

Table of Contents

Preface.
Glossary of terms

PART 1 ASSEMBLY LANGUAGE.
Introduction .
Syatax description.

Chapter 1 Format of source statements
Label ficld .

Opcration ficld .

Operand ficld.

Comment ficld .

Input of source statements .md corrc(.uons .
Addressing modes .

Chapter 2 Functional operation of instructions
Load and Store instructions .
Arithmetic instructions .
Logical instructions . .
Character handling mslrucuons
Branch instructions

Shift instructions .

Control instructions .

170 instructions., .
External trunsfer mslruutona
Move lable instructions .

Chapter 3 Assembly directives .
Program framework .

IDENT .

END . .

Linkage control .
ENTRY .
EXTRN .
COMN .

Assembly control .
IFT.
IFF.
XIF .
STAB.

<

..__
<SG —

-t aud S e O b o
SEE RS

LD L L oL

-t et mt - -
0 D

TS
NN
NN —-

1-23
1

N
<

AORG . 1-37
RORG . 1-37
Value dctinition . 1-38
DATA 1-38
EQU . 1-40

Area reservation - . e e e e e e e e s
RES s e e e e e e e e s

Listingcontrol 142
EJECT o o e e e e s A2
NLIST o o o e s 142
LIST o oo e 142

Symbol generation.o Lo L. . 143
FORM Lo
XFORM. oL o7
GEN 148

List of predefined symbols. 149
Chapter 4 Programming considerations. 1-51

Stand Alone or Monitor controlled programming. 1-51
Interrupt system . e S Y |
Systemstack L L L. L 0L
Userstack. T B5s¥.d
Trapaction 154

Simulation routine. . . B 1. 7
Adaptation of P855M sofmarc to P800M soflw.lre G 1-54
Use of RTN instruction 1-55

Stand Alone Input and Qutput Programmmg T

Glossary of terms

Absolute addressing

Assembler

Bootstrap
Breakpoint
Character
Cluster
Common

blank common

labeled common

Debugging Package

Directive

Effective
memory address

Entry point

External reference

File code

addressing specific locations in memory (see also
rclocatable addressing)

a system program which translates programs
written in Assembly Language into binary object
code

a program provided for initial loading of the
system

address at which execution of program stops 1o
allow further debugging

eight bits, representing an integer, letter or other
data item

a sct of data in object code

an arca to which cxternal references can be made
from one or morc modules

a predefined external reference which can be used
in several modules

a processor which allows the programmer to insert
breakpoints in a load module and call debugging
functions before execution of a program

an instruction used for providing a framework for a
program or for guiding the assembly process

address in memory where the actual information
can be found

a labcel to which an external reference is made

a rcfcrence to an entry point in another program or
module

one or (wo hexadecimal digits associated with an
170 device

IX

Identifier

Internal symbol
IPL

Label

Linkage Editor
Load Module

Location counter

Mnemonic

Module

Monitor

Object code

Operand

Pass

Real Time Clock

a character or a combination of characters used to
label an instruction or a value which is to be
referred to by other instructions

identifier in a module

Initial Program Loader. A program to load the
monitor

identifier of max. six characters long, the first
always being a letter

a processor used to link independent object
modulcs before execution

program output by the linkage Editor containing
no external references

counter used to assign a relative or absolute
address to program clements

abbreviation for an instruction, as uscd in the
opcration code field of a source statement, to
indicate a machine instruction or directive

a part of a program, enclosed by an IDENT and
END dircctive, which can be trcated independently
of the rest of the program

a system program which supervises the loading,
processing and execution of uscr programs, starts
and supcrvises the operation of processors and
initialises 17Q operations

program as translated by a languagce translator and
suitable 1o be input 10 the Linkage Fditor

an cxpression indicating the address, value or
register to bec operated upon by the machine
mstruction

onc program run

a mechanism by means of which the amount of
computer time allocated to a program is measured

and a signal is given when that period of time has
cnded

Relocatable addressing

Source statement

Stand Alone processor

Symbol

Update Package

addressing in rclation to the beginning of a
program, not to spccific locations in memory. The
relocation of the addresses is then done by the
machinc

one line in a source program

processor not running under Monitor control. It
contains its own 1/0 routines

an identificr, used as an address value in the
operand ficld of other instructions

a processor which handles the additions and
deletions in source or object programs

X1

X1l

PART 1 ASSEMBLY LANGUAGE

Introduction

This part contains a description of the Assembly Language. In this description it is
made clear how the programmer can write his programs using the instructions of
the PBOOM Instruction Sct as well as the directives which guide the assembly
process when the program is input to the Assembler. The instruction scts of the
P8OOM series computers are upward compatible.

Programs for the PBOOM computers ure written in a symbolic language closely
related to the machine code. Each statement (or linc) of the program relates to a
single machine instruction or to a duta item 1o be taken into account by un
instruction.

To write programs in the Assembly Language. the user should be familiar with
the syntax of the instructions, which are devided in the following main groups:

— Load and Store instructions

— Arithmetic instructions

— Logicul instructions

— Character handling instructions
— Branch instructions

— Shift instructions

— Control instructions

— Input/Output instructions

— External Transfer instructions
— Move Table instructions.

Programming in Assembly Language requires certain rules to be acceptable 10
the Asscmbler.

A source program may consist of one or more modules cach of which starts
with an identification IDENT and terminates with an END (see directives). The
wholc source program must be terminated by an “End Of File” mark (:EOF).

NOTE: If a source program consists of several modules the modules need not
be separated by :EOF marks but by :FOS marks (End Of Scgment).
An :EOS mark at the end of a punched tape indicates the physical
end of that tape when the program is punched on (wo tapes. The
mark is not part of the Assembly Language.

The following figure shows various possibilities of how programs can be
punched on tape.

In example A the program is contained on onc punched tape. The program
starts with an identification IDENT and is terminated by END which will causc
an :EOS to be punched when the program is assembled. and is followed by an

:EOF.
IDENT IDENT IDENT /\

%

2

IDENT
:EOS END END
:EOF EOF
/\ IDENT
END
EOF
END END END
:EOF :EOF :EOF

requircs LKE
C

requires LKE
D

Example B is an examplc of a program punched on two tapes. The first tapc
starts with an IDENT and is terminated with :EOS which causcs the Assembler
to wait for opcrator action. The second tape docs not contain an IDENT and is

read immediatcly after the fi . i i :
Foad amm y after the first one. The sccond tape is terminated by an END

Example C consist inni i 3
and ending wiih & ; Bf al::’o: E\gg'ules on two tapes both beginning with IDENT

14

Example D consists of several modules punchcd on one tape. Each module
begins with an IDENT and is terminated by END and cither an :EOS mark if
another module follows this one or by :EOF when it is the last module to be
processed. This example requires the Linkage Editar to make of those modules onc
larger program which can he executed.

Each module of a program consists of a number of characters grouped into
lincs and cach statement in a module is made up of the following characters:

Letters: A to Z inclusive
Digits: 0 10 9 inclusive

Delimiters: + plus

minus
asterisk
cqual
apostrophe
comma
blank

slash

left parenthesis
) right parenthcsis
. period

: colon

|

-~~~

Location counter

The Assembler maintains a location counter which is a software counter used
to assign a relative or absolute memory address to program clements. The
location counter starts with a relative value equal to zero. or it starts at an
absolute address defined by the AORG directive, at the beginning of an
assembly. The value of the counter is incremented by 2 or a multiple of 2
depending on the kind of instruction given.

The current valuc of the location counter is referred to by an + in the operand
field (sce below). In absolute program sections * has an absolute value. In that
case the value is incremented in the normal way and the valuc may be changed
by a RES or RORG directive.

Thle location counter may take neither a negative relative value nor an odd
value.

Symbols

A symbol is a character or a string of characters used 10 represent addresses or
values. Symbols may appcar in the label field as well as in the operand ficld of
a statement.

Their syntax is the same as for the label (see under label field). Some symbols
are predefined and have a special meaning for the Assembler ¢.g. « indicates
the current value of the location counter, P is the instruction counter etc.

Syntax description

The following symbols are used to define the syntax of the P80OM Assembly

Language.

< > to enclose syntactic items
| the vertical stroke has the meaning of or

== is composed of

[1 the syntactic items between these brackets may be omitted
L | select one of the items between these brackets

— spacc

The following list contains the definition of all items used.

< statcment >

<label >

<operation code >

<operand >

< comments >
<identifier >

< mnemonic >
<S>
(<cnd>)

< numerical
condition value >
< condition
mnemonic >

<L>
£ 3
< directive >

< DATA defined
hexa constant>
< module name >
< symbol >

[<label > 1 < operation
code >[< operand > [<< comments > |
[+ <comments >]

= = <identifier >
== < mnemonic >[S) < cnd =)|L]

[#]< directive >>

p=[+|=]<term>[+|=1<-term>

[+]=]<term>

‘< characters > |+ < characters >
<letter > | <identifier > <letter >|
<identifier > < digit >| < identifier >
< letters representing operation code >
<store indicator >
< numerical condition value >|
< condition mnemonic >

0{112/314|5l6]7

Z|PINJOIE|GILIAIUINA|
NR|NZINPINE|NGINI|NN

< load indicator >

indirection

<IDENT, END ecte.> see chapter on
directives

<see DATA directive >
< symbol >
< characters representing address or valye >

< predefined expression >
<entry point name >
< external >
< common-field
definition hst>

<common field definition>

<common ficld name >
<common field length >
<internal symbol list >

<internal symbol >
< ficld dcfinition >

< field length definition >
< = field value definition >
< :field value definition >

< field number>

<term >

<constant >

< decimal constant >

< hexadecimal constant >
<character constant >
<letter >

<digit>
<dclimiter >
<integer >

ITEETEET]
o

[l

< max. of two defincd symbols >
< identifier within reference modulc >
< identifier defined in other module >

<commen field definition >, < common ficld
definition >

.....

= <common field name>[<common ficld

length >

< identificr >

predefined (absolute) expression
<internal symbol >, <internal

.

symbol >

< identifier >

< field length definition >| | =|:) < ficld value
definition >

< number of bits >

< value to be placed in field >

< address of word >

< decimal integer >

<constant >| < symbol >

< decimal constant > | < hexadecimal
constant >| < character constant >
<digit >| <integer >

< hexadecimal integer >

< letter > | < digit > | < delimeter >
A|BIC|DIE|F|GIH|I|}IK|L|M|
NIO|PQIR|S|TIU|VIWIX]Y]Z
0]1]2|3)4]516|718|9

+| ===/ kD

< number >

1 Format of source statements

A source module consists of a sequence of statements. The Assembler
inerprets cach line as it is presented.
Statements can be divided in the following fields:

— label ficld

— operation ficld
— operand field
— comments field

< statement > =[< label > | < operation code = (] < operand >]
[< comments = |
«f < comments = |

Each lield has 10 be separated from the other by onc (or more) blank
character(s). Blanks may not appcar in the ficlds themselves except when
specified in a character constant or in a comments field. Instead of blanks a
backslash may be used for separation (sce page 1-16). One or more blanks at
the beginning of a statement indicate that there is no laubel field.

If there are more than en blanks after the operation ficld all following
characters are considered to be belonging 1o the comments field.

An * (asterisk) at the beginning of a statement identifies that line as a
comments line.

Statements punched on tape which arc to be read by the ASR punched tape
reader have to be terminated by L.LF XOFF CR, which switches the reader off,
followed by a Null character, ¢.g. Rub-out, to allow for a proper reading and
processing of the next usable character.

rTrrvrrTy LELLEI rrrrvrery IR LB T rT T T rTrrerrrrrrrryTreT LILELELELILILL Trrrrvey
[] 1)
rTTrvrrrTYy LILIR I | LELELILILLELE] rTevrrTou T TrrvrrTryrrvyyTTrrrrrrrrrroy TI1V7TV77T7TT Trrerrrrvy
] [}
Trrrryd LELILE Trrrrrrey LIR IR L S rryrryvrrrrrrrrrrrrrrrrrorrey LI LILBLELILLAS
] []
rTvrTTTTY TrrT TrrTTTTyTy TryrvrrTy LRI L L L I I D O O B L L B) TTrrrorrTy Trvrrrvyy
L)]
TrTryrTrTY LELBLAL rryrvryyey TrTvrvTrvTa Ty vy reryrTTTTTTrTrTrrrrerT LR TTTrrry
U L]
LERLEA N B B A § LILELBLI LB RERS TTrvrrvyvyy rrrryyvryryyrrvyryrrrrrrrryrrey TrTrrrTorTTY LI L
' L]
LI Trer LI BB A A B I vETTTTYUTTT LLEL L AL L L 2 L D O L B B I | TrTTrTTrTTY TTrryrynTT
' !
LIRS Trvy LB ERES Trrvrryrrity rTrIrrrevrrrrrrrrrryrrrarrrrda TrrTrrTrry TTrrrTTrry
(] []
TrTrTvTTY LILIRIR TTTryrrrrrr TVryvTTrTTTyTTT Trvrfrrrrrrrryrrrryrsrrrrrruyy rrrrrrrry Trrryvry
' |
TVrTv7vTTvY TYIvTTrIvrrrre L B B R I B | Ty VT T YTy r I r Ty T rr Ty rr v [T T T 7T ryrr T Trr—ooT
] [
LRI LI LR R I | Tvitvrorr?t rrVryrrvyrryrrTrrryryryvyrvy rrrr vy rrVvyrriyirer[vryYvrrrrTry
!]
CrrvTed LELLIJ TrrrrTTrriTe TerT T T Vvaa Trvyryvvyrrrrryyryvyrrrsrrrorey LANLANN B B B B A | AL L
(] [
TrrTTrYT LILELIJ Trryrrrrgid rrrrrrrrt TryrTrrrrrrrrrrrrrrrrrrrg TITrTrrri LA L L B B |
! [}
AL Tery TTrrrrrry rerrTT T T Y rrrrrryrvrrrryrryrrrrrrrrr oo rvrrrrTrT Trrrrrry
[] []
rrvrTT LILELILI LR ABEBARAI rTrrTTTTuUTa rryrrrrrrrrrrryrrrryrr oo LARRASEERI Tr717TT17TY
L} (]
rrrvrTey LILIL L TrrrrvrrTd rrrrrrorrT LANLUNLINL I I IO I L I IO B BN O 0 A IO AN A N AN B B B | TYrTrTrrIy rvyrrrrr
[l]
TrTrTrrrvey LR 2 B | L L L A L B rrrrrrrorrr rerryrrryrryrrrrryrvrvrerrr ooy LI LIRS TR TTTTT
! :
LIBLEE S0 B a0 a4 Tr=r-r TirTiriTrrrvyy LAEE NN ZNN Bun S S Sun s oy T rvrrTrT YT T Yy rryrrrrrrrriy LIRS LI reyrrrrrey
! [}
Tr A g r-r-r TYrvvegprvrvy rvrrrrrerrT ryrrTrTYrTrT T rTrrrrrrrrrrrrrrrryT LA LA AL A e Tryryrvry
| [}
vTrrvyreyverry T Tyvrvevryrrry TV Ty vrrery Trvryrervrerr 1T 171 -ﬂ-t-QJa‘-qqqq
[} [}
LELAR S0 20 2n 5 LB | TVrrrrrrore TTrrryrrry Tr Vryrvrrerrrrrrrry TTgg vy
! '
Ty ™rrT T T LN B S A o .q....-‘.A_.....-.-I-I-I-.sMJ-JIN-Q (A7 EX] TrTrrrey
]]
TTrrYTrTTTT T TT LI B B B B B B TYTTrrrrrr-" AT N dl-a-.“.v-\.~64°
TV TVrrrY T TT T T T YT Ty rrrrrrr TT T T T T T T T T 7V TV T T R T T T T IS gl T Y T T T T
] [}
TT T T T T LANLAN Sl S N S S S B B B o 2 T T T T T MALAGE Y 3 Ny 518’ ﬁ.dt-....._..-.o.d.."....
[
yvrrvrver Trry rrrivryrorry Tyvrrryryrrroery ..-...--..-.«<<.q.-...-b._--’
]
™ T i v 1) T Tov T T o 4 Toraife 7 Tos Te .
YonwILeN RO “ 00 uOeE»0D N -
o WiV e > r ey
Wy sbad 4o FPIwrxy
T OTT Tvd vo

SdiliHd

o

1-1

LABEL FIELD

< label » 2 = <ulentifier >
< idemtifier > :; =
< leter > | < identifier > < letter > | < identifier = < digiv =+| -2 identificr >

Labels (or identifiers) in a module are used for relerence purpose to other
statements in a module.

The Assembler assigns. in most cases, 1o cach label a word address value which
is the numerical cquivalent (absolute or relocatable) of the label.

The maximum number of characters in a label recognised by the Assembler is
six. The first of those must always be a letter. A label. however. may contain
more than six characters but the additional characters will not he taken into
account. If the 1abel has alrcudy been allocated 1o another statement an error
message is outpul.

Period signs in a label are not significant, e.g.

1.A.B.L.L. has the sume meaning as LABEL.

The valuc of a label is normally regarded as relocatable. except when:

— an absolute address is equated by an EQU dircctive

— the label appears in an absolute program scction (defined by the AORG

directive and which is not cquated by an EQU directive to a label previously
defined as rclocatable).

OPERATION FIELD

<operation code = :: = < mnemonic > [S|(<2 end >)|L][=] < asscmbly
dircctive >

where:

< mnemonic >

The operation field normally contains the mnemonic of a standard instruction. It
is possible, however, to generate one’s own instruction mnemonic by means of the

FORM, XFORM and GEN directives (only with the monitor controlled
Assembiler).

-1

S
Allowed afier the mnemonie of certam register to register and memory reference
instructions. It indicates that the result of the operation must be stored in a memory
word (bit 15 of the instruction is set to 1). In fact, S has (o be considered as a part
of the instruction mnemonic.

eg. CIR and CIRS instructions are to be considered as 1wo difterent

instructions,

NOTE: It is allowed to have the S preceded by a period sign though he
Asscmbler does not take this sign into account.
cg. ADSL = ADSS

(<cnd >):: = < numerical condition value >| < condition mnemonic >
< numerical condition value =2 = 0/1/ 17

< condition mnemonic > :: =
Z|PINJOLE|GILIAIR|UINAINRINZINPINE|NGINL|INN

This indicator specifies the condition under which a conditional branch
instruction is to be performed. The table below shows how in the Assembler the
conditional mnemonics and numerical condition values may be used.

COND. REG
CONTENTS GENERAL ARITHM.
0 ()} (Z) ZERO
1 (N (P) POS.
2) (N) NEG.
3 3 (0) OVERFL.
NOT - CONDITION
#£0 @) (NZ) NOT ZERO
21 (5) (NP) NOT POS.
#2 (6) (NN) NOT NEG.
#3 @ UNCONDITIONAL

Qul-l.?\:fd after the instruction muemonic of a constant instruction. It specifics
s ‘“ operand is contined in 16 bits ic. that the instruction must be
assembled ay “long” instruction.

1-12

*
Indicates the indirect addressing mode in a register to register or a memory
reference instruction.

OPERAND FIELD

The operand field may contain an address expression. a register expression or
constants associated with the current machine instruction or assembly directive
or a combination of those.

The structure and meaning of the operand depends on the type of instruction
and directive and is explained below.

All operand expressions must be separated by a comma.

Expression

<expression=:: = [+ | =]<term >+ | —J<term>[| + | =)< term >]
<term > = < constant > | < symbol >

NOTE: »is considered 10 be a symbol.
An expression may not refer to more than 2 symbols and may not refer to

more than one register name. In the latier case it may not contain any other
term.

(<CND>)
COMPARE 170
(E) EQUAL (A) ACCEPTED
(G) GREATER (R) REFUSED
(L) LESS -
— (U) UNKNOWN
(NE) NOT EQUAL (NA) NOT ACCEPTED
(NG) NOT GREATER (NR) NOT REFUSED
(NL) NOT LESS —

Address expression

The address specified in @ memory reference instruction can be either absolute
or relocatable.

An absolute address 1s the actudl address in memory where the information the
user necds can be found.

A relocatable address s relative to the beginning of the program m which n
appears.

The address expression may contain any of the following terms or a
combination of them:

. asterisk, which is a predefined expression representing the
current value of the location counter. This counter is
incremented by two or 4 muluple of two depending on
the length of the instruction.

symbol used to refer to an instruction or data word with the
same identifier in its label field. The Assembler will
convert the symbol to a relative address.

displacement value which can be antached to « or < symbol > to indicate a
word not labcled by an identifier.

Predetined expression

A predefined expression is an expression consisting ol not more than two
symbols, vach of which is defined i.e. has been assigned a value. Some symbuls
are imphicitely predefined in the Assembler (see page 1-49).

An cxpression may contain only one external reference. The remainder, if any,
of such an expression must have a predefined absolute value. The combination
of an external reference and a predefined absolute value may only be used for
specifying the value of a 16-bit ficld. The table below shows the result of a
combination of positive and negative ahsolute or relocatable values:

Ist term
+ R - R + A - A
2nd term
+ R E A R R
- R A E L E
A R E A A
A R E A A

1-14

where:

R = rclocatable
A = absolute
E = e¢rroncous

Register expression ' _
Register expressions arc regarded as predefined expressions and consist of one
or two characters. The register cxpressions recogniscd by the Assembler are:

P P-register or instruction counter

Al...A14 Registers | 10 14 (general purpose registers)
AlS Register 15 (stackpointer)

Constants

A varicty of constant types may be specified in the operand of an instruction
or dircctive.

< constant > :: = <decimal constant > | < hexadecimal constant > | < character
constant =
Decimal constants

< decimal constant > :: = <digit >| << integer >

The decimal constant is a digit or integer contained in an 8-bit character or 16-
bit word whose value may range from 0 to 32767,

Hexadecimal constants
< hexudecimal constant > :: = / < hexa integer > | X’ < hexa integer >°

The hexadecimal constant is considered to be hexadecunal value or bit string in
the range from 0 w0 /FFFF,

Character constants
< character constant > :: = "« character > [X character > |

A character constant is composed of a character string enclosed in single
quotation marks. The string is composed of the characters described in the
character set on page |-5.

A character constant can be used with a machine instruction only if the
constant consists of either one character (short constant) or two characters
(long constant). Longer strings can be specified in g DATA dircctive. A single
quote mark (‘) used as a character is specified by two conseculive single quote
marks.

1-15

COMMENT FIELD

Comments are only for the programmer’s benefit. They are included in the
assembly listing but not in the generated object program.

A line is considered to be a comment ling when the first 10 characters of that
linc are blanks or when the line starts with an asterisk.

INPUT OF SOURCE STATEMENTS AND CORRECTIONS

The user may type in the statements and corrections from the opcrator's
typewriter. He may do so by counting the number of characters to obtain a
ncat output on the listing device.

Example:
1st col 10th col 19th col 40th col
label — opcode — operand — comments

may bc typed as follows:
label\opcode\operand\comments
without having to count for the lirst column of each field.

Example:

DATARVL.DK\A4 4

VABLAVHALT

DEVUN\LDK\A4.5

\ABLINHALT

ADDIT\LDK\A1,0\SET INDEX REGISTER FOR BUFFER.
\LDKAA3.00FFALOGICAL CONSTANT INTO A3

ADDRESSING MODES

In Volume 1l we see how addressing takes place from a hardware point of
view. The condition an instruction must fullfil to mect the requircments of
the Assembler is explained on the preceding pages. Specific examples. with
source statements and explanation concerning the arithmetic instructions A
and ADR are given 1o show the operation within the CPU.

Sec lor the hardware operation of those instructions Volume Il. The order in
which the examples are given is in accordance with the description on those
pages.

Direct addressing

AD ALLABEL The contents of the memory location with
symbolic address LABEL are added to the
contents of register Al. The result is placed in Al.

ADS Al LABEL The contents of the memory location with address
LABEL are added to the contents of register Al.
The result is stored in LABEL

Indexed addressing

AD A2 LABEI.A10 The contents of register A10 are added to the
address LABEL. The result gives an address
whose contents are added to the contents of A2.
The result of the latter operation is placed in A2.

ADS A2,LABEL,A10 The contents of register A0 are added to the
address LABEL. Thc result gives an address
whosc contents are added 1o the contents of A2.
The result of the latter opcration is stored in the
address: LABEL + contents of A10.

Indirect addressing

ADs A2.ABEL The contents of LABEL point to an address
whose contents arc added to the contents of
register A2. The result is placed in A2.

ADSs A2LABEL The contents of LABEL point to an address
whosc contents arc added to the contents of
register A2. The result-is placed in the contents of
LABEL.

1-17

Indexed Indirect addressing

ADs A2LABEL.AIO

ADSe A2.LABEL.A10

LABEL is added to the contents of register Al10.
The result points to an address whose contents
are added to the contents of register A2, The
result hereof is placed in register A2.

LABEL is added 10 the contents of register A10.
The result points 10 an address whose contents
are added to the contents of register A2. The
result hereof s placed in the address obtained of
A10.

Register to Register operation

ADR Al1,A2

Register addressing

ADRx Al1,A2

ADRS Al1,A2

The contents of A2 are added 10 the contents of
Al. The result is placed in Al.

The contents of the address pointed 10 by A2 are
added to the contents of register Al. The result is
placed in A1l

The contents of the address pointed to by A2 are
added 10 the contents of Al. The result is stored
in the address pointed to by A2.

2 Functional operation of instructions

LOAD AND STORE INSTRUCTIONS

1.0oad Instructions

Before the programmer can perform an operation on the contents of a
memory location or a register its contents must be placed in one of the
registers Al thru A15,

Two load instructions are provided, allowing to load a 16-bit word from
anywhere in memory or from any rcgister into a specified register where the
operation will take place. and one instruction 10 load a constant into a register.

Store instructions

Companion 1o the load instruction is the store instruction which may store the
contents of a register, containing the result of an operation, into a memory
location or a register.

ARITHMETIC INSTRUCTIONS

Arithmetic instructions perform the normal arithmetic functions such as add.
subtract. The instruction operand operates upon the contents of the specified
register.

LOGICAL INSTRUCTIONS

Instructions described under this heading are called logicul instructions because
they operate on binary information according to the rules of logic. The first
operind which may be a memory location, a register (R1 or R3) or a constant
is compared with the second operand, register R2. The result is placed in
register or possibly in memory. In the instruction set each logical instruction is

given a description in which way the contents of a memory location is ANDed
or ORed.

CHARACTER HANDLING INSTRUCTIONS
Character handling instructions operate on a character level. Characters may

be exchanged. compared or 8 bits of a constant may be placed in 8 bits of a
register.

BRANCH INSTRUCTIONS
These instructions cause a branch to an uddress in memory cither when

certain condition is fulfilled or unconditionally.

1-19

In branch instructions on condition the instruction mnemonic is followed by a
number ranging from 1 thru 6, enclosed in brackets. When the number is (7) or
omitted, the branch is unconditionally. '

These numbers are compared with the contents of the condition register set by
the previous instruction.

The condition number has the following meanings:

(0) branchif CR =0 (4) branch if CR * 0
m =1 (5) # 1
2 =2 6) # 2
3) =3 (7) unconditional branch
Example:

1.DK A24
LABEL SUK A2l

RB(4) LABEL

The Assembler allows to use, instead of 4 number. a condition mnemonic c.g. 7. E,

A (see page 1-12).

Unconditional branches arc made by the following instructions:

— absolute branch instruction or relative branch instruction without a
condition indicator or when (7) is specificd.

— CF, RTN, EX instructions.

Long format absolute branch instructions pernut 1o branch. forward as well as
backwards, 10 any address in the program. Short format absolute branch
instructiors may only branch to locations 0000 to 00FE. Relative forward and
relative backward instructions may not skip backwards more than 127
locations and 128 locations forward.

The Assembler gives an crror indication if the permissible branch range is
excecded.

The address to which control is to pass may be indicated in various ways:

1. By means of a symbolic address cxpression:
ABL(3) LABEL

2. By an absolute address held in a register:
ABR (7} A5

. By using a constant to indicate an absolute mcmory. address (short
constant):
AB /84

1-20

4, By mcans of a displacement value added to or subtracted from the
instruction counter value (RB and RF instructions only). This
displacement value is computed by thc Assembler from an address
expression used in the operand and may not exceed more than. 128 words
forward or 127 backwards:

RB{0) ZERO

Another group of branch instructions are the Call Function and Return from
Function instructions. The Call Function instruction provides a link to a
subroutine by branching to the lirst instruction ol the subroutine. To be able 10
resume the execution of the main program after the subroutine has been
exccuted the contents of the P-register and the Program Status Word are
stored in the stack. When the last instruction of the subroutine (RTN) is
exccuted the contents of P and PSW arc restored.

A special group within the branch instructions is formed by the instructions
EX. EXK and EXR,

Thesc instructions allow to address a memory location of which the contents is
the binary representation of another instruction. The latter instruction is
exccuted before the program continues with the next instruction in sequence.

Example:

LDKL A3CIO
LDKL A4 SST

1o Clo ALLTY

EXR= A4 EXECUTE SST

RB(4) =2

EXR= A3 EXECUTE CIO
SST SST A1TY

RB4) *—2

The Execute insgruction may not refer 10 other EX. EXK or EXR instructions
or to Call Function, RTN or double format instructions.

SHIFT INSTRUCTIONS

Shift instructions operate on a bit level. These instructions allow to rotute the
contents of one of the registers Al thru A7 n positions in the direction

e . . and
manner specificd in the instruction.

1-21

CONTROL INSTRUCTIONS

These instructions perform the control of the program by atlowing the program to
be interrupted or not, or to reset an internal interrupt. Except for the 1LKM
instruction, control instructions should only be used in Stund Alone programming.

INH and ENB are two companion instructions. The program part between
these instructions is not interrupted as INH inhibits all interrupts, ENB sets the
machine st 1o permit interrupts,

Example:
IDENT TEST
ouTt EQU *
RORG OUT + /600
START HLT
INH
LDK AS50
LDKL AlLBUF
I.DK A20
AGAIN CI1O A2.1,/30 progrim inhibiwed
RB(NA) AGAIN
1.C A3.BUFPTP.AS
ENB

The RIT instruction is used to resct an internal interrupt which was previously
set by an interrupt from the control pancl. power failure/automatic restart,
real-time clock or by a program error.

The programmer may specify a 5-bit hexadecimal value in the operand of this
mstruction 1o clear specitic interrupts.

INTRTC RIT /1B Reset the real-time clock interrupt

170 INSTRUCTIONS

170 instructions handle the data transfer between the CPU und peripherals, the
operation ol control units for these peripherals and status conmrol,

In monitor controlled programs the /O functions, initiated by these
Instructions. are taken over by a general 170 routine which is called cach time
a LKM instruction followed by a DATA directive is uscd.

1-22

The user need therefore not o write his own /O routines. When the
programmer is to write a Stand Alonc program he has 10 write his own 170
routines.

EXTERNAL TRANSFER INSTRUCTIONS

Two of these instructions, WER and RER, may he used for programmng the 170
Processor by addressing an external register. The function of these instructions is
described on page 1-54. The other instructions of this group are only uselul when
working with the Memory Management Unit (MMU) on the P857M and permit 1o
load 16 registers on the MMU with 16 comecutive memory locations. or to replice
these locations with the contents of the 16 registers. The 16 registers are called
segment table.

MOVE TABLE INSTRUCTIONS

These instructions can only be used on the P857M. They allow to move a tablc cither
to an arca higher or lower in memory or to move a table from a user to a system
arca, and vice versa.

1-24

3 Assembly directives

Directives are used to provide a framework for a program and to guide the
assembly process. The directives are written in the program and arc printed on the
assembly lisung if the listing option is specificd in the Assembler option message
(sce puge 2-9).

The two versions of the Assembler accept either all directives (monitor controlled
Assembler) or part of the directives (Stand Alone Asscmbler).

The table below gives a survey of which directives arc accepted by which
Assembler.

Stand Monitor
Alone controlled
Dircctive | Mcaning Asscmbler] Assembler| puge
|__IDENT | Program identification X X 1-27
END End of assembly X X 1-28
ENTRY | Dcfine entry point name X X 1-30
EXTRN | Dcfine external X X 1-31
references)
COMN | Define common blocks - X 1-32
STAB Define internal symbol - X 1-36
table 7 B
AORG | Assign absolutc origin | X | X | 137
RORG | Assign rclative origin X X 1-37
IFF Il false . - X 1-35 |
IFT If true B - X 1-35
XIF End of condition - X 1-35
DATA | Daa gencration X X 1-38
EQU Equate symboltovalue | X | X 1-40
RES Reserve memory area X X 141
EJECT | Continue listing on new - X 142
page —
LIST Resume listing output - X 1-42
NLIST | Suspend listing output = X 1-42
FORM | Format definition - B X 1-43
XFORM | Extension of FORM - X 147 |
dircctive)
GEN Generation directive - X | 1—.4,,\ B

1-25

The directives can be divided in the following groups according 10 their
function:

— Program framework : IDENT. END

— Linkage control : ENTRY, EXTRN. COMN

— Assembly control : IFT AFF, XIF, STAB, AORG, RORG
— Value definition : EQUL DATA

— Arca reservation : RES

— Listing control : NLIST, LIST, EJECT

— Symbol generation : FORM. XFORM, GEN

PROGRAM FRAMEWORK

The dircctives IDENT and END form respectively the lirst and last statements
in the module. They are mandatory. The module punched on tupc must be
followed by :EOS or :EOF.

The IDENT directive is used for identification purposes and the END directive
generates the END cluster after which the assembly process is stopped and a
symbol table is printed.

1-26

IDENT

program IDENTification

IDENT

The IDENT directive specilics the name 10 be given 10 the object module
output by the Assembler. It is used for identification purposes in selective
loading or updating (sce parts on Linkage Editor and Update Package).

This directive must always be present and must be the first statement in a

source module.

Syntax

—IDENT. < module name >

where:

< module name >

A symbol which is specified according to the rules for a
label.

END

END of assembly END

This directive must be the last statement in a module and terminates the
assembly process by punching an :EOS mark.

Syntax

[- label =} END_J - predefined cxpression >][, < symbol =]

where:

< label >

< predefined expression >

< symbol =

1-28

The tabel is given a relative value equal to the length of
the relative section of the generated object program.
This length includcs the length of the optional symbol
table (sce STAB directive, page 1-36).

The value is 0 if this module is absolute.

This expression, if present. gives the address of the
first instruction o bc performed in the program
after loading.

This paramcter gives an entry point name 10 the
internal symbol table of the gencrated object
program when the STAB dircctive has becn
assembled.

LINKAGE CONTROL

Some modules which have to be grouped into one larger program contain
refercnces to identifiers defined in other modules.

By means of the directives ENTRY and EXTRN the user is able to refer to
certain parts in other modules whereas the dircctive COMN ailows 1o transfer
data among several modules either writicn in Assembly Language or in
FORTRAN.

By using a COMN thc programmer can define one or more common blocks.
Each common block may be divided in a number of subfields of varying length,
each having a symbolic name which can be referred 10 directly but only in the
module in which they are declared.

COMN blocks may be iabeled or blank: a COMN block is labeled if a name is
attached to it

The Linkage Editor allocates a space to the blank common block at the end of
the link-load or link-edit run (see l.inkage Editor). This block is placed at the
end of the entire program.

Labeled commons are placed at the end of the first module that refers to it.

The ENTRY, EXTRN and COMN directives must always follow immediately
after the IDENT directive and in this order. though it is not necessary that the
ENTRY as well as EXTRN and COMN are specified.

So: IDENT. ENTRY, EXTRN, COMN or
IDENT, EXTRN, COMN or
IDENT, ENTRY, COMN elc.

ENTRY define ENTRY point name ENTRY

The ENTRY directive is used 1o declare entry points, i. c. labels which are
defined in the current module and used as operands of another module.
The directive must follow, if present, the directive IDENT.

Syntax

—ENTRY <centry point name [, <Tentry point name >, .., <ientry point
name > |

where:

<cntry point name = Can be referred 10 by an operand of an instruction in
anothcr module, The maximum number of entry points
which can be specified in one ENTRY directive is
determined by the length of one line,

Example (see also EXTRN)

IDENT PROG
ENTRY NUMBI. NUMB2, NUMB 3

NUMB! LDKL A3. LABEL

NUMB2 ST A6. REFER
NUMB3 CF A14, LOS
END START

1-30

EXTRN

define EXTeRNal references EXTRN

The EXTRN directive is used to declare externals i.c. operands which are used
in the current module and defined as labels in another module.
The directive must follow ENTRY, or IDENT when the directive ENTRY is not

present.

Syntax

EXTRNL <external name >[, < external namc ><external name >

where:

< ¢xternal name >

Name of external reference (label in other module). The
maximum number of external names which can be
specified in one EXTRN dircctive is determined by the
length of one line.

t:xample (see also ENTRY)

IDENT
EXTRN

END

ASMPRO
NUMB2

A14, NUMB2

START

1-31

COMN declare COMmoN block COMN

The COMN directive factlitates communication between modules written in
Assembly Language or FORTRAN. The directive is written as follows:

Syntax
[< label > }=COMN_ < common ficld definition list >
where:

<common ficld definition list>::= <common lield definition >[, < common
ficld definition list >

where:

<common field definition>::= <common field name>[<common field
length >

where:

< common ficld name > ::= < identifier >
< common field length > :: = < predefined absolute expression >

If the paramcter <common ficld length> is omitted the dcfault value
assumed by the Assemnbler is 1. The field length must be given in words.

Examplc
ALCOMNGLFVALIL (3). FVAL2 (3), INTGV (10)

which defines a labeled common, named A, having the length

3+ 3+ 10= 16 words.

A is defined as an external reference and common block name. Either the
common block name itself or the subficld names may be referred to in the
same module. The subficld names are then considercd to be equivalent to:

< common block name > + -absolute displacement >

NO.

LDAL FVAL2 is equivalent 10 LDLALL A+6

1-32

and

ST_A2, INTGV + 18 is cquivalent 10 STLLA2, A + 30

The displacements in this example are counted in characters,

Blank commons can only be referred to by the subfield names defined in the
operand field.

_COMNLVALI (3), VAL2 (4)
_COMN_VAL3 (9), VALA (10)

These directives define a blank common of 3 + 4 + 9 + 10 = 26 words.

VALZ2, for instance, may be used in symbolic expressions and is equivalent to:

<blank common “name”> + 6

1-33

ASSEMBLY CONTROL

When it is neccessary lo check whether a certain condition is satisfied before
assembling a number of source lincs. the user may include the directives IFT,
IFF and XIF. The assembly of the IDENT — END — XIF directives are never
bypassed by IFT or IFF.

By mcans of the STAB directive the uscr may specify one or more internal
symbols which arc to be used for Debugging purposes. All these symbols must
have been defined previously in the current module.

Common block names arc¢ handled as externals.

The RORG and AORG dircctives are used to resct the location counter to a
relocatable or absolute value indicated in the operands of those two directives.

1-34

IFT, IFF, XIF Conditional Assembly IFT, IFF, XIF

Thosc directives are only used in combination with the dircctive XIF to
indicate that a block of instructions is to be asscmbled only if a certain
condition is fulfilled. The assembly of the IDENT — END — XIF dircctives
are never bypassed.

1T (IF True)

The IFT directive specifies that the Assembler has to assemble the next source
lines only if the condition stated by this directive is fulfilled.

Svmtax

.IFT_ < predefined absolute expression > = < predefined absolutc cxpression >
If the first parameter # second parameter the source line(s) following IFT up
to the next XIF directive are not assembled.

IFF (IF False)

Syntax
—IFF_ < predefined absolute expression > = < predelined absolute expression >

If the first paramcter = the second parameter the source lines following IFF
will not be assembled.

Syntax
—XIFL

This dircctive allows all subsequent statements 1o be assembled until a new IFT
or IFF statement is encountered.

STAB define internal Symbol TABle STAB

The STAB directive outputs at the end of the relocatable program section of the
generated module one or scveral internul symbols to be used for debugging
purposes (internal symbol is the address given to a symbol in the progrim afier
assembly). All symbols must have been declared previously in the current module.
STAB must immediatcly preccde the END dircctive.

Syntax

—STABL < internal symbol list >

where:

< internal symbol list > ;; = <internal symbol >[. < internal symbol list >

If the STAB directive does not contain a paramcter in the opcrand field all
internal symbols of thc module will be included.

The programmer may not specify entry points, external reference names or
commons. This directive is only taken into account when in the END directive the

parametcr <symbol> is specified which gives the name of the internal symbol
table.

1-36

AORG Assign absolute ORiGin AORG

This directives assigns an even absolute value to the location counter. The
jocation counter receives that value by specifying < predefined absolue
expression >,

From the time AORG s given and until 3 RORG directive is given the
location counter is incremented in the same way as if it were relative, i.e. by
increments of 2 and 4 depending on the length of the instruction. All labels in
an absolutc module arc given an absolute value unless they are cquated 10 a
predelined relative value by an EQU directive.

RB and RF instructions in an absolute program cannot refer 10 an address in a
relocatable program section as the place from where this section will be loaded
is not known.

Syntax

—AORG. < predefined absolute expression >

RORG assign Relative ORiGin RORG

The RORG direcuve allows the user to specify the beginning of a relocatable
module by assigning a rclative value. which must always be even. 10 the
location counter. Its value may never become negative. I RORG has no
operand the location counter is given the last relocatable value it has
previously received. This value is equal to the length of the relocatable module
at the time this directive is assembled.

Syntax

—RORG [< predefined relocatable expression > |

1-37

VALUE DEFINITION

The dircctives DATA and EQU arc used to define certain values in a module.

DATA DATA generation DATA

The DATA dircctive is used to assign a value to one or morc words in the
module. for inclusion in the object module.

Syntax

[<label > 1= DATA L < data cxpression >

where:
< data cxpression>-:: = | <expression >| < character string >°|
L < data expression > |
<label > refers to a symbol in the operand field elsewhere in the
module.

<data expression > the data expression may be:

— a decimal or hexadecimal constant

— an address cxpression

— a character string consisting of one 10 thirty-two
ASCII characters ¢nclosed by single quote marks, A
series of words is generated. of two characters cach,
which are left justified. When the number of
characters is odd the rightmost character of the last
word is a space.

Example

The expression may contain a number of paramciers which, in toal. may
generate no more than 16 words in memory.

DATALABC . /0A0D. 1./ A, 2"DEF

will generate the following words:

1-38

4142

4320

0AOD

4445

4620

Example

When the user wishes to make an ECB he may do so as follows:

ECB_DATALIL, BUF2,6,0.0,0,

Example

DATA_ —0128. + 12,/3AB,—/A, LABEL. ‘TEXT"

will generate the following:

FF80

000C

03AB

FFFo

< value :»

5954

3A20

-128

+ 12
/3AB
-/A
LABEL
‘TE
XT

1-39

EQU EQUate symbol to vaiue EQU

Identifiers are normally defined by being assigned memory values as they
appear in the label field of an instruction. The EQU directive may be used to
define an indentifier in a direct manner by assigning 10 it the value of an
expression in the operand ficld. The symbol in the label field is made equivalent
to the valuc in that operand field. This value may be absolute or relocatable.

A symbol. provided it differs from standard mnemonics and FORM-defined
mncmonics, may be used as an operation mnemonic but may not be followed
by an operand. The Asscmbler generates onc code word each time this
mnemonic appears in the operand field.

Syntax

< label » JEQUwu < predelined cxpression >

Example
CT— EQU_/41C4 CT may now be used anywhere in the program
to represcnt the value /41C4.

(64)
LDKLoALCT

Example
VALo EQULI10

LDK AL VAL

Example

LAB o EQU . » LAB reccives the vaue of the location counter.
{equal to: LAB RES 0)

Example: Each time the Assembler encounters C:1 or REG:3

C: 1EQU.25 they are replaced by “25” and A3 respectively.

REG: 3_.EQU_A3 LDK A1, C:1—= LDK A1,25

LDK REG:3,1—=LDK A3.1
LDK REG:3, C:1—=LDK A3.25

140

AREA RESERVATION

The directive RES can ce used to skip over an arca in memory. The RES
directive saves a memory area of a given length, specified in the operand.
advancing the location counter by twice the number ol words specified.

RES REServe memory area RES

The RES directive is uscd to reserve 8 number of memory words. The
programmer may specify this number in the parameter. The location counter is
incremented or decremented depending on the positive or negative value of
that paramcter. If positive, a memory area of the specified value is rescrved. If
negative. a memory arca of the specified size before the place identified by
< label >.

The value of the latter is not changed but the location counter is reset to a
lower valuc by subtracting wwice the value specified.

[<label >l RES_ < predefined absolute expression >
where:

< label > receives the address of the first word of
the reserved area.

< predefined absolute expression => specifies the length of the area to be
reserved.

If < predefined absolute cxpression > is 0 the location counter is not updated
and. if <label > is specified, the statement is equivalent

< label > LEQU s

Examples:
RES._4 Reserve 4 words
LABI_ RES_.-2 Reserve 2 words before LAB1
INS_. RES_O0 INS reccives the value of the location counter,

I'xamples of stack rescrvation:
STACK RES 4 STACK—
BASE EQU #-2

BASLC#-2—

* —

141

LISTING CONTROL

The Assembler normally produces an output listing for cach assembly. By
means of the directives EJECT, NLIST and LIST the programmer may
determine which parts of the modules do not need to be listed.

E)JECT Continue listing on new page EJECT

This directive causes the remainder of the current page of the line printer
paper 1o be left blank and the listing to be continued at the top of next page.

Syntax
—EJECTL

NLIST Suspend listing NLIST

The NLIST direcuve causcs the Assembler listing to be suspended from the
point where this directive is given until either the END directive or a LIST
directive.

Lines which contain errors will continue to be printed during this phasc.

Syntax
«NLIST..

LIST Resume listing LIST

The LIST dircctive causes the Asscmbler to resume the listing after it has been
suspended by a NLIST directive.

Syntax
—LIST

142

SYMBOL GENERATION

Three directives allow the user 10 make a number of special instructions for a
specific purpose or program, namely FORM, XFORM and GEN. In the FORM
directive the user may define the bit contiguration and the mnemonic of the
special instruction.

If two FORM-defincd instructions are to be specified which differ only in the
contents of certain ficlds thc programmer may use the XFORM directive.

The GEN directive allows to include the instructions, defined by FORM and
XFORM, in the existing Assembler by extending the Assembler’s symbol table.
A particular useful pseudo-instruction or system macro can be defined once for
all times instead of having to be generated by a FORM directive in every
program where it is used.

Symbol gencration is only possible with the monitor controlled ussembler.

FORM FORMat definition FORM

This directive is used to dcfinc the format of a word or a group of up to 8
words named by an identifier which can be used as an instruction mnemonic
later in the program.

The directive is written as follows:

Syntax

< label > L_FORM < field definition >[, < field definition >,

- field definition > . . _ < field definition > [/ < ficld number list >]
where:

= ficld definition > ::= < field length definition >|| = |:Jticld valuc definition >}
“lield number list > ::= < field number >[, < ficld number list >

and

* tield number > ::= < dccimal integer >

~field length definition ~ specifies the number of bits 1o be allocated 10 a
licld of the word and may range from 1 through 16. If scveral fields are defined

inside a word the sum of the held lengths must be 16. The maximum number of
consecutive words defincd by u single FORM directive is 8.

143

< field value definition > can be used to place a valuc in the field 1o which it
refers when the value is preceded by an equal sign (=).

If the value is preceded by a colon (:) the value indicates the address of a word
in relation to the first word of the expansion defined by FORM. The value
definition itsclf may be a prcdefined cxpression, an external reference without
any displaccment or a predefined absolute or relocatable cxpression. If a
particular ficld has not reccived a value dcfinition the field will be filled wit
zeroes.

< label > dcfines the instruction mnemonic. The operand ficld of the directive
must then contain values to be placed in any non-predcfined ficlds. The last
non-predelined value is default value.

Example
MNEM_FORM L 16=/85A0.16:14,16=/8141,16 = INST, 16. 16, 16

185A0 —arithmeiic or logical valuc

MNEM + 14 -=address of word lollowing this block
/8144 —arithmetic or logical value

INST —identifier

0-0

0-0 3 words containing zerues

0-0

The parameter 16:14 indicates a word address seven words form the beginning
of the expansion defined by FORM. The programmer has to specify this
address as the last three words are left zero.

Example

This example shows how the programmer may make an ECB if not all

paramcters arc known. By using the FORM dircctive he does not have to write
the instruction sequence:

LDK A7, —
LDKL A8, DECB
LKM

DATA

1-44

00000 IDENT FORM

00001 INOUT FORM 8=/07.8.16=/80A0.16,16=/2804.16 =1
00002 0000 BUFFER RES 10
00003 0014 0008 DECB DATA 8.BUFFER.20.0,0.0
0016 0000 R
0018 0014
001A 0000
001C 0000
001E 0000
0004 0020 0782 START INOUT /82.DECB
0022 B0AOQ
0024 0014 R
0026 2804
0028 0001
H0005 002A 2804 LKM
00006 002C 0003 DATA 3
00007 END START
SYMBOL TABLE

BUFFER 0000 R DECB 0014 R START 0020 R
ASS.ERR. 00000

LFOF

AzEOF

EXIT

From now on the programmer may use INOUT_/82, DECB instead of
IDKUAT. ...

Field number list

If the programmer wishes 1o put the values of the operand ficld of the FORM
detined mnemonic in an order different from that of the non-predefined ficld
they are w ovcupy, or if the user wishes 10 alter the values held by any of the
predefined ficlds, he must use the field number list parameter in the FORM
directive.

Fach field that is generated is given a number, beginning with 0 for the first
ticld, 1 Vor the second ficld, n-1 for the nth field (n may not exceed 15,

The ficld number list must be preceded by a / (slash) and be placed after the last
ticld definition of the FORM directive.

All non-predefined fields specified in the fickd defimtion hst must also be specitied
i the field number list.

A tield number is represented as a decimal integer.

Il a field aumber list is specificd alter a FORM directive. the operand
evpressions following the pscudo-mnemonic will occupy the ficlds specilied in
the field number list in the given order. In this way. the contents ol predefined
fields may be altered while blank ficlds may be It blank.

1-45

Example:
Suppose the user has specificd in his program. by means of a FORM directive,
a 16-bit word of the following format:

=1 8=2
T[00000010]

12 3

=2 2=11
010J01]
0

OUl

field no

He wishes to have this word changed in:

5=2 2=3 1=0 8=1
(0o0o010]11]0]JO0000000 1]
ficld no 0 1 2 3

He may do so by using the following instruction sequence in his program using
the field number list in the FORM directive

IDENT EXAM

WORD FORM 5=2,2=1,1=1,8=2/213

WORD 031

END

The Asscmbler will now change the ficlds as follows:
ficld no 2 (1 =1) will be changed to contain the value 0
field no 1 (2=1) will be changed to contain the value 3
ficld no 3 (8=2) will be changed to contain the value 1
ficld no 0 (5=2) will kecp the value 2

The operand expressions following a pseudo-mnemonic are positional
parameters. If onc parameter is omitted (other than the rightmost one), its
position must be indicated by a comma.

I 2 FORM defined mnemonic is identical with a standard instruction
mnemonic. the pseudo-mnemonic is given priority.

1-46

XFORM eXtension of a FORM directive XFORM

Syntax
< label > uXFORMo < FORM-dcfined pseudo-mnemonic >, <ficld list >

The XFORM may be used each time two FORM-defined pscudo-mnemonics
have to be defined which do not differ in the format but only in the values of
the predefined fields.

The ficld list is a series of field definitions giving the format of the new pscudo-
mnemonic and the contents of its ficlds.

The ficld length definitions must be the same as those of the FORM-directive
referred to and appcear in the same order.

Fxample
INSTIFORM..8=/FF, 4, 4, 16/1, 3, 2
INST2LFORM.8=/33,4,4,16/13.2

The XFORM directive combincs the two and gencrates an INST2 instruction
as follows:

INST2LXFORMALINST1.8=/334.4,16

1-47

GEN GENeration directive GEN

The GEN directive allows 10 extend the Asscmbler symbol tablc so that it
recognizes and assembles a number of non-standard symbols in any program in
which they are used.

Syntax

Restrictions
The GEN directive may only be used in the source program in which it appears
if it fulfills the following conditions:

— GEN must immediately precedec END
— only the FORM, XFORM, EQU and EXTRN directives arc allowed in this
program.

The Assembler does not verify if those conditions are fulfilled. 1t checks only
if:

— object code is produced
— assembly errors have occurred.

Example
IDENT_FORM

INOUT_. FORM_38 = /078,16 = /80A0,16,16 = /2804,16 = |
GEN
END

The following procedure must be followed to include the features provided by
GEN:

— load Assembler

— pluce on the reader the user source module with GEN directive

- usscml;lc this module to produce object output

— load Linkage Editor

- qla_cc the Assembler in the reader and have it processed by the Linkage
Editor (P

- place the object user program in the reader and have it processed (P)

— next Terminate (),

The punched output of this fink

X -cditing is the original Assembler extended with
One or more new mnemonics,

1-48

List of predefined symbols

NAME MEANING PREDEFINED INTERNAL
VALUE VALUE

P Instruction Counter 0 0

Al Register | 1 2

A2 Register 2 2 4

A3 Register 3 3 b

Ad Register 4 4 8

A5 Register 5 5 10

Ab Register 6 6 12

A7 Register 7 7 14

A8 Rcgister 8 8 1

A9 Register 9 9 3

A0 Register 10 10 5

Al Register 11 " 7

A2 Register 12 12 9

Al3 Register 13 13 11

Al4 Register 14 14 13

AlS stack pointer 15 15

Note: P, Al. A2, A3 ctc. can only be used to call the registers. Il they are
used for other purposcs an error message will be output.

149

1-50

4 Programming considerations

Data transfers between mput/output devices and the central processor are
controlled by device control units cach of which may have one or several
devices attached o it depending on the tvpe of device. Control units are
attached 1w the central processor by an interrupt or break line. by address lines
and other signal lines which are used by the computer to determine whether a
data transfer can be performed.

Data transfers wake place through a channel, the General Purpose Bus. The
actual programming of the data trunsfers may be on a character or word basis,
where cach word or character is programmed and transferred individually via
the Programmed Channel or the user may program blocks of words or
characters via the 170 Processor. In the latier case external registers may be
addressed.

Stand Alone or Monitor controlled programming

The basic difference between Stand Alone programming and Monitor
controlled programming is caused by the Tact that i Swnd Alone
programming the user has 1o write his own input/output routines whercas in
Maonitor controlled programming the user may call certain monitor functions
by means of finks to aronitor which execute the input/output.

For imformation on programming in cither maode refer to the PEROOM Software
I'raining Manual (Pub. No 5122 991 1243 x) and to page 1-55 of this manual.

Interrupt system

When working in interrupt mode cach interrupt program may be connected 10
anantercupt level. As the actioning of an interrupt involves the dircet accessing
ol the interrupt level's start address from its hardware interrupt location, the
contents of this location must have heen previously louded with 1the correct
address.

Hie start addresses loaded in these locations are not fined and must be defined
by the programmer.

interropt level hardware interrupt locirtion
0t 62 /0000 10 /007C

vhere level 0 has the highest priority and 62 the lowest. The kevels are defined

A SYSGEN 1ime (see Volume).

System stack
o save the contents of registers when an interrupt is made nto the main
program. the hardware interrupt routine awtomatically uses register A15. This

1-51

register addresses the stack which is (o hold the contents of the P-register and
the Program Staws Word at the time the program was interrupted. [t is
therefore necessary to reserve suflicient space for the stack and to load register
A5 with its start address. This may be done by using the appropriate assembly
directives and by dcfining the start address by means of an identifier. The start
address is the highest address reserved as the stack is filled from the high
towards the lower addresses.

Apart from the contents of the P-register and PSW, the stack may be used to
save the contents of other registers as required by the program. These registers
are saved by means of Stare instructions (1 for each register). Before returning
to the main program, Load instructions are required 1o restore the contents of
the stack. prior 10 RTN. During the hardware action further interrupts arc
inhibited. If the user wishes 1o allow the specific routine to be interrupted he
must give an ENB instruction,

User stack

We have seen that with the A15 stack the P-register. the PSW and any other
registers are saved with Store instructions in this stack towards the lower
addresses. Now, if a user calls a subroutine with a CF instruction the contents
of the P-register and the PSW are automatically stored in a stack he has set up
previously, for example as follows:

RES 20
STB EQU #2
LDKL. A14.5TB

then the subroutine is called:

CF Al14SUBR
and P and PSW are stored in the
A4 stack
(other registers may also be used
as a stackpointer)

For example, for a program with two subroutines., onc subroutine calling
another one. the saving may be done as follows:

SAREAl IDENT MAIN SUBR1 SUBR?2
SAREA2 RES 3 ST A1 SAREAI ST A1 SARFA?
RES 4 ST A2SAREAL+2 [/ ST A2SAREA2 + 2
| ST A3SAREAI +4f ST A3 SARFA2+4
CF A14SUBRY —
] CF A14.5UBR2 ST A4SARLEA2+6
END - -~
LD A1SAREA1 ALSAREA2
LD A2SAREA1+2/NLD A2SAREA2 +2
LD A3.SAREA1 +4 Y LD A3.SAREA? + 4
A4 SARFEA2+6
RTN Al4 -
RTN Al4

1-52

The following save operations take place in this cxample:

®

PSW (MAIN)

P (MAIN)

Stored automatically

®

A

PSW (SUBR1)

P (SUBRD

PSW (MAIN)

P (MAIN)

Stored automatically

®

SAREA2

—Al4

—Al4

Registers restored for SUBR1

®

SAREA1

Registers restored for MAIN

SAREAI

Al (MAIN)

A3 (MAIN)

Stored by user-written instruction

SAREA?

Al (SUBR1)

A4 (SUBRM)

Stored by user-written instruction

PSW (MAIN)

P (MAIN)

—Al4

P and PSW restored for SUBRI

— Al4

P and PSW restored for MAIN

1-53

Note:

It is possible to return from SUBR?2 directly to the main program but in such a
case the user must update the Al4 register content i.e. the stackpointer himself
(with 4, in this case).

Trap action

Instructions input to the P800M computer are checked and decoded by the CPU's

Hardware.

If an unexecutable instruction is encountered a trap action is started which

consists of a hardware and software operation. The hardware operation of the

trap consists of the following actions:

— the CPU does not attempt to carry out the instruction

— interrupts are inhibited

— information which refers to the instruction’s address and processor status (P
and PSW) are saved

— an indirect branch is made to location /7E (start of trap routine).

The softwiare operation of the trap consists of:

— save the address in P

— save the instruction’s bit pattern and its second word, if any
— activatc the Simulauion routine (see below). il any.

Simulation routine
The simulation routinc allows the P852M user to simulate the following
instructions:

multiply double shift
divide multiple load
double add multiple store

double subtract

This routine. which is activated cach time an illegal instruction code is met in
the nstruction sequence, consists of two parts. One part analyzing the bit
patiern saved by the trap routine and onc part executing the instruction listed
above,

The routine may be interrupted.

Sec Appendix G for Stand Alone Simulation Package

Adaptation of P855M software to PSOOM software

When PB55M programs are 1o be adapted and run on the ’800M computer the

following puints must be taken into account:

1 the sequence ... ENB INH ... in the P835M softwarce permits 1o have the
program interrupted after ENB 1o see whether an external interrupt is pending.
As in the PROOM external interrupts are not scanned at the end of a short

mstruction. i dummy instruction must be included afier ENB to allow for an
mterrupt scan.

1-54

The sequence may be altered n... ENB/RFa +2 /INH ...

2 in the P8OOM a stack overflow interrupt is given as long as the register AI1S
contents remains - /100. For the P855M a stack overflow intcrrupt is
generated when the contents of regster A1S = /100,

Use of the RTN instruction

Operation of the RTN nstruction is slightly different for the P852M on one hand
and the P856M and P857M on the other hand. The RTN instruction on the P852M
reloads from the system or the user stuack (the system stack s painted to by register
A15 and the uscr stack by onc of the registers Al through A 14) the contents of the
P register and the PSW as sived when the interrupt routine or subroutine was
cntered.

On the P856M and P857M the return is as follows:

When onc of the registers Al through A14 is specified, the P register and the CR
field of the PSW in the user stack are reloaded. When register A 13 is used as a stack
pointer, the P register, bits 0 through 7, bit 9 and bit 15 are reloaded from the
system stack.

Stand Alone Input and Output Programming

Programmed Channel

To control the data transfer between the device and the CPU the following
instructions arc, in gencral, available:

ClO Start Start input or output
CIO Stop Stop the input or output

INR Input one character

OTR Output onc character

SST Send status of the control unit
TST Test if the control unit is busy

The register <r3> used in the CIO instruction must always contain additional
information for thc control unit c.g. input, output, parity, eccho ctc. Which
information must be loaded can be found in the relevant hardware manuals
delivered with the system.

When the C1O Start instruction is accepted (test the condition register) it is followed
by an INR or OTR instruction. When the last character is tranferred a C1O Stop
instruction must be given. This instruction should be followed by an SST instruction
which gives the status of the relevant control unit and may reset an interrupt and
switch a control unit to the Inactive State.

1/0 Processor

The 170 processor allows the high speed transfer ol variable length or fixed
length data blocks between a suitable control unit and the processor.

Up to eight 1/0 processors may‘be connecled.m !he _(;em:r.'ul Purpose Bus
cach of which may control up to cight control units via eight subchanncls.

Each 170 processor has implemented two working registers which arc used to

1-55

effcct register to register exchanges with the CPU internal registers.

Before a data transf2r can be realised the user has to specify two control
words for two external registers. These external registers are addressed by 2
WER instructions in which the address part must be composed as follows:

processor subchannel

address address 0/1

78 9 10 11 12 13 14 15

\ /
N

p control unit address

where processor and subchannel address are determined at system installation
time. Both addresses, which may range from 0 thru 7. form togcther the
attached control unit address. Bit 15 determines which control word is sent:
bit 15 = 0 Ist control word

1 2nd control word

Format of control words
The format of the first control word is:

011

[3¥]
w
>

15

where:
bit0 = 1| exchange is in word mode
0 exchange is in character mode

bit I = | exchange is from memory to control unit (output)
0 cxchange is from control unit to memory (input)

bit2= 0

bu3= 0

bits 4 thru 15 specify the number of characters or words to be transferred.
The farmat of the second control word is:

LU starting address 15

:\;'\:‘no;)pcraling in word modc the Ist word of the block is always even (b

In character mode, and bit 15 = 1, the right hand character is addressed (odd

address). When bit 15 = 0 the left hand character is addressed (cven address),

1-56

Example:

ILDKL Al1./8032
LDKI. A2.BUF
WER AL/A
WER A2./B

10 A4.1.701

word maode. input, 50 words
starting address of block
send control words (1000010 and 1000011)

start input (address: 000001)

The RER instruction may now be uscd 1o read a transfer's cffective length

after termination of the 170 operation.

When the exchange is completed an SST instruction should check the status of
the control unit and set it to the inactive state. The control unit may now be re-

initialised for a new transfer.

1-57

Input/Output Programming on Programmed Channel
a) without interrupts

unknown |address

0 ()
ERROR

CR

1-58

b) with interrupt handling

clo

L]

yes

[

RTN

1-59

Prograomming on 1/O Processor

Unknown address

ERROR

LOAD 1st
control word

]

LOAD 2nd
control word

cememccscmmacacsson

1-60

RTN

10EnT ouTryl

EXanPLE QF SYanD ALONE PROGRAR 10 QUTPUT A
MESSAGE ON THE TELETYPE LOG ANV SEXT MAVE TeE
SANE WESIAGE PUNCHED On ThE TELETYPE PUNCH uNlT,

Ze oo ene

E336¢ DATA ' DIT 13 LEw TEIT!,/Bve8

sTany (184

L]
LOK 83,10 COUNTER POR ~O OF CWARACTERS
LOoKL A, 8
VoK 46,68
cto 46,1,7390 STANT TELETYPE Iw QUTPLY
RB(vA) w? accerreoY

ASR (44 AS,"ESIGE, AD LOAD A CHaw IN AD

[}
\L]

RB(%A) accerreO?
ADKL POINT TO NEXY CHARACTER
UK
R6(ND) ALL CHARACTERS PRINTED?
cto A0,0,/710 YL, 3NITCH TELEZYYPL OFP
RO(NA) [T} ACCEPTEDT
L1 Ag,/10 SEND 3TATUS
RO(NA) a2 accervgor

L]

o PUNEN THE RESSAGE

.
[9-L1N A8, 8
[$:13 ag,tl0 COUNTER FOR NO OF CHARACTENHS
j4-13 48,0
<10 AB,1,/10 Sn]lTCh TELLTYPE ON IN OUTPUY
LLILTY] vel ACCEPTEDY
wor 49,718 = SalTCw PunCw UNIT On
(A1} A9,0,/710
as(na) v

(414 [N A3, REDSGE, A8

R
ore 49,8,710 OUTPUT THR CmaNACTEN [N AD
NO(NA) [T}
A0%L Av,l
UK ALL CHMARACTERS PUNCHEOY
RO(aD)
Lu: alTCn PUNCH yNIT OFF
or
AB(N4) acCePreo?r
10

ap(na)
33t
as(na)
L]8 ¢
(L 1) 3TART

1-61

Source program calling a subroutine in FORTRAN library

When writing a program in Assembly [.anguage it may be useful 10 have a certain
operation performed by a subroutine which has been specifically included in the
FORTRAN library to cxccute such a function.

The user may call this subroutine, in his Assembly program, in the following way:

Suppose the uscr wishes to multiply two floating point numbers. The FORTRAN
library subroutine, which executes this multiplication, has F:RM as entry point.
The framework of the Assembly program, with only the relevant details, is written
as follows:

IDENT ASMPRO
EXTRN FRM

FLNUM1 DATA -
DATA -
DATA -

FILNUM2 DATA -
DATA -
DATA -

LDKL A13, PARLIS
CF Al4, F.-RM

PARLIS DATA FLNUM1
DATA FLLNUM2

Bcefore the CF instruction is executed, register A13 must contain the address of a

parameter list. This list must contain the address of floating point number 1 and the
address of floating point number 2.

A1l3 parameter list 1st parameter

L - .

: | 2nd parameter

1-62

The subroutine in the library contains the following relevant items:

IDENT FRTLIB
ENTRY F.RM

RTN Al4
This subroutine docs not use the stack of the calling program, except for the return.
When values arc to be returncd to the main program an integer will be returned to

A1l and a real value to the registers Al to A3 inclusive (mantissa in A1, A2 and the
exponent in A3),

The main program must now be link-edited or link-loaded with the called subroutine
and the FORTRAN library.

The Linkage Editor sclects those modules required for program execution.

1-63

	0-04
	0-05
	0-06
	0-07
	0-08
	0-09
	0-10
	0-11
	0-12
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63

