
P B 0 PASCAL

USER MANUAL

Version zz 2.1 for Z80 with CP/M

April 1983

Copyright (C) 1981,1982,1983 Prospero Software

37 Gwendolen Avenue
London SW15 6EP England

COPYRIGHT

This document is copyright and may not be reproduced by any method,
translated, transmitted, or stored in a retrieval system without prior
written permission of Prospero Software.

Permission is granted to Pro Pascal licence holders to abstract and
use any of the programming examples.

DISCLAIMER

While every effort is made to ensure accuracy, Prospero Software
cannot be held responsible for errors or omissions, and reserve the
right to revise this document without notice.

TRADEMARKS

Acknowledgement is made for references in this manual"' to CP/M (a
trademark of Digital Research of California), to CDOS (a trademark of
Cromemco Inc. of California), to Macro-80 (a trademark of Microsoft of
Washington State), and to Z80 (a trademark of Zilog Corporation of
California).

PASCAL

Pascal is a programming language originated by Niklaus Wirth and
colleagues in Zurich during the early 1970’s. Since then it has
achieved worldwide recognition, and been implemented on a wide variety
of computers. It reflects Wirth’s belief that the organisation of
data is an aspect of programming as important as the definition of the
processing to be carried out on that data, and indeed that the two are
inseparable. Pascal provides for definition of record layouts and
files, as well as arrays, and includes dynamic storage allocation
facilities (the ’’heap”) as well as the more conventional arrangements.

Two factors have probably contributed most to the popular success
which Pascal has achieved. Both are essentially practical in nature.

Efficient programs can be generated without any recourse in the
language to hardware-dependent concepts. Pascal programs are in
practice more portable than programs written in most other
languages.

Many different kinds of application are supported without the
language becoming too large to implement on small machines.
Clearly this is a vital consideration to micro-computer users.

Finally, Pascal is an orderly language which encourages a systematic
approach to program development.

A Standard for Pascal has been prepared under the auspices of the
International Standards Organisation (ISO), and copies can be obtained
from the British Standards Institution.

PHO PASCAL

Pro Pascal complies with all the requirements of ISO 7185, Level 0
(i.e. excluding conformant array parameters).

There are extensions for character string handling, double precision
floating-point arithmetic, random access to files, and for separate
compilation of program segments.

The Pro Pascal compiler is a true compiler, generating native machine
code for efficient program execution.

FORMAT OF THIS MANUAL

The manual is divided into three parts.

Part I is a guide to the main features of Pascal, intended for
the reader having some familiarity with Basic or Fortran. It
presents the topics in a "learning" rather than a "reference"
sequence, and covers sufficient ground'to enable many practical
programs to be produced without-going into all the possibilities.

Part II forms a detailed reference manual for writing programs in
Pro Pascal. It describes all the features of the language,
including the extensions and the facilities related to the
operating system.

Part III contains the directions for operating the software
(compiler, link-editor, etc.), the options available, format of
diagnostics, hints on program testing, and suchlike matters.
There are also details of hardware requirements and installation
procedures.

There are appendices giving the formal syntax, the compile-time and
run-time error codes, and the ASCII character set.

It is not possible in the scope of a manual such as this to provide
instruction in Pascal for the complete novice. A number of books are
available which do this, and the names of a few will be found at the
end of Part I. -

PART I - INTRODUCTION TO PASCAL

1 Example Pascal program 1

2 General layout and appearance 4

2.1 Program skeleton 4
2.2 Symbols, words, and constants 4
2.3 Identifiers and reserved words 52.4 Program appearance 6
2.5 Comments 6

3 Statements 7

3.1 Expressions 7
3.2 Simple, conditional, and repetitive statements 8
3.3 Simple statements 10
3.4 Conditional statements 11
3.5 Repetitive statements 12

4 Labels and LABEL declarations 13

5 CONST declarations 14

6 Data types and TYPE declarations 15

6.1 Data types 15
6.2 Built-in types 15
6.3 User-defined types 16

7 Variables and VAR declarations 27

7.1 Variable declarations 27
7.2 Reference to variables 27

8 Procedures and functions 28

8.1 Blocks 28
8,2 Scope 30
8.3 Declaring and using simple procedures 30
8.4 Parameters 31
8.5 Functions 33
8.6 Standard procedures 34

9 Getting started 36

9.1 Think ahead 36
9.2 Choice of names 36
9.3 Compilation and linking 37
9.4 Conclusion 37

10 Further reading 38

Pro Pascal User Mandai\ < 1-1

1 EXAMPLE PASCAL PROGRAM

This part, of the Pro Pascal user manual is intended to provide readers
having some preliminary knowledge of programming (in Basic or Fortran,
for instance) with an introduction to the main features of Pascal.
The presentation describes the Pro Pascal language, including a few of
the extensions which are not part of strict Standard Pascal. The
objective has been to provide sufficient information to enable many
practical programs to be written.

To introduce the general form and appearance, this section contains a
complete example program called "results", which reads the results of
a competition, tabulates them with the average score for eac\ entrant,
and at the end gives the winner of the competition. The winner is the
entrant having the highest average from five or more events.

The input to the program is to be presented in the form of lines, each
line starting with a competitor’s number (3 digits), followed by his
scores in up to eight events (scores in the range 0 to 100). The text
of the program, and a small sample tabulation, are given below.

Sample output:

105 76 65 47 59 81 69 397 66.17
108 55 58 68 67 42 290 58.00
110 67 39 72 73 65 71 387 64.50
114 70 78 76 82 306 76.50
119 69 43 38 46 39 . 235 47.00
121 52 47 32 43 48 55 72 349 49.86
122 74 56 65 42 88 81 406 67.67
124 46 63 72 42 59 60 342 57.00
127 50 51 36 48 67 252 50.40

Winner is number 122 with average 67.6?

. ' 7. '

Pro Pascal User Manual '' 1-2

1: PROGRAM results (input);
2:
3: CONST maxevents = 8; (maximum events for one entrant)
4: colwidth = 5; {column width on tabulation) ।
5:
6: TYPE competitor = 100..999; {range of entrants' numbers)
7: ' score = 0..100; {possible scores for one event)
8: •
9: VAR thiscomp, winner: competitor;

10: eventscore: score; totalscore: integer;
11: eventcount: 0..maxevents;
12: average, winningav: real;
13: listing: text; {output file for tabulation) .
14:
15: BEGIN
16: winningav := 0;
17: assign (listing, 'RESULTS.PRN'); rewrite (listing);-
18:
19: {process input and produce li’sting)
20: WHILE NOT eof (input) DO
21: BEGIN {read competitor number)
22: read (thiscomp);
23: write (listing, thiscomp:5, ' ' :3);
24:
25: eventcount := 0; totalscore := 0;
26: (now his scores until end-of-line)
27: WHILE NOT eoln (input) DO
28: BEGIN
29: read (eventscore);
30: write (listing, eventscore:colwidth);
31: totalscore := totalscore + eventscore;
32: eventcount := eventcount +1;
33: END {of processing one result);
34:
35: {space across to totals column},
36: IF eventcount < maxevents THEN
37: write (listing, ’ (maxevents-eventcount)*colwidth);
38: {calculate & print average)
39: IF eventcount = 0 THEN average := 0 *
40: ELSE average := totalscore / eventcount;
41: writein (listing, totalscore:8, average:7:2);
42: {is average greater than current winner ?}
43: IF (eventcount >= 5) AND (average > winningav) THEN
44: BEGIN
45: winner := thiscomp; (best so far}
46: winningav := average;
47: END;
48: readln ;
49: END {of processing one competitor};
50:
51: {at end of input, print winner}
52: writein (listing); writein (listing); {blank lines}
53: IF winningav > 0 THEN
54: writein (listing, • Winner is number', winner:5,
55: ' with average', winningav:6:2)
56: ELSE writein (listing, ' No entrant qualified as winner');
57:
58: END.

Pro Pascal User Manual I - 3

Note that the layout of the program text is arranged to help the eye
follow the general shape, which consists of some initialisation, a
process to be carried out for each entrant, and finally the printing
of the winner. The processing of an entrant can be subdivided into the
reading of his number, a repeated section dealing with his scores in
various events, then the calculation of his average and the comparison
of this with the current leader.

A number of aspects of Pascal are shown in this example; all will be
covered in later sections, but a few points can usefully be made
immediately.

1. Both upper and lower case letters are used to make the text
easier to read. The compiler does not make any distinction
between the cases.

2. Named constants are used for some parameters of the program,
allowing these factors to be amended simply. One such factor is
the maximum number of events allowed for (set at 8). Another is
the column width in the tabulation, which appears in the write
operations (set at 5).

3. The range of values for a competitor’s number and a score in
one event are given as part of the program in lines 6 and 7. This
information enables the compiler to produce a program taking
account of the anticipated sizes of numbers, and (optionally) to
include automatic checking.

Pro Pascal User Manual

2 GENERAL LAYOUT AND APPEARANCE

2.1 Proaran skeleton

A Pascal program has a general shape that is determined by the
following skeleton:

Program heading
LABEL declarations
CONST declarations
TYPE declarations
VAR declarations
PROCEDURE and FUNCTION declarations
Program body .

The heading and the body must be present. All the others are
optional, and may be omitted if not needed, though a program without
any variables would be very limited in what it could do.

The program heading consists of the word PROGRAM, followed by the
program name. The program body contains the statements which determine
the actions of the program. It is a rule of Pascal that objects must
be declared before they are used, and the various declarations that
come between the heading and the body are the means of doing this-. It
is worth noting that while any declarations that are not needed can be
omitted, the ones that are present must be in the order listed.

\ ■

2.2 Symbols, words, and constants

The text of a Pascal program is made up of words, special-character
symbols, and constants. The symbols are used for "punctuation" (for
instance comma, semicolon), to represent operations to be carried out
(+, -, *), and to distinguish special constructs. These uses will be
introduced as they are needed. The next subsection deals with words.
Constants are generally written just as in normal usage:

5 10 520 -6 3.4

(the last being a "real" or floating-point value). Character-string
constants are placed between quote marks, e.g: x

'I am the greatest.

Pro Pascal User Manual ' I - 5

Pro Pascal also allows integer constants to be written in hexadecimal,
as for instance:

100H OFFH 5CH

(A leading zero must be present if the constant would otherwise starts
with a letter.)

2.3 Identifiers and reserved words

Objects (variables, for instance) which are introduced into a program
are given "identifiers” by the programmer. An identifier is a name,
made up from letters and digits, starting with a letter. Pro Pascal
also allows the underscore character to be used within identifiers
to improve readability. (This is not part of strict Standard Pascal.)
Examples:

account last_used P5 wordlength

An identifier is separated from the next object in the program by any
character which is not a letter or digit. Thus a space can be (and
often is) used as a separator, and the end of a line similarly. Any
number of spaces can precede a component of the program, and. may be
used to help readability.

The programmer has a great deal of freedom in selecting names for
objects. In Pro Pascal there is effectively no limit to the length of
a name, though it may be useful to remember that some other Pascal
implementations may only differentiate by means of the first eight
characters. (A name is terminated by end-of-line, so cannot exceed
the length of a line, which is limited to 255 characters.) Some words
are however "reserved" and given special significance in the language,
and may not be used as names. Some of the commoner reserved words are

PROGRAM- CONST TYPE VAR
PROCEDURE FUNCTION BEGIN END
IF THEN ELSE CASE REPEAT UNTIL
FOR TO DO WHILE AND OR DIV MOD

A complete list is given in part II.

(Reserved words may be thought of as extending the repertory of
special characters, though the words are of course chosen to be
appropriate and help in understanding the program.)

For the purpose of obtaining the meaning from the program, the
compiler makes no distinction between upper and lower case letters,
nor does it give any importance to layout in the sense of what is
collected on one line and what is put on the next. The human eye,
nevertheless, gets a lot of help in its understanding of the program
text from such points of appearance. In this manual, upper case is
used for reserved words (PROGRAM, BEGIN, WHILE etc.) and generally
lower case for identifiers (lastused, wordlength).

Indenting the left-hand margin is also a great help in conveying the
meaning of a program to the human reader. The example in section 1
shows this to some extent, and the suggested approach is described
below with the kinds of statement which benefit.

2.5 Comments

A comment can be introduced into the program text anywhere
space would be allowed. A comment can be delimited either by
curly brackets {...}, or by the equivalent (*...*) if curly
are not available.

/

' •?> V
■ ? .X

Pro Pascal User Manual I - 7

3 STATEMENTS .

Statements’describe the actions of a program, and for this reason are
described first. To be complete, however, many statements need
variables to act upon. For the purpose of this section, we assume
that the variables named have already been declared.

3•1 Expressions

There are many instances in the description of statements where an
expression may be used. A simple form of expression can be just a
single variable or constant, and many actual expressions even- in
complicated programs are no more than this. An expression is also,
though, the means of specifying arithmetic or logical operations, and
for such purposes follows the notation found in many programing
languages, with symbols + for add, - for subtract, and * for
multiplying. Pascal makes a distinction between integer division
giving an integer result, for which the reserved-word symbol DIV is
used, and division giving a floating-point result, which is invoked by
w/n .

Relational operators can be used:

= (equal)
< (less than)
> (greater than)

<> (not equal)
<= (less or equal)
>= (greater or equal)

Logical operations are called for by the reserved-word symbols AND, OR
and NOT. (Pascal does not allow AND to be used as a masking operation,
since that implies implementation-dependent knowledge about the
internal representation.) Example expressions:

5
intvar
ind + interval
units-10
balance > limit
(a < b) OR (c = 6)
thickness + 4 * (length '- height)

Use of functions within expressions is covered in the description of
procedures and functions, and a few other special forms are mentioned
as they arise.

Pro Pascal User Manual 1-8

3.2 Sipple, conditional, and repetitive statements

It is useful to categorise statements according to the way the flow of
control passes through them. The so-called "simple" statements are
obeyed just once:

Conditional statements provide a choice from a number of actions:

Repetitive statements allow for execution of the controlled operation
a number of times:

These structures can be put together in any way, since the blocks
labelled "statement" can each be of any of the possible forms.

Pro Pascal User Manual : ' I _ g

To enable the compiler to process the component statements, the
semicolon symbol is used as a separator, for example:

statement ; statement ; statement

Another important constructional device is the "compound statement",
in which a sequence of* statements is grouped by BEGIN and END into a
single unit:

—> BEGIN statement ; statement ; .. END

This method of grouping is needed when a subsidiary statement of a
conditional or repetitive statement is to be a sequence rather than a
single statement. For clarity, it is important to lay out a compound
■»tatfescue sc chai. the BEGIN and END can be seen to ^atch:

BEGIN
statement ; {indented} \
statement ;
•

END

Simple statements3-3

are just three kinds simple statement.There of

(i) An assignment statement
variable:

Pro Pascal User Manual

first_time := 2;
next := next + increment;
compound := base + 0.045 * excess;

gives the value of an expression

(Note that the compound symbol := is used to mean "set equal to". The - :
symbol = on its own is kept for comparison operations.)

(ii) A procedure statement invokes execution of the procedure - this
is described later under "procedures and functions". . , Q
(iii) Special instances of procedure calls are the read and write 2 .'AT
operations, for example: t '

J - '.S .5 ' K ; /; ' 7,

read (input, currentitem);
write (output, ’Average density=’, avdensity); ■

■ / ' ■ ■ ' '■ . • ;<• • ' \ S-?.

(iv) GOTO statement. The control structures of Pascal provide the /
means of describing the large majority of instances in which a GOTO
would be needed in some languages (FORTRAN, for example), and the
programmer’s aim should be to avoid GOTOs where possible. However, T--J
some instances remain where a program is made more contorted and ,
difficult to understand by avoiding GOTO than by using it, forz , <:
instance:

- to terminate a program from an error or exception routine,

to exit from a loop at an intermediate point rather than ; z..
the beginning or end. . , Q

: ' • '' ' ; -?

X J 7 S' ' • S

Pro Pascal User Manual 1-11

3•4 Conditional statements

Pascal has two forms of conditional statement:

(i) The IF statement allows a choice between two alternatives, one
of which may be "do nothing":

IF index < 10 THEN do_one
ELSE do_two;
IF status > dummy THEN dothis;

Notice that do_one must not be terminated by a semicolon (it is in
effect terminated by the ELSE).

(ii) The CASE statement allows a choice of one from a number of
possibilities. The format is:

CASE v OF
1: do_one;
2: do_two;
4: do_f our;

END {case}

The case constants 1, 2, and 4 must be possible values of the control
variable v. The list is terminated by the symbol END.

As shown, any value of v except 1, 2, or 4 is illegal. There is a
variation to allow "any others" to be collected together, thus:

CASE v OF
1: do_one;
2: do_two;
4: do_four;
OTHERWISE do_others;

END {case}

Often, the action to be taken on other values is simply "do nothing1!,
as for example: ■

CASE v OF
1: do_one;
2: do_two;
4: do_f our;
OTHERWISE ;

END {case}

Pro Pascal User Manual - . , _ 1-12
■' ' ---

3.5 Repetitive statements ' • -

There are three repetitive statements:

(i) The WHILE statement provides a choice at the beginning:
A

WHILE a < 10 DO process

Thus it is possible that "process" may not be entered at all. Process
must alter the value of a to terminate the loop.

(ii) The REPEAT statement has its exit at the end, and the controlled
statement is obeyed at least once:

REPEAT
process

UNTIL a >= 10

(iii) The FOR statement provides a combined loop and count facility:

FOR a := 1 TO 10 DO process;
FOR b := 10 DOWNTO 1 DO anotherprocess;
FOR 1 := 2*n TO twicemax DO yetanother;

The variable (a, b, or 1) is the "control variable", and the initial
and final values are general expressions, of which 1 and 10 are simple
examples. In the form e1 TO e2, if e1 is greater than e2 then the loop
statement is never obeyed (and similarly in the DOWNTO form if e1 is
less than e2). The increment/decrement is always 1.

Pro Pascal User Manual I - 1’

4 LABELS AND LABEL DECLARATIONS

Labels in’Pascal are used only in conjunction with GOTO statements.
They take the form of integer values and are "sited", in the program,
body by appearing in front of a statement, followed by a colon. Each
label in a body must have a distinct value, and must be declared in
the LABEL declaration group. For example:

LABEL 99 {error exit}

IF value > validmax THEN
BEGIN
write (output, ’Exceeds maximum value’);
GOTO 99;

END;

99: ;
END {program}.

If there is more than one label, the list is presented thus:

LABEL 99, 10, 120;

.. ■ ? '• • . • :) - . - i S-^‘ : ■ -y ’ ■ . „ Tj ' ■ . <- - Q - .. -V .: ■•- "" ■ ■, ' , ■ '<...-■ ; .-.Pro Pascal User Manual < ; z I - 14
/ ;.•■ ■ ' •' • Z- • ' '■ V-A •/' : ' : . . ' V •?■■■• \ /

V>.. Z ; ?W ' *' : ■

5 CONST DECLARATIONS ‘ -

The CONST declaration group allows an identifier to be used to
represent a constant. There are two main advantages to be gained from
doing this:

(a) The name can be chosen to make the program self-documenting;

(b) Multiple references to the same value (e.g. buffer size) can
be altered by changing one declaration at the beginning of the
program. '

Note that (as with other declarations except PROCEDURE and FUNCTION)
the word CONST appears just once. Each individual declaration is
terminated by a semicolon:

CONST columnwidth =7;
buffersize = 128;
validtext = ’Valid entry. Date:'

■ • - ■■■" 74 4'4 4-4-4 4-4-, 4.4^4 - :4 '^4-7444 ,77'/'V :-■■■*-7.74« 4474474^ 4'47 •-:
4 4-4- Aägg»

Pro Pascal User Manual , , ■ 4 1-15
'. • ■--.7 "'4' ~ , -"4 4. . « 7^, -4..- / ,4 .4 w-^.. 4 : ■--"4-; 4-7 ;•«■ 7. - . - 4 4 ■ ■■■■■ . l ■ . - .' -4 .-- Z -

,/ 4/ -•' 7;//:-44 /-,<: . 4 • ' 74-774 7 4 - ■' 7-'- 4 " 4444 4477 - . M
477747 4>;^W -44 4 744-44 :44 <74?-44777 4 J 44
■'. ' 1 ^,4v<44: ■' ■■■" ■? , ' ' A • 7 "/47a 7 : v? 7. -4^4 ; f- '^7 - :■ 1 7„ 7 4 4'7 i ■
■, ■ ' ' ■■ .7 7 7-'4 /.' ■ ••. ..- .4'• ■' / 7-4 4. _ 4 . --4^4 : 444- \ / 4^ — 4 ^ ■' 4 4'

■ S • ' ' " - ■ ; '4' ■■ 7 74'4 47.4'44^4^^

6 , DATA TYPES AND TYPE DECLARATIONS '’■

It is not possible to separate completely the treatment 'of types in ^7 $ • :
Pascal from their application to variables, and thus _there is in this -4
section some anticipation of the next. It may be found helpful to
look ahead to see the overall picture first.

6.1 Data types . z

The word "type" is used in Pascal with an important and specialist
meaning. It describes the structure and attributes of an item of
data, not only (as in say Fortran) making the distinction between
integer and real values, but also allowing the programmer to define
data structures of his own.

(Niklaus Wirth’s book "Algorithms + Data Structures = Programs" gives
a thorough explanation of the idea of data types, and the title itself 444
shows the importance which he attaches to the subject.) 4*4^

■ '4 4 .- 4 ^774^447
A variable may only be assigned a value that is appropriate to its 4 47 4
type, and similarly there are rules governing the association of types 4 '
within expressions. These rules are enforced by the compiler, not to
be irksome but to ensure that before testing even starts a large
proportion of "silly" errors are removed.

6.2 Built-in types 4
■ ' > -7 . • ' 7 • . . 7 ■ v ; 4 ? 4

There are five built-in data types that can be used in any program 74y-'
without declaration. - „

(i) char - the data item is a character, in Pro Pascal (as in many
77 other implementations) one from the ASCII character set. ? '^<7.
“ . 4

(ii) integer - the item is an integer. In Pro Pascal the range of / . 7 -4
integers is nine decimal digits (to be exact: -2147483647 to 7/4

— 4 +2147483647). • 4 7 7'

f (iii) real - the item is a floating-point quantity.

’ j (iv) longreal - an extended-precision floating-point quantity. ' ; 44447'4 ■ '
£7 (v) boolean - the item is a logical value which may be either false ,

or true. Boolean values often occur "on the fly” as in

R IF a < b THEN 7" 'A .7477'4

but may also be assigned to appropriate variables. 4
I ■ ‘ 7 ■

4 : ' ■ 7.. . • • ■ . • 4-'-' . , .• ’ 447^74: 7/ -7:'yp (■ • ■cl ’'.7/7 - ■ - - s

77/ .744 -7 4 ■ : 7--'47; ' 7 774.7-4';7.7' .4-77; 7/ 774477/; .47444 4 44-/7 444 4 .
Ö . -,474 ; /. 4 .. 444 7 /7. 4 < -47 7 .4, : ; . 74 /4 ' / -4 / ;4 4, /. 4/4,4 ,74 /7

R ': 7' ' ' 7 ' . ' ' '.477'-' . - ' ■ ' * 7 '77 4/

Pro Pascal User Manual 1-16

6.3 User-defined types

6.3 -1 TYPE declarations

Any user-defined type nay be given a name, and appear in a declaration
laid out as follows:

TYPE typenamel = typel;
typename2 = type2;

Examples will be found in the following sections. Note that a type
declaration does not of itself introduce any variables, but just
provides a "template" for a data layout. "

6.3 .2 Enumerated types

The type consists of a list of possible values, set out as for
example:

TYPE dayofweek = (Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday); , -

A variable "day", declared to be of type dayofweek, may take any one
of the values Sunday to Saturday, but may not take a value which is
not in the list (10, say). If "day" and "today" are both of type
dayofweek then

day := Monday;
today := day;
IF today = Tuesday THEN...

are all valid, but "

IF today = 10 THEN ..

is not

Pro Pascal User Manual ; - I - 17 -
' - ' / ; J' '

The order of the items in the list may be used, for instance:

IF today < Wednesday

is true if today is Sunday, Monday, or Tuesday. There are operations '
"succ" and "pred" to get to the following or preceding value in the
list, so that

day := Monday;
today := succ (day); . '

leaves "today" with the value Tuesday. Enumerated types may also be
used in FOR statements:

FOR day : = Monday TO Friday DO...

and as array indexes (subscripts).

In Pro Pascal, an enumerated type may have at most 256 values.

6.3*3 Subranges

Subrange types are introduced by declarations such as

TYPE competitor = 100..999; ;
byterange = -128..127;
weekday = Monday..Friday; 1 / J:

They have particular use in defining the range of an array index (and
so the size of the array), but in Pro Pascal the compiler also makes
use of the information given in a subrange type for deciding the
storage needed for individual variables, and also in generating the
(optional) extra code for range checking. It is therefore a good T
general practice to use subrange types wherever appropriate when first
writing a program.

Pro Pascal User Manual

6.3- 1* Sets

A set declaration is of the form

s = SET OF b

where b is another type, called the "base” type of the set. The base
type must be an ordinal type, by which is meant one having distinct
values (not, for instance, the type "real"). The idea of the set is
to enable a program to represent economically those members of the
base type having some useful common property. For example, the
predeclared type char is a valid base type in Pro Pascal, and sets can
therefore be constructed which represent all the vowels in the
upper-case and lower-case alphabets, or all the characters- which
cannot be displayed on some particular printing device.

As another example of the way sets can be used, a retailer might have
a range of commodity codes 00 to 99, some of which are subject to VAT.
Declare

TYPE commoditycode = 00..99;
setofcc = SET OF commoditycode;

VAR VATcodes: setofcc;

then in the body of the program, set VATcodes by a statement such as

VATcodes := [5,6,8,10.. 15,22,50..59]

and later statements can say for instance

IF thiscode IN VATcodes THEN ...
ELSE ...

Such a program is clearer and more maintainable than one which has a
long sequence of tests to sort out the codes subject to VAT.

The list of values within square brackets is the notation for
constructing a set having those members. In the example above all the
values are constants, but they may be variables (or indeed any
expressions). That example showed a static value given to VATcodes at
the beginning of the program. The value of a set variable can of
course be changed (as with any other variable), and one might for
instance be used as a means of "ticking off" items which arise in an
arbitrary or random sequence.

Details of possible operations with sets are given in Part II. In Pro
Pascal, the base type of a set may be char, an enumerated type, or a
subrange of integer lying within 0 to 2039. The storage allocated for
a set variable is determined by the range of the base type..

The concept of an array appears in most programming languages (e.g.
Fortran and BASIC). In Pascal, the declaration of an array must
specify an index type, defining the range of index values, and a
component'type.

M

■

TYPE intarray = ARRAY [0..9] OF integer;
realvect = ARRAY [1..5, -10..10] OF real;
dayletter = ARRAY [dayofweek] OF char;

The last of these declares a data structure which has one character
for each value of the enumerated type dayofweek (see 6.3.2 above).

The components of an array may be of any other data type. An array of -
sets, for example, would be permissible and might be useful. An array
of records is allowed, as is an array of files.

An array may sometimes be referenced whole for the purpose of YY
assigning it to another array of the same type. More commonly, the
individual elements are referenced by putting an index after the array
name: <

daycode[Friday] := ’F’;
IF subvec[j*3+1] > k THEN... ' , ; '

The index can be any expression that evaluates to the declared index ' YY
type.

■ . ■ < ■ Y > • ' ' > ■
" . . . > ■ ’ - • . - • : . ■ /y v.'

6.3-6 Strings '

In strict Standard Pascal, the term "string-type" is given to types of
the form

PACKED, ARRAY [1..n] OF char

Such types are compatible with character string literals of the same JY
length for purposes of assignment and comparison, for example ; .

dayname := ’Friday •;
IF month = ’Apr’ THEN ... ’ ; --

and similarly with other string-type variables of the same length. « ■ ; ! Y

p

' . ^yy:yy'':y^^^ ■'■•. y. yyyyy - ' ..g-gg .. ••- ■ •

Pro Pascal User Manual - I - 20 ’

\y 'yy J ■ <? v g • <■ i: |gOg/w' igggg-g • '>• gj : \ -■ yy ■ -'' \g' : - /g.
■■','■ ■ '■'/.■ ■ ' : ' g ' 't. : ' ' g >■' " ' ?'gi'-' y ' ' / ' ' yy -y ' ' / J j

. ■ : -. ' ’■ ? ’" ■■ ' •■ ■' . g -■'■ 'g.;g

Pro Pascal also implements dynamic-length strings. These string g:
variables have a maximum length given in their declarations, which are gg g
of the form’”string[n]”. During execution of the program, they may
take values of any length up to the given maximum. Character string
literals can be assigned and compared, provided that the declared '
length is not exceeded; a PACKED ARRAY string-type variable can also
be assigned to a dynamic string, but not vice versa. There is a limit
of 255 characters on the declared length. g..

An important aspect of the use of dynamic strings is the set of
procedures and functions which are provided to perform insertion, -7- >
deletion, and other operations. See 8.6.1 below.

The declaration "string” without a length specification is accepted as ’-Lg
an abbreviation for ”string[80]”.

6.3-7 Records ,

An array-type describes a uniform collection of elements of the same g'
component type. A record on the other hand is a grouping of pieces of igg
data which are not necessarily related in form. It is a common concept jg
of data processing, and is found for instance in Cobol and PL/1. g> g -
While the elements of an array are selected by index values, the c
fields of a record are named. -

The component fields may be of any other data type. An array, for ' ' -’ g.
example, may be part of a record, as may another record, or even a - / \---g'.
file.

The form of declaration may be seen in the following example: ? g?
- . ■ . ?g ' .■ 'J

'• • ' i g^ ’g i-'g'g =

TYPE makes = (Ford, Bedford, Leyland, AEC, Scammell); ' ' .
date = RECORD ’ z

day: 1..31; month: 1..12; S
year: 1900..1999;

END {date}; ...
vehicle = RECORD /

makercode: makes;
registration: string[71; - . x
mileage: integer;
lastservice: date; , (v . .

END {vehicle}; ' . -

Pro Pascal User Manual 1-21

If a variable is now declared as

VÄR truck: vehicle;

the fields are referenced by name as for instance

truck.makercode
truck.registration! 1]
truck.lastservice.month

(since "date” is a record within a record, its individual fields
require the further extension).

It might be more useful to have an array of such records, as for
instance

VAR trucks: ARRAY [1.-50] OF vehicle;

in which case an index is needed to choose an individual entry.

trucks!thisone].makercode
trucks!thatone].mileage

To simplify (and make more efficient) the references to record fields,
Pascal has a WITH statement. It specifies a particular record, and
the field names can then be used on their own. .

WITH trucks!thisone] DO
BEGIN
mileage := mileage + miles;
IF lastservice.month < duemonth THEN...

END

The WITH statement can equally be used to specify a single record
variable such as "truck", to avoid frequent repetitions of "truck"
before the field names.

There are other facilities of records, including a method of
describing variants, which are covered in Part II of this manual.

Pro Pascal User Manual

6.3.8 Pointers

Besides the -variables considered up to now which are al'located at
cocipile time, Pascal includes a dynamic storage facility known as a
"heap". Space can be taken from and returned to the heap at any time
during the running of an object program, according to the requirements
of each particular execution.

Objects in the heap are addressed through pointers. A pointer is a '
variable which is associated with a particular data type, and must
always point to an object of that type (unless it is currently unused
when it should be given the special value NIL). For instance, a
pointer to the type "vehicle" in 6.3-7 might be introduced by

TYPE ptvehicle = * vehicle; . ■

and a pointer variable declared

VAR ptruck : ptvehicle; ('

To get space in the heap for a vehicle record, and to set ptruck to -
point to it, the following statement is used .

new (ptruck)

after which the record can be filled in by statements such as .

ptruck*.makercode := AEC -

(Note that the up-arrow comes before the name in the type declaration, ~ \ _ \
but after it when making references.)

.When processing is complete, the statement -
dispose (ptruck) (.

returns the space to the dynamic pool.

Of course, this particular example would not be a worthwhile use of ‘
the apparatus. The full value of the heap becomes more apparent in , '
situations such as a program which requires two large structures but
not both at once. And the full versatility may be gauged from the . , / "
idea of adding a new field of type ptvehicle to the vehicle record, 7
which allows a chain of records to be built up to any length:

1

Pro Pascal User Manual 1-23

6.3-9 Files

A file in Pascal is a data structure having an indefinite number of
components. In practice, files are generally implemented as the means
whereby programs can transfer data to or from discs Or other external
devices. They are best considered as being of two main kinds: text
files, and others.

6.3•9.1 Text files

A text file is composed of characters grouped into lines. It is
therefore the natural means of communication with the user, thrpugh
console or listing. There are facilities for automatically converting
values between internal and external representations as they are read
from or written to text files, and in the case of output the program
can control the layout. A text file is declared as, for example:

VAR listfile: text

(Text files are equivalent to formatted files in Fortran.)

6.3.9.2 Other files

Files based on other data types can be used, typically for
intermediate storage, or transfer of data from one program to another
without involving conversion. Returning to the example of "vehicle"
as a record type, a file may be declared as

VAR fleet: FILS OF vehicle;

that is, "fleet" is a series of records describing vehicles. Note,
first, that all the components of a file are of the same type. (The
use of "variant" records, described in Part II, makes this a less
severe restriction than it may seem at first.) Also, just one
component is accessible to the program at a time, as though a "window"
was moved along the file through which one component can be viewed.
In Standard Pascal the window can only move sequentially; Pro Pascal
provides, in addition, a random-access facility.

The file components do not have to be records - FILE OF integer, for -
instance, is perfectly valid. Pro Pascal provides automatic blocking
of small components. The only prohibition is a combination of
declarations which defines one file within another one.

24

THEN summary

reset (f); {for input}
rewrite (f); {for output}

Pro Pascal User Manual

6.3.9.3 Common concepts

The operations read and write are available with any file. For .
non-text files, they have the effect of moving one component between
the file (at the current position of the "window") and a program
variable, for example

read (fleet, truck)

copies the current component from the file "fleet" to the variable
"truck", and at the same time moves the window to the next component.
The basic operation on a text file is similar; for instance, if ch is
a variable of type char, the statement

write (listfile, ch)

moves the value of ch to the current position in listfile and advances
the window. However, there are further possiblities with textfiles
that are discussed below.

Another characteristic of all files is the concept of "eof" (or
end-of-file). Check for this condition before a read operation bv a
statement such as

IF eof(fleet)

(No special steps have
file-handling software

Before it is addressed

to be taken at the end of writing the file; the
simply notes the last component.)

by read or write operations, a file must be set
into the input or output condition by one

These have the effect of positioning the
component. The sequence of operations on
follows;

of the statements

file window "at the
a work file might

first
be as

rewrite (work); {prepare for output}
write (work,..); write (work,..); ...
reset (work); {back to start & prepare for input}
read (work,..); read ();...

The standard text files "input" and "output" can be used by any
program without having to be declared or any reset or rewrite given.

Any implementation generally has methods of associating Pascal files
with specific devices or disc files. The Pro Pascal arrangements are
discussed in the "implementation dependent" section of Parf II

Pro Pascal User Manual

6.3« 9-4 Special features of text files

Text files have the special property that the basic file components
(characters) are held within a substructure of lines. The way this is
defined is designed to be independent of the method of determining the
end of lines in any particular hardware or operating system.

When writing, the end of each line is indicated by a writein
operation, e.g.

writein (output)

For reading, an end-of-line condition similar to the end-of-file
condition is introduced, obtained by the operation eoln. This
condition is true when the file window is at a point where a writelri
was given. The readln operation skips any remaining characters on the
current line and positions the window at the first character of the
next line (or eof becomes true).

Read and write operations on text files can specify multiple transfers
within the same line, e.g.

write (output, ’Total-’, total) -

The line termination can be included as well, by using writein instead
of write.

Conversion operations are automatically supplied when reading or
writing values in internal representation such as integer or real
(though not for user-defined types such as enumerated). On writing, ' -
the layout can be controlled by specifying a field width with the ./p
value, thus

write (output, value:width) .

where both "value" and "width” are in principle expressions. If the
value is of type integer, it will be displayed right-justified in a
field'of the specified width. When width is omitted, Pro Pascal 7
displays integer values right-justified in a field of 11 characters.
If the significant digits of the output are more than the given width,
the width is exceeded. As a consequence, a width of 1 gives a
left-justified output. Further options are available with real values,
as described in Part II.

A special facility of Pro Pascal is the "append" operation, which can
be used instead of rewrite when new information is to be added to an
existing file.

Pro Pascal User Manual 26

6.3»9«5 Special features of non-text files

In Standard'Pascal, all file operations are sequential. Pro Pascal
has additional facilities for random access to non-text files; the
operation

seek (ntfile, elnumber)

positions the file window at the specified element number. Read (or
write) operations following take effect from this position Random
read operations can be performed on a file written sequentially, and
for this purpose reset should be specified to initialise the file.

The "append" facility described above is also available for non-text
files, allowing data to be added to an existing sequential file.

The operation "update" is also provided in Pro Pascal as an
alternative to reset and rewrite, indicating that both forms of access
are to be used. Update.operation is inherently less secure than the
sequential file processing of Standard Pascal, and should be used with
appropriate safeguards against system malfunctions (regular backups in
particular). It is also not intended that update operations be done
on an empty file; a sequential initialising process should be carried
out first

... ■■ • ? : '"• '" '•.. •_.. J ■... < /.<• . . -
Pro Pascal User Manual > > \ x I * 27 .

. ' .. . \ ‘ '

* - - ■ ■ . .' . ■ 1 .'• ' • -I ' ' '; ^ f’ x.

7 VARIABLES AND VAR DECLARATIONS '
• • • ■. ’ — . • ^. .. . ^ . . . ••'•'■ : • X’ ■- ' , •' !< .X/ \

7.1 Variable declarations ' ■ ’ '

Variable declarations instruct the compiler to allocate space in the
object program, and to associate with each variable a type (which
among other things dictates the size of the item). For example:

VAR thiscomp, winner: competitor;
eventscore: score; <
totalscore: integer;
listing: text;

(from the sample program in section 1). The types integer and text
are built-in with predeclared significance (which the' programmer can
redefine if he wishes), whereas type declarations for competitor and
score must already have been encountered.

The type quoted in a variable declaration need not be in the form of
an identifier - any of the forms described in the previous section can '
be written after the colon, for example: \

VAR linecount: 1..66; .
fleet: FILE OF vehicle; ‘ .
answer: (yes, no, dontknow); i i

The variables of one type also do not have to be listed together (as
thiscomp and winner), though it is often helpful to do so. -J

7.2 Reference to variables

The forms of reference to various types of variable have already been
shown. To summarise:

A complete ("entire") variable is referenced simply by the
■ variable name. ‘ -

An array element is selected by an index expression in square
brackets - a[e], / -

A field in a record is selected by the field name separated ..<
from the record reference by a period (full stop).

The object pointed at is obtained by following the pointer
reference with an up-arrow (*).

Because Pascal allows such combinations as an array of records, or a
record having an array as one of its fields, or a record as part of a
larger record, the selection of an elementary item may need to be done
in stages. In all cases it is a matter of progressive refinement, -
following a logical path to the required object by use of the four
forms shown above.

Pro Pascal User Manual - I - 28

8 PROCEDURES AND FUNCTIONS

Procedures.provide one of the most valuable methods of subdividing a
program into manageable pieces, as well as allowing for commoning-up
of similar sections of code.

8.1 Blocks

The program skeleton shown in section 2.1 consists Of a program
heading followed by:

LABEL declarations
CONST declarations
TYPE declarations
VAR declarations
PROCEDURE and FUNCTION declarations'
Program body

This collection (from LABEL to body) is called a block, and a
procedure declaration is formed from a procedure heading and a block.
Since the procedure block can include procedure declarations, xt
follows that the first procedure can have further procedures inside it
(like the big fleas and little fleas). ■

For many programs, however, it is sufficient to collect the procedures
at one level, thus:

PROGRAM able; ' ■ ' ■ ■'
type ... ■ , .• -
VAR ...

PROCEDURE alpha;
VAR ... ' ; ' > . , ...
BEGIN

{body of alpha}
END;

PROCEDURE beta;
TYPE ...
VAR ...
BEGIN

{body of beta}
END; . '' . ■

FUNCTION gamma: real; ■ ' . v
BEGIN .

{body of gamma} /
END; •

BEGIN \ . •
{program body} (

END.

Indenting and comments are useful in showing up this structure to the
eye.

There is one important constraint to observe. In the example above,
statements in the body of beta can use procedure alpha, but without
special arrangements the reverse is not true. Often this constraint
is not difficult to live with: it is simply necessary to put the more
primitive, low-level procedures first.

The above, and much else in this section, applies equally to
functions.

Pro Pascal User Manual ,1-30 ■

I
! < * . ■ ■ ' KzM1 . ' . >>"!'M'M'M <

' ' ' ' ' • “ ‘ ~ - x .
» 'x.- "• ' x ' •■ > ■ • . x.- C x "'s4/• \ \ x. ’-• ‘ ■■ <• •.-v.' ?x ; ■ i...x-\- .■ ■ x-x —

_ Z. / ■• '/• ■.•. : •••■-”■ -X - -. .- ' X •■ Z ’ ' X \ • . / ’ X ' 4 ’• - ' ■ X ' P

4 : ,, 8.2 Scope ' 1 ' . - z

F, ’ One of the important characteristics of a block is its opaque quality
5 from outside. Procedure alpha can be used by beta or the program
k’ body, but anything declared inside it (a variable, for instance) is

invisible and cannot be referred to from outside. On the other hand,
(the block is "transparent” from inside, and the body of alpha can use
I ’ - types or variables from the main program. The subdivision of the - .

; Z’ program into watertight compartments makes the whole thing more
z- secure, and allows attention to be given to a reasonable-sized portion .
^3 of the problem at once.

f/ The term "scope” is used to mean that part of the whole program text
M over which the declaration of a name applies. It is, generally

speaking, the block in which the declaration occurs, and any blocks
nested within it. The same name can be re-used in'an inner block -

X; ' though this is not on the whole a good practice, being confusing to (
Ä• humans - in which case the "nearest” declaration is the one which is
X taken at any reference.

8.3 Declaring and using simple procedures z M . V.

' A procedure such as alpha in 8.1 is very like a miniature program. It ; '
can have its own "local" variables, which come into existence when the , 'M X
procedure is used and vanish when control reaches the end of the body
and returns to the point of call. v

, । To call alpha, the statement

M ■ z'M \z alpha; • • ,z [
- zC' ■ ■ / M, > • • ' ' ' . .. z'-^ ' - ? z - „X ■ Xz-?;'X'/XX

. is used. . , ■ . .

[X mz; -z,' ?<^xxmz.';x> x:\^.x

& - ■' ' X ' ■ : ; Z ‘ -'v'X'■ ^'/'x • X- X . X.X' - . .

Pro Pascal User Manual - ’ I - 31

•• ' v, ... 1

8.4 Parameters ‘ " • •

Procedures as so far described are a useful means of subdividing
programs, but rely on variables of an enclosing block (typically the
main block) for communication. Parameters give an important extension
to the independence, and hence the structural value, of procedures.

A parameter is a variable of the procedure which is filled in at the
time of call. It has the advantage of being local to the procedure,
and hence private except at the time the procedure is invoked. For
example,

PROCEDURE upper (fch: char); .
BEGIN

IF fch IN [’A’..’Z’] THEN
writein (output, ’Upper case-’);

END {upper};

Here, upper has a "formal parameter" fch of type char. Each call of
upper must supply a character, and upper will display the message
’Upper case’ if it is in the range A to Z. The call A '

upper (’X’);

is obvious, but the supplied value would more usefully be a variable,
e.g.

read (input, ch); upper (ch);

Incidentally, this shows how the read and write operations are in fact
examples of procedures. They are unusual in two ways -

(a) they are used without being declared,

(b) they may have a variable number of parameters.

Some other "standard procedures" are described in section 8.6.
User-defined procedures must be declared, and each call must supply
the number and types of parameters to match the declaration.’

Pro Pascal User Manual ' ' z I - j2

The parameter fch to procedure upper is a "value" parameter - the call
can supply any character expression, including a constant. The
parameters to the procedure write are of this kind. An alternative
form is found in the procedure read, which returns a- value to the
caller via its parameter. This kind is a VAR parameter, so called
because the declaration of such a parameter in a user procedure starts
with the word VAR. Within the procedure, the parameter name may
appear on the left-hand side of assignments, and the call must supply
a variable (which may be an array element or a field in a record) into
which the assignment is returned. Before using a VAR parameter to
return a value, the called procedure can refer to the current contents
of the variable. It is therefore somewhat more versatile, but less
safe, than a value parameter.

Here the procedure lower has a VAR parameter of type char:

PROCEDURE lower (VAR fch: char);
BEGIN

IF fch IN t’A’..’Z’] THEN
fch:= chr(ord(fch) - ord(’A’) + ord(’a’));

END {lower};

If the variable supplied in the call is an upper-case letter, the
procedure replaces it by the lower-case equivalent. (This example
uses two further concepts, ord and chr. Pascal does not permit
arithmetic operations to be carried out directly on characters,
because implementation-dependent assumptions about character codes
would then be embedded in programs. For further details, see below
and in Part II.)

Pro Pascal User .Manual I

8.5 Functions

In fact, örd and chr are examples of functions. Other examples are
sqrt(x), which returns the square root of the argument x,।and the eof
predicate mentioned in section 6.3-9 on files. A function is in many
respects like a procedure, but differs in that it always returns an
answer, and is invoked by quoting the function name where the answer
is required, typically within an expression.

A function has a type, which is the type of the answer, and is
included in the declaration:

FUNCTION lowercase (fch: char): char;
BEGIN . ~ ■

IF fch IN [’A’..’Z’] THEN
lowercase := chr (ord(fch) - ord(’A‘3 + ord(’a’))
ELSE lowercase := fch;

END {lowercase};

This example uses the value parameter/function result mechanism to
perform the same service as the procedure "lower” in the previous
section. The alternative forms of call might be

read (input, ch); lower (ch);

and

read (input, ch); ch := lowercase (ch);

However, the function can be more versatile in use, as for instance

read (input, ch); write (output, lowercase (ch));

Pro Pascal User Manual z ' > ' '1-34
■ ■ ;:...

y ' I ; z - 'Cm ■ ■ ■ ■ yl Z
' - - . - -

:■ ■'■/-.■• ■"•’"?• .: / ■■■■-.■- ■-•■ ■ v., ■■■• "■ . , V . v. \./.,; • \ \ ' •... V. \
' ' ' . , ■ . -* - f \ ■

8.6 Standard procedures -

In Pascal, ä number of procedures (known as "standard procedures") are
provided as part of the language, and can be used without having to be
declared. The file-handling procedures read and write introduced
earlier (see 6.3-9) are examples; others are the math functions sqrt,
sin, cos, exp, In, and arctan which can be used within expressions
whenever needed.

8.6.1 String-handling procedures *

A further category is the group of procedures and functions used for
manipulating dynamic-length strings. The principal ones are

length(s) a function which gives the current length
of string s

copy(s,i,n) a string function which gives n characters
from string s starting at character i

delete(sv,i,n) a procedure to delete n characters from
string variable sv starting at character i

insert(s,sv,i) a procedure to insert string s into string
variable sv at position i

concat(s1,s2,.. .) a function which gives the "concatenation”
of s1, s2, etc.

Others provide for searching within a string for a given substring,
and for converting an integer from internal form to decimal. Details
will be found in Part II.

Pro Pascal User Manual

Example program using strings

PROGRAM list (input,output)

VAR
(source file}source: text;

BEGIN

END

name: string[lO];
filename: string[l4];
line: string[120];
linecount: O..9999»

{Copy a textfile from "source" to "output"
with line numbers.}

linecount :=0;
write(’Source name - '); readln(name)
WHILE (length(name) >0) AND (name[1]

delete(name,1,1);
{remove any leading spaces} 1

filename := concat(name,’.PAS’);
assign(source,filename); reset(source);

{now copy from source to output
WHILE NOT eof(source) DO

BEGIN
linecount := linecount + 1;
readln(source,line);
writeln(output, linecount:4,

. END;

a line at a time}

, line)

' " * , ' '' ' L r * - ' " *
77< 77: t- - 7 " ■ " ” 7? ' ' -

. 77777 ' 77,. ’ ■ 7. " ; ■ 77 s, ‘ 7-7. ; ■ - ' — -
7 Pro Pascal User Manual 1-36

9 ' GETTING STARTED

The information in the previous sections is sufficient to allow quite
advanced Pascal programs to be produced. A few topics (program
segmentation, for instance) have been omitted from the sequential
presentation to avoid confusion in the early stages. Part II contains
a fully detailed description >in reference format, and should be
consulted if any queries arise, or features not covered in Part I are
to be used. This section is devoted to some practical guidance for
those who may not be familiar with how a language system such as Pro
Pascal is actually used.

9.1 Think ahead

Except for comparatively trivial programs, Pascal cannot really be
composed at the keyboard. Plan at least the general shape of a
program on paper, with particular reference to any data structures.
If there is a significant amount of processing code, consider how it
might be given shape and clarity by subdividing it into procedures;
even if a procedure is only called from one place, it helps to
concentrate the logic and make errors simpler to track down.

Once a program has been given a suitable initial shape, Pascal is very
malleable. Statements can easily be added or moved, made conditional
or put within a loop. Sections of code can be extracted into
procedures, giving the possibility of introducing new local variables
and the independence provided by the procedure structure.

9.2 Choice of names

Names in Pascal form an important part of the self-documenting aspect
of any source text. Variables called i and j, for instance, give away
little of their purpose in their names, and should be avoided, except
possibly as very localised loop counts. (There is not even any
built-in rule that i should be of type integer, though it would be
perverse to use the name for, say, an array of characters.)
Meaningful names - vehicle, printentry, scanlist, today, linecount -
make all the difference to readability and hence ease of testing and
maintenance.

jc

Pro Pascal User Manual ~ ' -J ; 1-37

9.3 Compilation and. linking

When a source program has been entered into the computer, it must go
through two stages before it can be run. The source is compiled, and
the output from the compilation is then linked with a selection of
routines from the Pascal library to form an executable object program.
(This arrangement will be familiar to most users of Fortran.)
Directions for operating the compiler and the linker will be found in
Part III.

During the compilation process, thorough checks are made that the
program obeys the Pascal language rules. Any violations are reported,
with the type of error and its position. After correcting the errors,
the compilation must be retried. As a result of this - (perhaps
apparently frustrating) sequence, many small errors are in fact put
right in a short period of time. For example, because all objects
must be declared before use, any mis-spelled or incorrectly keyed
names can be eliminated.

Errors of logic in the program, however, may remain (including
possibly the typing mistake which turns one intended name into another
legitimate one). These can only be found by linking the compiler’s
output and trying to execute the result. If the program is a large
one, it may be worth inserting a few extra statements such as

writein (’Initialisation complete’);

which can easily be removed later.

A number of kinds of error are trapped at run time by the routines
from the library, and may be located from the information displayed.
There are also extra checks which can optionally be included in the
object code by the compiler, and may help in the detection of such
things as use of variables before any value has been given to them.
Details of these aids will be found in Part III.

9.4 Conclusion '

Pascal presents many more possibilities than Basic or Fortran, and
consequently takes a little longer to learn to use, but the trouble
taken is amply repaid. The professional will appreciate for example
that procedures can be collected and used again in different programs,
or how simply file-processing operations can be programmed, because
such things improve productivity. And it is not necessary to be a
professional to feel the sense and logic of a well-structured program.
It was one of the motives behind the design of Pascal to improve the
reliability of software, and it forms a valuable tool in achieving
that purpose.

? :>' •• X • ; ■ ■ ■■■ • - a. ■ - • • ■

Pro Pascal User Manual I - 38

10 FURTHER READING

This User Manual is not intended to be a Pascal primer, or to deal
with every aspect of the definition and use of the Pascal programs'ng
language. Among the many publications which address these topics, the
following - each with its own distinctive approach - are
certainly worth investigating.

(1) K. Jensen and N. Wirth
"Pascal User Manual and Report"
Springer-Verlag, 1975

(2) N. Wirth
"Algorithms + Data Structures = Programs" ,
Prentice-Hall, 1976

(3) J. Welsh and J. Elder
"Introduction to Pascal"
Prentice-Hall, 1979

(4) P. Grogono
"Programming in Pascal"
Addison-Wesley, 1960

(5) L.V. Atkinson
"Pascal Programming"
John Wiley & Sons, 1980

(6) D. Fox and M. Waite
"A Pascal Primer"
Sams, Indianapolis, 1981

(7) I.R. Wilson and A.M. Addyman
"A Practical Introduction to Pascal - with BS 6192"
Macmillan^Computer Science Series, 1983

In a rather special category is the definition of ISO Standard Pascal, -
which is now available.

BS 6192: 1982
"Specification for computer programming language Pascal"
British Standards Institution
(ISBN 0 580 12531 9)

While not easy reading, it is clearly a document of importance to all
serious users of the language.

Index

W ■■■■ \
5; ' :3- . 3 / ' r < 3 3?- ' ,3> , f- : : 3 ;■'

' PART II - PRO PASCAL LANGUAGE DEFINITION
. ■ ' ■ , (' \ /

’ . z

1
; ' ' . . ' ■ i J .

Lexical aspects t ' > 1 - >3

1.1 Tokens 1
1.2 Separators 5

2 Programs, segments and blocks 7

2.1 Programs 7
2.2 Segments ' 8
2.3 Blocks 9

3 Statements and expressions 10 '/
3-1 Statements 10
3.2 Expressions 18

4 Labels 29

4.1 Declaration of labels 29
4.2 Definition of labels 29 "
4.3 Reference to labels 29 '

5 CONST declarations 3° '

6 Type definitions 31

6.1 Type denoters ■ 31 ' 3
6.2 Type compatibility 39

7 Variable declarations 4°

8 Procedures and functions 41

8.1 Procedure and function declarations 41
8.2 Activation of procedures and functions 46
8.3- Standard procedures and functions 48

9 Implementation-dependent aspects 58

9.1 Pascal files and CP/M 58
9.2 Additional standard procedures 63
9.3 Library facilities 66
9.4 Storage allocation 69
9.5 Object code for integer arithmetic 71
9.6 Interfacing to assembler 74 ’ f
9.7 Non-CP/M object programs 77

80

X

z" ■ ' ■*" * .*■ x(. ■ ■• ' . "- - 'X ' ■. ‘i V- * - . . . X ■' *v k ■_■ . >/ ‘ ■ ■ ",

Pro Pascal User Manual • II _

1 LEXICAL ASPECTS . . , x . “ '

Considered from the aspect of its representation on the printed page,
rather than with regard to its syntax or meaning, a Pascal program can
be viewed as a sequence of lexical "tokens” interspersed with
"separators". The forms which these two kinds of lexical entity may
take are described in 1.1 and 1.2, respectively.

The length of a source line may not exceed 255 characters. .

(The notation used, throughout this manual, for defining the Pascal
syntax is described in Appendix A.) -

1.1 Tokens

These are of 6 kinds: ,

token = special-symbol | identifier ' directive '
label ! unsigned-number ! character-string

1.1.1 Special symbols ~ ~ \ ’■

The special-symbols are tokens with special fixed meanings. ’ :

special-symbol = | «<" | |
rt r it ! Hl« J h w i n n i n . n i n.n i n*n i \ rL I J I • I 9 I • I 9 I I

i njn i n<>n | j h>-h i n.-n [x A

J word-symbol -
word-symbol = "AND" ! "ARRAY" j "BEGIN" | "CASE" I "COMMON" ,

"CONST" | "DIV" I "DO" -"DOWNTO" | "ELSE" i ,
"END" J "FILE" | "FOR" j "FUNCTION" J "GOTO" |
"IF" | "IN" ! "LABEL" | "MOD" | "NIL" | "NOT" J
"OF" ; "OR" ; "OTHERWISE" ! "PACKED" { , '
"PROCEDURE" ! "PROGRAM" i "RECORD" | "REPEAT" }
"SEGMENT" ! "SET" ! "THEN" ["TO" J "TYPE" { -
"UNTIL" ! "VAR" J "WHILE" J "WITH" . - - '

To allow for them not being available on all keyboards, three of the r
special-symbols have alternative representations: ’* .

symbol________ alternative
[(. . /
]. .) >

e <

In the spelling of word-symbols, as elsewhere in Pascal (except within ’ *•
character-strings), upper- and lower-case letters maty be used
Interchangeably.

Note that word-symbols are "reserved" words: they are not available
to the programmer for use as identifiers. / ?

Pro Pascal User Manual - „ II - 2 ''

1.1.2 Identifiers -

Identifiers, are used to denote constants, types, fields; variables,
procedures and functions. They are constructed from letters, digits
and underscore characters, starting with a letter:

identifier = letter { (letter ! digit ' underscore) }
letter = "a" ! "b" II "c" ; "d" 1 "e" ; «fn - Bg„ . "h"

! "j" II "k" ; "i" ! "m" ! K B c t HpH
"q" J nrn iI "s" i "t” 1 "u" i "v" 1 "w" ; "X”
”yn I "Z"

digit = "0" ; W1n ; ng” ; "3" ! "4" 1
ngn I "6" ! nqn ; "8" ; n gü

underscore = n n

Identifiers may be arbitrarily long (but may not extend over more than
one line). All characters except underscore are significant in
distinguishing among identifiers. No distinction is made between the
upper and lower case of a letter.

Examples: ■ ■.\
' . ' ■■ : ■ ■ ■ •' < • /''

• ' • ' : ' ' ' : \ ' ' " ,

prime_number Z80 UP2down4 1 ' _
. — ■ “ \ • -■

1.1.3 Directives - '

directive = "FORWARD” ! "EXTERNAL” - /

Directives are identifiers with special meanings (see 8.1.3). Because '
they are not "reserved" words, they may be redefined within the source
program (although this would seem an odd thing to do). .

1.1.4 Labels "

A label is a sequence of decimal digits with a value in the range
O..9999; •

label = digit-sequence ' / '
digit-sequence = digit {digit}

A label is uniquely identified by its value, so that 2 and 00002, for
example, represent the same label. ' ,

Pro Pascal User Manual v \
A t

; - '' / ' ■; : t-al■ ■ ''. >. ...: ' ' 7' - flf 1'1
1.1.5 Unsigned numbers

These are of three types, integer, real and longreal: *
unsigned-number =

unsigned-integer ! unsigned-real ! unsigned-longreal

1.1.5.1 Unsigned integers

These may be in either decimal or hexadecimal notation:

unsigned-integer = decimal-integer J hexadecimal-integer
decimal-integer = digit-sequence
hexadecimal-integer = digit {hexdigit} "H"
hexdigit = digit ! "A" | "B" J "C" | "D" J "E" ! "F"

Again, no distinction is made between upper- and lower-case letters.

Whichever of the two representations is used, the value must lie in
the range O..maxint, where maxint = 2147483647.

Examples:

1066 OFFH

1.1.5.2 Unsigned reals

These must be in fixed- or floating-point decimal notation:

unsigned-real =
decimal-integer digit-sequence ("E" scale-factor] J
decimal-integer "E" scale-factor

scale-factor = [sign] decimal-integer
sign = "+" ! "-"

E means "times 10 to the power of", and may be in upper or lower case.-

Examples:

10.0 1e-10 0.314159265E1

Pro Pascal User Manual - - II - 4

1.1.5.3 Unsigned longreals

These must- be in floating-point decimal notation,' " and are
distinguished from real constants in that the decimal exponent is
introduced by "D" rather than "E":

unsigned-longreal =
decimal-integer ["." digit-sequence] "D" scale-factor

D means "times 10 to the power of", and may be in upper or lower case.
Longreal constants are held to greater precision than real constants
(see 6.1.1.1). Examples:

1D0 0.1234567890123456d-99

1.1.6 Character strings

A character-string is a sequence of one or more ASCII characters
enclosed between apostrophes. If the string is to contain an
apostrophe, this is denoted by an "apostrophe image", which consists
of two adjacent apostrophes:

character-string = string-element {string-element}
string-element = string-character | apostrophe-image
string-character = ASCII-character
apostrophe-image = "»’n

A character-string containing just one string-element is a constant of
the standard type char (see 6.1.1.1.5).

A character-string containing n string-elements, with n in the range
2..255, is a constant of the type

PACKED ARRAY [1..n] OF char

(see 6.1.2.1).

Examples:

’x'
•This string has 30 characters.’
’•’ is an apostrophe’

Pro Pascal User Manual II - 5

1.2 Separators

These are of three kinds: , ' ‘

separator = space I end-of-line | comment
space = " "
comment = "{" any-sequence-of-ASCII-characters-and-

end-of-lines-not-including-right-brace "}"

Zero or more separators may occur between any two consecutive tokens.
At least one separator must occur between any pair of tokens
consisting of word-symbols, directives, identifiers, labels or
unsigned-numbers. No separators may occur within tokens.

1.2.1 Comments ' v

To allow for the possibility of left- and right-brace characters not
being available, "(*" may be substituted for and/or "*)" may be
substituted for "}", in a comment.

For example: (* This is a correctly formed comment.} /

If the character immediately after the "{" is "$", then the comment
may represent a "compiler directive". The Pro. Pascal compiler
recognises two such directives: source file insertion, and page throw
on listing. (Both are extensions to Standard Pascal.)

/

1.2.1.1 Source file insertion

If the character after $ is I (or i), the comment is treated as a
request to the compiler to include the contents of another source file
at the point in the text at which the "comment" occurs. For example:

{$1 typedefs} '•
■ • ' . /•'' ";

cäuses the inclusion of the source file TYPEDEFS.PAS. Any spaces
after the I are ignored, and the remainder of the comment is treated
as a CP/M filename. If the filename has no extension, .PAS is
supplied.

Inserts may be nested, to a maximum depth of 4.

This facility is disabled if the "Accept only strict Standard Pascal"
compile-time option is in force. _

1.2.1.2 Page throw on listing

If the character after $ is P (or p), the comment is treated as a
request to the compiler to insert a page throw (form-feed) into the
listing file at that point (assuming that the L compile—time option is
in force). Example:

{$pj ... ■

Hfl®®® ft - ■ A ' , ;(■ - . - . . ,-

' % V fl >■ .' R®'® fl ' "fl" '<® '
Pro Pascal User Manual ' ■ . , , ' II - 7 ,! <

. —■ ■ - ‘ \ ■ ; >'.flfl< ®' V X
. \ \ \ ' J. 'J" ® ® •-•. • ®

... ■ ' ’ ' ' ' • . - • ' ' • ’’ ’ ., • ’ : t i’ • : ’ ’ ■• • . . ‘ < . X'_ - . . -J - . ? .

' fl " ' : ' ' "® fl ■ : ® ■■ ’ ® ' ®. ■ / ' ' ■ ' ; ' fl fl '

2 PROGRAMS, SEGMENTS AND BLOCKS ■ ' . ' . '

The unit of input to the compiler is a program or a segment. Each
has, roughly, the form of a procedure declaration.

compilation-unit = program ! segment /

An executable Pascal program is composed, in source terms, of a
program together with zero or more segments. Each is separately
compiled, and then linked together to form the executable program.
Execution commences at the beginning of the statement-part of the
program. Control passes (temporarily) to a segment only when a
procedure or function in that segment is called (from the main program ,
or from a segment): a segment does not have any statement-part.

2.1 Programs fl ■

program = program-heading ";" block "." . _
program-heading = ...

"PROGRAM" identifier ["(" global-parameter-list ")"] - ®
global-parameter-list = identifier-list ® '■
identifier-list = identifier {"," identifier}

The identifier following PROGRA.M is the program name, and has no
further significance within the program. The identifiers in the
global-parameter-list may optionally, but are not required to, name ' '
any files used within the program. The syntax is accepted, but
otherwise ignored, in order to preserve compatibility with other
Pascal systems.

The concept of "block" is defined in 2.3. ..

At the beginning of the statement-part of every program, a call is . V®®
generated to a module in the library which sets up the environment for ..'if
the program. This includes operations equivalent to - the statements x. ’
reset(input) and rewrite(output), so these standard files may be used
by the program without further preparation. ®

For an example of a complete program, see Part I, section 1. x , i;.®

;Y?.

B

HL
b

Is

.
Pro Pascal User Manual - - ' II -' 8 .•

■ S • . ' • > (' \ ■ . - • ' . \ ;

2.2 Segments . ’ <; ■ ' . \ ! ■

segment = segment-heading ";" segment-declarations ' ” .
"BEGIN" "END" "."

segment-heading = ■
"SEGMENT" identifier ["(" global-parameter-list ")"]

segment-declarations = constant-definition-part
type-definition-part ;

• variable-declaration-part
procfunc-declaration-part v , •

The identifier following SEGMENT is the segment name, but has no
further significance within the segment. The syntax and meaning of
"global-parameter-list" is as in 2.1.

By referring to the syntax of "block" (see 2.3), it will be observed f
that at the outermost level of a segment, as opposed to a program, the
label-declaration-part is absent and the statement-part is trivial
(the empty "compound-statement"). Only the procedures and functions
within the segment contain executable statements. ■v.

As an example of a complete segment, here is one containing just a '
single function. After being compiled, it could be added to a library
of object modules, and would then be available to any Pascal program
which declared it as EXTERNAL (see 8.1.3).

SEGMENT min; ' . ' "
FUNCTION min (arg1, arg2: integer): integer; v
BEGIN ' -f . , '

IF arg1 < arg2 THEN min := arg1
ELSE min := arg2;

END {min}; ■ / . _ '' .' .
BEGIN - x
END.

B
11

Pro Pascal User Manual . / II - 9

2.3 Blocks

A block consists of declarations, definitions and statements, and is
the main ingredient of a program, • a procedure declaration or a
function declaration.

block = label-declaration-part
constant-definition-part
type-definition-part
variable-declaration-part ' _
proofunc-declaration-part
statement-part

Since a procedure or function can, in turn, contain declarations of
procedures and/or functions local to itself, "block" is an essentially
recursive concept.

A label or identifier which is declared in a block has a scope which
includes any block textually nested within it, except where it is
(temporarily) "masked" by having been redeclared in such an inner
block.

The first five ingredients in the above definition of "block" all have
the nature of declarations, and are treated in sections 4 thru 8. The
last - the statement-part - is the subject of section 3. Its formal
definition is:

statement-part = compound-statement '

3 STATEMENTS AND EXPRESSIONS

3-1 Statements

Statements denote the actions to be carried out by a program. They may
be classified into two groups: simple statements and structured
statements.

A statement may be optionally preceded by, a label: ?

statement =
[label (simple-statement | structured-statement)

3.1.1 Simple statements

Simple statements are those which are not made up of other statements.
They are of four kinds:

simple-statement = empty-statement I assignment-statement |
procedure-statement J goto-statement z - ’

3.1.1.1 Empty statement

This consists of nothing at all, and causes no action to be performed.
Thus, anywhere in the Pascal syntax that a statement can occur, one of
the options is to put nothing. A particular example is the labelled
empty statement, as in:

BEGIN
IF error THEN GOTO 999; ' ■ 5
{...}

999:
END ■

3.1.1.2 Assignment statement

The purpose of the assignment statement is to cause the value of an
expression on the "right-hand" side to be assigned to a variable, on
the "left-hand" side:

assignment-statement =
(variable-access | function-identifier) ":=" expression

The type of the expression must be assignment-compatible (see 6.2.2)
with the type of the variable on the left-hand side.

TV ';7 ■ ; \ . -V V- , \ ' 7';. 77777 ■ 77\7V- 77 7- \ ‘ -V • ; ; 7;

Pro Pascal User Manual ' ,, ,. II- 11
: / - .- •' ■ 7 •-■ ..- V/ r - 7?. ■ ■ ./ : y'.' '

f' ~ ' > '• 7.7 '■ ’ \ " ' K *\ , ’ ' 1 _ ’’ '
' 7v .. . 7 . V. •. ' -. ;7/V .7 .-. 77 ; 7.. ■ 77 ; ./7;. . •<. 7. ■ \7■ V? 7 ' ' 7'‘ -7 7

If the variable-access involves array indexing (see 3.2.1.1.2) anc/or >7^
pointer dereferencing (see 3.2.1.1.4), these actions will be carried
out before the right-hand-side expression is evaluated. , ’ x . ■.y^< .

s ■ ' / - 7 ,If the item on the left-hand side is a function-identifier, the '
assignment statement determines the value which the function will y
return, when called. The assignment statement must be within the
function block. See also 8.1.2.

Examples: • ■

z := a*x - b*y
a[i,j] := 0.0 . . 7 7 ~-

p7next := NIL

3.1.1.3 Procedure statement
\ - 7 > -7’

. ■ • .X v ’ -
A procedure statement denotes a call of the procedure named in it. A : 77^
(possibly empty) list of actual parameters are passed, which
correspond one-for-one with the formal parameters in the procedure’s'
declaration: .

procedure-statement = ~ z
procedure-identifier [actual-parameter-list] , : , , -*V'

• ' V V

The actual parameters are evaluated in left-to-right order. Further
details will be found in 8.2.3» - . r

Examples: .
■ - ■ 'v" ■ ■ ? . . . > ‘ y. . * / . ‘ '

open_customer_file
invert (a, b) /
pack (a[row], 4»i, z) •

3»1.1.4 GOTO statement
- ’ ■ 7'' < ;7 ,7 ■A GOTO statement causes control to be transferred to the place in the -<7’7 ’

program text at which the label is defined, i.e. to the statement
which is prefixed by the label (see 3.1). 2 ~

goto-statement = "GOTO" label
? . . ' 7 ' 7 7 ■ ' ■ 77-7'B?7|^

The label may be in the current block or at any textually enclosing "7777
level. - ■

Example:

GOTO 999

Pro Pascal User Manual

3.1.2 Structured statements

Structured 'Statements are those which are composed of other
statements. There are four kinds:

structured-statement =
compound-statement ' conditional-statement !
repetitive-statement J with-statement

3.1.2.1 Compound statement

A compound statement is simply a sequence of statements bracketed by
the delimiters BEGIN and END:

compound-statement = "BEGIN" statement-sequence "END"
statement-sequence = statement { statement }

The statements are executed in the order in which they are written.

Example:

BEGIN ’?
i := 0; j := 1; . ? -
k := i + j;

END . ' -

3.1.2.2 Conditional statements

The two sorts of conditional statement permit the selection of one
from several alternative statements.

conditional-statement = if-statement ' case-statement

Pro Pascal User Manual

3.1.2.2.1 IF statement

if-statement = "IF" boolean-expression "THEN" statement
["ELSE" statement] '

Here, boolean-expression is an expression (see 3.2) which is of type
boolean, i.e. has the value either true or false. If, at run time, the
value of the expression is true, the statement following THEN is
executed and the statement following ELSE (if present) is skipped. If
the value of the expression is false, the statement following THEN is
skipped and (if there is an ELSE clause) the statement following ELSE
is executed.

Since the alternatives are "statements, either or both may themselves
be IF statements. For example:

IF i = 0 THEN ' ,
IF j = i THEN reorder ■
ELSE finish

Any possible ambiguity is resolved by the rule that an ELSE clause is
always matched with the nearest unmatched THEN. The above statement
is therefore equivalent to

IF i = 0 THEN '
BEGIN - v

IF j = i THEN reorder <
ELSE finish ~

END , ■_ - '
... / ;

as opposed to

IF i = 0 THEN ' ' V
BEGIN

IF j = i THEN reorder
END

ELSE finish

. - Pro Pascal User Manual -- . M' -------- ' u _ *4

3.1.2.2.2 CASE statement

case-statement = "CASE" case-index "OF”
case-list-elecent { case-list-element}
["OTHERWISE” statement] [] "END”

case-index = expression
case-list-element = case-constant-list statement
case-constant-list = case-constant { case-constant }
case-constant = constant

Here, case-index is an ordinal-type expression which selects, at run
time, which of a number of alternative statements is to be executed.
The case-constants must all be distinct from one another, and be
compatible with the type of the case-index.

If the value of the case-index matches one of the case-constants, the
statement in whose case-constant-list that constant figures is
executed (and all other statements are bypassed). If the value of the
case-index does not match any of the case-constants, then what happens
depends on whether an OTHERWISE clause is present or not; if so, the
statement following OTHERWISE is executed (all other statements being
bypassed); if not, a run-time error occurs.

Example:

CASE flag OF
0: interrupt := set;
1: interrupt := reset;

OTHERWISE error(134);
END

Note that, although they may resemble them (as in this example),
case-constants are completely different from labels.

Pro Pascal User Manual x II * 1* ?

3.1.2.3 Repetitive statements

' The three sorts of repetitive statement cause certain statement(s) to
be executed repeatedly.

repetitive-statement =
repeat-statement ! while-statement ' for-statement

3.1.2.3.1 REPEAT statement

repeat-statement =
"REPEAT" statement-sequence "UNTIL" boolean-expression -

boolean-expression = expression

The sequence of statements bracketed by the delimiters REPEAT and
UNTIL is repeatedly executed until the value of the boolean expression
is true. The expression is evaluated after each execution of the
statement-sequence. In particular, therefore, the sequence is always
executed at least once.

Example:

REPEAT
j := 12 » i;
i := succ(i);

UNTIL j > i

3.1.2.3.2 WHILE statement

while-statement = "WHILE" boolean-expression "DO" statement

While the value of the boolean expression is true, the statement is
repeatedly executed. The expression is evaluated before each
(potential) execution of the statement. In particular, therefore, the
statement may not be executed at all.

Example:

WHILE i <= j DO
BEGIN

j := 12 • i;
i := succ(i);

END

Note the difference in behaviour compared with the example in
3.1.2.3.1. If (e.g.) the initial values are i = 1 and j = 0, then the
REPEAT loop will be executed precisely once, the WHILE loop not at
all. -

Pro Pascal User Manual II - 16

3.1.2.3«3 FOR statement

for-statement =
"FOR” control-variable n:=" initial-value
("TO" J "DOWNTO") final-value "DO” statement

control-variable = entire-variable
initial-value = expression
final-value = expression
entire-variable = variable-identifier

The statement after DO is repeatedly executed while a sequence of
values is assigned to the control-variable. The latter must be an
identifier which has been declared in the block immediately containing
the FOR statement. The control-variable must be of ordinal-type, and
the initial- and final-value expressions must be assignment-compatible
with it. _

When the FOR statement

FOR v := e1 TO e2 DO body

is executed, the sequence of events is as follows. The expressions e1
and e2 are evaluated, and if e1 > e2 then nothing remains to be done;
otherwise, e1 is assigned to v, body is performed, v is compared with
e2, and, for as long as it is not equal to e2, v is incremented and
body is again executed.

When the FOR statement

FOR v := e1 DOWNTO e2 DO body

is executed, the sequence of events is as follows. The expressions e1
and e2 are evaluated, and if e1 < e2 then nothing remains to be done;
otherwise, el is assigned to v, body is performed, v is compared with
e2, and, for as long as it is not equal to e2, v is decremented and
body is again executed.

Example-: t '

FOR i := j TO 10 DO proc (i, j)

If j has the initial value 9» then this FOR loop has the same effect
as the sequence of statements
- i := 9; ' ' - ' ' ■ ' ’

proc (i, j);
i := succ(i);
proc (i, j)

If, on the other hand, the initial value of j is 12, the FOR loop
simply does nothing.

Pro Pascal User Manual

3.1.2.4 WITH statement

with-statement = "WITH” record-variable-list "DO" statement
record-variable-list =

record-variable { record-variable }
record-variable = variable-access , \ /'

As each record-variable in the list is encountered at compile-time,
the compiler brings into scope all the field-identifiers of that
record-type so that, for the duration of the with-statement, the
fields can be referenced without having to select them by means of the
usual "record-variable." prefix.

If selecting the record-variable involves array indexing and/or
pointer dereferencing, these operations are performed, once and for
all, before the component statement is executed.-

Example: >

WITH customer[custno] DO
IF balance < 0 THEN
BEGIN

sendletter;
creditworthy := false; -•

END O

Assuming (as always) appropriate type declarations, this ' WITH
statement is equivalent to

IF customer[custno].balance < 0 THEN '■
BEGIN . - 1 ' J

sendletter;
customer[custno].creditworthy := false;

END '

Besides being easier to read, the version using the WITH construct may
well be compiled into better code.

Pro rascal User Manual II - 13

3.2 Expressions •

Expressions’possess a value, at run time, of a particular type, and
are composed of operands (such as a simple variable name) and
operators (such as +). If an expression involves several different
operators, the order in which the operations should be performed is
determined by grouping them into four classes. In order of decreasing
precedence, these are:

SOT
multiplying operators '
adding operators
relational operators

Within any one class, operands are evaluated and operations are
performed in left-to-right order. The precedence ordering can be
overridden by the use of parentheses, ().

These ideas are reflected in the following formal definitions: . *

expression =
simple-expression [relational-operator simple-expression]

simple-expression = [sign] term { adding-operator term }
term = factor { multiplying-operator factor }
relational-operator = '

n_n I j n^tt 1] n< = n | n>-t» t _

adding-operator = "+" J "-" | "OR” ' ?
multiplying-operator = | "/" ! "DIV" } "MOD" ! "AND" x '

Expressions, simple-expressions, terms and factors will be referred to
generically as "operands". The various kinds of operators will be
treated in section 3-2.2. The concept of "factor" remains to be
defined, and this is the subject of the next section.

Pro Pascal User Manual II - 19,

3.2.1 Factors

factor = variable-access ' unsigned-constant '
function-designator | set-constructor J
”(" expression ")n 1 "NOT” factor

Of the 6 possible forms which factor can take, the last embodies the
fact that, as mentioned in 3-2, NOT is the operator with the highest
precedence, and the last-but-one reflects the possibility of
overriding the usual operator precedence hierarchy by using
parentheses. The first 4 forms will now be described.

3.2.1.1 Variable access

Because the Pascal language includes the~ concepts of records and
pointers, as well as the more usual arrays and files, the selection of
the data item to be referenced may involve a quite complicated
sequence of operations, involving the symbols [], . and For
example, with suitable type declarations the construct

nextp“.sums[count].result

might refer just to a real variable. The following definitions
formalise the rules for selecting a variable.

First, introduce a 5-fold subdivision:

variable-access = entire-variable | indexed-variable I
field-designator J referenced-variable |
buffer-variable

3.2.1.1.1 Entire variable

entire-variable = variable-identifier
variable-identifier = identifier

An entire-variable is therefore simply an identifier which denotes a
variable declared in a VAR or COMMON declaration or in the formal
parameter list of a procedure or function.

Pascal User Manual

the

3.2.1.1.2 Indexed variable

indexed-variable =
array-variable "["index-expression {"," index-expression}"]
dynamic-string-variable "[" index-expression "■]"

array-variable = variable-access
dynamic-string-variable = variable-access
index-expression = expression

An array-variable is a variable of array-type (see 6.1.2.1).
index-expression(s) must be assignment-compatible with
corresponding index-type(s) in the definition of the array-type.

The
the

Just as, when defining an array (see 6.1.2.1), the declaration

trans: ARRAY [1..9] OF ARRAY [char] OF char

is equivalent to

trans: ARRAY [1..9, char] OF char

so, when referencing an
form

element of such a multidimensional array,

trans[3] [eh]

is equivalent to

trans[3, ch]

The same applies however many indexes the array has

A dynamic-string-variable is a variable of dynamic-string-type
6.1.2). The index-expression must be integer-type, and have a

(see
value

not greater than the maximum length of the dynamic-string-type, as
specified in its declaration.

3.2.1.1.3 Field designator

field-designator = record-variable "." field-identifier
record-variable = variable-access
field-identifier = identifier

A record-variable is a variable of record-type, and
field-identifier must be one of the fields in the declaration of
record-type (see 6.1.2.2)

the
that

Examples:

persondetails.salary
nextdate“.time.second

Pro Pascal User Manual II - 21
Zi' :’■ M

t '■ " ' K . ” '-"V •' .

3.2.1.1.4 Referenced variable x

refer.enced-variable = pointer-variable ' -
pointer-variable = variable-access

A pointer-variable is a variable of pointer-type (see 6.1.3). The
associated referenced-variable is a variable which must have been
created dynamically in the heap by means of a call of the standard
procedure new (see 8.3.2). The process of going from a
pointer-variable to the referenced-variable by means of the “ symbol
is known as "dereferencing” a pointer.

Examples:

score[day]“
thisman“.father“.father“, son -

In the second example, the relevant declarations would be something
like

TYPE manptr = “ manrec;
manrec = RECORD ' . :

father, son: manptr; - \ '
{...}

END; ■; . ’ :
VAR thisman: manptr; ■ '

■ ' ■ . ' ; - - / - ' • . ' ’ >

3.2.1.1.5 Buffer variable

buffer-variable = file-variable
file-variable = variable-access

A file-variable is a variable of file-type (see 6.1.2.4). The
associated buffer-variable denotes the currently-accessible component
of the file. _

Example: ;

input“

Pro Pascal User Manual - ' 1 ' II - 22

3.2.1.2 Unsigned constant

The second-possible form of "factor" (see 3.2.1) is an unsigned
constant, of which there are 4 kinds:

unsigned-constant = unsigned-number I character-string '
constant-identifier i "NIL"

The definitions of unsigned-number and character-string are in 1.1.5
and 1.1.6, respectively. A constant-identifier is an identifier which
has figured on the left-hand side of a CONST declaration (see section
5). The symbol NIL denotes the nil-value for pointer variables, and
is assignment-compatible with all pointer-types.

3.2.1.3 Function designator

The third possible form of "factor" is a function call with a
(possibly empty) list of actual parameters:

function-designator = ? '
function-identifier [actual-parameter-list] z ■

For the definition of actual-paraneter-list, see 8.2.3.

Examples: ■

max (yours, mine)
cos (i*x + j*y)

Pro Pascal User iManual \ _ 11-23 ...
- 7„. ,. :■■■ . : / -■ ’ ' : ‘7 7\ ‘ ;

■ v 7' ‘ '7 7.7 . . . ' ■ '•■■•• ' v <7 7 ■ ' : X •'. ■ ■■■
■?■' / '■ ' ' J ■ ' ''' . ■ ' '■ ~ ' .,,■ \' 7’ .

■ ■ • • • ' - : 7/ \ . .'.f' 7, 7 7;

3.2.1.4 ' Set constructor ' '
• ■ 1 ■■ . ’ I " . ■ ■ . ■ / ; • . 7

The final.form for "factor” is a set-type value: . "

set-constructor = ■ .
[member-designator { member-designator}] "]"

member-designator = expression [expression]

The expression(s) must be ordinal-type, and must have ordinal values
in the range

0 <= ord(expression) <= 2039

If the set-constructor involves more than one expression, the types of
the expressions must be mutually compatible. If the expression's)
have type t, the set-constructor has the implicit type SET OF t.

The member-designator x..y represents the set of all values in the
closed interval x to y; if x > y, it denotes no value at all. x

(] denotes the empty set, which is assignment-compatible with every ?<
set-type. -

Examples: ' ■ . '' : .

[you,me,him] ’ z, .
[’A'..’Z’, ^’..’z’]

Pro Pascal User Manual II - 2U

3.2.2 Cperators

The operators introduced in 3.2 are best described under four
headings: arithmetic, boolean, set and relational.

3.2.2.1 Arithmetic operators

Additional information on the precise effects of arithmetic operators
on integer-type operands - in particular, those of subrange type -
will be found in section 9-

3.2.2.1.1 + . '

If it is not preceded by an operand, + -is a unary operator. It does
not alter the value of the operand following it, which must be of
integer-type, real-type or longreal-type.

If placed between operands of integer-type, real-type and/or
longreal-type, + represents the usual binary operator of addition. If
either operand is longreal, then the result is longreal, else, if
either operand is real, then the result is real, else the result is
integer-type. (The result is thus integer-type only if both operands
are integer-type.)

Note that the symbol + is also used for the quite distinct operation
of set union (see 3.2.2.3.1).

3.2.2.1.2

If not preceded by an operand, - is the unary operator of negation.
It may only be applied to operands of integer-, real- or
longreal-type, and produces a result of the same type.

If placed between two operands of integer-, real- and/or
longreai-type, - represents the usual binary operation of subtraction.
The result type is as described in 3-2.2.1.1.

Note that the symbol - is also used for the distinct operation of set
difference (see 3.2.2.3.2).

3-2.2.1.3 •

If placed between two operands of integer-, real- and/or
longreal-type, * represents multiplication. The result type is as
described in 3-2.2.1.1.

Note that the symbol * is also used for set intersection (see
3.2.2.3.3).

Pre Pascal User Manual

3.2.2.1.4 /

The symbol / represents the operation of real division. The two
operands may each be integer-, real- or longreal-type. If either
operand is longreal, the result is longreal, otherwise, the result is
real, any integer-type operand(s) being "floated” to real- or
longreal-type (as appropriate) before the division is performed.

3.2.2.1.5 DIV

DIV is the operation of integer division with truncation. Both
operands, and the result, are integer-type.

If i >= 0 and j > 0, then the value of i DIV j is such that '

i - j < (i DIV j) » j <= i

If j =0, a run-time error occurs. If i and/or j are negative, ’the
value of i DIV j is such that

abs(i DIV j) = abs(i) DIV abs(j)

and the sign of i DIV j is positive if i and j have the same signs
and negative otherwise. For example:

■ 7 DIV 3 = 2
- 7 DIV 3 = -2
7 DIV -3 = -2 '

- 7 DIV -3=2

3.2.2.1.6 MOD - ■ ■

MOD is the operation of taking the value of an integer modulo another
- roughly, the remainder after division. Both operands, and the
result, are integer-type.

If j <= 0, a run-time error occurs; otherwise, the value of
i MOD j is that one out of the sequence of values

(i - (k*j)), where k is any integer

which is such that '

0 <= i MOD j < j

For example: -

7 MOD 3=1
-7 MOD 3 = 2

Pro Pascal User Manual < > . < \ II - 26

3-2.2.2 Boolean operators

3.2.2.2.1 OR

OR is the logical inclusive "or" operator. Both operands, and the
result, are of boolean type (i.e. take the values true or false).

3.2.2.2.2 AND

AND is the logical "and" operator. Both operands, and the result, are
boolean.

' N '../<■ . .

3.2.2.2.3 NOT .

NOT is the unary operator of logical negation. It is applied to an
operand of boolean type, and produces the result true when applied to
the value false, and vice versa.

3-2.2.3 Set operators . •

3.2.2.3- 1 +

If placed between two operands of set-type (see 6.1.2.3), + stands for
the operation of set union. The base types of the two operands^ must
be compatible. The result has the type of the union of the two base
types.

As an example, suppose there has been the type declaration

weekday = (Monday, Tuesday, Wednesday, Thursday, Friday)

then the value of the expression - ,

[Monday..Wednesday] + [Thursday]

is equal to

[Monday..Thursday]

Pro Pascal User Manual II - 27

3.2.2.3- 2

If placed between two operands of set-type, - represents the operation
of set difference. The base types of the two operands must be
compatible, and the result has the type which is the difference of the
base types. For example, with the same declaration as in 3.2.2.3.1,
the value of the expression

[Monday..Wednesday] - [Tuesday]

is equal to >

[Monday; Wednesday]

3.2.2.3 -3 * -

If placed between two operands of set-type, * represents "set
intersection”. The base types of the operands must be compatible, and
the result has the type which is the intersection of the two base
types. For example, with the type declaration of 3.2.2.3.1, the value
of the expression

[Monday..Wednesday] * [Thursday]

is the empty set, [].

3.2.2.4 Relational operators

3.2.2.4.1 = and <>

These operators are used to compare, for equality or otherwise, two
operands of simple-, dynamic-string-, string-, pointer- or set-type.
The result type is boolean (true or false).

The operands are of compatible types, or one operand is integer-type
and the other real- or longreal-type - and this applies also to the
operators in 3.2.2.4.2 and 3.2.2.4.3.

3.2.2.4.2 < and >

These operators are used to compare two compatible simple-, dynamic­
string- or string-type operands. The result is boolean.

When two strings are compared, it is on the basis of their
lexicographic ordering according to the ASCII character set (see
Appendix D) - and the same applies to the operators in 3.2.2.4.3.

Pro Pascal User Manual

3.2.2.4.3 <= and >=

These operators may be used to compare two compatible simple-,
dynamic-string-, string- or set-types. The result is-boolean.

If s1 and s2 are two set-type operands, then s1 <= s2 is true if,
and only if, the set s1 is a (not necessarily proper) subset of s2;
and this expression has the same value as s2 >= s1. For example,
with the type declaration as in 3.2.2.3.1, the expression

[Monday..Friday] >= [Tuesday]

is true.

3.2.2.4.4 IN

IN is used to determine whether an ordinal-type value (the left-hand
operand) is a member of a set (the right-hand operand). If it is, the
expression has the value true, otherwise, false. In particular, if
the ordinal-type operand has an ordinal value outside the range of the
base type of the set, then IN yields the value false. The type of the
left-hand operand must be compatible with the base-type of the set.

As an example, with the type declaration of 3.2.2.3.1, the expression

Tuesday IN [Monday..Friday]

is true. , . : . - '

Pro Pascal User Manual II - 29

4 LABELS

Labels are-unsigned decimal integers in the range 0..9999'(see 1.1.4).
Their purpose is to enable the flow of control within a program to be
abruptly altered, by GOTO statements.

Labels must be explicitly declared. They may then be defined and
referenced.

4.1 Declaration of labels

In the overall layout of a block (see 2.3), the first declaration
which may (optionally) be present is

label-declaration-part = ["LABEL” label {"," label}]

The label-declaration-part must contain all labels that are defined in
the statement-part of that block. Conversely, all labels in the
label-declaration-part must be defined (see 4.2) in the statement-part
of the block.

Example:

LABEL 1,
999;

{for re-start}
{for error exit}

4.2 Definition of labels

A label is defined by being prefixed to a statement, as described in
3.1.

Example:

999: close(workfile)

4.3 Reference to labels

The only way a label can be referenced is in a GOTO statement, as
described in 3.1.1.4.

Example:

GOTO 999

5

Pro ascal User Manual 30

CONST DECLARATIONS

comes (after any label declarations) at theA CONST
head of

declaration, which
a block, is a means of giving names to constants:

constant-definition-part = ["CONST” constant-definition
{constant-definition ";"}]

constant-definition = constant-identifier "=" constant
constant-identifier = identifier
constant = [sign] (unsigned-number J constant-identifier) [

character-string

If the constant contains a sign (+ or -) with the form
constant-identifier, then the constant-identifier must (previously)
have been defined to represent an integer-, real- or longreal-type
value.

Examole:

CONST - ' ■ ' A : •
pi = 3.141592653589793D0;
minuspi = - pi;
message = ’Please repeat filename’; ' .

At a level enclosing the outer level of every program or segment,
there is an implicit declaration of the predefined standard . \'.i'"
constant-identifier maxint. If written explicitly, this declaration
would look like:

CONST - ; '
maxint = 2147483647;

Every variable and value in Pascal possesses a type, which nay be one
of the predefined standard types (see 6.1.1.1, 6.1.2 and 6.1.2.4) or
be one created by the programmer. As well as dictating how much
storage a variable occupies, the type determines which operations may
be performed upon it and what effect those operations have.

The starting point for the formal definition of "type" is the
syntactic object "type-denoter". It figures both in variable
declarations, which are treated in section 7, and in type definitions,
which are the subject of the present section.

The type definition part is the third (optional) component öl' a
"block" (see 2.3).

type-definition-part = ["TYPE" type-definition .
{ type-definition

type-definition = type-identifier "=" type-denoter _ \
type-identifier = identifier

6.1 Type denoters
■ ' a//a/</a "life

type-denoter = simple-type ' structured-type ! pointer-type "

If, in a type-definition, the type-denoter is a simple-type, then the
type-identifier is classified as a "simple-type-identifier". The -a?
concept of "x-type-identifier", for arbitrary "x", is defined in like/ (
manner. ■/. //

The three kinds of type-denoter will be treated individually. , /?

6.1.1 Simple types k
— • . '• ' . <</• /

simple-type = ordinal-type ! real-type ! longreal-type * /
ordinal-type = enumerated-type | subrange-type | - •,.-/

integer-type ' boolean-type J char-type | i ■/ ' ,/
ordinal-type-identifier

Ordinal types have values which map onto a subset of the integer
ordinal numbers. Real and longreal types have "floating-point"
values.

If the item on the right-hand side of the type-definition is ; «/
"ordinal-type-identifier", the definition simply introduces a synonym
for an existing type-identifier.

Enumerated and subrange types will be defined in 6.1.1.2 “and 6.1.1.3
respectively. The remaining possibilities are the five standard
simple types.

Pro Pascal User Manual II - 32

6.1.1.1 Standard simple types 1
e *

There are five of these: real, longreal, integer, boolean and char.
The corresponding identifiers (real, etc.) are predeclared, at a level
enclosing the outer level of every program or segment. A type is
real-type if it is the identifier real or any type-identifier which
has been defined to be a synonym, and similarly for the other standard
types.

6.1.1.1.1 Real

real-type = ’real"

These items take on real values, which are signed floating-point
values whose magnitude may range from 5.9E-39 to 6.8E+38, and which
are held internally to just over 7 decimal digits of precision.

Constants of this type are of the form ~ s

[sign] unsigned-real .

where "unsigned-real" is as in 1.1.5.2.

6.1.1.1.2 Longreal .

longreal-type = "longreal"

These items take on longreal values, which are signed floating-point
values whose magnitude may range from 1.1D-308 to 3.6D+308, and which
are held internally to just under 16 decimal digits of precision. It
is worth noting that integral values of up to 9000000000000000 in
magnitude are represented with complete precision; also that,
provided the result is an integral value in this range, the operations
of addition, subtraction, multiplication and division are performed
with complete precision. Longreals can therefore be used for
"whole-number" applications where the range of integer
(-maxint..maxint) is insufficient.

Constants of this type are of the form

[sign] unsigned-longreal

where "unsigned-longreal" is as in 1.1.5.3.

The predefined type longreal is an extension to Standard Pascal. '

Pro Pascal User Manual . ' II - 33 ,

6.1.1.1.3 Integer ,

integer-type = "integer" , '

Integer-type items take values in the range -maxint..maxint, where
maxint is defined in section 5. Constants of this type are of the
form

[sign] unsigned-integer

where "unsigned-integer" is as in 1.1.5.1.

6.1.1.1.4 Boolean

boolean-type = "boolean"

Boolean items take the values false or true, which are predefined .
constant-identifiers, with ordinal values 0 and 1, respectively. It is
as if there were the following type definition at a level enclosing P
the outermost level of every program or segment: .

TYPE boolean = (false, true); , z\

6.1.1.1.5 Char x • . x :

char-type = "char" ■-
■■ ' /•' ■. ■ <’

These take values which are any of the 128 characters of the ASCII
character set (see Appendix D). The ordinal value of the character is
its ASCII value, and so lies in the range 0..127. - ■ ;’

Pro Pascal User Manual II - 34

6.1.1.2 Enumerated types

enumerated-type = "(" identifier-list ")"
identifier-list = identifier { identifier}

An enumerated type determines an ordered set of values by enumerating
the identifiers which denote those values. The ordinal value of each
identifier is determined by its place in the list, the first
(left-most) having ordinal value 0, the next 1, and so on. The list
may contain at most 256 identifiers, corresponding to a maximum
ordinal number of 255.

Examples: '•

(red, orange, yellow, green, blue, indigo, violet)
(false, true) s

6.1.1.3 Subrange types

subrange-type = constant constant

The constants must be of one ordinal-type, known as the "host'* type of
the subrange type. The two constants delimit the range of values which
the subrange-type may take. The first constant must be less than or
equal to the second.

Examples:

-128..127
•A’..’Z*
yellow..blue

6.1.2 Structured types

The second class of "type-denoter" (see 6.1) is composed of the
structured types.

structured-type = ["PACKED'1] unpacked-structured-type J
dynamic-string-type '
structured-type-identifier

unpacked-structured-type =
array-type ! record-type] set-type ! file-type

dynamic-string-type = "string" ["[" constant nJ"] .
A

A structured type is classified as array, record, set or file type
according to the nature of the unpacked-structured-type .. in its
declaration, i.e. without regard to whether PACKED is specified.

A structured type is classed
PACKED is explicitly present

A packed structured type occupies
Howevercorresponding unpacked type.

notably those involving arrays

identifier

the tokenas packed if, and only
in its definition.

the same storage
some features of the

as the
language

or notdiffer depending on whether
type is packed; see, in particular, 6.1.2.1 and 8.3.3

A dynamic-string-type is declared using the predefined
"string", with an optional length-specifier. For example

string[32]

represents a dynamic-string-type which can hold a maximum of 32
characters (the actual length of the dynamic-string being a run-time
variable quantity, as the name implies). If the length-specifier is
omitted, then a default length of 80 characters is assumed
Dynamic-strings are an extension to Standard Pascal

I’

Pro Pascal User Manual

6.1.2.1 Array types

array-type = "ARRAY” "[" index-type
"OF" type-denoter

index-type = ordinal-type

index-type}

An array type consists of a fixed number of components, whose type is
given by "type-denoter" in the above definition. Components may be of
any type. The index-type specifies the range of values which the
array index may take.

If the component type is itself an array-type, the definition

ARRAY [t1] OF ARRAY [t2] OF t

may be replaced by - '

ARRAY [t1, t2] OF t

and similarly for three or more indexes. The two notations are ■ : .in­
completely equivalent. If the second form is used, and the array type
is packed, then the token PACKED is taken to apply to each and every > >
array-type in the expanded (first) form of notation. For example:

PACKED ARRAY [0..9» red..violet] OF wavelength

is equivalent to .

PACKED ARRAY [0..9] OF >
PACKED ARRAY [red..violet] OF wavelength

If t1 is a subrange of integer-type, with lower bound 1, then any type
of the form - , \ \

PACKED ARRAY [t1] OF char ' . •
- L./'i

is known as a string-type. The constants of string-type are the ;
character-strings (see 1.1.6), the upper bound of the associated
subrange type t1 being the length of the string. For example, ’ABC is ' -
a constant of type PACKED ARRAY [1..3] OF char.

Pro Pascal User Manual

6.1.2.2 Record types

record-type = "RECORD" [field-list] "END"
field-list = fixed-part [";" variant-part] ! variant-part
fixed-part = record-section record-section]
record-section = identifier-list type-denoter
variant-part = "CASE" [tag-field ":"] tag-type "OF"

variant {";" variant }
tag-field = identifier '
tag-type = ordinal-type-identifier
variant = case-constant-list ":" "(" [field-list [";"]] ")"
case-constant-list = case-constant case-constant]
case-constant = constant

A record type consists of a fixed number of components, possibly of
differing types. The record may consist of a fixed part only, or a
"variant" part only, or a fixed part followed by a variant part.

The syntax of "fixed-part" is the same as that of
"variable-declaration-sequence" (see section 7), the identifiers in '
"identifier-list" representing fields in the former and variables in
the latter. However, the meanings are different. For instance, the . -
occurrence of an identifier in a record-section causes no storage to
be allocated: only when a variable of that record-type is declared is > -
storage allocated for the fields which constitute that record.
Furthermore, fields are referenced differently from variables • (see ./
3.2.1.1.3).

If there is a variant part, the tag-type must be an ordinal-type. All
the case-constants must be distinct, and be of a type compatible with -
the tag-type. The set of case-constant values must be equal to the
set of values specified by the tag-type. (In particular, therefore,
the tag-type cannot be "integer".) '

Examples: v ,

RECORD , - J ' ' ('
hours: 0..23; \ \
minutes, seconds: 0..59;

END ' ' / ■ - ' ' 7 , 7

RECORD ’ •
name: string24; .
age: 0.. 119; ‘ -
salary: integer; ' _
CASE female: boolean OF

true: (maidenname: string24);
false: () ,

END

,..y ' '4 -.A ' 4.' 4 44444 444 4 ,.4a4V4 4'44 ‘4 4:‘''4.4 ■'■'\^ <4?444'444^ ■ ’' < ’4 4 < \4 . 4;
4.4 - 4 _-<4 5 414.^.44^ 4' - ■ • 4444.4 < 4

■ '-■■■ .{ " '■. ■ <■ ■ •’. • 4'" i ■; 4 4 ’’ " : • 4 : \4- . - ■ j ■ 4' / ; x .4;: 1 •■ ’■ 4 v. 44 ’*■ ' ■ '•■ - V ■' < "'' * 4 44 ■ ■ - ■ ’■ ’ '■ 4 4 y . . i ■ ■- ■■ . -'4; <4
'■■.<' • ' * - 4 ~ 4 7' - ’ ,; • ' ■■•'•-!•'■'■ •’. ,1 :4.Z' .4: '• ■ . . ., ‘^7- . .

\ ; ' ' i' i ■ - ■ ■ "■ ■ ■ - . 4 " ' V 7 ■■■ <• - ■' ' . * • ■ 1 ".. 4 '

Pro Pascal User Manual ' ' II - 38
, 4' ' ?4 >•.-•• , 4; • •"' - ■■.,■ " •-" . V '•••■• ’ 44

' . .. : ■ 'V ' ' • ‘/V. IT—

6.1.2.3 Set types -

set-type = "SET” "OF" ordinal-type

The ordinal-type defines the "base type” of the set. ’ The set-type
itself takes values in the powerset of the base type.

The base type may be either char, or an enumerated type, or any
subrange of integer lying within the range 0 to 2039, or a subrange of
any of these types.

Examples:

SET OF char
SET OF red..green

6.1.2.4 File types 4 .

file-type = "FILE" "OF" type-denoter ' - J

A file type represents a sequence of components all of which, are of 4'4 4
the same type, given by "type-denoter". Components may be of any '44
type, except one having a file as a component. , > 4 ;

There is one predefined standard file-type: text. Variables of type "
text are known as textfiles. Their components are of type char, but
are, additionally, structured into lines. Lines are terminated by 4*
line-markers, the presence of which can be determined by calling the 4
standard function eoln (see 8.3.1.1). . - ’4®;4

Examples: '■ 4 44 4- .44^.

FILE OF integer 4
FILE OF PACKED ARRAY [1..7] OF char ,4 ’

6.1.3 Pointer types ~ .4\ 4 '■ :• 4..4'’"- 4

The third and final kind of "type-denoter" (see 6.1) is the pointer ; '
type. .

pointer-type = type-identifier | pointer-type-identifier . 4f.4<

A pointer type has a value which points to a variable of an associated
type, specified by "type-identifier" in the above definition. In
addition, a pointer type can take the value NIL, which does not point
to any variable. yl.

Pointer values, and the variables to which they point, are created ^4
only by calls of the standard procedure new (see 8.3.2).

Pro Pascal User Manual II - 39

6.2 Type compatibility

At various points in the language definition, there are Requirements
that two types shall be "compatible", or that they shall be
"assignment-compatible". These two terms will now be defined.

6.2.1 Compatible types

Two types, t1 and t2, are compatible if at least one of the following
assertions holds:

(1) t1 and t2 are the same type.

(2) t1 is real-type and t2 is longreal-type, or vice versa.

(3) t1 is a subrange of t2, or vice versa, or t1 and t2 are both
subranges of the same host type.

(4) t1 and t2 are set-types with compatible base types, and either
both, or neither, is packed.

(5) t1 and t2 are string-type (see 6.1.2.1), with the same
index-type.

(6) t1 is a dynamic-string-type (see 6.1.2) and t2 is a string­
type or vice versa, or t1 and t2 are both dynamic-string-
types.

6.2.2 Assignment-compatible types

A value of type t2 is assignment-compatible with the type t1 if at
least one of the following assertions holds:

<
(1) t1 and t2 are the same type, and this is not a_file-type nor a

type containing a file-type component.

(2) t1 is real-type and t2 is integer-type or longreal-type.

(3) t1 is longreal-type and t2 is integer-type or real-type.

(4) t1 and t2 are compatible ordinal-types, and the value of type
t2 is in the range of t1.

(5) t1 and t2 are compatible set-types, and all the members of the
value of type t2 are in the range of the base type of t1.

(6) t1 and t2 are compatible string-types.

(7) t1 is a dynamic-string-type (see 6.1.2), and t2 is a string­
type or a dynamic-string-type.

Pro Pascal User Manual II - 40

7 VARIABLE DECLARATIONS #

Variables are declared in the variable-declaration-part of a block
(see 2.3).

variable-declaration-part = ' z
["COMMON" variable-declaration-sequence ";"]
["VAR" variable-declaration-sequence ";"]

variable-declaration-sequence = '
variable-declaration {";" variable-declaration}

variable-declaration = identifier-list. type-denoter

In a "variable-declaration", each identifier in the identifier-list
names a variable of the type specified by the type-denoter.

The COMMON facility is a Pro Pascal extension. COMMON declarations can
only be made at the outermost block level of a program or segment.
Using COMMON, rather than VAR, causes the names of the variables to be
accessible from other segments, and the same identifier declared in
several segments represents one and the same variable. A COMMON
variable exists throughout the execution of a program.

Variables declared in VAR declarations exist from the time the block
in which they are declared is activated until the statement-part of
the block is completed. They may be referenced in statements of that
block and of any textually enclosed block.

For an account of how variables are referenced, see 3.2.1.1.

Example: \

COMMON >
basearray: ARRAY [baserange] OF integer; >
errfile: errfiltype; - ' \

VAR ‘ •
student, teacher, parent: person;
attendance: 0..maxnumber; s
promised,
empty: boolean; ? ■
c1, c2: RECORD

realpart, imagpart: real
END; ' • ■ ' ‘ S ?"

mark: (good, fair, indifferent);

Pro Pascal User Manual \ , 11-41

■ " J- "~’i" ' -. ' ■< \ '<X <-’X/

8 PROCEDURES AND FUNCTIONS < . ' <J " . z'
A procedure is a self-contained part of a program which can be
activated from elsewhere. A function is similarly independent, but
differs in that it returns a value. Procedures and functions may be
declared by the user according to his own requirements; there are also
a number of so-called "standard" procedures and functions whose
declarations are part of the definition of the language and which can
be used at any point.

Much of this section applies equally to procedures and functions.
References to "procedure" should be taken to include function unless
stated otherwise.

8.1 Procedure and function declarations ■ - ' ■ ' *
Procedures and functions are declared in the fifth (optional) part of <
a block (see 2.3):

procfunc-declaration-part = {procfunc-declaration }

A procedure or function declaration introduces and names part of a
program.

procfunc-declaration = ' ,’
procfunc-heading (block J directive) I
procfunc-identification block

The purpose of the second form is explained in 8.1.4. The form most
commonly used is the first, consisting of a heading and a block
separated by a semicolon.

Pro Pascal User Manual

Example without parameters:

PROCEDURE listfile

FUNCTION rand: real

.1.1.1 Procedure heading

.1.1.2 Function heading

Example without parameters

8.1.1 Procedure and function heading

function-heading = "FUNCTION" function-identifier
[formal-parameter-list] ":" result-type

function-identifier = identifier
result-type = simple-type-identifier |

pointer-type-identifier

procfunc-heading = procedure-heading ' function-heading

procedure-heading = "PROCEDURE” procedure-identifier
[formal-parameter-list]

procedure-identifier = identifier

The heading names the procedure, and lists the formal parameters
any. Parameters are discussed in 8.1.1.3.

The distinction between function and procedure lies in the result
returned by a function (and hence the method of activation). The type
of the result is given in the heading.

Pro Pascal User Manual \ •' . • II - 43

8.1.1.3 Parameters ~

The declaration of a procedure or function may include’ a list of
formal parameters. Formal parameters are of four kinds.

formal-parameter-list = "(" formal-parameter-section
{ ";" formal-parameter-section } ")"

formal-parameter-section =
value-parameter-specification '
variable-parameter-specification '
procedural-parameter-specification [
functional-parameter-specification

When the procedure or function is invoked, an "actual parameter" is -
supplied to match each formal parameter in the declaration (see
8.2.3).

8.1.1.3- 1 Value parameter - .

value-parameter-specification =
identifier-list ":" type-identifier *

Value parameters are local variables of the procedure, with the y /
special property that initial values are supplied by the caller on y
activation.

The type may not be a file-type, nor a type containing a file-type
component.

8.1.1.3- 2 VAR parameter • '

variable-parameter-specification = < • -
"VAR" identifier-list ":" type-identifier

, ■ ■ ■ > .
A VAR formal parameter is matched on activation with a’variable-access < y
(see 3.2.1.1) of identical type. Within the body of the procedure, a
reference to the formal parameter, including assignment to it, becomes 1 .
a reference to the actual variable. Thus a VAR parameter can be used
to return results as well as to provide initial values. '

Example:

PROCEDURE maxval (a, b: integer; VAR max: integer); - . ' "j
{Returns larger of a and b} . '
BEGIN -

IF a > b THEN max := a
ELSE max := b;

END; . *..

Pro Pascal User Manual II - 44

8.1.1.3. 3 Procedural and functional parameters

procedural-parameter-specification = procedure-heading
functional-parameter-specification = function-heading

Procedural and functional parameters allow a procedure (or function)
to be substituted at the time of activation. A routine to print
histograms, for instance, could be written with a functional parameter
which when called returned the value for one column of the display.

8.1.2 Procedure or function block

Following the heading, there is either a directive (see 8.1.3 below)
or a block. The block may contain any of the components of a program
block (LABEL, CONST, TYPE, etc.) except COMMON variable declarations.
All objects declared in a procedure block are •’local’’ to the
procedure, and are not accessible from outside. The ideas of locality
and scope are discussed in section 2. In particular, the procedure
block may contain procedure and function declarations, which are
therefore "nested". A nested procedure may reference any local
variables - including formal parameters - of the enclosing procedure.

Within a function block, there must be an assignment to the function
identifier, and the value so assigned is returned as the result of the
function. If there is more than one such assignment, the last is
taken as the result.

Example (compare the example in 8.1.1.3.2):

FUNCTION max (a, b: integer): integer;
{Returns larger of a and b}
BEGIN

IF a > b THEN max := a
ELSE max := b;

END; ’ '

Pro Pascal User Manual 45

8.1.3 Directives

A procedure heading, instead of introducing the complete declaration,
may name (and make available for activation) a procedure whose full
declaration is elsewhere.

directive = "FORWARD" ! "EXTERNAL"

The FORWARD directive indicates that the defining block is textually
later in the same compilation-unit (see 8.1.4). The EXTERNAL directive
(not part of Standard Pascal) indicates that the definition is in
another compilation-unit. An EXTERNAL procedure may be in a ?
separately-compiled Pascal segment, or may be in an assembler-coded /
module as described in 9.6 below. Names of EXTERNAL procedures are
limited to 7 characters in the relocatable binary format, and must be
distinct in these first 7 to avoid confusion during the link-edit
process. ~ k ?

. .. • ' - , ' . - V ■ " \ ' .

8.1.4 FORWARD declarations < '

A FORWARD declaration is introduced to enable a procedure to be ;,
referenced prior to its full definition. Each such declaration must *
be matched by a definition later in the source program (at the same
level of nesting), the latter being associated with the original .
declaration by an identification with the same name. Continuing the
formal definition from 8.1 :

' ■ • ' ' < ■' ' /O'' < </<
procfunc-identification =

"PROCEDURE" procedure-identifier }
"FUNCTION" function-identifier ■

Example: _ ...

PROCEDURE fproc (fpb: boolean); FORWARD; ’ r /k -

: ...: - .■ « ■/. ;.r

PROCEDURE fproc; ’
BEGIN . ; ' ' . . ’ v .

IF fpb THEN ...
ELSE ...

END;

Note that the parameters are not repeated. \/ '
■ ? V. . y ' * ?

Pro Pascal User Manual '' - ' II * 46

8.2 Activation of procedures and functions ;

8.2.1 Activation of procedures

A procedure is activated by a procedure-statement quoting the
procedure name (see 3.1.1.3). If the procedure heading included any
formal parameters, corresponding actual parameters must be supplied
(see 8.2.3 below).

8.2.2 Activation of functions

A function is activated when its name is used as a factor within an
expression (see 3»2.1.3). During the execution of the function, a
result value is assigned to the function name, and this result is
returned to the expression. If the function has formal parameters,
corresponding actual parameters must be supplied.

A. . / ■

8.2.3 Actual parameters

actual-parameter-list =
"(" actual-parameter { n," actual-parameter } ")”

actual-parameter = expression |
variable-access |
procedure-identifier ' /
function-identifier

8.2.3.1 Value parameters v .

The actual parameter corresponding to a value formal parameter is an
expression, which must be assignment-compatible with the type of the
formal. The current value is assigned to the formal parameter as its
initial value.

The assignment-compatibility includes the implied type coercion of an
integer actual parameter to real if the formal is of real type, and of
an integer or real actual parameter to longreal if the formal is of
longreal type.

Note that a value parameter may be of a structured type (e.g. a
record). A local variable of the same type is allocated in the
procedure, and the value of the actual is assigned to it (i.e. copied
into it). A local copy may be needed by the procedure, but if the
structure is a large one the effect on the size, and possibly also the
execution time, of the program may be significant; in such cases, use
of a VAR parameter (see next subsection) should be considered.

Pro Pascal User Mar.ua

8.2.3- 2 VAR parameters

The actual parameter corresponding to a variable (VAR) formal
parameter is a variable-access, which must be of identical type to the
formal. It may not be a tag-field, nor may it be a component of a
PACKED type. Any reference to the formal parameter during the
activation of the procedure is treated as a reference to this
variable. If the selection of the variable involves indexing or
pointer dereference, then such operations are carried out before the
procedure block is activated.

Consider the example procedure maxval in 8.1.1.3.2, namely:

PROCEDURE maxval (a, b: integer; VAR max: integer); *
BEGIN

IF a > b THEN max := a
ELSE max := b; \ -

END; ■ :

Parameters a and b are value parameters, to be matched by actuals
which are expressions. Parameter max is a VAR parameter, and must be
matched by a variable. Possible calls of maxval are:

maxval (maxtotal, current, maxtotal)
maxval (float+50, 500, limit[item].flim) - ' 1

The first has the effect of updating maxtotal if current is larger.
Both maxtotal and flim must be of type integer; current and float may
be of subrange types or integer.

8.2.3- 3 Procedural (functional) parameters

The actual parameter corresponding to a procedural (functional) formal
parameter is a procedure (function) identifier. The formal and actual
must have compatible parameter-lists, and in the case " of a function
the result types must be identical.

Two parameter lists are compatible if (1) they contain the same number
of parameters, and (2) corresponding entries match. Entries match if
(1) they are both value parameters of identical type, or (2) they are
both variable (VAR) parameters of identical type, or (3) they are both
procedural parameters with compatible parameter lists, or (4) they are
both functional parameters with compatible parameter lists and
identical result types.

Mar.ua

Pro Pascal User Manual - ' . ' . II - U8

8.3 Standard procedures and functions ।

The declarations of the standard procedures and functions form part of
the definition of Pascal. They need not be declared before use -
indeed, though the names may be redeclared, the original definitions
would then be lost.

Activation is as for user-declared procedures and functions (see 8.2).

Additional standard procedures for this implementation are defined in
section 9.

8.3- 1 Operations on files

This section describes the facilities of Standard Pascal relating to
the use of files. Extra procedures associated with the operating (
system will be found in section 9.1.

The procedures are described in terms of a file variable gf, which may - •
be of any file type, and a variable txf, which must be of type text. - \

8.3.1.1 eof and eoln -

The "predicate” eof(gf) indicates when the file gf is at the v . -i
end-of-file position. The parameter may be omitted, in which case the-
standard file input is assumed. t '

Examples: -
. - , -■< .•

■ . . ' . * k'"' \ ‘

IF eof (transactions) THEN summarise;
WHILE NOT eof DO ... , >

Similarly, eoln(txf) indicates when the textfile txf is at an
end-of-line marker. In this condition, reading from the file obtains :: (
a space character;

It is an error to perform any input operation on a file if eof is true
(even to test eoln), and the eof condition should therefore always be
the first test. <

Pro Pascal User Manual II - 49

8.3.1.2 reset and rewrite

The procedure reset(gf) prepares gf for input. If the file is empty,
eof(gf) becomes true, otherwise eof(gf) becomes false and the buffer
variable gf* is positioned to the first element in the file.

The procedure rewrite(gf) prepares gf for output. The buffer variable
gf* is positioned to the first element, and eof(gf) becomes true. Any
previous contents of the file are lost.

In general, any file must be initialised before input or output
operations can be performed. Exceptions are the standard files
"input" and "output" for which initialising is done before the Pascal
program is entered (see 2.1).

8.3•1•3 get and put

These are the basic operations which advance the file buffer pointer
to the next element (moving the "window"). They are in practice less
frequently used than read and write.

get(gf) obtains the next element of an input file. If the end
of file has been reached, eof(gf) becomes true, and gf* is
undefined. It is an error to call get(gf) when eof(gf) is
already true.

put(gf) advances gf* for an output file to point to the next
element.

8.3•1•page

The procedure page(txf) causes a new page to be taken on an output
textfile txf. The parameter may be omitted, in which case the
standard file output is assumed.

< ^X-V^ '?XvXXXX<A^^ ■ -?■■/ V XXXXX^Xa■
■ r* -j-—. - ••• -.— — •?- — ■ - - —A’"- ^--r .. ■ ; . - ; — j ■'■ J- r - - - .— ... ■.-■■■. ■ ■■■„/- -.- • .. ■- :.. ' ■ f.

XX ■ '/X^ ■ . X:,X--■ X'- :.a/-X' •X>X.\ .'X' 1 ■ ' r XX; ■ \-X. - X ” -X J 'X*'-'
■' j: '.V ' ’ /A - : A’. A -AaA A.A ■' AA AA a" AA '. -A/* : 'v. ,4V' - A >. ■ ' ~ A/' ' A* ..’A-

Pro Pascal,User Manual ‘ “ '■ ./ II - 50 x
: ■ . ; '/ ' t X Wx/ . ' \cxOf-

8.3 -1.5 read X ■
X ■ , VX-X-X" XXX'

In its basic form, readfgf, varbl) is equivalent to

BEGIN varbl := gfÄ; get(gf) END

i.e. the current file element is assigned to varbl and the next
element made accessible. The component type of gf must be assignment­
compatible with the variable varbl.

There are some additional facilities of read. In the first place, it
may have a list of parameters (rather than the single varbl) into
which successive values are to be read. If gf is a text file,
characters may be read into variables of type char, since this is the _ v
basic file element; but variables of integer, real or longreal type
may also be included and conversion from the external character format
is performed automatically. The external representation in these . (
cases must conform to the layout of integer, real or longreal \X Xx
constants in a source program, any leading spaces or line separators xXXpX
being ignored. r

The file parameter may be omitted, in which case the standard file . Xxx
input is assumed. t J - ,
Example:

read (txf, itemnumber, quantity) . . ■
■ • . ■■ , ■.<;•■< \... •• X ; X;X^;. .'^X-. !Xi?

' ■' . ■ 'V : ; ; . . ' ' < ? -v.. J;

8.3 » 1-6 readin x • t J

This procedure advances a textfile to the beginning of the next line, ' ■?
making the first character available as the current file element (or ,
sets eof if the end of the file has been reached). readln(txf) is
equivalent to - z

. BEGIN ' ' • X
WHILE NOT eoln(txf) DO get(txf);
get(txf);

END

Similarly to read, readln may also be called with one or more variable ,
parameters, implying reading successive values from the current line
before advancing to the next. readln(txf, v1, v2) is equivalent to a'I ;

BEGIN read(txf, v1, v2); readln(txf) END - ' <X'■ \

The possible forms of write are essentially similar to the forms of,
read. There is a basic form, write(gf,expr) being equivalent to

BEGIN gf“ := expr; put(gf) END

i.e. the value of expr is assigned to the buffer variable and the file
advanced to the next element. The write operation takes an expression
(rather than a variable), which for non-text files must be
assignment-compatible with the component type of the file.

More than one element may be written with a single call of write, and ,
if the file is a textfile then expressions of integer, real, longreal, • ■ j
dynamic-string, string, and boolean types Jas well as char) may be
included, and conversion is provided automatically.

V .

Write operations to textfiles may optionally include specification
field widths in the output. The examples below show the effect
each expression type. The integer i contains the value 12345, and
real r contains 123.45.

statement result comment , ;

write(’X’) X '
write(’X*:5) X 4 leading spaces
write(’ABC’) ABC
write(’ABC’:5) ABC 2 leading spaces
write(i:6) 12345 1 leading space
write(i) 12345 default width = 11
write(i:1) 12345 left justified
write(r) 1.2344999E+02 default real format
write(r:10) 1.234E+02
write(r:10:4) 123.4500 "fixed point" format

of
for . /■
the

- v

■ ■ - ? ' A<■ "J ' '

"

•./ J 1 \ '

y - ■■ ■ f ■

If no field width is
follows:

specified, default widths are assumed, ' as ’ If

\

type

integer
real
longreal
boolean
char
string
dynamic-string

default width

11 ■
14
24
6

declared length
current actual length

• ' ;’ J

The file parameter to write may be omitted, in which case the standard "
file output is implied.

Pro Pascal User Manual \ II - 52
' l_ _ , ’■ / , -• , ■ ■' •; • • ' _ . '

8.3 -1•8 writein

The statement writeln(txf) outputs a line marker to the textfile txf.
The parameter may be omitted, the standard file output being implied.

writeln(txf, el, e2, e3) is equivalent to

BEGIN write(txf, e1, e2, e3); writeln(txf) END

i.e. the values are written, followed by a line marker.

8.3 -2 new and dispose

These procedures are used to request space in the heap and to return
it when no longer needed. In each case, p is a pointer-type variable,
and t is the type with which the pointer is associated.

new(p) allocates space for a variable of type t and sets p to
point to it. The value of the new variable is undefined.

dispose(p) returns the space occupied by p". No further
reference may be made to the variable.

If t is a record type with a variant part, the space may be requested ,
for a particular variant. The tag-type value is included as an extra
parameter: new(p,tag). If this form of new is used, the matching
form dispose(p,tag) must be used to return the correct amount of
space. If the variant part itself has a variant part, a tag value for
that, too, may be specified, as a third parameter to new - and so on,
if subvariants are even deeper nested.

Note 1. On dispose, the contents of the pointer variable p become
obsolete, as do any copies made of it. This includes the implied -
copies generated when the variable is passed as an actual parameter,
or included in a WITH statement.

Note 2. The form of new which includes a tag may result in a smaller
allocation of heap space than other variants of the same record type.
(Indeed, this is the object of using it.) The variant must therefore
not be changed during execution, and operations which reference the
whole (’’entire") record are not permitted since some adjacent but
quite independent occupant of the heap might be corrupted. These
short records must be referenced by their individual fields.

8.3 .3 pack and unpack

The procedures pack and unpack transfer one or more elements between
an array of some type, and a PACKED array of the same type. If unp is
the first array, and pkd is the other, then:

unp must have at least as many elements as pkd;

the operations include an index value i of array unp at which
the transfer starts, and the value of i must leave "room” in
the remainder of unp for all the elements of pkd.

The statement pack(unp,i,pkd) moves successive elements from- unp to
pkd, starting at unp[i] and continuing to the end of pkd. The
statement unpack(pkd,unp,i) performs the 'transfer in the opposite
direction.

8.3•trunc and round \

The functions trunc and round perform conversion from real or longreal
to integer type, truncating or rounding as the name implies. Each
accepts a real or longreal argument and returns an integer result.

Examples:

trunc (5.2) gives 5
trunc (5-7) gives 5
trunc (-5-7) gives -5
round (5.2D0) gives 5 ■ s

' ■ . . ■■ • < ■ x ~

round (5.7DO) gives 6
round (-5.700) gives -6

8.3.5 ord and chr

The function ord converts an argument of any ordinal type (e.g.
enumerated or char) to integer. Function chr takes an integer
argument and returns the character value corresponding to it. The
operations involved may sometimes be trivial, but the use of these
functions to cross type boundaries contributes to program portability.

Example (v is in the range 0 to 15):

IF v < 10 THEN ch := chr (v + ord(’O'))
ELSE ch := chr (v - 10 + ord(’A’))

leaves in ch the hex character representing v.

5 i -

Pro Pascal User Manual II - 54

8-3.6 succ and pred

These functions take an argument of an ordinal type, and return a
result of the same type, succ(v) returns the value ”1' after v" and
pred(v) returns the value "1 before v". If v is integer, succ(v) is
equivalent to v+1 and pred(v) to v-1.

If weekday is defined as

TYPE weekday = (Monday,Tuesday,Wednesday,Thursday,Friday)

then succ(Monday) is Tuesday and pred(Thursday) is Wednesday.

8.3-7 abs and sqr -

These functions take an argument of integer, real or longreal type,
and return a result of the same type. abs(x) returns the absolute
value of x (i.e. -x if x is negative, +x otherwise), sqr(x) returns
the square of x (i.e. x*x).

8.3.8 sqrt, sin, cos, exp, In, arctan

These mathematical functions take an argument which may be integer,
real or longreal. If the argument is integer or real, the result is
real; if the argument is longreal, the result is longreal.

of arctangent of x

Function Result Illegal

sqrt(x) non-negative square root x < 0.0

sin(x) sine of x (x in radians) abs(x) > 32768.0 (x real)
- abs(x) > 4.3D9 (x longreal)

cos(x) cosine x (x in radians) abs(x) > 32768.0 (x real)
abs(x) > 4.3D9 (x longreal)

exp(x) . exponential of x x > 89.4 (x real)
x > 710.4D0 (x longreal)

ln(x) natural logarithm of x x < = 0.0

arctan(x) principal value (radians)

Pro Pascal User Manual II - 55

8.3.9 odd

The function odd(i) takes an integer argument i, returning true if the
argument is an odd value (i.e. if i MOD 2=1) and false if it is an
even value.

8.3. W dynamic-string procedures and functions

Three procedures and four functions are provided for manipulating
variables and expressions of dynamic-string type (see 6.1.2).

_ /

The examples in the following subsections assume the declaration:

VAR sv: string;

and that sv currently has the value ’PQRSTUV* (so that its dynamic '
length is 7). ;

8.3.10.1 concat(s1,s2, ..)

The function concat has two or more dynamic-string arguments,' and
returns a dynamic-string result consisting of the arguments
concatenated together. For example:

sv := concat(’A*,sv,’YZ')

sets sv to the value ’APQRSTUVYZ’.

The arguments are expressions of dynamic-string type; in particular,
therefore, they may be dynamic-string functions such as copy. It is
an error if the combined length of the arguments exceeds 255
characters.

8.3.10.2 copy(stringval,index,count)

The function copy returns the dynamic-string value containing "count” r-, ?'.•
characters, taken from "stringval" and starting at character-position / ' - "
"index". For example: ,

sv := copy(sv,U,3)

sets sv to ’STU’. Again, the parameter "stringval" is a general
dynamic-string expression; and the other two parameters are in
general integer expressions. It is an error if the substring defined
by "index" and "count" extends beyond the current limits , of
"stringval". *'

Pro Paccal User Manual ' . 11-56

8.3.W.3 insert(stringval, stringvar, index) /

This procedure inserts "stringval" into "stringvar." at position
"index", moving up any characters in higher index positions. The
first parameter is a dynamic-string expression, the second a
dynamic-string variable. "Index" may take any value up to the
current length of "stringvar" plus 1 (i.e. insert may be used to
append to the current contents), but it may not exceed this value. It
is also an error if the resulting length exceeds the defined length of
"stringvar". - *

As an example: ~

insert('XY’,sv,5)

leaves sv holding »PQRSXYTUV».

8.3.10.4 delete(stringvar,index,count)

This procedure alters the contents of "stringvar" by deleting "count"
characters, starting at position "index". For example:

. . • - ' '■ ' ' . ; \ \„
delete(sv,4,2)

removes ’ST' from the original contents of sv, leaving ’PQRUW. It’is
an error if the substring defined by index and count extends beyond
the current limits of the contents of stringvar.

; ?■ : .1 • "

8.3.IO.5 length(stringval)

The integer function length returns the number of characters in the
dynamic-string "stringval". If the parameter stringval is a
dynamic-string variable, the length is determined from its current
contents, not from its nominal maximum length. "stringval" may in
fact be any string expression, so that, for example

i := length(concat(s1,s2)) ' '

is quite permissible.

Pro Pascal User Manual II - 57

8.3 -10.6 pos(substr,stringval)

The integer function pos searches "stringval" for the first occurrence
of the substring "substr". If the latter does not occur within
Stringval, then pos returns the value zero; otherwise, it returns the
index within "stringval" of the first matching character. For
example:

i := pos(' RS ’,sv)

sets i to 3; whereas

i := pos('X*,sv)

sets i to 0. Both parameters may be general dynamic-string
expressions.

8.3 .10.7 str(intexp,stringvar)

This procedure converts the value of the integer expression "intexp"
to decimal character form (as in writing to a textfile), and places
the result in the dynamic-string variable "stringvar". It is an error
if stringvar is not long enough to hold the decimal representation.
(The maximum which is ever required is 11 characters.)

9 IMPLEMENTATION-DEPENDENT ASPECTS

9.1 Pascal, files and CP/M

9.1.1 Declaration of files.

The standard predeclared files input and output are always available.
Any other file must be declared. Local files are permitted, also
COMMON files in segmented programs.

9.1.2 File assignment

A variable comes into existence when the block in which it is declared
is activated - for declarations at the outer program level this is on
entry to the program. The contents of a file (i.e. the elements which
make up the value of a file variable) are not held within the computer :
memory like other variables except when being referenced, but are kept
on an external disc file or device. A connection must be set up
between the Pascal program and the CP/M file (or device) to- provide
access to the contents, since the name given to the Pascal file
variable is not in general the same as the CP/M filename. The
variable is said to be "assigned" to the CP/M file, implying simply an <
association between the variable and a certain filename. /

The connection is made, in the sense of an "open file" operation, when
reset or rewrite is called, and at this time an input file must
already exist. The corresponding "close" is performed automatically
on exit from the block in which the file is declared. (A "close"
procedure is provided for cases of abnormal exit, see below.)

When it comes into existence, each file variable is given a default
assignment (CP/M filename with which it is associated) which may be >-
changed by means'of the procedure "assign", see below, before any
reset or rewrite operation. A file which is simply a workfile, being
written and read back within one program, need not be explicitly
assigned; but any more permanent file should have a name, and the
Pascal file be assigned to it. The default assignments of the x
standard files input and output are to the console (CP/M device CON:).
All other files are defaulted to disc file names in the form
PROTEM.nnn, where nnn is a number sequence starting at 001. Such
files are erased on termination of the program unless renamed.

Pro Pascal User Manual 1 11—59

9.I.3 file formats

A Pascal text file (on disc) follows the conventions of ED and other
CP/M processes: lines are terminated by c/r 1/f, and the end-of-file
is marxed by Ctrl Z. (The end-of-file marker is supplied
automatically when a text file used for output is closed, and it
causes eof to become true on input.)

Non-text files on disc are automatically blocked and unblocked if the
file element size is less than half the size of a CP/M sector (i.e. if
it is 63 bytes or less). Two bytes per sector are taken by the
controlling software in this case. Larger file elements occupy an
integral number of CP/M sectors, and in particular an element size of
128 bytes provides a one-to-one correspondence between elements and
sectors. To read a binary CP/M file not produced by Pro Pascal, it
should be declared as FILE OF sector (where sector has been declared
ARRAY [0..127] OF byte), rather than FILE OF byte.

Random access facilities are available with non-text .files on disc.
For this purpose the elements in the file are numbered starting at
zero.

9.1.4 Delayed input from files

The technique known as "lazy i/o" is employed on input to ensure
sensible conversational use of the console. A get operation is not
actually performed until the next reference is made to that file (by
fA, eof(f), etc.). There is no effect on the operation of programs
written according to the standard rules.

9.1.5 Additional standard procedures and functions

The following additional predeclared procedures are provided. Their
use is explained individually below.

PROCEDURE assign (VAR f: genfile; name: CPMname);
PROCEDURE seek (VAR f: ntfile; elnumber: integer);
PROCEDURE update (VAR f: ntfile);
PROCEDURE close (VAR f: genfile);
PROCEDURE erase (VAR f: genfile);
FUNCTION fstat (name: CPMname): boolean; '
FUNCTION checkfn (name: CPMname): boolean;
PROCEDURE append (VAR f: genfile);
PROCEDURE rename (VAR f: genfile; name: CPMname);
PROCEDURE ramfile (VAR f: text); -
PROCEDURE echo (VAR f:’ text; onoff: boolean);

Pro Pascal User Manual II - 60

Here "genfile" implies a generalised file type, for which any valid
Pascal file type may be substituted (as in the standard procedure
reset, for example), and "ntfile" is any file type except text.
"CPMr.ame" is any string or dynamic-string type, the associated actual
parameter being an expression representing a CP/M file or device name.

9.1.5.1 assign

A file is assigned to a CP/M disc file or device by a call of the
procedure assign. The CPMname parameter may be the name of a disc
file with or without drive specifier and filetype extension (e.g. * X”',
•G0CD.3YE’ or 'B:READ.ME’), .or a device name. The device names
recognised are CON:, LST:, RDR: and PUN:, together with two pseudonyms
KBD: and NUL: described below.

A textfile assigned to CON: and used for input works on a
line-at-a-time basis. The operator may backspace and make corrections
until c/r (Return) is given, when the complete line is made available
to the program. This is the default arrangement with the standard
file "input". Devices LST:, RDR:, and PUN: transfer a character at a
time. The pseudo "device" KBD: gives access to the console keyboard
without echo, and without hold-up if no key has been pressed (a null
character being returned in this case). The KBD: facility is not
available under MP/M, and should not be mixed with use of the cstat
function described later. The other pseudo device NUL: accepts and
throws away output - this may avoid the need for tests at several
points in a program. , .

A non-text file may be assigned to a device provided that the element
size is 1 byte. If a FILE OF char is assigned to CON: and reset, the
transfers are carried out a character at a time, with echo, and
holding until a key is pressed. This can be a useful alternative to
the line input method used with text files.

Note that reset or rewrite (or update or append) must be called
following assign before any other reference is made to the file.

9.1.5.2 seek . ■ ‘ ■

The seek operation provides random access to the elements of a
non-text file by means of the element number. The file is regarded'
rather as an array, with "index" values starting at zero. To read
random records, assign and reset are called, then seek(f,n) positions
f* to element number n. (Note that no "get" is needed, indeed get
advances f* to the next element.) It is not necessary to have
prepared the file specially when writing it; a sequentially-written
file can be read in this way. Following a seek, the standard get or -
read operations progress sequentially from the new position. To write
random records, assign and update are called, followed by seek and put
or write, as described in the next subsection.

' ' ■ ■ 'J■ ' ■ . - ’ - ’ s ' ■. " ' ' '
Pro Pascal User Manual -*'/ ' ' ' / II - 61

9.1.5.3 update /
/ * - • ;

Random access updating can be performed on a non-text file. After
assign, procedure update(f) is called in place of reset/rewrite. The
buffer variable f* is thereby positioned at the first element of the
file. (This is equivalent to the operation seek(f,0).) A seek
operation may then be used to position the file window at the required
element, and f* can be used to examine and modify the contents. The
standard procedure put(f) causes the modified element to be rewritten
to disc, and advances the file window.

A file can be .extended with the update facility, using seek to
position to the first empty position and then writing sequentially.
However, a file with "holes" in it cannot be processed reliably; . it
should be initialised by writing (e.g.) dummy -records sequentially
first.

9.1.5.4 close

Files are closed automatically at completion of execution of the
program, or in the case of local files on normal exit from the
procedure in which they are declared. The procedure "close" must be
invoked for any output file if this normal exit path is not taken
(because of chaining to another program, or a GOTO out of a procedure, 1
for example).

9.1.5.5 erase

When a Pascal file has been assigned to a CP/M disc file, the file may
be erased by calling the Pro Pascal procedure erase. ;

9.1.5.6 fstat _ , '

The boolean function fstat has as parameter a string (constant,
variable, or expression) containing a CP/M filename, including
optional drive specifier and filetype as for the second parameter of
assign. Fstat returns the value true if the file exists, false if
there is no such file or if the string is not a correct CP/M filename.
That is, if fstat returns true, a Pascal file can be assigned to the
same name and opened reset without error. For example

fstat(’LST:’) returns false (not a filename)
fstat(’A:B:X') returns false (bad format) .
fstat(’A:NIM.TXT’) returns true if a file NIM.TXT

is present on drive A
false otherwise

Pro Pascal User Manual II - 62

9.1.5.7 checkfn

This is another boolean function, having a string as -parameter. It
returns the value true if the parameter is a correctly-formed CP/M
filename, without any check as to whether the file exists or not.

9.1.5.8 append

To write additional data at the end of an existing sequential file,
call assign followed by append (in place of rewrite). After append,
the file is prepared for output (as by rewrite) but f~ is positioned
just after any existing data. If the file does not in fact exist,
append is equivalent to rewrite.

9.1.5.9 rename

This procedure has as parameters a file and a filename (CPMname). The
file must already be connected to a disc file by an assign operation.
The name of the disc file is changed to CPMname, which must be a’
correctly-formed disc file name. If a drive identifier is included, it
must match the existing assignment; however, normal usage is to omit
the drive specifier, implying the same. After rename, the file
remains available for use by the program, but reset/rewrite/etc must f
be given before any further reading or writing can be done.

9.I.5 .W ramfile ■' ,

This procedure has one parameter, which must be a textfile. The file
is assigned to a workfile in memory (a "silicon file"), and rewrite
must be called to prepare it for output. Data can then be written,
with implied conversion of binary operands, the file reset and the
data read back in character form; or alternatively, character data
can be re-read with input conversions; or again, the file can simply'
be used to buffer text without the overhead of disc access. The
length of the file is limited only by the amount of heap space
available (cf. 9.3-1).

9.1.5 .11 echo

The parameters are a file (which must be a textfile) and a boolean
"onoff". The file must have been assigned to a discfile or ramfile,
and set for output by rewrite. A call of echo with onoff true causes
any subsequent output to the file to appear also on the console. To
switch off the console echo, call echo again with onoff false.

9.2 Additional standard procedures , _ / v '

Section 9.1 above includes details of the additional procedures
related to file handling. There are other additional standard
procedures and functions, definitions of which are given below.

9.2.1 move

This procedure permits transfers of data without the type checking
normally carried out on assignments. It is therefore to be used with
care. The call must specify source (the first parameter) -and
destination (second parameter) for the transfer, and also the length
(in bytes). Source and destination may be any variable references,
length is an integer expression and may in principle be up to 6^k
bytes. Mote that if source and destination areas overlap, it is
relevant that the transfer is performed starting at the low-address
end.

Examples:

move (sv, dv, 4);
move (srec.sarr[2], de, 1);
move (srec.sf, darr[inx], sz);

9.2.2 chain , J

This procedure allows control to be passed from one program ' to
another. A Pascal file must be declared, assigned to the CP/M .COM
file, and reset. The chain procedure has just one parameter, the
Pascal file (which can be of any type).

Note that chaining to another program does not provide the automatic
closing of files which normally takes place on termination. Any
output files must be closed explicitly (see under 9*1 above). See
also putcomm and getcomm below.

11 x < Example: - r
I ' ' . • . - ■ v ' i H :■

assign (chainfile, ’NEXTPROG.COM’); x /' >.
K reset (chainfile); .

chain (chainfile);

z: xI t - ■; ' ' - ' " * >

n .. ■ • -7.i • . 7-- ■

1 ■■■ ■- - ? —■ J-- - ■ ' v-zA:

y •' • ■ _ • ' Illi

Pro Pascal User Manual II - 64

9.2.3 putcomm

The procedure putcomm (put command) specifies a variable, typically a
string or a record, which is to be passed to the next program after a
chaining operation. The call of putcomm should immediately precede
the call of chain. The variable is limited in size to 80 bytes.

Example:

putcomm (interprog record);

9.2.4 getcomm

The partner procedure getcomm (get command) "is called on entry to the
chainee program, to copy the command into one of its own variables.
The layout of the command is arbitrary, though there must of course be
agreement in specification between the two programs.

The area used for passing the command is in fact the CP/M default
buffer, and getcomm can therefore be used to pick up the residue of
any command line, quite apart from its use in chained programs. The
residue is in the format of a dynamic string, and can be manipulated
as a string after getcomm has moved it into a program variable. /For
example, if a program "compare" includes

VAR fnames: string[35];

BEGIN
getcomm(fnames);

then following the command

A>COMPARE SI.PAS, B:S2.PAS

the string fnames will be set to ’ S1.PAS, B:S2.PAS'. (Note that all
characters in the command line except the actual program name are
transferred, including the space preceding 51.)

is
the
Mo
a

II - 65Pro Pascal User Manual

sizeof (longreal)

yields the value 8.

peek9.2.7

Function peek has an
address, and returns
integer value in the

9.2.8 poke

occupied by a data type, for example
in fact known to the compiler, it
object code in the same way as for
run-time computation is involved.

9.2.5 sizeof

9.2.6 addr

The integer function sizeof is a notation for obtaining the storage
a record. Because the value
is simply introduced into
example a named constant.

The parameter must be
type-identifier, and the value returned is in bytes, for example

The function addr has a parameter which is a variable-access,
returns an integer result which is the machine address at which
variable is located.

and
the

argument of type integer which machine
the value of the byte at that address, as an
range 0..255.

Procedure poke has two parameters. The first is a machine address
for function peek), the second is an integer expression which will
truncated if necessary and stored in the byte at that address.

(as
be

Pro Pascal User Manual

Library facilities9.3

These "library facilities" are routines provided in • the standard
library but not predeclared in the compiler. An appropriate
declaration must be included in the program before one of these
routines can be used.

9.3.1 memavail

The function semavail returns an integer value which is a measure of
the amount of free space remaining (in bytes) between the heap and the
stack. It is declared as

FUNCTION memavail: integer; EXTERNAL;

The value does not include space returned to the heap by dispose
operations, and in general should be regarded as a useful guide rather
than an exact figure.

9.3- 2 rand '■

The function rand yields at each call a pseudo-random real value,'
uniformly distributed in the range 0.0 to 1.0. It is declared as

FUNCTION rand: real; EXTERNAL;

9.3.3 cstat

The function cstat returns a boolean value which is true if a key on '•
the console has been pressed, false otherwise. No actual read
operation takes place. It is declared as

FUNCTION cstat: boolean; EXTERNAL; ‘ ; '

Note that if a key has been pressed, the cstat processing includes the
checks made by CP/M for the special characters ctrl-C and ctrl-S,
which have the normal consequences of aborting the program or
suspending output, respectively.

9.3. ^ dreset

Procedure dreset performs a reset of the disc system, so that a
program can continue writing if a disc is changed during execution.
The default drive is re-established as it was before the operation.
The declaration is simply

PROCEDURE dreset; EXTERNAL;

Pro Pascal User Manual II - 67

9-3*5 ownerr •

This procedure is provided to enable the user to .perform his own
exception handling, as an alternative to the normal reporting of
run-time errors. The procedure ownerr installs a procedure nominated
by the user as his error handler, which will then receive control in
the event of any error arising. The handler is invoked for all types
of error, but has the option of processing some and leaving the others
to be reported at the console in the usual way. The handler must be
written to the parameter specification shown below in the declaration
of ownerr.

PROCEDURE ownerr >
(PROCEDURE handler (errorletter: char;

erroraddress: integer; -
VAR errorstring: string;

• fatal: boolean; ‘
VAR processed: boolean)

); EXTERNAL;

The procedure nominated as the error handler when ownerr is called ’
must be at the outer level. (It can itself be an EXTERNAL, for
example in a library.) Its parameters must agree with the list above,
where the purpose of the first four is to provide "handler" with the .
information from the standard error message - letter, address,
supplementary string (which may be empty), and fatal/recoverable flag.
The fifth ("processed") is an inout parameter defaulted to false. If
handler leaves this as it is, then on exit the normal report will be
produced; if it is set to true, reporting will be skipped. ,

The handler routine may well refer to other variables of the program.
For example, it may be useful to maintain a global variable (called *;
"marker" say) which indicates to the handler the part of the program
tn which an exception occurred.

If the error is classed as recoverable (i.e. if "fatal" is false),
then on normal exit from the handler execution will be resumed. (The
normal report will be produced first if "processed" is false.) If the
error is fatal, then on exit the program is terminated. However, the
handler can use a GOTO to pass control back to the program body as a
means of avoiding termination, in cases where recovery is feasible.
Some types of error - for example stack overflow - may result in
corruption of data, and any attempt at recovery from fatal errors must_ .
be carefully planned and tested. '

The information in the VAR string parameter can be altered or
extended, to a maximum of 30 characters, and the normal reporting
process will display the amended string. (The limit of 30 is not
checked, and exceeding it may have dramatic consequences.)

Pro Pascal User Manual II -

O
(P

It is possible to call ownerr more than once in the Same program,
installing different exception handlers at different times.

The definition ensures that a handler with the correct paramet
specification but which does nothing is "transparent", all err
reports appearing in the normal way. Thus the error trapping can
effectively be turned off.

9.3 -6 ipcrt

This routine must be declared as

FUNCTION iport (portno: integer): integer; EXTERNAL;

and when invoked reads a byte from the specified port, returning an
integer value in the range 0..255.

9.3 .7 oport

The declaration required is

PROCEDURE oport (portno,value: integer); EXTERNAL;

When called, "value" is output to Z80 port number "portno" (both
expressions being truncated to byte width if necessary).

Pro Pascal User Manual II - 69

9.4 Storage allocation

9.4.1 Overall layout z

Object programs and segments can in general contain requirements for
the following kinds of storage.

Program code and constants.
Static data areas.
COMMON data blocks.

The link-edit process combines these areas, together with any library
routines, into a loadable file (.COM). When the program is executed,
the space remaining in the TPA is used dynamically for stack and heap.

Loaded program
1 1
I Heap >1J__________

I I
; < Stack1
j_____________

Variables declared at the outer level of a program or segment are
allocated static data space. Parameters and local variables of
procedures are placed on the stack. In the link-edit operation there
is an option to separate the code and data areas - see the description
of the linker in Part III - though for simplicity the default is to
combine them.

All allocation of data space is on a byte basis (i.e. no "slack" bytes
are introduced), except for single-byte value parameters which occupy
a word in the stack.

9.4.2 Formats of variables

Variables of "ordinal" types may be 1, 2,.or 4 bytes in length.

1 byte: boolean, char, enumerated, and subranges of integer
within -128..127 or within 0..255.

2 bytes: subranges of integer within -32768..32767 or within
0..65535 (but outside byte subranges). The normal low-high
arrangement is followed.

4 bytes: integer, and subranges of integer outside word
subrange. The bytes are arranged least-significant to
most-significant in ascending addresses.

Pro Pascal User Manual . ! -' ,11-70

Real values occupy 4 bytes in a format corresponding to the proposed
IEEE Standard. The 32 bits are made up as follows (from most to. least
significant.):

1-bit sign
8-bit binary exponent, biassed by 127
23-bit mantissa, with an implied 1 in the most

significant (24th) bit position

Longreal values occupy 3 bytes in the IEEE format:
1-bit sign
11-bit binary exponent, biassed by 1023
52-bit mantissa, with an implied 1 in the most

significant (53rd) bit position

In both formats, the implied binary point is between the implied '1’
bit and the most significant actual bit of _the mantissa. Thus the
value 1.0, for example, is represented by the following bit-patterns:

32-bit 3F8OOOOOH , ,
64-bit 3FF0G0C000000000H . .. • . ’T - /■

Pointers occupy 2 bytes.

Set variables occupy from 1 to 255 bytes, depending upon the upper
limit of the range of the base type in the declaration (SET OF 0..7,
for instance, requires 1 byte, while SET OF char occupies 16 bytes and
SET OF 0..2039 is the maximum 255 bytes). Element 0 of a set is
always present, and is represented in bit 0 of the first byte. ,

Arrays are arranged with the element having the lowest index value in,
the lowest address (the obvious way in this machine).

A variable of type string[n] occupies (n+1) bytes, the
lowest-addressed byte containing the length of the string (a value in
the range 0..255). ,

Record layouts are simply derived by placing the component fields in
ascending addresses.

Pro Pascal User Manual

Ooiect code for integer arithmetic9.5

Modes of code generation9.5.1

The previous section details the storage allocated to variables, and
in particular to integers and subranges of integer. Use of suitable
subrange declarations has several advantages: the program is more
self-documenting, the compiler can allocate for each variable only the
space it needs (so economising on data space) and generate the most
appropriate machine operations (so economising on code size), and the
range checking options can be applied when debugging.

Because the Z80 is essentially
operations can be performed
efficiently than on 2-byte or
complications when the range of
what can be held in a byte or a
a choice between two regimes of

an 8-bit machine,
between byte-length

most arithmetic
operands

possible .

more
are

; of
word, and Pro Pascal therefore allows
code generation for such quantities.

4-byte values. However, there
the operands approaches the limits

are

The default regime avoids all potential overflow problems by extending
the operands wherever necessary before the arithmetic is performed.
This generally results in somewhat longer code, but is recommended
except where space is at a premium.

The alternative regime
at compile time. More
the programmer must
overflows. Details of

is invoked by the "restricted width" (R) option
economical code will generally be produced, but

below to assist in this process

be prepared to guard against any
the rules followed by the compiler given

Pro Pascal User Manual

9.5.2 Restricted-width object code

Types which are subranges of integer are classified into byte, word
and "long" (i.e. 4-byte), and in the case of byte and word length
values into signed and unsigned. A subrange such as 1..10 which can
be accommodated in a signed or unsigned byte is classed as signed, and
similarly with word subranges such as O..999. However, a literal
(constant) in one of the overlapping ranges is treated where possible
as having the same type as the operand with which it is being
combined.

The following rules determine the result type of an operation, which
except for multiply also determines the length at which the operation
takes place. The notation used is sb (for signed byte), ub (for
unsigned byte), sw, uw and i (integer).

9.5.2.1 Negate and abs

Operand type: sb ub sw uw i \
Result type: sb sw sw i i

9.5.2.2 Mixed-length operands

If the two operands in an add, subtract, multiply or divide . operation
are of different lengths, the shorter is extended to the size of the
longer before the operation takes place.

9.5.2.3 Add, subtract, divide and modulus

For byte and word add and subtract, in-line code instructions are
produced. Other operations are performed out-of-line. The result
type (which dictates the operation length) is determined from:

add, divide, modulus subtract

sb ub sw uw i sb ub sw uw r-

sb sb sb sw sw i sb sb sw sw i '
ub sb ub sw uw i sb sw sw i i '
sw sw sw sw sw i sw sw sw sw i
uw sw uw sw uw i sw i sw i i
i i . i i i i i i i i i ■„ '■

The cases of +1 and -1 are recognised and treated as increment and
decrement.

v

Pro Pascal User Manual . 11-73

9.5.2.4 Multiply

Multiply operations are performed out-of-line, with the exceptions
noted below. The product of two signed bytes is a signed word, of two
unsigned bytes is an unsigned word, and any other combinations produce
a four-byte product.

The particular instance *1 is recognised, and has the effect of
extending a byte or word value without calling any out-of-line
routine. Similarly *2 causes byte or word to be extended and the
first operand is then added to itself.

A further special case is byte*256, which produces a word result
having the original byte as its more significant half.

9.5 »2.5 Overflow -

As noted earlier, the restricted range code can give rise to the
possibility of overflow, and the programmer must make appropriate
provision. (As a simple example, an addition of two signed bytes is
performed at byte width, and the result classed as signed byte. If
the original operands were 72 and 79 the sum would be out of range.
One useful technique is to use *1 to force widening of one of the
values, so that the operation is done at word width.)

To assist in the tracing of errors arising from overflow, extra code
is introduced when the R option is used in conjunction with the
range-checking options A or I. This code tests the overflow flag
provided in the Z80 after in-line add and subtract operations.

The out-of-line add and subtract for 4-byte operands always check for
overflow. The byte and word divide routines also check for the
particular instances (-128 DIV -1) and (-32768 DIV -1). All these
situations produce run-time error indications.

Pro Pascal User Manual .II - 74

9.6 Interfacing to assembler

9.6.1 Use of assembly language

To make use of machine features not available through the Pascal
language, for example interrupts, procedures may be written in
assembly language and combined with the generated code during the
link-edit process.

9.6.2 Choice of assembler

The Z60 version of Pro Pascal generates relocatable object code in
Microsoft format. Assembly language segments may be processed by any
assembler which generates this format, and- linked with the other
components of the program. In particular, Microsoft’s Macro-80
assembler will be found satisfactory, supporting as it does the full
range of Z80 instructions. The description of the linker in Part III
gives details of certain constraints which must be taken into account.
The . REL files produced by the Pro Pascal compiler will also be
accepted by most other linkers which have been designed to handle the
Microsoft relocatable format.

9.6.3 ENTRY/EXTERNAL linkage

The assembler-coded procedure must be declared within the Pascal
program as EXTERNAL, for example

PROCEDURE asproc; EXTERNAL;

Note that the name is restricted in length to 6 characters by the
assembler. Once declared, the procedure is called in the usual way.

In the assembly language module, the name is quoted _ in an ENTRY
directive, or made global in some equivalent way. More than one
procedure can be placed in the module. Return is made by RET
instruction.

An outer-level Pascal procedure can be called from the assembler code.
The procedure name is quoted in an EXT directive (or equivalent), and
the procedure can then be CALLed. For the purpose of external access,
all outer-level Pascal procedures are given ENTRY status in the
relocatable form of the object program (unless the program is entirely
self-contained), but note that the limitation to 6 characters applies
if calls are to be made from assembler code.

II - 75Pro Pascal user Manual

As an example, the following might appear in a Pascal program:

9.6.4 COMMON data

Pascal variables which have been declared in COMMON can be referenced
directly from assembler code. The compiler treats the variable names
as COMMON block names, and the linker matches them with assembler
COMMON statements. Again there is a limit of 6 characters on the
length of these names.

TYPE time = RECORD
hours: 0..24;
mins: 0..60; _
secs: 0..60;

END;
COMMON

letter: char; ,
timer: time; ' ; •

' BEGIN , , .
' ' . . ' ' ; ; .. i

letter := *P’;
WITH timer DO ,

write(hours:1,':’,mins:1,’:’,secs:1);

In an assembler module linked with the above, letter and timer can be
referenced as COMMON, by e.g.

COMMON/LETTER/
PLETT: DS 1

COMMON/TIMER/
HOURS: DS 1 .
MINS: DS 1 ' x ,

/ SECS: DS 1 .

The assembler declarations must describe the layout of the Pascal
variables. Section 9-4 gives details of storage layout for different
types.-

The COMMON mechanism provides a simple and direct means of conveying
data to or from an assembler-coded procedure.

9.6.5 Contents of IX

The generated Pascal code depends upon the contents of the IX register
being unchanged on return from a procedure. Assembler-coded
procedures must either leave IX undisturbed or save and restore it.'
The stack pointer must also be left after return at the same position
as before the call (which is the natural result of returning from a
simple procedure by means of a RET).

v

Pro Pascal User Manual •11-76

P3

SP

On return, parameters as well as link must have been removed.

9.6.6 Parameters

When a procedure has parameters, the actuals are pushed on
prior to the call. The first parameter is pushed first,
furthest from the return link on entry to the procedure.

the stack
and so is

9.6.6.1 Value parameters •

Values of simple type (see 6.1.1) occupy 1, 2, 4 or 8 bytes (see 9.4.2
for details). The corresponding number of bytes is pushed onto the
stack, except that a 1-byte value is passed by pushing a pair of bytes
(with the value in the high-addressed byte of the pair). In the case
of 4- or 8-byte values, the high-order pair is pushed first, followed
by the lower-order pair(s).

Set and dynamic-string values are passed adjusted to the length of the y' ■
formal parameter. - , -

Structure value parameters (arrays and records) are passed by address. r.s
■ ■■ ■ ■ ' '7'

9-6.6.2 VAR parameters ?

In all caseT, the address of the "first" (i.e. lowest addressed) byte -
is passed.

9.6.7 Function results

The result of a longreal function is returned in an 8-byte COMMON .
variable called $QACC. For any other type the result is returned in
registers, determined by the length of the type:

. ' ' ■

1 byte result returned in A ' ' _
2 bytes result returned in HL ' ' ■
4 bytes result returned in HLBC

(H most significant, C least)

Pro Pascal User Manual 11-77

/ , . - . i ■ ' . - -

9.7 Non-CP/M object programs

Pro Pascal can be used to generate object programs which are for the
Z80 processor but independent of CP/M. This subsection provides some
indications for doing this. It is assumed that the user has
appropriate experience to code interfacing routines as assembler
procedures.

9.7.1 Compiled object code

The generated object code (as distinct from the run-time library)
contains no use of CP/M facilities. The code itself is pure, COMMON
variables and those declared at the outer level of a program or
segment are allocated in static memory, parameters and local variables
of procedures are placed in the run-time stack.

9.7.2 Run-time library / '

The coding of the routines in the run-time library (in particular the
integer and floating-point arithmetic and the set and string
operations) makes them able to be used re-entrantly, i.e. as with
compiled procedures the code is pure and the stack is used for all
workspace requirements.

Exceptions to this general rule are the heap management (which keeps
some base pointers in static storage), longreal arithmetic (which uses
an 8-byte "software accumulator", $QACC, in static storage), and the
file-handling routines. The latter are in any case oriented round
CP/M devices and file operations.

9.7.3 RST instructions and alternate registers

If the "compact code" option is exercised, RST 2 to RST- 4 are used as
short calls to out-of-line sequences; this is the only application of
the RST instructions. No use is made of the alternate registers
(which are therefore available for interrupt handlers).

9.7.4 Library modules H1LIB and H2LIB -

Source code for these modules is included in the distribution package
for the benefit of users who wish to generate -non-CP/M object
programs, and they should be adapted to meet any special requirements.,

H1LIB contains the routine $HINIT, which is called^when a program is
first entered, sets up the stack and heap, and initialises the
standard files input and output. The console buffer is declared as a
common block ($FLNB), and its size can be modified if required. The f
variables $DCLN, $DNLGT, $DSLFL and $DPRST relate to the option for
maintaining source line numbers at’run time (the last is actually in
H2LI3). $MEMRY is filled in by the linker with the address of the
first free location above the loaded program, which is the starting
point for file areas and the heap.

H2LI3 contains the routines for program termination and for run-time v
error reporting. There is also a routine $BDOS through which all CP/M
calls are routed.

. << ; at' \

9.7.5 programs

This section outlines at a general level some considerations
to the preparation of object programs to run in a

es^are^written in

Preparation of non-CP/M

a
er .the spe<^j^^*noutines included.on- equivalents

ted

^ile tcr-rep
F icluded in

ences to
module

rocea

related
non-CP/M

environment. In the main, internal processing presents few problems -
the difficulties.: "tend to be in the area of input/output. This may

which are not addressable via CP/M.

Oneg^proach H^-^o dispeafce^entirely with Pascal file handling, and to
lief iK^pFh'd^urW which interface with^the devices and allow
be transferred. The Interfax
declared as EXTERNAL ip
link-edit PCPce^fc^In somq^i

Krays iWely t<»pesült

.this approach is a

JINOUT and SFINIO.

r-at
K
B’

data to
assembler,

art; i: and included in the

^version of H1LIB shoul
ch^hi^e been^^emove^xthe/^*

ef er­ rs t

may

e or

Pro Pascal User Manual II - 79

However, if the application involves input and/or output of
information formatted as text (i.e. character data separated into
lines by c/r 1/f), it may be worth retaining the standard files INPUT
and OUTPUT. During initial testing, the CP/M console (or a disc file)
can be substituted for any special device to be used in the eventual
application, which may be a significant help. Also, the normal range
of Pascal operations (get, put, read, write, etc.) is available, with
any conversions that may be involved. Against ^he convenience must
however be set the extra library modules that are needed to implement
the facilities.

In Pro Pascal, a file variable consists of a pointer to an information
block referred-to as File Control Area or FCA. (The FCA is kept by
the Pascal software, and is distinct from the FCB needed for CP/M disc
files.) In bytes 6 and 7 of the FCA for a textfile is the address of
a routine which will be called to obtain each input character, and in
8 and 9 the address of a routine which will be called to pass each
output character. The character in both cases is kept in byte 23. In
H1LIB, the call to $FINIO causes FCA’s to be set up for the standard
files INPUT and OUTPUT, after which bytes 6 and 7 of the FCA for INPUT
contain the address of a routine to place the next character from CON:
in byte 23 (using the "read console buffer" BDOS call), and similarly
bytes 8 and 9 of the FCA for OUTPUT contain the address of a routine
to take the character in byte 23 and transfer it to CON: (using the
"console output" BDOS call). H1LIB can be modified to replace the
default entry addresses with the addresses of routines which read from
or write to non-CP/M devices, observing the convention that byte 23 of
the FCA is used as a buffer. The higher-level file handling software
will then invoke the supplied routines whenever get, put, read or
write operations address these files.

1 ' '
■ ' ‘V: ’

Pro Pascal User Manual

INDEX

In this index, word-symbols are distinguished by the use of capital
letters (as in BEGIN). Standard names (such as reset, maxint) and
words from the formal syntax (such as array-ty^e,- identifier) are
distinguished by not having an initial capital letter. - x >

$MEMRY, 78 -
SQACC, 76, 77

abs, 25, 54
actual-parameter, 43, 46
actual-parameter-list, 11, 22, 46
adding-operator, 18
Addition, 24, 32, 72-73
addr, 65
AND, 1, 18, 26
apostrophe-image, 4
append, 59, 62
arctan, 54
Arithmetic operators, 24, 72-73
ARRAY, 1, 20, 36
array-type, 20, 35, 36, 53, 76
array-variable, 20, 70
ASCII, 4, 27, 33
Assembler interface, 45, 74-78
assign, 58-63
Assignment-compatible, 10, 16, 20, 22, 23, 39, 46, 50
assignment-statement, 10, 11

Base type, 26-28, 38, 39
BEGIN, 1, 8, 12
block, 7-9, 11, 16, 29-31, 40, 41, 44, 58 .
Boolean operators, 26
boolean-type, 13, 15, 26-28, 3b 33, 38, 51, 69
buffer-variable, 19, 21, 49, 51

CASE, 1, 14, 37
case-constant, 14, 37
case-constant-list, 14, 37
case-index, 14
case-list-element, 14
case-statement, 12, 14
chain, 63, 64
character-string, 1, 4, 22, 30, 36
char-type, 4, 33, 36, 38, 50, 51, 53, 60, 69
checkfn, 59, 62
chr, 53
close, 58, 59, 61

</>

II - 81Pro Pascal User Manual

4

53, 69

echo,
ELSE,
Empty
Empty

59, 62
1, 13
file, 49
set, 23, 27

27, 28, 35, 39, 51, 55-57, 60, 70
20

empty-statement, 10
END, 1, 8, 12, 14, 37
entire-variable, 16, 19
enumerated-type, 31, 34

decimal-integer, 3
delete, 56
Dereferencing, 11,

eof, 48-50, 59
eoln, 38, 48, 50
erase, 59, 61
Errors (run time), 14, 25, 48, 49, 55-57, 67-68, 73, 78
Exception handling, 67-68

17, 21, 47

dynamic-string-type, 20,
dynamic-string-variable,

comment, 5, 6
COMMON, 1, 7, 40, 44, 58, 69, 75, 77
Compatible, 14, 23, 26-28, 37, 39, 47
compilation-unit, 7, 45
Compiler, 5, 7, 17, 66, 71, 74, 75
Compiler directive, 5, 6
Compile-time options, 5, 6, 71, 73, 77
Component, 21, 36-38, 50, 51, 70
compound-statement, 8, 9, 12
CON:, 5, 58, 60, 78, 79
concat, 55
conditional-statement, 12
CONST, 1, 30
constant, 4, 14, 22, 30, 34, 35, 37
constant-definition, 30
constant-definition-part, 8, 9, 30
control-variable, 16
copy, 55
cos, 54
CP/M, 5, 58-64, 77-79
cstat, 66

Device, 5, 58-60, 78, 79
digit, 2, 3
digit-sequence, 2-4
directive, 1, 2, 5, 41, 45, 74
dispose, 52, 66
DIV, 1, 18, 25, 72-73
Division (integer), 25, 72-73
Division (real), 25, 32
DO, 1, 15-17
DOWNTO, 1, 16
dreset, 66

exp, 54 .
Exponent, 4, 70
expression, 10, 11, 13-16, 18-20, 23, 26-28, 46, 55-57.
EXTERNAL, 2, 8, 45, 66, 74, 78

factor, 18, 19, 22, 23, 46
false, 13, 26, 28, 33
File Control Area, 79
File Control Block, 79
Field, 2, 17, 20, 37, 52, 70
field-designator, 19, 20
field-list, 37
Field width, 51
FILE, 1, 38
file-type, 21, 35, 38-39, 43, 58-61
file-variable, 21, 48
fixed-part, 37
Floating-point, 3, 4, 31, 32, 77
FOR, 1, 16
formal-parameter-list, 42, 43
formal-parameter-section, 43
for-statement, 15, 16
FORWARD, 2, 45
fstat, 59, 61
FUNCTION, 1, 42, 45
Function, 2, 7-9, 11, 22, 41-47, 76
functional-parameter-specification, 43, 44
function-designator, 19, 22
function-heading, 42, 44

get, 49, 50, 59, 60, 79
getcomm, 63, 64
global-parameter-list, 7, 8
GOTO, 1, 11, 61, 67
goto-statement, TO, 11

H1LIB, 78-79
H2LIB, 78-79 '
Heap, 21, 52, 62, 66, 69, 77, 78
hexadecimal-integer, 3
hexdigit, 3

identifier, 1, 2, 7-9, 16, 19, 20, 22, 30-32, 34, 35, 37, 40, 42
identifier-list, 7, 34, 37, 40, 43
IF, 1, 13
if-statement, 12, 13 '
Implementation-dependent, 58 et seq.
IN, 1, 18, 28
indexed-variable, 19, 20
Indexing, 11, 17, 20, 47, 70
index-type, 20, 36, 39
input, 7, 48-50, 58, 60, 78, 79

Pro Pascal User Manual ' - 11-33

insert, 56- ' ■
Integer division, 25, 72-73
integer-type, 3, 20, 24, 25, 27, 30, 32, 33, 36, 39, 46, 50, 51,

53-57, 69, 72-73, 76
Interrupts, 74, 77
iport, 68 A . .
IX register, 75

KBD:, 60 •

LABEL, 1, 29
label, 1, 2, 5, 9-11, 29
label-declaration-part, 8, 9, 29
Lazy input/output, 59
length, 56
letter, 2, 3 '
Link-edit, 45, 69, 74, 75, 78
Link-time options, 69
In, 54
Logical operations, 26
longreal-type, 3, 4, 24, 25, 27, 30-32, 39, 46, 50-54, 70, 76, 77
LST:, 60

Macro-80, 74
maxint, 3, 30, 33
memavail, 66
member-designator, 23
MOD, 1, 18, 25, 55, 72
move, 63
Multiplication, 24, 32, 73
multiplying-operator, 18

Negation, 24, 26
new, 21, 38, 52
NIL, 1, 22, 38
NOT, 1, 18, 19, 26
NUL:, 60

odd, 55
OF, 1, 14, 36-38
Operand, 18, 24-28, 71-73
Operator, 18, 19, 24-28
oport, 68
Options (compile-time), 5, 6, 71, 73, 77
Options (link-time), 69
OR, 1, 18, 26
ord, 53
ordinal-type, 14, 16, 23, 28, 31, 34, 36-39, 53, 54, 69
OTHERWISE, 1, 14
output, 7, 49, 51, 52, 58, 78, 79
Overflow, 71, 73 '
ownerr, 67-68

Pro Pascal User Manual II - 84

pncky 53PACKED, 1, 4,’35, 36, 39, 47, 53
page, 49
Parameter, 11, 22, 43-47, 69, 76, 77
peek, 65
Pointer, 11, 17, 21, 22, 38, 52, 70 A ,
pointer-type, 21, 22, 31, 38, 42, 52
pointer-variable, 21, 52
poke, 65
port, 68 -
pos, 57
pred, 54
Predeclared, 7, 32, 58, 59, 66, 78
Predefined, 30-32, 35, 38
PROTEM, 58
procedural-parameter-specification, 43, 44
PROCEDURE, 1, 42, 45
Procedure, 2, 7-9, 11, 41-47
procedure-heading, 42, 44
procedure-statement, 10, 11, 46
procfunc-declaration, 41
procfunc-declaration-part, 8, 9, 41
procfunc-heading, 41, 42
procfunc-identification, 41, 45
PROGRAM, 1, 7
Program, 7-9, 30, 32, 33, 40, 58, 61-69, 74, 77, 78
program-heading, 7
PUN:, 60
put, 49, 51, 61, 79
putcomm, 63, 64

ramfile, 59, 62
rand, 66
Random access, 59-61
RDR:, 60 * -
read, 50, 60, 66, 79
readln, 50
Real division, 25, 32
real-type, 3, 4, 24, 25, 27, 30-32, 39, 46, 50-54, 70, 76
RECORD, 1, 37
Record, 19, 37, 46, 52, 70, 76
record-section, 37
record-type, 17, 20, 35, 37, 52, 76
record-variable, 17» 20
record-variable-list, 17
referenced-variable, 19, 21
Registers, 75-77
relational-operator, 18
Relational operators, 18, 27, 28
rename, 59, 62

■ . / c A -
A'; • ' 7 '" '' ■ ' A< ■ '^A, ■ ? -.7 " \ ■ •

- ■ - ' * ■ ac A? ■!
Pro Pascal User Manual ' _

REPEAT, 1, 15
repeat-statement, 15
repetitive-statement, 12, 15
reset, 7» 49, 58, 60-63
Restricted-width arithmetic code, 71-73
result-type, 42
rewrite, 7, 49, 58, 60-62
round, 53
Run-time errors, 14, 25, 48, 49, 55-57>

/ ' ' s G 77 1 7
•A .■■■■.< - A..A- A'A ,a > ■■ • r ' aa.a..a-7
A ■ A • 'A' A A ■ AzAAv 7 \ .■ " A-A ■ . '.A ■
IB IB G7|BGW

a 77.. aa:_.^ - ; ' " G77 7-' A
J; I 11-85

67-68, 73, 78

scale-factor, 3, 4
Scope, 7, 9, 17, 44
seek, 59-61
SEGMENT, 1, 8
Segment, 7, 8, 30, 32, 33, 40, 45, 58,
segment-declarations, 8
segment-heading, 8
separator, 1, 5
SET, 1, 38
set-constructor, 19, 23
Set operators, 26
set-type, 23, 26-28, 35, 38, 39, 70, 76

’ sign, 3, 18, 30, 32, 33
simple-expression, 18
simple-statement, 10
simple-type, 27, 31-34, 42
sin, 54 '
sizeof, 65
special-symbol, 1
sqr, 54
sqrt, 54
Stack, 66, 67, 69, 75-78
Standard constants, 30, 33
Standard files, 7> 78
Standard functions, 41, 48, 53-57, 59,
Standard procedures, 41, 48-53, 56, 57,
Standard types, 31, 32, 38
statement, 8, 10, 12-17
statement-part, 7-9, 29, 40
statement-sequence, 12, 15
Storage allocation, 69-70, 77
str, 57
String constant, 4, 59
string-element, 4
string-type, 27, 28, 36, 39, 51
structured-statement, 10, 12
structured-type, 31, 35
subrange-type, 31, 34, 69, 71-73
Subtraction, 24, 32, 72-73
succ, 54

* .7. ' '

z 7 - ■.

69, 77 ■ ' . - : '

. ‘ r 7
■ ' 'A-;- -Aa7. 7 77a'A -v a '7j .A'-.7a< ' ,' 7- 7:'.';a

G-G>"-- Ä G
.. -.....................77A'A <sa z7 | a • ■ ; - . v < G | . 7a? ••

: ‘ 7- - 7 ' ’G .■ .• : -7'7 ■ A<;

7 • ■ ' 7*' .. < • , ■ /•■■■— ■ A. ' 7 '■ . . 77 G 77 J :

' : ; 7 .. 7 - 7" A '~ . 7 ? ;

' ' /
' - 7 ; " 1 - 77 * t. 7' A

■- < : A. " '-' A -* ' ' '■

1 ' ^7' '' >7- ■ A : W

61, 62, 65 -
59-65 k z

.■ •. . - .■ a 7 ‘7'7 7 ■■7';7j- 7 aa ,

• ■ ■ . / ■ A: "■-;,7'
< - ^ Aa . /? A; 7-; - a-7 ■ 7 V

:■ .• J - .■ /'^Aa7 'riA ?

■ - ? .. B ■; ^7G7GG Bill

''G "I’BC BAI IBB

;'^7„777 /. - 7-777.. -'7'7|a^

' 4 :

- ' > 7 7 7 '7 a . • : 7'z-:< 7. GIB

■. ' ; -■ 7 :z7 7 -A^ '■ - 'A' ’ -Aa 7A-. A? ' A ■

Pro Pascal User Manual '

tag-field, 37, 47
tag-type, 37, ’52
tern, 18
text, 7, 38, 48, 59
Textfile, 38, 48-51, 57, 59, 60, 62
THEN, 1, 13
TO, 1, 16
token, 1,5
Transient Program Area, 69 /
true, 13, 15, 26, 28, 33
trunc, 53
TYPE, 1, 31
type-definition, 31
type-definition-part, 8, 9, 31
type-denoter, 31, 35-38, 40

underscore, 2
unpack, 53
unpacked-structured-type, 35
unsigned-constant, 19, 22
unsigned-integer, 3, 33
unsigned-longreal, 3, 4, 32
unsigned-number, 1, 3, 22, 30
unsigned-real, 3, 32
UNTIL, 1, 15
update, 59, 61

value-parameter-specification, 43
VAR, 1, 40, 43, 47, 76
variable-access, 10, 17, 19-21, 43, 46, 47
variable-declaration, 40
variable-declaration-part, 8, 9, 40
variable-declaration-sequence, 40
variable-parameter-specification, 43
variant, 37, 52
variant-part, 37, 52

WHILE, 1, 15
while-statement, 15
WITH, 1, 17
with-statement, 12, 17, 52
word-symbol, 1, 5
write, 51, 52, 79
writein, 52

Z80, 68, 71, 73, 74, 77

A ■ MA i MAAAv/ ' ' : A A A?’-
■.•>•;/. : -r, . ; \ ' "'■■.< X . '■ , . . ’ 7'.■<''" ■. '. - . <•_ ■ ■- -

77.,. 7. 7<-<7 7. ; 7; ’ -'. ■ 7< -' •■ ; •'• i' ' 7-7' 7/7'

•- ■ . - . ■ ■ 7 '\ ’ 7 ■ ‘ 7. ; . .

7 :- A ' ' . - ‘ V ‘ 7 . .. "

PART III - PRO PASCAL OPERATION

. ' '7 ‘7 7 77 7 V ■ .7 i'v77 -
■ ■•:.;/ .■/■ i7'-'<. ■ *• . • \ ;------■/ ■■ ; .\ . :

- A; A^ A;AA ABIWa
.. \ . _ ■ . / ' -. . . 7 ■ -

. '

^ ... ' x "7 -7 / ; ■ ■ ; ’77 '7'.’ 7. ■ ■ 7.-7
■•7 " 7 ' '■ ■ ■ ' *77'7 ■ / ' 77 ' V ■ 7:7^ > -7 7 7^

x ' 7 x

: . ■ .■ . a . -7.7^:7
■ . ' ■ 1 7'7 • ;;>7 ' ./ • : '■ 7 7-

1 Installation details 1 7^'7

1.1 Hardware requirements 1 ' V >

1.2 Delivery and installation 1

2 Simple compile and link 3 7 A

3 Operation of the compiler 6

3.1 Form of invocation 6
3.2 Compile-time options 7 . < < . - 7^ 7 7'
3.3 Compiler messages 10 f'.

4 Operation of the linker 7 12
.7 ■ ' '■ 7-7.7777.;. 7V7.^..7;j.v;7v

4.1 Form of invocation 12
4.2 Link-time options 13
4.3 Linker messages 15 ;7U >V'777>. •'

5 Operation of object programs
7 ■ . . ■ ; ■ ■■ . 7 7 / >■ 7'

18

5.1 Run-time errors 7 18 ■ 77- ? :7"7 7.7777>
- < . - ' ■ . - '• ■

’ . 7 ... 7 . " -77.''.:-■ 77' " '

6 Operation of the librarian ‘7/ -.719^
6.1 Form of invocation 19
6.2 Report options 20 7
6.3 Module selection 22 . , ■ ' 777' ;':7777
6.4 Librarian messages 23 7'A AM ; ! Al

.: 7< ■< 7... 7^7' , 7.^7z^^ 77 ,77:. .

7 Cross-reference generator 24 ' 77vVAAA^

7.1 Simple cross-reference 24
7.2 Additional facilities
7.3 Messages 24 .. . ' ■ - ..

; ; ■ ■' ' ■ ' ' i > /. ■

8 The configuration program .7 25 '
8.1 Disc drives 25
8.2 Compile-time options 25 7-7 -7-V 77;

' : ' . ■ ‘. A? ’ - I- * A. ■? ; • . ■ A'

IllPro

INSTALLATION DETAILS1

Pascal User Manual

1.1 Hardware requirements

The hardware required to run the Pro Pascal compiler is a computer
with Z80 processor, a console, and at least^^OOK bytes of disc
storage. CP/M (version 1.4 or later) or CDOS is needed, and memory
(RAM) of 52K bytes. (To be exact, the CP/M Transient Program Area
including CCP must be at least 44K bytes.)

The minimum requirement for object programs is a computer with Z80
processor and console, running CP/M (version 1.4 or later) or CDOS.
Other requirements are dependent on the program. It is possible to
generate object programs that do not use CP/M at all - see Part II,
section 9.7.

1.2 Delivery and installation

The Pro Pascal software is delivered on a disc, or discs,
the following files:

containing

PROPAS.COM Compiler (Pass 1)
PROPAS2.COM Compiler (Pass 2)
PROPAS3.COM Compiler (pass 3)

PROPAS.ERR Compile-time error messages

PASLI3.REL Run-time library ;■ ?■ ., ' • > ■ -

PROLINK.COM Linker program
• 1

PROLIB.COM Librarian program

XREF.COM Cross-reference generator

PCONFIG.COM Configuration program

H1LIB.MAC,H2LIB.MAC Library module sources - see Part II, 9.7.4

together with a few example source program (.PAS) files. If there are
any special comments relating to the software, for instance
descriptions of extra files included on the disc, they are placed in a
file called READ.ME. If this file is present, consult it before
installing the software.

PROPAS.COM
PROPAS2.COM
PROPAS3.COM
PROLINK.COM
PROLIB.COM
XREF.COM
PCONFIG.COM

Pro Pascal User Manual -J - < < ' 'III - 2

Before use, a Pascal system disc (or discs) should be established.
Normally, the .COM, .ERR and .REL files are added to a disc, containing -
at least a CP/M system, a text editor (ED, for example), and PIP.
During compilation and linking, this disc is in the default drive.
There must be sufficient space on it for the compiler's work files,
which typically occupy together as much space as the Pascal source
file (e.g. 16K bytes for a fairly large program). It is possible to
hold Pascal programs on the same disc, but to ajoid the need for ,
periodical clearing out they are usually kept on another disc (or
discs) mounted on a different drive.

If the available disc capacity makes the normal arrangement
unworkable, the PCONFIG program should be used, to distribute the
supplied files and/or the compiler’s work files onto disc drives other
than the default drive (see section 8).

In the descriptions which follow, it is assumed that a Pro Pascal
system disc is on the default drive A, and a Pascal source program
disc on drive B. '

Pro Pascal User Manual III - 3

2 SIMPLE COMPILE AND LINK

To prove that the software is installed correctly, copy the sample
program RESULTS.PAS to the Pascal program disc. Set up the system
disc in A and program disc in B. After the prompt A>, type

PROPAS B:RESULTS

and the following output is generated on the console:

A>PROPAS B:RESULTS

Pro Pascal Compiler - Version zz 2.1
Copyright (C) 1982 Prospero Software
Serial No: nnnn

Pass 1 '

Pass 2 ,

Pass 3

Name: RESULTS Lines: 58
Code: 657
Data: 20

Pro Pascal Linker - Version zz 1.6
Copyright (C) 1982 Prospero Software
Serial No: nnnn

Linking:
B:RESULTS.REL
PASLIB.REL

Data: 0103 1F81
Program: 0103 1F81
Start address: 011B

Executable file: B:RESULTS.COM

Note that the linking operation is entered automatically. The result
of linking is the file RESULTS.COM on disc B.

The command STAT B:RESULTS.* shows three files: the source .PAS, the
object program .COM, and also the "relocatable1* version .REL which is
generated by the compiler and read by the linker.

B:RESULTS.COM
RESULTS.COM

Pro Pascal User Manual III - 4

Program RESULTS is designed to read from the file '’input" which is by
- default assigned to COM:, and write to file "listing" /which is

assigned to RESULTS.PRN. Execute the program, and type a few lines
such as those in the sample below, ending with Ctrl Z on a new line.
The contents of RESULTS.PRN can then be displayed.

A>B:RESULTS
105 76 65 47 59 81 69
108 55 58 68 67 42
110 67 39 72 73 65 71
114 70 78 76 82
119 69 43 38 46 39
121 52 47 32 43 48 55 72
122 74 56 65 42 88 69
124 46 63 72 42 59 60
127 50 51 9 ■48 67
*Z

A>TYPE RESULTS.PRN
105 76 65 47 59 81 69 397 66.17 .
108 55 58 68 67 42 290 58.00
110 67 39 72 73 65 71 387 64.50
114 70 78 76 82 306 76.50
119 69 43 38 46 39 235 47.00
121 52 47 32 43 48 55 72 349 49.86
122 74 56 65 42 88 69 394 65.67 -A?: T-

124 46 63 72 42 59 60 342 57-00
127 50 51 9 48 67 ' 225 45.00

Winner is number 105 with average 66.17

A>

Pro Pascal User Manual

To demonstrate the complete process, use ED to create a' new source
program H.PAS (source files should normally be given the .PAS
suffix). As a variation, this could be put on the default disc. The
program consists of

PROGRAM h(output); . -
BEGIN
writein (output, ’Hello’);

END. , . .. O

When this has been set up, type ,

PROPAS H

File H.COM is generated, and when executed will display Hello on the
console.

Of course, the Pro Pascal software is designed to be able to handle
much larger programs than this, but the operation is not necessarily
any more complicated.

The extra facilities of the compiler and linker are explained in the
next two sections. ,

H.COM

Pro Pascal User Manual ■ ' III - 6

3 OPERATION OF THE COMPILER ‘ '

The compiler processes a source file, containing a Pascal PROGRAM or
SEGMENT, and converts this into a binary output file in Microsoft
relocatable format.

The previous section has described the simple form of operation of the
compiler, in which all the compile-time options^'are left at their
default (or "off”) values. In this section, the various options and
messages are explained.

3.1 Form of invocation

The PROPAS command may be given with, or without, a source filename:
the "one-line" and "conversational" modes of invocation, respectively.

3.1.1 The one-line command -

When a source filename is specified, it may optionally be followed on
the command line by the character "/" together with one or more
letters, as in:

PROPAS B:RESULTS/NAP
■ . ' ~ ' ' ■ ■ •. /' ■ . r. -

Each letter stands for a particular compile-time option (see section
3.2). The letters may be run together, as in this example, or may be
separated by spaces, commas, or further / characters. It makes no ? v
difference whether they are in upper or lower case.

. . . ■~ _ .. ,

3.1.2 Conversational mode \

If no file name is given in the first command line (i.e. just PROPAS),
a conversational mode of operation is entered. The first request is (•
for the name of "the source file, the response being e.g. B:RESULTS, Ä .,
terminated by Return. If no filename extension is given, the , default -
.PAS is supplied automatically.

There is then a series of questions relating to compile-time options.
There are three possible responses to each question in the list: / M':

Y or y to select the option
N or n to reject the option and go to the next
. to terminate the list.

■ . ' ■ :'v " X

(Note that any characters other than these are ignored, and that it is
not necessary to press Return for the reply to be accepted.) When z
the list is terminated, or the end is reached by Y and N responses,
the compilation process begins. • : '

Pro Pascal User Manual III - 7

3.2 Compile-time options

The various compile-time options are described in the following
sub-sections, the associated letter for invoking the option in a
one-line command being given in brackets in each sub-heading. The
default setting for each option is ’’off”, or N, when the software is
shipped, but this can be altered by runnning the.configuration program
(see 8.2).

3.2.1 Source listing (L) 7

A listing of the source can be generated as a by-product of
compilation. Each line is preceded by its line number within-the file
and by the relative address of the start of that line within the
object code. The listing is output to a file with the name of the
source and extension .PRN, on the same drive as the source. After the
compilation it may be listed or typed as desired.

Specifying this option also causes the current source line to be
displayed as part of any compile-time error messages.

3.2.2 Compact code (C)

If the compact code option is invoked, the compiler substitutes
shorter (but somewhat slower) alternatives for certain object code
sequences. The amount of difference this will make depends on the
nature of the program, but might typically be in the region of 1GJ
saving in compiled code.. Use of the option would only be recommended
for large programs.

If the program is segmented, and the option is to be used for any of
the segments, it is essential that it be used also when compiling the
main program. (The latter sets up the mechanism on initial entry.)

Compact code uses RST instructions 2, 3» and 4. '; <3

3.2.3 Restricted-width arithmetic (R)

The effect of specifying this option is fully described in Part II,
section 9.5. If in doubt as to its meaning, simply leave it in its
default (i.e. off) state. As with the /C option, its use would only
be recommended for large programs and/or for those in which speed is
critical (processing of real-time events, perhaps).

Pro Pascal User Manual III - 8

3.2.4 Source line numbers (N)

This option instructs the compiler to insert extra code into the
object program to maintain during execution a record of the source
line number corresponding to the code currently being obeyed. This
line number will be displayed in the event of any run-time error, and
if it is within a procedure then also the line number at the point of
call, and the sequence of calls is then followed ^Lght back to the
main program. (For further details, see under section 5.)

3.2.5 Range checks (I and A)

Range checks can be made on values of enumerated, subrange or set
type. The checks are carried out just? before a value is to be used,
and take into account the specific destination. The checks can be
invoked separately for inaex bounds (I) and for assignments (A) (which
includes value parameters).

Extra code is generated, checking the expression value against the
precise stated bounds of index, variable, or formal parameter.
(Constant values are checked at compile time.) Range checks can be
valuable in the early stages of program testing to pick up errors such
as use of a variable before any value has been given to it, and may
usefully be kept longer for index bounds.

3.2.6 Checks on pointers (P)

This option causes checks to be inserted at-each "pointer dereference"
(p*) in the program. The address resulting is tested to be reasonable
as the position of an object in the heap. The check will certainly
detect any attempted use of a pointer which has been set to NIL, and
has a good chance of picking up cases where no value has been
assigned.

3.2.7 Hold before REL output (H)

The hold option is provided mainly to ease the compile/link process
when limited disc space is available. The compilation process is
suspended before generation of the .REL file to allow the disc to be
changed; in this way, .REL files can be kept separately from the .PAS
sources.

A 5 •• ■ •• '■•.•■ '■• ' ' ■ ' Z "*•• ' • ’f- • >•' ■'-■ -t •. - A v;f •? ,‘ ■ ■ . < >• • ,. • •••; ■ '.,■ ■-— - • • • . 'f. ■ .-• •. « • *1 •

Pro Pascal User Manual ' III -- 9 \ x
.■"• . ' ■' ■ ' ' ■ — \ : v? - ■ . -

*' ■ ■ - /. < " /■". ■ '■ 7 < ' > - .■ '■/' > J>-'

3.2.8 Accept only strict Standard Pascal (S) '

When this option is invoked, the compiler disables use of the
non-standard features of Pro Pascal, namely:

segmentation (SEGMENT/COMMON/EXTERNALj,
OTHERWISE clause in CASE statement, A .
additional predefined types, procedures'or functions, .
compiler directives (source file insertion, page throw), . V
hexadecimal or longreal constants,
underscore characters within identifiers.

If a program' is to be transferred to a different Pascal
implementation, this check will pick out any points which may. call for
attention.

3.2.9 Double precision floating-point constants (D)

With this option, the compiler is instructed to
unsigned-real constant (see Part II, 1.1.5.2) as the
unsigned-longreal constant (see Part II, 1.1.5.3). That
the following constants

1.2 12e-1 0.1200E+1

is treated just as if it had been written as

1.2D0

treat every .
corresponding '
is, each of •

A possible use for this option is when it is desired to run an
existing program (using reals) in the extended-precision mode which
longreal provides. Provided care is taken in handling any EXTERNAL
interface which involves reals, a simple one-line edit to include the
TYPE declaration

real = longreal

together with recompilation using the D option, may be all that is
needed.

3.2.10 Console output to .LOG file (G)

When this option is specified, the messages output by the compiler to
the console during compilation are written also to a disc file. The
name of the file is the same as that of the source, with the extension
.LOG. This can be a useful facility, both for inspection of
compile-time errors and for recording the compilation status of each
source program (code size, etc.).

Pro Pascal User Manual < - III - 10

' j ’ -

3.3 Compiler messages

When the compilation process proper begins, messages are output to the
console to report progress and any irregularities. At- any stage, the
compilation can be interrupted by pressing any key, and then either
resumed or aborted.

3.3.1 Normal messages

In the main, these are self-explanatory. The start of each of the
three passes is indicated. If the compiler activation was
conversational, each pass also reports the amount of free space
remaining, from which may be judged the limit on source program size
that can be handled in any particular Transient Program Area. ,

If any use is made of the source file insertion facility (see Part II,
1.2.1.1), then the line numbers at which the included files are
started and ended are written to the console. The first column of
line-numbers represents the overall line numbering, as used by the
compiler to number lines in compile-time error messages and in the
listing (.PRN) file. Each subsequent column of line-numbers, up to J
the maximum allowed depth of 4 "current" source files, represents the \
line number within the source file at which an "event" occurred,
namely, at which reading of another source insert file started (the
filename is printed against the fictitious line number 0) or ended (a
fictitious line number one greater than the actual last line of the
file is printed).

On completion of compilation, the number of source lines, and the
sizes of the code and data areas generated, are reported. These are .
all decimal values. The data size does not include any COMMON !
variables. If there are no EXTERNAL references, and the one-line form '<
of command was used, the linker is entered immediately; in the
conversational mode, the question

Link ? (Y/N)

is output.

Ill - 11

? filename

A single error
a number of re]

in error is
line.

give rise to
declaration,

possible for

compilation are
or on disc (e.g.

jports. An obvious instance is

counts should

Pro Pascal User Manual

3.3.2 Error messages

If the source filename is illegal, or the file does not exist

a missing
It is also

message is produced, and the compilation processes terminated (in the
one-line command mode) or the request for a file name is repeated (in
the conversational mode).

Errors in the source program may be detected during any of the three
passes, though the majority generally appear in pass 2. The format
in each case is source line number and error code, followed by an
explanatory sentence if the file PROPAS.ERR is present. In Appendix B
is a list of the error codes, with somewhat fuller descriptions where
appropriate.

If the source listing option (L) is in force, the line
displayed immediately after the error number(s) for that

as the programmer sees it, may sometimes

which will be signalled at each reference.
one error to have a "cascading” effect. Large error
therefore, not be taken at face value.

The other possible problems which may arise during
connected with running out of space, either in memory
insufficient room for the .REL file). Such events give rise to error
messages in the normal run-time error format (see under section 5).
In particular, an error S or H signifies that the compiler’s work
space has become full; the only remedy for this is to reduce the size
of the source program, perhaps by splitting it into several segments

Pro Pascal User Manual - ' . \ ill - 12

4 OPERATION OF THE LINKER

The linker pröcesses a sequence of one or more files in Microsoft
relocatable format and combines them into an executable .COM file.
There is essentially no limit to the size of the executable file,
whatever the size of work area available, since it is built up using a
paging (rather than memory-resident) technique.

a, '

The linker allocates storage to items in the order in which they are
encountered in the input file(s), in increasing memory addresses
(except for ASEG items, which must of course be loaded at specific
addresses). There is an option, however, to request that "code" and
"data" items be separated from one another. In either case, the
Microsoft convention is adhered to, whereby the address of the byte
beyond the top of the data area is stored by the linker in the word
named $MEMRY (if such a symbol is encountered).

All addresses printed, or requested, by the linker are in hexadecimal
(without a trailing ’H’ character).

There is both a "one-line" and a "conversational" mode of operation,
the latter making available to the user a number of link-time options.

4.1 Form of invocation

The simple mode of executing the linker may be illustrated by'
returning to the first example in section 2. To repeat just the link
part of the process, type

PROLINK B:RESULTS,PASLIB/S

which will cause the relocatable-binary file RESULTS.REL on disc B to
be read, the Pascal library file PASLIB.REL to be scanned (selecting
only the required modules), and the executable file RESULTS.COM to be
generated. The console output is as follows:

Pro Pascal Linker - Version zz 1.6
Copyright (C) 1982 Prospero Software - . ? /
Serial No: nnnn ' '

Linking:
B:RESULTS.REL
PASLIB.REL

Data: 0103 1F81 - ;
Program: 0103 1F81
Start address: 011B

Executable file: B:RESULTS.COM

RESULTS.COM
B:RESULTS.COM

Pro Pascal User Manual III - 13

The command line following the program name (PROLINK) must consist of
one or more filenames, separated by commas. Any of the filenames may
be followed by the two characters /S, to indicate that a "selective"
scan of that file is to be made, i.e. that only those modules are to
be incorporated that have been referenced by previously-encountered
modules. (In this context, a "module" is the result of compiling one
PROGRAM or SEGMENT, or the output from one execution of Macro-80.) In
the case of the Pascal library, the selective scÄI mode should always
be specified, i.e. PASLIB/S.

If, on the other hand, no filenames at all are supplied on the command
line, i.e. all that is typed is

PROLINK

then the conversational mode of operation .is entered. There is a
series of questions relating to link-time options, and then an
invitation to input one or more lines containing filename(s). This is
described in detail in section 4.2.

In either mode, if filenames with no extension are given, the
extension .REL is supplied automatically by the linker. The name of
the executable file is constructed by appending the extension .COM to
the name of the first input (relocatable) file. The .COM file is
designed to load at address 0100, in the normal way. Locations 0100
thru 0102 will contain a jump instruction (created by the linker) to
the start of the program.

4.2 Link-time options

The first question is

Separate program and data areas ? (Y/N) *
Here, "program" refers to the Z80 instructions generated by the
compiler, which are read-only (i.e. not altered at execution time),
and "data" refers to everything else: variables declared at the
outermost level of a program or segment, COMMON variables, data areas
of Assembler-coded library routines, etc. This distinction between
"program" and "data" is the same as that between CSEG, on the one
hand, and DSEG and COMMON on the other, in Assemblers such as
Microsoft’s Macro-80.

If the reply to the question is N or n, storage is allocated by the
linker using sequentially increasing addresses starting at 0103» with
no distinction between the two types of item.

used

all
or
As
to

the names and absolute
the same for

of lines
4.1, the

IllPro Pascal user Manual

The values are'to be input in

The second question is

Map ? (Y/N)

Map $names too ? (Y/N)

COMMON blocks;
External/Entry names, that

Filename(s) -

Y or y, there
of two areas,

If the reply is
start addresses

first,
second,

If the reply is Y (or y), there is a further question

complete. It is
addresses of any

in two parts;

is an invitation to input values for the
one for "program" and one for, "data"
hexadecimal. If just c/r (Return) i

given, a default value of 0103 is used. Neither value should be less
than 0100. If either is less than 0103, it is important to realise
that the linker will always put a jump instruction in locations 0100
thru 0102, as described in section 4.1.

If the reply is N (or n), no storage map of the executable program
will be produced.

By replying N or n, the listing of the (often rather numerous) library
names beginning with $ may be suppressed.

The storage map is output to the console when the linking process is

is : Pascal outer-level procedures
functions together with ENTRY names from Assembler-coded modules.
with all console output, the CP/M "ctrl P" facility can be
obtain a hard-copy print of the map on the listing device.

After these questions, there is a prompt to input any number
containing filename(s). Just as was described in section
filenames must be separated by commas, and any of them may be followed
by /S.

When all input filenames have been specified-, respond to the prompt

with a full stop (.) character, or with just c/r (Return). The
linking process will then be completed.

Ill

4.3 Linker messages

to the
report a

During linking, messages are output
progress, to flag any errors and/or to

4.3.1 Normal messages

Pro Pascal User Manual

console to indicate
successful conclusion.

As it starts to process each input file, the linker writes the full
filename to the console.

At the end of the link, the start and end of the program and data
areas, and the 'start-of-execution address, are reported. The name of
the executable (.COM) file is also printed. -

4.3.2 Error messages > : . . -

If an input file cannot be found (perhaps because its name has been - /'■
misspelt), the linker reports this fact and invites more filename(s). ,

If a character other than ’S’ is supplied after ’/’, the linker'
reports this, and ignores the spurious character. '

A further situation leading to an error message is when all the input '
files have been processed and yet there are still EXTERNAL references
outstanding for which no corresponding Pascal procedure or function
(or Assembler ENTRY name) has been encountered. This may be because a v
.REL filename has been inadvertently omitted from the list. The ; J
message . ..

Unsatisfied external(s); ,

is printed on the console, followed by a list of the unmatched names.
Then there is the question

Terminate ? (Y/N)

If the response is Y or y, the linking process will be brought to a
conclusion. In particular, a .COM file will be produced which is
normal except that any location containing a reference to a missing J ' X-’.J
routine will not contain a sensible value. Caution should therefore
be exercised if execution of the program is attempted. ;X■ _

If the response is N (or n), the linking process will resume with a J . ..<
renewed invitation to input filename(s); in this way, the link can be /y
completed successfully.

• *

Pro Pascal User Manual, III - 16

If an error situation other than the above is detected, the link
operation is aborted immediately, after outputting a message. Uo
usable .COM file will have been produced. The messages in this
category are the following.

Text Meaning

Not enough memory The linker needs a work area of at
least 7K bytes.

Multiply-defined entry The input files contain more than

Load address below 0100

one Pascal procedure/function or
Assembler ENTRY name with the same
(up to 7 characters) spelling. The
name is printed before the message. •

The .COM file would, if completed ■
and executed, involve items being
loaded at memory addresses below <'y '
0100. This is probably due to ■ ;
incorrectly chosen values for the
start addresses of the program and/ \ , "7
or data areas (see 4.2).

Program exceeds 64K The .COM file would, if completed s

Prog overlaps data area)

and executed, involve items at z . '
memory addresses above FFFF. . , "

These two errors can only occur if
Data overlaps prog area) the answer to

X. Separate program and data areas ?
was Y or y. The remedy is to .'j'
specify a more suitable start \
address for either or both of the
areas. - . / .

ASEG overlays prog/data An absolute load address (from use
of Macro-80’s ASEG directive, for
example) falls within the current

Attempt to extend COMMON

code and/or data area(s). ,

If a COMMON variable is declared in
more than one segment, then either
all declarations should be the same
or the variant with the largest
size must be the first one encount- ?
ered by the linker.

•/ ■

Pro Pascal User Manual

Extern +- not supported

Extension not supported

COMMON not selected)
Nonexistent COMMON block)
Chaining error)
Relocation error)
End of file encountered)

/

■■ .'.'A- y ■ ■ A .A AA A;. A AA; ;; A;A ‘;

Ill - 17

’ 1 ’ ')

The linker is not designed to
handle link items which correspond / .
to Assembler constructs like •

EXT NAME
DW NAME+3 ; or NAME-2, etc.

The linker is not designed to
handle "extension ^link items",
which are reserved in Microsoft
relocatable format for use by
certain compilers (currently, only
COBOL).

These five - and the previous —
errors should never occur. If they
do, one of ths input files is most
probably not a relocatable file at
all: check on this. If the error
persists, it possibly indicates a
linker or compiler malfunction.

t

Pro Pascal User Manual III - 18

5 OPERATION OF OBJECT PROGRAMS

The operation of an object program under CP/M is determined very much
by the program itself. Programs are run by typing th.e name of the
.CCM file after the normal prompt, and return to CP/M on completion
(unless chaining to another program). Default assignments of files
are as described in 9.1.2 of Part II, the standard files input and
output in particular being defaulted to the console. The program may
include assignments to specific named CP/M files (their names being
expressed in the program text as string constants) or it may start by
requesting entry of a filename from the keyboard, as for instance the
compiler does.

The only aspect of program operation not determined from the program
itself arises if an error is detected by the run-time software.

5.1 Run-time errors

Errors may be detected in a number of situations: file handling,
dynamic space management, arithmetic operations, and so on. In some
cases they may be found by the checking code incorporated by one of
the compile-time options (see 3-2 above). In all cases a report is
made on the console, giving error type - identified by a code letter -
and the absolute location (in hex):

Error x at address aaaa

A list of the run-time error codes is given in Appendix C. In some
cases, additional information is given, preceding the standard
message.

If the option to carry source line numbers into the object program has
been selected, the standard message is followed by the line number
information. The first number gives the error location, and if this
is within a procedure it is followed by the line number at the point
of call, the sequence of calls being followed back to the program­
level.

In a segmented program, the line number information is ambiguous (i.e.
segments are not distinguished in the display), and procedure names
must be used to resolve any queries. If the segments were not all
compiled with the line numbers option, nothing at all is printed for
calls in "unnumbered" segments.

Finally, many classes of error allow continuation, and this choice is
offered as a console option with (Y/N) response.

Pro Pascal User Manual III - 19

6 OPERATION OF THE LIBRARIAN

The purpose of the Librarian utility program is to administer files
which are in Microsoft relocatable format - such as those produced
by the Pro Pascal or Pro Fortran compilers or by the Macro-80
assembler. Individual modules may be extracted, and/or files may be
merged together into libraries. A number of report options are also
available.

6.1 Fora, .of invoc9ti.cn

As with the other programs in this package, there is both a "one-line”
and a "conversational" mode of operation. All the options are
available in either mode.

6.1.1 The one-line command

The command line following the program name (PROLIB) must be
constructed as follows. First must come the name of the "library"
file. This may optionally be followed by the character "/" together
with one or more letters, as in: '

PROLIB B:RESULTS/MX .

Each letter stands for a particular option regulating the report(s)
that are produced by the librarian (see 6.2). The letters may be run
together, as in this example, or may be separated by spaces or further
/ characters; it makes no difference whether they are in upper or
lower case.

A one-line command of the above form indicates a "read-only" operation
on the library file: the file must already exist, and the purpose of
the PROLIB execution is solely to list certain information about this
relocatable file.

Alternatively, the library filename (and any option letters) may be '
followed by an "=" sign and one or more input filenames, separated by
commas, as in:

PROLIB NEWLIB/M = M0D1, M0D2 ' ’

A one-line command of this form indicates a "create" mode of
operation: if the library file already exists it will be overwritten,
and the purpose of the PROLIB execution is to combine the input
filenames into a new library with the given name. (The librarian
actually creates the file, in the first place, with an extension of
.$$$, and only renames this to the required library filename on
successful completion of processing. For this reason, it is perfectly
possible to include the library filename (assuming the file already
exists) as one of the input files, although this may not be considered
good data processing practice.)

Pro Pascal User Manual III - 20

Any of the input filenames may be immediately followed by a "module
selector" (see 6.3)- '

If no filename extension is given (whether for the library or the
component input file names), the extension .REL is supplied
automatically by the librarian.

6.1.2 Conversational mode

If, on the other hand, no filenames at all are supplied on the command
line, i.e. all that is typed is

PROLIB

then the conversational mode of operation is entered.

The first request is for the library filename. There is then a series
of questions relating to the report options (cf. 6.2). Reply Y (or y)
to select the option, otherwise N (or n). The final question is
whether or not to create a new library with the given filename. If
the answer is affirmative, the librarian repeatedly issues an
invitation to input a line containing filename(s). The filenames are
entered just as for the one-line mode of operation, that is, they must
be separated by commas and each may be followed by a "module
selector". To terminate this process, respond to the prompt)

Input filename(s) - -

with a full-stop (.) character, or with just c/r (Return) on its own.

If no filename extension is given (whether for the library or the
input filenames), the extension .REL is supplied automatically.

6.2 Report options - .

Whether or not in the "create" mode of execution, the librarian can be
requested to produce a report describing the library file. (If in the
create mode, the report will reflect the contents of the library file
on completion of processing.) z

The various report options are described in the following
sub-sections. Each sub-heading contains (in brackets) the associated
letter which must be written after the library filename in the
one-line form of execution in order to invoke the option.

6.2.1 Module listing (M) /

A report is produced which gives, for each module in the library file
(in order of occurrence within the file), the name of the module, all
ENTRY names defined and EXTERNAL names referenced within it, together
with the sizes of code, data and any common blocks which it contains.

Pro Pascal User Manual III -21

6.2.2 Cross-reference listing (X)

The report consists of two parts. The first part gives, for each
ENTRY/EXTERNAL name in the library file (in alphabetical order), the
name of the module in which it is defined (i.e. is an ENTRY name) plus
the names of all modules in which it is referenced (i.e. is an
EXTERNAL name). '

The second part is a listing of all common blocks (in alphabetical
order) together with the names of the modules which reference them.

6.2.3 Unsatisfied references listing (U)

This report is concerned with the requirement imposed by PROLINK
(along with many other linkers) that, for a library which is to be
"selectively” searched (/S option), the component modules must be
ordered in such a way that, if module A contains an external reference
to an entry point in module B, then module B must follow module A in
the library file (cf. 4.1 above). The report lists all EXTERNAL names
(in alphabetical order) which do not obey this rule, either because
they are defined in an earlier module or because they are not defined
at all.

6.2.4 Suppress $names (N)

(This option is only meaningful if at least one of M, U or X has been
selected.)

In order to avoid conflict with user-defined names, most ENTRY and
common-block names in the Pascal library begin with $. Since they are
rather numerous, it can on occasion be desirable to suppress them. By
specifying this option, no name beginning with $ will appear in the
report(s).

The default is that all names, including those beginning with $, are
listed.

6.2.5 Listings to disc (D)

(This option is only meaningful if at least one of M, U or X has been
selected.)

The default destination for reports is the console. (Of course, as
with all console output, the CP/M "ctrl P" facility can be used to
obtain a hard-copy print-out on the listing device.)

If this option is chosen, the reports are written instead to a disc
file. The file is given the same name as the library file, but with
the extension .PRN.

Pro Pascal User Manual III - 22

6.3 Module selection

In the "create" mode of operation (only), the user may specify that
only some of the modules in an input file are selected- (The default
is to select all modules from each file.) For this purpose, two kinds
of "selector" are provided.

The first kind is the "selective scan" of an iftput file, and is
specified by following the filename with the two characters /S: only
those modules that have been referenced by previously selected modules
will be incorporated into the output library file (and so into any
reports).
Example: FNAME/S - ' '

The second kind is by "module enumeration", and is specified by
following the filename with the character [, then a collection of
module names, and finally the character]. This "collection" of
module names is to be written as a list of names, separated by commas;
optionally, in place of a module name, the list can contain, at any
point, two names separated by ".." (i.e. name!..name2), signifying
"all modules from namel to name2 inclusive". X ' .

Example: FNAME1 [M0D1, MOD4..MOD8, M0D16] • ' .

A particular filename can be followed by at most one of these two
kinds of selector.

An example of an input line containing all the above features is:

FNAME1, FNAME2 [M6], FNAME3 [M0D3. .MOD9], LIBNAME/S <

When reading an input file in the "selective scan" (/S) mode, the
librarian and the linker adopt identical selection criteria. Use may
be made of this to obtain an analysis of the composition of a
fully-linked .COM file. Suppose, for example, one wishes to know
which modules from PASLIB are needed by the RESULTS program referred -
to in section 2 above. The one-line command

PROLIB TEMP/M=B:RESULTS,PASLIB/S

will produce a report giving details of RESULTS.REL itself and of all
the contributory modules from PASLIB. At the same time, the
relocatable file TEMP.REL is produced. This file can subsequently be
made the object of other reports, as in:

PROLIB TEMP/X

It can even be converted into an identical copy of RESULTS.COM by:

PROLINK TEMP

RESULTS.COM

Pro Pascal User Manual III - 23

6.4 Librarian messages

6.4.1 Normal messages

If in the "create" mode, when it starts to process each input file the
librarian writes the full filename to the console-

6.4.2 Error messages

If an input file cannot be found (perhaps because its name has been
misspelt), the librarian reports this fact and invites more
filename(s).

If a character other than ’S’ is supplied after ’/* following an input
filename (i.e. where a "selective scan" directive is anticipated), the
librarian reports this error and ignores the incorrect character.

If an error situation other than these is detected, execution is
aborted immediately, after outputting a message to the console. The
messages in this.category are the following.

Text Meaning

Command line improperly terminated In the one-line command mode, the
library filename and switches have
been read, followed by a character
other than "=".

Illegal module-selection syntax The rules given in 6.3 have been
broken (in particular, must
have a module name on either side
of it, and must have a matching
"]" on the same line).

End of file encountered If this error occurs, the most
probable explanation is that an
input file is not in Microsoft
relocatable format at all.

c Pro Pascal User Manual _ , III - 24 ,

7 CROSS-REFERENCE GENERATOR

A cross-reference generator XREF is provided as part of the Pro Pascal
package. It is a very useful facility when developing-programs of any
size, and is tailored to the Pro Pascal syntax (extra reserved words,
hexadecimal and longreal constants, underscore within identifiers,
source file insertion). '

As with the compiler and linker, there is both a "one-line" and a
"conversational" mode of invocation.

7.1 Simple cross-reference >

This mode is chosen by entering the source filename with the command,
e.g. ,

XREF B:RESULTS

The source file is read, and the cross-reference listing is output
direct to device LST: with a page width of approx. 100 characters. \

7.2 ' Additional facilities - ' . -

When XREF is activated without a source filename in the command line,
the conversational mode is entered. The source filename is first
requested. As with the compiler (and the simple mode described in
7.1) the .PAS suffix is supplied if none is given in the input. The
destination for the listing is specified next. It may be directed to
LST:, as in the simple mode, or to a disc file, or indeed to CON:. If
output is to a disc filename, and no suffix is given, the suffix .XRF
is supplied. If simply c/r (Return) is replied, the default
destination (LST:) is assumed. Finally, the linewidth can be be set.
Replying to this question with just c/r (Return) gives the default
width of 100; otherwise, narrower or wider listings can be selected.
(The value determines the point on the line at which a new entry will
not be started, but a new line taken; it is possible that the actual
listing width may exceed the value entered by up to one entry, i.e. 4
or 5 characters.)

7.3 Messages

At any time before production of the report commences, the program can
be interrupted by pressing a key, and then either resumed or aborted.

If use is made of the source file insertion facility (see Part II,
1.2.1.1), then the line numbers at which the included files are
started and ended are written to the console, as described in 3-3.1
above. The line numbers in the cross-reference listing are the
"overall" line numbers, obtained after insertion of the source files.

If the source file is not a correct Pascal program,- XREF may produce
error messages, using certain of the numbers listed in Appendix B.

Pro Pascal User Manual 7 , ' III - 25 ; >

8 THE CONFIGURATION PROGRAM . (_7

A program (PCONFIG.COM) is provided to enable the user to "tailor” the
Pro Pascal compiler to his own requirements. Two. aspects of the
system may be changed: the disc drives on which the various files
known to the compiler are to reside, and the default values of the
compile-time options. - .

Before executing PCONFIG, make sure that the copy of PROPAS.COM which
you wish to amend is on the default disc drive. Then type

PCONFIG , . z

The program will invite you to make changes to the disc drive
configuration and/or to the compile-time option defaults. ;; .

8.1 Disc drives . _

The question-and-answer session is largely self-explanatory. The only ’>
point worth expanding on is that, to specify that file(s) shall reside V ■" j 7
on the default drive (rather than A:, or whatever), you may reply ;
either by pressing the space bar or by a c/r (Return) on its own.

(The software is shipped in a state which corresponds to replying with iSC/7?
a space or Return to all the questions.) x -'S <

8.2 Copoile-time options ■

Again, the question-and-answer session is self-explanatory. The S,
program runs through all the compile-time options, in the same order
as when the compiler is executed in "conversational" mode (see 3*1.2), ; "S'S
and for each, you are requested to respond with Y (or y), meaning that l'S’"
the default setting of that option in all future compilations is to be f
"yes" or "on"; ’or N (or n), meaning that-the default for that option -‘t.’S
is to be "no"/"off". (All other characters typed in response to the .7
question are ignored.)

(The software is shipped in a state which corresponds to replying N or
n to all the questions.) '

PCONFIG.COM
PROPAS.COM

Pro Pascal User Manual

A LANGUAGE SUMMARY

A. 1 NOTATION

The notation used throughout this manual for the Pascal syntax is
summarised in the following table: A- ’

Notation Meaning ' . >'

= is defined to be
| alternatively
[x] zero or one instance of x _
{x} zero or more instances of x
(x'y!—!z) grouping: any one of x, y, ..., z
"xyz” the terminal symbol xyz
lower-case-name a non-terminal symbol

(For increased readability, the non-terminal symbols are often.
hyphenated.)

In this appendix, the nature of the source file which is input to the /
compiler (the ’compilation-unit') is viewed from two complementary <•<<
aspects: the lexical (or bottom-up) and syntactic (or top-down). -
These views merge at about the level of the 'token'. The division of
the remainder of this appendix into two subsections is designed to -
mirror these two viewpoints. '

The definitions in each of the following subsections are grouped and
ordered according to their 'level'. At the first level comes, in each
case, the definition of the 'compilation-unit': the only concept j.v;
given two (complementary) definitions. The definition of any other \
concept is to be found on the next level to that in which the concept
first appears. The definition level is printed at the left margin.

Taken together,-subsections A.2 and A.3 contain one, and only one, ' .
definition for every nonterminal symbol. The only exceptions - apart ■
from 'compilation-unit' - are 'end-of-line', which is self- ;
explanatory, and 'ASCII-character', which stands for any one of the -
128 characters in the ASCII set (these are enumerated in Appendix D). ■

Except within a ’character-string*, there is no distinction in meaning
between the upper- and lower-case versions of any letter. v >

Pro Pascal User Manual A - 3

ch
ar

ac
te

r-
se

qu
en

ce
 =

 {
AS

CI
I-

ch
ar

ac
te

r}

Pro Pascal User Manual

bo
ol

ea
n-

ty
pe

 =
 "

bo
ol

ea
n"

Pascal User Manual

wi
th

-s
ta

te
me

nt
 =

 "
WI
TH
*'
 r

ec
or

d-
va

ri
ab

le
-l

is
t

"D
O"
 s

ta
te

me
nt

Pro Pascal User Manual A - 10

o

Pro Pascal User Manual

Pro Pascal User Manual ' ' B - 1

' " ' : • \ ' ’> ■ ' . • - . ' >/ V J- y " ?7

B COMPILE-TIME ERRORS .

For each error number, the text which is printed at compile time
(provided PROPAS.ERR is present) is given, plus extra explanation
where necessary.

Number Meaning
_ __—__—_______________________ ________________ ____________ _______ ’ \

1 Simple type expected

2 Identifier expected

3

4

5

PROGRAM or SEGMENT expected

) expected

: expected

. 5 -A •. v ■ "■

7 '7 7 777; -7 ; - '

' ' . ” . 7- ■ * ’ 7 >-< "• \ * 'A-'

■ "7 6 Symbol illegal in this context
May be due to an error in the preceding line, such as
semicolon.

' ■ ' J-y 7 '■ ;

missing

7 Error in parameter list

8 OF expected
■' . . ’S. •" ' \ - 3

/ 9

10

(expected ■

Error in type •

- 11 [expected

12

13

I1»

15

] expected

END expected

; expected

Integer expected
(in a LABEL declaration, or after GOTO)

■ " - Z z

■ ' . ’

7 ' .'7 ■ ■'
y '■ ■ y- - : '■/ 7^ 7

t ■ '-77.

’k ’ ' r

16 = expected • •
(in a CONST or TYPE declaration)

A •

. •’ < '

V 17 BEGIN expected

Pro

18

19

20

21

24

25

49

50

51

52

53

54

55

58

59

101

102

103

104

105

106

107

Pascal User Manual B - 2 1 <

■ . ’ ■ • * . • ’ ’ " ' . .' * - ‘ x .. .< ■/ .-S' : ? ’ ■

Error in declaration part - . ■ ,'
Declaration processing has finished, and statement-part is
expected. May be due to incorrect ordering of declarations,
e.g. TYPE before CONST

Error in field-list

, expected ■ ,

. expected

Illegal source character -

One identifier may not follow another

No cases in case statement _ . "

Error in constant - x A
" ' . - \ / - • ’ ZfS* V’. ’

. . ‘ j. /r' . \ J NT

:= expected , ' ' '
. , (in an assignment statement or FOR statement) '

THEN expected . •

UNTIL expected ' '

DO expected ■ ' . , <

TO or DOWNTO expected

Error in factor ' - ' ;

Error in variable ‘ ' z

Identifier declared twice ~
The first_8 characters of the identifier are printed . ' • (7

•Low bound exceeds high bound , . ' ; ;

Identifier is not of appropriate class ' .
The first 8 characters of the identifier are printed , ’

Identifier has not been declared - .
The first 8 characters of the identifier are printed ® '

V

Sign not allowed s

Number expected

Incompatible subrange types
In c1..c2, type of c1 is not compatible with type of c2

Pro Pascal User Manual B - 3

108 File not allowed here
A file may not be a component of another file-type

109 Type must not be real

110 Tagfield type must be ordinal type

111 Incompatible with tagfield type
Refers to a case-constant in a record variant, or a tag value
in a call of new or dispose

113 Index type must be ordinal type

114 Base type exceeds set range
Base type of set is outside the (ordinal) range 0..2039

115 Base type of set must be ordinal type

116 Bad parameter type for standard procedure

117 Unsatisfied forward reference ■ '
The name of the undefined type (which will have occurred after

in a type denoter) is printed on next line

119 Repetition of parameter list not allowed
Parameter list may only be specified at the place where the
FORWARD declaration is made

120 Function type may be scalar/subrange/pointer
These are the only permitted result types for a function ' ; '

121 File value parameter not allowed
This applies also to structured types with file components >

122 Repetition of result type not allowed
The result type may only be specified at the _place where the ?
FORWARD declaration of the function is made ‘ -

123 Function declaration with no result type .

124 Second width parameter is for reals only
(In actual parameter list of write or writein to a textfile)

125 Bad parameter type for standard function

126 No. of parameters differs from declaration

Pro Pascal User Manual ? „ ? ' B - 4

127 Illegal variable parameter
Actual parameter corresponding to a VAR formal may not be a
tag-field, nor a component of a PACKED structured-type

128
* -

Functional-parameter’s type is incorrect

129 Operand types incompatible

130 Expression is not "of set type

131 Tests on equality allowed only ' , .
(for pointer types)

132 Strict set inclusion not allowed
If s1, s2 are set-type, s1<s2 and s1>s2 are illegal

133 Relational operation not allowed
(on arrays, records or files)

132* Illegal type of operand(s) <

135 Type of operand must be boolean '

136 Set element type must be ordinal type

137 Set element types not compatible

138 Type of variable is not array ,

139 Index type incompatible with declaration

140 Type of variable is not record
The item preceding in a variable-access, or the variable
in a WITH statement, is not record-type

141
- / - ■ ' j .

Type of variable must be file or pointer
{before '''•)

142 Incompatible parameter type

143 Illegal type of loop control variable
Control variable of FOR statement must be ordinal-type

144 Illegal type of expression

145 Incompatible type
Initial- or final-value in a FOR statement incompatible with
type of control-variable

146 Assignment of files is not allowed
This applies also to structured types with file components

Pro Pascal User Manual , B - 5

147 Case-constant of invalid type
(in a CASE statement) _ 1

148 Subrange bounds must be ordinal type

149 Index- or tag-type must not be integer
If integer-type, must be a subrange

150 Standard function name not allowed here .

151 Assignment to formal function is illegal

152 No such field in this record

154 Actual parameter must be a variable

155 Control variable must be local to block
In particular, may not be in COMMON

156 Multidefined case label ,
(in a CASE statement)

157 Too many cases in case statement
More than 4096

158 No corresponding variant declaration
Too many parameters in a call of new or dispose

159 Real or string case-constant not allowed

160 Previous declaration was not FORWARD
A second declaration of the same procedure or function
has been encountered in a block

161 Already declared as FORWARD

162 Error in record structure

163 Missing variant(s) in declaration
(If Standard Pascal option selected, only.) In a record
declaration with variant part, there must be one case-constant
for every value of the tag-type

164 Standard procedure/function not allowed here

165 Multidefined label

166 Multideclared label

167 Undeclared label .

168 Undefined label
The value of the label is printed

. - ■ . *
' "■ x - ' \ 7. .<. > 7. .■ ■.-7 < ■ 7 '7'.?

Pro Pascal User Manual B - 6
■ ' - v ■ • ' ' 7 :\-- -t/'77 -7 :-!/; ■ 7 7- 7-7 '7. ■ 7 '

175 Missing file ’input' in program heading
(If Standard Pascal option selected, only) • .

176 Missing file 'output' in program heading
(If Standard Pascal option selected, only)

177 Assignment to function not allowed here
Must be within function's block -S'

178 Multidefined record variant
Case-constant not unique

179 Control variable is not secure
The control varaible of a FOR-loop may not be modified in the
body of an inner-level procedure or function

180 Control variable must not be formal
(in FOR statement) , .

7. ' 1 ' ' ,
1 81 Attempt to alter control variable

The control variable has been modified during the FOR-loop i

182 Label value out of range
Not in O..9999

183 Label jumped to from an illegal position . ,~
(If Standard Pascal option selected, only) '

184 GOTO: label is not accessible
(If Standard Pascal option selected, only)

201 Error in real constant: digit expected

202 String constant exceeds source line

203 Integer constant too large
Exceeds maxint 7 .

205 Null string not allowed 1
•’ is illegal in Standard Pascal

~ " 7'' ’ . 7 ' ,

207 Error in hex constant ; 1

208 Constant not properly terminated

209 Exponent of real constant out of range

250 Too many nested scopes of identifiers
Depth (including scopes opened by RECORD or WITH) exceeds 17

251 Too deep nesting of procedures/functions - 7-
Depth exceeds 15

Pascal User ManualPro

252 Too deep nesting of FOR/WITH statements
(Message appears at end of procedure or function block)

253 Too deep nesting of source file inserts
Depth exceeds 3 '

261
■ ... ‘ ■ z .

Compiler update-stack overflow
More than 192 names at inner block.level^*are in scope

263 Too many COMMON names
More than 128

270 Static data area exceeds 64K bytes ‘

271 Stack requirement exceeds 32K bytes
(in one procedure or function) "

272 Code area exceeds 64K bytes ,

301 No case provided for this value
Illegal tag value in call of new or dispose ~

302 Index expression out of bounds -

304 Set element expression out of range 1 .
Outside the (ordinal) range 0..2039 - /

305

306

Warning: FOR loop will never be executed
Final-value < initial-value (if TO), or > initial-value (if
DOWNTO). -Warning only: a useable .REL file will be produced

Range error
Range checking requested, and constant out of bounds. Warning
only: a useable .REL file will be produced

308 Case-constant outside range of tag-type

310 String size must be integer constant
(in the declaration string[n]) -

311 String length exceeded

320 Incompatible parameter-lists ' ’

322 Undeclared FORWARD procedure or function
The first 8 characters of the name are printed on the next
line. This error can be due to incorrect block structure -
an extra END, for example

■ ■ '' ■

♦- . , .. . > ■: • -

Pro Pascal User Manual , ' ' B - 8

323 Identifier referenced before declaration (
The first 8 characters of the identifier are printed

324 No value assigned to function

325 Variable referenced but never defined
The name is printed after the error, which occurs at end of
block in which the variable is declared, and means the '
variable has not been given a value

330 Source insert filename illegal/not found

333 End of source file encountered
Probably due to incorrect block structure (a missing END,
etc.), or to an unclosed comment (a missing)

349 COMMON declaration not allowed here ' 1 . <■ C
Only allowed at outermost level ... '

350 Illegal SEGMENT structure
Segment contains, at outer level, a LABEL declaration, or a ' r A
statement-part different from BEGIN END

351 COMMON name not unique in 7 characters
The name is printed ■\ '

352 - EXTERNAL name not unique in 7 characters , , ' '
The name is printed , '[

353 Entry name not unique in 7 characters
The name - that of an outer-level procedure or function - ..
is printed ;

380 eof on compiler work file
Errors 380 thru 386 should not normally occur, and may ’ /
indicate a compiler malfunction . k

381 eof on compiler work file

382 Compiler work file contents invalid • \ '

386 ' Compiler work file contents invalid ' , "

398 Pro Pascal implementation restriction ' ' ■/
An enumerated type can have at most 256 identifiers r ' A“'

399 Pro Pascal extension to Standard
If the compiler has been requested to ’Accept only strict
Standard Pascal’, this error indicates that a Pro Pascal f
extension has been used, e.g. a hex constant, or an . 1 .
implementation-dependent additional predeclared procedure

The format -of the messages produced for run-time errors is given in
Part III under "Operation of object programs". This appendix lists the
error codes, with significance and possible causes.

Code Meaning

A Angle argument error. 1

From sin or cos when the argument is so large that range
reduction would lead to serious loss of accuracy.

Real argument: abs(value) > 32768.0
Longreal argument: abs(value} > 4.295D9

B Bounds exceeded.

An index bound has been exceeded (with /I compile-time option ; ■
selected) or a value is outside the range of the receiving ' -X
field in an assignment (with the /A option selected). ’ - "

C Case error.

No case constant corresponding to expression value (arid no
OTHERWISE specified). Continuation is to the statement v
following the CASE statement. V

■ ■ ' . S ■ ’ ? ■ ") - * C? ■ ...•••■ V '

D Disc or Device error.

Unable to open input file (filename displayed). Disc or
directory space insufficient for output. Attempted reset of an
output device (e.g. LSI“:) or rewrite of an input device. > (

E Reading beyond EOF. _ - '

Program does not correctly check for end-of-file condition.

F File programming error.
'■ J ■Incorrect sequence of operations on a file (e.g. attempted , S2.7

read before reset).

H Heap overflow.

Insufficient free space for "new" operation.

J Divide error (integers).

In "i DIV J" j is zero; in "i MOD j" j is zero or negative.
Continuation possible, but results not predictable.

Pro Pascal User Manual C - 2

K Overflow on TRUNC or ROUND.

Conversion of the real value to integer gives a value outside
integer range.

L LN argument error.

Argument to "In” function is zero or negative.

N Name format error.

• The name given in an "assign" operation is not in correct
format for a CP/M file or device name.

0 Overflow during integer arithmetic.

From 32-bit add, subtract, multiply (always checked), or from
8-bit/l6-bit DIV when option /R invoked, or from 8-bit/l6-bit
add, subtract when option /A or /I invoked in combination with
/R. Continuation possible, truncated result used.

P Pointer not valid.

The variable used as a pointer contains a value which is not
valid. From "dispose" (checked always) or from pointer
dereference when checking option specified.

Q SQRT argument error.

Negative argument to "sqrt" function. Continuation possible,
the result returned being zero.

R Read error on textfile.

During reading of an integer, real or longreal value from a
textfile, -incorrect format of input. Continuation possible,
but value unpredictable.

S Space insufficient.

The dynamic stack used for parameters and local variables of
procedures has exceeded the space available.

T Error in string handling operation

String value assigned or passed as an actual parameter exceeds
the size of the receiving variable or formal parameter;
"concat" exceeds 255 characters; index value given to "copy",
"delete", or "insert" is zero or beyond current length of the
string.

Pro Pascal User Manual . C - 3

Continuation possible but results not

longreals).

but results not predictable

contains as Appendix D a list

U Illegal argument to SEEK.

x The specified element number is negative or beyond the maximum
file size.

V Set construction error.
A set expression contains element(s) outside the range 0 to
2039.

W Write error on textfile.

Fieldwidth parameter is outside the range 1 to 255.

X Overflow during real or longreal arithmetic

Exponent out of range,
predictable.

Z Divide by zero (reals or

Continuation possible,

The Pascal Standard (ISO 7185)
"errors", and requires that there be a statement describing how each
is treated.

If all compile-time options have their default ("off") values, the
following errors are detected prior to, or during, execution of a
program:

D.9, D.10, D.11, D.14, D.15, D.16, D.23, D.32, D.33, D.34, D.35,
D.36, D.40, D.41, D.42, D.44, D.45, D.46, D.47, D.51, D.54, D.56,'
D.57, D.58

If the /A compile-time option is specified, the following additional
errors are detected at run time:

, D.7, D.8, D.17, D.18, D.37, D.49, D.50, D.52, D.53, D.55

If the /I compile-time option is specified, the following additional
errors are detected at run time:

D.1, D.26, D.29 "

If the /P compile-time option is specified, error D.3 is,
additionally, detected.

The following errors are not, in general, reported:
D.2, D.4, D.5, D.6, D.12, D.13, D.19, D.20, D.21, D.22, D.24,
D.25, D.27, D.28, D.30, D.31, D.38, D.39, D.43, D.48^

(These last errors are mainly to do with referencing undefined or
uninitialised variables, referencing fields in "non-active" variants
of records, and so on. For full details, refer to the Standard.)

Pro Pascal User Manual

ASCII CHARACTER SET

Hex Character ! Hex Character I Hex Character ! Hex Character

00 NUL
1 1
! 20 space

i
; 4o e ! 60 %

01 SOH ! 21 ! ! 41 A I 61 a
02 STX I 22 n I 42 B I 62 b
03 ETX I 23 £ ! 43 C ! 63 c
04 EOT I 24 $ I 44 D ! 64 d “
05 ENQ ! 25 $! 45 E ! 65 e
06 ACK ! 26 & ! 46 F ! 66 f
07 BEL ! 27 f ! 47 G I 67 S
08 BS I 28 (I 48 H I 68 h
09 HT ! 29) I 49 I ! 69 i -’B
0A LF ! 2A » ! 4A J ! 6A J
OB VT I 2B + ! 4B K I 6B
OC FF I 2C 9 ! 4C L ! 6C ■ i' BJ
OD CR ! 2D — I 4D M I 6D BB ° ■
OE SO ! 2E I 4E N ; 6E B ' n .
OF SI I 2F / I 4F 0 I 6F o z
10 DLE I 30 0 ! 50 P ! 70 ■- p ■
11 DC1 ' I 31 1 I 51 Q { 71 ■ q BB
12 DC2 I 32 2 I 52 R ! 72 B r BS

-13 DC3 I 33 3 ! 53 S I 73 Mb- ; 3 <1
14 DC4 I 34 4 ! 54 T I 74 |b t
15 NAK I 35 5 I 55 U ! 75 .-BM U B?|
16 SYN I 36 6 56 V I 76 V
17 ETB I 37 7 I 57 w I 77 w If
18 • CAN I 38 8 I 58 X ! 78 X -
19 EM I 39 9 I 59 I I 79 b<< y W
1A SUB I 3A • I 5A z I 7A z
1B ESC I 3B 9 I 5B - [I 7B {
1C FS I 3C < I 5C \ I 7C h - ■ -B 1
1D GS f 3D — I 5D] I 7D * }BM
1E RS I 3E > ! 5E A I 7E **
1F US I 3F ? I 5F _ I 7F DEL

