PRO PASCAL

nszaf MANUAL

~

. Version zz 2.1 for Z80 with CP/M

April 1983

Copyright (C) 1981,1982,1983 Prospero Software >7

37 Gwendolen Avenue
London SW15 6EP England

COPYRIGHT

This document is copyright and may not be reproduced by any method,
translated, transmitted, or stored in a retrieval system without prior
written permission of Prospero Software.

Permission is granted to Pro Pascal licence holders to abstract and
use any of the programming examples.

DISCLAIMER

While every effort is made to ensure accuracy, Prospero Software
cannot be held responsible for errors or omissions, and reserve the
- right to revise this document without notice.

TRADEMARKS

Acknowledgement is made for references in this manual’ to CP/M (a
trademark of Digital Research of California), to CDOS (a trademark ‘of
Cromemco Inc. of California), to Macro-80 (a trademark of Microsoft of
Washington State), and to Z80 (a trademark of Zilog Corporation of
California). : '

| R

PASCAL T ’ .-
Pascal is a programming language originated by Niklaus Wirth and
colleagues in Zurich during the early 1970's. Since then it has
achieved worldwide recognition, and been implemented on a wide variety
of computers. It reflects Wirth's belief that the organisation of
data is an aspect of programming as important as the definition of the
processing to be carried out on that data, and indeed that the two are
inseparable. Pascal provides for definition of record 1layouts and
files, as well as arrays, and includes dynamic storage allocation
facilities (the "heap™) as well as the more conventional arrangements.

Two factors have probably contributed most to the popuiaﬁ' success
which Pascal has achieved. Both are essentially practical in nature.

Efficient programs can be generated without any recourse in the
language to hardware-dependent concepts. Pascal programs are in
practice more portable than programs written in most other

languages.

Many different kinds of application are supported without the
language becoming too large to implement on small machines.
Clearly this is a vital consideration to micro-computer users.

Finally, Pascal is an orderly language which encourages a systematic
approach to program development.

A Standard for Pascal has been prepared - under the auspices of the
International Standards Organisation (ISO), and copies can be obtained
from the British Standards Institution.

PRO PASCAL : : .

Pro Pascal complies with all the requirements of ISO 7185, Level 0
(i.e. excluding conformant array parameters),

There are extensions for character string handling, double precision
floating-point arithmetic, random access to files, and for separate
compilation of program segments. '

The Pro Pascal compiler is a true compiler, generating native machine
code for efficient program execution.

FORMAT OF THIS MANUAL

The manual is divided into three parts.

Part I.is a guide to the main features of Pascal, intended for
the reader having some familiarity with Basic or Fortran. It
presents the topics in a "learning™ rather than a "reference"
sequence, and covers sufficient ground- to enable many practical
programs to be produced without 'going into all the possibilities.

Part II forms a detailed reference manual for writing programs in
Pro Pascal. It describes all the features of the language,
including the extensions and the facilities related to the
operating system.

Part III contains the directions for operating the software
(compiler, link-editor, etc.), the options available, format of
diagnostics, hints on program testing, and suchlike matters.

" There are also details of hardware requirements and installation
procedures. '

There are appendices giving the formal syntax, the compile-time and
run-time error codes, and the ASCII character set.

It is not possible in the scope of a manual such as this to provide
instruction in Pascal for the complete novice. A number of books are
available which do this, and the names of a few will be found at the
end of Part I. -

PART I - INTRODUCTION TO PASCAL

1 Example Pascal program ' 1
2 * - General layout and appearance Ty
2.1 Program skeleton i g
o 2.2 Symbols, words, and constants N
B 2.3 Identifiers and reserved words 5
A 2.4 Program appearance 6
2.5 Comments 6
3 Statements : - 7
3.1 Expressions 7 -
3.2 Simple, conditional, and repetitive statements 8 _
. 3.3 Simple statements - 10
» <E§N; 3.4 Conditional statements - 11
N 3.5 Repetitive statements 12
N :
4 Labels and LABEL declarations 13
CONST declarations 14
6 Data types and TYPE declarations 15
6.1 Data types 15
6.2 Built-in types 15 \
6.3 User-defined types 16 PR
T Variables and VAR declarations 27
Ef 7.1 Variable declarations 27
7.2 Reference to variables ' 27 ‘
8 Procedures and functions 28
8.1 Blocks] 28 R
8.2 Scope 30 .
8.3 Declaring and using simple procedures 30
8.4 Parameters : 7 31)
8.5 Functions 33
8.6 Standard procedures 34
o 9 Getting started 36
= 9.1 Think ahead 36
. 9.2 Choice of names 36
W 9.3 Compilation and linking : 37
L 9.4 - Conclusion , 37
i 10 Further reading - 38

1 EXAMPLE PASCAL PROGRAM ‘ - fL e

‘This part. of the Pro Pascal user manual is intended to provide readers
having some preliminary knowledge of programming (in Basic or Fortran,
for instance) with an introduction to the main features of Pascal.
The presentation describes the Pro Pascal language, including a few of
the extensions which are not part of -striet Standard Pascal. The
objective has been to provide sufficient information to enable many
practical programs to be written. »

To introduce the general form and appearance, this section contains a
complete example program called "results", which reads the results of
a competition, tabulates them with the average score for each entrant,
and at the end gives the winner of the competition. The winner is the
entrant having the highest average from five or more events. ' :

The input to the program is to be presented in the form of lines, each
line starting with a competitor's number (3 digits), followed by his =
scores in up to eight events (scores in the range C to 100). The text :
of the program, and a small sample tabulation, are given below.

Sample output:

105 76 65 47 59 81 69 S 397 66.17 STy
108 55 58 68 6T 42 : - . 290 58.00 R
110 67 39 72 T3 65 T1 . © 387 64.50-

114 70 78 76 82 : . 306 T76.50 3

119 69 43 38 46 39 .. 235 47.00 T

121 52 47 32 43 48 55 T2 349 49.86) .

122 T4 56 65 42 88 81 406 67.67 4

124 4% 63 72 42 59 60 - 382 57.00 Lo

127 50 51 36 48 67 - 252 50.4%0

Winner is number 122 with average 67.67

Pro Pascal User Manual I - 2

1: PROGRAM results (input);
2: : .
3: CONST maxevents = 8; {maximum events for one entrant}
4: colwidth = 5; {column width on tabulation} P o
5: . :] - "
"6: TYPE competitor = 100..999; - {range of entrants? numbérs} '
7: . score = 0..100; {possible scores for one event}
8: ' : .
9: VAR thiscomp, winner: competitor;
10: eventscore: score; totalscore: integer;
11: eventcount: 0..maxevents;
12: average, winningav: real;
13: listing: text; {output file for tabulation}
14:
15: BEGIN
16: winningav := 0;
17: assign (listing, 'RESULTS.PRN'); rewrite (listing);-
18: :
19: {process input and produce listing} : " (_
20: WHILE NOT eof (input) DO ’ '
21: BEGIN {read competitor number} .) -
22: read (thiscomp); ' R
23: write (listing, thiscomp:5, ' ':3);
24: ‘ \
25: eventcount := 0; totalscore := 0Q;
26: {now his scores until end-of-line}
27:. WHILE NOT eoln (input) DO .
28: BEGIN v : -
29: read (eventscore); : N
30: write (listing, eventscore:colwidth); o
31: totalscore := totalscore + eventscore;
‘ 32: , eventcount := eventcount + 1;
33: . END {of processing one result}; -
34: .
35: : {space across to totals column}
36: IF eventcount < maxevents THEN , .
37: write (listing, ' ': (maxevents-eventcount)¥®colwidth); _
38: {calculate & print average} . (j
39: : IF eventcount = 0 THEN average := 0 =
40: " ELSE average := totalscore / eventcount;
41: writeln (listing, totalscore:8, average:T:2);
42: {is average greater than current winner ?}
- 43: IF (eventcount >= 5) AND (average > winningav) THEN
4y BEGIN
45: winner := thiscomp; {best so far} v .
[46: ‘ winningav := average; : i ey
. 47: END; : . . - :
48: readln ; . /e
49:; END {of processing one competitor}; , L
- ' 51: {at end of input, print winner} ‘
. 52: writeln (listing); writeln (listing); {blank lines}
53: IF winningav > O THEN : , .
b o S4: writeln (listing, ! Winner is number', winner:5, - - - oo
55: . ' with average', winningav:6:2)
56: ELSE writeln (listing, ' No entrant qualified as winner'); (.
5T: : B

58: END.

c @ e e meeme - . r—— c® = ey — ‘ /

Pro Pascal User Manual . ’ I- 3

Note that the layout of the program text is arranged to help the eye
follow the general shape, which consists of some initialisation, a
process to be carried out for each entrant, and finally the printing
of the winner. The processing of an entrant can be subdivided into the
reading of his number, a repeated section dealing with his scores 1in
various events, then the calculation of his average and the comparison
of this with the current leader.

- A nunmber of aspects of Pascal are shown in this example; all will be
2 covered in later sections, but a few points can usefully be made
immediately. B
1. Both upper and lower case letters are used to make the text
easier to read. The compiler does not make any distinction
between the cases.

lf 2. Named constants are used for some parameters of the program,

N allowing these factors to be amended simply. ~One such factor is
the maximum number of events allowed for (set at 8). Another is
the colurn width in the tabulation, which appears in the write
operations (set at §).

E 3. The range of values for a competitor's number and a score in
| one event are given as part of the program in lines 6 and 7. This
information enables the compiler to produce a program taking
account of the anticipated sizes of numbers, and (optionally) to
include automatic checking.

.
BN
..
RN
)
N

Pro Pascal User Yanual

2 ‘ GENERAL LAYOUT AND APPEARANCE

2.1 -4 < e

A Pascal program has a general shape that is determined by the
following skeleton:

Program heading

LABEL declarations

CONST declarations

TYPE declarations

VAR declarations . .

PROCEDURE and FUNCTION declarations oo

Program body L. ’
The heading and the body must be present. All the others are
optional, and may be omitted if not needed, though a program without
any variables would be very limited in what it could do.)

The program heading consists of the word PROGRAM, followed by the
program name. The program body contains the statements which determine
the actions of the program. It is a rule of Pascal that objects must
be declared before they are used, and the various declarations that
come between the heading and the body are the means of doing this. It
is worth noting that while any declarations that are not needed can be
omitted, the ones that are present must be in the order listed.

2.2 Symbols, words, and constants

The text of a Pascal program is made up of words, special-character
symbols, and constants. The symbols are used for "punctuation" (for
instance comma, semicolon), to represent operations to be carried out
(+, -, ®), and to distinguish special constructs. These uses will be
introduced as they are needed. The next subsection deals with ' words.
Constants are generally written just as in normal usage:

5 10 520 -6 3.4

(the last being a "™real” or floating-point value). Character-string
constants are placed between quote marks, e.g: R X

'I am the greatest.'

. e s i R L e AT T &
I SR R s - B e e e - e e T

Pro Pascal'User Manual

Pro Pascal also allows integer constants to be written in hexadec1mal,
as for lnstance

100H OFFH 5CH
(A leading zero must be present if the constant would otherw1se start.
with a letter.) , ‘ . .

2.3 dentifiers and re ved ds

Objects (variables, for instance) which are introduced into a program
are given "identifiers™ by the programmer. An identifier is a name,
made up from letters and digits, starting with a letter. Pro Pascal
also allows the underscore character "_" to be used within identifiers
to improve readability. (This is not part of strict Standard Pascal.)
Examples: :

account last_used P5 wordlength Lo - E

An identifier is separated from the next object in the program by any
character which is not a letter or digit. Thus a space can be (and

ﬁt" S often is) used as a separator, and the end of a line similarly. Ary
o nunber of spaces can precede a component of the program, and. may be
- used to help readability. , .

o The programmer has a great deal of freedom in selecting names for '
W . : objects. In Pro Pascal there is effectively no limit to the length of
: a name, though it may be useful to remember that some other Pascal

implementations may only differentiate by means of the first eight .
~characters. (A name is terminated by end-of-line, so cannot exceed
the length of a line, which is limited to 255 characters.) Some words
are however "reserved" and given special significance in the language,
and may not be used as names. Some of the commoner reserved words are

PROGRAM. CONST TYPE VAR

PROCEDURE FUNCTION BEGIN END

IF THEN ELSE CASE REPEAT UNTIL :
FOR TO DO WHILE AND OR DIV MOD . o T

A complete list is given in pért II.
(Reserved words may be thought of as extending the repertory of

special characters, though the words are of course chosen to be
appropriate and help in understanding the program.) ’

Pro Pascal User

For the purpose of obtaining the meaning from the program, the .
compiler makes no distinction between upper and lower case letters, '
nor does it give any importance to layout in the sense of what is 52
collected on one line and what is put on the next. The human eye,
nevertheless, gets a lot of help in its understanding of the progran
text from such points of appearance. In this manual, upper case is
used for reserved words (PRCGRAM, BEGIN, WHILE etc.) and generally
lower case for identifiers (lastused, wordlength).

1
Indenting the left-hand margin is also a great help in conveying the>
meaning of a program to the human reader. The example in section 1

shows this to some extent, and the suggested approach is described ‘{ .¢
below with the kinds of statement which benefit. . =

2.5 nts e : ’ WERIR S AT

A comment can be introduced into the program text anywhere that a.
space would be allowed. A comment can be delimited either by matching
curly brackets {...}, or by the equivalent (*...%#) if curly brackets
are not available.

e e e

Pro Pascal User Manual ' j;‘»‘j‘ ‘ S \»iii IR 7

3 STATEMENTS

Statements 'describe the actions of a program, and for this reason are
described first. To be complete, however, many _ Statements need
variables to act upon. For the purpose of this section, we assume
that the variables named have already been declared.

3.1 Expressions

There are many instances in the description of statements where an
expression may be used. A simple form of expression can be just a
single variable or constant, and many actual expressions even- in
complicated programs are no more than this. -An expression is also,
though, the means of specifying arithmetic or logical operations, and
for such purposes follows the notation found in many programing
languages, with symbols + for add, - for subtract, and #* for
multiplying. Pascal makes a distinction between integer division
giving an integer result, for which the reserved-word symbol DIV is
used, and division giving a floating-point result, which is invoked bty
m/n.

Relational operators can be used:

= (equal) <O (hot equal)
< (less than) <= (less or equal)
> (greater than) >= (greater or equal) T

Logical operations are called for by the reserved-word symbols AND, OR
and NOT. (Pascal does not allow AND to be used as a masking operation,
since that implies implementation-dependent knowledge about the
internal representation.) Example expressions:

5

intvar

ind + interval .

units-10 ' .
balance >-limit

(a < b) OR (¢ = 6)

thickness + 4 * (length ‘- height)

Use of functions within expressions is covered in the description of
procedures and functions, and a few other special forms are mentioned
as they arise.

Pro Pascal User Manual A o o I1- 38

3.2 i condition nd repetitive s ements

. -

It is useful to categorise statements according to the way the flow of
control passes through them. The so-called ™"simple"™ statements are
obeyed just once:

O | statement statement p—>»

Conditional statements provide a choice from a number of actions:

-

| statement statement

statement | . ' >

statement

Repetitive statements allow for execution of the controlled operation
a number of times: ‘

statement

J

™ statement

These structures can be put together in any way, since the blocks
labelled "statement™ can each be of any of the possible forms.

iPro Pascal User Manual °

= “‘ ; To enable the compiler to process - the component statements, the
senicolon symbol is used as a separator, for example: .

—>4 statement ; statement ; statement j—p=

- Anotner inmportant constructional device is the "compound statement”, »
i ' in which a sequence of statements is grouped by BEGIN and EHD into a !
single unit:) ‘
[‘ —>{ BEGIN statement ; statement ; .. END |j—>= ' -
{' (::" This method of groupinz is needed when a subsidizry statement of a
[Co conditional or repetitive statement is to be a sequence rather than a2 fide
V*" ’ single statement. For clarity, it is important to lay out a compound
i o stznzoeny s oindab the 3ECGIM and ZHD can be seen to wateh:
=GI:
statenent ; {indented}
statement ; ’
) END
g , . \ N ".
\ 3 ;
=
i '

3.3 4

"‘¢ 1'.F1 There are just three kinds of simple statement.

(i) An assignment statement givés the value of an expression to
variable:

first_time := 2; ’ Can R
next := next + increment; T '
~compound := base + 0.045 * excess;

(Note that the compound symbol := is used to mean "set equal to". The =
symbol = on its own is kept for qomparison operations.)

-

(ii) A procedure statement invokes execution of the procedure - this
is described later under "procedures and functions",. . :

, < - (iii) Special instances of procedure calls are the read and write
:5\';$ -~ operations, for example:

 } AT read (input, currentitem);
¢ : write (output, 'Average density=', avdensity);

. (iv) GOTO statement. The control structures of Pascal provide the
’ ’ means of describing the large majority of instances in waich a GOTO
. would be needed in some languages (FORTRAN, for example), and the
programmer's aim should be to avoid GOTOs where possible. However,
some instances remain where a program is made more contorted and
-~ difficult to understand by avoiding GOTO than by wusing it, for’

instance: _ » , ~

- to terminate a program from an error or -exception routine,

- to exit from a loop at an intermediate point rather than
the beginning or end.

Pro Pascal User Manual v a I -1

3.4 ndition z-ements

Pascal hés two forms of conditional statement:

(1) The IF statement allows a choice between two alternatives, one
of which may be "do notzing":

IF index < 10 THEN do_one
ELSE do_two; :
IF status > duc=y THEN dothis;

Notice that do_one must not be terminated by a semicolon (it is in
effect terminated by the ELSE). : - :

(ii) The CASE statement allows a choice of one from a number of
possibilities. The format is:)

CASE v OF
1: do_one;
2: do_two;
4: do_four;
END {case}

The case constants 1, 2, and 4 must be possible values of the control
variable v. The list is terminated by the symbol END.

As shown, any value of v except 1, 2, or 4§ is illegal. There is a
variation to allow "any others" to be collected together, thus:

CASE v OF
1: do_one;
2: do_two;
4: do_four;

OTHERWISE do_others;
END {case}
Often, the action to be taken on other values is simply "do nothing",
as for example:

CASE v OF
1: do_one;
2: do_two;
4: do_four;
OTHERWISE ;
END {case}

3.5
'>T ;iL4a'— There are three repetitive statements:
(1) The WHILE statement provides a choice at the beginning:

X WHILE a < 10 DO process . , IO -f*ﬁ;v:,

~
\

Thus it is possible that "process" may not be entered at all. Process | S
must alter the value of a to terminate the loop.

'(i1) The REPEAT statement has its exit at the end, and the controlled Vf$1fl
statement is obeyed at least once: R
REPEAT | R W
process : : - b ,(

UNTIL a >= 10

(iii) The FOR statement provides a combined loop and count facility:

! : ~FOR a := 1 TO 10 DO process; :
1t S FOR b := 10 DOWNTO 1 DO anotherprocess;
B : FOR 1 := 2%p TO twicemax DO yetanother;
The variable (a, b, or 1) is the "control variable", and the initial
2 and final values are general expressions, of which 1 and 10 are simple
'Qj- .~ examples. In the form el TO e2, if el is greater than e2 then the loop
L _ statement is never obeyed (and similarly in the DOWNTO form if el is

L ~ less than e2). The increment/decrement is always 1. ‘ ’

Fg : S SR G .
3) . 3 .
: T ; : :

Pro Pascal User ﬁanual -

N

) LABELS AND LABEL DECLARATIONS

v

Labels in‘'Pascal are used only in conjunction with GOTO statements.
They take the form of integer values and are "sited" . in the program,
body by appearing in front of a statement, followed by a colon. Eacn
label in a body must have a distinet value, and must be declared in
the LABEL declaration group. For example:

LABEL 99; - {error exit} :
- IF value > validmax THEN | '
BEGIN ' : - .

: write (output, 'Exceeds maximum value'); _ L
- GOTO 99; o |
rﬁ . END; o ' S
}@,\ . ' - ‘ ' . :

o 99: ; ' L
[: (END {program!}.

If there is more than one label, the list is presented thus:

tﬁ L o LABEL 99, 10, 120;

Pro ?ascal User

‘fhe COHST declaration groupv allows ah identifier to be wused ‘to

Yanual

’ VCOHST.DECLARATIONS

-4

represent a constant. There are two main advantages to be gained frem
doing this: '

(a) The name can be chosen to make the program self-documenting;

(b) Multiple references to the same value (e.g. buffer size) can
be altered by changing one declaration at the beginning of the
program. _ B

Note that (as with other declarations except PROCEDURE and FUNCTIG:)
the word CONST appears just once. Each individual declaration is
terminated by a semicolon: T

-

CONST columnwidth = T; L
buffersize = 128; B
= 'Valid entry. Date:';

validtext

"Pro Pascal User Manual

DATA TYPES AND TYPE DECLARATIONS

It is not possible to separate completely the treatment ‘of types in
Pascal from their application to variables, and thus there is in this
section some anticipation of the next. "It may be found helpful to
look ahead to see the overall picture first. S

The word "type" is used in Pascal with -an important and specialist
meaning. It describes the structure and attributes of an item of .
data, not only (as in say Fortran) making the distinction between
integer and real values, but also allowing the programmer to define
data structures of his own.

(Niklaus Wirth's book "Algorithms + Data Structures = Programs"‘ gives
a thorough explanation of the idea of data types, and the title itself . =
shows the importance which he attaches to the subject.) ;

A variable may only be assigned a value that is appropriate to its
type, and similarly there are rules governing the associatiocn of types
within expressions. These rules are enforced by the compiler, not to
be irksome but to ensure that before testing even starts a large -
proportion of "silly" errors are removed, » Ll :

6.2 Built-i es

There are five built-in data types that can be wused in any brograﬁ.
without declaration. : : : e
(i) char - the data item is a character, in Pro Pascal (as in many
other implementations) one from the ASCII character set. g

(ii) integer - the item is an integer. In Pro Pascal the ‘range of
integers is nine decimal digits (to be exact: -2147483647 to
+2147483647). o §

(iii) real - the item is a floating-point quantity.
(iv) 1longreal - an extended-precision floating-point quantity.

(v) boolean - the item is a logical value which may be either false
or true. Boolean values often occur "on the fly" as in ’

IF a < b THEN

but may also be assigned to appropriate variables.

Pro Pascal User Manual , ’, _ S : I - 16

6.3 Qser-defiged types

6.3.1 TYPE declarations

Any user-defined type may be given a name, and appear in a declaration
laid out as follows:

typel;
type2;

TYPE typenamet
typename2

Examples will be found in the following sections. Note that a type
declaration does not of itself introduce any variables, but Just
provides a "template™ for a data layout. =

6.3.2 Enumerated types

The type consists of a 1list of possible values, set out as for
exanple:

TYPE dayofweek = (Sunday, Monday, Tuésday, : ;
Wednesday, Thursday, Friday, Saturday); . -

A variable "day", declared to be of type dayofweek, may take any one
of the values Sunday to Saturday, but may not take a - value which is
not in the list (10, say). If "day" and "today" are both of type.
dayofweek then '

day := Monday;
today := day;
IF today = Tuesday THEN...

are all valid, but
Lgf\ |
3 — IF today = 10 THEN ..

is not.

IF today < Wedresday

is true if today is Sunday, Monday, or Tuesday. There are operations LR
"succ™ and "pred" to get to the following or preceding value in the
list, so that

day := Monday; p
today := succ (day); .

leaves "today"™ with the value Tuesday. Enumerated types may also be -
used in FOR statements: -

FOR day := Monday TO Friday DO...
and as array indexes (subscripts).

In Pro Pascal, an enumerated type may have at most 256 values. :

6.3.3 Subranges
Subrange types are introduced by declarations such és

TYPE competitor = 100..999; T
byterange = -128..127; R :
weekday = Monday..Friday; ¥

They have particular use in defining the range of an array index (and

so the size of the array), but in Pro Pascal the compiler also makes

use of the information given in a subrange type for deciding the
storage needed for individual variables, and also in generating the -

(optional) extra code for range checking. It 1is therefore a good

general practice to use subrange types wherever appropriate when first

writing a program.

2

Pro Pascal User Manual I -‘18

i
6.3.4 Sets
A set decla;ation is of the form
s = SET OF b

where b is another type, called the "base™ type of the set. The base
type must be an ordinal type, by which is meant one having distinct
values (not, for instance, the type "real"). The idea of the set is
to erable a program to represent economically those members of the
base type having some useful common property. For example, the
predeclared type char is a valid base type in Pro Pascal, and sets can
therefore be constructed which represent all the vowels in the
upper-case and lower-case alphabets, or all the characters- which
cannot be displayed on some particular printing device.

As another example of the way sets can be used, a retailer might have
a range of commodity codes 00 to 99, some of which are subject to VAT.
Declare
TYPE commoditycode = 00..99;

setofce = SET OF commoditycode;
VAR VATcodes: setofcc;
then in the body of the program, set VATcodes by a statement such as

VATcedes := [5,6,8,10..15,22,50..59]

and later statements can say for instance

IF thiscode IN VATcodes THEN ...
ELSE ...

Such a program is clearer and more maintainable than one which has a

long sequence of tests to sort out the codes subject to VAT.

The list of values within square brackets is the notation for
constructing a set having those members. 1In the example above all the
values are constants, but they may be variables (or indeed any
expressions). That example showed a static value given to VATcodes at

the beginning of the program. The value of a set variable can of =

course be changed (as with any other variable), and one might for
instance be used as a means of "ticking off" items which arise in an
arbitrary or random sequence. '

Details of possible operations with sets are given in Part II. In Pro
Pascal, the base type of a set may be char, an enumerated type, or a
subrange of integer lying within 0 to 2039. The storage allocated for
a set variable is determined by the range of the base type... ...

Pro PaScél‘Uséi Manual

i 6.3.5 - Arrays o Lt s

_ ' The concept of an array appears in most programming lahguages (e.g.
. Fortran and BASIC). 1In Pascal, the declaration of an array must -
S specify an index type, defining the range of index values,. and a° {"33

component’ type. ‘ e

TYPE intarray = ARRAY [0..9] OF integer; ' e
realvect = ARRAY ([1..5, -10..10] OF real; - "
dayletter = ARRAY [dayofweek] OF char; ‘ i

The last of these declares a data structure which has one character:
for each value of the enumerated type dayofweek (see 6.3.2 above).

The components of an array may be of any other data type. An array of -
sets, for example, would be permissible and might be useful. An array
of records is allowed, as is an array of files.

An array may sometimes be referenced whole for the purpose of
assigning it to another array of the same type. More commonly, the
individual elements are referenced by putting an index after the array
name: L

”‘Eg] - k - daycode[Friday] := 'F'; ‘
’ IF subvec[j*3+1] > k THEN...

The index can be any expression that evaluates to the declared index
type. G
6.3.6 Strings

' In strict Standard Pascal, the term "string-type" is given to types of
the form L

PACKED_ ARRAY [1..n] OF char

Such ‘types are compatible with character string literals of the sanme
length for purposes of assignment and comparison, for example

dayname := 'Friday ';
IF month = 'Apr' THEN ...

and similarly with other string-type variables of the same length.

\

/\ | L 6- 3-7 ReCOPdS i Lo 7) '\ ’ . " : At

Pro Pascal also implements dynamic-length strings. These string
variables have a maximum length given in their declarations, which are
of the form "string[{n]". During execution of the program, they may
take values of any length up to the given maximum. Character string

- literals can be assigned and compared, provided that the declared /f;ft
length is not exceeded; a PACKED ARRAY string-type variable can also |
be assigned to a dynamic string, but not vice versa. There is a limit
of 255 characters on the declared length.

An important aspect of the use of dynamic strings is the set of
procedures and functions which are provided to perform insertion,
deletion, and other operations. See 8.6.1 below.

The declaration "string™ without a length specification is accepted as
an abbreviation for "string[80]".

. An array-type describes a uniform collection of elements of the same
i component type. A record on the other hand is a grouping of pieces of
data which are not necessarily related in form. It is a common concept
of data processing, and is found for instance in Cobol and PL/1. °
While the elements of an array are selected by index values, the
fields of a record are named. , 4 Coe T

The component fields may be of any other data type. An array, for f
example, may be part of a record, as may another record, or even a
file. ;

The form of declaration may be seen in the following example:

RN TYPE makes = (Ford, Bedford, Leyland, AEC, Scammell);
o date = RECORD
day: 1..31; month: 1..12;
; year: 1900..1999; ST
: END {date};

vehicle = RECORD
- makercode: makes;
- S L registration: string([7];
e : : mileage: integer;
lastservice: date;
END {vehicle};

r%

SR - i e e e e e R e B T e e

Pro Pascal User Marual I - 21

§ . T
‘If a variable is now declared as
VAR truck: vehicle;
the fields are referenced by name ﬁs for instance

truck.makercode
truck.registration{1]
truck.lastservice.month

(since "date" is a record within a record, its individual fields
require the further extension).

It might be more useful to have an array of such records, as for
instance

VAR trucks: ARRAY [1..50] OF vehicle;
in which case an index is needed to choose an individual entry.

trucks{thisone].makercode
trucks{thatone].mileage

To simplify (and make more efficient) the references to record fields,
Pascal has a WITH statement. It specifies a particular record, and
the field names can then be used on their own. -,

WITH trucks[thisone] DO
BEGIN
mileage := mileage + miles;
IF lastservice.month < duemonth THEN...

END

The WITH statement can equally be used to specify a single record
variable such as "truck", to avoid frequent repetitions of "truck"
before the field names.

There are other facilities of records, including a method of
describing variants, which are covered in Part II of this manual.

.When processing is complete, the statement L A IO A

Pro Pascal Usgr’Hénualu

‘6.3.8 Pointers

Besides the variables considered up to now which are allocated at
comnpile time, Pascal includes a dynamic storage facility known as a

"heap"”. Space can be taken from and returned to the heap at any time :‘;-;4
during the running of an object prograsm, accordlng to the requirements - -
of each particular execution. , .

Objects in the heap are addressed through pointers. A pointer is a PR
variable which is associated with a particular data type, and mus:
always point to an object of that type (unless it is currently unused
when it should be given the special value NIL). For instance, a
pointer to the type "vehicle" in 6.3.7 might be introduced by

\

TYPE ptvehicle = © vehicle;
and a pointer variable declared

VAR ptruck : ptvehicle;

To get space in the heap for a vehicle record, and to set ptruck toc
peint to it, the following statement is used L.

new (ptruck)

\

after which the record can be filled in by statements such as

ptruck”.makercode :=z AEC

(Hote that the up-arrow comes before the name in the type declafation,
but after it when making references.)

dispose {ptruck)

o

returns the space to the dynamic pool.

Of course, this particular example would not be a worthwhile use of
the apparatus. The full value of the heap becomes more apparent in
situations such as a program which requires two large structures but
not both at once. And the full versatility may be gauged from the
idea of adding a new field of type ptvehicle to the vehicle record,
which allows a chain of records to be built up to any length: '

’VPro Pascal User Manual

6.3.9 Files

A file in Pascal is a data structure having an indefinite number of
components. In practice, files are generally implemented as the means

whereby programs can transfer data to or from discs dr other external .

devices. They are best considered as being of two main kinds: text
files, and others. v

6.3.9.1 Text files

A text file is composed of characters grouped into 1lines. It is
therefore the natural means of communication with the wuser, through
console or listing. There are facilities for automatically converting
values between internal and external representations as they are read

from or written to text files, and in the case of output the program

can control the layout. A text file is declared as, for example:
VAR listfile: text;

(Text files are equivalent to formatted files in Fortran.)

6.3.9.2 Other files

Files based on other data types c¢an be used, typically for
intermediate storage, or transfer of data from one program to another
without involving conversion. Returning to the example of "vehicle"
as a record type, a file may be declared as

VAR fleet: FILE OF vehicle; ' /

that is, "fleet™ is a series of records describing vehicles. Note,
first, that all the components of a file are of the same type. (The
use of "variant®™ records, described in Part II, makes this a 1less
severe restriction than it may seem at first.) Also, Jjust one
component is accessible to the program at a time, as though a "window"
was moved along the file through which one component can be viewed.
In Standard Pascal the window can only move sequentially; Pro Pascal
provides, in addition, a random-access facility.

The file components do not have to be records - FILE OF integer, for
instance, 1is perfectly valid. Pro Pascal provides automatic blocking
of small components. The only prohibition is a combination of
declarations which defines one file within another one.

_Pro Pascal User Manual

6.3.9.3

Common concepts

‘The operations read and write are available yith“ any'lfiie.-i?or_
non-text files, they have the effect of moving one component between
the file (at the current position of the "window") and a program

variable, for example

read (fleet, truck) . ' S i
“copies the current component from the file "fleet"™ to the variable
"truck", and at the same time moves the window to the next component.
The basic operation on a text file is similar; for instance, if ch is . .
a variable of type char, the statement S

write (listfile, ch) - o : G (
moves the value of ch to the current position in listfile and advances .
the window. However, there are further possiblities with textfiles
that are discussed below. :

Ariother characteristic of all files is the concept of "eof" (ob
end-of-file). Check for this condition before a read operation by a .
statement such as SR

IF eof(fleet) THEN summary " S Bt S e

(No special steps have to be taken at the end of writing the file; the
file-handling software simply notes the last component.)

Before it is addressed by read or write operations, a filevmust be set
into the input or output condition by one of the statements

. reset (f); {for input}
‘ ' rewrite (f); {for output}

These have the effect of positioning the file window -=at the first
component. The sequence of operations on a work file might be as
follows: ‘
rewrite (work); {prepare for output} . _
write (work,..); write (work,..); ... =~ > o
reset (work); {back to start & prepare for lnput}
read (work,..); read (); ...

The standard text files "input" and "output™ can be used by any
program without having to be declared or any reset or rewrite given.

Any implementation generally has methods of associating Pascal files .
with specific devices or disc files. The Pro Pascal arrangement; -are
discussed in the "implementation dependent" section of Part II. :

‘ véééiPascal User Manual

6.3.9.4

‘Text files have the special property that the basic file cOmponéntsi

Special features of text files

(characters) are held within a substructure of lines. The way this is
defined is designed to be independent of the method of determining the
end of lines in any particular hardware or operating system.

When writing, the end of each 1line is indicated by a writeln
operation, e.g.

writeln (output)

For reading, an end-of-line condition similar to the end-of-file
condition 1is introduced, obtained by the operation eoln. This = v
condition is true when the file window is at a point where a writeln '
was given. The readln operation skips any remaining characters on the
current line and positions the window at the first character of the
next line (or eof becomes true). _)

Read and write operations on text files can specify multlple transfers
within the same line, e.g.

write (output, 'Total-', total)

The line termination can be included as well, by using wrlteln instead
of write. :
Conversion operations are automatically supplied when reading or
writing values in internal representation such as integer or real
(though not for user-defined types such as enumerated). On writing,
the layout can be controlled by specifying a field width with the
value, thus ’

write (output, value:width) _ e SR

where both ™value" and "width" are in principle expressions. If the
value is of type integer, it will be displayed right-justified in a
field of the specified width. When width is omitted, Pro Pascal
displays integer values right-justified in a field of 11 characters.
If the significant digits of the output are more than the given width, -
the width is exceeded. As a consequence, a width of 1 gives a

left-justified output. Further options are available with real values,

as described in Part II. '

A special facility of Pro Pascal is the "append" operation, which"can
be used instead of rewrite when new information is to be added to an
existing file.

" Pro Pascal User Marual

2y

1 6.3.9.5

\

Special features of non-text files

.

In Standard- Pascal, all file operations are sequential. Pro Pascal~

has additional facilities for random access to non-text files; the'~i}
operation , ‘ ‘ :
g seek (ntfile, elnumber) '
) positions the file window at the specified element number. Read (or e

-~ write) operations follqwing take effect from this position. Randon s
read operations can be performed on a file written sequentially, and
for this purpose reset should be specified to initialise the file.
The Mappend™ facility described above is also available for nen-text
files, allowing data to be added to an existing sequential file.
The operation Mupdate™ is also provided in Pro Pascal as an

. alternative to reset and rewrite, indicating that both forms of access
e are to be used. Update. operation is inherently less secure than the
S sequential file processing of Standard Pascal, and should be used with
N appropriate safeguards against system malfunctions (regular backups in
particular). It is also not intended that update operations be done
on an empty file; a sequential initialising process should be carried
out first. :

Fgis

e

7 VARIABLES AND VAR DECLARATIONS

Pro Pascal User Manual «

7.1 iable declaration SRR CE AL

Variable declarations instruct the compiler to allocate space in the
object program, and to associate with each variable a type (which
among other things dictates the size of the item). For example:

VAR thiscomp, winner: competitor; “ g ; 0 i
eventscore: score; . i _ il
totalscore: integer; : o ;
listing: text;

(from the sample program in section 1). The types integer and text =~
are built-in with predeclared significance (which the programmer can
redefine if he wishes), whereas type declarations for competitor and - = .
score must already have been encountered.

The type quoted in a variable declaration need not be in the form of
an identifier - any of the forms described in the previous section can
be written after the colon, for example: : o

VAR linecount: 1..66; : :
fleet: FILE OF vehicle; S
answer: (yes, no, dontknow);

The variables of one type also do not have to be listed together

(as'
thiscomp and winner), though it is often helpful to do so. 3

7.2 - Reference to variables . } o ~;,1,f;~

The forms of reference to various types of variable have already been
shown. To summarise:

A compléte ("entire") variable is referenced simply by the f
- variable name. i

S

An array element is selected by an index expression in square
brackets - ale]. P

A field in a record is selected by the field name separated
from the record reference by a period (full stop). ~ -

The object pointed at is obtained by following the pointer .
reference with an up-arrow (7).

Because Pascal allows such combinations as an array of records, or a
record having an array as one of its fields, or .a record as part of a
larger record, the selection of an elementary item may need to be done

in stages. In all cases it is a matter of progressive refinement,
following a logical path to the required object by wuse of the four
forms shown above. gnk:

Pro Pascal User Manual °

I - 28

8 . PROCEDURES AND FUNCTICNS

Procedures. provide one of the most valuable methods of subdivi&ing a
program into manageable pieces, as well as allowing for commoning-up
of similar sections of code. -

-

8.1 Blocks

~ The program skeleton shown in section 2.1 consists of a progran

heading followed by:

LABEL declarations

CONST declarations

TYPE declarations

VAR declarations -
PROCEDURE and FUNCTION declarations
Program body

This collection (from LABEL to body) is called a block, and a
procedure declaration is formed from a procedure heading and a block.
Since the procedure block can include procedure declarations, it
follows that the first procedure can have further procedures inside it
(like the big fleas and little fleas). :

Pascal Yser Manual
N : e

] For many prcgrams, however,
E at one level, thus:
ol SR PROGRAM able; S
v . »” ¢', TYPE c o0 » g)
3['“ ‘;if?, VAR ... B
R | PROCEDURE alpha;
: R VAR ...
L BEGIN
LT O I, o {body of alpha}
e END;
; PROCEDURE beta; S A N
TYPE ... : B e e T
- - - ; VAR ... - - R AR 3
[“ ({7, BEGIN
: . ' {body of beta}
™ . B END; -
| R ~ FUNCTION gamma: real;
. o : BEGIN .
' S {body of gamma} :
. .7} S ~ END; -
R ~ BEGIN et
: {program body}
END.
o Indenting and comments are useful in showing up this structure td the '
& - eye. Lt
i There is one important constraint to observe. 1In the example above, .
SR . statements in the body of beta can use procedure alpha, but without
— PRt special arrangements the reverse is not true. Often this constraint
(-jr " is not difficult to live with: it is simply necessary to put the more
Lg,\ i primitive, low-level procedures first. : o e
. The above, and 'much else in this section, applies -equally to
functions. SR : el
3 on
L (‘:"‘
™ T

. is used. | _ L .

One of the important characteristics of a bloc« is its opague quality

from outside. Procedure alpha can be used by beta or the progranm

body, but anything declared inside it (a variable, for instance) 'is

invisible and cannot be referred to from outside. On the other hand,

the block is "transparent™ from inside, and the body of alpha can use

types or variables from the main program. The subdivision of the

program into watertight compartzments makes the whole thing more
secure, and allows attention to be given to a reasonable-sized portlon

of the problem at once.

The term "scope™ is used to mean that part of the whole program text = .
over which the declaration of a name applies. It is, generally RN
speaking, the block in which the declaration occurs, and any blocks R
nested within it. The same name can be re-used in"'an inner block -
though this is not on the whole a good practice, being confusing 'to A (
humans - in which case the "nearest" declaration is the one which is o -
taken at any reference.

8.3 Declaring and using simple procedures R+

A procedure such as alpha in 8.1 is very like a miniature program. It =~
can have its own "local” variables, which come into existence when the
procedure is used and vanish when control reaczes the end of the body
and returns to the point of call. oo

To call alpha, the statement

alpha;

Pro Pascal User Manual:

Ay

8.4 Parapeters

_ . Procedures as so far described are a useful means of subdividing
'~ prograas, bdut rely on variables of an enclosing block (typically the
main block) for communication. Parameters give an important extension

to the independence, and hence the structural value, of procedures.

A parameter is a variable of the procedure which is filled in at the
time of call. It has the advantage of being local to the procedure,
and hence private except at the time the procedure is invoked. For
example, ’ '

PROCEDURE upper (fch: char); :
BEGIN .
IF fch IN ['A'..'2Z'] THEN :
writeln (output, 'Upper case!);
END {upper};

Here, upper has a "formal parameter" fch of type char. Each call of
upper must supply a character, and upper will display the message:
'Upper case! if it is in the range A to Z. The call

upper ('X');
is obvious, but the supplied value would more usefully be a vériable,
e.g.

read (input, ch); upper (ch);

Incidentally, this shows how the read and write operations are in fact
examples of procedures. They are unusual in two ways =- o

(a) they are used without being declared,

(b) they may have a variable number of parameters.,
Some other "standard procedures"™ are described iﬁ section 8.6. :
User-defined procedures must be declared, and each «call must supply -

the number and types of parameters to match the declaration. B

A

PrcIPasc#l'User Manual

The parameter fch to procedure upper is a "value" parameter - the call
can supply any character expression, including a constant. The
parameters to the procedure write are of this kind. An alternative :
form is found in the procedure read, which returns a- value to the - %7;
caller via its parameter. This kind is a VAR parameter, so called '
because the declaration of such a parameter in a user procedure starts
with the word VAR. Within the procedure, the parameter name may e
appear on the left-hand side of assignments, and the call must supply ~ -

a variable (which may be an array element or a field in a record) into :
which the assignment is returned. Before using a VAR parameter to

return a value, the called procedure can refer to the current contents

of the variable. It is therefore somewhat more versatile, but less

safe, than a value parameter., :

Here the procedure lower has a VAR parameter of type char: ' ’

PROCEDURE lower (VAR fch: char); , ‘ . R e (
BEGIN e pRa
IF fch IN ['A'..'Z'] THEN ,
fech:= chr(ord(fch) -~ ord('A') + ord('a'));
END {lower};

If the variable supplied in the call is an upper-case letter, the
procedure replaces it by the lower-case equivalent. (This example’
uses two further concepts, ord and chr. Pascal does not permit
arithmetic operations to be carried out directly on characters,
because implementation-dependent assumptions about character codes
would then be embedded in programs. For further details, see below
and in Part II.) ‘ 3

"
. Q;}\

e

g ST

Pro Pascal User Manual - 'Q”f5 ’§ _ 15fffiff | DT S
8.5 Functiozs
In fact, ord and chr are examples of functions. Other 'éxamples aré'

sqrt(x), which returns the square root of the argument x,,and the eof
predicate mentioned in section 6.3.9 on files. A function is in wmany
respects like a procedure, but differs in that it always returns an
answer, and is invoked by quoting the function name where the answer
is required, typically within an expression.

A function has a type, which is the of the
included in the declaration:

type answer, and 1is

FUNCTICHN lowercase (fch: char): char;
BEGI!
IF fch IN ['A'..'Z'] THEN
lowercase := chr (ord(fch) - ord('A') + ord(a'))
ELSE lowercase := fch;
END {lowercase};

-

This example uses the value parameter/function result mechanism to
perform the same service as the procedure "lower" in the previous
section. The alternative forms of call might be

read (input, ch); lower (ch);
and

read (input, ch); ch := lowercase (ch);
However, the function can be more versatile in use; as for instance

read (irput, ch); write (output, lowercase (ch));

In Pascal, a number of procedures (known as "standard procedures") are
provided as part of the language, and can be used without having to be

declared. The file-handling procedures read and write introduced o
earlier (see 6.3.9) are examples; others are the math functions sqrt, ,;Jf
sin, cos, exp, ln, and arctan which can be used within expressions .
whenever needed.

8.6.1 String-handling procedures ST

A further category is the group of procedures and functions used for
manipulating dynamic-length strings. The principal ones are

~ length(s)) a function which gives the current length
of string s

copy(s,i,n) a string function which gives n characters
from string s starting at character i

delete(sv,i,n) a procedure to delete n characters from
string variable sv starting at character i~

insert(s,sv,i) a procedure to insert string s lnto string
variable sv at position i

concat(s1,s2,...) a function which gives the "concatenation”
of st1, s2, etc. .

' Others provide for searching within a string for a given 'substbing,-:
and for converting an integer from internal form to decimal. Details
will be found in Part II.

.

Example program using strings:

PROGRAM list (input,output);

VAR

BEGIN

END.

{Copy a textfile from "source®™ to "output”
with line numbers.} _ ;

source: text; {source file}
name: string{10];

filename: string[14];

line: string[120];

linecount: 0..9999;

-~

linecount := 0;

write('Source name - '); readln(name);

WHILE (length(name) > 0) AND (name[1] = ' ') DO
delete(name,1,1); '
{remove any leading spaces}

filename := concat(name,'.PAS'); %

assign(source,filename); reset(source); s

1

{now copy from source to output, a line at a time} . -
WHILE NOT eof(source) DO
BEGIN
linecount := linecount + 1;
readln(source,line);
writeln(output, linecount:4, ': ' ,line);
END; ‘

-

el

_Pro Pascal User Manual

~
Lo

A

9 GETTING STARTED

The information in the previous sections is sufficient to allow quite
advanced Pascal programs to be produced. A few topics (program
segmentation, for instance) have been omitted from the sequential
presentation to avoid confusion in the early stages. Part II1 contains
a fully detailed description in reference format, and should be
consulted if any queries arise, or features not covered in Part I are
to be used. This section is devoted to some practical guidance for
those who may not be familiar with how a language system such as Pro
Pascal is actually used. '

9.1 Think ahead

Except for comparatively trivial programs, Pascal cannot really be
composed at the keyboard. Plan at least the general shape of a
program on paper, with particular reference to any data structures.
If there is a significant amount of processing code, consider how it
might be given shape and clarity by subdividing it into procedures;

even if a procedure is only called from one place, it helps to

concentrate the logic and make errors simpler to track down.

Once a program has been given a suitable initial shape, Pascal is very -

malleable. Statements can easily be added or moved, made conditional

~or put within a loop. Sections of code can be extracted into

procedures, giving the possibility of introducing new local variables
and the independence provided by the procedure structure. -

9.2 Choice of names P

Names in Pascal form an important part of the self-documenting aspect
of any source text. Variables called i and j, for instance, give away
little of their purpose in their names, and should be avoided, except
possibly as very localised 1loop counts., (There is not even any
built-in rule that i should be of type integer, though it would be
perverse to use the name for, say, an array of characters.)
Meaningful names - vehicle, printentry, scanlist, today, linecount =

£

make all the difference to readability and hence ease of testing and 3

maintenance, .

~ Pro Pascal User Manual

Vo

rmoil

ta'

-
.

When a source program has been entered into the computer, it must go = &
througnh two stages before it can be run. The source is compiled, and :
the output from the compilation is then linked with a selection of
routines from the Pascal library to form an executable object program.
(This arrangezent will be familiar to most users of Fortran.)
Directions for operating the compiler and the linker will be found in
Part III.

During the ccmpilation process, thorough checks are made that the
progran obeys the Pascal language rules. Any violations are reported,
with the type of error and its position. After correcting the errors,
the compilation must be retried. As a result of this - (perhaps
apparently frustrating) sequence, many small errors are in fact put
right in a short period of time. For example, because all objects
must be declared before use, any mis-spelled or dincorrectly keyed
names can be eliminated.

Errors of 1logic in the program, however, may remain (including
possibly the typing mistake which turns one intended name into another
legitimate one). These can only be found by 1linking the compiler's .
output and trying to execute the result. If the program is a large
one, it may be worth inserting a few extra statements such as e

writeln ('Initialisation complete');
which can easily be removed later.

A number of kinds of error are trapped at run time by the routines

from the library, and may be located from the information displayed.
There are also extra checks which can optionally be included in the
object code by the compiler, and may help in the detection of such
things as use of variables before any value has been given to then.
Details of these aids will be found in Part III.

9.4 lusion
Pascal presents many more possibilities than Basic or Fortran, and
consequently takes a little longer to learn to use, but the trouble
taken is amply repaid. The professional will appreciate for example
that procedures can be collected and used again in different programs,
or how simply file-processing operations can be programmed, because
such things improve productivity. And it is not necessary to be a
professional to feel the sense and logic of a well-structured program.
It was one of the motives behind the design of Pascal to improve the
reliability of software, and it forms a valuable tool in achieving
that purpose. '

Pro Pascal User Manual I-38

10 FURTHER READING

This User Manual is not intended to be a Pascal primer, or to deal
with every aspect of the definition and use of the Pascal programming
language. Among the many publications which address these topics, the
follewing - each with its own distinctive approach - are
certainly worth investigating.

(1) K. Jensen and N. Wirth
"Pascal User Manual and Report”
Springer-Verlag, 1975)

(2) N. Wirth
"Algorithms + Data Structures = Programs"
Prentice-Hall, 1976

(3) J. Welsh and J. Elder
"Introduction to Pascal"™
Prentice-Hall, 1979

(4) P. Grogono
"Programming in Pascaln®
Addison-Wesley, 1980

(5) L.V. Atkinson
"Pascal Programming"
John Wiley & Sons, 1980

(6) D. Fox and M. Waite
"A Pascal Primer®
Sams, Indianapolis, 1981

(7) I.R. Wilson ard A.M. Addyman
"A Practical Introduction to Pascal - with BS 6192"
Macmillan_Computer Science Series, 1983

In a rather special category is the definition of ISO Standard Pascal, -
which is now available.

BS 6192: 1982

"Specification for computer programming language Pascal®™
British Standards Institution

(ISBN 0 580 12531 9)

While not easy reading, it is clearly a document of importance to all
serious users of the language. :

= -
n

n

SIS ANV
w N -

= = & w w w
. e o
wn — [\ Y

[*ATEEEN) |

. wm® oo =N oo
N —

\D\D\‘O\O\O\O O
O EWN —

9.7

Index

Lexical aspects

Tokens ' N “9lfi ’:"1biw‘; . , : 2
Separators - Lo i (s i

Programs, segments and blocks : -

Programs
Segments
Blocks

Statements and expressions

Statements
Expressions

Labels

Declaration of labels
Definition of labels
Reference to labels

CONST declarations
Type definitions

Type denoters : ' o
Type compatibility -

Variable declarations
Procedures and functions

Procedure and function declarations -
Activation of procedures and functions -
Standard procedures and functions

Implementation-dependent aspects

Pascal files and CP/M

Additional standard procedures
Library facilities

Storage allocation ,
Object code for integer arithmetic
Interfacing to assembler

Non-CP/M object programs

‘Considered from the aspect of its representation on the printed page,

. The length of a source line may‘not exceed 255 characters.

LEXICAL ASPECTS -~ .,

rather than with regard to its syntax or meaning, a Pascal program can
be viewed as a sequence of lexical "tokens" interspersed with
"separators". The forzs which these two kinds of lexical entity may
take are described in 1.1 and 1.2, respectively.

(The notation used, throughout this manual, for defining the Pascal -
syntax is described in Appendix A.)

1.1 kens o - - . ,iiffﬁf:'
These are of 6 kinds:
token = special-syz=bol | identifier | directive !
label | unsigned-number | character-string
1.1.1 Special symbols

The special-symbols are tokens with special fixed meanings.

special-symbol = "+® } m.nm | mEn 1 mym 4 onom 4 ongnm § onyn
n[w = n]n : n.on : n’n { n.n : n;n : n*n :
n(n ; n)n I ongyn { ng=n : ny_n : LE :

.." | word-symbol
word-symbol = "AND" |} "ARRAY" | "BEGIN" i MCASE™ | "COMMON™ | -
- WCONST® | "DIV™ | "DO" | MDOWNTO" | "ELSE" | ,
{ "FILE™ | "FOR™ | "FUNCTIONM™ ! "GOTQ" | ~°

"END"
®IF" | "IN" | "LABEL"™ | "MOD" | "NIL"™ | "NOT" |
"OF™ | "OR"™ | "OTHERWISE"™ | "PACKED" |}

]

"PROCEDURE"™ | "PROGRAM" | "RECORD"™ | MREPEAT" |
"SEGHMENT™ | "SET™ | "THEN™ | "TQO" | "TYPE" |
"UNTIL"™ } "VAR" | "WHILE" | "WITH"

To allow for them not being available on all keyboards, three of the
special-symbols have alternative representations:

symbol alternative
((.
1 -)
s e

In the spelling of word-symbols, as elsewhere in Pascal (except within
character-strings), upper- and lower-case letters may be used
interchangeably. o

Note that word-symbols are "reserved" words: they are not available
to the programmer for use as identifiers. : ‘

B3

[

5 .
‘ R e o D TR pyp— e e PR R A . . - . sos

$ox

Pro Pa°cal User ﬂandal;

1.1.2 Identifiers

Identifiers are used to denote constants, types, fields, - variables,“r
procedures and functions. They are constructed from letters, digits
and underscore characters, starting with a letter: .

identifier = letter { (letter | digit | underscore) }

]
i
lettep = "aﬂ : nb" : ncn : lld" : "e" : llrﬂ : l'gtl H nh!l :
ni" : "J'" = "kl‘l { nl" : nmn : ﬂnn = “O" ; "pﬂ g /
Nq" : "rﬂ ; ﬂsﬂ = "t" : ﬂuﬂ : llvn { nwn : Nxﬁ : ‘
nyn | ngm i A
digit = "Q" | ™1 | mgm | m3m | omym | ‘ R
ngn | mgm ! nm7e | ongn | ngn p E ';"'
underscore = "_" . A
Identifiers may be arbitrarily long (but may not extend over more than v - (

one line). All characters except underscore are significant in
distinguishing among identifiers. No distinction is made between the
upper and lower case of a letter.

Examples:

prime_number 280 UP2downl

1.1.3 Directives

directive = "FORWARD" | "EXTERNAL"
Directivés are identifiers with special meanings (see 8.1.3). Because‘f
they are not "reserved" words, they may be redefined within the source .
program (although this would seem an odd thing to do).

1.1.4 Labels ' ; . "1Vf : (

A label is a sequence of decimal digits Wlth a value in the range _A;-
0..9999.

label = digit-sequence - BT AL
digit-sequence = digit {digit} . : o

A label is uniquely identified by its value, so that 2 and 00002, for
example, represent the same label. 30

1.1.5 Unsigned numbers

These are of three types, integer, real and longreél:

.

unsigned-number = .
unsigned-integer | unsigned-real

1.1.5.1 Unsigned integers ' -

These may be in either decimal or hexadecimal notation:

unsigned-integer = decimal-integer |

decimal~integer = digit-sequence

hexadecimal-integer

hexadecimal-integer = digit {hexdigit} "H"

hexdigit = digit | "A™ | n"B® | nCn |

Again, no distinction is made between upper- and lower-case letters.

Whichever of the two representations is used, the value must 1lie
the range 0..maxint, where maxint = 2147483647.

Examples:

1066 OFFH

1.1.5.2 Unsigned reals

These nust be in fixed- or floating-point decimal notation:

unsigned-real =

decimal-integer "." digit-sequence ["E" scale-factor]

decimal-integer "E" scale-factor
scale-factor = [sign] decimal-integer
sign = "an | nom

Examples:

10.0 . 1e-10 0.314159265E1

npn

unsigned-lcngreal

Pro Pascal User Manual R

Il .

1.1.5.3 Unsigned longreals

These must. be in floating-point decirmal notation, ~ and are
distinguished from real constants in that the decimal exponent is
introduced by "D" rather than "E":

unsigned-longreal =
decimal-integer [".™ digit-sequence] "D" scale-factor

D means "times 10 to the power of", and may be in upper or lcwer case.
Longreal constants are held to greater precision than‘ real constants
(see 6.1.1.1). Examples:

1D0 0.1234567890123456d-99

1.1.6 Character strings

A character-string is a sequence of one or more ASCII characters
enclosed between apostrophes, If the string is to contain an
apostrophe, this is denoted by an "apostrophe image", which consists
of two adjacent apostrophes: -

character-string = "'" string-element {string-element} "'"

- string-element = string-character | apostrophe-image
string-character = ASCII-character ' .
apostrophe-image nian

A character-string containing just one string-element is a constant of
the standard type char (see 6.1.1.1.5).

A character-string containing n string-elements, with n in the range
2..255, is a constant of the type

PACKED ARRAY [1..n] OF char
(see 6.1.2.1).
Examples:
Tyt

'This string has 30 characters.'!
''"' is an apostrophe!?

These are of three kinds:

"If the character immediately after the "{" is "§", then the comment

Pro Pascal User Manual .

v

1.2 e at

separator = space | end-of-line | comment

space = " "

comment = "{" any-sequence-of-ASCII-characters-and-
end-of-lines-not-including-right-brace "}n

Zero or more separators may occur between any two consecutive tokens.
At least one separator must occur between any pair of tokens
consisting of word-symbols, directives, identifiers, labels or
unsigned-numbers. No separators may occur within tokens.

1.2.1 Comments . » S

To allow for the possibility of left- and right-brace characters not
being available, "(*" may be substituted for "{" and/or "#)" may be"
substituted for ™}", in a comment. N

For example: (* This is a correctly formed comment.}
may represent a "compiler directive”, The Pro Pascal compiler -
recognises two such directives: source file 1nsert10n, and page throw
on listing. (Both are extensions to Standard Pascal.)
1.2.1.1 Source file insertion

If the character after $ is I (or i), the comment is treated as a

request to the compiler to include the contents of another source file
at the point in the text at which the "comment"™ occurs. For example:

7

{$I typedefs]} F T

causes the inclusion of the source file TYPEDEFS.PAS. Any spaces
after the I are ignored, and the remainder of the comment is treated
as a CP/M filename. If the filename has no extension, .PAS is
supplied. :

i

Inserts may be nested, to a maximum depth of 4.

- >

This facility is disabled if the "Accept only strict Standard Pascal"
compile~time option is in force.

1.2.1.2 Page throw on listing - .

If the character after § is P (or p), the comment is ‘treated as a‘;
request to the compiler to insert a page throw (form-feed) into the
listing file at that point (assuming that the L compile-time option is

in force). Example:

(3P} L :

- The unit of input to the compiler is a program or a ‘segment. Each

‘compiled, and then linked together to form the executable progran.

\

2 PROGRAMS, SEGMENTS AND BLOCKS

has, roughly, the form of a procedure declaration. , . ~ i T
compilation-unit = program | segment

An executable Pascal program is composed, in source teras, of a
program together with zero or more segments. Each 1is separately

Execution commences at the beginning of the statement-part of the
program. Control passes (temporarily) to a segment only whea a
procedure or function in that segment is called (from the main pregram | =
or from a segment): a segment does not have any statement-part. .

-

2.1 Programs

program = program-neading ";" block "."
program-heading =

"PRCGRAM" identifier ["(" global-parameter-list m)n"]
global-parameter-list = identifier-list
identifier-list = identifier {"," identifier}

The identifier following PROGRAM is the program name, and has no
further significance within the program. The identifiers in the
global-parameter-list may optionally, but are not required to, nare
any files used within the program. The syntax is accepted, but
otherwise ignored, in order to preserve compatibility with other
Pascal systems.

The concept of "block™ is defined in 2.3.

At the beginning of the statement-part of every program, a call is
generated to a module in the library which sets up the environment for
the program. This includes operations equivalent to- the statements
reset(input) and rewrite(output), so these standard files may be used

by the program without further preparation. el

For an example of a complete program, see Part I, section 1.

L T SR LB

.. Pro Pascal User Manual:

Ry

2.2 Sezpents B T S R 1f{v7',ﬂ:V

segzent = segment-heading ";" segment-declarations e :
NREGIN™ MENDM u n] ST et tE
segzent-heading = : ’ e
"SEGMENT" identifier ["(" global-parameter-list ")"]
segzent-declarations = constant-definition-part ST e
type-definition-part : S TR
variable-declaration-part : LA e

procfunc-declaration-part
The identifier following SEGMENT is the segment name, but has no |
further significance within the segment. The syntax and meaning of
"global-parameter-list™ is as in 2.1. - .
By referring to the syntax of "block" (see 2.3), it will be observed - /‘(

that at the outermost level of a segment, as opposed to a program, the
label-declaration-part is absent and the statement-part is trivial
(the empty "compound-statement™). Only the procedures and functions
within the segment contain executable statements.

)

L As an exazple of a complete segment, here is one containing Jjust a
o single function. After being compiled, it could be added to a library
{fg S of object modules, and would then be available to any Pascal program
s . which declared it as EXTERNAL (see 8.1.3).

{ o SEGMENT min;
(SO FUNCTION min (argl, arg2: integer): integer; T
S e BEGIN —:"'Q‘ggzv'

IF argl < arg2 THEN min := argil
ELSE min := arg2;
END {min};
BEGIN : ER LR
END. . 4 » ' N -}fl;

Pro Pascal User Manual > ; f‘ N R DT i II - 9
2.3 Blocks]

-
.

A block Eonsists of declarations, definitions and statements, and is

the main ingredient of a program,. a procedure declaration or a
function declaration.

block = label-declaration-part
constant-definition-part
type-definition-part
variable-declaration-part
procfunc-declaration-part
statement-part

Since a procedure or function can, in turn, contain declaraticns of
procedures and/or functions local to itself, "block" is an essentially
recursive concept. =

A label or identifier which is declared in a block has a scope which
includes any block textually nested within it, except where it is
(temporarily) "masked" by having been redeclared in such an inner
block.

The first five ingredients in the above definition of "block" all have
the nature of declarations, and are treated in sections 4 thru 8. The
last - the statement-part - is the subject of section 3. Its formal
definition is:

statement-part = compound-statement

Pro Pzz2al User Manual

3 . STATEZMENTS AND EXPRESSIOQNS

. X

/

3.1 Statements

Statezents denote the actions to be carried out by a program. They may
be classified into two groups: simple statements and structured’

D statements. ' ,

7O

A statement may be optionally preceded by a label:

L statement = K
- » (label ":"] (simple-statement | structured-statement) -

r? e 3.1.1 Simple statements . »\"[" (i
f"\‘ T Simple statements are those which are not made up of other statements.

e DR They are of four kinds: . '

.‘*'T,ggf ‘ sizple-statement = empty-statement | assignment-statement |

V G) procedure-statement | goto-statement

3.1.1.1 Enpty statement

This consists of nothing at all, and causes no action to be performed.

Thus, anywhere in the Pascal syntax that a statement can occur, one of
the options is to put nothing. A particular example is the 1labelled
expty statement, as in: :

[BEGIN ;

i IF error THEN GOTO 999; |

‘ : {on.} .
S 999: - - s
: ; : ND . . B """‘.'
Lﬁf-\ S E - ' - R

3.1.1.2 Assignment statement

.. . The purpose of the assignment statement is to cause the value of an -
: expression on the "right-hand™ side to be assigned to a variable, :on
the "left-hand™ side: : oo

8 Gl assignment-statement = L
L (variable-access | function-identifier) ":=" expression .

The type of the expression must be assignment-compatible (see
with the type of the variable on the left-hand side.

If the variable-access involves array indexing (see 3.2.1.1.2) arnd/nr

pointer dereferencing (see 3.2.1.1.4), these actions will

be carried
out before the right-hand-side expression is evaluated. . _

%

e

If the item on the left-hand side is a function-identifiér,l the
assignzment statement determines the value which the function will
return, when called. The assignment statement wmust be within the

. function block. See also 8.1.2.

Examples:

Z := a¥yxy - bly . : n -;TI _
ali,3] := 0.0 | TN e
p~.next := NIL : ~ 3

3.1.1.3 Procedure statement

A procedure statement denotes a call of the procedure named in it. A
(possibly empty) 1list of actual parameters are passed, which'
correspond one-for-one with the formal parameters in the procedure's
declaration:

s

procedure-statement =
procedure-identifier [actual-parameter-list]

The actual parameters are evaluated in left-to-right order. Further
details will be found in 8.2.3.

Examples:
open_customer_file ,
invert (a, b) v : s
pack (a[row], 4%*i, z) B
3.1.1.4 GOTO statement
A GOTO statement causes control to be transferred to the place in the
program text at which the label is defined, i.e. to the statement
which is prefixed by the label (see 3.1). :
goto-statement = "GOTO"™ label

The label may be in the current block or at any textually enclosing
level. : ©o

Example:

GOTO 999

.. Pro Pascal User Manual

 The statements are executed in the order in which they are written;

3.1.2 Structured statements

Structured -statements are those which are ~ composed of other
statezents. There are four kinds:

structured-statement =
compound-statement | conditional-statement !
repetitive-statement | with-statement

3.1.2.1 Compound statement

- NE

A compound statement is simply a sequence of statements bracketed by
the delimiters BEGIN and END:

compound-statement "BEGIN™ statement-sequence "END" - ER os
statement-sequence = statement { ";" statement } ‘ B A (

Exampie:
BEGIN
i:=20; J:=1;
k =1+ j; -
END ‘

3.1.2.2 Conditional statements

The two sorts of conditional statement permit the selection
from several alternative statements. ’

conditional-statement = if-statement | case-statement'

o Pro ?ascal U:er Manual

3.1.2.2.1 IF statement

~vaiue of the expression is true, the statement following THEN is

A

" if-statement = "IF" boolean-expression "THEMN™ statement =

["ELSE" statement] .
Here, boolean-expression is an expreSsion (see 3.2) which is of type
boolean, i.e. has the value either true or false. If, at run time, the

executed and the statement following ELSE (if present) is skipped. If
the value of the expression is false, the statement following THEN is
skipped and (if there is an ELSE clause) the statement following ELSE.
is executed.

Since the alternatives are "statement™s, either or both may themselves ; ?§
be IF statements. For example: - :
IF i = 0 THEN _ > o RISy
IF j = i THEN reorder ' RO T
ELSE finish ‘ E

Any possible ambiguity is resolved by the rule that an ELSE clause is -
always matched with the nearest unmatched THEN. The above statement
is therefore equivalent to

IF i = 0 THEN
BEGIN »
IF j = i THEN reorder : , , R
ELSE finish ‘ ‘ e
END , By

as opposed to

IF i = 0 THEN
BEGIN ‘
IF j = i THEN reorder
END . - SRS
ELSE finish SRR S S

. Pro Paccal User Manual

3.1.2.2.2 CASE statement : R

case-statement = "CASE"™ case-index "QF"
case-list-element { ";" case-list-element}
[™;™ "OTHERWISE" statement] [";m] mEND"
case-index = expression
case-list-element = case-constant-list ":" statement
case-constant-list = case-constant { "," case-constant }
case-constant = constant

Here, case-index is an crdinal-type expression which selects, at un
time, which of a number of alternative statements is to be executed.
The case-constants must all be distinet from one another, and be
cozmpatible with the type of the case-index. -

If the value of the case-index matches one of the case-constants, the
statement in whose case-constant-list that constant figures is
executed (and all other statements are bypassed). If the value of the
case-index does not match any of the case-constants, then what happens
depends on whether an OTEERWISE clause is present or not; if so, the
statexent following OTHERWISE is executed (all other statements being
bypassed); if not, a run-time error occurs.

Exacple:

CASE flag OF
0: interrupt := set;
1: interrupt := reset;
OTHERWISE error(134);
END

Note that, although they may resemble them (as in this example),
case=-constants are completely different from labels.

- R e et et R0 T S w W et st . P ———————

N

3.1.2.3 Repetitive statehents

.The three sorts of'repetitive staterment cause certain Sfatemeﬁt(a) to
be executed repeatedly.

repetitive-statement
~repeat-statenent

while-statement | for-stategment

3.1.2.3.1 REPEAT statement : : - . o

-

repeat-statement =
"REPEAT" statement-sequence "UNTIL" boolean-expression bt
boolean-expression = expression Vet

The sequence of statements bracketed by the delimiters REPEAT and
UNTIL is repeatedly executed until the value of the boolean expression
is true. The expression is evaluated after each execution of the
statement-sequence. In particular, therefore, the sequence is always
executed at least once.

Exacple: » ' ST N

i := sucec(i);
UNTIL j > i

3.1.2.3.2 WHILE statement ‘ , ERESET

while-statement = "WHILE" boolean-expression "DO" statement :
While the value of the boolean expression is true, the statement is
repeatedly executed. The expression 1is evaluated before each
(potential) execution of the statement. In particularl therefore, the
statement may not be executed at all. . :

Example:

WHILE 1 <= j DO , : SR
BEGIN - : : e

Note the difference in behaviour compared with the example in -
3.1.2.3.1. If (e.g.) the initial values are i = 1 and j = 0, then the

REPEAT loop will be executed precisely once, the WHILE 1loop not at
all' . . A ‘:f ":'P_",f

3.1.2.3.3 FOR statement = =
for-statement = : e

"FOR" control- varlable .= initial-value

("TO"™ | "DOWNTO"™) final-value "DO" statement
control-variable = entire-variable '
initial-value = expression RS
final-value = expression - o
entire-variable = variable-identifier P

The statement after DO is repeatedly executed while a sequence of
values is assigned to the control-variable. The 1latter must be an
identifier which has been declared in the block immediately containing
the FOR statement. The control-variable must be of ordinal-type, and ‘
the initial- and final-value expressions must be a531gnment-compat1ble ST

with it. . o > 'Cf

When the FOR statement
FOR v := e1 TO e2 DO body

is executed, the sequence of events is as follows. The expressions el
and e2 are evaluated, and if el > e2 then nothing remains to be done;
otherwise, el is assigned to v, body is performed, v is compared with"
e2, and, for as long as it is not equal to e2, v is incremented and

body is again executed. e

When the FOR statement
FOR v := el DOWNTO e2 DO body

is executed, the sequence of events is as follows. = The expressions el.
and e2 are evaluated, and if el < e2 then nothing remains to be done;
otherwise, el is assigned to v, body is performed, v is compared with :
e2, and, for as long as it is not equal to e2, v is decremented and '“,k\; (‘.
body is again executed. ' LG S

Example:
FOR 1 := j TO 10 DO proc (i, J)

If j has the initial value 9, then this FOR loop has the same effect
as the sequence of statements

i:=9; S : ST
proc (i, j); : ’ SR
i := suce(i); . o .
proc (i, j) ’

If, on the other hand, the initial value of j is 12, the FOR loop
simply does nothing.

- « P e o

Pro Paccal User Manual

© . 3.1.2.4 WITH statement

with-statement = "WITH" record-variable-list "DQ" statement
record-variable-list =

record-variable { "," record-variable } : : o
reccrd-variable = variable-access , Ny

As each record-variable in the list is encountered at compile-time,

the compiler brings into scope all the field-identifiers of that

-record-type so that, for the duration of the with-statement, the

fields can be referenced without having to select them by means of the

usual "record-variable." prefix.

If selecting the record-variable involves array indexing and/or

peinter dereferencing, these operations are performed, once and for

all, before the component statement is executed. ’

Example:

WITH customer[custne] DO
IF balance < 0 THE!
BEGIN
sendletter;
‘creditworthy :=z false; v P G G
END - SE g

.

Assuming (as always) appropriate type declarations, this ~ WITH '
statement is equivalent to : : '

IF customer[custno].balance < O THEN PR
BEGIN ‘ , —on A
sendletter; ' S0
customer[custno].creditworthy := false;
o END ‘

Besides being easier to read, the version using the WITH construct may
well be compiled into better code.

S L sxmple-expression [relational-operator 51mple-expre5510n]

-
I

Prs Zascal User Manual

3.2 xpressicns

Expressions’'possess a value, at run time, of a particular htype, and
are ccaoposed of operands (such as a simple variable name) and P
operators (such as +). If an expression involves several different "~ '
operators, the order in which the operations should be performed is °. ‘°
deterzined by grouping them into four classes. In order of decreasing f*"‘
precedence, these are: A S
NOT ’ _ S IR
cultiplying operators ' L) BRI
adding operators T s
relational operators - T

Within any one c¢lass, operands are evaluated and operations are e
perfcrzmed in left-to-right order. The precedence ordering can be
overridden by the use of parentheses, (). . : (

' These ideas are reflected in the following formal definitions: ,ff“"
 § , expression =

simple-expression = [sign] term { adding-operator term }
tera = factor { multlplylng-operator factor }
relational-operator = IO R
n_n ; LR : ngn { LY } nean : ny-n : nIN® . ,
adding-operator = "4t | n.om | nQpn
pultiplying-operator = n"#n [nym § mpTywn { mMoD® | WAND" |
Expressions, simple-expressions, terms and factors will be referred to
generically as "operands"., The various kinds of operators will be
treated in section 3.2.2. The concept of W"factor"™ remains to be
defined, and this is the subject of the next section.

A
\

Pro Paccal User Manual N II - 19

3.2.1 Factors

factor = variable-access | unsigned-constant |
function-designator | set-constructor |
n(" expression ")" | "NOT" factor

Of the 6 possible forms which factor can take, the last embodies the
fact that, as mentioned in 3.2, NOT is the operator with the highest
precedence, and the last-but-one reflects the possibility of
overriding the wusual operator precedence hierarchy by using
parentheses. The first 4§ forms will now be described.

3.2.1.1 Variable access

-

(“m Because the Pascal language -includes the_ concepts of records and
? (?5 pointers, as well as the more usual arrays and files, the selection of
Lo~ :; the data item to be referenced may involve a quite complicated

sequence of operations, involving the symbols [], . and “. For
= example, with suitable type declarations the construct

nextp”.sums{count].result

mizht refer Jjust to a .real variable. The following definitions
foraalise the rules for selecting a variable.

First, introduce a 5-fold subdivision:
variable-access = entire-variable | indexed-variable |

field-designator | referenced-variable |
buffer-variable

3.2.1.1.1 Entire variable

entire-variable = variable~identifier
variable-identifier = identifier

An entire-variable is therefore simply an identifier which denotes a

B variable declared in a VAR or COMMON declaration or in the formal
, parameter list of a procedure or function. '
, S
/\\
Lg

"Prec

g

?éscal Usequanual;

3.2.1.1.2 Indexed variable
indexed-variable = : !
array-variable "["index-expression {"," index-expression}m]m™ | ..
dynamic-string-variable "[" index-expression ™]" ~
array-variable = variable-access o
dynamic-string-variable = variable-access ' :
index-expression = expression : '

An array-variable is a variable of array-type (see 6.1.2.1). The
index-expression(s) must be assignment-compatible with the y
corresponding index-type(s) in the definition of the array-type. ., . = .

Just as, when defining an array (see 6.1.2.1), the declaration e .’jf;i[QV
trans: ARRAY ([1..9] OF ARRAY [char] OF char ‘ : , : .
is equivalent to A e ; ~j‘f'5

trans: ARRAY [1..9, char] OF char

so, when referencmng an element of such a multidimensional array,
form

trans{3] [eh]
is equivalent to
trans[3, ch] : P e

The same applies however many indexes the array has.

A dynamic-string-variable is a variable of dynamic-string-type (see-
6.1.2). The index-expression must be integer-type, and have a value
not greater than the maximum length of the dynamic-string-type, as J
specified in its declaration. ' R (

3.2.1.1.3 Field designator

field-designator = record-variable "." field-identifier e
record-variable = variable-access I
field-identifier = identifier - L

A record-variable is a variable of record-type, and the
field-identifier must be one of the fields in the declaration of that
record-type (see 6.1.2.2).

Examples:

persondetails.salary PR ' IO
nextdate”.time.second o ' AT

\

3.2.1.].& Referenced variable

- referenced-variable = pointer-variable """
pointer-variable = variable-access

A pointer-variable is a variable of pointer-type (see 6.1.3). The
associated referenced-variable is a variable which must have. been
created dynamically in the heap by means of a call of the stancard)
procedure new (see 8.3.2). The process of going from a .. .
pointer-variable to the referenced-variable by means of the ° vmcol

is known as "dereferencing" a pointer.

Examples: : ' ‘ i L e

score[day]” :
thisman”.father”.father”.son -~ e B B

In the second example, the relevant declaratlons would be something
like

TYPE manptr = ° manrec; - e
manrec = RECORD L S
father, son: manptr, cou e
{...} PR
END; } T

VAR thisman: manptr;

3.2.1.1.5 Buffer variable

buffer-variable = file-variable "°n
file-variable = variable-access

A file-variable is a variable of file-type (see 6.1.2.4). The 4
associated buffer-variable denotes the ourrentlj accessible component -
of the file, , : - 3

Example:

input”® T : .

3.2.1.2 Unsigned constant

The second ‘possible form of "factcr?” (see 3.2.1) 1is an unsigned
constant, of which there are 4 kinds: '

unsigned-constant = unsigned-number | character-string |
constant-identifier | "NIL"

The definitions of unsigned-number and character-string are in 1.1.5
and 1.1.6, respectively. A constant-identifier is an identifier which L
has figured on the left-hand side of a CONST declaration (see section Sl
5). The symbol NIL denotes the nil-value for pointer variables, and . = -
is assignment-compatible with all pointer-types. - = ﬁw,

3.2.1.3 Function designator B

The third possible form of "factor” is a function ecall
(possibly empty) list of actual parameters:

function-designator =
function-identifier [actual-parameter-list]

For the definition of actual-parameter-list, see 8.2.3.
Exadples:

max (yours, mine)
cos (i*x + j*y)

< -

Pro Pascal User Manual

3.2.1.4 ° Set constructor >>¢’

The final form for "factor" is a set-type value: .o

set-constructor = : . o
"[" [member-designator { "," member-designator}] "]m - s
member-designator = expression [".." expression] : :

The expression(s) must be ordinal-type, and must have ordinal values
in the range i

0 <= ord(expression) <= 2039 Ly K

i

If the set-constructor involves more than one expression, the types of
the expressions must be mutually compatible. If the -expression(s) - = "
have type t, th set-constructor has the implicit type SET OF t. i

The member-designator x..y represents the set of all values in the ~,:41¢
closed interval x to y; if x > y, it denotes no value at all. :

[] denotes the empty set, which is assignment-compatible with every
set-type.

Examples: : - T

[you,me,him]
['A!..|Zl’ 'al..izll

it

e

Pro Fascal User Manual “"‘4? *17“*37f:¥“ .;': S II - 24

3.2.2 Cperators ,
The operators introduced in 3.2 are best described under four
headings: arithmetic, boolean, set and relational.

3.2.2.1 Arithmetic operators

Additicnal information on the precise effects of arithmetic operators
on integer-type operands - in particular, those of subrange type -
will be found in section 9.

3.2.2.1.1 +

~

If it is not preceded by an operand, + is a unary operator. It does
not alter the value of the operand following it, which must be of
integer-type, real-type or longreal-type.

If placed between operands of integer-type, real-type and/or
longreal-type, + represents the usual binary operator of addition. If
either orerand is longreal, then the result is 1longreal, else, if
either operand is real, then the result is real, else the result is
integer-type. (The result is thus integer-type only if both operands
are integer-type.)

Note that the symbol + is also used for the quite distinct operation
of set union (see 3.2.2.3.1).

3.2.2.1.2 -
If not preceded by an operand, - is the unary operator of negation.
It may only be applied to operands of integer=-, real- or
longreal-type, and produces a result of the same type.

If placed between two operands of integer-, real- and/or
longreal-type, - represants the usual binary operation of subtraction.
The result type is as described in 3.2.2.1.1.

Note that the symbol - is also used for the distinct operation of set
difference (see 3.2.2.3.2).

3.2.2.1.3 b

If placed between two operands of integer-, real- and/or

longreal-type, * represents multiplication. The result type 1is as

described in 3.2.2.1.1.

Note that the symbol * is also used for set intersection (see
3.2.2.3.3). .

.

- Prc Pascal User Manual -

1 MOD j 1is that one out of the sequence of values

i

3.2.2.1.4 / PR R R AT N TR P e N A
The symbol / represents the operation of real divisien. The two
operands may each be integer-, real- or longreal-type. If either
operand is longreal, the result is longreal, otherwise, the result is . .
real, any integer-type operand(s) being "floated"™ to real=- . or
longreal-type (as appropriate) before the division is perforzed. s

3.2.2.1.5 DIV

DIV is the operation of integer division with truncation. Béth
operands, and the result, are integer-type.

If £ >= 0 and j > 0, then the value of i DIV j is such that~

-

i-Jj < (iDIV j) ® j <=1

If j = 0, a run~time error occurs. If i and/or j are negative; fthe“
value of i DIV j 4is such tha;

abs(i DIV j) = abs(i) DIV abs(j)

and the sign of i DIV j is positive if i and j have the same signs,
and negative otherwise. For example: :

7 DIV 3 = 2 .
-7 DIV 3 = =2 o :

- 7 DIV -3 = =2 i ’ S T
-7 DIV =3 = 2 ST SRR L

3.2.2.1.6 = MCD
MCD is the operation of taking the value of an integer modulo another.
- roughly, the remainder after division. Both operands, and the -
result, are integer-type.) :

If j <= 0, a run-time error occurs; otherwise, the value of

“h £

(1 - (k*j)), where k is any integer
which is such that
"0 <= i MODj < J
For example:

7 MOD 3
-7 MOD 3

U
N =

bréwgééééi User H;n&al_

L

3.2.2.2 Boolean opérators

"3.2.2.2.1 OR

-

OR is the logical inclusive "or" operator. Both operands, and
result, are of boolean type (i.e. take the values true or false).

the

3.2.2.2.2 AN : S

AND is the logical "and"™ operator. Both operands, and the result, are
boolean.

- Tt

3.2.2.2.3 = NOT | S

o~ | NOT is the unary operator of logical negation. It is applied to an.
S operand of boolean type, and produces the result true when applied to
{4 S the value false, and vice versa.

"{A 4fq 3.2.2.3 Set operators

3.2.2.3.1 +

If placed between two operands of set-type (see 6.1.2.3), + stands for
the operation of set union. The base types of the two operands must. -
be compatible. The result has the type of the union of the two base
types. A , , , v

s

As an example, suppose there has been the type declaration

weekday = (Monday, Tuesday, Wednesday, Thursday, Friday)

i then the value of ihe expression

[Monday..Wednesday] + [Thursday]

is equal to

[Monday..Thursday]

N

3.2.2.3.2 -

.

If placed between two cperanda of set-type, - represents the operation
of set difference. The base types of the two operands must be
compatible, and the result has the type which is the differepce of the
base types. For example, with the same declaration as in 3.2.2.3.1,
the value of the expression

[Mondzy. .Wednesday] - [Tueéday] - SR ~.ﬁ}g e
is equal to , ' - g\f‘ LN

[Monday; Wednesday]

3.2.2.3.3 * . ~

If placed between two operands of set-type, * represents "set
intersection". The base types of the operands must be compatible, and -
the result has the type which is the intersection of the two base
types. For exzmple, with the type declaration of 3.2.2.3.1, the value
of the expression

[Monday..Wednesday] # [Thursday]

is the empty set, [].
3.2.2.4 Relational operators

3.2.2.4.1 = and <

These operators are used to compare, for equality or otherwise, two . :
operands of simple-, dynamic-string-, string-, pointer- or set-type,
The result type is boolean (true or false). - -
The operands are of compatible types, or one operand is integer-type -
and the other real- or longreal-type - and this applies also to the
operators in 3.2.2.4.2 and 3.2.2.4.3.

3.2.2.4.2 < and >

These operators are used to compare two compatible simple-, .dynamic-
string- or string-type operands. The result is boolean. ; L

When two strings are compared, it is on the basis of their
lexicographic ordering according to the ASCII character set . (see
Appendix D) - and the same applies to the operators in 3.2.2.4.3.

Ere

R

¥

Ui
,

FaUAR

-

Pro Pascal User Nanuai

3.2.2.4.3 <= and >=

These operators may be wused to compare two compatible simple-,

dynamic-string-, string- or set-types. The result is-boolean.

If s1 and s2 are two set-type operands, then s] <=z s2 is true if,

and only if, the set s1 is a (not necessarily proper) subset of 523 L
and this expression has the same value as s2 >z s1. For example, ‘i o
with the type declaration as in 3.2.2.3.1, the expression .

[Monday..Friday] >= [Tuesday]

is true.

3.2.2.4.4 IN | (

IN is used to determine whether an ordinal-type value (the left-hand
operand) is a member of a set (the right-hand operand). If it is, the
expression has the value true, otherwise, false. In particular, if
the ordinal-type operand has an ordinal value outside the range of the
base type of the set, then IN yields the value false. The type of the
left-hand operand must be compatible with the base-type of the set.

As an example, with the type declaration of 3.2.2.3.1, the expression

Tuesday IN [Monday..Friday]

is true.

HEct 1
H

Pro Pazcal User Manual -~ . = ' ' R ;.‘ Lot Il - 29

4 - LABELS

Labels are-unsigned decimal integers in the range 0..9999 (see 1.1. 4y,
Their purpose is to enable the flow of control within a program to be
abruptly altered, by GOTO statements.

Labels nust be explicitly declared. They may then be defined and
referenced.

4.1 clzration o bels

In the overall layout of a block (see 2.3), the first declaration
wnich may (optionally) be present is

label-declaration-part = ["LABEL" label {"," label} ";"]
The label-declaration-part must contain all labels that are defined in
the statement-part of that block. Conversely, all labels in the

label-declaration-part must be defined (see 4.2) in the statement-part
of the block. .

Example:
LABEL 1, {for re-start}

999; {for error exit}

4.2 Definition of labels

A label is defined by being prefixed to a statement, as described in

3.1.
Example:

999: close{workfile) . : _

4.3 Reference to labels

The only way a label can be referenced is in a GOTO statement, as
described in 3.1.1.4. :

Example:

GOTO 999

/

Pro Pascal User Manual

N

5 CONST DECLARATIONS = - e s e

.

A CCUST declaration, which comes (after any label declaratlons) at the LI
head of a block, is a means of giving names to constants: B

constant-definition-part = ["CONST" constant-definition ";"
‘ {constant-definition m;"}]
constant-definition = constant-identifier "=" constant
constant-identifier = identifier
S constant = [sign] (unsigned-number | constant-identifier) !
2 character-string -

’

[

If the constant contains a sign (+ or -) with the form
constant-identifier, then the constant-identifier must (previously) = .
have been defined to represent an integer-, real- or longreal-type ,
value. L TR £ (

Example:

[Q TN R CONST
I = 3.141592653589793D0;

L § minuspi = - pi;

{K Ry ‘ message = 'Please repeat filename’';

At a level enclosing the outer level of every program or segment,
there 1is an implicit declaration of the predefined standard ;
constant-identifier maxint. If written explicitly, this declaration
would look like: "

e coNsT | LR
O maxint = 2147483647; X

6 TYPE DEFINITICIUS

‘Every variable and value in Pascal possesses a type, which nmay be one
of the predefined standard types (see 6.1.1.1, 6.1.2 and 6.1.2.4) or
be one created by the programmer. As well as dictating "how much
storage a variable occupies, the type determines which operations wmay
be performed upon it and what effect those operations have.

The starting point for the forzal definition of M™type" is the
syntactic object "type-denoter®. It figures both in variable .
declarations, which are treated in section 7, and in type definitions,
which are the subject of the present section. :

The type definition part is the third (optional) component of a fa
"block™ (see 2.3). oy

type-definition-part = ["TYPE" type-definition ";n

{ type-definition ™;"}]
type-identifier "=z=" type-denoter A
identifier -

type-definition
type-identifier

6.1 JIvpe denoters
type-denoter = simple-type | structured-type | pointer-type

If, in a type-definition, the type-denoter is a simple-type, then the
type-identifier is classified as a T"simple-type-identifiern. The
concept of "x-type-identifier", for arbitrary "x", is defined in 1like,
manner, :

The three kinds of type-denbter will be treated individually.

6.1.1 Simple types o et

simple-type = ordinal-type |} real-type ! longreal-ﬁype

ordinal-type = enumerated-type | subrange-type |
integer-type | boolean-type | char-type !
ordinal-type-identifier

Ordinal types have values which map onto a subset of the integer‘
ordinal numbers. Real and 1longreal types have *"floating-pointn®
values. '

If the item on the right-hand side of the type-definition is
"ordinal-type-identifier™, the definition simply introduces a synonym
for an existing type-identifier.

Enumerated and subrange types will be defined in 6.1.1.2 -and 6.i.1.3
respectively. The remaining possibilities are the five standard
simple types.

"Pro Pascal User Manual

-

6.1.1.1 Standzrd simple types

There are five of these: real, longreal, integer, boolean and char.
The correspondirg identifiers (real, etc.) are predeclared, at a level
enclcsing the outer level of every program or segment. A type is
real-type if it is the identifier real or any type-identifier which
has been defined to be a synonym, and similarly for the other standard
types. ’

6.1.1.1.1 Real -

real-type = %real®
These items take on real values, which. are signed floating-point
values whose magritude may range from 5.9E-39 to 6.8E+38, 'and which e (

are held internally to just over 7 decimal digits of precision. B TSI
. ‘1

Constants of this type are of the form
[sign] urnsigned-real

where "unsigned-real™ is as in 1.1.5.2.

6.1.1.1.2 Longreal
longreal-tyze = "longreal®

These items tazke on longreal values, which are signed floating-point -
values whose magnitude may range from 1.1D-308 to 3.6D+308, and which
are held interrally to just under 16 decimal digits of precision. It
is worth noting that integral values of up to 9000000CC0000000 - in
magnitude are represented with complete precision; also that,
provided the result is an integral value in this range, the operations R
of addition, subtraction, multiplication and division are performed . ..
with complete precision. Longreals can therefore be wused for -
"whole-number" applications where the range of integer
(-maxint..maxint) is insufficient. ' %

Constants of this type are of the form
[sign] unsigned-longreal

where "unsigned-longreal™ is as in 1.1.5.3. ~

The predefined type longreal is an extension to Standard Pascal. .

B D T e I

Pro Pascal User Marual

6.1.1.1.3 Integer

integer-type = "integer"®

Integer-type items take values in the range -maxint..maxint, where
maxint is defined in section 5. Constants of this type are of the
form :

[sign] unsizned-integer

where "unsigned-integer™ is as in 1.1.5.1.

6.1.1.1.4 Boolean

boolean-type = "boolean"
Boolean items take the values false or true, which are predefined
constant-identifiers, with ordinal values 0 and 1, respectively. It is
as if there were the following type definition at a level enclosing_
the outermost level of every program or segment: . : '

TYPE boolean = (false, true);

6.1.1.1.5 Char . 5’.. g ;:\ 3
char-type = "char"
These take values which are any of the 128 characters of the ASCII”'

character set (see Appendix D). The ordinal value of the character iS”
its ASCII value, and so lies in the range 0..127. ‘ -

" Pro Pascal User Manual =

6.1.1.2 Enumerated types
enuzerated-type = "(" identifier-list ")" : .
identifier-list = identifier { ®," identifier)

An enuzerated type determines an ordered set of values by enumerating
the identifiers which denote those values. The ordinal value of each
identifier is determined by its place in the 1list, the first
(left-mcst) having ordinal vaiue 0, the next 1, and so on. The 1list
may contain at most 256 identifiers, corresponding to a maximum
ordinal number of 255. -

Examples: . _

(red, orange, yellow, green, blue, indigo, violet)
(false, true) VT

6.1.1.3 Subrange types

subrange-type = constant ".." constant

The constants must be of one ordinal-type, known as the "host" type of
the subrange type. The two constants delimit the range of values which
the subrange-type may take. The first constant nmust be less than or:
equal to the second.

Examples:
-128..127

!AV’.|Zl
yellow..blue

Pro Paczal User Mar.al

6.1.2 Structured types
The second class of "type-denoter" (see 6.1) 1is composed of the
structured types. i

structured-type = ["PACKED"] unpacked-structured-type } .. - « -°
dynamic-string-type | D
structured-type-identifier
unpacked-structured-type = - : R A R
array-type | record-type | set-type | file-type R T L 3
dynanic-string-type = "string" ["[" constant "]"] \ :

A structured type is classified as array, record, set or file type
according to the rnature of the unpacked-structured-type _in its
declaration, i.e. witaout regard to whether PACKED is specified.

-~

A structured type is classed as packed if, and only if, the token .
PACXED is explicitly present in its definition.

A rpacked structured type occupies the same storage as the
corresponding unpacked type. However, some features of the language, v
notably those involving arrays, differ depending on whether or not a
type is packed; see, in particular, 6.1.2.1 and 8.3.3.

A dynamic-string-type is declared using the predefined identifier
"string", with an optional length-specifier. For example

string(32]

represents a dynamic-string-type which c¢an hold a maximum of 32
characters (the actual length of the dynamic-string being a run-time :
variable quantity, as the name implies). 1If the length-specifier is .
omitted, then a default 1length of 80 characters is assumed.

Dynamic-strings are an extension to Standard Pascal.)

Manual

ﬂ;fi_ ~ 6.1.2.1 Array types S B e R

array-type

= WARRAY" "[" index-type {"," index-type} "]" -
"OF" type-denoter ‘ .
index-type = ordinal-type :) R ST

An array type consists of a fixed number of components, whose type is
given bty M"type-denoter™ in the above definition. Compcnents =ay be of
any type. The index-type specifies the range of values wnhich the
array index may take. :

If the component type is itself an array-type, the definition

ARRAY [t1] OF ARRAY [t2] OF t . O e

may be replaced by ’ - o '::;5:

ARRAY [t1, t2] OF t S

and similarly for three or more indexes. The two notations are
cozpletely equivalent. If the second form is used, and the array type
is packed, then the token PACKED is taken to apply to each and every .
array-type in the expanded (first) form of notation., For example: ‘

T,

PACKED ARRAY [0..9, red..violet] OF wavelength
is equivalent to

PACKED ARRAY [0..9] OF i
PACKED ARRAY [red..violet] OF wavelength = °

{-.{{ If t1 is a subrange of integer-type, with lower bound 1, then any type -
i ‘ of the form _ : “ S

Ve

ino ' PACKED ARRAY [t1] OF char

is known as a string-type. The constants of string-type are the.
character-strings (see 1.1.6), the upper bound of the associated
subrange type t1 being the length of the string. For example, 'ABC' is -
a constant of type PACKED ARRAY [1..3] OF char. e

A

6.1.2.2 Record types

record-type = "RECORD™ [field-list [";"]] "END" . I Lert
field-list = fixed-part [";" variant-part] | variant-part - - TN
fixed-part = record-section {";" record-section} R
record-section = identifier-list ":" type-denoter
variant-part = "CASE" [tag-field ":"] tag-type "CF"

variant {";" variant }
tag-field = identifier N
tag-type = ordinal-type-identifier ST W A
variant = case-constzant-list ":7 n(m [field-list [m;n]] m)n o
case-constant-list = case-constant {"," case-constant}
case-constant = constant

A record type consists of a fixed number of components, 'possibly of
differing types. The record may consist of a fixed part only, or a
"variant™ part only, or a fixed part followed by a variant part.

The syntax of "fixed-part"™ is the same as that of ¢
"variable-declaration-sequence™ (see section 7), the identifiers in -
"identifier-list™ representing fields in the former and variables in
the latter. However, the meanings are different. For instance, the
occurrence of an identifier in a record-section causes no storage to
be allocated: only when a variable of that record-type is declared is
storage allocated for the fields which constitute that record.
Furthermore, fields are referenced differently from variables - (see

3.2.1.1.3).

If there is a variant part, the tag-type must be an ordinal-type. All
the case-constants must be distinct, and be of a type compatible with -
the tag-type. The set of case-constant values must be equal to the
set of values specified by the tag-type. (In particular, therefore,
the tag-type cannot be "integer".) : o -

RECORD : ' =
hours: 0..23; ’
minutes, seconds: 0..59; , SO
END R T

RECORD > A
name: string2l; : W
age: 0..119;
salary: integer;

CASE female: boolean OF
true: (maidenname: string2y);
false: ()

END

The ordinal-type defines the "base type" of the set. The set-ﬁype v

Pro Pascal User Manual‘

6.1.2.3 - Set types

set-type = MSET"™ "OF" ordinal-type

itself takes values in the powerset of the base type.

The base type may be either char, or an enumerated type, or any
subrange of integer lying within the range 0 to 2039, or a subrange of
any of these types. .

Exazples:

SET OF char .
SET OF red..green. ‘

6.1.2.4 File types ' . Con ;f;n 4 7

file-type = "FILE™ "CF" type-denoter

A file type represents a sequence of components all of which, are of
the same type, given by "type-denoterm”,. Components may be of any ~
type, except one having a file as a component. .

There is one predefined standard file-type: text. Variables of type
text are known as textfiles. Their components are of type char, but
are, additionally, structured into lines. Lines are terminated by
line-markers, the presence of which can be determined by calling the
standard function eoln (see 8.3.1.1).

Examples:

FILE OF integer . : i
FILE OF PACKED ARRAY [1..7] OF char . ‘mﬁ'f

6.1.3 Pointer types

The third and final kind of "type-denoter™ (see 6.1) is the pointer ;
type. R

pointer-type = "“" type-identifier | pointer-type-identifier

A pointer type has a value which points to a variable of an associated
type, specified by "type-identifier™ in the above definition. In
addition, a pointer type can take the value NIL, which does not point -
to any<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>