Page 3-1

CHAPTER 3
BASIC FUNCTIONS

The intrinsic functions provided by BASIC are presented in

this chapter. The functions may be called from any program
without further definition.

Arguments to functions are always enclosed in parentheses.
In the formats given for the functions in this chapter, the
arguments have been abbreviated as follows:

X and Y Represent any numeric expressions
I and J Represent integer expressions
XS and YS Represent string expressions

If a floating point value is supplied where an integer is
required, BASIC will round the fractional portion and use
the resulting integer.

N OTE

Only integer and single precision results
are returned by functions. Double precision
functions are not supported.

BASIC FUNCTIONS

3.1 ABS

Format:
Action:

Example:

3.2 ASC

Format:

Action:

Example:

Page 3-2

ABS (X)

Returns the absolute value of the expression X.

PRINT ABS(7*(-5))
35
Ok

ASC{XS$)

Returns a numerical value that is the ASCII code
of the first character of the string X$. (See
Appendix E for ASCII codes.) If X$ is null, an
"Illegal function call" error is returned.

10 X$ = "TEST"
20 PRINT ASC(XS$)
RUN

84
Ok

See the CHRS$ function for ASCII-to-string
conversion.

BASIC FUNCTIONS Page 3-3

3.3. ATN

Format: ATN (X)

Action: Returns the arctangent of X in radians. Result
is in the range -pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
ATN is always performed in single precision.

Example: 10 INPUT X
20 PRINT ATN (X)

RUN

?2 3
1.24905

Ok

3.4. CDBL

Format: CDBL (X)
Action: Converts X to a double precision number.
Example: 10 A = 454.67

20 PRINT A; CDBL(A)

RUN

454.67 454.6700134277344
Ok

BASIC FUNCTIONS Page 3-4

3.5 CHRS

Format:

Action:

3.6 CINT

Format:

Action:

Example:

CHRS(I)

Returns a string whose one element has ASCII code
I. (ASCII codes are listed in Appendix E.)

CHRS is commonly used to send a special character
to the terminal.

Special characters are:

CHRS(4);CHRS(1i);CHRS(j); set cursor on position
j in line i CHRS$(5);
print screen contents
on printer

CHRS(7); bell
CHRS(12); clear screen, cursor home
Example:

AS=CHRS(12)+CHRS$(7)+CHRS(4)+CHRS(8)+CHRS(25)
PRINT AS;"XYZ"

clears screen, rings the bell

cursor to line 8, position 25

XYZ on positions 25, 26 and 27

cursor to begin line 9

CINT(X)

Converts X to an integer by rounding the fractional
portion. If X is not in the range -32768 to 32767,
an "Overflow" error occurs.

PRINT CINT(45.67)
46
Ok

See the CDBL and CSNG functions for converting
numbers to the double precision and single
precision data type. See also the FIX and INT
functions, both of which return integers.

BASIC FUNCTIONS Page 3-5

3.7 Cos
Format: COS(X)
Action: Returns the cosine of X in radians. The calculation

of COS(X) is performed in single precision.

Example: 10 X = 2*COS(.4)
20 PRINT X
RUN
1.84212
Ok

NOTE: To calculate || and to convert degrees into radians
v.v. the next construction can be used.

10 PI = 4 * ATN(1)
20 RAD = 180 / PI
30 LPRINT PI
40 LPRINT RAD
50 LPRINT " 1.5 RADIANS
60 LPRINT " 45 DEGREES
RUN
3.14159
57.2958
1.5 RADIANS
45 DEGREES

";1.5 * RAD;"DEGREES"
";45 / RAD;"RADIANS"

85.9437 DEGREES
.785398 RADIANS

3.8 CSNG
Format: CSNG(X)
Action: Converts X to a single precision number.

Example: 10 A# = 975.3421#%
20 PRINT A#; CSNG(A#)
RUN
975.3421 975.342
Ok

See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types.

BASIC FUNCTIONS Page 3-6

3.9 Cvi, Cvs, CVD

Format: CVI({2-byte string))
CVS(¢4~-byte string))
CVD({8-byte string))

Action: Convert string values to numeric values.
Numeric value that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to an
integer. CVS converts a 4-byte string to a
single precision number. CVD converts an 8-byte
string to a double precision number.

Example: .

.

70 FIELD #1,4 AS NS, 12 AS BS, ...
80 GET #1
90 Y=CVS(NS$)

See also MKIS$, MKSS, Appendix B.

3.10 EOF

Format: EOF(<{file number))

Action: Returns -1 (true) if the end of a sequential
file has been reached. Use EOF to test for
end-of-file while INPUTting, to avoid "Input
past end" errors.

Example: 10 OPEN "I",1,"DATA"

20 C=0

30 IF EOF(1) THEN 100
40 INPUT #1,M(C)

50 C=C+1:GOTO 30

BASIC FUNCTIONS Page 3-7

3.11 EXP

Format:

Action:

Example:

3.12 FIX

Format:

Action:

Examples:

EXP (X)

Returns e to the power of X. X must be
{=87.3365. If EXP overflows, the "Overflow"
error message is displayed, machine infinity
with the appropriate sign is supplied as the
result, and execution continues.

10 X = 5

20 PRINT EXP (X-1)
RUN

54.5982

Ok
FIX(X)

Returns the truncated integer part of X. FIX(X)
is equivalent to SGN(X)*INT(ABS(X)). The major

difference between FIX and INT is that FIX does

not return the next lower number for negative X.

PRINT FIX(58.75)
58
Ok

PRINT FIX (-58.75)
-58
Ok

BASIC FUNCTIONS Page 3-8

3.13 FRE

Format:

Action:

Examples:

3.14 HEXS

Format:

Action:

Example:

FRE (0)
FRE (nn)

Arguments to FRE are dummy arguments. FRE (0)
returns the number of bytes in memory that
are not being used by BASIC.

FRE("") forces a garbage collection before
returning the number of free bytes. BE PATIENT:
garbage collection may take 1 to 1-1/2 minutes.
BASIC will not initiate garbage collection until
all free memory has been used up.

PRINT FRE(OQ)
20838
Ok

HEXS (X)

Returns a string which represents the
hexadecimal value of the decimal argument.
X is rounded to an integer before HEXS (X)
is evaluated.

10 INPUT X
20 AS = HEXS(X)
30 PRINT X "DECIMAL IS " AS " HEXADECIMAL "
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCTS function for octal conversion.

BASIC FUNCTIONS Page 3-9

3.15 INP

Format:

Action:

Example:

3.16 INPUT

Format:

Action:

Example 1:

Example 2:

INP(I)

Returns the byte read from port I. I must be in
the range 0 to 255. INP is the complementary
function to the OUT statement.

100 A=INP(255)

INPUTS (X[, [#1Y])

returns a string of X characters, read from the
terminal or from file number Y. If the terminal
is used for input, no characters will be echoed
and all control characters are passed through
except SHIFT-STOP, which is used to interrupt the
execution of the INPUTS function.

5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMATL

10 OPEN"I",1,"DATA"

20 IF EOF(1) THEN 50

30 PRINT HEXS(ASC(INPUTS(1,41)));

40 GOTO 20

50 PRINT

60 END

100 PRINT "TYPE P TO PRECEED OR S TO STOP"
110 X$=INPUTS (1)

120 IF X$="P" THEN 500

130 IF X$="S" THEN 700 ELSE 100

BASIC FUNCTIONS Page 3-10

3.17 1INSTR

Format:

Action:

Example:

3.18 INT
Format:
Action:

Examples:

INSTR([I,]XS,YS)

Searches for the first occurrence of string Y$
in X$ and returns the position at which the
match is found. Optional offset I sets the
position for starting the search. I must be in
the range 0 to 255. If I LEN(XS) or if XS is
null or if Y$ cannot be found, INSTR returns O.
If Y$ is null, INSTR returns I or 1. X$ and Y$
may be string variables, string expressions or
string literals.

10 XS "ABCDEBR"
20 YS an
30 PRINT INSTR(XS,YS); INSTR(4,XS$,YS$)
RUN
2 6
Ok

INT (X)
Returns the largest integer '=X.

PRINT INT (99.89)
99
0Ok

PRINT INT(-12.11)
-13
Ok

See the FIX and CINT functions which also return
integer values.

BASIC FUNCTIONS Page 3-11

3.19 LEFTS

Format:

Action:

Example:

Format:

Action:

Example:

LEFTS$ (X$,1)

Returns a string comprised of the leftmost I
characters of X$. I must be in the range 0 to
255. If I is greater than LEN (X$), the entire
string (XS$) will be returned. If I=0, the null
string (length zero) is returned.

10 AS = "BASIC-80"
20 BS = LEFTS$(AS,5)
30 PRINT BS

BASIC

0Ok

Also see the MIDS and RIGHTS functions.

LEN (XS)

Returns the number of characters in XS.
Non-printing characters and blanks are counted.

10 X$ = "PORTLAND, OREGON"
20 PRINT LEN(XS)
16

Ok

BASIC FUNCTIONS Page 3-12

3.21 LOC

Format:

Action:

Example:

3.22 LOG

Format:

Action:

Example:

LOC(.file number))

With random disk files, LOC returns the next
record number to be used if a GET or PUT
(without a record number) is executed. With
sequential files, LOC returns the number of
sectors (128 byte blocks) read from or written
to the file since it was OPENed.

200 IF LOC(1)>50 THEN STOP

LOG (X)

Returns the natural logarithm of X. X must be
greater than zero.

PRINT LOG(45/7)
1.86075
Ok

BASIC FUNCTIONS Page 3-13

3.23 LPOS

Format: LPOS (X)

Action: Returns the current position of the line
printer print head within the line printer
buffer. Does not necessarily give the
physical position of the print head. X is a
dummy argument.

Example: 100 IF LPOS (X)»60 THEN LPRINT

3.24 MIDS

Format: MIDS (XS$,I[,J])

Action: Returns a string of length J characters
form X$ beginning with the Ith character.
I and J must be in the range 0 to 255. If J
is omitted or if there are fewer than J
characters to the right of the Ith character
all rightmost characters beginning with the
Ith character are returned.
If IX>LEN(XS), MIDS returns a null string.

Example: LIST
10 AS="GOOD"
20 BS="MORNING EVENING AFTERNOON"
30 PRINT AS$; MIDS(BS,9,7)
Ok
RUN
GOOD EVENING
Ok

Also see the LEFTS and RIGHTS functions.

BASIC FUNCTIONS Page 3-14

3.25 MKIS,

MKSS, MKDS

Format

Action:

Example:

Format:

Action:

Example:

MKIS (<{integer expression))
MKSS$((single precision expression>)
MKDS ({double precision expression>)

Convert numeric values to strina values. Any
numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKIS converts an integer
to a 2-byte string. MKSS$ converts a single
precision number to a 4-byte string. MKDS
converts a double precision number to an 8-byte
strina.

90 AMT=(K+T)

100 FIELD #1. 8AS DS, 20 AS NS
110 LSET DS = MKSS(AMT)

120 LSET NS$ = AS

130 PUT #1

See also CVI, CVS, CVD, Appendix B.

OCTS (X)

Returns a string which represents the octal
value of the decimal argument. X is rounded
to an integer before OCTS$(X) is evaluated.

PRINT OCTS (24)

BASIC FUNCTIONS Page 3-15

3.27 PEEK

Format: PEEK(1I)

Action: Retiurns the hyte (decimal integer in the
range 0 to 255.) read from memory location I.
I must be in the range 0 to 65536, PEEK is the
complementary function to the POKE statement,

Chapter 2.
Example: A=PEEK(&H5A00)
3.28 POS
Format: POS(1I)
Action: Returns the current cursor position. The
leftmost position is 1. X is a dummy argument.
Example: IF POS(X).h0 THEN PRINT

Also see the LPOS function.

BASIC FUNCTIONS Page 3-16
3.29 RIGHTS

Format: RIGHTS (XS, I)

Action: Returns the rightmost I characters of string
XS. If I=LEN(X$), returns X$. If I=0, the
null string (length zero) is returned.

Example: 10 AS="DISK BASIC-80"
20 PRINT RIGHTS(AS,8)
RUN
BASIC-80
Ok

Also see the MIDS and LEFTS functions.

3.30 RND

Format: RND[(X)]

Action: Returns a random number between 0 and 1.
The same sequence of random numbers is
generated each time the program is RUN unless
the random number generator is reseeded (see
RANDOMIZE, chapter 2. However, x/0 always
restarts the same sequence for any given X.
X>0 or X omitted generates the next random
number in the sequence. X=0 repeats the last
number generated.

Example: 10 FOR I=1 TO 5
20 PRINT INT(RND*100);
30 NEXT
RUN

24 30 31 51 5
0Ok

BASIC FUNCTIONS Page 3-17

3.31 SGN

Format: SGN (X)

Action: If X>0, SGN(X) returns 1.
If X=0, SGN(X) returns 0.
If X{0, SGN(X) returns -1,

Example: ON SGN(X)+2 GOTO 100, 200, 300 branches to
100 if X is negative, 200 if X is 0 and 300 if
X is positive.

3.32 SIN

Format: SIN (X)

Action: Returns the sine of X in radians. SIN (X) is
calculated in single precision.

Example: PRINT SIN (1.5)

.997495
Ok

BASIC FUNCTIONS Page 3-18

3.33 SPACES

Format:

Action:

Example:

3.34 sSpC
Format:

Action:

Example:

SPACES (X)

Returns a string of spaces of length X. The
expressions X is rounded to an integer and must
be in the range 0 to 255.

10 FOR I = 1 TO 5
20 XS = SPACES(I)
30 PRINT XS$;I

40 NEXT I

RUN

Ok

Also see the SPC function.

SPC(I)

Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I
must be in the range 0 to 255.

PRINT "OVER" SPC(15) " THERE"
OVER THERE
Ok

Also see the SPACES function.

BASIC FUNCTIONS Page 3-19

W

.35 SQR

Format:

Action:

Example:

3.36 STRS

Format:

Action:

Example:

SQOR(X)

Returns the square root of X. X must be >=0,
otherwise an "Illegal function call" error occurs.

10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)

30 NEXT
RUN
10 3.16228
15 3.87298
20 4.47214
25 5
Ok
STRS (X)

Returns a string representation of the value
of X.

5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER";N
20 ON LEN(STRS(N)) GOSUB 30,100,200,300,400,500

.

Also see the VAL function.

BASIC FUNCTIONS Page 3-20

3.37 STRINGS

Formats: STRINGS (I,J)
STRINGS (I,XS)

Action: Return a string of length I whose characters
all have ASCII code J or the first character of
XSO

Example: 10 X$ = STRINGSS (10,45)
20 PRINT X$ "MONTHLY REPORT" XS$
RUN
——————————— MONTHLY REPORT----—-—-—-====—-—
Ok

3.38 TAB

Format: TAB(I)

Action: Spaces to position I on the terminal. If the
current print position is already beyond space
I, TAB goes to that position on the next line.
Space 1 is the leftmost position, and the right-
most position is the width minus one. I must be
in the range 1 to 255. TAB may only be used in
PRINT and LPRINT statements.

Example: 10 PRINT "NAME" TAB(25) "AMOUNT": PRINT

20 READ AS,BS
30 PRINT AS TAB(25) BS
40 DATA "G. T. JONES", "$25.00"

RUN
NAME AMOUNT
G. T. JONES $ 25.00

Ok

BASIC FUNCTIONS

3.39 TAN

Format:

Action:

Example:

3.40 USR

Format:

Action:

Example:

Page 3-21

TAN (X)

Returns the tangent of X in radians.

TAN (X) is calculated in single precision.
If TAN overflows, the "Overflow" error
message is displayed, machine infinity with
the appropriate sign is supplied as the
result, and execution continues.

10 Y = Q*TAN(X) /2

USR[<digit] (X)

Calls the user's assembly language sub-
routine with the argument X.

{digit> is in the range O to 9 and
corresponds to the digit supplied with the
DEF USR statement for that routine. If
{digit?> is omitted, USRO is assumed.

See Appendix A.

40 B = T*SIN(Y)
50 C = USR(B/2)
60 D = USR(B/3)

BASIC FUNCTIONS Page 3-22

3.41 VAL
Format: VAL(XS)
Action: Returns the numerical value of string X$. If
the first non-blank character of X$ is not +, -,
&, or a digit, VAL(XS$)=0.
Example: 10 XS="-123"
20 PRINT VAL (XS)
RUN
-123
50 Xs=" 15 PETER"
60 PRINT VAL(XS)
RUN
15

100 X$= "PETER 15"
110 PRINT VAL(XS)
RUN

0

See the STRS function for numeric to string
conversion.

Page A-1

APPENDIX A

BASIC File Commands and Functions

A.1 SYSTEM COMMAND

Format: SYSTEM A or SYSTEM B
Purvose: To set the default drive to the specified drive
number.

A.2 DISK FILES

Disk filenames follow the normal BASIC naming conventions.
All filenames may include A: or B: as the first two
characters to svecifv a disk drive, otherwise the currently
selected drive is assumed. A default extension of .BAS is
used on LOAD, SAVE, MERGE and RUN filename commands if no
"." appears in the filename and the filename is less than 9
characters lona.

A.3 FILES COMMAND

Format: FILES[filename]

Purpose: To print the names of files residing on the
current disk.

Remarks: If filename 1is omitted, all the files on the
currently selected drive will be listed.
filename 1is a string formula which may contain
question marks (?) to match any character in the
filename or extension. An Asterisk (*) as the
first character of the filename or extension will
match any file or any extension.
Be patient: It only few files are present on the
assigne isk, the FILES command can be very
slow.

Examples: FILES
FILES "*BAS"
FILES "B:* *"
FILES "TEST?.BAS"

81 03 05

BASIC File Commands and Functions

A.4 RESET COMMAND Paade A-2

Format:

Purpose:

Remarks:

Note:

RESET

To tell the system that an other diskette has
been inserted,

Before exchanaing a diskette, all files have to
be closed. Then the disk administration 1is
updated.

After exchanging, the RESET statement has to be
qgiven. The system reads then the administration
of the new inserted diskette.

After DISK I/0O ERROR the statement RESET has to
be given.

A.5 LOF FUNCTION

Format:

Action:

Example:

A.6 EOF

LOF(file number)

Returns the number of records present in the last
extent read or written. If the file does not
exceed one extent (64 records), then LOF returns
the true length of the file.

110 PRINT "MY CURRENT RECORD NUMBER ON FILE 1
IS", LOF(1)

With BASIC the EOF function may be used with random files.
If a GET is done past the end of file, EOF will return -1.
This may be used to find the size of a file using a binary
search or other algorithm.

Page B-1

APPENDIX B

BASIC Disk I/O

Disk I/O procedures for the beginning BASIC user are

examined in this appendix. If you are new to BASIC or if
you're getting disk related errors, read through these
procedures and program examples to make sure you're using all
the disk statements correctly.

Wherever a filename is required in a disk command or
statement, use a name that conforms to the BASIC system's
requirements for filenames. The file system will append a
default extension .BAS to the filename given in a SAVE, ROUN,
MERGE or LOAD command.

B.1 PROGRAM FILE COMMANDS

Here is a review of the commands and statements used 1in
program file manipulation.

SAVE "filename"[,A] Writes to disk the program that is
currently residing in memory.
Optional A writes the program as a
series of ASCII characters.
(Otherwise, BASIC uses a compressed
binary format.)

LOAD "filename" [,R] Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before LOADing. If R is
included, however, open data files
are kept open. Thus programs can be
chained or loaded in sections and
access the same data files.

BASIC Disk I/O

RUN "filename"[,R]

MERGE "filename"

KILL"filename"

NAME

B.2 PROTECTED FILES

Page B-2

RUN "filename" loads the program from
disk into memory and runs it. RUN
deletes the current contents of memory
and closes all files before loading
the program. If the R option is
included, however, all open data files
are kept open.

Loads the program from disk into
memory but does not delete the current
contents of memory. The program line
numbers on disk are merged with the
line numbers in memory. If two lines
have the same number, only the line
from the disk program is saved. After
a MERGE command, the "merged" program
resides in memory, and BASIC returns
to command level.

Deletes the file from the disk.
"filename" may be a program file, or a
sequential or random access data file.

To change the name of a disk file,
execute the NAME statement, NAME
"oldfile" AS "newfile". NAME may be
used with program files, random files,
or sequential files.

If you wish to save a program in an encoded binary format.
use the "Protect" option with the SAVE command.

For example:

SAVE "MYPROG",P

A program saved this way cannot be listed or edited.
The attempt to list or edit the protected program results in
an "illegal function call".

BASIC Disk I/0 Page B-3

B.3 DISK DATA FILES - SEQUENTIAL AND RANDOM 1,/0

There are two types of disk data files that may be created
and accessed by a BASIC program: sequential files and random
access files.

B.3.1 Sequential Files

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a sequential
file is stored, one item after another (sequentially), in the
order it is sent and is read back in the same way.

The statements and functions that are used with sequential
files are:

OPEN PRINT# INPUT# WRITE#
PRINT# USING LINE INPUT#

CLOSE EOF LOC

The following program steps are required to create a
sequential file and access the data in the file:

1. OPEN the file in "O" mode. OPEN "O",#1,"DATA"

2. Write data to the file PRINT#1,AS$;BS;CS
using the PRINT# statement.
(WRITE# maybe used instead.)

3. To access the data in the CLOSE#1
file, you must CLOSE the file OPEN "I",#1,"DATA"
and reOPEN it in "I"™ mode.

4. Use the INPUT# statement to INPUT#1,X$,YS,2$
read data from the sequential
file into the program.

Program B-1 is a short program that creates a sequential
file, "DATA", from information you input at the terminal.

BASIC Disk I/O Page B-4

10 OPEN "O",#1,"DATA2

20 INPUT "NAME";NS

25 IF NS="DONE" THEN END

30 INPUT "DEPARTMENT" ;DS

40 INPUT "DATE HIRED";HS

50 PRINT#1,NS$;",";DS$;"," ;HS
60 PRINT:GOTO 20

RUN

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

PROGRAM B-1 - CREATE A SEQUENTIAL DATA FILE

BASIC Disk [,C Page B-5

Now look at Procram B-2. It accesses the file "DATA"
rhat was created in Program B-1 and displays the name
~F syveroone Divaed in 1978,

[R i | F oy man
B It,=21,"DATA

R
20 INP JT#T N§,DS,HS
30 IF QIGATS(HS 2)="78" THEN PRINT NS
40 GOTO 20
RUN
EBENEEZEZR SCROCGE

PROGRAM B-2 - ACCESSING A SEQUENTIAL FILE

Program B-2 reads, sequentially, every item in the file.
When all the data has been read, line 20 causes an "Input
past end" error. To avoid getting this error, insert line
15 which uses the EOF function to test for end-of-file:

15 IF EOF(1) THEN END
and change line 40 to GOTO 15

A program that creates a sequential file can also write
formatted data to the disk with the PRINT# USING
statement. For example, the statement

PRINT#1,USING"####.%##,";4,B,C,D

could be used to write numeric data to disk without
explicit delimiters. The comma at the end of the format
string serves to separate the items in the disk file.

The LOC function, when used with a sequential file,
returns the number of sectors that have been written to
or read from the file since it was OPENed. A sector is a
256-byte block of data.

B.3.1. Adding Data To A Sequential File -

If you have a sequential file residing on disk and later
want to add more data to the end of it, you cannot simply
open the file in "O" mode and start writing data. As soon
as you open a sequential file in "O" mode, you destroy
its current contents. The following procedure can be used
to add data to an existing file called "NAMES".

BASIC Disk I/0 Page B-6

1. OPEN "NAMES" in "I" mode.

2. OPEN a second file called "COPY" in "O" mode.

3. Read in the data in "NAMES" and write it to, "COPY".

4. CLOSE "NAMES" and KILL it.

5. Write the new information to "COPY".

6. Rename "COPY" as "NAMES" and CLOSE.

7. Now there is a file on disk called "NAMES" that
includes all the previous data plus the new data
you just added.

Program B-3 illustrates this technique. It can be used to
create or add onto a file called NAMES. This program also
illustrates the use of LINE INPUT# to read strings with
embedded commas from the disk file. Remember, LINE INPUT#
will read in characters from the disk until it sees a

carriage return (it does not stop at quotes or commas) or
until it has read 255 characters.

BASIC Disk I/0 Page B-7

10 ON ERROR GOT "2000

20 OPEN "I",#1,"NAMES"

3¢ REM IF FILE EXISTS, WRITE IT TO COPY
40 OPEN "O",42,"COPY"

50 IF EOF(1) THEN 90

60 LINE INPUT#1,AS

70 PRINT#2,AS

80 GOTO 50

90 CLOSE #1

100 KILL "NAMES"

110 REM ADD NEW ENTRIES TO FILE

120 INPUT "NAME" ;NS

130 IF N$="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? ";AS

150 LINE INPUT "BIRTHDAY? ";BS

160 PRINT#2,NS

170 PRINT#2,AS

180 PRINT#2,BS

190 PRINT:GOTO 120

200 CLOSE

205 REM CHANGE FILENAME BACK TO "NAMES"
210 NAME "COPY"™ AS "NAMES"

2000 IF ERR=53 AND ERL=20 THEN OPEN "O",#2,"COPY":RESUME 120
2010 ON ERROR GOTO O

PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

The error trapping routine in line 2000 traps a "File does
not exist" error in line 20. If this happens, the statements
that copy the file are skipped, and "COPY" is created as if
it were a new file.

B.3.2 Random Files

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to
using random files. One advantage is that random files
require less room on the disk, because BASIC stores them in
a packed binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk -- it is not
necessary to read through all the information, as with
sequential files. This is possible because the information
is stored and accessed in distinct units called records and
each record is numbered.

The statements and functions that are used with random files
are:

BASIC Disk I/O0 Page B-8

OPEN FIELD LSET/RSET GET

PUT CLOSE LOC
MXI3 CVI
MKSS Ccvs

MKDS CvVD

B.3.2.1 Creating A Random File -
The followlng program steps are required to create a random
file.

1. Open the file for random OPEN "R",#1,"FILE",32
access ("R" mode). This example
specifies a record length of 32
bytes. If the record length is
omitted, the default is 256

bytes.
2. Use the FIELD statement to FIELD #1 20 AS NS,
allocate space in the random 4 AS AS, 8 AS PS

buffer for the variables that
will be written to the random

file.

3. Use LSET to move the data LSET N$=XS$
into the random buffer. LSET AS$=MKSS(AMT)
Numeric values must be made LSET PS$S=TELS

into strings when placed in

the buffer. To do this, use the
"make" functions: MKIS to

make an integer value into a
string, MKSS for a single
precision value, and MKDS$ for

a double precision value.

4. Write the data from PUT #1,CODES%
the buffer to the disk
using the PUT statement.

Look at Program B-4. It takes information that is input at the
terminal and writes it to a random file. Each time the PUT
statement is executed, a record is written to the file.

The two-digit code that is input in line 30 becomes the record
number.

BASIC Disk I/0

NOTE

Do not use a FIELDed string
variable in an INPUT or LET
statement. This causes the

pointer

for that variable to

point into string space
instead of the random file

buffer.

10
20
30
40
50
60
70
80
90

OPEN

FIELD
INPUT
INPUT
INPUT
INPUT

"R",#T,"FILE
#1,20 AS NS,

4 AS AS, 8 AS PS

"2-DIGIT CODE" ;CODE%

"NAME" ; X$
"AMOUNT" ; AMT

"PHONE" ; TELS:

LSET N$=X$
LSET A$=MKSS (AMT)

LSET

PS=TELS

100 PUT #1,CODE%
110 GOTO 30

PRINT

PROGRAM

B-4 - CREATE A RANDOM FILE

B.3.

2.2

Access A Random File -

Page B-9

The following program steps are required to access a random
file:

1.

2.

Open the file in "R" mode.

Use the FIELD statement to
allocate space in the random

buffer for the variables that
will be read from the file.

NOTE:
In a program that performs both
input and output on the same random
file, you can often use just one
OPEN statement and one FIELD
statement.

OPEN "R",#1,"FILE",32

FIELD #1 20 AS NS
4 AS AS,

8 AS PS$

BASIC Disk I/0 Page B-10

3. Use the GET statement to move GET #1,CODE%
the desired record into the
random buffer.

4., The data in the buffer may PRINT NS$
now be acessed by the program. PRINT CVSD(AS)
Numeric values must be converted
back to numbers using the
"convert" functions: CVI for
integers, CVS for single
precission values, and CVD
for double precision values.

Program B-5 accesses the random filed;FILE" that was created

in Program B-4. By inputting the th¥ee-digit code at the
terminal, the information associated with that code is read from
the file and displayed.

0/

10 INPUT "R",#1,"FILE"

20 FIELD #1, 20 AS NS, 4 AS AS, 8 -S PS$
30 INPUT "2-DIGIT CODE";CODES /)

40 GET #1, CODE%

50 PRINT N$

60 PRINT USING "SS###.##" ;CUS(AS)

70 PRINT P$:PRINT

80 GOTO 30

PROGRAM B-5 -ACCESS A RANDOM FILE

The LOC function, with random files, returns the "current record
number." The current record number is one plus the last record
number that was used in a GET or PUT statement.

For example, the statement

IF LOC(1)=50 THEN END

ends program execution if the current record number in file#1 is
higher than 50.

Program B-6 is an inventory program that illustrates random file
access. In this program, the record number is used as the part
number, and it is assumed the inventory will contain no more
than 100 different part numbers. Lines 900-960 initialize the
data file by writing CHR$(255) as the first character of each
record. This is used later (line 270 and line 500) to determine
whether an entry already exists for that part number.

Lines 130-220 display the different inventory functions that the
program performs. When you type in the desired function number,
line 230 branches to the appropriate subroutine.

BASIC Disk I/O Page B

120

130
135
140
150
160
170
180
220
225

230
240
250
260
270

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590

|
—
—

PROGRAM B-6 - INVENTORY

OPEN "R",#1,"INVEN.DAT", 39

25 FIELD#1,1 AS FS$,30 AS DS, 2 AS Q$,2 AS RS$,4 AS PS

PRINT:PRINT "FUNCTIONS:" :PRINT

PRINT 1,"INITIALIZE FILE"

PRINT 2,"CREATE A NEW ENTRY"

PRINT 3,"DISPlAY INVENTORY FOR ONE PART"

PRINT 4,"ADD TO STOCK"

PRINT 5,"SUBTRACT FROM STOCK"

PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"

PRINT:PRINT: INPUR"FUNCTION" ; FUNCTION
F~(FUNCTION 1)OR(FUNCTION.>6) THEN PRINT "BAD FUNCTION

NUMBER" : GOTO 130

IF FUNCTION GOSUB 900,250,390,480,560,680

GOTO 220

REM BUILD NEW ENTRY

GOSUB 840

IF ASC(F$)-~ 255 THEN INPUT"OVERWRITE";AS:IF A$ "Y" THEN

RETURN

LSET F$=CHRS$(0)

INPUT "DESCRIPTION";DESCS

LSET D$=DESCS

INPUT "QUANTITY IN STOCK"; Q‘/

LSET QS$=MKIS$(Q%)

INPUT "REORDER LEVEL";R$%

LSET R$=MKIS(R$%)

INPUT "UNIT PRICE";P

LSET PS$S=MKS$(P)

PUT#1,PARTS

RETURN

REM DISPLAY ENTRY

GOSUB 840

IF ASC(F$)=255 THEN PRINT "NULL ENTRY" :RETURN
PRINT USING "PART NUMBER ###" ;PART%

PRINT DS

PRINT USING "QUANTITY ON HAND #####";CVI(QS)

PRINT USING "REORDER LEVEL #####",CVI(RS)
PRINT USING "UNIT PRICE SS##.##";CVS(PS)

RETURN

REM ADD TO STOCK

GOSUB840

IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
PRINT DS$:INPUT "QUANTITY TO ADD" ;A%

Q%=CVI(QS)+A%

LSET QS$=MKIS(Q%)

PUT#1,PART$

RETURN

REM REMOVE FROM STOCK

GOSUB 840

IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
PRINT DS$

BASIC Disk I/0 Page B-12

600 INPUT "QUANTITY TO SUBSTRACT";S%

610 Q%=CVI(QS)

620 IF (Q%-S%) 0 THEN PRINT "ONLY";Q%:;" IN STOCK":GOTO 600

630 Q%=Q%-S%

640 UD Q%= CVI(RS) THEN PRINT "QUANTITY NOW";Q%;;" REORDER

LEVEL"+CVI(RS)

650 LSET QS$=MKIS(Q%)

660 PUT#1,PART%

670 RETURN

680 REM DISPLAY ITEMS BELOW REORDER LEVEL

690 FOR I=1 TO 100

710 GET#1,1I

720 IF CVI(QS) CVI(RS$S) THEN PRINT D$;" QUANTITY"; CVI(QS)
TAB(50) "REORDER LEVEL";CVI(RS)

730 NEXT I

740 RETURN

840 INPUT "PART NUMBER" ;PART%

850 IF(PART%.1)OR(PART% 100) THEN PRINT "BAD PART NUMBER":GOTO
840

890 END

900 REM INITIALIZE .

910 INPUT "ARE YOU SURE":IF B$ "Y" THEN RETURN

920 LSET F$=CHRS$(255)

930 FOR I=1 TO 100

940 PUT#1,1

950 NEXT I

960 RETURN

Page C-1

APPENDIX C

Assembly Language Subroutines

BASIC has provisions for interfacing with assembly language
subroutines. The USR Function allows assembly language
subroutines to be called in the same way BASIC's intrinsic
functions are called.

C.1 MEMORY ALLOCATION

Memory space must be set aside for an assembly language
subroutine before it can be loaded. During initialization,
enter the highest memory location minus the amount of memory
needed for the assembly language subroutine(s). BASIC uses
all memory available from its starting location up, so only
the topmost locations in memory can be set aside for user
subroutines.

When an assembly lanquage subroutine is called, the stack
pointer is set up for levels (16 bytes) of stack storage.

If more stack space is needed, BASIC's stack can be saved and
a new stack set up for use by the assembly language
subroutine. BASIC's stack must be restored, however, before
returning from the subroutine.

The assembly language subroutine may be loaded into memory by
means of the BASIC POKE statement.

Assembly Lanquage Subroutines
Page C-2
C.2 USER FUNCTION CALLS

The format of the USR function is
USR[<(digity] (argument)

where {digit> is from 0 to 9 and the argument is any numeric
or string expression. (digit > specifies which USR routine is
being called, and corresponds with the digit supplied in the
DEF USR statement for that routine. If {digit) is omitted,
USRO is assumed. The address given in the DEF USR statement
determines the starting address of the subroutine.

When the USR function call is made, register A contains a
value that specifies the type of argument that was given.
The value in A may be one of the following:

Value in A Type of Argument
2 Two-byte integer (two's complement)
3 String
4 Single precision floating point number
8 Double precision floating point number

If the argument is a number, the [H,L] register pair points
to the Floating Point Accumulator (FAC) where the argument is
stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and
FAC-2 contains the middle 8 bits of mantissa and
FAC-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is
the sign of the number (0O=positive, l=negative).
FAC-0 is the exponent minus 128, and the binary
point is to the left of the most significant
byte of the mantissa.

Assembly Language Subroutines Page C-3

If the argument 1s a double precision floating point number:

FAC-7 throuah FAC:
P (™Y

4 contaln four more bytes
of mantissa (7AC e 8

conTalos one loweast

If the argument is a string, the [(D,E] register pair points
to 3 bytes called the "string descriptor.” Byte o of the
string descriptor contains the length of the string (0 to
255). Bytes 1 and 2, respectively, are the lower and upper 8
bits of the string starting address in string space.

CAUTION: If the argument is a string literal in the program,
the string descriptor will point to program text. Be careful
not to alter or destroy your program this way. To avoid

unpredictable results, add +"" to the string literal in the

program. Example:
AS = "BASIC"+""

This will copy the string literal into string space and will
prevent alteration of program text during a subroutine call.

Assembly Language Subroutines
Page C-4

C.3 CALL STATEMENT

BASIC user function calls may also be made with the CALL
statement.

A CALL statement with no arguments generates a simple "CALL"
instruction. The corresponding subroutine should return via a
simple "RET."

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument in the CALL
argument list, a parameter is passed to the subroutine. that
parameter is the address of the low byte of the argument.
Therefore, parameters always occupy two bytes each,
regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal to
3, they are passed in the registers. Parameter 1
will be in HL, 2 in DE (if present), and 3 in BC (if
present).

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter in HL.
2. Parameter in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3).)

Note that, with this scheme, the subroutine must know how
many parameters to exprect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. There are no checks for
correct number or type of parameters.

Assembly Langquage Subroutines Page C-5

When accessing parameters in a

rutine, don't forget that
they are onnters to the acrizl "

nts vassed.

[t iz encirely 2p 20 the
programmer to see to it that
the arguments in the calling
program match in number, tvpe,
and lengtn with the parameters
expeCted By the subroutine.
This applies tc BASIC
subroutines, as well as those
written in assembly language.

Derivad Funcsions

Functicns that
as follows:

are

Functicn

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

not

HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC

SINE
COSINE
TANGENT
SECANT
COSECANT
COTANGENT

INVERSE
SINE
INVERSE
COSINE
INVERSE
TANGENT
INVERSE
SECANT
INVERSE
COSECANT
INVERSE HYPERBOLIC
COTANGENT

HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC

HYPERBOLIC

Page

t» BASIC may be calculated

BASIC Rguivalent

SEC(X)=1/C0OS(X)

CSC(X)=1/SIN(X)

COT (X)=1/TAN(X)

ARCSIN(X)=ATN(X/SQR(-X*X+1))

ARCCOS (X)=-ATN(X/SQR(-X*X+1))+1.5708

ARCSEC (X)=ATN(X/SQR(X*X-1))
+SGN(SGN(X)-1)*1.5708

ARCCSC(X)=ATN(X/SQR(X*X-1))
+((SGN(X)=-1)*1.5708

ARCCOT(X)=ATN(X)+1.5708

SINH(X)=(EXP(X)-EXP(-X))/2

COSH (X)=(EXP(X)+EXP(-X))/2

TANH (X)=EXP(-X)/EXP(X)+EXP(-X)) *2+1

SECH(X)=2/(EXP(X)+EXP(-X))

CSCH(X)=2/(EXP(X)-EXP)-X))

COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1

ARCSINH(X)=LOG(X+SQR(X*X+1))
ARCCOSH (X)=LOG(X+SQR(X*X-1))
ARCTANH (X)=LOG((1+X)/(1-X))/2
ARCSECH (X)=LOG((SQR(-X*X+1)+1)/X
ARCCSCH(X)=LOG((SGN(X)*SQR(X*X+1)+1) /X

ARCCOTH (X)=LOG((X+1)/(X-1))/2

Page E-1

APPENDIX E

ASCII Character Codes

ASCII Character ASCII Character ASCITI Character
Code Code Code

000 NUL 043 + 086 v
001 SOH 044 , 087 W
002 STX 045 - 088 X
003 ETX 046 . 089 Y
004 EOT 047 / 090 y/
005 ENQ 048 0 091 [
006 ACK 049 1 092

007 BEL 050 2 093]
008 BS 051 3 094

009 HT 052 4 095

010 LF 053 5 096 '
011 vT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 SO 057 9 100 d
015 SI 058 : 101 e
016 DLE 059 : 102 £
017 DC1 060 103 g
018 DC2 061 = 104 h
019 DC3 062 105 i
020 DC4 063 ? 106 3j
021 NAK 064 Q 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 C 110 n-
025 EM 068 D 111 o
026 SUB 069 E 112 P
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115 [
030 RS 073 I 116 t
301 Us 074 J 17 u
032 SPACE 075 K 118 v
033 ! 076 L 119 w
034 " 077 M 120 X
035 # 078 N 121 Yy
036 $ 079 (o] 122 z
037 % 080 P 123

038 & 081 Q 124

039 ! 082 R 125

040 (083 S 126

041) 084 T 127 DEL
042 * 085 U

ASCII codes are in decimal
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

Page F-1

APPENDIX F
Converting BASIC programs
If you have programs written in other BASIC’s than Philips~
BASIC, some minor adjustments may be necessary before
running them with BASIC. Here are some specific things to
look for when converting BASIC programs.

F.1 STRING DIMENSIONS

In some old BASIC implementations the array elements of a
string variable contained only one character, so one of the
dimensions was used to specify the length of a string.
Delete all statements that are used to declare the length of
strings. A statement such as DIM AS$(I,J), which dimensions a
string array for J elements of length I, should be converted
to the BASIC statement DIM AS(J).

In BASIC, the MIDS, RIGHTS and LEFTS$ functions are used to
take substrings of strings. Forms such as A$(I) to access

the Ith character in A$, or AS$(I,J) to take a substring of
AS from position I to position J, must be changed as follows:

0ld BASICs Philips—-BASIC
X$=AS$(1) X$=MIDS(AS,I,1)
X$=AS$(1,J) X$=MIDS$ (AS(J),I,1)

If the substring reference is on the left side of an
assignment and X$ is used to replace characters in AS,
convert as follows:

014 BASICs Philips-BASIC
AS(I)=XS$ MIDS (AS$,1,1,)=X$
AS(I,J)=XS$ MIDS(A$(J),I,1)=X$

Some BASIC's use a comma or ampersand for string
concatenation. Each of these must be changed to a plus sign,
which is the operator for BASIC string concatenation.

Converting BASIC Programs Page F-2

F.2 MULTIPLE ASSIGNMENTS

Some BASIC’'s allow statements of the form:

10 LET B=C=0
to set B and C equal to zero. BASIC would interpret the
second equal sign as a logical operator and set B equal to -1
if C equaled 0. Instead, convert this statement to two
assignment statements:

10 C=0:B=0

F.3 MULTIPLE STATEMENTS

Some BASIC s use a backslash (\) to separate multiple
statements on a line. With BASIC, be sure all statements on a
line are separated by a colon (:).

F.4 MAT FUNCTIONS

Programs using the MAT functions available in some BASIC's
must be rewritten with FOR...NEXT loops to execute properly.

Page G-1

APPENDIX G

Summary of Error Codes and Error Messages

Number Message

1 NEXT without FOR
A variable in a NEXT statement does not
correspond to any previously executed,
unmatched FOR statement variable.

2 Syntax error
A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.)

3 Return without GOSUB
A RETURN statement is encountered for which
there is no previous, unmatched GOSUB
statement.

4 Out of data
A READ statement is executed when there are no

DATA statements with unread data remaining in
the program.

5 Illegal function call
A parameter that is out of range is passed to
math or string function. An FC error may also
occur as the result off:
1. a negative or unreasonably large subscript
2. a negative or zero argument with LOG

3. a negative argument to SQR

4. a negative mantissa with a non-integer
exponent

Summary of Error Codes and Error Messages Page G-2

5. a call to a USR function for which the
starting address has not vet beesn given

6. an inproper argument to MIDS, LEFTS, RIGHTS,
INP, OUT, WAIT, PEEK, POKE, TAB, SPC,
STRINGS, SPACES, INSTR, or ON...GOTO.

6 Overflow
The result of a calculation is too large to be
represented in BASIC number format. If
underflow occurs, the result is zero and
execution continues without an error.

7 Out of memory
A program is too large, has too many FOR loops
or GOSUB’s, too many variables, or expressions
that are too complicated.

8 Undefined line number
A line reference in a GOTO, GOSUB, IF...THEN...E1SE
or DELETE is to a nonexistent line. .

9 Subscript out of range
An array element is referenced either with a
subscript that is outside the dimensions of the
array, or with the wrong number of subscripts.

10 Duplicate Definition
Two DIM statements are given for the same array, or
a DIM statement is given for an array after the
default dimension of 10 has been established for
that array. -

1" Division by zero
A division by zero is encountered in an expression,
or the operation of involution results in zero being
raised to a negative power. Machine infinity with
the sign of the numerator is supplied as the result
of the division, or positive machine infinity is
supplied as the result of the involution, and
execution continues.

12 Illegal direct
A statement that is illegal in direct mode is
entered as a direct mode command.

13 Type mismatch
A string variable name is assigned a numeric value
or vice versa; a function that expects a numeric
argument is given a string argument or vice versa.

Summary of Error Codes and Error Messages Page G-3

14

o
jt
T

string space

variables exceed the amount of allccated
space. BASIC will allocate 50 bytes of
space, unless string space 1s allocated by
statement.

€]
~
[~

W

[e
S v oot

4G W

oW
:Vu
L oRre;

D ooy

15 String too long
An attempt is made to create a string more than
255 characters long.

16 String formula too complex
A string expression is too long or too complex.
The expression should be broken into smaller
expressions.

17 Can't continue
An attempt is made to continue a program that:

1. has halted due to an error,

2. has been modified during a break in
execution, or

3. does not exist.

18 Undefined user function
A USR function is called before the function
definition (DEF statement) is given.

19 No RESUME
An error trapping routine is entered but
contains no RESUME statement.

20 RESUME without error
A RESUME statement is encountered before an
error trapping routine is entered.

21 Unprintable error
An error messadge 1is not available for the error
condition which exists. This is usually caused
by an ERROR with an undefined error code.

22 Missing operand
An expression contains an operator with no
operand following it.

23 Line buffer overflow
An attempt is made to input a line that has too
many characters.

Summary of Error Codes and Error Messages Page G-4

26 FOR without NEXT
A FOR was ecountered without a matching
NEXT.,

29 WHILE without WEND
A WHILE statement does not have a matching
WEND

30 WEND without WHILE
A WEND was ecountered without a matching
WHILE.

31 Printer error

50 Field overflow

A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

51 Internal error
An internal malfunction has occurred in Philips
BASIC. Report to Philips under which the message
appeared.

52 Bad file number
A statement or command references a file with
a file number that is not OPEN or is out of
the range of file numbers specified at
initialization.

53 File not found
A LOAD, KILL or OPEN statement references a
file that does not exist on the current disk.

54 Bad file mode
An attempt is made to use PUT, GET, or LOF
with a sequential file, to LOAD a random file
or to execute an OPEN with a file mode other
than I, O, or R.

55 File already open
A sequential output mode OPEN is issued for a
file that is already open; or a KILL 1is

given for a file that is open.

57 Disk I/0 error
An I/0 error occured on a disk I/0 operation.

It is a fatal error, i.e., the operating system
cannot recover from the error

58 File already exists
The filename specified in a NAME statement is

Summary of Error Codes and Error Messages Page G-5

61 Disk full
All disk storage space is in use.

652 Input past end
An INPUT statement is executed after all the
data in the file has been INPUT, or for a null
[empty] file. To avoid this error, use the
EOF function to detect the end of file.

63 Bad record number
In a PUT or GET statement, the record number
is either greater than the maximum allowed
[32767] or equal to zero.

64 Bad file name
An illegal form is used for the filename with
LOAD, SAVE, KILL, or OPEN [e.g., a filname
with too many characters].

66 Direct statement in file
A direct statement is encountered while
while LOADing an ASCII-format file. The
LOAD is terminated.

67 Too many files
An attempt is made to create a new file
(using SAVE or OPEN] when all 255 directory
entries are full.

Page H-1

APPENDIX H
The Voiume Organization Utilixy

The Volumeé Organization Utility supports the field-
develcpment of BASIC user-programs.

The utility is invoked by:
RUN "B:VOLORG"

and the user is asked to select the desired function via a
menue.,

The functions are:

load and run a BASIC program

read disk directory

copy file

copy disk from drive 1 to drive 2
delete a file

delete whole disk

rename a file

set/reset file write-protection
display file sizes

compare disks

set parameters for automatic program load
exit to BASIC command level

* e ® 3

MPODODdANBWN—=O
L) L]

After having selected a function, the utility prompts for all
necessary inputs.

The file names follow the normal BASIC conventions, except
that drive A: is referred to by 1 and drive B: by 2.

After a function has been executed successfully, the utility
asks for continuation.

Responding with "1" simply executes the same function again,
while any other key returns to the menue. After an
unsuccessful termination of a function any key returns to the
menue,

The disk directory can be printed with function 1 when the
user types "P" as a response to the question "NEXT PAGE".

With the function "A" parameters for the systems start-up
time can be set:

The file name of a BASIC program which is RUN after
the start-up,

the number of files which can be opened at the same
time (0 through 15), and whether an index sequential
excess method (ISAM) is required or not (yes/no)

Paade I-1

APPENNDIX T

soreen [/ Manadsment

“

N Tomae s crora foay tre Soreen's I/0 Managerent.,
Thoge procedares are oavamined 1n this anpendix.
e careifal: The incorrecht ase of memnrv address, as mentioned

Hereinafror, nav cause unnredictable results.

T

-
L

Clear Screen, Cursny Home

With PYINT CHRS(12); zhe screen 1s cleared, and the
cnreor 0es to the home rnosition

Rina The Zell

With PRINT CHRS{T); the hell rinas

Move Carsor

To move +*he cursor tn line , nosition
execute PRINT CHURS(4); CHRS(line), CHRS(position)

The allowahle range for 1line 1is 1 through 24,
for oosition I throuah 80

Move Cursor To The Beainnina Of The Next Line

PRINT

Print Screen

The screen'

s imaade 1s routed to the printer by
PRINT CHRS(5)

.
14

Change Screen Output Speed

At nnwer-up or after a system reset the screen is set to
the hiaghest output sneed, which is indicated by a 0
(Zero hvte) on location &H46090,

You can slow down the outnut speed by resetting it with
e.a. POKE &Y6090, 8.

The outont sneed of the screen slows down proportionally
to this value until another POKE to the address is
executed, The lowest nnossible output speed is set by
POXFE &1A09N0, 255,

81 03 05

Page I-2

The Keyboard Innut Conversion Table

The input which 1is entered by the user via the kevbhoard
is translated to ASCIT characters bv the kevhoard input
conversion tahle. In the case, that the user wants to
Aisable, or to chanae the meanina of a key, he or she
simply alters the contents of the conversion table.

The ASCII characters which are read in from the kevhoard
quene after vou strike a ¥%ev, are stored in the memorv
locations A to A + &HM9F in which A can be calculated as
follows:

A = 25A*PREK (&H6939) + PEFK (&H693R)

In this table the ASCII code can be found on location:
A + Kevyvhoard position code

Fxample 1:

The command POKE A + &HS51, ASC("Y") changes the
meaning of the kevy (upner case) "H". An ASCITI "Y"
(hexadecimal 59) will appear on the screen and be
recognized frem your BASIC program, if you strike the
"H" kev, until this location of the keyboard input
table is altered again.

Fxample 2:

The user can disable the STOP key e.a. by replacing
it by an ASCII spmace (hexadecimal 20):

POKE A + &H58, ASC (" ")

Page J-1
APPENDIX J

BASIC Reserved Words

ARS GO TO PEEK
AND GOSUB POKE
ASC GOTO POS
ATN HEXS PRINT
AUTO) IF PUT
CALL IMP RANDOMIZE
CDBL INKEY READ
CHAIN INKEYS REM
CHRS INP RENUM
CINT INPUT RESET
CLEAR INSTR RESTORE
CLOSE INT RESUME
COMMON KILL RETURN
CONT LEFTS RIGHTS
CcOoSs LEN RND
CSNG LET RSET
CVD LINE RUN
CVI LIST SAVE
CVSs LLIST SGN
DATA LOAD SIN
DEF LOC SPACES
DEFDBL LOF SPC
DEFINT LOG SQR
DEFSNG LPOS STEP
DEFSTR LPRINT STOP
DELETE LSET STRS
DIM MERGE STRINGS
EDIT MIDS SWAP
ELSE MKDS SYSTEM
END MKIS TAB
EQV MKSS$S TAN
ERASE MOD THEN
ERL NAME TO
ERR NEW TROFF
ERROR NEXT TRON
EXP NOT USING
FIELD NULL USR
FILES OCTS VAL
FIX ON VARPTR
FN OPEN WAIT
FOR OPTION WEND
FRE OR WHILE
GET ouT WIDTH
WRITE

XOR

	p2kdb_03_0001
	p2kdb_03_0002
	p2kdb_03_0003
	p2kdb_03_0004
	p2kdb_03_0005
	p2kdb_03_0006
	p2kdb_03_0007
	p2kdb_03_0008
	p2kdb_03_0009
	p2kdb_03_0010
	p2kdb_03_0011
	p2kdb_03_0012
	p2kdb_03_0013
	p2kdb_03_0014
	p2kdb_03_0015
	p2kdb_03_0016
	p2kdb_03_0017
	p2kdb_03_0018
	p2kdb_03_0019
	p2kdb_03_0020
	p2kdb_03_0021
	p2kdb_03_0022
	p2kdb_0A_0001
	p2kdb_0A_0002
	p2kdb_0B_0001
	p2kdb_0B_0002
	p2kdb_0B_0003
	p2kdb_0B_0004
	p2kdb_0B_0005
	p2kdb_0B_0006
	p2kdb_0B_0007
	p2kdb_0B_0008
	p2kdb_0B_0009
	p2kdb_0B_0010
	p2kdb_0B_0011
	p2kdb_0B_0012
	p2kdb_0C_0001
	p2kdb_0C_0002
	p2kdb_0C_0003
	p2kdb_0C_0004
	p2kdb_0C_0005
	p2kdb_0C_0006
	p2kdb_0C_0007
	p2kdb_0C_0008
	p2kdb_0C_0009
	p2kdb_0C_0010
	p2kdb_0C_0011
	p2kdb_0C_0012
	p2kdb_0C_0013
	p2kdb_0C_0014
	p2kdb_0C_0015
	p2kdb_0C_0016
	p2kdb_0C_0017
	p2kdb_0C_0018
	p2kdb_0C_0019

