MINC-11

Book 5:
MINC IEEE Bus Programming

November 1978

This manual describes the MINC routines that control the
IEEE-488-1975 general purpose instrument bus.

Order Number AA-D8O01A-TC
MINC-11

VERSION 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, November 1978

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright @ 1978 by Digital Equipment Corporation

The postage-prepaid READER’S COMMENTS form on the last page of this document requests the user’s
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10

MINC-11 DECSYSTEM-2020

6/79-14

PREFACE

PART1 INTRODUCTION TO IEEE BUS PROGRAMMING

CHAPTER 1 FUNDAMENTAL CONCEPTS 1
WHAT IS THE IEEE BUS? 1
Talker, Listener, Controller 2
Instrument Addresses 4
The Interface 4
MESSAGE ROUTINES 6
Messages 6
Sending Messages 7
Receiving Messages 8
Transferring Messages 9
TRIGGERING 9
STATUS 9
Serial Polls 10
Service Requests 11
Parallel Polls 12
REMOTE AND LOCAL 13
RESETS 15
Clearing Interfaces 16
Clearing Instruments 16

CHAPTER 2 ADVANCED CONCEPTS 19
COMMANDS: THE ATN LINE 20
Instrument Addressing 20
Universal and Addressed Commands 21
Control Conflict 21

i

CONTENTS

CONTENTS

THE EOI LINE 21
Parallel Polls: IDY 21
Fragmented Messages: END 21

THE DATA LINES 22
Message Codes 22
Command Codes 22
Poll Results 25

THE HANDSHAKE LINES 26
The Handshake 26
Error Conditions 27
The Idle State 28

MINC COMMANDS 29

PART 2 ROUTINES
SYNTAX CONVENTIONS

ALL_INSTR_CLEAR Clear All Bus Instruments 31
DISABLE_ALL.PAR_POLL Disable Parallel Poll Response of All
Instruments 33
DISABLE_PAR_POLL Disable Parallel Poll Response of Selected
Instruments 35
DISABLE_REMOTE Put All Bus Instruments in the Local State 37
ENABLE_PAR_POLL Enable an Instrument’s Parallel Poll Response 39
ENABLE_-REMOTE Allow All Bus Instruments to Be in the Remote
State 43
IEEE_BUS_CLEAR Clear the IEEE Bus 45
INSTR_CLEAR Clear Selected Instruments 47
INSTR_TIME_LIMIT Set Time Allowed for Instrument Response 49
LOCAL_INSTR Put Selected Instruments in the Local State 52
LOCAL_LOCKOUT Disable Return-to-Local Buttons 55
PAR_POLL Conduct a Parallel Poll 57
RECEIVE Receive a Message from an Instrument 60
SEND Send a Message to an Instrument 65
SEND_FRAGMENT Send a Message Fragment to an Instrument 68
SERIAL_POLL Conduct a Serial Poll 71
SET_TERMINATORS Specify Terminating Characters 76
SRQ_SUBROUTINE Designate an SRQ Service Subroutine 79
TEST_LISTENERS Test for the Presence of Listeners 83
TEST_-REMOTE Test the Remote Enable (REN) Bus Line 85
TEST_SRQ Test the Service Request (SRQ) Bus Line 87
TRANSFER Supervise Message Transfer Between Instruments 89
TRIGGER_NSTR Trigger Selected Instruments 92

INDEX 95

iv

Figure

MINC Receives a Message 2

MINC Sends a Message 2

Sample Address Record 3

An Instrument’s Interface 4

An Instrument Listens 5

An Instrument Talks 5

An Instrument Accepts Command from MINC
Serial Poll Response 11

Example of a Parallel Poll Response 13
Remote and Local States 14

The IEEE Bus Lines 19

Values Associated with the Data Lines 22
ASCII Character Codes 23

Command Codes 24

Command Code Format 25

Poll Result Bits Correspond to Data Lines 25
A Handshake 26

ENABLE_PAR_POLL Example, Part 1 42
ENABLE_PAR_POLL Example, Part 2 42
The Status Argument 72

SERIAL_POLL Example 75

CONTENTS

FIGURES

This manual describes the MINC routines that control the
IEEE bus, the general purpose instrument bus described in
standard 488-1975 of the Institute of Electrical and Electronic
Engineers, IEEE Standard Digital Interface for Programmable
Instrumentation (also known as standard MC 1.1-1975 of the
American National Standards Institute). Programs use these
routines to control instruments on the bus and to send data to
and receive data from these instruments.

This manual has two major parts. Part 1 describes the IEEE
bus and what the IEEE routines do. Part 2 deseribes how to use
the IEEE routines: these individual routine descriptions are ar-
ranged alphabetically for easy reference. Part 1 has two levels of
discussion: Chapter 1 is an introduction to the bus, but contains
enough information for many applications, while Chapter 2 is
more detailed and advanced.

vii

PREFACE

PART 1

INTRODUCTION TO
IEEE BUS
PROGRAMMING

CHAPTER 1

FUNDAMENTAL CONCEPTS

The IEEE bus permits a computer to communicate with instru-
ments through strings of characters, called messages. The com-
puter can send an instrument a string that tells the instrument
what to do. The instrument can send back a string of informa-
tion about data it has collected.

Since this bus became an IEEE standard and an ANSI stan-
dard in 1975, hundreds of instruments with diverse applications
have been built to be connected to it. Any instrument that con-
forms to the IEEE standard can communicate with MINC
through this bus, though an instrument can conform to the
standard without having all of the capabilities defined in the
standard.

Physically, the IEEE bus is a cable of 16 wires, or bus lines,
which are shared by MINC and all instruments on the bus.
The cable, connectors to the cable, and electrical requirements
are defined by the standard and are described in Chapter 6 of
Book 7.

The standard describes each line of the bus and specifies exactly
when and how an instrument may use that line. Eight of the
lines, called the data lines, are used to encode the characters sent
on the bus. Three morelines, called the handshake lines, are used
to be sure that each character sent is received. The remaining
five lines are for general bus management. The purpose of each
of these 16 lines is discussed in more detail later.

WHAT IS THE IEEE
BUS?

IEEE BUS PROGRAMMING

Talker, Listener,
Controller

Instruments play well-defined roles on the bus. An instrument
sending a message is called a talker. Only one instrument may
talk at any one time. An instrument receiving a message is
called a listener. Any number of instruments may listen to the
message being sent by the talker.

MINC is called the controller of the bus. As such, it tells bus in-
struments when to talk and when to listen. No instrument can
ever talk or listen unless told to do so by MINC. MINC controls
all bus activity, and it must be the only controller of the bus. This
means that no other calculator or computer, not even another
MINC, can be a controller on this IEEE bus.

For example, suppose your IEEE bus system consists of MINC,
a multimeter, and a signal generator. You want MINC to receive
from the multimeter a message that reports a voltage reading
and then send the signal generator a message that causes it to to
output a signal based on the voltage reading. To receive the volt-
age reading, MINC tells the multimeter to be the talker, and
MINC itself is the listener. MINC tells the signal generator to
neither talk nor listen, so the signal generator ignores the mes-
sage that the multimeter sends to MINC (see Figure 1). To send
instructions for the signal output, MINC tells the signal genera-
tor to be a listener, and MINC itself is the talker. MINC tells the
multimeter to neither talk nor listen, so the multimeter ignores
the message that MINC sends to the signal generator (see Fig-
ure 2).

IEEE Bus

Y1 1l

MINC Multimeter Signal Generator

(listener) (talker)
MR-2127

Figure 1. MINC Receives a Message

|EEE Bus

i

MINC Mulitimeter Signal Generator
(talker) (listener)

MR-2128

Figure 2. MINC Sends a Message

FUNDAMENTAL CONCEPT
IEEE Bus Addresses S

Instrument Address Secondary Addresses
Multimeter 1 1 resistance
2 amperage
voltage
Signal Generator 2 none

MR-2126

Figure 3. Sample Address Record

IEEE BUS PROGRAMMING

Instrument Addresses

The Interface

Each instrument on the bus has a number between 0 and 30 that
MINC uses to identify the instrument when telling it to talk or
listen. This number is the instrument’s address and can be set
with switches located on the instrument itself. Chapter 6 of Book
7 describes these switches and how to set them. Before you can
use the IEEE routines, you must know the addresses of the in-
struments on your bus. In the previous example, you might set
the multimeter to have an address of 1, and the signal generator
to have an address of 2. An instrument’s address is also called its
primary address.

Some bus instruments have different functions or parts that
MINC can specify by using a secondary address in addition to
the instrument’s primary address. Secondary addresses are in
the range 0 to 30, though in order to distinguish them from pri-
mary addresses, they are specified in IEEE bus routines by
numbers in the range 200 to 230. Each instrument’s designer de-
fines the meanings of any secondary addresses the instrument
recognizes. For example, when you tell the multimeter above to
talk, it might report a voltage reading if you specify secondary
address 3, an amperage reading if you specify secondary ad-
dress 2, and a resistance reading if you specify secondary ad-
dress 1.

We suggest that you write down the address of each bus instru-
ment, along with any secondary addresses and what they spec-
ify, on a form such as the one shown in Figure 3. Be sure that no
two instruments have the same address. Blank forms are pro-
vided at the end of this chapter and at the end of the book.

o ~N
< {EEE bus cable >
|EEE bus < Defined

by

the
IEEE
standard

(O

Interface
(Instrument-independent)

AW

Instrument ﬁ Defined
Instrument-dependent by
part the

instrument’s
designer

- 4

MR-2129

Figure 4. An Instrument’s Interface

IEEE bus

Messages

Interface
accepts
messages

y 4

N

instrument

Instrument-dependent
part interprets
messages

MR-2130

Figure 5. An Instrument Listens

Partof each instrumenton the IEEE busis defined by the IEEE
standard and is thus instrument-independent. This part is
called the instrument’s interface to the bus. The rest of the in-
strument is instrument-dependent. It is defined not by the stan-
dard but by the instrument’s designer. These parts are illus-
trated in Figure 4. Because every instrument on the IEEE bus
has an interface, the bus is sometimes called the interface bus.

Only an instrument’s interface interacts directly with the bus.
Messages are interpreted by the instrument-dependent part of
the instrument, but they are sent and received through the inter-
face. When MINC tells the instrument to listen, the instrument’s

|EEE bus

7S

Interface
transmits
messages

Messages

Instrument-dependent
part provides
messages

Instrument

MR-2131

Figure 6. An Instrument Talks

FUNDAMENTAL CONCEPTS

IEEE BUS PROGRAMMING

MESSAGE
ROUTINES

Messages

6

interface passes any subsequent messages sent on the bus to the
instrument-dependent part of the instrument. This is illustrated
in Figure 5.

When MINC tells the instrument to talk, the instrument’s inter-

face transmits messages from the instrument-dependent part of
the instrument. This is illustrated in Figure 6.

MINC controls the bus by sending commands, which are in-
structions to the interfaces on the bus. This is illustrated in Fig-
ure 7. Like messages, commands are sent as characters on the
data lines but, unlike messages, commands are intercepted and
interpreted by the interface, not passed to the instrument-
dependent part of the instrument. The interface interprets each
command according to the meaning defined for that command
by the IEEE standard. Only MINC, the bus controller, can send
commands. MINC uses commands to tell instruments to talk or
listen.

|EEE bus cable

Commands

Interface

Instrument

Instrument-dependent
part

MR-2132

Figure 7. An Instrument Accepts Commands from MINC

The routines described in this section control message transmis-
sion. In the SEND routine, MINC transmits a message to an in-
strument on the bus (MINC sends); inthe RECEIVE routine, an
instrument on the bus transmits a message to MINC (MINC
receives). Since message transmission between IEEE bus in-
struments and MINC is the main purpose of the bus, SEND and
RECEIVE are the most used and most important IEEE bus
routines.

The contents of each message string and the effect it has or the
information it reports are as varied as the types of instruments
on the bus. The IEEE standard only defines how instruments

communicate, not what they communicate. For this reason, the
user’s guide for each instrument is an essential source of infor-
mation when you use the IEEE routines. It helps you decide
what strings to send to that instrument and tells you what
strings you should expect to receive from it.

For example, the multimeter above might send back a reading
with these characters:

V+4.382E+01

where the “V” indicates that this was a voltage reading (not an
amperage or resistance reading) and the other characters indi-
cate a measurement of 43.82 volts. Based on this reading, your
program might tell the signal generator to generate a 43.8 volt
signal at 1250 Hz. The message telling the signal generator to do
this might be:

V43.8F'1250

where “V43.8” means “43.8 volts” and “F1250” means “at a fre-
quency of 1250 Hz.”

The SEND routine sends a message to one or more instruments
on the IEEE bus. MINC itself is the talker and sends a message
string specified by your program to the listeners specified by
your program. Not all instruments are able to listen.

Each instrument that can listen has a vocabulary of characters
that are meaningful to it. Because vocabularies differ from in-
strument to instrument, you usually send each message to only
one instrument. The user’s guide for a particular instrument
lists the characters the instrument recognizes and the effect of
each character. The message you send to an instrument depends
on the effect you want and which character or characters cause
that effect.

For example, a statement that sends the message “V43.8F1250”
to the signal generator above is:

SEND(''V43.8F1250",2)
where 2 is the signal generator’s address.
One of the five general management bus lines is known as the

END line. This line is reserved by the standard so that the talker
can set it while sending the last character of its current message

FUNDAMENTAL CONCEPTS

Sending Messages

IEEE BUS PRCGRAMMING

Receiving Messages

and thus indicate the end of that message to the listeners. Some
instruments do not act on any message characters untilthe END
line is set. The SEND routine sets this bus line while sending
the last character of the string specified by your program. In
the example above, it sets the END line while sending the
character “0.”

The RECEIVE routine receives a message from an instrument
on the IEEE bus. MINC is a listener and stores the message
string sent by the talker you specify. Not all instruments are able
to talk. For example, the signal generator might be able only to
listen.

The meaning and format of the string is determined by the
instrument’s designer. The user’s guide for an instrument tells
you what information the instrument sends and the format of its
messages.

For example, a statement to take a voltage reading from the
multimeter above is:

RECEIVE(V$,.1,203)

where 1 is the multimeter’s address, 203 indicates secondary ad-
dress 3 (a voltage reading), and the message string (in this case
“V+4.382E+01") is stored in the variable V$.

MINC knows the message is complete when one of the following
three conditions occurs:

1. Thetalker sets the END bus line while sending a character.
For example, the multimeter above might set the END line
while it sends the character “1.”

2. The talker sends a terminator, a character MINC does not
store as part of a message but recognizes only as an end-of-
message indicator. Normally, MINC recognizes a carriage
return or a line feed as a terminator, but you can change
which characters are terminators by wusing the
SET_TERMINATORS routine. For example, the multime-
ter might follow the “1” character with a carriage return
character. Note that if it did this, it would not set the END
line while sending the “1.” Depending on how it was de-
signed, the instrument might or might not set the END line
while sending the carriage return character.

3. The number of characters sent in this message reaches a

limit set by your program in the RECEIVE statement. For
example, if the multimeter is not designed to set the END
line or send a terminator, your program should specify
eleven (the number of characters in the string
“V+4.382E+01”) as the maximum number of characters in
the message.

The TRANSFER routine supervises the transfer of a message
between instruments. Even though it does not store the message,
MINC does listen so that it can know when the message is com-
plete. As in the RECEIVE routine, MINC knows the message is
complete when the talker sets the END line, sends a terminating
character, or sends a message whose length reaches a limit set
by your program in the TRANSFER statement.

The TRANSFER routine should only be used with compatible
instruments: the vocabulary of the listener you specify should be
able to interpret the message sent by the talker you specify.

The TRIGGER_INSTR routine triggers one or more instru-
ments to start their basic operations. Each instrument’s de-
signer defines what that instrument does when triggered. Many
instruments take a reading when triggered; the value of this
reading is sent when your program asks for it with the
RECEIVE routine.

TRIGGER_INSTR is often used to trigger a single instrument,
but it can also trigger many instruments simultaneously. For
example, you might first want to use the SEND routine toset the
ranges on a voltmeter, a temperature probe, and an chmmeter.
Later, your program can trigger all three of these instruments
to take readings simultaneously and can then obtain the respec-
tive readings one at a time by using RECEIVE statements.

An instrument on the IEEE bus can report information about
its ecurrent status to MINC. Though the type of status informa-
tion reported depends on the particular instrument, the proce-
dures for reporting status are part of the IEEE standard and
are the same for all instruments.

As controller of the IEEE bus, MINC can ask instruments for
their status by conducting either a serial poll or a parallel poll.
In a serial poll, instruments one at a time report status informa-
tion on the bus’s data lines. Since the bus has eight data lines,
each instrument can report up to eight bits of status informa-
tion. In a parallel poll, instruments simultaneously report status

FUNDAMENTAL CONCEPTS

Transferring Messages

TRIGGERING

STATUS

IEEE BUS PROGRAMMING

Serial Polls

10

information on the bus’s data lines. Each instrument can use
only one data line and can thus report only one bit of status infor-
mation. The bit of information reported in a parallel poll is not
necessarily related to any of the information reported in a serial
poll. A particular instrument is able to respond to one, both, or
neither of these types of polls. The user’s guide for a particular
instrument tells you which polls that instrument can respond to
and what status information it reports.

There is one type of status information an instrument can tell
MINC without having to wait to be polled. It can tell MINC that
it needs service. It issues this service request by setting a bus line
reserved for this purpose, the SRQ (service request) bus line. If
your program ignores the service request, the instrument can
take no further initiative. Setting the SRQ line is the only action
on the IEEE bus that instruments can initiate independently of
MINC.

Since bus lines are shared by all instruments, MINC doesn’t
know which instrument is setting the SRQ line. One function of a
serial poll is to give the controller a way to find out which instru-
ment is requesting service. As part of the information in its
serial poll response, each instrument must report whether or not
itisrequesting service. Any instrument that can request service
must be able to respond to serial polls.

The SERIAL_POLL routine conducts a serial poll of the instru-
ments you specify. If more than one instrument is to be polled,
the routine polls the instruments one after the other.

Each instrument polled has eight bits of status information in its
interface; this group of bits is called the instrument’s status byte.
Each bit of the status byte is set (1) or clear (0) to report specific
information about the instrument. When MINC serially polls
the instrument, the instrument reports the state of each of
these bits by setting or clearing the corresponding data line
on the bus.

Asshown in Figure 8, data line 6 contains the same type of infor-
mation for all instruments. An instrument sets this line in re-
sponse to a serial poll if it is requesting service from MINC. This
line is different from the SRQ line, which is not one of the data
lines. If an instrument has set the SRQ line, however, then when
itis serially polled it must also set data line 6. Each instrument’s
designer determines the type of information that the instrument
reports on each of the other data lines.

Data Line Meaning

Meaning is instrument-dependent
Set if the instrument is setting the SRQ line
Meaning is instrument-dependent
Meaning is instrument-dependent
Meaning is instrument-dependent
Meaning is instrument-dependent
Meaning is instrument-dependent
Meaning is instrument-dependent

O=NWhOON

MR-2123

Figure 8. Serial Poll Response

Your program can detect a service request in two ways: by peri-
odically using the TEST_SRQ routine to test whether or not the
SRQ line is set or by using SRQ_SUBROUTINE to designate a
service subroutine. Whenever any instrument sets the SRQ line,
this subroutine is automatically invoked as soon as the current
statement has finished executing.

An SRQ service subroutine has the same form as a normal
subroutine, even though it is invoked by an instrument request-
ing service rather than by a GOSUB statement. The last state-
ment executed in a service subroutine isa RETURN statement.
With normal subroutines, the RETURN statement transfers
control back to the statement following the GOSUB statement.
With an SRQ service subroutine, the RETURN statement
transfers control back to the statement following the last state-
ment executed before the service subroutine was invoked. For
more information about service subroutines, read the “Service
Subroutines” and “Program Dynamies for Control Programs”
sections of Book 6.

Having detected a service request, your program still does not
know which instrument is requesting service. Part of the infor-
mation reported by an instrument during a serial poll, however,
is whether or not that instrument is currently setting the SRQ
line. To determine the source of a service request, therefore,
your program should use the SERIAL_POLL routine, which
conducts a serial poll until it polls an instrument that reports
that it is requesting service.

When MINC serially polls an instrument that is requesting ser-
vice, the instrument stops setting the SRQ line. Therefore, when
your program detects a service request, it should conduct a

FUNDAMENTAL CONCEPTS

Service Requests

1

IEEE BUS PROGRAMMING

Parallel Polls

12

serial poll even if it knows which instrument is requesting ser-
vice, so that the instrument will free the SRQ line for future use.
If this is not done, MINC cannot detect any new service requests
because the SRQ line is always set.

The action required when an instrument requests service de-
pends on the characteristics of the particular instrument. For
example, one instrument on your IEEE bus might request ser-
vice when it has new data; your program would ask it for the
data by using the RECEIVE routine. Another instrument
might request service when it is out of paper; your program
would type a warning on the terminal.

The PAR_POLL routine conducts a parallel poll. Every instru-
ment that can do so responds to the poll. Each instrument polled
has in its interface a bit of status information called the
instrument’s status bit. The meaning of each instrument’s status
bit is determined by the instrument’s manufacturer and is
described in its user’s guide.

An instrument can respond to a parallel poll only if it is designed
to respond and if its response has been enabled. Any instrument
that can respond to a parallel poll must be able to have its re-
sponse enabled either by local controls or by MINC, but not by
both. The method of local poll enabling is not part of the IEEE
standard, but is determined by the instrument’s designer. The
ENABLE_PAR_POLL routine enables the parallel poll re-
sponse of instruments whose response can be enabled by the bus
controller (MINC).

An instrument can respond to parallel polls until its parallel
poll response is disabled. If the response was enabled locally,
it is also disabled locally. If the parallel poll response was
enabled by the ENABLE_PAR_POLL routine, however,
it can be disabled by the DISABLE_PAR_POLL routine
or by the DISABLE_ALL_PAR_POLL routine. The
DISABLE_PAR_POLL routine affects selected instruments,
while the DISABLE_ALL_PAR_POLL routine affects all in-
struments.

Enabling an instrument’s parallel poll response assigns the in-
strument one of the bus’s data lines and a condition. The instru-
ment sets the data line during a parallel poll if the status bit in
its interface is in the assigned condition. If the condition as-
signed to itis 0, the instrument sets the data line if its status bit is
0 at the time of the poll; if the condition assigned to it is 1,
the instrument sets the data line if its status bit is 1 at the time
of the poll.

FUNDAMENTAL CONCEPTS

For example, suppose your program enables instrument 17 with
data line 5 and condition 0, and enables instrument 15 with data
line 2 and condition 1. When your program conducts a parallel
poll, the data lines have the values shown in Figure 9.

Data Line Value

7 0

6 0

5 0 if instrument 17's status bit is 1
1 if instrument 17’s status bit is O

4 0

3 0

2 0 if instrument 15's status bit is O
1 if instrument 15’s status bit is 1

1 0

0 0

MR-2124

Figure 9. Example of a Parallel Poll Response

More than one instrument can be assigned to a single data line;
this is not usually done, however, because if the line were set dur-
ing a parallel poll, your program could not determine which in-
strument set it. Each of the eight data lines is clear ina parallel
poll unless one or more instruments sets it.

An instrument on the IEEE bus can use input information ei- REMOTE AND
ther from the bus or from manual controls on the instrument it- LOCAL
self. When messages from the IEEE bus are the source of input

information, the instrument is said to be in the remote state.

When the manual controls on the instrument are the source of

input information, the instrument is said to be in the local state.

This section discusses how your program can control which state

each instrument is in; these controls are summarized in Figure

10. A heavy arrow in this figure represents a transition between

the local and remote states. A light arrow represents a state-

ment that enables or disables the transition that the arrow

points to.

No instrument can be in the remote state unless the remote
enable (REN) bus line is set. When you start MINC, this line is
clear, so all instruments on the bus are in the local state. The first
IEEE bus routine to execute after MINC is started sets the REN 13

IEEE BUS PROGRAMMING

IEEE Bus

] 1

Interface

| L

REMOTE
STATE

Instrument

Instrument-
dependent

Local Controls

instrument
told to listen

ENABLE_REMOTE

—

DISABLE_REMOTE

_ disables

return-to-local

button

enables

LOCAL __LOCKOUT
disables

enables

LOCAL_INSTR

y

|IEEE Bus

1 L

Interface

Instrument’s

T
STATE

Instrument

Instrument-
dependent

Local Controls

Figure 10. Remote and Local States

14

MR-2122

line automatically. This line remains set unless your program
turns it off. An instrument enters the remote state when MINC
tells it to listen while the REN bus line is set.

The DISABLE_REMOTE routine clears the REN bus line,
causing all instruments on the bus to enter the local state. The
LOCAL_INSTR routine causes selected instruments to enter
the local state, but it does not change the REN line. The
ENABLE_REMOTE routine sets the REN line, and the
TEST_REMOTE routine reports whether the REN line is cur-
rently set or clear.

Some instruments have a return-to-local button, which can
be used to put the instrument in the local state. The user’s guide
for a particular instrument tells you whether or not that instru-
ment has a return-to-local button and, if so, where it is.
The LOCAL_LOCKOUT routine disables the return-to-local
buttons of all instruments on the bus and thus prevents each
instrument from unexpectedly entering the local state (per-
haps at a critical time) in the event that someone acciden-
tally presses its return-to-local button. LOCAL_INSTR
and DISABLE_REMOTE still cause instruments to enter
the local state even if LOCAL_LOCKOUT has been
executed. DISABLE_REMOTE cancels the effect of
LOCAL_LOCKOUT, causing the return-to-local buttons to be-
come operative again.

The instrument designer determines how the instrument be-
haves under local control and under remote control. When going
from local to remote control, an instrument can either use its
current local settings until they are subsequently overridden by
remote input or use remote input that was previously received.
In either case, the instrument must ignore future use of its local
controls and become responsive to remote input. Some instru-
ments, however, have functions that are always controlled lo-
cally, even in the remote state. When going from remote to local
control, an instrument can either use input from its local con-
trols immediately or continue to use the last input from the bus
until that input is overridden by subsequent local control set-
tings. In either case, the instrument must ignore future remote
input and respond to future use of its local controls. It can still
talk and listen while in the local state.

Your program can separately clear, or reset, either the
instrument’s interface to the bus or its instrument-dependent
part.

FUNDAMENTAL CONCEPTS

RESETS

15

IEEE BUS PROGRAMMING

Clearing Interfaces

Clearing Instruments

16

The IEEE_BUS_CLEAR routine clears the bus and every
instrument’s interface to the bus by setting the interface clear
(IFC) bus line, a line reserved for this purpose by the standard.
This routine clears only the interfaces, not the instrument-
dependent parts of instruments. Each interface returns to the
clear state defined by the IEEE standard. This routine has the
following effects:

1. All return-to-local buttons of bus instruments become
operative (see “Remote and Local,” page 13). If
LOCAL_LOCKOUT has been called to disable these but-
tons, it is no longer in effect.

2. The REN bus line is cleared and then set.

3. All instruments enter the local state (see “Remote and
Local,” page 13). Because the REN bus line is set, however,
each instrument enters the remote state when it is told
to listen.

4. Any condition set by a message (for example, a range or a
sampling rate set by a SEND routine) is not affected by this
routine.

The first IEEE bus routine to execute after MINC is started
calls IEEE_BUS_CLEAR automatically. You can use
IEEE_BUS_CLEAR at the beginning of your program to un-
do any effect that previous IEEE bus routines have had on
the interfaces.

Two routines clear the instrument-dependent parts of instru-
ments on bus. The ALL_INSTR_CLEAR routine clears all bus
instruments, and the INSTR_CLEAR routine clears only se-
lected instruments. These routines do not clear the instruments’
interfaces. Each instrument cleared returns to a clear state de-
fined by that instrument’s manufacturer; this is usually the
state the instrument is in after its power is turned on. Refer to
the user’s guide for the particular instrument for the properties
of this state. (CAUTION: Never turn on an instrument’s power
while MINC is running!)

You can use the ALL_INSTR_CLEAR routine at the begin-
ning of your program to undo the effects of previous mes-
sage routines.

|EEE Bus Addresses

Instrument Address Secondary Addresses

MR-2143

CHAPTER 2
ADVANCED CONCEPTS

Until now we have emphasized what the IEEE bus does, not
how it works. This chapter discusses in detail how the IEEE bus
and the IEEE routines work. For many applications you do not
need the information here. This chapter is for people who need to
know how the IEEE routines control the bus.

As you know from Chapter 1, the bus has 16 lines: 8 data lines, 3
handshake lines, and 5 general bus management lines. These
are illustrated in Figure 11. Each line is set when it is grounded,
so that a bus line is set if one or more instruments sets it. A line is
clear only if no instrument sets it.

DIO0
D101
D102
DIO3
DI04
DIO5
D106
DIO7

NRFD
DAV Handshake Lines

NDAC

ALN Controll
ontroller
REN Only General Bus

IS':?% Management Lines

EO! (End Or Idy)

Data Lines

MR-2133

Figure 11. The IEEE Bus Lines 19

IEEE BUS PROGRAMMING

COMMANDS: THE
ATN LINE

Instrument Addressing

20

MINC controls the bus by sending commands to the interfaces.
A command is a character MINC sends on the bus while the at-
tention (ATN) bus line is set. Only MINC can send a command or
change the ATN line. A command differs from a message in the
following ways:

1. A characteris a command if it is sent when ATN is set and is
part of a message if it is sent when ATN is clear.

2. A command is sent by the controller, a message by a talker.

3. A command is received by all instruments, a message only
by listeners.

4. A command is a directive to the instrument’s interface, so
the interpretation of a command is defined by the standard.
A message, however, is sent through the interface to the in-
strument; its interpretation depends on the instrument’s vo-
cabulary, which is defined by the instrument’s designer.

Some commands tell a certain instrument to talk or listen. When
your program specifies a talker address in an IEEE routine,
MINC directs the instrument with that address to talk by send-
ing the appropriate MTA (my talk address) command, in the
range MTAO to MTA30. An instrument becomes the talker
when its interface detects the MTA command for its address.
The instrument can send message characters when MINC
clears the ATN line. It stops being the talker when it detects any
other MTA command; this assures that at most one instrument
is a talker at any one time. The instrument also stops being the
talker when it detects the UNTALK command; routines in
which MINC is the talker send the UNTALK command so that
no other instrument talks when MINC clears the ATN line.

For example, instrument 15 becomes the talker when MINC
sends the MTA15 command. It stops being the talker when
MINC sends MTAO to MTA14, MTA16 to MTA30, or UNTALK.

In asimilar way, when your program specifies a listener address
in an IEEE routine, MINC directs the instrument with that ad-
dress to listen by sending the appropriate MLA (my listen ad-
dress) command, in the range MLAO to MLA30. An instrument
becomes a listener when its interface detects the MLA command
for its address. The instrument can receive message characters
when MINC clears the ATN line. It does not stop being a listener
when it detects any other MLA command; this allows more than
one instrument to be a listener at the same time. An instrument

stops being a listener only when MINC sends the UNLISTEN
command, after which no instrument is a listener.

When your program specifies a secondary address, MINC sends
the appropriate MSA (my secondary address) command, in the
range MSAO to MSA30.

The other commands MINC sends are classified as either uni-
versal commands or addressed commands. Universal com-
mands affect all instruments, while addressed commands affect
only listeners. The names of these commands are listed in Fig-
ure 14 (page 24): the commands are discussed in Part 2 in the
“Operation” section of the routines that use them.

Only MINC, the bus controller, can set or clear the ATN, IFC,
and REN bus lines. If another controller changes any of these
three lines, MINC produces a “?MINC-F-Conflict over control of
the bus” error when the next IEEE routine is invoked. MINC
also produces this error if the total cable length of your IEEE
bus is too long (see chapter 6 of Book 7).

The EOI (End Or Identify) bus line has two functions. If the
ATN line is clear, the EOI line is used by the talker as the END
line to mark the end of the message. If the ATN line is set, the
EOI line is used by the controller as the IDY (identify) line to
conduct a parallel poll.

MINC conducts a parallel poll by setting both the ATN and IDY
lines, waiting at least two microseconds, and then reading the
bus’s data lines.

In Chapter 1 we pointed out that the SEND routine sets the
END line while sending the last character of the string to mark
that character as the last one of the message. The
SEND_FRAGMENT routine is identical to SEND except that
it does not set the END line while sending the last character.

Because MINC allows no more than 255 characters in a string,
one SEND statement cannot send a message longer than 255
characters. The message must be sent in fragments, with each
message fragment containing up to 255 characters. The END
line should be set only at the end of the entire message, not at the
end of each fragment of the message. To do this, use
SEND_FRAGMENT for every message fragment except the
last, and use SEND for the last fragment of the message.

ADVANCED CONCEPTS

Universal and
Addressed Commands

Control Conflict

THE EOI LINE

Parallel Polls: IDY

Fragmented
Messages END

21

IEEE BUS PROGRAMMING

THE DATA LINES

Message Codes

Command Codes

22

The eight data lines are used for messages, commands, and sta-
tus information. They are called DIOO0 to DIO7 (Data In/Out).
The IEEE standard numbers the lines 1 to 8, but in this book we
number them 0 to 7 for consistency with MINC. The data lines
can represent numbers in the range 0 to 255. Each data line is
associated with a value, as shown in Figure 12. The number rep-
resented by the data lines is the sum of the values associated
with the lines that are set. For example, if lines 0, 1, 2, and 5 are
set, the data lines represent the number 39 (=1+2+4+32).

Data Line Associated Value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
MR-2125

Figure 12. Values Associated with the Data Lines

Each character is associated with a unique number in the range
0 to 127, called its ASCII value. A talker sends a message char-
acter by setting the data lines so that they represent the ASCII
value of that character. Figure 13 lists characters and their rep-
resentation on the data lines. For example, the character “A” is
represented by data lines 0 and 6 set. Book 2 discusses ASCII
values in detail.

To send a nonprinting character as part of a message, use the
CHRS$ function described in Book 3 with the character’s ASCII
value and concatenate that string with the printing characters
in the message. For example, the string “ABC” followed by a
carriage return character is “ABC”’+CHR$(13), because 13 is
the ASCII value of the carriage return character.

To make a character a message terminator, specify its ASCII
value in the argument of the SET_TERMINATORS routine.

Each command has a numeric code and therefore a representa-
tion on the data lines. These representations are shown in Figure
14. This figure shows all of the command codes used by the

ADVANCED CONCEPTS

71 O 0 0 0 0 0 0
D?ta 6 0 0 0 0 1 1 1
Line # g 0 1 1 0 1

4 1 0 1 0 1 0 1
3210
0000 NUL DLE SP 0 @ ! p
0001 | SOH DC1 ! 1 A a q
0010 STX DC2 " 2 B b r
0011 ETX DC3 # 3 c c s
0100 EOT DC4 $ 4 D d t
0101 ENQ NAK % 5 E e u
0110 ACK SYN & 6 F f v
0111 BEL ETB ! 7 G g w
1000 BS CAN (8 H h X
1001 HT EM) 9 | i y
1010 LF SUB * J j 2
1011 VT ESC + ; K k {
1100 FF FS , (L |
1101 CR GS = M m }
1110 SO RS) N n ~
1111 |s us / ? 0 1o DEL

Figure 13. ASCII Character Codes

MR-2135

23

IEEE BUS PROGRAMMING

IEEE routines. Figure 15 shows the format of these command
codes. Many of the possible codes for addressed and univer-
sal commands have not yet been assigned meanings by the

standard.

Notice that the codes for secondary address commands and
parallel poll enable commands overlap. Command codes in this
range are interpreted as secondary address commands if they
follow a talker or listener address command; they are interpret-

Data Line # Command Command
76543210 Abbreviation | Name
(00000001 | GTL Go To Local
Addressed : 00000100 SDC Selected Device Clear
Commands 00000101 PPC Parallel Poll Configure
L00001000 | GET Group Execute Trigger
00010001 LLO Local Lockout
. 00010100 | DCL Device Clear
|
ggrlr‘:s:?nds 100010101 PPU Parallel Poll Unconfigure
00011000]| SPE Serial Poll Enable
. 00011001 SPD Serial Poll Disable
00100000 | MLAO My Listen Address 0
Listener 00100001 MLA1 My Listen Address 1
Address : : :
Commands 00111 0 | MLA30 My Listen Address 30
L 00111 1 UNL Unlisten
(01000000 | MTAO My Talk Address 0
Talker 01000001 MTA1 My Talk Address 1
Address ¢ : : :
Commands 01011 101 MTA30 My Talk Address 30
L01T011111 UNT Untalk
Secondary (011000 0 0 | MSAO My Secondary Address O
Address ‘ 0 11700001 I\élSA1 I\gly Secondary Address 1
Commands | 61111110/ MsA30 My Secondary Address 30
Parallel Poll Enable
(01100000 | PPE Condition 0, Data Line 0
01100001 PPE Condition 0, Data Line 1
g"’ﬁ’"e' 01100111] PPE Condition 0, Data Line 7
Eo bl 4901101000 | PPE Condition 1, Data Line O
nable 01101001 | PPE Condition 1, Data Line 1
Commands . .
01101111 PPE Condition 1, Data Line 7
L 01110000]| PPD Parallel Poll Disable

MR-2136

24 Figure 14. Command Codes

ed as parallel poll enable commands if they follow a parallel
poll configure command (one of the addressed commands).

Code Format Type of
Command
Data Line#—~>7 6 4 3 2 1 0

0 O o * * * * Addressed

0 O 1 * * * * Universal
Instrument Address

0 0 “x * * * * MLA
Instrument Address

0 1 x * * * * MTA
Secondary Address

o 1 E * Data MSA
Condition Line

0 1 0 ¥ % ¥ * |PPE

*=0or1

MR-2134

Figure 15. Command Code Format

Both parallel and serial poll results are received on the data
lines and are therefore numbers between 0 and 255. Often you
need to know whether a certain data line was set or clear. Bits 0
through 7 of the poll result argument correspond to the data
lines 0 through 7 during the poll, as shown in Figure 16. Usethe
TEST_BIT routine to test a particular bit in the numeric result
of the poll and thus determine whether the corresponding data
line was clear or set. TEST_BIT is a lab module routine and is

described in Book 6.
Data Line # Value
0 - Qor 1
1 - Qor 1
Oor1
2 -
3 - Oor1
4 - Oor1
Oor1

Oor1

Qor 1

Bit# —e 15 14 13 12 11 10 9

|

7 6 5

[eToTeTe [eLeToTo]

Poll Result

MR-2137

Figure 16. Poll Result Bits Correspond to Data Lines

ADVANCED CONCEPTS

Poll Results

25

IEEE BUS PROGRAMMING

THE HANDSHAKE Three bus lines provide a handshake mechanism to assure that
LINES every character sent is received. This handshake must have both

“hands”: for message characters, the source handshake is pro-
The Handshake vided by the talker and the acceptor handshake is provided by

the listeners; for command characters, the source handshake is
provided by MINC and the acceptor handshake is provided by
the command acceptors, which are all the instruments on the
bus. Because there is a handshake for every character, the speed
of the transmission is limited by the slowest instrument involved
in the transmission.

The DAV (data valid) line indicates whether or not a charm\
available and valid on the data lines. The source sets this line T
when the character on the data lines is valid.

The NRFD (not ready for data) line indicates whether or not the
acceptors are ready for the next character of data. Each accept-
or sets this line if it is not ready for data. The line is clear only if
no acceptor is setting it, which means that every acceptor is
ready for the next character.

The NDAC (not data accepted) line indicates whether or not the
acceptors have accepted the current character of data. Each ac-
ceptor sets this line if it has not accepted the current character.
The line is clear only if no acceptor is setting it, which means
that every acceptor has accepted the current character.

®

< clear = data not valid
DAV set by source
‘ b < set = data valid
< clear = data accepted
NDAC set by acceptors
—_—= < set = not data accepted

| [~ < clear =ready for data
NRFD set by acceptors
<+ set = not ready for data

Time—

MR-2138

Figure 17. A Handshake

A detailed description of the handshake mechanism is available
in the IEEE standard. The following brief description starts at
26 the time when one character is on the bus and DAV has been set

by the source to indicate that the character is valid data. Figure
17 shows the state of the three handshake lines during one hand-
shake. Time is from left to right in the figure but is not to scale.

The source:

S1. Waits for NDAC to be cleared, which indicates that all ac-
ceptors have accepted the character of data.

g2. Clears DAV, indicating to the acceptors that the datalines
no longer contain valid data.

S3. Changes the data lines to the next character.

S4. Waits for NRFD to be cleared, which indicates that all ac-
ceptors are ready for the next character of data.

S5. Sets DAV, indicating to the acceptors that the next char-

acter is on the data lines.

Each acceptor:

Al.

A2.

A3.

A4.

Ab.

Aé6.

Sets NRFD, indicating to the source that it is not ready
for the next character of data. This line becomes set when
the first acceptor sets it.

Reads the current character.

Stops setting NDAC. This line remains set until the last
acceptor stops setting it, at which time it becomes clear,
indicating to the source that all acceptors accepted the
current character of data.

Waits for the source to clear the DAV line.

Sets NDAC in preparation for the next handshake. This
line becomes set when the first acceptor sets it.

Stops setting NRFD when it becomes ready to accept the
next character. This line remains set until the last ac-
ceptor stops setting it, at which time it becomes clear, indi-
cating to the talker that all acceptors are ready for the next
character of data.

If the source tries to send a character and there is no acceptor,
NRFD and NDAC are both clear, a condition that never occurs
when there is an acceptor handshake. This causes MINC to

ADVANCED CONCEPTS

Error Conditions

27

IEEE BUS PROGRAMMING

The Idle State

28

produce a “?’MINC-F-Listener is not on the bus” error. This error
occurs in an IEEE routine under the following circumstances:

1. There is no instrument on the bus, hence no command
acceptor.

2. There is no instrument on the bus with the address of the
listener specified.

3. The instrument specified as a listener cannot listen, is set lo-
cally to “talk only,” or is turned off.

The TEST_LISTENERS routine tests for this error condition
by trying to send a one-character message (a line feed) to the in-
struments specified. This routine does not produce an error if it
detects that the acceptor handshake is missing when it tries to
send the message. Instead, it reports the error to your program
in its argument. This routine does produce an error, however, if
there is no instrument on the bus, hence no command acceptor.

The absence of a talker does not produce an error message. The
following conditions result in the absence of a talker:

1. There is no instrument on the bus with the address of the
talker you specified.

2. The instrument specified as a talker cannot talk, is set lo-
cally to “listen only,” or is turned off.

3. The instrument is not designed to respond to a serial poll
(SERIAL_POLL routine only).

The INSTR_TIME_LIMIT routine allows you to set a time
limit for each handshake, so tht MINC produces a “’MINC-F-
Instrument time limit exceeded” error instead of waiting
indefinitely for the next character from the talker when one
of the above conditions occurs. The time limit is 120 system
clock ticks (at 50 or 60 ticks per second, depending on the fre-
quency of your electrical power) unless you change it with the
INSTR_TIME_LIMIT routine.

At the end of every IEEE routine, MINC puts the bus in an idle
state. MINC sets the NRFD line to prevent the talker from send-
ing any characters. The ATN line is clear.

Certain MINC commands issue an UNLISTEN command if
any instrument has been told to listen and an UNTALK com-
mand if any instrument has been told to talk. These commands
then clear the NRFD line and the REN line and then set the
REN line again if it was already set. This causes all instruments
to enter the local state and makes all return-to-local buttons op-
erative. These MINC commands are discussed in Book 3 and are
listed below:

BYE

COLLECT
COPY

CREATE

DATE
DIRECTORY
DUPLICATE
EDIT
EXTRA_SPACE
HELP
INITIALIZE
INSPECT
NORMAL_SPACE
RESTART
TIME

TYPE

VERIFY

ADVANCED CONCEPTS

MINC COMMANDS

29

PART 2
ROUTINES

SYNTAX CONVENTIONS

The routine descriptions in Part 2 use the structural framework
described in the “Syntax Conventions” section of Book 6 except
for the differences listed below. As in Book 6, the required parts
of the statement form are printed in black and the optional parts
are printed in biue.

1.

ANl IEEE routines use whole number values. A real number
can always be specified in any numeric argument, of course,
but IEEE routines use the value of the next lowest whole
number, disregarding any fractional part of the number.

The “Operation” section of the IEEE routine descriptions
usually consists of two paragraphs. The first paragraph de-
scribes briefly the capability of the routine and refers to rel-
evant sections in Chapter 1. The second paragraph describes
in detail how the routine uses the bus and refers to relevant
sections in Chapter 2.

IEEE routine descriptions have no “Configuration” section.

Some IEEE routines have plural argument descriptors,
which represent a list of arguments, separated by commas,
rather than a single argument.

In the “talker” and “listener” arguments, secondary ad-
dresses 0 through 30 are specified by the numbers 200
through 230 in order to distinguish them from primary ad-
dresses 0 through 30, which are specified by the numbers 0
through 30.

ALL_INSTR_CLEAR

The ALL_INSTR_CLEAR routine clears the instrument-
dependent part of every instrument on the bus, returning each
to a clear state defined by its manufacturer. (See “Clearing In-
struments,” page 16.)

This routine sends the “device clear” universal command. (See
“Commands: the ATN Line,” page 20, and “Command Codes,”
page 22.)

ALL_INSTR_CLEAR

Argument Type of Argument Valid Values Default Value
This routine has no arguments.

Clear All Bus Instruments

Operation

Statement Form

Example ALL_INSTR_CLEAR
Result Clear all instruments on the bus.

This routine has no arguments.

IEEE_BUS_CLEAR ALL_INSTR_CLEAR does not affect the
interfaces of instruments. IEEE_BUS_CLEAR is a comple-
mentary routine that clears the interfaces of all instruments on
the bus, but does not affect their instrument-dependent parts.

INSTR_CLEAR The INSTR_CLEAR routine clears the
instrument-dependent parts of instruments just as
ALL_INSTR_CLEAR does, but INSTR_CLEAR affects only
the instruments you specify instead of all bus instruments.

You can use the ALL_INSTR_CLEAR routine at the beginning
of your program to undo effects that the message routines of pre-
vious programs have had on bus instruments.

Each instrument must be capable of being cleared by the bus
controller. If an instrument’s manufacturer has not imple-
mented this part of the standard, then trying to clear the instru-
ment with ALL_INSTR_CLEAR does not produce an error but
also does not clear that instrument; other bus instruments are
still cleared.

Argument
Descriptions

Related Routines

Restrictions

31

ALL_INSTR_CLEAR

Errors

Example

32

?MINC-F-Invalid argument
?MINC-F-Listener is not on the bus

No instrument is on the bus.

See the example for the SEND routine.

DISABLE_ALL_PAR_POLL

Disable Parallel Poll Response of All Instruments

The DISABLE_ALL_PAR_POLL routine disables the parallel
poll response of every instrument whose response has been
enabled by the ENABLE_PAR_POLL routine. These instru-
ments no longer respond to parallel polls. (See “Parallel Polls,”
page 12.)

This routine sends the “parallel poll unconfigure” universal
command. (See “Commands: the ATN Line,” page 20, and “Com-
mand Codes,” page 22.)

DISABLE_ALL_PAR_POLL

Argument Type of Argument Valid Values Default Value
This routine has no arguments.

Example DISABLE_ALL_PAR_POLL
Result All instruments ignore subsequent parallel
polls.

This routine has no arguments.

DISABLE_PAR_POLL The DISABLE_PAR_POLL routine
has the same effect as the DISABLE_ALL_PAR_POLL rou-
tine, except that DISABLE_PAR_POLL affects only the instru-
ments you specify.

ENABLE_PAR_POLL The ENABLE_PAR_POLL routine
enables selected instruments to respond to parallel polls.

PAR_POLL The PAR_POLL routine conducts a parallel poll.
Instruments whose parallel poll response has been disabled by
DISABLE_ALL_PAR_POLLor by DISABLE_PAR_POLLdo
not respond to the poll.

The parallel poll response of some instruments can be en-
abled and disabled only by local controls. Trying to disable
the parallel poll response of such an instrument with
DISABLE_ALL_PAR_POLL does not cause an error, but also
does not disable its parallel poll response if the response has been
enabled by local controls. The parallel poll responses of other in-
struments, however, are still disabled.

Operation

Statement Form

Argument
Descriptions

Related Routines

Restrictions

33

DISABLE_ALL_PAR_POLL

Errors ?MINC-F-Invalid argument
?MINC-F-Listener is not on the bus
No instrument is on the bus.

Example See the example for the ENABLE_PAR_POLL routine.

34

DISABLE_PAR_POLL

Disable Parallel Poll Response of Selected Instruments

The DISABLE_PAR_POLL routine disables the parallel poll
response of every specified instrument whose response has been
enabled by the ENABLE_PAR_POLL routine. These instru-
ments no longer respond to parallel polls. (See “Parallel Polls,”
page 12.)

This routine tells the specified instruments to listen by sending
the “unlisten” command and the appropriate “my listen ad-
dress” and “my secondary address” commands. It then sends the
“parallel poll configure” addressed command (which tells
listeners to interpret commands of the form 011***** 35 parallel
poll commands instead of as “my secondary address” com-
mands), the “parallel poll disable” command, and the “untalk”
command (which tells instruments to stop interpreting com-
mands of the form 011***** ag parallel poll commands). (See
“Commands: the ATN Line,” page 20, and “Command Codes,”
page 22.)

DISABLE_PAR_POLL(listeners)

Argument Type of Argument Valid Values Default Value
listeners numeric expressions 0 to 30; 200 to 230 required argument

Example DISABLE_PAR_POLIL(3)

Result Instrument 3 no longer responds to parallel
polls.

Example DISABLE_PAR_POLL(4,7)

Result Instruments 4 and 7 no longer respond to paral-
lel polls.

listeners The addresses of the instruments whose parallel poll
response is to be disabled.

Values: 0 to 30; 200 to 230

Default: required argument

The listeners argument is a list of instrument addresses (0 to 30).
Each address can be followed by a secondary address (200 to
230), though secondary addresses are not usually meaningful in
this routine. Separate addresses with commas.

Operation

Statement Form

Argument
Descriptions

35

DISABLE _PAR_POLL

Related Routines

Restrictions

Errors

Example

36

DISABLE_ALL_PAR_POLL The DISABLE_ALL_PAR_POLL
routine has the same effect as the DISABLE_PAR_POLL
routine, except that DISABLE_ALL_PAR_POLL affects all
bus instruments.

ENABLE_PAR_POLL The ENABLE_PAR_POLL routine
enables selected instruments to respond to parallel polls.

PAR_POLL The PAR_POLL routine conducts a parallel poll.
Instruments whose parallel poll response has been disabled by
DISABLE_PAR_POLL or DISABLE_ALL_PAR_POLL do
not respond to the poll.

The parallel poll response of some instruments can be en-

abled and disabled only by local controls. Trying to disable the
parallel poll response of such an instrument with
DISABLE_PAR_POLL does not cause an error, but also does
not disable its parallel poll response if the response has been
enabled by local controls. The parallel poll responses of any
other instruments specified, however, are still disabled.

?MINC-F-Invalid instrument address
?MINC-F-Listener is not on the bus
The instrument you specified as a listener is either not on the

bus, turned off, not designed to listen, set locally to “talk only,” or
not at the address specified.

See the example for the ENABLE_PAR_POLL routine.

DISABLE_REMOTE

Put All Bus Instruments in the Local State

DISABLE_REMOTE clears the “remote enable” (REN) bus
line. All instruments go to the local state, in which they use input
from their local controls instead of from the IEEE bus. (See
“Remote and Local,” page 13.)

DISABLE_REMOTE

Argument Type of Argument Valid Values Default Value
This routine has no arguments.

Example DISABLE_REMOTE
Result Clears the REN bus line. All instruments enter
the local state. '

This routine has no arguments.

ENABLE_REMOTE ENABLE_REMOTE is a complemen-
tary routine to DISABLE_REMOTE. It sets the REN bus line
so that instruments enter the remote state as they are told to lis-
ten. Because IEEE message routines have no effect on instru-
ments when the REN line is clear, the next IEEE routine after
DISABLE_REMOTE is usually ENABLE_REMOTE.

First IEEE routine The first IEEE routine to execute after
MINC is started invokes the IEEE_BUS_CLEAR routine auto-
matically; this sets the REN line.

IEEE_BUS_CLEAR The IEEE_BUS_CLEAR routine clears
and then sets the REN bus line.

LOCAL_INSTR The LOCAL_INSTR routine puts selected in-
struments in the local state. It does not affect the REN line.

LOCAL_LOCKOUT Pressing an instrument’s return-to-
local button puts the instrument in the local state. The
LOCAL_LOCKOUT routine causes all instruments to ignore
their return-to-local buttons. DISABLE_REMOTE cancels the
effect of LOCAL_LOCKOUT, making the return-to-local but-
tons of all instruments operational.

SRQ_SUBROUTINE IfDISABLE_REMOTE isusedinaser-

Operation

Statement Form

Argument
Descriptions

Related Routines

37

DISABLE_REMOTE

Restrictions

Errors

Example

38

vice subroutine, your program should first check the state of the
REN line with TEST_REMOTE. Before returning from the
service subroutine, your program should return the REN line to
the state it was in when the service subroutine was entered.

TEST_REMOTE The TEST_REMOTE routine reports
whether the REN bus line is set or clear.

Certain MINC commands clear the REN line and then set it
again if it was already set. This causes all instruments to enter

the local state and makes all return-to-local buttons operative.
(See “MINC Commands,” page 29.)

?MINC-F-Invalid argument
?MINC-F-Conflict over control of the IEEE bus
Only MINC, the bus controller, can change the REN line.

See the example for the LOCAL_INSTR routine.

ENABLE_PAR_POLL

Enable an Instrument’s Parallel Poll Response

The ENABLE_PAR_POLL routine enables an instrument to Operation
respond to parallel polls, which are conducted by the
PAR_POLL routine. (See “Parallel Polls,” page 12.)

This routine tells the specified instruments to listen by sending
the “unlisten” command and the appropriate “my listen ad-
dress” and “my secondary address” commands. It then sends the
“parallel poll configure” addressed command (which tells
listeners to interpret commands of the form 011***** as parallel
poll commands instead of as “my secondary address” com-
mands), the “parallel poll enable” command for the condition
and data line specified, and the “untalk” command (which tells
instruments to stop interpreting commands of the form
011***** a5 parallel poll commands). (See “Commands: the ATN
Line,” page 20, and “Command Codes,” page 22.)

ENABLE_PAR_POLI(condition,data-line,listeners) Statement Form
Argument Type of Argument Valid Values Default Value

condition numeric expression 0;1 required argument

data-line numeric expression Oto7 required argument

listeners numeric expressions 0 to 30; 200 to 230 required argument

Example ENABLE_PAR_POLL(0,3,5)

Result From now on, when the routine PAR_POLL
conducts a parallel poll, instrument 5 sets data
line 8 if its status bit is clear (0).

Example ENABLE_PAR_POLL(1,3,5)

Result From now on, when the routine PAR_POLL
conducts a parallel poll, instrument 5 sets data
line 3 if its status bit is set (1).

Example ENABLE_PAR_POLI(1,7,5)

Result From now on, when the routine PAR_POLL
conducts a parallel poll, instrument 5 sets data
line 7 if its status bit is set.

condition The instrument sets its data line during subsequent Argument
parallel polls if its status bit at the time of the poll is in the state Descriptions
specified by the condition argument. 39

ENABLE_PAR_POLL

40

Values Meaning

0 The instrument sets its data line (specified in
the data line argument) in response to subse-
quent parallel polls if its status bit is clear (0) at
the time of the poll. If its status bit is set (1), the
instrument does nothing.

1 The instrument sets its data line in response to
subsequent parallel polls if its status bit is set
(1) at the time of the poll. If its status bit is clear
(0), the instrument does nothing.

Default: required argument

The status bit is a bit in the instrument’s interface which is clear
or set to indicate some piece of information about the instru-
ment. The meaning of the status bit is specific to that instrument
and is explained in the user’s guide for the instrument.

data line The data line of the IEEE bus on which the instru-
ment responds to subsequent parallel polls.

Values: Oto7

Default: required argument

The data-line argument specifies a data line of the IEEE bus.
The instrument sets this line during subsequent parallel polls if
its status bit at the time of the poll is in the state specified by the
condition argument.

After your program has enabled an instrument’s parallel poll
response with ENABLE_PAR_POLL, it can change the data
line and condition assigned to the instrument by using
ENABLE_PAR_POLL again. Your program need not disable
the parallel poll response first.

listeners The addresses of the instruments whose parallel poll
responses are enabled.

Values: 0 to 30; 200 to 230

Default: required argument

The listeners argument is a list of instrument addresses (0 to 30).
Each address can be followed by a secondary address (200 to
230), though secondary addresses are not usually meaningful in
this routine. Separate addresses with commas.

DISABLE_ALL_PAR_POLL, DISABLE_PAR_POLL The
DISABLE_ALL_PAR_POLL and DISABLE_PAR_POLL
routines disable the parallel poll response of instruments whose
response has been enabled by ENABLE_PAR_POLL, causing
these instruments not to respond to parallel polls.

PAR_POLL The PAR_POLL routine conducts a parallel poll.
The ENABLE_PAR_POLL routine does not conduct a parallel
poll; it only enables an instrument to respond when PAR_POLL
conducts a poll.

Many instruments cannot respond to a parallel poll. Trying to
enable the parallel poll response of an instrument that is incapa-
ble of responding to a parallel poll does not cause an error, but
also does not enable the instrument to respond to parallel polls.

The parallel poll response of some instruments can be enabled
and disabled only by local controls. Trying to enable the parallel
poll response of such an instrument with ENABLE_PAR_POLL
does not cause an error, but also does not enable its parallel poll
response.

Each of the eight bits in the parallel poll response is clear unless
one or more instruments sets it. By assigning only one instru-
ment to each data line, your program knows whether each in-
strument did or did not set its line. If your program assigns more
than one instrument to a single data line, then if thatlineis setin
a parallel poll, your program does not know which instrument
set it.

?MINC-F-Invalid argument

?MINC-F-invalid instrument address

?MINC-F-Listener is not on the bus

The instrument you specified as a listener is either not on the
bus, turned off, not designed to listen, set locally to “talk only,” or
not at the address specified.

See also the example for the PAR_POLL routine.

Consider the following program fragment:

1100 DISABLE_ALL_PAR_POLL

ENABLE_PAR_POLL

Related Routines

Restrictions

Errors

Example

41

ENABLE_PAR_POLL

42

1110 ENABLE_PAR_POLL(1,2,15)
1120 ENABLE_PAR_POLL(1,3,23)
1130 ENABLE_PAR_POLL(0,5,17)
1140 PAR_POLL(R1)

1530 DISABLE_PAR_POLL(23)
1540 PAR_POLL(R2)

Statement 1100 disables the parallel poll response of every in-
strument on the bus. Only the instruments whose parallel poll
response is enabled in statements 1110, 1120, and 1130 respond
to the parallel poll conducted in statement 1140. The bits of R1,
the poll response, are shown in Figure 18.

Bit# 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o] ojoflo}o 01]o0 ofl|o0 0 0 010
0 if the status bit 0 if the status bit
of instrument 17 of instrument 15
is set (1). is clear (0).
1if it clear (0). 1if it is set (1).

0 if the status bit
of instrument 23
is clear (0).

1ifitisset (1).

MR-2139

Figure 18. ENABLE_PAR_POLL Example, Part 1

Statement 1530 disables the parallel poll response of instrument
23. Assume that no parallel poll responses have been enabled or
disabled since statement 1130. The bits of R2, the response to the
poll conducted in statement 1540, are shown in Figure 19. No-
tice how the bits of the PAR_POLL argument shown in Figure
19 correspond to the data line values shown in Figure 9.

Bit# 15 14 13 12 11 10 9 8 7 6 5 1 0

4 3 2
OIOI IOO

0 OIOIOO OIOIOIOIO
0 if the status bit

0 if the status bit
of instrument 17 of instrument 15

is set (1). is clear (0).
1if it is clear (0). 1if itisset (1).

MR-2140

Figure 19. ENABLE_PAR_POLL Example, Part 2

ENABLE_REMOTE

Allow All Bus Instruments to Be in the Remote State

ENABLE_REMOTE sets the “remote enable” (REN) bus line.
Whenever this line is clear, all instruments on the bus are in the
local state, in which they use input information from their local
controls. When the REN bus line is set, each instrument enters
the remote state when your program specifies it as a listener in
an IEEE routine. (See “Remote and Local,” page 13.)

ENABLE_REMOTE

Argument Type of Argument Valid Values Default Value
This routine has no arguments.

Example ENABLE_REMOTE

Result Sets the REN bus line. Any instruments told to
listen while this line is set enter the remote
state.

This routine has no arguments.

DISABLE_REMOTE The DISABLE_REMOTE routine
clears the REN bus line. All instruments enter the local state.

First IEEE routine The first IEEE routine to execute after
MINC is started invokes the IEEE_BUS_CLEAR routine auto-
matically; this sets the REN line.

IEEE_BUS_CLEAR The IEEE_BUS_CLEAR routine clears
and then sets the REN bus line.

SEND By specifying a string of length zero as the message to
be sent in the SEND routine, you can tell instruments to listen
without sending them a message. If the REN line is set, the in-
struments enter the remote state.

SRQ_SUBROUTINE IfENABLE_REMOTE isusedin aser-
vice subroutine, your program should first check the state of the
REN line with TEST_REMOTE. Before returning from the
service subroutine, your program should return the REN line to
the state it was in when the service subroutine was entered.

Operation

Statement Form

Argument
Descriptions

Related Routines

43

ENABLE_REMOTE

Restrictions

Errors

Example

44

TEST_REMOTE The TEST_REMOTE routine reports
whether the REN bus line is set or clear.

Certain MINC commands clear the REN line and then set it

again if it was already set. This causes all instruments to enter
the local state. (See “MINC Commands,” page 29.)

?MINC-F-Invalid argument
?MINC-F-Conflict over control of the IEEE bus

A\
Only MINC, the bus controller, can change the REN line. L

See the example for the LOCAL_INSTR routine.

IEEE_BUS_CLEAR

The IEEE_BUS_CLEAR routine clears the bus by returning
the interface of every instrument on the bus to the clear state
defined by the IEEE standard. (See “Clearing Interfaces,”

page 16.)

This routine sets the “interface clear” (IF C) bus line for approxi-
mately 125 microseconds. It clears and then sets the REN bus
line.

IEEE_BUS_CLEAR

Argument Type of Argument Valid Values Default Value
This routine has no arguments.

Example IEEE_BUS_CLEAR
Result Clear the instrument-independent part of all
instruments on the bus.

This routine has no arguments.

ALL_INSTR_CLEAR, INSTR_CLEAR IEEE_BUS_CLEAR
does not affect the instrument-dependent parts of instruments.
The ALL_INSTR_CLEAR and INSTR_CLEAR routines are
complementary to IEEE_BUS_CLEAR and clear instrument-
dependent parts of instruments but do not affect their
interfaces.

DISABLE_REMOTE The DISABLE_REMOTE routine
clears the REN bus line.

ENABLE_REMOTE The ENABLE_REMOTE routine sets
the REN bus line.

First IEEE routine The first IEEE routine to execute after
MINC is started invokes IEEE_BUS_CLEAR automatically.

LOCAL_LOOKOUT The IEEE_BUS_CLEAR routine can-
cels the effect of any previous LOCAL_LOCKOUT statements.
After an IEEE_BUS_CLEAR statement, all return-to-local
buttons of bus instruments are operative.

Clear the IEEE Bus

Operation

Statement Form

Argument
Descriptions

Related Routines

45

IEEE_BUS_CLEAR

Restrictions

Errors

Example

46

You can use IEEE_BUS_CLEAR at the beginning of your pro-
gram to undo effects that the IEEE routines of previous pro-
grams have had on the bus.

?MINC-F-Invalid argument

?MINC-F-Conflict over control of the IEEE bus

Only MINC, the bus controller, can change the IFC line or the
REN line.

See the example for the SEND routine.

INSTR_CLEAR

Clear Selected Instruments

The INSTR_CLEAR routine clears the instrument-dependent
part of specified instruments, returning each to a clear state
defined by its manufacturer. (See “Clearing Instruments,”

page 16.)

This routine tells the specified instruments to listen by sending
the “unlisten” command and the appropriate “my listen ad-
dress” and “my secondary address” commands. It then sends the
“selected device clear” addressed command. (See “Commands:
the ATN Line,” page 20, and “Command Codes,” page 22.)

INSTR_CLEAR(listeners)

Argument Type of Argument Valid Values Default Value
listeners numeric expressions 0 to 30; 200 to 230 required argument

Example INSTR_CLEAR(3)

Result Clear instrument 3.
Example INSTR_CLEAR(3,5,2)
Result Clear instruments 3, 5, and 2.

Listeners The addresses of the instruments to be cleared.

Values: 0 to 30; 200 to 230

Default: required argument

The listeners argument is a list of instrument addresses (0 to 30).
Each address can be followed by a secondary address (200 to
230), though secondary addresses are not usually meaningful in
this routine. Separate addresses with commas.

ALL_INSTR_CLEAR The ALL_INSTR_CLEAR routine
clears the instrument-dependent parts of instruments just as
INSTR_CLEAR does, but ALL_INSTR_CLEAR affects all
bus instruments, not just selected instruments.

IEEE_BUS_CLEAR INSTR_CLEAR does not affect the inter-
faces of instruments. IEEE_BUS_CLEAR is a complementary
routine that clears the interfaces of instruments on the bus but
does not affect their instrument-dependent parts.

Operation

Statement Form

Argument
Descriptions

Related Routines

47

INSTR_CLEAR

Restrictions

Errors

Example

48

Each instrument specified must be capable of being cleared by
the bus controller. If an instrument’s manufacturer has not im-
plemented this part of the standard, then trying to clear the in-
strument with INSTR_CLEAR does not produce an error but
also does not clear that instrument. Other instruments specified
in the INSTR_CLEAR statement are still cleared.

?MINC-F-Invalid instrument address
?MINC-F-Listener is not on the bus

The instrument you specified as a listener is either not on the
bus, turned off, not designed to listen, set locally to “talk only,” or
not at the address specified.

See also the example for the LOCAL_INSTR routine.

Assume that your program has assigned the address of a voltme-
ter on the IEEE bus to the variable V%. The following program
segment is a subroutine which takes a voltage reading on the 10
volt scale and stores the result in V§.

5200 INSTR_CLEAR(V%)
5210 SEND("10V" V%)
5220 RECEIVE(V$,.V%)
5230 RETURN

Because this subroutine might be called from several different
places in the program, we don’t know what state the voltmeter is
in. Message routines might have changed the scale, polarity,
leads used, or other parameters. Statement 5200 clears the volt-
meter. Now that the voltmeter is in a known state, statement
5210 sets it to the 10 volt scale, and statement 5220 accepts the
voltage reading.

INSTR_TIME_LIMIT

Set Time Allowed for Instrument Response

Use this routine to specify how long MINC will wait for an in-
strument to accept or send each character. (See “The Handshake

Lines,” page 26.)

INSTR_TIME_LIMIT(new-time-limit,old-time-limit)

Argument Type of Argument Valid Values Default Value
new-time-limit numeric expression 0; 1to 32,767 time limit not changed
old-time-limit numeric variable name 0; 1 to 32,767 no value assigned

Example INSTR_TIME_LIMIT(300)

Result Set the new time limit to 300 clock ticks (five
seconds if you have 60 Hz power, six seconds if
you have 50 Hz power).

Example INSTR_TIME_LIMIT(,T)
Result Assign the number of clock ticks in the current
time limit to T.

Example INSTR_TIME_LIMIT(N)
INSTR_TIME_LIMIT(N+10)

Result First, N is set to the current time limit. Then,
the time limit is reset to 10 clock ticks more
than this.

Example INSTR_TIME_LIMIT(0)

Result There is no time limit. Wait indefinitely for any

character to or from any instrument.
new-time-limit The time limit for future characters.
Values Meaning
0 Wait indefinitely for each character to be sent

or received.

1to 32,767 The maximum number of clock ticks that
MINC waits for any one character to be sent or
received. After waiting this long, MINC prints
the “?MINC-F-Instrument time limit ex-
ceeded” error message and displays READY.

Default: Time limit remains unchanged.

Operation

Statement Form

Argument
Descriptions

49

INSTR_TIME_LIMIT

Related Routines

Restrictions

50

The time limit is specified as a number of ticks of the systen
clock. There are either 50 or 60 ticks per second, depending on
whether your power is 50 or 60 Hz. The time limit is not instru-
ment specific and applies to all command and message trans-
mission on the bus.

When MINC is started, the time limit is 120 clock ticks.

old-time-limit The time limit before this INSTR_TIME _LIMIT
statement. INSTR_TIME_LIMIT assigns a value to this
argument.

Values Meaning

0 There was no time limit. MINC was waiting in-
definitely for each character to be sent or re-
ceived.

1t0 32,767 The maximum number of clock ticks that
MINC was waiting for any one character to be
sent or received.

Default: No value assigned. INSTR_TIME_LIMIT
does not report the time limit.

RECEIVE, TRANSFER In the RECEIVE and TRANSFER
routines, an instrument talks. If for any reason the instrument
does not send a character within the timelimit, MINC prints the
“MINC-F-Instrument time limit exceeded” error message and
displays READY. Be sure that the instrument is on, addressed
correctly, connected to the bus, and designed to talk.

SERIAL_POLL If an instrument does not respond to a serial
poll within the time limit, MINC prints the “?MINC-F-
Instrument time limit exceeded” error message and displays
READY. Be sure that the instrument is on, addressed correctly,
connected to the bus, and designed to respond to a serial poll.

You should rarely need this routine. If your program has an
“?MINC-F-Instrument time limit exceeded” error, increasing
the time limit might not help, because the time limit is 120 clock
ticks when MINC is started and this is enough for most instru-
ments. Before increasing the time limit, make sure that the in-
strument is connected to the bus, correctly addressed, and capa-
ble of the action you expect from it.

Usediscretion in eliminating the time limit, since this causes the
IEEE routines to wait indefinitely for each character. For ex-

ample, if you use RECEIVE to get data from instrument 4, and
instrument 4 is not on the bus, then if there is no time limit,
RECEIVE waits forever for the message, which will never be
sent.

?MINC-F-Invalid argument

A voltmeter on your IEEE bus automatically switches to the
scale appropriate to the voltage being read. Because of this, the
voltmeter can take up to 4 seconds to start sending a reading
when you use the RECEIVE routine.

10 IEEE_BUS_CLEAR \ ALL_INSTR_CLEAR
20 V=13 \ F=60

30 INSTR_TIME_LIMIT(4*F)

40 RECEIVE(VS,.V) \ PRINT V§

50 STOP

Statement 10 clears the bus and the instruments on it. State-
ment 20 assigns 13, the address of the voltmeter, to the variable
V and assigns 60, the frequency of your system clock, to the vari-
able F. F should be set to 50 if you have a 50 Hz system clock.
Statement 30 increases the time limit to four seconds before
statement 40 accepts and prints a reading from the voltmeter.

INSTR_TIME_LIMIT

Errors

Example

51

LOCAL_INSTR

Put Selected Instruments in the Local State

Operation

Statement Form

Argument
Descriptions

Related Routines

52

LOCAL_INSTR causes specified instruments to enter the local
state, in which the instruments use input information from their
local controls instead of from the IEEE bus. (See “Remote and
Local,” page 13.)

This routine tells the specified instruments to listen by sending
the “unlisten” command and the appropriate “my listen ad-
dress” and “my secondary address” commands. It then sends the
“go to local” addressed command. (See “Commands: the ATN
Line,” page 20, and “Command Codes,” page 22.)

LOCAL_INSTR(listeners)

Argument Type of Argument Valid Values Default Value
listeners numeric expressions 0 to 30; 200 to 230 required argument

Example LOCAL_INSTR(3,5)
Result Instruments 3 and 5 enter the local state.

Listeners The addresses of the instruments to enter the local
state.

Values: 0 to 30; 200 to 230

Default: required argument

The listeners argument is a list of instrument addresses (0 to 30).
Each address can be followed by a secondary address (200 to
230), though secondary addresses are not usually meaningful in
this routine. Separate addresses with commas.

DISABLE_REMOTE The DISABLE_REMOTE routine
turns off the REN bus line, putting all bus instruments in the
local state.

First IEEE routine The first IEEE routine to execute after
MINC is started invokes IEEE_BUS_CLEAR automatically;
this causes all instruments to enter the local state. Any listeners
specified in this first routine, however, then enter the remote
state.

IEEE_BUS_CLEAR The IEEE_BUS_CLEAR routine clears
and then sets the REN bus line. This causes all instruments to
enter the local state.

IEEE routines with listeners Any IEEE routine that requires
a listener specification causes the instruments specified as
listeners to enter the remote state if the REN bus line is set. This
undoes the effect that any previous LOCAL_INSTR statement
had on those instruments.

If a specified instrument does not have a local state, this routine
has no effect on the instrument.

?MINC-F-Invalid instrument address
?MINC-F-Listener is not on the bus

The instrument you specified as a listener is either not on the
bus, turned off, not designed to listen, set locally to “talk only,” or
not at the address specified.

Instrument 5on your IEEE bus is an ohmmeter, and instrument
27 is a signal generator. The following program measures the ef-
fects of voltage on a resistor. It measures the resistance, applies a
voltage to the resistor for six hours, and then measures the resis-
tance again. This program also allows you to use the ohmmeter
through its front panel controls during the six hours.

10 IEEE_BUS_CLEAR \ ALL_INSTR_CLEAR
20 M=5 \ S§=27

30 PRINT ““Is a 5 ohm resistor in place’’;

40 INPUT A$ \ IF A$<>"YES" GO TO 30
50 LOCAL_LOCKOUT

60 SEND('100HM"" M)

70 RECEIVE(R1$,, M)

80 LOCAL_INSTR(M)

90 PRINT ""Disconnect the ohmmeter leads.”
100 PRINT "Are the leads disconnected’’;

110 INPUT A$ \ IF A$<>"YES" GO TO 100
120 PRINT "The ohmmeter can be used locally.”
130 SEND("'20V",S)

140 PAUSE("'6::")

150 INSTR_CLEAR(S)

160 PRINT "Connect the ohmmeter leads.”
170 PRINT "'Are the leads connected™;

180 INPUT A$ \ IF A$<>"YES"” GO TO 170
190 INSTR_CLEAR(M)

200 SEND("100HM"" M)

LOCAL_INSTR

Restrictions

Errors

Example

53

LOCAL_INSTR

54

210 RECEIVE(R2$,,M)

220 PRINT R1$; "ohms before”

230 PRINT R2$; "ohms after”

240 DISABLE_REMOTE \ ENABLE_REMOTE
250 STOP

Statement 10 clears the bus and the instruments on it. State-
ment 20 assigns 5, the address of the ohmmeter, to the variable
M and 27, the address of the signal generator, to the variable S.

Assume that the signal generator has a return-to-local button.
The LOCAL_LOCKOUT routine in statement 50 assures that
no one will ruin the six-hour experiment by accidentally press-
ing this button.

The program now takes the first resistance reading. Statement
60 sets the ohmmeter to the 10 ohm scale, and statement 70 ac-
cepts the reading. The LOCAL_INSTR routine in statement 80
makes the ohmmeter available for local use. Without this state-
ment, theohmmeter could not be used locally. Even its return-to-
local button would not enable its local controls because all such
buttons were disabled in statement 50.

The signal generator starts outputting a 20 volt signal when
statement 130 is executed. The PAUSE routine in statement 140
is a lab module routine and is described in Book 6. This state-
ment causes MINC to wait six hours before continuing.

After six hours, clear the signal generator in statement 150.
This stops its output. Then take the second resistance reading.
Statement 190 clears the ohmmeter, canceling the effect of any
local use. Since the INSTR_CLE AR routine specifies listeners,
statement 190 also returns the ohmmeter to the remote state.
Statement 200 sets the ohmmeter to the 10 ohm scale, and state-
ment 210 accepts the reading.

Statement 240 turns the REN bus line off and then on again.
This cancels the effect of the LOCAL_LOCKOUT routine so
that the ohmmeter and signal generator can now be used locally.
Because the REN line is on, they can also still be used remotely.

LOCAL_LOCKOUT

Disable Return-To-Local Buttons

An instrument on the IEEE bus can have a return-to-local but-
ton which causes it to enter the local state, in which the instru-
ment uses input information from its local controls instead of
from the IEEE bus. LOCAL_LOCKOUT causes the return-to-
local buttons on all instruments on the bus to become inopera-
tive. When pushed, they no longer activate the local controls of
the instruments. (See “Remote and Local,” page 13.)

This routine sends the “local lockout” universal command. (See
“Commands: the ATN Line,” page 20, and “Command Codes,”
page 22.)

LOCAL_LOCKOUT

Argument Type of Argument Valid Values Default Value
This routine has no arguments.

Example LOCAL_LOCKOUT
Result Disable all return-to-local buttons of instru-
ments on the bus.

This routine has no arguments.

DISABLE_REMOTE The DISABLE_REMOTE routine
clears the REN bus line. This undoes the effect of any previous
LOCAL_LOCKOUT statement and puts all instruments on the
bus in the local state. When your program calls
ENABLE_REMOTE or IEEE_BUS_CLEAR to set the REN
line again, the return-to-local buttons of all instruments on the
bus are operational again.

IEEE_BUS_CLEAR The IEEE_BUS_CLEAR routine clears
and then sets the REN bus line. This undoes the effect of any pre-
vious LOCAL_LOCKOUT, so that the return-to-local buttons of
all instruments on the bus are again operational.

LOCAL_INSTR The LOCAL_INSTR routine puts selected in-
struments in the local state even if LOCAL_LOCKOUT has dis-
abled their return-to-local buttons.

Operation

Statement Form

Argument
Descriptions

Related Routines

55

LOCAL_LOCKOUT

Restrictions

Errors

Example

56

LOCAL_LOCKOUT has no effect on an instrument that does
not have a return-to-local button. If an instrument has such a
button, however, then according tothe IEEE standard, that but-
ton must become inoperative when the LOCAL_LOCKOUT

routine is executed.
Certain MINC commands clear the REN line and then set it

again if it was already set. This causes all instruments to enter
the local state and makes all return-to-local buttons operative.

(See “MINC Commands,” page 29.)
?MINC-F-invalid argument

?MINC-F-Listener is not on the bus

No instrument is on the bus.

See the example for the LOCAL_INSTR routine.

The PAR_POLL routine conducts a parallel poll. Each instru-
ment whose response has been previously enabled (either by
local controls or by the ENABLE_PAR_POLL routine) reports
the condition of its status bit on one of the bus’s eight data lines.
(See “Parallel Polls,” page 12.)

The PAR_POLL routine sets both the “attention” (ATN) and the
“identify” (IDY) bus lines and reads the poll response from the
data lines. (See “Parallel Polls: IDY,” page 21, and “Poll Re-
sults,” page 25.)

PAR_POLL(poll-response)

Argument Type of Argument Valid Values Default Value
poll-response numeric variable name 0 to 255 required argument

Example PAR_POLIL(R)
Result Conduct a parallel poll. The response is as-
signed to the variable R.

poll-response The response to the parallel poll. PAR_POLL
assigns a value to the poll-response argument.

Values: 0 to 255

Default: required argument

Each responding instrument reports the state of its status bit,
using the data line assigned to the instrument when its response
was enabled. For each data line set in response to the poll,
PAR_POLL sets the corresponding bit of the poll-response argu-
ment. (See “The Data Lines,” page 22.)

DISABLE_ALL_PAR_POLL, DISABLE_PAR_POLL The
DISABLE_ALL_PAR_POLL and DISABLE_PAR_POLL
routines disable the parallel poll response of instruments whose
response has been enabled by ENABLE_PAR_POLL, causing
these instruments not to respond to parallel polls.

ENABLE_PAR_POLL The ENABLE_PAR_POLL routine
enables selected instruments to respond to parallel polls. Only

PAR_POLL
Conduct a Parallel Poll

Operation

Statement Form

Argument
Descriptions

Related Routines

57

PAR_POLL

Restrictions

58

instruments whose response has been previously enabled by
ENABLE_PAR_POLL or by local controls respond to parallel
polls.

SERIAL_POLL The SERIAL_POLL routine conducts a serial
poll, whereas PAR_POLL conducts a parallel poll. Both types of
polls ask instruments for information about their status, but
there the similarity ends. An instrument reports eight bits of
status information in a serial poll, and the bits of this status byte
can be unrelated to the status bit reported in a parallel poll.
SERIAL_POLL can poll only one instrument at a time, since an
instrument must be told to talk in order to send its status byte.
Unlike a parallel poll, a serial poll does not require any previous
enabling of the instrument.

SRQ_SUBROUTINE, TEST_SRQ Some instruments use the
status bit to indicate a request for service. This differs from re-
questing service by setting the SRQ bus line in the following
ways:

1. Aninstrument that requests service by setting the SRQ line
shares that line with all other bus instruments, so that
MINC must conduct a serial poll to determine which instru-
ment is requesting service. An instrument which indicates a
request for service with its status bit, however, can be as-
signed its own dedicated data line on which to report its re-
quest for service during a parallel poll.

2. An instrument can set the SRQ bus line at any time and in-
dependently of MINC, and your program can designate a
service subroutine to be entered automatically whenever an
instrument requests service in this way. An instrument
which uses its status bit to request service, however, can do
nothing independently of MINC but must wait for your pro-
gram to conduct a parallel poll before it can report its re-
quest for service.

TEST_BIT The TEST_BIT routine is described in Book 6 and
tests whether a specified bit is clear or set. Use TEST_BIT after
PAR_POLL to determine whether a specific bit of the parallel
poll response is clear or set.

If no instrument has been assigned to a given data line, that line
is clear when a parallel poll is conducted. If no instrument on the
bus has been enabled to respond, every data line is clear when a
parallel poll is conducted.

Each of the eight bits in the parallel poll response is clear unless
one or more instruments sets it. By assigning only one instru-
ment to each data line, your program knows whether each in-
strument did or did not set its line. If your program assigns more
than one instrument to a single data line, then if that line is set in
a parallel poll, your program does not know which instrument
set it.

?MINC-F-Invalid argument
See also the example for the ENABLE_PAR_POLL routine.

Assume that your IEEE bus has a signal generator whose ad-
dress is 4 and a digital counter whose address is 7. The following
program measures the number of counts detected by the counter
during a three-second period in which a known voltage is being
applied to a circuit. When the digital counter is triggered, it
resets its count to zero and starts counting. It stops counting af-
ter the specified time and sets its status bit.

10 IEFE_BUS_CLEAR \ ALL_INSTR_CLEAR
20 C=7 \ G=4

30 SEND("10V",G)

40 SEND(''3.0",C)

50 ENABLE_PAR_POLL(1,0.C)

60 TRIGGER_INSTR(C)

70 PAR_POLL(R)

80 TEST_BIT(0,S.R)

90 IF S=0 GO TO 70

100 RECEIVE(CS$,,C)

110 PRINT C$; "counts detected.”
120 STOP

Statement 10 clears the bus and the instruments on it. State-
ment 20 assigns 7, the address of the digital counter, tothe varia-
ble C and assigns 4, the address of the signal generator, to the
variable G. The program now tells the signal generator to output
a 10 volt signal (statement 30) and tells the counter to count for
three-second intervals (statement 40). Statement 50 tells the
counter to set data line 0 in response to a parallel poll if its status
bit is set.

The counter starts counting when it is triggered in statement 60.
Statements 70, 80, and 90 form a loop that waits for the counter
to report that its status bit is set. TEST_BIT is alab module rou-
tine and is desceribed in Book 6. After the counter sets its status
bit, statements 100 and 110 accept and print the reading from
the counter.

PAR_POLL

Errors

Example

59

RECEIVE

Receive a Message from an Instrument

Operation

Statement Form

Argument
Descriptions

60

The RECEIVE routine receives and stores a message string
from an instrument. (See “Receiving Messages,” page 8.)

This routine tells the specified instrument to talk by sending the
appropriate “my talk address” and “my secondary address”
commands. MINC is a listener. If you specify listeners, this rou-
tine tells those instruments to listen also by sending the “unlis-
ten” command and the appropriate “my listen address” and “my
secondary address” commands. If you do not specify listeners,
this routine sends the “unlisten” command so that MINC will be
the only listener. MINC then clears the “attention” (ATN) bus
line, allowing the talker to send message characters. (See “Com-
mands: the ATN Line,” page 20, “Command Codes,” page 22, and
“Messages Codes, page 22.)

RECEIVE(message,maximum»]ieng’aih,talker,Hs*&;enem)

Argument Type of Argument Valid Values Default Value
message string variable name any string required argument
maximum-length numeric expression 0 to 255 255

talker numeric expressions 0 to 30; 200 to 230 required argument
listeners numeric expressions 0 to 30; 200 to 230 only MINC listens

Example RECEIVE(MS,,3)

Result Instrument 3 sends a message of up to 255 char-
acters. MINC is the listener and stores the mes-
sage string in M$.

Example RECEIVE(A1$,20,17,4)
Result Instrument 17 sends a message of up to 20 char-
acters. MINC and instrument 4 are the

listeners. MINC stores the message string in
AlS$.

message The message string received from the instrument.

- RECEIVE assigns a value to the message argument.

Values: any string

Default: required argument

The meaning and format of the string is determined by the
instrument’s designer and is described in the user’s guide for the

instrument. Numbers are usually sent as a string of characters
and have to be converted to a numeric value by using the VAL
function described in Book 3.

maximum-length The greatest number of characters MINC
accepts from the talker.

Values: 0 to 255
Default: 255

MINC stops the talker from sending any more characters when
the number of characters in this message reaches the limit spec-
ified in the maximum-length argument. MINC ends the mes-
sage before this if the talker either sets the END bus line while
sending a character or sends a terminator, a character MINC
recognizes as an end of message indicator. Terminators are not
stored as part of the message.

talker The address of the instrument that sends the message.

Values: 0 to 30; 200 to 230

Default: required argument

The talker argument is an instrument address (0 to 30), which
can be followed by a secondary address (200 to 230). If a second-
ary address is specified, separate it from the instrument address
with a comma.

listeners The addresses of the instruments that receive the
message.

Values: 0 to 30; 200 to 230
Default: Only MINC listens.

The listeners argument is a list of instrument addresses (0 to 30).
Each address can be followed by a secondary address (200 to
230). Separate addresses with commas.

MINC is a listener. Usually it is the only listener, but if you spec-
ify instruments in the listeners argument, those instruments
also listen. Check the user’s guide of any specified listener to be
sure that the talker’s message makes sense in the listener’s vo-
cabulary.

SEND, SEND_FRAGMENT The SEND and
SEND_FRAGMENT routines send a string to an instrument.

RECEIVE

Related Routines
61

RECEIVE

Restrictions

Errors

62

MINC talks and the instrument listens.

SET_TERMINATORS After MINC is started, carriage return
and line feed are terminators, characters MINC recognizes as
end of message indicators. Some instruments, however, use
other terminators. Use the SET_TERMINATORS routine to
specify terminators.

TRANSFER The TRANSFER routine supervises a message
transfer from one instrument to another. It is similar to
RECEIVE except that MINC does not store the message.

TRIGGER_INSTR The TRIGGER_INSTR routine is some-
times used in conjunction with the RECEIVE routine.
TRIGGER_INSTR might tell an instrument to take a reading;
the instruments report the results of that reading in the next
RECEIVE routine.

Some instruments send a carriage return and a line feed at the
end of each message. Normally MINC recognizes each of these
characters as a terminator. When a RECEIVE statement ac-
cepts a message from such an instrument, MINC ends the mes-
sage when the carriage return is sent. The next RECEIVE
statement from that instrument accepts the line feed, which im-
mediately ends that message. Therefore each full message from
the instrument requires two RECEIVE statements if the mes-
sage terminators have not been changed with the
SET_TERMINATORS routine.

MINC can receive messages in fragments, using more than one
RECEIVE command, by specifying the length of each fragment
in the message-length argument. MINC stops the instrument in
the middle of its message if the message length specified is
shorter than the length of the instrument’s actual message. The
instrument continues the message from that point if it is told to
talk again.

?MINC-F-Invalid argument
?MINC-F-Invalid instrument address
?MINC-F-Not enough space for the string

There is not enough workspace to store the message string from
the talker.

?MINC-W-Same instrument specified as talker and listener

MINC prints this warning but allows the message to be trans-
mitted.

?MINC-F-Instrument time limit exceeded

The talker specified is either not on the bus, turned off, not de-
signed to talk, set locally to “listen only,” or not at the address
specified. Some instruments need a longer time limit, which you
can specify with the INSTR_TIME_LIMIT routine.

?MINC-F-Listener is not on the bus

No instrument is on the bus.

See also the example for the TRIGGER_INSTR routine.

Instrument 4 on your IEEE bus reports readings in the follow-
ing format:

vtd.dddExdd—!

where

v istheletter “V”if the reading is valid and the letter “O”
if the reading is off scale

“§”

I+

is either a “+” or a character

d isa digit, a character between “0” and “9”
E is the letter “E”
— s the “return” character

l is the “line feed” character

The following program takes ten readings from the instrument
and prints the average.

10 IEEE_BUS_CLEAR \ ALL_INSTR_CLEAR
20 1%=4 \ R=0

30 SET_TERMINATORS(10)

40 FORN=0TO 9

50 RECEIVE(V$,1.1%)

60 RECEIVE(RS,,1%)

70 IF V$="0" THEN PRINT "'Data overflow” \ STOP
80 R$—SEG$(R$.1,LEN(RS)-1)

90 R=R-+VAL(R$)

100 NEXT N

110 R=R/10 \ PRINT "The average is"’; R
120 STOP

RECEIVE

Example

63

RECEIVE

64

Statement 10 clears the IEEE bus and all instruments on it.
Statement 20 assigns the instrument address to 1% and zeroes
the sum of the readings.

This instrument sends both a carriage return and a line feed at
the end of each message. The SET_TERMINATORS routine in
statement 30 makes only line feed a terminator so that the mes-
sages will not end prematurely when the carriage return char-
acter is sent.

The string V$ in statement 50 is the first character of the mes-
sage. The string R$ in statement 60 is the remainder of the mes-
sage. If V§ is an “O” character, the reading is invalid so we stop
the program.

Statement 80 deletes the last character (the carriage return)
from R$. The VAL function in statement 90 then converts the re-
maining string into a number which is added to the total, R (see
Book 3). After ten readings, statement 110 calculates and prints
the average.

SEND

Send a Message to an Instrument

The SEND routine sends a message string to one or more instru-
ments on the IEEE bus. (See “Sending Messages,” page 7.)

MINC itself is the talker, so this routine first sends an UNTALK
command, which tells the previous talker not to talk anymore.
Then it tells the specified instruments to listen by sending the
“unlisten” command and the appropriate “my listen address”
and “my secondary address” commands. MINC then clears the
“attention” (ATN) bus line and sends the string one character at
atime, setting the END bus line while it sends the last character
of the string. (See “Commands: the ATN Line,” page 20, “Com-
mand Codes,” page 22, and “Message Codes,” page 22.)

SEND(message,listeners)

Argument Type of Argument Valid Values Default Value
message string expression any string required argument
listeners numeric expressions 0 to 30; 200 to 230 required argument

Example SEND(’R1F3”, 17).

Result MINC (the talker) sends the string “R1F3” to
instrument 17 (the listener). It sets the END
bus line while sending the “3.”

Example SEND(MS$,5,214)

Result MINC sends the string M$ to secondary ad-
dress 14 of instrument 5. It sets the END bus
line while sending the last character of the
string.

message The string that MINC sends.

Values: any string

Default: required argument

Each instrument that can listen has a vocabulary of characters
that are meaningful to it. This vocabulary is instrument specific
and not defined by the IEEE standard. The message you send to
an instrument must make sense in terms of the instrument’s vo-
cabulary. If it does not, the instrument might ignore the mes-
sage, or it might do something other than what you intended.

Operation

Statement Form

Argument
Descriptions

65

SEND

Related Routines

Restrictions

66

listeners The addresses of the instruments that are to receive
the message.

Values: 0 to 30; 200 to 230

Default: required argument

The listeners argument is a list of instrument addresses (0 to 30).
Each address may be followed by a secondary address (200 to
230). Separate addresses with commas.

ENABLE_REMOTE By specifying a string of length zero in
the message argument of the SEND routine, you can tell instru-
ments to listen without sending them a message. If the REN line
is set, the instruments enter the remote state.

RECEIVE The RECEIVE routine receives astring from an in-
strument. MINC listens and the instrument talks.

SEND_FRAGMENT The SEND_FRAGMENT routine also
sends a string to an instrument. It is identical to the SEND rou-
tine except that it does not set the END bus line while sending
the last character of the string. This allows MINC to send mes-
sages longer than 255 characters, which is the maximum length
of a MINC string.

TEST_LISTENERS If a SEND statement specifies a listener
address which does not correspond to any instrument on the bus,
MINC prints the “’MINC-F-Listener is not on the bus” error
message and displays READY. The TEST_LISTENERS rou-
tine checks for this error condition without stopping your
program.

Some instruments expect each message to end with a special ter-
minating character, such as a carriage return, and do not acton
a message until the terminating character is sent. The user’s
guide for a particular instrument tells you whether or not that
instrument requires a terminator. If the instrument does re-
quire a terminator, you must explicitly specify the terminator as
part of the message string. Use the CHRS$ function described in
Book 3 when specifying a non-printing character.

The SEND routine is not diseriminating: it can send any string
to any listener. In order to use this routine effectively, you must
know the vocabulary of every instrument you send a message to;
this information is in the user’s guide for each instrument.

?MINC-F-Invalid argument
?MINC-F-Invalid instrument address
?MINC-F-Listener is not on the bus

The instrument you specified as a listener is either not on the
bus, turned off, not designed to listen, set locally to “talk only,” or
not at the address specified.

Instrument 7 on your IEEE bus is a signal generator. Its fre-
quency is programmed by sending it the character “F” followed
by a number, and it requires that messages to it end with the
“return” character (ASCII value 13). For example, the string
“F7500” plus a “return” character causes it to generate a signal
at 7500 cycles per second. The following program asks you for a
frequency and then generates that signal.

10 IEEE_BUS_CLEAR \ ALL_INSTR_CLEAR
20 G=7

30 PRINT "What frequency"’;

40 INPUT F \ IF F <0 GO TO 30

50 SEND("'F'+STR$(F)+CHR$(13),G)

60 STOP

Statement 10 clears the bus and all the instruments on it. State-
ments 30 and 40 ask you for the frequency and test that the value
is valid.

Statement 50 sends the specified concatenated string to instru-
ment 7. The STR$ function converts a number into its string
representation, and the CHRS$ function converts an ASCII value
into a one-character string (see Book 3).

SEND

Errors

Example

67

SEND_FRAGMENT

Send a Message Fragment to an Instrument

Operation

Statement Form

Argument
Descriptions

68

The SEND_FRAGMENT routine sends a message fragment to
one or more instruments on the IEEE bus. It should be used to
send part of a message if the entire message is longer than 255
characters, the maximum length of a MINC string. (See “Send-
ing Messages,” page 7, and “Fragmented Messages,” page 21.)

MINC itself is the talker, so it first sends an “untalk” com-
mand, which tells the previous talker not to talk any more. Then
it tells the specified instruments to listen by sending the “unlis-
ten” command and the appropriate “my listen address” and “my
secondary address” commands. MINC then clears the “atten-
tion” (ATN) bus line and sends the string one character at a time.
Unlike the SEND routine, SEND_FRAGMENT does not set
the END bus line while it sends the last character of the string.
(See “Commands: the ATN Line,” page 20, “Command Codes,”
page 22, and “Message Codes,” page 22.

SEND_FRAGMENT(message-fragment,listeners)

Argument Type of Argument Valid Values Default Value
message-fragment string expression any string required argument
listeners numeric expressions 0 to 30; 200 to 230 required argument

Example SEND_FRAGMENT(F$,3)

Result Send the string F'$ to instrument 3. This string
is only part of the message to instrument 3. The
last part will be sent with the SEND routine.

message-fragment The string that MINC sends.

Values: any string

Default: required argument

Each instrument that can listen has a vocabulary of characters
that are meaningful to it. This vocabulary is instrument specific
and not defined by the IEEE standard. The message you send to
an instrument must make sense in terms of the instrument’s vo-
cabulary. If it does not, the instrument might ignore the mes-
sage, or it might do something other than what you intended.

This routine does not set the END bus line when it sends the last

character of the string. Use SEND_FRAGMENT to send parts
of messages that are longer than 255 characters, the maximum
MINC string length. Use SEND_FRAGMENT to send all parts
of such a message except the last, which should be sent with

SEND.

listeners The addresses of the instruments that are to receive
the string.

Values: 0 to 30; 200 to 230

Default: required argument

The listeners argument is a list of instrument addresses (0 to 30).
Each address may be followed by a secondary address (200 to
230). Separate addresses with commas.

RECEIVE The RECEIVE routine receives astring from anin-
strument. MINC listens and the instrument talks.

SEND The SEND routine sends a string to an instrument. Itis
identical to the SEND_FRAGMENT routine except that it sets
the END bus line while sending the last character of the string.

TEST_LISTENERS If a SEND_FRAGMENT statement
specifies a listener address which does not correspond to any in-
strument on the bus, MINC prints the “?MINC-F-Listener is not
on the bus” error message and displays READY. The
TEST_LISTENERS routine checks for this error condition
without stopping your program.

The END line indicates to many instruments that the character
being sent is the last character in the message, and some instru-
ments require that this line be set before they act on a message
sent to them.

The SEND_FRAGMENT routine is not discriminating: it can
send any string to any listener. In order to use this routine effec-

tively, you must know the vocabulary of the instruments you are
sending messages to.

?MINC-F-Invalid argument
?MINC-F-Invalid instrument address
?MINC-F-Listener is not on the bus

The instrument you specified as a listener is either not on the

SEND_FRAGMENT

Related Routines

Restrictions

Errors

69

SEND_FRAGMENT

Example

70

bus, turned off, not designed to listen, set locally to “talk only,” or
not at the address specified.

None

The SERIAL_POLL routine conduets a serial poll. It tells your
program which instrument is requesting service and the value
of its status byte. (See “Status,” page 9.)

This routine sends the “serial poll enable” universal command,
which puts bus instruments into serial poll mode. In this mode,
any instrument that is told to talk sends a one-character mes-
sage, its status byte. To poll each instrument, MINC tells the in-
strument to talk by sending the appropriate “my talk address”
and “my secondary address” commands. MINC then clears the
“attention” (ATN) bus line, and the instrument sends its status
byte. When an instrument'’s status byte indicates that it is re-
questing service, no further instruments are polled and this rou-
tine sends the “serial poll disable” universal command to take
bus instruments out of serial poll mode. (See “Commands: the
ATN Line,” page 20, and “The Data Lines,” page 22.)

SERIAL_POLL(status,index,talkers)

Argument Type of Argument Valid Values Default Value
status numeric variable name 0 to 255 no value assigned
index numeric variable name 0;>1 no value assigned
talkers numeric expressions 0to 30; 200 to 230 required argument

Example SERIAL_POLIL(D%,,4)
Result Conduct a serial poll of instrument 4 and put its
status byte in the variable D%.

Example SERIAL_POLL(I4)

Result Conduct a serial poll of instrument 4 to deter-
mine whether or not it is requesting service. L is
assigned the value 1 if it is requesting service, 0

if it is not.
Example SERIAL_POLL(S,I,5,7,3)
Result Conduct a serial poll of instruments 5, 7, and 3.

If instrument 5 is requesting service, I is 1 and
S is the status byte of instrument 5. If instru-
ment 5 is not requesting service but instrument
7is, I is 2 and S.is the status byte of instrument
7. If neither instrument 5 nor 7 is requesting
service but instrument 3 is, I is 3 and S is the

SERIAL_POLL

Conduct a Serial Poll

Operation

Statement Form

71

SERIAL_POLL

Argument
Descriptions

72

status byte of instrument 3. If none of the in-
struments 5, 7, and 3 is requesting service, [is 0
and S is the status byte of the last instrument,
instrument 3.

Example SERIAL_POLL(,1%,4,7,2,19,3)

Result Conduct a serial poll of instruments 4, 7, 2, 19,
and 3. 1% is assigned the value 0 if none of these
instruments is requesting service; 1 if instru-
ment 4 is requesting service; 2 if 4 is not re-
questing service but 7 is; and so forth.

status The status byte of the last instrument polled, as indicat-
ed by the index argument. SERIAL_POLL assigns a value to
the status argument.

Values: 0 to 255

Default: Novalueassigned. SERIAL_POLL does not re-
port the status byte.

The status argument is the status byte of the instrument indicat-
ed by the index argument. If the index argument is 0, the status
argument is the status byte of the last instrument specified in
the talkers argument. As shown in Figure 20, bit 6 of the status
argument always indicates whether or not the instrument was
requesting service. Bits 0 through 5 and bit 7 indicate other as-
pects of the instrument’s status. Notice how the bits of the status
argument shown in Figure 20 correspond to the data lines of the
serial poll response shown in Figure 8, page 11.

Bit# 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 o|lo0foO 0] 0]S |SRQ| S S|S|s|s S

Key
S = 0 or 1; meaning is instrument-dependent

SRQ = 0 if the instrument is not requesting service
=1 if the instrument is requesting service

MR-2141

Figure 20. The Status Argument
index Theindex argument indicates which instrument was re-
questing service. SERIAL_POLL assigns a value to this
argument.

Values Meaning

0 No instrument was requesting service.

=1 An index to the instrument requesting service.

Default: Novalueassigned. SERIAL_POLL doesnotre-
port which instrument was requesting service.

As it polls each instrument, MINC checks data line 6 of the
instrument’s response. If line 6 is clear, the instrument was not
requesting service, so MINC polls the next instrument in the
list. If line 6 is set, however, the instrument was requesting ser-
vice, so MINC polls noother instruments. The index argument is
1 if the first instrument listed was requesting service; 2 if the
first instrument was not requesting service but the second one
was; 5 if the fifth instrument was requesting service but none of
the first 4 were; and so on. If none of the instruments in the list of
talkers was requesting service, the index argument is 0.

More than one instrument can request service at the same time.
When this happens, the order of the instruments in the talkers
argument represents the priority of the service requests. An in-
strument whose address is earlier in the list has its service re-
quest recognized before an instrument whose address is later in
the list. For example, suppose instruments 5 and 7 are request-
ing service. Your program uses SERIAL_POLL to determine
the source of the service request. If instrument 7 is listed first in
the SERIAL_POLL statement, its service request is recog-
nized. Instrument 5 is-not polled and so it continues to request
service. When the SERIAL_POLL statement is-executed again,
instrument 7 reports that it is no longer requesting service, so
instrument 5 is polled. Its service request is now recognized.

Some instruments do not clear bit 6 of their status byte when
they are serially polled, even though they are no longer request-
ing service. These instruments do not clear bit 6 until MINC ac-
tually services them. For example, a voltmeter might request
service when it has a data reading to report. Though it would
stop requesting service when serially polled, the voltmeter
might not clear bit 6 of its status byte until it reports the reading
in a RECEIVE statement.

talkers The addresses of the instruments to be polled.

Values: 0 to 30; 200 to 230

Default: required argument

The talkers argument is a list of instrument addresses (0 to 30).
Each address can be followed by a secondary address (200 to

SERIAL_POLL

73

SERIAL_POLL

Related Routines

Restrictions

Errors

74

230), though secondary addresses are not usually meaningful in
this routine. Separate addresses with commas.

At least one talker must be specified. If your program is using
this routine to determine the source of a service request, be sure
toinclude in the list of talkers all instruments on the bus that can
request service. This assures that SERIAL_POLL will find the
source of the service request.

PAR_POLL The PAR_POLL routine conducts a parallel poll,
whereas SERIAL_POLL conducts a serial poll. Both types of
polls ask instruments for information about their status, but
there the similarity ends. An instrument reports only one bit of
status information in a parallel poll, and this status bit can be
unrelated to any of the bits in the status byte reported in a serial
poll. Instruments must be enabled in advance to respond to
parallel polls. When PAR_POLL conducts a parallel poll, all
enabled instruments respond at the same time, and none of these
instruments has to be told to talk.

SRQ_SUBROUTINE, TEST_SRQ The SRQ_SUBROUTINE
and TEST_SRQ routines detect service requests. After a ser-
vice request is detected, use SERIAL_POLL to identify the
source of the request. Conducting a serial poll of the instrument
requesting service frees the service request (SRQ) bus line for
future use.

TEST_BIT The TEST_BIT routine is described in Book 6 and
tests whether a specified bit is clear or set. A status byte has
eight bits, each of which may indicate specific information
about the instrument’s status. Use TEST_BIT after
SERIAL_POLL to determine whether a specific bit of the sta-
tus byte is clear or set.

The instrument being polled must be capable of responding to a
serial poll. Any instrument that can request service can respond
to a serial poll.

?MINC-F-Invalid argument
?MINC-F-Invalid instrument address
?MINC-F-Instrument time limit exceeded

The instrument specified is either not on the bus, not turned on,
or unable to respond to a serial poll.

?MINC-F-Listener is not on the bus
No instrument is on the bus.
See also the example for the SRQ_SUBROUTINE routine.

Suppose that a plotter on your IEEE bus can respond to serial
polls and reports the information shown in Figure 21 in its sta-
tus byte. Bit 2 is set if the plotter is out of ink, bit 5is setif it is out
of paper, and bit 6 is set if it is requesting service. The other bits
are always clear.

Bit# 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0|0 0 0 0 0 0 0

1 if requesting service l ‘ 1 if out of ink
0if not 0 if not

1 if out of paper
Oifnot

Figure 21. SERIAL_POLL Example

MR-2142

The following program checks whether or not the plotter is out
of paper.

10 IEEE_BUS_CLEAR \ ALL_INSTR_CLEAR
20 P%=6

30 SERIAL_POLL (S,,P%)

40 TEST_BIT(5.P,S)

50 IF P=0 GO TO 100

60 PRINT "'Please put paper in the plotter.”
70 PRINT "Have you put in the paper’’;

80 INPUT A$ \ IF A$<>"YES" GO TO 70
90 GO TO 30

100 PRINT "The plotter has paper.”

110 STOP

Statement 10 clears the IEEE bus and the instruments on it.
Statement 20 assigns 6, the address of the plotter, to the variable
P%. After statement 30 gets the status byte of the plotter, state-
ment 40 checks bit 5 with TEST_BIT, a lab module routine
described in Book 6. If the plotter has enough paper, bit 5is clear
so P is 0. If bit 5 is set, P is not zero so statements 60 through 90
are executed.

SERIAL_POLL

Examples

75

SET_TERMINATORS

Specify Terminating Characters

Operation This routine specifies the characters that the routines
RECEIVE and TRANSFER recognize as message
terminators. (See “Receiving Messages,” page 8.)

Statement Form SET_TERMINATORS (terminators)
Argument Type of Argument Valid Values Default Value
terminators numeric or 0 to 255; any no characters are
string expression one-character string terminators

Example SET_TERMINATORS(10)

Result Only the line feed character (ASCII value 10) is
recognized by RECEIVE and TRANSFER as
terminators.

Example SET_TERMINATORS(A’’B’,10,13)

Result Characters ‘A’, ‘B’, line feed (ASCII value 10),
and carriagereturn (ASCII value 13) are recog-
nized by RECEIVE and TRANSFER as
terminators.

Example SET_TERMINATORS()
Result No characters are recognized by RECEIVE
and TRANSFER as terminators.

Argument terminators A list of up to 4 message terminating characters.
Descriptions
Values Meaning
0 to 255 The ASCII value of a character that
is to be a terminator.
any one-character A character that is to be a
string expression terminator.
Default: RECEIVE and TRANSFER do not
recognize any character as a
terminator.

Up to four terminators can be specified. These terminators over-
, ride any previous terminators. After MINC is started, carriage
76 return and line feed are the terminators.

RECEIVE, TRANSFER RECEIVE and TRANSFER are the
only routines that use the list of terminators specified in
SET_TERMINATORS. Each time the talker sends a character,
these routines check that character against the list of
terminators. If the character is a terminator, they end the mes-
sage. RECEIVE does not store the terminator as part of the
message.

SEND, SEND_FRAGMENT Some instruments require that a
special terminating character be sent to them to end a message.
This terminating character, however, must be explicitly
specified in SEND. The terminators specified in
SET_TERMINATORS apply only to characters that instru-
ments themselves send.

SRQ_SUBROUTINE, CONTINUE, SCHEDULE, and
SCHMITT SRQ_SUBROUTINE, CONTINUE, SCHEDULE,
and SCHMITT are the MINC routines that can schedule service
subroutines. When a service subroutine executes a RETURN
statement, MINC makes the list of message terminators the
same as it was when the subroutine was invoked. Thus, if
SET_TERMINATORS is used in a service subroutine, the new
terminators are used only for the duration of the subroutine.
SET_TERMINATORS is the only IEEE bus routine whose ef-
fect is automatically reset at the end of a service subroutine.
CONTINUE,SCHEDULE, and SCHMITT are lab module rou-
tines and are discussed in Book 6.

If a character is a terminator, it is recognized as such regardless
of which instrument sends it. If one instrument uses a character
as aterminator, and another uses it as part of a message, then the
latter’s message could be prematurely ended if it sends the char-
acter recognized by MINC as a terminator. Using
SET_TERMINATORS to eliminate this character as a
terminator would allow the message to conclude properly.

Some instruments send a carriage return and a line feed at the
end of each message. Normally MINC recognizes each of these
characters as a terminator. When a RECEIVE statement ac-
cepts a message from such an instrument, MINC ends the mes-
sage when the carriage return is sent. The next RECEIVE
statement from that instrument accepts the line feed, which im-
mediately ends that message. Therefore each full message from
the instrument requires two RECEIVE statements if the mes-
sage terminators have not been changed with the
SET_TERMINATORS routine.

SET_TERMINATORS

Related Routines

Restrictions

77

SET_TERMINATORS

MINC recognizes no more than four terminators at any time.
Errors ?MINC-F-Invalid argument

Example See the example for the RECEIVE routine.

78

With this routine, your program can designate a service
subroutine that will be entered automatically whenever any in-
strument requests service by setting the SRQ bus line. (See “Sta-

tus,” page 9.)

SRQ_SUBROUTINE

Designate an SRQ Service Subroutine

SRQ_SUBROUTINEGubroutine)

Argument Type of Argument Valid Values Default Value
subroutine numeric expression 0; 1 to 32,767 0
Example SRQ_SUBROUTINE(2300)
Result When a service request occurs, start executing
the service subroutine that begins at statement
number 2300.
Example SRQ_SUBROUTINE(S%)
Result Designate an SRQ subroutine whose beginning
statement number is the value of the variable
S%. When a service request occurs, this service
subroutine is invoked.
Example SRQ_SUBROUTINE()
Result Cancel the current SRQ service subroutine.

subroutine The number of the first statement in the SRQ ser-

vice subroutine.

Values

Meaning

1 to 82,767 Statement number of a service subroutine.

0

Default:

Cancel the current SRQ service subroutine.
When a service request occurs, MINC does not
automatically invoke a service subroutine.

0

SRQ_SUBROUTINE designates a service subroutine by the
statement number of the first statement in the subroutine.
When an instrument sets the SRQ bus line, MINC transfers pro-
gram control to the service subroutine as soon as the current
statement finishes executing. After the service subroutine, the

Operation

Statement Form

Argument
Descriptions

79

SRQ_SUBROUTINE

Related Routines

Restrictions

80

program returns to the statement following the one it was ex-
ecuting when the service request occurred.

DISABLE_REMOTE, ENABLE _REMOTE, and TEST_REMOTE
If your program uses the DISABLE_REMOTE routine or the
ENABLE_REMOTE routine in a service subroutine, then it
should first check the state of the REN line with
TEST_REMOTE. Before returning from the service
subroutine, your program should return to REN line to the state
it was in when the subroutine was entered.

SERIAL_POLL The service subroutine designated by
SRQ_SUBROUTINE should include a SERIAL_POLL state-
ment which polls all instruments that can request service. This
tells your program which instrument is requesting service and
causes that instrument to stop requesting service. The service
subroutine can then execute different statements depending on
which instrument is requesting service.

SET_TERMINATORS When a service subroutine executes a
RETURN statement, MINC makes the list of message
terminators the same as it was when the subroutine was in-
voked. Thus, if SET_TERMINATORS is used in a service
subroutine, the new terminators are used only for the duration
of the subroutine. SET_TERMINATORS is the only IEEE bus
routine whose effect is automatically reset at the end of aservice
subroutine.

TEST_SRQ Instead of using SRQ_SUBROUTINE to desig-
nate a service subroutine to handle service requests, your pro-
gram can use TEST_SRQ periodically to test the SRQ bus line.
This method of detecting service requests should only be used
when fast response is not necessary.

CONTINUE, SCHEDULE, and SCHMITT CONTINUE,
SCHEDULE, and SCHMITT are lab module routines that des-
ignate service subroutines, which are just like the SRQ service
subroutine except that different conditions cause them to be exe-
cuted. They are described in Book 6.

All service subroutines are canceled when MINC displays
READY. This makes them useless in immediate mode.

More than one instrument can request service at the same time.
While the SRQ subroutine is executing, new SRQs are ignored.
When the RETURN statement is executed, MINC checks the
SRQ line. If the line is clear, then the main program resumes. If

the line is set, however, then MINC checks whether or not the
SRQ subroutine has serially polled any instrument requesting
service. If it has, then the SRQ line is set because one or more
other instruments are also requesting service, so MINC does not
return to the main program but instead executes the SRQ
subroutine again. If it has not, then the SRQ line is set because
the instrument setting the line has not stopped requesting ser-
vice. This situation could cause the SRQ subroutine to be exe-
cuted over and over again for the same service request. For this
reason, MINC automatically cancels the SRQ subroutine and
prints the “?MINC-W-SRQ subroutine cancelled because no
serial poll done” error message.

The resequencing command, RESEQ, resequences normal pro-
gram statement numbers. It does not change subroutine state-
ment numbers specified in SRQ_SUBROUTINE statements.
When you resequence a program, you have to determine
the new statement number of the service subroutine and
change the subroutine argument to that number in the
SRQ_SUBROUTINE statement. For this reason, it is more con-
venient to use a variable name for the subroutine argument. Put
the variable assignment statement and an explanatory remark
at the beginning of the program where you can locate it quickly.
Then, each time you resequence the program, assign new values
to the statement number variables and save searching for all oc-
currences of SRQ_SUBROUTINE statements.

?MINC-F-Invalid argument
?MINC-W-SRQ subroutine canceled because no serial poll done
?MINC-W-SRQ service subroutine has been canceled

?MINC-F-Could not find service subroutine #### requested

The following program uses lab module routines (described in
Book 6) to control data acquisition for an experiment involving
radioisotopes. Your IEEE bus has only four instruments: two
identical radiation detectors, each of which issues a service re-
quest if the radiation level of the room it is in rises above a cer-
tain level, and two identical alarms, each of which sounds when
triggered by MINC. The radioisotope is used at the start of the
experiment but is then transferred to another room for storage.
One detector and one alarm are in each room. The program
sounds a room’s alarm immediately if the radiation in that room
reaches a hazardous level. If the radiation leak is in the experi-
ment room, the program stops the experiment.

SRQ_SUBROUTINE

Errors

Example

81

SRQ_SUBROUTINE

82

10 IEEE_BUS_CLEAR \ ALL_INSTR_CLEAR
20 D1=11 \ A1=12 \ D2=21 \ A2=22 \ S=5000
30 SRQ_SUBROUTINE(S)

rest of program acquires experiment data

5000 SERIAL_POLL(,1%,D1,D2)
5010 IF 1%=0 THEN PRINT "SRQ error” \ RETURN
5020 ON 1% GO TO 5100,5200

5100 TRIGGER_INSTR(A1)
5110 STOP

5200 TRIGGER_INSTR(A2)
5210 RETURN

Statement 10 clears the IEEE bus and the instruments on it.
Statement 20 contains values for the addresses of the detectors
in the experiment room (D1) and the storage room (D2) and the
alarms in the experiment room (A1) and the storage room (A2).
Statement 30 designates 5000, the value of S, as the beginning of
the SRQ service subroutine.

If a detector requests service, the service subroutine is automati-
cally executed. Statement 5000 conducts a serial poll to deter-
mine which detector is requesting service. In statement 5010, 1%
should never be zero since the two detectors are the only instru-
ments on the bus that can request service. Include this state-
ment, however, in case some other instrument is added to the bus
later. If 1% were 0, statement 5020 would cause a fatal error.

Statement 5020 branches to different points depending on the
value of I1%. If the detector in the experiment room was request-
ing service, 1% is 1 and statements 5100 and 5110 are executed.
These statements sound the alarm in the experiment room and
stop the experiment. If the detector in the storage room was re-
questing service, I% is 2 and statements 5200 and 5210 are exe-
cuted. These statements sound the alarm in the storage room,
but allow the experiment to continue.

Notice in statement 5000 that the detector in the experiment
room has the higher priority. If both detectors request service
simultaneously, 1% is 1.

TEST_LISTENERS

Test for the Presence of Listeners

This routine tests whether any of the listeners specified are on
the bus.

TEST_LISTENERS tries to send a line feed character with the

END line set. If the acceptor handshake is not detected, no in-
strument is listening. (See “The Handshake Lines,” page 26.)

TEST_LISTENERS(condition, listeners)

Argument Type of Argument Valid Values Default Value
condition numeric variable name 0; -1 required argument
listeners numeric expressions 0 to 30; 200 to 230 required argument

Example TEST_LISTENERS(C,3)

Result C is -1 if instrument 3 is listening, 0 if it is not.
Example TEST_LISTENERS(A%,3,6,7)
Result A% is-1if any of the instruments 3, 6, and 7 are

listening, 0 if none of them are.

condition Reports whether or not any of the instruments speci-
fied are listening. TEST_LISTENERS assigns a value to the
condition argument.

Values Meaning
0 None of the instruments are listening.
-1 At least one of the instruments is listening.

Default: required argument

An instrument may not be listening for any of the following
reasons:

1. The instrument is not connected to the bus.

2. The instrument’s power is not turned on. (Never turn an
instrument’s power on while MINC is running!)

3. The instrument has an address different from the one you
specified.

Operation

Statement Form

Argument
Descriptions

83

TEST_LISTENERS

4. The instrument is not designed to listen.

5. Some instruments have a switch which can be set to “talk
only.” This switch can prevent the instrument from listen-

ing.
listeners The addresses to be tested.

Values: 0 to 30; 200 to 230
Default: required argument
The listeners argument is a list of instrument addresses (0 to 30).

Each address may be followed by a secondary address (200 to
230). Separate addresses with commas.

Related Routines SEND, SEND_FRAGMENT TEST_LISTENERS should be
used before SEND or SEND_FRAGMENT if the listener
might not be on the bus. SEND and SEND_FRAGMENT
produce a fatal error if the listener is not on the bus.

RestncM LISTENERS sends a one character message, aline feed.

) Check the user’s guide for each instrument to be sure this has no
,/ undesired effect.

y
Errors ?MINC-F-Invalid argument

?MINC-F-Invalid instrument address

?MINC-F-Listener is not on the bus

No instrument is on the bus.

Example None

84

TEST_REMOTE

Test the Remote Enable (REN) Bus Line

TEST_REMOTE tells your program whether or not the
remote-enable (REN) line of the IEEE bus is set. (See “Remote
and Local,” page 13.)

TEST_REMOTE(condition)

Argument Type of Argument Valid Values Default Value
condition numeric variable name 0; -1 required argument

Example TEST_REMOTE(C)
Result Tests the REN bus line. Cis-1ifthelineisset, 0
if it is clear.

condition The condition of the REN bus line.
TEST_REMOTE assigns a value to the condition argument.

Values Meaning
0 The REN line is clear.
-1 The REN line is set.

Default: required argument

This routine does not change the state of the REN line.

DISABLE_REMOTE The DISABLE_REMOTE routine
clears the REN bus line.

ENABLE_REMOTE The ENABLE_REMOTE routine sets
the REN bus line.

First IEEE routine The first IEEE routine to execute after
MINC is started invokes IEEE_BUS_CLEAR automatically,
which clears and then sets the REN line.

IEEE_BUS_CLEAR The IEEE_BUS_CLEAR routine clears
then sets the REN bus line.

Operation

Statement Form

Argument
Descriptions

Related Routines

85

TEST_REMOTE

Restrictions None/ '
Errors ///?mC-F-Invalid argument
Example None

86

TEST_SRQ

Test the Service Request (SRQ) Bus Line

This routine tests the SRQ bus line to determine whether or not Operation
any instrument on the bus is requesting service. (See “Status,”

page 9.)

TEST_SRQ(condition) Statement Form
Argument Type of Argument Valid Values Default Value

condition numeric variable name 0; -1 required argument

Example TEST_SRQ(C)
Result C is 0 if the SRQ line is clear, -1 if it is not.

Example TEST_SRQ(S%)

Result TEST_SRQ assigns the value 0 to S% if no in-
strument is requesting service, and the value-1
if one or more instruments is.

condition The state of the SRQ bus line. TEST_SRQ assigns a Argument
value to the condition argument. Descriptions
Values Meaning
0 The SRQ line is clear.
-1 The SRQ line is set.

Default: required argument

TEST_SRQ tests the state of the SRQ bus line. Instruments on
the bus can request service from MINC by setting this line.

SERIAL_POLL The SERIAL_POLL routine conducts a serial Related Routines
poll to determine which instrument is requesting service. When

an instrument that is requesting service is serially polled, it

stops requesting service.

SRQ_SUBROUTINE The SRQ_SUBROUTINE routine is
used to designate a service subroutine which will be entered au-
tomatically whenever an instrument requests service.
TEST_SRQ is not needed if service requests are detected
this way. 87

TEST_SRQ

Restrictions None
Errors ?MINC-F-Invalid argument
Example None

88

TRANSFER

Supervise Message Transfer Between Instruments

One instrument on the bus, the talker, sends a message string to
one or more other instruments, the listeners. MINC also listens
so that it can tell when the message is over, but it does not store
the message. (See “Transferring Messages,” page 9.)

This routine tells the specified instrument to talk by sending the
appropriate “my talk address” and “my secondary address”
commands. It then tells the specified instruments to listen by
sending the “unlisten” command and the appropriate “my listen
address” and “my secondary address” commands. MINC then
clears the “attention” (ATN) bus line, allowing the talker to send
message characters. (See “Commands: the ATN Line,” page 20,
“Command Codes,” page 22, and “Message Codes,” page 22.)

TRANSFER(actuai-length,maximum-length,talker,listeners)

Argument Type of Argument Valid Values Default Value

actual-length numeric variable name 0 to 32,767 no value assigned

maximum-length numeric expression 0 to 32,767 no limit

talker numeric expressions 0 to 30; 200 to 230 required
argument

listeners numeric expressions 0 to 30; 200 to 230 required
argument

Example TRANSFER(,5,17)
Result Instrument 5 sends a message string of any
number of characters to instrument 17.

Example TRANSFER(L,3,15,2)

Result Instrument 3 sends a message string of any
number of characters to instruments 15 and 2.
TRANSFER assigns the actual number of
characters in the message to the variable L.

Example TRANSFER(N%,20,17,21,213)

Result Instrument 17 sends a message of up to 20 char-
acters to secondary address 13 of instrument
21. TRANSFER assigns the actual number of
characters in the message to the variable N%.

actual-length The actual number of characters in the message
sent by the talker. TRANSFER assigns a value to the actual-
length argument.

Operation

Statement Form

Argument
Descriptions
89

TRANSFER

90

Values: 0 to 32,767

Default: No value assigned.

maximum-length The maximum number of characters
MINC allows the talker to send.

Values: 0 to 32,767

Default: MINC imposes no limit on the length of the
talker’s message.

MINC stops the talker from sending any more characters when
the number of characters in this message reaches the limit spec-
ified in the maximum-length argument. MINC ends the mes-
sage before this if the talker either sets the END bus line while
sending a character or sends a terminator. Terminators are not
included in the length of the message reported in the actual-
length argument.

talker The address of the instrument that sends the message.

Values: 0 to 30; 200 to 230

Default: required argument

The talker argument is an instrument address (0 to 30), which
can be followed by a secondary address (200 to 230). If a second-
ary address is specified, separate it from the instrument address
with a comma.

listeners The addresses of the instruments that receive the
message.

Values: 0 to 30; 200 to 230

Default: required argument

The listeners argument is a list of instrument addresses (0to 30).
Each address may be followed by a secondary address (200 to
230). Separate addresses with commas.

Each instrument that can talk or listen has a vocabulary of char-
acters that are meaningful to it. This vocabulary is instrument
specific and not defined by the IEEE standard. The message
sent by the talker must make sense in terms of the listener’s vo-
cabulary. If it does not, the listener might ignore the message or
do something unexpected.

RECEIVE The RECEIVE routine receives astring froman in-
strument. The instrument talks and MINC listens; other instru-
ments can also listen. RECEIVE differs from TRANSFER in
that MINC stores the message.

SEND, SEND_FRAGMENT The SEND and
SEND_FRAGMENT routines send a string to an instrument.
MINC talks and the instrument listens.

SET_TERMINATORS After MINC is started, carriage return
and line feed are terminators, characters MINC recognizes as
end of message indicators. Some instruments, however, use
other terminators. Use the SET_TERMINATORS routine to

specify terminators.
None

?MINC-F-Invalid argument
?MINC-F-Invalid instrument address
2MINC-W-Same instrument specified as talker and listener

MINC prints this warning but allows the message to be trans-
mitted.

?MINC-F-Instrument time limit exceeded

The talker specified is either not on the bus, turned off, not de-
signed to talk, set locally to “listen only,” or not at the address
specified. Some instruments need a longer time limit, which you
can specify with the INSTR_TIME_LIMIT routine.

?MINC-F-Listener is not on the bus

No instrument is on the bus

Assume that instrument 1 is a line printer and instrument 2is a
voltmeter. The following program transfers a message from the
voltmeter to the line printer.

10 IEEE_BUS_CLEAR \ ALL_INSTR_CLEAR
20 P=1 \ V=2

30 TRANSFER(,.V,P)

40 STOP

Statement 10 clears the bus and all instruments on it. When
statement 30 executes, the voltmeter talks and the line printer
listens, printing each character sent by the voltmeter.

TRANSFER

Related Routines

Restrictions

Errors

Example

91

TRIGGER_INSTR

Trigger Selected Instruments

Operation

Statement Form

Argument
Descriptions

Related Routines

92

Each instrument specified starts its basic operation. The re-
sponse to this trigger is instrument specific. (See “Triggering,”

page 9.)

This routine tells the specified instruments to listen by sending
the “unlisten” command and the appropriate “my listen ad-
dress” and “my secondary address” commands. It then sends the
“group execute trigger” addressed command. (See “Commands:
the ATN Line,” page 20, and “Command Codes,” page 22.)

TRIGGER_INSTR(listeners)

Argument Type of Argument Valid Values Default Value .
listeners numeric expressions 0 to 30; 200 to 230 required argument

Example TRIGGER_INSTR(4)

Result Instrument 4 starts its basic operation.

Example TRIGGER_INSTR(7,15,3)

Result Instruments 7, 15, and 8 each start their basic
operation.

listeners The addresses of the instruments to be triggered.

Values: 0 to 30; 200 to 230

Default: required argument

The listeners argument is a list of instrument addresses (0to 30).
Each address can be followed by a secondary address (200 to
230), though secondary addresses are not usually meaningful in
this routine. Separate addresses with commas.

RECEIVE The TRIGGER_INSTR routine is sometimes used
in conjunction with the RECEIVE routine. TRIGGER_INSTR
might tell an instrument to take a reading; the results of that
reading are reported in the next RECEIVE routine.

SEND Some instruments ignore triggers unless they have
been sent a message telling them to expect a trigger.

Some instruments do not respond to triggers. If an instrument
ignores a trigger, no error is produced, and other bus instru-
ments are still triggered.

?MINC-F-Invalid instrument address
?MINC-F-Listener is not on the bus

The instrument you specified as a listener is either not on the
bus, turned off, not designed to listen, set locally to “talk only,” or
not at the address specified.

See also the examples for the SRQ_SUBROUTINE and
PAR_POLL routines.

Your experiment involves a relay box, two voltmeters, and an
ohmmeter. The following program closes the relay and then
takes simultaneous voltage and resistance readings.

10 IEEE_BUS_CLEAR \ ALL_INSTR_CLEAR

20 R=7\ V1=3\ V2=12\ 0=6

30 TRIGGER_INSTR(R)

40 TRIGGER_INSTR(V1,v2,0)

50 RECEIVE(V1$,,V1) \ PRINT "Voltage 1 =";V1$
60 RECEIVE(V2$,,V2) \ PRINT "Voltage 2 ="";V2$
70 RECEIVE(O$,,0) \ PRINT "Resistance =";0$
80 STOP

Statement 10 clears the bus and all the instruments on it. State-
ment 20 contains the address of the relay box, the two voltme-
ters, and the chmmeter.

The first TRIGGER_INSTR statement closes the relay box. The
second one causes the two voltmeters and the ohmmeter to take
readings simultaneously. In statement 50, one voltmeter sends
the reading it took when it was triggered. In statement 60, the
other voltmeter sends the reading it took when it was triggered.
In statement 70, the ohmmeter sends the reading it took when it
was triggered.

TRIGGER_INSTR

Restrictions

Errors

Example

93

Acceptor handshake, 26
Address form, 4
Addressed commands
codes for, 22, 24
definition of, 21
go to local command, 52
group execute trigger, 92
parallel poll configure, 35
selected device clear, 47
Addresses
primary, 4
secondary, 4
specifying, 30
ALL_INSTR_CLEAR routine
discussion of, 16
reference for, 31
related to
IEEE_BUS_CLEAR, 45
INSTR_CLEAR, 47
ANSI standard, 1
Arguments
optional and required, 30
plural, 30
ASCII values, 22
ATN bus line
idle state of the bus, 28
PAR_POLL, 57
RECEIVE, 60
related to
commands, 20
EOI bus line, 21
parallel polls, 21
restrictions on, 21
SEND, 65

SEND_FRAGMENT, 68

SERIAL_POLL, 71

TEST_LISTENERS, 83

TRANSFER, 89
Attention bus line

See ATN bus line

Beginning of program
ALL_INSTR_CLEAR, 16
IEEE_BUS_CLEAR, 16

Bits
data lines, 25
polls, 9-10

Black print, 30

Blue print, 30

Bus lines
ATN, 20
DAV, 26
definition of, 1
DIO1 through DIO7, 22
END, 7-8
EOI (End or IDY), 21
IDY, 21
IFC, 16
NDAC, 26
NRFD, 26
REN, 13,15
set when grounded, 19
SRQ, 10
types of, 19

Bus management lines
definition of, 1

BYE
See MINC commands

INDEX

95

INDEX

96

Cable
definition of, 1
maximum length, 21
Canceling service subroutines, 80
Carriage return character, 62, 76
Characters
ASCII values, 22
commands, 6
handshake, 26
messages, 1
CHRS$ function, 22, 66
Clear bus line, 19
Clearing
instrument-dependent parts, 15
interfaces, 15
Clock ticks, 28

Codes

command, 22, 24

messages, 22
COLLECT

See MINC commands
Color of print, 30
Command acceptor, 26
Commands

codes for, 22, 24

compared to messages, 20

definition of, 6, 20

handshake, 26

interface, 6

interpretation of, 6
Compatible instruments

transferring messages, 9
Condition

for parallel poll response, 12
Configuration, 30
Connectors, 1
CONTINUE routine

related to

SET_TERMINATORS, 77
SRQ_SUBROUTINE, 80

Controller

commands, 6, 20

conflict, 21

definition of, 2

parallel polls, 9-10

serial polls, 9-10
Conventions, syntax, 30
COPY

See MINC commands
CREATE

See MINC commands

Data accepted, 26
Data bus lines, 22

Data lines
commands, 6
definition of, 1
parallel poll, 12
serial poll, 10-11
Data Valid bus line
See DAV bus line
DATE
See MINC commands
DAV bus line, 26
DCL ecommand
See Device clear command
Descriptions, routine, 30
Device clear command
ALL_INSTR_CLEAR, 31
DIO bus lines
See Data bus lines
DIRECTORY
See MINC commands
DISABLE_ALL_PAR_POLL routine
discussion of, 12
reference for, 33
related to
DISABLE_PAR_POLL, 36
PAR_POLL, 57
DISABLE_PAR_POLL routine
discussion of, 12
reference for, 35
related to
DISABLE_ALL_PAR_POLL, 33
ENABLE_PAR_POLL, 41
PAR_POLL, 57
DISABLE_REMOTE routine
discussion of, 15
reference for, 37
related to
ENABLE_REMOTE, 43
IEEE_BUS_CLEAR, 45
LOCAL_INSTR, 52
LOCAL_LOCKOUT, 55
SRQ_SUBROUTINE, 80
TEST_REMOTE, 85
Disabling parallel poll responses, 12
Disabling return-to-local buttons, 15
DUPLICATE
See MINC commands

EDIT
See MINC commands
Electrical requirements, 1
ENABLE_PAR_POLL routine
discussion of, 12
reference for, 39
related to
DISABLE_ALL_PAR_POLL, 33

DISABLE_PAR_POLL, 36
PAR_POLL, 57-58
ENABLE_REMOTE routine
discussion of, 15
reference for, 43
related to
DISABLE_REMOTE, 37
IEEE_BUS_CLEAR, 45
SEND, 66
SRQ_SUBROUTINE, 80
Enabling parallel poll responses, 12
Enabling return-to-local buttons, 15
END bus line, 7-8, 21
END bus line
SEND, 65
SEND_FRAGMENT, 68
TEST_LISTENERS, 83
END line
messages
related to, 9
End of message
receiving messages, 8
sending, 7-8
transferring, 9
End Or Identify bus line
See EOI bus line
Entering the local state, 15
Entering the remote state, 13, 15
EOI bus line
See END bus line
See IDY bus line
Errors
Conflict over control of the bus, 21
Conflict over control of the IEEE bus
DISABLE_REMOTE, 38
ENABLE_REMOTE, 44
IEEE_BUS_CLEAR, 46

Could not find service subroutine ####

requested
SRQ_SUBROUTINE, 81
Instrument Time limit exceeded, 28,
50
RECEIVE, 63
SERIAL_POLL, 74
TRANSFER, 91
Invalid argument
ALL_INSTR_CLEAR, 32
DISABLE_ALL_PAR_POLL, 34
DISABLE_REMOTE, 38
ENABLE_PAR_POLL, 41
ENABLE_REMOTE, 44
IEEE_BUS_CLEAR, 46
INSTR_TIME_LIMIT, 51
LOCAL_LOCKOUT, 56
PAR_POLL, 59

RECEIVE, 62
SEND, 67
SEND_FRAGMENT, 69
SERIAL_POLL, 74
SET_TERMINATORS, 78
SRQ_SUBROUTINE, 81
TEST_LISTENERS, 84
TEST_REMOTE, 86
TEST_SRQ, 88
TRANSFER, 91
Invalid instrument address
DISABLE_PAR_POLL, 36
ENABLE_PAR_POLL, 41
INSTR_CLEAR, 48
LOCAL_INSTR, 53
RECEIVE, 62
SEND, 67
SEND_FRAGMENT, 69
SERIAL_POLL, 74
TEST_LISTENERS, 84
TRANSFER, 91
TRIGGER_INSTR, 93
Listener is not on the bus, 27-28
ALL_INSTR_CLEAR, 32
DISABLE_ALL_PAR_POLL, 34
DISABLE_PAR_POLL, 36
ENABLE_PAR_POLL, 41
INSTR_CLEAR, 48
LOCAL_INSTR, 53
LOCAL_LOCKOUT, 56
RECEIVE, 63
SEND, 67
SEND_FRAGMENT, 69
SERIAL_POLL, 75
TEST_LISTENERS, 84
TRANSFER, 91
TRIGGER_INSTR, 93
Not enough space for the string
RECEIVE, 62
Same instrument specified as talker
and listener
RECEIVE, 62
TRANSFER, 91
SRQ service subroutine has been
canceled
SRQ_SUBROUTINE, 81
SRQ subroutine canceled because no
serial poll done
SRQ_SUBROUTINE, 81
Examples
addresses, 4
enabling parallel poll response, 13
END line, 7-8
end of message, 8-9
messages, 7

INDEX

97

INDEX

98

receiving messages, 2, 7

secondary addresses, 8

sending messages, 2, 7

terminators, 8

triggering, 9

types of service requests, 12

vocabularies, 7
EXTRASPACE

See MINC commands

First IEEE routine
related to
DISABLE_REMOTE, 37
ENABLE_REMOTE, 43
IEEE_BUS_CLEAR, 16, 45
LOCAL_INSTR, 52
REN line, 13, 15
TEST_REMOTE, 85
Form
address, 4
Fractional part of a number, 30
Fragmented messages, 21, 62
Framework, structural, 30

General bus management lines
See Bus management lines
GET command

See Group execute trigger command

Go to local command
LOCAL_INSTR, 52

Grounded bus line, 19

Group execute trigger command
TRIGGER_INSTR, 92

GTL command
See Go to local command

Handshake lines
definition of, 1
Handshaking, 26
HELP
See MINC commands
Hung bus, 50-51

Identify bus line
See IDY bus line
Idle state, 28
IDY bus line, 21
PAR_POLL, 57
IEEE bus
clearing
See Clearing interfaces
definition of, 1
IEEE bus lines
See Bus lines

IEEE standard, 1, 5
clear state, 16
commands, 6
messages, 6-7
numbering of data bus lines, 22
partial implementation
clearing, 48
local and remote, 53
parallel polls, 41
return-to-local buttons, 56
serial poll, 74
partial implementation
triggers, 93
partial implementation of
clearing, 31
status, 9
IEEE_BUS_CLEAR routine
discussion of, 16
reference for, 45
related to
ALL_INSTR_CLEAR, 31
DISABLE_REMOTE, 37
ENABLE_REMOTE, 43
INSTR_CLEAR, 47
LOCAL_INSTR, 53
LOCAL_LOCKOUT, 55
TEST_REMOTE, 85
IFC bus line, 16
IEEE_BUS_CLEAR, 45
restrictions on, 21
Immediate mode
service subroutines, 80
Implementation
See IEEE standard
INITIALIZE
See MINC commands
INSPECT
See MINC commands
INSTR_CLEAR routine
discussion of, 16
reference for, 47
related to
ALL_INSTR_CLEAR, 31
IEEE_BUS_CLEAR, 45
INSTR_TIME_LIMIT
reference for, 49
INSTR_TIME_LIMIT routine
discussion of, 28
Instrument
address switches, 4
addresses, 4
instrument-dependent part, 5
interface, 5
listener, 2
talker, 2

Instrument-dependent part, 5
clearing
See Clearing
Instrument-independent part
See Interface
Instruments
compatible, 9
Interface, 5
clearing
See Clearing
commands, 6
related to
commands, 20
listening, 20
talking, 20
status bit, 12
Interface bus, 5
Interface clear bus line
See IFC bus line
Intrument time limit, 28

Limit, time, 28
Line feed character, 62, 76, 83
Lines, bus
See Bus lines
List of arguments, 30
Listen
able to, 7
commands, 6
definition of, 2
related to
instrument-dependent part, 5-6
interface, 5-6
Listener
argument, 30
commands, 20
definition of, 2
entering the remote state, 13, 15
related to
remote state, 53
LLO commands
See Local lockout command
Local lockout command
LOCAL_LOCKOUT, 55
Local parallel poll disabling, 12, 33, 36
Local parallel poll enabling, 12, 41
Local state
clearing interfaces, 16
discussion of, 13
MINC commands, 29
LOCAL_INSTR routine
discussion of, 15
reference for, 52
related to
DISABLE_REMOTE, 37

INDEX

LOCAL_LOCKOUT, 55
LOCAL_LOCKOUT routine
discussion of, 15
reference for, 55
related to
clearing interfaces, 16
DISABLE_REMOTE, 37
IEEE_BUS_CLEAR, 45

Maximum message length, 8-9
Maximum string length, 21
Message routines
RECEIVE, 60
related to
clearing instrument-dependent part,
16
clearing interfaces, 16
SEND, 65
SEND_FRAGMENT, 68
TRANSFER, 89
undoing the effects of, 31
Messages, 6
commands
related to, 6
compared to commands, 20
definition of, 1
end of, 7-8
error messages
See Errors
handshake, 26
listening, 2
receiving, 8
related to
ATN line, 20
sending, 7
speed of transmission, 26
talking, 2
transferring, 9
MINC
controller of the IEEE bus, 2, 6, 9-
10, 20-21
MINC commands
related to
LOCAL_LOCKOUT, 56
restrictions on, 29
restrictions on
DISABLE_REMOTE, 38
ENABLE_REMOTE, 44
MLA commands
See My listen address commands
MSA commands
See My secondary address commands
MTA commands
See my talk address commands
Multiple service requests, 73 99

INDEX

100

Multiple terminators, 62

My listen address commands
DISABLE_PAR_POLL, 35
discussion of, 20
ENABLE_PAR_POLL, 39
INSTR_CLEAR, 47
LOCAL_INSTR, 52
RECEIVE, 60
related to

remote state, 53

SEND, 65
SEND_FRAGMENT, 68
TEST_LISTENERS, 83
TRANSFER, 89
TRIGGER_INSTR, 92

My secondary address commands
DISABLE_PAR_POLL, 35
discussion of, 20
ENABLE_PAR_POLL, 39
INSTR_CLEAR, 47
LOCAL_INSTR, 52
RECEIVE, 60
SEND, 65
SEND_FRAGMENT, 68
SERIAL_POLL, 71
TEST_LISTENERS, 83
TRANSFER, 89
TRIGGER_INSTR, 92

My talk address commands
discussion of, 20
RECEIVE, 60
SERIAL_POLL, 71
TRANSFER, 89

NDAC bus line, 26
NORMALSPACE
See MINC commands
Not Data ACcepted bus line
See NDAC bus line
Not Ready For Data bus line
See NRFD bus line
NRFD bus line, 26
idle state of the bus, 28
related to
MINC commands, 29
Numbers

represented on the data bus lines, 22

Numeric arguments, 30

Operation, 21, 30
Optional arguments, 30

Parallel poll configure command
DISABLE_PAR_POLL, 35
ENABLE_PAR_POLL, 39

Parallel poll disable command
DISABLE_PAR_POLL, 35
Parallel poll enable commands
ENABLE_PAR_POLL, 39
Parallel poll unconfigure command
DISABLE_ALL_PAR_POLL, 33
Parallel polls
ATN and IDY bus lines, 21
bits of response, 25
compared to serial polls, 9-10
definition of, 9-10
disabling responses, 12
discussion of, 12
enabling responses, 12
local disabling, 33, 36
local enabling, 41
status bit, 12
PAR_POLL routine
discussion of, 12
reference for, 57
related to
DISABLE_ALL_PAR_POLL, 33
DISABLE_PAR_POLL, 36
ENABLE_PAR_POLL, 41
SERIAL_POLL, 74
PPE commands
See Parallel poll enable commands
Plural arguments, 30
Power
turning on an instrument, 16
PPC command
See Parallel poll configure command
PPD command
See Parallel poll disable command
PPU command
See Parallel poll unconfigure
command
Primary addresses
definition of, 4
specifying, 30
switch setting, 4
Print, color of, 30
Programs, previous
undoing the effects of, 31

Rate of message transmission, 26
READY

cancels service subroutines, 80
Ready for data, 26
Real numbers, 30
RECEIVE routine

discussion of, 8

reference for, 60

related to

INSTR_TIME_LIMIT, 50

SEND, 66
SEND_FRAGMENT, 69
SET_TERMINATORS, 77
TRANSFER, 91
TRIGGER_INSTR, 9, 92
Receiving messages
discussion of, 8
end of message, 8
examples of, 2
in fragments, 62
Remote state
clearing interfaces, 16
discussion of, 13
REN bus line, 13, 15
DISABLE_REMOTE, 37
ENABLE_REMOTE, 43
IEEE_BUS_CLEAR, 45
related to
clearing interfaces, 16
MINC commands, 29
restrictions on, 21
TEST_REMOTE, 85
Request service
See Service requests
Required arguments, 30
RESEQ commands
SRQ_SUBROUTINE, 81
Resetting
See Clearing
RESTART
See MINC commands
RETURN statement
in a service subroutine, 11
Return-to-local buttons
discussion of, 15
related to
clearing interfaces, 16
MINC commands, 29
Routine descriptions, 30

SCHEDULE routine
related to
SET_TERMINATORS, 77
SRQ_SUBROUTINE, 80
SCHMITT routine
related to
SET_TERMINATORS, 77
SRQ_SUBROUTINE, 80
SDC command
See Selected device clear command
Secondary addresses
definition of, 4
specifying, 30
Selected device clear command
INSTR_CLEAR, 47

INDEX

SEND routine
discussion of, 7
reference for, 65
related to
ENABLE_REMOTE, 43
RECEIVE, 61-62
SEND_FRAGMENT, 69
SET_TERMINATORS, 77
TEST_LISTENERS, 84
TRANSFER, 91
TRIGGER_INSTR, 9, 92
SEND_FRAGMENT routine
discussion of, 21
reference for, 68
related to
RECEIVE, 61-62
SEND, 66
SET_TERMINATORS, 77
TEST_LISTENERS, 84
TRANSFER, 91
Sending messages
discussion of, 7
examples of, 2
Serial poll disable command
SERIAL_POLL, 71
Serial poll enable command
SERIAL_POLL, 71
Serial poll mode, 71
Serial polls
bits of response, 25
compared to parallel polls, 9-10
definition of, 9-10
discussion of, 10
related to
SRQ bus line, 11-12
related to service requests, 10-11
SERIAL_POLL routine
discussion of, 10
reference for, 71
related to
INSTR_TIME_LIMIT, 50
PAR_POLL, 58
SRQ_SUBROUTINE, 80
TEST_SRQ, 87
Service requests
definition of, 10
detecting, 11
determining the source of, 10-11, 73
multiple, 73
related to serial polls, 10
types of service requested, 12
Service subroutines
definition of, 11
READY, 80
SRQ_SUBROUTINE, 79 101

INDEX

102

Set bus line, 19
SET_TERMINATORS
related to
ASCII values, 22
SET_TERMINATORS routine
discussion of, 8
reference for, 76
related to
RECEIVE, 62
SRQ_SUBROUTINE, 80
TRANSFER, 91
Setting
instrument address switches, 4
Source handshake, 26
SPD command
See Serial poll disable command
SPE command
See serial poll enable command
Speed
of message transmission, 26
SRQ bus line, 10-12
related to
serial polls, 11-12
SRQ_SUBROUTINE, 79
testing, 11
TEST_SRQ, 87
SRQ line
related to status byte, 10-11
SRQ_SUBROUTINE routine
discussion of, 11
reference for, 79
related to
DISABLE_REMOTE, 37-38
ENABLE_REMOTE, 43
PAR_POLL, 58
SERIAL_POLL, 74
SET_TERMINATORS, 77
TEST_SRQ, 87
Standard
See IEEE standard
Start of program
See Beginning of program
Starting MINC
remote and local states, 13, 15
Statement form, 30
Status
parallel polls, 9-10
serial polls, 9-10
service requests, 10
Status bit, 12
Status byte, 10
STRS$ function, 67
Strings
maximum length, 21
messages, 1

Structural framework, 30
Subroutines, service

See Service subroutines
Switches

instrument addresses, 4
Syntax, 30
System clock, 28

Talk
able to, 8
commands, 6
definition of, 2
related to
instrument-dependent part, 6
interface, 6
Talker
argument, 30
commands, 20
definition of, 2
Terminators
definition of, 8
multiple, 62
sending, 66
TEST_BIT routine
discussion of, 11, 25
related to
PAR_POLL, 58
SERIAL_POLL, 74
TEST_LISTENERS routine
discussion of, 27-28
reference, 83
related to
SEND, 66
SEND_FRAGMENT, 69
TEST_REMOTE routine
discussion of, 15
reference for, 85
related to
DISABLE_REMOTE, 38
ENABLE_REMOTE, 43-44
SRQ_SUBROUTINE, 80
TEST_REMOTE, 85
TEST_SRQ routine
reference for, 87
related to
PAR_POLL, 58
SERIAL_POLL, 74
SRQ_SUBROUTINE, 80
TIME
See MINC commands
Time limit, 28
TRANSFER routine
discussion of, 9
reference for, 89

related to
INSTR_TIME_LIMIT, 50
RECEIVE, 62
SET_TERMINATORS, 77
Transferring messages, 9
Transitions
between local and remote, 15
Triggering, 9
TRIGGER_INSTR routine
discussion of, 9
reference for, 92
related to
RECEIVE, 62
Turning on an instrument’s power, 16
TYPE
See MINC commands

Universal commands
codes for, 22, 24
definition of, 21
device clear, 31
local lockout command, 55
parallel poll unconfigure, 33
serial poll disable command, 71
serial poll enable command, 71
UNL command
See Unlisten command
Unlisten command
DISABLE_PAR_POLL, 35
discussion of, 20
ENABLE_PAR_POLL, 39
INSTR_CLEAR, 47
LOCAL_INSTR, 52
RECEIVE, 60
related to
MINC commands, 29

INDEX

SEND, 65

SEND_FRAGMENT, 68

TEST_LISTENERS, 83

TRANSFER, 89

TRIGGER_INSTR, 92
UNSAVE

See MINC commands
UNT command

See Untalk command
Untalk command

DISABLE_PAR_POLL, 35

discussion of, 20

ENABLE_PAR_POLL, 39

related to

MINC commands, 29

SEND, 65

SEND_FRAGMENT, 68

TEST_LISTENERS, 83
User’s guides

messages, 6-7

parallel polls, 9-10

serial polls, 9-10

vocabularies, 7-8

VERIFY
See MINC commands
Vocabularies
receiving messages, 8
sending messages, 7
transferring messages, 9

Waiting indefinitely, 50-51
Whole numbers, 30

103

|EEE Bus Addresses

Instrument Address Secondary Addresses

MR-2143

MINC IEEE
Bus Programming

READER’S COMMENTS AADSOIA-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
O Higher-level language programmer
O Occasional programmer (experienced)
0 User with little programming experience
00 Student programmer
00 Other (please specify)
Name Date
Organization
Street Telephone
City State Zip Code

or
Country

ol al1 Il

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MR1-2/E37
MARLBOROUGH, MASSACHUSETTS 01752

———— Do Not Tear - Fold Here and Tape - — — — — -~ — - — — — — — — — — — — — .

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

	B5MIBP_00_0001
	B5MIBP_00_0002
	B5MIBP_00_0003
	B5MIBP_00_0004
	B5MIBP_00_0005
	B5MIBP_00_0006
	B5MIBP_00_0007
	B5MIBP_00_0008
	B5MIBP_00_0009
	B5MIBP_00_0010
	B5MIBP_01_0001
	B5MIBP_01_0002
	B5MIBP_01_0003
	B5MIBP_01_0004
	B5MIBP_01_0005
	B5MIBP_01_0006
	B5MIBP_01_0007
	B5MIBP_01_0008
	B5MIBP_01_0009
	B5MIBP_01_0010
	B5MIBP_01_0011
	B5MIBP_01_0012
	B5MIBP_01_0013
	B5MIBP_01_0014
	B5MIBP_01_0015
	B5MIBP_01_0016
	B5MIBP_01_0017
	B5MIBP_01_0018
	B5MIBP_02_0019
	B5MIBP_02_0020
	B5MIBP_02_0021
	B5MIBP_02_0022
	B5MIBP_02_0023
	B5MIBP_02_0024
	B5MIBP_02_0025
	B5MIBP_02_0026
	B5MIBP_02_0027
	B5MIBP_02_0028
	B5MIBP_02_0029
	B5MIBP_02_0030
	B5MIBP_03_0030a
	B5MIBP_03_0030b
	B5MIBP_03_0031
	B5MIBP_03_0032
	B5MIBP_03_0033
	B5MIBP_03_0034
	B5MIBP_03_0035
	B5MIBP_03_0036
	B5MIBP_03_0037
	B5MIBP_03_0038
	B5MIBP_03_0039
	B5MIBP_03_0040
	B5MIBP_03_0041
	B5MIBP_03_0042
	B5MIBP_03_0043
	B5MIBP_03_0044
	B5MIBP_03_0045
	B5MIBP_03_0046
	B5MIBP_03_0047
	B5MIBP_03_0048
	B5MIBP_03_0049
	B5MIBP_03_0050
	B5MIBP_03_0051
	B5MIBP_03_0052
	B5MIBP_03_0053
	B5MIBP_03_0054
	B5MIBP_03_0055
	B5MIBP_03_0056
	B5MIBP_03_0057
	B5MIBP_03_0058
	B5MIBP_03_0059
	B5MIBP_03_0060
	B5MIBP_03_0061
	B5MIBP_03_0062
	B5MIBP_03_0063
	B5MIBP_03_0064
	B5MIBP_03_0065
	B5MIBP_03_0066
	B5MIBP_03_0067
	B5MIBP_03_0068
	B5MIBP_03_0069
	B5MIBP_03_0070
	B5MIBP_03_0071
	B5MIBP_03_0072
	B5MIBP_03_0073
	B5MIBP_03_0074
	B5MIBP_03_0075
	B5MIBP_03_0076
	B5MIBP_03_0077
	B5MIBP_03_0078
	B5MIBP_03_0079
	B5MIBP_03_0080
	B5MIBP_03_0081
	B5MIBP_03_0082
	B5MIBP_03_0083
	B5MIBP_03_0084
	B5MIBP_03_0085
	B5MIBP_03_0086
	B5MIBP_03_0087
	B5MIBP_03_0088
	B5MIBP_03_0089
	B5MIBP_03_0090
	B5MIBP_03_0091
	B5MIBP_03_0092
	B5MIBP_03_0093
	B5MIBP_03_0094
	B5MIBP_99_0095
	B5MIBP_99_0096
	B5MIBP_99_0097
	B5MIBP_99_0098
	B5MIBP_99_0099
	B5MIBP_99_0100
	B5MIBP_99_0101
	B5MIBP_99_0102
	B5MIBP_99_0103
	B5MIBP_99_0104
	B5MIBP_99_0105
	B5MIBP_99_0106
	B5MIBP_99_0107
	B5MIBP_99_0108

