
MACHINE
AND

ASSEMBLY
LANGUAGE

PROGRAMMING
OF THE PDP-11

MACHINE
AND

ASSEMBLY
LANGUAGE

PROGRAMMING
OF THE PDP-11

ARTHURGILL
Departmentof Electrical Engineering and Computer Sciences

University of California, Berkeley

PRENTICE-HALL, INC., ENGLEWOOD CLIFFS, NEW JERSEY 07632

Library of Congress Cataloging in Publication Data

GILL, ARTHUR, (date)

Machine and assembly language programming of PDP-11.

Includes index.

1. PDP~11 (Computer)—Programming. 2. Assembler

language (Computer program language) I. Title.

QA76.8.P2G54 001.6’42 78-9690

ISBN 0-13-541870-4

© 1978 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book

maybe reproduced in any form or by any means

without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6

PRENTICE-HALL INTERNATIONAL,INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKSLIMITED,Wellington, New Zealand

To Velta

CONTENTS

PREFACE xii

NUMBER SYSTEMS 7

1.1 Decimal-to-Binary Conversion

1.2 Decimal-to-Octal Conversion

1.3 Binary-to-Decimal Conversion

1.4 Octal-to-Decimal Conversion

1.5 Octal-to-Binary Conversion

1.6 Binary-to-Octal Conversion

1.7 Binary and Octal Addition

Exercises C
O
N
N
D

GW
BG
&

bo

Vil

Contents

2

THE PDP-11 ORGANIZATION 9

2.1 The Central Memory

2.2 The Central Processor

2.3 The Teletype

2.4 The Line Clock

Exercises

REPRESENTATION OF NUMBERS AND CHARACTERS

3.1 2’s-Complement Representation

3.2 Addition and Subtraction

3.3 Character Representation

3.4 Floating-Point Representation

Exercises

10

12

12

13

14

15

19

21

23

24

15

&

INSTRUCTIONS AND ADDRESSING MODES 26

4.1 The Execution Cycle

4.2 Single-Operand and Double-Operand Instructions

4.3 Addressing Modes

4.4 Immediate Addressing

4.5 Absolute Addressing

4.6 Relative Addressing

4.7 Relative Deferred Addressing

4.8 Branch Instructions

4.9 No-operand Instructions

4.10 Examples

Exercises

27

27

29

30

32

33

34

35

38

39

42

Contents

ASSEMBLY LANGUAGE PROGRAMMING

5.1 Assembly Language versus Machine Language

5.2 Assembly Language Directives

5.3 Assembly Language Program Format

5.4 Example: Multiple Echo

5.5 Coding Hints

Exercises

45

46

50

51

55

57

5

45

&

STACKS AND SUBROUTINES 60

6.1 Stacks

6.2 Example: Backward Echo

6.3 Subroutines

6.4 Subroutine Call and Return

6.5 Argument Transmission

6.6 Nested Subroutines

6.7 Recursive Subroutines

6.8 Example: Towerof Hanoi

6.9 Coroutines

Exercises

60

62
64

65

67

70

72

74

79

80

ARITHMETIC OPERATIONS 85

7.1 Carry and Overflow under Addition

7.2 Carry and Overflow under Subtraction

7.3 Double-Precision Arithmetic

7.4 The TST and CMP Instructions

7.5 More on Branch Instructions

85

87

88

91

93

Contents

7.6 Shift Instructions 97
7.7 Example: ASCII-to-Binary Conversion 99

Exercises 106

TRAPS AND INTERRUPTS 777

8.1 Traps 111

8.2 Illegal Address and Illegal Instruction Traps 112

8.3 The Trap Bit and BPT Instruction 113

8.4 Interrupts 114

8.5 Why Use Interrupts? 116

8.6 Priority Interrupts 118

8.7 Example: Time Request 120

Exercises 126

P
i
e

THE ASSEMBLER AND LINKAGE EDITOR 730

9.1 The Two-Pass Assembly Process 131

9.2 Example of Assembler Listing 134

9.3 Absolute and Relocatable Addresses 136

9.4 The Linkage Editor 138

9.5 Address Modification 140

9.6 Global Symbols 140

9.7 The Two-Pass Linkage Process 144

9.8 Position-Independent Code 147

Exercises 148

Pasars
gq S, 3S

e
,

ADVANCED ASSEMBLY LANGUAGE TECHNIQUES 757

10.1 Macros 151

10.2 Macro Definitions and Macro Calls 154

Contents xi

10.3 Local Symbols 159

10.4 Repeat Directives 161

10.5 Conditional Assembly 164

Exercises 167

APPENDIXES 777

A. PDP-11 Organization (Partial) 172

B. Seven-Bit ASCII Code (Partial) 173

C. PDP-11 Addressing Modes 174

D. PDP-11 Instructions (Partial List) 175

E. MACRO-11 Directives (Partial List) 177

F. Powersof2 178

G. Notes on Programming Style 179

INDEX 783

PREFACE

This book evolved from notes written for a course in machinestructures

offered at the University of California at Berkeley. It is a second course in

computer science (the first being a course in a high-level language program-

ming) where students are exposed to the basic concept of computer opera-

tion (registers, instruction set, addressing modes, etc.) and learn assembly

language programming techniques.

The course offers the students ‘“‘hands-on”’ experience with a stand-alone

computer, one which they can program and manipulate with no operating

system standing between them and important machine features. The avail-

ability of a ‘“‘bare” machine not only eliminates much of the “‘magic’”’ associ-

ated with computers and computation, but also permits experimentation

with I/O programming, interrupt handling, and other essential techniques

not possible with simulated or ‘‘protected”’ machines. In addition to the

stand-alone machine, students have access to a large time-shared computer

where they can perform editing, assembling, linking,filing, and other opera-

tions whichare essentially of a bookkeeping nature.

For these purposes we selected the Digital Equipment Corporation’s

PDP-11 family of computers. (Specifically, we used the PDP-11/10 as the

xiii

XIV Preface

stand-alone machine, and the PDP-11/70, equipped with the UNIX oper-
ating system, as the time-shared computer.) The PDP-11 machines were
chosen because oftheir versatility, popularity, and the wide range ofavail-
able software systems. We found the PDP-11’s highly suitable as vehicles for
presenting the fundamental concepts of the course, and at the same time
exposing the students to the ever-widening world of minicomputers.

The objective of this book, then, is to familiarize the reader with the
basic organizational and operational features of the PDP-11 and to present

machine and assembly language techniquesfor this class of computers.It is

not, per se, a general text on machinestructures, and does not attempt to

provide a comprehensive treatment of available computer organizations and

assemblers. However, to the extent that the concepts and methods governing

the operation and programming of the PDP-11 are used in manyother mini-

computers, the material in this book should serve as good preparation for

the operation and programmingof other machines.

Chapter 1 outlines algorithms for converting numbers from one system

(binary, octal, decimal) to another. The algorithms are not provided with

proof and are intended to serve only for reference. Chapter 2 describes the

organizational structure of the PDP-11 (the central memory, central pro-

cessor, and peripheral devices). Chapter 3 explains how numbers(integers

and floating point), characters, and strings are represented in the PDP-11.

Chapter 4 describes the PDP-11’s instruction formats and addressing modes,

and Chapter 5 introduces the reader to assembly language programming.

The first five chapters should provide the reader with sufficient back-

ground to write simple programs for the PDP-11. The remaining chapters

delve deeper into operational details and describe further techniques. Chap-

ter 6 introduces stacks and subroutines (including recursion). Chapter 7

looks closer at the PDP-11’s arithmetic (including double-precision) and

other operations, such as the test, comparison, branch, and shift operations.

Chapter 8 explains the trap and interrupt mechanisms. Chapter 9 describes

the workings of the assembler and linkage editor and the notion of reloca-

tion. (Although the MACRO-11 assembler and LINKR-11 linkage editor are

used for illustration, the concepts discussed are quite general.) Chapter 10

introduces some advanced assembler facilities, such as macros, repeated

assembly, and conditional assembly.
The book ends with a number of appendixes, which consist of reference

lists and tables (character code, summary of addressing modes,list of opera-

tion codes, etc.). There is also an appendix on programming style, which

should be carefully read by the beginner.
Each chapter concludes with a set of exercises that serve to illustrate and

sometimes complement the material in the text. The reader is encouraged to

Preface
xv

solve the problems and run the programsincluded in these exercises. True

assimilation of the material in this book can come about only through

practice — by the actual writing and execution of programs.

The only prerequisite to this book is some experience with high-level

language programming. No particular language is assumed,butit is taken for

granted that the reader is familiar with the notions of an algorithm,a flow-

chart, and a stored program.

It is not intended that this book stand alone as a course text. Sinceit

does not describe all the fine details of the PDP-11 instructions and assem-

bler directives, students should be in possession of the PDP-11 processor

handbook and the assembler manual appropriate to their particular installa-

tion, where these details can be found when needed.Little is said in the

book regarding peripheral equipment (only the teletype and line clock are

treated in any detail), and students doing I/O programming may wish to

refer to the PDP-11 peripherals handbook and local manuals forassistance.

The author is indebted to Mr. R. S. Epstein of the University of Califor-

nia at Berkeley for reviewing the manuscript, for offering useful advice, and

for contributing most of Section 5.5 as well as some exercises. Thanks are

also due to Professors R. S. Fabry and M. R. Stonebraker (also of U.C.,

Berkeley) for helpful comments and suggestions.

ARTHUR GILL

NUMBER
SYSTEMS

In working with the PDP-11, we shall make extensive use of the binary

and octal number systems, as well as the decimal system. It is important

that the student acquire, as soon as possible, the facility to convert from

one system to another. In this chapter weshall outline, without proof, some

algorithms for carrying out these conversions. Students familiar with these

algorithms may proceed directly to Chapter2.

A “number” in this chapter will mean a non-negative integer (0, 1,

2, ...). The number N will be denoted by N,,, Ng, or N, if it is in the
decimal, octal, or binary system, respectively. However, the subscript may

be droppedif it is understood from the context.

An m-digit number will be written symbolically as D,,_, - *- - D, Do
[D, being the (i + 1)st digit from the right].

1.1
DECIMAL-TO-BINARY CONVERSION

The flowcharts in Figures 1.1 and 1.2 describe algorithms for converting
a decimal numberN intoits binary equivalent M.

Example (Subtraction-of-powers method)

N = 217,,
217-27 = 217-128=89 (D, =1)
89 - 2° = 89- 64= 25 (D, = 1)
25-24 = 25-16=9 (D, =1)
9-23 =9-8=1 (D, =1)
1-29 =1-1=0 (Dy =1)

M = 11011001, oO

Cstart)

X<N

M<D1+++DDp
Find greatest (with all DY not

Power of 2, say previously as-
2°, not exceed- signed set to 0)
ing X. *

DL «1

| *Use Table 1.1

Figure 1.1 Decimal-to-binary conversion by subtraction of powers.

Example (Division method)

N = 217,

217 is odd (Dy = 1)

217/2 = 108 is even (D, = 0)

108/2 = 54 is even (D, = 0)

54/2 = 27 is odd (D, = 1)

Sec. 1.2. / Decimal-to-Octal Conversion
3

27/2 =13 is odd (D, =1)

13/2 =6 is even (D, = 0)

6/2 =3isodd (D, = 1)

3/2 =1is odd (D, = 1)

1/2 =0

M = 11011001, O

X +N
m+ 0

 * qt(a/8) = integer quotient o/8
X + at(X /2)*
m<« mtl

4
Figure 1.2 Decimal-to-binary conversion by division.

1.2

DECIMAL-TO-OCTAL CONVERSION

The flowcharts in Figures 1.3 and 1.4 describe algorithms for converting

a decimal numberN into its octal equivalent M.

Example (Subtraction-of-powers method)

N = 2591,
2591- 5+ 8? = 2591-2560=31 (D, =5)
31-3+ 8! =31-24=7 (D, = 3)
7-7: 8°=0 (Dy = 7)

M = 5037, oO

YES

i Dn 9194

Find greatest (with al] D, not
number of form previously assigned
a-ak (l<a<7) set to 0)

not exceeding—
X. *

De. «a

X « X-(a-8*)

*Use Table 1.1

Figure 1.3 Decimal-to-octal conversion by subtraction of powers.

D., « rm(X/8)*

X « gt(x/a)t
m<« mtl

*qt(a/B) = integer quotient a/8
trm(a/g) = remainder of a/8

Figure 1.4 Decimal-to-octal conversion by division.

Sec. 1.3 Binary -to-Decimal Conversion 5

Example (Division method)

N = 2591,5

2591/8 = 323 (remainder7) (Dy = 7)

323/8 = 40 (remainder 3) (D, = 3)

40/8 = 5 (remainder0) (D, = 0)

5/8 = 0 (remainder 5) (D, = 5)

M = 5037, O

(Another method consists of first converting N into binary as shown in

Section 1.1, and then converting the result into octal as shownin Section

1.6.)

1.3

BINARY-TO-DECIMAL CONVERSION

If N= D,,_; ‘°° D, Dp, is a binary number, then its decimal equivalent

m-1

M- > D,- 2!
i=0

‘Powers of 2 are listed in Table 1.1.)

Example

N = 1011100,
M = 2? + 23 +24 +28 =4+8+16+64=92,, 0

1.4
OCTAL-TO-DECIMAL CONVERSION

If N= D,,_, °°: D,D, is an octal number, then its decimal equivalent is

m-1

M- > D,-8i
i=0

(Powers of 8 are listed in Table 1.1.)

6
Number Systems / Chap. 1

TABLE 1.1 Powers of 2 and 8

8° = 2° =] 8? =29 =512
2'=2 21° = 1024
27 =4 211 = 2048

8' = 2° =8 84 = 2!2 = 4096
24 =16 213 = 8192
2° = 32 2'4 = 16384

8? = 2° = 64 85 = 215 = 32768
27 = 128 2'§ = 65536
28 = 256 2!7 = 131072

Example

N = 3107,

M=7- 8° +0- 81 +1: 87+3- 83

=7-1+0°-8+1- 64+3- 512

= 7+ 64+ 1536

= 1607,, O

1.5

OCTAL-TO-BINARY CONVERSION

The binary equivalent M of the octal numberN is obtained by replacing

each digit in N with a group of three binary digits as shown in Table 1.2.

(Leading 0’s in the leftmost group can be deleted.)

Example

N = 160734,

M=1 110 000 111 011 100, 0

TABLE1.2 Octal-to-BinaryConversion

Octal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

1.6

BINARY-TO-OCTAL CONVERSION

The octal equivalent M of the binary numberN is obtained by parti-

tioning N into three-digit groups from right to left and then replacing each

group by an octal digit as shown in Table 1.2. (If the length of N is not

divisible by 3, add enough leading 0’s to makeit so.)

Example

N = 11010101, = 011 010 101
M = 325, O

1.7

BINARY AND OCTAL ADDITION

Two binary, numbers are added as if they were decimal, except for the

following rules:

1+1=0 (carry 1)

1+1+1=1 (carry 1)

Example

101101,

+ 100111,

1010100, oO

Two octal numbers are added as if they were decimal, except for the

following rule: If two digits (added as if they were decimal) yield the sum

D 2 8, then replace D with D - 8 and carry 1 (e.g., 4 + 5=1 with carry 1;

7 + 7 =6 with carry 1).

Example

67036,

+ 52147,

141205, O

1.1

1.2

1.3

1.4

1.5

1.6

1.7

EXERCISES

Using both the subtraction-of-powers method and the division method,

convert the following decimal numbers into their binary and octal
equivalents.

(a) 2337,, (c) 16383,
(b) 10000,,

Convert the following binary numbers into their decimal and octal

equivalents.

(a) 1111111, (c) 1010011100101110,
(b) 10000000,

Convert the following octal numbers into their decimal and binary

equivalents.

(a) 377, (c) 123456,
(b) 77777,

Perform the following binary additions and check the results by con-

verting the numbers into decimal.

(a) 1011010, + 11010, (b) 1111101, +1110,

Perform the following octal additions and check the results by con-

verting the numbers into decimal.

(a) 1456, + 567, (b) 1234, + 7473,

Compute the following binary product and check the result by con-

verting the numbersinto decimal.

11010111, X 100101,

Show that the binary equivalent of 2* - 1is111...1 (k times).

THE PDP-11
ORGANIZATION

The PDP-11 consists of a central processor (CP), where all computations

take place; the central memory (CM), where the data and program are

stored; and peripheral devices, such as the teletype, printer, paper tape

punch, card reader, plotter, cathode-ray tube display, magnetic disk, mag-

netic tape, clock, and front-panel switches. In this text we shall assume a

very rudimentary PDP-11 configuration with only a teletype (TTY) and a

line clock as peripheral devices. Details on these and other devices can be

foundin the ‘“‘PDP-11 Peripheral Handbook..”’

Figure 2.1 outlines the general structure of the PDP-11. In this chapter

we shall describe the main features of the various components shown in

this figure.

A symbol by itself, for example A, will represent a CM address or a

register name. The notation (A) will stand for ‘‘the contents of A.” Similar-

ly, ((A)) will stand for the ‘‘contents of (A)” (i.e., the contents of the

memory address found in A).*

*In the ‘“PDP-11 Processor Handbook”’ these conventions are confined only to

memory addresses. WhenA is a register name,it stands in the handbookfor‘‘the contents

of register A”’; (A) stands for ‘‘the contents of the CM address foundin register A.”

Central Processor (CP)

Processor Status Register (PSR)

| Prior-te [tNzivlcl177776

Central Memory (CM) 15 7 543210

ord
W General-Purpose Registers Arithmetic

a—16 bits——» RO and
Logical Unit

4 1 0 R1 (ALU)
3 2 R2

5 4 R3
7 6 R4

11 10 R5

13 12 R6*
8K words ————

>

R7t

*R6 is stack pointer (SP)
TR7 is program counter (PC)

| 37777 37776 Teletype Status and Data Registers

15 87 0 177560

177562
#8 bitsw~<8 bits» 177564 Clock Status Register

—_—-~S -——— 177566 __ yy -|177546
High Low 15 7 0 15 87 0

byte byte ;

Teletype
(TTY)

Figure 2.1 PDP-11 organization.

2.1

THE CENTRAL MEMORY

The basic memory element of a computer is the bit, which is capable

of holding a single binary digit, either a 0 or a 1. The multitude of bits of

which the central memory consists are grouped into bytes, which, in turn,

are grouped into words.

In the PDP-11 each word consists of 16 bits, numbered (right to left)

10

Sec. 2.1 / The Central Memory 11

from 0 through 15; bits 0 through 7 constitute the low byte and bits 8

through 15 the high byte of the word:

high byte low byte

Figure 2.1 shows a PDP-11 memory consisting of 2" = 8192, = 8K

words or 24 = 16384,, = 16K bytes (where K stands for 2= 1024). Larger
memories are possible, the exact size (always a multiple of 4096,,) varying

from oneinstallation to another.

Each byte in the CM is identified by a unique numbercalled the address

(or the location) of the byte. If the CM has b bytes, the sequence of byte

addresses is 0, 1, 2, ...,b-1. The address of a word is, by convention, the

address of its low byte. Thus, the sequence of word addressesis 0, 2, 4, 6,

..., b - 2. Note that a word address is always even. For example, in the

8K-word machine shownin Figure 2.1, the byte addresses are

0,1,2,3,...,37777, (37777, = 16383,,)

and the word addresses are

0,2,4,6,..., 37776,

Weshall always write CM addressesin octal.

The contents of a word (or byte) can be, naturally, represented by a

sequence of 16 (or 8) binary digits. When the sequence, viewed as a binary

number, is converted into its six-digit (or three-digit) octal equivalent, the

result is the octal contents of the word (or byte) —a concise and convenient

representation which will be used frequently in this text. For example, the

word whose actual (binary) contents is 1010011100101110 has the octal

contents 123456; its low byte has the octal contents 056, and its high byte,
247.

2.2
THE CENTRAL PROCESSOR

The CP consists of the arithmetic and logical unit (ALU), where all

numerical and logical operations take place, and a numberof 16-bit (word-

size) registers which constitute the CP’s “‘private memory.”’

There are 8 general-purpose registers called RO, R1,..., R7. R6 is

also called the stack pointer (SP), for reasons to be discussed later. R7 is

also called the program counter (PC); it always contains the address of the

next program instruction to be executed.

The processor status register (PSR) exhibits a number of 1-bit condition

codes whose values depend on the result of the instruction last executed.
For example:

1 if result was 0

0 if result was +0

1 if result was < 0

0 if result was 2 0

Z code (bit 2) = |

N code (bit 3) = |

Other condition codes will be discussed in later chapters. It should be noted

that different instructions affect the condition codes differently (and some

do not affect them at all). The precise effect of each instruction on the

condition codesis specified in the “‘PDP-11 Processor Handbook.”’

A numberof registers associated with peripheral devices will be intro-

duced in subsequentsections.

2.3

THE TELETYPE

By means of the TTY, information can be entered into the PDP-11

(by a human operator) via a keyboard, and printed by the PDP-11 via a

printer. It is important to note that unlike an ordinary typewriter, the TTY

consists of two devices, the keyboard and the printer, which are completely

independent. (For example, pressing a character on the keyboard will not

automatically result in a printout of this character.)

The TTY is associated with fourregisters:

15 7

Keyboard status register (addressed 177560): [F

Bit 7 (the “ready” bit) is 1 when the character typed in is available in

12

-

Sec. 2.4 / The Line Clock
13

the keyboard data register. It becomes0 only after an instruction is executed

which refers to the keyboard dataregister. ;
15 7

Keyboard data register (addressed 177562): | MILL

Bits 0-7 hold the encoded form of the character typed in. This register is

“read only” and cannotbe written into by a program.
15 7 0

Printer status register (addressed 177564): L Z |

Bit 7 (the ‘‘ready”’ bit) is 1 when the printer is available for printing.

It becomes 0 as soon as a character is loaded into the printer data register.
15 7 0

Printer data register (addressed 177566): | KKKJK“}

Bits 0-7 hold the encoded form of the character to be printed. If the

printer status register’s ‘‘ready”’ bit is 1, printing will take place immediately

upon loading the printer data register. This register is ‘write only.”If read,

it behavesas if it were all-zero.

We shall later see that 1 in bit 7 of a byte whose address is a implies

that the numberstored in byte a is negative. Thus, to test whether a new

character has already been delivered from the keyboard to the keyboard

data register (assuming that the previous character has already been pro-

cessed), we simply test whether byte 177560 contains a negative number.

Similarly, to test whether the teletype printer is available (for printing the

contents of the printer data register), we simply test whether byte 177564

contains a negative number. |

2.4

THE LINE CLOCK

29For timing purposes, a line clock is linked to the PDP-11, which “‘ticks

60 times per second. It is associated with a clock status register (addressed

177546), whose bit 7 (the ‘‘ready”’ bit) becomes 1 every 1/60 of a second.

This bit does not normally revert to O after the ‘‘tick’’; it should be cleared

by the program immediately after it becomes 1 so that the next “tick” can

be detected.*

As explained in the preceding section, the appearance of a “‘tick” in the

line clock can be recognized by the fact that the byte 177546 becomes

negative.

*However, when bit 6 (the ‘“‘interrupt enable”’ bit) of the clock status register is

1, the clearing of the ready bit after each ‘‘tick’’ is accomplished automatically.

2.1

2.2

2.3

14

EXERCISES

Write (in octal) the highest byte and word addresses in a w-word
computer, where w (in decimal) is

(a) 28K (b) 2»

How many wordsare in a CM whosehighest byte address is 17777 ,?

Determinethe octal contents of the words that contain

(a) 0110110110110110 (b) 1001011111010101

What are the octal contents of the low and high bytes of each of

these words?

REPRESENTATION
OF NUMBERS

AND CHARACTERS

In this chapter we shall see how numbers (integer and “‘real,’’ positive

and negative), characters, and character strings are stored within the PDP-11.

Unless otherwise specified, a ‘‘number’’ will mean an integer. A ‘‘positive

number’’ will mean a non-negative integer (0, 1, 2,.. .).

3.1

2'S-COMPLEMENT REPRESENTATION

Numbers are represented in the PDP-11 in the n-bit 2’s-complement

forms, where n is either 16 (for word representation) or 8 (for byte rep-

resentation). This form is constructed by the followingrules.

To store a positive number N:

1. Express N in binary form.

2. Store the (binary) N right-justified in the word (or byte), supplying

15

16 Representation of Numbers and Characters [| Chap. 3

it with as many leading 0’s as needed to make the total number of
digits n.

Examples

1. N= 1607,, = 3107,

16-bit 2’s-complement representation:

0 000 011 001 000 111 (003107 ,)

2. N=10,, = 12,

8-bit 2’s-complement representation:

00 001 010 (012,) O

The largest positive number recognized in the n-bit 2’s-complement
form is

When n = 16, then

NSO 111 111 111 111 111, = 017777, = 32767,

When n = 8:

NsS<01 111 111, = 177, = 127

Thus, the most-significant bit (MSB) in every positive 2’s-complement num-

beris 0.

To store a number -N:

1. Store N.

2. Obtain ~N (the 1’s complement of N) from N byreplacing (bit by

bit) every 0 with 1 and every 1 with 0. (The octal form of ~N can

be obtained from the octal form of N by replacing every digit D of

N with 7 - D.*)

3. Add 1 to \N (ignoring carry from MSB,if any).

*If the largest possible value of the leftmost digit is 1 or 3 (rather than 7), replace

it with 1 - D or 3 - D,respectively (instead of 7 - D).

Sec. 3.1 / 2's-Complement Representation

Examples

1. N= 1607,, = 3107,
16-bit 2’s-complementrepresentation:

N: 0 000 011 001 000 111

W: 1 111 100 110 111 000

1+1:

-N: 1 111 100 110 111 001

In octal:

N: 00310

WN: 17467

+]

-N: 17467

2. N = -1607,)

16-bit 2’s-complement representation:

—
I
E
o
w
n

N: 1 111 100 110 111 001

W: 0 000 011 001 000 110

+1: 1

-N: 0 000 011 001 000 111

In octal:

N: 17467

WN: 00310

+1: 1

-N: 00310

3. N=10,, = 12,

8-bit 2’s-complementrepresentation:

a
Ie
o
m
e

N: 00 001 010

W: 11 110 101

+1; 1

-N: 11 110 110

In octal:

17

18 Representation of Numbers and Characters / Chap. 3

N: 012

W: 365
+1: 1

Note that the MSB of every negative 2’s-complement numberis 1. Thus,

the MSB indicates whether the numberis negative or positive. (The MSB
is therefore often referred to as the sign bit.)

If N = 0, the 2’s-complement form of -N is obtained asfollows:

N: 00...00

WN: 11...11

+1: 1

-N: 00...00

Hence, the forms of +0 and -0 in 2’s complementare identical.

The n-bit number 10... 0 is “its own negative,’”’ and not the negative

of any positive n-bit 2’s-complement number:

N: 100...00

W: 011...11

+1: 1

-N: 100...00

This number is employed to represent -2"~!. Thus, in n-bit 2’s-complement

representation,

-P-l<en<Qr!-4

Table 3.1 shows the range of numbers representable in 16-bit and in

8-bit 2’s-complement forms. Note that an 8-bit 2’s-complement number

(stored in low byte) can be converted into a 16-bit 2’s-complement number

simply by extendingits sign bit (bit 7) to the entire high byte.

Sec. 3.2 / Addition and Subtraction
19

TABLE 3.1. Range of Numbers Representable in n-Bit 2’s-

Complement Form

Decimal Octal

Value Representation

n= 16 32767 077777

32766 077776

2 000002

] 000001

0 000000

-1 177777

-2 177776

-32766 100002

-32767 100001

-32768 100000

n=8 127 177

126 176

2 002

1 001

0 000

-1 377

-2 376

-126 202
-127 201

-128 200

3.2

ADDITION AND SUBTRACTION

The sum of two numbers, N, and N,, in n-bit 2’s-complement form is

computed by adding N, and N, as if they were unsigned (n-bit positive

numbers), and ignoring the carry from the MSB(if any). The difference

N, - N, is computed simply by adding N, to the 2’s complement of N,.

4VU

Examples (n = 16)

Representation of Numbers and Characters / Chap. 3

Decimal Binary Octal

1. 611 0 000 000 000 001 011 000013

+21 +0 000 000 000 010 101 + 000025

32 0 000 000 000 100 000 000040

2. 21 0 000 000 000 010 101 000025

- 11 +1 4111 117 111 110 101 + 177765

10 £9 000 000 000 001 010 000012

1

3. 11 0 000 000 000 001 011 000013

- 21 +1 1171 117 111 1017 O11 + 177753

- 10 1117 #111 :1171 110 110 177766

4.-11 1 1171 °=111 :111 110 101 177765

- 21 +1 14111 111 111 #101 011 + 177753

- 32 fC! 111 11711 111 100 000 177740

O

As mentioned in Chapter 2, arithmetic operations in the PDP-11 in-

fluence the Z and N condition codes in the PSR. They also influence the C

(‘‘carry’’) and V (‘‘overflow’’) codes in the PSR. For example,after an addi-

tion operation:

1

C code (bit 0) =

0

1

V code(bit 1) =

0

if addition resulted in carry from MSB

otherwise

if added numbers are of samesign andtheir

sum is of the opposite sign (“overflow’’)

otherwise

Morewill be said about the C and V codesin a later chapter.

3.3
CHARACTER REPRESENTATION

Characters consist of:

Letters: A, B,...,Z,a,b,...,2Z

Digits: 0,1,...,9

Special characters: +, *, /, t, $, space, ...

Nonprinting characters: bell, line feed (LF), carriage return (CR),. .

A character is represented in the PDP-11 by an 8-bit binary number

(occupying 1 byte). The rightmost 7 bits of this number correspond to the

ASCII code of the character (see Table 3.2). Note that the ASCII code of

the digit i is 60+i (octal).

The leftmost bit of a byte that contains a characteris called the parity

bit and is sometimes used for error detection. When an “‘even-parity’’ scheme

is used, the parity bit is filled in such a mannerso as to makethetotal num-

ber of 1-bits in the byte even. For example, the letter G (ASCII code 107,

= 01000111.) is stored as 107, = 01000111,, since the numberof 1’s in
the ASCII code of G is even. However, the letter g (ASCII code. 147,
= 01100111.) is stored as 347, = 11100111,, since the number of 1’s
in the ASCII codeofg is odd.

Now, suppose that a character (coded according to the even-parity

scheme) is transmitted from some peripheral device to the CM or CP.If

something happened during transmission to alter one of the bits (from 0 to

1 or from 1 to 0), then the numberof 1’s in the received byte will no longer

be even. Thus, the erroneous transmission of some bit in a byte can be

detected simply by checking whether the received byte has an even or an

odd numberof 1-bits.*

The ‘“‘odd-parity’’ scheme for error detection follows the same prin-

ciple, except that the parity bit is filled so as to make the total numberof

1’s odd rather than even.

A character entered into the PDP-11 via the teletype may in somecases

contain a nonzero parity bit, and hence may not correspond to its ASCII

code (as given in Table 3.2). Thus, before comparing an entered character

with an internally stored one (which conforms with Table 3.2), it is a good

idea to zero in the entered characterall bits except the rightmost seven.

*Note that any odd numberoferrors, but no even numberoferrors, can be detected

by this scheme. Usually, the probability of having more than one erroneousbit per byte

is too low to worry about.

21

TABLE 3.2 Some Characters and Their ASCII Codes (in octal)

Character Code Character Code

Bell 007 N 116

Line feed 012 O 117

Carriage return 015 P 120

Space 040 Q 121

! 041 R 122

” 042 S 123

043 T 124

$ 044 U 125

% 045 Vv 126

& 046 WwW 127

, 047 xX 130

(050 Y 131

) 051 Z 132

* 052 [133

+ 053 \ 134

; 054] 135

- 055 t 136
. 056 << 137

/ 057 140
0 060 a 141

1 061 b 142

2 062 c 143

3 063 d 144
4 064 e 145

5 065 f 146

6 066 g 147

7 067 h 150

8 070 i 151

9 071 j 152

: 072 k 153

; 073 | 154

< 074 m 155
= 075 n 156

> 076 o 157

? 077 p 160

@ 100 q 161

A 101 r 162

B 102 S 163

C 103 t 164

D 104 u 165

E 105 Vv 166

F 106 w 167

G 107 x 170

H 110 y 171
| 111 z 172

J 112 { 173
K 113 | 174
L 114 } 175
M 115 N 176

Sec. 3.4 / Floating-point Representation
23

The parity bit has no effect on the printer: a character will be properly

printed out regardless of whether its parity bit is zero or not.

Character strings (i.e., sequences of characters) are stored in successive

bytes in the CM. For example,the string PDP-11 is stored in three successive

wordsas follows:

042120 (D=104, P=120)
026520 (-=055, P=120)
030461 (1=061, 1=061)

Consecutive character strings can be conveniently separated in the CM by

the null character (ASCII code 000), a character that is rarely included in

any ‘‘practical”’ string.

3.4
FLOATING-POINT REPRESENTATION

The basic PDP-11 is not equipped to handle ‘“‘real’’ numbers (i.e., num-

bers with a fractional part). However, optional hardwareis available for some

models to carry out arithmetic operations on real numbers;alternatively,

such operations can be implemented by software (i.e., they can be pro-

grammed).

The reader is probably familiar with the scientific or floating-point

representation of real decimal numbers, where, for example, 12345000000,,

is written as .12345 X 10” and 0.00012345is written as .12345 x 107°.

This notation, which represents a numberbyits fraction or mantissa (e.g.,

12345) and by its exponent (e.g., 11 or -3), together with an assumeddeci-

mal point (e.g., immediately to the left of the fraction), is especially con-

venient for expressing very large and very small numbers.

In the binary equivalent of the floating-point representation, the nota-

tion is of the form .f X 2°, where both the fraction f and exponent e are

binary. (The point preceding f is here referred to as the binary point.) For

example, -832,, = -1101000000, is written as -.1101 x 219°, and
0.0390625,, = 0.0000101, is written as .101 xX 271.

The representation of real numbers in the PDP-11 (as in most other

computers) is based on the binary floating-point notation. A “‘single-pre-

cision’? real number occupies two memory words(32 bits), using the follow-

ing format*:

*A “double-precision”’ floating-point number occupies four memory words, with

the fraction field consisting of 55 (instead of 23) bits.

s Exponent Fr action

15 14 76 0 15 0

Here s is a sign bit—O if the numberis positive and 1 if negative. The binary

exponent is stored in excess-200, form; that is, it equals the true exponent

plus 200g = 10000000, (The true exponents can thus range from -128,, to

+127,,.) The binary point is assumed to be immediately to the left of the

fraction. The fraction is normalized; that is, it is shifted to the left (and the

exponent incremented correspondingly) until its leftmost bit is 1. This

leading 1 (which is always there after normalization, and hence redundant)

is then deleted and the fraction is shifted one additional bit to the left. An

exception is the real number 0, whichis represented by an arbitrary fraction

and an exponentfield (bits 7 through 14) filled with 0’s.

Examples

1. N=-832,, =-.1101 x 2**°

The normalized fraction is 1101 (in which the leading 1 is deleted) and the

excess-200, exponent is 10000000 + 1010 = 10001010. Thus,the floating-

point representation of N is (in binary)

1 10001010 1010000 0000000000000000

2. N= 0.0390625 = .101 xX 271

The normalized fraction is 101 (in which the leading 1 is deleted) and the

excess-200, exponent is 10000000 - 100 = 1111100. Thus, the floating-

point representation of N is (in binary)

0 01111100 0100000 0000000000000000 O

In this text we shall not refer any more to real numbersbut will deal

exclusively with integers.

EXERCISES

3.1 Show the octal contents of the words that contain:

(a) -1 (c) -1000,
(b) -1000,, (d) -7530,

24

25
Exercises

3.2

3.3

3.4

3.5

3.6

3.7

Find the octal numberN if:

(a) The 16-bit 2’s-complement form of -N is 176542.

(b) The 8-bit 2’s-complement form of -N is 273.

Without performing any octal-to-binary or octal-to-decimal conversions,

write the octal contents of the words that contain:

(a) 500, - 311, (c) -1043, - 751,
(b) 3721, - 6260,

Bytes 1000 through 1007 arefilled with the following numbers and

characters:

1000: 123,, 1001: 17,
1002: -32, 1003: ASCII “6”
1004: ASCII “2” 1005: -100,,
1006: ASCII “LF” 1007: ASCII “CR”

Show the octal contents of words 1000, 1002, 1004, and 1006.

Determine the character string stored in the five consecutive words

whose octal contents are

020061

026117

046103

041517

003513

Show thefloating-point representations of

(a) -(1/16),, = -0.0001, (b) (10.25),, = 1010.01,

What decimal numbershave the following floating-point representations

(given in octal):

(a) 041377 000000 (b) 137000 000000

INSTRUCTIONS
AND ADDRESSING

MODES

In this chapter we shall describe the format of PDP-11 instructions

and the various methodsused for specifying operands’ addresses(‘‘addressing

modes’’).

Instructions in the PDP-11 occupy one word (followed, possibly, by one

or two additional words to specify operands), and will be written as six-digit

octal numbers. These numbers correspond to the way instructions would

appear in a machine language program, that is, a program actually residing

in the CM and executable by the CP. Weshall also write instructions in

mnemonic or symbolic form. This is the form in which instructions would

appear in an assembly language program,a “‘symbolic”’ program that requires

translation (by an assembler) into a machine language program before

execution.

Henceforth all numbers will be assumed to be octal unless otherwise

specified.

26

4.1

THE EXECUTION CYCLE

As mentioned in Chapter 2, the PC at any time contains the address of

the instruction to be executed next. After the instruction is fetched from

that address, but before execution, the contents of PC is incremented by 2.

Thus, if PC does not change in the course of execution (which may happen

with ‘“‘branch”’ instructions and others), the next instruction will be auto-

matically fetched from the next word. This “‘execution cycle” continues

until a HALT instruction is encountered, which causes the PDP-11 to halt

(see Figure 4.1).

{

Instruction « ((PC))
(PC) « (PC)+2

HALT
instr. ,

Execute

instr.

Figure 4.1 The PDP-11 execution cycle.

4.2

SINGLE-OPERAND AND

DOUBLE-OPERANDINSTRUCTIONS

Single-operand instructions consist of an operation code (op code),

and a DD field, which specifies the location of the destination operand.

Double-operand instructions contain, in addition to the op code and DD

27

28

TABLE 4.1 Single-Operand and Double-Operand Instructions

Instructions and Addressing Modes / Chap. 4

Machine Assembly Name of

Language Language Instruction Resulting Action

Single Operand

00SODD CLRd clear (d) <0

0051DD COM d complement (d) <—~(d)
0052DD INCd increment (d) —(d) +1

0053DD DEC d decrement (d) <(d) -1

0054DD NEGd negate (d) <--(d)
0057DD TsTd test (d) <(d)
0060DD ROR d rotate right (d) <(d) shifted right 1 bit

0061DD ROL d rotate left (d) <-(d) shifted left 1 bit

0062DD ASR d arith. shift right (d) <(d)/2

0063DD ASL d arith. shift left (d) <2 * (d)

0003DD SWAB d swap bytes (dhiow * (high

0055DD ADC d add carry (d) <(d)+C

0056DD SBC d subtract carry (d) <(d) -C

0001DD JMP d jump (PC) <d

Double Operand

01SSDD MOVs,d move (d) <(s)

02SSDD CMP s,d compare form (s) - (d)

06SSDD ADD s,d add (d) <(s) + (d)
16SSDD SUB s,d subtract (d) <-(d) - (s)

03SSDD BIT s,d bit test form (s) A (d)*

04SSDD BIC s,d bit clear (d) —[(~(s)] A (d)*
05SSDD BIS s,d bit set (d) <-(s) V (d)*

*\V/is “OR,”A is “AND,” Vis “NOT.”

field, an SS field, which specifies the location of the source operand. The

formats of these instructionsare:

Single operand: | op

15

code ||

Double operand: | op code

15 1211
||

0

If the instruction operates on a byte (a “byte instruction’’) rather than

a word, bit 15 is set to 1; otherwise, it is 0. (Note: The addressof a ‘“‘word

instruction’’ must be even; otherwise, the program will fail.)

In assembly language, single-operand and double-operand instructions

have the formats

Sec. 4.3 / Addressing Modes
29

OPR d
OPR s,d

where OPR is the mnemonic op code and d ands are the symbolic forms

of DD andSS,respectively. In byte instructions, OPR is appended with the

letter B (i.e., CLR becomes CLRB).

Table 4.1 lists the single- and double-operandinstructions of the PDP-11.

All instructions can be made into byte instructions, except ADD and SUB

(which can operate only on 16-bit 2’s-complement numbers), SWAB and JMP.

Most instructions listed in Table 4.1 are self-explanatory. A detailed

description of each one of them can be found in the “‘PDP-11 Processor

Handbook.”” Some of the instructions will be elaborated upon in later

chapters.

ADDRESSING MODES

The DD andSSfields are each divided into a register subfield (a 3-bit

number n), and a modesubfield (a 3-bit number mode):

mode n

«-—3—oe———_3

The manner in which the operand address is derived from these subfields

during execution is described in Table 4.2. Table 4.3 shows examplesillus-

trating the various addressing modes.

30 Instructions and Addressing Modes / Chap. 4

TABLE 4.2 Addressing Modes

Assembly Operand’s

Mode Name of Mode Language Location Explanation

0 Register Rn Rn Operandis in Rn.

1 Register deferred (Rn) (Rn) Address of operand is in Rn.

2 Autoincrement (Rn)+ (Rn) Address of operandis in Rn;

(Rn)*{Rn)+2 after operand is

fetched.*

3 Autoincrementdeferred @(Rn)+ ((Rn)) Address of address of operandis in

Rn; (Rn)<{Rn)+2 after operand is

fetched.

4 Autodecrement ~(Rn) (Rn) (Rn)*{Rn)-2 before address is com-

puted +; address of operandis in Rn.

5 Autodecrementdeferred @-(Rn) ((Rn)) (Rn)<{Rn)-2 before address is com-

puted; address of address of operand

is in Rn.

6 Index X(Rn) X+(Rn) Address of operand is X plus (Rn).

Address of X is in PC; (PC)<{PC)+2

after X is fetched.

7 Index deferred @X(Rn) (X+(Rn)) Address of address of operandis X

plus (Rn). Address of X is in PC;

(PC)<{PC)+2 after X is fetched.

*But (Rn)<{Rn)+1 if instruction is byte instruction and n <6.

t But (Rn)<{Rn)-1 if instruction is byte instruction and n <6.

4.4
IMMEDIATE ADDRESSING

Suppose that we have

Address Contents

a OPR (PC)+,d (instruction with SS = 27)

a+2 k (constant)

a4

Just before the instruction is executed, the contents of PC are incremented

by 2 (see Figure 4.1). Thus, the address of the operand ofthis instruction is

Sec. 4.4 / immediate Addressing

TABLE 4.3 Examples of Addressing Modes

Before each instruction, assume:

(R3) = 000124
(122) = 000701
(124) = 000456
(304) = 000537

(456) = 000174
(524) = 000304
(700) = 000613

Instruction

Machine Assembly

Language* Language Resulting Action

005003 CLR R3 (R3)<0

005013 CLR (R3) (124)<0

005023 CLR (R3)+ (124)<0, (R3)*0001 26

105023 CLRB (R3)+ (124)<000400, (R3)<000125

005033 CLR @(R3)+ (456)<0, (R3)*0001 26

005043 CLR -(R3) (R3)*000122, (122)<0

105043 CLRB -(R3) (R3)<0001 23, (122)<-000301

105053 CLRB @-(R3) (R3)*0001 22, (700)<000213

005063
oases CLR 400(R3) (524)<0

005073
000400 CLR @400(R3) (304)<0

010300 MOV R3,RO (RO)<000124

011300 MOV(R3),RO (RO)<-000456

012300 MOV(R3)+,RO (RO)*000456, (R3)*0001 26

112300 MOVB (R3)+,RO (RO0)<000056, (R3)<0001 25+

013300 MOV @(R3)+,RO (RO)<000174, (R3)000126

014300 MOV -(R3),RO (R3)<0001 22, (RO)<000701

114300 MOVB -(R3),RO (R3)<000123, (RO)<000001

115300 MOVB @-(R3),RO (R3)<000122, (RO)<000001

016300
300400} MOV 400(R3),RO (R0)<000304

117303
000400 f MOVB @400(R3),R3 (R3)000137

016363
000400 MOV 400(R3),500(R3) (624)<000304

000500

000400 f MOV (R3)+,400(R3) (526)<000456, (R3)<000126
000400 , ,

*SS and DD are underlined.

tMOVBs,Rn copies the byte s into the low byte of Rn; the high byte of Rn is

then filled with the contents of bit 7 (‘‘sign extension’).

31

a+2 and hence the source operand is k. After the operand is fetched,

(PC)<«(PC)+2 = a+4 (by virtue of the autoincrement mode). In this man-

ner the operand can be placed immediately after the instruction without

32 Instructions and Addressing Modes / Chap. 4

being misinterpreted as the next instruction (hence the term immediate
addressing).

The sequence

OPR (PC)+,d
k

can be abbreviated in assembly language into

OPR #k,d

(Using immediate addressing for destination makes nosense.)

Examples

Machine Language Assembly Language Resulting Action

1. 012700
raze MOV #177776,RO (RO)<177776

2. 062716000008 } ADD #5 (SP) ((SP))<5+((SP)) O

4.5

ABSOLUTE ADDRESSING

Suppose that we have

Address Contents

a OPR @(PC)+,d (instruction with SS = 37)
a+2 A (address)

a+4

Just before the instruction is executed, the contents of PC is incremented by

2 (see Figure 4.1). Thus, the address of the address of the operand is a+2,

and hence the operandis in address A. After the operand is fetched, (PC)<

(PC)+2 = at+4 (by virtue of the autoincrement mode). In this manner the

address of the operand can be placed immediately after the instruction with-

out being misinterpreted as the next instruction. (This methodis referred to

as absolute addressing.)

Sec. 4.6 / Relative Addressing
33

The sequence

OPR @(PC)+,d

A

can be abbreviated in assembly languageinto

OPR @#A,d

Similar comments apply when DD = 37.

Examples

Machine Language Assembly Language Resulting Action

1, 005037 |
000472

2. ono" |

CLR @#472 (472)<0

000007

177566

MOV #7 @#177566 (177566)<000007 (ring bell)

4.6

RELATIVE ADDRESSING

Suppose that we have

Address Contents

@ OPR X(PC),d (instruction with SS = 67)

at+2 xX (relative address)

at4

Just before the instruction is executed, the contents of PC is incremented

by 2 (see Figure 4.1) and hence equals a+2. Just after X is fetched from

a+2, PC is again incremented and equals a+4. Thus, the address A of the

source operand, namely X+(PC), is given by

A= Xtat4

It is seen that X is the operand’s address relative to the current value of

PC (hence the term relative addressing).

34 Instructions and Addressing Modes / Chap. 4

The instruction

OPR X(PC),d

can be abbreviated in assembly language into

OPR A,d (A = Xtat4)

Similar comments apply when DD = 67.

Examples

Machine Language Assembly Language Resulting Action

1. 500: 005067
=" } CLR 704 (704)<0 [704 +504 = 200]

502: 000200

Note: The instruction above is equivalent to

500: 005037
502. sooran CLR @#704 (704)<0

2. 500: 162767 SUB #15 ,306 (306)<{306)-15 [306 - 506 = -200 = 177600]

502: 000015

504: 177600

Note: In this case X is stored in a+4 (rather than a+2) and hence A = xtat6. O

Weseethat the relative address X is the “‘distance’”’ betweenthe actual

address and the current value of PC. Thus, if the entire program is shifted

in the CM,the relative address need not be modified (since this ‘‘distance’”’

remains the same). Relative addresses are the ones to use in “‘position-inde-

pendent programming’’—the writing of programs in such a way that they can

be stored anywhere in the CM. Morewill be said about these in Chapter 9.

4.7

RELATIVE DEFERRED ADDRESSING

Suppose that we have

Address Contents

a OPR @X(PC),d (instruction with SS = 77)

a2 X {relative address)

Ont4

Sec. 4.8 / Branch Instructions
35

The address A of the address of the operand is X+(PC); that is, the operand’s

addressis in

A=Xtat4

(see Section 4.6). Thus, X is the operand’s address’s addressrelative to the

current value of PC.

Theinstruction

OPR @X(PC),d

can be abbreviated in assembly language into

OPR @A,d

Similar comments apply when DD = 77.

Example

Machine Language Assembly Language Resulting Action

500: 005077 } CLR @704 (123)<0
502: 000200

704: 000123 Cj

4.8

BRANCH INSTRUCTIONS

Branch instructions are used for program branching whencertain con-

ditions are satisfied. They have the form

base code + offset

where the base code is a 16-bit numberthat is always 0 in the low byte, and

the offset (denoted f) is an 8-bit 2’s-complement number. Thus (see Table

3.1),

-128,,<f<127,, or 200,<f<177,

36 Instructions and Addressing Modes / Chap. 4

During execution,if the branch conditionis satisfied, then

(PC)<(PC)+2

Hence, if the branch instruction is in address a, the next instruction will
be taken from the address

B= at2+2f

Conversely, if we wish to branch from address a to address 8, we must have

f = 4(B-a-2)

[Note that f is the distance, in words, between (PC) and the branch destina-

tion, and hence that branch instructionsare position-independent.]

Table 4.4 lists the branch instructions for the PDP-11. Thefirst five

instructions are the most commonly used. Applications of the remaining

instructions will be exposed in a later chapter.

TABLE4.4 Branch Instructions

Assembly

Base Code Language Branch to a if*

000400 BRa (unconditionally)

001000 BNE a not equal to 0 (Z = 0)

001400 BEQa equal to 0 (Z = 1)

100000 BPLa plus (N = 0)

100400 BMl a minus (N = 1)

102000 BVCa overflow clear (V = 0)

102400 BVSa overflow set (V = 1)

103000 BCC a carry clear (C = 0)

103400 BCS a carry set (C = 1)
002000 BGE a greater than or equal to 0 (N V V = 0)

002400 BLT a less than 0 (N V V=1)

003000 BGT a greater than 0 [Z V(N V V) =0]

003400 BLE a less than or equal to0 [Z V(N WV V) =1]

101000 BHI a higher (C V Z = 0)

101400 BLOS a lower or same (CV Z = 1)
103000 BHiS a higher or same (C = 0)

103400 BLOa lower (C = 1)

*The rules for the W operation are: 0+0=0, 0+1=1, 1+1=0; the rules for

the V operation are: 0+0=0, 0+1=1, 1+1=1.

Sec. 4.8 / Branch Instructions
37

If branching is required beyond the 127, range, the JMP instruction

can be used.

Examples

1. Find the machine language form oftheinstruction

554: BEQ 570

Answer:

f = (570 - 554 - 2)=%-12=5

001400 + 005 = 001405 < instruction

2. Find the machine language form ofthe instruction

624: BR 602

Answer:

f = 4(602 - 624 - 2) = %> (-24) = -12 = 366

000400 + 366 = 000766 instruction O

For “short”? jumps from a to 8, one can employthe following simplified

procedure for computing the offset: If 8B > a, attach to the words at2,

at4,a+6,... the numbers 0,1, 2, . ..; the numberattached to B is then f.

If 8 < a, attach to the words a, a-2, a-4,... the numbers 377, 376, 375,

... 3 the numberattached to £ is then f.

Examples

1. To branch from 554 to 570:

a= 554

556

560

562

564

566

B= 570 O
r
O
N

F
©

“
™
) i) o
n

38

2. To branch from 624 to 602:

B = 602

604

606

610

612

614

616

620

622

a = 624

Instructions and Addressing Modes / Chap. 4

366 |

367

370

371

372

373

374

375

376

f = 366

 377

4.9

NO-OPERAND INSTRUCTIONS

Table 4.5 lists some PDP-11 no-operandinstructions. The HALTinstruc-

tion is one that is used in almost every program. The others are condition

code operations used to either clear (i.e., set to 0) or set (i.e., set to 1)

condition codebits in the PSR.

TABLE 4.5 No-OperandInstructions

Machine Assembly Resulting

Language Language Action

000000 HALT halt

000241 CLC clear C

000242 CLV clear V

000244 CLZ clear Z

000250 CLN clear N

000257 CCC clearC,V,Z,N

000261 SEC set C

000262 SEV set V

000264 SEZ set Z

000270 SEN set N

000277 SCC setC,V,Z,N

Two or more clear/set instructions can be written in a single line, sepa-

rated by !. For example,to clear the C and bits, issue

<CLC!CLV >

4.10

EXAMPLES

The following are some program segments that illustrate most of the

PDP-11 addressing modesas well as some of the PDP-11 instructions.

It will be noticed that some assembly language instructions makeuse of

“symbolic” addresses (e.g., NEXT) rather than “absolute’’ (i.e., numerical)

addresses. The place in the program corresponding to such an addressis

indicated by the corresponding symbol appended with a colon (e.g., NEXT:).

All program segments are assumed tostart at 600.

1. Store in R1 the absolute value of the 16-bit 2’s-complement number

X stored in RO.

Machine Language Assembly Language Comments

600: 010001 MOV RO,R1 MOVE X TO RI

602: 100001 BPL NEXT }F X 20, DO NOTHING

604: 005401 NEG R1 ;ELSE, NEGATERI

606: --- NEXT: ---

Note: A MOVinstruction automatically clears or sets the Z and N

condition codes of the PSR in accordance with the value of the

number moved. Thus, a branch to NEXT will be effected by the

BPLinstruction only if X is positive.

2. Accept a character from the teletype, move it to R5 and “echo”it

(i.e., print it back).

Machine Language Assembly Language Comments

600: 105767 WAIT1: TSTB 177560 31S CHARACTERIN?

. 602: 176754

604: 100375 BPL WAIT] IF NOT, WAIT

606: 016705 MOV 177562,R5 ;ELSE, PUT IT IN RS

610: 176750

612: 105767 WAIT2: TSTB 177564 1S PRINTER FREE?

614: 176746

616: 100375 BPL WAIT2 3}F NOT, WAIT

620: 010567 MOV RS5,177566 ;ELSE PRINT (RS)

622: 176742

Note: As mentioned in Section 2.3, one can test whether or not the

“ready” bit (bit 7) of a status register is set by testing whether the

low byte of the register (regarded as an 8-bit 2’s-complementinteger)

is negative. This is the purpose of the TSTB/BPLpair of instructions.

39

40 Instructions and Addressing Modes / Chap. 4

Note also that all status and data registers are addressed here in the
relative mode.

3. Store the letters A, B, C,..., Z into a block of bytes starting at

1200.

Machine Language Assembly Language Comments

600: 012700 MOV #101,RO sINITIALIZE CHARACTER TOA

602: 000101

604: 012701 MOV #1200,R1 INITIALIZE BYTE ADDRESS TO 1200

606: 001200

610: 110021 AGAIN: MOVB RO,(R1)+ ;STORE CHARACTER, INCREMENT ADDRESS

612: 020027 CMP RO,#132 31S CHARACTER Z?

614: 000132

616: 001402 BEQ EXIT ;1F SO, ALL DONE

620: 005200 INC RO ;ELSE, FORM NEXT CHARACTER

622: 000772 BR AGAIN ;sRETURN FOR ANOTHER

624: --- EXIT: ---

Note: Constants representing addresses or characters (such as 1200

or 101) are here moved using immediate addressing. The autoincre-

ment mode used in AGAIN automatically updates the address after

each insertion. The INC instruction formsthe next letter by adding 1

to the ASCII code of the preceding one.

. The address of a numberY is stored in location 1000. Compute the

numberC of 1-bits in Y and puttheresult in R4.

Machine Language Assembly Language Comments

600: 005004 CLR R4 INITIALIZE C TO 0

602: 017705 MOV @1000,R5 sPUT YIN R5

604: 000172

606: 001404 REPT: BEQ OUT ‘IF Y=0, GET OUT

610: 100001 BPL SHIFT JF MSB=0, C UNCHANGED

612: 005204 INC R4 -ELSE, C=C+1

614: 006305 SHIFT: ASL RS SHIFT Y ONE BIT LEFT

616: 000773 BR REPT sREPEAT

620: --- OUT: ---

Note: Y is retrieved using the relative deferred addressing mode.

The number of 1-bits in Y is counted by counting the numberof

times Y becomes negative (i.e., bit 15 becomes 1) as Y is shifted

left (using the ASL instruction).

Location 160 contains a single-operand instruction. An eight-word

array starting at 750 contains eight addresses. Check the addressing

Sec. 4.10 / Examples
41

mode ofthe instruction; if it is D, jump to a point in the program

whose addressis stored in the (D + 1)st array word (i.e., in 750+2*D).

Machine Language Assembly Language Comments

600: 013700 MOV @#160,RO s7PUT INSTRUCTION IN RO

602: 000160

604: 042700 BIC #177707,RO ;PICK UP 8*D

606: 177707

610: 006000 ROR RO ;COMPUTE

612: 006000 ROR RO ; (8*D)/4 = 2*D

614: 000170 JMP @750 (RO) ;GO TO 750+2*D

616: 000750

Note: The instruction is placed in RO, using the absolute mode(al-

though relative mode could have workedjust as well). The BIC clears

all bits in RO except bits 3, 4, and 5 (i.e., it clears all bits correspond-

ing to the 1-bits in 177707); the result is D shifted 3 bits left (i.e.,

8*D). To compute 2*D = (8*D)/4, RO is shifted 2 bits right (ROR

is used, assumingthat is initially 0).

6. Insert a new number in the correct position of a sorted array of

16-bit 2’s-complement numbers, whose first and last words are

addressed A and B,respectively. Assume that the numbersare all

positive; that they are arranged in order of ascending magnitude;

that the new numberN is in RO, and that the addresses A and B are

stored in R1 and R2,respectively.

Machine Language Assembly Language Comments

600: 012741 MOV #177777,-(R1) j;PUT -1 IN A-2
602: 177777

604: 005722 TST (R2)+ PUT B+2 IN R2

-€06: 024200 LOOP: CMP -(R2),RO IS NEXT NUMBER KSN?

610: 003403 BLE INSERT FSO, INSERT

612: 011262 MOV (R2),2(R2) ;ELSE, MOVE K UP ONE WORD

614: 000002

616: 000773 BR LOOP ;RETURN FOR ANOTHER K

620: 010062 INSERT: MOVRO,2(R2) ;PUT N AHEAD OF K

622: 000002

Note: Successive numbers K, starting at B and proceeding back

toward A, are compared against N and moved one word ahead until

a K is found that is less than or equal to N. When such a is found

(and the -1 stored in A-2 guaranteesthat this will eventually happen),

42

4.1

4.2

4.3

4.4

Instructions and Addressing Modes / Chap. 4

N is placed just ahead of this K. The comparison is done in LOOP

with the autodecrement mode, where address decrementation is

always done before accession; thus, the array scanning mustinitiate

with R2 holding B+2 rather than B. This initialization is done with

the TST (R2)+ instruction, whose sole purpose is to increment the

contents of R2 (change B to B+2) rather than test anything. Note

that the index-mode address 2(R2), unlike the autoincrement address

(R2)+, leaves the contents of R2 intact.

EXERCISES

Each one of the following instructions is located in address 500.

Before each is executed, (RO) = 100, (76) = 176, (100) = 200, (176)

= 276, and (200) = 500. Translate each instruction into machinelan-

guage and determine the contents of RO and R1 after each is executed.

(a) MOV RO,R1 (b) MOV (RO),R1

(c) MOV (RO)+,R1 (d) MOV @(RO)+,R1

(e) MOV -(RO),R1 (f) MOV @-(R0),R1

(g) MOV 100(R0O),R1 (h) MOV @100(R0),R1

(i) MOV #100,R1 (j) MOV @#100,R1

(k) MOV 100,R1 (1) MOV @100,R1

What doesthe following instruction accomplish?

MOV -(PC),-(PC)

Whatis the octal contents of RO whenthe following program halts?

MOV #1,RO
MOV (PC) ,-(PC)
DEC RO
HALT

Location 1000 contains the octal number 42356. Assuming that the

following program starts at 500, find the octal contents of RO after

each instruction is executed.

MOVB @#1001,RO
BIC #770,R0
MOV 500(RO),RO
SUB #123456,RO

Exercises 43

4.5 The following program starts at address 500. Translate it into machine

language.

CMP (R3),#123
BLT 650
MOVB @(R4)+,701
BIC R5,-(RO)
CMP @100,-350(PC)
BEQ 400
SUB @22(SP),(R2)+
COMB @#755
JMP @-(R1)

4.6 The following machine language program starts at address 500. Trans-

late it into assembly language.

022733
000456
003756
012146
126467
000160
000273
001104
043777
000666
177652
160750
067215
177773

4.7. The following machine language program starts at address 0. What

doesit do?

016700
000022
016701
000020
105710
100376
105711
100376
022021
111011
000765
177560
177564

4.8 The following machine language program starts at address 0. What is

the octal contents of 0 when the program halts?

062737
040000
000000
100774
000000

44

49

4.10

4.11

4.12

4.13

Instructions and Addressing Modes / Chap.4

The following machine language program starts at address 0. After 5

instructions are executed, what are the octal contents of the words

addressed 0, 2, 4,..., 32 and of PC?

066737
000000
000004
062737
000004
000000
012767
000002
177770
163777
000006
177766
000137
000000

Write a machine language program (starting at 500) which accepts an

octal digit n from the keyboard and thenringsa bell n times.

Write a machine language program (starting at 500) which echoes

keyboard characters in such a way that all lowercase letters are capital-

ized.

Bytes 100 through 355are filled with 8-bit 2’s-complement numbers.

Write a machine language program (starting at 500) which puts in RO

the largest of these.

Words 2000 through 3776 are filled with 1000, 16-bit 2’s-comple-
ment numbers. Write a machine language program (starting at 500)

which puts in RO the average of these numbers (with the fractional

part truncated).

ASSEMBLY
LANGUAGE

PROGRAMMING

In this chapter we will explain what assembly language is and provide

some rudimentary facts on the MACRO-11 assembler. An example of a

complete assembly language program will be given and some coding hints

be offered.

5.1

ASSEMBLY LANGUAGE VERSUS

MACHINE LANGUAGE

For any but the most trivial tasks, programming in pure binary or octal

code (i.e., in machine language) is an onerous and frustrating exercise. The

major disadvantages of this form of programmingare:

1. Instructions are difficult to encode and interpret. The programmer

must memorize op codes and mode numbers before he or she can

45

46 Assembly Language Programming / Chap. 5

attain any fluency in machine language. Branch instructions are
especially messy to encode.

2. Program modification is very difficult. If a bug is discovered which
requires the insertion or deletion of an instruction, the entire program
may have to be reviewed and manyinstructions corrected before the
modification can be safely carried out.

To circumvent these difficulties, most manufacturers permit the user to
write programs in assembly language, a language essentially equivalent to
machine language, except that:

1. Op codes are not written numerically but mnemonically.

2. Addresses need not be specified numerically, but can be written

symbolically.

The program that translates the assembly language program (or source

program) into a machine language program (or object program) is called an

assembler (the translation process is called assembly). The PDP-11 has a

number of different assemblers; the one that will be used in this text is

called MACRO-11.

A good assembler must be flexible and resourceful enough to make the

task of program writing simple and efficient. Here are some of the features

included in MACRO-11 towardthis end:

1. The user is permitted to specify constants in nonoctal form (e.g.,

in decimal or binary).

2. The user is permitted to intersperse the program with comments.

3. The assembler lists the program in both assembly and machine

languages.

4. The assembler issues diagnostic messages when the program contains

syntactic errors. .

5. The assembler provides for conditional assembly, repeated assembly,

and macros. (These facilities will be explained in a later chapter.)

5.2

ASSEMBLY LANGUAGEDIRECTIVES

Unless otherwise specified, all numbers appearing in an assembly lan-

guage program are assumed bythe assembler to be octal. However, using the

following conventions, one can also include in a program decimal and binary

numbers,as well as octal and 1’s-complement numbers:

Sec. 5.2 / Assembly Language Directives 47

n. or fDn denotes a decimal n

t Bn denotesa binary n

fOn denotes an octal n

tCn denotes the 1’s complement of n

The ASCII code for a character p can be written as ‘p and the ASCII

code for the character pair p, P. aS "P, Po-

The operation of the assembler can be controlled by the user by means

of directives interspersed among the assembly languageinstructions. Direc-

tives are instructions addressed to the assembler; they are obeyed during

assembly time and not during run time (i.e., not during the actual execu-

tion of the program)!

Here are some often-used directives:

1. WORD d,,d,,...,d
BYTE 4d,,,,...,4

r

r

cause the assembler to store the data (numbers or characters) d, ,d.,
... d, in consecutive words or bytes, respectively. For example,

-WORD 35,18. ,"90
.BYTE 1B1011,'K

will result in storing, in four consecutive words, the octal numbers

000035
000022
030071
045413

2. .ASCII /str/

causes the assembler to store the ASCII code of string ‘‘str’’ in con-

secutive bytes (where / represents any character not in “‘str,” except

< and =). A nonprinting character with ASCII code n can be specified

as <n>. For example,

-ASCIT /THE ANSWER IS/
-ASCII /THE BELL WILL NOW RING/<7>
-ASCII *COMPUTATION OF X/Y* <15> <12>

The directive

.ASCIZ /str/

48 Assembly Language Programming / Chap. 5

is the same as .ASCII, but a zero byteis inserted after the last char-
acter of “‘str’’ as a terminator.

-BLKW n

-BLKB n

causes the assembler to reserve a storage block of n words or bytes,
respectively.

RADIX r

instructs the assembler to regard all subsequent numbers as base-r
numbers(r = 2, 4, 8, or 10). For example,

.RADIX 10

wil result in the interpretation of all subsequent numbers as decimal

(with no need for prefix tD or suffix .), unless otherwise specified

by means of a prefix TB, tO, or tC. (This directive can be canceled

by another .RADIX.)

. The “assignmentdirective’”’

sym = exp

causes the assembler to assign the symbol ‘“‘sym”’ the value of ex-

pression “‘exp.’’ For example,

KBSTAT=177560

assigns the value 177560 to KBSTAT. Henceforth, every time the
assembler encounters the symbol KBSTAT,it replaces it with 177560.

A subsequentdirective,

KBDATA=KBSTAT+2

assigns to the symbol KBDATAthevalue 177562.

A symbol can be reassigned any number of times in a program.

For example, a directive

1=1000

Sec. 5.2 /| Assembly Language Directives
49

can be followed later by

T=1+5

Between the two directives I will be taken as the constant 1000, but

after the second one,as the constant 1005.

6. The symbol. (‘“‘dot’’) refers to the assembler variable (called location

counter), which, at any time during assembly, holds the address of

the word into which the next instruction is to be assembled.* Its

initial value is 0. For reasons to be explained later, all programs

should start with

LC=.

Thereafter, if we wish a section of source program to be assembled

starting at address a, we issue the directive

= at+LC

(which will force ‘‘dot”’ to assumethe value a).

7. EVEN
.ODD

will force ‘‘dot”’ to become the next even address(if it is odd), or

the next odd address(if it is even), respectively.

8. A program usually starts with the directive

.TITLE name

which causes the assembler to head the program listing with the

title “‘name.”’

9. The last statement of every program must be

.END sym

where “‘sym”’ is the symbolic address of the program’s starting point.

With this directive, the “‘loader’’ (the program which loads the ma-

**“Dot” can also be used to specify addresses. For example, ‘jump 3 words ahead”’

can be written as JMP .+6; “‘movecurrent address to SP” can be written as MOV #.,SP.

50 Assembly Language Programming / Chap. 5

chine language program into the CM) will automatically start the
program at address ‘‘sym.”’

5.3
ASSEMBLY LANGUAGE PROGRAM FORMAT

A source program is composed of a sequenceoflines, each containing
a single statement. A statement may be composed ofas manyasfourfields,
namedand formatted as follows:

Label: Operator Operand ;Comment

For example:

LOOP: MOV RO,@#177566 ;PRINT CHARACTER

The operator and operand fields must be separated by at least one blank

or horizontal tab, but otherwise the spacing is arbitrary. However, since

the teletype’s horizontal tabs are usually set every eight columns(starting

with column1), it is convenient to adopt the following standard format:

Field Begins at column

Label 1

Operator 9

Operand 17

Comment 33

The label, which assigns a symbolic address to the statement, needs to

appear only when the statement is referred to symbolically. A symbol may

be of any length, but only the first six characters (letters and/or digits*) are

significant. Two or more labels having the same first six characters result

in an error message.

The commentfield is optional, but should be used generously if a well-

documented program is to result. (A line consisting entirely of commentary

may start with ;in any column.)

*$ and . can also be used, but the beginneris advised to avoid them.

Sec. 5.4 / Example: Multiple Echo
51

As a matter of convention, all source programs in this text will be

organized as follows:

Col. 1 9 17 33
.TITLE Program title

(Description of program)

ice.
~=44+LC

-WORD 6,0,12,0 INITIALIZE ERROR VECTORS
.=500+LC ;sALLOW FOR STACK SPACE
START: MOV PC ,SP

TST -(SP) s INITIALIZE SP TO START

(Program)

END START

With this format, programs will start at 500 with the initialization of

SP to 500. The reason for this and for the “error vectors’’ will be clarified

in later chapters.

5.4

EXAMPLE: MULTIPLE ECHO

We wish to write a program which “‘echoes’”’ (types back) every typed-in

character n times. Since echoes of a character may not be completed before

the next one is typed in, the program should set up a “buffer” (i.e., a tem-

porary storage block) for storing characters awaiting printout. We shall

assume that the backlog can never exceed 64,, characters.

The. program employs a “buffer input pointer,’ which, at any time,

points to the next free buffer byte (i.e., the byte in which the next typed-in

character is to be stored), and a “‘buffer output pointer,’’ which, at any time,

points to the next buffer byte to be echoed. Typically, the output pointer

lags behind the input pointer; when the formerfinally catches up with the

latter, the buffer is ‘‘empty”’ (no character awaits printout).

Forefficient operation, it is proposed to use a “circular buffer,’ where

the byte with the highest address is followed by the byte with the lowest

address. In this manner, only 64, bytes are required for storage, regardless

of the numberof characters typed in. An implementation of such a buffer

(RO) + 0
(Rl) + 0
(R2) + 0 BUFFER

BUFFER+1
" LOOP BUFFER+2

character

entered

YES

)
« (RO)+1
« (RO)A77 BUFFER+77

 Echo

output:

char.

(R1)
Print (BUFFER+(R1)) (R2)

(R2) « (R2)-1

< NO (R2) = 0

YES

Prepare

for next (R1) « (R1)+1
output (R1) « (R1)A77
char.

YES

Pick up repetition {

count

52

Figure 5.1 Flowchart for multiple-echo program.

MSW

buffer input pointer
buffer output pointer
repetition count n

R1

Sec.5.4 | Example: Multiple Echo
53

requires that when a buffer pointer reaches 63,, (77,), its next value be

reverted to 0. One way of accomplishing it is to mask outall but the right-

most 6 bits of the pointer after every incrementation.

Figure 5.1 shows the flowchart and Figure 5.2 the assemblerlisting of

the source and object codes of the program. (The symbols KBSTAT,

KBDATA,etc., are defined merely to improve program readibility.) In this

program N was selected to havethe value 5.

Note that every address which in the source program has the form

symbol + constant

(where either the symbol or the constant may be absent) is assembled by

MACRO-11into a relative address (mode 6). For example,

MOVB KBDATA,BUFFER(RO)

(located at 520) is assembled as

116760

177036 =(177562 - 524 = 177036)

000602

(See Section 4.6.)*

Remember that every symbolic address used by an instruction must be

defined as a label, or by means of an assignment directive (sym = exp), or

by means of a .GLOBL directive (to be discussed in a later chapter). A

symbol not thus defined (or defined more than once) will result in a diag-

nostic message.

The masking operation is done in the program by means of the BIC

(‘bit clear’’) instruction. BIC s,d clears to 0 all those bits in d which cor-

respond to 1-bits in s, leaving all other bits intact. Thus, BIC #177700,RO

will clear all but the rightmost 6 bits of RO. (The “bit set’”’ instruction BIS

s,d sets to 1 all those bits in d which correspond to 1-bits in s, leaving all

otherbits intact.)

*The meaning of the apostrophe attached to some of the assembled addresses will

be clarified in a later chapter.

54

H
O
P
W
M
P

7
8
9

22
23

24

26

27
28

000004

000500
000502

00504
00506
00510
00512

00516
00520

00526
00530

00534
00536
00540

00544
00546

00554
00556
00560
00562

00566
00570
00572

00576

00600
00602

~ TITLE MULTECHO
; ECHO EACH TYPED-IN CHARACTER N TIMES. USE CIRCULAR BUFFER OF
364 (DECIMAL) BYTES FOR STORING AWAITING CHARACTERS.

000000'LC=.
000004' .=4+LC
000006 -WORD 6,0,12,0 sINITIALIZE ERROR VECTORS
000000
000012
000000
000500' .=500+LC sALLOW FOR STACK SPACE
010706 START: MOV PC,SP
005746 TST - (SP) sINITIALIZE SP TO START

177560 KBSTAT=177560
177562 KBDATA=177562
177564 PRSTAT=177564
177566 PRDATA=177566

005000 CLR RO sINITIALIZE BUFFER INPUT POINTER
005001 CLR Rl sINITIALIZE BUFFER OUTPUT POINTER
005002 CLR R2 sINITIALIZE REPETITION COUNT
105767 LOOP: TSTB KBSTAT ;CHARACTER ENTERED?
177042!
100006 BPL ECHO >IF NOT, KEEP ECHOING
116760 MOVB KBDATA,BUFFER(RO) ;IF SO, STORE CHAR IN BUFFER+(RO)
177036'
000602"
005200 INC RO ;(RO)=(RO)+1
042700 BIC #177700,R0 ;ZERO RO IF > 77
177700
005702 ECHO: TST R2 ;1F MULTIPLE ECHO TERMINATES,
001413 BEQ NEXT ;PREPARE FOR NEXT OUTPUT CHARACTER
105767 TSTB PRSTAT ;OTHERWISE, IS PRINTER READY
177020'
100362 BPL LOOP ;1F NOT, ACCEPT NEXT CHARACTER
116167 MOVB BUFFER(R1),PRDATA ;IF SO, ECHO OUTPUT CHARACTER
.000602'
177012"
005302 DEC R2 ;(R2)=(R2)-1
001355 BNE LOOP 5IF (R2).NE.O, ACCEPT NEXT CHAR
005201 INC R1 sELSE, (R1)=(R1)+1
042701 BIC #177700,R1 ;ZERO R1 IF > 77
177700
020001 NEXT: CMP RO,R1 ;IF (RO)=(R1) (BUFFER EMPTY),
001750 BEQ LOOP sACCEPT NEXT CHARACTER
016702 MOV N,R2 3(R2)=(N) (REPETITION COUNT)
000002
000745 BR LOOP ;ACCEPT NEXT CHARACTER

000005 N: ~WORD 5 sREPETITION COUNT
BUFFER: .BLKB 64. ;BUFFER SPACE: 64 DECIMAL BYTES

000500' ~ END START

Figure 5.2 Multiple-echo program.

5.5

CODING HINTS

It is useful to mention some commonmistakes made by beginners while

learning assembly language.

When uncertain whether,something is correct, the programmer should

ask himself or herself what the instruction would be in machine language.

For example, consider the statement

MOV R1+4,RO

What was desired was to have 4 added to the contents of R1 and stored in

RO; that is, (RO)<(R1)+4. What was written is perfectly legal but its inter-

pretation is to move the contents of R5 to RO. The correct solution requires

twoinstructions:

MOV R1,RO
ADD #4,RO0

Suppose that it is desirable to use index modeand incrementtheregister
afterward. One may be temptedto issue

CLRB 1000(RO)+

Although this might be a very useful addressing modeto have, it does not

exist! The solution again requires two instructions:

CLRB 1000(RO)
INC RO

There is a world of difference between

MOV #500,RO

and

MOV 500,RO

The first means

(R0)<500

55

56 Assembly Language Programming / Chap. 5

while the second means

(RO)<(500)

Suppose it is necessary to clear locations 1000, 1002, and 1004. The
followingis correct:

MOV #1000,R0
CLR (RO)+
CLR (RO)+
CLR (RO)

The first instruction puts the address 1000 into RO. Thesecondinstruction

then clears location 1000 and adds 2 to RO. The third and fourth instruc-

tions clear locations 1002 and 1004, respectively.

Suppose that the contents of location 1000 is 500, and consider the

following sequenceof instructions:

MOV. 1000,R0
CLR (RO)+
CLR (RO)+
CLR (RO)

The first instruction moves the contents of location 1000 to RO. RO now
contains the value 500. The next three instructions would clear locations
500, 502, and 504. Notice the difference between this and the previous
example.

An additional word of caution: you will never use immediate addressing

as a destination. For example,

CLR #500
MOV #500,#600

hardly makes sense. (Why?) If you see a # in the destination, you almost

certainly are not writing what you want.

All symbolic addresses other than RO, R1,..., R7, SP (which may

replace R6) and PC (which may replace R7) must be defined within the

program. For example, CLR PSR is wrong unless preceded by PSR = 177776.

Note the difference between the twoinstructions,

SAM: .WORD 0

and

Exercises 57

CLR SAM

The first is an assembler directive, instructing MACRO-11 to insert O in

location SAM of the object program. The second is a PDP-11 CPinstruction

executed during program run. While .WORD 0 is obeyed only once (during

assembly time), the CLR instruction can be placed as part of a loop to clear

SAM each time the loop is entered during run time. (MOV #0,SAM is

equivalent to CLR SAM butis more wasteful in both time andspace.)

The compare (CMP) and subtract (SUB) instructions treat their operands

in an opposite fashion. In SUB the sourceis subtracted from the destination,

while in CMP the destination is subtracted from the source. For example,

SUB RO,R1 forms (R1)-(RO) (and stores it in R1), while CMP RO,R1 forms

(R0)-(R1) (with no register altered).

Beware of executing word instructions on operands which reside in odd

addresses. For example, do not issue CLR (RO) unless you are sure that

RO will always contain an even address.

It is not enough to write a program that merely runscorrectly. A pro-

gram should be well organized and adequately documented. Thereaderis

referred to Appendix G, ‘‘Notes on Programming Style,” for further details.

EXERCISES

5.1 Modify the multiple-echo program of Figure 5.2 to accommodate a
buffer size of 128,, bytes.

5.2 In as many different ways as you can think of, direct the assembler
to store the octal constant 050520 in a memory word (e.g., .WORD
050520).

5.3 Translate the following (nonsensical) assembly language program into
machine language.

LC=.
-=500+LC
JOE=100
SAM=JOE+20
START: MOV #SAM,JOE

JMP START
-ASCIZ =$/XYZ/$ <130>
-BYTE +B1,19., 'A
-RADIX 10
~BLKB 11
. EVEN
-WORD "12,t013,+C+B11010, 333
- END START

58

5.4

5.5

5.6

5.7

5.8

Assembly Language Programming / Chap. 5

What are the octal contents of the eight general-purpose registers
after the following program halts?

LC=.
»=500+LC
START: CLR

MOVB
MOV
MOV
MOV
BIC
MOV
MOV
CLR
- WORD
HALT
. WORD
- END

JOE:

SAM:

ANN:

RO
SAM ,R1
#'W,R2
PC,R3
SAM ,R4
ANN,R4
#J0E,SP
ANN, (SP)+
R5
123456

012705
START

What does the following program do? Whatare the octal contents of

RO, R1, and R2 whenit halts?

LC=.
-=500+LC
START: MOV

CLR
Al: MOVB

BIC
CMP
BLT
CMP
BGT
SUB
ASL
ASL
ASL
ADD
BR

A2: HALT
A3: -ASCIT
Ad: .BYTE

» END

#A3 ,RO
R2
(RO)+,R1
#177600 ,R1
R1,#'0

'010706'
15,12
START

Write an assembly language program that divides an integer stored

in A by an integer stored in B (with the fractional part truncated).

The quotient is to be left in RO and the remainderin R1.

Write an assembly language program that regards the word K as con-

sisting of eight 2-bit ‘‘quarter-bytes’’ and counts the number of such

quarter-bytes which have the value 3 (i.e., 11,). The count is to be

left in RO.

Write an assembly language program that prints out the octal contents

of a word whose address is-found in ADDR.(For example, if ADDR

59
Exercises

5.9

5.10

5.11

contains 123, and 123 contains 456, then the program should print

out 000456.)

One hundred (decimal) 16-bit 2’scomplement numbers (not neces-

sarily different from each other) are stored in order of ascending

magnitude in an array starting at address TABLE. Place in RO the

numberof occurrences of the array numberthat occurs most often.

Fifty (decimal) numbers, each between 0 and 100,,, are stored in a

50-word array starting at address GRADE.The contents of GRADE+i

represents the grade of student number it+1. Write an assembly lan-

guage program that sets up a 50-wordarray starting at address RANK,

where the contents of RANK+i is the rank of student numberi+1 in

the class of fifty. (The rank of a student equals one plus the number

of students whose grades exceed that student’s grade.)

Consider a chessboard whose rows and columns are numbered 0

through 7. Write an assembly language program that accepts an input

of the form ij (0 < i < 7, 0 < j < 7) and prints outall possible posi-

tions of a bishop starting at the intersection of row i and columnj.

For example, whenthe inputis 42, the output should be

01234567

N
W

B
W

H
D
—
©

*

STACKS
AND

SUBROUTINES

In this chapter we shall introduce the concept of a stack and see how

stacks are implemented in the PDP-11. Our attention will then turn to the

“‘system stack’’ and its most important application, the linking of subrou-

tines. The chapter will close with a discussion of recursive subroutines.

6.1

STACKS

A stack is a data structure where the data items are retrieved in the

reverse order in which they are stored (“ast in, first out’’). In this respect,

a stack is analogous to a dish well in a cafeteria, where the only plate avail-

able is the one most recently added.
In the PDP-11, a stack is usually implementedas a block of n consecutive

words, in the following manner:

60

BOTTOM-2n+2

BOTTOM-2 YWMI

BOTTOM WiYj)

Items are addedstarting at address BOTTOM,proceeding “upward’”’ toward

lower addresses. At any time, the stack pointer contains the address of the

current “‘top”’ of the stack.

The three basic stack operationsare:

stored items

o
e

 a

Initialization:

(stack pointer) < BOTTOM+2

‘Push’’ operation (place contents of source on top of stack):

(stack pointer) < (stack pointer)- 2

((stack pointer)) < (source)

‘‘Pop’’ operation (remove the top of the stack and copyits contents into

destination):

(destination) < ((stack pointer))

(stack pointer) < (stack pointer) + 2

The autoincrement and autodecrement modes of addressing make the

general registers (except PC) ideal as stack pointers. If Ri is chosen as a stack

pointer, the basic stack operations can be coded very simply as follows:

61

62 Stacks and Subroutines / Chap. 6

Initialization: MOV #BOTTOM+2,Ri

Push: MOVsource,-(Ri) [denoted (1(Ri)) < (source)]
Pop: MOV(Ri)+,destination [denoted (destination) < ((Ri)t)]

(Byte stacks can be implemented in a similar manner, except that MOVB

rather than MOVis usedin the push and pop operations.)

In most of our programs we shall allocate the stack space just ahead of

the program, so that BOTTOM+2is the program’s starting address START.

Weshall also use R6 (SP) as the stack pointer. With these conventions we
shall have:

Initialization: START: MOV #START,SP

or: START: MOV PC,SP

TST -(SP)

Push: MOVsource,-(SP)

Pop: MOV(SP)+,destination

In normal use, data is pushed onto the stack whenit is to be saved for

future use, and popped whenit is no longer needed. In this manner, memory

space is allocated for data only as it is needed, and can bereleased for other

purposes at other times.

The size n of the stack is an estimate of the greatest number of data

items which the stack may be called upon to accommodate at any given

time. An attempt to push an item onto the stack whenit is full (i.e., after

the stack pointer reaches BOTTOM-2n+2) results in stack overflow. At the

other extreme, an attempt to pop an item from the stack whenit is empty

(i.e., when the stack pointer points to BOTTOM+2) results in stack under-

flow. Both stack overflow and underflow may have disasterous results and

should be watched for by the program.

6.2

EXAMPLE: BACKWARD ECHO

We wish to write a program that accepts a line of characters from the

teletype and then echoes it backward. For example, a type-in of

ABC...XYZ d

(where) denotes carriage return) would result in a printout of

ZYX...CBA «/

Sec.6.2 / Example: Backward Echo 63

Since characters are printed out in the reverse order in which they are

typed in, a stack is the most natural data structure for this program. The
characters are pushed onto the stack as theyarrive, until a carriage return

is typed in, at which point the stack gets popped and printed until it is

emptied. (In order to prepare the printer for another line, the two bottom

words of the stack should be initialized with line-feed and carriage-return

codes.)

Figure 6.1 shows the flowchart and Figure 6.2 the assembler listing of

the program.

-

Initialize SP

(+(SP)) « 15 (CR)
(+(SP)) + 12 (LF)

Stack

JL

(SP)+

Character

entered

NO Character
| is CR

| (4(sP)) + character | START
Printer

ready

 Print ((SP)t+)

Figure 6.1. Flowchart for backward-echo program.

TITLE BACKWARD

; ACCEPT A LINE OF CHARACTERS FROM TELETYPE AND ECHO IT BACKWARDS.
LC=.
~=4+LlC

-WORD 6,0,12,0 sINITIALIZE ERROR VECTORS
~=500+LC sALLOW FOR STACK SPACE
START: MOV PC,SP

TST - (SP) >INITIALIZE SP TO START

KBSTAT=177560
KBDATA=177562
PRSTAT=177564
PRDATA=177566
’

MOV #15,-(SP) sCR CODE TO STACK
MOV #12,-(SP) ;LF CODE TO STACK

LOOP: TSTB KBSTAT ;CHARACTER ENTERED?
BPL LOOP 3NO: KEEP IDLING
MOV KBDATA ,RO ;(RO)=CHARACTER
BIC #177600,R0 ;CLEAR ALL BUT CODE BITS
CMP RO,#15 ;IS CHARACTER CR?
BEQ OUT 3IF SO, GO TO OUTPUT
MOV RO,-(SP) sELSE, PUSH CHARACTER ON STACK
BR LOOP 3AND RETURN FOR NEXT CHARACTER

OUT: TSTB PRSTAT 31S PRINTER READY?
BPL OUT ;1F NOT, KEEP IDLING
MOV (SP)+,PRDATA ;IF SO, POP NEXT CHAR. AND PRINT
CMP SP ,#START 31S STACK EMPTY?
BEQ START 3IF SO, ACCEPT NEW LINE
BR OUT ;IF NOT, GO ON PRINTING
~ END START

Figure 6.2 Backward-echo program.

6.3

SUBROUTINES

It is often the case that similar segments of code are required at various

points of a program, the only difference between them being the values

assigned to some key variables. In this case a great deal of labor as well as

program space are saved by writing all these segmentsas a single subroutine,

with the key variables serving as the subroutine’s arguments (or parameters).

The subroutine is called by the calling program at the points at whichit is

needed, and returnsto the calling program after it completes execution.

It should be pointed out that even when the saving of program spaceis

of no importance, the generous use of subroutines is highly desirable. It

helps the user write his or her program in a ‘‘top-down”(or “modular’’)

fashion, that is, in successive steps which proceed from the gross to the

detailed. This approach to programming is not only intellectually simpler,

but results in programsthat are easier to comprehend, debug, and maintain.

To the extent that a subroutine may be used by different programs writ-

64

Sec. 6.4 / Subroutine Call and Return
65

ten by different users, it should be carefully organized and amply docu-

mented and annotated. In addition, a subroutine should always be written

as a pure procedure (or in reentrant code)—that is, the subroutine should

in no way modify its own instructions during execution. This is imperative

if the subroutine is loaded into the memory andthencalled successively by

different independent programs (which expectto find it in its original form).

Subroutinecalls entail two essential actions:

1. Linkage: Transmitting to the subroutine the address in the calling

program to which it must return.

2. Argument transmission: Supplying the subroutine with the values

for its arguments.

In the following sections we shall see how these actions can be imple-

mented in the PDP-11.

6.4

SUBROUTINE CALL AND RETURN

A convenient linkage mechanism is provided in the PDP-11 by the JSR

(‘jump to subroutine’’) instruction. To call subroutine SUB(i.e., the sub-

routine whose entry address is SUB), issue

JSR Ri,SUB

where Ri is any general register* (referred to as the linkage register). The

effect of. this instruction is the same as if the following sequence of instruc-

tions were executed in a single cycle:

MOV Ri,-(SP)
MOV PC,Ri
JMP SUB

Thus, JSR saves the contents of Ri by pushing its contents onto the stack

whose pointer is SP; it then uses Ri for saving the contents of PC (i.e., the

return address); finally, it jumps to SUB. (Because SP is automatically

*However, the use of R6 here should be avoided.

66 Stacks and Subroutines / Chap. 6

regarded by the system as a stack pointer, the stack pointed to by SPis

called the system stack.)

Exit from a subroutine is done with RTS (“return from subroutine’’)

instruction. If the calling program used Ri as the linkage register when it

called the subroutine, then to return from this subroutine back to the

calling program, issue

RTS Ri

The effect of this instruction is the same as if the following sequence of

instructions were executed in single cycle:

MOV Ri,PC
MOV (SP)+,Ri

Thus, RTS puts in PC the contents of Ri (i.e., the return address) and then

restores the original contents of Ri by popping the system stack.

Example

Machine Assembly

Language Language Resulting Action

1000: 004567 JSR R5,SAM ((SP))<{R5),(R5)<{PC)=1004

1002: 000060

Calling program 1004: (Return point)

1064: SAM: (Entry point)

Subroutine

RTS R5 (PC)<{R5)=1004; (R5)<{(SP)T)
OC

In many cases it is convenient to use R7 (PC) as a linkage register. In

this case, the call becomes

JSR PC,SUB

which is equivalent to

MOV PC,-(SP)
MOV PC ,PC
JMP SUB

Sec.6.5 / Argument Transmission
67

Thus, JSR simply pushes the return address onto the system stack (without

tampering with any of registers R1 through R5) and enters SUB. The return

is done with

RTS PC

whichis equivalent to

MOV PC ,PC
MOV (SP)+,PC

Thus, RTS simply pops the return address from the system stack (at whose

top, presumably, this addressstill resides) onto PC.

Example

Machine Assembly

Language Language Resulting Action

1000: 004767 JSR PC,SAM (L(SP))<{PC)=1004

1002: 000060

Calling program 1004: (Return point)

1064: SAM: (Entry point)

Subroutine

RTS PC (PC)<{(SP)t)=1004

O

6.5

ARGUMENT TRANSMISSION

A number of methods are available for transmitting arguments from a

calling program to a subroutine, each with its own advantages and disad-

vantages. The particular method assumed by a subroutine should always

appear in the commentary of that subroutine.

Figures 6.4 to 6.7 illustrate some possible methods for transmitting

arguments to a subroutine MULT which executes (C)<(A)*(B)[where

(B) = 0]. The flowchart of MULT is shown in Figure 6.3. (The multiplica-

tion algorithm used in MULTis quite inefficient, but will do for an ex-

ample.)

YES

Figure 6.3. Flowchart for MULT subroutine.

MOV A,R1 ;(R1)=(A)
MOV B,R2 ;(R2)=(B)
JSR PC,MULT ;CALL MULT
MOV R3,C ;(C)=(R3)

A: -BLKW 1

" JSR R5,MULT sCALL MULT
A: .BLKW 1

b. B: .BLKW 1
B: “BLKW 1 C: .BLKW 1

C: -BLKW 1 MULT: MOV (R5)+,R1 ;(R1)=(A)
MOV (R5)+,R2 ;(R2)=(B)

. CLR R3
MULT: CLR R3 LOOP: DEC R2
LOOP: DEC R2 BMI EXIT (R3)+(R1)*(R2)

BMI EXIT (R3)+(R1)*(R2) ADD R1,R3
ADD R1,R3 BR LOOP
BR LOOP EXIT: MOV R3,(R5)+ 3 (C)=(R3)

EXIT: RTS PC ;RETURN RTS R5 ; RETURN

Figure 6.4 Argument transmission — method 1. Figure 6.5 Argument transmission — methodII.

68

Sec.6.5 / Argument Transmission
69

Here are some comments on the various methods.

Method I (see Figure 6.4). The arguments are moved to any of the

registers R1 to R5 before the call. This is perhaps the simplest

method,but is practical only for a small number of arguments.

Method II (see Figure 6.5). The arguments are placed immediately

after the call. The subroutine moves the arguments (whose location

is transmitted via the linkage register) to any registers or CM loca-

tions it finds convenient. The main disadvantage is that arguments

must be stored after the call, in the middle of the program.

Method III (see Figure 6.6). Similar to method II, except that the

addresses of the arguments are placed immediately after the call;

the arguments themselves may appear anywhere in the CM.

Method IV (see Figure 6.7). Arguments are listed in an array whose base

address is transmitted to the subroutinevia a general-purposeregister

R1 to R5. Advantageous for a large list of arguments, since the

subroutine does not have to allocate separate storage to them.

However, as a result of the index mode of addressing, reference to

argumentsis rather slow.

JSR R5,MULT ;CALL MULT
-WORD A,B,C sADDRESSES A,B,C ARE STORED HERE

A: -BLKW 1

B: -BLKW 1

Cc: BLKW 1

MULT: MOV @(R5)+,R1 ;(R1)
MOV @(R5)+,R2 ;
CLR R3

LOOP: DEC R2
BMI EXIT (R3)+(R1)*(R2)
ADD R1,R3
BR LOOP

EXIT: MOV R3,@(R5)+ 3(C)=(R3)
RTS RS ; RETURN

Figure 6.6 Argument transmission — methodIII.

MOV #ARG,R5 ;(R5)=BASE ADDRESS OF ARGUMENT ARRAY
JSR PC MULT 3CALL MULT

ARG: .BLKW 3 ;STORAGE FOR MULTIPLICAND ,MULTIPLIER,PRODUCT

MULT: MOV (RS5),R1 ;(R1)=(ARG)
MOV 2(R5),R2 5 (R2)=(ARG+2)
CLR R3

LOOP: DEC R2
BMI EXIT (R3)+(R1)*(R2)
ADD R1,R3
BR LOOP

EXIT: MOV R3,4(R5) 5 (ARG+4)+(R3)
RTS PC sRETURN

Figure 6.7 Argument transmission — method IV.

6.6
NESTED SUBROUTINES

It is often the case in modular programsthat a subroutinecalls a sub-

routine, which itself calls a subroutine, which itself calls a subroutine, and

so forth. Such subroutines are said to be ‘‘nested.”’

Since a subroutine may tamper with some general-purpose registers

holding information essential to its calling program, the calling program is

frequently obliged to save register contents in the CM beforeit issuesa call.

In particular, if the calling program is itself a subroutine, it must save the

linkage information transmitted to it by its calling program. All register

information must be restored by the calling program as soonas it regains

control. |

As the nesting ‘‘depth”’ increases, the amount of information requiring

temporary storage also increases, and careful bookkeeping is required to

decide where and when to moveeach item. In the PDP-11 this bookkeeping

is made exceedingly simple by the system stack and the automatic linkage

mechanism.

The idea is that all essential registers and linkage information be saved

in (and restored from) the system stack. In this manner, whenevera calling

program is ready to restore register contents or whenever a subroutine is

ready to use linkage information (in order to return), they can find the

70

MAIN:

MOV R1,-(SP) sSAVE (R1)=a,
SP Ls MOV R2,-(SP) ;SAVE (R2)=a,

rap <———._ JSR PC,SUB1 sCALL SUB1
ray o,: MOV (SP)+,R2 sRESTORE (R2)=a,
—_— MOV (SP)+,R1 sRESTORE (R1)=a,

sp> [op SUB: _
a MOV R3,-(SP) SAVE (R3)=B
Fy <—————._ JSR PC, SUB2 ;CALL SUB2
3 pp: MOV (SP)+,R3 RESTORE (R3)=8
Poy eae)

— RTS PC sEXIT —————_» “SP

sP> [pg] SUB2: vee
ry MOV R1,-(SP) sSAVE (R1)=y,
ry MOV R3,-(SP) sSAVE (R3)=7,
Ppp +————_ JSR PC, SUB3 CALL SUB3
re p3: MOV (SP)+,R3 sRESTORE (R3)=y,
Fo, MOV (SP)+,R1 sRESTORE (R1)=y,

Po wes La «SP

ay RTS PC sEXIT ————> |,
v Ld =

|e
SUB3: ay

Ld

Ty>] SP
Ma

oe 7)

RTS PC ;EXIT ———» [@
nm

ee!
1

Figure 6.8 Nested subroutines.

necessary items right on top of the stack. Specifically, for every subroutine

call a calling program contains the following successive steps:

71

72 Stacks and Subroutines / Chap. 6

1. Push contents of essential registers onto the system stack (using
MOVRi,-(SP)instructions).

2. Call the subroutine, employing PC asthe linkage register (using the

JSR PC,SUB instruction). This will automatically push the return
address onto the system stack.

3. Restore the contents of essential registers by popping the system
stack (using MOV (SP)+,Riinstructions).

Correspondingly, each subroutine should return with an RTSPCinstruc-

tion (which pops the return address from the system stack).

Figure 6.8 illustrates this scheme. On theleft, “snapshots” of the system

stack are shown as MAIN calls SUB1, as SUB1 calls SUB2, and as SUB2

calls SUB3. On the right, the system stack is shown as SUB8 returns to

SUB2, SUB2 to SUB1, and SUB1 to MAIN.

In the scheme above, the burden of protecting essential registers is

placed on the calling program. Alternatively, the subroutine itself can assume

this burden by saving, upon entry, all registers which are to be used byit

and restoring them just before exit. Conveniently, the saving can be done by

pushing the register contents onto the system stack (as in 1 above) and the

restoring by popping the same contents from the system stack (as in 2

above).

6.7

RECURSIVE SUBROUTINES

In many cases it is simpler to define mathematical functionsrecursively,

rather than directly. The recursive definition of a function F(n), for all

integers n 2 ng, consists of:

1. Basis: specifying the values of F(ng), F(no + 1),..., F(mo + k) ex-

plicitly.

2. Induction step: For alln > n, + k, specifying F(n) in terms of any

of the values F(ny)), F(np +1),..., F(n-1).

Examples

1. Defining the factorial function FACT(n) forall n 2 0:

Basis: FACT(0) = 1

Induction step: FACT(n) = FACT(n-1)-n (n> 0)

Sec. 6.7 / Recursive Subroutines
73

For example:

FACT(4) = FACT(3) * 4 = FACT(2) * 3° 4= FACT(1)*2°3°4

= FACT(0)°1°2°:3°4=1°1°2°3:°4324

2. Defining the Fibonacci number FIB(n)for all n 2 1:

Basis: FIB(1) = 1, FIB(2) = 1

Induction step: FIB(n) = FIB(n - 2) + FIB(n-1) (n> 2)

For example:

FIB(6) = FIB(4) + FIB(5) = FIB(2) + FIB(3) + FIB(3) + FIB(4)
= 1+ FIB(1) + FIB(2) + FIB(1) + FIB(2) + FIB(2) + FIB(3)
=1+1+1+1+1+1+ FIB(1) + FIB(2)=1+1+1+1+1+1+1+1=8

3. Defining the set PERM(n) of all permutations of the n-tuple (a, a,,

.--58,) (n2 1):

Basis: PERM(1) = {(a,)}
Induction step: PERM(n) = a,°(PERM(n - 1)) = set of all n-tuples

obtained by inserting a, in all possible positions of all elements of

PERM(n-1) (n>1).

For example:

PERM(3)= a, °(PERM(2)) = a3°(a9(PERM(1)))
= @3°(ao°({ (a,)})) = a3°({ (a, 44) (a, Ag)})

= (a, Ao4)(ao 43 44),(a, Ay sA5),(a5 44 149),(a; 43 145),(a4 Ao ,43)}

O

A recursive subroutine is a subroutine that computes a recursive func-

tion. Correspondingly, it consists of a basis that produces F(n) directly,

and an induction step that consists of the subroutinecalling itself with the

argument n replaced with a “‘lower’’ argument(usually n - 1). For example,

the following is a self-explanatory recursive subroutine (written in the

language PASCAL), which computes FACT(n)*:

FUNCTION FACT(N: INTEGER): INTEGER;
BEGIN IF N=0 THEN FACT := 1

ELSE FACT := FACT(N-1)*N
END;

*A PASCAL (or FORTRAN)subroutine that returns a single numerical value is
called a ‘‘function.”’

14
Stacks and Subroutines / Chap. 6

The way this subroutine operates is typical of all recursive subroutines:

If the argument n is greater than 0, it keeps calling itself with successively

decreasing values of n, until n is reduced to 0. At this point it keeps return-

ing to itself (each time multiplying the retumed value by n), with an ulti-
mate return to thecalling program.

Recursion is merely a special case of subroutine nesting and its imple-

mentation in the PDP-11 is as described in the precedingsection.

6.8

EXAMPLE: TOWER OF HANOI

A classical example of a recursive subroutine is the one that solves the

‘Tower of Hanoi’”’ puzzle. In this puzzle, a numberofdiscs are stacked in

decreasing size on a spindle A. They are to be movedto spindle C (stacked

in the original order), using, if necessary, a spindle B for temporary storage.

(See Figure 6.9.) In the moving process, the following two rules should be

obeyed: (1) only one disc may be moved at a time (from anyspindle to any

other spindle); (2) at no time maya disc rest on top of a smaller one.

The subroutine for solving this puzzle is HANOI(N,X,Y,Z), where the

argument N is the numberof discs and the arguments X, Y, and Z are the

names of the spindles used as initial, temporary, and final spindles, respec-

tively. Thus, for the situation depicted in Figure 6.9, a solution is obtained

by calling HANOI(5,A,B,C).

Weshall name the N discs 1,2,. .. , N (ordered from smallest to largest),

and denote a movement of disc i from spindle u to spindle v by uiv.

A B C
Initial Temporary Final
spindle spindle spindle

Figure 6.9 Tower of Hanoi puzzle.

Sec.6.8 / Example: Tower of Hanoi 5

HANOI(N,X,Y,Z), which prints out a sequence of moves denoted in this

manner, can be described recursively as follows:

Basis: HANOI(1,X,Y,Z)prints out X1Z.

Induction step: HANOI(N,X,Y,Z) (N > 1) does the following:

1. Executes HANOI(N - 1,X,Z,Y).

2. Prints out XNZ.
3. Executes HANOI(N - 1,Y,X,Z).

As an example, Figure 6.10 describes schematically the execution of

HANOI(3,A,B,C).

Figure 6.11 shows the listing of the program for solving the Tower of

Hanoi puzzle. (For simplicity, we assumed that N < 7.) Besides the recursive

subroutine HANOI described above, the program contains the subroutines

INPUT, OUTPUT, PRINT, NULINE, SAVE, and RESTOR. Figure 6.12

shows the subroutine nesting structure of the program. This structure,

which at first sight seems quite complex, can be easily implemented in the

PDP-11, using the schemedescribed in Section 6.6.

Figure 6.13 shows ‘“‘snapshots’”’ of the system stack (bottom on the

left and top on the night) as it appears in the course of executing HANOI

HANOI (3,A,B,C)

(i) (iii)

HANOI(2,A,C,B) HANOI(2,B,A,C)

(i) (444) (44) (i) (144)

HANOI(1,A,B,C) (i7) HANOI(1,C,A,B) HANOI(1,B,C,A) (ii) HANOI(1,A,8,C)

(Basis) (Basis) (Basis) (Basis)

A1C A2B C1B A3C B1A B2c Alc
Figure 6.10 Execution of HANOI(3,A,B,C).

76

TITLE HANOI

; SOLVES TOWER OF HANOI PUZZLE. PRINTS OUT SEQUENCE OF MOVES OF N<7 DISCS
;FROM INITIAL SPINDLE A TO FINAL SPINDLE C, USING SPINDLE B FOR TEMPORARY STORAGE
LC=.
~=44+LlC

WORD 6,9,12,9 sINITIALIZE ERROR VECTORS
- =599+LC ;ALLOW FOR STACK SPACE
START: MOV PC ,SP

TST -(SP) sINITIALIZE SP TO START

KBSTAT=177569
KBDATA=177562
PRSTAT=177564
PRDATA=177566

» MAIN PROGRAM
JSR PC, INPUT sREAD N INTO R5 (ASCII FORM) AND ECHO
MOV R5,R0
BIC #177779,RD > (RD)=N
JSR PC ,NULINE
JSR PC,NULINE ;LEAVE DOUBLE SPACE
TST RD
BEQ QUT > IF N=@, HALT
MOV #'A,R1 sX='A
MOV #'B,R2 ;Y='B
MOV #'C,R3 3Z='C
JSR PC ,HANOI ;CALL HANOI(N,'A,'B,'C)

OUT: (@1)HALT

HANOI(N,X,Y,Z)
SOLVES TOWER OF HANOI PUZZLE. PRINTS OUT SEQUENCE OF MOVES OF N DISCS FROM

; INITIAL SPINDLE X TO FINAL SPINDLE Z, USING SPINDLE Y FOR TEMPORARY STORAGE.
; ARGUMENTS: (RQ)=N,
; USES R4, R65.

(R1),=X, (R2)=Y, (R3)=Z.

HANOI: CMP RQ,#1
BEQ _—BASIS SIF Nel, EXECUTE BASIS
JSR PC SAVE SSAVE N.X,Y4Z
DEC RD :(RO)=N-1
MOV R24
MOV —R3_JR2 5 (R2)=7
MOVs R43 : (R3)=Y
JSR PC HANOI “CALL HANOI(N-1,X,Z,Y)

(@2)usR PC RESTOR -RESTORE N,X,Y4Z
JSR. PC OUTPUT SPRINT XNZ
JSR PC, SAVE “SAVE N,X.Y5Z
DEC RD : (RD)=N-1
MOV —R1,R4
MOV R2,R1 ;(R1)=Y
MOV R42 (RZ J=X
JSR. —-PC,HANOI “CALL HANOI(N-1,Y,X,Z)

(3)JSR PC RESTOR SRESTORE NX Y5Z
RTS PC SEXIT

BASIS: JSR PC,OQUTPUT SPRINT X1Z
RTS PC SEXIT

Figure 6.11 Tower of Hanoi program.

; OUTPUT
- PRINTS XNZ (NEXT DISC MOVEMENT). REGISTERS UNCHANGED.
OUTPUT: MOV R1,R5

JSR PC PRINT ;PRINT X
MOV R®,RS
ADD #69,R5 ;CONVERT N TO ASCII
JSR PC PRINT >PRINT N
MOV R3,R5
JSR PC PRINT sPRINT Z
JSR PC ,NULINE ;SKIP TO NEXT LINE
RTS PC sEXIT

: PUSHES (RQ), (Rl),(2) (R3) ONTO SYSTEM STACK. REGISTERS UNCHANGED.
AVE: MOV (SP)+, ;SAVE RETURN ADDRESS

MOV aD (SP) ;PUSH (RQ)
MOV R1,-(SP) : PUSH (R1)
MOV R2,-(SP) ;PUSH (R2)
MOV R3,-(SP) ;PUSH (R3)
MOV R4,-(SP) sRESTORE RETURN ADDRESS
RTS PC sEXIT

3 RESTOR
; POPS (R3),(R2),(R1),(R@) FROM SYSTEM STACK. R4 AND R5 UNCHANGED.
RESTOR: MOV (SP)+,R4 ;SAVE RETURN ADDRESS

MOV (SP)+,R3 ;POP (R3)
MOV (SP)+,R2 ;POP (R2)
MOV (SP)+,R1 ;POP (R1)
MOV (SP)+,RQ ;POP (R@)
MOV R4,-(SP) sRESTORE RETURN ADDRESS
RTS PC sEXIT

3 PRINT
; PRINTS CONTENTS OF R5. REGISTERS UNCHANGED.
PRINT: TSTB PRSTAT ;IS PRINTER READY?

BPL PRINT 3IF NOT, WAIT
MOV R5,PRDATA ;IF SO, PRINT (R5)
RTS PC >EXIT

NUL INE
>5 SKIPS TO NEW LINE. USES R5.
NULINE: MOV #12, R5

JSR PC,PRINT >PRINT LF
MOV #15,R5
JSR PC PRINT ;PRINT CR
RTS PC 3 EXIT

3 INPUT
» STORES TYPED-IN CHARACTER IN R5 AND ECHOES IT. OTHER REGISTERS UNCHANGED.
INPUT: TSTB KBSTAT 3IS CHARACTER IN?

BPL INPUT sIF NOT, WAIT
MOV KBDATA,R5 ;(R5)=CHARACTER
JSR PC, PRINT ;PRINT CHARACTER
RTS PC > EXIT

~ END START

Figure 6.11 (cont.)

77

 NULINE
Figure 6.12 Subroutine nesting structure of Tower of Hanoi

program.

al

aol 3A BC a2

a1 3 ABC a22ACB a2

al Z3ABCao22AC Ba21l ABC a2 (Print A1C)

al 3A BC a22ACB a2 (Print A2B)

ol 3ABCa22AC Ba21C A Ba3 (Print C1B)

al 3ABCa22ACB a2

al 3A BC a2 (Print A3C)

ol 3ABCa22BAC a3

al 3ABCa22BACa31 BCA a2 (Print B1A)

al 3ABCa22BAC a3 (Print B2C)

al 3 ABC a2 (Print A1C)

al

Figure 6.13 Stack snapshots for HANOI(3,A,B,C).

78

Sec.6.9 / Coroutines
19

(3,A,B,C). (The perturbations of the stack due to OUTPUTare not shown.)

(Compare Figure 6.13 with Figure 6.10!)

Note that the SAVE and RESTORsubroutines pop the return address

from the system stack as they are entered and push it back onto the system

stack just before they exit. These operations are necessary because the

“saving” and “restoring” activities of SAVE and RESTOR might otherwise

remove the return address from the top of thestack.

6.9
COROUTINES

It is sometimes the case that two subprogramsalternately call each other

in such a way that, each time, the jumpis not madeto the beginning of the

other subprogram but to the point at which the other subprogram was last

interrupted (see Figure 6.14). In this case (where each subprogram plays

Subprogram #1 Subprogram #2
"iA

(8, is on

top of (a, is on

stack) top of

— stack)
--—-—«

“1
(g, is on2 NY
top of Bowy

stack)

(a, is on

ap top of

. stack)
(84 is on

top of

stack) B3 by_
A

pp

Po= (0, is on
a

3 top of
stack)

| NS
| Seo—_

I
Figure 6.14 Coroutines.

80 Stacks and Subroutines / Chap. 6

the role of a calling program as well as a subroutine) the subprogramsare
referred to as coroutines.

Coroutines linkages can be implemented quite easily in the PDP-11.

Suppose that 8, is on top of the system stack when subprogram #1 is

started. When #1 reaches a, - 2 andis readyto transfer control to #2 (at B,),
it issues

JSR PC,@(SP)+

which doesthe following:

1. Pops the top of the system stack (i.e., 6,) into temporary location.

2. Pushes PC (1.e., a,) onto the system stack.

3. Copies the contents of the temporary location into PC.

Thus, a, is now on top of the system stack and #2 starts executing at 8, .

When #2 reaches 6, - 2 and is ready to transfer control to #1 (at a,), it
issues the same JSR PC,@(SP)+ instruction. The return address 8, will now

replace a, at the top of the stack and execution will start at a,. And so

forth.

EXERCISES

6.1. What does the following program segment compute?

CLR RO
JSR PC ,SUB
HALT

SUB: DEC R2
BMI EXIT
ADD R1,RO
JSR PC,SUB

EXIT: RTS PC

6.2 Trace the execution of the following program, indicating after each

instruction’s execution the octal contents of R3, R4, SP, and the

system stack.

LC=.
.=500+LC
START: MOV PC,SP

TST - (SP)
MOV #123,R3

Exercises

JSR R3 , GAME
~-WORD 5
HALT

GAME: MOV (R3)+,R4
DEC R4
BEQ EXIT
JSR R3 ,GAME
-WORD 1

EXIT: RTS R3
. END

6.3 Consider the following program:

LC=.
.=500+LC
START: MOV #4567,R0

JSR PC,BTOA
HALT

SUBROUTINE BTOA
BTOA CONVERTS THE OCTAL CONTENTS OF RO INTO ASCII AND PRINTS IT OUT.

BTOA: CMP #7,R0 3N LESS THAN OR EQUAL TO 7?
BHIS Bl ;IF SO, CONVERT AND PRINT
MOV RO,-(SP) ;ELSE, SAVE N
BIC #177770, (SP) ;REMOVE ALL BUT LAST 3 BITS FROM SAVED N
CLC sPREPARE TO SHIFT N RIGHT
ROR RO ;SHIFT N
ASR RO ;RIGHT
ASR RO ;THREE BITS
JSR PC ,BTOA sCONVERT WHAT'S LEFT
MOV (SP)+,RO ;GET BACK SAVED N

Bl: ADD #'0,RO ;CONVERT TO ASCII
LOOP: TSTB 177564 31S PRINTER READY?

BPL LOOP 3IF NOT, IDLE
MOV RO, 177566 ;ELSE, PRINT CHARACTER
RTS PC ;AND RETURN
~END START

Showthe contents of the system stack whenit is at its fullest.

6.4 Consider the following program:

LC=.
.=500+LC
START: MOV PC,SP

TST - (SP)
MOV SIZE ,R2
MOV #ARRAY ,R1
MOV (R1)+,RO
JSR PC ,COMPR
HALT

SIZE: -WORD 6
ARRAY: -WORD 137,10,205,647,53,122
3 SUBROUTINE COMPR
COMPR: DEC R2

BEQ RETURN
CMP (R1)+,RO
BLT REPEAT
MOV -2(R1),RO

REPEAT: JSR PC ,COMPR
RETURN: RTS PC

~ END START

82

6.5

6.6

6.7

6.8

6.9

6.10

Stacks and Subroutines / Chap. 6

(a) What is the final octal contents of RO?

(b) Show the octal contents of the system stack whenit is at its

fullest.

(c) Describe briefly what the program does (with an arbitrary collec-

tion of numbers in ARRAY).

Write a subroutine DUMPREGthat prints out the octal contents of

all the general-purpose registers and of the PSR as they appear just

before the subroutine is entered. Before DUMPREGis exited, the

original contents of all the registers must be restored. DUMPREG

may call other subroutines, such as CONVERT (for converting octal

contents into ASCII), and PRINT (for printout). (You can use

SUMPREGfor debugging.)

Write a subroutine whose parameters are the first address ADDR of

an N-byte array, the number N, and a character CHAR. Thesub-

routine puts 1 in RO if CHAR is found in any of the N bytes, and

0 otherwise. Write a main program (using the above subroutine)

which accepts a string of characters from the teletype and prints

out (in octal) the number of these characters foundin thearray.

Write a recursive subroutine which adds up all the 16-bit 2’s-com-

plement numbers stored in an N-wordarray starting at location X.

Assume that X is stored in RO, N in R1, and the sum in R2.(This

can be easily done without recursion, but try it recursively anyway.)

Write a recursive subroutine that finds a positive number N in RO

and leaves FACT(N) in R1.

Write a recursive subroutine that finds an integer N 2 1 in RO and

leaves FIB(N) in R1.

A binary tree T with root N is a graph that can be defined recursively

as follows:

Basis: If T is a single node N, then

T is a binary tree with root N.

Induction step: (See the figure on

the right.) If T consists of a

node N connected to nodes LS

(left successor) and RS (right

successor), and if LS and RSare

the roots of binary trees (de-

noted LT and RT,respectively),

then T is a binary tree with root

N.

Exercises 83

As an example, Figure 6.15(a) shows a binary tree whose rootis

labeled 0 and whose nodesarelabeled (in octal) 0,1,2,..., 14.

In the PDP-11, a k-node tree can be represented by a k-word array

with base address TREE. Node numberN is represented in location

TREE+2N.The high byte of TREE+2N contains the number LS of

the left successor of N, and the low byte the numberRSoftheright

successor of N.

Figure 6.15(b) shows the representation of the tree of Figure

6.15(a).
(a) The inorder traversal of a binary tree T is defined recursively

as follows:

Basis: If T is a single node N,visit N.

Induction step: If T consists of a node N connected to binary trees

LT and RT, then: (a) traverse LT in inorder; (b) visit N; (c) tra-

verse RT in inorder.

Write a recursive subroutine which prints out the node numbers of

a given binary tree as they appear in inordertraversal. (For example,

for the tree of Figure 6.15 the printout should be 3,1,4,0,7,5,13,11,

14,10,12,2,6.)
=

- n
N

z
a

”
n

0 TREE 1
1 3
2 5
3 0
4 0
5 7
6 0
7 0

10 11
11 13
12 0
13 0
14 0

(b)
Figure 6.15 Binary tree and its representation.

84 Stacks and Subroutines / Chap. 6

(b) The height of a binary tree T, denoted H(T), can be defined

recursively as follows:

Basis: If T is a single node N, then H(T) = 0.

Induction step: If T consists of a node N connected to binary trees LT

and RT,then

H(T) = 1 + maximum (H(LT),H(RT))

Write a recursive subroutine that prints out the height of a given

binary tree. (For example, for the tree of Figure 6.15, the printout

should be 5.)

ARITHMETIC
OPERATIONS

In this chapter we describe in detail how the condition codes in the

PSR are influenced by arithmetic operations. In particular, we examine how

the C and V codes behave and howtheycan be used for overflow indication

and in double-precision arithmetic. We also have a closer look at the TST

and CMPinstructions, at branch instructions, and at shift instructions. The

chapter closes with an ASCII-to-binary conversion program which illustrates

some of the points made previously.

7.1

CARRY AND OVERFLOW UNDER ADDITION

As already mentioned in Section 3.2, the C (Carry) and V (oVerflow)

condition codes in the PSR are influenced by the result of an ADDinstruc-

tion in the following manner:

85

86 Arithmetric Operations / Chap. 7

c= 1 if addition resulted in carry from MSB

0 otherwise

v- 1 if operandsare of samesign and their sumis of the opposite sign
0 otherwise

Examples

For simplicity, let us assume that the PDP-11 has 4-bit words, capable
of accommodatingintegers from -8 to +7.

4-bit 2's- Final Value of
Example Complement Binary

(Decimal) Addition C Vv Result Is

1 0001

+ (+2) + 0010 0 0 OK

3 0011

5 0101

+ (+6) +0110 0 1 wrong

11 1011

-6 1010

+ (+7) +0111 1 0 OK

1 £0001

1

-6 1010

+ (+3) +0011 0 0 OK

-3 1101

-5 1011

+ (-2) +1110 1 0 OK

-7 ¢71001
1

-6 1010

+ (-6) + 1010 1 wrong

-12 0100
4 O

Generally, the following can be readily deduced:

1. If both numbers are positive, C is always 0 (since both MSB’sare 0).

The sum is incorrect only if it is negative (V = 1).
2. If both numbers are negative, C is always 1 (since both MSB’s are 1).

The sum is incorrect only if it is positive (V = 1).

Sec. 7.2 / Carry and Overflow under Subtraction
87

3. If numbers have opposite signs, V is always 0 and the sum is always

correct. C can be either 0 or 1.

In conclusion, the result of adding two numbers is incorrect only if

V=1.

7.2
CARRY AND OVERFLOW UNDER SUBTRACTION

The way in which the C and V condition codes are influenced by the

result of a subtraction operation (i.e., by SUB or CMPinstruction) is the

following:

c= 1 if subtraction did not result in carry from MSB

0 otherwise

1 ‘if operands are of opposite signs and theresult

V= is of the same sign as the numbersubtracted*

0 otherwise

Examples

Again, weshall use 4-bit words.

4-bit 2’s- Final Value of
Example Complement Binary

(Decimal) Subtraction C V Result Is

6 0110

- (+3) +1101 0 0 OK

3 0011
]

4 0100

- (-2) + 0010 1 0 OK

6 0110

4 0100

- (-5) + 0101 1 1 wrong

9 1001

*In SUB the numbersubtracted is the source operand; in CMPit is the destination

operand.

88
Arithmetric Operations / Chap. 7

4-bit 2’s- Final Val f

Example Complement nar ware o Binary

(Decimal) Subtraction Cc Vv Result Is

5 0101
- (+7) + 1001 1 0 OK

-2 1110

-3 1101
- (+2) +1110 0) 0 OK

-5 gf1011

1

-2 1110

- (-S) +0101 0 0 OK

3 ¢0011

1

~4 1100

~(+6) + 1010 0 1 wrong
-10 £0110

Inspecting these examples we can conclude (as we did with addition)

that the result of subtraction is incorrect only if V = 1.

The negation operation (NEG), when applied to a nonzero number,

results in C = 1; whenit is applied to O, it results in C = 0. Notice that

the negation of a number (which consists of 1’s-complementing it and then

adding 1) produces a carry only when the numberis QO. Thus, a negation

operation results in C = 1 if there is no carry, and in C = 0 if thereis carry.

DOUBLE-PRECISION ARITHMETIC

In many applications the range of numbers accommodated bya single

computer word is not sufficient, and two consecutive words are employed

to store a number. In the PDP-11 a two-word, or double-precision number

is stored in a 32-bit 2’s-complement form. The low-order word holds the

least significant bits of the number, while the high-order word holds the

Sec. 7.3. / Double-Precision Arithmetric 89

most significant bits of the number. The MSBof the high-order word is the

sign bit of the entire number:

15 0 15 0

High-order Low-order

sign ~ . 7
2's complement value

With double precision, the PDP-11 can handle numbers up to

2,147,483,647,,, as compared to 32,767, with single precision!

How do we add two double-precision numbers, say a and 8? Suppose

that a is stored in AL and AH, g in BL and BH,and a + £ is to be stored

in BL and BH (wherethesuffix L denotes low-order words and H high-order

words). To compute a + @ it is not sufficient to issue ADD AL,BL followed

by ADD AH,BH,since this will ignore a possible carry from the low-order

words. This carry, which is the value of C after the low-order addition is

executed, must be added to AH (or to BH) just before the high-order addi-

tion is performed. This operation is facilitated by the instruction ADC d,

which performs (d) <« (d) + C. Thus, to compute a + 6 we issue

ADD AL,BL
ADC BH
ADD AH,BH

Examples

For the remainderof this section,all examples will assume 4-bit words.

Example 1 Example 2

Initial { an AL 0001 1001 “a7> 0001 1001
y BH BL 0011 0101 0011 0111

After { x AL 0001 1001 0001 1001
ADD AL,BL BH BL 0011 1110 (C =0) 0011 0000 (C = 1)

After { i AL 0001 1001 0010 1001
ADC AH BH BL 0011 1110 0011 0000

After {an AL 0001 1001 0010 1001
ADD AH,BH BH BL 0100 1110 <a+f-> 0101 0000

90 Arithmetric Operations / Chap. 7

To negate a double-precision number a stored in AL and AH,we1’s-
complement AH, 1’s-complement AL, add 1 to AL, and add the resulting
carry to AH. The 1’s complementation of AH can be done by negating
it and subtracting 1; the 1’s complementation and incrementation by 1 of
AL can be done simply by negating it. If the negation of AL does not
produce a carry (and henceresults in C = 1), the negation of a is complete.
If the negation of AL produces a carry (and henceresults in C = 0), then
the addition of this carry to AH can be effected by neglecting to subtract 1

from AHafterit is first negated. In conclusion, a can be negated by negating

AH, negating AL, and finally subtracting C from AH. The latter operation

is facilitated by the SBC d instruction, which performs(d) < (d) - C. Thus,
to compute -a, we issue

NEG AH
NEG AL
SBC AH

Examples

Example 1 Example 2

(Initially) AH AL 0101 1011 <a> 0101 0000

(After NEG AH) AH AL 1011 1011 1011 0000

(After NEG AL) AH AL 1011 0101 (C=1) 1011 0000 (C =0)

(After SBC AH) AH AL 1010 0101 <-a~—> 1011 0000

Suppose that a and @ are stored as before and we wish to compute

a - 8 and store it in AL and AH.We can dothisbyfirst negating 6 and then

adding the result to a (using the double-precision negation and addition

proposed above). These operations are equivalent to subtracting BL from

AL, adding the carry to AH, subtracting BH from AH, and subtracting 1

from the result (since the second subtraction is tantamount to adding to

AHthe negative, rather than the 1’s complement, or BH). Adding the carry

to AH and then subtracting 1 from the final result can be combined (as was

done with double-precision negation) by subtracting from AH the value of

C produced by the low-order subtraction. Thus, to compute a - 8, we issue

Sec 7.4. / The TST and CMP Instructions
91

SOR BAL
SBC AH

SUB BH,AH

Examples

Example | Example 2

‘tall AH AL 0101 1001 “a> 0101 0111
Initially {en BL 0011 0101 =<$> 0011 1010

After {an AL 0101 0100 (C =0) 0101 1101 (C=1)
SUB BL,AL BH BL 0011 0101 0011 1010

After (Au AL 0101 0100 0100 1101
SBC AH BH BL 0011 0101 0011 1010

After {a AL 0010 0100 +«a-B-> 0001 1101
SUB BH,AH BH BL 0011 0101 0011 1010

O

From Sections 7.1 and 7.2 we know that the result of addition or sub-

traction is incorrect only if it produces overflow (i.e., V = 1). In the double-

precision case this means that the result of the high-order addition or sub-

traction produces V = 1. Overflow produced by the low-order operation is

irrevelant.

7.4

THE TST AND CMP INSTRUCTIONS

The instruction CMP s,d (or CMPBs,d) forms the difference (s) - (d)

inside the ALU (not in d!). It is most often used to set the Z, N, C, and V

condition codes so as to facilitate the comparison of (s) and (d). It is impor-

tant to note that the C and V codesresulting from CMPareset according to

the rules of subtraction (stated in Section 7.2). We shall elaborate on the

applications of CMPin Section 7.5.

The instruction TST d (or TSTB d) executes (d) « (d). Its most common

purpose is to set the Z and N condition codes so as to facilitate the deter-

mination whether(d) is zero or nonzero, positive or negative.

¥Z
Arithmetric Operations / Chap. 7

Examples

Results of Instruction

Contents of CM TST 1000 TSTB 1000 TSTB 1001

Word Addressed 1000 Z N Z N Z N

000000 1 0 1 0 1 0

000001 0 0 0 0 1 0

000400 0 0 1 0 0 0

000401 0 0 0 0 0 0

000200 0 0 0 1 1 0

100000 0 1 1 0 0 1

100001 0 1 0 0 0 1

177500 0 1 0 0 0]

100200 0 1 0 1 0 1

000600 0 0 0 1 0 0

O

Although CMP and TST are most often used for comparing andtesting

numbers, they are sometimes used as a “‘clever’’ way for incrementation or

decrementation of registers. For example:

TST -(SP) ;(SP)—(SP)-2
TST (R5)+ 5 (R5)~—(R5)+2
CMP (RO)+,(RO)+ 3(RO)-(RO)+4

Any time that a TST or CMPinstruction is not followed by a conditional

branch instruction, it is most likely being used for autoincrementing or

autodecrementinga register.

Note that TST (R5)+ is illegal when R5 holds an odd address(since TST

is a word instruction). Thus, great caution should be exercised by the pro-

grammerin using TST and CMPfor incrementation and decrementation.

While TST (or TSTB) is intended for testing entire words (or bytes), the

BIT (or BITB) instruction can be used to test selected portions of words

(or bytes). Specifically the instruction BIT d (or BITB d) forms the AND

product of (s) and (d) inside the ALU (not in d!), enabling us to test only

those bits in d which correspond to 1-bits in s. For example, to branch to L

if either bit 7 or bit 15 of RO (or both) are 1, we can issue

BIT #100200,R0
BNE L

7.5

MORE ON BRANCH INSTRUCTIONS

In Section 4.8 we listed 16 conditional branch instructions. Thefirst

eight,

BEQ, BNE, BPL, BMI, BVC, BVS, BCC, BCS

are best suited to test whether the result of an arithmetic operation is zero or

nonzero, positive or negative, did or did not cause overflow, and did or did

not produce a Carry.
To compare two numbers, say a in A and @ in B,it is most convenient

to issue

CMP A,B

(which forms a - B) and then anyofthe followinginstructions:

Mnemonic Branch to q if*

Signed BGE q Ny V=0 (a 2 B)

conditional BLT q Nvvel (a < B)
branch BGT q ZV(NW V)=0 (a > £)
ranenes BLE q ZV(NWV)=1 (a < B)

Unsigned BHI q CVZ=0 (a > B)
‘ional BLOS q cVz=1 (a < £)

cones BHIS q C=0 (a > 8)

ranenes BLO q C=1 (a < p)

The ‘‘signed”’ conditional branches regard a and 6 as 16-bit 2’s-comple-

ment numbers and compare them accordingly. The “‘unsigned”’ conditional

branches regard a and 6 as 16-bit positive numbers (with the MSB no longer

regarded as a sign bit, but as the coefficient of 21° in the binary representa-

tion), and compare them accordingly.

As a general rule, BGE, BLT, BGT, BLE, BEQ, and BNEshould be used

to compare program data. BHI, BLOS, BHIS, BLO, BEQ, and BNEshould

be used to compare CM addresses.

For example, consider the following code which clears a section of CM

starting at A up to and including B (where is a higheraddress):

*The rules for the V operation are: 0 +0 =0,0+1=1,1+1 = 0. The rules of the V
operation are:0+0=0,0+1=1,1+1=1.

93

A=1000
B=2000

MOV #A,RO
MOV #B,R1

LOOP: CLR (RO)+
CMP R1,RO
BGE LOOP

BGEtreats the operandsas 2’s-complement numbers. The loop will terminate

when (RO) = 2002, which is the correct action. Suppose, however, that the
first two assignments are

A = 070000

B = 170002

(which may be legal addresses in some PDP-11 models). After CLR (RO)+

is first executed, (R1) = 170002 and (RO) = 070002. Hence (R1) - (RO)

= 100000, which is a negative number, causing the loop to terminate pre-

maturely.

The correct solution is to use a branch instruction that treats the op-

erands as unsigned numbers. The following codeis correct:

LOOP: CLR (RO)+
CMP R1,RO
BHIS LOOP

BHIS will work correctly regardless of the values of A and B.

Table 7.1 lists a number of examples (using 4-bit words) that illustrate

how the signed and unsigned conditional branchesare influenced by various

combinations of condition codes. In each example the first row lists a, the

second rowlists 6 (preceded by a minussign), and the third rowlists a - 8

(the number formed by CMP A,B). The checkmarksindicate the conditional

branch instructions which, when appearing after CMP A,B, cause a branch.

It is always advisable to use BGE and BLT rather than BPL and BMI

when comparing two signed numbers. For example, suppose that we want

the program to branch to L1 if (A) < (B) and to L2 otherwise. We may

write

CMP A,B
BMI L1

L2: ---

If A happens to contain 177772 (i.e., -6) and B happensto contain 077777,

then CMP A,B forms (A) - (B) = 077773, with Z = 0, N = 0, C = 0, V=1.

/
/s

/s
/s

0
0

0
0

0
0

0
L
1
0
0

€

LLOL
-

(s-)
-

OLLt
c-

L
/

/
/

/
L

L
0

0
0

0
L

00007
0

OLOL
-

(9-)
-

OLOL
9-

/
/

/s
/s

l
l

L
0

L
L

0
LLUL

L-

OLLL
-

(Z-)
-

LOLL
€-

L
/

/
/

iS
0

l
L

L
0

0
0

Lito?
6-

LOLO
-

($+)
-

OOLL
-

L

/s
/s

/s
/s

0
L

L
0

0
L

0
o
o
r
?

b-

0
1
0
0

-
(Z+)

-
OLLL

Z-

/s
/s

/s
/

t
L

l
0

L
l

0
LOLL

€-

OLLO
-

(9+)
-

LLOO
€

L
/

/
/

iS
L

L
0

0
0

0
L

0
0
0
0

0

LOLO
-

(s+)
-

LOLO
S

L

is
i

/s
/

0
0

0
0

0
0

0
oolo*

b

L100
-

(€+)
-

LLLO
L

O
1
8

SIH@
sOl18

 IH9
3
7
8

6198)
«6178

398)
=
Z
A
D
(
A
A
N
)
A
Z
A
A
N

A
9

N
Z

Aueulg
yewioaq

e
e
,
a

~
m
s

a
e
”

SjPUOIIIPUOD
p
a
u
s
i
s
u
N

SJRUOIIIPUOD
PaUsIS

Sapo.)
U
O
!
I
I
P
U
O
Z
JURIINSIY

a
j
d
u
e
x
y

s
o
j
d
w
e
x
y
y
s
u
e
g

1
2
3
7
8
V
L

95

96 Arithmetric Operations / Chap. 7

The program will thus branch to L2, although (A) < (B). However, if we
write

CMP A,B
BLT L1

L2: ---

the program will branch to L1. (What happens when CMPA,Bis followed by

BLO L1?)

Unsigned conditional branches are often used in the comparison of

double-precision numbers. For example, suppose that a and 6 are positive

double-precision numbers stored as described in Section 7.3. Then a > 8

if (AH) > (BH), or if: (1) (AH) = (BH), and (2) (AL) > (BL), where (AL)

and (BL) are unsigned! Thus, to jump to X if a > 8 and to Y otherwise, we

write

CMP AH,BH
BGT X
BLT Y
CMP AL,BL
BHI x

Another use of the unsigned branch instructions is in testing for two

conditions simultaneously. Suppose that we want to know if (RO)is less

than 0 or greater than 7 and if so, to branch to location X. We can write

CMP RO,#7
BGT X
TST RO
BLT X

An alternative solution is

CMP RO,#7
BHI xX

This works because a negative number, when treated as an unsigned number,

is always ‘‘higher”’ than’ any positive number. It is worth mentioning that

another solution would be

BIT #177770,R0
BNE X

Sec. 7.6 / Shift Instructions
97

Almost every single-operand and double-operandinstruction influences

the Z and N condition codes and manyofthese instructions influence the C

and V codes as well.* This means that a compareora test instruction which

one maybe temptedto insert after an operation and before a branchinstruc-

tion are actually redundant. For example,in

DEC R4
CMP R4 ,#0
BNE LOOP

the CMPinstruction is superfluous; in

SUB A,B
TST B
BEQ NEXT

the TST instruction is superfluous.

7.6
SHIFT INSTRUCTIONS

The PDP-11 has a numberof instructions that shift the contents of a

word or a byte 1 bit to the left or 1 bit to the right (see Figure 7.1):

ROL, ROLB (rotate left)

ROR, RORB (rotate right)

ASL, ASLB (arithmetic shift left)

ASR, ASRB (arithmetic shift right)

To understand the operation of ROL and ROR (or ROLB and RORB),

we take the destination word (or byte) and form a “‘ring”’ by joiningits ends

via a (fictitious) 1-bit register which holds the condition code C. The effect

of ROLis to rotate the contents of this ring 1 bit clockwise; the effect of

RORis to rotate the contents counterclockwise.

The effect of ASL (or ASLB) is to shift the contents of the destination

word (or byte) 1 bit left, with the rightmost bit replaced by 0 and the

leftmost bit replacing the old value of C. This operation is equivalent to

multiplying the contents of the destination (regarded as a 2’s-complement

*For details, see the ‘‘PDP-11 Processor Handbook.”’

ROL

ROLB

ROR

RORB

ASLB

ASR

ASRB

98

[ce | poda|

15 0

Byte:

LLEN]
[|
15 8 7 0

Word:

a
__j

15 0

Byte:

0

Word:

j I 1 J i j--0

15 0

Byte

Figure 7.1 Shift instructions.

poepe
8 7

Sec. 7.7 / Example: ASCII-to-Binary Conversion 99

signed number) by 2. The V codeis set to 1 if the result of this multiplica-

tion is out of bounds.

Theeffect of ASR (or ASRB)is to shift the contents of the destination

word (or byte) 1 bit right, with the leftmost bit remaining unchanged and

the rightmost bit replacing the old value of C. This operation is equivalent to

dividing the contents of the destination by 2 (and subtracting 1/2 if the con-

tents is odd). An exception:- 1 remains 1.

Examples

(A) After ASLA After ASR A

000032 000064 (= 32 X 2) 000015 (= 32/2)

177746 (= -32) 177714 (= -64) 177763 (= -15)

7.7

EXAMPLE: ASCII-TO-BINARY CONVERSION

To illustrate the use of some ofthe instructions and features introduced

in the preceding sections, we shall present a program which accepts a decimal

number N from the teletype and converts it into a 16-bit 2’s-complement

form. N may be prefixed with + or - and is always followed by a carriage

return. It should not exceed 32767,, in magnitude.
The program (flowcharted in Figure 7.2 and listed in Figure 7.3) stores

the input characters in a byte array whose base address is STRING. The

binary equivalent of N is left in R2. (If N is out of bounds, R2 is left with

100000, .) The program uses the following subroutines:

INPUT (stores the input characters in array STRING;uses PRINT)

PRINT (prints out contents of R5)

ATOB (computes the binary equivalent of N and puts it in R2;

uses MUL)

MUL [computes (RO)*(R1) and puts the result in R2]

The algorithm used by the multiplying subroutines MUL is much more

efficient than that used by MULTin Section 6.5. It proceedsas follows:

1. Set (R2) to 0.

2. If bit 0 of (R1) is 1, add (RO) to (R2). Otherwise, skip this step.

(R3) «+ STRING

(R3) « STRING

 No
Character

entered

(R5) + Character

 No

+ |STRING

1

Print (R5)

Figure 7.2 Flowcharts for ASCII-to-binary program.

100

Initialize

sign flag
and

pointer

Yes

Convert

character

to binary
and add to

partial

result

multiplied
by 10.

4

ATOB (R3) = pointer to next character of N
(R4) = currently scanned character of N
(R5) = N's sign flag (0 if N >0; 1 if N< 0)

(R5) « 0 (R2) = binary equivalent of N
(R4) + ((R3))} (RO),(R1) = input parameters of MUL
(R3) « (R3)+1

No

No
>Check sign

 Yes
[(R5) + (R5)+1] —[(R3) + (R3)-1]

eke _—_S)

Pick up next character

Yes

 No

(R4) « (R4)A17 norma]
(RO) « 10. exit
(R1) « (R2)

No (R2) + 100000

overflow

exit

Figure 7.2 (cont.)

101

multiplicand

(Rl) = multiplier
(R2) = product = (RO)*(R1)

(R2) « 0

{

Bit 0 Yes
of (R1) is

0

No

Clear C bit
Rotate (R1) 1 bit right

Arithmetic-shift (RO) 1 bit left

Yes No

Figure 7.2 (cont.)

3. Shift (RO) left one bit and (R1) right onebit.

4. If (R1) = 0, R2 contains (RO)*(R1); exit. Otherwise, return to step 2.

That this algorithms works for positive numbersis clear from the follow-

ing example (where all numbersare binary):

102

Sec. 7.7. / Example: ASCII-to-Binary Conversion
103

0 ...00011010 < Initial (RO)

0 ...01001011 < Initial (R1)

11010

11010

11010

11010
11110011110 < Final (R2) [sum of shifted (RO)’s]

shifted (RO)

To assure that the algorithm works for negative numbers also, the left

shifting of (RO) must be donearithmetically (with ASL rather than ROL)

and the right shifting of (R1) must be donecircularly (with ROR ‘rather

than ASR), with C cleared before rotation.

If the product (RO)*(R1) is out of bounds, the addition in step 2 or

the left shifting in step 3 will produce V = 1, which can be used by the

calling program as an error indicator.

The subroutine ATOBstarts by setting a “‘flag’”’ (stored in R5) to 0 if

N is positive and to 1 otherwise. It then converts |N| to binary by the follow-

ing algorithm:

1. Set (R2) to 0.

2. Pick up the next character. If it is a nondigit, R2 contains the binary

equivalent of |N|; if (R5) = 1, negate (R2) and exit. If the character

is a digit:

3. Multiply (R2) by 10,) (or 12,) and add toit the binary equivalent

of the digit picked up in step 2. Return to step 2.

For example,if N = 2591, R2 will successively contain, in decimal:

0
(0X10)+2 = 2
(2X10)+5 = 25

(25X10)+9 = 259
(259X10)+1 = 2591

or, in octal:

0
(0X12)+2 =2
(2X12)+5 = 31

(31X12)+11 = 403
(403X12)+1 = 5037

104

TITLE ASCTOBIN
; CONVERTS A TYPED-IN DECIMAL NUMBER N INTO ITS BINARY EQUIVALENT.
3N MAY BE PREFIXED WITH + OR - AND MUST BE FOLLOWED BY A CARRIAGE RETURN.
;THE BINARY EQUIVALENT OF N IS LEFT IN R2. IF N'S MAGNITUDE EXCEEDS
332767 DECIMAL, R2 WILL BE LEFT WITH 190909 OCTAL.
LC=.
~=4+LC

-WORD 6,9,12,2 sINITIALIZE ERROR VECTORS
. =509+LC ;ALLOW FOR STACK SPACE
START: MOV PC ,SP

TST -(SP) INITIALIZE SP TO START

KBSTAT=177569
KBDATA=177562
PRSTAT=177564
PRDATA=177566
LF=12
CR=15

> MAIN PROGRAM
MOV #STRING ,R3 ;(R3)=STRING
JSR PC, INPUT ;STORE INPUT STRING IN ARRAY
MOV #STRING ,R3 ;(R3)=STRING
JSR PC ,ATOB sCONVERT STRING INTO BINARY
HALT

STRING: .BLKB 29. ;STORAGE FOR TYPED-IN STRING
.
9

INPUT
ECHOES TYPED-IN CHARACTERS AND STORES THEM IN BYTE ARRAY WHOSE BASE

sADDRESS IS IN R3. EXITS AFTER CR IS TYPED. CHANGES R3, RO.
INPUT: TSTB KBSTAT 31S CHARACTER IN?

BPL INPUT ;1F NOT, WAIT
MOV KBDATA,R5 ;(R5)=CHARACTER
JSR PC PRINT ;PRINT CHARACTER
BIC #177699 ,R5 REMOVE CHECK BIT
MOVB R5,(R3)+ ;STORE CHAR. IN ARRAY, UPDATE INDEX
CMP #CR,R5 31S CHARACTER CR?
BNE INPUT ;IF NOT, ACCEPT NEXT CHARACTER
MOV #LF RS ;ELSE,
JSR PC ,PRINT 3 MOVE TO NEXT LINE
RTS PC sEXIT

3 PRINT
; PRINTS CONTENTS OF R5. REGISTERS UNCHANGED.
PRINT: TSTB PRSTAT 31S PRINTER READY?

BPL PRINT 3IF NOT, WAIT
MOV R5,PRDATA ;IF SO, PRINT (R5)
RTS PC ° sEXIT

3 ATOB
> CONVERTS INTO BINARY A DECIMAL NUMBER N STORED IN ASCII IN BYTE ARRAY
sWHOSE BASE ADDRESS IS IN R3. N MAY BE PREFIXED WITH + OR - AND MUST BE
;FOLLOWED BY A NON-DIGIT. THE BINARY EQUIVALENT OF N IS LEFT IN R2. IF
3N'S MAGNITUDE EXCEEDS 32767 DECIMAL, R2 IS LEFT WITH 19900 OCTAL.
; REGISTER ALLOCATION:
; (RP) (Rl) ARE USED FOR INPUTTING MUL PARAMETERS

CONVERTED NUMBER
(POINTER TO NEXT CHARACTER
(R4) SCANNED CHARACTER
(R5) SIGN FLAG (@ IF N IS POSITIVE, 1 OTHERWISE)

; R3)

ATOB: CLR R5 ;ZERO SIGN FLAG (ASSUME N POSITIVE)

Figure 7.3 ASCIl-to-binary program.

MOVB (R3)+,R4 ;(R4)=SCANNED CHARAC., UPDATE INDEX
CMPB #'+,R4 51S CHARACTER +?
BEQ ATOB2 -IF SO, START CONVERTING
CMPB #'-,R4 >1S CHARACTER -?
BNE ATOB1 SIF NOT, N IS UNSIGNED
INC R5 ;IF SO, SET SIGN FLAG FOR NEGATIVE N
BR ATOB2 >START CONVERTING

ATOB1: DEC R3 ;CHARACTER IS DIGIT. BACKTRACK
ATOB2: CLR R2 “INITIALIZE RESULT TO 9
ATOB3: MOVB (R3)+,R4 ;(R4)=SCANNED CHARACTER. UPDATE INDEX

CMPB #'9,R4 ;IF '@>(R4) (NONDIGIT)
BHI ATOB4 ; PREPARE FOR EXIT
CMPB #'9,R4 SIF '9<(R4) (NONDIGIT)
BLO ATOB4 ; PREPARE FOR EXIT
BIC #177769,R4 sCONVERT DIGIT TO BINARY
MOV #19. ,RO ;(R@)=19. (MUL PARAMETER)
MOV R2,R1 ;(R2)=(R1) (MUL PARAMETER)
JSR PC ,MUL 5 (R2)=(RO)*(R1)=19.*(R2)
BVS ATOB6 ;IF OVERFLOW, PREPARE FOR EXIT
ADD R4,R2 ;(R2)=(R4)+(R2)
BVS ATOB6 -IF OVERFLOW, PREPARE FOR EXIT
BR ATOB3 ;SCAN NEXT CHARACTER

sNORMAL EXIT
ATOB4: TST R5 sTEST SIGN FLAG

BEQ ATOB5 ;IF NUMBER IS POSITIVE, EXIT
NEG R2 sELSE, (R2)=-(R2)

ATOBS: RTS PC sEXIT
sOVERFLOW EXIT
ATOB6: MOV #1P9OPP ,R2 ;(R2)=109999

RTS PC sEXIT

: COMPUTES (RO)*(
MULU
R1) AND STORES RESULT IN R2. IF RESULT'S MAGNITUDE

;EXCEEDS 32767 DECIMAL, V BIT IS SET TO @. R3, R4, R5 NOT USED.

MUL: CLR R2 ;(R2)=9
MUL1: BIT #1,R1 ;TEST BIT O OF R1

BEQ MUL2 ;IF @, DON'T ADD
ADD R@,R2 sELSE, (RO)=(RD)+(R2)
BVS MUL3 ;EXIT IF OVERFLOW

MUL2: CLC ;CLEAR C BIT
ROR Rl ;ROTATE R1 1 BIT RIGHT
ASL RO ;ARITH.-SHIFT (RQ) 1 BIT LEFT
BVS MUL3 ;EXIT IF OVERFLOW
TST Rl ;TEST (R1)
BNE MUL1 ;IF NOT @, KEEP MULTIPLYING

MUL3: RTS PC sEXIT

. END START

Figure 7.3 (cont.)

If the multiplication or the addition in step 3 produces an overflow,

100000,is stored in R2as an error indicator.

Note that an ASCII digit can be converted to binary simply by picking

up its rightmost 4 bits (or ““ANDing”’ it with 17,). For example, 5 in ASCII

is 065, and 000065 A 17 = 000005; 9 in ASCII is 071, and 000071 A 17

= 000011.

105

7.1

7.2

7.3

106

EXERCISES

What are the octal contents of RO and the PSRafter each instruction

in the following program section is executed? (You may need the
‘*PDP-11 Processor Handbook”’ forassistance.)

CLR RO
DEC RO
ADD #77777 ,R0
ADD #2,RO
COM RO
SUB #177777 ,RO
ADD #100000 ,RO
SUB #1,RO
BIC #54321 ,RO
ASL RO
ASR RO
NEG RO
ROR RO

Consider the following program segment:

ADD A1,B1
BVC Ll
BCC L2
SUB A2,B2
BCC L3
BVC L4
BR L5

After the segment is executed, where does the program goto if the

contents of Al, B1, A2, and B2 areas follows:

(A1) and (A2) (B1) and (B2)

(a) 012306 100334
(b) 132550 052267
(c) 041316 060215
(d) 150043 117720
(e) 117720 150043

Given: (1000) = 177465, (1002) = 000313.
Determine the values of the Z, N, C, and V codes after each one

of the following instructions is executed. (Entries marked with an X

need notbefilled.)

Exercises 107

<Instruction ZNC

TST 1000

TSTB 1000

TSTB 1001

TST 1002

TSTB 1002

TSTB 1003

CMP 1000,1002

ADD 1000,1002

x
K
K
K
K
K

K
m

mK
K
K

OK

7.4 The instruction CMP A,B is followed by a branch instruction of the

7.5

7.6

form B ...L1, where... is any of GE, LT, GT, LE, HI, LOS,HIS,

or LO. Which of these eight instructions will result in a branch to

location L1 if the contents of A and B are as follows?

(A) (B)

(a) 017522 017522
(b) 104311 104311
(c) 177602 000176
(d) 054272 001016
(e) 177705 177613
(f) 004640 017227
(g) 105352 176051
(h) 151547 031246

The following program segment is supposed to clear the words ad-

dressed 000000 through 100000. Complete the fourth instruction.

CLR RO
LOOP CLR (RO)+

CMP #100000 ,RO
B... LOOP
HALT

Assume that X and X+2 contain a double-precision number p, and

Y and Y+2 contain the double-precision number q. (X and Y are the

low-order words.) Describe what the following program segment does.

ADD X+2 ,X+2
ADD X,X
ADC X+2
CMP X+2 ,Y+2
BLT L2
BGT L1
CMP X,Y

108

7.7

7.8

7.9

7.10

7.11

Arithmetric Operations / Chap. 7

BLOS L2
Ll: MOV #1,R0

HALT
L2: MOV #2,RO

HALT

Consider the following program:

START MOV X ,RO
CLR Rl

LOOP: TST RO
BEQ EXIT
BPL HERE
ASL Rl
INC Rl

HERE: ASL RO
BR LOOP

EXIT: MOV R1,Y
HALT

X: . WORD 123456
Y: . BLKW 1

(a) Whatis the final contents of Y?

(b) What does the program doin general [with an arbitrary (X)]?

Write an assembly language program that computes the double-pre-

cision product of two single-precision numbers. Assume that the

multiplier and multiplicand are in addresses A andB;the result is left

in C and C+2.

Write a subroutine that puts in R1 the numberof 1-bits found in RO.

[For example, if (RO) = 123456, then (R1) = 000011.]

Write an assembly language program which accepts a six-digit octal

number from the teletype and prints out its binary equivalent.

Write and run a program that simulates a four-function stack calcu-

lator. The inputs to the calculator are signed or unsigned decimal

numbers not exceeding 32767,,, and the operators + (add), - (sub-

tract), * (multiply), / (integer-divide), S (change sign), X (clear top),

and C (clear stack). Numbers and operators are entered through the

teletype, each followed by a carriage return. Numbers are stored

by the program in a stack (other than the system stack!). An operator

+, -, *, or / results in the corresponding operation carried out on the

two top stack elements, which are then replaced in the stack by the

result. The operator S results in the replacement of the top stack

element with its negative. X can be used to pop thestack top in case

of a typing error. C initializes the stack and is to be used each time a

Exercises 109

new calculation is to commence. Table 7.2 describes more precisely

the action of the program. Table 7.3 showsan illustrative example.

Write the program in a highly modular form, using such subrou-

tines as ATOB (which converts a decimal ASCII numberto binary),

BTOAS(which converts a binary number to a decimal ASCII num-

ber), MUL (a multiplying routine), DIV (a dividing routine), and
PRINT(for printout).

TABLE 7.2 Operation of Stack Calculator

Input* Stack Action Printout

Decimal numbernot Numberis converted into binary Input is echoed.

exceeding 32767,,. and pushed ontostack.

May be preceded by

either + or -.

+ Stack top is popped into A; (B)+(A) Neu . noes
- stack top is popped into B; (B)-(A) intedgut x- ;

* the following is pushed (B)*(A) sig decimal *A nber

onto stack: (B)/(A) (possibly preceded

S Sign of stack top is changed. by)followed by
a .

xX Stack top is popped and ignored.

Input is echoed.

C Stack is cleared (initialized).

* Always followed by CR.

110

TABLE 7.3. Example of Calculation of Stack Calculator

Expression to be evaluated:

-((-5)*((6+13)*(37-(125/7))+(143/(-15))))

Input Stack* Printout

C C

-5 -5 -5

6 6,-5 6

13 13,6,-5 13

+ 19,-5 +

00019

37 37,19,-5 37

125 125 ,37,19,-5 125

7 7,125 ,37,19,-5 7

/ 17,37,19,-5 /

00017

~ 20,19,-5 -

00020

* 380,-5 *

00380

143 143 ,380,-5 143

~-15 -15,143,380,-5 -15

/ -9 ,380,-5 /

-00009

+ 371,-5 +

00371

* -1855 *

-01855

S 1855 S

04855

*Top to bottom is shownleft to right.

TRAPS
AND

INTERRUPTS

In this chapter we study the mechanics and applications of traps and

interrupts. We discuss illegal address and illegal instruction traps, the trap

bit, the BPT instruction, and priority interrupts. The chapter concludes

with a program illustrating the nesting of subroutines and interrupts and the

manipulation of interrupt priorities.

8.1

TRAPS

To protect the user against various disasters, certain common program

errors in the PDP-11 result in processor traps (i.e., in the automatic branch

to fixed locations in the CM). Specifically, each such error is associated

with some CM location a (which is fixed by the manufacturer and cannot

be altered); when the error occurs, the following takes place automatically

(in a single cycle):

111

1tZ Traps and Interrupts / Chap. 8

MOV PSR,-(SP) ;Push processor status register onto system
stack

MOV PC,-(SP) ‘Push program counter onto system stack

MOV @#a,PC (PC)<(a)

MOV @#a+2,PSR (PSR)<(a+2)

Thus, the PSR and PCare saved in the system stack, a new PSRis fetched

from a + 2, and a jumpis executed to whatever address is encountered

in a. If a contains the address 8 and a + 2 contains the constant y, then the

CP proceeds to execute the program which starts at 6, using y as its PSR

(see Figure 8.1). It is the programmer’s responsibility to fill a and a + 2

with 6 and y (jointly referred to as a trap vector) and write a program (called

a trap routine) which starts at 8 and which does whatever needs to be done

whenthe error occurs(e.g., issues an error message andhalts).

Trap B °
Vector 1 ot?

(B

Trap }

Routine

{

Figure 8.1 Trap vector and routine.

8.2

ILLEGAL ADDRESS AND ILLEGAL

INSTRUCTION TRAPS

One of the most common programmingerrorsis a reference to anillegal

address, an attempt to execute a word instruction on an odd address or an

attempt to address a nonexistent memory location. This error results in a

trap through location 4, that is, in the following series of actions:

Sec. 8.3 / The Trap Bit and BPT Instruction
113

NOV PSR,-(SP)
MOV PC,-(SP)
MOV @#4,PC
MOV @26,PSR

Another commonerror is an attempt to execute an illegal instruction

(e.g., nonexistent op code). This results in a trap through location 10, that

is, in the followingseries of actions:

MOV PSR,-(SP)
MOV PC,-(SP)
MOV @=10,PC
MOV @212,PSR

The simplest thing to do in both of these casesis to cause the computer

to halt. This can be accomplished (as proposed in Section 5.3) byinitiating

the program with

C
-WORD 6,0,12,0

which fills the locations 4, 6, 10, and 12 with the constants 6, 0, 12, and 0,

respectively. When an illegal address is referenced, the CP traps through

location 4 into location 6, which contains the instruction 000000 (i.e.,

a HALT instruction). Similarly, when an illegal instruction is attempted,

the CP traps through location 10 into location 12, which also contains

000000.

Note that after the CP is halted by any of these two trap routines, the

top of the system stack contains the value of PC at the time theerror oc-

curred. Also, PC contains either 10 or 14, depending on whetherthe trap

routine executed was for illegal address or illegal instruction. Thus, by

inspecting the contents of (SP) and of PC, one can determine the location

and the type of error committed.

8.3
THE TRAP BIT AND BPT INSTRUCTION

From Figure 2.1 we see that the PSR contains, besides the condition
codes N, Z, V, and C, trap bit T in bit 4:

15 4 3 2 1 #0

PSR T N}]Z ,]VvV]c

Traps and Interrupts / Chap. 8

Like the otherbits, the trap bit can be set and cleared under program con-

trol. When set, a processor trap will occur through location 14.

The trap bit is especially useful in the implementation of monitoring

programs (such as tracing or debugging programs) whose function is to

execute a user’s program oneinstruction at a time, assuming control after

each execution. The monitoring program can accomplish it by setting T

to 1 before transferring control to the user’s program. After the first of the

user’s instructions is executed, the CP traps through location 14 back to

the monitoring program, which does whatever it is supposed to do. Using

the information saved in the system stack when the user’s program was

trapped, the monitoring program can nowyield control back to the user’s

program, returning to it the PC and PSR values it possessed when it was

last interrupted. The second user’s instruction is now executed, traps, and

the process repeats.

A trap can be generated by program (rather than automatically by

hardware) by issuing the instruction BPT (“‘breakpoint’’). Whenthis instruc-

tion is executed, a trap occurs through location 14.

8.4

INTERRUPTS

An interrupt is another form of processor trap. While a processortrap,

as we have seen, can be triggered by a programmingerror, an interrupt

is triggered by a certain condition attained by a peripheral device. When

this condition occurs, the program automatically branches to an address £

stored in somefixed location a@ in the CM,while replacing the contents of the

PSR with the contents y of a + 2. The contents of a and a + 2 are referred

to as an interrupt vector (analogous to a trap vector), and the program that

starts at B is called an interrupt routine or an interrupt handler (analogous

to a trap routine). |

A basic difference between a system trap and aninterruptis that traps

always take place when certain errors occur—they are beyond the pro-

grammer’s control. On the other hand, the programmer does have control

over interrupts; interrupts can be ‘“‘disabled’’ either temporarily or per-

manently, if the programmerso desires.
Weshall illustrate the interrupt mechanism with three peripheral devices:

the teletype keyboard, the teletype printer, and the line clock. As we know

from Sections 2.3 and 2.4, each one of these devices is associated with a

status register whose bit 7 is the “‘ready”’ bit (indicating that a character

Sec. 8.4 / Interrupts
115

has been typed on the keyboard,or that the printeris free, or that the clock

has “ticked’’). We now introduce another important bit in the status reg-

ister — bit 6, which is called the ‘‘interrupt enable’ (or INTR ENBL)bit:

15 8

R
O
Y
~

D
O
A

ML
AS

Ready ~ NSINTR ENBL

Each one of the three devices causes an interrupt when the “ready”’

bit in its status register changes from 0 to 1, provided that its INTR ENBL

bit is 1. An interrupt will also occur if the ‘‘ready”’ bit is 1 and an instruction

causes the INTR ENBLbit to change from 0 to 1. Thus,for an interrupt

to occur, one of the two bits must be a 1 and the other must have just

changed from a0 toal.

The interrupt vectors for the teletype and line clock are located as

follows:

Device Interrupt Vector Location

TTY keyboard 60

TTY printer 64

Line clock 100

It is the programmer’s responsibility to initialize the INTR ENBLbit to

1 if interruption by the corresponding device is indeed contemplated (this

bit is automatically cleared when the “‘start’’ switch is pressed in the PDP-11

or when a RESETinstruction is issued). Of course, as in traps,it is also the

programmer’s responsibility to supply the interrupt vector and the interrupt

routine for each device.

While a trap routine might end with a HALTinstruction, an interrupt

routine almost always ends by returning control to the interrupted program.

This returning of control is facilitated by the instruction RTI (“return from

interrupt”’), which executes the following (in a single cycle):

MOV(SP)+,PC ;Pop system stack into program counter

MOV(SP)+,PSR ‘Pop system stack into processorstatus register

Thus, RTI simply undoes the actions taken by the interrupt mechanism

just before the interrupt routine took over (see Section 8.1).

The way that interrupt routines assume and relinquish control is re-

116 Traps and Interrupts / Chap. 8

miniscent of the way subroutines assume andrelinquish control (using the
JSR and RTSinstructions). Both interrupt routines and subroutines use

the system stack for their linkage information. However, in addition to a
return address, an interrupt mechanism uses the stack to save the PSR of
the interrupted program.

When more than one “interrupt-driven’”’ device is used in a program,

there is always the possibility of one interrupt routine interrupting another.

The ‘‘nesting’’ of interrupt routines in this case is very similar to the nesting

of subroutines. In fact, one can nest an arbitrary mixture of interrupt rou-

tines and subroutines without risking any confusion.

8.5

WHY USE INTERRUPTS?

The main advantage of the interrupt facility is that it saves the program

the necessity of repeatedly testing (or ‘‘polling’’) a device in orderto deter-

mine whetheror notit attained a certain condition. If the device is interrupt-

driven, the occurrence of this condition will reveal itself automatically!

Since the testing of a peripheral deviceis usually a relatively lengthy process,

the interrupt facility may be an important time saver for the program.

For example, in past programs weissued

LOOP: TSTB @#177564
BPL LOOP

in order to ascertain that the printeris free. If the printer is interrupt-driven,

this loop becomes superfluous, and the time the printer requires for com-

pletion (in the order of 1/10 second) can be used for the execution of tens

of thousands of useful CP instructions.

The following are more detailed examples. In these examples, the reasons

behind the components y of the interrupt vector (200 in Example 1 and

300 in Example 2) will be explained in the next section.

Examples

1. We wish to use the TTY as an ordinary typewriter (i.e., have every

type-in character echoed) while the main program is running. Figure 8.2

shows how this can be done. The main program runs until a character is

typed in, at which pointit is interrupted by the interrupt-driven keyboard

and transfers control to INTHND. The interrupt routine, which starts at

TITLE INTYPE

; INTERRUPT DRIVEN ECHO PROGRAM

LC=.
.=44+LC

.WORD 6,8,12,0 ,INITIALIZE ERROR VECTORS
.=6O+LC

WORD ~=INTHND 299 INITIALIZE INTERRUPT VECTOR
. =590+LC sALLOW FOR STACK SPACE
START: MOV PC,SP

TST - (SP) ,INITIALIZE SP TO START
MOV #199,@#177569 <SET INTR ENBL BIT TO 1

MAIN PROGRAM

Main program

INTERRUPT HANDLER
INTHND: MOV @#177562,@4177566 ;PRINT INPUT CHARACTER

RTI “RETURN FROM INTERRUPT

- END START

Figure 8.2 INTYPE program.

INTHND,simply echoes the character. (We assumea slow typist, and hence

no need for buffering.)

Note that the main program resumes operation with the same PSR

that it possessed when it was last interrupted. This is important, since the

interruption might have occurred right after a TST or CMP instruction,

which makes the preservation of the condition codes (and hence the PSR)

essential.

2. We wish the bell to ring every 10 seconds (decimal) while a main

program is running. Figure 8.3 shows how this can be done. The main

program is interrupted by the line clock every 1/60 second. The interrupt

routine decrements the ‘‘tick”’ count by 1 each time it is entered*; when this

count becomes QO,it is reset to 600 decimal (600/60 = 10) and thebell

rings. Thus, the bell rings immediately when the program is started (since

the tick countis initially set to 1), and every 10 secondsthereafter. O

Although the preceding examplesare rather contrived, they doillustrate

the fact that, by means of interrupts, two programs can be executed by the

computer “‘in parallel.”

*When the clock’s INTR ENBLbit is 1, the ready bit in the clock status register is

cleared automatically after every tick.

117

~TITLE INBELL
; A BELL RINGS EVERY 19 SECONDS WHILE MAIN PROGRAM IS RUNNING.

LC=.

~=44+LC

-WORD 6,9,12,9 sINITIALIZE ERROR VECTORS
=1PQ+LC

. INTHND , 309 sINITIALIZE INTERRUPT VECTOR

. =509+LC ;ALLOW FOR STACK SPACE

START: MOV PC ,SP

TST - (SP) sINITIALIZE SP TO START

MOV #190 ,@#177546 >SET INTR ENBL BIT TO 1

MOV #1 ,COUNT s INITIALIZE TICK COUNT

; MAIN PROGRAM

)

> Main program

; J

; INTERRUPT HANDLER

INTHND: DEC COUNT ; (COUNT)=(COUNT)-1

BEQ RING ;IF (COUNT)=@. RING BELL

RTI sRETURN FROM INTERRUPT

RING: MOV #7 ,@#177566 ;RING BELL (ASCII CODE 997)
MOV #609. ,COUNT ;SET COUNT TO 19 SECONDS
RTI “RETURN FROM INTERRUPT

COUNT .BLKW 1 STICK COUNT

END START

Figure 8.3 INBELL program.

8.6
PRIORITY INTERRUPTS

To further understand the interrupt mechanism, we have to be familiar

with the priority field of the PSR, which consists of bits 5, 6, and 7:

15 8 7 6 5 4 3 2 1 «0

LM 7
PSR UWMWnr|si2\v|«

oe”

Priority Condition
Codes

The contents of the PSR’s priority field is referred to as the CP priority.

It can be set by the programmerto anylevel between 0 and 7. For example,

118

Sec. 8.6 / Priority Interrupts
119

to set the CP priority to 7, we issue

MOV =340,@#177776

(We shall assume that, when the program is started, the CP priority is set

automatically to 0.)
In addition to the CP priority, one talks about the priority of a periph-

eral device. For example, the priorities of the TTY keyboard and printer

are both 4, and the priority of the line clock is 6 (all of whichare fixed by

the manufacturer). The fundamental rule for interrupts is the following:

A device can interrupt a program only if the device's priority is strictly

greater than the CP priority. For example, the TTY and clock can interrupt

any program that runs with CP priority 0; programs that run with CPprior-

ity 7 cannot be interrupted by any device!

Suppose that two interrupt-driven devices, D1 and D2, whose priorities

are p, and pz, respectively, are used with a program that runs with CP

priority p . Assume that py < p, < py. Sometime after the program is

started, D1 attempts to interrupt. Since p, > po, the interruptis “acknowl-

edged’”’ and D1’s interrupt routine takes over. The CP priority at which this

routine runs is determined by the new contents of the PSR—that is, by

the second component (which we called y) of D1’s interrupt vector. Let’s

denote by p, the new CP priority, coming from bits 5, 6, and 7 of y.

Suppose now that, while D1’s interruptis still being ‘‘serviced,’’ D2 is at-

tempting an interrupt. Whether or not this interrupt will be acknowledged

depends on the relative magnitudes of p, and p,. If p, > p',, then D2’s

interrupt routine wil take over and be executed before control is returned

(with RTI) to D1’s interrupt routine. If p, < p,, D2’s interrupt will have

to remain ‘“‘pending”’ until D1’s interrupt routine is completed, control is

returned (with RTI) to the main program and thepriority is lowered back

tO Po.

Thus, by assigning appropriate y’s to the interrupt vectors, the program-

mer can dictate which interrupt routines are interruptable by which other

interrupt routines. Of course, the interrupt vectors are not the only means

by which one can change the CP priority; one can always changeit simply

by issuing a MOV #CONST,@#177776 instruction, where bits 5, 6, and 7

of CONSTare the desired priority.

In most cases the CP priority at which we wishto runtheinterrupt rou-

tine of a device is identical with the device’s priority. For example, suppose

that we wish to write a program which, while executing a main program,

acts as a typewriter and also rings a bell every 10 seconds (the combination

120 Traps and Interrupts / Chap. 8

of Examples 1 and 2 of Section 8.5). We certainly want the main program
to have lower priority than either the TTY keyboard or the clock. We also

want the clock to have higher priority than the keyboard, since a clock

interrupt every 1/60 secondis essential if all ‘‘ticks” are to be kepttrackof.
Thus, an appropriate choice of priorities could be:

Program CP Priority

Main program 0

Keyboard-interrupt routine 4

Clock-interrupt routine 6

The main program’s CP priority of 0 is presumably in force when thepro-

gram starts; the CP priority 4 of the keyboard interrupt routine can be

enforced by storing 200 in address 62; the CP priority 6 of the clock inter-

rupt routine can be enforced by storing 300 in address 102. Figure 8.4 il-

lustrates the manner in which the CP is shared among the main program,

the keyboard, and the clock.

8.7

EXAMPLE: TIME REQUEST

Weshall close this chapter with a program that illustrates interrupts by

two devices, the manipulation of CP priorities, and the nesting of subrou-

tines (includinga recursive subroutine) and interrupt routines.

The program (see Figure 8.5) opens with a query to the user: WHAT

TIMEIS IT?, to which the user is to respond with the correct time,in the

form XXYY (e.g., 1143 if the correct time is 11:43). Thereafter, whenever

the user types a character, the program prints out the message AT THE

BELL THE TIME WILL BE:, followed by the correct time, in the form

HH:MM:SS(hours:minutes:seconds), and a bell.

The main program (operating at CP priority 0) consists of the initial

query and the echoing and conversion to binary of the user’s response

XXYY. Subsequently, it enters an infinite loop (LOOP: BR LOOP) which

actually can be replaced by any useful program of the user’s choosing

(provided that it runs at CP priority 0). A clock-interrupt routine CLINT

interrupts the main program every 1/60 second to update the internal

*sydnssaqul
Aio0udg

p
g

asnsigy
d
n
u
s
a
j
z
u
L

p
u
r
e
o
g
h
a
y

=
y¥

y
d
n
u
u
a
q
u
L

YDO,[D
=

9

o>

ha<_)

ee_)

a>

awl
|
<
—

BSS]

(9
A
q
L
u
o
t
u
d
)

G
U
L
Y
N
O
U

YdNusaqULl-}49019

sujanos snaostnetbecntsy

—

G
G

L
anom1

u
e

y
y
y
y
y
v
i
u
o
n

121

122 Traps and Interrupts / Chap. 8

clock stored at HOUR, MIN, SEC, and TICK. CLINTraises the CP priority

from 0 to 6 (the y component of the clock-interrupt vector) and hence

cannot be interrupted by the keyboard (whosepriority is 4). When a charac-

ter is typed in, a keyboard-interrupt routine KBINT assumescontrol either

immediately (if the main program is running)orright after CLINT is com-

pleted. The function of KBINT is to print the message AT THE BELL,

etc.; convert to ASCII and print out the contents of HOUR, MIN,and SEC;

and ring a bell —all while CLINTis keeping track of the time by updating

HOUR,MIN, SEC, and TICK every 1/60 second. Since HOUR, MIN, and

SEC might be altered while KBINT is still processing their contents, the

first thing KBINT must do is copy them into temporary location (array

TEMP). This must be done without CLINT’s interruption and hence with

CP priority of at least 6 (7 is selected, and is assigned to the y component

of the keyboard interrupt vector). As soon as the copying into TEMPis

completed, KBINT lowers the CP priority to 0 (with CLR @#177776),

ready to be interrupted by CLINT every 1/60 secondas required.

The heart of CLINTis a recursive subroutine UPDATE, whose argument

is a CM address Z containing a positive numberless than 60;9. UPDATE

is called with Z = TICK, SEC, MIN, and HOUR,in that order. It increments

(Z) by 1 and checks whetherthe incremented (Z) equals 60; if not, UPDATE

exits; otherwise, UPDATE clears (Z) to O and calls itself with the next

address Z. For example:

HOUR MIN SEC TICK

Initial values 12 59 59 59

After UPDATE’s 1st call 12 59 59 00

After UPDATE’s 2nd call 12 59 00 00

After UPDATE’s 3rd call 12 00 00 00

After UPDATE’s 4thcall 13 00 00 00

After correction by CLINT 01 00 00 00

The main program uses a subroutine INCON to convert the inputs XX

and YY from ASCII to binary. For two-digit numbers, this subroutine is

just as efficient as the one implemented in ASCTOBIN (Section 7.7).

Note that, before returning, KBINT must clear the “ready” bit in

KBSTATso that the next keyboard interrupt can be acknowledged. This

can be doneby any reference to KBDATA(e.g., TST KBDATA).

Remember that .WORD and .BLKW directives (such as those appearing

at the end of the program) must initiate at even addresses. Thus, whenever

in doubt (for example, after .BYTE, .BLKB, or .ASCII directives), preface

them with an .EVENdirective.

TITLE TIME
IN RESPONSE TO THE PROGRAM'S QUERY "WHAT TIME IS IT?". THE USER

; INITIALIZES THE INTERNAL CLOCK BY TYPING THE TIME AS A 4-DIGIT NUMBER
;XXYY, THEREAFTER, WHENEVER A CHARACTER IS TYPED IN, THE PROGRAM PRINTS
;QUT THE MESSAGE "AT THE BELL THE TIME WILL BE:" FOLLOWED BY THE TIME IN
;THE FORMAT HH:MM:SS AND A BELL.
LC=.
.=44+LC

-WORD 6,9,12,9 ; INITIALIZE ERROR VECTORS
. =6G+LC

. KBINT , 349 ; INITIALIZE KEYBOARD INT. VEC. (PRIOR. 7)
.=199+LC

.WORD CLINT,309 ; INITIALIZE CLOCK INT. VEC. (PRIOR. 6)
. =590+LC ;ALLOW FOR STACK SPACE
START: MOV PC SP

TST - (SP) ;INITIALIZE SP TO START

KBSTAT=177568
KBDATA=177562
PRSTAT=177564
PRDATA=177566
CLSTAT=177546

: PRINT QUERY
MOV #QUERY ,RP ;SET PARAMETERS
MOV #ENDQ,R1 ; FOR PRINT SUBROUTINE
JSR PC PRINT ;PRINT LF, CR, QUERY TEXT

; ACCEPT AND ECHO INITIAL TIME XXYY
MOV #4 ,R2 3(R2)=DIGIT COUNT
MOV #ITIME,RO ;SET PARAMETERS

NEXTD: MOV RO,R1 ; FOR PRINT SUBROUTINE
TSTB KBSTAT ;CHARACTER ENTERED?
BPL .-4 ;IF NOT, KEEP TESTING
MOVB KBDATA, (R@) ;ELSE, STORE DIGIT IN ITIME ARRAY
BICB #200, (RD) ;REMOVE CHECK BIT FROM DIGIT
JSR PC PRINT ;PRINT DIGIT
INC RO 3 (RP)=(RD)+1
DEC R2 ;(R2)=(R2)-1
BNE NEXTD LIF (R2) NOT @, ACCEPT NEXT DIGIT

; CONVERT INITIAL HOURS (XX) TO BINARY
MOVB ITIME+1,RQ ;SET PARAMETERS
MOVB ITIME ,R1 ; FOR INCON SUBROUTINE
JSR PC, INCON sCONVERT XX TO BINARY
MOV R2,HOUR ; AND STORE IN HOUR

; CONVERT INITIAL MINUTES (YY) TO BINARY
MOVB TIME+3 RQ 3SET PARAMETERS
MOVB ITIME+2 ,R1 ; FOR INCON SUBROUTINE
JSR PC, INCON sCONVERT YY TO BINARY
MOV R2 MIN 3 AND STORE IN MIN

; SET INTERRUPT ENABLE BITS TO 1 AND WAIT
MOV #199 ,KBSTAT ;SET KEYBOARD INTR ENBLE BIT TO 1
MOV #199 ,CLSTAT 3SET CLOCK INTR ENBLE BIT TO 1

LOOP: BR LOOP ;WAIT FOR INTERRUPTS

Figure 8.5 Time-request program.

123

CLOCK INTERRUPT HANDLER
; UPDATES TIME EVERY 1/62 SECOND
CLINT:

EXIT3:

MOV
JSR
CMP
BLE
SUB
RTI

UPDATES TICK,
UPDATE:

EXIT4:

9

INC
CMP
BNE
CLR
TST
JSR
RTS

#TICK,R4 ;SET PARAMETER FOR UPDATE S.R.
PC UPDATE sUPDATE CLOCK COUNT
HOUR , #12. 31S (HOUR)=12. OR LESS?
EXIT3 ;IF SO, TIME UPDATE IS COMPLETE
#12. ,HOUR ;ELSE, CORRECT FOR 12-HOUR CLOCK

;RETURN FROM INTERRUPT
UPDATE (RECURSIVE SUBROUTINE)
SEC, MIN AND HOUR. ADDRESS OF UPDATED FIELD IS IN R4.
(R4) 3((R4))=((R4))+1
(R4) #69. 3 ((R4))=60.?
EXIT4 ;IF NOT, UPDATING IS COMPLETE
(R4) sELSE, ((R4))=@ (RESET COUNT)
-(R4) 5(R4)=(R4)-2 (GO TO NEXT FIELD)
PC ,UPDATE ;UPDATE NEXT FIELD
PC sEXIT

KEYBOARD INTERRUPT HANDLER
PRINTS OUT TIME WHENEVER A CHARACTER IS TYPED IN.

KBINT:

; PRINT

; CONVERT HOUR,
MOV

; PRINT

MOV #TEMP ,RQ ;SAVE LATEST
MOV HOUR , (RB)+ >; HOUR, MIN AND SEC
MOV MIN,(RQ)+ ; IN TEMP ARRAY TO
MOV SEC, (RP) 3 PROTECT FROM CLINT
CLR @#177776 ;LOWER PRIORITY TO ACCEPT CLINT
MESSAGE
MOV #MESSG ,RO ;SET PARAMETERS
MOV #ENDM,R1 ; FOR PRINT SUBROUTINE
JSR PC PRINT sPRINT LF, CR, MESSAGE TEXT

MIN AND SEC TO ASCII
#TEMP ,R2 ;SET PARAMETERS

MOV #OUTPUT ,R3 3 FOR OUTCON SUBROUTINE
JSR PC:,OUTCON ;CONVERT HOUR TO ASCII (HH)
JSR PC ,OUTCON ;CONVERT MIN TO ASCII (MM)
JSR PC ,OUTCON sCONVERT SEC TO ASCII (SS)
OUT HH:MM:SS AND RING BELL
MOV #OUTPUT ,RO 3SET PARAMETERS
MOV #ENDO,R1 3 FOR PRINT SUBROUTINE
JSR PC ,PRINT ;PRINT QUTPUT ARRAY
TST KBDATA ;CLEAR READY BIT IN KBSTAT
RTI ;RETURN FROM INTERRUPT

PRINT
; PRINTS STRING OF CHARACTERS STARTING AT (R@) AND ENDING AT (R1).
;CHANGES R5 ONLY.
PRINT:
AGAIN:

EXIT1:

124

MOV
CMP
BHI
TSTB

R@,R5 3(R5)=CHARACTER ARRAY INDEX
R5,R1 ;HAS STRING ENDED?
EXIT1 31F SO, EXIT
PRSTAT 31S PRINTER READY?
74 ;IF NOT, KEEP TESTING
(R5)+,PRDATA ;ELSE, PRINT ((R5)). (R5)=(R5)+1
AGAIN ;PICK UP NEXT CHARACTER
PC sEXIT

Figure 8.5 (cont.)

> INCON
; CONVERTS A 2-DIGIT DECIMAL NUMBER STORED IN ASCII IN R® (UNITS) AND
3R1 (TENS) INTO BINARY. THE RESULT IS PLACED IN R2, R3, R4, RS UNCHANGED.
INCON:

TENS:

EXIT2:

: CONVERTS A BIN

OUTCON:

MORE:

UNITS:

QUERY:

ENDQ:

MESSG:

ENDM:

OUTPUT:
ENDO:

ITIME:

HOUR:

MIN:

SEC:

TICK:

TEMP:

BIC
MOV
CMPB
BEQ
ADD
DEC
BR
RTS

MOV
CLR
CMP
BLT
INC
SUB
BR
ADD
ADD
MOVB
MOVB
INC
RTS

STORAGE

BYTE
-ASCIT
»ASCIT

. BYTE
~ASCIT
»ASCIT

ASCII
-BYTE

. BLKB

. EVEN

. BLKW

. BLKW

. WORD

. WORD

. BLKW

~ END

4177769 ,RB
RO,R2
R1,#'p
EXIT2
#19. ,R2
RI
TENS
PC

OUTCON

;CONVERT (R®) INTO BINARY
; AND STORE IN R2
3(R1)='@? (ANY TENS LEFT?)
IF NOT, EXIT
sELSE, (R2)=(R2)+19 DECIMAL
;(R1)=(R1)-1 (1 TEN LESS)
;CHECK FOR TENS AGAIN
EXIT

ARY NUMBER N (FROM @ TO 6 DECIMAL) INTO A 2-DIGIT
sASCII NUMBER PQ. ADDRESS OF N IS (R2). ADDRESSES OF P AND Q ARE (R3)
;AND (R3)+1. BEFORE EXIT THE CONTENTS OF R1 IS INCREMENTED BY 2 AND OF
3R3 BY 3. R4 AND R5 ARE UNCHANGED.

(R2)+,RB
Rl
RO, #19.
UNITS

R1
#19. ,RO

MORE

#'9,R1

#'D,RD
R1,(R3)+
RO ,(R3)+
R3

PC

;(RO)=BINARY NUMBER (HOUR, MIN, SEC)
sINITIALIZE TENS
>ANY TENS LEFT IN RQ?
;IF NONE, PROCESS UNITS
;ELSE, (R1)=(R1)+1 (ONE MORE TEN)
;(R@)=(RB)-19 DECIMAL
;CHECK FOR MORE TENS
;CONVERT TENS TO ASCII
;CONVERT UNITS TO ASCII
sSTORE TENS IN QUTPUT ARRAY
>STORE UNITS IN QUTPUT ARRAY
>SKIP COLON BYTE
sEXIT

FOR CONSTANTS AND TEMPORARIES

15,12
/WHAT TIME IS IT?
/ |

15,12 3CR, LF

/AT THE BELL THE TIME WILL BE:/
//

/HH:MM:SS/
7

4

W
e
e
o
e
p
r
r

START

3CR, LF

/ sQUERY TEXT
sEND OF QUERY (SPACE)

sMESSAGE TEXT
;END OF MESSAGE (SPACE)

sSTORATE FOR HH:MS:SS
3END OF OUTPUT (BELL)

;STORAGE FOR INITIAL TIME (XXYY)

3ADJUST WORD BOUNDARY
;STORAGE FOR HOURS (BINARY)
sSTORAGE FOR MINUTES (BINARY)
;STORAGE FOR SECONDS (BINARY)
;STORAGE FOR TICK COUNT (BINARY)
>TEMP. STORAGE FOR HOUR, MIN, SEC

Figure 8.5 (cont.)

125

EXERCISES

8.1 The following program is run on a PDP-11 model whose CM consists
of 8K words. What are the contents of RO, SP, PC, and the system
stack when the program halts?

LC=.

= 4+LC

-WORD X,0

- = 500+LC

START: MOV PC ,SP

TST -(SP)

CLR RO

LOOP: TST (RO)+

BR LOOP

X: SUB #2,RO0

HALT

-END START

8.2. The following program consists of a main program anda clock-inter-

rupt routine (starting at CLINT).

LC=.

.=100+LC

. WORD CLINT ,300 sINITIALIZE INTERRUPT VECTOR

.=500+LC 3ALLOW FOR STACK SPACE

START: MOV PC ,SP

TST - (SP) ;INITIALIZE SP TO START

MOV #100, 0#177546 3SET INTR ENBL BIT TO 1

LOOP: BR LOOP ;WAIT FOR CLOCK INTERRUPT

NOW: MOV RO,R1 3AFTER INTERRUPT STORE RO IN RI

HALT

CLINT: _| Insert one instruction here

RTI ;RETURN FROM INTERRUPT

~ END

Fill in the missing instruction so that the following is accom-

plished: After the first return from interrupt, the main program re-

sumes at location NOW (rather than LOOP), with the contents of SP

set to 500.

8.3 In the following program, determine the contents of PC, SP, and the

system stack. (Note: 177777is an illegal instruction!)

126

Exercises 127

LC=.
.=44LC

-WORD 6,0,12,0
. =500+LC
START: MOV PC,SP

TST - (SP)
CLR 177776
JSR PC,SUB
HALT

SUB: MOV #123123,-(SP)
ASR (SP)
.WORD 177777
RTS =PC
.END START

8.4 Verify that the following program eventually halts. What are thefinal

contents of PC, PSR, and the system stack?

LC=.
.=10+LC

. WORD 514,340

-=100+LC
. WORD 100,300

. =500+LC
START: MOV PC ,SP

TST -(SP)
MOV #100 ,@#177546

LOOP: BR LOOP
HALT
- END START

8.5 Consider the following program equipped with a clock-interrupt

routine INTHND:

Lc.
.=100+4LC

. WORD INTHND ,10
.=500+LC
START: MOV PC ,SP

TST -(SP)
MOV #100,177546

€}) ~ MOV #5 ,RO
@ TST RO

BMI Ll
@ ~

BPL L2
¢4 —

INC RO
HALT

Li: DEC RO
L2: HALT
INTHND: MOV 177776 ,2(SP)

RTI
. END START

128

8.6

8.7

Traps and Interrupts / Chap. 8

What are the contents of RO when the program haltsif the first clock
interrupt occurs at: (a) point t1, (b) point t2, (c) point t3, (d) point
t4?

Devices D1, D2, D3, and D4 have device priorities 4, 5, 6, and 7,
respectively; the start locations of their interrupt vectors (i.e., the
addresses a) are 60, 100, 170, and 174, respectively.

Consider the following program:

LC=.
~=4+LC

. WORD 6,0
=60+LC

. WORD INT1,200
=100+LC

» WORD INT2,240
=170+LC

. WORD INT3,0
=174+LC

. WORD INT4 ,340
-=500+LC
START:

SP is initialized to 50N‘and the INTR ENBL bits of

al] devices are set to l
ENTER1L: MOV #100,177776

~ subprogram ENTER]

ENTER2: MOV #300,177776

~ subprogram ENTER2

INT1:

subprogram INT1

INT2:

. subprogram INT2

INT3: :

. subprogram INT3

INT4: :

subprogram INT4

1
1

i

~END START

For each of the six subprograms (ENTER1, ENTER2, INT1,

INT2, INT3, and INT4), determine which of the four devices (D1,

D2, D3, D4) can cause an interrupt.

Consider the devices D1, D2, D3, and D4 specified in Problem 8.6.

Modify the program in that problem so that:

129
Exercises

8.8

8.9

8.10

8.11

ENTER1 can beinterrupted by D3 and D4.

ENTER2 can beinterrupted by D2, D3, and D4.

INT1 can beinterrupted by D3 and D4.

INT2 can be interrupted by D1, D2, D3, and D4.

INT3 can be interrupted by noneofthe devices.

INT4 can be interrupted by D1, D2, D3, and D4.

Write trap routines for illegal address and illegal instruction errors

which print out the type of error committed and the contents of

PC at the time the error was made.

The INTYPE program of Figure 8.2 assumessufficiently slow typing

so that no input buffering is necessary. Revise the program for the

case where this assumption can no longer be made.

Write and run a program that does the following: while a main pro-

gram (simulated by LOOP: BR LOOP)is running,a bell rings every

10 seconds; when a keyboard key is struck, the main program and

the bell ringing are suspended, and successive bytes of memory are

printed out in ASCII, starting at some address stored in RO; when a

keyboard key is struck again, printout stops and the main program

and bell ringing resume. This process can be repeated any numberof

times.

Include with the program a clock-interrupt routine CLINT for

timing the bells, and a keyboard-interrupt routine KBINTfor printing

the bytes in (RO), (RO) + 1, (RO) + 2,.... Both CLINT and KBNIT

should be able to interrupt the main program; CLINT maynotinter-

rupt KBINT.

Given an arbitrary program, propose a method for measuring its

execution time. How accurate is the method?

THE ASSEMBLER
AND

LINKAGE EDITOR

High-level languages (such as FORTRAN, BASIC, PASCAL, etc.) have

the advantage of enabling the user to easily write complex programs, unen-

cumbered by the details of routine operations (e.g., a loop can be simply

implemented by an instruction such as DO 10 I = 1,100,3). As compared

with assembly language programs, high-level language programsare easier

to write, comprehend, debug, and maintain. So why do weneed assembly

language? The reason is that, unlike assembly language programs, high-level

language programs can rarely take full advantage of the organization (the

CM, CP, I/0) of the particular computer on which they are intended to

run. Hence, such programs —even whentranslated by a highly sophisticated

compiler —are not always very efficient. Thus, in cases where speed is of

prime importance (as in manyutility programs), assembly language must

be resorted to. Another case where one must program in assembly language

is when the computer at hand is simply not equipped with (or cannot

support) compilers for higher-level languages.

In this chapter we shall describe the two programs that make assembly

language programming possible: the assembler and the linkage editor. Al-

130

Sec.9.1 / The Two-pass Assembly Process
131

though the discussion revolves around the PDP-11’s MACRO-11 and LINKR-

11, it is general enough to apply to many other assemblers and linkage

editors currently being used.

9.1
THE TWO-PASS ASSEMBLY PROCESS

As we already know,the basic difference between assembly language

and machine language is that in assembly language one can use symbolic

op codes and addresses instead of numerical op codes and addresses. The

correspondence between the symbols and their numerical values is recorded

by the assembler in two tables, the op-code table and symboltable.

The op-code table (which is essentially predefined for all assemblies)

lists all mnemonic op codes, each with its numerical equivalent. The symbol

table (which varies from one program to another)lists all symbolic addresses

and operands defined in the program, each with the numerical value that it

represents.

Also central to the operation of the assembler is the location counter

(symbolized in assembly language by .), which throughout the assembler’s

operation holds the CM address of the instruction currently being processed.

Initially, the contents of the location counteris 0.

MACRO-11, like most assemblers, is a two-pass assembler —that is,

it scans the source program twice before producing the object code. These

two scans, or passes, have the following objectives:

Pass I: To search the source program forall symbol definitions and enter

these into the symboltable.

Pass II: Using the symbol table constructed in pass I and the op-code

table, to generate the machine language equivalent of every instruc-

tion in the source program.

The flowcharts of passes I and II are shown in Figure 9.1 and 9.2. These

flowcharts are greatly simplified and convey only the highlights of the

assembly process.In particular, they do not indicate the assembler’s responses
to assembler’s directives. Here are some examples:

1. .WORD d,,d,,... ,d, (or .BYTE d, dg, ... ,d,) causes the as-

sembler to fill consecutive words (or bytes) with the binary equiv-

132

(location counter) + 0 |

ie

 q
Fetch next instruction |

END directive YES

Instructian

has label

NO

Add label to symbol table
with (location counter)

as its value

qv

Increment (location
counter) according to
instruction's length

4
Figure 9.1 Assembler’s pass J.

alents of d,,d,,...,d,, incrementing the location counter by 2 (or 1)
after each insertion.

-ASCII /str/ causes the assemblerto fill consecutive bytes with the

binary ASCII code of the characters of ‘“‘str,’’ incrementing the

location counter by 1 after each insertion.

-BLKW n (or .BLKB n) ‘causes the assembler to increment the loca-

tion counter by 2n (or n) — that is, to skip n words (or bytes).

i (location counter) - 0

ol
_Y

| Fetch next instruction |

 END directive

Look up op code in op-code table |

Look up symbolic operands
in symbol table

| Generate machine language |

instruction

Increment (location counter)
according to instruction's

length

Figure 9.2 Assembler’s passII.

4. An assignmentdirective sym = exp causes the assembler (in pass I)

to enter the symbol ‘‘sym’’ with its value ‘‘exp” into the symbol
table.*

The flowcharts also fail to show various diagnostic facilities of the
assembler. For example, the assembler flags a label as “multiply defined”’
if (in pass I) it is already found in the symboltable. It flags an instruction
as erroneousif (in pass II) its op code is not found in the op-code table or
its symbolic operandis not found in the symboltable.

*If “exp” involves a symbol not yet defined (a “forward reference’’), an extra
pass is required to determineits value.

133

9.2
EXAMPLE OF ASSEMBLERLISTING

In Section 7.7 we described a program ASCTOBIN which converts a

number from decimal ASCII form into binary. Passing this program through

MACRO-11 creates the object program of ASCTOBIN as well as thelisting

of the source program, object program, and symbol table. Figure 9.3 shows

the printout ofthis listing.

The assembler listing shows each source instruction together with the

object code to which it corresponds. Octal numbers followed by apostrophe

(e.g., 000526’) are addresses that require modification when the program is

‘“‘relocated.’’ More on that in the nextsection.

The symbol table contains (in alphabetic order) all the symbols de-

fined by the program (those defined by an assignmentdirective are indicated

by =). The meaning of the suffix R will be explained later.

1 .TITLE ASCTOBIN

2 > CONVERTS A TYPED-IN DECIMAL NUMBER N INTO ITS BINARY EQUIVALENT.

3 sN MAY BE PREFIXED WITH + OR - AND MUST BE FOLLOWED BY A CARRIAGE RETURN.

4 “THE BINARY EQUIVALENT OF N IS LEFT IN R2. IF N'S MAGNITUDE EXCEEDS

5 532767 DECIMAL, R2 WILL BE LEFT WITH 100000 OCTAL.

6 000000'LC=.

7 000004' .=4+LC

8 000004 000006 -WORD 6,0,12,0 ; INITIALIZE ERROR VECTORS

000000

000012

000000

9 000500' .=500+LC ;ALLOW FOR STACK SPACE

10 00500 010706 START: MOV PC ,SP

11 00502 005746 TST -(SP) ;INITIALIZE SP TO START

12 3

13 177560 KBSTAT=177560

14 177562 KBDATA=177562

15 177564 PRSTAT=177564

16 177566 PRDATA=177566

17 000012 LF=12

18 000015 CR=15

19 >
20 3 MAIN PROGRAM

21 00504 012703 MOV #STRING,R3 ;(R3)=STRING

000526'

22 00510 004767 JSR PC , INPUT sSTORE INPUT STRING IN ARRAY

000036

23 00514 012703 MOV #STRING,R3 ;(R3)=STRING

000526'

24 00520 004767 JSR PC ,ATOB sCONVERT STRING INTO BINARY

000106

25 00524 000000 HALT

26 ;

27 00526 STRING: .BLKB 20. sSTORAGE FOR TYPED-IN STRING

28 >
29 > INPUT

30 ; ECHOES TYPED-IN CHARACTERS AND STORES THEM IN BYTE ARRAY WHOSE BASE

Figure 9.3 ASCTOBIN — assemblerlisting.

134

31
32

33
34

73

74
75

76
77

78

00552

00556
00560

00564

00570

00574
00576

00602
00604

00610

00614

00616

00622
00624

00630

00632
00634
00636

00642
00644

00650
00652.
00654
00656
00660
00662
00664

00670
00672

00676
00700

00704

105767
177002"
100375
016705
176776'
004767
000026
042705
177600
110523
022705
000015
001363
012705
000012
004767
000002
000207

105767
176742'
100375
010567
176736'
000207

005005
112304
122704
000053
001406
122704
000055
001002
005205
000401
005303
005002
112304
122704
000060
101016
122704
000071
103413
042704
177760
012700
000012

sADDRESS IS IN R3. EXITS AFTER CR IS TYPED. CHANGES R3, RS.
INPUT: TSTB

BPL
MOV

JSR

BIC

MOVB
CMP

BNE
MOV

JSR

RTS

PRINT: TSTB

BPL
MOV

RTS

KBSTAT

INPUT
KBDATA ,R5

PC ,PRINT

#177600,R5

R5,(R3)+
#CR,R5

INPUT
#LF,R5

PC PRINT

PC

PRSTAT

PRINT
R5,PRDATA

PC

>1S CHARACTER IN?

3;IF NOT, WAIT

;(R5)=CHARACTER

;PRINT CHARACTER

sREMOVE CHECK BIT

;STORE CHAR. IN ARRAY, UPDATE INDEX
31S CHARACTER CR?

>IF NOT, ACCEPT NEXT CHARACTER

3 MOVE TO NEXT LINE

sEXIT

PRINT
; PRINTS CONTENTS OF R5. REGISTERS UNCHANGED.

;IS PRINTER READY?

;IF NOT, WAIT
;IF SO, PRINT (R5)

sEXIT

B
; CONVERTS INTO BINARY A DECIMAL NUMBER N STORED IN ASCII IN BYTE ARRAY
;WHOSE BASE ADDRESS IS IN R3. N MAY BE PREFIXED WITH + OR - AND MUST BE
;FOLLOWED BY A NON-DIGIT. THE BINARY EQUIVALENT OF N IS LEFT IN R2. IF
3N'S MAGNITUDE EXCEEDS 32767 DECIMAL, R2 IS LEFT WITH 100000 OCTAL.
; REGISTER ALLOCATION:
; (RO),

(R2)

ATOB:

ATOB1:
ATOB2:
ATOB3:

(R1) ARE USED FOR INPUTTING MUL PARAMETERS
CONVERTED NUMBER
POINTER TO NEXT CHARACTER
SCANNED CHARACTER
SIGN FLAG (0 IF N IS POSITIVE, 1 OTHERWISE)
R5
(R3)+,R4
#'+,R4

ATOB2
#'-,R4

ATOB1

(R3)* R4
#'0,R4

ATOB4
#'9,R4

ATOB4
#177760 ,R4

#10. ,RO

;ZERO SIGN FLAG (ASSUME N POSITIVE)
;(R4)=SCANNED CHARAC., UPDATE INDEX
31S CHARACTER +?

;IF SO, START CONVERTING
31S CHARACTER -?

;IF NOT, N IS UNSIGNED
;IF SO, SET SIGN FLAG FOR NEGATIVE N
sSTART CONVERTING
sCHARACTER IS DIGIT. BACKTRACK
sINITIALIZE RESULT TO 0
;(R4)=SCANNED CHARACTER. UPDATE INDEX
5IF 'O>(R4) (NONDIGIT)

3 PREPARE FOR EXIT
sIF '9<(R4) (NONDIGIT)

; PREPARE FOR EXIT
sCONVERT DIGIT TO BINARY

3(RO)=10. (MUL PARAMETER)

Figure 9.3 (cont.)

135

79 00710 010201 MOV R2,R1 ;(R2)=(R1) (MUL PARAMETER)
80 00712 004767 JSR PC MUL ;(R2)=(RO)*(R1)=10.*(R2)

000026
81 00716 102407 BVS ATOB6 IF OVERFLOW, PREPARE FOR EXIT
82 00720 060402 ADD R4,R2 5 (R2)=(R4)+(R2)
83 00722 102405 BVS ATOB6 IF OVERFLOW, PREPARE FOR EXIT
84 00724 000756 BR ATOB3 SCAN NEXT CHARACTER
85 NORMAL EXIT
86 00726 005705 ATOB4: TST R5 ;TEST SIGN FLAG
87 00730 001401 BEQ ATOBS5 ;IF NUMBER IS POSITIVE, EXIT
88 00732 005402 NEG R2 sELSE, (R2)=-(R2)
89 00734 000207 ATOB5: RTS PC sEXIT
90 OVERFLOW EXIT
91 00736 012702 ATOB6: MOV #100000 ,R2 ; (R2)=100000

100000
92 00742 000207 RTS PC sEXIT
93 ;
94 ; MUL
95 ; COMPUTES (RO)*(R1) AND STORES RESULT IN R2. IF RESULT'S MAGNITUDE
96 ;EXCEEDS 32767 DECIMAL, V BIT IS SET TO 0. R3, R4, R5 NOT USED.
97 ;
98 00744 005002 MUL: CLR R2 5(R2)=
99 00746 032701 MUL1: BIT #1,R1 TEST BIT O OF R1

000001
100 0752 001402 BEQ MUL2 sIF 0, DON'T ADD
101 0754 060002 ADD RO,R2 sELSE, (RO)=(RO)+(R2)
102 0756 102406 BVS MUL3 EXIT IF OVERFLOW
103 0760 000241 MUL2: CLC CLEAR C BIT
104 0762 006001 ROR Rl ROTATE R1 1 BIT RIGHT
105 0764 006300 ASL RO ;ARITH.-SHIFT (RO) 1 BIT LEFT
106 0766 102402 BVS MUL3 EXIT IF OVERFLOW
107 0770 005701 TST Rl sTEST (R1)
108 0772 001365 BNE MULI IF NOT 0, KEEP MULTIPLYING
109 0774 000207 MUL3: RTS PC sEXIT
110 ;
111 000500! .END START

SYMBOL TABLE
ATOB 000632R ATOB1 000656R ATOB2 000660R
ATOB3 000662R ATOB4 000726R ATOB5 000734R
ATOB6 000736R CR = 000015 INPUT 000552R
KBDATA= 177562 KBSTAT= 177560 LC = O00000R
LF = 000012 MUL 000744R MULI 000746R
MUL2 000760R MUL3 000774R PRDATA= 177566
PRINT 000616R PRSTAT= 177564 START 000500R
STRING 000526R

Figure 9.3 (cont.)

9.3

ABSOLUTE AND RELOCATABLE ADDRESSES

As we have seen in Section 9.1, the assembler’s location counter is

always initialized to the value 0. Consequently, the object program expects

to be loaded starting at address 0. There are many cases, however, In which

136

Sec. 9.3 / Absolute and Relocatabie Addresses 137

it might be desirable to ‘‘relocate’’ a program — thatis, to changeits loading

origin (the address at which loading starts) from 0 to someothervalue.For

example, when a large program is formed by “‘linking’’ a numberof inde-

pendently assembled programs,it is clear that only one of them can have

the loading origin 0—all the rest must be relocated. Also, if several pro-

grams, belonging to different users, are to occupy the memory simultane-

ously —as in a time-sharing environment — only one of these can be loaded

at O andall the rest must berelocated.

The questions arise: will the object program execute properly after

relocation, and if not —how can it be modified so as to make it execute

properly? Before answering these questions, we must makea distinction

between two types of addresses defined by a program: absolute addresses

and relocatable addresses. In their most rudimentary form, absolute ad-

dresses are simply numbers or characters (or symbols equated to numbers

or characters via assignment directives); relocatable addresses are simply

labels (or symbols equated to labels via assignmentdirectives). For example,

in the MOV, ADD,and BRinstructions contained in the following program

segment, the addresses 300 and X are absolute and the addresses A, B, and

Y are relocatable:

= 100
Y=B8

MOV A,300
ADD X,B
BR Y

won

B:

Addresses may also be specified by means of address expressions, that

is, by means of sums and differences of addresses. In deciding whether an

address thus specified is absolute or relocatable, the following rules are
employed:

absolute + absolute = absolute

relocatable - relocatable = absolute*

absolute + relocatable = relocatable

For example, in the MOV and ADDinstructions contained in the following
program segment, the values P+Q-100, D-C, and C-D+Q are absolute and

the address C-Pis relocatable.

*Relocatable + relocatable is undefined.

138 The Assembler and Linkage Editor / Chap. 9

200
'ZCo

) o
u

MOV P+Q-100,C-P
ADD D-C,C-D+Q

C:

D:

It is assumed (and this should be the programmer’s intent) that all absolute

addresses remain intact regardless of the program’s loading origin, while

all relative addresses, upon relocation, be changed by the same amountas

the loading origin. For example, in ASCTOBIN we want KBSTAT and CR

to retain the values 177560 and 15 regardless of the program’s location

(since the keyboard status register is always in 177560 and the ASCII

code for carriage return is always 15). On the other hand, STRING is 526

only when the program’s loadingorigin is 0; it should be changed to 1526

whenthe loadingorigin is changed to 1000.*

In the assembler’s listing of the symbol table the relocatable symbols

are marked with the suffix R.

The symbol . (representing the location counter) is regarded by MACRO-

11 as relocatable. Hence, in MACRO-11 a directive such as. = 500is illegal.

What we can do instead (and this is what we have invariably done in the

past) is initiate the program with LC = . (which defines LC as “relocatable

0’) and then issue . = 500 + LC, which assigns to the location counter the

relocatable value 500 + LC, which is 500 relative to the loadingorigin.

9.4

THE LINKAGE EDITOR

It is often the case that subroutines needed in a user’s program are al-

ready available (for example, they have been previously written by the

user for other programs, or they are included in the system’s library of

“standard’”’ subroutines). In this case what one wishes to do is to combine

the object codes of the main program and subroutines (all of which are

referred to as object modules) into one large machine language program

(called a load module) ready to be loaded and executed. This combining

or “‘linking”’ job is performed by the linkage editor.f

* Addresses associated with .BLKW or .BLKB must alwaysbeabsolute.

TtThe linkage editor described in this chapter is called LINKR-11.

Sec. 9.4 / The Linkage Editor
139

Suppose that the main program MAIN and the subroutines SUB1,

SUB2, . . . , SUBn have all been assembled independently. Passing the

corresponding n + 1 object modules (anda specification as to their ordering)

to the linkage editor results in a load module which looks as shown below.

This object module can be loaded in the CM of the PDP-11 (starting at

address 0) and executed (starting at the address originally attached to the

.END directive).

000000

MAIN

SUB1

SUB2

SUBn

Generally, the effect of the linkage editor is the same as if MAIN, SUB1,

SUB2, . . ., SUBn wereall assembled at the same time. The question may be

asked: Why don’t we store all the source codes (that of MAIN, SUB1,

SUB2, . . . , SUBn) in a single file and then assemble them together, in

which case no linking will be necessary. The answeris that sometimes the

source codes for SUB1, SUB2, ... , SUBn are simply not accessible to the

programmer (for example, when these are library subroutines). In other

cases the source language of SUB1, SUB2, . . . , SUBn is not assembly

language but some other language (e.g., FORTRAN), and translation to

machine language cannot be done with an assembler but with a special

compiler. In all these cases the linkage editor is indispensible.

In converting the object modules into a load module, the linkage editor

must perform the following two functions:

1. It must, whenever necessary, modify addresses affected by relocation.

2. It must supply ‘‘external’’ addresses —that is, addresses referred to

in one object module but defined in another.

140 The Assembler and Linkage Editor / Chap. 9

The details of these two functions are described in the following two
sections.

9.5
ADDRESS MODIFICATION

In view of our discussion in Section 9.3, we wish the linkage editor to

modify addresses according to the followingcriteria:

1. A relocatable address should be changed by the same amountas the

loading origin.

2. An absolute address should remain intact regardless of the loading

origin.

Table 9.1 shows examples of instructions and how they are to be modi-

fied after relocation. To make the linkage editor’s job easier, each address

that must be modified is marked by the assembler with an apostrophe.

From Table 9.1 we can deducethe following address modification rules:

1. All relocatable addresses should be increased by the same amount

as the loading origin, except when used in the relative mode,* in

which case no modification is required.

2. All absolute addresses are to be left intact, except when used in the

relative mode, in which case they should be decreased by the same

amountas the loadingorigin.

Note that branch instructions do not specify addresses, but offsets, and

hence never require any modification.

9.6

GLOBAL SYMBOLS

Suppose that wewish to link the subprograms MAIN, SUB1, SUB2,...,

SUBn, all assembled separately. It is unavoidable that some of them will

be referring to symbols that are defined externally (that is, defined by

*In this chapter “relative mode”’ refers to both therelative and the relative deferred

modes of addressing (see Sections 4.6 and 4.7).

Sec. 9.6 / Global Symbols 141

TABLE 9.1 Examples of Relocation

Example Source Program Object Program Loading Origin 1000 Modification

1 MOV A,RO 600: 016700 1600: 016700

602: 000100 1602: 000100 “No change

A: - 704: ... 1704:

2 MOV #A,RO 600: 012700 1600: 012700

602: 000704 1602: 001704 < 1000 added

A: 704: ... 1704:

3 MOV @#A,RO 600: 013700 1600: 013700

602: 000704’ 1602: 001704 +1000 added

A: ... 704: ... 1704:

4 MOV A(RO),R1 600: 016001 1600: 016001

602: 000704’ 1602: 001704 <1000 added

A: ... 704: ... 1704:

5 MOV @A(RO0),R1 600: 017001 1600: 017001

602: 000704 1602: 001704 <= 1000 added

A: ... 704: ... 1704:

6 MOV 177776,RO 600: 016700 1600: 016700

602: 177172’ 1602: 176172 <= 1000 subtracted

7 MOV #15,RO0 600: 012700 1600: 012700

602: 000015 1602: 000015 <—No change

8 MOV @#60,RO 600: 013700 1600: 013700

602: 000060 1602: 000060 <“No change

9 MOV 20(RO),R1 600: 016001 1600: 016001

602: 000020 1602: 000020 <No change

10 MOV @20(RO),R1 600: 017001 1600: 017001

602: 000020 1602: 000020 <—No change

other subprograms). For example, MAIN maybereferring to a label defined

in SUB1 (by issuing JSR PC,SUB1), and SUB1 maybereferring to an array

defined in SUB2 (by issuing, for example, MOV TABLE(RO),R1, where

TABLEis defined in SUB2 with a .BLKW directive).

A symbol in aprogram is called global if it is: (1) defined in another

program, or (2) it is referred to by another program. All global symbols

sym,, sym,,..., sym, in a subprogram must be declared (anywhere within

the program) by a global directive:

142 The Assembler and Linkage Editor / Chap. 9

-GLOBL sym) ,symo,...,Symy

Nonglobal symbols are said to be local. As we have seen,in pass II of

the assembly process, all local symbols in a program are replaced by numer-

ical addresses (with or without apostrophes). Thus, by the time the object

modules are presented to the linkage editor, local symbols cease to exist.

For this reason, local symbols in one program maybe duplicated in another

program without risking confusion. Global symbols, however, must be

uniquely defined in all linked programs,since theystill exist ‘‘unresolved’”’

(i.e., with no numerical equivalent available) when the linkage editor takes

over.

As an example, Figures 9.4, 9.5, and 9.6 show the assembler listings

(including symbol tables) of programs MAIN, SUB1, and SUB2 (which

are nonsense programs serving only for illustration). Each one of these

1 ~TITLE MAIN
2 000000'LC=.
3 000004' .=4+LC
4 000004 000006 . WORD 6,0,12,0 sINITIALIZE ERROR VECTORS

000000
000012
000000

5 000500' .=500+LC 3;ALLOW FOR STACK SPACE
6 000500 010706 START: MOV PC ,SP
7 000502 005746 TST -(SP) > INITIALIZE SP TO START

8 -GLOBL SUB1,A,B,D,E,G

9 000504 004767 JSR PC ,SUB1
000000G

10 00510 005767 TST A
000026

11 00514 005767 TST B
000142

12 00520 005767 TST C
000256

13 00524 005767 TST D
000000G

14 00530 005767 TST E
000000G

15 00534 005767 TST G
0000006

16 00540 000000 HALT
17 00542 A: . BLKW 50

18 00662 B: . BLKW 50
19 01002 C: . BLKW 50

20 000500' . END START

SYMBOL TABLE
A 000542RG B 000662RG C 001002R
D = kkkkKKk G E = kkkG G = kkkkkk G

LC = QQ0000R START 000500R SUBl1 = ****** G

Figure 9.4 Assemblerlisting of MAIN.

1 -TITLE SUB1
2 -GLOBL SUB1,SUB2,A,B,D,E
3 000000 004767 SUB1: JSR PC ,SUB2

0000006
4 000004 005767 TST A

0000006
5 000010 005767 TST B

0000006
6 000014 005767 TST D

000006
7 000020 005767 TST F

000402
8 000024 000207 RTS PC
9 000026 D: . BLKW 100
10 00226 E: - BLKW 100
11 00426 F: . BLKW 100
12 000001 . END

SYMBOL TABLE

A = tikiG Bo = tkEIe G D 000026RG
FE 000226RG 000426R SUB1 O00000RG

SUB2 = *eeeeE C

Figure 9.5 Assemblerlisting of SUB1.

1 ~TITLE SUB2
2 -GLOBL SUB2,A,D,G
3 000000 005767 SUB2: TST A

0000006
4 000004 005767 TST D

0000006
5 000010 005767 TST G

000006
6 000014 005767 TST H

000202
7 000020 000207 RTS PC
8 000022 G: . BLKW 100
9 000222 H: - BLKW 100
10 000001 END

SYMBOL TABLE

A = kkkKKK G D = kkkG G 000022RG

H 000222R SUB2 OO0000RG

Figure 9.6 Assemblerlisting of SUB2.

143

144 The Assembler and Linkage Editor / Chap. 9

programs contains global symbols. For example, MAIN refers to the global
symbols SUBI, D, and E, which appear in subroutine SUB1, and to G,
which appears in subroutine SUB2. In addition, MAIN defines the symbols

A and B whichare referred to by the subroutines SUB1 and SUB2. Hence,
MAIN must contain the directive

-GLOBL SUB1,A,B,0,E,G

In the listing of the object code, global symbols defined externally are

shown as 000000G; however, in the object module they actually appear

symbolically (as character strings). In the symboltable, all global symbols

are suffixed with G; externally defined global symbols appear in the table
gg ##ORRK G.

In the example above, the symbol C is local to MAIN, is local to

SUB1, and H is local to SUB2. (Both F and H could have been named “‘C”’

without anyrisk.)

9.7

THE TWO-PASS LINKAGE PROCESS

Each of the object modules presented to the linkage editor consists of

the machine language translation of the corresponding source program. This

translation, however, is deficient in two respects: (1) some of the addresses

(those suffixed with apostrophes) may need modification as a result of

relocation, and (2) some of the addresses (those which still appear in sym-

bolic form) are global and requireresolution.

In addition to the code, each object module provides the linkage editor

with a global symbol table, which consists of all global symbol definitions

found within the module. These correspond to all symbols in the original

symbol table which are suffixed with G and are not “‘defined” as ******.

For example, for the three programs of Section 9.6, we have

Global symbol table A 000542R
for MAIN B 000662R

Global symbol table D 000026R
for SUB1 fe 000226R

SUB1 000000R
Global symbol table G 000022R

for SUB2 SUB2 QQ0000N0R

Each object module also transmits to the linkage editor the module’s length.

Sec.9.7 / The Two-pass Linkage Process
145

The linkage editor’s job of converting the object modules into a load

module is accomplished in two ‘‘passes,’’ in roughly the following manner:

Pass I: Using the information on the lengths of the object modules and

on the order in which the object modules are to appear in the memory,the

linkage editor constructs a load map which shows how the modules are to

be relocated in the memory. Using the load map, the linkage editor now

scans each of the object modules and modifies (whenever necessary) each

apostrophed address according to the rules given in Section 9.5. It also

modifies (whenever necessary) the addresses in each of the global symbol

tables so as to make them conform with the loading origins of the corre-

sponding modules. It then combines all the global symbol tables into a

single merged global symbol table whichlists all the global symbols used

in the programsandtheir correct values.

Figure 9.7 shows the listing of the load map produced bythe linkage

editor for the programs of Section 9.6. This listing shows the start address

of the program (500) and its total length (2372), as well as the loading

origins (0, 1122, 1750) and the lengths (1122, 626, 422) of the three mod-

ules. Figure 9.8 shows the same information in a diagrammatical form. The

information in this load map is used by the linkage editor to modify all

apostrophed addresses appearing in the object modules of MAIN, SUB1,

and SUB2 and to construct the merged global symbol table. The table

(which is showninterpersed between the lines of the load mapin Figure 9.7)

looks as follows:

A 000542

B 000662

Mergedglobal D 001150

symboltable E 001350
SUB1 001122

G 001772

SUB2 001750

For example, the address D, which in the global symbol table of SUB1 was

26, is now 1122 + 26 = 1150; the address G, which in the global symbol

table of SUB2 was 22, is now 1750 + 22 = 1772. [Remember, however, that

the values of absolute global symbols (i.e., those without the suffix R)

remain unchanged.|

Pass II: Pass I produced an almost-complete load module, except for the

global symbols, which are still embedded in the code as character strings.

The linkage editor now scans the object modules and, using the merged

global symbol table, replaces all global symbols with their values as listed

TRANSFER ADDRESS: 000500
LOW LIMIT: 000000
HIGH LIMIT: 002372
kkkkkkkkik

MODULE MAIN
SECTION ADDRESS SIZE
<. ABS.> 000000 000000
< > 000000 001122

000542" B 000662'
Kekakkkkkkek

MODULE SUB1
SECTION ADDRESS SIZE
<. ABS. > 000000 000000
< > 001122 000626

001150" E 001350' SUB1 001122
kaekkkkkkkk

MODULE SUB2
SECTION ADDRESS SIZE
<. ABS. > 000000 000000
< > 001750 000422

G 001772' SUB2 001750!

Figure 9.7 Load map.

4 1 000000

1122 MAIN

"1 001122
2372

626 SUB1

"ys 001750

SUB2
422

v v |

Figure 9.8 Load module.

in the table. Here the merged global symbol table is used in exactly the

same manner as the symbol table was used by the assembler in pass II of

the assembly process. No address, however, need to be “apostrophed’”’

since no further relocation takes place.

146

9.8

POSITION-INDEPENDENT CODE

From previous examples we can see that, in a typical program, most

addresses need not be modified by the linkage editor after assembly, no

matter where the loading origin is. A source code whose addresses (after

assembly) need no modification regardless of loading origin is called posi-

tion-independent code (PIC). It is sometimespreferrable to write programs —

especially utility routines intended for frequent use by many users—in

PIC, since this results in object codes ready to be loaded anywhere in the

memory without additional processing.

To decide what is and what is not permitted in PIC, we can refer to

Section 9.5, where we spelled out the conditions under which addresses may

require modification by the linkage editor (i.e., the conditions under which

MACRO-11 attached apostrophes to addresses). Using these conditions, we

can deducethat, in PIC:

1. Relocatable addresses must be used in relative modeonly.

2. Absolute addresses can be used in any mode excepttherelative mode.

These rules make the writing of programsin PIC a tricky business. For

example, we have already seen that the non-PIC

START: MOV #START,SP

can be replaced by the PIC

START: MOV PC,SP
TST -(SP)

As another example, consider the copying of the 100-word array based at

A into the 100-word array based at B:

MOV #100,R0
MOV #A,R1
MOV #B,R2

LOOP: MOV (R1)+,(R2)+
DEC RO
BNE LOOP

A: -BLKW 100
B: .BLKW 100

147

148 The Assembler and Linkage Editor / Chap. 9

The above non-PIC can be replaced with the following PIC:

LOOP:

MOV
MOV
ADD
MOV
ADD
MOV
DEC
BNE

. BLKW

. BLKW

#100 ,RO
PC,R1
#A-.,R1
PC ,R2
#B-. ,R2-——8
(R1)+, (R2)+
RO
LOOP d —

—
_
—
_
—
_
—
—
A
—
—
—
—
e

2

100
100

During execution, MOV PC,R1 puts in R1 the (absolute) address a of the

next instruction; the next instruction, ADD #A-.,R1, adds to R1the dis-

tance d, from a to A and henceresults in R1 holding the absolute address
A. Similarly, MOV PC,R2 and ADD #B-.,R2 result in R2 holding the ab-

solute address B. (Note that A-. and B-., being of the form relocatable

- relocatable, are absolute addresses.)

EXERCISES

9.1 Indicate which of the following instructions are erroneous. Which

errors are assembly-time errors and which are run-time errors?

NEG
MOVE
RTI
JMP
BIC
ADD
CLR

@#37775
RO,R5
;SUB R4,R1
R3
(PC) ,SP
R2+5,R3
TABLE (RO)+

9.2 The programs PROG1 and PROG2 shown below are assembled inde-

pendently.

(a) List the object module of PROGI1.
(b) List the load module resulting from linking PROG1 and PROG2

(in that order).

. TITLE PROG]
LC=.
-=476+LC

START: HALT
END START

.TITLE PROG2
X: MOV #X,Y-X

MOV #X-Y,Y
MOV @#X-5,Y-X(R5)

Y: HALT
.WORD X,X-Y+3
. END

Exercises 149

9.3 (a) List the object module and the symbol table of the following

program. Indicate in the symbol table which addressesare absolute

9.4

and whichare relative.

LC=.

-=500+LC

A= 12

B = F+'h

C = E-F

D = A+C-2

START: MOV A,B

E: MOV #C, E(RO)

F: MOV #A+B,@D(R1)

HALT

G: -BLKW D-C

-WORD G+C,G-B
-END START

(b) Suppose that the program is loaded at loading origin 2200. List

the program as modified by the linkage editor.

Shown below are three programs, MAIN, SUB1, and SUB2, which

are assembled separately and then linked (in that order).

(a)
(b)

Complete the .GLOBLdeclarations on the three programs.

Show the complete assembler listing (including the symbol table,

the global table, and all apostrophes and suffixes) for each pro-

gram.

(c)
the three programs.

(d)

. TITLE

.GLOBL

MOV
MOV
MOV
MOV
MOV
JSR
HALT
. WORD
. BLKB
- END

o
r

-TITLE
-GLOBL

K=12
SUB1: MOV

MOV
MOV
MOV

Construct the load map and the merged global symbol table for

List the load module of the linked program.

MAIN

#400 ,100(R1)

#L 150
X ,@#60
K,@B
PC,SUB1

C
30
START

SUB1

@45(R1),L
#K,B(R3)
#B,76
X, @HM

150

JSR
MOV
RTS
. WORD

L: . BLKW
M: . WORD

. END

TITLE

.GLOBL

SUB2: MOV

MOV

MOV

BPL

JMP

Z: MOV

RTS

X: . WORD

. BLKW

Y: . BLKB

~ END

The Assembler and Linkage Editor

PC ,SUB2
177700,B8
PC
X
K
K-20

SUB2

#12,L
X,@A(R5)
300 ,@#Y
Z
L(R1)
44(R1) ,1234
PC
Y
X-Z
16

| Chap. 9

9.5 Replace the following program segment with a PIC that takes precisely

the sameaction. (Don’t use any registers other than R3, R4, and PC!)

CLR
MOV
MOV L(R3),R4

9.6 Write a PIC program which clears the 100,, words that precede the

program’s starting location.

ADVANCED
ASSEMBLY LANGUAGE

TECHNIQUES

In this section we describe some assembler facilities that make the writ-

ing of assembly language programseasier and “cleaner.” In particular, we

discuss macros, repeat directives, and conditional assembly.

10.1

MACROS

In chapter 6 we enumerated the advantages of writing modular pro-

grams and saw how subroutines can be employed to implement such pro-

grams. We must remember, however, that the use of subroutines exacts a

certain overhead cost — the time required to transmit arguments, to save and

restore registers, and to execute the JSR and RTSinstructions. It is not

difficult to conceive of subroutines where the time spent on overhead is

151

152 Advanced Assembly Language Techniques / Chap. 10

comparable to or even exceeds the time required for executing the sub-

routine proper.

Consider, for example, the subroutine DIV8, which divides the contents

of RO by 8:

DIV8: ASR RO ;SHIFT (RO)
ASR RO 3; ARITHMETICALLY
ASR RO; 3 BITS TO THE RIGHT
RTS PC <EXIT

To divide the contents of R3 by 8, we can call DIV8asfollows:

MOV RO,-(SP) ;SAVE (RO)
MOV R3,RO ; TRANSMIT DIV8 ARGUMENT
JSR PC,DIV8 ;CALL DIV8
MOV RO,R3 3(R3) = (R3)/8
MOV (SP)+,RO RESTORE (RO)

We thus see that six overhead instructions are required to execute a sub-
routine which consists of only three instructions. As far as execution time

is concerned, we are much better off ignoring the subroutine and simply

writing

ASR R3_ ;SHIFT (R3)
ASR R33; ARITHMETICALLY
ASR R33 3 BITS TO THE RIGHT

But suppose that we are dealing with a large program where division

of various registers (R3 as well as others) by 8 occurs at dozens of differ-

ent places. Writing the three ASR instructions (plus comments) in all these

places can get pretty monotonous and time consuming. Here is where

the macro facility comes in handy. We can define the three-instruction

sequence as a “macro’’ called DIV8, in which the operand register is in-

cluded as an argument REG:

MACRO DIV8 REG
ASR REG ;SHIFT (REG)
ASR REG > ARITHMETICALLY
ASR REG 3 3 BITS TO THE RIGHT.
ENDM

Oncethis is done, ‘‘macro calls’’ such as

Sec.10.1 / MACROS 153

DIVE R3

DIV8 RO

DIVE R2

can be issued. During pass I of the assembly process the assembler ‘‘expands’”’

these calls into the three instructions contained in the definition of the

macro DIV8, replacing REG with the particular operand appearing with the

call:

ASR R3_ ;SHIFT (R3)
ASR R33 ARITHMETICALLY
ASR R33 3 BITS TO THE RIGHT

ASR RO ;SHIFT (RO)
ASR RO 3; ARITHMETICALLY
ASR RO; 3 BITS TO THE RIGHT

ASR R2 ;SHIFT (R2)
ASR R2 3; ARITHMETICALLY
ASR R2 ; 3 BITS TO THE RIGHT

Once pass I of the assembly is completed, the macro definition for DIV8

is no longer needed and can be eliminated.

We can see that, besides saving the programmer time and effort, the

macro facility makes the program more readable: the “instruction”? DIV8

R3 is much more explicit than the three ASR instructions. In fact, we can

see how, by means of macros, a programmercan invent a whole newinstruc-

tion set so as to make the program lookas if it were written in a high-level

language, with all the concomitant advantages.

Figure 10.1 shows schematically how the macro mechanism compares

with the subroutine mechanism.It is seen that, while a subroutine appears

in the memory only once, the corresponding macro is duplicated as many

timesas it is called. Thus, if the overheadis relatively low, the macro mech-

anism may result in a source program that may require much more space

than is the case with subroutine mechanism. This is an important point

to bear in mind when memory spaceis at a premium.*

(In some assemblers, including MACRO-11, the macro expansion is

actually done in the object code during pass II rather than in the source

code during pass I. The macro definitions, however, must be consulted

during pass I in order to build up the symboltable. This alternative scheme

results in more economical memory-spaceutilization.)

*Macros are sometimescalled ‘‘open subroutines.’’ However, this name should not
lead the reader to confuse macros with ordinary(or ‘‘closed’’) subroutines.

Main Program

Action taken
during execution X«A, Y<B

Subroutine

Q(X.Y)

Main Program
 Macro expansion

performed during
assembly pass I

Main Program | eeo7 LWIN

Yd

eerXk

wacko Qx,y]

|

AB TO =<
Macro nr SAA

Q(X,¥.) BGG 0 ope ween ICON

 Eliminated

after
assembly re NGFPN

Figure 10.1 Comparison of subroutines and macros.

10.2

MACRO DEFINITIONS AND MACRO CALLS

The general format of a macro definition is

-MACRO named,,do,...,d, | macro heading*

macro body

.ENDM < terminator

*A “name” can be followed by a comma;the d; can be separated by spaces instead

of commas.

154

Sec. 10.2 / MACRODefinitions and MACROCalls 155

where. d,,d2, .. . ,d, are the dummy arguments. The general format of a

macrocall is

Label: name a, ,a5,... ,a,

where a,,@,,... ,a, are the actual arguments. The macro called “name’’

must be defined prior to its first call. The call is expandedinto (i.e., sub-

stituted by) the macro body, with every d, replaced by a,, every d, by

a,,..., and every d, by a,. After the expansionsare performed,the defini-

tion serves no useful purpose and can beeliminated.

If more arguments appear in the macrocall than in the macro definition,

the excess arguments are ignored. If fewer arguments appear in the call than

in the definition, the missing arguments are to be null (consisting of no

characters). The number of actual arguments passed to a macro by a macro

call can be obtained with the directive

-NARG symb

When placed within a macro definition, this directive assigns to “symb”’

a value that equals the numberofactual arguments appearingin thecall.

Examples

1. The macro DPADD performs double-precision addition (A) to (B) (see

Section 7.3).

Definition .MACRO DPADD A,B
ADD A,B
ADC A+2
ADD A+2 ,B+2
ENDM

Call DPADD 2Z,SUM

Expansion ADD ZZ,SUM
ADC Z72+2
ADD 22+2 ,SUM+2

Note: The call assumes that the operands are in ZZ, ZZ + 2 and in SUM
SUM + 2.

2. The macro SWAPinterchanges (P) and (Q).

Definition -MACRO SWAP P,Q
MOV P TEMP
MOV Q,P
MOV TEMP ,Q
 ENDM

Call NOW: SWAP -F+6,,(R3)

156 Advanced Assembly Language Techniques / Chap. 10

Expansion NOW: MOV F+6 , TEMP
MOV (R3),F+6
MOV TEMP , (R3)

Note: The label of a macro call is used as the label of the first instruction

in the expansion.

3. The macro FLIP reverses the order of the contents in P1, P2, P3, P4.

(SWAPis assumedto be defined as in Example 2.)

Definition .MACRO FLIP P1,P2,P3,P4
SWAP P1, P4
SWAP 2, P3
ENDM

Call FLIP B,B+2,B+4,B+6

Expansion (a) SWAP B,B+6
SWAP B+2, B+4

(b) MOV B,TEMP
MOV B+6 ,B
MOV TEMP ,B+6
MOV B+2,TEMP
MOV B+4 ,B+2
MOV TEMP ,B+4

Note: Macros can be “nested”’ to any numberof levels, in which case the

expansion is performed in a number of successive stages. Nested macros

can be defined in any order, as long as the call to the outer one occurs

after the definition of the inner one.

4. The macro PRINTprints a single character.

.MACRO
TSTB
BPL
MOV
. ENDM

PRINT

TSTB
BPL
MOV

Definition

Call

Expansion

PRINT CHAR
177564
.-4
#CHAR , 177566

'y
177564
4
#'Y 177566

5. The macro NULINE movesthe teletype to a new line. (PRINT is assumed

to be defined as in Example 4.)

Definition .MACRO NULINE
PRINT 15
PRINT 12
ENDM

Call NUL INE

Expansion (a) PRINT 15
PRINT 12

Sec. 10.2 / MACRODefinitions and MACROCalls 157

(b) TSTB 177564
BPL .-4
MOV #15,177566

TSTB 177564

BPL .-4
MOV #12,177566

Note: There are macros with no argumentsatall.

6. The macro WAIT executesan instruction and skips over data.

Definition .MACRO WAIT INSTR,SIZE,DATA,LOC
INSTR
JMP LOC+SIZE+2
.BYTE DATA

LOC: .BLKB SIZE
/ENDM

Call WAIT <JSR PC,SUB3>,100. ,<5,22,'H, 'L> MATRIX

Expansion JSR PC ,SUB3
JMP MATRIX+100. +2
.BYTE 5,22,'H,'L

MATRIX: .BLKB 100.

Note: Enclose an actual argument in < > if it contains commas and/or

spaces. WAIT is also a legal PDP-11 instruction, but the macro definition

takes precedence.

7. The macro DATAstores up to 10 items in an array LIST, followed by

as many reserved wordsasthere are stored items.

Definition .MACRO DATA LIST,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10
.NARG ON

LIST: .WORD P1,P2,P3,P4,P5,P6,P7,P8,P9,P10
.BLKW ON
 ENOM

Call DATA _—KIT,17,1098. ,'*

Expansion NARG N
KIT: .WORD 17,1098. ,'*

3. BLKW

Note: N is assigned the value 4, which is the number of actual arguments

passed to DATA.Blank data items in .WORDresult in storage of 0’s.

8. The macro ROTATErotates a register, moves it to memory,and branches.

Definition .MACRO
RO'D
MOV
B'COND
ENDM

Call ROTATE

ROTATE D,REG,BASE ,K,COND ,DEST
REG
REG ,BASE' K
DEST

L,R2,SWITCH,+30,EQ,OUT

158 Advanced Assembly Language Techniques / Chap. 10

ROTATE R,R5S,MAT,-16,R,.+12

Expansion ROL R2
MOV R2 ,SWITCH+30
BEQ OUT

ROR R5
MOV R5 ,MAT-16
BR .+12

Note: Use ’ to separate adjacent symbols, to avoid ambiguity. (For example,

without ” the definition of ROTATE will include the symbols ROD, BASEK,

and BCOND.) In the expansion process the ’ is deleted and the adjacent

symbols become “‘concatenated.”’

9. Macro JOEstores a string ‘““MESSAGE NO. k”’ in address Xk.

Definition .MACRO JOE A,J
MARY A,\J

Jed+1
ENDM

~MACRO MARY X,K
X'K: .ASCII /MESSAGE NO. K/

“ENDM

Call 1=0
JOE TEXT, 1

JOE TEXT, 1

JOE TEXT I

Expansion (a) I-0
MARY ‘TEXT,\I

I=I+1

MARY ‘TEXT,\I
I=I+1

MARY -TEXT,\I
I=1+1

(b) I=0
TEXTO: .ASCII /MESSAGE NO. 0/
I=I+1

TEXT1: .ASCII /MESSAGE NO. 1/
[=I+]

TEXT2: .ASCII /MESSAGE NO. 2/
[=1+2

Note: \I indicates that, in the expansion, the integer I should be inserted in

character form. (For example, 2 in TEXT2is the character 2.)

10.3

LOCAL SYMBOLS

One of the basic rules in writing assembly language programsis to

ensure that no label be multiply defined, that is, that no label appear more

than once in the label field However, there is an exception to this rule:

Labels having the form n$, where n is a decimal integer between 1 and

65535, can be repeated as long as they are separated by at least one “‘or-

dinary”’ label (i.e., a label not of the form n$). For example:

LABEL1:
3$:
15$:
18$:
LABEL2:

15$:
18$:
22$:
LABEL3:

3$:
22$:

is perfectly legal. The assembler considers the n§$ labels as local to the

region bounded by the ordinary labels, and creates unique definitions for

them in the symboltable.

Returning to macros, let us consider the following macro MULT which

computes (C)<(A)*(B) (see Section 6.5):

.MACRO MULT A,B,C
CLR C

LOOP: DEC B
BMI EXIT

ADD A,C

BR LOOP

EXIT:
.ENDM

Suppose that we call MULTtwice:

MULT —-R1,R2,R3

MULT P,Q,R (1)

159

160 Advanced Assembly Language Techniques / Chap. 10

After the expansion, we have*

CLR R3
LOOP: DEC R2

BMI EXIT
ADD R1,R3
BR LOOP

EXIT:

CLR R
LOOP: DEC Q

BMI EXIT
ADD P,R
BR LOOP

EXIT:

which, of course, is illegal since LOOP and EXIT are multiply defined. To

avoid this problem we could, to be sure, list LOOP and EXITas parameters

of MULT:

~MACRO MULT A,B,C,LOOP,EXIT

.ENDM

andinstead of (1), issue thecalls

MULT R1,R2,R3,LOOP1,EXIT1

MULT P,Q,R,LOOP2,EXIT2 (2)

However, if neither LOOP nor EXIT is referred to outside the macro, speci-

fying them in the call is not really necessary. One can declare LOOP and

EXIT as local symbols (local to the macro) by listing them in the macro’s

list of parameters as follows:

.MACRO MULT A,B,C, LOOP, ?EXIT

.ENDM (3)

If the call makes no mention of LOOP or EXIT(i.e., the corresponding

actual parameters are absent or null), the assembler replaces them with

64$ and 65$ in the first expansion, with 66$ and 67$ in the second ex-

*A label such as EXIT: can appearin a line preceding that which it labels. In fact,

any numberofdistinct labels are permitted to appear (one beneath the other), all labeling

the same word(and hence having the samevalue in the symboltable).

Sec. 10.4 / Repeat Directives
161

pansion, and so on. Thus, if MULTis defined as in (1) andcalled asin (3),

the expansionis

CLR R3
64¢$: DEC R2

BMI 65$
ADD R1,R3
BR 64$

65$:

CLR R
66$: DEC Q

BMI 67$
ADD P,R
BR 66$

67$:

If the two calls are separated by an “‘ordinary”’ label, the labels generated

in the second expansion are the sameas in thefirst, namely 64$ and 65$.

As explained above, this is quite legal and will not result in multiple defini-

tion of 64$ and 65$.

In general, local symbols are designated in the list of parameters in the

macro definition with the prefix ?. If they are absent from thecall, they are

replaced in the expansion by 64$, 65$, ... , 127$. If they are specified in

the call [as in (2)], the expansion is doneas specified, in the normal manner.

The labels n§$ will be repeated if the calls are separated by ordinary labels.

10.4

REPEAT DIRECTIVES

Occasionally, an assembly language program contains successive repeti-

tions of identical or almost identical copies of the same code sequence.In

this case a great deal of effort can be saved by using the .REPT (‘‘repeat’’)
directive:

-REPT exp < heading

repeat block

-ENDM < terminator*

During pass I of the assembly process, the assembler duplicates the repeat

block as manytimesas specified by the value of “‘exp.”’

* ENDRcanalso be used here.

162 Advanced Assembly Language Techniques / Chap. 10

Examples

1. Leave four blank lines. (Use the macro NULINE of Example 5 in Sec-
tion 10.2.)

REPT 5
NULINE
. ENDM

2. Set up a 100,,.-word array A, with each word containing the address of
the next word, except that the last word contains the address of thefirst.

(This array is called a “‘circularlist.’’)

A:

.REPT 99,

.WORD .+2

. ENDM
WORD A

3. Fill an array TABLE with the ASCII code of the characters A to Z.

CHAR='A
TABLE:

.REPT 26.
~BYTE CHAR

CHAR=CHAR+1
EN

4. Push the contents of TAB, TAB + 1, TAB + 2,..., TAB + 16 onto the

system stack, using the macro PUSH. (See Example 9 in Section 10.2 for

the explanation of\.)

~MACRO PUSH K
MOVB TAB+K,-(SP)
. ENDM

I=0
~REPT 17
PUSH \l

[=I+1.
. ENOM

5. The macro SAVEpushesthe contents of TAB + I, TAB+I1+1, TAB+I

+ 2,...,TAB+J (J > I) onto the system stack, using the macro PUSHof

Example 4.

Definition .MACRO SAVE I,J
COUNTSI

.REPT =J-I+1

Sec. 10.4 / Repeat Directives 163

PUSH \COUNT
COUNT=COUNT+1

. ENDM

. ENDM

Call SAVE 12,22

ansion (a) COUNT=12
Exp PUSH \12

COUNT=13
PUSH \13 22 -12+1= 11

macro calls

COUNT=22
PUSH \22

(b) COUNT=12
MOVB TAB+12,-(SP)

COUNT=13
MOVB TAB+13,-(SP)

COUNT=22_
MOVB TAB+22,-(SP) 0

Anotheruseful repeat directive is the .IRP (“indefinite repeat’’) directive:

IRP d,<a, ,a9,... ,a,> < heading

repeat block

.ENDM < terminator

where d is a dummyargumentand a,,a,,... ,a, are actual arguments. The

assembler (during pass I) duplicates the repeat block r times, first with d

replaced with a,, next with d replaced with a,, and so forth. For example,
to restore RO, R3, R4, and R5 from the system stack, we can write

-IRP REG,<RO,R3,R4,R5>
MOV (SP)+,REG
. ENDM

A similar directive is

RPC d;str < heading

repeat block

-ENDM < terminator

where d is a dummyargument and ‘“‘str’’ is a string of characters. The as-

sembler duplicates the repeat block —first with d replaced by thefirst

character of ‘“‘str,’”’ next with d replaced by the second character of ‘“‘str,”’

164 Advanced Assembly Language Techniques / Chap. 10

and so on. For example, to restore RO, R3, R4, and R5 from the system

stack, we can write

-IRPC N,0345
MOV (SP)+,R'N
. ENDM

(As in macros, ’ serves to separate adjacent symbols but is deleted during

duplication.)

10.5

CONDITIONAL ASSEMBLY

Conditional assembly directives enable the programmerto either include

or exclude a segment of source code, depending on certain conditions. This

facility is frequently used inside macro definitions, where parameter values

(as defined during pass I of the assembly process) determine which version

of the macro should be expanded.

The general form of the conditional directiveis

AF cond,s < heading

conditional block

-ENDC < terminator

where ‘‘cond”’ specifies a condition that s may or may notsatisfy. If s does

satisfy the condition, the conditional block is assembled; otherwise, it is

ignored. Table 10.1 lists some of the allowable IF directives. If the directive

. IFF

TABLE 10.1 Conditional Directives

Directive Assemble Block If

AF EQss s=0

AF NE s s #0
AF GT5s s>0

AF LE,s s<0
AF LT, $<0

LF GE,s sZ20

AF OF,s s is defined

AF NDF,s s is not defined

IF B,<s> macro argument s_ is blank (absent)
AF NB,<s> macro argument s is not blank (present)

Sec. 10.5 / Conditional Assembly
165

appears inside the conditional block, then the part of the block lying below

the IFF is assembled only if the preceding IF condition is not satisfied. Thus,

the IFF directive partitions the block into two subblocks, only one of which

is actually assembled.

Examples

1. The macro BRANCH generates the instruction BR X if the relative

distance to X is less than 255,, bytes, and the instruction JMP X otherwise.

X must be defined when this macro is called (that is, the branch must be

a backward branch).

Definition .MACRO BRANCH X
LIF LT,.-X-255.
BR X
FF
JMP xX
ENDC
ENDM

Note: Here we have an IF nested within a macro. The IFF splits the IF

block into two mutually exclusive subblocks (BR X and JMP X).

2. The macro GOTO L,X,REL,Y (where REL can be EQ, NE, GT,etc.)

generates the instructions CMP X,Y and B’REL L (which during run time

cause a branch to L if X and Y arerelated by REL). A call of the form

GOTO generates the unconditional branch BR L.(This is an attempt to

introduce a FORTRAN-likeinstruction into assembly language.)

Definition .MACRO GOTO L,X,REL,Y
IF B,<REL>
BR L
FF
CMP X,Y
B'REL =oL
-ENDC
~ENDM

Call GOTO LOOP ,SUM,NE #15

GOTO «EXIT

Expansion CMP SUM, #15
BNE LOOP

BR. EXIT

3. The macro MAX puts in RO the maximum of one to three arguments.

The code generated depends on the number of arguments, which is deter-
mined by the NARGdirective.

166

Definition

Call

Expansion

NEXT:

OUT:

67$:

(K=3)

68$:

69$:

Advanced Assembly Language Techniques / Chap. 10

~MACRO MAX A,B,C, ?NEXT, ?0UT
"NARG OK
MOV ARO
TIF NE.Kel
IF NE.Ke2
CMP C,RO
BLE NEXT
MOV «CRO
-ENDC
CMP B,RO
BLE OUT
MOV BRO
-ENDC

-ENDM

MAX p

MAX P,Q

MAX P.Q,R

MOV PRO

MOV PRO
CMP ssQRO
BLE 67$
MOV Q,RO

MoV PRO
CMP R.RO
BLE 68$
MOV R,RO
CMP —Q, RO
BLE 69$
MOV Q,RO

4. Conditional assembly can be used to implement ‘“‘macro recursion.”’

The macro POWER shown below multiplies the contents of X by 2% by

shifting X left (arithmetically) N times. The macro actually calls itself

recursively, with the recursion terminating by virtue of the IF which keeps

comparing a running tally (COUNT)against N.

Definition

Call

.MACRO POWER X,N
SL X

COUNT=COUNT+1
IF NE ,COUNT-N
POWER X,N
. ENDC
. ENDM

COUNT=0
POWER R5,6

167Exercises

Expansion ASL RS
ASL R5
ASL R5
ASL R5
ASL R5
ASL R5

EXERCISES

10.1 The macro FUNis defined as follows:

~MACRO FUN A,B,C,X,Y,N,M, ?LOOP
LOOP: X'Y

A‘B (PC)
BV'C LOOP
-WORD N,"B'M
. ENDM

Expand the following four calls, which appear consecutively in a

program. Show the contents of the .WORD directive resulting from

each call.

FUN AS,L,C,CL,C,15. ,C
FUN RO,R,S,SE,V,'X,X
FUN RO,L,S,CL,V,13,< >,L
FUN AS ,R,C,SE,N,<1,2,3>,<,>

10.2 The macros MAC1 and MAC2 are defined as follows:

.MACRO MAC1 K,X
MOVB R'K,X+K
.ENDM
.MACRO MAC2 N,Z

1=0
.REPT oN
MAC1 \I,2Z

I=I+1
~ENDM
/ENDM

Explain what MAC2 accomplishes and expandthecall

MAC2

10.3 (a) The macro STOREis defined by

5, TEMP

168 Advanced Assembly Language Techniques / Chap. 10

.MACRO STORE X,N
MOVB #1 ,X+]

I=I+1
LIF NE, I-N
STORE XN
ENDC
ENDM

Expandthecall

I=0
STORE TAB,7

(b) Write a nonrecursive macro that takes the same action as STORE.

10.4 The macro FOOis defined as follows:

10.5

10.6

10.7

.MACRO FOO R5, ITEMS ,LENGTH,BETA
CMP'BETA RO, Rl
R5
. WORD ITEMS
LIF B,<BETA>
.BLKW LENGTH
FF
. BLKB LENGTH
ENDC
ENDM

Expandthe calls

L5: FOO <BPL L5>,<5,25,3>,100,B
FOO <BNE L5>,,52

Write a subroutine POWER which multiplies the contents of X by 2

(where X is found in RO and N in R1). Comparethis subroutine with

the macro POWER of Section 10.5, indicating their relative advan-

tages and disadvantages.

Write a macro XOR which, when called with XOR, A,B, puts in RO

the exclusive-or product of A and B. (That is, RO will contain 1’s

only in those bits where A and B differ.)

Write a macro JMPSR,headed

. MACRO JMPSR SUB,REGS, ARRAY

which stores the registers listed in REGS onto a block of wordsstart-

ing at ARRAY, performs JSR PC,SUB,and thenrestores the contents

of all these registers. For example, the call

Exercises 169

10.8

JMPSR DPADD ,024 , TEMP

stores RO, R2, and R4 in TEMP, TEMP + 2, and TEMP+ 4; performs

JSR PC,DPADD;andthenrestores RO, R2, and R4.

A (fictitious) computer called SIMCOM (SIMple COMputer) has one

general-purpose register called an accumulator (ACC). Its central

memory and number representation are identical to those of the

PDP-11. The following is its instruction set, written in SIMCOM

assembly language (where d is a CM address):

Instruction Action

LDA d Load: (ACC)<{d)

STO d Store: (d)<{ACC)

ADD d Add: (ACC)*{ACC)+(d)
SUB d Subtract: (ACC)<{ACC)-(d)

TRA d Transfer: Branch to d (unconditionally)

TRZ d Transfer on zero: Branch to d if (ACC) = 0

TRN d Transfer on negative: Tranfer to d if (ACC) >0

HALT Halt

(1/0 instructions are omitted.) The assembler directives in SIMCOMare:

Directive Action

OCT n Store the octal constant n

BSS n Reserve n (octal) words

END End assembly

Using RO to simulate ACC, write a collection of PDP-11 macros

whose calls coincide with the 11 SIMCOMinstructionsand directives,

and which take the same actions as these instructions and directives.

For example, the macro for the load instruction will be

. MACRO LDA X
MOV X,RO
.ENDM

Using these macros, a SIMCOM program can be run on the PDP-11.

Each SIMCOMinstruction or directive is actually a PDP-11 macro

call (e.g., LDA SUM is actually MOV SUM,RO) which results in the

simulation of the SIMCOMinstruction ordirective.

Try your macros with a SIMCOM program which divides (A) by

(B) and puts the result (with fraction truncated) in C.

APPENDIXES

Central Memory (CM)

word

«——16 bits——»

4 1
3

5

7

11

13
8k words

16k bytes

 y 37777

15 87 0

#8 bitse<8 bits»
NN

High Low
byte byte

172

P
r
e
D
P

M
w
©

hm
e
©

37776

Appendix A
PDP-11 ORGANIZATION (PARTIAL)

Central Processor (CP)

Processor Status Register (PSR)

| Prior-te [rindvicli77776
15 7 543210

General-Purpose Registers Arithmetic
and

Logical Unit
(ALU)

15 8 7 0

*R6 is stack pointer (SP)
tR7 is program counter (PC)

Teletype Status and Data Registers

177560

177562

177564 Clock Status Register

177566 | 4
15 7 0 15 87 0

Teletype
(TTY)

| 177546

Appendix B

SEVEN-BIT ASCII CODE (PARTIAL)

Character Code Character Code

Bell 007 N 116
Line feed 012 O 117

Carriage return 015 P 120

Space 040 Q 121

| 041 R 122
” 042 S 123
043 T 124
$ 044 U 125
% 045 V 126
& 046 W 127
, 047 xX 130
(050 Y 131
) 051 Z 132
* 052 [133
+ 053 \ 134

; 054 J 135
- 055 t 136
. 056 << 137
/ 057 ‘ 140
0 060 a 141
1 061 b 142
2 062 c 143
3 063 d. 144
4 064 e 145
5 065 f 146
6 066 g 147

7 067 h 150
8 070 151
9 071 j 152

072 k 153
; 073 154
< 074 m 155
= 075 n 156
> 076 Oo 157
? 077 p 160
@ 100 q 16]
A 101 r 162
B 102 5 163
C 103 t 164
D 104 U 165
E 105 V 166
F 106 w 167
G 107 x 170
H 110 y 171
| 111 z 172

J 112 { 173
K 113 | 174

L 114 \ 175
M 115 N 176

173

Appendix C
PDP-11 ADDRESSING MODES

Assembly Operand’s

Mode Name of Mode Language Location Explanation

0 Register Rn Rn Operandis in Rn.

1 Register deferred (Rn) (Rn) Address of operand is in Rn.

2 Autoincrement (Rn)+ (Rn) Address of operandis in Rn;

(Rn)<{Rn)+2 after operandis

fetched.*

3 Autoincrement deferred @(Rn)+ ((Rn)) Address of address of operandis in

Rn; (Rn)<{Rn)+2 after operand is

fetched.

4 Autodecrement -(Rn) (Rn) (Rn)<{Rn)-2 before address is com-

puted +; address of operand is in Rn.

5 Autodecrementdeferred @-(Rn) ((Rn)) (Rn)<{Rn)-2 before address is com-

puted; address of address of operand

isin Rn.

6 Index X(Rn) X+(Rn) Address of operandis X plus (Rn).

Address of X is in PC; (PC)<{PC)+2

after X is fetched.

7 Index deferred @X(Rn) (X+(Rn)) Address of address of operand is X
plus (Rn). Address of X is in PC;

(PC)<{PC)+2 after X is fetched.

PC addressing

2 Immediate #k Operandis k. (k follows instruction.)

3. Absolute @#A A Address of operand is A. (A follows
instruction.)

6 Relative A A Address of operand is A. [A-(PC)
follows instruction.]

7 Relative deferred @A (A) Address of address of operandis A.

[A-(PC) follows instruction.]

*But (Rn)<{Rn)+1 if instruction is byte instruction and n <6.

+ But (Rn)<{Rn)-1 if instruction is byte instruction and n <6.

174

Appendix D

PDP-11 INSTRUCTIONS (PARTIALLIST)

Machine Assembly Nameof

Language Language Instruction Resulting Action

Single Operand

0050DD CLRd clear (d)< 0

0051DD COM d complement (d) <—~(d)

0052DD INCd increment (d) <(d) +1

0053DD DEC d decrement (d) <(d) -1

0054DD NEGd negate (d) <-(d)
0057DD TST d test (d) <(d)
0060DD ROR d rotate right (d) <-(d) shifted right 1 bit

0061DD ROL d rotate left (d) <-(d) shifted left 1 bit

0062DD ASRd arith. shift right (d) <(d)/2

0063DD ASL d arith. shift left (d) <2 * (d)
0003DD SWAB d swap bytes (diow ? (d)high

0055DD ADC d add carry (d) <—(d) +C

0056DD SBC d subtract carry (d) <(d)-C

0001DD JMPd jump (PC) <d

Double Operand

01SSDD MOVs,d move (d) <(s)

02SSDD CMP s,d compare form (s) - (d)

06SSDD ADD sd add (d) <(s) + (d)
16SSDD SUB s,d subtract (d) <-(d) - (s)

03SSDD BIT s,d bit test form (s) A (d)*

04SSDD BIC s,d bit clear (d) —[~(s)] A(d)*

05SSDD BIS s,d bit set (d) <—(s)V (d)*

*\/is “OR,” A is “AND,” Vis “NOT.”

175

176

Appendix D

Base Code Assembly Language Branch to a if*

000400 BRa (unconditionally)

001000 BNE a not equal to 0 (Z = 0)
001400 BEQa equal to 0 (Z = 1)

100000 BPLa plus (N = 0)
100400 BMI a minus (N = 1)

102000 BVCa overflow clear (V = 0)

102400 BVS a overflow set (V = 1)

103000 BCC a carry clear (C = 0)

103400 BCS a carry set (C = 1)

002000 BGE a greater than or equal to 0 (N V V =0)

002400 BLT a less than 0 (N V V=1) Signed

003000 BGT a greater than 0 [Z VV (N V V) =0]

003400 BLE a less than or equal to 0 [ZV (N V V) = 1]

101000 BHI a higher (C\VV Z = 0)

101400 BLOS a lower or same (CVV Z = 1) Unsigned

103000 BHIS a higher or same (C = 0)

103400 BLOa lower (C = 1)

*The rules for the V operation are: 0+0=0, 0+1=1, 1+1=0; the rules for the V operation are:

0+0=0, O+1=1, 1+1=1.

Machine Assembly

Language Language Resulting Action

Condition Code Operators

000241 CLC clear C

000242 CLV clear V

000244 CLZ clear Z

000250 CLN clear N

000257 CCC clearC,V,Z,N

000261 SEC set C

000262 SEV set V

000264 SEZ set Z

000270 SEN set N

000277 SCC setC, V,Z,N

Miscellaneous

Rn is
004nDD JSR Rn,d jump to subroutineat d } linkage

00020n RTS Rn return from subroutine register

000001 WAIT wait for interrupt

000002 RTI return from interrupt

000003 BPT breakpoint trap

000240 NOP (no operation)

000000 HALT halt

Appendix E

MACRO-11 DIRECTIVES (PARTIALLIST)

Directive Explanation

TITLE title Title used in assembly listing.

.END End of source program.

Data storage

BYTE €xXP,,--+,XPy Store the binary values of exp, ,..., €XPp_ in successive bytes.

WORD €xXP,,.-+,eXPp Store the binary values of exp,,..., exPp in successive words.

ASCII /string/ Store the ASCII value of string in consecutive bytes. (/ is any

-ASCIZ /string/

Location counter control

.=exp

.EVEN

ODD

.BLKB exp

.BLKW exp

Assignments

sym=exp

Globals

.GLOBL sym,,---,S¥YMpy

Notation for numbers and characters

-RADIX fr

TDn orn.

tOn

TBn

tcn

’p
"Py P2

any character notin string.)

Same as ASCII, but inserts a zero byte after last character of

string.

Set counter to value of exp (relocatable).

If current value of counteris odd, add 1 toit.

If current value of counteris even, add 1 toit.

Reserve a storage block of exp bytes (absolute).

Reserve a storage block of exp words (absolute).

Assign to sym the value of exp.

Define sym, ,...,SYMp as global symbols.

Henceforth all numbers are base r (2, 4, 8, or 10).

Take n as a decimal number.

Take n as an octal number.

Take nas a binary number.

Take the 1’s complement of n.

Take the ASCII value of the characterp.

Take the ASCII value of the two-character string pp.

177

Appendix F

POWERS OF 2

n 2"

0]

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1 024

11 2 048

12 4 096

13 8 192

14 16 384

15 32 768

16 65 536

17 131 072

18 262 144

19 524 288

20 1 048 576

21 2 097 152

22 4 194 304

23 8 388 608

24 16 777 216

25 33 554 432

26 67 108 864

27 134 217 728

28 268 435 456

29 536 870 912

.30 1 073 741 824

31 2 147 483 648

32 4 294 967 296

33 8 589 934 592

34 17 179 869 184

35 34 359 738 368

36 68 719 476 736

37 137 438 953 472

38 274 877 906 944

39 549 755 813 888

40 1 099 511 627 776

41 2 199 023 255 552

42 4 398 046 511 104

43 8 796 093 022 208

44 17 592 186 044 416

45 35 184 372 088 832

46 70 368 744 177 644

47 140 737 488 355 328

178

Appendix G

NOTES ON PROGRAMMINGSTYLE

A good assembly language program must be correct, well structured,

and properly documented. It is taken for granted that a final version of a

program must provide correct answers. The remainingcriteria can be classi-

fied as ‘“‘programming style.’’ Good programming style includes careful

annotation and commentary, clear organization, and lucid coding.In writing

your program, bear in mind that the reader knowsrelatively little about

the problem you are trying to solve, and next to nothing about yourpro-

gramming habits. Here are some specific pieces of advice:

1.

2.

3.

Programs should be modular. Well-defined portions of an algorithm

should be coded as subroutines.

Each program or subroutine should have a concise introductory

comment describing the purpose of the program or subroutine,

the algorithm used, the significance of important internal variables,

and the meaning and formats of required inputs and generated

outputs. For subroutines, describe the meaning and format of

parameters and the call convention (e.g., JSR PC,SUB); also list the

registers used by the subroutine.

Standardize your instruction format. For example:

Label field —column 1

Operation field —column 9

Operandfield —column 17

Commentsfield —column 33

If the operand field extends beyond column 32, simply leave a

space and start the comment.

. A comment should appear with almost every instruction. Such a

“‘marginal’? comment should not be simply a literal translation of

the instruction, but an explanation of its effect on the program.

For example, a comment for BR LOOP should not be ‘branch to

LOOP,”’ but ‘‘return for processing next character.”’

. If marginal comments do not make the operations clear enough,

do nothesitate to insert full-line commentary between instructions.

. A marginal comment extending over several lines should be suc-

cessively indented. For example:

179

180

10.

11.

12.

13.

14.

15.

16.

Appendix G

ASR RO ;DIVIDE
ASR RO ; OPERAND
ASR RO 3 BY EIGHT

. Separate distinct parts of the code with blanklines (or a line con-
taining only ;in column 1).

. Avoid “tricky” or “‘clever” instruction sequences. If you must

include such sequences, provide them with full explanations.

. Pay attention to all possibilities. For example, in writing a division

routine, include a check for zero divisor. If a divisor is found to be

zero, some specific action must be taken (an error message is to be

printed out, a certain condition codeis to beset,etc.).

At all costs, avoid writing self-modifying programs (where one or

more instructions are altered during execution). Such ‘“nonreen-

trant” programsare extremely difficult to debug.

Subroutines that stand a good chance of being useful in other

programs (e.g., I/O routines, multiplication and division routines)

should be as “‘transparent’”’ as possible to the calling program. All

registers used by such subroutines should be saved on entry and

restored before exit.

Storage areas should be grouped together in a single place in the

program, not mixed with executable code.

To the extent possible, symbols should be mnemonic. For example,

points in the program should be named LOOP, NEXTCH (“next

character’’), EXIT, etc., rather than X1, X2, X3. Similarly, storage

locations should be named TEMP, TABLE, CONST, etc., rather

than P, Q, R.

For better readability, predefine symbols for absolute addresses

and constants used in your program: for example, PSR = 177776,

BELL = 7, MASK = 177700. Write SP and PC for R6 and R7.

Avoid wasteful instructions if efficient ones are just as lucid. For

example, write

CLR RO not: ~MOV #0,RO
DEC R3 not SUB #1,R3
TST (SP)+ not ADD #2,SP
JMP LOOP not MOV #LOOP,PC

Do not insert test and compare instructions where they are not

needed. For example,in

DEC R4
CMP R4,#0
BNE LOOP

Appendix G 181

the CMPinstruction is redundant. In

SUB A,B
TST B
BEQ NEXT

the TST instruction is redundant.

17. Avoid using instructions as data, even if it may save you space.

For example, do not write

MOV —s@PC,, R11
BIC —R1,R5

18. The flowchart

YES TEST NO <
 Ll ¥

L3

should be coded as

TST...
BNE L2

Ll: oo...

BR L3
L2: ...

L3:

182 Appendix G

rather than

TST...
BNE L2

Ll: ...

L3:

L2:

BR L3

19. To reserve a word of storage, write .BLKW 1, not .WORD 0. (The

latter directive indicates that the initial contents of the word is

significant.)

A

Absolute address, 137, 138
Actual argument, 155
ADC,28, 89, 175
ADD,28, 29 85-87, 175
Addition, 85-87

binary, 7
octal, 7

two’s complement, 19, 20
Address, 11

Address expression, 137

Addressing mode, 29-35, 174
absolute, 32, 33,174

autodecrement, 30, 174

autodecrement deferred, 30, 174

autoincrement, 30, 174

autoincrement deferred, 30, 174

examples, 31, 39-42

INDEX

183

184 Index

Addressing mode(cont.):
immediate, 30-32, 174

index, 30, 174

index deferred, 30, 174
register, 30, 174

register deferred, 30, 174
relative, 33, 34, 174
relative deferred, 34, 35, 174

Address modification, 140

ALU (see Arithmetic and logical unit)
Argument, 64, 155
Argument transmission, 65, 67-70
Arithmetic and logical unit, 10, 12
ASCII, 47, 132, 177
ASCII code, 22, 173
ASCII-to-binary example, 99-105, 134-136
ASCIZ, 47, 177

ASL, 28, 97-99, 175
ASR, 28, 97-99, 175

Assembler, 26, 131-136
Assemblerlisting, 134-136
Assembly language, 26, 45-51

format, 50, 51, 179
Assignmentdirective, 48, 133, 177

B

Backward echo example, 62-64
Basis, 72

BCC, 36, 93, 176
BCS, 36, 93, 176
BEQ,36, 93, 176
BGE, 36, 93-96, 176
BGT, 36, 93-96, 176
BHI, 36, 93-96, 176
BHIS, 36, 93-96, 176
BIC, 28, 53, 175
Binary number, 1
Binary point, 23

Binary tree, 82-84
BIS, 28, 175
Bit, 10
BIT, 28, 92, 175
BLE, 36, 93-96, 176
BLKB, 48, 132, 177
BLKW,48, 132, 177, 182

Index

BLO, 36, 93-96, 176
BLOS, 36, 93-96, 176
BLT, 36, 93-96, 176
BMI, 36, 93, 176
BNE,36, 93, 176
BPL, 114, 176

BPT, 114, 176
BR, 36, 176
Branchinstruction, 35-38, 93-97, 176

BVC, 36, 93, 176
BVS, 36, 93, 176
Byte, 10

high, 11
low, 11

BYTE,47, 131, 182, 177

C

Call, 64
Calling program, 64
Card reader, 9
Carry, 20, 85-88

Cathode-ray tube display, 9
C bit, 20, 85-88, 91, 92
CCC, 38, 176
Central memory, 9-11

Central processor, 9, 10, 12
Character, 21

nonprinting, 21
special, 21

Character string, 23
CLC, 38, 176
CLN, 38, 176
Clock (see Line clock)

Clock status register, 10, 13, 115, 117
CLR, 28, 175
CLV,38, 176
CLZ, 38, 176
CM (see Central memory)

CMP,28, 87, 88, 91-97, 175
Coding hints, 55-57, 180-182

COM,28, 175
Commentfield, 50, 179

Concatenation, 158

Conditional assembly, 164-167

185

186

Conditional block, 164

Condition codes, 12, 20, 38, 93, 97, 176

Conversion method, 2-7

binary-to-decimal, 5
binary-to-octal, 7

decimal-to-binary, 2, 3

decimal-to-octal, 3-5
octal-to-binary, 6
octal-to-decimal, 5, 6

Coroutine, 79, 80

CP (see Central processor)
CP priority, 118

D

DD field, 27
Debugging, 113
DEC, 28, 175
Decimal number, 1

Destination operand, 27
Diagnostic, 133
Digit, 21
Directive, 46-50, 177
Dot, 49, 131

Double-operandinstruction, 27, 28, 175
Double precision, 23
Double-precision arithmetic, 88-91
Dummyargument, 155

E

END, 49, 177
ENDC, 164
ENDM,154, 161, 163
ENDR, 161
EVEN, 49, 177
Execution cycle, 27
Exponent, 23

F

Factorial function, 72, 73

Fibonacci numbers, 73

Floating point, 23
Fraction, 23

Front panel, 9

Index

Index 187

G

General purpose register, 10, 12
Global symbol, 140-146

Global symboltable, 144

GLOBL, 53, 142-144, 177

H

HALT,27, 38, 176
High-level language, 130

IF, 164
IFF, 164, 165
Illegal address trap, 112, 113

Illegal instruction trap, 112, 113
INC, 28, 175
Induction step, 72
Instruction, 27, 28, 175, 176

byte, 28
word, 28

Interrupt, 114-125
Interrupt enable bit, 13, 115, 118

Interrupt handler, 114, 120

Interrupt routine, 114, 120
Interrupt vector, 114
INTR ENBLbit (see Interrupt enablebit)
IRP, 163
IRPC, 163

J

JMP, 28, 29, 37, 175
JSR, 65, 176

K

K, 11
Keyboard, 12, 115

Keyboard data register, 10, 13
Keyboard statusregister, 10, 12, 115

L

Label, 50, 160

188 Index

Label field, 50

Letter, 21

Line clock, 9, 10, 18, 115, 117

Linkage, 65
Linkage editor, 130, 131, 138-146
Linkage register, 65
LINKR-11, 131, 138
Loader, 49

Loading origin, 137
Load map, 145
Load module, 138

Local symbol, 142, 159-161
Location, 11
Location counter, 49, 131, 177

M

Machinelanguage, 26, 45, 46
Macro, 151-167

nested, 156
MACRO,154, 155
Macro body, 154
Macro definition, 154, 155
MACRO-11, 46, 131-136, 153
Macro heading, 154
Macro recursion, 166
Magnetic disk, 9
Magnetic tape, 9
Mantissa, 23

Merged global symboltable, 145
Modesubfield, 29
Modular programming, 64, 151, 179
Monitoring program, 114
Mostsignificant bit, 18
MOV,28, 175
MSB(see Mostsignificant bit)
Multiple echo example, 51-54
Multiplication, 67, 68, 99, 102

N

NARG, 155
N bit, 12, 91, 92
NEG, 28, 88, 175
No-operandinstruction, 38

Index

NOP, 176

Null, 23

Number, 1, 15

Numbersystem, 1-8

O

Object module, 138

Octal contents, 11
Octal number, 1
ODD,49, 177
Offset, 35

One’s complement, 16
Op-code, 27
Op-code table, 131
Open subroutine, 153
Operand field, 50
Operation code, 27
Operator field, 50
Overflow, 20, 85-88, 91

P

Paper tape punch, 9
Parameter, 64

Parity bit, 21

PC (see Program counter)
PDP-11 organization, 9-14, 172
Peripheral device, 9, 116
Permutations, 73

PIC (see Position-independent code)
Polling, 116
Pop, 61, 62
Position-independent code, 34, 36, 147, 148

Powers of 2, 6, 178

Powers of 8, 6

Printer, 9, 12, 13,115
Printer data register, 10, 13
Printer status register, 10, 13, 115

Priority field, 118

Priority interrupt, 118-125

Processor status register, 10, 12, 118, 119

Processor trap, 111-114

Program counter, 10, 12, 27

Programmingstyle, 57, 179-182

189

190

PSR (see Processor statusregister)
Pure procedure, 65
Push, 61, 62

R

RADIX, 48, 177
Ready bit, 13, 114,115

Real number, 23

Recursive function, 72

Recursive subroutine, 72-79
Reentrant code, 65, 180
Register (see specific register name)
Register subfield, 29
Relocatable address, 137, 138
Relocation, 136-148
Repeat block, 161
Repeat directive, 161-164
REPT, 161
Return, 64
ROL, 28, 97-99, 175
ROR,28, 97-99, 175
RTI, 115, 176
RTS, 66, 176

S

SBC, 28, 90, 175
SCC, 38, 176
Scientific notation, 23
SEC, 38, 176
SEN, 38, 176
SEV, 38, 176
SEZ, 38, 176
Shift instruction, 97-99
Sign bit, 18
Single-operand instruction, 27, 28, 175
Single precision, 23
Source operand, 28
SP (see Stack pointer)
SS field, 28
Stack, 60-64
Stack calculator, 108-110
Stack overflow, 62

Stack pointer, 10, 12, 61, 66

Index

Index

Stack underflow, 62

SUB, 28, 29, 87, 88, 175
Subroutine, 64-80, 116, 138, 151-154, 179

nested, 70-72

Subtraction, 19, 87, 88
SWAB, 28, 29, 175
Symboltable, 131, 134, 136
System stack, 66, 112

T

T bit, 113, 114
Teletype, 9, 10, 12,13

Time request example, 120-125
TITLE, 49, 177
Top-down programming, 64

Tower of Hanoi example, 74-79
Trap, 111-114
Trap bit, 113, 114

Trap routine, 112
Trap vector, 112, 113
TST, 28, 91, 92,175
TTY (see Teletype)
Two-pass assembly, 131, 132

Two-pass linkage, 144-146
Two’s complement, 15-19

V

V bit, 20, 85-88, 91, 92

W

WAIT, 176
Word, 10

high order, 88
low order, 88

WORD,47, 131, 132, 177, 182

Z

Z bit, 12, 91, 92

191

	00_0002
	00_0003
	00_0004
	00_0005
	00_0006
	00_0007
	00_0008
	00_0009
	00_0010
	00_0011
	00_0012
	00_0013
	00_0014
	00_0015
	00_0016
	00_0017
	01_0001
	01_0002
	01_0003
	01_0004
	01_0005
	01_0006
	01_0007
	01_0008
	02_0009
	02_0010
	02_0011
	02_0012
	02_0013
	02_0014
	03_0015
	03_0016
	03_0017
	03_0018
	03_0019
	03_0020
	03_0021
	03_0022
	03_0023
	03_0024
	03_0025
	04_0026
	04_0027
	04_0028
	04_0029
	04_0030
	04_0031
	04_0032
	04_0033
	04_0034
	04_0035
	04_0036
	04_0037
	04_0038
	04_0039
	04_0040
	04_0041
	04_0042
	04_0043
	04_0044
	05_0045
	05_0046
	05_0047
	05_0048
	05_0049
	05_0050
	05_0051
	05_0052
	05_0053
	05_0054
	05_0055
	05_0056
	05_0057
	05_0058
	05_0059
	06_0060
	06_0061
	06_0062
	06_0063
	06_0064
	06_0065
	06_0066
	06_0067
	06_0068
	06_0069
	06_0070
	06_0071
	06_0072
	06_0073
	06_0074
	06_0075
	06_0076
	06_0077
	06_0078
	06_0079
	06_0080
	06_0081
	06_0082
	06_0083
	06_0084
	07_0085
	07_0086
	07_0087
	07_0088
	07_0089
	07_0090
	07_0091
	07_0092
	07_0093
	07_0094
	07_0095
	07_0096
	07_0097
	07_0098
	07_0099
	07_0100
	07_0101
	07_0102
	07_0103
	07_0104
	07_0105
	07_0106
	07_0107
	07_0108
	07_0109
	07_0110
	08_0111
	08_0112
	08_0113
	08_0114
	08_0115
	08_0116
	08_0117
	08_0118
	08_0119
	08_0120
	08_0121
	08_0122
	08_0123
	08_0124
	08_0125
	08_0126
	08_0127
	08_0128
	08_0129
	09_0130
	09_0131
	09_0132
	09_0133
	09_0134
	09_0135
	09_0136
	09_0137
	09_0138
	09_0139
	09_0140
	09_0141
	09_0142
	09_0143
	09_0144
	09_0145
	09_0146
	09_0147
	09_0148
	09_0149
	09_0150
	10_0151
	10_0152
	10_0153
	10_0154
	10_0155
	10_0156
	10_0157
	10_0158
	10_0159
	10_0160
	10_0161
	10_0162
	10_0163
	10_0164
	10_0165
	10_0166
	10_0167
	10_0168
	10_0169
	10_0170
	A_0171
	A_0172
	A_0173
	A_0174
	A_0175
	A_0176
	A_0177
	A_0178
	A_0179
	A_0180
	A_0181
	A_0182
	I_0183
	I_0184
	I_0185
	I_0186
	I_0187
	I_0188
	I_0189
	I_0190
	I_0191

