PASCAL VERSION 5.3

BY

T.J. BOURNE

MOLIMERX LTD.

1 BUCKHURST ROAD, TOWN HALL SQUARE, BEXHILL-ON-SEA, E. SUSSEX.
Tel: (0424) 220391/223636 TELEX 86736 SOTEX G

Copyright 1983 T.J. Bourne

a

Fascal System Manual
Version 5.3

Table of antents

a

Introduction

-

Components of the system

UWHHUWA

s s« T
S UN~=D

Fascal Language supported
Definition

Restrictions

Extensions

Other points to note

Using the Editor

Using the Compiler

Running and debugging Fascal programs

Input and output

Miscellanegus facilities

Writing efficient programs

Appendices

A

B

o

m

I @ M

Formal ;anguage definition

Word—-symbols

Standard and other supplied procedures and functions
Other predeclared.identifiers

Use of memory

Frogram size limits

Error cod;s and messages

Use of chaining (CHAIN aor DO)

FPossible incompatibilities with previous versions

Fage 1

a

Pascal System Manual
Version 5.3

1 Introduction

This system provides the TRS-B0 Model I or HModel III user
with efficient Fascal praogram development and execution
facilities. Unlike most other FPascal systems, it compiles your
program directly to Z80 machine code, in standard TRS-80 disk load
module format. The user may be interested to know that the Editor
and Compiler are themselves written in Fascal.

. The system has been tested wif% TRSDOS 2.3, NEWDOS 2.1, VTOS
3.0, LDOS S5.0.2, DOSFLUS 3.3 and NEWDOS/80 2.0 for the Model I, as
well as TRSDOS for Model III. As well as DOS facilities, some
TRS-80 ROM ‘rogtines are used; these are caommon to Model I and
Model III. In these days of cheap RAM the system has been
structured to use nearly the full 48K bytes of available RAM, and
both the Editor and Compiler require this. However, programs
produced by the system will run in as little as 16K if they need
little storage of their own.

2 Components of the system
The system consists of the following components:

Editor - & screen—based editor (PASEDIT/CMD)
is provided. The compiler will also accept
source files produced by either Scripsit or
Electric Fencil, so long as each source
line is terminated by pressing the Enter

key.
Compiler - this is the program PASCT/CMD.’
Run—time System - this is provided in loadable form in the

file PASCAL/CMD. See also FASCAL/0OERJ
in section 6.)

A sample program FILECOMF/FAS is also supplied to demonstrate
the use of files and allow the user to verify that all parts of
the system are working. Users are advised to avoid confusion by
using the file extensions /FAS, /0OBJ and /CMD respectively for
source, object and command files. .

Fage 2

a

Pascal System Manual
Version 5.3

3 The Fascal lanquage supported
3.1 Definition

Those new to the Pascal language are advised to use one of
the many excellent introductory texts which are generally
available; particularly recommended is ‘'Pascal for Frogrammers’ by
Eisenbach and Sadler, published by Springer-Verlag, most of the -
examples in which have been run with this system exactly as they
stand. The language definitions given here assume some familiarity
with the language, and concentrate on the variations from the full
language in this implementation.

The base document for this implementation is the Second Draft
Froposal for an International Standard (IS0) Fascal (reference in
Appendix A), which was based on the Pascal User Manual and Report,
by Jensen and Wirth, published in 1975 by Springer—-Verlag,
referred to from now on as the Report. The lists of restrictions
and extensions which follow refer to the syntax definition in
Appendix A of the Draft Froposal. A full and formal definition of
the language supported by this system is given in Appendix A. It
is understood that the British and International Standards for the
Fascal language are or will be virtually identical to the Draft
Proposal.

3.2 Restrictions

Records are not supported.]

All files are 1implicitly declared by their appearance in the
program header as TEXT. No other file types are allowed.

Procedure and function parameters are not allowed.

File access 1is only by the standard procedures READ, READLN, WRITE
and WRITELN. GET and FUT are not available, and file buffers may
not be accessed directly.

No type may be referenced before it is declared.

Conformant array parameters are not supported.

Fage 3

a

Fascal System Manual
Version 5.3

3.3 Extensions

A variety of standard procedures and functions are predeclared,
several of which yield more efficient object code than would a
Fascal equivalent. See Sections 8 and 9 and Appendix C.

FROCEDURE and FUNCTION may be abbreviated ta FROC and FUNC
respectively.

The files INFUT (keyboard), OUTPUT (screen) and FRINT (line
printer) are predeclared and may ~be omitted from the program
header.

Sequential disk files are supported, as described in sectian 7.

The CASE statement has an optional ELSE clause which is performed
if no case is selected.

Hexadecimal constants may be used in source programs (but not in
input data). A hexadecimal constant consists of 1-4 hexadecimal
digits (0-9,A-F) preceded by &.

3.4 Other points to note

Since square brackets may not be available on the TRS-80, dotted
parentheses ((. and .)) may be used in array references, as
required by the standard. Square brackets (ASCII values 91 and 23)
may also be used, but will appear as arrows on Model I screens.
Since braces (curly brackets) may not be available on the TRS5-80,
starred parentheses ((# and %)) may be used to delimit comments.
Braces (ASCII values 123 and 125) may also be used, but will not
appear on unmodified Model 1 screens. Since the up-arrow on the
Model I has the ASCII value 91, rather than the correct 94, two
alternatives are allowed for the up—-arrow used as a pointer
qualifier: @ (at-sign), as allowed by the standard, or ASCII 94,
which appears as a right—arrow on Model 1 screens. .

The data types supported are INTEGER (-32768..32767), CHAR
(0..255, the usual TRS-80 character set) and BOOLEAN (FALSE and
TRUE), plus subranges of these and user-defined scalar types, and
also REAL (equivalent to TRS-80 single precision).

Though much type checking 1is performed by the compiler, some
errors may not be detected. The user is particularly cautioned
that 1invalid operations on real data may cause the ROM routines to
fail in various ways, possibly including looping. .
Note that GOTO may only be used as permitted by the proposed
standard. FBEroadly, this means that a label at other than the
outermost level of nesting within a block, i.e. within any FOR or
CASE group, may only be referenced by a GOTO within the statement
labelled. The compiler will detect most infringements of this
rule; those not detected will cause execution errors. Note also
that GOTO to a label which 1is declared but not defined will not be
detected by the compiler, and will cause a run time error.

Fage 4

(‘d
3

4 Usi

has a
carri

ng the Editor

a

Fascal System Manual
Version 5.72

The Fascal Editor PFPASEDIT is a screen—-based editor whi
produces and accepts as input standard ASCII text files. Each 1i

maximum 1eng
age return ch

th of 64 characters and 1is terminated by
aracter, decimal value 13. The entire file

terminated by a character with decimal value zero. This format

compa
Fenci
used.

tryin

tible with th
1, also with

When the edito
g to recover

e DOS commands LIST and FRINT and with Electr
Scripsit so long as the ASCII option (S5,A)

r is entered it first offers the option
a file which 1is already in memory. This may

useful in case of finger trouble, hardware malfunction and so o
In most cases this recovery is successful if no other program h

been
corru
that
proce

it is
accor
pcurso
is po

Up—-ar

Down-—-

Left-

Right

NOTE:

run since th
pted the res

e editor was last used. If memory has be
ults are unpredictable, so it is worth checki

the beginning and end of text are as expected befo

eding.

The basic principle of the editor 1is that text is changed

seen aon the
ding to the

screen, character by character or line by lin
ey pressed and the current position of ¢t

ch
ne

a
is
is
ic
is

of
be
Nne.

as
en
ng
re

as
e,
he

ry which flashes alternately with the character over which it
sitioned. In the normal mode, pressing a key causes one
the following actions:

row -

artrow -

arrow -

—a&rrow -

The preceding

Move cursor up one line on the screen. If
already at the top of the screen, scroll the
screen down one line, unless already at the
start of the file.

Move cursor down one line on the screen. If
already at the bottom of the screen, scroll
the screen up one line. If at the end of the
file, add a new blank line to the end.

Move cursor left one space. If already at the
beginning of the line, move to the last
non-blank character in the previous line.

Move cursor right one space. If the line is
already full, move to the start of the next

line.

four keys may be held down to repeat the

cursor movement.

Fage S

of

a

Fascal System Manual
Version 5.3

Shift up-arrow - Delete the current line.

Shift down?arrow - Insert a‘blank line'before the cgrrent line. *
Shift left—arrog — Delete the current character.

Shift right—arrow - Insert a space before the current character.
Clear ' - Transfer to command mode (see below). *

Any other key = (in normal mode, with small cursor)

Replace the current character by the new
one, and move the cursor right one space.

(in insert mode, with large cursor)
Insert the new character at the cursor
position, and move the cursor and the
remainder of the line right one position.

* NOTE for WTOS and LDOS users — it will be necessary for you to
use shift clear instead of just clear, and shift @ instead of
shift down-arrow, because these systems intercept clear and shift
down—arrow. .

After transferring to command mode by pressing Clear or Shift
Clear, any of the following commands may be entered. Unless
otherwise stated, the text display is unchanged on completion of
the command. In each case the first letter of the command is
sufficient.

@ — The decimal value of any character may be input. This
character replaces the current character, and the
cursor moves on one space. This command may be used to
input the arrow characters and others not supported by
the standard keyboard routine.

Bottom - Move the cursor to the last character in the file.
Chop - Truncate the current line at the cursor position, by

chopping off all characters from the cursor (inclusive)
to the end.)

Divide — Divide the current line at the cursor position.
All characters from the cursor to the end become a new
line. :
End - Leave the Editor. A warning will be given if the

. file has been changed and not saved.

Page 6

-

Pascal System Manual

Version 5.3

Find - Find the next occurrence of a specified string. The
Editor will prompt for the search string, which should
be terminated by Enter. Fressing Enter without entering
& search string causes the previous search to continue
where it left off. If the string is found, the cursor
is left at the end of the line containing it.

Help - Help the user by listing the commands available.
Insert - Switch to insert mode.

Join = Join the next line on to the end of the current line.
block - A number of subcommands are provided for manipulating

blocks of text, as indicated below. Note that only oane
block may be marked at any one time.

B - mark the cursor position as the beginning of a
block :

C - copy the marked block to the cursor position

D - delete the marked block

E — mark the cursor position as the end of a block

F - forget the current block markers

Load — The Editor will prompt for the input file—spec and
load the file into the text buffer, overwriting any
previous contents. :

Memary - The number of free characters in fhe text buffer
will be displayed.

Number — Find the line with a specified line number. The editor
will prompt for the number. This command is useful
particularly in conjunction with run time error
messages giving line numbers.

Overwrite— Switch from insert mode back to normal mode.

Frint — The entire file will be printed an the line printer.

Save — The Editor will prompt for an output file-spec
(which may or may not be that used by Load) and
write the entire text file to it. The text remains
unchanged, and may be saved again to a different
file for security.

Top - Move the cursor to the first character in the file.

NOTE - if the message "TEXT SFACE NEARLY FULL" is displayed, the
text buffer is undamaged and the current file may safely be saved.

If an error is detected in a file specification during Load or
Save, you will be given an opportunity to try again.

Fage 7

-

Fascal System Manual
Version 5.3

=

3 Using the Compiler

A Fascal source program is put ‘into a disk file using the
supplied text editor (FPASEDIT), Scripsit or Electric Pencil. Each
line of up to 99 characters must be terminated by a return
character (13); usually by pressing the ENTER key. New page.
markers may be used and will be obeyed when listing the program.

The compiler is run by typing its file—-spec in the usual way.
It will prompt for the input and output file-specs, in standard
TRS-80 format, and ask what options are required. These are
selected by typing their initial letters, in any order. The
following options are available: ’ ’

A - Append the run time system to the compiler output.

C — Compatibility with version 4. Allows parentheses in array
declarations and references, also permits ‘falling
through’ a CASE statement. '

— Debug mode - implies options Ny R and S.

- Allow multiple input files (see below).

— Generate code to output line numbers for error messages.

Frint the source listing on the line printer.

— Generate code to check the range of values being assigned.

— Benerate code to check the values of array subscripts.

= Turn the trace option on initially.

= Wait if an error is detected.

E40NNTVTZXOC
!

The default is to do none of these. For example, replying WF
would cause the compiler to print the source listing, and to pause
after each error until the Enter key is pressed. ’

When an error is detected, the 1line in error will be
displayed with an up—-arrow pointing at the start of the item where
the erraor was detected. This may be past the actual error. If a
printed listing is alsa being produced, the error will be
indicated by a 1line beginning and ending with #****%% and the
suspect item indicated by an exclamation mark. In many cases the
compiler will attempt to "“correct" the error and continue.

NOTE that whenever the compiler is run the file YYFPASERR/ZYX
must be present throughout the .compilation process. If the A
option 1is used the file FASCAL/0OBJ must also be available for the
concluding stages of the compilation. :

Fage 8

Fascal System Manual
Version 5.3

To allow the compilation of programs larger than can be
edited as a single file by the Editor or Scripsit, and to permit
the inclusion of standard sets of procedures, multiple input files
may be compiled. If the M option is selected, the compiler will
ask how many: simply enter the appropriate number. There are no
restrictions on where the boundary may be between files, except
that of course a new file begins a new line. When the end of each
file is reached the compiler will prompt for the next File-spec.

The whole of the compilation process may be automated using

chaining 1f supported by vyour DOS. A sample program FASJCL to
achieve this is supplied, and details are given in Appendix H.

Fage 9

-

Fascal System Manual
Version S.7

6 Running and debugging FPascal programs

To run a generated ZBO program, it is first necessary to
ensure that the run-time system is loaded. This may be done by the
command FASCAL, or by forming a loadable program which includes
the run—-time system (see below). Then the program is run simply by
ﬁyping its file—spec.

To create a loadable program including the run-time system
the procedure recommended for previous versions may be followed.
Alternatively, the compiler option A may be used to do the job
automatically; in this case the output from the compiler will be a
complete executable program.

The break key has no effect when a Fascal program is running,
unless code has been included in the program to test for it using
FEEK. You could test for BREAK using the statement

IF ANDRITS(FEEK (14400) ,4) = 4 (% BREAK *) THEN action
within the main execution loop of your program.

A number of facilities have been provided to help vyou to
debug your programs. These include optional range checking of
values used in assignments and array references (R and § options
respectively) and optional use of line numbers in run time error
messages (N option). The D option may be used to imply NRS.

In addition, a trace facility 1is available. Any number of
values (variables, constants or expressions) may be output in each
call of the TRACE procedure, which has the same syntax as WRITE.
The output, which begins with an asterisk and the line number, may
be directed to any text file. Calls to TRACE will have no effect
unless tracing has been turned on; this may be done by the
compiler option T or by a call to the TRON procedure. Tracing may
be turned off by a call to the TROFF procedure. The TRACEON
Boolean function may be called within the program to see whether
tracing is in effect.

Fage 10

O

-

Fascal System Manual
Version 3.3

7 Input and output

Input and output operations may be to or from the keyboard,
screen, line printer and up to four sequential disk files in each
program. The format is the same in each case.

Output is by the WRITE and WRITELN procedures. The first
parameter is optionally a file name; if this is omitted OUTRUT
(screen) is assumed. Subsequent parameters are the values to be
output, and may be any expressions. The allowable value types and
their default formats and field widths are as follows:

Character string constants - Length of string

CHAR - 1 character

ARRAY OF CHAR - Length of array

BOOLEARN - &b characters, TRUE or FALSE
INTEGER - As in TRS-80 EBASIC

REAL - As in TRS-80 BASIC

The default format may be over—-ridden in each case by use of a
colon followed by a field width value; any additional spaces will
be inserted before the value to be output. If stated, the width
must not exceed 99. For example, ' ‘
WRITE(FRINT,J: 3
will print the current value of J in a field of three digits - if
J is 23 then a space followed by the digits 23 will be printed.
Contrary to the standard, this system allows you to output less
than a full value. For example,
WRITE (345: 2
will output just 45.

For real values a second width parameter may be supplied,
indicating the number of decimal places to appear in the output.

WRITELN forces a new 1line after all values in the list have
been output, while WRITE does not. FAGE sends a form feed
character (12) to a disk file or the printer, or does the
equivalent of the BASIC CLS if output is to the screen.

Input is by the READ and READLN procedures. The +first
parameter is aoptionally a file name;g if this 1is omitted INFUT
(keyboard) is assumed. Subsequent parameters are the variables to
which values are to be assigned. For character variables the next
character or characters of the input data will always be assigned.
For real variables the input data will be scanned for a real
constant, optionally preceded by a minus sign and/or including an
exponent; leading spaces are ignored. For variables of all other
types the input data will be scanned for an integer constant,
optionally preceded by a minus sign; leading spaces are ignored.

Fage 11

T
e

-

Fascal System Manual
Version 5.3

The EOLN and EOF functions may be tested before an input
operation to see whether the input pointer is at the end of the

line (carriage return, 1Z) or end of file respectively. READLN
forces the remainder of the current line to be discarded after all
variables in the 1list have been given values. READLN(INPUT) or

simply READLN may be used to wait for the ENTER key to be pressed.

To enable a program to test for a key being pressed without
having to use READ, the INKEY procedure 1is provided; this works
the same as TRS—-80 EBASIC INKEY#.

The above applies to disk files as well as to INPUT, OUTFUT
and FRINT. However, additional procedures are available for disk
files: '

TITLE must be used before the first reference to each disk
file, to assign a disk file to the FPascal file. There are two

forms of this procedure; the first, TITLE(filename), prompts the
user to input the file-spec from the keyboard, while the second,
TITLE(filename,string~literal—-or—-variable), allows the program to

provide the file-spec. Examples of their use can be found in the
supplied programs FILECOMF and FASJCL respectively. TITLE may be
used again after a file has been in use, and will then
automatically close the previous file before assigning a new one.

RESET or REWRITE are used to close a file (if it was apen)
and then open it for input or output respectively. The appropriate
one of these must be used before the first operation on each disk
file. ’

It is advisable to use CLOSE after the last output operation
on a file to cause the directory entry to be updated. However, all
files will be closed by the system when a program finishes,
whether normally or not. '

It is easy to make mistakes in typing in file specifications.
The ability has therefore been provided to trap such errors and
try again. To do this, use the procedure call ERRORTRAF(TRUE)
before the relevant RESET or REWRITE, and test the +function
ERRORCODE afterwards. If ERRORCODE is zero, all is well; otherwise
the value returned is the error code returned by D0OS, e.g. 24 for
file not in directory. To recover, simply repeat whatever process
was used to get. the file specification. If ERRORTRAF has not been
called, or is called again with the parameter FALSE, any
DOS—detected error will terminate the program.

Fage 12

Fascal System Manual
Version 5.3

8 Miscellaneous facilities

A number of procedures and functions have been provided to
make it easy to do things which would otherwise be difficult or
impossible to .achieve in Pascal. Flease note that use of these
facilities will make your programs more difficult to convert to
run on other Fascal systems.

CAaLL This allows you to call a routine written in Z80 machine
code and stored at a known location in memory. It needs
one parameter, the address of the routine.

CMD This allows you to exit from your program, passing a
character string constant which will be executed as a
DOS command. This may be the name of the next program
in & series.

FAIL This terminates your program and returns to DOS, also
ending a DO or CHARIN sequence if one was in effect.

INKEY This retwns a character value corresponding to the key
pressed if any, otherwise CHR{D).

INF This returns the value read from the specified port, as
in BASIC.
LPEN This needs one parameter, a screen paosition in the range

O to 1023. It is designed for use with the light pen
marketed by Molimerx. It returns TRUE if the light pen is
detected at the specified screen position. Users are
advised to call this function twice, with a brief delay
between the two calls, to avoid erroneous results caused
by timing problems.

MEMORY This returns the minimum amount of free memory since the
start of the program. If there is more than 32767 bytes
free, it returns 3I2767.

ouT This sends the specified value to the specified port, as
in BASIC.
FLOT This is equivalent to the 5-80 BASIC commands SET and

RESET. The first parameter is the X position (0 to 127),
the second the Y position (O to 47) and the third a flag
with the value 1 for SET and O for RESET.

RANDOM Reset the random number seed.

Fage 13

RND

SOUND

STOF .

-

Fascal System Manual
Version 5.3

The single parameter is an integer as in 5-80 BASIC. If
0O, RND returns a real value between 0 and 1, otherwise it
returns an integer value between 1 and the parameter
value (inclusive).

This takes two parameters, a frequency and a duration.
It makes a sound in the usual S-80 way if a sound box is

connected to the cassette lead.

This may be used to end a program from within a procedure
or function.

Fage 14 -

)
N

Fascal System Manual
Versiaon 5.3

? Writing efficient programs

Since a compiled Fascal program is automatically much faster
than the equivalent interpreted BASIC program, the efficiency of
vyour Fascal programs may not often be important. However, when it
is, you may find it useful to note some ways in which you can help
the compiler to generate the most efficient code possible (and to
use the minimum of memory).

Using the right variable type for the job is important. All
arrays are automatically packed if possible; this means that
character and boolean arrays are always packed into a single byte
per element, as are integer subrange arrays with values in the
range 0-255 and user—-defined types with 256 values or less. Use of
these types where possible not only saves space but also causes
more efficient code to be generated in many cases. Real variables
should be used only when strictly necessary, since every operation
on them involves at least one ROM call, 'and often several.

The location of the variable declaration is also important,
particularly .- for scalars. The most efficient access 1is always to

variables declared 1in the main program, since space for them is
allocated statically within the program code. Next best are
parameters and local variables (those declared in the same

procedure or function as the reference). When declaring arrays,
note that a lower bound of zero is most efficient, with a value of
one next best. Any other lower bound will require a subtraction at
every element reference.

Some of the Pascal control structures are more efficient than
others. The simplest code is generated for CASE and FOR
statements, while complex logical expressions in IF, WHILE or
REFEAT may involve several calls to the run—-time system. CASE
statements where the selector expression gives a single-byte value
(see paragraph above) produce particularly compact code.

A number of functions and procedures have been provided
specifically to provide efficent ways of manipulating bits and
bytes directly. As well as Pascal equivalents of the BASIC FEEEK
and FOKE, these include LOW, HIGH and WORD, three functions for
separating a word (integer value) into its high—-order and
low—order bytes and for building a word from two bytes. Bit
handling functions ANDEITS, OREITS, NOTRBITS, SHLERITS and SHREITS
are also provided; see Appendix C. The procedures MOVEUFP and
MOVEDN, each with the three parameters From address, To address
and Length, give access to the Z-80 instructions LDIR and LDDR
respectively, and allow the efficient movement of large blocks of
data; they may be used in conjunction with VARPTR, which always
returns the address of the first byte of the data concerned. Most
of these procedures and functions generate in-line code.

Fage 135

-

Fascal System Manual
Version 5.3

Appendix A — Formal Language Definition

The Fascal language supported by this compiler is based on
that defined in the Second Draft Froposal for a Fascal standard
(IS0 DF7185.1, BSI document reference 81/60021). This is very
similar ta, and is based on, Appendix D, Syntax, of the Fascal
User Manual by Jensen and Wirth (full reference in section 3),
which may be easier to abtain. It is believed to be virtually
identical to the recently published Pascal standard, BS &6192.

The follawing conventions are used in the definitions which
follow:

1 Lower case words, which may include hyphens, refer to rules
occurring elsewhere in the syntax definition.:

2 1Items occurring within parentheses in a definition may occur
zero, ane or more times.

3 Where a number of items, which may be grouped between less—than
and greater-than signs ({ and »), are separated by OR, one and
only one of the items must appear.

4 Anything occurring within double quotes (") must appear exactly
as shown.

5 Anything occurring within dotted parentheses (. and .) may occur
once. or not at all.

The following 1is a complete list of the syntax rules
applicable to this implementation, with an indication of those
additional rules included in the standard language definition:

actual-parameter ::= expression OR variable-—access

actual —parameter-list ::= " (" actual-parameter

(*"," actual-parameter » ")*"
adding-operator ::= "+" OR "-" OR "OR"
apostrophe—-image 1:= """

array-type ::= "ARRAY" " (." index-type ("," index-type)
SNy “OF" component-—-type)

array-variable ::= variable—access

assignment-statement ::= < variable-access OR
function—-identifier > ":=" expression

base—-type ::= ordinal-type .

block ::= label-declaration-part constant-definition-part
type-definition-part variable-declaration-part
procedure—and-function-declaration-part
statement—-part

boolean—-expression ::= expression

bound-identifier —— not implemented

buffer-variable —— not implemented

case—canstant ::= constant

case-constant—-list ::= case—-constant ("," case-constant)

case-index ::= expression

case—-list—-element ::= case-constant-list "“:" statement

FPage 16

entire-variable

-

Fascal System Manual
Version 5.3

"CASE" case—index "OF" case-list-element

case-statement ::
(";" case-list-element) ("“;")
(. "ELSE" statement .) YEND"

— i"nwen

character-string

component—type ::

companent—-variable ::= indexed-variable

compound—-statemént ::= "BEGIN" statement-sequence "“END"

conditional-statement ::= if-statement OR case-statement

conformant—array-parameter—-specification —-— not implemented

conformant-array-schema -— not implemented

constant ::= (. sign .) < unsigned-number OR constant-identifier
OR character-string

constant—-definition ::= identifier "=" constant

constant—-definition-part ::= (. "CONST" constant—definition "“j;"
(constant—definition ";") .)

constant-identifier ::= identifier

control-variable ::= entire-variable

digit : : - II(") 11 DR u 1 n DR "2“ DR IISH DR ll4ll QR “5" OR llbll DR ll7ll
DR IIBH DR “9"

digit—-sequence ::= digit (digit)

directive ::= "FORWARD"

domain—-type —-— type-identifier

else-part ::= "ELSE" statement

empty-statement

string-element (string-element) "¢
type—-denoter

e MmMa |l

:= variable-identifier
enumerated-type ::= "(" identifier-list ")"“
expression ::= simple—-expression
(. relational-operator simple-expression .)
factor ::= variable-access OR unsigned-constant OR
function—-designator 0OR set—constructor OR
"(" expression ")" OR "NOT" factor

field-designator -—- not implemented
field-identifier —— not implemented
field-list —— not implemented

field-specifier —— not implemented

file-type ::= "FILE" "“OF" component-type
file-variable ::= variable—-access
final-value :1:= expression

fixed-part —— not implemented

for-statement ::= "FOR" control-variable ":=" initial-value
< "TO" OR "DOWNTO" > final-value "DO" statement

formal -parameter-list ::= "(" formal-parameter—sectian

("3" formal-parameter-section) ")*"

fornMal -parameter—-section ::= value-parameter-specification OR
variable-parameter—specification

function-block ::= block

function—-declaration ::= function—heading ";" directive OR
function—-identification “;" function-block OR
function-heading ";" function-block

function—-designator ::= function—-identifier
(. actual-parameter-list .)

Fage 17

NS

C

-

FPascal System Manual
Version 5.3

function—heading ::= < “FUNCTION" OR "FUNC" > identifier
| (. formal-parameter-list .) ":" result-type
function—identification :1:= < "FUNCTION" OR "FUNC" >.
function—-identifier :
function—identifier ::= identifier

functional-parameter—-specification -- not implemented
goto-statement ::= "GOTO" label
hexadecimal—-constant ::= "%" hexadecimal-digit
(hexadecimal-digit)
NB A maximum of four hexadecimal digits may appear.
hexadecimal-digit ::= digit OrR "A" OR "E" OR "C" OR "D" OR “E"
DR IIF'II
identified-variable —— pointer—-variable "@"

identifier ::= letter (letter OR digit)
identifier-list ::= identifier ("," identifier)
if-statement ::= "IF" boolean—-expression "THEN" statement
(. else—-part .)
index—expression ::= expression
index—type ::= ordinal-type
index—-type—-specification —-— not 1mplemented
indexed—variable :1:= array-variable "(." index-—expression
(“"," index—-expression)} ".)"
initial-value ::= expression
label ::= digit-sequence .
label -declaration-part ::= (. "“LARBEL" label ("," label) ";"
letter ::= any upper—case or lower-case letter
member-designator ::= expression (. ".." expression .) -
multiplying—operator ::= "x" OR "“/" OR "DIV" OR "MOD" OR "“AND"
new—ordinal-type ::= enumerated-type OR subrange-—-type
new—pointer—-type —-—- "@" domain-type :
new—-structured-type ::= (. "PACKED" .) unpacked-structured-type
new-type ::= new-ordinal-type OR new-structured-type OR
new—pointer—-type
ordinal—-type ::= new—ordinal-type OR integer—-type OR
boolean—type OR char—-type OR ordinal-type—identifier
ordinal-type-identifier ::= identifier

packed—-conformant—array-schema -- not 1mp1emented

pointer—type —— new—-pointer-type OR
pointer—type—-identifier

pointer—type—identifier —-— type-identifier

pointer-variable —-— variable-access

procedural -parameter—-specification —-— not implemented

procedure—and—-function—declaration—-part ::=
(< procedure—-declaration OR function-declaration >

“; ")

procedure-block ::= block

procedure-declaration ::= procedure-heading ";" directive OR
procedure—identification ";" procedure-block OR
procedure—heading ";" procedure—-block

procedure—-heading ::= < “FPROCEDURE" OR “FROC" > identifier
(. farmal-parameter-list .)

procedure identification ::= < "PROCEDURE" OR "“FROC" =
procedure—identifier

Page 18

Fascal System Manual
Version 5.3

procedure—identifier :1:= identifier
procedure—-statement ::= procedure-identifier
(. actual-parameter-list .)
program ::= program—heading ";" program—-block ".*"
program—block ::= block
program—heading ::= "FROGRAM" identifier
(. "“(" program—-parameters ")" .)
program—parameters ::= identifier-list
read—-parameter-list ::= "(" (. file-variable "," .)
variable—access ("," variable—access) """
readln-parameter—list z:= (. "(" < file-variable OR
variable—-access » (" " variable—-access) ")" .)

record-section —— not implemented

record-type —— not implemented

record-variable —-- not implemented

record-variable-list —-— not implemented

relational —operataor ::= "=" OR "<>" OR “<" OR ">" OR "“<=" OR "=
DR u INII

repeat—-statement ::= "REPEAT" statement-sequence

"UNTIL" boolean—expression

repetitive-statement ::= repeat-statement OR while-statement OR
for—statement

result-type ::= simple-type—identifier OR
pointer—-type-identifier

scale-factor ::= signed-integer

set—constructor ::= "(." (. member—-designatoar
("," member-designator) .) ".)"

set-type :1:= "SET" "OF" base-type

Sign : := 'l+ll DR "w__u

signed-integer ::= (. sign .) unsigned-integer

signed—-number ::= signed-integer OR signed-real

signed-real ::= (. sign .) unsigned-real

simple—-expression ::= (. sign .) term (adding-operator term)

simple-statement ::= empty-statement OR assignment-statement OR
procedure—-statement OR goto-statement

simple-type ::= ordinal-type OR real-type

simple-type-identifier :1:= type-identifier

special-symbol ::= "+" OR "-" OR "#" OR "/" OR "=" OR "<" OR ">"
DR “" (- " DR (1} -) " OR " . " OR " ’ “, OR " . " DR ll; 1" DR n (Il
OR ") n DR n ,.\-: :}ll DR Il<:= II‘ DR " >= " OR n : =ll DR 1] . e "
OR word-symbol

statement ::= (. label ":" .) <simple-statement OR
structured—-statement >

statement-part ::= compound-statement

statement—-sequence ::= statement (“;" statement)

string—-character ::= any character from the TRS5-80 character set

string—-element ::= apostrophe—-image 0OR string-—-character

structured—-statement ::= compound-statement OR :
conditional-statement OR repetitive-statement

structured-type ::= new—-structured-type OR
structured-type-identifier

structured-type—-identifier ::= type—identifier

Fage 19

-

Pascal System Manual
Version S.73

subrange—-type ::= constant ".." constant

tag-field —-— not implemented
tag-type —-- not implemented
term ::= factor (multiplying-operator factor)
type-definition ::= identifier "=" type-denater

type-definition-part ::= (. "TYFPE" type-definition ";"
(type-definition "“;")
type-denoter ::= type-identifier OR new-type
type-identifier ::= identifier
unpacked—-conformant—array—-schema —— not implemented
unpacked-structured-type :1:= array-type OR set—-type OR file-type
unsigned-constant ::= unsigned-number OR character-string OR
constant—-identifier OR “NIL"
unsigned-integer ::= digit-sequence
unsigned—-number ::= unsigned-integer OR hexadecimal-constant
OR unsigned-real .
unsigned-real ::= unsigned—integer "." digit-sequence
(. "E" scale-factor .) OR -
unsigned-integer "E" scale-factor
value-parameter—-specification ::= identifier—-list ":"
type—-identifier
variable—access ::= entire-variable OR component-variable OR
identified-variable
variable—-declaration ::= identifier-list ":" type-—-denoter
variable-declaration-part ::= (. "VAR" variable-declaration "“;"
(variable—-declaration "3;") .)

variable—-identifier ::= identifier

variable-parameter—specification ::= "VAR" identifier-list
“:" type-identifier '

variant —-— not implemented

variant-part -- not implemented

variant—-selector —— not implemented

while-statement ::= "WHILE" boolean-expression "DO" statement

with-statement -- not implemented '

word—-symbol ::= "AND" OR "ARRAY" OR "“BEGIN" OR "CASE" OR "CONST"“
OR "DIV" OR "DO" OR "DOWNTO" OR "“ELSE™ OR "END"
OR “FILE" OR "FOR" OR “FUNC" OR "FUNCTION" OR “GOTO"
OR "IF" OR "IN" OR "LAEBEL" OR "MOD" OR “NIL" OR "NOT"
OR "OF'" OR "OR" OR "PACKED" OR “FROC" OR "PROCEDURE"
OR "FROGRAM" OR "RECORD" OR."REFEAT" OR "SET" OR "“THEN"
OR "TO" OR "TYFE" OR "UNTIL" OR "VAR" OR “WHILE"
OR "WITH" .

write—-parameter ::= expression (. ":" expression
(. ":" expression .) .)

write-parameter-list ::= "(" (. file-variable "," .)
write-parameter ("," write-parameter) "“)"

writeln-parameter—list ::= (. "(" <file-variable OR
write—-parameter > ("," write-parameter) ")*" .)

Fage 20

-

Pascal System Manual
Version 5.3

Appendix B - Reserved words
The following words have specific meanings in Pascal and may

not be used as identifiers, even though they may naot all be
recognised by this version of this particular compiler:

AND FILE NIL SET
ARRAY FOR NOT THEN
BEGIN FORWARD . OF TO '
CASE - FUNC OR TYPE
CONST FUNCTION FPACKED UNTIL
DIV . GOTO PROC VAR
DO IF FROCEDURE WHILE
DOWNTO IN FROGRAM WITH
ELSE LABEL RECORD

END MOD REFEART

Fage 21 -

-

Fascal System Manual
Version 5.3

Appendix C — Standard and other supplied procedures and functions

The compiler operates as if the following were all . declared in an
outer block encompassing the entire program. Though these

identifiers may be used for other purposes, the user 1is strongly
advised not to do so.

-

ARS (expr) Integer or Real Function - Absolute value

ANDBITS (el ,e2) Integer Function — Logical AND of two 1nteger
values
ARCTAN (expr) Real Function - Arc Tan (radians}) (As BASIC ATN)
AT (expr) Frocedure - Fosition cursor on screen
(as TRS-80 BASIC PRINT @) '
CALL (expr) Frocedure - Call routine at fixed address
(use FEEK/POKE to pass parameters)
CHR (expr) Char Function - Convert to character
(as TRS-80 BASIC CHR#)
CLOSE (file) Frocedure - Close a disk file
CMD (string) Procedure - Exit, passing a command to DOS
COS (expr) Real Function - Cosine (angle in radians)
DISFOSE (ptr) Procedure - Free addressed variable
EOQOF (file) " Boolean Function - True if at end of file
EOLN(file) Boolean Function - True if at end of line
ERRORCODE Integer Function - DOS error code after ERRORTRAF
ERRORTRAP (bool) Procedure - Turn I/0 error trap on or af+
EXF (expr) Real Function - Exponential (as BASIC EXF)
FAIL Procedure - Exit via DOS error exit 4030 Hex
(will abort chaining) '
HIGH (expr) Char Function - Get high—-order byte of value
INKEY Char Function - Return key value if one pressed
' (as TRS-80 BASIC INKEY#)
INF (port) Integer function — As BASIC INF
LN (expr) Real Function - Natural Log (as BASIC LOG)
LOW (expr) Char Function - Get low—-order byte of value
LFEN (pos) Boolean Function - Senses whether the 11ght pen is
at the specified screen position
MARE (ptr) Frocedure - Remember current heap position
MEMORY Integer Function - Minimum amount aof free memory

(will never return a.value greater than 3I27467).
MOVEDN(f,t,1) FProcedure - EBlock move downwards (Z80 LDDR)

From and To addresses should be top of block
MOVEUF (f,t,1) Procedure - Rlock move upwards (Z80 LDIR)

From and To addresses should be bottom of block

NEW(ptr) Frocedure - Allocate storage for addressed variable
NIL Constant - Fointer to nothing

NOTRITS (expr) Integer Function - Logical NOT of an integer value
0DD (expr) Boolean Function - True if expression is odd

ORBITS (el ,e2) Integer Function - Logical OR of two integer values

Fage 22

-

Pascal System Manual
Version S.3

ORD (expr) Integer Function - Convert to integer
(similar to TRS-80 BASIC ASC, but
may be used for any type except Real)
OUT (port,val) Frocedure - As BASIC QUT
PAGE (file) Frocedure - Start new page or screen
FEEK (expr) Integer Function - As TRS-80 EASIC PEEK
PLOT (x,y,flag) Procedure - Plot TRS-80 graphics
(for SET use FLOT(x,y,1),
for RESET use FLOT(x,y,0))
FOEE (addr,val) Frocedure - As TRS-80 EBASIC POKE

FRED (expr) Function (Any type except Real) - One less than
value of expression

RANDOM Frocedure - Reset random number seed (as BASIC)

READ(...) Procedure - Standard input procedure

READLN (. ..) Frocedure - Standard input procedure

RELEASE (ptr) Frocedure - Reset heap to pointer value (from MARE)

RESET (file) Frocedure - Open disk file for input

REWRITE(file) Procedure — Open disk file for output

RND (expr) Real Function - As TRS-80 EBASIC RND(n) where n
is an integer.

ROUND (expr) Integer Function - Round a real value

SHLEITS(el,e2) Integer Function - Shift the first value left the
’ number of bits given by the second value

SHREITS(el,e2) Integer Function - Shift the first value right the
number of bits given by the second value

SIN(expr) Real Function - Sine of angle (in radians)
SOUND (f ,d) Frocedure - Make a sound of the specified frequency
and duration)
SER (expr) Real or Integer Function - Square of a number
SGRT (expr) Real Function - Square root
STOF Frocedure - Exit from program without getting
' to the end of the main block
SUCC (expr) Function (Any type except Real) - One maore than
value of expression
TITLE(file) Frocedure - Get file—-spec from keyboard
TITLE(file,string or char array)
Procedure - Use supplied string as file-spec
TRACE (. ..) Frocedure - If trace flag is set, output the
specified values to the specified file
TRACEON Boolean Function - Indicate whether trace flag is
set
TROFF Frocedure - Set trace flag off
TRON Procedure - Set trace flag on
TRUNC (expr) Integer function - Truncate real value to integer
WORD (high,low) Integer Function Build word from two bytes
WRITE(...) Frocedure Standard output procedure

WRITELNC(...) Frocedure Standard output procedure

-

Fascal System Manual
Version 3.3

Appendix D — Other predeclared identifiers

Files - INPUT - The TRS-80 keyboard

QUTRFUT -~ The TRS-80 display
FRINT — Line printer (if available)

Types — BOOLEAN - (FALSE,TRUE)
CHAR — Any ASCII character, byte value 0..235
INTEGER - Any value from —-32768 to 32767 _
LOWINT - Integer values in the range 0..235
REAL - As TRS-80O BASIC single precision
TEXT — Equivalent to FILE OF CHAR

Constants — MAXINT - 32767

Appendix E — Use of memory

The system requires 4BK bytes of RAM. Generated Fascal
programs may run in as little as 16k depending on their data
requirements. The run—-time system occupies approximately 4K bytes
starting at S500 hex, and generated ZB0O code starts at 6500 hex.
Input/output buffers are located from S200 to S4FF on Model I, and
at the end of the generated code on Model IIIl. The run-—-time stack,
which includes most variable storage as well as r#urn addresses
and so on, starts at the top of available memory and grows
downwards. The highest address to be used is taken from the DOS
location HIGH# at 404%9/A Hexx on Maodel I or 4411/2 Hex on Madel
III. Lower case drivers and other routines in high memory will be
safe so long as they set HIGH#¥ correctly, as in VTOS and Newdos
80. The Editor and Compiler allow at least 200 bytes free for
device drivers etc. (nearer 1K bytes on Model I}.

Fage 24

-

Fascal System Manual
Version 5.3

Appendix F — Size Limits

»

The following limits apply to the size of programs which may

be handled by the system:

Editor >
Length of source line &4
Total number of characters in text 29000

Compiler

Length of a source line 9
Length of a string constant Q7
Length in an output format 9
Length of keyboard input up to ENTER 128
Maximum length of an identifier 9
Number of user-—-defined identifiers 370 (see note below)
Length of user—-defined identifiers 1500
Number of active cases + 200
I % number of nested blocks ’
Lowest value in a set (o}
Highest value in a set : 2955

Note that the space for user—-defined identifiers is also used to

hold details of array dimensions and any other types which
declared implicitly, e.g.

VAR A: ARRAY (0..7,0..9) OF (YELLDN,RED,BLUE);
takes one space for A, two for the two levels of array, one
for the implicitly declared types ©O..7 and 0..9, one for

implicitly declared type (YELLOW,RED,BLUE) and one each
YELLOW, RED and BLUE, & total of nine entries. '

Fage 25

are

each
the
far

-

Pascal System Manual
Version 5.3

Appendix G — Error codes and messages
G.1 Compilation errors

2 Identifier expected
3> FROGRAM expected
4) expected
S : expected
8 OF expected
? (expected
11 (. expected (i.e. left square bracket)
12 .) expected (i.e. right square bracket)
13 END expected
14 ;3 expected
15 Integer constant expected
16 = expected
17 BEGIN expected
18 Type expected
20 . expected
25 4 expected
26 .. expected
29 Undeclared type
33 Aggregate not allowed here
38 A string constant must contain at least one character
46 Scalar constant required
S0 Error in constant
S1 := expected
52 THEN expected
S3 UNTIL expected
54 DO expected
S5 TO or DOWNTO expected - TO assumed
58 Illegal factor in expression
62 Filename expected
?1 String constant too long
?2 Unexpected end of program — .check for unmatched string or
comment delimiters '
9% Compiler error
102 Invalid range — lower bound exceeds upper bound
103 Invalid use of identifier
104 Undeclared identifier
106 Numeric value required here
109 Real value or variable not allowed in this context
114 Base type must not be real
116 Farameter value is not of required type
1192 When FORWARD 'is used, no declaration of parameters or
returned value is allowed with the procedure body
126 Wrong number of parameters
130 Set expression expected
131 Illegal comparison
135 Boolean value required
137 Error in type of set element
138 Too many subscripts
13?2 Subscript does not match declared index type
141 Fointer value expected .

FPage 26

143
145
146

165
166

167
247
248
249
250
251

P

253

-«

Fascal System Manual
Version 5.3

Illegal loop control variable

Type conflict

File must be of char - in this version files may only be
declared as TEXT or FILE OF CHAR

Label is already defined

Label /GOTO nesting conflict - see GOTO restrictions in
Section 3-

Label not declared

Total length of all identifiers is too high

Value out of declared range

Input line too long

Too many identifiers

Too many nested blocks or cases

Too many disk files

Feature not yet implemented

Fage 27

Pascal System Manual
Version 5.3

G.2 Run—time errors

The <following messages may be produced by the run-time
system. Since this is used by all the programs in the system, they
may also be produced by the Editor or Compiler.

Out of memory — The stack has extended down as far as
the end of the program. The cure is
usually to reduce the size of arrays.

Error on file n — Where n is a number from 1 to 4
indicating the relative position in the
PROGRAM header (not counting INFUT,
OUTFUT and PRINT) of the offending file.
Usually & DOS message appears first
which fully explains the erroaor. If not,
it is a logical error such as writing to
a file which was RESET.

Divide by zero — Integer or real division by =zero.

Maths error : - Error in use of standard procedure or real
arithmetic, such as SGRT of negative value.

Source error n - A serious error of type n was detected
at the line stated during compilation.

Value n out of range — Compiler option R or S was selected, and
either a value to be assigned is outside
the range declared for the target, or an
array subscript is outside the range of
the index type.

No case for value n - A CASE statement did not include an ELSE
clause, the C option was not specified and
the value of the case—-index did not match
any of the specified case—constants.

No digits read - A READ or READLN for a non—character value
found an invalid ¢haracter before the first
digit.

No value for label n - The given label is the subject of a GOTO,
and was declared but not defined.

In each case the message will be followed by
at line n

if the line number .option was selected or the error was detected
at compile time.

Page 28

-

Fascal System Manual
Version 5.3

Appendix H — Use of chaining (CHAIN or DO)

In this system steps have béen taken to facilitate the use of
chaining with operating systems such as NEWDOS/80 (which is the
one used by the author). In particular, the FAIL procedure has
been provided; when called, this terminates the program by
signalling an error to DOS, in such a way that chaining will be
terminated. This is used by the compiler if it has found more than
trivial errors during compilation, so that standard JCL or DO
files can be used for compiling a program and then running & test
or generating a new version. ‘

A program FASJCL is supplied in source and command forms to
illustrate this technique. When run using the PASJCL command, it
asks for the ‘program name, and then offers the options of
including a test run, or alternatively either generating a new
version (program/CMD) or simply doing a test compilation. It then
displays the compiler options available and invites a selection. A
file FASRUN/JCL is created by the progfam and then invoked by
CMD('DO FASRUN'), and a file TEMF/ORJ is required (or created) by
the first and third options. You may of course need to tailor this
approach to fit your operating system, and are free to do so. As
it stands the program works with NEWD0OS/80 Version 2. Note the use
of TITLE(JCL, 'FASRUN/JCL) to save the need for you to type in a
file-spec..

This approach could be extended to build a JCL file for
compiling & program consisting of more than one source file.
Simply change the options line to MW, add a line saying how many
input files are present, and include any additional source
file-specs after it, one per line. :

Fage 29

-

Pascal System Manual
Version 9.3

Appendix I - Fossible incompatibilities with previous versions

Upper and lower case letters are now treated as equivalent
everywhere except 1in character strings and comments, though they
will be listed as entered.

Dotted parentheses ((. and .)) should now be used where the
language requires square brackets. Ordinary parentheses will still
be accepted if the compiler‘'s C (compatibility) option is
selected.

Bit—-handling functions ANDEITS, .ORRITS, NOTEITS, SHLEITS and
SHREITS have been added. The operators AND, OR and NOT may now
only be used with boolean operands; the non-standard operators SHL
and SHR are no laonger available.

Fage 30O

	pascal53_0000
	pascal53_0001
	pascal53_0002
	pascal53_0003
	pascal53_0004
	pascal53_0005
	pascal53_0006
	pascal53_0007
	pascal53_0008
	pascal53_0009
	pascal53_0010
	pascal53_0011
	pascal53_0012
	pascal53_0013
	pascal53_0014
	pascal53_0015
	pascal53_0016
	pascal53_0017
	pascal53_0018
	pascal53_0019
	pascal53_0020
	pascal53_0021
	pascal53_0022
	pascal53_0023
	pascal53_0024
	pascal53_0025
	pascal53_0026
	pascal53_0027
	pascal53_0028
	pascal53_0029
	pascal53_0030

