4¢BASE
Section IV:

Expanding your control with functionS....eeveseeses 80
Changing dBASE II parameters and defaults...ccceeee 84
Merging records from two databaseS.ieecccccccccoens 86
JOINING entire databaseS.....cesevesceoaressasccaras 87
.Full screen editing and formatting...ecceeevecscnns 88

Formatting the printed page.....,...;.............. 90

Setting up ana printing a forM.scececcocconacccecns 91
Time £O IeBrOUP.sescccsscssvsasasonossasssasscvsscs 93

By now you should be writing command files that
perform useful work for you.

I1...79

JOIN

SET FORMAT TO SCREEN
€..SAY..GET,..PICTUEE..
SET FORMAT TO PRINT
€..SAY..USING..

can

To help you further, in this section we will introduce
more\functions, a few more commands and go into quite a bit
of detail on how you can print out your data in exactly the

format you want it.

dBASE II.,.80

Expanding your control with functions

Functions are special purpose operations ‘that may be
used in expressions to perform things that are difficult or
impossible using regular arithmetic, logical and string
operations. dBASE II functions fall into the same three
categories, based on the results they generate.

Functions are called up by typing in “?~ then a space
and the function. They can be called from the terminal or
within command files.

NOTE: the parentheses shown below must be used.

(Remember that "strings" are simply a collection of
characters (including spaces, digits and symbols) handled,
manipulate and otherwise used as data. A "substring" is a
portion of any specific string.)

Don't worry about memorizihg them now, but do scan the
descriptions so that you know where to look when you need
one of them in a command file.

1(<variable/string>)
is the lower- to uppercase function. It changes all
the characters from 'a'..'z' in a string or string
variable to uppercase. Any other characters in the
string . are unaffected. You'll see this used frequently’
in the accounting system (Section VI) to convert inputs
from the keyboard into a standard form in the files.
This makes it simpler when searching.for data later,
since you will know that all of the data is stored in
uppercase, regardless of how it was entered.

TYPE(<expression>)
is the data type function and yields a C, Nor L,
depending on whether the expression data type is
Character, Numeric aor Logical.

INT(<variable/expression))
is the irteger funection. It "rounds off" a number
with a decimal, but does it by throwing away everything
to the right of the decimal. .The term inside the
parentheses (you must use the parentheses) can be a
number, the name of a variable or a complex expression.
In the 1attqr case, the expression is first evaluated,
then an integer is formed from the results.

Note that INT(123.86) yields 123, while
INT(-123.86) yields -123. & call to a variable yields
a truncated integer formed from thre current value of
that variable. . If we were on record 7 of MoneyOut .DBF,
a call to INT(Amount) would produce 2333, the integer
part of $2,333.75.

dBASE II...81

To rounded to the nearest whole number (rather
than chop), use this form: INT(value + 0.5). The value
within parentheses is first determined, then the
integer function of that is taken.

The integer function can also be used to round a
value to any number of decimal places. INT(value*10 +
0.5)/10 rounds a value to the nearest decimal place
because of the order of precedence of operations
(parentheses, then integer, then divide). To round
to two places, use "100" in place of the "10"s. For 3
places, use "1000", etc.

VAL(<variable/string/substring>) .
is the string to integer function. - 1t converts a
character string or substring made up of digits, a sign
and up to one decimal point into the equivalent numeric
quantity. VAL('123') yields the number 123.
VAL(Job:Nmbr) yields the numeric value of the contents
of the job number field in our MoneyOut database, since
we stored all Job Numbers as characters. You -can also
use it with the substring operator: VAL($(<string>)).

STR(<expﬁession/var1able/nu-ber), <length>,
<decimals>)
is the integer to string runction. It converts a
number or the contents of a numeric variable into a
string with the specified length and the specified
number of digits to the right of the decimal point.
The specified length must be large enough to encompass
at least all the digits Plus the decimal point. If the
numeric value is shorter than the specified field, the
remaining portion i{s filled with blanks. If the
decimal precision is not specified, "0" is assumed.

This function is used quite often in the

accounting system to simplify displays. Numbers are
converted to strings then concatenated with (joined to)
other strings of characters for displays.

LEN(<variable/string>)
is the string length function. It tells you how
many characters there are in the string you name. This
can be useful when the program has to decide how much
storage to allocate for information with no operator
intervention. However, if a character field variable
name is used, this function returns the size of the
field, not the length of the -contents (since any unused
positions are filled with blanks by dBASE IT).

dBASE II...82

$(<expression/variable/string>, <start), <length>)
is the substring function. It selects characters
from a string or character variable, starting at the
specified position and continuing for the specified
length.

. As an example, if we had a variable called <Date>
whose value was '810823', the function “$(Date,5,2)"
would give us '23'. To convert these numerals to a
number, we could use “VAL($(Date,5,2)).

You'll find an example of this in the
<DateTest.CMD> file in Section VI, where groups of two -
characters are.taken from a 6-character date field,
converted to integers (using the VAL(...) function),
then evaluated to see if they are in the correct range.

Don't confuse this with the substring logical®
operator described in Section II.

@(<variable1/string1>, <variable2/string2>)
is the substring search function. You might think
of this as "Where is stringi AT in string2?" When
you use this function, it produces the character
position at which the first string or character
variable starts in the second string or character
variable. If the first string does not occur, a value
of "O" is returned.

One use for this is to find out where a specific
string starts so that you can use the preceding
substring function. Another use is to find out if-a
specific string occurs at all.

" (If you only need to know whether one string is.in
another one, you can use the relational string
operator: String1$String2, Section II.)

You'll find these useful in a command rile when
the computer is searching without operator
intervention, and you can't simply step in and look to
see where the data is.

CHR(<number>)
yields the ASCII character equivalent of tue number.
Depending on how your terminal uses the standard ASCII
code, ? CHR(12) may clear your screen, CHR(13) might
produce reverse video while ? CHR(152,wou1d cancel it.
Other functions can be used to control hardware
devices, such as a printer. Check your manual--you'll
probably find a few interesting features.

To get underlining on your printer, try joining a
character string, the carriage return and the underline
like this: ? 'string®' + CHR(13) + ' '. You could
even set up a command file that uses the LEN function
to find out how long the string is, then produces that .
many underline,strckes.

T

dBASE II...82

is the macro substitution function. When the symbol
is used in front of a memory variable name, dBASE II
replaces the name with the value of the memory variable
(must be character data). This can be used when a
complex expression must be used frequently, to pass
parameters between command files, or in a command file
when the value of the paramever will be supplied wher
the program is run.

In the <Reportmenu.CMD> file in Section VI, it is
used to get the name of the required database:

? 'Which file do you want (Lo review?'
ACCEPT TO Database
USE &Database

It could also be used as an abbreviation of a
command: “STORE 'Delete Record' TO D". The command:
“&D 5" would then delete recofd 5 when the program
runs.

If the macro command {s not followed by a valid
string variable, it is skipped. This means that you
can use the symbol itself as part of a string without
getting an error indication.

FILE(<"filename"/variable/expression>)
yields a True value if the file exists on the disk,
False if it does not. If you use a specific file name,
use the quote marks. The name of a string variabdble
does not require the quote marks. You can- also use any
valid string expression: “FILE("B:"+Database)” would
tell you whether the file name stored in the memory
variable <Database> is on drive B (see Reportnenu CMD
in Section VI).

TRIM
eliminates the trailing blanks in the contents of a
string variable. This is done by typing:
“STORE ‘TRIM (<variabled) TO <newvariable>

dBASE II...8%

Changing dBASE II characteristics and defaults

dBASE II has a number of commands that control how it
interacts with your system setup. You-can change these
parameters back and forth "on the fly", or set them up once
at the beginning of your command file and leave them. In
many applications, the defaults will be just what you need.

Parameters are changed in your command files (or
interactively) by using the SET command. In the list
telow, normal default values are underlined.

Once again, there's no need to memorize these. As you
work with the established defaults, ‘you can decide if you
want to change any of the parameters on the list.

SET TALK OR Displays results from commands on console.
OFF No display.

SET PRINT ON Echoes all output to your 'list' device.
OFF No listing.

SET CONSOLE ON Echoes all output to your console.
OFF Console off.’

SET SCREEN ON Turns on full screen operation for APPEND,
EDIT, INSERT and CREATE commands.
OFF Turns full screen operation off.

SET FORMAT TO SCREEN sends output of €@ commands to the
screen

SET FORMAT TO PRINT sends output of € commands to the
printer

SET MARGIN TO <nnn> sets the left-hand margin on your
printer ("nnn"<=254)

SET RAW ON DISPLAYs and LISTs records. without spaces
between the fields
OFF DISPLAYs and LISTs records with an extra space
between fields

SET HEADING TO <string> changes the heading in the REPORT
command '

SET ECHO ON All commands in a command file are displayed
on your console as they are executed.
OFF No echo

SET EJECT ON enables page feed with REPORT command
OFF disables page feed

—

dBASE II...85

SET STEP ON Halts after completing each commhnd, for
debugging command files.
OFF Normal continuous operation,

SET DEBUG ON sends output from the ECHO and STEP commands
to the printer only
OFF sends ECHO and STEP output to the screen

SET BELL ON enables bell when field is full
OFF disables bell) -

SET COLON ON uses colons to delimit input variables on
the screen
OFF disables the colons

SET CONFIRM ON waits for <enter> before leaving a
' variable during full screen editing
OFF leaves the variable when the field is full

SET CARRY ON carries data from the previous record
forward to the new record when in APPEND
OFF shows a blank record in APPEND mode

SET INTENSITY ON enables dual intensity for full screen
operations)
OFF disables dual intensity

SET LINKAGE ON permits databases to be linked for display
with up to 64 fields and up to 2000 bytes per
dispiayed record. The P. or S. prefix must
be used when field names are similar in both
databases)

OFF disables linkage

SEBT EXACT ON requires that all characters in a comparison
between two strings match exactly
OFF allows different length strings. E.g.,
'ABCD'='AB' would be True (Also affects
FIND command)

SET ESCAPE ON allows the <escape> key to abort command
file execution
OFR disables the <escape> key

“SET ALTERNATE TO <filenahme>" creates a file with a
.TXT extension for saving everything that goes .to your CHT
screen. To start saving, type “SET ALTERNATE ON".

‘You can change the file that you are-saving to by
typing “SET ALTERNATE TO <newfile>".

To stop, type “SET ALTERNATE OFF". This also
terminates when your Q.(T dBASE II.

dBASE II...86

Merging records from two databases (UPDATE)

Data ¢an be transferred rrom one database file to
another with the following command:

UPDATE FROM <database> DN <key> [ADD <field 1list>]
[REPLACE <field list>)

Note: Both databases must be presorted on the "key"
field before this command is used.

Both files are "rewound" to the beginning, then key
fields are compared. If they are identical, then data from
the FROM data base is either added numerically to data in
the USE file, or is used to reglace data in the use file for
the fields specified in the field 1ist. When fields do not
match, those records are skipped. This command can be used
to keep inventory updated, for example.

In the accounting systen in Section VI, it is u.ad in
<{Payroll.CMD> and <CheckStub.CMD>. It's useful and wor:h
experimenting with.

dBASE II...87

JOINing entire databases

JOIN is one of the most powerful commands in dBASE II.
It czn combine two databases {the USE files in.the PRIMARY
‘and SECONDARY work areas) to create a third database. The
form of the ¢ommand is:

JOIN TO <newfile> ON <exoression> [FIELD <list>]

) In operaticn, the command positions dBASE II on the
first record of the primary USE file and evaluates each of
"the records in the secondary USE file. Each time the
nexpression" yields a true result, a record is added to
mnewfile". If you are in the primary area when you issue
the JOIN command, prefix variable names from tiie secondary
USE file with S.. 1If you are in the secondary area, prefix
variables from the primary USE file with P.. (See example
below-)

when each record in the secondary USE file has been
evaluated against the first record of the primary USE file,
dBASFE II advances to. the second record of the primary USE
file, then evaluates all of the records from the secondary
USE file again. This is repeated until all records from the
files have been compared against each other.

Note: This can take a great deal of time to complete if
the two databases are very large. It may also not be
possible to complete at all if the constraints are too
loose. Two files with 1,000 records each would create a
JOIN database with 1,000,000 records if the JOIN expression
was always trus, while dBASE II is limited to.65,535 records
in any single database.

To use the command, use this sequence of instructions:

USE Inventory

SELECT SECONDARY

USE Orders

JOIN TC NewFile FOR P.Part:NumberzPart:Number;
FIELD Customer,ltem,Amount,Cost

This creates a new database called.<NewFile.DBF> with
four fields: Custonfer, Item, Amount and Cost. The structure
of these fields (data type, size) are the same as in the two
Jjoined databases. (Notice that the "P." prefix is used to.
call a variable from the work area not in U3E.

| dBASE II...88

Full screen editing and formatting

(9..5‘!..38?..PICTURE)

dBASE II has a powerful series of formatting commands
that allow you to position information precisely where you
want it. "You saw this in action in our <{Sample.CMD>
program, where we used:

€ <coordinates> SAY ['prompt'] GET <variable)>

This command was able to position prompts and
variables (and their values) at any location we specified on
the screen. When we listed a series of commands, then
followed them with READ, we were able to control the format
of the entire screen. You might want to create and run the
following command file fragment to refresh your memory:

STORE "™ " TO MDate

STORE * * TO MBalance

STORE " " TO MDraw

@ 5,5 SAY "Set date MM/DD/YY " GET MDate

€ 10,5 SAY "What is the balance? ™ GET MBalance

@ 15,5 SAY "How much is requested"” GET MDraw

READ

ERASE

€ 5,5 SAY "Should we do an evaluation?® GET MEvaluate
READ

. The command can also be used without the SAY phrase as
@ <coordinates> GET <variable> (with a later READ in the
command file). This displays only the colons delimiting the
field length for the variable.

Tip: In the SCREEN mode the line numbers do not have to be
in order, but it's good practice to write them this way
since they must be in order for PRINT formatting.

This command can also be expanded for special
formatting like this:

€ <coordinates> SAY [expression] GET <variable> [PICTURE <format>)

The optional PICTURE phrase is filled in using the
format symbols listed below. The command:

@ 5,1 SAY "Today's date is™ GET Date PICTURE '99/99/99¢
would display:
Today's date is? / 7/

assuming that the Date variable was blank. In this example,
only digits can be entered.

d"ASE II...89

The GET function symbols are:

9 or # accepts only digits as entries.

A accepts only alphabetic characters.

1 converts character input to uppercase.
X accepts any characters.

4 shows '$' on screen.

® shows '#' on screen.

With this command, you can format your menu and input
screens any way you want them, quickly and easily.

Tip: The Osborne series of accounting books, besides
describing some fairly .sophisticated systems, also includes
_ CRT Mask Layouts for menus and entry formats with
coordinates clearly marked. Well worth their price for this
alone.

dBASE II...90

Formatting the printed page (SET FORMAT TO PRINT,
€..SAY..USING)

When you SET FORMAT TO PRINT, the €-command sends 1ts

information to the printer instead of the screen.

The GET and PICTHRE phrases are ignored, and the READ
commanc cannot be used.

Data to be printed on checks, purchase orders, invoices
or other standard forms can first be organized on the screen
with this command, then printed exactly as you see it:

@ coordinates S2Y variable/expression/'string' [USING format)

For printing, the coordinates must be in order. The
lines must be in increasing order (print line 7 before line-
9, etc.). On any given, line the tcolumns must be in order
(print column 15 before column 63, etc.).

This cormand can output the current value of a variable
that you name, the result of an expression, or a iiteral
string prompt message.

If the USING phrase is included, this command
specifies which characters are printed as well as where they
appear on the page. the symbols used are:

9 or # prints a digit only.

A prints alphabetic characters only.

X prints any printable character.

$ vprints a digit or a '$' in place
of a leading zero.

prints a digit or a '#' in place
of a leading zero.

The command 10,50 SAY Fours®Rate USING '$$$3$$$$.99°¢
could be used in both the screen and the printer modes since
it has no GET phrase. For Hours = 8 and Rate =12.73, it
‘would print or display $$$$101.8%4, useful for printing
checks that‘are more difficult to alter.

dBASE II...91

Setting up and printing a form

To set up a form, use measurements based on your
printer spacing (ours prints 10 characters per inch
horizontally, with 6 lines per inch vertically).

The "Outgoing Cash Menu" that we used in our earlier
command file could very well have had another selection item
called "l = Write checks", so we're going to do part of the
WriteCheck command file.

To start with, we'll have to input the date. The
following command lines accept the date to a variable called
MDate, and checks to see whether it is (probably) right:

ERASE

SET TALK OFF

STORE " " TO MDate
STORE T TO NoDate
DO WEBILE NoDate

@ 5,5 SAY "Set date MM/DD/YY" GET MDate PICTURE "99/99/99"

READ
IF VAL($(MDate,1,2)) < 1;
.OR. VAL($(Mpate,1,2)) > 1
.OR. VAL($(MpDate,’,2)) < 1
.OR. VAL($(Mpate,,2)) > 3
.OR. VAL($(MDate,7,2)) <
STORE " " TO MDate
@ 7,5 SAY wa3® BAD DATE, PLEASE RE-ENTER. ®usan
STORE T TO NoDate
ELSE)
STORE F TO NoDate
ENDIF
ENDDO because we now have a valid date
ERASE

23"
H

13
81

In English, the above first sets the value of Mpate to 8
blanks, then the €..SAY command displays:

Set date MM/DD/YY: / / :

When the date is entered, it is checked by the IF to see
whether the month is in the range 1-12, day is in the range
1-31, and yearz81. This is done in three steps:

- the substring function 4 takes the two characters
representing the month, day or year (e.g., for month
it starts in the 4th position and takes 2 characters)

_ the VAL function converts this to an integer

- this integer is then compared against the allowed
values) ‘

If the value is out of range, MDate is set to blanks again
and an error message comes up. When a date within the
allowed range is entered, the program continues.

The printout for the check jtself could be the next

por;ion of the program. Using the measurements of our

dBASE II...92
checks, this is the list of commands:

€ 8,3 SAY Script ® A character variable that prints the
* amount in script. This is filled in
* by another procedure called Chng2Serpt.
* We stubbed this for now like this:

STORE 'Seript Stub' TO Seript

® RETURN :

11,38 SAY Vendr:Nmbr

11,50 SAY MDate

11,65 SAY Amount

13,10 SAY Vendor

14,10 SAY Address

15,10 SAY City:State

15,35 SAY zIP

17,10 SAY Who

L L L Y Y Y

You can check this out on your screen before you print it,
then switch from SCREEN to PRINT modes with the SET command.
The values for the variables are provided elsewhere in your
command file.

Longer forms are no problem: a printer page can be up -
to 255 lines long. To reset the line counter, issue and
'EJECT” command with the printer selected.

dBASE II...93

Time to regroup

Because dBASE II is such a powerful system, it has a
large number of commands and techniques for dealing with
your -database needs and allowing you to get more information
more easily than any other database system or file handler
currently running on micros.] ’

The easiest way to learn the techniques is to go
through the examples and key them into your computer,
changing names as you go to reflect your needs rather than
our examples.

You start by using the CREATE command to create your
databases. Besides MoneyOut.DBF, we've created a number of
other database structures that you might find useful.
They're listed at the beginning of Section VI.

The <Costbase.DBF> file started life as <MoneyOut.DBF>.
We've modified it a great deal,.changing field names and
sizes (with and without data in the database).

- We've also added our own spacing between the fields
(see fields 5, .7 and 10), rather than using the dBASE IT
"RAW" default of a space between each field. NOTE: you can
NOT enter the hyphen as a field name when you CREATE a file.
To enter it, you have to MODIFY STRUCTURE, use ctl-N to
insert a blank line, then type inthe hyphen and the field
size. Ctl-W. saves the change (ctl-O0 with Superbdrain).

' You may want to check some of the other.database
structures, then see how they are used in the programs. Ve
tried to keep the field names and their individual
structures the same for all our databases to allow for file
merges and other uses. -Data from one database will fit into
corresponding fields in another, and with common names the
transfer is straightforward.

You might want to check through the command files. in
Section VI now. Most of the dBASE II commands have been
used, and the files work the way they are set up.

The first command file is the main menu for the system,
with sub-files selected by pressing a number. Some of the
files get a bit complicated (<Payroll> for example), so you
might go to some of the utility programs at the end of
Section VI before you try to unravel the rest of the
programs.

Writing these command files, we used exactly the
procedures that we recommended earlier: first define the
problem in a general sense. Gradually keep dropping down .in
levels of detail, using ordinary English at first, then
pseudocode, putting terms that dBASE II would understand’ in
capitals when we finally got to that level.

wWhen we came up with something that had to be done, t
we weren't sure how to do it, we simply made up a procedure
name for it, then went back to it later.

The indentation and mixture of upper- and lowercase

dBASE II...9%

letters was not done Just for this manual: it's the way we
work all the time. It makes writing the command files a lot
easier because you can see groupings of the structures that
you are using.

The identifiers were pulled out of our semi-English
pseudocode, modified a bit to fit within the 10 characters
allowed, but not enough to destroy the meaning.

Comments are sprinkled throughout the files for
documentation, although in many cases the programs are
almost self-documenting because so many of the dBASE II
commands are similar to English equivalents.

