
P3500/P3800
TurboDOS 1.4

8086 implementor’s guide (16 bits)

PHILIPS PHILIPS

July 1984

Order Number 5122 993 81839

Manual Number F77H

TurboDOS 1.4

8086 Implementor's Guide

June 1984

Copyright 1984

Software 2000, Inc.
1127 Hetrick Avenue

Arroyo Grande, CA 93420
U.S.A.

All rights reserved.

R
TurboDOS is a registered trademark of Software 2000, Inc.

TurboDOS 1.4 8086
Implemantor's Guide

NOTICES

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Copyright Notice Copyright 1984 by Software 2000, Inc. All
rights reserved. No part of this publication
may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated
into any language or computer language, in
any form or by any means, electronic, mecha­
nical, magnetic, optical, chemical, manual or
otherwise, without the prior written permis­
sion of Software 2000, Inc., 1127 Hetrick
Avenue, Arroyo Grande, California 93420,
U.S.A.

Trademark Notice TurboOOS is a registered trademark of Soft­
ware 2000, Inc., and has been registered in
the United States and in most major countries
of the free world.

IBM is a trademark of International Business
Machines Corporation. CP/M, Concurrent CP/M
and MP/M are trademarks of Digital Research.

Disclaimer Software 2000, Inc., makes no representations
or warranties with respect to the contents of
this publication, and specifically disclaims
any implied warranties of merchantability or
fitness for any particular purpose. Software
2000, Inc., shall under no circumstances be
liable for consequential damages or related
expenses, even if it has been notified of the
possibility of such damages.

Software 2000, Inc., reserves the right to
revise this publication from time to time
without obligation to notify any person of
such revision.

I I
| First Edition: June 1984 |

ABOUT THIS GUIDETurboDOS 1.4 8066
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

ABOUT THIS GUIDE

Purpose We've designed this 8086 Implementor's Guide
to provide the information you need to know
in order to generate various TurboDOS config­
urations for 8086-family microcomputers, and
to write the driver modules for various peri­
pheral devices. This document describes the
modular architecture and internal programming
conventions of TurboDOS, and explains the
procedures for system generation, serializa­
tion, and distribution. It also provides
detailed interface specifications for hard­
ware-dependent driver modules, and includes
assembler source listings of sample drivers.

Assumptions In writing this guide, we've assumed that you
are an OEM, dealer, or sophisticated TurboDOS
user, knowledgable in 8086-family microcompu­
ter hardware and assembly-language program­
ming. We've also assumed you have read both
the User ’ s Guide and the WJS. Programmer.^
Guide. and are therefore familiar with the
commands, external features, and internal
functions of 8086 TurboDOS.

Organization This guide starts with a section that de­
scribes the architecture of TurboDOS. It
explains the function of each internal module
of the operating system, and how these
modules may be combined to create the various
configurations of TurboDOS.

The next section explains the system genera­
tion procedure in detail, and describes each
TurboDOS parameter which can be modified
during system generation.

The third section of this guide explains the
TurboDOS distribution procedure, including
licensing, serialization, and support.

TurboDOS 1.4 8086
Implementor's Guide

ABOUT THIS GUIDE
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Organization
(Continued)

Related Documents

The fourth section is devoted to an in-depth
discussion of internal programming conven­
tions, aimed at the programmer writing
drivers or resident processes for TurboDOS.

The fifth section presents formal interface
specifications for implementing hardware­
dependent driver modules.

This guide concludes with a large appendix
containing assembler source listings of
actual driver modules. The sample drivers
cover a wide range of peripheral devices, and
provide an excellent starting point for
programmers involved in driver development.

In addition to this guide, you might be
interested in four other related documents:

. TurboDOS 1.4 User’s Guide

• TurboDOS 1.4 8086 Programmer's Guide

. TurboDOS 1.4 Z80 Programmer's Guide

. TurboDOS 1.4 Z80 Implementor's Guide

You should read the first two volumes before
start into this document. The User'5 Guide
introduces the external features and facili­
ties of TurboDOS, and describes each TurboDOS
command. The 8086 Programmer's Guide ex­
plains the internal workings of TurboDOS, and
describes each operating system function in
detail.

You'll need the Z80 guides if you are pro­
gramming or configuring a TurboDOS system
that uses Z80 microprocessors.

TurboDOS 1.4 8086 TABLE OF CONTENTS
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

ARCHITECTURE Module Hierarchy .. 1-1
Process Level .. 1-1
Kernel Level .. 1-2
Driver Level .. 1-2
TurboDOS Loader .. 1-2
Module Flow Diagram... 1-3

Process Modules .. 1-4
Kernel Modules ... 1-5
Driver Modules .. 1-8
Standard Packages .. 1-8

Package Contents Table 1-9
Supplementary Modules 1-10

Memory Required .. 1-11
Other Languages.. 1-12

SYSTEM GENERATION Introduction ... 2-1
TLINK Command . ..2-2
Patch Points...2-7
Network Operation .. 2-21

Network Model ... 2-21
Network Tables .. 2-21
Message Forwarding 2-24

A Complex Example ... 2-25
Sysgen Procedure .. 2-27

DISTRIBUTION TurboDOS Licensing ... 3-1
Legal Protection...3-1
User Obligations...3-2
Dealer Obligations 3-2
Distributor Obligations 3-3
Serialization ... 3-4
Technical Support ... 3-5

SERIAL Command .. 3-6
PACKAGE Command .. 3-8
Distribution Procedure 3-10

TurboDOS 1.4 8086 TABLE OF CONTENTS
Implementor's Guide (Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

CODING CONVENTIONS Undefined External References 4-1
Memory Allocation ... 4-2
List Processing..4-3
Task Dispatching... 4-4
Interrupt Service ... 4-6
Poll Routines...4-7
Mutual Exclusion ... 4-8
Sample Driver Using Interrupts 4-9
Sample Driver Using Polling 4-10
Inter-Process Messages 4-11
Console Routines ... 4-12
Sign-On Message .. 4-12
Resident Process ... 4-13
User-Defined Function 4-14

DRIVER INTERFACE General Notes ... 5-1
Initialization .. 5-2
Memory Table ... 5-2
Console Driver .. 5-3
Printer Driver .. 5-5
Disk Driver..5-6
Network Driver .. 5-9
Comm Driver..5-13
Clock Driver...5-14
Bootstrap.. 5-16

APPENDICES OTOASM Command .. A-1
Sample Driver Source Listings B-1

ARCHITECTURETurboDOS 1.4 8086
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

ARCHITECTURE This section introduces you to the internal
architecture of the TurboDOS operating sys­
tem. TurboDOS is highly modular, consisting
of more than forty separate functional
modules distributed in relocatable form.
These modules are "building blocks" that you
can combine in various ways to produce a
family of compatible operating systems. This
section describes the modules in detail, and
describes how to combine them in various
configurations.

Possible TurboDOS configurations include:

. single-user without spooling

. single-user with spooling

. network master

. simple network slave (no local disks)

. complex network slave (with local disks)

Numerous subtle variations are possible in
each of these categories.

Module Hierarchy The diagram on page 1-3 illustrates how the
functional modules of TurboDOS interact. As
the diagram shows, the architecture of Turbo­
DOS can be viewed as a three-level hierarchy.

Process Level The highest level of the hierarchy is the
process level. TurboDOS can support many
concurrent processes at this level. There is
one active process that supports the local
user who is executing commands and programs
in the local TPA. There are also processes
to support users running on other computers
and making requests of the local computer
over the network. There are processes to
handle background printing (de-spooling) on
local printers. Finally, there is a process
that periodically causes disk buffers to be
written out to disk.

1-1

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Module Hierarchy
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Level The intermediate level of the hierarchy is
the kernel level. The kernel supports the
various C-functions and T-functions, and
controls the sharing of computer resources
such as processor time, memory, peripheral
devices, and disk files. Processes make
requests of the kernel through the entrypoint
module OSNTRY, which decodes each C-function
and T-function by number and invokes the
appropriate kernel module.

Driver Level The lowest level of the hierarchy is the
driver level, and contains all the device-
dependent drivers necessary to interface
TurboDOS to the particular hardware being
used. Drivers must be provided for all peri­
pherals, including console, printers, disks,
communications channels, and network inter­
face. A driver is also required for the
real-time clock (or other periodic interrupt
source).

TurboDOS is designed to interface with almost
any kind of peripheral hardware. It operates
most efficiently with interrupt-driven, DMA-
type interfaces, but can al-so work fine using
polled and programmed-I/0 devices.

TurboDOS Loader The TurboDOS loader 0SL0AD.CMD is a program
containing an abbreviated version of the
kernel and drivers. Its purpose is to load
the full TurboDOS operating system from a
disk file (OSMASTER.SYS) into memory at each
system cold-start.

1-2

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Module Hierarchy
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

I TurboDOS Module Hierarchy____________________I

Pespool Lol Usr Net Syc
DSPOOL LCLUSR NETSVC FLUSHR

1 LCLMSG NETT8L 1
| Process Level 1 LCLTBL NETFWD 1

1 CMDINT 1 1
1 AUTLOD 1 1

Loader . 1 SGLUSR 1 1
OSLOAD 1 AUTLOG 1 1
LDRMSG 1 BIOS 1 1

1
1____

1
1

SUBMIT
1
1

1
1

1
____ 1

1
1

Decode
I Kernel Level OSNTRY

1 •
I

| Memory
1

Other
1

File
1

Net Req
1

Clock
1

Support |
| MEMMGR NONFIL FILMGR NETMGR RTCMGR DSPCHR |

CPMSUP FILSUP NETREQ 1 DSPSGL |
MPMSUP FILCOM MSGFMT 1 COMSUB |

I I QUEMGR FILLOK NETTBL 1
I I 1 FFOMGR NETLOD 1
I I
I I
I I ___

1
1
1

DRVLOK
1
1

1
1
1

1
1
1

I I I
| | Comm Ch

1
Printer

1
Console

1
Record

1
1

1
1 Initial |

| | COMMGR LSTMGR CONMGR BUFMGR 1 1 SYSNIT |
I I I LSTTBL CONTBL DSKMGR 1 1 1 1
I I I SPOOLR DOMGR DSKTBL 1 1 1 1
I I I
I I I

SPLMSG
1
1

INPLN
1
j

1
1
1

1
1
|

1
1
1

1 1
1 1

____I_____ I1 1 1
I Driver Level
i I I

1
1
1

I
1
1

1
1
1

1
1
1

1
1
1

1 1
1 1
1 I1

| | Comm Ch
1

Printer
1

Console
1

Disk Network
1

Clock
1

Initial |
| | COMDRV LSTDRA CONDRA DSKDRA CKTDRA RTCDRV HDWNIT |
I Memory LSTDRB or DSKDRB CKTDRB or
| MEMTBL etc. CONREM etc. etc. RTCNUL

1-3

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Process Modules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Process Modules | Module 11 Function 1
I
I
I
1

LCLUSR
1

Responsible for supporting local |
user's TPA activities. |

11
1
1

LCLMSG
1

Contains all 0/S error messages. |
11

1
1

LCLTBL
1

Local user option table. |
11

1
1
1

CMDINT
1

Command interpreter, processes |
commands from local user. |

11
1
1
I

AUTLOD
1

Autoload routine which processes |
COLDSTRT.AUT and WARMSTRT.AUT. |

11
1
1
1
1

SGLUSR
1

Flushes disk buffers at each |
console input. Use for single- |
user systems instead of FLUSHR. |

1
1
1
1
I

AUTLOG
1

Automatic log-on routine. Used |
when full log-on security is not |
desired. See AUTUSR patch point. |

1

I
BIOS

1
Direct BIOS Call (C-fcn 50). |

11
1
1
1

SUBMIT
1

Routine to emulate CP/M proces- |
sing of $$$.SUB files. |

I1
1
1

NETSVC
i

Services network requests from |
other processors on the network. |

1
, 1

1

NETTBL
1

Tables to define local network |
topology, used by NETSVC+NETREQ. |

11
1
1
1

NETFWD
1

Manages network message forward- |
ing. Requires NETREQ*NETSVC. I

11

1
DSPOOL

1
Processes background printing. |

11
1
1
1
L

FLUSHR
i

Periodically flushes disk buf- I
fers. Use for network master
configuration instead of SGLUSR. I

1

1-4

TurboDOS 1.4 8086
Implementor’s Guide

ARCHITECTURE

Kernel Modules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Modules | Module | Function I

| OSNTRY Kernel entrypoint module which |
decodes each C-function and |
T-function by number and invokes |
the appropriate kernel module. |

| FILMGR File manager responsible for |
requests involving local files. |

| FILSUP File support routines used by |
FILMGR. |

| FILCOM Processes common file-oriented |
requests that are never sent
over the network. |

| FILLOK File- and record-level interlock |
routines called by FILMGR. |

| FFOMGR FIFO management routines called |
by FILLOK. |

| DRVLOK Drive interlock routines. |

| BUFMGR Buffer manager called by FILMGR. |
Maintains pool of disk buffers |
used to speed local file access. |

| DSKMGR Disk manager responsible for |
physical access to local disks, |
called by BUFMGR. |

| DSKTBL Table defining drives A-P as |
local or remote disk drives.

| NONFIL Responsible for functions that |
are not file-oriented. |

| CPMSUP Processes C-functions 7, 8, 24, |
28, 29, 31, 37 and 107 which are |
rarely used. May be omitted. |

1-5

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Kernel Modules
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Modules
(Continued)

I Module |I Function I

| MPMSUP Processes C-functions 141-143, |
153, 160, 161 (optional). |

| QUEMGR Emulates MP/M queues, supports |
C-functions 134-140 (optional). |
Requires MPMSUP. |

| CONMGR Responsible for console 1/0. |

| CONTBL Links CONMGR to console driver. |

| DOMGR Responsible for do-files. |

I INPLN Console input line editor used |
by CMDINT and C-function 10.

| LSTMGR Responsible for printer output. |

I LSTTBL Table defining printers A-P and |
queues A-P as local or remote. |

I SPOOLR Print spooler which diverts I
print output to a spool file
when spooling is activated. |
Also handles direct printing to |
remote printers. |

| COMMGR Responsible for communications |
channel functions.

I NETREQ Responsible for issuing network |
request messages for all func- |
tions not processed locally.

| MSGFMT Network message format table
used by NETREQ. I

| NETMGR Network message routing routine |
used by NETSVC and NETREQ. I

1-6

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Kernel Modules
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Modules
(Continued)

| Module | Function

| NETLOD Loads programs over the network. |

| RTCMGR Real-time clock manager keeps |
system date and time. |

| DSPCHR Multi-task dispatcher which con- |
trols sharing of the local pro- |
cessor among multiple processes. |

| DSPSGL Null dispatcher used as alterna- |
tive to DSPCHR when only one
process is required (OSLOAD.CMD |
and single-user w/o spooling). |

| MEMMGR Memory manager responsible for |
dynamic allocation of memory, |
and for supporting TPA alloca- |
tion C-functions (53-58). |

| COMSUB Common subroutines used in all |
configurations.

| SYSNIT System initialization routine |
executed at system cold-start. |

| RTCNUL Null real-time clock driver, |
used in configurations where |
there is no periodic interrupt |
source. |

| CONREM Remote console driver for net- |
work master to support MASTER |
command.

| PATCH 128 bytes of zeroes, may be in- |
eluded to provide patch area. |

1-7

TurboDOS 1.4 6086
Implementor's Guide

ARCHITECTURE

Driver Modules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Standard Packages

Driver Modules I Module | Function 1
I
I CONDR_
I

1
Console I/O driver. |

II
| LSTDR_
1

1
Printer output driver(s). |

1
| DSKDR_
1

l
Disk driver(s) . |

1
| CKTDR_
1

1
Network circuit driver(s). |

11
| COMDRV
1

1
Communications channel driver. |

11
| RTCDRV
1

1
Real-time clock driver. |

11
| MEMTBL
1
1

1
Table defining the size and
structure of main memory (RAM). |

11
| HDWNIT
1
I________

1
Cold-start initialization for |
all hardware-dependent drivers. |

1

To simplify the system generation process,
the most commonly-used combinations of Turbo­
DOS modules are pre-packaged into the follow­
ing standard configurations:

1 Package 11 Descriotion 1

| STDLOADR cold-start loader
| STDSINGL single-user without spooling I
| STDSPOOL single-user with spooling I
| STDMASTR network master
| STDSLAVE simple slave w/o local disks |
| STDSLAVX complex slave with local disks |

The contents of each standard package is
detailed in the matrix on the next page.
Most TurboDOS requirements can be satisfied
by linking the appropriate standard package
together with a few additional modules plus
the requisite driver modules.

1-8

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Standard Packages
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

I Module ; K LOADR I SINGL I SPOOL I MASTR 1 SLAVE 1 SLAVX |
| AUTLOD . 2 - AUTLOD AUTLOD AUTLOD AUTLOD AUTLOD |
| AUTLOG . 0 - AUTLOG AUTLOG AUTLOG AUTLOG AUTLOG |
| BIOS .3 - BIOS BIOS BIOS BIOS BIOS |
| BUFMGR 1 . 2 BUFMGR BUFMGR BUFMGR BUFMGR - BUFMGR |
| CMDINT 1 .7 - CMDINT CMDINT CMDINT CMDINT CMDINT |
| COMMGR . 1 - COMMGR COMMGR COMMGR COMMGR COMMGR |
| COMSUB .2 COMSUB COMSUB COMSUB COMSUB COMSUB COMSUB |
| CONMGR . 4 CONMGR CONMGR CONMGR CONMGR CONMGR CONMGR |
| CONREM .5 - - - - -
| CONTBL .0 CONTBL CONTBL CONTBL CONTBL CONTBL CONTBL |
| CPMSUP . 3 -
| DOMGR .4 - DOMGR DOMGR DOMGR DOMGR DOMGR |
| DRVLOK . 1 - - - DRVLOK - -
| DSKMGR . 6 DSKMGR DSKMGR DSKMGR DSKMGR - DSKMGR |
| DSKTBL .0 DSKTBL DSKTBL DSKTBL DSKTBL DSKTBL DSKTBL |
| DSPCHR .7 - - DSPCHR DSPCHR DSPCHR DSPCHR |
| DSPOOL 1 .0 - - DSPOOL DSPOOL - DSPOOL |
| DSPSGL . 2 DSPSGL DSPSGL - - - -
| FFOMGR 1 . 1 - - - FFOMGR - -
| FILCOM .4 FILCOM FILCOM FILCOM FILCOM FILCOM FILCOM 1
| FILLOK 2.0 - - - FILLOK - -
| FILMGR 2.5 FILMGR FILMGR FILMGR FILMGR - FILMGR |
| FILSUP 2.9 FILSUP FILSUP FILSUP FILSUP - FILSUP |
| FLUSHR .2 - - - FLUSHR - -
| INPLN .2 - INPLN INPLN INPLN INPLN INPLN |
| LCLMSG . 4 - LCLMSG LCLMSG LCLMSG LCLMSG LCLMSG |
| LCLTBL .0 - LCLTBL LCLTBL LCLTBL LCLTBL LCLTBL |
| LCLUSR 1 . 1 - LCLUSR LCLUSR LCLUSR LCLUSR LCLUSR |
| LDRMSG . 1 LDRMSG - - - - -
| LSTMGR .3 - LSTMGR LSTMGR LSTMGR LSTMGR LSTMGR |
| LSTTBL . 1 - LSTTBL LSTTBL LSTTBL LSTTBL LSTTBL |
| MEMMGR 1.2 - MEMMGR MEMMGR MEMMGR MEMMGR MEMMGR |
| MPMSUP . 1 - ♦ ♦ ♦
| MSGFMT . 1 - - - ♦ MSGFMT MSGFMT |
| NETFWD . 3 - - - ♦
| NETLOD .3 - - - NETLOD NETLOD |
| NETMGR .9 - - - NETMGR NETMGR NETMGR |
| NETREQ 1 . 6 - - - NETREQ NETREQ |
| NETSVC 1 . 8 - - - NETSVC
| NETTBL .0 - - - NETTBL NETTBL NETTBL |
| NONFIL .2 NONFIL NONFIL NONFIL NONFIL NONFIL NONFIL |
I QSLQAD - 1.1 OSLOAD - - - - -

1-9

TurboDOS 1.4 6086
Implementor's Guide

ARCHITECTURE

Standard Packages
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

I Module | K II LOADR I SINGL I SPOOL I MASTR 1 SLAVE 1 SLAVX |
| OSNTRY .5 OSNTRY OSNTRY OSNTRY OSNTRY OSNTRY OSNTRY |
| PATCH . 1 +
| PGMLOO 1 .0 - PGMLOD PGMLOD PGMLOD PGMLOD PGMLOD |
| QUEMGR 1.3 - - - +
| RTCMGR . 1 - RTCMGR RTCMGR RTCMGR - RTCMGR 1
| RTCNUL . 1 + ♦ + ♦
| SGLUSR . 1 - SGLUSR SGLUSR - - SGLUSR 1
| SPLMSG . 1 - - SPLMSG SPLMSG SPLMSG SPLMSG 1
| SPOOLR . 6 - - SPOOLR SPOOLR SPOOLR SPOOLR |
| SUBMIT . 2 - + +
| SYSNIT . 1 - SYSNIT SYSNIT SYSNIT SYSNIT SYSNIT |

Optional Modules To supplement the standard packages, certain
optional modules (marked by H+" in the matrix
above) may have to be added. The following
table explains where these optional modules
are required:

I Module | Where Required 1

I CONREM Network masters with no console (instead of CONDR_). |
| CPMSUP To support C-fcns 7, 8, 24, 28, 29, 31, 37 and 107. |
| MPMSUP To support C-fcns 134-143, 153, 160 and 161. |
| MSGFMT Network masters that make requests over the network. |
I NETFWD To support forwarding of network messages. |
| NETLOD Network masters that load programs over the network. |
1 NETREQ Network masters that make requests over the network. |
I PATCH Wherever a supplementary patch area is required. |
| QUEMGR To support MP/M queue emulation (C-fcns 134-140.) |
| RTCNUL Wherever no RTC driver is available. |
I SUBMIT To emulate CP/M processing of $$$.SUB.

1-10

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Memory Required

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Memory Required To estimate the memory required by a particu­
lar TurboDOS configuration, you need to take
into account the combined size of all func­
tional modules, driver modules, disk buffers,
and other dynamic storage.

Drivers typically require 1K to 4K, and can
be even larger if the hardware is especially
complex. Disk buffer space should be as
large as possible for optimum performance,
especially in a network master. About 4K of
disk buffer space is reasonable for a single-
user system, although less can be used in a
pinch. Other dynamic storage doesn't usually
exceed 1K in single-user systems, 2K in net­
work masters .

The following table gives typical memory
requirements for standard TurboDOS configura­
tions :

I LOADR SINGL SPOOL MASTR SLAVE SLAVX |

I 0/S 1 OK 1 7K 1 9K 25K 1 3 K 22K |
| Drivers 2K 2K 2K 3K 1K 2K |
| Buffers 4K 4 K 4K 1 6 K - 4K |
| Dynamic 1K 1K 1K 3K 2K 2K |

| Total 1 7K 24K 26K 47K 16K 30K |

1-11

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Other Languages

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Other Languages To facilitate translation into languages
other than English, TurboDOS has been
implemented with all textual messages
segregated into separate modules. All such
message modules are available in source form
to TurboDOS OEM licensees upon request.

The following modules contain all TurboDOS
operating system messages:

Module II Contains

LCLMSG Most operating system messages.
I SPLMSG Spooler error messages.

LDRMSG Loader messages for OSLOAD.CMD.

In addition, a separate message module is
available for each TurboDOS command.

1-12

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

SYSTEM GENERATION This section explains the TurboDOS system
generation procedure in detail. It describes
how to use TLINK to link a desired set of
TurboDOS modules together, and details the
numerous system patch points which may be
modified during system generation. Step-by-
step procedures and examples are provided.

Introduction The functional modules of TurboOOS are dis­
tributed in relocatable object form (.0
files). Hardware-dependent driver modules
are furnished in the same fashion. The
TurboDOS TLINK command is a specialized
linker used to bind the desired combination
of modules together into an executable
version of TurboDOS. TLINK also includes a
symbolic patch facility used to modify a
variety of operating system parameters.

To generate a complete TurboDOS system, you
typically must use TLINK several times. At
minimum, you have to generate both a loader
OSLOAD.CMD and a master operating system
OSMASTER.SYS. For a networking system you
also have to generate a slave operating
system OSSLAVE.SYS. Complex networks may
require generation of several different slave
or master configurations. Finally, you may
have to use TLINK to generate a cold-start
bootstrap routine for the start-up PROM or
boot track.

At cold-start, the bootstrap routine loads
the loader program OSLOAD.CMD into the TPA of
the master computer and executes it. OSLOAD
loads the master operating system from the
file OSMASTER.SYS into memory. The master
operating system then down-loads the slave
operating system from the file OSSLAVE.SYS
over the network into each slave computer.

2-1

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

TLINK Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

TLINK Command The TLINK command is a specialized linker
used for 8086 TurboDOS system generation, and
may also be used as a general-purpose linker
for object modules produced by the TurboDOS
assembler TASM.

Syntax I I
I TLINK inputfn {outputfn} {-options} |
I___ I

Explanation The TLINK command links a specified collec­
tion of relocatable object modules together
into a single executable file. The "inputfn"
argument identifies the two input files used
by TLINK: a configuration file "inputfn.GEN"
and a parameter file "inputfn.PAR". The
"outputfn" argument specifies the name of the
executable output file to be created (normal­
ly type .CMD or .SYS). If "outputfn" is
omitted from the command, then "inputfn" is
also used as the name of the executable out­
put file, and should include an explicit file
type (.CMD or .SYS).

If the .GEN file is found, it must contain
the list of object modules (.0 files) to be
linked together. If the configuration file
is not found, then TLINK operates in an
interactive mode. You are prompted by an
asterisk * to enter a series of directives
from the console. The syntax of each direc­
tive (or each line of the .GEN file) is:

I I
| objfile {,objfile}... {;comment} |
I___ I

The object files are assumed to have type .0
unless a type is given explicitly. A null
directive (or the end of the .GEN file) ter­
minates the prompting sequence and causes
processing to proceed.

2-2

SYSTEM GENERATIONTurboDOS 1.4 8086
Implementor's Guide

TLINK Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Explanation
(Continued)

Options

After obtaining the list of modules from the
file or console, TLINK links all of the
modules together, a two-pass process that
displays the name of each module as it is
encountered. When the linking phase is com­
plete, TLINK looks for a parameter file
"inputfn.PAR" and processes it if present
(described below). Finally, the executable
file (.CMD or .SYS) is written out to disk.

NOTE: Each module of the TurboDOS operating
system is magnetically serialized with a
unique serial number. The serial number
consists of two components: an "origin
number" which identifies the issuing TurboDOS
licensee, and a "unit number" which uniquely
identifies each copy of TurboDOS issued by
that licensee. When used for TurboDOS
operating system generation, TLINK verifies
that all modules to be linked are serialized
consistently, and serializes the executable
file accordingly.

Options are always preceded by a "-" prefix,
and may appear before, between, or after the
file names. Several options may be concate­
nated after a single "-" prefix.

I. Qation-J___________Explanation___________ I

-8 Force 8080 model (single group)
-B No 128-byte base page
-C List to console, not to printer
-D Force data group G-Max to 64K
-H No .CMD header (implies -8, -B)
-L Listing only, no output file
-M List link map
-R List inter-module references
-S List sorted symbol table
-u List unsorted symbol table
-X Diagnose undefined references

2-3

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

TLINK Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Parameter File TLINK includes a symbolic patch facility that
may be used during TurboDOS system generation
to override various operating system para­
meters and to effect necessary software cor­
rections. Patches must be stored in a .PAR
file. The syntax of each .PAR file entry is:

I I
I location = value {.value}... {;comment} |
I I

where the "value" arguments are to be stored
in consecutive memory locations starting with
the address specified by "location".

The “location" argument may be the name of a
public symbol, an integer constant, or an
expression composed of names and integer
constants connected by + or - operators.
Integer constants must begin with a digit to
distinguish them from names. Constants of
the form "Oxdddd" are taken to be hexadeci­
mal. Constants of the form "Odddddd" are
taken to be octal. Constants that start with
a nonzero digit are taken to be decimal. The
"location" expression must be followed by an
equal-sign = character.

The "value" arguments may be expressions (as
defined above) or quoted ASCII strings, and
must be separated by commas. A "value" ex­
pression is stored as a 16-bit word if its
value exceeds 255 or if it is enclosed in
parentheses (...) or brackets [...]; other­
wise, it is stored as an 8-bit byte. An
expression enclosed in brackets is treated as
IP-relative (for example, the target address
of a CALL or IMP instruction). A quoted
ASCII string must be enclosed by quotes

and is stored as a sequence of 8-bit
bytes. Within a quoted string, ASCII control
characters may be specified by using TASM
backslant escape sequences.

2-4

TurboDOS 1.4 8086
Implementor'« Guide

SYSTEM GENERATION

TLINK Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Example In the following example, TLINK is used to
link a single-user TurboOOS system for an IBM
Personal Computer, using the modules listed
in OSMASTER.GEN and patches in OSMASTER.PAR,
creating the executable file OSMASTER.SYS.

OAlTLINK OSMASTER.SYS -M
Copyright 1984, Software 2000, Inc.
* ; Single-user without spooling for
* ; IBM Personal Computer with 256K RAM
* STDSINGL ;standard single-user pkg. |
* CPMSUP ;seldom-used CP/M functions |
* CONIPC ;IBM PC console driver |* LSTACA ;IBM PC serial list driver |
* NITIPC ;IBM PC initialization |
* DSKIPC ;IBM PC floppy disk driver |
* MSTIPC ;IBM PC 256K mem spec table |
* RTCIPC ;IBM PC real-time clock drvr |

Pass 1
LCLUSR LCLTBL CMDINT AUTLOD SGLUSR etc.

Pass 2
LCLUSR LCLTBL CMDINT AUTLOD SGLUSR etc.

Processing parameter file:
; Patches for single-user w/o spooling
OSMLEN = 1024 ;dynamic memory area (16K)
OSMTOP = 0x1000 ;but limit to first 64K
AUTUSR = 0x80 ;logon to user 0 Privileg.
NMBUFS = 8 ;number of disk buffers
EOPCHR = 0x1A ;end-of-print character *Z
SRHDRV = 1 ;search drive A
PRTMOO = 0 ;direct printing mode

Writing output file A:OSMASTER.SYS
0A}

2-5

TurboDOS 1.4 8066 SYSTEM GENERATION
Implementor's Guide

TLINK Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Error Messages
Serial number violation |
Not enough memory |
No object files specified |
Can't open object file |
Non-privileged user |
Unexpected EOF in object file |
Bad token in object file: <type> |
Can't create output file |
Can't write output file |
Load address out-of-bounds |
Duplicate transfer address I
Duplicate def: <name> |
Undefined name: <name> |
Too many externals in module |
Name table overflow I

2-6

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points The following table describes various public
symbols in TurboDOS which you may wish to
modify using the symbolic patch facility of
TLINK. (Other patch points may exist in
hardware-dependent drivers, but they are
beyond the scope of this document.)

I Symbol I______Default..Value_______I. Module I
I I
| ABTCHR = 0x03 ;CTRL-C CONTBL |
I I
| Abort character (after attention). |
I___ I
I I
I ATNBEL = 0x07 ;CTRL-G CONTBL |
I I
| Attention-received warning character. |
I___ I
I I
| ATNCHR = 0x13 ;CTRL-S CONTBL |
I I
| Attention character. May be patched to |
| another character if the default value of |
| CTRL-S is needed by application programs. |
| A common choice is zero (NUL), which al- |
| lows the console BREAK key to be used as |
| an attention key. |
I___ I
I I
| AUTUSR = OxFF AUTLOG |
I I
| Automatic log-on user number. Default |
| value of OxFF requires that user log-on |
| via LOGON command. If automatic log-on |
| desired at cold-start, patch AUTUSR to
| the desired user number (0-31), and set |
| the sign-bit if a privileged log-on is |
I desired. Generally patched to 0x80 in |
| single-user systems to cause automatic
I privileged log-on to user zero. |

2-7

TurboDOS 1.4 8066
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol |Default Value| Module

BFLDLY = (300) FLUSHR

Buffer flush delay determines how often
disk buffers are written to disk, stated
in system "ticks". Default value (300
decimal) causes buffers to be flushed
about every five seconds (assuming 60
ticks per second).

BUFBAS = (0000) BUFMGR

Base paragraph address of external disk
buffer area (see BUFLEN).

BUFLEN = (0000) BUFMGR

Length (in paragraphs) of external disk
buffer area starting at BUFLEN. Default
value (0000) indicates that buffers are
to be allocated from the regular dynamic
memory pool (see OSMLEN, OSMTOP).

BUFSIZ = 3 BUFMGR

Default disk buffer size (0=128, 1=256,
2=512, 3=1K,..., 7=16K). Default value
specifies 1K disk buffers.

2-8

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol I_______ Default Value_______ | Module

CKTAST = (0x0000),(CKTDRA), NETTBL
(0x0100),(CKTDRB) ,
(0x0200),(CKTDRC),
(0x0300),(CKTDRD)

Circuit assignment table defines network
topology. Contains NMBCKT two-word en­
tries, one for each network circuit to
which this processor is attached. The
first word of each entry specifies the
network address by which this processor
is known on a particular circuit, and the
second word specifies the entrypoint ad­
dress of the circuit driver responsible
for that circuit. (Possibly several cir­
cuits may be handled by the same driver.)

CLBLEN = 157 CMDINT

Command line buffer length defines long­
est permissible command line. The de­
fault value permits two 80-char lines.

CLPCHR = T CMDINT

Command line prompt character.

CLSCHR = "W CMDINT

Command line separator character.

COLDFN = 0,"COLDSTRT“,"AUT" AUTLOD

File name and drive for cold-start auto­
load processing (in FCB format).

2-9

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol |Default Value| Module

COMPAT = 0 FILCOM

Default compatibility flags which define
rules to be used for file-sharing. Patch
to 0xF8 to relax most MP/M restrictions.

CONAST = O.(CONDRA) CONTBL

Console assignment table defines how con­
sole I/O is handled. First byte passed
to console driver, and commonly defines
the channel number (e.g., serial port) to
be used for the console. Following word
specifies the entrypoint address of the
console driver to be used.

CPMVER = 0x31 NONFIL

CP/M BDOS version number returned by
C-function 12 in 8L-register.

DEFDID = (0) NETTBL

Default network destination ID, used for
routing all network requests that are not
related to a particular disk drive, queue
or printer. In a slave, DEFDID should be
set to the network address of the master.

2-10

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol |Default Value| Module

DSKAST = 0.(DSKDRA),1.(DSKDRB), DSKTBL
OxFF,(0),0xFF,(0) , . ..

Disk assignment table, an array of 16
three-byte entries (one for each drive
letter A-P) that defines which drives are
local, remote, and invalid.

For a local drive, the first byte must
not have the sign-bit set. That byte is
passed to the disk driver, and is common­
ly used to differentiate between multiple
drives connected to a single controller.
The following word specifies the entry­
point address of the disk driver to be
used.

For a remote drive, the first byte must
have the sign-bit set. The low-order
bits of that byte specify the drive let­
ter to be accessed on the remote proces­
sor. The following word specifies the
network address of the remote processor.

For an invalid drive, the first byte must
be OxFF, and the following word should be
(0) .

NOTE: In slave configurations STDSLAVE
and STDSLAVX, the default values are:

DSKAST = 0x80,(0),0x8 1 , (0) ,
0x82,(0),0x83,(0) ,
...,0x8E,(0),0x8F,(0)

2-11

TurboOOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol |_______ Default Value_______ | Module

DSPPAT = 1 , 1 , 1 , . . . , 1 LSTTBL

De-spool printer assignment table, an ar­
ray of 16 bytes (one for each printer
letter A-P) that defines the initial
queue to which each printer is assigned.
Values 1 through 16 correspond to queues
A-P, and 0 means that the printer is off­
line. The default value assigns all
printers to queue A.

ECOCHR = 0x10 ;CTRL-P CONTBL

Echo-print character (after attention).

EOPCHR = 0 LSTTBL

End-of-print character. May be patched
to any non-null character, in which case
the presence of that character in the
print output stream will automatically
signal an end-of-print-job condition.
The value zero disables this feature.

FWDTBL = (OxFFFF),(OxFFFF), NETT8L
(OxFFFF),(OxFFFF),OxFF

Network forwarding table, an array of
two-byte entries that define any explicit
message forwarding routes to be used by
this processor. The first byte of each
entry specifies a "foreign" circuit num­
ber N, and the second byte a "domestic"
circuit number C. Any messages destined
for circuit N will be routed via circuit
C. This table is variable-length, termi­
nated by OxFF, and defaults to empty.

2-12

SYSTEM GENERATIONTurboDOS 1.4 8086
Implementor's Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

I Symbol |_______ Default Value_______ | Module |
1 1
| LDCOLD = OxFF AUTLOD |
1 1
| Cold-start autoload enable flag. Patch |
| to zero if you want to disable the cold- |
| start autoload feature (COLDSTRT.AUT). |
1___ 1
1 1
| LDWARH = OxFF AUTLOD |
1 1
| Warm-start autoload enable flag. Patch |
| to zero if you want to disable the warm- |
| start autoload feature (WARMSTRT.AUT). |
1___ 1
1 1
| LOADFN = 0,"OSMASTER","SYS" OSLOAD |

| Default file name and drive (in FCB for- |
| mat) loaded by OSLOAD.COM. Drive field |
| (FCB byte 0) may be patched to an expli- |
| cit drive value to inhibit scanning. |
1___ 1
1 1
| LOGUSR = 31 FILCOM |
I I
| User number for logged-off state.
I___I
I I
| MAXMBS = 0 NETMGR |
I I
| Maximum number of message buffers that |
| will ever be allocated. Default value of |
| 0 means number of message buffers is |
| limited only to size of available memory. |

2-13

OSLOAD.COM

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol |Default Value| Module

MAXRPS = 0 NETMGR

Maximum number of reply packets that will
ever be allocated. Default value of 0
means number of reply packets is limited
only to the size of available memory.

NMBCKT = 1 NETTBL

Number of network circuits to which this
processor is connected.

| NMBMBS = 0 NETMGR

I Number of message buffers pre-allocated
| at cold-start. Message buffers are allo-
| cated dynamically as needed, but this may
| cause fragmentation which prevents you
| from changing the size of the disk buffer
| pool with the BUFFERS command. If this is
| important, patching NMBMBS to a suitable
| positive value will eliminate the problem
| (twice the number of network nodes is a
| good starting value to try).

NMBRPS = 0 NETMGR

Number of reply packets pre-allocated at
cold-start. Reply packets are allocated
dynamically as needed, but this may cause
fragmentation which prevents you from
changing the size of the disk buffer pool
with the BUFFERS command. If this is
important, patching NMBRPS to a suitable
positive value will eliminate the problem
(the number of network nodes is a good
starting value to try).

2-14

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor’s Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol I Default Value I Module 1
1

NMBSVC = 2 NETSVC |
1

Number of network server processes to be |
activated. (The number of network nodes |
is a good starting value to try.) |

1
1

NMBUFS = 4 BUFMGR |
1

Default number of disk buffers allocated |
at cold-start. Must be at least 2. For |
optimum performance, allocate as many |
buffers as possible (consistent with TPA |
and other memory requirements). |

1

OSMLEN = (128) ;2K bytes MEMMGR |
I

Length (in paragraphs) of the memory area |
to be allocated immediately above the |
TurboDOS operating system resident for
dynamic working storage. This area must |
accomodate disk buffers if no external
disk buffer area is defined (BUFLEN is |
zero). The default value (128 paragraphs |
or 2K bytes) is appropriate for a simple |
slave with no disk buffers. For other
configurations, patch OSMLEN to a value |
large enough to accomodate dynamic memory |
needs. Divide required length in bytes |
by 16 to give the value of OSMLEN in
paragraphs. (See OSMTOP.) |

2-15

TurboDOS 1.4 8006 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

I Symbol |_______ Default Value_______ | Module |
I I
I OSMTOP = (0000) MEMMGR |
I I
| Absolute upper bound (paragraph address) |
| for dynamic working storage area. The |
| actual upper bound is either OSMTOP or |
| the top of TurboDOS plus OSMLEN, which- |
| ever is smaller. The default value of |
| zero indicates no specified upper bound. |
I___ I
I I
| PRTCHR = OxOC ;CTRL-L CONTBL |
I I
| End-print character (after attention). |
| This is a console attention-response, not |
| to be confused with EOPCHR. |
I___I
I I
| PRTMOD = 1 LCLT8L |
I I
| Initial print mode for local user. The |
| default value of 1 specifies spooling.
| Patch to 0 for direct, or 2 for console. |

2-16

TurboOOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol |Default Value| Module

PTRAST = 0,(LSTDRA),OxFF,(0), LSTTBL
OxFF,(0).OxFF,(0) ,...

Printer assignment table, an array of 16
three-byte entries (one for each printer
letter A-P) that defines which printers
are local, remote, and invalid.

For a local printer, the first byte must
not have the sign-bit set. That byte is
passed to the disk printerr, and is com­
monly defines the channel number (e.g.,
serial port) to be used for the printer.
The following word specifies the entry­
point address of the printer driver.

For a remote printer, the first byte must
have the sign-bit set. The low-order
bits of that byte specify the printer
letter to be accessed on the remote pro­
cessor. The following word specifies the
network address of the remote processor.

For an invalid printer, the first byte
must be OxFF, and the following word
should be (0).

NOTE: In slave configurations STDSLAVE
and STDSLAVX, the default values are:

PTRAST = 0x80,(0) ,0x81,(0),
0x82,(0) ,0x83,(0),
...,0x8E,(0),0x8F,(0)

2-17

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol |Default Value| Module |

QUEAST = 0,(0),0xFF,(0), LSTTBL |
OxFF,(0).OxFF,(0).... |

Queue assignment table, an array of 16 |
three-byte entries (one for each queue |
letter A-P) that defines which queues are |
local, remote, and invalid. |

For a local queue, all three bytes must |
be set to zero. |

For a remote queue, the first byte must |
have the sign-bit set. The low-order |
bits of that byte specify the queue let- |
ter to be accessed on the remote proces- |
sor. The following word specifies the |
network address of the remote processor. |

For an invalid queue, the first byte must |
be OxFF, and the following word should be |
(0). |

NOTE: In slave configurations STDSLAVE |
and STDSLAVX, the default values are: |

QUEAST = 0x80,(0),0x81,(0) , |
0x82,(0),0x83,(0) , |
...,0x8E,(0),0x8F,(0) |

___ I

QUEDLY = (0000) QUEMGR |

Polling delay used in unconditional Read |
Queue (when queue is empty) and Write |
Queue (when queue is full), stated in |
system "ticks". If RTC driver is avail- |
able, patch to largest delay that yields |
reasonable queue performance. |

2-18

SYSTEM GENERATIONTurboDOS 1.4 8086
Implementor's Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol I Default Value I Module

QUEDRV = OxFF QUEMGR

Drive used for FIFOs that emulate MP/M
queues. Default value OxFF means use the
system disk (disk from which TurboDOS was
loaded at cold-start). Patch to 0 - 15
to specify a particular drive A-P.

QUEPTR = 1 LCLTBL

Initial queue or printer assignment. If
PRTMOD = 1 (spooling), QUEPTR specifies a
queue assignment. If PRTMOD = 0 (direct)
QUEPTR specifies a printer assignment.
In both cases, values 1 through 16 corre­
spond to letters A-P, and zero means do
not queue or print off-line.

RCNMSK = OxFF MPMSUP

Mask used in deriving a console number
from a network node in C-function 153.

RCNOFF = 0 MPMSUP

Offset used in deriving a console number
from a network node in C-function 153.

RESCHR = 0x11 ;CTRL-Q CONTBL

Resume character (after attention).

2-19

SYSTEM GENERATIONTurboDOS 1.4 8086
Implementor's Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol I Default Value I Module

SCANDN = 0 OSLOAD

Scan direction flag for OSLOAD. Patch to
OxFF to scan P-to-A (instead of A-to-P).

SLVFN = "OSSLAVE "."SYS" NETSVC

Name and type of file (in FCB format) to
be down-loaded into slave processors.

SPLDRV = OxFF LCLTBL

Initial spool drive. Default value OxFF
indicates spool to system disk (disk from
which TurboDOS was loaded at cold-start).
Patch to 0 - 15 to specify drive A-P.

SRHDRV = 0 CMDINT

Search drive for command files. Patch to
value 1 through 16 to search drive A-P
if command is not found on current
(default) drive. Patch to OxFF to search
system disk (disk from which TurboDOS was
loaded at cold-start). Default value 0
disables this feature altogether.

SUBFN = 0,"$$$ "."SUB" SUBMIT

FCB for emulating CP/M submit files.

WARMFN = 0,"WARMSTRT"."AUT" AUTLOD

File name and drive for warm-start auto­
load processing (in FCB format).

2-20

SYSTEM GENERATIONTurboDOS 1.4 8086
Implementor's Guide

Network Operation

which this processor is connec­
ted .

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Operation TurboDOS accomodates a wide variety of net­
work topologies, ranging from the simplest
point-to-point master/slave networks to the
most complex star, ring, and hierarchical
structures.

Network Model A TurboDOS network is defined to consist of
up to 255 circuits. with up to 255 nodes
(processors) on each circuit. Each node has
a unique 16-bit network address consisting of
an 8-bit circuit number plus an 8-bit node
number (on that circuit).

Any processor may be connected to several
circuits, if desired. A processor connected
to multiple circuits has multiple network
addresses, one for each circuit. Such a
processor even may be set up to perform mes­
sage forwarding from one circuit to another,
permitting dialogue between network nodes
that do not share a common circuit between
them (more on this later).

Network Tables The actual network topology is defined by a
series of tables in each processor. The
tables are set up during system generation,
and define the network as “seen" from the
viewpoint of each processor. The tables are:

I Symbol |_____________ Description______________ |
I I
| NMBCKT A byte value that defines the |

number of network circuits to

2-21

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Network Operation
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Tables
(Continued)

I Symbol I Description I

| CKTAST The circuit assignment table |
containing NMBCKT entries defin- |
ing the network address by which |
this processor is known on each |
circuit, and specifying the net- |
work circuit driver responsible |
for each handling each circuit. |

| DSKAST The disk assignment table that |
specifies for all drive letters |
A-P which are local, remote, and |
invalid. This table specifies |
a network address for each re- |
mote drive, and a disk driver |
for each local drive. |

| PTRAST The printer assignment table |
that specifies for all printer |
letters A-P which are local, re- |
mote, and invalid. This table |
specifies a network address for |
each remote printer, and a prin- |
ter driver for each local prin- |
ter. |

| QUEAST The queue assignment table that |
specifies for all queue letters |
A-P which are local, remote, and |
invalid. This table specifies a |
network address for each remote |
queue.

| DEFDID The default network destination |
ID, used for routing all network |
requests that are not related to |
a specific disk drive, printer, |
or queue. I

2-22

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Network Operation
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Tables
(Continued)

I Symbol II Description I

| FWDTBL The message forwarding table
that specifies any additional |
circuits (not directly connected |
to this processor) which may be |
accessed via explicit message
forwarding, and how messages |
destined for such circuits are |
to be routed. |

These tables are pre-defined with default
values to make set-up of simple master/slave
networks very easy. For complex multi­
circuit networks, the set-up is somewhat more
complicated (as might be expected).

Refer to the preceding Patch Points sub­
section for details of the organization and
defaults for these network tables.

2-23

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Network Operation
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Message Forwarding The TurboDOS module NETFWD supports both
"implicit" and "explicit" forwarding of net­
work messages. To understand the distinc­
tion, consider the case of a network with
three processors (PI, P2, and P3) connected
by two circuits (C1 and C2) as follows:

| P1 |-----------C1----------- | P2 |------------C2--------- | P3 |
I____ I I____ I I____I

A program running in P1 makes an access to
drive D. Suppose the disk assignment tables
in the three processors are set up in the
following fashion:

Pi’s DSKAST defines its drive D as a
remote reference to P2's drive 8.

P2's DSKAST defines its drive B as a
remote reference to P3's drive A.

P3's DSKAST defines its drive A as a
local device attached directly to P3.

In this case, Pi's access to its drive D
actually winds up implicitly accessing P3's
drive A. This is implicit forwarding.

Alternatively, suppose P1‘s DSKAST defines
its drive D as a remote reference to P3's
drive A, and that Pi’s FWDTBL provides that
messages destined for circuit C2 may be
routed via C1. In this case, P1 sends a
request to P3 on circuit C1. P2 receives the
request, recognizes that it should be forwar­
ded, and retransmits the request to P3 via
circuit C2. Thus, P1 accesses P3's drive A
with the assistance of P2, but this time P1
is not aware of P2's role in the transaction.
This is explicit forwarding.

2-24

SYSTEM GENERATION

A Complex Example

TurboDOS 1.4 8086
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

A Complex Example Let's take a reasonably complex network situ­
ation and see how to construct the required
.GEN and .PAR files.

Our hardware is a board-and-bus microcomputer
system consisting of an 80286 CPU running in
unmapped (8086) mode, 128K of RAM, hard disk
and floppy disk subsystems (all these make up
the master processor), and several single­
board slave computers with 80186 CPUs and
256K of RAM each. The master processor is
interfaced to two printers via RS232 serial
ports: a daisywheel printer on port 0 using
XON/XOFF protocol and a matrix printer on
port 1 using clear-to-send handshaking. In
addition, the master has a high-speed RS422
interface connecting it to another board-and-
bus system of similar configuration some
distance away.

We want to configure a TurboDOS system for
this hardware that permits all of the users
of each system to access the hard disk,
floppy disks, and printers attached to both
the local and remote system. We might create
the following OSMASTER.GEN file:

| ; OSMASTER .GEN for complex example
| STDMASTR ; standard master package |
| NETREQ ; to make requests of other sys |
| MSGFMT ; needed by NETREQ |
| CONREM ; no console on the master
I LSTXON ; XON/XOFF for daisy (LSTDRA) |
| LSTCTS ; CTS for matrix (LSTDRB) |
| DSKHDC ; hard disk controller (OSKDRA) |
| DSKFDC ; floppy disk control. (DSKDRB) |
| CKTSLV ; circuit driver for slaves (CO) |
| CKT422 ; circuit driver for RS422 (C1) |
| RTCDRV ; real-time clock driver
| NITDRV ; hardware initialization driver |
| MEMTBL ; memory specification table |

2-25

TurboDOS 1.4 8086
Implementor’s Guide

SYSTEM GENERATION

A Complex Example
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

A Complex Example Our system generation task is completed by
(Continued) creating the companion OSMASTER.PAR file:

| ; OSMASTER.PAR for complex example |
| NM8CKT =2 ; 2 network circuits: |
| CKTAST = (0x0000),(CKTDRA) ; CO = bus |
| (0x0100),(CKTDRB) ; C1 = RS422 |
| DSKAST = 0x00,(DSKDRA) ; drv A=local HD |
| 0x00,(DSKDRB) ; drv B=local FDO |

0x01,(DSKDRB) ; drv C=local FD1 |
| 0x80,(0x0101) ; drv D=remote HD |
| 0x81,(0x0101) ; drv E=remote FDO |
| 0x82,(0x0101) ; drv F=remote FD1 |
| PTRAST = 0x00,(LSTDRA) ; ptr A=lcl daisy |

0x01,(LSTDRB) ; ptr B = lcl matrix |
| 0x80,(0x0101) ; ptr C=rmt daisy |
| 0x81,(0x0101) ; ptr D=rmt matrix |
I QUEAST = 0x00,(0x0000) ; queue A=local |
| 0x00,(0x0000) ; queue B=local |
| 0x80,(0x0101) ; queue C=remote A |
| 0x81,(0x0101) ; queue D=remote 8 |
| DEFDID = (0x0101) ; default=other master |
| DSPPAT = 1,2,3,4 ; assgn ptrs to queues |
| OSMLEN = (0x0600) ; 24K dynamic memory |
| COMPAT = 0x88 ; compatibility flags |
| NMBSVC =5 ; 5 server processes |
| NMBUFS =20 ; 20 1K disk buffers |

The generation of the second master operating
system could be identical, except that all
occurrences of network addresses (0x0100) and
(0x0101) in the OSMASTER.PAR file would be
reversed. Generation of the slave operating
system would be very straightforward, and
identical for both systems.

If you study this example thoroughly until
you understand the reason for every .GEN and
.PAR file entry, you should have little
trouble setting up your own "sysgens".

2-26

SYSTEM GENERATION

Sysgen Procedure

TurboDOS 1.4 8086
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sysgen Procedure To conclude this section, here is a suggested
step-by-step procedure for generating a new
version of TurboDOS:

1. Bring up a previous version of 8086
TurboDOS. If this is your first attempt
to generate an 8086 TurboDOS system, you
may bring up CP/M-86 instead. However, if
you are using CP/M, all disks will have to
be in a format compatible with both CP/M
and TurboDOS (e.g., eight-inch one-sided
single-density with 128-byte sectors).

2. Make a working copy of your TurboDOS dis­
tribution disk. Do not use the original
disk (in case something goes wrong).
Insert the working diskette in a conven­
ient disk drive.

3. Using your favorite text editor, create or
revise the file OSMASTER.GEN containing
the names of the relocatable modules to be
linked together. Generally, this will
consist of the appropriate STDxxxxx stan­
dard package plus selected additional
modules and all required device drivers.

4. Using your editor once again, create or
revise the file OSMASTER.PAR containing
any required patches. This may be omitted
if no patches are desired.

5. Using the command TLINK OSMASTER.SYS■
generate an executable master operating
system in accordance with the .GEN and
.PAR files.

6. In a similar fashion, construct a new
loader by creating or revising the files
OSLOAD.GEN and OSLOAD.PAR, then using the
command TLINK OSLOAD.CMD to generate the
executable loader.

2-27

TurboDOS 1.4 8086
Implementor’s Guide

SYSTEM GENERATION

Sysgen Procedure
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sysgen Procedure 7. For a master/slave network system, con­
struct a slave operating system in the
same manner. Create or revise the files
OSSLAVE.GEN and OSSLAVE.PAR, then use the
command TLINK OSSLAVE.SYS to generate the
down-loadable slave operating system.

8. To test the newly-generated system, eject
all disks other than your working disk
(again, in case something goes wrong).
Enter the command OSLOAD. The new system
should cold-start. If it fails to come up
or to function properly, you will have to
start over at step 1 and check your work
carefully -- there is most likely an error
in one of your .GEN or .PAR files, or a
‘'bug" in one of your drivers.

2-28

DISTRIBUTIONTurboDOS 1.4 8086
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

DISTRIBUTION This section explains the TurboOOS distribu­
tion procedure in detail. It covers TurboDOS
licensing requirements, and the obligations
of licensed distributors, dealers, and end­
users. It describes how to make up and
serialize TurboDOS distribution disks.

Although this section is of concern primarily
to licensed TurboDOS distributors, we've
included it here so that dealers and end­
users can gain a better perspective on the
overall distribution process.

TurboDOS Licensing TurboDOS is a proprietary software product of
Software 2000, Inc. As such, it is protected
by law against unauthorized use and reproduc­
tion. Authorization to use and/or reproduce
TurboOOS is granted only by written license
agreement.

Legal Protection TurboDOS programs and documentation are copy­
righted, which means it is against the law to
make copies without express written authori­
zation from Software 2000 to do so.

The word "TurboDOS" is a trademark owned by
Software 2000 and registered in Class 9 (com­
puter software) and Class 16 (documentation)
with the trademark offices of the United
States and most of the developed countries of
the free world. This means it is against the
law to make use of the TurboDOS trademark
without express written authorization from
Software 2000.

Software 2000 has licensed certain companies
to distribute TurboOOS. Such distributors
are authorized to use the TurboDOS trademark,
and to reproduce, distribute, and sub-license
TurboDOS programs and documentation to deal­
ers and end-users.

3-1

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

User Obligations TurboDOS may be used only after the user has
paid the required license fee, signed a copy
of the TurboDOS end-user license agreement,
and returned the signed agreement to the
issuing TurboDOS distributor. Then, TurboDOS
may be used only in strict conformance with
the terms of the license.

Each end-user license allows TurboDOS to be
used on one specific computer system identi­
fied by make, model, and serial number. The
end-user license may not be transferred from
one computer system to another, and expressly
forbids copying programs and documentation
except as required for backup purposes only.

A separate license fee must be paid and a
separate license signed for each computer
system on which TurboDOS is used. Network
slave computers that cannot operate stand­
alone do not have to be licensed separately
from the network master. (This would be the
case, for example, if the slave computers
have no local disk storage, or if TurboDOS is
furnished in a form that cannot be run stand­
alone on the slave computers.) However,
networked computers that are also capable of
stand-alone operation under TurboDOS must
each be licensed separately.

Dealer Obligations A dealer must sign a TurboDOS dealer agree­
ment and return the signed agreement to the
issuing distributor. Then, the dealer is
permitted to purchase pre-serialized copies
of TurboDOS programs and documentation from
the distributor, and to resell them to end­
users. Dealers may not reproduce TurboDOS
programs or documentation for any purpose.
Before delivering each copy of TurboDOS, the
dealer must see to it that the end-user signs
the TurboDOS end-user license agreement and
returns it to the issuing distributor.

3-2

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distributor
Obligations

Each licensed TurboDOS distributor is provi­
ded a master copy of TurboDOS relocatable
modules and command programs on diskette. A
distributor is allowed to reproduce and
distribute copies of TurboDOS to dealers and
end-users, but only in connection with
certain specifically authorized hardware
(usually manufactured or sold by the distri­
butor). The distributor is required to
serialize each copy of TurboDOS with a unique
sequential magnetic serial number, and to
register each serial number promptly with
Software 2000. (Serialization is described
in more detail below.)

Each distributor is also provided with a
master copy of TurboDOS documentation, either
in camera-ready hardcopy or in ASCII files on
disk. The distributor is responsible for
reproducing the documentation and furnishing
it with each copy of TurboDOS it issues.

A distributor must require each dealer to
sign and return a TurboDOS dealer agreement
before issuing copies of TurboDOS to the
dealer for resale. A distributor must
require each end-user to sign and return a
TurboDOS end-user license agreement before
issuing a copy of TurboDOS directly to the
end-user.

3-3

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Serialization Each copy of TurboDOS is magnetically serial­
ized with a unique serial number. Such
serialization helps ensure that reproduction
and distribution of TurboDOS is done in
strict accordance with the required licensing
and registration procedures, and facilitates
tracing of unlicensed copies of the software.

Each relocatable module of TurboDOS distribu
ted to a dealer or end-user has a magnetic
serial number composed of two parts:

an origin number that identifies the
issuing distributor, and

a sequential unit number that uniquely
identifies each copy of TurboDOS issued
by that distributor.

During system generation, the TLINK command
verifies that all modules making up a Turbo­
DOS configuration are serialized consistent­
ly, and magnetically serializes the resulting
executable version of TurboDOS accordingly.

The relocatable modules on the master disk
furnished to each licensed TurboDOS distribu­
tor are partially serialized with an origin
number only. Each distributor is provided a
serialization program (SERIAL.CMD) that must
be used to add a unique sequential unit num­
ber to each copy of TurboDOS issued by the
distributor. The TLINK command will not
accept partially-serialized modules that have
not been serialized with a unit number. Con­
versely, the SERIAL command will not re­
serialize modules that have already been
fully serialized.

3-4

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Technical Support Software 2000 maintains telephone and telex
"hot-lines" to provide TurboDOS technical
assistance to its distributors. These are
unlisted numbers providing direct access to
the authors of the TurboDOS operating system,
and are furnished only to licensed TurboDOS
distributors. We encourage distributors to
take advantage of this service whenever tech­
nical questions or problems arise in using or
configuring TurboDOS.

It is the responsibility of each licensed
distributor to provide technical support to
its dealers and end-user customers. Software
2000 cannot assist dealers or end-users
directly. Where exceptional circumstances
seem to require direct contact between Soft­
ware 2000 technical personnel and a dealer or
end-user, this must be handled strictly by
prior arrangement between Software 2000 and
the distributor.

3-5

TurboDOS 1.4 8086 DISTRIBUTION
Implementor's Guide

SERIAL Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

SERIAL Command The SERIAL command enables TurboDOS distribu­
tors to magnetically serialize relocatable
modules of TurboDOS for distribution.

Syntax I I
| SERIAL srcefile destfile ;Unnn {options} |
| SERIAL ;Unnn {options} |
I___ I

Explanation The SERIAL command works exactly like the
COPY command, and accepts exactly the same
arguments and options. However, SERIAL has
the additional function of magnetically
serializing relocatable modules as they are
copied. SERIAL serializes files of type .REL
(Z80 modules) and type .0 (8086 modules).
Other files are copied without any change.

The unit number must be specified on the
command line as ;Unnn, where "nnn" represents
a decimal unit number in the range 0-65535.
Unit numbers must be assigned sequentially,
starting with 1. Unit number 0 is reserved
by convention for in-house use by the distri­
butor .

SERIAL produces fully-serialized modules that
are encoded with the distributor's origin
number and the specified unit number. TLINK
does not accept TurboDOS modules unless they
have been fully serialized in this fashion.

Options I Option I___________Explanation_____________ I

| SERIAL accepts all COPY options, plus: I
I I
| ;Unnn Relocatable modules (type .REL |
| or .0) are magnetically serial- |
| ized with unit number nnn, which |
| must be a decimal integer in the |
| range 0 to 65535. This "option" |
| is mandatory for SERIAL. I

3-6

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

SERIAL Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Example

Error Messages

I I
I oA} SERIAL„*,Q B;. ;U289N I
| OA:AUTLOD .0 copied to OB:AUTLOD .0 |
| OA:AUTLOG .0 copied to OB:AUTLOG .0 |
I : I
| 0A:SYSNIT .0 copied to OB:SYSNIT .0 |
I 0A} |
I I

I I
| SERIAL incorporates all COPY error mes- |
| sages, plus: (
I I
| Unit number not specified |
| Origin number violation |
| File is already serialized |
| Unexpected EOF in .0 or .REL file |
I I

3-7

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

PACKAGE Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

PACKAGE Command The PACKAGE command lets you combine any
collection of relocatable object modules into
a single concatenated .0 file.

Syntax

Explanation

I I
| PACKAGE srcefile {destfile} |
I I

PACKAGE may be used to construct custom
packages of TurboOOS modules, make additions
or changes to the supplied STDxxxxx packages,
pre-package collections of driver modules,
and so forth.

The "srcefile" argument specifies the name of
an input file "srcefile.PKG" that lists the
modules to be packaged. The "destfile" argu­
ment specifies the name of the concatenated
.0 file to be created. If "destfile" is
omitted, then the "srcefile" argument is also
used as the name of the output .0 file.

If the .PKG file is found, it must contain
the list of relocatable object modules (.0
files) to be linked together. If the .PKG
file is not found, then the PACKAGE command
operates in an interactive mode. You are
prompted by an asterisk * to enter a series
of directives from the console. The syntax
of each directive is:

I I
| objectfn {,objectfn}... {;comment} I
I_____________________________________ 1_______।

A null directive terminates the prompting
sequence and causes processing to proceed.

After obtaining the list of modules from the
file or console, PACKAGE concatenates all of
the modules together (displaying the name of
each module as it is encountered) and writes
the result to the output file.

3-8

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

PACKAGE Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Example

Error Messages

OAlPACKAGE STDLOADR
* ; STDLOADR.PKG standard loader package
* OSLOAD,LDRMSG,OSNTRY,FILMGR,FILSUP
* FILCOM,BUFMGR,DSKMGR,DSKTBL,NONFIL
* CONMGR,CONTBL,DSPSGL,COMSUB
OSLOAD LDRMSG OSNTRY FILMGR FILSUP etc.
OA}

File name missing from command
Invalid input file name
Non-privileged user
Unexpected EOF in input file
Disk is full
Can't make output file
Can't open input file
No input files

3-9

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

Distrib. Procedure

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distribution
Procedure

Here is the procedure to be followed by dis­
tributors when creating each copy of TurboDOS
to be issued to a dealer or end-user:

1. Assign a unique sequential unit number for
this copy of TurboDOS, and register it
immediately by filling out a serial number
registration card (or agreed-to substi­
tute) and mailing to Software 2000, Inc.

2. Format a new disk, and label it with the
following information clearly legible:

p
. trademark TurboDOS

. version number (1.4x)

. origin and unit numbers (oo/uuuu)

. statutory copyright notice:
Copyright 198x by Software 2000, Inc.
All rights reserved.

3. Use the SERIAL command to copy and serial­
ize the appropriate files from your dis­
tribution master disk to the new disk.
Use the tables on the following page to
guide you in determining what files to put
on the new disk.

IMPORTANT NOTE: Be absolutely certain
that the new disk does not contain any
unserialized modules or SERIAL.CMD*

4. Using the new serialized disk, use the
TLINK command to generate an executable
loader and operating system. Follow the
system generation procedure described in
the previous section.

5. In addition to the serialized disk, you
should issue copies of TurboDOS documenta­
tion and a start-up PROM (if applicable).

3-10

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

Distrib. Procedure
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distribution
Procedure
(Continued)

The following table may be used for guidance
in preparing TurboDOS disks for distribution.
In addition to the files shown, you need to
include hardware-dependent driver modules and
utility programs as appropriate.

| single-user | single-user | multi-user |
I w/o spooler 1 with spooler I networking I

STDLOADR
STDSINGL

.0

.0
STDLOADR.0
STDSINGL.0
STDSPOOL.O

STDLOADR
STDSINGL
STDSPOOL
STDMASTR
STDSLAVE
STDSLAVX

.0

.0

.0

.0

.0

.0

CPMSUP .0 CPMSUP .0 CPMSUP .0
MPMSUP .0 MPMSUP .0 MPMSUP .0
RTCNUL .0 RTCNUL .0 RTCNUL .0
PATCH .0 PATCH .0 PATCH .0
SUBMIT .0 SUBMIT .0 SUBMIT .0
OSBOOT .0 OSBOOT .0 OSBOOT .0

- - NETREQ .0
- - NETFWD .0
- - QUEMGR .0
- - MSGFMT .0
- - NETSVC .0
- - CONREM .0

AUTOLOAD .CMD AUTOLOAD.CMD AUTOLOAD .CMD
BACKUP .CMD BACKUP .CMD BACKUP .CMD

- - BATCH .CMD
BOOT .CMD BOOT .CMD BOOT .CMD
BUFFERS .CMD BUFFERS .CMD BUFFERS .CMD

- - CHANGE .CMD
COPY .CMD COPY .CMD COPY .CMD
DATE .CMD DATE .CMD DATE .CMD
DELETE .CMD DELETE .CMD DELETE .CMD
DIR .CMD DIR .CMD DIR .CMD
DO .CMD DO .CMD DO .CMD
DRIVE .CMD DRIVE .CMD DRIVE .CMD
DUMP .CMD DUMP .CMD DUMP .CMD

3-11

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

Distrib. Procedure
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distribution
Procedure

| single-user |
I w/o spooler I

single-user |
with spooler I

! multi-user
I networkino

(Continued) I
| ERASEDIR,.CMD ERASEDIR,.CMD ERASEDIR .CMD

- - FIFO .CMD
| FIXDIR . CMD FIXDIR .CMD FIXDIR .CMD
| FIXMAP .CMD FIXMAP .CMD FIXMAP .CMD
| FORMAT .CMD FORMAT .CMD FORMAT .CMD
| LABEL .CMD LABEL .CMD LABEL .CMD

- - LOGOFF .CMD
- - LOGON .CMD
- - MASTER .CMD

| OTOASM .CMD OTOASM .CMD OTOASM .CMD
| PRINT .CMD PRINT .CMD PRINT .CMD

- PRINTER .CMD PRINTER .CMD
- QUEUE .CMD QUEUE .CMD

| READPC .CMD READPC .CMD READPC .CMD
- - RECEIVE .CMD

| RENAME .CMD RENAME .CMD RENAME .CMD
- - SEND .CMD

| SET .CMD SET .CMD SET .CMD
| SHOW .CMD SHOW . CMD SHOW .CMD
| TASM .CMD TASM .CMD TASM .CMD
| TBUG .CMD TBUG .CMD TBUG .CMD
| TLINK .CMD TLINK .CMD TLINK .CMD
| TPC .CMD TPC .CMD TPC .CMD
| TYPE .CMD TYPE .CMD TYPE .CMD
| VERIFY .CMD VERIFY .CMD VERIFY .CMD

3-12

CODING CONVENTIONSTurboDOS 1.4 8086
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

CODING CONVENTIONS This section is devoted to in-depth discus­
sion of TurboDOS internal coding conventions,
aimed at the systems programmer writing hard­
ware-dependent drivers or resident processes.
All coding examples and driver listings in
this document make use of the TurboDOS 8086
assembler TASM.

Undefined External To allow various TurboDOS modules to be in
References eluded or omitted at will, TLINK auto­

matically resolves all undefined external
references to the default names "UndCode"
(for code references) and "UndData" (for data
references). The common subroutine module
COMSUB contains the following:

LOC Da ta£ ;data segment
UndData:

WORD 0,0
;undefined data

LOC CodeE ;code segment
UndCode:

XOR AL, AL
;undefined code
;zero AL & flags

RET ;return

Thus, it is always safe to load or call an
external name, whether or not it is present
at TLINK time. It is bad form to store into
an undefined external name, however!

4-1

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Memory Allocation

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Memory Allocation A common memory management module MEMMGR
provides dynamic allocation and deallocation
of memory space required for disk and message
buffers, print queues, file and record locks,
do-file nesting, and so forth. TurboDOS
reserves a region of memory for such dynamic
workspace, located immediately above the
TurboDOS resident. The length of this area
(in paragraphs) is determined by the patch­
able parameter OSMLEN. Memory segments are
allocated downward from the top of the
reserved region. Deallocated segments are
concatenated with any neighbors and threaded
on a free-memory list. A best-fit algorithm
is used to reduce memory fragmentation.

Allocation and deallocation requests are
coded in this manner:

;code to allocate a memory segment
MOV BX,=36 ;BX=segment size
CALL ALLOCE ;allocate segment
TEST AL, AL ;alloc successful?
JNZ ERROR ;NZ -> not enuf mem
PUSH BX ;else, BX=&segment

-.code to deallocate a memory segment
POP BX ;BX=&segment
CALL DEALOCE jdeallocate segment

ALLOCE prefixes each allocated segment with a
word containing the segment length, so that
DEALOCE can tell how much memory is to be
deallocated. ALLOCE does not zero the newly-
allocated segment.

4-2

CODING CONVENTIONS

List Processing

TurboDOS 1.4 8086
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

List Processing TurboDOS maintains its dynamic structures as
threaded lists with bidirectional linkages.
This technique permits a node to be added or
deleted anywhere in a list without searching.
The list head and each list node have a two-
word linkage (forward and backward pointers).

List manipulation is coded in this manner:

LOC
| ;list head (J
| LSTHED: WORD

DataE ;data segment
Linkage initialized empty) |

LSTHED ;forward pointer |
LSTHED ;backward pointer |WORD

I ;list
| LSTNOD

node (J
: WORD

WORD
RES

Linkage not initialized) |
0 ;forward pointer |
0 ;backward pointer |
128 ;contents of node |

| ;code
LOC

to add
MOV
MOV
CALL

CodeE ;program segment |
node to end of list

BX.iLSTHED ;BX=&head |
DX.&LSTNOD ;DX=&node |
LNKENDE ;link to list end |

| ;code to unlink node from list
MOV BX.iLSTNOD ;BX=&node |
CALL UNLINKE ;unlink node

I ;code to add
MOV
MOV
CALL

node to beginning of list |
BX.8.LSTHED ;BX=&head |
DX.MSTNOD ;DX = inode
LNKBEGE ;link to list beg. |

4-3

TurboDOS 1.4 8086
Implementor’s Guide

CODING CONVENTIONS

Task Dispatching

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Task Dispatching TurboDOS incorporates a flexible, efficient
mechanism for dispatching the 8086-family CPU
among various competing processes. In coding
drivers for TurboDOS, you must take extreme
care to use the dispatcher correctly in order
to attain maximum system performance.

The dispatcher allows one process to wait for
some event (for example, data-available or
seek-complete) while allowing other processes
to use the processor. For each such event,
you must define a three-word structure called
a "semaphore".

A semaphore consists of a count-word followed
by a two-word list head. The count-word is
used by the dispatcher to keep track of the
status of the event. (At present, only the
LSB of the count word is used, supporting
counts in the range -128 to +127.) The list
head anchors a threaded list of processes
waiting for the event to occur.

Two primitive operations operate on a sema­
phore: waiting for the event to occur
(WAITE), and signalling that the event has
occurred (SIGNALE). They are coded in this
following manner:

j ;this

| EVENT:
semaphore represents some event I

WORD 0 ;semaphore count |
WORD EVENT+2 -.semaphore f-ptr |
WORD EVENT+2 ;semaphore b-ptr |

| ;wait for the
MOV
CALL

event to
BX.&EVENT
WAITE

occur
;BX=&semaphore

;wait for event

| ;signal that
| MOV
| CALL

event has
BX.&EVENT
SIGNALE

occurred
;BX=&sempahore

;signal event

4-4

CODING CONVENTIONSTurboDOS 1.4 8086
Implementor's Guide

Task Dispatching
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Task Dispatching
(Continued)

Whenever a process waits on a semaphore,
WAITE decrements the semaphore's count-word.
Thus, a negative count -N signifies that
there are N processes waiting for the event
to occur. Whenever an event is signalled,
SIGNALE increments the semaphore count-word
and awakens the process that has been waiting
longest.

If an event is signalled but no process is
waiting for it, then SIGNALE increments the
count-word to a positive value. Thus, a
positive count N signifies that there have
been N occurrences of the event for which no
process was waiting. In this case, the next
N calls to WAITE on that semaphore will
return immediately without waiting.

Sometimes it is necessary for a process to
wait for a specific time interval (for exam­
ple, a motor-start delay or carriage-return
delay) rather than for a specific event.
TurboDOS provides a delay facility (DELAYE)
that permits other processes to use the CPU
while one process is waiting for such a timed
delay. Delay intervals are specified as some
number of "ticks". A tick is an implementa­
tion-defined interval, usually 1/50 or 1/60
of a second. Delays are coded thus:

;delay for one-tenth of a second
MOV BX,=6
CALL DELAYE

;BX=delay in ticks
•.delay process

Accuracy of delays is usually plus-or-minus
one tick. A delay of zero ticks may be
specified to relinquish the processor to
other processes on a "courtesy" basis.

All driver delays should be accomplished via
WAITE or DELAYE, never by spinning in a loop.

4-5

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Interrupt Service

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Interrupt Service Dispatching is especially efficient when used
with interrupt-driven devices. Usually, the
interrupt service routine just calls SIGNALE
to signal the interrupt-associated event.

Most interrupt service routines should exit
via the usual IRET instruction. However,
some periodic interrupt (usually a 50 or 60
hertz clock interrupt) should have an inter­
rupt service routine that exits by jumping to
the dispatcher entrypoint ISRXITE to provide
periodic time-slicing of processes. To avoid
excessive dispatcher overhead, don't use
ISRXITE more than about 60 times per second.

Before calling any TurboDOS support routine
(such as SIGNALE) or referencing any DS-
relative data, an interrupt service routine
must call the subroutine GETSDSE to set up
register DS.

A simple interrupt service routine might be
coded like this:

I DEVISR: PUSH AX save registers |
PUSH BX H

PUSH CX
PUSH DX H

PUSH DS
CALL GETSDSE get system DS |
MOV BX.&EVENT ; BX = 8csemaphore |
CALL SIGNALE signal event |
MOV DX.&EOIR DX=&end-of-int
MOV AX,=INTN AX=interrupt£ I
OUT DX, AX reset interrupt |
POP DS restore registers |
POP DX
POP CX
POP BX
POP
IRET

AX
return from int. |

4-6

CODING CONVENTIONS

Poll Routines

TurboDOS 1.4 8086
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Poll Routines Devices incapable of interrupting the CPU
have to be polled by the driver. The dis­
patcher maintains a threaded list of poll
routines, and executes them every dispatch.
The function of each poll routine is to check
the status of its device, and to signal the
occurrence of some event (for example, data-
available) when it occurs. The routine
LNKPOLE links a poll routine onto the poll
list, and UNLINKE removes it.

A poll routine must be coded so that it will
not signal the occurrence of a particular
event more than once. The best way to assure
this is for the poll routine to unlink itself
from the poll list as soon as it has signal­
led the event. An example:

| EVENT: WORD
WORD
WORD

0
EVENT+2
EVENT+2

;semaphore |

I jdriver waits
MOV
CALL
CALL
MOV
CALL

for event |
DX.iPOLNOD ;DX=ipoll node |
LNKPOLE jactivate poll rtn |
POLRTN ;optional pretest |
BX.&EVENT ;BX=isemaphore |
WAITE ;wait for event |

| ;poll routine
| POLNOD: WORD

WORD
| POLRTN: IN
| TEST
I JZ
| MOV
| CALL
| MOV
| CALL
| _X: RET

signals event when detected |
0 ;poll rtn linkage |
0 ; " " ’ I
AL,=STAT ;AL=device status |
AL,=MASK ;did event occur? |
__ X ;if not, exit
BX.&EVENT ;BX=&semaphore |
SIGNALE jsignal event |
BX.iPOLNOD ;8X=ipoll node |
UNLINKE ;unlink poll rtn |

;all done |

4-7

TurboDOS 1.4 6086
Implementor's Guide

CODING CONVENTIONS

Mutual Exclusion

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Mutual Exclusion TurboDOS is fully re-entrant at the process
and kernel levels. However, most driver
modules are not coded re-entrantly (since
most peripheral devices can only do one thing
at a time). Consequently, most drivers must
make use of a mutual-exclusion interlock to
prevent TurboDOS from invoking them re-ent­
rantly .

This is very easy to accomplish using the
basic semaphore mechanism of the dispatcher.
It is only necessary to define a semaphore
with its count-word initialized to 1 (instead
of 0). Mutual exclusion may then be accom­
plished by calling WAITE upon entry and
SIGNALE upon exit. An example:

;mutual-exclusion semaphore
MXSPH: WORD 1 ;count-word=1!

WORD MXSPH*2
WORD MXSPH+2

DRIVER: MOV BX.&MXSPH ;BX=&semaphore
CALL WAITE ;wait if ^n-use

MOV BX.&MXSPH ;BX=&semaphore
CALL SIGNALE junlock mut-excl
RET ;done

4-8

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Sample Driver
Using Interrupts

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sample Driver
Using Interrupts

Here is a simple device driver for an inter­
rupt-driven serial input device. It illus­
trates coding techniques discussed so far:

| MXSPH: WORD 1 ;MX semaphore
| WORD MXSPH+2
| WORD MXSPH+2
| RDASPH: WORD 0 ;RDA semaphore
| WORD RDASPH*2
| WORD RDASPH+2
| CHRSAV: BYTE 0 ;;saved input char |

| ;device driver main codej I
| INPDRV::MOV BX,8rMXSPH ;BX=iMXsemaphore |
| CALL WAITE ;;lock MX |
| STI ;need ints enabled |
| MOV BX.&RDASPH ; BX = &semaphore |
| CALL WAITE ;;wait data avail |
| PUSH CHRSAV ;;stack input char |
| MOV BX.&MXSPH ;BX=&MXsemaphore |
| CALL SIGNALE ;;unlock MX
| POP AX ;;return AL=char
| RET ;done |

| ;interrupt service routine
| INPISR::PUSH AX save registers
| PUSH 8X ■
| PUSH CX
| PUSH DX

PUSH DS *
| CALL GETSDSE get system DS |
I IN AL,=INPUT ;get input char |
| MOV CHRSAV,AL ;save for driver |

MOV BX.iRDASPH ;BX=&semaphore |
I CALL SIGNALE signal data avail |
| POP DS restore registers |
| POP DX
| POP CX -
| POP BX ■

| POP AX -

| IRET return from int. |

4-9

TurboDOS 1.4 8066
Implementor's Guide

CODING CONVENTIONS

Sample Driver
Using Polling

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sample Driver
Using Polling

Here is a simple device driver for non-inter­
rupting serial input device. It illustrates
how polling is used:

| MXSPH: WORD 1 ;MX semaphore |
WORD MXSPH+2 |
WORD MXSPH+2 |

I RDASPH: WORD 0 ;RDA semaphore |
WORD RDASPH+2 |
WORD RDASPH+2 |

| CHRSAV: BYTE 0 ;saved input char |

| ;device driver main code |
| INPDRV:::M0V BX.&MXSPH ;BX=&MXsemaphore |

CALL WAITE ;lock MX |
MOV DX.&POLNOD ;DX=&pollnode |
CALL LNKPOLE ;activate poll rtn |
CALL POLRTN ;optional pretest |
MOV BX.&RDASPH ;BX=&semaphore |
CALL WAITE ;wait data avail |
PUSH CHRSAV ;stack input char |
MOV BX.&MXSPH ;BX=&MXsemaph I
CALL SIGNALE junlock MX I
POP AX ;return AL=char
RET ;done I

| jdevice poll routine with linkage |
| POLNOD: WORD 0 ;poll rtn linkage |

WORD 0 I
| POLRTN: IN AL,=STAT ;get device status |

TEST AL,=MASK ;data available? I
JZ __ X ;if not, exit
IN AL,=DATA ;get input char I
MOV CHRSAV,AL ;save for driver |
MOV BX,&RDASPH ; 8X = &semaphore |
CALL SIGNALE ;signal data avail |
MOV BX.kPOLNOD ; BX=kpollnode |
CALL UNLINKE ;unlink poll rtn |

| __ X: RET ; done

4-10

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Inter-Process
Messages

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Inter-Process
Messages

To pass messages from one process to another,
a five-word structure called a "message node"
is used. A message node consists of a three-
word semaphore followed by a two-word message
list head. Routines are provided for sending
messages to a message node (SNDMSGE), and
receiving messages from a message node
(RCVMSGE). Typically, the sending process
allocates a memory segment in which to build
the message, and the receiving process deal­
locates the segment after reading the mes­
sage. The first two words of each message
must be reserved for a list-processing link­
age. Coding is done in this manner:

| {message node
MSGNOD:: WORD

WORD
WORD
WORD
WORD

0 ;semaphore part |
MSGNOD+2 ; " "I
MSGNOD+2 ; " " |
MSGNOD+6 ;message list head |
MSGNOD+6 ; " " |

;one process
MOV
CALL
PUSH

POP
MOV
CALL

allocates/builds/sends msg |
BX,=12+4 ;BX=message size+4 |
ALLOCE ;allocate segment |
BX ;save ^segment |

;build msg in seg |
DX ;DX=isegment
BX.&MSGNOD ; BX^msgnode |
SNDMSGE ;send message |

;other proces
MOV
CALL
PUSH

POP
CALL

s reads/deallocates message |
BX.iMSGNOD ;8X=&msgnode |

RCVMSGE ;receive message |
BX ;save ^segment |

;process message |
BX ; BX = 8rsegment |
DEALOCE {deallocate seg |

4-11

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Console Routines

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Console Routines

Sign-On Message

TurboDOS includes several handy console I/O
subroutines which may be called from within
driver modules as illustrated:

| ;raw console I/O routines
CALL CONSTE ;get status in AL |
TEST AL , AL ;input char avail? |
JZ __ X ; if not, exit |
CALL CONINE ;get input in AL |
CALL UPRCASE ;make upper-case |
MOV CL, AL ;char to CL |
CALL CONOUTE ;output char in CL |

| jmessage output routines
| ;message must be null- terminated

CALL DMSE ;output following |
I MSG: BYTE "This is a test message\0" |

MOV BX.&MSG ;8X=&message |
CALL DMSBXE ;output msg *BX |

| ;binary- to-decimal output routine
MOV BX,=3141 6 ;BX=word value |
CALL DECOUTE ;displays decimal |

You may add your own custom sign-on message
to TurboDOS. Your message will be displayed
at cold-start immediately following the nor­
mal TurboDOS sign-on and copyright notice.

Your sign-on message must be coded as an
ASCII character string terminated with a $
delimiter, and labelled with the public entry
symbol USRSOM. An example:

I USRSOM: :BYTE OxOD, OxOA |
BYTE "Implementation by "
BYTE "Trigon Computer Corp." |
BYTE "$" I

4-12

CODING CONVENTIONS

Resident Process

TurboDOS 1.4 8086
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Resident Process You can code a resident process that runs in
the background concurrent with other system
activities, and link it into TurboDOS. The
create-process subroutine CRPROCE may be
called to create such a process at cold-start
as shown:

| HDWNIT::M0V
I CALL

MOV
CALL

BX,=128 ;BX=workspace size |
ALLOCE ;alloc workspace |

;BX=&workspace |
DX.&MYPROC ;DX=&entrypoint |
CRPROCE jcreate process |

| MYPROC: INC
MOV
MOV

| CALL
JMP

COUNTIDI] ;increment count |
DX,=60*60 ;ticks/minute
CL,=2 ;T-function 2 |
OTNTRYE ;delay 1 minute
MYPROC ;loop forever |

CRPROCE automatically allocates a TurboDOS
process area (address appears in register SI)
and a stack area (address appears in SP). If
the process requires a re-entrant workspace,
it should be allocated with ALLOCE and passed
to CRPROCE in BX (as shown above), and will
appear to the new process in register DI.

The resident process must make all operating
system requests by calling OCNTRYE or OTNTRYE
with a C-function or T-function number in
register CL. It must not execute INT OxEO or
INT OxDF, nor make direct calls on kernel
routines such as WAITE, SIGNALE, DELAYE,
SNDMSGE, RCVMSGE, ALLOCE, and DEALOCE.

4-13

TurboDOS 1.4 8086
Implementor’s Guide

COOING CONVENTIONS

Resident Process
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Resident Process
(Continued)

User-Defined
Function

A resident process is not attached to a con
sole, so any console I/O requests will be
ignored.

You can do file processing within a resident
process, using the normal C-functions open,
close, read, write, and so forth, called via
OCNTRYE. First, however, you must remember
to warm-start with C-function 0 (OCNTRYE),
and then log-on with T-function 14 (OTNTRYE).

A resident process must always be coded to
preserve the contents of index register SI,
which Turbodos relies upon as a pointer to
its process area. The process may use all
other registers as desired.

The User-Defined Function (T-function 41)
provides a means of adding your own special
functions to the normal TurboDOS repertoire
of C-functions and T-functions. To do this,
you simply create a function processor sub­
routine with the public entrypoint symbol
USRFCN.

Whenever a program invokes T-function 41,
TurboDOS transfers control to your USRFCN
routine. On entry, ES:CX contains the
address of the 128-byte record area passed
from the caller’s current DMA address, and
registers BX and DX contain whatever values
the caller loaded into them. Your USRFCN
routine may return data to the caller in the
128-byte record area (address in CX at entry)
and in any of the registers AL-BX-CX-DX.

Architecturally, your USRFCN routine is in­
side the TurboDOS kernel. Consequently, it
may call kernel subroutines directly. Any
calls to C-functions and T-functions must
therefore be made by means of two special
recursive entrypoints: XCNTRYE and XTNTRYE.

4-14

DRIVER INTERFACETurboDOS 1.4 8086
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

DRIVER INTERFACE This section explains how to code hardware­
dependent device driver modules, and presents
formal interface specifications for each
category of driver required by TurboDOS.

Following this section is a large appendix
that contains assembler source listings of
actual driver modules. The sample drivers
cover a wide range of peripheral devices, and
provide an excellent starting point for your
driver development work.

General Notes Drivers modules are c<
lie entrypoint names,
using the TLINK commai
your drivers into as
modules as you like,
easier to reconfigure
of devices if the dri
packaged as a separate

>ded with standard pub-
and linked to TurboDOS
id. You may package
many or few separate

In general, it is
TurboDOS for a variety
'er for each device is
module.

TurboDOS is designed to accomodate multiple
disk, console, printer, and network drivers.
For disk drivers, for instance, the DSKAST is
normally set up to refer to disk driver
entrypoints DSKDRAE, DSKDRBf, DSKDRCE, and so
forth. Each disk driver should be coded with
the public entrypoint DSKDR_. TLINK automa­
tically maps successive definitions of such
names by replacing the trailing _ by A, 8, C,
etc. The same technique may be used for
console, printer, and network driver entry­
points .

You must code driver routines to preserve CS,
DS, SS, SP, SI and DI registers, but you may
use other registers as desired.

5-1

TurboDOS 1.4 8086 DRIVER INTERFACE
Implementor’s Guide

Initialization

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Initialization Hardware initialization and interrupt vector
set-up should be performed in an initializa­
tion routine labelled with the public entry
symbol HDWNIT::. TurboDOS calls this routine
during cold-start with interrupts disabled.

Your HDWNIT:: routine must not enable inter­
rupts or make calls to WAITE or DELAYE. In
most cases, HDWNIT:: will contain a series of
calls to individual driver initialization
subroutines contained in other modules.

Memory Table All 8086 TurboDOS systems must include a
table that specifies the size and layout of
main memory. The table must be labelled with
the public symbol MEMTBL. It must begin with
a byte value that specifies the number of
discontiguous regions of main memory (up to
eight), followed by two words for each region
which specify the base address and length of
the segment (both in paragraphs). The first
segment in the table must be large enough to
contain the resident portion of 8086 TurboDOS
plus the dynamic workspace (given by OSMLEN).

The following example illustrates the simple
case of a system with 256K of contiguous
memory starting at zero:

I I
| MODULE "MEMTBL" ;module ident I
| LOC DataE ;data segment |
| MEMTBL:: -.memory spec table |
| BYTE 1 ;just one region |

WORD 0x40 -.base (paragraph) |
I WORD 0x4000-0x40 ;length (para) |
I END |
I__ J

Note that the first 0x40 paragraphs (1K
bytes) are reserved for 8086 interrupt
vectors and must not be included in MEMTBL.

5-2

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Console Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Console Driver A console driver should be labelled with the
public entry symbol CONDR_. A console number
(from CONAST) is passed in register CH. The
driver must perform a console I/O operation
according to the operation code passed in
register DL:

DL = Function

0
1

Return status in AL, char in CL
Return input character in AL

2
8
9

10

Output character passed in CL
Enter error-message mode
Exit error-message mode
Conditional output char in CL

If DL=O, the driver determines if a console
input character is available. If no char­
acter is available, the driver returns AL=0.
If an input character is available, the
driver returns AL = -1 and the input character
in cl, kut mint nat --£pnsume..! ike ekALieier.
TurboDOS depends upon this look-ahead capa­
bility to detect attention requests. The
driver must not dispatch (via WAITE or
DELAYE) when processing a DL=0 call.

If DL=1, the driver returns an input char­
acter in AL (waiting if necessary).

If DL=2, the driver displays the output char­
acter passed in CL (waiting if necessary).

If DL=8, the driver prepares to display a
TurboDOS error message; if DL=9, it reverts
to normal. TurboDOS always precedes each
error message with an DL=8 call and follows
it with an DL=9 call. This gives the driver
an opportunity to take special action (25th
line, reverse video, etc.) for error
messages. For simple consoles, the driver
should output CR-LF in response to DL=8 or 9.

5-3

TurboDOS 1.4 8086
Implementor’s Guide

DRIVER INTERFACE

Console Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Console Driver
(Continued)

If DL=1O, the driver determines whether or
not it can accept a console output character
without dispatching (via WAITE or DELAYE).
If so, it outputs the character passed in CL,
and returns AL = -1 to indicate that the char­
acter was accepted. However, if the driver
cannot accept a console output character
without dispatching, it returns AL=0 to
indicate that the character was not accepted;
TurboDOS will then make an DL=2 call to
output the same character. This special
conditional output call is used by TurboDOS
to optimize console output speed by avoiding
certain dispatch-related overhead whenever
possible.

You should make a special effort to code the
console driver to- execute the minimum number
of instructions possible, especially func­
tions 0, 2, and 10. Excessive use of subrou­
tine calls, stack operations, and other time­
consuming coding techniques can make the
difference between running the console device
at full rated speed or something less. Study
the sample driver listings in the appendix
with this in mind.

5-4

DRIVER INTERFACETurboDOS 1.4 8086
Implementor's Guide

Printer Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Printer Driver A printer driver should be labelled with the
public entry symbol LSTDR_. A printer number
(from PTRAST) is passed in register CH. The
driver must perform a printer output opera­
tion according to the operation code passed
in register DL:

DL = I Function

2 Print character passed in CL
I 7 Perform end-of-print-job action

If DL = 2, the driver prints the output charac­
ter passed in CL (waiting if necessary).

If DL=7, the driver takes any appropriate
end-of-print-job action. This is quite
hardware-dependent, and may include slewing
to top-of-form, homing the print head,
dropping the ribbon, and so forth.

5-5

TurboOOS 1.4 6086
Implementor’s Guide

DRIVER INTERFACE

Disk Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Oisk Driver A disk driver should be labelled with the
public entry symbol DSKDR_. The driver per­
forms the physical disk operation specified
by the Physical Disk Request (PDR) packet
whose address is passed by TurboOOS in index
register SI. The structure of the PDR packet
is:

Offset |Contents

;physical disk request (PDR) packet
0 [S I] BYTE OPCODE ;operation code
1 [SI J BYTE DRIVE •.drive (base 0)
2 [SI] WORD TRACK ;track (base 0)
4 [SI] WORD SECTOR jsector (base 0)
6 [SI] WORD SECCNT ;£sectors to rd/wr
8 [SI] WORD BYTCNT ;£bytes to rd/wr

10 E SI] WORD OMAOFF ;DMA offs to rd/wr
1 2 [SI] WORD DMABAS ;DMA base to rd/wr
14 C S 11 WORD DSTAOR ;DST address
;copy (of disk specification table (DST)
1 6 [SI] BYTE BLKSIZ ;block size (3-7)
17 [SI] WORD NMBLKS ;£blocks on disk
1 9 C S IJ BYTE NM8DIR ;£directory blocks
20[SI] BYTE SECSIZ ;sector size (0-7)
2 1C SI] WORD SECTRK ;sectors per track
23[SI] WORD TRKDSK •.tracks on disk
25(SIJ WORD RESTRK ;reserved tracks

The operation to be performed by the driver
is specified in the first byte of the PDR
packet (OPCODE) as follows:

OPCODE Function

0
1

Read sectors from disk
Write sectors to disk

2
3
4

Determine disk type, return DST
Determine if drive is ready
Format track on disk

5-6

DRIVER INTERFACETurboDOS 1.4 8086
Implementor's Guide

Disk Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Disk Driver
(Continued)

If OPCODE=O, the driver reads SECCNT physical
sectors (or equivalently, BYTCNT bytes) into
DMAOFF/DMABAS, starting at TRACK and SECTOR
on DRIVE. The driver returns AL=0 if the
operation is successful, or AL = -1 if an
unrecoverable error occurs. TurboDOS may
request multiple consecutive sectors to be
read, but will never request an operation
that extends past the end of the track.

If OPCODE=1, the driver writes SECCNT physi­
cal sectors (or BYTCNT bytes) from
DMAOFF/DMABAS, starting at TRACK and SECTOR
on DRIVE. The driver returns AL=0 if the
operation is successful, or AL = -1 if an
unrecoverable error occurs. TurboDOS may
request multiple consecutive sectors to be
written, but will never request an operation
that extends past the end of the track.

If OPCODE=2, the driver must determine the
type of disk mounted in DRIVE, and must
return, in the DSTADR field of the PDR
packet, the address of an 11-byte disk speci­
fication table (DST) structured as follows:

I Offset II Description I

I o block size (3=1K,4=2K...........7=16K) |
I 1-2 total number of blocks on disk |
1 3 number of directory blocks |
| 4 sector size (0=128,...,7=16K)
I 5-6 number of sectors per track |
| 7-8 number of tracks on the disk
| 9-10 number of reserved (boot) tracks |

The first byte of the DST (BLKSIZ) specifies
the allocation block size in bits 2-0. In
addition, bit 7 is set if the disk is fixed
(non-removable), and bit 6 is set if file
extents are limited to 16K (EXM=0).

5-7

TurboDOS 1.4 8086 DRIVER INTERFACE
Implementor's Guide

Disk Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Disk Driver
(Continued)

The driver returns AL=-1 if the operation is
successful, or AL=0 if the drive is not ready
or the disk type is unrecognizable. On suc­
cessful return, TurboDOS moves a copy of the
DST into 16CSI] through 26[SI], where it is
available for subsequent operations.

If OPCODE=3, the driver determines whether
DRIVE is ready, and returns AL=-1 if it is
ready or AL=0 if not.

If 0PC0DE=4, the driver formats (initializes)
TRACK on DRIVE, using hardware-dependent
formatting information at DMA0FF/DMA8AS (put
there by the FORMAT command). The driver
returns AL=0 if successful, or AL=-1 if an
unrecoverable error occurs.

5-8

DRIVER INTERFACE

Network Driver

TurboDOS 1.4 8086
Implementor’s Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver A network circuit driver should be labelled
with the public entry symbol CKTDR_. A mes­
sage buffer address is passed in register OX.
The driver must either send or receive a
network message, according to the operation
code passed in register CL:

CL = I Function I

0 Receive message into buffer at DX |
1 Send message from buffer at DX |

If CL=0, the driver receives a network mes­
sage into the message buffer whose address is
passed in DX (waiting if necessary). If a
message is received successfully, the driver
returns AL=0. If an unrecoverable malfunc­
tion of any remote processor is detected, the
driver returns AL=-1 with the network address
of the crashed processor in OX.

If CL=1, the driver sends a network message
from the message buffer whose address is
passed in DX. If the message is sent suc­
cessfully, the driver returns AL=0. If the
message could not be sent because of an unre­
coverable malfunction of the destination
processor, the driver returns AL=-1 with the
network address of the crashed processor in
DX.

The structure of a network message buffer is
shown on the next page. The first two words
of the buffer are reserved for a linkage used
by TurboDOS, and should be ignored by the
driver. The 11-byte message header and
variable-length message body should be sent
or received over the circuit. The driver
needs to look at only the first two header
fields (MSGLEN and MSGDID) and possibly the
last field (MSGFCD).

5-9

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Network Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver
(Continued) | ; message buffer format

| WORD 7 ;linkage (ignored) |
| WORD 7 .
| ; 11-byte message header
| BYTE MSGLEN ;msg length |
| WORD MSGDID ;destination addr |
| BYTE MSGPID ;process id |
| WORD MSGSID jsource addr |

WORD MSGOID ;originator addr |
| BYTE MSGOPR ;orig‘r process id |
| BYTE MSGLVL ;forwarding level |
| BYTE MSGFCD ;msg format code |
| ; variable-length body
| RES 7 jregisters |
| RES 1 ;user £ and flags |
| RES 37 ;optional FCB data |
| RES 128 ;optional record |

The message format code field MSGFCD contains
bit-encoded flags that define the format and
context of each network message. This field
may be ignored by most simple drivers, but
its contents may be useful in complex network
environments. Encoding of MSGFCD is:

I Bit I_______________Meaning________________ I
I I
| 0 first message of session I
| 1 last message of session
| 2 continuation message follows |
| 3 request includes FCB data
| 4 request includes record data I
I 5 reply includes FCB data
| 6 reply includes record data |
I 7 this is a reply message

5-10

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Network Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver
(Continued)

The length field MSGLEN represents the number
of bytes in the message, including the header
and body (but excluding the linkage). On a
receive request (CL = 0) , TurboDOS presets
MSGLEN to the maximum allowable message
length, and expects MSGLEN to contain the
actual message length on return. On a send
request (CL=1), TurboOOS presets MSGLEN to
the actual length of the message to be sent.

In a master/slave network, it is often desir­
able for the circuit driver in the master to
periodically "poll" the slave processors on
the circuit to detect any slave malfunctions
quickly and to effect recovery. If the
driver reports that a slave has crashed (by
returning AL = -1 and DX=network-address), then
the circuit driver must not accept any fur­
ther messages from that slave until TurboDOS
has completed its recovery process.

TurboOOS signals the driver that such recov­
ery is complete by sending a dummy message
destined for the slave in question with a
length of zero. The driver should not actu­
ally send such a message to the slave, but
could initiate whatever action is appropriate
to reset the slave and download a new copy of
the slave operating system.

A slave must request an operating system
download by sending a special download re­
quest message to the master (usually done by
a bootstrap routine). The download request
message consists of a standard 11-byte header
(with MSGPID, MSGOID and MSGFCD zeroed) fol­
lowed by a 1-byte body containing a "download
suffix" character. The master processor
addressed by MSGDID will return a reply mes­
sage whose 128-byte body is the first record
of the download file OSSLAVEx.SYS (where "x"
is the specified download suffix).

5-11

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Network Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver
(Continued)

The slave continues to send download request
messages and to receive successive download
records until it receives a short reply mes­
sage (1-byte body) signifying end-of-file.
The single byte passed as the body of the
final short message identifies the system
disk, and should be passed to the system in
register AL.

The entire failure detection, failure recov­
ery, and slave downloading procedure is very
hardware-dependent. Study the driver listing
in the appendix for guidance.

5-12

DRIVER INTERFACE

Comm Driver

TurboDOS 1.4 8066
Implementor’s Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Comm Driver The comm driver supports the TurboDOS commu­
nications extensions (T-functions 34-40), and
may be omitted if these functions are not
used. The driver should be labelled with the
public entry symbol COMDRV. A comm channel
number is passed in register CH. The driver
must perform an I/O operation according to
the operation code passed in register DL:

DL = I______________Function______________ I
I

0 Return input status in AL |
1 Return input character in AL |
2 Output character passed in CL |
3 Set channel baud rate from CL |
4 Return channel baud rate in AL |
5 Set modem controls from CL |
6 Return modem status in AL |

__ I

If DL=O, the driver determines if an input
character is available. If one is available,
the driver returns AL=-1, otherwise AL=0.

If DL=1, the driver returns an input char­
acter in AL (waiting if necessary).

If DL=2, the driver outputs the character
passed in CL.

If DL=3, the driver sets the channel baud
rate according to the baud-rate code passed
in CL. If DL=4, the driver returns the
channel baud-rate code in AL. See T-func­
tions 37 and 38 in the 8086 Programmer's
Guide for baud-rate code definitions.

If DL = 5, the driver sets the modem controls
according to the bit-vector passed in CL. If
DL=6, the driver returns the modem status
vector in AL. See T-functions 39 and 40 in
the 8086 Programmer’s Guide for bit-vector
definitions.

5-13

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Clock Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Clock Driver The real-time clock driver does not take the
form of a subroutine called by TurboDOS, as
do the other drivers described in this sec­
tion. Rather, the clock driver generally
consists of an interrupt service routine
which responds to interrupts from a periodic
interrupt source (preferably 50 to 60 times a
second). The interrupt service routine
should call DLYTICE once per system tick (to
synchronize DELAYE requests). It should also
call RTCSECE once per second (that is, every
50 to 60 ticks) to update the system time and
date. Finally, it should exit by jumping to
ISRXITE to provide a periodic dispatcher
time-slice. Excluding initialization code, a
typical clock driver might be coded thus:

| RTCCNT: BYTE 60 divide-by-60 entr [
| RTCISR: PUSH AX save registers |

PUSH BX H H

PUSH CX
PUSH DX
PUSH OS
CALL GETSDSE get system DS |
CALL DLYTICE signal one tick |
DEC RTCCNT decrement counter |
JNZ __ X not 60 ticks yet |
MOV RTCCNT,=60 ;reset counter |
CALL RTCSECE signal one second |

I _X: MOV DX.&EOIR DX=&end-of-int |
MOV AX,=INTN AX=interrupt£ |
OUT DX, AX reset interrupt |
POP DS restore registers |
POP DX
POP CX
POP BX
POP AX ■
IMP ISRXITE go to dispatcher |

5-14

TurboDOS 1.4 8086
Implementor’s Guide

DRIVER INTERFACE

Clock Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Clock Driver
(Continued)

If the hardware is capable of determining the
date and time-of-day at cold-start (by means
of a battery-powered clock, for example), the
clock driver may initialize the following
public symbols in the RTCMGR module:

SECS:: BYTE 0 ;seconds 0-59 |
MINS:: BYTE 0 ;minutes 0-59 |
HOURS::: BYTE 0 ;hours 0-24 |

' JDATE:;: WORD 0x8001 ;Julian date |
;base 31 -Dec-47 |

5-15

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Bootstrap

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Bootstrap The bootstrap is usually contained in a ROM
or on a boot track. Its function is to
search all disk drives for the TurboDOS
loader program OSLOAD.CMD, and to load and
execute it if found. To generate a boot­
strap, use TLINK to combine the standard
bootstrap module OSBOOT.O with your own
hardware-dependent driver. Your driver must
define the following public names: INIT,
SELECT, READ, XFER, CODE, and DATA.

INIT:: is called once to perform any required
hardware initialization. It returns with
register AX set to the paragraph address of
the load base (where the file OSLOAD.CMD
should be loaded into memory by the boot­
strap). This address should be chosen so
that OSLOAD will not overlay the bootstrap or
the operating system to be loaded.

SELECT:: is called to select the disk drive
passed in AL (0-15). If the selected drive
is not ready or non-existent, it returns
AL=0. Otherwise, it returns AL=-1 and the
address of an 11-byte disk specification
table (DST) in register SI (see page 5-7).

READ:: is called to read one physical sector
from the last-selected drive. The track is
passed in CX, the sector in DX, the DMA
offset in BX, and the DMA base in ES. It
must return AL=0 if successful, or AL = -1 if
an unrecoverable error occurred.

XFER:: is transferred to at the end of the
bootstrap process. In most cases, this
routine must set register DS to the base
paragraph address of the loader (normally the
load base returned by INIT:: plus 8 to allow
for the .CMD header), set location DS:0080 to
zero (to simulate a null command tail), and
jump to the loader (using a JMPF to set CS = DS
and IP=0x100).

5-16

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Bootstrap
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Bootstrap
(Continued)

CODE:: defines the base paragraph (CS value)
under which the bootstrap itself is to be
executed. OSBOOT loads this value into
register CS before calling INIT::, SELECT::,
READ:: or XFER::.

DATA:: defines the base paragraph (OS value)
of a 128-byte RAM area that OSBOOT may use
for working storage. (It should not be
located where OSLOAD.CMD will be loaded!)
OSBOOT loads this value into register DS
before calling INIT::, SELECT::, READ:: or
XFER: : .

5-17

TurboDOS 1.4 8086
Implementor's Guide

OTOASM Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

OTOASM Command Some TurboDOS implementations require that a
Z80 master processor download 8086-family
slave processors. In writing the network
circuit driver for the Z80 master processor,
it is often necessary to embed a download
bootstrap routine written in 8086 code. The
utility program OTOASM.CMD is designed to
simplify this process.

OTOASM converts an 8086 object file (type .0)
produced by TASM into a Z80 source file (type
.ASM) acceptable to either the PASM or M80
assemblers. The output file contains a
sequence of data definition statements (.BYTE
and .WORD, or DB and DW) representing 8086
machine-language.

Syntax

Explanation

I I
| OTOASM filename {-M} |
I I

The "filename" argument must not have an
explicit type, and specifies the name of both
the input file "filename.0" and the output
file "filename.ASM" to be used. The "-M"
option causes the output to be formatted for
the M80 assembler rather than the PASM assem­
bler .

The input file (type .0) must not contain any
relocatable tokens. Consequently, the 8086
source module (type .A) must define only
absolute location counter values (LOC) and
must make no external references (£ suffix).
Public symbols may be defined as long as they
do not have relocatable values.

A-1

TurboDOS 1.4 8086
Implementor's Guide

SAMPLE DRIVER
SOURCE LISTINGS

Copyright 1984 by Software 2000, Inc.
All rights reserved.

SAMPLE DRIVER
SOURCE LISTINGS

The remainder of this document consists of
assembler source listings of actual drivers.
The listings comprise the drivers for a
working TurboOOS system for the IBM Personal
Computer with 256K of RAM.

The listings appear in the following order:

Module 1 Description 1

DREQUATE common symbolic equates |
MPBIPC IBM PC bootstrap driver |
NITIPC IBM PC driver initialization |
CONIPC IBM PC TTY-mode console driver |
LSTPPA IBM PC parallel printer driver |
LSTACA IBM PC serial printer driver |
RTCIPC IBM PC real-time clock driver |
DSKIPC IBM PC floppy disk driver |
MSTIPC IBM PC memory spec table (256K) |

Network circuit drivers will be furnished in
the next edition of this document. In the
meantime, refer to the Z 8 0 Implementor‘s
Guide for circuit driver examples.

8-1

; EINCLUDE "DREQUATE" ;DRIVER SYMBOLIC EQUIVALENCES
ENOLIST ;SUPPRESS LISTING

; ASCII EQUIVALENCES

ANUL = = BYTE 0x00 •«NULL
ASOH = = BYTE 0x01 ;SOH
ASTX a a BYTE 0x02 ;STX
AETX = s BYTE 0x03 ;ETX
AEOT = = BYTE 0x04 ;EOT
AENQ z = BYTE 0x05 ;ENQ
AACK = a BYTE 0x06 ;ACK
ABEL a a BYTE 0x07 ;BELL
ABS z z BYTE 0x08 ; BS
AHT a = BYTE 0x09 ;HT
ALF = = BYTE OxOA ;LF
AVT = = BYTE OxOB ;VT
AFF z z BYTE OxOC ;FF
ACR a a BYTE 0x00 ; CR
ASO s a BYTE OxOE ;S0
ASI z a BYTE OxOF ;SI
ADLE z a BYTE 0x10 ; DLE
ADC1 a a BYTE 0x11 ; DC 1
ADC2 a a BYTE 0x12 ; DC2
ADC3 a = BYTE 0x13 ; DC3
ADC4 a a BYTE 0x14 ; DC4
ANAK z a BYTE 0x15 ;NAK
ASYN a a BYTE 0x16 ;SYN
AETB a a BYTE 0x17 ;ETB
ACAN a a BYTE 0x18 ; CAN
AEM = a BYTE 0x19 ;EM
ASUB a a BYTE 0x1A ; SUB
AESC a a BYTE 0x18 ;ESC
AFS a a BYTE 0x1C ;FS
AGS a a BYTE 0x1D ;GS
ARS a z BYTE Ox1E ; RS
AUS z z BYTE 0x1F ;US
ASP a z BYTE 0x20 ;SPACE
ARUB a a BYTE 0x7F ;RUBOUT (DEL)

LOC 0 ;SYMBOLIC DEFINITIONS RELATIVE TO 0

PDRDP: ;PD REQUEST DESCRIPTOR PACKET
PORFCN: RES BYTE 1 ; PD REQUEST FUNCTION NUMBER
PDRDRV: RES BYTE 1 ;PD REQUEST DRIVE NUMBER
PDRTRK: RES WORD 1 ;PD REQUEST TRACK NUMBER
PDRSEC: RES WORD 1 ;PD REQUEST SECTOR NUMBER
PDRSC: RES WORb 1 ;PD REQUEST SECTOR COUNT
PDRTC: RES WORD 1 ;PD REQUEST TRANSFER COUNT
PDRDMA: RES WORD 1 ;PD REQUEST DMA OFFSET
PDRBAS: RES WORD 1 ;PD REQUEST DMA BASE
PDRDST: RES WORD 1 ;PD REQUEST DRIVE SPEC TABLE ADDR
PDRLEN a a BYTE .-PDRDP ;PD REQUEST DESCRIPTOR PACKET LENGTH
DSKNFO: ;DISK TYPE INFORMATION
BLKSIZ: RES BYTE 1 ;BLOCK SIZE
NM8LKS: RES WORD 1 ;NUMBER OF BLOCKS
NMBDIR: RES BYTE 1 ;NUMBER OF DIRECTORY BLOCKS
SECSIZ: RES BYTE 1 ;PHYSICAL SECTOR SIZE (2"N*128)
SECTRK: RES WORD 1 jPHYSICAL SECTORS PER TRACK
TRKDSK: RES WORD 1 ;PHYSICAL TRACKS PER DISK

RESTRK: RES
DNFOL = = BYTE

WORD 1 {NUMBER OF RESERVED TRACKS
.-DSKNFO {DISK INFO LENGTH

RELOC {RESTORE PREVIOUS LOCATION

ERELIST •.RESTORE PREVIOUS LISTING STATUS

2

ASCII EQUIVALENCES

ANUL = = OOH {NULL
ASOH = = O1H ;SOH
ASTX 02H ;STX
AETX = = 03H ;ETX
AEOT = = 04H ;EOT
AENQ = = 05H ; ENQ
AACK = = 06H ; ACK
ABEL = = 07H {BELL
ABS = = 08H ; BS
AHT = = 09H ;HT
ALF = = OAH ; LF
AVT = = OBH ;VT
AFF = = OCH ; FF
ACR = = ODH ; CR
ASO = = OEH ;SO
ASI = « OFH ; SI
ADLE = = 1OH ; DLE
ADC1 = = 11H ; DC 1
ADC2 = = 12H ; DC2
ADC3 = = 13H ;DC3
ADC4 = x HH ;DC4
ANAK 15H ;NAK
ASYN = = 16H ;SYN
AETB = = 17H ; ETB
ACAN = = 10H ; CAN
AEM = = 19H ; EM
ASUB = = 1AH {SUB
AESC = = 1BH ;ESC
AFS = = 1CH ;FS
AGS = = 1DH ; GS
ARS = = 1EH ; RS
AUS = = 1FH ; US
ASP = = 20H {SPACE
ARUB = = 7FH ;RUBOUT (DEL)

WBOOT == OOOOH {WARM START ENTRYPOINT
IOBYTE = = 0003H ; I/O CONFIGURATION BYTE
CURDRV == 0004H {CURRENT DEFAULT DRIVE
OPSYSC == 0005H {OPERATING SYSTEM ENTRYPOINT (CP/M)
OPSYST == 0050H •.OPERATING SYSTEM ENTRYPOINT (TDOS)
TFCB = = 005CH {DEFAULT FILE CONTROL BLOCK
TBUF = = 0080H •.DEFAULT DISK BUFFER ADDRESS
TPA = = O1OOH {TRANSIENT PROGRAM AREA BASE

.LOC 0 {WORKING STORAGE RELATIVE TO 0

PDRDP: ;PD REQUEST DESCRIPTOR PACKET
PDRFCN: . BLKB 1 ;PD REQUEST FUNCTION NUMBER
PDRDRV: . BLKB 1 ;PD REQUEST DRIVE NUMBER
PDRTRK: .BLKW 1 ;PD REQUEST TRACK NUMBER
PDRSEC: .BLKW 1 ;PD REQUEST SECTOR NUMBER
PDRSC: .BLKW 1 ;PD REQUEST SECTOR COUNT
PDRTC: .BLKW 1 ;PD REQUEST TRANSFER COUNT
POROMA: .BLKW 1 ;PD REQUEST OMA AOORESS
PDRDST: .BLKW 1 ;PD REQUEST DRIVE SPEC TABLE ADDR
PDRLEN == .-PDRDP ;PO REQUEST DESCRIPTOR PACKET LENGTH
DSKNFO: {DISK TYPE INFORMATION
8LKSIZ: . BLKB 1 {BLOCK SIZE

3

NMBLKS: .BLKW 1
NMBDIR: .BLKB 1
SECSIZ: .BLKB 1
SECTRK: .BLKW 1
TRKDSK: .BLKW 1
RESTRK: .BLKW 1
DNFOL == .-DSKNFO

.RELOC

;NUMBER OF BLOCKS
;NUM8ER OF DIRECTORY BLOCKS
;PHYSICAL SECTOR SIZE (2‘N*128)
PHYSICAL SECTORS PER TRACK
jPHYSICAL TRACKS PER DISK
;NUM8ER OF RESERVED TRACKS
;DISK INFO LENGTH

4

ETITLE "COMMON SYMBOLIC CONSTANTS FOR SAMPLE DRIVERS"
ESU8TTL "FOR TURBODOS ON IBM PERSONAL COMPUTER"

VERSION: 01/05/84

MODULE "DREQUATE" ;MODULE NAME

; ASCII EQUIVALENCES

ANUL = = BYTE 0x00 •.NULL
ASOH «X BYTE 0x01 ;SOH
ASTX BYTE 0x02 ;STX
AETX = = BYTE 0x03 ;ETX
AEOT =x BYTE 0x04 ;EOT
AENQ x= BYTE 0x05 ;ENQ
AACK xx byte 0x06 ;ACK
ABEL == BYTE 0x07 ; BELL
ABS =x byte 0x08 ;BS
AHT == BYTE 0x09 ;HT
ALF =x byte OxOA ; lf
AVT x= BYTE 0x08 ;VT
AFF == BYTE OxOC ;FF
ACR =x byte 0x00 ; CR
ASO xx BYTE OxOE ; SO
ASI =x BYTE OxOF ; s I
ADLE xx BYTE 0x10 ; DLE
ADC1 x= BYTE 0x11 ; DC 1
ADC2 xx byte 0x12 ;DC2
ADC3 x= BYTE 0x13 ; DC3
ADC4 == BYTE 0x14 ; DC4
ANAK =x BYTE 0x15 ;NAK
ASYN xx BYTE 0x16 ; SYN
AETB x= BYTE 0x17 ; ETB
ACAN == BYTE 0x18 ; CAN
AEM xx BYTE 0x19 ;EM
ASUB xx BYTE 0x1A ; SUB
AESC == BYTE 0x18 ;ESC
AFS xx BYTE 0x1C ; FS
AGS == BYTE 0x10 ;GS
ARS x= BYTE 0x1E ; RS
AUS =x BYTE 0x1F ;US
ASP X« BYTE 0x20 ;SPACE
ARUB == BYTE 0x7F ;RUBOUT (DEL)

LOC 0 SYMBOLIC DEFINITIONS RELATIVE TO 0

PDRDP: ;PD REQUEST DESCRIPTOR PACKET
PDRFCN: RES BYTE 1 ;PD REQUEST FUNCTION NUMBER
PDRDRV: RES BYTE 1 ;PD REQUEST DRIVE NUMBER
PDRTRK: RES WORD 1 ;PD REQUEST TRACK NUMBER
PDRSEC: RES WORD 1 ;PD REQUEST SECTOR NUMBER
PDRSC: RES WORD 1 ;PD REQUEST SECTOR COUNT
PDRTC: RES WORD 1 ;PD REQUEST TRANSFER COUNT
PDRDMA: RES WORD 1 ;PD REQUEST DMA OFFSET
PDRBAS: RES WORD 1 ;PD REQUEST DMA BASE
PDRDST: RES WORD 1 ;PD REQUEST DRIVE SPEC TABLE ADDR
PDRLEN == BYTE .-PDRDP ;PD REQUEST DESCRIPTOR PACKET LENGTH
DSKNFO: ;DISK TYPE INFORMATION
BLKSIZ: RES BYTE 1 ;BLOCK SIZE
NM8LKS: RES WORD 1 ;NUMBER OF BLOCKS
NMBDIR: RES BYTE 1 •.NUMBER OF DIRECTORY BLOCKS

5

SECSIZ:
SECTRK:
TRKDSK:
RESTRK:
DNFOL

RES
RES
RES
RES
== BYTE

BYTE 1 {PHYSICAL SECTOR SIZE (2*N*128)
WORD 1 {PHYSICAL SECTORS PER TRACK
WORD 1 {PHYSICAL TRACKS PER DISK
WORD 1 {NUMBER OF RESERVED TRACKS
.-DSKNFO {DISK INFO LENGTH

RELOC {RESTORE PREVIOUS LOCATION

ETITLE
ESUBTTL

END ;END OF MODULE
"SAMPLE BOOTSTRAP DRIVER MODULE"
"FOR TURBOOOS ON IBM PERSONAL COMPUTER"

; VERSION: 01/05/84

MODULE "MPBIPC" {MODULE NAME

LODSEG == OxOAOO {LOAD SEGMENT ADDRESS

CODE OxO7CO {CODE EXECUTION SEGMENT

DATALEN = = 128 {DATA WORKING STORAGE LENGTH

MAXTRY = = 4 ;MAX TRY COUNT

LOC 0 {DEFINITIONS RELATIVE TO 0

DSKNFO:
BLKSIZ:
NMBLKS:
NMBDIR:
SECSIZ:
SECTRK:
TRKDSK:
RESTRK:
DNFOL

RES
RES
RES
RES
RES
RES
RES
X z .

BYTE 1
WORD 1
BYTE 1
BYTE 1
WORD 1

• WORD 1
WORD 1

-DSKNFO

{DISK TYPE INFORMATION
{ALLOCATION BLOCK SIZE
{NUMBER OF ALLOCATION BLOCKS
{NUMBER OF DIRECTORY BLOCKS
{PHYSICAL SECTOR SIZE (2*N*128)
{PHYSICAL SECTORS PER TRACK
{PHYSICAL TRACKS PER DISK
{NUMBER OF RESERVED TRACKS
{DISK INFO LENGTH

LOC DATALEN {LOCATE AFTER DATA SEGMENT

WSBASE = = . {WORKING STORAGE BASE

DRIVE:
TRYCNT:

RES
RES

BYTE 1
BYTE 1

{DRIVE NUMBER
;TRY COUNT

WSLEN z z -WSBASE {WORKING STORAGE LENGTH

DATA z z ; CODE-((DATALEN+WSLEN+15)/16) {DATA SEGMENT
•

LOC Codef {LOCATE IN CODE SEGMENT

INIT:: STI
MOV
INT
MOV
RET

{ENABLE INTERRUPTS
AH,=0 {SET FUNCTION NUMBERED
0x13 {RESET DISK I/O DRIVER
AX.iLODSEG ;GET LOAD SEGMENT ADDRESS

{DONE

SELECT: :MOV
CMP
MOV
JNC
MOV
MOV

DRIVE.AL {SET DRIVE NUMBER
AL,=4 {VALID DRIVE NUMBER?
AL,=0 {PRESET RETURN CODE=O
_X ;IF INVALID DRIVE, CONTINUE
CX,=8 {ELSE, GET SECTOR NUMBER 8
AH,=4 ;SET FUNCTION NUMBER=4

6

CALL RVCOM -.ATTEMPT TO READ SECTOR 8
MOV SI,iOSDST {PRESET DST ADDRESS=ONE-SIDEO
TEST AL, AL {SECTOR READ SUCCESSFULLY?
JNZ _ x ;IF NOT. CONTINUE
MOV SI.&TSDST {ELSE, SET DST ADDRESS=TWO-SIDED
NOT AL ;SET RETURN CODE’OFFH

__ X: RET ;DONE

READ: : MOV AH, =2 {SET FUNCTION NUMBER=2

RVCOM: PUSH CX {SAVE TRACK NUMBER
MOV DX,CX {TRACK NUMBER TO DX-REG
MOV AL.BLKSIZ ;GET ALLOCATION BLOCK SIZE
MOV CL, AL {SET SHIFT COUNT
SHR DX.CL ;CALC TRACK NUMBER
NEG AL {NEGATE ALLOCATION BLOCK SIZE
ADD AL,=8 ;CALC SHIFT COUNT
MOV CL, AL {SHIFT COUNT TO CL-REG
MOV AL,=0xFF {SET AL=OFFH
SHR AL, CL {CALC ALLOCATION BLOCK MASK
POP CX {RESTORE TRACK NUMBER
MOV CH.DL {TRACK NUMBER TO CH-REG
AND CL, AL ;CALC SECTOR NUMBER
MOV OH, =0 {PRESET HEAD NUMBER’D
CMP CL,=8 {SECTOR ON SIDE ONE?
JC __ SOSO ;IF NOT, CONTINUE
SUB CL,=8 {ELSE, CALC SECTOR NUMBER
INC DH ;SET HEAD NUMBER’1

__ SOSO: INC CL {INCREMENT SECTOR NUMBER
MOV DL,DRIVE {GET DRIVE NUMBER
MOV AL,«1 -.SET SECTOR COUNT=1
MOV TRYCNT,= MAXTRY ;SET TRY COUNT’MAX TRYS

_RDL : PUSH AX {SAVE FUNCTION/SECTOR COUNT
INT 0x13 {READ SECTOR
POP AX {RESTORE FUNCTION/SECTOR COUNT
JNC __ X ;IF NO ERRORS, DONE
DEC TRYCNT {ELSE, DECREMENT TRY COUNT
JNZ __ RDL ;IF NOT LAST TRY, CONTINUE
MOV AH,=0 {ELSE, SET FUNCTION NUMBER=O
INT 0x13 {RESET DISK I/O DRIVER
MOV AL,=OxFF ;SET RETURN CODE=OFFH
RET {DONE

__ X: XOR AL, AL {SET RETURN CODE=O
RET {DONE

TBUF == 0x0080 {DEFAULT BASE PAGE BUFFER
TPA = = 0x0100 {PROGRAM START ADDRESS
CMDHDR == 128/16 ;.CMD HEADER LENGTH (PARAGRAPHS)

XFER: : MOV AX,&LODSEG*CMDHDR {GET LOAD SEGMENT
MOV DS, AX {SET DS-REG
MOV TBUF,=BYTE 0 {MAKE DEFAULT BUFFER EMPTY
JMPF TPA , LODSEG*CMDHDR -.TRANSFER TO LOADER

512 BYTE• SECTOR, DOUBLE-DENSITY, TWO-SIDED (MINI)

TSDST: BYTE 4 {BLOCK SIZE
WORD (40*8*2* (1 <<2))/(1<<4) {NUMBER OF BLOCKS
BYTE 2 {NUMBER OF DIRECTORY BLOCKS
BYTE 2 {PHYSICAL SECTOR SIZE (2*N*128)
WORD 1 {PHYSICAL SECTORS PER TRACK

7

WORD
WORD

40*8*2 {PHYSICAL TRACKS PER DISK
1 {RESERVED TRACKS

512 BYTE SECTOR, DOUBLE-DENSITY, ONE-SIDED (MINI)

OSDST: BYTE
WORD
BYTE
BYTE
WORD
WORD
WORD

3
(40*8*
2
2
1
40*8
1

{BLOCK SIZE
(1<<2))/(1<<3) {NUMBER OF BLOCKS

{NUMBER OF DIRECTORY BLOCKS
{PHYSICAL SECTOR SIZE (2“N*128)
{PHYSICAL SECTORS PER TRACK
{PHYSICAL TRACKS PER DISK
{RESERVED TRACKS

END
ETITLE "SAMPLE DRIVER INITIALIZATION MODULE"
ESUBTTL "FOR TURBODOS ON IBM PERSONAL COMPUTER"

; VERSION: 01/03/84

MODULE "NITIPC“ {MODULE NAME

EINCLUDE "DREQUATE" {DRIVER SYMBOLIC EQUIVALENCES

LOC CodeE {LOCATE IN CODE SEGMENT

HDWNIT:: CALL RTCNITE {INITIALIZE REAL TIME CLOCK DRIVER
CALL CONNITE {INITIALIZE CONSOLE DRIVER
CALL DSKINAE {INITIALIZE DISK DRIVER

END

RET {DONE

ETITLE "SAMPLE CONSOLE DRIVER MODULE"
ESUBTTL "FOR TURBODOS ON IBM PERSONAL COMPUTER"

; VERSION: 01/03/84

MODULE "CONIPC" {MODULE NAME

EINCLUDE "DREQUATE" {DRIVER SYMBOLIC EQUIVALENCES

LOC DataE {LOCATE IN DATA SEGMENT

CIBSIZ::WORD 64 {CONSOLE INPUT BUFFER SIZE
CIBADR: WORD 0 {CONSOLE INPUT BUFFER ADDRESS
CIIPTR: WORD 0 {CONSOLE INPUT BUFFER INPUT POINTER
CIOPTR: WORD 0 {CONSOLE INPUT BUFFER OUTPUT POINTER
CIBCNT: WORD

CISPH:

0 {CONSOLE INPUT BUFFER COUNT

{CONSOLE INPUT SEMAPHORE
WORD 0 {SEMAPHORE COUNT

__CIHD: WORD
WORD

__ CIHD
—CIHD

{SEMAPHORE LIST HEAD

CIWCT: BYTE 0 {CONSOLE INPUT WAIT COUNT

LOC CodeE {LOCATE IN CODE SEGMENT

CONNIT::PUSH DS {SAVE DS-REG
XOR AX, AX ;GET INTERRUPT POINTER PARAGRAPH
MOV DS, AX ;SET DS-REG
MOV (0x05*4)*0,WORD &PSISR {SET VECTOR OFFSET

8

MOV (OxO5*4)♦2,CS ;SET VECTOR CS BASE ADDRESS
POP
MOV
MOV
INT
MOV
CALL
MOV
MOV
MOV
MOV
CALL

DS {RESTORE DS-REG
AH,=0 ;SET FUNCTION NUMBERED
AL.=7 ;SET MODE VALUE = 7
0x10 ;SET VIDEO M0DE=7
BX.CIBSIZ {GET CONSOLE INPUT BUFFER SIZE
ALLOCE {ALLOCATE CONSOLE INPUT BUFFER
CIBADR.BX {SAVE CONSOLE INPUT BUFFER ADDR
CIIPTR.BX ;SET CONSOLE INPUT POINTER
CIOPTR.BX {SET CONSOLE OUTPUT POINTER
DX.iCIPOLL ;GET CONSOLE INPUT POLL ROUTINE
LNKPOLE {LINK POLL ROUTINE ON POLL LIST

RET ;DONE

PSISR: IRET {DONE

CONDR_: :CMP
JZ
TEST
JZ
DEC
JZ
DEC
JZ
SUB
JZ
DEC
JZ

DL, = 10 {FUNCTION NUMBER=10?
CONOUT ;IF SO, CONTINUE
DL,DL {FUNCTION NUMBER=0?
CONST ;IF SO, CONTINUE
DL {FUNCTION NUMBER=1?
CONIN ;IF SO, CONTINUE
DL {FUNCTION NUMBER=2?
CONOUT ;IF SO, CONTINUE
DL,=8-2 {FUNCTION NUMBER=8?
CONSO ;IF SO, CONTINUE
DL {FUNCTION NUMBER=9?
CONSI ;IF SO, CONTINUE

RET {ELSE, DONE

CONSO:
CONSI: CALL

BYTE
DMS£ {POSITION TO NEXT LINE
ACR,ALF,0

RET {DONE

CONOUT: MOV
MOV
MOV
INT
MOV

BX,=0 {SET FOREGROUND COLOR/DISPLAY PAGE=0
AL.CL {OUTPUT CHARACTER TO AL-REG
AH,=14 ;SET FUNCTION NUMBER=14
0x10 {OUTPUT CHARACTER TO VIDEO DISPLAY
AL,=0xFF ;SET RETURN CODE=OFFH

RET {DONE

CONST: MOV
TEST
JZ
MOV
MOV
MOV

AX.CIBCNT ;GET CONSOLE INPUT BUFFER COUNT
AX,AX {CONSOLE INPUT BUFFER COUNT=O?
__ X ;IF SO, DONE
BX.CIOPTR {ELSE, GET BUFFER OUTPUT POINTER
CL,[BX] ;GET CONSOLE INPUT CHARACTER
AL,=0xFF ;SET RETURN CODE’OFFH

_ X: RET {DONE

CONIN: MOV
TEST
JZ
DEC
MOV
MOV
INC
MOV
MOV
DEC
MOV

AX.CIBCNT ;GET CONSOLE INPUT BUFFER COUNT
AX,AX {CONSOLE INPUT BUFFER COUNT=0?
__ WT ;IF SO, CONTINUE
CI8CNT {ELSE. DECREMENT INPUT BUFFER COUNT
BX.CIOPTR ;GET BUFFER OUTPUT POINTER
AL,[8X] ;GET CHARACTER FROM INPUT BUFFER
BX_______ {INCREMENT BUFFER OUTPUT POINTER
DX.BX {BUFFER OUTPUT POINTER TO DX-REG
BX.CIBSIZ ;GET CONSOLE INPUT BUFFER SIZE
BX {DECREMENT CONSOLE INPUT BUFFER SIZE
CX.CIBADR ;GET CONSOLE INPUT BUFFER ADDRESS

9

ADD BX.CX {CALC LAST BUFFER ADDRESS
SUB BX.DX {BUFFER WRAP-AROUND?
JNC __ NWA ;IF NOT, CONTINUE
MOV DX,CX {GET CONSOLE INPUT BUFFER ADDRESS

__ NWA: MOV CIOPTR.DX {UPDATE BUFFER OUTPUT POINTER
RET ; DONE

__ WT: INC CIWCT {INCREMENT CONSOLE INPUT WAIT COUNT
MOV BX.&CISPH ;GET CONSOLE INPUT SEMAPHORE
CALL WAITE •»WAIT FOR CONSOLE INPUT
JMPS CONIN {CONTINUE

CIPOLL: WORD 0 {CONSOLE INPUT POLL ROUTINE
WORD 0

MOV AH, = 1 {SET KEYBOARD FUNCTIONS
INT 0x16 ;GET KEYBOARD STATUS
JZ __ X ;IF NO CHARACTER AVAILABLE. CONTINUE
MOV AH, =0 {ELSE, SET KEYBOARD FUNCTIONS
INT 0x16 {GET KEYBOARD INPUT
CMP AX,=83<< 8 {DELETE KEY PRESSED?
JNZ __ NDEL ;IF NOT, CONTINUE
MOV AL.=ARUB {SUBSTITUTE ASCII RUBOUT CODE

__ NDEL: MOV CL,AL {CONSOLE INPUT CHARACTER TO CL-REG
AND CL,=0x7F {STRIP SIGN BIT ON CHARACTER
MOV AL.ATNCHRE ;GET ATTENTION CHARACTER
CMP AL, CL ;CHARACTER=ATTENTION CHARACTER?
JNZ __ NACH ;IF NOT, CONTINUE
MOV AX.CIIPTR {ELSE, GET BUFFER INPUT POINTER
MOV CIOPTR.AX {SET BUFFER OUTPUT POINTER
MOV CI8CNT,= 0 {SET CONSOLE INPUT BUFFER COUNT=O

_NACH: MOV BX.CIBSIZ {GET CONSOLE INPUT BUFFER SIZE
MOV DX.CIBCNT ;GET CONSOLE INPUT BUFFER COUNT
INC • DX {INCREMENT CONSOLE INPUT COUNT
SUB BX.DX {CONSOLE INPUT BUFFER FULL?
JC _x ;IF SO, DONE
MOV CIBCNT.DX {ELSE, UPDATE CONSOLE INPUT COUNT
MOV BX.CIIPTR ;GET BUFFER INPUT POINTER
MOV [BX],CL {STORE INPUT CHARACTER IN BUFFER
INC BX {INCREMENT BUFFER INPUT POINTER
MOV DX.BX {BUFFER INPUT POINTER TO DX-REG
MOV BX.CIBSIZ ;GET CONSOLE INPUT BUFFER SIZE
DEC BX {DECREMENT CONSOLE INPUT BUFFER SIZE
MOV CX.CIBADR ;GET CONSOLE INPUT BUFFER ADDRESS
ADD BX.CX ;CALC LAST BUFFER ADDRESS
SUB BX.DX {BUFFER WRAP-AROUND?
JNC __ NWA ;IF NOT, CONTINUE
MOV DX.CX ;GET CONSOLE INPUT BUFFER ADDRESS

__ NWA: MOV CIIPTR.DX {UPDATE BUFFER INPUT POINTER
MOV BX.&CIWCT ;GET CONSOLE INPUT WAIT COUNT
MOV AL,[BX] {GET SERIAL INPUT WAIT COUNT
TEST AL, AL {SERIAL INPUT WAIT COUNTED?
JZ __ X ;IF SO, DONE
DEC BYTE [BX] {ELSE, DECREMENT INPUT WAIT COUNT
MOV BX.&CISPH ;GET CONSOLE INPUT SEMAPHORE
CALL SIGNALE {SIGNAL PROCESS AS READY

__ X: RET {DONE

END
ETITLE "SAMPLE PRINTER DRIVER MODULE (PARALLEL PRINTER ADAPTER)
ESUBTTL "FOR TURBODOS ON IBM PERSONAL COMPUTER"

10

; VERSION: 01/04/84

MODULE "LSTPPA" {MODULE NAME

EINCLUDE "DREQUATE" •.DRIVER SYMBOLIC EQUIVALENCES

LOC DataE {LOCATE IN DATA SEGMENT

PPACH:: BYTE 0 {PARALLEL PRINTER CHANNEL NUMBER
INITC: BYTE 0 •.INITIALIZATION COMPLETE FLAG
COLCNT: BYTE 0 {COLUMN COUNTER
SPCNT: BYTE 0 {SPACE COUNTER
LNCNT: BYTE 0 {LINE COUNTER

LOSPH:
WORD 0

•.LIST OUTPUT SEMAPHORE
{SEMAPHORE COUNT

__ LOHD: WORD __ LOHD {SEMAPHORE LIST HEAD
WORD _LOHD

LOC CodeE {LOCATE IN DATA SEGMENT

LSTDR_: :M0V AL,INITC {GET INITIALIZATION COMPLETE FLAG
TEST AL, AL {INITIALIZATION COMPLETE FLAG SET?
JNZ __ LDRV ;IF SO, CONTINUE
MOV INITC,»0 xFF {ELSE, SET INIT COMPLETE FLAG
PUSH DX {SAVE FUNCTION NUMBER
MOV DL,PPACH {GET PRINTER CHANNEL NUMBER
MOV DH,=O {DOUBLE LENGTH
MOV AH, =1 ;SET FUNCTION NUMBERS
INT 0x17 {INITIALIZE PRINTER PORT
POP DX {RESTORE FUNCTION NUMBER

__ LDRV: CMP DL,=2 {FUNCTION NUMBER=2?
JZ LSTOUT ;IF SO, CONTINUE
CMP DL,=7 {FUNCTION NUMBER=7?
JZ LSTWSR ;IF SO, CONTINUE
RET {ELSE, DONE

LSTWSR: MOV AL,COLCNT {GET COLUMN COUNT
PUSH AX {SAVE COLUMN COUNT
MOV CL,=ACR -.GET CARRIAGE RETURN
CALL LSTOUT {OUTPUT CARRIAGE RETURN
POP AX {RESTORE COLUMN COUNT
TEST AL, AL {COLUMN COUNTED?
JNZ __ FF ;IF NOT, CONTINUE
MOV AL,LNCNT {ELSE, GET LINE COUNTER
TEST AL, AL {LINE COUNT=0?
JNZ _ FF ;IF NOT, CONTINUE
RET {ELSE, DONE

_FF: MOV cl;=aff {GET FORM FEED

LSTOUT: MOV AL,CL ;GET OUTPUT CHARACTER
ANO AL,=0x7F {STRIP PARITY
JZ _x ;IF CHARACTER=NULL, DONE
MOV CL, AL {ELSE, CHARACTER TO C-REG
CMP AL,=ASP {GRAPHIC CHARACTER?
JNC __ GR ;IF SO, PROCESS
CMP AL,=ACR {CARRIAGE RETURN?
JZ _ CR ; IF SO, PROCESS
CMP AL,=AFF {FORM FEED?
JZ _FF ;IF SO, PROCESS
CMP AL,=ALF {LINE FEED?

1 1

JZ __ LF {IF SO, PROCESS
CMP
JZ
CMP
JZ
CMP
JNZ
JMP
RET

AL,=AHT {HORIZONTAL TAB?
__ HT ;IF SO, PROCESS
AL,=A8S {BACKSPACE?
_BS ;IF SO, CONTINUE
AL,=ABEL ;8ELL?
__ X ;IF NOT, CONTINUE
LSTCOM ;ELSE, CONTINUE

{DONE
_CR: CALL

XOR
MOV
MOV
RET

LSTCOM {OUTPUT CARRIAGE RETURN
AL, AL
COLCNT.AL {SET COLUMN COUNTED
SPCNT.AL {SET SPACE COUNTED

{DONE
_ FF: MOV

CALL
MOV
TEST
JZ
JMPS

CL.=ALF {GET LINE FEED CHARACTER
__ LF {OUTPUT LINE FEED
AL.LNCNT ;GET LINE COUNTER
AL,AL {AT TOP OF FORM YET?
__ X ;IF SO, DONE
__ FF {ELSE, CONTINUE

__ LF: CALL
MOV
INC
CMP
JC
XOR

LSTCOM {OUTPUT LINE FEED
AL.LNCNT ;GET LINE COUNTER
AL {INCREMENT IT
AL,=66 ;AT TOP OF FORM YET?
__ ULC {IF NOT, UDATE LINE COUNT
AL,AL {ELSE .RESET LINE COUNTER

_ULC: MOV LNCNT.AL {UPDATE LINE COUNTER
__ X: RET {DONE
__ HT: MOV

MOV
AND
ADD
SUB '
MOV

AL.COLCNT ;GET COLUMN COUNTER
DH.AL ;TO DH-REG
AL,=~7 ;CALC NEXT TAB STOP
AL, =8
AL , DH ;CALC NUMBER OF SPACES REQUIRED
DH.AL {SPACE COUNT TO DH-REG

_HTL: MOV
MOV
CALL
DEC
JNZ
RET

CL,=ASP ;GET ASCII SPACE
AL.CL {ASCII SPACE TO A-REG
__ GR {OUTPUT SPACES
DH______ ; TO NEXT TAB STOP
_htl

{DONE
_BS: CALL

DEC
RET

LSTCOM {OUTPUT BACKSPACE
COLCNT {DECREMENT COLUMN COUNT

{DONE
_6R: INC

CMP
JZ
MOV
TEST
JZ
MOV
PUSH

COLCNT {INCREMENT COLUMN COUNT
AL.=ASP ;CHARACTER=SPACE?
__ SP ;IF SO, CONTINUE
AL.SPCNT {ELSE, GET SPACE COUNT
AL.AL {SPACE COUNT=0?
LSTCOM ;IF SO. CONTINUE
DH.AL {ELSE. SPACE COUNT TO DH-REG
CX {SAVE OUTPUT CHARACTER

__ SPL: MOV
CALL
DEC
JNZ
POP
XOR
MOV
JMPS

CL,=ASP {GET ASCII SPACE
LSTCOM {OUTPUT SPACES
DH
_SPL
CX {RESTORE OUTPUT CHARACTER
AL, AL
SPCNT.AL {SET SPACE COUNT=0
LSTCOM {CONTINUE

_SP: INC
RET

SPCNT {INCREMENT SPACE COUNT
{DONE

12

LSTCOM: PUSH DX {SAVE DX-REG
PUSH CX {SAVE CX-REG
MOV DX.&__ LOPR ;GET LIST OUTPUT POLL ROUTINE
CALL LNKPOLE ;LINK POLL ROUTINE ON POLL LIST
CALL __ LOPC {EXECUTE POLL ROUTINE CODE
MOV BX.&LOSPH {GET SEMAPHORE ADDRESS
CALL WAITE IDISPATCH, IF NECESSARY
POP CX {RESTORE CX-REG
MOV DL.PPACH {GET PRINTER CHANNEL NUMBER
MOV DH, =0 ;DOUBLE LENGTH
MOV AL,CL ;GET OUTPUT CHARACTER
MOV AH, =0 ;SET FUNCTION NUMBER=0
INT 0x17 {OUTPUT CHARACTER
POP DX {RESTORE DX-REG
RET {DONE

_LOPR: WORD 0 {SUCCESSOR LINK POINTER
WORD 0 {PREDECESSOR LINK POINTER

__ LOPC: MOV DL.PPACH ;GET PRINTER CHANNEL NUMBER
MOV DH, =0 {DOUBLE LENGTH
MOV AH, =2 {SET FUNCTION NUMBER=2
INT 0x17 {GET PRINTER PORT STATUS
TEST AH,=1<<7 {PRINTER NOT BUSY BIT SET?
JZ __ LOPX ;IF NOT, CONTINUE
MOV BX.&__ LOPR ;GET LIST OUTPUT POLL ROUTINE
CALL UNLINKE {UNLINK POLL ROUTINE FROM POLL LIST
MOV BX.&LOSPH ;GET SEMAPHORE ADDRESS
CALL SIGNALE {SIGNAL PROCESS AS READY

—LOPX: RET {DONE

END
ETITLE "SAMPLE PRINTER DRIVER MODULE (ASYNC COMM ADAPTER)"
ESUBTTL "FOR TURBODOS ON IBM PERSONAL COMPUTER"

VERSION: 01/04/84

MODULE "LSTACA" {MODULE NAME

EINCLUDE "DREQUATE" •.DRIVER SYMBOLIC EQUIVALENCES

LOC DataE {LOCATE IN DATA SEGMENT

ACAIP:: BYTE 0x67 {ASYNC COMM ADAPTER INIT PARAMETERS
ACACH::: BYTE 0 {ASYNC COMM ADAPTER CHANNEL NUMBER
INITC: BYTE 0 {INITIALIZATION COMPLETE FLAG
COLCNT: BYTE 0 {COLUMN COUNTER
SPCNT: BYTE 0 {SPACE COUNTER
LNCNT: BYTE 0 {LINE COUNTER

COSPH:
WORD 0

;COMM OUTPUT SEMAPHORE
{SEMAPHORE COUNT

—COHD: WORD __ COHD {SEMAPHORE LIST HEAD
WORD —COHD

LOC CodeE {LOCATE IN DATA SEGMENT

LSTDR_: :MOV AL,INITC ;GET INITIALIZATION COMPLETE FLAG
TEST AL, AL {INITIALIZATION COMPLETE FLAG SET?
JNZ __ LDRV ;IF SO, CONTINUE
MOV INITC,=0xFF {ELSE, SET INIT COMPLETE FLAG
PUSH DX {SAVE FUNCTION NUMBER

13

_LDRV:

MOV
MOV
MOV
MOV
INT
POP
CMP
JZ
CMP
JZ
RET

DL.ACACH ;GET COMM ADAPTER CHANNEL NUMBER
DH,=O -.DOUBLE LENGTH
AL.ACAIP -.GET INIT PARAMETERS
AH,=O ;SET FUNCTION NUMBERED
0x14 {SET CHANNEL BUAD RATE
OX {RESTORE FUNCTION NUMBER
DL,=2 {FUNCTION NUMBER=2?
LSTOUT ;IF SO, CONTINUE
DL,=7 {FUNCTION NUMBER=7?
LSTWSR {IF SO, CONTINUE

;ELSE, DONE

LSTWSR:

_FF:

MOV
PUSH
MOV
CALL
POP
TEST
JNZ
MOV
TEST
JNZ
RET
MOV

AL.COLCNT ;GET COLUMN COUNT
AX {SAVE COLUMN COUNT
CL,=ACR ;GET CARRIAGE RETURN
LSTOUT {OUTPUT CARRIAGE RETURN
AX -.RESTORE COLUMN COUNT
AL,AL {COLUMN COUNT=O?
_FF ;IF NOT, CONTINUE
AL.LNCNT {ELSE, GET LINE COUNTER
AL,AL {LINE COUNT = O?
__ FF ; IF NOT. CONTINUE

{ELSE, DONE
CL,=AFF {GET FORM FEED

LSTOUT:

—CZ:

_FN:

MOV
AND
JZ
MOV
CMP
JNC
CMP
JZ
CMP
JZ
CMP
JZ
CMP
JZ
CMP
JZ
CMP
JNZ
JMX
RMT
CILL
MOV
SHR
[HZ
SHR
IDL
KALL
XOR
MOV
MO*
RMT
MOV
KALL
MO*
\E[T
JZ

AL,CL ;GET OUTPUT CHARACTER
AL,=0x7F {STRIP PARITY
__ X ;IF CHARACTER = NULL, DONE
CL,AL {ELSE, CHARACTER TO C-REG
AL,=ASP {GRAPHIC CHARACTER?
_GR ;IF SO, PROCESS
AL,=ACR {CARRIAGE RETURN?
__ CR ;IF SO, PROCESS
AL,=AFF {FORM FEED?
__ FF ;IF SO. PROCESS
AL,=ALF {LINE FEED?
__LF ;IF SO, PROCESS
AL,=AHT {HORIZONTAL TAB?
__ HT ;IF SO, PROCESS
AL,=ABS {BACKSPACE?
_BS ;IF SO, CONTINUE
AL,=ABEL -.BELL?
__ X ; IF NOT, CONTINUM
KOMOJT ;ML[E, KONTINUE

; DONM
COMOUT ;OU\P]T(CIRZIIGM ZE\UZN
AL,KOLCNT(;GMT(COL]MN KO]NT
IL,=9 ;/:
IL,=9 ;/2=/4
AL, = 1 ;/2=/8
IL,=3 ;ADD(CON[TIN\
__ NIL ;OU\P]T(N]LLS
AL, IL
COLKN\,IL(;SMT(COL]MN KO]N\=8
[PKN\,IL(;SMT(SXAKE{COUNT=0

;DONM
CL,=ALF ;OE\ LINE(FMEL KHIRIC\EZ
__ LN ;O]TXU\ LINE(FMEL
IL,LNCNT(;GMT(LINM KO]N\EZ
AL, IL ; IT(TOP(ON NOZM(YMT?
_X ;IF(SO,(DONM

14

JMXS __ FN {ELSE, CONTINUE
__ LF: CALL

MOV
CALL
MOV
INC
CMP
JC
XOR

COMOUT {OUTPUT LINE FEED
AL,=2 {GET NULL COUNT
__ NUL {OUTPUT NULLS
AL.LNCNT {GET LINE COUNTER
AL {INCREMENT IT
AL, = 66 ;AT TOP OF FORM YET?
__ ULC ;IF NOT, UDATE LINE COUNT
AL,AL {ELSE .RESET LINE COUNTER

__ ULC: MOV LNCNT.AL {UPDATE LINE COUNTER
__X: RET {DONE
_HT: MOV

MOV
AND
ADD
SUB
MOV

AL,COLCNT ;GET COLUMN COUNTER
DH.AL ;TO DH-REG
AL,=“7 ;CALC NEXT TAB STOP
AL,=8
AL,DH ;CALC NUMBER OF SPACES REQUIRED
DH,AL {SPACE COUNT TO DH-REG

__ HTL: MOV
MOV
CALL
DEC
JNZ
RET

CL,=ASP ;GET ASCII SPACE
AL,CL {ASCII SPACE TO A-REG
__ GR {OUTPUT SPACES
DH______ ;TO NEXT TAB STOP
__ HTL

{DONE
_BS: CALL

DEC
RET

COMOUT {OUTPUT BACKSPACE
COLCNT {DECREMENT COLUMN COUNT

{DONE
__ GR: INC

CMP
JZ
MOV
TEST
JZ
MOV
PUSH

COLCNT ;INCREMENT COLUMN COUNT
AL,=ASP ;CHARACTER=SPACE?
_SP {IF SO, CONTINUE
AL.SPCNT {ELSE, GET SPACE COUNT
AL,AL {SPACE COUNT=O?
COMOUT ;IF SO, CONTINUE
DH.AL {ELSE, SPACE COUNT TO DH-REG
CX {SAVE OUTPUT CHARACTER

_SPL: MOV
CALL
DEC
JNZ
POP
XOR
MOV
JMPS

CL,=ASP {GET ASCII SPACE
COMOUT {OUTPUT SPACES
DH
_SPL
CX {RESTORE OUTPUT CHARACTER
AL, AL
SPCNT.AL {SET SPACE COUNT=O
COMOUT {CONTINUE

__ SP: INC
RET

SPCNT {INCREMENT SPACE COUNT
;DONE

__ NUL: MOV
MOV

DH,AL {NULL COUNT TO DH-REG
CL,=O ;SET OUTPUT CHARACTER=NULL

__ NULL: CALL
DEC
JNZ

COMOUT {OUTPUT NULL
DH {DECREMENT NULL COUNT
__ NULL {CONTINUE

RET {DONE

COMOUT: PUSH
PUSH
MOV
CALL
CALL
MOV
CALL
POP
MOV
MOV

OX {SAVE DX-REG
CX {SAVE CX-REG
DX.i__COPR ;GET COMM OUTPUT POLL ROUTINE
LNKPOLE {LINK POLL ROUTINE ON POLL LIST
__ COPC {EXECUTE POLL ROUTINE CODE
BX.iCOSPH ;GET SEMAPHORE ADDRESS
WAITE___ {DISPATCH. IF NECESSARY
CX {RESTORE CX-REG
DL.ACACH ;GET COMM ADAPTER CHANNEL NUMBER
DH,=O {DOUBLE LENGTH

15

MOV AL.CL ;GET OUTPUT CHARACTER
MOV AH, =1 ;SET FUNCTION NUMBER=1
INT 0x14 ;OUTPUT CHARACTER
POP DX ;RESTORE DX-REG
RET ; DONE

__ COPR: WORD 0 ;SUCCESSOR LINK POINTER
WORD 0 ;PREDECESSOR LINK POINTER

__ COPC: MOV DL.ACACH ;GET COMM ADAPTER CHANNEL NUMBER
MOV DH,=O •.DOUBLE LENGTH
MOV AH, =3 ;SET FUNCTION NUMBER=3
INT 0x14 ;GET COMM CHANNEL STATUS
TEST AH,=1<<5 ;TRANSMIT HOLDING REGISTER EMPTY?
JZ __ COPX ;IF NOT, CONTINUE
MOV BX.&__ COPR ;GET COMM OUTPUT POLL ROUTINE
CALL UNLINKE ;UNLINK POLL ROUTINE FROM POLL LIST
MOV BX.iCOSPH ;GET SEMAPHORE ADDRESS
CALL SIGNALE ;SIGNAL PROCESS AS READY

__ COPX: RET ;DONE

END
ETITLE "SAMPLE REAL-TIME CLOCK DRIVER MODULE"
ESUBTTL "FOR TURBODOS ON IBM PERSONAL COMPUTER"

; VERSION: 01/03/84

MODULE "RTCIPC" -.MODULE NAME

EINCLUDE "DREQUATE" ;DRIVER SYMBOLIC EQUIVALENCES

LOC DataE ;LOCATE IN DATA SEGMENT

TICACC: BYTE 0 ;TICK ACCUMULATOR
TICCTR: BYTE’ 0 ;TICK COUNTER

LOC CodeE ;LOCATE IN CODE SEGMENT

RTCNIT::: PUSH DS •»SAVE DS-REG
XOR AX, AX ;GET INTERRUPT POINTER PARAGRAPH
MOV DS.AX ;SET DS-REG
MOV (0x1C*4) ♦O.WORD iRTCISR ;SET VECTOR OFFSET
MOV (Ox1C*4) +2,CS ;SET VECTOR CS BASE ADDRESS
POP DS ;RESTORE DS-REG
RET ; DONE

RTCISR: POPF ;CLEAR STACK (IP-REG)
POPF ;CLEAR STACK (CS-REG)
POPF ;CLEAR STACK (PS-REG)
PUSH BX ;SAVE REGISTERS
PUSH CX
CALL GETSDSE ;GET SYSTEM DATA SEGMENT
INC TICACC ;INCREMENT TICK ACCUMULATED
CMP TICACC,= 87 ;EXTRA TICK ACCUMULATED?
JC _NETA ; IF NOT, CONTINUE
MOV TICACC,= 0 ;ELSE, RESET TICK ACCUMULATOR
DEC TICCTR DECREMENT TICK COUNTER

_NETA: INC TICCTR ;INCREMENT TICK COUNTER
CMP TICCTR,==18 ;ONE SECOND ELAPSED?
JC __nsec ; IF NOT, CONTINUE
MOV TICCTR,=:0 ;ELSE, RESET TICK COUNTER
CALL RTCSECE ;ADVANCE SYSTEM TIME SECONDS

_NSEC: CALL DLYTICE ;ADVANCE SYSTEM TICK COUNTER

16

; VERSION: 01/03/84

MOV
OUT
POP
POP
POP
POP
POP
JMP

AL,=0x20
0x20,AL
CX
BX
DX
AX
DS
ISRXITE

;GET END OF INTERRUPT COMMAND
{SIGNAL ENO OF INTERRUPT
{RESTORE REGISTERS

{CONTINUE

END
ETITLE "SAMPLE FLOPPY D ISK DRIVER MODULE"
ESUBTTL "FOR TURBOOOS ON IBM PERSONAL COMPUTER"

MODULE "DSKIPC" {MODULE NAME

EINCLUDE "DREQUATE" {DRIVER SYMBOLIC EQUIVALENCES

MAXTRY == 4 {MAX TRY COUNT

LOC Data£ {LOCATE IN DATA SEGMENT

FCNTBL:
WORD RDOSK

{FUNCTION PROCESSOR ADDRESS TABLE
{READ DISK

WORD WRDSK {WRITE DISK
WORD RETDST {RETURN DST ADDRESS
WORD RETRDY {RETURN READY STATUS
WORD FMTDSK {FORMAT DISK

NMBFCN = = (. -FCNTBD/2 {NUMBER OF FUNCTION PROCESSORS

DMXSPH:
WORD 1

{MUTUAL EXCLUSION SEMAPHORE
{SEMAPHORE COUNT

__ DMXH: WORD __ DMXH {SEMAPHORE P/D HEAD
WORD __ OMXH

TRYCNT: BYTE 0 ;TRY COUNT

DRVNFO:
BYTE OxCF

{DISK DRIVER INFO
{SPECIFY COMMAND - FIRST PARAMETER

BYTE 0x02 {SPECIFY COMMAND - SECOND PARAMETER
BYTE 0x25 {MOTOR OFF COUNTDOWN VALUE

VARNFO:
BYTE OxOl)

{VARIABLE DISK DRIVER INFO
{SECTOR SIZE (2*N*128)

VARSPT: BYTE 0x00 {SECTORS PER TRACK (EACH SIDE)
BYTE 0x00 {READ GAP LENGTH
BYTE 0x00 ;DTL
BYTE 0x00 {FORMAT GAP LENGTH

VARLEN = s VARNFO {VARIABLE DISK DRIVER INFO LENGTH

BYTE 0xE5 {FORMAT FILL BYTE
BYTE 0x19 {HEAD SETTLE TIME (MILLISECONDS)
BYTE 0x04 {MOTOR START TIME (1/8 SECONDS)

; 1024 BYTE SECTOR, DOUBLE-DENSITY, TWO-SIDED (MINI)

DSTBAS: BYTE 4 {BLOCK SIZE
WORD (40*(10*(1<<3)))/(1<<4) {NUMBER OF BLOCKS

17

BYTE 2 {NUMBER OF DIR.CTOR. BLOCKS
BYTE 3 {PHYSICAL SECTOR SIZE (2*N*128)
WORD 10 {PHYSICAL SECTORS PER TRACK
WORD 40 {PHYSICAL TRACKS PER DISK
WORD 0 {NUMBER OF RESERVED TRACKS

VAROFF

DSTLEN

== .-DSTBAS {VARIABLE DISK DRIVER INFO OFFSET

BYTE 0x03 {SECTOR SIZE (2*N*128)
BYTE 0x05 {SECTORS PER TRACK (EACH SIDE)
BYTE 0x35 {READ GAP LENGTH
BYTE OxFF ;DTL
BYTE 0x74 {FORMAT GAP LENGTH

== .-DSTBAS ;DST LENGTH

1 024 BYTE SECTOR, DOUBLE-DENS ITY, ONE-SIDED (MINI)

BYTE 3 ; BLOCK SIZE
WORD (40* (5*(1<<3)))/(1<<3) {NUMBER OF BLOCKS
BYTE 2 {NUMBER OF DIRECTORY BLOCKS
BYTE 3 {PHYSICAL SECTOR SIZE (2*N*128)
WORD 5 {PHYSICAL SECTORS PER TRACK
WORD 40 {PHYSICAL TRACKS PER DISK
WORD 0 {NUMBER OF RESERVED TRACKS
BYTE 0x03 -.SECTOR SIZE (2N*128)
BYTE 0x05 {SECTORS PER TRACK (EACH SIDE)
BYTE 0x35 {READ GAP LENGTH
BYTE OxFF ;DTL
BYTE 0x74 {FORMAT GAP LENGTH

512 BYTE SECTOR. DOUBLE-DENSITY. TWO-SIDED (MINI)

BYTE 4 {BLOCK SIZE
WORD (40*8*2 *(1 <<2))/(1<<4) {NUMBER OF BLOCKS
BYTE 2 {NUMBER OF DIRECTORY BLOCKS
BYTE 2 {PHYSICAL SECTOR SIZE (2*N*128)
WORD 1 {PHYSICAL SECTORS PER TRACK
WORD 40*8*2 {PHYSICAL TRACKS PER DISK
WORD 1 {RESERVED TRACKS
BYTE 0x02 {SECTOR SIZE (2N*128)
BYTE 0x08 {SECTORS PER TRACK (EACH SIDE)
BYTE 0x2A {READ GAP LENGTH
BYTE OxFF ;DTL
BYTE 0x50 {FORMAT GAP LENGTH

512 BYTE SECTOR. DOUBLE-DENSITY. ONE-SIDED (MINI)

BYTE 3 {BLOCK SIZE
WORD (40*8*(1 <<2))/(1<<3) {NUMBER OF BLOCKS
BYTE 2 {NUMBER OF DIRECTORY BLOCKS
BYTE 2 {PHYSICAL SECTOR SIZE (2*N*128)
WORD 1 {PHYSICAL SECTORS PER TRACK
WORD 40*8 {PHYSICAL TRACKS PER DISK
WORD 1 {RESERVED TRACKS
BYTE 0x02 {SECTOR SIZE (2*N*128)
BYTE 0x08 {SECTORS PER TRACK (EACH SIDE)
BYTE 0x2A {READ GAP LENGTH
BYTE OxFF ; DTL
BYTE 0x50 {FORMAT GAP LENGTH

18

NMBDST = = (.-DSTBAS)/DSTLEN -,NUMBER OF DST'S

LOC CodeE -.LOCATE IN CODE SEGMENT

DSKIN_: :XOR
MOV
ES MOV
ES MOV
MOV
INT

AX.AX ;GET INTERRUPT VECTOR SEGMENT
ES,AX ;SET ES-REG
(0x1E*4HO,WORD iDRVNFO ;SET PARM OFFSET
(Ox 1E*4)♦2.CS ;SET PARM POINTER SEGMENT
AH,=O ;SET FUNCTION NUMBER=O
0x13 ;RESET DISK DRIVER

RET ;DONE

DSKDR_: :MOV
CALL
MOV
MOV
CMP
JNC
MOV
ADD
CALLI

BX.iDMXSPH ;GET MUTUAL EXCLUSION SEMAPHORE
WAITE IDISPATCH IF NECESSARY
DL,PDRDRVESI] ;GET PD REQ DRIVE NUMBER
BL,PDRFCN[SI] ;GET PD REQ FUNCTION NUMBER
BL,=NMBFCN ;VALID FUNCTION NUMBER?
__ NVFN ;IF NOT, CONTINUE
BH,=O ;MAKE FUNCTION NUMBER DOUBLE LENGTH
BX.BX ;X2
FCNTBLIBX] ;EXECUTE FUNCTION PROCESSOR

__ NVFN: PUSH
MOV
CALL
POP

AX ;SAVE RETURN CODE
BX.&DMXSPH ;GET MUTUAL EXCLUSION SEMAPHORE
SIGNALE jSIGNAL PROCESS AS READY
AX ;RESTORE RETURN CODE

RET ;DONE

RDDSK: CALL
MOV

SETUP ;DO COMMON SETUP
AH,=2 ;SET FUNCTION NUMBER=2

JMPS RWFCOM iCONTINUE

WRDSK: CALL
MOV

SETUP ;DO COMMON SETUP
AH,=3 ;SET FUNCTION NUM8ER=3

JMPS RWFCOM -,CONTINUE

FMTDSK: MOV
MOV
TEST
JNZ
ADD

BX.&DSTBAS ;GET DST BASE ADDRESS
AX,PDRDST[SI] ;GET PDR DST ADDRESS
AX,AX ;PDR DST ADDRESS=O?
__ TDSF ;IF NOT, CONTINUE
BX,=DSTLEN*2 ;ELSE, ADVANCE TO NEXT DST

__ TOSF: CALL
MOV
TEST
JNZ
MOV
INT

SETNFO ;SET DISK DRIVER INFO
CH,BYTE PDRTRKISI] ;GET REQUESTED TRACK
CH,CH ;REQUESTED TRACK NUMBER=0?
__ NTKO ;IF NOT, CONTINUE
AH,=O ;ELSE, SET FUNCTION NUMBERS
0x13 ;RESET DISK DRIVER

_NTK0: MOV
TEST
JZ
INC

DH,=O ;PRESET HEAD NUMBER=O
PDRSEC+1 [SI] , =BYTE 1<<7 -.HEAD ONE BIT SET?
__ NH1 ;IF NOT, CONTINUE
DH ;ELSE, SET HEAD NUMBER=1

__ NH1 : MOV
MOV
MOV

BX,PDRDMA[SI] ;GET REQUESTED DMA OFFSET
ES,PDRBAS[SI] ;GET REQUESTED DMA BASE
AX,=0x0501 -.SET FUNCTI0N = 5/SECT0R C0UNT=1

JMPS RWFCOM jCONTINUE

RETDST: XOR
CMP
JNC
MOV
MOV
MOV

AL,AL ;PRESET RETURN CODE=0
OL,=4 ;VALID DRIVE NUMBER?
__ X ;IF INVALID DRIVE, CONTINUE
DH.AL ;ELSE, SET HEAD NUM8ER=0
CX,=1 ;SET TRACK NUMBER=0/SECTOR NUMBERS
BX.8.DST8AS ;GET DST BASE ADDRESS

19

_0STL:

__ RDY:

__ RDST:

__ X:

MOV
CALL
MOV
CALL
INC
JNZ
ADD
DEC
JNZ
RET
INC
MOV
CALL
TEST
JZ
ADD
MOV
MOV
RET

BP,=NMBDST/2 {GET NUMBER uF DST'S (/2)
SETNFO ;SET DISK DRIVER INFO
AX,=0x0401 ;SET FUNCTI0N=4/SECTOR C0UNT=1
RWFCOM {ATTEMPT TO READ TRACK O/SECTOR 1
AL {REQUESTED DRIVE READY?
__ RDY ;IF SO, CONTINUE
BX,=DSTLEN*2 {ELSE, ADVANCE TO NEXT DST
BP {DECREMENT NUMBER OF DST'S
__ DSTL ;IF NOT LAST DST, CONTINUE

{ELSE, DONE
DH ;SET HEAD NUMBER=1
AX,=0x0401 ;SET FUNCTI0N=4/SECT0R C0UNT=1
RWFCOM {ATTEMPT TO READ TRACK O/SECTOR 1
AL,AL {READ SUCCESSFUL?
__ RDST ;IF SO, CONTINUE
BX,=DSTLEN ;CALC ONE-SIDED DST ADDRESS
PDRDSTCSI],BX ;SET DST ADDRESS
AL,=0xFF ;SET RETURN CODE=OFFH

{DONE

RETRDY: MOV
RET

AL,=0xFF ;SET RETURN CODE=OFFH
{DONE

RWFCOM:
__RDL:

_X:

MOV
PUSH
INT
POP
JNC
DEC
JNZ
MOV
INT
MOV ■
RET
XOR
RET

TRYCNT,=MAXTRY ;SET TRY COUNT=MAX TRYS
AX {SAVE FUNCTION/SECTOR COUNT
0x13 ;READ/WRITE/VERIFY SECTOR
AX {RESTORE FUNCTION/SECTOR COUNT
__ X ;IF NO ERRORS, CONTINUE
TRYCNT {ELSE, DECREMENT TRY COUNT
__ RDL ;IF NOT LAST TRY, CONTINUE
AH,=O {ELSE. SET FUNCTION NUMBER=0
0x13 {RESET DISK DRIVER
AL,=0xFF ;SET RETURN CODE=OFFH

{DONE
AL,AL {SET RETURN CODE=O

{DONE

SETUP:

___PSS3:

MOV
MOV
CMP
JZ
MOV
MOV
SHR
MOV
MOV
NEG
ADD
MOV
SHR
MOV
AND
MOV
CALL

CH,BYTE PDRTRKCSI] {GET TRACK NUMBER
CL,BYTE PDRSECCSI] {GET SECTOR NUMBER
SECSIZCSI],=3 {PHYSICAL SECTOR SIZE=3?
_PSS3 ; IF SO, CONTINUE
AX,PDRTRKCSI] {GET REQUESTED TRACK NUMBER
CL,BLKSIZ[SI] {GET ALLOCATION BLOCK SIZE
AX,CL ;CALC TRACK NUMBER
CH,AL {TRACK NUMBER TO CH-REG
CL,BLKSIZCSI] {GET ALLOCATION BLOCK SIZE
CL {NEGATE ALLOCATION BLOCK SIZE
CL,=8 ;CALC SHIFT COUNT
AL,=0xFF ;SET AL=OFFH
AL,CL ;CALC ALLOCATION BLOCK MASK
CL,BYTE PDRTRKCSI] {GET REQUESTED TRACK
CL.AL ;CALC SECTOR NUMBER
BX,PDRDST[SI] {GET PDR DST ADDRESS
SETNFO {SET DISK DRIVER INFO

MOV DH,=O ;
MOV AL.VARSPT
CMP CL.AL
JC __ SOSO ;
SUB CL,AL ;
INC DH ;

SOSO: INC CL ;

PRESET HEAD NUMBER=0
;GET VARIABLE INFO SECTORS/TRACK

SECTOR ON SIDE ONE?
IF NOT, CONTINUE
ELSE, CALC SECTOR NUMBER
SET HEAD NUMBER=1
INCREMENT SECTOR NUMBER

20

END

MOV
MOV
MOV
RET

BX,PDRDMA[SI J {GET REQUESTED DMA OFFSET
ES,PDRBAS[SI] {GET REQUESTED DMA BASE
AL,BYTE PDRSC[SI] {GET PD REQ SECTOR COUNT

{DONE

SETNFO: PUSH BX ;SAVE CX-REG
PUSH CX {SAVE CX-REG
PUSH SI {SAVE SI-REG
PUSH DI {SAVE DI-REG
ADD BX,=VAROFF ;ADD VARIABLE DRIVER INFO OFFSET
MOV SI,BX {VARIABLE DISK DRIVER INFO TO SI-REG
MOV DI.&VARNFO ;GET VARIABLE INFO ADDRESS
MOV CX.DS {GET DS-REG
MOV ES.CX ;SET ES-REG
MOV CX,=VARLEN ;GET VARIABLE INFO LENGTH
CLD {CLEAR DIRECTION FLAG
REP MOVS BYTE ;SET VARIABLE DISK DRIVER INFO
POP DI {RESTORE DI-REG
POP SI {RESTORE SI-REG
POP CX {RESTORE CX-REG
POP BX {RESTORE CX-REG
RET {DONE

END
ETITLE
ESUBTTL

"SAMPLE MEMORY SPECIFICATION TABLE MODULE
"FOR TURBODOS ON IBM PERSONAL COMPUTER"

(256K)"

; VERSION: 01/03/84

MODULE "MSTIPC “ {MODULE NAME

LOC DataE {LOCATE IN DATA SEGMENT

MEMTBL: :BYTE
WORD
WORD

1
0x0050
0x4000-

{NUMBER OF MEMORY SEGMENTS
{MEMORY SEGMENT BASE

0x0050 {MEMORY SEGMENT LENGTH

21

DREQUATE: COMMON SYMBOLIC CONSTANTS FOR SAMPLE DRIVERSFOR TURBODOS ON IBM PERSONAL COMPUTERPage 1
; VERSION: 01/05/840000 MODULE ’’DREQUATE” ; MODULE NAME; ASCII EQUIVALENCES0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 000A 000B OOOC OOOD OOOE OOOF 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019001 A 001B 001C 001D 001E 001F 0020 007F00000000

ANUL == BYTEASOH == BYTEASTX = = BYTEAETX == BYTEAEOT == BYTEAENQ == BYTEAACK == BYTEABEL == BYTEABS == BYTEAHT == BYTEALF == BYTEAVT = = BYTEAFF == BYTEACR == BYTEASO = = BYTEASI = = BYTEADLE == BYTEADC1 == BYTEADC2 == BYTEADC3 = = BYTEADC4 == BYTEANAK == BYTEASYN = = BYTEAETB == BYTEACAN == BYTEAEM == BYTEASUB == BYTEAESC = = BYTEAFS == BYTEAGS == BYTEARS == BYTEAUS == BYTEASP = = BYTEARUB == BYTELOCPDRDP:

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 OxOA OxOB OxOC OxOD OxOE OxOF 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x190x1A 0x1B 0x1C 0x1 D 0x1E 0x1F 0x20 0x7F0

;NULL;SOH;STX;ETX;EOT;ENQ;ACK;BELL;BS;HT;LF;VT;FF;CR;S0;SI;DLE;DC1;DC2?DC3;DC4;NAK;SYN;ETB;CAN;EM;SUB;ESC;FS;GS;RS;US;SPACEjRUBOUT (DEL)•»SYMBOLIC DEFINITIONS RELATIVE;PD REQUEST DESCRIPTOR PACKET0000 PDRFCN: RES BYTE 1 ;PD REQUEST FUNCTION NUMBER0001 PDRDRV: RES BYTE 1 ;PD REQUEST DRIVE NUMBER0002 PDRTRK: RES WORD 1 ;PD REQUEST TRACK NUMBER0004 PDRSEC: RES WORD 1 ;PD REQUEST SECTOR NUMBER0006 PDRSC: RES WORD 1 ;PD REQUEST SECTOR COUNT0008 PDRTC: RES WORD 1 ;PD REQUEST TRANSFER COUNTOOOA PDRDMA: RES WORD 1 ;PD REQUEST DMA OFFSETOOOC PDRBAS: RES WORD 1 ;PD REQUEST DMA BASEOOOE PDRDST: RES WORD 1 ;PD REQUEST DRIVE SPEC TABLE /00100010 PDRLEN == BYTE DSKNFO: .-PDRDP ;PD REQUEST DESCRIPTOR PACKET ;DISK TYPE INFORMATION

DREQUATE: COMMON SYMBOLIC CONSTANTS FOR SAMI LE OLIVERSFOR TURBODOS ON IBM PERSONAL COMPUTERPage 20010 BLKSIZ: RES BYTE 1 ;BLOCK SIZE0011 NMBLKS: RES WORD 1 ;NUMBER OF BLOCKS0013 NMBDIR: RES BYTE 1 jNUMBER OF DIRECTORY BLOCKS0014 SECSIZ: RES BYTE 1 •»PHYSICAL SECTOR SIZE (2^N*12J0015 SECTRK: RES WORD 1 ;PHYSICAL SECTORS PER TRACK0017 TRKDSK: RES WORD 1 ;PHYSICAL TRACKS PER DISK0019 RESTRK: RES WORD 1 ;NUMBER OF RESERVED TRACKS000B DNFOL = = BYTE .-DSKNFO• ;DISK INFO LENGTH0000 5 RELOC ;RESTORE PREVIOUS LOCATION0000 » END ;END OF MODULE

MPBIPC; SAMPLE BOOTSTRAP DRIVER MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 3
; VERSION: 01/05/840000 MODULE "MPBIPC” ;MODULE NAME0A00 LODSEG == OxOAOO ;LOAD SEGMENT ADDRESS07C0 CODE ==: 0x07C0 ;CODE EXECUTION SEGMENT0080 DATALEN == 128 ;DATA WORKING STORAGE LENGTH0004 MAXTRY == 4 ;MAX TRY COUNT0000 LOC 0 ;DEFINITIONS RELATIVE TO 00000 DSKNFO: ;DISK TYPE INFORMATION0000 BLKSIZ: RES BYTE 1 ;ALLOCATION BLOCK SIZE0001 NMBLKS: RES WORD 1 ;NUMBER OF ALLOCATION BLOCKS0003 NMBDIR: RES BYTE 1 ;NUMBER OF DIRECTORY BLOCKS0004 SECSIZ: RES BYTE 1 •»PHYSICAL SECTOR SIZE (2*N»128)0005 SECTRK: RES WORD 1 ;PHYSICAL SECTORS PER TRACK0007 TRKDSK: RES WORD 1 jPHYSICAL TRACKS PER DISK0009 RESTRK: RES WORD 1 ;NUMBER OF RESERVED TRACKS000B DNFOL == .-DSKNFO ;DISK INFO LENGTH0080 LOC DATALEN ;LOCATE AFTER DATA SEGMENT0080 WSBASE == . jWORKING STORAGE BASE0080 DRIVE: RES BYTE 1 ;DRIVE NUMBER0081 TRYCNT: RES BYTE 1 ;TRY COUNT0002 WSLEN == .-WSBASE ;WORKING STORAGE LENGTH07 B7 DATA ==: CODE-((DATALEN+WSLEN+15)/16) ;DATA SEGMENT01:0000 LOC Code# ;LOCATE IN CODE SEGMENT01:0000 FB INIT:: STI ;ENABLE INTERRUPTS01:0001 B4 00 MOV AH,=O ;SET FUNCTION NUMBER=O01:0003 CD 13 INT 0x13 •»RESET DISK I/O DRIVER01:0005 B8 0A00 MOV AX,&LODSEG ;GET LOAD SEGMENT ADDRESS01:0008 C3 RET ;DONE01:0009 A2 0080 SELECT::MOV DRIVE,AL. ;SET DRIVE NUMBER01:000C 3C 04 CMP AL, =4 ;VALID DRIVE NUMBER?01:000E BO 00 MOV AL,=O ;PRESET RETURN CODE=O01:0010 73 14 JNC ___ X ;IF INVALID DRIVE, CONTINUE01:0012 B9 0008 MOV CX,=8 ;ELSE, GET SECTOR NUMBER 801:0015 B4 04 MOV AH, =4 ;SET FUNCTION NUMBER=401:0017 E8 000F CALL RVCOM ;ATTEMPT TO READ SECTOR 801:001A BE 01:008B MOV SI,&OSDST ;PRESET DST ADDRESS=ONE-SIDE01:001D 84C0 TEST AL, AL ;SECTOR READ SUCCESSFULLY?01:001F 75 05 JNZ X ;IF NOT, CONTINUE01:0021 BE 01:0080 MOV SI,&TSDST ;ELSE, SET DST ADDRESS=TWO-S01:0024 F6D0 NOT AL ;SET RETURN CODE=OFFH

MPBIPC: SAMPLE BOOTSTRAP DRIVER MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 401:0026 C3 ___ X: RET ;DONE01:0027 B4 02 READ:: MOV AH, =2 ;SET FUNCTION NUMBER=201 :0029 5101:002A 89CA 01:002C AO 0000 01:002F 88C1 01 :0031 D3EA 01:0033 F6D8 01 :OO35 04 08 01:0037 88C1 01:0039 BO FF 01:003B D2E8 01:003D 59 01:003E 88D5 01 :0040 20C1 01:0042 B6 00 01 :0044 80F9 08 01:0047 72 05 01 :0049 80E9 08 01:004C FEC6

RVCOM: PUSH CX ;SAVE TRACK NUMBERMOV DX,CX ;TRACK NUMBER TO DX-REGMOV AL,BLKSIZ ;GET ALLOCATION BLOCK SIZEMOV CL,AL ;SET SHIFT COUNTSHR DX,CL ;CALC TRACK NUMBERNEG AL ;NEGATE ALLOCATION BLOCK SIZEADD AL,=8 ;CALC SHIFT COUNTMOV CL,AL ;SHIFT COUNT TO CL-REGMOV AL,=0xFF ;SET AL=0FFHSHR AL,CL ;CALC ALLOCATION BLOCK MASKPOP CX ;RESTORE TRACK NUMBERMOV CH,DL ;TRACK NUMBER TO CH-REGAND CL,AL ;CALC SECTOR NUMBERMOV DH,=0 ;PRESET HEAD NUMBER=0CMP CL,=8 jSECTOR ON SIDE ONE?JC ___ SOSO ;IF NOT, CONTINUESUB CL,=8 ;ELSE, CALC SECTOR NUMBERINC DH ;SET HEAD NUMBER=101 :004E FEC1 ___ SOSO: INC CL ;INCREMENT SECTOR NUMBER01:0050 8A16 008001:0054 BO 01 MOV DL,DRIVE ;GET DRIVE NUMBERMOV AL,=1 ;SET SECTOR COUNT=101:0056 C606 0081 04 MOV TRYCNT,=MAXTRY ;SET TRY COUNT=MAX TRI01:005B 5001:005C CD 13 ___ RDL: PUSH AX ;SAVE FUNCTION/SECTOR COUNTINT 0x13 ;READ SECTOR01:005E 5801:005F 73 OD01 :OO61 FEOE 008101:0065 75 F401:OO67 B4 0001:0069 CD 1301:006B BO FF01:006D C3

POP AX ;RESTORE FUNCTION/SECTOR COUNIJNC ___ X ;IF NO ERRORS, DONEDEC TRYCNT ;ELSE, DECREMENT TRY COUNTJNZ ___ RDL ;IF NOT LAST TRY, CONTINUEMOV AH,=0 ;ELSE, SET FUNCTION NUMBERSINT 0x13 ;RESET DISK I/O DRIVERMOV AL,=0xFF ;SET RETURN C0DE=0FFHRET ; DONE01:006E 30C001:0070 C3008001000008
_X:
TBUF TPA CMDHDR

XOR AL,AL ;SET RETURN CODE=ORET ; DONE== 0x0080 ;DEFAULT BASE PAGE BUFFER== 0x0100 ;PROGRAM START ADDRESS== 128/16 ;.CMD HEADER LENGTH (PARAGRAPH01:0071 B8 0A0801:0074 8ED8 XFER:: MOV AX,&LODSEG+CMDHDR ;GET LOAD SEGMENTMOV DS,AX ;SET DS-REG01:0076 C606 0080 00 MOV TBUF,=BYTE 0 ;MAKE DEFAULT BUFFER EMI-01:007B EA 0100 0A08 5 • > JMPF TPA,LODSEG+CMDHDR ;TRANSFER TO LOADEh512 BYTE SECTOR, DOUBLE-DENSITY, TWO-SIDED (Ml01:0080 04 01:0081 OOAO 01:0083 02 01:0084 02 01:0085 0001 01:0087 0280
TSDST; BYTE 4 ;BLOCK SIZEWORD (40»8»2»(1«2))/(1«4) ;NUMBER OF BLCBYTE 2 ;NUMBER OF DIRECTORY BLOCKSBYTE 2 PHYSICAL SECTOR SIZE (2*N*12€WORD 1 ;PHYSICAL SECTORS PER TRACKWORD 40*8*2 ;PHYSICAL TRACKS PER DISK

MPBIPC: SAMPLE BOOTSTRAP DRIVER MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 501 :OO89 0001 WORD 1 {RESERVED TRACKS; 512 BYTE SECTOR,, DOUBLE-DENSITY, ONE-SIDED (MIN01 :008B 03 OSDST: BYTE 3 {BLOCK SIZE01:008C 00A0 WORD (40»8»(1«2))/(1«3) {NUMBER OF BLOCKS01:008E 02 BYTE 2 •»NUMBER OF DIRECTORY BLOCKS01:008F 02 BYTE 2 {PHYSICAL SECTOR SIZE (2~N»128)01:0090 0001 WORD 1 {PHYSICAL SECTORS PER TRACK01:0092 0140 WORD 40*8 {PHYSICAL TRACKS PER DISK01:0094 00010000 WORDEND 1 {RESERVED TRACKS

NITIPC: SAMPLE DRIVER INITIALIZATION MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 6
; VERSION: 01/03/840000 J MODULE "NITIPC” ;MODULE NAME

01 :0000 ; #INCLUDELOC>
"DREQUATE” ;DRIVER SYMBOLIC EQUIVALEN(Code# ;LOCATE IN CODE SEGMENT01:0000 E8 02:0000« HDWNIT: :CALL RTCNIT# {INITIALIZE REAL TIME CLOCK DR01:0003 E8 03:0000« CALL CONNIT# {INITIALIZE CONSOLE DRIVER01:0006 E8 04:0000»01:0009 C30000 END

CALL RET DSKINA# {INITIALIZE DISK DRIVER ;DONE

CONIPC: SAMPLE CONSOLE DRIVER MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 7
; VERSION: 01/03/840000

01 :000001 :0000 0040

MODULE; ^INCLUDELOCCIBSIZ::WORD

"CONIPC” ;MODULE NAME"DREQUATE" ;DRIVER SYMBOLIC EQUIVALENData# ;LOCATE IN DATA SEGMENT64 ;CONSOLE INPUT BUFFER SIZE01:0002 0000 CIBADR: WORD 0 ;CONSOLE INPUT BUFFER ADDRESS01 :0004 0000 CIIPTR: WORD 0 ;CONSOLE INPUT BUFFER INPUT PC01:0006 0000 CIOPTR: WORD 0 ;CONSOLE INPUT BUFFER OUTPUT I01 :0008 0000 CIBCNT: WORD 0 ;CONSOLE INPUT BUFFER COUNT01 :000A01:000A 0000 CISPH: WORD ;CONSOLE INPUT SEMAPHORE0 ;SEMAPHORE COUNT01 :000C 01 :000C ___ CIHD: WORD ___ CIHD ;SEMAPHORE LIST HEAD01 :000E 01:000C WORD ___ CIHD01 :0010 00 CIWCT: BYTE 0 ;CONSOLE INPUT WAIT COUNT02:000002:0000 1E LOCCONNIT::PUSH Code# ;LOCATE IN CODE SEGMENTDS ;SAVE DS-REG02:0001 31C0 XOR AX,AX ;GET INTERRUPT POINTER PARAGR02:0003 8ED8 MOV DS,AX ;SET DS-REG02:0005 C7O6 0014 MOV (0x05*4)+0,WORD &PSISR ;SET VECTOR 002:000B 02:00308C0E 0016 MOV (0x05»4)+2,CS ;SET VECTOR CS BASE AD02:000F 1F POP DS ;RESTORE DS-REG02:0010 B4 00 MOV AH,=O ;SET FUNCTION NUMBER=O02:0012 BO 07 MOV AL,=7 ;SET MODE VALUE=702:0014 CD 10 INT 0x10 ;SET VIDEO MODE=702:0016 8B1E 01:0000 MOV BX,CIBSIZ ;GET CONSOLE INPUT BUFFER02:001A E8 03:0000* CALL ALLOC# ;ALLOCATE CONSOLE INPUT BUFFE02:001D 891E 01:0002 MOV CIBADR,BX ;SAVE CONSOLE INPUT BUFFER02:0021 891E 01 :0004 MOV CIIPTR,BX ;SET CONSOLE INPUT POINTER02:0025 891E 01:0006 MOV CIOPTR,BX ;SET CONSOLE OUTPUT POINTE02:0029 BA 02:00A5 MOV DX,&CIPOLL ;GET CONSOLE INPUT POLL F02:002C E8 04:0000* CALL LNKPOL# ;LINK POLL ROUTINE ON POLL LI02:002F C3 RET ;D0NE02:0030 CF PSISR: IRET ;DONE02:0031 80FA OA CONDR ::CMP DL,=10 ;FUNCTION NUMBER=10?02:0034 74 1D JZ CONOUT ;IF SO, CONTINUE02:0036 84 D2 TEST DL,DL JUNCTION NUMBER=O?02:0038 74 25 JZ CONST ;IF SO, CONTINUE02:003A FECA DEC DL ;FUNCTION NUMBER=1?02:003C 74 31 JZ CONIN ;IF SO, CONTINUE02:003E FECA DEC DL JUNCTION NUMBER=2?02:0040 74 11 JZ CONOUT ;IF SO, CONTINUE02:0042 80EA 06 SUB DL,=8-2 ;FUNCTION NUMBER=8?02:0045 74 05 JZ CONSO ;IF SO, CONTINUE02:0047 FECA DEC DL ^FUNCTION NUMBER=9?

CONIPC: SAMPLE CONSOLE DRIVER MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 802:0049 74 0102:004B C3 JZRET CONSI ;IF SO, CONTINUE ;ELSE, DONE02:004C02:004C E8 05:0000* CONSO:CONSI: CALL DMS# jPOSITION TO NEXT LINE02:004F OD OA 00 BYTE ACR,ALF,002:0052 C3 RET ;DONE02:0053 BB 0000 CONOUT: MOV BX,=0 ;SET FOREGROUND COLOR/DISPLAY F02:0056 88C8 MOV AL,CL ;OUTPUT CHARACTER TO AL-REG02:0058 B4 OE MOV AH,=14 ;SET FUNCTION NUMBER=1402:005A CD 10 INT 0x10 ;OUTPUT CHARACTER TO VIDEO DISF02:005C BO FF MOV AL,=0xFF ;SET RETURN CODE=OFFH02:005E C3 RET ;DONE02:005F A1 01 :0008 5CONST: MOV AX,CIBCNT ;GET CONSOLE INPUT BUFFER C(02:0062 85C0 TEST AX,AX ;CONSOLE INPUT BUFFER COUNT=O?02:0064 74 08 JZ ___ X ;IF SO, DONE02:0066 8B1E 01 :0006 MOV BX,CIOPTR ;ELSE, GET BUFFER OUTPUT PO:02:006A 8A0F MOV CL,[BX] ;GET CONSOLE INPUT CHARACTER02:006C BO FF MOV AL,=0xFF ;SET RETURN CODE=OFFH02:006E C3 ___ X: RET ;DONE02:006F A1 01:0008 CONIN: MOV AX,CIBCNT ;GET CONSOLE INPUT BUFFER C(02:0072 85C0 TEST AX,AX ;CONSOLE INPUT BUFFER COUNT=O?02:0074 74 23 JZ ___ WT ;IF SO, CONTINUE02:0076 FFOE 01:0008 DEC CIBCNT ;ELSE, DECREMENT INPUT BUFFER •02:007A 8B1E 01 :0006 im BX,CIOPTR ;GET BUFFER OUTPUT POINTER02:007E 8A07 MOV AL,[BX] ;GET CHARACTER FROM INPUT BUFF02:0080 43 INC BX ;INCREMENT BUFFER OUTPUT POINT02:0081 89DA MOV DX,BX jBUFFER OUTPUT POINTER TO DX-R02:0083 8B1E 01:0000 MOV BX,CIBSIZ ;GET CONSOLE INPUT BUFFER S02:0087 4B DEC BX ;DECREMENT CONSOLE INPUT BUFFE02:0088 8B0E 01:0002 MOV CX,CIBADR ;GET CONSOLE INPUT BUFFER A02:008C 01CB ADD BX,CX ;CALC LAST BUFFER ADDRESS02:008E 29D3 SUB BX,DX ;BUFFER WRAP-AROUND?02:0090 73 02 JNC _NWA ;IF NOT, CONTINUE02:0092 89CA MOV DX,CX ;GET CONSOLE INPUT BUFFER ADDR02:0094 8916 01:0006 ___ NWA; MOV CIOPTR,DX ;UPDATE BUFFER OUTPUT POINT02:0098 C3 RET ;DONE02:0099 FE06 01:0010 ___ WTs INC CIWCT ;INCREMENT CONSOLE INPUT WAIT02:009D BB 01 :000A MOV BX,&CISPH ;GET CONSOLE INPUT SEMAPHOR02:00A0 E8 06:0000» CALL WAIT# ;WAIT FOR CONSOLE INPUT02:00A3 EB CA JMPS CONIN ;CONTINUE02:00A5 0000 CIPOLL: WORD 0 ;CONSOLE INPUT POLL ROUTINE02:00A7 0000 WORD 002:00A9 B4 01 MOV AH,=1 ;SET KEYBOARD FUNCTIONS02:00AB CD 16 INT 0x16 ;GET KEYBOARD STATUS02:00AD 74 63 JZ ___ X ;IF NO CHARACTER AVAILABLE, CC02:00AF B4 00 MOV AH,=0 ;ELSE, SET KEYBOARD FUNCTIONS02:00B1 CD 16 INT 0x16 ;GET KEYBOARD INPUT02:00B3 3D 5300 CMP AX,=83«8 ;DELETE KEY PRESSED?02:00B6 75 02 JNZ ___ NDEL ;IF NOT, CONTINUE02:00B8 BO 7F MOV AL,=ARUB SUBSTITUTE ASCII RUBOUT COE

CONIPC: SAMPLE CONSOLE DRIVER MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 902:00BA 88C1 ___ NDEL: MOV CL,AL jCONSOLE INPUT CHARACTER TO CL-02:00BC 80E1 7F AND CL,=0x7F jSTRIP SIGN BIT ON CHARACTER02:00BF AO 07:0000 MOV AL,ATNCHR# ;GET ATTENTION CHARACTER02:00C2 38 C8 CMP AL,CL ;CHARACTER=ATTENTION CHARACTERS02:00C4 75 OC JNZ ___ NACH ;IF NOT, CONTINUE02:00C6 Al 01:0004 MOV AX,CIIPTR jELSE, GET BUFFER INPUT POD02:00C9 A3 01:0006 MOV CIOPTR,AX ;SET BUFFER OUTPUT POINTER02:00CC C7O6 01:0008 MOV CIBCNT,=O ;SET CONSOLE INPUT BUFFER Ct000002:00D2 8B1E 01:0000 ___ NACH: MOV BX,CIBSIZ ;GET CONSOLE INPUT BUFFER SI02:00D6 8B16 01:0008 MOV DX,CIBCNT ;GET CONSOLE INPUT BUFFER CC02:00DA 42 INC DX ;INCREMENT CONSOLE INPUT COUNT02:00DB 29 D3 SUB BX,DX jCONSOLE INPUT BUFFER FULL?02:00DD 72 33 JC ___ X ;IF SO, DONE02:00DF 8916 01:0008 MOV CIBCNT,DX jELSE, UPDATE CONSOLE INPUT02:00E3 8B1E 01 ;0004 MOV BX,CIIPTR ;GET BUFFER INPUT POINTER02:00E? 880F MOV [BX],CL jSTORE INPUT CHARACTER IN BUFFI02:00E9 43 INC BX ;INCREMENT BUFFER INPUT POINTEI02:00EA 89DA MOV DX,BX jBUFFER INPUT POINTER TO DX-REC02:00EC 8B1E 01:0000 MOV BX,CIBSIZ ;GET CONSOLE INPUT BUFFER SI02:00F0 4B DEC BX jDECREMENT CONSOLE INPUT BUFFEI02:00F1 8B0E 01 :0002 MOV CX,CIBADR ;GET CONSOLE INPUT BUFFER AI02:00F5 01CB ADD BX,CX jCALC LAST BUFFER ADDRESS02:00F7 29D3 SUB BX,DX jBUFFER WRAP-AROUND?02:00F9 73 02 JNC NWA jIF NOT, CONTINUE02:00FB 89CA MOV DX,CX ;GET CONSOLE INPUT BUFFER ADDRI02:00FD 8916 01:0004 _NWA: MOV CIIPTR,DX ;UPDATE BUFFER INPUT POINTEI02:0101 BB 01:0010 MOV BX,&CIWCT ;GET CONSOLE INPUT WAIT COUI02:0104 8A07 MOV AL,[BX] ;GET SERIAL INPUT WAIT COUNT02:0106 84 CO TEST AL,AL jSERIAL INPUT WAIT COUNT=0?02:0108 74 08 JZ ___ X ;IF SO, DONE02:010A FEOF DEC BYTE [BX] jELSE, DECREMENT INPUT WAIT02:010C BB 01:000A MOV BX,&CISPH jGET CONSOLE INPUT SEMAPHOR!02:010F E8 08:0000» CALL SIGNAL# jSIGNAL PROCESS AS READY02:0112 C3 ___ X: RET jDONE0000 END

LSTPPA: SAMPLE PRINTER DRIVER MODULE (PARALLEL printer auaftek;FOR TURBODOS ON IBM PERSONAL COMPUTERPage 10
; VERSION: 01/04/840000 MODULE ’’LSTPPA" ; MODULE NAME

01:000001:0000 00
; #INCLUDELOCPPACH:: BYTE

"DREQUATE" ;DRIVER SYMBOLIC EQUIVALEFData# {LOCATE IN DATA SEGMENT0 {PARALLEL PRINTER CHANNEL NUMI01:0001 00 INITC: BYTE 0 ;INITIALIZATION COMPLETE FLAG01:0002 00 COLCNT: BYTE 0 ;COLUMN COUNTER01:0003 00 SPCNT: BYTE 0 ;SPACE COUNTER01:0004 00 LNCNT: BYTE 0 {LINE COUNTER01:0005 01:0005 0000 LOSPH: WORD {LIST OUTPUT SEMAPHORE0 {SEMAPHORE COUNT01:0007 01:0007 ___ LOHD: WORD ___ LOHD {SEMAPHORE LIST HEAD01:0009 01:0007 WORD ___ LOHD02:000002:0000 AO 01:0001 LOCLSTDR__::MOV Code# ;LOCATE IN DATA SEGMENTAL,INITC {GET INITIALIZATION COMPLET02:0003 84C0 TEST AL,AL {INITIALIZATION COMPLETE FLAG02:0005 75 11 JNZ ___ LDRV ;IF SO, CONTINUE02:0007 C606 01:0001 FF MOV INITC,=0xFF {ELSE, SET INIT COMPLETE02:000C 52 PUSH DX {SAVE FUNCTION NUMBER02:000D 8A16 01:0000 MOV DL,PPACH {GET PRINTER CHANNEL NUMBER02:0011 B6 00 MOV DH,=0 ;DOUBLE LENGTH02:0013 B4 01 MOV AH,=1 {SET FUNCTION NUMBERS02:0015 CD 17 INT 0x17 {INITIALIZE PRINTER PORT02:0017 5A POP DX {RESTORE FUNCTION NUMBER02:0018 80FA 02 ___ LDRV: CMP DL,=2 {FUNCTION NUMBER=2?02:001B 74 1E JZ LSTOUT {IF SO, CONTINUE02:001D 80FA 07 CMP DL,=7 {FUNCTION NUMBER=7?02:0020 74 01 JZ LSTWSR ;IF SO, CONTINUE02:0022 C3 RET {ELSE, DONE02:0023 AO 01:0002 LSTWSR: MOV AL,COLCNT {GET COLUMN COUNT02:0026 50 PUSH AX {SAVE COLUMN COUNT02:0027 B1 OD MOV CL,=ACR {GET CARRIAGE RETURN02:0029 E8 000F CALL LSTOUT {OUTPUT CARRIAGE RETURN02:002C 58 POP AX {RESTORE COLUMN COUNT02:002D 84C0 TEST AL,AL {COLUMN COUNT=O?02:002F 75 08 JNZ ___ FF ;IF NOT, CONTINUE02:0031 AO 01:0004 MOV AL,LNCNT {ELSE, GET LINE COUNTER02:0034 84C0 TEST AL,AL {LINE COUNT=O?02:0036 75 01 JNZ ___ FF {IF NOT, CONTINUE02:0038 C3 RET {ELSE, DONE02:0039 B1 OC _FF: MOV CL,=AFF {GET FORM FEED02:003B 88C8 »LSTOUT: MOV AL,CL {GET OUTPUT CHARACTER02:003D 24 7F AND AL,=0x7F {STRIP PARITY02;003F 74 4D JZ ___ X {IF CHARACTER=NULL, DONE02:0041 88C1 MOV CL,AL {ELSE, CHARACTER TO C-REG02:0043 3C 20 CMP AL,=ASP {GRAPHIC CHARACTER?

I^STPPA: SAMPLE PRINTER DRIVER MODULE (PARALLEL PRINTER ADAPTER)FOR TURBODOS ON IBM PERSONAL COMPUTERPage 1102:0045 73 69 JNC ___ GR ;IF SO, PROCESS02:0047 3C OD CMP AL,=ACR ;CARRIAGE RETURN?02:0049 74 18 JZ ___ CR ;IF SO, PROCESS02:004B 3C OC CMP AL,=AFF ;FORM FEED?02:004D 74 20 JZ ___ FF ;IF SO, PROCESS02:004F 3C OA CMP AL,=ALF ;LINE FEED?02:0051 74 2A JZ ___ LF ;IF SO, PROCESS02:0053 3C 09 CMP AL,=AHT ;HORIZONTAL TAB?02:0055 74 38 JZ ___ HT ;IF SO, PROCESS02:0057 3C 08 CMP AL,=ABS jBACKSPACE?02:0059 74 4D JZ 'BS ;IF SO, CONTINUE02:005B 3C 07 CMP AL,=ABEL ;BELL?02:005D 75 2F JNZ ___ X ;IF NOT, CONTINUE02:005F E9 0076 JMP LSTCOM ;ELSE, CONTINUE02:0062 C3 02:0063 E8 0072 RET___ CR: CALL LSTCOM ;DONEjOUTPUT CARRIAGE RETURN02:0066 30C0 XOR AL, AL02:0068 A2 01:0002 MOV COLCNT,AL ;SET COLUMN COUNT=O02:006B A2 01:0003 MOV SPCNT,AL ;SET SPACE COUNT=O02:006E C302:006F B1 OA RET___ FF: MOV CL,=ALF ;DONE;GET LINE FEED CHARACTER02:0071 E8 0009 CALL _LF ;OUTPUT LINE FEED02:0074 AO 01 :0004 MOV AL,LNCNT ;GET LINE COUNTER02:0077 84CO TEST AL, AL ;AT TOP OF FORM YET?02:0079 74 13 JZ ___ X ;IF SO, DONE02:007B EB F2 JMPS ___ FF ;ELSE, CONTINUE02:007D E8 0058 ___ LF: CALL LSTCOM ;OUTPUT LINE FEED02:0080 AO 01:0004 MOV AL,LNCNT ;GET LINE COUNTER02:0083 FECO INC AL ;INCREMENT IT02:0085 3C 42 CMP AL,=66 ;AT TOP OF FORM YET?02:0087 72 02 JC ___ ULC ;IF NOT, UDATE LINE COUNT02:0089 30C0 XOR AL, AL ;ELSE ,RESET LINE COUNTER02:008B A2 01:0004 ___ ULC: MOV LNCNT,AL ;UPDATE LINE COUNTER02:008E C3 ___ X: RET ;DONE02:008F AO 01 :0002 ___ HT: MOV AL,COLCNT ;GET COLUMN COUNTER02:0092 88C6 MOV DH,AL ;T0 DH-REG02:0094 24 F8 AND AL,=“7 ;CALC NEXT TAB STOP02:0096 04 0802:0098 28F0 ADDSUB AL, =8 AL,DH ;CALC NUMBER OF SPACES REQUIRE!02:009A 88C6 MOV DH,AL ;SPACE COUNT TO DH-REG02:009C B1 20 ___ HTL: MOV CL,=ASP ;GET ASCII SPACE02:009E 88C8 MOV AL, CL ;ASCII SPACE TO A-REG02:00AO E8 OOOD CALL _GR ;OUTPUT SPACES02:00A3 FECE DEC DH ;T0 NEXT TAB STOP02;00A5 75 F502:00A7 C3 JNZRET ___ HTL ;DONE02:00A8 E8 002D _BS: CALL LSTCOM ;OUTPUT BACKSPACE02:00AB FEOE 01:0002 DEC COLCNT ;DECREMENT COLUMN COUNT02:00AF C302:00B0 FE06 01:0002 RET___ GR; INC COLCNT ;DONE;INCREMENT COLUMN COUNT02:00B4 3C 20 CMP AL,=ASP ;CHARACTER=SPACE?02:00B6 74 1B JZ ___ SP ;IF SO, CONTINUE02:00B8 AO 01:0003 MOV AL,SPCNT ;ELSE, GET SPACE COUNT02:00BB 84C0 TEST AL, AL ;SPACE COUNT=O?02:00BD 74 19 JZ LSTCOM ;IF SO, CONTINUE02:00BF 88C6 MOV DH,AL ;ELSE, SPACE COUNT TO DH-REG

'PA: SAMPLE PRINTER DRIVER MODULE (PARALLEL PRINTER ADAPTER)TURBODOS ON IBM PERSONAL COMPUTER! 12

0000

I0C1 51 PUSH CX ;SAVE OUTPUT CHARACTER)0C2 B1 20 ___ SPL: MOV CL,=ASP ;GET ASCII SPACE)0C4)0C7)0C9 E8 0011 FECE 75 F7 CALL DEC JNZ LSTCOM DH ___ SPL ;OUTPUT SPACES
)0CB)OCC 5930C0 POPXOR CXAL, AL ;RESTORE OUTPUT CHARACTER)OCE A2 01:0003 MOV SPCNT,AL ;SET SPACE COUNT=O)0D1 EB 05 JMPS LSTCOM ;CONTINUE)0D3)0D7 FE06 01:0003C3 ___ SP: INCRET SPCNT ;INCREMENT SPACE COUNT ;DONE)0D8 52 LSTCOM: PUSH DX ;SAVE DX-REG)0D9 51 PUSH CX ;SAVE CX-REG)ODA BA 02:00F8 ■ MOV DX,& LOPR ;GET LIST OUTPUT POLL ROUTINE)ODD E8 03:0000« CALL LNKPOL# ;LINK POLL ROUTINE ON POLL LIST30 EO E8 0019 CALL LOPC ;EXECUTE POLL ROUTINE CODE3OE3 BB 01:0005 MOV BX,&LOSPH ;GET SEMAPHORE ADDRESS30 E6 E8 04:0000» CALL WAIT# ;DISPATCH, IF NECESSARY3OE9 59 POP CX ;RESTORE CX-REG30 EA 8A16 01 :0000 MOV DL,PPACH ;GET PRINTER CHANNEL NUMBER30 EE B6 00 MOV DH,=0 ;DOUBLE LENGTH30 FO 88 C8 MOV AL,CL ;GET OUTPUT CHARACTER30 F2 B4 00 MOV AH,=0 ;SET FUNCTION NUMBER=03OF4 CD 17 INT 0x17 ;OUTPUT CHARACTER3OF63OF7 5AC3 POPRET DX ;RESTORE DX-REG ;DONED0F8 0000 ___ LOPR: WORD 0 ;SUCCESSOR LINK POINTER00 FA 0000 WORD 0 jPREDECESSOR LINK POINTEROOFC 8A16 01:0000 ___ LOPC: MOV DL,PPACH ;GET PRINTER CHANNEL NUMBER0100 B6 00 MOV DH,=O ;DOUBLE LENGTH0102 B4 02 MOV AH, =2 ;SET FUNCTION NUMBER=20104 CD 17 INT 0x17 ;GET PRINTER PORT STATUS0106 F6C4 80 TEST AH, = 1«7 ;PRINTER NOT BUSY BIT SET?0109 74 OC JZ LOPX ;IF NOT, CONTINUE010B BB 02:00F8 MOV BX,& LOPR ;GET LIST OUTPUT POLL ROUTINE010E E8 05:0000» CALL UNLINK# ;UNLINK POLL ROUTINE FROM POLL LIS0111 BB 01:0005 MOV BX,&LOSPH ;GET SEMAPHORE ADDRESS01140117 E8 06:0000*C3 CALLLOPX: RET SIGNAL# ;SIGNAL PROCESS AS READY ;DONEEND

LSTACA: SAMPLE PRINTER DRIVER MODULE (ASYNC COMM ADAPTER)FOR TURBODOS ON IBM PERSONAL COMPUTERPage 13
VERSION: 01/04/840000 MODULE; #INCLUDE "LSTACA" ;MODULE NAME"DREQUATl2" ;DRIVER SYMBOLIC EQUIVALENC01:0000 LOC Data# ;LOCATE IN DATA SEGMENT01:0000 67 ACAIP:: BYTE 0x67 jASYNC COMM ADAPTER INIT PARAME01:0001 00 ACACH:: BYTE 0 ;ASYNC COMM ADAPTER CHANNEL NUM01:0002 00 INITC: BYTE 0 ;INITIALIZATION COMPLETE FLAG01:0003 00 COLCNT: BYTE 0 ;COLUMN COUNTER01:0004 00 SPCNT: BYTE 0 jSPACE COUNTER01:0005 00 LNCNT: BYTE 0 jLINE COUNTER01:0006 COSPH: jCOMM OUTPUT SEMAPHORE01:0006 0000 WORD 0 jSEMAPHORE COUNT01:0008 01:0008 ___ COHD: WORD ___ COHD ;SEMAPHORE LIST HEAD01:000A 01:0008 WORD ___ COHD02:0000 LOC Code# ;LOCATE IN DATA SEGMENT02:0000 AO 01:0002 LSTDR_::MOV AL,INITC ;GET INITIALIZATION COMPLETE02:0003 84C0 TEST AL, AL ;INITIALIZATION COMPLETE FLAG S02:0005 75 14 JNZ LDRV ;IF SO, CONTINUE02:0007 C6O6 01:0002 FF MOV INITC,=0xFF jELSE, SET INIT COMPLETE F02:000C 52 PUSH DX jSAVE FUNCTION NUMBER02:000D 8A16 01:0001 MOV DL,ACACH ;GET COMM ADAPTER CHANNEL NUM02:0011 B6 00 MOV DH,=0 ; DOUBLE LENGTH02:0013 AO 01:0000 MOV AL,ACAIP jGET INIT PARAMETERS02:0016 B4 00 MOV AH,=O ;SET FUNCTION NUMBER=O02:0018 CD 14 INT 0x14 ;SET CHANNEL BUAD RATE02:001A 5A POP DX ;RESTORE FUNCTION NUMBER02:001B 80FA 02 ___ LDRV: CMP DL,=2 jFUNCTION NUMBER=2?02:001E 74 1E JZ LSTOUT jIF SO, CONTINUE02:0020 80FA 07 CMP DL,=7 jFUNCTION NUMBER=7?02:0023 74 01 JZ LSTWSR jIF SO, CONTINUE02:0025 C3 RET jELSE, DONE02:0026 AO 01:0003 LSTWSR: MOV AL,COLCNT ;GET COLUMN COUNT02:0029 50 PUSH AX jSAVE COLUMN COUNT02:002A B1 OD MOV CL,=ACR ;GET CARRIAGE RETURN02:002C E8 OOOF CALL LSTOUT ;OUTPUT CARRIAGE RETURN02:002F 58 POP AX ;RESTORE COLUMN COUNT02:0030 84C0 TEST AL,AL ;COLUMN COUNT=O?02:0032 75 08 JNZ ___ FF ;IF NOT, CONTINUE02:0034 AO 01:0005 MOV AL,LNCNT jELSE, GET LINE COUNTER02:0037 84C0 TEST AL, AL jLINE COUNT=O?02:0039 75 01 JNZ ___ FF jIF NOT, CONTINUE02:003B C3 RET jELSE, DONE02:003C B1 OC ___ FF: MOV CL,=AFF ;GET FORM FEED02:003E 88C8 LSTOUT; MOV AL, CL ;GET OUTPUT CHARACTER02:0040 24 7F AND AL,=0x7F jSTRIP PARITY02:0042 74 60 JZ X jIF CHARACTER=NULL, DONE

LSTACA: SAMPLE PRINTER DRIVER MODULE (ASYNC COMM ADAPTER) FOR TURBODOS ON IBM PERSONAL COMPUTERPage 1402:0044 88C1 MOV CL,AL ;ELSE, CHARACTER TO C-REG02:0046 3C 20 CMP AL,=ASP ;GRAPHIC CHARACTER?02:0048 73 7C JNC ___ GR ;IF SO, PROCESS02:004A 3C OD CMP AL,=ACR ;CARRIAGE RETURN?02:004C 74 18 JZ ___ CR ;IF SO, PROCESS02:004E 3C OC CMP AL,=AFF ;FORM FEED?02:0050 74 2E JZ ___ FF ;IF SO, PROCESS02:0052 3C OA CMP AL,=ALF ;LINE FEED?02:0054 74 38 JZ ___ LF ;IF SO, PROCESS02:0056 3C 09 CMP AL,=AHT ;HORIZONTAL TAB?02:0058 74 4B JZ ___ HT ;IF SO, PROCESS02:005A 3C 08 CMP AL,=ABS ;BACKSPACE?02:005C 74 60 JZ ___ BS ;IF SO, CONTINUE02:005E 3C 07 CMP AL,=ABEL ;BELL?02:0060 75 42 JNZ ___ X ;IF NOT, CONTINUE02:0062 E9 0095 JMP COMOUT ;ELSE, CONTINUE02:0065 C3 RET ;DONE02:0066 E8 0091 ___ CR; CALL COMOUT ;OUTPUT CARRIAGE RETURN02:0069 AO 01:0003 MOV AL,COLCNT ;GET COLUMN COUNT02:006C DOE8 SHR AL,=1 ;/202:006E DOE8 SHR AL,=1 ;/2=/402:0070 D0E8 SHR AL,=1 ;/2=/802:0072 04 03 ADD AL,=3 ;ADD CONSTANT02:0074 E8 0077 CALL ___ NUL ;OUTPUT NULLS02:0077 30C0 XOR AL, AL02:0079 A2 01:0003 MOV COLCNT,AL ;SET COLUMN COUNT=002:007C A2 01 :0004 MOV SPCNT,AL ;SET SPACE COUNT=O02:007F C3 RET ;DONE02:0080 B1 OA ___ FF: MOV CL,=ALF ;GET LINE FEED CHARACTER02:0082 E8 0009 CALL ___ LF ;OUTPUT LINE FEED02:0085 AO 01:0005 MOV AL,LNCNT ;GET LINE COUNTER02:0088 84C0 TEST AL,AL ;AT TOP OF FORM YET?02:008A 74 18 JZ ___ X ;IF SO, DONE02:008C EB F2 JMPS ___ FF ;ELSE, CONTINUE02:008E E8 0069 ___ LF: CALL COMOUT ;OUTPUT LINE FEED02:0091 BO 02 MOV AL,=2 ;GET NULL COUNT02:0093 E8 0058 CALL NUL ;OUTPUT NULLS02:0096 AO 01:0005 MOV AL,LNCNT ;GET LINE COUNTER02:0099 FECO INC AL ;INCREMENT IT02:009B 3C 42 CMP AL,=66 ;AT TOP OF FORM YET?02:009D 72 02 JC ___ ULC ;IF NOT, UDATE LINE COUNT02:009F 30C0 XOR AL,AL ;ELSE ,RESET LINE COUNTER02:00A1 A2 01:0005 ___ ULC: MOV LNCNT,AL ;UPDATE LINE COUNTER02:00A4 C3 ___ X: RET ;DONE02:00A5 AO 01:0003 ___ HT: MOV AL,COLCNT ;GET COLUMN COUNTER02:00A8 88C6 MOV DH,AL ;TO DH-REG02:00AA 24 F8 AND AL,=~7 ;CALC NEXT TAB STOP02:00AC 04 08 ADD AL, =802:00A£ 28F0 SUB AL,DH ;CALC NUMBER OF SPACES REQUIH02:00B0 88C6 MOV DH,AL ;SPACE COUNT TO DH-REG02:00B2 B1 20 ___ HTL: MOV CL,=ASP ;GET ASCII SPACE02:00B4 88C8 MOV AL,CL ;ASCII SPACE TO A-REG02:00B6 E8 OOOD CALL ___ GR ;OUTPUT SPACES02:00B9 FECE DEC DH ;TO NEXT TAB STOP02:00BB 75 F5 JNZ ___ HTL02:00BD• C3 RET ;DONE

LSTACA: SAMPLE PRINTER DRIVER MODULE (ASYNC COMM ADAPTER) FOR TURBODOS ON IBM PERSONAL COMPUTERPage 1502:00BE E8 0039 ___ BS: CALL COMOUT ;[OUTPUT BACKSPACE02:00Cl FEOE 01:0003 DEC COLCNT ;[DECREMENT COLUMN COUNT02:00C5 C3 RET [DONE02:00C6 FE06 01:0003 ___ GR: INC COLCNT ;[INCREMENT COLUMN COUNT02:00CA 3C 20 CMP AL,=ASP ;[CHARACTER=SPACE?02:00CC 74 1B JZ ___ SP j[IF SO, CONTINUE02:00CE AO 01 :0004 MOV AL,SPCNT [ELSE, GET SPACE COUNT02:00D1 84C0 TEST AL,AL j[SPACE COUNT=O?02:00D3 74 25 JZ COMOUT ;[IF SO, CONTINUE02:00D5 88C6 MOV DH,AL ;[ELSE, SPACE COUNT TO DH-REG02:00D7 51 PUSH CX ;[SAVE OUTPUT CHARACTER02:00D8 B1 20 ___ SPL: MOV CL,=ASP j[GET ASCII SPACE02:00DA E8 001D CALL COMOUT ;[OUTPUT SPACES02:00DD FECE DEC DH02:00DF 75 F7 JNZ ___ SPL02:00E1 59 POP CX ;[RESTORE OUTPUT CHARACTER02:00E2 30C0 XOR AL, AL02:00E4 A2 01:0004 MOV SPCNT,AL [SET SPACE COUNT=O02:00E? EB 11 JMPS COMOUT :[CONTINUE02:00E9 FE06 01:0004 ___ SP: INC SPCNT :[INCREMENT SPACE COUNT02:00ED C3 RET [DONE02:00EE 88C6 ___ NUL: MOV DH,AL [NULL COUNT TO DH-REG02:00F0 B1 00 MOV CL,=O [SET OUTPUT CHARACTER=NULL02:00F2 E8 0005 ___ NULL: CALL COMOUT ;[OUTPUT NULL02:00F5 FECE DEC DH [DECREMENT NULL COUNT02:00F7 75 F9 JNZ ___ NULL j[CONTINUE02:00F9 C3 RET [DONE02:00FA 52 COMOUT: PUSH DX [SAVE DX-REG02:00FB 51 PUSH CX [SAVE CX-REG02:00FC BA 02:011 A MOV DX,& COPR [GET COMM OUTPUT POLL ROUT]02:00FF E8 03:0000* CALL LNKPOL# [LINK POLL ROUTINE ON POLL LISI02:0102 E8 0019 CALL COPC [EXECUTE POLL ROUTINE CODE02:0105 BB 01:0006 MOV BX,&COSPH [GET SEMAPHORE ADDRESS02:0108 E8 04:0000* CALL WAIT# [DISPATCH, IF NECESSARY02:01OB 59 POP CX [RESTORE CX-REG02.-010C 8A16 01:0001 MOV DL,ACACH [GET COMM ADAPTER CHANNEL NUr02:0110 B6 00 MOV DH,=0 [DOUBLE LENGTH02:0112 88 C8 MOV AL, CL [GET OUTPUT CHARACTER02:0114 B4 01 MOV AH,=1 [SET FUNCTION NUMBER=102:0116 CD 14 INT 0x14 [OUTPUT CHARACTER02:0118 5A POP DX [RESTORE DX-REG02:0119 C3 RET [DONE02:911A 0000 __COPR: WORD 0 [SUCCESSOR LINK POINTER02:01 IC ocoo WORD 0 [PREDECESSOR LINK POINTER02:011E 8A16 01:0001 _COPC: MOV DL,ACACH [GET COMM ADAPTER CHANNEL NUt02:0122 B6 00 MOV DH,=O [DOUBLE LENGTH02:0124 B4 03 MOV AH, =3 [SET FUNCTION NUMBERS02:0126 CD 14 INT 0x14 [GET COMM CHANNEL STATUS02:0128 F6C4 20 TEST AH, = 1«5 [TRANSMIT HOLDING REGISTER Ef02:012B 74 0C JZ COPX [IF NOT, CONTINUE02:012D BB 02:011A MOV BX,& COPR [GET COMM OUTPUT POLL ROUT]02:0130 E8 05:0000* CALL UNLINK# [UNLINK POLL ROUTINE FROM POLL02:0133 BB 01:0006 MOV BX,&COSPH [GET SEMAPHORE ADDRESS02:0136 E8 06:0000» CALL SIGNAL# [SIGNAL PROCESS AS READY02:0139 C3 COPX: RET [DONE

^TACA: SAMPLE PRINTER DRIVER MODULE (ASYNC COMM ADAPTER) • OR TURBODOS ON IBM PERSONAL COMPUTER>age 16
OOOO END

RTCIPC: SAMPLE REAL-TIME CLOCK DRIVER MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 17
VERSION: 01/03/840000

01:0000
MODULE ’’RTCIPC” ; MODULE NAME ^INCLUDE ’’DREQUATE” ;DRIVER SYMBOLIC EQUIVALENCLOC Data# ;LOCATE IN DATA SEGMENT01:0000 00 TICACC: BYTE 0 ;TICK ACCUMULATOR01:0001 00 TICCTR: BYTE 0 ;TICK COUNTER02:0000 LOC Code# ;LOCATE IN CODE SEGMENT02:0000 1E RTCNIT::PUSH DS ;SAVE DS-REG02:0001 31C0 XOR AX,AX ;GET INTERRUPT POINTER PARAGRAF02:0003 8ED8 MOV DS,AX ;SET DS-REG02:0005 C706 0070 MOV (0x1C*4)+0,WORD &RTCISR ;SET VECTOR 0102:001102:000B 8C0E 0072 MOV (0x1C*4)+2,CS ;SET VECTOR CS BASE ADD!02:000F 1F POP DS ;RESTORE DS-REG02:0010 C3 RET ;DONE02:0011 9D RTCISR: POPF ;CLEAR STACK (IP-REG)02:0012 9D POPF ;CLEAR STACK (CS-REG)02:0013 9D POPF ;CLEAR STACK (PS-REG)02:0014 53 PUSH BX ;SAVE REGISTERS02:0015 51 PUSH CX02:0016 E8 03:0000« CALL GETSDS# ;GET SYSTEM DATA SEGMENT02:0019 FE06 01:0000 INC TICACC jINCREMENT TICK ACCUMULATED02:001D 803E 01:0000 57 CMP TICACC,=87 ;EXTRA TICK ACCUMULATED?02:0022 72 09 JC ___ NETA ;IF NOT, CONTINUE02:0024 C6O6 01:0000 00 MOV TICACC,=0 ;ELSE, RESET TICK ACCUMULATC02:0029 FEOE 01:0001 DEC TICCTR ;DECREMENT TICK COUNTER02:002D FE06 01:0001 NETA; INC TICCTR jINCREMENT TICK COUNTER02:0031 803E 01 :0001 1202:0036 72 0802:0038 C606 01:0001 0002:003D E8 04:0000*02:0040 E8 05:0000*
CMP TICCTR,=18 ;ONE SECOND ELAPSED?JC ___ NSEC ;IF NOT, CONTINUEMOV TICCTR,=0 ;ELSE, RESET TICK COUNTERCALL RTCSEC# ;ADVANCE SYSTEM TIME SECONDSNSEC: CALL DLYTIC# ;ADVANCE SYSTEM TICK COUNTER02:0043 BO 20 MOV AL,=0x20 ;GET END OF INTERRUPT COMMANI02:0045 E6 20 OUT 0x20,AL ;SIGNAL END OF INTERRUPT02:0047 59 POP CX ;RESTORE REGISTERS02:0043 5D . POP BX02:0049 5A POP DX02:004A 58 POP AX02:004B 1F POP DS02:004C E9 06:0000* JMP ISRXIT# jCONTINUE0000 END

DSKIPC: SAMPLE FLOPPY DISK DRIVER MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 18
; VERSION: 01/03/840000 MODULE ’’DSKIPC” ; MODULE NAME

0004 ; //INCLUDEMAXTRY == 4 ’’DREQUATE” ; DRIVER SYMBOLIC EQUIVALENT{MAX TRY COUNT01:0000 LOC Data# ;LOCATE IN DATA SEGMENT01:000001:0000 02:0036 FCNTBL: WORD ;FUNCTION PROCESSOR ADDRESS TA RDDSK {READ DISK01:0002 02:003D WORD WRDSK {WRITE DISK01:0004 02:0074 WORD RETDST ;RETURN DST ADDRESS01:0006 02:00AF WORD RETRDY ;RETURN READY STATUS01:0008 02:0044 WORD FMTDSK ;FORMAT DISK0005 NMBFCN = = (. -FCNTBL)/2 {NUMBER OF FUNCTION PROCESSORS01 :000A01 :000A 0001 DMXSPH; WORD ;MUTUAL EXCLUSION SEMAPHORE1 {SEMAPHORE COUNT01 :000C 01:000C ___ DMXH: WORD ___ DMXH jSEMAPHORE P/D HEAD01 :000E 01:000C WORD ___ DMXH01 :0010 00 TRYCNT; BYTE 0 ;TRY COUNT01:0011 01:0011 CF JDRVNFO: BYTE {DISK DRIVER INFOOxCF {SPECIFY COMMAND - FIRST PARAM01:0012 02 BYTE 0x02 {SPECIFY COMMAND - SECOND PARA01:0013 25 BYTE 0x25 ;MOTOR OFF COUNTDOWN VALUE01:OO14 01:0014 00 5VARNFO: BYTE {VARIABLE DISK DRIVER INFO 0x00 {SECTOR SIZE (2*N»128)01:0015 00 VARSPT: BYTE 0x00 {SECTORS PER TRACK (EACH SIDE)0110016 00 BYTE 0x00 {READ GAP LENGTH01:0017 00 BYTE 0x00 jDTL01:0018 00 BYTE 0x00 ;FORMAT GAP LENGTH0005 VARLEN == •VARNFO {VARIABLE DISK DRIVER INFO LE^01:0019 E5 5 BYTE 0xE5 {FORMAT FILL BYTE01:001A 19 BYTE Qx19 {HEAD SETTLE TIME (MILLISECONE01:001B 04 BYTE 0x04 {MOTOR START TIME (1/8 SECOND!
01 :001C 04

»JDSTBAS: 1024BYTE BYTE SECTOR, DOUBLE-DENSITY, TWO-SIDED (^4 {BLOCK SIZE01:001D 00C8 WORD (4O»(1O»(1«3)))/(1«4) {NUMBER OF Bl01:001F 02 BYTE 2 {NUMBER OF DIRECTORY BLOCKS01:0020 03 BYTE 3 {PHYSICAL SECTOR SIZE (2*N»12<01:0021 000A WORD 10 {PHYSICAL SECTORS PER TRACK01:0023 0028 WORD 40 {PHYSICAL TRACKS PER DISK01:0025 0000 WORD 0 {NUMBER OF RESERVED TRACKS000B VAROFF = = - --DSTBAS {VARIABLE DISK DRIVER INFO OF1

DSKIPC: SAMPLE FLOPPY DISK DRIVER MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 19
31:0027 03 01:0028 05 01:0029 35 01:002A FF 01:002B ?4

BYTE BYTE BYTE BYTE BYTE
0x03 0x05 0x35 OxFF 0x74

•»SECTOR SIZE (2~N*128)•»SECTORS PER TRACK (EACH SIDE)•»READ GAP LENGTH{DTL;FORMAT GAP LENGTH0010 DSTLEN == .-; 1024 DSTBASBYTE SECTOR ;DST LENGTH, DOUBLE-DENSITY, ONE-SIDED (MI01:002C 03 BYTE 3 {BLOCK SIZE01:002D 00C8 WORD (40*(5*(1 «3)))/(1 «3) {NUMBER OF BLOC01:002F 02 BYTE 2 {NUMBER OF DIRECTORY BLOCKS01:0030 03 BYTE 3 {PHYSICAL SECTOR SIZE (2*N»128)01:0031 0005 WORD 5 {PHYSICAL SECTORS PER TRACK01:0033 0028 WORD 40 {PHYSICAL TRACKS PER DISK01:0035 0000 WORD 0 {NUMBER OF RESERVED TRACKS01:OO37 03 BYTE 0x03 {SECTOR SIZE (2*N*128)01:0038 05 BYTE 0x05 {SECTORS PER TRACK (EACH SIDE)01:0039 35 BYTE 0x35 {READ GAP LENGTH01:003A FF BYTE OxFF jDTL01:003B 74 BYTE 0x74; 512 BYTE SECTOR, ;FORMAT GAP LENGTHDOUBLE-DENSITY, TWO-SIDED (Mil01:003C 04 BYTE 4 {BLOCK SIZE01:003D 00A0 WORD (40*8*2»(1«2))/(1«4) {NUMBER OF BLOC01:003F 02 BYTE 2 {NUMBER OF DIRECTORY BLOCKS01:0040 02 BYTE 2 {PHYSICAL SECTOR SIZE (2*N»12801:0041 0001 WORD 1 {PHYSICAL SECTORS PER TRACK01 :0043 0280 WORD 40*8*2 {PHYSICAL TRACKS PER DISK01 :OO45 0001 WORD 1 {RESERVED TRACKS01:0047 02 BYTE 0x02 {SECTOR SIZE (2*N*128)01:OO48 08 BYTE 0x08 {SECTORS PER TRACK (EACH SIDE)01:OO49 2A BYTE 0x2A {READ GAP LENGTH01:004A FF BYTE OxFF ;DTL01:004B 50 BYTE 0x50; 512 BYTE SECTOR, {FORMAT GAP LENGTHDOUBLE-DENSITY, ONE-SIDED (MI01:004C 03 BYTE 3 {BLOCK SIZE01:004D 00AO WORD (40*8*(1 <<2))/(1«3) {NUMBER OF BLOCK01:004F 02 BYTE 2 {NUMBER OF DIRECTORY BLOCKS01:0050 02 BYTE 2 {PHYSICAL SECTOR SIZE (2*N»12801:0051 0001 WORD 1 {PHYSICAL SECTORS PER TRACK01;0053 0140 WORD 40*8 {PHYSICAL TRACKS PER DISK01:0055 0001 WORD 1 {RESERVED TRACKS01:0057 02 BYTE 0x02 {SECTOR SIZE (2*N*128)01:0058 08 BYTE 0x08 {SECTORS PER TRACK (EACH SIDE)01:0059 2A BYTE 0x2A {READ GAP LENGTH01:005A FF BYTE OxFF ;DTL01:005B 50 BYTE 0x50 {FORMAT GAP LENGTH0004 NMBDST == (.,-DSTBAS)/DSTLEN {NUMBER OF DST’S

3SKIPC: SAMPLE FLOPPY DISK DRIVER MODULE■OR TURBODOS ON IBM PERSONAL COMPUTER3age 2032:0000 LOC Code# ;LOCATE IN CODE SEGMENT32:0000 31C0 DS KIN_:: XOR AX,AX ;GET INTERRUPT VECTOR SEGMENT32:0002 8EC0 MOV ES,AX ;SET ES-REG32:0004 26 C706 0078 ES MOV (0x1E*4)+0,W0RD &DRVNFO ;SET PARM OFFSI01;001132:000B 26 8C0E 007A ES MOV (0x1E*4)+2,CS ;SET PARM POINTER SEGMEN'32:0010 B4 00 MOV AH,=O ;SET FUNCTION NUMBER=032:0012 CD 13 INT 0x13 ;RESET DISK DRIVER32:0014 C3 RET ;DONE32:0015 BB 01:000A DSKDR_: :MOV BX,&DMXSPH ;GET MUTUAL EXCLUSION SEMAP!02:0018 E8 03:0000* CALL WAIT# ;DISPATCH IF NECESSARY02:001B 8A54 01 MOV DL,PDRDRV[SI] ;GET PD REQ DRIVE NUMBER02:001E 8A1C MOV BL,PDRFCN[SI] ;GET PD REQ FUNCTION NUM02:0020 80FB 05 CMP BL,=NMBFCN ;VALID FUNCTION NUMBER?02:0023 73 08 JNC ___ NVFN ;IF NOT, CONTINUE02:0025 B7 00 MOV BH,=0 ;MAKE FUNCTION NUMBER DOUBLE LE02:0027 01 DB ADD BX,BX ;X202:0029 FF97 01:0000 CALLI FCNTBL[BX] ;EXECUTE FUNCTION PROCESSOR02:002D 50 ___ NVFN: PUSH AX ;SAVE RETURN CODE02:002E BB 01:000A MOV BX,&DMXSPH ;GET MUTUAL EXCLUSION SEMAP02:0031 E8 04:0000* CALL SIGNAL# jSIGNAL PROCESS AS READY02:0034 58 POP AX ;RESTORE RETURN CODE02:0035 C3 RET ;DONE02:0036 E8 0094 RDDSK: CALL SETUP ;DO COMMON SETUP02:0039 B4 02 MOV AH,=2 ;SET FUNCTION NUMBER=202:003B EB 75 JMPS RWFCOM ;CONTINUE02:003D E8 008D WRDSK: CALL SETUP ;DO COMMON SETUP02:0040 B4 03 MOV AH,=3 ;SET FUNCTION NUMBER=302:0042 EB 6E JMPS RWFCOM ;CONTINUE02:0044 BB 01 :001C FMTDSK: MOV BX,&DSTBAS ;GET DST BASE ADDRESS02:0047 8B44 OE MOV AX,PDRDST[SI] ;GET PDR DST ADDRESS02:004A 85C0 TEST AX,AX ;PDR DST ADDRESS=O?02:004C 75 03 JNZ ___ TDSF ;IF NOT, CONTINUE02:004E 83C3 20 ADD BX,=DSTLEN*2 ;ELSE, ADVANCE TO NEXT DS02:0051 E8 OOBF ___ TDSF: CALL SETNFO ;SET DISK DRIVER INFO02:0054 8A6C 02 MOV CH,BYTE PDRTRK[SI] ;GET REQUESTED TRAC02:0057 84ED TEST CH,CH ;REQUESTED TRACK NUMBER=O?02:0059 75 04 JNZ ___ NTKO ;IF NOT, CONTINUE02:005B B4 00 MOV AH,=0 ;ELSE, SET FUNCTION NUMBERED02:005D CD 13 INT 0x13 ;RESET DISK DRIVER02:005F B6 00 ___ NTKO: MOV DH,=0 jPRESET HEAD NUMBER=O02:0061 F644 05 80 TEST PDRSEC+1[SI],=BYTE 1 «7 ;HEAD ONE BIT02:0065 74 02 JZ ___ NH1 ;IF NOT, CONTINUE02:0067 FEC6 INC DH ;ELSE, SET HEAD NUMBER=102:0069 8B5C OA ___ NH1: MOV BX,PDRDMA[SI] ;GET REQUESTED DMA OFFSI02:006C 8E44 OC MOV ES,PDRBAS[SI] ;GET REQUESTED DMA BASE02:006F B8 0501 MOV AX,=0x0501 ;SET FUNCTI0N=5/SECTOR COUf02:0072 EB 3E JMPS RWFCOM ;CONTINUE02:0074 30C0 RETDST: XOR AL,AL ;PRESET RETURN CODE=O02:0076 80FA 04 CMP DL,=4 ;VALID DRIVE NUMBER?

DSKIPC: SAMPLE FLOPPY DISK DRIVER MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 2102:0079 73 33 JNC ___ X ;IF INVALID DRIVE, CONTINUE92:007B 88C6 MOV DH,AL ;ELSE, SET HEAD NUMBER=O02:007D B9 0001 MOV CX, = 1 ;SET TRACK NUMBER=O/SECTOR NUMBl92:0080 BB 01:001C MOV BX,&DSTBAS ;GET DST BASE ADDRESS02:0083 BD 0002 MOV BP,=NMBDST/2 ;GET NUMBER OF DST’S (/2)02:0086 E8 008A _DSTL: CALL SETNFO ;SET DISK DRIVER INFO02:0089 B8 0401 MOV AX,=0x0401 ;SET FUNCTI0N=4/SECT0R COUN'02:008C E8 0023 CALL RWFCOM ;ATTEMPT TO READ TRACK O/SECTOR02:008F FECO INC AL ;REQUESTED DRIVE READY?02:0091 75 07 JNZ ___ RDY ;IF SO, CONTINUE02:0093 83C3 20 ADD BX,=DSTLEN*2 ;ELSE, ADVANCE TO NEXT DS'02:0096 4D DEC BP ;DECREMENT NUMBER OF DST’S02:0097 75 ED JNZ ___ DSTL ;IF NOT LAST DST, CONTINUE02:0099 C3 RET ;ELSE, DONE02:009A FEC6 ___ RDY; INC DH ;SET HEAD NUMBER=102:009C B8 0401 MOV AX,=0x0401 ;SET FUNCTI0N=4/SECTOR COUN02:009F E8 0010 CALL RWFCOM ;ATTEMPT TO READ TRACK O/SECTOR02:00A2 84C0 TEST AL,AL ;READ SUCCESSFUL?02:00A4 74 03 JZ ___ RDST ;IF SO, CONTINUE02:00A6 83C3 10 ADD BX,=DSTLEN ;CALC ONE-SIDED DST ADDRESS02:00A9 895C OE ___ RDST: MOV PDRDST[SI],BX ;SET DST ADDRESS02:00AC BO FF MOV AL,=0xFF ;SET RETURN CODE=OFFH02:00AE C3 ___ X: RET ;DONE02:00AF BO FF RETRDY: MOV AL,=0xFF ;SET RETURN CODE=OFFH02:00B1 C3 RET ;DONE02:00(32 C606 01:0010 04 RWFCOM: MOV TRYCNT,=MAXTRY ;SET TRY COUNT=MAX TRYS02:00B7 50 RDL: PUSH AX ;SAVE FUNCTION/SECTOR COUNT02:00B8 CD 13 INT 0x13 ;READ/WRITE/VERIFY SECTOR02:00BA 58 POP AX ;RESTORE FUNCTION/SECTOR COUNT02:00BB 73 OD JNC ___ X ;IF NO ERRORS, CONTINUE02:00BD FEOE 01:0010 DEC TRYCNT ;ELSE, DECREMENT TRY COUNT02:00C1 75 F4 JNZ ___ RDL ;IF NOT LAST TRY, CONTINUE02:00C3 B4 00 MOV AH,=O ;ELSE, SET FUNCTION NUMBER=O02:00C5 CD 13 INT 0x13 ;RESET DISK DRIVER02:00C7 BO FF MOV AL,=0xFF ;SET RETURN CODE=OFFH02:00C9 C3 RET ;DONE02:00CA 30C0 ___ X: XOR AL,AL ;SET RETURN CODE=O02:00CC C3 RET ;DONE02:00CD 8A6C 02 SETUP: MOV CH,BYTE PDRTRKCSI] ;GET TRACK NUMBER02:00DO 8A4C 04 MOV CL,BYTE PDRSEC[SI] ;GET SECTOR NUMBER02:00D3 807C 14 03 CMP SECSIZ[SI],=3 ^PHYSICAL SECTOR SIZE=3'02:00D7 74 1B JZ ___ PSS3 ;IF SO, CONTINUE02:00D9 8B44 02 MOV AX,PDRTRKCSI] ;GET REQUESTED TRACK NUh02:00DC 8A4C 10 MOV CL,BLKSIZ[SI] ;GET ALLOCATION BLOCK SI02:00DF D3E8 SHR AX,CL ;CALC TRACK NUMBER02:00E1 88C5 MOV CH,AL ;TRACK NUMBER TO CH-REG02:00E3 8A4C 10 MOV CL,BLKSIZ[SI] ;GET ALLOCATION BLOCK SI02:00E6 F6D9 NEG CL ;NEGATE ALLOCATION BLOCK SIZE02:00E8 80C1 08 ADD CL,=8 ;CALC SHIFT COUNT02:00EB BO FF MOV AL,=0xFF ;SET AL=OFFH02:00ED D2E8 SHR AL,CL ;CALC ALLOCATION BLOCK MASK02:00EF 8A4C 02 MOV CL,BYTE PDRTRKCSI] ;GET REQUESTED TRAC02:00F2 20C1 AND CL,AL ;CALC SECTOR NUMBER

DSKIPC: SAMPLE FLOPPY DISK DRIVER MODULEFOR TURBODOS ON IBM PERSONAL COMPUTERPage 2202:00F4 8B5C OE ___ PSS3: MOV BX,PDRDST[SI] {GET PDR DST ADDRESS02:00F7 E8 0019 CALL SETNFO {SET DISK DRIVER INFO02:00FA B6 00 MOV DH,=0 {PRESET HEAD NUMBER=002:00FC AO 01:0015 MOV AL,VARSPT {GET VARIABLE INFO SECTORS02:00FF 3ÖC1 CMP CL,AL {SECTOR ON SIDE ONE?02:0101 72 04 JC ___ SOSO ;IF NOT, CONTINUE02:0103 28C1 SUB CL,AL {ELSE, CALC SECTOR NUMBER02:0105 FEC6 INC DH {SET HEAD NUMBER=102:0107 FEC1 ___ SOSO: INC CL {INCREMENT SECTOR NUMBER02:0109 8B5C OA MOV BX,PDRDMA[SI] {GET REQUESTED DMA OFF02:010C 8E44 OC MOV ES,PDRBAS[SI] {GET REQUESTED DMA BAS02:010F 8A44 06 MOV AL,BYTE PDRSC[SI] ;GET PD REQ SECTOR02:0112 C3 RET {DONE02:0113 53 SETNFO; PUSH BX {SAVE CX-REG02:0114 51 PUSH CX {SAVE CX-REG02:0115 56 PUSH SI {SAVE SI-REG02:0116 57 PUSH DI {SAVE DI-REG02:0117 83C3 OB ADD BX,=VAROFF ;ADD VARIABLE DRIVER INFO02:011A 89DE MOV SI,BX {VARIABLE DISK DRIVER INFO TO02:011C BF 01:OO14 MOV DI,&VARNFO ;GET VARIABLE INFO ADDRESSO2:O11F 8CD9 MOV CX,DS {GET DS-REG02:0121 8EC1 MOV ES,CX {SET ES-REG02:0123 B9 0005 MOV CX,=VARLEN ;GET VARIABLE INFO LENGTH02:0126 FC CLD {CLEAR DIRECTION FLAG02:0127 F3 A4 REP IMOVS BYTE {SET VARIABLE DISK DRIVER INF(02:0129 5F POP DI {RESTORE DI-REG02:012A 5E POP SI {RESTORE SI-REG02:012B 59 POP CX {RESTORE CX-REG02:012C 5B POP BX {RESTORE CX-REG02:012D C3 RET {DONE0000 END

MSTIPC: SAMPLE MEMORY SPECIFICATION TABLE MODULE (256K)FOR TURBODOS ON IBM PERSONAL COMPUTERPage 23
• VERSION: 01/03/840000 MODULE "MSTIPC" ;MODULE NAME01:0000 LOC Data# ;LOCATE IN DATA SEGMENT01 :0000 01 MEMTBL::BYTE 1 ^NUMBER OF MEMORY SEGMENTS01:0001 0050 WORD 0x0050 ;MEMORY SEGMENT BASE01 :0003 3FB0 WORD 0x4000-•0x0050 ;MEMORY SEGMENT LENGTH0000 END

