The BIOS Components

The BIOS Entry Points

Bootstrap Functions

Character Input/ Output Functions
Disk Functions

Calling the BIOS Functions Directly
Example BIOS

The Basic
Input/Output System

This chapter takes a closer look at the Basic Input/ Output System (BIOS). The
BIOS provides the software link between the Console Command Processor
(CCP), the Basic Disk Operating System (BDOS), and the physical hardware of
your computer system. The CCP and BDOS interact with the parts of your
computer system only as logical devices. They can therefore remain unchanged
from one computer system to the next. The BIOS, however, is customized for your
particular type of computer and disk drives. The only predictable part of the BIOS
is the way in which it interfaces to the CCP and BDOS. This must remain the same
no matter what special features are built into the BIOS.

147

448 The CP/M Programmer’s Handbook

The BIOS Components

A standard BIOS consists of low-level subroutines that drive four types of
physical devices:
- Console: CP/M communicates with the outside world via the console.
Normally this will be a video terminal or a hard-copy terminal.

. “Reader” and “punch”: These devices are normally used to communicate
between computer systems—the names “reader” and “punch” are just his-
torical relics from the early days of CP/M.

- List: This is a hard-copy printer, either letter-quality or dot-matrix.

. Disk drives: These can be anything from the industry standard single-sided,
single-density, 8-inch floppy diskette drives to hard disk drives with capaci-
ties of several hundred megabytes.

The BIOS Entry Points

The first few instructions of the BIOS are all jump (JMP) instructions. They
transfer control to the 17 different subroutines in the BIOS. The CCP and the
BDOS, when making a specific request of the BIOS, do so by transferring control
to the appropriate JMP instruction in this BIOS jump table or jump vector. The
BIOS jump vector always starts at the beginning of a 256-byte page, so the address
of the first jump instruction is always of the form xx00H, where “xx” is the page
address. Location 0000H to 0002H has a jump instruction to the second entry of
the BIOS jump vector—so you can always find the page address of the jump
vector by looking in location 0002H.

Figure 6-1 shows the contents of the BIOS jump vector along with the
page-relative address of each jump. The labels used in the jump instructions have
been adopted by convention.

The following sections describe the functions of each of the BIOS’s main
subroutines. You should also refer to Digital Research’s manual CP/M 2.0 Altera-
tion Guide for their description of the BIOS routines.

Bootstrap Functions

There are two bootstrap functions. The cold bootstrap loads the entire CP/M
operating system when the system is either first turned on or reset. The warm
bootstrap reloads the CCP whenever a program branches to location 0000H.

Chapter 6: The Basic Input/Output System 149

xx00H JMP BOOT s "Cold" (first time) bootstrap
xxO03H JMP WBOOT s "Warm" bootstrap

xX0&H JMP CONST sConscole input status

xx09H JMP CONIN sConsole input

xXOCH JMP CONOUT sConsole output

XXOFH JMP LIST sList output

xx12H JMP PUNCH : "Punch" output

xx 15H JMP READER s "Reader" input

xx18H JMP HOME sHome disk heads (to track 0)
xx1BH JMP SELDSK ;Select logical disk

XX1EH JMP SETTRK ;Set track number

*xx21H JMP SETSEC ;Set sector number

Xx24H JMP SETDMA ;Set DMA address

Xx27H JMP READ sRead (128-byte) sector

xX2AH JMP WRITE sWrite (128-byte) sector
xx20H JMP LISTST sList device output status
Xx%30H JMP SECTRAN ;Sector translate

Figure 6-1.

Layout of the standard BIOS jump vector

BOOT: “Cold” Bootstrap

The BOOT jump instruction is the first instruction executed in CP/M. The
bootstrap sequence must transfer control to the BOOT entry point in order to
bring up CP/M. In general, a PROM receives control either when power is first
applied or after you press the RESET button on the computer. This reads in the
CP/M loader on the first sector of the physical disk drive chosen to be logical disk
A. This CP/M loader program reads the binary image of the CCP, BDOS, and
BIOS into memory at some predetermined address. Then it transfers control to the
BOOT entry point in the BIOS jump vector.

This BOOT routine must initialize all of the required computer hardware. It
sets up the baud rates for the physical console (if this has not already been done
during the bootstrap sequence), the “reader,” “punch,” and list devices, and the
disk controller. It must also set up the base page of memory so that there is ajump
at location 0000H to the warm boot entry point in the BIOS Jjump vector (at
xx03H) and a jump at location 0005H to'the BDOS entry point.

Most BOOT routines sign on by displaying a short message on the console,
indicating the current version of CP/M and the computer hardware that this BIOS
can support. '

The BOOT routine terminates by transferring control to the start of the CCP
+6 bytes (the CCP has its own small jump vector at the beginning). Just before the
BOOT routine jumps into the CCP, it sets the C register to 0 to indicate that logical
disk A is to be the default disk drive. This is what causes “A>” to be the CCP’s
initial prompt.

The actual CCP entry point is derived from tke base address of the BIOS. The
CCP and BDOS together require 1EO0H bytes of code, so the first instruction of
the CCP starts at BIOS —1E00H.

450 The CP/M Programmer’s Handbook

WBOOT: “Warm” Bootstrap

Unlike the “cold” bootstrap entry point, which executes only once, the WBOOT
or warm boot routine will be executed every time a program terminates by
jumping to location 0000H, or whenever you type a CONTROL-C on the console as
the first character of an input line.

The WBOOT routine is responsible for reloading the CCP into memory.
Programs often use all of memory up to the starting point of the BDOS, overwrit-
ing the CCP in the process. The underlying philosophy is that while a program is
executing, the CCP is not needed, so the program can use the memory previously
occupied by the CCP. The CCP occupies 800H (2048) bytes of memory —and this
is frequently just enough to make the difference between a program that cannot
run and one that can.

A few programs that are self-contained and do not require the BDOS’s
facilities will also overwrite the BDOS to get another 1600H (5632) bytes of
memory. Therefore, to be really safe, the WBOOT routine should read in both the
CCP and the BDOS. It also needs to set up the two JMPs at location 0000H (to
WBOOT itself) and at location 0005H (to the BDOS). Location 0003H should be
set to the initial value of the IOBYTE if this is implemented in the BIOS.

Asits last act, the WBOOT routine sets register C to indicate which logical disk
is to be selected (C= 0 for A, | for B, and so on). It then transfers control into the
CCP at the first instruction in order to restart the CCP. Again, the actual address
is computed based on the knowledge that the CCP starts 1EOOH bytes lower in
memory than the base address of the BIOS.

Character Input/Output Functions

Character input/output functions deal with logical devices: the console,
“reader,”“punch,”and list devices. Because these logical devices can in practice be
connected by software to one of several physical character 1/O devices, many
BIOS’s use CP/M’s IOBYTE features to assign logical devices to physical ones.

In this case, each of the BIOS functions must check the appropriate bit fields of
the IOBYTE (see Figure 4-2 and Table 4-1) to transfer control to the correct
physical device driver (program that controls a physical device).

CONST: Console Input Status

CONST simply returns an indicator showing whether there is an incoming
character from the console device. The convention is that A= OFFH if a character
is waiting to be processed, A = 0 if one is not. Note that the zero flag need not be set
to reflect the contents of the A register —it is the contents that are important.

CONST is called by the CCP whenever the CCP is in the middle of an
operation that can be interrupted by pressing a keyboard character.

Chapter 6: The Basic Input/Output System 151

The BDOS will call CONST if a program makes a Read Console Status
function call (BSCONST, code 11, 0BH). It is also called by the console input BIOS
routine, CONIN (described next).

CONIN: Console Input

CONIN reads the next character from the console to the A register and sets the
most significant (parity) bit to 0.

Normally, CONIN will call the CONST routine until it detects A = OFFH.
Only then will it input the data character and mask off the parity bit.

CONIN is called by the CCP and by the BDOS when a program executes a
Read Console Byte function (BSCONIN, code 1).

CONOUT: Console Output

CONOUT outputs the character (in ASCII) in register C to the console. The
most significant (parity) bit of the character will always be 0.

CONOUT must first check that the console device is ready to receive more
data, delaying if necessary until it is, and only then sending the character to the
device. :

CONOUT is called by the CCP and by the BDOS when a program executes a
Write Console Byte function (BSCONOUT, code 2).

LIST: List Output

LIST is similar to CONOUT except that it sends the character in register C to
the list device. It too checks first that the list device is ready to receive the character.

LIST is called by the CCP in response to the CONTROL-P toggle for printer echo
of console output, and by the BDOS when a program makes a Write Printer Byte
or Display String call (BSLISTOUT and BSPRINTS, codes 5 and 9).

PUNCH: “Punch” Output

PUNCH sends the character in register C to the “punch”device. As mentioned
earlier, the “punch”is rarely a real paper tape punch. In most BIOS’s, the PUNCH
entry point either returns immediately and is effectively a null routine, or it outputs
the character to a communications device, such as a modem, on your computer.

PUNCH must check that the “punch”device is indeed ready to accept another
character for output, and must wait if it is not.

Digital Research’s documentation states that the character to be output will
always have its most significant bit set to 0. This is not true. The BDOS simply
transfers control over to the PUNCH entry point in the BIOS; the setting of the
most significant bit will be determined by the program making the BDOS function
request (BSPUNOUT, code 4). This is important because the requirement of a zero

152 The CP/M Programmer’s Handbook

would preclude being able to send pure binary data via the BIOS PUNCH
function.

READER: “Reader” Input

As with the PUNCH entry point, the READER entry point rarely connects to
a real paper tape reader.

The READER function must return the next character from the reader device
in the A register, waiting, if need be, until there is a character.

Digital Research’s documentation again says that the most significant bit of
the A register must be 0, but this is not the case if you wish to receive pure binary
information via this function.

READER is called whenever a program makes a Read “Reader” Byte function
request (BSREADIN, code 3).

Disk Functions

All of the disk functions that follow were originally designed to operate on the
128-byte sectors used on single-sided, single-density, 8-inch floppy diskettes that
were standard in the industry at the time. Now that CP/M runs on many different
types of disks, some of the BIOS disk functions seem strange because most of the
new disk drives use sector sizes other than 128 bytes.

To handle larger sector sizes, the BIOS has some additional code that makes
the BDOS respond as if it were still handling 128-byte sectors. This code is referred
to as the blocking/deblocking code. As its name implies, it blocks together several
128-byte “sectors”and only writes to the disk when a complete physical sector has
been assembled. When reading, it reads in a physical sector and then deblocks it,
handing back several 128-byte “sectors” to the BDOS.

To do all of this, the blocking/deblocking code uses a special buffer area of the
same size as the physical sectors on the disk. This is known as the host disk buffer
or HSTBUF. Physical sectors are read into this buffer and written to the disk
from it.

In order to optimize this blocking/deblocking routine, the BIOS has code in it
to reduce the number of times that an actual disk read or write occurs. A side effect
is that at any given moment, several 128-byte “sectors” may be stored in the
HSTBUF, waiting to be written out to the disk when HSTBUF becomes full. This
sometimes complicates the logic of the BIOS disk functions. You cannot simply
select a new disk drive, for example, when the HSTBUF contains data destined for
another disk drive. You will see this complication in the BIOS only in the form of
added logical operations; the BIOS disk functions rarely trigger immediate physi-
cal operations. It is easier to understand these BIOS functions if you consider that

Chapter 6: The Basic Input/Output System 153

they make requests—and that these requests are satisfied only when it makes
sense to do so, taking into account the blocking/deblocking logic.

HOME: Home Disk

HOME sets the requested track and sector to 0.

SELDSK: Select Disk

SELDSK does not do what its name implies. It does not (and must not)
physically select a logical disk. Instead, it returns a pointer in the HL register pair
to the disk parameter header for the logical disk specified in register C on entry.
C=0fordrive A, 1 for drive B, and so on. SELDSK also stores this code for the
requested disk to be used later in the READ and WRITE functions.

If the logical disk code in register C refers to a nonexistent disk or to one for
which no disk parameter header exists, then SELDSK must return with HL set to
0000H. Then the BDOS will output a message of the form

"BDOS Err on X: Select"

Note that SELDSK not only does not select the disk, but also does not indicate
whether or not the requested disk is physically present —merely whether or not
there are disk tables present for the disk.

SELDSK is called by the BDOS either during disk file operations or by a
program issuing a Select Disk request (BSSELDSK, code 14).

SETTRK: Set Track

SETTRK saves the requested disk track that is in the BC register pair when
SETTRK gets control. Note that this is an absolute track number; that is, the
number of reserved tracks before the file directory will have been added to the
track number relative to the start of the logical disk.

The number of the requested track will be used in the next BIOS READ or
WRITE function (described later in this chapter).

SETTRK is called by the BDOS when it needs to read or write a 128-byte
sector. Legitimate track numbers are from 0 to OFFFFH (65,535).

SETSEC: Set Sector

SETSEC is similar to SETTRK in that it stores the requested sector number
for later use in BIOS READ or WRITE functions. The requested sector number is
handed to SETSEC in the A register; legitimate values are from 0 to 0OFFH (255).

The sector number is a logical sector number. It does not take into account any
sector skewing that might be used to improve disk performance.

SETSEC is called by the BDOS when it needs to read or write a 128-byte
sector.

154 TheCPM Programmer’s Handbook

SETDMA: Set DMA Address

SETDMA saves the address in the BC register pair in the requested DMA
address. The next BIOS READ or WRITE function will use the DM A address as
a pointer to the 128-byte sector buffer into which data will be read or from which
data will be written.

The default DM A address is 0080H. SETDMA is called by the BDOS when it
needs to READ or WRITE a 128-byte sector.

READ: Read Sector

READ reads ina 128-byte sector provided that there have been previous BIOS
function calls to

SELDSK —“select” the disk
SETDMA —set the DMA address
SETTRK —set the track number
SETSEC —set the sector number.

Because of the blocking/deblocking code in the BIOS, there are frequent
occasions when the requested sector will already be in the host buffer (HSTBUF),
so that a physical disk read is not required. All that is then required is for the BIOS
to move the appropriate 128 bytes from the HSTBUF into the buffer pointed at by
the DMA address.

Only during the READ function will the BIOS normally communicate with
the physical disk drive, selecting it and seeking to read the requested track and
sector. During this process, the READ function must also handle any hardware
errors that occur, trying an operation again if a “soft,” or recoverable, error occurs.

The READ function must return with the A register set to 00H if the read
operation is completed successfully. If the READ function returns with the A
register set to 01 H, the BDOS will display an error message of the form

BDOS Err on X: Bad Sector

Under these circumstances, you have only two choices. You can enter a
CARRIAGE RETURN, ignore the fact that there was an error, and attempt to make
sense of the data in the DMA buffer. Or you can type a CONTROL-C to abort the
operation, perform a warm boot, and return control to the CCP.

As you can see, CP/M’s error handling is not particularly helpful, so most
BIOS writers add more sophisticated error recovery right in the disk driver. This
can include some interaction with the console so that a more determined effort can
be made to correct errors or, if nothing else, give you more information as to what
has gone wrong. Such error handling is discussed in Chapter 9.

If you are working with a hard disk system, the BIOS driver must also handle
the management of bad sectors. You cannot simply replace a hard disk drive if one
or two sectors become unreadable. This bad sector management normally requires

Chapter 6: The Basic Input/Output System 155

that a directory of “spare”sectors be put on the hard disk before it is used to store
data. Then, when a sector is found to be bad, one of the spare sectors is substituted
in its place. This is also discussed in Chapter 9.

WRITE: Write Sector

WRITE is similar to READ but with the obvious difference that data is
transferred from the DMA buffer to the specified 128-byte sector. Like READ,
this function requires that the following function calls have already been made:

SELDSK —“select” the disk
SETDMA ——set the DMA address
SETTRK —set the track number
SETSEC —set the sector number.

Again, it is only in the WRITE routine that the driver will start to talk directly
to the physical hardware, selecting the disk unit, track, and sector, and transferring
the data to the disk. A

With the blocking/deblocking code, the BDOS optimizes the number of disk
writes that are needed by indicating in register C the type of disk write that is to be
performed:

0 = normal sector write
1 = write to file directory sector
2 = write to sector of previously unused allocation block.

Type 0 occurs whenever the BDOS is writing to a data sector in an already used
allocation block. Under these circumstances, the disk driver must preread the
appropriate host sector because there may be previously stored information oniit.

Type I occurs whenever the BDOS is writing to a file directory sector — in this
case, the BIOS must not defer writing the sector to the disk, as the information is
too valuable to hold in memory until the HSTBUF is full. The longer the
information resides in the HSTBUF, the greater the chance of a power failure or
glitch, making file data already physically written to the disk inaccessible because
the file directory is out of date.

Type 2 occurs whenever the BDOS needs to write to the first sector of a
previously unused allocation block. Unused, in this context, includes an allocation
block that has become available as a result of a file being erased. In this case, there
is no need for the disk driver to preread an entire host-sized sector into the
HSTBUEF, as there is no data of value in the physical sector.

As with the READ routine, the WRITE function returns with A set to 00H if
the operation has been completed successfully. If the WRITE function returns
with A set to 01 H, then the BDOS will display the same message as for READ:

BDOS Err on X: Bad Sector

456 The CP/M Programmer’s Handbook

You can see now why most BIOS writers add extensive error-recovery and
user-interaction routines to their disk drivers.

For hard disk systems, some disk drivers are written so that they automatically
“spare out”a failing sector, writing the data to one of the spare sectors on the disk.

LISTST: List Status

As you can tell from its position in the list of BIOS functions, the LISTST
function was a latecomer. It was added when CP/M was upgraded from version 1.4
to version 2.0.

This function returns the current status of the list device, using the IOBYTE if
necessary to select the correct physical device. It sets the A register to OFFH if the
list device can accept another character for output or to 00H if it is not ready.

Digital Research’s documentation states that this function is used by the
DESPOOL utility program (which allows you to print a file “simultaneously” with
other operations) to improve console response during its operation, and that it is
acceptable for the routine always to return 00H if you choose not to implement it
fully.

Unfortunately, this statement is wrong. Many other programs use the LISTST
function to “poll” the list device to make sure it is ready, and if it fails to come
ready after a predetermined time, to output a message to the console indicating
that the printer is not ready. If you ever make a call to the BDOS list output
functions, Write Printer Byte and Print String (codes 5 and 9), and the printer is
not ready, then CP/M will wait forever —and your program will have lost control
so it cannot even detect that the problem has occurred. If LISTST always returns a
00H, then the printer will always appear not to be ready. Not only does this make
nonsense out of the LISTST function, but it also causes a stream of false “Printer
not Ready” error messages to appear on the console.

SECTRAN: Sector Translate

SECTRAN, given a logical sector number, locates the correct physical sector
number in the sector translate table for the previously selected (via SELDSK)
logical disk drive.

Note that both logical and physical sector numbers are 128-byte sectors, so if
you are working with a hard disk system, it is not too efficient to impose a sector
interlace at the 128-byte sector level. It is better to impose the sector interlace right
inside the hard disk driver, if at all; in general, hard disks spin so rapidly that CP/M
simply cannot take advantage of sector interlace.

The BDOS hands over the logical sector number in the BC register pair, with
the address of the sector translate table in the DE register pair. SECTRAN must
return the physical sector number in HL.

If SECTRAN is to be a null routine, it must move the contents of BC to HL
and return.

Chapter 6: The Basic Input/Output System

157

Calling the BIOS Functions Directly

As a general rule, you should not make direct calls to the BIOS. To do so makes
your programs less transportable from one CP/M system to the next. It precludes
being able to run these programs under MP/M, which has a different form of BIOS
called an extended 1/O system, or XIOS.

There are one or two problems, however, that can only be solved by making
direct BIOS calls. These occur in utility programs that, for example, need to make
direct access to the CP/M file directory, or need to access some “private” jump
instructions which have been added to the standard BIOS jump vector.

If you really do need direct access to the BIOS, Figure 6-2 shows an example
subroutine that does this. It requires that the A register contain a BIOS function
code indicating the offset in the jump vector of the jump instruction to which
control is to be passed.

Q003
Q008
QOO%
Q00C
QOQOF
0012
Q015
[WIe §53
QOLE
Q01E
0021
0024
Q027
Q02A
Q02D
Q030

WROOT
CONST
CONIN
CONQUT
LIST
PUNCH
READER
HOME
SELDSE
SETTRK
SETSREC
SETOMA
READ
WRITE
LISTST
SECTRAN

L L T T (T 1 A 1 A 1 R U (I

Equates for use with BIOS subroutine

EQU 03H sWarm boot

EQu O&H sConsole status

EQU O%H ;Consale input

EQL! QCH sCaonsale output

EQU OFH ;Qutput to list device
EQu 12H sOutput to punch device
EQU 15H s Input from reader

EQU 18H sHome selected disk to track O
EQL 1RH sSelect disk

EQU 1EH Set track

EQU 21H 3Set sector

EQU 24H ;Set DMA address

EQU 27H sRead 128-byte sector
EQu 2AH sWrite 128-byte sector
EQU 2DH sReturn list status

EQU 30H sSector translate

sAdd further "private" RIQS codes here

RIOS

This subroutine transfers control to the appropriate
entry in the BIQS Jump Vector, based on a code number
handed to it in the L register.

Entry parameters

L = Code number (which is in fact the page-relative
address of the correct JMF instruction within
the jump vector)

All other registers are prese2rved and handed aver to
the BIOS routine intact.

Exit parameters

Figure 6-2.

BIOS equates

158 The CP/M Programmer’s Handbook

This routine does not CALL the RIOS routine, therefore
when the BIQS routine RETurns, it will do so directly
to this routine’s caller.

Calling sequence

TR we ws v we s owm we we v

MVI L, Code$Number
CALL RIOS
10%:
0000 FS PUSH PSW ;Save user’s A register
Q001 3A0200 LDA 0002H ;Get BIOS JMP vector page fraom
3 warm boot JMP

Q004 &7 MoV H, A sHL —-> RIOS JMP vector entry
0005 F1 POF PSW sRecover user”s A register
Q004 E? PCHL sTransfer control into the BIOS voutine

Figure 6-2. BIOS equates (continued)

Line Numbers Functional Component or Routine
0072-011& EIOS Jump Vector

0120-0270 Initialization Code

0275-0286 Display Message

0289-0310 Enter CP/M

1 0333-0364 CONST - Consocle Status
Q249-03293 CONIN - Console Input

0397-0410 CONCUT - Console Output
0414-0451 LISTST - List Status

0456-0471 LIST - List Output

0476-0492 FUNCH - Punch Output

0494-0511 READER - Reader Input

0516-0536& IOBYTE Driver Select

0540-0524 Device Control Tables

0589-0744 Low-level Drivers for Console, List,etc.
0769-0824 Disk Parameter Header Tables
0221-0878 Disk Parameter Elocks

0881-0907 Other Disk data areas

0710-0955 SELDSK - Select Disk

0958-0%64 SETTRK - Set Track

0967-0973 SETSEC - Set Sector

09723-0984 SETDOMA - Set DMA Address
0987-1025 Sector Skew Tables

1028-1037 SECTRAN - Logical to Physical Sector translation
1041-1056 HOME - Home to Track O
1059-1154 Deblocking Algorithm data areas
1157-1183 READl - Read 128-byte sectaor
1185-1204 WRITE — Write 128-byte sector
1206-1378 Deblocking Algorithm

1381-1432 Buffer Move

1435-1478 Deblocking subroutines
1481-1590 &" Floppy Physical Read/Write
1595-14681 S 1/4" Floppy Physical Read/Write
1485-17&4 WEOOT - Warm Boot

Figure 6-3. Functional Index to Figure 6-4

Chapter 6: The Basic Input/Output System 159

Example BIOS

The remainder of this chapter is devoted to an example BIOS listing. This
actual working BIOS shows the overall structure and interface to the individual
BIOS subroutines.

Unlike most BIOS’s, this one has been written specifically to be understood
easily. The variable names are uncharacteristically long and descriptive, and each
block of code has commentary to put it into context.

Each source line has been sequentially numbered (an infrequently used option
that Digital Research’s Assembler, ASM, permits). Figure 6-3 contains a func-
tional index to the BIOS as a whole so that you can find particular functions in the
listing in Figure 6-4 by line number.

0001 <-- Line Number ; Figure &4-4.

0002 H

0003 H %

0004 (A 4

Q005 3% Simple BIOS Listing ®

0006 3 ® ®

0007 3

0008 s

0009 3

0010 3030 = VERSION EQU 007 sEquates used in the sign on message
0011 3730 = MONTH EQU 1077

0012 3531 = DAY EQU 157

0013 3238 = YEAR Equ 82

0014 H

0015 H »* *

0018 ER] ®
0017 #* This BIOS is for a computer system with the following *
0018 ;% hardware configuration : #*
0019 3w *
0020 3% - 8080 CPU *
0021 3% ~ &4KBytes of RAM *
0022 PR = CRT/keyboard controller that transfers data *
0023 3R as though it were a serial port (but requires 3*
0024 g no baud rate generator or USART programming) #*
0025 3% = A serial port, used for both list and "reader"/ *
0028 3R "punch" devices. The serial port chip is an *
0027 3 Intel 8251A with an 8253 baud rate generator. *
0028 3% - Two S 1/4" mini—-floppy, double-sided, double- *
0029 PR density drives. These drives use S12-byte sectors. *
0020 3% These are used as logical disks A: and B:. *
0031 3% - Two 8" standard diskette drives (128-byte sectors). *
0032 3® These are used as logical disks C: and D:. *
0033 3% *
0034 3 * Two intelligent disk controllers are used, one for *
0035 3% each diskette type. These controllers access memory *
0036 3 directly, both to read the details of the *
0037 3% operations they are to perform and also to read *
0038 3% and write data from and to the diskettes. *
Q039 33 *
0040 P® *
0041 H

0042

0043 H

0044 3 Equates for defining memory size and the base address and

0045 ;7 length of the system components.

Figure 6-4. Simple BIOS listing

160 The CP/M Programmer’s Handbook

0046 4
0047 0040 = Memor y$Size EQU 64 sNumber of Kbytes of RAM
0048 3
0049 s+ ‘The BIOS Length must be determined by inspection.
Q050 + Comment out the ORG BIOS$Entry line below by changing the first
0051 s+ character to a semicolon. (This will make the Assembler start
0052 s the BIOS at location 0.) Then assemble the BIOS and round up to
0053 3 the nearest 100H the address displayed on the console at the end
00354 ; of the assembly.
0055 ;
0056 0900 = BIOS$Length EQU 0900H
0057 3
0058 0800 = CCPsLength EQU 0800H sConstant
0059 OEO00 = BDOS$Length EQU OEOOH ;Constant
0060 $
0061 0008 = Overalls$Lenagth EQU ((CCP$Length + BDOS$Length + BIOS$Length) / 1024) + 1
0062 H
0043 EO0Q0 = CCP$Entry EQU (Memory$Size - QOverallslLength) x 1024
0084 EB06 = BDOS$Entry EQU CCP$Entry + CCP$Length + é
00465 F&00 = BIOSS$Entry EQU CCP$Entry + CCP$Length + BDOS$Length
0066 H
0067 3
0048 H
00469
0070 F&600 ORG BIOSSEntry 3Assemble code at BIOS address
0071 H
0072 3 BIOS jump vector
0073 7 Control will be transferred to the appropriate entry point
0074 s+ from the CCP or the BDOS, both of which compute the relative
0073 3 address of the BIOS jump vector in order to locate it.
00746 3+ Transient programs can also make direct BIOS calls transferring
0077 3 control to location xxOOH, where xx is the value in location
0078 3 OO002H.
0079 3
0080 F&00 C3F9F6 JMP BOOT ;Cold boot —- entered from CP/M bootstrap loader
0081 Warm$Boot$Entry: ;3 Labelled so that the initialization code can
0082 ; put the warm boot entry address down in location
0083 3 OO0O1H and 0002H of the base page
0084 F403 C329FE JMP WBOOT sWarm boot —- entered by jumping to locaticn 00OCH.
0085 ;s Reloads the CCP which could have been
0086 ;3 overwritten by previous program in transient
0087 3 Program area
0088 F604 C342F8 JMP CONST ;Console status —- returns A = OFFH if there is a
0089 ;3 console keyboard character waiting
0090 F&09 C378F8 JMP CONIN sConsole input —— returns the next console keyboard
0091 ;3 character in A
0092 F&0OC C386F8 JMP CONOUT j;Console output —- outputs the character in C to
Q093 3 the console device
0094 F&OF C3ACFS8 JMP LIST sList output —- outputs the character in C to the
0095 3 list device
0096 F&é12 C3BCF8 JMP PUNCH sPunch output -~ outputs the character in C to the
0097 3 logical punch device
0098 F615 CICDF8 JMP READER ;Reader input -- returns the next input character from
0099 3 the logical reader device in A
0100 F&é18 C3D3FB JMP HOME sHomes the currently selected disk to track O
0101 Fé1B C32BFB JMP SELDSK jSelects the disk drive specified in register C and
0102 s returns the address of the disk parameter header
0103 F61E C358FB JMP SETTRK ;Sets the track for the next read or write cperaticn
0104 ;3 from the BC register pair
0105 Fé621 C3SEFB JMP SETSEC ;Sets the sector for the next read or write operation
0106 3 from the A register
0107 Fé24 C345FB JMP SETDMA ;Sets the direct memory address (disk read/write)
0108 ; address for the next read or write operation
0109 3y from the DE register pair
0110 Fé27 C3FBFB JMP READ sReads the previously specified track and sector from
o111 ;3 the selected disk into the DMA address
0112 Fé2A C315FC JMP WRITE iWrites the previously specified track and sector onto
0113 :; the selected disk from the DMA address
0114 Fé2D C394F8 JMP LISTST ;Returns A = OFFH if the list device can accept
0115 ;3 another cutput character
0116 Fé30 C3CDFB JMP SECTRAN jTranslates a logical sector into a physical cne
0117 3
0118 H
0119 3
0120 + The cold boot initialization code is only needed cnce.

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 164

o121 3 It can be overwritten once it has been executed.

0122 ¢ Therefore, it is "hidden" inside the main disk buffer.

0123 7 When control is transferred to the BOOT entry point, this

0124 3 code will be executed, only being overwritten by data from

0125 i the disk once the initialization procedure is complete.

01248 H

0127 3 To hide code in the buffer, the buffer is first declared

o128 ? normally. Then the value of the location counter following

0129 ? the buffer is noted. Then, using an ORG (ORiGin) statement, the

0130 3 location counter is “"wound back"” to the start of the buffer

0131 ? again and the initialization code written normally.

0132 ? At the end of this code, another ORG statement is used to

0133 } set the location counter back as it was after the buffer had

0134 3 been declared.

0135 H

0136 ;

0137 0200 = Physical$Sectors$Size EQU S12 3This is the actual sector size
0138 sfor the S 1/4" mini~floppy diskettes.
0139 sThe 8" diskettes use 128-byte sectors.
0140 sDeclare the physical disk buffer for the
0141 35 1/4" diskettes

0142 F&33 Disksbuffer: Ds Physical$Sector$Size

0143 3

0144 sSave the location counter

0145 F833 = AftersDisk$Buffer EQU $;% = Current value of location counter
0144 H

0:47 Fé33 ORG Disk$Buffer ;Wind the location counter back
0148 4

0149 Initialize$Stream: ;This stream of data is used by the

0150 sinitialize subroutine. It has the following

0151 s format:

0152 H

0153 3 DB Port number to be initialized

0154 H DB Number of bytes to be cutput

0155 H DB XX, XX, X%, xx data to be output

0156 s H

0157 H :

0158 3 DB Port number of OOH terminator

0159 ¥

0160 tNote : On this machine, the conscole port does

0161 3 not need to be initialized. This has

0162 H already been done by the PROM bootstrap code.
0163 H

0144 sInitialize the 8251A USART used for

0145 3 the list and communications devices.

0166 Fé33 ED DB Communication$Status$Port ;Port number

01467 Fé34 06 DB é sNumber of bytes

0168 F635 00 DB [d] ;Get chip ready to be programmed by

0169 Fé&36 00 DR [o] 3 sending dummy data out to it

0170 F&37 00 DB [e]

0171 F&438 42 DR 0100%0010B sReset and raise data terminal ready

0172 Fé39 6E DB 01$10$11$10B #1 stop bit, no parity, 8 bits per character
0173 ;7 baud rate divide factor of 1¢.

0174 F63A 25 DB 0010%40101B ;Raise request to send, and enable

0175 3 transmit and receive.

0176 H

0177 ;Initialize the 8253 programmable interval
0178 3 timer used to generate the baud rate for
0179 3 the 8251A USART

0180 Fé&3B DF DB Communication$Baud$Mode ;Port number

0181 F&2C 01 DB 1 sNumber of bytes

0182 F&3D Ré DB 10$11$011$0B ;Select counter 2, load LS byte first,

0183 3 Mode 3 (for baud rates), binary count.
0184 H

0185 F63E DE DB Communication$Baud$Rate sPort number

0186 F&63F 02 DB 2 sNumber of bytes

0187 F&40 3800 oW 0038H 31200 baud (based on 16X divide-down selected
o188 3 in the 8251A USART)

0189 H

0190 Fé&42 00 DB] ;Port number of O terminates

0191 H

0192 H

0193 3 Equates for the sign-on message

0194 3

0195 Q00D = CR EQU ODH s;Carriage return

Figure 6-4. (Continued)

462 The CP/M Programmer’s Handbook

0196 000A

0199 F643
0200 Fé4C
0201 Fé4E
0202 Fé4F
0203 Fé51
0204 Fé52
0205 Fé54
0206 F&55
0207 F&57
0208 Fé&5A
0209 F668
0210 F6&7F
0211 Fé9D
0212 FéBC
0213 F6DA

0215 F6F8
0217 0004

0229 F&F9

0231 F6FA

0234 F6FD
0235 F6FE
02386 F6FF
0237 F702
0238 F705
0239 F706&

0242 F707
0243 F708
0244 F709

0245 F70A
0247 F70B
02438 F70C
0249 F70F
0250 F710

0255 F713
0256 F715

0258 F718
0259 F71B

0262 F71E
0263 F71F
0264 F722

Q266 F723

43502F4D20
3030

20

3037

2F

3135

2F

3832
ODOAOA
S2696D706C
4469736B20
2020202020
2020202020
2020202020
2020202020

00

F3

2133F6

7€
B7
CA13F7
320AF7
23
4E

23
7€E
D2

00
oD
C207F7
23
C3FDFé

3E01
320300

2143F6
CD33F8

AF
320400
FR

CR40F8

LF EQU 0AH sLine feed
¥
Signon$Message: jMain sign-on message
DB “CP/M 2.2.7
DW VERSION sCurrent version number
DB P
oW MONTH sCurrent date
DR A
ju] DAY
DB At
DW YEAR
DB CR,LF,LF
DB “Simple BIOS”,CR,LF,LF
DB “Disk configuration :“,CR,LF,LF
DB N 0.35 Mbyte 5" Floppy”,CR,LF
DB ‘ 0.3S Mbyte 5" Floppy’,CR,LF,LF
DB ’ 0.24 Mbyte 8" Floppy’,CR,LF
DB < : 0.24 Mbyte 8" Floppy’,CR,LF
DB [¢]
Default$Disk EQU 0004H sDefault disk in base page
BOOT: ;Entered directly from the BIOS JMP vector.

;Control will be transferred here by the CP/M

3 bootstrap lcader.

3The initialization state of the computer system
3 will be determined by the

3 PROM bootstrap and the CP/M loader setup .

sInitialize system.
sThis routine uses the Initialize$Stream
;s declared above.

DI ;Disable interrupts to prevent any
; side effects during initialization.
LXI H,Initialize$Stream sHL -> Data stream

InitializeslLoop:
MoV AM ;Get port number
A

ORA ;I1f OOH, then initialization complete

JzZ Initialize$Complete

STA Initialize$Port ;Set up OUT instruction

INX H 3HL -> Count of number of bytes to output

MOV c/M ;Get byte count
Initialize$Next$Byte:

INX H sHL -> Next data byte

MOV AM s;Get next data byte

DB ouTt sOutput to correct port ~
Initialize$Port:

DB 0 3<{- Set above

DCR C ;Count down

JNZ Initialize$Next$Byte ;6o back if more bytes

INX H sHL -> Next port number

JMP InitializesLoop ;Go back for next port initialization

InitializesComplete:

MVI A, 00$00%$00%01B sSet IOBYTE to indicate terminal
STA I0BYTE 3 is to act as conscle
LXI H,Signon$Message sDisplay sign—on message on conscle
CALL Display$Message
H
XRA A ;Set default disk drive to A:
STA Default$Disk
El s Interrupts can now be enabled
JMP Enter$CPM ;Complete initialization and enter

;3 CP/M by going to the Conscle Command
3 Processor.

End of cold boot initialization code

Figure 6-4.

(Continued)

Chapter 6: The Basic Input/Output System

163

0272 F833 ORG AftersDisk$Buffer sReset location counter

0273 5

0274 3

0275 Display$Message: ;Displays the specified message on the console.

0276 ;0n entry, HL points to a stream of bytes to be

0277 ; output. A OOH-byte terminates the message.

0278 F833 7E Mav A, M ;Get next message byte

0279 F834 B7 ORA A ;Check if terminator

0280 F835 C8 RZ ;Yes, return to caller

0281 F836 4F MoV C,A ;Prepare for output

0282 F837 ES PUSH H ;Save message pointer

0283 F8&38 CD84F8 CALL CONQUT 3Go to main console output routine

0284 F83B El POP H sRecover message pointer

0285 F83C 23 INX H jMove to next byte of message

0286 F83D C3I33F8 JMP Display$Message ;Loop until complete message output

0287 5

0288 3

0289 Enter$CPM: ;This routine is entered either from the cold or warm

0290 3 boot code. It sets up the JMP instructions in the

0291 3 base page, and alsc sets the high-level disk driver’s

0292 3 input/output address (also known as the DMA address).

0293 H E

0294 F840 IECI MVI A, JMP sGet machine code faor JMP

0295 F&42 320000 STA 0000H ;Set up JMP at location 000OH

0296 F845 320500 STA 0005H 3 and at location 000SH

0297 H

0298 F848 2103F& LXI H,Warm$Boot$Entry sGet BIOS vector address

0299 F84B 220100 SHLD Q001H ;Put address at location 0001H

0300

Q301 FB84E 2106E8 LXI H, BDOS$Entry ;Get BDOS entry point address

0302 F851 220400 SHLD é ;Put address at location 00Q0SH

0303 H

0304 F854 018000 LXI B, 80H ;Set disk I/0 address to default

Q305 F857 CDESFBR CALL SETDMA sUse normal BIOS routine

0306 s

0307 F8SA FR EI sEnsure interrupts are enabled

0308 F8SBR 3A0400 LDA Defaults$Disk sTransfer current default disk to

0209 FS8SE 4F MoV C,A 3 Console Command Processor

0310 F8SF CR00E0 JMP CCP$Entry ;Transfer to CCP

0311 i

0312 3

0313 3 Serial input/output drivers

0314 H

0315 3 These drivers all look at the IOBYTE at location

0316 3 OO003H, which will have been set by the cold boot routine.

0317 3 The IOBYTE can be modified by the STAT utility, by

0318 3 BDOS calls, or by a program that puts a value directly

0319 3 into location OO03H.

0320 H

0321 3 All of the routines make use of a subroutine, Select$Routine,

0322 3 that takes the least significant two bits of the A register

0323 3 and uses them to transfer control to one of the routines whose

0324 3 address immediately follows the call to Select$Routine.

0325 3 A second entry point, Select$Routine$2l, uses bits

03248 35 2 and 1 to do the same job -- this saves some space

0327 3 by aveoiding an unnecessary instruction.

0328 3

0329 0003 = I0BYTE EQU 0003H 31/0 redirection byte

0330 i

0331 H

0332 1

0333 CONST: ;Get console status

0334 ;Entered directly from the BIOS JUMP vector

Q3335 3 and returns a parameter that reflects whether

0336 3 there is incoming data from the console.

0337 H

0338 sA = O0H (zero flag set) if no data

0339 3A = OFFH (zero flag clear) if data

0340 H

0341 ;CONST will be called by programs that

0342 ;3 make periodic checks to see if the computer

0343 7+ operator has pressed any keys —- for example,

0344 7 to interrupt an executing program.

0345 3

0346 FB862 CDGAFS8 CALL Get$Console$Status ;Return A = zero or nonzerco

0347 sAccording to status, then convert
Figure 6-4. (Continued)

464 The CP/M Programmer’s Handbook

0348 5 to return parameter convention.

0349 F865 B7 ORA A 1Set flags to reflect status

0350 F866 C8 RZ 3If O, no incoming data

0351 F847 3EFF MVI A, OFFH sOtherwise return A = OFFH to

0352 F869 C9 RET 3 indicate incoming data

0353 3

0354 Gets$Consoles$Status:

0355 F8&A 3A0300 LDA I0BYTE ;Get I/0 redirection byte

0356 sConsole is selected according to

0357 3 bits 1,0 of IOBYTE

0358 F86D CDDCF8 CALL Select$Routine j;Select appropriate routine

0359 ;These routines return to the caller
0360 s of Get$Console$Status.

0361 F870 F6&F8 DW TeletypeInStatus 300 <- IOBYTE bits 1,0

0362 F872 FCF8 DW TerminalInStatus 101

0363 F874 O02F9 DW CommunicationsIn$Status ;10

0364 FB876 O8F9 DW DummyInStatus 311

0365 H

0366 H

0387 H

0368 3

0369 CONIN: sGet console input character

0370 sEntered directly from the BIOS JUMP vector;
0371 5 returns the next data character from the
0372 3 Console in the A register. The most significant
0373 ;3 bit of the data character will be 0, except
0374 ;3 when "reader" (communication port) input has
Q375 3 been selected. In.this case, the full eight bits
0376 3 of data are returned to permit binary data to be
0377 3 received.

0378 H

0379 tNormally, this routine will be called after
0380 s a call to CONST has indicated that a data character
0381 3+ is ready, but whenever the CCP or the BDOS can
0382 3+ proceed no further until console input occurs,
0383 3 then CONIN will be called without a preceding
0384 3 CONST call.

0385 H

03846 F878 3A0300 LDA I0BRYTE ;Get 1/0 redirection byte

0387 F87B CDDCF8 CALL Select$Routine ;Select correct CONIN routine

o388 ;These routines return directly
0389 ;3 to CONIN“s caller.

0390 F87E 20F9 DW Teletype$Input 300 <- IOBYTE bits 1,0

0391 F880 26F9 oW Terminal$Input 301

0392 F882 2FF9 oW Communication$Input 310

0393 F884 35F9 oW Dummy$Input 311

0394 H

0395 i

0396 H

0397 CONQUT: ;Console output

0398 sEntered directly from BIOS JMP vector;

0399 s outputs the data character in the C register
0400 ;3 to the appropriate device according to bits
0401 3 1,0 of IOBYTE

0402 f

0403 F886 3IA0300 LDA I0BYTE 3Get 1/0 redirection byte

0404 F889 CDDCF8 CALL Select$Routine ;Select correct CONOUT routine

0405 ;These routines return directly
0406 ; to CONOUT’s caller.

0407 F88C 38F9 DW TeletypesOutput 300 <- IOBYTE bits 1,0

0408 F88E 3EF? DW Terminal$Output 301

0409 F890 44F% DW Communication$Output ;10

0410 FB892 4AF9 oW Dummy $0utput st

0411 H

0412 i

0413 3

0414 LISTST: sList device (output) status

0415 3;Entered directly from the BIOS JUMP vector;
0416 3 returns in A list device status that

0417 ; indicates whether the list device can accept
0418 3 another output character. The IOBYTE’s bits
0419 3 7,6 determine the physical device used.

0420 H

0421 3A = OOH (zero flag set): cannot accept data
0422 3sA = OFFH (zero flag clear): can accept data
0423 H

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 165

0424 sDigital Research’s documentation indicates

0425 7 that you can always return with A = OOH

0424 s ("Cannot accept data") if you do not wish to
0427 3 implement the LISTST routine. This is NOT TRUE.
0428 ;If you do not wish to implement the LISTST routine
0429 3 always return with A = OFFH ("Can accept data").
0430 3The LIST driver will then take care of things rather
0431 3 than potentially hanging the system.

0432 H

0433 F8%4 CD9CF8 CALL Get$List$Status ;Return A = zero or nonzero

0434 3 according to status, then convert

0435S 3 to return parameter conventicon

0436 F897 B7 ORA A sSet flags to reflect status

0437 F898 C8 RZ $If 0, cannot accept data for cutput
0438 Fg99 3EFF MVI A, OFFH sO0therwise return A = OFFH ta

0439 F89B C9 RET 3 indicate can accept data for output
0440 i

0441 GetsList$Status:

0442 F89C 3IA0R00 LDA I0RYTE sGet I/0 redirection byte

0443 F89F 07 RLC sMove bits 7,6 to 1,0

0444 FQAO 07 RLC

0445 F8A1 CDDCF8 CALL Select$Routine ;Select appropriate routine

04434 3 These routines return directly
0447 7 to GetsList$Status’s caller.
0448 F8A4 OBF9? DW TeletypeQutStatus 300 <- IORYTE bits 1,0
0449 F8AS 11IF9 ju] TerminalOutStatus ;01

0450 F8A8 17F9 DW CommunicationOutStatus 510

0451 F8AA 1DF9 DwW Dummy$0ut$Status 311

0452

0453 H

0454 H

0455 ;

0456 LIST: sList ocutput

0457 ;Entered directly from BIOS JMF vector;

0458 7 outputs the data character in the C register
0459 ;3 to the appropriate device according to bits
0440 s 7,6 of I0BYTE

0441 H

0452 FBAC 3A0300 LDA I0BYTE ;Get 1/0 redirection byte

0463 FB8AF 07 RLC iMove bits 7,6 to 1,0

0454 F8BO 07 RLC

0465 F8BR1 CDDCFS CALL Select$Routine ;Select correct LIST routine
0446 ;These routines return directly
0447 7 to LIST’s caller.

0468 F8B4 38F9 DW Teletypes$Qutput 500 <- IOBYTE bits 1,0

0469 F8BR& JEF9 DW Terminal$OQutput 301

0470 FS8BS 44F9 DW Communication$Output ;10

0471 F8BA 4AF9 DW Dummy$Qutput 311

0472

0473 H

0474 ;

0475 ;

0478 PUNCH: sPunch output

0477 ;Entered directly from BIOS UMP vectar;

0478 3 outputs the data character in the C register
0479 # to the appropriate device according to bits
0480 7 5,4 of IOBYTE

0481 :

0482 F8BC 3A0300 LDA I0BYTE ;Get I/0 redirection byte

04323 F8BF OF RRC ;Move bits 5,4 to 2,1

0484 F8CO OF RRC

0485 F8C1 OF RRC

0486 F8C2 CDDDFS8 CALL Select$Routines21 ;Select correct PUNCH routine
0487 s These routines return directly
0428 3 to PUNCH’s caller.

0439 F8CS 38F9 oW TeletypesQutput 300 <- IOBYTE bits 1,0

0490 F8C7 4AF9 DW Dummy$Qutput ;01

0491 F8CY 44F9% DW Communication$Output ;10

0492 F8CB 3EF9 oW Terminal$Qutput ;11

0493 H

0494 H

0495 3

0496 READER: ;Reader input

0497 ;Entered directly from BIOS JMP vector;

0498 # inputs the next data character from the
0499 3 reader device into the A register

Figure 6-4. (Continued)

166

The CP/M Programmer’s Handbook

0500 ;The appropriate device is selected according
0501 3 to bits 3,2 of IOBYTE.
0502 H
0503 F8CD 3A0200 LDA IOBYTE 3Get I/0 redirection byte
0504 F8DO OF RRC sMove bits 3,2 to 2,1
0505 F8D1 CDDDF8 CALL Select$Routine$21’ ;Select correct READER routine
0506 ;These routines return directly
0507 5 to READER‘s caller.
0508 F8D4 38F9 oW Teletype$Output 300 <- IOBYTE bits 1,0
0509 F8Dé 4AF9 oW Dummy$Output 301
0510 F8D8 44F9 oW Communication$Qutput ;10
0511 F8DA 3EFY oW TerminalsOutput 311
0512
0513 H
0514 H
0515 3
0516 Select$Routine: sTransfers control to a specified address
0517 ; following its calling address according to
0518 ;3 the value of bits 1,0 in A.
0519 F8DC 07 RLC 3Shift select values into bits 2,1
0520 3 in order to do word arithmetic
0521 3
0522 Select$Routines$21: sEntry point to select routine selection bits
0523 3 are already in bits 2,1
0524 FSDD E&06 ANI 0000%0110R sIsolate just bits 2,1
0525 F8DF E3 XTHL sHL -> first word of addresses after
0526 3 CALL instruction
0527 FS8EO SF MoV E,A 3Add on selection value to address table
0528 F8E1 1400 MVI D,0 ; base
0529 F8E3 19 DAD D sHL -> selected routine address
0530 ;Get routine address into HL
0531 FB8E4 7E MoV AM ;LS byte
0532 F8ES 23 INX H sHL —> MS byte
0533 F8ES &6 MOV H.M 3MS byte
0534 FB8E7 &F MOV L,A sHL -> routine
0535 FSES E3 XTHL ;Top of stack -» routine
0536 F8E? C9 RET sTransfer to selected routine
0537 ;
0538 3
0539 ;
0540 3 Input/Output Equates
0541 ¥
0542 OOED = Teletype$StatussPort EQU OEDH
0543 OCEC = Teletype$DatasPort EQU OECH
0544 Q001 = Teletype$Output$Ready EQU 0000$0001B ;Status mask
0545 0002 = Teletype$Input$Ready EQU 0000$0010B ;Status mask
0544 3
0547 0001 = Terminal$Status$Port EQU O1H
0548 0002 = Terminal$Data$Port EQU 02H
0549 0001 = Terminal$Qutput$Ready EQU 000040001 R ;Status mask
0550 0002 = Terminal$Input$Ready EQU 0000%$0010R ;Status mask
0551 3
0552 QOED = Communication$Status$Port EQU OEDH
0553 OQQEC = Communication$DatasPort EQU QECH
0554 0001 = Communication$Output$Ready EQU 0000%0001R ;Status mask
Q555 0002 = Communication$Input$Ready EQU 0000%$0010R ;Status mask
0556 i
0557 O0ODF = Communication$Baud$Mode EQU ODFH sMode Select
Q558 OCDE = Communication$Baud$Rate EQU ODEH ;Rate Select
0559 H
0560 ;
0561 3 Serial device control tables
0562 3
0543 3 In order to reduce the amount of executable code,
0564 3 the same low-level driver code is used for all serial ports.
05635 3 On entry to the low-level driver, HL points to the
0566 3 appropriate control table.
0567 3
0568 TeletypesTable:
0569 FBEA ED D Teletype$Status$Port
0570 FS8EB EC DB Teletypes$Data$Port
0571 F8EC 01 DB Teletypes$Output $Ready
0572 F8ED 02 DB Teletype$Input$Ready
0573 3
0574 Terminals$Table:
0575 F8EE 01 DB Terminal$Status$Port
Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

167

0576 FBEF 02 DB Terminal$Data$Port

0577 FBFO 01 DB Terminal$Output$Ready

0578 F8F1 02 DB Terminal$Input$Ready

0579 3

0580 Communications$Table:

0581 F8F2 ED Communication$Statuss$Port

0582 F8F3 EC DB Communication$DatasPort

0583 F8F4 01 DB Communication$Output$Ready

0584 F8FS5S 02 DB Communication$Input$Ready

0585 |

0586 H

0587 H

0588 ;

0589 3 The following routines are "called" by Select$Routine

0590 3 to perform the low-level input/output

0591 i

0592 TeletypeInsStatus:

0593 F8Fé 21EAFS LXI H,Teletype$Table 3HL -> control table

0594 F8F9 C34BF9 JMP Input¢Status ;Note use of JMP. Input$Status

Q595 3 will execute the RETurn.

0596 3

0597 TerminalInStatus:

0598 F8FC 21EEF8 LXI H, Terminal$Table sHL => control table

0599 F8FF C34BF9 JMP Inputs$Status ;Note use of JMP. Inputs$Status

0400 3 will execute the RETurn.

0601 1

0602 CommunicationInStatus:

04603 F902 21F2F8 LXI H,Communication$Table sHL -> control table

0404 F905 C34BF9 JMP Inputs$Status sNote use of JUMP. Input$Status

0605 5 will execute the RETurn.

0606 ¥

0607 DummyInStatus: sDummy status, always returns

0608 F908 3EFF MVI A, OFFH ; indicafing incoming data is ready

08609 F90A C9 RET

0610 H

0611 3

0612 TeletypesOut$Status:

0413 F90B 21EAFS LXI H,Teletypes$Table sHL => control table

0614 F9P0E C356F9 JMP Qutputs$Status ;Note use of JMP. Output$Status

0615 3 will execute the RETurn.

0616 3

0817 Terminal$QutsStatus:

0618 F911 21EEFS LXI H, Terminal$Table sHL -> control table

0619 F914 CI356F9 JMP Qutput$Status ;Note use of JMP. Output$Status

0620 3 will execute the RETurn.

0621 1

0622 Communication$QutéStatus:

04623 F917 21F2F8 LXI H,Communication$Table sHL => control table

0624 F91A C356F9 JMP Output$Status sNote use of JMP. Output$Status

0625 3 will execute the RETurn.

0626 3

0627 Dummy$Qut $Status: ;Dummy status, always returns

0628 F91D 3EFF MVI A, OFFH 3 indicating ready for output

0629 F91F C9 RET

0630 H

0631 3

0632 Teletype$lInput:

0633 F920 21EAF8 LXI H,Teletype$Table $HL -> control table

0434 F923 CI8OF9 JMP Input$Data ;Note use of JMP. Input$Data

0435 3 will execute the RETurn.

0636 i

0637 Terminal$Input:

0638 F926 21EEFS8 LXI H, Terminal$Table sHL => control table

0639 5 will execute the RETurn.

0640 F929 CD60OF9 CALL InputsData ;#% Special case ¥

0641 s Input$Data will return here

0642 F92C E67F ANI 7FH 3 50 that parity bit can be set 0

0643 F92E C9 RET

0644 3

0645 Communication$Input:

0646 F92F 21F2F8 LXI H,Communication$Table sHL => control table

0647 F932 C360F9 JMP Input$Data sNote use of JUMP. Inputs$Data

0648 3 will execute the RETurn.

0649 3

0650 Dummy$Input: sDummy input, always returns

0651 F935 3E1A MVI A, 1AH 3 indicating CP/M end of file
Figure 6-4. (Continued)

168 The CP/M Programmer’s Handbook
0652 F937 C9 RET
0653 i
0454 3
0655 ;
0656 5
0457 Teletype$Output:
0658 F938 21EAFS8 LXI H,Teletypes$Table sHL => control table
0859 F93B CI70F9 JMP Outputs$Data sNote use of JUMP. Output$Data
0640 5 will execute the RETurn.
06861 3
0662 Terminal$Output:
0663 F93E 21EEFS LXI H,Terminal$Table sHL => control table
0484 3 will execute the RETurn.
0665 F941 C370F9 JMP QutputsData sNote use of JUMP. Outputs$Data
0666 3 will execute the RETurn.
0667 3
0648 Communication$Output:
0669 F944 21F2F8 LXI H,Communication$Table sHL -> control table
04670 F947 CI70F9 JMP Output$Data sNote use of JUMP. OQutput$Data
0671 3 will execute the RETurn.
0672 :
0673 Dummy$Output: sDummy output, always discards
0674 F94A C9 RET ;3 the output character
0875 H
0676 H
0677 ;
0678 H
0679 3 These are the general purpose low-level drivers.
0680 3 On entry, HL points to the appropriate control table.
0481 3 For output, the C register contains the data to be output.
0682 H
0683 Inputs$Status: ;Return with A = OOH if no incoming data,
0484 3 otherwise A = nonzero.
0685 F94B 7E MOV AM ;Get status port
0686 F94C 3250F9 STA InputéStatussPart s#xx Self-modifying code #sx
0687 F94F DB DB IN sInput to A from correct status port
0688 i
0689 Input$StatussPort:
0690 F950 00 DB 00 ;<- Set above
0691 F951 23 INX H iMove HL to point to input data mask
0692 F952 23 INX H
0693 F933 23 INX H
0694 F954 A& ANA M sMask with input status
0695 F955 C9 RET
0696 H
0697 3
0698 OutputsStatus: sReturn with A = 00H if not ready for cutput
0699 ; otherwise A = nonzero.
0700 F95é 7E MoV AM ;Get status port
0701 F957 32S5BF9 STA OutputeStatussPort %% Self-modifying code x=x
0702 F95A DB DB IN s Input to A from correct status port
0703 3
0704 OQutput$StatussPort:
0705 F9SB 00 DB 00 <~ Set abave
0704 F95C 23 INX H sMove HL to point to output data mask
0707 F9SD 23 INX H
0708 F9SE Aé ANA M sMask with output status
0709 F9SF C9 RET
0710 :
0711 3
0712 InputsData: sReturn with next data character in A.
0713 sWait for status routine to indicate
0714 3 incoming data.
0715 F940 ES PUSH H ;Save control table pointer
0716 F961 CDABF9 CALL Inputs$Status 3Get input status in zerc flag
0717 F9644 EL POP H sRecover control table pointer
0718 F945 CALQOF9 Jz InputsData sWait until incoming data
0719 F968 23 INX H sHL -> data port
0720 F949 7E MOV , ;Get data port
0721 F96A 326EF9 STA Input$DatasPort ;xxx Self-modifying code *x*
0722 F94D DB DB IN tInput to A from correct data port
0723 3
0724 Input$DatasPort:
0725 F94E 00 DB o 3<{- Set above
0726 F94F C9 RET
0727 i
Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

169

0728 3

0729 QutputsData: ;Output the data character in the C register.

0730 sWait for status routine to indicate device

0731 3 ready to accept another character

0732 F970 ES PUSH H 3Save control table pointer

0733 F971 CDS&F® CALL OutputsStatus 3Get output status in zero flag

0734 F974 E1N POP H sRecover control table pointer

0735 F97S5 CA70F9 Jz OutputsData sWait until ready for output

07386 F978 23 INX H sHL -> output port

0737 F979 7€ MOV AM ;Get output port

0738 F97A 327FF9 STA Qutput$DatasPort suxx Self-modifying code xxx

0739 F97D 79 MOV A,C sGet data character to be output

0740 F97E D3 DB ourt ;0utput data to correct port

0741 3

0742 Output$DatasPort:

0743 F97F 00 DB o 3<- Set above

0744 F980 C9 RET

0745 H

0746 H

0747 3 High level diskette drivers

0748 H

0749 3 These drivers perform the following functions:

0750 H

0751 3 SELDSK Select a specified disk and return the address of

07352 H the appropriate disk parameter header

0753 ¢ SETTRK Set the track number for the next read or write

0754 ¢ SETSEC Set the sector number for the next read or write

0755 ¢ SETDMA Set the DMA (read/write) address for the next read or write.

0756 ; SECTRAN Translate a logical sector number into a physical

0757 5 HOME Set the track to 0 so that the next read or write will

0758 H be on Track 0

0759 ?

0760 3 In addition, the high-level drivers are responsible for making

0761 ? the 5 1/4" floppy diskettes that use a S512-byte sector appear

0782 5 to CP/M as though they used a 128-byte sector. They do this

0763 3 by using what is called blocking/deblocking code,

0764 ; described in more detail later in this listing,

0765 3 Just prior to the code itself.

0766 H

0767 H

0768 3

0769 3 Disk parameter tables

Q0770 H

0771 3 As discussed in Chapter 3, these describe the physical

0772 3 characteristics of the disk drives® In this example BIOS,

0773 3 there are two types of disk drives; standard single-sided,

0774 ¢ single-density 8", and double-sided, double-density S 1/4"

0775 3 diskettes.

0776 i

0777 3 The standard 8" diskettes do not need to use the blocking/

0778 3 deblocking code, but the S 1/4" drives do. Therefore an additicnal

0779 3 byte has been prefixed to the disk parameter black to

0780 3 tell the disk drivers each logical disk’s physical

0781 ;3 diskette type, and whether or not it needs deblocking.

0782 H

0783 H

0784 3 Disk definition tables

0785 H

0786 3 These consist of disk parameter headers, with one entry

0787 ¢ pPer logical disk driver, and disk parameter blocks, with

0788 3 either one parameter block per logical disk or the same

0789 5 pParameter block for several logical disks.

0790 H

0791 3

0792 Disk$Parameters$Headers: sDescribed in Chapter 3

0793 H

0794 sLogical Disk A: (5 1/4" Diskette)

0795 F981 &BFB oW Floppy$SeSkewtable 35 1/4" skew table

0796 F983 0000000000 DW 0,0,0 sReserved for CFP/M

0797 F989 CIF9 DW Directorys$Buffer

0798 F98B 42FA DW FloppySParameters$Block

0799 F98D 61FA DW Disk$AsWorkarea

0800 F98F CIFA bW DiskAAllocation$Vector

0801 H

0802 sLogical Disk B: (5 1/4" Diskette)

0803 F991 &BFB oW FloppySSkewtable ;Shares same skew table as A:
Figure 6-4. (Continued)

170 The CP/M Programmer’s Handbook

0804 F993 0000000000 DW 0,0,0 sReserved for CP/M
0805 F999 CIF? DW Directory$Buffer ;Share same buffer as A:
0806 F99B 42FA bW FloppySParameter$Block ;Same DPB as A:
0807 F99D B1FA DW DiskBWorkarea ;Private work area
0808 F99F D7FA oW DiskBAllocationsVector ;Private allocation vector
0809 H
0810 sLogical Disk C: (8" Floppy)
0811 F9A1 B3FB DW Floppy$8¢Skewtable ;8" skew table
0812 F9?A3 0000000000 DW 0,0,0 ;Reserved for CP/M
0813 F9A9 CIF9 DW Directory$Buffer ;Share same buffer as A:
0814 F9AB S2FA oW Floppy8Parameter$Block
0815 F9AD A1FA DW Disk$CsWorkarea sPrivate work area
0816 F9AF EDFA DW DiskCAllocation$Vector sPrivate allocation vector
0817 ;
0818 sLogical Disk D: (8" Floppy)
0819 F9B1 &BFB oW FloppySSkewtable sShares same skew table as A:
0820 F9B3 0000000000 DW 0,0,0 ;Reserved for CP/M
0821 F9B9 CIF9 W Directory$Buffer ;Share same buffer as A:
0822 F9BB S2FA W Floppy$8¢Parameter$Block ;Same DPB as C:
0823 F9BD BIFA oW DiskDWorkarea sPrivate work area
0824 F9BF OCFB DW DiskDAllocation$Vector sPrivate allocation vector
0825
0826 H
0827 §
0828 F9C1 Directory$Buffer: DS 128
0829 H
0830 H
0832 i
0833 s Disk Types
0834 H
0835 0001 = Floppy$d EQU 1 3S 1/4" mini floppy
0836 0002 = Floppy$8 EQU 2 ;8" floppy (S3 SIN
0837 3
0838 3 Blocking/deblocking indicator
0839 3
0840 0080 = Need$Deblocking EQU 1000$0000R ;Sector size > 128 bytes
0841 5
0842 ;
0843 3 Disk parameter blocks
0844 i
0845 3 5 1/4" mini floepy
0844 ;
0847 sExtra byte prefixed to indicate
0848 ; disk type and blocking required
0849 FA41 81 DB Floppy$S + Need$Deblocking
0850 FloppySParameter$Block:
0851 FA42 4800 7] 72 ;128-byte sectors per track
0852 FA44 04 DB 4 ;Block shift
0853 FA4S OF DB 15 ;Block mask
0854 FA46 01 DB 1 sExtent mask
0855 FA47 AEQQ oW 174 sMaximum allocation block number
0856 FA49 7FQ0 ju] 127 ;Number of directory entries -1
Q0857 FA4R CO DB 1100$0000B ;Bit map for reserving 1 alloc. block
0858 FA4C 00 DB 0000$0000B 3 for file directory
0859 FA4D 2000 W 32 sDisk changed work area size
0860 FA4F 0100 DW 1 sNumber of tracks before directory
0841 3
0862 H
0843 3 Standard 8" Floppy
0864 ;Extra byte prefixed to DPR for
0845 3 this version of the BIOS
0846 FAS1 02 DB Floppy$8 sIndicates disk type and the fact
0847 ; that no deblocking is required
0848 Floppy$8¢Parameter$Block:
08469 FAS2 1A00 W 26 ;Sectors per track
0870 FAS4 03 DB 3 ;Block shift
0871 FASS 07 DB 7 sBlock mask
Q872 FASé 00 DB (o] sExtent mask
0873 FAS7 F200 DW 242 sMaximum allocation block number
0874 FAS9 3F00 oW &3 sNumber of directory entries - 1
0875 FASB CO DB 1100$0000B 3;Bit map for reserving 2 alloc. blocks
0876 FASC 00 DB 0000%$0000R 3 for file directory
0877 FASD 1000) 16 ;Disk changed work area size
0878 FASF 0200 oW 2 3sNumber of tracks before directeory
0879 H
0880 3
Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

174

0881 3 Disk work areas
0882 H
0883 5 These are used by the BDOS to detect any unexpected
osgsq 3 change of diskettes. The BDOS will automatically set
0885 3 such a changed diskette to read-only status.
0884 3
0887 FASL Disk$AsWorkarea: ns 32 s A:
0888 FA81 DiskBWorkarea: DS 32 3 B:
0889 FAAL DiskCsWorkarea: DS 146 s C:
0890 FAB1 DiskDWorkarea: Ds 1é s Dz
0891 3
0892 H
0893 5 Disk allocation vectors
0894 5
089S 3 These are used by the BDOS to maintain a bit map of
0896 3 which allocation blocks are used and which are free.
0897 5 One byte is used for eight allocation blocks, hence the
0898 3 expression of the form (allocation blocks/8)+1.
0899 H
0900 FAC1 DiskAsAllocation$Vector DS (174/8)+1 3 A
0901 FAD7 DiskBRAllocation$Vector ns (174/8)+1 3 B:
0902 i
0903 FAED DiskCAllocation$Vector ns (242/8)+1 5 C:
0904 FBOC DiskDAllocationsVector DS (242/8)+1 y D:
09035 H
0906 5
0907 0004 = NumberofslLogical$Disks EQU 4
0908 H
0909 3
0910 SELDSK: ;Select disk in C
0911 sC = 0 for drive A, 1 for B, etc.
0912 sReturn the address of the appropriate
0913 3 disk parameter header in HL, or 0000H
0914 ;3 if the selected disk does not exist.
0915 H
0916 FB2B 210000 LXI H,0 jAssume an errvor
0917 FB2E 79 MQV A, C sCheck if requested disk valid
0918 FB2F FEO4 CPI Numbers$ofélLogical$Disks
0919 FB31 DO RNC sReturn if > maximum number of disks
0920 H
0921 FB32 32EAFB STA Selecteds$Disk ;Save selected disk number
o922 3Set up to return DPH address
0923 FB3S &F MOV L,A sMake disk into word value
0924 FB3& 2600 MVI H, 0
0925 sCompute offset down disk parameter
0926 ; header table by multiplying by
0927 3 parameter header length (16 bytes)
0928 FB38 29 DAD H 7 %2
0929 FB39 29 DAD H 3 ®4
0930 FB3A 29 DAD H 3 ®8
0931 FB3B 29 DAD H 3 %16
0932 FR3IC 1181F9 LXI D,Disk$Parameters$Headers ;Get base address
0933 FB3F 19 DAD D sDE -> Appropriate DPH
0934 FBA4O ES PUSH H ;Save DPH address
0935 H
0936 sAccess disk parameter block
0937 3 to extract special prefix byte that
0938 3 identifies disk type and whether
0939 3 deblocking is required
0940 H
0941 FB41 110A00 LXI D, 10 3Get DPB pointer offset in DPH
0942 FB44 19 DAD D sDE ~> DPB address in DFH
0943 FBAS SE MoV E,M ;Get DPB address in DE
0944 FB46 23 INX H
0945 FB47 Sé Mav D,M
0944 FB48 EB XCHG sDE -> DFR
0947 FB49 2B DCX H sDE ~-> prefix byte
0948 FB4A 7E MoV AM ;Get prefix byte
0949 FB4B E&OF ANI OFH slsolate disk type
0950 FB4D 32FAFB STA Disk$Type ;Save for use in low-level driver
0951 FBSO 7E MoV A M ;Get anocther copy of prefix byte
0952 FBS1 Eé80 ANI NeedsDeblocking sIsolate deblocking flag
0953 FBS3 32F9FB STA Deblocking$Required ;Save for use in low-level driver
0954 FBS6 E1l POP H sRecaver DPH pointer
0955 FBS7 C9 RET
0956 B
Figure 6-4. (Continued)

172 The CP/M Programmer’s Handbook

0957 H

0958 3 Set logical track for next read or write

0959 [

0960 SETTRK:

0961 FBS8 60 MOV H,B ;Selected track in BC on entry
0962 FBS9 69 MoV L,C

0963 FBSA 22EBFB SHLD Selected$Track ;Save for low-level driver

09464 FBSD C9 RET

0965 H

0966 H

0967 ;3 Set logical sector for next read or write

0948 H

0969 3

0970 SETSEC: sLogical sector in C on entry
0971 FBSE 79 MoV A, C

0972 FBSF 32EDFB STA Selected$Sector ;Save for low-level driver

0973 FBé2 C9 RET

0974 H

0975 H

0976 s Set disk DMA (input/output) address for next read or write
0977 3

0978 FB&3 0000 DMA$Address: oW o sDMA address

0979 3

0980 SETDMA: sAddress in BC on entry

0981 FB&S 69 MoV L,c sMove to HL to save

0982 FB&6 60 MOV H,B

0983 FB&7 2263FR SHLD DMAs$Address sSave for low-level driver

0984 FB&A C9 RET

0985 H

0986 H

0987 3 Translate logical sector number to physical

0988 H

0989 3 Sector translation tables

0990 3 These tables are indexed using the logical sector number,
0991 3 and contain the corresponding physical sector number.
0992 3

0993 FloppySSkewtable: sEach physical sector contains four
0994 ;3 128-byte sectors.

0995 3 Physical 128b Logiral 128b Physical S12-byte
0996 FB&B 00010203 DB 00,01,02,03 100,01,02,03 o)

0997 FB6F 10111213 DB 16,17,18,19 104,05, 06,07 4)

0998 FB73 20212223 DB 32,33,34,35 308,09,10,11 8)

0999 FB77 OCODOEOF DB 12,13,14,15 $12,13,14,15 3) Head
1000 FB7B 1CIDIEIF DB 28,29, 30,31 316,17,18,19 7) o
1001 FB7F 08090A0B DB 08,09,10, 11 $20,21,22,23 2)

1002 FB83 18191A1B DB 24,25,26,27 $24,295,26,27 &)

1003 FB87 04050607 DB 04,05, 06,07 328,29,30,31 1)

1004 FBSB 14151617 DB 20,21,22,23 $32,33,34,35 S)

1005 $

1006 FBS8F 24252627 DB 36,37,38, 39 3 36,37,38,39 o 1

1007 FB93 34353437 DB 52,53,54,55 0,41,42,43 4]

1008 FB97 44454447 DB é8,69,70,71 144,45,46,47 8 1

1009 FB9B 30313233 DB 48, 49,50, 51 148, 49,50,51 3 1 Head
1010 FBYF 40414243 DB 64,65,66,67 352,53, 54,55 7 11
1011 FBA3 2C2D2E2F DB 44,45,46,47 356,57,58,59 2 1

1012 FBA7 3C3D3E3F DB 60,61,62,63 360,61,62,63 é& 1

1013 FBAB 28292A2B DB 40,41,42,43 364,65,66,67 1 1

1014 FBAF 38393A3B DB 56,57,58,59 368,69,70,71 S 1

1015 3

1016 3

1017 Floppy8Skewtable: sStandard 8" Driver

1018 3 01,02, 03, 04, 05, 06,07,08,09, 10 Logical sectors
1019 FBB3 01070D1319 DB 01,07,13,19,25,05,11,17,23,03 ;Physical sectors
1020 H

1021 3 11,12,13,14,15,16,17,18,19, 20 Logical sectors
1022 FBBD 090F150208 DB 09,15,21,02,08, 14,20,26,06,12 sPhysical sectors
1023 H

1024 3 21,22, 23,24,25,26 Logical sectors

1025 FBC7 1218040A10 DB 18, 24,04,10,16,22 sPhysical sectors

1026

1027 3

1028 SECTRAN: ;Translate logical sector into physical
1029 30n entry, BC = logical sector number
1020 3 DE -> appropriate skew table
1031 :

1032 son exit, HL = physical sector number

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

1033 FBCD ER XCHG sHL —> skew table base

1034 FBCE 09 DAD B 3Add on logical sector number

1035 FRCF &E MoV LM ;Get physical sector number

10346 FBDO 2800 MVI H,0 sMake into a 16-bit value

1037 FBD2 C9 RET

1038 ;

1039 H

1040 H

1041 HOME : sHome the selected logical disk to track 0.

1042 sBefore doing this, a check must be made to see

1043 s if the physical disk buffer has informaticn

1044 s that must be written out. This is indicated by

1045 3 a flag, Must$WritesBuffer, set in the

1046 ; deblocking code.

1047 s)

1048 FRD3I 3AE9FR LDA Must$WritesBuffer ;Check if physical buffer must

1049 FBD& B7 ORA A 3 be written out to disk

1050 FBD7 C2DDFB JINZ HOMENoWrite

1051 FRDA 32ES8FR STA DatasIn$Disk$Buffer sNo, so indicate that buffer

1052 3 is now unocccupied.

1053 HOME$NosWrite:

1054 FBDD QEOO MVI c,0 ;Set to track 0 (logically --

1055 FBDF CDS8FB CALL SETTRK 3 no actual disk operation occurs)

1056 FBE2 C9 RET

1057

1058 H

1059 ;s Data written to or read from the mini-floppy drive is transferred

1060 ;s via a physical buffer that is actually 512 bytes long (it was

1061 ;s declared at the front of the BIOS and holds the "cne-time™

iggg ;3 initialization code used for the cold boct procedure).

1064 3 The blocking/deblocking code attempts to minimize the amount

10465 3 of actual disk 1/0 by storing the disk, track, and physical sector

1066 3 currently residing in the Physical Buffer. If a read request is for

1067 3 a 128-byte CP/M "sector" that already is in the physical buffer,

1068 3 then no disk access occurs.

1069 H

1070 ;

1071 0800 = Allocation$Block$Size EQU 2048

1072 0012 = PhysicalSecPer$Track EQU 13

1073 0004 = CPMSecPer$Physical EQU Physical$Sector$Size/128

1074 0048 = CPMSecPersTrack EQU CPMSecPer$Physical®*Physical$Sec$Pers$Track

1075 0003 = Sector$Mask EQU CPM$SecPerPhysical-1

1076 0002 = SectorBitShift EQU 2 ;LOG2(CPMSecPer$Physical)

1077 H

1078 ;These are the values handed over by the BDOS

1079 3 when it calls the WRITE operation.

1080 3 The allocated/unallocated indicates whether the

1081 5 BDOS is set to write to an unallocated allocaticn

1082 ; block (it only indicates this for the first

1083 3 128-byte sector write) or to an allocaticon block

1084 3 that has already been allocated to a file.

1085 sThe BDOS also indicates if it is set to write to

1084 3 the file directory.

1087 3

1088 0000 = WritesAllocated EQU o

1089 0001 = Write$Directory EQU 1

1090 0002 = WritesUnallocated EQU 2

1091 3

1092 FBE3 00 WritesType: DB o] ;Contains the type of write

1093 3 indicated by the BDOZ.

1094 H

1099 3

1098 In$Buf fer$DkTrkSec: ;Variables for physical sectar

1097 3 currently in Disk$Buffer in memory

1098 FBE4 00 In$Buffer$Disk: DB o] ; These are moved and compared

1099 FBES 0000 InsBuffer$Track: oW J 3 as a group, so do not alter

1100 FBE7 00 In$Buffer$Sector: DR] 3 these lines.

1101 ;

1102 FBES Q0 DatasIn$Disk$Buffer: DB o ;When nonzero, the disk buffer has

1103 ; data from the disk in it.

1104 FBE? 00 Must$WritesBuffer: DB [¢] sNonzero when data has been

1105 s written into Disk$Buffer but

1106 3 not yet written out to disk

1107 3

1108 Selected$DksTi-kéSec: sVariables for selected disk, track, and sectar
Figure 6-4. (Continued)

173

174

The CP/M Programmer’s Handbook

1109 ;3 (Selected by SELDSK, SETTRK,and SETSEC)
1110 FBEA 00 Selected$Disk: DB 3 These are moved and
1111 FBEB 0000 Selected$Track: DW [; compared as a group so
1112 FBED 00 Selected$Sector: ju] o ;3 do not alter arder.
1113
1114 FBEE 00 Selected$Physical$Sector: DB o ;Selected physical sector derived
1115 3 from selected (CP/M) sector by
1116 ;3 shifting it right the number of
1117 3 of bits specified by
1118 ;3 SectorBitShift
1119 3
1120 FBEF 00 Selected$Disk$Type: DB] ;Set by SELDSK to indicate either
1121 s 8" or § 1/4" floppy
1122 FBFO 00 Selected$Disk$Deblock: DB o ;Set by SELDSK to indicate whether
1123 s deblocking is required.
1124
1125
1128 UnallocatedDkTrk$Sec: sParameters for writing to a previcusly
1127 7 unallocated allocation block.
1128 FBF1 00 Unallocated$Disk: DB o 3 These are moved and compared
1129 FBF2 0000 Unallocated$Track: DW [¢] 5 as a group so do not alter
1130 FBF4 00 Unallocateds$Sector: DB (o] ;3 these lines.
1131
1132 FBFS 00 Unallocated$Record$Count: DB o] sNumber of unallocated "recards®
1133 7 in current previously unallocated
1134 3 allocation block.
1135
1136 FBF& 00 Disk$Error$Flag: DB [¢] sNonzero to indicate an error
1137 3 that could not be recovered
1138 3 by the disk drivers. BDOS will
1139 5 output a "bad sector" message.
1140 H
1141 sFlags used inside the deblocking code
1142
1143 FBF7 00 Must$Prereads$Sector: DB o] sNonzero if a physical sector must
1144 ;7 be read into the disk buffer
1145 ; either before a write to an
1146 3 allocated block can occur, aor
1147 3 for a normal CP/M 128-byte
1148 3 sector read
1149 FBF8 00 Read$Operation: DB o] sNonzero when a CP/M 128-byte
1150 3 sector is to be read
1151 FBF9 00 Deblocking$Required: DB (o] sNonzero when the selected disk
1152 3 needs deblocking (set in SELDSK)
1153 FBFA 00 Disk&Type: DB (o] ;Indicates 8" or § 1/4" floppy
1154 3 selected (set in SELDSK).
1155 H
1156 H
1157 3 Read in the 128-byte CP/M sector specified by previous calls
1158 7 to select disk and to set track and sector. The sector will be read
1159 3 into the address specified in the previous call to set DMA address.
1160 H
1161 3 If reading from a disk drive using sectors larger than 128 bytes,
1142 3 deblocking code will be used to "unpack" a 128-byte sector from
1143 3 the physical sector.
1164 READ:
11465 FBFR 3AF9FB LDA Deblocking$Required sCheck if deblocking needed
1166 FBFE B7 ORA A s(flag was set in SELDSK call)
1167 FBFF CAS2FD JZ ReadNoDeblock 3sNo, use normal nondeblacked
1148
11469 3 The deblocking algorithm used is such
1170 s that a read operation can be viewed
1171 3 up until the actual data transfer as
1172 3 though it was the first write to an
1173 3 unallocated allocation block.
1174 FCO2 AF XRA A ;Set the record count to O
1175 FCOR 32FSFB STA Unallocated$Record$Count 3 for first "write"
1176 FCO06 3C INR A sIndicate that it is really a read
1177 FCO07 32F8FB STA Read#$Operation 3 that is to be performed
1178 FCOA 32F7FB STA Must$Preread$Sector s and force a preread of the sector
1179 7 to get it into the disk buffer
1180 FCOD 3E02 MVI A,WritesUnallocated ;Fake deblocking code into respanding
1181 FCOF R2E3FB STA WritesType 5 as if this is the first write to an
1182 3 unallocated allocation block.
1183 FC12 C364EFC JMP Perform$Read$Write ;Use common code to execute read

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

175

1184 H
1185 3 Write a 128-byte sector from the current DMA address to
1186 3 the previously selected disk, track, and sector.
1187 H
1188 3 On arrival here, the BDOS will have set register C to indicate
1189 3 whether this write operation is to an already allocated allocation
1190 3 block (which means a preread of the sector may be needed),
1191 3 to the directory (in which case the data will be written to the
1192 3 disk immediately), or to the first 128-byte sector of a previously
1193 3 unallocated allocation block (in which case no preread is required).
1194 H
1195 5 Only writes to the directory take place immediately. In all other
1196 3 cases, the data will be moved from the DMA address into the disk
1197 s buffer, and only written out when circumstances force the
1198 5 transfer. The number of physical disk operations can therefore
1199 3 be reduced considerably.
1200 H
1201 WRITE: :
1202 FC15 3AF9FR LDA Deblocking$Required sCheck if deblocking is required
1203 FCi18 B7 ORA A 3(flag set in SELDSK call)
1204 FC19 CAA4DFD Jz Write$NosDeblock
1205
1206 FCIC AF XRA A sIndicate that a write operaticn
1207 FC1D 32FSFB. STA Read$Operation 3 is required (i.e. NOT a read)
1208 FC20 79 Mav A,C ;Save the BDOS write type
1209 FC21 32E3FB STA WritesType
1210 FC24 FEOQ2 CPI WritesUnallocated ;Check if the first write to an
1211 3 unallocated allocation block
1212 FC2é C237FC JNZ Check$Unallocated$Block ;No, check if in the middle of
1213 3 writing to an unallocated blcock
1214 ;Yes, first write to unallocated
1215 3 allocation block —-- initialize
1218 3 variables associated with
1217 3 unallocated writes.
1218 FC29 3E10 MVI A,Allccation$Block$Size/128 ;Get number of 128-byte
1219 3 sectors and
1220 FC2R 32FSFR STA Unallocated$Record$Count 3 set up a count.
1221 3
1222 FC2E 21EAFB LXI H,SelectedDkTrk$Sec ;Copy disk, track, and sector
1223 FC31 11FIFR LXI D,UnallocatedsDkTrkSec 3 into unallocated variables
1224 FC34 CD3SFD CALL MoveDkTrk$Sec
1225 H
1226 3 Check if this is not the first write to an unallocated
1227 ;3 allocation block -- if it is, the unallocated record count
1228 3 has just been set to the number of 128-byte sectors in the
1229 3 allocation block.
1230 3
1231 Check$Unallocated$Block:
1232 FC37 3AFSFB LDA Unallocated$Record$Count
1233 FC3A B7 ORA A
1234 FC3B CAGGFC Jz Request$Preread 3Na, this is a write to an
1235 3 allocated block
1236 1Yes, this is a write to an
1237 3 unallocated block
1238 FC3E 3D DCR A sCount down on number of 128-byte sectors
1239 5 left unwritten to in allocation block
1240 FC3F 32FSFB STA Unalleocated$Record$Count 5 and store back new value.
1241
1242 FC42 21EAFB LXI H,SelectedDkTrk$Sec sCheck if the selected disk, track,
1243 FCAS 11FIFB LXI D,UnallocatedDkTrkéSec; and sector are the same as for
1244 FC48 CD29FD CALL ComparesDkTrk$Sec 3 those in the unallocated block.
1245 FC4BR C264FC JINZ Request$Preread sNo, a preread is required
1244 ;Yes, no preread is needed.
1247 sNow is a convenient time to
1248 3 update the current sector and see
1249 3 if the track also needs updating.
1250 H
1251 sBy design, CompareDkTrk$Sec
1252 5 returns with
1253 3 DE -> Unallocated$Sector
1254 FCAE EB XCHG 3 HL -> Unallocated$Sector
1255 FCAF 34 INR M sUpdate Unallocated$Sector
1256 FCS0 7E MOV A M sCheck if sector now > maximum
1257 FCS1 FEA4S8 CPI CPM#$SecsPersTrack 3 on a track
1258 FCS3 DASFFC JC No$Track#$Change sNo (A < M)
1259 s Yes,
Figure 6-4. (Continued)

176

The CP/M Programmer’s Handbook

1240 FCS6 3600 MVI M, 0 sReset sector to O

1241 FCS8 2AF2FB LHLD Unallocated$Track sIncrease track by 1

1262 FCSB 23 INX H

1243 FCSC 22F2FB SHLD Unallocated$Track

1264 H

1245 No$Track$Change:

1266 ;Indicate to later code that

1267 s no preread is needed.

1248 FCSF AF XRA A

1269 FC&0 32F7FB STA Must$Preread$Sector sMust$Preread$Sector=0

1270 FCé3 CI&EFC JIMP Perform$Reads$Write

1271 3

1272 Request$Preread:

1273 FCéé AF XRA A ;Indicate that this is not a write

1274 FC&7 I2FSFB STA Unallocated$Record$Count ;3 into an unallocated block.

1275 FCéA 3C INR A

1276 FC4B 32F7FR STA Must$Preread$Sector ;Indicate that a preread of the

1277 ;3 physical sector is required.

1278 ;

1279 3

1280 Perform$Read$Write: sCommon code to execute both reads and

1281 ; writes of 128-byte sectors.

1282 FC8E AF XRA A ;Assume that no disk errors will

1283 FC&F 32F6FB sTA Disk$Error$Flag 3 occur

1284

1285 FC72 3AEDFR LDA Selected$Sector ;Convert selected 128-byte sectar

1286 FC7S 1F RAR s into physical sector by dividing by 4

1287 FC76 1F RAR

1288 FC77 E&3F ANI 3FH sRemove any unwanted bits

1289 FC79 32EEFR STA Selected$Physical$Sectaor

1290 H

1291 FC7C 21ESFB LXI H,DatasIns$Disk$Buffer sCheck if disk buffer already has

1292 FC7F 7E MQV A M ;5 data in it.

1293 FC80 3601 MVI M, 1 ; (Unconditionally indicate that

1294 : the buffer now has data in it)

1295 FC82 B7 ORA A sDid it indeed have data in it?

1296 FC83 CAA3FC Jz Read$SectorsintosBuffer ;No, proceed to read a physical

1297 s sector into the buffer.

1298 i

1299 :The buffer dces have a physical sector

1300 s in it.

1301 ; Note: The disk, track, and PHYSICAL

1302 ; sector in the buffer need to be

1303 ;s checked, hence the use of the

1304 ;s CompareDkTrk subroutine.

1305 ;

1306 FC86 11EAFB LXI D, In$Buf fer$DkTrkSec ;Check if sector in buffer is the

1307 FC89 21EAFB LXI H, SelectedDkTrkéSec ; same as that selected earlier

1308 FC8C CD24FD CALL CompareDkTrk ;Compare ONLY disk and track

1309 FC8F C29CFC JNZ SectorNatInsBuffer sNo, it must be read in

1210

1311 FC92 3AE7FB LDA In$Ruf fer$Sector ;Get physical sector in buffer

1312 FC9S 21EEFB LXI H,Selected$Physical$Sectar

1313 FC98 BE CMP M ;Check if correct physical sector

1314 FC99 CABIFC JZ SectorInBuffer sYes, it is already in memory

1315 3

1316 SectorNotInsBuffer:

1317 sNo, it will have to be read in

1318 s+ over current contents of buffer

1319 FC9C 3AESFB LDA Must$WritesBuffer sCheck if buffer has data in that

1320 FC9F B7 QRA A s must be written out first

1321 FCAQ C49SFD CNZ Write¢Physical sYes, write it out

1322 ;

1323 Read$Sector$intosBuffer:

1324 FCA2 CDILFD CALL SetsInsBufferDkTrk$Sec ;Set in buffer variables from

1325 ; selected disk, track, and sector

1326 : to reflect which sector is in the

1327 3 buffer naw

1328 FCA& 3AF7FR LDA Must$Preread$Sector sIn practice, the sector need only

1329 FCA9 B7 ORA A : be physically read in if a preread

1330 ;3 is required

1331 FCAA C49AFD CNZ Read$Physical ;Yes, preread the sector

1332 FCAD AF XRA A sReset the flag to reflect buffer

1333 FCAE 32E9FB STA Must$WritesBuffer ;3 contents.

1334 1

1335 Sector$InsBuffer: ;Selected sector on correct track and
Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

177

1336 3 disk is already in the buffer.
1337 ;Convert the selected CP/M (128-byte)
1338 ; sector into a relative address down
1339 5 the buffer.
1340 FCB1 3AEDFB LDA Selected$Sector ;Get selected sector number
1341 FCB4 E&603 ANI Sectors$Mask sMask off only the least significant bits
1342 FCB6 &F MoV L,A #Multiply by 128 by shifting 16-bit value
1343 FCB7 2600 MVI H,0 7 left 7 bits
1344 FCBY 29 DAD H % 2
1345 FCBA 29 DAD H 3% 4
1346 FCBB 29 DAD H 3% 8
1347 FCBC 29 DAD H 3E 16
1348 FCBD 29 DAD H 3% 32
1349 FCBE 29 DAD H % 64
1350 FCBF 29 DAD H 3% 128
1354 1 :
1352 FCCO 1133Fé LX1I D,Disk$Buffer ;Get base address of disk buffer
1353 FCC3 19 DAD D 3Add on sector number ® 128
1354 sHL -> 128-byte sector number start
1355 3 address in disk buffer
1356 FCC4 EB XCHG sDE -> sectar in disk buffer
1357 FCCS 2A43FB LHLD DMA$Address ;Get DMA address set in SETDMA call
1358 FCC8 EB XCHG ;Assume a read operation, so
1359 3 DE -> DMA address
1360 5 HL -> sector in disk buffer
13461 FCC9® OE10 MVI C,128/8 sBecause of the faster method used
1362 : to move data in and ocut of the
1363 3 disk buffer, (eight bytes moved per
1364 ; loop iteration) the count need only
1365 ;7 be 1/8th of ncrmal.
13¢6 At this point -
1367 H C = loop count
13é8 3 DE -> DMA address
1369 H HL ~> sector in disk buffer
1370 FCCB 3AFSFE LDA Read$Operation ;Determine whether data is to be moved
1371 FCCE B7 ORA A 3 out of the buffer (read) or intc the
1372 FCCF C2D7FC JNZ Buffer$Move 3 buffer (write)
1373 sWriting into buffer
1374 s (A must be O get here)
1375 FCD2 3C INR A ;Set flag to force a write
1376 FCD3 32E9FE STA Must$Write$Buffer 3 of the disk buffer later on.
1377 FCDé EB XCHG sMake DE -> sector in disk buffer
1378 H HL -> DMA address
1379 ;
1320 ;
1381 Buffer$Move: ;The folowing move loop moves eight bytes
1382 ¢+ at a time from (HL) to (DE), C contains
1383 3 the loop count.
1384 FCD7 7€ MOV AM ;Get byte from source
1385 FCD8 12 STAX D sPut into destination
1386 FCD9 13 INX D iUpdate pointers
1387 FCDA 23 INX H
1388 FCDR 7E MOV A, M iGet byte from source
1389 FCDC 12 STAX D ;Put into destination
1390 FCDD 13 INX D ;Update pointers
1391 FCDE 23 INX H
1392 FCDF 7€ MOV A M ;Get byte from scurce
1393 FCEO 12 STAX D iPut into destinaticn
1394 FCE1 13 INX D sUpdate pointers
1395 FCE2 23 INX H
1396 FCE3 7€ MOV AM ;Get byte from source
1397 FCE4 12 STAX D 3Put into destination
1398 FCES 13 INX D ;Update pointers
1399 FCE6 23 INX H
1400 FCE7 7E MoV AM ;Get byte from source
1401 FCE8 12 STAX D ;Put into destination
1402 FCE9? 13 INX D ;Update pointers
1403 FCEA 23 INX H
1404 FCEB 7E Mav AM ;Get byte from source
1405 FCEC 12 STAX D ;Put into destination
1406 FCED 13 INX D sUpdate pointers
1407 FCEE 23 INX H
1408 FCEF 7E MOV A, M ;Get byte from source
1409 FCFO 12 STAX D sPut into destinaticon
1410 FCF1 13 INX D sUpdate pointers
Figure 6-4. (Continued)

178

The CP/M Programmer’s Handbook

1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
142¢
1427
1428
1429
1430
1431

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441

1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

1452
1453
1454
1455
145¢
1457
1458
1459
1440
1461

1462
1463
1464
1465
1466
1467
1468
1449
1470
1471

1472
1473
1474
1475
1476
1477
1478
1479
1480
1482
1483
1484
1485
1486
1487

FCF2 23 INX H
FCF3 7E MOV A M ;Get byte from scurce
FCF4 12 STAX D sPut into destination
FCFS 13 INX o ;Update painters
FCF& 23 INX H
FCF7 oD DCR C sCount down on loop counter
FCF8 C2D7FC JNZ Buffer$Move sRepeat until CP/M sector moved
FCFR 3AEIFB LDA Write$Type sIf write to directory, write cut
FCFE FEO1 CPI WritesDirectory ; buffer immediately
FDOO 3AF&FB LDA Disk$Error$Flag ;Get error flag in case delayed write or read
FDOR CO RNZ sReturn if delayed write or read
H
FDno4 B7 ORA A ;Check if any disk errors have occurred
FDOS CO RNZ :Yes, abandon attempt to write to directory
FDO& AF XRA A ;Clear flag that indicates buffer must be
FDO7 I2E9FBR STA Must$WritesBuffer 3 written out
FDOA CD9SFD CALL Write$Physical jWrite buffer out to physical sector
FDOD 3AF6FB LDA Disk$Errar$Flag ;Return errar flag to caller
FD10 C9 RET
Set$InsBuffer$DkTrkSec: sIndicate selected disk,
;s sector now residing in buffer
FD11 3AEAFB LDA Selected$Disk
FD14 32EAFB sTA In$Buffer$Disk
FD17 2AEBFB LHLD Selected$Track
FD1A 22ESFR SHLD In$Buffer$Track
FDID' 3AEEFB LDA Selected$Physical$Sector
FD20 J2E7FB STA In$Buffer$Sector
FD23 C9 RET
CompareDkTrk: ;Compares just the disk and track
; pointed to by DE and HL
FD24 OEO3 MVI c,2 sDisk (1), track (2)
FD2é C32BFD JMP CompareDkTrk$Secsloop ;Use common code
CompareDkTrk$Sec: ;Compares the disk, track, and sectar
: variables pointed to by DE and HL
FD29 OEO4 MVI c.4 sDisk (1), track (2), and sector
CompareDkTrkeSecsloop:
FD2B 1A LDAX D ;Get comparitor
FD2C BE CMP M sCompare with comparand
FD2D CO RNZ :Abandon comparison if inequality found
FD2E 13 INX n sUpdate comparitor pointer
FD2F 23 INX H ;Update comparand pointer
FD30 OD DCR C ;Count down on loop count
FD31 C8 RZ sReturn (with zero flag set)
FD32 C32BFD JMP CompareDkTrk$Secsloop
MoveDkTrk$Sec: ;Moves the disk, track,and sector
; variables pcinted at by HL to
;s those pointed at by [E
FD35 OEO4 MVI cC,4 sDisk (1), track (2), and sector
MovesDkTrk$Secslocp:
FD37 7E MOV A M ;Get source byte
FD38 12 STAX D ;Store in destination
FD39 13 INX D sUpdate pointers
FD3A 23 INX H
FD3B OD DCR = ;Count down on byte count
FD3C C8 RZ sReturn if all bytes maved
FD3D C337FD JMP MoveDkTrk$Secsloop

for the 8" floppy diskette drives, and one for the § 1/4"
mini~diskette drives.

Figure 6-4. (Continued)

There are two "smart" disk controllers on this system, one

The controllers are "hard-wired" to monitor certain locations

Chapter 6: The Basic Input/Output System

179

1488 7 in memory to detect when they are to perform scme disk
1489 3 operation. The 8" controller monitors location 0040H, and
1490 ¢ the 5 1/4" controller monitors location 0045H. These are
1491 7 called their disk control bytes. If the most significant
1492 7 bit of a disk control byte is set, the controller will
1493 + lock at the word following the respective control bytes.
1494 3 This word must contain the address of a valid disk contral
1495 ? table that specifies the exact disk operation to be performed.
1496 ; >
1497 ;7 Once the operation has been completed, the controller resets
1498 3 its disk control byte to OOH. This indicates campletion
1499 3 to the disk driver code.
1500 H
1501 3 The controller also sets a return code in a disk status block --
1502 7 both controllers use the SAME location for this; 0043H.
1503 ¢ If the first byte of this status block is less than 80H, then
1504 7 @ disk error has accurred. For this simple BIOS, no further details
1505 ;3 of the status settings are relevant. Note that the disk controller
1508 i has built-in retry logic -- reads and writes are attempted ten
1507 3 times befaore the controller returns an error.
1508 H
1509 7 The disk control table layout is shown below. Note that the
1510 7 controllers have the capability for control tables to be
1511 i chained together so that a sequence of disk operations can
1512 7 be initiated. In this BIOS this feature is nat used. However,
1513 } the controller requires that the chain pointers in the
1514 7 disk control tables be pointed back to the main control. bytes
1515 3 in order to indicate the end of the chain.
1516 3
1517 0040 = Disk$Controlss EQu 40H ;8" control byte
1518 0041 = Command$Block$s EQuU 41H ;Control table pointer
1519 3
1520 00423 = Disk$Status$Block EQU 43H 8" AND S 1/4" status black
1521 i
1522 0045 = Disk$Controlss EQU 4SH 35 1/4" control byte
1523 0044 = Command$Block$S EQU 46H ;Control table pointer
1524 H
1525 H
1528 3 Floppy Disk Control Tables
1527 3
1528 FD40 00 Floppy$Command: DR 0 s Command
1529 0001 = Floppy$Read$Cade EQU O1H
1530 0002 = Floppy$Write$Code EQU OzH
1531 FD41 00 Floppy$Unit: DR [¢] sUnit (drive) number = 0 or 1
1532 FD42 00 Floppy$Head: DR o ;Head number = 0 or 1
1533 FD43 00 Floppy$Track: DB Y] s Track number
1534 FD44 00 Floppy$Sector: DB o ;Sector number
1535 FDAS 0000 Floppy$Bytes$Count: oW o sNumber of bytes to read/write
1536 FD47 0000 FloppyDMAAddress: DW o sTransfer address
1537 FD49 0000 Floppy$Next$Status$Rlock: DW o sPointer to next status block
1338 3 if commands are chained.
1539 FDA4B 0000 Floppy$Next$Control$location: DW [¢] ;Painter to next contrcl byte
1540 + if commands are chained.
1541 i
1542 i
1543 3
1544 WritesNosDeblock: sWrite contents of disk buffer to
1545 3 correct sectar.
1546 FD4D 3E02 MVI A,Floppy$WritesCode 3Get write function code
1547 FD4F C354FD JMP CommonNosDeblock ;6o to common code
1548 Read$NosDeblock: tRead previously selected sector
1549 3 into disk buffer.
1550 FDS2 3E01 MVI A,Floppy$Read$Code 3Get read function code
1551 CommonNoDeblock:
1552 FDS4 3240FD STA Floppy$Command ;Set command function code
1553 1Set up nondeblocked command table
1554 FDS7 218000 LXI H, 128 1Bytes per sector
1S5S FDSA 2245FD SHLD Floppy$BytesCount
1556 FDSD AF XRA A 38" floppy anly has head O
1557 FDSE 3242FD STA Floppy$Head
1558 3
1559 FD&1 RAEAFR LDA Selected$Disk 18" Floppy controller only has information
1540 3 on units O and 1 so Selected$Disk must
1561 ;3 be converted
1562 FDé4 E&O1L ANI OtH sTurn into 0 or 1
1543 FD&& 3241FD STA FloppysUnit 31Set unit number
Figure 6-4. (Continued)

180

The CP/M Programmer’s Handbook

1564 f
1565 FD&9 3AEBFB LDA Selected$Track
1566 FD4C 3243FD STA Floppy$Track ;Set track number
1567 H
1548 FD&F 3AEDFB LDA Selecteds$Sector
1549 FD72 3244FD STA Floppy$Sector ;Set sector number
1570 H
1571 FD75 2A43FB LHLD DMA$Address sTransfer directly between DMA address
1572 FD78 2247FD SHLD FloppyDMAAddress sand 8" controller.
1573 H
1574 ;The disk controller can accept chained
1575 s+ disk control tables, but in this case,
1576 + they are not used, so the "Next" pointers
1577 s+ must be pointed back at the initial
1578 ;3 control bytes in the base page.
1579 FD7B 214300 LXI H,Disk$Status$Block ;Point next status back at
1580 FD7E 2249FD SHLD Floppy$Next$Status$Black 3 main status block
1581 H
1582 FD81 214000 LXI H,Disk$Control$8 ;Point next control byte
1583 FD84 224BFD SHLD Floppy$Next$Controls$location 3 back at main control byte
1584 H
1585 FD8&7 2140FD LXI H,Floppy$Command ;Point controller at control table
1586 FD8A 224100 SHLD Command$Block$8
1587 ;
1588 FD8D 214000 LXI H,Disk$Controls8 sActivate controller to perform
1589 FDP0 3680 MVI M, 80H 3 operation.
1590 FD92 C3F7FD JMP Wait$ForsDisksComplete
1591
1592 H
1593 H
1594
1595 Write$Physical: sWrite contents of disk buffer to
1596 ;3 correct sector.
1597 FD9S 3E02 MVI A,Floppy$WritesCode ;Get write function code
1598 FD97 C39CFD JMP Common$Physical ;Go to common code
1599 Read$Physical: sRead previously selected sector
1600 ;3 into disk buffer.
1601 FD9A 3EO01 MVI A,Floppy$Read$Code ;Get read function code
1602 3
1603 Common$Physical:
1404 FD9C 3240FD STA Floppy$Command ;Set command table
1605
1606 ¥
1607 FD9F 3AFAFB LDA Disk$Type ;Get disk type (set in SELDSK)
1608 FDA2 FEO1 CPI Floppy$5 sConfirm it is a S 1/4" Floppy
1609 FDA4 CAADFD Jz Correct$Disk$Type 3 Yes
1610 FDA7 3EO1 MVI Al sNo, indicate disk error
1611 FDA9 32F6FB STA Disk$Error$Flag
1612 FDAC C9 RET
1613 Correct$Disk$Type: ;Set up disk control table
1614 H
1615 FDAD 3AEAFB LDA In$Buffer$Disk ;Convert disk number to O or 1
1616 FDBO E&601 ANI 1 ;3 for disk controller
1617 FDB2 3241FD STA Floppy$Unit
1618
1619 FDBS 2AESFEB LHLD In$Buffer$Track ;Set up track number
1620 FDB8 7D MOV AL :Note: This is single byte value
1621 FDB® 3243FD STA Floppy$Track ;3 for the controller.
1622 H
1623 :The sector must be converted into a
1624 s+ head number and sector number.
1625 : Sectors O - 8 are head 0, 9 - 17
1626 3 are head 1
1627 FDBC 0600 MVI B, 0 sAssume head 0O
1628 FDBE 3AE7FB LDA In$Buf fer$Sector ;Get physical sector number
1629 FDC1 4F MQV c,A sSave copy in case it is head O
1630 FDC2 FEO9 CPI 9 sCheck if < 9
16431 FDC4 DACBFD JC Head$0 sYes it is < 9
1632 FDC7 D&O? sul 9 sNo, modify sector number back
1633 3 in the O - 8 range.
1634 FDCY 4F MoV C,A sPut sector in B
1635 FDCA 04 INR B ;Set to head 1
1636 Head$0:
1637 FDCB 78 MOV A,B ;Set head number
1638 FDCC 3242FD STA Floppy$Head
1639 FDCF 79 MoV A, C ;Set sector number
Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

181

1640 FDDO 3C INR A ¢ (physical sectors start at 1)

1641 FDD1 3244FD STA Floppy$Sectar

1642 H

16443 FDD4 210002 LXI H,Physicals$Sector$Size ;Set byte count

1644 FDD7 2245FD SHLD Floppy$Byte$Count

1645 H

1644 FDDA 2133F6 LXI H,Disk$Buffer 3Set transfer address to be

1647 FDDD 2247FD SHLD FloppyDMAAddress s disk buffer

14648 H

1649 ;As only one control table is in

1450 7 use, close the status and busy

1651 3 chain pointers back to the

1452 3 main control bytes.

1653 FDEO 214300 LXI H,Disk$Status$Block

1654 FDE3 2249FD SHLD Floppy$Next$Status$Elack

1655 FDES 214500 LXI H,Disk$Controlss

1656 FDE9 224BFD SHLD Floppy$Next$Controls$lLocation

1657

1658 FDEC 2140FD LXI H,Floppy$Command :Set up command block pointer

1659 FDEF 224400 SHLD Command$Block$sS

1660

1661 FDF2 214500 LXI H,Disk$Controlss 7Activate S 1/4" disk controller

1662 FDFS 3680 MVI M, 80H

1643 H

1664 Wait$ForsDisk$Complete: sWait until Disk Status Block indicates

1665 i opPeration complete, then check

1666 ;3 if any errors occurred.

1867 $0n entry HL -> disk control byte

1468 FDF7 7E MoV A M 3Get control byte

1669 FDF8 R7 0ORA A

1670 FDF9 C2F7FD JINZ Wait$ForsDisksComplete ;Operation still not yet done

1671 H

1672 FDFC 2A4300 LDA Disk$Status$Block ;Complete -- now check status

1673 FDFF FE80 CPI 80H sCheck if any errors occurred

1674 FEOQO1 DAOSFE Jc Disk$Error sYes

1475 FEO4 AF XRA A s No

1676 FEOS 32F&FR STA Disk$Error$Flag ;Clear error flag

1677 FEO08 C9 RET

1678 Disk$Ervror:

1679 FEQ9 3E01 MVI Al 3Set disk-errar flag nonzero

1680 FEOR 32F64FB STA Disk$Error$Flag

1681 FEOE C9 RET

1682 ;

1483 H

1684 H

1485 3 Disk control table images for warm boot

1686 5

1687 Boot#Control$Partsi:

1688 FEOF 01 DR 1 sRead function

1689 FE10 00 DB [¢] sUnit (drive) number

1690 FE11 00 DB Q sHead number

1691 FE12 00 DB o] s Track number

1692 FE13 02 DB 2 sStarting sector number

1693 FE14 0010 W anS12 sNumber of bytes to read

1694 FE16 00EQ DwW CCP$ENntry sRead into this address

1695 FE18 43200 DW DiskéStatus$Black sPointer to next status bleock

1696 FE1A 4500] Disk$Controlss sPointer to next control table

1697 Boot$Control$Part2:

1698 FE1IC 01 DB 1 sRead functian

1699 FELD 00 DR [¢] ;Unit (drive) number

1700 FEI1E 01 DR 1 ;Head number

1701 FEIF 00 DB [o] s Track number

1702 FE20 01 DB 1 ;Starting sectar number

1703 FE21 0006 oW 3RG12 3Number of bytes to read

1704 FE23 00FO DW CCP$Entry + (8%512) ;Read into this address

1705 FE2% 4300 W Disk$Status$Block ;Pointer to next status block

1706 FE27 4500 oW Disk$Control$s ;Pointer to next control table

1707

1708 H

1709 3

1710 ;

1711 WRBOOQT: ;Warm boot entry

1712 ;0n warm boot, the CCP and BDOS must be relcaded

1713 ¢ into memory. In this BIOS, only the 5 1/4"

1714 7 diskettes will be used. Therefore this ccde
Figure 6-4. (Continued)

482 The CP/M Programmer’s Handbook

1715 ;s is hardware specific to the controller. Two
1716 ; prefabricated control tables are used.
1717 FE29 318000 LXI SP, 80H
1718 FE2C 110FFE LXI D, Boot$Control$Partl ;Execute first read of warm boot
1719 FE2F CD3BFE CALL Warm$Root $Read ;Load drive 0, track O,
1720 ; head 0, sectors 2 to 8
1721 FE32 111CFE LXI D, Boot$Control$Part2 ;Execute second read
1722 FE3S CD3BFE CALL Warm$Boot $Read sLoad drive O, track O,
1723 s head 1, sectors 1 - 3
1724 FE38 C340F8 JMP Enter$CPM sSet up base page and enter CCF
1725 3
1726 Warm$Boot$Read: ;0n entry, DE -> contrcl table image
1727 sThis control table is moved into
1728 3 the main disk control table and
1729 ;3 then the controller activated.
1730 FE3B 2140FD LXI H,Floppy$Command sHL -» actual control table
1731 FERE 224400 SHLD Command$Block$S 3Tell the controller its address
17a82 sMove the control table image
1733 3 into the control table itself
1734 FE41 OEOD MVI C,13 ;Set byte count
1735 Warm$Root $Move:
1736 FEA43 1A LDAX D ;Get image byte
1737 FEA4 77 MoV M, A ;Store into actual contreol table
1738 FEA4S 23 INX H sUpdate pointers
1739 FE46 13 INX D
1740 FEA7 OD DCR c ;Count down on byte count
1741 FEA8 C243FE JINZ Warm$Boot $Move sContinue until all bytes moved
1742
1743 FEA4B 214500 LXI H,Disk$Control$S sActivate controller
1744 FEAE 3680 MVI M, 80H
1745 WaitForBoot$Complete:
1746 FESO 7E MoV AM ;Get status byte
1747 FES1 B7 ORA A ;Check if complete
1748 FES2 C25S0FE JNZ WaitForBoot$Complete ;No
1749 sYes, check for errars
1750 FESS5 3A4300 LDA Disk$Status$Rlock
1751 FES8 FE80 CPI 80H
1752 FESA DASEFE JC Warm$Boot$Errar sYes, an error occurréed
1753 FESD C9 RET
1754 H
1755 Warm$Boot$Error:
1756 FESE 2167FE LXI H,Warm$Boot$Error$Message
1757 FEé1 CD33F8 CALL Display$Message
1758 FE&4 C329FE JMP WROOQT sRestart warm boot
1759 3
1760 Warm$Boot$Error$Message:
1761 FE&7 ODOAS76172 DR CR,LF, “Warm Boot Ervor - retrying...”,CR,LF,0
1762 H
1763 H
17¢4 FE89? END ;0f simple BIOS listing
Figure 6-4. (Continued)

The Major Steps

Building Your First System

Using SYSGEN to Write
CP/M to Disk

Using DDT to Build the
CP/M Memory Image

The CP/M Bootstrap Loader

Using MOVCPM to Relocate the
CCP and BDOS

Putting It All Together

Building a New
CP/M System

This chapter describes how to build a version of CP/M with your own BIOS
built into it. It also shows you how to put CP/M onto a floppy disk and how to
write a bootstrap loader to bring CP/M into memory.

The manufacturer of your computer system plays a significant role in building
a new CP/M system. Several of CP/M’s utility programs may be modified by
manufacturers to adapt them to individual computer systems. Unfortunately, not
all manufacturers customize these programs. You should therefore invest some
time in studying the documentation provided with your system to see what and
how much customizing may have already been done. You should also assemble
and print out listings of all assembly language source files from your CP/M release
diskette.

It is impossible to predict the details of customization and special procedures
that the manufacturer may have installed on your particular system. Therefore,
this chapter describes first the overall mechanism of building a CP/M system, and

183

184 The CP/M Programmer’s Handbook

second the details of building a CP/M system around the example BIOS shown in
the previous chapter as Figure 6-4.

The Maijor Steps

Building a new CP/M system consists of the following major steps:

- Create a new or modified BIOS with the appropriate device drivers in it.
Assemble this so that it will execute at the top end of memory (by using an
origin statement (ORG) to set the location counter).

- Create new versions of the CCP and BDOS with all addresses in the
instructions changed so that they will be correctly located in memory just
below the new BIOS. Digital Research provides a special utility called
MOVCPM to do this.

- Create or modify a CP/M bootstrap loader that will be loaded by the
firmware that executes when you first switch on your computer (or press the
RESET button). Normally, the CP/M bootstrap loader executes in the low-
address end of memory. The exact address and the details of any hardware
initialization that it must perform will depend entirely on your particular
computer system.

- Using Digital Research standard utility programs, bring the bootstrap loader,
the CCP and BDOS, and the BIOS together in the low part of memory. Then
write this new version of CP/M onto a disk in the appropriate places. Again,
depending on the design of your computer system, you may be able to use the
standard utility program, SYSGEN, to write the entire CP/M image onto
disk. Otherwise you may have to write a special program to do this.

When CP/M is already running on your computer system and you want to add
new features to the BIOS, all you need to do is change the BIOS and rebuild the
system. The CCP and BDOS will need to be moved down in memory if the changes
expand the BIOS significantly. If this happens, you will have to make minor
changes in the bootstrap loader so that it reads the new CP/M image into memory
at a lower address and transfers control to the correct location (the first instruction
of the BIOS jump vector).

Building Your First System

The first time that you build CP/M, it is a good idea to make no changes to the
BIOS at all. Simply reassemble the BIOS source code and proceed with the system
build. Then, if the new system does not run, you know that it must be something in
the procedure you used rather than any new features or modification to the BIOS

Chapter 7: Building a New CP/M System 185

source code. Changes in the BIOS could easily obscure any problems you have
with the build procedure itself.

The Ingredients

To build CP/M, you will need the following files and utility programs:

- The assembly language source code for your BIOS. Check your CP/M
release diskette for a file with a name like CBIOS.ASM (Customized Basic
Input/Output System). Some manufacturers do not supply you with the
source code for their BIOS; it may be sold separately or not released at all. If
you cannot get hold of the source code, the only way that you can add new
features to the BIOS is by writing the entire BIOS from scratch.

* The source code for the CP/M bootstrap loader. This too may be on the
release diskette or available separately from your computer’s manufacturer.

- The Digital Research assembler, which converts source code into machine
language in hexadecimal form. This program, called ASM.COM, will be on
your CP/M release diskette. Equivalent assemblers, such as Digital Research’s
macro-assemblers MAC and RMAC or Microsoft’s M80, can also be used.

* The Digital Research utility called MOVCPM, which prepares a memory
image of the CCP and BDOS with all addresses adjusted to the right values.

* The Digital Research debugging utility, called DDT (Dynamic Debugging
Tool), or the more enhanced version for the Z80 CPU chip, ZSID (Z80
Symbolic Interactive Debugger). DDT is used to read in the various pro-
gram files and piece together a memory image of the CP/M system.

* The Digital Research utility program SYSGEN. This writes the composite
memory image of the bootstrap, CCP, BDOS, and BIOS onto the disk.
SYSGEN was designed to work on floppy disk systems. If your computer
uses a hard disk, you may have a program with a name like PUTCPM or
WRITECPM that performs the same function.

The Ultimate Goal

In Figure 6-4, lines 0044 to 0065, you can see the equates that define the base
addresses for the CCP, the BDOS, and the BIOS. Figure 7-1 shows how the top of
memory will look when this version of CP/M has been loaded into memory.

Life would be simple if you could build this image in memory at the addresses
shown and write the image out to disk. Building this image, however, would
probably overwrite the version of CP/M that you were operating since it too lives
at the top of memory. Therefore, the goal is to create a replica of this image lower
down in memory, but with all the instruction addresses set to execute at the
addresses shown in Figure 7-1.

186 The CP/M Programmer’s Handbook

OFFFFH (Top of 64K RAM)
BIOS
OF400H
BDOS
- OECO00H
cCP
OE400H

Figure 7-1. Memory layout of CP/M

Using SYSGEN to Write CP/M to Disk

The SYSGEN utility writes a memory image onto a specified logical disk. It
can use a memory image that you arrange to be in memory before you invoke
SYSGEN, or you can direct SYSGEN to read in a disk file that contains the image.
You can also use SYSGEN to transport an existing CP/M system from one diskette
to another by directing it to load the CP/M image from one diskette into memory
and then to write that image out to another diskette.

Check the documentation supplied by your computer’s manufacturer to make
sure that you can use SYSGEN on your system. SYSGEN, as released by Digital
Research, is constructed to run on 8-inch, single-sided, single-density diskettes. If
your system does not use these standard diskettes, SYSGEN must be customized
to your disk system.

When SYSGEN loads a CP/M image into memory, it will place the bootstrap,
CCP, BDOS, and BIOS at the predetermined addresses shown in Figure 7-2,
regardless of where this CP/M originated.

Chapter 7: Building a New CP/M System 187

- OFFFFH (Top of 64K RAM)
Currently
executing
version
of CP/M
-¢ 0E400H (approximate)
-~ -~
BIOS = 2304 (900H) bytes
(this will vary from
-+ 2880H version to version)
BIOS
- 1F80H BDOS = 3584 (OEO0H) bytes
BDOS CCP = 2048 (800H) bytes
- 1180H
Bootstrap = 128 (80H) bytes
ccp
- 0980H
Bootstrap
~—— (0900H
SYSGEN = xxx (xxxH) bytes
SYSGEN
- 0100H
- 0000H

Figure 7-2. SYSGEN’s memory layout

188 TheCPM Programmer’s Handbook

You can see that the relative arrangement between the components has not
changed; the whole image has simply been moved down in memory well below the
currently executing version of CP/M. The bootstrap has been added to the picture
just beneath the CCP.

The SYSGEN utility writes this image onto a floppy diskette starting at sector
1 of track 0 and continuing to sector 26 on track 1. Refer back to Figure 2-2 to see
the layout of CP/M on a standard 8-inch, single-sided, single-density diskette.

If you request SYSGEN to read the memory image from a file (which you do by
calling SYSGEN with the file name on the same line as the SYSGEN call), then
SYSGEN presumes that you have previously created the correct memory image
and saved it (with the SAVE command). SYSGEN then skips over the first 16
sectors of the file so as to avoid overwriting itself.

Here is an example of how to use SYSGEN to move the CP/M image from one
diskette to another:

A>SYSGEN<CR>

SYSGEN VER 2.0

SOURCE DRIVE NAME (OR RETURN TO SKIF) A

SOURCE ON A:, THEN TYPE RETURN <cr>

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT) B
DESTINATION ON B: THEN TYPE RETURN <cr>

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT) <cr>
A>

As you can see, SYSGEN gives you the choice of specifying the source drive
name or typing CARRIAGE RETURN. If you enter a CARRIAGE RETURN, SYSGEN
assumes that the CP/M image is already in memory. Note that you need to call up
SYSGEN only once to write out the same CP/M image to more than one disk.

A larger than standard BIOS can cause difficulties in using SYSGEN. The
standard SYSGEN format only allows for six 128-byte sectors to contain the
BIOS, so if your BIOS is larger than 768 (300H) bytes, it will be a problem. The
CP/M image will not fit on the first two tracks of a standard 8-inch diskette.

Nowadays it is rare to find an 8-inch floppy diskette system where you must
load CP/M from a single-sided, single-density diskette. Most systems now use
double-sided or double-density diskettes as the normal format, but can switch to
single-sided, single-density diskettes to interchange information with other com-
puter systems.

Because there is no “standard” format for 8-inch, double-sided and double-
density diskettes, you probably won’t be able to read diskettes written on systems
of a different make or model. Therefore, you need only be concerned about using a
disk layout that will keep your disks compatible with other machines that are
exactly the same as yours.

This is also true if you have 5 1/4-inch diskettes. There is no industry standard
for these either, so your main consideration is to place the file directory in the same

Chapter 7: Building a New CP/M System 189

place as it will be on diskettes written by other users of your model of computer.
You must also be sure to use the same sector skewing. Otherwise, you will get a
garbled version whenever you try to read files originating on other systems.

With the higher capacity diskettes, you can reserve more space to hold the
CP/M image on the diskette. For example, in the case of the BIOS shown in Figure
6-4, the CP/M image is written to a 5 1/4-inch, double-sided, double-density
diskette using 512-byte sectors. Figure 7-3 shows the layout of this diskette. Note
that the bootstrap loader is placed in a 512-byte sector all by itself. Doing so makes
the bootstrap code and warm boot code in the BIOS much simpler.

The memory image must be altered to reflect the fact that the bootstrap now
occupies an entire 512-byte sector. Rather than change all of the addresses, the
bootstrap is loaded into memory 384 (180H) bytes lower, so that it ends at the same
address as before. Figure 7-4 shows the revised memory image.

Writing a PUTCPM Utility

Because the example system uses 5 1/4-inch floppy diskettes with 512-byte
sectors, the standard version of SYSGEN cannot be used to write the CP/M image
onto a diskette. You will have to use a functional replacement provided by your
computer’s manufacturer or develop a small utility program to do the job.

Track 0 Sector
1 2 3 4 5 6 7 8 9
Boot CCpP BDOS
BDOS BIOS
10 11 12 13 14 15 16 17 18
Sector
Track 1 Sector
1 2 3 4 5 6 7 8 9
File Directory Allocation Blocks

Disk layout for example BIOS on 5 1/4-inch diskettes

190 The CP/M Programmer’s Handbook

h
Currently
executing
version
of CP/M -
-
-—
BIOS
-
BDOS
CCP
-
Bootstrap
-

OFFFFH (Top of 64K RAM)

0E400H (approximate)

2880H

1F8OH

1180H

0980H

0780H

BIOS = 2304 (900H) bytes
(this will vary from
version to version)

BDOS = 3584 (OEOOH) bytes

CCP = 2048 (800H) bytes

Bootstrap = 512 (200H) bytes

Figure 7-4.

Addresses for example BIOS image

Figure 7-5 shows an example of such a program. It is written in a general-
purpose way, so that you may be able to use it for your system by changing the
equates at the front of the program to reflect the specifics of your disk drives.

Note that there are two problems to be solved. First, the area of the disk on
which the CP/M image resides cannot be accessed by the BDOS, as it is outside the
file system area on the disk. Second, it is rare to write the CP/M image onto the
disk with any kind of sector skewing; to do so would slow down the loading
process. In any case, skewing would be redundant, since the loader is doing no
processing other than reading the disk and can therefore read the disk without

skewing.

Chapter 7: Building a New CP/M System

191

3130
3730

3432
3238

0040

0900
0200
0800
QEQQ
1FQ0

0780
2100

wouon []

This program writes out the CP/M cold boot loader,
CCP, BDOS, and BIOS to a floppy diskette. It runs
under CP/M as a normal transient program.

Version EQU 01 sEquates used in the sign-on
7 message
Month EQU “07°
Day EQU 247
Year EQu ‘g2
' The actual PUTCPMFS.COM program consists of this code,
: Plus the BOOTFS.HEX, CCP, BDOS, and BIOS.
3 When this program executes, the memory image should
T look like this:
B Component Base Address
H BIOS 1F80H
H BDOS 1180H
H CCP 0980H
H BOOTFS Q780H
; The components are produced as follows:
3 BIOS.HEX By assembling source code
H BDOS) From a CPMnn.COM file output
H ccP) by MOVCPM and SAVEd on disk
3 BOQTFS.HEX By assembling source code
H The components are pieced together using DDT with the
3 following commands:
H DDT CPMnn.COM
H IPUTCPMFS. HEX
3 R (Reads in this program)
H IBOOTFS.HEX
H R&80 (Reads in BOOT at 0780H)
H IBIQOS.HEX
i R2980 (Reads in BIOS at 1FSCH)
H GO (Exit from DDT)
i SAVE 40 PUTCPMFS.COM (Create final .COM file)
3 The actual layout of the diskette is as follows:
H
s Track O Sector
H 1 2 3 4 S) 7 e 9
3 Head + +
3 O 1Boot i< cce i< BDOS H
; 1 i====== BRDOS ====>|K RIQS >
H + +
i 10 11 12 13 14 15 16 17 18
H Sectar
3 Equates for defining memory size and the base address and
H length of the system components
ﬁemoryQSize EQU &4 ;Number of Kbytes of RAM
H The BIQS Length must match that declared in the RIOS.
BRIOS$Length EQU 0900H
BootslLength EQu S12
CCPsLength EQU 0800H sConstant
BDOS$Length EQU QEOOH sConstant
LengthInBytes EQU CCPs$Length + BDOS$Length + RIOS$Length
Start$Image EQU PR0H -~ Boots$lLength sAddress of CP/M image
Length$Image EQU Length$In$Bytes + Boot$Length

¥
;

Figure 7-5.

Example PUTCPM

192 The CP/M Programmer’s Handbook

0001
0012
Q00
0200

Q001

Q000
0001
0011

Q009
0005

‘0100

0100

000D
000A

0103
0119
011B
0123
0125
0126
0128
0129
012B
012C
012E

Q045
0048
0043

Disk characteristics

These equates describe the physical characteristics of
the floppy diskette so that the program can move from
one sector to the next, updating the track and resetting

the sector when necessary.

= First$Sectorsons$Track EQU 1
= Last$SectorsonsTrack EQU 18
= Last$Sector$onsHeads$o EQU ?
= Sectors$Size EQU 512
7
H Controller characteristics
7
H On this computer system, the floppy disk contro}ler can write
? multiple sectors in a single command. However, 1in order‘
H to produce a more general example it is shown only reading one
H sector at a time.
= éec\orstPerSNrite EQU 1
; Cold boot characteristics
= étar!sTrack EQU 0 ;Initial values for CP/M image
= Start$Sector EQU 1 3= " =
= SectorsToWrite EQU (Length$Image + Sector$Size - 1) / Sector$Size
7
7
= BS$PRINTS EQU Q? sPrint string terminated by ¢
= BDOS EQU S sBDOS entry point
ORG 100H
Put$CPM:
C33F01 JMP Main$Code sEnter main code body
;For reasons of clarity, the main
;3 data structures are shown before the
3 executable ccode.
= CR EQU ODH sCarriage return
= LF EQU OAH sLine feed
Signon$Message:
ODOAS07574 DB CR,LF, “Put CP/M on Diskette”
ODOA DB CR,LF
5665727369 DB “Version ~
3031 oW Version
20 DB [
3037 DW Month
2F DB i
3234 DW Day
2F DB A
3832 DW Year
0DOA24 DB CR,LF, "%
H Disk control tables
= Disk$Control$S EQU 45H 35 1/4" control byte
= Cammand$BlocksS EQU 44H ;Control table pointer
= Disk$Status EQU 43H ;Completion status

The command table track and DMA$Address can alsc be used
as working storage and updated as the load process
continues. The sector in the command table cannat be

used directly as the disk controller reguires it to be

the sector number on the specified head-(1 -- ?) rather
than the sector number on track. Hence a separate variable
must be used.

o E e we e ws we ws ws

Figure 7-5.

(Continued)

Chapter 7: Building a New CP/M System

193

0131 01 Sector: DB StartsSector
3
0132 02 Command$Table: DB 02H ;Command —- Write
0133 00 Unit: DB o ;Unit (drive) number = 0 or 1
0134 00 Head: DB o] sHead number = 0 or 1
Q135 00 Track: DB Starts$Track sUsed as working variable
013& 00 Sectorsonshead: DR (o] ;Converted by low-level driver
0137 0002 Bytes$Count: oW Sector$Size % Sectors$PersWrite
0139 8007 DMASAddress: ju] StartsImage
013B 4300 Nexts$Status: oW Disk$Status ;Pointer to next status block
5 if commands are chained
013D 4500 Nexts$Control: DW Disk$Control$S ;Pointer to next control byte
3 if commands are chained
Mains$Code:
013F 310001 Lx1 SP, Put $CPM sStack grows down below code
0142 110301 LXI D, Signon$Message 3Sign on
0145 QOEQ? MVI C, BSPRINTS sPrint string until ¢
0147 CDOS00 CALL BDOS
014A 213201 LXI H, Command$Table sPaint the disk controller at
014D 224600 SHLD Command$Block$S 5 the command block
0150 OE11 MVI C,SectorssTosWrite ;Set sector count
Write$Loop:
0152 CD7CO01 CALL Put CPMWrite sWrite data onto diskette
01355 oD DCR [;Downdate sector count
0156 CAQ0Q0 Jz o sWarm boot
0159 213101 LXI H, Sector ;Update sector number
015C 3E01 MvI A,SectorssPersurite 3 by adding on number of sectors
015E 86 ADD M 3 by controller
O1SF 77 MoV M. A sSave result
0140 3E1R MVI A,Last$SectorsOns$Track + 1 sCheck if at end of track
0162 BE CMP M
0143 C24F01 JNZ NotEndTrack
0166 3401 MVI M,First$Sector$On$Track ;Yes, reset to beginning
0148 2A3501 LHLD Track sUpdate track number
016B 28 INX H
018C 223501 SHLD Track
NotEndTrack:
01&F 2A3901 LHLD DMAs$Address sUpdate DMA address
0172 110002 LXI D,Sector$Size * Sectors$PersWrite
0175 19 DAD D
0176 223901 SHLD DMA$Address
0179 C35201 JMP WritesLoop sWrite next block
7
Put$CPMs$Write: sAt this point, the description of the
3 operation required is in the variables
7 contained in the command table, along
3 with the sector variable.
017C CS PUSH B ;Save sector count in C
3 m————— Change this routine to match the disk controller in use ———-——
017D 0400 MVI B,0 sAssume head O
017F 3A3101 LDA Sector ;Get requested sector
0182 4F MQV C,A ;Take a copy of it
0183 FEOA CPI Last$SectorsonsHead$0+1 ;Check if on head 1
0185 DA8CO1 JC Head$0 s No
0188 D809 SUI Last$SectorsonsHeads0 sBias down for head 1
018A 4F MOV C,A ;Save copy
018B 04 INR B sSet head 1
Head$0:
018C 78 Mov A,B ;Get head
018D 323401 STA Head
0190 79 MOV A, C ;Get sectar
0191 3234601 STA SectorOnHead
fFigure 7-6. (Continued)

4194 The CP/M Programmer’s Handbook

0194
0197

0199
019A
019B

01%E
01A1
01A3

01Aé
01A7

01A8
01AB
01AD
01BO

01B3
01DB

214500
3480

7E
B7
C29901

2A4300
FESO
DAABO1

c1
c?

11B301
OEO0?

CDOS00
C33F01

0D0A457272

LXI
MVI

H,Disk$ControlsS
M, 80H

WaitForBoot$Complete:
MOV AM

ORA
JNZ

LDA
CPI
JC

§—————— End of physical write routine

POP
RET

;

PutCPMErvror:
LXI
MVI
CALL
JMP

A
Wait$Fors$Boot$Complete

Disk$Status
e0H
PutCPMError

B

D,PutCPMError$Message
C, BSPRINTS

BDO3

Main$Ccde

PutCPMError$Message:

DB
END

CR,LF, Error in writing
Put$CPM

sActivate controller

;Get status byte
;Check if complete

s No

sYes, check for errars

sYes, an error cccurred

;Recover sector count in C

;Print string until ¢
;Output error message
sRestart the loader

CP/M - retrying... ,CR,LF, %~

Figure 7-5. (Continued)

Using DDT to Build the CP/M Memory Image

DDT, the Digital Research debug program, is used to read files of type
“« COM” and “.HEX” into memory. Understanding the internal structure of these
file types is important, both to understand what DDT can do and to understand
how the MOVCPM utility can effectively change a machine code file so that itcan

be executed at a new address in memory.

“ COM” File Structure

A COM file is a memory image. It is a replica of the bit patterns that are to be
created when the file is loaded into memory. COM files are normally designed to
load at location 100H upwards. No internal structure to the file requires this,
however, so if you know what the contents of a COM file are, there is nothing to
preclude you from loading it into memory starting at some address other than

100H.

As you may recall from the description of the CCP in Chapter 4, the SAVE
command built into the CCP allows you to create a COM file by specifying the
number of 256-byte “pages” of memory and the name of the file. The CCP will

write out an exact image of memory from location 100H up.

Chapter 7: Building a New CP/M System 195

“.HEX” File Structure

HEX files are output by the assembler. They contain an ASCII character
representation of hexadecimal values. For example, the contents of a single byte of
memory with the binary value 10101111 would be represented by two ASCII
characters, A F, in a HEX file.

The HEX file has a higher level structure than just a series of ASCII charac-
ters however. Each line of ASCII characters is terminated by CARRIAGE
RETURN/LINE FEED. The overall structure is shown in Figure 7-6.

The most important aspect of a HEX file is that each line contains the address
at which the data bytes are loaded. Each line is processed independently, so the
load addresses of succeeding lines need not be in order.

DDT canread ina HEX file at an address different from the address where the
code must be in order to execute. For example, you can read in the HEX file of the
BIOS at the correct place for the memory image (shown in Figure 7-4). There are
two ways of using DDT to read ina COM or HEX file. You can specify the name of
the file on the same command line with DDT. For example:

A>DOT B:XYZ.HEX<cr> <= Call up DOT with file name

DDT VERS 2.0 - DDT signs on

NEXT PC

0180 0100 <= ... and displays next free byte

and entry point address
= ... and prompts for a commmand

The advantage of this method of loading a file is that you can specify which
logical disk is to be searched for the file. The second way of using DDT is to load
DDT first, and then, when it has given its prompt, specify the file name and request
that DDT load it like this:

~Ifilename.typ<cr> <— Enter the file name and type
-R<er> <—- Read in the file

The “I” command initializes the default file control block in the base page (at
location 005CH) with the file name and type; it does not set up the logical disk. If
you need to do this, you must set the first byte of the default FCB manually like

this:

-Ifilename.typ<cr> <— Specify file name
-88C<er> €<- "&"et location SC

Q0SC 00 QzLer> <~ Was 00, you enter 0z<cr>
005D 41 .<cr> <— Enter "." to terminate
-RLer?> - Read in the file

Location 005CH should be set to 01H for Drive A, 02H for B, and so on.
The “R” command will read in HEX files to the execution addresses specified
in each line of the HEX file, so be careful—if you forget to put an ORG (origin)

196 The CP/M Programmer’s Handbook

i

: 04 0152 00 64 00 01 80 BE

— —

T—‘Check sum formed by adding up all of the values 04, 01, 58, 00,
64, 00, 01 and 80 and then subtracting their sum from 00H

Data bytes to be loaded at the specified address

Record (line) type, normally 00

Load address for the data bytes on this line

Number of data bytes on this line (ASM uses 10H bytes)

Notk: HEX files do not have embedded blank characters; the example above is shown with
gaps between individual fields only for clarity.

Beginning of line marker (colon)

Figure 7-6.

Example line from HEX file

statement at the front of the assembly language source code, reading in the
resultant HEX file will overwrite location 0000H on up, destroying the contents of
the base page. Similarly, if you were trying to read in the HEX file for a BIOS,
there is an excellent chance that you will overwrite the currently executing CP/M
system.

DDT reacts to the file type you enter as part of the file name. For file types
other than .HEX, DDT loads the file starting at location 0100H on up.

The “R” command can also be used to read files into memory at different
addresses. You do this by typing a hexadecimal number immediately after the R,
with no intervening punctuation. For HEX files, the number that you enter is
added to the address in each line of the HEX file and the sum is used as the address
into which the data bytes are loaded. The data bytes themselves are not changed,
just the load address.

For COM files, the number that you enter is added to 0100H and the sum is
used as the starting address for loading the file.

The sum is performed as 16-bit, unsigned arithmetic with any carry ignored, so
you can load a BIOS HEX file into low memory by using the “R” command with
what is called an “offset value.”

If a HEX file has been assembled to execute at address “exec,” and you need to
use DDT to read in this file to address “load,” you need to solve the following
equation:

offset = load — exec.

DDT’s “H” command performs hexadecimal arithmetic. It calculates and
displays the sum of and difference between two hexadecimal values. For example,

Chapter 7: Building a New CP/M System 197

the BIOS in Figure 6-4 has been assembled to execute at location 0F600H, but
needs to be loaded into memory at location 1F80H. Here is how to compute the
correct offset for the “R” command:

-H1F80,Fa00<er> <= Use the H command
1580, 2980 {- Sum, difference

Thus, to read in the BIOS HEX file called FIG6-4.HEX at location 1F80H,
you would enter the following commands to DDT:

~-IFI1G&-4,.HEX<cr> <— Specify file name and type
-R2980<cr> <- Load at OF&00H + 2980H (= 1FR0H)

In this way, using DDT, you can read in the HEX files for both the BIOS and
the bootstrap loader.

The CP/M Bootstrap Loader

The bootstrap loader is brought into memory by PROM-based firmware in
the computer system. It loads in the CCP, BDOS, and BIOS and then transfers
control to the cold boot entry point in the BIOS—the first jump instruction in the
BIOS jump vector.

The bootstrap loader is a stand-alone program; it cannot make use of any
CP/M functions because no part of CP/M is in memory when the bootstrap loader
is needed. The firmware in the PROM that loaded the bootstrap may contain some
subroutines that can be used by the bootstrap, but this will vary from system to
system.

Figure 7-7 shows the bootstrap code for the example BIOS (from Figure 6-4).
This code has been written in a general way, so that you can adapt it to your
system. The disk controller on the example system can in fact read in multiple
sectors from the disk, but for generality the code shown reads in only one sector at
a time. This considerably increases the time it takes to load CP/M, but does make
the bootstrap loader more general.

Note that almost the first thing that the bootstrap does is to output to the
console a sign-on message. Not only does this confirm the version number, but it
shows that the bootstrap has been successfully loaded.

The PROM-based code has been designed to load the CP/M bootstrap into
location 100H, allowing the code to be debugged as though it were a normal
transient program, albeit with minor changes to the address at which it loads the
CP/M image from disk. Clearly, this feature is not very helpful if CP/M is being
brought up for the first time on a computer system. It helps a great deal, however, if
you need to modify the bootstrap or add the capability to boot your system from a
new type of disk drive.

198 The CP/M Programmer’s Handbook

H Example CP/M cold bootstrap loader
H This program is written out to track O, head 0, sector 1
H by the PUTCPMFS program.
H It is loaded into memory at location 100H on up by the
H PROM-based bootstrap mechanism that gets control of the
H CPU on power up or system reset.
3130 = Version EQU <017 sEquates used in the sign-on message
3730 = Month EQU Q77
3432 = Day EQU 247
3238 = Year EQU g2
12
Q000 = Debug EQU o ;Set nonzero to debug as normal
s transient program
H The actual layout of the diskette is as follows :
3 Track 0O Sector
H 1 2 3 4 = & 7 K] ?
3 Head + e +
;3 0 iBoot i< BDOS
3 1
H 10 11 12 13 14 15 18 17 18
H Sector
H Equates for defining memory size and the base address and
3 length of the system components.
Q040 = Memory$Size EQU &4 sNumber of Kbytes of RAM
H The BIOS Length must match that declared in the RIOS.
Q00 = RIOSsLength EQU Q900H
Q800 = CCP$Lenath EQU 0800H jConstant
QEQQ = BDOS$Length EQU QEOQOH ;Constant
0008 = LengthInk EQU ((CCP$Length + BDOS$Length + BIOS$Lenagth) / 1024) + 1
1F00 = LengthInBRytes EQU CCP$Length + BDOS$Length + BRIOS$Length
IF NOT Debug
EQQQ = CCP$Entry EQU (Memory$Size — LengthInk) = 1024
DIF
IF Debug
CCP$Entry EQU 3980H ;Read into a lower address.
;This address is chosen to be above
s the area into which DDT initially loads
;s and the 980H makes the addresses similar
s to the SYSGEN values so that the memory
; image can be checked with DDT.
ENDIF
EQ08 = BDOS$Entry EQU CCP$Entry + CCP$Length + &
F&00 = RIOS$Entry EQU CCP$Entry + CCP$Length + BDOS$Length
H Disk characteristics
H These equates describe the physical characteristics of
H the floppy diskette so that the program can move from
H one sector to the next, updating the track and resetting
H the sector when necessary.
Q001 = First$Sectorson$Track EQU 1
Q012 = Last$SectorsonsTrack EQU 18
Q009 = Last$SectorsonsHeadsO EQU ?
0200 = Sector$Size EQU 512
H Controller characteristics

Figure 7-7. Example CP/M cold bootstrap loader

Chapter 7: Building a New CP/M System

199

Q001

Q000
0002
0010

0100

0100

000D
Q00A

0103

011A
o11cC
0124
0126
0127
0129
012A
012C
012D
012F

0045
0044
0043

0132

0133
0134
0135
0136
0137
0138
013A
013C

O13E

0140

"
o we wn v (fy e we we we e

= StartsTrack EQU o] ;Initial values for CP/M image
= StartsSector EQU 2 3= " o=
= SectorsToRead EQU (LengthInRytes + Sector#$Size - 1) / Sector$Size
ORG 100H
Cold$BRoot$loader:
C24001 JMP MainsCode ;Enter main code body
;For reasons of clarity, the main
;3 data structures are shown before the
3 executable code.
= CR EQU ODH sCarriage return
= LF EQU OAH sLine feed
Signon$Message:
ODOA4ITORF CR,LF, “"CP/M Bootstrap Loader”
IF Debug
DR “ (Debug)”
ENDIF
ODOA DR CR,LF
SEE5727369 DB “Version
3031 jut) Version
20 DB e
3037 oW Manth
2F Ju] A
3234 oW Day
2F DB A
3832 W Year
ODOAQO DB CR,LF,0
H Disk Control Tables
= Disk$ControlsS EQU 435H 35 1/4" control byte
= Command$Block$S EQU 46H ;Control table pointer
= Disk$Status EQU 43H ;Completion status
H The command table track and DMA$Address can also be used
H as working storage and updated as the load process
H continues. The sector in the command table cannot be
i used directly as the disk controller requires it to be
H the sector number on the specified head (1 —— 9) rather
H than the sector number on track. Hence a separate variable
H must be used.
02 Sector: DR Start$Sector
o1 Command$Table: DR O1H s Command -- read
00 Unit: DR o] sUnit (drive) number = 0 or 1
00 Head: DR] sHead number = 0 or 1
Q0 Track: DB Starts$Track ;Used as working variable
00 Sector$onshead: DB (] sConverted by low-level driver
0002 BytesCount: DW Sectors$Size ®* Sectors$Per$Read
00EQ DMA$Address: W CCP$Entry
4300 Next¢Status: jul] Disk$Status sPointer to next status block
3 if commands are chained.
4500 Next$Control: oW Disk$Control$S ;Pointer to next control byte
;3 if commands are chained.
Main$Code:
310001 LXI §P, Cold$Boot $Loader ;Stack grows down below code

Qn this computer system, the floppy disk controller can read
multiple sectors in a single command. However, in arder to
produce a more general example it is shown only reading cne
sector at a time.

ectorsPerRead EQU 1

Cold boot characteristics

Figure 7-7. (Continued)

200 The CP/M Programmer’s Handbook

0143 210301 LXI H,Signon$Message 3Sign on
0144 CDDYO1L CALL Display$Message
0149 213301 LXI H, Command$Table ;Point the disk contrcller at
014C 224400 SHLD Command$Block$S ; the command block
014F 0QE10 MVI C,SectorssTosRead s;Set sector count
Load$lLoop:
0151 CD7BO1 CALL Cold$Root$Read sRead data intc memory
0154 OD DCR sDowndate sector count
IF NOT Debug
0155 CAQOQFé& JZ RIOS$Entry sEnter BIQS when load done
ENDIF
IF Debug
JZ o sWarm boot
ENDIF
0158 213201 LXI H, Sector sUpdate sector number
015B 3E01 MVI A, SectorsPerRead 3 by adding on number of sectors
015D 86 ADD M 3 by controller
O15E 77 MOV M, A ;Save result
015F 3E13 MVI A,Last$SectorsOn$Track + 1 ;Check if at end of track
0161 BE CMP M
0162 C26E01 JNZ NotEndTrack
0145 3601 MVI M,First$Sector$OnsTrack ;Yes, reset to beginning
0167 2A3601 LHLD Track sUpdate track number
016A 23 INX H
0148B 223401 SHLD Track
NotEndTrack:
018E 2A2A01 LHLD DMA$Address sUpdate DMA Address
Q0171 110002 LXI D, Sector$Size = Sectors$Per$Read
0174 19 DAD D
0175 223A01 SHLD DMA$Address
0178 Q35101 JMP Loads$Loop sRead next block
ColdsBoot$Read: sAt this point, the description of the
;3 operation required is in the variables
3 contained in the command table, alcng
3 with the sector variable.
Q017R CS PUSH B ;Save sector count in C
Change this routine to match the disk controller in use —-——---—
Q17C Q&00 MVI BR,0Q sAssume head O
017E 3A3201 LDA Sector ;Get requested sectar
0181 4F Mav C,A ;Take a copy of it
0182 FEOA CPI Last$Sectorson$Head$0+1 ;Check if on head 1
0184 DASRO1L Jdc Head$0 ;No
0187 D&O? sur Last¢SectorsonsHeads0 sBias down for head 1
0189 AF MOV C,A ;Save copy
018A 04 INR B sSet head 1
Head$0:
Q18R 78 MQV A B ;Get head
018C 323501 STA Head
Q18F 79 Mav A,C ;Get sector
0190 323701 STA Sector$0n$Head
0193 214300 LXI H,Disk$Controlss sActivate controller
0198 3680 MVI M, &OH
WaitForRootsComplete:
0198 7E MOV AM ;Get status byte
0199 B7 QRA A ;Check if complete
019A C29301 JINZ WaitForBootéComplete ;No
;Yes, check for errars
019D 3A4300 LDA Disk$Status
01AQ FERQ CPI 80H
01A2 DAA701 JC Cold$Boot$Error sYes, an error occurred
R End of physical read routine ————--—
Figure 7-7. (Continued)

Chapter 7: Building a New CP/M System 201

01AS C1 POP B sRecover sector count in C
01A8 C9 RET
Cold$Boots$Ervor:
01A7 21B001 LXI H,Cold$Root$Error$Message
01AA CDD?01 CALL Display$Message sO0utput error message
01AD C34001 JMP Main$Code sRestart the loader
Cold$Boot$Error$Message:
O01B0 ODOA426F&F DB CR,LF, "Bootstrap Loader Error - retrying...’,CR,LF,0
; Equates for Terminal Output
0001 = Terminal$Statuss$Port EQU O1H
0002 = Terminal$Datas$Port EQU 02H
0001 = Terminal$Output$Ready EQU Q000%0001B
H
Display$Message: sDisplays the specified message on the console.
30n entry, HL points to a stream of bytes to be
soutput. A OOH-byte terminates the message.
01D 7€ Mov AM 3Get next message byte
01DA R7 ORA A ;Check if terminator
O1DB C8 RZ ;Yes, return to caller
01DC 4F MQV C,A ;Prepare for ocutput
QutputNotReady:
01DD DRO1 IN Terminal$StatussPort ;Check if ready for output
01DF E&O1 ANI Terminal$Output$Ready
01E1 CADDO1 JzZ OutputNotReady 3No, wait
01E4 79 MOV A,C ;Get data character
01ES D302 ouT Terminal$DatasPort ;Qutput to screen
01E7 23 INX H sMove to next byte of message
01E8 C3D?01 JMP Display$Message ;Loop until complete message cutput
31 The PROM-based bootstrap loader checks
3 to see that the characters "CP/M"
s are on the diskette bootstrap sector
3 before it transfers control to it.
02EQ ORG 2EO0H
02EQ 43502FAD DB “CP/M”
02E4 END Cold$Bootsloader

Figure 7-7. (Continued)

In this case, the bootstrap code must be loaded at location 0780H, not the
normal 0980H, because the bootstrap takes a complete 512-byte sector (200H).
The same principle applies in determining the offset value to be used with DDT’s
“R” command to read the bootstrap HEX file, namely:

offset = load address — execution address.
In this case, the values are the following:
0680H = 0780H — 0100H

Using MOVCPM to Relocate the CCP and BDOS

MOVCPM builds a CP/M memory image at the correct locations for
SYSGEN, but with the instructions modified to execute at a specific address.
Inside MOVCPM is not only a complete replica of CP/M, but also enough

202 The CP/M Programmer’s Handbook

information to tell MOVCPM which bytes of which instructions need be changed
whenever the execution address of the image needs to be moved.

MOVCPM, as released from Digital Research, contains the bootstrap and
BIOS for an Intel MDS-800 computer along with the generic CCP and BDOS.
Unless you have an MDS-800, all you use is the CCP and BDOS. Some manufac-
turers have customized MOVCPM to include the correct bootstrap and BIOS for
their own computers; consult their documentation to see if this applies to your
computer system.

When you invoke MOVCPM, you have the following options:

- MOVCPM<cr>
MOVCPM will relocate its built-in copy of CP/M to the top of available
memory and will then transfer control to this new image of CP/M. Unless
your manufacturer has included the correct BIOS into MOVCPM, using this
option will cause an immediate system crash.

- MOVCPM nn<cr>
This is similar to the option above, except that MOVCPM assumes that nnK
bytes of memory are available and will relocate the CP/M image to the top of
that before transferring control. Again, this will crash the system unless the
correct BIOS has been installed into MOVCPM.

+ MOVCPM * x<cr>
MOVCPM will adjust all of the internal addresses inside the CP/M image so
that the image could execute at the top of available memory, but instead of
actually putting this image at the top of memory, MOVCPM will leave it in
low memory at the correct place for SYSGEN to write it onto a disk. The
SAVE command could also preserve the image on a disk.

- MOVCPM nn x<cr>
MOVCPM proceeds as above for the “# *” option except that the CP/M
image is modified to execute at the top of nnK.

MOVCPM has a fundamental problem. The nn value indicates that the top of
available memory is computed, assuming that your BIOS is small—less that 890
(380H) bytes. If your BIOS is larger (as is the case with the example in Figure 6-4),
then you will have to reduce the value of “nn” artificially.

Figure 7-8 shows the relationship between the size of the BIOS and the “nn”
value to use with MOVCPM. It also shows, for different lengths of BIOS, the BIOS
base address, the offset value to be used in DDT to read in the BIOS to location
1F80H (preparatory to using SYSGEN or PUTCPM to write it out), and also the
base addresses for the CCP and the BDOS. The base address of the BDOS
indicates how much memory is available for loading transient programs, as the
CCP can be overwritten if necessary.

The numbers in Figure 7-8 are based on the assumption that you have 64K of
memory in your computer system. If this is not the case, then proceed as follows:

Chapter 7: Building a New CP/M System 203

1. Convert the amount of memory in your system to hex. Remember that 1K is
1024 bytes.

Determine the length of your BIOS in hex.

3. Locate the line in Figure 7-8 that shows a BIOS length equal to or greater
than the length of your BIOS.

4. Usingthe “H” command in DDT, compute the BIOS Base Address using the
formula:
Memory in system — BIOS length from Figure 7-8

5. Find the line in Figure 7-8 that shows the same BIOS Base Address as the
result of the computation above. Use this line to derive the other relevant
numbers.

It is helpful to use DDT to examine a CP/M image in memory to check that all
of the components are correctly placed, and, in the case of the CCP and BDOS,
correctly relocated.

Figure 7-9 shows an example console dialog in which DDT is used first to
examine the memory image produced by MOVCPM and second to examine the
image built into the PUTCPMF utility shown in Figure 7-5.

BIOS
Length

&00

AQOO

EOO
1200
1600
1A00
1E00
2200
2600
2A00
2E00
3200
3600
3A00
3E00
4200
4600
4A00
4E00
5200
5600
SA00
SEO0O
6200
6600
&A00

BIOS DDT MOVCPM ccp BDOS
Base Offset ‘nn’ Base Base
FAOO 2580 44 E400 ECOO
F600 2980 63 EO00 ES00
F200 2080 62 Dcoo E400
EEOO 3180 61 D800 EO00
EAOO 3580 40 D400 DCOO
E400 3980 59 DOOO D800
E200 3080 58 cCoo D400
DEOO 4180 57 €800 D000
DAOO 4580 56 €400 CCoo
D600 4980 55 €000 €800
D200 4D80 54 BCOO €400
CEOO 5180 53 B300 co00
CA0O 5580 52 B400 BCOO
€600 5980 51 EO00 B80O
€200 5080 50 ACOO B400
BEOO 6180 49 AS00 BOOO
BAOO 6580 48 A400 ACOO
B600 6980 47 AO0O AB00
B200 4080 46 9C00 A400
AEOO 7180 45 9800 A00O
AAOO 7580 44 9400 9C00
AG00 7980 43 9000 9800
A200 7D80 42 aCo0 9400
9E00 €180 a1 2800 9000
9A00 8580 40 2400 8C0O0
9600 2980 29 8000 8800

Apart from the MOVCPM ‘nn’ value all other values are in hexadecimal

Figure 7-8.

CP/M addresses for different BIOS lengths

204 The CP/M Programmer’s Handbook

Call up MOVCPM requesting a “&3K’ system
and the image to be left in memcry.
A>Mavcpm &3 =der:
CONSTRUCTING 43k CP/M vers 2.2
READY FOR "SYSGEN" OR

"SAVE 24 CPM&3.COM"

Save the image from location 100H up. By
convention, the file name is CPMnn.COM, so
in this case it will be CPM&3.COM

A>Save 34 cpm
Call up DDT and request that it read in
CPM&3.COM

A>ddt cpmé

DDT VERS 2.2

NEXT FC

2300 0100

Display memory to show the first few bytes of
the CCP. Note the two JMP (C3H) instructions,
followed by 7FH, OOH, 20H“s, and the Digital
Research Copyright notice. These identify the
code as being the CCP. Note that the first
JMP instruction is to 35CH into the CCP -- you
can therefore infer the base address of the
CCP. In this case the JUMP is to locat; on E35C,
therefore this version of the CCP has been
configured to execute based at EQQOH.
4780, Yefiar>
Q980 C3 SC E3 C3 S8 E3 7F Q0 20 20 20 20 20 20 20 20 .\..X...
0990 20 20 20 20 20 20 20 20 43 4F S0 59 52 49 47 48 COPYRIGH
QAPA0 54 20 2R 43 29 20 31 IP I7 3IP 2C 20 44 49 47 49 T (C) 1979, DIGI
Q9RO S4 41 4C 20 52 45 53 45 41 52 43 48 20 20 00 00 TAL RESEARCH ..
Q9CO 00 00 Q0 00 Q0 00 00 00 00 00 00 00 00 00 00 Q0ccvvevnnnnren

Display the first few bytes of the BDOS. Note
the JUMP instruction at 118&. This is the
instruction to which control is transferred
by the JMP in location 5.

-d1180, 118F<cr>

1180 00 14 00 00 09 85 CR 11 ER 99 EQ® AS E® AR E8 Blcvveecnacns
Displaying further up in the BDOS identifies
it unambiguously —- there are some ASCII error
messages.

Ler>

DC E® CD ES E8 C2 00 Q0 42 &4 6F 73 20 45 .!........Bdos E
1240 72 72 20 4F &E 20 20 3A 20 24 42 &1 64 20 S3 &5 vr On : $Bad Se
1250 &3 74 &F 72 24 53 &5 &C &5 63 74 24 46 &9 &C 65 ctors$Selects$File
1240 20 S2 2F 4F 24 ES CD C9 E9 3A 42 EB Cé 41 32 C6 R/0%$....:B..AZ.

Display the first few bytes of the BIOS.

Notice the BIOS JUMP vector -— the series of C3H

instructions. Normally the first instruction

in the vector can be used to infer the base

address of the BRIOS; in this case it is

FGOOH. But there is no rule that says that

the cold boot code must be close to the BIOS

JMP vector —-- so this is only a rough guide.
~d1f3¢
1F80 C & C3 C3 Fé C3 61 F7 C3
1FP0 &D F7 ©3 72 F7 C3 75 F7 C3 78
1FAQ F7 C3 AC F7 C3 BR F7 C3 Cl1 F7
1FBO C3 B1 F7 82 F& 00 00 00 00 00
{FCO F? EE F& 82 F& 00 00 00 00 Q0
{FDO F? 1D F® 82 F& 00 00 00 00 00
L{FEO F9 4C F® 82 F& 00 00 00 00 00
L{FFO F® 7B F® 1A 00 03 07 00 F2 00
2000 02 00 01 Q7 OD 13 19 05 OB 11
2010 OB QE 14 1A O& OC 12 18 04 QA 10 16 OD 0A 0A 36 ..ivivrernnnneab
2020 33 4B 20 43 SO 2F 4D 20 76 &5 72 73 20 32 2E 32 3k CP/M vers 2.2
2030 OD OA Q0 31 00 01 21 9C F& CD D3 F7 AF 32 04 00 ...1..'......2..
A

Figure 7-9. Using DDT to check CP/M images

Chapter 7: Building a New CP/M System 205

In contrast, load DDT and request that it
load the PUTCPMFS.COM program.

2900 0100
Display the special bootstrap loader that
starts at location 0780H (compared to the
MDS-200 bootstrap which is at 0930H). Note
the sign-on message.

—d780, 7afory

0780 C3 40 O1 OD OA 43 SO 2F 4D 20 42 &F &F 74 73 74 .@...CP/M Bootst
0790 72 &1 70 20 AC &F &1 &4 &5 72 OD OA S& &5 72 73 rap Loader..Vers
07A0 69 &F &E 20 30 31 20 30 37 2F 32 34 2F 33 32 OD ion 01 07/24/82.

Confirm that the CCP is loaded in the correct
place. Check the address of the first JMP
instruction (QE3SCH).

0980 C3 SC E3 C3 S8 EX 7F 00 20 20 20 20 20 20 20 20 .\..X...

0990 20 20 20 20 20 20 20 20 43 4F S0 59 52 49 47 48 COPYRIGH
0PA0 S54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49 T (C) 1979, DIGI
O9BO 54 41 4AC 20 S2 45 53 45 41 52 43 48 20 20 00 00 TAL RESEARCH ..

Confirm that the BDOS is alsc in place.
-d1180,118f<cr >
1180 00 16 00 00 09 85 C2 11 E8 99 ER AS ER AR ER Bl ...cuvcverernnanes

Confirm that the BIOS has been loaded in the
correct place. Check the first JUMP to get
some idea of the BIOS base address. Note the
sign-on message.

E - FE C3 62 F8 C3 78 FR C3 88 F8 €3 ..
1F90 A4 F8 C3 B4 F8 C3 CS F8 C3 B& FBR C2 OE FB C3 3B
1FAO0 FBR C3 41 FBR C3 43 FR C3 DE FB C3 F8 FR C3 94 F8 ..
1FBO C3 BO FB ED 04 00 Q0 00 42 &E 25 DF 01 Bé DE 02
1FCO 38 00 Q0 43 S0 2F 4D 20 32 2E 32 2E 30 30 20 30 8..CP/M 2.2.00 0
1FDO 37 2F 31 35 2F 38 32 0D QA 0A 53 &9 &D 70 &C &5 7/15/82...Simple
1FEO 20 42 49 4F 53 OD OA OA 44 &9 73 &B 20 43 6F éE BIOS...Disk Con
1FFO 66 &9 67 75 72 61 74 &% &F &E 20 2A OD 0A OA 20 figuration :...
2000 20 20 20 20 41 3A 20 30 2E 23 235 20 4D 42 79 74 A: 0.35 Mbyt
2010 65 20 35 22 20 46 &C &F 70 70 79 OD OA 20 20 20 e 5" Floppy..
2020 20 20 42 3A 20 20 2E 33 35 20 4D 42 79 74 65 20 B: 0.35 Mbyte
2030 35 22 20 46 &C &F 70 70 7% OD OA OA 20 20 20 20 5" Floppy...

-

AS_

Figure 7-9. Using DDT to check CP/M images (continued)

Putting it all Together

Figure 7-10 shows an annotated console dialog for the complete generation of
a new CP/M system. Note that the following file names appear in the dialog:

BIOS1.ASM Figure 6-4.
PUTCFMFS. ASM Figure 7-S.
BOOTFS. ASM Figure 7-7.

206 The CP/M Programmer’s Handbook

CP/H AaSENBLER - VER 2.0
02E4

004H USE FACTOR

END OF ASSEMBLY

Crasm putcpmfS,

CP/M ASSEMBLER - VER 2.0

o10B
QO3H USE FACTOR
END OF ASSEMBLY

C>asm bicsl.cczicr>
CP/M ASSEMBLER ER 2.0
FE&C

011H USE FACTOR

END OF ASSEMELY

Crddt cpméX.
DDT VERS 2.2
NEXT FC
2300 0100

2300 0100

NE}T'“FE_
2300 0100

Assemble the CP/M Ecotstrap Loader,
with the scurce code and HEX file
on drive C:, no listing cutput.

Assemble the PUTCPMFS program (that
writes CP/M onto the disk), with
the source code and HEX file on
drive C:, no listing output.

Assemble the BIOS with the source
code and HEX file on drive C:, no
listing output.

Start piecing the CP/M image
together. Load DDT and ask it to
read in the file previously SAVEd
after a MOVCPM &3 =.

Indicate the file name of
PUTCPMFS.HEX, and read in without
any offset (i.e. it will load at
100H because of the ORG lOﬂH 1!
contains). -iputcpmf3.hs

Indicate the file name of
BOOTFS.HEX and read in with an
offset of &30H to make it load at
780H on up (it contains ORG 100H
toc) .

Indicate the file name of the BIOS
HEX file, and read it in with an
offset of 2980 such that it will
load at 1FSOH (it contains an ORG
OF 600H) .

Exit from DDT by going to location
Q000H and executing a warm boot.

Save the complete CP/M image on
disk. Saving 40 256-byte pages from
location 100H to 2900H.

Figure 7-10. Console dialog for system build

Chapter 7: Building a New CP/M System 207

Load and execute the PUTCPMFS
program.
CoputcpmfS<er>

PUTCPMFS signs on

Put CP/M on Diskette

Version 01 07/24/82
and writes the CP/M image to
disk.

o>

Figure 7-10. Console dialog for system build (continued)

