Chapter 5
MICROCASSETTE AND DISK FILES

This chapter describes procedures for creating and accessing files on microcas-
settes and floppy disks (including the RAM disk) with BASIC. The types of
file covered include program files, random access files and sequential access files.
In reading this chapter, keep in mind that file management is a process which
involves a number of interrelated commands and statements, each of which must
be prepared with consideration for the others. Also be sure to specify file descrip-
tors in accordance with the rules described in the “2.12 Files” section of Chap-
ter 2.

A summary of procedures for handling errors occurring during disk access is
included at the end of this chapter, together with a review of general precau-
tions to be observed in using microcassettes and floppy disks.

é 5.1 Program Files
R,
lQ

This section reviews the commands and statements used to manipulate program
files. In specifying these commands/statements, remember that the disk drive
which is currently logged in is assumed unless otherwise specified in <file
descriptor > . Thus if BASIC was entered from the command line with the logged
in drive A:, files would be saved to the RAM disk. If you had entered BASIC
from the menu with BASIC resident you may not know which is the currently
logged in drive. Also remember that the CP/M operating system will automati-
cally assume that the file name extension is explicitly specified.

>

R

SAVE <file descriptor>[|,A

P

This command writes the program in memory to the disk or microcassette un-
der the file name specified in < file descriptor > . If neither the A nor P options
are specified the program is written to the disk or microcassette in compressed
binary format. If the A (ASCII) option is specified, the file is written as a series
of ASCII characters. If the P (PROTECT) option is specified, the file is saved
in encoded binary format. A program saved using the P (PROTECT) option

1

LKW
J

i

5-1

HCIIhPDF - wyvw . laslio.com

http://www.fastio.com/

ClibPD

cannot be listed or edited when it is later reloaded; therefore it is recommended
that you also save an unprotected copy of the program for future listing or editing.

LOAD <file descriptor> [,R]

This command loads the program specified in < file descriptor > into memory
from the disk. If the R option is specified, the program will be automatically
executed as soon as loading is completed. Executing this command without the
R option closes all files which are currently open; however, files will not be closed
if the R option is specified. This makes it possible to chain programs which ac-
cess the same data files.

RUN <file descriptor>[,R]

If <file descrjptor> is omitted, this command executes the program which is
currently in memory. Specifying < file descriptor> causes the specified pro-
gram to be loaded into memory from the disk or microcassette (deleting any
program currently in memory) and to be immediately executed. As with the
LOAD command, all open files are closed upon execution of this command un-
less the R option is specified.

MERGE < file descriptor >

The MERGE command loads the specified program into memory from the disk
or microcassette and merges it with the program in memory. The program merged
must have been stored in ASCII format. If any lines of the program loaded have
the same line numbers as those of the program in memory, those program lines
in memory are replaced with those of the program from the disk or microcas-
sette. BASIC always returns to the command level after execution of a MERGE
command.

-

KILL < file descriptor>

This command deletes the specified file from the disk. The function of this com-
mand is the same regardless of whether the file specified is a system file, a pro-
gram file, or a random or sequential access data file; therefore, great care should
be exercised in using it.

52

wavwlastio.com

€
siainieinisinie
VOLOIODUVOLUL

»
ala
LV

!
E
)

HHBHO W

t

IS AN A

W

HHHHHYB O

Kk

"

NAME <old filename > AS <new filename >

This command is used to change the name of a file. Specify the current file name
in <old filename> and the new file name which is to be assigned to the file
in <new filename>. This command can be used to rename any type of file.

5.2 Sequential Files

This section describes procedures for creating, accessing and updating sequen-
tial data files. Sequential files are easier to create than random files, but they
are not as easy to update and take longer to access. As the name implies, the
items included in a sequential file are stored in the file in the order in which
they are written, and must be read back in the same order. Because of these
characteristics, sequential files are often used for address books, dictionaries
or other files which are searched from the beginning when they are used and
relatively rarely updated.

The statements and functions used to write to or read from sequential files are
as follows:

OPEN, CLOSE

PRINT #, PRINT # USING, WRITE #
INPUT #, LINE INPUT #

EOF, LOC

http://www.fastio.com/

ClibPD

5.2.1 Creating sequential files
The steps involved in creating and accessing a sequential file are as follows:

(1) Execute an OPEN statement to assign a file number to the file and to open
it in the “O” (output) mode.

(2) Write data to the file using the PRINT # or WRITE # statement.

(3) Close the file by executing a CLOSE statement. This must be done before
the file can be reopened in the “I” mode for input.

Example:

The following is a short program which creates a sequential file of employee
data. The file it creates will be used with subseauent programs. To simplify
programming, type in all the data with the key set to SHIFT ON.

1o OPEN "O",#1,"A:EMPLOYEE.DAT": Open file for output.

20 INPUT "NAME";N$:"Assign name to N$.

30 IF N$="XX" THEN CLOSE:END :*If XX is typed, the

40 * program ends.

S INPUT "SECTION”;S% :"Agsign section to S%.

60 INFPUT "DATE OF BIRTH"iD% : "Assign date of birth to D$
70 PRINT #1,N$3",";S%;",";D$:"Write data to file.

80 PRINT:G0TO 20 : "Moves cursor down.

Try running the program. The following prompt appears on the LCD screen:
NAME?

Type a name of employee (e.g. JOE SOAP) and press the key: the
following message appears: ,

SECTION?

Type the name of section where the employee works (e.g. ACCOUNTS) and press
the key: the following message appears:

DATE OF BIRTH?
Type the date of birth of the employee (e.g. 08/05/49) and press the

key: the first message appears again. The above steps are repeated until “XX”
is typed in response to the message “NAME?”,

5-4
wAvw.lastio.com

oo
i
an

L 77

oD
o
o ke y

Continue in this manner so that the following items are input to the file.

NAME SECTION DATE OF BIRTH
JOE SOAP ACCOUNTS 08/05/49
FRED BLOGGS ENTERTAINMENT 01/02/60
BETTY JONES ACCOUNTS- 09/09/55
GLORIA SMITH CUSTOMER SERVICE 03/04/62

Note that starting the program again after it has been terminated (that is, after
the file has been closed) erases all the data entered previously and creates a new
file to which the same name has been assigned.

After the program has been executed, if the command FILES “A: is typed a
file “EMPLOYEE.DAT” should have been added to the directory.

5.2.2 Accessing sequential files
The procedures for accessing sequential files are as follows:

(1) Execute an OPEN statement to open the file in the “I” mode.

(2) Read data from the file into variables in memory by executing either the
INPUT # or the LINE INPUT # statement.

(3) Close the file after input has been completed by executing a CLOSE
statement.

Notes:

1) Data is read from the beginning of the file each time the file is opened.

2) If all data included in the file is to be read at once, a DIM statement must
be executed to dimension one or more variable arrays of the appropriate size.

3) An “Input past end” error will occur if an attempt is made to read data
JSrom a sequential file after the end of that file has been reached.

http://www.fastio.com/

Example:
The following program reads data from the file created by the sample program

in Section 5.2.1 and displays the names of all employees working in the AC-
COUNTS section.

1o OPEN"I",#1,"A:EMPLOYEE. DAT" :"Open file for input.
26 IF EOF(1) THEN GOTO 1le :*If EOF is encountered,
jR{% I file closed and program
4¢ ends.
5@ INFUTH#1,N%,5%,D% :"Read data and assign

* items to N%,5% and D$

&@
7¢ IF S$="ACCOUNTS" THEN FRINT N$:*When the section is
84 ° ACCOUNTS, name is
A displayed on screen.
ioe GOTO 20 "Next data record

119 CLOSE:END ‘Close file and end
120 ° program

The screen will show the result as follows:

RUN
JOE SOAP
BETTY JONES

The comparison for the “ACCOUNTS” string requires the string not only to
be spelt the same, but that it be all in upper case. This was why the suggestion
was made to set the CAPS LOCK in the program to write the data, otherwise
the program would have had to check for all possibilities, for instance “Accounts”,

“accounts”, etc.

5.2.3 Updating sequential files.

After a sequential file has been written to a disk or microcassette, it is not pos-
sible to add data to that file once it has been clesed. The reason for this is that
the contents of a sequential disk file are destroyed whenever that file is opened
in the “O” mode. To overcome this, the following procedures can be used:

(1) Open the existing file in the “I” mode.
(2) Open a second file on the disk or microcassette in the “0” mode under

a different file name. -
(3) Read in data from the original file and write it to the second file, adding

the new data.

ClibPD waww.lastio.com

)
®)
©)

After all data included in the original file has been written to the second
file, close the original file and delete it with the KILL command.
Write the new information to the second file.

Rename the second file using the name which was assigned to the original
file, then close the file.

The result is a sequential file which has the same file name as the original file
and which includes both the original data and the new data. A sample progran;
illustrating this technique is shown below.

1e
20
o
4¢
50
[21%]
7é
8o
P
100
116
156
146
176¢
ige
196
200
210
2326¢
2E0
24a
256
260
270
280
296
206

BT If file not found,

ON ERROR GOTO =16
’ jump to 316,

: If file exists, write
) o . ~ it to A:TEMP,
?PEN IV #1,"A:EMPLOYEE. DAT" T 0pen file EMFLOYEE.

DAT for input.

:'Open temporary file
A:TEMP for output.
:7If EOF is encountered

OFEN "O",#2,"A: TEMP"

IF EQOF<1) THEN 186¢

* Jjump to 186.
LINE INPUT#1,A% :’Reaz data into A%
fRINT#2,A$:TWrite data in A% to
Az TEMF,
GOTO 96 : T Next data
sTAfter all data has

CLOSE#1
been read, original
file is closed.

"Hill original file

TAdd new file entries.

"If XX is typed, close

"file and end program.

FILL "A:EMPLOYEE.DAT"
INPUT "NAME";N$

IF N$="XX" THEN 286

LINE INPUT "SECTION? ":S¢

ke as ar e

LINE INPUT "DATE OF BIRTH? "iD4$:-°

FRINTH2,N$; ", ";5%5", ":D%$ PTWrite “
¢ , s LT H 2 dat :

FPRINT: GOTO 22¢ : "Next da;aa re AsTENR

CLOSE" :"Close A:TEMF.

?AME A: TEMF" AS "A:EMPLOYEE.DAT": "Change filename back

N) to "EMFLOYEE.DAT"

}F ERR=353 AND ERL=36 THEN FRINT "File not found"
If A:EMFLOYEE.DAT not
' exists, display "File
not fc ".
CLOSE: END 37 aund

http://www.fastio.com/

5.3 Random Files

The contents of the original file could be changed by replacing the contents of
variables before writing them to the second file. This could be done by adding

the following sequence between lines 110 and 150. w7 t: More program st.eps are required to create fmd access random files th.an is the

v o case with sequential files; however, random files have two advantages which make
111 PRINT A% :"Display contents of A$. _ | & them more useful whep there are large quantities of data.whlch must be fre-
112 PRINT "Change entry (Y/N)?" v ﬁ quently updated. The first is that random files require less disk space for storage
113 YN$=INPUTS$ (1) :'Wait for character input. o rQ because data is recorded using a packed binary format, whereas sequential files
114 IF z:‘l:f:';'l" Iﬂgs ;ég B gg :g :ég :: ; :;’g:g : e ! are written as series of ASCII characters. The second advantage is that random
i iz ézm 112 :"Go to.112. v l files allow data to be accessed anywhere on the disk: it is not necessary to read
117 INPUT "Enter new name";NN$ " Input new entries. e I'Q through each data item in sequence, as is the case with sequential files. Random
118 INPUT "Enter new section";S55%:’ -) access is made possible by storing and accessing data in distinct, numbered units
119 INPUT "Enter new birthdate";DD$ L 2 r lled records
120 A$=NN$+", "+DD$+", "+DD$:*Assign new entries.. - I'Q calle .

A g

2w The statements and functions which are used with random files are as follows.

= (3 OPEN, CLOSE

a2 FIELD, LSET/RSET

LA GET, PUT

g & LOC, LOF

S = MKIS, CVI

o B MKSS$, CvVS

L MKDS$, CVD

& g 9

~ LQ . .

s LQ 5.3.1 Creating random access files

“;‘}

5 n; The steps required to create random files are as follows:

7/ l

- (1) Open the file in the “R” mode.

o

; [’3 For example

. -~ ll P OPEN “R”, #2, “STOCKLST.DAT”, 50

F N 1

hid L,; opens file number 2 as a random access file named “STOCKLST.DAT”,

4 The record length is 50 bytes. If the record length is omitted, records

P L‘; of 128 bytes are assumed.

v/ I

- (2) Next, allocate space in the file buffer for each of the variables which are

5 LQ to be written to the random access file. This is done using the FIELD com-

§ mand, for example:
5.8 5-9

ClibPD waww.lastio.com

http://www.fastio.com/

l

ClibPD

FIELD #2, 18 AS S$, 38 AS N§, 10 AS C$

This allocates the fields for file number 2. The example distributes the total
length of the record among the variables as follows:

10 bytes for S$, 30; for N$, and 16 for C$

Note that all fields are allocated as strings. Even numeric variables are stored
as strings and must be converted as shown in step (3). Make sure the total
equals the declared record length. If this length is exceeded, a

FIELD overflow in <line number >
error will be generated.

(3) Data is then placed into the random file buffer using the LSET and RSET
commands, depending on whether they require left or right justification.
Only strings can be placed-into the buffer so any numeric values must be
converted to strings first; this is done using the MKI$, MKS$, and MKD$
functions. For example:

LSET S$ = MKI$(S%)

LSET N$ = MKS$(QY)

LSET RS = MKDS$(RR #)
LSET N$ = AS$

converts and sets an integer.
converts a single precision number.
converts a double precision number.
sets a string.

(4) Write data to the file from the random file buffer with the PUT statement.
Records can be written in any order (in contrast to sequential files) and thus
to add or change records it is only necessary to reopen the file and write
further records. HOWEVER, with MICROCASSETTE files, the files MUST
be written in sequential order.

(5) When all the data has been written to the file, the file must be closed using
the CLOSE command:

closes all files.
simply closes file #2.

e.g. CLOSE
CLOSE #2

Failure to close a file may render the file impossible to be read from or written

to at a later date.

5-10
wavwlastio.com

) S
-

€
”1
U

Y
1)
)

OV

i

4
M

q
v

DO U

A

&N

(
CArArArarn

»
VU

A

4

v

V\;\v

0333TTY

i
'y

t

JIIY

T Y

ry

The following program example allows data to be input from the keyboard
for storage in a random access file. In this example, one record is written
to the file output buffer each time the PUT statement on line 100 is execut-
ed. The record number which is used by the PUT statement is that which
is input at line 30.

10 OPEN"R",#1,"A:STOCKLST.DAT", 36
:"Open file
AS S%,30 AS N$,4 AS Cs
:"FIELD data to variables
"ENTER STOCK NO.";8%
:? Input data items.
4¢ IF 8%=0 THEN CLOSE:PRINT"END":END
:"Enter © to finish.
50 INPUT "ENTER ITEM NAME";A$
60 INPUT "QUANTITY";C%
7¢ LSET S$=MKI%(8%)
:’LSET data to buffer(file buffer -(3)

20 FIELD#1,2

30 INPUT

80 LSET N$=A%

90 LSET C$=MKSs (CYL)

100 PUTH#1,8% t"Write data to file.
110 GOTO 30 : "Next entry

-(4)

NOTE:

Once a variable name is specified in a FIELD command, do not use that name
in an INPUT or LET statement. The FIELD statement assigns variable names
to specific positions in the random file buffer, and using an INPUT or LET state-
ment to store values in a variable specified in the FIELD statement will cancel
this assignment and reassign the name to normal string space instead of to the
random file buffer.

5-11

http://www.fastio.com/

ClibPD

5.3.2 Accessing random files
The following steps are required to retrieve data from a random access file:
(1) Open the file in the “R” mode.

(2) Using the FIELD statement, allocate space in the random file buffer for
variables which are to be read in from the random file.

Note:
If the same program both writes data to a file and reads data from it, it is often
possible to use just one OPEN statement and one FIELD statement.

(3) Move the desired record into the random file buffer with the GET state-
ment. Any record number can be accessed without reading the whole file
into memory as is the case with sequential files. HOWEVER, with microcas-
sette files, the data MUST be accessed sequentially.

(4) Data in the random file buffer can now be used by the program. Be sure
that numbers which are converted to ASCII strings for storage in the file
are converted back into numeric values for use by the program; that is done
using the CVI, CVS and CVD functions.

The following sample program accesses random file “STOCKLST.DAT” creat-
ed using the program example shown in paragraph 5.3.1 above. Data records
are read in and displayed by entering the stock number (record number) from
the keyboard.

10 OPEN "R",#1,"A:STOCKLST.DAT", 36

:*Open file in R mode. -—— (1)
20 FIELD#1,2 AS S%,30 AS N$,4 AS C%
:?’Allocate space for variables. —— (2)

30 INPUT "ENTER STOCK NO.";S8%
: " Input stock No.
40 IF S%=0 THEN CLOSE:PRINT"END'":END
:’End program.
50 GET#1,S5%
: "Read record into buffer. - (3)
60 PRINT USING "###";CVI(S%) 5 : PRINT" "3
:"Convert strings to numeric values
and display them.

7@ PRINT USING "&"jN$j;:PRINT" "3
80 PRINT USING "#####";CVS(C$)
90 GOTO Jo

:’Next record

5-12

wavwlastio.com

)

PO O

T

lelalsialel
OV

2B\

rn

OO OOOORAROO
-
AR\Pipip

insoiniats

L

With random files, the LOC function returns the current record number; that
is, the record number which is one greater than the number of the record last
accessed by a GET or PUT statement. This function can be used to control the
flow of program execution according to the total number of records which have
been written to the file. For example, the following statement ends program exe-
cution if the current record number for file #1 is greater than 50:

IF LOC(1) >50 THEN END

5.3.3 Hints for increased performance

When BASIC is started, memory is automatically reserved for use as random
file buffers. The amount of memory reserved equals the number of bytes speci-
fied in the /S: option (the maximum record length of random files) times the
number of files specified in the /F: option (the maximum number of files which
can be opened at one time). Specify 0 in the /S: option to conserve memory
if random access files are not to be used. Also, specify /F: <number of files >
in the BASIC command if fewer than three files (the default value) are to be used.

5-13

http://www.fastio.com/

ClibPD

5.4 Microcassettes

The microcassette drive is supported as a disk device, and can be used in gener-
ally the same manner as a disk drive. It is, however, intended as a storage device
which adds to the portability of the PX-8, and not as a device which would sub-
stitute for a disk drive in normal day to day use. It is obviously slower than a
disk drive and has some further limitations. This section summarises the differ-
ences between the use of the microcassette as a disk drive and that of a conven-
tional disk drive.

5.4.1 Restrictions on use

Since the microcassette is essentially a sequential access device, there are a num-
ber of restrictions on its use as a disk device.

(a) Only one microcassette file can be opened at once. If two files are opened
in the input mode, only the second one to be opened can be accessed. When
a file is opened in the output mode no other file can be opened until it
has been closed.

(b) When a microcassette file is opened in the random (“R”) mode it can be
either read from or written to, but not both.

(c) When the GET statement is executed during random access, records must
be read in sequence starting with record number 1. True random access
is not possible. i

(d) As with the GET statement, records must be accessed in sequence starting
with record number 1 when the PUT statement is executed in the random
mode. Further, the file must be one which has been opened for the first
time; it is not possible to write data to a file which was previously created
in the random mode. If an attempt is made to write another record to a
file previously stored on tape a “Tape access error” will be generated.

5.4.2 Opening options

The options for opening a file with the microcassette are the same as for any
other file with two additions. The full syntax is:

OPEN “ |0
I
R

?, #n,“h:(sv)filename.ext”

5-14

wavwlastio.com

T

1)‘0‘0‘0

-

QUVOULVDYOL U

COOOIARONOOOD

slnlalalalele

Y

b

AR S\l nig\nle

NNOOB OO

iels

F}}

The “s” option specifies whether the stop mode or the non-stop mode is to be
used for reading from and writing to the file as follows:

S — Stop mode
N— Non-stop mode

Data is saved to the tape in blocks of 256 bytes. These blocks are duplicated
on the tape. In order to achieve greater accuracy in reading and writing data
these options allow the tape to be stopped between writing the duplicated blocks.
In a normal BASIC SAVE operation data is always written in non-stop mode.
It is possible to LOAD files in the stop mode, for instance:

LOAD “H:(SPROGRAM”

will load the program named “PROGRAM?” from the tape, stopping between
each block. The tape will physically stop and start during this operation. It takes
longer than normal operation and should only be used for loading BASIC pro-
grams if difficulty is experienced in loading a particular program.

In opening a data file for input it is often possible for a “Disk read” error to
occur if the file was originally written in the non-stop mode and is read in the
same mode. Greater reliability can thus be achieved by using the stop mode for
reading back data.

If the option is omitted when the file is opened in the “I” mode, the mode actu-
:ally used is that specified when the file was created. When a new file is created
in the “R” mode, data is written in the stop mode unless otherwise specified.

The “v” option specifies whether data is to be automatically verified after be-
ing written, as follows:

V — Data is automatically verified (with a Cyclic Redundancy Check) from
the beginning of the file through to its close after write access has

been completed.
N— Data is not verified.

When omitted, the value set in the system display is assumed.

5-15

http://www.fastio.com/

ClibPD

5.5 Errors
5.5.1 Error messages and causes

(1) Disk read error

An error occurred while data was being read from a disk.

(2) Disk write error

An error occurred while data was being written to a disk.

(3) Device unavailable

Access was attempted to a drive which did not contain a diskette, or the
specified drive. was not connected.

(4) Disk write protected

An attempt was made to write data to a disk which was protected with a
write protect tab.

An attempt was made to write data without executing the RESET com-
mand after the diskette in that drive had been replaced. . ’
An attempt was made to write data to a file for which the write protect
attribute was set.

An attempt was made to write data to a ROM device.

(5) Tape access error

An attempt was made to access an access-inhibited microcassette file.
An attempt was made to MOUNT a tape without REMOVEing the previ-
ous tape.

An attempt was made to REMOVE a tape which has not been MOUNTed.

3.5.2 Error processing

(1) Errors occurring when a file is opened *

Identify and eliminate the cause of the error, then re-execute the OPEN
statement.

5-16

wavwlastio.com

)

ahh!

O

DO O

q

g
\!w

PR TR O P, - -
VQOIVOVIVIDOQOLOVUVOLOOLOLOLOUYUUU

slelsielalalale

F

OO RETOOOREO

App\pigl

AR

AnR

{

HOHHSAOOHOOYRO

gals

N

@

3

Errors occurring during output

CLOSE the applicable file immediately if any of the following errors occur
during output with statements such as PRINT # or PUT. The contents of
the file may be destroyed if output is continued.

Device unavailable
Disk write protected
Disk read error
Disk write error

Errors occuring when a file is closed

Although a file will be closed if an error occurs when a CLOSE statement
is executed, the contents of the file are not assured. Further, if an error oc-
curs when an attempt is made to close more than one file with a single CLOSE
statement there is a possibility that some files will not be closed. If an error
occurs in this situation, additional CLOSE statements must be executed un-

- til no further errors occur.

@

“Disk write protected” error

This error will occur if a disk is changed without having CLOSEd the files
on the original disk. All files should be closed before a disk is changed, then
the RESET command should be executed.

If the disk is changed without closing the files, the RESET command will
close the files. However, it will be necessary to execute the RESET command
a number of times until no further errors occur before the new disk can
be accessed.

5-17

http://www.fastio.com/

ClibPD

5.6 Precautions On Changing Floppy Disks
This section may be skipped if you do not use an optional floppy disk drive unit.

Before removing a floppy disk from the drive, be sure to CLOSE all files cur-
rently open on that drive. The reason for this is as follows:

Assume that a file on the disk being replaced is open in the “O” or “R” mode
and that data has been output to that file with the PRINT # or PUT statements.
Write operations to the disk by these statements are not necessarily actually made
until the file is closed. Therefore, if the floppy disk is replaced without execut-
ing the CLOSE statement the contents of the file on that disk are not assured.
Further, if another disk is inserted in place of the one on which the file was
opened, the contents of the disk on that drive may be destroyed when an at-
tempt is made to CLOSE the file.

To avoid the destruction of data to the maximum extent possible, the CP/M
operating system is designed so that disks are automatically write protected on
replacement. If an attempt is made to write data to a disk while it is this condi-
tion a “Disk write protected” error will occur. The write protected condition
can be cleared and write access to the new floppy disk enabled by executing the
RESET command. :

For these reasons, the following procedures should be observed when replacing
floppy disks:

In the direct mode:
CLOSE all files;
Replace disk;
Execute RESET.

During program execution:
100 CLOSE
110 PRINT “Change the disk!”
(Change the disk and press any key)
120 A$ = INPUTS$(1)
130 RESET

5-18

wavwlastio.com

vy

\

vy

Pe 3

{

SOOI OOH OO

AL R IV SRV SN BN IR T I R IS

3D OO

bkl

U

=
U o

-

alal

igisisipipiaisialaiale

e
OOV

Chapter 6

SEQUENTIAL ACCESS
USING DEVICE FILES

This Chapter describes procedures for sequential access to the RS-232C serial

communications interface and other external 1/0 devices such as the keyboard
screen and printer. ’

6.1 Using the RS-232C Interface

The PX.-8’s RS-.232C interface makes it possible to connect the PX-8 to RS-232C
compatible dt?vwes such as printers, acoustic couplers, or other PX-8s. Support
for RS-232C interface access is a standard feature of BASIC for the PX-8. The

RS-232C port is handled as a sequential input/output device, and is identified
by the device name “COM@:”,

6.1.1 Opening the RS-232C interface

The R§-232C communications interface is opened for data communication by
.execut.mg an OPEN statement. The parameters of this statement specify the mode
in which the interface is to be opened (input or output), the file number whicl:
is to be assigned to the device and the communication protocol and control op:
tions. The communication protocol and control options are specified as a string
of up to seven characters, each of which determines the setting of one of seven
communication options. Devices which are connected to the RS-232C port must

be cor(r;patible with the communication protocol under which the interface is
opened.

Th§ format for specification of the OPEN statement and the meanings of the
various communication options are described in detail below.

(1) OPEN statement

The gener:al format of the OPEN statement for opening the RS-232C inter-
face port is the same as that used when opening sequential access files on

6-1

http://www.fastio.com/

ClibPD

floppy disks or in the RAM disk. However, the format of the file descriptor
differs slightly.

For disk files the format allows an optional device name but the file must
be given a name, for example:

OPEN “0”, #3;/A: TEST FILE”
OPEN “0”, #1,'NAME”

For the RS-232C interface port the format is as follows:
OPEN “<mode>", # <file number>, “ COM#:[(<options >)]”

“COM®:” must always be specified when opening the port, and no file name
is required. However, the options for determining the communication mode
and protocol need not be specified; if they are omitted, the default values
of CP/M are used. After the PX-8 is initialized, these values are as follows;
they remain effective until changed with the CONFIG program of CP/M
or the OPEN statement of BASIC.

Data transfer rate: 4800 bits per second
Word length (bits/character): 8

Parity: None
No. of stop bits: 2

DSR send check: OFF
DSR receive check: OFF
DCD check: OFF
SI/SO control: OFF
XON/XOFF: OFF

Opening an RS-232 port for output would thus take forms such as:

OPEN “0”, #35COMS:” -
OPEN “T”, # 1COM#:(68E3F)”

OPEN “0”, #2,COM#:(68E3AXN)”

¢ Options for Protocol and Control

The <options> specification in the OPEN statement determines the data
communication protocol and the control options. These are specified as a
character string of up to seven characters, each of which determines the set-

6-2

wavwlastio.com

)

T

Salalel

"'J' S" K' J‘ f o"'o";f‘ UH\B!\BHU

-
VY

DNOCEOHTONDNNAINTOOOORTR NP E

F AP\

ting of one option. The general format of the string specifying these op-
tions is (blpscxh), where “b” specifies the bit rate, “I”” the word length, “p”
the type of parity check to be made, and “s” the number of stop bit’s be-
tween characters. Option “c” specifies which of the interface’s four control
lines are to be checked when the interface is opened and during data com-
munication. The “x” option specifies whether or not communication is to
be controlled according to XON/XOFF protocol (that is, whether the PX-8
is to issue or respond to “wait until I catch up” requests during communi-
cation with the device on the other end of the RS-232C line), and the “h”
option indicates whether Shift-In/Shift-Out sequences are to be used to in-
dicate whether characters are upper case or lower case (applicable only when
the data word length is 7 bits and when it is necessary to send characters

whose codes are 128 or greater). These options are summarized in the table
on page 6-4.

WARNING:

When using the XOIY/XOFF or Shift-In/Shift-Out options, make sure they
are reset to off on exiting from the program. It is only possible to set them
Jrom BASIC and not from the CONFIG program of the CP/M utility ROM.

If care is not taken the XON/XOFF or SI/SO options may be set when they
are n.ot required, this can result in the Jollowing problem when machine code
is bezr.zg received. The SI, SO, XON or XOFF characters may be part of the
machine code. If the receiving compulter has either or both of the XON/XOFF
or SI/SO options set, when these characters are received they will be inter-
cepted by the RS-232C software and acted upon. This means they will be
lost as part of the machine code Jile. Moreover, if an SO character is received,

the data following will be changed. It will have the high bit set. This will furi
ther corrupt the file, Similarly XON/XOFF characters can be intercepted and
cause the transmisssion to hang indefinitely.

When using communications programs other than BASIC ones, a warm start
should be made before setting the RS-232C parameters using the CONFIG

program. This ensures that the SI/SO and XON/XOFF parameters are set
to be off.

6-3

http://www.fastio.com/

Meanings of each position in the “blpscxh” string are as follows.

blpscxh protocol format , 3
-
BIT RATE ;tﬁ b — A hexadecimal integer from &HO to &HF which determines the bit rate
0: 1200 send, 75 receive @[3 as follows:
1. 75 send, 1200 receive
i: }15(()) 3: Not specifiable > [Q 0 — Send bit rate = 1200 bps, receive bit rate = 75 bps
b 6 300 ? Ngg :gggmgg:g g, [Q 1 — Send bit rate = 75 bps, receive bit rate = 1200 bps
8: 600 9: Not specifiable > R 2—10bps
A: 1200 B: Not specifiable i r - 3 — Not specifiable
C: 2400 D: 4800 s =3 4 — 150 bps
E: 9600 F: 19200 - K. 5 — Not specifiable
WORD LENGTH * K - 6 — 300 bps
" 6 6 bits & [: 7 — Not specifiable
7: 7 bits S ur 8 — 600 bps
8: 8 bits ‘ 9 — Not specifiable
PARITY < A— 1200 bps
N: None - B — Not specifiable
P E: Even > C— 2400 bps
O: 0Odd ~ D— 4800 bps
STOP BITS e E — 9600 bps
1: 1 stop bit € g F — 19200 bps
s 2: 1.5 stop bits - [j . . .
3: 2 stop bits % [1 — A number from 6 to 8 which determines the number of bits per charac-
ACTIVE CONTROL LINES z K‘Q ter (the data word length):
Value DSR send DSR receive DCD @ '° 6: 6 bits/character
o8 check check check > W 7: 7 bits/character
1 g: 9 8“ 8:]' 82": c ‘Q 8: 8 bits/character
74 o
c 20rA ON OFF ON - ‘Q . . .
3orB ON OFF OFF - e p — A letter which determines the type of parity check to be made:
4orC OFF ON ON » I‘)
§orD OF . ON oF - ‘° N: No parity check)
7orF OFF OFF OFF e IQ E: Bven parity
XON/XOFF £ - O: 0dd parity
- l)
X X: On hd l s — A number which determines the number of stop bits to be included
N: Off o between each character:
SHIFT-IN/SHIFT-OUT - l‘ﬁ
h S: On v ; ‘,: I: 1bit
N: Off & 2: 1.5 bits
3: 2 bits

s

o
A

ClibPD waww.lastio.com

http://www.fastio.com/

ClibPD

¢ — A hexadecimal digit from 00H to OFH which determines which of the
four control lines are checked. Correspondence between the settings
of each of the four bits and the control lines to be checked is as follows:

Bit 3 — No meaning

Bit 2 — Data Set Ready (DSR) send check

1: OFF
0. ON
Bit 1 — Data Set Ready (DSR) receive check
1: OFF
0: ON
Bit 0 — Data Carrier Detect (DCD) check
1: OFF
0: ON

Combinations of settings for each hexadecimal digit are as follows:

DSR send DSR receive
check check DCD check
Oor8 ON ON ON
lor9 ON ON OFF
20or A ON OFF ON
3orB ON OFF OFF
4orC OFF ON ON
50orD OFF ON OFF
6or E OFF OFF ON
7orF OFF OFF OFF

x — A letter which determines whether XON/XOFF (send ON/send OFF)
protocol is to be used for communication control. When XON is speci-
fied and the interface is opened in the “I” mode, the PX-8 automati-
cally outputs control code 19 (13H) during output via the RS-232C
interface in the “O” mode, and automatically interrupts output until
control code 17 (11H) is received from the device at the other end of

6-6

wavwlastio.com

Y

aielsle
VRV T

inlalalal
VLUVOLL

ARNOONOABFTAIOOONEP PP
J

\plplolo\s

»

R

5

tabl

isiole)

the line. This prevents data from being lost due to receive buffer over-
flow when the speed of data transmission is greater than the speed with
which data received can be unloaded from the buffer.

X: XON/XOFF protocol used for send control.
N: XON/XOFF protocol not used for send control.

h — A letter which determines whether the shift-in/shift-out (SI/SO) con-
trol sequences are to be used. The SI/SO control sequences are used
when sending 8-bit data with a data word length of 7 bits. Shift-in/shift-
out control can be used only when the data word length is 7 bits:

S: Shift-in/shift-out control used.
N: Shift-in/shift-out control not used.

The (blpscxh) options can be completely or partially omitted when the com-
munications interface is opened; however, spaces must be specified for op-
tions which are omitted if there are any following options. If b, 1, p or s
are omitted, the default values are those which have been set with the CON-
FIG command. If ¢ is omitted, “F” is used, and if x and/or h are omitted,
“N” is used.

(2) OPEN modes

The RS-232C interface can be opened in either the “I”’ or “O” modes. The
“I” mode is specified for input and the “O” mode is specified for output.
If both input and output are to be performed simultaneously, the interface
must be opened as two files (one for input and one for output). In this case,
the communication protocol and control options used are those specified
in the first OPEN statement executed: the options will be ignored if they
are included in the file descriptor of the second OPEN statement.

1e OPEN"I",#1, "COM@: (LBN3FXN) "
20 0PENi?",#2,"CDMO:(48E2F)"

106 PRINT#2,A$
110 INPUT#1,B

In the example above, the option specification (48E2F) on line 20 is ignored
and the output file (#2) is opened using the protocol specified on line 10
(68N3FXN).

6-7

http://www.fastio.com/

‘ ClibPD

(3) Control lines used for communication through the RS-232C interface
(a) DTR (Data Terminal Ready)
DTR is a signal which is output by the PX-8 to indicate that it is ready
for data communications. The level on this line becomes HIGH when
the communications interface is opened in either the “I” or “O” mode,
and becomes LOW when the interface is closed (when it is no longer
open in any mode).

(b) RTS (Request To Send)
RTS is a signal which controls operation of a communication device
(modem or acoustic coupler) connected to the PX-8. The signal on this
line becomes HIGH when the interface is opened in the “O” mode, and
LOW when the interface is closed.

(c) DSR (Data Set Ready)

DSR is a signal which indicates whether the communication device con-
nected to the RS-232C port is ready for operation. When HIGH, the
device connected to the interface port is ready to accept signals controlling
data transmission/reception. When the interface is opened in the “I”
mode with the DSR receive check bit (bit 1 of option “c”) set to “0”
(ON), OPEN statement execution is not completed until the level on the
DSR line becomes HIGH.

(d) DCD (Data Carrier Detect)
This line is used for detecting the data carrier signal from the device
connected to the RS-232C port. When the interface is opened in the “I”
mode with the DCD check bit set to “0” (ON), the OPEN statement
is not completed until the level on the DCD line becomes HIGH.

6-8

wavwlastio.com

1

piplt!

Iginlsivielsink

YIO OO OO OO

oy

IR E N

e
O JUL

NN

o

PO O Ay oy O

!\
~

NE N

N

LA R B AR plp

NANA NG

6.1.2 Output to the RS-232C Interface

Statements and functions used for access to the RS-232C interface are as follows:

Statements

OPEN, CLOSE, INPUT #, LINE INPUT #, PRINT #,
PRINT # USING, LOAD, LIST, RUN, MERGE

Functions
EOF, LOC, LOF, INPUTS
The following statements can be used to output data to the RS-232C port.

PRINT #
PRINT # USING

When data is output using these statements, the data format is the same as when
data is output to a disk drive.

(1) Control line checks for the “O” mode

(a) CTS (Clear To Send)
Output to the RS-232C port becomes possible when the level on this line
becomes HIGH.

(b) DSR (Data Set Ready)
When the DSR send check bit is OFF (when bit 2 of option “¢” is 1),
data is output to the RS-232C port regardless of the level on the DSR
line. When the DSR check bit is ON (“0”), data is output after checking
the level on the DSR line and waiting for it to become HIGH.

(2) Errors applicable to the “O’ mode

(a) Device unavailable
The RS-232C interface cannot be used.

(b) Device time out
The level on the DSR line did not become HIGH within a certain period
of time when output to the RS-232C port was attempted after opening
it in the “O” mode with the DSR send check bit (bit 2 of option ‘c”)
set to ON (“0”). This error also occurs if the STOP key is pressed while
transmission is being deferred for 'some reason.

6-9

http://www.fastio.com/

ClibPD

6.1.3 Input from the RS-232C interface
The following statements and functions are used to input data via the RS-232C
interface.

Statements Functions

INPUT # INPUTS$

LINE INPUT #

The format in which data is input from the interface by these statements is ex-
actly the same as in the case of input from disk files.

The INPUT # and LINE INPUT # statements do not allow full freedom of data
format during input because they require pre-determined delimiters and termi-
nation symbols. However, the INPUTS$ function permits input without regard
for delimiters or terminators; thus it can be used with functions such as EOF
and LOF to provide full freedom of format.

(1) Control line checks for the “I” mode

(a) DSR (Data Set Ready)
If the DSR receive check bit is set to ON (if bit 1 of option “c” is set
to 0), the DSR line is monitored during input and an error is generated
if it drops to LOW,

(b) DCD (Data Carrier Detect)
When the interface is opened for input with the DCD check bit set to
ON (with bit 0 of option “c” set to 0), the level of the DCD line is checked
at the time of execution of an OPEN “I” statement for the RS-232C
interface and the port is not opened until the DCD line becomes HIGH.
An error is generated if the level on this line becomes LOW during input.

»

(2) Errors applicable to the “I’’ mode

(a) Device unavailable
This error occurs when the RS-232C interface cannot be used for some

reason.

6-10

wavwlastio.com

@Mumswmn@@ﬁswwamm@@@mﬂoﬂf@@!‘*!"?!“‘!‘ﬂ

&

alabblalbbkb!

Ny

UHOH la

dalolle

dddas

(b) Device time out
This error occurs if the level on the DSR line does not become HIGH
within a certain period of time after an attempt is made to open the
RS-232C interface in the “I” mode with the DSR receive check bit set
to ON (with bit 1 of option “c” set to 0). The same is true if the level
on the DCD line does not become HIGH within a certain period of time
after an OPEN“I” statement is executed with the DCD check bit set to

ON (with bit 0 of option “¢” set to 0)
(c) Device fault
This. error occurs if the RS-232C port is opened for input with the DSR
receive or DCD check bits set to ON (with bits 1 or 0 of option “c” set
to 0), and the level of a corresponding line becomes LOW during input.
(d) Device 1/0 error

Thi§ error occurs if a parity error, overrun error or framing error occurs
during input. Although this error is reset if input is continued, there is
no assurance that data received into the receive buffer at that time will

be correct.
(e) Input past end

This error. occurs if the STOP key is pressed during input from the
RS-232C interface with INPUT #, LINE INPUT# or INPUTS.

6.1.4 RS-232C functions

The four functions used with the RS-232C interface are as follows.

EOF
LoC
LOF
INPUTS

(1) EOF (<file no.>)

This function returns — 1 (true) when the receive buffer is empty, and 0 (false)
when the buffer is not empty.

(2) LOC (<file no.>)

:hfl‘:“ function returns the number of bytes of data remaining in the receive
uffer.

6-11

r‘,

http://www.fastio.com/

| ClibPD

(3) LOF (<file no.>)
This function returns the number of free bytes remaining in the receive buffer.

NOTE:
The size of the receive buffer is 262 bytes.

(4) INPUTS$(< no. of characters>, < file no.>)
This function inputs the specified <no. of characters> from the RS-232C
interface and returns them as a character string.

6.1.5 Using the LOAD, SAVE and LIST commands with the
RS-232C interface

Programs can be output via the RS-232C interface in ASCII format by using
LIST “COM@:”,A. When this is done, CTRL-Z (code 26, an end mark) is out-
put after transmission of the program has been completed. However, when
SAVE “COMB®:” is executed, the program saved is output in ASCII format
regardless of whether the A option or the P option is specified.

When an ASCII program is loaded via the RS-232C interface with LOAD
““COM#:", loading is terminated when CTRL-Z is received. The same applies
when the program is loaded using RUN ““COM@:*’.

If CTRL-Z is not received after receiving a program through the RS-232C in-
terface, loading can be terminated by pressing together with the
key.

NOTE:
When transferring BASIC programs via the RS-232C interface, either specify
a data word length of 8 bits or use Shift-in/Shift out control with a word length
of 7 bits.

-

6-12

wavwlastio.com

\{ O

slalalslelolainlele]

TOHOH LTS

o Ka
g
~ Ly
gy
b

Z kg

~y
>
-y
Fe
\ o4

w/

wrs

Pes
s
\' 74
%
\74

_—
\74 3

AR sRRs s sloidts

s
A4 X

)

6.2 Printer and Display Screen

With PX-8 BASIC, a printer and the LCD screen are supported as sequential
output devices. This means that data can be output to the printer or screen us-
ing the file output statements (PRINT # and PRINT # USING), as well as the
dedicated printer/display statements LIST/LLIST and PRINT/LPRINT.

The device name used to open the printer as a device file is “LPT®:”, and that
used to open the display screen is “SCRN:”,

(1) Statements

Statements which can be used for output to the display screen or printer
when it is handled as a device file are as follows:

OPEN, PRINT #, PRINT # USING, CLOSE, LIST “ < file descriptor > ”

(2) Errors

The “Device time out” error will occur if the printer is not ready for output
(because it is offline or out of paper, for instance).

6-13

http://www.fastio.com/

ClibPD

6.3 Keyboard

PX-8 BASIC also allows the keyboard to be handled as a sequential access in-
put device. When the keyboard is opened as a file, data input is assigned to vari-
ables using INPUT #, LINE INPUT # and INPUTS (X, <file no.>) instead
of the corresponding dedicated keyboard input statements. This makes it possi-
ble to use common routines for input of data from the keyboard, disk device
files and the RS-232C interface.

The device name used to OPEN the keyboard as a device file is “KYBD:".

(1) Statements o
Statements which can be used for input from the keyboard when it is han-

dled as a device file are as follows:

CLOSE, INPUT #, INPUTS$ (X, <file no.>),
LINE INPUT #, LOAD, OPEN “1”

(2) Errors _
A “Bad file descriptor” error will occur if an attempt is made to open the

keyboard in the “O” mode.

6-14

wavwlastio.com

1)

o

ol

™

CAGNANAR

alblylel

L

™

OO @

5

HOERHe

\idassrdds

igle

YH OB O

\o\s

!E(’

Appendix A ERROR CODES AND
ERROR MESSAGES

When an error occurs in a BASIC program, it is detected by the interpreter and
a message is printed. In most cases the error stops the program and will not
allow it to continue. BASIC will return to the direct mode and present the error
message. It will not always be obvious what exactly has caused the error. It may
be something as simple as a mistyped command which BASIC does not recog-
nise, an error of logic or any one of a series of programming faults. This appen-
dix is an attempt to help the user/programmer to find out what exactly he has
done wrong. It is not easy to cover each and every cause of an error, because
some errors are particular to the logic of a program and simply cannot be predict-
ed. However, many are due to definite reasons, and these are described below.

Each error has a code associated with it, which is useful for trapping errors and
also simulating them. See ERROR, ON..ERROR, ERR and ERL in Chapter
4 for details of their use. A list of errors in numerical order is given at the end
of this section. However, as the error is normally encountered as a message, the
details of each error are given in alphabetical order. The number at the left of
each error is the error code.

54 Bad file mode

A statement or function was used with a file of the wrong type.

Possible causes:

() An attempt was made to use PUT, GET or LOF with a sequential file.
(ii)) A non BASIC program file was specified in a LOAD command.

(iii) A file mode other than I, O, or R was specified in an OPEN statement.
(iv) An attempt was made to MERGE a file that was not saved in ASCII format.

64 Bad file descriptor

An illegal file name was specified in a LOAD, SAVE or KILL command or an
OPEN statement (for example, a file name with too many characters).

52 Bad file number

A statement or command references a file that has not been opened, or the file
number specified in an OPEN statement is outside of the range of file numbers
that was specified when BASIC was started.

Al

http://www.fastio.com/

	./brm5_01.tif
	./brm5_02-03.tif
	./brm5_04-05.tif
	./brm5_06-07.tif
	./brm5_08-09.tif
	./brm5_10-11.tif
	./brm5_12-13.tif
	./brm5_14-15.tif
	./brm5_16-17.tif
	./brm5_18-6_01.tif
	./brm6_02-03.tif
	./brm6_04-05.tif
	./brm6_06-07.tif
	./brm6_08-09.tif
	./brm6_10-11.tif
	./brm6_12-13.tif
	./brm6_14.tif

