MPF-1IP

BASIC
Manual

dxo34328
Stempel

MPF-IP BASIC

PROGRAMMIING
MANUAL

-, 2 ==

Table of Contents

Chapter 1 Introduction to BASIC.cscssscscesssssasnel—l

Yl Spectal Ceysuevvavieve saive e vianiedsve s sy d=l
1.2 Prompt CharacterS, .. iievasesesseseesssssasessased=d
1.3 Entry intc and Exit from the BASIC system.,.....l1l=3
1.4 Correction of Brrors While Inputing a Program..l-4
1.5 BASIC Commands and StatementS...isescesasscssssl=4d
1:5.,1 ExXecution Modes,,.:sesssssessdsesesiaese e
1.5.2 CommandS..iccscasassasiassasssssssasasssl=b
1843 StatementScccenumseesamenssanes viesveeesdeT
1.5.4 Correct or Delete a Statementesseecssssasl=8
1.6 Listing oFf a PLOGraM..«eses seeesesesssveiesesl=10
1.7 Execution of & PrograMi.eeieesvevesesiseessaael=ll
1.8 Deletion of a Whole Programecsscsscecassessssssel=ll
1.9 Remark in a PrograMessessssssssssnsasssnsssossl=l2

100 USage OFf ficveiviiesy & eidse s i ol @d e dauaaes =13

Chapter 2 Expression....................-...---.....2-i.

2-1 ConStant‘S-......"'.'..U......Q......l.-..-.--.z-z
2.1.1 Numeric ConsStantS.sseessessacsanssnnansesl=2
2.1.2 Literal Strings................--....o-.2-4

2.2 Variables...........-.ﬂ.-l..lIlIl.l-.II.I....l-z-s

2.3 FunCtionﬂ..-......-.-....--.-o-.-..o...........z‘s
2-4 OperatorSn-----t.t...o.'ptooooooon.-.ootoao..-.z*s

2.5 Evaluating EXpressionS...eecececcccscesscssssassl—9

Chapter 3 commanda.l...........c.-.v.t-.hc--..0.....3-1

3.1 Execution CommandS..eecsssssssscasnsnsessssssses =
Fwlsdl, RONIXED/COTO v umemenemenunnewess o nevesene =g
3.le2Z CONERNUG cwemew swwsmnmm sm s wmaren s e s veS=g
Biude3 QU T e eime s onsesesesnsessmees sssssesessssd=]

3,2 Edititig CoONNANAS. e e essnesessnseesessesessesed=ts
3.2.1 LISTesesssssessssssssssssssvesnsesssessed—8
32,2 NEW/NEWY uvsessesssesesssemese s e s sss 3=l f
2 D T e om0 T B o e e B

3.3 Permanent Storage COMMaNdSeeessccossscsssssnss 3=12
3.3l SAVE esncssnamanssseiensasdssebnie s 3512
3e3e2 LOAD.cscsssssssnssssssassacsssnsnsnssasss Jull

3«4 Auxiliary CommandSecsssssssesssssssassasasasssss3=14
3.4.) FREE ussisninssasianensssisiasevissass =15

3.4.2 HEK-.------aaccatooo.co.to-ot.0000000003—16

Chapter 4 General StatementS..cccssesccscscsscncssnsesd=l

4-1 LET.-..-.u-t'---.oqoo-o9--------------.----.-.-4-1

4.2 END/STOP-.-.--..-----o-oooc-3.-..-.-0---.-.-.--4-3

I

4.3
4.4

4.5

REM and “!.‘..-...lOOOCQQOOQOOQOQCIODOOG.0--...!4-4
RANDOMIZE..cecsoceacscsscasassnsosssansnsanceneed=5

SON (Speed On) and SOFF (Speed Off) eevscaceea.d=6

Chapter 5 Control Statement...ccccecccsccecsccnnsccasd=l

5.1

Loop-------t---t.-tt-o.ot.tt...t..'ot..oosrngcps-l

5.1-1 FOR000-¢00.0.v0-ot.c-cc..cott.a..0....-.5“3

BuluZ NBEXT. wseesaseeesieosesyie s woresee sseweydmd
S+1s3 FOR/NEXT LOOP:iesvaassvassasneessivavsessses sl
5.1.4 Some ExampleS.csesssssvsssssnssnnsssassssdrh
Conditional Control Transfer...cceeeeescscscaead=9
5¢24]1 IFeeeTHENusssessesesssossosossscnssnnsensd—d
SeZ«2 MNOre Oh LOOPEew e weeewsweae smae nnsesese T ohh
Unconditional Control Transfer....cececscsssasad=13
5231 GOTOesenasesesesnsesassscnasssesonsncesd=1l3
5.3.2 Infinite LOODsesssssnsnensesenensessseeed=Lai
Computer Control TransSfer...c.ceccescsacncasnaa’d=16

5-4.1 ONQQOGOTOUQOQUO-votvitoooo.t.-ant-....-shle

chaptet 6 Numeric OperatiOh............---..o---.o.ﬁ‘l

The Notation of Numeric Values in Memory.......6-1
umeric Functions........-.-.-a.---.-....-......ﬁ—Z

6.2.1 BBSeacenssensensvesesesesssesenseseseesssd=2

612-2 ATN..ttl-o.c...oo...ot-l.d.tt-...--.---¢6_2

11l

6.2.3 COS.o-llt-o-.---t.t.tv-.o.---.----c--...6—3

6.2.4 EAPivsusewnssnsssisssesisssssnesssssseesoia
6.2.5 INT-----...ot--.a...t...-t-oa.-c.-a--...ﬁ-s
6-2-6 LN.----.------.-coo-voo---e.coavc--aoaaos-s

66247 BOGcawsmnmenaswsnsnisssssonsesesesessenndrd
Baded FND cuimeeieeemesmme msime swme swmem ew:eee e se s 0= 1
6:e2.9 SGNuswesssnssessssssnsrescasassenesasssasd=9
6.2.10 SIG.svswsassscssssssasssssscsssasssessesb—9
6620 bl BORG e wommwwmenioios ssmanssssesssssmwsssives0nLy

6+2.12 TANussssesssesavensssssssnnsssssssnereseb=ll

Chapter 7 Ar!ay..--..-.............................7-1

Vol DIMesasiasisensesionesosiese s ssisssehocessienseesl=2

7.2 Changing the Dimensionn of an Array..ce.eeeee../=4

Chapter 8 St!ing Operation.............--.-...--..-8*1

B.1 String Literals....ccccsssccsssssasssssssssasssB=l
B.2 String Variableuduissesedeensensneslssnssesdassan=2
8.3 String EXpressioN.esecisescesssssesccescsasesnsesd=]
8.4 Functions for StringsS.cesccscssssssssssescsssssd—4
Budil ABCIlesiscevesoassnssvosassssiwiosnieie =D
Bidi2 CHRS.ivessasesasianssansisssssseiasssaiesd=?

8-4-3 INSTRQO....-.-.G..'d!dl....‘.l..l.ll‘.008"8

8.4.9
8.4.10

8.4.11

LEFTSecaecacesssssacoscsascsanacsasesesd-ll
LBH-aa.o-o--tco---aeag--..oo-.--.---...&“ll
MIDSOOUOGIOQ...'.....-Q....--.-....-.l-s—lz

NUMS..--.-.....ot..cccc..ooot..l.--...-8_13

RIGHTSssvsoesosesnssanssssssnsesessnnesB-l5
SPACES---.---.---o-----c----.o-.o----ooa-lﬁ

STRINGSIIl..I..--llllll.l---..-..II..'IB-la

VAL....................................8—23

Comparing StringS.scecessssasssassseassssssssssssB=22

INPUL/Dutpit of Strifg8.cessscnevesesnssssssssd=2s

Chapter 9

9l

Z/O Statement..............-.............9-1

Print'-tso...-.ttic.ot.toc-.0.-..---...-..---.-9—2

Output Of NUMELIiC Dat@.ieseescscccnsassed=d
gatput of String Patdu.iweescaeiavensaee9=5
The Usage of "," in a PRINT Statement...9-6
The Usage of ";" in a PRING Statement,..9-7
OLIEs TNV GE TR o o e wie e I O
POS FONCELION su v mv e sw o mim mimmwin mom s e a0

TAB FURELION G s e ssavdesssessessssssnss T

Statement...............................9-1”

Input Of NUMEric Dat@8.sssssssssssssceassd-12

Input of Sttiﬂg DAt cesesssssssssssssnseI=id

9.3 DATA/READ/RESTORE..cceiscsaccascns sesssrrnssesed-l3
9-3-1 Examplesn-a-ll--.-tr-ocpa...-o-o ------- 9-15
9.4 INP FunctioN...ssssssssee seccsssessenansas saeeI=16

HLE OUT Shatementicees s se viee s v B=1%

Chapter 1“ subprogram..............................1“‘1

10.1 Components of a SUDPrOgraM,..cessssssssssasssl@=2
10:2 GOSUB.veesomuramsnsesssssns) PRI £ s
10,2,1 GOSUBeeesersosesssennsasenessssssssesll-—3
10.2,2 ON/GOSUBusssssssssssacansscsecansssssll=4
10203 RETIIRN o o s s e b s s e o o, w5 8 »eelld=5
10.2.4 ExampleS.ecesssssssssssssssssscsrsnnaslld=6

10.3 Recursive SUDPrOgraM..cscsscccscsssssssssssesslld—8

Chapter 11 User-Defined FunctioON,..esssccsssssssssll-l

11.1 DEF Statcment...........o.....-...........-..11-2
11.2 Usage of User-Defied FunCtiON..eceeecececcaanas 11-4

Chapter 12 Combination with Non-BASIC Program.....l2-1

121 CALL Statement.c.eceses 01050 e Y L0

12-2 POKE/PEEK....-.....I.Il.lIII.d---a-..12-4

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

ASCII CharaCterst.I...I.i...............h'l

MPF-IP BASIC statement..I-..I........'I.B-l

MPF-IP BASIC Comandsto....oc....a....noc"'l

MPF-IP BASIC Built-in Function..........D-l

MPF-1P BASIC Error MessaQESQ---o.o--o---E-l

Fundamental Definitions-cna..caaa--..ot-?“l

ways to SaVE HemorY¢¢tdanlnlc...a...ncopc-l

Library Constant.issssscsssssssssssssnsaaslH=l

Some Subprogram in the Monitor...sseesesl=l

PREFACE

This book is written for those who want to program on
MPF-IP in BASIC. In fact, there are quite a few
versions of BASIC, each one with its own features
designed for special considerations required in
different fields.

MPF-1P BASIC, like other versions of BASIC, consists
of a set of instructions which you combine to create
programs which 1in turn define the tasks you want the
computer to do.

In this manual, detailed descriptions are provided on
all the statements, commands and functions available in
MPF-IP BASIC. For novice programmers this manual will
serve well as a tutorial. Readers who have had
experience in programming in other versions of BASIC
may read through this manual in a short period of time
to familiarize themselves with the special features of
MPF-IP BASIC.

This manual is divided into 12 chapters together with
an informative section of Appendices. It is hoped
that you learn and enjoy more and more in programming
as you finish each section of the book.

Chapter 1

Introduction to BASIC

In order to communicate with a computer, we have to
learn a language that the computer can understand. 1In
this manual, we will show to the readers a computer
language called "BASIC" - the abbreviation of
"Beginner's All-purpose Symbolic Instruction Code".
BASIC was brought into being by John Kemeny and Thomas
in the middle of 1960's. Among the numerous computer
languages currently in existence, BASIC is most widely
used by people because it is easy to 1learn, and
versatile in application,

MPF-IP BASIC has a number of commands in hand to
control the execution of programs as well as a number
of statements to write programs. It may well be
regarded as a dialect of the BASIC. It is designed to
execute on the MPF-IP system and inputs programs and
data through the keyboard. In this chapter, we will
show you how to make the MPF-IP go into the BASIC
system and leave it, and how to input or correct BASIC
commands and statements.

1.4 Spedial Keys
:

One has to end each and every command or statement
by pressing this key.

o

This is used to cancel the character before the
cursor on the same line.

-——> 1

The MPF-1P Display is a Fluorescent Indicator Panel
(FIP) with a length of 20 characters, but the length of
the Display buffer reaches 6@ characters. with this
key one can see those after the 21st character.

[CONTROL] M :

This 2<key combination serves the same purpose as

that of [=—] .
[ConTROL] € + [==] :

This can interrupt the execution of a program.

RESET' H

After MPF-IP System is started, a press on this key
at any moment will bring a display of ***** MPF-I-PLUS
***%* back on the Indicator Panel.

1.2 Prompt Characters

MPF-IP system uses a number of prompt characters to
keep the users aware of its present state of being.

: < resence of this prompt character indicates that
P is under the control of the Monitor and a
press on CONTROL B or CONTROL C will bring it into
the BASIC.

@: This prompt character tells us that MPF-IP is now in
the BASIC and we can input any BASIC commands or
statements,

7: When an INPUT statement is executed in the wuser's
Program, this prompt character will appear on the
Indicator Panel and MPF-IP is awaiting input.

1.3 Entry into and Exit from the BASIC System

After MPF-IP is turned on and a display of *#*#*¥%* MpPF-I-
PLUS *#***% or the fundamental mode <" is shown, there
are two ways to enter into the BASIC language:

(1) Press and B simultaneously (for BASIC),
MPF-IP will respond with

BASIC-IP, ORG : ©

and now MPF-IP is expecting the user to enter
program storage starting address in hexademical and
press , 1i1f the user press without
entering the starting address, the starting address
will automatically be set to the default value (the
default starting address).

MPF-IP will automatically detect the RAM space, if
there is only one RAM on the MPF-IP mainboard, the
default wvalue 1is set to F808, if there are two,
then it is set to F@@@, if an EPB-MPF-IP or IOM-
MPF~-IP is connected, then the default starting
address is set to DBOG.

Once the starting address of the program is
determined, the BASIC prompt character "@"" |is
displayed on the FIP.

(2) Press and C simultaneously: (for REBASIC)
MPF-IP will enter into BASIC system directly and
the prompt character of the BASIC system @~ will
appear on the indicator panel.

The most important difference between BASIC and REBASIC
lies in their manipulation on the memory. In BASIC,
the contents of the memory will change as a result of
the initialization. In REBASIC, however, there is no
initialization and all the data originally in the
memory are protected from being destroyed.

Exit from the BASIC language

There are two ways for exiting from the BASIC language.

(1) Press the[RESET] key

Whenever the [RESET] key is pressed, the MPF-IP is
initialized to its start state, i.e., a display of
ool MPF-I-PLUS **#%#*#% ij]] be seen on the
indicator panel.

(2) when the BASIC prompt character is displayed on the
Indicator Panel, key in QUIT and . Then the
control will be returned to the monitor program and
the prompt character of the monitor program <~ will
be seen on the display.

After you have exited from the BASIC language,
reentry into the BASIC is achieved by pressing

. This prevents your BASIC program

from being damaged.
1.4 Comection of Errors While Inputing a Program
While inputing a program, the mistake in a line of
statement can be corrected by pressing the BACKSPACE
key <- before the carriage return key is pressed.
Every press on the <- key deletes a character to the
left of the cursor and back-space the cursor one
position.
Example:

@PRIXT"

1f we press the BACKSPACE key for two times, then we
have

@PRI”™
Now, we can key in the correct characters and get

@PRINT

1.5 BASIC Commands and Statements

Before discussing the BASIC commands and statements in
the MPF-IP, we would describe the execution modes in
the MPF-IP.

1-4

1.5.1 Execution Modes

In the MPF-IP, two execution modes are available. One
is called the immediate execution mode, while the other
deferred execution mode.

1) The Immediate Mode

The immediate mode allows a user to execute a
BASIC command immediately after the command is entered.

Try to type on the keyboard as follows:
@PRINT 44/2

and then press , the MPF-1P will display.

22%
Which is the quotient of 44 being divided by 2.
From the example, it is obvious that after we entered
the PRINT statement and press , the MPF-IP will
execute the statement immediately to calculate the
expression after the PRINT command and display the
result on the indicator panel. 1In this example, "/" is
the divide operator.
Now, try to type in the following statement line.
BPRINT 447*2;9%600+2*19

and press [=—]. What will you see on the display?

894 5438°
Isn't it?
2) The Deferred Mode

In the deferred mode, each BASIC statement is
preceded by a statement number. Each statement is not
executed immediately after it is entered. 1In the
deferred mode, the statements contained in a BASIC
program is not executed until the RUN command is given.

Now you are suggested to follow the example below to
get a hands-on experience of how the deferred mode is.

@106 PRINT 447%*2
@20 PRINT 9*600+2*19

Don't forget to end each statement line with [=—I.

A number of statements in this Deferred Mode
will constitute a "program" which will not be executed
immediately. Instead, they are stored in the memory.
In fact, BASIC Interpreter will not execute this
program until the user enter the command in the
immediate mode RUN. Then the execution of the program
will go on and will stop only after the whole program
is performed. We will go into more detail on this
subject in 4.2 "END/STOP statements".

Now type RUN and press the key and we will have
894"

Press the key again and we will see
5438°

Now if we press the key for another three times,
we will have the foliowing displays in seguence:

READY

@
For more details on the function of the [——] in the
exection of a program, see Chapter 9, : "Input/output

statements".

1.5.2 Commands

The main functions of MPF-IP BASIC commands are to
control the Editing, Executing and Debugging in a
program.

Generally speaking, all the MPF-IP BASIC commands are
executed in the immediate mode. But they can be
executed in the deferred mode on some occasions.
Similarly the deferred mode statements in MPF-IP BASIC
can be converted to immediate mode to facilitate
debugging.

l-6

One can enter any MPF-IP BASIC commands when the prompt
character 1is displayed on the Indicator Panel. IE
there is any error while entering BASIC commands, the
Indicator Panel will show an error message.

1.5.3 Statements

Every BASIC program is composed of a set of deferred
mode statements aligned in order. More precisely, they
are aligned according to their statement numbers, from
the smallest to the largest. Statement numbers used in
a program are restricted to integers between 1 and
9999, Leading zeros at the beginning of a statement
number will be ignored in BASIC. For example, 812,
3312 and 12 will all mean the same thing 12 in BASIC.
The users need not bother to enter statements in the
order of statement numbers for BASIC will automatically
align them in order. During the execution of a program
BASIC will proceed in the order of the statement
numbers unless one of the following situations develops

(1) Commands related to the flow of the control are
executed.

(2) Execution is interrupted as a result of errors.
(3) and C are pressed simultaneously.
(4) Execution proceeds to STOP or END statements.

(5) After the statement with the largest statement
number is executed.

During the entry of a program, if a statement number
smaller than 1 or larger than 9999 is encountered, the
Indicator Panel will display

SN ERROR IN LINE

1f we press the key three times now, we will see
the following displays shown in sequence

READY
e

And the following statements will not be accepted,

1-7

For Example:

@g 1=9
SN ERROR IN LINE

READY

@10000 K=8

SN ERROR IN LINE
READY

@oleee J=9

SN ERROR IN LINE

READY
e

In the last example above, @18@80 does not exceed the
allowed range of statement number, but it is regarded
as an error because the length of this number exceeds
four.
Free format is adopted in the MPF-IP BASIC statements,
For example, the following statements all mean the same
thing,

@20 LET B7=25

@208LET B7=25

@26LETB7=25

@20LETB 7=25

@20LETB 7= 25
however,

@20LET B7=2 5

is a statement with syntax error.

1.5.4 Comect or Delete a Statement
*Correct a statement
Correction is required on the following two occasions:

1. There is syntax error in the statement.

1-8

2. The whole program is required to be modified for a
certain purpose,

Methods:

1. Before the key is pressed, correction can
easily be carried out with the <- key.

2. If the key is already pressed:
(1) key in a new statement.

I1f the statement number of the new statement
already exists somewhere in the original program, the
old statement will be completely replaced by the new
statement.

READY
@20 B7=25
@28 B7=12
(2) Use the EDIT command

If only a minor part of the statement is to be

corrected and the statement is a big one, (1) will take

much time and efforts. In this case we can do it as
follows:

@3¢ FOR I=1 TO 15 STEP 3
@EDIT 34,3,5

For more detail about the EDIT command, see 3.2.3,
*Delete a statement

If you want to delete a statement, all you have to do
is to key in its statement number and press the
key.

For example:

@2

1.6 Listing of a Program

After MPF-IP entered the BASIC, we can use the LIST
command to list the statements stored in the computer.

The LIST command is used to 1list a program after
correction or deletion of statements to see 1F
the modification is done successfully as required.

For example:

@l1¢ INPUT A,B

@20 C=A+G

@20 C=A+B:REM A CHANGE
@30 PRINT

@40 PRINT A:;" +";B;" =";C
@LIST

1% INPUT A,B

20 C=A+B:REM A CHANGE

30 PRINT

4@ PRINT A;" +";B;" =";C

The LIST command will list the statements starting from
the statement with the smallest statement number to
that with the largest statement number even if the
statements were not entered in this order.

For example:

@40 PRINT A;" +";B;" =";C
@20 C=A+B

@3@ PRINT

@1¢ INPUT A,B

@LIST

1@ INPUT A,B
28 C=A+B
3@ PRINT

A NDODTMM A
=W COLINL g

READY
@

1.7 Execution of a Program

After a program is entered, we can type in RUN to
request the execution of the program, THE LIST command
can be wused to see if the program is correct before
execution,

For example:

@NEW:REM CLEAR PROGRAM
@1¢@ PRINT "5%1@=";5%1¢
@RUN

5*10=50

READY
e

@NEW

@10 INPUT "“YOUR NAME:",NS
@20 ? "HELLO! ":NS

@RUN

YOUR NAME:?CHENG

HELLO! CHENG

READY
@

In the above program, the REM statement is used as a
remark, these statements are ignored in the execution
of a program,

The INPUT statement is a statement which asks for
entry (i,e., the user is expected to type in something
through the keyboard) "?" is one of the output
statement functioning exactly in the same way as PRINT.
We will look over these statements in more detail
later.

1.8 Deletion of a Whole Program

I1f an entered program is not to be used any more,
the NEW command will delete them once and for all. In
fact, the entry of the NEW command will nullify all the
programs in the BASIC system. We have shown the usage
of the NEW command in 1.7 though we did not go into
details about it.

Now, try the following program:

@NEW

@100 PRINT "5%10=";5*10
@RUN

5%1@=5@

READY
€10 INPUT "YOUR NAME:" ,N$
@2¢ ? "HELLO! ";NS$

@RUN

YOUR NAME:?YIH-HWA

HELLO! YIH-HWA

5%10=58

READY

e

In the above example, you will see the results .as shown
if you did not use the NEW command after the execution
of statement 10@, i,e., following the execution of
statement 18 and 2@, BASIC will proceed to the
statement 160. Now, let us use the LIST command to
examine what is stored in the computer.

@LIST

1@ INPUT "“YOUR NAME:",N$
20 ? "HELLO! ";NS

10@ PRINT "5*1@=";5*10

READY
@

1.9 Remark in a Program

In a program, we can use the REM statement to explain
or interpret the fuction of the statements. when a
program is displayed with a LIST command, the REM
statement is also shown, but their presence will make
no difference at all to the execution of a program,

For example:

@1¢ INPUT A,B

@20 C=A*B

@3¢ PRINT

@40 2 A;" *%;B;= ";C
@5REM...THIS PROGRAM
@7REM MULTIPLY 2 NUMBERS
@15REM 2 VALUES MUST BE
@17REMINPUT

@35REM..C CONTAINS THE
@37REM.....PRODUCT

@

As far as the execution of a program is concerned, the
results will all be the same before and after the REM
statements are added. Incidentally we would like to
call your attention to "!". In fact, "!“ is another
kind of the REM statements functioning exactly in the
same way as REM, This is just the same case with "2"
and PRINT we mentioned earlier.

1.10 Usage of:

Earlier in 1.7 we have explained how to use ":" in the
immediate mode together with the REM statement. Here
let us look at its real power in practice more closely.

Except for its presence in a string, ":" denotes the
end of a command or statement, followed by the
beginning of another statement or command. This makes
it possible for us to put several statements after a
single statement number.

For example:

@l¢ FOR I
1

2

3

4

1 TO 4 : ?I : NEXT 1

READY
@19 FOR I
@2@ ?I1
@39 NEXT I

1 TO 4

The above two programs will have the same result.

1-13

Chapter 2 Expression

An expression is composed of constants, variables,
functions and operators. An expression is expected to
produce a certain value after evaluation. It can be a
numeric value or a string. For that matter, an
expression is called a numeric expression or a string
expression according to the outcome to be produced by
the expression.

Constants, variables and functions all denote a certain
value. In an expression, the operators tell the
computer what to do with these values. We will go into
more detail on the evaluation of numeric wvalues and
strings in chapter 6 and 7. The following is an example
of expression.

(A+B) *C+D
Here A,B,C, and D are variables, each one must be
assigned a wvalue in due course, In an expression,
those included in parentheses are given top priority

for execution, followed by multiplication and division,
and lastly addition and subtraction are executed.

1f A=6, B=4, C=2, D=1, the value of this expression is
21.

See the next expression:

(X*(Y=-2))+2

Here, X,Y,Z are variables supposedly assigned certain
numberic values, *,+,-, are symbols of multiplication,
addition and subtraction respectively. 2 is a
constant. Those nested in the innermost parentheses
are evaluated first, followed by those in the outer
parentheses and lastly the operation of addition. if
X,Y,2 are 7,4,3 respectively, the value of this numeric
expression is 17,

2.1 Constants

A constant can either be a numeric value or a string.

2.1.1 Numeric Constants

A numeric constant can be a positive number, or a
negative .number, or zero. In MPF-IP BASIC, a numeric
constant can be a real number or a number expressed in
scientific notation. Both are expressed in floating
point system in MPF-IP BASIC. As a result, during the
execution of a program, the number displayed on the
indicator panel after PRINT or "?" statements as well
as those stored in the computer memory are subject to
the following limitations.

Inside the computer, real numbers and numbers expressed
in scientific notation are the same in essence. In
fact both are expressed in floating point system, and
can be considered the same thing. But in the design of
MPF-IP BASIC, the precision is restricted to 6 digits.
Therefore, any number greater than the 6th power of 10
or less than the -6th power of 1@ can not be expressed
with 6 digit precision. In this case, the scientific
digit precision. In this case, the scientiiic
notation is used as the key to solute to this problem.

A real number can be any one between 999999 and -
999999, with or without a decimal point, but the number
of digits shall not exceed 6. I1f the exponent of a
number is larger than 6 or smaller than -6, BASIC will
automatically express it in scientific notation.

The scientific notation makes it easy to deal with
numbers with very small or very large exponent. The
format of the scientific notation is shown below:

Number = Mantissa * 10 Exponent

Examples:
Conventional Scientific Notation MPF-IP BASIC Format
4
3.264 * 10 3.264E4
17
9.99 * 10 9.99E17
=5
5.691 * 10 5.691E-5
-18
-2.47 * 10 -2.47E-18

If the absolute value of a number is greater than
4.9999E+18 or less than -9.99998E-28, then the number
can not be expressed in scientific notation.

For example:
@PRINT 4.5624E5
456240
@PRINT 234.5678E9
2.34567E+11
@PRINT 3E7
3.00000E+07
Underflow:

When a small number falls between -9.99998E-2¢ and
9.99998E~-20, there will be underflow error with the
following error message dislayed:

UN ERROR IN LINE nnnn
and the program will go on.
Overflow:

If a 1large number goes above 4.99999E+18 or falls
below =-4.9999E+18, there will be Overflow error with
the following message displayed:

OV ERROR IN LINE nnnn

and the program will go on.

For example:

@PRINT 1E-19
9.99998E-20

@PRINT 1E-20

UN ERROR IN LINE
7.99998E-26

@PRINT 5E18
4.99999E+18

@PRINT 1E19

OV ERROR IN LINE
4,99999E+19

@PRINT 3E19

OV ERROR IN LINE
3.74999E+18

@NEW

@10 I=2

@20 T=I*1

@3¢ PRINT I

@40 GOTO 20

@RUN
4
16
256
65536
4.29496E+09

OV ERROR IN LINE 20
2.30584E+18

OV ERROR IN LINE 20
2.30584E+18 CONTROL C
READY

@

2.1.2 Literal Strings

Literal strings are strings of ASCII characters
enclosed by two quotation marks. In a literal string,
a space does mean something. 1In fact, it is considered
as a character. This is especially important for those
who are accustomed to free format.

We can put any of the characters that can be entered
through the keyboard into a literal string. Due to the
limited size of the key-in buffer, the number of
characters in a literal string is restricted.

In fact, the size of the key-in buffer is 60
characters, but the number of characters in a literal
string can be as large as 255 in actual operations.

Example:

"CBABC"

"WHAT A MANILI"

"CHENG YIH-HWA TEL 894-5438"
"HAHA"

Due to the requirement of the system design, there are
occasions we have to appeal to special ways to have a
character displayed. We will go into more detail in
this respect in chapter 8 on CHRS$. For now, let us try
the following example:

@PRINT "ABC"+CHRS$(13)+"HAHA"
ABC
HAHA

2.2 Variables

A variable is a name with an assigned value. During
the execution of a program the assigned wvalue is
subject to changes on request of the programmer.

The wvariable accounts for a major part im a program.
Each time the name of a variable is referenced, it is
the contents (a constant) of that wvariable that is
accessed,

The name of a numeric variable can be a letter of the
alphabet (A-Z) or an alphabet followed by numeric
letter (8-9). The value of a numeric variable is a
floating number. Here are some examples:

A AQ
E E5
Z z9

The name of a string variable can be obtained in the
same way as a numeric variable except that it must be
added with a "§" at the end. Here are some examples:

AS AGS
ES E58
z8 298

Usually, the value of a string variable is a string of
characters. In an extreme case, it can be a null
string, i.e., the length of the string is zero.

1f the name of a variable is to represent an element of
an array, the variable is expected to be added with a
subscript. A variable with a subscript is the same as
a common constant in essence. The number of subscripts
to variables can be one or two, I1f there are 2
subscripts, they must be separated by a comma(,). In
both cases, subscripts are enclosed by parentheses.
Usually, the subscripts are numeric contants or numric
variables, but there are chances that they are numeric
expressions. As the value of a numeric expression is a
floating number, they will be rounded up during the
evaluation when they are used as subscripts. Here are
some examples:

A(l) AG (A2,A3)
E(1l,2) E5(C4,X/4)
E(N+1) 29(106,18)

A string variable cannot be an element of an array.

2.3 Functions

A function is an operation in which a single value is
obtained through a series of evaluations of one or more
parameters. A numeric function has the same notation
with a numeric array. But the number of parameters in
a numeric function is not restricted to one or two.
The parameters are also separated by commas. The
number of parameters and type are different from one
function to another.

For the simple reason that the outcome of a function
after evaluation is a certain value, a function can be
used anywhere in expressions just like variables and
constants. In practice, a function is present in
expressions in the format of a function name followed
by an actual parameter enclosed in parentheses.

Let us look at some examples,
INT(X) :
Here X 1is a numeric expression., The outcome after

evaluation from this function is the greatest integer
smaller than or equal to X. For instance:

INT(8.35) =8
SGN (X) :
Again, X is a numeri¢ expression, We will have the

outcome according to the follolwing definition:

1, if x>0
g, if X=0
-1, if x<@

For instance,
SGN(4 * =3)==1

MPF-IP BASIC provides the user with quite a number of
built-in functions, such as the sine function, the
square root function, the function to get the absolute
values, etc. In Chapter 6, we will examine these
useful numeric functions in great detail. They are
listed in Appendix D. In addition, if one has to use
the same series of operations to get a value
frequently, it is possible for him to resort to user-
defined functions. For more detail please see chapter
1 & 9

So far we have focused our description on numeric
functions. When the outcome of a function after
operation turns out to be a string of letters of the
alphabet, it is called a string function. See chapter
8 for more detail. Again, some built-in string
functions are listed in AppendixD.

2.4 Operators

The operators will work arithmetic, 1logic or string
operations on one or two values to yield an outcome.
Usually, an operator comes between two operands, and is
called a Binary Operator. There are, however, Unary
operators as well. For instance, the "-" is binary in
A-B, but is unary in -A., The combinations of operands
and operators bring about expressions. The operands in
an expression can be constants, variables, functions,
or another expression, The operators can be classified
according to their characteristics into two categories:
(1) arithmetic and (2) relational operators.

(1) Arithmetic Operators

(A) Unary
+ the positive sign +A
- the negative sign -A
(B) Binary
+ Addition A+B
- Subtraction A-B
* Multiplication A*B
/ Division A/B
h Exponentiation A}B

(2) Relational Operators

= egual to A=B
< smaller than A<B
» larger than A>B
<= smaller than or equal to A<=B
>= larger than or equal to A>=B
<> unegual to A>B

In an operation with relational operators, a logical
value will come out as the result. In practice, all
relational operators are binary and relational
expressions can be used only in IF statement.

Operation of strings
In MPF-IP BASIC, there is an operator for the strings

used to combine 2 strings. The corresponding operation
is called concatenation.

notation meaning example
+ concatenation AS + BS

Here, AS and BS$ are combined to form a new string. 1In
the new string, the part of the original a$ is
immediately followed by BS. For instance, if
AS="ABC":BS="DEFG" then AS+BS="ABCDEFG". (A more
detailed discussion concerning the operation of strings
will be found in Chapter 8.

2.5 Evaluating Expressions

In essence, to evaluate an expression is to obtain the
value of each part of an expression and get the £final
value after the operations by the operators. Following
is the outline for evaluating expressions:

(1) Substitute the value of a variable for the variable

(2) Implement the operation as defined by the functions
to get the result value of the function,

(3) Implement the operations indicated by the operators

In evaluating expressions, operators are evaluated
according to their priorities.

Higher priority gnary +,-
' i ¢ 2

binary +,-
Lower priority relational operators =,<,>,<=,>=,{

The evaluation of expressions starts with operations
with higher priorities and proceeds to those with
lower priorities as shown in the above 1list. Should
there be twO operators of the same priority, the
evaluation will be in the order from left to right.
But the operations enclosed in parentheses will be
carried out in the first place, overriding all the
orders described in the above. In other words,
operations enclosed in parentheses are always evaluated
earlier than those outside of the parentheses. In case
there are multifolds of parentheses, the innermost
nested parentheses is given the top priority.

Let's look at some examples:

7+5%6 and 7+(5*6)=37 are the same thing.
6/2*4/8 is equal to ((6/2*4)/8=1.5
Provided A=4, B=5, C=6.1, D=0, E=4.3
then A+B*C=4+(B*C)=34.5
A*B-C=(A*B)=-C=13.9
A-B-C=(A-B)-C=7.1
(A+B) *C=54.9

In a relational expression, relational operators are
used to obtain logic wvalue (True or False) of an
expression, i1f A,B,C,D,E are assigned the same values
as above, then the logic value of the expression

(3*B) <(D+E)*C

is True. Here (A*B)=20, (D+E)*C=26.23

Chapter 3 Commands

So far we have described the usage of the commands
LIST, RUN and NEW. Parameters can be put after the
LIST command, which was not mentioned in earlier
chapters.In this chapter, we will present to you all
the commands wused in MPF-IP BASIC and you can find a
list of them in Appendix C.

The commands used 1in MPF-IP BASIC are classified
according to their characteristics into 4 categories,
i,e., (1) Execution Commands, and (2) Editing Commands
and (3) Storing Commands and (4) Auxiliary Commands.

Execution Commands:

RUN

XEQ

GOTO
CONTINUE
QUIT

Editing Commands:
LIST
NEW
NEW*
EDIT
Storing Commands:

LOAD
SAVE

Auxiliary Commands:

FREE
HEX

3.1 Execution Commands

The execution of a BASIC program could be suspended
through program design (e.g., by setting break points
in the program) or by pressing CTRL-C or [RESET], When
the execution of a program is suspended, we can examine
the execution state using some commands or statements.
In practice, we can debug a program at the break point,
e.g., retrieve the value of a certain variable, change
it and then continue the execution from the break
point. This is also the case with the whole program,
You can list the whole or a part of a program, change
it and then continue the execution.

3.1.1 RUN/XEQ/GOTO
RUN - Execute a Program
Format:
RUN
Execution Mode:
Immediate & deferred
Description:

The RUN Command is used to execute an MPF-IP BASIC
program.,

Usually execution of a program starts from the smallest
statement numbers.

Remark:

RUN 1is used to execute a program, and prior to the
execution, the BASIC will "clear" the contents of all
the variables. i.e., the numeric variables are
initialized with the value @, and the string variables
are reset to be null strings.

XEQ - The execxution of a program.
Format:

XEQ
Execution mode:

Immediate & deferred
Description:

XEQ 1is also used to execute an MPF-IP BASIC program
somewhat the way the RUN command is used. But they are
different when it comes to the initial values of the
variables in a program.

Remark:

XEQ is different from RUN in that XEQ will execute a
program without incurring a “"clearing" of the contents
of variables prior to the execution, In other words,
the values of the variables set earlier will not be
affected by the execution of the XEQ command.

GOTO - Changing the starting point of execution of a
program.

Format:

GOTO statement number
Description:

GOTO command is also used to execute a program. But
the starting point of execution is the statement number
specified in the command, not the smallest statement
number in the program.

Note:

If the statement number specified in the command is
not to be found anywhere in the original program, you
will see the following error message displayed in the
indicator panel:

UL ERROR IN LINE

and the execution of the program is suspended.
Remark:

Compared with RUN, GOTO is similar to the XEQ command
to a greater extent for the execution of GOTO does not
affect the value of the variables in a program, In
other words, the GOTO command does not cause
initialization. For this reason, GOTO is used mostly
for debugging.

To sum up, when we make comparisons among the three
commands RUN, XEQ and GOTO, we will find that RUN is
used in regular execution, XEQ is used when a specific
purpose in a program is to be achieved in mind and GOTO
is used mostly for debugging. As you have noticed, the
starting point of execution in a program is not
necessarily from that with the smallest statement
number. Let us try the following examples:

@1¢ PRINT"A=";A;"BS=":BS
@20 IFA<>@THEN40

@30 BS="HA!HA!"

@40 C=20:D=2:A=C"D

@5@ STOP

@60 BS="1 AM FINE"

@70 PRINT BS

:INE &

=

@XEQ
A=399.998 BS=HA!HA!
I AM FINE

READY
@XEQ
A=0 BS=1 AM FINE

STOP AT LINE 5@
@XEQ

A=399.998 B$=HA!HA!
I AM FINE

READY
@GOTO70
I AM FINE

READY
@XEQ
A=0 BS=I AM FIN

STOP AT LINE 5@
@RUN
A= BS=

STOP AT LINE 58
@GOTO 65
UL ERROR IN LINE

READY
e

In the above example, RUN is used twice and XEQ four
times. As to the usage of GOTO, one is correct, but in
the other one,the specified statement number 65 is not
found in the program, so an error message is displayed.
You may have noticed the implementations of the RUN
commands have resulted in the same outcome. This is
because at the beginning of the execution of the
program all numeric variables are cleared to @ and
strings variables null, In the case of XEQ, however,
different outcomes are obtained because the value of A
and BS$ are not cleared to @ or null.

You will notice during the execution that after the
first RUN command, we get A=C"D=399.998 (A=20"2=20 * 20
=4@@. For more detail please see chapter 6), therefore
by the first XEQ you have a different outcome with that
of the RUN command. Later, after the implementation of
statement 8¥ A=P, the outcome of the second XEQ 1is
obtained.
3.1.2 Continue
CON - Resume execution of an interrupted program.
Format:

CON [TINUE]
Execution Mode:

Immediate

Description:

CON is wused to resume execution of a program
interrupted as a result of a simultaneous press on
and C or a STOP statement.

Let us look at the following examples:
Example 1.

@19 FOR I = 1 TO 6

@20 PRINT I ,:IFI=3THEN?
@30 NEXT I

@498 PRINT:PRINT"*DONE*"
@50 sTOP

@0 PRINT "**RESUME**"
@RUN

1 7 3

4 5 6
*DONE *

STOP AT LINE 50
@CON
RESUME

READY
@

Example 2,

@l¢ FOR I=1 TO 160:?I next I
ERUN

1

2

4

i C

STOP AT LINE 1d@
ECON

6

7

8

i C

STOP AT LINE 1@

3.1.3 QUIT
QUIT - Return control to monitor program
Format:
QUIT
Description:

QUIT is wused to exit BASIC language and return
control to the monitor program. The QUIT command can
be executed either in immediate or in deferred mode.

READY
@XEQ
A=0 BS=1 AM FIN

STOP AT LINE 5¢
@RUN
A=0@ BS=

STOP AT LINE 50
EGOTO 65
UL ERROR IN LINE

READY
@

In the above example, RUN is used twice and XEQ four
times. As to the usage of GOTO, one is correct, but in
the other one,the specified statement number 65 is not
found in the program, so an error massage is displayed.
You may have noticed the implementations of the RUN
commands have resulted in the same outcome. This is
because at the beginning of the execution of the
program all numeric variables are cleared to @ and
strings variables null. In the case of XEQ, however,
different outcomes are obtained because the value of A
and B$ are not cleared to @ or null,

You will notice during the execution that after the
first RUN command, we get A=C"D=399,998 (A=20"2=20 * 20
=4¢@. For more detail please see chapter 6), therefore
by the first XEQ you have a different outcome with that
of the RUN command. Later, after the implementation of
statement 86 A=0, the outcome of the second XEQ is
obtained.

3-7

3.2 Editing Commands

Editing commands are used to modify or process the
program currently stored in the BASIC system. There
are 3 editing commands: LIST, NEW[*] and EDIT.

3.2.1 LIST
LIST - Listing a program,
Format:

LIST [[n][,m]]
(n,m are statement numbers)

Description:

There are a variety of derived forms among the LIST
commands as follows.

LIST List the whole program

LIST n List the statement with statement number n

LIST n,m List the statements with statement numbers
from n to m,

LIST ,m List the program from the beginning to the
statement to that with the statement number m.

Execution Mode:

Immediate execution mode.
Note:

In LIST n,m, no statements will be listed if n>m,
Remark:

LIST ,m, an equivalent of LIST #,m, can be considered
as a special case of the LIST n,m form. This is an
implication of the fact that all statements with
statement number larger than n and smaller than m will
be listed, even if n is not found in the current
program, we do not give you the LIST m, form becasue
no statements will be listed as it is equivalent to
LIST m,0.

@le A=4@
@20 B=25
@30 c=A*B
@4@ PRINT C
@LIST
10A=40
2@B=25
30Cc=A*B
40PRINT C

READY
@LIST, 30
10a=40
206B=25
JoC=a*B
READY

@LIsT 30,490
30C=a*B

40 PRINT C

READY
@LIST11,25
20B=25

READY
€éLisT29,

READY
€LIST3@
3@C=a*B

READY
@

3.2.2 NEW/NEW*
NEW/NEW* - Clear a program
Format:
NEW([*]
Description:

There are two forms of the NEW command as follows:
(1) NEW -Clears the program as well as all the variables
(2) NEW*-Clears the program only.

Execution Mode:

Immediate & deferred
Remark:

When NEW* is executed, only the program is cleared,
all the variabls are left with their original wvalues
unaffected.

Try the following example:

@10 I=5
@RUN

READY
@NEW*
@1@ PRINT
@XEQ

5

READY
@NEW

@1@ PRINT
@XEQ

a

3.23 EDIT

EDIT - Modify a statement.

Format:

EDIT n/string-1/string-2
Description:

Replace string 1 in statement n with string 2.
Execution Mode:

Immediate execution mode.
Note:

When statement number n is not found in the
program, the execution of EDIT will cause the
display of the following error message:

UL ERROR IN LINE

Similarly, if string 1 is not found in statement n you
will observe:

DA ERROR IN LINE
Remark:

We have used two slants "/" as delimiters to
separate the two strings. 1In fact, any two identical
characters can be used in pair as delimiters. The
character, however, must not be a space,

For instance:

@lg A=7*5/4+3

@EDIT 1@8/7/6
@LIST
10A=6%5/4+3

READY

@EDIT 1825/23-
@LIST
10A=6*3-4+3

READY
@EDIT 15V6V3
UL ERROR IN LINE

READY
@EDIT 10 3 4
SN ERROR IN LINE

READY
@EDIT 16VxVI
DA ERROR IN LINE

READY
e

3.3 Permanent Storage Commands

After a program is completed, it can be stored onto a
magnetic tape for use in the future. After the storage
operation, the program is still available in the
system. It will not be cleared off until the a NEW
command is implemented.

To store a program onto a magnetic tape, one must use

the SAVE command followed by a 4-character program
name.

3.3.1 SAVE
SAVE - Store a program onto a magnetic tape.
Format:

SAVE aaaa
(a represents any character except space)

Description:

To permanently store a MPF-IP BASIC program, we can
use the SAVE command in conjunction with a recording
device to store the program onto the magnetic
tape. In the format, aaaa is the program name.
Execution mode:

Immediate Execution mode

Note:

Any character following SAVE must not be a space,
otherwise, the program will be read only with extreme
difficulty. The program name must be composed of
exactly four characters.

Suppose we have the following program:

@NEW

ele 1=2

@20 I=I*1I

@3¢ PRINT I

@4¢ GOTO 20
First, set the recording device ready for use, 1i,e.,
connect one end of the recording cable to the MIC jack
of the recorder and connect the other end te the MIC
jack of MPF-IP. Then type in:

@SAVE POWR
Be sure to leave room for a space after SAVE. Now
press the REC and PLAY on the recorder followed by a
press on the[=—] key. As this is done you will see:

(<]
3.3.2 LOAD
LOAD - Read a program from the magnetic tape.
Format:

LOAD aaaa
(a2 is any character except space)

Description:

The LOAD command is used to read a program which was
previously written onto the magnetic tape by the SAVE
command back to the BASIC system.

Execution mode:

Immediate execution mode

Note:

All the 4 characters following LOAD are expected to
be non-space characters.

Let us see how the LOAD command works.
First, type in
@BNEW

Now connect the EAR jack of the recorder and that of
the MPF-IP with a connecting cable. Then type in

@LOAD POWR

And now press the key and the PLAY button on the
recorder in sequence, You will see the following
display on the indicator panel.

POWR

@LIST

1g 1=2

20 I=1*1
3@ PRINT I
40 GOTO 20

READY
e

3.4 Auxiliary Commands

In MPF-IP BASIC, two auxiliary commands are available
to provide useful information as needed, One of the is
used to tell the user how many memory locations are
still usable, and the other can convert the hexadecimal
into the decimal representation.

3.4.1 FREE
Format:

FREE
Description:

After the execution of the FREE command, two
hexadecimal numbers in 2 lines will be displayed. The
one in the first line shows the start address of free
memory locations and the other shows how many memory
locations are still free. It is always a
good practice to guard against using the memory
locations in an uneffective manner, especially when one
is to enter a long program. For instance, you may well
use "?" instead of PRINT and "!" instead of REM in a
program.

Let us look at some examples of the FREE command.

@NEW

@FREE

FOeQ

@BYE

@18 FOR I = I TO 4
@20 A(I)=1

@38 PRINT I,A(I)
@40 NEXT I
@FREE

FOO0

@B6E

@RUN

1
2
3
4

LD R e

READY
RFREE
FOo@
P97B

3.4.2 HEX
HEX - Convert the hexadecimal numbers into decimal.
Format:
HEX nnnn
Description:

The HEX command is used to convert a hexadecimal
number into a decimal number and display it.

Execution mode:
Immediate execution mode.
Remark:

The auxiliary command HEX is quite often used in
conjunction with the CALL statement. For more detail
on the CALL statement, please see Chapter 12,

A Review on Execution Mode

In order to facilitate debugging, MPF-IP BASIC is
designed so that all commands and statements can be
executed both in immediate and in deferred execution
mode., In this manual, we have classified the commands
and statements by execution mode in a convention that
most other BASIC adopted. It is true that all commands
and statements can be executed in both modes. However,
for some statements, it is -only when they are executed
in immedate mode in conjunction with other statements
that we can make the best of them. For this reason, we
have assigned each command and statement with their
optimum execution mode.

Let us give a description of them as follows:
(1) Immediate Mode: In MPF-IP BASIC, when the prompt

character "@" is displayed, any entry without a
statement number will cause an immediate execution.

(2) Deferred Mode: 1In MPF-IP BASIC, any command or
statement with a statement number will not be executed
immediately. They will not be executed until the
commands RUN/XEQ/GOTO is entered. Usually a BASIC
program is composed of a number of deferred statements.
When we run the program, BASIC will ignore the
statement numbers and all statements are in a sense,
executed in the immediate mode.

Chapter 4
General Statements

We will describe the various types or statements used
in BASIC programs in the subsequent chapters. In this
chapter we will show you the general statements. In
1:5.:2 we have given you a rough description of
statements, and you know a statement begins with a
statement number and ends with a press on the key.
And in 1.10 we have told you that following a statement
number we can put several statements seperated by
colons (":"). A program composed of statements will
not run until the implementation of execution command.
In order to facilitate debugging, most MPF-IP BASIC
statements can be executed either in immediate or in
deferred mode.

41 LET

LET - Assignment statement.
Format:

[LET] Var = Expr.
Description:

With this statement, you can assign the value of Expr
to the variable Var. Usually the types of the variabls
on the two sides of the equal sign must be the same.

Execution mode:

Deferred mode.

-Remark:

If the types of variables on the two sides of the
equal sign are different, the following error message
will be displayed

SN ERROR IN LINE
Remark:

In this statement, the egual sign can be considered
as an operator, It is, however, different from the
equal sign used as a relational operator in that it
assigns the value of the expression to the right of the
equal sign to the variable on the lefesie of the equal
sign rather than denotes equality.

In case the lefthand side variable happens to be an
element of an array, the subscript of the variable will
be evaluated in the first place and then the righthand
side expression is evaluated

The following is an example:

@10 LETF=3.4
@28 R=555
@30 AS="DINGDONGDING"
@40 Al(2)=2
@50 Al(Al(2))=4
@6d ?F;R;Al(2)
@7@ ?2AS
@80 aS$=R
@RUN
3.4 555 4
DINGDONGDING
SN ERROR IN LINE 88

READY
e

4.2 END/STOP

END and STOP statements are used to terminate the
execution of a program. As far as the program
execution is concerned, you can do with both of them or
without either of them. As a matter of fact, in MPF-IP
BASIC, there is implicitly an END statement at the end
of the statement with the largest statement number.

END - Terminate the execution of a program.

Format:

END
Description:

The END statement is used to terminate the execution
of a program, After it is executed, the following
message will appear on the display:

READY
Execution mode:

Deferred mode
Remark:

The END statement does not necessarily appear at the
last line of a program, it can be anywhere in the
program.

STOP - Suspend the program execution
Foremat:

STOP
Description:

The STOP statement signifies a break point in a
program, after it is executed, the following message

will appear on the display:

STOP AT LINE

Execution mode:
deferred mode
Remark:

STOP is used to suspend the program execution in much
the same way as END. It is however, different from the
END statement in that after being executed, one can use
the CON command to resume the program executon. Thus
in a strict sense, STOP is merely a break point in the
program.

Now try the following example:

@19 C=1:Cl=C

@20 FOR I =1 TO 180
@30 C=C+Cl:Cl=C

@40 NEXT I

@5@ PRINT "C"=";C
@68 sToP

@70 PRINT "CONTINUE"
@89 END

RUN

C=1024

STOP AT LINE 60
@CoN

CONTINUE

READY

@

4.3 REM and 'V

The REM statement can be used anywhere in a program to
insert remarks with a view to making the program easier
to read. 1In a big program, the readability is of great
importance. A program difficult to read will result in
extreme impediment in program documentation and
maintenance. Even the anther of a program will
understand his own program only with much pains if it
was programmed long ago and written without sufficient
remarks.

REM - Remarks in a program.
Format:

REM[![(CHARACTER)]
Description:

Any character in a REM statement wIll not affect the
program execution in BASIC in any way. In other words,
REM 1is a non-execution statement. The character "I"
have exactly the same function as that of "REM". As
any character in a REM statement is ignored by the
BASIC, even ":" (As mentioned in 1.10, it is used to
seperate statements.) will not function as it does.

See the following example:

@19 REM:HERE SHOWS

@20 REM AN EXAMPLE

@30 REM OF REM STATEMENTS
@49 REM-ANY CHARACTERS
@50 REM-MAY FOLLOW REM
@680 REM-REM STATEMENTS
@70 REM-ARE NOT EXECUTED
@80 PRINT "“REMARK"

@99 !HERE IS ANOTHER REM
@95 PRINT "SEE YOU AGAIN"
@RUN

REMARK

SEE YOU AGAIN

READY
@

4.4 RANDOMIZE

The RANDOMIZE statement is used to change the initial
value of the random number function RND. (See chapter
6)

RANDOMIZE - Change the initial value of random numbers.
Format:

RAN (DOMIZE)

Description:

The RAN statement is used to renew the initialization
of a set of random numbers.

Execution mode:
Deferred mode

Remark:

For more detail please see the section on the RND
function,

4.5 SON (Speed On) and SOFF (Speed Off)

In the Basic mode, MPF-IP supplies users with two
extra optional instructions to control the speed of
execution of a program, with these two instructions,
you can choose to execute your program at a faster
speed or normal (built-in) speed, The rate of execu-
tion of "SON" is about four or five times of that of
"SOFF". Default is "SOFF".

The reason why you may feel your program executes
slower when using the instruction "SOFF" is that MPF-1P
has to spend time scanning the keyboard and the dis-
play, even though no data is to be output to the dis-

play.
Description:

If one intends to speed up the execution of a certain
block of instructions in a program (such as a bklock
with arithmatic calculation), put the instruction "SON"
with the statement number in front of that block of
instructions. On the contrary, if one intends to go
back to the normal (built-in) speed to execute a cer-
tain block of instructions in a program {(such as a
block sending information out to the printer or display
of MPF-1P), put the instruction "SOFF" with the state-
ment number in front of that block of instructions.

However, the speed of execution will be affected even
with "“son", if you intend to print something out
through the printer which is in "PRT-ON" status and
connects to MPF-I1IP.

Format:
SON/SOFF
Execution Mode:
Deferred Mode

Please type in the following programs, and you will see
what 1is the difference between these programs through
the display of MPF-IP and time-counting.

1) A Do Loop preceded by a " SON " command:

19 SON

2@ FOR I=1 TO 5000
30 NEXT I

@ RUN

Note: It takes 26 seconds to execute the above program.
2) A Do Loop preceded by a " SOFF " command:

16 SOFF

20 FOR I=1 TO 5000
30 NEXT I

@ RUN

Note: It takes 1l minute and 46 seconds to execute the
above program,

3) Two Do Loops with " PRINT " statement Preceded by a
" soN " and " SOFF " command respectively:

10 NEW
20 SON
36 FOR I=1 TO 33:PRINT I;:NEXT I
40 SOFF
50 FOR I=1 TO 33:PRINT I,:NEXT I
@ RUN

Remark:

If the "PRINT ," or "PRINT ;" statement is preceded by
a SON command, data is only printed on the printer
board 1if it exists and not displayed on the 20-digit
FIP (Fluorescent Indicator Panel)., If "," or “;" is not
in the PRINT statement, data is printed on both
the printer and the display (FIP).

Chapter 5
Control Statement

in this chapter, we shall investigate the control
statements used' in MPF-IP BASIC. The control
statements are used in the following four applications:

.LOOP

.Conditional Control Transfer
.Unconditional Control Transfer
.Computed Control Transfer

5.1 Loop

The loop is an indispensable tool in programming. The
size of memory of a computer is restricted by physical
and cost considerations. The aim of programming is to
make the most out of this limited memory. For that
reason, the recursive utilization of memory is, in a
sense, the best way to extend the memory.

all that is stored in the computer memory can be
classified into the following tweo categories:

(1) Data and (2) Procedure.

The utilization of variable was developed out of the
consideration to repeatedly utilize the data memory.
This is again the case with the utilization of loop and
procedure memory.

Generally speaking, the program execution follows a
normal order, i.e., executed from the beginning to the
last as indicated by the statement numbers one after
another, In actual practice, however, most computer
programs are not executed this way. Many problems
require changes of execution sequence whenever
necessary. On some occasions, some statements are
skipped over while on other occasions certain
statements are reguested to be repeated. These in all
bring the loop into existence. Usually a loop is
composed of four components, However, not all loops
consist of the four parts. The four components are
described below:

(1) Setup

The setup of a loop requires at least the
initialization of a control variable.

(2) Body of the loop

By "Body of the loop" we mean all the statements in
the loop in general. Naturally, it may as well include
the nested loop or loops.

(3) Modification of the control variables

The execution times of the whole loop is decided by
the value of the control variables. AS a consegquence,
if one cannot modify the control variables, the loop
will turn into an Infinite loop.

(4) Test/Exit

Test/Exit is provided to determine if a loop is to
carry on repeated execution. The contents of Test is
the execution factor controlled by the control variable.

In the section on Loop, we will describe FOR/NEXT. 1In
the section on Conditional Control Transfer, we will
investigate the recursive loops formed by IF/GOTO. In
the section on Unconditional Control Transfer, we will
see a special form of loops - the Infinite Loop. In
the last pages we will show you the applications of
Computed Control Transfer.

5.1.1 FOR
FOR - the FOR loop
Format:

FOR avar = aexpr-l TO aexpr-2 (STEP aexpr-3)

Description:
The FOR statement is wused to form a loop. In
analysis, we find avar aexpr-1 forms the Setup

component, (STEP aexpr-3) is used to modify control
variable, the control variable is avar, and TO expr-2
is the TEST part of TEST/EXIT.

Execution mode:

Deferred Mode
Remark:

To ensure the completensess of a loop, a FOR
statement has to be accompanied by a NEXT statement.
In this case, the NEXT statement functons as the EXIT
part of TEST/EXIT. All that is inclosed by FOR and
NEXT forms the Body of the loop. As is seen in the
format, the part STEP aexpr-3 can be omitted, 1in this
case, there is implied STEP 1.

5.4.2 NEXT
NEXT - the next execution reptition of the FOR loop.
Format:
NEXT avar-2
Description:

The FOR statement is the start point of a FOR loop,
while the NEXT statement is the end point of it.

Execution mode:

Deferred mode

Remark:

The FOR statement and the NEXT statement are combined
to form a FOR loop. In this case, avar-1 in FOR must
be identical with avar-2 in NEXT. In 1,16, we
described the usage of ":", here we would like to tell
you that it is illegal to use ":" followed by another
statement after the NEXT statement,

5.1.3 FOR/NEXT LOOP

The loop made up of the combination of FOR/NEXT is used
to repeatedly execute a group of statements. The
statements group starts with the FOR statement and end

at the NEXT statement. The number of repeated
execution is decided by other parts in the FOR
statement. As a review, please refer to 5.,1.2. In

this section we will continue the description in more
detail.

During the execution of the FOR statement, avar serves
as the control variable of the loop., The loop setup is
accomplished when aexpr-l1 is evaluated and assigned to
the control wvariable as its initial value. The
subsequent process is described below:

(1) First a comparison between control variables avar
and expr-2 is made, when aexpr-3 1is positive, if
avar>aexpr-2 the program execution will jump to the one
immediately following the NEXT statement. When aexpr-3
is negative, if avar<aexpr-2 the execution will go on
from the one immediately following the FOR statement.

(2) The execution of the statements group specified by
the FOR and the NEXT statement will then continue.

(3) The control variable is updated. If Step aexpr-3
in the FOR statement is omitted, the control variable
is incremented by 1, otherwise, it is incremented by
the value specified by aexpr-3.

(4) The program execution again goes back to (1).

Each time a FOR loop begins execution, the MPF-IP
BASIC will first examine if there is another FOR loop,
I1If so, and if the control variables of the FORINEXT
loops are identical, then the FOR loop originally in
existence will be ignored and disabled, and the program
execution will go on as stated before.

It is a good practice during programming to avoid
making program execution directly jump to the body of
the loop'without an appropriate setup of the FOR loop
beforehand. Otherwise some unpredictable results may
occur.

There can be FOR loops in nested structure. An Inner
Loop is one that is completely contained in the body of
the Outer Loop. Overlapping of two loops is not
allowed.

In order to make you understand the correct usage of
loops in nested structure and control tranfer (for more
detail on this topic see the following pages of this
chapter) and FOR loop, some examples of legal and
illegal structure are listed below for your reference.

Legal Loops in Nested Structure:

FOR statement

I

L NEXT statement

Illegal Loops in Nested Structure

Legal Control Transfer

L

—

L

Illegal Control Transfer

5.1.4 Some exainples

@NEW
@10 FOR I =1 TO 6
@4¢ PRINT 1/1I
@80 NEXT I
@RUN

1

)

.333333

«25

o

.166666

3

READY

@EDI 8€2I12I:2"END"
@RUN

1

SN ERROR IN LINE 1@

READY
@LIS8@
8¢NEXTGI : 2" END"

READY
e

followed by another statement is not allowed

immediately follow the NEXT statement.

The

@EDIBQ:?"END"
@EDI10,6,6:71;
@RUN
1 1

2 5

3 .333333

4 25

5 V2

6 .166666

READY

@LIST 10

18 FOR I = 1 TO 6:2I;

READY
@EDI B8@?I?K
@RUN
1 1
NX ERROR IN LINE 80

READY
@LIS 80
80 NEXT K

READY
@

to

Control Variable in the FOR statement is I while
that in the NEXT statement is K.

GEDIBG?K?I
@3¢ FORI=7TO9STEP.5
@RUN

1

.142857

.133333
.125

.117647
.111111

READY

@

The FOR loop formed by statement 10 is disabled
statement 30 is executed.

@EDI 1P?I?K

@908 NEXT K

@EDI 10?676STEP-1
@RUN

g

READY
@LIST

10
3@
49
8@
9@

FOR K = 1 TO 6 STEP-1:71;
FOR I = 7 TO 9 STEP.5
PRINT 1/1

NEXT I

NEXT K

READY

@9e

@60 NEXT K
GEDI 10767?7-6
@RUN

@
T
T
7
7
7
7
7
X

N

.142857
.142857
.142857
.142857
.142857
.142857
.142857
.142857
ERROR IN LINE 8@

when

READY

@LIST

18 FOR K = 1 TO -6 STEP-1:?1;
38 FOR I = 7 TO 9 STEP.5

4@ PRINT 1/I

6@ NEXT K

80 NEXT I

READY
@

In this example, there is an illegal nested FOR loop.

—— FOR K

FOR I

——— NEXT K

NEXT I

5.2 Conditional Control Transfer

Conditional statements are used to examine a specific
condition during program execution so as to change
order of execution as required. The condition in the
conditional statement is a relational expression. The
truth value of the relational expression is tested so
as to determine whether program execution is to be
changed.

5.2.1 IF---THEN

Format:
If rexpr THEN snum|statement
Description:

When rexpr is true, program execution will go on from
the statement following THEN. I1f a statement number
(snum) follows THEN, the program execution will jump to
that statement number. When rexpr is false, program
execution will go on frm the statement immediately.
following the IF...THEN statement.

Execution mode:
pDeferred mode,

As program execution goes on from the statements
following THEN when rexpr is true, it is possible to
find a group of statements separated by ":" put after
THEN. However, one should not place ":" statement
after THEN snum.

Let us look at the following example:

@NEW
@l@ INPUT N,M
@20 IF N>M THEN 50
@38 PRINT ,M
@4¢ END
@5@ PRINT N
@6@ END
@RUN
212,49

49
READY
@RUN
?16,5

10

READY
@NEW
@16 INPUT N,M
@20 IF N>M THEN 2N:END
@39 PRINT ,M:END
@RUN
212,49
49

READY

@RUN

?10,5
10

READY
@NEW

@l@ INPUT N

@20 IF N<100 THEN N=N+1:GOTO40
@30 PRINT "N>=10@@"

5-1@

@4@ PRINT "“N=";N
@RUN

749

N=5@

READY
@RUN
2?2120
N>=100
N=120

READY
e

5.2.2 More on Loops

The conditional control transfer statement IF and the
unconditional control transfer statement GOTO can be
paired to form a powerful type of loop.

In this type of loop, there can be more than one
control variables, and the creation and modification of
the control variables can be designed by the
programmer. However, in the FOR/NEXT loops described
before, the control variable can only be incremented or
decremented as specified by the STEP acxpr-3. Hence,
in a strict sense, the FOR/NEXT loop can be considered
as a special case of the IF/GOTO loop.

In an IF/GOTO loop, the control variable can be
modified through addition, subtraction, multiplication,
division or other more complicated operations, (For
more detail on the GOTO statement, see 5.3) which can
hardly be done with the FOR loop. The GOTO statement
is an unconditional control transfer, each time it 1is
implemented the program execution will jump to the
statement number specified in the GOTO statement.

For example,

@NEW

@1 PRINT = 1 TO 6
@20 PRINT 1/1

@38 NEXT I

is the same as the following one:

@NEW
@le 1=1
@2¢ IF 1>6 THEN 50
@36 PRINT 1/I
@40 I=I+1:CGOTO20
@50 END
@RUN

1

«5

«333333

c20

.2

.166666

READY
e

As mentioned earlier, in an IF/GOTO loop, the
modification of control variables can be accomplished
through addition, subtraction, multipication, division,
or other more complicated operations. See the
following examples:

@NEW
eleg 1=1
@20 IF I>9@ THEN 50
@30 PRINT 1/1
@4@ I=1*2:G0TO20
@50 END
@RUN
1
.5
25
al25
.0625
.@3125
.315625
READY
@NEW
@19 1=2
@28 IF 1I>999999 THEN 50
@3¢ PRINT I
@40 I=I*I:GOTO20
@53 END

@RUN

16
256
65536

READY

5.3 Unconditional Control Transfer

As you know, normally program execution starts with
that of the least statement number and go on in the
numeric order of statement numbgers one after another.
In case at certain points of a program, you want to
override the normal seguential order so as to transfer
control to a certain statement number and go on program
execution therefrom, you can use the unconditional
control transfer, the GOTO statement.

5.3.1 GOTO
GOTO - Transfer of execution order,
Format:

GOTO Snum
Description:

After this statemnt is executed, the next statement
to be executed is the statement whose statement number
is specified by snum,

Note:

If Snum is not to be found anywhere in the program,
the following error message will be displayed:

UL ERROR IN LINE

Remark:

We have described the GOTO command in Chapter 3, from
the viewpoint of execution mode, we can say that the
GOTO command is of the immediate execution mode while
the GOTO statement is of the deferred mode,

When the GOTO statement is executed, the next state-
ment to be executed will be that specified by the
statement number snum, Therefore, the GOTO statement
should not be followed by the statements group preceded
by ":". This is because the statements group put there
will never be executed.

Try the following example:

@NEW
@l I = 15
@2@ PRINT I/2+3
@30 IF 1>46 THEN END
@49 I=I+3:GOTO20:I=0
@RUN

16.5

12

13.5

15

16.5

READY
@

5.3.2 Infinite Loop

In Section 5.1, we have mentioned that the control
variables are an indispensable part of a loop for it
controls the number of times that a loop is to be
executed. In practice, there are infinite loops without
control variables either due to the specific require-
ment of a program or simply because of incorrect
programming.

In an infinite loop, there is no TEST/EXIT, owing to
the absence of the control variables, Thus, if the
program execution happens to fall into the body of the
infinite 1loop, it will cause the loop to execute in-
finitely because there is no exit. In this case the
loop execution will not end until there is an error or
an external interrupt.

See the following example:

@NEW
@le 1=1
@20 PRINT 1/1
@30 I=1+5:G0T020
@RUN
1
.166666
.@99989
.0625
.047619
038461

CONTROL C
READY

@NEW

@1¢ PRINT"HELLO"
@2@ GOoTO10
@RUN

HELLO

HELLO

HELLO

HELLO

HELLO

CONTROL C [=—1]
READY
@

5.4 Computed Control Transfer

As mentioned earlier, execution of the unconditional
control transfer statement GOTO will transfer control
to the statement specified by the statement number snum
regardless of the number of times of execution on any
occasions,

In this Section, we will discuss the computed GOTO
statement which can transfer control to one of several
statements specified. The statement to which the
control 1is to be transferred will be determined by the
numeric value evaluated from an arithmetic expression
in the ON aexpr GOTO Snum statement.

54.1 ON---GOTO
ON...GOTO... - Computed Control Transfer
Format:

On aexpr GOTO snum {[snum]}
Description:

Suppose the statement number list following GOTO read
as snum-1l, snum-2,.... snum-n, then if the integer part
of aexpr is evaluated to be i, the control of program
execution will be transferred to snum-i.

Note:

If the value of aexpr is less than 1 or larger than n
(n is the number of snum's following GOTO), the
fellowing error message will be displayed:

SN ERRCOR IN LINE
and execution comes to a stop.
Remark:
As with GOTO, ":" statement group is not allowed to

follow the ON/GOTO statement. 1In practice, ON/GOTO is
often used as a select switch,

See the following example:

@NEW ;

@l0 A@=0:B0=0:Al=0:Bl=
@20 INPUT A,e

@3¢ ON C GOTO 40,60,880
@40 AG=ADQ+A:Al=Al1+1

@50 GOTO 2@

@6@ BO=BO+A:Bl=Bl+l

@78 GOTO 20

@8@ PRINT"1GROUP :";

@90 PRINT"SUM=";AQ8;"AVG";
@95 PRINT"=";A@/Al

@1@@ ?"ZGROUP :SUM=";B0;
@118 ?“AVG=";BO/Bl

@RUN

?19,1

?50,2

217,2

13,1

?12,1

?45,2

?34,2

211,1

?279,1

?100,1

55,3

1GROUP :SUM= 234 AVG 39
2GROUP :SUM= 146 AVG 36.5

READY
@

MPF-IP BASIC coft
expression. Flo
variables, array,

en uses floating numbers in arithmetic
ating number may be the value of
constants, expressions, or functions.

Chapter 6
Numeric Operation

In MPF-IP BASIC numeric operation is done in floating
number system. Expressed in floating number are the
values of variables, arrays, constants, expressions and
functions,

6.1 The Notation of Numeric Values in Memory

In MPF-IP BASIC, all numeric values are expressed in
floating number notation. In memory, each numeric
value takes up four Bytes, i.e., each floating number
is expressed in 32 bits. 24 bits are used to express
mantissa, 7 bits are for exponent.

[BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 |

—F b
Exponent Mantissa
Sign bit
g=+
l==

018006=0.5x%x2=1
P28000=0.5x4=2
#4A000=(0.5+0.125)x2 =10
80FFFF=-06.999999

As all numeric values are expressed in floating number
notation, we can not expect absolute accuracy (The
deviations are usually negligible though) . In
operations on some built-in functions, only approximate
results can be obtained.

6.2 Numeric Functions

The MPF-IP BASIC provides the users with a variety of
built-in functions, in this section, you will see some
numeric functions.

6.21 ADS
ABS - Absolute value function
Format:
ABS (aexpr)
Description:

ABS returns the absolute value of the expression.
Note:

In practice, the argument of the ABS function should
be a numeric expression, if a string expression is
used, the result will be an unpredictable positive
number.,

@?ABS(-14,6)
19,6
@?ABS (AS)
.041962
@?ABS (AS)
.513916
@?ABS (-22E12)
2.19999E+13
6.22 ATN
ATN - Arctangent function
Format:
ATN (aexpr)

Description:

ATN returns the arctangent of an arithmetic expression.

Note:

The value of ATN (aexpr) is in radians. If the value
in degrees is required, the following eguation will do
the conversion:

Degrees = Radians * 186/PI

PI PI
The range of ATN is - ==== < ATN £ =-=-=
2 2

See the following example:

@NEW

@?PI,ATN(1)/P1
3.14159

@?ATN(1)/P1*180
45

@?ATN (0)/PI*180
-2.57839E~04
@?ATN(1.732)/PI*180
£9.9993
@
6.2.3 COS
COS - Cosine function
Format:
COS (aexpr)
Description:
COS returns the cosine of an arithmetic expression.
b

(see Fig. where C0S (Q)= ---)
c

/:' N a
A8]
4

Note:
aexpr is in radians.
Degrees = Radians * 180/PI
See the following example:

@NEW

@?C0S (90)
-.448162

@?C0S (P1/2)
-.999997

@?COS (PI*2)
»999997

@2COS(PI/3)
.499999

e

6.24 EXP

EXP - Natural Exponentiation Function

Format:
EXP (aexpr)

Description:
X
EXP returns e , where e is the Napierian
2.71827. EXP is the inverse of the natural
function.

See the following example:

@?EXP (1)
2.71827
@NEW
@10 FOR I
@20 ?EXP(I
@38 NEXT I
@RUN
7.38905
20.0855
54,5981
148.412

2T0 5

]
7

constant,
logarithm

READY
@?EXP(LN(2))
1.99999

6.25 INT
INT - Integer Function
Format:

INT (aexpr)
Description:

INT returns the largest integer less than or equal to
aexpr.

Iﬁ fact, INT works as a Gaussion Function,
See the following example:
@?INT(3.6)
@gINT(-3.5)
@;:23.456?E8;INT{123.4567E8)
1.23456E+10 1.23456E+1@
@?INT(0,4)
@gINT(ﬂ,4J
8 -1
6.2.6 LN
LN - Natuial Logarithm Function
Format:
LN (aexpr)
Description:

LN returns the natural logarithm of aexpr. It is the
inverse of EXP.

Note:

aexpr must be greater than zero, otherwise the
following error message will be displayed:

OF ERROR IN LINE
See the following example:

Q?LN (@)

OF ERROR IN LINE
@?LN(-12)

OF ERROR IN LINE
@?LN (EXP(5))

4,99999
@?LN(123456)
11.7236
@?LN(10)
2.30250
6.2.7 LOG
LOG - Common Logarithm Function
Format:)
LOG (aexpr)

Description:

LOG returns the common logarithm of aexpr. The LOG
logl@ (aexpr). It is the inverse of 18x function. Note
the following relation:

LOG (X)=LN(X)/LN(10)
Note:
As with LN function, aexpr must be greater than zero,
otherwise the following error message will be

displayed.

OF ERROR IN LINE

See the following example:

@?LOG (@)

OF ERROR IN LINE

@?L0G(1678)
7.99999

@?7LOG(7)
.845097

@?LN(7)/LN(180)
.845097

@?LOG (1)
)

e

6.2.8 RND
RND - Random number function
Format:
RND [(aexpr)]
Description:

When omitted, aexpr can be considered as 1. RND
returns a random value in the current random number
cycle. The value is greater than or eqgual to zero and
less than aexpr, The value of aexpr can be negative.
In this case, the resultant value will fall between
zero and aexpr.

See the following examples:

@NEW

@l¢ INPUT A

@3¢ PRINT INT(RND(A))
@40 NEXT I

@RUN

27

B S

READY
@RUN

S SU

READY
@5RANDOM1EE
@RUN

27

nMNEHWHES

READY
@RUN

"l
aooOESs oW~

READY
@RUN
7-3
-1

wd

READY

6,29 SGN
SGN - Sign function
Format:
SGN (aexpr)
Description:
SGN (X)= 1 if X>@
SGN (X)= @ if X=0
SGN (X)=-1 if X<@

See the following two examples, which have the
effect.

@NEW

@1@ INPUT A

@20 PRINT SGN(A)

@3¢ GOTO 10

@NEW

@10 INPUTA

@20 IF A<>@ THEN A=A/ABS (A)
@30 PRINT A

@40 cOoTO 10

6.2.10 SIN
SIN - Sine function
Format :
SIN (aexpr)
Description:
The SIN function returns the sine of an aexpr.
a

See Fig. where SIN(f)= ---
c

same

Note:

aexpr must be in radians.
Use the following equation for conversion.
Degrees = Radians * 180/PI

See the following example:

@NEW
@?SIN(90)
.89395
@?SIN(PI1/2)
.999997
@?SIN(PI)
1.19209E-07
@?SIN(PI*2)
-2.38418E-087
@?SIN(PI/3)
.866025
@

6.2.11 SQR
SQR - Square root function
Format:

SQR (aexpr)
Description:

SOR (aexpr) = aexpr(l/2)
Note:

The value of aexpxr must be positive or zero,
otherwise the following error message will be dislayed:

See the following example:

@?SQR(9);97(1/2)
2.99999 2.99999
@?SQR(7)
2.64575
€?SQR (@)
[
@?SQR (-8)
OF ERROR IN LINE
@?(-8)".5
OF ERROR IN LINE
@

6.212 TAN
TAN - Tangent function
Format:
TAN (aexpr)
Description:
TAN returns the tangent of an aexpr. See Fig. where

a
TAN(0)= ---
b

Aa
b

Note:

aexpr must be in radians. TAN is the inverse of the
ATN functon. Use the following equation for conversion.

Degrees = Radians * 18@/PI

See the following example:

@NEW

@?TAN (PI/4)
. 999999

@2TAN(PI)

-1.1920G9%E-@7

@2 TAN(45)
1.61988

@?TAN(PI/2)
8,.38858E+06

@2TAN(PI/3)
1.73285

@

6-12

Chapter 7 Array

An array is also called a Matrix which is composed of a
group of variables with the same name, For
identification of each variable, a subscript is added
to the common name. For instance, H(5) represents the
fifth (or sixth in a strict sense) element of the array
H.

An array can either be one-dimentional ox two-
dimensional. A one-dimensional array is composed of a
single column with a number of rows. In practice, a
subscript is added to specify the row. The numberng of
columns and rows starts from zero. A two-dimensional
array can be conceptualized as a table with multiple
columes and rows. For instance: DIM A(3,4) can be
tabulated as follows:

Columns
g 1 2 3 4
g A(G,0) A(O,1) A(B,2) A(@,3) A(0,4)
ROWS 1 A(l,@) A(l,1) A(l,2) A(l,3) A(l,4)
2 A(2,0) A(2,1) A(2,2) A(2,3) A(2,4)
3 A(3,0) A(3,1) A(3,2) A(3,3) A(3,4)

In a two-dimensional array, two subscripts seperated by
a comma are used for each element. As shown in the
above table, the first subscript is used to specify the
row number, and the second the column number,

In MPF-IP BASIC, there are two methods to define
array.

(1) Explicit Type:

an

In this method, an array is declared by a DIM
statement (see next section). In the statement,
the name of the array, the number of rows and the

number of columns are specified,

(2) Implicit Type:

It is possible for you to use the elements of
an array without declaration by a-'DIM statement

beforehand. In this case, if the array is

one-

dimensional, the system will automatically set the
variable name as that of an array with 11 elements

(subscripts range from zero to 16).

1f the array is two-dimensional, the system will

set the variable name as the name of a

two

dimensional array with 121 elements (subscripts

range from @ to 1¢ for bother row and column).

In MPF-IP BASIC, you can no use an array for string

variables.

7.1 DIM
DIM~ Declaraton of an array.
Format:
DIM avar subscript [{,name subscript}]
Description:
DIM is used to declare an array
Note:

The number of subscripts for an array variable

can

only be one or two, 1i,e., only one dimensional and two

dimensional arrays are allowed in practice.

Remark:

The array is most often used to formulate a table.
During the program execution, one can easily find any
item on the table with the help of the subscripts.

There 1is a great variety of applications of tables on
the computer. For the simulation of the advanced
applications such as stack, queue, order lists, tables
together with subscripts are widely utilized and are
found powerful.

During the program execution, if the value of a
subscrit exceeds the range either in explicit or in
implicit mode, the following error message will be
displayed:

SN ERROR IN LINE

and the program execution will halt. Try the following
examples:

@NEW

@DIMZ (20,9)

@z(10,4)=8:2Z(10,4)
8
@?z(9,0);2(20,9)
g @

@? z(20,10)

SN ERROR IN LINE
READY

e2a(l1,11)

SN ERROR IN LINE

READY
@7A(10,19)
e

@NEW

@1¢ REM PRIME NUMBER
@20 DIM P(50)

@30 p(0)=2

@40 PRINT 2;

@50 PO=0

@60 Pl=3

@7@ FOR I=0 TO PO

@8@ 2F P(I)>SQR(Pl)+1 THEN 120
@98 J=p(I)

@166 IF INT(Pl/J)*J=Pl1 THEN 158
@11¢ NEXT I

@128 P@=P@+1:P(P@)=P1

@13@ IF POS(@)>=2@¢ THEN ?

@148 PRINT Pl;

@15@ Pl=Pl+2

@160 GOTO7@¢

@RUN

2 3 5 7 11 13
17 19 23 29 31
37 41 43 47 53
59 61 67 71 73
79 83 89 97 1681
163 167 169 113
127 131 137 139
149 151 157 163
167 173 179 181
191 193 197 199
211 223 227 229

233 SN ERROR IN LINE 126

7.2 Changing the Dimension of an Array

When the DIM statement for an array is executed, each
and every element of the array is given a default value
of zero. With the execution of a DIM statement, the
Maximum Storage Size for the array variables is fixed,
and it is impossible to change the Maximum Storage Size
until the execution of RUN or NEW statement. In
response to the second, third,...DIM statement for the
array variables, the system will check if the Maximum
Storage Size of the new DIM statement is greater than
that of the first DIM statement. 1f so, the following
error message will be displayed:

SN ERROR IN LINE
and the program execution will come to a halt.

Otherwise, the system will only change the dimension of
the array and retain the contents of the storage.

7-4

Try the following examples:

@NEW

@106 DIM A(10)

@26 FOR 1= TO 10
@30 ?A(I);:A(I)=I:?A(I)
@40 NEXT I

@50 DIM A(1,4)
@60 FQR I=0 TO 4
@76 FOR J=0 TO 1
@80 PRINT A(J,I)
@96 NEXT J

@160 PRINT

€110 NEXT I

@RUN

BlwNnHEFSD OO OO e RS
Vo USwo-Jaumbdwhni-R

READY
@DIM A(2,4)
SN ERROR IN LINE

READY

e
In MPF-IP BASIC, the one-dimensional arrays is
considered as a special case of the two-dimensicnal
array. For instance, A(I) is considered an equivalent
to A(I,0).

Try the following example:

@NEW
@l@ DIM A(1@)

@2@ FOR I=0 TO 10
@30 A(I)=I

@40 NEXT I

@58 FOR I=@ TO 10

@60 PRINT A(I);A(I,0Q)

@78 NEXT I

@RUN
g

- =

HWO oUW N
HOOdWUs W

READY

Examine the followng examples:

"I'M BASIC"
'Ith Ll

'QUOTE MARK (")'
'MPF-IP'

When quotes or apostrophes are required within a
string literal, be sure to use the other as the
enclosure as shown above,

8.2 Stiing Variable

The string variable is used to store a string of ASCII
characters. The 1length of a string variable can be
changed as required, which can be evaluated by the LEN
function. The 1length of a null string is zero.

In theory, the maximum length of a string variable can
reach 255. In fact, however, due to the limited size
of the memory, there are some restraints.

In execution, a string variable is given a default
value of null string by the MPF-IP BASIC.

The name of a string variable is a letter of the
alphabet followed by a dollar sign "$", or a letter
followed by any of the numbers from zero to 9 which is
again followed by a dollar sign.

In practical application of string variables, the name
of the string variable is used to represent the whole
string variable. To use a substring, however, string
functions such as MID$, LEFTS, RIGHTS are required. 1In
MPF-IP BASIC, the notation of pseudo variable is not
accepted, thus it is more or less inconvenient to
change a substring. Notwithstanding, it is still
possible to change some substrings of a string with the
help of string functions or string expressions.

See the following examples:

@AS="THIS IS AN EXAMPLE"
@?AS

THIS IS AN EXAMPLE
@?LEFTS (AS,7)

THIS IS

@?MIDS (AS,8,3,)

AN

@Z7RIGHTS(AS$,11)

EXAMPLE
@?AS="THESE ARE"+RIGHTS(AS,11)
@zas
THESE ARE EXAMPLE
@A$=A$+"S“

@?A8 i
THESE ARE EXAMPLES

8.3 Sting Expression

An string expression is composed of a single string
(including string literal, string variable and string
function) or two strings combined by a concatenation
operator "“+". The concatenation operator functions to
combine the two strings in the order from left to right
to form a new string. A string expression is used to
be assigned to a string variable or to form a
relational expression (For more detail refer to 8.5 on
the comparison of strings).

The format of string expression is as follows:

string

string + string
Here the string can be a string 1literal, a string
variable, a string variable or a string function. In
application, it is a good practice to avoid combining
many strings at a time as shown below in order to avoid
undesirable results.

string + string + string

Examples of string 1literal, string variable, and
string function are "BASIC", "MPF-IP", AS$, 298, and
CHRS$(65), Num$(1l00) respectively.

The length of an evaluated string expression is also
restricted to zero to 255.

See the following examples:

@? "ABC"+" COMPUTER"
ABC COMPUTER
@cs="BASIC"
@?CS+"-MPF-IP"
BEASIC-MPF-IP
@?CHRS (90)+CS
ZBASIC

@?CHRS (66) “ASIC"
BASIC

@CHRS (65)+CHRS(90)
AZ

@AS=" COMPUTER"
@?2CS+AS

BASIC COMPUTER

@

8.4 Functions for Strings

A number of built-in functions for strings are
available on MPF-IP BASIC. Among them, some are used
for conversion between numeric values and strings. In
this section, we present the functions in alphabetical
order. Below is a list of them in four categories:

(1) For the operation of substrings:

LEFTS (8,4,4)
MIDS (8,4,6)
RIGHTS (8,4,8)

(2) For the formation of new strings:
SPACES (8,4,9)

STRINGS (8,4,10)

(3) For the conversion between numeric values and

strings:
ASCII 8,4,1
CHRS 8,4,2
NUMS 8,4,7
VAL 8,4,11
(4) oOthers
INSTR 8,4,3
LEN 8,4,5
8.4.1 ASCI

ASCII - ASCII code function
Format:

ASCII (sexpr)
Description:

ASCII (American Standard Code for Information
Interchange) 1is a set of codes devised by the American
National Standards Institute for effective interchange
of information between different computers.

Every character (letter of alphabet, number, or
symbol) is given a corresponding ASCII code. According
to its definition, every ASCII code is composed of 7
bits ranging from (000@200) to (1111111) in binary
representation or zero to 127 in decimal.

The ASCII function returns the corresponding ASCII
value of the first character of the string expression
seXpr. (For the table of ASCII values, please refer to
Appendix A.)

Remark:

We have mentioned in the above that each standard
ASCI1I code is composed of 7 bits. As the CPU (Central
Processing Unit) of MPF-IP processes the data on a base
of 8 bits, it is convention to regard the most
significant bit (MSB) as zerc. The CHRS$ function is in
a sense the inverse of the ASCII function, in the
discussion on CHRS, we will examine the problem of
correspondence when a numeric valus is larger than 278
(=256) .

See the following example=:

@?ASC("@"™) ;ASC("™0O1")
48 48
@?ASC("1");asSC({"9")
49 57
@?ASC("AX") ;ASC("Z2")
65 90
@NEW
@Gl0 INPUT K$
@20 PRINT ASCITI ({KS$)
@30 cOoTO 1@
@RUN
203G
85
+++
A3
?'lll
)]
<
(]
TYGG
CV ERROR IN LINE 1@

READY

@RUN
U AAAR"
65

SH

34
?Il Ll
39
?!IFE L)
CV ERROR IN LINE 10
READY
@

In the above examples, the error message CV ERROR
occurred twice becasue the input string did not

properly adhere to the "'" or '"' rules. For the input
of a string, the use of "or' will make no difference
provided it is in legal form. (For more detail on the
input of strings, please refer to chapter 9.)

8.4.2 CHR®

CHRS - Character function
Format:

CHRS (aexpr)
Description:

CHRS 1is a string function which returns a one-
character string which contains the alphanumeric
equivalent of the argument, according to the conversion
table in Appendix A.

The ASCII code is formed by 7 bits while Z-80A is based
on 8 bits. Consequently, for any value of the numeric

expression aexpr between zero and 255, the
corresponding character will be displayed according to
the ASCII conversion. In case aexpr is greater than

127, the value will be subtracted by 128. Displayed on
the printer will be values between zero and 127. If
aexpr exceeds 255, unpredictable characters will be
displayed.

Try the following examples:

@NEW

@19 INPUT A

@20 PRINT CHRS (A)
@30 GOTO 1@

@RUN

265

A

734

"

7?78

N

2200

H

7193

A

? CONTROL C
STOP AT LINE 10

READY
@?ASC (CHRS (65))
65
@?ASC (CHRS(1222))
4

@?CHRS (ASC ("ABC"))
a

8.4.3 INSTR
INSTR - The position of a string in another string.
Format:
INSTR (aexpr, sexpr-l, sexpr-2)
Description:

The INSTR function is used to find the position of
sexpr-2 in sexpr-1, where the starting postion for
search and comparison is controlled by aexpr which must
be a positive number.

INSTR Returns:

(1) @ - when sexpr-2 is not to be found in sexpr-1l
after the aexpr-th character.

(2) 1 - when sexpr-2 is a null string

(3) n - when sexpr-2 is found starting from the n-th
character in sexpr-1.

B-8

Try the following example:

@NEW

@5 ?"INPUT MAIN STRING"
@1@ INPUT S1S8

@15 ?"INPUT SUBSTRING"
@28 INPUT 528
@25 ?"INPUT STARTING POINT"
@30 INPUT A

@40 ? INSTR(A,S1S,52%)
@45 ?"INPUT SELECTION"
@50 INPUT K

@686 ON K GOTO 5,15,25
@RUN

INPUT MAIN STRING
?ABCDEFGHIJKLMNO
INPUT SUBSTRING

?EFG

INPUT STARTING POINT
71

5

INPUT SELECTION

23

INPUT STARTING POINT
?6

a

INPUT SELECTION

22

INPUT SUBSTRING

22

INPUT SUBSTRING

?Hll

INPUT STARTING POINT
21

1

INPUT SELECTION

?2

INPUT SUBSTRING

?ADDGY

INPUT STARTING POINT
71

a

INPUT SELECTION
71

INPUT MAIN STRING
2ADDCGADDGY

INPUT SUBSTRING
?ADD
INPUT STARTING POINT
21
1
INPUT SELECTION
23
INPUT STARTING POINT
23
6
?CONTROL C
STOP AT LINE 5@

READY
@

8.44 LEFTS

LEFTS - Left substring function
Format:

LEFTS (sexpr, aexpr)
Description:

LEFTS returns a string composed of the leftmost aexpr
characters of sexpr. When aexpr is larger than the
length of sexpr. the LEFT$ function returns the whole
of sexpr. 1f aexpr is negative, the following error
message will display:

OV ERROR IN LINE
Try the following example:

ANEW

@10 INPUT SS

@2@ FOR I=1 TO 15
@30 PRINT LEFTS(SS,I)
@40 NEXT 1

@RUN

?CHENG=-YIH-HWA

8-10@

C

CH

CHE

CHEN

CHENG

CHENG~-
CHENG-Y
CHENG-YI
CHENG-YIH
CHENG-YIH-
CHENG=YIH=-H
CHENG-YIH-HW
CHENG-YIH-HWA
CHENG=-YIH-HWA
CHENG-YIH-HWA

READY

@?LEFTS(S8,~1)
OV ERROR IN LINE

As you will find in B8.4.6 on the MIDS$ function, LEFTS
can be expressed by MID$ as shownin the following
equation.
LEFTS[aexpr,aexpr} = MIDS (sexpr, 1, aexpr)
And in a later section you will find
seXpr=LEFTS (sexpr, aexpr) + RIGHTS(sexpr, aexpr+l)
8.4.5 LEN
LEN - String length function
Format:
LEN (sexpr)
Description:
The LEN function returns an integer equal to the
number of characters in the string argument. The value

may range from zero to 255, 1i,e., a string can contain
255 characters at most.

Try the following example:

@NEW

@19 INPUT SS

@28 FORI=1 TO LEN(SS$)
@3@ PRINT LEFTS (SS,I)
@48 NEXT I

@RUN

2?BASIC

B

BA.
BAS
BASI
BASIC

READY
e

8.4.6 MID$
MIDS - Middle part of a string
Formgt:

MIDS (sexpr, aexpr-1, aexpr-2)
Description:

The MIDS function returns a substring of sexpr
composed of aexpr-2 characters starting from the
(aexpr-1) th character.

Remark:

Be sure you understand the following eguations:

(1) MIDS (sexpr, 1, N) = LEFTS (sexpr, N)

(2) MIDS (sexpr, N, LEN(sexpr)-N+1)=RIGHTS (sexpr,N)

For more detail on the RIGHTS function, please see
8.4.8.

@NEW
@10 INPUT S§
@20 FOR I=1 TO LEN(S$S)
@3¢ AS=MIDS(SS$,I,1)
@40 ?A;ASCII (AS)
@50 NEXT I
@RUN
?BASIC-MPF-1P
66
65

- B T B - e - B B R T v
[
w

REALY
@?MIDS(58,6,5)
-MPF=-
@?LEFTS(S8,5)
BASIC
@?MIDS$(S§,1,5)
BASIC

e

8.4.7 NUM$
NUMS - Conversion from a number to a string
Format:
NUMS (aexpr)
Description;:

The NUMS converts the resultant value of the numeric
expression aexpr to a string representation.

Note:

If a string expression is entered as the argument of
the NUMS, the NUMS will return zero,

Description:

The usage of the NUM$ function can be considered as a
special method of input/output. 1In fact, it is called
an Internal OQutput Function while the usage of PRINT
statement is usually referred to as an External Output.
In 8.4.11 on VAL function, we will examine the relation
between Internal and External Input.

In fact, there is a conversion step contingent to all
output execution. When we use the PRINT statement, a
numeric expression is first evaluated and then the
result is displayed on the screen or printed on a
printer, wWhen the NUMS function is used, however, the
result is stored at a specified address in the memory.
That 1is, the programmer can reuse the result of the
conversion as a string or assign and store the string
to a string variable. ~“Similarly, the resultant string
can be used to form another string expression or ussed
in the comparison of strings. In short, the result of
conversion can be reused in the case of NUM$ while the
result can only be output to a display screen or
printer in the case of the PRINT statement.

NMote the following eguation:
PRINT aexpr = PRINT NUMS (aexpr)

The NUMS function is the inveerse of the VAL function
which is decribed in 8.4.11,

@?5;"AAAR"
5 AAA
@2NUMS (5) ; "AAA"
5 ARA
@NEW
@1¢ INPUT A,B
@20 AS=NUMS(A)
@25 IFAS=" @ " THEN END
@30 BS=NUMS (B)
@40 SS=NUMS(A+B)
@50 LS=AS+"+":L1S=BS+"="
@69 LS=LS+L1S:LS$=LS+SS
@7@¢ PRINT LS
@88 GcOTOl@

@RUN
?12,78
12 + 78 = 90
25E7, 6E6’
5.00000E+07+6.00000E+06=5.60006E+027
?2123.5,-67.3
123.5+=-67.3=56.2
?l.0,1000000
1+1,000000E+06=1.00000E+06
?1E-10,9E-10
9.99999E-1148.99999E-18=9.99999E-14@
20,0

READY
@

8.4.8 RIGHTH
RIGHT - Rightside substring function
Format:
RIGHTS (sexpr, aexpr)
Description:

RIGHTS returns a substring which includes the aexprth
character to the end of sexpr. When the value of aexpr
turns out greater than the length of sexpr, RIGHTS
returns the whole string. If aexpr is negative, the
following error message will be displayed:

OV ERROR IN LINE
In 8.4.6, we have described the following relations
among MIDS, LEFT$ and RIGHTS, test the following

examples to see if the relations are true.

RIGHTS (sexpr, N)=MIDS$(sexpr, N, LEN(sexpr)-N+1)
seXxpr=LEFTS (sexpr, N)+RIGHT (sexpr, N+1)

Examples:

@NEW
@AS="MPF-I-PLUS"
@?RIGHTS(AS,7)

PLUS
@?MIDS (AS,7,LEN (AS)-7+1)
PLUS
@?LEFTS (AS, 7)+RIGHTS (AS,18)
MPF-I-PLUS
@NEW
@ld AS="MPF-I-PLUS"
@2¢ FOR I=1 TO LEN(AS)
@3@ PRINT RIGHTS(AS,I)
@48 NEXTI
@RUN

MPF-I-PLUS

PF-I-PLUS

F-I-PLUS

-I-PLUS

I-PLUS

-PLUS

PLUS

LUS

us

S

READY
@

8.4.9 SPACES
SPACE - Space function
Format:

SPACES (aexpr)
Description:

SPACES returns a number of continuous blanks.

Remark:

In practice, whenever you want to save memory, you
can use the SPA function instead of a string of blanks
provided the number of the continuous blanks is greater
than of the bytes used for SPA (aexpr).

In 8.4.10 on STRINGS, you will see
SPACES (aexpr) = STRING(aexpr,32)

as the ASCII code for a blank is 32.
See the following examples:

@?'"' ,SPACES(1@),'""

" L

@?"'“'SPA(].S] =I|III

@NEW

@1¢ INPUT N

@20 FOR I=@ TO N

@38 ? SPA(N-1);"*";SPA(I*2);"*"
@40 NEXT I

@5¢ FOR I = N-1 TOSTEP-1

@6Q ?SPA(N-1);"*"“:SPA(I*2);"*"
@70 NEXT I

@RUN

?5

READY
@RUN
23

8-17

READY
@RUN
?1

%* %

de ke

READY

8.4.10 STRINGH
STRINGS - String of identical characters
Format:

STRINGS (aexpr-1, aexpr-2)
Description:

STRINGS returns a string of aexpr-1 identical
characters with an ASCII code of aexpr-2.

Remark:

As described in 1,11, you can use the STRINGS
function in its abbreviated form, i.e.,

STRINGS = STR(aexpr)

As a result, whenever you want to save memory, you can
use the STR function instead of a string of characters
provided the number of the reiterated characters is
greater than that of the bytes occupied by STR(aexpr).

Take note that STRINGS (aexpr, 32)=SPACES(aexpr), as the
ASCII code for a blank is 32.

In the program listed in 8.4.11, try some modifications
as shown below:

@NEW

@18 INPUT N

@20 FOR I=@0 TO N

@3@ ?S5PA(N-1);S5TR(1%2,42)
@40 NEXT 1

@50 FOR I = N-1 TO @ STEP-1
@68 ?SPA(N-=1);STR(I1*2,42)
@79 NEXT I

@RUN

75

W %
Wk kK
Yo vede ok ok R
kkkhkhih
khkAhhhkkhhhh
dekdekkdkd
vk kdk ok
ke ok i ok
&k

READY
@RUN

74
o

wkkk
kkkkhk
o g de de ok ke o
ek kkkk
ek koK
LR

READY
@RUN
22

* ¥
Wi ke Kk
& &

READY
e

8.4.11 VAL
VAL - Value of numeric string function
Format:
VAL (sexpr)
Description:

The VAL function returns the value of a string in the
form of numbers.

Note:

1f there is any illegal character in the argument,
the following error message will be displayed as in the
case of the execution of the INPUT STATEMENT.:

CV ERROR IN LINE
Remark:

VAL can be condidered as the inverse of NUMS. It is
regarded as a special 1/0 format i.,e., an Internal
Input Function. In comparison, the INPUT statement
commonly used is called an External Input Function.
Earlier in B.4.7, we have described the relationship
between Internal/External Output.

In all forms of input, there is always a conversion
involved. This is more important with the input of a
string. As mentioned in Chapter 6, in MPF-IP BASIC, a
numeric value is stored in memory as a four byte
floating point number, What is entered through the
keyboard is nothing but individual ASCII codes.
Therefore, the process of conversion carries much
significance.

Later in chapter 9, we will describe the READ
statement. It is a form of internal input just like
the VAL function.

In comparison, the INPUT statement converts the ASCII
codes entered through the keyboard into numeric values,
while the VAL function treats a string in the program
as an entry through keyboard and operate on it Jjust
like an INPUT statement, and the READ statement fetch a
data from a Data Buffer in the program and then operate
on it in a way similar to INPUT and VAL. To sum up, we
can consider the VAL function as an indipendent
function, while the execution of INPUT and READ request
that the data be placed at a definite address and then
process of the VAL function is implemented.

In the following example, we will show you how to use
the VAL function, and a program is used to convert a
positive integer.

@NEW

@?VAL("1E7)

1.00060E+07
@2VAL ("9E-7")

8.99999E-07
@PVAL(" 123")

123
@l¢ INPUT NS
@20 N=@
@30 FOR I=1 TO LEN(NS)
@40 N1$=MIDS(NS,I,l)
@50 IF N1$=" " THEN 9
@60 IF N1$>"9" THEN 120
@70 IF N1S<"@"™ THEN 120
@80 N=N*10+ASC(N1S$)-48
@90 NEXT I
@1¢@ PRINT NS;"=";N
@l1l@ GoTO 14
@120 PRINT NS
@130 PRINTSPA(I-1);"*CONVERSION ERROR"
@148 GOTO 10
@RUN
?ll 45"

45= 45

267
67= 67
?76543
76543= 76543
?"444 23"
444 23= 44423

Two strings are egual only if they have the same
logical length and each character matches. A string is
less than another if its first character that does not
match the other is numerically less than (according to
the standard ASCII codes for characters) or it is an
initial proper subset of the other.

The detailed description of the other relational
operators are omitted since they can be easily figured
out from the above discussion on "=" and "<".

Try the fllowing example:

@NEW

@l@ INPUT AS

@20 INPUT BS

@38 PRINT

@40 PRINT AS;

@50 IF A$=B$ THEN ?2"=";
:GOTO 8¢

@60 IF AS<BS THEN 2" ";
:GOTO 80

@7@ PRINT "“>";

@88 PRINT BS

@90 GOTO 10

@RUN

?ABC

?ABB

ABC>ABB
?X
XX

X<XX
T

?ll n
?2G

<G
?AARA
?AAAA

AAAA=AAAA
?ASRF
?ASR

ASRF>ASR
256

257
56457
7186

?19

186<19
?|C
STOP AT LINE 10

READY
e

8.6 Input/Output of Strings

Detailed description on input/output of strings will be
presented in Chapter 9. Topics on PRINT, INPUT, and
READ/DATA/RESTORE statements will be found in that
chapter. Special emphasis must be given to the "," and
";" in the PRINT statement.

Chapter 9
/O Statement

1/0 plays an essential part in the operation of a
computer. In MPF-IP BASIC, the fundamental 1I/0
statements are POS and INP functions and the OUT
statement.

Information processing is undoubtedly the major
function of a computer system. In preceding chapters
we have described the functions of MPF-IP BASIC 1in
connection with the operation on numbers and strings .
A computer system has to communicate with the outside
world, i.e., the information to be processed must be
input onto the computer system, and then the processed
information is expected to be output to the outside
world. The SAVE and LOAD commands on MPF-IP BASIC are
used together with a tape-recorder. The LOAD command
will cause the information stored on the magnetic tape
transferred to the computer, The LIST command will
have the program displayed on a screen or printed on a
printer. The SAVE command will have the program
entered through the keyboard tranferred to and stored
on a secondary storage such as a magnetic tape.

For a computer system, there are a number of peripheral
devices in the outside world. For MPF-IP, we have the
keyboard, magnetic tapes, the printer. 1In future, the
peripheral devices will include a video output and disk
drive. In each case, different methods of 1/0
operations are required for different peripheral
devices.

To make the most of a computer system, the user must
communicate effectively with it. One can enter the
programs and data by the different methods of
communication into the computer and get the results.
In an application system, the user can do without the
1/0 operations. Certain devices will automatically
provide the system with necessary data, and the output
of the system will instruct the peripheral devices to
do the subsequent procedures.

On a general-purpose computer system, the user
communicates directly with the computer through the 1/0
operations which are the principal topics of this
chapter. As described 1in the section pon permanent
storage commands, there are devices called auxiliary
storage which the computer can access directly.

9.1 PRINT

The PRINT statement is wused to have some values
displayed on the indicator panel. 1f a printer is
attached to the PRT-MPF-IP system, it can be printed
on the printer. To know how the printer operates,
please see the PRT-MPF-IP Printer Operation Manual.
Before the system enters the BASIC mode, you can press
CONTROL P to power ON/CFF the printer. In practice,
when the printer is active, CONTROL P will turn it off,
otherwise, it is turned on.

PRINT - Display on the indicator panel.
Format:

PRINT [{expr}[{
? [{expr}[{

- =
-~ s

Description:
"?" can be used in place of PRINT.

The PRINT statement is used to output the wvalues of
expressions to the indicator panel or the printer.

Execution mode:

Immediate & deferred mode

Remark:

In practice, there are several fundamental types of
the PRINT statement as shown below:

(1) PRINT

(2) PRINT expr

(3) PRINT expr, expr
(4) PRINT expr; expr
(5) PRINT expr,

(6) PRINT expr;

Before we examine the above types in detail, we would
like to give a few words concerning the concept of a
LINE.

In hardware structure, MPF-IP is equipped with a 20-
character green Fluorescent Indicator Panel. With the
software control, the buffer of a display 1line can
contain up to 60 characters. 1In other words, in MPF-IP
there are a maximum of 68 characters in a line. During
the program execution when the output requires a
linefeed, the program execution will come to a halt and
it will not resume until the user presses and all

characters on the indicator panel are cleared off. In
contrast, suppose a printer is installed to MPF-IP and
the printer is in active state. Then when the data

displayed on the indicator panel requires a linefeed,
the system will instruct the printer to get a hardcopy
of that 1line, get a linefeed automatically and the
program execution will go on, For this reason, we
recommend that the wuser of MPF-IP have a printer
installed so as to enhance the performance of the
system.

In type (1) through (4), neither "," nor ";" is present
at the end of these statements. When their execution
is accomplished, a linefeed is invoked. We will give
you a detailed description on the usage of ","™ and ";"
in 9.1.3 and 9.1.4.

9.1.1 Output of Numeric Date

In a PRINT statement, except for some control factors
(See 9.,1.3, 9.1.4, 9.1.5, 9.1.6, 9.1.7), numeric data
and string data (See 9.1.2) are the principal
components for output. Numeric data can be categorized
inte (1) numeric constants (2) numeric variables (3)
numberic functions (Including built-in functions and
user-defined functions). In spite of the different
categories, the final result in practice is a numeric
value in any case. The PRINT statement is used to
display the value on the indicator panel in a certain
format.

In 8.4.7 on the NUM$ function, we have described he
output format of numeric values. In fact, the NUMS
funcion can be considered as a conversion routine which
can convert a numeric value into a string in a
specified format and then the string is displayed on
the indicator panel. To understand the conversion
format, try the following examples.

@27
7
@7123.4567
123.456
@2+2345,789
2345.78
@?-78.0
-78
@7+34.01
34.01
82789789789
7.89789E+@8
@?-3645,7653
-3645.76
@?1E6
1.006000E+06
B?1ES
1.00000
@?1E-5
1.00000E-0G5
@71E-4
9.99999E-@5
@71E18
9.99999E+17

@7-1E10@
-1.00000E+10@
@?-1.E19

OV ERROR IN LINE
4.99999E+18

@

9.1.2 Output of String Data

String data can be classified into string literal,
string variable and string function (including built-in
function and user-defined function). Upon the
execution of a PRINT statement, the structure of a
string data can be conceptualized as follows:

n
A

where each [_] stands for a byte in the memory. Stored
in the first byte is the length of the string (N),
followed by n bytes in each is the code for a character
of the string.

During the output of string data, if the length of the
estring is zero, the output pointer will not move, (The
length of a null string is zero.)

Try the following example:

@z?"1273"
1273
@znm
@z'm

@?!lll

@2"SFVGR"
$FVGR
e

9.1.3 The Usage of " in a PRINT Statement

In MPF-IP BASIC, the maximum length allowed for a line
is 32 characters, and every 8 characters form a field,
In connection with output, there is an important
indicator-the output pointer which points to the next
output pointer is """ (called cursor). In a PRINT
statement, the execution of "," will cause the output
pointer to jump to the beginning of next field and the
subsequent output will start from there. In the usage
of ",", when output requires a linefeed, 1in other
words, when the output pointer is in the last field of
a line, the subsequent appearance of "," will cause an
automatic linefeed, and the output pointer will jump to
the beginning of the first field of the next line.

16 NEW

26 INPUT J

3¢ FOR I=1 TO 8
49 PRINT I+J,
50 NEXT I

@ RUN

11 12 13

15 16 17
18
READY
@

If the ";" or "," symbol is embedded in a PRINT
command, the BASIC Interpreter will send a linefeed
code to the PRT-MPF-IP when the number of characters to
be printed out exceeds 32,

9.1.4 The Usage of ™" in a PRINT Statement

Upon the execution of a PRINT statement, both numeric
data and string data are converted into the same format
which can be considered as string format before they
are output. In 9.1.3, we have described that "," is
used to control field. 1In contrast, ";" cause the data
to be output one imwmediately after another after the
various data is converted into the same format.

10 PRINT "H";:GOTO 10
@RUN
HHHHHHHHHHHHHHHHHHH
HHHHHHHHHHH
HHHHHHHHHHHHHHHHHHH
HHHHHHHHHHH
HHHHHHHHHHHHHHHHHHH
HHHHHHHHHHH
HHHHHHHHHHHHHHHHHHH
HAMC

STOP AT LINE 18

9.1.5 Omission of ;"

In MPF-IP BASIC, data is classified into numeric data
and string data, which are in turn classified into
numeric constants, string constants, numeric variables,
string variables, numeric functions, string functions,
numeric expressions and string expressions. As
mentioned earlier, a variable name begins with a
alphabetical letter which may be followed by a numeral.
The dollar sign "$" is added to a string variable. The
first two characters of all reserved words used by the
MPF-1P BASIC are restricted to letters of the alphabet,
which leaves out any possibility of ambiguity in
identification. As a result, for a PRINT statement, on
condition that the output of data is clearly
identifiable, "," may be omitted.

@2"1234""5678"
12345678
@21234"5678"
1234 5678
@r=10
@?1234n

1234 1@
@?A"5678"

16 5678

In fact, omission of "," is a special feature of MPF-IP
BASIC, it is not necessarily allowed in other BASIC.

9.1.6 POS Function
POS - Position of output pointer
Format:
POS (@)
Description:

The POS function is used to indicate the current
position of output pointer in the output buffer or in a
line, You may use this function to prevent the usage
of ";" from invoking overflow which destroys other
memory contents in the system.

@NEW

@1@ PRINT

@20 INPUT J

@36 FOR I=1 TO 28

@40 IFPOS(0)>=20 THEN ?
@50 PRINT 1+J;

868 NEXT I

@RUN

20
12 3 4 5 6 7
8 9

10 11 12 13
14 15 16 17 18
19 2¢
READY
@RUN

2100
161 162 103 104
165 1e6 187 1@8
169 116 111 112
113 114 115 116
117 118 119 120

READY

@RUN

210
11 12 13 14 15
16 17 18 19 28
21 22 23 24 25
26 27 28 29 3@
READY
@

9.1.7 TAB Function
TAB - Designation of output position
Format: .
TAB (aexpr)
Description:

The TAB function is wused together with a PRINT
statement to specify the start position of the next
output.

Remark:

The TAB function may be considered as a generalized
usage of ",", It is used to specify the start point of
the next field in a line. In comparison with ",", the
length of a field is not restricted to B (or 4 for the
last one) if the TAB function is used,

In practice, the TAB function moves the output pointer
to the positition specified by aexpr. As a result, if
the value of aexpr is less than the current position of
the output pointer in the line, a linefeed will occur.

Try the following exampoles:

@NEW
@19 FOR I = 1 TO 10
@20 ?TAB(I*3);I;
@30 NEXT I

1.2 34856

789 10

READY

@ NEW

@l@ FOR I=1 TO 1@
@20 ? TAB(I);I
@30 NEXT I

@RUN

READY

9.2 INPUT Statement

The INPUT statement allows the user to enter through
the keyboard the required data during the program
execution. In other words, the INPUT statement enables
a program to get data from the outside world during the
program execution. In addition, the programmer can
print a "prompt statement" before the user is requested
by the INPUT statement to enter data, this enables the
user to acknowledge what he is expected to key in.

INPUT - Input data through the keyboard
Format:

INPUT [string,] var [{,var}]

Description:

The INPUT statement enables the programmer to enter
data through the keyboard during the program execution.

Execution mode:
Immediate and deferred mode
Remark:

The fundamental types derived from the format are
listed below:

(1) INPUT string, var

(2) INPUT var

(3) INPUT var, var

(4) INPUT string, var, var
in (1) and (4), the striné will first be printed upen
the execution of program and then the system waits for
input. In fact they are equivalent to the following
statements.

(1*) PRINT string;: INPUT var

(4') ?string ;: INPUT var, var

As shown in (3) and (4), when two or more items of data
are to be input, "," can be used as a delimiter.

If the type of the entered data does not match that of
var, the following error message will be displayed:

CV ERROR IN LINE

9.2.1 Input of Numeric Data

We have described the conversion of numeric data under
the topic on the VAL function in 8.4.11. When you
enter a numeric data through the keyboard, the entered
item, which 1is in the form of a string, is first
converted into a numeric data through the conversion of
the VAL function and then stored onto the specified
numeric variable.

@INPUT"NUMBER" ,A:?A
NUMBER?-1080

-100

@INPUT C,D

20,45

@PRINT C,D;C;D

20 45 20 45
@NEW: INPUT A,C:?A,C
12,50

12

@INPUT'"',A

"230

@

9.2.2 Input of Sting Data

. The format of string data input is on the whole the
same to that of string literal. Simplied format is
allowed as shown in the following examples:

@INPUT"STRING" ,AS:?AS
STRING?"QUIET"

QUIET

@INPUT AS:?AS

?DDD

DDD

@INPUT"TWO" ,AS,BS:?AS,RS
TWO?"GGG" , HHH

GGG HHH

@INP AS,BS$:?AS,BS
2333 ,CGGG

JJJ GGG

@INP AS,B$:?A$. B$
?"JJJ,GG" ,HH

JJJ,GG HH

9-12

9.3 DATA/READ/RESTORE

DATA/READ/RESTORE - Stock of constants in a program

Constants are required in almost all programs. The
attempt to relentlessly use the LET statement will make
the program over-sized and a lot of memory spaces
wasted. In practical applications such as those for
industrial and commercial purposes, a set of numeric
data or alphanumeric data are required.

In MPF-IP BASIC, the statements DATA/READ/RESTORE are
provided to deal with these constant values. We will
start with DATA/READ.

In any program, the statements DATA and READ work as a
complimentary pair. Either of them can be placed
anywhere in a program, DATA and REM are similar in
nature, i,e., both of them are non-executable
statements. They are different in that anything
following REM is ignored by BASIC while those appeared
in DATA have actual significance. In fact, the order
of statement number of each DATA statement is crucial
in program execution. All the DATA statements in a
program can be considered as a single DATA statement
with the contents of each statement combined in the
order of statement numbers.

Upon the execution of a READ statement, there is a
conceptualized Data Pointer in the DATA statement
pointing to the individual items. The DATA pointer
will specify the next item to be read. Each time an
item in the DATA statements is read, the date pointer
will move to the next one.

The RESTORE statement is used to bring the data pointer
back to the first item in DATA statement.

READ - Read an item from DATA
Format:

READ var [{,var}]

Description:

The execution of the READ statement will get an item
from the DATA statements.

Execution mode:

Immediate and deferred mode
Note:

1f the number of remaining items in the DATA
statements 1is less than that requested by the READ
statement, the following error message will be
displayed:

DA ERROR IN LINE
Remark:

In practice, the numeric constants and string
constants can be intermingled in one DATA statement.
The data conversion related with DATA is the same as
that of INPUT.

DATA - Stock of data
Format:
DATA string | number [{,string|number}]

Description:

The DATA statement is used to reserve numeric and/or
string constants to be used later in the program,

Execution mode:

Deferred mode
Remark:

At the time of programming, all data in the DATA
statemnts are considered as string constants prior to
conversion operation. Upon the execution of the READ

statement, each item in DATA is converted into a
numeric constant or string constant as required.

In the execution of the READ statement, if a non-
numeric data is assigned to a numeric variable in the
READ statements, the following error message will be
displayed..

CV ERROR IN LINE
RESTORE - Reset the data pointer
Format:
RESTORE
Description:

The execution of the RESTORE statement will move the
data pointer to the first item in the first DATA
statement.

Execution mode:

Immediate and deferred mode.

9.3.1 Examples

@NEW
€10 DATA 1,2,3,4,5,6
@20 DATA 7,8,9,18
@30 FOR I = 1 TO 10
@40 READ J
@50 PRINT J;
@60 NEXT I
@RUN
1 2 3 4 5 6 7
8 9 10
READY
@GOTO 30
DA ERROR IN LINE 40

READY
@RESTORE
@GOoTO 33
l1 2 3 4 5 6 7
8 9 1¢
READY
@

9-15

@NEW

@19 DATA 1,2,3,4,5,6
@20 DATA 7,8,9,10
@3¢ FOR I = 1 TO 140
@40 READ JS

@50 PRINT J$;

@60 NEXT I

@RUN

12345678910

READY

@35 RESTORE

@RUN

1111111111

@35 DATA A,B,C,D

@45 READ K

@55 PRINT K;

@RUN
123456789 1@
CV ERROR IN LINE 45

9.4 INP Function
INP - Read a data from input port
Format:
INP (aexpr)
Description:
The INP function is used to read a data from input

port aexpr, where the range for the data is from zero
to 255.

9.5 OUT Statement
OUT - Send a data to output port
Format:

OUT aexpr-l, aexpr-2

Descriptioni

The OUT statement is used to send aexpr-2 to output
port aexpr-1, where the range for aexpr-2 is preferably
zero to 253.
Execution mode:

Immediate and deferred mode.

Chapter 10 Subprogram

Earlier in the topics on loops, we have mentioned that
the main purpose of programming is to make the infinite
result out of the limited resources. Like the loops,
the subprograms are used to save memory spaces. The
subprograms, however, have other valuable features.
They greatly increases the readability of a program,
and 1is an excellent tool for structured programming.
Moreover, they greatly decrease the difficulty in the
development and maintenance of programs.

A subprogram is a predesigned portion of a program
which can be used to deal with programs in a specified
procedure, Usually a subprogram can not execute
independently, it has to be driven by a main program or
another subprogram.

In fact, we have utilized some subprograms in the
earlier pages,. However, they are called bullt-in
functions then. Examples are numeric value-relat~d
funcions such as SIN. COS...as well as string-relatel
functions such as MIDS$, RIGHTS...etc. In other words,
functions are subprograms in a special form. Each of
them returns a value through the operation on a
parameter. A subprogram, however, is used to carry out
a specified operation, it is used in varied features,
not merely for obtaining a value. A special feature of
the subprogram makes it possible for us to use a
subprogram written in a language other than-BASIC. For
more details in this respect, please refer to chapter
12.

1e-1|

The modern philosophy of programming advocates modular
programming and structural programming. These ideas in
programming are based on the notion of Independency
derived in the construction of subprograms.

On the bdsis of Independency, when we set out on
programming we start with the abstraction of a problem
and then divide the problem into a number of Black
Boxes to be processed. Subsequently we make a
subprogram out of each black box and then combine them
with each one placed in its proper location, The
procedure stated above is called modular programming.

10.1 Components of a Subprogram

Flow of subprogram execution

1o Entry Point
20
- Body
GOSUg 1600
100
119
" v Return Point

The components of a subprogram are described below:
(1) Entry Point:

The BASIC language is so devised that any statement
number can be the entry point of a subprogram and a
subprogram may have more than one entry point.

(2) Body

The portion starting from the entry point and
ending at the return point is called the body of the
subprogram.,

(3) Return Point
The return point is provided to end the operation

of the subprogram and return the control to the main
program.

19-2

(4) Parameter

In the BASIC language, the notion pf parameters is
the most ambiguous. In fact, even the entry point of
the subprogram can not be <clearly defined. In
practice, the main program and the subprograms are
intermingled. In addition, as the range for variables
is global in nature, any variable that can be changed
during the subprogram execution may be considered as a
parameter of the subprogram.

(5) The method of entry into a subprogram

GOSUB nnnn. Where nnnn is the entry point. For a
detailed description please see 16.2.

102 GOSUB

In the usage of a subprogram, we will described both
the entry into the subprogram and the return to the
main program.

10.2.1 GOSUB
GOSUB - Entry into a subprogram
Format:

GOSUB snum
Description:

The GOSUB statement is used to specify the entry
point by the statement number smum, Upon execution,
the system will record the statement number of the next
statement following GOSUB on a stack, and the eontraol

of program execution is transferred to statement number
snum.

Note:

If the statement number snum is not existent in the
current program, the following error message will be
displayed:

UL ERROR IN LINE

1v=3

Execution mode:
Deferred mode
Remark:

The statements GOSUB and GOTO are guite similar in
effect. The execution of GOSUB transfers the control
of program execution to the subprogram, and this
transfer is recorded on the Return-Address stack. When
the program execution comes to the point of the RETURN
statement, the control of the program execution will be
transferred as 1indicated by the top of the Return-
Address stack.

Upon the execution of each GOSUB statement, the return
address will first be pushed onto the top of the
Return-Address stack. And later upon the execution of
a RETURN statement, a return address will be popped off
the top of the stack, decrementing the height of
Return-Address stack by 1 and execution goes back to
the return address. If a RETURN statement is executed
when the height of the Return-Address stack is zero,
the following error message will be displayed:

RT ERROR IN LINE

For more detail on the usage of the stack, please see
18.3.

20.2.2 ON/GOSUB
ON/GOSUB - Computed entry into a subprogram
Format:

ON aexpr GOSUB snum-1{[,snum-i]}
Description:

The relation between ON/GOSUB and GOSUB statements is
similar to that between ON/GOTO and GOTO statements.

16-4

When the value of the numeric expression aexpr is 1,
the statement 1is egquivalent to GOSUB snum-l. In
general, when the value of aexpr is i, the statemeent
is equivalent to GOSUB snum-i.

Note:

Like the GOSUB statement, if snum-i is not to be
found anywhere in the current program, the following
error message will be displayed:

UL ERROR IN LINE

Similary, when the value of aexpr exceed s the number
of snum, the following error message will be displayed:

SN ERROR IN LINE
Exécution mode :
Deferred mode
Remark:
During the program execution, the error resulted from

the absence of snum-i in the current program will be
detected only when aexpr is equal to i.

10.2.3 RETURN
RETURN - Return point of the subprogram
Format :
RETURN
Description:
Upon the execution of the RETURN statement, the

program execution will go back to the statement next to
the last executed GOSUB statement.

18-5

Note:

When the number of execution of RETURN exceeds that
of GOSUB, the following error message will be
displayed:

RT ERROR IN LINE
Execution mode:

Deferred mode
Remark:

Please refer to 10.2.1 on GOSUB for a detailed
description.

10.2.4 Examples

@NEW

@18 2"SIZE :";

@20 INPUT N

@32 ?2"USING KEY";
@40 INPUT AS

@5@ C=ASCII(AS)
@60 FOR I = @ TO N
@7@ GOSUB 5@@

@80 NEXT I

@93 FOR I = N-1 TO @ STEP-1
@l@@ GOSUB 5@@
@110 NEXT 1

@120 END

@530 ?SPA(N-I);
@51@ ?STR(I*2,C)
@520 RETURN

SIZE :?2

USING KEY?Y

YY
YYYY
YY

READY

@RUN
SIZE:27
USING KEY?:

18-6

LU T

.
e e

READY

@NEW

@10 INPUT N:NO@=N

@20 GOSURB 1080

@30 GOTO 180

@lP@ N=ABS (N)

@ll¢ IF NO<G THEN 2"-";
@120 GOSUB 200

@130 IF N>@ THEN 120
@14@ PRINT NS:N$=""
@150 RETURN

@280 N1=INT(N/10)
@210 C=N-N1*10

@210 NS=CHRS(C+4B8)+NS
@230 N=N1

@24¢ RETURN

@RUN

? 1234

1234

? -78

-78

? -67

-67

?78.78

78

7-667666.34

-667666

767.9

67

? +678.6

678

18-7

? -777.0
=777
24C
STOP AT LINE 10

READY
e

10.3 Recursive Subprogram

In 10.2.1 on GOSUB, we have described the usage of
stack. We will go into the details in this respect in
this section and then go on with the Recursive
Subprogram comprised of stack and subprogram return
point.

The stack is an ordered 1list, its insertion and
deletion occur only at an opening which is called the
TOP. The configure of stack is shown on the following
page. The insertion and deletion at the top are called
PUSH and POP respectively. A PUSH stores a new data
onto the top of the stack so that the next data
accessible becomes the new data and not the original
top. A POP works in an opposite manner, it takes the
data on the top off the stack, and the original next
data becomes the new top of the stack.

P EEU 0D
|Pomoomm
>wmEo 0o
BWHEON

STACK PUSH POP POP

To visualize the notion of a stack, think of the dishes
placed in a pile as seen in a cafeteria. The customers
take the dish off the top in sequence, and the washed
dishes are placed onto the top of the pile. This
phenomenon is a living analogy to PUSH an POP.

10-8

The operations of PUSH and POP on the stack function in
a special format which is called first-in-last-out or
last-in-first-out. In other words, all data is taken
off the stack in an order contrary to that in which
they are inserted. See the following configure:

PUSH A,B,C,D,E,F

STACK [ABCDEF
TOP
pOP F,E,D,C,B,A,

In fact, there is a Return-Address stack in the BASIC
system. Upon the execution of a CALL statement, the
system will PUSH the statement number next to the CALL
statement onto the Return-Address Stack. Later in the
program upon the execution of a RETURN statement, the
system will POP the top of the Return-Address Stock and
the control of the program will be transferred to the
statement indicated by the top.

Try the following example:

@le 1=1

@20 I=I+1

@30 IF I<5 THEN GOSUB 2@:?"RET"
@4@ PRINT I

@5@ RETURN
@RUN

5
RET 5
RET 5

RT ERROR IN LINE 5@
READY

In mathematics, many a function is expressed as a
recursive function, Take n! as an example:

1 if n=¢

nl= {
n*(n-1)! if n>@

10-9

To express this function in a recursive subprogram,
obviously we need a data stack N in addition to the
Return-Address Stack. 1In fact, the programmer must set
up this N stack and define the operations of PUSH and
POP. In the case of languages which do not have an
automatic stack-manipulating feature, we usually resort
to a one-dimensional array together with its index to
simulate the function of a stack.

Examine the following definition:
Array : A(N) Index : I
PUSH(X) : I=I+l1 : A(I)=X
POP(X) : I=I-1

Listed below is a BASIC program with a recursive
subprogram.

@1@ INP"N=",N
@2¢ DIM S(N)
@36 1=0
@48 GOSUB 100
@50¢ PRINT P
@68 END
@108 I=I+1
@118 S(I)=N
@12¢ IF N=@ THEN P=1: RET
@130 N=N-1:GOSUB 1060
@140 I=I-1:N=S(I)
@158 P=N*p
@160 RETURN
@RUN
N=27
5040

READY

@RUN

N=78
4¢320

READY
@

l¥-11

Chapter 11
User-Defined Function

In MPF-IP BASIC, there are a number of built-in
functions in connection with numeric and string
operations, In fact, the user can define functions
themselves to facilitate programming. These user -
defined functions have the same effect as the built-in
functions in practical applications.

The name of a user-defined function begins with "FN"
followed by a variable name which can either be a
numeric variable name or be a string variable name.
The resulting value of a user-defined function is a
numeric valuee if the variable name is a numeric
variable, Similarly is the case with the string
variables.

A user-defined function is usually used as an operand
of an expression in practical usage. An argument 1is
usually added to the function name. This is in general
an actual argument enclosed by parentheses. An actual
argument may be a constant, a variable, a built=-in
function, or an expression. Sometime it can be another
user-defined function.

In Appendix D, all the built-in functions are listed
for reference.

11-1

11.1 DEF Statement
DEF - Define a function
Format:

DEF FN var-1(var-2)=expr
DeSCzi§t10n=

The DEF statement is used to define a user-defined
function.

Note:

Ony one dummy argument (var-2) is allowed in a user-
defined function, it can either be a numeric variable
or be a string variable. In addition, this dummy
variabl is merely a local variable which will not
affect the wvalue of another variable with the same
variable name during program execution.

In a user-defined function, the type of wvar-1 must
match the type of the expr On the righthand side of the
equal sign (=). The var-l must be a generally accepted
legal variable name.

Description:

From Format, we can derive the following two
fundamental types:

(1) DEF FN avar (var)=aexpr
{(2) DEF FN svar (var)=sexpr

In (1) a numeric function is defined while in (2) a
string function is defined.

In the above, expr represents an expression, the
operands in which can be a constant, variable, built-in
function or another user-defined function, Be sure,
however, not to insert the function itself in expr.
The execution of a function defined in this way will
bring the system intec an infinite loop which will never
come to an end. In this case, the only way to recovery
is to press the RESET key to reinitialize the system,

11-2

Try the following example:

@NEW
@1@ DEF FNA(F)=F+8
@20 DEF FNB(U)=U+100
@3¢ DEF FNC(U)=U+FNA (U)
@40 INPUT A
@50 PRINT FNA(A) ;FNB(A) ; FNC(A)
@68 GOTO 40
@RUN

732

20 112 124
230

38 130 160
7699

767 799 1498
?1C
STOP AT LINE 3@

READY

Like REM, DATA, the DEF statement is a non-executable
statement. it is also one of the declaration
statements like DIM (For details please see chapter 7).
It doesn't matter where in the program it is located.

Try the following example:

@NEW
@19 FOR I=1 TO 5
@20 PRINT FNS1(PI/I)
@30 NEXT I
@40 END
@100 DEF FNS1(J)=1/S8IH(J)
GRUN

8.38861E+06

1

1.1547

1.41421

1.7013

READY
@

11-3

Jne must take note not to have more than two wvariable
names following FN to be identical. The system will
not tell the wuser that it is illegal but amony the
user-defined functions with the same name, only that
with the lowest statement number will be acknowledged
by the system.

Try the fellowing example:

@NEW

@l¢ DEF FNAS(AS)=RIGHTS (AS,4)
@20 DEF FNAS (AS)=LEFTS (AS,4)
@30 INPUT"STRING",AS

@40 PRINT AS;FNAS(AS)

@59 GOTO 3@

@RUN

STRING?ABCDEFGH
ABCDEFGHDEFGH
STRING?BASIC-MPF-IP
BASIC-MPF-IPIC-MPF-IP
STRING?

11.2 Usage of User-Defined Function

The user-defined function greatly facilitates
programming. When the function is repeatedly used in a
program, the time for inputting the program is greatly
decreased and the number of errors resulted therefrom
is also diminished. In addition, the memory space of
the system is saved to a considerable extent. And most
importantly, it is the technique provided for modular
programming.

Listed below are some trigonometric functions which are
not provided by the BASIC-MPF-IP system but can be
derived from other functions.
(1) Cotangent: COT (X)

DEF FNA(X)=1/TAN (X)
(2) Secant : SEC(X)

DEF FNA(X)=1/C0S(X)

11-4

(3) Cosecant : CSC(X)
DEF FNA(X)=1/SIN(X)
(4) Arccotangent: COT-I (X)
DEF FNA(X)=PI/2-ATN(X)
(5) Hyperbolic Sine: SINH(X)
DEF FNA(X)=(EXP (X)-EXP(-X))/2
(6) Hyperbolic Cosine: COSH(X)
DEF FNA(X)=(EXP(X)+EXP(-X))/2
(7) Hyperbolic Tangent: TANH (X)
DEF FNA(X)=(EXP (X)~EXP (~X))/ (EXP (X)+EXP (~X))
(8) Hyperbolic Cotangent : COTH (X)
DEF FNA(X)=(EXP(X)+EXP(=X))/(EXP(X)=EXP (=X))
(9) Hyperbolic Secant: SECH(X)
DEF FNA(X)=2/(EXP(X)+EXP(-X))
(19) Hyperbolic Cosecant: CSCH(X)
DEF FNA(X)=2/(EXP(X)-EXP(-X))
(11) Archyperbolic Sine: SINH_I{XJ
DEF FNA (X)=LN(X+5QU (X*X+1))
(12) Archyperbolic Cosine: COSH_I{XJ
DEF FNA (X)=LN(X+SQR(X*X-1)
(13) Archyperbolic Tangent: TBNH_ltx)
DEF FNA(X)=LN((1+X)/(1-X))/2
(14) Archyperbolic Cotangent: COTH-1 (X)

DEF FNA(X)=LN((X+1)/(X-1))/2

11-5

(15)

(16)

Archyperbolic Secant: SECH-1(X)
DEF ENA(X)=LN(l/X+SQR(1l/(X*X)-1))

Archyperbolic Cosecant: CSCH (X)

DEF FNA(X)=LN(1/X+SQR(1l/(X*X)+1))

11-6

Chapter 12
Combination with Non-BASIC Program

Undoubtedly MPF-IP BASIC can execute a pure BASIC
program, In addition, it can execute a portion of
assembly program,

In the execution of the assembly program, the absolute-
address variable is also used. 1In connection with I1/0,
we have described the INP function and OUT statement in
chapter 9.

In connection with the execution of an assembly
program. We can use the CALL statement. For the usage

of absolute address, we have the PEEK function and the
POKE statement.

12.1 CALL Statement

MPF~IP uses Z-80A which is one of the most prevalent in
the market as its CPU(Central Processing Unit).

As a result, among the various assembly languages, Z-80
Assembly is the only one executable on the MPF-IP BASIC
system.

CALL - Execution of an assembly program

Format:

CALL aexpr

12-1

Description:

Upon the execution of the CALL statement, firstly the
value of aexpr is evaluated and then the control of the
program is transferred to the absolute address aexpr
for the execution of a portion of assembly program.

Execution mode:
Immediate and Deferred mode
Remark:

The execution of assembly program will go on until a
RET (mnemonic:C9 Hex=201) is encountered and then the
execution will go back to the BASIC program. There is
only one RET in the most simple assembly program,

Try the following examples:

@12 POKE 61660,201
@20 FOR I=1TOS

@30 CALL61660

@40 PRINT I

@5@ NEXT I

BRUN

Wb g

READY

@NEW

A=15020

@B=A

@19 A=B:B=B+6

@2@¢ CALL A

@30 PRINT "“HAHA"
@XEQ

RG ERROR IN LINE 2@

READY

@XEQ
UL ERROR IN LINE 20

12-2

READY
@XQR
OF ERROR

READY
@XEQ
ST ERROR

READY
e
SN ERROR

READY
@XEQ
RT ERROR

READY
@XEQ
DA ERROR

READY
@XEQ
NX ERROR

READY
@xEQ
CV ERROR
READY
@XEQ
CK ERROR

READY
@XEQ
FN ERROR

READY
QXEQ
DW ERROR

READY
@XEQ
DS ERROR

READY
@XEQ
OV ERROR
HAHA

IN

IN

IN

IN

IN

IN

IN

IN

IN

InN

LINE

LINE

LINE

LINE

LINE

LINE

LINE

LINE

LINE

LINE

LINE

LINE

20

20

20

20

20

20

20

2

20

20

2@

20

12-3

READY
@XEQ
HAHA
READY
@XEQ
ERROR IN LINE 2@

*****MPF-I—PLUS*****
<

Note:
The value of aexpr must be in the range zero to
65535, otherwise the following error message will be
displayed:
OV ERROR IN LINE

Try the following example:
@CALL -1
OV ERROR IN LINE

FEG@ AF B1B@ BC 9800
<

12.2 POKE/PEEK

The POKE statement and the PEEK function is wused in
connection with the absolute address variable. As an
absolute variable, a number is restricted to be in the
range zero to 255, occupying a byte in the memory.
POKE - Assign a value to an absolute address
Format:

POKE aexpr-1, aexpr-2

Description:

The POKE statement is used to assign the value of
aexpr-2 to the absolute address aexpr-1l.

Execution mode:

Immediate and deferred mode

12-4

Note:

The value of aexpr-1 must be between zero and 65535,
otherwise the following error message will be
displayed:

OV ERROR IN LINE

As Z-80A is used as the CPU on the MPF-IP system, the
absolute address ranges from zero through 65535,
However, the actual memory on MPF-IP may be less, thus
the usage of some address may become insignificant. 1In
addition, to the Read Only Memory of MPF-IP ", the POKE
statement has no effect. The value of aexpr-2 is
expected to fall between zero and 255. I1f aexpr-2
exceeds 255 the actual value in effect will be
INT (aexpr-2/256) . if INT (aexpr-2/256) 1is a gain
greater than 255, the INT operation is repeated.

Try the following examples:

@NEW

@l0 1=256

@20 POKE 61660,1I

@3¢ PRINT INT(I/256),1,PEEK(61660)
@40 I=1+256

@50 GOTO 20

@RUN
1 256 : §
2 512 2
3 768 3
4 1024 4
5 1280 5
6 1536 6
7 1792 7
8 2048 8
@NEW
@19 1I=143

@20 POKE 61660,I

@30 PRINT INT(I/256),1,PEEK(61660)
@40 I=1+256

@50 GOTO 2@

12-5

@RUN

399
655
911
1167
1423
1679
1935
2191
2447
2783
2959

LS o
HHEWOOdoWmds W

- =

v e HHWYEOO WU W
[~

PEEK - Read a numeric value from an absolute address
Format:
PEEK (aexpr)
Description:
The PEEK function returns the value currently stored
in the abscolute address specified by aexpr. The value
will be between zero and 65535, otherwise the following
error message will be displayed:
OV ERROR IN LINE

Try the following example:
@?PEEK (-1)
OV ERROR IN LINE

129
@

12-6

And now have fun trying the following example:

@RESET
t***thF_I_pLUs*****
CONTROL B

BASIC-IP, ORG:F@@@

@10 I=15*16*16*16

@2@ J=PEEK(I)

@3¢ IF J< 32 THEN 70

@40 IF J> 96 THEN 7@

@50 PRINT CHRS(J);

@60 IF POS(@)>19 THEN PRINT
@70 I=1I+1

@8@ GOTO 20

@RUN

I=15*16*16*16 J=PEEK(I)@
IF J< 32 THEN 7¢@ IF J>96
THEN 78 P PRINT CHRS(J);A
IF POS(@)>19 THEN

PRINT I=I+1 GOTO 207?72

>EW

CONTROL C

READY

@

12-7

Appendix A ASCIl Characters

Decimal Hexadecimal Meaning

Value

Value

(Abbreviation)

%]

10

11

ag

@1

a2

a3

a4

@5

@6

a7

a8

@9

aa

éB

Null
(NUL)

Start of
Heading
(SOH)

Start of
Text
(STX)

End of
Text
(ETX)

End of
Transmission
(ET)

Enquiry
(ENQ)

Acknowledge
(ACK)

Bell
(BEL)

Backspace
(BS)

Horizontal
Tabulation
(HT)

Line Feed
(LF)

Vertical
Tabulation
(VT)

12

13

14

15

16

17

18

19

20

21

22

23

ec

@D

OE

@F

1@

11

12

13

14

15

16

17

Form Feed
(FF)

Carriage
Return
(CR)

Shift oOut
(s0)

Shift In
(SI)

Data Link
Escape
(DLE)

Device
Control 1
(DC1)

Device
Control 2
(DC2)

Device
Control 3
(DC3)

Device
Control 4
(DC4)

Negative
Acknowledge
(NAK)

Synchronous
I1dle
(SYN)

End of
Transmission
Block

(ETB)

24

25

26

27

28

29

30

31

32

33

34

35

36

18

19

1A

1B

1cC

1D

1E

1F

20
21

22

23

24

Cancel
(CAN)

End of
Medium
(EM)

Substitute
(SUB)

Escape
(ESC)

File Separator
(FS)

Group
Separator
(GS)

Record
Separator
(RS)

Unit
Separator
(Us)

Space

Exclamation
Point
(1)

Quotation
Mark

*)

Number
Sign
(#)

Dollar
Sign
($)

37

38

39

49

41

42

43

44

45

-3
o

47

48

49

25

26

27

28

29

2A

2B

2C

2D

[y
=

2F

39

31

A-4

Percent
Sign
(%)

Ampersand
(&)

Apostrophe
(")

Opening
Parenthesis

(<)

Closing
Parenthesis
(>)

Asterisk
(*)

Plus
(+)

Comma

()

Hyphen
(Minus)
(=)

Period
(Decimal
Point)
(.)

Slant
(/)

Zero
()

One
(1)

5@

51

52

53

54

55

56

57

58

59

60

61

62

63

64

32

33

34

35

36

37

38

39

3a

3B

3ac

3D

3E

3F

40

Two
(2)

Three
{3)

Four
(4)

Five
(5)

Six
(6)

Seven
(7)

Eight
(8)

Nine

(9)

Colon

(2)

Semicolon
()

Less Than
(<)

Equals
(=)

Greater
Than
(>)

Question
Mark

(?)

Commercial
At
(@)

65

66

67

68

69

76

71

72

73

74

75

76

77

78

79

8@

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

AF

5@

Uppercase
(a)

Uppercase
(B)

Uppercase
(C)

Uppercase
(D)

Uppercase
(E)

Uppercase
(F)

Uppercase
(G)

Uppercase
(H)

Uppercase
(1)

Uppercase
(J)

Uppercase
(K)

Uppercase
(L)

Uppercase
(M)

Uppercase
(N)

Uppercase
(0)

Uppercase
(P)

81

82

83

84

85

86

87

88

89

908

91

92

93

24

95

51

52

D3

54

55

56

57

58

59

SA

5B

5C

5D

S5E

5F

Uppercase
(Q)

Uppercase
(R)

Uppercase
(5)

Uppercase
(T)

Uppercase
(u)

Uppercase
(V)

Uppercase
(W)

Uppercase
(X)

Uppercase
(Y)

Uppercase
(2)

Opening
Bracket
(0

Reverse
Slant
(\)

Closing
Bracket
(1)

Circumflex
(")

Underscore

(=)

96 60 Grave

Accent
*)

97 61 Lowercase a
(a)

98 62 Lowercase b
(b)

99 63 Lowercase c
(c)

148 64 Lowercase d
(d)

161 65 Lowercase e
(e)

192 66 Lowercase f
(f)

103 67 Lowercase g
(g)

164 68 Lowercase h
(h)

165 60 Lowercase 1
(1)

126 6A Lowercase j
(3)

197 GB Lowercase k
(k)

168 6C Lowercase 1
(1)

189 6D Lowercase m
(m)

11¢@ 6F Lowercase n
(n)

i 6F Lowercase ©

(o)

112 70 Lowercase p

(p)

113 71 Lowercase g
(a)

114 72 Lowercase r
(x)

115 73 Lowercase s
(s)

116 74 Lowercase t
(t)

117 75 Lowercase u
(u)

118 76 Lowercase v
(v)

119 77 Lowercase w
(w)

120 78 Lowercase X
(x)

121 79 Lowercase y
(y)

122 TA Lowercase z
(z)

123 7B Opening (left)
Brace
({)

124 7¢C Vertical
Line
()

125 7D Closing (right)
Brace
(hH

126 7E Tilde
()

127 1F Delete
(DEL)

Appendix B
MPF-IP BASIC Statements

Name Abbreviaton Description Reference
CALL CAL Execution of an assembly 12.1
program
DATA DAT Stock of data 9.3
DEF DEF User-defined functions 11,1
DIM DIM Declaration of an array 7.1
END END End the program execution 4.2
FOR FOR FOR-loops 5:1.1
GOSUB GOS Jump to a subprogram 102X
GOTO GOT Unconditional control 5.3.1
transfer
IF..THEN 1IF..THE Conditional Control B2l
Transfer
INPUT INP Input through the keyboard 9.2
LET Assignment statement 4.1
NEXT NEX Next FOR-loop SaXed
ON..GOSUB ON..GOS Computed jump to a 190.1.2
subprogram
ON..GOTO ON..GOT Computed control transfer St
ouT ouT Send to output port 9.5
POKE POK Assign a value to an 12.2

absolute address

PRINT ? (PRI) Output to the display 9.1

B=-1

RANDOMIZE RAN Reset the random number 4.4

cycle
READ REA Read an entry from DATA 9.3
statement
REM ! Remark 4.3
RESTORE RES Reset the DATA point 9.3
RETURN RET Return to the main program 10.1.3
STOP STO Stop the program execution 4.2

Appendix C
MPF-IP BASIC Commands

Name Abbreviation Description Reference
CONTINUE CON Continue the execution 3.1.2
of an interrupted program
EDIT EDI Edit program statements 3.2.3
FREE FRE Show the memory available 3.4.1
GOTO GOT Change the start point of 3.1.1
program execution
HEX HEX Hexadecimal conversion 3.4.2
LIST LIS List a program vl
LOAD LOA Read a program from a 3:3:2
magnetic tape
NEW NEW Clear a program 3.2.2
NEW NEW* Clear a program 3.2.2
QUIT QUI Return to the monitor 3i¢ls3
RUN RUN Execute a program , = B 07
SAVE SAvV Save a program on the .3l

magnetic tape

XEQ XEQ Execute a program Fednd

Appendix D
MPF-IP BASIC Built-in Functions

The followed is a 1list of MPF-IP BASIC built-in
functions in alphabetical order. Please note that the
argument of all the trigonometric functions is
expressed in radians (1 radian=184/PI degrees). In
this 1list, X represents a numeric expression while §
represents a string expression.

Name (Argument) Abbreviation Description Reference
ABS (X) ABS (X) Absolute value 6.2.1
ASCII(S) ASC(X) ASCII code of the 8.4.1

first character
of the string
expression

ATN (X) ATN (X) Arctangent 6.2.12
function
Results is in
radians

CHRS (X) CHR(X) Corresponding 8.4,2
character according
to the ASCII code

COS (X) COS (X) Cosine function 6.2.10

EXP (X) EXP (X) Exponentiation 6.2:2
with base e=2,71828

INSTR(X,51,52) INS(X,51,52) Find the position 8.4.3
of presence of 52
in S1 starting

from X.

INT(X) INT(X) The Gaussian B3
(Integer) function

INP (X) INP(X) Input data from 9.4
port X

D-1

LEFTS (S,X)
LEN(S)

LN (X)

MIDS$(S,X1,Xx2)

NUMS (X)
PEEK (X)

RIGHTS (S, X)

RND (X)

SGN (X)
SIN(X)

SPACES (X)
SQR (X)

STRINGS (X1, X2)

TAN (X)

VAL (X)

LEF (5,X)

LEN(S)

LN (X)

MID(S,X1,X2)

NUM(X)

PEE (X)

RIG(S5,X)

RND (X)

SGHN (X)
SIN(X)

SPA (X)

SOR (X)

STR(X1,X2)

TAN (X)

VAL (X)

The leftmost X 8.4.4
characters of S.

Length of string 6.2.4
S.

Natural logarithm 6.2.5
The X2 characters B8.4.6

starting from
(X1)th character of

string S

Convert X to a 8.4.7
string

Read data from 12.2

absolute address X

The rightmost 8.4.8
characters starting

from (X)th character

of string

Random number 6.2.6
function

Sign function 6.2.7
Sine function 6.2.9

String composed of 8.4.9
spaces

Square root 6.2.8
function

String composed of 8.4.10
of X1 characters

with the corresponding
ASCII code of X2.

Tangent function 6.2.11

Value of the 8.4.11
numeric string §

Appendix E
MPF-IP BASIC Error Messages

The format of MPF-IP BASIC error messages is as follows:

XX
XX

UL

OF

RT

DA

NX

cv

UN

SN

ST

ERROR IN LINE
Description

A statement number not found in the program is
referred to,

(1) LOG(X) X<=8
(2) SQR(X) X>=@
(3) Division by zero

A RETURN statement without the corresponding
GOSUB

(1) Items in DATA statements are insufficient.
(2) Upon the execution of EDIT, the string to be
modified is not found in the program.

A NEXT statement without the corresponding FOR
Conversion errors

(1) Underflow
(2) Errors in evaluations of numeric values,

(1) Syntax error

(2) The maximum memory is extended when the
array variables are redeclared

(3) The values of subscripts run out of range

(4) Absence of parameters in the usage of
functions

(1) Incorrect usage of parameters in functions
(2) Too many folds of parentheses are used in an
expression

ov

RG

(1)

(2)
(3)
(4)

(5)

et

Tt

Overflow

Errors in evaluation of numeric values
Errors in the usage of absolute address

The value of aexpr is negative in the usage
of the LEFTS function

The value of aexpr is negative in the usage
of The TAB function

The values of subscripts exceed the range
Run out of memory

Appendix F
Fundamental Definitions

* syntactic Definitions and Abbreviations
The following definitions are based upon Backus-Naur
Form (BNF). These usages are not available in BASIC,
In BNF, some special symbols such as {and|can clearly
express the structure or relation. The symbol :=is
used to mark the beginning of the definition on the
lefthand side. These special symbols are called
Metasymbols.
| Used to separate the alternatives
[l Used to indicate the item is optional
{} Used to indicate the item can be repeated
~ Used to indicae a necessary blank
metasymbol

g 1 O] [} ¥
digit

:= 1|2|314|5|6|7|8|9]|@
letter

:= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|V|Z
special

p= LIRIS|R& | (D [* 2 l=]=1€ 1+ 121 Z]> <] T
character

:= letter|digit|special
alphanumeric

:= letter|digit

F-1

name
:= letter[digit]
numeric variable name
:= name
number
t= [+|-1[{digit}].({digit}]) [E[+|-]digit[digit]]

arithmetic variable

i= avar
avar
i1= name

delimiter
¥ Rt I S 2 7 R AR &
arithmetic operator
1= aop
aop
i= 4[=]*|/]"
arithmetic expression
= aexpr
aexpr
:= avar |number
:= (aexpr)
s = [+[-] aexpr
:= avar subscript
Subscript

:= (aexpr {, aexpr})

avar
:= avar subscript
string
:= "[{character}]"

null string

string variable

1= gvar
svar
:= name$

string operator
:= sop

sop
1=+

string expression
i= SexXpr

sexpr

:= svar|string
i= SeXpr sop sexpr

string relational operator
:= srop
sTop

1= =|>|>=|<=|<| O

variable
1= var
var
:= avar|svar
expression
1= expr
expr
i= aexpr|sexpr
statement number
:= snum
snum
:= {digit}

line

snum[{instructions}] instruction

arithmetic relational operator

arop
1= =2 >=]<=|<>

arithmetic relational expression
= arexpr

arexpr
1= aexpr arop aexpr

string relatonal expression

srexpr
i= SeXpr Srop sexpr

relational expression

Appendix |
Some Subprograms in the Monitor

*1-1

Entry point(hex) Decimal Function
@195 4065 PRT CONTROL
Description:

This subprogram serves as a soft switch for the
printer in BASIC. It has the same effect as CONTROL P
in the monitor program execution.

Try the following example:

@NEW
@CALL 405
PRT OFF@"

@10 CALL 405

@20 FOR I=1 TO 4

@3¢ PRINT SQR(I)

@40 NEXT 1

@50 CALL 4@5

*1-2

Entry point(hex) Decimal Function
B1A9 425 BEEP CONTROL
Description:

This subprogram serves as a soft switch for the
speaker in BASIC. It has the same effect as CONTROL G
in the monitor program execution.

Try the following example:

@CALL 425
@CALL 425

fore the execution of the first CALL 425 subprogram,
4 beep is generatated each time a character is entered
through the keyboard, After the execution of the first
CALL 425 subprogram, this beep-generating function is
suépended. The function 1is recovered with the
execution of the second CALL 425 subprogram.

*I-3
Entry point (hex) Decimal Function
@7F6 2038 CLRBUF

Description:

Upon the execution of this subprogram, all characters
on the indicator panel are cleared and the prompt < is
displayed.

Try the following example:

@NEW
@HEX FE27
65063
@19 IF POS(@)>=015 THEN GOSUB 108
@2@ PRINT I;
@30 I=I+1
@40 GOTO 14
€l0¢ POKE 65063,0
@11¢ CALL 2038
8126 RETURN

@RUN

8 1 2 3 4
<5 ®6_7 8 9
<10 11 12 13
<14 15 16 17
<18 19 20 21
<22 23 24 25
< 26 4C
STOP AT LINE 30
READY
e

During the execution, the output linefeed is directly
controlled by the program, hence the indicator panel
keeps flashing with the output going on.

In the example, statement 10@ POKE 65063,0 is used to
reset the value of the POS function.

Appendix G
Ways to Save Memory

Listed below are ways to save memory occupied by a
program in MPF-IP BASIC system:

(1) Use "!" instead of REM. Two bytes are saved.
(2) Use "?" instead of PRINT. Four bytes are saved.

(3) Use ":" whenever possible, This can decrease the
use of statememt numbers.

(4) Use the abbreviated form of reserved words.

In MPF-IP BASIC, the first three characters are used as
the identifiable abbreviated form of a reserved word,
The set of reserved words in MPF-IP BASIC includes
commands, statements and built-in functions as listed
in Appendix B, Appendix C and Appendix D. Followed is
a list of some examples.

CONTINUE {am=> CON
RESTORE LD RES
GOTO {===> GOoT
ASCII (X) LD ASC

RIGHT (XS ,A) <~=-=> RIG(X$,A)

Appendix H
Library Constant

In 6.2 on numeric functions, we have described some
built-in functions provided in MPF-IP BASIC. Among
them, some are trigonometric functions in which the
constant 7C is often used. As a result, the value of

7¢ is set by the system,
Try the following examples:

@PRINT PI
3.14159

@PRINT SIN(PI/2)
.999997

@PRINT COS(PI/2)
1.19209E-0@7

Multitech

OFFICE/9FL, 266 SUNGCHING ROAD, TAIPLI 104 |

TEL: (02)551.1101 TELEX: "19162 MULTIIC" j

FACTOARY/TINDUSTRIAL E. RD, 111, HSINCHLI)
INDUSTRIAL PARK, HSINCHU, TAIWA

