MINC-11

Book 2:
MINC Programming Fundamentals

June 1980

This manual teaches the fundamentals of computer programming,
using MINC and the BASIC programming language. Book 3: MINC
Programming Reference should be used in conjunction with this book
for technical details and quick reference.

This manual supersedes Book 2: MINC Programming Fundamentals,
Order Number AA-D799A-TC.

Order Number AA-D799B-TC
MINC-11

VERSION 1.2

Software and manuals should be ordered by title and order number. In the United States, send orders to the nearest
distribution center. Outside the United States, orders should be directed to the nearest DIGITAL Field Sales Office
or representative.

NORTHEAST/MID-ATLANTIC REGION CENTRAL REGION WESTERN REGION

Technical Documentation Center Technical Documentation Center Technical Documentation Center
Cotton Road 1050 East Remington Road 2525 Augustine Drive

Nashua, NH 03060 Schaumburg, Illinois 60195 Santa Clara, California 95051
Telephone: (800) 268-1710 Telephone: (312) 640-5612 Telephone: (408) 984-0200

New Hampshire residents: (603) 884-6660

digital equipment corporation ® marlboro, massachusetts

First Printing, November 1978
Revised, June 1980

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corpora-
tion. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in this document.

The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such license.

No responsbility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright ©, 1978, 1980, Digital Equipment Corporation.
All Rights Reserved.

The postage-prepaid READER’S COMMENTS form on the last page of this
document requests the user’s critical evaluation to assist us in preparing
future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DECnet IAS
DECUS DECsystem—10 MASSBUS
Digital Logo DECSYSTEM-20 PDT

PDP DECwriter RSTS
UNIBUS DIBOL RSX

VAX EduSystem VMS

MINC-11 VT

7/80-14

CHAPTER 1 INTRODUCTION 1
WHAT IS MINC? 2
Using the Terminal 2
The BASIC Language 3
Commands and Statements 3
The MINC Workspace 4
Special Terminal Keys 4
MINC VOLUMES 5
USING THIS MANUAL 6

CHAPTER 2 USING MINC IN THE IMMEDIATE MODE 7
THE PRINT STATEMENT 8
Numeric Literals 9
Arithmetic Operations and Priority of Operators 11
SOME MINC FUNCTIONS 16
The Square Root Function 17
Trigonometric Functions 17
Exponential Function 19
Logarithmic Functions 19
VARIABLES 20
Assigning Values to Variables 21
VARIABLES AND THE MINC WORKSPACE 22
The CLEAR Command 22
The Scratch Command 22
MULTIPLE STATEMENT LINES 22

CHAPTER 3 USING MINC IN THE PROGRAM MODE 25
A PROGRAM EXAMPLE 26
PROGRAMS AND THE MINC WORKSPACE 27
The NEW Command 28

CONTENTS

fii

PROGRAMMING FUNDAMENTALS

STATEMENT NUMBERS 28
INPUT STATEMENTS 29
ARITHMETIC OPERATIONS AND PRIORITY OF OPERATORS 31
MAKING OUTPUT READABLE 31
String Literals 32
Print Zones 33
The TAB Function 35
STRING VARIABLES 36
Assignment Statements 38
Inputting String Information 38
Concatenating Strings 39
THE REMARK STATEMENT 40

CHAPTER 4 MINC PROGRAM COMMANDS 43
CORRECTING PROGRAMS 43
Deleting Lines 44
The Substitute Command 44
The Resequence Command 47
SAVING PROGRAMS 48
The SAVE Command 49
Program Files 49
The OLD Command 52
The REPLACE Command 53
The DIRECTORY Command 54
Printing a Program 56
Checking the Length of a Program 57
LISTING AND RUNNING PROGRAMS 58
Listing Programs 58
Running Programs 59
COMPILING A PROGRAM 61
USING OTHER VOLUMES 62
MINC Volumes 62
Deleting a Program File 66
Recovering Unused Space 66
Initializing a Volume 68
Finding Bad Blocks 70
Duplicating a Volume 71
Copying a File 72

CHAPTER 5 PROGRAM CONTROL 75

IF STATEMENTS AND LOGICAL EXPRESSIONS 75
IF Statements in BASIC Are Like English 75
Logical Expressions 76
IF/THEN Statements 78
IF/GO TO Statements 81
Programming the “Otherwise” 81

GO TO Statements 81

iv Unconditional GO TO Statements 81

CONTENTS

ON/GO TO Statements 82
RESEQUENCING PROGRAMS WITH GO TOs 82
PROGRAM TERMINATION 83

END Statements 83

The STOP Statement 83

CHAPTER 6 USING A REPETITIVE PROCESS 85
LOOPS USING IF STATEMENTS AND GO TOs 86
FOR LOOPS AND THE FOR/NEXT STATEMENTS 88

CHAPTER 7 ARRAYS AND NESTED LOOPS 93
CREATING AN ARRAY 94
WHY USE ARRAYS? 95
ONE-DIMENSIONAL ARRAYS 96
TWO-DIMENSIONAL ARRAYS 98
NESTED LOOPS 100
Nested FOR Loops 103
USING ARRAY ELEMENT 0 104
One-Dimensional Arrays 104
Two-Dimensional Arrays 105
SUBSCRIPTED VARIABLES 106
Subscripts 106
Examples 107
Subscripted Variables 109
HOW ARRAYS ARE STORED IN THE WORKSPACE 110

CHAPTER 8 DATA TYPES AND FUNCTIONS 113

DATA TYPES 113
Real Variables and Literals 113
Integer Variables and Literals 113
Integer Arithmetic 115
Mixed Mode Arithmetic 115

ARITHMETIC AND TRIGONOMETRIC FUNCTIONS 117
Integer Function 118
Absolute Value Function 118
Random Number Function and RANDOMIZE Statement 118
Computing the Sign of an Expression 120

STRING FUNCTIONS 120
Clock and Calendar Functions 121
The TIME and DATE Commands 121
String Manipulation Functions 122
Finding the Length of a String 122
Trimming Trailing Blanks Off a String 123
Finding the Position of a Substring 123
Copying Segments from a String 124
Conversion Functions 125
Character and ASCII Code Conversions 126
Numbers and Their String Representation Conversions 127 v

PROGRAMMING FUNDAMENTALS

Example — Converting Lower Case to Upper Case 128
USER-DEFINED FUNCTIONS 130

CHAPTER 9 SUBROUTINES 135
THE GOSUB AND RETURN STATEMENTS 137
EXAMPLE OF SUBROUTINES 138
THE ON/GOSUB STATEMENT 140
RESEQUENCING PROGRAMS WITH GOSUBS 141

CHAPTER 10 MINC ROUTINES 143

CHAPTER 11 FILE CONTROL 145
PROGRAM FILES AND OTHER FILES 145
SEQUENTIAL FILES 147
Opening a Sequential File 147
Closing a Sequential File 149
Using a Sequential File 149
Storing Data in a Sequential File 149
Accessing Data in a Sequential File 151
Checking For the End of the Input File 152
Restoring a File to the Beginning 153
Example of Using Sequential Files 153
Another Example 162
VIRTUAL ARRAY FILES 163
Opening a Virtual Array File 165
Closing a Virtual Array File 167
Using Virtual Array Files 168
Example of Using a Virtual Array File 168
DELETING A FILE 170
RENAMING A FILE 170

CHAPTER 12 OTHER BASIC STATEMENTS 173
READ AND DATA STATEMENTS 173
The RESTORE Statement 176
MINC SYSTEM FUNCTIONS 176

CHAPTER 13 FORMATTED OUTPUT \177
PRINT 178
PRINT USING 178
FORMATTING NUMERIC OUTPUT 179
FORMATTING STRING OUTPUT 182
PRINT USING STATEMENT ERROR CONDITIONS 184

CHAPTER 14 COMBINING PROGRAMS 185
CHAINING PROGRAMS TOGETHER 186
Example — A Sequential File Maintenance Program 187
Preserving Values of Variables in a Chain 194
APPENDING PROGRAMS 196
vi OVERLAYING A PROGRAM 200

CHAPTER 15 KEYPAD EDITING WITH MINC 203

THE THREE EDITING COMMANDS 204
MINC'S KEYPAD AND OTHER SPECIAL KEYS 206

BASIC Programs and the Keypad Editor 207
INSPECTING AN ASCII FILE 207

INS Operations and Symbols 208

INS Exercises 210

Introducing 1 FILE, | FILE and Tone 212

Introducing Searching 213

Introducing Unique Search Models 216
EDITING AN ASCII FILE 221

EDI Operations and Symbols 222

EDI Exercises 224

Control Characters and the Keypad Editor 231

Screen Width and the Keypad Editor 233
CREATING AN ASCII FILE 233

CRE Operations and Symbols 234

CRE Exercises 234

CHAPTER 16 DEBUGGING YOUR PROGRAMS IN THE
IMMEDIATE MODE 235

CHAPTER 17 WHERE TO GO FROM HERE 239
APPENDIX A ASCII CHARACTER SET 241
INDEX 245

CONTENTS

vii

Figure

P b e ek e ek
SO LWNFE OO0 WND -

CONTENTS

FIGURES
Organization of a New Diskette 63
Initialized Diskette with No Files 64
Diskette with Program Files 65
MINC System Volume with Program Files 65
Diskette with File Deleted 67
Collected Diskette 67
One-Dimensional Array 96
One-Dimensional Array 99
Two-Dimensional Array 99
One-Dimensional Array 106
One-Dimensional Array 110
Two-Dimensional Array 111
Two-Dimensional Array Stored in the Workspace 111
The Keypad 206
The Calendar in File EDITOR.001 210
The Faulty Calendar in File EDITOR.002 223

ix

This book teaches you the commands necessary to use your
MINC system. However, this book teaches more than just the
syntax of the commands — it also teaches you how to put these
commands together to produce your desired results. This book
teaches you good techniques for making MINC work more effec-
tively as well as for putting the commands together more
effectively.

This book is designed to be read sequentially from the front to
the back because the later chapters build on your knowledge
from the earlier ones. Consequently, the later chapters are not
all easy to understand. In order to show you how to use your
MINC effectively, some of the later examples become somewhat
complex. However, the examples are explained quite thor-
oughly; and if you take the time to understand the examples,
you will finish this book with a good knowledge of your MINC
and how to use it.

All of the examples in this book have been chosen carefully.
Examples can never reflect every possible environment, but the
ones presented in this manual all reflect possible uses for MINC
in the laboratory environment. Many of the examples are actu-
ally tools that you will want to use in your own work with
MINC.

This book discusses all of the MINC commands but does not
discuss all of the technical details of each command. The more
complex and technical points of the commands are left for Book
3: MINC Programming Reference.

CHAPTER 1
INTRODUCTION

PROGRAMMING FUNDAMENTALS

WHAT IS MINC?

Using the Terminal

2

This book repeatedly makes reference to Book 3. Feel free to
look up a subject in Book 3 for further information. Book 3 is
arranged in alphabetical order by topic for easy reference.

MINC, which stands for Modular INstrument Computer, is both
a calculator and a computer. When MINC is ready to accept
commands from you, it displays a READY message. MINC has
two modes: the immediate mode and the program mode. In the
immediate mode, MINC performs the instructions immediately
as you type them. In the program mode, MINC saves the in-
structions that you type and performs them only when you re-
quest it.

You communicate with MINC through the terminal. You input
information to MINC by typing on the terminal keyboard, and
MINC outputs information to you by displaying its messages on
the terminal screen.

Notice the flashing box on the terminal screen. This flashing
box is called the cursor. If anything happens on the screen, it
happens where the cursor is. When you type a character on the
screen, MINC displays the character at the current cursor loca-
tion and then moves the cursor to the right, one place.

You can type a command to MINC whenever MINC is display-
ing the READY message. You terminate a command by press-
ing the RETURN key. If you are in the immediate mode when
you press the RETURN key, MINC immediately tries to execute
the command. If you are in the program mode when you press
the RETURN key, MINC does not try to execute the command
until you tell it to.

You cannot damage MINC by typing an incorrect command. If
you notice a mistake before you press RETURN, you can erase
your mistake by pressing the DELETE key until the mistake is
erased, and then you can type in the correct command.

If you press RETURN before you notice the mistake, MINC will
tell you that you made a mistake. Then MINC will display the
READY message and will wait for you to type the command
again.

You type commands to MINC using the terminal keyboard,
which is like a typewriter. MINC understands commands in
both upper and lower case.

When you type a character, MINC reads it and then displays it
on the terminal screen. Usually, when you type a lower case
character, MINC displays a lower case character. Sometimes,
however, when MINC displays a question for you to answer, it
will display your response in upper case, even when you type
your response in lower case characters.

You communicate with MINC using the BASIC language. Basic
is a language that is like English but has a limited vocabulary.
In BASIC, each word in the vocabulary has only one meaning to
MINC.

For example, in BASIC, the verb PRINT tells MINC to display
something on the terminal screen. You tell MINC what to print,
and MINC prints it.

On the other hand, in English, the verb print can mean one of
the following:

® Produce a page of text using a printing press (like to
print a newspaper).

® To write in a certain manner — a child is taught to
print before being taught to write in script.

® To produce a photograph on paper from a negative.

Thus, BASIC is less ambiguous than English and is easier for
MINC to understand.

Due to the limited vocabulary, you must be careful to type ex-
actly what you mean. For example, you cannot use a lower case
ell (1) instead of a one (1). A lower case ell (1) means something:
very different to MINC than a one (1) does. Similarly, you can-
not use a capital O (oh) in place of a 0 (zero).

The BASIC language gives two types of instructions to MINC:
commands and statements. Until now, the term command has
been used loosely to mean any instruction given to MINC. How-
ever, there is a difference between commands and statements. A
BASIC command can be used only in the immediate mode. A
BASIC statement can be used in either the immediate mode or
the program mode.

You can put a series of BASIC statements together to form a

INTRODUCTION

The BASIC Language

Commands and

Statements

PROGRAMMING FUNDAMENTALS

The MINC Workspace

Special Terminal Keys

program. Thus, a program is just a group of statements that
perform a larger task than you can perform with just one
statement.

MINC has a workspace in which it stores a program that you
type and any values that you tell it to save. The workspace has a
limited size, and thus, can only hold a limited amount of
information.

MINC does not save the results of any command in the work-
space, but it does save the results of some statements — even in
the immediate mode. As you type in a program, MINC saves
that program in the workspace. However, MINC can only save
one program in the workspace at a time. If you type in a new
program, you destroy the old program in the workspace.

There are some terminal keys that have special meanings to
MINC.

The RETURN Key The RETURN key signals the end of your
command or statement. In examples, this key is represented by
the following symbol:

RET)

This symbol appears only in the first few examples in this man-
ual to show you where to use it. In later examples, you should
remember to press the RETURN key at the end of the line
shown in the example. -

The NO SCROLL Key The NO SCROLL stops all output from
appearing on the terminal screen. If you press the NO SCROLL
key a second time, the output resumes on the screen. Thus, if
you are typing on the terminal and nothing appears on the
screen, press the NO SCROLL key, just in case you pressed the
NO SCROLL key by mistake. The NO SCROLL key is an on-off
switch for the terminal output.

Control Characters There are special characters called control
characters. For example, you send MINC a “Control C” by press-
ing the CTRL key at the same time as the C key (similar to
sending a capital C by pressing the SHIFT key at the same time
as the C key). In a paragraph the “Control C” character is repre-
sented as CTRL/C. In an example, it is shown as:

CTRL/C

When you press CTRL/C, the following symbol appears on the
screen.

*C

The control characters that are important to MINC are:
CTRL/C, CTRL/S, CTRL/Q, and CTRL/U. There are other con-
trol characters that have significance, but the other control
characters are explained in Book 3.

The CTRL/C character stops a program. This character is ex-
plained in Chapter 3.

The CTRL/S character stops all output from appearing on the
terminal screen. The CTRL/Q character shows all the output
that was hidden with the CTRL/S character. Thus, if you are
typing on the terminal and nothing appears on the screen, press
CTRL/Q, just in case you typed CTRL/S by mistake.

The CTRL/S and CTRL/Q characters together are the same as
the NO SCROLL key.

The CTRL/U key signals MINC to ignore the current line that
you are typing. When you press CTRL/U, MINC returns the
cursor to the next line. The line you want to erase still appears
on the screen, but MINC ignores it.

Before you can use your MINC, you must place a MINC system
diskette in the left diskette drive. The diskette is a more perma-
nent storage medium than the MINC workspace. If you do not
have a MINC system diskette, read Book 1: Introduction to
MINC to learn how to create a system diskette from the Master
diskette.

The diskette is a physical medium for storage. A volume is a
logical storage medium to MINC. For example, a volume to a
person can be one book in a set of encyclopedias — any one of
the set, not one in particular. A volume to MINC is any storage
medium — not just one particular diskette. Thus, the term vol-
ume is used throughout this manual to refer to a diskette.

MINC has logical devices as well as logical storage media. The
diskette drive is a physical device. The diskette is placed in a
diskette drive. The logical names for the two diskette drives are
SYO: and SY1: (the colon is part of the name). SYO: is the name

INTRODUCTION

MINC VOLUMES

PROGRAMMING FUNDAMENTALS

USING THIS MANUAL

of the left diskette drive, and SY1: is the name of the right
diskette drive.

To learn BASIC most effectively, you should read this book and
try the examples on your MINC as you read them. The best way
to learn BASIC is to use it.

To try the examples in this book, you must have a demonstra-
tion diskette in the left diskette drive (SYO0:). The directions for
starting your MINC system and obtaining a copy of the demon-
stration diskette are in Part II of Book 1: Introduction to MINC.

CHAPTER 2

USING MINC IN THE IMMEDIATE MODE

The immediate mode is used for two purposes:
e To display calculations.

® To command MINC to perform tasks such as running
and saving programs.

This chapter describes how to use MINC to do calculations.
Chapter 4 describes the immediate mode commands that direct
MINC to perform other tasks.

Imagine yourself using a small calculator to do the following
calculation:

(27+32)(15-8)

you would probably follow these steps:

Enter 27.

Add 32.

Store result (in memory or on paper)

Enter 15.

Subtract 8.

Multiply by what is stored in memory or on paper.
Divide by 327.

Noos b=

At this point the calculator display is showing the correct an-
swer, which is 1.263.

PRINT 23.8
23.8

PRINT 5324.7 +78625.9
83950.6

You can insert blanks or spaces to make the PRINT statement
more readable. MINC ignores blanks. All of the following exam-
ples have the same meaning to MINC.

PRINT 7
PRINT?7

PRINT?7

You can also type the PRINT statement in any mixture of upper
and lower case. All of the following examples have the same
meaning to MINC.

priNT 7
print 7
PRINT 7

However, in this manual, all MINC statements are typed in
upper case to distinquish them from other parts of the text.

A single number can be the expression of a PRINT statement.
Another name for a number is a numeric literal. Any number
whose magnitude is between .01 and 999999 can be printed just
the way it looks. Zero is also printed the way it looks. For
example:

PRINT .01
.01

PRINT 999999
999999

PRINT -.01
-.01

PRINT O
0

Numeric literals cannot contain commas or spaces. Numeric

THE IMMEDIATE MODE

Numeric Literals

PROGRAMMING FUNDAMENTALS

10

literals can contain up to six significant digits; that is, numeric
literals can have up to six digits, not counting zeroes preceding
the number or zeroes trailing the decimal point. Some valid nu-
meric literals are:

0.123456

999999

99999.9

123.456

In a PRINT statement, MINC rounds decimal places to six sig-
nificant digits. That is, if the value of the seventh digit (last
decimal place) is five or less, the remaining digits are lost; if the

value of the seventh digit is six or greater, the sixth digit is
incremented by one. For example:

PRINT Statement What Is Printed
PRINT .1234565 123456
PRINT .1234566 .123457
PRINT 1.2345672 1.23457

Numbers that have a magnitude greater than 999999 or less
than .01 are printed in scientific notation, where E denotes the
exponent, or power of 10, involved. For example:

PRINT Statement What Is Printed
PRINT .01 .01

PRINT .0099 9.90000E-03 (9.9 X 107
PRINT 999999 999999

PRINT 1000000 1.00000E+06 (1 X 10°%
PRINT .0100 .01

PRINT 090 90

PRINT 1E-01 1

PRINT 1E6 1.00000E+06 (1< 10°%

Examples 5 and 6 show that MINC removes preceding and trail-
ing zeroes. Examples 7 and 8 show that you can used E notation
in a PRINT statement. In Example 7, MINC converts the E
notation to .1 because the value is between .01 and 999999. In
Example 8, MINC converts the result to 1.00000E + 06 because
this is the form in which MINC prints E notation, even though
MINC understands shortcuts.

The range of magnitudes that can be represented in E notation

is between 10 and 10%.

MINC performs the following arithmetic operations: addition,
subtraction, multiplication, division, and exponentiation. In or-
der to obtain the correct result of a calculation, you should know
the order in which MINC performs these operations. MINC per-
forms calculations in a certain order unless forced by you to do
otherwise. All MINC calculations must be written on one line.

Any of the arithmetic operators (described in the following sec-
tions) combined with numeric literals are valid expressions. Ex-
pressions containing arithmetic operations are called arithmetic
expressions.

Addition and Subtraction Addition is denoted by a plus sign
(+). Sums are obtained by putting those numbers to be added in
a PRINT statement with plus signs between them. For example:

PRINT 7+2
9

PRINT 43+9.2+8.7
222

PRINT 6E6 + 5E5
6.50000E + 06

Subtraction is denoted by a minus sign (-). Differences are ob-
tained by putting those numbers to be subtracted in a PRINT
statement with minus signs between them. For example:

PRINT 8-5
3

PRINT 9.4-6.5-2
.9

PRINT 5.3E-7 - 4.9E6
-4.90000E + 06

Notice that in the last example, 0.00000053 is negligible next to
4,900,000.

Addition and subtraction are of equal priority; that is, if MINC
is given a series of additions and subtractions, it proceeds from
left to right. For example:

PRINT 5+7-2
10

THE IMMEDIATE MODE

Arithmetic Operations
and Priority of
Operators

11

PROGRAMMING FUNDAMENTALS

12

PRINT 6-2-3+4
5

PRINT 4.9-3.2+6.7-10.9
-2.5

In the second example, the first subtraction (6-2) is done first,
then the second subtraction (4-3), and finally the addition
1+4).

Multiplication and Division Multiplication is denoted by an as-
terisk (*) rather than an X, and the * must never be left out if a
multiplication is to be performed. In mathematical texts, multi-
plication is represented in several ways; sometimes with an X,
sometimes with a dot, and sometimes by writing expressions
without any operator.

In MINC, the only way to obtain the product of two numbers is
to insert an asterisk (*) between the numbers to be multiplied.
For example:

2"3

You can obtain products of numbers by putting those numbers
to be multiplied in a PRINT statement. For example:

PRINT 85
40

PRINT 4.35"6.72
29.232

PRINT 6E4*3E9
1.80000E + 14

The multiplication operation has a higher priority than addition
and subtraction and thus is done first when combined with addi-
tion or subtraction. For example:

PRINT 2+3*7
23

MINC does the multiplication (3*7) first and then the addition
(2+421). Another example:

PRINT 2+3*7-9
14

In this case, MINC does the multiplication (3*7) first, and then

the addition (2+21) and subtraction (23-9) are done from left to
right since they are of equal priority.

Division is denoted by a slash (/) and the divisor must appear on
the same line as the dividend. For example, three-sevenths in
mathematical notation must appear as 3/7 in MINC notation.

Examples of division are:

PRINT 3/5
6

PRINT 10/3
3.33333

PRINT 20/3
6.66667

PRINT 10E6/5E4/2
100

PRINT 6/0
?MINC-W-Dividing by zero
0

In the final example, an error message notes that division by
zero is not defined and consequently cannot be computed.

Multiplication and division are operations of equal priority.
When they are combined, MINC performs these operations from
left to right. For example:

PRINT 2*3/9
.666667

PRINT 4/10*5
2

PRINT 5*4/10
2

PRINT 5E8 * 2E7 / 9E6
1.11111E+09

Division, like multiplication, is of higher priority than addition
and subtraction, and MINC performs division before addition or
subtraction. For example:

PRINT 5/2+3
55

THE IMMEDIATE MODE

13

PROGRAMMING FUNDAMENTALS

14

PRINT 2+ 3*5-6/3
15

In the second example, the multiplication (3*5) is done first,
then the division (6/3), and then the addition and subtraction
proceed from left to right.

Exponentiation In mathematics, to raise 2 to the third power,
you write:

23

Because calculations in MINC must be written on one line, ex-
ponentiation is denoted by a caret (*), and thus to raise 2 to the
third power you write:

2°3

PRINT 2°3
8

MINC processes exponentiation operations, like the other opera-
tions, from left to right. For example:

PRINT 2°3°2
64

First MINC computes 2°3 (=8) and then squares the result
(=64).

Overriding Priorities You can override the priority of multipli-
cation and division over addition and subtraction by the use of
parentheses. Anything in parentheses has priority over any-
thing outside parentheses. In the following two examples, see
how the parentheses affect the result.

PRINT 2 +3*7
23

PRINT (2+3)*7
35

In the second example, MINC performs the addition (2 +3) first
because this operation is enclosed in parentheses. Another
example:

PRINT 6+ (2+7)/(2+1)-4
5

MINC performs the addition (2+7) first, then the addition
(2+1), because they are in parentheses; then MINC performs
the division because it has the next higher priority; and finally
MINC performs the addition (6+3) and subtraction (9-4) from
left to right.

You can place parentheses within parentheses, to nest one ex-
pression within another. For example:

PRINT (2+7*(6+5))/24+5
8.29167

MINC performs the innermost addition (6 + 5) first. Then MINC
performs the operations within the outer parentheses according
to the usual priorities. Finally, MINC performs the operations
outside the parentheses according to the usual priorities. That
is:

(2+7*(6+5))/24+5
6+5=11
711=77
2+77=79

79/24 =3.29167

3.29167 +5=8.29167 The Answer

Note that every left parenthesis must be matched somewhere in
the expression by a right parenthesis.

Table 1. Priority of Operators

Operation Priority
() highest
*or/

+ or - lowest

Exponentiation has the highest priority of all the operations as
shown in Table 1, but like the rest, that priority can be overrid-
den by parentheses. For example:

PRINT 2 +3°3
29

THE IMMEDIATE MODE

15

PROGRAMMING FUNDAMENTALS

SOME MINC
FUNCTIONS

16

PRINT (2+3)'3
125

PRINT (2°3)"2
64

PRINT 2(3"2)
512

PRINT 2*2°3
16

PRINT (2*2)"3
64

MINC can perform some functions that are difficult to calculate
by hand. For example, MINC can compute square roots, loga-
rithms, and trigonometric functions.

A function is an operation on an argument or arguments that
computes a value. For example, the symbol

Vx

represents the value equal to the square root of x. The x is the
argument of the square root function.

To print the value of the square root of 2 on MINC, type:

PRINT SQR(2)
1.41421

MINC prints the value of the square root of 2 on the terminal
screen.

A function, which consists of the function name followed by a
parenthesized expression called an argument, can be used as an
expression of a PRINT statement, as above. A function can also
be used with a larger expression wherever an expression is
valid. For example:

function
name argument
—tp—

PRINT(-5 + SQR(5"2-4*3%2))/(2*3)

element of
PRINT expression

N J

PRINT evxpression

MINC functions calculate results to six significant digits.

Some MINC functions are described in the following sections.
The remaining functions are described in Chapter 8.

The square root function, denoted as SQR, calculates the value
of the square root of the argument. The following four examples
show uses of the SQR function. The third example shows that
the square root function can be used as the argument of the
square root function; that is, function calls can be nested. The
fourth example shows that an expression can be the argument of
the SQR function as well as the SQR function being an element
of the larger expression of the PRINT statement.

PRINT SQR(4)
2

PRINT SQR(2)
1.41421

PRINT SQR(SQR(16))
2

PRINT (-5 + SQR(5°2-4*3"2))/(2*3)
-.666667

As with all MINC operations, the precision of the result of the
square root function is to six significant digits.

The PI function always takes on the value of = to six significant
digits (3.14159). The PI function has no argument and can be
used wherever the value 3.14159 is required.

The sine, cosine, and arc tangent functions, which are denoted
by SIN, COS, and ATN respectively, calculate the value of the
sine, cosine, and arc tangent of their arguments respectively.
The arguments of both the sine and cosine functions are angles
that must be expressed in radians. You can convert an angle in
degrees to radians with the following identity:

radians = degrees*P1/180

where PI is the function that takes on the value 3.14159.

THE IMMEDIATE MODE

The Square Root
Function

Trigonometric
Functions

17

PROGRAMMING FUNDAMENTALS

18

The form of the sine function is:
SIN(expression)

The form of the cosine function is:
COS(expression)

For example:

PRINT SIN(PI)
1.87254E-07

PRINT COS(PI)
-1

Notice that MINC returns a value of .0000001 for the sine of .
This value is approximately 0. See the Numeric Precision sec-
tion of Book 3.

If you want the value of the sine of 239 degrees, type:

PRINT SIN(239*P1/180)
-.857167

As with the SQR function, you can nest the trigonometric func-
tions. For example,

PRINT SQR(COS(45*P1/180))
.840896

The form of the arc tangent function is:
ATN(expression)

The ATN function calculates the value in radians in the range
+m/2 to -mw/2. For example:

PRINT ATN(32.435)
1.53998

You must compute the other trigonometric functions — tangent,
cotangent, arc sine, arc cosine — using the SIN, COS, and ATN
functions. For example, the following PRINT statement prints
the tangent of n/3.

PRINT SIN(PI/3)/COS(P1/3)
1.73205

The exponential function raises the number e (approximately
2.71828) to the power specified by the argument of the function.
That is, EXP(7) is equivalent to e’.

The form of the exponential function is:
EXP(expression)

For example:

PRINT EXP(7)
1096.63

PRINT EXP(SQR(2 +3))
9.35647

The LOG function calculates the value of
log.(expression)

The LOG function is the inverse of the EXP function since the
following relationship is true:

LOG(EXP(expression)) = expression

For example:

PRINT LOG(2.718281)
1

PRINT LOG(EXP(5))
5

The LOG10 function returns the value of
log,,(expression)

For example:

PRINT LOG10(10)
1

PRINT LOG10(100)
2

Logarithms to any base may be easily computed using the fol-
lowing formula:

THE IMMEDIATE MODE

Exponential Function

Logarithmic Functions

19

PROGRAMMING FUNDAMENTALS

VARIABLES

20

log.(expression)

For example, the MINC statement to compute the log base 2 of
512 is:

PRINT LOG (512)/LOG(2)
9

Up to now, all of the calculations have involved numeric liter-
als. However, most mathematical formulas have variables in
them — that is, quantities that can vary. For example, the fol-
lowing formula represents the area of a circle.

area =’

The w represents the number 3.14159 and the r represents the
radius of the circle. The r is a variable — that is, it is a place-
holder whose value varies for different circles. On the other
hand, = is a constant whose value is always 3.14159.

Similarly, the formula for conversion from Fahrenheit to Cel-
sius has constants and variables.

T, = 5/9*%(T-32)

T, is the variable representing the result in degrees Celsius and
T; represents degrees Fahrenheit. The numbers 32 and 5/9 are
numeric literals.

In MINC, a numeric variable is the name of storage for a nu-
meric value. The storage is allocated in the workspace.

You can use variables in the immediate mode to save space on a
line in a long calculation and to cut down on typographical er-
rors. If you are going to do several calculations with the same
large expression, you can save time by storing the value of the
expression in a variable.

For example, if you want the sine, cosine, tangent, and arc tan-
gent of 45 degrees, you might type the following:

PRINT SIN(45*P1/180)

PRINT COS(45*P1/180)

PRINT SIN(45*P1/180)/COS(45*P1/180)
PRINT ATN(45*P1/180)

However, using the variable A to represent 45 degrees con-
verted to radians, you need only type:

A=45'P1/180

PRINT SIN(A)

PRINT COS(A)
PRINT SIN(A)/COS(A)
PRINT ATN(A)

MINC represents numeric variables with a letter or a letter
followed by a digit. For example, the variable names F and F1
represent two distinct variables. You can print the area of a
circle with radius 5 by using the following statements:

R=5
PRINT PI*R"2

In MINC, a numeric variable represents a numeric value. In the
previous example, the variable R has a numeric value of 5. The
next section describes how to assign a value to a variable.

You can assign a value to a variable with an assignment state-
ment. The form of the assignment statement is:

LET variable-name = expression

The keyword LET is optional. The value on the left of the equals
sign must be a variable name. The value on the right side of the
equals sign must be a valid expression. There is another type of
numeric variable called an integer variable which can contain
only whole number values. Integer variables are discussed in
Chapter 8.

The following example shows assigning the value 7 to the varia-
ble R.

R=7

Hereafter, whenever you use the variable R, MINC goes to the
workspace and uses the value 7. For example:

PRINT PI*R"2
153.938

The equals sign (=) does not denote mathematical equality. In-
stead, in MINC it means, “take the value to the right of the

THE IMMEDIATE MODE

Assigning Values to
Variables

21

PROGRAMMING FUNDAMENTALS

VARIABLES AND
THE MINC
WORKSPACE

The CLEAR Command

The Scratch Command

MULTIPLE
STATEMENT LINES

22

equals sign and place it in the variable to the left of the equals
sign.” For example, both of the following statements are accept-
able to MINC, but the second is not valid in mathematics.

A=2
A=A+1

The first statement tells MINC to give variable A the value 2.
The second statement tells MINC to calculate the value of A+1
(which is 2+1 or 3), and then to place this value in the variable
A. At the end of statement 2, A has the value 3.

As stated earlier, MINC stores variables in the workspace.
Whenever you use a variable, MINC sets up a place in the work-
space for it. The value of the variable is zero until you assign a
new value to it.

When you turn MINC off, all the variables you used are erased

from the workspace. Thus, when you turn MINC on, there are
no variables until you create one by assigning a value to it.

To reset all variables to zero, use the CLEAR command. The
form of the CLEAR command is:

CLEAR

When you use the CLEAR command, your variables still exist
in the workspace, but MINC has set their values to zero.

The SCR command, which stands for scratch, erases the entire
workspace. The form of the SCR command is:

SCR

When you use the SCR command, MINC zeroes all variables

and erases any program you stored in the workspace. (See
Chapter 3.)

You can type more than one BASIC statement on a line on the
screen by using the backslash (\). The form of the backslash is:

statement \ statement

The backslash works only for BASIC statements and not for
commands. Note that the backslash () is different from the
slash (/), which indicates division.

For example:

A=45"PI/180\ PRINT SIN(A) \ PRINT COS(A) \ PRINT ATN(A)

.707107
.707107
.665774

READY

By placing more than one statement on a line, you can see all of
the results together instead of separated by blank lines and
READYs.

Note that you can only put as many statements on a line as will
fit. Remember that BASIC statements cannot cross line
boundaries.

THE IMMEDIATE MODE

23

CHAPTER 3

USING MINC IN THE PROGRAM MODE

The advantage of a computer is its ability to perform repetitive
or iterative tasks automatically. As a simple example, consider
computing the sine and cosine of many angles in degrees. When
using MINC in the immediate mode to compute the sines and
cosines of 45°, 272°, 130°, and 90°, you would have to type all of
the following lines. The comma between expressions instructs
MINC to print two numbers on the same line.

A=Pl/180

PRINT SIN(45*A),COS(45™A)
707107 .707107

PRINT SIN(272*A),COS(272*A)
-.999391 .034892

PRINT SIN(130*A),COS(130*A)
.766045 -.642788

PRINT SIN(90*A),COS(90*A)
1 0

This is a lot of typing, and if you need the sines and cosines of
more angles, you will have to do more typing and will have more
chance for error. You can type a BASIC program that will com-
pute the sine and cosine of any angle in degrees, but the pro-
gram needs to be typed only once.

A program is a series of statements that can be executed as a
whole. It can perform more than one calculation or task.

25

PROGRAMMING FUNDAMENTALS

A PROGRAM
EXAMPLE

26

Suppose a physics student has a MINC available to her for her
homework. Since she needs to compute sines and cosines for
many of her physics problems, she wrote a program to compute
as many sines and cosines as she needs. Her program asks for an
angle in degrees and then prints out the sine and cosine. The
program keeps asking for another angle until she types in a
CTRL/C (presses the CTRL key at the same time as the C key).

The student’s program follows. You should type it in just to see
how a program works. Do not worry if you do not quite under-
stand the program. All of the programming concepts shown here
are explained later in this manual.

What you type in is shown in red ink. MINC’s responses are
shown in black.

This program should be typed exactly as it appears here. You
must type each statement perfectly. If you make a typographical
error, simply retype the line. MINC executes the statements in
numerical order, even if you did not enter them in order. Re-
member that spaces within a statement are there only to make
the statement easier to read — they do not matter to MINC.

READY
NEW
NEW FILE NAME — — SINES

The NEW command erases and then names the workspace.
Thus, if you want to save the program you are typing in, give
the program a name. In this case the workspace is named
SINES.

READY

20 PRINT ,"SINE","COSINE"
30 PRINT "DEGREES";

40 INPUT X

60 Z=X"PI/180

70 PRINT ,SIN(Z2),COS(2Z)
80 GO TO 30

90 END

If your program is not typed perfectly, retype lines that are not
correct by retyping the line number followed by the statement.
For example, if you had typed:

40 INPUT C

you can now type:

40 INPUT X

and MINC will correct the line by replacing the old line 40 with
the new one.

To see the way your correct program looks, type:

LIST

The LIST command causes your entire program to appear on
your terminal screen.

When you are convinced that your program is typed properly,
type:

RUN

MINC will then run or execute your program; in other words,
MINC will perform the instructions you have given it.

Output from the above program follows. What MINC types on
the screen is represented in black ink while your responses are
represented in red. After entering each response, press the
RETURN key.

SINES 20-APR-80 03:28:32

SINE COSINE
DEGREES? 45 .707107 .707107
DEGREES? 272 -.999391 .0348992
DEGREES? 130 .766045 -.642788
DEGREES? 90 1 0]
DEGREES? "C
STOP at line 40
READY

If you type RUN, MINC will perform this program again; you
can enter more angles and MINC will compute more sines and
cosines. You can also save this program and call it back when
you need more sines and cosines, saving yourself many steps.
(How to save programs is discussed in Chapter 4.)

You can run the program many times because MINC stores pro-
grams in the workspace as you type them. Before you type in a
new program, you should make sure that any previous program
is erased from the workspace by typing the SCR command (ex-
plained in Chapter 2) or the NEW command (explained in the
following section).

THE PROGRAM MODE

PROGRAMS AND
THE MINC
WORKSPACE

27

PROGRAMMING FUNDAMENTALS

The NEW Command

STATEMENT
NUMBERS

28

When you type a program, MINC stores the program in the
workspace in the upper case, whether you typed in the program
in upper case or lower case. MINC also formats the program for
you. MINC leaves at most one space between words, no matter
how you type in the program.

Like the SCR command, the NEW command erases the work-
space. However, the NEW command also allows you to give the

workspace a name. The SCR command automatically names the
workspace NONAME.

The NEW command has two forms. If you type only NEW fol-
lowed by RETURN, MINC prompts you for the new workspace
name.

NEWG@ED
NEW FILE NAME — —

Here you type in a name from one to six characters long. The
name can be any combination of letters and digits.

The second form of the NEW command is:

NEW name

where name is the name that you want (from one to six charac-
ters). In this second case, MINC does not prompt you for the
name.

You should use the NEW or the SCR command to erase the
SINES program from the workspace before you try the next ex-
amples. Unlike the NEW command, the SCR command auto-
matically names the workspace NONAME. Thus, if you care
about the name of the workspace, use the NEW command.

A statement number preceding a BASIC statement determines
whether MINC is in the immediate mode or the program mode.
For example:

PRINT 7
causes MINC to print a 7 immediately, while:

10 PRINT 7

does not cause MINC to do anything immediately. When you
type in a statement with a statement number, MINC does not

THE PROGRAM MODE

execute the statement, but rather places the statement in the
workspace. The above example is a one-line program consisting
of one PRINT statement. To execute a program (for example, 10
PRINT 7), you must type the RUN command. For example:

READY
SCR

READY
10 PRINT 7
RUN

NONAME 20-APR-80 04:46:28
7

READY

The program mode is much more powerful than the immediate
mode because it permits MINC to perform a series of statements
together as in the example in the beginning of the chapter.

Statement numbers tell MINC the order in which to execute the
BASIC statements. MINC executes the statements in ascending
numerical order, whether you entered the statements in numer-
ical order or not. The numbers do not have to be consecutive. In
fact, it is wise to leave a gap between statement numbers in case
you omitted a statement and have to insert it later.

The main purpose of a computer is to accept data as input, pro- INPUT STATEMENTS
cess the data, and produce output that is readable and usable.

Assignment statements assign values to variables, these values
being determined by the program. In contrast, INPUT state-
ments stop a program to accept data values from the user (the
person using the program — possibly someone other than the
programmer).

If you use variables along with the INPUT statement a program
can process any value that you input, as long as it is within the
boundaries of the program. The following example demonstrates
how to use the INPUT statement.

Suppose an engineer needs to find the volume of many cylin-
ders. For each cylinder, the engineer must know the area of the
base and the volume. The area of a circle is:

o’ 29

PROGRAMMING FUNDAMENTALS

30

where r is the radius of the circle (base). The volume of a cylin-
der is:

mr’h
where A is the height of the cylinder.

To find the area and volume of a cylinder with radius 2cm and

height 5cm, the engineer could enter the following line into
MINC.

PRINT PI*2°2, PI*2"2*5

For each cylinder having different dimensions, the engineer
would have to enter this same line with the new dimensions. If,
however, the engineer wrote a program to calculate the area
and volume of the cylinder, he would have to type the program
only once and it would take as input the radius and height and
would print the area of the cylinder base and volume of each
cylinder. The following program would do this:

NEW CYLIND
READY

10 INPUT R,H
20 PRINT PI*R"2, PI"R"2*H

When the engineer types RUN, the program, from statement 10,
will produce a question mark as a prompt indicating that MINC
is waiting for him to type in the radius and the height separated
by commas. The engineer must press the RETURN key to sig-
nify the end of his input line. Then, underneath these input
amounts, MINC will print the area and volume of the cylinder.
The screen would look like this:

RUN

CYLIND 20-APR-80 04:48:37
72,5

12.5664 62.8319

Red represents what the engineer typed and black represents
what MINC typed.

In this example, the INPUT statement assigns to the variables

R and H the values that the engineer entered at the question
mark. Now, in line 20, MINC uses 2 and 5 as the values for the
variables R and H respectively, to compute the area of 12.5664
and volume of 62.8319.

The form of the INPUT statement is:
INPUT variable-list

where variable-list is one variable or, as in this example, many
variables separated by commas. For example:

10 INPUT F
20 INPUT A,B,CH

In statement 10, MINC gives a question mark as a prompt for
you to enter one piece of information followed by a RETURN.
An INPUT statement produces one question mark for each vari-
able it expects. In statement 20, MINC issues a question mark
and expects three numbers separated by commas or RETURNS.
In the second case, if you have entered only two numbers before
you pressed RETURN, MINC issues another question mark for
the third number.

When you type RUN and MINC starts to execute the program,
all variables have the value zero. If there is an INPUT state-
ment in the program, then those variables listed in the INPUT
statement are given the new values that you enter at the ques-
tion mark.

The arithmetic operations, addition, subtraction, multiplication,
division, and exponentiation, are the same in the program mode
as in the immediate mode; the order of priority being: exponen-
tiation as the highest, multiplication and division second, and
addition and subtraction lowest.

At the time MINC performs a calculation, it treats a variable as
a number, giving it the value you entered in the INPUT state-
ment. The priority of the operations remains the same with var-
iables as with numbers.

The engineer in the earlier example decided that he was not
satisfied with his program for calculating the area and volume
of his cylinders. He did not like the fact that the only prompt for
input was a question mark which required him to remember

THE PROGRAM MODE

ARITHMETIC
OPERATIONS AND
PRIORITY OF
OPERATORS

MAKING OUTPUT
READABLE

31

PROGRAMMING FUNDAMENTALS

String Literals

32

what he had to type in. A much more meaningful dialog on the
terminal would be:

CYLIND 21-APR-80 09:43:03

Radius? 2
Height? 5

Area: 12.5664
Volume: 62.8319

In this case, he would know easily what he should type in, and
the results are clearly labelled. The changes to his program are
minimal. His original program was:

10 INPUT R,H
20 PRINT PI*R2, PI"R"2*H

His new version of the program is:

CYLIND 21-APR-80 10:27:27

10 PRINT 'Radius’; \ INPUT R
20 PRINT 'Height’; \ INPUT H
30 PRINT ’Area:’; PI*"R"2

40 PRINT 'Volume:’; PI*R"2*H

READY
and the output is the same as shown previously.

These new changes are explained in the next two sections.

Statement 10 of the engineer’s new program prints out the label
“Radius”. This label is enclosed in apostrophes within the
PRINT statement and is called a string literal. A string literal
can be alphabetic letters or numbers or both.

Digits in a string literal are characters rather than numbers.
Notice the difference in the following two PRINT statements.
The first prints a numeric value, so MINC computes the value
and prints out the result, which is 5. The second prints a string
literal. PRINT “2+ 3” means to print the character “2” followed
by the character “+” followed by the character “3”.

PRINT 2+3
5

PRINT '2+3'
2+3

When you are entering string literals, you must enclose them in
a pair of apostrophes (') or in a pair of quotation marks ("). If you
need to use an apostrophe within a string literal, then you
should use quotation marks to delimit the string literal. If you
need to use quotation marks within a string literal, then you
should use apostrophes to delimit the string literal. In all other
cases, you can use either apostrophes or quotation marks, but
you cannot use an apostrophe at one end of the string literal and
a quotation mark at the other. For example.

PRINT "THE BOY'S COAT"
THE BOY’S COAT

Although spaces have no meaning within BASIC statements,
within string literals spaces are significant. In the second of the
two following examples, the space character is part of the string
constant because it is enclosed within the quotation marks.

PRI NTZ2 + 3
5

PRINT2 + 3"
2 + 3

In the following example, notice that MINC does not capltahze
lower case letters within string literals.

Examples:

10 PRINT "the area”

20 PRINT ’of a circle is’

30 PRINT "computed using the”
40 PRINT ‘formula pi r squared’
RUN

NONAME 12-JUN-80 11:20:15

the area

of a circle is
computed using the
formula pi r squared

In line 10 of the program CYLIND, the engineer placed a semi-
colon (;) after his string literal. The semicolon prevents the ter-
minal from going to a new line before printing the question
mark prompt from the INPUT statement. In the second of the

THE PROGRAM MODE

Print Zones

33

PROGRAMMING FUNDAMENTALS

34

two partial examples below, there is no semicolon after RADIUS
and consequently the prompt from the INPUT statement is
printed on the next line.

10 PRINT 'Radius’;
20 INPUT R
RUN

NONAME 24-APR-80 10:30:46
Radius?
READY

10 PRINT ’Radius’
20 INPUT R
RUN

NONAME 24-APR-80 10:31:15

Radius
?

MINC considers the terminal screen to be divided into five 14-
space columns or zones. A comma in a PRINT statement causes
the terminal to skip to the next print zone. For instance, in the
following example, the first comma causes the terminal to skip
to the second zone, SINE is printed in the second zone, the sec-
ond comma causes the terminal to skip to the third zone, and
COSINE is printed in the third zone.

PRINT ,’SINE’,"COSINE’
SINE COSINE

Nothing is printed in the first zone (because the initial comma
causes the terminal to skip the first zone).

Two successive commas skip an entire zone. For example, the
following PRINT statement would print A in the first zone and
B in the third zone.

PRINT 'A’,,'B’
A B

In the next example, MINC prints 6 on the next line because
there are only five print zones per line.

PRINT 1,2,3,4,5,6
1 2 3 4 5
6

To suppress the print zones, use the semicolon. For example:

PRINT 1;2;3,4,5,6
1 2 3 4 5 6

Because there is a semicolon between 1 and 2 and between 2 and
3, MINC prints the 1, 2, and 3 in the same zone. MINC leaves
one space before each number for a sign (in this case space for
positive) and one space after each number as a separator.

The comma between 3 and 4 causes the 4 to be printed in zone
two. The 5 and 6 are printed in zones three and four because of
the commas.

Note that a semicolon puts no spaces between string constants.
For example:

PRINT 'A";'B’
AB

To skip lines, use PRINT statements without arguments — one
PRINT statement for each skipped line, as shown below.

PRINT

If you end the PRINT statement with a semicolon, MINC does
not start the next PRINT statement on a new line. For example:

10 PRINT 1;
20 PRINT 2;
30 PRINT 3;
40 PRINT ’this is the end of the line’

READY
RUN

NONAME 20-JUL-80 11:40:05
1 2 3 this is the end of the line

READY

The TAB function causes the terminal to skip to a specified
column within the line to be printed. The form of the TAB func-
tion is:

PRINT TAB(expression);

L4

THE PROGRAM MODE

The TAB Function

35

PROGRAMMING FUNDAMENTALS

STRING VARIABLES

36

where expression is a column number greater than 0. If the
expression is greater than the number of columns on a line,
MINC continues to skip lines until it can tab to a column within
the line. If the column number specified in the expression is less
than 0, the following error message is printed.

?MINC-F-Arguments in definition do not match function called

If the expression is not an integer, MINC uses only the integer
portion of the number. In the following two examples, a hyphen
(-) represents a space, so that you can count the spaces more
easily and understand what the TAB function does. For
example:

PRINT TAB(5);’ RADIUS'
----- RADIUS

PRINT TAB(7.32);' FUN’

In the second example, because the expression is not integer,
MINC uses only the integer portion — that is, the terminal
spaces to column 8, skipping 7 spaces.

You should use a semicolon after the TAB function because a
semicolon prevents MINC from skipping to the next print zone.

If the column number specified is less than or equal to the cur-
rent column number, printing starts at the current position.

In many applications, it is necessary to input alphabetic charac-
ters. For example, suppose you want to use one of the graphic
features of MINC to plot a set of data points. This program may
first accept the labels of the axes (alphabetic data) as input and
then the numeric data to plot. In this way, the program will
work for any graph that needs to be produced.

For example, the following program accepts as input a name
and address and prints them out. Remember that the back-
slashes let you put more than one statement on the same line.

10 PRINT "YOUR NAME'; \ INPUT N$

20 PRINT 'YOUR ADDRESS’; \ INPUT S$,C$
30 PRINT \ PRINT N$\ PRINT S$\ PRINT C$
RUN

NONAME 20-JUL-80 11:40:65

YOUR NAME? JOHN S. DOE
YOUR ADDRESS? 11 MAIN ST.
? WORCESTER MA. 01605

JOHN S. DOE
11 MAIN ST.
WORCESTER, MA. 01605

The variables N$, S$, and C$ are string variables. That is, their
values must be strings. A string variable name is any variable
name followed by a dollar sign ($). Examples of string variable
names are:

A$
B$
D7$

The string variable A$ is a separate and distinct variable from
the numeric variable A. Both names A$ and A can be used
within the same program.

Input to string variables entered in response to the question
mark from the INPUT statement need not be enclosed within
quotation marks. MINC will accept input with or without quota-
tion marks. However, if a comma is part of the input string, you
must enclose the data within quotation marks or MINC will
think you are entering more than one string. String variables
can have as a value any collection of characters, spaces, and
numbers. The maximum length of a string variable is 256 char-
acters. For example,

10 PRINT 'input only one string variable’
20 INPUT A$

30 PRINT A$

RUN

NONAME 26-JUL-80 14:23:18

input only one string variable

? one, two

?MINC-W-Extra values from keyboard or file ignored at line 20
one

READY

Just as MINC sets numeric variables to zero when you run a
program (until you give them a value), MINC sets string varia-
bles to the null string — the string with zero characters (the
string constant ’: . A string variable can take on the value of

THE PROGRAM MODE

37

10 LINPUT B$
20 PRINT B$
30 END

RUN

NONAME 09-MAY-80 09:50:47

? "Now, look here!”, said John.
"Now, look here!’, said John.

READY

The following program, which is identical to that above except
that it inputs string data with an INPUT statement, prints a
warning message. The comma after the quotation mark termi-
nates the string. Notice that the quotation marks delimit the
string but are not part of it.

10 INPUT B$
LIST

NONAME 09-MAY-80 09:52:15

10 INPUT B$
20 PRINT B$
30 END

READY
RUN

NONAME 09-MAY-80 09:52:18

? "Now, look here!”, said John.
72MINC-W-Extra values from keyboard or file ignored at line 10
Now, look here!

READY

The only string operation is concatenation. Concatenation puts
one string after another without any intervening characters.
Concatenation is specified by either the plus sign (+) or the
ampersand (&). For example:

PRINT 'ONE’ + 'WORD’
ONEWORD
READY

A$='GOOD'&'BYE’

THE PROGRAM MODE

Concatenating Strings

39

PROGRAMMING FUNDAMENTALS

THE REMARK
STATEMENT

40

READY
PRINT A$

GOODBYE

READY

10 INPUT A$,B$,C$
20 PRINT A$ + B$&C$
RUN

NONAME 09-MAY-80 10:23:22

? ONE,WO,RD
ONEWORD

READY

Since BASIC does not allow very mnemonic variable names, and
since programmers quite often forget the details of their pro-
grams, the REMARK statement allows a programmer to place
comments within a program. These comments are ignored by
MINC when your program is run. Comments in a program are
valuable and should be used if someone else will use your pro-
gram or if you will be looking at your program at a later date —
long after you remember how you wrote the program. REM is a
valid abbreviation for REMARK. For example:

10 REMARK THIS PROGRAM CONVERTS DEGREES
20 REM to radians

30 INPUT D

40 PRINT D*PI/180

RUN

NONAME 09-MAY-80 10:27:35

?90
1.5708

Both forms of the REMARK statement, REMARK and REM, do
the same thing.

MINC does not convert lower case characters to capitals in a
REMARK statement. By using lower case characters in a
REMARK statement, you can visually break up a program.

MINC stores REMARK statements in the workspace along with
the other statements in the program. If a program gets too large

for the workspace, you can remove the REMARK statements to
provide space. This will not affect the execution of the program.

The REM statement message itself can contain any printing
character on the keyboard except the backslash, which will ter-
minate the remark. Remarks are also terminated by a new line.
For example:

10 REM THIS IS A "?@#! COMMENT

20 REM N$ represents the person’s name

30 REM - A$ represents the person’s address \INPUT A$

40 REM - C$ represents the person’s city and state INPUT C$
50 REM ** this is the end of this section **

THE PROGRAM MODE

41

CHAPTER 4

MINC PROGRAM COMMANDS

After the engineer wrote the program to compute the area of a
circle and the volume of a cylinder, he wanted to save the pro-
gram so he can use it repeatedly. This chapter describes the
commands used for saving programs as well as those used for
changing them.

Commands are those BASIC instructions that cannot be used
with line numbers in the program mode. Statements are those
BASIC instructions that can be used with line numbers in the
program mode. In the immediate mode, statements look like
commands.

For example, PRINT is a statement because you can put it into a
program. RUN is a command, and cannot be put in a program.

Suppose the engineer had initially typed his program like this:

1 PRINT ’Radius’; \ INPUT R
2 PRINT 'Area’; PU*R"2

This program computes only the area of a circle. However, the
engineer made a typographical error and typed PU instead of
PI. He can easily correct this error by retyping the whole line as
follows.

2 PRINT ’'Area’; PI"R"2

Now that the engineer retyped line 2, MINC replaces the old
line 2 in the workspace with this corrected one. The old line 2 is
now gone from the workspace.

CORRECTING
PROGRAMS

43

The general form of the SUB command is:

SUB stmt# d bad-string d good-string d whole-number

The delimiter must not appear in either
string. The bracket ([) character is a good
choice for a delimiting character because
it is not used in BASIC programs except

leted. Do not delimit the string with quo-

where:
stmt# is the number of the line to be changed.
d is any character to delimit the strings.
in string constants.
bad-string is the old series of characters to be de-
tation marks.
good-string is the new series of characters to be in-

serted. Do not delimit the string with

quotation marks.

whole-number is the constant that specifies which occur-
rence of bad-string in the line is to be re-
placed with good-string when there is
more than one occurrence. Whole-number
is optional and, if omitted, MINC replaces

the first occurrence.

After you have made the changes to the line, MINC prints the

new line.

Suppose you have the following incorrect line and want to re-

place the second F9 with L.

100 F9=A"SIN(X) + F9

Type the following SUB command to correct line 100.

SUB 100 [FO[I[2
100 F9=A*SIN(X) +

READY

You can use the SUB command to change a line number. For

example, if the current line 20 is:

PROGRAM COMMANDS

45

PROGRAMMING FUNDAMENTALS

46

20 PRINT A,B,C,D

and you want to change the line number to 100, type the follow-
ing SUB command:

SuB20([20[100
100 PRINT AB,C,D

READY

MINC makes the correction and then prints the new line. Since
line 100 is a different line from line 20, MINC copies line 20 into
line 100, but does not delete line 20. If you no longer want line
20, you can delete it with the DEL command (explained previ-
ously in this chapter).

You cannot use the SUB command to delete a line number (that
is, change a program line to an immediate mode statement). If
you try to do this, MINC prints the following message and does
not execute the command.

?MINC-F-SUB creates an invalid statement or has a syntax error

MINC also prints this message if you entered the SUB command
in the wrong format, such as omitting the delimiting character
that ends the bad-string.

MINC uses the first character after the line number in the SUB
command as the delimiting character, but it ignores all spaces
and tabs until it finds a character. Consequently, you cannot use
space or tab as a delimiting character. You also cannot use a
digit as the delimiting character because MINC will consider it
part of the line number.

If MINC cannot find the bad-string you specify, it reprints the
line with no changes. Thus, you must type bad-string exactly as
MINC lists it. To see how MINC lists a line, you use the LIST
command explained later in this chapter.

Remember that MINC stores a program in upper case (except
for string literals and REM statements), even though you typed
it in lower case. Therefore, MINC would not find the following
bad-string:

sub2[pu|pi

MINC has stored the typographical error, pu, as PU. Conse-
quently, MINC would make no change in line 2. When you use

the SUB command, if you are not changing a string literal or a
REM statement, it is a good idea to set the CAPS LOCK button
so that you type in capital letters. Otherwise MINC will not find
your bad-string in a SUB command (even though it recognizes
the SUB command in lower case).

Suppose the engineer had initially typed his program like this:

1 PRINT 'Radius’; \ INPUT R
2 PRINT 'Area’; PI*R"2

If he wants to add height and volume calculations to his cylin-
der program, he must change the program. Since the statements
are numbered consecutively, the engineer cannot fit a statement
between lines 1 and 2 without renumbering the program.

He can solve his problem by typing the following resequence
(RESEQ) command:

RESEQ

MINC renumbers the entire program starting with the first
statement of the program, numbering it as 10 and the following
statements in steps of 10. Thus, after the engineer types the
RESEQ command, MINC changes his program to this:

10 PRINT ‘Radius’; \ INPUT R
20 PRINT 'Area’; PI"R"2

You can use the RESEQ command to resequence your entire
program or sections of your program. You can specify the new
line number at which you want the renumbered section (or en-
tire program) to start, the range of line numbers that you want
resequenced (the old line numbers), and the increment to be
used between each line number.

The general form of the resequence command is:
RESEQ newstart,oldstart-oldfinish,increment

As shown in the engineer’s example, all of these values are
optional:

newstart specifies the new starting statement number.

oldstart specifies the lowest existing statement num-
ber to be resequenced.

PROGRAM COMMANDS

The Resequence
Command

47

PROGRAMMING FUNDAMENTALS

SAVING PROGRAMS

48

—oldfinish specifies the highest existing statement num-
ber to be resequenced. You must specify the
hyphen before oldfinish.

increment specifies the increment to be used between
each statement number.

If you do not specify an newstart, MINC uses the highest exist-
ing line number less than oldstart. For example, in the follow-
ing RESEQ command, the newstart value is missing. If the
highest line number under 105 is 100, MINC renumbers the
first new line (line 105 or first highest above 105) to 100 plus
the increment, or 110.

RESEQ ,105-200,10

In the above example, MINC renumbers old lines 105 through
200. If you omit the newstart value, you must leave in the
comma before oldstart so that MINC knows that the number is
oldstart and not newstart.

If you leave out oldstart, MINC starts resequencing at the be-
ginning of the program. For example, the following RESEQ
command resequences the program from the first line through
old line 200 in increments of 10. If you leave out oldfinish in-
stead, MINC resequences from oldstart to the end of the
program.

RESEQ ,-200

If you do not specify an increment, MINC increments the state-
ment numbers by 10.

For more details of the RESEQ command, see Book 3.

You can save any program that you type into the workspace for
subsequent use. Once you have saved a program, you can do all
of the following:

* Replace it. That is, change it and save the changed copy.

e Look at your directory. That is, look at a list of all the pro-
grams you saved.

e Delete a program. That is, throw a program away.

e Recover unused space. That is, consolidate all the empty space
created by deleting programs.

e Print a program.

e Combine two programs.

Suppose you want to save the engineer’s program, which you
named CYLIND with the NEW command, and which you typed
into the workspace. You can save this program named CYLIND
by typing the following command.

READY
SAVE

After you have typed this SAVE command, the program is
named CYLIND and saved on the volume in SYO: (the left
drive).

When you type only:

SAVE

then MINC uses the default name in the workspace. Since you
used the NEW command, the name in the workspace is
CYLIND. If you had used the SCR command instead of the
NEW command, the name in the workspace would be
NONAME.

If you do not want your saved program to have the default
name, use the following form of the SAVE command.

SAVE name

The specified name overrides the workspace name. For example:

SAVE CIRCLE

With this SAVE command, the program stored in the workspace
is saved on volume SYO: with the name CIRCLE (no matter
what the name of the workspace is). The program is also still in
the workspace. For more details of the SAVE command, see
Book 3.

When you save a program, the program is stored on a volume in
a program file. For example, if you type:

SAVE CYLIND

PROGRAM COMMANDS

The SAVE Command

Program Files

49

PROGRAMMING FUNDAMENTALS

50

the program in the workspace is stored on SYO: in a program file
called CYLIND.BAS. The .BAS denotes the type of the file
named CYLIND. CYLIND.BAS is a file that holds a BASIC
program.

The full file specification for the CYLIND program is:

SYO0:CYLIND.BAS

where:

SYO: is the device on whose volume the program is
stored. If you leave out the device, MINC de-
faults to SYO:. Note that you must always have
a colon as part of the device name.

CYLIND is the program name. You can select any name
between one and six characters in length.

.BAS is the file type denoting that CYLIND is a file
that contains a BASIC program. The .BAS file
type is the default file type for BASIC
programs.

You can store a program in a file with any file type (up to three
characters) you choose. However, if you make up your own file
type, you must always enter the file type, or MINC will not find
the correct file.

For example, you can enter:

SAVE CYLIND.PRG

Now, whenever you want to reference this program (to run it,
for example) you must always use the name and file type,
CYLIND.PRG. If you use the default file type, you need only to
type the name.

For example, if you want to run the program stored in
CYLIND.PRG, you must type:

RUN CYLIND.PRG

However, if you want to run the program stored in
CYLIND.BAS, type:

RUN CYLIND

Below are other examples:

SAVE

SAVE FUN

SAVE SY0:FUN.PRG

SAVE SY0:HELLO.BAS

saves the program currently in
the workspace in a file called
SY0O:NONAME.BAS, unless
you have used the NEW com-
mand. If you have used the
NEW command to name the
workspace, SAVE saves the
program with the name of the
workspace.

saves the program currently in
the workspace in a file called
SYO0:FUN.BAS.

saves the program currently in
the workspace in a file called
SYO:FUN.PRG. Remember
that you must always type the
file type when it is other than
the default.

saves SYO:HELLO.BAS.

Later in this chapter, saving programs on SY1: will be

discussed.

The general form of the SAVE command is:

SAVE filespec
where filespec takes the form:
dev:name.typ

and

dev: is the device (default SYO:)

name

is the program file name (default NONAME)

typ is the file type (default .BAS)

There are fypes of files other than program files. For example, if

you wanted to collect data from an instrument, you would save

PROGRAM COMMANDS

51

PROGRAMMING FUNDAMENTALS

The OLD Command

52

this data in a data file. You cannot run data files or any file that
is not a program file. These types of files are discussed in
Chapters 11, 14, and 15.

If you try to save a program with the same name as another
program already stored on the volume, MINC prints an error
message. For example, if you have already saved the program
CYLIND.BAS and you want to correct the program and save it
again, you cannot type:

SAVE CYLIND

MINC prints the following error message.

?MINC-F-File name in use; REPLACE or change name or volume

You cannot use the SAVE command to store the new version of
CYLIND. You must use the REPLACE command (described in
one of the following sections) or change the file description (the
volume, name, or file type).

The OLD command brings a saved program from the program
file on a volume into the workspace. For example, the following
OLD command brings the CYLIND program stored in
SYO0:CYLIND.BAS into the workspace.

READY
OoLD
OLD FILE NAME — - CYLIND

READY
LIST

CYLIND 13-APR-80 13:46:43

10 PRINT 'Radius’; \ INPUT R
20 PRINT 'Height’; \ INPUT H

30 PRINT 'Area’;PI*"R"2

40 PRINT 'Volume’; \ PI"R"2*H

READY

Like the SAVE command, the OLD command uses SYO: as the
default device and .BAS as the default file type.

Notice in the above example, if you type only OLD, MINC
prompts you for the OLD FILE NAME. You can also type the
file name as part of the OLD command. For example:

OLD filespec
where filespec is of the form:
dev:name.typ

The OLD command first changes the workspace name, then
erases the workspace (performs a SCR), and finally brings in the
program stored in the program file named by the filespec.

If there is no program file with the name specified in filespec,
MINC prints the following error message:

?MINC-F-Specified or default volume does not have file named

When this error occurs, the workspace name changes, but MINC
does not scratch the workspace. Thus, you must be careful not to
inadvertently change a program name through this sort of error.

If you save a program, then call it back into the workspace with
an OLD command, and then alter the program, you cannot use
the SAVE command to put the changed program back into the
old file. You can save this changed program with a new name, or
you can use the REPLACE command.

The REPLACE %ommand is like the SAVE command except
that REPLACE saves a program even if it means writing over
an existing program file. This difference between the SAVE and
REPLACE commands helps prevent you from inadvertently de-
leting program files that you previously saved.

The form of the REPLACE command is:

REPLACE filespec

If you omit the file specification, MINC uses the current work-
space name as the default specification.

Study the following example and notice the difference between
SAVE and REPLACE. This example uses the name
SYO:TEST.BAS throughout (established with the NEW
command).

NEW
NEW FILE NAME — — TEST

READY

PROGRAM COMMANDS

The REPLACE
Command

53

PROGRAMMING FUNDAMENTALS

The DIRECTORY
Command

54

10 PRINT 'This is a test’

SAVE

READY

20 PRINT 'This is another test’

LIST

TEST 09-MAY-80 00:03:43

10 PRINT 'This is a test’
20 PRINT ’'This is another test’

READY
SAVE
?MINC-F-File name in use; REPLACE or change name or volume

READY
REPLACE

READY

Now the program stored on the diskette in file TEST.BAS is the
new version with two lines.

For more details of the REPLACE command, see Book 3.

You can see the names of all the program files and other types of
files that you save on a diskette with the DIRECTORY com-
mand (DIR).

On each diskette, MINC keeps a directory on each diskette of all
the files stored on that diskette. For example, suppose you have
saved two programs named CYLIND.BAS and SINES.BAS and
you want to look at the directory. You can use the DIR command
as shown below:

READY

DIR

10-MAY-80

Volume ID: MINC System

Owner: engineer

SINES.BAS 1 11-MAY-80 CYLIND.BAS 1 12-MAY-80

<unused> 122
2 Files, 2 Blocks
122 Free Blocks

READY

The DIR command causes MINC to print out the directory,

which consists of the current date, the volume identifier, the
owner, the list of files, and a description of the available and
used space. All of these features are described below.

The Volume ID and Owner were named by you or someone else
when the diskette was initialized (described later in this chapter
under Initializing a Volume).

The list of program files takes the form:

name.typ b dd-mmm-yy name.typ b dd-mmm-yy

where:
name.typ is the name of the file and its file type.
b is the size of the program file in blocks. A

block is a unit of size on a diskette. Blocks
and diskettes are discussed more thoroughly
later in this chapter (in the section titled
MINC Volumes).

dd-mmm-yy is the date that the program was saved or
replaced.

The <unused> shows you the unused, available space on the
diskette.

The last part of the directory listing takes the form:

n Files, m Blocks
x Free Blocks

where:
n Files is the number of files in the directory.
m Blocks is the total number of blocks that the n

programs take.
x Free Blocks is the total available space on the diskette.

There are a number of features of the DIR command. With the
DIR command you can:

e Look at a directory of all files on a diskette.

PROGRAM COMMANDS

55

PROGRAMMING FUNDAMENTALS

Printing a Program

56

e Look at a directory of all file names on a diskette that have
the same file type; for example, all file names with the .BAS
type.

e Look at a directory of all files with the same name but differ-
ent file types.

e Direct the directory listing to another file.
e Direct the directory listing to the line printer.

For more details of these advanced features of the DIR com-
mand, see the DIRECTORY command in Book 3.

Until now, you have been using the LIST command to see the
program that is stored in the workspace. You cannot use the
LIST command to view the contents of a file stored on a volume.

To see a listing of the contents of a file that is not in the work-
space on the terminal screen, use the TYPE command. The form
of the TYPE command is:

TYPE filespec
where filespec takes the form:
dev:name.typ

If you leave out the device, MINC defaults to SYO:. If you leaye
out the file type, MINC defaults to a program file (.BAS file
type). You can display files other than program files by specify-
ing the name and file type. (For more about files other than
program files, see Chapter 11.)

The TYPE command does not affect the use of the workspace. It
reads the file from the volume and displays it without storing it
in the workspace. That is, if you have a program in the work-
space and you command MINC to type another program, the
original program in the workspace remains unaffected.

For example:

READY

TYPE CYLIND

10 PRINT 'Radius’; \ INPUT R
20 PRINT 'Height’; \ INPUT H

30 PRINT 'Area’;PI*R"2

40 PRINT 'Volume’;\ PI*R"2*H

READY

You can use the NO SCROLL key to stop a long program from
scrolling off the top of the screen before you have a chance to
read it.

For more details of the TYPE command, see Book 3.

The LENGTH command lets you check to see how much work-
space a program requires. The length of the program is given in
units of workspace called words.

The form of the LENGTH command is:

LENGTH

To see how many words are available in your workspace, type
the LENGTH command after the SCR command.

READY
SCR

READY
LENGTH

0 USED, 5491 FREE
READY
In the following example, when the CYLIND program is in the

workspace, it uses 58 words (58 USED) and leaves 5433 words
available (5433 FREE).

CYLIND 11-MAY-80 11:22:06

10 PRINT ‘Radius’; \ INPUT R
20 PRINT 'Height’; \ INPUT H

30 PRINT "Area’;PI"R"2

40 PRINT 'Volume’;\ PI"R"2*H

READY
LENGTH

58 USED, 5433 FREE

The length of a program can vary from run to run. For example,
if one of your programs accepts string input, the length of the

PROGRAM COMMANDS

Checking the Length of
a Program

57

The LISTNH command is the same as the LIST command except
that MINC displays no header (NH).

The following example lists the entire program without a
header line.

LISTNH
10 PRINT 'Radius’; \ Input R
20 PRINT 'Height’; \ Input H
1 30 PRINT ’Area’;PI"R"2
40 PRINT 'Volume'; \ P*R"2*H

This next LIST command lists the header line and statement
number 20 of the program.

LIST 20
CYLIND 11-MAY-80 11:22:10

20 PRINT 'Height’; \ INPUT H

It is often helpful to list a line before using the SUB command.
By listing the line, you can see exactly what it looks like so you
can correctly change the line.

This last example of the LIST command lists statements 25 and
50, all statements from 100 through 200, and all lines from
statement 500 through the end of the program.

LIST 25,50,100-200,500-

You can run a program that is stored in the workspace by
typing:

RUN

When MINC executes the RUN command, it first displays a
header line. It then initializes all numeric variables to 0 and all
string variables to the null string. Finally MINC starts execut-
ing the program at the lowest numbered line.

The RUNNH command has the same effect as the RUN com-
mand except that MINC does not print the header line.

It is a good practice to use the RUN command rather than the
RUNNH command. In case your program has some sort of error,
you at least see the header and know the program tried to run.

PROGRAM COMMANDS

Running Programs

59

PROGRAMMING FUNDAMENTALS

60

If you want to run a program from a program file, that is, a
program stored on the diskette but not in the workspace, type:

RUN filespec
where filespec takes the form:
dev:name.typ

If you do not specify the device, MINC defaults to SYO:. If you do
not specify the file type, MINC defaults to the program file type
(.BAS).

When you specify a file with the RUN command, MINC erases
the workspace (equivalent to SCR), changes the workspace
name, and brings the specified program into the workspace. Fi-
nally MINC starts execution of the program. This process de-
stroys the previous contents of the workspace, so be sure to save
it if you want to keep it before executing the RUN filespec
command.

The RUN filespec command does not display a header line and
is equivalent to the RUNNH filespec command. It leaves the
program specified by filespec in the workspace when it is
finished.

For example, the following sequence of commands brings the
CYLIND program into the workspace and runs the program.

READY
RUN CYLIND

CYLIND 11-MAY-80 12:10:08

Radius?

If MINC cannot find the file specified in a RUN filespec com-
mand, it changes the workspace name and displays the follow-
ing error message.

?MINC-F-Specified or default volume does not have file named

However, MINC does not delete the program originally in the
workspace. This can happen if you mistype the RUNNH com-
mand, such as RUNHN. In this case, MINC interprets the com-
mand as RUN HN, where HN is the file specification.

If the file specification begins with NH, MINC assumes that the

NH is part of the RUNNH command. For example, MINC inter-
prets a RUN NHTEST command as RUNNH TEST. To run a

program whose file specification begins with NH, use the
RUNNH command.

MINC does not store a program in the workspace exactly the
way you type it but instead compresses (compiles) each line. By
compiling the program internally, MINC allows you to fit larger
programs in the workspace than you could if MINC did not com-
pile each line.

Whenever you list the program or save it on a diskette, MINC
translates the program from the compiled form to the form that
you entered. ‘

The COMPILE command saves the internal, compiled version
on a diskette. The BASIC version is still in the workspace. Once
you have saved this compiled version, MINC can bring this ver-
sion into the workspace faster than it can bring a version saved
with the SAVE command into the workspace. Thus the OLD
and RUN filespec commands work faster.

The form of the COMPILE command is:
COMPILE filespec

Where filespec takes the form:
dev:name.typ

If you omit the filespec, MINC uses the current workspace name
with the .BAC file type, which stands for a compiled program. If
you omit the device, MINC defaults to SYO:. If you specify the
filespec, MINC stores the compiled version into that file on the
diskette.

You can COMPILE only the program currently stored in the
workspace.

If you type the following command:

RUN name

MINC tries to run name.BAC first. If name.BAC is not on the
diskette, then MINC tries to run name.BAS.

You can use the TYPE command to type a compiled program.
However, the output is unintelligible and quite confusing.

PROGRAM COMMANDS

COMPILING A
PROGRAM

61

PROGRAMMING FUNDAMENTALS

USING OTHER
VOLUMES

MINC Volumes

62

So far you have saved programs and run programs; all of these
programs have been stored on the diskette in the SYO: device.
You can use both SY0: and SY1: with MINC, but there are some
general procedures you must follow to prepare a new diskette
for use.

In general, to prepare a new volume (diskette) for use, you must:
® Place the new volume in SY1:

e Initialize the volume (set up an empty directory).

After you have initialized the volume, you can copy programs,
save programs, and store data on it.

The following sections discuss MINC volumes, their structure,
and their use.

The volumes that you have been using up to now are MINC
system volumes. That is, these volumes have system files on
them that make MINC work. When you put these system vol-
umes in SYO: (the left drive) and turn on the power, they let you
know that they are system volumes by printing one of the fol-
lowing messages:

MINC BASIC V1.2 for the 11/23
MINC BASIC V1.2 for the 11/03

Not all volumes are system volumes. You can use a volume to
store programs you have written or to store data that you have
collected. If you try to start MINC with one of these nonsystem
volumes in SYO:, you will get an error message similar to the
following:

@
?BOOT-F-No boot on Volume

When you get such a message, you must put a system volume in
SYO0: and start again.

You must always have a MINC system volume in SYO: or your
MINC system will not work.

The following sections describe volumes in more detail.
Master Volumes With your MINC system you received Master

volumes. They are a form of MINC system volume. You cannot
use these volumes because they have been set up so that you can

only copy them. They direct you to place an empty volume in
SY1: and then they copy the MINC system onto your volume.
For more information, see Book 1.

You cannot manipulate a Master volume. That is, you cannot
save programs or data on a Master volume. To save programs or
data, you must copy the Master volume onto your own volume
or volumes and then use your own volume.

You should keep many copies of the MINC system volume. That
way, in case one volume is somehow damaged, you have another
copy. The procedure for copying volumes is described in the fol-
lowing sections.

The Structure of Volumes A volume is a storage area for MINC.
A volume has a finite amount of space; that is, it can hold only a
finite amount of information.

The unit of size on a volume is a block, which holds 512
characters.

Figure 1 represents the organization of a new diskette. Notice
that nothing is stored on it.

BLOCK 0

BLOCK 1

MR-1630

Figure 1. Organization of a New Diskette

PROGRAM COMMANDS

63

PROGRAMMING FUNDAMENTALS

64

Figure 2 represents the organization of an initialized diskette.
When you initialize a diskette, MINC sets up a directory on that
diskette. Nothing is stored in the directory, however, until you
begin using the diskette for program storage or to copy system
files. (The procedure for initializing a diskette is described later
in this chapter.)

MINC
VOLUME
DIRECTORY

FREE
BLOCKS

MR 1631

Figure 2. Initialized Diskette with No Files

Figure 3 represents a diskette that stores only program files.
After initializing a new diskette, you can place it in SY1: and
type the following SAVE commands.

READY
OLD SINES

READY
SAVE SY1:SINES.BAS

READY
OLD CYLIND

READY
SAVE SY1:CYLIND.BAS

READY

Now the diskette in SY1: holds only two program files and or-
ganizationally looks like Figure 3.

PROGRAM COMMANDS

Figure 4 represents a system volume on which you saved the
SINES program and CYLIND program on SYO..

4
SINES.BAS

CYLIND.BAS

~ DIRECTORY

<UNUSED>

SINES.BAS]
— PROGRAM FILE

CYLIND.BAS
PROGRAM FILE

\ FILES SPACE

FREE SPACE
<UNUSED>

MR 1632

Figure 3. Diskette with Program Files

MINC SYSTEM
SINES.BAS
— CYLIND.BAS

> DIRECTORY

<UNUSED>

MINC SYSTEM
FILES

SINES.BAS
PROGRAM FILE

CYLIND.BAS
o]

LFILES SPACE
PROGRAM FILE

<UNUSED>

MR-1633

Figure 4. MINC System Volume with Program Files 65

PROGRAMMING FUNDAMENTALS

Deleting a Program File

Recovering Unused
Space

66

When you look at the directory of a system volume, you cannot
see the MINC system files; however, they are on the volume.
Thus, the directory of the volume in Figure 3 would look the
same on the screen as the directory of the volume in Figure 4.
The only difference in the directory listings is that the number
of free blocks is less for the system volume than for the nonsys-
tem volume. After all, the MINC system files use up some of the
space on the volume.

You can delete any file from a diskette with the UNSAVE com-
mand. The form of the UNSAVE command is:

UNSAVE filespec
where filespec takes the form:
dev:name.typ

If you leave out the device, MINC defaults to SYO:. If you leave
out the file type, MINC defaults to the program file type (BAS).
You can unsave files other than program files by specifying the
name and file type. (For more about files other than program
files, see Chapter 11.)

For example:

UNSAVE SY0:SINES.BAS

Files take up space (blocks) on a diskette, and eventually they
can fill it. Use the UNSAVE command to delete files that you no
longer need to store, to make more space.

When you unsave a file, MINC takes the file name out of the
directory, and the space where the file was stored becomes im-
mediately available. Figure 5 shows the organization of a sys-
tem diskette with an unsaved file.

When you unsave a file, the space where the file was stored
becomes immediately available. However, if you look at Figure
5, the SINES.BAS file was between the MINC system files and
the CYLIND.BAS file. Thus, where the SINES.BAS file was
deleted, it left a “hole” in the directory and in the available
space. Only programs of the same size or smaller will fit in the
holes.

To consolidate all of the unused space into one large area, use
the COLLECT command.

PROGRAM COMMANDS

MINC SYSTEM
<UNUSED>
CYLIND.BAS

>~ DIRECTORY

] <UNUSED>

J\

MINC SYSTEM
FILES

> <UNUSED>

FILES
SPACE

CYLIND.BAS
PROGRAM FILE

—> <UNUSED>

MR-1634

Figure 5. Diskette with File Deleted

MINC SYSTEM
CYLIND.BAS

- DIRECTORY
— <UNUSED>

AR

> MINC SYSTEM
FILES

CYLIND.BAS
o PROGRAM FILE

FILES
SPACE

— <UNUSED>

MR-1635

Figure 6. Collected Diskette 67

PROGRAMMING FUNDAMENTALS

Initializing a Volume

68

The form of the COLLECT command is:
COLLECT dev:
where dev: is either SYO: or SY1.:.

If you collect the diskette shown in Figure 5, graphically it will
look like Figure 6.

You can also use COL instead of COLLECT. COL is a valid
abbreviation for COLLECT.

NOTE

Before you collect a diskette, you should verify it for
bad blocks. This procedure is explained later in this
chapter.

Before using a new volume, you must initialize it. When you
initialize a volume, MINC formats it — setting up a directory
area and an area available for files. Besides putting the volume
in the necessary format, initializing it also erases any previous
information stored on the volume.

To initialize a volume, make sure you have a system volume in
SYO: and the volume to be initialized in SY1:. Then type one of
the following commands:

INI SY1:

INITIALIZE SY1:

MINC responds with:
Install volume to be initialized in SY1:, and press RETURN

Current volume id:eeeeeeeeeeee
Current owner: eeeeeeeeeeee
Proceed with initialization (Y or N)?

If the volume is new (that is, never used), the ¢’s appear as the
“Current volume id” and the “Current owner”. If the volume has
been used before, the “Current volume id” and the “Current
owner” are those names given in the previous initialization. The
volume id and owner are a means of ensuring that you are not
initializing a valid volume (that is, one with valid information
on it).

If you have put a valid volume in SY1: and do not want to
proceed with the initialization, type N for no. If you want to
proceed, type Y for yes. If you type anything but Y or N, MINC
uses N as the default answer and does not initialize the volume.

If you want to proceed, type Y for yes at the question mark.
MINC then prompts you for the following information.

Type new Volume id:

The id stands for identifier. Type the identification name that
you wish to give the volume. It is recommended that you give
the volume a meaningful identifier. A maximum of 12 letters is
allowed for the volume identifier. If this volume will be a system
volume, you should denote it as such in the volume id. For ex-
ample, if you are copying one of the Master diskettes you might
want to name the copy “mastersystem,” and then make more
copies of the “mastersystem” diskette for general use. You can
answer the question as follows:

Type new Volume id: Lab 3 system

Then, the next question is as follows.

Type new owner name:

If your name is Jane Doe and this volume is your personal vol-
ume, you might want to type Jane Doe as the owner name.

Then MINC will initialize the volume. This process takes one or
two minutes. Finally, MINC prints the message:

Initialization is complete; found xxx Bad blocks

MINC does not actually type “xxx”. It types a 3-digit number
representing the number of bad blocks. Remember a block is a
unit of diskette space. A bad block is a block that MINC cannot
use because it has been damaged in some way. Most diskettes do
not have bad blocks. You can limit the occurrence of bad blocks
by taking good care of your diskettes. However, with normal
use, a diskette can develop a bad block after a long period of
time through no fault of your own. See Book 1 for the instruc-
tions on caring for a diskette.

It is possible to use a volume that has bad blocks. However, if
you are a beginner, put volumes with bad blocks aside for now,
because the procedure for using them can be more difficult. For

PROGRAM COMMANDS

69

sage similar to the following example. The only column that
gives you useful information is the filename column. In this
example, both of the bad blocks are marked in the FILE.BAD
file. Thus, they will not affect your use of the diskette.

Bad Blocks Type Filename Rel Blk
414 Hard FILE.BAD 0
417 Hard FILE.BAD 0

READY

If one of your diskettes develops bad blocks in one of your files,
your file name will appear under the Filename column. For ex-
ample, if bad blocks develop in CYLIND.BAS, you can recover
the file. See the Error Recovery section in Book 3.

If one of your diskettes develops bad blocks in one of the MINC
system files, the recovery procedure can be more difficult. See
the Error Recovery in Book 3.

You can use the DUP command to copy an entire diskette —
including the MINC system files. The form of the duplicate com-
mand is:

DUP

You should use the DUP command to keep backup copies of each
of your diskettes. You should do this often, at least once a day,
because diskettes are fragile.

Use the INI command to prepare a new diskette before using it
for duplicating.

The DUP command prompts you to put the diskette to be dupli-
cated in SYO0: and the backup diskette in SY1:. The DUP com-
mand then copies the entire contents of the diskette in SYO: to
the diskette in SY1:, destroying all of the previous contents of
the diskette in SY1:.

If you are going to use a used diskette as a backup, you must
initialize it first to mark any bad blocks that may have devel-
oped since the last initialization. The DUPLICATE command
prints the following message if your diskette has not been re-
cently initialized.

?UTILITY-F-Target volume must be newly initialized yd

PROGRAM COMMANDS

Duplicating a Volume

71

PROGRAMMING FUNDAMENTALS

The following example shows the entire procedure for dupli-
cating a diskette.

INI SY1:
Install volume to be initialized in SY1:, and press RETURN

Current volume id:eeeceeeeceeee
Current owner: eeeeeeeeceee
Proceed with initialization (Y or N)?Y
Type new Volume id:MINC system
Type new owner name:Student 003

Initialization is complete; found 000 Bad blocks
READY

verify sy1:
There were no bad blocks found

READY
DUP
Install volume to be duplicated in SYO:;

Install initialized, empty volume in SY1:, are you ready (Y or N)?Y

SY1 volume id is: MINC system
SY1 owner is: Student 003

Do you want to duplicate another volume (Y or N)?N
Re-install system volume in SY0:, and then press RETURN
MINC BASIC V1.2 for the 11/23 (or 11/03)

10-MAY-80
04:33:40

READY

The DUP command will even duplicate a diskette with bad
blocks. Thus, if one of your files develops a bad block, you can
recover the file and restore it to good condition on another disk-

ette. For more information on this procedure, see DUPLICATE
in Book 3.

Copying a File You can use the COPY command to transfer a file from one
volume to another or to list the file on a line printer.

The form of the COPY command is:

72 COPY from-filespec to-filespec

where:

from-filespec is the file specification of the file to be cop-
ied. The default file type is .BAS. The name
of the file to be copied must be present.

to-filespec is the file specification of the new file that
holds the copy. The default file name is the
from-file name. The default file type is the
from-file type. The default device is SYO:. If
you use LP:, MINC prints the file on the
line printer.

You must specify at least partially both the from-filespec and
the to-filespec; that is, specify at least the file name if not the
device or file type.

For example, either of the following COPY commands copy
CYLIND.BAS from SYO: to SY1: as the program CYLIND.BAS.

COPY SYO:CYLIND.BAS SY1:CYLIND.BAS

COPY CYLIND SY1:
The COPY command copies one file at a time.

If you try to copy a file to a filespec that already exists, MINC
displays the following message:

Output file name is already in use;
do you want to erase the current contents (Y or N)?

If you type N, MINC does nothing and returns to the READY
prompt. If you type Y, MINC performs the copy, destroying the
previous contents of the file.

PROGRAM COMMANDS

73

CHAPTER 5

PROGRAM CONTROL

Until now, all of the programs given in examples have pro-
ceeded sequentially. That is, MINC executes each of the pro-
grams step by step in order by statement number until the last
statement is executed, and then terminates the program. For
example, the following program executes statement 20, then 30,
then 40, then 50, and then, since there are no more statements,
the program stops executing.

20 PRINT 'Radius’; \ INPUT R
30 PRINT "Height’; \ INPUT H
40 PRINT 'Area’; PI*R"2

50 PRINT 'Volume’; PI"R"2*H

This chapter explains how you can gain more control over the
order in which MINC executes statements and how to make
some statements execute more than once.

IF statements are one method by which you can control the flow
of your program. The flow of a program is the order in which the
statements are executed. In all previous examples, the flow has
been sequential — that is, MINC starts executing statements
with the lowest statement number and proceeds to those with
the highest.

In English, the statement, “If it is sunny, then wash the car,” is
a conditional sentence: if the events in the first clause occur (“if
it is sunny”), the events in the second clause should follow.

A more complicated if statement is: “If it is sunny, then wash
the car; otherwise stay in the house.”

IF STATEMENTS AND
LOGICAL
EXPRESSIONS

IF Statements in BASIC
Are Like English

75

PROGRAMMING FUNDAMENTALS

Logical Expressions

76

BASIC has comparable forms of IF statements. One form of the
IF statement (comparable to the simpler form in English) is
demonstrated below.

IF A<BTHEN A=A+1

In English this statement means, “If A is less than B, then
increment A by 1”; and that is exactly what happens in BASIC.

The IF statement has three slightly different forms:

IF logical-expression THEN statement
IF logical-expression THEN stmt#
IF logical-expression GO TO stmt#

All of these forms of the IF statement are described in the fol-
lowing sections.

Later, programming the “otherwise” clause of an IF statement
is explained.

NOTE

Do not use IF statements in multiple-statement lines.
The outcome of trying to put more than one statement
on the same line as an IF statement is not obvious and
can actually be quite confusing. See IF statements in
Book 3.

A logical expression is an expression that can take on one of two
values — either the expression is true or it is false. In the previ-
ous example, “it is sunny” is a logical expression because it is
either true or false. In BASIC, “A is less than B” is likewise a
logical expression.

The form of a logical expression is:
expressionl relational-operator expression2

where expressionl and expression2 are both arithmetic expres-
sions or both string expressions as defined earlier.

Relational operator can be one of six operators that work on
expressions and are defined in the following tables.

Arithmetic Relational Operators Table 2 shows and explains the
six arithmetic relational operators.

Table 2. The Arithmetic Relational Operators

Mathematical BASIC

Symbol Symbol Example Meaning
= = A=B A is equal to B.
< < A<B A is less than B.
< <= A<=B A is less than or equal to B.
> > A>B A is greater than B.
= >= A>=B A is greater than or equal to
B.
+ <> A<>B A is not equal to B.

The symbols = <,=>,>< are accepted by BASIC but are converted to <=, > =, and <>
and are shown in that form in a listing.

The arithmetic relations are the same in BASIC as in
mathematics.

The expressions in a logical expression can, of course, be more
than one numeric variable. For example:

(A+6"X-37)/43 < (C+19)2

Whether this expression is true or false depends on the values of
the variables in the expression. The expression could be false at
the beginning of a program, and true later, after the values of
the variables had changed.

String Relational Operators The same six relational operators
that apply to arithmetic expressions also apply to string expres-
sions. In string expressions, however, these relations apply to
alphabetical sequence. The comparison is done character by
character, left to right, on the internal representation of a char-
acter (called the ASCII code). For example, it is true that:

t(ABC” < Q(ABD”

because “ABC” alphabetically precedes “ABD”. MINC compares
the first character from each expression; if they are equal, then
MINC compares the second characters. This process continues
until a character differs or until the strings match.

Because strings can also contain numbers and punctuation,
each character, whether it is alphabetic, numeric, or other, has
an ASCII code. The characters have a collating sequence that
tells the “alphabetical order” of all the characters depending on

PROGRAM CONTROL

77

PROGRAMMING FUNDAMENTALS

IF/THEN Statements

78

the value of each character’s ASCII code. The collating sequence
and the ASCII codes are given in Appendix A.

For example, it is true that:
((ABC” < ((abc”

because the ASCII codes for the capital letters are lower than
the ASCII codes for the lower case letters.

In any string comparison, MINC ignores trailing blanks (that is,
“ABC” is equivalent to “ABC). However, MINC does not
ignore preceding blanks. Table 3 shows and explains the string
relational operators.

Table 3. The String Relational Operators

Operator Example Meaning
= A$=B$ The strings A$ and B$ are alphabetically
equal.
< A$<B$ The string A$ alphabetically precedes B$.
> A$>B$ The string A$ alphabetically follows B$.
<= A$<=B$ The string A$ is equivalent to or precedes

B$ in alphabetical sequence.

>= A$>=B$ The string A$ is equivalent to or follows B$
in alphabetical sequence.

<> A$<>B$% The strings A$ and B$ are not alphabeti-
cally equal.

One form of the IF/THEN statement was demonstrated in the
first section of this chapter. The two forms of the IF/THEN
statement are:

IF logical-expression THEN statement
IF logical-expression THEN stmt#

Examples of the first form are:

10 IFB<=23 THENB=B+1

10 IF B"2-4*A*C < 0 THEN PRINT 'ROOTS IMAGINARY'
10 IF A$<>B$ THEN F=1

10 IF C$>B$ THEN IF A$=B$ THEN S$=C$

In the first example, if it is true that B is less than or equal to
23, then B is incremented by one. If B is greater than 23, then
MINC passes on to the next statement in the program (which is
not listed here). In the final example, a second IF statement
follows the THEN statement, showing that IF statements can be
nested.

A program example using this form of the IF statement follows:

10 REM* This program prints the square root

12 REM* Of positive inputs. It flags

14 REM* Negative values.

16 REM*

20 PRINT 'Number’ \INPUT N

30 IF N<0 THEN PRINT ’'Square root of negative # not allowed’
40 IF N> =0 THEN PRINT 'The square root is’; SQR(N)

RUN

SQRT 20-APR-80 4:15:27

Number? 4
The square root is 2

READY
RUN

SQRT 20-APR-80 4:15:10

Number? -2
Square root of negative # not allowed

Examples of the second form are:
100 IF A$<B$ THEN 50
100 IF X +3>=18 THEN 200

100 IF 52< =X THEN 25

The second form of the IF statement says, “If the logical expres-
sion is true, then transfer control to the statement whose num-
ber is after the THEN.” MINC has control over the execution of
the program. IF statements cause MINC to transfer control from
the IF statement to the statement whose number is after the
THEN. In the first example, if A$ is less than B$, then the next
statement executed will be statement 50. If A$ is not less than
B$, then the next statement executed will be the statement that
immediately follows line 100.

PROGRAM CONTROL

79

PROGRAMMING FUNDAMENTALS

A program example using the second form of the IF statement
is:

10 REM - This program sorts 3 input strings in
15 REM - alphabetical order.
20 PRINT 'Input 3 strings’

30 INPUT AS$, B$, C$

60 REM - test if they are in alphabetical order.
70 IF A$<B$ THEN 110

75 REM - swap them.

80 S$=A$%

90 A$=B$

100 B$=S$%

110 IF A$<C$ THEN 150
115 REM - swap them.

120 S$=A$

130 A$=C$

140 C$=S$

150 IF B$<C$ THEN 190
155 REM - swap them.

160 S$=B$

170 B$=C$

180 C$=S%

190 PRINT 'The sorted list is’
195 PRINT A$

200 PRINT B$

210 PRINT C$

RUNNH

Input 3 strings

? hello

? goodbye

? always

The sorted list is
always

goodbye

hello

Notice that a third “temporary” variable is needed for a swap.
You cannot swap A$ and B$ by saying:

A$=B$B$ =A%

because of the nature of an assignment statement.
A$=B$%

erases the previous value of A$ and puts the value of B$ there.
Consequently, the original value of A$ is lost. In this example,
80 S$ saves the original value of A$ while B$ is stored in A$.

The form of the IF/GO TO statement is:
IF logical-expression GO TO stmt#

and MINC executes it exactly like the IF logical-expression
THEN stmt# statement. The previous example that prints out
three strings in alphabetical order would work the same if you
replace THEN with GO TO. GO TO is perhaps clearer in this
type of IF statement because the term GO TO itself implies
transfer of program control.

The sorting example program is actually an example of pro-
gramming the “otherwise” portion of an IF statement. For ex-
ample, the following program segment says, “If A$ is less than
C$ then compare B$ and C$; otherwise swap A$ and C$.”

110 IF A$<C$ GO TO 150

115 REM — — — otherwise swap A$ and C$
120 S$=A$

130 A$=C$

140 C$=S$

150 IF B$<C$ THEN . . .

Statements 120, 130, and 140 are all part of the “otherwise.”

GO TO statements can be used anywhere in a BASIC program
to transfer control to another statement.

Upon execution of an unconditional GO TO statement, MINC
transfers control to the statement-number in the GO TO state-
ment. This form of GO TO statement is called unconditional
because control is always transferred when the statement is exe-
cuted, as opposed to the [F/GO TO statement, which is a condi-
tional GO TO. The form of the unconditional GO TO is:

GO TO stmt#

A program using an unconditional GO TO was shown in Chap-
ter 3 for computing sines and cosines. The following statement
numbers are the same as those used in Chapter 3. Some
REMARK statements have been added to help you understand
the program.

PROGRAM CONTROL

IF/GO TO Statements

Programming the
“Otherwise”

GO TO STATEMENTS

Unconditional GO TO
Statements

81

PROGRAMMING FUNDAMENTALS

ON/GO TO Statements

RESEQUENCING
PROGRAMS WITH
GO TOs

82

5 REM - This program computes sines and cosines
10 REM - of any angle given in degrees.
20 PRINT ,’Sine’, ‘Cosine’

30 PRINT 'Degrees’;

35 REM - Input angle in degrees.

40 INPUT X

55 REM - Compute radians from angle.
60 Z=X"PI/180

70 PRINT ,SIN(Z), COS(2)

75 REM - Repeat for next angle

80 GO TO 30

At statement 80, control always passes back to statement 30
because of the unconditional GO TO.

Unconditional GO TO statements transfer control to a particu-
lar statement. ON/GO TO statements transfer control to one of
several statements depending upon the value of an expression.
Thus, ON/GO TO statements are a form of conditional GO TO.
The other form of a conditional GO TO is the IF/GO TO
statement.

The form of the ON/GO TO statement is:
ON numeric-expression GO TO list-of-line-numbers

For example:

10 ON X GO TO 100,200,300

If X is equal to 1, control transfers to statement 100. If X is
equal to 2, control transfers to statement 200. And, if X is equal
to 3, control transfers to line 300. If X is less than 1 or greater
than 3, then MINC prints the following error message.

?MINC-F-Value of control expression is out of range at line 10
Line 10 is the line number with the ON/GO TO statement.

An example of using ON/GO TO statements is given in Chapter
7.

When you use the RESEQ command to renumber your state-
ments, MINC also renumbers any references to these state-
ments. That is, all line numbers referenced in GO TO, ON/GO
TO, IF/THEN, and IF/GO TO statements are changed to reflect
the new numbering. However, MINC does not change any refer-
ences to statement numbers within remarks.

Note that if you change statement numbers yourself, you must
be careful to change any references to these statements.

Obviously, every program must terminate at some time. Pro-
grams can terminate in any of the following ways:

e Normally, by executing the highest numbered
statement.

e Normally, by executing a STOP or END command (ex-
plained in the following sections).

e Abnormally, by encountering a fatal error (denoted by
messages beginning with 2MINC-F-).

e Normally or abnormally, by someone’s pressing
CTRL/C.

Usually you want your programs to terminate normally — that
is, under the program’s control. One of the best ways to termi-
nate a program normally is to make sure that MINC executes a
STOP or an END statement. These statements are defined in
the following sections.

An END statement when present must come as the very last
statement in the program. When control passes to the END
statement, the program terminates.

Programs will terminate by default by “falling out the bottom,”
that is, by looking for the statement after the last statement.
However, the use of an END statement makes it clear that the
programmer definitely wanted to end the program at a certain
point — that no statements were forgotten at the end. Espe-
cially in a program where control must pass to a statement that
terminates the program, END statements are clearer and
better.

Like the END statement, the STOP statement terminates exe-
cution of a program. However, the STOP statement can be
placed anywhere in a program. The STOP statement also prints
a message giving the line number of the STOP statement that
terminated execution.

PROGRAM CONTROL

PROGRAM
TERMINATION

END Statements

The STOP Statement

83

CHAPTER 6

USING A REPETITIVE PROCESS

The power of a computer lies in its ability to perform tedious
and repetitive processes quickly and to relieve people of such
tasks. In fact, this capability can even result in changes to the
nature of a solution. For example, when working by hand, you
might approximate a solution to a problem; however, working
with a computer, you might find you can do the entire set of
computations in the same amount of time.

MINC will do repetitive processes if it is programmed to execute
certain statements over and over again in a “loop”. A loop is a
sequence of statements that MINC repeats continuously until
an end condition is met.

The sines and cosines problem executes some statements over
and over and can calculate the sine and cosine of any number of
angles. Again, the program is:

20 PRINT ,'SINE’,’COSINE’
30 PRINT 'DEGREES’;

40 INPUT X

60 Z=X"P1/180

70 PRINT ,SIN(Z),COS(2)
80 GO TO 30

MINC repeats statements 30, 40, 60, 70, and 80 until you type
CTRL/C. What is actually happening is:

Statement What Happens

20 print labels
30 prints prompt

85

PROGRAMMING FUNDAMENTALS

LOOPS USING IF
STATEMENTS AND
GO TOs

86

Statement What Happens
40 inputs angle in degrees
60 converts angle to radians
70 prints sine and cosine
80 returns control to line 30
30 prints prompt
40 inputs angle in degrees
60
70
80
30

In this program, statements 30 through 80 form a loop.

A simple program that computes the squares and cubes of posi-
tive whole numbers follows:

10 PRINT 'I','1"2",' I3’

20 1=1

30 PRINT 1,I"2,I"3

40 1=1+1

50 GO TO 30

RUNNH
| "2 1”3
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6

36 216

Statements 30, 40, and 50 are the statements in the loop. This
program does not terminate unless you press CTRL/C.

This program is in an infinite loop. Infinite loops never termi-
nate by themselves. You must intervene and terminate the loop
by pressing CTRL/C twice.

If you want a loop to terminate by itself, you can place a condi-
tion in the loop that terminates the loop when the condition is
met. This condition is called the end condition. For example,
this program can be rewritten to print the squares and cubes
from 1 to 100 and stop after 100.

10 PRINT 'I",’'I"2",'I"3'
20 1=1

30 PRINT [,1"2,1"3

40 IF 1=100 GO TO 70
50 1=1+1

60 GO TO 30

70 END

RUNNH

Ot hAE WN =

99
100

READY

12

16
25
36

9801
10000

"3

27
64
125
216

970299
1.00000E + 06

This time the program terminates by itself after 100, 100%, and

100° are printed.

Take care when programming the end condition of a loop. If you
interchange statement 40 (the end test) and statement 50
(which increments the statement variable), then the test would
no longer work as before. For example:

10 PRINT 'I',’1"2",'I"3’

20 I=1

30 PRINT 1,I"2,1"3

40 1=1+1

50 IF 1=100 GO TO 70
60 GO TO 30

70 END

The results of this loop are not as defined in the problem and are
shown below. When I reaches 98, this is what happens:

Statement

30
40
50
60
30
40

What Happens

prints 98,982,983
increments I to 99

I (99) is not equal to 100 so go to 60

go to 30
prints 99,99°2,99°3
increments I to 100

A REPETITIVE PROCESS

87

PROGRAMMING FUNDAMENTALS

FOR LOOPS AND
THE FOR/NEXT
STATEMENTS

88

Statement What Happens
50 I (100) is equal to 100 so go to 70
70 end the program

The values 100, 100, and 100® are never printed because the
end condition is not correct. In this case, statement 50 must be
changed to:

50 IF I>100 GO TO 70

You should convince yourself (possibly by trying it) that this
new line 50 allows 100, 100%, and 100° to be printed.

To present another example of the many ways in which a loop
can be written and still perform the same function, the following
program is equivalent to the two previous versions of the
squares and cubes problem.

10 PRINT 'I','1"2","1"3’

20 1=1

30 PRINT [,I2,1"3
401=1+1

50 IF I<=100 GO TO 30
60 END

Although both the sines and cosines program and the squares
and cubes program are loops, the logic of the programs is very
different. The squares and cubes problem executes its loop ex-
actly 100 times. The program counts the number of times the
loop is executed. The number of times the sines and cosines loop

is executed varies with each run and depends on when the user
types CTRL/C.

Loops like that in the sines and cosines problem, which are ter-
minated by a specific end condition, can most easily be pro-
grammed using IF and GO TO statements. However, loops like
that in the squares and cubes problem, which are dependent on
a count, can be done more easily with a FOR statement, which
automatically counts the number of times the loop is executed.

Again, the squares and cubes program is listed below:

10 PRINT '1",'1I"2",'I"'3’

20 1=1

30 PRINT L,I"2,1"3

40 1=1+1

50 IF I<=100 GO TO 30
60 END

Using the FOR statement you can rewrite the program like this:

10 PRINT 'V','1"2","I"3’
20 FOR I=1TO 100
30 PRINT I, I"2, I"3
40 NEXT |

50 END

The results of the two versions are the same, but the second is
one statement shorter.

The FOR and NEXT statements do the counting automatically.
In the second example, the FOR statement:

20 FOR I=1TO 100

sets up I as the variable that will count the loop, and I counts
from 1 to 100. I is the control variable of the FOR loop. The FOR
statement starts the top of the loop. The NEXT statement:

40 NEXT |

determines the bottom of the loop. The NEXT statement incre-
ments I by one and returns control to the top of the loop to start
the loop over. When I gets incremented to greater than 100,
control is passed to the statement following the NEXT (in this
case, statement 50, the END statement).

There is only one difference between the way the two examples
function, but the difference would not show in the output unless
each program were changed slightly as follows.

10 PRINT ‘1','I"2",'I"3'

20 1=1

30 PRINT 1,I"2,1"3

40 [=1+1

50 IF I<=100 GO TO 30
55 PRINT |

60 END

10 PRINT 'I','I"2","I"3'
20 FOR I1=1TO 100
30 PRINT I, I"2, I"3
40 NEXT |

45 PRINT |

50 END

In statement 55 of the first example above, MINC prints 101 as
the value of I. In statement 45 of the second example above,
MINC prints 100 as the value of I. The only difference between

A REPETITIVE PROCESS

89

20 FORI = 5TO 1 STEP -1
30 PRINT |

40 NEXT |

50 END

RUNNH

- NDWhrO

READY

The following example shows that any expression within the
FOR statement can be fractional.

10 FORJ=0TO 1.5 STEP .3
20 PRINT J

30 NEXT J

40 END

RUNNH

0
.3
.6
9
1.2
5
READY

The next example shows that you can alter the control variable
within the loop; however, you should take care to be sure that
this is what you really want to do. (In fact, changing the control
variable unintentionally is a major cause of program errors.)

10FOR1 =1TO 10
200 =1+1

30 PRINT |

40 NEXT |

50 END

RUNNH

= 0O AN

READY

A REPETITIVE PROCESS

91

PROGRAMMING FUNDAMENTALS

MINC never executes this last loop because I (10) is greater
than the end value (1) right from the beginning.

10 FOR I=10TO 1
20 PRINT |

30 NEXT |

40 END

RUNNH

READY

92

CHAPTER 7

ARRAYS AND NESTED LOOPS

An array is a group of conceptually similar variables, all with
the same name. For example, suppose a professor has given a
20-question questionnaire to some students and asks you to pro-
cess the results of this questionnaire using MINC. Your first
idea for representing the questions might be to refer to each
question on the questionnaire as Q1, Q2, Q3, and so forth. How-
ever, this method fails at Q10 because Q10 is not a valid BASIC
variable name.

Instead, you can put the questions in an array named Q. You
can then reference question 1 by the name Q(1). You can refer-
ence question 2 by the name Q(2). And, you can reference ques-
tion 20 by the name Q(20).

In mathematical notation, these array elements are written as
follows:

QO Ql Q2 Q3 .. Q19 Q20

The small number below the Q is called a subscript, and Q, is
read “Q sub 2.”

In MINC notation, the equivalent array elements are written as
follows:

QO Q1) Q2 QB ..Q19 Q(20)

In MINC, the number in parentheses is also called a subscript,
and Q(0) is read “Q sub 0.”

93

PROGRAMMING FUNDAMENTALS

CREATING AN
ARRAY

94

The questionnaire problem corresponds very well with the use of
arrays. By using an array to represent the questionnaire in
MINC, you give all the questions the same variable name, Q.
Each individual question is distinguished by its unique
subscript.

In order that MINC can reserve a workspace of sufficient size for
your array of variables, you must define how many you will use.
In BASIC you can use a dimension statement (DIM) to do this as
follows.

10 DIM Q(20)

This statement tells MINC that you are defining an array
named Q with a dimension of 20. The dimension determines the
number of distinct elements in the array.

If you give an array a dimension of 20, MINC creates 21 distinct
elements (elements 0 through 20). All arrays begin with
element 0.

The general form of the DIM statement is:
DIM array-list

The argument array-list is the list of arrays to be dimensioned
in this statement. An array in the list is written as follows:

array-name(dimension)

The array-name must follow the rules for numeric variable
names if the elements in the array are numeric values. The
array-name must follow the rules for string variable names if
the elements in the array are going to be strings.

The dimension represents the maximum subscript that you can
use in the array. The dimension is the number of elements in
the array minus one (because of element 0). In the questionnaire
example, the dimension is 20 because there are 20 questions in
the questionnaire.

The maximum number of elements that you can define in an
array depends on the size of the program.

Because the array and the program must both fit in the work-
space, a short program leaves more room for a large array, and a
large program requires a shorter array.

ARRAYS AND NESTED LOOPS

Remember that with a dimension of 20, there are really 21 ele-
ments. For convenience, element 0 will be ignored for now. In
later sections, this chapter discusses how to adjust the program
to use element 0.

You should use an array for the questionnaire problem because
it is very inefficient to name the questions Q1, Q2, and so forth.
Even if MINC allowed variable names like Q20 (which is does
not), the programming to input all 20 questions would be a prob-
lem. You would have to type the following INPUT statement.

10 INPUT Q1,Q2,Q3,04,Q5,Q06,Q7,Q8,Q9,Q10
11 INPUT Q11,Q12,Q13,Q14,Q15,Q16,Q17,Q18,Q19,Q20

If you wanted to make your program more practical by prompt-
ing each question, you would have to type the following 20 lines
just to input the answers to one questionnaire:

10 PRINT "1';\ INPUT Q1
20 PRINT "2\ INPUT Q2
30 PRINT '3\ INPUT Q3

By using an array, you can take advantage of FOR loops. Even
prompting each question becomes easy. The part of the program
to input the answers to one questionnaire is:

10 DIM Q(20)

40 FORI=1TO 20

50 PRINT I;\ INPUT Q(l)
60 NEXT |

Instead of using 20 lines of code, this method uses four. The way
this loop works is:

Statement What Happens
40 starts [at 1
50 prints 1, inputs Q(1) (because [=1)
60 increments I to 2
50 prints 2, inputs Q(2) (because I=2)
60 increments I to 3

60 increments I to 20

WHY USE ARRAYS?

95

PROGRAMMING FUNDAMENTALS

ONE-DIMENSIONAL
ARRAYS

96

Statement What Happens
50 prints 20, inputs Q(20) (because I=20)
60 increments I to 21, exits loop,

decrements I to 20

Because you can use arrays so easily in FOR loops, arrays make
programming much easier for problems like this one. The com-
puter does the repetition instead of the programmer.

MINC allows up to two subscripts for an array. An array with
one subscript is called a one-dimensional array. An array with
two subscripts is called a two-dimensional array. These two
kinds of arrays are discussed in the following sections.

So far the method used for storing the results of the question-
naire has been to store the results in a one-dimensional array. A
one-dimensional array can be pictured as follows. This particu-
lar one-dimensional array is named Q.

Qo) < | INFORMATION
HELD IN Q(0)

Q1)

Q2)

Q(3)

Q(4)

Q(s)

MR 1587

Figure 7. One-Dimensional Array
This one-dimensional array has six elements (0 through 5).

From the examples in the previous sections, you now know how
to get the data from one questionnaire into a one-dimensional
array in MINC. Now you have to devise a scheme to process the
data.

Suppose the questionnaire has 20 questions, each with three
possible responses: agree, disagree, and don’t care.

For the time being, all the professor wants is to keep a tally for
each question of the number of agrees, disagrees, and don’t cares

ARRAYS AND NESTED LOOPS

received. One method is to type in the following input for each
question.

Enter a 1 for agree.
Enter a 2 for disagree.
Enter a 3 for don’t care.

A program to compute the results of these responses can use an
ON/GO TO statement. Besides needing an array for the input of
each questionnaire, you need 3 more arrays — one to tally
agrees, one to tally disagrees, and one to tally don’t cares. State-
ment 10 becomes:

10 DIM Q(20), A(20), D(20), C(20)

For example, A(1) tallies the number of people who agreed with
question 1. D(15) tallies the number of people who disagreed
with question 15. C(12) tallies the number of people who don’t
care about question 12, and so forth. (Remember that element 0
of each array is being ignored for the time being.)

The program to read and process the questionnaire now
becomes:

10 DIM Q(20),A(20),D(20),C(20)

20 REM - Q represents the original questionnaire

30 REM - A represents the number of people who agreed
35 REM - with each question

40 REM - D represents the number of people who disagreed
45 REM - with each question

50 REM - C represents the number of people who don't
55 REM - care about each question

60 REM - Input the questionnaire

70 FOR I=1TO 20

80 PRINT I;\ INPUT Q()

90 NEXT |

100 REM - Process questionnaire

110 FORI=1TO 20

120 ON Q(1) GOTO 150, 160, 170

150 A(l) =A(l)+ 1\ GOTO 200

160 D(I)=D(l)+ 1\ GOTO 200

170 C(l)=C(l) +1

200 NEXT |

In line 120, if Q(I), the response to question number I, is 1, the
agree counter is incremented. If Q(I) is 2, the disagree counter is
incremented. If Q(I) is 3, the don’t care counter is incremented.
The ON/GO TO statement ensures that only one counter is in-

cremented for each question.
97

PROGRAMMING FUNDAMENTALS

TWO-DIMENSIONAL
ARRAYS

98

Because MINC sets all variables to 0 when you type the RUN
command, the counters are all started at 0. You do not have to
give the counter arrays an initial value of zero.

You can shorten this program segment to input and process a
questionnaire. Q is an unnecessary array. You do not need to
read in all 20 questions at once when you can process one ques-
tion at a time. By eliminating the Q array, you can save 19
variables in the workspace. You need only one variable, rather
than a whole array of 20 variables.

Without changing the basic algorithm or the approach, you can
change the program to reduce the number of variables as
follows.

10 DIM A(20),D(20),C(20)

30 REM - A represents the number of people who agreed
35 REM - with each question

40 REM - D represents the number of people who disagreed
45 REM - with each question

50 REM - C represents the number of people who don’t
55 REM - care about each question

60 REM - Input and process one questionnaire
70FORI1=1TO 20

75 REM - R represents one response to one question

80 PRINT {;\ INPUT R

100 REM - Process question

120 ON R GOTO 150, 160, 170

150 A(l)=A(l)+1\ GOTO 200

160 D(l)=D(l) + 1\ GOTO 200

170 C(H=C(l) +1

200 NEXT |

There is another method that uses two-dimensional arrays for
inputting and processing a questionnaire. This method is dis-
cussed in the next section.

The previous algorithm for processing questionnaires uses three
one-dimensional arrays. Again, a one-dimensional array uses
one subscript and can be pictured as shown in Figure 8.

A two-dimensional array can be thought of as a matrix and
requires two subscripts. Two-dimensional arrays can be pictured
as shown in Figure 9.

You can use one two-dimensional array to replace the three one-
dimensional arrays in the questionnaire problem. Array R,

Q(20):

X

Figure 8. One-Dimensional Array

/—— INFORMATION HELD IN A(0,0)

ARRAYS AND NESTED LOOPS

INFORMATION
HELD IN Q(0)

MR 1588

A(O’,O) A(0,1) A(0,2) A(0,3) A(0,4)
A(1,0) A{1,1) A(1,2) A(1,3) A(1,4)
A(2,0) A(2,1) A(2,2) A(2,3) Al2,4)
A(3,0) A(3,1) A(3,2) A(3,3) A(3.4)
A(4,0) A(4,1) A(4,2) A{4,3) A(4,4)

Figure 9. Two-Dimensional Array

MR.1589

which stands for response, will be dimensioned as follows:

10 DIM R(20,3)

The first subscript (ranging from 0 through 20) represents the
question being answered. The second subscript (1 through 3)
represents the response. Therefore, the value of R(2,1) repre-
sents the number of people who agreed with question 2. (Re-
member that all elements with a subscript of 0 are being

ignored.)

This method has no fewer variables because three one-
dimensional arrays that are 20 elements long have as many
variables as one two-dimensional array with 20 x 3 variables.
However, the program becomes much shorter. (In fact, this

99

PROGRAMMING FUNDAMENTALS

NESTED LOOPS

100

method is wasting a few more variables by ignoring Q(0,0)
through Q(20,0). However, using these elements is discussed in
later sections.)

Use of a two-dimensional array simplifies the loop to input and
process questionnaires to the following four statements:

70 FOR 1=1T0O 20
80 PRINT I;\ INPUT Q
90 R(1,Q)=R(1,Q) +1
100 NEXT |

The first subscript represents the number of the question; the
second subscript represents the code for the answer. In line 90, if
Iis equal to 12 and Q is equal to 2, then R(12,2) is incremented.

A very simple program is now developed for processing one
questionnaire. However, the program must be expanded to pro-
cess many questionnaires. The program needs a loop to process
more than one questionnaire; but, you cannot use a FOR loop
because you do not know how many questionnaires there are to
be processed. Instead, you must create a loop that will work for
any number of questionnaires. The following program segment
presents a loop for processing many questionnaires.

20 PRINT 'Input another questionnaire’; \ INPUT A$
30 IF A$="YES' GO TO 70

40 IF A$= 'NO’ GO TO 350

50 GO TO 20

60 REM - Input and process one gquestionnaire
70FOR1=1TO 20

110 GO TO 20
350 END

Many people do not test specifically for a “NO” or invalid re-
sponse (that is, something other than yes or no) as in lines 40
and 50. Their test would be:

50 IF A$<>'YES' GOTO 350

However, if you are inputting questionnaire number 199 and
you mistype yes for questionnaire 200, you do not want to have
to start typing all over again. Thus, it is a good idea to test for
the proper input.

ARRAYS AND NESTED LOOPS

The program segment for inputting and processing many ques-
tionnaires is shown as follows:

10 DIM R(20,3)

20 PRINT ’Input another questionnaire’; \ INPUT A$
30 IF A$="YES' GO TO 70

40 IF A$='NO’ GO TO 350

50 GO TO 20

60 REM - Input and process one questionnaire
70FORI=1TO 20

80 PRINT I;\ INPUT Q

90 R(1,Q)=R(1,Q) +1

100 NEXT |

110 GO TO 20

350 END

This program has one loop (the FOR loop) within another loop
(the IF/GO TO loop). This process of putting one loop inside
another is called nesting loops. You can also nest FOR loops if
you need to.

These nested loops work exactly the way this problem was
solved. The inner loop, which includes statements 70 to 100, is
processed first. That is, the program processes all 20 questions
of one questionnaire — by repeating statements 70 through 100
twenty times. Once the entire questionnaire is processed, con-
trol passes to statement 110, and the outer loop is processed. If
there is another questionnaire, control passes back to statement
70 which will again start the inner loop, and the whole process
described in this paragraph is repeated. If there is not another
questionnaire, the program will stop.

This program only reads and processes the questionnaire. To
make the program of any value to the professor, you must pro-
duce a report of the results.

The following program produces a report that lists the results.

10 DIM R(20,3)

15 REM - Input next questionnaire

20 PRINT ‘Input another questionnaire’; \ INPUT A$
30 IF A$='YES' GO TO 70

40 IF A$='NO’ GO TO 310

50 GO TO 20

60 REM - Input and process one questionnaire

70 FORI1=1TO 20

75 REM - Q represents the response to one question
80 PRINT I\ INPUT Q

85 REM - Process question

90 R(1,Q)=R(1,Q) +1

100 NEXT | 101

PROGRAMMING FUNDAMENTALS

110 GO TO 20

300 REM - Print results of all questionnaires

310 PRINT ,,’AGREE’, 'DISAGREE’, 'DON’'T CARE'’
320 FOR I=1TO 20

330 PRINT 'Question’;l,,R(l,1), R(l,2), R(1,3)

340 NEXT |

350 END

Below is a partial sample run of this program. This sample does
not show the entire input process or the entire output.

RUN
QUEST 28-FEB-80 10:27:00

Input another questionnaire? YES
1?7 1
2? 3
3?7 1
47 2

20?7 3
Input another questionnaire? NO

AGREE DISAGREE DON'T CARE
Question 1 23 10 7
Question 2 5 29 6
Question 3 18 4 18
Question 4 2 38 0

The above example of the QUEST program now does the entire
job of taking questionnaires as input, processing the results, and
printing the results. However, this program does not process the
questionnaires well. You should be aware of the following prob-
lems:

® The program expects an upper case YES as the answer
to “Input another questionnaire” and does not recog-
nize a lower case yes.

® The program expects the person typing in the ques-
tionnaire responses to be a perfect typist. The program
does not validate that the current response is between
1 and 3. In the above example, if the response is other

102

ARRAYS AND NESTED LOOPS

than 1, 2, or 3, MINC will have a problem as it tries to
update R(I,Q) in line 90. The value of Q will not be
within the dimensions of the array R. MINC prints the
following message:

?MINC-F-Array subscript is negative or too large at line 90

Techniques for resolving these and similar problems are dis-
cussed in Chapters 8 and 11.

Suppose for some reason you decided that you want to reset your Nested FOR Loops
two-dimensional array R to zero. That is, you want to set each

element to zero later in the program without having to run the

program again. You can accomplish this by several means, some

easier than others.

The easiest way to access each element of a two-dimensional
array is to use nested FOR loops (as shown in the following
example).

300 FOR I=1TO 20

301 FORJ=1TO3
302 R(l,J)=0 I
303 NEXT J

304 NEXT |

Nested FOR loops must be completely nested. That is, the inner
FOR loop must be entirely within the outer FOR loop as shown
by the lines drawn in on the previous example.

Here is an example of an invalid pair of nested FOR loops.

200 FOR I=1TO 20
201 FOR J=1 TO 3~
202 R(1,J)=0

203 NEXT |

204 NEXT J

At statement 204, what is the value of I? MINC gets confused at
this line, tries to execute the loop, cannot accept this loop, and
prints the following message.

?MINC-F-No corresponding FOR statement for NEXT at line 203

Here are some examples of acceptably and unacceptably nested
FOR loops.

103

PROGRAMMING FUNDAMENTALS

USING ARRAY
ELEMENT 0

One-Dimensional
Arrays

104

Acceptable FOR loops

10 FOR1=1TO 10
20FORI11=1TO 4—

30 FORI12=2TO 7
40 NEXT 12 —--]
50 NEXT I

60 NEXT |

10 FORJ=1TO 10
20 FORK=2TO 2

30 NEXT K—J
40 FOR I=1TO 12—
50 FORK2=1TO 5
60 NEXT K2

70 NEXT |
80 NEXT J

Unacceptable FOR loops

10 FOR |=2 TO 15+
20 FORK=1TO5
30 NEXT |
40FORJ=1TO5
50 NEXT J
60 NEXT K

10 FOR I=1 TO 5 ——
20 FORK=1TO5
30 NEXT K

40 FOR J=1TO 5—
50 NEXT |
60 NEXT J

The previous examples in this chapter ignored element 0 of each
array. The next two sections discuss how you can modify your
algorithms to use element 0 for one- and two-dimensional
arrays.

Remember that when you dimension a one-dimensional array, it
actually has one more element than the value of the dimension
implies. For example, the following array has six elements, even
though its dimension is 5.

10 DIM A(5)

In the professor’s problem, Q(0), A(0), D(0), and C(0) were ig-
nored, and the FOR loops started at 1. Because the question-
naires started with question 1, not question 0, the programming
was made easier by ignoring element 0 in each of the arrays.

ARRAYS AND NESTED LOOPS

A FOR loop to access every element of the six-element array
follows:

10 FORI=0TO5
20 A(l) =1
30 NEXT |

In this FOR loop, every element is given an initial value of 1.

Both dimensions of a two-dimensional array start with zero. For
example, the following array:

10 DIM A(4,4)
actually looks like Figure 9 (Page 99).

The two-dimensional solution to the professor’s problem ignored
row zero and column zero of the arrays and started the FOR
loops at 1. Because the array was dimensioned 20 by 3, the
program wasted 20+ 3+ 1 array elements, or 24 variables. You
really don’t want to waste space (that is, declare unused varia-
bles) if possible. You can save the space by changing the
program:

10 DIM R(19,2)

70 FOR 1=0 TO 19

80 PRINT I+1;\ INPUT Q
90 R(,Q-1)=R(1,Q-1) +1
100 NEXT |

The array R now has 60 elements. The FOR loop still executes
20 times. Line 80 still prints the right question number; 0 +1 is
1 for the first question. Q-1 converts the agree, disagree, and
don’t care codes to 0, 1, and 2. You could change the input to 0,
1, and 2, but the programmed conversion is just as simple. Your
choice of algorithm depends on how you want to structure your
problem. In this case, questionnaires rarely start with question
0, so the program makes the conversion from question 1 to
element 0.

This program makes better use of the workspace by not wasting
variables. Better yet, the program change is invisible to anyone

Two-Dimensional
Arrays

105

PROGRAMMING FUNDAMENTALS

SUBSCRIPTED
VARIABLES

Subscripts

106

using the program. That is, the person inputting the question-
naires and printing the results for the professor does not have to
learn a new code for the input or have to do anything different,
even though the program has changed.

Arrays are a group of variables all given the same name. The
individual elements are distinguished by the one or two unique
subscripts. Each element then is called a subscripted variable.

The subscripts of a variable determine the unique array element
being referenced. Picture a one-dimensional array that looks
like Figure 10.

A(0): ELEMENT O
A1): ELEMENT 1
A(2): ELEMENT 2
A(3): ELEMENT 3

MR-1590

Figure 10. One-Dimensional Array

Array A has four unique elements. The first element is specifi-
cally referenced by the name A(0). The fourth element is specifi-
cally referenced by the name A(3). As you can see in Figure 10,
each array element is a discrete unit, and referencing A(3.7)
does not really make any sense. Therefore, before MINC refer-
ences an array element, it truncates any fractional part of all
subscripts to make them whole numbers. Thus, in the following
statements, reference A(3), the value of I remains 3.7, but in
statement 20, A(3), not A(3.7), gets the value 7.

101=3.7
20 A()=7

A subscript can be any numeric expression. For example,
A(I+3*B"2) is a perfectly valid reference to a subscripted varia-
ble (as long as [+ 3*B"2 is within the dimension of the array).
B(Q+7,1¥2.65+9) is a valid reference to a subscripted variable
for the two-dimensional array B. If either or both subscripts are
not whole numbers, MINC truncates each subscript to a whole
number before accessing the array element.

ARRAYS AND NESTED LOOPS

Subscripts can never be string literals or string variables. Sub-
scripts must always be numeric.

Subscripts must remain within the bounds or dimensions of the
array. For example, if you dimension the following array:

10 DIM C(8)

MINC will not let you reference C(-5) or C(9), nor will it let you
use any subscript that is not between 0 and 8. Should you try to
reference elements that are out of bounds, MINC will issue the
following error message and terminate your program.

?MINC-F-Array subscript is negative or too large

When using a two-dimensional array, you must take care that
both dimensions are within the bounds set in the DIM state-
ment. For example, if you dimension the following array:

10 DIM C1(3,5)

the first subscript must be between 0 and 3, and the second
subscript must be between 0 and 5. C1(4,3) is an invalid refer-
ence because the first subscript is too large. C1(1,6) is an invalid
reference because the second subscript is too large. C1(-1,8) is an
invalid reference because both subscripts are out of bounds.

If the subscripts of a two-dimensional array are out of bounds,
MINC will terminate the program with the following message.

?MINC-F-Array subscript is negative or too large

Example 1

This example counts the number of times each number from 0 to
10 is entered by the person running the program (you, if you try
this example).

NEW COUNT

10 DIM A(10)

20FORI=1TO5

30 PRINT ’Input a number from 0 to 10’;\ INPUT N
40 A(N)=A(N) +1

50 NEXT |

60 PRINT

100 FORI=0TO 10

110 PRINT ‘The number’;l;’appeared’;A(l); time(s).’
120 NEXT |

130 END

RUN

Examples

107

PROGRAMMING FUNDAMENTALS

108

COUNT 01-MAR-80 156:59:55

Input a number from 0 to 10? 5
Input a number from 0 to 10? 3
Input a number from 0 to 107 1
Input a number from 0 to 10?7 0
Input a number from 0 to 10?7 5

The number 0 appeared 1 time(s).
The number 1 appeared 1 time(s).
The number 2 appeared 0 time(s).
The number 3 appeared 1 time(s).
The number 4 appeared 0 time(s).
The number 5 appeared 2 time(s).
The number 6 appeared 0 time(s).
The number 7 appeared 0 time(s).
The number 8 appeared 0 time(s).
The number 9 appeared 0 time(s).
The number 10 appeared 0 time(s).

READY

There are no problems with this example. However, when MINC
displays READY, if you type RUN and enter the numbers 1 and
11, MINC will halt the program. In line 40, MINC tries to incre-
ment A(11), cannot find A(11), and terminates the program.

Example 2

The following short program written by a history professor tal-
lies votes for the Moderate and Reform parties in all elections
between 1900 and 1915. As input, it takes the year and the
party — M for Moderate and R for Reform.

10 DIM E(15,1)

20 PRINT ’Enter year,party’; \ INPUT Y,P$
30 REM - validate party

35 IF P$<>'r' THEN IF P$<>'m’ GO TO 20
40 IF P$="'m’' THEN P=0

50 IF P$="r' THEN P=1

60 REM - validate year

70 IF Y<1900 GO TO 20

80 IF Y>1915 GO TO 20

85 REM - update tally

90 E(Y-1900,P) =E(Y-1900,P) +1

100 REM - next input

110 PRINT ‘more data’; \ INPUT R$

120 IF R$="yes’ GO TO 20

130 FORI=0TO 15

140 PRINT 'year’;l+ 1900;'moderate votes’;E(l,0); reform votes’;E(l,1)
150 NEXT |

160 END

ARRAYS AND NESTED LOOPS

This program checks the input data to ensure that each piece of
data is correct before the program tries to access an array ele-
ment. If the data are not correct, the program reissues the
prompt and waits for valid data.

Example 3

In the following example, the subscript goes outside the bounds
of the array, but the error is not obvious.

10 DIM A(10)

20 FOR I=0TO 10 STEP 2
30 PRINT A(l),A(l +1)

40 NEXT |

50 END

In line 30, when I=10, I+1=11. A(11) is out of the bounds of
the array A.

Subscripted variables are array elements, or variables, that are Subscripted Variables
referred to by the use of subscripts. Although the subscripts

themselves must always be numeric, the variables can hold ei-

ther numeric or string data (depending on the type of array).

Subscripted string variables can be used anywhere that string
variables can be used. Subscripted numeric variables can be
used anywhere that numeric variables can be used except as the
control variable for a FOR loop.

The following example uses a string array. This program ac-
cepts as input students’ names and their three test scores. The
program prints out the students’ names, test scores, and final
grade based on the test scores.

10 DIM S$(25),G1(25),G2(25),G3(25),G$(25)

20 PRINT ’Input student name and three test scores’;

25 INPUT S$(1),G1(h,G2(1),G3(l)

30 F=G1(l)+ G2() + G3(l)

40 REM - compute student’s letter grade based on average
45 REM - of the three test scores

50 F=F/3

55 IF F<60 THEN G$(l)="F’

60 IF F>=60 THEN IF F<70 THEN G$(l)="'D’

70 IF F>=70 THEN IF F<80 THEN G$(l)='C’

80 IF F>=80 THEN IF F<90 THEN G$(l)='B’

90 IF F>=90 THEN G$(I)="A’

100 PRINT ’Another student’; \ INPUT R$

110 IF R$="no’ GO TO 150

120 IF R$<>'yes’ GO TO 100 109

PROGRAMMING FUNDAMENTALS

HOW ARRAYS ARE
STORED IN THE
WORKSPACE

110

125 REM - count the next student

130 I=1+1

140 GO TO 20

150 PRINT 'STUDENT NAME’,’GRADE 1','GRADE 2','GRADE 3',’FINAL GRADE’
160 FORJ=0TO |

170 PRINT S$(J),G1(J),G2(J),G3(J),G$(J)

180 NEXT J

190 END

RUNNH

Input student name and three test scores? Andrea,90,93,95
Another student? yes

Input student name and three test scores? Jason,85,75,80
Another student? no

STUDENT NAME GRADE 1 GRADE 2 GRADE 3 FINAL GRADE

Andrea 90 93 95 A
Jason 85 75 80 B
READY

It is not necessary for you to read the following discussion of
arrays unless you intend to use some of the specialized MINC
program features (see Books 4 and 6).

When you dimension an array with a DIM statement, MINC
sets up an area in the workspace for the array.

One-dimensional arrays are stored as they have been previously
pictured. Thus, the array dimensioned in the following

statement:

10 DIM A(5)

is stored in the workspace as shown in Figure 11.

(0) (M (2) (3) (4) (5)

Figure 11. One-Dimensional Array
Although you can think of two-dimensional arrays as matrices,
they are stored linearly in the workspace. Thus, the array di-

mensioned in the following statement:

10 DIM B(2,3)

ARRAYS AND NESTED LOOPS

can be pictured as in Figure 12.

1
ROW O | B(0,0) B(0,1} B(0,2) B(0,3) | ROWO
ROW 1 | B(1,0) B(1,1) B(1,2) B(1,3) | ROW 1
ROW?2 | B(2,0) B(2,1) B(2,2) B(2,3) | ROW2

MR 1592

Figure 12. Two-Dimensional Array

However, this array is stored in the workspace as shown in
Figure 13.

(0,00 (0,1) (0,2) (03 (1,00 (1,1 (1,2) (1,3) (20 (21 (22) (23)

[— I\ J -]
e

Y \a
ROW 0 ROW 1 ROW 2

MR-1593

Figure 13. Two-Dimensional Array Stored in the Workspace

MINC stores a two-dimensional array in row-major order. That
is, MINC stores all of row zero, then all of row one, and so forth.
In this order, the rightmost subscript varies the fastest as you
look down the linear list of the two-dimensional array.

When working with a two-dimensional array in a BASIC pro-
gram, you must always use two subscripts when referencing one
of the array elements. Thus, the way the array is stored in the
workspace is usually of little importance to you.

However, some aspects of the lab module routines discussed in
Book 6 are easier to use if you know how two-dimensional ar-
rays are stored in the workspace.

111

CHAPTER 8

DATA TYPES AND FUNCTIONS

Chapter 2 discussed numeric variables and numeric functions
(the trigonometric functions and some arithmetic functions).
This chapter treats data types and numeric variables in more
detail and discusses numeric and string functions.

So far, this manual has dealt with two data types: numeric and
string. String variables and literals have been discussed com-
pletely; however, numeric variables and literals have been sim-
plified until now.

There are two kinds of numeric variables and literals: real and
integer. These numeric data types are discussed in the following
sections.

Those variables and literals that have previously been described
as numeric are real variables and literals. Real numbers can
have a fractional part or they can be whole numbers. For exam-
ple, 7 and 7.3 are both real literals. The limits on real literals
are 10 to 10%,

Real variables are named by a letter, or a letter followed by a
digit. Thus, A and A1l are two real variable names. A program
can have at most 286 real variables (A-Z, and A0-A9 through
Z0-29).

Integer variables and literals can have only whole number val-
ues. If you try to give an integer variable a fractional value,
MINC truncates the value to the whole number portion.

DATA TYPES

Real Variables and
Literals

Integer Variables and
Literals

113

PROGRAMMING FUNDAMENTALS

114

To distinguish an integer literal from a real literal, you must
type a percent sign (%) after the literal. For example, the follow-
ing literal is a real literal.

7

The integer literal 7 is denoted as follows:

7%

The limits on integer literals are -32,768 to 32,767.

Integer variables can take on only whole number values. Like
integer literals, integer variables never have a fractional part.
Integer variables have the same range of values as integer liter-
als, -32,768 to +32,767.

MINC integer variable names are represented with a letter fol-
lowed by a percent sign, or with a letter followed by a digit
followed by a percent sign. For example, A% and A2% are two
distinct integer variable names.

MINC stores real numbers and integers differently. A real num-
ber takes twice as much room in the workspace as an integer,
but a real number has more precision (the fractional part) than
an integer and has a different range.

You must be careful when you perform arithmetic operations
using integer variables because fractional results of any opera-
tion are truncated.

Operations involving only integer operands are called integer
arithmetic. Operations involving a combination of integer and
real operands are called mixed mode arithmetic.

NOTE

The term whole number is used to denote a number
with no fractional part. A whole number can be stored
in a real variable or can be a real literal. The term
whole number does not denote a data type. In contrast,
the term integer refers to the data type. An integer
literal must be followed by a percent sign. Integers
must be whole numbers, but whole numbers are not
necessarily integers.

DATA TYPES AND FUNCTIONS

MINC handles operations that use only integer operands quite
differently than it does those involving real numbers. For exam-
ple, because there are no decimal fractions allowed with in-
tegers, the following division results in a value of 0.

PRINT 1%/7%
0

The above example, and the following examples in this section,
are not trying to show good use of MINC. That is, you would
probably never print the value 1%/7%. However, while using
MINC you might want to do a division using integer variables,
or perform an operation using a mixture of integer variables
and real literals or variables. The following examples show you
how to do these operations. To make the examples clear, this
section will use literals rather than variables, even though you
would never do these specific types of operations with literals.

Again, the limits on integer values are -32768 to +32767. If you
exceed these limits, MINC will print an error message. For
example:

PRINT 3% * 30000%
?MINC-W-Value of integer expression not in range -32768 to +32767
0

MINC warns you that it cannot handle an integer as large as
90,000 and substitutes 0 for the result of the calculation.

If you assign a real value to an integer variable, MINC trun-
cates the value; that is, it cuts off the fractional portion. For
example:

A% =17.999
PRINT A%
7

You can perform calculations with a mixture of integer and real
literals and variables. However, unless you understand how
MINC performs the mixed mode arithmetic, you can obtain very
unexpected results.

Real numbers take precedence over integers. That is, a combina-
tion of real and integer operands results in a real result. For
example, in the first division below, the real operand (15) pro-
duces a real result (.666667). In the second division, both
operands are integer, producing an integer result.

Integer Arithmetic

Mixed Mode Arithmetic

115

PROGRAMMING FUNDAMENTALS

116

PRINT 10%/15
.666667

However:

PRINT 10%/15%
0

The order in which MINC does the calculations can affect the
result. In the following example, MINC performs the calculation
from left to right because division and multiplication are of
equal priority. The integer division is done before the real mul-
tiplication, resulting in a value of 0.

PRINT 10%/15%*20
0

This same calculation follows, but in a different order. In this
second example, the multiplication is done first, resulting in a
real interim result, which causes the division to produce a real
result.

PRINT 20*10%/15%
13.3333

Parentheses override operator precedence in mixed mode arith-
metic. For example:

PRINT 20*(10%/15%)
0

When MINC assigns a real number to an integer variable, it
truncates the value before making the assignment. For
example:

A% =15/10

PRINT A%
1

The following chart sums up the results of mixed mode
operations:

operand 1 operand 2 result
real real real
real integer real
integer real real

integer integer integer

DATA TYPES AND FUNCTIONS

In Chapter 2, the following arithmetic and trigonometric func- ARITHMETIC AND
tions were discussed. TRIGONOMETRIC
))) FUNCTIONS
Arithmetic functions
SQR the square root function
EXP the exponential function

LOG, LOG10 the logarithmic functions
Trigonometric functions

PI the function that computes the value of
SIN the sine function

COS the cosine function

ATN the arc tangent function

You can use the arithmetic and trigonometric functions in a
program as easily as in the immediate mode because the argu-
ment of a function can include variables as well as constants.

For example, the following program computes the nonimaginary
roots of the following quadratic equation.

0=ax’+bx+c
This program uses the quadratic formula given below.

-b+V (b*4ac)

10 PRINT ‘Input a, b, and ¢’;\ INPUT A,B,C
20 D=B"2-4"A*C

25 |F D>=0 GO TO 40

30 PRINT ’Roots are imaginary’

35GO TO 70

40 R1=(-B+ SQR(D))/2*A

50 R2=(-B-SQR(D))/’2*A

60 PRINT 'The roots are’;R1;'and’;R2

70 END

The general form of an arithmetic or trigonometric function is:

function name (argument)

The argument can be any arithmetic expression. The remaining
arithmetic functions available with MINC are: 117

PROGRAMMING FUNDAMENTALS

Integer Function

Absolute Value
Function

Random Number
Function and
RANDOMIZE Statement

118

INT calculates the integer portion of its argument
ABS calculates the absolute value of its argument
RND produces a random number

SGN computes the sign of its argument

These arithmetic functions are described in the following four
sections.

The integer function (INT) takes on the value of the greatest
integer less than the value of the argument. If the argument is
not a whole number, the function truncates the fractional part.

The form of the integer function is:
INT(expression)

For example:

PRINT INT(7)
7

PRINT INT (-7.35)
-8

PRINT INT (7.3E-9)
0

The absolute value function (ABS) takes on the absolute value
of the argument of the function. The form of the absolute value
function is:

ABS(expression)

For example:

PRINT ABS (-3)
3

PRINT ABS (-16.25)
16.25

The random number function (RND) generates a pseudo-random
number between 0 and 1 each time it is invoked. The term
pseudo-random number is used because MINC computes the
random numbers according to a formula that ultimately repeats
its sequence of numbers. However, this sequence of numbers is

so large that the numbers can be considered random.

For example:

PRINT RND
.0407319

DATA TYPES AND FUNCTIONS

Following every RUN or SCR command, the RND function will
begin at the same point in the set of random numbers. This
feature helps you find potential errors in your program by pro-

ducing the same conditions for each run.

To cause MINC to produce a set of random numbers with a new
starting point for each run, use the RANDOMIZE statement in
the immediate mode or as a statement in your program. For

example:

READY
SCR

READY
PRINT RND
.0407319

READY
SCR

READY
PRINT RND
.0407319

READY
SCR

READY
RANDOMIZE

READY
PRINT RND
.86727

READY
SCR

READY
RANDOMIZE

READY
PRINT RND
169211

READY

119

PROGRAMMING FUNDAMENTALS

Computing the Sign of
an Expression

STRING FUNCTIONS

120

The RANDOMIZE statement is a BASIC statement and not a
function. It does not calculate a value. Its only purpose is to
cause MINC to start the random numbers at various points in
the sequence.

The sign function (SGN) takes on the value + 1 if the argument
is positive, a value of -1 if the argument is negative, or a value
of 0 is the argument is 0.

The form of the SGN function is:
SGN (arithmetic expression)

For example, in the following assignment statement, X is as-
signed the value -1.

X =SGN(-3)

PRINT X
-1

Note that the following mathematical relationship is true in
MINC.

X =SGN(X)*ABS(X)

When you use a string variable or string literal, MINC stores
the characters in the string in the workspace. MINC stores char-
acters in a code called the ASCII code. This code represents each
character with a numeric code.

For example, the internal representation of the character ‘2’ is
very different from the internal representation of the number 2.
For example, the decimal value of the internal representation of
the number 2 is 2. The decimal value of the ASCII code for the
character ‘2’ is 50. The ASCII code for ‘A’ is 65 and the ASCII
code for ‘a’ is 97. The ASCII codes are all in the range 0 to 255.
For a full list of the characters and their ASCII codes, see the
table in Appendix A.

MINC provides the string functions that allow you to examine
and modify strings of ASCII characters and perform certain
string-to-numeric conversions.

String functions that produce a string value have a dollar sign
($) at the end of their name. String functions that produce real
or integer numbers do not have a dollar sign.

DATA TYPES AND FUNCTIONS

When you start your MINC, you have to type the date and time.

MINC has functions that let you determine the current values
MINC has for the date and time.

The CLK$ function produces the time, measured on a 24-hour
clock. The DATS$ function produces the date. For example:

Please enter
Today’s date: 26-APR-80
Current time: 11:28

READY
PRINT CLK$
11:28:37

READY
PRINT CLK$
11:28:43

READY
PRINT DATS
26-APR-80

READY

The CLK$ and DAT$ functions have no arguments.

If, when using MINC, you want to change the time or date that
MINC has stored, you can use the TIME and DATE commands.
The TIME command sets the MINC system clock, and the DATE
command sets the system date. The form of the TIME command
is:

TIME hh:mm:ss

where hh stands for hours, mm stands for minutes, and ss
stands for seconds. The minutes and seconds as well as the trail-
ing colons are optional. The MINC system clock is a 24-hour
clock.

The form of the DATE command is:

DATE dd-mmm-yy

where dd stands for the day of the month, mmm stands for the
first three letters of the month, and yy stands for the last two
digits of the year. ’

For example:

Clock and Calendar
Functions

The TIME and DATE
Commands

121

PROGRAMMING FUNDAMENTALS

String Manipulation
Functions

Finding the Length of a
String

122

TIME 17:15

READY
DATE 1-FEB-80

READY
PRINT CLK$
17:15:35

READY
PRINT DAT$
1-FEB-80

READY

The MINC string manipulation functions allow you to do the
following:

® Determine the length of a string (LEN).
® Trim off trailing blanks from a string (TRMS$).

® Search for the position of a set of characters within a
string (POS).

® Copy a segment from a string (SEG$).

Remember that the string operation is concatenation (& or +).
The string relational operators test for equality of strings (=,
<>) and alphabetic precedence (<, >, <=, >=).

You can use the LEN function to find the length, or number, of
characters in a string. The LEN function produces a whole num-
ber value equal to the length of the string you specify. The form
of the LEN function is:

LEN(string)

The following example prints the length of a string containing
all the letters in the alphabet.

10 A$ ="abcdefghijkimnopgrstuvwxyz’
20 PRINT LEN(A$)
RUNNH

26

READY

DATA TYPES AND FUNCTIONS

The TRM$ function produces the argument string with any Trimming Trailing
trailing blanks removed. The form of the TRM$ function is: Blanks Off a String
TRM$(string)

The following example concatenates and prints two strings both
before and after it trims trailing blanks.

10 A$ = "abcd’

20 B$="efg’

30 PRINT ’'before trimming:’;A$&B$

40 PRINT 'after trimming:’; TRM$(A$)&B$
RUNNH

before trimming: abed efg
after trimming: abcdefg

READY
You can use the POS function to see if a group of characters Finding the Position of
(substring) occurs within a larger string. The form of the POS a Substring

function is:

POS(search-string,substring,numeric-expression)

where:
search-string is the string being searched.
substring is the substring the POS function is

searching for.

numeric-expression is the position in the search-string
at which MINC starts the search.

The POS function searches for and produces a whole number
equal to the first occurrence of the substring in the search-
string. POS begins the search with the character position speci-
fied by numeric-expression. If POS finds the specified substring,
it produces the character position of the first character of the
substring relative to the beginning of the entire string. If POS
does not find the specified substring, it produces a 0.

The following example translates each name of a month to its
numeric equivalent (for example, APR to 4). In line 140 the POS
function returns the position of the input string M$ in the string
containing the first three letters of each month, T$. 123

PROGRAMMING FUNDAMENTALS

If the program finds the month you specify, it prints the number
of the month. If it does not find the month, it requests you to try
again.

10 T$="'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC’

100 PRINT 'type the first 3 letters of a month’; \ INPUT M$

120 IF M$="END’ GO TO 32767

130 IF LEN(M$)<>3 GO TO 200

140 M= (POS(T$,M$,1) + 2)/3 \ REM - find the number of the month

150 IF M<>INT(M) GO TO 200

160 PRINT M$;’'is month number’;M

170 GO TO 100

200 PRINT 'invalid entry — — — try again’ \ GO TO 100

32767 END

RUNNH

type the first 3 letters of a month? NOV
NOV is month number 11

type the first 3 letters of a month? MAY
MAY is month number 5

type the first 3 letters of a month? JUD
invalid entry — — — try again

type the first 3 letters of a month? END

READY

There are certain boundary conditions that are dependent on
the values of the strings and the expression. For the details of
these boundary conditions, see Book 3.

Copying Segments You can use the SEG$ function to produce a segment (substring)

from a String of a string. The SEG$ function produces a substring consisting
of the characters in the string you specify between specified
character positions. The original string is unchanged. For exam-
ple, the following call to SEG$ prints characters 3 through 5 of
string ‘ABCDEF".

10 PRINT SEG$(’'ABCDEF’,3,5)
RUNNH

CDE

READY

The form of the SEG$ function is:
SEG$(string,start-position,end-position)
where:

string is the string from which the segment is
124 returned.

DATA TYPES AND FUNCTIONS

start-position is a numeric expression specifying the
starting character position of the segment.

end-position is a numeric expression specifying the last
character position of the segment.

There are several boundary conditions based on the values of
the positions and the string. For details on these boundary con-
ditions, see Book 3.

By using the SEG$ function and the string concatenation opera-
tor (& or +), you can replace a segment of a string. For example,
line 20 of the following program replaces the characters CDE in
the string A$ with XYZ.

10 A$='ABCDEFG’

20 C$=SEG$(A$,1,2)& XYZ'&SEG$(A$,6,7)
30 PRINT C$

RUNNH

ABXYZFG

READY

You can use similar string expressions to replace any given
characters in a string. A general formula to replace the charac-
ters in positions n through m of string A$ with B$ is:
C$=SEGS$(AS$,1,n-1)&BS$&SEGS(A$,m + 1,LEN(AS))

MINC provides several string functions that convert characters
to numbers and numbers to characters. You can use MINC func-
tions to make the following conversions:

1. Character to its corresponding ASCII code (ASC).

2. ASCII code to its corresponding character (CHR$).

3. Number to its character representation (STR$).

4. Character representation of a number to its numeric value
(VAL).

5. String representing a binary number to a decimal number
(BIN). (See Book 3 for the description of this function.)

6. String representing an octal number to a decimal number
(OCT). (See Book 3 for the description of this function.)

Conversion Functions

125

PROGRAMMING FUNDAMENTALS

Character and ASCII
Code Conversions

126

These functions provide you with flexibility in manipulating
both strings and numbers.

MINC uses the ASCII code to represent characters internally.
The ASC function returns the decimal ASCII code of a one-char-
acter string that you specify.

See Appendix A for a table of the ASCII codes.

The CHR$ function returns the one-character string that has
the ASCII value you specify.

For example:

LISTNH

10 PRINT 'The ASCII code for ‘A’ is ";ASC('A’)

20 PRINT 'The ASCII code for ‘B’ is ';ASC('B’)

30 PRINT 'The ASCII code for 'Z' is ";ASC('Z’)

40 PRINT 'The ASCII code for 'a’ is ';ASC(’a’)

45 PRINT 'The ASCII code for 'z’ is ';ASC('z’)

50 PRINT 'The ASCII code’;ASC(’'1’);'represents the character ';CHR$(49)
60 PRINT 'The ASCII code’;ASC('9’);'represents the character ';CHR$(57)

READY
RUNNH

The ASCII code for ‘A’ is 65

The ASCII code for ‘B’ is 66

The ASCII code for 'Z’ is 90

The ASCII code for 'a’ is 97

The ASCII code for 'z’ is 122

The ASCII code 49 represents the character 1
The ASCII code 57 represents the character 9

READY

The ASC and CHRS$ functions can be used with the SEG$ func-
tion to analyze the characters in a string.

The form of the ASC function is:
ASC(string)

The string must be a one-character string. If string is a null
string or contains more than one character, MINC prints the
following error message.

?MINC-F-Arguments in definition do not match function called

The ASC function produces a whole number value.

DATA TYPES AND FUNCTIONS

The form of the CHR$ function is:
CHR$(numeric expression)

The CHRS$ function generates only one character at a time. The
numeric expression must be greater than or equal to 0. MINC
treats arguments greater than 255 as being modulo 256 (that is,
MINC treats 256 as 0, 257 as 1, and so forth).

The numeric expression represents the decimal ASCII value of
some characters. Its value is treated modulo 256 because the
ASCII codes are within the range 0 to 255.

Two functions, VAL and STR$, convert numbers to their ASCII
character representation and vice versa. You can use these func-
tions to input a numeric value in a string variable or to print a
number without the spaces around it.

The VAL function returns the number represented by the speci-
fied string. The form of the VAL function is:

VAL(string)

The string may contain the digits 0 through 9, the letter E (for E
notation), and the symbols + (plus), - (minus), and . (decimal
point), and must be a string representation of a number.

For example:

READY
PRINT VAL('23’)
23

READY
PRINT VAL('2.345E6")
2.34500E + 06

READY
A$="12345’

READY
PRINT VAL(A$)
12345

READY
PRINT VAL('A")

?MINC-F-Arguments in definition do not match function called

READY

Numbers and Their
String Representation
Conversions

127

PROGRAMMING FUNDAMENTALS

Example — Converting
Lower Case to Upper
Case

128

The STR$ function converts a number to its string representa-
tion. The form of the STR$ function is:

STR$(numeric-expression)

The STR$ function returns the value of numeric-expression as it
would be printed by a PRINT statement but without a leading
or trailing space. Use the STR$ function when you want to print
a number without spaces before and after it or when you want to
perform string operations or functions on a number.

This example converts lower case input to upper case and leaves
upper case input alone. The algorithm for this program can be
described as follows:

1. Input a string.

2. Look at the first character in the string.

3. If the character is lower case, then convert it to upper
case.

4. Append the converted character on to the new string of
upper case.

5. Look at the next character.

6. Go to step 3.

Obviously lines 2 through 6 can be replaced with a FOR loop
similar to the unfinished loop shown below.

7 FOR I=1 TO length of string

8 T$=next character

9 IF T$ is lower case THEN convert it
10 R$=R$ & T$

11 NEXT |

Remember that & and + are the string concatenation operators
(see Chapter 3, page 39).

In line 7, length of string is simply LEN(S$), where S$ is the
string to be converted from lower to upper case.

In line 8, to get the next character, use the SEG$ function to
extract the ith character from the input string as follows.

8 T$=SEGS3(SS,1,1)
So far, the program is this:

1 INPUT S$
7 FOR 1=1 TO LEN(S$)

DATA TYPES AND FUNCTIONS

8 T$=SEGS$(SS$,1,1)

9 IF T$ is lower case THEN convert it
10 R$=R$ & TS

11 NEXT |

Now all that remains to be done is to determine if T$ is a lower
case character and convert it.

To convert a lower case character to an upper case character,
subtract the constant 32 from the ASCII code of the lower case
character. You do not need to know the ASCII code of any
character.

Remember that the function ASC returns the value of the ASCII
code of the argument. Thus ASC(‘a’) represents the ASCII code
for ‘a’. ASC(‘a’)-32 represents the ASCII code for ‘A’. Therefore,
if T$ is a lower case character, ASC(T$)-32 represents the upper
case equivalent of T$. (See Appendix A for the table of ASCII
codes.)

In fact, you do not have to remember the constant 32. It turns
out that the the following mathematical relationship is true:

32=ASC('a’)-ASC('A")

To convert T$ from lower case to upper case, you can use the
following BASIC statement.

T$=CHR$(ASC(T$)-32)
The argument ASC(T$)-32 represents the ASCII code for an up-

per case character. The function CHR$ converts this ASCII code
back to a character.

Now the IF statement looks like this:
IF T$ is lower case THEN T$=CHR$(ASC(T$)-32)

The ASCII code for each of the lower case letters is greater than
the ASCII code for the equivalent upper case letters. Therefore,
to determine if T$ is lower case, you can use the following
relations:

ASC(T$)> =ASC('a’)
ASC(T$)< =ASC('Z’)

That is, if ASC(T$)>=ASC('a’)and if T$< =ASC('z"), then T$ is 129

PROGRAMMING FUNDAMENTALS

a lower case character.

Then, the IF statement becomes:
IF ASC(T$)>=ASC('a’) THEN IF ASC(T$)< =ASC('z’) THEN T$=CHRS$(ASC(T$)-32)

Finally, the program to convert lower case to upper case input
is:

10 REM - This program converts lower case string input in S$
20 REM - to upper case, in R$. T$ is a temporary variable.
30 REM - If the string is lower case, it is converted to upper
40 REM - case. If the string is upper case, it is left alone.

50 U=ASC('a’)-ASC('A")

60 PRINT ’Input a string’; \ INPUT S$

70 FOR I=1 TO LEN(S$)

80 T$=SEGS$(S$,1,1)

90 IF ASC(T$)>=ASC('a’) THEN IF ASC(T$)<=ASC('z')THEN T$=CHRS$(ASC(T$)-U)
100 R$=R$ & T$

110 NEXT |

120 PRINT R$

RUNNH

Input a string? yes
YES

READY

USER-DEFINED You can define your own functions and then use them as you

FUNCTIONS would the SQR, SIN, or SEG$ functions. For example, the fol-
lowing program defines a function to cube a variable. The func-
tion is named FNC, and it is defined in line 10.

10 DEF FNC(X) = X"3\ REM — define the cube function
20 PRINT "1','I"3’

30FORI=1TO5

40 PRINT I,FNC(I\ REM — print the number and its cube

50 NEXT |

60 END

RUNNH

| I3
1 1

2 8

3 27
4 64
5 125
READY

The name of a user-defined function consists of the letters FN
130 followed by a third letter, and optionally followed by a percent

DATA TYPES AND FUNCTIONS

sign (%) or a dollar sign ($). If you end the function name with a
percent sign, the function returns an integer; if you end the
function name with a dollar sign, it produces a string; other-
wise, the function produces a real number. Table 4 shows some
valid and invalid user-defined function names.

Table 4. User-Defined Function Names

Valid User-Defined Invalid User-Defined
Function Names Function Names
FNA FN1
FNC% FNC1
FNR$ FNC%$

You must define each user-defined function once in a program
with a DEF statement. You can define it anywhere in the pro-
gram. The general form of the DEF statement for user-defined
functions is:

DEF name (dummy-argument-list) = expression

where:

name is the function name as described
previously.

dummy-argument-list contains between one and five
dummy argument names. A
dummy argument in a function
definition is a place holder for the
actual argument. The arguments
may be integer, real, or string
variables.

expression is the string or arithmetic expres-
sion that defines what the func-
tion is supposed to do. The expres-
sion contains any of the dummy
arguments or any other variables
in the program as well as any
MINC-defined function or user-
defined function.

You must ensure that the expression is the same type, string or
numeric, as the function name. The rules of mixed mode arith-
metic apply to user-defined functions. 131

PROGRAMMING FUNDAMENTALS

132

You can define a function anywhere in the program. You can
use any defined function in a program. The format for using the
function is:

function-name (actual-argument-list)

For example,

X=FNC(3)

For example, in the following DEF statement, which computes
the value of X modulo M, X and M are the dummy arguments.

10 DEF FNM(X,M) = X-M*INT(X/M)

The variables X and M are place holders for the actual argu-
ments of the function. In the following assignment statement,
53 and 10 are the actual arguments of the function FNM.

I=FNM(53,10)

You can even use one of the dummy argument names as an
actual variable name within the program without affecting the
function definition. That is, in this example, you can use varia-
bles X and M within the program without affecting the defini-
tion of FNM.

For example, in the following program, the value of FNM(53,10)
remains unchanged, even though X and M are assigned values
in line 30. Note too that the execution of the function does not
alter the values of the actual variables X and M.

10 DEF FNM(X,M) = X-M*INT(X/M)
20 PRINT FNM(53,10)

30 X=5\M=23

40 PRINT FNM(53,10),X,M
RUNNH

3
3 5 23

The defining expression in a DEF statement can contain any
constants, variables, MINC-supplied functions or user-defined
functions. For example:

10 DEF FNQ(A,B,C) = SQR(B"2-4*A*C)
20 DEF FNR(A,B,C) = (-B-FNQ(A,B,C))/2*A
30 DEF FNS(A,B,C) = (-B + FNQ(A,B,C))/2*A

You can include any variables in the defining expression. How-
ever, if the expression contains variables that are not in the

DATA TYPES AND FUNCTIONS

dummy argument list, they are not dummy variables. That is,
when MINC evaluates the user-defined function, the variables
have the value currently assigned to them in the main program.

The definition must have at least one dummy argument. How-
ever, the expression does not have to contain any variables. For
example:

10 DEF FNA$(X)='This is a string constant despite the value of X’
20 R$=FNAS$(10)

30 PRINT R$

RUNNH

This is a string constant despite the value of X
READY

If you enter a DEF statement in immediate mode, MINC ignores
it. MINC does not define a function until a program is run.

For example, if you type a function definition and then try to
use the function in the immediate mode, MINC produces an
error message.

10 DEF FNA(X) =X"2
PRINT FNA(3)

?MINC-F-No DEF statement for the function named

READY

However, once you run the program, the function is defined.
RUNNH

READY
PRINT FNA(3)

9

READY
Now the function works.

If you try to define the same function more than once in a pro-
gram, MINC prints the following message.

?MINC-F-An earlier statement already defined the function at line 20

Line 20 is the line of the second definition, that is, the line with
the error. 133

Some of the previous examples used many BASIC statements to
validate input. For example, just validating a yes or no response
takes three statements as follows:

200 INPUT R$

210 IF R$='YES' GO TO 100
220 IF R$='NO’ GO TO 300
230 GO TO 200

These three statements do not completely test the input. For
example, these three lines do not test for a lower case response
or a combination of upper and lower case.

In a long program, you may prompt the user to answer yes or no
to more than one question. In this case, you can put the three (or
more) lines after every input of yes or no, or you can figure out a
way to reuse the same three (or more) validation lines at every
yes or no input.

BASIC simplifies reusing the same validation statements with a
mechanism called a subroutine. A subroutine is a group of state-
ments in a program with distinct entry and exit points that
performs a task, such as input validation.

Before the details of using subroutines are discussed, an exam-
ple is given below to show you how subroutines are used.

This example shows a subroutine that validates a yes or no
input. The problem is the questionnaire program from page 101.

CHAPTER 9
SUBROUTINES

135

PROGRAMMING FUNDAMENTALS

136

The subroutine prints a prompt that the program put in varia-
ble P$, checks for a yes or no response, and sets variable Z to 1
for yes and Z to 2 for no.

The essential portion of the previous method for processing
questionnaires is:

10 DIM R(20,3)

45 PRINT ’'Input another questionnaire’; \ INPUT A$

50 IF A$="YES' GO TO 70\ IF A$='NO’ GO TO 310\ GO TO 45
60 REM - Input and process one questionnaire

70FORI=1TO 20

550 END

Below is an example of the essential portion of this program
now changed to use a subroutine to validate the yes or no re-
sponse. The person using the program sees exactly the same
thing as in the previous version.

10 DIM R(20,3)

45 P$="Input another questionnaire’

50 GOSUB 800

55 ONZ GO TO 70, 310

60 REM - Input and process one questionnaire
70FORI=1TO 20

800 REM - Subroutine to validate yes or no

805 REM - P$ is the prompt string

806 REM - R$ is the response (yes or no)

810 PRINT P$\ INPUT R$

820 IF R$<>'YES’ THEN IF R$<>'NO’ GO TO 810
830 IF R$="YES' THEN Z=1

840 IF R$='NO’' THEN Z=2

850 RETURN

900 END

The GOSUB statement in line 50 transfers control to line 800.
The RETURN statement in line 850 returns control to line 55,
the line after the GOSUB statement.

This particular example using the subroutine is not shorter
than the program it replaced. However, the subroutines handles
any case that requires a yes or no response and is therefore more
general. Thus, if the program must be expanded to handle many
cases with yes or no responses, each new response can be han-
dled by the subroutine.

The GOSUB statement is used to transfer control to a subrou-
tine. The form of the GOSUB statement is:

GOSUB statement-number

The statement-number is the statement number of the first
statement in the subroutine to be executed.

For example, the following GOSUB statement transfers control
to statement 800.

GOSUB 800

A GOSUB is not like a GO TO, however, even though it uncon-
ditionally transfers control to another statement number. The
difference is that when you use a GO TO, MINC unconditionally
transfers control to the new statement and forgets the statement
number of the GO TO; but when you use a GOSUB, MINC re-
members the statement number of the GOSUB statement. Thus,
when MINC executes the statement 50 GOSUB 800, it goes to
statement 800, but it remembers that it came from statement
50.

The RETURN statement is used to transfer control from the
subroutine just executed back to the statement after the
GOSUB that called the subroutine.

The form of the RETURN statement is:

RETURN

The following example expands the use of the validating subrou-
tine. When the subroutine is called from line 110, it returns to
line 120. When the subroutine is called from line 210, it returns
to line 240.

10 REM - This program processes questionnaires
20 REM - the questionnaires are in two groups:
30 REM - the special group, and the rest of the questionnaires

100 P$="'Another questionnaire’

110 GOSUB 800

120 ON Z GO TO 200, 500

200 P$ ="'Is questionnaire in special group’
210 GOSUB 800

240 ON Z GO TO 300, 400

300 REM - Process special questionnaires

SUBROUTINES

THE GOSUB AND
RETURN
STATEMENTS

137

PROGRAMMING FUNDAMENTALS

EXAMPLE OF
SUBROUTINES

138

400 REM - Process regular questionnaires
500 REM - Print results

799 GO TO 1000

800 REM - Subroutine to validate yes or no response
810 PRINT P$\ INPUT R$

820 IF R$<>'YES’ THEN IF R$<>'NO’ GO TO 810
830 IF R$="YES' THEN Z=1

840 IF R$='NO’' THEN Z=2

850 RETURN

1000 END

Notice that a new statement (number 799) has been put in to go
to statement 1000 after printing the results. You must be very
careful to make sure that a program does not “fall through” to a
subroutine. If statement 799 were not there, control would pass
to statement 800 after the results were printed. MINC would
finally terminate the program with an error message at state-
ment 850 because MINC would not know where to return.

Because it is difficult to look at a section of a BASIC program
and determine whether this section is a subroutine, it is a good
idea to begin each subroutine with a REMARK statement that
identifies the subroutine.

This section gives more advanced examples of subroutines as
well as some techniques and rules.

In this example, the program to convert lower case input to
upper case is changed to a subroutine.

Again, the complete program to convert lower to upper case is as
follows. (See also Chapter 8, page 130).

10 REM - This program converts lower case string input

20 REM - to upper case.

30 REM - If the string is lower case, it is converted to upper
40 REM - case. If the string is upper case, it is left alone.
50 U=ASC('a’)-ASC('A’)

60 PRINT ’Input a string’; \ INPUT S$

70 FOR 1=1 TO LEN(S$)

SUBROUTINES

80 T$=SEG$(S$,1,1)

90 IF ASC(T$)>=ASC('a’) THEN IF ASC(T$)< =ASC('z') THEN T$=CHR$(ASC(T$)-U)
100 R$=R$ & T$

110 NEXT |

120 PRINT R$

To make this program a general subroutine, alter the program
so that the lower-to-upper-case subroutine no longer prints a
message or accepts input. To be most useful and general, the
lower-to-upper-case subroutine should assume that the calling
program “knows” what it wants converted to upper case. All
that a lower-to-upper-case subroutine should do is convert a
string from lower to upper case. The program (or other subrou-
tine) that uses the lower-to-upper-case subroutine should worry
about printing messages and inputting strings. This subroutine
assumes the calling program puts the string to be converted in

S$.

Notice in the lower-to-upper-case subroutine shown below that
now a new statement (statement 1030) is added to initialize R$
to the null string. Every time you use the RUN command to run
the program to convert lower case to upper case, MINC reinitial-
izes all numeric variables to 0 and all string variables to the
null string (''). However, when writing a subroutine, you do not
know how many times the subroutine will be used within one
run of the program. Thus, during one run, R$ contains the old
string from the previous time it was used, unless you remove
the old string.

1000 REM - Subroutine to convert lower to upper case

1010 REM - Subroutine converts only lower case

1020 U=ASC(’'a’)-ASC('A’)

1030 R$=""

1040 FOR I=1 TO LEN(S$)

1050 T$=SEGS$(SS,1,1)

1060 IF ASC(T$)>=ASC('a’) THEN IF ASC(T$)< =ASC('z') THEN T$=CHR$(ASC(T$)-U)
1070 R$=R$ & T$

1090 NEXT |

1100 RETURN

The new version of the yes-no validation subroutine that uses
the lower-to-upper-case subroutine is as follows:

800 REM - Subroutine to validate yes or no response

810 PRINT P$\ INPUT S$

820 GOSUB 1000\ REM - Convert response to upper case

830 IF R$<>'YES’ THEN IF R$<>'NO’ GO TO 810

840 IF R$="YES' THEN Z=1

850 IF R$='NO’ THEN Z=2

860 RETURN 139

PROGRAMMING FUNDAMENTALS

THE ON/GOSUB
STATEMENT

140

Notice that the yes-no validation subroutine now uses another
subroutine. This process is called nesting subroutines.

You must remember, that any program that uses the yes-no
validation subroutine given here must place a prompt in P$ and
must not use variables S$, R$, T$, or U. That is, unlike user-
defined functions that have dummy arguments, variables used
in subroutines are actual variables within the program.

The ON/GOSUB statement is used to conditionally transfer con-
trol to one of several subroutines. The ON/GOSUB statement
has the following form:

ON numeric-expression GOSUB list-of-statement-numbers

The numeric-expression is any valid numeric expression and the
statement numbers must be separated by commas.

The ON/GOSUB statement works like the ON/GO TO state-
ment (see page 82). When MINC executes the ON/GOSUB state-
ment, it first evaluates the numeric expression. If the value of
the expression is 1, control passes to the first line number speci-
fied; if it is 2, control passes to the second line number specified;
and so forth. If the expression is less than 1 or greater than the
number of line numbers in the list, MINC prints the following
error message.

?MINC-F-Value of control expression is out of range at line XX

where XX represents the statement number where the error
occurred.

The following statement is an example of an ON/GOSUB
statement.

20 ON A+B GOSUB 200,300,120

If A+B is equal to 1, then MINC passes control to line 200. If
A+B is equal to 2, then MINC passes control to line 300. If
A+B is equal to 3, then MINC passes control to line 120. If
A + B is greater than 3 or less than 1, MINC prints out the error
message and stops executing the program.

In this example, no matter which subroutine is executed from
the ON/GOSUB statement, as soon as MINC reaches a
RETURN statement, it passes control back to the statement

physically after the ON/GOSUB statement (the statement after
line 20 in this example).

When you use the RESEQ command to resequence all or part of
a program, MINC correctly resequences all references to
subroutines. (See pages 82 and 83 for other references to the
RESEQ command.) For example, suppose the program below is
in need of resequencing.

3 DIM R(20,3)

6 P$ ='input another questionnaire’

9 GOSUB 45

120N Z GO TO 15,30

15FOR1=1TO 20

18 PRINT ;N INPUT Q

21 R(,Q)=R(,Q) +1

24 NEXT |

27GOTO®6

30 PRINT ,,’AGREE’,'DISAGREE’,'DON'T CARE’
33FORI1=1TO 20

36 PRINT 'question’;1,,R(l,1),R(1,2),R(1,3)
39 NEXT |

42 GO TO 63

45 REM - subroutine to validate yes or no
48 PRINT P$\ INPUT R$

51 IF R$<>'yes’ THEN IF R$<>'no’ GO TO 48
54 IF R$="yes’ THEN Z=1

57 IFR$='no’ THEN Z=2

60 RETURN

63 END

Then, the RESEQ command changes the statement numbers,

and the program is numbered as shown below. Notice that the
GO TOs, the ON/GO TOs, and the GOSUB statements are
renumbered correctly.

10 DIM R(20,3)

20 P$ ='Input another questionnaire’

30 GOSUB 150

40 ON Z GO TO 50,100

50 FOR I=1TO 20

60 PRINT I;\ INPUT Q

70 R(,Q) =R(1,Q) +1

80 NEXT |

90 GO TO 20

100 PRINT ,,’AGREE’,’'DISAGREE’,'DON'T CARE’
110 FOR I=1TO 20

120 PRINT 'question’;l,,R(l,1),R(1,2),R(l,3)
130 NEXT |

140 GO TO 210

150 REM - subroutine to validate yes or no

SUBROUTINES

RESEQUENCING
PROGRAMS WITH
GOSUBS

141

PROGRAMMING FUNDAMENTALS

160 PRINT P$\ INPUT R$

170 IF R$<>'yes’ THEN IF R$<>'no’ GO TO 160
180 IF R$="yes’ THEN Z=1

190 IF R$='no’ THEN Z=2

200 RETURN

210 END

MINC can also resequence programs with ON/GOSUB state-
ments. Remember, however, that the RESEQ command does not
update any statement numbers that are referenced within
REMARK statements.

142

You can use the graphic, instrument bus, and lab module fea-
tures of MINC in the immediate mode or in the program mode.
The MINC system provides these capabilities in routines, a
means by which you request MINC to perform a complex task.

There is a set of graphic routines, a set of instrument bus
routines, and a set of lab module routines. Book 4 describes how
to use the graphic routines, Book 5 describes how to use the
instrument bus routines, and Book 6 describes how to use the
lab module routines.

This chapter describes the general format for using routines.
The examples in this chapter use graphic routines because all
MINC systems include the graphic capability, but the concepts
described here apply to the lab module and instrument bus
routines as well.

For example, the following BASIC program uses the graphic
routine HTEXT to display two lines on the screen, a flashing
boldface line and a reverse video line. Type this program in and
run it to see the graphics that this program generates.

10 HTEXT('flash,bold’,22,1, Flashing boldface’)
20 HTEXT('reverse’,23,1,'Reverse video')

HTEXT is the routine name, ‘flash,bold’, 22, 1, and ‘Flashing
boldface’ are the routine arguments.

CHAPTER 10
MINC ROUTINES

143

PROGRAMMING FUNDAMENTALS

144

The task that routine HTEXT performs is printing a line on the
terminal screen. The way the printed line looks depends on the
arguments that you specify.

As you can see by this example, you use a routine as you would
any other BASIC statement. You can use routine statements
where you need them in a program along with any other BASIC
statements. For example:

10 PRINT ’Anocther line’; \ INPUT R$

20 IF R$<>"yes’ THEN STOP

30 PRINT ’Input line to print in flashing boldface’; \ INPUT L$
40 IF L$<>"" THEN htext('flash,bold’,23,1,L$) \ GO TO 10
50 PRINT ’'Line entered is null — try again’ \ GO TO 30

Notice that MINC does not convert routine names to upper case
as it does for any other BASIC statement. Thus, if you type in a

routine name in lower case, it remains in lower case.

For more information on the routines, see Books 4, 5, and 6.

When you type the SAVE command, MINC saves the program
in the workspace in a program file on the volume that you spec-
ify. In Chapter 4 the definition of program file is simply that
place on the volume in which the program is stored.

A file in general is a named portion of a volume that holds
information. It is conceptually similar to a file kept in a drawer
in a filing cabinet. You can think of the cabinet as a volume,
and the drawers as files. Each folder within the drawer holds
information (probably on paper). The drawer (file) holds a set of
similar data. Each folder holds one record or entry. However,
the kind of information in a file may vary from file to file. For
example, one file may hold correspondence and another file may
hold sales brochures.

A file on a volume can hold a program. Other files on the same
volume can hold, for example, the ASCII characters of a letter
you typed or data collected by an instrument connected to
MINC. This chapter discusses the two types of MINC files, se-
quential files and virtual array files, and suggests possible uses
for these files.

When you type a SAVE command, MINC creates a file on the
volume you specify with the name that you specify. For
example:

SAVE QUEST

This command creates a program file on the default volume,

CHAPTER 11
FILE CONTROL

PROGRAM FILES
AND OTHER FILES

145

PROGRAMMING FUNDAMENTALS

146

names the program file QUEST.BAS, and stores the ASCII
characters of the program in the workspace into the program
file. The program file on the volume looks like this:

10 & DIM &P R(20,3) GED 20 €B P$="'Input €D another & quest...

That is, the program file holds every ASCII character in the
program, including the spaces () and RETURNS (@ED). When
you use the OLD command, MINC automatically transfers the
ASCII characters from the file into the workspace. Then the
program is there, ready for you to run.

There are other kinds of files besides program files. For exam-
ple, you may want to collect more data from an instrument than
MINC can store in the workspace. To do this, you must create a
file on a volume in which MINC can store the data. As another
example, you may need to use an array in a program that does
not fit in the workspace. You can create a file on a volume that
MINC can use as extra array space.

When you are using program files, MINC manages them for you
when you type the SAVE, REPLACE, or OLD commands. When
you use nonprogram files, such as a data file, you must handle
creating the file, putting information into the file, and storing
the file yourself with the appropriate BASIC statements in a
BASIC program.

To create a file or use an existing file, you must open the file
with an OPEN statement. To make sure the file is stored prop-
erly on the volume, you must close the file with a CLOSE state-
ment after you have used the file. How you use the file depends
on the type of file; that is, whether it is a sequential file or a
virtual array file.

A sequential file is a file that must be accessed serially. That is,
to get to the fifth piece of information in the file, MINC must
first look at pieces one, two, three, and four. The information in
a sequential file is always ASCII characters, and MINC can
either output information from the workspace to an open se-
quential file or input information from a sequential file to the
workspace, but MINC cannot do both input and output with the
same sequential file. Program files are sequential files.

A virtual array file is a file that can be accessed directly. That is,
MINC can access the fifth piece of information without having
to access the first four. This type of file is called a virtual array
file, because you use it in your program as you would an array.

The term virtual is used because this file is not an array stored
in the workspace even though it looks like an array to the pro-
gram,; it is a file stored on a volume. Because you can treat a
virtual array file like afi array, MINC can both input from and
output to the same virtual array file.

The information in a virtual array file can be ASCII characters
or it can be numeric information where 2 is stored as the num-
ber 2 and not as the ASCII character “2”.

The following sections describe using sequential and virtual
files.

You use sequential files in the same way that you use terminal
input and output. However, when you input from a sequential
file (using an INPUT or LINPUT statement), MINC inputs the
information from the sequential file instead of from the user
sitting at the terminal. When you output to a sequential file
(using a PRINT statement), MINC writes the information in the
file instead of on the terminal screen. Before you can use a se-
quential file, however, you must open the file.

You open a sequential file with an OPEN statement. The OPEN
statement opens a channel over which MINC transfers the infor-
mation from the file to the workspace. A channel in MINC is
similar to a television channel. Currently, television channels
are open for input only. You tune your television to a channel
and receive a television program.

The OPEN statement links the file with the channel until the
channel is closed by a CLOSE statement. Then the channel be-
comes available again. There are 12 available channels
numbered 1 through 12. Channel 0 is always open to the termi-
nal, and you cannot open it.

The three most common forms of the OPEN statement are:
OPEN filespec-string FOR INPUT AS FILE # numeric-expression

OPEN filespec-string FOR OUTPUT AS FILE # numeric-expression

and

OPEN filespec-string AS FILE # numeric-expression

where:

FILE CONTROL

SEQUENTIAL FILES

Opening a Sequential
File

147

PROGRAMMING FUNDAMENTALS

148

filespec-string is a string representing the file spec-
ification.

The file name is any name (up to 6
characters) that you choose to call
the file. The file type is any 3-
character file type you want. If you
do not specify the file type, MINC
defaults to .DAT for the file type.
The .DAT file type stands for data.
Thus the file type is by default not a
program file.

FOR INPUT is optional and specifies using an ex-
isting file.

FOR OUTPUT specifies creating a new file.

is optional.

numeric-expression is the channel number of the file.
Later in the program when you
want to refer to the file, you use the
channel number instead of the file
name. The channel number can
have any whole number value be-
tween 1 and 12.

If you specify FOR INPUT, MINC opens an existing file, and
you can only input information from it to the workspace.

If you specify FOR OUTPUT, MINC creates a new file. Any
existing file with the same file specification is superseded when
the new file is closed (see next section). If you specify FOR
OUTPUT for a sequential file, you can only write to the file.

Specifying neither FOR INPUT nor FOR OUTPUT for an exist-
ing sequential file is equivalent to specifying FOR INPUT. If
the sequential file does not exist, specifying neither is equiva-
lent to specifying FOR OUTPUT.

If you use LP: as the filespec with the FOR OUTPUT option,
MINC can output to the line printer with the PRINT# state-
ment described later in the chapter. For more details see the
section entitled “Line Printer” in Book 3.

Following is an example of creating a new sequential file called
QIN.DAT on the system volume.

10 OPEN 'QIN’ FOR OUTPUT A8 FILE #1

Remember that the .DAT file type is the default file type. If you
want to create a file with another file type, you must specify the
file type in the file specification. For example, the following
OPEN statement creates a new sequential file with the name
QIN.TXT on the SY1: volume.

10 OPEN 'SY1:QIN.TXT’ FOR OUTPUT AS FILE #2

For more advanced features of the OPEN statement, see Book 3.

When you create a sequential file using the OPEN statement
with FOR OUTPUT, you must close the file in the program with
a CLOSE statement. If you do not close the file and the program
terminates with an error, MINC does not create the file.

The two forms of the CLOSE statement are:
CLOSE # expression, # expression, ...
CLOSE

The expression is the channel number of the file to close. You
can close more than one file with the CLOSE statement.

If you use the CLOSE statement with no arguments, MINC
closes all open files.

If the program terminates normally (that is, by executing the
END statement or the statement with the highest line number),
MINC closes all files for you automatically. However, you
should put in a CLOSE statement.

You use sequential files in the same way that you use terminal
input and output. You program MINC to input from a sequen-
tial file with an INPUT or LINPUT statement, and MINC in-
puts the information from the sequential file instead of from the
terminal. You put information into the sequential file with a
PRINT # statement.

You create a sequential file by opening with the FOR OUTPUT
specification. Once the file is open, you put information into it
with the PRINT # statement.

The form of the PRINT # statement is:

PRINT # expression,argument-list

FILE CONTROL

Closing a Sequential
File

Using a Sequential File

Storing Data in a
Sequential File

149

PROGRAMMING FUNDAMENTALS

150

where:

expression is the channel number. Note that this
channel number must match a channel
number from an OPEN statement. If the
expression is 0, MINC prints the output on
the terminal.

argument-list contains the items to be printed just as
you would print information on the termi-
nal screen. The argument list can contain
any numeric and string expressions and
the TAB function. You can separate the
items to be printed with commas or semi-
colons, directing MINC to output the in-
formation to the file with or without print
zones.

You can use a colon (:) instead of a comma (,) after the
expression.

If there are no items in the argument list, MINC prints a blank
line in the file. When there are no items in the list, you need not
specify the comma or colon after the expression.

The following example creates a sequential file and puts 5
names in it.

10 OPEN 'NAMES’' FOR OUTPUT AS FILE #1

20 PRINT #1, '"JOHN S. DOE';",’; ' THOMAS R. SMITH'

30 PRINT #1,"JANET Q. BROWN';",";" CHERYL F. JONES'
40 PRINT #1, '"ANDREW G. SCOTT’

50 CLOSE #1

60 END

RUNNH

READY

Line 10 creates the file. Lines 20, 30, and 40 put the names in
the file. Notice that the #1 in the PRINT statements matches
the #1 in the OPEN statement.

Notice also that between each name is a comma in a string
literal (“,”). You should print a comma in a string literal be-
tween each data item on a line in the file. If you do not, later you
will not be able to input the data items from the file using an
INPUT statement.

The CLOSE statement in line 50 closes the file.

After you run this program, if you look at the directory (DIR),
you will see a new file on the volume called NAMES.DAT. If you
look at NAMES.DAT 4vith the TYPE command, the file looks
like this:

JOHN S.DOE,THOMAS R. SMITH
JANET Q. BROWN,CHERYL F. JONES
ANDREW G. SCOTT

The following example reads the file NAMES.DAT created in
the previous program, and prints the results on the terminal.

10 OPEN 'NAMES’ FOR INPUT AS FILE #1
20 INPUT #1,A$,B$

30 LINPUT #1,C$

40 INPUT #1,D$

50 PRINT A$,B$

60 PRINT C$

70 PRINT D$

80 END

RUNNH

JOHN S. DOE THOMAS R. SMITH
JANET Q. BROWN,CHERYL F. JONES
ANDREW G. SCOTT

Notice that the first INPUT # statement at line 20 has the same
number of variables (A$,B$) as the first line in the NAMES file
has values (JOHN S. DOE, THOMAS R. SMITH). An INPUT #
statement uses one whole line of input, even if the number of
variables in the statement is less than the number of values in
the corresponding line of the input file. For example, suppose
the input line was A,B,C and the input statements were:

10 INPUT #1, A$,B$
20 INPUT #1, C$

The value of A$ then becomes “A” and the value of B$ becomes
“B”, However, the value of C$ becomes '’ (the null string). The
first INPUT # statement used the whole line of input, despite
the fact that there were fewer variables than values.

The LINPUT # statement inputs a string from a file. MINC
treats LINPUT # just as it treats LINPUT; all characters on the
input line, including commas and quotation marks, are assigned
to the string. Like the INPUT # statement, the LINPUT #
statement expects input from the terminal if the file number is
0. The LINPUT # statement in line 30 reads the entire line of
input from the NAMES file, including the comma.

FILE CONTROL

Accessing Data in a
Sequential File

151

PROGRAMMING FUNDAMENTALS

Checking for the End
of the Input File

152

Suppose that you have the following input file.

JOHN S. DOE
JANET Q. BROWN
ANDREW G. SCOTT
THOMAS R. SMITH
CHERYL F. JONES

You could then write the following program to read the file and
write out its contents.

10 OPEN 'NAMES' FOR INPUT AS FILE #2
20 LINPUT #2,N$
30 PRINT N$

40GO TO 20

50 CLOSE #2

60 END

RUNNH

JOHN S. DOE
JANET Q. BROWN
ANDREW G. SCOTT
THOMAS R. SMITH
CHERYL F. JONES

?MINC-F-Too few values for INPUT or READ variables at line 20

Notice that this program terminates with an error message.
MINC continued to read the file until it came to the end. When
MINC reached the end of the file, there were no more values to
read with the LINPUT # statement, so MINC terminated the
program and printed the message.

In this case, the program is terminated before the file is closed
in line 50. There are no problems in this example, because the
program does not create any sequential files. However, if the
program were creating a sequential file, and did not close the
file, the file would be lost. You can use the CLOSE statement in
the immediate mode if this happens (see Book 3).

You can check for the end of file and have MINC terminate the
program without an error by using the IF END # statement.
The form of this statement is: "

IF END # expression THEN statement
IF END # expression THEN statement-number
IF END # expression GO TO statement-number

The expression is the file number of the file. The value of the
expression can not be 0 and the file associated with the expres-
sion cannot be a terminal.

If the next attempt to input a value would produce the ZMINC-
F-Too few values for INPUT or READ variables at line XX error
message, MINC eyecutes the statement after the THEN or
transfers control to the specified line number. Otherwise MINC
transfers control to the statement after the IF as it does with
any other IF statement.

The following example terminates without an error message.

10 OPEN 'NAMES’ FOR INPUT AS FILE #2
20 IF END #2 GO TO 40
30 GO TO 60

40 PRINT 'End of file’

50 GO TO 90

60 LINPUT #2, N$

70 PRINT N$

80 GO TO 20

90 CLOSE #2

100 END

RUNNH

JOHN S. DOE
JANET Q. BROWN
ANDREW G. SCOTT
THOMAS R. SMITH
CHERYL F. JONES
End of file

READY
Line 20 checks for the end of the file.

Note that the IF END # statement tests if there is one more
item in the file. If there is one item left when the IF END checks
the file and your INPUT # statement requests two items, MINC
prints the ?MINC-F-Too few values for INPUT or READ varia-
bles at line XX error message and terminates the program with-
out closing the file.

The RESTORE # statement resets the specified sequential in-
put file from its current position to its beginning. The format of
the RESTORE # statement is:

RESTORE # expression
The expression is the channel number of the file to be restored.
This example merges two files of names and addresses in alpha-

betical order into one file in alphabetical order and removes
duplicate names and addresses.

FILE CONTROL

Restoring a File to the
Beginning

Example of Using
Sequential Files
153

PROGRAMMING FUNDAMENTALS

154

The algorithm description of the basic loop is:

1. Input a name and address (namel) from file 1 and a name
and address (name2) from file 2.

2. If namel < name2 then put namel in the output file, get
next namel from file 1, and repeat step #2.

3. If name2 < namel then put name2 in the output file, get
next name?2 from file 2, and go to step #2.

4. At this point namel = name?2. If addresses match then they
are duplicates, put namel in file, and go back to step #1.

5. If addresses do not match, put both names and addresses in
file and go back to step #1.

The following section of a BASIC program implements this algo-
rithm. Compare this program section to the algorithm. N1$ is
the name from file number 1, A1$ is the street or P.O. Box
number from number 1, and S1$ is the city and state from file
number 1. N2$ A2$, and S2$ correspond to the names, streets or
P.O. Box numbers, and cities from file number 2. File number 3
is the merged output file.

Lines 95 through 320 correspond to step 1 of the algorithm.
Lines 330 through 400 correspond to step 2 of the algorithm.
Lines 405 through 460 correspond to step 3 of the algorithm.
Lines 465 through 510 correspond to step 4 of the algorithm.
Finally, lines 515 through 560 correspond to step 5 of the
algorithm.)

100 REM - Input from file 1
101 REM
110 LINPUT #1,N1$,A1$,51$

1995REM ~\ - — - — - - — e
200 REM - Input from file 2

201 REM

210 LINPUT #2,N2$,A2$,52%

220 GO TO 350

306REM — = - — — — - — e __
310 REM - Input from file 1

315 REM

320 LINPUT #1,N1$,A1$,S1%

FILE CONTROL

3OREM-—---- - ——— —
340 REM - Compare the files

345 REM /

350 IF SEG$(N1%,1,28)> = SEG$(N2$,1,28) GO TO 410
335REM— - - —— - - —— - e e —
360 REM - File 1 alphabetically precedes 2

365 REM

370 PRINT #3,N1$
380 PRINT #3,A1$
390 PRINT #3,51%

400 GO TO 230

405REM - - — — - — — — — —
406 REM - Compare the files

407 REM

410 IF N2$=N1$ GO TO 480

415REM - — - — — - — — — — —

420 REM - Record from file 2 alphabetically precedes 1
425 REM

430 PRINT #3,N2%

440 PRINT #3,A2$

450 PRINT #3,52%

460 GO TO 120

470 REM - The names are equal
475 REM

480 PRINT #3,N1$

490 PRINT #3,A18

500 PRINT #3,51$

506 REM - Compare the addresses

507 REM

510 IF A1$=A2% THEN IF S1$=S2% THEN GO TO 60
55 REM- - - - - - - —— - — — — — —
520 REM - the addresses are different, so print both

525 REM

530 PRINT #3,N2%

540 PRINT #3,A2%

550 PRINT #3,52%

560 GO TO 60

This program segment is not complete. It does not open the files
nor test for the end of either of the files. First, in this example,
the program must terminate normally or the new, merged file
will not be closed, and consequently will not exist. Second, if one
of the files is ended and the other is not, the program should put
the rest of the unfinished file on the end of the merged file.

A specific example of the way the program should work is shown
below. Notice that file 2 is longer than file 1.

155

PROGRAMMING FUNDAMENTALS

156

File 1

DIGITAL EQUIPMENT CORP. A/S
P.O. Box 3914
7001 Trondheim, Norway

DIGITAL EQUIPMENT CORP. S.A.

Burgunderstrasse 42A

Basle, Switzerland CH-4051
DIGITAL EQUIPMENT INT., LTD.
Ballybrit Industrial Estate

Galway, Ireland

File 2

DEC DE PUERTO RICO

P.O. Box 106

San German, Puerto Rico 00753
DIGITAL EQUIPMENT CORP.
1400 Terra Bella Avenue
Mountain View, CA 94043
DIGITAL EQUIPMENT CORP.
200 Forest Street

Marlboro, MA 01752

DIGITAL EQUIPMENT CORP.
P.O. Box 80

Albuquerque, NM 87103
DIGITAL EQUIPMENT INT., LTD.
Ballybrit Industrial Estate
Galway, Ireland

Merged File

DEC DE PUERTO RICO

P.O. Box 106

San German, Puerto Rico 00753
DIGITAL EQUIPMENT CORP.
1400 Terra Bella Avenue
Mountain View, CA 94043
DIGITAL EQUIPMENT CORP.
200 Forest Street

Marlboro, MA 01752

DIGITAL EQUIPMENT CORP.
P.O. Box 80

Albuquerque, NM 87103
DIGITAL EQUIPMENT CORP. A/S
P.O. Box 3914

7001 Trondheim, Norway
DIGITAL EQUIPMENT CORP. S.A.
Burgunderstrasse 42A

Basle, Switzerland CH-4051
DIGITAL EQUIPMENT INT., LTD.
Ballybrit Industrial Estate

Galway, Ireland

The end conditions for this problem are rather complex. You do
not want one of the files to finish causing the LINPUT state-
ment to run out of data. If this happens, MINC terminates the
program abnormally with an error message. Not only is the
merged file not closed, it also is not finished. The names and
addresses in the longer file do not appear in it because the pro-
gram terminated before it read them. The LINPUT # state-
ments given previously are:

110 LINPUT #1,N1,A1$,51%
210 LINPUT #2,N2$,A2$,52%
320 LINPUT #1,N1$,A1$,S1$

When the LINPUT # statement at line 110 inputs the last value
from file 1, the program must still finish processing file 2.

The BASIC statements to do this are:

50 REM - Check for end of file 1
55 REM
60 IF END #1 GO TO 80

70 GO TO 110
80 F=2
90 GO TO 590

100 REM - Input from file 1
101 REM
110 LINPUT #1,N1$,A1$,S1$

195 REM — - — — = = —— ——— — — — —

200 REM - input from file 2
201 REM

210 LINPUT #2,N2$,A2$,52%
220 GO TO 350

305REM —————— ————— = — —

310 REM - Input from file 1
315 REM
320 LINPUT #1,N1$,A1$,51$

580 REM - Finish off remaining file
585 REM

590 IF END # F GO TO 630

600 LINPUT # F,N$,A$,S$

610 PRINT #3,N$\PRINT #3,A5\PRINT #3,5%

620 GO TO 590
630 CLOSE
640 END

When control passes to line 210, the program has already input
a name and address from file 1 (N1$,A1$, and S1$). However, if
file 2 has no more values, then the program should print out
N1$, A1$, and S1$ before finishing off file 1 at line 590. Other-
wise, program control still passes to line 590, but the program
ignores the values left in N1$, A1$, and S18$.

The BASIC statements to do this are:

50 REM - Check for end of file 1
55 REM

60 IF END #1 GO TO 80

70 GO TO 110

80F=2

90 GO TO 590

100 REM - Input from file 1
101 REM
110 LINPUT #1,N1$,A1$,51%

11I5REM——— — - — - — —— - ——

116 REM - Check for end of file 2

FILE CONTROL

157

PROGRAMMING FUNDAMENTALS

158

117 REM

120 IF END #2 GO TO 140

130 GO TO 210

140 F=1

M5REM —— — - — - e
150 REM - End of file 2, finish file 1
155 REM

160 N$=N1$

170 A$=A1$

180 S$=S1%

190 GO TO 610

200 REM - Input from file 2
201 REM

210 LINPUT #2,N2$,A2$,S2%
220 GO TO 350

305REM — — = — e e
310 REM - Input from file 1

315 REM

320 LINPUT #1,N1$,A1$,S1$

590 IF END # F GO TO 630

600 LINPUT # F,N$,A$,S%

610 PRINT #3,N$\PRINT #3,A$\PRINT #3,S%
620 GO TO 590

630 CLOSE

640 END

Finally, when control passes to line 320, the program has al-
ready input a name and address from file 2. Therefore, if file 1
has no more values, then the program must print out the cur-
rent value of N2§,A2$, and S2$ before returning to line 590 and
finishing file 2.

The BASIC statements to do this are:

OREM - - —— - — e e
50 REM - Check for end of file 1

55 REM

60 IF END #1 GO TO 80

70GO TO 110

80F=2

90 GO TO 590

BSREM—- - e e~
100 REM - Input from file 1

101 REM

110 LINPUT #1,N1$,A1$,51$

f1f5SREM- -\ - - - - — - - - —
116 REM - Check for end of file 2

117 REM

FILE CONTROL

120 IF END #2 GO TO 140

130 GO TO 210

140 F=1

145REM - ————————— - — - —— ——
150 REM - end of file 2, finish file 1

155 REM

160 N$=N1$

170 A$=A1$

180 S$=S1%

190 GO TO 610

195REM —————————— - —— —— ——
200 REM - Input from file 2

201 REM

210 LINPUT #2,N2$,A2$,52%

220 GO TO 350

225REM——— - — - - —— e —— ——
226 REM - Check for end of file 1

227 REM

230 IF END #1 GO TO 250

240 GO TO 320

245REM - - - - —— - - - - — —— ——
250 REM - End of file 1, finish file 2

255 REM

260 F=2

270 N$=N2%

280 A$=A2%

290 S$=S52%

300 GO TO 610

305REM - - ————— - —— ——
310 REM - Input from file 1

315 REM

320 LINPUT #1,N1$,A1$,S1$

590 IF END # F GO TO 630

600 LINPUT # F,N$,A$,S$

610 PRINT #3,N$\PRINT #3,A5\PRINT #3,5%
620 GO TO 590

630 CLOSE

640 END

The whole BASIC program to merge two files is:

10 OPEN 'NAMES1’ FOR INPUT AS FILE #1
20 OPEN 'NAMES?2’ FOR INPUT AS FILE #2
30 OPEN 'MAILST' FOR OUTPUT AS FILE #3

50 REM - Check for end of file 1
55 REM

60 IF END #1 GO TO 80

70 GO TO 110

80F=2

90 GO TO 590
159

PROGRAMMING FUNDAMENTALS

100 REM - Input from file 1

101 REM

110 LINPUT #1,N1$,A1$,S1$

1M5REM - - - — - - - — — — — e e~
116 REM - Check for end of file 2

117 REM

120 IF END #2 GO TO 140

130 GO TO 210

140 F =1

145REM - - - — - - — — — — e~
150 REM - End of file 2, finish file 1

155 REM

160 N$=N1$

170 A$=A1%

180 S$=S51%

190 GO TO 610

1995REM - - - - — - - — - —
200 REM - Input from file 2

201 REM

210 LINPUT #2,N2$,A2$,52%

220 GO TO 350

226 REM - Check for end of file 1

227 REM

230 IF END #1 GO TO 250

240 GO TO 320

245 REM———— - - — - e
250 REM - End of file 1, finish file 2

255 REM

260 F=2

270 N$=N2$

280 A$ =A2%

290 S$=S2%

300 GO TO 610

35REM——— - - e e e e
310 REM - Input from file 1

315 REM

320 LINPUT #1,N1$,A1$,S1%

330REM ——— = = — e e
340 REM - Compare the files

345 REM

350 IF SEG$(N1$,1,28)>=SEG$(N2$,1,28) GO TO 410
BBSREM— - = - — - - — — - e
360 REM - File 1 alphabetically precedes 2
365 REM
370 PRINT #3,N1$
380 PRINT #3,A1$
390 PRINT #3,S1$
400 GO TO 230
405REM -~ - —— - - - - — - — - — —
406 REM - Compare the files
407 REM
160 410 IF N2$=N1$ GO TO 480

415REM -~ - - - - - - - - ——— ——
420 REM - Record from file 2 alphabetically precedes 1
425 REM

430 PRINT #3,N2%

440 PRINT #3,A2%

450 PRINT #3,S2%

460 GO TO 120

465REM - - - - - - - - - - — - - —
470 REM - the names are equal

475 REM

480 PRINT #3,N1$

480 PRINT #3,A1$

500 PRINT #3,51$

505REM-— - - - - - —— - - - — — — — e — —
506 REM - Compare the addresses

507 REM

510 IF A1$=A2% THEN IF S1$=S2% THEN GO TO 60
55 REM- - - - — - - - - — - — ——— ———— ——— — —
520 REM - The addresses are different, so print both

525 REM

530 PRINT #3,N2%

540 PRINT #3,A2%

550 PRINT #3,52%

560 GO TO 60

570REM - - - - - - - —— - - — - — — — — — -
580 REM - Finish off remaining file

585 REM

590 IF END # F GO TO 630

600 LINPUT # F,N$,A$,S$

610 PRINT #3,N$\ PRINT #3,A$\ PRINT #3,S$%

620 GO TO 590

630 CLOSE

640 END

This program is still not foolproof. A name typed in upper and
lower case is not equal to the same name typed in upper case
only. To make sure you are comparing comparable names, you
can use the lower-to-upper-case subroutine.

Also, the LINPUT statements input three lines from a name
and address file. If the number of lines in each input file is not a
multiple of three, then the program will terminate abnormally
and the output file will not be created. You can correct this
problem by inserting an IF END statement before inputting
each variable.

You should now type this program and save it. You cannot test
this program, however, until you create two files of names and
addresses named NAMES1 and NAMES2.

The following example shows you how to create these name and

FILE CONTROL

161

PROGRAMMING FUNDAMENTALS

address files as well as shows you the general form of the OPEN
statement.

Another Example This example allows you to create a sequential file and put in-
formation into the file by running the program. (Note: You can
also create files using the editor explained in Chapter 15.) How-
ever, this program does not let you correct the file if you make a
mistake in typing. That is, if you press RETURN before you
notice the mistake, you cannot correct the file with this pro-
gram. You can, of course, use the DELETE key if you notice the
mistake before you press RETURN.

10 PRINT "File number(1-12)"; \ INPUT N
20 PRINT "File name(max. of 6 characters)”; \ LINPUT F$
30 PRINT \ PRINT
40 PRINT "At the question mark, type the next line of the file.”
50 PRINT "To end, press RETURN at the question mark.”
60 REM - - Create arrays to hold records
70 DIM A$(100)
80 DIM B$(100)
90 DIM C$(100)
100 REM - - Accept records from terminal
110 T=1
120 FOR 1=0TO 100
130 LINPUT L$
140 IF L$="" THEN GO TO 330
150 LINPUT M$
160 LINPUT N$
170 REM - - Change lower case in name to upper case
180 U=ASC("a")-ASC("A")
190 R$=""
200 FOR K=1 TO LEN(L$)
210 T$=SEGS$(L$,K K)
220 IF ASC(T$)>=ASC("a") THEN IF ASC(T$)<=ASC("z") THEN T$ =CHRS$(ASC(T$)-U)
230 R$ = R$&TS
240 NEXT K
250 L$=R$
260 REM - - Insert records into arrays
270 A$(l)=L$
280 B$(l) =M$
290 C$(I)=N$
300 T=T+1
310 NEXT |
320 REM - - Open output file
330 OPEN F$ FOR OUTPUT AS FILE #N
340 REM - - Arrange records in alphabetical order
350 FORC=0TOT
360 FORD=CTOT
370 IF SEG$(A$(C),1,28)>SEG$(A$(D),1,28) THEN GO TO 460
380 NEXT D
390 REM - - Send record to output file
400 PRINT #N,A$(C)
410 PRINT #N,B$(C)
162 420 PRINT #N,C$(C)

430 NEXT C

440 CLOSE #N\ GO TO 500

450 REM - - Switch positions of two records
460 S$=A3$(C) \ AS(C)=A$(D)\ A$(D)=S$
470 S$=B$(C) \ B$(C)=B$(D) \ B$(D)=S$
480 S$=C$(C)\ C$(C)=C$(D)\ C$(D)=S$
490 GO TO 380

500 PRINT \ PRINT

510 PRINT "The file ";F$;" is created.”

520 END

SAVE INFILE
READY
RUNNH

File number (1-12)?1
File name (max. of 6 characters)? NAMES1

At the question mark, type the next line of the file.

To end, press RETURN at the question mark.

?Digital Equipment Int., Ltd.
?Ballybrit Industrial Estate
?Galway, lreland

?Digital Equipment Corp. S.A.
?Burgunderstrasse 42A
?Basle, Switzerland CH-4051
?Digital Equipment Corp. A/S
?P.0. Box 3914

?7001 Trondheim, Norway
?®ED

The file NAMES1 is created.

READY

To see the file, use the TYPE command. For example,

TYPE NAMES1.DAT

Remember that you must specify the .DAT file type because the

TYPE command defaults to .BAS.

Now you can create the name and address files and run the file

merge program.

You can use virtual array files in the same way that you use a
large array. Just as you can access the elements of an an array
in the workspace in any order, you can access the elements of a

virtual file in any order.

FILE CONTROL

VIRTUAL ARRAY
FILES

163

PROGRAMMING FUNDAMENTALS

Virtual array files have several advantages over sequential

files.

You can access elements in a direct, nonsequential
manner. The last element in a virtual array file can be
accessed as quickly as any other element. Remember
that when using a sequential file, you must input the
entire file before inputting the last element.

When MINC stores data in virtual array files, it does
not convert them to ASCII characters but rather stores
them in their numeric representation. Consequently,
there is no loss of precision caused by data conversion.
There is some loss of precision with sequential files
because all data are converted to ASCII. Remember
that sequential files are ASCII files only.

You can update virtual array files without copying the
entire file. That is, you can open a virtual array file for
both input and output.

Virtual array files also have advantages over arrays stored in
the workspace.

Virtual array files allow you to create much larger
arrays than can be stored in the workspace.

You can permanently store data in virtual array files.
That is, when your program ends, the virtual array
files are stored on a volume. Remember that when you
run a program or use the SCR or CLEAR commands,
previous arrays stored in the workspace are cleared,
and thus lost.

Virtual array files also have several restrictions that do not
apply to arrays stored in the workspace.

164

Virtual array files are slower because MINC must
read the file on the volume before manipulating data.

Although strings stored in the workspace can have
length (up to 255 characters), you cannot use these
variable-length strings in virtual array files. Strings
in virtual array files have a fixed maximum length
from 1 to 255 that you specify in the DIM # statement
(explained in the next section). MINC handles strings
shorter than this maximum length similarly to strings

stored in the workspace. MINC truncates strings
longer than the maximum length.

® You must dimension only one virtual array file in each
DIM # statement.

® Many MINC arrays do not allow virtual array files as
arguments although they accept workspace arrays as

arguments.

As with sequential files, you open a virtual array file with an
OPEN statement. The OPEN statement opens a sequential file
unless the file-channel number specified in the OPEN state-
ment is also specified in a DIM # statement (explained later in
this section). Again, the three most common forms of the OPEN

statement are:

OPEN filespec-string FOR INPUT AS FILE # riumeric-expression

OPEN filespec-string FOR OUTPUT AS FILE # numeric-expression

and

OPEN filespec-string AS FILE # numeric-expression

where:

filespec

FOR INPUT

FOR OUTPUT
#

numeric expression

is a string representing the file spec-
ification. If you do not specify the
file type, MINC defaults to .DAT for
the file type.

is optional and specifies opening an
existing file.

specifies creating a new file.
is optional.

is the channel number of the file.
Later in the program when you
want to refer to the file, you use the
number instead of the file name.
The number can have any whole
number value from 0 to 12. The
channel number must match the
channel number in the correspond-
ing DIM# statement.

FILE CONTROL

Opening a Virtual
Array File

165

variable-name (number-of-elements)

where variable-name can be any string, inte-
ger, or real variable name, and number-of-
elements represents the dimensions (maxi-
mum size) of the subscript or subscripts.

string size is an optional whole number literal (with or
without a percent sign) that specifies the
maximum length for elements in a string vir-
tual array file. Its value must be in the range
1 to 255. If it is omitted for a string array, the
maximum length is 16.

To access information in an existing virtual array file, be sure
that the DIM # statement specifies the same variable type
(string, real, or integer) and number of subscripts that are speci-
fied in the program that created the file. The variable name
associated with the file can be different from the original as long
as it is the same variable type.

Below are some examples of opening virtual array files.

The following example creates a 2001-element integer virtual
array file. The virtual array file is named A% in this program.
You can assign values to the elements and then use the values.

10 OPEN 'ARRAY1’ FOR OUTPUT AS FILE #1
20 DIM #1, A%(2000)

The next example opens an existing two-dimensional, string vir-
tual array file. The virtual array file is named F$ in this pro-
gram. Only input is allowed; that is, if you try to assign a value
to an element of the array, MINC prints out the following
message.

?MINC-F-OPEN statement for this file channel prohibits transfer at line 50

30 OPEN 'ARRAY2’ FOR INPUT AS FILE #2
40 DIM #2, F$(100,2) =25

In this previous example, each string element can have a maxi-
mum of 25 characters. A complete example of a program using a
virtual array file is given later in this chapter.

When you open a virtual array file for output you must always
close the file in the program with a CLOSE statement. If you do
not close the file and the program terminates with an error,

FILE CONTROL

Closing a Virtual Array
File
167

PROGRAMMING FUNDAMENTALS

Using Virtual Array
Files

Example of Using a
Virtual Array File

168

MINC leaves the file in an indeterminate state. That is, some of
the changes might be in the file and some might not.

The two general forms of the CLOSE statement are:
CLOSE
CLOSE # expression, # expression, ...

The expression is the channel number of the file to close. You
can close more than one file with the CLOSE statement. The
CLOSE statement with no arguments closes all open files.

If the program terminates normally (that is, by executing the
END statement or the statement with the highest line number),
MINC closes all files for you. However, you should put in a
CLOSE statement.

You use a virtual array file just as you use an array stored in
the workspace. For example:

10 OPEN "ARRAY1’ AS FILE #1
20 DIM #1, A$(2000) =23

100 A$(5)= 'This is a string’

200 F$ = A$(7)

1000 CLOSE #1

In line 100, the program puts the string value 'This is a string’
in A$(5). This line stores that value in the file. In line 200, F$
receives the string that is already stored in A$(7). Line 200
inputs a value from the file. Line 1000 closes the file.

The following example uses the questionnaires program again.
(See pages 101-102.) This time, the array that holds the re-
sponses is stored on a volume as a virtual array file. Because the
array is now stored on the volume, you can enter some question-
naires now and some later. You no longer lose those question-
naires you typed in when you scratch the workspace.

This time, however, the program should test the input to make

sure that each response is between 1 and 3 (1=agree, 2=disa-
gree, 3=don’t care). If the typist enters a value that is not be-
tween 1 and 3, and the program does not test the value, the
program terminates with an error in statement 40 (the ON/GO
TO). If the program terminates with an error, the virtual array
file is not closed and its contents are unknown to you (that is,
some of the elements might be updated while others might not
be).

The new program is as follows:

LIST
QUEST 23-MAR-80 09:30:37

5 OPEN ‘resp’ AS FILE 1

10 DIM #1,R(20,3)

20 P$ ='Input another questionnaire’

30 GOSUB 150

40 ON Z GO TO 50,100

50 FOR I=1TO 20

60 PRINT I;\ INPUT Q
63IFQ>=1THENIFQ<=3GO TO 70

66 PRINT 'input not between 1 and 3’ \ GO TO 60
70 R(,Q)=R(1,Q) +1

80 NEXT |

90 GO TO 20

100 PRINT ,,’AGREE’,'DISAGREE',"DON'T CARE"
110 FOR I=1TO 20

120 PRINT 'question’;1,,R(1,1),R(1,2),R(l,3)

130 NEXT |

140 GO TO 1000

150 REM - subroutine to validate yes or no

160 PRINT P$\ INPUT S$

170 GOSUB 300

180 IF R$<>'YES’ THEN IF R$<>'NO’ GO TO 160
190 IF R$="YES’' THEN Z=1

200 IF R$='NO’' THEN Z2=2

210 RETURN

300 REM - subroutine to convert lower to upper case
310 U=ASC('a’)-ASC('A")

320 R$="

330 FOR K=1 TO LEN(S$)

340 T$=SEGS$(S$.K,K)

350 IF ASC(T$)>=ASC('a’) THEN IF ASC(T$)< =ASC('z’) THEN T$=CHR$(ASC(T$)-V)
360 R$=R$&T$

370 NEXT K

380 RETURN

1000 CLOSE #1

1010 END

READY

FILE CONTROL

169

PROGRAMMING FUNDAMENTALS

DELETING A FILE

RENAMING A FILE

170

Now when you run this program, the questionnaire responses
that you type are saved in the file called RESP.DAT. Notice that
line 5 does not specify FOR INPUT or FOR OUTPUT. By speci-
fying neither, the program creates the file the first time the
program is run and updates the file the rest of the times the
program is run.

Note that the IF END statement is not applicable to a virtual
array file. Each element is equally accessible. Thus, you do not
need to test for the end of the file. You just need to close the file.

Whenever you no longer want a virtual array file or a sequen-
tial file on one of your volumes, you can delete the file with the
KILL statement.

The form of the KILL statement is:
KILL filespec

The filespec is a string that is a specification of the file. For
example:

KILL 'ARRAYY’

If you do not specify the file type, the .DAT file type is the
default. If you specify a device (for example, SY1:), you must
then specify the entire file specification — including the file

type.

The KILL statement is similar to the UNSAVE command. How-
ever, the default file type for the KILL statement is .DAT where
the default file type for the UNSAVE command is .BAS.

Because you can delete a file from a program with the KILL
statement, your programs can open a temporary file to create

more room for your program’s data, and then can delete the file
at the end of the program with a KILL statement.

You can change the name of a virtual array file or a sequential
file with the NAME statement.

The form of the NAME statement is:
NAME file-to-be-renamed TO new-name

The new name must have the same volume specification as the

FILE CONTROL

old one. That is, the NAME statement changes the file name,
not the physical location. See the NAME statement in Book 3
for further details. The names are strings and must be enclosed
by quotes.

For example:

NAME 'PROG1.BAS’ TO 'INFILE.BAS’

If you do not specify the file type in the NAME command, the
default is .DAT.

171

CHAPTER 12

OTHER BASIC STATEMENTS

This chapter discusses the READ, DATA, and RESTORE state-
ments as well as some special MINC system functions.

Both assignment and INPUT statements are means of getting a
value into a variable. Another method is via READ and DATA
statements, which are explained in this section.

INPUT statements enter pertinent but changing data into a pro-
gram. READ and DATA statements are an alternate method of
assigning values to variables. DATA statements are like a se-
quential file stored in the workspace and READ statements in-
put the information from the DATA statements. READ and
DATA statements are best used for generally defining values
that are not going to change within one run of a program, but
might change between runs.

For example, Chapter 14 describes a large program that begins
by offering the program’s users a menu of tasks to perform. The
number of items in the menu usually does not change. However,
if the program chooses to add a new task to the menu of tasks,
then, for the next run, the number changes; however, it remains
constant for the entire run. The number of items is best put in
READ and DATA statements.

READ and DATA statements are always used together — that

is, if one is in a program, the other must be somewhere in the
same program. The form of the READ statement is:

READ variable-list

READ AND DATA
STATEMENTS

173

PROGRAMMING FUNDAMENTALS

174

where the items in the variable list can be string or numeric
variables separated by commas. The READ statement reads the
values in the DATA statements (described below), and assigns
these values to the variables in the variable list.

The form of the DATA statement is:

DATA data-list

where data-list contains the numbers or strings that you want
to assign to the variables listed in the READ statement. Sepa-
rate individual data items by commas. You do not have to en-
close strings in quotation marks. For example:

10 READ A,B,A$,C

20 DATA 3,4.7 HELLO,9
30 PRINT AB,A$,C
RUNNH

3 47 HELLO 9

When you type a RUN command, MINC searches for the first
DATA statement and saves a pointer to its location. Each time
MINC encounters a READ statement in the program, the next
value in the DATA statement is assigned to the next variable in
the READ list. If there are no more values in that DATA state-
ment, MINC looks for the next DATA statement. If there are
not enough DATA items, MINC prints the following error mes-
sage and lists the line number of the READ statement that
could not be finished.

?MINC-F-Too few values for INPUT or READ variables at line XX

The location of DATA statements within a program is arbitrary
as long as the data items appear in the proper order. (You deter-
mine the proper order by what your program does.) It is a good
practice to place all the DATA statements in a program together
for quick reference when checking the program.

A READ statement assigns the next available element in a
DATA statement to the first variable in its list. Then it assigns
the next available element in a DATA statement to the next
variable in its list until all variables have been satisfied. Again,
the DATA statements are like a sequential file that is stored in
the workspace.

The items in the DATA list must match the type of variable
(string or numeric, integer or real) to which they will be as-

OTHER BASIC STATEMENTS

signed. If MINC finds a string variable where it expects a nu-
meric variable, it outputs the following error message.

?MINC-F-DATA value or value from file does not match variable at line XX

where line XX is the line in which the READ statement could
not be completed. If MINC finds a numeric value where it is
expecting a string value, it simply assumes that the numbers
are in the string and stores the ASCII values of the numbers in
the string variable.

Integer values must match integer variables and real values
must match real variables. You can put a numeric constant with
no decimal point in either real or integer variables. For exam-
ple, the following READ statement works.

10 READ A, A%
20 DATA 2,3

30 PRINT A,A%
RUNNH

2 3

However, the following READ statement does not work because
the corresponding DATA value for Q (a real variable) is an inte-
ger literal.

20 READ Q,Q%
21 DATA 2%,3%
RUNNH

?MINC-F-DATA value or value from file does not match variable at line 20

Conversely, you cannot match a real literal to an integer varia-
ble. READ statements do not allow mixed modes as assignment
statements do.

MINC ignores items in a DATA statement in excess of those
used by the READ statements.

It is desirable to use DATA and READ statements rather than
INPUT or assignment statements in a few cases. The first case,
as mentioned earlier, is when you want to assign variable
names to values that will remain constant within one run of a
program, as in the menu example. Pertinent values in a pro-
gram may actually be constants for an entire run of a program,
but may need to be changed from run to run. You cannot use
INPUT here because the program’s users do not necessarily

175

PROGRAMMING FUNDAMENTALS

The RESTORE
Statement

MINC SYSTEM
FUNCTIONS

176

know the correct value (such as the number of menu items). You
might find it more convenient to use READ and DATA state-
ments rather than assignment statements because with READ
and DATA statements you need to change only the DATA state-
ments rather than retyping entire assignment statements.

A second need of the READ and DATA statements occurs when
the particular computer configuration has only one terminal for
input and output. If the terminal is drawing an important graph
or printing an important report, the question mark prompt from
the INPUT statement might not be appropriate in the middle of
the output. In this case, READ and DATA statements are more
desirable because they do not affect the screen display.

You can use the RESTORE statement in conjunction with the
READ and DATA statements. The RESTORE statement simply
returns the DATA pointer to the first DATA item in the begin-
ning of the whole DATA list, just as a RESTORE # statement
restores a sequential file. For example, the following line causes
the next READ after statement 50 to start reading from the
very first DATA statement in the program, regardless of where
the last DATA item was found.

A complete example is:

10 READ A$, B$

20 PRINT A$, B$

30 RESTORE

40 READ C$, B$, A$

50 PRINT C$, BS, A$

60 DATA ITEM1

70 DATA ITEM2,ITEM3,ITEM4

RUNNH
ITEM 1 ITEM 2
ITEM 1 ITEM 2 ITEM 3

The MINC system functions change some of the characteristics
of MINC, unlike the numeric and string functions discussed pre-
viously, which manipulate numbers or strings. These system
functions are listed below. For descriptions of these functions
and their forms, see Book 3.

TTYSET
RCTRLC
CTRLC
ABORT
RCTRLO
SYS

CHAPTER 13

FORMATTED OUTPUT

When the format as well as the content of your output is import-
ant, you can use the PRINT USING statement rather than the
PRINT statement. The PRINT USING statement permits you to
control the appearance and location of information on the output
line, and thus enables you to create formatted lists, tables, re-
ports, and forms.

With the PRINT USING statement, you set up a template that
specifies the following kinds of numeric and string formats.

Numeric Output Format

Number of digits
Location of decimal point
Special symbols:
trailing minus
asterisk fill
dollar sign
commas
E notation

String Output Format

Number of characters
Left justification
Right justification
Centered

Extended field

177

PROGRAMMING FUNDAMENTALS

PRINT

PRINT USING

178

The general form of the PRINT USING statement is:

PRINT # channel, USING format-description, list

where:

format-description

list

is a coded format template of the line
to be printed. The format description
is a string expression. If the format
description is a string literal, it must
be enclosed in quotation marks, not
apostrophes.

contains the items to be printed.

The format description sets up fields in the output line in which
the items are printed. For example, the following two programs
print a series of numbers and strings. One uses PRINT state-
ments and the other uses PRINT USING statements.

NEW PRINT
10 PRINT 1,’john smith’
20 PRINT 100,’jane doe’

30 PRINT 1.00000E +06,'jim brown’

40 PRINT 100.3,lucy wong’

50 PRINT .0123456,'dave miller’

RUN

PRINT 27-MAR-80 11:32:11
1 john smith
100 jane doe
1.00000E + 06 jim brown
100.3 lucy wong
.0123456 dave miller

READY

NEW USING

10 AS ="####### ## RRRRRRRRRRRR"

20 PRINT USING A$,1, 'john smith’

30 PRINT USING A$,100,’jane doe’

40 PRINT USING A$,1.00000E +08,'jim brown’
50 PRINT USING A$,100.3,'lucy wong’

60 PRINT USING A$,,.0123456,"dave miller’

RUN

USING 27-MAR-80

11:32:57

1.00 john miller

100.00 jane doe
1,000,000.00 jim brown
100.30 lucy wong

0.01 dave miller

READY

Notice that the numbers printed with the PRINT USING state-
ment are aligned by the decimal point and the names are right
justified in their field.

The format description for this example is:

"####### ## RRRRRRRRRRRR"

NOTE

The format description describes the entire line of out-
put. When you use a PRINT USING statement, the
print zones are no longer in effect, and commas and
semi-colons do nothing but separate list items.

You specify the number of digits in the format description with
a number sign (#). Thus, a format description for a 3-place num-
ber is “###”. If the number is negative, you must have a # for
the minus sign too. Thus, “###” is the format description for a
3-place positive number or a 2-place negative number. If the
format does not have enough places for all of the digits in the
number, MINC prints out a percent sign (%) and then prints the
number with a PRINT statement format. For example:

PRINT USING "####", 1234,-123,-1234
1234

-123

%-1234

You specify the location of a decimal point in the numeric field
by placing a period (.) in the appropriate place in the format
description. For example, the format description for a number
with 5 places to the left of the decimal point and 2 places to the
right is “#####.##”. If there are not enough places in the
format description after the decimal point, MINC rounds the
number. For example:

PRINT USING ".###",.999
.999

FORMATTED OUTPUT

FORMATTING
NUMERIC OUTPUT

179

PROGRAMMING FUNDAMENTALS

180

PRINT USING ".##",.994
.99

PRINT USING ".##",.999
%.999

PRINT USING "#.##",.999
1.00

If you would like commas to appear in numeric output, place a
comma anywhere in the numeric format description before the
decimal point. Then, commas will print every three places. For
example, the format description for a number with 7 places to
the left of the decimal point, 2 places to the right, and commas is
“##,##4## ##”. Note that the comma can appear anywhere
before the decimal point. For example:

PRINT USING "## ##.##", 1234.56
1,234.56

If you would like the minus sign after the number rather than
before, place a minus sign after the number signs in the format
description. For example, if you want a numeric field with 3
places to the left of the decimal point, 2 places to the right, and a
trailing minus sign, use “###.## -” as the format description.
If the number is negative, the minus sign will follow it. If the
number is positive, there will be no minus sign. For example:

PRINT USING "#, ###.##-", 1234.56, -1234.56
1,234.56
1,234.56-

If you would like the numeric field filled with preceding aster-
isks (*), place 2 asterisks as the first 2 places of the format
description. The asterisks also define two places in the field. For
example, “**##.#-” defines a numeric field with asterisk fill, 4
places before the decimal point, 2 places after, and a trailing
minus. You cannot combine asterisk fill with a preceding minus.
For example:

PRINT USING "*####.##-", 1234.56, ;1234.56
**1234.56
**1234.56-

If you would like the numeric field to have a dollar sign (§),
place 2 dollar signs as the first 2 places of the format description
for that field. The dollar signs define one place in the field for a
dollar sign and one place for the first number. For example,
“$$,###.##-" defines a numeric field with a dollar sign, com-

mas, 4 places before the decimal point, 2 places after and a
trailing minus sign. You cannot combine a dollar sign with as-
terisk fill or a preceding minus. For example:

PRINT USING "$$#,##.##-", 1234.56. -1234.56
$1,234.56
$1,234.56-

To print a number using E notation, you place 4 carets (***") after
the number signs. The 4 carets reserve space for the E, followed
by a plus or minus sign, and the 2-digit exponent. In E notation,
the digits to the left of the decimal point are not filled with
spaces. Instead, the first nonzero digit is shifted to the leftmost
place, and the exponent is equal to the number of places that the
decimal point is shifted from the number in standard notation.
For example:

PRINT USING "##.#### ~™,1234.56, -1234.56
12.3456E + 02
-1.2346E +03

The following example shows all the forms of numeric format.
Notice that in line 100, the program tries to print a negative
number in asterisk fill without a trailing minus sign.

10 P=1234.56

20 N=-1234.56

30 PRINT USING "######.##",P,N
35 PRINT

40 PRINT USING "####.##".P,N

45 PRINT

50 PRINT USING "™*#####.##" P
55 PRINT

60 PRINT USING " #### ##",P
65 PRINT

70 PRINT USING "* #### .##-" PN
75 PRINT

80 PRINT USING "$$## ##.##-" PN
85 PRINT

90 PRINT USING "##.#### PN
95 PRINT

100 PRINT USING ™*####.##"N
RUN

NONAME 27-MAR-80 15:03:24

1234.56
-1234.56

1234.56
%-1234.56

FORMATTED OUTPUT

181

PROGRAMMING FUNDAMENTALS

FORMATTING
STRING OUTPUT

182

***1234.56
**1,234.56

**1,234.56
**1,234.56-

$1,234.56
$1,234.56-

12.3456E + 02
-1.2346E +03

?MINC-F-Invalid PRINT USING format or syntax at line 100

READY

The format description in statement 100 caused an error mes-
sage because the asterisk fill format description left no room for
a trailing minus sign.

A string format description starts with an apostrophe ('). If you
want to print a string field with one character, the format de-
scription is “'”.

If a string is larger than its specified string field, MINC prints
as much of the string as fits in the field and ignores the rest.
The only exception is that for extended fields (described below),
MINC prints the entire string.

To print strings in a left-justified field, use an L in the format
description for each character in the field after the first. (Re-
member that the first character is denoted by an apostrophe.)
For example:

10 PRINT USING "'LLL", 'ABCDE’
20 PRINT USING "LLLLLL", 'ABCDE’
RUNNH

ABCD
ABCDE

READY

To print strings in a right-justified field, use an R in the format
description for each character in the field after the first. For
example:

PRINT USING ""RRRRRR", 'A’,’AB’,’ABC’,’”ABCDE’

A

AB
ABC
ABCDE

READY

To print strings in a centered field, use a C in the format descrip-
tion for each character in the field after the first. For example:

PRINT USING ""CCCCCC", 'A’.’AB',’ABC’,’ABCDE’

A
AB
ABC

ABCDE

READY

Notice that if the string cannot be exactly centered (such as a
two-character string in a seven-character field), MINC prints
the string one character off center to the left.

To print strings in an extended field, use an E in the format
description for each character in the field after the first. The
extended field is the only field that ensures the printing of the
entire string. If you specify an extended field, MINC left-justi-
fies the string as it does for a left-justified field. But, if the
string has more characters than there are places in the field,
MINC extends the field and prints the entire string. For
example:

LIST
NONAME 25-JUL-80 11:36:44

10 DIM A$(5)

20 PRINT 'input 5 strings of varying length’

30 FOR I=1TO 5\ INPUT A$(I) \ NEXT |

40 PRINT \ PRINT 'centered extended left right’

50PRINT '———==——— ———————— — - ———————— '
70 F$="."/CCCC. .’EEEE. ./LLLL. .’RRRR.

80FORI=1TO5

90 PRINT USING F$,A$(1),A$(1),A$(1),A$(l)

100 NEXT |

110 END

READY
RUN

NONAME 25-JUL-80 11:36:49

FORMATTED OUTPUT

183

PROGRAMMING FUNDAMENTALS

input 5 strings of varying length
?a

?ab

?abc

? abed

? abcdefghij

centered extended left right

The underlined field has been extended. Note that the rest of
the line is displaced five places.

e
PRINT USING There are two types of PRINT USING error conditions: fatal and
STATEMENT ERROR nonfatal.
CONDITIONS

When a fatal error occurs, MINC stops executing the program
and prints the following message.

?MINC-F-Invalid PRINT USING format or syntax
When a nonfatal error occurs, MINC continues to execute the
program, although the resulting output may not be in the for-

mat intended.

See Book 3 for the details of PRINT USING error conditions.

184

CHAPTER 14
COMBINING PROGRAMS

When you are writing a program that solves a complex problem,
that program can become very long. You might want to break
the program into segments for two reasons: the program is too
long and complicated to think about as a whole, or the program
and its arrays are too long to fit in the workspace.

There are two statements and one command that help you to
break a program into segments.

CHAIN When one segment is finished executing, the
CHAIN statement at the end of the segment
brings the next segment into the workspace.

APPEND The APPEND command merges program
segments together in the workspace.

OVERLAY In the immediate mode, the OVERLAY
statement works like the APPEND com-
mand. It also works in the program mode,
merging two program segments together in
the workspace.

This chapter describes these statements in more detail. For fur-
ther explanation, see also Book 3. 185

COMBINING PROGRAMS

all arrays not defined in COMMON

all user-defined functions
4. Loads the new segment into the workspace and executes it.
Use of the CHAIN statement is shown by an example in the

following section. Further explanation of the CHAIN statement
— that is, saving variables in COMMON — is given after the

example.
NOTE Example — A
Sequential File
The following program segments are stored on the Maintenance Program

demonstration diskette in files FILEMT.BAS,
FILEM1.BAS, FILEM2.BAS, FILEMS3.BAS,
FILEM4.BAS, and FILEM5.BAS. If you do not have a
demonstration diskette, copy the Master diskette us-
ing the instructions given in Part II of Book 1. Run-

ning these programs might require use of the
EXTRA__SPACE command. See the
EXTRA__SPACE command in Book 3.

Suppose you want to make managing sequential files easier for
yourself and your colleagues. You can write a program to do the
types of file manipulation procedures that are quite common,
such as

® inputting a sequential file
® sorting the contents of a sequential file
® merging two ordered files into one ordered file

® concatenating two files

® listing a file on the screen

Writing a program to do all of these things is quite complicated.
So, you can write a series of small programs, one for each item
in the list, and chain them together.

Once you know what you want to do, you can write a “main
program” that manages your other programs. For example, the
following program manages the sequential file maintenance
program. It gives its users a choice of what to do with their files,
and when they choose what to do, the program chains to the
right choice. 187

PROGRAMMING FUNDAMENTALS

188

Lines 10 through 100 print the choices on the screen. Line 160
inputs the user’s choice. Line 170 checks to see that the choice is
within the range, and then chains to the program that matches
the choice.

This program’s name is FILEMT. The program representing
choice 1 is FILEMI1, the program representing choice 2 is
FILEM2 and so forth.

LIST
FILEMT 16-MAY-80 14:21:33

10 FOR I=1 TO 23\ PRINT \ NEXT I\ REM - Clear Screen
20 PRINT 'SEQUENTIAL FILE MAINTENANCE PROGRAM’

30 PRINT
40 PRINT 'Enter program number from:’ \ PRINT
50 PRINT '1 Input a file (NOTE: use editor to update)’
60 PRINT '2 Sort a file’
70 PRINT '3 Merge 2 files'
80 PRINT '4 Concatenate files’
90 PRINT '5 List a file on the screen’
100 PRINT '6 Exit file maintenance program’
110 PRINT

120 REM - S is the second to the last choice
130 REM - L is the last choice

140 READ S,L

150 DATA 5,6

160 INPUT |

170 IF 1< =1 THEN IF | < =S THEN CHAIN 'filem’ + STR$(l)
180 IF I=L GO TO 210

190 PRINT 'Enter number between 1 and ’;L;
200 GO TO 160

210 PRINT 'Exit File Maintenance Program’
220 END

READY

The variables S and L are used to represent the second to last
choice and the last choice that appear on the screen. By using
the variables in a READ statement, if you want to add a choice
to the list, you have to change only the DATA statement and
add the appropriate print statements.

By creating the FILEMT program, you can now write one pro-
gram for each task. The problem is not so difficult when it is
broken into segments.

The program FILEM1, representing choice 1, is shown below.
Notice that FILEM1 chains back to the main program, FILEMT,
to offer the user the next choice.

COMBINING PROGRAMS

LIST
FILEM1 16-MAY-80 13:21:53

10 FOR I=1 TO 23\ PRINT \ NEXT I\ REM — — Clear screen

20 PRINT 'FILE INPUT PROGRAM’ \ PRINT \ PRINT

30 PRINT ’Input file name’; \ LINPUT F$

40 PRINT 'At each question mark, type the next line of the input file.’
50 PRINT 'To end the file, press the RETURN key at the question mark.’
60 OPEN F$ FOR OUTPUT AS FILE #1

70 LINPUT N$

80 IF N$="GO TO 110

90 PRINT #1,N$

100 GO TO 70

110 CLOSE #1

120 PRINT ’File input complete’

130 CHAIN 'filemt’

140 END

READY

The program for choice 2, FILEMZ2, is shown below. This pro-
gram sorts a sequential file. The program restricts the file to be
a maximum of 100 records with a maximum of 10 lines per
record. For example, a file with 50 names and addresses (3 lines
each) has 50 records with 3 lines per record. That is, each name
and address represents 1 record.

Lines 1 through 70 input the pertinent information about the
file to be sorted. Lines 80 through 150 enter the file into the
workspace. Lines 4000 through 4150 sort the file now stored in
array N. For the explanation of the sorting algorithm, the shell
sort, see The Art of Computer Programming, Volume 3/Sorting
and Searching by Donald E. Knuth, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1973. Finally, Lines 4170
through 5060 store the sorted file. Then the program chains
back to the main program, FILEMT.

LIST
FILEM2 16-MAY-80 16:52:48

1 REM - N$[N.,I] is the array to be sorted. N is the number of elements

3 REM - that are i lines long.

5 DIM N$(100,10)

10 FOR 1=1 TO 23\ PRINT \ NEXT |

20 PRINT 'FILE SORT PROGRAM’

30 PRINT\ PRINT

40 PRINT 'Name of file to be sorted’; \ INPUT F$

50 OPEN F$ FOR INPUT AS FILE 1

60 PRINT 'How many lines represent one record’; \ INPUT L 189

PROGRAMMING FUNDAMENTALS

190

65L=L-1
70N=1
74 REM

76 REM - Input the file into the workspace

77 REM

80 IF END #1 GO TO 140

90 FORI1=0TOL

100 LINPUT #1,N$(N,I)

110 NEXT |

120 N=N+1

130 GO TO 80

140 N=N-1

150 CLOSE 1

3000REM - - - - - — - — — - — —
3010 REM - Sort the file

3020 REM

3030 REM - For an explanation of the shell sort see:

3040 REM - Knuth, D.E., "The Art of Computer Programming,
3050 REM - Volume 3 / Sorting and Searching”, Addison-Wesley Publishing
3060 REM - Company, Reading, Massachusetts, 1973
3065 REM

3070REM - - - — - — - - - - - —— —— —— — —
4000 REM - shell sort

4005 REM

4010G=N

4020 G =INT(G/2)

4030 K=G

4040 K=K +1

4050 FOR I=0 TO L\ V$(l) = (K,)) \ NEXT |

4060 J=K

4070 J1=J

4080 J=J-G

4090 IF J<1 GO TO 4130

4100 FORI=0TO L

4101 IF V$(l)<N$(J,l) GO TO 4110

4102 IF V$(1)>N$(J,l) GO TO 4130

4103 NEXT |

4110 FOR I=0 TO L\ N$(J1,l)=N$(J,I) \ NEXT |

4120 GO TO 4070

4130 FOR I=0 TO L\ N$(J1,I)=V$(I) \ NEXT |

4140 IF K<N GO TO 4040

4150 IF G>1 GO TO 4020

4155 REM

4165 REM

4170 PRINT 'Name of output fite to hold sorted file’; \ INPUT F$
5000 OPEN F$ FOR OUTPUT AS FILE 1

5010 FORJ=1TON

5020 FORI=0TO L

5030 PRINT #1,N$(J,1)

5040 NEXT |

5050 NEXT J

5060 CLOSE 1

5070 PRINT 'File sort complete’

COMBINING PROGRAMS

5080 CHAIN ‘filemt’
5090 END

READY

The program FILEM3, merges two sorted files into one larger
sorted file, removing duplicates. This program is a generalized
version of the mailing label program described in Chapter 11,
pages 154—156.

Lines 10 through 100 input the pertinent information about the
file. The rest of the program merges the two files. For further
explanation of the algorithm, refer back to Chapter 11. Finally,
the program chains back to FILEMT for the user’s next choice.

LIST
FILEM3 16-MAY-80 16:29:23

10 FOR I=1 TO 23\ PRINT \ NEXT |

20 PRINT 'FILE MERGING PROGRAM’

30 PRINT \ PRINT

40 PRINT ’Input first file name’; \ INPUT F1$

50 PRINT ’Input second file name’; \ INPUT F2$

60 PRINT 'How many lines represent one record’; \ INPUT L
70 PRINT ’output file name’; \ INPUT O$

80 OPEN F1$ FOR INPUT AS FILE 1

90 OPEN F2%$ FOR INPUT AS FILE 2

100 OPEN O$ FOR OUTPUT AS FILE 3

104 REM

1I5REM-—— - - -~ ———
106 REM - Process file 1

107 REM

110 IF END #1 GO TO 130

120 GO TO 160

130 F=2\ REM - End of file 1; file 2 left

140 GO TO 540

150 REM - Get next record from file 1

160 FOR I=1 TO L\ LINPUT #1,11$(I) \ NEXT |

164 REM

165REM- - —— - ———
166 REM - Process file 2

167 REM

170 IF END #2 GO TO 190

180 GO TO 240

190 F=1\ REM - End of file 2; file 1 left

200 REM - Get record left over from file 1

210 FOR |=1 TO L\ I$(l)=11$(I)\ NEXT |

220 GO TO 560

230 REM - Get next record from file 2

240 FOR |=1 TO L\ LINPUT #2,128(1) \ NEXT |

250 GO TO 340

255 REM 191

PROGRAMMING FUNDAMENTALS

192

256REM- - -~ - - -
257 REM - Process file 1

258 REM

260 IF END #1 GO TO 280

270 GO TO 330

280 F=2\ REM - End of file 1: file 2 left

290 REM - Get record left over from file 2

300 FOR I=1 TO L\ I$(l)=12%(1) \ NEXT |

310 GO TO 560

320 REM - Get next record from file 1

330 FOR I=1 TO L\ LINPUT #1,11$(1) \ NEXT |

334 REM

3BREM - - - - - -
337 REM - Decide which record is next in the output file
338 REM

340FORI=1TOL

350 IF 1$(1)>=12%(l) GO TO 400

355 REM

360 REM - Process the record from file 1

365 REM

370 FOR J=1 TO L\ PRINT #3,11$(J) \ NEXT J

380 GO TO 260

400 IF 12$()> =11$(l) GO TO 450

405 REM

410 REM - Process the record from file 2

415 REM

420 FOR J=1 TO L\ PRINT #3,12$(J) \ NEXT J

430 GO TO 170

450 NEXT |

460 REM - They are equal records — so print from file 1
470 FOR J=1 TO L\ PRINT #3,11$(J) \ NEXT J

480 GO TO 110

525 REM

526 REM- - --—-—-— - — - — —
527 REM - finish off remaining file

530 REM

540 IF END #F GO TO 580

550 FOR I=1 TO L\ LINPUT #F,I$(l) \ NEXT |

560 FOR I=1 TO L\ PRINT #3,1$(I) \ NEXT |

570 GO TO 540

580 CLOSE 1,2,3

590 PRINT 'File merge complete’

600 CHAIN ’filemt’

610 END

READY

FILEM4 concatenates files; that is, it creates a large output file
that holds all of the input files, one after another. Finally
FILEM4 chains back to FILEMT.

LIST

FILEM4 16-MAY-80 13:32:28

10 FOR I1=1 TO 23\ PRINT \ NEXT |

20 PRINT 'FILE CONCATENATION PROGRAM'’
30 PRINT\ PRINT

35 PRINT 'Output file name’; \ INPUT O$

37 OPEN O$ FOR OUTPUT AS FILE #12

60 PRINT 'Next file name’; \ INPUT F$

70 OPEN F$ FOR INPUT AS FILE 1

80 IF END #1 GO TO 1000

90 LINPUT #1,L$

100 PRINT #12,L$

110 GO TO 80

1000 CLOSE 1

1010 PRINT 'Merge another file (Y or N)’; \ INPUT R$
1015 IF R$="Y’' GO TO 60

1016 IF R$ ="y’ GO TO 60

1020 CLOSE 12

1030 PRINT 'File merge complete’

1040 CHAIN ‘filemt’

1050 END

READY
Lastly, FILEMS5 lists a file on the screen.

LIST
FILEM5 16-MAY-80 14:30:52

10 FOR I=1 TO 23\ PRINT \ NEXT |\ REM - Clear screen
20 PRINT 'FILE LIST PROGRAM '\ PRINT \ PRINT

30 PRINT ’'File name (default type is .DAT)’; \ INPUT F$
40 OPEN F$ FOR INPUT AS FILE 1

50 IF END #1 GO TO 90

60 LINPUT #1,L$

70 PRINT L$

80 GO TO 50

90 CLOSE 1

100 PRINT ‘List another file (Y or N)'; \ INPUT R$

110 IF R$="Y" GO TO 30

120 IF R$="y’ GO TO 30

130 CHAIN filemt’

140 END

READY
To run this program, type:
RUN FILEMT

Notice how much simpler programming the file maintenance
program became when it was segmented. Most programs can be
designed this way. Later, if you find that you want to recombine

COMBINING PROGRAMS

193

PROGRAMMING FUNDAMENTALS

Preserving Values of
Variables in a Chain

194

the segments into one large program again, you can do so easily,
using the APPEND command (described later in this chapter).

The COMMON statement preserves the values of variables and
arrays when one BASIC program segment chains to another.
Any variables or arrays listed in COMMON statements retain
the same variable names and values after the CHAIN is
executed.

The form of the COMMON statement is:
COMMON list

where list is the list of variables and arrays separated by com-
mas. For example:

10 COMMON A$, F%, C2, V(100), 1$(10,3)

You must specify the dimensions of arrays in COMMON. The
COMMON statement replaces the DIM statement for arrays
stored in COMMON.

When MINC brings in the new program segment, it checks to
see that the new segment has corresponding COMMON state-
ments. The lists in the COMMON statements of the new seg-
ments must contain the same variable names, data types, and
array dimensions in the same order as the lists in the previous
segment. You can change the line numbers and the number of
items specified in each COMMON statement, but you cannot
change the order of the variables and arrays.

For example:

Segment 1 Segment 2
10 COMMON A,B,C$ 70 COMMON A,B
20 COMMON D(100) 30 COMMON C$,D(100),G$(2)
30 COMMON G$(2)
Segment 3

10 COMMON A,B,D(100)
20 COMMON C$
30 COMMON G$(2)

Program segments 1 and 2 contain equivalent COMMON state-
ments. Segment 3 however does not contain equivalent
COMMON statements because D(100) appears before C$.

If in the new segment you do not list the variables and arrays in
COMMON statements as in the original, MINC prints the fol-
lowing error message and stops program execution.

2MINC-F-COMMON variables not in the same order as in last program at line 10

Below is a short example to demonstrate the COMMON
statement.

The file named SEG1 is listed below. Line 10 preserves array
1(100) in COMMON. The program segment assigns the values 2
through 200 to both arrays I and J and then chains to SEG2.

10 COMMON [(100)

20 DIM J(100)

30 PRINT 'Executing SEG1’
40 FORK=1TO 100

50 I(K) =K*2

60 J(K)=K*2

70 NEXT K

80 CHAIN 'SEG2’

90 END

The file named SEG2 is listed below. Line 10 preserves I(100) in
COMMON. This program segment sums all of the elements of
each array; that is, T1 holds the sum of the elements of array I
and T2 holds the sum of the elements of array J.

10 COMMON I(100)

20 DIM J(100)

30 PRINT 'Executing SEG2’

40 FOR K=1TO 100

50 T1=T1+I(K)

60 T2=T2+J(K)

70 NEXT K

80 PRINT 'The sum of array | is’;T1
90 PRINT 'The sum of array J is’;T2
100 END

A run of this program produces the following output.

run segi

Executing SEG1

Executing SEG2

The sum of array | is 10100
The sum of array J is 0

READY

Note that MINC preserves 1(100) but does not preserve J(100)
since array J was not saved in COMMON.

COMBINING PROGRAMS

195

PROGRAMMING FUNDAMENTALS

APPENDING
PROGRAMS

196

For more detail of the COMMON statement, see Book 3.

The APPEND command merges the specified file with the pro-
gram already in the workspace. The resulting program in the
workspace is a combination of the two programs. This command
is especially useful when you wish to add subroutines from a
diskette to a new program in the workspace.

When you use the APPEND command, you must be careful that
the statement numbers are aligned properly. For example, sup-
pose this simple program is in the workspace.

10 PRINT ’original program line 10’
30 PRINT ’original program line 30’
40 PRINT ’original program line 40’

Below is a program stored in APND.BAS.

20 PRINT "APND line 20’
40 PRINT 'APND line 40’
50 END

Now, if you type:
APPEND APND

The following program ends up in the workspace.

10 PRINT ’original program line 10’
20 PRINT 'APND line 20’

30 PRINT ’original program line 30’
40 PRINT 'APND line 40’

50 END

Line 40 of the original program was superseded by line 40 of
APND.BAS.

Note that the APPEND command does not affect the workspace
name.

The form of the APPEND command is:
APPEND filespec

where filespec is optional and is of the form:
dev:name.typ

If you leave out the device, MINC assumes SYO0:. If you leave out

the file type, MINC assumes .BAS. You cannot APPEND a com-
piled program. If you leave out the filespec, MINC prints:

OLD FILE NAME—
to which you must enter the file specification.

You can use the APPEND command to make one program out of
a group of segments. For example, the file maintenance program
was easier to design and program by breaking the problem into
segments. However, the CHAIN command works slowly because
it must retrieve each segment from the diskette. Thus, now you
might want to merge the file maintenance segments into one
program that fits into the workspace all at once.

To do this, you must make some minor modifications to the
segments. In general these modifications are as follows. First,
make copies of all the segments before you alter them. Then
change FILEMT.BAS so that it does not use the CHAIN com-
mand (because you are altering the program so that it does not
chain). Use ON/GO TO instead of CHAIN. Then, resequence
each segment so that they do not have conflicting statements.
Finally, append all the segments together. The following se-
quence shows you specifically how to modify FILEMT and
FILEM1. You can modify segments FILEM2 through FILEM5
similarly to FILEM1.

Below is another listing of the main program, FILEMT.

10 FOR I=1 TO 23\ PRINT \ NEXT |\ REM - Clear Screen
20 PRINT 'SEQUENTIAL FILE MAINTENANCE PROGRAM’

30 PRINT
40 PRINT 'Enter program number from:’ \ PRINT
50 PRINT '1 Input a file (NOTE: use editor to update)’
60 PRINT '2 Sort a file’
70 PRINT '3 Merge 2 files’
80 PRINT ‘4 Concatenate files’
90 PRINT '5 List a file on the screen’
100 PRINT '6 Exit file maintenance program’
110 PRINT

120 REM - S is the second to the last choice

130 REM - L is the last choice

135 RESTORE

140 READ S,L

150 DATA 5,6

160 INPUT |

170 IF 1< =1 THEN IF | < =S THEN CHAIN 'filem’ + STR$(1)
180 IF 1=L GO TO 210

190 PRINT 'Enter number between 1 and ’;L;

200 GO TO 160

COMBINING PROGRAMS

197

PROGRAMMING FUNDAMENTALS

198

210 PRINT ’'Exit File Maintenance Program’
220 END

First, save FILEMT in FILEMT.OLD. Now you have a copy of
the original program before you alter it.

To make one large program out of all the segments, you must
change lines 170 and 220 as follows.

170 IF 1<=ITHEN IF I<=5 THEN ON | GO TO 1000,2000,3000,4000,5000

220 GO TO 32767

Rather than chaining to a segment, line 170 has been changed
to go to the appropriate part of the program with an ON/GO TO
statement. Line 32767 is now the END statement. Notice that a
new line, 135, has been added. You must restore the DATA
statement now, every time the READ statement is executed.
Previously, the DATA statement was restored every time the
FILEMT.BAS program was chained to. Now that the menu part
of the program remains in the workspace at all times, you must
specifically restore the DATA statement.

Now you can save this new version in the file called
FILEMT.BAS. The old version is stored in FILEMT.OLD.

Now load FILEM1.BAS with the OLD command and save it in
FILEM1.0LD before you change it.

Below is another listing of FILEM1.

10 FOR I=1 TO 23\ PRINT \ NEXT |\ REM — Clear screen

20 PRINT 'FILE INPUT PROGRAM' \ PRINT \ PRINT

30 PRINT ’Input file name’; \ LINPUT F$

40 PRINT 'At each question mark, type the next line of the input file.’
50 PRINT 'To end the file, press the RETURN key at the question mark.’
60 OPEN F$ FOR OUTPUT AS FILE #1

70 LINPUT N$

80 IF N$="GO TO 110

90 PRINT #1,N$

100 GO TO 70

110 CLOSE #1

120 PRINT 'File input complete’

130 CHAIN 'FILEMT’

140 END

First resequence FILEM1 with the following command:

RESEQ 1000

This command resequences FILEM1 so that it starts with line
1000. It must start with line 1000 because the new FILEMT
program transfers control to 1000 if the choice is 1 (line 170 of
the new FILEMT).

Now you must change lines 1120 and 1130. Line 1120 should be
changed to

1120 GO TO 10

Now when the program is done with inputting a file, it goes
back to the beginning and displays the choices again.

Line 1130 should be deleted. You cannot have an END state-
ment in the middle of a program (line 32767 is now the END
statement).

Now you can change the workspace name to FILEMT with the
RENAME command and APPEND FILEMT. The resulting pro-
gram is listed below.

LIST
FILEMT 18-MAY-80 02:36:27
10 FOR I=1 TO 23\ PRINT \ NEXT 1
20 PRINT 'SEQUENTIAL FILE MAINTENANCE PROGRAM’

30 PRINT
40 PRINT ’Enter program number from:' \ PRINT

50 PRINT '1 Input a file (NOTE: use editor to update)’
60 PRINT '2 Sort a file’
70 PRINT '3 Merge 2 files’
80 PRINT '4 Concatenate files’
90 PRINT '5 List a file on the screen’
100 PRINT ‘6 Exit file maintenance program’
110 PRINT

120 REM - S is the second to the last choice
130 REM - L is the last choice
135 RESTORE
140 READ S,L
150 DATA 5,6
160 INPUT |
170 IF 1<=ITHEN IF | <=8 THEN ON | GO TO 1000,2000,3000,4000,5000
180 IF I=L GO TO 210
190 PRINT 'Enter number between 1 and ’;L;
200 GO TO 160
210 PRINT 'Exit File Maintenance Program’
220 GO TO 32767
1000 FOR I=1 TO 23\ PRINT \ NEXT I\ REM - Clear Screen
1010 PRINT 'FILE INPUT PROGRAM' \ PRINT \ PRINT
1020 PRINT 'Input file name’; \ LINPUT F$

COMBINING PROGRAMS

199

faults to .BAS. (Note: you cannot overlay a com-
piled program.)

number is optional (as well as LINE). If LINE and num-
ber are present, they represent the statement
number at which MINC starts execution after
the overlay. If you omit LINE and number,
MINC starts execution at the next sequential
statement number after the OVERLAY
statement.

Note that if you enter the OVERLAY statement on a multi-
statement line, MINC ignores the rest of the line.

For more information about the OVERLAY command, see Book
3.

COMBINING PROGRAMS

201

CHAPTER 15

KEYPAD EDITING WITH MINC

In the immediate and program modes, MINC interprets each
line you type as a statement or command in the BASIC lan-
guage. When you are using or writing programs, the BASIC
commands and statements are adequate.

However, neither the program mode nor the immediate mode
allows you to easily type, correct, store, or display ASCII files
that are not program files. For example, Chapters 11 and 13
demonstrated a simple program that allows you to type in an
ASCII file such as names and addresses (INFILE and FILEM1).
If you make a typing mistake in one of these files, however, you
can correct it only by writing a program in the program mode.

MINC'’s alternate mode of operation is editing. By working with
the keypad editor, you can create, inspect, or modify any ASCII
file. You can use the editor to type in BASIC programs, but in
doing so, you can create programs that will produce serious er-
rors in BASIC. The keypad editor is far more suitable for the
following sorts of files:

® Sequential data files (for INPUT and LINPUT
statements).

® Memos and letters.
® Charts.

® Documentation for special programs and equipment
you use.

® Any other files that have only ASCII characters.

203

PROGRAMMING FUNDAMENTALS

THE THREE EDITING
COMMANDS

204

You cannot use the editor to create, inspect, or modify four
kinds of files:

® Files with the protected file types .SYS, .SAV, .COM
or .BAD.

® (Compiled program files — .BAC is the default file type
MINC uses for these.

® Virtual array files — .DAT is the default file type
MINC uses.

® Any other files that have non-ASCII characters.

The keypad editor is a useful tool for MINC users who already
have experience with MINC’s immediate and program modes or
with text editing programs on other equipment. As you will soon
see as you learn how the editor works, its chief advantage is
that it continuously displays the file that you are working with.
You can scan downward and upward freely; you always see a 24-
line part of your file with the line you are changing in the mid-
dle of the screen. You can also erase characters, insert charac-
ters at any position on a line, and search forward or backward
for character strings that are elsewhere in the file.

The three MINC commands that run the keypad editor are:

INSPECT Use INSPECT when you want to look at an
existing ASCII file but you do not want to
change the file in any way; INS is the valid
abbreviation.

EDIT Use EDIT when you want to add to an exist-
ing ASCII file or to change or erase some
characters in it; EDI is the valid abbreviation.

CREATE Use CREATE when you want to create a new
ASCII file and store it on one of your disk-
ettes; CRE is the valid abbreviation.

Whenever MINC is READY, you can run the keypad editor with
one of the three commands. The INSPECT command requires an
input file name. The form of the INSPECT command is:

INSPECT filespec

Because you cannot add to or change a file that you are inspect-
ing, the editor does not create an output file. When you finish
inspecting a file, the keypad editor stops, and MINC signals
READY.

The EDIT command also requires an input file name. You may
specify an output file name or have MINC compose the output
file name from defaults. The general form of the EDIT command
is:

EDIT input-filespec output-filespec

The output file specification is optional. While you are editing,
the keypad editor uses a temporary copy of your input file until
you finish the editing session. When you finish, the keypad edi-
tor program creates the permanent output file and stops. MINC
then signals READY. If you omit an explicit output file name,
the keypad editor preserves your original input file and creates
your new output file in two steps, as follows.

1. The keypad editor renames the input file type to .BAK. If a
.BAK file exists with the same name as the file you are
editing, MINC replaces it.

2. The keypad editor creates a new file with the input file’s
file name and file type.

The CREATE command requires an output file name. The form
of the CREATE command is:

CREATE filespec

While you are typing the new file and correcting it, the keypad
editor maintains it in a temporary form. When you finish, the
keypad editor creates the new file with the name you have spec-
ified, and MINC signals READY.

If you specify a file name that already exists, the keypad editor
displays the following message.

?EDITOR-W-Output file name is already in use,
do you want to erase its current contents (Y or N)?

Type N if you do not want the keypad editor to erase the exist-
ing file. The keypad editor stops immediately, and MINC sig-
nals READY. You can then complete the CRE command with a
different file name.

KEYPAD EDITING

205

PROGRAMMING FUNDAMENTALS

MINC’S KEYPAD AND
OTHER SPECIAL
KEYS

206

Type Y if you do want the keypad editor to erase the existing
file and store the new text you enter under the name you
specified.

Figure 14 shows how the keypad editor uses the standard keys
on your terminal’s keypad and main keyboard for its special
operations. Each keypad editor operation requires only one
keystroke. Notice that the keypad in Figure 14 has the keypad
label pasted on it. The keypad label shows you the functions of
the keypad keys when you are using the keypad editor.

DELETE STORE
aTcursor 1 FILE | FuLE FILE
e ~T -

S

2
DELETE Y
LINE [

S RS (ANeet
SEARCH SEARCH
MODEL

/

Figure 14. The Keypad

A full introduction to the MINC keypad editor follows. The first
section covers the INS command and the editor operations that
are active while you are only inspecting a file. The second sec-
tion covers the EDI command and the additonal operations that
are active while you are adding to or modifying the contents of a
file. The third section covers the CRE command.

Many MINC users find that the keypad editor is not particu-
larly convenient for typing in or changing BASIC programs. On
the other hand, many others use the keypad editor heavily for
program entry. Consider the following major factors before you
work on your own programs with the keypad editor.

® Normally, MINC checks each program statement as
you type it. It signals several sorts of significant errors
immediately. The keypad editor does not check for any
BASIC errors. Therefore, you really should use BASIC
to create BASIC programs and not the keypad editor.
See Book 3 for a more detailed discussion of this
problem. :

® The keypad editor provides ways to erase and insert
characters that are different from the DEL and SUB
commands. (You cannot use DEL or SUB while you
are using the keypad editor.)

® In MINC’s normal mode, your current program is al-
ways accessible in MINC’s workspace. When a pro-
gram doesn’t quite work, you can modify it with imme-
diate BASIC statements and, in many cases, correct it
dynamically. When you use the keypad editor, you
cannot run the program or use any immediate state-
ments or commands.

e Normally, MINC displays your current program only
when you use a LIST command. As you type new com-
mands and statements, your program statements
scroll upward and off screen. When you use the keypad
editor, 24 lines from the file you are editing are always
on the screen.

Again, the INSPECT command allows you to look at an existing
ASCII file that you do not want to change in any way.

Again, the form of the INS command is:
INS filespec

If you leave out the device, MINC defaults to SYO:. If you leave
out the file type, MINC defaults to .BAS.

Because you cannot add to or change a file that you are inspect-
ing, the editor does not create an output file. When you finish
inspecting a file, the keypad editor stops, and MINC signals
READY.

KEYPAD EDITING

BASIC Programs and
the Keypad Editor

INSPECTING AN
ASCII FILE

207

PROGRAMMING FUNDAMENTALS

INS Operations and
Symbols

208

This whole section describing the INSPECT feature of the key-
pad editor assumes that you are using the EDITOR.001 file from
a demonstration diskette. If you do not have a copy of this disk-
ette, install the master demonstration diskette in SY0: and an
unused diskette in SY1:, and then type the RESTART command
to copy the Master Demonstration diskette.

NOTE

For the steps in this section, use a demonstration disk-
ette and install it in SYO:.

This section describes the special ASCII characters and the ter-
minal keys that are important to the keypad editor for inspect-
ing a file. These keys are described in general here and are
described again in later sections where the concepts are demon-
strated in the context of actually inspecting a file.

TERMINATORS The special ASCII characters that de-
fine the ends of lines in your file — FF,
VT, CR, LF, and the CR LF

combination.

STORE Return to MINC’s normal mode.

FILE

CURSOR The cursor marks the insert position
and defines the upper and lower parts
of your file.

1 FILE Move the cursor to the top of your file.

| FILE Move the cursor to the bottom of your
file.

1 SEARCH Search backward in the upper part of
your file for a string that matches the
current search model.

| SEARCH Search downward in the lower part of
your file for a string that matches the
current search model.

SEARCH Change the search model.

MODEL

<« Move the cursor 1 character to the left.

— Move the cursor 1 character to the
right.

0 Move the cursor up one line vertically.

Note: this is tricky if there is no char-
acter directly above.

! Move the cursor down one line verti-
cally. Note: this is tricky if there is no
character directly below.

LINE Move the cursor to the end of the cur-
— rent line or, if it is at the end of a line,
to the end of the following line.

LINE Move the cursor to the beginning of the

— current line or, if it is at the beginning
of a line, to the beginning of the pre-
ceding line.

¥ End of File symbol — The crosshatch
symbol appears immediately after the
last character in your file.

The example for this section is the file EDITOR.001, a blank
calendar for June, 1980.

When MINC displays READY, type the following command.

INS EDITOR.001

Most of the calendar presented in Figure 15 should appear on
your screen. However, because the entire calendar does not fit
on your terminal screen, you will see only to row s.

The INS command displays any ASCII file. You can scan the
file, but the operations to insert or erase characters are inactive.
The only valid operations are the ones that move the cursor. By
moving the cursor through a file that is longer than 24 lines,
you can display different 24-line sections of it.

KEYPAD EDITING

209

PROGRAMMING FUNDAMENTALS

INS Exercises

210

//734%78This is a sample file for MINC Keypad Editor exercises. //

A ' ' Do naot erase it.' /7
JUNE, 1980
a SUN NN TUE WD ™HU FRI SAT
b
¢ + + + + + $ + +
d S | V2 ' 3 P 4 ' 5 N v 7 :
e : ' H X . ‘ H :
f ' H H : : ' H :
q + + + + + + + +
h v 8 ' 9 110 At 2 A3 14 :
i. : : : ' ' : : X
J ' ' \ N H ' ' '
k $ + + + + + } +
| 15 16 7 18 19 120 s | '
" H : H : H ' : ‘
n : . : H H . H :
0 + + + + + + + +
] 122 : 124] 126 27 128 '
q] : : : : H . H
r H : ' : : : : :
s + + : + + + + +
t 29 130 : H : h ‘ H
u H H . : : : : :
v ' : : . : , : :
v + + + + 4 + + +
]

Figure 15. The Calendar in File Editor.001

The following steps are the foundation for all later keypad edi-
tor exercises.

This section shows you how to use the keypad editor to inspect a
file. The procedure for inspecting a file is shown through a set of
exercises that inspect the file EDITOR.001.

Each exercise is denoted by an exercise number and a title. The
number is given for quick reference, and the title tells you the
point of the exercise.

1. The form of the cursor.
Notice that a flashing box, the keypad editor’s cursor, is at

the upper left corner of your screen. The cursor always ap-
pears in this form when you are using the keypad editor.

2. The purpose of the cursor.

The purpose of the cursor is to mark your current position

KEYPAD EDITING

on the terminal screen. The part of a file preceding the
cursor at any moment is considered to be “above” it, and
the part of a file following the cursor is “below” it. To use
the editor’s operations correctly and efficiently, you need to
be aware of the distinction. With the cursor at the upper
left corner of your display, your file is entirely below it.

3. The term current character.

Wherever the cursor is located on your screen, the charac-
ter at the cursor is the first character in the lower part of
your file. That character is also called the current
character.

The character to the cursor’s left, if any, is always the last
character in the upper part of your file.

4. —

(If the cursor is not at the upper left corner of your screen,
press 1 FILE.)

Type the — key eight times.

Each right arrow operation moves the cursor one character
to its right. After eight operations, T in the word This is
the current character, and 8 is the last character in the
upper part of your file.

5 |
Type the | key three times.

Each downarrow operation moves the cursor vertically
down one line in the file. If the next line has no character in
that column (remember that spaces and tabs are charac-
ters), the cursor moves to the character at the end of that
line. After those operations, the cursor should be on the J of
June. Three complete lines are now in the upper part of
your file. The space before the cursor is the last character
in the upper part of your file.

6. 1
Type the 1 key three times.

Each uparrow operation moves the cursor up vertically one 211

PROGRAMMING FUNDAMENTALS

Introducing 1 FILE,
| FILE and Tone

212

line. After three uparrow operations, the cursor is back at
the T of This in the top line of your screen. T is the current
character.

6.._
Type the < key three times.

Each leftarrow operation moves the cursor one character to
its left.

In the preceding steps you moved the cursor away from the top
of your file and back to the top. The following steps:

8.

10.

® illustrate the 1 FILE and | FILE operations
® introduce the keypad editor’s warning tone

| FILE.

Type the | FILE key.

J FILE moves the cursor to a position below your entire
file. The entire file is now above the cursor.

The End of File Symbol.

Move the cursor to the beginning of line w. (The easiest
way is with the uparrow key.)

Note that the special graphic crosshatch is the last charac-
ter on your screen. The keypad editor displays this symbol
immediately after the last character in your file. The sym-
bol means “End of File” and it is not a character in the file
the editor is displaying. As you see it in this step, the sym-
bol shows that the last real character in the file
EDITOR.001 is the terminator at the end of line w.

The warning tone.

Type downarrow to move the cursor back to the bottom of
your file, and then type | FILE.

Note that the cursor does not move; the editor signals that
the operation failed by sounding the tone on your terminal.

The keypad editor uses the tone to signal every operation

11.

12.

13.

14.

that fails. No printed messages appear while you are using
the keypad editor. Occasionally, an error message appears
at the beginning or end of a session.

In most cases, the cause of the warning will be clear when
you look at your screen. When you hear the tone, that
means that you have tried to perform an invalid operation.
The keypad editor does not do anything but sound the tone
in this case — you have not hurt or destroyed your file.

1 FILE.

With the cursor at the bottom of your file, type the 1 FILE
key.

1 FILE moves the cursor to the top of your file. The cursor
always moves to the upper left corner of your screen, and
the first character in your file becomes the current
character.

More work with 1 FILE.

With the cursor at the / in JUNE or somewhere else in the
middle of a line, type 7 FILE again. Note that 1 FILE al-
ways moves the cursor to the top of your file from wherever
it is.

The tone again.

Type 7 FILE again. In this case, the tone is a signal that
1 FILE is invalid because the cursor is already at the top of
your file.

Practice with | FILE.

Move the cursor to a place anywhere within your file; then
type | FILE. Note that the cursor moves to the bottom of
your file from wherever it is.

The arrow operations are the most elementary operations the
keypad editor provides. However, you are less likely to use them
while you are inspecting a file than during an EDI or CRE ses-
sion. They are most useful for moving the cursor to particular
positions on your screen to insert text or erase characters, and
those operations are not active during an INS session.

The keypad editor also has three searching operations, and they

KEYPAD EDITING

Introducing Searching

213

PROGRAMMING FUNDAMENTALS

214

are extremely useful while you are inspecting a file.

The steps to follow when you “search” for a string in your file
are:

a. Type the SEARCH MODEL key.
b. Type in the string you want the editor to find.

c. Specify whether the editor is to search the upper part
of your file or the lower part of your file.

The string you type is the search model the editor uses. The
upper part of your file includes all of the characters to the left of
the cursor and above it. The lower part of the file includes the
current character and the characters to the right of the cursor
and below it.

When you have typed a search model and specified the part of
your file to search, the editor moves away from the cursor and
stops when it finds a string of characters in your file that
matches the string you typed as a model.

The following steps:
® Demonstrate how to enter a search model.
® Introduce the concept of a cursor target.
® llustrate the 1 SEARCH and | SEARCH operations.

® Demonstrate two common search failures.

15. Entering a search model.

Move the cursor to the top of your file. Type the SEARCH
MODEL key. (Note: you do not have to move the cursor to
the top of the file to use the SEARCH MODEL key. This
step makes this exercise easier to describe.)

Use the SEARCH MODEL operation each time you want to
specify a new model for searching operations. The editor
temporarily erases the first two lines. You can specify any
model up to 40 characters long, and you can use any char-
acters on your main keyboard. A search model cannot in-
clude any characters from keypad keys.

16.

17.

18.

19.

Terminating a search model.
(Do not press RETURN.)

Type the single digit 2 as the model for this step, and then
type the | SEARCH key.

There are three ways to terminate a search model. If you
change your mind about searching for anything, type
CTRL/U. CTRL/U erases any partial model you have typed,
cancels the SEARCH MODEL operation entirely, and
leaves the cursor where it was when you typed SEARCH
MODEL.

The two more common ways to terminate a search model,
however, are the | SEARCH and 1 SEARCH operations.

| SEARCH.

The | SEARCH operation in step 16 moved the cursor to
the 2 in the space for June 2, 1980. That 2 becomes the
current character. The upper part of your file includes the
first eight complete lines and the part of line d to the left of
the cursor.

Each | SEARCH operation moves the cursor through the
lower part of your file. The search is successful when the
editor finds a string in the file that matches the current
model. A successful search stops with the cursor on the first
character of a string that matches the model.

Repeated searching.

With the cursor on the 2 in line d, type | SEARCH twice.
The editor always recalls the last model you specified and
uses it until you specify a different model. This step moves

the cursor to the 2 in 20, the second occurrence of that digit
below the 2 in line d.

You can use as many | SEARCH and 1 SEARCH opera-
tions as you like for each model you specify.

1 SEARCH.

Without entering a model, type 1 SEARCH while the cur-
sor is at 20.

KEYPAD EDITING

215

PROGRAMMING FUNDAMENTALS

Introducing Unique
Search Models

216

20.

21.

Each successful 1 SEARCH operation moves the cursor
through the upper part of your file to the first string that
matches the current model. The 2 in 12 becomes the cur-
rent character.

Search failures.
With the cursor at 12, type 1 SEARCH twice.

The first search upwards for 2 is successful; the 2 in line d
becomes the current character. However, the second opera-
tion fails. Because it was an 1 SEARCH operation, the cur-
sor moves through the upper part of your file and stops at
the top.

Each time a search operation fails, the cursor moves to the
top or bottom of your file and the editor sounds the tone on
your terminal. Unsuccessful 1 SEARCH operations move
the cursor to the top. Unsuccessful | SEARCH operations
move the cursor to the bottom.

The concept of target.

Later steps use the term target to refer to the position
where the cursor stops when the editor finishes an opera-
tion. For example:

® The target of a successful 1 SEARCH operation is the
first character of the nearest string in the upper part
of your file that matches the current model.

® The target of a successful | SEARCH operation is the
first character of the nearest matching string below
the cursor.

® The target of any unsuccessful search operation is the
far end of your file — either the top or the bottom.

Searching is the fastest way to move the cursor to a precise
position in your file. The following steps demonstrate two tech-
niques for choosing search models that may not immediately be
obvious:

® seeing unique combinations

® using invisible characters in models

22.

23.

24.

25.

Seeing unique combinations.

In the preceding searching exercises, 2 has been our target.
If you type several | SEARCH operations, the cursor
moves from the top of your file to the bottom, stopping in
the boxes for June 2, June 12 and each of the dates from
June 20 through June 29. When a | SEARCH operation for
2 finally fails, the cursor moves to the bottom of your file
and the tone sounds.

That is a tedious way to reach the twelfth 2 in your file or
any other character that is both common and far from the
cursor. What is the shortest model for a | SEARCH opera-
tion that moves the cursor directly from the top to the verti-
cal bar before 20?

With the cursor at the top of your file, enter the search
model |2 and search forward.

The vertical bar in |20 becomes the current character. The
other strings above |20 do not match the model.

Another unique combination.

How can you move the cursor directly to the vertical bar to
the right of 30? With the cursor at |20, try using the model
0 |, where ©P represents the space character.
(Enter the model and search down.)

That model is almost adequate — but not quite. The cursor
moves to the 0 in [20. Another | SEARCH operation moves
the cursor into the June 30 block under the 0 in 30, closer
to the goal, but still not quite reaching it.

Aha!
There is a way! Now search downward for | € &P.
Using a line terminator in models.

Move the cursor to the bottom of your file, and search up for
the T in SAT. Enter the model T and search up.

Each time you type the RETURN key when you are work-
ing with MINC, your terminal sends the two usually invisi-
ble characters CR and LF, which stand for carriage return
and line feed. When a program you are using creates a

KEYPAD EDITING

217

PROGRAMMING FUNDAMENTALS

218

26.

217.

sequential file (by using PRINT statements to a file that is
open for output), it also stores a CR LF pair at the end of
each line. The CR LF pair is the most common line termi-
nator, by far, because CR and LF are the characters MINC
uses to represent the RETURN key. Although these charac-
ters do not always appear when you are editing a file, the
characters are real, and you can use them in search models.

Each time you type the RETURN key while you are com-
pleting a search model, the editor displays special graphics
for CR and LF. In this step, the model appears as T CR LF,
and it specifies a T that is the last character in a line.

Using the TAB key in models.

CR and LF are the most common, usually invisible charac-
ters in ASCII files, and they appear together most of the
time. The other common invisible character is HT, the
character your terminal sends when you type the TAB key.

The calendar for June, 1980 includes tabs. Find the first
one by moving the cursor to the top of your file, typing the
TAB key once as your search model and searching down-
ward. Each time you type the TAB key in a search model,
the editor displays the special graphic character for HT.

The cursor moves just to the right of //’ at the beginning of
line 2 in your file. The HT character in that position be-
comes the current character. It is the fourth character in its
line.

More HT characters

With the cursor at the first HT character in line 2, type
| SEARCH once.

The cursor moves to the right of the second apostrophe in
line 2.

Now type « twice and then — twice. The cursor moves to
column 3 and back to the right of the second apostrophe.

In fact, the character between apostrophes is HT. The first
of the two HT characters is in column 4; the second is in
column 10. The following step explains how the keypad edi-
tor composes your screen’s display when your file has HT
characters in it.

KEYPAD EDITING

28. Explanation of tabs.

On a normal typewriter, the tab key creates a blank. The
number of print columns in the blank is exactly the number
of print columns before the next tab you have set with the
TAB SET key.

MINC’s keypad editor displays HT characters in almost the
same way. MINC sets tabs automatically every eight col-
umns — in columns 9, 17, 25, 33, and so on. (You cannot
override these settings.) When the keypad editor displays
an HT character, it leaves a blank to the right of the HT
character and up to the next tab.

Step 26 demonstrates how the keypad editor displays HT
characters. In line 2, column 4, is an HT character. The
next tab is set at column 10. Column 4 is blank because HT
is an invisible character. Columns 5, 6, 7 and 8 are blank
because of the effect of the preceding HT character.

Step 27 demonstrates that the blank from column 4 to col-
umn 8 has only one real character in it. Therefore, the —
and < operations move the cursor one real character to the
left and right, but in your display the cursor jumps across
the entire blank.

Tabs are almost always confusing, but sometimes they may
be necessary for the work you will be doing with ASCII files
on your MINC system. The most important facts about tabs
are the following.

® The special character HT represents each tab in the
search model.

® HT is a single character. When a < or — operation
moves the cursor more than one screen position to the
left or right through a blank, a tab is present.

® The keypad editor does not display any HT characters
that are in a file you are inspecting, editing or creat-
ing. However, if you want to search for an HT charac-
ter, the editor displays the special graphic for HT each
time you type the TAB key as part of a search model.

® If nothing requires you to put tabs into a file, avoid
using them — at least until you are comfortable with
them. 219

PROGRAMMING FUNDAMENTALS

220

e The principal benefit of using tabs is that they use
much less file space than an equivalent number of
spaces, but in most applications file space is not criti-
cal enough to justify using them.

The two remaining cursor movement operations in the keypad
editor are LINE< and LINE—. The following steps demonstrate
them.

29.

30.

31.

32.

LINE—.
Move the cursor to the top of your file and type LINE—.

When the cursor is not at the end of a line, the LINE—
operation moves the cursor to the line terminator of its
current line. In this step the cursor moves to the end of line
1. The terminator that follows // becomes the current
character.

NOTE

At this point, the cursor is on the CR of the CR LF pair
at the end of the line. However, nothing shows. If you
type —, the cursor moves to the beginning of the same
line and displays CR because the current character is
now the LF of the CR LF pair.

The other function of LINE—.
Type LINE— three more times.

The cursor moves to the ends of lines 2, 3 and 4. The termi-
nator at the end of line 4 becomes the current character.
Whenever the current character is a line terminator,
LINE— moves the cursor to the end of the following line.

LINE<«.
Search downward for 20, and then type LINE<«.

When the cursor is not at the beginning of a line, the
LINE< operation moves the cursor to the beginning of the
current line. In this step, the I at the beginning of line I
becomes the current character.

The other function of LINE«.

With the cursor at the beginning of line 1, type LINE«
three more times.

In each case, the cursor moves to the beginning of the pre-
ceding line. Whenever the cursor is at the beginning of a
line, the LINE<« operation moves the cursor to the begin-
ning of the preceding line.

33. Finishing an INS session.

Step 32 completes the introduction to the operations that
are active while you are inspecting a file. The essential step
that has not been covered yet is how to finish an INS
session.

Press the STORE FILE key.

The STORE FILE operation is the normal way to finish any
session with the keypad editor.

When you press STORE FILE, MINC displays its READY
message. If you have a program in your workspace when
you begin to inspect, edit or create a file, that program is
still there after you press STORE FILE .

The EDIT command allows you to add to an existing ASCII file
or to change or erase some of the characters in it.

Again the form of the EDIT command is:
EDIT input-filespec output-filespec

For the input-filespec, if you leave out the device, MINC de-
faults to SYO:. If you leave out the file type, MINC defaults to
.BAS. '

For the output-filespec, if you leave out the device, MINC de-
faults to the input-filespec device. If you leave out the name,
MINC defaults to the input-filespec name. If you leave out the
file type, MINC defaults to the input-filespec file type and
changes it to .BAK on the input file.

There are restrictions on defaulting parts of the output-filespec.
For a description of these restrictions, see Book 3. For now, you
are safest defaulting the entire output-filespec (leaving it out
entirely) or completely specifying the entire output-filespec.

When you add to or change a file with the EDIT command,
MINC creates a temporary file that holds the input file.

KEYPAD EDITING

EDITING AN ASCII
FILE

221

PROGRAMMING FUNDAMENTALS

EDI Operations and
Symbols

222

This whole section describing the EDIT feature of the keypad
editor assumes that you are using the EDITOR.002 file from a
demonstration diskette. If you do not have a copy of this disk-
ette, install the Master Demonstration diskette in SY0: and an
unused diskette in SY1:, and then use the RESTART command
to copy the Master Demonstration diskette.

NOTE

For the steps in this section use a demonstration disk-
ette and install it in SYO..

N

The keypad editor works equally well when your terminal’s
screen width is 80 columns or 132 columns. However, for the
following instructional steps, please use the 80 column width.
The instructions are not accurate for 132 column displays. See
Book 7 for detailed instructions on changing your screen width.

All of the operations, symbols, and concepts covered in the pre-
ceding section (the INS command) also apply to the EDIT com-
mand. See the summary of INS operations and terms preceeding
step 1. The following definitions describe the special ASCII
characters and terminal keys that are important to the keypad
editor for editing a file. These characters and concepts do not
apply to inspecting a file. These concepts are described in gen-
eral here and are described again in later sections where the
concepts are demonstrated in the context of actually editing a
file.

INSERTION Each character you type on your main key-
board is inserted at the current character’s
position; the cursor, the current character,
and all other characters in the lower part
of your file all move to the right.

L 283 The keypad editor displays this 2-
character wrap symbol in columns 1 and 2
whenever a line is longer than 78 charac-

ters.
DELETE Erase the character at the cursor’s left.
DELETE Erase the current character.
AT CURSOR
CTRL/U Erase all characters between the preceding

line terminator and the cursor.

KEYPAD EDITING

DELETE Erase the current character, any charac-
LINE— ters that are to its right on the current
line, and the current line’s terminator.

The example for this section is the file EDITOR.002, a faulty
draft of a calendar-for July, 1980.

For this section, you will need to store the corrected form of the
calendar under a file name you choose. When MINC is READY,
type the following command.

EDI EDITOR.002 your-file-name

When you type this command, a portion of the calendar shown
in Figure 16 will appear on you terminal screen.

{ 2 3 4 § 6 7
123456789012345678901234567890123456789012345678901234567990123456789012345678
430
'/345678This is a sample file for MINC Keypad Exercises. /7

A ' ' Do not erase it.' ' ' //
' JY, 1980
aSAT
b
¢ + + + + + + +
d I X D | 03 C 4 0 5 '
e X , X ; ' ' I |
f I ; , 1 , ! | [
q + + + + + + + +
h . 6 17 . 8 - 10 8! 12 X
1 ' |) I) \ ' I
J | | . J : ' J .
4 + + + + + + + 43 14
¢ 18 16 17 118 19 :
" i)) * ') ') I | |
n) ' l i 1 X ' i
0 + + + + HEHH +
P 120 222 23 24 125 126)
N A
r 1 I t i | + i
s + + + + + + +
t * 27 128 129 (30 13 X ; |
u i : | | I ' ﬁ |
v | | : \ l ; : I
W + + +
JANUARY.,
FEBRUARY,
MARCH,
APRIL,
MAY
B

Figure 16. The Faulty Calendar in File EDITOR.002 223

PROGRAMMING FUNDAMENTALS

EDI Exercises

224

The easiest way to modify or correct a BASIC program is to
bring it into your workspace (with the OLD command). You can
then replace entire statements or use the SUB command to
make substitutions within existing statements. That procedure
does not work for files that are not programs, however, and for
large programs it may be inconvenient. MINC’s keypad editor is
“.the most convenient tool for any large editing task. The keypad
ditor offers the only practical way to create, modify, and in-
spect files that are not programs.

This section introduces and explains the five editing operations
you can use to change the contents of an ASCII file. Each step
makes heavy use of the keypad editor’s cursor movement opera-
tions. If you want to review the cursor movement operations,
refer to the summaries at the beginning of the preceding section
(the INS command).

Each time you begin an EDI session, the keypad editor displays
the first 24 lines of your file. The cursor is in the upper left
corner of your screen. The first character in your file is the
current character, and your entire file is below the cursor.

Throughout the session, the cursor always marks the current
character, except in two specific cases. The most common excep-
tion is when the cursor is at the bottom of your file, beyond the
last real character in your file. The second exception is in the
rare case that you move the cursor so that a CR character is
immediately to its left. One of the steps below covers this case in
detail. In general, all characters to the cursor’s left and above it
are in the upper part of your file.

34. Recognizing wrapped lines.

The first two lines in EDITOR.002 number the columns on
your screen and were used when the file was created. The
first correction to the file is to remove them, but before you
do that, study them for a moment and finish reading this
step.

When your terminal is set for an 80 column screen width,
the keypad editor uses only 78 columns. When a line in a
file you are inspecting, editing, or creating is longer than
78 columns, the keypad editor automatically “wraps” the
line onto the following line of your display. The special
wrap symbol (diamond) marks each wrapped line, and it
means that the preceding line on your screen does not end
with a line terminator.

35.

36.

For example, the screen display of the file EDITOR.002
shows that the second line of the file is longer than 78
characters. That line begins on the second line of your
screen. The third line of your screen begins with the wrap
symbol (diamond) and continues with the characters that
do not fit on the line above. The wrap symbol means that
there is no line terminator after the 8 in column 78 in the
preceding line.

The keypad editor processes wrapped lines and lines that
are 78 characters long (or shorter) in exactly the same way.
You can demonstrate this quickly by moving the cursor to
the top of your file and typing LINE— twice. The LINE—
operation moves the cursor to the right until it reaches a
line terminator. The first LINE— operation moves the cur-
sor to the right of the 7 in line 1 of your screen. The second
LINE— operation shows that the second line terminator in
your file is displayed on the third line of your screen.

NOTE

When your terminal is set for 132 columns, the keypad
editor uses 130 columns and wraps lines that are
longer than that. To demonstrate this, however, you
must set the terminal screen width before you run the
keypad editor with the INSPECT command, EDIT
command, or CREATE command. To set the screen
width, see Book 7.

DELETE LINE—.

Move the cursor to the top of your file and type the
DELETE LINE— key.

The keypad editor erases the first line of your file, includ-
ing its terminator. The first character of the second line
becomes the current character, and the editor smoothly

scrolls your file upward in order to show you 24 lines of the
file.

Each DELETE LINE— operation erases the current char-
acter,\any characters to its right on the same line, and the
line’s terminator.

Erasing a wrapped line.

Type DELETE LINE— once more.

KEYPAD EDITING

225

PROGRAMMING FUNDAMENTALS

226

37.

38.

39.

The keypad editor erases the overlong line in your file.
Note that it erases all of the characters up to and including
the wrapped line’s terminator.

Inserting new characters.

Move the cursor to the Y in JY on line 3. (One way is to
search downward for Y.) Type UL.

The letter Y, the cursor, and the characters to the right of
the cursor move to the right as you insert each letter. The
keypad editor displays each letter immediately. The new
letters are inserted before the current character.

Inserting new lines.

Move the cursor to a in line a. (With the cursor at the top of
your file, using the model asa and the | SEARCH opera-
tion will move the cursor to this target.) With a as the
current character, type RETURN once.

During an EDI session, each key on your main keyboard
inserts its character immediately at the cursor’s position.
The editor displays the character immediately. The cursor,
the current character, and all other characters in the lower
part of your file move one position to the right.

The a in line a is still the current character, but there is
now one blank line before line a.

Correcting typing errors with DELETE.
Move the cursor to the S in SAT. (The — is the easiest way

to do this.) Type 123, and then type the DELETE key three
times.

NOTE

This is the DELETE key next to the RETURN key.
The DELETE AT CURSOR key works differently.

You can immediately erase any typing mistake you make while
you are editing or creating a file by using the DELETE key.
Each DELETE operation erases the last character in the upper
part of your file — the character just to the left of the cursor.
The DELETE key works the same in the editor as it usually
does.

40.

41.

42.

Inserting new characters.

With the cursor on the S in SAT, complete the calendar’s
banner. Type the following line, inserting spaces where in-
dicated (do not include parentheses).

(9 spaces)SUN(4 spaces)MON(4 spaces)
TUE(4 spaces)WED(4 spaces)THU(4 spaces)FRI(4 spaces)

SAT moves to the right as you insert each character. Lines
below line a do not change because the insertion does not
make line a wider than your screen.

The only time insertion is invalid is when your file is too
full to accept another character.

Inserting another character.

The 2 for July 2 is missing from its box. Move the cursor to
the space in line d that is under the W in WED. (Searching
forward for | 6@ 3 is one way to reach that target.) Insert a
2.

The characters to the left of the cursor do not move, but the
new 2 aligns the right part of the line properly.

DELETE again.

Move the cursor to the 7 in line A. (Searching downward for
17 and using — is one way. Searching downward for 7 is
quicker.) Type DELETE once.

The editor removes the character 1 and closes up the right
part of the cursor’s line from the right. After erasing the 1
in line A, the rest of the line is aligned properly.

The only times DELETE is invalid are when the cursor is
at the top of your file or when there are no characters in
your file.

WARNING

Avoidrusing the DELETE operation to erase line ter-
minators until you have extensive experience with the
keypad editor. Later steps in this section demonstrate
the kind of graphic confusion that can occur when you
use DELETE to erase terminators and show in detail
how other editing methods are less confusing.

KEYPAD EDITING

227

PROGRAMMING FUNDAMENTALS

228

43.

44.

45.

46.

Inserting a RETURN to break a line.

Study line & briefly. It is too long to fit in one screen line
because line [is joined to it. The wrap symbol (diamond)
appears below & to show that the line is too long. To fix this
fault in the calendar, you need to insert a terminator after
the last + in line %k and then identify and align line /.

Move the cursor to the space after the last + in line k&
(search downward for +). Press the RETURN key.

This step inserts a CR LF pair between the + and the space
following it. Each time you insert a RETURN between two
characters, the current character becomes the first charac-
ter of the new line.

Another insertion exercise.
Insert an [/ at the beginning of line / to align it properly.

DELETE AT CURSOR.

Move the cursor to the first * in line o and insert six hy-
phens (-). After inserting the characters, type DELETE AT
CURSOR six times.

Each DELETE AT CURSOR operation erases the current
character and the next character becomes the current char-
acter. The editor closes up the line from the right if any
printing characters remain on it.

The only times DELETE AT CURSOR is invalid are when
the cursor is at the bottom of your file or when there are not
any characters in your file.

WARNING

Avoid using the DELETE AT CURSOR operation to
erase line terminators until you have extensive experi-
ence with the keypad editor. Later steps in this section
demonstrate the kind of graphic confusion that can oc-
cur when you use DELETE AT CURSOR to erase ter-
minators and show in detail how other editing meth-
ods are less confusing.

DELETE LINE— again.

47.

48.

Either line s or the line that follows it must be erased.
Since line s is already aligned properly, this step shows how
to remove the line below line s.

Move the cursor to the beginning of line between line s and
line ¢. (The fastest way is with five | operations.) Type
DELETE LINE—.

With the cursor at the beginning of a line, each DELETE
LINE — operation erases the following line.

The only times DELETE LINE— is invalid are when the
cursor is at the bottom of your file or when there are not
any characters in your file.

Editing with the CTRL/U operation.

The fault in line ¢ is that there are too many characters to
the left of | 27. Move the cursor to the space at the right of
the * in line ¢, and type CTRL/U.

When the cursor is not at the beginning of a line, the
CTRL/U operation erases all of the characters between the
cursor and the beginning of its current line. The current
character remains the same, but it moves to the beginning
of the line, along with characters to its right.

Now type in the ¢ to align the line.

Erasing an entire line with CTRL/U.

Move the cursor to the beginning of line w, and insert the
following sentence.

“This is the end of EDITOR.002.ReD”

This step demonstrates how you can easily erase an entire
line after you have typed the RETURN key. With the cur-
sor at the beginning of line w, type CTRL/U.

When the cursor is at the beginning of a line, the CTRL/U
operation erases the entire preceding line. When you type
several CTRL/U operations, the keypad editor erases lines
in the upper part of your file. When you type several
DELETE LINE— operations, the keypad editor erases lines
in the lower part of your file.

KEYPAD EDITING

229

PROGRAMMING FUNDAMENTALS

49. Joining separate lines.

The last lines in your file are there to demonstrate the least

nfusing way to join two separate lines in your file. In this
short series of steps you will also see why using the
DELETE AT CURSOR and DELETE operations to erase a
line terminator is usually confusing.

Move the cursor to the end of the line that has the word
FEBRUARY. (Search forward for FEB and use a LINE—
operation to ensure that the cursor is at the end of the line.)
Press DELETE LINE—.

The least confusing way to join two lines is to move the
cursor to the end of the upper one and erase that line’s
terminator with a DELETE LINE— operation. Note that
the keypad editor processes DELETE LINE— in the follow-
ing straightforward way.

® It tests the current character to see if it is a
terminator.

® It erases the current character.

e Ifit has erased any terminator, it stops erasing; other-
wise it repeats these three steps.

The keypad editor recognizes five line terminators — FF, VT,
LF, CR and the special (but most common) case of the CR LF
combination. DELETE LINE— is the least confusing way to join
lines because the editor handles all five line terminators equally
well when you use DELETE LINE —.

REMINDER

DELETE Deletes a line from the current cursor position
LINE— to the next terminator.

CTRL/U Deletes from before the cursor to the preceding
terminator.

Move the cursor to the end of the line FEBRUARY, MARCH,.
Type DELETE AT CURSOR. The terminator on the line was a
CR LF combination. DELETE AT CURSOR erases the CR char-
1cter. The result shows how the keypad editor displays a LF
230 haracter that stands alone. Type DELETE AT CURSOR again.

As you can see, a single DELETE LINE— operation would have
joined the lines in the same way.

Now move the cursor to the M in MAY. Prepare for a small
surprise — and type DELETE.

The DELETE operation erased the LF character from a CR LF
combination. A CR character now stands alone. In your file the
string of characters around CR is PRIL, 6® CR MAY.

When the editor displays the solitary CR character, it then dis-
plays the word MAY over the first three characters of
FEBRUARY. The reasons for this are sound, but they are be-
yond the scope of this book. However, to signal what has hap-
pened in this very confusing situation, the keypad editor dis-
plays the special CR symbol in column 1. That symbol means
that a stand-alone CR is at the cursor’s left and the display is at
least somewhat unreadable.

Type DELETE again.

Whenever you accidentally erase a LF character, immediately
use the DELETE operation if the CR symbol appears on your
screen.

Avoid using the DELETE AT CURSOR and DELETE opera-
tions to erase line terminators at least until you have extensive
experience with editing.

50. Joining two lines — the last exercise!

For the last step in this series, move the cursor to the end of
line w. Type DELETE LINE—. You can now finish fixing
this file at your leisure.

51. Finishing an EDI session.
Press the STORE FILE key at this point.

The STORE FILE operation is the normal way to finish any
session with the keypad editor. Until you type STORE
FILE, the changes you make to a file are temporary.

—

This section covers the six control characters that are most im-
portant while you are inspecting, editing, or creating a file with
the keypad editor.

KEYPAD EDITING

Control Characters and
the Keypad Editor
231

PROGRAMMING FUNDAMENTALS

232

WARNING

The keypad editor processes most control characters
without p(%sing any confusion. However, there are
several control characters that can cause the keypad
editor to produce a confusing or unreadable display.
Therefore, avoid using any control characters while
you are inspecting, editing, or creating a file until you
are sure you want and need them.

The CTRL/U character is the only one that you will need fre-
quently while working with the keypad editor. CTRL/U is the
keypad editor operation for erasing the characters on the cur-
rent line from the beginning of the line up to the cursor. De-
tailed instructions about inspecting, editing, and creating ASCII
files appear in the instruction sections, which follow this intro-
ductory material.

The CTRL/C character is especially important while you are
editing or creating an ASCII file with the keypad editor. When
you type CTRL/C, the editor will discard the temporary file it
was using and stop immediately, and MINC will signal READY
if you answer yes to the following question that the editor
displays.

?EDITOR-W-Abort edit session losing all edits (Y,N)?

If you type Y, MINC returns to the READY, changes no files
and loses all your edits. If you type N, MINC returns the editor
to where you were before you typed CTRL/C.

The CTRL/L character is particularly useful if your MINC sys-
tem includes a line printer. (If your system does not include a
hardcopy printer, CTRL/L offers no major benefits.) When you
type CTRL/L, your terminal sends the ASCII character
FORMFEED to MINC. If you are editing or creating a file with
the keypad editor, the editor displays the FORMFEED charac-
ter with the special graphic FF and processes it like any of the
other valid ASCII characters. If your hardcopy printer starts a
new page whenever MINC sends a FORMFEED character,
CTRL/L offers the easiest way to divide an ASCII file into pages.

The CTRL/W character is important because the keypad editor
interprets it as a command to update your screen display. Type
CTRL/W whenever you want to be especially sure that the char-
acters you see are exactly the ones in the part of your file you
are working with. The most common case in which CTRL/W is

useful is when you have accidentally typed another disrupting
control character and need to be sure that your screen is up to
date.

The CTRL/Q character is important because it cancels the
confusing effects of the CTRL/S character. Avoid typing
CTRL/S; if you type the combination while you are using the
keypad editor, the editor will continue to run but it will stop
displaying what it is doing. If you do type CTRL/S by mistake,
type CTRL/Q to establish immediate screen updating again. Re-
member that the NO SCROLL key performs the same function
as the CTRL/Q and CTRL/S pair.

See Book 3 or Book 7 for detailed instructions about changing
the number of columns MINC displays on your screen.

The keypad editor works equally well when you set your termi-
nal’s screen for 80 columns or for 132 columns. If you want to
change your screen width as you are editing, use the SET-UP
MODE to change the width and then press CTRL/W.

MINC provides a distinct command, CREATE, for your use
when you want to type in an entirely new ASCII file. The princi-
pal difference between the CREATE command and the EDI com-
mand is that you can only specify one file name for CREATE,
while one or two file names are both valid for EDIT.

Again, the form of the CREATE command is as follows.
CRE input-filespec

If you leave out the device, MINC assumes SYO:. If you leave out
the file type, MINC defaults to .BAS.

When you create a file with the CRE command, MINC creates a
temporary file that holds your input. MINC creates the file on
the diskette when you terminate the session by pressing the
STORE FILE key.

You cannot create a new file using the EDI command. When you
type:

EDI new-filespec

—

MINC prints the following message:

?EDITOR-F-Cannot find input file on specified or default volume

KEYPAD EDITING

Screen Width and the
Keypad Editor

CREATING AN ASCII
FILE

233

PROGRAMMING FUNDAMENTALS

CRE Operations and
Symbols

CRE Exercises

234

The operations, symbols, and concepts for a CRE session are
exactly the same as for an EDI session. All of the editor’s opera-
tions are active while you are creating a new file. The common
exception is at the beginning of each CRE session, when there
are not any characters in your new file yet. The first operation
in a CRE session must be to inj:art one character or more.

The two preceding sections (INS and EDI) provide practice with
the keypad editor. At this point you can create a file to try the
CRE command.

Try typing the mailing list using the CRE command rather than
the FILEMT.BAS program listed in Chapter 14.

CHAPTER 16

DEBUGGING YOUR PROGRAMS IN THE IMMEDIATE

You can use the immediate mode along with the program mode
to help find the errors (bugs) in a program. The term for finding
the errors in a program is debugging.

When a program does not work as you anticipated it would, you
can stop the program in the middle of its execution by pressing
CRTL/C twice (once at an input prompt) or wait for it to termi-
nate normally. In either case, MINC will display READY. At
READY, you can use the immediate mode to print the values of
variables used by the program, change the value of a variable,
or restart the program from any line.

The following example shows how you might use the immediate
mode to figure out what is wrong with a program.

The following program is a trivial example of a procedure you
might follow with a data collection or data analysis program.
This program dimensions array A at 1000. The FOR loop that
processes array A, however, does nothing more than set A(I) to I
in this example.

10 DIM A(1000)

20 FOR I=1TO 10000 _-
30 A(hy=1

40 NEXT |

50 PRINT 'this is the end’
60 END

MODE

235

PROGRAMMING FUNDAMENTALS

236

When you run this program, you get the following result.
NONAME 01-JUN-80 10:06:22
?MINC-F-Array subscript is negative or too large at line 30

READY

Now you decide that you must look at line 30 to see what you
did wrong.

LISTNH 30
30 A(l)=1

Line 30 looks fine. So the next step is to see what the value of 1
is. Since all arrays and variables maintain their values until
you perform a SCR, RUN, or their equivalents, you can print
the value of I in the immediate mode.

PRINT |
1001

The value of I is 1001. The only line that changes the value of 1
is statement 20.

LISTNH 20
20 FOR I=1 TO 10000

There is a typographical error in statement 20. The high value
of 10,000 was typed instead of 1000. Now you can correct the
line and try the program again.

You can examine the array in the immediate mode. The follow-
ing FOR loop prints out the first 20 elements of array A.

READY
FOR I=1TO 20\ PRINT A(1); \ NEXT |
1234567891011121314151617181920

You can also examine an individual array element. For
example:

READY
PRINT A(1000)
1000

As another example, look at the lower-to-upper-case program
(not subroutine). Below is a listing for the program.

DEBUGGING

LIST
L2U 05-JUN-80 10:07:49

10 REM - This program converts lower case string input

20 REM - to upper case.

30 REM - If the string is lower case, it is converted to upper
40 REM - case. If the string is upper case, the program leaves it alone.
50 U=ASC('a’)-ASC('A")

60 PRINT ’Input a string’; \ INPUT S$

70 FOR I=1 TO LEN(S$)

80 T$=SEGS(SS$,1,1)

90 IF ASC(T$)>=ASC(’'a’) THEN T$=CHRS$(ASC(T$)-U)
100 R$ =R$&TS

110 NEXT |

120 PRINT R$

READY

Now suppose you run this program as follows:
RUN
L2U 05-JUN-80 10:09:46

Input a string? {This is a string within braces.}
[THIS IS A STRING WITHIN BRACES]

READY

Notice that the program has changed the braces ({}) to brackets
(D.

The first thing that you would probably do is make sure that the
program input the string properly. In the immediate mode, print
out the value of S$.

READY
PRINT S$
{This is a string within braces.}

READY
As you can see, S$ is correct.

Statement 90 is the statement that actually changes the input
string. \

LISTNH 90
90 IF ASC(T$)> =ASC('a’) THEN T$ =CHR$(ASC(T$)-U) 937

PROGRAMMING FUNDAMENTALS

This line tests to see if the input character is greater than or
equal to ‘a’, but it does not test to see if the input character is
less than or equal to ‘z’. Thus, those characters that have an
ASCII value greater than ‘z’ get converted too.

You can change line 20 and then start executing the program
from the beginning of the loop at statement 70.

SUB 90[THEN[THEN IF ASC(T$)<=ASC<'z’) THEN
90 IF ASC(T$)>=ASC(’a’) THEN IF ASC(T$)< =ASC('z’) THEN T$=CHRS$(ASC(T$)-U)

READY
GO TO 70
[THIS IS A STRING WITHIN BRACES.{THIS IS A STRING WITHIN BRACES.}

Notice that the output string was not cleared when the program
was executed from line 70. Where you use the RUN command,
MINC sets all string variables to the null string and all numeric
variables to 0. However, when you use the GO TO command in
the immediate mode, none of the values of variables are
changed, Thus, the new upper case string is concatenated to the

old.

If you set the value of R$ to the null string, you can then start
the program from line 70 and get the expected results.

READY
R$ — ”"

READY
GO TO 70
{THIS IS A STRING WITHIN BRACES.}

READY

238

CHAPTER 17

WHERE TO GO FROM HERE

If you have gotten to this point and have understood all of the
examples presented in this book, you have a good command of
the MINC BASIC programming language. You will probably
not need to refer to this manual any more.

Book 3: MINC Programming Reference is designed to help you
when you need BASIC reference. All of the BASIC commands
and statements are described in alphabetical order and all of the
information about a command or statement is described in one
place.

For example, Book 2 was designed to teach BASIC. Thus, the
information was presented in an order logical for learning. All
of the information about PRINT statements was not presented
at once because you would have gotten lost in the detail.

However, in Book 3, all of the information about PRINT state-
ments is presented in one place. Now that you understand
PRINT statements, you will want all the information in one
place so that you can find what you are looking for quickly.

Book 3 also provides you with more technical information than
was presented in this manual. It describes the commands and
statements in more detail, providing the more detailed and more
powerful options of some statements and the more detailed
restrictions.

239

PROGRAMMING FUNDAMENTALS

240

You should browse through Book 3 to familiarize yourself with
the format of the manual. Look up some of the BASIC state-
ments and commands to see some of the more technical
information.

If you have a problem when you are writing a program, look in
Book 3. You might find that there are restrictions for a state-
ment that were not described in this manual.

Another manual that will be of service to you is Book 8: MINC
System Index. Book 8 gives explanations and/or references for

all of the error messages and contains the combined indexes for
Books 2 through 7.

Book 4: MINC Graphic Programming, Book 5: MINC IEEE Bus
Programming, and Book 6: MINC Lab Module Programming
describe each of the features of the MINC system. Each of these
manuals has a tutorial section in the beginning to help you
learn to use the MINC routines and a reference section at the
end.

Book 7: Working with MINC Devices explains how to connect the
MINC modules.

APPENDIX A

ASCIl CHARACTER SET

The following table shows, with the corresponding decimal
codes, the 128-character ASCII (American Standard Code for
Information Interchange) character set. These codes are used to
store ASCII data in files and to store them internally.

You can convert an ASCII value to the corresponding string
character with the CHR$ function and can convert a string
character to the corresponding ASCII value with the ASC func-
tion (see Chapter 8).

BASIC also uses the ASCII values of the characters in string
comparisons (see Chapter 5).

Notice in the table that there are ASCII codes for every charac-
ter — even non-printing characters. For example, the ASCII
code for the space character is 32. The two ASCII codes equiva-
lent to the RETURN key are 13 (carriage return) and 10 (line
feed). Every time you press RETURN, MINC sends both charac-

ters.

This table also shows the collating sequence. The characters are
ordered by their ASCII codes.

ASCII
Decimal S
Code Character
0 NUL (CTRL/@)
1 SOH (CTRL/A)

241

PROGRAMMING FUNDAMENTALS

ASCII
Decimal
Code Character

2 STX (CTRL/B)
3 ETX (CTRL/C)
4 EOT (CTRL/D)
5 ENQ (CTRL/E)
6 ACK (CTRL/F)
7 BEL (CTRL/G)
8 BS (CTRL/H)
9 HT (CTRL/I or TAB)

10 LF (NEW LINE or LINE FEED) ¢ T&: / g
11 VT (Vertical TAB) 7KL /'K —p 1 lue
12 FF (Form Feed) ¢ TRt/
13 RT (Return) 2RI M
14 SO (CTRL/N) ’
15 SI (CTRL/O)

16 DLE (CTRL/P)

17 DC1 (CTRL/Q)

18 DC2 (CTRL/R)

19 DC3 (CTRL/S)

20 DC4 (CTRL/T)

21 NAK (CTRL/U)

22 SYN (CTRL/V)

23 ETB (CTRL/W)

24 CAN (CTRL/X)

25 EM (CTRL/Y)

26 SUB (CTRL/Z)

27 ESC (ESCAPE)

28 FS (CTRLN)

29 GS (CTRL/))

30 RS (CTRL/)

31 US (CTRL)

32 SP (space bar)

33 !

34 "

35 #

36 $

37 %

38 &

39 ’

40 (

41)

42 *

43 +

242 44 ,

APPENDIX A

ASCII
Decimal
Code Character

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

OO WO ™

S<CHRNIDOTOZIORSTTIQEETQEPE YV I AT
—

243

\,
PROGRAMMING FUNDAMENTALS

ASCII
Decimal

Code Character

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126 ~
127 DELETE

)\—J/V—|N'_<N

) |

TN M g d g w %,Q-Uosai—-pr““-'w:-aq O OO0 oW

244

ABS function, 118
form of, 118
Addition, 11
APPEND command, 185, 196-200
form of, 196
Arc tangent function, 17
Argument, 16
dummy, 131
Arithmetic
integer, 113-115
mixed mode, 114-116
relational operator, 76-78
Arithmetic expression, 11
Arithmetic functions, 117-118
form of, 117
Arithmetic operations, 31

Array element, 93-94, 96, 104-106 —

Arrays
creation of, 94-95
definition of, 93
one-dimensional, 96-98, 104-105,
110
two-dimensional, 96, 98-100,
105-106, 111
ASC function, 125-126, 129-130
form of, 126
ASCII code, 77, 120, 126, 129, 241
definition of, 77-78

Assignment statement, 21-22, 38, 80
form of, 21

ATN function, 17, 117
form of, 18

Backslash, 22-23
Bad blocks, 69-70
definition of, 69
.BAS, 50
BASIC, 3-4
BASIC programs and keypad
editing, 207
BIN function, 125
Block
definition of, 55, 63
Body of loop, 90
Bounds, 107-109
Bug, 235

Calendar example
editing, 223-231
inspecting, 209-221
Cancelling a keypad editor session,
232
Capitalization, 3, 28, 33, 40
Chain, 185-194

INDEX

245

PROGRAMMING FUNDAMENTALS

246

CHAIN statement, 185-187
form of, 186
Characters, 32, 120, 126-130
CHRS$ function, 125-127, 129
form of, 127 ,
CLEAR command, 22
CLK function, form of, 121
CLOSE statement, 146, 150
form of, 149, 168
Closing files, 146
Collating sequence, 77-78, 241
COLLECT command, 66
form of, 68
Combining programs, 185
Comma
use of, 34-35
Command, 2
definition of, 3, 43
Commands
APPEND, 185, 196-200
CLEAR, 22
COLLECT, 66, 68
COMPILE, 61
COPY, 72-73
CREATE, 204, 205-206, 233
DATE, 121-122
DEL, 44
DIR, 54-56, 151
DUP, 70, 71-72
EDIT, 204-205, 221-222, 224
INI, 68, 71-72
INSPECT, 204, 207, 209
LENGTH, 57-58
LIST, 27, 58
LISTNH, 59
NEW, 26, 28
OLD, 52-53, 146
REPLACE, 53-54

RESEQ, 47-48, 82-83, 141-142

RUN, 27-28, 31, 58-60
RUNNH, 59-61
SAVE, 49-52, 145
SCR, 22, 28

Scratch, 22, 28

SUB, 44-47

TIME, 121-122
TYPE, 56-57

UNSAVE, 66
VERIFY, 70-71
COMMON statement, 194-196
form of, 194
COMPILE command, 61
form of, 61
Compile
definition of, 61
Computer, 25
Concatenation, 39
Conditional GO TO, 82
Control characters, 4-5
COPY command, 72-73
form of, 72
Copying files, 72-73
Correcting lines, 26-27
COS function, 17, 117
form of, 18
Cosine function, 17
CR, 208
CREATE command, 204-206
form of, 233
Creating files, 233
CTRL/C, 4-5, 26
CTRL/C key and keypad editor, 232
CTRL/L key and keypad editor, 232
CTRL/Q, 5
CTRL/Q key and keypad editor, 233
CTRL/S, 5
CTRL/S key and keypad editor, 233
CTRL/U key and keypad editor, 222,
229, 230, 232
CTRL/W key and keypad editor,
232-233
Current character, 211
Current owner, 68-69
Cursor, 208, 210-211

.DAT file type, 148, 149
DATS$ function
form of, 121
DATA statement, 173-176
form of, 174
Data type, 113
Date, 121-122

DATE command, 121-122
form of, 121

Debugging, 235-238

DEF statement, 130-133
form of, 131

DEL command, 44
form of, 44

DELETE AT CURSOR key, 222, 228

DELETE key, 2, 222, 226, 227

DELETE LINE— key, 223, 225,

228-229, 230

Device, 50, 51
definition of, 5-6

DIM statement, 94, 110
definition of, 94

DIM # statement, 166-167
form of, 166

Dimension, 94-95, 98, 107-109
definition of, 94

DIR command, 54-56, 151
form of, 54

Directory, 64, 66, 68
definition of, 54

Diskette, 5, 61

Division, 12-15

Dummy argument
definition of, 131

DUP command, 71-72
form of, 71

Duplicating diskettes, 71-72

E notation
definition of, 10-11
form of, 10
EDIT command, 204-205
form of, 221
Editing
files, 221-231
files for line printers, 232
Editor
See Keypad Editor, 203
EDITOR.001 example, 210
EDITOR.002 example, 223
Element of array, 93
End condition, 86-87
End of file symbol, 209, 212

INDEX

END statement, 83

Entering search models, 214
Erasing a wrapped line, 225-226
Examples

editing calendar, 223

EDITOR.001, 210

editor.002, 223

file concatenation, 192

file input, 188

file list, 193

file maintenance, 162-163,
187-194

file merge, 191-192

file sort, 189-191

input sequential file, 162-163

inspecting calendar, 209

lower to upper case, 128-130,
138-140

merging files, 153-162

questionnaire, 93, 97-103, 105,
169-170

yes/no validation, 100, 136-140

Execute

definition of, 27

EXP function, 19, 117

form of, 19

Exponential function, 19
Exponentiation, 14, 15
Expressions

arithmetic, 11
logical, 76
string, 38

- FF, 208
Fields, 178
File, 49-50, 66, 145-146
File concatenation example, 192-193
File input example, 188
File list example, 193
File maintenance example, 162-163,

187-194

File merge example, 191-192
File number, 148-151

definition of, 148

File sort example, 189-191
File specification, 50 247

PROGRAMMING FUNDAMENTALS

File type, 50
.DAT, 148
FILE.BAD, 71/
FILEM1 program, 189
FILEM2 program, 189-191
FILEMS3 program, 191-192
FILEM4 program, 192-193
FILEMS5 program, 193
FILEMT program, 188, 193
Files
copying, 72-73
creating, 233
definition of, 145
editing, 221-231
inspecting, 210-221
nonprogram, 51-52
program, 49-51, 55
sequential, 146-163
system, 62
virtual array, 146-147, 163-170
Filespec, 51
definition of, 51
Finishing an EDI session, 231
Flow
definition of, 75
FOR INPUT, 148, 165-166
FOR loop, 88, 95, 103-104
FOR OUTPUT, 148, 165-166
FOR statement, 89-91
form of, 90
Format description, 177-179
centered, 183
commas, 180
decimal point, 179
dollar sign, 180-181
E notation, 181
extended, 183
left-justified, 182
minus sign after, 180
number of digits, 179
numeric, 179-182
preceding asterisks, 180
right-justified, 182
string, 182-184
trailing minus sign, 180
Formatted output, 177
FORMFEED, 232

Function, 16

Functions
ABS, 118
arithmetic, 117-118
ASC, 125-126, 129-130
ATN, 17, 117
BIN, 125
CHRS, 125, 127, 129
CLK, 121
COS, 17, 117
DATS, 121
definition of, 16
EXP, 19, 117
INT, 118
LEN, 122, 128
LOG, 19, 117
LOG10, 19
OCT, 125
PI, 17, 117
POS, 123-124
RND, 118-120
SEG$, 122, 124-125, 128-129
SGN, 118, 120
SIN, 17, 117
SQR, 17, 117
STR$, 125, 128
string, 120-125
system, 176
TAB, 35-36
trigonometric, 117
TRMS$, 122-123
user-defined, 130-133
VAL, 125, 127

GO TO statement, 81-82
form of, 81

GOSUB statement, 136-138
form of, 137

Graphic routine, 143

Horizontal tab, 218-219
HT, 218-219

IF statement, 75-76
form of, 76

IF END # statement, 152-153,
158-159
form of, 152
IF/GO TO statement, 81
form of, 81
IF/THEN statement, 78-80
form of, 78
Immediate mode, 2, 7, 20, 235, 236
Infinite loop, 86
INI command, 68, 71-72
form of, 68
Initialize, 68, 71-72
definition of, 64, 68
Initialized diskette
graphic of, 64
Input, 2
Input sequential file example,
162-163
INPUT statement, 29-31, 37-39, 173
form of, 31
INPUT # statement, 151
form of, 151
Inserting new characters, 226
Inserting new lines, 226
INSPECT command, 204-205, 207,
209
form of, 207
Inspecting files, 210-221
Instrument bus routine, 143
INT function, 118
form of, 118
Integer arithmetic, 115
Integer variable, 21, 114
definition of, 113

Keypad, 206
Keypad editing and BASIC
programs, 207

Keypad editing

terminating a session, 231
Keypad editor

file restrictions, 204
Keys

!, 209

| FILE, 208, 212, 213

| SEARCH, 215

INDEX

<, 209, 212

—, 209, 211

1,209, 211-212

1 FILE, 208, 211, 213

1 SEARCH, 208, 215-216

CTRL/C and keypad editor, 232

CTRL/L and keypad editor, 232

CTRL/Q and keypad editor, 233

CTRL/S and keypad editor, 233

CTRL/U and keypad editor, 222,
229, 230, 232

CTRL/W and keypad editor, 232

DELETE, 222, 226-227

DELETE AT CURSOR, 222, 228

DELETE LINE—, 223, 225, 228,
230

LINE«, 209, 220

LINE—, 209, 220

NO SCROLL, 233

STORE FILE, 208, 221, 231

TAB, 218

KILL statement
form of, 170

Lab module routines, 111, 143
LEN function, 122, 128
form of, 122
LENGTH command, 57-58
form of, 57
LET, 21
LET statement, 21, 38
LF, 208
Line printers
editing files for, 232
Line terminator in search models,
217-218
LINE< key, 209, 220
LINE— key, 209, 220
LINPUT statement, 38
form of, 38
LINPUT # statement, 151, 154,
157-162
form of, 152
LIST command, 27, 58
form of, 58
LISTNH command, 59 249

PROGRAMMING FUNDAMENTALS

250

Literal \
numeric, 9
form of, 9
string, 32-33
LOG function, 117
form of, 19
LOG10 function
form of, 19
Logarithmic function, 19
Logical expression, 76
definition of, 76
form of, 76
Loop, 86-88, 90-92, 100
definition of, 85
FOR, 95
Lower case, 2

Lower to upper case example,
128-130, 139

Magnitude, 10

Master volume, 62

Merging files example, 153-161
Mixed mode arithmetic, 114, 115-116
Multiple statement line, 22-23
Multiplication, 12-16

NAME statement
form of, 170-171
Name
string variable, 37
Nesting
expressions, 15
FOR loops, 103-104
functions, 17
loops, 100-103
definition of, 101
subroutines, 140
NEW command, 26, 28
form of, 28
New diskette
graphic of, 63
NEXT statement, 89-90, 92
form of, 90
NO SCROLL key, 4, 233
NONAME, 28

Nonprogram file, 51
Nonsystem volume, 66
definition of, 62
Null string
definition of, 37
Numeric literal
definition of, 9
form of, 13
Numeric variable, 20-21

OCT function, 125

OLD command, 52-53, 146

ON/GO TO statement, 82, 97
form of, 82

ON/GOSUB statement
form of, 140

One-dimensional array, 96-98,

104-105, 110

definition of, 96

OPEN statement, 147-149, 165-166
form of, 147, 165

Opening files, 147-148

Output, 2, 31-32
formatted, 177

OVERLAY statement, 185, 200-201
form of, 200

Overriding priority, 14-16

Owner, 68-69

Parentheses
use of, 14-15
PI function, 17, 117

-POS function, 122-124

form of, 123
Precision, 16-17
PRINT format
See format description
PRINT statement, 3
form of, 8
PRINT USING errors, 184
PRINT USING statement, 177-184
Print zones, 33-35
definition of, 34
PRINT # statement, 150
form of, 149

Priority, 11-16, 31
overriding, 14
Program, 3, 29
definition of, 25
Program file, 49-52, 55, 64, 145
definition of, 49
Program flow
definition of, 75
Program format, 28
Program mode, 2, 25, 29
Program name, 26, 28, 50
form of, 50
Program termination, 83

Quadratic formula, 117

QUEST program, 101-102, 169-170

Question mark prompt, 30-31

Questionnaire example, 93, 97-103,
105, 169-170

Radians, 17
RANDOMIZE statement, 119-120
Range of magnitude, 10
READ statement, 173-176
form of, 173
READY message, 2
Real variable, 114
definition of, 113
Relational operator
arithmetic, 77
string, 77-78
REMARK statement, 40-41
REPLACE command, 53-54
form of, 53
RESEQ command, 47-48, 82-83,
141-142
form of, 47
RESTORE statement
form of, 176
RESTORE # statement
form of, 153
RETURN Kkey, 2, 4
RETURN statement, 136-138
form of, 137

INDEX

RND function, 118-120
form of, 119

Rounding, 10

Routines,
definition of, 143
graphic, 143
instrument bus, 143
lab module, 143

Row major order, 111

RUN command, 27-29, 31
form of, 59-61

Run
definition of, 27

RUNNH command, 60-61

SAVE command, 49-52, 145
form of, 51
Saving programs, 48
Scientific notation
See E notation, 10
SCR command, 22, 28
Scratch command, 22, 28
Screen width and keypad editor, 233
Search failures, 216
Search model, 208, 214, 218, 220
entering, 214
terminating, 215
unique, 216-217
Searching, 213-218
SEGS$ function, 122, 124-125,
128-129

_/ form of, 124

Semicolon
use of, 35

Sequential file, 145-163
definition of, 146

SGN function, 118
form of, 120

Shell sort, 189-190

SIN function, 17, 117
form of, 18

Sine function, 17

Special characters, 4-5

Special keys, 4

SQR function, 17, 117 251

PROGRAMMING FUNDAMENTALS

Square root function, 17
Statement numbers, 28-29
Statements
assignment, 21, 38, 80
CHAIN, 185
CLOSE, 147, 149, 150, 167-168
COMMON, 194-195
DATA, 173-176
DEF, 131-133
definition of, 3, 43
DIM, 94, 110
DIM #, 166-167
END, 83
FOR, 88-92
GO TO, 81
GOSUB, 136-138
IF, 75-76
IF END #, 152-153
IF/GO TO, 81
IF/THEN, 78-80
INPUT, 29-31, 37-39, 173
INPUT #, 151
KILL, 170
LET, 21, 38
LINPUT, 38-39
LINPUT #, 151, 154-156
NAME, 170-171
NEXT, 88-92
ON/GO TO, 82, 97
ON/GOSUB, 140
OPEN, 147-149, 166-167
OVERLAY, 185, 200
PRINT USING, 177-179
PRINT #, 149-150
RANDOMIZE, 119-120
READ, 173-176
REMARK, 40-41
RESEQ, 141-142
RESTORE, 176
RESTORE #, 153
RETURN, 136-138
STOP, 83
STOP statement, 83
Storage media, 5
See also volumes, diskette
STORE FILE key, 208, 221, 231

STR$ function, 125, 127-128
form of, 128
String expression, 38
String function, 120, 122
String literal, 32-33
definition of, 32
form of, 32-33
String operation, 39
String relational operator, 77-78
String variable, 36-38
String variable name, 37
Structure of volumes, 63
SUB command, 44-47
form of, 45
Subroutine, 135-142
definition of, 135
nesting, 140
Subscript, 96, 98-99, 106-110
definition of, 93
Subscripted variable, 106, 109
Substring, 124
definition of, 124
Subtraction, 11
SYo0:, 50, 62, 71
definition of, 5
SY1: 62, 64, 71
definition of, 5
Symbol, wrap, 222, 224-225
System file, 65
System function, 176
System volume, 62, 65, 68
definition of, 62

Tab, 218
TAB function, 35-36
form of, 35
TAB key, 219
in search models, 218
Target, 216

Terminating a keypad editor session,

231
Terminating search models, 215

Terminators, 208
Time, 121

TIME command, 121
form of, 121
Tone, 212-213
Trigonometric functions, 17, 117
form of, 117
TRMS$ function, 122
form of, 123
Two-dimensional array, 96, 98-100,
105, 111
definition of, 98
Type,
data, 113
file, 50-51
TYPE command
form of, 56

Unconditional GO TO, 81
Unique search models, 216-217
UNSAVE command, 66

form of, 66
Upper case, 2-3
User-defined function, 130-133
USING, PRINT, 177

VAL function, 125, 127-128
form of, 127

Variable name, 21

Variables, 20-22, 29-31
definition of, 20

INDEX

integer, 21, 113-114
numeric, 20-21
real, 113
string, 36-38
subscripted, 106, 109
VERIFY command, 70
form of, 70
Virtual array file, 145-147, 163-170
definition of, 146-147
Volume id, 55, 68-69
Volumes, 50, 55, 62-66, 68, 145-146
definition of, 5
master, 62-63
nonsystem, 62, 66
system, 65, 68
VT, 208

Warning tone

See Tone
Word

definition of, 57
Workspace, 20, 22, 27-28, 57,

110-111

definition of, 4
Wrap symbol, 222, 224
Wrapped lines, 224

Yes/no validation example, 136,
139-140

253

MINC-11 Book 2:
MINC Programming Fundamentals
AA-D799B-TC

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments sub-
mitted on this form at the company’s discretion. If you require an immediate
answer and you are under warranty, call the appropriate MINC Customer
Support Center. (The MINC Customer Support Centers are listed in the MINC
Newsletter.)

Did you find this manual understandable, usable, and well-organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

\,
Please indicate the type of reader that you most nearly represent.

(0 Assembly language programmer

(] Higher-level language programmer

[J Occasional programmer (experienced)

[J User with little programming experience
(0 Student programmer
[J Other (please specify)

Name Date

Organization Telephone

Street

City State Zip Code

or Country

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MR1-2/E37
MARLBOROUGH, MASSACHUSETTS 01752

	B2MPF_00_0001
	B2MPF_00_0002
	B2MPF_00_0003
	B2MPF_00_0004
	B2MPF_00_0005
	B2MPF_00_0006
	B2MPF_00_0007
	B2MPF_00_0008
	B2MPF_00_0009
	B2MPF_00_0010
	B2MPF_01_0001
	B2MPF_01_0002
	B2MPF_01_0003
	B2MPF_01_0004
	B2MPF_01_0005
	B2MPF_01_0006
	B2MPF_02_0007
	B2MPF_02_0009
	B2MPF_02_0010
	B2MPF_02_0011
	B2MPF_02_0012
	B2MPF_02_0013
	B2MPF_02_0014
	B2MPF_02_0015
	B2MPF_02_0016
	B2MPF_02_0017
	B2MPF_02_0018
	B2MPF_02_0019
	B2MPF_02_0020
	B2MPF_02_0021
	B2MPF_02_0022
	B2MPF_02_0023
	B2MPF_02_0024
	B2MPF_03_0025
	B2MPF_03_0026
	B2MPF_03_0027
	B2MPF_03_0028
	B2MPF_03_0029
	B2MPF_03_0030
	B2MPF_03_0031
	B2MPF_03_0032
	B2MPF_03_0033
	B2MPF_03_0034
	B2MPF_03_0035
	B2MPF_03_0036
	B2MPF_03_0037
	B2MPF_03_0039
	B2MPF_03_0040
	B2MPF_03_0041
	B2MPF_03_0042
	B2MPF_04_0043
	B2MPF_04_0045
	B2MPF_04_0046
	B2MPF_04_0047
	B2MPF_04_0048
	B2MPF_04_0049
	B2MPF_04_0050
	B2MPF_04_0051
	B2MPF_04_0052
	B2MPF_04_0053
	B2MPF_04_0054
	B2MPF_04_0055
	B2MPF_04_0056
	B2MPF_04_0057
	B2MPF_04_0059
	B2MPF_04_0060
	B2MPF_04_0061
	B2MPF_04_0062
	B2MPF_04_0063
	B2MPF_04_0064
	B2MPF_04_0065
	B2MPF_04_0066
	B2MPF_04_0067
	B2MPF_04_0068
	B2MPF_04_0069
	B2MPF_04_0071
	B2MPF_04_0072
	B2MPF_04_0073
	B2MPF_04_0074
	B2MPF_05_0075
	B2MPF_05_0076
	B2MPF_05_0077
	B2MPF_05_0078
	B2MPF_05_0079
	B2MPF_05_0080
	B2MPF_05_0081
	B2MPF_05_0082
	B2MPF_05_0083
	B2MPF_05_0084
	B2MPF_06_0085
	B2MPF_06_0086
	B2MPF_06_0087
	B2MPF_06_0088
	B2MPF_06_0089
	B2MPF_06_0091
	B2MPF_06_0092
	B2MPF_07_0093
	B2MPF_07_0094
	B2MPF_07_0095
	B2MPF_07_0096
	B2MPF_07_0097
	B2MPF_07_0098
	B2MPF_07_0099
	B2MPF_07_0100
	B2MPF_07_0101
	B2MPF_07_0102
	B2MPF_07_0103
	B2MPF_07_0104
	B2MPF_07_0105
	B2MPF_07_0106
	B2MPF_07_0107
	B2MPF_07_0108
	B2MPF_07_0109
	B2MPF_07_0110
	B2MPF_07_0111
	B2MPF_07_0112
	B2MPF_08_0113
	B2MPF_08_0114
	B2MPF_08_0115
	B2MPF_08_0116
	B2MPF_08_0117
	B2MPF_08_0118
	B2MPF_08_0119
	B2MPF_08_0120
	B2MPF_08_0121
	B2MPF_08_0122
	B2MPF_08_0123
	B2MPF_08_0124
	B2MPF_08_0125
	B2MPF_08_0126
	B2MPF_08_0127
	B2MPF_08_0128
	B2MPF_08_0129
	B2MPF_08_0130
	B2MPF_08_0131
	B2MPF_08_0132
	B2MPF_08_0133
	B2MPF_08_0134
	B2MPF_09_0135
	B2MPF_09_0136
	B2MPF_09_0137
	B2MPF_09_0138
	B2MPF_09_0139
	B2MPF_09_0140
	B2MPF_09_0141
	B2MPF_09_0142
	B2MPF_10_0143
	B2MPF_10_0144
	B2MPF_11_0145
	B2MPF_11_0146
	B2MPF_11_0147
	B2MPF_11_0148
	B2MPF_11_0149
	B2MPF_11_0150
	B2MPF_11_0151
	B2MPF_11_0152
	B2MPF_11_0153
	B2MPF_11_0154
	B2MPF_11_0155
	B2MPF_11_0156
	B2MPF_11_0157
	B2MPF_11_0158
	B2MPF_11_0159
	B2MPF_11_0160
	B2MPF_11_0161
	B2MPF_11_0162
	B2MPF_11_0163
	B2MPF_11_0164
	B2MPF_11_0165
	B2MPF_11_0167
	B2MPF_11_0168
	B2MPF_11_0169
	B2MPF_11_0170
	B2MPF_11_0171
	B2MPF_12_0172
	B2MPF_12_0173
	B2MPF_12_0174
	B2MPF_12_0175
	B2MPF_12_0176
	B2MPF_13_0177
	B2MPF_13_0178
	B2MPF_13_0179
	B2MPF_13_0180
	B2MPF_13_0181
	B2MPF_13_0182
	B2MPF_13_0183
	B2MPF_13_0184
	B2MPF_14_0185
	B2MPF_14_0187
	B2MPF_14_0188
	B2MPF_14_0189
	B2MPF_14_0190
	B2MPF_14_0191
	B2MPF_14_0192
	B2MPF_14_0193
	B2MPF_14_0194
	B2MPF_14_0195
	B2MPF_14_0196
	B2MPF_14_0197
	B2MPF_14_0198
	B2MPF_14_0199
	B2MPF_14_0201
	B2MPF_14_0202
	B2MPF_15_0203
	B2MPF_15_0204
	B2MPF_15_0205
	B2MPF_15_0206
	B2MPF_15_0207
	B2MPF_15_0208
	B2MPF_15_0209
	B2MPF_15_0210
	B2MPF_15_0211
	B2MPF_15_0212
	B2MPF_15_0213
	B2MPF_15_0214
	B2MPF_15_0215
	B2MPF_15_0216
	B2MPF_15_0217
	B2MPF_15_0218
	B2MPF_15_0219
	B2MPF_15_0220
	B2MPF_15_0221
	B2MPF_15_0222
	B2MPF_15_0223
	B2MPF_15_0224
	B2MPF_15_0225
	B2MPF_15_0226
	B2MPF_15_0227
	B2MPF_15_0228
	B2MPF_15_0229
	B2MPF_15_0230
	B2MPF_15_0231
	B2MPF_15_0232
	B2MPF_15_0233
	B2MPF_15_0234
	B2MPF_16_0235
	B2MPF_16_0236
	B2MPF_16_0237
	B2MPF_16_0238
	B2MPF_17_0239
	B2MPF_17_0240
	B2MPF_98_0241
	B2MPF_98_0242
	B2MPF_98_0243
	B2MPF_98_0244
	B2MPF_99_0245
	B2MPF_99_0246
	B2MPF_99_0247
	B2MPF_99_0248
	B2MPF_99_0249
	B2MPF_99_0250
	B2MPF_99_0251
	B2MPF_99_0252
	B2MPF_99_0253
	B2MPF_99_0254
	B2MPF_99_0255
	B2MPF_99_0256

