Appendix A DRIVE NAMES

Drive Peripheral

A: RAM disk

B: ROM capsule-1

C: ROM capsule-2

D:,E:,F:,G: Floppy disk drives

H: Microcassette drive

I: RAM cartridge

J: ROM cartridge-1

K: ROM cartridge-2
SCRN: LCD screen
LPTO: Printer
COMO: RS-232C interface
COMI: Serial interface (SIO)
COM2: RS-232COLn£\IJItt, or SIO
COM3: Cartridge serial
KYBD: Keyboard
CASO: External cassette

A-1

ClibPDF - www .fastio.com -

http://www.fastio.com/

A p pendl'x B B A S I C C OM m N D& 1I:]Iote ;: ED:ata is al;)utput in an ASCII format even if the A option is omitted.
ote 2: ct value is not returned due to the limitations i ed b
S MT EMEN T S; AN D Note 3: There are some restrictions on the us: of the fglzs;g;p;;npli,cgs:getﬁi
F U NCTIO NS A MIL A_ bers must be sequentially assigned, beginning with 1 for a random data file.
BLE FOR 1/0
DEVICES

BASIC commands, statements, and functions which can be used with various 1/0
devices are given in the table below. Disk-1 and Disk-2 denote one of the following
disk drives:

Disk-1: RAM disk, RAM cartridge, or floppy disk drives

Disk-2: ROM capsules, or ROM cartridges

oiverame | kYBD: | SCRN: | LPTO: | COMn | Disk-1 | Disk-2 | H: | CASO:
(o:l?g\um"gzgh Statement,

CLOSE @) O O O @) @) O O
DSKF X X X X (@) O Note 2 X
EOF - X X O O O O @)
GET X X X X O O Note 3 X
INPUT # @) X X O @) @) (@) O
INPUT$ O X X O O O O O
LINE INPUT # O X X @) O)] @) O
LIST X O O @) O X @) O
LOAD O X X O O O @) O
LOC - X X @] (@) O O X
LOF - X X @) O O] X
OPEN “I'" O X X O O O Note 3 (@)
OPEN 0"’ X @) @) O O X Note 3 @)
OPEN ““R”’ X X X X O O Note 3 X
POS X O O O O O O O
PRINT # X O O O O X O O
PRINT USING # X O O O O X O O
PUT X x x X O X Note 3 x
SAVE x Note 1 | Note 1 | Note 1 @] x O O
WIDTH X X O O X X X O
WRITE X @] O O O X O O
O Awvailable

X Not available

— No meaning

B-1 B-2
ClihPDF - www . fastio.com

http://www.fastio.com/

Appendix C FORMATTING

CHARACTERS

Formatting character

Remarks

!

Causes the first character of a string to be displayed.

&n__spaces&

Causes (n+2) characters to be displayed from a string,
starting at the first character.

@

Causes the contents of a string to be displayed as is.

#

Causes the number of digits equal to the number of
#’s to be displayed. The result is right-justified.

Causes a decimal point to be displayed in the same
position when it appears.

Causes the sign to be displayed before or after a num-
ber.

Causes a minus sign to be displayed after a negative
number.

Causes leading spaces to the left of a number in the
print area to be filled with *’s,

\\

Causes \ (only one) to be displayed to the left of a
number in the print area.

* %\ or * *

Causes \ to be displayed just before a number and *
to the left of the \, to fill the leading spaces in the
print area.

Causes , to be displayed every three digits in the in-
teger part of a number.

ANAA

Causes a number to be displayed using an exponent.

__ (under line)

Causes the string following the __ to be displayed as

is.

F - www.fastio.com

Appendix D KEYBOARDS

ASCII keyboard

Function keys

ESC PAUSE WELP PF; PF2
L1 I | | I I I
B

3 INS
e

E) PFa__prs |CJCAPS
o NUM

! = % [& (m
1 = 0 =
i 2 |3 4 5 6 7 8_]9)0

CTRL A S D F G H J K L

T T

] \\ o]
V

Mode switching keys

Item keyboard

Mode switching keys

Indicators — System keys — pirection keys
Osieer =] [E] L LT_]EE]E'
e Y o o %}S
] e [o 51 051 0
DDDDDDDD ER]ERIEN
o [o o e o = (o] [o00) (]

— Item keys

Edit keys

— Numeric keypad keys

http://www.fastio.com/

Appendix E PROGRAMMABLE
FUNCTION KEYS
AND ITEM KEYS

You can assign any string to the programmable function keys and item keys.
The keys that can be assigned strings are identified by shaded boxes in the figures

below.

Programmable

E;!_;:]I:----- =

function keys

+— item keys
1
ASCII keyboard
0o o o D [: [:] I I N Y
(I D B

CL LT LT Wt
I e] e e
I |)

] | OO

Item keyboard

(D) Programmable function keys (ASCII keyboard only)
Load a string for the programmable function keys in the following format:
KEY PF__key__number,string
Specify a number from 1 to 10 for the PF__key__number. 1 to 5 correspond
to to , and 6 to 10 correspond to [SHIFT| + [PF1]tO[SHIFT]| + s
respectively. The number of characters in the string must not exceed 15. Extra
characters are ignored. Use the CHR$(n) to define nonprintable characters
such as control codes. See Appendix J ‘“CHARACTER CODES”’ for the

control codes.
E-1

ClihPDF - www . fastio.com

Examples:
KEY 1,"AauTo"
Pressing the [pF1] key provides the same effect as typing[a] [u] [T][o] .
EEY S, "RUM"+CHR$ (173)
Pressing the key provides the same effect as typing [R] [u] [N] and press-
ing the key.

@ 1tem keys
Load a string for the item keys in the following format:

KEY item__key__number,string
The item__key_ _number must be within the range of &H40-&HSE, or
&H60-&HTE. Keys corresponding to the ASCII and item keyboards and
the item key numbers are given below.

ASCII keyboard (numbers in hexadecimal)

lss E
CAPS lock { H " H HSE '
mode (the [s Jesfoe] se oo ss|as[arfso]ao
CAPS LED on ﬂ al H 53 a4 | 45 o] 48J[4A[48 [4c]L 1 56
::Z:f‘/mafd JISA " 58 H a3 " 56 ll a2 l] I H
J
’ 58 ﬂ 5D
 IIIIITIIITITI=
(three LEDs [n]rfesfre]n]n]n]e]er]n]o
St o 1 3 1) 3 o R
»

E-2

http://www.fastio.com/

ClibPDF - www .fastio.com

Item keyboard (numbers in hexadecimal)

0 | 4 42 43 | 44 45 | 46 | 47

N :
ormal mode 48 49 4A 4B 4C 4D 4E 4F

(the SHIFT LED %0 51 52 53 || 54 | 55 56 | 57

Is off) 58 || 59 | 5A | 5B || 5C J| 5D || SE J[SHIFT

60 61 62 63 64 65 66 67

Shift mode {the 68 || 69 | 6A | 6B || 6C | 6D | 6E | 6F

SHIFT LED is 70 7 72 73 74 75 76 77

on) 78 79 7A | 7B || 7C || 7D || 7E |[SHIFT

The number of characters in <string> must not exceed 15. BASIC ignores
the 16th and subsequent characters. Use the CHR$(n) function to define non-
printable characters such as the control codes.

The item keys on the keyboard are enabled immediately once they are loaded
with a string.

On the ASCII keyboard however, you must first switch the key mode to use
the function keys. The key mode is set by:

KEY 253: Accepts any defined strings (item key mode)

KEY 254: Ignores any defined strings and accepts normal characters (default

mode established when BASIC is started).

You can enter a programmed string by pressing the item key while holding
and keys, even if you are in another keyboard mode.
Normal characters will be entered even after the execution of KEY, 253, if no
item key has been defined.

Strings assigned to item keys on both the item and ASCII keyboards can be
cancelled by executing KEY 255.

NOTE:

Executing this command on the item keyboard will inhibit entry from the
keyboard.

E-3

Example:

FEY &H41,"6AUTO"

?QSIC will display ‘““AUTO” if you press the [a] key after executing KEY

If you further press the [A] key after executing KEY 254, then BASIC will

dfsplay “A”. Pressing the , , and [A] keys together will also
display “AUTO”’.

. A —
Item key number
anat B Enabled by KEY 254
(initial values when BASIC is started)
a J CTRL |+ |SHIFT{+ | A | (key input)
AUTO 1 J
L | |- Enabled by KEY 253
Item key number Cancelled by KEY 255
&H61 _J

Item key number

&H41
— AUTO —
, — Cancelled by KEY 255
Item key number | —J
&H61
E-4

http://www.fastio.com/

A:

j B:
C:

|

\

|

\

|

ClibPDF -«

The three LEDs on the ASCII or item keyboard can be turned on and off with
a program by using the PRINT statement in the following format:

| PRINT CHR$(&H1B);CHRS$(n)

Specify n as a number between &HAO and &HAS (160 to 165). The LEDs will
turn on and off as follows:

ASCIl keyboard Item keyboard

CA] caes
o [CA"] sHIFT
CC 1 s

Is turned on when the value of n is &HA2 and off when it is &HA3.
Is turned on when the value of n is &HA4 and off when it is &HAS.
Is turned on when the value of n is &HAO and off when it is &HAI.

NOTE:
This statement turns the LEDs on and off but does not change the key entry

modes.

E-§

vww fastio.com

|
|

Appendix F USER-DEFINED
CHARACTERS

(1) User-defined Characters

The PX-4 allows you to define your own character designs. You can assign
up to 30 user-defined characters to any of the unused character codes be-
tween &HE2 and &HFF (the other character codes are already assigned let-
ters, symbols, or control characters: see Appendix J). You can display these
characters on the screen by using the CHR$ function.

Generating a character pattern

One character can consist of a matrix 6 dots wide by 8 dots long (one of
the rectangular segments in the drawing below is referred to as a dot). To
define a character pattern, you must compose it with eight bytes of dot data,
with each dot row represented by the ASCII code equivalent to the desired
binary format, as shown below.

7 6 5 4 3 2 | 0
Dot row pattern //% (6001 1100)---(1C)
” R 28 D T R N R I o (0000 0000)---(00)
” 3 / // ------ (0011 1110)---(3E)
Vi s\ VS B4 L e (0000 1000)---(08)
” s |\ NS | @A || b (0000 1000)--(08)
” s |\ 10 | e | b (0000 1000)-+(08)
” VWS N e | e (0000 1000)---(08)
” s {1t | 1 1 | | (0000 0000)---(00)

6 X 8 dot matrix

[ttt SOV sl al
0000 1000
0001 1001
T
he dot pattern shown 0010 1010

above corresponds to the qg||---

numbers on the right.

NOTE:
Bits 6 and 7 of each byte are ignored.

F-1

http://www.fastio.com/

ClibPDF -

Assigning a character pattern to an ASCII character code.

Once you have designed a character pattern, it can be registered in the sys-
tem as an ASCII character code by using the following statement.

PRINT CHR$(&H1B) + CHR$(&HEO) + CHR$(character code)
+ CHR$(pattern for dot row 1)
+ CHRS$(pattern for dot row 2)
+ CHR$(pattern for dot row 3)

+ CHRS$(pattern for dot row 8)

The ASCII character codes &HE2 to &HFF are available as user-defined
characters.

& * USER-DFEINED CHARACTERS

1@ PRINT CHR#% (LH1R)+CHR% (ZHE®) +CHR$ (XHFO
Y+CHRS (AH1C) +CHR% (2H®) +CHR% (YH3IE) +CHR$ (%
H8) +CHR$ (%H8) +CHR$ (XH8) +CHR$ (&H8) +CHR$ (&
He)

20 FRINT CHR$ (%HF3)

etk

.:f.
Tt

A sample program for defining a user-defined character is given below.

You can enter user-defined characters from the keyboard if you load them
directly into programmable function keys or item keys. '

Example:
Assuming that ‘5’ is assigned to character code &HFO0. You can define

‘s in the system by typing

FEY 1, CHRES (SHF3)

and pressing the

www . fastio.com

(2) User-defined Pattern

Generating a user-defined pattern

A.user-defined pattern consists of a 16 dots by 16 dots matrix an
with a total of 32 bytes. The pattern

shown below.

0000
Basic User area
XXXX
&HB6000 | — — — —
YYYY
BDOS
RAM disk

Dot row pattern |

Y
Vi
Vi
Vi
v
Vi
"
"
"
Vi
"
"
"
”
"

3.
5.
7.
9

.

= User-defined area

System area

76 5 4 3 2 |

0 7 6 5 4 3 2

0

F-3

 dots d is specified
Hz”, for example, can be defined as

(00) (00)
(73) (80)
(21) (o00)
(21) (00)
(2]) (o00)
(21) (00)
(21) (3E)
(3F) (02)
(21) (02)
(21) (0a)
(21) (08)
(21) (10)
(21) (20)
(21) (20)
(73) (BE)
(00) (00)

http://www.fastio.com/

This dot pattern can be stored in memory in the form of binary bytes 00, 00,
73, 80, 21, 00, 21, 00, and so on, in that order.

User-defined pattern area configuration

BASIC stores-the address of the area used for storing user-defined patterns in
addresses &HO0112 and &HO0113 and the code for the first user-defined pattern
in addresses &H0110 and &HO0111. The user can specify the storage addresses
and character codes of user-defined patterns by using the POKE statement.

User-defined patterns are defined by consecutive user-defined character codes
in the area starting at address XXXX designated by the user-defined pattern
address stored in memory addresses &HO0112 and &HO0113.

0000
—=— XXXX
Ursrelj-defined pattern
32 bytes data for user-defined
| i character code + O
i
XXXX !
0110 | User-defined +20| l i
character’ @ | | User-defined pattern
0111 lcode (L) (H) g g | | 32 bytes data for user-defined
n @
0112 ;tte;:eaﬂ::iss :|_‘ S § l ‘ character code + 1
©
0113 |@L) (H) 2 3" |
= | |
g ']'-:: 32 bytes Data for user-defined
o = character code+2
© 2
27]] :
8§ peo———
‘©
<
]
]
YYYY
(L) and (H) denote the lower and
| higher bytes of a user-defined
)
character code and address,
FFEF respectively.

All memory addresses in hexadecimal.

User-defined character codes are assigned to codes from 0 to 65535. When
storing code 2000 for example, you must load &HDO in memory address
&HO0110 and &HO7 in memory address &HO111 because the hexadecimal
representation of 2000 is &HO7DO0. (The decimal to hexadeciaml conversion
can be accomplished easily by using the BASIC PRINT HEX&(2000)

statement.) F-4

o
| —
ClibPDF - www fastio.com

|
!
|
|
|

When using an area at &H5000 for storing user-defined patterns, load &H00
in memory address &HO0112 and &HS50 in memory address &HO0113. This al-
lows user-defined patterns to be defined in the memory area starting at &H5000
as 32-byte consecutive character codes (2000, 2001, 2002, and so on).

Defining user-defined patterns into the system

To define user-designed patterns in the system, load the pattern bytes at the
address for the first byte of the corresponding character code. In the example
below, the pattern corresponding to user-defined character code 2000 is loaded
into the 32-byte area from &H4000 through &H401F. Next, the pattern cor-
responding to 2001 is loaded into the 32-byte area from &H4020 through
&H403F.

Example:

S ‘USER-DEFINED CHARACTERS

100 CLS

110 CLEAR ,&H3FFF

120 FOR I=0 TO 31

130 READ A

140 POKE &H4000+I,A

150 NEXT

160

170 POKE %H110,&HDO : ‘2000 = &h0O7DO

180 POKE &H111,%H7

190 POKE &H112,0

200 POKE &H113,%H40

210 FONT(16,16) ,PSET, 2000

220 END

230

240 DATA 0,0,%h73,%h80,%h21,0,%h21,0,%h2
1,0,%h21,0,%h21,%h3E,%h3F,2,%h21,2,%h21,
4,%h21,8,%h21,&%h10,%h21,%h20,%h21 ,&h20, &
h73,%hBE, 0,0

rure

H=z

http://www.fastio.com/

ClibPDF -

Explanation:

Line 110 reserves the area for storing the user-defined pattern. The FOR NEXT
loop from lines 120 through 150 reads user-defined patterns defined on line 240
into the area starting at address &H4000. Lines 170 and 180 load the user-defined
character code and lines 190 and 200 load the start address of the pattern area.
The program finally prints the user-defined pattern on the screen at line 210.

110 User-defined character code

User-defined character code &HO07D0 =2000
111 User-defined character code L H2

L

H
112 User-defined pattern address L
113 User-defined pattern address H }

User-defined pattern address &Hfoao

You can store the user-defined patterns onto an auxiliary storage device with
the BSAVE command, then load them back into memory with the BLOAD

command.

F-6

wyvvw . fastio.com

Appendix G MACHINE LANGUAGE
PROGRAMS

@Memory allocation

Wher} v..lsing machine-language programs or defining user-defined charac-
ters, 1t 1s necessary to reserve a memory area that does not overlap the one
used by BASIC. This is to prevent the BASIC programs or data from being
destroyed by the machine language programs, and vice versa. To reserve
the memf)ry area, you must specify the end address of the area used by BAS-
IC by using the CLEAR command, or in the /M: parameter when starting
BASIC. The machine language program area start address must be lower
than the BDOS start address or &H6000, whichever is smaller.

&HO0000

Stack area

End address %

Machine language program area

XXXX
(BDOS start address)

BDOS, BIOS, and RAM disk area

&HFFFF L

NOTE: All memory addresses are in hexadecimal.

G-1

http://www.fastio.com/

Machine language programs can use the memory area from the address you
specified up to XXXX-1. The address XXXX is determined by the sum of the
areas available for the RAM disk and user BIOS. The address XXXX is stored

in addresses 0006 and 0007.

Example:

L 1= Address 0006

— BDOS start address -?‘_ Address 0007

L: Lower byte
H: Higher byte

FRIMT HEX$ (FEEK (7) *25&4+FEEK (4))

6206
(1%

The BDOS start address is &H6206 in this example.

Use the POKE command to load short machine language programs, one byte
at a time. To load a machine language program file, use the BLOAD command.

e To invoke a machine language program from a BASIC program, use the USR
function or CALL statement.

G-2

ClihPDF - www fastio.com

@USR function

To invoke a machine language program with the USR function, specify the
start address of the machine language program. Then assign a subroutine
number to the machine language program with the DEF USR statement.
The subroutine number must be an integer between 0 and 9.

DEF USR < subroutine number > = <start address of the memory area
that is to be loaded with the
machine language program >

You can now call a machine language program by specifying the subrou-
tine number in the USR function. The format is as follows:

<variable name> = USR[< subroutine number >](argument)

<variable name> is used to store any results from the machine language
program execution that are to be returned to the BASIC program. When
there are no results to be returned, specify the same variable name for the
argument.

Specify for <subroutine number > the same subroutine number that is de-
fined in the DEF USR statement. If the number is omitted, 0 is assumed.
Specify in (argument) the value (of a numeric or string variable) to be passed
from the main program to the machine language program. A variable name
must be specified even when there are no values to be passed.

When the USR function is used, register A is loaded with one of the follow-
ing values which identifies the type of the argument to be passed to the
machine language program. If the argument is a number, the HL register
pair is loaded with the address of the fifth byte of the FAC (Floating Point
Accumulator) memory area, which is used to hold the argument.

Type of argument Value in register
A Integer 2
String 3
Single-precision real number 4
Double-precision real number 8

r HL register pair

FAC 1 2 3 4 5 6 7 8

G-3

http://www.fastio.com/

The argument is loaded into the FAC in one of the following ways:

e When the argument is an integer

FAC-6 FAC-6

Bytes 5 and 6 of the FAC are loaded with the lower 8 bits and higher 8 bits
of the argument, respectively.

e When the argument is a single-precision real number

Bit 7

l

FAC b FAC 6 FAC 7 FAC 8

Decimal point of the mantissa

The highest 7 bits, intermediate 8 bits, and lowest 8 bits of the argument’s man-
tissa are stored into bytes 7, 6, and 5 of the FAC respectively. Bit 7 of byte
7 contains the sign of the argument (0 for positive and 1 for negative). The
decimal point of the mantissa is assumed to be placed between bits 6 and 7 of
byte 7. Byte 8 is used to hold the value (exponent minus 128).

e When the argument is a double-precision real number
Bit 7

{

FAC1 | FAC2 | FAC3 | FAC4 | FAC5 | FAC6 | FAC7 | FAC 8

Decimal point of the mantissa

Bytes 5 to 8 of the FAC are used in the same way as for a single-precision num-
ber. Bytes 1 to 4 contain the lowest 4 bytes of the mantissa.

G4

ClibPDF - www fastio.com

® When the argument is a string

The start address of the 3-byte area called the “‘string descriptor’’ is loaded into
the DE register pair. Byte 1 contains the length of the string (0-255); and bytes
2 and 3 contain the start address of the area in which the string is stored.

DE

Character descriptor

T

Start address of the area containing
the string

|

Length of the string

1 byte/

1 byte 1 byte

If the argument is a literal string in the program, bytes 2 and 3 of the string
descriptor point to the program text.

To make the USR function return a value to BASIC, place the function value
in the FAC. Normally, a USR function returns the same type of value as the
argument originally passed to the function.

This is easily accomplished by the FRCINT and MAKINT routines provided
by PX-4 BASIC. FRCINT converts the value in the FAC to an integer. The
converted value is placed into the HL register pair. MAKINT converts the value
in the HL register pair into an integer and places it in the FAC. These routines
are used to convert to integers values passed from a USR function to a user-
defined machine language program, or to return a value to the USR function.

The start addresses of FRCINT and MAKINT are shown in the figure below.

103 Low
FRCINT address
- 104 HI
105 Low
MAKINT address
106 HI

LOW: Lower byte
HIGH: Higher byte

G-5

http://www.fastio.com/

| @Invoking a machine language program with the CALL statement The a.ddress'and length are specified in the BSAVE command. If no ad-

| dress is specified in the BLOAD command, the file will be loaded into the
| You may also invoke a machine language program from a BASIC program memory space starting at the address originally specified in the BSAVE
I with the CALL statement. command.

i A CALL statement with no argument simply invokes a machine language
program and executes it. Control must be returned from the machine lan-
|
i

guage program to the main program via a RET instruction. A CALL state-

ment with arguments passes the addresses of areas that contain them. The

method of passing arguments depends on the number of arguments to be
passed as follows:

If there are 3 or less arguments, they are placed in registers. The address
of the area containing the first argument is placed in the HL register pair,
the addresses of the areas containing the second and third arguments, if any,
are placed in the DE and BC register pairs, respectively.

If there are more than 3, they are passed as follows:

I
I
\
\
il
il
|
w
|
M
H (a) The address of the area containing the first argument is placed in the
| " ‘ HL register pair.
i _ (b) The address of the area containing the second argument is placed in the
| DE register pair.
1 (c) For arguments 3, 4,...and so on, the start address of the table contain-
1 ing the start addresses of the arguments are placed in register pair BC.
‘ (i.e., BC points to the start address of the area containing the third ar-
gument).
\
I
I
\‘ ‘
I
|
1
I

(4)BSAVE, BLOAD

The BSAVE command saves a machine language program or data in memory
into a file. The BLOAD command loads a machine language program or
data file into memory.

in addition to the data in memory. The BLOAD command cannot load a
file which has an illegal header. The 5-byte header has the following format:

1 &HFD
2-3 Address
4-5 Length (in bytes)

} data

|
The BSAVE command writes a 5-byte header at the beginning of the file

G-6 G-1

|
b
ClihPDF - www . fastio.com

http://www.fastio.com/

* .
Appendix H CONTROL CODES Cote
B Decimal | Hexadecimal
27 1B Escape code. [Esc]
28 ic Moves the cursor to the
right.
5 29 1D Moves the cursor to the
Code - Function Key usage ; left.
Decimal | Hexadecimal ™
1 01 Move the cursor to the be- + [A] 1E Moves the cursor upward.
ginning of the current line. 31 1F Moves the cursor
2 02 Move the cursor one word + downward.
to the left.
3 03 Stop the program execu- , + [c]
tion. These keys also stop
the automatic number
generation that is initiated
by the AUTO command.
5 05 Delete characters to the end + [E]
of the line.
6 06 Move the cursor one word + [F]
to the right.
8 08 Delete the character to the , + [H]
left.
9 09 Move the cursor to the next| [TAB], + [
tab position.
1 0B Move the cursor to the , + [K]
home position (upper left
corner) of the virtual
screen.
12 0C Clear the virtual screen. CLR|, [CTRL] + [L]
13 0D Execute a command or + [m]
statement.
18 12 Toggle between the over- [Ins] + [s]
write and insert modes of
the BASIC screen editor.
19 13 Suspend the execution of a . + [s]
BASIC program.
18 Move the cursor to the end | [CTRL] + [X]
of the line.
1A Delete all characters to the + [z]
end of the screen.
H-1 H-2

- www fastio.com

http://www.fastio.com/

Appendix I RESERVED WORDS

ABS
ALARM
ALARMS
AND
ASC
ATN
AUTO

BEEP
BLOAD
BSAVE

CALL
CDBL
CHAIN
CHRS$
CINT
CLEAR
CLOSE
CLS
COM
COMMON
CONT
COPY
COS
CSNG
CSRLIN
CVIl
CVS
CVD

libPDF - www fastio.com

DATA
DATES
DAY
DEF
DEFINT
DEFSNG
DEFDBL
DEFSTR
DELETE
DIM
DSKF

EDIT
ELSE
END
EOF
ERASE
EQV
ERL
ERR
ERROR
EXP
EXTD

FIELD
FILES
FIX
FN
FONT
FOR
FRE

I-1

GET
GO
GOSUB

HEXS$

IF

IMP
INKEY$
INP
INPUT
INPUT #
INSTR
INT

KEY
KILL

LEFTS
LEN
LET
LINE
LIST
LLIST
LOAD
LOAD?
LOC
LOCATE
LOF
LOG
LOGIN
LPOS

- LPRINT
- LSET

MENU
MERGE
MID$
MKD$
MKI$
MKS$
MOD
MOTER
MOUNT

NAME
NEW
NEXT
NOT

OCT$

OFF

ON

OPEN

OPTION

OPTION COUNTRY
OPTION CURRENCY
OR

ouT

PCOPY
PEEK
POINT
POKE
POS
POWER
PRESET
PRINT
PRINT #
PSET
PUT

1-2

http://www.fastio.com/

- [3 |2 aEnEnis $
e ¢ 3
QO NEIERERERERERERERERERERERERERERERE N
: =5
o DG R EE EEE g
VL
N R RERERERERERERERERERERERERERERERE S5
g g B]
T R EREBEREREREREREREREBEREREREBERE MW
3 R I 1 R T =3 S =1 N - I = A 1 B - O 4 B
C ol e L O N O Y 30 P S P o S0
REIRERERERERERERERERERERERERERERERE §8
M 1..T2‘_3T4.1L|_ — L -~ |4 “ ﬁﬁ-|l|.1 mc-m
MEEREREREREREREBRERERERERE g B
7mp|q',||'|'|w|‘umumu” mMW.M
. 7rs___tu > = R L i Rl L L Q L S
< NERERERERERERERERERERERERERERERERERR: §53x% 3
H o<_=b:defg_h1..k1mnn_u < .MMMX =
S N EAC AR RERE NN CNENENENCREY ERER R S5g%
RN R N EE S R T T 1 N S
of [z [g Tq Ts ERERE o o R S23
M m.m.FnFB_l_EFD_ME_HF_MGFHWI_hJ_M:FLW_h_m_m mAmAW
AL e _ o fu =T = g
~ NERERENENE R RN R ARG RERC G s S5Sy
v o e o e (e mo e e I ARy °
B MR R R RERE REREREERERERE sR 3%
Ts.:e#q_i L I O O e Pole | ™ Uﬂl‘rmm
,m RN RERENERENERERERE NERENCRERCRCRE MR
= S
S OO EE e EE T L
p | S<=%
$s|fs/ 85 2lzl8lz 2/ =lglz/2/zl8ls 5= 3§
D =EHHHHHBHEEEHEEBEE 43385
~N N o

TAPCNT
THEN
TIME$
TITLE
TO
TROFF
TRON
USING
USR
VAL
VARPTR
WAIT
WEND
WHILE
WIDTH
WIND
WRITE
XOR
I-3

TAN

- www fastio.com

RANDOMIZE
READ
SGN
SIN
SOUND
SPACES$
SQR
STAT
STEP
STOP
STRS$
STRING$
SWAP
SYSTEM

REM
SCREEN

REMOVE
RENUM
RESET
RESTORE
RESUME
RETURN
RIGHTS$
SAVE

“ClibPD

http://www.fastio.com/

Differences between the USASCII character set and the character sets of other
countries are as shown below.
CQuntry United | France |Germany|lEngland Denmark] Sweden | Italy | Spain [Norway
Dec. Code States
35 # # # £ # # # f& #
36 ¥ ¥ ¥ ¥ * = ¥ ¥ (=]
64 @ = % @ =3 = @ @ E
91 L = & L 13 & = i 3
92 = & . b & i e
93] = i)] & & & i &
94 ~ ~) 0 . O
96 N < - . =3) ¢ &
123 < é = < * & = ¥
124 : o) i & : & ot *
125 > & G > & & é * &
126 e i e] 0 i " o
J-2

Appendix K ERROR CODES AND

MESSAGES

BASIC displays an error message and enters the command mode when one of
the errors listed in this appendix occurs.

Message | Code Desciption
/0 11 | Division by zero
An attempt was made to divide by zero.
< Possible causes>
1. Zero was used as a divisor.
2. Division was attempted using an undefined variable as the divisor.
AC 72 | Tape access error
An attempt was made to access an access-inhibited file.
< Possible causes >
1. An attempt was made to access an access-inhibited microcassette
file.
2. An attempt was made to mount a microcassette without execut-
ing the REMOVE command to demount the previous one.
3. The REMOVE command was executed while the microcassette
was in the demounted condition.
4. The WIND command was executed while the microcassette was
in the mounted condition.
5. The TAPCNT function was evaluated when the microcassette
was in the mounted condition.
AO §5 | File already open
An OPEN ““O”’ statement was executed for a file which was already
open, or a KILL command was executed for a file that was open.

http://www.fastio.com/

Message

Code

Description

BF

54

Bad file mode N ‘

An illegal statement or function was specified for a file.

< Possible causes > .

1. A PUT or GET statement or the LOF function was executed for
a sequential file. '

2. A LOAD command was executed for a random flle: o

3. A file mode other than I’*, “R”’, and ““O”’ was specified in an
OPEN statement. .

4. An attempt was made to MERGE a file that was not saved in
ASCII format.

BN

52

Bad file number .

A statement or command references a file that has not been open.ed.
Or, the file number specified in the OPEN statement was outside
of the range of file numbers that was specified when BASIC was

first started.

BS

Bad subscript ' .
The subscript for an array variable was outside the range permitted

for that array. . N

1. The subscript specified was greater than the maximum specified
in the DIM statement defining that array.

2. A subscript greater than 10 was used when no array variable was
specified by a DIM statement.

3. Zero was used after executing OPTION BASE 1.

CN

17

Can’t continue

BASIC cannot continue toexecute the program

< Possible causes >

1. Program execution was terminated due to an error.

2. The program was modified while execution was suspendeq.

3. The [sTOP]key was pressed during execution of an received
faster than it can be processed by the computer.

CO

28

Communication buffer overflow .
The receive buffer overflowed during receipt of data via the RS-'232C
interface. This error occurs when data is received faster than it can

be processed by the computer.

K-2

ClibPDF - www . fastio.com

Message | Code Description
DD 10 | Duplicate definition

An array was defined more than once.

< Possible causes>

1. A second DIM statement was executed for an array without free-
ing the memory area allocated to that array by the ERASE
statement.

2. An undefined array was used, then an attempt was made to re-
dimension that array with a DIM statement.

3. The OPTION BASE statement was used more than once.

4. An OPTION BASE statement was executed after an array had
been dimensioned by a DIM statement or after the array varia-
ble had been used.

DF 61 | Disk full

All the disk storage space is in use.
DR 70 | Disk read error

An error occurred while a file on a disk was being input.
DS 66 | Direct statement in file

A program line with no line number was encountered during the

execution of a LOAD or a MERGE command. An attempt was made

to execute a LOAD command for a data file or a machine language
program,
DT 24 | Device time out

| 1. CTS was not held high and transmission via the RS-232C inter-

2. The key was pressed while output to the RS-232C inter-

3. DSR or DCD did not go ON within the needed period of time

4. The printer was not ready when output to the printer was at-

A peripheral device was not ready for input or output processing.

face was not enabled within the needed period of time after an
OPEN ““O’’ statement was executed. Or, the transmitter was not
ready within the needed period of time after a DSR send check
was specified with the “‘c’’ option at interface open time.

face was being deferred for some reason.
after an OPEN”’I” statement was executed. Both the DSR receive
check and DCD check were specified with the ‘‘c’’ option at in-

terface open time.

tempted.

http://www.fastio.com/

Message

Code

Description

Message

Code

Description

DU

68

Device unavailable
An attempt was made to access a peripheral device not connected

to the computer.

DW

71

Disk write error
An error occurred while a file was being written to a disk device.

FD

Bad file descriptor

An illegal file descriptor was specified in a LOAD, SAVE, KILL
command, or OPEN statement.

FA

25

Device fault

DSR or DCD went OFF during input from the RS-232C interface
after a DSR check or DCD check was specified with the ‘‘c’’ option
in the OPEN’’I’’ statement at interface open time.

58

File already exists

The new file name specified in a NAME statement is already being
used by another file on the disk.

FN

FOR without NEXT
A FOR statement was encountered without a corresponding NEXT.,

FC

Tilegal function call
A statement or function was incorrectly specified.
< Possible causes >
1. Specification of a negative number as an array variable subscript
2. Specification of a negative number as the argument in the LOG
function
3. Specification of a negative number as the argument of the SQR
function
4. Specification of a non-integer exponent with a negative mantissa
5. A call to a USR function for which the start address of the
machine language program has not been defined
6. Anincorrectly specified argument in any of the following state-
ments or functions:
MID$, LEFTS$, RIGHTS, INP, OUT, WAIT, PEEK, POKE,
TAB, SPC, STRINGS$, SPACE$, INSTR, ON..GOSUB,
ON...GOTO, ASC, SCREEN, VARPTR, LOGIN, STAT
7. Specification of a non-existent line number in a DELETE
statement
8. Attempting to erase a non-existent array variable with an
ERASE statement
9. Execution of an EDIT command for a program that was saved
on an auxiliary storage device with a SAVE command with the
““p”’ option then loaded into the program area again
10. Execution of a RENUM command with a number greater than
65529. Or, attempting to change the order of the program lines
with a RENUM command
11. Execution of a SWAP statement for a variable to which no value

FO

50

Field overflow
The size of the random file variables specified in a FIELD state-
ment exceeds the size of a record specified by an OPEN statement.

12

Illegal direct

A statement that is illegal in the direct mode was entered in direct
mode.

Input past end
An attempt was made to input a file which was empty or a file from

which all data had been read. (To avoid this error, use the EOF
function.)

62

Input past end

The. key was pressed while the RS-232C interface was waiting
for input with an INPUT #, INPUTS, or a similar command.

10

57

Device 1/0 error

An error occurred involving input or output to a peripheral device.

<Possible causes >

1. An 1/0 error occurred during access to a disk device.

2. An error occurred during input from the RS-232C interface. (In
this case, the error condition will be reset if input is continued,
but there is no assurance that data received will be correct.)

3. The printer power was off or a fault occurred when data was
output to the printer.

IT

51

Internal error
An internal malfunction occurred in BASIC.

LO

23

Line buffer overflow
A line that did not fit in the line buffer was input.

has been given by a LET statement

hPDF -

wwww fastio.com

K4

LS

15

String too long
The length of a string variable exceeds 255 characters.

MF

67

Too many files

An attempt was made to create a new disk file after all directory
entries were full.

MO

22

Missing operand

An operand required for an expression is missing.

K-5

http://www.fastio.com/

Message

Code

Description

NE

53

File not exist
The file name specified in a LOAD, KILL, NAME, or OPEN state-
ment does not exist on the disk.

Message

Code

Description

NF

NEXT without FOR

A NEXT statement was executed without a corresponding FOR

statement.

< Possible causes >

1. A FOR statement corresponding to the NEXT was not executed
previously.

2. The variable in a NEXT statement does not correspond to any
previously executed FOR statement variable.

3. Execution branched to a point within a FOR/NEXT loop from
elsewhere in the program.

ov

14

Overflow

A numeric value was encountered whose magnitude exceeds the limits

prescribed by BASIC.

< Possible causes>

1. The result of an integer calculation was outside the range — 32768
to 32767.

2. The result of a single or double precision number calculation was
outside the range —1.70141E38 to 1.70141E38.

3. The argument specified for the CINT function was outside the
range — 32768 to 32767.

4. The argument specified for the HEX$ or OCTS$ function was out-
side the range — 32768 to 65535.

NR

19

No RESUME

No RESUME statement was included in an error processing rou-
tine. All error processing routine must conclude with an END or
RESUME statement.

oD

Out of data

A READ statement was executed when there was no unread data

remaining in the program’s DATA statement.

< Possible causes >

1. The number of data items in a DATA statement was smaller than
that of the variables in a READ statement.

2. Incorrect specification of a RESTORE statement.

3. Incorrect delimiting punctuation used in a DATA statement

RG

RETURN without GOSUB

A RETURN statement was encountered which did not correspond

to previously executed GOSUB statement.

< Possible causes >

1. Execution was transferred to a subroutine by a GOTO statement
(GOSUB must be used).

2. The line number specified in a RUN command indicated a line
in a subroutine.

3. The main program included no GOTO or END statement at the
end and the program flow moved into a subroutine.

RN

63

Bad record number
The record number specified in a PUT or GET statement was zero.

OM

Out of memory

The memory available is insufficient for executing a program.

< Possible causes >

The program is too long.

The program uses too many variables.

The suscript range specified in a DIM statement is too large.

An edxpression has too many levels of parentheses.

. FOR...NEXT loop or GOSUB...RETURN sequences are nest-
ed to too many levels.

voR W

RW

RESUME without error

A RESUME statement was executed outside an error processing

routine.

<Possible causes >

1. A RESUME statement was encountered in an error processing
routine to which the program was passed by a GOTO or GOSUB
statement.

2. A RESUME statement was encountered in an error processing
routine that was executed due to the absence of an END state-
ment between the main and error processing routines.

oS

14

Out of string space
Insufficient memory space is available for storing string variables.

K-6

p\\:) PDF - www . fastio.com

K-7

http://www.fastio.com/

Message | Code Description

UL 8 Undefined line number
A non-existent line number was specified in one of the following com-|
mands or statements: GOTO, GOSUB, RESTORE, RUN, RENUM.

UP 21 | Unprintable error
No error message has been provided for the error codes, 27, 31-49,
56, 59, 60, 73-255.

WE 29 | WHILE without WEND
A WHILE statement was encountered without a correspondingl
WEND.

WH 30 | WEND without WHILE
A WEND statement was encountered without a corresponding]
WHILE.

wP 69 | Disk write protect

An attempt was made to write a file to a disk which was write]
protected by a write protect tab.

Message | Code Description
SN 2 Syntax error
A statement does not conform to the BASIC syntax rules.
< Possible causes >
1. Wrong reserved word(s)
2. Unmatched parentheses
3. Wrong delimiting punctuation (commas, periods, colons, or semi-
colons)
4. Variable name beginning with a character other than a alpha-
betic character
5. Reserved words used as the first characters of a variable name
6. Wrong number or type of arguments specified in a function or
statement
7. Type of a value included in a DATA statement did not match
the corresponding variable in the list of variables specified in a
READ statement.
ST 16 | String formula too complex
A string expression has too many levels of parentheses.
™ 13 | Type mismatch
A string was assigned to a numeric variable or a numeric value to
a string variable.
< Possible causes >
1. An attempt was made to assign a numeric value to a string
variable.
2. An attempt was made to assign a string to a numeric variable.
3. The wrong type of value was specified as the argument of a
function.
UF 18 | Undefined user function

A call was made to an undefined user function.

< Possible causes >

1. The letters FN were used at the beginning of a variable name.

2. The function name was specified incorrectly in the DEFFN state-
ment or when the function was called.

3. The user function was called before the corresponding DEFFN
statement was executed.

K-8

F - www.fastio.com

K-9

http://www.fastio.com/

[IhPDF -

Appendix L DERIVED FUNCTIONS

Functions that are not intrinsic to PX-4 BASIC may be calculated as follows:

Function HC-40/41 BASIC Equivalent
SECANT SEC(X)=1/COS(X)
COSECANT CSC(X)=1/SIN(X)
COTANGENT COT(X) = COS(X)/SIN(X)

INVERSE SINE

ARCSIN(X)=ATN(X/SQR(-X*X +1))

INVERSE COSINE

ARCCOS(X) = — ATN(X/X * X + 1))
+1.570796326794897

INVERSE SECANT

ARCSEC(X)=ATN(SQR(X * X — 1)) +
(SGN(X) — 1 % 1.570796326794897

INVERSE COSECANT

ARCCSC(X)=ATN(1/SQR(X*X - 1)) +
(SGN(X) — 1) * 1.570796326794897

INVERSE COTANGENT

ARCCOT(X) = — ATN(X)
+1.570596326794897

HYPERBOLIC SINE

SINH(X) = — (EXP(X) — EXP(- X))/2

HYPERBOLIC COSINE

COSH(X) =EXP(X) + EXP(—- X))/2

HYPERBOLIC TANGENT

TANH(X) = — EXP(— X)/(EXP(X)+ EXP(2
X)) *2+1

HYPERBOLIC SECANT

SECH(X) =2/(EXP(X) + EXP(- X))

HYPERBOLIC COSECANT

CSCH(X) =2/(EXP(X) — EXP(~ X))

HYPERBOLIC COTANGENT

COTH(X) = EXP(- X)/(EXP(X) - EXP
(-X)*2+1

INVERSE HYPERBOLIC SINE

ARCSONH(X)=LOG(X+SQR(X * X + 1))

INVERSE HYPERBOLIC COSINE

ARCCOSH(X) = LOG(X + SQR(X * X — 1))

INVERSE HYPERBOLIC TANGENT

ARCTANH(X)=LOG(1 + X)/(1 - X))/2

INVERSE HYPERBOLIC SECANT

ARCSECH(X) = LOG((SQR(— X * X + 1) +
1)/X)

INVERSE HYPERBOLIC COSECANT

ARCCSH(X) = LOG((SGN(X) * SQR(X * X +
1)+ 1/X)

INVERSE HYPERBOLIC COTANGENT

ARCCOTH(X)=LOG((X + 1)/(X — 1))/2

www . fastio.com

L-1

Appendix M MEMORY MAP

&HO0000 |
&H0100 |
BASIC work area
BASIC program variable area
d
1
String area
Stack area
&HXXXX
&H6000 | |----- User-defined character area - --—————————___
. Machine language area
&HYYYY
BDOS - BIOS
RAM disk
&HEO000
OS work area
&HFFFF

&HXXXX: Must be specified in the /M option when starting BASIC, or with
the CLEAR command. Must be less than &H6000 or SHYYYY,
whichever is smaller.

&HYYYY: This value depends on the sum of the sizes of the RAM disk and
user BIOS areas. See APPENDIX G ‘‘Machine Language Pro-
grams”’ for further information.

M-1

http://www.fastio.com/

2. LST: device selection

Appendix N DIP SWITCH SETTING

When an external printer or optional Cartridge Printer is used, select appropri-
ate setting according to the device to be used.

When the RS-232C or serial interface is used, confirm the parameters such as
baud rate match with those of the device connected. Use CONFIG.COM to

The DIP swith located inside the ROM capsule compartment is used to select select interface parameters.

some of system configurations.
To change DIP switch setting:

1) Turn off the power switch.

2) Change the desired setting by a ball-point pen, twizers or small screw driver.
3) Push the reset switch on the right side of the computer.

4) Turn on the power switch.

Device name SW-5[SW-6

Serial interface | OFF | OFF
RS-232C interface | OFF | ON
Cartridge printer | ON | OFF

Printer interface | ON | ON

e} DIP switch

s 0] o8

e ow: o

DIP switch

1. Country selection

International character set can be selected by setting of four switches.
It can be also selected by using CONFIG.COM of CP/M utilities. See Operat-
ing Mannal for details.

Keyboard type| SW-1 | SW-2 | SW-3 | SW-4
ASCII ON ON ON ON
France OFF | ON ON ON
German ON | OFF | ON | ON
England OFF | OFF | ON ON
Denmark ON ON | OFF | ON
Sweden OFF | ON | OFF | ON
Italy ON | OFF | OFF | ON
Spain OFF | OFF | OFF | ON

. Norway OFF | ON ON | OFF

N-1 N-2
-www fastio.com

http://www.fastio.com/

	./brm_a1.tif
	./brm_b1-b2.tif
	./brm_c1-d1.tif
	./brm_e1-e2.tif
	./brm_e3-e4.tif
	./brm_e5-f1.tif
	./brm_f2-f3.tif
	./brm_f4-f5.tif
	./brm_f6-g1.tif
	./brm_g2-g3.tif
	./brm_g4-g5.tif
	./brm_g6-g7.tif
	./brm_h1-h2.tif
	./brm_i1-i2.tif
	./brm_i3-j1.tif
	./brm_j2-k1.tif
	./brm_k2-k3.tif
	./brm_k4-k5.tif
	./brm_k6-k7.tif
	./brm_k8-k9.tif
	./brm_l1-m1.tif
	./brm_n1-n2.tif

