Forward References

Chapter 17

] INCLUDING FILES

3
10
5
16 The fact that the TURBO editor performs editing only within memory lim-
8 its the size of source code handled by the editor. The | compiler direc-
4 tive can be used to circumvent this restriction, as it provides the ability
2 to split the source code into smaller ‘lumps’ and put it back together at
1 compile-time. The include facility also aids program clarity, as commonly
Ok. Program stopped again. used subprograms, once tested and debugged, may be kept as a ‘li-

brary’ of files from which the necessary files can be included in any oth-

er program.

The above program is actually a more complicated version of the follow- The syntax for the | compiler directive is:
ing program:

{$I filename}
program Catch222;

Var where filename is any legal file name. Leading spaces are ignored and
X: Integer; lower case letters are translated to upper case. if no file type is
begin specified, the default type .PAS is assumed. This directive must be
Write('Enter any integer: '); specified on a line by itself.
Readln(X);
while X <> 1 do Examples:
begin {$Ifirst.pas}
if Xmod 2 = 0 then X := X div 2 else X := X*3+1; {$I COMPUTE.MOD}
Writeln(X); {$iStdProc }
end;
Write('0k. Program stopped again.'); Notice that a space must be left between the file name and the closing
end. brace if the file does not have a three-letter extension; otherwise the

brace will be taken as part of the name.
It may interest you to know that it cannot be proved if this small and
very simple program actually will stop for any integer! To demonstrate the use of the include facility, let us assume that in your
‘library’ of commonly used procedures and functions you have a file
called STUPCASE.FUN. It contains the function StUpCase which is
called with a character or a string as parameter and returns the value of

this parameter with any lower case letters set to upper case.

146 TURBO Pascal Reference Manual - INCLUDING FILES 147

wvwfastio.com

http://www.fastio.com/

INCLUDING FILES

Chapter 18
- OVERLAY SYSTEM

File STUPCASE.FUN:

function StUpCase(St: AnyString): AnyString;
Var I: Integer;
begin
for I := 1 to Length(St) do
St[I] := UpCase(St[I]);
StUpCase := St
end;

The overlay system lets you create programs much larger than can be
accommodated by the computer's memory. The technique is to collect a
number of subprograms (procedures and functions) in one or more files
separate from the main program file, which will then be loaded automati-
cally one at a time into the same area in memory.

In any future program you write which requires this function to convert

strings to upper case letters, you need only include the file at compile-
time instead of duplicating it into the source code:

The following drawing shows a program using one overlay file with five
overlay subprograms collected into one overlay group, thus sharing the
same memory space in the main program:
program Include Demo;
type
InData= string(80];
AnyString= string[255];
Var
Answer: InData;
{$I STUPCASE.FUN}
begin
ReadLn(Answer);
Writeln(StUpCase(Answer));
end.

Main program Overlay file

Main program code Overlay procedure 1

Overlay area Overlay procedure 2

This method not only is easier and saves space; it also makes program
updating -quicker and safer, as any change to a ‘library’ routine will au-

Overlay procedure 3
tomatically affect all programs including this routine. yP

Notice that TURBO Pascal allows free ordering, and even muiltiple .oc-
currences, of the individual sections of the declaration part. You may
thus e.g. have a number of files containing various commonly used type
definitions in your ‘library’ and include the ones required by different pro-
grams.

Overlay procedure 4
Main program code .

Overlay procedure 5

All compiler directives except B and C are local to the file in which they
appear, i.e. if a compiler directive is set to a different value in an included
file, it is reset to its original value upon return to the including file. B and
C directives are always global. Compiler directives are described in
Appendix C.

Figure 18-1 Principle of Overlay System

Include files cannot be nested, i.e. one include file cannot include yet
another file and then continue processing.

148 TURBO Pascal Reference Manual OVERLAY SYSTEM 149

wvwfastio.com

http://www.fastio.com/

OVERLAY SYSTEM

150

When an overlay procedure is called, it is automatically loaded into the
overlay area reserved in the main program. This ‘gap’ is large enough to
accommodate the largest of the overlays in the group. The space re-
quired by the main program is thus reduced by roughly the sum of all
subprograms in the group less the largest of them.

In the example above, overlay procedure 2 is the largest of the five pro-
cedures and thus determines the size of the overlay area in the main
code. When it is loaded into memory, it occupies the entire overlay area:

Main program Overlay file

Main program code

Overlay procedure 1

Overlay procedure 3

Overlay procedure 4
Main program code

Overlay procedure 5

Figure 18-2: Largest Overlay Subprogram Loaded

TURBO Pascal Reference Manual

OVERLAY SYSTEM

The smaller subprograms are loaded into the same area of memory,
each starting at the first address of the overlay area. Obviously they oc-
cupy only part of the overiay area; the remainder is unused:

Main program Overlay file

Overlay procedure 1

Main program code

Overlay procedure 2

Overlay procedure 4

Main program code
Overlay procedure 5

Figure 18-3: Smaller Overlay Subprogram Loaded

As procedures 1, 3, 4, and 5 execute in the same space as used by pro-
cedure 2, it is clear that they require no additional space in the main pro-
gram. It is also clear that none of these procedures must ever call each
other, as they are never present in memory simuitaneously.

There could be many more overlay procedures in this group of overlays;
in fact the total size of the overlay procedures could substantially
exceed the size of the main program. And they would still require only
the space occupied by the largest of them.

The tradeoff for this extra room for program code is the addition of disk
access time each time a procedure is read in from the disk. With good
planning, as discussed on page 155, this time is negligible.

OVERLAY SYSTEM 151

http://www.fastio.com/

Creating Overlays

Creating Overlays

152

Overlay subprograms are created automatically, simply by adding the
reserved word overlay to the declaration of any procedure or function:

overlay procedure Initialize;:
and
overlay function TimeOfDay: Time;

When the compiler meets such a declaration, code is no longer output
to the main program file, but to a separate overlay file. The name of this
file will be the same as that of the main program, and the type will be a
number designating the overlay group, ranging form 000 through 099.

Consecutive overlay subprograms will be grouped together. l.e. as long
as overlay subprograms are not separated by any other declaration,
they belong to the same group and are placed in the same overlay file.

Example 1:

overlay procedure One;
begin

end;

overlay procedure Two;

begin

end;

overlay procedure Three;

begin

end;

These three overlay procedures will be grouped together and placed in

the same overlay file. If they are the first group of overlay subprograms
in a program, the overlay file will be no. 000.

The three overlay procedures in the following example will be placed in
consecutive overlay files, .000 and .001, because of the declaration of a
non-overlay procedure Count separating overlay procedures Two and
Three.

TURBO Pascal Reference Manual

wvwfastio.com

Creating Overlays

The separating declaration may be any declaratioq, for example a dum-
my type declaration, if you want to force a separation of overlay areas.

Example 2:

overlay procedure One;
begin

end;

overlay procedure Two;
begin

end;

procedure Count;
begin

en<.i

overlay procedure Three;
begin

end;

A separate overlay area is reserved in the main program code for each
overlay group, and the following files will be created:

Main program Overlay files

file .000
Main program code

overlay procedure One
lay area 0 <
Overlay overlay procedure Two

procedure Count file .001

overlay procedure Three

Overlay area l

Main program code

Figure 18-4: Multiple Overlay Files

OVERLAY SYSTEM 153

http://www.fastio.com/

Nested Overlays

Nested Overlays

Overlay sqbprograms may be nested, i.e. an overlay subprogram may it-
self contain overlay subprograms which may contain overlay subpro-
grams, etc.

Example 3:
program OverlayDemo;

overlay procedure One;
begin

end;

overlay procedure Two;
overlay procedure Three;
begin

end;
begin

end;

In this example, two overlay files will be created. File .000 contains over-
lay procedures One and Two, and an overlay area is reserved in the
main program to accommodate the largest of these. Overtay file .001
contains overlay procedure Three which is local to overlay procedure

Two, and an overlay area is created in the code of overlay procedure
Two:

Main program Overlay files Overlay files

Main program code file .000

overlay procedure One

Overlay area

Figure 18-5: Nested Overlay Files

TURBO Pascal Reference Manual

wvwfastio.com

overlay procedure Two file .001
overlay procedur¢
__—Overlay area Three
Main program code Procedure code '

Automatic Overlay Management

Automatic Overlay Management

An overlay subprogram is loaded into memory only when called. On
each call to an overlay subprogram, a check is first made to see if that
subprogram is already present in the overlay area. If not, it will automati-
cally be read in from the appropriate overlay file.

Placing Overlay Files

During compilation, overlay files will be placed on the logged drive, i.e.
on the same drive as the main program file (.COM or .CMD file).

During execution, the system normally expects to find its overlay files on
the logged drive. This may be changed as described on pages 196
(PC/MS-DOS), 233 (CP/M-86), and 265 (CP/M-80).

Efficient Use of Overlays

The overlay technique, of course, adds overhead to a program by ad-
ding some extra code to manage the overlays, and by requiring disk
accesses during execution. Overlays, therefore, should be carefully
planned.

In order not to slow down execution excessively, an overlay subprogram
should not be called too often, or - if one is called often - it should at
least be called without intervening calls to other subprograms in the
same overlay file in order to keep disk accesses at a minimum. The ad-
ded time will of course vary greatly, depending on the actual disk
configuration. A 5 1/4” floppy will add much to the run-time, a hard disk
much less, and a RAM-disk, as used by many, very little.

To save as much space as possible in the main program, one group of
overlays should contain as many individual subprograms as possibie.
From a pure space-saving point of view, the more subprograms you can
put into a single overlay file, the better. The overlay space used in the
main program needs only accommodate the largest of. these subpro-
grams - the rest of the subprograms have a free ride in the same area
of memory. This must be weighed against the time considerations dis-
cussed above.

OVERLAY SYSTEM 155

http://www.fastio.com/

Restrictions Imposed on Overlays
Restrictions Imposed on Overlays

Data Area

Overlay subprograms in the same group share the same area in memory
and thus cannot be present simultaneously. They must therefore not call
each other. Consequently, they may share the same data area which
further adds to the space saved when using overlays (CP/M-80 version
only).

In example 1 on page 152, none of the procedures may therefore call
each other. In' example 2, however, overlay procedures One and Two
may call overlay procedure Three, and overlay procedure Three may call
each of the other two, because they are in separate files and conse-
quently in separate overlay areas in the main program.

Forward Declarations

Overlay subprograms may not be forward declared. This restriction is
easily circumvented, however, by forward declaring an ordinary subpro-
gram which then in turn calls the overlay subprogram.

Recursion

Overlay subprograms cannot be recursive. Also this restriction may be
circumvented by declaring an ordinary recursive subprogram which then
in turn calls the overlay subprogram.

Run-Time Errors

Run-time errors occurring in overlays are found as usual, and an ad-
dress is issued by the error handling system. This address, however, is
an address within the overlay area, and there is no way of knowing
which overlay subprogram was actually active when the error occurred.

Restrictions Imposed on Overlays

Run-time errors in overlays can therefore not always be readily found
with the Options menu’s ‘Find run-time error’ facility. What ‘Find run-
time error’ will point out is the first occurrence of code at the specified
address. This, of course, may be the place of the error, but the error
may as well occur in a subsequent subprogram within the same overlay

group.

This it not a serious limitation, however, as the type of error and the way
it occurs will most often indicates in which subprogram the error hap-
pened. The way to locate the error precisely is then to place the
suspected subprogram as the first subprogram of the overlay group.
‘Find run-time error’ will then work.

The best thing to do is not to place subprograms in overlays until
they have been fully debugged!

156 TURBO Pascal Reference Manual OVERLAY SYSTEM 157

HCM;)PD wvwfastio.com

http://www.fastio.com/

Restrictions Imposed on Overlays

158

1"“
IClIhPDF - whyvw . fastio.com

Notes:

TURBO Pascal Reference Manual

Chapter 19
IBM PC GOODIES

This chapter applies to the IBM PC-versions only, and the functions
described can be expected to work on IBM PC and compatibles
only! If you have problems on a compatible, it's not as compatible as
you thought.

Screen Mode Control
TURBO provides a number of procedures to control the PC’s various
screen modes.

Windows
The window routines let you declare a smaller part of the screen to be
your actual work area, protecting the rest of the screen from being
overwritten.

Basic graphics
These built-in graphics routines let you plot points and draw lines in
different colors.

Extended graphics
A set of external graphics routines allow for more advanced graphics.
One simple statement includes these routines in your programs.

Turtlegraphics
The same external machine language file also provides you with turtle-
graphics routines.

Sound
Standard procedures are provided which let you use the PC’'s sound
capabilities in an easy way.

Keyboard
A number of the special keys of the IBM keyboard are installed as pri-
mary commands for the editor. These commands are listed on page
186, and you may add more if you wish. The secondary WordStar com-
mands are still available.

IBM PC GOODIES 159

http://www.fastio.com/

/
Screen Mode Control Screen Mode Contro

Screen Mode Control Color Modes

The IBM PC gives you a choice of screen modes, each with its own
characteristics. Some display characters, some display graphics, and
they all have different capabilities of showing colors. TURBO Pascal sup-
ports all these screen formats and provides an easy way of using them.

The following screen modes are available:

TextMode 25 lines of 40 or 80 characters
GraphColorMode 320x200 dots color graphics
GraphMode 320x200 dots black & white graphics (color on
an RGB monitor)
HiRes 640x200 dots black + one color graphics
Text Modes

In text mode, the PC will display 25 lines of either 40 or 80 characters.
The procedure to invoke this mode is named TextMode and is
called as follows:

TextMode;

TextMode (BW40) ; BWA40 is an integer constant with the value 0
TextMode (C40); C40 is an integer constant with the value 1
TextMode (BW80) ; BW80 is an integer constant with the value 2
TextMode(C80) ; C80 is an integer constant with the value 3

The first example with no parameters invokes the text mode which was
active last, or the one that is currently active. The next two examples
activate black and white text modes with 40 and 80 characters on each
line. The final two examples activate color text modes with 40 and 80
characters on each line. Calling TextMode will clear the screen.

TextMode should be called before exiting a graphics program in order to
return the system to text mode.

In the color text modes, each character may be chosen to be one of 16
colors, and the background may be one of 8 colors. The colors are re-
ferred to by the numbers O through 15. To make things easier, TURBO
Pascal includes 16 pre-defined integer constants which may be used to
identify colors by names:

Dark colors Light colors

0: Black 8. DarkGray

1: Blue 9: LightBlue

2: Green 10: LightGreen

3: Cyan 11: LightCyan

4: Red 12: LightRed

5: Magenta 13: LightMagenta
6: Brown 14: Yellow

7: LightGray 15: White

Table 19-1: Text Mode Color Scale ‘

Characters may be any of these colors, whereas the background may
be any of the dark colors. Notice that some monitors do not recognize
the intensity signal used to create the eigh_t light colors. On such moni-
tors, the light colors will be displayed as their dark equivalents.

TextColor

Syntax: TextColor(Colon);

This procedure selects color of the characters. Color is an integer ex-
pression in the range 0 through 15, selecting character colors from the
table given above.

Examples:
TextColor(l); selects blue characters
TextColor(Yellow); selects yellow characters

The characters may be made to blink by adding 16 to the color number.
There is a pre-defined constant Blink for this purpose:

TextColor(Red + Blink); selects red, blinking characters

161
160 TURBO Pascal Reference Manual IBM PC GOODIES

wvwfastio.com

http://www.fastio.com/

Screen Mode Control

TextBackground
Syntax: TextBackground(Colon);

This procedure selects color of the background, that is, the cell immedi-
ately surrounding each character; the entire screen consists of 40 or 80
by 25 such cells. Color is an integer expression in the range 0 through
7, selecting character colors from the table given above.

Examples:

TextBackground(4); selects red background

TextBackground(Magenta); selects magenta background
Cursor Position o

J

In text mode, two functions will tell you where the cursor is positioned
on the screen:

WhereX
Syntax: WhereX;

This integer function returns the X-coordinate of the current cursor posi-
tion.

WhereY
Syntax: WhereY;

This integer function returns the Y-coordinate of the current cursor posi-
tion.

162 TURBO Pascal Reference Manual

wvwfastio.com

Screen Mode Control

Graphics Modes

With a standard IBM graphics video board, or one that is compatible,
TURBO will do graphics. Three modes are supported:

GraphColorMode 320x200 dots color graphics
GraphMode 320x200 dots black & white graphics
HiRes 640x200 dots black + one color graphics

The upper, left corner of the screen is coordinate 0,0. X coordinates
stretch to the right, Y coordinates downward. All drawing is ‘clip-ped’,
that is, anything displayed outside the screen will be ignored (except
when the turtlegraphics’ Wrap is in effect).

Activating one of the graphics modes will clear the screen. The stan-
dard procedure CirScr works only in text mode, so the way to clear a
graphics screen is to activate a graphics mode, possibly the one that's
already active. With extended graphics and turtlegraphics, however,
there is a ClearScreen procedure which clears the active window.

Graphics can be mixed with text. In 320 x 200 modes, the screen can
display 40 x 25 characters and in 640 x 200 mode, it can display 80 x
25 characters.

The TextMode procedure should be called before exiting a graphics pro-
gram in order to return the system to text mode, see page 160).

GraphColorMode
Syntax: GraphColorMode;
This standard procedure activates the 320x200 dots color graphics
screen giving you X-coordinates between 0 and 319 and Y-coordinates

between 0 and 199. Drawings may use colors selected from the palette
described on page 165.

IBM PC GOODIES 163

http://www.fastio.com/

Screen Mode Control

GraphMode
Syntax: GraphMode;

This standard procedure activates the 320x200 dots black and white
graphics screen giving you X-coordinates between 0 and 319 and Y-
coordinates between 0 and 199. On a RGB monitor like the IBM
Color/Graphics Display, however, even this mode displays colors from a
limited palette as shown on page 166.

HiRes
Syntax: HiRes;

This standard procedure activates the 640x200 dots high resolution
graphics screen giving you X-coordinates between 0 and 639 and Y-
coordinates between 0 and 199. In high resolutions graphics, the back-
ground (screen) is always black, and you draw in one color set by the
HiResColor standard procedure.

HiResColor
Syntax: HiResColor(Color);

This standard procedure selects the color used for drawing in high reso-
lution graphics. Color is an integer expression in the range 0 through 15.
The background (screen) is always black. Changing HiResColor causes
anything already on the screen to change to the new color.

Examples:
HiResColor(7); selects light gray
HiResColor(Blue); selects blue

This one color may be chosen from the following 16 colors:

164 TURBO Pascal Reference Manual

wvwfastio.com

Screen Mode Control

Dark colors Light colors

0: Black 8: DarkGray

1: Blue 9: LightBlue

2: Green 10: LightGreen

3: Cyan 11: LightCyan

4: Red 12: LightRed

5: Magenta 13: LightMagenta
6: Brown 14: Yellow

7: LightGray 15: White

Table 19-2: High Resolution Graphics Color Scale

Some monitors do not recognize the intensity signal used to create the
eight light colors. On such monitors, the light colors will be dis-played as
their dark equivalents.

Palette

Syntax: Palette(N);

This procedure activates the color palette indicated by the integer ex-
pression N. with a parameter specifying the number of the palette. Four
color palettes exist, each containing three colors (1-3) and a fourth color
(0) which is always equal to the background color (see later):

Color number: 0 1 2 3
Palette O Background Green Red Brown
Palette 1 Background Cyan Magenta LightGray

Palette 2 Background LightGreen LightRed Yeliow
Palette 3 Background LightCyan LightMagenta White

Table 19-3: Color Palettes in Color Graphics

IBM PC GOODIES- 165

http://www.fastio.com/

Screen Mode Control

The graphics routines will use colors from this palette. They are called
with a parameter in the range 0 through 3, and the color actually used is
selected from the active palette:

Plot(X,Y,2) will piot a red point when palette 0 is active.
Plot(X,Y,3) will plot a yellow point when palette 2 is active.
Plot(X,Y,0) will plot a point in the active background color,

in effect erasing that point.

Once a drawing is on the screen, a change of palette will cause all
colors on the screen to change to the colors of the new palette. Only
three colors plus the color of the background may thus be displayed
simultaneously.

The GraphMode supposedly displays only black and white graphics, but
on on zn RGB monitor, like the IBM Color/Graphics Display, even this
mode displays the following limited palette:

Color number: 0 1 2 3
Palette 0 Background Blue Red LightGray
Palette 1 Background LightBlue LightRed White

Table 19-4: Color Palettes in B/W Graphics

GraphBackground
Syntax: GraphBackground(Colon);
This standard procedure sets the the background color, that is the en-
tire screen, to any of 16 colors. Color is an integer expression in the
range O through 1

GraphBackground(0); sets the screen to black
GraphBackground(11); sets the screen to light cyan

The following color numbers and pre-defined constants are available:

166 TURBO Pascal Reference Manual

wvwfastio.com

Screen Mode Control

Dark colors Light colors

0: Black 8: DarkGray

1: Blue 9: LightBlue

2: Green 10: LightGreen
3: Cyan 11: LightCyan

4: Red 12: LightRed

5: Magenta 13: LightMagenta
6: Brown 14: Yellow

7: LightGray 15: White

Table 19-5: Graphics Background Color Scale

Some monitors do not recognize the intensity signal used to create the
eight light colors. On such monitors, the light colors will be displayed as
their dark equivalents.

IBM PC GOODIES 167

http://www.fastio.com/

Windows Windows

Windows
TURBO Pascal lets you declare windows anywhere on the screen.
When you write in such a window, the window behaves exactly as if you
were using the entire screen, leaving the rest of the screen untouched.

Text Windows

The Window procedure allows you to define any area on the screen as
the active window in text mode:

Window(X1,Y1,X2,Y2);

where X1 and Y1 are the absolute coordinates of the upper left corner
of the window, X2 and Y2 are the absolute coordinates of the lower
right corner. The minimum size of the text window is 2 columns by 2
lines.

Figure 19-1: Text Windows

The screen outside the window is simply not accessible, and the window
behaves as it were the entire screen. You may insert, delete, and scroll
The default window is 1,7,80,25 in 80-column modes and 71,7,40,25 in lines, and lines will wrap around if too long.
40-column modes, that is, the entire screen.

All screen coordinates (except the window coordinates themselves) are Graphics Windows

relative to the active window. This means that after the statement: .
The GraphWindow procedure allows you to define an area of the screen
Window(20,8,60,17); as the active window in any of the graphics modes:
which defines the center portion of the physical screen to be your active GraphWindow(X1,Y1,X2,Y2);
window, screen coordinates 1,1 (upper left corner) are now the upper

left corner of the window, not of the physical screen: where X1 and Y1 are the absolute coordinates of the upper left corner

of the window, X2 and Y2 are the absolute coordinates of the lower
right corner.

The default graphics window is 0,0,379,7199 in 320x200-dot modes and
0,0,639,199 in 640x200-dot mode, that is, the entire screen.

ALL screen coordinates are relative to the active window—not to the
physical screen. For example, after:

GraphWindow (50,100,200, 180);
coordinate 0,0 is in the upper left corner of the window.
Windows cause graphics to be ‘clipped’, that is, if you for example Draw

between two coordinates outside the window, only the part of the line
that falls within the window will be shown:

168 TURBO Pascal Reference Manual IBM PC GOODIES . 169

http://www.fastio.com/

Windows

! 170
|

HiclihPDF - wiww . faslio.com

Figure 19-2: Graphics Windows

TURBO Pascal Reference Manual

Basic Graphics

Basic Graphics
In each of the graphics modes, TURBO Pascal provides standard pro-

cedures which will plot points at specified coordinates and draw lines
between two coordinates:

Plot
Syntax: Plot(X, Y, Colon);

Plots a point at the screen coordinates specified by X and Y in the color
specified by Color. X, Y, and Color are integer expressions.

Draw
Syntax: Draw(X1,Y1,X2,Y2,Color);
Draws a line between the screen coordinates specified by X7,Y7 and

X2,Y2 in the color specified by Color. All parameters are integer expres-
sions.

IBM PC GOODIES 171

http://www.fastio.com/

Extended Graphics

Extended Graphics

TURBO Pascal comes with a set of external machine language routines
that can be included in TURBO programs during compilation. They pro-
vide extended graphics commands as described in the following.

The external graphics routines are contained in the file GRAPH.BIN. The
file GRAPH.P contains the necessary external declarations, and the ex-
tended graphics routines are included in a TURBO program simply by
using this statement to include the GRAPH.P file in the program:

{$I GRAPH.P }

ColorTable

172

Syntax: ColorTable(C1,C2,C3,C4);

ColorTable supplements Palette by defining a color ’translation table’
which lets the current color of any given point determine the new color
of that point when it is written again. The default color table value is
(0,1,2,3), which means that when a point is written on the screen, it
does not change the color that’s already there:

color 0 becomes color 0
color 1 becomes color 1
color 2 becomes color 2
color 3 becomes color 3

The table (3,2,1,0) would cause

color 0 to become color 3

color 1 to become color 2

color 2 to become color 1

color 3 to become color 0

that is, all colors would be reversed. The PutPic procedure always uses
the color table; all other draw procedures use the table if a color of — 1
is specified, for example:

Plot(X,Y,~-1);

TURBO Pascal Reference Manual

wvwfastio.com

Extended Graphics

Syntax: Arc(X, Y,Angle,Radius,Colon;

Draws an arc of Angle degrees, starting at the position given by XY,
with a radius given by Radius. If Angle is positive, the arc turns clock-
wise; if it is negative, the arc turns counterclockwise. If Color is from 0
through 3, the pen color is selected from the color palette (see page
165); if it is — 1, the color is selected from the color translation table
defined by the ColorTable procedure (page 172).

Circle

Syntax: Circle(X, Y,Radius,Color);

Draws a circle in the color given by Color with its center at X,Y and a ra-
dius as specified by Radius.

The radius of the circle is the same in the horizontal and vertical axes. In
320 x 200 mode this draws a perfect circle, as the display is almost
linear. In 640 x 200 mode, however, circles appear as ellipses.

If Color is from O through 3, the pen color is selected from the color
palette (see page 165); if it is — 1, the color is selected from the color
translation table defined by the ColorTable procedure (page 172).

GetPic

Syntax: GetPic(Buffer,X1,Y1,X2,Y2);

Copies the contents of a rectangular area defined by the integer expres-
sions X7,Y1,X2,Y2 into the variable Buffer, which may be of any type.
The minimum buffer size in bytes required to store the image is calculat-
ed as:

320 x 200 modes:
Size = ((Width + 3) div 4)*Height*2 + 6

640 x 200 modes:
Size = ((Width + 7) div 8)*Height + 6

IBM PC GOODIES- 173

http://www.fastio.com/

Extended Graphics

where:
Width = abs(x1-x2) + 1 and Height = abs(y1-y2) + 1

Note tlhat it the responsibility of the programmer to ensure that the
buffer is large enough to accommodate the entire transfer.

The first 6 bytes of the buffer constitute a three word header (three in-
tegers). After the transfer, the first word contains 2 in 320 x 200 mode
or1in 64Q x 200 mode The second word contains the width of the im-
age and third contains the height. The remaining bytes contain the data
Data is stored with the leftmost pixels in the most significant bits of thé

bytes. At the end of each row, the remaining bits of th
skipped. g the last byte are

PutPic

Syntax: PutPic(Buffer, X, Y);

Copies the contents of the variable Buffer onto a rectangular area on
the screen. The integer expressions X and Y define the lower left-hand
corner of the picture area. Buffer is a variable of any type, in which a
picture has previously been stored by GetPic. Each bit in the buffer is

converted to a color according to the color map before it is wri
the screen. P written to

GetDotColor

174

VY [AaSLo.COM

Syntax: GetDotColor(X, Y);

This integer function returns the color value of the dot loca i
ted at coordi-

rgwateh‘)(,)’~ Vglges <1)f 06th0rough 3 may be returned in 320 x 200 dot
raphics, and 0 or 1 in 640 x 200 dot raphics. If X,Y is outsid in-
dow, GetDotColor returns — 1. ’ 196 the win

TURBO Pascal Reference Manual

Extended Graphics

FillScreen

Syntax: FillScreen(Color);

Fills the entire active window with the color specified by the integer ex-
pression Color. |f Color is in the range 0 through 3, the color will be
selected from the color palette, if it is — 1, the color table will be used.
This allows for dramatic effects; with a color table of 3,2,1,0, for exam-
ple, FillScreen(— 1) will invert the entire image within the active window.

FillShape Procedure

Syntax: FillShape(X, Y, FillColor,BorderColon);

Fills an area of any shape with the color specified by the integer expres-
sion FillColor which must be in the range 0 through 3. The color transla-
tion table is not supported. The shape must be entirely enclosed by the
color specified by BorderColor, if not, FillShape will ‘spill’ onto the area
outside the shape. X and Y are the coordinates of a point within the im-
age to be filled.

FillPattern

Syntax: FillPattern(X71,Y7,X2,Y2,Colop);

Fills a rectangular area defined by the coordinates X1,Y7,X2,Y2 with the
pattern defined by the Pattern procedure. The pattern is replicated both
horizontally and vertically to fill the entire area. Bits of value 0 cause no
change to the display, whereas bits of value 1 cause a dot to be written
using the color selected by Color.

IBM PC GOODIES 175

http://www.fastio.com/

l ClihPD

Extended Graphics

Pattern

176

Syntax: Pattern(P);

Defines the'pattern used by the FillPattern procedure. The pattern is an
8 x 8 matrix defined by the P parameter which must be of type ar-
ray[0..7] of Byte. Each byte corresponds to a horizontal line in the pat-
tern, and each bit corresponds to a pixel. The following shows some
sample patterns and the hexadecimal value of each line in the matrix. A
hyphen represents a binary 0, and an asterisk represents a binary 1.

- *% - _ _ ® _ _ $44 LI S

* - - * o _ $88 - * _ * _ % _ % :ég
- - - % _ . L% $11 * % _ % _ ox _ $AA
- - % - _ _ % _ $22 -~ * % _ % _ % $55
- % L% o $44 * - % % _ % _ $AA
* . o - % o L $88 - * _ ® % _ % $55
- - - % -~ _ $11 L R $AA
- - * L% $22 - % _ * _ % _ $55

To use the first pattern, the slanted lines, the followin
) , g typed constant
could be declared and passed as a parameter to Pattern: 4

const
Lines: array[0..7] of Byte =
($44,$88,$11,$22,$44.$88,$ll,$22);

When the pattefn is used by the FillPattern procedure, low bits cause no
change to the display, high bits cause a dot to be written.

TURBO Pascal Reference Manual

Wy fastio.com

Turtlegraphics

Turtlegraphics

The external file GRAPH.BIN that contains the extended graphics rou-
tines mentioned in the previous section also contains the TURBO Turtle-
graphics routines, so whenever you include the graphics declaration file
GRAPH.P:

{$I GRAPH.P }
you also have access to the turtlegraphics described in the following.

TURBO Turtlegraphics is based on the 'turtle’ concept devised by S.
Papert and his co-workers at MIT. To make graphics easy for those of
us who might have difficulty understanding cartesian coordinates, Papert
et al. invented the idea of a ’turtle’ that could 'walk’ a given distance and
turn through a specified angle, drawing a line as it went along. Very sim-
ple algorithms in this system can create more interesting images than an
algorithm of the same length in cartesian coordinates.

Like the other graphics routines, turtlegraphics operate within a window.
This window is set to the entire screen by default but the Window or
TurtleWindow procedures can be used to define only part of the screen
as the active graphics area, safeguarding the rest from being overwrit-
ten. Turtlegraphics and ordinary graphics can be used simultaneously,
and they share a common window.

The TURBO Turtlegraphics routines operate on turtle coordinates. The
turtle’s home position (0,0) in this coordinate system is always in the
middle of the active window, with positive values stretching to the right
(X) and upwards (Y), and negative values stretching to the left (X) and
downwards (Y):

IBM PC GOODIES 177

http://www.fastio.com/

Turtlegraphics Turtlegraphics

ClearScreen
Syntax: ClearScreen;

This procedure clears the active window and homes the turtle.

Forwd

Syntax: Forwd(Dist);

Moves the turtle forwards the distance given by the integer expression
Dist from its current position in the direction the turtle is currently facing,
while drawing a line in the current pen color (if Dist is is negative, the
turtle moves backwards).

Figure 19-3: Turtle Coordinates

Heading

The range of coordinates on a full screen is: Syntax: Heading;

320 x 200 modes: X
640 x 200 mode: X

—159..0..160, Y —99..0..100

The Heading function returns an integer in the range 0..359 giving the
—319..0.320, Y = —99..0..100

direction in which the turtle is currently pointing. 0 is upwards, and in-
creasing angles represent headings in clockwise direction.

but th_e actual range will be limited to the size of the active window.
Coordinates outside the active window are legal, but will be ignored.

Zg:z means that drawings are ‘clipped’ to the limits of the active win- HideTurtle
Syntax: HideTurtle;
Back Hides the turtle, so that it is not shown on the screen. This is the initial
, state of the turtle, so to see the turtle, you must first call the ShowTurtle
Syntax: Back(Dis?); procedure.
Moves.the turtle backwards the distance given by the integer expres-
sion Dist from its current position in the direction opposite to the the Home

turtle’s current heading while drawing a line in the current pen color (if
Dist is is negative, the turtle moves forwards). Syntax: Home;

This procedure puts the turtle to its home position at turtle coordinates
0,0 (the middle of the active window), and points it in heading 0 (up-
wards).

178

TURBOQ Pascal Reference Manual IBM PC GOODIES 179

[HhPDF - www.lastio.com

http://www.fastio.com/

Turtlegraphics

NoWrap
Syntax: NoWrap;
This procedure disables the turtle from ‘wrapping’, that is, re-appear ing

at the opposite side of the active window if it exceeds the window b
' oun-
dary. NoWrap is the system’s initial value.

PenDown
Syntax: PenDown;

This proqedure ‘puts the pen down’ so that when the turtie moves, it
draws a line. This is the initial status of the pen.

PenUp
Syntax: PenUp;

This procedure ‘lifts the pen’ so the turtle moves without drawing a line.

SetHeading
Syntax: SetHeading(Angle);

j’urns the turtle to the apgle specified by the integer expression Angle. 0
is _upw_ards, and increasing angles represent clockwise rotation. If Angle
is not in the range 0..359, it is converted into a number in that range.

Four integer constants are pre-defined to easily turn the turtle in the four

main directions: North = 0 (up), East = 90 (right -
West = 270 (ieft). (right), South = 180, and

180 TURBO Pascal Reference Manual

(%

wvwfastio.com

Turtlegraphics

SetPenColor
Syntax: SetPenColor(Colon);
Selects the color of the ‘pen’, that is, the color that will be used for
drawing when the turtle moves. Color is an integer expression yielding a
value between — 1 and 3. If Color is from O through 3, the pen color is
selected from the color palette (see page 165); if itis —1, the color is
selected from the color translation table defined by the ColorTable pro-
cedure (page 172).

SetPosition
Syntax: SetPosition(X, Y);

Moves the turtle to the location with coordinates given by the integer ex-
pressions X and Y without drawing a line.

ShowTurtle
Syntax: ShowTurtle;
Displays the turtie as a small triangle. The turtle is initially hidden, so to
see the turtle, you must first call this procedure.
TurnLeft
Syntax: TurnLeft(Angle);
Turns the turtle Angle degrees from its current direction. Positive angles
turn the turtle to the left, negative angles turn it to the right.
TurnRight
Syntax: TurnRight(Angle);

Turns the turtle Angle degrees from its current direction. Positive angles
turn the turtle to the right, negative angles turn it to the left.

IBM PC GOODIES 181

http://www.fastio.com/

182

Turtlegraphics

TurtleWindow

Syntax: TurtleWindow(X, Y, W,H);

The TurtleWindow procedure defines an area of the screen as the active
graphics area in any of the graphics modes, exactly as does the Win-
dow procedure. TurtleWindow, however, lets you define the window in
terms of turtle coordinates, which are more natural to use in turtlegraph-
ics. X and Y are the screen coordinates of the center of the window; W
is its width, and H is its height.

The default TurtleWindow is 159,99,320,200 in 320x200-dot modes and
319,99,640,200 in 640x200-dot mode, that is, the entire screen. If the
turtlewindow is defined to fall partly outside the physical screen, it is
clipped the edges of the physical screen.

Turtlegraphics are ‘clipped’ to the active window, that is, if you move
the turtle outside the active window, it will not be shown and it will not
draw.

When the window is set (whether by TurtleWindow or by Window, the
turtle is initialized to its Home position and heading. Changing screen
mode resets the window to the entire screen.

Turtlegraphics operate in turtle coordinates. The turtie’s home position
(0,0) in this coordinate system is always in the middie of the active win-
dow, with positive values stretching to the right (X) and upwards (Y), and
negative values stretching to the left (X) and downwards (Y):

TURBO Pascal Reference Manual

C

ChihPDF - www.lastio.com

Turtlegraphics

Figure 19-4: Turtle Coordinates

The range of coordinates on a full screen is:

320 x 200 modes: X = -159..0..160, Y = -99..0..100
640 x 200 mode: X = -319..0..320, Y = -99..0..100

but the actual range will be limited to the size of the active window.

Coordinates outside the active window are |eg_a|,‘but will be ignored.
This means that drawings are ‘clipped’ to the hr_nlts qf the qctnve
window, and anything drawn outside of the active window is lost.

TurtleThere

Syntax: TurtieThere;

This boolean function returns True if the turtle _is visible in the
active window (after a ShowTurtle), otherwise it returns False.

TurtleDelay

Syntax: TurtleDelay(Ms),

This procedure sets a delay in milliseconds between each step of the
turtle. Normally, there is no delay.

IBM PC GOODIES 183

http://www.fastio.com/

ChhPD

Turtlegraphics

Wrap
Syntax: Wrap;

After a call to this procedure, the turtle will re-appear at the opposite

side of the active window when it exceeds the wi
e win
NoWrap to return to normal. indow boundary. Use

Xcor
Syntax: Xcor;

Ycor
Syntax: Ycor;

g

1
84 TURBO Pascal Reference Manual

wavwfastio.com

Sound

Sound

The PC’s speaker is accessed through the standard procedure Sound:
Sound(I);

where / is an integer expression specifying the frequency in Hertz. The
specified frequency will be emitted until the speaker is turned off with a
call to the NoSound standard procedure:

NoSound

The following example program will emit a 440-Hertz beep for half a
second:

begin
Sound(440) ;
Delay(500);
NoSound;
end.

IBM PC GOODIES 185

http://www.fastio.com/

ChihPD

|
}
[Editor Command Keys

Editor Command Keys

186

In addition to the WordStar commands, the editing keys of IBM PC key-
board have been implemented as primary commands. This means that
while e.g. Ctrl-E, Ctrl-X, Ctrl-S, and Ctrl-D still move the cursor up,
down, left, and right, you may also use the arrows on the numeric
keypad. The following table provides an overview of available editing
keys, their functions, and their WordStar-command equivalents:

ACTION PC-KEY COMMAND
Character left Left arrow Ctrl-sS
Character right Right arrow Ctrl-D
Word left Ctrl-left arrow Ctrl-A
Word right Ctrl-right arrow Ctri-~F
Line up Up arrow Ctrl-E
Line down Down arrow Ctrl-X
Page up PgUp Ctrl-R
Page down PgDn Ctrl-C
To left online Home Ctrl-Q-S
To right on line End Ctrl-Q-D
To top of page Ctrl-Home Ctrl-Q-E
To bottom of page Ctrl-End Ctrl1-Q-X
To top of file Ctrl-PgUp Ctrl-Q-R
Toend of file Ctrl-PgDn Ctrl-qQ-C
Insert mode on/off 1Ins Ctrl-v
Mark block begin F7 Ctrl-K-B
Mark block end F8 Ctrl-K-K
Tab <TAB> Ctrl-I

Table 19-6: IBM PC Keyboard Editing Keys

Note that while maintaining WordStar compatibility in the commands,
some function keys have different meanings in WordStar and TURBO.

TURBO Pascal Reference Manual

wvwfastio.com

Chapter 20
PC-DOS AND MS-DOS

1)

?2)

i i ific to the PC-
This chapter describes features of TURBO Pascal speci _
DOS ang MS-DOS implementations. It presents two kinds of informa-

tion:
Things you should know to make efficient use of TURBO Pascal. Pages
187 through 208.

i i i f interest only to ex-
The rest of the chapter describes thlngs.whlch are o ¢ €
perienced programmers, such as machine language routines, technical

aspects of the compiler, etc.

Tree-Structured Directories

On the Main Menu

The DOS structured directories are supported by TURBO'’s main menu:

Logged drive: A
Active directory: \

Work file:
Main file:
Edit Compile Run Savs—;
Dir Quit compiler Options
Text: 0 bytes
Free: 62903 bytes
> "
Figure 20-1: TURBO Main Menu
PC-DOS AND MS-DOS 187

http://www.fastio.com/

I ClihPD

Tree-Structured Directories

Notice the addition of the A command which lets you change the Active
directory using the same path description as with the CHDIR command
of DOS. The currently active directory is shown after the colon.

DOS uses a backslash: \ to refer to the ROOT directory, as shown in
the example. The rest of directories have names just like files, that is a
1-8 letter name optionally followed by a period and a 1-3 letter type.
Each directory can contain ordinary files or other directories.

Files in this system of directories are referenced by a path name in addi-
tion to the file name. A path name consists of the names of the direc-
tories leading to the file, separated by backslashes. The complete refer-
ence to a file called INVADERS.PAS in the directory TURBO is thus:

\TURBO\INVADERS.PAS

The first backslash indicates that the path starts from the root directory.
If you were logged on some other directory, and you wanted to move to
the TURBO directory, you would press A and enter:

\TURBO

in every sub-directory you will see two special entries in a DIR
listing: . and .. The one period serves to identify this directory
as a sub-directory. The two periods is a reference to the directory’s
‘parent’ directory. These two periods may be used in a directory path; if,
for example, you are logged on a sub-directory of TURBO, you may re-
turn to TURBO by pressing A and then entering the two periods.

188 TURBO Pascal Reference Manual

wvwfastio.com

Tree-Structured Directories

Directory-related procedures

TURBO Pascal provides the following procedures t
tree-structured directories of MS-DOS.

o manipulate the

ChDir

Syntax: ChDir(St);

path specified by the string expres-

Changes the current directory to the o file name. For

sion St. Also changes the logged drive if St cont
example: ,

ChDir('B:\PROG');

MkDir
Syntax: MkDir(St);

i ified by the path give
s a new sub-directory as spec !
g;g?;zsion St The last item in the path must be an no

filename.

n by the string
-existing

RmbDir -

Syntax: RmDir(St);

Removes the sub-directory specified by the path given by the string ex-

pression St.

GetDir

Syntax: GetDir(Dr,St);

of the drive indicated by Dr in the string

Returns the current directory e 6= logged drive, 1= by

variable St. Dr is an integer expression W
etc.

189
PC-DOS AND MS-DOS

http://www.fastio.com/

Compiler Options
P Compiler Options
Compiler Options
Th :
ang 3\ ac:r:Jr:mand selects the following menu from which you may view minimum cOde segment size: XXXX paragraphs (max.YYYY)
ge some default values of the compiler. It also provides a help- minimum Data segment size: XXXX paragraphs (max.YYYY)

mInimum free dynamic memory: XXXX paragraphs

ful function to find runtime errors in programs compiled into object code
mAximum free dynamic memory: XXXX paragraphs

files.

compile -> Memory Figure 20-3: Memory Usage Menu
Com-file
cHn-file

The use of these commands is described in the following sections.

command line Parameter: Minimum Code Segment Size

Find run-time error Quit The O-command is used to set the minimum size of the code segment
for a .COM using Chain or Execute. As discussed on page 193, Chain
and Execute do not change the base addresses of the code, data, and
stack segments, and a ‘root’ program using Chain or Execute must
therefore allocate segments of sufficient size to accommodate the larg-
est segments in any Chained or Executed program.

Figure 20-2: Options Menu

Memory / Com file / cHn-file
Consequently, when compiling a ‘root’ program, you must set the value
of the Minimum Code Segment Size to at least the same value as the
largest code segment size of the programs to be chained/executed from
that root. The required values are obtained from the status printout ter-
minating any compilation. The values are in hexadecimal and specify
number of paragraphs, a paragraph being 16 bytes.

:'he three commanqs M, C, and H select the compiler mode, i.e. where
fo ?ut the code which results from the compilation. Memory is the de-
ault mode. When active, code is produced in memory and resides there
ready to be activated by a Run command.

Com-file is selected by pressin i

. _ g C. The arrow moves to point to this i
The cqmppler writes ppde to a file with the same name gs the Wc;fk"rf]i?é
(or Main file, if specified) and the file type .COM. This file contains the

program code and Pascal runtime library, and m i
ing its name at the console. i 2y be activated by typ-

Minimum Data Segment Size

The D-command is used to set the minimum size of the data segment
for a .COM using Chain or Execute. As discussed above, a ‘root’ pro-
gram using these commands must allocate segments of sufficient size

cHain-file is selected by pressing H. The arrow moves to point to this
to accommodate the largest data of any Chained or Executed program.

line. The compiler writes code to a file with

. -ompile! S the same name as the W
file (or Main file, if specified) and the file type .CHN. This file contains ?r:l;
program code but no Pascal library and must be activated from another

- ili ‘root’ h |
TURBO Pascal program with the Chain procedure (see page 193). Consequently, when compiling a ‘root’ program, you must set the value

of the Minimum Data Segment Size to at least the same value as the
largest data segment size of the programs to be chained/executed from
that root. The required values are obtained from the status printout ter-
minating any compilation. The values are in hexadecimal and specify
number of paragraphs, a paragraph being 16 bytes.

When the Com or cHn mode is sel iti i i
aen the Sor ected, four additional lines will appear

190

TURBQO Pascal Reference Manual PC-DOS AND MS-DOS 191

ChbPD wvwfastio.com

http://www.fastio.com/

Compiler Options

Minimum Free Dynamic Memory

This value specifies the minimum memory size required for stack and
heap. The value is in hexadecimal and specifies a number of paragraphs, a
paragraph being 16 bytes.

Maximum Free Dynamic Memory

This value specifies the maximum memory size allocated for stack and
heap. It must be used in programs which operate in a multi-user environ-
ment to assure that the program does not allocate the entire free memory.
The value is in hexadecimal and specifies a number of paragraphs, a para-
graph being 16 bytes.

Command Line Parameters

The P-command lets you enter one or more parameters which are passed
to your program when running it in Memory mode, just as if they had been
entered on the DOS command line. These parameters may be accessed
through the ParamCount and ParamStr functions.

Find Run-time Error

When you run a program compiled in memory, and a run-time error oc-
curs, the editor is invoked, and the error is automatically pointed out. This,
of course, is not possible if the program is in a .COM file or an .CHN file.

Run time errors then print out the error code and the value of the program
counter at the time of the error:

Run-time error 01, PC=1B56
Program aborted

Figure 20-4: Run-time Error Message

To find the place in the source text where the error occurred, enter the

F command. When prompted for the address, enter the address given
by the error message:

Enter PC: 1B56

Figure 20-5: Find Run-time Error
192 TURBO Pascal Reference Manual

wvwfastio.com

Compiler Options
The place in the source text is now found and pqinted out exactly as if
the error had occurred while running the program in memory.

Notice that locating errors in programs using overlays can be a bit more
tricky, as explained on page 196.

Standard Identifiers

The following standard identifiers are unique to the DOS implementa-

tions:

CSeg LongFilePos MemW PortW
DSeg LongFileSize MsDos SSeg
Intr LongSeek Ofs Seg

Chain and Execute

i] hich allow
TURBO Pascal provides two procedures Chain and Execute w
TURBO programs to activate other TURBO programs. The syntax of the
procedure calls are:

Chain(FilVan)
Execute(FilVar)

where FilVar is a file variable of any type, prev_iously ass@gl_'\ed to a Qisk
file with the standard procedure Assign. If the file exists, it is loaded into
memory and executed.

i i i ial TURBO Pascal
The Chain procedure is used only to actlva‘te speqal
.CHN files, i.e. files compiled with the cHn-file option selected on the:
Options menu (see page 190). Such a file contains only program code;
no Pascal library, it uses the Pascal library already present in memory.

The Execute procedure is used to activate any TURBO Pascal .COM
file.

If the disk file does not exist, an IO error occurs. This error is tlreated as
described on page 116. When the | compiler directive is passive ({$!-}),
program execution continues with the statement following the failed
Chain or Execute statement, and the /Oresult function must be called
prior to further 1/O.

PC-DOS AND MS-DOS 193

http://www.fastio.com/

g ClIihPD

Chain and Execute

194

Data can be transferred from the current program to the chained pro-
gram either by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as
the very first variables in both programs, and they must be listed in the
same order in both declarations. Furthermore, both programs must be
compiled to the same size of code and data segments (see page 191).
When these conditions are satisfied, the variables will be placed at the
same address in memory by both programs, and as TURBO Pascal
does not automatically initialize its variables, they may be shared.

Example:
Program MAIN.COM:
program Main;
var
Txt: string([80];
CntPrg: file;

begin '

Write('Enter any text: '); Readln(Txt);
Assign(CntPrg, 'ChrCount.chn');
Chain(CntPrg);

end.

TURBO Pascal Reference Manual

wvwfastio.com

Chain and Execute

Program CHRCOUNT.CHN:
program ChrCount;
var
Txt: string[80];
NoOfChar,
NoOfUpc,
I: Integer;

begin
NoOfUpc := O;
NoOfChar := Length(Txt);
for I := 1 to length(Txt) do
if Txt[I] in ['A'..'Z'] then NoOfUpc := Succ(NoOfUpc);

Write('No of characters in entry: ',NoOfChar);
Writeln('. No of upper case characters: ', NoOfUpc,'.');
end.

If you want a TURBO program to determine whether it was invoked by
eXecute or directly from the DOS command line, you should use an ab-
solute variable at address Cseg:$80. This is the command line length
byte, and when a program is called from DOS, it contains a value
between 0 and 127. When eXecuting a program, therefore, the calling
program should set this variable to something higher than 127. When
you then check the variable in the called program, a value between O
and 127 indicates that the program was called from DOS, a higher value
that it was called from another TURBO program.

Chaining and eXecuting TURBO programs does not alter the memory al-
location state. The base addresses and sizes of the code, data and
stack segments are not changed; Chain and Execute only replace the
program code in the code segment. ‘Alien’ programs, therefore, cannot
be initiated from a TURBO program.

It is important that the first program which executes a Chain statement
allocates enough memory for the code, data, and stack segments to ac-
commodate largest .CHN program. This is done by using the Options
menu to change the minimum code, data and free memory sizes (see
page 190).

Note that neither Chain nor Execute can be used in direct mode, that is,
from a program run with the compiler options switch in position Memory
(page 190).

PC-DOS AND MS-DOS 195

http://www.fastio.com/

HihPD

Overlays

Overlays

During execution, the system normally expects to find its overlay files on
the logged drive and current directory. The OvrPath procedure may be
used to change this default value.

OvrPath Procedure
Syntax: OvrPath(Path);

where Path is a string expression specifying a subdirectory path (see
page 188 for an explanation of DOS directory paths). On subsequent
calls to overlay files, the files will be expected in the specified directory.
Once an overlay file has been opened in one directory, future calls to the
same file will look in the same directory. The path may optionally specify
a drive (A:, B:, etc.). ‘

The current directory is identified by a single period. OvrPath(’.’) thus
causes overlay files to be sought on the current directory.

Example :
program OvrTest;

overlay procedure ProcA;
begin

Writeln('Overlay A');
end;

overlay procedure ProcB;
begin

Writeln('Overlay B');
end;

procedure Dummy;

begin
{Dummy procedure to separate the overlays
into two groups}

end;

overlay procedure ProcC;
begin

Writeln('Overlay C');
end; '

196 TURBO Pascal Reference Manual

w

wvwfastio.com

Overlays

begin
OvrPath('\subl');
ProcA;
OvrPath('.');
ProcC;
OvrPath('\subl');
ProcB;

end.

The first call to OvrPath specifies overlays to be sought on the sgbdirec-
tory \subl. The call to ProcA therefore causes the first overlay file (con-
taining the two overlay procedures ProcA and ProcB to be opened on

this directory.

Next, the OvrPath(’.’) statement specifies that following overlays are to
be found on the current directory. The call to ProcC opens the second

overiay file here.

The following ProcB statement calls an overlay procedure in the first
overlay file; and to ensure that it is sought on the \sub? directory, the
OvrPath(’\sub1’) statement must be executed before the call.

PC-DOS AND MS-DOS 197

http://www.fastio.com/

ChihPD

Files
Files

File Names

A file name in DOS consists of a path of directory names, separated by

backslashes, leading up to the desired directory, followed by the actual
file name:

Drive:\ Dirname\ ...\ Dirname\ Filename

If the path begins with a backslash, it starts in the root directory; other-
wise, it starts in the logged drive.

The Drive and path specification is optional. If omitted, the file is as-
sumed to reside on the logged drive.

The FileName consists of a name of one through eight letters or digits,
optionally followed by a period and a file type of one through three
letters or digits.

Number of Open Files

The number of files that may be open at the same time is controlled
through the F compiler directive. The default setting is {$F16), which
means that up to 16 files may be open at any one time. If, for instance,
a {$F24) directive is placed at the beginning of a program (before the
declaration part), up to 24 files may be open concurrently. The F com-
piler directive does not limit the number of files that may be declared in a
program; it only sets a limit to the number of files that may be open at
the same time.

Note that even though the F compiler directive has been used to allo-
cate sufficient file space, you may still experience a ‘too many open files’
error condition, if the operating system runs out of file buffers, If that
happens, you should supply a higher value for the ‘files = xx’ parameter
in the CONFIG.SYS file. The default value is usually 8. For further detail,
please refer to your MS-DOS documentation.

198 TURBO Pascal Reference Manual

wvwfastio.com

Files

Extended File Size

The following three additional file routines exist to accommodate the ex-
tended range of records in DOS. These are:

LongFileSize function,_
LongFilePosition function, and
LongSeek procedure

i i leSize, FilePosition, and
They correspond to their Integer equwalents_ FileSize, ,
Posytion butpoperate with Reals. The functions thus return results of
type Real, and the second parameter of the LongSeek procedure must
be an expression of type Real.

File of Byte

i i - files (except text
In the CP/M implementations, access to non-TURBO (
files) must[be done through untyped files because the two fIfS‘t bytes_of
typed TURBO files always contain the number of components in the f|{e.
This is not the case in the DOS versions, however, and a non-turbo flle
may therefore be declared as a file of byte and accessed randomly with
Seek, Read, and Write.

Flush Procedure

The Flush procedure has no effect with typed files in DOS, as DOS
typed file variables do not employ a sector buffer.

Truncate Procedure

Syntax: Truncate(FilVar),

i le i ifi i he current posi-
This procedure truncates the file identified by FilVar at the «
tion gf the file pointer, that is, records beyond the file pointer are cut
away. Truncate also prepares the file for subsequent output.

PC-DOS AND MS-DOS 199

http://www.fastio.com/

| ClibPD

Files
Text Files

Buffer Size
The text f_ile _buffer size is 128 bytes by default. This is adequate for
most applications, but heavily 1/O-bound programs, as for example a

copy program, will benefit from a larger buffer, as it will reduce disk
head movement.

You_ are therefore given the option to specify the buffer size when de-
claring a text file:

VAR TextFile: Text[$800];

declares a text file variable with a buffer size of 2K bytes.

- Append Procedure
Syntax: Append(FilVar),

Thfe dis!< file assigned to the file variable FilVar is opened, and the file
pointer is moved to the end of the file. The only operation allowed after
Append is appending of new components.

Flush Procedure

The ;—'Ilush procedure causes the file buffer to be flushed when used with
text files. ‘

Logical Devices

The following additional logical devices are provided:
INP: Refers to the MS-DOS standard input file (standard handle number 0).
OUT: Refers to the MS-DOS standard output file (standard handie number 1).

ERR: Refers to the MS-DOS standard error output file (standard handle
number 2).

200 TURBQO Pascal Reference Manual

wvwfastio.com

Files

These devices may also be used with typed and untyped files.

The MS-DOS operating system itself also provides a number of logical
devices, for instance ‘CON’, ‘LST’ and ‘AUX’. TURBO Pascal will treat
these devices as if they were disk files, with one exception: when a text
file is opened, using Reset, Rewrite or Append, TURBO Pascal asks
MS-DOS for the status of the file. If MS-DOS reports that the file is a
device, TURBO Pascal disables the buffering that normally occurs on
textfiles, and all 1/O operations on the file are done on a character by
character basis.

The D compiler option may be used to disable this check. The default
state of the D option is {$D +}, and in this state, device checks are
made. In the {$D —) state, no checks are made and all device 1/O
operations are buffered. In this case, a call to the flush standard pro-
cedure will ensure that the characters you have written to a file have ac-
tually been sent to it.

- I/O redirection

PC/MS-DOS TURBO Pascal supports the i/O redirection feature provid-
ed by the MS-DOS operating system. In short, I/O redirection allows you
to use disk files as the standard input source and/or standard output
destination. Furthermore, a program supporting /O redirection can be
used as a filter in a pipe. Details on 1/O redirection, filters, and pipes, are
found in the MS-DOS documentation.

I/O redirection is enabled through the G (get) and P (put) compiler direc-
tives. The G directive controls the input file and the P directive controls
the output file. The G and P directives both require an integer argument,
which defines the size of the input or output buffer. The default buffer
sizes are zero, and with these, Input and Output wili refer to the CON:
or the TRM: device.

if a non-zero input buffer is defined, for instance {$G256}, the standard
Input file will refer to the MS-DOS standard input handle. Likewise, if a
non-zero output buffer is defined, for instance {$P1024), the standard
Output file will refer to the MS-DOS standard output handle. The D com-
piler directive (see page 201) applies to such non-zero-buffer Input and
Output files. The P and G compiler directives must be placed at the be-
ginning of a program to have any effect, i.e. before the declaration part.

PC-DOS AND MS-DOS 201

http://www.fastio.com/

Files

202

The following program demonstrates re-directed 1/O. It will read charac-
ters from the standard input file, keep a count of each alphabetical char-
acter (A through Z), and output a frequency distribution graph to the
standard output file:

{$G512,P512,D-}
program CharacterFrequencyCounter;

const
Bar = #223;
var
Count: array[65..90] of Real;
Ch: Char;
I,Graph: Integer;
Max,
Total: Real;
begin

Max := 0; Total := O;
for I := 65 to 90 do Count[I] := O;
while not EOF do
begin
Read(Ch);
if Ord(Ch) > 127 then Ch := Chr(Ord(Ch)-128);
Ch := UpCase(Ch);
if Ch in ['A'..'Z'] then
begin ’
Count{Ord(Ch)] := Count{Ord(Ch)] +1;
if Count[Ord(Ch)] > Max then Max := Count[Ord(Ch)];
Total := Total +1;
end;
end;
Writeln(' Count %');
for I := 65 to 90 do
begin
Write(Chr(I),': ',Count{I]:5:0,
Count[I]*100/Total:5:0,' ')
for Graph := 1 to Round(Count[I]*63/Max) do
Write(Bar);
Writeln;
end;
Writeln('Total', Total:5:0);
end.

TURBO Pascal Reference Manual

Files

If the program is compiled into a file called COUNT.COM, then the MS-
DOS command:

COUNT < TEXT.DOC > CHAR.CNT

will read the file TEXT.DOC and output the graph to the file CHAR.CNT.

Absolute Variables

Variables may be declared to reside at specific memory addresses, and
are then called absolute. This is done by adding to the variable declara-
tion the reserved word absolute followed by two Integer constants
specifying a segment and an offset at which the variable is to be locat-
ed:

var
Abc: Integer absolute $0000:$00EE;
Def: Integer absolute $0000:$00F0;

The first constant specifies the segment base address, and the second
constant specifies the offset within that segment. The standard
identifiers CSeg and DSeg may be used to place variables at absolute
addresses within the code segment (CSeg) or the data segment (DSeg):

Special: array[l..CodeSize] absolute CSeg:$05F3;

Absolute may also be used to declare a variable “‘on top” of another
variable, i.e. that a variable should start at the same address as another
variable. When absolute is followed by the identifier of a variable or
parameter, the new variable will start at the address of that variable
parameter.

Example:
var
Str: string[32];
StrLen: Byte absolute Stir;

This declaration specifies that the variable StrLen should start at the
same address as the variable Str, and as the first byte of a string vari-
able contains the length of the string, StrLen will contain the length of
Str. Notice that an absolute variable declaration may only specify one
identifier.

PC-DOS AND MS-DOS 203

http://www.fastio.com/

ClhihPD

Absolute Variables
Further details on space allocation for variables are found on page 216.

Absolute Address Functions

The foliowing functions are provided for obtaining information about pro-
gram variable addresses and system pointers.

Addr
Syntax: Addr(Name);
Returns the address in memory of the first byte of the variable with the
identifier Name. If Name is an array, it may be subscribed, and if Name

is a record, specific fields may be selected. The value returned is a 32
bit pointer consisting of a segment address and an offset.

Ofs
Syntax: Ofs(Name);
Returns the offset in the segment of memory occupied by the first byte
of the variable, procedure or function with the identifier Name. If Name
is an array, it may be subscribed, and if Name is a record, specific fields
may be selected. The value returned is an Integer.

Seg
Syntax: Seg(Name),
Returns the address of the segment containing the first byte of the vari-
able with the identifier Name. If Name is an array, it may be subscribed,

and if Name is a record, specific fields may be selected. The value re-
turned is an Integer.

204 TURBQO Pascal Reference Manual

wvwfastio.com

Absolute Address Functions

Cseg
Syntax: Cseg;

Returns the base address of the Code segment. The value returned is
an Integer.

Dseg

Syntax: Dseg;
" Returns the base address of the Data segment. The value returmned is an

Integer.

Sseg
Syntax: Sseg;
Returns the base address of thé Stack segment. The value returned is
an Integer.

Predefined Arrays
TURBO Pascal offers four predefined arrays of type Byte, called Mem,
MemW, Port and PortW which are used to access CPU memory and
data ports.

Mem Array
The predefined arrays Mem and MemW are used to access memory.
Each component of the array Mem is a byte, and each component of
the array
Wmem is a word (two bytes, LSB first). The index must be an address
specified as the segment base address and an offset separated by a

colon and both of type Integer.

The following statement assigns the value of the byte located in seg-
ment 0000 at offset $0081 to the variable Value

Value:=Mem[0000:$%$00811;

PC-DOS AND MS-DOS 205

http://www.fastio.com/

IHhPD

Predefined Arrays

While the following statement:
MenW[Seg(Var):0fs(Var)]:=Value;

places the value of the Integer variable Value in the memory location oc-
cupied by the two first bytes of the variable Var.

Port Array

The Port and PortW array are used to access the data ports of the
8086/88 CPU. Each element of the array represents a data port, with
the index corresponding to port numbers. As data ports are selected by
16-bit addresses the index type is Integer. When a value is assigned to
a component of Port or PortW it is output to the port specified. When a
component of port is referenced in an expression, its value is input from
the port specified. The components of the Port array are of type Byte
and the components of PortW are of type Integer.

Example:
Port[56]:=10;

The use of the port array is restricted to assignment and reference in
expressions only, i.e. components of Port and PortW cannot be used as
variable parameters to procedures and functions. Furthermore, opera-

tions referring to the entire port array (reference without index) are not
allowed.

With Statements
With statements may be nested to a maximum of 9 levels.

Pointer Related Items

MemAuvail
The standard function MemAvail is available to determine the available
space on the heap at any given time. The result is an /nteger specifying

the number of available paragraphs on the heap (a paragraph is 16
bytes).

206 TURBQO Pascal Reference Manual

wvwfastio.com

Pointer Related Items

Pointer Values
In very special circumstances it can be of interest to assign a specific
value to a pointer variable without using another pointer variable or it
can be of interest to obtain the actual value of a pointer variable.
Assigning a Value to a Pointer
The standard function Ptr can be used to assign specific values to a
pointer variable. The function returns a 32 bit pointer consisting of a
segment address and an offset.
Example:
Pointer:=Ptr(Cseg, $80);
Obtaining The Value of a Pointer
A pointer value is represented as a 32 bit entity and the standard func-
tion Ord can therefore not be used to obtain its value. Instead the func-
tions Ofs and Seg must be used.

The following statement obtains the value of the pointer P (which is a
segment address and an offset):

SegmentPart:=Seg(P");
OffsetPart:=0fs(P*);

PC-DOS AND MS-DOS 207

http://www.fastio.com/

DOS Function Calls

DOS Function Calls

For the purpose of making DOS system calls, TURBO Pascal introduces
a procedure MsDos, which has a record as parameter:

MsDos(Record) ;

Details on DOS system calls and BIOS routines are found in the IBM
DOS Technical Reference Manual.

The parameter to MsDos must be of the type:

record X
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;

or, alternatively:

record case Integer of
1: (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer);
2: (AL, AH,BL,BH,CL,CH,DL,DH : Byte);
end;

Before TURBO makes the DOS system call, the registers AX, BX, CX,
DX, BP, S|, DI, DS, and ES are loaded with the values specified in the
record parameter. When DOS has finished operation the MsDos pro-
cedure will restore the registers to the record thus making any results
from DOS available.

The following example shows how to use an MsDos function call to get
the time from DOS:

procedure Timer(var Hour,Min,Sec,Frac:Integer);

type
RegPack = record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;
var
Regs: Regpack;
208 TURBO Pascal Reference Manual

wavwfastio.com

DOS Function Calls

begin
with Regs do
begin
AX := $2C00;
MsDos(Regs);
Hour := hi(CX);
Min = 1o(CX);
Sec = hi(DX);
Frac := lo(DX);
end;
end; { procedure Timer }

User Written 1/O Drivers

For some applications it is practical for a programmer to define his own
input and output drivers, i.e. routines which perform input and output of
characters to and from an external device. The following drivers are part
of the TURBO environment, and used by the standard /O drivers
(although they are not available as standard procedures or functions):

function ConSt boolean; { 11}
function Conin: Char; { 8 }
procedure ConOut (Ch: Char); { 2 }
procedure LstOut (Ch: Char); {5}
procedure AuxOut (Ch: Char); { 4}
function Auxin: Char; { 3}
procedure UsrOut (Ch: Char); { 2 }
function Usrin: Char; { 8 }

The ConSt routine is called by the function KeyPressed, the Conin and
ConOut routines are used by the CON:, TRM:, and KBD: devices, the
LstOut routine is used by the LST: device, the AuxOut and Auxin rou-
tines are used by the AUX: device, and the UsrOut and Usrin routines
are used by the USR: device.

By default, these drivers are assigned to the DOS system calls as
showed in curly brackets in the above listing of drivers.

This, however, may be changed by the programmer by assigning the

PC-DOS AND MS-DOS 209

http://www.fastio.com/

|
ChhPD

User Written I/O Drivers

address of a self-defined driver procedure or a driver function to one of
the following standard variables:

Variable Contains the address of the
ConStPtr ConSt function

ConinPtr Conin function

ConOutPtr ConQut procedure

LstOutPtr LstOut procedure
AuxOutPtr AuxOut procedure

AuxinPtr Auxin function

UsrOutPtr UsrOut procedure

UsrinPtr Usrin function

A user defined driver procedure or driver function must match the
definitions given above, i.e. a ConSt driver must be a boolean function, a
Conin driver must be a char function, etc.

External Subprograms

210

The reserved word external is used to declare external procedures and
functions, typically procedures and functions written in machine code.

The reserved word external must be followed by a string constant
specifying the name of a file in which executable machine code for the
external procedure or function must reside. The default file type is
.COM.

During compilation of a program containing external functions or pro-
cedures, the associated files are loaded and placed in the object code.
As it is impossible to know in advance exactly where in the object code
the external code will be placed this code must be relocatable, and no
references must be made to the data segment. Furthermore the exter-
nal code must save the registers BP, CS, DS and SS and restore these
before executing the RET instruction.

An external subprogram has no block, i.e. no declaration part and no
statement part. Only the subprogram heading is specified, immediately
followed by the reserved word external and a filename specifying where
to find the executable code for the subprogram.

TURBO Pascal Reference Manual

wvwfastio.com

External Subprograms

Example:
procedure DiskReset; external 'DSKRESET':
function IOstatus: boolean; external 'IOSTAT';

An external file may contain code for more than one subprogram. The
first subprogram is declared as described above, and the following are
declared by specifying the identifier of the first subprogram followed by
an an integer constant specifying an offset, enclosed in square brackets.
The entry point of each subprogram is the address of the first subpro-
gram plus the offset.

Example:

procedure Coml; external 'SERIAL.BIN’;
function ComlStat: Boolean; external Coml[3];
procedure ComlIn: Char; external Coml[6];
procedure ComlOut: Char; external Coml[9];

The above example loads the file SERIAL.BIN into the program code,
and defines four procedures called Com?1, Com1Stat, Com1in, and
Com10ut with entry points at the base address of the external code
plus 0, 3, 6 and 9, respectively. When an external file contains several
subprograms, the first part of the code is typically a jump table, as as-
sumed in the example. In that way, the entry points of the subprograms
remain unchanged if the external file is modified.

Parameters may be passed to external subprograms, and the syntax is
exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); extermal 'PLOT';
procedure QuickSort(var List: PartNo); external 'QS’';

External subprograms and parameter passing is discussed further on
page 221.

In-line Machine Code
TURBO Pascal features the inline statements as a very convenient way
of inserting machine code instructions directly into the program text. An

inline statement consists of the reserved word inline followed by one or
more code elements separated by slashes and enclosed in parentheses.

PC-DOS AND MS-DOS- 211

http://www.fastio.com/

In-line Machine Code

A code element is built from one or more data elements, separated by
plus (+) or minus (—) signs. A data element is either an integer con-
stant, a variable identifier, a procedure identifier, a function identifier, or
a location counter reference. A location counter reference is written as
an asterisk (*).

Example:
inline (10/$2345/count+1l/sort-*+2);

Each code element generates one byte or one word (two bytes) of code.
The value of the byte or the word is calculated by adding or subtracting
the values of the data elements according to the signs that separate
them. The value of a variable identifier is the address (or offset) of the
variable. The value of a procedure or function identifier is the address
(or offset) of the procedure or function. The value of a location counter
reference is the address (or offset) of the location counter, i.e. the ad-
dress at which to generate the next byte of code.

A code element will generate one byte of code if it consists of integer
constants only, and if its value is within the 8-bit range (0..255). If the
value is outside the 8-bit range, or if the code element refers to variable,
procedure, or function identifiers, or if the code element contains a loca-
tion counter reference, one word of code is generated (least significant
byte first).

The ‘<’ and ‘>’ characters may be used to override the automatic
size selection described above. if a code element starts with a ‘ <’
character, only the least significant byte of the value is coded, even if it
is a 16-bit value. If a code element starts with a ‘ >’ character, a word
is always coded, even though the most significant byte is zero.

Example:
inline (<$1234/>%$44);

This inline statement generates three bytes of code: $34, $44, $00.

The value of a variable identifier use in a inline statement is the offset
address of the variable within its base segment. The base segment of
global variables (j.e. variables declared in the main program biock) is the
data segment, which is accessible through the DS register. The base
segment of local variables (i.e. variables declared within the current sub-
program) is the stack segment, and in this case the variable offset is re-
lative to the BP (base page) register, the

212 TURBO Pascal Reference Manual

wvwfastio.com

PC-DOS AND MS-DOS-

In-line Machine Code

use of which automatically causes the stack segment to be selected.
The base segment of typed constants is the code segment, which is ac-
cessible through the CS register. inline statements should not attempt
to access variables that are not declared in the main program nor in the
current subprogram.

The following example of an inline statement generates machine code
that will convert all characters in its string argument to upper case.

procedure UpperCase(var Strg: Str);
{Str is type String{255]}

begin
inline
($C4/$BE/Strg/ { LES DI,Strg[BP]) }
$26/$8A/%0D/ { MOV CL,ES:[DI] }
$FE/$C1l/ { INC CL }
$FE/$C9/ { Ll1: DEC CL }
$74/%13/ { JZ L2 }
$47/ { INC DI }
$26/$80/$3D/%61/ { CMP ES:BYTE PTR {DI],'a'}
$72/8F5/ { JB L1 }
$26/$80/$3D/$7A/ { CMP ES:BYTE PTR [DI],'z'}
$77/8EF/ { JA L1 }
$26/$80/$2D/%$20/ { SUB ES:BYTE PTR [DI],20H}
$EB/$E9) ; { JMP SHORT L1 }
{ L2: }
end;

Inline statements may be freely mixed with other statements throughout
the statement part of a block, and inline statements may use all CPU
registers. Note, however, that the contents of the registers BP, SP, DS,
and SS must be the same on exit as on entry.

213

http://www.fastio.com/

C\DPD:—

Interrupt Handling

Interrupt Handling

A TURBO Pascal interrupt routine must manually preserve registers AX,
BX, CX, DX, SI, DI, DS and ES. This is done by placing the following in-
line statement as the first statement of the procedure:

inline ($50/$53/851/$52/$56/$57/$1E/$06/$FB);

The last byte ($FB) is an STI instruction which enables further interrupts
- it may or may not be required. The following inline statement must be
the last statement in the procedure:

inline ($07/$1F/$5F/$5E/$5A/$59/$5B/$58/$8B/$ES/$5D/$CF) ;

This restores the registers and reloads the stack pointer (SP) and the
base page register (BP). The last byte ($CF) is an IRET instruction which
overrides the RET instruction generated by the compiler.

An interrupt service procedure must not employ any |/O operations us-
ing the standard procedures and functions of TURBO Pascal, as the
BDOS is not re-entrant. The programmer must initialize the interrupt
vector used to activate the interrupt service routine.

Intr procedure

Syntax: Intr(interruptNo, Resulf)

This procedure initializes the registers and flags as specified in the
parameter Result which must be of type:

Result = record
* AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;

It then makes the software interrupt given by the parameter interruptNo '

which must be an Integer constant. When the interrupt service routine
returns control to your program, Result will contain any values returned
from the service routine.

214 TURBO Pascal Reference Manual

wvwfastio.com

Interrupt Handling

Note that the data segment register DS, used to access global variables,
will not have the correct value when the interrupt service routine is en-
tered. Therefore, global variables cannot be directly accessed. Typed
constants, however, are available, as they are stored in the code seg-
ment. The way to access global variables in the interrupt service routine
is therefore to store the value of Dseg in a typed constant in the main
program. This typed constant can then be accessed by the interrupt
handler and used to set its DS register.

PC-DOS AND MS-DOS 215

http://www.fastio.com/

ICIihPDF -

Internal Data Formats

Internal Data Formats

In the following descriptions, the symbol @ denotes the offset of the
first byte occupied by a variable of the given type within its segment.
The segment base address can be determined by using the standard
function Seg.

Global and local variables, and typed constants occupy different seg-
ments as follows:

Global variables reside in the data segment and the offset is relative to
the DS register.

Local variables reside in the stack segment and the offset is relative to
the BP register.

Typed constants reside in the code segment and the offset is relative to
the CS register.

All variables are contained within their base segment.

Basic Data Types

The basic data types may be grouped into structures (arrays, records,
and disk files), but this structuring will not affect their internal formats.

Scalars

216

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range 0..255, booleans, chars, and declared
scalars with less than 256 possible values. This byte contains the ordinal
value of the variable.

The following scalars are all stored in two bytes: Integers, Integer
subranges with one or both bounds not within the range 0..255, and de-
clared scalars with more than 256 possible values. These bytes contain
a 2's complement 16-bit value with the least significant byte stored first.

TURBO Pascal Reference Manual

wvwfastio.com

Internal Data Formats

Reals

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa
and an 8-bit 2's exponent. The exponent is stored in the first byte and
the mantissa in the next five bytes with the least significant byte first:

@ Exponent
@ +1 LSB of mantissa
@ +5 MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an ex-
ponent of $84 indicates that the value of the mantissa is to be multiplied
by 2 "($84-$80) = 2 "4 = 16. If the exponent is zero, the floating point
value is considered to be zero.

The value of the mantissa is obtained by dividing the 40-bit unsigned in-
teger by 2°40. The mantissa is always normalized, i.e. the most
significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The
sign of the mantissa is stored in this bit, however, a 1 indicating that the
number is negative, and a 0 indicating that the number is positive.

Strings

A string occupies as many bytes as its maximum length plus one. The
first byte contains the current length of the string. The following bytes
contains the string with the first character stored at the lowest address.
In the table shown below, L denotes the current length of the string, and
Max denotes the maximum length:

@ Current length (L)
@ +1 First character
@ +2 Second character
@ +L Last character
@ +L+1 Unused
@ + Max Unused
PC-DOS AND MS-DOS- 217

http://www.fastio.com/

Internal Data Formats

Sets

An element in a Set occupies one bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to
be zero at all times and need therefore not be stored. In terms of
memory efficiency, the best way to store a set variable of a given type
would then be to “cut off”’ all insignificant bits, and rotate the remaining
bits so that the first element of the set would occupy the first bit of the
first byte. Such rotate operations, however, are quite slow, and TURBO
therefore employs a compromise: Only bytes which are statically zero
(i.e. bytes of which no bits are used) are not stored. This method of
compression is very fast and in most cases as memory efficient as the
rotation method. :

The number of bytes occupied by a set variable is calculated as (Max
div 8) — (Min div 8) + 1, where Max and Min are the upper and lower
bounds of the base type of that set. The memory address of a specific
element E is:

MemAddress = @ + (E div 8) — (Min div 8)

and the bit address within the byte at MemAddress is:

BitAddress = E mod 8

where E denotes the ordinal value of the element.

Pointers

A pointer consists of four bytes containing a segment base address and
an offset. The two least significant bytes contains the offset and the two
most significant bytes the base address. Both are stored in memory us-
ing byte reversed format, i.e. the least significant byte is stored first. The
value nil corresponds to two zero words.

218 TURBO Pascal Reference Manual

- wawwlastio.com

Internal Data Formats

Data Structures

Data structures are built from the basic data types using various struc-
turing methods. Three different structuring methods exist: Arrays,
records, and disk files. The structuring of data does not in any way
affect the internal formats of the basic data types.

Arrays

The components with the lowest index values are stored at the lowest
memory address. A multi-dimensional array is stored with the rightmost
dimension increasing first, e.g. given the array

Board: array[l..8,1..8] of Square

you have the following memory layout of its components:

lowest address: Board[1l,1]
Board[1,2]

Board[1,8]

Board[2,1]
Board[2,2]

Highest address: Board[8,8]

Records

The first field of a record is stored at the lowest memory address. If the
record contains no variant parts, the length is given by the sum of the
lengths of the individual fields. If a record contains a variant, the total
number of bytes occupied by the record is given by the length of the
fixed part plus the length of largest of its variant parts. Each variant
starts at the same memory address. '

PC-DOS AND MS-DOS- 219

http://www.fastio.com/

ClibhPD

Internal Data Formats

Disk Files

Disk files are different from other data structures in that data is not
stored in internal memory but in a file on an external device. A disk file is
controlled through a file interface block (FIB).

File Interface Blocks

220

The following table shows the format of a FIB:

@+0 File handle (L.SB).

@+1 File handie (MSB).

@+2 Record length (LSB) or flags byte.
@+3 Record length (MSB) or character buffer.
@+4 Buffer offset (LSB).

@+5 Buffer offset (MSB).

@+6 Buffer size (LSB).

@+7 Buffer size (MSB).

@+8 Buffer pointer (LSB).

@+9 Buffer pointer (MSB).

@+10 Buffer end (LSB).

@+11 Buffer end (MSB).

@+12 First byte of file path.

@+75 Last byte of file path.

The word at @ + 0 and @ + 1 contains the 16-bit file handle returned
by MS-DOS when the file was opened (or OFFFFH when the file is
closed). For typed and untyped files, the word at @ + 2 and @ + 3 con-
tains the record length in bytes (zero if the file is closed), and bytes
@ + 4 to @ + 11 are unused.

For text files, the format of the flags byte at @ + 2 is:

Bit 0..3 File type.

Bit 5 Pre-read character flag.
Bit 6 Output flag.

Bit 7 Input flag.

File type 0 denotes a disk file, and 1 through 5 denote the TURBO Pas-
cal logical I/O devices (CON:, KBD:, LST:, AUX:, and USR:). Bit 5 is set
if the character buffer contains a pre-read character, bit 6 is set if output
is allowed, and bit 7 is set if input is allowed.

TURBO Pascal Reference Manual

wvwfastio.com

Internal Data Formats

The four words from @ + 4 to @ + 11 store the offset address of the
buffer, its size, the offset of the next character to read or write, and the
offset of the first byte after the buffer. The buffer always resides in the
same segment as the FIB, usually starting at @ + 76. When a textfile is
assigned to a logical device, only the flags byte and the character buffer
are used.

The file path is an ASCIH string (a string terminated by a zero byte) of up
to 63 characters.

Random Access Files

A random access file consists of a sequence of records, all of the same
length and same internal format. To optimize file storage capacity, the
records of a file are totally contiguous.

TURBO saves no information about the record length. The programmer
must therefore see to it that a random access file is accessed with the
correct record length. '

The size returned by the standard function Filesize is obtained from the
DOS directory.

Text Files

The basic components of a text file are characters, but a text file is
furthermore divided into /ines. Each line consists of any number of char-
acters ended by a CR/LF sequence (ASCII $0D/ $0A). The file is ter-
minated by a Ctrl-Z (ASCIi $1B).

Parameters

Parameters are transferred to procedures and functions via the stack
which is addressed through SS:SP.

On entry to an external subroutine, the top of the stack always contains
the return address within the code segment (a word). The parameters, if
any, are located below the return address, i.e. at higher addresses on
the stack.

PC-DOS AND MS-DOS- 221

http://www.fastio.com/

ChhPD

Internal Data Formats

222

If an external function has the following subprogram header:
function Magic(var R: Real; S: string5): Integer;

then the stack upon entry to Magic would have the following contents:

< Function result >
< Segment base address of R >
< Offset address of R >
< First character of S >
< Last character of S >
< Length of S >
< Return address > SP

An external subroutine should save the Base Page register (BP) and
then copy the Stack Pointer SP into the Base Page register in order to
be able to refer to parameters. Furthermore the subroutine should
reserve space on the stack for local workarea. This can be obtained by
the following instructions:

PUSH BP
MOV BP,SP
SUB SP, WORKAREA

The last instruction will have the effect of adding the following to the
stack:

< Return address > BP
< The saved BP register >
< First byte of local workarea >

A oo

Last byte of local work area > SP
Parameters are accessed via the BP register.

The following instruction will load length of the string into the AL regis-
ter:

MOV AL, [BP-1]

TURBO Pascal Reference Manual

wvwfastio.com

Internal Data Formats

Before executing a RET instruction the subprogram must reset the
Stack Pointer and Base Page register to their original values. When exe-
cuting the RET the parameters may be removed by giving RET a param-
eter specifying how many bytes to remove. The following instructions
should therefore be used when exiting from a subprogram:

MOV SP,BP
POP BP
RET NoOfBytesToRemove

Variable Parameters

V\/i'gh a variable (var) parameter, two words are transferred on the stack
giving the base address and offset of the first byte occupied by the actu-
al parameter.

Value Parameters

With value parameters, the data transferred on the stack depends upon
the type of the parameter as described in the following sections.

Scalars

Integers, Booleans, Chars and declared scalars (i.e. all scalars except
Reals) are transferred on the stack as a word. If the variable occupies

only one byte when it is stored, the most significant byte of the parame-
ter is zero.

A real is transferred on the stack using six bytes.

Strings

When a string i_s at the top of the stack, the topmost byte contains the
length of the string followed by the characters of the string.

PC-DOS AND MS-DOS- 223

http://www.fastio.com/

ClibPD

Internal Data Formats

Sets

A set always occupies 32 bytes on the stack (set compression only ap-
plies to the loading and storing of sets).

Pointers

A pointer value is transferred on the stack as two words containing the
base address and offset of a dynamic variable. The value NIL
corresponds to two zero words.

Arrays and Records

Even when used as value parameters, Array and Record parameters are
not actually transferred on the stack. Instead, two words containing the
base address and offset of the first byte of the parameter are
transferred. It is then the responsibility of the subroutine to use this in-
formation to make a local copy of the variable.

Function Results

User written external functions must remove all parameters and the
function result from the stack when they return.

User written external functions must return their results exactly as
specified in the following:

Values of scalar types, except Reals, must be returned in the AX regis-
ter. If the result is only one byte then AH should be set to zero. Boolean
functions must return the function value by setting the Z flag (Z =
False, NZ = True).

Reals must be returned on the stack with the exponent at the lowest
address. This is done by not removing the function result variable when
returning.

Sets must be returned on the top of the stack according to the format
described on page 223. On exit SP must point at the byte containing the
string length.

Pointer values must be returned in DX:AX.

224 TURBO Pascal Reference Manual

wvwfastio.com

Internal Data Formats

 Heap and The Stacks

-During execution of TURBO Pascal program the following segments are
- allocated for the program:

a Code Segment,
a Data Segment, and
a Stack Segment

Two stack-like structures are maintained during execution of a program:
the heap and the stack.

The heap is used to store dynamic variables, and is controlled with the
standard procedures New, Mark, and Release. At the beginning of a
program, the heap pointer HeapPtr is set to low memory in the stack
segment and the heap grows upwards towards the stack. The pre-
defined variable HeapPtr contains the value of the heap pointer and al-
lows the programmer to control the position of the heap.

The stack is used to store local variables, intermediate results during
evaluation of expressions and to transfer parameters to procedures and
functions. At the beginning of a program, the stack pointer is set to the
address of the top of the stack segment.

On each call to the procedure New and on entering a procedure or func-
tion, the system checks for collision between the heap and the recursion
stack. If a collision has occurred, an execution error results, unless the
K compiler directive is passive ({ $K-}).

PC-DOS AND MS-DOS- 225

http://www.fastio.com/

b PD

Memory Management

Memory Management

When a TURBO program is executed, three segments are allocated for
the program: A code segment, a data segment, and a stack segment.

Code segment (CS is the code segment register):

CS:0000 - CS:O0FF MS-DOS base page.
CS:0100 - CS:EOFR Run-time library code.
CS:EQFR - CS:EOFP Program code.

CS:EQOFP - CS:EOFC Unused.

Data segment (DS is the data segment register):

DS:0000 - DS:EOQOFW
DS:EOFW - DS:EOFM
DS:EOFM - DS:EOFD

Run-time library workspace.
Main program block variables.
Unused.

The unused areas between (CS:EOFP-CS:EOFC and DS:EOFM-
DS:EOFD) are allocated only if a minimum cOde segment size larger
than the required size is specified at compilation. The sizes of the code
and data segments never exceed 64K bytes each.

The stack segment is slightly more complicated, as it may be larger than
64K bytes. On entry to the program the stack segment register (SS) and
the stack pointer (SP) is loaded so that SS:SP points at the very last
byte available in the entire segment. During execution of the program
SS is never changed but SP may move downwards until it reaches the
bottom of the segment, or 0 (corresponding to 64K bytes of stack) if the
stack segment is larger than 64K bytes.

The heap grows from low memory in the stack segment towards the ac-
tual stack residing in high memory. Each time a variable is allocated on
the heap, the heap pointer (which is a double word variable maintained
by the TURBO run-time system) is moved upwards, and then normal-
ized, so that the offset address is always between $0000 and $00OF.
Therefore, the maximum size of a single variable that can be allocated
on the heap is 65521 bytes (corresponding to $10000 less $000F). The
total size of all variables allocated on the heap is however only limited by
the amount of memory available. The heap pointer is available to the
programmer through the HeapPtr standard identifier. HeapPltr is a type-
less pointer which is compatible with all pointer types. Assignments to
HeapPtr should be exercised only with extreme care.

226 TURBO Pascal Reference Manual

wvwfastio.com

This chapter describes features of TURBO Pascal specific to the CP/M-
86 implementation. It presents two kinds of information:

Things you should know to make efficient use of TURBO Pascal. Pages
227 through 240.

The rest of the chapter describes things which are of interest only to ex-
perienced programmers, such as machine language routines, technical
aspects of the compiler, etc.

ompiler Options

The O command selects the following menu from which you may view
and change some default values of the compiler. It also provides a help-
ful function to find runtime errors in programs compiled into object code
files.

compile -> Memory
Cmd-file
cHn-file

command line Parameter:

Find run-time error Quit

Figure 21-1: Options Menu

Memory / Cmd file / cHn-file

The three commands M, C, and H select the compiler mode, i.e. where
to put the code which results from the compilation. Memory is the de-
fault mode. When active, code is produced in memory and resides there
ready to be activated by a Run command.

CP/M-86 227

http://www.fastio.com/

	./tp3_146-147.tif
	./tp3_148-149.tif
	./tp3_150-151.tif
	./tp3_152-153.tif
	./tp3_154-155.tif
	./tp3_156-157.tif
	./tp3_158-159.tif
	./tp3_160-161.tif
	./tp3_162-163.tif
	./tp3_164-165.tif
	./tp3_166-167.tif
	./tp3_168-169.tif
	./tp3_170-171.tif
	./tp3_172-173.tif
	./tp3_174-175.tif
	./tp3_176-177.tif
	./tp3_178-179.tif
	./tp3_180-181.tif
	./tp3_182-183.tif
	./tp3_184-185.tif
	./tp3_186-187.tif
	./tp3_188-189.tif
	./tp3_190-191.tif
	./tp3_192-193.tif
	./tp3_194-195.tif
	./tp3_196-197.tif
	./tp3_198-199.tif
	./tp3_200-201.tif
	./tp3_202-203.tif
	./tp3_204-205.tif
	./tp3_206-207.tif
	./tp3_208-209.tif
	./tp3_210-211.tif
	./tp3_212-213.tif
	./tp3_214-215.tif
	./tp3_216-217.tif
	./tp3_218-219.tif
	./tp3_220-221.tif
	./tp3_222-223.tif
	./tp3_224-225.tif
	./tp3_226-227.tif

