Preface

This volume is intended to be used together with the PBOOM publications concerning
programming,

Part 1 describes in great detail the powerful instruction set for the PBOOM computers
and shows the programmer the functional operation, the syntax, the setting of the
condition register, the instruction time and examples.

The instructions are grouped in the following operational categories :

Load ang store instructions
Arithmelic instructions
Logical instructions
Character handling instructions
Branch instructions

Shift instructions

Table handling instructions
External 1ransfer instructions
Control instructions

170 inslructions

String instructions

Table of Contents
Preface 1
PART 1 INSTRUCTION SET
Chaepter 1 Introduction 1.1
Key 1o symbaols used in the Instruction Set 1.1
Instruction Formats 1.2
Registers 14
Type of Instruction 1.5
Software Simulation of Instructions 1.6
Chapter 2 Load and Store Instructions 1.7
Chapter 3 Arithmetic Instructions 1.21
Chapter 4 Logical Instructions 1.61
Chapter 5 Character Handling Instructions 1.73
Chapter 6 Branch Instructions 1.83
Chapter 7 Shift Instructions 1.89
Chapter’ 8 Table Handling Instructions 1.115
Chapter 9 External Transfer Instructions 1.119
Chapter 10 Control Instructions 1.131
Chapter 11 Input/Output Instructions 1.137
Chapter 12 String Instructions 1.151

PART 1 INSTRUCTION SET

vt

1 Introduction

Key to symbols used in the instruction set

Label Identifier, or label, consisting of max. 6 characters of which the first must
always be a letter,
All instructions, and most of the assembler directives, may be preceded by a
label.

* Asterisk, Indicates:
— indirect addressing
—~ current value of location counter

1] The syntactic item(s) between these brackets may be omitted

b Choose one of the items botween these brackets

r1 Register A1 ... A15

r2 Register A1 ... A15. Used as an index register in memory reference instructions.

r3 Register A1... A?

m Memory expression

k Constant in bits 8~15 (short constant)

Ik Constant or address in bits 0—15 of the word following the instruction (long
constant)

P P-register, (Instruction counter)

™ Register to register operation.

T2 Long constant instruction,

T3 Register addressing.

T3A Register r2 is not the stackpointer A15

T3B Register r2 is the stackpointer A15

TxS The result must be stored in memory

T4 Direct addressing

T5 Indexed addressing

T6 Indirect addressing

T7 Indirect indexed addressing

T8 Short constant instruction

I/s Load/store indicator. Load: hit15=0

Store: bit15=1

MD Addressing mode

IS Lagical AND

W Logicul OR

v Exclusive OR

.- Cornpar%p

! Divide

X Multiply

+ Add

Instruction formats

Machine instructions conform to ane of the following two formats:
— format O

— format 1.

Format 0 instructions

Instructions of this type consist of one word, where the 16 bits indicate the following
functions :

bit o 1 4 5 7 8 15
0 opcode r3
CND
where
bit O — indicates the instruction format
bits 1-4 — operation code
bits 5-7 — ane of the registers A1—A7 or the condition value in a Branch instruction.
bits 8—15 — the contents of this field varies according to the type of instruction and

may contain one of the following values;

— an 8-bit pasitive constant (constant instruction}

— an even displacement value (branch instruction}
—an indication of the shift raquired (shift instruction)
- device address (1/0 instruction) + functian bits

— tixed parameters (miscellaneous instruction)

L2

Format 1 instructions

Format 1 instructions perform a number of operations by reference to two of the 16
registers available for user access: one of these registers may point to a data item either
in a word following the instruction or elsewhere in memory as it is possible to use that
register as an index register.

bit 0 4 5 7 8 9 10 1 14 15
1 opcode rl MD] r2 [I/s
CND
gy gy Sy
: aperand m of Ik {2 words for DAK and DSK) K
!_ e e e
where:
bit 0 — indicates the instruction forrnat
bits 1-4 — operation code
bits 5—8 — ona of the registers A1 . .. A15 specified as follows:

registers A1 ... A7 are in group 0 and registers A8 .., A15 are in group 1.
The group to which a register beiongs is indicated by hit 8.
This may be either O (group 0) or 1 (group 1)
— in branch instruction, however, bits 5 1o 7 inclusive indicate a condition

value and bit 8 is not used.

bits 9-10 — addressing mode cade. These bits will specify direct or indirect addressing,
i.e. whether the word following the instruction, or anather memory word,
has tg be taken into account.

bits 11—14 — the numbur of one of the 16 registers, expressed in the same way as in bits
5-8.

bit 16 — load/store indicator. Used in certain instructions to indicate that the result
of the operation is 1o be placed either in the reyister shown by bits 58
{15 = 0) or in a rmemory word (l/s = 1}.

This type of instruction may be followed by a data word {16 bits) containing an address (m)
or a positive or negative value. In the case of an address, bit 15 is not significant, except for
character handling instructions,

The binary values of bits 5 through B in r1 and 11 through 14 tor r2 are: 42 18, and in
3 421,

Example: A3 inr1 orr2 iswritten 3s 0110and A12 as 1001. For r3 this is 011,
A12 cannot be specified in the field r3.

/

1.3

Registers

16 registers are available for use by the programmer. These 16 registers, which have the
predefined symbols AO through A15, are called the scratchpad. They may be addressed
from either the instruction being carried out or from the toggle switches on the control
panel.

The specific designation of registers within the scratchpad is:

P-register {AO)

This register is used to hold the address of the next instructian to be executed. It is
incremented in steps of two if the program is to carry out in sequence, aor altered to
hold the required new address if a twranch is to be performed.

The instruction counter {P) points always already to the next instruction before
execution of an instruction.

Waorking registers (A1—A14)
The working registers may be used in any of the following ways:

— as accumulator where the data to be processed can be found in a register,

- as painters where the contents of the specified registers contain the aperand
address rather than the operand itself.

— as index registers where the contents of the specified registers and the contents of
the word following the instruction are summed to praduce the operand address.

Register A15

This register 15 used by the interrupt system as the stackpointer and, as such, it is
updated by the system whenever it is used for remory addressing.
It may be addressed by instruction in the same way as the registers A1 through A14.

1.4

Type of instruction

The instruction in the instruction set may use various methods of forming one of the
operands to be used. To make a clear distinction between these methods, each instruction
in the instruction set description has received a notation T1 thru T8 to indicate the

manner in which the operand is formed. The latter is usually governed by the values of the
format, address mode and the r2 field (bits 11 thru 14) in the instruction, The result of this
operation may be an address which is called the effective memory address.

Type Format | Mode| r2 field | Description

T 1 00 #0 Register to register operation

T2 1 01 0000 Long constant instruction

T3 1 01 v 0 Address in register r2

(T3A) {The register specified is not A15]
(T38) {The register specified is A15)

T4 1 10 | 0000 Address in next word (direct addressing)
75 1 10 #0 Indexed addressing

T6 1 1 0000 Indirect addrcssin§

T7 1 1 #0 Indexed indirect addressing

T8 0 - - Short constant

T'1 Register ta registar operation
The operand is the value in the register specified by r2.

T2 Long constant instruction
The operand is the value contained in the least significant word of the double length
instruction.

T3 Address in register

The operand is held in memory. The m%ry address of the operand is the value in the
register specified by 2,

T3A 2 # A15

T3 r2 = A1S

T4 Address in next word (direct addressing)
The operand is held in memory. The memory address of the operand is the value in the
least significant word of the double length instruction.

T5 Inddexed sddress in next word (indexed addressing)

The operand is held in memory. The memory address of the operand is faurd by adding
the valuu in the register specified by r2 to the value in the least significant word of the
double length instructian.

1.5

2 Load and Store Instructions

Load register LD P85 1M

P852M.
P856M
P857M

Syntax: [labellu LD [*)or1, m [,r2]

The contents of the register specified by r1 are replaced by the contents of
the eftective memory address. This effective memary address can be found

as follows:
Type Functron MD Syntax
T4 {m) ~ 10 LD fr1,m
T5 {m+ (r2)) .1l 10 LD ri,m,r2
T6 {{m)) .l 1 LD*r1,m
T7 {m+(r2))) - n n LD r1, m,r2
Condition
register: CR = 0if(r1}=0
1if(r1)>0
2if(r1) <0
bit 0 4 5 8 9 10 N 14 15
1/0000 r MO | r |o
Remark:

Restricted to system modse if r1 = A15.

—_

-

LDR

Syntax:

Condition
register:

Load register/register LDR

P851IM

[label] LDR [*)e.r1,r2

P852M
P8EEM
P857M

The 186 bits of the register specified by r1 are replaced either by the
contents of the register specified by r2 (direct addressing) or by the
contents of the effective memory address which can be found in the
register specified by r2 {indirect addressing). In the last addressing mode,
if r2 specifies the A15 register, the latter is assumed to be the stack, In
this case, the pointer is updated (i.e. incremented by one word to point

to the latest entry) before the transfer of data occurs.

Type Function MD Syntax
T {r2) -+ rt 00 LDR r,r2
T3A {{r2}) -rl 01 LDR®* r1,r2
T38 {A15) + 2+ A15, ({{A15)) —~ rl o LOR* r1,A15
CR =0if{r1)=0
1if(r1}>0
2it{r1} =0
bit 0o 1 4 5 8 9 10 11 14 15
1foooo] n Mp | Jo
Remark:

Restricted to system mode if r1 = A15 or if type 3B.

LDK LOK P851M
LDKL Load constant LDKL PB52M
PB56M
P85S7M
Syntax: [label] L LDK i r3, k - T8
[label] o LDKL L 1, 1k -T2
T8 The positive constant k is loaded into bits 8 through 15 of the
register specified in r3. The bits O through 7 are reset to zero.
T2 The pasitive or negative constant, which can be found in the
word foliowing the instruction, replaces the contents of the
register specified by r1.
Type Function Syntax
T8 K= r3ps 0 3o, LDK 3,k
T2 Ik -vr1 LDKL 1,1k
Condition
register: T8 Unchenged
T2 CR = 0iflk=0
11flk=>0
2iflk <0
bit 0 1 4 5 78 15
18 [0[0 0 0 0] 3 | k
bit 0 1 4 5 8 9 10 M 14 15
12 [1[00 0 0] n Jo 1Joo o ofJo
Remark:

Restricted to system mode if r1 = A15.

1.9

ST Store register ST P85S 1M
P852M
PBSE6M
P857M

Syntax: (tabells ST [«)_r1, m [, r2]

The 16 bits of the register specified by r1 replace the contents of the
effective memory address.

Type Function MO Syntax

T4 {r1) - m 10 ST ri.m

T5 (r1) - m+ (r2) 10 ST r1,m,r2

T6 (r1) ~ (m) 1 ST* r1,m

T? (r1) = (m + (r2)) 1 ST® r1,m, r2
Condition
register: Unchanged

bit 0 1 4 5 8 9 10 1N 14 15

10000 n | Mo | [1
Remark:

Restricted to system mode if r1 = A15,

Syntax:

Condition
register:

Store registeriregister STR PB51M
P852M
P856M
P857M

flabell, s STRw:r1,r2

The 16 bits of the register specified by r1 replace the contents of the
memory address indicated in the register specified by r2 (indirect
addressing). If A15 (stack pointer) is specified by r2 it is updated.

Type Function Syntax

T3A (r1) ~ (r2) STR (1, r2

T38 (r1) » (A15), {A15} -2 - A15 STR r1, A15

Unchanged

bit 0 1 4 5 8 9 10 N 14 15

1o o0 o0 o] rn |o1| r2j

Remark:

¢ Aninterrupt ‘stack ovorflow’ is generated when, for T3B type, the
address reached by the pointgf = <</100. Bit 13 is set to 1in PSW.

* Restricted to system mode if(r1 = A15 or if type 3B.

L

ML

Syntax:

Condition
register:

Multipte load ML P851M
P852M | (softw.
P856M
P857M

(labelhos ML [*]un, m [, r2]

The contents of n consecutive registers (the first one being A1) are
replaced by the contents of n consecutive memory locations (the first
location is indicated by the effective memory address).

Type Function MD Syntax

T4 (m) ... (m + n) - Al..An 10 ML nm
T5 [4 {r2}} oo (M 2 {r2) + n) - Al..An 10 ML n,m,r2
T6 {{m}) ... ((m) + n) + Al An 1N ML® n,m
T7 (Um+(r2)}) ...{im+{r2))+n} - Al.. An 11 ML* n,m,r2

n = number of registers (1 through 15}

CR = 0if(All~0

1if (A1) > 0
2t (A1 <0
bt 0 1 4 8 8 9 10 11 1415
1o 1 1] n Mo | n lo
Remark:

Restricted to system mode if n = 156.

.12

MLK Multiple load constant MLK PES 1M
P852M | (softw. sim
P856M
P857M

Syntax: [label] _ MLK _n

The contents of n successive registers are replaced by n values which must
be given immediately after this instruction by means of a data statement.
If n = 0 the instruction is trapped.

Type Function Syntax
T2 Ik1,1k2,.... Ikn -~ A1,A2 ., An MLK n
DATA x,...,xn
n = number ot registers (1 through 15)
Condition
register: CR - 0if(A1)=10
1if (A1})>0
2it{A1} <0
bit 0 1 4 5 8 9 10 N 14 15
1o 11| n L01|oooo|o
Remark:

Restricted to system made if n = 15.

113

MLR Mufltiple load/register MLR PBS1M
P852M
P856M
P857M
Syntax: [label] W MLR L n, 2
The contents of n consecutive registers (the first one being A1), are
replaced by the cantents of n consecutive memory locations. The first
address of those locations is indicated by the contents of r2.
If r2 is the stackpointer A15, the system stackpointer is updated.
Type Function Syntax
T3A {{r2)) - A1 MLR n,r2
{r2) +2) » A2
((r2) +2n - 2| = An
T3B (A15) +2n - A15 MLR n, A15
((A15}) - A1l
(tA15) —2) - A2
{({A15) —2n+2} — An
n = number of registers (1 through 15)
Condition
register: CR - 0it{A1}-0
1if(A1) >0
2if(A1) <0
bt 0 1 4 5 10 N 14 15
[vTo 1 v 1] n D [o

Remark:

* Restricted to systemm mode if n= 15 or if r2 = A15
* 1f 3B type, the contents must be even (P85 1M).

{softw, sim)

Syntax:

Condition
reijister:

Multiple store MS PES1IM
P852M | (softw. sim)
P856M
P857M

(label] LMS (*] _n,m[,r2)

The contents of n consecutive memory locations (the first one is given by
the effective memory address) are replaced by the contents of n consecutive
registers.

Type Function MD Syntax

T4 Al . An-m,.. m+n 10 MS n.m
T5 Al. . An>m+(r2),.., m+{r2) ¢n 10 MS n,m,r2
T6 Al. . An—-(m),...(m+n 1 MS®n, m
T7 Al..,An~(m+(2)),...Im+(2))+n 11 MS*n, m, r2

n = number of registers (1 through 15)

Unchanged

bit 0 1 4 5 8 9 10 n 14 15
1o 1 11 n [MD] r2 1

Remark:

Restricted to system mode if n = 15,

115

MSR

Multiple store register MSR PESIM

Syntax:

Candition
register:

P852M
P856M
PB57M

|label] _ MSR _n, r2

The contents of n consacutive registers (the first one is register A1) replace
the contents of n consecutive memory lacations. The first address of those
locations is specified in r2. If r2 = the system stackpointer A15, the stack-

pointer is updated by the contents of n registers.

Type Function Syntax

T3A {A1) - (r2) MSR n,r2
(A2) - (r2) +2
{An}) -~ {r2) +2n -2

T3B (A1) - (A15) MSR n, A15
(A2) - (A15) -2
(An) - (A15) -- 2n +2

(A18) —2n - (A15)

n = number of registers {1 through 15)

Unchanged

it 0 1 4 5 8 9 10 N 14 15
1[0111] n [01] ZE

Remark:

® Aninterrupt ‘stack overflow’ is generated when, for type T38B, the
address reached by the pointer = </100. Bit 13 in PSW is set to 1.

° Restricted 10 system mode when n = 16 ar r2 = A15.

¢ 11 3B type, the A15S contents must be even (PBSTM).

(softw. sim

EL

Syntax:

Condition
register:

Extended load (MMU option)

(label] - EL [+] L1, m [, r2]

EL

P857M

The 16-bit contents of the effective memory address, specified in m and
translated by the MMU, are loaded in register r1,

Type Function MD Syntax
T4 {m} extended -l 10 EL r1,m
T5 {m + {r2)) extendead - r1 10 EL r1,m,r2
T6 {{m)) extended -rl 1 EL* 1, m
T7 {(m + {r2))) extended - ri 1" EL* 1, m, r2
CR =0if(r1)=0
1if(e1)>0
2i(r1)<0
bit 0 1 4 5 8 9 10 11 14 15
11 o0o10] n [mo] r2 [o

Remark:

This instruction may only be used in system mode.

.17

ELR

Syntax:

Condition
register:

Extended load/reg. (MMU option) ELR

P8S7M

[label} ~ELRr1, 12

The 16-bit contents of the effective memory address pointed to in register

r2, and translated by the MMU, are loaded in register r1,

Type Function
T3 {{r2}) extended - r1

CR =~ 0if(r1) -0
1if(r) >0
2if(r1)<o0

hit 0 4 5 8 9 10 N

14 15

1ﬁo10 r Jo1f 2

To

Remark:
This instruction may only be used in system mode,

1.18

ES

Syntax:

Condition
register:

Extended store (MMU option) ES P85S7M

[tabel] L ES (=) rt, m [, (2]

The 16-bit contents of register r1 replace the contents of the effective
memory address as translated by the MMU.

Type Function MD Syntax

T4 (r1) -~ m, extended 10 ES n,'m

TS5 (r1) = m + (r2}, extended 10 ES 1, m, r2
T6 {r1) -» {m), extended 1 ES* r1,m

T7 {r1} - {m + {r2)), extended 1" ES" r1,m, r2
Unchanged

bit 0 1 4 5 8 9 10 N 14 15

11010 o [Twm [K

Remark:
This instruction may only be used in system mode.

118

ESR

Syntax:

Condition
register:

Extended store/reg. (MMU option) ESR

P857M

[label} ., ESR_ r1, r2

This instruction replaces the contents of the memory address specified
in r2, and translated by the MMU, by the 16-bit contents of register r1.

Type Function

T3 (r1) - (r2) extended
Unchanged
bit

14 15

4 5 8 9 10 1N
II r2

0 1
1J101o[rtjo

Remark:
This instruction may only be used in system mode.

1.20

LD LDA Pas3

A Load address PB4
PB858
PB59

Synlax. {tabel] LDA r1.D.r2

This instruct:on loads the address specified in r2. incremented by the value D
from the seccnd instruction word. into the register specified by r1.

Type Function

T (r2)+ D = 1
Condition
register. Unchanged
bit g 1 45 1 B9 0 1 14 15
[o fl lo ol 2 | o
D
Remark

* r1 mustbe rQ
* restncled to system mode ifr1 <« A15

1.20A

1.208

3 Arithmetic Instructions
ADK ADK PB51M
ADKL Add constart ADKL P852M

P856M
P857M

Syntax: [label)] L ADK w13, k T8

|labet]) _ ADKL wrl, 1k —T2

T8 The positive constant k is added to the contents of the register
specified in r3. The result of the addition is placed in r3.

T2 The positive or negative constant |k is added to the contents of
the register specified in r1. The result of the addition is placed
inrl,

Type Function Syntsax

T8 (r3)+k - r3 ADK 3,k

T2 {ri) +1lk -+ rt ADKL r1, |k

Condition

register: CR = QOifresult=0

1if result>> 0
2ifresult< 0
3in case of overflow

bit 0 1 4 5 7 8B 15

18 {000 1 0] 3] k

bit 0 1 4 5 8 9 10 N 14 15

T2 [1|{oo v o] n Jo 1Joooofo

Remark:
Restricted to system mode if r1 = Als.

L2

ADR . , . ADR PB5S1M
ADRS Addition register/register ADRS PB52M
P856M
P857M
Syntax: (labet] ADR [*) 1,12
[label) L ADRS L 1,12
The contents of the register specified by r1 are added either to the contents
of the register specified by r2 (direct addressing), in which case the sum is
always placed in the register specified by r1, or to the contents of the
memory address indicated in the register specified by r2 (indirect addressing).
In that case the sum is placed either in the register specifiad by r1 (the I/s
indicator being 0) or in the memory address {l/s = 1],
Type Function MD /s Syntax
T (r)+(r2)-~r1 00 n.s. ADR r1,r2
T3 (r1) + ({r2}) -+ 1 01 0 ADR* r1,r2
T3 (r1) +((r2)) -~ (r2) o1 1 ADRS r1,r2
Condition
register: CR =0 ifresult=0
1 ifresult >0
2 ifresult < 0
3 in case of overtlow

bit 0 1 4 5 B 9 10 11 1415
1{00 10 r [mD 2 Jus

Remarks:
* When l/s = 1 (store), r1 must be # 0.
* Restricted to system made if r1 = A15.

1.22

AD
ADS

Syntax:

Condition
register:

- AD FE5TM
Addition ADS PBS2M
PB56M
PB57M

[1ebel] L AD (S][*]r1, ml, r2]

The contents of the affective memory address are added to the contents of
the register specified by ri,

The sum is placed either in the register specified by r1, in which case the
load/store must be 0, or in the effective memory address when the load/
store indicator is 1.

Type Function MO IS Synrax
T4 (r1Y+({m) -l 10 0 AD rl, m
T4 riy+(m) - m 10 1 ADS ri,m
T5 (F1)+(m +(r2)) - r1 10 0 AD rl,m,r2
T5 (P)+(m +(r2}) = m +(r2) 10 1 ADS r1,m,r2
T6 (r1) + ({m}) - rl 1 0 AD®* I'm
T6 (r1) + {{m})) -»(m) 1 1 ADS* n1,m
T7 (r1) ¢+ (lm +(r2))) = r1 1 0 AD* 1, m, 2
T7 (r1)y+((m +(r2)) +{m +(r2)) N 1 ADS® r1,m,r2
CR = 0 ifresuit=0

1 ifresult >0

2 ifresult <0

3 in case of overflow
bit 0 1 4 5 8 9 10 N 14 15

1]oo0 1 0] r | Mo | 2 s
Remarks:)
* Whenl/s=1,r1 mustbe ¥ 0.

* Restricted to system mode if r1 = A15,

1.23

IMR

Syntax:

Condition
register:

Increment memory /register

[label].s IMR i r2

IMR

P851M
PB52M
PBS6M
P857M

The contents of the effective memory address indicated in the register

spacified by r2 (indirect) are increased by one.

Type Function Syntax

T3 ({r2)} + 1 (r2} IMR

CR =0 ifresult=0
1 ifresult> 0
2 ifresult <0
3 in case of overflow

bit o 1 4 5 8 8

r2

10 11

14 15

1Joo10[0 00 0]0

1]

r2

1.24

Syntax:

Caondition
register:

Increment memory

(1abel] o IM [¢] _m [, r2]

P851M

PB52M
P856M
P857M

This instruction increases by 1 the contents of the effective memory
address, after which the value of the effective memory address is replaced

by the new value.

Type Function MD Syntax
T4 (m)+1 - m 10 M m
T5 (m +4{r2)] +1 + m +(r2) 10 IM m, 2
T6 {((m)) +1 - {m) 1" IM®* m
T7 (m +(2)D+1 -~ (m +{r2]) 11 IM* m, r2
CR =0 ifresult=0
1 ifresult >0
2 ifresult< 0
3 in case of overflow
bit 0 1 4 5 B 9 10 11 14 15
1{oo01o0fooo0o] Mo | [

1.26

SUK SUK PBS1M
SUKL Subtract constant SUKL PES2M
PB56M
PB57M
Syntax: (label] — SUK_ 3, k - 718
(tabel] _ SUKL . r1, Ik -T2
T8 The positive constant k is subtracted from the contents of the
register specified in r3. The result is placed in r3.
T2 The positive or negative constant Ik is subtracted from the contents
of the register specified in r1. The result is placed in r1,
Type Function Syntax
T8 (r3) — k13 SUK 13,k
T2 (r1} — k> r1 SUKL r1, k
Condition
register: CR =0 ifresult=0
1 itresuit> 0
2 ifresult <0
3 in case of overflow
bit 0o 4 5 8 15
™ (0fo o0 1 1| 3 k
bit 0 1 4 5 8 9 10 11 14 15
T2 [1Jo o 11 1 0o 1Joooo]o
Remark:

Restricted to system mode if r1 = A15.

1.26

SUR . . SUR PB51M
SURS Subtract register/register SURS PBEIM
P856M
P857M
Syntax: [label) _ SUR [*] wr1,r2
[label] . SURS _ r1, r2
The contents of the register specified by r2 (direct addressing) or the con-
tents of the memory address indicated in the register specified by r2
(indirect addressing) are subtracted from the contents of the 16-bit register
specified by r1. The result of this operation is placed:
~ (direct addressing) : in the register specified by r)
— (indirect addressing) : either in the register specified by r1 (I/s = 0} in
the memory address indicated in the register
specified by r2 {l/s = 1).
Type Function MD ifs Syntax
T1 (r)—(r2)— ri 00 0 SUR r1,r2
T3 (r1) = ((r2)) = r1 01 0 SUR* r1,r2
T3 (r1) — ((r2)) = (r2) o1 1 SURS r1,r2
Condition
register: CR = 0 ifresult=10

1 ifresult> 0
2 ifresult <O
3 in case of averflow

bit 0 1 4 5 8 9 10N 14 15

10 0 11 r1 [Mo | r2 [s

Remark:
®" Whenl/s=1,r1 mustbe # 0
* Restricted 1o system modg if r1 = A15,

1.27

SuU
SUS

Syntax:

Condition
register:

Su
Subtract vord sus

P851M
P852M
PB56M
PB57M

[label)_ SU[S] [*1ur1, m], r2]

The contents af the effective memory address are subtracted from

the con-

tents of the register specified by r1. The result is placed in the register
specitied by r1, when the I/s bit is 0, or in the effective memory address

when lsis 1.

Type Function MD 155 Syntax
T4 {(r1) - (m) - rl 10 0 SuU 1, m
T4 {rly—(m) +m 10 1 SUS 1,m
T5 frty—(m +{2)) - 11 10 0 SuU rl, m,r2
75 r)—{m +{2l} = m+{r2}) 10 1 SUS r1,m,r2
T6 (r1) - (Im}) - 1 0 SU* rt.m
T6 (r1) — ((m}) » (m) " 1 SUS® r1.m
T7 (rl) = {im +(r2))) » 11 1" 0 SU* rt,m,r2
T7 (rhh—(m = {r2))) - (m+{r2) 1N 1 SUS* rt,m,r2
CR =0 ifresult= 0

1 result >0

2 ifresult< O

3 in case of overflow
bit 0 1 4 5 8 9 10 11 14 15

1]Jo o 1 1] M [Mo [r [us

Remark:
* When the I/sbit - 1, rl mustbe # 0
* Restricted to system mode i r1 = A15,

cwK

Syntax:

Condition
register:

Campare word with constant

{label] L CWK . r1, Ik

CWK P851M

P852M
P856M
PES7TM

The contents of the register specified by r1 are compared with the
constant. The result of this comparison is stored in the condition register.

Type
T2

CR

bit

Function
(r1)«slk -» CR

0 if (r1) = Ik
if (1) > 1k
2 if (r1) < Ik

Py

4 5 8 9

Syntax
CWK 1,1k

10 11 14 15

01
1fr101] a Jo

1o o0 o0 oo

Remark:
Restricted to system mode if r1 =« A15,

1.29

Compare words register/register CWR P851M

Syntax:

Condition
register:

P852M
PB56M
PB57M

[label] = CWR [¢] _r1,r2

The contents of the 16-bit register specified by r1 are compared with the
contents of the 16-bit register specified by r2 {direct addressing) or with the
contents of the memoary address held in the register specified by r2 {indirect
addressing).

The result of the comparison is stared in the condition register.

Tvoe Function MO s Syntax
T {ri)~(r2)-CR 00 0 CWR ri1,r2
T3 {r1)«~ ((r2)} - CR 01 0 CWR* r1,r2

CR = 0 if {r1) = [2nd operand])
1 if {r1) > (2nd operand)
2 if {r1) < (2nd operand]

bit 4 5 8 8 10 N 14 15

0 1
BN | mo | r [o

Remark:
Restricted to system mode if r1 = A15.

1.30

Ccw

Syntax:

Condition
register:

Compare wards

[label] = CW([*]u 1, m [, r2]

cw

PB51M

P852M
PBS6M
PB57M

The cantents of the 16-bit register specified by r1 are compared with the
contents of the effective memory address which is found in the word

following the instruction.

The result of this camparison is stored in the condition register.

Type Function MD Syntax
T4 (r1y={m) - CR 10 CW r,m
T5 (rlyes(m +(r2)) - CR 10 CW 1, m, 2
T6 (r1) «((m)) - CR n CW" r1,m
T7 (r1) = ((m +(r2))) - CR 1 CW* r1,m,r2
CR = 0 if (r1) = 2nd operand
1 if (r1) > 2nd operand
2 if {r1) < 2nd operand
bit 0 1 4 5 8 9 10 1 14 15
11 1 00 r MD r2 0
Remark:

Restricted to system mode if r1 = A15,

1.3

Cc1 Cc1 PBS1M
c1s Ones complement c1s PBE2M
PBS56M
PESTM
Syntax: [labetl) o C1 [*iurl, m[,r2]
[label]l w CIS [*)m [, r2]
Logic

Complement: One bits in the specified word or register become D and vice versa.
The logic complement of the effective memory address replaces either the
ocontents of the 16-bit register specified by r1 or the contents of the
effective memory xidress, depending on the state of the |/s indicator.

Type Function MD i Syntax
T4 {(m) -l 10 0 c1 rl,m
T4 (m) - m 10 1 CIS m
T5 (m_+{r2)) - n 10 0 (o}] 1, m,r2
T5 (m +(r2)) - m +{r2) 10 1 CiIS m,r2
T ((m) | "m0 c1* ri,m
T6 ((m)) - {m) 11 1 CiS* m
17 {m + (2 - n 1 0 C1* r,m,r2
T7 dmo +(r2))) ~ (m + (r2)) " 1 C1S* m,r2
Condition
register: CR -0 ifresut O

1 ifresult> 0
2 ifresult<< 0

bit 0 1 4 5 8 9 10 n 14 15

R | mo [2 [17

Remark:
* Wheni/s=0,r1 mustbe =0
* Restricted ta system mode when r1 = A15,

1.32

C1R . . CiR PB51M
C1RS Ones complement register /register C1RS PBRS2M
PBS6M
PB57M
Syntax: (label) CIR ()i rt, 12
(label], C1RS i 12
Logic
complement: Bits which contained 1 in the specified register become 0, and vice versa,
The logic complement of the contents of the 16-bit register specified by
r2 (direct addressing) ar the contents of the memory address indicated in
the register specified by r2 replaces the contents of:
— (direct addressing) the register specified by r1
— {indirect addressing): either the register specified by r1 (I/s = 0) or the
memory address indicated in the register specified
by 2 {Ifs=1).
If r1is not specified, the default value will be P,
Type Function mMD 1743 Syntax
T1 (r2) - n 00 0 CiR 1, r2
T3 ((r2)] - il 01 0 CIR* 1,12
T3 2N - (r2) 01 1 CiRS r2
Condition
register: CR = 0 ifresult=0
1 ifresult > 0
2 ifresult< 0
bit 0 1 4 5 8 9 10 N 14 15
1 | Mo | n [o

Remark: ;"
¢ When I/s =0, rt must be %-0
* Restricted ta system mode when rl1 = A15,

1.33

NGR

Syntax:

Condition
register:

Negate register NGR

{labell, NGR L 11,12

Twos complement.
Zero bits become ones and vice versa, +1.

PBS1M
P852M
P856M
P8S7M

The twos caomplement of the contents of the register spacified by r2

replaces the contents of the register specified by r1.

Type Function Syntax

T1 0—-(r2)~n1 NGR r1,r2

CR =0 ifresult=0
1 ifresult>0
2 ifresult< 0
3 in case of overtlow

bit 0o 1 g8 9 10 1

14 15

4 5
ﬂ0011i]]o oI r2

Remark:
" r1mustbe#0

* Restricted to system mode when r1 = A15 (not for P851M).

1.34

C2R

Syntax:

Condition
ragister:

Twos complement/register

[label]L C2R U r2

Twos complement.
Zero bits become one and vice versa, +1,

C2R

P851M
P852M
PB56M
P85S7M

The twos complement (or negative) of the contents of the effective
memory address replaces the old contents of this address.

Type Function Syntax
T3 0 - ({r2)) = (r2} C2R r2
CR =0 ifresult=0
1 if result >0
2 ifresult <O
3 in case of overfiow
bit 0 1 4 5 8 9 M0 1 14 15
1]00110000]01]& |1

1.35

c2

Syntax:

Condition
register:

Twos complement

c2

P851M

[label] L. C2 [*] . m [, r2]

Twos complement.
Zero bits become onc and vice versa, 4 1.

P852M
P856M
PBS7M

The twos complement (or negative) of the contents of the effective
memory address, indicated by the word following the instruction,
replaces the old contents.

CR

bit

Function MD Syntax
0-(m) - m 10 C2 m
O—(m +{r2)) = m +(r2) 10 C2 m,r2
0 —{{m}} - (m) " C2" m
0-{{m +{r2)))(m +(r2)) " C2¢ m,r2

0 ifresulit=0

1 ifresult >0

2 ifresult <0

3 in case of overflow

0 1 4 5 8 9 10 1 14 15

1/oo1 1Joooof Mo [[1

1.36

CMR

Syntax:

Condition
registor:

Clear memory /register CMR P851M

P852M
P866M
P857M

[label] , CMR s r2

The contents of the memory address specified in the register specified
by r2 are reset t0 0.

Type Function Syntax

T3 0~ ({r2) CMR r2
Unchanged

bit 0 4 5 8 9 10 n 14

15

1o1oooooo|01| r2

1.37

CM

Syntax:

Condition
register:

Cfear memory

[tabel). CM [*) = m (, r2)

CM

P8B1M

P852M
P856M
P857M

The contents of the effective memory address are reset to 0.

Type Function

T4 0-m

T5 0- m +(r2)

T6 0~ (m)

T7 0+ (m +(r2))
Unchanged

bit 4 5

8 9

MO
10

10
"
1

10

1

Syntax

CM m
CM m,r2
CM* m
CM* m, 2

14 15

0 1
1i01oo OOOO—[MD[

r2 11

1.38

MUK

Syntax:

Condition
reqister:

Multiply with constant MUK P8S1M
P852M
P856M
P857M

{label] L MUK k

The constant |k is multiplied by the constant of register A2. The result of
the multiplication is loaded as a 31-bit product in registers A1 and A2.
Bit 0 of A2 is reset to zero. The sign bit of A1 is the sign of the result.
Overflow occurs if the result > 23°—1,

In that case the two registers contain only the 30 least significant bits
while the sign bit may or may not be correct.

Type Function

T2 (A2) x |k - A1, A2
CR =0 ifresult=0

1 ifresult>0

2 ifresult< O

3 in case of overflaw

bit 0 1 4 5 8 9 10 n 14 15

1[1000[0000[0 1[00000

1.39

{softw. sim)

MUR

Syntax:

Condition
register:

Multiply register/register

[label] u MUR([=]_ r2

MUR P851M

P852M
PBS6M
P857M

The contants of the register specified by r2 (direct addressing), or the
contents of the memory address indicated in r2 {indirect addressing) are
multiplied by the contents of A2. The result is loaded as a 31-bit product
in A1, A2. The most significant bit of A2 is reset to zero. The sign of the

praduct is stored in the sign bit of A1,
Overflow occurs if the result > 239 -1,

In that case the two registers contain only the 30 least significant bits

while the sign bit may or may not be correct.

Type
T1
T3

CR

bit

Function MD Syntax
(A2) x (r2) - A1, A2 00 MUR r2
(A2} x {{r2)) - A1, A2 01 MUR* r2
=0 ifresult=0
1 ifresult >0
2 ifresult< 0
3 in case of overflow
0 1 4 5 8 9 10 11 14 15
1110000000|MD[r2 lo

MU ' Multipty MU ’ PES1IM
- P852M

P856M
PB57M

Syntax: [label] MU[* L m(, r2]

The contents of register A2 are multiplied by the contents of the effective
memory address. The result of this multiplication is loaded as a 31-bit
product in registers A1, A2. The most signiticant bit of A2 is reset to zero.
The sign of the product is stored in the sign bit of register A1.

Overflow occurs if result > 2¢—1,

In that case the two registers contain anly the 30 least significant bits while
the sign bit may or may not be correct.

Type Function MD Syntax
T4 {A2) x (m) - A1, A2 10 MU m
T5 (A2 x (m +{r2)) - A1,A2 10 MU m,r2
T6 (A2) x ((m)) - A1, A2 1 MU* m
T7 (A2) x ({m +(r2))) - A1 A2 1" MU* m, 2
Condition
register: CR =0 ifresult~ 0
1 ifresult>0
2 ifresult <0

3 in case of overflow

bit 0 1 4 5 8 9 10 M 14 15

11oooloooo]mo[r?]o

' 1.47

(softw, sim)

DVK Divide by constant DVK P851IM
P852M | (softw. sim]
PBS6M
PB57M

Syntax: [label]l . DVK L 1k

The contents of the registers A1, A2 are divided by the canstant |k, The
quotient is placed in register A2, the remainder in register A1. Overflow
occurs when the quotient exceeds 15 bits, In that case the contents of A1
and A2 are not significant. See also the note under DV on page 3.0.24.

Type Function Q R
T2 {A1,A2)/ Ik A2 A1l
Condition
register: CR =0 if(A2)=0
1if(A2)>0
2if(A2)< 0

3 in case of overtlow

bt 0 1 4 5 8§ 8 10 N 14 15
1]1001[0000]0 1|oooo[o

1.42

DVR

Syntax:

Condition
register:

Divide register/register

(label] L DVR({#)_r2

DVR

PB51M
P852M | (softwi. sim
P856M
P857M

The contents of the registers A1 and A2 are divided by the contents of r2
(direct addressing), or the contents of the memory address indicated in

r2 (indirect addressing}, The quotient is placed in register A2, the remainder
in A1,
Overtlow occurs if the.quotient exceeds 15 bits. In that case the contents
of A1 and A2 are not significant.

See also the note under DV on page 3.0.24.

Type
T
T3

CR

bit

Function Q A MD Syntax
(A1,A2) (1 {r2) - A2 A1 00 DVR r2
(A1, A2) [{(r2)) - A2 A1 [0} DVR* r2

0 if(A2)=0

1 if{A2})>0

2 if (A2} <0

3 in case of overflow

0 1 4 5 8 9 10 1 14 15 /

111001[0000 Mo[2 [0

1.43

o]

Syntax:

Condition
register:

Divide DV PB51M
P852M
PB56M
P857M

llabetl_. DV (*]i m[, r2]

The contents ot the registers A1 and A2 are divided by the contents of the
effective memory address. The quotient is placed in register A2. The
remainder in register A1,

The sign of the remainder is equal to the original sign of A1, A2, except
when the remainder is equal to zero (always positive),

Overflow occurs when the quotient exceeds 15 bits. In that case the
contents of A1 and A2 are destroyed except when the division is equal to
7ero.

Type Function o R MD Synitax

T4 (A1, A2} /{m) - A2 Al 10 DV m
T5 (A1,A2) /{m +(r2)} ~» A2 A1 10 DV m, 2
T6 (A1, A2) / ((m)) - A2 A1 11 DV* m
T7 IA1,A2) /lm +(r2))} - A2 A1 1 DV* m,r2

CR =0d(A2)=0
1it(A2)>0
2 if(A2) <0
3 in case ot overflow

bit

8 9 10 N 14 15
0

0 1 4 5
1F001L00_001MD’ 2 |0

Note:
An erroneous result is given when the most significant word of the dividend
1s tqual to the 1wos complement of tha divisar.

1.44

{softw. sim)

l

DAK

Syntax:

Condition
register:

Doubile add with constant

[label] DAK o Ik, , lks

DAK

P851M
P852M
PB56M
P8S7M

{softw. sim)

A constant consisting of 32 bits (bit O of first word is sign bit; bit O of second
word is not used) is added to the contents of registers A1 and A2. The sum is
placed in A1, A2, Bit 0 of A2 Is set to zero. Bit O of Al is the sign bit

Type Function

T2 k1, k2 + (A1, A2} - A1, A2
CR =0 ifresult= 0

1 ifresult > 0

2 ifresult <0

3 in case of overflow

bit 0 1 4 5

"

14 15

1[1010]0000]0

1[0000|0

1.45

DAR

Syntax:

Condition
register:

Double sdd register fregister DAR

(label] . DAR[*]_ r2

The contents of two consecutive registers, the first one specified in r2

P851M
P852M
P856M
P857M

{direct addressing), or the contents of two consecutive words. The address
of the first one being indicated in r2 (indirect addressing) are added to the

contents of Al and A2. Bit 0 of A2 is set to zero. The sign bit of the result

is the sign bit of A1,

Type

T
T3

CR

it

Function 4D Syntax
(r2,r2+ 1)+ [A1,A2) - A1, A2 00 DAR r2
({r2],(¢2) + 2) + (A1, A2) = A1,A2 O1 DAR* r2
=0 ifresult=0

1 ifresult>> 0

2 ifresult < 0

3 in case of overflow

0 1 4 5 8 9 10 1 14 15

11010[00001MD| 2 0

1.46

{softw,

DA

Syntax:

Conditian
register:

Dauble add DA

[labell, DA[+]_ m{, r2}

The contents of the effactive memory address and the contents of the

P851M
PBS2M
PB56M
P857M

effective memory address + 2 are added to the contents of the registers

A1l and A2. The sum is placed in those registers.

The sign bit in A2 is set to zero. T he sign bit of the parametars and result

is the sign bit of A1,

Type Function MD Syntax
T4 {m, m+2}+(A1,A2) +~A1,A2 10 DA m
T5 (m+(r2), m ¢ {r2) + 2) + (A1, A2) - A1,A2 10 DA m,r2
T6 ({m),{m) + 2) + (A1, A2) -~A1,A2 11 DA'm
T7 ((m + (r2)), {m + (r2) + 2N+ (A1, A2) ~A1,A2 11 DA*m,r2
CR =0 ifresut=0

1 ifresult> 0

2 ifresult< O

3 in case of overflow
bit o 1 4 5 8 9 10 1 14 15

1]1010|oooolmo[2 |o

1.47

(softw. sim)

DSK

Syntax:

Condition
register:

Double subtract with constant DSK PBS1M
P852M
PE56M
P857M

(1abel] .. DSK L. Ik,, k;

{softw, sim}

A constant consisting of 32 bits (bit O of first word is sign bit; bit O of second
word is not used) is subtracted from the contents of registers Al, A2, The
result is placed in A1, A2, Bit 0 of A2 is set to zero, Bit 0 of A1 is the sign bit,

Type
T2

CR

it

WN =QO

Function
(A1, A2) — k1, k2 » A1, A2

ifresult=0
if result > 0
if result <0
in case of overflow

0 4 5 8 9 10 MmN 14 15

1]1011]0000]0 1]0000]0

1.48

DSR

Syntax:

Condition
register:

Double subtract reg. /reg.

DSR

[label] L, DSR[*)_r2

P851M
P852M
PBS6M
P857M

The contents of two consecutive registers, the first one being specified in
r2 (direct addressing], or the contents of two consecutive words, the
address of the first one being indicated in r2 (indirect addressing) are
subtracted from the contents of the registers A1 and A2. Bit 0 of A2 is

reset 10 zero. Bit 0 of At is the sign bit.

Type Function MD Syntax
T (A1,A2) —[r2,r2+1) -~ A1,A2 00 DSR
T3 {A1, A2) — ({r2}, (r2+ 1)) - A1,A2 O1 DSR*
CR = 0 ifresult=0

1 ifresult > 0

2 ifresult < 0

3 in case of overflow
bit 4] 1 4 10 11

r2
r2

(softw, sim|

14 15/

5 8 9
110110000|MD

l r2

[0

1.49

DS

Syntax:

Condition
register:

Double subtract

DS

P851M
P852M

(label] s DS[*1_ ml, r2)

P856M
P857M

The contents of the cffective memory address and the contents of the
effective memory address + 2 are subtracted from the contents of the
registers A1 and A2. The result is placed in A1, A2. The sign bit in A2 is

set to zero.

The sign bit of the parameters and the result is the sign bit of reqgister A1.

Type Function MD Syntax
T4 (A1,A2) - {m ,m+2) +A1,A2 10 DS m
T5 (A1,A2) — (m+(2), m+(r2) +2) -A1,A2 10 DS m,r2
T6 (A1, A2) = ({m), (m) +2) ~A1,A2 11 DS*'m
T7 {A1,A2) — (im +(r2)), (m+{(2)) +2) + A1, A2 11 DS* m,r2
CR =0 ifresult=0

1 ifresult> 0

2 ifresult< O

3 in case of overflow
bit 0o 4 b B8 9 10 11 14 15

1[101IL0000|MD[2]o

1.50

{softw. sim

FFL

Syntax:

Condition
register:

Integer to floating point (F.P.P. option) FFL P857M

[tabel] _ FFL

The contents of the registers A1,and A2, being a double precisioh[bger,
are sent to the Floating Point Processor where the integer is converted
into a floating point operand. The result is stored in three accumulators
FPA1, FPA2 and FPAJ on the Floating Point Processor.

Type

T1

CR =0
1
2

bit 0

Function
(A1), (A2) - FP.operand - FPAT1, FPA2, FPA3

if result=0
it result> 0
if result <0

1 4 5 10 " 14 15

7

8 9
10 0 1 oo1oLo o[oooo]o

1.51

FFX

Syntax:

Condition
register:

Floating point to integer (F.P.P. option)

FFX PBS7M

[label] s FFX

The floating point operand cantained in three accumulators FPA1, FPA2
and FPAQ, situated on the Floating Point Processor, is converted into a
double precision integer. The result is placed in the registers A1 and A2.
During this operation the number may be truncated (loss of least signifi-

cant bits).

An overflow occurs if the integer is greater than 2°° —1 or smaller than
-2% . An interrupt is generated by the Floating Point Pracessor when an

abnormal condition occurs. CR is set to 3.

Tyoe Function

T (FPA1, FPA2, FPA3)—~integer ~ A1, A2
CR =0 ifresult=0

1 ifresult>0

2 ifresult <O

3 abnormal condition:

— arithmetic overflow (exponent >> 30)

bit 0 4 5 8 9 10

1" 14 15

111001 oo1o[o o[oooo[1

1.52

FADR
FADRS

Floating point addition/register (F.P.F. option) ::g: s FB57M

Syntax:

Condition
register:

[labell FADR([S] r2 /

The floating point operand contained 1n three accumulators FPA1, FPA2
and FPA3 on the Floating Point Processor, is added to the floating point
operand present in three consecutive memory locations. The first memory
location is indicated by r2. The result is placed either in FPA1, FPA2 and
FPA3 or in three consecutive memory locations, depending on the state of
the I/s indicator.

An interrupt is generated by the Floating Point Processor when an abnor-
mal condition occurs, CR is set to 3,

Tyoe Function

T3 (FPA1 FPA2,FPA3J) + ((r2)},({r2)+2),((r2)+4) - FPA1,FPA2 FPA3
T3S (FPA1,FPA2,FPA3) + ((r2)},((r2)+2),((r2)+4} —~ (r2) {r2}+2,{12)+4

Type /s Syntax

T3 0 FADR r2
T3S 1 FADRS 2

CR = 0 ifresult= 0
1 ifresut >0
2 if result <0
3 abnormal conditions:
— unnormalized operand {operatian aborted)
— arithmetic overflow (result exponent> or = 2'%)
— arithmetic underflow (result exponent < —2!¢)

bit 0 1 4 5 B8 9 10 N 14 15

1|1001|1000]0 1| r2 [I.’s

1.63

FAD Floating point addition (F.P.P. vptian) FAD P8S7M

Syntax: [labet] . FAD[S] [*)lu ml, r2]

The floating point operand contained in the floating point accumulators
FPA1, FPA2, FPA3 on the Floating Paint Processor, is added to the
floating point eperand contained in three consecutive memory locations,
the tirst one being indicated by the effective memory address. The sum

is placed either in accumulators FPA1, FPA2 and FPA3 or in three
consecutive memory locations pointed 1o by the effective memory
address, depending on the state of the I/s indicator.

An interrupt is gensrated by the Floating Point Processor when an abnaor-
mal condition occurs. CR is set to 3.

Type Function

T4 (FPA1,FPA2 FPA3)+ (m),{m+2){m+4) - FPA1FPA2 FPA3
T4S (FPALFPA2FPA3}+{m){m+2](m+4)~mm+2, m+4
T5 (FPA1,FPA2,FPA3} + { m+ (r2}},{m + (r2) + 2), (m + (r2) + 4)
- FPA1,FPA2,FPA3
T5S (FPA1,FPA2,FPA3) + (m + (r2)),(m + (r2) + 2}, {m + {r2) + 4) »
~m+{(r2), m+(r2) +2, m+ (r2) + 4
T6 (FPA1,FPA2,FPA3) + {({(m)},(im + 2)},({m + 4)) -~ FPA1 FPA2 FPA3
T6S (FPA1,FPA2,FPA3) + ({m)),({m + 2)),{{m + 4)) - (m), (m + 2}, {m + 4)
T? (FPA1,FPA2,FPA3) + ({m 4 (r2))),{tm + (r2) + 2)),((m + (r2) + 4)) -
- FPA1,FPA2,FPA3
T7S IFPA1,FPA2 FPA3L + {{m = (r2)}),{{m t {r2) + 2]},{{m + (r2) + 4)) »
—~{m+(r2)}), {m + (r2) + 2), (m + [r2) + &)

Type MD /s Syntax

T4 10 0 FAD m
T4S 10 1 FADS m
T5 10 0 FAD m, r2
T55 10 1 FADS m,r2
T6 1 0 FAD* m
T6S 11 1 FADS* m
T? 1 0 FAD* m,r2
T7S 11 1 FADS" m, r2
Condition
register. CR = 0 ifresult=0
1 if result> 0
2 ifresult< 0

3 abnormal condition:
— unnormalized operand (operation aborted)
- arithmetic overflow (result exponent > or = 2'%)
— arithmetic underflow (result exponent < —2'%)

bit 0 1 8 9 10 1 14 15

a 5
i_ﬂ‘OOLL‘OOO MDl 2 [vs

1.54

FSUR
FSURS

Floating point subtract/register FSUR

{F.P.P. option) ESURS P857M

Syntax;

Condition
registar:

[label]l_. FSUR[S]._ r2

The floating point operand contained in three consecutive memory
locations, the first ane being specified by r2, is subtracted from the
floating point operand in the three accumuletors FPA1, FPA2 and
FPA3 on the Fioating Point Processor, The result is placed either in
FPA1, FPA2, FPA3 or in three consecutive memory locations,
depending on the state of the |/s indicator,

An interrupt is generated by the Floating Point Pracessor when an
abnormal condition occurs. CR is set to 3.

Type Function

T3 (FPA1,FPA2 FPA3) —({r2)),({r2) + 2),{(r2) + 4) - FPA1 FPA2 FPA3
T3S (FPA1,FPA2,FPA3)—((r2)) {(r2} + 2} ({r2}) + 4) ~ (r2),(r2) + 2,(r2) + 4

Type /s Syntax

T3 0 FSUR r2
T3S 1 FSURS r2

CR =0 iftresuit=10
1 ifresult>0
2 ifresult< O
3 abnormal condition:
— unnarmalized operand {operation aborted)
— arithmetic overflow (result exponent > or = 2'%)
— arithmetic underflow (result exponent < —2*)

14 15

0 4 5 8 9 10 11
1E°°’l'°’ﬂ° 1T 12 Iis

bit

1.56

FSU

Syntax:

Condition
register:

Floating point subtract (F.P.P. option) FSU P8S7M

[label] - FSU[S] [*] m(, r2]

The floating point operand contained in three consecutive memory
locations, the first of which is specified by the effective memory address,
is subtracted trom the floating point operand present in three accumu-
lators FPA1, FPA2 and FPA3J on the Floating Point Processor. The

result is placed either in FPA1, FPA2 and FPA3J or in three consecutive
memory locations pointed 10 by the effective memory address, depending
on the state of the I/s indicator. An interrupt is generated by the Floating
Point Processor when an abnormal condition occurs.

Type Function

T4 [FPAY,FPA2,FPA3} - ({m),{m+2 }(m+4)-~ FPA1,FPA2,FPA3
T4S |FPA1,FPA2FPA3—{m)im+2){m+4)-m m+2, m+4
T5 (FPA1,FPA2,FPA3) — (m 4+ (r2)){m + {r2) = 2),(m + (r2) + 4) -
- FPA1,FPA2,FPA3
T5S {(FPA1,FPA2,FPA3) — { m 4+ {r2)),im + {r2) + 2),(m + (r2) + 4) —+
“m+(r2),m+(2)+2, m+(r2) +4
T6 {FPA1,FPA2,FPA3) — ({ml),{{m + 2)},[(m + 4))-- FPA1,FPA2 FPA3
T6S (FPA1,FPA2,FPA3) — ({m)),(im +2)),({m + 4)) = {m),[m + 2),(m + 4)
T7 IFPA1,FPA2,FPA3) — {{m + (r2))) {{m + {r2) + 2}},({m + (r2) + 4)) -
- FPA1,FPA2 FPA3
T7S (FPA1FPA2FPAZ) — ({m + {r2)) {m + (r2) + 2}},({m + (r2) + 4)) —
~ {m+{r2)), (m+(r2) + 2), {m + (r2) + 4)

Type MD IS Syntax

T4 10 0 FSU m
TA4S 10 1 FSUS m
75 10 0 FSU m,r2
T5S 10 1 FSUS m, r2
T6 1" 0 FSU* m
T6S 11 1 FSUS" m
T7 1 4] FSU* m,r2
T7S 1 1 FSUS®* m, r2
CR =0 ifresult=0
1 ifresult> 0
2 fresult< 0
3 abnormal condition:
— unnormalized operand (operation aborted)
— arithmetic overflow {result exponent > or = 2'*)
— arithmetic underflow (result exponent < —2'*%)
bit 0 1 4 5 8 9 10 N 14 15

110011010|MD| 2 I/s

1.56

FMUR
FMURS

Floating point multiply /register FMUR PESIM
(F.P.P. option) FMURS

Syntax:

Condition
register.

[tabel].., FMURI[S] r2

The fioating point operand contained in the floating point accumulators
FPA1, FPA2, FPA3Z is multiplied by the floating point operand present

in three consecutive memory locations, the first one being indicated in r2.
The result is placed either in FPA1, FPA2, FPA3 or in three consecutive
memary locations, pointed at by 2, depending on the state of the I/s
indicator.

An interrupt is generated by the Floating Point Processor when an abnor-
mal condition occurs, CR is set 1o 3.

Type Function

T3 (FPA1,FPA2 FPA3) x ((r2)),((r2) + 2),((r2) + 4]~ FPA1,FPA2 FPA3
T3S (FPA1FPA2,FPA3) x ((r2)),{(r2) +2) {(r2) + 8-+ {r2),(r2) + 2,{r2) + 4

Type Ifs Syntax

T3 [¢] FMUR r2
T3S 1 FMURS r2

CR =0 ifresut=0
1 ifrosult> 0
2 ifresult< 0
3 abnormal condition:
— unnormalized operand (operation aborted)
— arithmetic overflow (result exponent > or - 2'%)
— arithmetic underflow {result exponent < —2'*)

bit 0 1 4 5 8 9 10 N 14 15
11001[1100]01[r2]!:‘s

1.57

FMU

Fioating point multiply (F.P.P, option) FMU PB57M

Syntax:

Condition
register:

[label}_ FMU(SI[*]._ ml, r2]

The floating point operand contained in the floating point processor
accumulators FPA1, FPA2, FPA3, is multiplied by the floating point
operand present in three consecutive memory locations, the first of
which is indicated by the effective memory address, The result is pfaced
gither in FPA1, FPA2 and FPAJ or in three consecutive memory
locations, pointed at by the effective memory address, depending on the
state of the I/s indicator.

An interrupt is generated by the Floating Point Processar when an abnor-
mal condition occurs. CR is set to 3.

Type Function

T4 (FPA1,FPA2,FPA3l x (m){m+2|{m+4)~ FPA1FPA2 FPA3
T4S (FPA1FPA2FPA3Ix(m)(m+2){m+4}» mm+2 m+4
T6 (FPA1,FPA2,FPA3) x [m + (r2),{m + (r2) + 2),(m + (r2) + 4) ~
- FPA1,FPA2,FPA3
TSS (FPA1,FPA2,FPA3) x (m+ (r2)),im + (r2) + 2} {m + {r2} + 4} -»
- m+(r2), m+(r2}+2, m+(r2) +4
T6 (FPA1,FPA2,FPA3) x ({m}],{{m + 2)},((m + 4)) ~ FPA1 FPA2 FPA3
T6S (FPA1,FPA2,FPA3) x {{m}).{{m + 2)},({m + 4)) = (m],(m + 2).(m + 4)
T? {FPA1,FPA2,FPA3] x {Im = ({r2}})) {(m + {r2) + 2]},{{m 4+ {r2} + 4)) »
- FPA1,FPA2,FPA3
TIS {FPA1,FPA2 FPA3} x (Im + {r2)),((m + (r2) + 2}},{{m + (r2) + 4}) >
- (M4 (r2)), (M +1{r2) + 2}, {m + {r2] + 4)

Type MO IS Synrax
T4 10 0 FMU m
T4 10 1 FMUS m
T5 10 0 FMU m,r2
T58 10 1 FMUS m,r2
T6 1 0 FMU®* m
T6S 1 1 FMUS*® m
T7 1" 0 FMU®* m,r2
TS 1 1 FMUS® m,r2
CR =0 ifresut=0

1 ifresult> 0

2 Hresult <0

3 abaormal condition:

— unnormalized vperand (operation aborted)
— arithmetic overflow [result exponent > or = 2'%)
— arithmetic underflow (result exponent << =2'?)

4 5 8 9 10 N 14 15
1

bit 0 1
|_1 Tv oo 1 0 0[MD | 2 Ifs
| -

1.58

FDVR Floating point divide/register FDVR PESTM
FDVRS {F.P.P. option) FDVRS
Syntax: [label] FDVRI[S]) L r2
Tha floating point operand contained in the tloating point processor
accumulators FPA1, FPA2, FPA2, is divided by the floating point
operand present in three consecutive memory locations, the first of
which is indicated by r2.
The quotient is placed either in FPA1, FPA2, FPAJ or in three
consecutive memory locations, pointed at by r2, depending on the
state of the Ifs indicator.
An interrupt is generated by the Floating Point Processor when an
abnormal condition occurs. CR is set to 3.
Type Function
T3 (FPA1, FPA2,FPA3) / ({r2}},((r2] + 2),({r2] + 4) - FPA1 FPA2,FPA3
T3S {FPA1, FPA2,FPA3) / ({r2}},({r2} + 2),({r2)} + 4) -+ (r2),(r2) + 2,(r2) + &
Type 5 Syntax
T3 0 FOVR 2
T3S 1 FODVRS r2
Condition
register: CR = 0 ifresult=0
1 frasult>0
2 ifresult< 0
3 abnormal condition:

-- unnormalized operand {operation aborted)

— arithmetic overflow (result expanent > or = 2'%)
— arithmetic underflow {result exponent <. —2'%)
— Divisor =0

4 5 10 N 14 15

bit 0 1 B 9
1Jroo0 11100 1| w2 [vs]

1.59

FDV Floating puint division (F.P.P. option) FDV P857M
Syntax: label}., FOVIS] [+]u m[, r2]
The floating point operand contained in the floating point processor
accumulators FPA'T, FPA2, FPA3, is divided by the floating paint
operand present in three consecutive memory locations, the first one
being pointed at by the effective memory address. The result is placed
either in FPA1,FPA2,FPA3 or in the three consecutive memory
locations pointed at by the effective memory address, depending on
the state of the I/s indicator,
An interrupt is generated by the Floating Point Processor swhen an
abnormal condition occurs. CR s set to 3.
Type Function
T4 (FPA1,FPA2,FPA3)/ [m){m+2) {m+4) - FPA1,FPA2 FPA3
T4S (FPA1FPA2FPA3) {{m){im+42){m+d) - mm+2, m+4
T5 (FPA1,FPA2,FPA3) / (m+{r2) { m~(r2) +2},{ m + (r2) + 4) -»
» FPA1,FPA2 FPA3
T5S (FPA1,FPA2,FPA3) /I m+ {20 A m+{r2) +2),(m+(r2) +4) -
~m4{r2), m+(r2) +2, m+ (r2) + 4.
T6 (FPA1,FPA2,FPAZ) / ((m)) {{m + 2}) {{m + 4)) -~ FPA1,FPA2,FPA3
TBS (FPA1,FPA2,FPA3) / {{m)),{Im +2}} {{m + 4)) -+ {m),(m +2),(m + 4)
T7 (FPAY,FPA2,FPA3) / ({m +{r2I)) {(m + (r2} + 2}) {{m + (r2) = 4)) -
- FPA1,FPA2 FPA3
T7S (FPAYFPA2,FPA3) / ({m + {r2])),((m + {r2} 4+ 2)),{{m + (r2) + 4)) —~
o {m o+ (r2)), im +{r2} + 2), (m + (r2) + &)
Tvpe MDD 5 Syntax
T4 10 0 FOV m
T4S 10 1 FDVS m
T5 10 0 FDV m, r2
T58 10 1 FOVS m,r2
T8 1 0 FDV* m
65 1 1 FDVS* m
T? 1 0 FOV*® m,r2
T78 11 1 FOVS® m,r2
Condition
register: CR =0 ifresult- 0
1 if result > 0
2 ifresult< O
3 abnarmal candition:

— unnormalized operand (operation aborted)

— arithmetic overflow (result exponent > or = 2'*)
— arithmetic underflow {result exponent < =2'*)
- Divisor - 0

4 5 8 9 10 1 14 15

o 1
‘_LFOOI 1”1‘10] MDI 2 Iis

bit

1.60

4 Logical Instructions
ANK .) ANK PB51M
ANKL Logical AND with constant ANKL PES2M

P856M
P857M
Syntax: [labell ANK i r3, k - T8
[label} s ANKL L r1, Ik -T2
Logical product
Bitinr3orri Bitin k or Ik Logical product
0 0 0
0 1 0
1 0 0
1 1 1
T8 The logical product of k and the contents of bits B—15 of the register
specified by r3 is placed in bits 8—15 of r3.
Bits 0—7 of this register are set to 0.
T2 The logical product of Ik and the contents of the register specified by
rlisplacedinrl,
Type Function Syntax
T8 (73)3-” sk f35-|_< 0 - r3o-+ ANK 73, K
T2 (r1) Ak = r1 ANKL rl, 1k
Condition
register: CR =0 ifresult=0
1 ifresult > 0
2 ifresult-< 0
bit 0 1 4 5 7 8 15
T8 [0]O 1+ 00 2] K
bit 0 4 5 8 3 10 1 14 15
T2 (1o 100 n 0o 1]/o0o000fjoO

Remark:

¢ 14 T8, r3mustba £ 0.1fT2, r1 must be £ 0.

* Restricted to system mode if r1 = A15.

1.67

ANR ANR P851M
ANRS Logical AND register fregister ANRS PE52M
P85EM
P857M
Syntax: {label}_ ANR [*]_ 1,12
[1abel] . ANRS _r1,r2
Logical product
Bitinrl Bit in 2nd operand Logical product
0 0 0
0 1 0
1 0 0
1 1 1
The logical product of the contents of the register r1 and the contents of
the register specified by r2 {direct addressing) or the contents of the
memory address indicated in the register specified by r2 (indirect
addressing]) is stored in:
— (direct addressing) register specified by r1
— (indirect addressing) : either in register specified by r1 (I/s=0) or in
the memory address indicated in the register
specified by (2 {I/s - 1).
Type Function MO I Syntax
T (r1) 2 (r2)-r1 00 0 ANR r1,r12
T3 (r1) ~ ((r2)) =~ r1 (0] 0 ANR* r1,r2
T3 (r1) ~ ((r2)) - {r2} 01 1 ANRS r1,r2
Condition
register: CR =0 ifresult= 0
1 fresult > 0
2 ifresult <0
bit 0 4 5 8 9 10 11 14 15
1o 1 00 " | mo | 2 /s
Remark:

* 1T, thenr1 must be # 0. If T3, and I/s # O then r1 must be 4 0.
° Restricted to system mode if r1 = A15.

1.62

AN . AN PB51M
ANS Logical AND ANS PB52M
PE5EM
PB57M

Syntax: (label]l L, AN[S] [*]_ r1, m[, 2]

Logical product

Bitinr1 Bit in 2nd aperand Logical product
0 0 0
0 1 0
1 0 0
1 1 1

The logical product of the contents of the effective memary address and the
contents of the register specified by r1, is placed in this register, when the
I/s indicator O, or in the effective memory address, when /s is 1.

Type Function MD 15 Syntax
T4 (r1) A{m) - r1 10 0 AN rt,m
T4 {rip A{m) - m 10 1 ANS r1,m
T5 frit Alm +(r2)) = 10 0 AN r1,m,r2
T5 rif A{m +(r2)) = m +(r2) 10 1 ANS 1, m,r2
T6 (r1} A¢{m}) g 1 0 AN® r1,m
T6 (r1} ~{{m}} ~{m) 1 1 ANS® r1,m
T7 {r1) Alm +(r2))) - 11 0 AN®* r1,m,r2
T7 rh atlm 4+ {r2))) =(m +(r2)} N 1 ANS® r1,m, r2
Condition
register: CR = 0 if logical product = 0

1 f logical product > 0
2 if logical product < 0

bit 0 1 4 5 g 8 10 11 1415
101 0 0] n mo | r2 [/s

Remark:
* Iflfs = 0Othenrl must be # 0,
* Restricted to system mode if r1 = A15,

1.63

ORK . I ORK PB5TM
ORKL Logical OR with constant ORKL PRE2M
PB56M
PB57M
Syntax: label] L ORK L r3, k - T8
[label) » ORKL i r1, Ik -T2
Logical
union: Bitinr3orri Bitin k or Ik Logical union
0 0 0
0 1 1
1 0 1
1 1 1
T8 A logical OR is performed on the contents of bits 8—15 of the
register specified by r3 and the value of the constant k.
The result is placed in bits 8—15 of the register specified by 3.
Bits 0—7 of this register are set to zero.
T2 A logical OR is performed an the contents of the register
specified by r1 and the value of the constant Ik. The result of
this operation is placed in the register specified by r1.
Type Function Syntax
T8 (r3)g-1s v kK > 13440 3o~ unchanged ORK 3,k
T2 (r1) Wk =~ ORKL r1, Ik
Condition
register: CR =0 ifresut = 0
1 ifresult >0
2 ifresult <0
bit 0o 1 4 5 7 8 15
T8 o0 1 0 1 r3 k
bit 0o 1 4 5 8 9 10 N 14 15
T2 {101 01| n [o 1]Jooo0oofo

Remark:
® Wi/s=0thenrl mustbe # 0.
" Restricted to system mode if r1 = A15.

1.64

ORR Loaical OR reaister reai ORR PBS1M
ORRS ogic3 register/register ORRS PES2M
PB56M
P8S7M
Syntax: llabel] _ ORR [+]._r1,r2
{tabell L ORRS _r1, r2
Logical
union: Bitinrl Bit in 2nd operand Logical union
0 0 0
0 1 1
1 0 1
1 1 1
The logical OR of the contents of the 16-bit register specified by r1 and the
contents of the 16-bit register specified by r2 {direct addressing) or the con-
tents of the memory address indicated by the register specified by r2 {in-
direct instruction) is placed:
— (direct eddressing) : in the register specified by r1l
— (indirect addressing): either in the register specified by r1 (I/s = 0) or in
the memory address indicated in the register
specified by r2 {I/s = 1],
Type Fiunction MD s Syntax
T1 {rifv{(r2)=n 00 0 ORR 1,r2
T3 (el (Ir2h) - 01 0 ORR* r1,r2
T3 (r1) e {Ur2)) - (r2) (0] 1 ORRS r1,r2
Condition
register: CR = 0 ifresult=

1 ifrosult> 0
2 itresult<0

bt 0 1 4 5 8 9 10 N 14 15
1]o 1 0 1 " [MD] r2 [l/s

Remark:
* Iflfs=0thenrl mustbe # Q.
* Restricted 10 system mode if rt = A15.

1.65

OR , OR LY
ORS Logical OR ORS PB52M
P856M
P857M
Syntax: [1abell_ OR(S] [¢])_ r1, m[, r2]
Logical
union: Bitinrl Bit in 2nd operand Logical union
0 0 0
0 1 1
1 0 1
1 1 1
The logical OR of the contents of the effective memory address and the
contents of the register specified by r1 is placed either in the r1 register,
when |/s bit =0, or in the effective memory address, swhen I/s bit = 1,
Type Function 40 /s Syntax
T4 (r1)wv(m) -~ rl 10 0 OR rt, m
T4 (r1) v (m) rm 10 1 ORS 1, m
T5 (r1)w(m +{r2}) - rl 10 0 OR rl,m,r2
T5 (rI)v(m +(r2)) > m ~{r2) 10 1 ORS r1,m,r2
T6 (r1) » ((m)) -rl 1" 0 OR" ri,m
T6 (r1) v ((m)) -+ {m} 1 1 ORS* r1,m
T7 (r1) v ((m +(r2)}) -~ r1 n 0 OR* r1,m,r2
T7 (r) v (m +(r2))) ~{m +{r2}} 11 1 ORS" r1,m,r2
Condition
register: CR - 0 ifresult=0

1 if result> 0

2 if result < O

bit 0 1 4 5 g8 9 100 N 14 15
110 1 0 r IMDl r2]u/s

Remark:

* 11mustbe# 0.
* Restricted to system mode if r1 = A15,

1.66

XRK A . XRK P851M
XRKL Exclusive OR with constant XRKL PBS2M
P856M
PB57M
Syntax: [label] L XRK _r3, k - T8
[label] o XRKL _r1, Ik -T2
Exclusive
OR: Bitinr3orn Bitin k or ik Exclusive OR
0 0 0
0 1 1
1 0 1
1 1 0
T8 The axclusive OR on the contents of bits 8—15 of the register
specified by r3 and the value of k is placed in the register specified
by r3.
Bits 0—7 of this register remain unchanged.
T2 The exclusive OR on the contents of the register specified by r1
and Ik is placed in the register specified by r1.
Type Function Syntax
T8 (r3ly-ys ¥ k=133« 3.1 unchanged XRK 3,k
T2 {r1} ¥lk->rl XRK 1,k
Condition
register: CR =0 ifresult = 0
1 ifresuit>0
2 fresult <0
bit 0 1 4 5 7 8 15
78 [0]o 1 1 0 3 | k
bit 0 1 4 5 8 9 10 1N 14 156
1Jo 1 1 0] n [o 1Jo oo o]o
Remark:

* rland r3mustbe ¥ 0.
* Restricted to system made if r1 = A15.

1.67

XR . XR PBS1M
XES Exchusive OR XRS PBE2M
PB56M
PBS7M
Syntax: [label)— XRI(S]) (=] rY, m[, r2]
Exclusive
OR: Bitinrl Bit in 2nd operand Exclusive OR
0 0 0
0 1 1
1 0 1
1 1 0
The exclusive OR of the contents of the effective memory address and the
contents of tha register specified by r1 is placed either in the register
specified by r1, when the I/s bit = 0 or in tho effective memory address,
when I/s =1,
Type Function MDA Syntax
T4 (ri) ¥(m) s rl 10 0 XR rl, m
T4 {r1) w{m) -+ m 10 1 XRS r1,m
T5 frih={m +(r2)) - 1 10 0 XR ri,m,r2
75 {frib={m +(r2)) = m +(r2) 10 1 XRS r1,m,r2
T6 (r1} w({m)) -l 1 0 XR* rn,m
T6 (r1] % (im)) - (m) 1" 1 XRS" 1, m
T7 (r1) wdlm + (r2))) - 1" 0 XR* r1,m,r2
T7 {r1) = {m 4+ (e2)) ~(m +(r2)) N 1 XRS" r1,m, r2
Condition
register: CR =0 ifresult=0
1 ifresult>0
2 frasult <0
bt 0 1 4 5 8 9 10 1 14 15
1o 1 1 0 n | ™o 2 fiis
Remark:

* rlmustbe # 0,
* Restricted 10 system mode if r1 = A15,

1.68

XRR . , . XKR P851M
XRRS Exclusive OR register/register XRRS PBE2M
PB56M
P857M
Syntax: (label] XRR [*]_r1,r2
(label} XRRS i r1, r2
Exclusive
OR: Bitin r1 Bit in 2nd operand Exclusive OR
0 0 0
0 1 1
1 0 1
1 1 0
The exclusive OR of the contants of the 16-bit register specified by r1 and
the contents of the 16-bit register specified by r2 (direct addressing) or the
contents of the memory address indicated in the register specified by r2
(indirect addressing) arc placed as follows:
— (direct addressing) : in the register spacified by r1
— (indirect addressing) : either in the register specified by r1 (I/s = O) or
in the memory address indicated by the register
specified by r2 {Ifs = 1).
Type Function MO s Syntax
T (M »(r2) - r1 00 0 XRR r1,r2
T3 (r1) v t{r2)) - r1 01 0 XRR* r1,r2
T3 (r1) % ((r2)) —~ (r2) 01 1 XRRS r1,r2
Condition
register: CR =~ 0 ifresult=0
1 ifresult> 0
2 ifresut < 0.
bit o 1 4 5 8 9 10 N 14 15
1o 1t 1 0] n MO] 2 [1fs
Remark:

* rl must be # 0.
* Restricted to system mode if r1 = A15.

1.69

™ Test mask ™ PBS1M
P852M
PB56M
PBS7M

Syntax: llabel] TM irl, 12

The lagical product {AND) of the contents of the register specified by r1
and the contents of the register specified by r2 is compared to zero.

The result of the comparison is stored in the condition register.

The contents of the register specified by r1 and r2 rematn unchanged.

Type Function
m ({r1} ~ (r2)] -0 - CR

Condition

register: CR =0 ifresult=0
1 if result > 0
2 ifresult< O

bit 0o 1 4 5 8 9 100 M 14 15

|]0100| r [o o[2 IE

Remark:
* r1 must be# 0.
* Restricted to system mode if r1 = A15.

1.70

Syntax:

Condition
reqgister:

Test not mask TNM PB51M
P852M
PBS6M
P8S7M

{label] ., TNM ., r1, 2

The exclusive OR of the contents of the register specified by rl1 and the
contents of the register specified by r2 is compared with zero. The result
of the comparison is stored in the condition register.

The mitial contents of the register specified by r1 and the register specified
by r2 remain unchanged,

Type Function
T [{r1} + (r2})] ~0 -+ CR

CR =0 ifresult=0
1 ifresult> 0
2 fresult<< 0

bit 0 1 4 5 8 9 10 11 14 15

10110[) [0 0] 2 1

Remark:
* rl mustbe # 0.
* Restricted to system mode if r1 = A15,

1.7t

TSB

Syntax:

Conditicn
register

Test and Set Bit TSB P853
ast an ef 41, P854

P858
P859

[label] TSB[*] m[.r2]

This instruction tests a bit in a bitsiring. sets tha condition registar to the
value of thal bit, and seis the bit to 1.

The address of the first character of the bitstring is the instruction operand,
found as follovss

Type adaress

T4 m

T5 m+(r2)
T6 (m)

T7 (m +(r2))

The bt position in the string must be specstied in register A2;
1n addressing the operard itis used as shown below:

12 13 15

0
Yl D B |

The bit displacement A2q_15 1s split up in the character displacement D and
the bit number B

The function of the instruction is:

Type Function Mode Syntax

T4 (m+D)g - CR 10 TSB m
1 - (m+Dig

T5 (m+(r2)+D)g -~ CR 10 TSB m,re
1= (m+(r2}+D)g

T6 I(m)+D)}g - CA 1 TSB* m
1~ ((m)+D)g

I7 ((m+1(r2))+D)g - CR 1 TSB* m.12

1~ ((m+(r2)) + D)g

CR - 0if tested bit was 0
CRA = 1if testod bit was 1

bt 0 1 45 89 10 11 14 15
[t o o ofo o o of mode | 2 [1]

172

TSBR

Syntax:

Condition
ragistar:

Test and Test Bit / Register TSBR P853

|label) TSBR r2

Thus instruction tests a bit in a bitstring. sets the condilion register 10 the
value of that bit. and seis the bit to 1.

The address of the first character of the string is contained in the register
spacified by r2.

The bit position in the string must be specif ed in register A2; in agcressing
the operand 1t is used as shown below:

0 12 13 15

A2 D B

The bit displacement A2q_5 15 split up in the character displacement O and
the bit number B

The function of the instruction is:

Type Funclion

3 ((r2+ D)g ~ CA
1~ ((r2)+Dig

CR =01 the lestad bit was 0
CR =1 it the tested bit was 1

bit 0 1 45 89 10 11 14 15

[1] o o ofo o o ofo 1] r2 [

1.72A

TRB

Syntax

Congition
register

Tss! anao Reset Bl

[label] TRB[*} m[.r2}

TRB

P853
P854
P858
P859

This instracsion lests a bit in a bitstring, sets the condtion reg:ster to the
value of that bit, ano resets the bit10 0
The address of the first character of the bitstring 1s the instruction operand.

foung as follows:

Type Address

T4 m

15 m+(r2)
T6 (m)

T? (m+(r2))

The bit position 1n the stnng must be specilied in regester A2: in addressing
the gparand 111s used as shown below.

0

12 13

15

a2 | D

The it displacement A2q_1 5 is split up In the character aisplacement D and

the bit number B.

The function of the instruction is:

Type Function Mode Syntax
T4 (m+Djg - CR 10 1RAB m
0 - m-+Dig
T5 m+({r2)+D)g -~ CR 10 TRB m,r2
0 ~im+(2)+D)g
6 ((m+D)yg - CR 11 TRB- m
0 -~ ((m)+ D)g
T7 (im+(r2))~D)g ~ CR n TRB* m,r2
0 -~ ((m+¢r2)) + DY
CR =0 tested o1t was 0
CR -1 if tesled bit was 1
o o 1 45 89 10 11 14 15
[+]t o o 1Jo o o of moe | 2 [1]

1728

| TRBR

Syntax.

Condition
register:

Test and Resel Bil / Registe: TRBR gggg

PB8s8
PBS9

[label] TRBR r2

This instructian 1ests a bitin a bitsiring. sets the condition register io the
value of that bit, and resets the bit to 0.

The address of the lirst character of the sinng is cortained in the register
speciliad by r2

The bit pasition in the string must be specified in register A2; in addressing
the operand it is used as shown belaw:

[¢] 12 13 15

Az | D B

The bit dhsplacement A2(_y5 is split up in the character displacement D and
the bit number B.

The tunction of the instruction is:

Type Funchon

T3 ((r2)+D)g -~ CR
0 -~ ((r2)+D)g

CR=0ifthe 1ested bit was 0
CR = 1if the 1ested bit was 1

bit 0 1 45 89 10 11 14 15

[1]t o o 1fo o o ofo [2 K

1.72C

Test 81t B Pas53
18 st P854
PB58
P859

Syntax. [iabel] TB[*] m[.r2]

This instruction tests a bit in a bitstring. and sets the condilion register to the
value of that bt

The address of the first character of the bitstring 1s tho instruction operand,
found as follows.

Type Address

T4 m

15 m+(r2)
T6 (m)

17 (m 4+ (r2))

The bit position in the stnng must be specified in register A2; in addressing
the operand i1 1s used as shown below:

0 1213 15

a2 | 0 [8 |

The bit displacement A2g_45 1s split in the character displacement D and
the bit number B8

The function of :he instructian is:

Type Function Mode Syntax

T4 (m+D)g - CR 10 8 m

75 (m+(r2) + D)g = CR 10 8 m.r2

76 ((m)+D)g ~ CR 11 TB° m

I7 ((m+{r2)}+ D)g =+ CR 1" TB* mr2
Condition
registar CR =0 if tested blt was D

CR : 11l tested bit was 1

bit 0 45 89 10 11 14 15

[+]+ © 1+ ofo o o of moce | 2 [1]

1.720

TBR

Syntax-

Condition
register

Test Bit / Regist TBR P853
est Bit / Register Pose

P8s8
PB59

llabel) TBR r2

Tris instruction tests a bitin a bitstring. sets the condition ragisler to the va-
lue of that bit.

The aadress of the first character of the string is contained in the register
specitied by r2

The bit position in the siring must be specified in register A2; in acdressing
the operand it is used as shown below:

0 12 13 15
a2 | D [8]

The bit displacement A2q.451s split up in the character dispiacement D and
the bit number B

The functian of the instruction is:

Type Function
T3 ((r2)+D)g - CR

CR =0 Ifthe tested bit was Q
CR = 1.if the tested bit was 1

45 89 10 11 14 15

0 1
[1+]1 o 1+ of 0 0 o o]0 1] r2 [1|

bit

1.72€

1 72F

5 Character Handling Instructions

ECR Exchange characters register/registes ECR PES1IM
P852M
P856M
P857M
Syntax: (labet] L ECR _ r1, r2

The left and right-hand characters contained in the register specified by r2
are exchanged and then placed in the register spacified by r1.
The old contents of the register specified by r2 are not changed.

Type Function

T1 (r2)y=r1, and (r2) =1,
Condition
register: Unchanged
bit 0 1 4 5 8 9 10 1N 14 15
1]1100[r [0 o[r2 [0
Remark:

* r1 mustbe # O,
* Restricted to system mode if r1 = A15.

1723

LCK Load character with constant LCK P8S1IM
P852M
P856M
P857M

Syntax: [labell LCK i 1, Ik

The left-hand character (bits 0—7) of the constant Ik is copied to bits 8—15
(right-hand character) of the register specified by r1,
Bits 0—7 of r1 remain unchanged.

Type Function

T2 k) - r1,
Condition
register: Unchanged
bit 0 1 4 5 8 9 10 N 14 15
1[1 10 0] n [o 1 Joooofo
Remark:

* rImustbe# 0.
* Restricted ta system mode if r1 = A15,

LCR

Syntax:

Condition
register:

Load character/register LCR

PBS1M

[label]l— LCR _ 1, r2

PB52M
PBS6M
PB57M

The right-hand {odd address) 8-bit contents or the left-hand (even address)
8-bit contents of the effective memory addresses, specified in 12, substitute

the least significant 8 bits of the register specified by r1,
Bits 0—7 of r1 remain unchanged.

Type Function

T3 ((r2])|/,. - rl,

Unchanged

bit 0 1 4 5 8 9 10 N 14 15
1]1 100 rl [0 1] r2]o

Remark:

* r1 must be ¥ 0.
¢ Restricted to system mode if r1 = A16.

LC Losd character LC PES1M
P852M
PBS6M
PBS57M

Syntax: llabel] _ LC[*)w r1, mi, r2]

This instruction allows to transfer the right-hand character of the contents
of the effective memory address (odd address) or the left-hand character
(even address) to bits 8—15 of the register specified by r1.

Bits 0—7 of r1 remain unchanged.

Type Function MD Syntax
T4 (m]Ur b f'r 10 LC 11, m
T5 (m +r2h)y,, -1, 10 LC r1,m,r2
T6 ((m)) |, ~rl, 1 LC" 1, m
T7 {(m 2y -1, 1" LC* r1,m,r2
Condition
register: Unchanged
bit 0 1 4 5 8 9 10 N 14 15
11 1 00 L r [MD] r2] 0
Remark:

" rTmustbe# 0.
* Restricted 10 system made if r1 = A15,

1.76

Syntax:

Caondition
register:

Store character/register

(label} SCR L r1, 12

PB51M
p8s2m
PB856M
P857M

The least significant bits of the register specified by r1 replace the right-
hand (odd address) or the left-hand (even address) 8 bit contents of the

effective memory address indicated by r2,

Type Function

T3 (r1ly, = (r2),y
Unchanged
bit 0 1 4 5 8 9

10

1

14 15

111 00] r [o

Remark:
“ rImustbe#0,
" Restricted to system mode if r1 = A15.

1.27

SC

Syntax:

Candition
register:

Store character SC P85 1M
P852M
PB56M
PB57M

[label], , SC[*}._. r1, m[, r2]

The least significant 8 bits of the register specified by r1, when address is
odd, replace the right-hand 8 bits of the contents of the effective memory
address or the left-hand 8 bits, when the address is even.

The unaffected half of the address remains unchanged.

Type Function MO Syntax

T4 (r1)p -~ m,r/1 10 SC r,m
T5 (r1ip - m & (e2) 1r 10 SC rl,m,r2
T6 (riy - (m)rdd 1 SC* n,m
T7 Iri)y = (m+ (r2)) /7 11 SC* n1,m, 2
Unchanged

it 4 5 10 1 14 15

0 1 8 9
1T1100[r Lmofrz T1

Remark:
* rimusthe? 0.
* Restricted 1o system mode if r1 = A15.

1.78

CCK Compare character with constant CCK PB51M
P852M
P856M
P857M

Syntax: (label} o, CCK L r1, Ik

Bits 8—15 (the right-hand character) of the register specified by r1 are
compared with bits 0—7 (the left-hand character) of the constant lk.
The most significant bit of a character is not a sign bit. The result of the
comparison is stored in the condition register.

Type Function

T2 {r1), « 1k, -+ CR
Condition
register: CR =0 it(ri}, = Ik
1 if ‘fl'r> |k|
2 it{rlh, < Ik,
bit 0 4 5 8 9 10 1 14 15

111101] r]o1|oooo]1

Remark:
* r1 mustbe £ 0.
* Restricted to systern mode if r1 = A15.

1.79

CCR Compare character/register CCR P851M
PB52M
PBS6M
P857M

Syntax: [label] L CCR . (1, (2

The 8 least signiticant bits of the register specified by r1 are compared with
the right-hand (if odd address) or left-hand (if even address) 8 bits of the
contents of the effective memory address indicated in r2,

The result of the comparison is stored in the condition register.

The most significant bit of a character is considered not to be a sign bit.

Type Function
T3 (r1)p = {{r2})yy, -+ CR

Condition

register: CR -0 if |f1)r= ((r2])“;r
1T e1) > {r2hyy,
2.t (r1), < ({r2))yy,

bit 4 5 8 9 10 N 14 15

0
1]1101 r]01[r2 1

Remark:
* r1 must be # 0.
* Restricted to system mode if r1 = A15,

1.80

cC

Syntax:

Condition
register:

Compare characters

[label}_ CC [¢]_ r1, m[.r2]

cc

P851M
P852M
PE56M
PBS7M

The 8 least significant bits of the reqister specified by r1 are compared with
the right-hand character of the contents af the effective memory address
(odd address) or with the feft-hand character of the contents of the effective

memory address (even address).

The result of the operation is stored in the condition register.
The most significant bit of a character is considered not to be a sign bit.

Type Function MO Syntax
T4 {rllg ~ (™ hifr *CR 10 CC ri.m
T5 (rlhpee(m +{r2)hyr -CR 10 CC r1,m,r2
T6 (M« ((m)yyr -CR 11 CC* r1,m
T7 (r1ly « ((m +{(r2)i/r>CR 11 CC*r1,m,r2
CR = 0 it{r1)r = (2nd operand)|/r
1 if {r1); > (2nd operand} ;¢
2 if {r1)r < (2nd operand)|/r
bit 0 1 4 5 8 9 10 11 14 15
1] 11 0 1 ‘L 1 r MD] 2 1
Remark:

* 1 mustbe¥ 0.

* Restricted to system mode ifr1 = A16,

1.81

.82

6 Branch Instructions

The branch instructions AB, ABL, ABR, ABI, RB and RF branch to an address or the
contents of an address or register when a certain condition is fulfilled. If that condition
does not arise the program determines the next instruction to be executed.

The condition is given by a number from 1 through 7 or by one or two latters.

The following table gives a survey:

Condition Notation

Cond. reg. (cnd)
contents | GENERAL | ARITHM. COMPARE . 1/0
0 0} (Z) Zero - (E) Equal (A) Accepted —‘
1 (1) {P) Pos. (G) Greater (R} Refused
2 (2) [N) Neg, (L} Less -
3 (3) (O) Overtl, - (U) Unknown
NOT — Condition
40 14} (NZ) Not Zero | (NE) Not Equal (NA) Not Accepted
#1 (51 {NP] NotPos. | (NG) Not Greater [[NR) Not Refused
412 (6) INN} Not Neg. | (NL} Not Less -
n-s. (7) Unconditional
Note.

The instruction counter P always points to the next instruction to be executed. Wherever
in the description the notation (P) + 2 {or 4) appears, the hardware function is meant.
\When the following program must be assernbled calculate the displacement in locations
as follows:

BEGIN EQU *

HLT

LDK A1,/000A
SUK A12
RF(Z2) <*+4

RB «—4

ABL -8

END START

where ++4 refersto ABL
«.-4 refers 1o SUK
«—8 refers to LDK

When the same program is to be put in memory with the toggle switchus the value tor
RF{Z} «+4 155002 and not 5004 as the P register is already pointing to the next
instruction,

The value for RB «—4 must be 5F06 and not 5F04, as the P-reqister is already pointing
10 the next instruction,

The address in the ABL instruction must be the relative address puinting to LDK.

1.83

The values put in memory for the program listed above must be:

207F START HLT

010A LDK A1,/000A
1902 SUK Al.2
5002 RF{2Z) «+4
5F06 RB —4
8F20 ABL -8
0002

END START

P85 1M
:gL Absolute conditional branch gg‘_ ngZM
P8SEM
P857M
Syntax: [label] L AB {(cndl]_ k - T8
[label] _ ABL [(cnd)]_ Ik -T2
This instruction means that the next instruction to be executed is found
either at the addrass specified by the constant {k indicating one of the first
256 addresses of the memory, |k being specified 1n the word following the
instruction) or in normal sequence, depending on the (cnd) and the contents
of the condition register,
If {cnd) is equal to {7) the next instruction is at the effective memary
address. Note that if {end) is omitted, the default value is (7).
The least significant bit in either constant, is always zero (word addressing).
See also table and note on page 6.0.1.
Effective Type Function
branch: 18 K=P
T2 k-~ P
No branch: Type Function
T8 Pr+2-7P
T2 (Py+4-pP
Condition
register: Unchanged

bit 0 1 4

5 7
T8 o|0001| CND

14 15

8
1B k [o

bit 0 1 4 s 7 89 10 1 14 15
T2 [1Joo o 1] ecno Po 1foooofo

1.85

ABR

Syntax:

Effective
branch:

No branch:

Condition
register:

Absvlute conditional branch to register ABR P851M
P852M
P856M
P857M

[tabel]._ ABR [{end)) [¢] _r2

This instruction indicates that the address of next instruction to be exscutad
is found either in the register specified by r2 or at the memory address
indicated by the register or in normal sequence depending on (cnd) and the
contents of the condition register.

If (end) = {7), the next instruction is at the sffective memory address
(unconditional branch).

If {(cnd) is omitted, the defautl value is (7).

See also table and note on page 6.0.1,

Type Function MD 173 Syntax

Ti (r2)-"P 00 ns. ABR{cnd) r2
T3 ((r2)} -~ P 01 0 ABRlcnd)® r2
Type Function MD 5

T (P)+2-P 00 n.s.

T3 (PY+2->P 01 0

Unchanged

bit 0 1 4 5 7 8 38 10 1 14 15

1[0001 CNDWMD] r2 |o

1.86

ABI Absolute branch indirect ABI P851M
Pg8s2m
PB56M
PB57M
Syntax: {label]l_ ABI [{cnd}] [+]_ m[, r2]
The address of the next instruction to be executed is found either at the
effective memory address or in the next instruction, depending on (cnd}
and the contents of the condition register.
If {cnd) = (7) (see below) the instruction branched to is always at the
effective memory address (unconditional branch).
In all other cases the program must first fulfil a condition before the
branch takes place. If {cnd) is omitted, the default value is (7).
See also table and note on page 6.0.1.
Effective Type Function MD Syntax
branch: T4 (m) -~ P 10 ABl{end) m
T5 {m +(r2)) P 10 ABl(end] m, 2
T6 {{tm}) - P 1" ABi{cnd)® m
T7 {(tm +(r2))) - P 1 ABl{cnd)® m,r2
No branch: Tvoe Function MD
T4 (P)+4-P 10
TS Py +4-P 10
T6 (P)+4~P 1
T7 (P)+4-+P 1
Condition
register: Unchanged
bit 0 1 4 5 7 8 9 10 N 14 15
1Jooao 1] cno P2 M0 [w2 [0

1.87

RF

Syntax:

Condition
register:

Relative forward conditional branch RF PB851M
P852M
P8S6M
P857M

This instruction indicates that the next instruction to be executed is found
either at the effective mamory address or in normal sequence, depending
on (cnd} and the contents of the condition register. If {cnd) = {7) the next
instruction can be found at the effective memory address (unconditional
relative branch).

If (end) is omitted, the default value of (7) is assumed.

The assembler calculates from the effective memory address, a displace-
ment D relative {forwards) to the current value of the instruction counter
{P). This value is stored in bits 8—15 of the instruction as a positive number.
Thus its maximum is 255. |n programming terms, this means that this
instruction can only be used to branch by € 128 words.

See also table and note on page 6.0.1.

Type Function
T8 {P1+2+D- P (branch effective)
T8 (PY+2 - P (no branch)

Example:
RF(Z) END
RF(3) ++12

Unchanged

bt 0 1 4 5 1.8 1415
o]1 01 0] cvo | D [o

RB

Syntax:

Condition
register:

Relative backwards conditional branch RB P8B1M
P852M
P856M
P857M

[label]. . RB[{cnd)] _ m

This instruction means that the next instruction to be executed is found
either at the effective memory address or in normal sequence, depending
on (cnd) and the contents of the condition register. |f (cnd) = (7) the next
instruction to be executed is found at the effective memory address.

If (end) is omitted, the defaut value of (7) is assumed.

The assembler calculates from the effective memory address, a displace-
ment D relative {backwards) to the current value of the instruction counter
(P). This value is stored in bits 8—15 of the instruction as a positive number.
Thus its maximum is 2565. In programming terms, this means that this
instruction can only be used to branch backwards by < 128 words.

It should be noted that
— RB {end) "
is equivalent to branch to itself and causes a continuous loap.

See also table and note on page 6.0.1.

Type Function

T8 [PI+2—-D- P (branch effective)

T8 {P) +2 - P {no branch)

Example:

RB(4) LABEL

RB(NE) +-2

Unchanged

bit 0 1 (4 5 7.8 1415
0 v 0 v 1T end |) 0

1.89

CF

Syntax:

Condition
register:

Call function CF PB51M
P852M
PB56M
P857M

(1abet}. . CF _ r1, Ik

This instruction provides a link to a subroutine by storing successively the
contents of the P-register and the program status word [PSW) in a memary
stack. The PSW contains, amongst other things, the priority level and
condition register, The stack pointar is held in the register specified by r1
and is automatically uEgated. Then a branch is made to the address
specified by Ik,

The subroutine must be terminated by an RTN instruction to branch back
to the rain program.

Type Function

T2 (P) -~ r)r1) =2-n1
(PSW) — (r1),{r1) =2 ~r1
1k - P

Unchanged. Its contents shows the result of a previous operation and is
stared in the memory stack for use on return from the subroutine.

bit 8 8 10 n 14 15

0 1 4 5
1T1110l r1 101[0000[1

Remark:

An interrupt ‘stack overflow’ is generated when r1- A15 and the word
address reached by the pointer= </100. Bit 13 is set in PSW.

* rlmustbe# 0.

* Restricted to system mode if r1 - A15,

The system stack and user stack are both built towards the lower
addresses.

P is stored first and next PSW.

-

1.90

CFR

Cafl function register CFR | P85 1M
P852M

Syntax:

Condition
register:

PB56M

P8S7M

[label).. CFR[*]_r1,r2

This instruction provides a link to a subroutine by storing successively the
contents of the P-register, which points to the next instruction of the main
pragram, and the contents of the program status word (PSW/| in a3 memory
stack. The PSW contains, amongst other things the prionty level and the
condition register. The stack pointer held in the register specified by r1 is
automatically updated by decreasing the stack pointer by 2, as the stack
pointer is filled from the higher address towards the lower address.

Next a branch is made to the effective memary address specified by the
contents of a register specified by r2.

The subroutine must be terminated by an RTN instruction to branch back
to the main program.

Type Function MD Syntax

TIL,T3 (P S{r)rb =2 - 11
(PSW} — (ri)fr1) 2+ 11

then:

T1 (r2) -P 00 CFR r1,r2
T3 {(r2)) - P 01 CFR* r1,r2

Unchanged. its contents shows the result of a previous operation and is
stored in the memory stack for use on return from the subroutine,

bit 0 4 5 8 9 10 N 14 15

ld_l)_l IERIE [™o] 2 [

Remark:

* An interrupt 'stack overtiow’ is generated when r1- A15 and the word
address reached by the pointer - </100. Bit 13in the PSWissetto 1.

* 1 mustbe+ 0.

* Restricted to system mode if r1 = A15.

1.91

CFIl

Syntax:

Condition
register:

Calf function indirect CFl P8BS 1M
P852M
P856M
PBE7M

(tabell _ CFI[(*]_ r1, m[, v2]

The instruction provides a link to a subroutine by storing successively the
contents of the P-register, which points to the naxt instruction of the main
program, and the contents of the program status word {PSW) in 8 memory
stack. The PSW ocontains, amongst other things, the priority level and
candition register. The stack pointer held in the register specified by r1 is
automatically updated by decreasing the stack pointer by 2, as the stack
pointer is filled from the higher address towards the lower address.

Next a branch is made to the contents of the effective memory address,
i.e. the subroutine which has to be executed.

The subroutine must be terminated by an RTN instruction to branch back
10 the main program.

Type Function MD Syntax

T4, T6 (P) -~ (r1) (r1) —2- r1 n.a.

T6,T?7 (PSW) —~(r1) (r1)=2-r1 n.a.

then:

T4 [m}) P 10 CFl r1,m
T5 (m +4{r2)) =P 10 CFI r1,m,r2
T6 {m)) ~P 11 CFI* rI,m
T7 {flm +(r2)})} =P 1 CFI®* r1,m,r2

Unchanged. Its cantents shows the result of a previous aperation and is
stored in the rmemory stack for use on return from subprogram,

bit 0 1 4 5 g8 9 10 1 14 15

1‘illUr1 [mpo] r2 [1

Remark:

* Aninterrupt ‘stack overflow’ is generated when r1= A15 and the word
address reached by the pointer = </100. Bit 13 of the PSWisset to 1.

* r1 moustbe =0,

" Restricted 10 system mode if r1 = A15,

RTN

Return from function (A1 ... Al14) RTN

Syntax:

Condition
register:

llabel] RTN _ r2

P85 1M
P852M
P856M
P857M

This instruction allows the retum from a subroutine to the main program.
It must be the last instruction of such a routine. The instruction reloads
the P-register and CR-registar which have previously been loaded into a

memory stack by a Call Function instruction,

Type Function

T3 (r2)+2 =12
{r2),, ~PLR
r2)),_.. - CR
(r2)+2 -~+1r2
{{r2)) - P

Reloaded trom stack, bits 6 and 7 of the PSW — CR,

bit 8 9 10 11

14 15

0 1 4 5
1|111(£Loooo£) LL

r2

o

Remark:
r2 must be # 0.

1.93

r

RTN Return from function (A15) | RTN P851M
P852M
PBS6M
P857M
Syntax: {lahel)._, RTN _ A15

This instruction allows the return from an interrupt routine, a trap routine

ar subroutine, |t must therefore be the last instruction of that routine. The

instruction reloads the PSW and P-register which have previously been

loacled inta a memory stack by a Call Function instruction. The stack-

pointer A15 is automatically updated,

On the P852M bit 8 of the PSW (ENB) is always set to 1. On the other

computers bit 9 must be set, if required.

Notc: By torcing bit 16 of the PSW to 1, the user may switch the machine
from system mode to user mode (PBS1M, PBSBM and PBS7M).

Type Function (P852M) Functian fother)

T3 {A15) +2 - Al1b [A15) + 2 -+ Al5
{{A15]) 0-5 -+ PLR ((A15)) 0-5 -+ PLR
((A16)) 6,7 - CR ((A15)) 6,7 - CR
bit 9 isset to 1 -~ ENB ((A15)) 9 -~ ENB
SU brt does not exist ({A16)) 15 -- SU
(A15) + 2 - A15 (A15)+ 2 - A15
{{A15)) - P {l1A15)) - P

bit 0 1 4 5 8 9 10 11 14 15

1T11tﬁ[0000|0 1]1111[0

Remark:
r2 must be 2 0.

EXR

Execute register EXR P851M

Syntax:

Condition
register:

P852M
PB56M
P8S7M

[

[Iabel]_, EXR(']U r2

This instruction executes the instruction in r2 {T 1} or pointed to by the
contents of r2 (T3). r2 may not contain a double word instruction, a CF
instruction, RTN instruction or another EXR, EX or EXK instruction,

Type Function MD Syntax
m™ (12) is executed 00 EXR r2
T3 {(r2)) is executed 01 EXR* 2

CR is set by the instruction in (r2).

bit 0o 1 4 5 8 9 10 n 14 15

u111o—[0000[MD[r2 [

EXK

Syntax:

Condition
register:

Execute constant

(label] _ EXK o Ik

This instruction performs the operand instruction contained in lk.

EXK

PB51M
PB52M
P856M
P857M

The memory address may not contain a double word instruction, a CF
instruction, RTN instruction or another EXK, EX or EXR instruction.

Type Function
T2 Ik is executed

CR is set by the instruction in lk.

bit 1 4 5 8 9

10 N

14 15

0
1]1110000010

1]0000T1

1.96

EX

Syntax:

Condition
register:

Execute EX PB51M
P852M
P856M
P8BS7M

(label] _ EX[*}_ m[, r2]

This instruction executes the operand instruction contained in the effective
memory address. The memory address may not contain a double word
instruction, a CF instruction, RTN instruction or another EX, EXK, or EXR
instruction.

Type Function MDD Syntax

T4 (m}) is axecuted 10 EX m
75 (m +(r2)) o 10 EX m,r2
76 {{m)}) " 1M EX* m
T7 {im + (r2))) " 1" EX* m,r2

CR is set by the instruction in the effective memory address.

bit 4 5 8 9 10 1 14 15

0
11 v 1 0[0o00 0] MO [2 [1

1.97

7 Shift Instructions
SLA Single left arithmetic shilt SLA PE51M
P852M
P856M
PBS7M
Syntax: (label]l LSLA .. (3, n
The bits of the register specified by r3 are shifted left n bit positions. Over-
flow occurs when the sign bit was modified during the operation. Vacant
bits are filled with zeroes.
Type Function
T8 0 15
1—-| s l-r register contents I-O
«—— n positions ——
Condition
register: CR =0 ifresult=20

v if result > C
2 ifresult <0
3 in case of overflow

bit 0 1 4 5 10 1N 15
0 [o 11 1 3 o| n

Remark:

3¢ 0.

1.99

SRA Single right arithmetic shift SRA PB51M
P852M
P856M
P857M
Syntax: (label]l SRA _r3,n
The contents of the register specified by r3 are shifted right n bit positions.
The sign bit is not changed. It is shifted into the vacant position(s) of the
register. The vacant bit positions are filled with the same values as the sign
bit, i.e. either O or 1.
If n> 15, all bits of the register will be tha same as the sign bit.
Type Function
T8 0 1 15
B{ register ct;mtents‘]_1
n positions —
Condition
register: CR =0 ifresult =« 0
1 ifresult>0 -
2 ifresult <0
bit 0 1 4 5 7 8 9 10 01 15
0o 1 11 r3 0 0 1 [n
Remark :
3#0.

1.100

SLL

Syntax:

Condition
register:

Single feft logical shift SLL

(tabel] L SLL . r3, n

P851M
P852M
P856M
Pa57M

The bits of the register specified by r3 are shifted laft n bit positions.

Vacant bits become zero. After 16 or more shifts the whole register

contains zero.

Type Function
T8 0o 1 15

I_E}_liregisler contents }0

«— N positions

CR = Qifresult =0
1ifresult> 0
2ifresuit< 0

bit 0 4 5 78 9 10 W

Remark:
r3# 0.

1.101

SRL Single right logical shift SRL PB51M
P852M
P856M
P857M

Syntax: (label] .. SRL _. r3,n

The contents of the register specified by r3 are shifted right n bit positions,
Vacant bits become zero, After 16 or more shifts the register contains zero.

Type Function
T8 0 1 15

0 —B{ register contents |—

——— n positions —>

Condition
register: CR =0 ifresutt=10 -
1 ifresut >0
2 ifresult < 0
bit 0 1 4 5 7 8 9 10 1 15
oJo v v 1] r3 o1 1] n
Remark:
3¢ 0.

1102

SLC

Syntax:

Condition
register:

Singte left circular shift sLc

[label) . SLC .3, n

P851M
P852M
P856M
P857M

The contents of the register specified by r3 are shifted left, end around,

n bit pasitions,

Type Function
T8 0 1 15

I_LT_]..L register contents I.j

n positions

CR =0 ifresult=0
1 ifresult > 0

2 ifresult <0
bit 0 1 4 5 78 9 10 1 15
0 [01 11 3 1 1 0 J n |

Remark:
3 # 0.

1.103

SRC

Syntax:

Condition
register:

Single right circufar shift

[label) _SRC_r3,n

SRC

PBS 1M
P852M
PE56M
P857M

The contents of the rugister specified by r3 are shifted right, end around,

n hit positions.

Tvpe Function
T8 0 1 15

ﬂ register contentsh

N positions
CR =0 ifresult= 0
1 ifresult >0
2 ifresult< 0
bit 0 1 4 5 7 8 8

1"

16

00111J 3 [1

Remark:
r3#0.

SLN

Syntax:

Condition
register:

Single left and normalize shift SLN

(label] _ SLN. .3, r?

PB51M
P852M
P856M
PBS7M

The contents of the register specified by r3 are shifted left until the two
most significant bits differ, The sign bit remains unaffected; zero bits are
inserted in the least significant positions. The number of shifted positians

is placed in the register specified by r2.

Type Function

T8 0 1 15
Bl{ register contents }o—O
Unchanged
bit 0 1 q 5 7 8 9 10 1N 14 15
oJo 1 1 1] 3 1 0 o] 2 | o
Remark:
" 3#0.

" If (r3] = O the number of shifted positons will be 16.
* Restricted to system mode if r2 = A15,

1.105

SRN Single right and normalize shift SRN P851M
P852M
PB56M
P857M

Syntax: [labell_ SBN _, r3, r2

The contents of the register specified by r3 are shifted right until 3 1-bit
appears in hit 15 of that register.

The sign bit is not changed and is copied each time a shift is given.

The number of times a shift had 1o be performed is placed in the register
specified in r2,

Type Function
T8 0 1 15

E_{ register contents |,

Condition
register: Unchanged
bt 0 1 4 5 7 8 9 10 1N 14 15
oJo 1 11 3 [1 0 1] r2 0
Remark:
* 340

* If (r3) = 0 the number of shifted positions will be 16.
* Restricted to system mode if r2 = A15,

DLA Double left arithmetic shift DLA PB51M
P852M | (Softw.sim.)
PBS6M
P857M

Syntax: [labell L DLAC n

This instruction treats the A1 and A2 register as ane 31-bit register (bit 0
of A2 is set to zerol. The contents are shifted left n positions and zeroes
are placed from the right in vacated positions.

Overflow occurs when the sign bit is changed during execution of this
instruction.

Type Function

T8 0 1 15 16 17 31
L—@_L register A1 {0 register A2 k-0

« n positions

Condition
register: CR =0 ifresult=0
1 ifresult >0
2 ifresult <0
3 in case of overflow

bit 0 1 4 5 6 7 8 9 10 N

oJo 1 1 1Jo o ofo 0o o] n1_i]
|

1.107

DRA Double right arithmetic shift DRA P851M
P852M | (Sottw. sim.)
PB56M
P857M
Syntax: (labellL.DRA L. n
This instruction treats the A1 and A2 registers as one 31-bit register,
The contents are shifted right n positions and zeroes or ones are
propagated into vacated positions depending on the value of the sign bit
of A1,
After 30 or more shifts the two registers are filled the value of the sign
bit {all zeroes or anes}, except for the sign bit of A2 which is always set
to 0.
Type Function
T8 0 1 15 16 17 31
E_.L register A I_J %’A L[register A2 h
_———————— n positions *
Condition
register: CR =0 ifresult=0
1 ifresult >0
2 ifresult <0
bit 0 1 4 5 6 7 8 9 10 N 15
oJo 11 1Joo ofo o 1] n

1.108

DLL

Double jeft logical shift DLL P85 1M

Syntax:

Candition
register:

P852M
PB56M

PB57M

[label]) DLL_ n

This instruction treats the registers A1 and A2 as one 32-bit register. The
contents are shifted left n positions. Zeroes are propagated into vacated
positions of A1 and A2.

Type Function

T8 0 1 15 16 17 31
_E__L rogister A1 j._m{ register A2]._0
i n positions

CR = Qyifresuft = 0
1 ifresult>0
2 fresu < 0

78 9 10 1 14

bit 0 1 4 5
1

1.709

{Softw, sim.)

DRL

Syntax:

Condition
register:

Doubte right fogical shift DRL

{label] ., DRLL N

P85 1M
PB52M
PB56M
P857M

The A1 and A2 registers are treated as one 32-bit register, The contents
are shifted right n positions. Zeroes are propagated into vacated positions.
The max. number of shifts is 31.

Type
T8

CR =

bit

Function

n positions
0 result=0
1 ifresult>0
2 ifresult <0
0 1 4 5 6 7 8 9 10 n

15

0]0111]000]01 1[

1.710

(Softw. sim.)

16
0 -ol s]—-blireglsterA‘l j——oB—OL register A2 J——l

DLC

Double left circular shift DLC PBS1M

Syntax:

Condition
register:

P852M
P856M
P8ETM

[labell L OLC L n

The A1 and A2 registers are treated as one 32-bit register. The contents
are shifted left, end around, n positians.

Type Function

T8 0o 15 16 17 Khi
I——E-Lreginer Al J—El'_(register A2 I-j
n positions

CR =0 ifresult=0
1 ifresult> 0
& ifresult <0

bit 0 1 4 5 6 7 8 9 10 1 15

UT)"‘IOOO"OT n

s

(Sofiw. sim.|

P85 1M
PB52M
PBS6M
P857M

31

}-.-l

DRC Double right circular shift DRC
Syntax: [label)_ DRC _n
The A1 and A2 registers are treated as one 32-bit register. The contents
are shifted right, end around, n positions.
Type Function
T8 0 1 15 16 17
- E"l register A1 }"E}_’I register A2
n positions
Condition
register: CR = 0 ifresult- 0
1 ifresult> 0
2 ifresult < 0
bit 0 1 q 5 6 727 8 9 10 1

15

0 o111]ooo|111[

1112

{Softw. sim.)

DLN

Double left and normalize shift DLN P851M

Syntax:

Condition
register:

PBS2M | (Softw. sim.|
P856M
P857M

[tabell_ DLN _ r2

The A1 and A2 registers are treated as one 31-bit register, I1s contents are
shifted left untif bit zero and bit one have a different value.

Zeroes are shifted, from the right hand side on, into vacated positions of
the register. The sign bit of register A1 remains unchanged.

The number of shifted positions is stored in register r2.

The sign bit of A2 becomes zero.

Type Fi uncrton
T8 1 6

17 31
) L] g | — o

Unchanged

bit 0 1 4 5 6 7 8 9 10 11 14 15
0“111000[100 2 0

Remark:

Restricted to system mode if r2 = A15.

1113

DRN Double right and normalize shift DRN P851M
P852M
PBSEM
P857M
Syntax: |label} .. DRN . r2
The A1 and A2 registers are treated as one 31-bit register. The contents
are shifted right until a 1-bit appears in the least significant position of the
register, The sign bit is shifted to the right each time a shift takes place.
The number of shifted postions is stored in register r2.
The sign bit of A2 becomes zero.
Tvpe Functwn
T8 15
L} [mn [}y
Congition
register: Unchanged
bit 0 1 4 5 6 727 8 9 10 N 14 15
oJo 1 1 1Jooo[r 0o 1] 2 Jo
Remark:

Restricted ta system mode if r1 = A15.

1114

(Softw. sim.)

Table Handling Instructions

MVF

Move Table Forward MVF P857M

Syntax:

Condition
register:

[labet]_ MVF _r2

This instruction copies a string of consecutive words trom one mermory

area into another area, boginning with the last location from the buffer ta

be copied towards the start address of that buffer, Should the buffer to

be copied and the receiving buffer overlap, the user must take care not to

overwrite the contents of the locations in the buffer to be copied. Use in

that case the instruction MVB.

— register A1 must be loaded with the start address of the memory area
to be copied.

— register A2 must be loaded with the start address of the receiving
buffer.

— register r2 must contain the number of characters to be copied {the
number must be even and unsigned).

The execution of this instruction may be interrupted after any word

transfer. When the interrupt is accepted the contents of the instruction

counter, which is pointing to this instruction, are saved in the stack.

The contents of A1 and A2 remain unchanged.

Register 12 contains the remaining number of characters 1o be transferred.
The execution of this instruction is resumed when the interrupt has been
serviced, When the execution is terminated A1 and A2 contain the initial
values.

Type Function
T8 (r2) — 2 = r2, {({A1) + (r2}1) ~ (A2) 4 (r2)

0 > r2, ((A1)) - (A2)
Unchanqgud

bit 0 1

4 5 7 8 10 1
01110|'ootﬂono 2
-

Remark:

* When used in systum moder2 - A15 or £ A15.
* \When used in user made r2 4 A15.

* r2mustbe# 0.

14 1

(5]

5

1.115

MVB Move Table Backward MvB P8S7M

Syntax: [label] _, MVB _ r2

This instruction copies a string of consecutive words from one memory
area into another area, beginning with the first location of the buffer to
be copied towards the last location of that buffer. Should the buffer to
be copied and the receiving buffer overlap, the user must take care not to
overwrite the contents of locations in the buffer to be copied. Use in that
case the instruction MVF,
— register A1 must contain the start address of the huffer to be copied.
— register A2 must contain the start address of the receiving buffer,
— register r2 must contain the number of characters to be copied. (The
number must be even and unsigned.]
The execution of this instruction may be interrupted after any word
transfer. When the interrupt 1s accepted the contents of the instruction
counter, which points to this instruction, are saved in the stack. The
contents of registers A1 and A2 paint to the first location to be trans-
ferred when resuming the execution. Register r2 cantains the remaining
number of characters 10 be transterred.
The execution of the instruction is resumed when the instruction
interrupt has been serviced, When the execution is terminated A1 and A2
point to the first address after the buffer.

Type Function

T8 (A1} > |A2)
{r2)=-2 -2, (A1)+2 = A; (A2} 42 - A2; ({A1)) ~ (A2)

0 --r2; (A1)+2 -~ Al; [A2)+2 - A2
Condition

register: Unchanged

b 4 b 78 9 10 n 14 15

it 0 1
F)”’[1__| 1 1]o 0 ofo o o] 2 Jo

Remark:

* When used in system maoxie r2 - A15 or ¥ Al5.
* When used in user mode r2 # A15.

® 12 must be ¢ 0.

1.7116

MVUS Move Table from User to System area MVUS P857M
MMU option)

Syntax: |label] _ MVUS _ 12

This instruction is used to copy a table of consecutive words from a user

area (sending buffer) to a system area (ruceiving buffer), beginning with

the first location towards its last location.

— register A1 must contain the logical start address (MMU) of the buffer
to be capied.

~ ragister A2 must contain the physical start address (NO MMU) of the
receiving butfer,

— register r2 must be loaded with the number of characters to be copied.
This number must be even and not signed.

The execution of this instruction may be interrupted atter any ward
transfer. When the interrupt is accepted the contents of the instruction
counter, which points to this instruction, are saved in the stack. The
contents of A1 and A2 point to the first location to be transferred when
the execcution is resumed.

Ragister r2 contains the remaining number of characters to be transferred.
The execution of this instruction is resumed when the interrupt is serviced.
When the execution is terminated A1 and A2 point 1o the first address
after the receiving buffer,

Type Function

T8 (A1)} ~ (A2)
(12)= 2 -712; (A1) +2 =~ Al; (A2)+2 ~ AZ; ((Al1]) ~ (A2)

0 -2, (A1} +2 = A1, (A2)+2 —~ A2

Condition
register: Unchanged
bit 0 1 4 5 7 8 9 10 1n 14 15
0[1111000100] r2]0
Remark:

* When used in systern mode r2 = A15 or # A15.

* When used in user mode r2 ¥ A15. In that case or if MMU is not available
this instruction is the same as the MVB instruction.

* r2 must be ¥ 0.

1117

] MVSU Move Table from System to User area I— MVSU PB57M
_ {MMU option) L

Syntax ;

Condition
register:

label] (. MVSU._ r2

This instruction is used to copy a table of consecutive words from a system

area (sending buffer) to a user area (receiving butfer}, beginning with the

last location of the sending area towards the first location.

— register A1 must contain the physical start address (NQ MMU) of the
sending butfer.

— register A2 must contain the logical start address (MMU) of the
receiving buffer, *

— register r2 must be laaded with the number of characters to be copied
{this number must be even and unsigned).

The execution of this instruction may be interrupted after any word
transfer. When the interrupt is accepted the contents of the instruction
caunter, which points to this instruction, are saved in the stack. The
contents of registers A1 and A2 remain unchanged.

Register r2 contains the remaining number af characters to be transterred.

The execution of the instruction is resumed when the interrupt is serviced.
When the execution is terminated A1 and A2 contain their initial values.

Type Function

T8 r2) =2 - r2, (A1) = (12)} ~ (A2) + (r2)
0~-r2 . UAT]) - (A2)
Unchanged
hit 10 N 14 15

0 1 4 5 7 B8
,oi111cﬂoociloo| 2 0

|

Remark:

* When used in system mode r2 = A15 or ¥ A15,

* When used in user mode r2 ¥ A15. In that case or if MMU is not
available this instruction is the same as tha MVF instruction,

* r2 must be # 0.

.118

9 External Transfer Instructions

WER Write external register WER P851M
P852M
PB56M
P857M
Syntax: [label] _ WER _ r3, address

The contents of the register specified by r3 are transferred to the external
register whose address is specified in bits 8—15. The contents of the
register specified by r3 and the candition ragister remain unchanged,

Two WER instructions must be used to send two control words, one contain
.ing a buffer address and the second one containing the number of words or
characters to be transferred, 1o two registers on the 1/0 Processor.

Ist contro! word

DREEIK 7
where: bit0 = 0 if char. mode

1 if word mode

bit1 = Oif transferisCU — MEM
1if transfer is MEM -» CU

bits 2, 3 are used to extend the memory address in 2nd control
viord to > 32K.

bits 4 through 15 = transfer length in words or characters,
2nd control word

(o] [15]
where: bits 0 through 14 = memory address

bit 15 {if char. mode) = O left hand character
1 right hand charecter

The layout of bits 8 through 15 of the WER instruction is:

0 [proc. address | sub-chan. address] on |
8 9 1 12 14 15
bit8 = 0
bits 9 through 11 must be set to zero for the P851M (only one prucessor
connection.
On P852M, P856M or PBS7M it may be a number from O
through 7.
bits 12 through 14 device address
bit 15 = 0 WER instruction for the 1st control word

1 WER instruction for the 2nd control vvord

Note: When a device must be addressed via a multiple cantrol unit card
specify the lowest address.

.

1.119

Condition
register:

Example:
Qutput on cassette

LDK A1,/0084 Send 132 characters.

LDOKL A2, BUFFER Take the contents of ‘BUFFER"’.

WER A1,/A The cassette has address /05 and is connected to
1/0 Processor numero 0, Bit 15 = 0 {1st control
word).

WER A2,/B Send the 2nd control word. Bit 15 =1,

Type Function

T8 {r3) = externreq.

Unchanged

bit 0 1 4 5 7 8 15

0 [1t 1 10] 3 | ext, reg. address

Remark:

* r3mustbe# 0.
* This instruction may only be used in system mads.

1.120

RER

Syntax:

Conditian
register:

Read external register RER PBS1M
P852M
P856M
P8STM

(1abel] _ RER ._ r3, address

The contents of the extarnal register, specified by its address, are trans-
ferred to the register specified by r3. The contents of the external register
remain unchanged, Bits 6 and 7 of the external register are copied to the
condition register.

Through this instruction the uscr can check how many characters or
words have been transferred,

Type Function
T8 (extern regl -+ r3

(extern reg 6,7) » CR

bit 0 7 8 15

4 5
0 l 110 IL r3 | ext. reg. address

Remark:
“r3mustbez 0.
* This instruction may only be used in system mede.

1121

TLR

Segment Table Load/register TLR

Syntax:

Condition
register:

{MMU option)

P857M

[labet]l TLR 2

This instruction loads 16 consecutive registers, TRO through TR 15, which
are located an the MMU, with the contents of 16 consecutive memory

locations, the first one being indicated in register 2.

Type Function

T3 ((r2)) - TRO
((r2) +2) - TR1

(r2) +15x2) -~ TR15

Unchanged
bit 0 1 4 5 8 9 10 11 14 15
1[0111]0000[0 1] 2]C

Remark:
This instruction is restricted ta system mode.

1.122

TL

Syntax:

Condition
register:

Segment Table Load TL P8S57M
(MMU option)

[tabel]l o TL{*]u m(, 2]

This instruction loads 16 consecutive registers, TRO through TR15, which
are located on the MMU, with the contents of 16 consecutive memory
locations.

The address of the first memory location is indicated by the effective
memory address.

Type Function Syntax

T4 {m)..{m +15x2) -+ TRO..TR15 TL m
T6 (m+(r2))..{m+(r2})+15x2) - TRO..TR16 TL m,r2
T6 ({m)) .. {{m} + 15x2) - TRO..TR15 TL* m

T7 ((m+ (r2l)). . ({m+ {r2}} + 15x2} ~ TRO..TR1S TL®* m,r2

Unchanged

bit 0 1 4 5 8 9 10 N 14 15

1]01110000[MD] 2]0

Remark:
This instruction is restricted to system mode.

1.123

TSR

Segment Table Store/register TSR

Syntax:

Condition
register:

PBS7M

IMMU option)

[label] L TSR ., r2

This instruction places the contents of 16 consecutive registers, TRO
through TR15, located on the MMU, in 16 consecutive memory locations.
The first memary location is indicated by the contents of register r2,

Type Function

T3 {TRO) - (r2)
(TR1) = (r2) +2

(TR15) - {r2} + 15x2
Unchanged

bit 0 1 4 5 8 9 10111

14 15

110111[0000]0 11 r2

Remark:
This instruction is restricted to system mode.

1.124

TS Segment Table Store TS PB57M

Syntax: labet]_ TS{*]_ ml[, r2]

The contents of 16 consecutive registers, TRO through TR15, located on the
MMU, replace the cantents of 16 memory locations. The first memory
location is indicated by the effective memory address.

Type Function Syntax
T4 [TRO) -m
(TR1) - m+2
(TR15) - m+ 15x2 TS m
T5 (TRO) s m+ (r2)
(TR1) e m+(r2) +2
(TR15) - m+(r2) + 15x2 TS m,r2
T6 (TRO} —+(m)
(TR1) {m+2)
{TR15) -»{m + 15x2} TS* m
T? (TRO} —+{m +{r2}}
(TR1) s{m 4+ {r2} +2)
{TR15) —(m ¢ (r2) + 15x2) TS* m. 2
Condition
register: Unchanged
bit 0 1 4 5 8 9 10 1N 14 15
1o 1 1 1]0 00 0] mMp | 2 [1

Remark:
This instruction is restricted to system mode.

1.125

FLDR

Floating Point Load/register FLDR
(F.F.P. option)

Syntax:

Condition
register:

P857IM

[label]., FLDR.. r2

The contents of three consecutive memary locations are loaded into three

accumulators FPA1, FPA2, FPA3 on the Floating Point Processar.

The first memory location is indicated in the register r2.

Type Function

T3 ((r2)) - FPA1
{(r2) +2| - FPA2
{(r2) +4] » FPA3

CR = 0 if floating point operand = 0
1 if floating point operand > 0
2 if floating point operand < 0

bit 0 1 4 5 8 9 10 1

14 15

1]10000010]01] r2

1.126

FLD

Syntax:

Condition
register:

Floating Point Load FLD

P857M

(F.F.P. option)

[label] _ FLD[*]_ m[, r2]

The contents of three consecutive memory locations are loaded into three
accumulators FPA1, FPA2 and FPA3 on the Floating Point Processor.
The first memory location is indicated by the effective memory address.

Type
T4

T5

T6

T7

CR

bit

Function MD Syntax
(m) -+ FPA1 10 FLD m
(m +2) - FPA2

(m +4) - FPA3

(m +(r2) - FPA1 10 FLD m,r2
{m +(r2) +2) - FPA2

{m +{r2) +4) -+ FPA3

{{m}) - FPA1 " FLD* m
({m)+2) -~ FPA2

((m} + 4) - FPA3

{(m +(r2)}) - FPA1 n FLD®* m,r2
((m +(r2)} +2) - FPA2

((m +(2)} +4) - FPA3

0 if floating point operand = 0
1 if floating point aperand > 0
2 it floating point operand < 0
3 unnarmalized operand (operation aborted)

0 1 4 5 8§ 9 10 1N

14 15

1[1to0o0oo0fo o1 of mo | 2

1.127

FSTR

Floating Point Store/register

Syntax:

Condition
register:

(F.F.P. option)

[label]_ FSTR _ r2

FSTR PB57M

The contents of three accumulators FPA1, FPAZ2 and FPA3 on the
Floating Point Processor replace the cantents of three consecutive
memory locations. The first location is indicated in register r2.

Type Function

T3 (FPA1)
(FPA2)
(FPA3)

-~ (r2)
s (r2) +2
+(r2) + 4

Unchanged

bit 0o 1 4 5 8 9

10 N 14 15

111000T0010[o

1| 2 11

1.128

FST

Syntax:

Condition
rugister:

Floating Point Store
(F.F.P. option)

llabel] o FST(*]_ m|, r2]

FST

P857M

The contents of three accumulators FPA1, FPA2 and FPAJ on the
floating point pracessor replace the contents of three consecutive memory
locations. The first location is indicated by the effective memory address.

Type Function MO Syntax

T4 (FPA1) - m 10 FST m
(FPA2) - m +2
(FPA3) > m +4

T5 (FPA1) -+ m +(r2) 10 FST m,r2
(FPA2) - m +1(r2)+2
(FPA3) - m +(r2)+4

T6 (FPA1) -+(m) 11 FST* m
(FPA2) —(m)+2
(FPA3) ~+(m)+4

T7 (FPA1) —+{m +(r2)) " FST* m,r2
(FPA2) -+(m + (12) +2)
(FPA3) —(m +(r2) +4)

Unchanged

bit 0 1 4 5 8 9 10 11 14 15

1[1o000]o o1 o] Mo | r2 1

	00.0001
	00.0002
	00.0003
	00.0004
	00.0005
	00.0006
	01.0001
	01.0002
	01.0003
	01.0004
	01.0005
	01.0006
	01.0007
	01.0008
	01.0009
	01.0010
	01.0011
	01.0012
	01.0013
	01.0014
	01.0015
	01.0016
	01.0017
	01.0018
	01.0019
	01.0020
	01.0020A
	01.0020B
	01.0021
	01.0022
	01.0023
	01.0024
	01.0025
	01.0026
	01.0027
	01.0028
	01.0029
	01.0030
	01.0031
	01.0032
	01.0033
	01.0034
	01.0035
	01.0036
	01.0037
	01.0038
	01.0039
	01.0040
	01.0041
	01.0042
	01.0043
	01.0044
	01.0045
	01.0046
	01.0047
	01.0048
	01.0049
	01.0050
	01.0051
	01.0052
	01.0053
	01.0054
	01.0055
	01.0056
	01.0057
	01.0058
	01.0059
	01.0060
	01.0061
	01.0062
	01.0063
	01.0064
	01.0065
	01.0066
	01.0067
	01.0068
	01.0069
	01.0070
	01.0071
	01.0072
	01.0072A
	01.0072B
	01.0072C
	01.0072D
	01.0072E
	01.0072F
	01.0073
	01.0074
	01.0075
	01.0076
	01.0077
	01.0078
	01.0079
	01.0080
	01.0081
	01.0082
	01.0083
	01.0084
	01.0085
	01.0086
	01.0087
	01.0088
	01.0089
	01.0090
	01.0091
	01.0092
	01.0093
	01.0094
	01.0095
	01.0096
	01.0097
	01.0098
	01.0099
	01.0100
	01.0101
	01.0102
	01.0103
	01.0104
	01.0105
	01.0106
	01.0107
	01.0108
	01.0109
	01.0110
	01.0111
	01.0112
	01.0113
	01.0114
	01.0115
	01.0116
	01.0117
	01.0118
	01.0119
	01.0120
	01.0121
	01.0122
	01.0123
	01.0124
	01.0125
	01.0126
	01.0127
	01.0128
	01.0129

