ERROR ERR

ERROR <integer expression> ERR
Simulates the occurrence of a BASIC error. Also allows error Used in an error processing routine to return the code of an error

codes to be defined by the user. occurring during program execution.

The ERR function returns the code of errors occurring during
command or statement execution.

The value of <integer expression> must be greater than 0 and
less than 255. If the value specified equals one of the error codes
which is used by BASIC (see Appendix A), occurrence of that

error is simulated and the corresponding error message is dis-
played. If the value specified is not defined in BASIC, the mes-
sage ‘“UL error” (Unprintable error) is displayed.

You can also use the ERROR statement to define your own error

As with the ERL function, the ERR function is normally used
with IF ... THEN statements in an error processing routine to
control the flow of program execution when an error occurs. An
example of program control using the ERR function is shown
below.

messages; this is illustrated in the example below. When using the

ERROR statement for this purpose the value of <integer ERL, ON ERROR GOTO, RESUME
expression > must be a number which does not correspond to any ‘
error code which is defined in BASIC. Such user-defined error See under ERROR

codes can then be handled in an error processing routine.
IF ERR =11 THEN RESUME 1449
ERR, ERL, ON ERROR GOTO, RESUME .
When included in an error processing routine, this line causes pro-
‘ gram execution to resume at line 1000 if the error being processed

is a /@ error (Division by zero).
1¢ ON ERROR GOTO 8¢

26 X = "FRED"

T X$(20) = 2T

4¢ ERROR 199

SO PRINT

63 FPRINT “"There are no more errors to demonstrate”
7¢ END

89 IF ERR = 13 THEN PRINT "There is a Type Mismatch in line
20" :RESUME Zo

¢ IF ERL = 3% THEN PRINT "There is a Subscript error in lin
e IO":RESUME 40

166 IF ERR = 199 THEN PRINT "I defined this error number 199
mysel f": RESUME 50

There is a Type Mismatch in line 2@
There is a Subscript error in line 30
I defined this error number 199 myself

There are no more errors to demonstrate
Ok

3-54 3-55

ChibPDF - www.fastio.com wﬁ

http://www.fastio.com/

EXP

Remarks

See also
Example

EXP(X)
Returns the value of the natural base e to the power of X.

The value specified for X must not be greater than 87.3365; other-
wise an OV error (Overflow) will occur.

To raise another number to a power use the operator “/\’, See
the program below for an example.
EXP can also be used to obtain antilogarithms.

LOG

i FOR J = @ TO 8¢ STEP 1@

26 LPRINT "e™"iJdi"="IiEXP(J)
Zé NEXT

4¢ LLPRINT

5¢ LPRINT "The cube of 2 is: '

)
i

e™ @ = 1

e" 19 = 22026.5

e™ 20 = 4.85165E+08
@ T = 1,.06865E+13
e~ 40 = 2,35385E+17
e~ S99 = 5.1847E+21
e 60 = 1.142E+26

e 76 = 2.51544E+30
e 86 = T.354063E+3T4
The cube of 2 is: 5]

3-56

ChibPDF - www.fastio.com

FIELD

Remarks

FIELD|[#] < file number>, <field width> AS < string vari-
able>, <field width> AS <string variable>, ...

Assigns string variables to specific positions in a random file
buffer.

When a random access file is opened, a buffer is automatically
reserved in memory which is used for temporary storage of data
while it is being transferred between the storage medium (RAM
disk or other disk device) and the computer’s memory. Data is
read into this buffer from the storage medium during input, and
is written from the buffer to the storage medium during output.
During input, data is read into the buffer upon execution of a
GET statement, and is output to the buffer upon execution of
a PUT statement.

However, before any GET or PUT statement can be executed,
a FIELD statement must be executed to assign positions in the
file access buffer to specific variables. Doing this causes data sub-
stituted into that variable by a PUT statement to be stored in as-
signed positions in the file access buffer, rather than in normal
string space. Conversely, items brought into the buffer from the
file by a GET statement are accessed by checking the contents
of variables to which positions in the buffer have been assigned.
See Chapter 5 for a detailed description of procedures for access-
ing random access files.

The < file number> which is specified in the FIELD statement
is that under which the file was opened. < field width > specifies
the number of positions which is to be allocated to the specified
< string variable>. For example:

FIELD 1,20 AS N$,10 AS ID$,46 AS ADDS$

assigns the first 20 positions of the buffer to string variable N§,
the next 10 positions to ID$, and the next 40 positions to ADDS.

3-57

http://www.fastio.com/

ChhPDF -

See also

16

OFEN

209

1zl
46
S0
b0
70

FIEL

8o °
e

100

11e 7
120 °

136

140 *

NOTE:
Once a variable name has been specified in a FIELD statement, only use RSET
or LSET to store data in that variable. FIELDing a variable name assigns it to
specific positions in the random file buffer; using an INPUT or LET statement
to store values to FIELDed variables will cancel this assignment and reassign
the names to normal string space.

wvvwfastio.com

The total number of positions assigned to variables by the FIELD
statement cannot exceed the record length that was specified when
the file was opened; otherwise, an FO error (Field overflow) will
occur (the default record length is 128 bytes).

If necessary, any number of FIELD statements may be executed
for the same file. If more than one such statement is executed,
all assignments made are effective concurrently.

GET, LSET/RSET, OPEN, PUT
For full details of use of the FIELD command see Chapter 5.

"R",#1,"E:EMPDAT.DAT"
Opens file "EMPDAT.DAT"
access file.

D #1,6 AS N0D%$,2 AS DP%,120 AS RES$
Assigns the first six bytes of file buffer #!1 to

in drive E: as a random

variable NO$%$, the second two bytes to variable
DPF$, and the last 120 bytes to variable RE$.

Data can now be placed in the buffer with the
LSET/RSET statement, then stored in the file with
the FUT statement. Or, data can be brought into
the buffer from the file with the GET statement,
after which the contents of the buffer variables
can be displayed with the FRINT statement or

used for other processing.

3-58

FILES

Remarks

Example 1

Example 2

FILES[< ambiguous file name >]

Displays the names of files satisfying the <ambiguous file
name>.

If <ambiguous file name > is omitted, this command displays
the names of all files in the disk device which is the currently select-
ed drive. ’

When specified, <ambiguous file name> is composed of the fol-
lowing elements.

[<drive name > :][< file name > [< .extension >]]

In this case, the FILES command lists the names of all files which
satisfy the <ambiguous file name>. An ambiguous file name
is used to find files whose file names and/or extensions include
common character strings. The form for specifying ambiguous
file names is similar to that used for normal file descriptors, ex-
cept that the question mark (?) can be used as a wild card charac-
ter to indicate any character in a particular position, and the
asterisk (*) can be used as a wild card character to indicate any
combination of characters for a file name or extension. Some ex-
amples of ambiguous file names are shown below.

If there are no files on a particular disk, the ¢“File not found’’
message will be displayed.

FILES “A:L???.BAS”’
Displays all files on disk drive A: whose file names begin with
L, are up to four characters long and are also BASIC files.

FILES “L??22222.BAS”
Displays the names of all files on the currently active disk device
whose file names begin with the letter L and whose extensions

are ‘“.BAS”’, because all possible character positions are used with
the ‘?” wild card.

3-59

http://www.fastio.com/

ChbPDF -

FILES “D:#.%” or FILES “D:”

Example 4

Example 5

Displays the names of all files on the disk in drive D.

FILES “D:D???.%”’
Displays the names of all files on the disk in drive D which begin
with the letter D and which include not more than four charac-
ters in the file name.

FILES “D:* .COM”
Displays all the files on disk drive D: which have .COM as their

extension.

PRINTING FILE NAMES FROM BASIC

In order to print the directory of a disk from BASIC, a screen
dump must be carried out. If there are more files than the screen
will show at one time, scroll the screen using the cursor keys and
perform multiple screen dumps. Selecting screen size of 40 x 50
by WIDTH command is the best to use for screen dumps of files
because it can be scrolled, and will hold the greatest number of
file names at any one time.

3-60

wvvwfastio.com

FIX

Format
Purpose

FIX(X)
Returns the integer portion of numeric expression X.

The value returned by FIX(X) is equal to the sign of X times the
integer portion of the absolute value of X. Thus — 1 is returned
for — 1.5, —2is returned for —2.33333 and so forth. Compare
with the INT function, which returns the largest integer which
is less than or equal to X.

See CINT for an explanation and comparison of CINT, FIX and
INT, and also other problems associated with their use.

3-61

http://www.fastio.com/

ClihPDF -

FONT

Purpose
Remarks

FONT [STEP](X,Y), < function>, <user defined character
code > [, <user defined character code>......]

Displays user defined characters at the specified location.

This statement displays user defined characters assigned to the
specified user defined character codes. The coordinates (X,Y) in-
dicate a point which is the upper left corner of the first character
displayed. Y is an integer from 0 to 13 but X must be a multiple
of 8 (0, 8, 16,...) between 0 and 232. If X is other than multiples
of 8, the greatest one of multiples of 8 which is less than X is
used as the X coordinate.

When the specified location is out of the window, the specified
characters are not displayed or part of the characters is displayed.

< function> is one of the following.

PSET: Displays characters as they are.

PRESET: Displays reversed characters.

OR: Displays the result of logical sum (OR) of the dot pat-
tern existing on the screen and that of the specified
characters.

AND: Displays the result of logical product (AND) of the dot
pattern existing on the screen and that of the speci-
fied characters.

XOR: Displays the result of XOR (exclusive OR) operation
on the dot pattern existing on the screen and that of
the specified characters.

3-62

wvvwfastio.com

FOR...NEXT

Purpose

Remarks

FOR <variable > = < expression 1> TO < expression 2> [STEP
< expression 3>]

NEXT [<variable >][, < variable > ...]

The FOR...NEXT statement allows the series of instructions be-
tween FOR and NEXT to be repeated a specific number of times.

This statement causes program execution to loop through the ser-
ies of instructions between FOR and NEXT a specific number
of times. The number of repetitions is determined by the values
specified following FOR for < expression 1>, < expression 2>,
and <expression 3>.

<variable> is used as a counter for keeping track of the num-
ber of loops which have been made. The initial value of this coun-
ter is that specified by <expression 1>. The ending value of the
counter is that specified by <expression 2> . Program lines fol-
lowing FOR are executed until the NEXT statement is encoun-
tered, then the counter is-incremented by the amount specified
by <expression 3>. An increment of 1 is assumed if STEP
<expression 3> is not specified; however, a negative value must
be specified following STEP if the value of < expression 2> is
less than that of <expression 1>.

Next, a check is made to see if the value of the counter is greater
than the value specified by <expression 2>. If not, execution
branches back to the statement following the FOR statement and
the sequence is repeated. If the value is greater, execution con-
tinues with the statement following NEXT. Otherwise statements
in the loop are skipped and execution resumes with the first state-
ment following NEXT.

3-63

http://www.fastio.com/

FOR...NEXT loops may be nested; that is, one FOR...NEXT loop
may be included within the body of another one. When loops are
nested, different variable names must be specified for <variable> 10 FRINT 1. Sinal _ ’
at the beginning of each loop. Further, the NEXT statement for o0 FOR 3 = 1 10 o Erér‘?”‘é incremented in steps of 2"
inner loops must appear before those for outer ones. @ FRINT J,
40 NEXT
If nested loops end at the same point, a single NEXT statement Zg Eg?rﬁ- :R}N¥D,'},E‘Z’QNEXT _
may be used for all of them. In this case, the variable names must B FOR K = 1 10 5 ngle loop with default increment of 1v
be specified following NEXT in reverse order to that in which 80 FRINT K,
they appear in the FOR statements of the nested loops; in other 70 NEXT
words, the first variable name following NEXT must be that which :?g EQ?N‘{ . :.R } N-Tm " 3 m@;zgt T e .
is specified in the nearest preceding FOR statement, the second 120 FOR d = 1 TO 5 €d 1oop with two NEXT statements”
variable name following NEXT must be that which is specified ‘ 170 FOR K = 1 TO =
in the next nearest preceding FOR statement, and so forth. ;;g 52;¥TN2XT/ "ik,
140 FOR L = 1 TO 1@0:NEXT.
170 FRINT:FRINT "4. Nested loop with one NEXT statement

If a NEXT statement is encountered before its corresponding FOR

statement, an NF error (NEXT without FOR) message is displayed L 80 'I—zg e_Ci fying both variable
and execution is aborted. If a FOR statement without a cor- 190 Fog 3 - i 18 J
responding NEXT statement is encountered, an FN error (FOR 200 FRINT J;"/"; ;::,J

without NEXT) message is displayed and execution is aborted. 210 NEXT ¥,J

WHILE...WEND

1. Single loop incremented in steps of 2
1 = S 7 ?

i Single loop with default increment of t
- -
o< 5 4

b
Z. Nested loop with two NEXT statements
i / 1 1 72 1 7 = 271 27 2
2/ i /1 /52 3/ = Z / ;
4 /7 2 4 / = S /71 S /7 2 S/ =

4. Nested loop with one NE
XT statement specifyi
variables i ying betn

171 1 7 2 1 /7 = 271 27 2

2/ E /1 /2 I/ = ; / ;

4 /7 2 a4 / = S /1 S /2 S /7 =
3-65

3-64

ChibPDF - www.fastio.com

http://www.fastio.com/

F RE Note that when the program is run, line 10 shows there are 23665
bytes of memory. When line 20 has allocated a value to variable
FRE(X) B, available memory is reduced to 23657 bytes. After string
FRE(XS) manipulation, line 70 shows the memory is reduced a great deal
further. In executing the FRE(X$) command, much of this
Returns the number of bytes of memory which are not being used memory can be retrieved.
by BASIC.
10 PEégT "Free memory for programs and variables using FRE (X)
. . . s is" 3 FRE (X)) ’
The value returned by this function provides an indication of the no Ee 16
nurpber of bytes f’f memory which are available for use as string 30 PRINT “Free memory for programs and variables using FRE (X)
variables, numeric variables or BASIC program text. However, 1" FRE (X) i
the value returned also includes a work area which is used by 4@ FOR J = &5 TO 75
. - . 5S¢ At = A% + CHR$(J)
BASIC during program execution and thus does not provide a 60 NEXT J
direct indic?tion of the number of unused bytes which are avail- | 76 FRINT “Free memory for programs and variables using FRE(X)
able for this purpose. ‘ is"3iFRE (X)
80 FRINT “and using FRE(X$) is "iFRE(X$)
The arguments of this function have no meaning; FRE returns Fun
the same value regardless of whether a string expression or a Free memory for programs and variables using FRE(X) is 23645
numeric expression is specified as the argument. Free memory for programs and variables using FRE(X) is 23657

Free memory for programs and variables using FRE(X) is 23565
and using FRE(X$) is 23631

When a FRE(X$) function is executed, the BASIC interpreter has ‘ Ot

to perform ‘garbage collection’. When strings are defined BASIC |
stores them in memory; they are often changed frequently as the
program is executed. Every so often BASIC has to collect the
values of the strings which are still valid and erase the unwanted
ones, otherwise there will be no space for more strings to be stored.
If a program executes a great deal of string handling there can
be times while the program is running that it appears to halt be-
cause it is carrying out this ‘garbage collection’. By executing
FRE(X$), BASIC is forced to carry out this operation. A line
which checks the free memory is often placed throughout a BASIC
program so that by forcing garbage collection in small steps rather
than one big one the long gap can be avoided.

FRE(X) carries out garbage collection for numerical variables in
a manner similar to that in which FRE(X$) performs garbage
collection for string variables.

The following program shows how assigning a value to a vari-
able decreases the amount of free memory available.

3-66 3-67

CChbPDFE - www . fastio.com

http://www.fastio.com/

. ClihPDF -

GET

Remarks

See also

GET]| #] < file number > [, <record number>]

The GET statement reads a record into a random file access buffer
from a random disk file.

This statement reads a record into a random file access buffer
from the corresponding random access file. <file number> is
the number under which the file was opened and <record
number> is the number of the record which is to be read into
the random file buffer. Both <file number> and <record
number> must be specified as integer expressions.

If <record number> is omitted the record read is that follow-
ing the one read by the preceding GET statement. The highest
possible record number is 32767.

Note that records must be read sequentially if the file being ac-
cessed is a microcassette file. Also note that the FIELD statement
must be executed to assign space in the random file buffer to vari-
ables prior to executing a GET statement.

FIELD, LSET/RSET, OPEN, PUT
For full details of use of the FIELD command see Chapter 4.

1@ *lLines 20-8¢ create a random data file with S records.
20 OPEN"R",#1,"A: TESTDAT", 10

30 FIELD#1,10
4¢ FOR I=1 TO
S¢ PRINT"Type
&0 LSET AS=Bs$
70 PUT#1,1

80 NEXT

9a

148 ’Lines 110 to read specified records from the file.

AS A%
S
1-10 characters for recor

1190 INPUT"Enter record no. (1-35)"3R

120 GET#1,.R
1306 PRINT A%
149 GOTO 110

wvvwfastio.com

3-68

"315:INPUT B%$

run
Type
Type
Type
Type
Type

i—-10
i-10
i-1e
1-16
1-16

characters for .

characters for
characters for
characters for
characters for

Enter record

Enter record
Edward

Enter record
Dean

Enter record
Charlie
Enter record
Betty

Enter record
Alfie
Enter record

no. (1-5)72

no. (1-5)7

no. (1-5) 7

no. (1-3)°7

no. (1-9)7

no. (1-5)7

no. (1-5)°7

w

(2]

N

record
record
record
record
record

3-69

(LN E N

e))

Alfie
Betty
Charlie
Dean
Edward

http://www.fastio.com/

' ClihPDF -

GOSUB...RETURN

GOSUB <line number>

RETURN

The GOSUB and RETURN statements are used to branch to and
return from subroutines.

The GOSUB statement transfers execution to the program line
number specified in <line number>. When a RETURN state-
ment is encountered, execution then returns to the statement fol-
lowing the one which called the subroutine, either on the same
line or the next one. Subroutines may be located anywhere in a
program; however, it is recommended that they be made readily
distinguishable from the main routine. Since an RG error
(RETURN without GOSUB) will occur if a RETURN statement
is encountered without a corresponding GOSUB statement, care
must be taken to ensure that execution does not move into a
subroutine without it having been called. This can be avoided with
the STOP, END or GOTO statements; the STOP and END state-
ments halt execution when encountered, while the GOTO state-
ment can be used to route execution around the subroutine.

Subroutines may include more than one RETURN statement if
the program logic dictates a return from different points in the
subroutine. Further, a subroutine may be called any number of
times in a program, and one subroutine may be called by another.
Nesting of subroutines in this manner is limited only by the amount
of stack space available for storing return addresses. An OM er-
ror (Out of memory) will occur if the stack space is exceeded. The
stack space size may be changed with the CLEAR statement if
it is insufficient to accomodate the number of levels of subrou-
tine nesting used by a program, but this must be executed at the
beginning of the program outside the subroutines as CLEAR des-
troys all references to RETURN line numbers on the stack and
you will not be able to RETURN from a subroutine if CLEAR
is used within it.

3-70

wvvwfastio.com

CLEAR

1o GOSUR 7o

20 FRINT "Resuming execution after returning from subroutine
at line 70"

G GOSUR 60

40 FRINT "Resuming execution after return from the nested
subroutines startin at line S6"

560 END

&6 GOSUBR 7é: RETURN

7¢ PRINT "Now executing the subroutine at line 7a°

86 RETURN

i

Mow exrecuting the subroutine at line 70

Resuming execution after returning from subroutine at line 7o
Now executing the subroutine at line 76

Resuming execution after return from the nested subroutines st
arting at line 50

Ok

31

http://www.fastio.com/

GOTO or GO TO

ClibPDF - wun

Purpose

Remarks

GOTO <line number >
GO TO <line number >

Unconditionally transfers program execution to the program line
specified by <line number>.

This statement is used to make unconditional *‘jumps’’ from one
point in a program to another. If the first statement on the line
specified by <line number> is an executable statement (other
than a REM or DATA statement), execution resumes with that
statement; otherwise, execution resumes with the first executable
statement encountered following <line number>.

It is also possible to leave out the GOTO in conditional statements,
e.g., line 20 in the following program.

A UL error (Undefined line number) will occur if <line number >
refers to a non-existent line.

GOTO can also be used in direct mode. In this case, variables
are not destroyed (unlike RUN < line number > which does des-
troy variables), and can in fact be assigned from the command
line in the direct mode.

1% READ A,B:’Reads numbers into A and B from line 7¢
20 IF A=0 AND B=@ THEN 80: Jumps to line 80 if A and B
25 ° both equal @.

30 PRINT "A=";A,"B=";B
49 S=Ax%B

5@ PRINT "Product is":8
60 GOTO 10

7¢ DATA 12,5,8,3,9,0,0,0
80 END

:"Jumps to line 10O.

run
A= 12 B= 5
Product is &0
A= B8 B= 3
Product is 24
A= 9
Product is ©
0Ok

3-72

v fastio.com

HEXS$

Remarks

Example 1

1o CLS

HEX$(X)

Returns a character string which represents the hexadecimal value
of X.

The value of the numeric expression specified in the argument
must be a number in the range from — 32768 to 65535. If the value
of the expression includes a decimal fraction, it is rounded to the
nearest integer before the string representing the hexadecimal value
is returned.

To convert from hexadecimal to decimal use &H before the hex-
adecimal value. This will give a numerical constant.

HEXS is a string.
&H is a numeric.

OCT$

26 LOCATE 1,1: PRINT "Convert He:x to Decimal (H) or ":

FRINT

"Decimal to Hex (D))"

32 INFUT C¢
40 IF C$ = "H" OR C$% = "h" THEN GOSUER 10% ELSE IF C$ =

"pY OR

C$ = "d" THEN GOSUE 200 ELSE 20

56 INPUT "Any more (yes/no) "i YN$

60 IF LEFTH(YN$,1)

"y" AND LEFTH({YN$,1) <> "Y" THEN

END ELSE RUN
106 INFUT "Type in number in hexadecimal "iH$

1o v
120 PR

= VAL ("%&H" + H$)
INT V

176 RETURN
200 INFUT “"Type in number in decimal "3 D

216 V¢
220 FR
230 RE

= HEX$ (D)
INT Vs
TURN

3-73

http://www.fastio.com/

hhPDF -

run
Convert Hex to Decimal (H) or
Decimal to Hex (D)

? h

Type in number in hexadecimal 7 4d
77

Any more (yes/no) 7

Convert He: to Decimal (H) or
Decimal to Hex (D)

? d

Type in number in decimal ? 24

Any more (yes/na) ?

3-74

wvvwfastio.com

IF... THEN [...ELSE]J/IF...GOTO

Remarks

Possible alternatives are

IF <logical expression >THEN < statement > [ELSE
< statement >]

IF <logical expression>THEN <line No. > [ELSE < line No. >]
IF <logical expression > THEN < statement > [ELSE < line No.>]

IF <logical expression>THEN < line No.>[ELSE
< statement >]

IF <logical expression>GOTO < line No.>[ELSE
< statement >]

IF <logical expression > GOTO < line No. > [ELSE < line No.>]

Changes the flow of program execution according to the results

of a logical expression.

The THEN or GOTO clause following <logical expression > is
executed if the result of <logical expression> is true (— 1). Other-
wise, the THEN or GOTO clause is ignored and the ELSE clause
(if any) is executed; execution then proceeds with the next executa-
ble statement.

When a THEN clause is specified, THEN may be followed by
either a line number or one or more statements. Specifying a line
number following THEN causes program execution to branch to
that program line in the same manner as with GOTO. When a
GOTO clause is specified, GOTO is always followed by a line
number.

IF...THEN...ELSE statements may be nested by including one
such-statement as a clause in another. Such nesting is limited only
by the maximum length of the program line.

For example, the following is a correctly nested IF...THEN
statement

3-75

http://www.fastio.com/

(M

PDF -

20 IF X >Y THEN PRINT “X IS LARGER THAN Y”” ELSE
IF Y>X THEN PRINT “X IS SMALLER THAN Y’ ELSE
PRINT ““X EQUALS Y”

Because of the logical structure of the line only one of the strings
can be printed.

If a statement contains more THEN than ELSE clauses, each
ELSE clause is matched with the nearest preceding THEN clause.
For example, the following statement displays ‘““A=C’’ when
A=Band B=C. If A=B and B< >C it will display “A< >C"’.
And if A< >B, it displays nothing at all.

IF A=B THEN IF B=C THEN PRINT ‘“A=C”’ ELSE
PRINT “A<>C”

It is also possible to have a number of statements where
< statement > occurs in the above format expressions. For ex-
ample it is common to have a line such as:

IF A=2 THEN B=3:C=T7:A$=‘“ORANGE”

Only if A has the value 2 will B be set equal to 3. The value of
C will also only be set equal to 7 and A$ given the value
“ORANGE” if A=2, If the expression “A=2" is false then all
the rest of the line will be ignored.

This also applies if the sequence of statements exists in a line such
as the following:

IF A=2 THEN PRINT “TRUE”’:B=5:A$=‘“APPLES”:
GOTO 200 ELSE PRINT “FALSE”:B=T7:A$=“PEARS”’:
GOTO 300

In this case if A has the value 2 the expression “A=2" is true and
the variable B is made equal to 5, the value “APPLES” is assigned
to A$ and the program branches to line 200. However, if A does
not have the value 2, the expression “A=2" is false and the com-
mands following ELSE are executed; B is set equal to 7, AS$ is as-
signed the value “PEARS” and the program will branch to line
300.

3-76

wvvwfastio.com

When using IF together with a relational expression which tests
for equality, remember that the results of arithmetic operations
are not always exact values. For example, the result of the rela-
tional expression SIN(1.5708)=1 is false even though “1” is dis-
played if PRINT SIN(1.5708) is executed. Therefore, the relational
expression should be written in such a way that computed values
are tested over the range within which the accuracy of such values
may vary. For example, if you are testing for equality between
SIN(1.5708) and 1, the following form is recommended:

IF ABS(1-SIN(1.5708)) < 1.0E — 6 THEN...

This relational expression returns “true”.

10
20
39

SCREEN ®,0,0:CLS
RANDOMIZE VAL (RIGHT$(TIMES$,2))
’ Reinitializes the sequence of numbers returned

40 by the RND funct1on

50 °

69 PRINT "Guess what number I am thinking of."

70 °

aa N—INT(RND(X)*????)

F0 Generates a random 4-digit number between

100 7 © and 9999 and stores it in variable N

119 *

129 INPUT"Enter your guess":G

170 I=I+1

140 - keeps track of the number of guesses

150 °

160 IF G=N THEN PRINT "That’'s just right-—-in"j;I;"guesses!'":E
LSE IF G<N THEN PRINT "You'’re too low! Try again.":G0OTO 120:
ELSE PRINT "Sorry--you’re too high! Try again.":60T0 12¢

170

Displays the first message and the number

186 ° of guesses you have made if you correctly
1906 ° guess the number generated on line 403 if
200 ° your guess is too low, displays the second
210 ° message and branches to line 503 if your
220 guess is too high, displays the third

2360 ° message and branches to line S50

317

http://www.fastio.com/

INKEY$ 250 Y=Y~1:IF Y<1 THEN Y=8
26@ LOCATE X,Y:PRINT "#"::IF v=8 THEN LOCATE X,1:PRINT " ":g
LSE LOCATE X,Y+1:FRINT " *

276 RETURN
INKEYS$ 280 °
: 299 "Move asterisk down
Checks the keyboard buffer during program execution and returns : 360 Y=Y+1:IF Y>8 THEN Y=1

31@ LOCATE X,Y:PRINT "%"3:IF Y=1 THEN LOCATE X,8:PRINT " =
ELSE LOCATE X,Y—1:FRINT " *

3260 RETURN

IIe C

Z49 “Move asterishk left

350 X=X—-1:1F X<1 THEN X=80

a null string if no key has been pressed.

INKEYS$ returns a null string if the keyboard buffer is empty.
If any key whose code is included in the ASCII code table has
been pressed, INKEY$ reads that character from the keyboard

3 360 LOCATE X,Y:PRINT "#"3i:IF X=80 THEN LOCATE 1,Y:PRINT " *;
buffer and returns it to the program. Characters read from the :ELSE LOCATE X+1,Y:PRINT " "j) !
keyboard buffer by INKEY$ are not displayed on the screen. 276 RETURN ‘

80 -
. . . I9a 7 » as isk
INKEYS simply examines the keyboard buffer. It does not wait 439 XT;):T ?Ftiiézkrﬂéﬂh;:l
for a key to be pressed. If this function is required, use 410 LOCATE X,Y:PRINT “#"i:IF X=1 THEN LOCATE 8&,Y:FRINT " ©;
INPUTS$(1). :ELSE LOCATE X-—1,Y:PRINT " i '

423 RETURN

INPUTS

1e SCREEN ©,0,0
20 WIDTH 80,8:CLS

ZG X=1:Y=1:LOCATE X,Y:FRINT "“*"{: Displays an asterisk

44 ° in the upper left

56 7 corner of the screen.

&6

7@ A$=INEEY$: IF A$="" THEN 79

go ° Checks for input from the keyboard: repeats

9a ? until input is detected.

100 7)

110 ON INSTR(CHRS$ (Z0) +CHR% (31) +CHR$ (29) +CHR$ (28) , A$€) GOSUR 2

S50, 300, 3560, 400

120 7 Checks whether the key pressed is one of the
130 ° cursor control keysi if so, goes to the

140 °* corresponding subroutine. Otherwise,

1506 ° continues to the GOTO statement on the line
160 ° below.

176

180 GOTO 76:°Transfers execution to line 76.

196

2600 " The four subroutines below move the asterisk
2106 "in the direction indicated by the arrow on
220 “the applicable cursor key.

236 7

249 "Move asterisk up

3.78 3-719

ChibPDF - www.fastio.com

http://www.fastio.com/

INP

Format
Purpose
Remarks

See also
Example

INP (J)
Returns one byte of data from machine port J.

The machine port number specified for J must be an integer ex-
pression in the range from 0 to 255.

The full use of this command is beyond the scope of this manu-
al. Please see the System Documentation for details of the ports.

ouT

16 "See 1/0 port %HG2 if LED is ON
20 A=INF (4H2)

33 LED=A AND %HA4

4¢ IF LED=0 GOTO 60
S50 END

&3 OUT &H2,%H4

:"See BIT 2 status
:*If LED is OFF, set LED

: "Set LED

3-30

ChibPDF - www.fastio.com

R R S T e

INPUT

Remarks

INPUT]; “ <prompt string > ”]‘ ;‘ <list of variables >
b

Makes it possible to substitute values into variables from the key-
board during program execution.

Program execution pauses when an INPUT statement is encoun-
tered to allow data to be substituted into variables from the key-
board. One data item must be typed in for each variable name
specified in <list of variables >, and each item typed in must be
separated from the following one by a comma. If any commas
are to be included in a string substituted into a given variable, that
string must be enclosed in quotation marks when it is typed in
from the keyboard. The same applies to leading and trailing spaces;
leading and trailing spaces are not substituted into a string varia-
ble by the INPUT statement unless the string is enclosed in quo-
tation marks.

If the number or type of items entered is incorrect, the message
«9Redo from start” is displayed, followed by the prompt string
(if any). When this occurs, all the data items must be re-entered.
No values are substituted into variables until a correct response
has been made to all the items of the list.

When BASIC executes the line a question mark prompt is displayed
if no prompt string is specified. However, if a prompt string is
specified, the string is displayed, but whether a question mark is
displayed depends on the character before the list of variables. It
is possible to enter a comma or a semi-colon before the list of
variables. In the latter case, a question mark will be displayed.
If the prompt string is followed by a comma, the question mark
is suppressed. If no prompt string is given it is not possible to sup-
press the question mark.

The optional semicolon following INPUT prevents the cursor from
advancing to the next line when the user types a on com-
pletion of entry of the data. The next PRINT statement or error
statement will be printed directly after the last character input by

the user before pressing .
3-81

http://www.fastio.com/

1o INPUT A

20
3
46

SO INPUT: R

29 INPUT"Enter C",C

166
110
120

When more than one variable name is specified in <list of varia-
bles >, each variable name must be separated from the following
one by a comma. Items entered in response to an INPUT state-
ment are substituted into the variables specified in <list of varia-
bles> when the key is pressed. The user must input each
variable and separate it from the following one by a comma. If
the user tries to press after each variable, a “?Redo from
start” message will be printed, and the user will have to begin at
the first item of the list of variables. The values entered are only

substituted into the variables when the key is pressed at
the end of the list.

When the key is pressed for a single item or for the last
1terp of a list, the variable is set to a null string if it is a string
variable and to zero if it is a numeric variable.

: 7 Inputs value from keyboard
:"into A, then moves cursor
:7to next line.

:"Inputs value into B and
:"keeps cursor on current
:line.

« ®

:"Displays prompt without
:"question mark and inputs
:"value into C.

170 INPUT"Enter D,E"i{D,E : Displays prompt and

140
150
160

:’question mark and inputs
t"values into D and E.

. ®
H

170 INFUT:"Enter F,G"iF,G: Displays prompt, inputs

180
196

:“values into F and G, and
:Tkeeps cursor on current line.

200 FRINT "“END"

3-82

ChibPDF - www.fastio.com

INPUT #

nﬂaﬂaﬂa

See also

INPUT # <file number>, <variable list>

This statement is used to read items from a sequential disk file
in a similar way to that in which the INPUT statement reads data
from the keyboard.

The sequential file from which data is to be read with this state-
ment must have been previously opened for input by executing
an OPEN statement. < file number > is the number under which
the file was opened.

As with INPUT, < variable list> specifies the names of varia-
bles into which items of data are to be read when the INPUT #
statement is executed. Variables specified must be of the same
type as data items which are read. Otherwise, a ‘“Type mismatch’’
error will occur. :

Upon execution of this statement, data items are read in from
the file in sequence until one item has been assigned to each vari-
able in < variable list>. When the file is read with this statement,
the first character encountered which is not a space is assumed
to be the start of a data item. With string items, the end of one
item is assumed when the following character is a comma or a
carriage return, however, individual string items may include com-
mas and carriage returns if they are enclosed in quotation marks
when they were saved to the file. The end of a data item is also
assumed if 255 characters are read without encountering a com-
ma or carriage return.

With numeric items, the end of each item is assumed when a space,
comma, or carriage return is encountered. Therefore, care must
be taken to ensure that proper delimiters are used when the file
is written to the disk file with the PRINT # statement.

Examples of use of the INPUT # statement are shown in the pro-
gram below.

INPUT, LINE INPUT, LINE INPUT#, OPEN, PRINT #,
WRITE, WRITE #

Chapter 4
3-83

http://www.fastio.com/

Example

16
20
%)
40
56
b3
70
80
4%
100

1106
120

130
14¢

150

160
17a

180
196

ChbPDF -

OFEN "0O",#1,"a:testl.dat”
FOR I=1 TO 16:° Saves numeric data items "1
: to "1&" to file "astestl.dat"
FRINT#1,1
NEXT I
FRINT#1,"a"sCHR$ (12):"b"

Saves "a" and "b" to file "a:rtestl.dat"”
? as separate data items. Items are separated
" by a carriage return code (CHR$(13)).
PRINT#I CHR$(Z4)+"c,d,.e"+CHR$ (34)
Saves “c,d.,e" to file "a:testl.dat” as one
data 1tem. This is regarded as one item because
° it is enclosed in quotation marks (CHR$(Z4))
’ to indicate that the commas are part of the
string, and not delimiting characters.

PRINT#I."f g"
Saves “f g" to file "a:testl.dat" as separate
° data 1tem5. The reason for this is that commas

are part of a string. Quotation marks are saved
to a file by specifying their ASCII codes with
" the CHR$ function as shown above with "c,d,e”.
CLOSE

DIM AC1S)

OPEN "I",#1,"a:testl.dat"

FOR I=0 TO 15

INFUT#1,A((D)

NEXT I

FOR I=0G TO 1S

PRINT A(I):

NEXT

PRINT

INFUT#1,A%,.B%,C$,Ds,ES

FRINT A$:PRINT R&:PRINT C$:FRINT D$:FRINT E$

CLOSE

[N}
L
»
e

o
~
o)
0
—
S
[N
—
-
+
oy
o
—
B
-
4]
-
i

3-84

wvvwfastio.com

are regarded as delimiters unless quotation marks
are saved to the disk to indicate that the commas

INPUTS

Remarks

INPUTS(X[,[#]1< file number>1)

Reads a string of X characters from the keyboard buffer or the
file opened under < file number>.

INPUTS$(X) reads the number of characters specified by X from
the keyboard buffer and returns a string consisting of those
characters to the program. If the keyboard buffer does not con-
tain the specified number of characters, INPUT$ reads those
characters which are present and waits for other keys to be
pressed. Characters read are not displayed on the screen.

Unlike the INPUT and LINE INPUT statements, INPUT$ can
be used to pass control characters such as RETURN (character
code 13) to the program.

INPUTS$(X,[#] < file number >) reads the number of characters
specified by X from a sequential file opened under the specified
file number. As with the first format, characters which would be
recognized as delimiters between items by the INPUT # or LINE
INPUT # statements are returned as part of the character string.

Execution of the INPUT$ function can be terminated by press-
ing the key.

The BASIC statement
A$=INPUT$(1)

is useful for waiting for a single key to be pressed, in contrast to
100 A$ =INKEYS : IF INKEY$ = "”THEN 100

whereas INKEYS$ can scan the keyboard buffer simply to test if
a key has been pressed without waiting for it to be pressed.

3-85

http://www.fastio.com/

Example

1% OPEN"O" . #1,"test”

26 FPRINT#1, "ABCDEFGHIJKLMNOFORETUVWXYZ"
36 CLOSE

4¢ OFEN"I",#1,"test”

S

60

100 AS=INFUT$ (19, #1) : Inputs 16 characters into

116 :°A%$ from sequential file opened
126 s under file number 1.

125 PRINT A%

130 HE

140 H$=INFUTS (1) :’Inputs 1% characters into E$
150 :’from keyboard.

166 PRINT BES$

run
ABRCDEFGHIJ
qwertyuiop
Ok

i 3-86
ChibPDF - www.fastio.com

INSTR 1
INSTR({J,1X$,Y$) |

Searches for the first occurrence of string Y$ in string X$ and
returns the position at which a match is found.

If J is specified, the search for string Y$ begins at position J in
string X$. J must be specified as an integer expression in the range
from 1 to 255; otherwise, an ““Illegal function call”’ error will oc-
cur. If a null string is specified for Y$, INSTR returns the value
which is equal to that specified for J. A value of ‘‘0”’ is returned
if J is greater than the length of X$, if X$ is a null string, or if ‘
Y$ cannot be found. Both X$ and Y$ may be specified as string |
variables, string expressions or string literals.

Example

14 "Example of using INSTR with ON...GOTO to control
20 *flow of program execution.

30 7

49 INPUT"Enter a,b,or c"iX$

=9 ON INSTR(1l,"abc",X$) GOTO 76,90,119

66 PRINT"Illegal entry, try again.":G0TO 49

760 PRINT"Character entered is ";CHR$(Z4)3"a."iCHR$(34)
86 END

90 FRINT"Character entered is ";CHR$%(34):"b.";CHR$ (34)
1906 END

119 PRINT"Character entered is "iCHR$(34);"c."iCHR$(34)
120 END

run
Enter a,b,or c? a
Character entered is "a.
Ok

3-87

http://www.fastio.com/

NT

INT(X)
Returns the largest integer which is less than or equal to X.
Any numeric expression may be specified for X.

CINT, FIX

The explanation of CINT also contains information on the differ-
ences between CINT, FIX and INT and describes why some
problems arise from conversion and storage of numbers in con-
nection with these functions.

16 PRINT "I","INT(I)"
26 FOR I=-5 TO S STEP .8
@ PRINT I,INT(D)

40 NEXT 1
I INT(I)
-5 -5
. -5
-Z.4 -4
2.6 -3
-1.8 -2
-1 -1
~.2 -1
.o]
1.4 1
2.2 2
3.8 3
4.6 4

3-88

ChibPDF - www.fastio.com

KEY

Remarks

KEY <programable function key no. >, <character string >
KEY <item function key no. >, <character string >

KEY <item function key switch >

KEY LIST

KEY LLIST

Used to define the programmable function keys and item func-
tion keys. Also used to output a list of character strings assigned
to all function keys to the screen or printer.

The first two formats indicated above assign the specified con-
tents of <character string> to the function key specified in
< programmable function key no.> or <item function key
no.>. For the programmable function keys, the function key
number is specified as a number from 1 to 10. For the item func-
tion keys, the function key number is specified as a number from
&H40 to &H7E. R

< character string > is specified as any combination of up to 15
characters. If more than 15 characters are specified in <character
string >, the 16th and following characters are ignored when the
statement is executed.

The third format indicated above is used to clear, disable, or ena-
ble the item function keys. All item functions are cancelled when
255 is specified in <item function key switch>, all item func-
tion keys are disabled when 254 is specified, and all item func-
tion keys are enabled when 253 is specified. However, the item
function keys can be temporarily enabled after executing KEY
254 by pressing them together with the and keys.
The KEY LIST statement outputs the definitions of the program-
mable function keys to the display screen, and the KEY LLIST
outputs a similar list to the printer.

3-89

http://www.fastio.com/

ChhPDF -

Initial definitions of the programmable function keys are as

follows.
PF1 auto PF6 load”
PF2 list PF7 save”
PF3 edit PF8 system
PF4 stat PF9 menu\M
PF5 runAM PF10 login__

FC error (Illegal function call) — The number speci.fied in one
of the statement operands was outside of the prescribed range.

MO error (Missing operand) — A required operand was not speci-
fied in the statement.

3-90
wvvwfastio.com

KILL

KILL <file descriptor>
Used to delete files from a disk device.

; The KILL command can be used to delete any type of disk file.

The full file descriptor must be specified if the file to be deleted
is in a drive other than that which is currently selected. Other-
wise, only the file name and extension need to be specified.

KILL “A:GRAPH.BAS”

This will delete the file in drive A: ‘““GRAPH’’ which has the ex-
tension ¢‘.BAS”’.

NOTE:
Operation of the KILL command is not assured if it is issued against a file which
is currently OPEN,

39

http://www.fastio.com/

ChhPDF -

LEFTS

Format
Purpose

Remarks

See also

Example 1

Example 2

LEFT$(X$,J)

Returns a string composed of the J characters making up the left
end of string X$.

The value specified for J must be in the range from 0 to 255. If
J is greater than the length of string X$, the entire string will be
returned. If J is zero, a null string of zero length will be returned.

MIDS$, RIGHTS

A$=LEFT$(““CARROT”’,3) will return ‘“CAR’’ to be stored in
AS.

10 A% = "EPSON"

20 FOR J = 1 TO &
I PRINT LEFT$(A%,J)
40 NEXT

EF
EFS
EFSO
EFSON
EPSON

3-92

wvvwfastio.com

LEN

Format
Purpose
Remarks

LEN(X$)
Returns the number of characters in string X$.

The number returned by this function also indicates any blanks
or non-printable characters included in the string (such as the
return and cursor control codes).

16 CLS

20 INPUT "Type in a word or phrase”:;As
30 PRINT "The length of :—- "

49 PRINT A%

59 PRINT "is"i: LEN(A%); "characters"”
660 GOTO 20

Type in a word or phrase? FRED
The length of :-

FRED h

is 4 characters

Type in a word or phrase?

Type in a word or phrase? CHARLIE 1S SUPER
The length of :-

CHARLIE IS SUFER

is 16 characters

Type in a word or phrase?

3-93

http://www.fastio.com/

LET

Remarks

[LET] < variable> = <expression>
Assigns the value of <expression> to <variable>.

Note that the word LET is optional. Thus, in the example below,
the variables A$ and BS$ give the same result when printed, as do

A and B.

1o CLS .
23 LET A = "THIS IS A STRING
9 B$ = "THIS IS A STRING"

49 PRINT AS
50 PRINT B$
6o LET A = 3%4
70 B =32 » 4
g8a FPRINT AR

THIS 1S A STRING
THIS IS A STRING
12 1z

Ok

3-94

ChibPDF - www.fastio.com

LINE

Purpose
Remarks

LINE[[STEP] (X1,Y1)] - [STEPI(X2,Y2)[,[< function code>]
LIBIF]I, <line style>]]]

Draws a line between two specified points.

This statement is a graphics command which can only be used
for graphic screen (LCD display). It draws a straight line between
two specified points on the graphic screen. The coordinates of
the first point are specified as (X1, Y1) and those of the second
point are specified as (X2, Y2).

If STEP is omitted, (X1, Y1) and (X2, Y2) are absolute screen
coordinates; if STEP is specified, (X1, Y1) indicates coordinates
in relation to the last dot specified by the last graphic display state-
ment executed (PSET, PRESET or LINE). The coordinates of
the last previously specified dot are maintained by a pointer
referred to as the last reference pointer (LRP); this pointer is up-
dated automatically whenever a PSET, PRESET, or LINE state-
ment is executed.

For example

LINE (0,0) - (239,63)
draws a line diagonally from the top left hand corner to the bot-
tom right hand corner.

LINE - (100,50)
draws a line from the last plotted point (i.e. the LRP) to the point
(100,50).

LINE (10,10) - STEP (100,30)
draws a line from point (10,10) to a point 100 points to the right
and 30 down from point (10,10); i.e., to point (110,40).

LINE - STEP (100,50)

draws a line 100 points to the right and 50 points down from the
coordinates of the LRP.

395

http://www.fastio.com/

ChhPDF -

LINE STEP (10,10) - (100,50)
draws a line from a point 10 to the right and 10 down from the
LRP to the absolute point (100,50).

LINE STEP (10,10)— STEP (100,40)

draws a line from a point 10 to the right and 10 down from the
LRP. The LRP is then updated and the line drawn 100 points
to the right and 50 down from the first end point of the line. Thus
if the last point plotted before this command was executed was
(5,3), the line would be drawn from the point (15,13) to (115,53).

< function code> is a number from 0 to 7 which specifies the
line function. If 0 is specified, the LINE statement resets (turns
off) dots along the line between the specified coordinates. If a
number from 1 to 7 is specified, dots along the line are set (turned
on) when the statement is executed. If no < function code> is
specified, 7 is assumed.

Specifying <“B”’ causes the LINE statement to draw a rectangle
whose diagonal dimension is defined by the two points specified.
If the F option is specified together with the B option, the rec-
tangle is filled in. However, the BF option cannot be specified
together with <line style>, although simply using B will allow
rectangles to be drawn using different line types.

If you want to use the B or BF function without using the
< function code>, a comma must be used as separator.

For example

LINE (0,0) — (20,15) ,,BF
will fill a box 20 points wide and 15 points high in the top left
hand corner of the screen.

The <line style> option is a parameter which determines the type
of line drawn between the two specified points. The line style is
specified as any number which can be represented with 16 binary
digits; i.e., the line style can be specified as any number from 0
t0 65535 (in hexadecimal notation, from &HO to &HFFFF). There
is a one-to-one correspondence between the settings of the binary
digits of <line style> and the settings of each 16-dot segment
of the line drawn when the statement is executed. When the

396

wvvwfastio.com

See also

< function code> is 1 to 7 or defaults to 7 because no value is
inserted, all points corresponding to ‘1’ bits are set (i.e., plot-
ted). When the < function code> is specified as 0, all points cor-
responding to ‘‘1”’ bits are reset (i.c., erased). This is illustrated
in the second example program below. In both cases where dots
correspond to ‘“0’’ bits no action is taken. When the length of

the line is greater than 16 dots, the pattern is repeated for each
16-dot segment.

For example, dot settings are as follows when <line style> is
specified as 1, 43690, and 61680.

<line style >
1 (&H1)

Binary equivalent

,0000000000000001

--------------- * Dot settings
(*for on, — for off)

43690 (&HAAAA) 1010101010101010

% -%-%-%-*%-x-%-%- Dot settings

61680 (&kHFOF0) 1111000011110000

sk kx----kkx%---- Dot settings

The LINE statement can only be executed during display in the
graphic mode (screen mode 3).

PRESET, PSET

397

http://www.fastio.com/

LINE INPUT

LINE INPUT[;][< prompt string>;] <string variable> S CLS
16 LINE INPUT "TYFE IN SOME CHARACTERS “:A$

. 15 FRINT " This is on the nex i "
Used to substitute string data including all punctuation into string 26 PRINT "The characters w ef Et ol :\QE
variables from the keyboard during program execution. Z6 LINE INPUT:"AND SOME MORE ";E$
40 FRINT " This is on the same line"
50 PRINT "The characters were ":iH$

The LINE INPUT statement is similar to the INPUT statement

in that it is used to substitute values into variables from the key- TYFE IN SOME CHARACTERS CHARLIE IS MY DARLING

board during program execution. This is on the next line

However, whereas the INPUT statement can be used to input both The characters were CHARLIE IS MY DARLING

numeric and string values, the LINE INPUT statement can only ?:2 SSQE a:g:fsoxzﬁ eTgsngﬁHgosng.Engﬁssi s on the same line
be used for input of string values. Further, only one such string O¥: A

can be input each time the LINE INPUT statement is executed.
It is not possible to specify a list of variables separated by com-
mas as is the case with the INPUT statement, because commas
are accepted as part of the string.

INPUT allows commas to be entered if the first character typed
is the quotation marks character. Quotation marks can be entered
as long as they are not input as the first character. LINE INPUT
on the other hand allows all characters to be substituted into the
specified variable exactly as entered. Further, no question mark
is displayed when a LINE INPUT statement is executed unless
one has been included in <prompt string> by the user.

As with the INPUT statement, a semicolon immediately follow-
ing LINE INPUT suppresses the carriage return typed by the user.
The cursor is positioned after the last character entered by the

user before pressing .
INPUT

3-98 399
ChibPDF - www.fastio.com

oy

http://www.fastio.com/

LINE INPUT #

Remarks

See also
Example

LINE INPUT# < file number >, <string variable>

Used to read data into string variables from a sequential access
file, in the same way that LINE INPUT is used to read strings
from the keyboard.

The LINE INPUT # statement is similar to the INPUT # state-
ment in that it is used to read data into variables from a sequen-
tial access file. The value of < file number > is the number under
which the file was opened, and <string variable> is the name
of the variable into which data is read when the statement is ex-
ecuted.

Whereas the INPUT # statement can be used to read both nu-
meric and string values, the LINE INPUT # statement can only
be used to read character strings. Further, only one such string
can be read each time the LINE INPUT # statement is executed.
It is not possible to specify a list of variables, as is possible with
the INPUT # statement.

Another difference between the INPUT # and LINE INPUT #
statements is that whereas the former recognizes both commas
and carriage returns as delimiters between data items, the LINE
INPUT # statement regards all characters up to a carriage return
(up to a maximum of 255 characters) as one data item. Any com-
mas encountered are regarded as part of the string being read.
The carriage return code itself is skipped, so the next LINE
INPUT # statement begins reading data at the character follow-
ing the carriage return.

This statement can be used to read all values written by a PRINT #
statement into one variable. It also allows lines of a BASIC pro-

gram which has been saved in ASCII format to be input as data
by another program.

INPUT #

See Chapter 5.

3-100

ChibPDF - www.fastio.com

LIST

Purpose
Remarks

1) LISTI *] [[<line no. 1>][-[<line no. 2>1]]
2) LIST[*] <file descriptor>

[,I<line no. 1>J[-[<line no. 2>]]1
3) LLIST[*] [[<line no. 1> J[-[<line no. 2>1}

Outputs all or part of a program in memory to an external device.

The LIST command outputs all or part of the program in the cur-
rently selected program area to the screen or other external
device.With format 1) above, output is to the screen; with for-
mat 2), output is to the specified device; when it is omitted, out-
put is to the display screen.

If <line no. 1> is specified by itself, only that line of the pro-
gram is output.

If <line no. 1> and the hyphen are specified, the line specified
and all following lines are output.

If tl'xe l}yphen and <line no. 2> are specified, all lines from the
beginning of the program to the specified line are output.

If both <line no. 1> and <line no. 2> are specified, all lines
within that range are output.

When the asterisk is specified, program lines are output without
line numbers.Further, any remark statements which are specified
using an apostrophe (‘) are printed without the apostrophe, mak-
ing it possible to use the LIST statement in simple word process-
ing applications.

In the case of the LLIST command, output is always directed to

the printer; however, in other respects it is exactly the same as
the LIST command.

3-101

http://www.fastio.com/

ChhPDF -

LLIST

Purpose

Remarks

Example 1

Example 2

Example 4

Example 5

Example 6

LLIST[*][< line number > J[— <line number>]

Lists all or part of the lines of the program in the currently logged
in program area to a printer.

The LLIST command is used in the same manner as LIST, but
output is always directed to the printer connected to the PX-4.
BASIC always returns to the command level after execution of
a LLIST command.

LIST

LLIST
Prints all lines of the program in the currently logged in program

area.

LLIST *
Same as above, but prints program lines without line numbers.

LLIST 500
Prints program line 500.

LLIST 150-
Prints all program lines from line 150 to the end of the program.

LLIST -1000
Prints all lines from the beginning of the program to line 1000

(inclusive).

LLIST 150-1000
Prints program lines from 150 to 1000 (inclusive).

3-102

wvvwfastio.com

LOAD

Remarks

See also

LOAD < file descriptor > [,R]

Loads a program into memory from a disk drive, RAM disk, the
RS-232C interface, RAM cartridge, ROM cartridge, or the
microcassette drive.

Specify the device name, file name, and extension under which
the program was saved in < file descriptor >. If the device name
is omitted, the currently selected drive is assumed; if the file name
extension is omitted, “BAS” is assumed.

When a LOAD command is executed without specifying the “R”
option, all files which are open are closed, all variables are cleared,
and all lines of any program in the currently logged in program
area are cleared; after loading is completed, BASIC returns to the
command level.

However, if the “R” is specified, any files which are currently open
remain open and program execution begins as soon as loading has
been completed. Thus, LOAD with the “R” option may be used
to chain execution of programs which use the same data files.

The following restrictions must be noted when using LOAD with

the “R” option to chain execution of programs.

* All variables are cleared by execution of the LOAD command,
regardless of whether the “R” option is specified. Further, the
COMMON statement cannot be used to pass variables to the
program called. Therefore, some other provision must be made
for passing data to the program called (for example, intermedi-
ate data could be saved in a file in RAM disk).

¢ All assignments of variables to positions in random file buffers
are cancelled even though the random access files to which the
buffers belong remain open. Therefore, the FIELD statement
must be executed in the called program to remake these as-
signments.

CHAIN, MERGE, RUN, SAVE

LOAD“A :PROG1.BAS”

3-103

http://www.fastio.com/

(Example of program call using LOAD)

1o CLS ‘
24 FRINT "This is the calling program, sometimes called the

loader" '
=@ PRINT "It will now load the program LOAD2.BAS. ...

40 LOAD "A:LOAD2.BAS",R

This is the calling program, sometimes called the loader
it will now load the program LOAD2.BAS....

(Example of program called by Example 2)

10 FRINT ‘
20 PRINT"This is the program called LOAD2.BAS which has been

loaded by the loading program LOAD1.BAS"
6 END

This is the program called LOAD2.BAS which has been loaded
by the loading program LOAD1.BAS
Ok

3-104

ChibPDF - www.fastio.com

LOAD?

Format
Remarks

LOAD? [<file descriptor >}
Verifies the contents of a file.

This statement is used to check whether the file specified in < file
descriptor > has been properly recorded. No device name other
than CASO: may be specified in < file descriptor>.

The LOAD? statement reads the contents of the specified file in
the mode (stop or non-stop) in which it was written to the exter-
nal audio cassette and verifies its contents by making CRC checks.
If any CRC error is detected, an IO error (Device I/0 error)
occurs. Programs are not actually loaded by this statement, so
the contents of memory remain unaffected.

When this statement is executed, all files preceding that specified
in < file descriptor> are skipped; after the file is checked, the
head of the external cassette recorder is positioned to the end of
the file checked (to the beginning of the next file).

If <file descriptor> is omitted, the first file found is checked.

3-105

http://www.fastio.com/

	./brm3_054-055.tif
	./brm3_056-057.tif
	./brm3_058-059.tif
	./brm3_060-061.tif
	./brm3_062-063.tif
	./brm3_064-065.tif
	./brm3_066-067.tif
	./brm3_068-069.tif
	./brm3_070-071.tif
	./brm3_072-073.tif
	./brm3_074-075.tif
	./brm3_076-077.tif
	./brm3_078-079.tif
	./brm3_080-081.tif
	./brm3_082-083.tif
	./brm3_084-085.tif
	./brm3_086-087.tif
	./brm3_088-089.tif
	./brm3_090-091.tif
	./brm3_092-093.tif
	./brm3_094-095.tif
	./brm3_096-097.tif
	./brm3_098-099.tif
	./brm3_100-101.tif
	./brm3_102-103.tif
	./brm3_104-105.tif

