LOC

LOC (< file number>)

This function can be used to control the flow of program execu-
tion according to the number of records or file sectors which have
been accessed by a program since the file was opened.

16
29
1]
40
50
=14
70
g6
96
160
110
1260
130
146
1506
166
176

ouT
1
INF
1
INF
Ok

ChhPDF -

been read or written since the file was opened.

When the specified file is the PX-4’s RS-232C interface, the LOC
function returns the number of bytes of data in the RS-232C

receive buffer.

ON ERROR GOTO 160
OFPEN"R",#1,"A: LOCTEST",S

PRINT “QUTFUT"
FIELD#1,5 AS A%

FOR A=1 TO 20:LSET A$=STR$ (A):PRINT STR$(A)::PUT#1,A:NEXT
PRINT

CLOSE

DFEN"R", #1, "A: LOCTEST",S

PRINT "INPUT"

FIELD #1,5 AS A%

IF LtOC(1)>10 THEN 150

GET#1

PRINT A$S

GOTO 116

ERKROR 230

IF ERR=23% THEN FRINT:PRINT "INFUT PAST LIMIT"
END

FUT
2345 6789 1011 1213 14 15 16 17 18 19 2¢
uT

2 3 4] & 7 8 9 16 11
Ut FAST LIMIT

3-106

wvvwfastio.com

With random access files, returns the record number which will
be used by the next GET or PUT statement if that statement is
executed without specifying a record number. With sequential
files, returns the number of file sectors (128-byte areas) which have

LOCATE

Purpose
Remarks

LOCATE [<X>LLI<Y>1, <cursor switch>1]]
Moves the cursor to the specified position.

This statement moves the cursor to the screen position whose
horizontal character coordinate is specified by < X> and whose
vertical character coordinate is specified by <Y >. The value
specified for <X > must be in the range from 1 to Xmax and
that specified for <Y > must be in the range from 1 to Ymax,
where Xmax and Ymax are determined by the size of the virtual
screen.

< cursor switch> is a switch which determines the status of the
cursor following execution of the LOCATE statement. Cursor
display is turned off if 0 is specified for <cursor switch>, and
cursor display is turned on if 1 is specified. Normally, the cursor
is not displayed during execution of BASIC programs; however,
it can be displayed by executing a LOCATE statement with 1
specified for < cursor switch>. The BASIC interpreter also for-
cibly sets the cursor switch to 1 whenever it returns to the com-
mand input mode. (The cursor is also always displayed during
execution of an INPUT or LINE INPUT statement, regardless
of the status of the cursor switch.)

MO error (Missing operand) — A required operand was not speci-
fied in the statement.

FC error (Illegal function call) — The number specified in one
of the statement operands was outside of the prescribed range.

OV error (Overflow) — The number specified in one of the state-
ment operands was outside of the prescribed range.

3-107

http://www.fastio.com/

LOF (<file no.>)

Format
urpose

LOF
P Returns the size of a file.

R When the file specified in < file no.> is a disk file, the LOF func-
tion returns the size of that file. When the file is open in the “R”’
mode, the size of the file is calculated based on the record size
specified when the file was opened and the maximum record num-
ber which has been written to that file. When the file is open in

the “I’’ or ““O’’ mode, its size is calculated based on the number
of records written and a record size of 128 bytes.

If the file specified in < file no.> is the RS-232C interface, the
LOF function returns the number of bytes remaining in the receive
buffer.

Under CP/M, the size of files is determined in 128-byte units.
Therefore, if a record size of less than 128 bytes is used for a ran-
dom access file, the value returned by the LOF function will be
greater than that indicated by the maximum record number
output.

NOTE:

When the LOF function is executed against a disk file, the disk must be accessed
in order to determine the size of the file. Therefore, when a random access file
is used in a retrieval program or the like, execution time will be greatly increased
if the LOF function is executed repeatedly. To prevent this, substitute the LOF
value into a variable at the beginning of the retrieval loop, then refer to the vari-
able inside the loop instead of the LOF function.

3-108

ChibPDF - www.fastio.com

LOG

Format
Purpose
Remarks

LOGX)
Returns the natural logarithm of X.

The value specified for X must be greater than zero. LOG(X) is
calculated to the precision of the numeric type of expression X.

To obtain the logarithm to another base the mathematical con-
version has to be carried out as in the first example below.

To obtain a number from its logarithm (i.e. its antilogarithm) use
EXP (X) as shown in the second example.

Example 1

1@ CLS

2@ INFUT "What base logarithm do you want "iM

@ FRINT: INPUT “What number do you want the log of ";X

48 Z = (LOG(X)/LOG(N)): "THIS IS THE FORMULA FOR CONVERTING
NATURAL LOGE TO OTHER RASES

S0 PRINT: PRINT “Log to the base ";N;" of ";X3" is ";Z

&@ END

What base logarithm do you want ? 10
What number do you want the log of 7?7 100

Log to the base 10 of 100 is 2
Ok

What base logarithm do you .want 7 8
What number do you want the log of 7 24
b?g to the base 8 of 34 is 1,69582

3-109

http://www.fastio.com/

Example 2

LOGIN

Format
Purpose
Remarks

CLS ‘
1”% INPUT "What is the number of which you want the natural

lo ".X] + 3 "oy
e F‘F\'?NT;F'F(INT"The log to the base e of ";X;' is ; LOG (XD
4@ FRINT:PRINT"The antilog (given by EXP(X)) is "j;EXP(LOG(X))

5@ END

What is the number of which you want the natural log ? 23
The log to the base e of 23 is %. 13549

The antilog (given by EXP(X)) is 23

Ok

What is the number of which you want the natural log ? 657
The log to the base e, of &57 is 6.48769

The antilog (given by EXP(X)) is 657

ok

3-110

ChibPDF - www.fastio.com .

LOGIN <program area no.>[,R]
Switches between BASIC program areas.

A number from 1 to 5 is specified in <program area no.>, in-
dicating one of the five BASIC program areas. When the R op-
tion is not specified, executing this command causes the BASIC
interpreter to switch to the specified program area and stand by
for entry of commands in the direct mode. In this case, the vari-
able area is cleared and all open files are closed.

When the R option is specified, the specified program area is
selected and the program in that area is executed immediately,
starting with its first line. In this case, the variable area is not
cleared and any files which are open at the time of command ex-
ecution remain open.

FC error (lllegal function call) — A number other than 1 to 5
was specified in <program area no.>.

MO error (Missing operand) — A required operand was not speci-
fied in the command.

3-111

http://www.fastio.com/

LPOS

Remarks

10
26
0

40

B

LPOS(X)

Returns the current position of the print head pointer in the printer
output buffer.

The maximum value returned by LPOS is determined by the line
width which has been set by the WIDTH LPRINT statement, and
does not necessarily correspond to the physical position of the
print head. This is especially true if a control character has been
sent to the printer; see the program below for an example of this.

X is a dummy argument, and may be specified as any numeric
expression.

In the example below, at the end of line 100 ten characters have
been printed. The position in the buffer is thus 11. Line 20 adds
two control characters compatible with EPSON printers to cause
the printer to change the print style. The first character is a con-
trol character, which is ignored by the LPOS function. The se-
cond character is used by the printer but not printed; it is in fact
the letter <“E’’. The position in the buffer as returned by LPOS
is now 12 because only this character has been added. Line 30
adds another ten characters to the line, and thus LPOS returns
a value of 22.

LPRINT "1274567890"; : GOSUER 100
LFRINT CHR$ (27) iCHR$ (69) 3 : GOSUR 1606
LFRINT "1234567896";:6G0SUB 100

END

190 A
116 RETURN

LFOS (0 :PRINT"Print head pointer is at position "if

1274547990 1234567899

5] 3

run
Frint head pointer is at position 11

1”

Frint head pointer is at position 2

D

Frint head pointer is at position <=

Q%

ChhPDF -

3-112

wvvwfastio.com

LPRINT/LPRINT USING

Purpose

Remarks

Example 1

Example 2

LPRINT [<list of expressions>]
LPRINT USING < format string > ; <list of expressions >

These statements are used in the same manner as the PRINT and
'PRINT USING §tatements, but output is directed to the printer
instead of the display screen.

PRINT, PRINT USING

10 A =23

20 A% = "There are *“

I0 LPRINT A%$;A;" vowels in ° o
o HAH computer

There are I vowels in ‘computer’

1@ "THE LFRINT COMMAND
20 = 3
I A% = "There are "
40 LPRINT A£1A:" vowel in -
; als - s
S LPRINT omputer

ga *THE LFRINT USING "'" COMMAND

o LPRINT USING "'"i"AAA":"BER";"CCC"
86 LERINT ' Freee
90 "THE LFRINT USING "\ *

166 A% = "12T456" COnnAND
116 B$ = "ABCDEF"

170 LERINT USING "\ \";A$;ES$

176 LFRINT USING "\ \"iA®:E®

146 LFRINT o

159 *THE LPRINT USING "&" COMMAND
1660 LPRINT USING "%";A$:" = ";H$
176 LPRINT '

3-113

http://www.fastio.com/

*THE LFRINT USING "#" COMMAND e

LPRINT USIMG "####"i13.12512. 63 1232435

LFRINT . .
LERIMT USING "##$#_ ## 11273112, T43127.4565 .12
LPRINT

*THE LFRIMT USIMNG "+#" COMMAND

LERIMT USING "+#### "i127

LFRINT

STHE LFRINT USING "#-" COMMANMD

LFRINT USING "####- "3T435:-456

LFRINT

*THE LFRIMT USING "=x" COMMAND - I
LERINT USING "=*x####. ## "312. I5:123.555: 555555, 8%
LFRINT

*THE LFRIMT USING "$%' COMMAND e e e .
LFRINT USING "sEHH##. ## "112.35:127.55555335009. a8
LPRINT

THE LFRINT USING "#+" COMMAND e cceen
LEFRINT USING "$*x##d#, ## "312.35:127.53355555500. SeH#
LFRINT

TTHE LPRINT USING "*x$" COMMAND e .
LERINT USING "#*xSHu##, ##% 512,353 123,.555:955555. 88
LPRINT

*THE LPRINT USING "##,.##" COMMAND

LPFRINT USING "#s#i#s#s, (HH#"3 555559. 88#

LFRINT o

*THE LPRINT USING "#i#.##~"""" COMMAND e -
LERINT USING *###. g~~~ "1125. 453 12.34531254.5
LFPRINT

TUSING THE UMNDERSCORE

LERINT USING “###_%"i1123

LEFRINT

*USING OTHER CHARAACTERS

LERINT USING "##/##/##4"312734356

LFRINT _
LFRINT USING " (###) "1 127
LFARINT _ _
LFRINT USIHG "<###x"1 127
LFRINT
3-114
- wwwyfastio.com

LSET/RSET

Purpose

Remarks

See also

LSET <string variable > = <string expression >
RSET <string variable > = <string expression>

These statements move data into a random file buffer to prepare
it for storage in a random access file with the PUT statement.

< string variable > is a variable which has been assigned to posi-
tions in a random file buffer with the FIELD statement. <string
expression> is any string constant or string variable.

If the length of <string expression> is less than the number of
bytes which were assigned to the specified variable with the FIELD
statement, the LSET (Left SET) statement left-justifies the string
data in the variable and the RSET (Right SET) statement right-
justifies it. The positions following left-justified data and those
preceding right-justified data are padded with spaces.

If the length of <string expression> is greater than the number
of bytes assigned to the specified variable, excess characters are
truncated from the right end of <string expression> when it is

moved into the buffer. (This is true for both the LSET and RSET
statements.)

Numeric values must be converted to strings before they can be
moved into a random file buffer with the LSET or RSET state-
ments. This is done using the MKI$, MKS$, and MKD$ func-
tions described elsewhere in this Chapter, and Chapter 5.

FIELD, GET, OPEN, PUT

3-115

http://www.fastio.com/

See Chapter 5 for examples of use of LSET/RSET in a program.

NOTE:

The LSET and RSET statements can also be used to left or right justify a string
in a string variable which has not been assigned to a random file buffer. For
example, the following program left-justifies character string “CAMERA?” in
a 20-character field prepared in variable AS$ and right-justifies character string
“MAY 8, 1984’ in variable B3. This procedure can be very useful when format-

ting data for output.

10 A$=STRING$(20, *“)
s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

vartawtens [T TT T T LTI IIIITTITTT]

20 B$=A$%

234567891011121314151617181920

variawtens [TTT T T LTI LTI ITTTT]

30 N$=“CAMERA”:LSET A$=N$
3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 6
variableas [C[aAMIEIRIA] [[[T T T T[T TTTT]
A=

Spaces

40 N$=“MAY 8, 1984’":RSET B$=N$
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

variavtens [T [T T T [T T MIaIY] [e[.T [1]oTs]4]

Spaces

ChibPDF - www.fastio.com 3-116

MENU

MENU
Returns BASIC to the start-up menu.
Executing this command returns the BASIC interpreter to the
BASIC menu screen which is displayed at the time of start-up.
It 2.1150 clears all variables and closes any files which are open.
;1.“ his command resets the virtual screen size to 40 columns X 50
ines.
LOGIN, WIDTH
BRSIC Wers.x (00 PREE Miors & EFm)
EETURM o e o %i#:ﬁli'E‘ 1~1'.:'5r 1 s EREDH
lﬂﬂ_ e f
H £
F3s 5
Fef s 1]
Fos g

3-117

http://www.fastio.com/

MERGE

MERGE < file descriptor>

Merges a program from a disk device or the RS-232C interface
with the program in the currently logged in program area.

Specify the device name, file name, and file name extension un-
der which the file was saved in <file descriptor>. The device
name can be omitted if the file is in the currently active drive (the
drive which was logged in under CP/M at the time BASIC was
started). If the file name extension is omitted, ‘‘.BAS”’ is assumed.

The file being merged must have been saved in ASCII format.
Otherwise, a BF error (Bad file mode) will occur.

If any lines of the program being merged have the same numbers
as lines of the program in memory, the merged lines will replace
the corresponding lines in memory. Thus, a program brought into
the BASIC program area with the MERGE statement may be
thought of as an overlay which replaces corresponding lines previ-
ously included in the program area.

BASIC always returns to the command level following execution
of a MERGE command.

SAVE

First type in and save the following programs, making sure they
are saved in ASCII format by using the ‘“, A’’ extension as shown

below.

19 "FROGRAM "MERGEL" TO BE MERGED WITH "MERGE2" THEN "MERGEZ"
29 PRINT "HELLO MUM"

T PRINT

Ol

SAVE "A:MERGEL1".A

Ok

3-118

ChibPDF - www.fastio.com

NEW

Ok

I9 TFROGRAM "MERGEZ" T0O BE MERGED WITH "MERGE:"
40 PRINT "GOODRBYE DAD"

S8 END

SAYVE "A:MERGEZ",A

Ok

Clear the program with the NEW command, and type in the
following program.

Sa "FROGRAM "MERGE 2" WITH WHMICH "MERGE1" WILL BE ME
64 FRINT “"GOODEBYE Mum" REED
79 END

Now type

MERGE "A:MERGEL"

If th_e program in memory is listed it will be seen to consist of
the lines from both programs as follows:

1 *FROGRAM "MERGE1" TO BE MERGED WITH "MERGE?Z" "MERGET "
20 PRINT "HELLO MUM" =" THEN "MERGES
30 PRINT
S© °PROGRAM "MERGE 2" WITH WHICH "MERGE1" WILL BE MERGE

;i ~ ; MER
&6 PRINT "GOODEYE MUM" °Ep
76 END

Now type in the following.

MERGE "A:MERGEZ"

List to see that the result is as follows.

TFROGRAM "MERGEL" TO BE MERGED WITH "MERGEZ2" 3
3 GEZ2 VI GEZ"

PRINT "HELLO MUM*“ THEN "MERGE:

2 TFROGRAM "MERGEI" TO BE MERGED WITH * {

: T - MERG "

49 FRINT "GOODRYE DAD" e

S99 END

&40 FRINT "GOODERYE MUM"

70 END

16
-

3-119

http://www.fastio.com/

ChbPDF -

MIDS$

As a statement
MIDS (< string expression 1>,n[,m]) = <string expression 2>

As a function
MID$ (X$,J[,KD

As a statement, replaces a portion of one string with another. As
a function, returns the character string from the middle of string
expression X$ which consists of the K characters beginning with
the Jth character.

When MIDS$ is used as a statement, n and m are integer expres-
sions and < string expression 1> and <string expression 2> are
string expressions. In this case, MIDS$ replaces the characters be-
ginning at position n in <string expression 1> with the charac-
ters of <string expression 2> . If the m option is specified, the
first m characters of <string expression 2> are used in making
the replacement; otherwise, all of <string expression 2> is used.
However, the number of characters replaced cannot exceed the
length of the portion of < string expression 1> which starts with
character n.

For example:

10 A$=““ABCDEFG” : LET B$ = ‘‘wxyz”’
20 MID$(A$,3)=BS$
30 PRINT AS

will give the result “ABwxyzG’’ for A$. Whereas,

10 A$=“‘ABCDEFG”’ : LET B$ = ‘‘wxyz”’
20 MID$(AS$,3,2)=BS
30 PRINT AS

will give a value of “ABwWxEFG”’.

When MIDS$ is used as a function, J and K must be integer ex-
pressions in the range from 1 to 255. If K is omitted, or there
are fewer than K characters to the right of the J th character,the
string returned consists of all characters to the right of the Jth

3-120

wvvwfastio.com

See also
Example

character. If the value specified for J is greater than the number
of characters in X$, MIDS$ returns a null string.

LEFTS$, RIGHTS$S

INSERT MIDS$

1@ A¥ = "Computers 1is great!"
20 ¥ = "are"
Z@ PRINT A%

4@ MID¥#(A%¥,11) = B#%
S0 FRINT A%

&@ FRINT

7@ Bf = "super-—duper"
8@ MID*¥(A%,15,5) = B#¥
90 FRINT A%

18@ FRINT

118 B = MID¥(A%,7,12)
120 FRINT B#

1Z® END

Computers 1is great!
Computers are great!

Computers are super'!

ers are supe

3-121

http://www.fastio.com/

ChhPDF -

MKI$/MKS$/MKD$

MKIS$(< integer expression>)

MKSS$(< single precision expression>)
MKDS$(< double precision expression>)
Converts numeric values to string values for storage in random
access files.

Numeric values must be converted to string values before they
can be placed in a random file buffer by a LSET or RSET state-
ment for storage with a PUT statement. MKI$ converts integers
to 2-byte strings, MKS$ converts single precision numbers to
4-byte strings, and MKDS$ converts double precision numbers to
8-byte strings.

Unlike the STR$ function, which produces an ASCII string whose
characters correspond to the digits of the decimal representation
of a number, these functions convert numeric values to characters
whose ASCII codes correspond to the binary coded decimal values
with which corresponding values are stored in variable memory.
In many instances, less disk space is required for storage of numbers
which are converted to strings using the MKI$/MKS$/MKD$
functions.

CV1I/CVS/CVD

See also

For examples of the use of these functions, see the section of
Chapter 6 dealing with random access files.

FILES "A:

MERGE 1 .BAS MERGEZ .BAS

Ok

MAME "A:MERGE1L.EAS" AS "A:CHAIN.RAS"
Ok

FILES "A:
CHAIN . BAS
Ok

MERGEZ .BAS

3-122
wvvwfastio.com [g

MOTOR

Format
Purpose
Remarks

MOTOR [<switch>]
Controls the motor of the external audio cassette.

This statement turns on or off the external audio cassette’s REM
(remote) terminal. The REM terminal is turned on if ON is speci-
fied for <switch>, and is turned off if OFF is specified. If
<switch> is not specified, execution of this statement reverses
the setting of the REM terminal.

3123

http://www.fastio.com/

MOUNT

ChhPDF -

Remarks

See also

MOUNT

Reads the microcassette tape directory into memory and enables
the tape for use.

A MOUNT command must be executed before data can be writ-
ten to or read from a microcassette tape. The MOUNT command
prepares the tape for access by reading its directory into memory.

Before executing the MOUNT command, any previously mount-
ed tape must be unmounted by executing the REMOVE

command.

10 error (Device 1/0 error) — The drive does not contain a cas-
sette tape.

DR error (Disk read error) — An error occurred while the
microcassette tape was being read.

AC error (Tape access error) — The MOUNT command was ex-
ecuted without unmounting the previous tape with the REMOVE

command.

REMOVE
Section 2.4.5

3-124

wvvwfastio.com

NAME

Format
Purpose
Remarks

See also

NAME <old filename > AS <new filename >
Changes the name of a disk device file.

Both <old filename> and <new filename> are specified as a
device name, file name, and extension. The device name may be
omitted if the file resides on the disk device which is currently
active.

The file name specified in <old filename > must be that of a cur-
rently existing file, and that specified in < new filename > must
be a name which is not assigned to any other file belonging to
the applicable disk device. If <old filename> is not the name
of an existing file, an NE error (File not found) will occur; if
<new filename> is already assigned to an existing file, an FE
error (File already exists) will occur. If the file being renamed has
a file name extension, that extension must be specified in <old
filename > .

If the NAME command is executed with a file which is already
open, there is no guarantee that the file will remain intact. Using
the CLOSE command will ensure that all files are closed.

This command changes only the name of the specified file; it does
not rewrite the file to another area in the storage medium.

FILES

3-125

http://www.fastio.com/

NEW

Purpose

Remarks

See also
Example

NEW

Deletes the program in the currently logged in program area and
clears all variables.

Enter NEW at the command level to clear the memory before
starting to enter a new program. BASIC always returns to the
command level upon execution of a NEW command.

An FC error (Illegal function call) will occur when this command
is executed if program editing has been disabled by executing a
TITLE command with the P (protect) option specified.

TITLE

LOGIN 1

F1: DEMOFROG 27 Bytes
Ok

NEW

Ok

LOGIN 1
Fil: @ Bytes

Ok

3-126

CChihPDFE - www . fastio.com

OCTs

Format
Purpose

OCTS$(X)
Returns a string which represents the octal value of X.

The numeric expression specified in the argument is rounded to
the nearest integer value before it is evaluated.

A description of using numbers and numeric variables is given
in Chapter 2,

10 CLS

20 INFUT "What value do you want to convert "3 X
30 PRINT

4@ PRINT "The octal value of “;X;" is ";0CT#$(X)
90 FOR J = 1 TO 3000:NEXT

&0 GOTO 10

What value do you want to convert ? 23

The octal value of 23 is 27

What value do you want to convert 7? 983
The octal value of 983 is 1727

3-127

http://www.fastio.com/

ON COM(n) GOSUB...RETURN

LCIIHPDF - wwvw fastio.com

ON COM() GOSUB [<line number>]...
RETURN [<line number>]

Defines the starting point of the communication trap routine to
which processing branches when a communication line interrupt
is generated.

This statement defines the starting point of the communication
trap routine to which processing branches when a communica-
tion port input interrupt is generated. The n in COM(n) indicates
the communication port number, and is specified as a number
from 0 to 3. <line number > is the first line of the communica-
tion trap routine. Communication interrupts are disabled if 0 is
specified for <line number> or the parameter is omitted.
Processing is returned to the main routine from the communica-
tion trap by the RETURN statement. If RETURN is executed by
itself, processing resumes from the point at which it was inter-
rupted; if a line number is specified following RETURN, process-
ing resumes with the first statement in that line.

Since only one communication device (COMn:) can be open at
a time, there is no possibility of interrupts being generated from
two communication ports simultaneously. The COM(n) ON state-
ment must be executed to allow branching to the communication
V trap. Communication interrupts are not generated if COM(n)
OFF is executed. If COM(n) STOP is executed, no interrupt is
generated but data received is saved; an interrupt is then generat-
ed the next time COM(n) ON is executed. Once one interrupted
has been generated, other are deferred just as if COM(n) STOP
were executed. Unless the COM(n) OFF statement is executed in
the communication trap routine, generation of deferred interrupts
is automatically reenabled upon return to the main routine in the
same manner as when COM(n) ON is interrupted. Communica-
tion interrupts are not generated except during execution of a
BASIC program. Further, all interrupts are automatically disa-
bled if any error occurs. When using the RETURN <line
number > statement, remember that the status of any subroutines
(GOSUB) or loops (WHILE or FOR/NEXT) being processed re-
mains unchanged when processing branches to the communica-
tion trap.
3-128

ON ERROR GOTO

See also
Example

NOTE:

ON ERROR GOTO [<line number>]

Causes program execution to branch to the first line of an error
processing routine when an error occurs.

Execution of the ON ERROR GOTO statement enables error trap-
ping; that is, it causes execution of a program to branch to a user-
written error processing routine beginning at the program line
specified in <line number > whenever any error (such as a syn-
tax error) occurs. This error processing routine then evaluates the
error and/or directs the course of subsequent processing. For ex-
ample, it may be written to check for a certain type of error or
an error occurring in a certain program line, then to resume exe-
cution at a certain point in the program depending on the result.

If subsequent error trapping is to be disabled, execute ON ERROR
GOTO 0. If this statement is encountered in an error processing
routine, program execution stops and BASIC displays the error
message for the error which caused the trap. It is recommended
that all error processing routines include an ON ERROR GOTO
0 statement for errors for which are not provided for in the error
recovery procedures. If <line number > is not specified, the ef-
fect is the same as executing ON ERROR GOTO 0.

ERROR, RESUME, ERL/ERR, Appendix A

See the program example under ERROR.

BASIC always displays error messages and terminates execution Jfor errors which
occur in the body of an error processing routine; that is, error trapping is not
performed within an error processing routine itself.

3-129

http://www.fastio.com/

ClihPDF -

ON...GOSUB/ON...GOTO

Purpose

Remarks

Example 1

ON <numeric expression> GOSUB <list of line numbers>
ON < numeric expression> GOTO <list of line numbers>

Transfers execution to one of several program lines specified in
<list of line numbers> depending on the value returned when
< numeric expression> is evaluated.

The value of <numeric expression> determines to which of the
line numbers listed execution will branch. If the value of
< numeric expression> is 1, execution will branch to the first line
number in the list; if it is 2, execution will branch to the second
line number in the list; and so forth. If the value is a non-integer,
the fractional portion is rounded.

An FC error (Illegal function call) will occur if the value of
< numeric expression> is negative or greater than 256. -

With the ON...GOSUB statement, each program line indicated
in <list of line numbers> must be a line of a subroutine.

GOSUB...RETURN, GOTO

10 CLS

200 INFUT "Type in a number from 5 to 10 "X
Y = X - 4

AQ OM Y GOTO 40,80,100,120,140,160

5@ END

60 PRINT X3"— 4 = ";Y:;" so this is line &0"
7@ 6OTO 20

80 FRINT X3“—- 4

9@ GOTO 20 .

100 FRINT X3"— 4
11@ GOTO 20

120 FRINT X3"-~ 4
120 GOTO 20

140 FRINT X3"— 4
150 6GOTO 20

160 PRINT X;"— 4 ":¥3" so this is line 160"
170 GOTO 20

1

"s¥;" so this is line 80"

":1¥;" so this is line 100"

":Y¥;" so this is line 120"

":1¥;" so this is line 140"

3-130

wvvwfastio.com

Type in a number from S to 16 7 7

7 - ﬂ = 3 s0 this is line 166
Type in a number from S to 16 7 9
? - 4= 5 eo this is line 14
Example 2
10 CL.S

20 INFUT "Type in a number 5 v
30 ON X GOSUE 50,60,70,8@,9;r0m Pre s X
40 GOTOD 20

9@ FRINT "ONE":RETURN

60 FRINT “TWO": RETURN

7@ FRINT "THREE":RETURN

80 FRINT "FOUR":RETURN

@ FRINT "FIVE":RETURN

Type in a nunber from 1 to ?

[}
3]

TWO

Type in a number from 1 to 5 7
FOUR e
Type in a nunber from 1 to 5 7 =
THREE i

NOTE:

Only numeric expressions can be used to control branching with the ON...GOSURB
and ON.~..GOTO statem'ents. However, it is possible to derive numeric values
Jrom string values by using functions such as ASC and.INS TRS. For example,

the following sample program derives numeric results Jor the ON...GOSUB and
ON...GOTO statements based on input of string values.

3-131

http://www.fastio.com/

|

19 CLS ‘ A L
2 INFUT “Type in & word beginning with A, B or € "3

‘ X = ASC(AS)
43 ¥ = X - &4

” 55 0N Y GOSUE 76,110,150
?‘ &HH END

‘ 3 FRINT “"64 from this code to give 1, thus causing
o FRINT "subroutine at line 70 to be execuvted
w 1o6 RETURN

FRINT "at line 11@ to be executed"
RETURN

‘ FRINT "&4 from this giving

i 170 FRINT "line 150 is executed.”
“ 186 RETURN

f

Type ir a word beginning with A,AB OF_C ? Albatross
The ASCIT code for A is 65, so line 40 subtracts

44 from this code to give 1, thus causing the

’ subroutine at line 70 to be executed

Ol

Type in a ward beginning with A, B or g ? Carousel
The ASCII code for C is &7, and line 490 subtracts
&4 from this giving 3 so that the subroutine on
line 15¢ is executed.

Ok

: !“ | 3132

L'ClihPDF - wwwy fastio.com

A%

73 PRIMT "The ASCII code for A is 65, so line 40 subtracts

the"

119 PRINT “"The ASCII code for B is b6, SO line 40 ﬁubtfacﬁg
5 FRINT "64 from this to give 2, causing the subroutine

FRINT "The ASCII code for € is &7, and line 4 sgbtracts
zo that the subroutine on

OPEN

Purpose

Remarks

OPEN ‘‘<mode>",[#] < file number >, < file descriptor>,
[<record length >]

The OPEN statement enables input/output access to a disk device
file or other device.

Disk device files must be OPENed before any data can be input
from or output to such files. The OPEN statement allocates a
buffer for I/0 to the specified file and determines the mode of
access in which that buffer will be used. <mode> is a string ex-
pression whose first character is one of the following.

Ooro........ Specifies the sequential output mode.
Tori.......... Specifies the sequential input mode.
Rorr.. ... Specifies the random input/output mode.

Any mode can be specified for a disk device file, but only the
“I”” or ““O”’ modes can be specified for devices such as the
RS-232C interface or printer.

< file number > is an integer expression from 1 to 15 which speci-
fies the number by which the file is to be referenced in 1/0 state-
ments as long as the file is open. The value of < file number >
is limited to the maximum specified in the /F: option if this op-
tion is used when BASIC is started up. Since this is 3 in the default
mode, it is necessary to ensure the /F: option is specified before
a program is run if more than 3 files are required.

< file descriptor> is a string expression which conforms to the
rules for naming files (see Chapter 2).

<record length > is an integer expression which, if specified, sets
the record length for random access files. If not specified, the
record length is set to 128 bytes.

Disk files and files on the RAM disk can be open for sequential
input or random access under more than one file number at a time.
However, a given sequential access file can only be opened for
sequential output under one file number at a time, and such a

3-133

http://www.fastio.com/

See also
Example

file cannot be open in both the sequential input and sequential
output modes concurrently.

Microcassette files can only be open for sequential input, random

access, or sequential output under one file number at a time.'Fur-
ther, only one microcassette file can be open at any given time.

The RS-232C interface can be open concurrently in the sequen-
tial input mode and the sequential output mode, but cannot be

opened in the random access mode.

Chapters S and 6.

For programming examples, see Chapters 5 and 6 and the expla-
nation of EOF.

3-134

ClhibPDF - www .fastio.com

OPTION BASE

Format
Purpose
Remarks

See also
Example

10 CLEAR

OPTION BASE <base number >
Declares the minimum value of array subscripts.

When BASIC is started, the minimum value of array subscripts
is set to 0; however, in certain applications it may be more con-
venient to use variable arrays whose subscripts have a minimum
value of 1. Specifying 1 for the value of <base number> in this
statement makes it possible to set the minimum subscript base
to one, -

Once the subscript base has been set by executing this statement,
it cannot be reset until a CLEAR statement has been executed;
executing a CLEAR statement restores the option base to 0. Fur-
ther, OPTION BASE 1 cannot be executed if any values have
previously been stored in any array variables. A DD error (Dupli-
cate Definition) will occur if the OPTION BASE statement is
executed under either of these conditions.

DIM

20 FRINT "Memory free following CLEAR: ";FRE (&)

IO OFPTION BASE O

48 DIM A(5,5,5,5)

39 PRINT “Memory free after DIM A(5,5,5,5) with OFTION BASE

A: "iFRE ()
&% CLEAR

76 OPTION BASE 1
86 DIM A(S5,5,5,5)
9@ PRINT "Memory free after DIM A(5,5,5,5) with OPTION BASE

1: "3 FRE (&)

run

Memory free following CLEAR: 7324
Memory free after DIM A(S,5,5,5) with OFPTION EASE ©: 2125
Memory free after DIM A(5,5,5,5) with OPTION BASE 1: 4869

(s1%

3-135

http://www.fastio.com/

ClihPDF -

OPTION COUNTRY

Purpose
Remarks

OPTION COUNTRY <string>

Selects the international character set.

This statement selects the international character set which is used
for keyboard input/output, display, and output to the printer.
The character set selected by this statement is determined by the

first character of the <string> parameter as follows.

“U” or “u”...... U.S.A

“F” or “f...... France
“G” or “g’...... Germany
“E” or ‘“‘e’...... England
“D” or “d”...... Denmark
“W?”» or “w’’..... Sweden
“I’ or i Italy
“S or ‘s Spain
“N” or “n”...... Norway

After execution of the OPTION COUNTRY statement, the speci-
fied character set is used for all output to the LCD screen or
printer. The currency symbol output with the PRINT USING
statement is also changed to the corresponding symbol in the ap-
plicable character set.

The OPTION COUNTRY statement can only be used with the
European version of PX-4 BASIC; if it is executed with the Ameri-
can version, a Syntax error will result.

Country selection can be changed by DIP switch setting or
CONFIG.COM of CP/M utility program. See Appendix N and
Operating Manual.

3-136

wvvwfastio.com

OPTION CURRENCY

Format
Purpose
Remarks

OPTION CURRENCY < string >
Changes the currency symbol.

This statement specifies the character which is output for the cur-
rency symbol when two consecutive currency symbol codes (&H5C
with the Japanese version, and &H24 with the export versions)
are specified at the beginning of the numeric formatting string
in the PRINT[#] USING statement.

The character output for the currency symbol is the first charac-
ter in <string>, and can be any character which is included in
the character set.

3-137

http://www.fastio.com/

UT

Format
Remarks

See also

NOTE:

OUT < integer expression 1>, <integer expression 2>

Used to send data to a machine output port.

The data to be output is specified in <integer expression 2> and
the port to which it is to be output is specified in <integer ex-

pression 1>. Both values must be in the range 0 to 255.

INP

Use of this statement requires sound knowledge of the PX-4 firmware. In§orrect
use may corrupt programs or data held in memory, including BASIC itself.

3-138

ChibPDF - www . fastio.com -

PCOPY

Purpose

Remarks

PCOPY <program area no.>

Copies the contents of the currently selected program area to
another program area.

This command copies the contents of the currently selected pro-
gram area to the program area whose number is specified in
< program area no. >. The number specified must be in the range
from 1 to 5, and must be the number of an area which does not
contain a program. It must also be the number of an area other
than the currently selected program area.

Programs which have been saved using the protect save function
cannot be transferred between program areas with this command.

FC error (lllegal function call) — A number other than 1 to 5
was specified for <program area no. > ; the currently selected pro-
gram area was specified as the destination area; the specified pro-
gram area was not empty, or; an attempt was made to PCOPY
a program saved using the protect save function.

OM error (Out of memory) — The amount of free memory avail-
able was not sufficient to allow the program to be copied.

3-139

http://www.fastio.com/

PEEK
PEEK(Q)

Returns one byte of data from the memory address specified for
J as an integer from 0 to 255.

As the name suggests, PEEK is a tunction to look at memory lo-
cations and return the value of the contents of the location
PEEKed. The contents of the location are not changed by inspect-
ing it. For the beginner learning BASIC, PEEK and the allied com-
mand POKE (which allows the contents of a location to be
changed) are commands which are difficult to understand, be-
cause it is not always easy to see the function of the values used.
They can be used in a large number of ways. Also the values are
very computer dependent. It is often possible to type many BASIC
programs into the PX-4 when they have been written for other
computers even if the BASIC is another version of MICROSOFT
BASIC. When PEEK and POKE commands are used, they are
invariably not directly translatable. For example with many com-
puters it is possible to PEEK and POKE the memory reserved
for the screen. This is not possible directly with the PX-4.

The integer value specified for J must be in the range from 0 to
65535.

POKE

If location 4 is PEEKed, the number returned will correspond to
the drive which is the default drive when returning to CP/M. This
is not the default drive for BASIC. If the value returned is <‘0”’
then A: is the default drive, if it is ‘1’’ then it is drive ‘“‘B’’ and
SO omn.

3-140
- wwwyfastio.com

POINT

POINT (<horizontal coordinate >, < vertical coordinate >)

Returns the status of the dot at the specified screen coordinates.

The POINT function returns the status of the dot at the speci-
fied graphic coordinates as a function code. If the dot is set (turned
on), the value returned is 7; if the dot is reset (turned off), the
value returned is 0. If the specified graphic coordinates are out-
side the screen, the value returned is —1.

OV error (Overflow) — An argument specified was not in the
range from —32768 to 32767.

3-141

http://www.fastio.com/

lHhPDF -

POKE

Format
Purpose
Remarks

See also
Example

WARNING:

POKE <integer expression 1>, <integer expression 2>
Writes a byte of data into memory.

The address into which the data byte is to be written is specified
in <integer expression 1> and the value which is to be written
into that address is specified in <integer expression 2> . The value
specified in <integer expression 2> must be in the range from
0 to 255.

The complement of the POKE statement is the PEEK function,
which is used to check the contents of specific addresses in
memory. Used together, the POKE statement and PEEK func-
tion are useful for accessing memory for data storage, writing
machine language programs into memory, and passing arguments
and results between BASIC programs and machine language
routines.

PEEK

An example of using BASIC to POKE a machine code routine
is described under the CALL command.

In the example under the PEEK command, it was shown how to
find out which drive would be the active drive when exiting to
CP/M. This can be altered with the BASIC POKE command.
If you have any BASIC programs in memory which you want to
save, save them first. In direct mode type ‘“‘POKE 4,1”’, then type
“SYSTEM”’ and press . You will be transferred to either
the system menu or the CP/M command line. If the menu is ac-
tive, use ESC to return to the CP/M command line. The active
drive should be shown as ‘“B>’’ which will normally be assigned
to one of the ROM sockets.

Since this statement changes the contents of memory, the work area used by
BASIC may be destroyed if it is used carelessly. This can result in erroneous oper-
ation, so be sure to check the memory map to confirm that the address specified
is in a usable area.

3-142

wvvwfastio.com

POS

Remarks

POS(<file no.>)

Returns the current position of the print head, cursor, or file out-
put buffer pointer.

When ‘0"’ is specified for < file no.>, this function returns the
current horizontal position of the cursor. The value returned
ranges from 1 to the number of columns in the virtual screen cur-
rently being output.

When a number other than ““0”’ is specified for < file no. > , this
function returns the current position of the pointer in the output
buffer for the specified file. Here, the file must be one which has
been opened in the sequential output mode or the random access
mode. The value returned for a file opened in the sequential in-
put mode will have no meaning.

When the value specified for < file no.> is other than “0”, the
value returned by the POS function will be a number in the range
from 1 to 255; immediately after the file is opened or a carriage
return is output, the value returned is ““1°’.

If the file specified is ‘““LPTO:”’, this function returns the same
value as the LPOS function.

3-143

http://www.fastio.com/

ClhihPDF -

POWER

Remarks

1) POWER OFF [,LRESUME]
2) POWER | < duration>
CONT

Allows the power to be turned off by program and controls the
auto power-off function.

Executing POWER OFF turns off the power in the restart mode.
When the power goes off in the restart mode, BASIC is restarted
by a hot start when the power is turned back on.

When POWER OFF, RESUME is executed, the power goes off
in the continue mode. When the power is then turned back on
(by moving the power switch from ON to OFF, and then back
ON again), BASIC program execution resumes with the statement
following the POWER statement which turned off the power.

When the power goes off in the restart mode, it is turned back
on again if the wake-up time set by a WAKE statement is reached
before the power is manually turned back on.

When the wake time is reached after the power has gone off in
the continue mode, program execution resumes with the statement
following the POWER statement which turned off the power.

POWER <duration> specifies the amount of time which will
elapse before the auto shut-off function automatically turns off
the power when a certain amount of time passes in the direct mode
without anything being entered from the keyboard.

Executing POWER CONT disables the auto power-off function.
The auto power-off function can later be reenabled by executing
POWER <duration>.

FC error (Illegal function call) — The value specified for
<counter value> was outside the prescribed range.

3-144

wvvwfastio.com

PRESET

Format
Purpose

Remarks

PRESET [STEP] (X,Y)I, < function code>]

R.esets (turns off) the dot at the specified graphic screen coor-
dinates.

This statement resets the dot at the graphic screen coordinates

specified by (X,Y). When STEP is specified, relative coordinates
are used.

When < function cgde> is specified, this statement sets or resets
the dot at the specified position in the same manner as the PSET

statement. If <function code> is omitted, the specified dot is
reset.

" After execution of the PRESET statement, the LRP (last refer-

ence pointer) is updated to the values specified for (X,Y).

FC error (Illegal function call) — The number specified in one
of the statement operands was outside of the prescribed range.

OV error (Overflow) — The number specified in one of the state-
ment operands was outside of the prescribed range.

3-145

http://www.fastio.com/

ChhPDF -

PRINT

Purpose
Remarks

See also

www fastio.c

PRINT [<list of expressions>]
Outputs data to the LCD screen.

Executing a PRINT statement without specifying any expressions
advances the cursor to the line following that on which it is cur-
rently located without displaying anything.

When a < list of expressions > is included, the values of the ex-
pressions are output to the display screen. Both numeric and string
expressions may be included in the list. The positions in which
items are displayed is determined by the delimiting punctuation
used to separate items in the list.

Under BASIC, the screen is divided up into zones consisting of
14 spaces each. When items in <list of expressions > are delimited
with commas, each succeeding value is displayed starting at the
beginning of the following zone. When items are delimited with
semicolons, they are displayed immediately following one another.
Including one or more spaces between items has the same effect
as a semicolon. Other display formats can be obtained by includ-
ing the TAB, SPACES$, and SPC functions.

If a semicolon or comma is included at the end of the list of ex-
pressions, the cursor remains on the current display line and values
specified in the next PRINT statement are displayed starting on
the same line. If the list of expressions is concluded without a semi-
colon or comma, the cursor is moved to the beginning of the next
line.

If values displayed by the PRINT statement will not fit on one
display line, display is continued on the next line.

LPRINT, PRINT USING, SPACES$, SPC, TAB

3-146

Example

16 FRINT 12334565789

26 FRINT 123,456,789

IO FRINT "123%;"456%; "789"
40 PRINT "AEC",

5o FRINT “DEF"

60 FRINT "ABC";

7% FRINT “DEF"

run

123 454 7469

12% 456 789
123456789

ARC - DEF

ABCDEF

Ok

NOTE:

A question mark (?) may be typed in place of the word PRINT when entering
the PRIJ\{T statement. BASIC automatically converts question marks encoun-
tered during statement execution to PRINT statements.

3-147

http://www.fastio.com/

PRINT USING

Remarks

Example 1

i
ClihPDF - www fastio

PRINT USING < format string > ; <list of expressions>

Displays string data or numbers using a format specified by
< format string>.

< format string> consists of special characters which determine
the size and format of the field in which expressions are displayed.
<list of expressions> consists of the string expressions or nu-
meric expressions which are to be displayed. Each expression in
<list of expressions > must be delimited from the one following
it by a semicolon.

The characters which make up the <format string> differ ac-
cording to whether the expressions included in <list of expres-
sions> are string expressions or numeric expressions. The
characters and their functions are as follows:

Format strings for string expressions

“"’
.

Specifies that the first character of each string included in <list
of expressions> is to be displayed in a 1-character field.

10 PRINT USING "5";"Aa";"bB";HDC“

run
AbD
Ok

‘“\n spaces\’’

Specifies that 2+n characters of each string in <list of
expressions > is to be displayed. Two characters will be displayed
if no spaces are included between the backslashes, three charac-
ters will be displayed if one space is included between the back-
slashes, and so on. Extra ¢haracters are ignored if the length of
any string in <list of expressions> is greater than 2+n. If the
length of the field is greater than that of a string, the string is
left-justified in the field and padded on the right with spaces.

3-148
com

Example 2

Example 3

190 A$="1234547"
20 B$="ABCDEFG"

39 PRINT USING "\ \";A%; BS

40 PRINT USING "\ ";5A%; Bs
run

12345ABCDE

1234547 ABCDEFG

Ok

“&”

Specifies that strings included in <list of expressions> are to be
displayed exactly as they are.

10 READ A$,B$
20 PRINT USING "%";A$;" ";B$
3@ DATA EFSON,PX-4

run
EPSON PX—-4
Ok

Format strings for numeric expressions

With numeric expressions, the field in which digits are displayed
by a PRINT USING statement is determined by a format string
consisting of the number sign (#) and a number of other charac-
ters. When the format string consists entirely of # signs, the length
of the field is determined by that of the format string.

If the number of digits in numbers being displayed is smaller than
the number of positions in the field, numbers are right justified
in the field. If the number of digits is greater than the number
of # signs, a percent sign (%) is displayed in front of the number
and all digits are displayed.

3-149

http://www.fastio.com/

Example 4

hPDF -

Example 5

WA fast

Minus signs are displayed in front of negative numbers, but (or-
dinarily) positive numbers are not preceded by a plus sign.

The following is an example of use of the # sign in the numeric
format string of a PRINT USING statement.

"315.12512.6512345

19 PRINT USING "####
20 END

run

1 © 13 Z1234%5

Ok

Other special characters which may be included in numeric for-
mat strings are as follows:

A decimal point may be included at any point in the format string
to indicate the number of positions in the field which are to be
used for display of decimal fractions. The position to the left of
the decimal point in the field is always filled (with 0 if necessary).
Digits to the right of the decimal point are rounded to fit into

positions to the right of the decimal point in the field.
10 PRINT USING “###.## "3123512.34;123.456465.12
20 END

run
123,00
Ok

12.34 123.46 Q.12

(13 + *”
A plus sign (+) at the beginning or end of the format string causes
the sign of the number (plus or minus) to be displayed in front

of or behind the number.

19 FRINT USING “+####"3 1235123
20 END

run
+123 —123

Ok

3-150

[0.COM

Example 6

Example 7

Example 8

X3 bR

A minus sign at the end of the format string causes negative num-
bers to be displayed with a trailing minus sign.

10 PRINT USING "####~ ";345;-45646
20 END

run
345 4546~
0Ok

Ciskokdd

(. .
A double asterisk at the beginning of the format string causes lead-
Ing spaces to be filled with asterisks. The asterisks in the format
string also represent two positions in the display field.

10 PRINT USING "#x##i#i#i_ #8# ;
12,355 123.555; 555555. 684
20 END

run
*k¥N12.35
Ok

*%#123.56 555555.88

“$$”

A double dollar sign at the beginning of the format string causes
the dollar sign (or other character selected with the OPTION
CURRENCY statement) to be displayed immediately to the left
of numbers displayed. The dollar signs in the format string also
represent two positions in the display field (one of which is used
for display of the dollar sign).

10 PRINT USING "$$####4.848# 3
12,353 123.5%5; S55555. 884

20 END
run
$12.35 $123.56 %$555555.68
Ok
3-151

http://www.fastio.com/

hPDF -

Example 9

Example 10

[13 * * $9’

Specifying ##$ at the beginning of the format string combines
the effect of the dollar sign and asterisk. Numbers displayed are
preceded by a dollar sign, and empty spaces to the left of the dol-
lar sign are filled with asterisks. The symbols * *§$ also represent
three positions in the display field (one of which is used for dis-
play of the dollar sign).

10 PRINT USING "*xs##H##.## "“512.35;
123.5553 555555. o84
20 END

run
*xxx$12,35 #xx$123.56 $3555555.88

Ok

(13 "
2

Including a comma to the left of the decimal point in a format
string causes commas to be displayed to the left of every third
digit to the left of the decimal point. If the format string does
not include a decimal point, include the comma at the end of the
format string; in this case, numbers are rounded to the nearest
integer value for display.

The comma represents the position of an additional position in
the display field, and each comma displayed occupies one position.

10 PRINT USING “#####H#, . ##"; 555555, 884#
20 END ‘

run

555, 555. 88
Ok

3-152

wvvwfastio.com

Example 11

Example 12

C“ANANT

Four carets (exponentiation operators) at the right end of the for-
mat string cause numbers to be displayed in exponential format.
The four carets reserve space for display of E + XX.

The decimal point may also be included in the format string at
any position desired. Significant digits are left-justified, and the
exponent and fixed point constant are adjusted as necessary to
allow the number to be displayed in the number of positions in
the field.

Unless a leading + or trailing + or — sign is included in the for-
matstring, one digit position to the left of the decimal point will
be used to display a + or — sign.

10 FRINT USING "###. ##-0nn oy
123, 45; 12, 345; 1234, 5

28 END

run

ol2-3SEYBL 12.I5E+00 12.35E+02

An underscore mark in the format string causes the following character
to be output as a literal together with the number.

10 PRINT USING "###_%"; 123
20 END

Oy
~MNE

3-153

http://www.fastio.com/

NOTE:

Other characters:

If characters other than those described above are placed at the
beginning or end of a format string, those characters will be dis-
played in front of or behind the formatted number. Operation
varies from case to case if other characters are included within
the format string; however, in general including other characters
in the string has the effect of dividing the string up into sections,
with formatted numbers displayed in each section together with
the delimiting character.

1@ FRINT USING "##/##/##";12; 34,56
2@ FRINT USING “ (###)"; 123

30 PRINT USING "<###:"; 123

4@ END

The formatting characters shown above apply to the ASCII character set. If you
select a character set other than ASCII with the Option Country statement some
of the formatting characters will be output differently as shown below.

Hex. | Dec. | U.S.A | France |Germany|England [Denmark| Sweden | Italy Spain | Norway
23H 35 # # # £ # # # Fi #
24H 36 k3 ¥ ¥ ¥ ¥ i ¥ ¥ 2]
5CH 92 = & -] & [b
SEH 94 - - 8] 8) L

Example 13

See listing under OPTION COUNTRY.

3-154

ChbPDF - www . fastio.com

PRINT #/PRINT # USING

Purpose
Remarks

PRINT # < file number>,[<list of expressions>]

PRINT # <file number>, USING < format string > ; <list of
expressions >

These statements write data to a sequential output file.

The value of < file number > is the number under which the file
was opened for output. The specification of <format string>
is the same as that described in the explanation of the PRINT
USING statement, and the expressions included in <list of ex-
pressions > are the numeric expressions which are to be written
to the file.

Both of the formats above write values to the disk in display im-
age format; that is, data is written to the disk in exactly the same
format as it is displayed on the screen with the PRINT or PRINT
USING statements. Therefore, care must be taken to ensure that
data is properly delimited when it is written to the file (otherwise,
it will not be input properly when the file is read later with the
INPUT# or LINE INPUT # statements).

Numeric expressions included in <list of expressions> should
be delimited with semicolons. If commas are used, the extra blanks
that would be inserted between display fields by a PRINT state-
ment will be written to the disk.

String expressions included in <list of expressions> must be
delimited with semicolons; further, a string expression consist-
ing of an explicit delimiter (a comma or carriage return code)
should be included between each expression which is to be read
back into a separate variable. The reason for this is that the
INPUT # statement regards all characters preceding a comma or
carriage return as one item. Explicit delimiters can be included
using one of the following formats.

PRINT # 1, < string expression>; ‘,’’ ; < string expression> ...

PRINT #1, < string expression > ;CHR$(13); < string
expression> ...

3-155

http://www.fastio.com/

ChhPDF -

See also

If a string which is to be read back into a variable with the
INPUT # statement includes commas, significant leading spaces
or carriage returns, the corresponding expression in the PRINT #
statement must be enclosed between explicit quotation marks
CHR$(34). This is done as follows.

PRINT #1,CHR$(34);‘SMITH, JOHN’’; CHR$(34); CHRS$(34);
“SMITH, ROBERT’’;CHR$(34);...
This would actually be printed to the disk as
“SMITH, JOHN”’,““SMITH, ROBERT”.....
When the LINE INPUT # statement is to be used to read items
of data back into variables, delimit string expressions in <list of
expressions > with CHR$(13) (the carriage return code) as shown

in the example above.

INPUT #, LINE INPUT #, WRITE #, and Chapter 6.

3-156

wvvwfastio.com

PSET

Remarks

PSET [STEP] (X,Y)[, <function code>]
Sets (turns on) the dot at the specified graphic screen coordinates.

This statement sets the dot at the graphic screen coordinates speci-
fied by (X,Y). When STEP is specified, relative coordinates are
used.

< function code> is a number from 0 to 7 which specifies whether
the dot at the specified coordinates is set or reset. If 0 is speci-
fied, the PSET statement resets (turns off) the specified dot; if
1 to 7 is specified, the specified dot is set (turned on). If omitted,
7 is assumed.

After execution of the PSET statement, the LRP (last reference
pointer) is updated to the values specified for (X,Y).

MO error (Missing operand) — A required operand was not speci-
fied in the statement.

FC error (Illegal function call) — The number specified in one
of the statement operands was outside of the prescribed range.

OV error (Overflow) — The number specified in one of the state-
ment operands was outside of the prescribed range.

3-157

http://www.fastio.com/

	./brm3_106-107.tif
	./brm3_108-109.tif
	./brm3_110-111.tif
	./brm3_112-113.tif
	./brm3_114-115.tif
	./brm3_116-117.tif
	./brm3_118-119.tif
	./brm3_120-121.tif
	./brm3_122-123.tif
	./brm3_124-125.tif
	./brm3_126-127.tif
	./brm3_128-129.tif
	./brm3_130-131.tif
	./brm3_132-133.tif
	./brm3_134-135.tif
	./brm3_136-137.tif
	./brm3_138-139.tif
	./brm3_140-141.tif
	./brm3_142-143.tif
	./brm3_144-145.tif
	./brm3_146-147.tif
	./brm3_148-149.tif
	./brm3_150-151.tif
	./brm3_152-153.tif
	./brm3_154-155.tif
	./brm3_156-157.tif

