T
The TURBO editor vs. WordStar '
Notes: Chapter 2
Basic Symbols
The basic vocabulary of TURBO Pascal consists of basic symbols divid-
ed into letters, digits, and special symbols:
Letters
‘ At0 Z, ato z, and _ (underscore)
Digits
0123456789
Special symbols
+-* /= r s> ()L TLY ., xS
No distinction is made between upper and lower case letters. Certain
operators and delimiters are formed using two special symbols:
Assignment operator: : =
Relational operators: <> <= >=
Subrange delimiter: . . ,
Brackets: (. and .) may be used instead of [and]
Comments: (* and *) may be used instead of { and }
Reserved Words
Reserved words are integral parts of TURBO Pascal. They cannot be
redefined and must therefore not be used as user defined identifiers.
* absolute * external nil * shl
and file not * shr
array forward * overlay * string
begin for of then
case function or type
const goto packed to
div * inline procedure until
do if program var
downto in record while
else label repeat with
end mod set * xor
36 TURBO Pascal Reference Manual BASIC LANGUAGE ELEMENTS 37

HC]HHN) wvwfastio.com

http://www.fastio.com/

Reserved Words

Throughout this manual, reserved words are written in boldface. The
asterisks indicate reserved words not defined in standard Pascal.

Standard Identifiers

TURBO Pascal defines a number standard identifiers of predefined
types, constants, variables, procedures, and functions. Any of these
identifiers may be redefined but it will mean the loss of the facility
offered by that particular identifier and may lead to confusion. The fol-
lowing standard identifiers are therefore best left to their special pur-
poses:

Standard Identifiers

Throughout this manual, all identifiers, including standard identifiers, are
written in a combination of upper and lower case letters (see page 43).
In the text (as opposed to program examples), they are furthermore
printed in italics.

Delimiters

Language elements must be separated by at least one of the following
delimiters: a blank, an end of line, or a comment.

Program Lines

Addr Delay Length Release
ArcTan Delete Ln Rename
Assign EQF Lo Reset
Aux EOLN LowVideo Rewrite
AuxInPtr Erase Lst Round
AuxQutPtr Execute LstOutPtr Seek
BlockRead Exit Mark Sin
BlockWrite Exp MaxInt SizeOf
Boolean False Mem SeekEof
BufLen FilePos MemAvail SeekEoln
Byte FileSize Move Sqr
Chain FillChar New Sqrt
Char Flush NormVideo Str

Chr Frac 0dd Succ
Close GetMem Ord Swap
C1lrEOL GotoXY Qutput Text
ClrScr Halt Pi Trm

Con HeapPtr Port True
ConInPtr Hi Pos Trunc
ConOutPtr IOresult Pred UpCase
Concat Input Ptr Usr
ConstPtr InsLine Random UsrInPtr
Copy Insert Randomize UsrOutPtr
Cos Int Read Val
CrtExit Integer ReadLn Write
CrtInit Kbd Real WriteLn
DelLine KeyPressed

The maximum length of a program line is 127 characters; any character
beyond the 127th is ignored by the compiler. For this reason the TURBO
editor allows only 127 characters on a line, but source code prepared
with other editors may use longer lines. If such a text is read into the
TURBO editor, line breaks will be automatically inserted, and a warning
is issued.

Each TURBOQ Pascal implementation further contains a number of dedi-
cated standard identifiers which are listed in chapters 20, 21, and 22.

38 TURBO Pascal Reference Manual BASIC LANGUAGE ELEMENTS 39

| _
- ChbhPDFE - www.lastio.com

http://www.fastio.com/

%CM;)PD

Program Lines

40

wvwfastio.com

Notes:

TURBOQO Pascal Reference Manual

Chapter 3
STANDARD SCALAR TYPES

A data type defines the set of values a variable may assume. Every vari-
able in a program must be associated with one and only one data type.
Although data types in TURBO Pascal can be quite sophisticated, they
are all built from simple (unstructured) types.

A simple type may either be defined by the programmer (it is then called
a declared scalar type), or be one of the standard scalar types: integer,
real, boolean, char, or byte. The following is a description of these five
standard scalar types.

Integer

Integers are whole numbers; in TURBO Pascal they are limited to a
range of — 32768 through 32767. Integers occupy two bytes in
memory.

Overflow of integer arithmetic operations is not detected. Notice in par-
ticular that partial results in integer expressions must be kept within the
integer range. For instance, the expression 1000 * 100 / 50 will not yield
2000, as the multiplication causes an overflow.

Byte

The type Byte is a subrange of the type Integer, of the range 0..255.
Bytes are therefore compatible with integers. Whenever a Byte value is
expected, an Integer value may be specified instead and vice versa, ex-
cept when passed as parameters. Furthermore, Bytes and Integers may
be mixed in expressions and Byte variables may be assigned integer
values. A variable of type Byte occupies one byte in memory.

STANDARD SCALAR TYPES 41

http://www.fastio.com/

|
i(l\mPD

Real

Real

The range of real numbers is 1E — 38 through 1E + 38 with a mantissa
of up to 11 significant digits. Reals occupy 6 bytes in memory.

Overflow during an arithmetic operation involving reals causes the pro-
gram to halt, displaying an execution error. An underflow will cause a
result of zero.

Although the type real is included here as a standard scalar type, the
following differences between reals and other scalar types should be
noticed:

1) The functions Pred and Succ cannot take real arguments.

2) Reals cannot be used in array indexing.

3) Reals cannot be used to define the base type of a set.

4) Reals cannot be used in controlling for and case statements.
5) Subranges of reals are not allowed.

Boolean

A boolean value can assume either of the logical truth values denoted
by the standard identifiers True and False. These are defined such that
False < True. A Boolean variable occupies one byte in. memory.

Char

42

A Char value is one character in the ASCII character set. Characters are
ordered according to their ASCII value, for example: ‘A’ < 'B’. The or-
dinal (ASCII) values of characters range from 0 to 255. A Char variable
occupies one byte in memory.

TURBO Pascal Reference Manual

wvwfastio.com

Chapter 4
USER DEFINED LANGUAGE
ELEMENTS

Identifiers

Identifiers are used to denote labels, constants, types, variables, pro-
cedures, and functions. An identifier consists of a letter or underscore
followed by any combination of letters, digits, or underscores. An
identifier is limited in length only by the line length of 127 characters,
and all characters are significant.

Examples:

TURBO

square

persons_counted

BirthDate

3rdRoot illegal, starts with a digit

Two Words illegal, must not contain a space

As TURBO Pascal does not distinguish between upper and lower case
letters, the use of mixed upper and lower case as in BirthDate has no
functional meaning. It is nevertheless encouraged as it leads to more le-
gible identifiers. VeryLongldentifier is easier to read for the human
reader than VERYLONGIDENTIFIER. This mixed mode will be used for
all identifiers throughout this manual.

Numbers

Numbers are constants of integer type or of real type. Integer constants
are whole numbers expressed in either decimal or hexadecimal notation.
Hexadecimal constants are identified by being preceded by a dollar-
sign: $ABC is a hexadecimal constant. The decimal integer range is
— 32768 through 32767 and the hexadecimal integer range is $0000
through $FFFF.

USER DEFINED LANGUAGE ELEMENTS: 43

http://www.fastio.com/

IClihPDF -

Numbers

Examples:

1

12345

-1

$123

$ABC

$123G illegal, G is not a legal hexadecimal digit
1.2345 illegal as an integer, contains a decimal parts

The range of Real numbers is 1E-38 through 1E + 38 with a mantissa of
up to 11 significant digits. Exponential notation may be used, with the
letter E preceding the scale factor meaning “‘times ten to the power of”.
An integer constant is allowed anywhere a real constant is allowed.
Separators are not allowed within numbers.

Examples:

1.0

1234 .5678

-0.012

1E6

2E-5

-1.2345678901E+12

1 legal, but it is not a real, it is an integer

Strings

44

A string constant is a sequence of characters enclosed in single quotes:
'This is a string constant '

A single quote may be contained in a string by writing two successive
single quotes. Strings containing only a single character are of the stan-
dard type char. A string is compatible with an array of Char of the same
length. All string constants are compatible with all string types.

Examples:
'TURBO'

'You''ll see'
Ttrrr

-

TURBO Pascal Reference Manual

wvwfastio.com

Strings

As shown in example 2 and 3, a single quote within a string is written as
two consecutive quotes. The four consecutive single quotes in example
3 thus constitute a string containing one quote.

The last example - the quotes enclosing no characters, denoting the
empty string - is compatible only with string types.

Control Characters

TURBO Pascal also allows control characters to be embedded in
strings. Two notations for control characters are supported:

1) The # symbol followed by an integer constant in the range 0..255
denotes a character of the corresponding ASCII value, and -

2) the *~ symbol followed by a character, denotes the corresponding
control character.

Examples: _

#10 ASCII 10 decimal (Line Feed).
#$1B ASCIi 1B hex (Escape).

‘G Control-G (Bell).

~1 Control-L (Form Feed).

| Control-[(Escape).

Sequences of control characters may be concatenated into strings by
writing them without separators between the individual characters:

#13#10
#27"U#20
"G*"G"G"G

The above strings contain two, three, and four characters, respectively.
Control characters may also be mixed with text strings:

'Waiting for input! '“G*G*G' Please wake up'
#27'U '
'This is another line of text '~M*J

These three strings contain 37, 3, and 31 characters, respectively.

USER DEFINED LANGUAGE ELEMENTS 45

http://www.fastio.com/

ChihPD

Comments

Comments

A comment may be inserted anywhere in the program where a delimiter
is legal. It is delimited by the curly braces { and }, which may be re-
placed by the symbols (* and *).

Examples:
{This is a comment}
(* and so is this *)

Curly braces may not be nested within curly braces, and (*..*) may
not be nested within (*..*). However, curly braces may nested within
(*..*) and vise versa, thus allowing entire sections of source code to
be commented away, even if they contain comments.

Compiler Directives

A number of features of the TURBO Pascal compiler are controlled
through compiler directives. A compiler directive is introduced as a com-

ment with a special syntax which means that whenever a comment is al-

lowed in a program, a compiler directive is also allowed.

A compiler directive consists of an opening brace imn!ediqtely followed
by a dollar-sign immediately followed by one compiler directive letter or a
list of compiler directive letters separated by commas. The syntax of the
directive or directive list depends upon the directive(s) selected. A full
description of each of the compiler directives follow in the relevant sec-
tions; and a summary of compiler directives is located in Appendix C.
File inclusion is discussed in chapter 17.

Examples:

{$1-}

{$1 INCLUDE.FIL}
{$R~-,B+,V-}
(*$X-*)

Notice that no spaces are allowed before or after the dollar-sign.

46 TURBO Pascal Reference Manual

wvwfastio.com

Chapter 5
PROGRAM HEADING AND
PROGRAM BLOCK

A Pascal program consists of a program heading followed by a program
block. The program block is further divided into a declaration part, in
which all objects local to the program are defined, and a statement part,
which specifies the actions to be executed upon these objects. Each is
described in detail in the following.

Program Heading

In TURBO Pascal, the program heading is purely optional and of no
significance to the program. If present, it gives the program a name, and
optionally lists the parameters through which the program communi-
cates with the environment. The list consists of a sequence of identifiers
enclosed in parentheses and separated by commas.

Examples:

program Circles;

program Accountant(Input,Output);
program Writer(Input,Printer);

Declaration Part

The declaration part of a block declares all identifiers to be used within
the statement part of that block (and possibly other blocks within it). The
declaration part is divided into five different sections:

1) Label declaration part

2) Constant definition part

3) Type definition part

4) Variable declaration part

5) Procedure and function declaration part

Whereas standard Pascal specifies that each section may only occur
zero or one time, and only in the above order, TURBO Pascal allows
each of these sections to occur any number of times in any order in the
declaration part.

PROGRAM HEADING AND PROGRAM BLOCK 47

http://www.fastio.com/

Declaration Part

Label Declaration Part

Any statement in a program may be prefixed with a label, enab!lng
direct branching to that statement by a goto statement. A label consists
of a label name followed by a colon. Before use, the label must be dc_e-
clared in a label declaration part. The reserved word label heads this
part, and it is followed by a list of label identifiers separated by commas
and terminated by a semi-colon.

Example:
label 10, error, 999, Quit;

Whereas standard Pascal limits labels to numbers of no more than 4 di-
gits, TURBO Pascal allows both numbers and identifiers to be used as
labels.

Constant Definition Part

48

The constant definition part introduces identifiers as synonyms for con-

stant values. The reserved word const heads the constant definition

part, and is followed by a list of constant assignments se_parated by
semi-colons. Each constant assignment consists of an identifier followed
by an equal sign and a constant. Constants are either strings or
numbers as defined on pages 43 and 44.

Example:

const
Limit = 255;
Max = 1024;

PassWord = 'SESAM';
CursHome = *"['V';

The following constants are predefined in TURBO Pascal which may be
referenced without previous definition:

Name: Type and value:

Pi Real (3.1415926536E+00).

False Boolean (the truth value false).
True Boolean (ihe truth value true).
Maxint Integer (32767).

As described in chapter 13, a constant definition part may also define
typed constants.

TURBO Pascal Reference Manual

H%C\mPD: —wnvwy.fastio.com

Declaration Part

Type Definition Part

A data type in Pascal may be either directly described in the variable de-
claration part or referenced by a type identifier. Several standard type
identifiers are provided, and the programmer may create his own types
through the use of the type definition. The reserved word type heads
the type definition part, and it is followed by one or more type assign-
ments separated by semi-colons. Each type assignment consists of a
type identifier followed by an equal sign and a type.

Example:

type
Number = Integer;
Day = (mon, tues,wed, thur, fri,sat,sun);
List = array[l..10] of Real;

More examples of type definitions are found in subsequent sections.

Variable Declaration Part

Every variable occurring in a program must be declared before use. The
declaration must textually precede any use of the variable so that the
variable is ‘known’ to the compiler when it is used.

A variable declaration consists of the reserved word var followed by one
or more identifier(s), separated by commas, each followed by a colon
and a type. This creates a new variable of the specified type and associ-
ates it with the specified identifier.

The ‘scope’ of this identifier is the block in which it is defined, and any
block within that block. Note, however, that any such block within
another block may define another variable using the same identifier.
This variable is said to be local to the block in which it is declared (and
any blocks within that block), and the variable declared on the outer lev-
el (the global variable) becomes inaccessible.

Example:
var
Result, Intermediate, SubTotal: Real;
I, J, X, Y: Integer;
Accepted, Valid: Boolean;
Period: Day;
Buffer: array[0..127] of Byte;

PROGRAM HEADING AND PROGRAM BLOCK 49

http://www.fastio.com/

| ClibPD

Declaration Part

Procedure and Function Declaration Part

A procedure declaration serves to define a procedure within the current
procedure or program (see page 131). A procedure is activated from a
procedure statement (see page 56), and upon completion, program exe-
cution continues with the statement immediately foliowing the calling
statement.

A function declaration serves to define a program part which computes
and returns a value (see page 137). A function is activated when its
designator is met as part of an expression (see page 54).

Statement Part

The statement part is the last part of a block. It specifies the actions to
be executed by the program. The statement part takes the form of a
compound statement followed by a period or a semi-colon. A compound
statement consists of the reserved word begin, followed by a list of
statements separated by semicolons, terminated by the reserved word
end.

50 TURBO Pascal Reference Manual

wvwfastio.com

&
)
ﬁ

Chapter 6
EXPRESSIONS

Expressions are algorithmic constructs specifying rules for the computa-
tion of values. They consist of operands: variables, constants, and func-
tion designators combined by means of operators as defined in the fol-
lowing. :

This section describes how to form expressions from the standard
scalar types Integer, Real, Boolean, and Char. Expressions containing
declared scalar types, string types, and set types are described on
pages 63, 67, and 86, respectively.

Operators

Operators fall into five categories, denoted by their order of precedence:

1) Unary minus (minus with one operand only).

2) Not operator.
3) Multiplying operators: *, /, div, mod, and, shl, and shr.
4) Adding operators: +, —, or, and xor.

5) Relational operators: =, < >,<,>,< =,> = andin.

Sequences of operators of the same precedence are evaluated from left
to right. Expressions within parentheses are evaluated first and indepen-
dently of preceding or succeeding operators.

If both of the operands of the muiltiplying and adding operators are of
type Integer, then the result is of type Integer. If one (or both) of the
operands is of type Real, then the result is also of type Real.

Unary Minus

The unary minus denotes a negation of its operand which may be of
Real or Integer types.

EXPRESSIONS 51

http://www.fastio.com/

Operators

Not Operator

The not operator negates (inverses) the logical value of its Boolean

operand:

not True = False
not False = True

TURBO Pascal also allows the not operator to be applied to an Integer
operand, in which case bitwise negation takes place.

Examples:
not O = -1
not -15 =14
not $2345 = $DCBA

Multiplying Operators
Operator Operation Operand type Result type
* multiplication Real Real
* multiplication integer Integer
* multiplication Real, Integer Real
/ division Real, Integer Real
/ division Integer Real
/ division Real Real
div Integer division Integer Integer
mod modulus Integer Integer
and arithmetic and Integer Integer
and logical and Boolean Boolean
shl shift left Integer Integer
shr shift right Integer Integer
Examples:
12 * 34 = 408
123 7 4 = 30.76
123 div 4 = 30
12 mod 5 =2
True and False = False
12 and 22 =4
2 shl 7 = 256
256 shr 7 = 2

52

|
“C;M;)PD wvwfastio.com

TURBO Pascal Reference Manual

Operators
Adding Operators
Operator Operation Operand type Result type’
+ addition Real Real
+ addition Integer Integer
+ addition Real, Integer Real
- subtraction Real Real
- subtraction Integer Integer
- subtraction Real, Integer Real
or arithmetic or Integer Integer
or logical or Boolean Boolean
xor arithmetic xor Integer Integer
xor logical xor Boolean Boolean
Examples:
123+456 =579
456-123.0 = 333.0
True or False =True
12 or 22 =30
True xor False =True
12 xor 22 =26
Relational Operators

The relational operators work on all standard scalar types: Real, Integer,
Boolean, Char, and Byte. Operands of type Integer, Real, and Byte may
be mixed. The type of the result is always Boolean, i.e. True or False.

= equal to

<> not equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to
Expressions

53

http://www.fastio.com/

Operators

Examples

a=>b true if a is equal to b.

a <> b trueif ais not equal to b.

a>b true if a is greater than b.

a<b true if a is less than b.

a >= b trueif ais greater than or equal to b.
a <= b trueif ais less than or equal to b.

Function Designators

A function designator is a function identifier optionally followed by a
parameter list, which is one or more variables or expressions separated
by commas and enclosed in parentheses. The occurrence of a function
designator causes the function with that name to be activated. If the
function is not one of the pre-defined standard functions, it must be de-
clared before activation.

Examples:

Round(PlotPos)

Writeln(Pi * (Sqr(R)))

(Max(X,Y) < 25) and (Z > Sqrt(X * Y))
Volume(Radius,Height)

TURBO Pascal Reference Manual

I
I _
| CLibPDF - wyywy.[astio.com

Chapter 7
STATEMENTS

The statement part defines the action to be carried out by the program
(or subprogram) as a sequence of statements; each specifying one part
of the action. In this sense Pascal is a sequential programming
language: statements are executed sequentially in time; never simul-
taneously. The statement part is enclosed by the reserved words begin
and end and within it, statements are separated by semi-colons. State-
ments may be either simple or structured.

Simple Statements

Simple statements are statements which contain no other statements.
These are the assignment statement, procedure statement, goto state-
ment, and empty statement.

Assignment Statement

The most fundamental of all statements is the assignment statement. It
is used to specify that a certain value is to be assigned to a certain vari-
able. An assignment consists of a variable identifier followed by the as-
signment operator : = followed by an expression.

Assignment is possible to variables of any type (except files) as long as
the variable (or the function) and the expression are of the same type.
As an exception, if the variable is of type Real, the type of the expres-
sion may be Integer.

Examples:

Angle := Angle * Pi;
AccessOK := False;

Entry := Answer = PassWord;

SpherVol := 4 * Pi * R * R;

STATEMENTS 55

http://www.fastio.com/

ClibPD

Simple Statements

Procedure Statement

A procedure statement serves to activate a previously defined user-
defined procedure or a pre-defined standard procedure. The statement
consists of a procedure identifier, optionally followed by a parameter list,
which is a list of variables or expressions separated by commas and en-
closed in parentheses. When the procedure statement is encountered
during program execution, control is transferred to the named pro-
cedure, and the value (or the address) of possible parameters are
transferred to the procedure. When the procedure finishes, program ex-
ecution continues from the statement following the procedure state-
ment.

Examples:

Find(Name, Address);

Sort (Address);
UpperCase(Text);
UpdateCustFile(CustRecord);

Goto Statement

A goto statement consists of the reserved word goto followed by a label
identifier. It serves to transfer further processing to that point in the pro-
gram text which is marked by the label. The following rules should be
observed when using goto statements:

1) Before use, labels must be declared. The declaration takes place in a la-
bel declaration in the declaration part of the block in which the label is
used.

2) The scope of a label is the block in which it is declared. It is thus not
possible to jump into or out of procedures and functions.

Empty Statement
An ‘empty’ statement is a statement which consists of no symbols, and
which has no effect. It may occur whenever the syntax of Pascal re-
quires a statement but no action is to take place.
Examples:
begin end.

while Answer <> '' do;
repeat until KeyPressed; {wait for any key to be hit}

56 TURBO Pascal Reference Manual

wvwfastio.com

Structured Statements

Structured Statements

Structured statements are constructs composed of other statements
which are to be executed in sequence (compound statements), condi-
tionally (conditional statements), or repeatedly (repetitive statements).
The discussion of the with statement is deferred to pages 81 pp.

Compound Statement

A compound statement is used if more than one statement is to be exe-
cuted in a situation where the Pascal syntax allows only one statement
to be specified. It consists of any number of statements separated by
semi-colons and enclosed within the reserved words begin and end,
and specifies that the component statements are to be executed in the
sequence in which they are written.

Example:
if Small > Big then
begin
Tmp := Small;
Small := Big;
Big := Tmp;
end;

Conditional Statements
A conditional statement selects for execution a single one of its com-
ponent statements.

If Statement
The if statement specifies that a statement be executed only if a certain
condition (Boolean expression) is true. If it is false, then either no state-

ment or the statement following the reserved word else is to be execut-
ed. Notice that else must not be preceded by a semicolon.

STATEMENTS 57

http://www.fastio.com/

ClibhPDF -

Structured Statements

The syntactic ambiguity arising from the construct:

if expr1 then
if expr2 then
stmt1
else
stmt2

is resolved by interpreting the construct as follows:

if expr1 then
begin
if expr2 then
stmt1
else
stmt2
end

The else-clause part belongs generally to the last if statement which
has no else part.

Examples:

if Interest > 25 then
Usury := True

else

TakeLoan := OK;

if (Entry < 0) or (Entry > 100) then

begin
Write('Range is 1 to 100, please re-enter: ');
Read(Entry);

end;

Case Statement

The case statement consists of an expression (the selector) and a list of
statements, each preceded by a case label of the same type as the
selector. It specifies that the one statement be executed whose case la-
bel is equal to the current value of the selector. If none of the case la-
bels contain the value of the selector, then either no statement is exe-
cuted, or, optionally, the statements following the reserved word else
are executed. The else clause is an expansion of standard Pascal.

58 TURBO Pascal Reference Manual

wvwfastio.com

Structured Statements

A case label consists of any number of constants or subranges separat-
ed by commas followed by a colon. A subrange is written as two con-
stants separated by the subrange delimiter ‘. .’. The type of the con-
stants must be the same as the type of the selector. The statement fol-
lowing the case label is executed if the value of the selector equals one
of the constants or if it lies within one of the subranges.

Valid selector types are all simple types, i.e. all scalar types except real.

Examples:

case Operator of
'+': Result := Answer + Result;
'-': Result := Answer - Result;
'*¥7: Result := Answer * Result;
'/': Result := Answer / Result;

end;

case Year of
Min..1939: begin
Time := PreWorldWar2;
Writeln('The world at peace...'});
. end;
1946. .Max: begin
Time := PostWorldWar?2
Writeln('Building a new world.');
end;
else begin
Time := WorldWarZ2;
Writeln('We are at war');
end;
end;

Repetitive Statements

Repetitive statements specify that certain statements are to be execut-
ed repeatedly. If the number of repetitions is known before the repeti-
tions are started, the for statement is the appropriate construct to ex-
press this situation. Otherwise the while or the repeat statement should
be used.

STATEMENTS 59

http://www.fastio.com/

" ClihPDF -

Structured Statements

For Statement

The for statement indicates that the component statement is to be re-
peatedly executed while a progression of values is assigned to a vari-
able which is called the control variable. The progression can be ascend-
ing: to or descending: downto the final value.

The control variable, the initial value, and the final value must all be of
the same type. Valid types are all simple types, i.e. all scalar types ex-
cept real.

If the initial value is greater than the final value when using the to
clause, or if the initial value is less than the final value when using the
downto clause, the component statement is not executed at all.

Examples:
for I := 2 to 100 do if A[I] > Max then Max := A[I];

for I := 1 to NoOfLines do

begin
Readln(Line);
if Length(Line) < Limit then
ShortLines := ShortLines + 1
else
LonglLines := Longlines + 1
end;

Notice that the component statement of a for statement must not con-
tain assignments to the control variable. If the repetition is to be ter-
minated before the final value is reached, a goto statement must be
used, although such constructs are not recommended - it is better pro-
gramming practice use a while or a repeat statement instead.

Upon completion of a for statement, the control variable equals the final
value, unless the loop was not executed at all, in which case no assign-
ment is made to the control variable.

60 TURBO Pascal Reference Manual

v fastio.com

Structured Statements

While statement

The expression controlling the repetition must be of type Boolean. The
statement is repeatedly executed as long as expression is True. If its
value is false at the beginning, the statement is not executed at all.

Examples:
while Size > 1 do Size := Sqrt(Size);

while ThisMonth do
begin

ThisMonth := CurMonth = SampleMonth;

Process;

{process this sample by the Process procedure}
end;

Repeat Statement

The expression controlling the repetition must be of type Boolean. The
sequence of statements between the reserved words repeat and until is
executed repeatedly until the expression becomes true. As opposed to
the while statement, the repeat statement is always executed at least
once, as evaluation af the condition takes place at the end of the loop.

Example:

repeat
Write("M, 'Delete this item? (Y/N)');
Read(Answer);

until UpCase(Answer) in ['Y','N'];

STATEMENTS 61

http://www.fastio.com/

- ClibPD

Structured Statements

62

wvwfastio.com

Notes:

TURBO Pascal Reference Manual

SCALAR AND SUBRANGE TYPES

Chapter 8
SCALAR AND SUBRANGE TYPES

The basic data types of Pascal are the scalar types. Scalar types consti-
tute a finite and linear ordered set of values. Although the standard type
Real is included as a scalar type, it does not conform to this definition.
Therefore, Reals may not always be used in the same context as other
scalar types.

Scalar Type

Apart from the standard scalar types (Integer, Real, Boolean, Char, and
Byte), Pascal supports user defined scalar types, also called declared
scalar types. The definition of a scalar type specifies, in order, all of its
possible values. The values of the new type will be represented by
identifiers, which will be the constants of the new type.

Examples:
type
Operator = (Plus,Minus,Multi,Divide);
Day = (Mon, Tues,Wed, Thur,Fri, Sat,Sun);
Month = (Jan,Feb,Mar,Apr,May,Jun,Jul, Aug, Sep, Oct,Nov,Dec);
Card = (Club,Diamond,Heart, Spade);

Variables of the above type Card can assume one of four values, name-
ly Club, Diamond, Heart, or Spade. You are already acquainted with the
standard scalar type Boolean which is defined as:

type
Boolean = (False,True);

The relational operators =, < >, >, <, > =, and < = can be ap-
plied to all scalar types, as long as both operands are of the same type
(reals and integers may be mixed). The ordering of the scalar type is
used as the basis of the comparison, i.e. the order in which the values
are introduced in the type definition. For the above type card, the follow-
ing is true:

Club < Diamond < Heart < Spade

SCALAR AND SUBRANGE TYPES 63

http://www.fastio.com/

- ClibPDF -

Scalar Type

The following standard functions can be used with arguments of scalar
type:

Succ(Diamond) The successor of Diamond (Heart).
Pred(Diamond) The predecessor of Diamond (Club).
Ord(Diamond) The ordinal value of Diamond (1 [as the ordinal

value of the first value of a scalar type is 0]).

The result type of Succ and Pred is the same as the argument type. The
result type of Ord s Integer.

Subrange Type

64

A type may be defined as a subrange of another already defined scalar
type. Such types are called subranges. The definition of a subrange sim-
ply specifies the least and the largest value in the subrange. The first
constant specifies the lower bound and must not be greater than the
second constant, the upper bound. A subrange of type Real is not al-
lowed. '

Examples:
type
HemiSphere = (North, South, East, West);
World = (East..West)
CompassRange = 0..360;
Upper = 'A'..'2';
Lower = 'a'..'z";
Degree = (Celc, Fahr, Ream, Kelv);
Wine = (Red, White, Rose, Sparkling);

The type World is a subrange of the scalar type HemiSphere (called the
associated scalar type). The associated scalar type of Compassrange is
Integer, and the associated scalar type of Upper and Lower is Char.

You already know the standard subrange type Byte, which is defined as:

type
Byte = 0..255;

A subrange type retains all the properties of its associated scalar type,
being restricted only in its range of values.

TURBO Pascal Reference Manual

wvwfastio.com

Subrange Type

The use of defined scalar types and subrange types is strongly recom-
mended as it greatly improves the readability of programs. Furthermore,
run time checks may be included in the program code (see page 65) to
verify the values assigned to defined scalar variables and subrange vari-
ables. Another advantage of defined types and subrange types is that
they often save memory. TURBO Pascal allocates only one byte of
memory for variables of a defined scalar type or a subrange type with a
total number of elements less than 256. Similarly, integer subrange vari-
ables, where lower and upper bounds are both within the range 0
through 255, occupy only one byte of memory.

Type Conversion

The Ord function may be used to convert scalar types into values of
type integer. Standard Pascal does not provide a way to reverse this
process, i.e. a way of converting an integer into a scalar value.

In TURBO Pascal, a value of a scalar type may be converted into a
value of another scalar type, with the same ordinal vaiue, by means of
the Retype facility. Retyping is achieved by using the type identifier of
the desired type as a function designator followed by one parameter en-
closed in parentheses. The parameter may be a value of any scalar type
except Real. Assuming the type definitions on pages 63 and 64 , then:

Integer(Heart) = 2
Month(10) = Nov
HemiSphere(2) = East
Upper(14) =0
Degree(3) = Kelv
Char(78) = 'N’
Integer('7') = b5

Range Checking

The generation of code to perform run-time range checks on scalar and
subrange variables is controlled with the R compiler directive. The de-
fault setting is { $R-}, i.e. no checking is performed. When an assign-
ment is made to a scalar or a subrange variable while this directive is ac-
tive ({ $R +}), assignment values are checked to be within range. it is
recommended to use this setting as long as a program is not fully de-
bugged.

SCALAR AND SUBRANGE TYPES 65

http://www.fastio.com/

ClibhPDF -

Range Checking

Example:

program Rangecheck;

type
Digit = 0..9;

Var
Digl,Dig2,Dig3: digit;

begin
Digl := 5; {valid}
Dig2 := Digl + 3; {valid as Dig1 + 3 < = 9}
Dig3 := 47; {invalid but causes no error}
{$R+} Dig3 := 55; {(invalid and causes a run time error}
{$R-} Dig3 := 167; (invalid but causes no error}

end.

66 TURBO Pascal Reference Manual

wvwfastio.com

Chapter 9
STRING TYPE

TURBO Pascal offers the convenience of string types for processing of
character strings, i.e. sequences of characters. String types are struc-
tured types, and are in many ways similar to array types (see chapter
10). There is, however, one major difference between these: the number
of characters in a string (i.e. the length of the string) may vary dynami-
cally between 0 and a specified upper limit, whereas the number of ele-
ments in an array is fixed.

String Type Definition

The definition of a string type must specify the maximum number of
characters it can contain, i.e. the maximum length of strings of that
type. The definition consists of the reserved word string followed by the
maximum length enclosed in square brackets. The length is specified by
an integer constant in the range 1 through 255. Notice that strings do
not have a default length; the length must always be specified.

Example:

type
FileName = string[l4];
ScreenLine = string[80];

String variables occupy the defined maximum length in memory plus one
byte which contains the current length of the variable. The individual
characters within a string are indexed from 1 through the length of the
string.

String Expressions

Strings are manipulated by the use of string expressions. String expres-
sions consist of string constants, string variables, function designators,
and operators.

STRING TYPE 67

http://www.fastio.com/

ClibhPDF -

String Expressions

The plus-sign may be used to concatenate strings. The Concat function
(see page 71) performs the same function, but the + operator is often
more convenient. If the length of the result is greater than 255, a run-
time error occurs.

Example:

'TURBO ' + 'Pascal' = 'TURBO Pascal’

1123 + '.' + '456' = '123.456’

'TA' + 'B'+ ' C '+ 'D" ='ABCD’

The relational operators =, < >, >, <, > =, and < = are lower

in precedence than the concatenation operator. When applied to string
operands, the result is a Boolean value (True or False). When compar-
ing two strings, single characters are compared from the left to the right
according to their ASCIi values. If the strings are of different length, but
equal up to and including the last character of the shortest string, then
the shortest string is considered the smaller. Strings are equal only if
their lengths as well as their contents are identical.

Examples:

'A' < 'B! is true
TA' > 'b! is false
' < '12! is false
"TURBO' = 'TURBO' is true
'TURBO ' = 'TURBO' is false

'Pascal Compiler' < 'Pascal compiler’' istrue

String Assignment

The assignment operator is used to assign the value of a string expres-
sion to a string variable.

Example:
Age := 'fiftieth’';
Line := 'Many happy returns on your ' + Age + ' birthday.|

If the maximum length of a string variable is exceeded (by assigning too
many characters to the variable), the exceeding characters are truncat-
ed. E.g., if the variable Age above was declared to be of type string[5],
then after the assignment, the variable will only contain the five leftmost
characters: ‘fifth’.

68 TURBO Pascal Reference Manual

wwwlastio.com

i

B

String Procedures

String Procedures

The following standard string procedures are available in TURBO Pas-
cal:

Delete
Syntax: Delete (St, Pos, Num);

Delete removes a substring containing Num characters from St starting
at position Pos. St is a string variable and both Pos and Num are integer
expressions. If Pos is greater than Length (St), no characters are re-
moved. If an attempt is made to delete characters beyond the end of the
string (i.e. Pos + Num exceeds the length of the string), only charac-
ters within the string are deleted. If Pos is outside the range 1..255, a
run time error occurs.

If St has the value 'ABCDEFG’ then:
Delete(St,2,4) will give Stthe value ‘AFG’.
Delete(St,2,10) will give Stthe value ‘A’.

Insert
Syntax: Insert (Obj, Target, Pos);

Insert inserts the string Obj into the string Target at the position Pos.
Obj is a string expression, Target is a string variable, and Pos is an in-
teger expression. If Pos is greater than Length(Target), then obj is con-
catenated to Target. If the result is longer than the maximum length of
Target, then excess characters will be truncated and Target will only
contain the leftmost characters. If Pos is outside the range 1..255, a run
time error occurs.

If St has the value 'ABCDEFG’ then: Insert('XX',St,3) wil give
St the value 'ABXXCDEFG’

STRING TYPE 69

http://www.fastio.com/

ChihPD

String Procedures

Str

Val

70

Syntax: Str (Value , St),

The Str procedure converts the numeric value of Value into a string and
stores the result in St. Value is a write parameter of type integer or of
type real, and St is a string variable. Write parameters are expressions
with special formatting commands (see page 111).

If / has the value 1234 then: Str(I:5,St) gives St the value
' 1234°'.

If X has the value 2.5E4 then: Str(X:10:0,St) gives St the value
! 2500".

8-bit systems only: a function using the Str procedure must never be
called by an expression in a Write or Writeln statement.

Syntax: Val (St, Var, Code),

Val converts the string expression St to an integer or a real value
(depending on the type of Var) and stores this value in Var. St must be
a string expressing a numeric value according to the rules applying to
numeric constants (see page 43). Neither leading nor trailing spaces are
allowed. Var must be an Integer or a Real variable and Code must be an
integer variable. If no errors are detected, the variable Code is set to 0.
Otherwise Code is set to the position of the first character in error, and
the value of Varis undefined.

If St has the value '234’ then:
Val(St,I,Result) gives /the value 234 and Result the value 0

If St has the value "12x’ then:
Val(St,I,Result) gives / an undefined value and Result the value
3

If St has the value '2.5E4’, and X is a Real variable, then:
Val(St,X,Result) gives X the value 2500 and Result the value 0

8-bit systems only: a function using the Var procedure must never be
called by an expression in a Write or Writeln statement.

TURBO Pascal Reference Manual

wvwfastio.com

String Functions

String Functions

The following standard string functions are available in TURBO Pascal:

Copy

Syntax: Copy (St, Pos, Num);

Copy returns a substring containing Num characters from St starting at
position Pos. St is a string expression and both Pos and Num are in-
teger expressions. If Pos exceeds the length of the string, the empty
string is returned. If an attempt is made to get characters beyond the
end of the string (i.e. Pos + Num exceeds the length of the string), only
the characters within the string are returned. if Pos is outside the range
1..255, a run time error occurs.

If St has the value ‘ABCDEFG’ then:

Copy(St,3,2) returns the value ‘CD’
Copy(St,4,10) returns the value ‘DEFG’
Copy(St,4,2) returns the value ‘DE’

Concat

Syntax: Concat (St1, St2{, SiN});

The Concat function returns is a string which is the concatenation of its
arguments in the order in which they are specified. The arguments may
be any number of string expressions separated by commas (St1, St2 ..
StN). If the length of the result is greater than 255, a run-time error oc-
curs. As explained in page 68 , the + operator can be used to obtain
the same result, often more conveniently. Concat is included only to
maintain compatibility with other Pascal compilers.

If St1 has the value ‘TURBQ’ and St2 the value ‘is fastest’ then:
Concat(Stl,' PASCAL ',St2)

returns the value ‘TURBO PASCAL is fastest’

STRING TYPE 71

.

http://www.fastio.com/

String Functions

Length

Pos

Syntax: Length (St);

Returns the length of the string expression St, i.e. the number of char-
acters in St. The type of the result is integer.

If St has the value ‘123456789’ then:
Length(St) returns the value 9

Syntax: Pos (Obj, Target);

Pos function scans the string Target to find the first occurrence of
g;; within Target. Obj and Target are stripg expressions, and the type
of the result is integer. The result is an integer denoting the position
within Target of the first character of the matched pattern. The position
of the first character in a string is 1. If the pattern is not found, Pos re-

turns 0.

If St has the value ‘ABCDEFG’ then
Pos('DE',St) returns the value 4
Pos('H',St) returns the value O

Strings and Characters

Strings and Characters

String types and the standard scalar type Char are compatible. Thus,
whenever a string value is expected, a char value may be specified in-
stead and vice versa. Furthermore, strings and characters may be mixed
in expressions. When a character is assigned a string value, the length
of the string must be exactly one; otherwise a run-time error occurs.

The characters of a string variable may be accessed individually through
string indexing. This is achieved by appending an index expression of
type integer, enclosed in square brackets, to the string variable.

Examples:

Buffer[5]
Line[Length(Line)-1]
Ord(Line[0])

As the first character of the string (at index 0) contains the length of the
string, Length(String) is the same as Ord(String[0]). If as-
signment is made to the length indicator, it is the responsibility of the
programmer to check that it is less than the maximum length of the
string variable. When the range check compiler directive R is active «
$R +1}), code is generated which insures that the value of a string index
expression does not exceed the maximum length of the string variable.
It is, however, still possible to index a string beyond its current dynamic
length. The characters thus read are random, and assignments beyond
the current length will not affect the actual value of the string variable.

72 TURBO Pascal Reference Manual STRING TYPE 73

- ClihPDF - www.fastio.com

http://www.fastio.com/

Strings and Characters

Chapter 10
ARRAY TYPE

Notes:

An array is a structured type consisting of a fixed number of com-
ponents which are all of the same type, called the component type or
the base type. Each component can be explicitly accessed by indices
into the array. Indices are expressions of any scalar type placed in
square brackets suffixed to the array identifier, and their type is called
the index type.

Array Definition

The definition of an array consists of the the reserved word array fol-
lowed by the index type, enclosed in square brackets, followed by the
reserved word of, followed by the component type.

Examples:
type
Day = (Mon,Tue,Wed, Thu,Fri,Sat,Sun)
Var
WorkHour : array([l..8] of Integer;
Week : array[l..7] of Day;

type

Players = (Playerl,Player2,P1ayer3,Player4);

Hand = (One,Two,Pair,TwoPair,Three,Straight,
Flush,FullHouse,Four, StraightFlush,RSF);
1..200;
array|[Players] of LegalBid;

LegalBid
Bid

Var
Player : array[Players] of Hand;
Pot : Bid;

An array component is accessed by suffixing an index enclosed in
square brackets to the array variable identifier:

Player[Player3] := FullHouse;
Pot[Player3] := 100;
Player[Player4] := Flush;
Pot[Player4] := 50;

ARRAY TYPE 75
74 TURBO Pascal Reference Manual

{ ClihPDF - v fastio.com I

http://www.fastio.com/

ClibhPDF -

Array Definition

As assignment is allowed between any two variables of identical type,
entire arrays can be copied with a single assignment statement.

The R compiler directive controls the generation of code which will per-
form range checks on array index expressions at run-time. The default
mode is passive, i.e. { $R-}, and the { $R + } setting causes all index ex-
pressions to be checked against the limits of their index type.

Multidimensional Arrays

The component type of an array may be any data type, i.e. the com-
ponent type may be another array. Such a structure is called a multidi-
mensional array.

Example:
type
Card

(Two, Three,Four,Five,Six, Seven,Eight,Nine,
Ten,Knight,Queen,King, Ace);

Suit = (Hearts, Spade,Clubs,Diamonds);
AllCards = array[Suit] of array[l..13] of Card;
Var

Deck: AllCards;

A multi-dimensional array may be defined more conveniently by specify-
ing the muitiple indices thus:

type
AllCards = array([Suit,l..13] of Card;

A similar abbreviation may be used when selecting an array component:
Deck[Hearts,10] isequivalentto Deck[Hearts][10]

It is, of course, possible to define multi-dimensional arrays in terms of
previously defined array types.

76 TURBO Pascal Reference Manual

wvwfastio.com

Multidimensional Arrays

Example:
type

Pupils = string[20];

Class = array[l..30] of Pupils;

School = array([l..100] of Class;
Var

J,P,Vacant : Integer

ClassA,

ClassB : Class;

NewTownSchool; School;
After these definitions, all of the following assignments are legal:

ClassA[J]:='Peter’';

NewTownSchool[5][21]:="'Peter Brown';
NewTownSchool[S,J]:-NewTownSchool[7,J];(wmeJmm@wcmw)
ClassA[Vacant]:=ClassB[P]; (pupino. Pchanges Class and number}

Character Arrays

Character arrays are arrays with one index and components of the stan-
dard scalar type Char. Character arrays may be thought of as strings
with a constant length.

In TURBO Pascal, character arrays may participate in string expres-
sions, in which case the array is converted into a string of the length of
the array. Thus, arrays may be compared and manipulated in the same
way as strings, and string constants may be assigned to character ar-
rays, as long as they are of the same length. String variables and values
computed from string expressions cannot be assigned to character ar-
rays.

Predefined Arrays

TURBO Pascal offers two predefined arrays of type Byte, called Mem
and Port, which are used to access CPU memory and data ports. These
are discussed in chapters 20, 21, and 22.

ARRAY TYPE 77

http://www.fastio.com/

Predefined Arrays

‘ 78

[ClihPDF - wywww.fastio.com

Notes:

TURBO Pascal Reference Manual

Chapter 11
RECORD TYPE

A record is a structure consisting of a fixed number of components,
called fields. Fields may be of different type and each field is given a
name, the field identifier, which is used to select it.

Record Definition

The definition of a record type consists of the reserved word record
succeeded by a field list and terminated by the reserved word end. The
field list is a sequence of record sections separated by semi-colons,
each consisting of one or more identifiers separated by commas, fol-
lowed by a colon and either a type identifier or a a type descriptor. Each
record section thus specifies the identifier and type of one or more
fields.

Example:
type
DaysOfMonth = 1..31;
Date = record
Day: DaysOfMonth;
Month: (Jan,Feb,Mar,Apr,May,Jun,
July, Aug, Sep,Oct,Nov,Dec);
Year: 1900..1999;
end;
Var
Birth: Date;

WorkDay: array[l..5] of date;

Day, Month, and Yearare field identifiers. A field identifier must be
unique only within the record in which it is defined. A field is referenced
by the variable identifier and the field identifier separated by a period.

Examples:
Birth.Month := Jun;

Birth.Year := 1950;
WorkDay[Current] := WorkDay[Current-1];

RECORD TYPE 79

http://www.fastio.com/

Record Definition

Note that, similar to array types, assignment is allowed between entire
records of identical types. As record components may be of any type,
constructs like the following record of records of records are possible:

type
Name = record
FamilyName: string[32];
ChristianNames: array[l..3] of string[l6];
end;
Rate = record

NormalRate, OverTime,
NightTime, Weekend: Integer
end;
Date = record
Day: 1..31;
Month: (Jan,Feb,Mar,Apr,May,Jun,
July, Aug, Sep,Oct,Nov,Dec);
Year: 1900..1999;
end;
Person = record
ID: Name;
Time: Date;
end;
Wages = record
Individual: Person;
Cost: Rate;
end

Var Salary, Fee: Wages;
Assuming these definitions, the following assignments are legal:
Salary := Fee;
Salary.Cost.Overtime := 950;

Salary.Individual.Time := Fee.Individual.Time;
Salary.Individual.ID.FamilyName := 'Smith'

TURBO Pascal Reference Manual

| ClihPDF - www.fastio.com

With Statement

With Statement

The use of records as describes above does sometimes result in.rather
lengthy statements; it would often be easier if we could access individu-
al fields in a record as if they were simple variables. This is the function
of the with statement: it ‘opens up’ a record so that field identifiers may
be used as variable identifiers.

A with statement consists of the reserved word with followed by a list
of record variables separated by commas followed by the reserved word
do and finally a statement.

Within a with statement, a field is designated only by its field identifier,
i.e. without the record variable identifier:

with Salary do

begin
Individual := NewEmployee;
Cost := StandardRates;
end;

Records may be nested within with statements, i.e. records of records
may be ‘opened’ as shown here: -

with Salary, Individual, ID do

begin
FamilyName := 'Smith';
ChristianNames[1l] := 'James';
end

This is equivalent to:

with Salary do with Individual do with ID do

The maximum ‘depth’ of this nesting of with sentences, i.e. the max-
imum number of records which may be ‘opened’ within one block,
depends on your implementation and is discussed in chapters 20, 21,
and 22.

RECORD TYPE 81

http://www.fastio.com/

o

[IhPDF -

Variant Records

Variant Records

The syntax of a record type also provides for a variant part, i.e. alterna-
tive record structures which allows fields of a record to consist of a
different number and different types of components, usually depending
on the value of a tag field.

A variant part consists of a tag-field of a previously defined type, whose
values determine the variant, followed by labels corresponding to each
possible value of the tag field. Each label heads a field list which defines
the type of the variant corresponding to the label.

Assuming the existence of the type:
Origin = (Citizen, Alien);

and of the types Name and Date, the following record allows the field
CitizenShip to have different structures depending on whether the value
of the field is Citizen or Alien:

type
Person = record
PersonName: Name;
BirthDate: Date;
case CitizenShip: Origin of
Citizen: (BirthPlace: Name);
Alien: (CountryOfOrigin: Name;
DateOfEntry: Date;
PermittedUntil: Date;
PortOfEntry: Name);
end;

In this variant record definition, the tag-field is an explicit field which may
be selected and updated like any other field. Thus, if Passenger is a
variable of type Person, statements like the following are perfectly legal:
Passenger.CitizenShip := Citizen;

with Passenger, PersonName do
if CitizenShip = Alien then writeln(FamilyName);

82 TURBO Pascal Reference Manual

wvwfastio.com

Variant Records

The fixed part of a record, i.e. the part containing the common fields,
must always precede the variant part. In the above example, the fields
PersonName and BirthDate are the fixed fields. A record can only have
one variant part. In a variant, the parentheses must be present, even if
they will enclose nothing.

The maintenance of tag field values is the responsibility of the program-
mer and not of TURBO Pascal. Thus, in the Person type above, the field
DateOfEntry can be accessed even if the value of the tag field
CitizenShip is not Alien. Actually, the tag field identifier may be omitted
altogether, leaving only the type identifier. Such record variants are
known as free unions, as opposed to record variants with tag fields
which are called discriminated unions. The use of free unions is infre-
quent and should only be practiced by experienced programmers.

RECORD TYPE 83

http://www.fastio.com/

|

Variant Records

84

M ChbPD wvwfastio.com

Notes:

TURBO Pascal Reference Manual

Chapter 12
SET TYPE

A set is a collection of related objects which may be thought of as a
whole. Each object in such a set is called a member or an element of
the set. Examples of sets could be:

1) Allintegers between 0 and 100
2) The letters of the alphabet
3) The consonants of the alphabet

Two sets are equal if and only if their elements are the same. There is
no ordering involved, so the sets [1,3,5], [5,3,1] and [3,5,1] are all equal.
If the members of one set are also members of another set, then the
first set is said to be included in the second. In the examples above, 3)
is included in 2).

There are three operations involving sets, similar to the operations addi-
tion, multiplication and subtraction operations on numbers: ‘

The union (or sum) of two sets A and B (written A+ B) is the set
whose members are members of either A or B. For instance, the un-
ion of [1,3,5,7] and [2,3,4] is [1,2,3,4,5,7].

The intersection (or product) of two sets A and B (written A*B) is the
set whose members are the members of both A and B. Thus, the in-
tersection of [1,3,4,5,7] and [2,3,4] is [3,4].

The relative complement of B with respect to A (written A-B) is the
set whose members are members of A but not of B. For instance,
[1,3,5,7]-[2,3,4]is [1,5,7].

Set Type Definition

Although in mathematics there are no restrictions on the objects which
may be members of a set, Pascal only offers a restricted form of sets.
The members of a set must all be of the same type, called the base
type, and the base type must be a simple type, i.e. any scalar type ex-
cept real. A set type is introduced by the reserved words set of followed
by a simple type.

SET TYPE 85

http://www.fastio.com/

Set Type Definition

Examples:
type
DaysOfMonth = set of 0..31;
WorkWeek = set of Mon. .Fri;
Letter = set of 'A'..'Z";
AdditiveColors = set of (Red,Green,Blue);
Characters = set of Char;

in TURBO Pascal, the maximum number of elements in a set is 256,

and the ordinal values of the base type must be within the range 0

through 255.

Set Expressions

Set values may be computed from other set values through set expres-
sions. Set expressions consist of set constants, set variables, set con-
structors, and set operators.

Set Constructors

86

A set constructor consists of one or more element specifications,
separated by commas, and enclosed in square brackets. An element
specification is an expression of the same type as the base type of the
set, or a range expressed as two such expressions separated by two
consecutive periods (..).

Examples:

['T','U','R','B', |0v]

[X,Y]

[X..Y]

[1..5]
['A'..'Z','a'..'2','0'..'9"]
[1,3..10,12]

[] <

The last example shows the empty set, which, as it contains no expres-
sions to indicate its base type, is compatible with all set types. The set
[1..5] is equivalent to the set [1,2,3,4,5]. If X > Y then [X..Y] denotes the
empty set.

TURBO Pascal Reference Manual

I ChihPDF - www.lastio.com

Set Expressions

Set Operators

The rules of composition specify set operator precedency according to
the following three classes of operators:

1) * Set intersection.
2) + Setunion.
- Set difference.
3) = Test on equality.
<> Test on inequality.

>= True if all members of the second operand are included in the first
operand.

<= True if all members of the first operand are included in the second
operand.

IN Test on set membership. The second operand is of a set type, and
the first operand is an expression of the same type as the base
type of the set. The result is true if the first operand is a member of
the second operand, otherwise it is false.

Set disjunction (when two sets contain no common members) may be

expressed as:

A*B=11];

that is, the intersection between the two sets is the empty set. Set ex-

pressions are often useful to clarify complicated tests. For instance, the

test:

if (Ch='T') or (Ch='U') or (Ch='R') or (Ch='B') or (Ch='0")

can be expressed much clearer as:

Ch in ['T','U','R'",'B','0"]

And the test:

if (Ch >= '0') and (Ch <= '9') then ...

is better expressed as:

if Ch in['0'..'9'] then

SET TYPE 87

http://www.fastio.com/

' ClibPD

Set Assignments

Set Assignments

Values resulting from set expressions are assigned to set variables us-
ing the assignment operator :=.

Examples:
type

ASCII = set of 0..127;
Var

NoPrint,Print,AllChars: ASCII;
begin

AllChars := [0..127];

NoPrint := [0..31,127];

Print := AllChars - NoPrint;
end.

TURBO Pascal Reference Manual

wvwfastio.com

Chapter 13
- TYPED CONSTANTS

Typed constants are a TURBO specialty. A typed constant may be used
exactly like a variable of the same type. Typed constants may thus be
used as ‘initialized variables’, because the value of a typed constant is
defined, whereas the value of a variable is undefined until an assignment
is made. Care should be taken, of course, not to assign values to typed
constants whose values are actually meant to be constant.

The use of a typed constant saves code if the constant is used often in
a program, because a typed constant is included in the program code
only once, whereas an untyped constant is included every time it is
used.

Typed constants are defined like untyped constants (see page 48), ex-
cept that the definition specifies not only the value of the constant but
also the type. In the definition the typed constant identifier is succeeded
by a colon and a type identifier, which is then followed by an equal sign
and the actual constant.

Unstructured Typed Constants

An unstructured typed constant is a constant defined as one of the
scalar types: '

const
NumberOfCars: Integer = 1267;
Interest: Real = 12.67;
Heading: string[7] = 'SECTION';
Xon: Char = *Q;

Contrary to untyped constants, a typed constant may be used in place
of a variable as a variable parameter to a procedure or a function. As a
typed constant is actually a variable with a constant value, it cannot be
used in the definition of other constants or types. Thus, as Min and Max
are typed constants, the following construct is illegal:

TYPED CONSTANTS 89

http://www.fastio.com/

ChihPD

Unstructured Typed Constants

const
Min: Integer = O;
Max: Integer = 50;

type
Range: array[Min..Max] of integer

Structured Typed Constants

Structured constants comprise array constants, record constants, and
set constants. They are often used to provide initialized tables and sets
for tests, conversions, mapping functions, etc. The following sections
describe each type in detail.

Array Constants

The definition of an array constant consists of the constant identifier
succeeded by a colon and the type identifier of a previously defined ar-
ray type followed by an equal sign and the constant value expressed as
a set of constants separated by commas and enclosed in parentheses.

Examples:
type
Status = (Active,Passive,Waiting);
StringRep = array{Status] of string[7];
const

Stat: StringRep = ('active', 'passive', 'waiting');

The example defines the array constants Stat, which may be used to
convert values of the scalar type Status into their corresponding string
representations. The components of Stat are:

Stat[Active] = 'active' c
Stat[Passive] = 'passive'
Stat[Waiting] = 'waiting'

The component type of an array constant may be any type except File

types and Pointer types. Character array constants may be specified

both as single characters and as strings. Thus, the definition:

90 TURBO Pascal Reference Manual

wvwfastio.com

Structured Typed Constants

const
Digits: array[0..9] of Char =
(Iol’lll'l2l’|3I,14|,l5l,16I’l7l’I8l'l9');

may be expressed more conveniently as:

const
Digits: array[0..9] of Char = '0123456789"';

Multi-dimensional Array Constants

Multi-dimensional array constants are defined by enclosing the con-
stants of each dimension in separate sets of parentheses, separated by
commas. The innermost constants correspond to the rightmost dimen-
sions.

Example:
type
Cube = array[0..1,0..1,0..1] of integer;
const
Maze: Cube = (((0,1),(2,3)),((4.5),(6,7)));
begin
Writeln(Maze[0,0,0},"'
Writeln(Maze[0,0,1],"'
Writeln(Maze[0,1,0},"'
Writeln(Maze[O,1,1],"
Writeln(Maze[1,0,0],"'
Writeln(Maze[1,0,1],"
Writeln(Maze[1,1,0],"
Writeln(Maze[1l,1,1],"
end.

e we e we Ne v o

")
")
")
")
")
")
")
")

O ND—O

[2 A A

-

Record Constants

The definition of a record constant consists of the constant identifier
succeeded by a colon and the type identifier of a previously defined
record type followed by an equal sign and the constant value expressed
as a list of field constants separated by semi-colons and enclosed in
parentheses.

Typed Constants 91

http://www.fastio.com/

ClihPD

Structured Typed Constants

Examples:
type
Point = record
X,Y,Z: integer;
end;
0s = (CPM80, CPM86,MSDOS, Unix);
uI = (CCP,SomethingElse,MenuMaster);
Computer = record
OperatingSystems: array[l..4] of 0S;
UserInterface: UI;
end;
const

Origo: Point = (X:0; Y:0; Z:0);
SuperComp: Computer =
(OperatingSystems: (CPM80,CPM86,MSDOS,Unix);
UserlInterface: MenuMaster);
Planel: array[l..3] of Point =
((X:1;Y:4;Z:5),(X:10;Y:-78;Z2:45), (X:100;Y:10;Z:-7));

The field constants must be specified in the same order as they appear
in the definition of the record type. If a record contains fields of file types
or pointer types, then constants of that record type cannot be specified.
If a record constant contains a variant, then it is the responsibility of the
programmer to specify only the fields of the valid variant. If the variant
contains a tag field, then its value must be specified.

Set Constants

A set constant consists of one or more element specifications separated
by commas, and enclosed in square brackets. An element specification
must be a constant or a range expression consustlng of two constants
separated by two consecutive periods (..). C

Example:
type
Up = set of 'A'..'Z';
Low = set of 'a'..'z';
const
UpperCase: Up = ['A'..'Z"'];
Vocals : Low = ['a','e','i",'0o",'u','y'];
Delimiter: set of Char =
[| |..|/|,v:1_‘|9l,v[| |ll,l{l. ' v]’
92 TURBO Pascal Reference Manual
wvwfastio.com

Chapter 14
FILE TYPES

Files provide a program with channels through which it can pass data. A
file can either be a disk file, in which case data is written to and read
from a magnetic device of some type, or a logical device, such as the
pre-defined files Input and Output which refer to the computer’s stan-
dard 1/O channels; the keyboard and the screen.

A file consists of a sequence of components of equal type. The number
of components in a file (the size of the file) is not determined by the
definition of the file; instead the Pascal system keeps track of file
accesses through a file pointer, and each time a component is written to
or read from a file, the file pointer of that file is advanced to the next
component. As all components of a file are of equal length, the position
of a specific component can be calculated. Thus, the file pointer can be
moved to any component in the file, providing random access to any ele-
ment of the file.

File Type Definition

A file type is defined by the reserved words file of followed by the type
of the components of the file, and a file identifier is declared by the
same words followed by the identifier of a previously defined file type.

Examples:
type
ProductName = string{80];
Product = file of record
Name: ProductName;
ItemNumber: Real;
InStock: Real;
MinStock: Real;

Supplier: Integer;
end;
Var
ProductFile: Product;
ProductNames: file of ProductName;
FILE TYPES 93

http://www.fastio.com/

	./tp3_036-037.tif
	./tp3_038-039.tif
	./tp3_040-041.tif
	./tp3_042-043.tif
	./tp3_044-045.tif
	./tp3_046-047.tif
	./tp3_048-049.tif
	./tp3_050-051.tif
	./tp3_052-053.tif
	./tp3_054-055.tif
	./tp3_056-057.tif
	./tp3_058-059.tif
	./tp3_060-061.tif
	./tp3_062-063.tif
	./tp3_064-065.tif
	./tp3_066-067.tif
	./tp3_068-069.tif
	./tp3_070-071.tif
	./tp3_072-073.tif
	./tp3_074-075.tif
	./tp3_076-077.tif
	./tp3_078-079.tif
	./tp3_080-081.tif
	./tp3_082-083.tif
	./tp3_084-085.tif
	./tp3_086-087.tif
	./tp3_088-089.tif
	./tp3_090-091.tif
	./tp3_092-093.tif

