

Table of Contents

Preface.

Glossary of terms

PART 1 ASSEMBLY LANGUAGE.

Introduction .

Syatan description.

Chapter 1 Format of source statements
Label field . ;
Opcration field .
Operand field.
Comment ficld .
Input of source statements ‘and corrections
Addressing modes .

Chapter 2 Functional operation of instructions
Load and Store instructions .
Arithmetic instructions .

Logical instructions .
Character handling instructions.
Branch instructions

Shift instructions
Control instructions. .
1/70 instructions. .

External Cransfer instructions .

Move table instructions .

Chapter 3 Assembly directives
Program framework .
IDENT .
END .

Linkage control.
ENTRY .
EXTRN .
COMN .

Assembly control .

IFT.
ITF.
XIF
STAB. e

s
t

e
e
t

e
t
t

a
=

o
b

AORG .
RORG

Value definition .

DATA
EQU .

Area reservation

RES .

Listing control .
EJECT .
NLIST .
LIST .

Symbol generation.
FORM .
XFORM.
GEN .

List of predefined symbols.

Chapter 4 Programming considerations .

Stand Alone or Monitor controlled programming.
Interrupt system . re
System stack .
User stack .
Trap action
Simulation routine.
Adaptation of P855M software to P8OOM software : - _ :) T

S
T

T
T

T
T
T

R
A
N

=
=
=

—

;

A
A
A

A
A
A
A
D
S

a
n

Glossary of terms

Absolute addressing

Assembler

Bootstrap

Breakpoint

Character

Cluster

Common

blank common

labeled common

Debugging Package

Directive

Effective
memory address

Entry point

External reference

File code

addressing specific locations in memory (see also
relocatable addressing)

a system program which translates programs
written in Assembly Language into binary object
code

a program provided for initial loading of the
system

address at which execution of program stops to
allow further debugging

eight bits. representing an integer, letter or other
data item

a set of data in object code

an arca to which external references can be made

from one or morc modules

a predefined external reference which can be used
in several modules

a processor which allows the programmer to insert
breakpoints in a load module and call debugging
functions before execution of a program

an instruction used for providing a framework for a
program or for guiding the assembly process

address in memory where the actual information
can be found

a label to which an external reference is made

a reference to an entry point in another program or
module

one or two hexadecimal digits associated with an
1/O device

IX

Identifier

Internal symbol

IPL

Label

Linkage Editor

Load Module

Location counter

Mnemonic

Module

Monitor

Object code

Operand

Pass

Real Time Clock

a character or a combination of characters used to

label] an instruction or a value which is to be

referred to by other instructions

identifier in a module

Initial Program Loader. A program to load the
monitor

identifier of max. six characters long, the first
always being a letter

a processor used to link independent object
modulcs before execution

program output by the Linkage Editor containing
no external references

counter used to assign a relative or absolute
address to program elements

abbreviation for an instruction, as used in_ the

operation code field of a source statement, to
indicate a machine instruction or directive

a part of a program, enclosed by an IDENT and
END directive, which can be treated independently
of the rest of the program

a system program which supervises the loading.
processing and execution of user programs, starts
and supervises the operation of processors and
initialises 1/O operations

program as translated by a language translator and
suttable to be input to the Linkage Fditor

an cxpression indicating the address, value or
register to be operated upon by the machine
struction

one program run

a mechanism by means of which the amount of
computer time allocated to a program is measured
and a signal is given when that period of time has
ended

Relocatable addressing

Source statement

Stand Alone processor

Symbol

Update Package

addressing in relation to the beginning of a
program, not to spccific locations in memory. The
relocation of the addresses is then done by the
machine

one line in a source program

processor not running under Monitor control. It
contains its own I/O routines

an identifier, uscd as an address value in the

operand field of other instructions

a processor which handles the additions and
deletions in source or object programs

XI

XII

PART 1 ASSEMBLY LANGUAGE

1-2

Introduction

This part contains a description of the Assembly Language. In this description itis
made clear how the programmer can write his programs using the instructions of
the P800M Instruction Sct as well as the directives which guide the assembly
process when the program is input tu the Assembler. The instruction sets of the
P800M series computers ure upward compauble.

Programs for the P800M computers ure written in a symbolic language closely
related to the machine code. Each statement (or line) of the program relates to a
single machine instruction or to a diuta ttem to be taken into account by an
instruction.

To write programs in the Assembly Language. the user should be familiar with
the syntax of the instructions, which are devided in the following main groups:

— Load and Store instructions
— Arithmetic instructions
— Logical instructions
— Charucter handling instructions
— Branch instructions
— Shift instructions
— Control instructions
— Input/Output instructions

— External Transfer instructions

— Move Table instructions.

Programming in Assembly Language requires certain rules to be acceptable to
the Assembler.
A source program may consist of one or more modules cach of which starts
with an identification IDENT and terminates with an END (see directives). The
whole source program must be terminated by an “End Of File” mark (:EOF).

NOTE: {fa source program consists of several modules the modules need not
be separated by :EOF marks but by :EOS marks (End Of Segment).
An :EOS mark at the end of a punched tape indicates the physical
end of that tape when the program ts punched on two tapes. The
mark is not part of the Assembly Language.

The following figure shows various possibilities of how programs can be
punched on tape.

in example A the program ts contained on one punched tape. The program
starts with an identification IDENT and is terminated by END which will cause
an :-EOS to be punched when the program is assembled. and is followed by an
“EOF.

IDENT IDENT Van Van IDENT

“EOS END END
-EOF :-EOF

VAN IDENT

END
“EOF
VN VAN IDENT

END END END
“EOF :EOF “EOF

requires LKE requires LKE

A B C D

Example B is an example of a program punched on two tapes. The first tape
Starts with an IDENT and is terminated with :EOS which causes the Assembler
to wait for operator action. The second tape docs not contain an IDENT and is
read immediately after the first one. The second tape is terminated by an END
and :EOF.

Example C consists of t _ ‘th IDE
and ending with END ay. rows on two tapes both beginning wit ENT

1-4

Example D consists of several modules punched on one tape. Each module
begins with an IDENT and is terminated by END and either an :-EOS mark if
another module follows this one or by :EOF when it is the last module to be
processed. This example requires the Linkuge Editor to make of those modules one
larger program which can be executed.

Each module of a program consists of a number of characters grouped into
lines and each statement in a module is made up of the following characters:

Letters: A to Z inclusive

Digits: 0 to 9 inclusive

Delimiters: + plus
— minus
* aSterisk
= cqual

apostrophe
. comma

blank
/ slash

left parenthesis
) right parenthesis

period
colon

a
H

Location counter
The Assembler maintains a location counter which ts a software counter used
to assign a relative or absolute memory address to program clements. The
location counter starts with a relative value equal to zero. or it starts at an
absolute address defined by the AORG directive, at the beginning of an
assembly. The value of the counter is incremented by 2 or a multiple of 2
depending on the kind of instruction given.
The current value of the location counter is referred to by an « in the operand
field (see below). In absolute program sections « has an absolute value. In that
case the value is incremented in the normal way and the valuc may be changed
by a RES or RORG directive.
The location counter may take neither a negative relative value nor an odd
value.

Symbols
A symbol ts a character or a string of characters used to represent addresses or
values. Symbols may appcar in the labcl field as well as in the operand field of
a Statement.
Their syntax is the same as for the label (see under label field). Some symbols
are predefined and have a special meaning for the Assembler ¢.g. « indicates
the current value of the location counter, P is the instruction counter ete.

Syntax description

The following symbols are used to define the syntax of the P800M Assembly
Language.

< > toenclose syntactic ttems
| the vertical stroke has the meaning of or
= is composed of
[] the syntactic items between these brackets may be omitted
| J select one of the items between these brackets
is Spacc

The following list contains the definition of all items used.

< Statcment >

< label >
< operation code >

< operand >

<comments >

< identifier >

< mnemonic >
<S>

(<cnd>)

< numerical

condition value >

< condition

mnemonic >

F 4

< directive >

<DATA defined

hexa constant >

< module name >

<symbol >

[<label >]~ < operation
code >{ < operand >][< comments >]
[*<comments >]
< identifier >
<mnemonic >[S|(< end =)|L]
[«]< directive >
[+|—]< term >[+|—]<-term >
[+|—]<term>
'< characters > |* < characters >
<letter >| <idenufier > <letter > |
<identifier > < digit >| < identifier >
<letters representing operation code >
<store indicator >
<numerical condition value >|
<condition mnemonic >

Of 112] 314]5}o|7

Z|PINJO[E|GILJAIUNA

NRINZINPINE|NGINL|NN

< load indicator >

indirection
“IDENT, END etc.> see chapter on
directives

<see DATA directive >
< symbol >
< characters representing address or valuc >

< predefined expression >
<entry point name >
< external >

< common-field
definition list >

<common field definition >

<common field name >
<common field length >
<internal symbol list >

<internal symbol >
<ficld definition >

<field length definition >
< = field value definition >
< :field value definition >
<field number >
< term >
< constant >

< decimal constant >
< hexadecimal constant >

<character constant >
< letter >

< digit >
< delimiter >
< integer >

< max. of two defined symbols >
< identifier within reference module >

< identifier defined in other module >

<commen field definition >.< common ficld
definition>
<common field name >[<common field
length > |
< identifier >
predefined (absolute) expression
<internal symbol >.<internal symbol >

= <identifier >

<field length definition >| | =|:)< field value
definition >
<number of bits >
< value to be placed in field >
< address of word >
< decimal integer >
<constant >| < symbol >
< decimal constant > | < hexadecimal
constant >| < character constant >
< digit >| < integer >
< hexadecimal integer >
<letter >| < digit > |< delimeter >

A|BiC| DIE] FIGHT J|K]L]M|
NIO|PIQIR(S|THU]V| WX] ¥}Z
Of 1|2|3}4]5]6]7]8|9

+ |—fol = [Jol D1:
< number >

1 Format of source statements

A source module consists of a sequence of statements. The Assembler
interprets cach line as it is presented.
Statements can be divided in the following fields:

— label field
— operation ficld
— operand field
— comments field

< statement >:: =[<Jabel > JU < operation code » WK] < operand > JO
[<comments > |

«{ <comments =]

Each field has to be separated from the other by one (or more) blank
character(s). Blanks may not appear in the ficlds themselves except when
specified in a character constant or in a comments field. Instead of blanks a
backslash may be used for separation (see page I-16). One or more blanks at
the beginning of a statement indicate that there 1s no label field.

If there are more than ten blanks after the operation ficld all following
characters are considered to be belonging to the comments field.
An » (asterisk) at the beginning of a statement identifies thar line as a
comments line.

Statements punched on tape which arc to be read by the ASR punched tape
reader have to be terminated by LF XOFF CR, which switches the reader off,
followed by a Null character, c.g. Rub-out, to allow for a proper reading and
processing of the next usable character.

1
.

1m
R
S

T
U
T
E
T
r
e
y

T
U
e
T
T
T
U
r
r
r
r
r
r
r
r
y
r
r
r
r
r
T
r
r
r
r
r
v
i
r
y

T
r
y

r
r
r
r
t
r
r
r
r
e
r
e
r
y
r
r
e
r
e
e
t
r
y
f

ht
Yr

Ph
tt

r
r
r
r
p
r
p
e
d
e

P
e
r
i

r
i
d
r
e

T
T
T

T
r
y

Le
ee

|
O
T
T

2

oe
ee

e
e

a
L

LER
E
n

U
L

P
r
r
o
u
r
g
u
d

L
e

o
s

O
L

n
n

T
U
T
r
i
é
r
T
y

t
t

T
r
o
y

V
r
r
r
e
g
e

Le
ef
T
o
o
t

|
e

i
e
o

oe
oe

om
r
t

T
Y
r
P
p
r
y
y

Le
0

0

O
O
O

O
O

T
r
T
T
Y
T
r
T
r
r
e
r
y
e

r
r
r

T
E
r
v
r
i
d
T
n
e
)
e

fF
v
g

O
T
T

T
T
T
)

V
r
Y
T
r
r
e
r
d

m
o
o
)

T
U
T

t
s

T
T
T

T
o
o
)

V
R
Y
I
Y
T
G
i
r
y

§
m
h
)

T
U
U
P
r
?
r
R
S

T
T

n
t

O
O

O
O

0

D
B

QD
O
D

OD
a

UO
c
k

e
t

P
R
r
I
r
y
P
r
e
e
g

T
r
i
s
)

V
U
T
r
y

ty
€

TVTYgT
T
o
o

r
r
r
r
r
r
y
r
y

4
4

T
T
T
T
y
Y
V
y
Y
T

T
T
T

0

O
O

O
O

O
D

n
n

tk
ck

cant
tt

TrTrTrrTryTryyY
r
h
o

V
U
T
r
Y
y

r
y

|

T
T
T

t
t
e

o
o
t

V
e
R
r
r
r
y

r
f

o
t

T
r
r
r
i
r
y
r
y

o
r
y

s
e

T
T
r
r
r
r
e
r
y

o
t

T
R
T
T
T
T
e

T
T
T

O
k

T
o
r
t

f
t

V
U
T
r
i
r
i
n
b
r
g

v
o

T
r
e
o

V
r
u
r
y
Y
r
r
i
r
y
e
t

m
o
t
t
o

V
U
R
r
T
r
E
y

w
r
e

O
o
o
)

v
T
Y
Y
y
Y
y
Y
r
y
T
r
r
y
t

T
r
t

V
r
U
r
r
r
i
r
e

Ln
T
T
T

e
t
t
)

r
T
r
T
r
T
r
r
r
y
T
y
y

r
o
t

T
T

T
r
r
r
e
t

v
v

T
T
T

t
r
e
o
)

V
T
r
P
r
i
r
i
r
r
y

L
L

o
n
a
n

an

v
t
U
V
T
y
Y

v
y

T
V

T
T
I

V
r
y
Y
@
6
p
g
g
r
i
y
f
Y

‘
o
n
a
n

tn
n
n

o
n

oon
a
e

oe
ae

TLAILAan
din

Inn
a
n
t
e
n
n
a

andi
dn

OS
I
E

L
L

aod
a

ok
a

r
Y
r
r

T
r

T
r
y

n
r

V
r
e
r
y
v
y

T
T

FT
T
T

T
T
T

T
T

T
T
T

T
A
T

T
T
A

A
L
T

T
T

T
r
r
T
r
r
e
r
T

tr
T
T
T

E
E
E

D
E
E
D

E
E

E
E

E
E

I
E
E
T
E
E
E
T
E
T
T

E
E
T

T
N
T

T
E
T

T
G

r
r
r
r
r

y
s

r
r
r
r
r
r
y
r
®

Y
u
r
y

v
y
?

,
o
Y

E
E
E

E
S
E
T

E
E
T

T
E
T
T

V
T

H
Y

t
"
y

¥
'
d

B
y
e

Y
T
r
g
Q
N
e
r
v
T
T

rT
T
T
F

I
E
E
E

E
E
E

E
E
E

T
E
S
T
E

T
E
T
S

a
'
r
a

3
1

n
'
a
"
)

r
h

b
i
s

t
a
'
e

T
T

T
r
e
e
)
y

vy
T
T
T

E
E
E

E
E
E

E
E
E

E
E
E

E
T

V
U
T
T
V
T

T
I
T

T
T

ig
h
y
e

P
r

i
g
t
g
y
g
i
g
)

P
P
T

r
r
r
r
y
e

T
Y

T
r
r
y
y
T

y
v
v

y
r
r
e
r
r
r
r
r
r
r
r
r
e
r
r

r
r

r
r
r

r
e
e

vv
v
e
r
r
y

J
T
H
e

o
'
g
'
a

7}
a
y
y

P
V
e
r

by
t
a
t
g
t
g
'
’
s

r
T

v
T
V
r
v
y

Ty
Y
Y

V
Y

¥
0

P
e
r
e
l

Mp,

=
Tv

alez
tT

Ls")
T

Toe
T

Tos
v

+
5
—
—
—
+

Tor
41 1@0

T
um)

ret
:

v
o
n
w
m
i
v
e
r

s
r
e
e
?

|
pve

redo
uoetrad0

|
m
e

y
—
_

a
.

wiAnvuDOed
W
I
T
T

hw

ser
tgp

sb
aad”

a

L
I
L
E
S

mg
ies

—
-

2
Faved

v
i
v
a

SdINIHd
o

o
r

4
o
u
t

LABEL FIELD

<label = :: = < identifier ~
< identifier > :: =
< letter >| <tdentifier > < letter >| < identifier = < digit >| -< identifier >

Labels (or identifiers) in a module are used for reference purpose to other
statements in a module.
The Assembler assigns. in most cases, to cach label a word address valuc which
is the numerical equivalent (absolute or relocatable) of the label.

The maximum number of characters in a label recognised by the Assembler ts
six. The first of those must always be a letter. A label. however, may contain
more than six characters but the additional characters will not be taken into
account. [fF the label has already been allocated to another statement an error
Message 1s OUlpUl.
Period signs in a label are not significant, e.g.

L.A.B.E.L. has the same meaning as LABEL.

The valuc of a label ts normally regarded as relocatable. except when:

— an absolute address is equated by an EQU directive
— the label appears in an absolute program scction (defined by the AORG

directive and which is not equated by an EQU directive to a label previously
defined as relocatable).

OPERATION FIELD

< operation code > :: = < mnemonic >[S|(< end > JL] [-]< assembly
directive >

where:

< mnemonic >

The operation field normally contains the mnemonic of a standard instruction. It
is possible, however, to generate one’s own instruction mnemonic by meuns of the
FORM, XFORM and GEN directives (only with the monitor controlled
Assembler).

S

Allowed after the mnemonic of certain register to register und memory reference

instructions. It indicates that the result of the operation must be stored ina memory
word (bit 15 of the instruction ts set to 1). In fact, S has to be considered as a part
of the instruction mnemonic.
eg. CER and CIRS instructions are to be considered as two different

INStTUCKIONS.,

NOTE: \t is allowed to have the S preceded by a period sign though the
Assembler does not take this sign into account.
ev. ADSO = ADSW

(< end >):: = < numerical condition value > |< condition mnemonic >
< numerical condition value > :: = 0/17 /7

< condition mnemonic ~:: =
Z|PINJOFEIGILJA[RJUINAINRINZINPINE|NGINLINN

This indicator specifies the condition under which a conditional branch
instruction Is to be performed. The table below shows how in the Assembler the
conditional mnemonics and numerical condition values muy be used.

COND. REG

0 (0) (Z) ZERO
1 (1) (P) POS.
2 (2) (N) NEG.
3 (3) (O) OVERFL.

NOT - CONDITION

£0 (4) (NZ) NOT ZERO
#1 (5) (NP) NOT POS.
#2 (6) (NN) NOT NEG.
#3 (7) | | UNCONDITIONAL

AL

Allowed after the instruction mnemonic of a constant instruction. It specifies
that ' ‘ IS ¢ tS | | |
ISS ne Opcrand is contained in 16 bits ie. that the instruction must be asscinbled as a “long” instruction.

1-12

o

Indicates the indirect addressing mode in a register to register or a memory
reference instruction.

OPERAND FIELD

The operand ficld may contain an address expression. a register expression or
constants associated with the current machine instrucuon or assembly directive
or a combination of those.
The structure and meaning of the operand depends on the type of instruction
and directive and is explained below.
All operand expressions must be sepurated by a comma.

Expression

<expression =: = [+ | —]<term>{[+ | —}<term=[[+ | —J< term >]]
<term >: = < constant >|< symbol >

NOTE: » is considered to be a symbol.

An expression may not refer to more than 2 symbols and may not refer to
more than one register name. In the latter case it may not contain any other
term.

(<CND>)

COMPARE 1/0

(E) EQUAL (A) ACCEPTED
(G) GREATER (R) REFUSED
(L) LESS _
_— (U) UNKNOWN

(NE) NOT EQUAL (NA) NOT ACCEPTEI)

(NG) NOT GREATER (NR) NOT REFUSED
(NL) NOT LESS _

Address expression
The address specified in a memory reference instruction can be either absolute
or relocatable.
An absolute address is the actudl address in memory where the information the
user needs cun be found.
A relocatable address is relauve to the beginning of the program in which it

appears.

The address expression may contain any of the following terms or a
combination of them:

s asterisk, which is a predefined expression representing the
current value of the location counter. This counter is
incremented by two or a muluple of two depending on
the length of the instruction.

symbol used to refer to an instruction or data word with the
same identifier in its label field. The Assembler will
convert the symbol to a relative address.

displacement value which can be attached to « or <symbol> to indicate u
word not labcled by an identifier.

Predctined expression
A predefined expression is an expression consisting of not more than two
symbols, each of which is defined te, has been assigned a value. Some symbols
ave imphiciely predefined in the Assenbler (sce page 1-49).

An expression may contain only one external reference. The remainder, if any.
of such an expression must have a predefined absolute value. The combination
of an external reference and a predefined absolute value may only be used for
specifying the value of a 16-bit field. The table below shows the result of a
combination of positive and negative absolute or rclocatable values:

Ist term
+ R —R + A —A

2nd term

+R E A R R

—R A E L FE

+ A R LE A A

—A R E A A

1-14

where:

R = relocatable

A = absolute

E = erroncous

Register expression |

Register expressions are regarded as predefined expressions and consist of one
or two characters. The register expressions recogniscd by the Assembler are:

Pp P-register or instruction counter
Al...Al4 Registers I to 14 (general purpose registers)
A15 Register 15 (stackpointer)

Constants
A variety of constant types may be specified in the operand of an instruction
or directive.

< constant >:: = «decimal constant > | < hexadecimal constant > | < character
constant =

Decimal constants
«decimal constant > :: = < digit >|-< mnteger >

The decimal constant is a digtt or integer contained in an 8-bit character or 16-
bit word whose value may range from 0 to 32767,

Hexadecimal constants
< hexudecimal constant > :: = / < hexa integer >|X’ < hexa integer > °

The hexadecimal constant is considered tu be hexadecimal value or bit string in
the range from 0 to /FFFF.

Character constants
< character constant >:: = '-< character =f << character >]

A character constant is composed of a character string enclosed in single
quotation marks. The string is composed of the characters described in the
character set on page 1-5.

A character constant can be used with a machine instruction only if the
constant consists of either one character (short constant) or two characters
(long constant). Longer strings can be specified in a DATA directive. A single

quote mark (‘) used as a character is specified by two conseculive single quote
marks.

1-15

COMMENT FIELD

Comments are only for the programmer's benefit. They are included in the
assembly listing but notin the generated object program.
A line is considered to be a comment line when the first 10 characters of that
linc are blanks or when the line starts with an asterisk.

INPUT OF SOURCE STATEMENTS AND CORRECTIONS

The user may type in the statements and corrections from the operator's
typewriter. He may do so by counting the number of characters to obtain a
neat output on the listing device.

Example:
Ist col 10th col 19th col 40th col
label — opcode — operand Ww comments

may be typed as follows:

label \opcode \operand\comments

without having to count for the first column of each field.

Example:
DATAF\LDK\A4,4
\ABLA7)\HALT
DEVUN\LDK\A4,5
\ABLU7)\HALT
ADDIT\LDK\AAILO\SET INDEX REGISTER FOR BUFFER.
\LDK\A3.00F FX\LOGICAL CONSTANT INTO A3

ADDRESSING MODES

In Volume Uf we see how addressing takes place from a hardware point of

view. The condition an instruction must fullfil to meet the requirements of
the Assembler is explained on the preceding pages. Specific examples. with
source stutements and explanation concerning the arithmetic instructions AD
and ADR are given to show the operation within the CPU.
Sec for the hardware operation of those instructions Volume Il. The order in

which the examples are given is in accordance with the description on those
pages.

Direct addressing

AD ALLABEL The contents of the memory location with
symbolic address LABEL are added to the
contents of register Al. The result is placed in Al.

ADS AI,LABEL. The contents of the memory location with address
LABEL. are added to the contents of register Al.
The result is stored in LABEL

Indexed addressing

AD A2,LABEI.A10 The contents of register Al0O are added to the
address LABEL. The result gives an address
whose contents are added to the contents of A2.
The result of the latter operation is placed in A2.

ADS A2,LABEL,A10 The contents of register AlO are added to the
address LABEL. The result gives an address
whose contents are added to the contents of Az.
The result of the latter opcration is stored in the
address: LABEL + contents of A1l0.

Indirect addressing

ADe A2,LABEL The contents of LABEL point to an address
whose contents are added to the contents of
register A2. The result is placed in A2.

ADS» A2.LABEL The contents of LABEL point to an address
whose contents are added to the contents of
register A2. The result-is placed in the contents of
LABEL.

indexed Indirect addressing

ADs A2,LABEL,AI0

ADS« A2,LABEL.A10

LABEL is added to the contents of register ALO.
The result points to an address whose contents
ure added to the contents of register A2. The
result hereof is placed in register A2.

LABEL. ts added to the contents of register A10.
The result points to an address whose contents
are added to the contents of register A2. The
result hercof ts placed in the address obtained of
A10.

Register to Register operation

ADR Al,A2

Register addressing

ADR« Al,A2

ADRS Al1,A2

The contents of A2 are added to the contents of

Al. The result is placed in Al.

The contents of the address pointed to by A2 are
added to the contents of register Al. The result is
placed in Al.

The contents of the address pointed to by A2 are
added to the contents of Al. The result is stored
in the address pointed to by A2.

N
 Functional operation of instructions

LOAD AND STORE INSTRUCTIONS

Load Instructions
Before the programmer can perform an operation on the contents of a
memory location or a register its contents must be placed in one of the
registers Al thru At5.
Two load instructions are provided, allowing to load a 16-bit word from
anywhere in memory or from any register into a specified register where the
operation will take place. and one instruction to load a constant into a register.

Store instructions
Companion to the load instruction ts the store instruction which may store the
contents of a register, containing the result of an operation, into a memory
locauion or a register.

ARITHMETIC INSTRUCTIONS

Arithmetic instructions perform the normal artthmeuc functions such as add.
subtract. The instruction operand operates upon the contents of the specified
register.

LOGICAL INSTRUCTIONS

Instructions described under this heading ure called logicul instructions because
they operate on binary information according to the rules of logic. The first
operand which may be a memory location, a register (R1 or R3) or a constant
is compared with the second operand. register R2. The result is placed in a
register or possibly in memory. In the instruction set each logical instruction is
given a aescripuion in which way the contents of a memory location is ANDed
or ORcd.

CHARACTER HANDLING INSTRUCFIONS

Character handling instructions operate on a character level. Characters May
be exchanged, compared or 8 bits of a constant may be placed in 8 bits of a
register.

BRANCH INSTRUCTIONS

These instructions cause a branch to an address in memory either when a
certain condition is fulfilled or unconditionally.

1-19

In branch instructions on condition the instruction mnemonic is followed by a
number ranging from 1 thru 6, enclosed in brackets. When the number is (7) or
omitted, the branch is unconditionally. :

These numbers are compared with the contents of the condition register set by
the previous instruction.
The condition number has the following meanings:

(0) branch if CR = 0 (4) branch if CR r 0
(1) = | (5) 4 |
(2) = 2 (6) #2?

(3) = 3 (7) unconditional branch

Example:

LDK A2.4
LABEL. SUK A2.1

R B(4) LABEL

The Assembler allows to use, instead of « number. a condition mnemonic c.g. 7. E,
A (see page 1-12).
Unconditional branches are made by the following instructions:
— absolute branch instruction or relative branch instruction without a

condition indicator or when (7) is specified.
— CF, RTN, EX instructions.

Long format absolute branch instructions permit to branch, forward as well as
backwards, to any address in the program. Short format absolute branch
instructions may only branch to locations 0000 to OOFE. Relative forward and
relative backward instructions may not skip backwards more than 127
locations and 128 locations forward.
The Assembler gives an crror indication if the permissible branch range is
exceeded.
The address to which control is to pass may be indicated in various ways:

l. By means of a symbolic address expression:
ABL{3) LABEL

2. By an absolute address held in a register:
ABR (7) A5

5. By using a constant to indicate an absolute memory. address (short
CONStaNnt):

AB /R84

1-20

4, By means of a displacement value added to or subtracted from the
instruction counter value (RB and RE instructions only). This
displacement value is computed by the Assembler from an address
expression used in the operand and may not exceed more than.128 words
forward or 127 backwards:
RB(O) ZERO

Another group of branch instructions are the Call Function and Return from
Function instructions. The Call Function instruction provides a link to a
subroutine by branching to the first instruction of the subroutine. To be able to
resume the execution of the main program after the subroutine has been
executed the contents of the P-register and the Program Status Word are
stored in the stack. When the last instruction of the subroutine (RTN) is
exccuted the contents of P and PSW arc restored.
A special group within the branch instructions is formed by the instructions
EX. EXK and EXR.,
These instructions allow to address a memory location of which the contents is
the binary representation of another instruction. The fatter instruction is
exccuted before the program continues with the next instruction in sequence.

Example:

LDKL A3,CIO
LDKL A4,SST

CIO ClO ALITY
EXRs A4 EXECUTE SST
RBR(4) *—2

EXRs A3 EXECUTE CIO

SST SST ATTY
R B(4) *—2

The Execute instruction may not refer to other EX. EXK or EXR instructions
or to Call Function, RTN or double format instructions.

SHIFT INSTRUCTIONS

Shift instructions operate on a bit level. These instructions allow to rotite the
contents of one of the registers Al thru A7 n positions in the direction nea ; und
manner specified in the instruction.

1-21

CONTROL INSTRUCTIONS

These instructions perform the control of the program by allowing the program to
be interrupted or not, or to resct an internal interrupt. Except fur the I.KM
Instruction, control instructions should only be used in Stand Alone programming.

INH and ENB are two companion instructons. The program part between
these mstructions is not interrupted as INEE inhibits all interrupts. ENB sets the
machine satus to permit interrupts,

Example:

IDENT TEST
OUT EQL *

RORG OUT + #600
START HIT

IN
LDK A50

LDKL ALLBUF
_LDK A2,0

AGAIN CIO A2.1./30 > program inhehited

REINA) AGAIN
LC A3.BUFPTP,AS

ENB

The RIT instruction is used to resect an internal interrupt which was previously
set by an interrupt from the control pancl. power failure/automatic restart.
real-time clock or by a program error.
The programmer may specify a 5-bit hexadecimal valuc in the operand of this
mstruchion to clear specific interrupts.
INTRTC RIT /1B Reset the ceal-time clock interrupt

1/0 INSTRUCTIONS

1/O instructions handle the data transfer between the CPU und peripherals, the
operation of control units for these peripherals and status control.
In monitor controlled programs the I/O functions, initiated by these
Instructions, are taken over by a general 1/O routine which is called cuch time
#1.KM instruction followed by a DATA directive is used.

1-22

The user need therefore not to write his own I/O routines. When the
programmer is to write a Stand Alone program he has to write his own LO
revuatines.

EXTERNAL TRANSFER INSTRUCTIONS

Two of these instructions, WER and RER, may be used for programmuiny the 1/O
Processor by addressing un external register. The function of these instructions ts
described on page 1-54. The other instructions of this group are only welul when
working with the Memory Management Unit (MMU) on the P857M and permit to
loud 16 registers on the MMU’ with 16 consecutive memory locations, or to replice
these locations with the contents of the 16 registers. The 16 registers are called
segment table.

MOVE TABLE INSTRUCTIONS

These instructions can only be used on the P857M. They allow to move a table cither
to an arca higher or lower in memory or to move a table from a user to a system
area, and vice versa.

1-24

Assembly directives o>

Directives are used to provide a framework for a program and to guide the

assembly process. The directives are written in the program and are printed on the

assembly listing if the listing option ts specified in the Assembler option message

(see puge 2-5). a
The two versions of the Assembler accept either all directives (monitor controlled

Assembler) or part of the directives (Stand Alone Assembler).

The table below gives a survey of which directives arc accepted by which

Assembler.

Stand Monitor
Alone controlled

Directive} Meaning Assembler] Assembler] puge

IDENT | Program identification — Xx X 1-27

END End of assembly _ X X 1-28

ENTRY | Define entry point name Xx x 1-30

| EXTRN | Define external X x 1-31
references :

COMN | Define common blocks - x 1-32
STAB Define internal symbol — Xx 1-36

table _
AORG | Assign absolute origin xX | X [1-3

RORG | Assign relative origin xX x)-37

IFF If false ; —_ xX 1-35

IFT If true = X 1-35

XIF End of condition — x 1-35
DATA Data gencration x X 1-38

EQU Equate symbol to value X JF x 1-40
RES Reserve memory area X X 1-41
EJECT | Continue listing on new — 4 1-42

page _
LIST Resume listing output — _ x 1-42
NLIST | Suspend listing output _ x 1-42

FORM _| Format definition = | x 1-43
XFORM | Extension of FORM _ 4 1-47

dircctive :

GEN — | Generation directive _ xX Tyas

1-25

The directives can be divided in the following groups according to their
function:

— Program framework : IDENT. END
— Linkage control : ENTRY, EXTRN. COMN
— Assembly control > ET, IEF. XIF. STAB, AORG, RORG
— Value definition > EQU, DATA
— Area reservation : RES
— Listing control > NLIST, LIST, EJECT
— Symbol generation >: FORM. XFORM, GEN

PROGRAM FRAMEWORK

The directives IDENT and END form respectively the first and last statements
in the module. They are mandatory. The module punched on tupe must be
followed by :EOS or :FOF.
The IDENT directive is used for identification purposes and the END directive
generates the END cluster after which the assembly process is stopped and a
symbol table is printed.

IDENT program IDENTification IDENT

The IDENT directive specilies the name to be given ta the object module
output by the Assembler. [1 is used for identification purposes in selective
loading or updating (sce parts on Linkage Editor and Update Package).
This directive must always be present and must be the first statement in a
source module.

Syntax

_IDENTW < module name >

where:

<module name> A symbol which is specified according to the rules for a
label.

END END of assembly END

This dircctive must be the last statement in a module and terminates the

assembly process by punching an :EOS mark.

Symtax

[<< label > JLEND_J ~ predefined expression >][, < symbol >]

where:

< label >

< predefined expression »

<symbol >

The tabel is given a relative value equal to the length of
the relative section of the generated objcct program.
This length includes the length of the optional symbol
table (sec STAB directive, page 1-36).
The value is 0 if this module is absolute.

This expression, if present. gives the address of the
first instruction to be performed in the program
after loading.

This parameter gives an entry point name to the
internal symbol table of the generated object
program when the STAB directive has been
assembled.

LINKAGE CONTROL

Some modules which have to be grouped into one larger program contain
references to identifiers defined in other modules.
By means of the directives ENTRY and EXTRN the user is able to refer to
certain parts in other modules whereas the directive COMN allows to transfer
data among several modules either written in Assembly Language or in
FORTRAN.
By using a COMN the programmer can define one or more common blocks.
Each common block may be divided in a number of subfields of varying Iength.
each having a symbolic name which can be referred to directly but only in the
module in which they are declared.
COMN blocks may be jabeled or blank: a COMN block js labeled if a name is
attached to it.
The Linkage Editor allocates a space to the blank common block at the end of
the link-load or link-edit run (see Linkage Editor). This block is placed at the
end of the entire program.
Labeled commons are placed at the end of the first module that refers to it.

The ENTRY, EXTRN and COMN directives must always follow immediately
after the IDENT directive and in this order, though it is not necessary that the
ENTRY as well as EXTRN and COMN are specified.

So: IDENT, ENTRY, EXTRN, COMN or
IDENT, EXTRN, COMN or
IDENT, ENTRY, COMN elc.

1-29

ENTRY detine ENTRY point name | ENTRY

The ENTRY dircctive is used to declare entry points, i. c. labels which are
defined in the current module and used as Operands of another module.
The directive must follow, if present. the directive IDENT.

Syntax

WKENTRYO<entry point name=[.<entry point name>. ...<entry point
name > |

where:

<entry point name + Can be referred to by an operand of an instruction in
another module. The maximum number of entry points
which cun be specified in one ENTRY directive is
determined by the length of one line.

Example (see also EXTRN)

IDENT PROG
ENTRY NUMBI, NUMB2, NUMB 3

NUMB!I LDKL A3, LABEL

NUMB2 ST Ao. REFER

NUMB3 CF Al4, FOS

END START

1-30

| EXTRN define EXTeRNal ceferences | EXTRN

The EXTRN directive is used to declare externals ie. operands which are used
in the current module and defined as labels in another module.

The directive must follow ENTRY, or IDENT when the directive ENTRY is not

present.

Syntax

WEXTRNW<external name >f, < external name >< external name > |

where:

<external name> Name of external reference (label in other module). The
maximum number of external names which can be
specified in one EXTRN dircctive is determined by the
length of one line.

f-xample (see also ENTRY)
IDENT ASMPRO
EXTRN NUMB2

CF Al4, NUMB2

END START

1-31

| COMN declare COMmoN block COMN

The COMN directive facilitates communication between modules written in
Assembly Language or FORTRAN. The dircctive is written as follows:

Syntax

[<label > LCOMNW < common ficld definition list >

where:

<common field definition fist>::= <common field definition >[,< common
field definition list >]

where:

<common field definition >:= <common field name>[<common field
length > |

where:

<common field name > ::= < identifier >
<common field length > ::= < predefined absolute expression >

lf the parameter <common ficld length> is omitted the default value
assumed by the Assembler is 1. The field length must be given in words.

Example
AUCOMNWGFVAL!1 (3), FVAL2 (3), INTGV (10)

which defines a labeled common, named A, having the length

3+3+ 10 = 16 words.

A is defined as an external reference and common block name. Either the
common block name itself or the subficld names may be referred to in the
same module. The subficld names are then considered to be equivalent to:

«common block name > + < absolute displacement >

sO.

LDOAI1, FVAL2 is equivalent to LDUAI. A + 6

1-32

and

STWA2, INTGY + 18 is cquivalent to STIA2, A + 30

The displacements in this example are counted in characters.
Blank commons can only be referred to by the subfield names defined in the
operand field.

 wCOMNWUVALI (3), VAL2 (4)
COMNWVAL3 (9), VAL4 (10)

These directives define a blank common of 3 + 4 + 9 + 10 = 26 words.

VAL2, for instance, may be used in symbolic expressions and is equivalent to:

<blank common “name"> + 6

1-33

ASSEMBLY CONTROL

When it is neccessary to check whether a certain condition is satisfied before
assembling a number of source lines. the user may include the directives IFT,
IFF and XIF. The assembly of the IDENT — END — XIF directives are never
bypassed by IFT or IFF.

By means of the STAB directive the user may specify one or more internal
symbols which arc to be used for Debugging purposes. All these symbols must
have been defined previously in the current module.
Common block names are handled as externals.

The RORG and AORG directives are used to reset the location counter to a
relocatable or absolute value indicated in the operands of those two directives.

1-34

IFT, IFF, XIF | Conditional Assembly | IFT. 1FF, XIF

Those directives are only used in combination with the directive XIF to
indicate that a block of instructions ts to be assembled only if a certain
condition is fulfilled. The assembly of the IDENT — END — XIF directives
are never bypassed.

1eT CF True)

The IFT directive specifies that the Assembler has to assemble the next source
lines only if the condition stated by this directive ts fulfilled.

Symtax

_IFTW < predefined absolute expression > = < predefined absolute expression >

If the first parameter * second parameter the source line(s) following IFT up

to the next XIF directive are not assembled.

[FF OIF False)

Syntax
IFFWU < predefined absolute expression > = < predefined absolute expression >

If the first parameter = the second parameter the source lines following IFF
will not be assembled.

Syntax

ow XIFO

This directive allows all subsequent statements to be assembled until a new IFT
ov IFF statement is encountered.

STAB define internal Symbol TABle STAB

The STAB directive outputs at the end of the relocatable program section of the
generated module one or several internal symbols to be used for debugging
purposes (internal symbol is the address given to a symbol in the progeim after
assembly). All symbols must have been declared previously in (he current module.
STAB must immediatcly precede the END dircctive.

Syntax

—KSTABWK < internal symbol list >

where:

< internal symbol list > :: = <internal symbol >[.< internal symbol list >]

if the STAB directive does not contain a parameter in the opcrand field all
internal symbols of the module will be included.
The programmer may not specify entry points, external reference names or
commons. This ditcctive is only taken into account when in the END directive the
parametcr <symbol> is specified which gives the name of the internal symbol
table.

1-36

AORG Assign absolute ORiGin AORG

This directives assigns an even absolute value to the location counter. The
lecation counter receives that value by specifying < predefined absolute
expression >.
From the time AORG its given and until a RORG directive is given the
location counter is incremented in the same way as if it were relative, ie. by
increments of 2 and 4 depending on the length of the instruction. All labels in
un absolute module are given an absolute valuc unless they are cquated to a
predelined relative value by an FQU directive.
RB and RF instructions in an absolute program cannot refer to an address in a
relocatable program section as the place from where this section will be louded
is not known.

Syntax

~AORGL < predefined absolute expression >

RORG | assign Relative ORiGin | RORG |

The RORG directive allows the user to specify the beginning of a relocatable
module by assigning a relative value. which must always be even. to the
location counter, Its value may never become negative. If RORG has no
operand the location counter is given the last relocatable value it has
previously received. This value is equal to the lenyth of the relocatable module
ut the time this directive is assembled.

Syntax

—RORGW [< predefined relocatable expression > |

1-37

VALUE DEFINITION

The directives DATA and EQU arc used to define certain values in a module.

DATA DATA generation DATA

The DATA directive ts uscd to assign a value to one or more words in the
module. for inclusion in the object module.

Syntax

[<label > JUEDATAW < data expression >

where:

<data expression > :: = | <expression >|'< character string >|
[< data expression > |

< label > refers to a symbol in the operand field elsewhere in the

module.
<data expression > the dala expression may be:

— a decimal or hexadecimal constant
— an address expression
— a character string consisting of one to thirty-two

ASCII characters enclosed by single quote marks, A
serics of words is generated. of two characters cach,
which are Icft justified. When the number of
characters is odd the rightmost character of the last
word is a space.

Example
The expression may contain a number of parameters which, in total, may
generate no more than 16 words in memory.

—DATAV'ABC../0A0D., 1,/A, 2! DEF

will generate the following words:

1-38

4620 Fo

Example
When the user wishes to make an ECB he may do so as follows:

ECBUDATAWUI, BUF2, 6, 0, 0, 0,

Example
DATAW—0128, + 12,/3AB,—/A, LABEL. ‘TEXT:

will generate the following:

F FBO -128

000C + 12

03AB ‘3AB
—_——_—_

FFFo ~/ POFFO A

< value > LABEL
SS

3445 ‘TE
_

5954 XT
_

3A20 a
Ls

1-39

EQU EQUate symbol to vaiue EQU

Identifiers ure normally defined by being assigned memory values as they
appear in the label field of an instruction. The EQU) directive may be used to
define an indentifier in a direct manner by assigning to it the value of an
expression in the operand field. The symbol in the label field is made equivalent
to the value in that operand field. This value may be absolute or relocatable.
A symbol. provided it differs from standard mnemonics and FORM-defined
mnemonics, may be used as an operation mnemonic but may not be followed
by an operand. The Assembler generates onc code word each time this
mnemonic appears in the operand field.

Syntax

< label > EQUW < predefined expression >

Example
CTO FQUW/41C4 CT may now be used anywhere in the program

to represent the value /41C4.

CT
LDKLUAI, CT

Example
VALY EQU.10

LDK OU Al, VAL

Example
LAB — EQU Ws LAB reccives the vaue of the location counter.

(equal to: LAB RES 0)

Example: Each time the Assembler encounters C:! or REG:3

C: WlIEQU_25 they are replaced by “25” and A3 respectively.
REG: 3 .EQUWA3 LDK Al, C:i—- = LDK A1,25

LDK REG:3,!1—~ =LDK A3,1
LDK REG:;3, C:1— =LDK A3,25

1-40

AREA RESERVATION

The directive RES can ce used to skip over an arca in memory. The RES

directive saves a memory area of a given length, specified in the operand,

advancing the location counter by twice the number of words specified.

RES | REServe memory area RES

The RES directive is used to reserve a number of memory words. The
programmer may specify this number in the parameter. The location counter is
incremented or decremented depending on the positive or negative value of
that parameter. If positive, a memory area of the specified value is reserved. If
negative, a memory areca of the specified size before the place identified by
label >.
The value of the latter is not changed but the location counter is reset to a
lower value by subtracting twice the value specified.

(< Jabel > JLRESWH < predefined absolute expression >

where:

< Jubel > receives the address of the first word of
the reserved area.

<. predefined absolute expression > specifies the length of the area to be
reserved.

If < predefined absolute expression > is 0 the location counter is not updated
and. if <label> is specified, the statement is equivalent to

«label > GEQUUs

Examples:
RES.4 Reserve 4 words

LABIL, RESW-2 ~~ Reserve 2 words before LABI

INS) RESO __sINS receives the value of the location counter.

Examples of stack reservation:
STACK RES 4 STACK— [— =
BASE EQU «-2 —

BASE#-2—> ; |

* — | |

L _J

1-41

LISTING CONTROL

The Assembler normally produces an output listing for cach assembly. By
means of the directives EJECT, NLIST and LIST the programmer may
determine which parts of the modules do not need to be listed.

EJECT Continue listing on new page EJECT

This directive causes the remainder of the current page of the line printer
paper to be left blank and the listing to be continued at the top of next page.

Syntax
WHEJECTWU

NLIST Suspend listing NLIST

The NLIST directive causes the Assembler listing to be suspended from the
point where this directive is given until either the END directive or a LIST
directive.
Lines which contain errors will continue to be printed during this phase.

Syntax
wNLISTWO

List Resume listing LIST

The LIST directive causes the Assembler to resume the listing after it has been
suspended by a NLIST directive.

Syntax
ww LIST _

142

SYMBOL GENERATION

Three directives allow the user to make a number of special instructions for a
specific purpose or program, namely FORM, XFORM and GEN. In the FORM
directive the user may define the bit contiguration and the mnemonic of the
special instruction.
if two PORM-defined instructions are to be specified which differ only in the
contents of certain ficlds the programmer may use the XFORM directive.
The GEN directive allows to include the instructions, defined by FORM and
X FORM, in the existing Assembler by extending the Assembler’s symbol table.
A particular useful pseudo-instruction or system macro can be defined once for
all times instead of having to be gencrated by a FORM dircctive in every
program where it is used.
Symbol gencration is only possible with the monitor controlled assembler.

FORM FORMat definition FORM |

This directive is used to define the format of a word or a group of up to 8
words named by an identifier which can be used as an instruction mnemonic
later in the program.
The directive is written as follows:

Syntax

<. label > UFORMW < field definition >[.< field definition >.
field definition > ...< field definition >]{/ < field number list >]

where:

= field definition > ::= <field length definition >{| = |:Iticld value definition >]
“<field number list > ::= <field number >J, < field number list >]

and

= field number > ::= < decimal integer >

‘field length definition > specifies the number of bits to be allocated to a
held of the word and may range from 1 through 16. If several fields are defined
inside a word the sum of the field lengths must be 16. The maximum number of
consecutive words defined by u single FORM directive is 4.

1-43

< field value definition > can be used to place a value in the field to which it
refers when the value is preceded by an equal sign (=).
If the value is preceded by a colon (:) the value indicates the address of a word
in relation to the first word of the expansion defined by FORM. The value
definition itself may be a predefined expression, an external reference without
any displacement or a predefined absolute or relocatable expression. If a
particular ficld has not received a value definition the field will be filled wit
zeroes.

<label> defines the instruction mnemonic. The operand ficld of the directive
must then contain values to be placed in any non-predefined ficlds. The fast
non-predefined value is default value.

Example
MNEMW FORM. 16 = /85A0.16:14.16 = /8141,16=INST, 16, 16, 16

‘85A0 —arithmetic or logical valuc

MNEM + 14 -~address of word following this block

‘8141 —arithmetic or logical valuc

INST identifier

0-0

0-0 3 words containing zerues

0-0

The parameter 16:14 indicates a word address seven words form the beginning
of the expansion defined by FORM. The programmer has to specify this
address as the last three words are left zero.

Example
This example shows how the programmer may make an ECB if not all
parameters arc known. By using the FORM dircctive he does nat have to write
the instruction sequence:

LDK AJ, —

LDKL A8, DECB
KM —

DATA 1

144

00000 IDENT FORM
00001 INOUT FORM 8=/07.8.16= /80A0, 16,16 = /2804,16 = !
00002 0000 BUFFER RES 10
00003 0014 0008 DECB DATA 8.BUFFER,.20.0,0.0

0016 0000 R
0018 0014
001A 0000
001C 0000
OO1E 0000

00004 0020 0782 START INOUT /82.DECB
0022 80A0
0024 0014 R
0026 2804
0028 0001

00005 002A 2804 LKM
00006 002C 0003 DATA 3
0007 END START

SYMBOL TABLE
BUFFER OOOOR DECB 0014R START 0020 R
ASS.ERR. 00000
FOF
AnEOF

EXIT

from now on the programmer may use INOUTW—/82, DECB instead of
| DKWA?,...

Field number list
If the programmer wishes to put the values of the operand field of the FORM
defined mnemonic in an order different From that of the non-predefined ficld
they are to uccupy, or if the user wishes to alter the values held by any of the
predefined ficlds. he must use the field number list parameter in the FORM
directive.

Fach field that is generated is given a number, beginning with O for the first
field, 1 for the second ficld, n-! for the nth field (n may not exceed 15).

The ficld number list must be preceded by a / (slash) and be placed after the last
field definition of the FORM directive.
All non-predefined fields specified in the ficld definition list must also be spccitied
in the field number list.
‘ fiekid number is represented as a decimal integer.
If a field number list is specified after a FORM directive, the operand
C\pressions following the pscudo-mnemonic will occupy the fields specilied in
the field number list in the given order. In this way. the contents of predefined
ticlds may be altered while blank fields may be teft blank.

1-45

Example:
Suppose the user has specified in his program. by means of a FORM directive,
a 16-bit word of the following format:

5=2 2=11= 8=2
f0001 070 SEELE EDEL |

field ao 0 | 2 3

He wishes to have this word changed in:

5=2 2=3 1=0 8=1
food 0/1 1/0/00000001)

field no 0 1 2 3

He may do so by using the following instruction sequence in his program using
the field number list in the FORM directive

IDENT EXAM

WORD FORM 5=2, 2=1.,1=1, 8=2/2,1.3

WORD 903.1

END

The Assembler will now change the fields as follows:
ficld no 2 (1 = 1) will be changed to contain the value 0
field no t (2=1) will be changed to contain the value 3
field no 3 (8= 2) will be changed to contain the value |
ficld no 0 (5= 2) will keep the value 2

The operand expressions following a pseudo-mnemonic are positional
parameters. If one parameter is omitted (other than the rightmost one), its
Position must be indicated by a comma.

a FORM defined mnemonic is identical with a standard instruction
mnemonic, the pscudo-mnemonic is given priority.

1-46

XFORM eXtension of a FORM directive XFORM

Syntax

< label > .XFORMW < FORM-defined pseudo-mnemonic >, < field list >

The XFORM may be used each time two FORM-defined pscudo-mnemonics
have to be defined which do not differ in the format but only in the values of
the predefined fields.
The field list is a series of field definitions giving the format of the new pseudo-
mnemonic and the contents of its fields.
The field length definitions must be the same as those of the FORM-directive
referred to and appcar in the same order.

Example
INST! UFORMW8=/FF, 4, 4, 16/1, 3, 2
INST2..FORMW—8 = /33,4,4,16/1,3,2

The XFORM directive combines the two and gencrates an INST2 instruction
as follows:

INST2.UUXFORM JUINSTI,8 = /33,4,4,16

1-47

GEN GENeration directive GEN

The GEN dircctive allows to extend the Assembler symbol table so that tt
recognizes and assembles a number of non-standard symbols in any program in
which they are used.

Syntaa

GEN WG

Restrictions
The GEN directive may only be used in the source program in which it appears
if it fulfills the following conditions:

— GEN must immediately precede END
— only the FORM, XFORM, EQU and EXTRN directives are allowed in this

program.

The Assembler does not verify if those conditions are fulfilled. It checks only
if;

— object code ts produced
— ussembly errors have occurred.

Example
IDENT. FORM

INOUTWY FORMS = /07,8,16 = /80A0,16,16 = /2804,16 = I
GEN
END

The following procedure must be followed to include the features provided by
GEN:

— load Assembler
— place on the reader the user source module with GEN directive
— assemble this module to produce object output
— load Linkage Editor

prec MN Assembler in the reader and have it processed by the Linkage
“GIO (

- place the object user program in the reader and have it processed (P) — next Terminate (1).

The . sgt a _ : = Punched output of this link-editing is the original Assembler extended with
onc or more new mnemonics.

1-48

List of predefined symbols

NAME MEANING PREDEFINED INTERNAL
VALUE VALUE

P Instruction Counter 0 0
Al Register | I 2
A2 Register 2 2 4
A3 Register 3 3 b
Ad Register 4 4 8
A5 Register 5 5 10
Ab Register 6 6 12
A7 Register 7 7 14
A8 Register 8 8 |
AY Register 9 9 3
A10 Register 10 10 5
All Register 11 11 7
Al2 Register 12 12 9
Al3 Register 13 13 11
Al4 Register 14 14 13
A15 stack pointer 15 15

Note: P, Al. A2. A3 ete. can only be used to call the registers. If they are
used for other purposes an error message will be output.

1-49

1-50

Programming considerations &

Data transfers between mpul/uutput devices and the central processor ure

controlled by device control units cach of which may have one or several
devices attached to it. depending on the type of device. Control units arc
attached to the central processor by an interrupt or break linc. by address lines
and ather signal lines which are used by the computer to determine whether a
date transfer can be performed.
Data transfers take place through a channel, the General Purpose Bus. The
actual programming of the data transfers may be on a character or word basis.
where each word or character is programmed and transferred individually via
the Programmed Channel or the user may program blocks of words or
characters via the 1/Q Processor. In the latter case external registers may be
addressed.

Stand Alone or Monitor controlled programming
Ihe baste difference between Stand Alone programming and Monitor
controlled) programming is cuused by the fact that am Stand Alone
programming the user has ta write his own input/output routines whereas in
Monitor controlled programming the user may call certain monitor functions
bs means of finks to arontor which execute the input/output.
bor information on programming in cither mode refer to the P800M Software
Training Manual (Pub. No 5122 991 1243 x) and to page 1-55 of this manual.

Interrupt system
When working in interrupt mode cach interrupt program may be connected to
anintercupt level. As the actioning of un interrupt involves the direct accessing
of the interrupt level's start address from its hardware interrupt location, the
contents of this location niuse have been previously louded with the correct
address,

Ihe start addresses loaded mv these locations are not fixed and must be defined
by the programmer.

merrupt level hardware interrupt location
0 to 62 (0000 to 4007C

“where level O has the highest priority and 62 the lowest. The levels ure defined
Ht SYSGEN ume (see Volume 1).

System stack
To save the contents of registers when an interrupt is made into the main
program, the hardware interrupt routine automatically uses register ALS. This

I-31

register addresses the stack which is to hold the contents of the P-register and
the Program Status Word at the time the program was interrupted. [tis
therclore necessary lo reserve suflicient space for the stack and to load register
A1I5 with its start address. This may be done by using the appropriate assembly
directives and by defining the start address by means of an idenufier. The start
address is the highest address reserved as the stack is filled from the high
towards the lower addresses.
Apart from the contents of the P-register and PSW, the stack may be used to
save the contents of other registers as required by the program. These registers
are saved by means of Store instructions (1 for cach register). Before returning
to the main program, Load instructions are required to restore the contents of
the stack, prior to RTN. During the hardware action further interrupts arc
inhibited. If the user wishes to allow the specific routine to be interrupted he
must give an ENB instruction.

User stack
We have seen that with the Al5 stack the P-register. the PSW and any other
registers are saved with Store instructions in this stack towards the lower
addresses. Now, if a user calls a subroutine with a CF instruction the contents
of the P-register and the PSW are automatically stored in a stack he has set up
previously, for example as follows:

RES 20
STB EQU #2

LDKL Al4.STB
then the subroutine ts called:

CF Al4.SUBR
and P and PSW are stored in the
A14 stack
(other registers may also be used
as a stackpointer)

For example, for a program with two subroutines. one subroutine calling
another one. the saving may be done as follows:

SAREAI IDENT MAIN SUBR] SUBR?2

SAREA2 RES 3 ST AILSAREAI ST AI,SARFA?
RES 4 ST A2,SAREAI1+2 / ST A2,SAREA2 + 2

ST AZ,SAREAI+4/ ST A3,SAREA2 +4
CF Al4.SUBRi —
' CF Al4.SUBR2 ST A4SAREA2 +6
END _ ~

LD AI,SAREAI AISAREA?2
LD A2,SAREAI +2 4 A2, SAREA2 +2
LD A3,SAREA1!I +4 LD A3,SAREA2? +4

A4,SARFA2+6
RTN Ald ~

RTN Al4
1-52

The following save operations take place in this example:

®
PSW (MAIN)

P (MAIN)

Stored automatically

@
A

PSW (SUBR1)

P (SUBR1)

PSW (MAIN)

P (MAIN)

Stored automatically

SAREA2

@

—Al4

—Al4

Registers restored for SUBRI

SAREAI

*|
Registers restored for MAIN

SAREAI
Al (MAIN)

A3 (MAIN)
\ f

Stored by user-written instruction

SAREA2

Al (SUBR1)

Ad (SUBR1)

Stored by user-written instruction

PSW (MAIN)

P (MAIN)

—Al4

P and PSW restored for SUBRI

— Al4

P and PSW restored for MAIN

}-53

Note:
luis possible to return from SUBR2 directly to the main program but in such a
case the user must update the Al4 register content Le. the stackpointer himsclf
(with 4, in this case).

Trap action
Instructions input to the P800M computer are checked and decoded by the CPU's
Hardware.
If an unexecutable instruction is encountered a trap action is started which
consists of a hardware and software operation. The hardware operation of the
trap consists of the following acuons:
— the CPU does not attempt to carry out the instruction
— interrupts are inhibited
— information which refers to the instruction’s address and processor status (P

and PSW) are saved
— an indirect branch is made to location /7E (start of trap routine).

The software operation of the trap consists of:
— save the address in P
— save the instruction’s bit pattern and its second word, if any
— activate the Simulation routine (see below). if uny.

Simulation routine
The simulation routine allows the P852M_ user to simulate the following
instructions:

multiply double shift
divide multiple load
double add multiple store
double subtract

This routine. which is activated cach time an illegal instruction code is met in
the instruction sequence, consists of two parts. One part analyzing the bit
pattern saved by the trap routine and one part executing the instruction listed
above.
The routine may be interrupted.
See Appendix G for Stand Alone Simulation Package

Adaptation of P855M software to P800M software

When P855M programs are to be adapted and run on the 800M computer the
following points must be taken into account:
1 the sequence... ENB INH... in the P855M software permits to have the

Program interrupted afler ENB to sce whether an external interrupt is pending.
As in the P800M external INtcrrupts arc not scanned at the end of a short
fastruction, a dummy instruction must be included after FNB to allow for an
Interrupt scan.

1-54

The sequence may be altered in... ENB/RFs +2 /INH...
2 inthe P800M a stack overflow interrupt is given us long us the register ATS

contents remains << /100. For the P855M a stack overflow interrupt is
generated when the contents of register ALS = / 100.

Use of the RTN instruction
Operation of the RTN instruction ts slightly different for the P852M on one hand
and the P856M and P857M on the other hand. The RTN instruction on the P852M
reloads from the system or the user stack (the system stack is pointed to by register
A15 and the user stack by onc of the registers Al through Al4) the contents of the
P register und the PSW us suved when the interrupt routine or subroutine was
entered.
On the P856M and P857M the return is as follows:
When one of the registers Al through A14 ts specified, the P register and the CR
field of the PSW in the user stack are reloaded. When register A 15 is used as a stack
pointer, the P register, bits 0 through 7, bit 9 and bit 15 are reloaded from the
system stack.

Stand Alone Input and Output Programming

Programmed Channel

To control the data transfer between the device and the CPU the following
instructions arc, in gencral, available:
CIO Start Sturt input or output
CIO Stop Stop the input or output
INR Input one character
OTR Output one character
SST Send status of the control unit
TST Test if the control unit is busy
The register <r3> used in the CIO instruction must always contain additional
information for the control unit c.g. input, output, parity, echo ctc. Which
information must be loaded can be found in the relevant hardware manuals
delivered with the system.
When the CIO Start instruction is accepted (test the condition register) it is followed
by an INR or OTR instruction. When the last character is tranferred u CIO Stop
instruction must be given. This instruction should be followed by an SST instruction
which gives the status of the relevant control unit and may reset an interrupt and
switch a control unit to the Inactive State.

[/O Processor . |
The 1/O processor allows the high speed transfer of variable length or fixed
length data blocks between a suitable control unit and the processor.
Up to eight I/O processors may be connected to the General Purpose Bus
cach of which may control up to cight control units via eight subchannels.
Fach 1/0 processor has implemented two working registers which are used to

1-55

effect register to register exchanges with the CPU internal registers.
Before a data transfer can be realised the user has to specify two control
words for two external registers. These external registers are addressed by 2
WER instructions in which the address part must be composed as follows:

processor subchannel
uddress address of

8 9 10 II 2 13 14 = =15 ™
3

Sy

» control unit address

where processor and subchannel address are determined at system installation
time. Both addresses, which may range from 0 thru 7, form together the
attached control unit address. Bit 15 determines which control word is sent:
bin lS = O- Ist control word

1 2nd control word

Format of control words

The format of the first control word ts:

QT); 2,344 15

where:
bi O = | exchange ts in word mode

0 exchange is in character mode
bith = 4 exchange is from memory to control unit (output)

0 exchange ts from control unit to memory (input)
bi2= 0
bis = 0
bits 4 thru 15 specify the number of characters or words to be transferred.
The format of the second control word 1s:

[Lo Starting address 15

Be gePerating in word modc the Ist word of the block is always even (bit

In character mode, and bit 15 = 1. the right hand character is addressed (odd
address). When bit 15 = 0 the left hand character is addressed (even address).

1-56

Example:

I.DKL A1,/8032
LDKIL. A2,.BUF
WER Al/A
WER A2./B

C10 A4,1,/0!

word mode. input, 50 words
starting address of block
send control words (1000010 and 100001 1)

start input (address: 000001)

The RER instruction may now be used to read a transfer's cffective length
after termination of the 1/O operation.
When the exchange is completed an SST instruction should check the status of
the control unit and set it to the inactive state. The control unit may now be re-
initialised for a new transfer.

1-57

Input/Output Programming on Programmed Channel
a) without interrupts

TST

unknown /address

(ence)

1-58

SST

YES

NO

b) with interrupt handling

LU
N

|

RTN

1-59

Progrumming on |/O Processor

1-60

TST

3

Unknown address |

Conon)

LOAD Ist
control word

}

LOAD 2nd
control word

C10
Start

=
SST

Gry

eopes
Oeral
AEAAZ
eenas
OOBGE
6es05
eeene

eoua7

eoned
ooned
eeale
00011

oo8ie
60013
eenie
00835

00016
00017
00018

eee18
eenas
70021
eeec2
seers
90024
eae2d
35Ck6
80027
8eea6

e8e29
peete
80031
8ee32
80033
30034
80039
88036

raes?

2ae036
88039

20048

0604)
a0ed2
Beads
abade
aages

a6qee
eeaes

80046
gaaad
aaasa

eeoe
8002
reese
“ee6
aeons
eros
aeec
fane
Pre
eer2
e014
ene
eer6
eeia
eric
OLE
erro
9022
ne2z4
e028
ee2s
aeza
eerc
aeze
eese
0032
ves6
ae36
ease

eegs
eesc
ae3e
ance
aea2
eeaa
eea6é
e¢4e
aeea
saat
eeag

eeSe
oes2
aeSa
e056
8036
@aSAa
0a5c
aase

du6e
on62
eyoa
0066
ae68

weed

ri cy)
ag34

avee

$32a
45es

4€2e
9445
53356
e0ea
2e70

aeur
#132
sese
eeee
e6eea
4608
8Ce4é
€Se2
gece
asin
sceé

Bese
903i

1903
ecia
4690
oCea

4c0e
Bce4

Ggag

oeas
P12
eo6ee
460@
SCea

0812
41e
SCua
€sa2
esce
4316
sCea
oeae
oge)
1003
9cie
e516
4518
$Cua
4608
oCea
aCue
$Cea

2077

start

LOEwT

DATA

RO(NA)

OurPut

EXAMPLE OF SYaND ALONE PROGRAM 70 OUTPUT a
MESSAGE OM THE TELZTTPE LOG anv NEXT HAVE THE
SANE MESSAGE PUNCHED ON TRE TELETYPE PUNCR UNIT,

* DIT 13 2am TEest®,sevea

ai,is8
a6,8

a6,@

46,1.718
e

AS,@,/i@
en}

a6, 1

40,8,/198
ee@

A6,/48
ee?

eo

o PUNEN THE RESSAGE

Te

ORL

poa
Oa
230
ap(wa)
OR
OTR
ae(wa)

WC

ore
mO(Nal
404L

46514,/18
oe?

a5,/18
49,0,/38
ee2

49,0./16
ong

4g,l

ipl
eT?
a5,/44
49,0,/180
ee?

46,6,/18

COUNTER POR NO OF CHARACTERS

Stan? TECETIVPE Le OUTPUT
aCCEePrcor

£040 A Cmaw IN AS

acCePTcor
POINT TO NERY CHARACTER

ALL CmARACTERS PRINTED?
YES, SwitCn TELETYOE OFF
accerrfo?
BENO Sfarus
accéePreor

COUNTER FOR NO OF CHARACTERS

SayiCm TELETYPE Ow IN OUTPUT
aCCEPrevu?
B SalTCr PuNCe URI? On

OUTPUT THe CmanacTew Ch 439

ALL CMARACTERS PUNCHEOT

aaliCn POUnCn UNIT OFF

aCCer*Téo?

1-61

Source program calling a subroutine in FORTRAN library
When writing a program in Assembly [.anguage it may be useful to have a certain
operation performed by a subroutine which has becn specifically included in the
FORTRAN library to execute such a function.
The user may call this subroutine, in his Assembly program, in the following way:

Suppose the uscr wishes to multiply two flouting point numbers. The FORTRAN
library subroutine, which executes this multiplication, has F:RM as entry point.
The framework of the Assembly program, with only the relevant details, is written
as follows:

IDENT ASMPRO
EXTRN F:RM

FLNUM1 DATA =
DATA —
DATA —

FILNUM2 DATA —
DATA -
DATA -

LDKIL A13, PARLIS
CF Al4, F:RM

PARLIS DATA FLNUM1
DATA FLNUM2

Before the CF instruction is executed, register A13 must contain the address of a
parameter list. This list must contain the address of floating point number 1 and the
uddress of floating point number 2.

A13 parameter |ist Ist parameter

[| a ee — >

2nd parameter

1-62

The subroutine in the library contains the following relevant items:

IDENT FRTLIB
ENTRY F:RM

RTN Al4

This subroutine docs not use the stack of the calling program, except for the return.
When values are to be returned to the main program an integer will be returned to
Al and a real value to the registers Al to A3 inclusive (mantissa in Al, A2 and the
exponent in A3).

The main program must now be link-edited or link-loaded with the called subroutine
and the FORTRAN library.

The Linkage Editor sclects those modules required for program exccution.

1-63

	0-04
	0-05
	0-06
	0-07
	0-08
	0-09
	0-10
	0-11
	0-12
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63

