LOC

LOC (< file number>)

With random access files, returns the record number which will
be used by the next GET or PUT statement if that statement is
executed without specifying a record number. With sequential files,
returns the number of file sectors (128-byte areas) which have been
read or written since the file was opened.

When the specified file is the PX-8’s RS-232C interface, the LOC
function returns the number of bytes of data in the RS-232C
receive buffer.

This function can be used to control the flow of program execu-
tion according to the number of records or file sectors which have
been accessed by a program since the file was opened.

Example

19 ON ERROR GOTO 169

20 OPEN"R",#1,"A:LOCTEST",S

30 PRINT "OUTFUT"

49 FIELD#1,5 AS A%

50 FOR A=1 TO 20:LSET A$=STR$ (A) :FPRINT STR$(A)::PUT#1,A:NEXT
60 PRINT

79 CLOSE

g9 OPEN"R",#1,"A: LOCTEST",S

90 PRINT "INPUT"

120 FIELD #1,5 AS A%

11¢ IF LOC(1)>1Q THEN 150

120 GETH#1

1720 PRINT A%;

140 GOTO 110

150 ERROR 2230

160 IF ERR=2I36 THEN FRINT:PRINT "INPUT PAST LIMIT"
176 END

OUTFUT
123456789 10 11 12 13 14 15 16 17 18 19 20
INFUT

1 2 3 4 S 6 7 8 9 10 11
INFUT PAST LIMIT
Ok

4-114

LOCATE

LOCATE [<X>][I<Y>]I, <cursor switch>]]
Moves the cursor to the specified screen coordinates.

This statement moves the cursor to the screen position whose
horizontal character coordinate is specified by <X > and whose
vertical character coordinate is specified by <Y >. The value speci-
fied for <X > must be in the range from 1 to Xmax, where Xmax
is the number of columns in the currently selected virtual screen.
The value specified for <Y > must be in the range from 1 to Ymax,
where Ymax is the number of lines in the currently selected virtu-
al screen.

<cursor switch> is a switch which determines the status of the
cursor following execution of the LOCATE statement. Cursor dis-
play is turned off if 0 is specified for <cursor switch>, and is
turned on if 1 is specified. Normally, the cursor is not displayed
during execution of BASIC programs; however, it can be forcibly
displayed by executing a LOCATE statement with 1 specified for
<cursor switch>. Cursor display is also forcibly turned on dur-
ing execution of INPUT and LINE INPUT statements and the
INPUTS function, regardless of the status of the cursor switch.

10 CLS:LOCATE 10,3,0

20 FRINT"This has been printed starting at line I column 10"
I9 LOCATE 19,4,0

40 FRINT"and the cursor has been switched off."

SO FOR J = 1 TO Z000:NEXT

60 CLS:LOCATE 6,4,1:PRINT"This has been printed starting at
line 4 column 6,"

79 ILOCATE 6,5, 1:FRINT"and the cursor has been switched on ag
ain."”

80 FOR J = 1 TO Io00:NEXT

This has been printed starting at line I column 10
and the cursor has been switched off.

This has been printed starting at line 4 column 6,
and the cursor has been switched on again.

4-115

NOTE:
The expression

LOCATE X, Y

will print at location X columns across on row number Y. When the length of

the string to be printed plus the value of X is greater than 81, the string will be
printed at the start of the next line.

4-116

LO

F

LOF (< file number>)

Returns the size of a file.

When the file specified in < file number > is a disk file, the LOF

function returns the size of that file. If the file has been opened
in the “R” mode, the size of the file is calculated using the highest
record number of that file and the record size under which the
file was opened. If the file was opened in the sequential mode,
the size is calculated according to the number of records, based
on a record size of 128 bytes.

When the specified file is the PX-8’s RS-232C interface, the LOF
function returns the number of free bytes remaining in the
RS-232C receive buffer.

16
20
1)
46
50
&5
760
8a
115
120
176
140

run
The
Ok

OFEN "O",#1,"A:LENGTH"
FOR J =1 TO S
READ A%

FPRINT #1,A$%
NEXT
DATA JIM,FRED,SHEILA, SUSAN,HARRY
CLOSE #1
OFEN "I" .#1,"A:LENGTH"

X = LOF(1)

PRINT"The length of this file is "iX:i" % 128 bytes"
CLOSE #1

END

length of this file is 1 x 128 bytes

4-117

LOG(X)

Returns the natural logarithm of X.
The value specified for X must be greater than zero. LOG(X) is
calculated to the precision of the numeric type of expression X.

To obtain the logarithm to another base the mathematical con-
version has to be carried out as in the first example below.

To obtain a number from its logarithm (i.e. its antilogarithm) use
EXP (X) as shown in the second example.

Example 1

1@ CLS

20 INFUT "What base logarithm do you want "iN

I@ PRINT: INFUT “"What number do you want the log of ";X

4@ Z = (LOG(X)/LOB(N)): "THIS IS THE FORMULA FOR CONVERTING
NATURAL LOGS TO OTHER BASES

5@ FRINT: PRINT "Log to the base "jN;" of "iX:i" is "3

4@ END

What base logarithm do you want 7 10
What number do you want the log of 7 1o

Log to the base 10 of 100 is 2
Ok

What base logarithm do you .want 7 8
What number do you want the log of 7 34
b?g to the base 8 of 34 is 1.69582

4-118

Example 2

10 CLS

20 INPUT "What is the number of which you want the natural
log "3X

3@ FRINT:PRINT"The log to the base e of "$X3" is ";LOG(X)

4@ FRINT:PRINT"The antilog (given by EXF(X)) is "$EXP(LOG (X))

S@ END

What is the number of which you want the natural log ? 23
The log to the base e of 23 is 3I.13549
EPE antilog (given by EXF(X)) is 23

What is the number of which you want the natural log ? 657
The log to the base e of 657 is 6.48769
SPe antilog (given by EXP(X)) is 657

4-119

LOGIN

Purpose
Remarks

19 PRINT

LOGIN < program area no.>[,R]
Switches between BASIC program areas.

The number of the BASIC program area to be selected is speci-
fied in <program area no.> as a number from 1 to 5. If the R
option is not specified, executing this command clears all varia-
bles, closes all files, and switches BASIC to the designated pro-
gram area and causes it to stand by for input of commands in
the direct mode.

When the R option is specified, the specified program area is select-
ed and the program in that area is executed immediately, starting
with its first line. In this case, all variables remain intact and any
files which are open at the time of execution of the LOGIN com-
mand remain open.

An “Illegal function call” error will result if a number other than
1 to 5 is specified in <program area no.>.

"This program will log in to program area 2

20 FRINT"and execute a resident program"

30 LOGIN

run

- o
<

This program will log in to program area 2
and execute a resident program

F2:LOGINZ2 60 Bytes

This is the program resident in program area 2

Ok

20 END

16 PRINT"This is the program resident in program area 2"

Program logged in area 2

4-120

LPOS

Format
Purpose

Remarks

Example

16
20

2]

46

=

LPRINT

LPOS(X)

Returns the current position of the print head pointer in the printer
output buffer.

The maximum value returned by LPOS is determined by the line
width which has been set by the WIDTH LPRINT statement, and
does not necessarily correspond to the physical position of the print
head. This is especially true if a control character has been sent
to the printer; see the program below for an example of this.

X is a dummy argument, and may be specified as any numeric
expression.

In the example below, at the end of line 100 ten characters have
been printed. The position in the buffer is thus 11. Line 20 adds
two control characters compatible with EPSON printers to cause
the printer to change the print style. The first character is.a con-
trol character, which is ignored by the LPOS function. The se-
cond character is used by the printer but not printed; it is in fact
the letter “E”. The position in the buffer as returned by LPOS
is now 12 because only this character has been added. Line 30 adds
another ten characters to the line, and thus LPOS returns a value
of 22.

"1234567899"5 : GOSUR 100

LFRINT CHR$ (27) i CHR$ (69) i : GOSUE 100
LFRINT "12%4567890"; :GOSUER 1060

END

190 A = LFOS(X) :FRINT"Frint head pointer is at position "3

1109 RETURN

1273456478901234567890

Ok

run

Frint head pointer is at position 11
Frint head pointer is at position 12
Frint head pointer is at position 22

Ok

4-121

LPRINT/LPRINT USING

LPRINT [<list of expressions>]
LPRINT USING < format string > ; <list of expressions>

These statements are used to output data to a printer connected
to the PX-8.

These statements are used in the same manner as the PRINT and
PRINT USING statements, but output is directed to the printer
instead of the display screen.

PRINT, PRINT USING

Example 1

10 A=73

20 A¥ = "There are "

@ LPRINT A%$;A;" vowels in '‘computer’"
4@ END

There are 3 vowels in ‘computer’

Example 2

1é& "THE LFRINT COMMAND
20 A = 3
I A% = "There are "

46 LPRINT A%5A3" vowels in “computer”
Sa LPRINT

&9 TTHE LFRINT USING "!'" COMMAND

79 LPRINT USING "!"3"AAA"{"BEEB":"CCC"
8o LPRINT

Fa TTHE LPRINT USING "\ \" COMMAND

"

106 A% = "12T456"
11 Bs = "ABCDEF"
126 LPFRINT USING "\ \"iAiBE
170 LFRINT USING "\ "SsAEIEE

140 LFRINT
153 " THE LPRINT USING "&" COMMAND
166 LFRINT USING "&"iA®s" = "iB$
176 LPRINT

4-122

186 "THE LFRINT USING "#"

126 LPRINT USING "####"351:.1

200 LPRINT

210 LPRIMT USING "##H.## "5
LFRINT

! TTHE LFRINT USING "+#" C

270 LPRINT USING "+#### "3112

240 LFRINT

245 "THE LFRINT USING "#-" C

250 LPRINT USING "####- "33

260 LFRINT

265 TTHE LFRINT USING "xx" C

270 LFRINT USING "*x#H###. #3#
286 LFRINT
290 "THE LPRIMT USING "$%$" C
3 LFRINT USING "E$####. ##
Z19 LFRINT
220 T THE LFRINT USING "$%x"
LFERINT USING "$xx##H#. $#
LFRINT
TTHE LFRINT USING "*x$"
LFEFRINT USING "**&H##H. #4
LFRINT
TTHE LFRINT USING "##,.#
LFRINT USING "#HH#H#H#H$H#, . #
LERINT
TTHE LFRINT USING "##. ##
LERINT USING "H##. ##~mmn
5 LPRINT
TUSING THE UNDERSCORE
LEFRINT USING "###_7"§ 127
LFRINT
TUSING OTHER CHARAACTERS
465 LFRINT USING "##/##/##"3
475 LFPRINT
485 LPRINT USING " (###) "3 127
495 LFPRINT
SO0 LFRINT USING "<###:"5 123
519 LPRINT

COMMAND

2312.6312345
2T312.345 122,456 .12

OMMAND

=3

OMMAND

554506

OMMAND

"312

TE .

- etvd N

OMMAND

"i12.35%

122.5555 955550, 88#
COMMAND

"312.358 122

COMMAND

"312,.355 127,555 555556,

COMMAND

#
#"5 5055555,

88#
et COMMAND

"312Z2.45512.734551274.5

Al

4-123

LSET/RSET

Purpose

Remarks

See also

LSET <string variable > = <string expression>
RSET <string variable> = <string expression >

These statements move data into a random file buffer to prepare
it for storage in a random access file with the PUT statement.

< string variable > is a variable which has been assigned to posi-
tions in a random file buffer with the FIELD statement. <string
expression> is any string constant or string variable.

If the length of <string expression> is less than the number of
bytes which were assigned to the specified variable with the FIELD
statement, the LSET (Left SET) statement left-justifies the string
data in the variable and the RSET (Right SET) statement right-
justifies it. The positions following left-justified data and those
preceding right-justified data are padded with spaces.

If the length of <string expression> is greater than the number
of bytes assigned to the specified variable, excess characters are
truncated from the right end of <string expression> when it is
moved into the buffer. (This is true for both the LSET and RSET
statements.)

Numeric values must be converted to strings before they can be
moved into a random file buffer with the LSET or RSET state-
ments. This is done using the MKI$, MKS$, and MKDS$ functions
described elsewhere in this Chapter, and Chapter 5.

FIELD, GET, OPEN, PUT

4-124

See Chapter 5 for examples of use of LSET/RSET in a program.

NOTE:

The LSET and RSET statements can also be used to left or right justify a string
in a string variable which has not been assigned to a random file buffer. For ex-
ample, the following program left-justifies character string “CAMERA” in a
20-character field prepared in variable A$ and right-justifies character string “MAY
8, 1984 in variable B3. This procedure can be very useful when formatting data
for output.

10 A$=STRING$(20, “)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Vaiables [[[[[[T TTTTTTTTTTTTT]]

20 B$=A$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
VariableBS [[[[[[[[[T T[T [TT]T]1]]

30 N$=“CAMERA”:LSET A$=N$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Variable A$ [CIAM[E[R[A] [[[[[[[[[[[][]
Spalvces
40 N$=“MAY 8, 1984”:RSET B$=N$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
VariableB$ [[[[[[[[| [m[a[v] [8[,] [1]o]s]4]

Sp&ues

4-125

MENU

Purpose
Remarks

See also

MENU
Returns BASIC to the BASIC program menu.

Executing this command returns BASIC to the BASIC program
menu which is displayed following execution of the BASIC com-
mand under CP/M; afterwards, another program area can be
selected and logged in with the cursor keys and the space bar or
[RETURN |key. Executing this command also clears all variables
and closes any files which are open.

Further, the screen mode and sizes are all reset to their initial values
upon execution of this command.

LOGIN

EFSOM BAS
Mo gy
]

D] AT

3 5 ke Microzoft snd EFZOH
IIF'H h- run 1

T lo=in.

'Ih’l
m™
—(|
ST e

m

[

~+

T

i

!

=

‘f'gn oS
i

BASIC program menu

4-126

MERGE

MERGE < file descriptor >

Merges a program from a disk device or the RS-232C interface
with the program in the currently logged in program area:

Specify the device name, file name, and file name extension un-
der which the file was saved in < file descriptor > . The device name
can be omitted if the file is in the currently active drive (the drive
which was logged in under CP/M at the time BASIC was start-
ed). If the file name extension is omitted, “.BAS” is assumed.

The file being merged must have been saved in ASCII format.
Otherwise, a “Bad file mode” error will occur.

If any lines of the program being merged have the same numbers
as lines of the program in memory, the merged lines will replace
the corresponding lines in memory. Thus, a program brought into
the BASIC program area with the MERGE statement may be
thought of as an overlay which replaces correspending lines previ-
ously included in the program area.

BASIC always returns to the command level following execution
of a MERGE command.

SAVE

First type in and save the following programs, making sure they
are saved in ASCII format by using the “, A ” extension as shown
below.

19 "FROGRAM "MERGEL" TO BE MERGED WITH "MERGEZ2" THEN "MERGEZ"
20 FRINT "HELLO Mum"

60 PRINT

Ok

SAVE "A:MERGEL",A

Ok

4-127

MEW
Ok
I TFROGRAM "MERGEZ" TO BE MERGED WITH "MERGE1L"
49 FPRINT "GOODEYE DAD"

S END

SAVE "ArMERGEZ",A

Ok

Clear the program with the NEW command, and type in the fol-
lowing program.

56 TFROGRAM "MERGE 2" WITH WHICH "MERGE1" WILL EE
&6 FRINT "GOODEYE MUM™

73 END

Now type

MERGE "A:MERGEL"

If the program in memory is listed it will bé seen to consist of
the lines from both programs as follows:

MERGED

1 "FROGRAM "MERGEL" TO BE MERGED WITH "MERGEZ" THEN "MERGEZ"

20 FPRINT "HELLO Mum"
IO PRINT

59 TPROGRAM "MERGE 2" WITH WHICH "MERGE1" WILL BE MERGED

&GO PRINT "GOODEBYE MuM"
7€ END

Now type in the following.
MERGE "A:MERGET"

List to see that the result is as follows.

FRINT "HELLO MUM"

TRROGRAM "MERGEZ" TO BE MERGED WITH "MERGE1"
FRINT "GOODRYE DAD"

S END

6@ FRINT "GOODRBYE MUM"

79 ENMD

4-128

TRFROGRAM "MERGEL" TO BE MERGED WITH "MERGEZ" THEM "MERGEZI"

MIDs$

Remarks

As a statement
MIDS (< string expression 1> ,n[,m])= <string expression 2>

As a function
MIDS$ (X$,J[,K])

As a statement, replaces a portion of one string with another. As
a function, returns the character string from the middle of string
expression X$ which consists of the K characters beginning with
the Jth character.

When MIDS is used as a statement, n and m are integer expres-
sions and < string expression 1> and < string expression 2> are
string expressions. In this case, MIDS$ replaces the characters be-
ginning at position n in <string expression 1> with the charac-
ters of <string expression 2> . If the m option is specified, the
first m characters of <string expression 2> are used in making
the replacement; otherwise, all of <string expression 2> is used.
However, the number of characters replaced cannot exceed the
length of the portion of < string expression 1> which starts with
character n.

For example:

10 A$=“ABCDEFG” : LET B$="“wxyz”
20 MID$(A$,3)=B$
30 PRINT A$

will give the result “ABwxyzG” for A$. Whereas,

10 A$=“ABCDEFG” : LET B$=“wxyz”

20 MIDS$(AS,3,2)=BS$

30 PRINT AS$

will give a value of “ABwWxEFG”.

When MIDS$ is used as a function, J and K must be integer ex-

pressions in the range from 1 to 255. If K is omitted, or there are
fewer than K characters to the right of the Jth character,the string

4-129

returned consists of all characters to the right of the Jth charac-
ter. If the value specified for J is greater than the number of charac-
ters in X$, MID$ returns a null string.

LEFTS, RIGHTS

10 A* = "Computers is great!'"
20 B¥ = "are"
Z@0 FRINT A%

40 MID*¥(A¥,11) = B#%
S0 FRINT Af

&0 FRINT

70 B¥ = "super-—duper"
80 MID¥(A%¥,15,5) = B%
0 FRINT A%

180 FRINT

110 Bf = MID¥(A%,7,12)
120 FRINT B#%

170 END

Computers is great!
Computers are great!

Computers are super'!

ers are supe

4-130

MKI$/MKS$/MKD$

Purpose

Remarks

See also

MKI$(< integer expression>)
MKSS$(< single precision expression>)
MKD$(< double precision expression >)

Converts numeric values to string values for storage in random
access files.

Numeric values must be converted to string values before they can
be placed in a random file buffer by a LSET or RSET statement
for storage with a PUT statement. MKI$ converts integers to 2-byte
strings, MKS$ converts single precision numbers to 4-byte strings,
and MKD$ converts double precision numbers to 8-byte strings.

Unlike the STR$ function, which produces an ASCII string whose
characters correspond to the digits of the decimal representation
of a number, these functions convert numeric values to charac-
ters whose ASCII codes correspond to the binary coded decimal
values with which corresponding values are stored in variable
memory. In many instances, less disk space is required for storage
of numbers which are converted to strings using the
MKI$/MKS$/MKDS$ functions.

CVI/CVS/CVD

For examples of the use of these functions, see the section of Chap-
ter 6 dealing with random access files.

4-131

MOUNT

Remarks

See also

MOUNT

Reads the microcassette tape directory into memory and enables
the microcassette drive for access as a disk device.

A MOUNT command must be executed before data can be writ-
ten to or read from a microcassette tape. The MOUNT command
installs the tape by reading its directory into memory. Until this
is done the cassette cannot be used either for reading or writing.
The MOUNT command functions in the same way as the MOUNT
command on the System Display.

If an attempt is made to MOUNT a tape when a previously in-
stalled tape is still in the drive, a “Tape access error” will be gener-
ated. If this occurs, insert the previously installed tape back into
the PX-8 and execute a REMOVE command. Failure to do this
could prevent the data being read from the previous tape.

REMOVE and the section on the handling of the Microcassette
Drive in the User’s Manual.

4-132

NAME

Purpose
Remarks

Example

NAME <old filename> AS <new filename >
Changes the name of a disk device file.

Both <old filename> and <new filename> are specified as a
device name, file name, and extension. The device name may be
omitted if the file resides on the disk device which is currently
active.

The file name specified in < old filename > must be that of a cur-
rently existing file, and that specified in <new filename > must
be a name which is not assigned to any other file belonging to
the applicable disk device. If <old filename> is not the name
of an existing file, a “File not found” error will occur; if <new
filename > is already assigned to an existing file, a “File already
exists” error will occur. If the file being renamed has a file name
extension, that extension must be specified in <old filename > .

If the NAME command is executed with a file which is already
open, there is no guarantee that the file will remain intact. Using
the CLOSE command will ensure that all files are closed.

This command changes only the name of the specified file; it does
not rewrite the file to another area in the storage medium.

FILES

FILES "A:

MERGE 1 -BAS MERGEZX .EBAS

Ok

MAME "A: MERGE1.EBAS" AS "A:CHAIN. EAS"
Ok

FILES "A:
CHAIN LBAS MERGEZ . BAS
Ok

4-133

NEW

Format
Purpose

Remarks

See also
Example

NEW

Deletes the program in the currently logged in program area and
clears all variables.

Enter NEW at the command level to clear the memory before start-
ing to enter a new program. BASIC always returns to the com-
mand level upon execution of a NEW command.

An “Illegal function call” error will occur when this command
is executed if program editing has been disabled by executing a
TITLE command with the P (protect) option specified.

TITLE

LOGIN 1

F1:DEMOFROG 23 Bytes
Ok

NEW

Ok

LOGIN 1
Fi: @ Bytes
Ok

4-134

OCTS
OCTS$(X)

Returns a string which represents the octal value of X.

The numeric expression specified in the argument is rounded to
the nearest integer value before it is evaluated.

A description of using numbers and numeric variables is given
in Chapter 2.

Example

1@ CLS
20 INFUT "What value do you want to convert ";X
30 PRINT

4@ PRINT "The octal value of " X3" is ";0CTE(X)
90 FOR J = 1 TO ZQ00Q:NEXT
&0 GOTO 10

il

What value do you want to convert 7 2:

The octal value of 23 is 27

What value do you want to convert ? 983
The octal value of 983 is 1727

4-135

ON ERROR GOTO

Format
Purpose

Remarks

Example

NOTE:

ON ERROR GOTO [<line number>]

Causes program execution to branch to the first line of an error
processing routine when an error occurs.

Execution of the ON ERROR GOTO statement enables error trap-
ping; that is, it causes execution of a program to branch to a user-
written error processing routine beginning at the program line
specified in <line number > whenever any error (such as a syn-
tax error) occurs. This error processing routine then evaluates the
error and/or directs the course of subsequent processing. For ex-
ample, it may be written to check for a certain type of error or
an error occurring in a certain program line, then to resume exe-
cution at a certain point in the program depending on the result.

If subsequent error trapping is to be disabled, execute ON ER-
ROR GOTO 0. If this statement is encountered in an error process-
ing routine, program execution stops and BASIC displays the error
message for the error which caused the trap. It is recommended
that all error processing routines include an ON ERROR GOTO
0 statement for errors for which are not provided for in the error
recovery procedures. If <line number > is not specified, the ef-
fect is the same as executing ON ERROR GOTO 0.

ERROR, RESUME, ERL/ERR, Appendix A

See the program example under ERROR.

BASIC always displays error messages and terminates execution for errors which
occur in the body of an error processing routine; that is, error trapping is not
performed within an error processing routine itself.

4-136

ON...GOSUB/ON...GOTO

Format

Purpose

Example 1

ON < numeric expression> GOSUB <list of line numbers >
ON < numeric expression> GOTO <list of line numbers >

Transfers execution to one of several program lines specified in
<list of line numbers > depending on the value returned when
< numeric expression> is evaluated.

The value of <numeric expression> determines to which of the
line numbers listed execution will branch. If the value of <numeric
expression> is 1, execution will branch to the first line number
in the list; if it is 2, execution will branch to the second line num-
ber in the list; and so forth. If the value is a non-integer, the frac-
tional portion is rounded.

An “Illegal function call” error will occur if the value of <numeric
expression > is negative or greater than 256.

With the ON...GOSUB statement, each program line indicated in
<list of line numbers> must be a line of a subroutine.

GOSUB...RETURN, GOTO

10 CLS

20 INFUT "Type in a number from S to 19 ";X
IVY =X —- 4

42 ON Y GOTO 40,80,100,120,140,160

S0 END

LEQ FRINT X3"— 4 = "3;Y;" so this is line &0"
70 GOTO 20

80 FRINT X3"- 4 = "3Y;" so this is line 80"
?0 GOTO 20 .

100 FRINT X;"— 4 = ":Y;" so this is line 100"
110 GOTO 20

120 FRINT X3"- 4 = ";Y;" so this is line 120"
120 GOTO 20

140 FRINT X;"—- 4 = ":Y¥;" so this is line 140"
150 GOTO 20

160 FRINT X3"- 4 = "3;Y3;" so this is line 140"

170 GOTO 20

4-137

Type in a number from S to 1é 7 7

7 -4 = I sp this is line 10
Type in a number from 5 to 16 ? 9
? -4 = 5 so this is line 140

Example 2

10 CLS

20 INFUT "Type in a number from 1 to & ";X
Z0 ON X GOSUE S@,s40,70,80,90

40 GOTO 20

S50 FRINT "ONE":RETURN

60 PRINT "TWO":RETURN

7@ FRINT "THREE":RETURN

€0 PRINT "FOUR":RETURN

?@ FRINT "FIVE":RETURN

rJ

Type in a number from 1 to S 7?

TWO

Type in a number from 1 to 5 7 4
FOUR

Type in a number from 1 to S 7?7 3
THREE

NOTE:

Only numeric expressions can be used to control branching with the ON..GOSUB
and ON..GOTO statements. However, it is possible to derive numeric values from
string values by using functions such as ASC and INSTRS$. For example, the fol-
lowing sample program derives numeric results for the ON..GOSUB and
ON...GOTO statements based on input of string values.

4-138

Example 3

CLS

INFUT "Type in a word beginning with A, B or C "iA%

X = ASC(AS%)

¥ o= X — 464

ON Y GOSUE 79,116,150

END

FRINT "The ASCII code for A is 65, so line 49 subtracts
FRINT "64 from this code to give 1, thus causing the’
FRINT "subroutine at line 76 to be executed”

RETURN

FRINT "The ASCII code for B is 66, so line 49 subtracts
FRINT "&4 from this to give 2, causing the subroutine”
FRINT "at line 119 to be executed"

RETURN

FRINT "The ASCII code for C is &7, and line 49 subtracts
FRINT "64 from this giving 7 so that the subroutine on”
FRINT "line 159 is executed."

RETURN

Type in a word beginning with 4, B o C 7 Albatross
The ASCII code for A is 65, so line 49 subtracts

44 from this code to give 1, thus causing the
subroutine at line 79 to be executed

Ok

Type in a word beginning with A, B or C 7 Carousel
The ASCII code for C is 67, and line 4©® subtracts

44 from this giving 2 so that the subroutine on
line 1% is executed.
Ok

4-139

OPEN

Format

GEINEE

OPEN “<mode> "] #] < file number >, < file descriptor>,
[<record length>]

The OPEN statement enables input/output access to a disk device
file or other device.

Disk device files must be OPENed before any data can be input
from or output to such files. The OPEN statement allocates a
buffer for I/0 to the specified file and determines the mode of
access in which that buffer will be used. <mode> is a string ex-
pression whose first character is one of the following.

Ooro............. Specifies the sequential output mode.
Tori.......... Specifies the sequential input mode.
Rorr........... Specifies the random input/output mode.

Any mode can be specified for a disk device file, but only the “I”
or “O” modes can be specified for devices such as the RS-232C
interface or printer.

< file number > is an integer expression from 1 to 15 which speci-
fies the number by which the file is to be referenced in 1/0 state-
ments as long as the file is open. The value of < file number >
is limited to the maximum specified in the /F: option if this op-
tion is used when BASIC is started up. Since this is 3 in the default
mode, it is necessary to ensure the /F: option is specified before
a program is run if more than 3 files are required.

< file descriptor > is a string expression which conforms to the
rules for naming files (see Chapter 2).

<record length> is an integer expression which, if specified, sets
the record length for random access files. If not specified, the
record length is set to 128 bytes.

Disk files and files on the RAM disk can be open for sequential
input or random access under more than one file number at a time.

4-140

Example

However, a given sequential access file can only be opened for se-
quential output under one file number at a time, and such a file
cannot be open in both the sequential input and sequential out-
put modes concurrently.

Microcassette files can only be open for sequential input, random
access, or sequential output under one file number at a time. Fur-
ther, only one microcassette file can be open at any given time.

The RS-232C interface can be open concurrently in the sequen-
tial input mode and the sequential output mode, but cannot be
opened in the random access mode.

Chapters 5 and 6.

For programming examples, see Chapters 5 and 6 and the expla-
nation of EOF.

4-141

OPTION BASE

Purpose
Remarks

See also
Example

OPTION BASE < base number >
Declares the minimum value of array subscripts.

When BASIC is started, the minimum value of array subscripts
is set to 0; however, in certain applications it may be more con-
venient to use variable arrays whose subscripts have a minimum
value of 1. Specifying 1 for the value of <base number > in this
statement makes it possible to set the minimum subscript base to
one.

Once the subscript base has been set by executing this statement,
it cannot be reset until a CLEAR statement has been executed;
executing a CLEAR statement restores the option base to 0. Fur-
ther, OPTION BASE 1 cannot be executed if any values have previ-
ously been stored in any array variables. A “Duplicate Definition”
error will occur if the OPTION BASE statement is executed un-
der either of these conditions.

DIM

1o CLEAR

20 FRINT "Memory free
30 OFTION BASE ©

4 DIM A(5,5,5,9)

S5® FRINT "Memory free
B "IFRE (&)

660 CLEAR

7% OFTION BASE 1

ga DIM A(5,5,5,9)

96 FRINT "Memory free
1:"iFRE (@)

run

Memory free following
Memory free after DIM
Memory free after DIM
Ok

following CLEAR:"iFRE (@)

after DIM A(5,5,5,5) with OPTION BASE

after DIM A(5,5,5,9) with OFTION BASE

CLEAR: 732
A(5,5,5,5) with OPTION BASE ©: 2125
A(5,5,5,5) with OPTION BASE 1: 4809

4-142

OPTION COUNTRY

Format
Purpose
Remarks

OPTION COUNTRY < character string >
Selects one of the international character code sets.

Executing this statement selects the character set of the country
which corresponds to the first letter of <character string>.
Characters corresponding to character sets of the various coun-
tries are as follows.

“D” or “d” .ccvevvvvnennnns Denmark
“E” or “€” ciivvvveinennnns England
“F” or “f” civvveinennens France
“G” or “g” cvviiiiinennnns Germany
“IT” or “i” civevninennnns Italy
“N” or “n” covvvvveiinnnnn Norway
“S”or “s” i, Spain
“U” or “u” coovvevvinenen. US.A.
“W” or “W” iiviviienens Sweden

Executing the OPTION COUNTRY statement changes the charac-
ter set which is used for output to the LCD screen. Further, the
currency symbol output by the PRINT USING statement is
changed to that of the specified country.

The option selected will remain in force until an exit is made from
BASIC or until changed with another similar statement. When
exiting to the system, or re-running BASIC from the MENU
screen, the character set reverts to the default set by the DIP
switches. If it is required to have a permanent change of key as-
signment, the DIP switches can be set as described in the User’s
Manual.

4-143

Example

10 CLS
20 INFUT "Type D, E, F, G, I, N, S, U or W ";A%
30 FRINT "Current special characters"
490 FOR J = 1 TO 12
5@ READ A
60 PRINT CHRE(A)
7@ NEXT J
80 RESTORE
90 FRINT:FRINT "Newly selected special characters"
100 OFTION COUNTRY AF
11@ FOR K = 1 TO 12
20 READ B
130 FPRINT CHR#® (R);
140 NEXT kK
145 OFTION COUNTRY "e"
15@ END
160 DATA 35,36,64,91,92,9%,94,96,127,124,125,126

Type D, E, F, G, I, N, S, Uar W ? G

Current special characters
£FA@CNT L™

Newly selected special characters
#FSAOU™ " A6 00

Type D, E, F, G, I, N, S, Uor W ? S

Current special characters
£f@IN\NI™ {13

Newly selected special characters
Fef@ e ™" TR

Type D, E, F, G, I, N, S, Uor W? I

Current special characters
£f@LNI~ LI

Newly selected special characters
#F@°\ A LAaséei

4-144

OPTION CURRENCY

NOTE:

OPTION CURRENCY <string expression >
Changes the currency symbol.

This statement changes the character which is output as the cur-
rency symbol by the format string of the PRINT USING state-
ment to that specified in <string expression> when the format
string begins with two successive characters whose ASCII code
is 36 (&H24 in hexadecimal notation). The first character of
<string expression > may be any character which is included in
the character set.

For example, executing OPTION CURRENCY “@” while the
U.S. character set is selected causes the symbol “@ to be output
as the currency symbol by PRINT USING statements whose for-
mat strings begin with “$$”. If the German character set is subse-
quently selected, the “§” symbol is output as the currency symbol.

The formatting characters used in PRINT USING statements are based on the
U.S. ASCII keyboard. With the character sets of other countries, use characters
with the corresponding internal codes as shown below.

19 OFTION COUNTRY "E"

20 OFTION CURRENCY "#"

ZO FRINT USING "$$H#HH"{ 100
40 OFTION COUNTRY "g&*

S0 FRINT

USING "$$H#HH#" 100

&6 OFTION COUNTRY "E"

run

£160
Fe 1640

Ok

4-145

ouT

OUT <integer expression 1>, <integer expression 2>

Used to send data to a machine output port.

The data to be output is specified in <integer expression 2> and
the port to which it is to be output is specified in <integer ex-
pression 1>. Both values must be in the range 0 to 255.

INP

NOTE:
Use of this statement requires sound knowledge of the PX-8 firmware. Incorrect
use may corrupt programs or data held in memory, including BASIC itself.

4-146

PCOPY

Remarks

See also
Example

19 "THIS
2@ FRINT
E9OEND

2ASIC v
Bvtes Free
CAT

PCOPY <program area no.>

Copies the contents of the currently selected program area to
another program area.

This command copies the contents of the currently logged in pro-
gram area to the program area whose number is specified in
<program area no. > . The number specified must be in the range
from 1 to 5, and must be the number of an area which is empty.

Programs which have been saved using the protect save function
and then loaded into memory cannot be copied from one pro-
gram area to another with this command.

An “Illegal function call” error will occur if a number other than
1 to 5 is specified in <program area no. >, if the number of the
currently selected program area is specified, or if the specified pro-
gram area is not empty. This error also occurs if the program in
the currently selected program area is one which has been loaded
from a program previously saved with the protect save function.

LOGIN, MENU, STAT, TITLE

FROGRAM WILL
1

! BE COFIED, FROM AREA 1 TO AREA 3
"EOFY-CAT

ver-1.0 (C) 19771983 by Microsoft and EFSON

81 Bytes

4-147

EFSON EASIC ver—1.0 (C) 1977-1987% by Microsoft and EFSON
Move cursor, RETURN to run_or SFACE to laogin.
B CitcoFv-caT 81 Eytes

@ Bytes
I @ Bytes
4z @ Bytes
5 @ Bytes

~ 1787 by Microsoft and

EFSON BASIC 1977197 by Microsoft and EFSON
Mave Cursor run_or SFACE to login.
mFEl: A 81 Bytes
- @ Bytes
21 Bytes
@ Bytes
@ Byt
Frree

1977--1983 by Micros t and EFSON

4-148

PEEK

Purpose

Remarks

See also
Example

PEEKQ)

Returns one byte of data from the memory address specified for
J as an integer from 0 to 255.

As the name suggests, PEEK is a function to look at memory lo-
cations and return the value of the contents of the location
PEEKed. The contents of the location are not changed by inspect-
ing it. For the beginner learning BASIC, PEEK and the allied com-
mand POKE (which allows the contents of a location to be
changed) are commands which are difficult to understand, because
it is not always easy to see the function of the values used. They
can be used in a large number of ways. Also the values are very
computer dependent. It is often possible to type many BASIC pro-
grams into the PX-8 when they have been written for other com-
puters even if the BASIC is another version of MICROSOFT
BASIC. When PEEK and POKE commands are used, they are
invariably not directly translatable. For example with many com-
puters it is possible to PEEK and POKE the memory reserved for
the screen. This is not possible directly with the PX-8.

The integer value specified for J must be in the range from 0 to
65535.

POKE
If location 4 is PEEKed, the number returned will correspond to
the drive which is the default drive when returning to CP/M. This

is not the default drive for BASIC. If the value returned is “0”
then A: is the default drive, if it is “1” then it is drive “B” and so on.

4-149

POINT

POINT (horizontal position, vertical position)

Returns the setting of the display dot at the specified graphic screen
coordinates.

This function returns a number indicating the setting of the dis-
play dot at the specified graphic screen coordinates.
If the dot is set, 7 is returned; if it is reset, O is returned.

If the coordinates specified are outside the graphic screen area the
value of —1 is returned.

19 CLS
26 SCREEN =

%o FRINT "HELLO MUM"

49 FOR X = @ TO 54

50 FOR Y = @ TO 8

&9 IF FOINT (X,Y) = & THEN FRESET (X,Y),1:G0TO 8@
70 FRESET (X,Y),®

80 NEXT Y,X

HELLD MM
HET xRy
HEL LU PILIN]

4-150

POKE

Purpose

See also
Example

WARNING:

POKE <integer expression 1>, <integer expression 2>
Writes a byte of data into memory.

The address into which the data byte is to be written is specified
in <integer expression 1> and the value which is to be written
into that address is specified in <integer expression 2> . The value
specified in <integer expression 2> must be in the range from
0 to 255.

The complement of the POKE statement is the PEEK function,
which is used to check the contents of specific addresses in
memory. Used together, the POKE statement and PEEK function
are useful for accessing memory for data storage, writing machine
language programs into memory, and passing arguments and
results between BASIC programs and machine language routines.

PEEK

An example of using BASIC to POKE a machine code routine
is described under the CALL command.

In the example under the PEEK command, it was shown how to
find out which drive would be the active drive when exiting to
CP/M. This can be altered with the BASIC POKE command. If
you have any BASIC programs in memory which you want to save,
save them first. In direct mode type “POKE 4,2”, then type “SYS-
TEM” and press . You will be transferred to either the
system menu or the CP/M command line. If the menu is active,
use ESC to return to the CP/M command line. The active drive
should be shown as “C > which will normally be assigned to one
of the ROM sockets.

Since this statement changes the contents of memory, the work area used by BASIC
may be destroyed if it is used carelessly. This can result in erroneous operation,
50 be sure to check the memory map to confirm that the address specified is in

a usable area.

4-151

POS

POS(< file no.>)

Returns the current position of the print head, cursor, or file out-
put buffer pointer.

When “0” is specified for < file no.> this function returns the
current horizontal position of the cursor in the LCD screen. The
value returned ranges from 1 to the number of columns in the cur-
rently selected virtual screen.

When a number other than “0” is specified for < file no. >, this
function returns the current position of the buffer pointer in the
output buffer for the specified file. The file must be one which
has been opened in the sequential output mode or the random
access mode; the value returned for a file opened in the sequen-
tial input mode is meaningless.

When the value specified for < file no.> is other than “0”, the
value returned by the POS function is a number in the range from
1 to 255. The value returned immediately after the file is opened
or a carriage return is output is “1”.

If the file specified is “LPT@&”, this function returns the same value
as the LPOS function.

10 PRINT "1224567890"::6GOSUR S@

20 FRINT "1

56787901275 : GOSUR S0

I PRINT "1274567890127456": : GOSUR S0
4 END

S A

= POS(X)::PRINT"Horizontal cursor position is "§A

&0 RETURN

547890Horizontal cursor position is 11
567899127Horizontal cursor position 1s 14
547890123456Horizontal cursor position is 17

4-152

POWER

Purpose

Remarks

POWER OFF[,RESUME]
POWER < duration>
POWER CONT

Allows the power to be turned off by a program and can be used
to set the auto power-off function.

Executing POWER OFF turns off the power in the restart mode.
This is equivalent to switching the power off in the restart mode.
On turning the power on again, command will be returned to
CP/M, and to the system menu if it is set to be on. Any ALARM
or wake settings will still function as if the power had been
switched off normally.

When POWER OFF, RESUME is executed, the power goes off
in the continue mode. This is equivalent to switching the power
switch off when the control key is held down as well. When the
power is then turned back on (by moving the power switch from
ON to OFF, and then back ON again), BASIC program execu-
tion resumes with the statement following the POWER statement
which turned off the power. If the wake time set by the ALARM
statement is reached after the power has been switched off by the
program, it causes execution to resume at that time with the state-
ment following the POWER statement which turned off the
power.

POWER < duration> specifies the amount of time which will
elapse before the auto shut-off function automatically turns off
the power. <duration> is specified in minutes as an integer ex-
pression in the range from 1 to 255. The auto shut-off function
automatically turns off the power when the amount of time which
has elapsed since the last key was pressed or the last program state-
ment was executed becomes equal to the time specified in
< duration>.

Executing POWER CONT disables the auto power-off function.

The auto power-off function can later be re-enabled by execut-
ing POWER <duration>.

4-153

See also
Example

ALARM, ALARMS, AUTO START

The use of POWER to switch the computer off automatically is
shown under ALARM. The combination of the two functions al-
lows the PX-8 to switch itself on and off at any predetermined
time, totally under the control of a BASIC program.

4-154

PRESET

Remarks

See also
Example

NOTE:

PRESET [STEPI(X,Y)I, < function code>]

Resets the dot at the graphic display coordinates specified by X
and Y.

Relative coordinates are used when STEP is included; otherwise,
absolute coordinates are used.

When < function code> is omitted or is specified as 0, the dot
is reset (turned off); if it is specified as a number from 1 to 7,
the point is set (turned on).

The LCD screen must be in the graphic mode (mode 3) when this
statement is executed.

After execution of the PRESET statement, the last reference
pointer (LRP) is updated to the coordinates specified for X and Y.

LINE, PSET

1@ SCREEN 3
20 LINE (@,0)-(15@,5@) ,,BF

32 PI = 3.14159

42 D = P1/180

50 FOR N = 1 TO 360
60 X = 10 + N/4

7@ Y = 25-SIN(D*N) %25
80 PRESET (X,Y)

98 NEXT

Normally PSET is used without a <function code> to turn a point on, and
PRESET is used without a <function code> to turn a point off.

The default value of < function code> is 7 with PSET. With PRESET, the
default value of < function code> is 0.

If <function code> is specified, the two commands behave in the same way.

4-155

PRINT

Purpose
Remarks

See also

PRINT [<list of expressions>]
Outputs data to the LCD screen.

Executing a PRINT statement without specifying any expressions
advances the cursor to the line following that on which it is cur-
rently located without displaying anything.

When a <list of expressions> is included, the values of the ex-
pressions are output to the display screen. Both numeric and string
expressions may be included in the list. The positions in which
items are displayed is determined by the delimiting punctuation
used to separate items in the list.

Under BASIC, the screen is divided up into zones consisting or
14 spaces each. When items in <list of expressions > are delimit-
ed with commas, each succeeding value is displayed starting at
the beginning of the following zone. When items are delimited with
semicolons, they are displayed immediately following one another.
Including one or more spaces between items has the same effect
as a semicolon. Other display formats can be obtained by includ-
ing the TAB, SPACES$, and SPC functions.

If a semicolon or comma is included at the end of the list of ex-
pressions, the cursor remains on the current display line and values
specified in the next PRINT statement are displayed starting on
the same line. If the list of expressions is concluded without a semi-
colon or comma, the cursor is moved to the beginning of the next
line.

If values displayed by the PRINT statement will not fit on one
display line, display is continued on the next line.

LPRINT, PRINT USING, SPACES, SPC, TAB

4-156

Example

le FRINT 123:4564:789

20 FRINT 123,456,789

39 PRINT "12Zv:"456": 789"
4¢ FPRINT "ABC",

99 FRINT "DEF"

69 FPRINT "ARC"S

7@ FRINT "DEF"

456 789
122 456 789
123456789
AEBC DEF
ABCDEF

Ol

NOTE:

A question mark may be typed in place of the word PRINT when entering the
PRINT statement. BASIC automatically converts question marks encountered
during statement execution to PRINT statements.

4-157

PRINT USING

PRINT USING < format string > ; <list of expressions>

Displays string data or numbers using a format specified by
< format string>.

< format string > consists of special characters which determine
the size and format of the field in which expressions are displayed.
<list of expressions> consists of the string expressions or nu-
meric expressions which are to be displayed. Each expression in
< list of expressions > must be delimited from the one following
it by a semicolon.

The characters which make up the <format string> differ ac-
cording to whether the expressions included in <list of expres-
sions> are string expressions or numeric expressions. The
characters and their functions are as follows:

Format strings for string expressions

“"’

Specifies that the first character of each string included in <list
of expressions> is to be displayed in a 1-character field.

10 PRINT USING u!u;nAau;"bEn;nDCn

run
AbD
0Ok

‘“\n spaces\”’

Specifies that 2+n characters of each string in <list of
expressions > is to be displayed. Two characters will be displayed
if no spaces are included between the backslashes, three charac-
ters will be displayed if one space is included between the back-
slashes, and so on. Extra characters are ignored if the length of
any string in <list of expressions > is greater than 2 +n. If the
length of the field is greater than that of a string, the string is
left-justified in the field and padded on the right with spaces.

4-158

Example

Example

190 A$="1234567"

20 B$="ABCDEFG"

30 PRINT USING "\ "iA%; B

40 PRINT USING "\ "$A%;BS

run

12345ABCDE

1234567 ABCDEFG
(13

“&”
Specifies that strings included in <list of expressions> are to be
displayed exactly as they are.

1o READ A%,B$
20 PRINT USING "&";A$;" ";B$
3@ DATA EFSON,PX-8

run
EPSON PX-8
Ok

Format strings for numeric expressions

With numeric expressions, the field in which digits are displayed
by a PRINT USING statement is determined by a format string
consisting of the number sign (#) and a number of other charac-
ters. When the format string consists entirely of # signs, the length
of the field is determined by that of the format string.

If the number of digits in numbers being displayed is smaller than
the number of positions in the field, numbers are right justified
in the field. If the number of digits is greater than the number
of # signs, a percent sign (%) is displayed in front of the number
and all digits are displayed.

4-159

Minus signs are displayed in front of negative numbers, but (or-
dinatily) positive numbers are not preceded by a plus sign.

The following is an example of use of the # sign in the numeric
format string of a PRINT USING statement.

10 PRINT USING "#### "i15.12512.6512345
20 END

run
1 Q 13 7412345

Ok

Other special characters which may be included in numeric for-
mat strings are as follows:

A decimal point may be included at any point in the format string
to indicate the number of positions in the field which are to be
used for display of decimal fractions. The position to the left of
the decimal point in the field is always filled (with O if necessary).
Digits to the right of the decimal point are rounded to fit into
positions to the right of the decimal point in the field.

19 PRINT USING "###.## "3123512.34;5123.4365.12
20 END

run
123, a0 12.34 1237.46 9.12

Ok

(X3 + bRl

A plus sign (+) at the beginning or end of the format string causes
the sign of the number (plus or minus) to be displayed in front
of or behind the number.

1o FRINT USING "+H###" 1277123
20 END
run

+127 —123

Ok

4-160

(X3 ”»

A minus sign at the end of the format string causes negative num-
bers to be displayed with a trailing minus sign.

1@ PRINT USING "####—~ ";345;-456
20 END

run
345 456~
Ok

IITT 1L

A double asterisk at the beginning of the format string causes lead-
ing spaces to be filled with asterisks. The asterisks in the format
string also represent two positions in the display field.

10 PRINT USING "*x####.## "3
12,355 123.555; 555555. aa+#
20 END

run
*%%%12.35 *xx1237.56 S55555.88

Ok

(($$‘!

A double dollar sign at the beginning of the format string causes
the dollar sign (or other character selected with the OPTION
CURRENCY statement) to be displayed immediately to the left
of numbers displayed. The dollar signs in the format string also
represent two positions in the display field (one of which is used
for display of the dollar sign).

10 PRINT USING "s$####.## "3
12.355 123.555; 955555, 88#

20 END
run

$12.35 $123.56 ZL$555555.88
Ok

4-161

€€ * * $”

Specifying **$ at the beginning of the format string combines
the effect of the dollar sign and asterisk. Numbers displayed are
preceded by a dollar sign, and empty spaces to the left of the dol-
lar sign are filled with asterisks. The symbols ** § also represent
three positions in the display field (one of which is used for dis-
play of the dollar sign).

10 PRINT USING "*xbH#H##.## 312,355
123.5553 555555. 884

20 END

run
*#x%%$12,.35 *x*xx$123.56 $555555.88

Ok

(X3 2]
s

Including a comma to the left of the decimal point in a format
string causes commas to be displayed to the left of every third
digit to the left of the decimal point. If the format string does
not include a decimal point, include the comma at the end of the
format string; in this case, numbers are rounded to the nearest
integer value for display.

The comma represents the position of an additional position in
the display field, and each comma displayed occupies one position.

12 PRINT USING "#######, . ##" 555555, a8+#
20 END

run

555,555. 88
Ok

4-162

CAANANT

Four carets (exponentiation operators) at the right end of the for-
mat string cause numbers to be displayed in exponential format.
The four carets reserve space for display of E + XX.

The decimal point may also be included in the format string at
any position desired. Significant digits are left-justified, and the
exponent and fixed point constant are adjusted as necessary to
allow the number to be displayed in the number of positions in
the field.

Unless a leading + or trailing + or — sign is included in the for-
mat string, one digit position to the left of the decimal point will
be used to display a + or — sign.

10 FRINT USING "#it#, ##ooo 0y
123.45; 12,7455 1274, 5
20 END

run
D}E.35E+®1 12.28E+00 12, Z5E+02

(X3 "

An underscore mark in the format string causes the following
character to be output as a literal together with the number.

10 FPRINT USING "###_7"; 123
20 END

Q"%
hC

4-163

NOTE:

Other characters:

If characters other than those described above are placed at the
beginning or end of a format string, those characters will be dis-
played in front of or behind the formatted number. Operation
varies from case to case if other characters are included within
the format string; however, in general including other characters
in the string has the effect of dividing the string up into sections,
with formatted numbers displayed in each section together with
the delimiting character.

1@ PRINT USING "##/##/##";12; 734,54
20 FPRINT USING " (###)";123
IO PRINT USING "<###:";123
4@ END

The formatting characters shown above apply to the ASCII character set. If you
select a character set other than ASCII with the Option Country statement some
of the formatting characters will be output differently as shown below.

Hex. Dec. U.S.A | France |Germany|England |Denmark| Sweden Italy Spain | Norway

23H | 35 # # # £ # # # Fi #

24H 36 ¥ ¥ ¥ ¥ ¥ i k3 ¥ =]

SCH 92 . = o] - 3] 2 o

SEH 9 4 . . o, oY "-', |:| e l:l
See listing under OPTION CURRENCY.

4-164

PRINT #/PRINT # USING

Purpose
Remarks

PRINT # < file number>,[<list of expressions>]

PRINT # <file number>, USING < format string > ; <list of
expressions >

These statements write data to a sequential output file.

The value of < file number > is the number under which the file
was opened for output. The specification of < format string>
is the same as that described in the explanation of the PRINT
USING statement, and the expressions included in <list of ex-
pressions > are the numeric expressions which are to be written
to the file.

Both of the formats above write values to the disk in display im-
age format; that is, data is written to the disk in exactly the same
format as it is displayed on the screen with the PRINT or PRINT
USING statements. Therefore, care must be taken to ensure that
data is properly delimited when it is written to the file (otherwise,
it will not be input properly when the file is read later with the
INPUT# or LINE INPUT # statements).

Numeric expressions included in <list of expressions> should
be delimited with semicolons. If commas are used, the extra blanks
that would be inserted between display fields by a PRINT state-
ment will be written to the disk.

String expressions included in <list of expressions> must be
delimited with semicolons; further, a string expression consisting
of an explicit delimiter (a comma or carriage return code) should
be included between each expression which is to be read back into
a separate variable. The reason for this is that the INPUT # state-
ment regards all characters preceding a comma or carriage return
as one item. Explicit delimiters can be included using one of the
using one of the following formats.

PRINT #1, <string expression>;*‘,”’; <string expression>...

4-165

See also

PRINT #1, < string expression > ;CHRS$(13); < string
expression>...

If a string which is to be read back into a variable with the
INPUT # statement includes commas, significant leading spaces
or carriage returns, the corresponding expression in the PRINT #
statement must be enclosed between explicit quotation marks
CHRS$(34). This is done as follows.

PRINT #1,CHR$(34);‘SMITH, JOHN’’; CHR$(34); CHR$(34);
‘““SMITH, ROBERT’’;CHRS$(34);...

This would actually be printed to the disk as

“SMITH, JOHN”,““SMITH, ROBERT”'.....
When the LINE INPUT # statement is to be used to read items
of data back into variables, delimit string expressions in <list of
expressions > with CHR$(13) (the carriage return code) as shown

in the example above.

INPUT #, LINE INPUT #, WRITE #, and Chapter 6.

4-166

PSET

PSET [STEP] (X, Y) [, <function code>]

Sets or resets the dot at the specified graphic coordinates on the
screen.

Relative coordinates are used when STEP is included; otherwise,
absolute coordinates are used.
When < function> code is omitted or is specified as a number
from 1 to 7, the dot is set (turned on); if 0 is specified, it is reset
(turned off). The LCD screen must be in the graphic mode (mode
3) when this statement is executed.

After execution of the PSET statement, the last reference pointer
(LRP) is updated to the coordinates specified for X and Y.

NOTE:

Normally PSET is used without a <function code> to turn a point on, and
PRESET is used without a < function code> to turn a point off.

The default value of < function code> is 7 with PSET. With PRESET, the
default value of < function code> is 0.

If <function code> is specified, the two commands behave in the same way.

LINE, PRESET

4-167

40 FOR F = 1 TO @ STEF -1
5@ FOR N = 1 TO 360

60 X = 10 + N/4

70 = RQE-SIN(D*N) ¥25

80 FSET (X,Y) ,F

Q0 NEXT N,F

N
SN
i Y
3
R %
/O
A}
£oN ,
R "\
[uiy N\ //
\‘\.’ v
N\
kY r

run ‘\ \/

4-168

PUT

Purpose

Remarks

See also
Example

PUT]| #]< file number > [, <record number >]

Writes the contents of a random file buffer to one record of a ran-
dom access file.

The random access file must be opened in the “R” mode under
the number specified in < file number > before this statement can
be executed. Further, data must be set in the random file buffer
with the LSET and/or RSET statements.

< file number > is the number under which the file was opened,
and <record number > is the number of the file record to which
the buffer contents are to be written.

< record number > must have a value in the range from 1 to 32767.
If <record number > is omitted, the contents of the random file
buffer will be written to the record following the record accessed
by the previous PUT or GET statement.

GET,LSET/RSET, OPEN and Chapter 6.

10 OPEN "R",#1, "RANDOM", 20
20 FIELD #1,10 AS A$
30 LSET A$="ABCDEFGHIJ"
40 PUT #1

50 WRITE#1,1,2,"YZa"

60 PUT #1

70 PRINT#1, "KLMNOP@";
80 PUT #1

90 FOR I=1 TO 3

100 GET #1,1

11@ PRINT AS$

120 NEXT

run
ABCDEFGHIJ
1,2,"YZa"
KLMNOPQa "
Ok

4-169

NOTE:
String data to be written to a random access file with PUT can be placed in the

random file buffer with the PRINT#, PRINT# USING, and WRITE # state-
ments, as well as with the LSET/RSET statements. An example of this is includ-
ed in the program above. When the WRITE # statement is used for this purpose,
extra positions in the buffer are padded with spaces. A “Field overflow” error
will occur if an attempt is made to read or write past the end of the buffer.

4-170

RANDOMIZE

Remarks

See also
Example

RANDOMIZE [< expression>]

Reinitializes the sequence of random numbers generated by the
RND function using the seed number specified in <expression>.

The value specified in <expression> must be a number in the
range from — 32768 to 32767. If <expression> is omitted, BASIC
suspends program execution and displays the following message
to prompt the operator to enter a value from the keyboard.

Random number seed (— 32768 to 32767)?

If the random number sequence is not reinitialized, the RND func-
tion will return the same sequence of random numbers each time
a given program is executed. This can be overcome by placing a
RANDOMIZE command at the beginning of each program so
that the user can input a random number. It is better however,
if the computer changes the random number seed in
< expression>. This can be achieved by using the TIMES$ func-
tion as this is a continually changing string of numbers. A descrip-
tion of this is given in the example program in RND.

RND

10 FOR J=1 TO 3
20 RANDOMIZE

3@ PRINT

40 FOR I=1 TO
S5O PRINT RNDj
60 NEXT I

79 PRINT

80 NEXT J

4]

run

Random number seed (-32768 to 327467)7 1
.58041 .128928 .928324 .901162 .532818

Random number seed (-32768 to 32767)7 2
.89341 .823736 964563 .674916 .963391

Random number seed (-32768 to 32767)? 1
.B826124 .915422 .0593067 .381003 .511101

Ok

4-171

READ

Format
Purpose
Remarks

See also

READ <list of variables>
Reads values from DATA statements and assigns them to variables.

The READ statement must always be used in conjunction with
one or more DATA statements. The READ statement assigns items
from the <list of constants> of DATA statements to variables
specified in <list of variables>. Items from the <list of con-
stants> are substituted into variables in the <list of variables >
on a one-to-one basis, and the type of each variable to which data
is assigned must be the same as the type of the corresponding con-
stant in <list of constants>.

A single READ statement may access one or more DATA state-
ments, or several READ statements may access the same DATA
statement.

If the number of variables specified in <list of variables> is great-
er than the number of constants specified by DATA statements,
an “Out of data” error will occur. If the number of variables speci-
fied in <list of variables> is smaller than the number of con-
stants specified in DATA statements, subsequent READ statements
begin reading data at the first item which has not previously been
read. If there are no subsequent READ statements, the extra items
are ignored.

The next item to be read by a READ statement can be reset to
the beginning of the first DATA statement on any specified line
by means of the RESTORE statement.

DATA, RESTORE

4-172

Example

16
20
Eis)
46
56
&
76
[=1%]
DO
1060
116
126

run

T DR

o

FOR J=1 TO S

READ A(J) ,EB$(J),CI)
NEXT J

FOR J=1 TO 5

FRINT A(J),B%(J),C(J)
NEXT J

END

DATA 1, aaaa, 11
DATA 2,bbbb, 22
DATA Z,cccc,33
DATA 4,dddd, 44
DATA 5, eeee,S5

aaaa
bbbb
ccce
dddd
eeee

4173

11
22

44

55

Purpose
Remarks

NOTE:

REM <remark >
> <remark >

Makes it possible to insert explanatory remarks into programs.

Either of the above formats may be used to insert explanatory re-
marks into a program. Remark statements are ignored by BASIC
during program execution, but are output exactly as entered when
the program is listed.

If program execution is branched to a line which begins with a
remark statement, execution resumes with the first subsequent line
which contains an executable statement.

If a remark statement is to be appended to a line which includes
an executable statement, be sure to precede it with a colon (:). Also,
note that any executable statements following a remark statement
on a given program line will be ignored.

When a program is listed using LIST* or LLIST*, apostrophes indicating re-
mark statements are not output. However, “REM” is output at the beginning
of any remark statements beginning with REM.

4-174

REMOVE

Remarks

See also
Example

REMOVE

Writes the directory to the microcassette tape and terminates
microcassette read and write access.

A REMOVE command must be executed before taking a cassette
tape out of the microcassette drive. The reason for this is that if
the cassette tape is taken out of the drive without executing the
REMOVE command, data which has been written to the cassette
tape up to that point may be lost. Further, if another tape is in-
serted in the microcassette drive without executing a REMOVE
command for the previous tape, the contents of the new tape may
be destroyed.

Before executing the REMOVE command, the tape must have first
been installed by executing the MOUNT command.

MOUNT

REMOVE

4175

RENUM

Examples

RENUM([< new line number >][,[< old line number>]
[, <increment >]]]

Renumbers the lines of programs.

This command renumbers the lines of a program according to the
values specified in <new line number >, <old line number>,
and <increment>. <new line number > is the first line number
to be used in the new sequence of program lines and <old line
number > is the line number in the current program with which
renumbering is to begin. <increment> is the amount by which
each successive line number in the new sequence is to be increased
over the number of the preceding line.

The default value for <new line number > is 10, that for <old
line number > is the first line of the current program, and that
for <increment> is 10.

The RENUM command also changes all line number references
included in GOTO, GOSUB, THEN, ON...GOTO, ON..GOSUB
and ERL statements to reflect the new line numbers. If a nonex-
istent line number appears after one of these statements, the mes-
sage “Undefined line xxxxx in yyyyy” is displayed. The incorrect
line number indicated by xxxxx is not changed, but that indicat-
ed by yyyyy may be changed.

RENUM

Renumbers the entire program. The first line number of the new
sequence will be 10, and the numbers of subsequent lines will be
increased in increments of 10.

RENUM 300,50

Renumbers program lines starting with existing line 50. The num-
ber of line number 50 in the current program will be changed to
300, and all subsequent lines will be increased in increments of 10.

4-176

RENUM 1000,900,20
Renumbers the lines beginning with 900 so that they start with
line number 1000 and are increased in increments of 20.

NOTE:

The RENUM command cannot be used to change the order of program lines
(for example, RENUM 15, 30 when the program has three lines numbered 10,
20 and 30), or to create line numbers greater than 65529. An “lllegal function
call” error will result if this rule is not observed.

4-177

RESET

Purpose

RESET

Resets the READ/ONLY condition which results when the flop-
py disk in a disk drive has been exchanged for another one. When
the floppy disk in an external disk drive is replaced with another
one when that drive has previously been accessed, subsequent
writes to that drive are inhibited. This is to protect the contents
of the disk’s directory. Executing the RESET command resets the
read-only condition and re-enables access to the new disk. It also
closes any files which are open in the same manner as the CLOSE
command.

Also RESET enables a new ROM capsule for read access after
replacement.

The default drive is the default drive for CP/M until a RESET
command is executed. The execution of a RESET command sets
the default drive to drive A: and so programs should specify the
drive to which the data is to be saved.

100 CLOSE

1190 PRINT "Replace disk in drive E: and press
enter when ready"

120 A$=INPUTS$ (1)

130 RESET

140 OPEN"O",#1,"E:FILEL"

4-178

RESTORE

Remarks

See also
Example

RESTORE [<line number>]

Allows DATA statements to be re-read from a specified program
line.

If <line number > is specified, the next READ statement will ac-
cess the first item in the DATA statement on the specified line or
on the first subsequent line which contains a DATA statement if
there is no DATA statement in the specified line. If <line num-
ber > is not specified, the next READ statement accesses the first
item in the first DATA statement in the program.

DATA, READ

10 FOR I=1 TO 2

20 FOR X=1 TO 8

30 READ A:SOUND A, S0

40 NEXT X, I

50 SOUND @, 100:RESTORE

60 FOR I=1 TO 2

7@ FOR X=1 TO 8

80 READ A:SOUND A*2,50

90 NEXT X,I

100 DATA 256,288,320,341,384,426,480,512
110 DATA S12,480,426,384,341,320, 2688, 256

4-179

RESUME

Remarks

See also

RESUME

RESUME §

RESUME NEXT
RESUME < line number >

Used to continue program execution after execution has branched
to an error processing routine.

The RESUME statement makes it possible to resume program ex-
ecution at a specific line or statement after error recovery process-
ing has been completed. The point at which execution is resumed
is determined by the format in which the statement is executed
as follows:

RESUME Resumes program execution at the statement
or which caused the error.
RESUME 6

RESUME NEXT Resumes program execution at the statement
immediately following that which caused the
€error.

RESUME Resumes program execution at the program line
<line number> specified in <line number >.

A “RESUME without error” message will be generated if a RE-
SUME statement is encountered anywhere in a program except
in an error processing routine.

ERROR, ON ERROR GOTO, ERR/ERL

See the example program under ERROR.

4-180

RIGHTS

Remarks

RIGHT$(X$,J)

Returns a string composed of the J characters making up the right
hand end of string X$.

The value specified for J must be in the range from 0 to 255.
If J is greater than the length of X$ the entire string will be
returned. If J is equal to 0 a null string of zero length is returned.

LEFTS$, MID$

1@ A%$="Epson PX-8"
20 FOR I=1 TO 1@
30 PRINT RIGHT# (A%, 1)
49 NEXT
run
8
-8
X-8
PX-8
PX-8
n PX-8
on PX-8
son PX-8
pson PX-8
Epson PX-8
Ok

4-181

RND

Example

RND[(X)]
Returns a random number with a value between 0 and 1.

RND returns a random number from a sequence determined
mathematically by the random number generator in the BASIC
interpreter. The same sequence of numbers is generated each time
a program containing the RND function is executed. If X is omit-
ted or the number specified for X is greater than 0, the next ran-
dom number in the sequence is generated. If 0 is specified for X,
RND repeats the last random number generated. If the number
specified for X is less than 0, RND starts a new sequence whose
initial value is determined by the value specified for X.

It is sometimes necessary to generate numbers in a given range.
The following examples show how this may be done.

INT (RND (X) * 1060) Generates numbers in the range
0—99.

INT (RND (X)*160)+1 Generates numbers in the range
1—100.

INT (RND (X) = 100) + 50 Generates numbers in the range
100—149.

INT (RND (X)*10)-5 Generates numbers in the range
—5to +4.

RANDOMIZE

The following program shows how to use RANDOMIZE and the
value returned by TIMES, to give a random number which is as
random as the computer will allow. Run the program a number
of times to see that the numbers output from line 30 are the same
each time the program is run. The first value will be the same for
the five circuits of the repeating loop (lines 30 to 50) because a
negative value of X repeats the number by continually reseeding
with the same number. The next values will be the same as these
values because X =0 which repeats the last random number. When
X is from 1 to 3 a different number is produced each time in the
loop lines 30 — 50, but this number will be the same each time the

4-182

program is run.

The second set of numbers, generated by lines 100 — 130, is again
the same every time the program is run, despitt RANDOMIZE
having been used.

The last set of numbers are different every time the program is
run because the number used to generate the seed is different. It
is obtained from the string returned by TIMES, by multiplying
the hours by the seconds. This requires not only string manipula-
tion to remove the characters from each end of the string, but also
using the VAL function to convert them into numbers. More com-
plex algorithms could be used.

1¢ FOR X -1 70 =

20 FOR N 1 TO S

30 PRINT RND(X) 3

40 NEXT N

45 FPRINT

S0 NEXT X

(=12

VA

80 ° first randomize routine
90 RANDOMIZE (456

1o FOR J = 1 TO 1o

110 PRINT INT(RND(1)%1600);
126 NEXT

136 FRINT

14¢ °

150 ° second randomize routine
1660 FOR J = 1 TO 1o

17¢ RANDOMIZE (VAL (LEFT$(TIME$,2)) *VAL(RIGHT$ (TIME%,2)))
180 FRINT INT(RND(1)%1000);
196 NEXT

200 FRINT

CI08601 L 308601 L TG8B6G1 . ZAB601 . Ta8601
. I08601 .T08601 .3J08601 (308601 . I08601
. 498871 670127 .98706 (739354 .783418
.949844 .S35241 .681371 .823571 .244878
L4215604 (775332 310637 .3T46467 056878
422 292 906 614 K67 B83IZ 595 910 875 173
86 120 948 4 839 687 o 507 224 514
Ok

4-183

RUN

Purpose

Examples

RUN [<line number >}
RUN < file descriptor > [,R]

Initiates program execution.

The first format is used to start execution of the program in the
the currently selected program area. Execution begins at the first
line of the program unless <line number > is specified. If <line
number > is specified, execution begins at the specified line. All
files are closed and variables cleared, even if the <line number >
specified is not the first line of the program. To restart a program
from a particular line number without using RUN, use GOTO
<line number>.

The second format is used to load and execute a program from
a disk device, including the microcassette drive and RS-232C
interface. Specify the name under which the program was
saved in < file descriptor >; if the extension is omitted, ‘‘.BAS”’
is assumed. For the RS-232C interface, specify
“COMG@:[(< options>)] as the file descriptor.

The RUN command normally closes all files which are open and
deletes the current contents of memory before loading the speci-
fied program. However, all data files will remain open if the R
option is specified although the variables will be cleared.

GOTO, LOAD, MERGE

RUN 300
runs the program from line 300.

RUN “ADDRESS.BAS”
loads and runs the program “ADDRESS.BAS” in the default drive.

RUN “D:ENTRY.BAS”,R

loads and runs the program “ENTRY.BAS” from disk drive D:
without closing the files which were opened by the previous
program.

4-184

SAVE

Purpose

Remarks

See also
Examples

SAVE <file descriptor>[,A]
SAVE <file descriptor>[,P]

Used to save programs to disk device files or the RS-232C com-
munications interface.

This command saves BASIC programs to disk files or the RS-232C
communications interface. In the former case, specify the drive
name, file name and extension in <file descriptor>.

The currently active drive is assumed if the drive name is omit-
ted, and “BAS” is assumed if the extension is omitted. In the lat-
ter case, specify “COM@: [(<options>)]” as the file descriptor.

If the A option is specified, the program will be saved in ASCII
format; otherwise it will be saved in compressed binary format.
The ASCII format requires more disk space for storage than bi-
nary format, but some file access operations require that the file
be in ASCII format (for example, the file must be in ASCII for-
mat if it is to be loaded with the MERGE command).

If the P (protect) option is specified, the program will be saved
in an encoded binary format. When a file is saved using this op-
tion it cannot be edited or listed when it is subsequently loaded.
Once a program has been saved with the P option the protected
condition cannot be cancelled.

LOAD, MERGE
SAVE “ADDRESS”
SAVE “B:ADDRESS.ASC”, A

SAVE “COM#:(ASN3FXN)”
SAVE “SECRET”,P

4-185

SCREEN

Format

Purpose
Remarks

SCREEN [<mode>] I <virtual screen>]
[,[< function key switch >] [,[<boundary character >]
[WIDTH [< no. columns >]J[,[<no. lines 1>][, <no. lines 2>]]111]

Selects the screen mode and sets the various screen parameters.

The value specified in <mode> determines the mode of opera-
tion of the PX-8’s display screen. If this parameter is omitted, the
value corresponding to the current screen mode is assumed. The
value specified for <mode> should be an integer with a value
from 0 to 3; screen modes selected for each value are as follows:

@: 80-column mode
1: 39-column mode
2: Split screen mode
3: Graphic mode

Either 0 or 1 is specified for <virtual screen>. This parameter
determines the virtual screen which is used, with 0 specifying the
first virtual screen and 1 specifying the second virtual screen. If
this parameter is omitted, the currently selected screen is assumed.

The < function key switch> parameter determines whether the
definitions of the programmable function keys are displayed.
Function key display is turned off if 0 is specified, and is turned
on if 1 is specified.

The <boundary character > parameter determines the character
which is displayed at the boundary between virtual screens in
screen mode 2. It only functions in this mode. If omitted, the cur-
rently specified character is assumed.

Parameters from WIDTH on determine the size of the virtual
screens. Rules for specifying these parameters are the same as with
the WIDTH statement. When the WIDTH parameter is omitted,
the current values are assumed if the mode specified is the same
as the current mode, and the following values are assumed if the
mode specified differs from the current mode.

4-186

See also

Examples

Mode No. columns No. lines 1 No. lines 2

0 80 24 24
1 39 48 48
2 40 48 48
3 80 7 or 8 Not applicable

If a value of <mode> other than the current mode is specified
in the SCREEN statement (or if the boundary character is
changed), both virtual screens and the real screen are completely
cleared. If the WIDTH parameters are specified, the screens are
cleared even if the mode and boundary character are not changed.

WIDTH and Chapter 2 for a detailed description of the screen
modes.

SCREEN 3 simply switches to the graphics screen mode.

SCREEN 1, 8, 0, sets screen mode 1 to display the first virtual
screen, without the function key assignments on the bottom line.

SCREEN 2, 0, 1 sets screen mode 2 to display the first virtual
screen, with the function key assignments shown on the bottom
line.

SCREEN , , 0 clears the bottom line, without changing the virtu-
al screen or screen mode.

SCREEN 1 changes the virtual screen to the second virtual screen.

SCREEN 2, 1, 8, ““$’’ sets screen mode 2 with the cursor on the
second virtual screen and therefore on the right hand side of the
split screen. The boundary character is a ‘‘$*’. There is no func-
tion key display on the bottom line.

SCREEN, , , “&’’ changes the boundary character if the screen
is in screen mode 2, otherwise nothing happens.

SCREEN 2, , , CHRS (140) clears the screen to screen mode 2
with a boundary character which is the graphics character hav-
ing ASCII code 140.

4-187

SCREEN 2, 0, 1, “‘="WIDTH 10 sets screen mode 2 with a width
of 10 columns on the left hand side of the screen. The boundary
character is an equals sign. The cursor sits in the left hand screen,
and the function key display is set on.

SCREEN 1, , , WIDTH 39 sets the screen to screen mode 1, but
because the WIDTH must be set to 39 columns, the change to
screen mode 1 is the only effective action needed. NOTE that there
are TWO SPACES between the delimiting comma and WIDTH.
This is the normal space for the format plus a space because no
boundary character is present.

SCREEN 1, , ,“$”WIDTH 39, 20 sets screen mode 1. The bound-
ary character is ignored since it can only be changed in screen
mode 2. Both virtual screens are set to 20 lines.

SCREEN 1,, , WIDTH , 30, 20 sets screen mode 1. Both virtual

screens are set to 30 lines, because the second line parameter is
ignored in screen mode 1.

SCREEN 3, , , WIDTH , 26 will only set screen mode 3 since
the number of lines in this mode is fixed.

4-188

SCREEN

SCREEN (< horizontal position, vertical position>)

Returns the ASCII character code corresponding to the character
displayed at the specified character coordinates on the screen.

< horizontal position > must be specified as a number with a value
in the range from 1 to Xmax, where Xmax is the number of
columns in the currently selected virtual screen or graphic screen.
<vertical position> must be specified as a number in the range
from 1 to Ymax, where Ymax is the number of lines in the cur-
rently selected virtual screen or graphic screen.

1o CLS

20 FRINT

0 PRINT" HELLO Mum®
49 FPRINT

S0 FOR N = 1 TO 12

60 A = SCREEN(N,Z2)

79 BE = CHR$ (A)

80 FRINT Af"("iB$:") ";
9a NEXT N

HELLO MUM

20 Z2) 72 (K 69 (E) 76 (L) (76 (L) 79 (@)
32) 77 M) 85 (W) 77 (M) I2 ()

Ok

4-189

'),

GN

Format
Purpose
Remarks

SGN(X)
Returns the sign of numeric expression X.

If X is greater than 0, SGN(X) returns 1. If X equals 0, SGN(X)
returns 0. If X is less than 0, SGN(X) returns — 1. Any numeric
expression can be specified for X.

10 A=1: PRINT SGN(A)
20 B=1<{0:PRINT SGN(B)
30 C=1=1:PRINT SGN(C)

run
1
1

-1

Ok

4-190

SIN

Format
Purpose
Remarks

Example

SIN(X)
Returns the sine of X, where X is an angle in radians.

The sine of angle X is calculated to the precision of the type of
the numeric expression specified for X.

10 CLS

20 INPUT "Enter angle in degrees"iA
30 PI=4%ATN(1)

49 D=P1/180

50 PRINT "SIN(";A;")="3;SIN(A%*D)

60 GOTO 20

Enter angle in degrees? ©
SINC 0)= 0

Enter angle in degrees? 30
SIN(30)= .5

Enter angle in degrees? 45
SIN(45)= ,707107

Enter angle in degrees?

4-191

SOUND

Format
Purpose
Remarks

SOUND < frequency >, <duration >
Generates a tone of specified frequency and duration.

The <frequency > parameter determines the pitch of the sound
generated, and is specified as a number from 0 to 2500. Values
from 100 to 2500 cause a sound to be generated at the equivalent
frequency (in Hertz), and values from 0 to 99 result in no sound.
Frequencies corresponding to the notes of the musical scale are
as follows, taking the standard A as 440 Hz:

A 110 220 440 880 1760
Bb 116 233 466 932 1864
B 123 247 494 988 1975
C 131 261 523 1046 2093
C# 138 277 554 1109 2217
D 147 294 587 1174 - 2349
Eb 155 311 622 1244 2489
E 165 329 659 1318
F 175 349 699 1397
F# 185 370 740 1480
G 196 392 784 1568

Ab 208 415 830 1661

The <duration> parameter determines the length of the sound
generated, and is specified as a number from 15 to 2554. The length
of the sound generated is equal to approx. <duration> X 10 msec,
with the result rounded off to the nearest millisecond. Durations
in crotchet units corresponding to various metronome markings
are as follows:

4-192

Example

Metronome J=200 J=150 J=100 J=6O
- 180 240
120 160 240

-

ys 9 120 180

4 60 80 120 200
J. 45 60 90 150
J 30 40 60 100
) 2 30 45 75
J 15 20 30 50

When a SOUND statement is executed, BASIC waits for execu-
tion of that statement to be completed before going on to the next
statement. An example of the use of the SOUND statement in a
program which plays music is shown below.

BEEP

1@ READ A

20 IF A = 1 THEN 1600

30 SOUND A, 30

46 GOTO 1o

50 DATA 261,329,392,392,0,784,784,0,660,660,0,261,
261,329,392,392,0

40 DATA 784,784,0,699,699,0,247,247,294, 440, 440, @,
880,880, 0, 699, 699, 0 S
74 DATA 247,247,294,440,440,0,880,880,0, 660, 660, @,
261,261,329,392,523,0 ' ' o
8@ DATA 1046,1046,0,784,784,0,261,261,329,392,523,
0,1046, 1046, 0) '
9@ DATA 880,880,0,294,294,749, 440, 1

166 SOUND 446, 120:S0UND I76,30:SOUND 392, 360: SOUND
b6, 126

11 SOUND S23,3a:SOUND I29,30:SO0UND 329,30:SOUND @
1)

126 SOUND 294,3a:SOUND 44¢,360:SOUND @,30:SOUND 397
1)

12@ SOUND 261,45:S0UND 261, 15:SOUND 261,30

1406 END

4-193

m BN e tle] IT fote | teted ln.f
g
g
£ N o [VAR L L (\RER N TS
- o - [- [o (S =
=
o | o [YEEE L L i ol T T
e e ™| | ™ .II“MH lT
_m] o« ol L o L VIRR ™ ™
= D nEEs NEEN L nEER HEEE REEA L
% T N T N T vt e
=
n e e e bt | |
a Y
2 |
2 e Ty ™ L i ol TR s
-] - H+H 1 - b+ 1 — M
2 e T T T ™ T T e
b=
7% BEA] BERL TTe T8 TTTe ™ N
R R i e e I e I
2a g \
A A AN Al = =
ST TR T R ™ N W

4-194

SPACES$

Format
Purpose

Remarks

See also
Example

10
26

SPACE$Q)

Returns a string of spaces whose length is determined by the value
specified for J.

The value of J must be in the range from 0 to 255. If other than
an integer expression is specified for J, it is rounded to the nearest
integer.

SPC

FOR J=1 TO 7
READ A%,E%$
Fe=A%+5FACES$ (20—-LEN (A$+B%)) +B$

40 PRINT P$

S0 NEXT

&9 DATA Angie,S23-2121,A1fie,456-1010,Robert,21-4444
7@ DATA Susan, 223-1234,Charlie,234-2324,John, 703-7654
8¢ DATA Randolph,631-1340

run

Angie S923-2121

Alfie 456-1010

Robert 21-4444

Susan 223-1234

Charlie 234-2324

John 703-74654

Randolph 631-1360

Ok

4-195

SPC
SPC ()

Returns a string of spaces for output to the display or printer.

The SPC function can only be used with an output statement such
as PRINT or LPRINT — unlike the SPACES$ function, it cannot
be used to assign spaces to variables. The value specified for J
must be in the range from 0 to 255.

SPACES$

10 FOR J=1 TO 7

26 READ A$,E$

30 PRINT A%$;SPC (20-LEN (A$+B%)) ; B$

40 NEXT

5@ DATA Angie,S23-2121,Alfie,456-1010,Robert,21-4444,Susan, 2
23-1234,Charlie, 234-2324, John, 703-7654, Randolph, 631-1360

run

Angie 523-2121
Alfie 4546—-1010
Robert 21-4444
Susan 223-1234
Charlie 234-2324
John 703-7654
Randolph 631-1360

4-196

SQR

SQR(X)

Returns the square root of X.
The value specified for X must be greater than or equal to 0.

10 PRINT "X","S@R(X)"
20 FOR X=0 TO 100 STEP 10
30 PRINT X,SQR(X)

40 NEXT
run
X SGQR (X)
] <]
10 3.16228
20 4.47214
30 S5.47723
40 6.32456
59 7.07107
(-1¢] 7.74597
7@ 8.3666
80 8.94427
90 ?.48683
100 10
Ok

4197

STAT

Purpose
Remarks

STAT [<program area no.> |
STAT ALL

Displays the status of the BASIC program areas.

Executing the STAT command without specifying any parameters
displays the status of the currently selected program area. If
< program area no. > is specified the status of that program area
is displayed. In both cases the display format is as follows.

Pn: XXXXXXXX YYYYY Bytes

Here n indicates the number of the applicable program area,
XXXXXXXX indicates the name assigned to that program area
by the TITLE command and YYYY indicates the size of the pro-
gram area (i.e., the size of the program in that area) in bytes. Spaces
are displayed for XXXXXXXX if no name has been assigned with
the TITLE command.

When an asterisk (*) is displayed between Pn and the program
area name, the edit-inhibit attribute has been set for that area with
the TITLE command.

Executing STAT ALL displays the status of all program areas as
follows.

P1: AAAAAAAA aaaaa Bytes

P2 :BBBBBBBB bbbbb Bytes

P3:CCCCCCCC ccccc Bytes

P4 :DDDDDDDD ddddd Bytes

PS5 :EEEEEEEE eeceee Bytes
xxxxx Bytes Free

The number displayed for xxxxx indicates the current number of
bytes of memory which are available for use by BASIC.

An “Illegal function call” error will occur if a number other than
1 to § is specified for <program area no.>.

4-198

LOGIN, MENU, PCOPY, TITLE
stat all

F1: TESTFROG 3146 Bytes

P2: 1137 Bytes
P3: 59 Bytes
F4: 1302 Bytes
F3: 199 Rytes
12859 Bytes Free

Ok

login 1

P1: TESTFPROG Z16 Bytes
Ok

stat 2

P2: 117 Bytes
Ok

4-199

STOP

Purpose

Example

STOP

Terminates program execution and returns BASIC to the command
level.

STOP statements are generally used to interrupt program execu-
tion during debugging to allow the contents of variables to be ex-
amined or changed in the direct mode. Program execution can then
be resumed by executing a CONT command.

The following message is displayed upon execution of a STOP
statement:

Break in nnnnn

Unlike the END statement, no files are closed when a STOP state-
ment is executed.

CONT

10 PRINT "Program line 10"
20 STOP
30 PRINT "Program line 20"

run

Program line 10
Break in 20

Ok

cont

Program line 20
Ok

4-200

STOP KEY

STOP KEY |ON
OFF

Disables or re-enables the key.

Executing STOP KEY OFF disables the [STOP | and [CTRL | +
[Clkeys. This prevents processing from being interrupted if the
[sToP Jkey is pressed accidentally during execution of a BASIC
program.

Executing STOP KEY ON re-enables the [STOP | and [CTRL] +
[Cl keys after they have been disabled.

If a program becomes trapped in an endless loop after executing
STOP KEY OFF, execution can only be interrupted by pressing
the reset switch on the left side of the PX-8. Therefore, care should
be taken to debug programs completely before including the STOP
KEY OFF statement.

10 STOP KEY OFF :’Disables STOP key.
20 AS=INPUT$(10) t’Type in 10 characters to proceed.

30 * Can’t be interrupted by pressing STOP key.

40 PRINT AS$

5@ STOP KEY ON : "Re—-enables STOP key.

60 B$=INPUT$(10) :’Type in 10 characters to proceed.
7@ * Can be interrupted by pressing STOP key.

80 PRINT B$

90 END

4-201

STR$

Format
Purpose
Remarks

See also

STR$(X)
Converts numeric data to string data.

This function returns a string of ASCII characters which represent
the decimal number corresponding to the value of X. X must be
a numeric expression.

This function is complementary to the VAL function.

VAL

10 FOR X=1 TO 1@
20 PRINT X3

30 NEXT

40 PRINT

S50 FOR X=1 TO 1o
60 A$=8TR$ (X)

7@ PRINT A%j

80 NEXT

run
1 2 3 4 5 &6 7 8 9 10
1234567829 10

Ok

4-202

STRINGS

Format

Purpose
Remarks

Example

STRING $(J, K)
STRINGS$(J, X$)

Returns a string of characters.

The length of the character string returned by this function is de-
termined by the value of J. If K is specified the function returns
a string of J characters whose ASCII code corresponds to the value
of K. If a non-integer value is specified for K its value if rounded
to the nearest integer before the string of characters is returned.

If X$ is specified this function returns a string of J characters made
up of the first character of the specified string.

1@ A$=STRINGS (5, "A")
20 B$=STRINGS (5, 66)
30 PRINT A%:PRINT B$

run
AAARAA
BBBBB
Ok

4-203

SWAP

Remarks

SWAP <variable 1>, <variable 2>

The SWAP statement exchanges the values of variables specified
in <variable 1> and <variable 2>.

The SWAP statement may be used to exchange the values of any
type of variable, but the same variable types must be specified
in both <variable 1> and <variable 2> ; otherwise a “Type mis-
match” error will occur.

14 - Using SWAF for alphabetization

20 FOR J=1 TO 3

Io READ A%(J)

46 NEXT J

58 FOR J=2 TO 3

6@ IF A$(JI-1) A% (J) THEN SWAF A% (J-1) ,A%$(J):J=1
79 NEXT J

g9 FOR J=1 TO S

29 FRINT A%(J)

196 NEXT J

114 DATA Mary,Charlie,fAngie,Jane,Andy

run
Andy
Anglie
Charlie
Jane
Marry

Ok

4-204

SYSTEM
SYSTEM

Terminates BASIC operation and returns control to the CP/M
operating system.

This command may be executed either in the direct mode or the
indirect mode.

4-205

TAB

Remarks

Example

TABQ)

Spaces to column J on the LCD screen or printer. If the cur-
sor/print head is already past column J, it is spaced to that column
on the next line.

The character position on the far left side of the LCD screen or
printer is column 0, and that on the far right side is the device
width minus one. For the LCD screen, the device width is the num-
ber of columns determined for the currently selected screen by the
SCREEN or WIDTH statement. For a printer, it is the number
of columns determined by the WIDTH LPRINT statement.

If the value specified for J is greater than the device width minus
one, the number of spaces generated .is equal to J MOD n, where
n is the device width.

In the expression
PRINT TAB (J) ; AS$

the string A$ will be printed with the first character starting at
position J. However, if the length of string A$ added to the value
of J is greater than 81, the string will be printed on the next line.

The TAB function can only be used with the PRINT and LPRINT
statements, and cannot be used to generate strings of spaces for
other purposes.

10 SCREEN ©
20 PRINT 1523535455
30 PRINT 15TAB(4);25TAB(9)333TAB(15) 3545 TAB(22)55

run

1 2 3 4 5

1 2 3 4]
Ok

4-206

NOTE:

If a space is included between TAB and the opening bracket in TAB (J), PX-8
BASIC will interpret this as item J of an array with the name TAB. Rather than
print the next string at position J, the value 0 will be printed because the value
of all the items in this array will be 0. If J is greater than 10, a “Subscript Out
of Range” error will be generated because the TAB array has not been dimensioned,

4-207

TAN
TAN(X)

Returns the tangent of X, where X is an angle in radians.

The tangent of angle X is calculated to the precision of the type
of numeric expression specified for X.

To convert an angle from degrees to radians, multiply it by 1.57080
(for single precision) or by 1.570796326794897/90 (for double pre-
cision).

ATIN, COS, SIN

1@ INPUT "Enter angle in degrees"j
20 PRINT "Tangent";A; "degrees is";TAN(A*#3.14159/180)
30 GOTO 1o

Enter angle in degrees? 30
Tangent 30 degrees is .57735
Enter angle in degrees? 45
Tangent 45 degrees is .999999
Enter angle in degrees? &9
Tangent &0 degrees is 1.73205
Enter angle in degrees?

4-208

TAPCNT

Purpose
Remarks

As a statement
TAPCNT=J

As a variable
J=TAPCNT

Reads or sets the value of the PX-8’s microcassette drive counter.

TAPCNT is a system variable which is used to maintain the value
of the PX-8’s microcassette drive counter. When used as a state-
ment, TAPCNT changes the setting of the drive counter. In this
case, the tape in the microcassette drive must be in the unmount-
ed condition and the value specified for J must be in the range
from —32768 to 32767. A “Tape access error” will result if an
attempt is made to set the counter while the tape is in the mount-
ed condition.

As a variable, TAPCNT returns the value of the microcassette drive
counter as a number in the range from —32768 to 32767.

tapcnt=5000
Ok

print tapcnt
5000

Ok

4-209

TIMES

Format

Purpose
Remarks

Example

As a statement
TIMES$S=“<HH>:<MM>:<S§>”

As a variable
X$=TIMES

Used to read or set the time of the PX-8’s built-in clock.

TIMES is a system variable which is used to maintain the time
of the PX-8’s built-in clock. When specified as a statement, TIMES$
changes the setting of the clock. <HH > is a 2-digit number from
00 to 23 which indicates the hour, <MM > is a 2-digit number
from 00 to 59 which indicates the minute, and <SS> is a 2-digit
number from 00 to 59 which indicates the second.

As a variable, TIMES$ returns the time of the built-in clock in
“HH:MM:SS” format.

time$="17:35:00"
Ok

print times
17:35: 05

Ok

4-210

TITLE

TITLE [<program area name >][,P]
To assign a name to the currently logged in program area.

This command assigns a name to the currently selected BASIC
program area. The name is specified as a string of from 0 to 8
letters. If more than 8 letters are specified, excess letters are ignored.

After execution of this command, the specified program area name
is displayed whenever the BASIC program area menu is displayed
or the STAT command is executed. If a program is loaded from
a disk device, the file name of the program loaded is used as the
program area name.

The program area name can be cancelled by executing the TITLE
command with a null string (““”) specified for <program area
name>. The program area name is also cancelled when the NEW
command is executed. The program area name is not affected if
the <program area name> parameter is omitted.

If the P (protect) option is specified, executing this command sets
the edit inhibit attribute for the currently selected program area.
Once a program area has been protected in this mannner, any at-
tempt to edit that program or to execute a DELETE command
in that program area will result in an “Illegal function call” error.

NEW

P1l: 443 Bytes

title "SAMP1"

0Ok

stat

P1:SAMP1 443 Bytes
Ok

4-211

TRON/TROFF

See also
Example

TRON
TROFF

Used to enable or disable the trace mode of execution.

In the trace mode, the number of each line of a program is dis-
played on the screen in square brackets at the time that line is ex-
ecuted. This makes it possible to determine the sequence in which
program lines are executed, and as such can be used with the STOP
and CONT commands during program debugging.

The trace mode is enabled by executing TRON and is disabled
by executing TROFF.

CONT, STOP

1o FOR I=1 TO 3:PRINT I;:NEXT
20 PRINT
30 TRON
49 FOR I=4 TO 6:PRINT Ij:NEXT
50 TROFF

run
1 2 3

[40] 4 5 6 [50]

Ok

4-212

USR

Remarks

USR [< digit >] < argument >

Passes the value specified for <argument> to a user-written
machine language routine and returns the result of that routine.

< digit > is an integer from 0 to 9 which corresponds to the digit
specified in the DEF USR statement for the machine language
routine. If <digit> is omitted, USR@ is assumed.

A string or numeric expression must be specified for

< argument > ; this argument is passed to the machine language
routine as described in Appendix D.

4-213

VAL
VAL(XS)

Converts a string composed of numeric ASCII characters into a
numeric value.

This function returns the numeric value of a character string con-
sisting of numeric characters. The first character of string X$ must
be “+77, ¢“—27, ¢ & or a numeric character (a character

whose ASCII code is in the range from 48 to 57); otherwise, this

function returns 0.

Some examples of use of the VAL function are shown below.

(1) VAL(XS)
Returns the decimal number which corresponds to the string
representation of that decimal number. X$ is composed of the
characters ‘0’ to ‘“9”” and may be preceded by ““+°, ‘-’
or ““.”, Complementary to the STR$ function.

(2) VAL(“&H”’ + X$)
Returns the decimal number which corresponds to the string
representation of a hexadecimal number. X$ is composed of
the characters ‘‘0”’ to ‘“9”” and ‘‘A”’ to ‘‘F’’. This is com-
plementary to the HEXS$ function.

(3) VAL(“&0”’ +X$)
Returns the decimal number which corresponds to the string
representation of an octal number. X$ is composed of the

characters ‘‘0’’ to ““7°’. This is complementary to the OCT$
function.

HEXS, OCTS$, STR$

10 INPUT "Type in a hexadecimal number "j;A$

20 PRINT "The decimal value of &H";A%$;" using VAL (";CHR$(34)
$"AH"SCHR$(34) 3 "+X$) is "jVAL ("&H"+A%)

30 INPUT "Type in an octal number "3;B$

49 PRINT "The decimal value of %0";B$3;" using VAL (";CHR$ (34)
$"&0";CHR$ (34) 5 "+X$) is "jVAL ("&0"+B%$)

run

Type in a hexadecimal number ? 4F

The decimal value of &H4F using VAL ("&H"+X%$) is 79

Type in an octal number ? 32

The decimal value of &032 using VAL ("&0"+X$) is 26

Ok

4-214

VARPTR

Format

Purpose

Remarks

VARPTR (< variable name >)
VARPTR (# < file number>)

The first format returns the address in memory of the first data
byte of the variable specified in <variable name>.
The second format returns the starting address of the I/0O buffer
assigned to the file opened under <file number>.

With the first format, a value must be assigned to <variable
name > before executing VARPTR; otherwise, an “Illegal func-
tion call” error will result. Any type of variable name (numeric,
string, or array) may be specified, and the address returned will
be an integer in the range from — 32768 to 32767. If a negative
number is returned, add it to 65536 to obtain the actual address.

Storage of the various types of data in memory is as follows.
(4 indicates the byte which corresponds to the value returned
by VARPTR.)

(1) Integer variables

The data section of integer variables occupies two bytes in
memory. Lower-order bits of this number are contained in the
byte whose address is returned by the VARPTR function, and
high-order bits are contained in the byte at the following address.
Thus, if variable A% contains the integer 2, the address returned
by the VARPTR function (the low-order byte) will contain 2, and
that address plus 1 (the high-order byte) will contain 0.

Lower byte Higher byte
\ ‘ / 9 v
v —F
2 Variable name (0] 0 Data
;W_J
2-bytes

4-215

(2) Single precision variables

With single precision variables, numeric values are stored in two
parts, using a total of four bytes of memory. The first part which
is referred to as the exponent, and the remaining three bytes are
referred to as the mantissa.

The VARPTR function returns the address of the least signifi-
cant byte of the mantissa; the VARPTR address + 1 contains the
middle byte of the mantissa; and the VARPTR address + 2 con-
tains the most significant byte of the mantissa. The exponent is
at the VARPTR address + 3.

Exponent

L 2
T T

4 Variable name (0] 0 Mantissa

—~
4 -bytes

(3) Double precision variables

The storage format for double precision values in variables is the
same as with single precision variables. However, the mantissa
portion of a double precision variable consists of seven bytes in-
stead of three, so the data portion of a double precision variable
occupies a total of eight bytes in memory.

Exponent
4 !
i

8 Variable name 0 (0] Mantissa

~
8-bytes

4-216

(4) String variables

With string variables, the VARPTR function returns the length
of the string. The low-order byte of the string’s starting address
in memory is indicated by the VARPTR address + 1, and the high-
order byte of the string’s starting address in memory is indicated
by the VARPTR address + 2.

$

T
String| Starting
length addll'ess
SN———
3-bytes for string descriptor

3 Variable name 0] 0

The second format returns the address of the first byte of the I/O
buffer assigned to the file opened under < file number>.

This function is generally used to obtain the address of a varia-
ble prior to passing it to a machine language program. In the case
of array variables, the format VARPTR(A(0)) is generally used
so that the address returned is that of the lowest-numbered ele-
ment of the array.

VARPTR is an abbreviation for VARiable PoinTeR.

30 A%$="abcdefghijklmnopgrstuvwxyz"

49 A=VARPTR(A%$) :PRINT "Address of variable A% is ";

S50 B=PEEK (A+2) #*&H100+PEEK (A+1)

60 PRINT "Address of string in variable A% is"3B

70 PRINT "String in variable A% is ";:FOR I=0 TO 25:PRINT CH
R$ (PEEK (B+I))3;

90 NEXT

run
Address of variable A% is —-29424

Address of string in variable A% is 35638

String in variable A% is abcdefghijklmnopgrstuvwxyz
Ok

NOTE:

The addresses of array variables change whenever a value is assigned to a new
simple variable; therefore, all simple variable assignments should be made be-
fore calling VARPTR for an array.

4-217

WAIT

WAIT <port number>,J [, K]

Suspends program execution while monitoring the status of a
machine input port.

The WAIT statement causes execution to be suspended until a
specified machine input port develops a specified bit pattern. The
data read at the port is exclusive ORed with the value of integer
expression K, then ANDed with J. If the result is zero, BASIC
loops back and reads the port again. If the result is not 0, execu-
tion resumes with the next statement. If K is omitted, 0 is assumed.

NOTE:

Use of this statement requires in-depth knowledge of the PX-8 firmware, and
using it incautionsly can result in loss of system control and other problems. See
the PX-8 OS Reference Manual for detailed information on the PX-8 firmware.

4-218

WHILE..WEND

Remarks

See also

WHILE < expression >
| <loop statements >]

WEND

Allows the series of instructions between WHILE and WEND to
be repeated as long as the condition specified by <expression>
is satisfied.

This statement causes program execution to loop through the ser-
ies of instructions between WHILE and WEND as long as the
condition specified by <expression> is satisfied. <expression>
is specified as any expression which has a truth value of 0 (false)
or other than 0 (true). Thus numeric, logical or relational expres-
sions may be used to specify the condition which controls looping.

As with FOR/NEXT loops, WHILE/WEND loops may be nest-
ed to any level. They may also be included within FOR/NEXT
loops or vice versa. When loops are nested, the first WEND cor-
responds to WHILE of the innermost loop, the second WEND
corresponds to WHILE of the next innermost loop, and so forth.

A “WHILE without WEND” error will occur if WHILE is en-
countered without a corresponding WEND, and a “WEND
without WHILE” error will occur if WEND is encountered
without a corresponding WHILE.

FOR...NEXT

4-219

@ INPUT"Enter arbitrary number"s

20 WHILE X"A<1E+06

30 PRINT STR&(X)i"""iMID$(STR$(A) ,2,5) i "="iMID$ (STR% (X™A), 2,
6)

4é A=A+1

5o WEND

L

run
Enter arbitrary number? 42.5
42.5"0=1
42.5°1=42.5
42.5"2=1806.2
42.5"3=76765.
Ok

4-220

WIDTH

WIDTH [< no. of columns >][,[<no. of lines 1>][, <no. of lines
2>]]
WIDTH < file descriptor>, <no. of columns>
WIDTH # < file no.>,<no. of columns>
WIDTH LPRINT <no. of columns>

Sets

the column width of the virtual screens or other specified

device or file.

(1)

WIDTH [< no. of columns >][, <no. of lines 1>][, <no. of
lines 2>11

This format specifies the size of the PX-8’s virtual screens.
When the screen size of virtual screen 1 (VS-1) is expressed
as ml columns X nl lines and that of VS-2 is expressed as m2
columns X n2 lines, the size of the virtual screens is deter-
mined as follows:

(a) Mode 0

When this statement is executed during display in screert mode
0 (the 80-column mode), the value specified in <no. of
columns > must be 80. Values for nl and n2 must be greater
than or equal to 8, and nl+n2 must be less than or equal
to 48. If <no. of lines 2> is omitted, the value specified for
<no. of lines 1> is assumed.

(b) Mode 1

When executed in screen mode 1 (the 39-column mode), the
value specified in <no. of columns> must be 39. The value
specified in <no. of lines 1> determines both nl and n2;
this value must be greater than or equal to 16, and must be
less than or equal to 48. If <no. of lines 1> is omitted, the
current value is assumed. The <no. of lines 2> parameter
is ignored.

(c) Mode 2

When executed in screen mode 2 (the split screen mode), the
value specified in <no. of columns> determines ml, and
must be in the range from 1 to 78. m2 is determined by

4-221

2

3

)

(79— <no. of columns>). The value specified in <no. of
lines 1> determines both nl and n2; the value specified must
be greater than or equal to 8 and less than or equal to 48.
The <no. of lines 2> parameter has no meaning with this
mode, and is ignored if specified.

(d) Mode 3

This format is meaningless when executed in screen mode
3 (the graphic mode), and will result in an “Illegal function
call” error if executed.

WIDTH <file descriptor >, <no. of columns>

This format specifies the number of characters which can be
output in each line to the device specified in < file descrip-
tor >. The devices which can be specified in < files descrip-
tor> are “LPT#:” and “COMS@:”. An “lllegal function call”
error will result if any other device is specified. When
“LPT®:” is specified, this format performs the same func-
tion as WIDTH LPRINT. When the WIDTH statement is
executed in this format and the specified device is already
open, the output width specified does not become effective
until the device has been closed and then re-opened.

WIDTH # < file no.>, <no. of columns >

This format specifies the output width for the file (channel)
specified by < file no.>. With this format, the file specified
by <file no.> must be open at the time the WIDTH state-
ment is executed. Further, the file device must be either
“SCRN:”, “LPT#:”, or “COMS@:”; an “Illegal function call”
error will result if these conditions are not satisfied.

The width specified by executing the WIDTH statement in
this format becomes effective immediately for the specified
file (channel); this makes it possible to change the width of
open device files at any time.

WIDTH LPRINT <no. of columns>
This format specifies the maximum number of characters per

line which can be printed by the printer.

For devices other than the display screen, any value from 1
to 255 can be specified in <no. of columns>. When a value

4-222

from 1 to 254 is specified, BASIC monitors the number of
characters output and, when the number exceeds that speci-
fied, automatically outputs a carriage return/line feed code.
When 255 is specified, the output line width is assumed to
be infinite and BASIC does not automatically output carri-
age returns and line feed codes.

10
20
30
40
50
80
90
1900
110
120
130
14¢

*This program outputs characters input from the keyboard
*to virtual screen 1 and the RS-232C interface, and
*outputs characters input from the RS-232C interface
*to virtual screen 2.
SCREEN 2,0,0,"*" WIDTH 38,48
OPEN "0O",#1, "COMO®: (D8B8NIFXN)"
OPEN "1",#2,"COMO:"

SCREEN 2,0,0

AS=INKEY$: IF A$<>"" THEN PRINT A$;:PRINT#1,A%;
A$="":SCREEN 2,1,0

IF NOT EOF(2) THEN A$=INPUT$(1,2):PRINT A%;

GOTO 100

NOTE:

The width values which are effective at the time BASIC is started are as follows.
LPT@: 80
COM#: 255

4-223

WIND

WIND [!

< counter value>
ON

OFF

Used to turn the microcassette drive motor on or off, to wind
the tape in either direction to a specified counter value, or to re-
wind the tape to its beginning while returning the counter to 0.

When this command is executed without specifying any
parameters, the tape is rewound to its beginning and the counter
is reset to 0. When <counter value> is specified, the tape is
wound in one direction or the other until the counter reaches the
value specified. This may be an integer or numeric expression
whose value lies in the range from — 32768 to 32767.

Executing WIND ON places the microcassette drive in the PLAY
mode. In this mode, the microcassette drive’s output signal is
directed to the PX-8’s built-in speaker, or to the speaker or ear-
phone connected to the external speaker jack on the PX-8’s back
panel. After the drive has been placed in the PLAY mode, BAS-
IC goes on to execute any following statements. Microcassette
operation in the PLAY mode is terminated by executing WIND
OFF.

Note that the BEEP and SOUND statements cannot be executed
while the microcassette drive is in the PLAY mode. Further, note
that the WIND statement cannot be executed if the tape in the
microcassette drive has been MOUNTed.

WIND ON

4-224

WRITE

Remarks

WRITE][< list of expressions>]

Displays data specified in <list of expressions> on the LCD
screen.

If <list of expressions > is omitted, a blank line is output to the
LCD screen. If <list of expressions> is included, the values of
the expressions are displayed on the LCD screen.

Numeric and string expressions can both be included in <list of
expressions >, but each expression must be separated from the
one following it with a comma. Commas are displayed between
each item included, and strings displayed are enclosed in quota-
tion marks. After the last item has been output, the cursor is au-
tomatically advanced to the next line.

The WRITE statement displays numeric values using the same
format as the PRINT statement; however, no spaces are output
to the left or right of numbers displayed.

PRINT

10 SCREEN ©:CLS
20 A=10:B=90:C$="PX-8"
30 WRITE A,B,C$

40 END

10,90, "PX-8"
Ok

4-225

WRITE #

Purpose
Remarks

See also
Example

WRITE # < file number >, <list of expressions >
Used to write data to a sequential disk device file.

<file number > is the number under which the file was opened
for output, and expressions included in <list of expressions > are
the numeric and/or string expressions which are to be written to
the file. Data is written to the file in the same format as it is out-
put to the screen by the WRITE statement; that is, commas are
inserted between individual items and strings are delimited with
quotation marks.

Therefore, it is not necessary to specify explicit delimiters in < list
of expressions >, as is the case with the PRINT # statement. The
following illustrates the difference between use of the PRINT #
and WRITE # statements (the statements indicated perform iden-
tical functions).

PRINT #1,CHR$(34);‘SMITH,JOHN’’; CHRS$(34);*,”’;
CHR$(34);‘SMITH, ROBERT’; CHR$(34)

WRITE #1, ‘““SMITH, JOHN”’,*‘SMITH, ROBERT”’

A carriage return/line feed sequence is wriiten to the file follow-
ing the last item in <list of expressions>.

PRINT # and PRINT # USING

10 CLS

20 OPEN "0",#1,"A:DATA"
30 FOR I=1 TO 2

40 PRINT "Enter item";I:LINE INPUT A%$(I)
S50 NEXT I

60 WRITE#1,A%(1),A%(2)
70 CLOSE

80 OPEN"I",#1,"A:DATA"
90 INPUT#1,A%,B%

100 PRINT A$:PRINT B%
110 CLOSE

120 END

4-226

Enter item 1
SMITH, JOHN
Enter item 2
SMITH, ROBERT
SMITH, JOHN
SMITH, ROBERT
Ok

4-227

	BRM_04_0114
	BRM_04_0115
	BRM_04_0116
	BRM_04_0117
	BRM_04_0118
	BRM_04_0119
	BRM_04_0120
	BRM_04_0121
	BRM_04_0122
	BRM_04_0123
	BRM_04_0124
	BRM_04_0125
	BRM_04_0126
	BRM_04_0127
	BRM_04_0128
	BRM_04_0129
	BRM_04_0130
	BRM_04_0131
	BRM_04_0132
	BRM_04_0133
	BRM_04_0134
	BRM_04_0135
	BRM_04_0136
	BRM_04_0137
	BRM_04_0138
	BRM_04_0139
	BRM_04_0140
	BRM_04_0141
	BRM_04_0142
	BRM_04_0143
	BRM_04_0144
	BRM_04_0145
	BRM_04_0146
	BRM_04_0147
	BRM_04_0148
	BRM_04_0149
	BRM_04_0150
	BRM_04_0151
	BRM_04_0152
	BRM_04_0153
	BRM_04_0154
	BRM_04_0155
	BRM_04_0156
	BRM_04_0157
	BRM_04_0158
	BRM_04_0159
	BRM_04_0160
	BRM_04_0161
	BRM_04_0162
	BRM_04_0163
	BRM_04_0164
	BRM_04_0165
	BRM_04_0166
	BRM_04_0167
	BRM_04_0168
	BRM_04_0169
	BRM_04_0170
	BRM_04_0171
	BRM_04_0172
	BRM_04_0173
	BRM_04_0174
	BRM_04_0175
	BRM_04_0176
	BRM_04_0177
	BRM_04_0178
	BRM_04_0179
	BRM_04_0180
	BRM_04_0181
	BRM_04_0182
	BRM_04_0183
	BRM_04_0184
	BRM_04_0185
	BRM_04_0186
	BRM_04_0187
	BRM_04_0188
	BRM_04_0189
	BRM_04_0190
	BRM_04_0191
	BRM_04_0192
	BRM_04_0193
	BRM_04_0194
	BRM_04_0195
	BRM_04_0196
	BRM_04_0197
	BRM_04_0198
	BRM_04_0199
	BRM_04_0200
	BRM_04_0201
	BRM_04_0202
	BRM_04_0203
	BRM_04_0204
	BRM_04_0205
	BRM_04_0206
	BRM_04_0207
	BRM_04_0208
	BRM_04_0209
	BRM_04_0210
	BRM_04_0211
	BRM_04_0212
	BRM_04_0213
	BRM_04_0214
	BRM_04_0215
	BRM_04_0216
	BRM_04_0217
	BRM_04_0218
	BRM_04_0219
	BRM_04_0220
	BRM_04_0221
	BRM_04_0222
	BRM_04_0223
	BRM_04_0224
	BRM_04_0225
	BRM_04_0226
	BRM_04_0227

