MINC-11

Book 4:
MINC Graphic Programming

November 1978

This manual teaches concepts of graphic programming for
MINC systems, and it explains the use of the MINC graphic
routines. All readers of this manual should first read Book 1:
Introduction to MINC. All readers should be familiar with MINC
BASIC, which is documented in Book 2: MINC Programming
Fundamentals and Book 3: MINC Programming Reference.

Order Number AA-D574A-TC
MINC-11

VERSION 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, November 1978

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright @ 1978 by Digital Equipment Corporation

The postage-prepaid READER’S COMMENTS form on the last page of this document requests the user’s
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10

MINC-11 DECSYSTEM-2020

12/79-14

PREFACE
PART 1 INTRODUCTION TO COMPUTER GRAPHICS

CHAPTER 1 COMPUTER GRAPHICS WITH MINC 1
ROUTINE STATEMENTS IN IMMEDIATE MODE 3

CHAPTER 2 PROPERTIES OF THE MINC TERMINAL 5
TEXT POSITIONS AND GRAPHIC COORDINATES 6
Text Positions 6
Graphic Coordinates 6
SUBDIVIDING THE SCREEN 7
The Scrolling Area 8
Scrolling Modes 9
Graph Regions 9
DISPLAYING TEXT 12
Character Mode 12
Display Mode 13
GRAPH NUMBERS 14
THE GRAPHIC MEMORY 14
Erasing a Graph 14
Making a Graph Invisible 15
THE STANDARD INITIAL STATE 15

CHAPTER 3 INTRODUCTION TO THE GRAPH ROUTINE
INITIAL PROCEDURES 19
Creating a Data Structure 19
First Display 21
Omitted Arguments 22
The Option String 22
Clearing the Screen 23
Displaying Two Graphs 23

il

19

CONTENTS

CONTENTS

OPTIONAL FEATURES 23
The Graph Number Argument 23
The BRANDS Option 24
The SHADE Option and the Shade Line Argument 25
Erasing a Graph 26
Making a Graph Invisible 27
The Number Argument 28
Autoscaling 29
The Options GRID, TICKS, UNITS, HLINES, and VLINES 30
The EXACT Option 33
Strip-Chart Mode 35
The Start X Argument 39
The Increment Argument 40
The Start Index Argument 41
INDEX ARRAYS 42
Using Index Arrays 44
Indexing a Single Point 44
Multiple Indexing 46

CHAPTER 4 PICTORIAL EXAMPLES 51
Simple Point-Plot of Entire Array 52
Simple Point-Plot of Entire Array, with X Coordinates 53
Simple Point-Plot of Array Subset 54
Bargraph of Array Subset 55
Shaded Point-Plot of Entire Array 56
Shaded Point-Plot of Array Subset, with Brands 57
Point-Plot with Exact Axis Units 58
Point-Plot of Every Second Value 59
Interpolated Point-Plot of Every Twentieth Value 60
Interpolated Point-Plot with Shading 61
Interpolated Point-Plot, Shaded about Y =0 62
Bargraph of Array Subset, Shaded aboutY=0 63
Bargraph of Array Subset, Shaded aboutY=1 64
Simple Point-Plot of Entire Array, with Vertical Grid Lines 65
Simple Point-Plot of Entire Array, without Horizontal Grid
Lines 66
Simple Point-Plot of Entire Array, without Axis Units 67
Simple Point-Plot of Entire Array, Labeled with LABEL Routine
Replacement of X Units with Text Label 69
Simple Point-Plot of Entire Array, with Marked Value 70

CHAPTER 5 ARRAYS AND DATA STRUCTURES 71
ARRAYS 71
One-Dimensional Arrays 72
Two-Dimensional Arrays 73
VIRTUAL ARRAY FILES 77
Displaying Virtual Array Files 78

iv

PART 2 ROUTINES

INTRODUCTION TO PART 2 83
BARGRAPH 89

BOX 90

CHAR-MODE 93
DISPLAY_CLEAR 96
DISPLAY_-MODE 98
DUAL_MOVE 101
ERASE_GRAPH 106
ERASE_TEXT 112
FIND_POINT 116
GET_-CURSOR and MOVE_CURSOR
GRAPH and BARGRAPH 122
GRAPH_INIT 134

GRID 136
HLINE and VLINE 138
HTEXT and VTEXT 141
LABEL 144

LIGHTS 147
MAP_TO_GRAPH 149
MAP_TO_TEXT 152
MOVE_-CURSOR 155
POINT 156

PUT_-SYMBOL 160
REGION 163

ROLL_AREA 165

SET_BAR 167

SHADE 169

TEXTINIT 171

TEXT_LINE 172

VIEW 175
VLINE 176
VTEXT 177

WIDE_LINE 178
WINDOW 180

INDEX 185

119

CONTENTS

Figure 1.

(N

CONTENTS

MINC Terminal Sereen, Showing Maximum Scrolling FIGURES
Area 8

MINC Terminal Screen, Showing the Three Graph
Regions 10

MINC Character Modes 12

Primary Setup Mode Display 16

Secondary Setup Mode Display 17

A Simple Sine Graph 21

A Graph with Brands (Lower Region) 24

Two Shaded Graphs, with and without Shade Lines 25
Shaded Graph without the LINES Option (Lower
Region) 26

Result of VIEW ("INVISIBLE”, 2) 27

GRAPH Display of 20 Points 29

Result of GRID and VLINES Options 31

Result of GRID plus -UNITS Options 32

Result of GRAPH Statement without EXACT Option 34
Result of GRAPH Statement with EXACT Option 35
Static Display of a 1401-Point Array 36

First 511 Points of Array M 37

First 500 Points, Beginning of Strip-Chart Operation 37
Last 512 Points, End of Strip-Chart Operation 38
Logarithmic X Axis 40

Sine (Upper) and Cosine (Lower) Waves 41

Index Array before Execution 42

Index Array after Execution 43

Beginning of Indexing Operation 45

Simple Point-Plot of Entire Array 52

Simple Point-Plot of Entire Array, with X Coordinates 53
Simple Point-Plot of Array Subset (50 Points) 54
Bargraph of Array Subset (10 Points) 55

Shaded Point-Plot of Entire Array 56

Shaded Point-Plot with Brands (20 Points) 57
Point-Plot with Exact Axis Units 58

Point-Plot of Every Second Value 59

Interpolated Point-Plot of Every Twentieth Value 60
Interpolated Point-Plot with Shading 61

Interpolated Point-Plot, Shaded about Y =0 62
Bargraph of Array Subset, Shaded about Y =0 63
Bargraph of Array Subset, Shaded about Y=1 64

vii

CONTENTS

Figure 38.
39.

40.
41.
42,
43.
44.
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

Simple Point-Plot of Entire Array, with Vertical Grid
Lines 65

Simple Point-Plot of Entire Array, without Horizontal Grid
Lines 66

Simple Point-Plot of Entire Array, without Axis Units 67
Labeled Point-Plot of Entire Array 68

Replacement of X Units with Text Label 69

Simple Point-Plot of Entire Array with Marked Point 70
A Representation of the Array T1 (5,4) 73

Allocation of the Array A1(1,2) 74

Points Stored in a Two-Dimensional Array 75

Display of a Two-Dimensional Array 76

Display of a Virtual Array File 80

Result of Two BOX Statements 90

Sample Character Modes 94

A Long-Format Graph 98

Original Graph 106

Result of ERASE_GRAPH (“-ALL, POINTS”) 107
Result of ERASE_GRAPH (“-ALL, GRID”) 107

Result of ERASE_GRAPH (“-ALL, HLINE”,,1.00) 108
SHADE Option with a 100-Point Graph 126

SHADE and LINES Options with a 100-Point Graph 127
Sine Wave with GRID Display 136

Typical HTEXT and VTEXT Displays 141

Result of the LABEL Routine 144

Programmable LED Options 148

PUT_SYMBOL Characters 160

TEXT_LINE Display with Stair-Step Effect 174
Regular and Double-Width Characters 178

viii

This manual shows you how to use all the MINC graphic rou-
tines, beginning with those used most frequently.

Part 1 of this manual is written so that you can run sample pro-
grams on the MINC system while you read. If you do not have a
MINC system immediately available, you may find it useful to
read the definition of each routine (Part 2) as a preparation.
Each routine has its own reference section in Part 2, and the sec-
tions are ordered alphabetically by routine name.

If you begin with Part 1, put your system diskette in the MINC
and start the machine, because you will want to try examples as
you read.

This manual, and the programming examples within it, are
written with the assumption that you know something about the
BASIC programming language. If you are not familiar with
BASIC, read Book 2: MINC Programming Fundamentals, be-
fore going any further.

Even if you know BASIC, be sure to read Chapter 2, “Properties
of the MINC Terminal.”

ix

PREFACE

PART 1

INTRODUCTION TO
COMPUTER
GRAPHICS

CHAPTER 1

COMPUTER GRAPHICS WITH

Computer graphics is a process that uses computers to create
pictures. Just as the computer can be used for a wide variety of
computational and control tasks, computer graphics is used for
a variety of pictorial tasks.

In alaboratory with a MINC computer system, the typical use of
graphics is to display data that are read from a laboratory in-
strument or data that are computed by a program.

Graphic programming is generally done by writing computer
programs in a special language. The language is usually one of
the standard programming languages that has been extended
with additional statements that are specialized to graphics. In
MINC programming, these additional statements are called
routines, because they perform routine tasks associated with
graphic displays. MINC routines are simple to use and have
names that help define their functions. When you use a routine
in a program, the statement containing the routine name is
known as a routine statement. A routine statement looks like this
in a MINC program:

<line number> <routine name>(<arguments>)

The words between the angle brackets (<>) represent the three
components that are common to routine statements.

1. The line number has the same significance in graphic pro-
gramming as in other MINC programming: it tells MINC
the order in which statements should be executed.

MINC

GRAPHIC PROGRAMMING

2. The routine name is a word or series of words that identifies

the routine you wish to use. MINC graphic programming is
done with a set of 33 special routines that you can use in a
MINC program. Each of these routines has a name that de-
scribes its function. For instance, BARGRAPH is the name
of the routine that makes bargraphs from your data. The
routine that erases text from the screen is named
ERASE_TEXT. Notice that when routine names consist of
more than one word, you must connect the words with an un-
derscore character (_). You make the underscore character
by holding down the SHIFT key on your terminal and press-
ing the hyphen key.

3. The arguments for the routine statement are a set of values
that tell the routine exactly what to do. Some routines al-
ways perform the same function, in which case they have no
arguments at all. Most routines, though, can perform many
variations of the same general function, and they need a list
of arguments to define the specific operation you want.

Nearly all the routines that use arguments also have default
conditions for arguments. A default condition, or simply, a
default, occurs when you leave an argument out of a routine
statement. When you leave out the argument, the routine
makes an assumption about the effect you want. The default
conditions for the routines are documented in Part 2 of this
manual. In every case, the defaults select the most powerful
application of the routine; this allows you to avoid naming a
long list of arguments in a statement, while still taking ad-
vantage of the routine’s full capabilities.

When you include a list of arguments in a routine statement,
the individual arguments are separated by commas, and the
entire list is enclosed by parentheses, as shown in the form
above.

This is a sample graphic routine statement as it might appear in
a MINC program:

10 GRAPH("SHADE”,10,,Y(0),,2)

The line number is 10. The name of the routine is GRAPH. The
arguments are “SHADE”, a string expression; the number 10;
the expression Y(0); and the number 2. The exact meanings of
these arguments will be discussed later in Part 1. Notice that in
two places in the GRAPH statement, there are pairs of commas
with nothing between them. These commas indicate that two

arguments are missing, and the GRAPH statement will use the
default values for them. Actually, the GRAPH routine can ac-
cept up to eight arguments, but because the seventh and eighth
arguments come after the 2, they do not need to be represented
by missing commas. Argument lists in MINC are like decimal
digits, in these two ways:

1. Theinterpretation of an argument depends on its position in
the list. For instance, the argument “SHADE” must always
be in the first position in a GRAPH statement. This is simi-
lar to a decimal number such as 1234.567, in which the posi-
tion of the digit 3 identifies it as the “tens” digit.

2. Missing arguments, like missing decimal digits, need be
represented only if they come betweern other arguments.
Thus, the pairs of commas in the sample GRAPH statement
assure that the subsequent arguments are interpreted cor-
rectly by MINC. The pairs of commas are similar to zeros in
a decimal number. In the number 12300.456, the zeros are
significant; in the number 123.45600, they are not and may
be omitted.

The line number shown in the previous example is required only
when you use a routine in a program. You can also use routines
inimmediate mode simply by typing the routine name and argu-
ments without the line number. For instance, this dialog, in
which your responses are in red, will first erase graphic mate-
rial from the screen and then will erase text from the screen:

READY
ERASE_GRAPH

READY
ERASE_TEXT

READY

COMPUTER GRAPHICS

ROUTINE
STATEMENTS IN
IMMEDIATE MODE

CHAPTER 2

PROPERTIES OF THE MINC

The MINC terminal was designed as an integral part of the
MINC system, and it has many features that are not found in
most computer terminals. The special properties of interest to
graphic programmers are listed here.

1. Separate systems of text coordinates and graphic coordi-
nates, so that you can address the terminal in the coordinate
system most appropriate to the type of display you desire.

2. A programmable scrolling area, which lets you define the
portion of the screen to be used for ordinary text (such as sys-
tem messages and program writing).

3. Programmable graph regions, which let you define the por-
tions of the screen to be used for graphic displays.

4. Programmable character modes, which let you decide
whether characters in any text display will be displayed as
normal, flashing, underlined, boldface, or reverse video
characters. (Combinations of these modes are also allowed.)

5. Programmable display modes, which let you define the
width of the screen, the background color (black or white),
and the scrolling mode (smooth or jump).

6. Selectable graph numbers, which let you display two graphs
simultaneously.

TERMINAL

GRAPHIC PROGRAMMING

TEXT POSITIONS
AND GRAPHIC
COORDINATES

Text Positions

Graphic Coordinates

7. An internal graphic memory, which holds graphic informa-
tion within the terminal itself and allows graphs to be erased
or changed without affecting the workspace used by MINC
BASIC.

8. A standardinitial state, which guarantees that the terminal
has a known set of characteristics when you turn on its
power (as when starting the MINC system).

The MINC terminal can, at any given time, display up to 24 rows
of 132 characters. It can simultaneously display up to two
graphs, each of which can contain 512 displayed points.

This section describes the two different systems that you use to
actually display text and graphs on the screen.

When you display text on the screen with the graphic routines,
you refer to a text position. The MINC terminal can display up to
924 lines of text. Each line can contain either 80 or 132 charac-
ters, depending on your choice when you use the
DISPLAY_MODE routine.

The word row refers to the horizontal strip on the MINC screen
in which a line of text can be displayed. Similarly, the word col-
wmn refers to the vertical strip in which a character is displayed.

When you use a text-display routine (such as HTEXT) that takes
row-column arguments, the row argument should be an integer
in the range 1-24. The column argument should be an integer in
the range 1-80 or 1-132, depending on the screen width you have
selected with the DISPLAY_MODE routine.

When you display points or graphs with the graphie routines,
you refer to screen positions with graphic coordinates. Graphic
coordinates, or X-Y coordinates, are the actual numbers that re-
sult from a computation or from reading data from an instru-
ment. These numbers may be integers, or they may be real num-
bers.

Unlike text positions, graphic coordinates have no fixed rela-
tionship to physical screen positions. For instance, the point at
coordinates X=.5, Y=.25 could appear anywhere on the screen.
The only fixed relationship that applies to graphic coordinates is
their relative position. That is, the point at coordinates (.5,.25) is
placed on the screen so that it is clearly at a “lower” coordinate
position than, say, (1.5,1.25).

For a single graph, the relationship that defines placement of
coordinates at physical sereen positions is called the window of
the graph. This term is used because the graph is like a window
through which you view a portion of the X-Y coordinate space.

The window establishes the ranges of X and Y coordinates that
can appear in a particular graph.

You can define the window of a graph with the WINDOW rou-
tine (see Part 2 for a definition of WINDOW). With the routines
GRAPH and BARGRAPH, you can use a feature called auto-
scaling, which sets the window automatically, based on the
minimum and maximum values of the data set you wish to
display.

To summarize:

1. When you want to display a text string or expression, the
text-display routines are used. They take row and column
arguments in the range 1-24 and 1-132, respectively.

2. When you want to display graphical information (such as a
point), the graphic display routines are used. These routines
take X and Y arguments, the range of which depends on the
current window. The GRAPH and BARGRAPH routines,
which can use the autoscaling feature, also accept argu-
ments that mark the beginning of entire arraysof X and Y
coordinates. These arguments, called the start X and start Y
arguments, are discussed in Chapter 3, “Introduction to the
GRAPH Routine.”

You will be using the terminal both for the display of graphical
information and for the display of text that ordinarily appears
on a programming terminal, such as program listings, requests
for input from a MINC program, and messages printed by a pro-
gram with the PRINT statement. Because you will commonly
display these two kinds of information at the same time, the
MINC system must use different areas of the screen for the dif-
ferent types of display. Doing so prevents such text as input re-
quests (created by the INPUT statement of BASIC) and error
messages from getting lost in a complicated graph. In this sec-
tion, text of this type is called ordinary text.

The MINC graphic system gives you simple mechanisms with
which to subdivide your terminal screen. The section of the

THE MINC TERMINAL

SUBDIVIDING THE
SCREEN

GRAPHIC PROGRAMMING

The Scrolling Area

screen you reserve for ordinary text is the scrolling area. The
section you reserve for a graph is the graph region.

The terminal has a maximum scrolling area of 24 rows, with 80
or 132 columns in a row (see Figure 1).

~ 2

ROWS

B Xl Z—Z—Z-—-—=—=t

I
LINES MOVE IN H
THISDIRECTION | |
DURING SCROLLING | |

|l

nlt——————— = tl-—-—=—=——— -]
1 41 80

\ COLUMNS —» j

MR-1621

Figure 1. MINC Terminal Screen, Showing Maximum
Scrolling Area

If the computer sends the terminal 25 lines of text for display,
line 1 is displayed at the top of the scrolling area (row 1), and the
screen fills up with text until line 24 appears on row 24. When
line 25 is received, it appears on row 24, at the bottom of the
screen. Lines 1-24 move up one position, causing line 1 to disap-
pear from the top of the sereen. This movement is called scroll-
wng because it resembles a scroll of printed lines being cranked
past your field of vision.

With the ROLL_AREA routine, you can change the size and
placement of the scrolling area to make it occupy any part of the
screen. For instance, you could use the top half of the screen for a
graph region and the bottom half for the scrolling area.

To demonstrate this to yourself, type the following statements on
your MINC terminal.

ROLL_AREA(21,24)
DIRECTORY

With the ROLL_AREA statement, you have restricted the
scrolling area to the bottom four rows of the screen. This
ROLL_AREA statement also protects any text outside rows 21-
24 from further scrolling. Notice that the cursor is now inside
the bottom four rows, even if it was at the top of the screen before
you typed the ROLL_AREA statement. As always, the cursor
is showing you where the next line of ordinary text will appear.

The scrolling area is a type of receptacle for error messages, pro-
gramming dialogs, and similar entries that you type by hand or
that MINC sends to the terminal. These are all examples of ordi-
nary text.

Many of the routines defined in Part 2 accept row and column
numbers as arguments. These routines can display strings of
characters (or special symbols) at any row-column position on
the screen, whether or not the row is inside the scrolling area.

You can control the type of scrolling, or scrolling mode, with the
DISPLAY_MODE routine. In jump scrolling mode, a new line
appears all at once at the bottom of the serolling area, so that the
text already on the screen jumps upward by one row. Smooth
scrolling mode has a more continuous appearance, because the
new line scrolls onto the screen more gradually.

If your MINC system is now running, you can also demonstrate
the graph regions to yourself. Type the red parts of this dialog:

READY
REGION('UPPER’)

READY
REGION('LOWER)

READY
REGION('FULL")

Each time you type a new REGION statement, horizontal lines
appear, marking the top and bottom of the named graph region.

Figure 2 shows all the possible divisions of the MINC screen into
graph regions.

THE MINC TERMINAL

Scrolling Modes

Graph Regions

GRAPHIC PROGRAMMING

10

1L
“UPPER"
REGION
10F - _MRULLY - —
L REGION
13
“LOWER"
REGION
oL v Y
, - “DEFAULT” SCROLLING AREA
4

_ p,

MR-1622

Figure 2. MINC Terminal Screen, Showing the Three Graph
Regions

The main characteristics of graph regions are as follows.

1.

There are only three kinds of graph region: the “upper re-
gion,” which corresponds to rows 1-10 on the screen; the
“lower region,” which corresponds to rows 11-20; and the
“full region,” which corresponds to rows 1-20. You cannot
make a graph region of any other size.

In each region, the bottom text row is reserved by the
graphicroutines for the display of X axis units. The reserved
row is row 20 for the full and lower regions, and row 10 for
the upper region.

You can define two graph regions at the same time. MINC
can then display two totally independent graphs on the
screen simultaneously, either in separate regions or in the
same region.

You can never display a graph that covers all the rows on the
scereen. Even the full region extends only through row 20, so
that the bottom four rows are reserved for a scrolling area.

Some of the graphic routines begin their display operations
by erasing all the text in their graph region. For this reason,

the REGION routine resets the scrolling area automatically
to keep it from overlapping the graph region. After you have
defined a graph region with the REGION routine, you
should use ROLL_AREA with care. If you were to define a
scrolling area that overlapped an existing graph region,
subsequent graphic routines could erase important mes-
sages from the screen.

The REGION routine associates a graph region with a particu-
lar graph number. (Graph numbers are discussed in a later sec-
tion.) With the aid of REGION, you can display two graphs in
the same region or you can use different regions for different
graphs.

When you choose a graph region with a REGION statement, all
graphic and text material is erased from the region, in prepara-
tion for the display of new material.

REGION also redefines the scrolling area so that it no longer oc-
cupies a part of the screen being used for a graph region.

For example, the statement
REGION("UPPER”,1)

causes subsequent routines to display graph 1 in the upper re-
gion. The statement also resets the scrolling area to rows 11-24.
In this respect, the REGION statement performs the same oper-
ation as the statement

ROLL_AREA(11,24)

Finally, this sample REGION statement erases all previous
graphic and text material from rows 1 to 10 — the area corre-
sponding to the upper region.

The REGION routine, and the expression “graph 1,” are dis-
cussed in more detail in later sections.

NOTE

REGION acts only on subsequently displayed graphs.
That is, if you display graph 1 in the full region, you
cannot change its placement with a later REGION
statement.

THE MINC TERMINAL

11

GRAPHIC PROGRAMMING

DISPLAYING TEXT

Character Mode

12

When you are finished with this demonstration, type

DISPLAY_CLEAR

to clear all text from the screen and to reset the serolling area to
the full 24 lines.

There are two general properties, or modes, that affect the ap-
pearance of text strings on the MINC terminal screen. Charac-
ter mode affects the appearance of all characters displayed on
the screen. Display mode affects the general appearance and
properties of the screen itself. These modes are controlled by the
graphic routines CHAR_MODE and DISPLAY_MODE, re-

spectively.

Characters can be displayed in the “normal” manner, or as bold-
face, reverse video, underlined, or flashing characters. Com-
binations of these properties are also allowed. Figure 3 shows
the variety of character modes available on the MINC terminal.

4 N

NORMAL CHARACTERS UNDERLINED BOLDFACE
AEERIE INLES ONED FLAaH
BOLDFACE FLASHING Z0LIFACE
UNDERLINFE D oSiaSRTNG
TLASHING TSTEEIBLASHING BOLDEE

REVERSE BOLDFACH] REVER NOERLINED DOLDE AS

Figure 3. MINC Character Modes

The character mode is set by the CHAR_MODE routine. Any
time you use CHAR_MODE, the character mode changes im-
mediately — even in the middle of a row. Notice that in Figure 3
characters of different modes appear on the same row, demon-
strating this property.

If you want to demonstrate the CHAR_MODE routine to your-
self, type this statement on the MINC terminal:

CHAR_MODE("REVERSE")

Notice that the READY message, which appears after you type
the statement, is in reverse video characters. All text that you
type will now be displayed in this mode until you change it. To
change back to normal character mode, type

CHAR_MODE("-REVERSE"")

CHAR_MODE changes the character mode of all characters
subsequently displayed on the screen. The new mode remains
in effect until you change it with another CHAR_MODE
statement.

Many other routines allow a “local” character mode setting. A
local setting affects only the text string (or special symbol) dis-
played by the routine; subsequent text is not affected. Figure 3
was created by one of these routines, HTEXT. Other routines
that allow a local character mode are BOX, LABEL,
PUT_SYMBOL, TEXT_LINE, and VTEXT. If you want to ex-
amine the definitions of these routines, see the appropriate sec-
tions of Part 2.

The MINC terminal has the following characteristics, called
display modes, that apply to the entire screen. The
DISPLAY_MODE routine controls all these properties.

1. Background color for text displays — the BRIGHT option
displays all text as black characters on a white background.
(The normal screen, with white letters on a black back-
ground, is selected by the option “-BRIGHT”.)

2. Scrolling mode — the JUMP option changes to “jump”
scrolling instead of the normal, or smooth, scrolling.
(Smooth scrolling is selected by the option “-JUMP”.)

3. Screen width — the LONG option changes the screen width
to 132 columns. (The normal screen width, 80 columns, is se-
lected by the option “-LONG”.)

When you use DISPLAY_MODE with the LONG option, subse-
quent graphs appear in a long graph format. The LONG option
does not increase the number of points that can appear in a
graph, but it does increase the number of numerical units and
tick marks used to mark the graph’s axes.

THE MINC TERMINAL

Display Mode

13

GRAPHIC PROGRAMMING

GRAPH NUMBERS

THE GRAPHIC
MEMORY

Erasing a Graph

14

The MINC system allows you to display two completely distinet
graphs at the same time. When you do so, you and your program
distinguish the two graphs by number. There are only two
graph numbers in MINC graphic programming: 1 and 2.

A graph number is really just a label that refers to a particular
picture. Graph 1, for instance, could refer to a graph displayed
in the full region, or it could apply to a graph that occupies only
the upper or lower region.

With most of the graphic routines you can include a graph num-
ber in the statement optionally; if you do not include the graph
number in such routines, they refer to graph 1 by default.

Many of the routines used to change the appearance of existing
graphs also allow you to specify a graph number of 0. A graph
number of 0 makes the routine statement apply to both graph
numbers.

The MINC terminal displays graphs by storing information in
an internal graphic memory. This memory resides in the MINC
terminal, not within the MINC workspace that is used to store
programs. Having a separate graphic memory allows you to dis-
play and erase graphs without changing the contents of the
workspace.

You will find this feature extremely useful. It allows you to
calculate or otherwise acquire a set of data, and to then display
the same data in various graphic formats. In the section of this
book titled “Introduction to the GRAPH Routine,” this tech-
nique is used extensively. After creating a set of computed data,
you will, in that section, display the data many different ways by
typing graphic routine statements in immediate mode.

You can control the appearance of graphs either by making
them invisible or by erasing them.

When you erase a graph, the graph not only disappears from the
screen but also is erased from the graphic memory. Erasure is
controlled by the ERASE_GRAPH routine, which allows you to
erase an entire graph from the screen or to erase only selected
parts of the graph.

ERASE_GRAPH is fully defined in Part 2 of this manual.

ERASE_GRAPH does not erase the contents of variables or ar-
rays in MINC’s workspace. You therefore can repeat the origi-
nal graph-drawing statement, or you can display the graph in a
different form, without having to rerun the program that com-
puted the original data.

When you make a graph invisible, the graphed points disappear
from the screen, but the data remain in the graphic memory.
Therefore, you can redisplay the same graph without having to
repeat the graph-drawing statement. Visibility and invisibility
are controlled by the VIEW routine, defined in Part 2.

NOTE

The effect of VIEW on the picture is more limited than
the effect of ERASE_GRAPH. The “ALL” option of
ERASE_GRAPH erases everything in the specified
graph region. The VIEW routine only blanks out the
points used to make the graph; VIEW does not remove
the axes, axis units, or grid features.

The MINC terminal has a feature called setup mode that allows
you to define, save, and recall the terminal’s characteristics. You
can find a general discussion of setup mode in Book 7. This sec-
tion defines a subset of the setup mode parameters called the
standard initial state. In order to use the terminal for graphic
programming, you must set the following parameters to stan-
dard values:

1. Background color (digit 8 of group 1on “SETUP B” display)
should be BLACK (the 0 setting).

2. Screen width (the 9 key on “SETUP A” display) should be 80
columns.

3. Scrolling mode (digit 1 of group 1, “SETUP B” display)
should be SMOOTH (the 1 setting).

4. Escape sequence type (digit 3 of group 2, “SETUP B” dis-
play) should be set to ANSI (the 1 setting).

The standard initial state is in effect when your terminal arrives
from the factory. However, the terminal gives you the ability to
change these parameters to new settings. Therefore, because an-
other user may have changed the saved parameters, you should

THE MINC TERMINAL

Making a Graph
Invisible

THE STANDARD
INITIAL STATE

15

GRAPHIC PROGRAMMING

16

check the parameters periodically to make sure they are in the
standard initial state.

The following procedures will ensure that these parameters are
set properly. When you follow these procedures, the terminal
power must be ON, although you do not need to insert or run the
MINC system diskette.

1. Withthe terminal on, press the SETUP key at the upper left
corner of the keyboard. The screen changes to show the dis-
play in Figure 4.

2. While holding down the SHIFT key, press the R key. Your
screen should now be identical to Figure 4. (The combina-
tion SHIFT/R recalled the parameters stored in the ter-
minal.)

/SET-UP A \

- T - N T - " T T
QHG?B t1234567 82 ChPRELIVERIN 234667830 ERTLTPERT 23456789 OJVRLLTYL: kv 2 34567590) /

Figure 4. Primary Setup Mode Display

Compare carefully the row of numbers at the bottom of your
screen with the corresponding numbers in Figure 4. This
row should have 8 groups of 10 digits, marking 80 columns
on the screen; if so, proceed with the next step. If instead
your terminal shows 132 columns, press the 9 key. Now your
screen should have 80 columns.

3. Pressthe 5 key. Your screen should change to the secondary
setup mode display shown in Figure 5.

" SET-p B " N

|
kl 11 (R0 101001} T SPEED 9600 R SPEED 9scy

Figure 5. Secondary Setup Mode Display

Figure 5 shows some of the displayed digits in red ink. Com-
pare these features carefully with the corresponding parts
of your display. If the elements of your display are different,
you must reset them.

To reset a setup parameter, press either the left-arrow key
(<) or the right-arrow key (—). When you press these keys,
the cursor will move back and forth above the rows of digits.
When the cursor is directly over the digit you must change,
press the 6 key. If the digit was previously 0, it will now be 1,
and vice versa. Compare your screen again to Figure 5.

4. When the digits on your screen match those shown in Figure
5, your terminal is in the standard initial state.

Now hold the SHIFT key down and press the S key. The
message WAIT will appear briefly on your terminal and
then disappear. The SHIFT/S operation has saved the setup
parameters in your terminal’s internal memory. The pa-
rameters will remain there unless you change them again
and save a new set with another SHIFT/S operation.

Once setup parameters have been saved in the terminal’s mem-
ory, they remain there even when the terminal’s power is turned
off. When the power is turned on again, the saved parameters
are recalled from the memory and put into effect.

THE MINC TERMINAL

17

GRAPHIC PROGRAMMING

18

The MINC system also has a routine, TEXT_INIT, which re-
calls the parameters saved in the terminal’s memory.
TEXT_INIT is described in Part 2 of this manual. This routine
can be very useful in graphic programming, because during a
programming session, the setup parameters can be changed ei-
ther by certain routines or by your reentering setup mode and
changing them directly. You can use TEXT_INIT at any time to
return the setup parameters to a known state.

CHAPTER 3

INTRODUCTION TO THE GRAPH

This section contains examples that are highly interactive with
the MINC system itself, illustrating a wide variety of related
graphic operations. By concentrating on the use of the GRAPH
routine, this section introduces most of the features of graphic
programming with MINC. Try to finish all the suggested exer-
cises in this section during a single session at the MINC ter-
minal. Such a session takes from one to three hours.

To get the most benefit from this section, you should be familiar
with the BASIC programming language. If you do not have pre-
vious experience with BASIC, you should read Book 2: MINC
Programming Fundamentals before going further.

To begin this session, sit down at the MINC terminal and start
the system. If you are unsure about how to do so, read Book 1:
Introduction to MINC. When you have the system going, the
word

READY

should be on the screen, meaning that the system is ready for
your first command.

Your first task is to create some sample data that can be dis-
played on the screen later. As you probably know, analog signals
can be represented by the sine and cosine functions. Since MINC
can easily calculate and store large arrays of sine and cosine
values, we will use the sine function to create the first sample

ROUTINE

INITIAL
PROCEDURES

Creating a Data
Structure

19

GRAPHIC PROGRAMMING

20

data. To create the data structure for the examples, type the red
portion of the following dialog.

READY
NEW MDEMO

READY

10 DIM X1(199),F1(10),Y1(199)
20 FOR I=0 TO 199

30 Y1(1)=SIN(I*PI/50)

40 X1(1)=LOG10(I+1)

50 NEXT |

60 END

SAVE

READY
RUNNH

You have just created and run a very short BASIC program
called MDEMO. Pause a moment and consider what this pro-
gram is doing. The NEW command creates a new program
called MDEMO. Line 10 creates three arrays. Lines 20-50 load
200 sine values into the array Y1 and 200 logarithms into array
X1. Because no values were assigned to the array F'1, its 11 ele-
ments all contain zeros.

PI is a predefined constant in MINC programming; the expres-
ston I*PI is divided by 50 so that the expression I*PI/50 will go
through the range 0-27 nearly twice during the FOR/NEXT
loop. The array Y1 will therefore contain Y values correspond-
ing to two full cycles of a sine wave.

The values in the arrays X1 and Y1 are now available in your
workspace. You can display these values either by adding
graphic routine statements to MDEMO and running it again, or
by writing routine statements in immediate mode, with refer-
enceto Y1. Because we are interested in the effects of single rou-
tines during most of this session, we will rely primarily on sim-
ple routine statements in immediate mode. Using immediate
mode will also eliminate our waiting for new values to be com-
puted each time we want a new display.

The arrays will retain these same values unless you change their
elements with assignment statements, erase the program work-
space with the SCRATCH command, or perform some other op-
eration (such as turning off the power to MINC) that destroys
the data.

THE GRAPH ROUTINE

We will begin the display examples with the GRAPH routine,
which, as you will soon see, gives you a multitude of choices for
display formats.

Type this line: First Display
GRAPH(,,.Y1(0))

If you typed the GRAPH statement correctly, your screen now
looks like the one shown in Figure 6.

////”1.2500

E+00

5.2500
E-01

0.0000
E+00

-8, 2500
E-01

-1.2500 |
E+00 0.0000E+00 5, 0000E+01 "1.0000E+02 " 1.5000E+02 j

N

Figure 6. A Simple Sine Graph

NOTE

Do not type commands to MINC while a graph or other
figure is being drawn on the screen. If you doso, MINC
will not display the characters you type on the screen,
and the command may be ignored.

An exception to this rule is the command CTRL/C. If
you type CTRL/C once or twice, the graph-drawing
process will stop and the READY message will reap-
pear.

The NO SCROLL key, when first pressed, will “freeze”
a graph-drawing procedure. When the key is pressed a
second time, the graph-drawing resumes. 21

GRAPHIC PROGRAMMING

Omitted Arguments

The Option String

22

If your screen does not look like Figure 6, examine your GRAPH
statement. Are there any typing errors? The GRAPH statement
you type must have exactly the right number of commas and pa-
rentheses. If you find a mistake, retype the GRAPH statement.
(You should also be sure that you typed the MDEMO program
correctly.)

You may be surprised that such a small number of statements
created this complex picture. For one thing, you took advantage
of all the default conditions allowed by the GRAPH routine. The
three commas in the GRAPH statement are there to hold the
place of missing arguments, much as the zeros in the number
.0005 hold the places of missing digits. In other words, a routine
statement with two leading commas has a very different mean-
ing from a statement with three leading commas, just as .005
and .0005 represent different numeric values.

The complete form of a GRAPH statement is as follows:

GRAPH(option,number,start X,start Y,increment,shade line,
graph namber,start index)

The blue ink shows the GRAPH arguments that are optional. In
your first use of the GRAPH statement, you omitted them all.

When you leave out arguments in aroutine statement, the MINC
system can make reasonable assumptions (called default condi-
tions) about the intended appearance of the graphic display. The
GRAPH routine has only one required argument, called the
start Y argument. You supplied the element Y1(0). There are
seven optional arguments that are legal in a GRAPH statement.
From the form of the GRAPH statement that you just typed, you
can see that you included only three leading commas, because
three of the optional arguments come before the start Y argu-
ment. The other four follow start Y, and they do not need to be
marked with commas. This, too, is analogous to zeros in a deci-
mal number, since .005 and .0050 have the same meaning.

The first missing argument in the above GRAPH statement —
that is, the argument that would come before the first comma —
is the option string.

The option string is a single word or series of words, enclosed in
quotation marks. If the string contains a series of words, you
must separate them with commas.

Now we will use the GRAPH_INIT routine, which erases the
graphic memory. Then we will be ready for a new graph. Type

GRAPH_INIT

Notice that the GRAPH_INIT statement erased the graph, but
left the text on the secreen. GRAPH_INIT also resets the scroll-
ing area to rows 1-24. Now type

ERASE_TEXT

to erase the text from the screen.

You can also clear the screen by typing
DISPLAY_CLEAR

The DISPLAY_CLEAR routine is equivalent to typing
GRAPH_INIT followed by ERASE_TEXT.

Now we will set the system up to display two graphs at once, in
different graph regions. Type the red part of this dialog:

READY
REGION(""UPPER",1)

READY
REGION("'LOWER",2)

Notice first that these two REGION statements have option
strings. UPPER refers to the upper graph region. LOWER re-
fers to the lower region. Only one word is allowed in the option
string for REGION. The only other allowable word is FULL,
which refers to the full graph region. If you omit the option word
from a REGION statement, FULL is used by default.

The numbers 1 and 2 are graph numbers. MINC allows a max-
imum of two graphs to appear on the screen at once. Therefore,
the REGION statements have told MINC to put graph 1 in the
upper region and to put graph 2 in the lower region.

The GRAPH routine accepts a graph number as one of its op-
tional arguments. When the graph number is left out of a
GRAPH statement — or any other statement in which it is op-
tional — the graph number has a default value of 1. Thus, your
first picture was graph 1, displayed in the full graph region.

THE GRAPH ROUTINE

Clearing the Screen

Displaying Two
Graphs

OPTIONAL FEATURES

The Graph Number
Argument

23

GRAPHIC PROGRAMMING

The BRANDS Option

24

To redisplay the same picture in the upper region, type

GRAPH(,,,Y1(0))

The upper region now should contain a smaller version of your
sine graph. Notice that we used thesame array, Y1, since its sine
values are still intact in your workspace.

Now type

GRAPH("BRANDS,SHADE LINES",30,,Y1(0),,.5,2)

Your screen should now look like the one shown in Figure 7.

£.2500
+0

9.0000 |-
E+00

-1.2500
£+00

| - |
0.0000E+00 B,0000E+04 T1.0000E+02, , !

£,0000
E+00

5.0000
E-01

2.0000
£+00

\ 0. 0D00E+00 7. 5000€+00 1.5000E+01 2.2500£+01 J

Figure 7. A Graph with Brands (Lower Region)

The figure in the bottom half of the screen is graph 2 — the last
number in the GRAPH statement is the graph number 2.

Your second GRAPH statement includes a three-word option
string. The word BRANDS creates the small vertical line seg-
ments that appear at regular points along graph 2. The
BRANDS option is used to mark the exact horizontal location of
data that might otherwise be hard to notice in a complicated pic-
ture. Notice that there are 30 brands in graph 2; each brand
marks the position of one datum. The number 30 in the state-
ment is called the number argument; this GRAPH statement
plotted the first 30 data from array Y1. The number argument is
explained later in more detail. The points that fall between the

brands in graph 2 are interpolated line segments created by the
LINES option. This option is also explained later.

The shaded appearance of graph 2 is produced by the second op-
tion word, SHADE. SHADE tells MINC to shade a graph by
drawing vertical lines from the graphed points to a particular
horizontal line called theshade line. In this case, the shadeline is
at Y =.5 — that is the purpose of the argument .5 in the second
GRAPH statement.

Try this statement, which omits the shade line argument:
GRAPH("'SHADE LINES",30,,Y1(0),,,1)
Notice that, because you changed the graph number to 1, this

statement erased the upper region and then displayed a new
graph (see Figure 8).

-)

1.0000
E+00

L0111 R ———
E-01

0.0000
E+00
- 0.0000E+00 . 5000E+00

1.0000
E+00

5.0000
E-0t

0.0000
£+00

0.0D00E+00 7.5000E+00 "1.5000E+01 2. 2500E+01

- /

Figure 8. Two Shaded Graphs, with and without Shade Lines

As you see, the graph in the upper region is shaded from the bot-
tom of the upper region. If you include “SHADE” in the option
string, but omit the shade line argument, the bottom of the
graph region is always used for the shade line. In this case, the
bottom of the region corresponds to the Y coordinate 0.

Finally, type this statement, which displays only the 30 points,
without the interpolated lines (see Figure 9):

THE GRAPH ROUTINE

The SHADE Option
and the Shade Line
Argument

25

GRAPHIC PROGRAMMING

Erasing a Graph

26

GRAPH(""SHADE",30,,Y1(0),,,2)

S

E+00

5.0000
E-01

0.0000
E+00

" 0.0000E+00 7.5000E+00 '1.5000E+01

S ‘

' 2,2500E+01
1.0000 ‘ o
E+00

|

5 0000 |r+-ereeremmreeeeeesiereeeereesmeseeeenes ' ! :

0.0000

= | | i

"1.5000E+01

T
Lo
£+00 SENEE| ‘|‘!

. — i ;
k 0, 0000E+00 7. 5000E+00 " 2.2500E+01 J

Figure 9. Shaded Graph without the LINES Option (Lower
Region)

As shown in Figure 9, the shading loses some of its effectiveness
when there are only a few points on the graph. For this reason,
the SHADE and LINES options are often used together, with
the BRANDS option serving to distinguish the actual data
points from the interpolated points created by LINES.

You have just seen one method of eliminating an old graph: by
using GRAPH again and replacing the old graph with a new
one. You can also simply erase the graph in a particular region
without displaying a new one. Examine, but do not type this
statement:

ERASE_GRAPH(“ALL”,,2)

This statement would remove the shaded graph from the lower
region, leaving graph 1 in the upper region. Notice that the
ERASE_GRAPH statement has the option word “ALL”. That
means “erase all the features of graph 2.” As discussed in Part 2
of this manual, ERASE_GRAPH can be used to remove some
features from a graph without affecting the others. Notice also
that the graph number (2) was included as the last argument in
ERASE_GRAPH. You could have left the graph number out,
but then MINC would have used the default condition and
erased graph 1. You want to avoid mistakes of that kind, since

once ERASE_GRAPH is used on a graph, the graph can be re-
covered only by redrawing it. With the simple case we are using,
redrawing is a minor problem (you have already done it in this
session). In real working situations you could conceivably lose
valuable information by an accidental erasure.

Partly to protect against accidental erasures, MINC has a rou-
tine called VIEW, which can make a graph disappear tem-
porarily without erasing it from the graphic memory. Try the
VIEW routine on graph 2 by typing

VIEW("INVISIBLE",2)
Notice that the graph points, lines, and brands have disap-

peared from graph 2, leaving only the features shown in Figure
10.

S — —

400

Z L0000 freneeeemenemmeeneaneensanenn e
=-01

1,0000
£+00

“ 0,0000E+00 . 5000E+00 1.5000E+04 ' 2.2500E+01
1.0000 |
£+00 |

50000 rrreeesreeessereessssnssssenesanaas
=-0t

2.0000

1
S Lt

. l
\ 0.0000E+00 7 .5000E+00 1.5000E+01 " 2.2500E+01 J

Figure 10. Result of VIEW(“INVISIBLE”,2)

i

You may already have realized that VIEW is especially useful
for displaying two graphs sequentially in the full graph region.
That is, if the two graphs make too confusing a picture, you can
remove one of them without erasing it. Then you can put the in-
visible graph back on the screen with another simple statement.

Type

VIEW("-INVISIBLE",2)

Notice that the points have been restored to graph 2. This VIEW

THE GRAPH ROUTINE

Making a Graph
Invisible

27

GRAPHIC PROGRAMMING

The Number
Argument

28

statement shows another important feature of MINC routines:
In many cases, you can reverse the effect of an option word by
preceding it with a minus sign (-). In this case, the option
“INVISIBLE” means “make the invisible graph visible again.”
(When you omit the graph number from a VIEW statement,
graph 1 is affected by default. When it is included, the graph
number comes after the option word.)

The primary difference between VIEW(“INVISIBLE”) and
ERASE_GRAPH is that the graph number used in a VIEW
statement remains “in use.” That is, the graph affected by the
VIEW statement is preserved in the graphic memory, and you
can therefore redisplay it with another VIEW statement. How-
ever, the fact that the graph number is in use does not mean that
it is illegal in other statements. For example, type

VIEW("INVISIBLE™)
to make graph 1 invisible. But, instead of restoring graph 1, type
GRAPH("POINTS",,.Y1(0))

This statement has replaced the shaded graph in the graphic
memory with an unshaded graph containing all 200 points. The
GRAPH statement also negated the previous INVISIBLE op-
tion, so that the new graph appeared immediately on the screen.

Now let’s examine another optional GRAPH argument. First,
type

DISPLAY_CLEAR

to erase the graphic memory and clear the screen.

The next optional argument we will examine is the number
argument, which follows the option string. So far, most of our
graphs used the entire contents of the array Y1. All the graphs
were plotted with the value in Y1(0) as the Y coordinate of the
first point. When we omitted the number argument, the
GRAPH routine displayed all the Y coordinates from Y1(0) to
the end of the array, which in this case is Y1(199). The number
argument, which can assume any value from 0 to the entire ar-
ray dimension, allows you to select the exact number of points to
display. The following statement demonstrates the number
argument.

GRAPH(""LINES,BRANDS",20,,Y1(100),,.2)

The result should look like Figure 11.
oo)
E+00

6.8750
E-01

3.7500
£-01

2P

-2.5000 | |

I
(01 0.0000E+00 5. 0000E+00 "1.0000E+01 " 1.5000£+01 /

Figure 11. GRAPH Display of 20 Points

Notice that only 20 points appear on this new graph. The posi-
tions of the points are marked by the brands. Note also that this
new graph is displayed in the full graph region. That is because
you typed a DISPLAY_CLEAR statement, which, in addition to
erasing the graphic memory, also restored both graph 1 and
graph 2 to the full region.

Before we proceed, let’s digress for a moment and discuss the
MINC feature known as autoscaling.

Autoscaling is a feature of the MINC routines GRAPH and
BARGRAPH. Its purpose is to ensure that the display of a cer-
tain set of data is as visually appealing and as easily interpreted
as possible.

When you supply a set of data to GRAPH and BARGRAPH —
that is, by supplying the start Y argument and the number

argument—the routines detect the largest and smallest numeri-
cal values in the set. The two routines then adjust the largest and
smallest axis labels so as to ensure that the full range of input
values appears on the screen. In the usual mode, the minimum
and maximum values on the axis labels slightly exceed the
limits of the input values. (For more details on this adjustment
procedure, see the description of the EXACT option.)

Because of autoscaling, the display is expanded to fii: the graph

THE GRAPH ROUTINE

Autoscaling

29

GRAPHIC PROGRAMMING

The Options GRID,
TICKS, UNITS,
HLINES, and VLINES

30

region, even when the data occupy a very small range, such as 0
to .001. The axes are automatically relabeled to retain the nu-
merical information in the displayed graph. You have already
seen this effect when you plotted the 20-point sine graph in the
previous example.

Autoscaling works the same way for data that have a very large
range between the maximum and minimum values. The auto-
scaling is independent on the two axes, so that the X values can
occupy a very small range, and the Y values, a very large range.

However, when the GRAPH or BARGRAPH routine is pre-
sented with input sets that exceed 512 elements in length MINC
can fit only 512 points on the screen at once. Although the rou-
tines will not prevent you from naming larger arrays, the result-
ing display may not be a true representation of your data unless
you take extra measures. These measures are simple, but we
will discuss them later. Until then we will continue using arrays
of fewer than 512 elements.

You can override the autoscaling feature of GRAPH (and
BARGRAPH) with the WINDOW routine. WINDOW sets fixed
limits for data that can appear on a particular graph; data that
fall outside such a window are legal but are not displayed on the
graph.

Autoscaling is used by GRAPH and BARGRAPH in the follow-
ing three cases.

1. You have not used WINDOW at all before using GRAPH or
BARGRAPH.

2. You included no X or Y arguments in the last WINDOW
statement before the GRAPH or BARGRAPH statement.

3. Youhaveusedthe GRAPH_INIT or the DISPLAY_CLEAR
routine before using GRAPH or BARGRAPH.

For more details on the WINDOW routine, see Part 2.

We will now return to our discussion of optional arguments.

As you have seen on previous graphs (for example, Figure 11),
all the displays created by GRAPH had a superimposed pattern
of horizontal lines, tick marks (the short vertical lines on the X
axis), and numeric labels on both axes. The pattern is called a
grid, and its purpose is to make the graphs easier to interpret.

These grids are created by the option word GRID. You have not
needed to include this word in your GRAPH statements, because
it is included by default.

The GRID option is associated with four other options: TICKS,
UNITS, HLINES, and VLINES. Except for VLINES, these
options simply refer to the individual features of the grid. To
demonstrate how these options work, we will initialize the
graphic memory and then display a variety of graphs in the full
graph region. Type

READY
DISPLAY_CLEAR

READY
GRAPH("GRID,VLINES",,,Y1(0))

The resulting display is shown in Figure 12.

K 2500 \

=+00

§.2500(
E-01 |

3.0000 [
£400 |

-5.2500
01 |

-1.2500

l | |
\E#OO " 0.0000E+00 5.,0000E+01 11, 0000E+02 " 1,5000E+02 J

Figure 12. Result of GRID and VLINES Options

As you see from the display, the VLINES option replaces the
tick marks with vertical “grid lines” that extend the height of
the screen. In many cases, your graphs will be more easily in-
terpreted if you use the VLINES option.

NOTE

The vertical grid lines ALWAYS have a height equal
to the height of the full screen, including the scrotling

THE GRAPH ROUTINE

31

GRAPHIC PROGRAMMING

32

area. If you display two different graphs in the upper
and lower graph regions, the vertical grid lines from
each region will extend through the other region as
well. In some cases, this property can lead to confusing
pictures. In other cases, it permits you to make a useful
visual comparison of the X data on two graphs.

VLINES can be used only when the GRID option is also included
in the routine statement, either explicitly or by default. A state-
ment such as

GRAPH(’-GRID,HLINES,VLINES,UNITS”,, Y1(0))

is “legal,” in that it produces no error message, but it does not
display horizontal lines, vertical lines, or units.

It is legal to include HLINES, UNITS, and TICKS in a state-
ment in which GRID isnot negated, but they do not add anything
to the display.

When you display a graph or bargraph in the full region, either
four or five horizontal lines appear; in the upper or lower region,
three lines appear.

Now try this statement, which creates horizontal lines and tick
marks but omits the axis units:

GRAPH("GRID,-UNITS",,,Y1(0))

........

Figure 13. Result of GRID plus -UNITS Options

The sereen should now resemble Figure 13.

Asyou see, these options produce horizontal lines and tick marks
identical to those produced by your previous statements. How-
ever, the interpretive value of these features is minimal, because
they are not labeled with axis units.

Let’s summarize this information about grids:

1. The GRID option, by default, produces horizontal grid lines,
tick marks, and axis units. The axis units appear at the in-
tersections of these grid features with the X and Y axes.

2. Ifandonly if the GRID option is present, the VLINES option
produces vertical grid lines in place of the tick marks.

3. When GRID is negated, the horizontal lines, tick marks, and
axis units cannot be produced.

4. Theoptions HLINES, TICKS, and UNITS are useful only in
their negative forms. To display grid features separately,
you must use such forms as -UNITS to subtract the un-
wanted grid features.

As you read in the section on autoscaling, the GRAPH routine
normally does not use the highest and lowest values in your input
arrays as the largest and smallest axis labels. Instead, the
GRAPH routine makes the numerical range of the axis labels
slightly larger than the numerical range of the input, in order to
make the axis units in the display reasonably “round” numbers
— for instance, 1.25 rather than 1.2533. Generally, this adjust-
ment makes the grid more useful for interpreting the numeric
values of particular points, and, by reducing the number of deci-
mal digits, it makes the axis labels fit and look better on the
display.

Consider this example:

READY
NEW EXACT

READY

10 DIM Z1(199)

20 FOR I=1 TO 199
30 Z1(1)=SIN(I*P1/420)
40 NEXT |

THE GRAPH ROUTINE

The EXACT Option

33

GRAPHIC PROGRAMMING

34

50 END
SAVE

READY
RUNNH

After this calculation, the array elements Z1(1) and Z1(199) do
not contain either 0 or 1. The value in Z1(1) is the sine of 1/420 X
7, or 7.47991 X 107, The value in Z1(199) is the sine of 199/420 X

7, or .996617. However, if Z1 is plotted with the GRAPH routine,
the smallest and largest Y axis labels are 0 and 1 (see Figure 14).

Type

GRAPH(,..Z1(1))

P — —
E+00

7,5000
£-01

5.0000
£-01

2.5000
E-01

l l |

0.0000 L
Qoo 0.0000E+00 5.0000E+01 "1, 0000E+02 " {.5000E+02 /

Figure 14. Result of GRAPH Statement without EXACT
Option

There may be cases in which you do want to display the exact
numerical values of your largest and smallest input data. The
EXACT option is used for this purpose:

GRAPH("EXACT",,,Z1(1))

Notice that the Y axis units in Figure 15 include only four deci-
mal digits. The fourth digit to the right of the decimal point is
the result of rounding less significant digits.

/&9662 s p— \

E-01

7.4933 . e
E-01

5.0205
E-01

2.5476
E-01

7,479 | l

Qz 0.0000E+00 4.,9750E+01 "9, 9500E+01 " 1. 4925E+02 /

Figure 15. Result of GRAPH Statement with EXACT Option

The MINC terminal uses a feature called strip-chart mode for
the display of large data sets.

The GRAPH and BARGRAPH routines, in their normal mode,
will let you specify arrays of more than 512 points. However, the
GRAPH and BARGRAPH routines do not produce true repre-
sentations of such arrays in their normal mode of operation.

As an example, let’s consider the array created by this short pro-
gram:

10 DIM M(1400)

20 FOR I=0 TO 1400

30 M(I)= SIN(I*PI1/25)*COS(I*PI1/400)
40 NEXT |

50 GRAPH(,,.M(0))

The array M contains 1401 values that represent a sine wave
modulated by a cosine wave of much lower frequency. The
display created by the GRAPH statement in line 50 is shown in
Figure 16.

As you can see from Figure 16, the static display is not a good
representation of array M. The autoscaling feature of the
GRAPH routine has set the limits of the graph to-1 and 1 in the

THE GRAPH ROUTINE

Strip-Chart Mode

356

GRAPHIC PROGRAMMING

36

E+00

////:j;ooo : o T S 44‘\\\\\

5.00001 .
E-01

0.0000
E+00

-5.0000 [
£-04

-1.0000 e

E+00 0.0000E+00 4.0000E+02 "8.0000E+02 "1, 2000E+03 J

Figure 16. Static Display of a 1401-Point Array

Y direction, and to 0 and 1600 in the X direction. However, be-
cause only 512 points can appear at once, some of the points be-
tween 0 and 1401 have been dropped from the display, and the
display has lost resolution. The points have been dropped at reg-
ular intervals, of course. That is why the general form, or “enve-
lope,” of the low-frequency cosine wave is visible in Figure 16.
However, little or no detail of the sine wave is visible.

The combination of limits set by the autoscaling feature
(0, -1, 1600, and 1) is called the window of the graph. Points that
fall within the window of a graph are displayed; points that fall
outside the window are not displayed. The problem we have ex-
amined in Figure 16 is due to the fact that the autoscaling fea-
ture deliberately sets the window to ensure that the largest and
smallest values are displayed.

In the simple case, the window limits are set automatically by
the autoscaling feature. However, MINC contains a routine
called WINDOW that lets you set explicit limits for the window;
consequently, WINDOW also disables the autoscaling feature of
the GRAPH and BARGRAPH routines.

Let us first use WINDOW to turn off the autoscaling feature;
this action alone will allow us to see the true representation of
part of array M. Type the red commands:

READY
WINDOW(,0,-1,511,1)

READY
GRAPH(,511,,M(0))

The result is shown in Figure 17.

ﬂ .0000[=

E+00

5.00001.....

E-0t

0.0000 R wAw:
B0 | - o L MV

-5.0000
£-01

-1.0000)__ ¥

v

\900 0.0000E+00 1.5000E+02 "3.0000E+02

" 4.5000E+02 /

Figure 17. First 511 Points of Array M

Figure 17 shows a true representation of the first 511 points in
array M. The features of both the sine and cosine functions are
now clearly visible. The points between 512 and 1401 were not
displayed because a number argument of 511 was used.

ﬂ 0000(¥

E+00

5.0000(..

E-01

0.0000 S SN
E+00- Lo N

-5.0000
E-01

-1.0000] ¥

Coo 1.5000E+02 3. 0000E+02 "4.5000E+02

:v,‘ l Iy
" 6. 0000E+02 J

Figure 18. First 500 Points, Beginning of Strip-Chart

Operation

THE GRAPH ROUTINE

37

GRAPHIC PROGRAMMING

38

Strip-chart mode will give us the ability to see all 1401 points in
a continuous flow. Type the statement

GRAPH('MOVE’,500,,M(0))

The result is shown in Figure 18.

To see the rest of the points, type
GRAPH('MOVE’,901,,M(500))

The final display is shown in Figure 19.

K 0000 R

£E+00

5,00001...; e S R .
E'OiA-. e Lo o I

0.0000 . : .:.‘ _ : .) : : N
E+00 B A '

-5.0000
E-01

40000 | I 1

\yoo 1.0500E+03 = 1.2000E+03 = 1.3500E403 = 1.5000E+03 J

Figure 19. Last 512 Points, End of Strip-Chart Operation

The effect you observed was the strip-chart action. The second
GRAPH statement plotted the remaining 901 points in array M,
beginning with element M(500). As points beyond the old
window limit (511) were added, they appeared at the right edge
of the screen, and the old points shifted to the left.

In effect, strip-chart mode changes the window dynamically to
allow new points to be added.

To leave strip-chart mode, type
DISPLAY_CLEAR

The routines DISPLAY_CLEAR and GRAPH_INIT provide

the only means of leaving strip-chart mode and returning to
static displays. These routines also cancel previous WINDOW
statements, which reinstitute autoscaling by the GRAPH and
BARGRAPH routines.

You can also cancel a previous WINDOW statement by using
the WINDOW routine again, without an argument list:

READY
WINDOW

READY

NOTE

When you use strip-chart mode, you may notice that
the screen flickers while the moving graph is being
displayed. This effect occurs when your window set-
ting (via the WINDOW routine) and the values con-
tained in the array combine to cause points to over-
write old points.

A sample case occurs when your WINDOW statement
sets the X range to 0-1.5, the first GRAPH statement
displays the first 600 points, and all of the first 600
points have X coordinates between 0 and 1.5. You can
correct the condition in this case by resetting the
window to a lower maximum X value.

The flickering effect also occurs in some cases when
the LINES option is combined with the MOVE option.

In any case, the flickering is a normal effect and does
not indicate a malfunction of your terminal.

Now we are ready to examine the next optional argument. It fol-
lows the number argument and is called the start X argument.
The start X argument is an element of an array of X coordinates.
In the MDEMO program you ran at the beginning of this ses-
sion, you defined a 200-element array called X 1. In the same pro-
gram, the elements of X1 were filled with the logarithms of the
integers from 1 to 200. Before continuing, type RUN MDEMO
to recreate the arrays X1, Y1, and F1.

Now type

GRAPH(""SHADE,LINES,BRANDS",50,X1(0),Y1(0))

THE GRAPH ROUTINE

The Start X Argument

39

GRAPHIC PROGRAMMING

The Increment
Argument

40

The result looks like Figure 20.

/ 0000

£+00

7.5000
E-01

LRI SESEREEERENEE PP IRDIRG ——
E-01

PR A 0wk
E-01

0.0000

&1‘00 0.0000E+00 .0000E-01 1.0000E+00 1.5000E+00 /

Figure 20. Logarithmic X Axis

As you can see, supplying X information to GRAPH allows you
to plot nonlinear axes. Notice also that the autoscaling feature
has expanded the graph to fit the full graph region, even though
the values of X1(49) and Y1(49), the last data to be plotted, are
very close to 0.

We will now investigate the fifth argument of the GRAPH rou-
tine, which is the increment argument. In the examples you
have seen, you have been giving GRAPH the array element at
which to begin extracting data (the start Y argument) and the
number of points to plot (the number argument). You have not
supplied the increment argument, and the value 1 was therefore
used by default. This meant that, when plotting 50 points start-
ing at Y1(0), GRAPH plotted the data in elements Y1(0) through
Y1(49). The increment, which can be any integer from 1 to
32767, allows you to precisely control the array elements used to
construct a graph. Consider (and type) this example.

READY
SCRATCH

READY

10 DIM Y(200)

20 FOR I=1 TO 200 STEP 2
30 Y(I-1)=SIN(I*PI1/100)

40 Y(I)=COS(I*P1/100)

50 NEXT |

THE GRAPH ROUTINE

60 REGION("UPPER",1)

70 REGION("LOWER",2)

80 GRAPH("SHADE,LINES,BRANDS™,100,,Y(0).2,,1)
90 GRAPH('SHADE LINES,BRANDS,100,,Y(1),2,,2)
100 LABEL("BOLD"","SINE WAVE""GRAPH 1",1)
110 LABEL("BOLD","COSINE WAVE" "GRAPH 2",2)
120 END

RUNNH

The resulting display should look like Figure 21.

/1. 0000

E+00

0.0000 1
E+00

— ::'u»z:{c:/

-1.0000
E+00
. 0000E+04 1.0000E+0
CUSINE WAVE

1.0000[
E+00

0.0000F
E+00

X U0

>

-1.0000
E+00

0.0000E+00 . . 1.5000€+02

N _/

Figure 21. Sine (Upper) and Cosine (Lower) Waves

The increment argument has enabled you to display two wave-
forms from data in a single array. The sine and cosine waves
were chosen for convenience.

A realistic application for the increment is analog-to-digital
conversion of output from a two-channel laboratory instrument.
Some lab module routines (described in Book 6: MINC Lab Mod-
ule Programmaing) handle such an application by storing digital
values from the two channels in alternate elements of a single

array.
There is still one GRAPH argument to be examined: the start The Start Index
index argument. This argument is the first element of the index Argument

array.Inthe program MDEMO, which you ran at the beginning
of this session, you created the 11-element array F'1 for use as the
index array. We have not used F1 yet, and we have deferred un-
til now the discussion of the index array as a data structure. 41

GRAPHIC PROGRAMMING

INDEX ARRAYS

42

Index arrays are used only with the GRAPH and BARGRAPH
routines. Index arrays have the following structural and func-
tional differences from the arrays of X and Y coordinates.

1.

The purpose of the index array is to let you quickly find the
coordinates of an interesting-looking featureof a GRAPH or
BARGRAPH display. For example, you might want to
quickly find the numerical values of local maximain a wave-
form. You may use the index array to find the coordinates of
such points in the original arrays of X and Y coordinates.

Index arrays cannot exceed 11 elements in length.

You assign a value to only one element of an index array be-
fore using it in a GRAPH or BARGRAPH statement. You
always assign this value to the first element of the index ar-
ray — that is, to the element named in the start index argu-
ment of your GRAPH or BARGRAPH statement.

During the execution of the statement, MINC writes values
into the index array. Any or all values in the index array
may be changed by the routine, including the value you
placed in the first element.

The value written into the first element by the routine is an
index count — it counts the elements of the index array that
are changed during the execution of the routine.

Except for the index count, the values written into the array
are indices. Indices are always either 0 or some positive
integer.

Figure 22 shows a diagram of a typical (7-element) index array
that is ready to be used in a GRAPH or BARGRAPH statement.

N1(0) NT(1) N1(2) N1(3) N1{4) N1(5) N1(6)

6 0 0 0] O 0 0

MR-1627

Figure 22. Index Array before Execution

The 6 in element N1(0) was inserted by the user, perhaps with a
simple assignment statement such as N1(0)=6. The assignment
statement is made before N1(0) is named in a GRAPH or
BARGRAPH statement. Therefore, the value in N1(0) is not yet

the index count. Instead, the value 6 counts the maximum
number of indices that the forthcoming routine can insert in the
index array. Because there are 6 elements remaining after
N1(0), the entire index array (except N1(0))is now available for
indices.

Now consider this example, but do not type it:
GRAPH("POINTS,INDEX",200,X1(5),Y1(10)...,N1(0))

This statement displays 200 points, using 200 elements of X1
and Y1 as the X and Y coordinates of the points. X1(5) contains
the first X coordinate and Y1(10) contains the first Y coordinate.
N1(0) is the first element of the index array (which was filled

with the value 6). Figure 23 shows how the index array might
look after the above GRAPH statement is executed.

N1(0} N1(1) N1(2) N1(3) N1{4) N1(5) N1(6)

4 20 10 | 101 " 0 0

MR-1628

Figure 23. Index Array after Execution

First, notice that the first element now contains a 4; even though
6 elements were available, only 4 were changed. Notice also that
this lets you know that the Os in the last two elements are NOT
indices but rather are the same values that existed in N1(5) and
N1(6) before execution of the GRAPH routine.

The new values in elements 1-4 are indices. Each index refers to
some interesting point that the user of the program selected
from the displayed graph. The purpose of indexing is to help de-
termine the coordinates of such points.

Each index in N1 gives the ordinal number of a displayed point,
minus 1. If the index of a point is 0, then the point was the first
point displayed by the GRAPH or BARGRAPH statement. The
coordinates of the first displayed point are, as you know, in the
array elements named in the start X and start Y arguments.

The index values begin with 0 (instead of 1) for a simple reason:
this convention lets you determine the location of a point’s coor-
dinates in the X and Y arrays simply by adding the index of the
point to the element number of the start X or start Y argument.

THE GRAPH ROUTINE

43

GRAPHIC PROGRAMMING

Using Index Arrays

Indexing a Single Point

44

For example, consider element N1(1) in Figure 23. After the
GRAPH statement, this element contains 20. The start X and
start Y arguments in the GRAPH statement were X1(5) and
Y 1(10), respectively. During the execution of the GRAPH state-
ment the element N1(1) was assigned the value 20 in order to in-
dex the coordinates of an interesting point. The coordinates of
the point of interest are in X1(5+20) and Y1(10+20), that is,
X1(25) and Y1(30).

As you may have gathered from this discussion, indices are
never negative, nor do they ever have values larger than the
maximum dimension of the X and Y arrays.

Although we have covered the structure and purpose of index
arrays, the most important question still remains: Exactly how
do those indices get stored in the index array? To answer this
question, let’s return to our example session with the GRAPH
routine.

To store indices of displayed points, you need to include two addi-
tional items in the GRAPH statement. One is the start index
argument, which is the last argument of the GRAPH routine.
The second item is the option word INDEX. Let’s examine the
effects of these two items with a sample GRAPH statement.

To be sure that you still have the necessary program in your
workspace, type

RUN MDEMO

(If, for some reason, MDEMO has been erased from your disk-
ette, type NEW MDEMO, and then retype the program as
shown at the beginning of this chapter.)

To begin the indexing operation, type
F1(0)=2

You have now assigned the value 2 to the first element of your
index array. Therefore, your next GRAPH statement can store
the indexes of up to two points. Now type the GRAPH statement
itself:

READY
DISPLAY_CLEAR

READY
GRAPH("INDEX",, X1(5),Y1(5),...F1(0))

The result is shown in Figure 24.

///:jzsoo <\\\\\

£+00

5.2500
E-01

0.0000 . S
£400 3 S

-6.2500
£-04

o v

-1,2500 |

| |
Qo 4,0000E-01 9, 0000E-01 "1, 4000E+00 " 1,9000E+00 /

Figure 24. Beginning of Indexing Operation

Asyou see, Figure 24 shows a sine wave, distorted from its ordi-
nary shape by having been plotted with a logarithmic X axis.
Looking at the display screen, you will also notice a small flash-
ing brand. Try holding down the left-arrow (—) and right-arrow
(—) keys on your MINC keyboard. Notice that they make the
flashing brand move to the left or right, following the contour of
the sine wave. This flashing brand is used to mark the position of
the point you want to index. Even though you have preset the ele-
ment F'1(0) to 2, you will index only one point in this operation.

With the arrow keys, move the flashing brand to the first (left-
most) peak of the sine wave. When you have the flashing brand
where you want it, press the S key on your keyboard. The flash-
ing brand disappears, showing you that the index of the branded
point is now stored in F1(1).

Now that you have indexed the point, press the key to end
the indexing operation.

NOTE

For convenience, we have been using immediate mode
in our examples. If you perform this type of indexing
operation within a program, the program flow is sus-
pended, and the GRAPH (or BARGRAPH) statement

THE GRAPH ROUTINE

45

GRAPHIC PROGRAMMING

Muiltiple Indexing

46

remains in control until you press . When you
press ®eD), the program flow resumes at the first
statement following the GRAPH or BARGRAPH

statement.

Examine the index count by typing

PRINT F1(0)

The result is 1. Previously, you assigned the value 2 to this ele-
ment, to allow for two indices. The value 1 is areminder that you
actually stored only one index.

To examine the coordinates of the indexed point, type

READY
PRINT “X COORDINATE: *;X1(5+F1(1))

READY
PRINT *'Y COORDINATE: *;Y1(5+F1(1))

The value b in the preceding statements is, of course, the element
number of your start X and start Y arguments.

You have now used the indexing feature in a restricted applica-
tion — to store the index of a single point. However, the max-
imum size for an index array is 11 elements, meaning that as
many as 10 points can be indexed in a single operation. To
make this exercise complete, we must now try a multiple-
indexing operation.

Begin by typing

READY
RUNNH

READY
F1(0)=3

These two statements are all that you need to do in preparation.
The only purpose of the RUNNH statement was to reinitialize
the array F1 so that all of its elements would contain the value 0.
Then the assignment statement preset the number of allowable
indices to 3.

Now retype the GRAPH statement:

GRAPH("INDEX",,X1(5),Y1(5),.,.,F1(0))

At this point, the display on your screen is identical to the one
shown previously (Figure 24). You can now proceed with the
multiple-indexing operation.

The numeric keys 1 through 0 above your keyboard represent
the last 10 elements in the index array F1. (The 0 key represents
the last element, F'1(10).) To store or change an index, press the
key that represents either the next available element, or one of
the elements already used. The phrase “next available element”
is used because you are not allowed to “skip” elements that have
not been used. For instance, try pressing the 2 key. The buzzer
sounds, meaning that you selected an improper element in the
index array. (You skipped F'1(1), which has not been used yet.)

The buzzer also sounds if you press a numeric key any time you
have a flashing brand on the screen.

The available elements must be used in the correct order, be-
cause after the indexing operation is finished, you want to be
sure that the index count not only gives the number of stored in-
dices but also implies which elements of the index array were
used.

By pressing each of the numeric keys, verify that none of the in-
dex array elements are in use. The flashing brand that is cur-
rently on the screen is for the index that will be stored in F1(1),
the first available element.

With the arrow keys, move the new flashing brand to the first
peak of the sine wave and then press the S key. The first index is
now stored in F1(1).

Now, instead of pressing , press the 2 key. A new flashing
brand appears, showing you that the next index element, F1(2),
is now available. Move the flashing brand to the second peak of
the sine wave and press the S key to store the second index.

To store the third index, press the 3 key, move the flashing brand
all the way to the right end of the sine wave and press the S key.
(Notice that the bell sounds if you attempt to go off the right edge
of the graph; the same effect occurs at the left edge.) F1(3) now
contains the index of the last point on the display.

DO NOT press yet, because there is one more feature to be
demonstrated. First, try pressing the numeric keys from 4 to 0.

THE GRAPH ROUTINE

47

GRAPHIC PROGRAMMING

48

The buzzer sounds each time, because your preset value in F1(0)
provides only three index elements for your use.

However, you can change any or all of the indices you have
stored. We will change just one of them to demonstrate. Cur-
rently, F1(2) contains the index of the second peak of the sine
wave. We will change it to the index of the first point on the
screen. Begin by pressing the 2 key, which corresponds to F1(2).
Notice that the buzzer does not sound, because this index ele-
ment is still available. Now simply move the flashing brand to
the left end of the sine wave, and press the S key. The element
F1(2) has been changed; it now contains the index of the first
point that was displayed. In general, you are allowed to repeat
this change operation as often as you like; it is particularly use-
ful for correcting minor errors, such as overshooting the point of
interest and indexing some adjacent point instead.

Instead of changing any more indices, press @®ep) to end the in-
dexing operation. Then type

PRINT F1(2)

The index stored in F1(2) is 0, because you changed it to the in-
dex of the first point on the graph.

To examine the entire index array, type
FOR 1=0 TO 10 \ PRINT “ELEMENT *I": “;F1(1) \ NEXT I
The result is:

ELEMENT 0: 3
ELEMENT 1: 20
ELEMENT 2: 0
ELEMENT 3: 194
ELEMENT 4: 0
ELEMENT 5:
ELEMENT 6:
ELEMENT 7:
ELEMENT 8:
ELEMENT 9:
ELEMENT 10: 0

o O O oo

Element 0 contains a 3, because you used all three of the ele-
ments that you specified with the previous statement F1(0)=3.
You also know that the indices were stored only in elements 1-3
and that the 0s in elements 4-10 are not indices but only the ini-
tial values of these elements. Element 1 contains the index 20,

corresponding to the first peak of the sine wave. The 0 in element
2 1s an index, corresponding to the first point displayed. Ele-
ment 3 contains the index of the last point displayed.

THE GRAPH ROUTINE

49

CHAPTER 4

PICTORIAL EXAMPLES

This section summarizes some types of display that you can
create with MINC graphic routines. Each picture is accompa-
nied by a short program that creates the display. If you like, you
can reproduce the pictures yourself by typing in the sample
program.

Many of the examples use this program to create the data:

10 DIM X(255),Y(255)

20 FOR I=0 TO 255

30 X() = LOG10(I+1)

40 Y(I) = SIN(I*PI/50)*COS(I*PI/200)
50 NEXT |

The examples that use lines 10-50 to create data contain a single
graphic statement in line 60.

If you are running several of these examples in a single session
with MINC, you can enter and run this program once, to create
the data in arrays X and Y. To display each picture, you cansim-
ply type the graphic statement as shown in line 60, in response to
the READY message. If you leave the line number (60) out of
this statement, the graphic routine is executed immediately (im-
mediate mode). If you include the number 60 at the beginning,
the routine statement is added to the program as line 60, and you
must then type RUN or RUNNH to create the display (program
mode). Program mode will take longer, because the X and Y
values will be recalculated each time. =

51

GRAPHIC PROGRAMMING

Simple Point-Plot of
Entire Array

52

Program:

10 DIM X(255),Y(255)
20 FOR I=0 TO 255

30 X()) = LOG10(I+1)
40 Y(I) = SIN(I*PI/50)*COS(I*P1/200)

50 NEXT |

60 GRAPH(...Y(0))

Display shown in Figure 25.

1.0000
E+00

5.0000

E-01

E+00

3.0000

-5.0000
E-01

-1.0000

”

\\\\fioo 3 0000E+00 5, 5000£+01

:
"1.5000E+02

" 2. 2500E+02 /

Figure 25. Simple Point-Plot of Entire Array

PICTORIAL EXAMPLES

Simple Point-Plot of
Entire Array, with X

10 DIM X(255),Y(255) Coordinates
20 FOR I=0 TO 255

30 X(I) = LOG10(I+1)

40 Y(Iy = SIN(I*P1/50)*COS(I*P1/200)

50 NEXT I

60 GRAPH(,,X(0),Y(0))

Program:

Display shown in Figure 26.

E+00 i

G0 0000 .o e eeeeeeeneeen
£-01 .

2,0000 : - -
E+00 A

-5.0000
E-01

-1.0000 ‘

| | | ¢
Qwo 0.0000E+00 6. 2500E-01 "1, 2500E+00 ' 1,8750E+00 /

Figure 26. Simple Point-Plot of Entire Array, with X
Coordinates

53

GRAPHIC PROGRAMMING

Simple Point-Plot of Program:
Array Subset
10 DIM X(255),Y(255)
20 FOR I1=0 TO 255
30 X() = LOG10(I+1)
40 Y(I) = SIN(I*PI/50)*COS(1*PI/200)
50 NEXT |
60 GRAPH(,50,X(0),Y(0))

Display shown in Figure 27.

ﬂ 0000/ \

E+00

7.5000
E-01

5.0000
E-01

2.5000
E-01

0.0000 I ‘ |

Q)o 0.0000E+00 5., 0000E-01 ™1, 0000E+00 " 1,5000E+00 J

Figure 27. Simple Point-Plot of Array Subset (50 Points)

54

PICTORIAL EXAMPLES

Program: Bargraph of Array
Subset

10 DIM X(255).Y(255)

20 FOR I=0 TO 255

30 X() = LOG10(I+1)

40 Y(I) = SIN(I*PI/50)*COS(I*P1/200)
50 NEXT |

60 BARGRAPH(,10,X(0),Y(0))

Display shown in Figure 28.

a N

6.0000
E-01

4.5000
E-01

3.0000
E-01

1.5000
E-04

0.0000 |

k E+00 0.0000E+00 2.5000E-01

Figure 28. Bargraph of Array Subset (10 Points)

5.0000E-01 7.5000E-04

/

55

GRAPHIC PROGRAMMING

Shaded Point-Plot of
Entire Array

56

Program:

10 DIM X(255),Y(255)

20 FOR I=0 TO 255

30 X(I) = LOG10(I+1)

40 Y(I) = SIN(I*P1/50)*COS(I*PI/200)
50 NEXT |

60 GRAPH(""SHADE",,X(0),Y(0))

Display shown in Figure 29.

/

£.0000
E+00 M

5.0000

E-01

0.0000
E+00

-5.0000 !
E-01 il

-1,0000 sl
E+00 0.0000E+00 6.2500E-01 "1.2500E+00 1.8750E+00

Figure 29. Shaded Point-Plot of Entire Array

Program:

10 DIM X(255),Y(255)

20 FOR I=0 TO 255

- 30 X(I) = LOG10(It1)

40 Y(I) = SIN(I*P1/50)*COS(I*P1/200)

50 NEXT |

60 GRAPH("'SHADE,LINES,BRANDS",20,X(0).Y(0))

Display shown in Figure 30.

- —

E+00

7.5000
E-01

G, 0000 |+ereemsermemresemsmmnemmsnssnssssennennseassnsnnsnaennssnssssssasneree: S - - cnernereees
E-01

PN EEeEER—— e
E-01

0.0000

\E’*OO 0.0000E+00 4.0000E-01 8.0000E-01 1.2000E+00 /

Figure 30. Shaded Point-Plot with Brands (20 Points)

PICTORIAL EXAMPLES

Shaded Point-Plot of
Array Subset, with
Brands

57

GRAPHIC PROGRAMMING

Point-Plot with Exact
Axis Units

58

Program:

10 DIM X(255),Y(255)

20 FOR 1=0 TO 255

30 X() = LOG10(I+1)

40 Y(I) = SIN(I*P1/50)*COS(I*P1/200)
50 NEXT |

60 GRAPH(EXACT",.X(0).Y(0))

Display shown in Figure 31.

E-01

4.6403
E-01

5.9605 : > ~
£-08 " i

iy
~/ v

=4, 6403 [
E-01

-9.2807 | |

QOI 0.0000E+00 6.0206E-01 1. 2041E+00 " 1,8062E+00 j

Figure 31. Point-Plot with Exact Axis Units

Program:

10 DIM X(255),Y(255)

20 FOR =0 TO 255

30 X() = LOG10(I+1)

40 Y(I) = SIN(I*P1/50)*COS(1*P1/200)
50 NEXT |

60 GRAPH(,.X(0),Y(0),2)

Display shown in Figure 32.

/1.0000 N \
E+00 R _

5.0000
E-04

0.0000
E+00

-5.0000
E-01

~1.0000 | | | ;

\E»foo 0.0000E+00 6. 2500E-01 "1.2500E+00 "1, 8750E+00 /

Figure 32. Point-Plot of Every Second Value

PICTORIAL EXAMPLES

Point-Plot of Every
Second Value

59

GRAPHIC PROGRAMMING

Interpolated Point-Plot Program:
of Every Twentieth
Value 10 DIM X(255),Y(255)

20 FOR I=0 TO 255

30 X()) = LOG10(I+1)

40 Y(I) = SIN(I*P1/50)*COS(I*PI/200)
50 NEXT |

60 GRAPH("LINES ,BRANDS", X(0).Y(0),20)

Display shown in Figure 33.

[1. 0000(” :1 \

E£+00 /
5. 0000 e

E-01 -~ } J :_

0,0000 Q
E+00 A

-5.0000
E-01

-1.0000 | | l [

\E*OO 0.0000E+00 6.2500E-01 "1.2500E+00 " 1.8750E+00 /

Figure 33. Interpolated Point-Plot of Every Twentieth Value

60

PICTORIAL EXAMPLES

Program: Interpolated Point-Plot
with Shading

10 DIM X(255),Y(255)

20 FOR I=0 TO 255

30 X(I) = LOG10(I+1)

40 Y(I) = SIN(I*PI/50)*COS(I*P1/200)

50 NEXT |

60 GRAPH("'LINES,BRANDS,SHADE",X(0),Y(0),20)

Display shown in Figure 34.

/1. 0000

E+00

5.0000
E-01

0.0000
E+00

-5.0000
E-01

-1.0000

QGO 0.0000E+00 .2500E-01 1.2500E+00 1.8750E+00 /

Figure 34. Interpolated Point-Plot with Shading

GRAPHIC PROGRAMMING

Interpolated Point-
Plot, Shaded about
Y=0

62

Program:

10 DIM X(255),Y(255)

20 FOR I=0 TO 255

30 X() = LOG10(I+1)

40 Y(I) = SIN(I1*P1/50)*COS(I*P1/200)

50 NEXT |

60 GRAPH("'LINES,BRANDS,SHADE",,X(0),Y(0),20,0)

Display shown in Figure 35.

/oo

E+00

5.0000
E-01

0.0000
E+00

-5.0000
E-01

-1.0000

Q)o 0.0000E+00 6. 2500E-01 "1, 2500E400 " 1.8750E+00 J

Figure 35. Interpolated Point-Plot, Shaded about Y =0

PICTORIAL EXAMPLES

Bargraph of Array
Subset, Shaded about

10 DIM X(255),Y(255) Y=0
20 FOR 1=0 TO 255

30 X() = LOG10(+1)

40 Y(I) = SIN(I*PI/50)*COS(I*P1/200)

50 NEXT |

60 BARGRAPH("'SHADE"",10,X(0),Y(0),20,0)

Program:

Display shown in Figure 36.

- o

E+00

1111) DO SRS W—
E-01

4.0000 N — -
E-01

0.0000
E+00

-4.0000

\s-ox "0.0000E+00 . 2500E-01 1. 2500E+00 "1, 8750€+00 J

Figure 36. Bargraph of Array Subset, Shaded about Y =0

63

GRAPHIC PROGRAMMING

Bargraph of Array
Subset, Shaded about
Y =1

64

Program:

10 DIM X(255),Y(255)
20 FOR =0 TO 255
30 X(h) = LOG10(I+1)

40 Y(I) = SIN(*PI/50)*COS(1*P1/200)

50 NEXT |

60 BARGRAPH("'SHADE",10,X(0),Y(0),20,1)

Display shown in Figure 37.

-

E+00

8.0000
£-01

0.0000
E+00

-4.0000

.2500E-01

0. 0000E+00

N

1.2500E+00

" 1.,8750E+00

/

Figure 37. Bargraph of Array Subset, Shaded about Y =1

PICTORIAL EXAMPLES

Program: Simple Point-Plot of
Entire Array, with
10 DIM X(255),Y(255) Vertical Grid Lines

20 FOR I=0 TO 255

30 X() = LOG10(+1)

40 Y(I) = SIN(I*P1/50)*COS(I*P1/200)
50 NEXT |

60 GRAPH("VLINES",,X(0),Y(0))

Display shown in Figure 38.

////:toooo g : *‘\\\\

E+00

5.0000} i A
E-01 | : 3

0.0000} : PSS N
E+00 . B . .;' '.\

L P
\.:(i

-5.0000}
E-01

-1.0000 |

| | ‘
Qoo 0.0000E+00 ©.2500E-01 '1,2500E400 | 1.8750E+00 /

Figure 38. Simple Point-Plot of Entire Array, with Vertical
Grid Lines

65

GRAPHIC PROGRAMMING

Simple Point-Plot of Program:
Entire Array, without
Horizontal Grid Lines 10 DIM X(255),Y(255)

20 FOR I=0 TO 255

30 X(I) = LOG10(I+1)

40 Y(I) = SIN(I*PI/50)*COS(I*P1/200)
50 NEXT |

60 GRAPH("'-HLINES",,X(0),Y(0))

Display shown in Figure 39.

E+00

5.0000
E-01

0.0000 ' A
E+00 A

-5.0000
E-01

~1.0000 | | |
E+00 0.0000E+00 6.2500€-01 1. 25006 +00 {57506 +00 j

Figure 39. Simple Point-Plot of Entire Array, without
Horizontal Grid Lines

66

PICTORIAL EXAMPLES

Program: Simple Point-Plot of
Entire Array, without
10 DIM X(255),Y(255) Axis Units

20 FOR I=0 TO 255

30 X(I) = LOG10(I+1)

40 Y(I) = SIN(I*PI/50)*COS(I*PI/200)
50 NEXT |

60 GRAPH(""-UNITS",,X(0).Y(0))

Display shown in Figure 40.

A

Figure 40. Simple Point-Plot of Entire Array, without Axis
Units

67

GRAPHIC PROGRAMMING

Simple Point-Plot of
Entire Array, Labeled
with LABEL Routine

68

Program:

10 DIM X(255),Y(255)
20 FOR I=0 TO 255

30 X()) = LOG10(I+1)
40 Y(I) = SIN(I*P1/50)*COS(I*P1/200)

50 NEXT |

60 GRAPH(,,X(0),Y(0))
70 LABEL("BOLD","Base 10 Logarithms”,”"Modulated Sine Wave'')

Display shown in Eigure 41.

1.0000
E+00

5.0000

Base 10 Logarithws A

E-01

0.0000
E+00

v 3.
A v

-8.0000
E-01

-1.0000

|

l

E+00

0.0000E+00

6. 2500E-01 "1, 2500E+00 " 1,8750E+00

Km<m: n 3w qm-O-m._u:n.OzJ

Figure 41. Labeled Point-Plot of Entire Array

PICTORIAL EXAMPLES

Program: Replacement of X
Units with Text Label

10 DIM X(255),Y(255)

20 FOR |=0 TO 255

30 X(h = LOG1I0(I+1)

40YWH)= SIN(I*PI/SO)*COS(I*PI/ZOO)

50 NEXT |

60 GRAPH(,,X(0),Y(0))

70 REMARK X UNITS (FULL REGION) BEGIN AT ROW 20, COLUMN 9

80 ERASE_TEXT("-TEXT,ROW'",20,9,72)

90 HTEXT('BOLD",20,10, 'Scroll-Proof Position for X Labels™)

Display shown in Figure 42.

£.0000 i
E+00 R

5.00001........
E-01

0.0000 : e
E+00 K ia

s 5

-5.0000
E-01

3

5

-1.0000 | |

\Boo " Scroll-Proaf Position for X Labels J

Figure 42. Replacement of X Units with Text Label

GRAPHIC PROGRAMMING

Simple Point-Plot of
Entire Array, with
Marked Value

70

Program:

10 DIM X(255),Y(255)
20 FOR I=0 TO 255

30 X(I) = LOG10(I+1)

40 Y(I) = SIN(I*PI/50)*COS(I*P1/200)

50 NEXT |

60 GRAPH(,,X(0),Y(0))
70 REMARK 35th point will be marked with a reverse cross

75 X1=X(34) \ Y1=Y(34)

80 MAP_TO_TEXT(X1,Y1,R,C)

90 PUT_SYMBOL("'BOLD,REVERSE,CROSS",R,C)
100 REMARK Print values from array

110 MOVE_CURSOR(R,C1+2)

120 PRINT “X =

X

Y=V

130 REMARK Return to scrolling area
140 MOVE_CURSOR

Display shown in Figure 43.

1.0000
E+00

5.0000

~

Mx= 1507, ¥

. 726749

E-01

0.0000
E+00

7\
I
PR

~5.0000
E-0t

-1.0000

|

E+00

0.0000E+00

6. 2500E-01 "1, 2500E+00 " {,8750E+00

/

Figure 43. Simple Point-Plot of Entire Array with Marked

Point

CHAPTER b5
ARRAYS AND DATA STRUCTURES

With the MINC system, the actual display of data is done by the
MINC graphic routines. The only jobs that you must do are to
decide which data to display in a particular operation, and then
to put your data in the proper type of structure.

The data structure used by the majority of MINC graphic rou- ARRAYS
tines is the array of the BASIC programming language. Except

in one special case (the index array) you use arrays to store the X

and Y coordinates of points or other figures that you want to

display on the screen of your terminal. The graphic routines

display the picture you want when you supply them with the ar-

ray elements that contain the coordinates of, for example, a

point.

In this section, we will consider the use of one- and two-
dimensional arrays as data structures for the MINC graphic
routines. Because it is a special case the index array is discussed
as part of the introduction to the indexing feature of the GRAPH
and BARGRAPH routines (see “Introduction to the GRAPH
Routine”).

The graphic routines are more difficult to use with two-
dimensional arrays than with one-dimensional arrays. Al-
though the practice is allowable and predictable, you should, for
simplicity’s sake, avoid the use of two-dimensional arrays unless
your application requires that you use them. = 71

GRAPHIC PROGRAMMING

One-Dimensional
Arrays

72

The MINC graphic routines are defined elsewhere in this man-
ual. At this point, consider the following statements as examples
of how to refer to arrays in a routine statement.

Example: POINT(,X1(0),Y1(0))
Result:

This statement displays a single point on the screen. The POINT
routine finds the X and Y coordinates of the point in element 0 of
the arrays X1 and Y1, respectively.

One way to display 200 points would be to repeat the POINT
statement 200 times. On each repetition of the statement, you
would, in effect, specify different elements of the arrays X1 and
Y1, in order to give each point a unique X and Y coordinate. In
the following example, assume that X1 and Y1 are 200-element
arrays created with the DIM statement, and that each element
of X1 and Y1 has been assigned a value.

Example:
FOR M=0 TO 199 \ POINT(,X1(M),Y1(M)) \ NEXT M
Result:

Since POINT is repeated 200 times in the FOR-NEXT loop, 200
points are displayed on the screen. The index of the FOR-NEXT
loop is also the number of each array element used in each
POINT statement. Thus, all 200 pairs of your X and Y coordi-
nates are extracted from X1 and Y1 and used to display the
points.

Asyou will see, using a statement such as POINT in this manner
is also more complicated to write down than the alternative. The
alternative is to use a more comprehensive routine, which can
handle your arrays more conveniently.

Example:

GRAPH(,,X1(0),Y1(0))

Result:

This GRAPH statement has the same effect as the FOR/NEXT
loop shown previously. In this case, however, X1(0) and Y1(0)

are simply the first pair of coordinates to be used — in this case,
they are also the first elements in their arrays. They are called

ARRAYS AND DATA STRUCTURES

the start X and start Y arguments, respectively. Once it knows
the start X and start Y arguments, this form of the GRAPH
statement plots all the remaining points by taking successive
elements of the arrays X1 and Y1. GRAPH does not stop until it
reaches the end of one of the arrays.

Therefore, with this GRAPH statement, you do not need to know
how long the arrays are or how many points to plot. You are re-
quired only to know where in the arrays GRAPH should start
and to arrange the arrays so that the X and Y coordinates match
up properly. Note that the start X and start Y arguments do not
need to have the same array element number. The two argu-
ments could, for instance, be X1(100) and Y1(1). Neither is it
necessary for the two arrays to have the same length. The
GRAPH routine stops when it reaches the end of the shorter
array.

In MINC BASIC, you can create two-dimensional arrays with
such statements as DIM T1(5,4)

This statement creates a 30-element array. You can put values
in this array by giving an element number for each dimension,
in statements such as

T1(1,2)=2

A two-dimensional array resembles a table, as shown in Figure
44,

0 1 2 3 4
0 T1(0,0) T1(0,4)
1
2
3
4
5 T1(5,0) T1(5,4)

___ MR-1624

Figure 44. A Representation of the Array T1(5~,4)

Two-Dimensional
Arrays

73

GRAPHIC PROGRAMMING

74

The table is an appropriate and simple structure for visualizing
the individual elements in a two-dimensional array. However, if
you use two-dimensional arrays with the MINC graphic rou-
tines, you must also remember the order in which successive ele-
ments are allocated in the MINC workspace. Within the work-
space, array elements are not physically stored as shown in Fig-
ure 44. Instead, the elements are stored linearly, according to a
fixed pattern that allows MINC to determine whether a given
element belongs to one or the other dimension.

Asthearray elements are allocated, the second dimension varies
most rapidly.

Thus, the statement
DIM A1(1,2)

allocates memory for the Al elements in the order shown in
Figure 45.

A1(0,0}

A1(0,1)

A1(0,2)

A1(1,0)

A1(1,1)

A1(1,2)

MR-1625

Figure 45. Allocation of the Array A1(1,2)

Notice that in Figure 45, all the “row (” elements of A1 are allo-
cated together, and then the elements of row 1 are allocated.
Thus, the second dimension (the “columns”) varies most rapidly.
Even though it is often convenient to think of A1 as a table with 2
rows and 3 columns, you must remember that in the workspace,
it looks like Figure 45.

ARRAYS AND DATA STRUCTURES

The MINC graphic routines display data from a two-
dimensional array by varying the second dimension most rap-
idly. That is, the statement

GRAPH(,,A1(0,0))

displays all the information in the array Al, treating the values
in both dimensions as Y coordinates. The elements of A1 are dis-
played in the order shown in Figure 45. As you can see, the
GRAPH statement is fairly simple when you use a two-
dimensional array for Y coordinates only. Of course, there
would be no advantage over one-dimensional arrays in this case.

The familiar visualization of a two-dimensional array as a table
suggests that such an array could be used to store X and Y coor-
dinates. You could use one dimension to identify particular
points; this dimension would equal the number of points you
wish to display. The second dimension would then be used to
store the information related to each point; if the information
consists of an X coordinate and a Y coordinate, the second di-
mension has two elements for each element of the first dimen-
sion. The “table” for a set of points then resembles Figure 46.

POINT O

POINT 1

MR-1626

Figure 46. Points Stored in a Two-Dimensional Array

The following example program, called TWOWAY, shows a
two-dimensional array being used to store X and Y coordinates
for 200 points. As the program shows, the GRAPH statement be-
comes more complicated in this case, although it does produce
the correct result (Figure 47).

READY _
NEW TWOWAY 75

GRAPHIC PROGRAMMING

76

READY

5 REMARK Create a two-dimensional array E1.

10 DIM E1(199,1)

15 REMARK Fill the array with X and Y coordinates.
20 FOR I=0 TO 199

25 REMARK X values are stored in the 0 elements.

30 E1(1,00=LOG10(I+1)

35 REMARK Y values are stored in the 1 elements.

40 E1(1,1)=SIN(1*P1/50)

50 NEXT |

51 REMARK Display the points in array E1.

52 REMARK The increment argument of 2 assures

53 REMARK the correct interpretation of X and Y values.
60 GRAPH("'EXACT LINES,SHADE", E1(0,0),E1(0,1),2,0)
SAVE

READY
RUNNH

The resulting display is shown in Figure 47.

K 0000

E+00

5.0000
E-01

1.1921
E-07

-5.0000
E-01

-1.0000 |

Qoo 0.0000E+00 5, 7526E-01 "1, 1505E+00 "1,7258E+00 /

Figure 47. Display of a Two-Dimensional Array

The program TWOWAY creates a table of 200 points (line 10).
The X coordinates are the logarithms of the integers from 1 to
200 (line 30). The Y coordinates are the sines of the angles be-
tween (approximately) 0 and 4+ (line 40).

The GRAPH statement in line 60 plots all the points in array E1.
The element E1(0,0) is used as the start X argument, because it

ARRAYS AND DATA STRUCTURES

contains the X coordinate of the first point. The element E1(0,1)
is used as the start Y argument, because it contains the Y coordi-
nate of the first point. The next-to-last argument in the GRAPH
statement is the increment argument, for which a value of 2 is
used. Recall that the E1 elements are stored in the workspace in
the following order:

E1(0,0) E1(0,1) E1(1,0) E1(1,1) E1(2,0) . . .

The value 2 for the increment argument tells GRAPH to skip an
array element between each successive point. Therefore, £E1(0,0)
is the first X coordinate, and E1(1,0) is the second X coordinate.
E1(0,1) is the first Y coordinate, and E1(1,1) is the second Y
coordinate.

The last argument in the GRAPH statement (0) is the shade line
argument. This argument shades the graph about the line Y =0.

You will soon be using the MINC system to display sets of data
that you have created by computation (in a program) or that you
have acquired by reading values from laboratory instruments
(as described in Books 5 and 6). As you attempt to display larger
and larger data sets, you will eventually encounter the limita-
tion imposed by using arrays. Because arrays are created and
stored in the MINC workspace, they come with a built-in size
limitation. You can determine the size of the available work-
space at any time by typing the red part of this dialog:

READY

LENGTH
2500

READY

The number with which MINC responds, 2500 in this example,
is the current length of the workspace in “words” of memory.
MINC uses one word of memory to store the value of an integer
and two words to store real numbers. This use of memory means
that with a workspace of 2500 words, you can create an array of
2500 integers or 1250 real numbers.

In the laboratory, it is likely that you will want to process much
larger sets of data than are allowed by these limitations. For
such purposes, MINC provides an additional data structure
known as the virtual array file. ‘

VIRTUAL ARRAY
FILES

77

GRAPHIC PROGRAMMING

Displaying Virtual
Array Files

78

Virtual array files are created by a special form of the DIM
statement:

DIM <file number>,<name> (<dimension>)

As shown in the above example, the DIM statement also makes
reference to a file number. As discussed in Book 2, a file number
appears in an OPEN statement, and essentially tells MINC
where data can be recorded or retrieved.

In the case of virtual array files, the OPEN statement and the
DIM statement create a data structure on a MINC diskette,
rather than in the MINC workspace. Conceivably, this data
structure can occupy an entire diskette, meaning that the vir-
tual array file can contain the equivalent of 240,000 words of
memory. Translated into numbers of stored values, this means
an array-like structure containing 240,000 integers or 120,000
real numbers.

You can easily display virtual array files with the POINT rou-
tine, using its MOVE option. The MOVE option causes the
graph to move to the left on the screen as more than 512 points
are displayed. This action is called strip-chart mode, because it
resembles the action of a strip-chart recorder.

Strip-chart mode is explained in detail in Chapter 3. If you want
to demonstrate strip-chart mode with virtual array files, type
the following example. If you run this example, you should first
put an empty (initialized) diskette in drive. 1. If the diskette has
never been used, initialize it with the command

INITIALIZE SY1:
The program VIRTUE takes several minutes to run.

READY
NEW VIRTUE

READY

5 REMARK Create virtual array file

10 OPEN “SY1:VIRTUE" AS FILE #2

20 DIM #2,D(4000)

25 REMARK Clear screen

30 DISPLAY_CLEAR

35 REMARK Display advisory message

40 HTEXT('BOLD,FLASH",10,35,"FILLING VIRTUAL ARRAY FILE")
45 REMARK Put data in virtual array file

ARRAYS AND DATA STRUCTURES

50 FOR 1=0 TO 4000

60 D(1)=SIN(I*PI/200)*COS(I*PI/125)

70 NEXT |

75 REMARK Set window

80 WINDOW("'EXACT",0,-1,500,1)

85 REMARK Display the grid

90 GRID

95 REMARK Display the points from the file
100 FOR I=0 TO 4000

110 POINT("MOVE,UNITS",I,D(1))

120 NEXT |

125 REMARK Label the finished graph

130 LABEL("BOLD","VIRTUAL ARRAY FILE",CLK$)
135 REMARK Close the virtual array file
140 CLOSE #2

150 END

SAVE

READY
RUNNH

The program VIRTUE performs the following tasks:

1. Opens a file called VIRTUE.DAT on SY1:, which is as-
sumed to be an empty diskette created by the INITIALIZE

command (see Books 2 and 3 for a description of
INITIALIZE).

2. Creates a virtual array file called D that will be stored on
SY1: with the name VIRTUE.DAT.

3. Computes 4000 real numbers and stores each number in a
separate element of D. During the computation, the message
FILLING VIRTUAL ARRAY FILE flashes on the screen.

4. When the computation is finished, the program sets the
window (line 80) and requests a grid for the graph (line 90).
(The routines WINDOW and GRID are described in Part 2
of this manual.)

5. Lines 100-120 display all the points from the virtual array
file.

6. Line 130 labels the final display when all the points have
been plotted. Thetitle VIRTUAL ARRAY FILE is centered
at the top of the graph region. The time of day (requested by
the string function CLK$) appears vertically at the right
edge of the graph region. 79

GRAPHIC PROGRAMMING

80

7. Line 140 closes the virtual array file on the diskette. The
data are now stored permanently, although you can change
their values by reopening the file.

The final display created by the program VIRTUE is shown in
Figure 48.

/1.00001 """"""""""""""""""""""" VIRTUAL ARRAY FILE / \

£-00 7N
N A
5.0000 A\ / .
£-01 it i H 0
y : 1
SN ::: \"\‘._ /:’ é
2.0000 frorerly B : o 0
£+00 / i FU
: kY A I
g 5
-5.,0000[" _,f
£-0t B
/ ; |
-1.00001.¢ |] | |
E+00 3.6250E+03 3.7500E+03 3. B750E+03 4.0000E+03

Figure 48. Display of a Virtual Array File

PART 2
ROUTINES

INTRODUCTION TO PART 2

Part 2, which comprises the remainder of this manual, describes
each of the graphic routines available in the MINC system. Each
routine has a section of its own, and the sections are ordered al-
phabetically by routine name.

Some of the routines are related so closely that they are
described together insingle sections. GRAPH and BARGRAPH
are described together; so are HLINE and VLINE; HTEXT
and VTEXT; and GET_CURSOR and MOVE_CURSOR.

Each section in Part 2 contains subsections that cover the fea-
tures of the routine in detail. These sections, and their contents,
are as follows:

1. “Operation” describes the general purpose of the routine.

2. “Examples” gives short examples of the routine in use. Each
example is followed by a brief explanation of the effects of
the routine statement.

3. “Statement Form” gives the correct form, or syntax, for the
routine. In the statement form, words and phrases are used
to represent the routine’s arguments.

Arguments that are required (and have no default setting)
are shown in black ink. Optional arguments are shown in

blue ink. -

83

GRAPHIC PROGRAMMING

84

Note that many routines contain an option argument.
In actual use, the value of this argument is an alpha-
betic string. One way to represent a string in a routine
statement is by inserting a word or list of words that is en-
closed by quotation marks. Another way to represent a
string in a routine statement is by inserting the name of
a string variable (example: S$) to which you have pre-
viously assigned the appropriate string value (exam-
ple: LET S$=“EXACT,SHADE,LINES,BRANDS").
String variables are useful if you want to make several rou-
tine statements that use the same option words. Once you
have assigned the proper values to the string variable, you
can simply name the variable in each routine statement and
can avoid retyping the full list of words each time.

Notice that in the example LET statement, the list of option
words is surrounded by quotation marks. When you use a
string variable such as S$, you do not need to put quotation
marks around the variable name. For this reason, the
“Statement Form” sections do not show quotation marks
around the option word. You must remember to put them in,
however, when you put the explicit option string in the rou-
tine statement.

If you need more information on the use of strings and string
variables, see Book 2: MINC Programming Fundamentals
and Book 3: MINC Programming Reference.

“Argument Descriptions” contains definitions and explana-
tions of each argument that can appear in the routine state-
ment. The arguments are described in the order in which
they appear in the statement form. In some sections, such as
the section on GRAPH and BARGRAPH, the argument de-
scriptions are rather long; that is because the description of
arguments, for these and other routines, contains most of the
“fine detail” about the routines’ operations. You should read
the argument descriptions carefully to get a full under-
standing of the way the routines work.

“Related Routines” compares and contrasts the operation of
the routine under discussion with other routines that have a
similar function. This is another important section, because
such routines as VIEW and ERASE_GRAPH have a simi-
lar visual effect even though the similarity is really only su-
perficial. This section is a good place to look when a routine

does not produce the result you expected, or when the pre-
vious sections on the routine suggest that the routine does
not perform the operation you need.

“Restrictions” lists the specific things that the routine does
not do. To some extent, this section anticipates the questions
you have about the effects a routine may have, for instance,
“Can I use GRAPH_INIT to erase text from the screen?”
This section also describes some operations that may appear
to be valid but are in fact illogical; one example of this type is
the inclusion of two contradictory option words in the same
routine statement. In most cases, logical errors cause the
routine statement to fail and produce an error message that
tells where you made the mistake. There are some cases in
which logic errors do not stop the routine and thus produce
no error message. Thus, the “Restrictions” section is a good
source of information when you are sure you are using the
correct routine (as verified by “Related Routines”), you re-
ceived no error message, and you still did not produce the
display you wanted.

“Brror Conditions” describes the common errors that occur
with a particular routine. This section gives the text of error
messages produced by the routine, which are accompanied
by a short description of the condition that created theerror.
Unless a solution is obvious from the error message itself,
the section also recommends a solution.

All the errors described are known as fatal errors. This
phrase means that the error actually stopped the routine.
Error messages are preceded by the letters “MINC-F-”, in
which the letter F designates a fatal error. Fatal errors can
generally be corrected by repeating the routine statement in
the proper form. Fatal errors do not change, or “corrupt,”
the data that you are trying to display.

Some errors are not fatal and thus produce no error mes-
sage. You can usually clarify these conditions by referring to
the “Restrictions” section.

Many system messages and error messages besides those re-
lated to graphic programming are produced by MINC. For
a list of system messages, see Book 8: MINC System Index.

INTRODUCTION TO PART 2

85

GRAPHIC PROGRAMMING

The MINC system has 33 graphic routines that allow you to
create and change complex pictures with single routine state-
ments. The following list briefly describes what the graphic rou-
tines do.

1.

10.

11.

86 12.

BARGRAPH has the same features as GRAPH, but it
displays data in bargraph form instead of point-plot form.

BOX draws a box on the screen.

CHAR_MODE controls the appearance of groups of dis-
played characters.

DISPLAY_CLEAR performs the actions of
ERASE_TEXT and GRAPH_INIT in a single statement,
erasing all text from the screen and clearing the graphic
memory.

DISPLAY_MODE controls the width, background color,
and scrolling mode of the screen.

DUAL_MOVE displays two graphs in strip-chart mode.

ERASE_GRAPH erases partor all of the graphic material
on the screen and also erases the data from the graphic
memory.

ERASE_TEXT erases part or all of the textual material
from the screen but does not return the terminal to the state
defined in setup mode.

FIND_POINT determines the X-Y coordinates of an inter-
esting point on a graph.

GET_CURSOR and MOVE_CURSOR determine the cur-
rent position of the cursor and move the cursor to a new po-
sition, respectively.

GRAPH displays data as a set of points on an X-Y plot (that
is, a “point-plot”). GRAPH automatically scales the data,
puts a grid on the screen, and puts numerical units on the X
and Y axes. With the same routine, you can index the coor-
dinates of interesting points, shade parts of the graph, and
create a moving graph that simulates the output of a strip-
chart recorder.

GRAPH_INIT erases the graphic memory, clearing all

13.

14.

16.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

graphies from the screen and exiting from strip-chart
mode.

GRID plots a grid of horizontal lines and tick marks on the
screen.

HLINE and VLINE plot horizontal and vertical lines on
the screen, respectively.

HTEXT and VTEXT display horizontal and vertical text
strings, respectively.

LABEL puts labels on the X and Y axes of either a graph or
a bar chart.

LIGHTS controls four of the light-emitting diodes on the
terminal keyboard.

MAP_TO_GRAPH translates a screen position from row-
column coordinates to X-Y coordinates.

MAP_TO_TEXT translates a screen position from X-Y
coordinates to row-column coordinates.

POINT plots a single point on the screen.

PUT_SYMBOL displays one of a set of special symbols at a
particular row-column position.

REGION sets the placement of the graphic displays on the
screen.

ROLL_AREA sets the placement of the scrolling area on
the screen.

SET_BAR can be used together with BARGRAPH to con-
trol the exact widths of individual bars in a BARGRAPH
chart. If you use BARGRAPH without SET_BAR, the
widths of the bars are set automatically.

SHADE shades sections of a graph.

TEXT_INIT erases all text and returns the terminal to the
state defined in setup mode.

TEXT_LINE draws lines on the screen from one row/
column position to another. -

INTRODUCTION TO PART 2

87

GRAPHIC PROGRAMMING

28. VIEW makes graphed data visible or invisible.

29. WIDE_LINE controls the width of characters on a partic-
ular row.

30. WINDOW sets the numerical limits of the X and Y coordi-
nates for a graphic display.

88

BARGRAPH

See “GRAPH and BARGRAPH.”

89

BOX

Operation

Examples

Statement Form

20

BOX draws rectangular boxes on the MINC screen with special
text characters.

ROLL_AREA(21,24)
B0X(,1,1,20,70)

draws a box with corners at row 1, column 1, and row 20, column
70 (the outer box shown in Figure 49).

BOX("BOLD,REVERSE”,5,5,16,60)

draws a box with corners at row 5, column 5, and row 16, column
60 (the inner box in Figure 49). This inner box is drawn with
reverse boldface characters.

/'t o

\Z _/

Figure 49. Result of Two BOX Statements

BOX(option,row 1,column 1,row 2,column 2)

Argument Type of Argument Valid Values Default Value
option string expression B,U,FR,[-]I -1
row 1,row 2 numeric expression Integer in Row containing
range 1-24 cursor
column 1, numeric expression Integer in Column containing
column 2 range 1-132 cursor

no arguments Although there are default values for every
argument, you cannot use BOX without arguments (see “Re-
strictions” below).

option Your choice of the options INVISIBLE, FLASHING,
BOLD, REVERSE, and UNDERLINE. INVISIBLE displays
spaces instead of line characters, erasing any characters pre-
viously drawn in the path of the box. Because INVISIBLE
displays spaces, the combination of INVISIBLE and
REVERSE does produce a visible result — a box of reverse
video spaces, without the line-drawing characters normally
used by BOX. The other four options describe the character
mode that applies to the box. (For a description of character
modes, see CHAR_MODE.)

If you omit the option word, “-INVISIBLE” is used by default.

row 1 row number of one corner of the box; must be in the
range 1-24. If you omit row 1, the row in which the cursor is cur-
rently located is used by default.

column 1 column number of one corner of the box:; must be in
the range 1-80 or 1-132. If you omit column 1, the column in
which the cursor is currently located is used by default.

row 2 row number of the opposite corner of the box; must be in
the range 1-24. If you omit row 2, the row in which the cursor is
currently located is used by default.

column 2 column number of the opposite corner of the box;
must be in the range 1-80 or 1-132. If you omit column 2, the col-
umn in which the cursor is currently located is used by default.

1. The LONG option of the DISPLAY_MODE routine sets the
column number range to 1-132 and enables you to enter
BOX arguments in this range.

2. The extent of figures drawn by BOX is not affected by pre-
vious statements, including ROLL_AREA or other routines
that restrict the size of the scrolling area.

1. All graph-drawing statements, including GRAPH and
BARGRAPH, begin their operation by clearing their graph
region of text. Therefore, when you want to put a box around
some feature of a graph, you must use BOX after you use the
graph-drawing routine. '

BOX

Argument
Descriptions

Related Routines

Restrictions

91

BOX

Error Conditions

92

BOX uses special text characters to draw lines. Therefore,
any part of the box that extends into your scrolling area will
scroll along with the other text in the serolling area. You can
use the ROLL_AREA routine to protect the box from this
scrolling action.

The two column positions specified in a BOX statement
cannot have common rows OR common columns. An error
message appears when any BOX statement has row 1=row 2
or column 1=column 2. Note that this occurs if you use BOX
either with no arguments at all or with the option word
alone, since all the rows and columns would default to the
cursor position.

Error message: ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

You have specified an illegal option word.

Error messages: BAD ROW SPECIFICATION or BAD
COLUMN SPECIFICATION

One or more of the row and column numbers you entered are
outside their legal range.

Error message: SPECIFIED CORNERS ARE NOT DIAG-
ONALLY OPPOSITE

You have entered the same value for both row numbers or
the same value for both column numbers (or both). This con-
dition is also created by omitting all the row and column
numbers from the statement.

As its name suggests, CHAR_MODE sets the mode in which
characters appear on the screen. A mode is a temporary state
that remains in effect only until you change it.

The modes set by CHAR_MODE remain in effect until they are
changed by another CHAR_MODE statement.

CHAR_MODE is used most commonly to draw attention to a
block of text on the screen, by making the text look different
from the rest of the screen.

CHAR_MODE provides the only means of controlling character
modes of text that is printed by the PRINT and PRINT USING
statements.

CHAR_MODE(’BOLD,REVERSE,UNDERLINE”)

sets the character mode of all subsequent characters to boldface,
reverse video, underlined characters. This mode remains in ef-
fect until it is canceled by a TEXT_INIT statement or another
CHAR_MODE statement.

CHAR_MODE(option)

Argument Type of Argument Valid Values Default Value
option string expression [-IB,[FIR,[-IF[-JU No change

no arguments Using CHAR_MODE with no arguments has
no effect on the current character mode.

option One or more of the following option words enclosed in
quotation marks and separated by commas.

1. REVERSE specifies that all the following text output state-
ments will display reverse video characters. Reverse video
characters appear within a small area with the background
color opposite that of the rest of the screen. '

2. BOLD specifies that all the following text output statements
will display boldface characters.

CHAR_MODE

Operation

Examples

Statement Form

Argument
Descriptions

93

CHAR_MODE

Related Routines

94

_

UNDERLINE specifies that all the following text output
statements will display underlined characters.

FLASH specifies that all the following text output state-
ments will display flashing characters.

Figure 50 shows the appearance of various character modes.

4)

HORMAL CHARACTERS JNDERLINED BOLDFACE
REVERSE VIDED
BOLDFACE
INDERLZNED
FLASHING

REVERSE BOLDFACH]

"TNERSE FLASHING

Figure 50. Sample Character Modes

For the purpose of photographing the screen or using a
screen copier, you may want to enable the interlacing fea-
ture in setup mode. Interlacing enhances the appearance of
characters for photographic purposes because it reduces the
amount of background color in each character. See “Setup
Mode” in Book 7 for information about interlacing.

The TEXT_INIT routine not only erases all text but also
nullifies any previous CHAR_MODE statements.
TEXT_INIT restores the stored setup mode parameters,
which were defined at the factory and may be changed by a
save (SHIFT/S) operation during setup mode. The saving of
setup parameters is described in Book 7: Working with
MINC Devices.

The DISPLAY_MODE routine has an option (BRIGHT)
that affects the appearance of characters on the screen. This
option is far superior to the REVERSE option of
CHAR_MODE as a means of changing the entire screen to a

white background. However, CHAR_MODE can also
display reversed characters after a
DISPLAY_MODE(BRIGHT”) statement, in which case
the reversed characters appear as white characters on small
black backgrounds.

4. The LABEL, HTEXT, VTEXT, BOX, PUT_SYMBOL, and
TEXT_LINE routines have all the character mode options
of CHAR_MODE; however, the character modes specified
in these routines affect only a single text string or figure
rather than all subsequent text. Therefore, these routines
arepreferableto CHAR_MODE when you want to highlight
a single entity.

1. Because CHAR_MODE affects all subsequent text output,
its effects are not limited to a particular part of the screen.
The modes affect both the scrolling area and (conceivably)
the graph regions.

2. Although the CHAR_MODE options can be specified in any
combination, the UNDERLINE option tends to reduce the
readability of text that is also in reverse video.

Error message;: ILLEGAL OR CONFLICTING OPTION(S)
SPECIFIED

You have attempted to specify an option that is illegal
for CHAR_MODE. The only legal options are BOLD,
UNDERLINE, FLASH, and REVERSE.

CHAR-MODE

Restrictions

Error Conditions

95

DISPLAY_CLEAR

Operation DISPLAY_CLEAR erases all text from the screen and erases

all graphic displays. A single DISPLAY_CLEAR statement is
fully equivalent to the following two statements:

ERASE_TEXT(“TEXT”)

GRAPH_INIT
Examples None included.
Statement Form DISPLAY_CLEAR
Argument No arguments allowed.
Descriptions
Related Routines 1. DISPLAY_CLEAR erases both text and graphies in a sin-

96

gle statement. To erase the text without erasing the
graphics, use the ERASE_TEXT routine by itself. To erase
the graphics without affecting the text, use either the
ERASE_GRAPH or GRAPH_INIT routine by itself.

DISPLAY_CLEAR does not cancel the current character
mode, nor does it recall the stored setup mode parameters. If
you want to recall the stored parameters while erasing text
from the screen, use the TEXT_INIT routine.

DISPLAY_CLEAR, like GRAPH_INIT, not only erases a
graph from the screen but also cancels previous REGION
and ROLL_AREA statements. To erase a graph without

canceling these previous statements, use the
ERASE_GRAPH routine.

DISPLAY_CLEAR, GRAPH_INIT, and ERASE_GRAPH
all erase a graph from the screen and from the graphic
memory of the terminal. To redisplay the graph, you must
then repeat the graph-drawing statements that produced it
originally. To remove a graph temporarily, use the VIEW
routine. The graph can then be redisplayed immediately by
another single VIEW statement.

DISPLAY_CLEAR

None. Restrictions

Error message: SYNTAX ERROR; CANNOT TRANSLATE Error Conditions
THIS STATEMENT

You have either misspelled DISPLAY_CLEAR or have made

some other syntax error, such as including an argument list. Re-
peat the statement.

97

DISPLAY_MODE

Operation

Examples

98

DISPLAY_MODE controls the background color, width in col-
umns, and scrolling mode of the entire screen.

DISPLAY_MODE can change these characteristics whether
you use it before or after you actually display text. Note, how-
ever, that the LONG and -LONG options erase existing text and
graphs from the screen.

DISPLAY_MODE(“BRIGHT”)

sets the screen to display black characters on a white back-
ground.

DISPLAY_MODE(“-BRIGHT,LONG,JUMP”)

returns to displaying white-on-black characters, sets the screen
to a width of 132 columns, and changes the scrolling mode to
jump scrolling.

READY
DISPLAY_MODE(“LONG”)
READY

GRAPH(,,Y(0)

READY

produces a “long-format” graph such as is shown in Figure 51.

-

(3]

6,350
(2]

0.0000
£+0

.20
£t

.......

R

41,25
Km 0.0000EH0 ' 20000601 5.0000E0 7.G0EHH | LOOOEMR L. 2500EMR 00OEWR 1.7SOMEHR

_/

Figure 51. A Long-Format Graph

DISPLAY_MODE(option)

Argument Type of Argument Valid Values Default Value
option string expression [[IL, [} No change
[-]B

no arguments Using DISPLAY_MODE with no arguments is
legal but has no effect on the screen.

option One or more of the following option words, enclosed in
quotation marks.

1.

BRIGHT sets the background color of the screen to white,
making displayed characters black. Negated by -BRIGHT.
If you omit both these options, the background color is not
changed.

LONG sets the screen width to 132 columns instead of the
normal 80. Negated by -LONG. LONG and -LONG also
erase all text from the screen and reset the scrolling area to
rows 1-24. If you omit both these options, the screen width is
unchanged.

LONG also performs an effective DISPLAY_CLE AR state-
ment, erasing graphs and text from the screen.

JUMP sets the scrolling mode to “jump,” so that a new line of
text appears instantaneously in the scrolling area. The nega-
tion, -JUMP, sets the scrolling mode to “smooth,” so that a
new line of the text scrolls onto the screen in smaller incre-
ments, giving the appearance of smooth motion. If you omit
both these options, the scrolling mode is unchanged.

The three properties controlled by DISPLAY_MODE can
also be controlled in setup mode. However, you should use
only DISPLAY_MODE to set the background color and
screen width, so that the setup mode parameters remain in
the standard initial state. For example, none of the routines
will accept a column number in the range 81-132 unless you
have previously used DISPLAY_MODE with the LONG op-
tion. These routines will fail if you have set the screen width
to 132 via setup mode.

DISPLAY_MODE(“LONG”) allows other graphic routines
to use rows 81-132.

DISPLAY_-MODE

Statement Form

Argument
Descriptions

Related Routines

99

DISPLAY-MODE

Restrictions

Error Conditions

100

3. The TEXT_INIT routine eliminates the effects of all pre-
vious DISPLAY_MODE statements and returns the ter-
minal to the state saved in setup mode. This state may be the
same as was defined at the factory. For details on saving and
recalling setup mode parameters, see Book 7: Working with
MINC Devices.

In order for the DISPLAY_MODE routine to work consistently
with other routines, you must set the terminal to the standard
initial state in setup mode (see Part 1).

Error message: ILLEGAL OR CONFLICTING OPTION(S)
SPECIFIED :

You have entered an illegal option word.

DUAL_MOVE puts two graphs on the screen in strip-chart
mode. It is the only means of doing so.

DUAL_MOVE(‘DISTANCE’,,1,Y1(0),Y2(0))

displays the entire contents of arrays Y1 and Y2 in sti'ip-chart
mode. The value of 1 for the start X argument is interpreted by
DUAL_MOVE as the distance between adjacent points on the
graphs, where 1 is the smallest possible distance and 512 the
largest. The increment argument was not included; therefore,
all elements of both arrays are displayed. Array Y1 is displayed
on the region defined for graph 1; array Y2 is displayed on the
region defined for graph 2.

DUAL_MOVE(-DISTANCE’,100,X(0),Y 1(0),Y2(0),2)

displays 100 points on each graph. In this case, the start X argu-
ment is the first element of array X. The values in array X will
form the X axis for both graphs. Because the increment argu-
ment is 2, only the even-numbered elements are displayed from
arrays X, Y1, and Y2.

DUAL_MOVE {cption,number,start X, start YVisart Y2,
incremert)

Argument Type of Argument Valid Values Default Value
option string expression [-ID -D
number numeric expression positive integer smaller number
<= dimension of the of elements be-
smaller y array tween start Y1/
start Y2 and end
of array Y1/Y2
start X name of array name of element in 1 (with D option)
element, or legally dimensioned
numeric expression array, or integer in default not allowed
range 1-512 with -D option
(with D option),
or real number
start Y1, name of array name of element in not allowed
start Y2 element, or legally dimensioned
numeric expression array, or any legal
numeric expression
increment numeric expression integer in range 1

1-32,767

DUAL_MOVE

Operation

Examples

Statement Form

101

DUAL-MOVE

Argument
Descriptions

102

option A single word, enclosed in quotation marks, that speci-
fies the proper interpretation of the start X argument.
DISTANCE makes DUAL_MOVE interpret start X as the dis-
tance in raster units between adjacent points on the screen. In
other words, when you specify the DISTANCE option, start X
must be an integer in the range 1-512. The option -DISTANCE,
which is chosen by default when you omit the option word,
makes DUAL_MOVE interpret start X as the first element of
an array of values that will be the start X coordinates for both
graphs. This array must have a dimension at least as large as the
two Y arrays.

number The number of points to plot on both graphs; must be
equal toor less than the dimensions of the two Y arrays, if arrays
are used for the graph 1 and graph 2 values.

If you do not include the number argument, DUAL._MOVE will
begin plotting from the array elements you specify and will
continue to the ends of the arrays. If the arrays have different
sizes, the length of the smallest array is used.

start X When the -DISTANCE option is used, start X is an ele-
ment of the array of X values to use in plotting both graphs.
When the -DISTANCE option is used, you must includethe start
X argument; there is no default value in this case, and omitting
the start X argument causes an error. DUAL_MOVE will use
the value in this array element as the X coordinate of the first
point on both graphs. In this case, the point is displayed only if
the value of start X is within the window established for graph 1.

When the-DISTANCE option is used, DUAL_MOVE uses the X
window of graph 1 for both graphs.

When the DISTANCE option is used, start X must be an integer
in the range 1-512, indicating the distance in raster units be-
tween adjacent points on the two graphs. In this case, you can
omit the start X argument altogether, and a value of 1 will be
used by default. A value of 1 simply means that the points will be
as close together as possible.

startY1 Anelementof the array of Y values to plot on graph 1.
DUAL_MOVE plots the first point of graph 1 using the value in
this element as the Y coordinate.

You can make this argument a numeric expression if the
number argument is 1.

If start Y1 is an array element, the dimension of the array must
be at least as large as the number argument.

start Y2 An element of the array of Y values to plot on graph 2.
DUAL_MOVE plots the first point of graph 2 using the valuein
this element as the Y coordinate.

As with start Y1, this argument can be a numeric expression if
one point is being plotted and must be an array element if many
points are being plotted. If an array is used, its dimension must
be at least as large as the number argument.

increment The array increment to be used by DUAL_MOVE.
If you leave this argument out of a DUAL_MOVE statement, an
inerement of 1 is used by default. An increment of 1 means that
each element of the arrays, beginning with the starting ele-
ments you name in the statement, will be plotted on the screen.
An increment of 2 means that DUAL_MOVE will plot from the
starting elements and will then plot every other element. Simi-
larly, you can skip two elements at a time by specifying an incre-
ment of 3. The increment cannot be less than 1 or greater than
32767.

1. DUAL_MOVE is very similar in operation to the GRAPH
routine with the MOVE option. However, GRAPH allows
only one graph at a time in strip-chart mode. DUAL_MOVE
also differs from the GRAPH routine in its interpretation of
the start X argument, and in general DUAL_MOVE has
considerably fewer options available.

2. When you want to display individual points in strip-chart
mode, it may be more convenient to use the POINT routine,
which has a MOVE option like that of GRAPH. However, as
with GRAPH, you can use only one graph number at a time
with POINT.

3. Although DUAL_MOVE provides no options in its own
string except DISTANCE, you can use the
ERASE_GRAPH, HLINE, SHADE, and VIEW routines to
modify DUAL_MOVE displays.

4. Because DUAL_MOVE lacks the autoscaling feature of
GRAPH, you must use the WINDOW routine to set the
windows for both graphs. &

DUAL-MOVE

Related Routines

103

DUAL-MOVE

Restrictions

Error Conditions

104

You cannot use DUAL_MOVE after a BARGRAPH,
GRAPH, or POINT statement that includes the MOVE op-
tion unless you first use GRAPH_INIT or
DISPLAY_CLEAR.

You cannot use the FIND_POINT routine in conjunction
with DUAL_MOVE.

You cannot plot vertical lines (as with the VLINE routine)
on the screen during a DUAL_MOVE operation.

To add new points to a display created by DUAL_MOVE,
you should use DUAL_MOVE again, not POINT or
GRAPH.

Error message: ARRAY LENGTH IS TOO SMALL

Array Y1, Y2, or X array has too few elements to plot the
requested number of points. Specifically, the number of ele-
ments from the starting element to the end of the array must
be equal to or greater than the number argument times the
increment argument. Repeat the statement with a smaller
number argument or recreate the array(s) with a larger di-
mension. See the description of the DIM statement in Book 2
or Book 3.

Error message: “DISTANCE” MUST BE SPECIFIED
WHEN X IS OMITTED

You have illegally omitted the start X argument when spec-
ifying the -DISTANCE option. This may mean that you have
omitted the option word altogether, since the default option
is -DISTANCE.

Error message: ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

You have specified an option word that is illegal for
DUAL_MOVE. The only legal options are DISTANCE and
-DISTANCE.

Error message: VALUE OF ARGUMENT NO. 21S OUT
OF BOUNDS

The number argument in your statement is less than 0 or
greater than 32767.

DUAL-MOVE

5. Error message: VALUE OF ARGUMENT NO. 6 IS OUT
OF BOUNDS

The increment argument in your statement is less than 1 or
greater than 32767.

6. Error message: SINGLE STRIP-CHART MODE CAN-
NOT BE ON WHEN DUAL_MOVE IS CALLED

You used DUAL_MOVE when the terminal was already in
single strip-chart mode, for example, after a POINT or
GRAPH statement with the MOVE option. First use
GRAPH_INIT to eliminate single strip-chart mode, and
then repeat the DUAL_MOVE statement.

7. Error messages:

X VALUE MUST BE GREATER THAN 0 WHEN “DIS-
TANCE” IS SELECTED

X VALUE MUST BE LESS THAN 513 WHEN “DIS-
TANCE” IS SELECTED

You have used DUAL_MOVE with the DISTANCE option

but with an X value that is not in the range 1-512. Repeat the
statement with a legal X value.

105

ERASE_GRAPH

Operation

Examples

106

ERASE_GRAPH allows you to selectively erase any or all
graphic material that you have displayed on the screen.
ERASE_GRAPH erases the material from the graphic memory
as well as from the screen.

ERASE_GRAPH(“ALL”,,,0)

erases all features of graphs 1 and 2 from the screen and from
the graphic memory.

The following examples show the effects of other

ERASE_GRAPH options on the original graph shown in Figure
52.

(" - N

1.0000[
E+00

5.0000
E-01

0.0000 S S
3 AV

~5.0000
E-01

-1.0000]..* e
E+00 0.0000E+00 1,5000E+02 " 3. 0000E+02 " 4,5000E+02

N _

Figure 52. Original Graph

ERASE_GRAPH(“-ALL,POINTS”)

erases the points from graph 1, leaving the grid features (Figure
53).

ERASE_GRAPH

1.0000
E+00

5.0000
E-01

0.0000
E+00

-5.0000
£-01

-1.0000
E+00 0.0000E+00 1.5000E+02 "3.0000E+02 " 4.5000E+02 <_//////

Figure 53. Result of ERASE_GRAPH(“-ALL,POINTS”)

ERASE_GRAPH(“-ALL,GRID”)

erases the grid features from the screen, leaving the points (Fig-
ure 54).

Figure 54. Result of ERASE_GRAPH(“-ALL,GRID”)

107

ERASE_GRAPH

Statement Form

Argument
Descriptions

108

HLINE(,1.00)
ERASE_GRAPH(“-ALL,HLINE”,,1.00)

displays, then erases a horizontal line located at Y =1.00

- N

1.0000| =
E+00 i :s,_

5.0000
E-01

0.0000 SRS
0 | - - - /N

~

-5.0000
E-01

-1.0000)._% [v = I
E00 ' 0.0000E+00 i B000E 08 TS 00006 +08 T i 5000E+02 j

_

Figure 55. Result of ERASE_GRAPH(“-ALL,HLINE",,1.00)

ERASE_GRAPH(cotions, X coordinate, ¥ cocrdinate,grach

numner,

Argument - Type of Argument Valid Values Default Value
option string expression [[JA,PH,V,G A
graph number numeric expression 0,1,0r2 1
X coordinate, numeric expression integer in all lines
Y coordinate range -32768
to 32767, or

any real number

no arguments Using ERASE_GRAPH with no arguments
erases graph 1 in its entirety.

options A list of items to be erased from the screen, separated
by commas and enclosed in quotation marks. The following list
describes all the legal options.

1. POINTS erases the entire series of points (and brands) from
the graph number you supply. If you include a graph
number of 0, the points are erased from both graphs. If you

omit the graph number, only graph 1 is affected. The X and
Y coordinates are not required by this option.

2. HLINE and VLINE erase horizontal and vertical lines (re-
spectively) from the graph number you supply. HLINE can
erase a single line at the Y coordinate you supply, and
VLINE can erase a single line at the X coordinate you sup-
ply. If you do not supply the appropriate coordinate, HLINE
and VLINE will erase all the horizontal and vertical lines on
the graph number you supply.

HLINE operates on both graphs if you include a 0 as the
graph number, and on graph 1 alone if you omit the graph
number. (See also, “Restrictions” for ERASE_GRAPH.)

VLINE always operates on both graphs and does not re-
quire a graph number argument.

3. GRID erases the grid (the horizontal lines, tick marks, and
axis units) from the graph whose number you supply, or
from both graphs if you include a graph number of 0. If you
omit the graph number, the grid is erased only from graph
1. The X and Y arguments are not required by this option.

4. ALL completely erases graphs. ALL is the default option
used if you include no option words in an ERASE_GRAPH
statement. Because ALL includes all the other
ERASE_GRAPH options, you must include its negative
form (-ALL) in statements that are intended to erase only a
single feature.

X coordinate The X coordinate of a vertical line to be erased.
The coordinate must be within the current window to have any
effect. This argument is only used by the VLINE option.

Y coordinate The Y coordinate of a horizontal line to be erased.
The coordinate must be within the current window to have any
effect. This argument is only used by the HLINE option.

graph number The number of the graph on which
ERASE_GRAPH operates. A value of 0 indicates both graphs,
and a value of 1 or 2 indicates a single graph. If you omit the
graph number, graph 1 is used by default. h

ERASE_GRAPH

109

ERASE_-GRAPH

Related Routines

Restrictions

Error Conditions

110

Unlike DISPLAY_CLEAR and GRAPH_INIT,
ERASE_GRAPH has no effect on previous WINDOW,
REGION, VIEW, or SHADE statements.

The only text displays affected by ERASE_GRAPH are the
units displayed by GRID, POINT, GRAPH, and
BARGRAPH.

If you want to eliminate a graph temporarily rather than
permanently, do not use ERASE_GRAPH; use VIEW in-
stead.

If supplied, the X and Y coordinates must be within the cur-
rent window. If a coordinate is outside the window, it has no
effect, although no error message is produced.

The horizontal grid lines displayed by GRAPH and
BARGRAPH are not placed at exactly the Y position la-
beled on the Y axis. Consequently, you should use the
HLINE option of ERASE_GRAPH only to erase those lines
displayed by the HLINE routine.

Once you have erased a feature with ERASE_GRAPH, the
feature can be recovered only by repeating the statements
that produced the original display.

The options ALL, POINTS, and VLINE areillegal when ap-
plied to graphs in strip-chart mode.

Error message: ILLEGAL GRAPH NUMBER

The graph number you have supplied is not 0, 1, or 2. Repeat
the ERASE_GRAPH statement with one of these graph
numbers. (If you intend to erase graph 1, you can simply
omit the graph number.)

Error message: ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

The option word you specified is illegal for
ERASE_GRAPH.

Error message: CANNOT ERASE A CURRENTLY UN-
USED GRAPH

You have attempted to erase a graph that does not exist.

Note that if you omit the graph number from
ERASE_GRAPH, the statement applies to graph 1 by de-
fault.

Error message: SPECIFIED OPTION(S) INCOMPAT-
IBLE WITH MOVING GRAPHS

You have attempted to use either the POINTS, VLINE, or
ALL option to erase features from a graph that is in strip-
chart mode. The only ERASE_GRAPH options that are le-
gal on moving graphs are GRID and HLINE. Repeat the
ERASE_GRAPH statement with the appropriate option,
and be sure to include the option -ALL in the same state-
ment.

ERASE_GRAPH

111

ERASE_TEXT

Operation

Examples

Statement Form

Argument
Descriptions

112

ERASE_TEXT has a function very similar to that of
ERASE_GRAPH: selective erasure of the screen. The two rou-
tines differ in that ERASE_TEXT operates only on text
displays.

ERASE_TEXT(“TEXT”)
erases all text characters from the screen.
ERASE_TEXT(“TEXT,ROW”,2,25,20)

erases a horizontal row of 20 characters beginning at row 2, col-
umn 25.

ERASE_TEXT(“-TEXT,COLUMN?”,2,25,20)

erases a vertical column of 20 characters beginning at row 2, col-
umn 25.

ERASE_TEXT(cption,row number,column number, number to

erase)
Argument Type of Argument Valid Values Default Value
option string expression [-IT,C,R T
row number numeric expression integer in with T option:
range 1-24 all rows
with others:
row containing
cursor
column number numeric expression integer in with T option:
range 1-132 all columns
with others:
column con-
taining cursor
number numeric expression integer in 1
to erase range 1-32767

no arguments Using ERASE_TEXT with no arguments
erases all text from the screen (equivalent to the TEXT option
with no other arguments).

option One or more option words enclosed in quotation marks.

1. If you omit the option word, the TEXT option is selected by
default.

2. TEXT erases a single character at the row and column
numbers you specify. If you do not give row and column
numbers, all text is erased. If you give a column number
without a row number, all text in that column is erased. If
you give a row number without a column number, all text in
that row is erased.

The number argument is not used by the TEXT option.

3. ROW erases characters in the row number you supply. Be-
ginning with the column number you supply and working
toward the right, this option erases the number of charac-
ters given by the number argument. The erasure always
stops at the end of the row. If you select the ROW option and
omit either the row number or column number, the current
position of the cursor is used by default. If you select ROW
and omit the number argument, a single character is erased.

ROW should be used only in combination with -TEXT.

4. COLUMN erases characters in the column number you sup-
ply. Beginning with the row number you supply and work-
ing downward, this option erases the number of characters
given by the number argument. The erasure always stops at
the end of the column. If you select the COLUMN option and
omit either the column number or row number, the current
position of the cursor is used by default. If you select COL-
UMN and omit the number argument, a single character is
erased.

COLUMN should be used only in combination with -TEXT.

row number A number in the range 1-24. Indicates the row of
text on which ERASE_TEXT operates. If you omit the row
number, the default condition depends on the option you have se-
lected. For the TEXT option, the default is the entire column in-
dicated by the column number. For the ROW and COLUMN op-
tions, the default is the row in which the cursor is located.

column number A number in the range 1-80 (or 1-132). Indi-
cates the column of text on which ERASE_TEXT operates. If
you omit the column number, the default condition depends on
the option you have selected. For the TEXT option, Tue default is

ERASE_TEXT

113

ERASE_TEXT

Related Routines

Restrictions

Error Conditions

114

the entire row indicated by the row number. For the ROW and
COLUMN options, the default is the column in which the cursor
is located. ‘

number to erase For the ROW and COLUMN options, the
number of characters to erase. This argument can be any inte-
ger from 0 to 32767. A value of 0 causes no erasure.

If you omit the number to erase, a value of 1 is used by default.
This argument is ignored by the TEXT option.

1.

Unlike TEXT_INIT, ERASE_TEXT does not change the
effects of prior statements of DISPLAY_MODE,
CHAR_MODE, ROLL_AREA, or LIGHTS.

If you use the ROW option of ERASE_TEXT and store the
arguments for ROLL_AREA in your program, it is
straightforward to erase only the scrolling area, without af-
fecting the labels on graphs.

The range of legal column numbers in an ERASE_TEXT
statement is affected by previous DISPLAY_MODE state-
ments. The LONG option of DISPLAY_MODE makes the
range 1-132. The -LONG option makes the range 1-80.

The figures produced by BOX, TEXT_LINE, and
PUT_SYMBOL are erased by ERASE_TEXT, since they
are produced with special TEXT characters.

The ERASE_GRAPH routine can erase the units displayed
by GRID, GRAPH, and BARGRAPH. This is the only case
in which ERASE_GRAPH operates on text characters.

Although the legal range of the number to erase argument is
very large, the practical range is either 0-80 or 0-132, since
the erasure always stops at the end of a row or column.

Because ERASE_TEXT can erase the units displayed by
GRID, GRAPH, and BARGRAPH, you should avoid using
the TEXT option in its most general form when you have
graphics on the screen.

Error message: VALUE OF ARGUMENT NO. 21IS OUT
OF BOUNDS

You have entered a row number that is outside the range
1-24.

Error message: VALUE OF ARGUMENT NO. 31IS OUT
OF BOUNDS

You have entered a column number that is outside the range
1-80 or 1-132.

Error message: VALUE OF ARGUMENT NO. 4 IS OUT
OF BOUNDS

The number to erase is less than 0 or greater than 32767.

Error message: ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

You have specified an illegal option. The only legal
ERASE_TEXT options are TEXT, ROW, and COLUMN.

Error message: THE TEXT OPTION MUST BE SPECI-
FIED BY ITSELF

You have included other optionsin an ERASE_TEXT state-
ment besides TEXT. When you specify TEXT, neither ROW
nor COLUMN may be specified in the same statement.

ERASE_TEXT

1156

FIND_POINT

Operation

Examples

116

After you have displayed a graph on the sereen, FIND_POINT
allows you to find and store the coordinates of an interesting-
looking point on a graph.

FIND_POINT allows you to select a particular point interac-
tively, by means of the following procedure.

1. Assoon as FIND_POINT is used, either in a program or in
immediate mode, a flashing brand appears on the screen.

2. Move the flashing brand so that it covers the point of inter-

est. You can move it with the four arrow keys at the top right
edge of the keyboard.

3. When the brand is covering the point of interest, strike the
key on the keyboard. The flashing brand disappears,
and the coordinates of the point are stored in the variables X
and Y.

If, prior to using FIND_POINT, you set X and Y to a coordinate
position that is within the current window, the flashing brand
will begin at that position. If the preset position is outside the
current window, it is ignored, and the flashing brand appears
within the graph region, as close as possible to the coordinate po-
sition you specified in X and Y.

If you use FIND_POINT in a program, the program will pause
until you strike the key to store the coordinates. The pro-
gram execution then resumes at the first statement following
the FIND_POINT statement.

FIND_POINT(X1,Y5)

displays a flashing brand that you can move to cover an interest-
ing point on a graph. When you press the key,
FIND_POINT stops and the flashing brand disappears. The X
coordinate of the point is now stored in the variable X1, and the
Y coordinate, in the variable Y5.

FIND_POINT(X,Y)

Argument Type of Argument Valid Values Default Value
X, Y name of any legal name for not allowed
numeric variable real or integer
variable

X The name of a variable that will hold the the X coordinate of
the point. Before you use FIND_POINT, you may set this varia-
ble to the X coordinate at which the flashing brand will first ap-
pear.

X is a required argument.

Y The name of a variable that will hold the Y coordinate of the
point. Beforeyou use FIND_POINT, you may set this variable to
the Y coordinate at which the flashing brand will first appear.

Y is a required argument.

1.

FIND_POINT is similar in operation to the INDEX option
of GRAPH and BARGRAPH. However, FIND_POINT ac-
tually returns coordinates that are within the current
window of the graph, whilethe INDEX option returns an in-
dex to the arrays of input data used by GRAPH and
BARGRAPH.

Because you can specify the exact starting position of the
flashing brand, the brand is not restricted to the graphed
points, as it is with the INDEX option of GRAPH and
BARGRAPH.

The accuracy of Y coordinates found by FIND_POINT is
limited to the vertical length of the flashing brand.

You cannot use FIND_POINT on a DUAL_MOVE display,
or on any other display that is in strip-chart mode.

When you use FIND_POINT, only one graph may be
present, either in visible or invisible form.

Error message: ARGUMENT NO.n MUST BE A VARIA-
BLE

You have entered an X or Y argument that is not a legal vari-
able name. The value n=1 refers to the X argunfent; n will

FIND_POINT

Statement Form

Argument
Descriptions

Related Routines

Restrictions

Error Conditions

117

FIND_POINT

118

also be 1 if you have entered nonvariable values for both
arguments.

Error message: MOVE MODES MUST BE OFF UPON
INVOCATION

You cannot use FIND_POINT on graphs or bargraphs that
were created in strip-chart mode, that is, by DUAL_MOVE
or by GRAPH, POINT, or BARGRAPH with the MOVE op-

tion.

GET_-CURSOR and MOVE_CURSOR

GET_CURSOR and MOVE_CURSOR allow you to find out the Operation
exact row and column at which the cursor is located and to move

the cursor to any screen position by supplying a new row and col-

umn.

GET_CURSOR determines the cursor’s current position.

MOVE_CURSOR moves the cursor to any new position you
specify.

GET_CURSOR(R1,C1) Examples
stores the row number of the cursor’s current position in the

variable R1; stores the column number of the cursor’s current

position in the variable C1.

MOVE_CURSOR(10,10)

moves the cursor to row 10, column 10. The next text to be dis-
played will start at this new position.

GET_CURSOR(row number,column number) Statement Form

MOVE_CURSOR(row number,column number})

Argument Type of Argument Valid Values Default Values
row number numeric expression integer in MOVE_CURSOR:
or variable range 1-24 top row of
scrolling area
GET_CURSOR:
not allowed
column number numeric expression integer in MOVE_CURSOR:
or variable range 1-132 column 1
GET_CURSOR:
not allowed
row number For MOVE_CURSOR, the row number, in the Argument
range 1 to 24, to which to move the cursor. Descriptions

For GET_CURSOR, the name of a variable that will receive the
row number of the cursor. 119

GET_CURSOR and MOVE_-CURSOR

Related Routines

120

You may not omit the row number from a GET_CURSOR state-
ment.

If you omit the row number from a MOVE_CURSOR statement,
the top line of the current scrolling is used by default.

column number For MOVE_CURSOR, the column number,
in the range 1-80 or 1-132, to which to move the cursor.

For GET_CURSOR, the name of a variable that will receive the
column number of the cursor.

You may not omit the column number argument in a
GET_CURSOR statement.

If you omit the column number in a MOVE_CURSOR state-
ment, column 1 is used by default.

1. Thedefault position for MOVE_CURSOR is always the first
position of the current scrolling area. Therefore, any rou-
tine that changes the scrolling area also changes this default

position. Routines that change the scrolling area are
GRAPH, POINT, BARGRAPH, DUAL_MOVE, REGION,
ROLL_AREA, GRAPH_INIT, and TEXT_INIT.

2. The legal range of column numbers in a MOVE_CURSOR
statement depends on previous DISPLAY_MODE state-
ments. The LONG option of DISPLAY_MODE makes the
columns range from 1 to 132. The -LONG option specifies
columns ranging from 1 to 80.

3. MOVE_CURSOR and GET_CURSOR can address any lo-
cation on the screen; they are not limited by previous
REGION or ROLL_AREA statements.

4. The PRINT and PRINT USING statements always begin
their output at the current cursor position. You can use
MOVE_CURSOR to make such output appear outside the
scrolling area. Figure 43 in Part 1 illustrates a graph that
has a point marked with this technique.

5. In general, when you move the cursor outside the scrolling
area and perform some operation, you should follow imme-
diately with a MOVE_CURSOR statement with no argu-
ments, which will return the cursor to the first position in
the scrolling area.

GET_-CURSOR and MOVE_CURSOR

You cannot supply any sort of constant or arithmetic expres-
sion as a GET_CURSOR argument. The GET_CURSOR
arguments must be variable names.

Error messages: BAD COLUMN SPECIFICATION or
BAD ROW SPECIFICATION

You have attempted to move the cursor to a row that is out-
side the range 1-24, or to a column that is outside the range
currently in effect on your terminal (either 1-132 or 1-80).

Error message: ARGUMENT NO.n MUST BE A VARIA-
BLE

You have used GET_CURSOR with an argument or argu-
ments that are not variables. The value n=1 refers to the row

number; n will also equal 1 if you enter bad values for both
GET_CURSOR arguments.

Error message:. CANNOT GET CURSOR POSITION
FROM TERMINAL

The GET_CURSOR routine was unable to return the cur-
rent cursor position. Enter setup mode to ensure that the ter-

minal is set for ANSI escape sequences. You may also need
to press the NO SCROLL key.

Restrictions

Error Conditions

121

GRAPH and BARGRAPH

Operation

Examples

122

GRAPH creates a complete graphic display using arrays of pre-
computed X and Y data. GRAPH allows you to choose among
several formats for displaying the data, and it allows you to in-
dex the coordinates of up to 10 points from the graph.

Like GRAPH, BARGRAPH creates a picture from arrays of
precomputed data. Instead of creating a graph from points
or line segments, however, BARGRAPH creates a figure in
whichthe X and Y coordinates of a datum are represented by the
position and height of a bar.

Both routines use a feature called autoscaling. The purpose of
autoscaling is to make the MINC display screen conform to the
numerical limits of your data. For instance, when you use
GRAPH to display an array of Y coordinate data, you will com-
monly want the largest Y value in the array to appear near the
top of the Y axis. The autoscaling feature will ensure this type of
display, regardless of the numerical range of the input data.

Autoscaling is always used by GRAPH and BARGRAPH unless
you have previously used the WINDOW routine.

GRAPH(“SHADE”,500,,Y1(0),2,.75)

creates a 500-point graph from the Y coordinates stored in array
Y1. The first point will be graphed with the Y coordinate in
Y1(0). The increment is 2. Therefore, the Y coordinates will be
taken from Y1(0), Y1(2), Y1(4), and so on until 500 points have
been plotted. Note that Y1 must therefore have at least 999 ele-
ments. In the display created by this example, the units on the X
axis will be the ordinal numbers of the displayed points.

The graph is shaded about the line Y = .75.

GRAPH(“LINES,BRANDS”,50,X1(0),Y1(0),,,2)

creates a 50-point graph with a graph number of 2. The X and Y
coordinates of the points on the graph are taken from corre-
sponding elements of arrays X1 and Y1, respectively. The 50
points are connected with line segments, and brands are placed
at each point. The graph is not shaded.

BARGRAPH(“EXACT”,20,X1(0),Y1(0),2)

displays a bargraph of 20 bars. The positions of the barsonthe X
axis are determined by 20 elements from array X1. The heights
of the bars are determined by 20 elements from array Y1. In
both cases, the first 20 even-numbered elements are used, be-
cause of the increment of 2. The presence of the EXACT option
sets the axis limits to equal the largest and smallest values in the
20 selected elements. Unless you have used SET_BAR pre-
viously, the widths of the 20 bars are adjusted automatically to
provide a pleasing separation between bars.

GRAPH(ontion, number,start X,start Y,increment,shade line,
graph number,start index)

BARGRAPH(cption,number,start X,start Y,incremont,shade
line,graph numbper,start index)

Argument Type of Argument Valid Values Default Value
option string expression -P-H,-U,-T, G, P
[']Gv [']M’ [-]E!
VLS LB
number numeric expression integer in range smaller no. of array
0-32767 elements between
start X/start Y and
end of X/Y array
start X, name of name of any element start X:
start Y, numeric array in any legally ordinal number
start index element dimensioned array of plotted point

start Y, start index:
not allowed

increment numeric expression integer in range 1
0-32767

shade line numeric expression any legal Y lowest Y coordinate
coordinate, real in window
or integer

graph number numeric expression lor2 1

options A list of the following option words, enclosed in quota-
tion marks and separated by commas.

1. If you omit the option list, GRID and POINTS are selected
by default.

2. Three of the options control the type of symbol used to make
the graph: POINTS, LINES, and BRANDS. POINTS
creates a graph from a series of dots. LINES creates the
graph by displaying dots and then connecting them with
line segments. BRANDS creates the graph with short verti-
cal line segments that are displayed where the points would
otherwise appear.

GRAPH and BARGRAPH

Statement Form

Argument
Descriptions

123

GRAPH and BARGRAPH

124

If you do not include any of the three options, POINTS is cho-
sen by default.

NOTE

The options POINTS and LINES have no meaning in
the BARGRAPH routine; use them only with GRAPH.
Note also that BRANDS cannot be used together with
the MOVE option.

GRID places a pattern of horizontal lines across the graph
region, evenly spaced in the Y direction. GRID also places
short vertical line segments, calledtick marks, on the X axis.
Finally, GRID places numerical values called units near the
points where the tick marks meet the X axis and the horizon-
tal lines meet the Y axis. Thus, the horizontal lines, tick
marks, and units all work together to make the graph or
bargraph easier to interpret numerically.

GRID is selected by default.

If you include the GRID option in a statement, HLINES,
TICKS, and UNITS are implied, and you do not have to re-
quest them separately. However, if you include the GRID op-
tion in a statement, you can subtract the grid features sepa-
rately with the options -HLINES, -TICKS, and -UNITS. If
you include the -GRID option in a statement, you cannot
display horizontal or vertical lines, tick marks, or axis units.

The TICKS option is ignored after a previous statement that
includes the MOVE option, until you use GRAPH_INIT or
DISPLAY_CLEAR.

VLINES places vertical lines at the same points at which
the tick marks appear. These lines are a further aid to in-
terpreting a graph, but each vertical line extends the full
length of the screen. Therefore, the VLINES option is useful
only if you are using the full graph region.

The VLINES option cannot be used after a previous state-
ment that includes the MOVE option, until you use
GRAPH_INIT or DISPLAY_CLEAR.

INDEX allows you to store the indices of up to 10 points of a
graph.

The indices that are stored tell your program where to find

the point’s coordinates in your X and Y arrays. The index of
a point is its displacement from the point at which you
started the graph. If you entered X1(5) as the start X argu-
ment, an index of 0 means that the point in question was plot-
ted from the value at X1(5). Similarly, an index of 1 refers to
X1(6), an index of 2 to X1(7), and so on.

When you include the INDEX option in a BARGRAPH or
GRAPH statement, MINC pauses and inspects the array
element named in the start index argument. You must pre-
viously have set this argument to equal the number of allow-
able indices. Each of the allowable brands can be used to in-
dex a single point from the graph. If the start index element
contains a 0, no indices are allowed, so MINC continues its
normal operation. If the start index element contains an in-
teger in the range 1-10, a single flashing brand appears on
the screen. You can use the left- and right-arrow keys to
move this brand until it covers an interesting point on the
graph. When you have located the point, you can save its in-
dex by pressing the S key (for “Save”). This operation will
save the point’s index in the first element following the start
index element.

To save the index of another point, you can press one of the
numeric keys, either on the keypad or in the row above the
top of the typewriter keyboard. This numeric key must be in
the range 0to 9, and it must also be in the proper numerical
order as defined by your previous saving operations. For in-
stance, if you have saved only one index so far, the numeric
key you press must be either 1 or 2. The 1 key would signify
that you are replacing the first index you saved with a new
index. The 2 key would signify that you wanted to save a new
index in the third element of the index array. The 0 key rep-
resents the tenth index.

After you have pressed S, pressing any valid numeric key
makes a new flashing brand appear on the screen. This new
brand can be positioned as before with the left- and right-
arrow keys, and the new index can be saved with the S key.

You can return to normal operation at any time by pressing
the key. This key restores the normal program flow that
was interrupted by the indexing operations. After such a
return, the start index element contains the number of in-
dices actually stored, which may be different from the pre-
vious number of allowable indices. This feature is a conve-
nience to ensure you that all indices you requested were ac-
tually stored.

GRAPH and BARGRAPH

125

GRAPH and BARGRAPH

If, during a saving operation, you press an invalid numeric
key, the terminal’s buzzer will sound. You can continue nor-
mally by pressing a valid numeric key or the key.

You cannot use INDEX together with the MOVE option.

7. SHADE draws vertical lines between the points of your
graph and a line called the shade line. Shading of this kind
makes any graph more visually appealing, and it also has in-
terpretive value.

If you display a graph containing a small number of points

(relative to the maximum of 512), the SHADE option
produces a result such as is shown in Figure 56.

an ‘)

E+00

5.0000
E-04

0.0000 ‘I{’ ‘
E+00 140

-5.0000
E-01

|
i | ;“';:1 ; l
| ! I
|

[

S 4[":]. '1‘j!

i St ST 1

-1,0000 LI Hl“'llhlulﬂlJ!“ i et
E+00 0.0000E+00 2.5000E+01 5.0000E+01 7.5000E+01

N J

Figure 56. SHADE Option with a 100-Point Graph

To produce a solid shade, use the SHADE option together with
the LINES option. LINES uses all displayable points to inter-
polate line segments between your actual data. The resulting
graph resembles Figure 57.

8. MOVE enters strip-chart mode. After strip-chart mode is
entered, subsequent statements (if they also include the
MOVE option) push the entire graph or bargraph to the left
126 to allow larger X values to be entered.

1.0000
E+00

5.0000
E-01

0.0000F
E+00

-5.0000
E-01

-1.0000
E+00 0.0000E+00 .5000E+01 5.0000E+04 7.5000€+01

Figure 57. SHADE and LINES Options with a 100-Point
Graph

If you include the MOVE option in a statement, you cannot
include the option BRANDS or INDEX in the same state-
ment. Following a statement with the MOVE option, you
cannot include the VLINES option in subsequent state-
ments, until you exit from strip-chart mode. You exit from
strip-chart mode with the DISPLAY_CLEAR routineor the
GRAPH_INIT routine.

9. EXACT produces axis units of which the largest and small-
est values are exactly equal to the corresponding values of
the input arrays. The default option, -EXACT, extends
ranges of the axis units slightly, so that the largest and
smallest values lie inside the maximum and minimum axis
units. The -EXACT option has the desirable side-effect of
producing reasonably “round” numbers for the axis units.
Examples of graphs with and without the EXACT option
are shown in Part 1.

number The number of values to plot from the X and Y arrays.
This number must be equal to or less than the dimension of the
smallest array you include in the statement, times the increment
argument.

If you do not start the figure from element 0 of the arrays, the
number must be correspondingly smaller. For instance, if you

GRAPH and BARGRAPH

127

GRAPH and BARGRAPH

128

start plotting from Y1(3) when Y1 has 61 elements, the number
to plot must be less than or equal to 61 - 3 + 1, or 59. If you do not
name an X array in the statement, this number of Y values will
still be displayed from the Y array, and the X coordinates will be
spaced evenly on the sereen.

If you omit the number argument, the routine plots all values
from your X and Y arrays, beginning with the array elements
you supply in the start X and start Y arguments, and continuing
until the end of the shorter array is reached.

start X An element of the optional array of X values to use in
the graph. The X value in this element will be the X coordinate of
the first point to be plotted. This array must have a dimension at
least as large as the number of points you specify in the number
argument.

If you omit the start X argument, the routine spaces the points
(or bars) evenly on the screen (in the X direction).

startY An element of the array of Y values to use in the graph.
The value in this element will be the Y coordinate of the first
point to be plotted. The array must have a dimension at least as
large as the number of points you specify in the number argu-
ment.

The start Y argument is the only required argument in a
BARGRAPH or GRAPH statement.

increment An optional integer that specifies the “step size”
that the routine takes through your X and Y arrays. When you
omit this argument from a statement, an increment of 1 is used
by default. An increment of 1 means that after displaying the
value in Y1(3), the routine displays the value in Y1(4). You can
select any other increment from 1 to 32767 for the routine to use.

shade line The Y coordinate of the shade line. The graph is
“shaded” by drawing vertical lines between all the displayed
points and the shade line. The shade line has no significance un-
less you have included the SHADE option in your statement. If
you include the SHADE option but do not supply a shade line
argument, the shading begins at the bottom of the graph region
by default.

graph number The graph number is always either 1 or 2. That
1s, your terminal can contain up to two figures (graphs or

bargraphs) at a time. Each of these figures has a graph number.
If you specify graph 1 in a statement and there is already a
graph 1on the screen, the old graph 1 will be erased and the new
one will replace it, unless the terminal is in strip-chart mode.

If you omit the graph number from the statement, graph 1 is
used by default.

start index An element of the array used to store indices. Be-
fore you use GRAPH or BARGRAPH, you must set this element
to the number of allowable indices. After an indexing operation,
indices will be stored in this array, beginning with the element
following the start index element. Additionally, the start index
element will then contain a count of the number of indices actu-
ally stored. See the discussion of the INDEX option for more de-
tails.

1. The GRID, HLINE, VLINE, SHADE, and VIEW routines
can be used to change the characteristics of a display pro-
duced by GRAPH or BARGRAPH.

2. The POINT routine can add single points to an existing
display produced by GRAPH. However, POINT has no
autoscaling feature.

3. Before you use GRAPH or BARGRAPH, you can use the
REGION routine to place the display in the upper half or
lower half of the screen. If you have not used REGION pre-
viously, the display will cover the full region by default.

4. The EXACT option of GRAPH and BARGRAPH is identi-
cal to the EXACT option of WINDOW. For more details
about the EXACT option, see the description of WINDOW
in Part 2.

5. You can use the ERASE_GRAPH routine to erase some or
all of a display created by GRAPH or BARGRAPH.

6. You can use the GRAPH_INIT routine to eliminate the
display produced by GRAPH or BARGRAPH.
GRAPH_INIT erases all parts of graphs 1 and 2 except the
vertical text lines used to make the right and left borders of
the graph and the axis units. GRAPH_INIT also eliminates
the effects of previous REGION and WINDOW statements.

GRAPH_INIT and DISPLAY_CLEAR cancel strip-chart
mode. ‘

GRAPH and BARGRAPH

Related Routines

129

GRAPH and BARGRAPH

Restrictions

Error Conditions

130

DISPLAY_CLEAR has the same effect on GRAPH and
BARGRAPH displays as does GRAPH_INIT except that,
because it includes an ERASE_TEXT statement,
DISPLAY_CLEAR also removes the vertical text lines and
axis units from the graph.

In some circumstances, you can use the FIND_POINT rou-
tine as you would use the indexing feature of GRAPH or
BARGRAPH. The major difference between the indexing
feature and FIND_POINT is that FIND_POINT gives you
the actual coordinates of a point as it appears on the screen,
while the INDE X option supplies an index intothe X and Y
arrays.

If you display graphs 1 and 2 in the same graph region (for
example, both in the upper region), the axis units displayed
will be those corresponding to the last figure you display.
This property can lead to confusion, and it is recommended
that you display different graphs on different parts of the
screen.

Remember that the indices stored in an INDEX operation
are offsets from the starting array element. Therefore, in-
dices may not have the same numerical values as the array
subscripts to which they refer. The only time the correspon-
dence is exact is when you specify element 0 as the starting
element.

When you usethe MOVE option, you cannot usethe INDEX,
BRANDS, or VLINES option in the same GRAPH or
BARGRAPH statement.

Error message:. ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

The option string has words beginning with illegal charac-
ters. The only legal characters for BARGRAPH and
GRAPH areB,I,G,H,L, M, P, T, U, and V.

Error message: ARRAY LENGTH IS TOO SMALL
There are not enough array elements provided by your
statement. Specifically, this message appears if the follow-

ing formula is not satisfied:

number < FLOOR [(array dimension - 1)/increment)] +1

where the function FLOOR computes the integer that is
just less than the result of the division.

You can usually correct the error condition by repeating
the routine statement with a smaller number argument.
You can also increase the size of the array dimensions, al-
though you must then recompute the data that go into the
arrays (see the discussion of arrays in Book 2 and/or the de-
scription of the DIM statement in Book 3).

Error messages:
GRAPH NUMBER OF ZERO NOT ALLOWED HERE
ILLEGAL GRAPH NUMBER

The graph number argument must be either 1 or 2. The
value 0, which specifies both graphs for some other rou-
tines, is illegal in a GRAPH or BARGRAPH statement.

Error message: VALUE OF ARGUMENT NO.21ISOUT
OF BOUNDS

The number argument is less than 0 or greater than 32767.

Error message: VALUE OF ARGUMENT NO.5ISOUT
OF BOUNDS

The increment argument is less than 1 or greater than
32767.

Error message: ARGUMENT NO. 4 CANNOT BE DE-
FAULTED

The start Y argument may be missing from the statement.
This argument is the only required argument.

Error message: CAN'T DISPLAY VERTICALLINESIN
STRIP-CHART MODE

You have attempted to use the VLINE and MOVE options
in the same statement, which is illegal.

Error messages:

SPECIFIED OPTION(S) INCOMPATIBLE WITH
STRIP-CHART MODE -

GRAPH and BARGRAPH

131

GRAPH and BARGRAPH

132

10.

11.

12.

INDEXINGNOT ALLOWED IN STRIP-CHART MODE

You have included illegal options with the MOVE option.
When you use GRAPH or BARGRAPH with the MOVE
option, the options BRANDS and INDEX cannot be in-
cluded in the statement.

Error message: INDEX ARRAY IS NOT PRESENT

You have used GRAPH or BARGRAPH with the INDEX
option, but you have illegally omitted the start index argu-
ment. To use the INDEX option, you must first create an
index array, then assign to the first element of this array
the number of indices you want to store, and, finally, repeat
the GRAPH or BARGRAPH statement. In this statement,
include both the option word INDEX and, as the start in-
dex argument, the name of the first element of the index
array (for instance, 1())).

Error message: NUMBER OF INDICES IS OUTSIDE
RANGE 0-10

Prior to using GRAPH or BARGRAPH, you have assigned
an illegal number to the array element named in the start
index argument. First, use an assignment statement to set
this element to the correct number of indices. Then repeat
the GRAPH or BARGRAPH statement, taking care to in-
clude the option word INDEX as well as the correct ele-
ment name in the start index argument.

Error message: PREVIOUSLY PLOTTED POINT NOT
FOUND

The indexing operation in a GRAPH or BARGRAPH
statement failed to locate an indexed point in your original
data arrays.

This can happen when your array of coordinates is being
changed dynamically by one of the MINC lab module rou-
tines (see Book 6).

Error message: CAN'T BE IN DOUBLE STRIP-CHART
MODE WHEN USING THIS ROUTINE

You have included the MOVE option in a GRAPH or
BARGRAPH statement after the terminal was put in dou-
ble strip-chart mode by the DUAL_MOVE routine. First

GRAPH and BARGRAPH

use GRAPH_INIT or DISPLAY_CLEAR to eliminate
double strip-chart mode, then repeat the GRAPH or
BARGRAPH statement.

- 133

GRAPH_INIT

Operation

Examples
Statement Form

Argument
Descriptions

Related Routines

134

GRAPH_INIT eliminates the effects of all previous graphic rou-
tines, including GRAPH, BARGRAPH, SET_BAR,
DUAL_MOVE, REGION, and ROLL_AREA.

Text features that are displayed by the GRAPH, BARGRAPH,
and POINT routines (the axis units and the right and left bor-
ders) are not erased by GRAPH_INIT.

GRAPH_INIT erases all graphic features of graphs 1 and 2.

None included.

GRAPH_INIT

No arguments allowed.

1.

GRAPH_INIT has no effect on the modes set by the
CHAR_MODE, WIDE_LINE, and DISPLAY_MODE rou-
tines, nor does it eliminate features that are strictly textual,
such as the labels displayed with LABEL, VTEXT, and
HTEXT, the axis units displayed by GRAPH and
BARGRAPH, and the displays created with TEXT_LINE,
LIGHTS, BOX, and PUT_SYMBOL.

These textual displays are initialized by the TEXT_INIT
routine.

Because it includes an ERASE_TEXT statement, the
DISPLAY_CLEAR routine erases all features from the
screen, including the axis units and borders displayed by the
GRAPH, BARGRAPH, and POINT routines. Therefore,
DISPLAY_CLEAR is more useful than GRAPH_INIT
when you want to erase both text and graphics from the
screen.

Because they require that a graph number be in use, the
MAP_TO_GRAPH and MAP_TO_TEXT routines are ille-
gal immediately after a GRAPH_INIT statement. The same
applies to the graphic routine FIND_POINT.

GRAPHANIT

None included. Restrictions
The only error condition is a syntax error that will occur if you Error Conditions

misspell GRAPH_INIT or if you include an argument string in
the statement.

N 135

GRID

Operation

Examples

Statement Form

Argument
Descriptions

136

GRID places a pattern of horizontal lines on the sereen and small
vertical lines (called tick marks) on the X axis. Numbers then ap-
pear where the tick marks and horizontal lines intersect the X
and Y axes, respectively.

Figure 58 shows a typical graph that is overlaid by a grid.

4 N

1.2500
E+00 5}\15 units JNertical grid line

Fal

N S Horizontal grid line
§.2500}.. - by
£t |-

0.0000 - e, t
E+00 : i

~6.2500
£-01 . L
A Y

.’v': Y Vo
FI’ ick mark I |

-1.2500
E*00 0.0000E%00 4.5000+02 '3.00006%02 | 4.5000E+02 J

Figure 58. Sine Wave with GRID Display

None included.

GRID(opt on,granh number)

Argument Type of Argqument Valid Values Default Value
option string expression -H,-T,-U,V HTU
graph number numeric expression lor2 1

no arguments Using GRID with no arguments displays a grid
on graph 1. The grid does not include vertical lines.

option One or more of the option words -HLINES, -TICKS,
-UNITS, and VLINES. If you omit the option word, horizontal

lines, tick marks, and units are displayed by default. For an ex-
planation of these features, see the definition of GRAPH and
BARGRAPH in Part 2.

graph number Graph number (1 or 2) on which the grid is dis-
played.

1. The numerical units displayed by GRID are a function of
your previous WINDOW statements.

2. If you have used GRAPH or BARGRAPH with the -GRID
option, you can add the grid later with the GRID routine and
the correct graph number.

Avoid placing grids on two graphs if they are within the same
graph region but have different windows.

1. Error messages: ILLEGALGRAPH NUMBERor GRAPH
NUMBER OF ZERO NOT ALLOWED HERE

You have entered an illegal graph number. Note that a value
of 0 is illegal for GRID.

GRID

Related Routines

Restrictions

Error Conditions

137

HLINE and VLINE

Operation

Examples

Statement Form

Argument
Descriptions

138

HLINE and VLINE allow you to place horizontal and vertical
lines on a graph. These lines help give the display an obvious
scale, as do the lines on a piece of graph paper. Both routines al-
low you to specify the placement of the first line, the number of
lines to display, the space between the lines, and whether the
lines are visible.

HLINE(0,5,.25,1)

displays five horizontal lines. The first line is a Y=0. The lines
are separated by .25 Y units. All five lines are part of graph 1.

VLINE(’INVISIBLE”,1.,,2)
locates the vertical line at X=1 on graph 2 and makes it invisible.
HLINE(option,first Y,number,inerement,graph number)

VLINE(»ption,first X, number,increment,graph number)

Argument Type of Argument Valid Values Default Value
option string expression [-INVISIBLE -INVISIBLE
first X, numeric expression any legal X or lowest Xor Y
first Y Y coordinate, coordinate in
real or integer window
number numeric expression HLINE: 1 (both routines)
integer in
range 0-89 or 189
VLINE:
integer in
range 0-512
inerement numeric expression any legal X or lines spaced evenly
Y coordinate, in remainder of region
real or integer (both routines)
graph number numericexpression 1or 2 1

no arguments Using HLINE and VLINE with no arguments
displays two lines on graph 1: a horizontal line at the bottom of
the region and a vertical line at the left edge of the region (i.e.,
the X and Y axes, respectively).

option A single option word, enclosed in quotation marks. The
option “INVISIBLE” makes the specified lines for the given

graph number temporarily invisible. The lines can be made visi-
ble again by a subsequent statement with the option
“INVISIBLE”.

first X(Y) The X or Y coordinate of the first vertical or horizon-
tal line, respectively.

If you omit this argument, the lowest X or Y coordinate in the
window is used by default.

number The number of lines to display. Must be an integer in
the range 0-512 for VLINE or 0-89 or 189 for HLINE (a 0 value
displays no lines). If you omit this argument, one line is
displayed.

increment The amount of space between adjacent lines, ex-
pressed in X or Y coordinate units (for VLINE or HLINE, re-
spectively). If you omit this argument, the requested lines are
displayed, spaced evenly in the X or Y direction.

graph number The number of the graph (1 or 2) with which the
lines are associated.

1. If you omit the first X or first Y argument, the numerical
position of the first line is the lower X or lower Y as specified
in a previous WINDOW use. If you did not use WINDOW,
recall that, by default, lower X = 0.0 and lower Y = 0.0.

2. Ifyouomittheincrement argument, the number of lines dis-
played depends on the window for the graph number you
specify. For instance, the space between vertical lines in
such a case is given by

(upper X - first X) / number of lines,

where upper X was specified by a previous WINDOW state-
ment. If you did not use WINDOW previously, recall that
upper X = 1.0 by default. -

3. If the first X or first Y argument falls outside the current
window, the VLINE or HLINE routine operates normally
(that is, without an error message), and any lines that end up
within the current window are displayed.

1. Vertical lines, whether displayed with the VLINE routine
or with the VLINE option of GRAPH and BARGRAPH, al-
ways extend across the full height of the screen, regardless

HLINE and VLINE

Related Routines

Restrictions

139

HLINE and VLINE

Error Conditions

140

of previous REGION statements. There is no way to limit a
vertical line to just the upper or lower graph region.

If a graph number is used by GRAPH or BARGRAPH with
the MOVE option, VLINE cannot be used on the same
graph number without an intervening GRAPH_INIT or
DISPLAY_CLEAR statement.

Error message: VALUE OF ARGUMENT NO. 31IS OUT
OF BOUNDS

You have entered a number argument that is less than 0 or
greater than 32767.

Error messages: ILLEGAL GRAPH NUMBER or GRAPH
NUMBER OF ZERO NOT ALLOWED HERE

You have entered an illegal graph number. Note that the
value 0 is illegal for HLINE and VLINE.

HTEXT and VTEXT

HTEXT and VTEXT allow you to display text strings either
horizontally or vertically at any point on the screen.

After displaying a string, both HTEXT and VTEXT return the
cursor to its previous position.

Figure 59 shows some of the kinds of displays possible with these
two routines.

g)

Horizontal Text String

—l eI D <

o x o —

w3

o /

Figure 59. Typical HTEXT and VTEXT Displays

Notice that the characters are in different modes; both HTEXT
and VTEXT allow you to specify a character mode that is unique
to-the string displayed by the statement.

HTEXT(“BOLD”,1,1,“MINC-117)
displays the letters MINC-11 horizontally, beginning at row 1,

column 1. The letters are displayed in boldface, but subsequent
text is displayed in the current character mode.

VTEXT(“BOLD,FLASH”,10,132,“MINC-11")

Operation

Examples

141

HTEXT and VTEXT

Statement Form

Argument
Descriptions

142

displays the letters MINC-11 vertically, beginning at column
132 of row 10. The letters are displayed in flashing boldface.

HTEXT(option,row number,column number,text string)

VTEXT{option,row number,column number,text string)

Argument Type of Argument Valid Values Default Value

option string expression B,R,U,F normal

row number numeric expression integer in row containing
range 1-24 cursor

column number numeric expression integer in column containing
range 1-132 cursor

text string string expression any legal string empty (null) string
expression

no arguments Using HTEXT or VTEXT with no arguments
is legal but has no effect.

option One or more of the following option words, enclosed in
quotation marks and separated by commas.

1. BOLD displays the text string in boldface.
2. FLASH displays the text string in flashing characters.

3. REVERSE displays the text string in a small area that is
opposite in color from the screen background.

4. UNDERLINE underlines the text string.
5. If you omit the option, normal character mode is used.

row number The row number (1-24) on which the text string
will start.

If you omit the row number from an HTEXT statement, the row
on which the cursor is currently located is used by default.

If you omit the row number from a VTEXT statement, the text
string is centered on the column.

column number The column number (1-80 or 1-132) on which
the text string will start.

If you omit the column number from an HTEXT statement, the
text string is centered on the row.

If you omit the column number from a VTEXT statement, the
column in which the cursor is currently located is used by de-
fault.

text string The string to be displayed, expressed either as a
string variable or as a literal (with quotation marks).

If you omit the text string, nothing is displayed.

If the text string is too long to fit in the given space, characters
will be dropped, or “clipped,” from the right end of the string to
make it fit.

1.

Previous CHAR_MODE statements do not affect the result
of an HTEXT or VTEXT statement, because these state-
ments use only the character mode defined in their own op-
tion strings.

Previous DISPLAY_MODE statements can alter the ap-
pearance of a VTEXT or HTEXT display. The BRIGHT op-
tion of DISPLAY_MODE, since it creates a white screen
background, causes the REVERSE option of HTEXT and
VTEXT to display white characters on a small black area.
The LONG option of DISPLAY_MODE makes the range of
column numbers in HTEXT and VTEXT 1-132 instead of
1-80 and reduces the size of each character accordingly.

Although options can be entered in any combination, un-
derlining may reduce the readability of reverse video char-
acters.

Do not enter such characters as carriage returns, line feeds,
or form feeds in HTEXT or VTEXT strings.

Error messages: BAD ROW SPECIFICATION or BAD
COLUMN SPECIFICATION

Either the row number or column number in your statement
is outside its legal range.

Error message: ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

You have attempted to enter an illegal option word. The only
legal entries for HTEXT and VTEXT are BOLD, FLASH,
UNDERLINE, and REVERSE.

HTEXT and VTEXT

Related Routines

Restrictions

Error Conditions

143

LABEL

Operation

Examples

Statement Form

144

LABEL puts axis labels on graphic displays. It is particularly
useful with displays created by the GRAPH and BARGRAPH
routines.

Figure 60 shows a bargraph that has been labeled with the

LABEL

routine.

-~

1.0000
E+00

5.0000

E-01

0.0000
E+00

~5.0000
E-01

-1.0000

\\\\iioo

0.0000E+00 1.0000E+02 2.0000E+02 3.0000£+02

\

M oX>>Ww

T C oM

/

Figure 60. Result of the LABEL Routine

LABEL (“BOLD,REVERSE”“NUMBER OF STUDENTS”,
“AVERAGE 1Q”)

displays the title NUMBER OF STUDENTS at the top of graph
1; displays the title AVERAGE 1Q vertically to the right of the
graph region. Both titles are displayed in boldface reversed
characters.

LABEL(

yotion, X label,Y label,graph number)

Argument Type of Argument Valid Values Default Value
option string expression B, R, UF normal
X label string expression any string empty (null) string:
of 0-132 current labels are
characters erased if Y label is
also omitted from
statement
Y label string expression any string empty (null) string;
of 0-24 current labels are
characters erased if X label is
also omitted from
statement
graphnumber numeric expression lor2 1

no arguments If you use LABEL with no arguments, it will
erase the current X and Y labels.

option One or more option words to describe the character
mode of the labels. Legal words are FLASHING, BOLD,
REVERSE, and UNDERLINE. If you omit the option word,
normal characters are displayed.

X label A label that will be centered at the top of the graph
region. This label can either be a literal (that is, a string of char-
acters enclosed in quotation marks) or the name of a string vari-
able (such as X1§).

If you omit the X label from the statement, any X label that is
already on the screen is erased.

Y label A label that will be displayed vertically on the right
edge of the graph region. The Y label can either be a literal or a
string variable.

If you omit the Y label, any Y label that is already on the screen
is erased.

graph number The graph number (1 or 2) to which the labels
apply. The LABEL routine will recognize the graph region be-
ing used for this graph and will place the labels in the correct
position.

The character mode options of LABEL are identical to the op-
tions of the CHAR_MODE routine. However, the BOLD,
REVERSE, FLASHING, and UNDERLINE options of
LABEL apply only to the X and Y labels supplied in the same
statement, not to any other text on the screen.

LABEL

Argument
Descriptions

Related Routines

145

LABEL

Restrictions

Error Conditions

146

1. The X label cannot exceed the screen width (80 or 132 col-
umns) defined by the DISPLAY_MODE routine. Excess

characters are ignored.

2. The Y label cannot exceed 24 characters for graphs using
the full region, or 10 characters for graphs using the upper
or lower region. Excess characters are ignored.

3. Donotincludecarriage returns, line feeds, or form feedsin a
LABEL string.

Error messages: ILLEGAL GRAPH NUMBER or GRAPH
NUMBER OF ZERO NOT ALLOWED HERE

The graph number you included in the LABEL statement was
neither 1 nor 2.

There are seven small red light-emitting diodes, or LEDs, above
the keyboard on the MINC terminal. With the LIGHTS routine,
you can turn four of these lights (the ones labeled L1, L2, L3, and
L4) on or off.

LIGHTS(“A,B,C,D”)
turns on all the LEDs.
LIGHTS(“-B,-C”)

turns off the two LEDs in the middle.

LIGHTS(option)
Argument Type of Argument Valid Values Default Value
option string expression [-1A, [-1B, [-1C, [-]D no change

option One or more of the letters A, B, C, or D, each of which
stands for a single LED. The letters are separated by commas
and the list is enclosed in quotation marks.

An option such as “A” turns on the LED represented by A. To
turn off the same LED, use an option such as “-A”.

Any letters that are omitted from a LIGHTS statement repre-
sent unchanged LEDs. Therefore, using LIGHTS with no argu-
ments has no effect.

Figure 61 shows the correspondence between the letters A, B, C,
and D and the four LEDs on the terminal.

LIGHTS

Operation

Examples

Statement Form

Argument
Descriptions

147

LIGHTS

Related Routines

Restrictions

Error Conditions

148

(8

L3

5

N /

Figure 61. Programmable LED Options

The TEXT_INIT routine turns off all the LEDs. No other rou-
tine affects the result of LIGHTS.

Only the four LEDs named in Figure 61 are programmable
with LIGHTS or any other routine.

Error message: ILLEGAL OR CONFLICTING OPTION(S)
SPECIFIED

You have attempted to enter an illegal option. The only legal en-
tries for LIGHTS are the letters A, B, C, and D.

MAP_TO_GRAPH

MAP_TO_GRAPH transforms a screen position from row- Operation
column coordinates to X-Y coordinates.

MAP_TO_GRAPH(5,10,X1,Y1,2) Examples
transforms row 5 into a Y coordinate in the window of graph 2

and puts the Y coordinate in variable Y1; transforms column 10
into an X coordinate in the window and puts the X coordinate in

variable X1.
MAP_TO_GRAPH(row number,column number,X,Y grapn Statement Form
number)
Argument Type of Argument Valid Values Default Value
row number numeric expression integer in not allowed
range 1-19
column number numeric expression integer in not allowed
range 1-132
XY name of numeric legal name of not allowed
variable real variable
graph number numeric expression lor2 1
row number A row number in the range 1-19 (see also Restric- Argument
tions, below). This is a required argument. Descriptions

column number A column number in the appropriate range
(1-80 or 1-132). This is a required argument.

X A variable name. MAP_TO_GRAPH sets this variable to the
value of the X coordinate corresponding to the row number.

The possible range of this coordinate is a property of the window
and placement on the screen of the graph indicated by the graph
number argument.

The X argument is required in all MAP_TO_GRAPH state-
ments.

Y A variablename. MAP_TO_GRAPH sets this variable to the
value of the Y coordinate corresponding to the column number.

The possible range of this coordinate is a property of the window 149

MAP_TO_-GRAPH

Related Routines

Restrictions

Error Conditions

150

and region of the graph indicated by the graph number argu-
ment.

The Y argument is required in all MAP_TO_GRAPH state-
ments.

graph number The number of the graph from which to extract
window and screen placement information. This argument
must be either 1 or 2 if specified; a 0 value is illegal.

If you omit the graph number, graph 1 is used by default.

1. Previous REGION and WINDOW statements specify the
correspondence between a row-column position and an X-Y
position.

2. The MAP_TO_TEXT routine performs a function that is the
reverse of MAP_TO_GRAPH. That is, MAP_TO_TEXT
transforms X-Y coordinates to row-column coordinates.

1. Do NOT use integer variables (such as X% or Y%) for the X
or Y argument if the window is such that points are not
represented adequately by integers. Using integer varia-
bles will not cause an error message, but the fractional parts
of the returned coordinates will be lost.

2. Do NOT userow numbers that are outside the graph region.
For graphs in the upper graph region, the row number must
beintherange 1-9. For graphs in the lower region, the range
is 11-19. For graphs in the full graph region, the range is
1-19. (Rows 10 and 20 are used for axis units.)

3. The X and Y coordinates returned by MAP_TO_GRAPH
correspond to the approximate center of a capital H dis-
played at the given row-column position. Except by visual
estimate, you cannot determine exact coordinates of arbi-
trary text positions such as the beginning of a letter or the
point at which the period character (.) appears.

1. Error message: ARGUMENT NO.n MUST BE A VARIA-
BLE

You have X and/or Y arguments that are not variable
names. The value n=3 refers to the X argument; n will also
equal 3 if you enter nonvariable values for both the X and Y
arguments.

MAP_TO_GRAPH

2. Error message: SPECIFIED ROW OR COLUMN NOT IN
GRAPH REGION

You have entered a row-column position that is outside the
region of the graph indicated by the graph number argu-
ment.

3. Error messages: ILLEGAL GRAPH NUMBERor GRAPH
NUMBER OF ZERO NOT ALLOWED HERE

You have entered an illegal graph number. The only legal en-
tries for MAP_TO_GRAPH are 1 and 2.

151

MAP_TO_TEXT

Operation

Examples

Statement Form

Argument
Descriptions

162

MAP_TO_TEXT transforms a screen position from the X-Y
coordinates used by graphic routines to the row-column coordi-
nates used by text routines.

MAP_TO_TEXT(.5,-10.17,R1,C1)

transforms the X coordinate .5 to a column number and puts the
column number in variable C1; transforms the Y coordinate
-10.17 to arow number and puts the row number in variable R1.

MAP_TO_TEXT(X coordinate,Y coordinate,R,C,zraph

number)

Argument Type of Argument Valid Values Default Value

X coordinate, numeric expression any legal Xor Y not allowed

Y coordinate coordinate

R name of numeric any name of any not allowed
variable integer variable

C name of numeric any name of any not allowed
variable integer variable

graph number numeric expression lor2 1

X coordinate The X coordinate of a screen position. This coor-
dinate must be within the current window of the specified graph
number; otherwise, a negative column number is returned. This
is a required argument.

Y coordinate The Y coordinate of a screen position. This coor-
dinate must be within the current window of the specified graph
number; otherwise, a negative row number isreturned. Thisis a
required argument.

R A variable name. This variable receives the computed row
number. This is a required argument.

C A variable name. This variable receives the computed col-
umn number. This is a required argument.

graph number The number of the graph in which the X-Y
point is located. This number must be either 1 or 2.

If you omit the graph number, MAP_TO_TEXT uses graph 1 by
default.

Prior WINDOW statements, which set the window for a
graph number, govern the useful range of X and Y coordi-
nates that you include in a MAP_TO_TEXT statement. If
you have not used WINDOW previously, or if you have used
WINDOW with no arguments, the window for both graphs
is from the X-Y point (0,0) to the point (1,1).

The MAP_TO_GRAPH routine reverses the function of
MAP_TO_TEXT, computing an X-Y position from a row-
column position.

An important difference between the two routines is that
MAP_TO_TEXT does not consider X-Y coordinates outside
the window to be an error. Instead, MAP_TO_TEXT
returns negative values for the row and column. Note that
the returned values are negative whether the X-Y coordi-
nates are larger or smaller than the window. Therefore,
nothing can be deduced from these variables except that
there is no row-column position corresponding to your X-Y
position.

The R and C argumentsina MAP_TO_TEXT statement can
be integer variables such as R1% and C1%, because row and
column numbers are always integers.

You can supply the graph numbers 1 and 2 in a
MAP_TO_TEXT statement, or you can omit the graph
number, implying graph 1. However, you cannot use the
value 0 to represent both graphs, even when both graphs oc-
cupy the full screen.

You cannot use numeric expressions for R or C. Both must
be legal variable names. Either single variables or array
elements can be supplied for R and C.

Error messages: ILLEGAL GRAPH NUMBER or GRAPH
NUMBER OF ZERO NOT ALLOWED HERE

You have attempted to supply an illegal graph number to
MAP_TO_TEXT. You must either supply the value 1, the
value 2, or omit the graph number.

Error message: ARGUMENT NO.n MUST BE A VARIA-
BLE =

MAP_-TO_TEXT

Related Routines

Restrictions

Error Conditions

153

MAP_TO_TEXT

154

The items you supplied for R and C are not variables. The
value n=3 refers to the R argument; n will also equal 3 if you
enter bad values for both the R and C arguments.

Error message: SPECIFIED REALNUMBERNOT CON-
VERTIBLE TO TEXT COORDINATE

The X and/or Y coordinate you supplied refers to a point that
is “off the screen.” Therefore, it cannot be converted to a row/
column number.

MOVE_CURSOR

See “GET_-CURSOR and MOVE_CURSOR”

155

POINT

Operation

Examples

Statement Form

Argument
Descriptions

156

POINT displays a single point in the graph region you specify.
You can associate this point with either graph 1 or graph 2, and
you have the options of putting a brand on the point or entering
strip-chart mode.

The X and Y coordinates in a POINT statement can be refer-
ences to single elements of a virtual array file. Therefore,
POINT with the MOVE option is useful for displaying large
data sets that are stored as virtual array files on a MINC disk-
ette.

POINT(.5,1.)

displays a single point on graph 1 at X=.5, Y=1.

FOR I=0 TO 1200 \ POINT(“MOVE”,,)Y(I)) \ NEXT I
displays 1201 points from array Y in strip-chart mode on graph
1. The first point appears at the extreme right edge of the graph
region, and the entire set of points moves to the left as new points

are displayed at the right edge.

POINT(cption, X coordinate,Y coordinate,graph number)

Argument Type of Argument Valid Values Default Value
option string expression -I,M,B, U -I
X coordinate numeric expression any real or integer with M option:
expression right edge
of region
with others:
not allowed
Y coordinate numeric expression any real or integer not allowed
expression
graph number numeric expression lor2 1

option Oneor more of the following option words, separated by
commas and enclosed in quotation marks.

1. INVISIBLE makes the point temporarily invisible. The
point can be made visible again by a subsequent POINT
statement that includes the default option -INVISIBLE,
with the same X and Y coordinates.

2. BRAND places a brand at the point. You can change a
brand back to a regular point with another POINT state-
ment having thesame X and Y coordinates together with the
default option -BRAND. You cannot include BRAND and
MOVE in the same POINT statement.

3. MOVE displays the point in strip-chart mode. In strip-chart
mode, subsequent POINT statements with the MOVE op-
tion that have no X coordinate plot the new point at the right
edge of the graph region and shift existing points one raster
unit to the left.

If the subsequent statement includes an X coordinate AND
the MOVE option, the shift will occur only when the X coor-
dinate exceeds the current window.

The MOVE option (and thus, strip-chart mode) is negated
by the DISPLAY_CLEAR and GRAPH_INIT routines.

4. If you omit the option word, the options -BRAND, -MOVE,
and -INVISIBLE are selected by default.

X coordinate The X coordinate of the point.

If you do not select the MOVE option in the POINT statement,
the X coordinate is a required argument.

If you select the MOVE option and omit the X coordinate, the Y
coordinate is still used, and the point is displayed at the right
edge of the screen. All previous points are shifted one raster unit
to the left.

Y coordinate The Y coordinate of the point. This is a required
argument in all cases.

graph number The graph number (1 or 2) with which the point
will be associated. If you omit the graph number, graph 1 is used
by default.

1. Strip-chart mode can be terminated only with the
GRAPH_INIT or DISPLAY_CLEAR routines.

2. Instrip-chart mode, the point at which the leftward shift oc-
curs is dictated by previous WINDOW statements. The shift
occurs only when the X coordinate is greater than the cur-
rent maximum X value of the window. If the X coordinate
falls below the X range, the point is not displayed. (If the

POINT

Related Routines

167

POINT

Restrictions

Error Conditions

158

point’s Y coordinate is above or below the Y range, the point
is forced to the top or bottom of the region, respectively.)

It is not an error to give coordinates to POINT that fall out-
side the ranges set by WINDOW. Therefore, although the
point is not displayed, no error message is produced.

When a leftward shift occurs in strip-chart mode, the X
range of the window is shifted by an amount equal to (upper
X - lower X)/511.

Unlike GRAPH and BARGRAPH, POINT has no autoscal-
ing feature. Therefore, although you can use POINT to add
new elements to a GRAPH or BARGRAPH display, for a
new point to be displayed, its coordinates must be within the
same window as the display to which the point is added.

Because brands have a noticeable length, you ecannot inter-
pret Y coordinates accurately when brands are used on dis-
played points.

Error message: MOVE OPTION MUST BE SELECTED
IF X ARGUMENT OMITTED

You have omitted the X coordinate from a POINT statement
without selecting the MOVE option.

Error messages: ILLEGAL GRAPH NUMBERor GRAPH
NUMBER OF ZERO NOT ALLOWED HERE

You have entered an illegal graph number. Note that 0 is il-
legal in POINT statements.

Error message: ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

You have entered an illegal option word.

Error message: CAN'T BE IN DOUBLE STRIP-CHART
MODE WHEN USING THIS ROUTINE

You have followed a DUAL_MOVE statement with a
POINT statement including the MOVE option, without an
intervening GRAPH_INIT or DISPLAY_CLEAR state-
ment.

POINT

5. Error message: MOVE AND BRAND OPTIONS
CANNOT BE SPECIFIED TOGETHER

You have included BRAND and MOVE in thesame POINT
statement.

6. Error message: MOVE OPTION NOT ALLOWED IF
OTHER GRAPH IS IN USE

If you use graph 1 in strip-chart mode, you must first erase
graph 2, and vice versa. If you must display both graphs in
strip-chart mode, use DUAL_MOVE.

7. Error message: MOVE OPTION MUST BE SPECIFIED
IF MOVE SPECIFIED PREVIOUSLY

Following a statement with the MOVE option, you used
POINT again without the MOV E option. If you want tostay
in strip-chart mode, all POINT statements must contain the
MOVE option. If you want to leave strip-chart mode, you
must include the option -MOVE explicitly.

159

PUT_SYMBOL

Operation

Examples

Statement Form

160

PUT_SYMBOL displays one of a set of special symbols at the po-
sition you specify. PUT_SYMBOL is useful for putting symbols
on graphs and for connecting boxes and lines drawn by other

routines.

PUT_SYMBOL(“BOLD,FLASHING,CR0SS”,10,20)

displays a boldface flashing cross at column 20 of row 10.

Figure 62 shows the set of symbols that you can display with

PUT_-SYMBOL.

(s

L

~

/

Figure 62. PUT_SYMBOL Characters

PUT_SYMBOLicgiion, row number,column number)

Argument Type of Argument Valid Values

option string expression lof:C,H,V,
N,S,E, W,
MJ, KL

+ 1 or more of:

B,R,U,F[-]I

row number numeric expression integer in range
1-24

column number numeric expression integer in range
1-132

Default Value
-1

row containing
cursor

column containing
“cursor

no arguments Using PUT_SYMBOL with no arguments
displays a space at the current cursor position.

option Oneof the following option words, enclosed in quotation
marks.

1. CROSS displays a square cross.

2. HORIZONTAL LINE displays a short horizontal line seg-
ment.

3. VERTICAL LINE displays a short vertical line segment.
4. SOUTH displays a T-bar with the foot pointing down.
5. WEST displays a T-bar with the foot pointing to the left.
6. EAST displays a T-bar with the foot pointing to the right.
7. NORTH displays a T-bar with the foot pointing up.
8. M displays a “northwest” corner character.
9. J displays a “northeast” corner character.

10. K displays a “southeast” corner character.

11. L displays a “southwest” corner character (roughly the
shape of the letter L).

12. INVISIBLE displays a space.

13. One or more of the character mode options REVERSE,
FLASHING, UNDERLINE, and BOLD can also be in-
cluded.

If you omit the option word, the option “-INVISIBLE” is se-
lected by default.

rownumber Thenumber (1-24)of the row on which the symbol
will appear. If you omit the row number, the row containing the
cursor is used by default.

column number The number (1-80 or 1-132) of the column in
which the symbol will appear. If you omit the column number,
the column containing the cursor is used by default.

PUT_SYMBOL

Argument
Descriptions

161

PUT_SYMBOL

Related Routines

Restrictions

Error Conditions

162

The range of legal column numbers, which is normally 1-80,
can be extended to 1-132 by the “LONG” option of
DISPLAY_MODE. DO NOT use setup mode to set the
132-column feature.

The range of screen positions that can be addressed by
PUT_SYMBOL is unaffected by previous ROLL_AREA
statements or by other routines that limit the size of the
scrolling area.

The GRAPH, BARGRAPH, DUAL_MOVE, POINT, and
REGION routines begin their operations by clearing all text
from their graph regions. Therefore, if you want to put a spe-

cial symbol on such a graph, you must use PUT_SYMBOL
after using GRAPH or BARGRAPH.

The symbols displayed by PUT_SYMBOL are special text
characters. Therefore, any symbols displayed in your scroll-
ing area will scroll along with the other text in the scrolling
area.

Error messages: BAD ROW SPECIFICATION or BAD
COLUMN SPECIFICATION

You have entered row and/or column numbers that are out-
side their legal ranges. If your column number is in the
range 81-132, you must previously have selected the
“LONG” option of DISPLAY_MODE.

Error message: ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

You have entered an illegal option word.

Error message: ONLY ONE SYMBOL MAY BE
DISPLAYED AT A TIME.

You have attempted to display more than one symbol with a
single PUT_SYMBOL statement.

REGION lets you decide which regions of the screen are used for
graphic displays. You can select the full region, which corre-
sponds to text rows 1-20; the lower region, corresponding to rows
11-20; or the upper region, corresponding to rows 1-10.

A REGION statement erases all text and graphics within the se-
lected region.

A REGION statement also resets the scrolling area tothe part of
the screen that lies below the selected region. That is, selecting
the upper region resets the scrolling area to rows 11-24. Select-
ing the lower region or the full region resets the scrolling area to
rows 21-24.

REGION(“LOWER?”)

specifies the lower region for use by graph 1; also erases all ma-
terial in rows 11-20 and resets the scrolling area to rows 21-24.

REGION(“FULL”,2)

specifies the full region for use by graph 2, erases all material in
rows 1-20, and resets the scrolling area to rows 21-24.

REGION(“UPPER”,)0

specifies the upper region for use by both graphs, erases all ma-
terial in rows 1-10, and resets the scrolling area to rows 11-24.

REGION(option,graph number)

Argument Type of Argument Valid Values Default Value
option string expression ULF F
graph number numeric expression 0,1,0r2 1

no arguments Using REGION with no arguments selects the
full region for graph 1. The region for graph 2 is not changed.

option Your choice of one of three option words, enclosed in
quotation marks. UPPER selects the upper region, LOWER se-
lects the lower region, and FULL selects the full region. If you
omit the option word, FULL is used by default.

REGION

Operation

Examples

Statement Form

Argument
Descriptions

163

REGION

Related Routines

Restrictions

Error Conditions

164

graph number The number of the graph (1 or 2) that will ap-
pear in the selected region. A value of 0 specifies both graphs in
the same region. If you do not include a graph number in the
statement, only graph 1 is associated with the selected region.

1.

When the GRAPH, BARGRAPH, and POINT routines be-
gin a new display, they erase all previous graphics and text
in the selected graph region.

The GRAPH_INIT and DISPLAY_CLEAR routines reset
both graph numbers to the full region, canceling the effects
of previous REGION statements.

Do not use REGION when the terminal is in strip-chart
mode. You can exit from strip-chart mode by using the
DISPLAY_CLEAR or GRAPH_INIT routine.

REGION affects subsequent statements of such routines as
GRAPH and BARGRAPH; you cannot use it to change the
placement of existing displays.

You cannot use REGION or any other routine to display
graphics in rows 21-24, which form the default scrolling
area when the full or lower region is in use.

If you are using both graph numbers and the two graphs
have different windows, you should avoid displaying them
in the same graph region. The reason is that the units dis-
played by GRAPH, GRID, and BARGRAPH will apply only
to the figure that was displayed most recently.

Error message: ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

You havespecified an option that is illegai for REGION. The
only legal options are UPPER, LOWER, and FULL.

Error message: SPECIFY ONLY ONE REGION,
PLEASE

You have attempted to specify more than one option in the
REGION statement.

Error message: ILLEGAL GRAPH NUMBER

You have attempted to specify an illegal graph number. If
you specify the graph number, the only legal values are0, 1,
and 2.

ROLL_AREA defines the size of the scrolling area.
The scrolling area is the area where messages produced by your
communication with MINC appear. Examples are the READY

message, the output of a LIST command, the lines of a new pro-
gram you are writing, and error messages.

ROLL_AREA(13,24)
designates the lower half of the screen as the scrolling area.
ROLL_AREA(21,24)

sets the scrolling area to rows 21-24 (the bottom four rows on the
screen).

ROLL_AREA(oo row, botborn row)

Argument Type of Argument Valid Values Default Value
top row numeric expression integer in range 1-23 1

bottom row numeric expression integer in range 2-24 24

no arguments Using ROLL_AREA with no arguments resets
the top row of the scrolling area to 1 and the bottom row to 24.

toprow A number from 1 to 23 that is the top row of the scroll-
ing area.

If you omit this argument, the value 1 is used by default.

bottom row A number from 2 to 24 that is the bottom row of
the scrolling area.

If you omit this argument, the value 24 is used by default.

1. Use ROLL_AREA carefully after a REGION statement. In
particular, avoid designating a scrolling area that overlaps
a graph region, because the graph-plotting routines begin
their operation by erasing all old material in their region,
including text.

ROLL_AREA

Operation

Examples

Statement Form

Argument

Descriptions

Related Routines

165

ROLL-AREA

Restrictions

Error Conditions

166

The GRAPH and BARGRAPH routines always reserve the
last four rows on the screen (rows 21-24) as a scrolling area.
If, for example, you use GRAPH without a prior REGION
statement, the default conditions call for a full-region
graph. This graph will not intrude on the default scrolling
area in rows 21-24.

The use of ROLL_AREA has no effect on the
MOVE_CURSOR, GET_CURSOR, BOX, TEXT_LINE,
HTEXT, VTEXT, MAP_TO_GRAPH, MAP_TO_TEXT,
and PUT_SYMBOL routines. All of these routines can ad-
dress the full range of rows and columns at any time, regard-
less of the setting of the scrolling area.

CHAR_MODE and DISPLAY_MODE affect text in the
serolling area as well as text in the graph region.

You cannot eliminate the scrolling area from the screen. As
mentioned previously, the graphic routines provide a small
default scrolling area at the bottom of the screen even when
you select the FULL option of REGION. By the same token,
you cannot specify the same row as the top and bottom row in
a ROLL_AREA statement, since doing so would effectively
eliminate the scrolling area.

The scrolling area you designate is used only for ordinary
text, that is, text not produced by the MINC graphic rou-
tines.

Error messages:
ZERO ISILLEGAL AS ROLL_AREA ARGUMENT

ARGUMENT OUTSIDE TERMINAL SCROLLING
LIMITS

Either the top row or bottom row argument in your state-
ment is outside the range 1-24.

Error message: FIRST ARGUMENT MUST BE
SMALLER THAN SECOND

You have used ROLL_AREA with a bottom row number
that is less than or equal to the top row number.

SET_BAR

SET_BARis aspecial routine used together with BARGRAPH. Operation
Its only purpose is to control the width of bars in a bargraph.

SET_BAR(40,2) Examples

defines the width of the bars in bargraphs using graph 2. Subse-
quent BARGRAPH statements will display bars that are 40 ras-
ter units wide.

NOTE

The screen measures 512 raster units in the X direc-
tion and 240 raster units inthe Y direction. These units
are “absolute” measurements that are unaffected by
the autoscaling features of such routines as GRAPH
and BARGRAPH. Absolute units are used for
SET_BAR arguments so that the bars will always
have the width you want, regardless of changes in the
scaling. Thus, a bar that is 51 raster units wide is al-
ways 10% of the width of the total screen.

SET_BAR{width,grach number) Statement Form
Argument Type of Argument Valid Values Default Value
width numeric expression integer in automatic settings

range 1-512 are restarted
graph number numeric expression 0,1,or2 1
no arguments A SET_BAR statement with no arguments Argument
causes BARGRAPH to revert to automatic setting of the bar Descriptions

widths for graph 1.

width The width of the bar, measured in raster units. The
width must be an integer in the range 0-511. If you omit the
width argument, the widths of bars in subsequent bargraphs
are set automatically by the BARGRAPH routine.

graph number The graph number to which the bar widths ap-
ply, either 0, 1, or 2. A value of 0 makes the SET_BAR statement
apply to both graphs. 167

SET_BAR

Related Routines

Restrictions

Error Conditions

168

Using SET_BAR with a width argument disables the auto-
matic bar setting feature of BARGRAPH.

Using SET_BAR with a width argument disables autoscal-
ing in the X direction. You can reinstitute autoscaling by us-

ing WINDOW again with no arguments, or by using
DISPLAY_CLEAR or GRAPH_INIT.

The width argument may not exceed 511.

Bars that are less than 2-3 raster units wide may be difficult
to see.

Error message: NEGATIVE NUMBERS NOT
ALLOWED

One of the arguments in the SET_BAR statement was nega-
tive.

Error message: WIDTH MUST BE LESS THAN 512.

The width argument is greater than 511.

SHADE lets you add shading to existing graphs or to declare
that future graphs with a given graph number will be shaded.
Shading is especially useful for distinguishing two waveforms
of similar shape.

SHADE(,.5,2)

shades graph 2 by connecting all points on the graph with the
line Y=.5.

SHADE(“INVISIBLE”)

removes shading from graph 1.

£ ot e [T o o Ty ey g e | IR
SHADE (anficr,shace line graph numose)

Argument Type of Argument Valid Values Default Value
option string expression [-INVISIBLE -INVISIBLE
shade line numeric expression any legal lowest value

Y coordinate in window
graph number numeric expression 0,1,0r2 1

no arguments Using SHADE with no arguments shades
graph 1, with the shade line located at the bottom of graph 1’s
region.

option One of two option words, enclosed in quotation marks.
INVISIBLE makes the shading temporarily invisible. The
shading can be made visible by a subsequent SHADE statement
that includes the option word -INVISIBLE.

shade line The Y coordinate of a horizontal line. The shading
consists of vertical lines drawn between this line and the dis-
played points. See “Related Routines,” below.

graph number Either 1 or 2, designating the graph to be
shaded. If you supply a value of 0 instead, both graphs are
shaded. If you omit the graph number, graph 1 is shaded.

SHADE

Operation

Examples

Statement Form

Argument
Descriptions

169

SHADE

Related Routines

Restrictions

Error Conditions

170

The coordinate of the shade line is automatically adjusted to
compensate for changes in the window and for the autoscal-
ing feature of GRAPH and BARGRAPH. Thus, once you
have placed the shade line at a particular Y coordinate, it
will remain associated with that Y value until you change it
with another statement.

If the coordinate of the shade line is above or below the Y
range of the current window, the immediate effect is identi-
cal to setting the line to the top or bottom of the graph region,
respectively. The desired position is remembered, however,
so that if the window is subsequently changed and that Y
coordinate appears on the screen, the shade line will be
placed in the proper position.

None.

1.

Error message: ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

You have entered an illegal option word. The only legal en-
tries are “INVISIBLE” and “INVISIBLE”.

Error message: ILLEGAL GRAPH NUMBER

You have entered an illegal graph number. Legal entries are
0, 1, and 2.

TEXT_INIT erases all text from the screen (including the fea-
tures of TEXT_LINE, PUT_SYMBOL, and BOX), eliminates
any character modes you have set, and returns the terminal to
the setup parameters saved during setup mode.

TEXT_INIT also performs the function of the GRAPH_INIT
routine, erasing all graphic material from the screen.

None included.
TEXT_INIT

No arguments allowed.

1. TEXT_INIT eliminates all text and graphics displayed by
the GRAPH, POINT, DUAL_MOVE, and BARGRAPH
routines, and it turns off any of the lights that were turned
on by previous LIGHTS statements.

2. TEXT_INIT eliminates the effects of all previous REGION,
WINDOW, CHAR_MODE, and DISPLAY_MODE state-
ments. After a TEXT_INIT statement, the only mode set-
tings will be those that you saved during setup mode.

TEXT_INIT returns the MINC terminal to the state prescribed
in setup mode. The graphic routines work on the assumption
that certain setup mode parameters are set to the standard ini-
tial state.

The only error condition is a syntax error, created if you misspell
TEXT_INIT or if you use TEXT_INIT with an argument
string.

TEXTNIT

Operation

Examples
Statement Form

Argument
Descriptions

Related Routines

Restrictions

Error Conditions

171

TEXT_LINE

Operation

Examples

Statement Form

Argument
Descriptions

172

“

TEXT_LINE draws lines of any length and direction on the
screen. The routine uses a special set of text characters to draw
the lines.

None included.

TEXT_LINE(cpion,row 1,column 1,row 2,column 2)

Argument Type of Argument Valid Values Default Value
option string expression B,R,UF[-II -1
row 1, row 2 numeric expression integer in range row containing
1-24 cursor
column 1, numeric expression integer in range column containing
column 2 1-132 cursor

no arguments Although all arguments have default values,
you cannot use TEXT_LINE without arguments. See “Restric-
tions,” below.

option Your choice of the options INVISIBLE or
-INVISIBLE. INVISIBLE displays spaces instead of lines,
erasing characters previously drawn in the path of the line.
-INVISIBLE draws a visible line with small horizontal and ver-
tical characters.

You can also include one or more of the character mode options
REVERSE, BOLD, FLASHING, and UNDERLINE.

If you omit the option word, -INVISIBLE is used by default.

row 1 The row number of one endpoint of the line; must be in
the range 1-24.

If you omit row 1, the row in which the cursor is currently lo-
cated is used by default.

column1 The column number of one endpoint of the line; must
be in the range 1-80 or 1-132, depending on previous statements.

If you omit column 1, the column in which the cursor is currently
located is used by default.

row 2 The row number of one endpoint of the line; must be in
the range 1-24.

If you omit row 2, the row in which the cursor is currently lo-
cated is used by default.

column2 The column number of one endpoint of the line; must
be in the range 1-80 or 1-132, depending on previous statements.

If you omit column 2, the column in which the cursor is currently
located is used by default.

Your previous use of the DISPLAY_MODE routine governs
the range of legal column numbers. The LONG option of
DISPLAY_MODE sets the screen width to 132 columns. DO
NOT use setup mode for this purpose.

The extent of lines drawn by TEXT_LINE is not limited by
ROLL_AREA, nor by any other routine that restricts the
scrolling area.

TEXT_LINE cannot allow both endpoints of the line to be
located at the same row-column position. Since the current
cursor position is the default for all the row-column argu-
ments, it is therefore illegal to use TEXT_LINE with no
arguments, or with only the option word.

TEXT_LINE uses special text characters to draw lines.
Therefore, any part of the line that extends into your seroll-
ing area will scroll along with the other text in the scrolling
area.

TEXT_LINE always uses vertical or horizontal line seg-
ment characters to draw lines; one character is vertical and
the other is horizontal. Therefore, lines that are neither hor-
izontal nor vertical will exhibit a “stair-step” effect, which
becomes more apparent as the angle approaches 45 degrees.

Figure 63 shows this stair-step effect on a 45-degree line.

TEXT-INIT

Related Routines

Restrictions

173

TEXT-INIT

Error Conditions

174

_ /

1.

Figure 63. TEXT_LINE Display with Stair-Step Effect

Error message: ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

You have entered an illegal option word. “INVISIBLE” and
“INVISIBLE” are the only legal values.

Error message: LINE MUST HAVE DIFFERENT
ENDPOINTS

You have entered arguments such that row 1 =row 2 AND
column 1 = column 2. This condition is also caused implicitly
by using TEXT_LINE without any row or column argu-
ments.

Error messages: BAD ROW SPECIFICATION or BAD
COLUMN SPECIFICATION

You have entered row and/or column numbers that are out-
side the legal range. If you have entered column numbers in
the range 81-132, be sure that you have selected the LONG
option of DISPLAY_MODE.

With the option INVISIBLE, VIEW makes graphs temporarily
invisible without erasing the graphic memory. With the option
-INVISIBLE, VIEW also makes an invisible graph visible
again.

None included.

VIEW(opticn,graph number)

Argument Type of Argument Valid Values Default Value
option string expression [-INVISIBLE -INVISIBLE
graph number numeric expression 0,1,0r2 1

no arguments Using VIEW with no arguments makes graph
1 visible.

option A single option word, enclosed in quotation marks.
INVISIBLE makes the specified graph temporarily invisible.
-INVISIBLE makes the graph visible again.

graph number Either 1 or 2 if you want to affect a single
graph. If you omit the graph number, only graph 1 is affected.

1. VIEW operates only on the points and brands displayed by
GRAPH, POINT, BARGRAPH, and DUAL_MOVE. It has
no effect on previous or subsequent displays created by
SHADE, GRID, HLINE, or VLINE.

2. VIEW has no effect on text displays created by LABEL or
by any text-display routine.

None.

1. Error messages: ILLEGAL GRAPH NUMBER

You have entered an illegal graph number.

2. Error message: CAN'T TURN ON GRAPH THAT'S NOT
IN USE

You have asked to view a graph that has not yet been dis-
played.

VIEW

Operation

Examples

Statement Form

Argument
Descriptions

Related Routines

Restrictions

Error Conditions

175

VLINE

See “HLINE and VLINE.”

176

VTEXT

See “HTEXT and VTEXT.”

177

WIDE_LINE

Operation

Examples

Statement Form

Argument
Description

178

WIDE_LINE controls the width of characters on a single row.
Figure 64 shows the two character widths available on a MINC
terminal.

4 N

Normal width

\ Double width j

Figure 64. Regular and Double-Width Characters

When you use WIDE_LINE on a line of characters, the double-
width attribute moves with the line of characters if they scroll.

Subsequent lines of text on the same row will be in regular
width.

None included.

WIDE_LINE(ortion,row number)

Argument Type of Argument Valid Values Default Value

option string expression [-IWIDE no change

row number numeric expression integer in row containing
range 1-24 cursor

no arguments Using WIDE_LINE with no arguments is le-
gal, but has no effect.

option A single option word enclosed in quotation marks.

WIDE-LINE

WIDE sets the characters in the specified row to double width.
-WIDE returns the characters on a row to normal width.

If you omit the option word, WIDE_LINE has no effect on any
row.

row number Number of the row on which WIDE_LINE oper-
ates (range: 1-24). If you omit the row number, WIDE_LINE op-
erates on the row in which the cursor is currently located.

1. WIDE_LINE controls the width of characters on a given Related Routines
row, either before or after the characters have actually been
displayed by a text routine.

2. The TEXT_INIT routine eliminates the effect of all pre-
vious WIDE_LINE statements. Following a TEXT_INIT
statement, all lines will display characters of normal width.

3. Erasing a line of characters with ERASE_TEXT does not
change the effect of a previous WIDE_LINE statement; the

row will continue to display characters of the width that you
spécified prior to using ERASE_TEXT.

4. WIDE_LINE can operate on any row of the screen, whether
it is part of the scrolling area or part of the graph region.

1. WIDE_LINE affects all characters in a given row, regard- Restrictions
less of the current position of the cursor. Consequently, there
is no way to display a line that contains both normal and
double-width characters.

2. Note that a line of more than 40 normal characters is trun-
cated if you switch it to double width characters. If you have
previously selected the LONG option of DISPLAY_MODE,
lines longer than 66 characters are truncated.

1. Error message: BAD ROW SPECIFICATION Error Conditions

You have entered an illegal row number.

2. Error message: ILLEGAL OR CONFLICTING
OPTION(S) SPECIFIED

You have either entered an illegal option word, or you have
entered more than one option word in a single statement. 179

WINDOW

Operation

Examples

Statement Form

180

WINDOW sets the numerical limits of values that can appear on
a graph. WINDOW can set a legal range for graph values in the
Y direction and in the X direction. After these ranges have been
set by WINDOW, only data that fall within the ranges will be
displayed on the graph(s). Subsequent graphic routines will still
accept data that are outside the window, but the data will not be
displayed.

WINDOW(“EXACT”,0.,1.,100.,511.,0)

sets the window for both graphs such that the X range is 0.-100.
and the Y range is 1.-511. Autoscaling is disabled for both
graphs. The lowest and highest units on the graph axes will have
exactly those values specified in the WINDOW statement.

WINDOW(“-EXACT”,0.,1:,100.,511.,0)

sets the same window for both graphs as the previous example
and disables autoscaling for both graphs. However, the highest
units on the X and Y axes will exceed 100. and 511. slightly, to
produce more readable units throughout the graph.

WINDOW

sets the window of graph 1 such that the X and Y ranges are0.-1.
Since no X or Y values are specified, reenables autoscaling for
graph 1. (Note that the -EXACT option is also selected by de-
fault.)

WINDOW(,,,,,0)
sets the window for both graphs such that the X and Y ranges

are 0.-1. Reenables autoscaling for both graphs. (Note that the
-EXACT option is also selected by default.)

WINDOW(opt.on,lower x,lower y,upper x,upper y,graph
N DA
numoer)

Argument Type of Argument Valid Values Default Value
option string expression [[(JEXACT -EXACT
lower X, lower Y numeric expression any real- 0.0

valued X or

Y coordinate
upper X, upper Y numeric expression any real- 1.0

valued X or

Y coordinate
graph number numeric expression 0,1,or2 1

no arguments Using WINDOW with no arguments resets the
window of graph 1 to the default values and selects the-EXACT
option. Such a statement also reenables autoscaling for graph 1.
Graph 2 is unaffected.

If you include the option and/or graph number but omit all the X
and Y arguments, the X and Y ranges are set to their default
values and autoscaling is reenabled for the graph number you
specify.

option Either EXACT or -EXACT. EXACT makes the lowest
and highest numbers on the graph axes exactly equal to the
lower and upper values in the WINDOW statement. -EXACT
makes the lowest and highest numbers on the graph axes fall
slightly outside the ranges set by the WINDOW statement. The
effect of -EXACT is to make the units on your graph more read-
able.

If you do not include an option word in the WINDOW statement,
-EXACT is selected by default.

lower x The lowest value of the X range. (Default value: 0.0)
lowery The lowest value of the Y range. (Default value: 0.0)
upper x The highest value of the X range. (Default value: 1.0)

uppery The highest value of the Y range. (Default value: 1.0)

graph number The optional number (1 or 2) of the graph to
which this window applies. If you enter 0 for the graph number,
the window applies to both graphs. If you omit the graph
number, the window applies only to graph 1. '

WINDOW

Argument
Descriptions

181

WINDOW

Related Routines

182

In general, all graphic and text routines that accept or
return X and Y coordinates will produce visible results only
when coordinates fall within the current window. No rou-
tine will fail because coordinates are outside the current
window; the usual result is that a given point or object is not
displayed on the screen. See the description of individual
routines for exact details.

When you use DUAL_MOVE, or when you use the GRAPH,
BARGRAPH, and POINT routines with the MOVE option,

- the X range set by a WINDOW statement may be shifted to

the left. In other words, each time a new point exceeds the
maximum value of X in the window, the window’s X range is
shifted by the amount required to place that point at the
high end of the X axis. The Y range remains the same in
these cases.

The DUAL_MOVE routine always uses the X window of
graph 1 for both graphs 1 and 2.

If a point is plotted in strip-chart mode and its X coordinate
is less than the minimum value of X in the window, the point
is simply not displayed, and the X range of the window is un-
changed.

If the starting coordinates in a FIND_POINT statement are
outside the current window, they are ignored, and the
FIND_POINT operation begins at the upper end of the cur-
rent window.

If the X and/or Y coordinate in a MAP_TO_TEXT state-
ment falls outside the current window, a negative value is
returned for the corresponding row or column.

If you include any of the X or Y arguments in a WINDOW
statement, the autoscaling feature of GRAPH and
BARGRAPH is disabled for that graph. See the descrip-
tions of GRAPH and BARGRAPH for more details about
autoscaling.

The GRAPH_INIT, TEXT_INIT, and DISPLAY_CLEAR
routines not only erase both graphs but also reset the
windows of both graphs to the default values, reenable
autoscaling for both graphs, and (effectively) select the
-EXACT option for both graphs.

You cannot change the window of an existing graph.
WINDOW operates only on subsequently displayed graphs.

You cannot set a window such that the relative difference be-
tween upper and lower limits is less than .0001. That is, the
following two conditions will cause fatal error in a
WINDOW statement:

| (upper X - lower x) / lower X | <.0001

| (upper Y - lower y) / lower Y| <.0001

Error message: DIFFERENCE IN WINDOW VALUES
MUST BE GREATER THAN 1.0E-04

You have entered WINDOW coordinates that violate the rel-
ative difference restriction. See “Restrictions,” above.

Error message: ILLEGAL GRAPH NUMBER

You have entered an illegal graph number. Legal values are
0,1, and 2.

WINDOW

Restrictions

Error Conditions

183

Arrays
displaying large, 35
related to, 72, 73
Autoscaling
definition of, 26
related to, 167, 182

BARGRAPH routine
definition of, 122
related to, 167

BASIC language, 19

Boxes, 90

BOX routine
definition of, 90

Brands
illustration of, 24

Character modes
changing, 93
definition of, 12
local, 13

Characters
boldface, 12
controlling appearance of, 12
double-width, 178
flashing, 12
reverse video, 12
underlined, 12
width of, 178

CHAR_MODE routine
definition of, 93
example of, 12, 13

Coordinates of point, 6
indexing, 126

INDEX

related to, 152
storing, 116

Cursor
moving, 119 :
reading position of, 11

Data sets
displaying large, 77, 78
DISPLAY_CLEAR routine
definition of, 96
DISPLAY_MODE routine
definition of, 98
related to, 94
Display modes
definition of, 13
DUAL_MOVE routine
definition of, 102

ERASE_GRAPH routine
definition of, 106
example of, 26
introduction, 14

ERASE_TEXT routine
definition of, 112

Erasing graphs, 14, 106

Erasing text, 112

FIND_POINT routine
definition of, 116

GET_CURSOR routine
definition of, 119
Graph numbers
definition of, 14 185

INDEX

186

Graph regions
definition of, 7
related to, 163
GRAPH routine
definition of, 122
examples of, 21
Graphic memory
definition of, 14
Graphics
clearing, 134
GRAPH_INIT routine
definition of, 134
example of, 23
Graphs
coordinates for, 6
erasing, 14, 106
erasing axis units from, 129, 134
erasing borders of, 129, 134
hiding, 175
invisible, 14, 27, 175
labeling, 141, 144
long-format, 98
marking with symbols, 160
number per screen, 14
placement of, 9
shaded, 169
illustration of, 25
storing information about, 126
type-ahead during, 22
visibility of, 14
visible, 175
windows of, 7
Grid features, 136
GRID routine
definition of, 136

HLINE routine
definition of, 138

Horizontal lines
graphic, 138
text, 172

HTEXT routine
definition of, 141

Index array
definition of, 41
Index option, 126
Initial state of terminal, 15
Interlacing, 94

Labeling graphs, 141, 144

LABEL routine
definition of, 144

LEDs, 147

LENGTH command, 77

Light-emitting diodes, 147

LIGHTS routine
definition of, 147

Long-format graph, 98

MAP_TO_GRAPH routine
definition of, 149
MAP_TO_TEXT routine
definition of, 152
Memory
graphic, 14
MOVE_CURSOR routine
definition of, 119
MOVE option, 126

Option strings
examples of, 22
negative forms of, 27

Photographing screen, 94
POINT routine
definition of, 156
Points
coordinates of, 6
displaying single, 156
finding coordinates of, 116
indexing coordinates of, 126
Programming language, 19
PUT_SYMBOL routine
definition of, 160

Raster units
definition of, 167

REGION routine
definition of, 163
example of, 9
examples of, 23
related to, 96

ROLL_AREA routine
definition of, 165
related to, 96
example of, 7

Screen
changing background color of, 98
changing width of, 98
clearing, 96
columns per, 98
photographing, 94
resetting, 96, 134
subdivision of, 7
Scrolling area
definition of, 8
erasing, 114
related to, 165

Scrolling modes
definition of, 9
related to, 98

SET_BAR routine
definition of, 167

Setup mode
related to, 15, 99

Setup parameters
related to, 171

SHADE routine
definition of, 169

Standard initial state, 15, 100, 171

Start index argument, 42

Start X argument
related to, 72, 73

Start Y argument
related to, 72, 73

Strip-chart mode
definition of, 35
dual, 102
exiting from, 38, 129
related to, 126

Symbols
special, 160

Terminal
initial state of, 19
Text displays
definition of, 12
erasing, 112
positioning, 6
vertical, 141

INDEX

TEXT_INIT routine
definition of, 171
TEXT_LINE routine
definition of, 172
Text parameters
resetting, 171
Text positions
related to, 149
Type-ahead during graph-drawing, 21

Vertical lines
graphic, 138
text, 172
VIEW routine
definition of, 175
illustration of, 27
introduction, 14
Virtual array files, 77, 156
VLINE routine :
definition of, 138
VTEXT routine
definition of, 141

WIDE_LINE routine
definition of, 178 -
WINDOW routine
canceling effects of, 39
definition of, 180
Windows
definition of, 7
resetting, 180
Words of memory, 77
Workspace length, 77

i

187

MINC Graphic
Programming

AA-D574A-TC
READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
O Higher-level language programmer
O Occasional programmer (experienced)
0O User with little programming experience
O Student programmer
O Other (please specify)
Name Date
Organization
Street Telephone
City State —______ Zip Code

= or
Country

Balilglitlall il

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MR1-2/E37
MARLBOROUGH, MASSACHUSETTS 01752

No Postage
Necessary
if Mailed in the
United States

918 Alramer NMrnttensd I tom

	B4MGP_00_0001
	B4MGP_00_0002
	B4MGP_00_0003
	B4MGP_00_0004
	B4MGP_00_0005
	B4MGP_00_0006
	B4MGP_00_0007
	B4MGP_00_0008
	B4MGP_00_0009
	B4MGP_00_0010
	B4MGP_00_0011
	B4MGP_00_0012
	B4MGP_01_0001
	B4MGP_01_0002
	B4MGP_01_0003
	B4MGP_01_0004
	B4MGP_02_0005
	B4MGP_02_0006
	B4MGP_02_0007
	B4MGP_02_0008
	B4MGP_02_0009
	B4MGP_02_0010
	B4MGP_02_0011
	B4MGP_02_0012
	B4MGP_02_0013
	B4MGP_02_0014
	B4MGP_02_0015
	B4MGP_02_0016
	B4MGP_02_0017
	B4MGP_02_0018
	B4MGP_03_0019
	B4MGP_03_0020
	B4MGP_03_0021
	B4MGP_03_0022
	B4MGP_03_0023
	B4MGP_03_0024
	B4MGP_03_0025
	B4MGP_03_0026
	B4MGP_03_0027
	B4MGP_03_0028
	B4MGP_03_0029
	B4MGP_03_0030
	B4MGP_03_0031
	B4MGP_03_0032
	B4MGP_03_0033
	B4MGP_03_0034
	B4MGP_03_0035
	B4MGP_03_0036
	B4MGP_03_0037
	B4MGP_03_0038
	B4MGP_03_0039
	B4MGP_03_0040
	B4MGP_03_0041
	B4MGP_03_0042
	B4MGP_03_0043
	B4MGP_03_0044
	B4MGP_03_0045
	B4MGP_03_0046
	B4MGP_03_0047
	B4MGP_03_0048
	B4MGP_03_0049
	B4MGP_03_0050
	B4MGP_04_0051
	B4MGP_04_0052
	B4MGP_04_0053
	B4MGP_04_0054
	B4MGP_04_0055
	B4MGP_04_0056
	B4MGP_04_0057
	B4MGP_04_0058
	B4MGP_04_0059
	B4MGP_04_0060
	B4MGP_04_0061
	B4MGP_04_0062
	B4MGP_04_0063
	B4MGP_04_0064
	B4MGP_04_0065
	B4MGP_04_0066
	B4MGP_04_0067
	B4MGP_04_0068
	B4MGP_04_0069
	B4MGP_05_0070
	B4MGP_05_0071
	B4MGP_05_0072
	B4MGP_05_0073
	B4MGP_05_0074
	B4MGP_05_0075
	B4MGP_05_0076
	B4MGP_05_0077
	B4MGP_05_0078
	B4MGP_05_0079
	B4MGP_05_0080
	B4MGP_05_0081
	B4MGP_06_0082
	B4MGP_06_0083
	B4MGP_06_0084
	B4MGP_06_0085
	B4MGP_06_0086
	B4MGP_06_0087
	B4MGP_06_0088
	B4MGP_06_0089
	B4MGP_06_0090
	B4MGP_06_0091
	B4MGP_06_0092
	B4MGP_06_0093
	B4MGP_06_0094
	B4MGP_06_0095
	B4MGP_06_0096
	B4MGP_06_0097
	B4MGP_06_0098
	B4MGP_06_0099
	B4MGP_06_0100
	B4MGP_06_0101
	B4MGP_06_0102
	B4MGP_06_0103
	B4MGP_06_0104
	B4MGP_06_0105
	B4MGP_06_0106
	B4MGP_06_0107
	B4MGP_06_0108
	B4MGP_06_0109
	B4MGP_06_0110
	B4MGP_06_0111
	B4MGP_06_0112
	B4MGP_06_0113
	B4MGP_06_0114
	B4MGP_06_0115
	B4MGP_06_0116
	B4MGP_06_0117
	B4MGP_06_0118
	B4MGP_06_0119
	B4MGP_06_0120
	B4MGP_06_0121
	B4MGP_06_0122
	B4MGP_06_0123
	B4MGP_06_0124
	B4MGP_06_0125
	B4MGP_06_0126
	B4MGP_06_0127
	B4MGP_06_0128
	B4MGP_06_0129
	B4MGP_06_0130
	B4MGP_06_0131
	B4MGP_06_0132
	B4MGP_06_0133
	B4MGP_06_0134
	B4MGP_06_0135
	B4MGP_06_0136
	B4MGP_06_0137
	B4MGP_06_0138
	B4MGP_06_0139
	B4MGP_06_0140
	B4MGP_06_0141
	B4MGP_06_0142
	B4MGP_06_0143
	B4MGP_06_0144
	B4MGP_06_0145
	B4MGP_06_0146
	B4MGP_06_0147
	B4MGP_06_0148
	B4MGP_06_0149
	B4MGP_06_0150
	B4MGP_06_0151
	B4MGP_06_0152
	B4MGP_06_0153
	B4MGP_06_0154
	B4MGP_06_0155
	B4MGP_06_0156
	B4MGP_06_0157
	B4MGP_06_0158
	B4MGP_06_0159
	B4MGP_06_0160
	B4MGP_06_0161
	B4MGP_06_0162
	B4MGP_06_0163
	B4MGP_06_0164
	B4MGP_06_0165
	B4MGP_06_0166
	B4MGP_06_0167
	B4MGP_06_0168
	B4MGP_06_0169
	B4MGP_06_0170
	B4MGP_06_0171
	B4MGP_06_0172
	B4MGP_06_0173
	B4MGP_06_0174
	B4MGP_06_0175
	B4MGP_06_0176
	B4MGP_06_0177
	B4MGP_06_0178
	B4MGP_06_0179
	B4MGP_06_0180
	B4MGP_06_0181
	B4MGP_06_0182
	B4MGP_06_0183
	B4MGP_06_0184
	B4MGP_99_0185
	B4MGP_99_0186
	B4MGP_99_0187
	B4MGP_99_0188
	B4MGP_99_0189
	B4MGP_99_0190

