APPENDIX B
ASSIST09 MONITOR PROGRAM

B.1 GENERAL DESCRIPTION

The M6809 is a high-performance microprocessor which supports modern programming
techniques such as position-independent, reentrancy, and modular programming. For a
software monitor to take advantage of such capabilities demands a more refined and
sophisticated user interface than that provided by previous monitors. ASSISTO09 is a
monitor which supports the advanced features that the M6809 makes possible.
ASSISTO09 features include the following:

® Coded in a position (address) independent manner. Will execute anywhere in the
64K address space.
® Multiple means available for installing user modifications and extensions.

® Full complement of commands for program development including breakpoint and
trace.

@ Sophisticated monitor calls for completely address-independent user program ser-
vices.

® RAM work area is located relative to the ASSIST09 ROM, not at a fixed address as
with other monitors.

® Easily adapted to real-time environments.

® Hooks for user command tables, I/O handlers, and default specifications.

® A complete user interface with services normally only seen in full disk operating
systems.

The concise instruction set of the M6809 allows all of these functions and more to be
contained in only 2048 bytes.

The ASSIST09 monitor is easily adapted to run under control of a real-time operating
system. A special function is available which allows voluntary time-slicing, as well as
forced time-slicing upon the use of several service routines by a user program.

B.2 IMPLEMENTATION REQUIREMENTS

Since ASSIST09 was coded in an address-independent manner, it will properly execute
anywhere in the 64K address space of the M6809. However, an assumption must be made
regarding the location of a work area needed to hold miscellaneous variables and the
default stack location. This work area is called the page work area and it is addressed
within ASSISTO09 by use of the direct page register. It is located relative to the start of the

B-1

ASSIST09 ROM by an offset of —1900 hexadecimal. Assuming ASSISTO09 resides at the
top of the memory address space for direct control of the hardware interrupt vectors, the
memory map would appear as shown in Figure B-1.

FFFF ASSISTO9 at Top of
ASSIST09 Memory Map
Base ROM
F800 Extension ROM or Other Use
User
Extension ROM
FOOO Unused 2K
(Unused)
E800 Default PTM and ACIA
Locations
PTM/ACIA
12000] Work Page and Default
Work Page/Stack Stack (DFFF and Down)

Figure B-1. Memory Map

If F80O0 is not the start of the monitor ROM the addresses would change, but the relative
locations would remain the same except for the programmable timer module (PTM) and
asynchronous communications interface adapter (ACIA) default addresses which are fix-
ed.

The default console input/output handlers access an ACIA located at EO08. For trace
commands, a PTM with default address E000 is used to force an NMI so that single in-
structions may be executed. These default addresses may easily be changed using one
of several methods. The console I/0 handlers may also be replaced by user routines. The
PTM is initialized during the MONITR service call (see Paragraph B.9 SERVICES) to fireup
the monitor unless its default address has been changed to zero, in which case no PTM
references will occur.

B.3 INTERRUPT CONTROL

Upon reset, a vector table is created which contains, among other things, default inter-
rupt vector handler appendage addresses. These routines may easily be replaced by user
appendages with the vector swap service described later. The default actions taken by
the appendages are as follows:

RESET — Build the ASSIST09 vector table and setup monitor defaults, then invoke
the monitor startup routine.

SWI — Request a service from ASSISTO09.
FIRQ — An immediate RTI is done.

SWI2, SWI3, IRQ, Reserved, NMI — Force a breakpoint and enter the command
processor.

B-2

The use of IRQ is recommended as an abort function during program debugging ses-
sions, as breakpoints and other ASSIST09 defaults are reinitialized upon RESET. Only the
primary software interrupt instruction (SWI) is used, not the SWI2 or SWI3. This avoids
page fault problems which would otherwise occur with a memory management unit as
the SWI2 and SWI3 instructions do not disable interrupts.

Counter number one of the PTM is used to cause an NMT interrupt for the trace and break-
point commands. At RESET the control register for timer one is initialized for tracing pur-
poses. If no tracing or breakpointing is done then the entire PTM is available to the user.
Otherwise, only counters two and three are available. Although control register two must
be used to initialize control register one, ASSIST09 returns control register two to the
same value it has after a RESET occurs. Therefore, the only condition imposed on a user
program is that if the ‘“operate/preset” bit in control register one must be turned on, $A7
should be stored, $A6 should be stored if it must be turned off.

B.4 INITIALIZATION

During ASSISTO09 execution, a vector table is used to address certain service routines
and default values. This table is generated to provide easily changed control information
for user modifications. The first byte of the ASSISTO9 ROM contains the start of a
subroutine which initializes the vector table along with setting up certain default values
before returning to the caller.

If the ASSIST09 RESET vector receives control, it does three things:
1. Assigns a default stack in the work space,
2. Calls the aforementioned subroutine to initialize the vector table, and
3. Fires up the ASSIST09 monitor proper with a MONITR SWI service request.

However, a user routine can perform the same functions with a bonus. After calling the
vector intitialization subroutine, it may examine or alter any of the vector table values
before starting normal ASSIST09 processing. Thus, a user routine may ‘‘bootstrap”
ASSISTO09 and alter the default standard values.

Another method of inserting user modifications is to have a user routine reside at an ex-
tension ROM location 2K below the start of the ASSIST0O9 ROM. The vector table in-
itialization routine mentioned above, looks for a “BRA*” flag ($20FE) at this address, and
if found calls the location following the flag as a subroutine with the U register pointing
to the vector table. Since this is done after vector table initialization, any or all defaults
may be altered at this time. A big advantage to using this method is that the modifica-
tions are ‘“automatic” in that upon a RESET condition the changes are made without
overt action required such as the execution of a memory change command.

No special stack is used during ASSIST09 processing. This means that the stack pointer
must be valid at all interruptable times and should contain enough room for the stacking
of at least 21 bytes of information. The stack in use during the initial MONITR service call
to start up ASSISTO09 processing becomes the ‘“official” stack. If any later stack validity
checks occur, this same stack will be re-based before entering the command handler.

B-3

ASSISTO09 uses a work area which is addressed at an offset from the start of the
ASSIST09 ROM. The offset value is — 1900 hexadecimal. This points to the base page us-
ed during monitor execution and contains the vector table as well as the start of the
default stack. If the default stack is used and it exceeds 81 bytes in size, then contiguous
RAM must exist below this base work page for proper extension of the stack.

BS. INPUT/OUTPUT CONTROL

Output generated by use of the ASSIST09 services may be halted by pressing any key,
causing a ‘FREEZE’ mode to be entered. The next keyboard entry will release this condi-
tion allowing normal output to continue. Commands which generate large amounts of
output may be aborted by entering CANCEL (CONTROL-X). User programs may also
monitor for CANCEL along with the ‘FREEZE’ condition even when not performing con-
sole I/0 (PAUSE service).

B.6 COMMAND FORMAT

There are three possible formats for a command:
<Command> CR

<Command> <Expressioni> CR
<Command> <Expression1> <Expression2> CR

The space character is used as the delimiter between the command and all arguments.
Two special quick commands need no carriage return, ““.”” and “/”’. To re-enter a command
once a mistake is made, type the CANCEL (CONTROL-X) key.

Each “expression” above consists of one or more values separated by an operator.
Values can be hex strings, the letters “P”’, “M”, and “W”, or the result of a function. Each
hexadecimal string is converted internally to a 16-bit binary number. The letter “P”
stands for the current program counter, “M” for the last memory examine/change ad-
dress, and “W” for the window value. The window value is set by using the WINDOW
command.

One function exists and it is the INDIRECT function. The character “@"” following a value
replaces that value with the 16-bit number obtained by using that value as an address.

Two operators are allowed, “ +” and “ —” which cause addition and subtraction. Values
are operated on in a left-to-right order.
Examples:

480 — hexadecimal 480

W + 3 — value of window plus three

P-200 — current program counter minus 200 hexadecimal

M —-W — current memory pointer minus window value

100@ — value of word addressed by the two bytes at 100 hexadecimal

P+ 1@ — value addressed by the word located one byte up from the current program
counter

B-4

B.7 COMMAND LIST

Table B-1 lists the commands available in the ASSIST09 monitor.

Table B-1. Command List

Command Name Description Command Entry
Breakpoint Set, clear, display, or delete breakpoints B
Call Call program as subroutine C
Display Display memory block in hex and ASCII D
Encode Return indexed postbyte value E
Go Start or resume program execution G
Load Load memory from tape L
Memory Examine or alter memory M

Memory change or examine last referenced /

Memory change or examine hex/
Null Set new character and new line padding N
Offset Compute branch offsets (0}
Punch Punch memory on tape P
Registers Display or alter registers R
Stlevel Alter stack trace level value S
Trace Trace number of instructions T

Trace one instruction .
Verify Verify tape to memory load Y
Window Set a window value w

B.8 COMMANDS
Each of the commands are explained on the following pages. They are arranged in

alphabetical order by the command name used in the command list. The command name
appears at each margin and in slightly larger type for easy reference.

B-5

BREAKPOINT BREAKPOINT

Format: Breakpoint
Breakpoint —
Breakpoint <Address>
Breakpoint — <Address>

Operation: Set or change the breakpoint table. The first format displays all breakpoints.
The second clears the breakpoint table. The third enters an address into the
table. The fourth deletes an address from the table. At reset, all breakpoints
are deleted. Only instructions in RAM may be breakpointed.

CALL CALL

Format: Call
Call <Address>

Operation: Call and execute a user routine as a subroutine. The current program counter
will be used unless the address is specified. The user routine should eventual-
ly terminate with a “RTS” instruction. When this occurs, a breakpoint will en-
sue and the program counter will point into the monitor.

B-6

DISPLAY DISPLAY

Format:

Operation:

Display < From>
Display <From> <Length>
Display <From> <To>

Display contents of memory in hexadecimal and ASCII characters. The se-
cond argument, when entered, is taken to be a length if it is less than the first,
otherwise it is the ending address. A default length of 16 decimal is assumed
for the first format. The addresses are adjusted to include all bytes within the
surrounding modulo 16 address byte boundary. The CANCEL (CONTROL-X)
key may be entered to abort the display. Care must be exercised when the last
15 bytes of memory are to be displayed. The <Length> option should always
be used in this case to assure proper termination: D FFEO 40

Examples:

D M 10 — Display 16 bytes surrounding the last memory
location examined.

D EO00 FO00 — Display memory from E000 to FOOO hex.

ENCODE ENCODE

Format:

Operation:

Encode <Indexed operand>

The encode command will return the indexing instruction mode postbyte
value from the entered assembler-like syntax operand. This is useful when
hand coding instructions. The letter “H” is used.to indicate the number of hex
digits needed in the expression as shown in the following examples:

E\Y — Return zero offset to Y register postbyte.

E [HHHH,PCR] — Return two byte PCR offset using indirection.
E[,S+ +] — Return autoincrement S by two indirect.

E H,X — Return 5-bit offset from X.

Note that one “H” specifies a 5-bit offset, and that the result given will have
zeros in the offset value position. This comand does not detect all incorrectly
specified syntax or illegal indexing modes.

B-7

GO GO

Format: Go
Go <Address>

Operation: Execute starting from the address given. The first format will continue from
the current program counter setting. If it is a breakpoint no break will be
taken. This allows continuation from a breakpoint. The second format will
breakpoint if the address specified is in the breakpoint list.

LOAD LOAD

Format: Load
Load < Offset>

Operation: Load a tape file created using the S1-S9 format. The offset option, if used, is
added to the address on the tape to specify the actual load address. All off-
sets are positive, but wrap around memory modulo 64K. Depending on the
equipment involved, after the load is complete a few spurious characters may
still be sent by the input device and interpreted as command characters. If
this happens, a CANCEL (CONTROL-X) should be entered to cause such
characters to be ignored. If the load was not successful a ‘“?” is displayed.

B-8

MEMORY

Format:

Operation:

MEMORY

MEMORY < Address>/

< Address >/

/

Initiate the memory examine/change function. The second format will not ac-
cept an expression for the address, only a hex string. The third format
defaults to the address displayed during the last memory change/examine
function. (The same value is obtained in expressions by use of the letter “M”.)
After activation, the following actions may be taken until a carriage return is

entered:
< Expr>

SPACE

LF

VAN

CR
'<Text>’

Replaces the byte with the specified value. The value may
be an expression.

Go to next address and print the byte value.

(Comma) Go to next address without printing the byte
value.

(Line feed) Go to next address and print it along with the
byte value on the next line.

(Circumflex or Up arrow) Go the previous address and print
it along with the byte value on the next line.

Print the current address with the byte value on the next
line.

(Carriage return) Terminate the command.

Replace succeeding bytes with ASCII characters until the
second apostrophe is entered.

If a change attempt fails (i.e., the location is not valid RAM) then a question
mark will appear and the next location displayed.

NULL NULL

Format: Null <Specification>

Operation: Set the new line and character padding count values. The expression value is
treated as two values. The upper two hex represent the character pad count,
and the lower two the new line pad count (triggered by a carriage return). An
expression of less than three hex digits will set the character pad count to
zero. The values must range from zero to 7F hexadecimal (127 decimal).
Example:

N 3 — Set the character count to zero and new line count
to three.

N 207 — Set character padding count to two and new line
count to seven.

Settings for Tl Silent 700 terminals are:
Baud Setting

100 0
300 4
1200 317
2400 72F

OFFSET OFFSET

Format: Offset <Offset addr> <To instruction>

Operation: Print the one and two byte offsets needed to perform a branch from the first
expression to the instruction. Thus, offsets for branches as well as indexed
mode instructions which use offsets may be obtained. If only a four byte
value is printed, then a short branch count cannot be done between the two
addresses.

Example:

0 P+2 A000 — Compute offsets needed from the current pro-
gram counter plus two to A00O.

B-10

PUNCH PUNCH

Format: Punch <From> <To>

Operation: Punch or record formatted binary object tape in S1-S9 (MIKBUG) format.

REGISTER REGISTER

Format: Register

Operation: Print the register set and prompt for a change. At each prompt the following
may be entered.

SPACE Skip to the next register prompt

<Expr> SPACE Replace with the specified value and prompt for the next
register.

<Expr> CR (carriage return) Replace with the specified value and ter-
minate the command.

CR Terminate the command.

MIKBUG is a trademark of Motorola Inc.

B-11

STLEVEL STLEVEL

Format:

Operation:

Stlevel
Stlevel < Address>

Set the stack trace level for inhibiting tracing information. As long as the
stack is at or above the stack level address, the trace display will continue.
However, when lower than the address it is inhibited. This allows tracing of a
routine without including all subroutine and lower level calls in the trace in-
formation. Note that tracing through a ASSIST09 “SWI” service request may
also temporarily supress trace output as explained in the description of the
trace command. The first format sets the stack trace level to the current pro-
gram stack value.

TRACE TRACE

Format:

Operation:

Trace <Count>
. (period)

Trace the specified number of instructions. At each trace, the opcode just ex-
ecuted will be shown along with the register set. The program counter in the
register display points to the NEXT instruction to be executed. A CANCEL
(CONTROL-X) will prematurely halt tracing. The second format (period) will
cause a single trace to occur. Breakpoints have no effect during the trace.
Selected portions of a trace may be disabled using the STLEVEL command.
Instructions in ROM and RAM may be traced, whereas breakpoints may be
done only in RAM. When tracing through a ASSIST09 service request, the
trace display will be supressed starting two instructions into the monitor until
shortly before control is returned to the user program. This is done to avoid an
inordinate amount of displaying because ASSIST09, at times, performs a
sizeable amount of processing to provide the requested services.

B-12

VERIFY VERIFY

Format: Verify
Verify < Offset>

Operation: Verify or compare the contents of memory to the tape file. This command has

the same format and operation as a LOAD command except the file is com-
pared to memory. If the verify fails for any reason a “?” is displayed.

WINDOW WINDOW

Format: Window < Value>

Operation: Set the window to a value. This value may be referred to when entering ex-
pressions by use of the letter “W”. The window may be set to any 16-bit value.

B-13

B.9 SERVICES

The following describes services provided by the ASSIST09 monitor. These services are
invoked by using the “SWI” instruction followed by a one byte function code. All services
are designed to allow complete address independence both in invocation and operation.
Unless specified otherwise, all registers are transparent over the “SWI” call. In the
following descriptions, the terms ‘“‘input handler” and “output handler” are used to refer
to appendage routines which may be replaced by the user. The default routines perform
standard 1/0 through an ACIA for console operations to a terminal. The ASCIl CANCEL
code can be entered on most terminals by depressing the CONTROL and X keys
simultaneously. A list of services is given in Table B-2.

Table B-2. Services

Service Entry Code Description
Obtain input character INCHP 0 Obtain the input character in register A from the input handler
Output a character OUTCH 1 Send the character in the register A to the output handler
Send string PDATA1 2 Send a string of characters to the output handler
Send new line and string PDATA 3 Send a carriage return, line feed, and string of characters to the

output handler

Convert byte to hex OUT2HS 4 Display the byte pointed to by the X register in hex
Convert word to hex OUT4HS 5 Display the word pointed to by the X register in hex
Output to next line PCRLF 6 Send a carriage return and line feed to the output handler
Send space SPACE 7 Send a blank to the output handler

Fireup ASSISTO09 MONITR 8 Enter the ASSIST09 monitor

Vector swap VCTRSW 9 Examine or exchange a vector table entry

User breakpoint BRKPT 10 Display registers and enter the command handler

Program break and check PAUSE 1 Stop processing and check for a freeze or cancel condition

B-14

B R K PT User Breakpoint B R K PT

Code: 10
Arguments: None

Result: A disabled breakpoint is taken. The registers are displayed and the com-
mand handler of ASSISTO09 is entered.

Description: Establishes user breakpoints. Both SWI2 and SWI3 default appendages
cause a breakpoint as well, but do not set the | and F mask bits. However,
since they may both be replaced by user routines the breakpoint service
always ensures breakpoint availability. These user breakpoints have
nothing to do with system breakpoints which are handled differently by the
ASSIST09 monitor.

Example: BRKPT EQU 10 INPUT CODE FOR BRKPT
SwiI REQUEST SERVICE
FCB BRKPT FUNCTION CODE BYTE

I N C H P Obtain Input Character I N C H P

Code: 0
Arguments: None
Result: Register A contains a character obtained from the input handler.

Description: Control is not returned until a valid input character is received from the in-
put handler. The input character will have its parity bit (bit 7) stripped and
forced to a zero. All NULL ($00) and RUBOUT ($7F) characters are ignored
and not returned to the caller. The ECHO flag, which may be changed by
the vector SWAP service, determines whether or not the input character is
echoed to the output handler (full duplex operation). The default at reset is
to echo input. When a carriage return ($0D) is received, line feed ($A0) is
automatically sent back to the output handier.

Example: INCHNP EQU O INPUT CODE FOR INCHP
SWI PERFORM SERVICE CALL
FCB INCHNP FUNCTION FOR INCHNP

A REGISTER NOW CONTAINS NEXT CHARACTER

B-15

M 0 N IT R Startup ASSIST09 M 0 N IT R

Code:

Arguments:

Result:

Description:

Example:

8

S— Stack to become the “official’”’ stack

DP— Direct page default for executed user programs

A =0 Call input and output console initialization handlers and give the
“ASSIST09” startup message

A#0 Go directly to the command handler

ASSISTO9 is entered and the comand handler given control

The purpose for this function is to enter ASSISTO09, either after a system
reset, or when a user program desires to terminate. Control is not returned
unless a “GO” or “CALL” command is done without altering the program
counter. ASSIST09 runs on the passed stack, and if a stack error is
detected during user program execution this is the stack that is rebased.
The direct page register value in use remains the default for user program
execution.

The ASSISTO09 restart vector routine uses this function to startup monitor
processing after calling the vector build subroutine as explained in IN-
ITIALIZATION.

If indicated by the A register, the input and output initialization handlers
are called followed by the sending of the string “ASSIST09” to the output
handler. The programmable timer (PTM) is initialized, if its address is not
zero, such that register 1 can be used for causing an NMI during trace com-
mands. The command handler is then entered to perform the command re-
quest prompt.

MONITR EQU 8 INPUT CODE FOR MONITR
LOOP CLRA PREPARE ZERO PAGE REGISTER AND
* INITIALIZATION PARAMETER

TFR A,DP SET DEFAULT PAGE VALUE

LEAS STACK, PCR SETUP DEFAULT STACK VALUE

SWI REQUEST SERVICE

FCB MONITR FUNCTION CODE BYTE

BRA LOOP REENTER IF FALLOUT OCCURS

B-16

O UTC H Output a Character 0 UTC H

Code: 1
Arguments: Register A contains the byte to transmit.

Result: The character is sent to the output handler

The character is set as follows ONLY if a LINEFEED was the character to
transmit:

CC =0 if normal output occurred.

CC =1 if CANCEL was entered during output.

Description: If a FREEZE Occurs (any input character is received) then control is not
returned to the user routine until the condition is released. The FREEZE
condition is checked for only when a linefeed is being sent. Padding null
characters ($00) may be sent following the outputted character depending
on the current setting of the NULLS command. For DLE (Data Link Escape),
character nulls are never sent. Otherwise, carriage returns ($00) receive the
new line count of nulls, all other characters the character count of nulls.

Example: OUTCH EQU 1 INPUT CODE FOR OUTCH
LDA #0 LOAD CHARACTER “0”
SWi SEND OUT WITH MONITOR CODE
FCB OUTCH SERVICE CODE BYTE

OUTZHS Convert Byte to Hex OUTZHS

Code: 4

Arguments: Register X points to a byte to display in hex.

Result: The byte is converted to two hex digits and sent to the output handler
followed by a blank.
Example: OUT2HS EQU 4 INPUT CODE FOR OUT2HS
LEAX DATA, PCR POINT TO ‘DATA’ TO DECODE
SWi REQUEST SERVICE
FCB OUT2HS SERVICE CODE BYTE

B-17

0 UT4HS Convert Word to Hex OUT4HS

Code:
Arguments:

Result:

Example:

5
Register X points to a word (two bytes) to display in hex.

The word is converted to four hex digits and sent to the output handler
followed by a blank.

OUT4HS EQUS5 INPUT CODE FOR OUT4HS
LEAX DATA, PCR LOAD ‘DATA’ ADDRESS TO DECODE
SWI REQUEST ASSIST09 SERVICE
FCB OUT4HS SERVICE CODE BYTE

PAU S E Program Break and Check PAU S E

Code:
Arguments:

Result:

Description:

11
None

CC =0 For a normal return.
CC=1 If a CANCEL was entered during the interim.

The PAUSE service should be used whenever a significant amount of pro-
cessing is done by a program without any external interaction (such as con-
sole 1/0). Another use of the PAUSE service is for the monitoring of FREEZE
or CANCEL requests from the input handler. This allows multi-tasking
operating systems to receive control and possibly re-dispatch other pro-
grams in a timeslice-like fashion. Testing for FREEZE and CANCEL condi-
tions is performed before return. Return may be after other tasks have had
a chance to execute, or after a FREEZE condition is lifted. In a one task
system, return is always immediate unless a FREEZE occurs.

B-18

PC R L F Output to Next Line PC R L F

Code: 6
Arguments: None

Result: A carriage return and line feed are sent to the output handler.
C =1 if normal output occurred.
C=1if CONTROL-X was entered during output.

Description: If a FREEZE occurs (any input character is received), then control is not
returned to the user routine until the condition is released. The string is
completely sent regardless of any FREEZE or CANCEL events occurring.
Padding characters may be sent as described under the OUTCH service.

Example: PCRLF EQU 6 INPUT CODE PCRLF
SWiI REQUEST SERVICE
FCB PCRLF SERVICE CODE BYTE

P DATA Send New Line and String P DATA

Code: 3
Arguments: Register X points to an output string terminated with an ASCII EOT ($04).

Result: The string is sent to the output handler following a carriage return and line
feed.
CC =0 if normal output occurred.
CC=1 if CONTROL-X was entered during output.

Description: The output string may contain embedded carriage returns and line feeds
thus allowing several lines of data to be sent with one function call. If a
FREEZE occurs (any input character is received), then control is not return-
ed to the user routine until the condition is released. The string is complete-
ly sent regardless of any FREEZE or CANCEL events occurring. Padding
characters may be sent as described by the OUTCH function.

B-19

PDATA S Continued) PDATA

Example: PDATA EQU 3 INPUT CODE FOR PDATA
MSGOUT FCC ‘THIS IS A MULTIPLE LINE MESSAGE.’
FCB $0A, $0D LINE FEED, CARRIAGE RETURN
FCC ‘THIS IS THE SECOND LINE.’
FCB $04 STRING TERMINATOR
LEAX MSGOUT, PCR LOAD MESSAGE ADDRESS
SWI REQUEST A SERVICE
FCB PDATA SERVICE CODE BYTE

P DATA1 Send String P DATA1

Code: 2
Arguments: Register X points to an output string terminated with an ASCIl EOT ($04).

Result: The string is sent to the output handler.
CC =0 if normal output occurred.
CC=1 if CONTROL-X was entered during output.

Description: The output string may contain embedded carriage returns and line feeds
thus allowing several lines of data to be sent with one function call. If a
FREEZE occurs (any input character is received), then control is not return-
ed to the user routine until the condition is released. The string is complete-
ly sent regardless of any FREEZE or CANCEL events occurring. Padding
characters may be sent as described by the OUTCH function.

Example: PDATA EQU 2 INPUT CODE FOR PDATA1
MSG FCC ‘THIS IS AN OUTPUT STRING’
FCB $04 STRING TERMINATOR
LEAX MSG, PCR LOAD ‘MSG’ STRING ADDRESS
SWI REQUEST A SERVICE
FCB PDATA1 SERVICE CODE BYTE

B-20

S PAC E Single Space Output S PAC E

Code: 7
Arguments: None
Result: A space is sent to the output handler.

Description: Padding characters may be sent as described under the OUTCH service.

Example: SPACE EQU 7 INPUT CODE SPACE
SWiI REQUEST ASSIST09 SERVICE
FCB SPACE SERVICE CODE BYTE

VCT RSW Vector Swap VCT st

Code: 9

Arguments: Register A contains the vector swap input code.
Register X contains zero or a replacement value.

Result: Register X contains the previous value for the vector.

Description: The vector swap service examines/alters a word entry in the ASSISTO09 vec-
tor table. This table contains pointers and default values used during
monitor processing. The entry is replaced with the value contained in the X
register unless it is zero. The codes available are listed in Table B-3.

Example: VCTRSW EQU 9 INPUT CODE VCTRSW
IRQ EQU 12 IRQ APPENDAGE SWAP FUNCTION
CODE
LEAX MYIRQH,PCR LOAD NEW IRQ HANDLER ADDRESS
LDA #.IRQ LOAD SUBCODE FOR VECTOR SWAP
SWI REQUEST SERVICE
FCB VCTRSW SERVICE CODE BYTE

X NOW HAS THE PREVIOUS APPENDAGE ADDRESS

B-21

B.10 VECTOR SWAP SERVICE

The vector swap service allows user modifications of the vector table to be easily install-
ed. Each vector handler, including the one for SWI, performs a validity check on the stack
before any other processing. If the stack is not pointing to valid RAM, it is reset to the in-
itial value passed to the MONITR request which fired-up ASSISTO09 after RESET. Also, the
current register set is printed following a “?”” (question mark) and then the command
handler is entered. A list of each entry in the vector table is given in Table B-3.

Table B-3. Vector Table Entries

Entry Code Description
.AVTBL 0 Returns address of vector table
.CMDL1 2 Primary command list
.RSVD 4 Reserved MC6809 interrupt vector appendage
.SWI3 6 Software interrupt 3 interrupt vector appendage
.SWI2 8 Software interrupt 2 interrupt vector appendage
.FIRQ 10 Fast interrupt request vector appendage
.IRQ 12 Interrupt request vector appendage
.SWI 14 Software interrupt vector appendage
.NMI 16 Non-maskable interrupt vector appendage
.RESET 18 Reset interrupt vector appendage
.CION 20 Input console intiialization routine
.CIDTA 22 Input data byte from console routine
.CIOFF 24 Input console shutdown routine
.COON 26 Output console initialization routine
.CODTA 28 Output/data byte to console routine
.COOFF 30 Output console shutdown routine
.HSDTA 32 High speed display handler routine
.BSON 34 Punch/load initialization routine
.BSDTA 36 Punch/load handler routine
.BSOFF 38 Punch/load shutdown routine
.PAUSE 40 Processing pause routine
.CMDL2 44 Secondary command list
.ACIA 46 Address of ACIA
.PAD 48 Character and new line pad counts
.ECHO 50 Echo flag
.PTM 52 Programmable timer module address

The following pages describe the purpose of each entry and the requirements which
must be met for a user replaceable value or routine to be successfully substituted.

B-22

-AC I A ACIA Address -AC l A

Code: 46

Description: This entry contains the address of the ACIA used by the default console in-
put and output device handlers. Standard ASSISTO9 initialization sets this
value to hexadecimal E008. If this must be altered, then it must be done
before the MONITR startup service is invoked, since that service calls the
.COON and .COIN input and output device initialization routines which in-
itialize the ACIA pointed to by this vector slot.

.AVT B L Return Address of Vector Table .AVT B L

Code: 0

Description: The address of the vector table is returned with this code. This allows mass
changes to the table without individual calls to the vector swap service.
The code values are identical to the offsets in the vector table. This entry
should never be changed, only examined.

B-23

. BS DTA Punch/Load Handler Routine . BS DTA

Code:

Description:

36

This entry contains the address of a routine which performs punch, load,
and verify operations. The .BSON routine is always executed before the
routine is given control. This routine is given the same parameter list
documented for .BSON. The default handler uses the .CODTA routine to
punch or the .CIDTA routine to read data in S1/S9 (MIKBUG) format. The
function code byte must be examined to determine the type request being
handled.

A return code must be given which reflects the final processing disposition:

Z =1 Successful completion
or
Z =0 Unsuccessful completion.

The .BSOFF routine will be called after this routine is completed.

. BSO F F Punch/Load Shutdown Routine . BSO F F

Code:

Description:

38

This entry points to a subroutine which is designated to terminate device
processing for the punch, load, and verify handler .BSDTA. The stack con-
tains a parameter list as documented for the .BSON entry. The default
ASSISTO09 routine issues DC4 ($14 or stop) and DC3 ($13 or x-off) followed
by a one second delay to give the reader/punch time to stop. Also, an inter-
nally used flag by the INCHP service routine is cleared to reverse the ef-
fect caused by its setting in the .BSON handler. See that description for an
explanation of the proper use of this flag.

B-24

. BSO N Punch/Load Initialization Routine . BSO N

Code:

Description:

34

This entry points to a subroutine with the assigned task of turning on the
device used for punch, load, and verify processing. The stack contains a
parameter list describing which function is requested. The default routine
sends an ASCII “reader on” or “punch on” code of DC1 ($11) or DC2 ($12)
respectively to the output handler ((CODTA). A flag is also set which
disables test for FREEZE conditions during INCHNP processing. This is
done so characters are not lost by being interpreted as FREEZE mode in-
dicators. If a user replacement routine also uses the INCHNP service, then
it also should set this same byte non-zero and clear it in the .BSOFF
routine. The ASSISTO09 source listing should be consulted for the location
of this byte.

The stack is setup as follows:
S + 6 = Code byte, VERIFY (- 1), PUNCH (0), LOAD (1)
S + 4 = Start address for punch only
S +2=End address for punch, or offset for READ/LOAD
S + 0 =Return address

-CI DTA Input Data Byte from Console Routine .Cl DTA

Code:

Description:

22

This entry determines the console input handler appendage. The respon-
sibility of this routine is to furnish the requested next input character in the
A register, if available, and return with a condition code. The INCHP ser-
vice routine calls this appendage to supply the next character. Also, a
“FREEZE” mode routine calls at various times to test for a FREEZE condi-
tion or determine if the CANCEL key has been entered. Processing for this
appendage must abide by the following conventions:

Input: PC— ASSIST09 work page
S— Return address
Output: C=0, A=input character

C=1if no input character is yet available
Volatile Registers: U, B

The handler should always pass control back immediately even if no
character is yet available. This enables other tasks to do productive work
while input is unavailable. The default routine reads an ACIA as explained
in Paragraph B.2 Implementation Requirements.

B-25

. CI O F F Input Console Shutdown Routine . C I 0 F F

Code: 24

Description: This entry points to a routine which is called to terminate input processing.
It is not called by ASSIST09 at any time, but is included for consistency.
The default routine merely does an “RTS”. The environment is as follows:

Input: None
Output: Input device terminated
Volatile Registers: None

. C I 0 N Input Console Initialization Routine . C ' 0 N

Code: 20

Description: This entry is called to initiate the input device. It is called once during the
MONITR service which initializes the monitor so the command processor
may obtain commands to process. The default handler resets the ACIA
used for standard input and output and sets up the following default condi-
tions: 8-bit word length, no parity checking, 2 stop bits, divide-by-16 counter
ratio. The effect of an 8-bit word with no parity checking is to accept 7-bit
ASCII and ignore the parity bit.

Input: .ACIA Memory address of the ACIA
Output: The output device is initialized
Volatile Registers: A, X

B-26

-CM D L1 Primary Command List -C M D L1

Code:

2

Description: User supplied command tables may either substitute or replace the

ASSIST09 standard tables. The command handler scans two lists, the
primary table first followed by the secondary table. The primary table is
pointed to by this entry and contains, as a default, the ASSIST09 command
table. The secondary table defaults to a null list. A user may insert their own
table into either position. If a user list is installed in the secondary table
position, then the ASSIST09 list will be searched first. The default
ASSISTO09 list contains all one character command names. Thus, a user
command “PRINT” would be matched if the letters ‘PR’ are typed, but not
just a “P” since the system command list would match first. A user may
replace the primary system list if desired. A command is chosen on a first
match basis comparing only the character(s) entered. This means that two
or more commands may have the same initial characters and that if only
that much is entered then the first one in the list(s) is chosen.

Each entry in the users command list must have the following format:

+0 FCB L Where “L” is the size of the entry in-
cluding this byte

+1 FCC ‘<string>’ Where “<string>" is the command
name

+N FDB EP-* Where “EP” represents the symbol de-
fining the start of the command rou-
tine
The first byte is an entry length byte and is always three more than the
length of the command string (one for the length itself plus two for the
routine offset). The command string must contain only ASCIl alphanumeric
characters, no special characters. An offset to the start of the command
routine is used instead of an absolute address so that position-
independent programs may contain command tables. The end of the com-
mand table is a one byte flag. A — 1 ($FF) specifies that the secondary table
is to be searched, or a —2 ($FE) that command list searching is to be ter-
minated. The table represented as the secondary command list must end
with —2. The first list must end with a —1 if both lists are to be searched, or
a —2if only one list is to be used.

A command routine is entered with the following registers set:
DPR— ASSISTO09 page work area.
S—- A return address to the command processor.
Z=1 A carriage return terminated the command name.
Z=0 A space delimiter followed the command name.

B-27

.CMDLA1 T oty .CMDL1

A command routine is entered after the delimiter following the command
name is typed in. This means that a carriage return may be the delimiter
entered with the input device resting on the next line. For this reason the Z
bit in the condition code is set so the command routine may determine the
current position of the input device. The command routine should ensure
that the console device is left on a new line before returning to the com-
mand handler.

. C M D L2 Secondary Command List -C M D L2

Code:

44

Description: This entry points to the second list table. The default is a null list followed

by a byte of —2. A complete explanation of the use for this entry is provided
under the description of the .CMDL1 entry.

-CO DTA Output Data Byte to Console Routine .CO DTA

Code:

Description:

28

The responsibility of this handler is to send the character in the A register
to the output device. The default routine also follows with padding
characters as explained in the description of the OUTCH service. If the out-
put device is not ready to accept a character, then the ‘“pause” subroutine
should be called repeatedly while this condition lasts. The address of the
pause routine is obtained from the .PAUSE entry in the vector table. The
character counts for padding are obtained from the .PAD entry in the table.
All ASSISTO09 output is done with a call to this appendage. This includes
punch processing as well. The default routine sends the character to an
ACIA as explained in Paragraph B.2 Implementation Requirements. The
operating environment is as follows:

Input: A = Character to send
DP = ASSIST09 work page
.PAD =Character and new line padding counts
(in vector table)
.PAUSE = Pause routine (in vector table)
Output: Character sent to the output device
Volatile Registers: None. All work registers must be restored

B-28

. COO F F Output Console Shutdown Routine . COO F F

Code: 30

Description: This entry addresses the routine to terminate output device processing.
ASSISTO09 does not call this routine. It is included for completeness. The
default routine is an “RTS”.

Input: DP— ASSIST09 work page
Output: The output device is terminated
Volatile Registers: None

. C 0 0 N Output Console Initialization Routine . C O 0 N

Code: 26

Description: This entry points to a routine to initialize the standard output device. The
default routine initializes an ACIA and is the very same one described
under the .CION vector swap definition.

Input: .ACIA vector entry for the ACIA address
Output: The output device is initialized
Volatile Registers: A, X

B-29

-ECHO Echo Flag .ECHO

Code:

Description:

.FIRQ

Code:

Description:

50

The first byte of this word is used as a flag for the INCHP service routine
to determine the requirement of echoing input received from the input
handler. A non-zero value means to echo the input; zero not to echo. The
echoing will take place even if user handlers are substituted for the default
.CIDTA handler as the INCHP service routine performs the echo.

Fast Interrupt Request Vector Appendage . FI RQ

10

The fast interrupt request routine is located via this pointer. The MC6809
addresses hexadecimal FFF6 to locate the handler when processing a
FIRQ. The stack and machine status is as defined for the FIRQ interrupt
upon entry to this appendage. It should be noted that this routine is
“jumped” to with an indirect jump instruction which adds eleven cycles to
the interrupt time before the handler actually receives control. The default
handler does an immediate “RTI” which, in essence, ignores the interrupt.

B-30

. H S DTA High Speed Display Handler Routine . H S DTA

Code:

Description:

IRQ

Code:

Description:

32

This entry is invoked as a subroutine by the DISPLAY command and passed
a parameter list containing the “TO” and ‘“FROM” addresses. The from
value is rounded down to a 16 byte address boundary. The default routine
displays memory in both hexadecimal and ASCII representations, with a
title produced on every 128 byte boundary. The purpose for this vector table
entry is for easy implementation of a user routine for special purpose
handling of a block of data. (The data could, for example, be sent to a high
speed printer for later analysis.) The parameters are all passed on the
stack. The environment is as follows:

Input: S + 4 = Start address

S +2 =Stop address

S + 0= Return Address

DP— ASSISTO09 work page
Output: Any purpose desired
Volatile Registers: X, D

Interrupt Request Vector Appendage .I RQ

12

All interrupt requests are passed to the routine pointed to by this vector.
Hexadecimal FFF8 is the MC6809 location where this interrupt_vector is
fetched. The stack and processor status is that defined for the IRQ inter-
rupt upon entry to the handler. Since the routine’s address is in the vector
table, an indirect jump must be done to invoke it. This adds eleven cycles to
the interrupt time before the IRQ handler receives control. The default IRQ
handler prints the registers and enters the ASSIST09 command handler.

B-31

.NMI

Code:

Description:

.PAD

Code:

Description:

Non-Maskable Interrupt Vector Appendage . N M I

16

This entry points to the non-maskable interrupt handler to receive control
whenever the processor branches to the address at hexadecimal FFFC.
Since ASSIST09 uses the NMI interrupt during trace and breakpoint pro-
cessing, such commands should not be used if a user handler is in control.
This is true unless the user handler has the intelligence to forward control
to the default handler if the NMT interrupt has not been generated due to
user facilities. The NMT. handler given control will have an eleven cycle
overhead as its address must be fetched from the vector table.

Character and New Line Pad Count - PAD

48

This entry contains the pad count for characters and new lines. The first of
the two bytes is the count of nulls for other characters, and the second is
the number of nulls ($00) to send out after any line feed is transmitted. The
ASCII| Escape character ($10) never has nulls sent following it. The default
.CODTA handler is responsible for transmitting these nulls. A user handler
may or may not use these counts as required.

The “NULLS” command also sets these two bytes with user specified
values.

B-32

. PA U S E Processing Pause Routine . PAU S E

Code:

Description:

.PTM

Code:

Description:

40

In order to support real-time (also known as multi-tasking) environments
ASSISTO09 calls a dead-time routine whenever processing must wait for
some external change of state. An example would be when the OUTCH ser-
vice routine attempts the sending of a character to the ACIA through the
default .CODTA handler and the ACIA status registers shows that it cannot
yet be accepted. The default dead-time routine resides in a reserved four
byte area which contains the single instruction, “RTS”. The .PAUSE vector
entry points to this routine after standard initialization. This pointer may be
changed to point to a user routine which dispatches other programs so that
the MC6809 may be utilized more efficiently. Another example of use would
be to increment a counter so that dead-time cycle counts may be ac-
cumulated for statistical or debugging purposes. The reason for the four
byte reserved area (which exists in the ASSIST09 work page) is so other
code may be overlayed without the need for another space in the address
map to be assigned. For example, a master monitor may be using a memory
management unit to assign a complete 64K block of memory to ASSIST09
and the programs being executed/tested under ASSIST09 control. The
master monitor wishes, or course, to be reentered when any ‘“‘dead time”
occurs, so it overlays the default routine (“RTS”) with its own “SWI”. Since
the master monitor would be “front ending” all “SWI’s”” anyway, it knows
when a “pause” call is being performed and can redispatch other systems
on a time-slice basis.

All registers must be transparent across the pause handler. Along with
selected points in ASSIST09 user service processing, there is a special ser-
vice call specifically for user programs to invoke the pause routine. It may
be suggested that if no services are being requested for a given time period
(say 10 ms) user programs should call the .PAUSE service routine so that
fair-task dispatching can be guaranteed.

Programmable Timer Module Address . PT M

53

This entry contains the address of the MC6840 programmable timer module
(PTM). Alteration of this slot should occur before the MONITR startup ser-
vice is called as explained in Paragraph B.4 Initialization. If no PTM is
available, then the address should be changed to a zero so that no in-
itialization attempt will take place. Note that if a zero is supplied, ASSIST09
Breakpoint and Trace commands should not be issued.

B-33

. R ES ET Reset Interrupt Vector Appendage . R ES ET

Code:

18

Description: This entry returns the address of the RESET routine which initializes

ASSIST09. Changing it has no effect, but it is included in the vector table in
case a user program wishes to determine where the ASSISTO09 restart code
resides. For example, if ASSIST09 resides in the memory map such that it
does not control the MC6809 hardware vectors, a user routine may wish to
start it up and thus need to obtain the standard RESET vector code ad-
dress. The ASSISTO9 reset code assigns the default in the work page, calls
the vector build subroutine, and then starts ASSIST09 proper with the
MONITR service call.

. RSV D Reserved MC6809 Interrupt Vector Appendage . RSV D

Code:

4

Description: This is a pointer to the reserved interrupt vector routine addressed at hex-

adecimal FFFO0. This MC6809 hardware vector is not defined as yet. The
default routine setup by ASSIST09 will cause a register display and en-
trance to the command handler.

B-34

SWi

Code:

SWI

Softare Interrupt Vector Appendage

14

Description: This vector entry contains the address of the Software Interrupt routine.

SWIi2

Code:

Normally, ASSIST09 handles these interrupts to provide services for user
programs. If a user handler is in place, however, these facilities cannot be
used unless the user routine “passes on” such requests to the ASSIST09
default handler. This is easy to do, since the vector swap function passes
back the address of the default handler when the switch is made by the
user. This “front ending” allows a user routine to examine all serivce calls,
or alter/replace/extend them to his requirements. Of course, the registers
must be transparent across the transfer of control from the user to the
standard handler. A “JMP” instruction branches directly to the routine
pointed to by this vector entry when a SWI occurs. Therefore, the environ-
ment is that as defined for the “SWI” interrupt.

Software Interrupt 2 Vector Appendage -SW I 2

8

Description: This entry contains a pointer to the SWI2 handler entered whenever that in-

struction is executed. The status of the stack and machine are those defin-
ed for the SWI2 interrupt which has its interrupt vector address at FFF4
hexadecimal. The default handler prints the registers and enters the
ASSIST09 command handler.

B-35

. SW l 3 Software Interrupt 3 Vector Appendage . SWI 3

Code: 6

Description: This entry contains a pointer to the SWI3 handler entered whenever that in-
struction is executed. The status of the stack and machine are those defin-
ed for the SWI3 interurpt which has its interrupt vector address located at
hexadecimal FFF2. The default handler prints the registers and enters the
ASSIST09 command handler.

B-36

