Library Functions

Reading or Writing Using the BIOS
Accessing the File Directory

Utility Programs Enhancing
Standard CP/M

Utility Programs for the Enhanced BIOS

Additional
Utility Programs

This chapter contains the narrated source code for several useful utility
programs. Two groups of such programs are included —those that supplement
Digital Research’s standard utility programs, and those that work in conjunction
with features shown in the enhanced BIOS (Figure 8-10).

To avoid unnecessary detail, the programs shown in this chapter are all written
inthe Clanguage. Cis a good language to use for such purposes since it can show
the overall logic of a program without the clutter of details common in assembly
language.

In order to reuse as much source code as possible, this chapter includes a
“library” of all the general-purpose C functions that can be called from within any
of the utility programs. This file, called “LIBRARY.C”, is shown in Figure 11-1.
Once a utility program has been compiled, the necessary functions from the
library can be linked with the utility’s binary output to form the “.COM? file.

371

372 The CP/M Programmer’s Handbook

/% Library of commeonly-used functions =/

#include <LIBRARY.H> /% Standard defines and structures =/

/% Configuration block access #/

/ /
char

#get _cbalcode) /% Get configuration block address #/

4
/% This function makes a call to a “"private" entry in the BIDS
jump vector to return the address of a specific data object in
the BIOS. The code indicates which object is required.
Each program using this functicn could make a direct call to
the BIOS using the biosh() function provided by BDS C. This
function provides a common point to which debugging code can
be added to display the addresses returned. #/

/% Entry parameters =/
int code; /% Code that specifies the object
whose address is required #/
/% Exit Parameters
Address returned by the BIDS routine =/

i
char #®retval; /% Value returned by the BIOS =/

retval = biosh(CBGADDR,code);

/% printf("\nget_cba : code %d address %4x",code,retval); ®/
return retval;

3 /% End of get_cba(code) x/

/® Character manipulation functions #/
/
strscn(string, key) /% String scan ¥/
/ 5/
/% This function scans a OO-terminated character string looking
for a key string in it. If the key string is found within the
string, the function returns a pointer to it. Otherwise it
returns a value of zero. »/
/% Entry parameters =/
char #string; /% String to be searched =/
char %key; /% Key string to be searched faor =/
/% Exit parameters
Pointer to key string within searched string, or
zero if key not found
®/
while (%¥string) /% For all non-null chars. in string =/
i
if ((%string == =key) && /% First char. matches =/
(sstrcmp(string, key) == 0) /% Perform substring
compare on rest #/
)
return string; /% Substring matches,
return pointer =/
string++; /% Move to next char. in string =/
return 03 /% Indicate no match found =/
3 /® End of strscn =/
/ t/

ustremp(stringl, string2) /% Uppercase string compare #/

/% This function is similar to the normal strcmp function;
it differs only in that the characters are compared as if they
were all uppercase characters —— the strings are left
unaltered. =/

Figure 14-4. LIBRARY.C, commonly used functions, in C language

Chapter 11: Additional Utility Programs

373

/% Entry Parameters =/
char *stringl;
char #string2;

/% Pointer to first string =/ "r
/% Pointer to second string =/

/% Exit parameters
0 - if string 1 = string 2
—ve integer if string 1 > string 2
+ve integer if string 1 < string 2

=/

{

int count: /% Used to access chars. in both strings =/
count = O3 /% Start with the first character of bath =/

/% While string 1 characters are non-null, and
match their counterparts in string 2. =/
while (stringllcountl == stringZ(count])

i
if (stringll++countl == “\0*) /% Last char. in string 1 =/
return 03 /% Indicate equality =/
3
return string2lcount] - stringlilcountl; /% "Compare" chars. =/

} /% End of sstrcmp =/

/ :/
sstremp(string, substring) /% Substring compare =/
/

®/
/% This function compares two strings. The first, string, need not
be OO-terminated. The second, substring, must be OO-terminated.
It is similar to the standard functicn strcpgp, except that the
length of the substring controls how many characters are compared. #/

/% Entry parameters %/
char ®*string; /% Pointer to main string =/
char #substring; /% Pointer to substring =/

/% Exit parameters
0 - substring matches corresponding characters in string
—ve integer if char. in string is > char. in substring
+ve integer if char. in string is < char. in substring

#/
i
int count; /% Used to access chars. in string and substring =/
count = 03 /% Start with the first character of each =/

/% While substring characters are non-null, and

match their counterparts in string. =/

while (stringlcountl] == substringlccuntl)

i

if (substringl++countl == “\0“) /% Last char in substring =/

return 0; /% Indicate equality =/

3

return substringlcountl - stringlcountl; /% "Compare" chars. =/

} /% End of sstrcomp =/

/ %/
usstremp(string, substring) /% Uppercase substring compare =/
/ %/

/% This function compares two strings. The first, string, need not
be 00-terminated. The second, substring, must be OO-terminated.
It is similar to the substring compare above except all
characters are made uppercase. %/

/% Entry parameters =/
char #string; /% Pointer to main string #/
char #substring; /% Pointer to substring =/

/% Exit parameters
0 -- substring matches corresponding characters in string

Figure 11-4. (Continued)

374 The CP/M Programmer’s Handbook

-ve integer if char. in string is > char. in substring
4+ve integer if char. in string is < char. in substring

®/
int count; /% Used to access chars in string and substring =/
count = O3 /% Start with the first character of each =/

/% While substring characters are non-null, and
match their counterparts in string. =/
while (toupper(stringlcountl) == toupper(substringlcountl))

i
if (substringf++countl == “\0°) /% Last char. in substring =/
return 0; /% Indicate equality =/

return substringlcountl - stringlcountl; /% "Compare" chars. %/
} /% End of usstrcmp =/

/ /
comp_fname (scb, name) /3% Compare file names %/

/% This function compares a possibly ambiguous file name
to the name in the specified character string. The number of
bytes compared is determined by the number of characters in
the mask.
This function can be used tc compare file names and types,
or, by appending an extra byte to the mask, the file names,
types, and extent numbers.
For file directory entries, an extra byte can be prefixed tc
the mask and the function used to compare user number, file
name, type, and extent.
Note that a "?" in the first character of the mask will NOT
match with a value of OxES (this value is used to indicate
an inactive directory entry). =/

/% Entry parameters %/
struct _scb #scbs /% Pointer to search control block %/
char #*name; /% Paointer to file name =/

/% Exit parameter
NAME_EQ if the names match the mask
NAME_LT if the name is less than the mask
NAME_GT if the name is greater than the mask
NAME_NE if the name is not equal to the mask (but the outcome
is ambiguous because of the wildcards in the mask)

®/

i

int count; /% Count of the number of chars. processed ®/
short ambiguous; /% NZ when the mask is ambiguous =/

char #*mask; /% Pointer to bytes at front of SCB %/

/# Set pointer to characters at beginning of search control block =/
mask = scbs

/% Ambiguous match on user number, matches
only users O — 15, and not inactive entries %/
if (mask[0] == “?7)
i

if (namel0] == OxES)
return NAME_NE; /% Indicate inequality =/

3
else /% First char. of mask is not "?" =/
i
if (mask[O1 != namel0l) /x* User numbers do not match */
return NAME_NE; /% Indicate inequality =/
3
/% No, check the name (and, if the length is such, the extent) =/
for (count = 1j /% Start with first name character =/
count <= scb -> scb_length; /% For all required characters ®/
count++) /% Move to next character =/

i
if (maskfcountl == “?“) /% Wildcard character in mask */

Figure 14-1. (Continued)

Chapter 11: Additional Utility Programs

375

i
ambiguous = 13 /% Indicate ambiguous name in mask =/
continue; /% Do not make any comparisons %/

3}
if (masklcountl != (namelcount) & Ox7F))
i /% Mask char. not equal to FCB char. #/
if (ambiguous) /% If previous wildcard, indicate NE %/
return NAME_NE;

else
/% Compare chars. to determine relationship %/
return (masklcountl > namelcount] ?
NAME_LT : NAME_GT);
¥

¥

/% If control reaches here, then all characters of the

mask and name have been processed, and either there

were wildcards in the mask, or they all matched. =/
return NAME_EQ; /# Indicate mask and name are "equal" =/

} /% End of comp_fname */

/
conv_fname(fcb, fn) /% Convert file name for cutput =/
/

/% This function converts the contents of a file control
block into a printable string "D:FILENAME.TYP." %/

/% Entry parameters »/

struct _fcb *fcb; /% Pointer to file control block =/
char #fn; /% Pointer to area to receive name =/
{

/% 1f the disk specification in the
FCB is 0, use the current disk =/
#fn++ = (fcb -> fcb_disk) ? (fcb -> fcb_disk + (“A’-1))
(bdos (GETDISK) + “A”);

®#fn+s = 7375 /% Insert disk id. delimiter =/
movmem(&fcb -> fcb_fname,fn,8); /% Move file name *»/

fn += 8; /% Update pointer =/

®fn+t = 7,73 /% Insert file name/type delimiter =/
movmem(&fcb -> fcb_fname+8,fn,3); /% Move file type =/

#fn++ &= Ox7F; /% Remave any attribute bits %/
*fn++ &= Ox7F; /% Remove any attribute bits »/
®#fn++ &= Ox7F; /% Remove any attribute bits =/

®#fn = “\0"3 /% Terminator #/

} /% End of conv_fname x/

/ /
conv_dfname(disk,dir, fn) /% Convert directory file name for output =/
/ 74
/% This function converts the contents of a file directory entry

block into a printable string "D:FILENAME.TYP," =/
/% Entry parameters %/
short disk; /# Disk id. (A =0, B = 1) =/
struct _dir xdir; /% Pointer to file control block =/
char *fn; /% Pointer to area to receive name =/
i

/% Convert user number and disk id. =/

sprintfdfn,"%2d/%c:",dir -> de_userno,disk + “A");
fn += 5; /% Update pointer to file name =/
movmem(&dir -> de_fname,fn,8); /% Move file name %/
fn += 8; /% Update pointer =/
®xfn+t = 7,73 /% Insert file name/type delimiter %/

movmem(&dir -> de_fname+8,fn,3); /% Move file type =/

#fn++ &= Ox7F; /% Remove any attribute bits =/
®fn++ &= OxX7F; /% Remove any attribute bits =/
#fn++ &= Ox7F; /% Remove any attribute bits %/
#fn = “\0"; /% Terminator =/

=

Figure 14-4. (Continued)

376 The CP/M Programmer’s Handbook

3 /% End of conv_dfname 3/

/ /
get_nfn(amb_fname,next_fname) /% Get next file name %=/
/

/% This function sets the FCB at "next_fname" to contain the
directory entry found that matches the ambigucus file name
in "amb_fname."
On the first entry for a given file name, the most significant
bit in the FCB“s disk field must be set to one (this causes a
search first BDOS call to be made). ®/

/% Entry parameters x/

struct _fcb xamb_fname; /% Ambiguous file name =/

struct _fcb %next_fname;/x First byte must have ms bit set for
first time entry)=/

/% Exit parameters
0 = No further name found
1 = Further name found (and set up in next_fname)

®/

i

char bdos_func; /% Set to either search first or next =/

char #pfname; /% Pointer to file name in directory entry =/

/% Initialize tail-end of next file FCB to zero %/
setmem(&next_fname -> fcb_extent,FCBSIZE-12,0);

bdos_func = SEARCHF; /% Assume a search first must be given =/
if (!(next_fname -> fcb_disk & Ox80)) /% If not first time =/
i

/% search first on previous name ¥/
srch_file(next_fname, SEARCHF);

bdos_func = SEARCHN; /% Then do a search next =/
3
else /% First time =/

next_fname -> fcb_disk &= Ox7F; /% Reset first-time flag #/

/% Refresh next_fname from ambiguous file name
(move disk, name, type) =/
movmem(amb_fname, next_fname, 12);

/% If first time, issue search first, otherwise
issue a search next call. "srch_file" returns
a pointer to the directory entry that matches
the ambiguous file name, or O if no match »/
if (V(pfname = srch_file(next_fname,bdos_func)))
i

return O; /% Indicate no match x/
/% Move file name and type %/
movmem(pfname,&next_fname -> fcb_fname,11);

return 1; /% Indicate match found %/

¥ /% End of get_nfn =/

; 5/
char ®srch_file(fcb,bdos_code) /% Search for file =/
/

/% This function issues either a search first or search next
BDOS call. =/

/% Entry Parameters %/
struct _fcb %fcb; /% pointer to file control block ®/
short bdos_code; /% either SEARCHF or SEARCHN #/

/% Exit parameters

0 = no match found

NZ = pointer to entry matched (currently in buffer)
®/

Figure 11-4. (Continued)

Chapter 11: Additional Utility Programs

377

i

unsigned r_code; /# Return code from search function
This is either 255 for no match, or 0, 1, 2, or 3
being the ordinal of the 32-byte entry in the
buffer that matched the name x/

char ®dir_entry; /% Pointer to directory entry =/

/% The BDS C compiler always sets the BDOS DMA
to location 0x80 =/

r_code = bdos(bdos_code, fcb); /% Issue the BDOS call =/
if (r_code == 255) /% No match found =/
return O;

/% Set a pointer to the matching
entry by multiplying return code by 128
and adding onto the buffer address (0x80),
also add 1 to point to first character of name %/
return (r_code << 5) + Ox81;

}/% End of srch_file %/

/ /
rd_disk(drb) /% Read disk (via BIOS) =/
/ 4

/% This function uses the parameters previously set up in the
incoming request block, and, using the BIOS directly,
executes the disk read. =/

/% Entry parameters %/
struct _drb x=drb; /% Disk request block (disk, track, sector, buffer) =/

/% Exit parameters
0 = No data available
1 = Data available

®/
{
if (lset_disk({drb)) /% Call SELDSK, SETTRK, SETSEC =/

return O3 /% If SELDSK fails, indicate

no data available =/

if (bios(DREAD)) /% Execute BIOS read =/

return O; /% Indicate no data available if error returned =/
return 1; /% Indicate data available =/

} /% End of rd_disk =/

/ /
wrt_diskldrb) /% Write disk (via BIQS) =/
/ :/
/% This function uses the parameters previously set up in the
incoming request block, and, using the BIOS directly,
executes the disk write. %/
/% Entry parameters =/
struct _drb *drb; /% Disk request block (disk, track, sector, buffer) =/
/% Exit parameters
0 = Error during write
1 = Data written OK
®/
{
if (lset_disk(drb)) /% Call SELDSK, SETTRK, SETSEC, SETDMA =/
return O; /% If SELDSK fails, indicate no data written =/
if (bios(DWRITE)) /% Execute BIOS write #/
return O; /% Indicate ervor returned %/
return 1; /% Indicate data written %/

Y} /% End of wrt_disk x/

-

Figure 14-4. (Continued)

378 The CP/M Programmer’s Handbook

/ /
short set_disk(drb) /% Set disk parameters =/
/ /
/% This function sets up the BIOS variables in anticipation of
a subsequent disk read or write. =/
/% Entry parameters %/
struct _drb =drb; /% Disk request block (disk, track, sector, buffer) =/

/% Exit parameters
0 = Invalid disk (do not perform read/write)
1 = BIOS now set up for read/write

*®/

{
/% The sector in the disk request block contains a

LOGICAL sector. If necessary (as determined by the

value in the disk parameter header), this must be

converted into the PHYSICAL sector.

NOTE: skewtab is declared as a pointer to a pointer to

a short integer (single byte). =/
short =xskewtab; /% Skewtab -> disk parameter header -> skew table =/
short phy_sec; /% Physical sector =/

/% Call the SELDSK BIOS entry point. If this returns
a 0, then the disk is invalid. Otherwise, it returns
a pointer to the pointer to the skew table %/
if (!'(skewtab = biosh(SELDSK,drb -> dr_disk)).)
return O; /% Invalid disk %/

bios(SETTRK,drb -> dr_track); /% Set track =/

/% Note that the biosh function puts the sector into
registers BC, and a pointer to the skew table in
registers HL. It returns the value in HL on exit
from the BIOS x/
phy_sec = biosh(SECTRN,drb -> dr_sector, ¥skewtab); /% Get physical sector %/
bios (SETSEC, phy_sec); /% Set sector =/
bios(SETDMA,drb -> dr_buffer); /% Set buffer address x/

veturn 1; /% Indicate no problems %/

} /% End of setp_disk %/

/% Directory Management Functions */

/ /
get_nde(dir_pb) /% Get next directory entry =/

/ t/

/% This function returns a pointer to the next directory entry.
If the directory has not been opened, it opens it.
When necessary, the next directory sector is read in.
If the current sector has been modified and needs to be written back
onto the disk, this will be done before reading in the next sector. =/

/% Entry parameters =/
struct _dirpb #dir_pb; /% Pointer to the disk parameter block =/

/% Exit Parameters
Returns a pointer to the next directory entry in the buffer.
The directory open and write sector flags in the parameter
block are reset as necessary.

®/

{
if(!dir_pb -> dp_open) /% Directory not yet opened =/

if (lopen_dir(dir_pb)) /% Initialize and open directory #/
i

err_dir(0_DIR,dir_pb); /% Report error on open %/
exit();

3
/% Deliberately set the directory entry pointer to the end
of the buffer to force a read of a directory sector =/

Figure 11-4. (Continued)

Chapter 11: Additional Utility Programs

379

dir_pb -> dp_entry = dir_pb -> dp_buffer + DIR_BSZ;
dir_pb -> dp_write = 0; /% Reset write-sector flag =/
3

/% Update the directory entry pointer to the next entry in
the buffer. Check if the pointer is now "off the end"
of the buffer and another sector needs to be read. %/
if (++dir_pb -> dp_entry < dir_pb -> dp_buffer + DIR_BSZ)
i
return dir_pb -> dp_entry; /% Return pointer to next entry %/

]
/% Need to move to next sector and read it in =/

/% Do not check if at end of directory or move to
the next sector if the directory has just been
opened (but the opened flag has not vet been set) =/
if (!dir_pb -> dp_open)
dir_pb -> dp_open = 1; /% Indicate that the directory is now open %/

else
/% Check if the sector currently in the buffer needs to be
written back out to the disk (having been changed) =/
if (dir_pb -> dp_write)
i
dir_pb -> dp_write = 0; /% Reset the flag =/
if(lrw_dir(W_DIR,dir_pb)) /% Write the directory sector =/
{
err_dir(W_DIR,dir_pb)y /% Report error on writing ®/
exit();
¥
3
/% Count down on number of directory entries left to process,
always four 32-byte entries per 128-byte sector =/
dir_pb -> dp_entrem —-= 4;
/% Set directory-end flag true if number of entries now < 0O %/
if (dir_pb -> dp_entrem == 0) /% now at end of directory %/
i
dir_pb -> dp_end = 1; /% Indicate end %/
dir_pb -> dp_open = 03 /% Indicate directory now closed #/
return 0; /% Indicate no more entries %/
3
/% Update sector (and if need be track and sector) =/
if (++dir_pb -> dp_sector == dir_pb -> dp_sptrk)
{
++dir_pb -> dp_track; /% Update track x/
dir_pb -> dp_sector = 0; /% Reset sector =/
3
3
if(lrw_dir(R_DIR,dir_pb)) /% Read next directory sector #/
i

err_dir(R_DIR,dir_pb); /% Report error on reading %/
exit();
3

/% Reset directory-entry pointer to first entry in buffer =/
return dir_pb -> dp_entry = dir_pb -> dp_buffer;

} /% End of get_nde %/

/
open_dir{dir_pb) /% Open directory =/
/ /
/% This function "opens" up the file directory

on a specified disk for subsequent processing

by rw_dir, next_dir functions. =/

/% Entry parameters x/
struct _dirpb ®*dir_pb; /% Pointer to directory parameter block %/

Figure 11-4. (Continued)

380 The CP/M Programmer’s Handbook

/% Exit parameters

0 = Ervor, directory not opened

1 = Directory open for processing
®/

i
struct _dpb xdpb; /% CP/M disk parameter block =/

/% Get disk parameter block address for the disk specified in

the directory parameter block %/

if ((dpb = get_dpbldir_pb -> dp_disk)) == 0)
return O; /% Return indicating no DPB for this disk #/

/% Set the remaining fields in the parameter block %/
dir_pb -> dp_sptrk = dpb -> dpb_sptrk; /% Sectors per track =/
dir_pb -> dp_track = dpb -> dpb_trkoff; /* Track offset of the directory =/
dir_pb -> dp_sector = 03 /% Beginning of directory =/
dir_pb -> dp_nument = dpb -> dpb_maxden+l; /% No. of directory entries x/
dir_pb -> dp_entrem = dir_pb -> dp_nument; /% Entries remaining to process =/
dir_pb -> dp_end = O3 /% Indicate not at end x/

/% Set number of allocation blocks per directory entry to
8 or 16 depending on the number of allocation blocks x/
dir_pb -> dp_nabpde = (dpb -> dpb_maxabn > 255 ? 8 1 16)3
/% Set number of allocation blocks (one more than number of
highest block) x/
dir_pb -> dp_nab = dpb ~> dpb_maxabn;

/% Set the allocation block size based on the block shift.
The possible values are: 3 = 1k, 4 = 2K, 5 = 4K, 6 = 8K, 7 = 16K.
So a value of 16 is shifted right by (7 - bshift) bits. =/
dir_pb -> dp_absize = 16 >> (7 - dpb -> dpb_bshift);
return 1; /% Indicate that directory now opened %/

} /% End of open_dir x/

/
rw_dir{(read_op,dir_pb) /* Read/write directory */
/ /
/% This function reads/writes the next 128-byte

sector from/to the currently open directory. =/

/% Entry parameters %/
short read_op; /% True to read, false (0) to write =/
struct _dirpb ®dir_pb; /% Directory parameter block */

/% Exit parameters
error -- operation not performed
operation completed

1

#/

{

struct _drb drb; /% Disk request (for BIOS read/write) */
drb.dr_disk = dir_pb -> dp_disk; /% Set up disk request =/

drb.dr_track = dir_pb -> dp_track;
drb.dr_sector = dir_pb -> dp_sector;
drb.dr_buffer = dir_pb -> dp_buffer;

if (read_op)
i

if (lrd_disk(&drb)) /% Issue read command */
return Oy /% Indicate error -- no data available %/
}
else
i
if (lwrt_disk(&drb)) /% lssue write command %/
return O; /% Indicate error —- no data written =/
3
return 1; /% Indicate operation complete %/

} /% End of rd_dir %/

Figure 11-4. (Continued)

Chapter 11: Additional Utility Programs

381

/ /
err_dir(opcode,dir_pb) /% Display directory error
/

/

/% This function displays an error message to report an error
detected in the directory management functions open_dir and rw_dir. %/
/% Entry parameters »/
short opcodes /% Operation being attempted =/
struct _dirpb ®dir_pb; /% Pointer to directory parameter block */

{
printf("\n\OO7Error during ");
switch(opcode)

£

case R_DIR:
printf("Reading");
break;

case W_DIR:
printf("Writing");
break;

case O_DIR:
printf("Opening");
break;

default:
printf("Unknown Operation (%d) on",opcode);

3

printf(" Directory on disk %c:. ",dir_pb -> dp_disk + “A“);
} /% End of err_dir »/

/ /
setscb(scb, fname,user,extent, length) /% Set search control block ®/
/

/

/% This function sets up a search control block according
to the file name specified. The file name can take the
following forms:

filename

filename.typ

d:filename.typ

xsfilename.typ (meaning "all disks")

ABCD...NOP:filename.typ (meaning "just the specified disks")

The function sets the bit map according to which disks should be
searched . For each selected disk, it checks to see if an error is
generated when selecting the disk (i.e. if there are disk tables
in the BIOS for the disk). %/

/% Entry parameters %/

struct _scb %scbs /% Pointer to search control block %/
char *fname; /% Pointer to the file name */
short user; /% User number to search for =/
short extent; /% Extent number to search for =/
int length; /% Number of bytes to compare %/
/% Exit parameters
None.
®/
i
int disk; /% Disk number currently being checked */
unsigned adisks; /% Bit map for active disks %/
adisks = O3 /% Assume no disks to search %/
if (strscn(fname,"1")) /% Check if "1" in file name =/
{
if (#fname == ‘»’) /% Check if "all disks"™ =/
{
adisks = OxFFFF; /% Set all bits »/
]
else /% Set specific disks »/
{
while(#fname = “31°) /% Until ":" reached %/

Figure 41-4. (Continued)

382 The CP/M Programmer’s Handbook

i

/% Build the bit map by getting the next disk
id. (A - P), converting it to a number in
the range 0 — 15, shifting a 1-bit left
that many places, and OR-ing it into the
current active disks. =/

adisks i= 1 << (toupper(xfname) - “A7);
++fname; /% Move to next character =/
3
++fname; /% Bypass colon %/
]
3
else /% Use only current default disk =/
{

/% Set just the bit corresponding to the current disk %/
adisks = 1 << bdos(GETDISK);
3

setfcb(sch, fname); /% Set search control block as though it
were a file control block. =/

/% Make calls to the BIOS SELDSK routine to make sure that
all of the active disk drives have disk tables for them
in the BIOS. If they don“t, turn off the corresponding
bits in the bit map. =/

for (disk = O /% Start with disk A: =/
disk < 163 /% Until disk P: =/
disk++) /% Use next disk =/

{
if (1¢(1 << disk) & adisks))

continue; /% Avoid selecting unspecified disks =/
if (biosh(SELDSK,disk) == 0) /% Make BIOS SELDSK call =/
{ /% Returns O if invalid disk =/

/% Turn OFF corresponding bit in mask
by AND-ing it with bit mask having
all the other bits set =1 =/

adisks &= ((1 << disk) * OxFFFF);

3}

]
scb -> scb_adisks = adisks; /% Set bit map in SCB %/
scb -> scb_userno = user; /% Set user number */
scb -> scb_extent = extent; /% Set extent number =/
scb -> scb_length = length; /% Set number of bytes to compare %/
} /% End setscb =/
/ /
dm_clr(disk_map) /% Disk map clear (to zeros) */
/ /
/% This function clears all elements of the disk map to zero. ®/
/% Entry Parameters =/
unsigned disk_mapl161018]; /% Address of array of unsigned integers =/

/% Exit parameters
None.
®/

{
/% WARNING -~ The 576 in the setmem call below is based on
the disk map array being [1461[(18] -- i.e. 288 unsigned
integers, hence 576 bytes. x/
setmem(disk_map, 576, \0"); /% Fill array with zeros =/

} /% End of dm_clr %/

/ /
dm_disp(disk_map, adisks) /% Disk map display %/
/

/% This function displays the elements of the disk map, showing
the count in each element. A zero value-element is shown as
blanks. For example:

Figure 11-4. (Continued)

Chapter 11: Additional Utility Programs

383

A: 123 20 98 202 199 101 211

Lines will only be printed for active disks (as indicated by
the bit map). */

/% Entry parameters =/

unsigned disk_map[161[18); /% Pointer to disk map array =/
unsigned adisks;: /% Bit map of active disks =/
(.
#define USED_COUNT 1é& /% “"User" number for used entities =/
#define FREE_COUNT 17 /% "User" number for free entities =/
int disk; /% Current disk number =/
int userno; /% Current user number =/
unsigned dsum; /% Sum of entries for given disk %/
printf("\n o} 1 2 3 4 S é 7 8 ? 10 11 12 13
for (disk = 03 /% Start with disk A: =/
disk < 16&; /% Until disk P: =/
disk++) /% Next disk =/
3
if (!(adisks & (1 << disk))) /% Check if disk is active =/
continue; /% No -- so bypass this one =/

printf("\n%c: ",disk + “A”); /% Display disk number =/

dsum = 03 /% Reset sum for this disk =/

for (userno = 0; /% Start with user 0 =/

userno < 163 /% Until user 15 =/
userno++) /% Next user number x/
i

dsum += disk_map[disk]llusernol; /% Build sum =/
3

if (dsum) /% Check if any output for this disk,
and if not, display d: Ncne =/
i
/% Print either number or blanks %/
for (userno = 03 /% Start with user 0 =/
userno < 18; /% Until user 15 =/
userno++) /% Next user number =/
if (disk_mapldisklCusernol)
printf("%4d",disk_mapldiskllusernol);
else
printf(" ")
3
}
else /% No output for this disk =/
i
printf(" -- None —--

} /% End dm_disp %/

return 03 /% Invalid disk =/

[o] 1 2 3 4 S é 7 8 9 10 11 12 13 14 1S Used Free

954

14

3
printf(" 7%4d %4d",disk_map[diskICUSED_COUNT],disk_mapldisk][FREE_COUNTI);
3

/ /
get_dpb(disk) /% Get disk parameter block address =/
/ 74
/% This function returns the address of the disk parameter
block (located in the BIOS). =/
/% Entry parameters x/
char disk; /% Logical disk for which DPB address is needed =/
/% Exit parameters
0 = Invalid logical disk
NZ = Pointer to disk parameter block
®/
i
if (biosh(SELDSK,disk) == 0) /% Make BIOS SELDSK call =/

15 Used Free"):

Figure 11-1. (Continued)

384 The CP/M Programmer’s Handbook

bdos (SETDISK,disk); /% Use BDOS SETDISK function =/
return bdos{(GETDPARM); /% Get the disk parameter block =/

} /% End of get_dpb %/

/% Code table functions #/

/% Most programs that interact with a user must
accept parameters from the user by name and translate
the name into some internal code value.
They also must be able to work in reverse, examining
the setting of a variable, and determing what (ASCII
name) it has been set to.

An example is setting baud rates. The user may want to
enter "19200," and have this translated into a number
to be output to a chip. Alternatively, a previously
set baud rate variable may have to be examined and the
string "19200" generated to display its current
setting to the user.

A code table is used to make this task easier.
Each element in the table logically consists of:
A code value (unsigned integer)
An ASCII character string (actually a pointer to it) =/

/ /
ct_init(entry,code,string) /% Initialize code table x/
/ /

/% This function initializes a specific entry in a code table
with a code value and string pointer.

")y NOTE: By convention, the last entry in a given
code table will have a code value of CT_SNF (string not found). »/

/% Entry parameters x/

struct _ct xentry; /% Pointer to code table entry s/
int code; /% Code value to store in entry =/
char ®string; /% Pointer to string for entry =/

/% Exit parameters

None .
®/
i
entry -> _ct_code = code; /% Set _ct_code %/
entry -> _ct_sp = string; /% Set string pointer =/

} /% end of ct_inti =/

/ /
unsigned

ct_parc(table,string) /% Parameter - return code */

/ /

/% This function searches the specified table for a
matching string, and returns the code value that corresponds to it.
If only one match is found in the table, then this function returns
that code value. If no match or more than one match is found,
it returns the error value, CT_SNF (string not found).
This function is specifically designed for processing
parameters on a command tail.
Note that the comparison is done after conversion to uppercase
(i.e. "STRING" matches "string"). A substring compare is used so
that only the minimum number of characters for an unambiguous
response need be entered. For example, if the table contained:

Code Value

1 "APPLES"

2 "ORANGES"
3 "APRICOTS"

A response of "0O" would return code = 2, but "A" or "AP" would
be ambiguous. "APR" or “APP" would be required. ®/

struct _ct xtable; /% Pointer to table »/
char *®string; /% Pointer to key string %/

Figure 14-1. (Continued)

Chapter 11: Additional Utility Programs

385

i

int mcode; /% Matched code to return =/

int mcount; /% Count of number of matches found =/
mcode = CT_SNF; /% Assume error %/

mcount = O3 /% Reset match count =/

while(table -> _ct_code != CT_SNF) /% Not at end of table =/

i
/% Compare keyboard response to table entry using
uppercase substring compare. %/
if (usstrcmp(table -> _ct_sp,string) == 0)
{

mcount++; /% Update match count =/
mcode = table -> _ct_code; /% Save code ®/
3
table++; /% Move to next entry =/
if (mcount == 1) /% Only one match found %/
return mcode; /% Return matched code =/
else /% Illegal or ambiguous =/

return CT_SNF;
} /% End ct_parc =/
/ /

unsigned
ct_code(table,string) /% Return code for string =/

/% This function searches the specified table for the
specified string. If a match occurs, it returns the
corresponding code value. Otherwise it returns CT_SNF
(string not found).
Unlike ct_parc, this function compares every character in the
key string, and will return the code on the first match found. =/

/% Entry parameters */
struct _ct xtable; /% Pointer to table =/
char #string; /% Pointer to string =/

/% Exit parameters

Code value -- if string found
CT_SNF -- if string not found
*/
{
while(table -> _ct_code != CT_SNF) /% For all entries in table =/
i
if (ustrcmp(table -> _ct_sp,string) == 0) /% Compare strings =/
return table -> _ct_code:; /% Return code %/
table++; /% Move to next entry =/
3
return CT_SNF; /% String not found =/

} /% End ct_code %/

/
ct_disps(table) /% Displays all strings in specified table %/
/

/% This function displays all of the strings in a given table.
It is used to indicate valid responses for operator input. %/

/% Entry parameters %/

struct _ct xtable; /% Pointer to table %/
/% Exit Parameters
None.
®/
i
while(table -> _ct_code != CT_SNF) /% Not end of table %/
{
printf("\n\t\t%s",table -> _ct_sp); /% Print string =/
table++; /% Move to next entry =/
3

Figure 14-4. (Continued)

386 The CP/M Programmer’s Handbook

putchar(“\n”); /% Add final return =/
} /% End of ct_disps */
/
ct_index(table,string) /% Returns index for a given string =/
/
/% This function searches the specified table, and returns
the INDEX of the entry containing a matching string.
All characters of the string are used for the cemparison,
after they have been made uppercase. %/
/% Entry parameters %/
struct _ct xtables /% Pointer to table %/
char #string; /% Pointer to string =/
/% Exit parameters
Index of entry matching string, or
CT_SNF if string not found.
®/
{
int index; /% Current value of index =/
index = 03 /% Initialize index =/
while(table -> _ct_code != CT_SNF) /% Not at end of table %/
i .
if (ustrcmp(table -> _ct_sp,string) == 0)
return index; /% Return index %/
table++; /% Move to next table entry %/
index++; /% Update index %/
3
return CT_SNF; /% String not found %/
3
/ /
char #*ct_stri(table, index) /% Get string according to index =/
/ /
/% This function returns a pointer to the string in the
table entry specified by the index. %/
/% Entry parameters x/ .
struct _ct xtable; /% Pointer to table =/
int index; /% Index into table %/
{
struct _ct xentry; /% Entry pointer »/
entry = tablelindex]; /% Point to entry =/
return entry -> _ct_sp; /% Return pointer to string =/
} /% End of ct_stri %/
/ /
char #ct_strc(table,code) /% Get string according to code value %/
/ /
/% This function searches the specified table and returns a
pointer to the character string in the entry with the
matching code value or a pointer to a string of "unknown"
if the code value is not found. %/
/% Entry parameters x/
struct _ct »table; /% Pointer to table x/
unsigned code; /% Code value %/
{
while(table -> _ct_code != CT_SNF) /% Until end of table %/
i
if (table -> _ct_code == code) /% Check code matches =/
return table -> _ct_sp; /% Yes, return ptr. to str.
table++; /% No, move to next entry %/

®/

aa

bb

Figure 11-1. (Continued)

Chapter 11: Additional Utility Programs

387

3
return "Unknown";
}

/% Bit vector functions =/

/% These functions manipulate bit vectors. A bit vector is a group
of adjacent bits, packed eight per byte. Each bit vector has the
structure defined in the LIBRARY.H file.

Bit vectors are used primarily to manipulate the operating
system’s allocation vectors and other values that can best
be represented as a series of bits. %/

/ /
bv_make(bv,bytes) /% Make a bit vector and clear to zeros =/
/ /

/% This function uses C’s built-in memory allocation, allcc,
to allocate the necessary amount of memory, and then
sets the vector to zero-bits. x/

/% Entry parameters %/
struct _bv xbv; /% Pointer to a bit vector =/
unsigned bytes; /% Number of bytes in bit vector =/

/% Exit parameter
NZ = vector created
O = insufficient memory to create vector

®/

{

if(!{bv -> bv_bits = alloc(bytes))) /% Request memory x/
return 03 /% Request failed =/

bv -> bv_bytes = bytesy /% Set length =/

bv -> bv_end = bv -> bv_bits + bytes; /% Set pointer to end %/

bv_fill(bv,0); /% Fill with 0“s %/
return 1

} /% End bv_make x/

/ /
bv_fill(bv,value) /% Fill bit vector with value #/
/ /
/% This function fills the specified bit vector with the
specified value.
This function exist only for consistency’s sake and
to isolate the main body of code from standard
functions like setmem. %/
/% Entry parameters x/
struct _bv xbv; /% Pointer to bit vector =/
char value; /% Value to fill vector with %/
/% Exit parameters
None.
#/
{
/% address length value =/
setmem(bv -> bv_bits,bv -> bv_bytes,value);
/ /
bv_set(bv,bitnum) /% Set the specified bit number x/
/

/
/% This function sets the specified bit number in the bit vector
to one-bit. %/

/% Entry parameters %/
struct _bv xbv; /% Pointer to bit vector =/
unsigned bitnum; /% Bit number to be set x/

bb

cc

dd

ee

Figure 14-4. (Continued)

388 The CP/M Programmer’s Handbook

/% Exit parameters
None .
"/
i
unsigned byte_offset; /% Byte offset into the bit vector =/

if ((byte_offset = bitnum >> 3) > bv -> bv_bytes)
return O; /% Bitnum is "off the end” of the vector =/

/% Set the appropriate bit in the vector. The byte offset
has already been calculated. The bit number in the byte
is calculated by AND ing the bit number with 0x07.

The specified bit is then OR ed into the vector */

bv -> bv_bitslbyte_offsetl i= (1 << (bitnum & ox7))s

return 13 /% Indicate completion %/

/% End of bv_set x/

/ /
bv_test (bv,bitnum) /% Test the specified bit number =/
/ /

/% This function returns a value that reflects the current
setting of the specified bit. =/

/% Entry parameters x/
struct _bv xbv; /% Pointer to bit vector =/
unsigned bitnum; /% Bit number to be set x/

/% Exit parameters
None.
®/

i
unsigned byte_offset; /% Byte offset into the bit vector =/

if ((byte_offset = bitnum >> 3) > bv -> bv_bytes)
return O; /% Bitnum is "off the end" of the vector =/

/% Set the appropriate bit in the vector. The byte offset
has already been calculated. The bit number in the byte
is calculated by AND ing the bit number with 0x07.

The specified bit is then OR ed into the vectar =/
return bv -> bv_bitslbyte_offsetl & (1 << (bitnum & Ox7));

} /% End of bv _tests =/

/
bv_nz(bv) /% Test bit vector nonzero %/
/

/% This function tests each byte in the specified vector,
and returns indicating whether any bits are set in
the vector. %/

/% Entry parameters %/
struct _bv xbv; /% Pointer to bit vector =/

/% Exit Parameters
NZ = one or more bits are set in the vector
0 = all bits are off

&/

char ®bits; /% Pointer to bits in bit vector ®/

bits = bv -> bv_bits; /% Set working pointer 3/

while (bits != bv -> bv_end) /% For entire bit vector =/
i

if (xbits++) /% 1f nonzero %/
return bits——3; /% Return pointer to NZ byte x/

Figure 14-4. (Continued)

Chapter 11: Additional Utility Programs 389

3 T
return O3 /% Indicate vector is zero %/ 44
3 /% End of by_nz =/ —
/ /]
bv_and(bv3,bvi,bv2) /% bv3 = bvl & bv2 %/
/ /
/% This function performs a boolean AND between the bytes
of bit vector 1 and 2, storing the result in bit vector 3. %/
/% Entry parameters =/
struct _bv x=bvi: /% Pointer to input bit vector %/
struct _bv xbv2; /% Pointer to input bit vector =/
/% Exit parameters x/
struct _bv xbv3; /% Pointer to output bit vector =/
! hh
char xbitsl, ®bits2, ®bits3; /% Working pointers to bit vectors x#/
bitsl = bvl -> bv_bits; /% Initialize working pointers %/
bits2 = bv2 -> bv_bits;
bits3 = bv3 -> bv_bits;
/% AND ing will proceed until the end of any one of the bit
vectors is reached x/
while (bitsl != bvl -> bv_end &&
bits2 != bv2 -> bv_end &&
bits3 != bv3 -> bv_end)
{
*¥bits3++ = wbitsi++ & xbits2++; /% bv3 = bvl & bv2 =/
3
¥ /% End of bv_and =/ -
/ /]
bv_or (bv3,bvi,bv2) /% bv3 = bvl or bv2 =/
/
/% This function performs a boolean inclusive OR between the bytes
of bit vectors 1 and 2, storing the result in bit vector 3. »/
/% Entry parameters #/
struct _bv xbvi; /% Pointer to input bit vector =/
struct _bv ®bv2; /% Pointer to input bit vector #/
/% Exit parameters x/
struct _bv xbv3; /% Pointer to output bit vector =/
char xbitsl, ®bits2, xbits3; /% Working pointers to bit vectors »/ n
bitsl = bvl -> bv_bits; /% Initialize working pointers =/
bits2 = bv2 -> bv_bits:
bits3 = bv3 -> bv_bits;
/% The OR ing will proceed until the end of any one of the bit
vectors is reached. =/
while (bitsi != bvl -> bv_end &%&
bits2 != bv2 -> bv_end &&
bits3 != bv3 -> bv_end)
{
*bits3++ = xbitsl++ | *bits2++; /% bv3 = bvl or bv2 =/
3
} /% End of bv_or %/ —
/ ; -—
bv_disp(title,bv) /% Bit vector display =/
/ /
/% This function displays the contents of the specified bit vector
in hexadecimal. It is normally only used for debugging. =/ ﬁ
/% Entry parameters %/
char #title; /% Title for the display %/
struct _bv xbv; /% Pointer to the bit vector =/ A

Figure 41-14. (Continued)

390 The CP/M Programmer’s Handbook

/% Exit parameters T
None.

®/
char ®bits: /% Working pointer =/
unsigned byte_count; /% Count used for formatting display %/
unsigned bit_count; /% Count for processing bits in a byte #/
char byte_value; /% Value to be displayed =/
printf("\nBit Vector : Zs",title): /% Display title =/
bits = bv -> bv_bits;s /% Set working pointer x/
byte_count = 03 /% Initialize count =/
while (bits != bv -> bv_end) /% For the entire vector =/

{

if (byte_count % S == 0) /% Check if new line %/

/% Display bit number =/ ji

printf("\n%ad : “,byte_count << 3);
byte_value = %bits++; /% Get the next byte from the vector =/
for (bit_count = 0; bit_count < 8; bit_count++)

/% Display the leftmost bit, then shift the value
left one bit =/

if (bit_count == 4) putchar(’ “); /% Separator =/
putchar((byte_value & Ox80) ? “1“ : “07);
byte_value <<= 1; /% Shift value left =/
3

printf(" "); /% Separator =/

byte_count++; /% Update byte count =/
3

¥ /% End of bv_disp %/

/% End of LIBRARY.C %/ —

Figure 44-4. (Continued)

Associated with the library of functions is another section of source code called
“LIBRARY.H”, shown in Figure 11-2. This “header” file must be included at the
beginning of each program that calls any of the library functions.

For reasons of clarity, this chapter describes the simplest functions first,
followed by the more complex, and finally by the utility programs that use the
functions.

Several functions in the library and some definitions in the library header are
not used by the utilities shown in this chapter. They have been included to illustrate
techniques and because they might be useful in other utilities you could write.

#define LIBVN "1.0" /% Library version number =/
/% This file contains groups of useful definitions.

It should be included at the beginning of any program
that uses the functions in LIBRARY.C %/

#define short char /% Short is not supported directly =/

/% Definition to make minor language modification to C. »/ :] a

Figure 14-2. LIBRARY.H, code to be included at the beginning of any program that
calls LIBRARY functions in Figure 11-1

Chapter 11: Additional Utility Programs 391

/% One of the functions (bv_make) in the library uses the BDS C 'T
function, alloc, to allocate memory. The following definitions
are provided for alloc. %/
struct _header /% Header for block of memory allocated =/ b
i
struct _header x_ptr; /% Pointer to the next header in the chain %/
unsigned _size; /% Number of bytes in the allocated block =/
33
struct _header _base; /% Declare the first header of the chain =/
struct _header %_allocp; /% Used by alloc() and free() functions =/ —
/% BDOS function call numbers x/ =
#define SETDISK 14 /% Set (select) disk %/
#define SEARCHF 17 /% Search first =/
#define SEARCHN 18 /% Search next */
#define DELETEF 19 /% Delete file »/ c
#define GETDISK 25 /% Get default disk (currently logged in) =/
#define SETDMA 26 /% Set DMA (Read/Write) Address %/
#define GETDPARM 31 /% Get disk parameter block address %/
#define GETUSER 32 /% Get current user number x/
#define SETUSER 32 /% Set current user number %/ —
/% Direct BIOS calls 7
These definitions are for direct calls to the BIOS.
WARNING ! Using these makes program less transportable.
Each symbol is related to its corresponding Jump in the
BIOS jump vector.
Only the more useful entries are defined. =/
#define CONST 2 /% Console status =/
#define CONIN 3 /% Console input =/
#define CONOUT 4 /% Console output */
#define LIST 5 /% List output %/
#define AUXOUT & /% Auxiliary output x»/
#define AUXIN 7 /% Auxiliary input =/
#define HOME 8 /% Home disk »/ d
#define SELDSK ¢ /% Select logical disk %/
#define SETTRK 10 /% Set track %/
#define SETSEC 11 /% Set sector %/
#define SETDMA 12 /% Set DMA address %/
#define DREAD 13 /% Disk read */
#define DWRITE 14 /% Disk write x/
#define LISTST 1S /% List status =/
#define SECTRN 16 /% Sector translate #/
#define AUXIST 17 /% Auxiliary input status =/
#define AUXOST 18 /% Auxiliary output status =/
/% "Private" entries in jump vector =/
#define CIOINIT 19 /% Specific character I/0 initialization %/
#define SETDOG 20 /% Set watchdog timer x/
#define CBGADDR 21 /% Configuration block, get address x/ -
/% Definitions for accessing the configuration block =/]
#define CB_GET 21 /% BIOS jump number to access routine x/
#define DEV_INIT 19 /% BIOS jump to initialize device %/
#define CB_DATE O /% Date in ASCII =/
#define CB_TIMEA 1 /% Time in ASCII »/
#define CB_DTFLAGS 2 /% Date, time flags %/
#define TIME_SET Ox01 /% This bit NI means date has been set =/ e
#define DATE_SET 0Ox02 /% This bit NZ means time has been set %/
#define CB_FIP 3 /% Forced input pointer x/
#define CB_SUM 4 /% System start-up message */
#define CB_CI S /% Console input %/
#define CB_CO & /% Console output %/
#define CB_AI 7 /% Auxiliary input =/
#define CB_AO 8 /% Auxiliary output =/ ~

Figure 14-2. (Continued)

392 The CP/M Programmer’s Handbook

—

#define
#define

#define
#define
#define

#define
#define

#define
#define

#define
#define

#define
#define

#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define

#define
#define
#define

#define

#define
#define

struct

#define
#define
#define

#define
#define

CB_LI 9
CB_LO 10

CB_DTA 11
CB_C1224 12
CB_RTCTR 13

CB_WDC 14
CB_WDA 15

CB_FKT 16
CB_COET 17

CB_DO_IS 18
CB_DO_BRC 19

CB_D1_IS 20
CB_D1_BRC 21

CB_D2_IS 22
CB_D2_BRC 23

CB_IV 24
CB_LTCBO 25
CB_LTCBL 26

CB_PUBF 27
CB_MCBUF 28
CB_POLLC 29

/%
/%

/%
/%
/%

/%
/%

/%
/%

/%
/%

/%
/%

/%
/%

/%
/%
/%

/%
/%
/%

List input =/
List output =/

Device table addresses */
Clock 12/24 format flag %/
Real time clock tick rate (per second) %/

Watchdog count =/

Watchdog address =/

initialization stream =/
baud rate constant =/

Device 1 initialization stream %/

initialization stream %/
baud rate constant =/

Function key table %/

Console output escape table %/
Device O

Device O

Device 1 baud rate constant x/
Device 2

Device 2

Interrupt vector */

Long term config.
Long term config.

block offset =/
block length »/

Public files flag %/
Multi-command buffer =/
Polled console flag =/

/% Device numbers and names for physical devices */
/% NOTE: Change these definitions for your computer system x/

T_DEVN 0
M_DEVN 1
P_DEVN 2

MAXPDEV 2

/%
/%
/%

/%

Terminal =/
Modem =/
Printer =/

Maximum physical device number =/

/% Names for the physical devices ®/

PN_T "TERMINAL"
PN_M "MODEM"
PN_P "PRINTER"

/% Structure and definitions for function keys %/

FK_ILENGTH 2

FK_LENGTH 16
FK_ENTRIES 18

_fkt
{

/%

/%
/%

/%

char fk_input (FK_ILENGTHI;
char fk_output[FK_LENGTH];

char fk_term;
}s

/% Definitions and structure

/% Protocol bits %/

if the most
then the
will logically OR
permits Input DTR
XON or ETX protocol.

/% Note:
set =1,

DT_ODTR 0x8004
DT_OXON 0x0008
DT_OETX 0x0010

DT_IRTS 0x8040
DT_IXON. 0x0080

*/

/%
/%
/%

/%
/%

No. of chars.

input when func.

key pressed

NOTE: This does NOT include the ESCAPE. */

Length of string

{(not including fk_term) =/

Number of function key entries in table %/

Function key table %/

/% Lead—-in character is not in table =/
/% Output character string =/
/% Safety terminating character %/

for device tables */

significant bit is
set_proto function
in the value. This
to co-exist with

Output DTR high to send (OR ed in) %/

Output XON =/

Output ETX/ACK %/

Input RTS (OR-ed in) =/

Input XON =/

Figure 11-2.

(Continued)

Chapter 11: Additional Utility Programs

393

#define
#define
#define
#define

#define

struct

#define

#define W_DIR

#define O_DIR

#define ALLPROTO OxDC /%

struct _dt /%
{
char dt_f1014]; /%
char dt_sti; /%
char dt_st2; /%
unsigned dt_f2; /%
unsigned dt_etxml; /%
char dt_f3012]1; /%
s

All protocols combined =/
Device table */

Filler =/

Status byte 1 -- has protocol flags %/

Status byte 2 =/
Filler =/
ETX/ACK message length =/
Filler =/

/% Values returned by the comp_fname (compare file name) x/

NAME_EQ © /% Names equal =/

NAME_LT 1 /% Name less than mask =/

NAME_GT 2 /% Name greater than mask =/

NAME_NE 3 /% Name not equal (and comparison ambiguous) =/

}:

/% Parameter block used for calls

DIR_BSZ 128 /%

struct _dirpb
i

short dp_opren; /%
short dp_end; /%
short dp_write; /3%
struct _dir =dp_entry; /%
char dp_buffer [DIR_BSZ];

char dp_disk; /%
int dp_track:; /%
int dp_sectors; /%
int dp_nument; /%
int de_entrem; /%
int dp_sptrk; /%
int dp_nabpde; /%
unsigned dp_nab; /%
int dp_absize; /%

¥

/% Structure for standard CP/M file control block %/

to the directory management routines

Directory buffer size =/

0 to request directory to be opened =

NZ when at end of directory =/

NZ to write current sector to disk =/

Pointer to directory entry in buffer
/% Directory sector buffer =/

Current logical disk =/

Start track =/

Start sector =/

Number of directory entries =/

Entries remaining to process =/

Number of sectors per track ®*/

Number of allocation blocks per dir.

Number of allocation blocks */

Allocation block size (in Kbytes) =/

/% The err_dir function is used to report errors found by the
directory management routines,
Err_dir needs a parameter to define the operation being
performed when the error occurred. The following definitions
represent the operations possible. =/

open_dir and rw_dir.

o /% Writing directory x/
#define R_DIR 1 /% Reading directaory 3/
2 /% Opening directory %/

FCBSIZE 3é /% Define the overall length of an FCB =/

_fcb

i

short fcb_disk; /% Logical disk (0 = default) =/

char fcb_fnamel113; /% File name, type (with attributes) =/

short fcb_extent; /% Current extent x/

unsigned fcb_s12; /% Reserved for CP/M =/

short fcb_reccnt; /% Record count used in current extent »/

union /% Allocation blocks can be either =/
i /% Single or double bytes =/
short fcbab_short[16);
unsigned fcbab_longl8);
} _fcbab;

short fcb_currecs; /% Current record within extent =/

char fcb_ranrec(3]; /% Record for random read/write =/

#/

/

»/

entry =/

Figure 11-2. (Continued)

394 The CP/M Programmer’s Handbook

/% Disk parameter block maintained by CPM =/

struct _dpb
i

unsigned dpb_sptrk; /% Sectars per track ®/

short dpb_bshift; /% Block shift =/

short dpb_bmask; /% Block mask 3/

short dpb_emask; /% Extent mask %/

unsigned dpb_maxabn; /% Maximum allocation block number »/
unsigned dpb_maxden; /% Maximum directory entry number x/
short dpb_rabO; /% Allocation blocks reserved for =/
short deb_rabil; /% directory blocks %/

unsigned dpb_diskca; /% Disk changed workarea %/

unsigned dpb_trkoff; /% Track offset x/

};

/% Disk directory entry format =/

struct _dir {

char de_userno; /% User number or OxES if free entry =/

char de_fnamel(111; /% File name [8) and type [31 =/

int de_extent; /% Extent number of this entry =/

int de_reccnt; /% Number of 128-byte records used in last
allocation black =/

union /% Allocation blocks can be either =/

/% single or double bytes =/
short de_short(16];
unsigned de_longl&];
} _dirab;

/% Disk request parameters for BIOS-level read/writes =/

struct _drb

i

short dr_disk; /% Logical disk A =0, B =1,.. ¥/
unsigned dr_tracks; /% Track (for SETTRK) =/

unsigned dr_sector; /% Sector (for SETSEC) =/

char =dr_buffer; /% Buffer address (for SETDMA) =/
s

/% Search control block used by directory scanning functions =/

~<

struct _scb

short scb_userno; /% User number(s) to match =/

char scb_fnamel11]; /% File name and type %/

short scb_extent; /% Extent number x/

char unused[191; /% Dummy bytes to make this lock like
a file control block =/

short scb_length; /% Number of bytes to compare =/

short scb_disk; /% Current disk to be searched =/

unsigned scb_adisks; /% BRit map of disks to be searched.

the rightmost bit is for disk A:. =/
¥

/% Code table related definitions %/

#define CT_SNF OxFFFF /% String not found =/

struct _ct /% Define structure of code table x/
{
unsigned _ct_code; /% Code value =/
char #_ct_sp; /% String pointer %/
33

Figure 14-2. (Continued)

Chapter 11: Additional Utility Programs 395

/% Structure for bitvectors %/]

struct _bv
i

unsigned bv_bytes; /% Number of bytes in the vector %/
char #bv_bits; /% Pointer to the first byte in the vector %/ S
char ®bv_end; /# Pointer to byte following bit vector x/

s

/% End of LIBRARY.H %/ —

Figure 41-2. (Continued)

Library Functions

This section describes the library functions and the sections from the header
file that must be included at the beginning of each utility program.

A Minor Change to C Language

One minor problem with the BDS C Compiler is that it does not support
“short” integers, or integers that are only a single byte long. It is convenient to
declare certain values as short to serve as a reminder of the standard type
definition. Therefore, the BDS C compiler must be “fooled” by declaring these
values to be single characters. To do this, the library header file contains the
declaration

#define short char.

shown in Figure 11-2, section a.

The “#define” tells the first part of the C compiler, the preprocessor, to
substitute the string “char” (which declares a character variable) whenever it
encounters the string “short” (which would ordinarily declare a short integer in
standard C).

Note that character strings enclosed in “/*” and “x/ ” are regarded as comments
and are ignored by the compiler.

BDOS Calls

The standard library of functions that comes with the BDS C compiler
includes a function to make BDOS calls, called “bdos.” It takes two parameters,
and a typical call is of the following form:

bdos(c,de):

The “c” parameter represents the value that will be placed into the C register. This
is the BDOS function code number. The “de”is the value that will be placed in the
DE register pair.

A)

396 The CP/M Programmer’s Handbook

BIOS Calls

7/

The library header contains definitions (#define declarations) for BDOS func-
tions 14 through 32, making these functions easier to use (Figure 11-2, ¢). Function
32 (Get/Set Current User Number) has two definitions; the “de” parameter is used
to differentiate whether a get or a set function is to be performed.

The BDS C standard library also contains two functions that make direct
BIOS calls. These are “bios” and “biosh.” They differ only in that the bios function
returns the value in the A register on return from the BIOS routine, whereas biosh,
as its name implies, returns the value in the HL register pair. Examples of their use
are

bios(jump_number,bc);
and
biosh(jump_number,bc,de);

Both functions take as their first parameter the number of the jump instruction
in the BIOS jump vector to which control is to be transferred. For example, the
console-status entry point is the third JMP in the vector. Numbering from 0, this
would be jump number 2.

The library header file contains #defines for BIOS jumps 2 through 21 (Figure
11-2, d). The last group of these #defines (19 through 21) is for the “private”
additions to the standard BIOS jump vectors described in Chapter 8.

Remember, though, that using direct BIOS calls makes programs more diffi-
cult to move from one system to another.

BIOS Configuration Block Access

As you may recall, the configuration block is a collection of data structures in
the BIOS. These structures are used either to store the current settings of certain
user-selectable options, or to point to other important data structures in the BIOS.

One of the “private” jumps appended to the standard BIOS jump vector
transfers control to a routine that returns the address in memory of a specified data
structure. For example, if a utility program needs to locate the word in the BIOS
that determines from which physical device the console input is to read, it can
transfer control to jump 21 in the BIOS jump vector (actually the 22nd jump) with
a code value of 5 in the C register. This jump transfers control to the CBGet-
Address code, which on its return will set HL to the address of the console input
redirection vector. The utility program can then read from or write into this
variable. The library header file contains #define declarations relating the code
values to mnemonic names (Figure 11-2, €).

You will need to refer to the source code in Figure 8-10 to determine whether
the address returned by the BIOS function is the address of the data element or the

Chapter 11: Additional Utility Programs 397

address of a higher-level table that in turn points to the data element.
In order to access the current system date, for example, you would include the
following code:

char ®ptr_to_date; /% declare date pointerx/
ptr_to_date = biosh(CB_DATE); /= get address =/

The ptr_to_date can then be used to access the date directly.

During initial debugging of a utility, it is useful to be able to intercept all such
accesses to the configuration block, partly to reassure yourself that the utility
program is working as it should, and partly to ensure that the BIOS routine is
returning the correct addresses to the data structures. Therefore, the utility library
contains a function, “get_cba,” that gets a configuration block address (Figure
11-1, a).

At first, it appears that get_cba is declared as a function that returns a pointer
to characters. This is not strictly true. Sometimes the address it returns will point
to characters, sometimes to integers, and sometimes to structures (such as the
function key table).

The “printf” instruction has been left in the function in anticipation of debug-
ging a utility. If you need to see some debug output whenever the get_cba function
is used, delete the “/+” and “#/ ” surrounding the “printf” and recompile the library.

BIOS Function Key Table Access

The BIOS shown in Figure 8-10 contains code to recognize when an incoming
escape sequence indicates that one of the terminal’s function keys has been
pressed. Instead of returning just the escape sequence, the console driver injects a
previously programmed string of characters into the console input stream. For
example, on a DEC VT-100 terminal, when the PF1 function key is pressed, the
terminal emits the following character sequence: ESCAPE, “O”, “P”. The function
key table contains the “OP” and a 00H-byte-terminated string of characters to be
injected into the console input stream. In Figure 8-10, the example string is
“FUNCTION KEY 17, LINE FEED. The library header file contains a declaration
for the structure of the function key table (Figure 11-2, h).

Note the use of “#define” to declare the length of the incoming characters
emitted by the terminal as well as the length of the output string.

In order to access a function key table entry, you must declare a pointer to a
“_fkt” structure like this:
struct _fkt #ptr_to_fkt; /% Declare pointer =/
ptr_to_fkt = get_cba(CB_FKT); /% Set pointer =/
printf("Display the first string : %s",

ptr_to_fkt -> fk_output);
++ptr_to_fkt; /% Move to next entry %/

The get_cba function is used to return the address of the first entry in the
function key table and set a pointer to it. Then the printf function (part of the

398 The CP/M Programmer’s Handbook

standard BDS C library) is used to print out the first string, which gets substituted
for the “%s” in the quoted string. Note that the statement
\

++ptr_to_fkt

does not just add one to the pointer to the function key table—it adds whatever it
takes to move the pointer to the next entry in the table.

BIOS Device Table Access

The device tables are important structures for the serial devices served by the
console, auxiliary, and list device drivers in the BIOS. They are declared at line
1500 in Figure 8-10.

The get_ cba function does not return a pointer to a specific device table, buta
pointer to a table of device table addresses. Each entry in the address table
corresponds to a specific device number. If there is no device table for a specific
device number, then the corresponding entry in the table will be set to zero. the
library header file contains definitions for the device table (Figure 11-2, 1).

The device tables contain, among other things, the current serial line protocols
used to synchronize the transmission and reception of data by the device drivers
and the physical devices. An example utility, PROTOCOL, is shown later in the
chapter. The example #define declarations and structure definition shown hereare
modeled on the requirements of this utility. The only relevant bytes are the two
status bytes dt_stl and dt_st2 and the message length used with the ETX/ACK
protocol, dt_etxml. The #defines shown are for the specific bits in the device table’s
status bytes. The PROTOCOL utility uses the most significant bit to indicate
whether a given protocol setting can coexist with others.

To access these fields, use the following code:

struct _ppdt
{

char xpdt(161; /% Array of 16 pointers to device tables %/
¥} #ppdt; /% Pointer to array of 16 pointers =/
struct _dt =dt; /% Pointer to device table =/
ppdt = get_cba(CB_DTA); /% Set pointer to array of pointers %/
dt = ppdt -> pdtldevice_nol; /% Set pointer to specified device
table »/
if (idt)

printf("\nError - no device table for this device.");

dt -> dt_etxml = O3 /% Clear ETX message length =/

BIOS Disk Parameter Block Access

Several of the utility programs shown in this chapter must access the file
directory on a given logical disk. The disk parameter block (DPB) indicates the
size and location of the file directory. The library header contains a structure
definition that describes the DPB (Figure 11-2, n).

Chapter 11: Additional Utility Programs 399

To locate the DPB, you can make a direct BIOS call to the SELDSK routine,
which returns the address of the disk parameter header (DPH). You then can
access the DPB pointer in the DPH. Alternatively, using the BDOS, you can make
the required disk the default disk and then request the address of its DPB. The
code for the latter method is shown in the get_dpb function included in the utility
library (Figure 11-1, u).

The get_dpb function uses a BIOS SELDSK function first to see if the
specified disk is legitimate. Only then does it use the BDOS.

Reading or Writing a Disk Using the BIOS

When you write a program that uses direct BIOS calls, you increase the
possibility of problems in moving the program from one system to another.
However, in certain circumstances it is necessary to use the BIOS. Reading and
writing the file directory is one of these; the BDOS cannot be used to access the
directory directly. The library header contains a structure declaration for a
parameter block that contains the details of an “absolute” disk read or write
(Figure 11-2, p).

Note the pointer to the 128-byte data buffer used to hold one of CP/M’s
“records.”

The disk read and write functions are rd_disk (Figure 11-1, k) and wrt_disk
(Figure 11-1,1). Both of them take a _drb as an input parameter, and both call the
set_disk function to make the individual BIOS calls to SELDSK, SETTRK, and
SETSEC.

Of special note is the code in set_disk (Figure 11-1, m) that converts a logical
sector into a physical sector using the sector translation table and the SECTRAN
entry point in the BIOS.

File Directory Entry Access

All of the utility programs that access a disk directory share the same basic
logic regardless of their specific task. This logic can be described best in pseudo-
code:

while (not at the end of the directory)

{

access the next directory entry
if (this entry matches the current search criteria)

{

process the entry

}
}

There are two ways of implementing this logic. The first uses the BIOS to read
the directory. Entries are presented to the utility exactly as they occur in the file

400 The CP/M Programmer’s Handbosek

directory. The second uses the BDOS functions Search First and Search Next and
accesses the directory file-by-file rather than by entry. This latter method is more
suited to utilities that process files rather than entries. The ERASE utility, de-
scribed later in this chapter, illustrates this second method.

Three groups of functions are provided in the library: to access the next entry
in the directory, to match the name in the current entry against a search key, and to
assist with processing the directory.

Directory Accessing Functions

A number of functions involve access to the file directory. The first group of
such functions performs the following:

get_nde (get next directory entry; Figure 11-1, n)
This function returns a pointer to the next directory entry, or returns zero if
the end of the directory has been reached.

open_dir (open directory; Figure 11-1, 0)
This function is called by get_nde to open up a directory for processing.

rw_dir (read/ write directory; Figure 11-1, p)
This function reads or writes the current directory sector.

err_dir (error on directory; Figure 11-1, q)
This general-purpose routine displays an error message if the BIOS indi-
cates that it had problems either reading or writing the directory.

All of these functions use a directory parameter block to coordinate their
activity. The library header contains the definitions for this structure (Figure 11-2,
1), as well as #define declarations for operation codes used by the directory-
accessing functions (Figure 11-2, m).

Before calling get_nde, the calling program needs to set dp—open to zero
(forcing a call to open_dir) and the dp_disk field to the correct logical disk. The
open_dir function sets up all of the remaining fields, using get_dpb to access the
disk parameter block for the disk specified in dp_disk.

Of the remaining flags, dp_end will be set to true, when the end of the directory
is reached, and dp_write must be nonzero for rw_dir to write the current sector
back onto the disk.

The get_nde function includes all of the necessary logic to move from one
directory entry to the next, reading in the next sector when necessary, and writing
out the previous sector if the dp_write flag has been set to a nonzero value by the
calling program. It also counts down on the number of directory entries processed,
detecting and indicating the end of the directory.

The code at the beginning of the function calls open_dir if the dp_open flag is
false. Note the code at the end of open_dir that sets the number of allocation blocks
per directory entry (dp—nabpde). This number is computed from the maximum

Chapter 11: Additional Utility Programs 401

allocation block number in the disk parameter block. If it is larger than 255, each
allocation block must occupy a word, and there will be eight blocks per directory
entry. If there are 255 or fewer allocation blocks, each will be one byte long and
there will be 16 per entry. The allocation block size, in Kbytes, is computed from a
simple formula.

In the early stages of debugging utilities, comment out the line that makes the
call to wrt_disk. This will prevent the directory from being overwritten. You then
can test even those utilities that attempt to erase entries from the directory without
any risk of damaging any data on the disk.

The last function in this group, err__dir, is a common error handling function
for taking care of errors while reading or writing the directory.

Directory Matching Functions

The second group of functions that access the file directory matches each direc-
tory entry against specific search criteria. These include the following functions:

setscb (set search control block; Figure 11-1, r)
A search control block (SCB) is a structure that defines the entries in the
directory that are to be selected for processing.

comp_fname (compare file name; Figure 11-1, f)
This function compares the file name in the current directory entry with the
one specified in the search control block.

The library header contains the structure definition for the search control
block (Figure 11-2, q). This SCB is a hybrid structure. The first part of itisa cross
between a file control block (FCB) and a directory entry. The last three fields,
scb_length, scb_disk, and scb_adisks, are peculiar to the search control block.
Note that its overall length is the same as an FCB’s so that the standard BDS C
function set_fcb can be used. This function sets the file name and type into an
FCB, replacing “+” with as many “?” characters as are required, and clears all
unused bytes to zero.

The scb_length field indicates to the comp_fname (compare file name) func-
tion how many bytes of the structure are to be compared. This field will be set to 12
to compare the user number, file name, and type, or to 13 to include the extent
number.

Note that scb__disk is the current disk to be searched, whereas scb_adisksis a
bit map with a 1 bit corresponding to each of the 16 possible logical disks that must
be searched.

The search control block is initialized by the setscb function.

Note the form of the file name that setscb expects to receive. This is described
in the comments at the beginning of the function.

Several of the utility programs use their own special versions of setscb,

402 The CP/M Programmer’s Handbook

’

renaming it ssetscb (special setscb) to avoid the library version being linked into
the programs.

The complementary function comp_fname is used to compare the first few
bytes of the current directory entry to the corresponding bytes of the SCB.

The comp_fname function pegforms a specialized string match of the user
number, the file name, the file type, and, optionally, the extent number. A “?”
character in the search control block file name, type, and extent will match with
any character in the file directory entry. However, in the SCB user number, a “?”
will only match a number in the range 0 to 15; it will not match a directory entry
that has the user number byte set to ESH (or 0XES, as hexadecimal notation in C).

This function also returns one of several values to indicate the result of the
comparison. These values are defined in the library header file (Figure 11-2, j).

Directory Processing Functions

The final group of functions that access the directory are those that help
process the directory entries themselves. These functions use a structure definition
to access each directory entry (Figure 11-2, 0).

A union statement is used for the allocation block numbers. These can be
single- or two-byte entries, depending on the maximum number of allocation
blocks that must be represented. The union statement tells the BDS C compiler
whether there will be a 16-byte array of short integers (characters) or an array of
eight unsigned two-byte integers.

The functions contained in this group can be divided into three subgroups:

. Those that deal with converting directory entries for display on the console.

. Those that deal with a “disk map”—a convenient array for representing
logical disks and the user numbers they contain.

Those that deal with “bit vectors”—a convenient representation of which
allocation blocks on a logical disk are in use or available.

The library contains only one function to convert a directory-entry file name
into a suitable form for display on the console. This is the conv_dfname function
(Figure 11-1, h). It takes the information from the specified directory entry (or,asa
convenience, a search control block) and formats it into a string of the form

uu/d:filename.typ

The “uu” specifies the user number and the “d” specifies the disk identification.

The repetitive code at the end of the function is necessary to make sure that the
characters in the file type do not have their high-order bits set. These bits are the
file attributes. If they are set, they can render the characters nondisplayable on
some terminals.

Chapter 11: Additional Utility Programs 403

The second subgroup of functions, those that manipulate a “disk map,”
produce an array that looks like this:

Disks
v User Numbers --> -Totals-
A 0 1 2 3 4 S 6 7 8 910 11 12 13 14 15 Used Free
B
P

This disk map is used by several utility programs. For example, the SPACE
utility displays a disk map that shows, for each logical disk in the system, and for
each user on each logical disk, how many Kbytes of disk space are in use. The
totals at the right show the total of used and free space. In another example, the
FIND utility shows how many files on each disk and in each user number match
the search name.

Each utility program that uses a disk map is coded:

unsigned disk_map[161L18];
Two functions are provided in the library to deal with the disk map:

dm_clr (disk map clear; Figure 11-1, s)
This function fills the entire disk map with zeros.

dm_disp (disk map display; Figure 11-1, t)
This function displays the horizontal and vertical caption lines for the disk
map and then converts each element of the disk map to a decimal number.

The first function, dm_clr, uses one of the standard BDS C functions to set a
block of memory to a specific value. It presumes that the disk map is 16 X 18
elements, each two bytes long.

The second function, dm_disp, prints horizontal lines only for those disks
specified in the bit map parameter. Here is an example of its output:

0 1 2 3 4 see 10 11 12 13 14 15 \Used Free
A: 1 1 15 241
R: &6 20 74 SO 2 245 779
C: -= None -—- 0 1024

(NOTE: All user groups would be shown on the terminal.)

The final subgroup deals with processing “bit vectors.” A bit vector is a string
of bits packed eight bits per byte. Each bit is addressed by its relative number along
the vector; the first bit is number 0.

An example of why bit vectors are used is a utility program that needs to scan
the directory of a disk and build a structure showing which allocation blocks are in
use. It can do this by accessing each active directory element and, for each nonzero
allocation block number, setting the corresponding bit number in a bit vector.

The library header has a structure definition for a bit vector (Figure 11-2, s).

404 The CP/M Programmer’s Handbook

This vector contains the overall length of the bit vector in bytes, and two pointers.
The first points to the start of the vector, the second to the end. The bytes that
contain the vector bits themselves are allocated by the alloc function —one of the
standard BDS C functions.

The following bit vector functions are provided in the library:

bv_make (bit vector make; Figure 11-1, cc)
This function allocates memory for the bit vector (using the standard
mechanism provided by BDS C) and sets all of the bits to zero.

bv_fill (bit vector fill; Figure 11-1, dd)
This fills a specified vector, setting each byte to a specified value.

bv_set (bit vector set; Figure 11-1, ee)
This sets the specified bit of a vector to one.

bv_test (bit vector test; Figure 11-1, ff)
This function returns a value of zero or one, reflecting the setting of the
specified bit in a bit vector.

bv_nz (bit vector nonzero; Figure 11-1, gg)
This returns zero or a nonzero value to reflect whether any bits are set in

the specified bit vector.

bv_and (bit vector AND; Figure 11-1, hh)
This function performs a Boolean AND between two bit vectors and places
the result into a third vector.

bv_or (bit vector OR; Figure 11-1, ii)
This is similar to bv_and, except that it performs an inclusive OR on the
two input vectors.

bv_disp (bit vector display; Figure 11-1, ji)
This function displays a caption line and then prints out the contents of the
specified bit vector as a series of zeros and ones. Each byte is formatted to
make the output easier to read.

The bv_make function uses the alloc function to allocate a block from the
unused part of memory between the end of a program and the base of the BDOS.
It requires that two data structures be declared at the beginning of the program.
These structures are declared in the library header file (Figure 11-2, b).

The bv_fill function uses the standard BDS C setmem function.

The bv_set function converts the bit number into a byte offset by shifting the
bit number right three places. The least significant three bits of the original bit
number specify which bit in the appropriate byte needs to be ORed in.

The bv_test function is effectively the reverse of bv_set. It accesses the specified
bit and returns its value to the calling program.

The bv_nz function scans the entire bit vector looking for the first nonzero

Chapter 11: Additional Utility Programs 405

byte. If the entire vector is zero, it returns a value of zero. Otherwise, it returns a
pointer to the first nonzero byte.

Bothbv__and and bv__or functions take three bit vectors as parameters. The
first vector is used to hold the result of either ANDing or ORing the second and
third vectors together. Both of these functions assume that the output vector has
already been created using bv_make. The shortest of the three vectors will termi-
nate the bv_and or bv_or function; that is, these functions will terminate when
they reach the end of the first (shortest) vector.

The final function, bv_disp, displays the title line specified by the calling
program, and then displays all of the bits in the vector, with the bit number of the
first bit on each line shown on the left.

None of the utility programs uses bv_disp—it has been left in the library purely
as an aid to debugging.

Here is an example of bv_disp’s output:

Bit Vector : Allocation Blocks in Use

0 : 0000 0000 0001 1000 1000 0001 1111 1111 1111 1111
40 : 1111 1111 1111 1111 1111 1111 1110 1011 0000 0000
80 : 1100 0000 1111 1100 1111 1001 1100 0000 1001 1111

120 : 1110 1100 0001 1111 0000 0000 1101 1000 0001 1110
160 = 1111 1111 1110 1111 1110 1111 0000 0111 0000 o111
200 : 1111 0010

Checking User-Specified Parameters

The Clanguage provides a mechanism for accessing the parameters specified
in the “command tail.” It provides a count of the number of parameters entered,
“arge” (argument count), and an array of pointers to each of the character strings,
“argv”(argument vector). At the beginning of the main function of each program
you must define these two variables like this:

main{argc,argv)

i

int argce; /% Argument count =/

char #argv[l; /% Array of pointers to char. strings =/

/% Remainder of main function %/

e es ae

Consider the minimum case—a command line with just the program name on
it:

A>command

The convention is that the first argument on the line is the name of the program
itself. Hence argc would be set to one, and argv[0] would be a pointer to the
program name, “command.”

406 The CP/M Programmer’s Handbook

Next consider a more complex case —a command line with parameters like the
following:

A>command paraml 123

In this case, arge will be three; argv[1] will be a pointer to paraml; and
argv[1][0] will access the 0 (th€ first) character of argv[1]—in this case the
character “p.”

To detect whether the second parameter is present and numeric, the code will
be
if Cisdigit(argv[131L01))

{
/% Process digit =/
3
else
{
/% Parameter either not present or has

alpha character at the front =/
3

In most of the utilities, you will get a much “friendlier” program if the user need
only specify enough characters of a parameter to distinguish the value entered
from the other possible values. For example, consider a program that can haveasa
parameter one of the following values: 300, 600, 1200, 2400, 4800, 9600, or 19200.
It would be convenient if the user needed to type only the first digit, rather than
having to enter redundant keystrokes. However, the values 1200 and 19200 would
then be ambiguous. The user would have to enter 12 or 19. Novice users often
prefer to specify the entire parameter for clarity and security.

The standard C library provides a character string comparison function,
strcmp. Unfortunately, this function does not provide for the partial matching just
described. Therefore, the library includes two special functions that do make this
possible: sstrcmp (substring compare, Figure. 11-1, d) and usstrcmp (uppercase
substring compare, Figure 11-1, €). The latter function is necessary when you need
to compare a substring that could contain lowercase characters; it converts
characters to uppercase before the comparison.

To assist with character string manipulation, two additional functions have
been included in the library. These are strscn (string scan, Figure 11-1, b) and
ustremp (uppercase string compare, Figure 11-1, c).

Using Code Tables

A code table is a simple structure used by all of the utility programs that accept
parameters that can have any of several values. The library header contains a
structure definition for a code table (Figure 11-2, r).

A code table entry contains an unsigned code value and a pointer to a character
string. It is used in the utility programs wherever there is a need to relate some
arbitrary code number or bit pattern to an ASCII character string. For example,

Chapter 11: Additional Utility Programs 407

to program a serial port baud-rate-generator chip to various baud rates requires

different time constants for each rate. Users do not need to know what these

numbers are; they only need to be able to specify the baud rate as an ASCII string.
Thus, a code table is set up as follows:

Baud Rate Constant User’s Name
0x35 “300”
0x36 “600”
0x37 “1200”
0x3A “2400”
0x3C “4800”
0x3E “9600”
0x3F “19200”

A utility program now needs to be able to perform various operations using the
code table:

Given the input parameter on the command tail, the utility must check
whether the ASCII string is in the code table, display all of the legal options
onthe console if it is not, and return the code value for subsequent processing
if it is.

Given the current baud rate constant (held in the BIOS), the utility must scan
the code table and display the corresponding ASCII string to tell the user the
current baud rate setting.

The library includes specialized functions to do this, plus some additional
functions to make code tables more generally usable. These functions are

ct_init (code table initialize; Figure 11-1, v)
This function initializes a specific entry in a code table, setting the code
value and the pointer to the character string.

ct_parc (code table parameter return code; Figure 11-1, w)
This performs an uppercase substring match on the specified key string,
returning either an error (the value CT_SNF —string not found) or a code
value.

ct_code (code table return code; Figure 11-1, x)
This function is similar to ct_parc in that it scans a code table and returns
the corresponding code. It differs in the way that the comparison is done.
The entire search string is compared with the string in the code table entry.
A match only occurs when all characters are the same.

ct_disps (code table display strings; Figure 11-1, y)
This function displays all strings in a given code table. It is used either when
the user has entered an invalid string, or when the utility program is
requested to show what options are available for a parameter.

ct_index (code table return index; Figure 11-1, z)
This function, given a string, searches the code table and returns the index

408 The CP/M Programmer’s Handbook

of the entry that has a string matching the search string. The index is not the
code value; it is the number of the entry in the table.

ct_stri (code table string index; Figure 11-1, aa)
This function, given an entry index number, returns a pointer to the string
in that entry.

ct_strc (code table string code; Figure 11-1, bb)
This function, given a code number, returns a pointer to the string in the
entry that has a matching code number.

Accessing a Directory via the BDOS

One problem associated with accessing the file directory directly, as illustrated
by earlier functions, is that the program is presented with directory entries in
exactly the order that they occur in the directory. For some programs, such as
those that process groups of files, it is better to use the BDOS Search First and
Search Next functions to access the directory.

Using the BDOS, the program can process the first file name to match an
ambiguous search key, then go back to the BDOS to get the name of the next file,
and so on. The library header contains a structure definition for a standard CP/M
file control block (Figure 11-2, k).

Notice that the first byte of the FCB is a disk number rather than the user
number of the directory entry. Note also the use of a union statement to describe
the allocation block numbers.

The standard BDS C library contains a function, setfcb, that is given the
address of an FCB and a pointer to a string containing a file name. It converts any
“£” in the name to the appropriate number of “?”, and fills the remainder of the
FCB with zeros.

The example library contains the following functions designed for BDOS file
directory access:

get_nfn (get next file name; Figure 11-1, i)

This function is given a pointer to an ambiguous file name and a pointer to
an FCB. It returns with the FCB set up to access the next file that matches
the ambiguous file name.

srch_file (search for file; Figure 11-1, j)
This function, used by get_nfn, issues either a Search First or a Search
Next BDOS call.

conv_fname (convert file name; Figure 11-1, g)
This function converts a file name from an FCB into a form suitable for
display on the console. It is similar to the conv_dfname function described
earlier except that it outputs only the disk, file name, and type (not the user
number) in the form

d:filename.typ

Chapter 11: Additional Utility Programs 409

To signal the get_nfn function that you want the first file name, you must set
the most significant bit of the first byte, the disk number.
Here is an example showing how to use the get_nfn function:

struct _fcb fcbs /% Declare a file control block x/

setmem(fcb,FCB_SIZE,0); /% Clear FCB to zeros %/
fcb. feb_disk = Ox80; /% Mark FCB for "first time" =/

while (get_nfn(fcb, "RB:XYZx%,.%x"))
/% Until get_nfn returns a zero #/
{

/% Open the file using FCB %/
while (/% Not at end of file x/)

/% Process next record or
Character in filex/

/% Close the file %/
¥

The quoted string “B:XYZ#.x” could also be just a pointer to a string, or a
parameter on the command line, argv[n].

The last function for BDOS processing of the file directory, conv_fname, is
used to convert a file name for output to a terminal. Again, the repetitive code at
the end clears the file attribute bits to avoid any side effects from the terminal.

Utility Programs Enhancing Standard CP/M

This group of utilities is designed to enhance those supplied by Digital Research.
They do not take advantage of any special features of the enhanced BIOS in Figure
8-10 and can be used on any CP/M Version 2.2 installation.

With the exception of the ER ASE utility, all of the utilities scan down the file
directory using BIOS calls, as described earlier in this chapter.

ERASE — A Safer Way to Erase Files

There are two disadvantages to the Console Command Processor’s built-in
ERA command. First, it will unquestioningly erase groups of files. Second, if you
have a file name with nongraphic or lowercase characters, you cannot use the ERA
command, as the CCP converts the command tail characters to uppercase and
terminates a file name on encountering any strange character in the string.

The ERASE utility shown in Figure 11-3 erases groups of files, but it asks the
user for confirmation before it erases each file.

Rather than use the BIOS to access each directory entry, it uses the get_nfn
function, which then calls the BDOS. Thus ER ASE functions equally well for files

440 The CP/M Programmer’s Handbook

that have multiple entries in the directory. It can use the BDOS Delete File
function to erase all extents of a given file.
Here is an example console dialog showing ERASE in operation:

F2Arerase<CR>
ERASE Version 1.0 02/23/83 (Library 1.0)
Usage :

ERASE {d:}file_name.typ

P3Arerase #*.com{CR>
ERASE Version 1.0 02/23/83 (Library 1.0)

Searching for file(s) matching A:??????77.COM.
Erase A:UNERASE .COM y/n?
Erase A:TEMF1 .COM y/n?
Erase A:TEMPZ2 .COM y/n?
Erase A:TEMFZ .COM y/n?
Erase A:TEMP4 .COM y/n?
Erase A:ERASE .COM y/n?

== Will be Erased!

== Will be Erased!

PKRPPXP

Erasing files now...
File A:TEMP1 .COM erased.
File A:TEMP4 .COM erased.

#define VN

/% ERASE

int ecount;
int count;

short argcs

ecount = O3

"1.0 02/24/83"

This utility erases the specified file(s) logically
by using a BDOS delete function. =/

#include <LIBRARY.H>

struct _fcb amb_fcb; /% Ambiguous name file control block =/

struct _fcb fcbs /% Used for BDOS search functions x/

char file_namel201; /% Formatted for display: d:FILENAME.TYP =/
short cur_disk; /% Current logical disk at start of program =/

#define MAXERA 1024
struct _fcb era_fcbUMAXERAD;

main(argc, argv)
char #argvl]; /% Argument vector (pointer to an array of char. ®/
{
printf ("\nERASE Version %s (Library %s)",VUN,LIBVN);
/

chk_uselargc); #* Check usage */
cur_disk = bdos(GETDISK); /% Get current default disk =/

setfcb(amb_fcb,argvi1]); /% Set ambigucus file name =/

if (amb_fcb.fcb_disk) /% Check if default disk to be used %/
i
bdos (SETDISK, amb_fcb. fcb_disk + 1); /% Set to specified disk =/
3

/% ERASE saves the FCB“s of the all the
files that need to be erased in the
following array 3/

/% Count of number of files to be erased */

/% Used to access era_fcb during erasing »/

/% Argument count =/

/% Initialize count of files to erase x/

Figure 11-3.

ERASE.C, a utility that requests confirmation before erasing

Chapter 11: Additional Utility Programs 411

/% Convert ambiguous file name for output =/
conv_fname (amb_fcb,file_name);
printf("\n\nSearching for filel(s) matching %s.",file_name);

/% Set the file contrel block to indicate a "first" search =/
fcb.fcb_disk 1= O0x80; /% OR in the ms bit 3/

/% While not at the end of the directory, set the FCB
to the next name that matches =/
while(get_nfn(amb_fcb, fcb))
{

conv_fname(fcb,file_name);

/% Ask whether to erase file or not =/
printf("\n\tErase %s y/n? ",file_name);
if (toupper(getchar()) == “Y~)

i

printf(" <== Will be erased!");

/% add current fcb to array of FCB's %/
movmem(fcb, &era_fcblecount++1,FCBSIZE);

/% Check that the table is not full =/
if (ecount == MAXERA)

{

printf("\nWarning : Internal table now full. No more files can be erased");
printf("\n until those already specified have been erased.");
break; /% Break cut of while loop ®/
3
3} /% All directory entries processed */

if (ecount)
printf("\n\nErasing files now...");

/% now process each FCB in the array, erasing the files =/

for (count = O3 /% Starting with the first file in the array =/
count < ecount; /% Until all active entries processed x/
count++) /% Move to next FCB =/
i
conv_fname(&era_fcblcountl,file_name);
if (bdos(DELETEF,&era_fcblcountl) == -1) /% error? %/
printf ("\n\O07Error trying to erase %s",file_name);
else /% File erased =/

printf("\n\tFile %s erased.",file_name);

3
bdos(SETDISK, cur_disk); /% reset to current disk =/
3

chk_use(argce) /% Check usage %/
/% This function checks that the correct number of
parameters has been specified, outputting instructions if not. =/

/% Entry parameter x/
int argcs /% Count of the number of arguments on the command line =/

{
/% The minimum value of argec is 1 (for the program name itself),
s0 argc is always one greater than the number of parameters
on the command line #/

if (arge != 2)
{
printf("\nUsage :");

printf ("\n\tERASE {d:l}file_name.typ");
exit();
3

Figure 11-3. (Continued)

412 The CP/M Programmer’s Handbook

UNERASE — Restore Erased Files

UNERASE, as its name implies, can be used to “revive” an accidentally erased
file. Only files whose allocation blocks have not been reallocated to other files can
be revived. The UNERASE utility shown in Figure 11-4 builds a bit vector of all
the allocation blocks used by active directory entries. Then it builds a bit vector for
all the allocation blocks required by the file to be UNERASEJ. If a Boolean AND
between the two vectors yields a nonzeto vector, then one or more blocks that
originally belonged to the erased file are now allocated to other files on the disk.

#define VN "1.0 02/12/83"

/% UNERASE --
This utility does the inverse of ERASE: it restores
specified files to the directory by changing the first byte of
their directory entries from OxES back to the specified user
number. ¥/

#include <LIBRARY.H>

struct _dirpb dir_pb; /% Directory management parameter block #/
struct _dir x=dir_entry; /% Pointer to directary entry =/
struct _scb scb; /% Search control block =/
struct _scb scbaj /% SCB set up to match all files =/
struct _dpb dpbs /% CP/M’s disk parameter block %/
struct _bv inuse_bv; /% Bit vector for blocks in use %/
struct _bv file_bv: /% Bit vector for file to be unerased %/
struct _bv extents; /% Bit vector for those extents unerased %/
char file_namel[20]; /% Formatted for display : un/d:FILENAME.TYP »/
short cur_disk; /% Current logical disk at start of program
NZ = show-map of number of files =/
int count; /% Used to access the allocation block numbers
in each directory entry =/
int user; /% User in which the file is to be revived %/

main(arge, argv)

short argcy /% Argument count */

char #argv(]; /% Argument vector (pointer to an array of chars.) #®/
i

printf ("\nUNERASE Version %s (Library %s)",VN,LIBVN); N

chk_use(arge); /% Check usage %/

cur_disk = bdos(GETDISK); /% Get current default disk =/

/% Using a special version of the set search-control-block utility,
set the disk, name, type (no ambiguous names), the user number
to match only erased entries, and the length to compare
the user, name, and type.

This special version also returns the disk_id taken from
the file name on the command line. =/
if ((dir_pb.dp_disk = ssetscb(scb,argvl11,0xES,12)) == 0)

{ /% Use default disk %/

dir_pb.dp_disk = cur_disk;

3

else
{ /% make disk A = 0, B = 1 (for SELDSK) =/
dir_pb.dp_disk--;
]

printf("\nSearching disk %d.",dir_pb.dp_disk);

if(strscn(scb,"?")) /% Check if ambiguous name %/
{
printf("\nError —— UNERASE can only revive a single file at a time.");
exit();

Figure 11-4. UNERASE.C, a utility program that “revives” erased files

Chapter 11: Additional Utility Programs

413

}

/% Set up a special search control block that will match with
all existing files. %/

ssetscb(scba, "%, %", °?7,12); /% Set file name and initialize SCB =/
if (argc == 2) /% No user number specified %/

user = bdos(GETUSER, OxFF); /% Get current user number x/
else
i

user = atecilargvi2l); /% Get specified number #/

if (user >)

printf("\nUser number can only be 0 - 15.");
exit();
3

3

/% Build a bit vector that shows the allocation blocks
currently in use. SCBA has been set up to match all
active directory entries on the disk. =/

build_bv(inuse_bv,scba);

/% Build a bit vector for the file to be restored showing
which allocation blocks will be needed for the file. %/
if ('build_bv(file_bv,scb))
{

printf("\nNo directory entries found for file %s.",
argvi11);

exit();

3

/% Perform a boolean AND of the two bit vectors. =/
bv_and(file_bv,inuse_bv,file_bv);

/% Check if the result is nonzerc —- if so, then one or more
of the allocation blocks required by the erased file is
already in use for an existing file and the file cannot
be restored. =/

if (bv_nz(file_bv))

i
printf("\n--- This file cannot be restored as some parts of it");
printf("\n have been re-used for other files! ---");
exit();

3

/% Continue on to restore the file by changing all the entries
in the directory to have the specified user number.
Note: There may be several entries in the directory for
the same file name and type, and even with the same extent
number. For this reason, a bit map is kept of the extent
numbers unerased —-- duplicate extent numbers will not be
unerased. #/

/% Set up the bit vector for up to 127 unerased extents =/
bv_make(extents, 14); /% 16 % 8 bits =/

/% Set the directory to "closed"”, and force the get_nde
function to cpen it. %/
dir_pb.dp_open = 0;

/% While not at the end of the directory, return a pointer to
the next entry in the directory. %/

while(dir_entry = get_ndel(dir_pb))

i

/% Check if user = OxES and name, type match %/
if (comp_fname(scb,dir_entry) == NAME_EQ)
{

/% Test if this extent has already been
unerased %/
if (bv_test(extents,dir_entry -> de_extent))

{ /% Yes it has %/

printf("\n\t\tExtent #%d of %s ignored.”,
dir_entry -> de_extent,argviil);

continue; /% Do not unerase this one =/

3

Figure 14-4. (Continued)

414 The CP/M Programmer’s Handbook

else /% Indicate this extent unerased =/

bv_set(extents,dir_entry -> de_extent);
dir_entry -> de_userno = user; /% Unerase entry =/
dir_pb.dp_write = 13 /% Need to write sector back ®/
printf("\n\tExtent #%d of %s unerased.”,

dir_entry -> de_extent,argvl11);
3

¥

printf("\n\nFile %s unerased in User Number %d.",
argvil1l,user);

bdos (SETDISK, cur_disk); /»* Reset to curvent disk =/
3

build_bv(byv, scb) /% Build bit vector (from directory) =/

/% This function scans the directory of the disk specified in
the directory parameter block (declared as a global variable),
and builds the specified bit vector, showing all the allocation
blocks used by files matching the name in the search contral

block. %/
/% Entry parameters */
struct _bv xbv; /% Pointer to the bit vector =/
struct _scb *scb: /% Pointer to search control block =/

/% Also uses : directory parameter block (dir_pb) =/

/% Exit parameters
The specified bit vector will be created, and will have 1-bits
set wherever an allocation block is found in a directory
entry that matches the search control block.
It also returns the number of directory entries matched. =/

i

unsigned abno; /% Allocation block number =/

struct _dpb xdpb; /% Pointer to the disk parameter block in the BIOS =/
int mcount; /% Match count of dir. entries matched =/

mcount = O /% Initialize match count %/

dpb = get_dpb(dir_pb.dp_disk); /% Get disk parameter block address %/

/% make the bit vector with one byte for each eight allocation
blocks + 1 %/
if (!'(bv_make(bv, (dpb -> dpb_maxabn >>3)+1)))

{

printf("\nError —- Insufficient memory to make a bit vector.");
exit(Q);

3

/% Set directory to "closed" to force the get_nde
function to open it. =/
dir_pb.dp_open = 03

/% Now scan the directory building the bit vector x/
while(dir_entry = get_nde(dir_pb))
£

/% Compare user number (which can legitimately be
OxES), the file name and the type). %/
if (comp_fname(sch,dir_entry) == NAME_EQ)
{

++mcount; /% Update match count =/

for (count = O3 /% Start with the first alloc. block =/
count < dir_pb.dp_nabpde; /% For number of alloc. blks. per dir. entry =/
count++)

/% Set the appropriate bit number for
each nonzero allocation block number x/
if (dir_pb.dp_nabpde == 8) /% assume 8 2-byte numbers %/
{
abno = dir_entry -> _dirab.de_longlcountl;
3}

else /% Assume 16 1-byte numbers %=/
i

Figure 41-4. (Continued)

Chapter 11: Additional Utility Programs 415

abno = dir_entry -> _dirab.de_shortlcount);
3

if (abno) bv_set(bv,abno); /% Set the bit %/
3

3
3
return mcount; /% Return number of dir. entries matched =/
chk_use(argc) /% Check usage %/

/% This function checks that the correct number of
parameters has been specified, outputting instructions
if not. =/

/% Entry parameter 3/
int argc: /% Count of the number of arguments on the command line =/

/% The minimum value of argc is 1 (for the program name itself),
so arge is always one greater than the number of parameters
on the command line %/

if (argc == i1 arge > 3)
i

printf(“\nUsage :");
Printf ("\n\tUNERASE {d:3}filename.typ fuseri");
printf("\n\tOnly a single unambiguous file name can be used.)");
exit();
3

} /% end chk_use x/

ssetscb(scb, fname,user,length) /* Special version of set search contrcl block =/
/% This function sets up a search control block according
to the file name, type, user number, and number of bytes
to compare.
The file name can take the following forms :
filename
filename.typ
d:filename.typ

It sets the bit map according to which disks should be searched.
For each selected disk, it checks to see if an error is generated
when selecting the disk (i.e. if-there are disk tables in the BIOS
for the disk). »/ .

/% Entry parameters x/

struct _scb xscb; /% Pointer to search control block %/
char xfname; /% Pointer to the file name x/

short user: /% User number to be matched %/

int lengths; /% Number of bytes to compare %/

/% Exit parameters
Disk number to be searched. (A =1, B = 2...)

#/
{
short disk_id; /% Disk number to search x/
setfcb(scb, fname); /% Set search control block as though it
were a file control block. %/
disk_id = scb -> scb_usernc; /% Set disk_id before it gets overwritten
by the user number =/
scb -> scb_userno = user; /% Set user number %/
scb -> scb_length = length; /% Set number of bytes to compare =/

return disk_id;
} /» end setscb =/

Figure 114-4. (Continued)

446 The CP/M Programmer’s Handbook

A further complication occurs if two or more directory entries of the erased file
have the same extent number. This can happen if the file has been created and
erased several times. Under these circumstances, UNERASE revives the first entry
with a given extent number that it encounters, and displays a message on the

console both when an extent is revived and when one is ignored.

Because of the complicated nature of the UNERASE process, the utility can

process only a single, unambiguous filg name.

The following console dialog shows UNERASE in operation:

P3A>dir #.com<CR>
A: UNERASE COM : TEMP2 COM : TEMP3 COM : ERASE

P3A>unerase{CR>
UNERASE Version 1.0 02/12/83 (Library 1.0)
Usage :

UNERASE i{d:3}filename.typ {user}

Only a single unambiguous file name can be used.

P3A>unerase templ.com{CR>
UNERASE Version 1.0 02/12/83 (Library 1.0)
Searching disk A.
Extent #0 of TEMP1.COM unerased.
Extent #0 of TEMP1.COM ignored.

File TEMP1.COM unerased in User Number 3.

P3A>dir %¥.com{CR>
A: UNERASE COM : TEMP1 COM : TEMP2 COM : TEMPI
A: ERASE coM

P3A>unerase tempS.com<CR>

UNERASE Version 1.0 02/12/83 (Library 1.0)
Searching disk A.

No directory entries found for file TEMPS.COM.

FIND —Find “Lost” Files '

The FIND utility shown in Figure 11-5 searches all user numbers on specified
logical disks, matching each entry against an ambiguous file name. It can then
display either a disk map showing how many matching files were found in each
user number for each disk, or the user number, file name, and type for each

matched directory entry.

You can use FIND to locate a specific file or group of files, as shown in the

following console dialog:

P3B>find<CR:
FIND Version 1.0 02/11/83 (Library 1.0)
Usage :
FIND d:filename.typ INAMES}
#:filename.typ (All disks)
ARCD..OP:filename.typ (Selected Disks)

NAMES option shows actual names rather than map.

P3B>find abs:x.%<CR>
FIND Version 1.0 02/11/83 (Library 1.0)

COM

COoM

Chapter 11: Additional Utility Programs 447

Searching disk : A
Searching disk : B
Numbers show files in each User Number.

-== User Numbers --- Dir. Entries

0 1 2 3 4 S cee 11 12 13 14 15 Used Free

Az 1 1 8 23 233
B: 66 20 74 55 3 252 772

P3B>find %:%.com{CR>

FIND Version 1.0 02/11/83 (Library 1.0)

Searching disk : A

Searching disk : B
H

Searching disk C
=== User Numbers --- Dir. Entries
o] 1 2 3 4 S sea 11 12 13 14 15 Used Free
Az S 23 233
B: 61 S 4 13 252 772
C: —-- None —-- 16 112

P3R>find ®.com names<CR>
FIND Version 1.0 02/11/83 (Library 1.0)
Searching disk : B

0/B:CC .COM O/B:CC2 .COM O/BR:CLINK .COM 2/B:CLIB .COM
1/Bi1CPMé1 .COM 1/B:MOVCPM .COM 1/B:PSWX .COM O/B:SUBMIT .COM
2/B:CDB .COM 1/B:CPM&O .COM O/B:DDT .COM O/B:EREMOTE .COM
0/B: SPEEDSP .COM O/B:PIP .COM O/B:PRQTOSP .COM O/B:RX .COM
0/Bi1 TXA .COM O/B:EPUB .COM O/R:EPRIV .COM Q/B:WSC .COM
0/BiX .COM 0/B:CRCK .COM O/B: XSUB .COM oO/B:DU .COM

0/B1QERA .COM O/Bi1FINDALL .COM O/R:MQVEF .COM O/B:REMOTE .COM
0/B:LOCAL .COM O/B:DUMP .COM O/B:MRESET .COM O/B:ELOCAL .COM
0/B:PUTCPMFS.COM 0O/B: TEST .COM O/B:FDUMF .COM 0/B: INVIS .COM

0/B:L80 .COM O/B:LIST .COM 0O/B:PUB .COM 0/B:LOAD .COoM
0/B:MAC .COM 0O/B:SCRUB .COM 0O/B:RXA .COM 0/B:STAT .COM
0/B:TX «COM O/B:ERASEALL.COM O0/B:WM -.COM 0/B:MSFORMAT.COM
0/B:STATUS .COM 0O/B:UNERA .COM O/B:MSINIT .COM O/R:VIS .COM
O/B:WSVTIP .COM O/B:XD -COM O/B:NEWVE .COM 0O/B:DDUMF . COM
0/B:FORMATMA.COM 0O/B:PRIV .COM O/B:FCOMP .COM O/B:DDUMFA .COM
0/B:PUTSYS1C.COM O/B:DDUMPNI .COM O/B:DSTAT .COM 0O/BR:ASM .COM
2/B:CDBTEST .COM O0/B:OLDSYS .COM O/B:E .COM 2/B:F/C .COM

3/B: ERASE .COM 3/B:FUNKEY .COM 3/B:DATE .COM 3/B:FIND .COM

Press Space Bar to continue....

3/B: SPACE .COM 3/B:UNERASE .COM 3/B:MAKE .COM 3/B:MOVE . COM
1/B:PUTSYSWX.COM 3/BiTIME .COM 3/B:ASSIGN .COM 3/B:SPEED .COM
3/B:PROTOCOL.COM O/B:PRINTC .COM 3/B:T .COM

#define VN "1.0 02/11/83"

/% FIND - This utility can display either a map showing on which disks
and in which user numbers files matching the specified ambiguous
file name are found, or the actual names matched. x/

#include <LIBRARY.H>

struct _dirpb dir_pbs /% Directory management parameter block %/

struct _dir =dir_entry; /% Pointer to directory entry (somewhere in
dir_pb) =/

struct _scb scb; /% Search control block %/

char file_namel20]; /% Formatted for display : un/d:FILENAME.TYP %/

Figure 14-5. FIND.C, a utility program that locates specific files or groups of files

448 The CP/M Programmer’s Handbook

short cur_disk; /% Current logical disk at start of program %/
int mcount; /% Match count (no. of file names matched) =/
int dmcount; /% Per disk match count =/

int lcounts /% Line count (for lines displayed) =/

int map_flag; /% 0 = show file names of matched files,

NZ = show map of number of files x/

/% The array below is used to tabulate the results for each
disk drive, and for each user number on the drive.
In addition, two extra "users" have been added for "free”
and "used" values. */

unsigned disk_mapl161018]; /% Disk A -> P, ysers 0 -> 15, free, used */
#define USED_COUNT 16 /% "User" number for used entities =/
#define FREE_COUNT 17 /% "User" number for free entities =/

main(argc,argv)

short argcs /% Argument count x/

char sargvl]; /% Argument vector (pointer to an array of chars.) »/
i

printf ("\nFIND Version %s (Library %s)",VN,LIBVN);

chk_uselargce)s /% Check usage %/
cur_disk = bdos(GETDISK); /% Get current default disk =/

dm_clr(disk_map); /% Reset disk map %/

/% Set search control blaock
disks, name, type, user number, extent number,
and number of bytes to compare —- in this case, match all users,
but only extent O =/
setscb(scb,argvi1],”?7,0,13); /% Set disks, name, type %/

map_flag = usstrcmp("NAMES",argvi2]); /% Set flag for map option =/

lcount = dmcount = mcount = O3 /% Initialize counts =/

for (scb.scb_disk = Oy /% Starting with lcogical disk A3 %/
scb.scb_disk < 163 /% Until logical disk P: */
scb.sch_disk++) /% Move to next logical disk %/

{

/% Check if current disk has been selected for search #/
if (!(scb.scb_adisks & (1 << scb.scb_disk)))
continue; /% No,so bypass this disk %/

printf("\nSearching disk : %c",(scb.scb_disk + ‘A7)
- lcount++; /% Update line count =/

dir_pb.dp_disk = scb.scb_disk; /x Set to disk to be searched®/
dmcount = O3 /% Reset disk matched count %/

if C(imap_flag) /% If file names are to be displayed %/
putchar(’\n”); /% Move to column 1 %/

/% Set the directory to "closed", and force the get_nde
function to open it %/
dir_pb.dp_open = O3

/% While not at the end of the directory, set a pointer to the
next directory entry x/
whileldir_entry = get_ndeldir_pb))
{

/% Check if entry in use, to update
the free/used counts %/

if (dir_entry -> de_userno == OxES) /% Unused %/
disk_mapLscb.scb_diskI[FREE_COUNT]++;
else /% In use %/

disk_map(scb.scb_disk][USED_COUNTI++;

/% Select only those active entries that are the
first extent (numbered 0) of a file that matches
the name supplied by the user =/

Figure 14-5. (Continued)

Chapter 11: Additional Utility Programs

419

if «
(dir_entry -> de_userno
(dir_entry -> de_extent
{comp_fname(scb,dir_entry) == NAME_EQ)

)
i
mecount++; /# Update matched counts =/
dmcount++; /% Per disk count =/

if (map_flag) /% Check map option #/
f
/% Update disk map %/
disk_maplscb.scb_disk]lldir_entry —> de_usernal++;

else /% Display names %/
{
conv_dfname(scb.scb_disk,dir_entry,file_name)s
printf("is ",file_name);

/% Check if need to start new line =/
if (!(dmcount % 4))
{
putchar(’\n“);
if (4++lcount > 18)
{

lcount = 03

printf("\nPress Space Bar to continue....");
getchar ()

putchar(“\n”);

3

}

¥
} /= End of directory =/
} /% All disks searched %/

if (map_flag)
{

printf("\n Numbers show files in each user number.");

printf("\n === User Numbers --- Dir. Entries")s
dm_disp(disk_map,scb.scb_adisks); /% Display disk map %/

]

if (mcount == 0)

printf("\n --- File Not Found --- ");

bdos (SETDISK, cur _disk); /% Reset to current disk %/
3

chk_use(argc) /% check usage =/

/% This function checks that the correct number of
parameters has been specified, outputting instructions
if not. N

*/

/% Entry parameter =/

int argces /% Count of the number of arguments on the command line %/

/% The minimum value of argc is 1 (for the program name itself),
so argc is always one greater than the number of parameters
on the command line 3/

if (arge == !t arge > 3)
{

printf(“\nUsage :");
Printf ("\n\tFIND d:filename.typ {NAMES}");

printf("\n\t #:filename.typ (All disks)");

printf("\n\t ABCD..OP:filename.typ (Selected Disks)");
printf("\n\tNAMES option shows actual names rather than map.");
exit();

]

]

Figure 14-5. (Continued)

420 The CPM Programmer’s Handbook

SPACE — Show Used Disk Space

The SPACE utility shown in Figure 11-6 scans the specified logical disks and
displays a disk map that shows, for each user number on each logical disk, how
many Kbytes of storage have been used. It also displays the total number of Kbytes
used and free on each logical disk.

Here is an example console dialog showing SPACE in operation:

P3B>space<CR>
SPACE Version 1.0 02/11/83 (Library 1.0)
Usage :

SPACE # (All disks)

SPACE ABCD..OP (Selected Disks)
P3R>space %<CR> !
SPACE Version 1.0 02/11/83 (Library 1.0)
Searching disk
Searching disk
Searching disk

oW

Numbers show space used in kilobytes.

—--=- User Numbers —-—- Space (Kb)
o] 1 2 3 4 S ees 10 11 12 13 14 15 Used Free
A: 18 202 38 258 1196
B: 4692 432 &56 548 36 2364 996
C: 140 140 204
#define VN "1.0 02/11/83"
/% SPACE -- This utility displays a map showing on the amount of space

(expressed as relative percentages) occupied in each user number
for each logical disk.It also shows the relative amount of space
free. %/

#include <LIBRARY.H>

struct _dirpb dir_pb; /% Directory management parameter block %/
struct _dir ®dir_entry; /% Pointer to directory entry %/
struct _scb scbs /% Search control block */
struct _dpb dpb; /% CP/M’s disk parameter block =/
char file_namel201]; /% Formatted for display : un/d:FILENAME.TYP %/
short cur_disk; /% Current logical disk at start of program
NZ = show map of number of files %/
int count; /% Used to access the allocation block numbers
in each directory entry %/
int user; /% Used to access the disk map when calculating %/

/% The array below is used to tabulate the results for each
disk drive, and for each user number on the drive.
In addition, two extra "users" have been added for "free"
and "used" values.

®/

unsigned disk_map[161[18]; /% Disk A -> P, users 0 -> 15, free, used =/
#define USED_COUNT 16 /% "User" number for used entities x/
#define FREE_COUNT 17 /% "User" number for free entities %/

mainlargc, argv)

short argc; /% Argument count x/

char sargvil; /% Argument vector (pointer to an array of chars.) =/
{

Figure 14-6. SPACE.C,a utility that displays how much disk storage is used or available

Chapter 11: Additional Utility Programs 421

printf("\nSPACE Version %s (Library %s)",VUN,LIBVN);

chk_uselargce); /% Check usage %/
cur_disk = bdos(GETDISK)}y /% Get current default disk =/
dm_clr(disk_map); /% Reset disk map %/
ssetscb(scb,argvil1]); /% Special version : set disks,
name, type %/
for (scb.scb_disk = 03 /% Starting with logical disk A: =/
scbh.scb_disk < 163 /# Until logical disk P: %/
scb.sch_disk++) /% Move to next logical disk =/
{

/% Check if current disk has been selected for search x»/
if (!(scb.scb_adisks & (1 << scb.scb_disk)))
continue; /% No, so bypass this disk %/

printf("\nSearching disk : %c", (scb.scb_disk + “A“));
dir_pb.dp_disk = scb.scb_disk; /* Set to disk to be searched »/

/% Set the directory to "closed", and force the get_nde
function to open it =/
dir_pb.dp_open = O3

/% While not at the end of the directory, set a pointer
to the next entry in the directory =/
while (dir_entry = get_nde(dir_pb))

{
if (dir_entry -> de_userno == OxES)

continue; /% Bypass inactive entries =/
for (count = 0O; /% Start with the first alloc. block %/
count < dir_pb.dp_nabpde; /% For number of alloc. blks. per dir. entry =/
count++)
{
if (dir_pb.dp_nabpde == 8) /% Assume 8 2-byte numbers =/
i

disk_maplscb.scb_disklfdir_entry -> de_userncl
+= (dir_entry ~> _dirab.de_longlccuntl > 0 7 1 1 0);
3
else /% Assume 16 1-byte numbers =/
{
disk_maplscb.scb_disklldir_entry -> de_userncl
+= (dir_entry -> _dirab.de_shortlcountl > 0 7 {1 : 0);

} /% All allocation blocks processed =/
} /% End of directory for this disk =/

/% Compute the storage used by multiplying the number of
allocation blocks counted by the number of Kbytes in
each allocation block. %/

for (user = 0; /% Start with user 0 =/
user < 16; /% End with user 15 %/
user ++) /% Move to next user number */
i
/% Compute size occupied in Kbytes =/
disk_maplscb.scb_disklluser] %= dir_pb.dp_absize;
/% Build up sum for this disk =/
disk_maplscb.scb_diskI[USED_COUNT] += disk_map[scb.scb_disklluserl;
3

/% Free space = (# of alloc. blks % # of kbyte per blk)
- used Kbytes
- (directory entries % 32) / 1024 ... or divide by 32 »/
disk_maplscb.scb_disk]JCFREE_COUNT] = (dir_pb.dp_nab % dir_pb.dp_absize)
- disk_maplscb.scb_diskI[USED_COUNT]

- (dir_pb.dp_nument >> S); /% Same as / 32 x%/
¥ /% All disks processed %/
printf("\n Numbers show space used in kilabytes.");
printf("\n -== User Numbers --- Space (Kb)")s
dm_disp(disk_map, scb.scb_adisks); /% Display disk map =/

Figure 14-6. (Continued)

422 The CP/M Programmer’s Handbook

bdos (SETDISK,cur _disk); /% Reset to current disk =/
3

ssetscb(scb, ldisks) /% Special version of set search control block =/

/% This function sets up a search control block according
to just the logical disks specified. The disk are specified as
a single string of characters without any separators. An
asterisk means "all disks." For example --

ABGH (disks A:, B:, G: and H:)
* (all disks for which SELDSK has tables)

It sets the bit map according to which disks should be searched.
For each selected disk, it checks to see if an error is generated
when selecting the disk (i.e. if there are disk tables in the BIOS
for the disk).

The file name, type, and extent number are all set to "?" to match
all possible entries in the directory. %/

/% Entry parameters %/
struct _scb #scb; /% Pointer to search control block =/
char xldiskss /% Painter to the logical disks %/

/% Exit parameters

None.
®/
£
int disks /% Disk number currently being checked =/
unsigned adisks; /% Bit map for active disks %/
adisks = O3 | /% Assume no disks to search %/
if (®ldisks) /% Some values specified */
i
if (®%ldisks == ‘%) /% Check if "all disks" =/
{
adisks = OxFFFF; /% Set all bits x/
3
else /% Set specific disks %/
{
while(*ldisks) /% Until end of disks reached =/
{
/% Build the bit map by getting the next disk
id. (A - P), converting it to a number
in the range 0 - 15, and shifting a 1-bit
left that many places and OR ing it into
the current active disks.
®/
adisks != 1 << (toupper(®ldisks) - "A");
++1disks; /% Move to next character =/
3
3
3
else /% Use only current default disk */
£

/% Set just the bit corresponding to the current disk %/
adisks = 1 << bdos(GETDISK);
3}

/% Set the user number, file name, type, and extent to "?"
so that all active directory entries will match =/
/% 0123456789012 */
strcpy(&scb => scb_userno, "????2?272?7?27277?");

/% Make calls to the BIOS SELDSK routine to make sure that
all of the active disk drives have disk tables for them
in the BIOS. If they don”t, turn off the corresponding
bits in the bit map. %/

for (disk = 0; /% Start with disk A: =/
disk < 163 /% Until disk P: =/
disk++) /% Use next disk x/

i
if (1((1 << disk) & adisks))
continue; /% Avoid selecting unspecified disks %/

Figure 11-6. (Continued)

Chapter 11: Additional Utility Programs

423

if (biosh(SELDSK,disk) == 0) /% Make BIOS SELDSK call %/
{ /% Returns O if invalid disk %/
/% Turn OFF corresponding bit in mask
by AND-ing it with bit mask having
all the other bits set = 1. =/
adisks &= ((1 << disk) * OxFFFF);
3
3

scb -> scb_adisks = adisks; /% Set bit map in scb =/

} /% End ssetscb =/

chk_uselargce) /% Check usage =/

/% This function checks that the correct number of
parameters has been specified, outputting instructions
if not. =/

/% Entry parameter */
int argce; /% Count of the number of arguments on the command line 3/
{

/% The minimum value of argec is 1 (for the program name itself),
s0 argc is always one greater than the number of parameters
on the command line %/

if (arge != 2)

i

printf("\nUsage :");

printf ("\n\tSPACE x (A1l disks)");
printf ("\n\tSPACE ABCD..OP (Selected Disks)");
exit();

3
} /% End chk_use %/

Figure 11-6. (Continued)

MOVE — Move Files Between User Numbers

The MOVE utility shown in Figure 11-7 moves files from one user number to
another on the same logical disk. The movement is achieved by changing the user
number in all the relevant directory entries. This is much faster than copying the

files. It also avoids having multiple copies of the same file on the disk.
Here is a console dialog showing MOVE in operation:

P3RB>move<CR>
MOVE Version 1.0 02/10/83 (Library 1.0)
Usage :

MOVE d:filename.typ to_user {from_user} {NAMESY
#:filename.typ (All disks)
ABCD..0P:filename.typ (Selected Disks)

NAMES option shows names of files moved.

P3B>dir %.com<CR>

B: ERASE COM : FUNKEY COM : DATE COM : FIND COoM
B: SPACE COM : UNERASE COM : MAKE COM : MOVE CcOoM
B: TIME COM : ASSIGN COM : SPEED COM : PROTOCOL COM

P3B>move #*.com
MOVE Version 1.

names<CR>

9
0 02/10/83 (Library 1.0)

Maving file(s) 3/B:????????.COM -> User O.

424 The CP/M Programmer’s Handbook

0/B: ERASE .COM O/B:FUNKEY .COM O/B:DATE .COM O/B:FIND
0/B: SPACE .COM O/B:UNERASE .COM 0O/B:MAKE .COM 0/B:MOVE

.COM
. COM

O/B: TIME .COM O/B:ASSIGN .COM O/B:SPEED .COM 0O/B:PROTOCOL.COM

P3B>user QKCR>

POR>dir
B: ERASE COM : FUNKEY COM : DATE COM : FIND COM
B: SPACE COM : UNERASE COM : MAKE COM : MOVE COM
B: TIME COM : ASSIGN COM : SPEED COM : PROTOCOL COM
#define VN "1.0 02/10/83"
/% MOVE -- This utility transfers file(s) from one user number to
another, but on the SAME logical disk. Files are not actually
copied —- rather, their directory entries are changed. %/
#include <LIBRARY.H> /
struct _dirpb dir_pb; /# Directory management parameter black =/
struct _dir =dir_entry; /% Pointer to directory entry %/
struct _scb scb; /# Search control block %/
#define DIR_BSZ 128 /% Directory buffer size %/
char dir_buffer{DIR_BSZ1]; /% Directory buffer x/
char file_namel20]; /% Formatted for display : un/d:FILENAME.TYP =/
short name_flag; /% NZ to display names of files moved #/
short cur_disks; /% Current logical disk at start of program =/
int from_user; /% User number from which to move files %/
int to_user; /% User number to which files will be maved #/
int mcount; /% Match count (no. of file names matched) =/
int dmcount; /% Per-disk match count %/
int lcount; /% Line count (for lines displayed) =/
main(aragc, argv)
short arac; /% Argument count =/
char »argv(]; /% Argument vector (pointer to an array of chars.) */
{
printf("\nMOVE Version %s (Library %s)",VN,LIBVN);
chk_uselarge); /% Check usage x/
to_user = atoilargvl2l): /% Convert user no. to integer %/
/% Set and check destination user number =/
if(to_user > 15)
{
printf("\nError —- the destination user number cannot be greater than 15.");
3

/% Set the current user number %/
from_user = bdos (GETUSER, OxFF)3;

/% Check if source user number specified %/
if (isdigit(argv(31(01))
{

/% Set and check source user number %/
if((from_user = atoilargvIi31)) > 15

printf("\nError —- the source user number cannot be greater than 15.");
exit();
3
/% Set name suppress flag from parameter #4 x/
name_flag = usstrcmp("NAMES", argvi4]l);
}

else /% No source user specified %/
i

Figure 41-7. MOVE.C, a utility program that changes files’ user numbers

Chapter 11: Additional Utility Programs

425

/% Set name suppress flag from parameter #3 =/
name_flag = usstrcmp("NAMES", argv(31);
3

/% To simplify the logic below, name_flag must be made
NZ if it is equal to NAME_EQ, O if it is any other value #/
name_flag = (name_flag == NAME_EQ 7 1 : 0);

if (to_user == from_user) /% To = from %=/
printf("\nError - “to” user number is the same as “from’ user number.");
exit();
¥

/% Set the search control block file name, type, user number,
extent number, and length —- length matches user number, file
name, and type. As the extent number does not enter into the
comparison, all extents of a given file will be found. =/

setscb(scb,argvl1], from_user, “?7,13);

cur_disk = bdos(GETDISK); /% Get current default disk =/
lcount = dmcount = mcount = 0; /% Initialize counts =/
for (scb.scb_disk = 03 /% Starting with logical disk A: =/
scb.scb_disk < 163 /% Until logical disk P: =/
scb.scb_disk++) /% Move to next logical disk #/
{

/% Check if current disk has been selected for search =/
if (!{scb.scb_adisks & (1 << scb.scb_disk)))

continues /% No, so bypass this disk %/

/% convert search user number and name for output =/
conv_dfname(scb.scb_disk,scb,file_name);
printf("\n\nMoving file(s) %s -> User %d.",file_name,to_user):;

lcount++; /% Update line count %/

dir_pb.dp_disk = scb.scb_disk; /% Set to disk to be searchedx/
dmcount = 03 /% Reset disk matched count =/

if (name_flag) /# 1f file names are to be displayed ®/
putchar{(“\n“); /» Move to column 1 %/

/# Set the directory to "closed" to force the get_nde
function to open it. =/
dir_pb.dp_open = 03

/% While not at the end of the directory, set a pointer
to the next directory entry =/
while(dir_entry = get_nde(dir_pb))
{

/% Match those entries that have the correct
user number, file name, type, and any
extent number. =/

if
(dir_entry -> de_userno != OxES) &&
(comp_fname(scb,dir_entry) == NAME_EQ)
)
{

dir_entry -> de_userno = to_users /% Move to new user #/
/% Request sector to be written back =/
dir_pb.dp_write = 1;

mcount++; /% Update matched counts x/
dmcount++; /% Per-disk count =/

if (name_flag) /% Check map cption =/
{

conv_dfname(scb.scb_disk,dir_entry,file_name);
printf("%s ",file_name);

/% Check if need to start new line =/
if (Y{dmcount % 4))

{

putchar(’\n");

if (++lcount > 18)

Figure 11-7. (Continued)

426 The CP/M Programmer’s Handbook

3

if (mcount .
printf("\n --- No Files Moved --- ");

bdos (SETDISK,cur_disk); /#* Reset to current disk =/
3

chk_usel(arge)
/% This function checks that the correct number of
parameters has been specified, outputting instructions

i

lcount = 03

printf("\nPress Space Bar to continue...."J;
getchar();

putchar(’\n");

3

/% Check usage %/

if not =/
/% Entry parameter =/
int argc; /% Count of the number of arguments on the command line x/
{

/% The minimum value of argc is 1 (forythe program name itself),
so argc is always one greater than the number of parameters
on the command line %/

if (arge == 1 1! arge > 5)
{

printf("\nUsage :");
printf("\n\tMOVE d:filename.typ to_user {from_user} {NAMES}");

printf("\n\t ®:filename.typ (All disks)");
printf("\n\t ABCD..OP:filename.typ (Selected Disks)");
printf ("\n\tNAMES option shows names of files moved.");
exit();

}

Figure 11-7. (Continued)

Other Utilities

The utility programs described in this section are by no means a complete set.
You may want to develop many other specialized utility programs. Some possibili-

ties are:

FILECOPY
A more specialized version of PIP could copy ambiguously specified
groups of files. Of special importance would be the ability to read a file
containing the names of the files to be copied. A useful option would be the
ability to detect the setting of the unused file attribute bit and copy only
files that have been changed.

PROTECT/UNPROTECT
This pair of utilities would allow you to “hide”files in user numbers greater
than 15. Files so hidden could not be accessed other than by UNPRO-
TECTing them, thereby moving them back into the normal user number
range.

Chapter 11: Additional Utility Programs 427

RECLAIM
This utility would read all sectors on a disk (using the BIOS). Any bad
sectors encountered could then be logically removed by creating an entry in
the file directory, with allocation block numbers that would effectively
“reserve” the blocks containing the bad sectors.

OWNER
This utility, given a track or sector number, would access the directory and
determine which file or files were using that part of the disk. This is useful if
you have a bad sector or track on a disk. You then can determine which files
have been damaged.

Utility Programs for the Enhanced BIOS

This section describes several utility programs that work with the enhanced
BIOS shown in Figure 8-10. Several of these utilities work directly with the
physical devices on the computer system, which can vary from computer to
computer. The library header contains #define declarations for device numbers
and names for physical devices (Figure 11-2, f and Figure 11-2, g).

These #define statements are used to build a physical-device code table. If you
have more physical devices or want to change the names by which you refer to the
devices, you will need to change these definitions.

All of these utilities share some common features in the way that they are
invoked. If they are called without any parameters, they display instructions on
the console regarding what parameters are available. If they are called with the
word “SHOW?” (or “S”, “SH”, and so forth) as a parameter, they display the
current settings of whatever attribute the utility controls.

MAKE — Make Files “Invisible” or “Visible”

The MAKE utility shown in Figure 11-8 is designed to operate in conjunction
with the public files option implemented in the enhanced BIOS of Figure 8-10. It
has two modes of operation — making files “invisible” or “visible.”

An invisible file is one in user 0 which has been set to Read-Only and System
status. When the public files option is enabled, these files cannot be seen when you
use the DIR command, nor can they be erased accidentally.

A visible file is one that has been set to Read/Write and Directory status.

When files are made invisible, they are transferred from the current user
number to user 0. When files are made visible, they are transferred from user 0 to
the current user number.

Here is an example console dialog showing MAKE in operation:

P3EB>make <CR:>
MAKE Version 1.0 02/12/83 (Library 1.0)

428 The CP/M Programmer’s Handbook

Usage :
MAKE d:filename.typ INVISIBLE {NAMES}
VISIBLE
#:filename.typ (All disks)
ABRCD..QP:filename.typ.(Selected Disks)
NAMES coption shows names of files processed.

P3B>dir #.com<{CR>
BR: ERASE COM : UNERASE COM : ASSIGN COM : PROTOCOL COM

P3B>make =.com invisible names+CR>
MAKE Version 1.0 02/12/83 (Library 1.0)

Moving files from User 2 to O and making them Invisible.
Searching disk : B

0/B:ERASE .COM made Invisible in User O.
0/B:UNERASE .COM made Invisible in User O.
0/B:ASSIGN .COM made Invisible in User O.
O/RB:PROTOCOL.COM made Invisible in User O.

P3Brmake erase.com visible names<CR>
MAKE Version 1.0 02/12/83 ({ibrary 1.0)

Moving files from User O to 3 and making them Visible.
Searching disk : B

3/B: ERASE .COM made Visible in User 3.

#define VN "1.0 02/12/83"

/% MAKE - This utility is really two very similar programs;
which one depends on the parameter specified on the command
line.

INVISIBLE finds all of the specified files, moves them

to user number 0, and sets them to be System and Read Only
status. These files can then be accessed from user numbers
other than O when the public files feature is enabled in the
BIOS.

VISIBLE is the opposite in that the specified files are
moved to the current user number and changed to Directory
and Read/Write status. %/

#include <LIBRARY.H>

struct _dirpb dir_pb; /% Directory management parameter block =/
struct _dir =dir_entry; /% Pointer to directory entry 3/

struct _scb scbs /% Search control block =/

short to_user:; /% User number to which files will be set =/
short from_user; /% User number from which files will be moved =/
char file_namel201]; /% Formatted for display : un/d:FILENAME.TYP =/
short name_flag; /% NZ to display names of files moved =/

short cur_disk; /% Current logical disk at start of program x/
int mcount; /% Match count (no. of file names matched) =/
short invisible; /% NZ when parameter specifies invisible =/

char #operation; /% Pointer to either "invisible" or "visible" =/

main(argc, argv)
short argc; /% Argument count =/
char ®argv(]; /% Argument vector (pointer to an array of chars.) =/

Figure 14-8. MAKE.C, a utility that makes files “invisible” and protected or makes
them “visible,” accessible, and unprotected

Chapter 11: Additional Utility Programs

429

{

printf("\nMAKE Version %s (Library %s)",VN,LIBVN);
chk_use(arge); /% Check usage %/

cur_disk = bdos(GETDISK); /% Get current default disk %/
mcount = O /% Initialize count x#/

/% Set the invisible flag according to the parameter =/
invisible = usstrcmp("VISIBLE",argvi21);

/% Set the from_user and to_user numbers depending on which
program is to be built, and the parameters specified. »/

if (invisible)

{

from_user = bdos(GETUSER,OxFF); /% Get current user number =/

to_user = 0; /% Always move files to user 0 %/

operation = "Invisible"; /% Set pointer to string =/
else /% visible =/

i

from_user = 0; /% Always move from user O =/

to_user = bdos(GETUSER, OxFF); /% Get current user =/

operation = "Visible"; /% Set pointer to string »/

/% Set search control block disks, name, type, user number,
extent number, and number of bytes to compare -- in this
case, match the "from" user, all extents. =/

setscb(scb,argvi1], from_user,’?",13); /% Set disks, name, type %/

name_flag = usstrcmp("NAMES", argv[31); /% Set name-suppress flag from param. 3 %/

/% To simplify the logic below, name_flag must be made
NZ if it is equal to NAME_EQ@, O if it is any other value =/
name_flag = (name_flag == NAME_EQ ? 1 : Q)3

/% Convert search user number and name for ocutput #*/
conv_dfname (scb.scb_disk,scb,file_name);
printf("\n\nMoving files from User %d to %d and making them %s.",
from_user, to_user,operation);

for (scb.scb_disk = Oy /% Starting with logical disk A: =/
scb.scb_disk < 163 /% Until logical disk P: =/
scb.scb_disk++) /% Move to next logical disk %/

/% Check if current disk has been selected for search =/
if (!(scb.scb_adisks & (1 << scb.scb_disk)))
continues /% No —-- so bypass this disk %/

printf("\nSearching disk : %c", (scb.scb_disk + “A%));
dir_pb.dp_disk = scb.scb_disk; /x» Set to disk to be searchedx/

if (name_flag) /% 1If file names are to be displayed x/
putchar(’\n“); /% Move to column 1 %=/

/% Set the directory to "closed", and force the get_nde
function to open it. */
dir_pb.dp_open = 03

/% While not at the end of the directory,
set a pointer to the next directory entry. =/
while(dir_entry = get_nde(dir_pb))
{

/% Match those entries that have the correct
user number, file name, type, and any
extent number. »/

if «
(dir_entry -> de_userno != OxES) &
(comp_fname(scb,dir_entry) == NAME_EQ)
)
t

Figure 11-8. (Continued)

430 The CP/M Programmer’s Handbook

mcount++; /% Update matched counts %/

if (invisible)
{ /% Set ms bits x/

dir_entry -> de_fnamel8] != O0x80;
dir_entry -> de_fnamel(9] = Ox80;
3

else /% Visible %/
{ /% Clear ms bits =/

dir_entry -> de_fnamel[8] &= Ox7F;
dir_entry -> de_fnamel[9] &= Ox7F;
3}

/% Move to correct user number =/
dir_entry -> de_userno = to_user;

/% Indicate sector to be written back =/
dir_pb.dp_write = 13

/% Check if name to be displayed x/
if (name_flag)
{

conv_dfname(scb.scb_disk,dir_entry,file_name):
printf("\n\t%Zs made %s in User %d.",
file_name,cperation, to_user);

3
}
3} /% All directory entries processed =/

3 /% All disks processed */

~
if (mcount == 0)
printf(*\n ——— No Files Processed ——— ");

bdos (SETDISK,cur_disk); /% Reset to current disk =/
3}
chk_use(argc) /% Check usage x/
/% This function checks that the correct number of

parameters has been specified, outputting instructions

if not.
®/
/% Entry parameter »/
int argcy /% Count of the number of arguments on the command line =/
{

/% The minimum value of argc is 1 (for the program name itself),
so argc is always one greater than the number of parameters
on the command line =/ ‘

if (arge == 3 |! argc == 4)
returny
else

£

printf("\nUsage :")3

printf("\n\tMAKE d:filename.typ INVISIBLE {NAMES}");

printf("\n\t VISIBLE");

printf("\n\t #:filename.typ (All disks)"):

printf("\n\t ABCD..OP:filename.typ (Selected Disks)");

printf ("\n\tNAMES option shows names of files processed.");

exit();

¥

3

Figure 11-8. (Continued)

Chapter 11: Additional Utility Programs 431

SPEED — Set Baud Rates

The SPEED utility shown in Figure 11-9 sets the baud rate for a specific serial
device. Here is an example console dialog that shows several of the options:

P3B>speed<CR>
SPEED 1.0 02/17/83
The SPEED utility sets the baud rate speed for each physical device.
Usage is : SPEED physical-device baud-rate, or
SPEED SHOW (to show current settings)

Valid physical devices are:
TERMINAL
PRINTER
MODEM

Valid baud rates are:
300
600
1200
2400
4200
800
19200

P3B>speed show<CR>

SPEED 1.0 02/17/83

Current Baud Rate settings are :
TERMINAL set to 9400 baud.
PRINTER set to 9400 baud.
MODEM set to 96400 baud.

P3B>speed m 19<CR>

SPEED 1.0 02/17/83

Current Baud Rate settings are :
TERMINAL set to 96400 baud.
PRINTER set to 9400 baud.
MODEM set to 19200 baud.

P3B>speed xyz 12<CR>
SPEED 1.0 02/17/83
Physical Device “XYZ“ is invalid or ambiguous.
Legal Physical Devices are :
TERMINAL
PRINTER
MODEM

#define VN "\nSPEED 1.0 02/17/83"

/% This utility sets the baud rate speed for each of the physical
devices. %/

#include <LIBRARY.H>

struct _ct ct_pdevIMAXPDEV + 21; /% Physical device table */

/% Hardware specific items »/

Figure 11-9. SPEED.C, a utility that sets the baud rate for a specific device

432 The CP/M Programmer’s Handbook

/% Baud rates for serial ports =/

#define B300 0x3% /% 300 baud =/

#define B60O 0x36 /% 600 baud =/

#define B1200 0x37 /% 1200 baud =/
#define B2400 Ox3A /% 2400 baud */
#define B480O Ox3C /% 4800 baud ®/
#define B9600 Ox3E /% 9600 baud =/
#define B19200 Ox3F /% 19200 baud %/

struct _ct ct_br[101; /% Code table for baud rates (+ spare entries) =/

/% Parameters on the command line x/
#define PDEV arav[1l] /% Physical device %/
#define BAUD argv[2] /% Baud rate %/

main(argc,argv)
int argc;
char *argv(l;

i
printf(VN); /% Display sign-on message %/
setup()s /% Set up code tables x/

chk_uselargc)y /% Check correct usage »/

/% Check if request to show current settings =/
if (usstrcmp(“"SHOW",argvi11))
{

/% No —-- assume setting is required =/
set_baud(get_pdev(PDEV),get_baud(BAUD)); /* Set baud rate #/
]
show_baud(); /% Display current settings %/

} /% end of program %/

setup() /% set up the code tables for this program %/
i

/% Initialize the physical device table ®/
ct_init(ct_pdev[O), T_DEVN,PN_T); /% Terminal x/
ct_init(ct_pdev[11,P_DEVN,PN_P); /% Printer =/
ct_init(ct_pdev[2],M_DEVN,PN_M); /% Modem %/

ct_init(ct_pdev[3],CT_SNF,"%"); /¥ Terminator ®/

/% Initialize the baud rate table =/
ct_init(ct_br(0]1,B300, "300");
ct_init(ct_bri11,B&00,"600");
ct_init(ct_br[2],B1200,"1200");
ct_init(ct_br[31,B2400, "2400");
ct_init(ct_br[41,B4800, "4800");
ct_init(ct_brI51,B9600, "9600");
ct_init(ct_br[é1,B19200,"19200");
ct_init(ct_brC7],CT_SNF,"%"); /% Terminator x/
]

unsigned

get_pdev(ppdev) /% Get physical device #/

/% This function returns the physical device code
specified by the user in the command line. %/

char xppdev; /% Pointer to character string =/
£
unsigned retval; /% Return value x/
retval = ct_parc(ct_pdev,ppdev); /% Get code for ASCII string */
if (retval == CT_SNF) /% If string not found %/
i
printf("\n\007Physical Device “%s” is invalid or ambiguous.",
ppdev);
printf("\nLegal Physical Devices are : ")j
ct_disps(ct_pdev); /% Display all values */
exit();
3
return retval; /% Return code %/
3
unsigned

get_baud(pbaud)
/% This function returns the baud rate time constant for
the baud rate specified by the user in the command line =/

Figure 14-9. (Continued)

Chapter 11: Additional Utility Programs

433

char #*pbaud; /% Pointer to character string x/
{
unsigned retval; /% Return value %/
retval = ct_parc(ct_br,pbaud); /% Get code for ASCII string =/
if (retval == CT_SNF) /% If string not found %/
i
printf ("\n\007Baud Rate “%s” is invalid or ambiguous.",
pbaud);
printf("\nLegal Baud Rates are : ");
ct_disps(ct_br); /% Display all values =/
exit();
3
return retval; /% Return code %/
3}

set_baud(pdevc,baudc) /% Set the baud rate of the specified device %/
int pdevc; /% Physical device code %/
short baudc /% Baud rate code %/
/% On some systems this may have to be a
two-byte (unsigned) value x/

{
short xbaud_rc; /% Pointer to the baud rate constant »/
/% On some systems this may have to be a
two-byte (unsigned) value x/

/% Note: the respective codes for accessing the baud rate constants

via the get_cba (get configuration block address) function are:
Device #0 = 19, #1 = 21, #2 = 23. This function uses this

mathematical relationship /

/% Set up pointer to the baud rate constant =/
baud_rc = get_cba(CB_DO_BRC + (pdevc << 1));

/% Then set the baud rate constant =/
*baud_rc = baudc;

/% Then call the BIOS initialization routine =/
bios (CIOINIT, pdeve);
3

show_baud () /% Show current baud rate %/
{

int pdevn: /% Physical device number x/
short baudc; /% Baud rate code %/

/% On some systems this may have to be a
two-byte (unsigned) value &/
short xbaud_rc; /% Pointer to the baud rate constant x/
/% On some systems this may have to be a
two-byte (unsigned) value x/
/% Note: the respective codes for accessing the baud rate constants
via the get_cba (get configuration block address) function are:
Device #0 = 19, #1 = 21, #2 = 23. This function uses this
mathematical relationship %/

printf("\nCurrent baud rate settings are :");

for (pdevn = 0; pdevn <= MAXPDEV; pdevn ++) /% All physical devices =/
{

/% Set up pointer to the baud rate constant —-
the code for the get_cba function is computed
by adding the physical device number =2 to
the Baud Rate code for device #0 =/

baud_rc = get_cba(CB_DO_BRC + (pdevn << 1));

/% Then set the baud rate constant x/
baudc = ®baud_rc;

printf("\n\t%s set to %s baud.",
ct_strc(ct_pdev,pdevn), /% Get ptr. to device name */
ct_strclct_br,baudc)); /% Get ptr. to baud rate x/

3
3
chk_use(arge) /% Check correct usage #/
int argc; /% Argument count %/
{

Figure 14-9. (Continued)

434 The CP/M Programmer’s Handbook

if (arge == 1)
{

printf("\nThe SPEED utility sets the baud rate speed for each physical device.");
printf("\nUsage is 1 SPEED physical-device baud rate, or");

printf("\n SPEED SHOW (to show current settings)");
printf("\n\nValid physical devices are: ")3

ct_disps(ct_pdev);

printf("\nValid baud rates are: ");

ct_disps(ct_br);

exit();

3

Figure 11-9. (Continued)

PROTOCOL — Set Serial Line Protocols

The PROTOCOL utility shown in Figure 11-10 is used to set the protocol for a
specific serial device.

The drivers for each physical device can support several serial line protocols.
The protocols are divided into two groups, depending on whether they apply to
data output by or input to the computer.

Note that the output DTR and input RTS protocols can coexist with other
protocols. The strategy is first to set the required character-based protocol and
then to set the DTR/RTS protocol. There is an example of this in the following
console dialog:

P3Brprotocol <CR>
PROTOCOL Vn 1.0 02/17/83
PROTOCOL sets the physical device“s serial protocols.
PROTOCOL physical-device direction protocol imessage-lengthl

Legal physical devices are :
) TERMINAL
PRINTER
MODEM

Legal direction/protocols are :
Output DTR
Output XON
Output ETX
Input RTS
Input XON

Message length can be specifed with Output ETX.

P3B>protocol showdCR>

PROTOCOL Vn 1.0 02/17/83
Protocol for TERMINAL - None.
Protocol for PRINTER - Output XON
Protocol for MODEM - Input RTS

P3B:protocol m o e 128<CR>
PROTOCOL VYn 1.0 02/17/83
Protocol for TERMINAL - None.

Protocol for PRINTER - Output XON

Chapter 11: Additional Utility Programs 435

Protocol for MODEM - Output ETX Message Length 128 bytes.

F3Brprotocol m o d<CR>
PROTOCOL Vn 1.0 02/17/83
Protocol for TERMINAL - None.
Protocol for PRINTER - Output XON
Protocol for MODEM - Output DTR Output ETX Message Length

128 bytes.

#define VN "\nPROTOCOL Vn 1.0 02/17/83"

/% PROTOCOL -- This utility sets the serial port protocol for the
specified physical device. Alternatively, it displays the
current protocols for all of the serial devices. =/

#include <LIBRARY.H>

/% Code tables used to relate ASCII strings to code values %/

struct _ct ct_iprotol3]; /% Code table for input protocols =/
struct _ct ct_oprotol4d]; /% Code table for output protocols %/
struct _ct ct_dprotol71; /% Code table for displaying protocols =/
struct _ct ct_pdevIMAXPDEV + 21;/% Physical device table %/

struct _ct ct_iol3); /% Input, output =/

/% Parameters on the command line %/
#define PDEV argvi1l] /% Physical device x/
#define 10 argvi2] /% Input/output =/
#define PROTO argv(3] /% Protocol %/
#define PROTOL argvi4] /»* Protocol message length %/

mainlargc, argv)
int argc;

char xargvll;

i

pPrintf(VN); /% Display sign-on message %/
setup(); /% Set up code tables x/
chk_use(argc); /» Check correct usage %/

/% Check if request to show current settings =/
if (usstrcomp("SHOW",argv[11))
{ /% No -- assume a set is required %/
set_protol(get_pdev(PDEV), /% Physical device %/
/% Input/output and protocol =/
get_proto(get_io(10),PROTO),
PROTOL) 3 /% Protocol message length %/

3
show_proto();
} /% end of program %/
setup () /% Set up the code tables for this program %/

/% Initialize the physical device table %/
ct_init(ct_pdeviO0]1,0,PN_T); /% Terminal =/
ct_init(ct_pdevl11,1,PN_P); /# Printer %/
ct_initlct_pdev(21,2,PN_M); /% Modem %/
ct_init(ct_pdevi31,CT_SNF,"%"); /% Terminator %/

/% Initialize the input/output table %/
ct_init(ct_iol01,0,"INPUT");
ct_init(ct_iol11,1,"OUTPUT");
ct_init(ct_iolf2],CT_SNF,"%"); /% Terminator =/

/% Initialize the output protocol table %/
ct_init(ct_oprotol01,DT_ODTR, "DTR")}
ct_init(ct_oprotol1]),DT_OXON, "XON");
ct_init(ct_oprotol2],DT_OETX, "ETX");

Figure 141-10. PROTOCOL.C, a utility that sets the protocol governing input and
output of a specified serial device

436 The CP/M Programmer’s Handbook

ct_init(ct_oprotol3],CT_SNF,"x"); /% Terminator %/

/% Initialize the input protocol table %/
ct_inittct_iprotol0l,DT_IRTS, "RTS");
ct_init(ct_iprototl].DT_lXUN,”XON“);
ct_init(ct_iprotol2],CT_SNF,"x"); /% Terminator %/

/% Initialize the display protocol x/
ct_init(ct_dprotol0],DT_ODTR, "Output DTR");
ct_init(ct_dprotol1],DT_OXON, "Output XON") s
ct_init(ct_dprotol2],DT_OETX, "Output ETX");
ct_init(ct_dprotol31,DT_IRTS, "Input RTS"):
ct_init(ct_dprotol4]1,DT_IXON, "Input XON™) 3
ct_init(ct_dprotolS1,CT_SNF, "%");

3

unsigned .

get_pdev(ppdev) /% Get physical device %/

/% This function returns the physical device code
specified by the user in the command line. %/

char xppdev; /% Pointer to character string %/
i
unsigned retvals; /% Return value x/

retval = ct_parclct_pdev,ppdev); /= Get code for ASCII string =/

if (retval == CT_SNF) /% 1f string not found %/
i
printf("\n\007Physical Device “Z%s’ is invalid or ambiguous.",
ppdev);
printf("\nLegal Physical Devices are : ");
ct_disps(ct_pdev); /% Display all values =/
exit();
3
return retval; /% Return code ¥/
unsigned
get_io(pio) /% Get input/output parameter =/
char #pioj /% Pointer to character string */
{
unsigned retval; /% Return value =/
retval = ct_parc(ct_io,piod; /% Get code for ASCII string =/
if (retval == CT_SNF) /% If string not found =/
i
printf("\n\007Input/Output direction “%s’ is invalid or ambiguous.",
pio)s
printf("\nLegal values are : ")}
ct_disps(ct_io); /% Display all values %/
exit(); ,
3
return retval; /% Return code ®/
3
unsigned

get_protoloutput,pprota)
/% This function returns the protocol code for the
protocol specified by the user in the command line. */

int output; /% =1 for output, =0 for input x»/
char *pprotos; /% Pointer to character string =/
{
unsigned retval; /% Return value %/
if (output) /% OUTPUT specified »/

{

/% Get code for ASCII string %/
retval = ct_parc(ct_oproto,pproto);

if (retval == CT_SNF) /% 1If string not found %/

{

printf("\n\0070utput Protocol “%s’ is invalid or ambiguous.",
pproto);

printf(”"\nLegal Output Protoccls are : "):

ct_disps(ct_oproto); /% Display valid protocols =/

exit()s

3

Figure 11-40. (Continued)

Chapter 11: Additional Utility Programs

437

3
else /% INPUT specified =/
{
/% Get code for ASCII string %/
retval = ct_parc(ct_iproto,pprota);
if (retval == CT_SNF) /% 1f string not found »/
{

Printf (“\n\007Input Protocol “%s” is invalid or ambiguous.",

pproto);
exitQ);
3}

return retval;
3

set_proto(pdevc,protoc,
int pdevc;

unsigned protoc;

char #pplength;

{

struct _ppdt

i
char xpdt[161;

if (protoc & 0Ox8000)

dt -> dt_stl i=
else

dt -> dt_st1l =

{

if (isdigit(xpp
{
3

show_proto()
i

struct _ppdt

{

char ®pdtl16];

i]

struct _ppdt =ppdt;
struct _dt x=dt;

int pdeves;

struct _ct =dproto;

ppdt = get_cba(CB_DTA):

printf("\nLegal Input Protocols are :
ct_disps(ct_iproto):

dt -> dt_etxml =

")

/% Display valid protocols =/

/% Return code %/

pplength) /% Set the protocol for physical device =/
/% Physical device code %/
/% Protocol byte %/
/% Pointer to protocol length =/

/% Array of 16 pointers to the device tables =/

s
struct _ppdt xppdt; /% Pointer to the device table array =/
struct _dt x=dt; /% Pointer to a device table =%/
ppdt = get_cba(CB_DTA); /® Set pointer to array of pointers =/
dt = ppdt -> pdtilpdevc];
if (idt) /% Check if pointer in array is valid %/
i
Printf("\nError -- Array of Device Table Addresses is not set for device #%d.",
pdevc):
exit();
}

/% Check if protocol byte to be set
directly or to be OR ed in %/

/% OR ed =/

(protoc & Ox7F);

/% Set directly =/
(protoc & Ox7F);

if ((protoc & Ox7F) == DT_OETX) /% If ETX/ACK, check for message

length =/
length)) /% Check if length present =/
/% Convert length to binary and set device

table field. %/
atoi(pplength);

/% Show the current protocol settings x/

/% Array of 16 pointers to the device tables x/

/% Pointer to the device table array =/
/% Pointer to a device table »/

/% Physical device code %/

/% Pointer to display protocols %/

/% Set pointer to array of pointers =/

/% For all physical devices %/

Figure 11-10.

(Continued)

438 The CP/M Programmer’s Handbook

for (pdeve = 0; pdevc <= MAXPDEV; pdevc++)
i

/% Set pointer to device table ®/
dt = ppdt -> pdtlpdevcl;

if (dt) /% Check if pointer in array is valid =/
{

printf("\n\tProtocol for %s - ",ct_strc(ct_pdev,pdevc));
/% Check if any protocols set =/

if (1(dt -> dt_st1 & ALLPROTO))
i

printf("None.");
continue;
3

/% Set pointer to display protocol table =/
dproto = ct_dproto;
while t(dproto -> _ct_code != CT_SNF)
{
/% Check if protocol bit set =/
if (dproto -> _ct_code & dt -»> dt_stl)
i /% Display protocol =/
printf("%s ",dprotc -> _ct_sp);

++dproto; /% Move to next entry =/
]

/% Check if ETX/ACK protocol and
message length to be displayed %/
if t(dt -> dt_st1 & DT_OETX)
printf(" Message length %d bytes.",
dt -> dt_etxml);

chk_use(argc) /% Check for correct usage =/
int aragc; /% Argument count on commmand line %/
{
if (arge == 1)
{

printf("\nPROTOCOL sets the physical device’s serial protocols.”);

printf ("\n\tPROTOCOL physical-device direction protocol imessage-lengthi”);
printf("\n\nLegal physical devices are :");

ct_disps(ct_pdev);

printf("\nLegal direction/protocols are :");

ct_disps(ct_dproto);

printf("\n\tMessage length can be specifed with Output ETX.\n");

exitQs

3}

Figure 41-10. (Continued)

ASSIGN — Assign Physical to Logical Devices

The ASSIGN utility shown in Figure 11-11 sets the necessary bits in the
physical input/output redirection bits in the BIOS. It assigns a logical device’s
input and output to physical devices. Input can only be derived from a single
physical device, while output can be directed to multiple devices.

Here is an example console dialog showing ASSIGN in action:
P3B>assign<CR>
ASSIGN Vn 1.0 02/17/83
ASSIGN sets the Input/Output redirection.

ASSIGN lcogical-device INPUT physical-device

ASSIGN logical-device OUTPUT physical-devl {phy_devZ..}
ASSIGN SHOW (to show current assignments)

Chapter 11: Additional Utility Programs 439

Legal logical devices are :
CONSOLE
AUXILIARY
LIST

Legal physical devices are :
TERMINAL
PRINTER
MODEM

P3B>assign show<CR>

ASSIGN Vn 1.0 02/17/83

Current Device Assignments are :
CONSOLE INPUT is assigned to - TERMINAL
CONSOLE OUTPUT is assigned to - TERMINAL
AUXILIARY INPUT is. assigned to - MODEM
AUXILIARY OUTPUT is assigned to — MODEM
LIST INPUT is assigned to - PRINTER
LIST OUTPUT is assigned to - PRINTER

P3B>assign a o t m p<CR>
ASSIGN Vn 1.0 02/17/83
Current Device Assignments are :
CONSOLE INPUT is assigned to - TERMINAL
CONSOLE OUTPUT is assigned to - TERMINAL
AUXILIARY INPUT is assigned to — MODEM
AUXILIARY OUTPUT is assigned to - TERMINAL PRINTER MCDEM
LIST INPUT is assigned to - PRINTER
LIST QUTPUT is assigned to - PRINTER

#define VN "\nASSIGN Vn 1.0 02/17/83"
#include <LIBRARY.H>

struct _ct ct_pdevIMAXPDEV + 21; /% Physical device table =/

/% Names of logical devices %/

#define LN_C “CONSOLE"
#define LN_A "AUXILIARY"
#define LN_L "LIST"
struct _ct ct_ldevIi4l; /% Logical device table %/
struct _ct ct_iol31; /% Input, output =/
/% Parameters on the command line %/
#define LDEV argvi1l] /% Logical device #/

#define I0 argvi2] /% Input/output =/

main(argc, argv)
int argc;

char *argvl];

i

printf(VN); /% Display sign-on message %/
setup(); /% Set up code tables »/
chk_uselargc); /% Check correct usage %/

/% Check if request to show current settings %/
if (usstromp("SHOW",argv[11))
i /% No, assume a set is required %/

Figure 14-14. ASSIGN.C, a utility that assigns a logical device’s input and output to two
physical devices

440 The CP/M Programmer’s Handbook

/% NOTE : the number of physical devices to
process is given by argc - 3 %/
set_assign(get_ldev(LDEV),get_io(I0),argc - 3,argv);

3

show_assign();
3
setup () /% Set up the code tables for this program x/
i

/% Initialize the physical device table =/
ct_init(ct_pdevi01,0,PN_T); /% Terminal */
ct_init(ct_pdevi11,1,PN_P); /% Printer =/
ct_init(ct_pdevl21,2,PN_M); /% Modem ¢/
ct_init(ct_pdev[3]1,CT_SNF,"x"); /% Terminator x/

/% Initialize the lcgical device table x/

ct_init(ct_1devl0]l,0,LN_C); /% Terminal =/
ct_init(ct_ldevi1],1,LN_A); /% Auxiliary =/
ct_init(ct_ldevl2],2,LN_L); /% List =/

ct_init(ct_1dev[3]1,CT_SNF,"%"); /% Terminator =/

/# Initialize the input/output table %/
ct_init(ct_iol0],0, "INPUT");
ct_init(ct_iol11,1, "OUTPUT

ct_initct_iol21,CT_SNF, "®"); /% Terminator #/
3

unsigned

get_ldevipldev) /% Get logical device =/

/% This function returns the logical device code
specified by the user in the command line. =/

char *pldev; /% Pointer to character string =/
{
unsigned retval; /% Return value #/
retval = ct_parc(ct_ldev,pldev); /% Get code for ASCII string =/
if (retval == CT_SNF) /% If string not found =/
{
printf("\n\007Logical device “%s’ is invalid or ambigucus.",
pldev);
printf("\nLegal logical devices are : ");
ct_disps(ct_ldev); /# Display all values %/
exit();
3
return retval; /% Return code %/
3
unsigned
get_io(pio) /% Get input/cutput parameter x/
char ®pio; /% Pointer to character string =/
unsigned retval; /% Return value »/
retval = ct_parc(ct_io,pio); /% Get code for ASCII string =/
if (retval == CT_SNF) /% If string not found =/
i
printf("\n\007Input/output direction “%s” is invalid or ambiguous.",
pio)s
printf("\nLegal values are : ");
ct_disps(ct_io); /# Display all values »/
exit()s
3
return retval; /% Return code %/
set_assign(ldevc,output,aragc,argv) /% Set assignment (I/0 redirection) =/
int ldeves /% Logical device code %/
int output; /% 1/0 redirection code %/
int argces /% count of arguments to process */
char ®argvl]; /% Replica of parameter to main functicn =/
i
unsigned xredir; /% Pointer to redirection word %/
int pdevcy /% Physical device code ®/
unsigned rd_vals /% Redirection value %/

/% Get the address of the I/0 redirection word.

Figure 14-11. (Continued)

Chapter 11: Additional Utility Programs

441

This code assumes that get_cba code values
are ordered:

Device #0, input & output

Device #1, input & output

Device #2, input & putput

The get_cba code is computed by multiplying the
logical device code by 2 (that is, shift left 1)
and added onto the code for Device #0, input
Then the output variable (0 = input, 1 = output)
is added on */

redir = get_cba(CB_CI + (ldevc << 1) + output);

rd_val = 03 /% Initialize redirection value »/

/% For output, assignment can be made to several physical
devices, so this code may be executed several times */

/% Get code for ASCII string %/

/% NOTE: the physical device parameters start
with parameter #3 (argv[3]). However argc
is a decreasing count of the number of physical
devices to be processed, Therefore, argc + 2
causes them to be processed in reverse order
(i.e. from right to left on the command line) %/

pdeve = ct_parclct_pdev,argvliarge + 21);
if (pdevec == CT_SNF) /% 1f string not found %/
{

printf("\n\OO7Physical device “%s’ is invalid or ambiguous.",
argvlarge + 21);

printf(”\nLegal physical devices are : ");

ct_disps(ct_pdev): /% Display all values %/

exit();

/% Repeat this loop for as long as there are
more parameters (for output only) =/
else

/% Build new redirection value by OR ing in
a one-bit shifted left pdevc places. x»/
rd_val i= (1 << pdevc);
3
} while (--argc 8& output)s

®redir = rd_valy /% Set the value into the config. block %/
}

show_assign() /% Show current baud rate =/
{

int rd_code; /% Redirection code for get_cba x/

int ldevn: /% Logical device number =/

int pdevn: /% Physical device number »/

unsigned rd_val; /% Redirection value %/

unsigned »*prd_val; /% Pointer to the redirection value %/

/% Note: the respective codes for accessing the redirection values
via the get_cba (get configuration block address) function are:
Device #0 console input —— S
Device #0 console putput —- &
Device #1 auxiliary input -—- 7
Device #1 auxiliary output —- 8
Device #2 list input -- 9
Device #2 list output -- 10

This function uses this mathematical relationship %/

printf(“\nCurrent device assignments are :");

/% For all get_cba codes %/
for (rd_code = CB_CI; rd_code <= CB_LO; rd_code++)
{

/% Set pointer to redirection value x/
prd_val = get_cbal(rd_code);
/% Get the input redirection value #/

Figure 11-14. (Continued)

442

The CP/M Programmer’s Handbook

chk_use(argce) /% Check for correct usage */
int argcs /% Argument count on commmand line %/

if (arge == 1)

rd_val = ®prd_val; /# This also performs byte reversal =/

/% Display device name. The rd_ccde is converted to a
device number by subtracting the first code number
from it and dividing by 2 (shift right one place).
The input/output direction is derived from the
least significant bit of the rd_code. %/

printf("\n\t%s %s is assigned to - ",
ct_strc(ct_ldev, (rd_code - CB_CI) >> 1),
ct_strclet_io, ({rd_code & Ox01) * 1)));

/% For all physical devices %/
for (pdevn = 0; pdevn < 146; pdevn++)
{

/% Check if current physical device is assigned
by AND ing with a i1-bit shifted left pdevn times %/
if (rd_val & (1 << pdevn)) /% 1s device active? =/
i /» Display physical device name %/
printf(" %s",ct_strc(ct_pdev,pdevn));
3

i

printf("\nASSIGN sets the Input/Output redirection.");
printf("\n\tASSIGN logical-device INPUT physical-device");
printf("\n\tASSIGN logical-device OUTPUT physical-devl {phy_dev2..3}");
printf("\n\tASSIGN SHOW (to show current assignments)");
printf("\n\nLegal logical devices are :");
ct_disps(ct_ldev);

printf("\nLegal physical devices are :");
ct_disps(ct_pdev);

exitQ);

3

Figure 41-41. (Continued)

DATE — Set the System Date

The DATE utility shown in Figure 11-12 sets the system date in the configura-
tion block, along with a flag that indicates that the DATE utility has been used.
Other utility programs can use this flag as a primitive test of whether the system
date is current.

Here is an example console dialog:

P3B>date<CR>

DATE Vn 1.0 02/18/83

DATE sets the system date. Usage is :
DATE mm/dd/vy :
DATE SHOW (to display current date)

P3B>date show<CR>
DATE Vn 1.0 02/18/83
Curvrent Date is 12/18/82

P3B>date 2/23/83<CR>
DATE Vn 1.0 02/18/83
Current Date is 02/23/83

Chapter 11: Additional Utility Programs 443

#define VN "\nDATE Vn 1.0 02/18/83"

/% This utility accepts the current date from the command tail,
validates it, and set the internal system date in the BIOS.
Alternatively, it can be requested just to display the current
system date. =/

#include <LIBRARY.H>

char xdate; /% Pointer to the date in the config. block %/
char xdate_flag; /% Pointer to date-set flag %/

int mm,dd,yy; /% Variables to hold month, day, year =/

int mcount; /% Match count of numeric values entered #/
int count; /% Count used to add leading 0“s to date %/

main(argc,argv)
int argc;

char #argvl];

i

Printf(VN); /% Display sign-on message %/

date = get_cba(CB_DATE): /% Set pointer to date %/

date_flag = get_cba(CB_DTFLAGS);/%* Set pointer to date-set flag =/

if C(arge != 2) /% Check if help requested (or needed) %/
show_use(); /% Display correct usage and exit =/

if (usstrcmp(“SHOW",argvl[11)) /% Check if not SHOW option =/
i

/% Convert specified time into month, day, vear =/
mcount = sscanf(argv(1],"%d/%d/%d", &mm, &dd, &yy);
if (mcount != 3) /% Input not numeric x/
show_use(); /% Display correct usage and exit %/

/% NOTE: The following validity checking is
simplistic, but could be expanded to accommodate
more context-sensitive checking: days in the month,
leap vears, etc. %/

if (mm > 12 !! mm < 1) /% Check valid month, day, year %/
{

printf("\nMonth = %d is illegal.",mm);
show_use()y /% Display correct usage and exit %/
}

if (dd > 31 !l dd < 1)
{

printf("\nDay = %d is illegal.",dd);
show_use ()3 /% Display correct usage and exit */
3

if (yy > 90 i1 yy < 83) /% (=== NOTE ! %/
i

printf("\nYear = %d is illegal.",vy);
show_use(); /% Display correct usage and exit =/
3

/% Convert integers back into a formatted string =/
sprintf(date, "%2d/%2d/%2d",mm,dd, yy);
datel[8] = Ox0A; /% Terminate with line feed =/
datel9] = “\0’; /% New string terminator %/

/% Change " 1/ 2/ 3" into "01/02/03" »/
for (count = 0; count < 7; count+=3)
N

if (datelcountl == “)
datelcountl = “07;
3}

/% Turn flag on to indicate that user has set date =/
®date_flag != DATE_SET;
3

printf("\n\tCurrent Date is %s",date);
}

show_use () /% Display correct usage and exit =/
{

printf("\nDATE sets the system date. Usage is :");
printf ("\n\tDATE mm/dd/yy");

pPrintf("\n\tDATE SHOW (to display current date)\n");
exit();

3

Figure 14-12. DATE.C, a utility that makes the current date part of the system

444 The CP/M Programmer’s Handbook

TIME — Set the System Time

The TIME utility shown in Figure 11-13 sets the current system time. Like
DATE, TIME sets a flag so that other utilities can test that the system time is likely
to be current.

Here is an example console dialog:

P3B>time<CR>
TIME Vn 1.0 02/18/83
TIME sets the system time. Usage is :
TIME hhi:mmi:ssi}
TIME SHOW (to display current time)

P3B>time show<CR>
TIME Vn 1.0 02/18/83
Current Time is 13:08:44

FP3B>time S:47<CR:
TIME Vn 1.0 02/18/83
Current Time is 05:47:00

#define VN "\nTIME Vn 1.0 02/18/83"

/% This utility accepts the current time from the command tail,
validates it, and sets the internal system time in the BIOS.
Alternatively, it can just display the current system time. »/

#include <LIBRARY.H>

char #time; /% Pointer to the time in the config. block =/
char *time_set; /% Pointer to the time set flag =/

int hh,mm, sss /% Variables to hold hours, minutes, seconds %/
int mcount; /% Match count of numeric values entered »/

int count; /% Count used to add leading zeros to time =/

mainlargc, argv)
int argcs
char xargvl];

{
printf(VN); /% Display sign-on message %/
time = get_cba(CB_TIMEA); /% Set pointer to time x/
time_flag = get_cba(CB_DTFLAGS); /% Set pointer ta the
time-set flag »/
hh = mm = ss = 03 /% Initialize the time if seconds or
minutes are not specified x/

if (arge 1= 2) /% Check if help requested (or needed) =/
show_use(); /% Display correct usage and exit =/

if (usstromp("SHOW",argvi1l)) /% Chaeck if not SHOW option %/
i

/% Convert time into hours, minutes, seconds %/
mcount = sscanflargvi1],"%d:%d:%d",&hh, &mm, &ss) 3

if (!mcount) /% Input not numeric */
show_use(); /% Display correct usage and exit =/

if (hh > 12) /% Check valid hours, minutes, seconds %/
{

printf("\n\OO7Hours = %d is illegal.",hh);
show_use(); /% Display correct usage and exit %/
3

Figure 11-13. TIME.C, a utility that makes the current time part of the system

Chapter 11: Additional Utility Programs

445

if (mm > 59)

{
printf("\n\O00O7Minutes = %d is illegal.",mm);
show_use()y /% Display correct usage and exit »/

3
if (ss > 59)
i

show_use(); /% Display correct usage and exit */
printf("\n\007Seconds = %d is illegdl.",ss);
3

/% Convert integers back into formatted string =/
sprintf(time, "%2d1%2d:%2d",hh,mm, ss);
time(81 = OxO0A; /% Terminate with line feed x/
time[?] = “\0“; /% New string terminator =/

/% Convert " 1: 21 3" into "01:02:03" =/
for (count = 03 count < 7; count+=3)
{

if (timelcountl == <)
timelcountl = “07;
]
/% Turn bit on to indicate that the time has been set =/
%time_flag i= TIME_SET;
3}

printf("\n\tCurrent Time is %s",time);
3

show_use () /% Display correct usage and exit */
{

printf("\nTIME sets the system time. Usage is :");
Printf("\n\tTIME hhi:mm{iss}}");

printf ("\n\tTIME SHOW (to display current time)\n");
exit();

3

Figure 41-13. TIME.C, a utility that makes the current time part of the system (continued)

FUNKEY — Set the Function Keys

The FUNKEY utility shown in Figure 11-14 sets the character strings asso-
ciated with specific function keys. In the specified character string, the character
“<” is converted into a LINE FEED character. Here is an example console dialog:

FUNKEY sets a specific function key string.
FUNKEY key-number "string to be programmed<"
(Note ¢ “<“ is changed to line feed.)

¢ key-number is from O to 17.)
(string can be up to 1& chars.)
FUNKEY SHQW (displays settings for all keys)

P3B>funkey show<CR>

FUNKEY Vn 1.0 02/18/83
Key #0 = “Function Key 1<°
Key #1 = “Function Key 2~

P3EB>funkey O "PIP Bi=A:%.#[VI<"<CR>

P3E>funkey show{CR>
FUNKEY VYn 1.0 02/18/83

Key #0 = “PIP Bi=A:®,%[V1<~
Key #1 = “Function Key 2<~“

446 The CP/M Programmer’s Handbook

#define VN "\nFUNKEY Vn 1.0 02/18/83"

#include <LIBRARY.H>
int fnum;

char fstringl20];
struct _fkt xpfk;

/% Function key number
/% String for function
/% Pointer to function

mainlargce,argv)
int argces

char *argvll;
i

if (arge == arge >)
show_use()s

pfk = get_cba(CB_FKT); /% Set pointer to function key
if (usstromp("SHOW",argvi11))
:f (lisdigit(arov[11001))
;rintf("\n\007’Zs’

argviil);
show_use();
¥

fnum = atoitargvill);

if (fpum > FK_ENTRIES)
show_use();

if (get_fs(fstring) > FK_LENGTH)
i

show_use();
}

pfk += fnum; /% Update pointer to string »/
/% Copy string into function key table

/% Check if function key input present
if (M(pfk => fk_inputl01))

{
printf("\n\007Error :
show_use();

Function Key #%4d

3
strepy(pfk -> fk_output,fstring);
3

else /% SHOW function specified %/
Printf(VN);
show_fun();
3

}

to be programmed =/
key %/
key table 3/

table %/

is an illegal function key.",

/% Convert function key number x/

{
printf ("\n\00O7Function key number %d toc large.",fnum);

printf ("\n\0O7Function key string is too long.");

*/

x/

is not set up to be programmed.”, fnum)s

/# Display sign-on message =/

get_fs(string)
char stringl];
{

char =taily
short tcount;
int slen;

/%
/%

/%
/%
/%

Get function string from command tail =/
Pointer to character string =/

Pointer to command tail =/
Count of TOTAL characters in command tail */
String length %/

tail = Ox80; /% Command line is in memory at OOSOH %/
tcount = ®tail++; /% Set TOTAL count of characters in command tail =/
slen = O3 /% Initialize string length =/

/% For all characters in the command tail =/

while(tcount--)
{

if (#tail++ ==
break;

rnsy

/% Scan for first quotes x/

Figure 141-14.

FUNKEY.C, a utility that sets the character strings associated with

specific function keys

Chapter 11: Additional Utility Programs 447

3
if (ltcount) /% No quotes found %/
i
Printf("\n\007No leading quotes found.");

show_use ()3
3

++tcount; /% Adjust tail count =/
while(tcount--) /% For all remaining characters in tail =/

{
if (%tail == ’"7)
i

stringlslenl = “\0"; /% Add terminator =/
break; /% Exit from loop %/
3

stringlslen) = xtail++; /% Move char. from tail into string =/

if (stringlslenl] == “<”)
stringlslen] = Ox0A;
++slens

if (ltcount) /% No terminating gquotes found =/

{
printf("\n\007No trailing quotes found.");
show_use();

3

return slen; /% Return string length =/

show_fun() /% Display settings for all function keys %/
struct _fkt =pfkt; /% Local pointer to function keys ®/

int count; /% Count to access function keys %/

char =1f; /% Pointer to "<" character (LINE FEED) =/

pfkt = get_cba(CB_FKT); /% Set pointer to function key table %/
for (count = 0; count <= FK_ENTRIES; count++)
{

if (pfkt -> fk_inputl0d) /% Key is programmed »/
i
/% Check if at physical end of table =/
if (pfkt -> fk_input == OxFF)
break; /% Yes -- break out of for locop =/

strepy(fstring,pfkt -> fk_output);

/% Convert all O%0A chars to "<" %/
while (1f = strscn(fstring,"\012"))

i

N ®1f = <73
3

printf("\n\tkey #%d = “%s”",count,fstring);

++pfkt; /% Move to next entry */

show_use ()
{

printf("\nFUNKEY sets a specific function key string.");
Printf("\n\tFUNKEY key-number \042string to be programmed<\042 ");

printf("\n\t (Note : “<“ is changed to line feed.)");

printf("\n\t q key-number is from O to %d.)",
FK_ENTRIES-1);

printf("\n\t ¢ string can be up to %d chars.)",
FK_LENGTH) ;

Printf("\n\tFUNKEY SHOW (displays settings for all keys)");

exit();

3

Figure 14-14. (Continued)

448 The CP/M Programmer’s Handbook

Other Utilities

Because of space limitations, not all of the possible utility programs for the
BIOS features can be shown in this chapter. Others that would need to be
developed in order to have a complete set are

PUBLIC/PRIVATE
This pair of utilities would turn the public files flag on or off, making the
files in user 0 available from other user numbers or not, respectively.

SETTERM
This program would program the CONOUT escape table, setting the
various escape sequences as required. It could also program the characters
in the function key table that match with those emitted by the terminal
currently in use.

SAVESYS
This utility would save the current settings in the long term configuration
block.

LOADSYS
This would load the long term configuration block froma previously saved
image.

DO
This utility would copy the command tail into the multi-command buffer,
changing “\” into LINE FEED, and then set the forced input pointer to the
multi-command buffer. As a result, characters from the multi-command
buffer would be fed into the console input stream as though they had been
typed one command at a time.

SPARE
This utility would work in conjunction with the hard-disk bad-sector
management in your disk drivers. It would spare out bad sectors or tracks
on the hard disk. This done, all subsequent references to the sectors or
tracks would be redirected to a different part of the disk.

