
TABLE OF CONTENTS

Page

INTRODUCTION ...:... oocecceasecccccsccsccccccccecs ccccccccccccccccccccccces I
Touchscreen Toolbox Features
System ReEquiIreEMENDtS »...2....sscccccccccccccsccccccccccccesccesoes ecoee 3

Hardware Requirements ccosncscccescoscescocencces eccccccccce ccoee 3
Software Requirements sage ec cccccccces eeccccccces cccccces &

HOW TO USE THIS MANUAL ccccccscccccseccccccrsccoscccoccsscssoecees
Notation Conventions, evacnccccecccsess oecccovsecsocees
Defimitions0.s0ccersvcscccrcrcccscvccccscscccescecceseovoese coeece

GETTING STARTED «. weceesenestocesceccsscescecoescees ccvcccccccccccce seceeee 8
~ Before You Begin .2:...c...geccccsscsensccsccccscsccssscersccsesccees sseee 8
Operational Requirements For Software Use ocececees sevccceee &

» PAPFAMEHETS »..ccccccccscccoccopecesevscseccccscsscccccescscsccsoscccccsceoes LO
A Sample Program weccpassr0eeceee SPOOHOHOICHOOHOSHOHHOOHHOOSHOHESOHOOHOCEOHOOESOE 12

FUNCTIONAL AND OPERATIONAL DESCRIPTIONS sccccccvee 14
ALPHA.cccsscccessessccsecccscvcscsscescceeooes crvccccsccccccccccccooee LS

[LPR RERERE ESSERE EZ EE EERE EES ZS l

4
eeeeee coscccccccee 4

6

ENHANC. OOSOCTHHHHHHEHOOESS SHCHSHHSSHSHSSSHSHSHSHOHSHOHHHSHSHOHOHHSHOHSHOSEHOHHSHOCHHEOOSELO 17

EEYLBYI, 2000008830008 08 eccccccccesoces eeoeeaeeeeoeooee ©00000600H0O8SOS8O eoceococe 20

KEYPAD #i...... eocccccecccsece eaeeee ©00080080006080 Co oeooosuenseose eccvceccsoe 22

PLACE . seis ftnesscsccnnnarnccscconnsnnsessoocnnnsnsssscoonsseaioeccscensssaseons 25.

TPAD ...scsse-. seccecccciieccenscseccescesesssssssssscconscssssssccsssssonecs 30
ERRORS. sessbevee occccceee sasbesssesssoscenee eocces sasosenseseransessnseesnseses 33 .

Faial EEQTOTSccccccsccccccccccccscccccccccscccsccccsccscccssssccsssoecsocos SD

QUICK: REFERENCE. ecccccsccccoccoccccees
APPENDIX,

B. Sample Programs For The Tduchscreen TOOIDOX ..ccccooee B-1
TSODEM. BAS CoCr eeneeeeccensenecs @000000 SCOOOHHHOOHHTOOHOSOOOSOSOSSHOEOOCED B-1

ATEST.BAS dseeencceneeesivnssscngnesssesescooosoosee ecccccccccececccoees DS
TSAMPL.BAS ...ccssccosssscccnnsssccscccsscosscccscsccssccsscsscssssscs BS
ENTEST.BAS vseeetaevenccesageronssesnccoreecsocssscoesseosesoranes B-5
SHRINK.BAS seeesscecegvudacsessqnecoesceecscesasassesescocsessessssones Dm 7
TOUCH. BAS oeee secoceedusecceecepscevscanscceaecoooeces 0006808800000 800830 B-9

ences ooccceccccccccennevcvcocoscoes 36

LTEST. BAS seesssersvesceseccscenasceseseecs PYYTTTITTIT TTT TTT OSCSCOSCSOESOE B- 12

Cc. Note To Users of TSQDRV. LIB. eeccccseets ‘eeooevecese SE C- l

D. Erasing "Pull-down Menus" COSCO HOSOOOHOOOEOUSHOOOEOCOOOOOO OOOO EEOSS D-1

INTRODUCTION

The Touchscreen Toolbox is a library of subroutines for the
Fluke 1722A Instrument Controller and the 1752A Data
Acquisition System that greatly simplifies the creation of
displays. With the toolbox, the programmer can save hours of
laborious hand-coding and design complex screens with ease.

Fluke provides a Touch-Sensitive Overlay (TSO) programming
work sheet to assist you in the design process. Use of the work
sheet is highly recommended; it will allow you to visualize
the design clearly before coding. Work sheets are available
from Fluke in pads of 50, by ordering part number 533547. See
Figure 1 for a sample programming work sheet.

Touchscreen Toolbox Features

The features of each of the Touchscreen Toolbox subroutines are
discussed in the following paragraphs. See the Functional and
Operational Descriptions section for complete programming
information.

The TSO is divided into 60 single locations, or touch-cells.
The subroutine TPAD allows you to create a box or other
touch-sensitive target of any size from 1 x 1 through 5 x 5
touch-cells. With TPAD, an entire screen of touchkeys can be
defined in one command. The library subroutine PLACE allows
you to place a touchkey anywhere in the character plane of the
I7XXA.

Because the Touchscreen Toolbox drivers use only the character
plane of the 1722A or 1752A, the graphics plane is left free
for other uses. For example, an individual key on the TSO
display (a touchkey) can be placed on top of a complicated
graph. The touchkey can be used for input and erased without
affecting the graph. See Appendix D for instructions on using
"pull-down menus" with graphics.

q9904uS
quOM

ZuyTwMeuZ0ug
*|

a
u
n
t
y

S
N
W
A
N
I
O
9

3
Z
I
S
—
-
3
1
0
G
N
O
d

[or
P
E
P
E

E
p
e
(
s
e
p
r
e
c
e
l
e
e
|
i
e

p
e
s
e
e
l

e
s
e
l
s
e
p
e
e
e
r
e
i
t
e
p
e
l
s
t
i
e
r

At[st]styrt

[+24]
i

("|
6

| 8
| L

| 9
| S

| »
| >

| 2
|

t
|

SMOY 3ZIS—3IONIS
|-|u[>]+[»[oln[ololo}=|s/2]s|2/3| SE

C
T
T

SR
ea

needed
eed

cadoatte
pecan

eeuboncead
a ccaaaareee

a
l

ek
IM

I
L
E

AT
e
y
e

al
pi

LU
L
L
L

UI
P
O
E

6
8

L
4

_

y
€

2
I

H
O
I
N
O
L
V
N
A
G

a
e

O
e

e
e

e
e

O
e

e
e

S
N
A
N
N
O
D

A
Z
I
S
-
A
T
I
S
N
I
S

I-[oafotefolotr [eo]
SMOY 3ZIS—31¢EdN0G

-2-

TOUCHSCREEN TOOLBOX

Two other programs, KEYPAD and ALPHA, allow you to enter or
change data without the keyboard, simply by touching the TSO.
KEYPAD allows you to enter numeric values and ALPHA allows
you to enter text. Both routines have recall, remembering the
value or string that is passed to them when they are called.
This feature is useful when dealing with serial numbers, names,
or any value that is changed repeatedly in a program. Suppose
you have changed a value, have called the subroutine KEYPAD,
and discover that the value should not be changed. You don't
have to remember the former value; pressing the RCL button will
display it. Pressing ENTer will re-enter the old value.

REPORT returns the name of the touchkey touched. The ability
to name a touchkey is important because the touchkey's position
is determined by checking the value of the system variable KEY.
Since touchkeys are often composed of more than one touch-cell,
you normally would have to check several values to determine if
a touchkey had been touched. With a named touchkey, all touch-
cells making up a touchkey will send back the same character
string (ID Code).

KEYLBL is primarily used for labeling touchkeys, centering the
labels in a specified area and truncating them if necessary.
ENHANC enables a target to be high-intensity (highlighted) or
blinking. ENHANC, PLACE and TPAD can be used to define single-
or double-sized targets, characters and labels. Targets can
also be defined in reverse-image, outline, or as a label-only.

System Requirements

In order to run the Touchscreen Toolbox subroutines on your
system, you must meet certain hardware and software
requirements.

Hardware Requirements

To run the Touchscreen Toolbox subroutines, you must have a
1722A Instrument Controller or a 1752A Data Acquisition System.
(Hereafter, both are referred to as the 17XXA.)

TOUCHSCREEN TOOLBOX

Software Requirements

The following software is required for proper functioning of
the Touchscreen Toolbox:

e The 17XXA System disk.

e A Compiled BASIC (CBASIC) or Extended BASIC (XBASIC)
Language Disk.

e The Touchscreen Toolbox disk, which contains the file
TTBOX.LIB for Compiled BASIC and TTBOX.LBX for Extended
BASIC.

HOW TO USE THIS MANUAL

This manual presents information on the use of the Touchscreen
Toolbox library of subroutines. To assist you in learning to
use the toolbox, this section presents manual use instructions,
a chart of conventions, and definitions of words used in this
manual. Detailed information on each of the routines follows,
including a description, syntax, parameters, errors reported
and an example of use. A quick reference guide is also
included. Appendices provide sample programs for the toolbox
subroutines, along with other important information.

Notation Conventions

Fluke manuals use certain conventions to illustrate keyboard
entries and to differentiate these entries from surrounding
text. The braces, { }; brackets, []; and angle brackets, < >
are not part of the key stroke sequence and should not be typed
in.

TOUCHSCREEN TOOLBOX

<XXX> Means "press the xxx key". Example: <RETURN>
indicates the Return key.

<xxx>/y Means "hold down key xxx and then press y". Example:

[xxx]

(xxx)

<CTRL>/C means to hold down the key labeled CTRL and
then press the key labeled C.

Indicates an optional input. Example: [input
filename] means to type the name of an input file
name. If no file name is typed, a default name will
be used.

Means to type the name of the input as shown.
Example: BASIC means to type the program name BASIC
as shown.

Indicates a required user-defined input. Example:
{device} means to type a device name of your choice,
as in MFO: for floppy disk drive 0.

This construction has two uses:

1. As a separate word, (xxx) means that xxx is
printed by the program. Example: (date) means
that the program prints today's date at this
point.

2. Attached to a procedure or function name, (xxx)
means that xxx is a required input of your
choice; the parentheses must also be typed in.
Example: TIME(parameter) means that the word TIME
must be typed in, followed by a parameter that
must be enclosed in parentheses.

TOUCHSCREEN TOOLBOX

Definitions

This section will aid you in understanding terminology specific
to the Touchscreen Toolbox.

Character cell
A size 8 x 14 matrix of pixels, in which a character is
defined.

ID code
A character string that represents a touchkey. The ID
code may be user-defined in the PLACE subroutine, or it
may be automatically defined by the subroutine TPAD. When
the REPORT subroutine is called, it returns the ID code of
the touchkey pressed.

Legend
An alphanumeric label on a target.

Pixel
The smallest amount of visual information that the display
is able to resolve; one dot.

Target
A visual image displayed on the screen and perceived by
the user as a single box, icon, set of characters, or
other graphic image. A target indicates a location for
the user to touch on the screen.

Touch-cell
A single location on the Touch-Sensitive Overlay. There
are 60 touch-cells per TSO on the FLUKE 17XXA.

Touch-keypad
A group of targets (usually drawn as boxes) that provide
the operator with a set of command options; also called a
keypad.

TOUCHSCREEN TOOLBOX

Touchkey
1. An active touch-sensitive area on the TSO, composed of

1 or more touch-cells that, when pressed by the user,
causes the host computer to perform a single function.

2. An associated target on the display, located directly
beneath the group of touch-cells.

Touchscreen
The combination of a TSO and a video display.

TSO
Touch-Sensitive Overlay; the transparent membrane on the
screen of a FLUKE 17XXA. The TSO consists of 60
touch-cells and reports a value between 1 and 60 to the
host computer. The value corresponds to the most recently
pressed touch-cell.

Parameters That May Be Changed

Size
Refers to the size of the label in a touchkey. A size 1
touchkey will have single-sized characters in the label.
A size 2 touchkey will have double-sized characters.

Type
Refers to a touchkey type. A type -1 touchkey is in
inverse video. A type 0 touchkey is in normal video. A
type 1 touchkey is outlined.

TOUCHSCREEN TOOLBOX

GETTING STARTED

This manual is written with the assumption that you are
familiar with the Fluke 1722A Instrument Controller (or 1752A
Data Acquisition System) and Compiled or Extended BASIC. If
you are not, please read the following materials:

e Getting Started: A New User's Guide to the 1722A Instrument
Controller (or 1752A Data Acquisition System, as
applicable).

e The 17XXA System Guide.

e The Compiled BASIC or Extended BASIC language manual.

Before You Begin

Before you get going, you will need to make a backup copy of
the Touchscreen Toolbox disk and put the original copy of the
disk in a safe place.

To make copies of your disks, use the Touch-copy program
(Tcopy). Tcopy is an easy to learn, menu-driven program that
utilizes the 17XXA's Touch-Sensitive Display to transfer files
between the controller's file-structured devices. Tcopy is
explained in more detail in the 17XXA System Guide.

Operational Requirements For Software Use

Proper operation of the Touchscreen Toolbox software requires
correct initializations within the calling program.

e The screen must be in character mode. Character mode
facilitates subroutines like ENHANC, which puts a character
attribute on a touchkey, and allows you to label the bottom
of an outlined touchkey.

TOUCHSCREEN TOOLBOX

Character mode is entered using the following code:

(PRINT CHR$(27)3"[?1h"s)

e Correct initialization requires that you set a character
variable equal to 240 spaces. This is most easily
accomplished using the following CBASIC (or XBASIC)
statement:

{variable}$ = SPACE$(240)

For example,

touch$ = SPACE$(240)

This variable is used by the subroutines to store the ID
codes of each touch-cell. When more than one touch-cell
shares the same ID code, they should be part of a single
touchkey.

If a character attribute is on when a routine is called, the
called routine may show that attribute. For example, if
KEYPAD is called while high-intensity is turned on, the
keypad will be displayed in high-intensity.

Once the screen is set to character mode and the character

variable is initialized, the subroutines can operate. For
correct operation, the programmer must also be aware of the
expectations of each routine.

@ When a screen is to have double-sized characters within the

touchkeys, the calling program must set the screen to
double-size. The following BASIC statement sets the screen
to double-size:

PRINT CHR$(27)3"(?2h"s

TOUCHSCREEN TOOLBOX

@ REPORT reads the system variable KEY. KEY should not be
read prior to calling report. Reading the value of KEY
before calling REPORT will cause the subroutines to operate
slowly or not at all. See Logical Errors for more
information.

e The subroutines have no interrupt handling or traps. An
interrupt trap within the calling program will still
function when execution has been transferred to one of the
subroutines.

@ When calling a subroutine that returns a value in the
variable id$, the BASIC compiler requires that the return
variable be initialized in the calling program.

e None of the subroutines turn off the cursor. This allows
the program to determine the state of the cursor at all
times. To disable the cursor, use the BASIC statement

PRINT CHR$(27)3"[281"3

e If a bad definition is passed to the routines from the
calling program, the cursor will be turned on before the
program is terminated. See the Errors section for more
information.

@ Some screen control sequences will also turn the cursor back
on. For example, using <ESC>[3p to enter character graphics
instead of <ESC>[?3h will turn on the cursor. See the 17XXA
System Guide for more information.

Parameters

There are specific parameter requirements for toolbox routines.

e The parameters in the CALL statement must be of the type and
in the same order as specified by the subroutine being
called.

-~10-

TOUCHSCREEN TOOLBOX

e There should be the same number of parameters in the CALL
statement as in the routine being called. An incorrect number
of parameters will result in error number 706.

e Variable Types:

x A -variable without a qualifier is a real number.
x% A variable followed by "%" is an integer.
x$ A variable followed by "$" is a character string.
x$() A variable (real, integer, or string) followed

by "()" is an array. It must be dimensioned using a
DIM statement.

-~lj-

TOUCHSCREEN TOOLBOX

A Sample Program

The following program demonstrates the subroutine KEYPAD. It
will draw a touch-keypad on the TSO screen. This program is
also found on the applications disk as TSAMPL.BAS.

1. First type in the sample program.

Program 'tsampl.bas':

value=0 ! Initialize value.
uplftZ=1% ! Upper left corner = 1.
prompt$ = "Enter 0 to end." ! Set the prompt.

ON CTRL/C GOTO done

PRINT CHR$(27);"(?1h";
PRINT CHR$(27) ;"[781";
PRINT CHR$(27);"(2J":

Program exit.
Character mode.

Disable cursor.

Clear screen.

KEYPAD(uplft%, value, 1%, prompt$) ! Get new value
WHILE value <> 0

IF (value >= 1) AND (value <=8) THEN ! Legal position?
uplft%.= value

ENDIF

PRINT CPOS(1,1); "The value entered was: ";
PRINT CHR$(27); "[OK"; ! Erase line.
PRINT value; ! Print new value.
KEYPAD(uplft%, value, 1%, prompt$) ! Get new value.

ENDWHILE

done:

PRINT CHR$(27); "[?8h" ! Enable cursor.
PRINT CHR$(27); "{2J" ! Clear screen.

END

-12-

TOUCHSCREEN TOOLBOX

2.

3.

4.

Before you can run the program, it must be compiled and
linked. See your CBASIC or XBASIC manual's Getting Started
section for more information on compiling and linking the
program, or use the command file CMAIN.CMD. Refer to
Appendix A for the code for this file. CMAIN compiles the
program, links it with the Touchscreen Toolbox subroutines
and returns you to the FDOS> prompt. When using the
command file, the screen will look like this:

FDOS>cmain tsampl
Compiling...
Linking...

FDOS>

After compiling and linking, type

FDOS> tsampl <RETURN>

to run the program.

The KEYPAD subroutine will prompt you to enter a number on
the screen. If the number entered is greater than or equal
to one and less than or equal to eight, a new keypad will
be drawn at the location corresponding to the number
entered. Real number values will be truncated. To exit
the program, enter a zero.

That's all there is to it. Of course, the average program is
much more complicated than this example, but calling any of the
subroutines is no more difficult. To use the other subroutines,
just observe the syntax required for calling them and carefully
check the parameters passed to each subroutine. Both the
variable type and the order in which the variables appear is
very important. Information on each subroutine can be found
in the Functional and Operational Descriptions section of this
manual.

~13-

TOUCHSCREEN TOOLBOX

FUNCTIONAL AND OPERATIONAL DESCRIPTIONS

Functional and Operational descriptions follow for each of the
subroutines in the Touchscreen Toolbox library.

ALPHA

SYNTAX

ALPHA(string$,erase%, prompt$)

DESCRIPTION

Draws a conventional (qwerty) keyboard on the screen, allowing
alpha-numerical data to be entered using the TSO. ALPHA also
has the recall feature, allowing you to escape without changing
previously stored data.

The screen must be in character mode.

The string entered may be up to fifty-four characters long.

The keyboard plus prompt require all but the first and last
nine columns of screen and the entire top and bottom rows.

The prompt may be up to 60 characters long.

When all characters are deleted, the delete button becomes a

recall button that will recall the value in string$ that was
passed to the subroutine.

PARAMETERS

string$ A character string entered from the TSO and returned
by the subroutine. The string that is returned when
the recall button is pressed.

~14-

TOUCHSCREEN TOOLBOX

erase% A flag that controls the drawing and erasing of the
keypad. The flags function as follows:

0% Draw the keypad, but don't erase when returning
from the routine.

1% Draw the keypad, then erase before returning
from the routine.

2% Don't draw the keypad, and don't erase when
returning from the routine.

3% Don't draw the keypad, but erase before
returning from the routine.

The drawing and erasing controls are used as
follows:

Entering one number:
Use erase% = 1%.

Entering two numbers:
Use erase% = 0% for the first number.

Use erase% = 3% for the second number.

Entering three numbers:
Use erase% = 0% for the first number.
Use erase% = 2% for the second number.
Use erase% = 3% for the third number

Entering n numbers:
Use erase% = 0% for the first number.
Use erase% = 2% for the second, third, fourth,

etc. numbers, n-2 times.
Use erase% = 3% for the last number.

prompt$ A character string that appears above the keyboard
printed on the screen.

-15-

TOUCHSCREEN TOOLBOX

EXAMPLE

The following example draws a qwerty keyboard on the screen,
with the prompt centered above it on the first row of the
screen. It then allows alpha-numeric data entry from the
screen. Data is returned in character form in the variable
"string$".

string$ = ""
prompt$ = "Enter the model number <SPACE> serial number."
ALPHA(string$,1%,prompt$)

The keyboard and prompt are erased by pressing the ENTER
button.

ERRORS

This subroutine generates no errors.

-~16-

TOUCHSCREEN TOOLBOX

cNHANC

SYNTAX

ENHANC(pad$,size%,att%,type™%)

DESCRIPTION

Puts a character attribute on a touchkey. The attribute can be
high-intensity (highlighted) or blinking.

e Although the touchkey may be created by PLACE, only the
letters A through Y have size definitions. Therefore, the
subroutine is limited to the touchkey sizes available
through TPAD. See Figure 2 for touchkey sizes.

e ENHANC can only enhance one touchkey at a time. To enhance
two touchkeys, you must call the subroutine twice.

e The subroutine should only be called after a touchkey has
already been drawn on the screen. It should be called with
the same definition and type as the touchkey that was
originally drawn.

PARAMETERS
pad$ The letter-number string that is used to define the

touchkey. See Figure 2 for touchkey sizes.

NOTE

Touchkey sizes have changed since the release
of the preliminary version of the subroutines
(TSO Drivers). Refer to Appendix C for a list
of the former sizes. |

size% Specifies the size of the label characters. 1%
indicates single-sized, 2% indicates double-sized.

-~l7-

TOUCHSCREEN TOOLBOX

att% The attribute to be super-imposed.

0% attributes off
1% high-intensity
2% blinking

type% The type of cell to receive the attribute. Type%
defaults to -1% for double-sized characters.

-1% reverse video
0% label only
1% outlined

EXAMPLE

The following example causes the 2 x 2 touchkey in the upper
right-hand corner to be highlighted.

ENHANC("G9",1%,1%,1%)

ERRORS

An illegal combination of touchkey size and location will
result in a fatal error listing the bad parameter. For
example, D60, a bad definition, specifies a touchkey extending
off the screen. The error message would read:

*** BAD TOUCHKEY DEFINITION: 'D60'” ***,
Stop at line xxx in module ENHANC

-~18-—

Horizontal

| | | | | |
| lb 1 | 2 | 3 | 4&4 | 5 I
| | | | | | |
| | | | | | |

vi 1 t+ A | B tc | D I CE Y
e | | | | | | |
r | | | | | | |
t | 2 | F | Gt dH |tIéidiJd if
i | | | | | | |
ec | | | | | | |
a | 3 | K | L {[M {tN ft OO f
1 | | | | | | |

| | | | | | |
| 4 | P | Q | R | S [| T I
| | | | | | |
| | | | | | |
| 5 | U | Ve it wWwtsx dy i if
| | | | | | |

Figure 2. Touchkey Sizes For TPAD

The letter indicates the size in touch-cells. The
letter may be in upper or lower case. The vertical

variable indicates the first number ina pair. For
example, Q (or q) would draw a 4 cell x 2 cell touchkey.

NOTE

Touchkey sizes have changed since
the release of the preliminary version
of the subroutines (TSO Drivers).
Refer to Appendix C for a list of the
former sizes.

~19-

TOUCHSCREEN TOOLBOX

KEYLBL

SYNTAX

KEYLBL(strow%,stcol%,rows%,cols%,size%,lbl1$,type%)

DESCRIPTION

Places a label at a specified location in a specified amount of
space. It is used in conjunction with PLACE to find the best
fit for a touchkey label.

A line break is defined by a back-slash (\) between words.

To print a back-slash (\), precede it with a tilde (~). For
example, '\~\~~~\' prints a line break, a back-slash, two
tildes, and a back-slash. To follow a tilde by a line
break, leave a space between the tilde and the back-slash.

Labels are centered vertically and horizontally where
possible.

Words are fit in the order that they are presented. Since
an n-character label may not fit in an n-cell space, words
that are too long for the number of columns specified will
be split. The remainder of the word will be on the next
line.

Labels too long for the space will be truncated.

In a type 1 touchkey the last line is underlined to complete
the outline. The screen must be in character mode.

PARAMETERS

strow% The starting row of the label.

stcol% The starting column of the label.

-20-

rows%

cols%

size%

Ib1$

type%

EXAMPLE

TOUCHSCREEN TOOLBOX

The number of rows the label may occupy.

The number of columns the label may occupy.

The size of the characters to be printed.

The label to be printed.

The type of touchkey being printed.

The following example calls KEYLBL and places the words
"TOUCH HERE" inside a touchkey box.

PLACE(1%,2%,2%,2%,"TOUCH HERE",1%,"KEY 1",touch$)
KEYLBL(4%, 13%,3%,8%,1%,"TOUCH HERE",1%)

ERRORS

This subroutine generates an error message and stops the
program if the values in strow%, stcol%, rows%, and cols%
define a printing area that is off the screen. For example,
KEYLBL(16%,80%,2%,2%, ...) specifies an area off the screen.
The error message would read:

*** BAD LABEL AREA: 16 %, 80 %, 2 %, 2 %. ***

The numbers referenced (16 %, 80 %, etc.) are the first four
parameters in the KEYLBL statement.

-~2]-

TOUCHSCREEN TOOLBOX

KEYPAD

SYNTAX

KEYPAD(uplft%,value,erase%, prompt$)

DESCRIPTION

Draws a touch-keypad on the screen and allows you to enter
numerical data using the TSO. The upper left corner is drawn
at the touch-cell specified in uplft%. A user-specified prompt
is displayed in the line above the touch-keypad.

KEYPAD also has a recall feature. When all new digits have
been deleted, the delete button becomes a recall button that
allows you to recall the value stored in "value". This feature
allows you to escape without changing a previously stored
value.

e The screen must be in character mode.

e The number entered may be up to 15 digits long including the
decimal point, sign, exponent and exponent sign. If the
number entered is too large or too small, the subroutine
will trap the error and prompt the operator. The operator
may then modify the number from its illegal value.

e The keypad erases 20 columns and 14 rows starting at the
touch-cell specified in uplft%.

e The prompt may be up to 18 characters long.

e The touch-keypad may be erased by pressing the ENTer button.

PARAMETERS

uplft% An integer from 1 through 8 that specifies the upper
left touch-cell of the keypad.

—~22-

value

erase%

TOUCHSCREEN TOOLBOX

A real number entered from the TSO and returned by
the subroutine. The value that is returned when the
RCL (recall) button is pressed.

A flag that controls the drawing and erasing of the
keypad. The flags function as follows:

0% Draw the keypad, but don't erase when returning
from the routine.

1% Draw the keypad, then erase before returning
from the routine.

2% Don't draw the keypad, and don't erase when
returning from the routine.

3% Don't draw the keypad, but erase before
returning from the routine.

The drawing and erasing controls are used as
follows:

Entering one number:
Use erase% = 1%.

Entering two numbers:
Use erase% = 0% for the first number.
Use erase% = 3% for the second number.

Entering three numbers:
Use erase% = 0% for the first number.
Use erase% = 2% for the second number.
Use erase% = 3% for the third number

Entering n numbers:
Use erase% = 0% for the first number.
Use erase% = 2% for the second, third, fourth,

etc. numbers, n-2 times.
Use erase% = 3% for the last number.

prompt$ A character string that appears above the keyboard
printed on the screen.

~23-

TOUCHSCREEN TOOLBOX

EXAMPLE

The following example draws a touch-keypad 6 touch-cells high
(14 rows) and 3 touch-cells wide (20 character cells) starting
from character cell 2,10 and allows data entry from the screen.
The words "Enter percentage" are centered above the
touch-keypad on the second line of the screen. Data is
returned in numerical form as a real value in the variable
"value".

value = 0
prompt$ = "Enter percentage."
KEYPAD(1%, value, 1%,prompt$)

ERRORS
Specifying an illegal location will result in a fatal error
identifying the location. For example,

KEYPAD(9%, value, 1%,prompt$)

specifies a touch-keypad that would extend out of the touch-cell
area. The error message would read:

*kk BAD LOCATION FOR KEYPAD: 9 %. *¥**
Stop at line xxx in module KEYPAD

The number (9%) indicates the location passed to KEYPAD.

KEYPAD also detects errors when the exponent value is too large
or too small. An error message is printed inside the touchkey.
Touching the keypad corrects the error.

~24-

TOUCHSCREEN TOOLBOX

PLACE

SYNTAX

PLACE(uplft%,hght%, width%,size%, lbl$,type%,id$,touch$)

DESCRIPTION

Places a touchkey of a given size in a specified location with
a user-supplied label. The touchkey may be in single- or
double-size. It can be printed as a label only, in reverse
video, or outlined. It cannot be outlined in double-size. A
user-defined four-character ID code causes the subroutine
REPORT to elicit a response from every touch-cell.

e The screen must be in character mode.

e A single-size touchkey (composed of one touch-cell) has 1
row and 2 columns available for a label. Each additional

touch-cell adds either 6 columns or 2 rows.

e Double-sized characters require that the screen be set to
double-size before the subroutine is called.

e Double-sized touchkeys cannot be outlined.

e Specifying an outlined double-sized touchkey will default to
an inverse video touchkey.

e A double-sized touchkey composed of one cell has 1 row and 2
columns. Each additional cell adds either 3 columns or 1
row.

e For labeling specifications, see KEYLBL.

e Spaces should not be used in the ID code. One or more
spaces may be used to "zero out" any definition currently
set up for a given touch-cell. An ID code of "" leaves the
current definition undisturbed.

~25-

TOUCHSCREEN TOOLBOX

PARAMETERS

uplft% |The upper left touch-cell number in the touchkey.

hght% The height of the touchkey measured in touch-cells.

width% The width of the touchkey measured in touch-cells.

size% The size of the characters; 1% is single-sized, 2%
is double-sized.

lb1$ The label to be printed in the touch-cell.

type% The type of cell.

-1% reverse video
0% label only
1% outlined

id$ The ID code for the touchkey, <= 4 characters.

touch$ A string containing all touch-cell ID codes. Must
be initialized as SPACE$(240) at the beginning of
the program.

EXAMPLE

The following example places a touchkey 2 touch-cells high and
& touch-cells wide beginning at touch-cell 1. The touchkey is
outlined and is labeled "TOUCH HERE".

PLACE(1%,2%,2%,1%,"TOUCH HERE",1%,"KEY1",touch$)

~26-

TOUCHSCREEN TOOLBOX

ERRORS

An illegal combination of size and location will result in a
fatal error listing the bad parameters. For example,
PLACE(60%,3%,3%, ...) specifies a touchkey extending off the
screen. The error message would read:

k BAD TOUCHKEY DEFINITION 60 %, 3 %, 3 %. ***
Stop at line xxx in module PLACE

The numbers correspond to the first three parameters in the
PLACE statement.

-27-

TOUCHSCREEN TOOLBOX

REPORT

SYNTAX
REPORT(id$,touch$)

DESCRIPTION
Follows a WAIT FOR KEY, an ON KEY GOTO command, or is in
an equivalent loop. REPORT receives the value of the system
variable, KEY, and interprets it. If a defined touchkey has
been touched, it returns an ID code. If a defined touchkey has
not been touched, it returns a null string ("").

e REPORT only returns characters other than spaces. It will
not return characters that are preceded by spaces.

e In general, ID codes should not contain spaces (see PLACE
for information on special uses of spaces).

e REPORT may be called even if the screen has not been touched
(KEY=0). It will return a null string (id$="").

@ REPORT will not operate properly if the value of KEY is read
immediately before calling the subroutine.

PARAMETERS

id$ A string returned by the subroutine containing the
ID code for the touch-cell, touch$, as defined by
TPAD or PLACE.

touch$ A string containing all touch-cell ID codes. Must
be initialized as SPACE$(240) at the beginning of
the program.

-~28-

TOUCHSCREEN TOOLBOX

rXAMPLE

In the following example, touching the touchkey labeled VALVE A
will result in "G9" being printed. Touching VALVE B will print
"G29", and touching VALVE C will print "G49".

labels$(1)="VALVE A"

labels$(2)="VALVE B"
labels$(3)="VALVE C"

TPAD("G9,G29,G49",1%, labels$(), 1%,touch$)
again:
REPORT(id$,touch$)
IF id$="" THEN GOTO again
PRINT id$ -

ERRORS

This subroutine generates no errors.

-29—

TOUCHSCREEN TOOLBOX

TPAD

SYNTAX

TPAD(active$,size%,labels$(),type%,touch$)

DESCRIPTION

Allows you to define an entire screen of touchkeys, each with
its own label. The touchkeys may be in single- or double-size,
and may appear as label only, in reverse video, or outlined.
Touchkeys cannot be outlined in double-size.

e The screen must be in character mode.

e The labels for the touchkeys begin with element one of the
label array (label$(1)). Element zero is not used.

@e Double-sized characters cannot be outlined.

e A single-sized touchkey composed of one touch-cell has one
row and two columns available for a label. Each additional

touch-cell adds either six columns or two rows.

e A double-sized touchkey composed of one touch-cell has one
row and two columns. Each additional cell adds either three

columns or one row.

e For labeling specifications, see KEYLBL.

e TPAD uses the same letter-number definition (see active$) as

the ID codes used by REPORT.

PARAMETERS

active$ A string containing the location and size of each
touchkey. See Figure 2 for a diagram of touchkey
sizes.

~30-

TOUCHSCREEN TOOLBOX

NOTE

Touchkey sizes have changed since the
release of the preliminary version of
the subroutines (TSO Drivers). Refer
to Appendix C for a list of the former
sizes.

size% The size of the characters. 1% is single-sized, 2%
is double-sized.

labels$() An array with the labels for the touchkeys ordered
in the same way as active$ definitions.

type% The type of cell. Type% defaults to -1% in
double-size.

-1% reverse video
0% label only
1% outlined

touch$ A string containing all touch-cell ID codes. Must
be initialized as SPACE$(240) at the beginning of
the program.

EXAMPLE

The following example places three outlined touchkeys measuring
<@ x 2 touch-cells on the right side of the screen with the
labels "VALVE A", "VALVE B", and "VALVE C".

labels$(1)="VALVE A"

labels$(2)="VALVE B"

labels$(3)="VALVE C"
TPAD("G,G29,G49",1%,labels$(),1%,touch$)

-~3]-

TOUCHSCREEN TOOLBOX

ERRORS

An illegal combination of touchkey size and location will
result in a fatal error. The error message will list the bad
parameter. For example, the parameter D60 specifies a touchkey
extending off the screen. The error message would read:

*** BAD TOUCHKEY DEFINITION "D60", ***,
Stop at line xxx in module TPAD

Other error messages, such as Error 803 may occur. Check for
bad TPAD definitions, especially in the parameters active$ and
touch$.

~32-

TOUCHSCREEN TOOLBOX

<RRORS

The Touchscreen Toolbox library can report five errors, each
referring to a bad placement or definition. An error will
cause the screen to be cleared and an error message to be
printed. This type of error will terminate the program and
cannot be trapped by the calling program.

The subroutines that detect errors are ENHANC, KEYPAD,
KEYLBL, PLACE, and TPAD. The errors that are detected all
pertain to touchkey, touch-keypad or label placement. If
parameters are passed to any of the five subroutines that
specify a label, touchkey, or keypad that would go off the
screen, the respective subroutine will print a descriptive
error message and stop the program.

In addition, KEYPAD detects errors when the exponent value is
too large or too small. An error message is printed inside the
touch-keypad and the error is corrected by touching the keypad.

If character attributes underline or reverse video are set
before calling a routine in TTBOX.LIB or TTBOX.LBX, the result
after the call may be improperly displayed. Turning off the
character attribute(s) before calling the routine will correct
this problem.

Examples of each type of error can be found in the Functional
and Operational Descriptions section under the name of the
subroutine in question.

Fatal Errors Encountered by the BASIC Runtime System

In most cases, the Touchscreen Toolbox subroutines should not
generate any errors from the BASIC Runtime System. However,
certain fatal errors can occur due to the syntax of the calling
statement. The most common errors are 706 and 900.

—33-

TOUCHSCREEN TOOLBOX

Error 706 is the result of having an improper number of
parameters. Check the statement to ensure that there are the
same number of parameters in the CALL statement as in the
routine being called.

The example below may result in errors.

PLACE(1,2,2,1,"TOUCH HERE",1,"KEY",touch$)

It should read:

PLACE(1%,2%,2%,1%,"TOUCH HERE",1%,"KEY",touch$)

An error 900 occurs when variables in the CALL statement have

not been initialized. The variable should be initialized at

the beginning of the program.

Errors may also occur within the routines if they are
improperly called. The following example results in the error
message?

"!Error 0 at line 21 in module KEYLBL"

DIM label$(3)
PRINT CHR§$(27)3"([2J"3

PRINT CHR$(27)s"[? 1h";
label$(1)="VALVE A"

label$(2)="VALVE B"

label$(3)="VALVE C"

touch$=SPACE$(240)
TPAD("G9,G29,G49",1%,label$(3),1,touch$)
END

The line before the END should read:

TPAD("G9,G29,G49",1%,label$(), 1%, touch$)

~34~-

TOUCHSCREEN TOOLBOX

Fatal errors in the subroutines can be traced, in most cases,
to the calling program. When this type of error is
encountered, check the calling statement and the parameters
passed to the subroutine. Make sure that the correct variable
types are passed.

Logical Errors

Logical errors are program-dependent, but may also occur when
improper variables are passed to the routines or when the
screen has not been put in character mode. Strange and
unpredictable images on the screen are often the result of
logical errors.

Other error messages may also occur. Check first for bad TPAD
definitions, especially in the parameters active$ and touch$.

-35-

TOUCHSCREEN TOOLBOX

QUICK REFERENCE

The following is a summary of the subroutines, their parameters
and their functions.

e Initialize the string touch$ to 240 spaces with the
statement: touch$=SPACE$(240).

e Pass each variable in the correct type. Passing a real
number variable in place of an integer variable will cause
errors.

e For the subroutines to operate, the screen must be in
character mode. Enter character mode using the following
code:

(PRINT CHR$(27)3;"[? 1h")

Print sizes:

1% Single-size
2% Double-size

Types: Attributes for ENHANC:
-1% Inverse video 0% Attributes off
0% Label only 1% High-intensity
1% Outlined (single-size only) 2% Blinking

Erase:
0% Draw the keypad, but don't erase when returning from

the routine.
1% Draw the keypad, then erase before returning from the

routine.
2% Don't draw the keypad, and don't erase when returning

from the routine.
3% Don't draw the keypad, but erase before returning from

the routine.

~36-

TOUCHSCREEN TOOLBOX

Touchkey sizes for TPAD:

Horizontal

M
P
o
e
a
Q
a
r
a
e
r
y
a
<

o “ < = . z
Subroutine Descriptions And Syntax:

ALPHA (string$,erase%, prompt$)
Draws a keyboard to enable alphanumeric input from the TSO.
To erase keyboard, set erase% = 1%; otherwise, erase% = 0%.
To avoid redrawing the keyboard, add 2% to erase%.

ENHANC(pad$,size%,att%,type%)
Enables a touchkey to be high-intensity (highlighted) or
blinking.

The values of pad$, size%, and type% should correspond to the
touchkey being enhanced.

KEYPAD(uplft%,value,erase%, prompt$)
Draws a touch-keypad to enable numeric input from the TSO.
To erase keypad, set erase% = 1%; otherwise, erase% = 0%
To avoid redrawing the touch-keypad, add 2% to erase%.

-37-

TOUCHSCREEN TOOLBOX

KEYLBL(strow%,stcol%,rows%,cols%,size%,lbl$,type%)
Centers a label within the specified space.

PLACE(uplft%,hght%, width%,size%,lbl$,type%,id$, touch$)
Places a touchkey in the desired location.
Double-size must be set in the calling program.
Can be used to make selected boxes in reverse video.

REPORT(id$,touch$)
Reports the most recently pressed touchkey by interpreting
touch$,

Do not read the value of KEY before calling REPORT.

TPAD(active$,size%, labels$(),type%,touch$)
Enables an entire screen of touchkeys to be defined in one
command.

Double-size must be set in the calling program.

~38-

TOUCHSCREEN TOOLBOX

APPENDIX

The following appendices present a useful command program
(CMAIN), sample programs that provide examples for Touchscreen
Toolbox applications, and a list of the former TPAD sizes.
Appendix D explains how to erase "pull-down menus".

APPENDIX A

CMAIN.CMD

CMAIN.CMD
Compiles and links the calling routine with the

Touchscreen Toolbox subroutine and returns you to
the operating system.

BC
&Compiling
=?/nl/e

LL
&Linking

I ?,B$LOAD
F TSODRV
0?
M KBO:
G
FUP ?.0BJ/D

TOUCHSCREEN TOOLBOX

APPENDIX B

Sample Programs For The Touchscreen Toolbox

The following programs provide examples for use of the
Touchscreen Toolbox library.

TSODEM. BAS

! TSODEM.BAS runs the Touchscreen Toolbox (TTBOX)
! demonstration programs. Note: TSODEM.BAS and the other

! TSODRV demo programs must be on the system device for
! TSODEM to function correctly.

ON CTRL/C GOTO done

PRINT CHR$(27); "{2J"

PRINT CHR$(27); "({?1h"

PRINT CHR$(27); "[?81"

SET SHELL “TSODEM"

DIM labels$(7)
touch$ = SPACE$(240%)
done% = 0%
tkey$ = vere

GOSUB buttons

WHILE done% = 0%

REPORT(tkey$, touch$)
SELECT (tkey$)

CASE "H1"
ENHANC(tkey$, 1%, 2%,
PRINT CHR$(27); "[(?78h"
RUN “ATEST"

CASE “H21"
ENHANC(tkey$, 1%, 2%,
RUN "TSAMPL"

CASE "H41"
ENHANC(tkey$, 1%, 2%,
RUN "ENTEST"

1%)

1%)

1%)

B-1

Clear screen.

Character mode.

Disable cursor.

Set shell to this program.
Initialize labels$().
Initialize touch.

Set done to false.

Initialize tkey.

Determine which touchkey
was touched.

Enable cursor.
Run ATEST.

Run TSAMPL.

Run ENTEST.

TSODEM.BAS (contd)

CASE "H8"

TOUCHSCREEN TOOLBOX

ENHANC(tkey$, 1%, 2%, 1%)
RUN "SHRINK"

CASE "H28"

ENHANC(tkey$, 1%, 2%, 1%)
RUN "TOUCH"

CASE "H48"
RUN "LTEST"

CASE "G25"

done% = 1%
ENDSELECT

ENDWHILE

done:

PRINT CHR$(27); "[?8h"
PRINT CHR$(27); "[2J"

SET SHELL
END

buttons:

! Run SHRINK.

! Run TOUCH.

' Run LTEST.

! Program exit.

! Enable the cursor.

' Clear the screen.

'draw the touchkeys for the program

labels$(1)
labels$(2)
labels$(3)
labels$(4)
labels$(5)
labels$(6)
labels$(7)

"ALPHA"
"KEYPAD"
"ENHANC"
"SHRINK"
"TOUCH"
"LABEL"
"EXIT"

! Initialize label names.

tkey$ = "H1,H21,H41,H8,H28,H48,G25"
TPAD(tkey$, 1%, labels$(), 1%, touch$)

RETURN

TOUCHSCREEN TOOLBOX

ATEST.BAS

ATEST.BAS demonstrates how to use KEYPAD. The routine
asks the user to type in a new prompt. The program is
exited by typing <Q>.

ON CTRL/C GOTO done ! Program's exit.
PRINT CHR$(27); "[?1h" ! Character mode.
PRINT CHR$(27); "{2J" ! Clear screen.

prompt$ = "Enter the new prompt. Type Q to exit"
string$ = ""

WHILE prompt$ <> "Q"
ALPHA(string$,0%,prompt$) ' Call ALPHA to get new
prompt$=string$ ' prompt.

ENDWHILE

ne:
PRINT CHR$(27); "({2J" ' Clear screen.

END

TOUCHSCREEN TOOLBOX

TSAMPL .BAS

TSAMPL.BAS demonstrates how to use KEYPAD. If the user
enters a number between 1 and 8, the touch-keypad is
redrawn in that position. If a zero is entered, the

program exits. If any other number is entered, the keypad
is not redrawn. o

m

C
m
;

C
o
D

O
D

O
C
D

(
O
D

value=0 ! Initialize value.

uplft%Z=1% ! Set upper 1. corner to 1.
prompt$ = "Enter O to end." ! Set the prompt.

ON CTRL/C GOTO done

PRINT CHR$(27);"[?1h"s
PRINT CHR$(27) ;"(281";
PRINT CHR$(27);"[2J"s

Program exit.
Character mode.

Disable cursor.

Clear screen. e
m
p

C
m

C
D

O
D

KEYPAD(uplft%, value, 1%, prompt$) ! Get new value.
WHILE value <> 0

IF (value >= 1) AND (value <=8) THEN ! Legal position?
uplft% = value

ENDIF
PRINT CPOS(1,1); "The value entered was: ";
PRINT CHR$(27); “[OK"; ! Erase line.
PRINT value; ! Print new value.

KEYPAD(uplft%, value, 1%, prompt$) ! Get new value.
ENDWHILE

done:

PRINT CHR$(27); "[?8h" ! Enable cursor.
PRINT CHR$(27); "{2J" ! Clear screen.

END

TOUCHSCREEN TOOLBOX

ENTEST.BAS

ENTEST.BAS provides an overview of ENHANC. The user
selects an attribute and a touchkey to display that
attribute. <CTRL>/C exits the routine. o

m

C
D

C
D

O
m

ON CTRL/C GOTO done ! Program's exit.
PRINT CHR$(27); "(?1h" ! Character mode.
PRINT CHR$(27); "[2J" ! Clear the screen.
PRINT CHR$(27); "[?81" ' Disable cursor.

DIM label$(4)
label$(1)="TOUCH HERE"
label$(2)="BLINKING"
label$(3)="HIGH INTEN- SITY"
label$(4)="ATTRIB OFF"

touch$=SPACE$(240)
“PAD("G1",1%,label$(),-1%,touch$) ! Draw initial touchkey.
PAD("G5",1%,label$() ,0%, touch$)

TPAD("G9 ,G23,G27,GH5", 1%, label$(), 1%, touch$)
attZ=-0
tkey$=""

LOOP
REPORT (tkey$, touch$)
IF tkey$ <> "" THEN

PRINT chr$(7); ! Print beep.
ENDIF

Select (tkey$)
CASE "G23" ! Which attribute was

att%Z = 2 ! chosen?
CASE "G27"

att%Z = 1

CASE "G45"

att% = 0

ENTEST.BAS (contd)

CASE "Gi"
ENHANC("G1", 1%,att%,-1%)

CASE "G5"
ENHANC("G5", 1%,att%,0%)

CASE "G9"
ENHANC("G9" ,1%,att%, 1%)

ENDSELECT
ENDLOOP

done:

PRINT CHR$(27); "{2J"
PRINT CHR$(27); "[?8h"

END

TOUCHSCREEN TOOLBOX

Redraw touchkey with
new attribute.

Clear screen.

Enable cursor.

TOUCHSCREEN TOOLBOX

SHRINK .BAS

SHRINK.BAS demonstrates the abilities of TPAD, PLACE and

KEYLBL. It will draw a touchkey at any legal position on
the TSO.

ON CTRL/C GOTO done
PRINT CHR$(27); "[2J" ! Clear screen.
PRINT CHR$(27); "[?81" ' Disable cursor.
PRINT CHR$(27); "[{?1h" ! Character mode.

DIM labels$(7)
touch$=DUPL$(" ", 240%)
lab$="THIS LABEL IS AUTOMATICALLY CENTERED IN THE SPACE"

lab$=lab$+"AVAILABLE."

labels$(1)="GROW DOWN"

labels$(2)="SHRINK UP"

labels$(3)="GROW RIGHT"
*abels$(4)="SHRINK LEFT"

abels$(5)="CHANGE TYPE"

labels$(6)="EXIT"
TPAD("G7,G9,G27,G29,G47,GU9", 1%, labels$(), 1%, touch$)

type? = 02 \ vert% = 6% \ horz% = 5%

uplft? = 1% \ tkey$ - own

LOOP
! Draw the demo touchkey.
PLACE(uplft%,vert%,horz%Z, 1%, lab$, type%,"", touch$)

REPEAT

REPORT(tkey$, touch$) ! Decode a possible screen.
UNTIL tkey$ <> "" ! touch.

PRINT CHR$(7); ! Beep.
SELECT (tkey$)

CASE "G7" ! Grow vertically.
IF vert% < 6% THEN vert% = vert% + 1%

TOUCHSCREEN TOOLBOX

SHRINK.BAS (contd)

CASE "G9" ! Shrink vertically.
GOSUB fixscr ! Fix screen.

if vert% > 1% THEN vert% = vert% - 1%
CASE "G27" ! Grow horizontally.

If horz% < 6% THEN horz% = horz% + 1%
CASE "G29" ! Shrink horizontally.

GOSUB fixscr ! Fix screen.

IF horz% > 1% THEN horz% = horz% - 1%

CASE "G47" ! Change type.
typeZ=type%+1%
IF type%>1% THEN type%=-1%

CASE "G4g" ! Exit.

GOTO done

ENDSELECT
tkey$= ree

ENDLOOP

fixser:

! fixser erases the part of the box that will not be
! shown in the next screen update.

FOR k% = 2% TO 14%

PRINT cpos(k%,46%) ;CHR$(27);"(1K"; ! erase a line
NEXT k% ! of the screen.
RETURN

done:

!' Clear screen and enable the cursor.

PRINT CHR$(27);"(2J"; ! Clear Screen.
PRINT CHR$(27);"(?8h"; ! Enable cursor.

END

TOUCHSCREEN TOOLBOX

fOUCH. BAS

' TOUCH.BAS demonstrates and tests the abilities of the

! Touchscreen Toolbox library.

ON CTRL/C GOTO done

PRINT CHR$(27); "[2J"
' Program's exit.
! Clear screen.

'
'

PRINT CHR$(27); "[?781"; ! Disable cursor.
' PRINT CHR$(27); "[?1h";

DIM labels$(6)
DIM 1b1$(3)

' Character mode.

touch$=DUPL$(" ",240%) ! Set up touchkey definition.

Ooldb1k%
oldlb1l%

0% \ oldin%Z = 0%

0% \ newtkey$ = ""

labels$(1)
“abels$(2)
abels$(3)

labels$(4)
labels$(5)
labels$(6)

"Blink Two"

"Blink Three"

"Inverse One"

"Inverse Two"

"Inverse Three"

"Blink One" ! Draw and label the touchkey.

TPAD("G1,G21,G41,G5,G25,G45", 1%, labels$(),1%, touch$)

"Label One"

1b1$(2) "Label Two"
1b1$(3) "Label Three"
TPAD("G9,G29,G49", 1%,1b1$() ,0%, touch$)

1b1$(1)

GOSUB getkey ! Get the first key.
PRINT CHR$(7); ! Beep.
LOOP

num = MOD(VAL(RIGHT(newtkey$,2)),10) !
newtkey% = VAL(RIGHT(newtkey$, 2) !
IF num < 4 THEN !

GOSUB blink !
]

Get row no. from ID.

! Extract upper left
touch-cell.

! One of the BLINK
! keys.

TOUCHSCREEN TOOLBOX

TOUCH.BAS (contd)

ELSE
IF num > 4 and num < 8 THEN

GOSUB inverse ! One of the INVERSE keys.
ELSE

GOSUB label ! One of the LABEL keys.
ENDIF

ENDIF
PRINT CHR$(7);
GOSUB getkey ! Get the next key.

ENDLOOP

inverse:

! Changes the most recently touched touchkey to
! inverse video and returns the previous inverse
! image to normal.

IF oldin%Z<>0% THEN ! Take reverse image off
SELECT (oldinZ) ! last value chosen.

CASE 5

PLACE(oldin%Z,2%,2%,1%,labels$(4),1%,oldin$, touch$)
CASE 25

PLACE(oldin%,2%,2%, 1%, labels$(5),1%,o0ldin$, touch$)
CASE 45

PLACE(oldinZ,2%,2%,1%, labels$(6),1%,oldin$, touch$)
ENDSELECT

ENDIF

SELECT (newtkeyZ) ! Redraw the chosen touchkey
CASE 5 ! with reverse image.
PLACE(newtkey%,2%,2%, 1%, labels$(4) ,-1%,newtkey$, touch$)

CASE 25

PLACE(newtkey% ,2%,2%, 1%,labels$(5),-1%,newtkey$, touch$)
CASE 45 |

PLACE (newtkey%,2%,2%, 1%, labels$(6),-1%,newtkey$, touch$)
ENDSELECT

oldin%? = newtkey%
oldin$ = newtkey$

RETURN

B-10

TOUCHSCREEN TOOLBOX

JUCH.BAS (contd)

blink:
! Changes the most recently touched touchkey to blinking
! and returns the previous blinking image to normal.

IF oldblk%<>0% THEN ! Take reverse image off

ENHANC(oldblk$, 1%, 0%, 1%) ! last valve chosen.
ENDIF

ENHANC(newtkey$, 1%, 2%, 1%) ! Redraw the chosen
oldbl1k% = newtkey% ! touchkey.

oldblk$ = newtkey$
RETURN

label:

! Changes the most recently touched touchkey to a
! high-intensity label and returns the previous high
! intensity image to normal.

IF oldlbl1%<>0% THEN ! Take reverse image off

ENHANC(oldlb1$, 1%, 0%, 0%) ! last valve chosen.
ENDIF

ENHANC(newtkey$, 1%, 1%, 0%) ! Redraw the chosen
oldlb1% = newtkey% ! touchkey.
oldlbl$ = newtkey$

RETURN

getkey:
! This routine gets the ID code from the touchkey
! that was pressed.

REPEAT

REPORT (newtkey$, touch$)
UNTIL newtkey$ <> ""

RETURN

done:

! Clears the screen and enables the cursor.

PRINT CHR$(27);"{2J"; ! Clear screen.
PRINT CHR$(27);"[?8h"; ! Enable cursor.

“ND

B-11

TOUCHSCREEN TOOLBOX

LTEST.BAS

!
! LTEST.BAS allows the user to experiment with PLACE.

! Each time a new label is typed in, PLACE is called
! to display it.

PRINT CHR$(27);"(?1h"; ! Character mode.
PRINT CHR$(27);"(2J"; ! Clear screen.

touch$ = SPACE$(240)
id$ —- own

CLOSE 1%
OPEN "KBO:" AS OLD FILE 1% ! Open the channel from

! the keyboard to enable
! input.

KEYLBL(1%,1%,1%,80%, 1%, "TOUCH THE BOX TO END PROGRAM" ,0%)
lbl$ = "/ “\\YOUR MESSAGE\~~ "777777777 \ HERE"
lbl$ = 1bl1$ + "\7\ /"
PLACE(14%,3%,4%, 1%, 1b1$, 1%, "END", touch$)

SET NOECHO
ON KEY GOTO check_done
ON CTRL/C GOTO byebye

LOOP
PRINT CPOS(15,3);"Enter the label: ";CHR$(27);"[OK";
1b1$ — in

a%Z = 0% ! No characters received.
WHILE a% <> 13%

IF LSH(INCOUNT(1%),-8%) THEN ! If there is a character
a% = INCHAR(1%) ! Get character.
IF a%Z <> 0% THEN |

IF a%Z <> 127% THEN

lb1$ = 1lb1l$ + CHR$(a%)

PRINT CHR$(a%);

If not a delete then

Add character to string.
Print character. o

m

c
o
p

B-12

TOUCHSCREEN TOOLBOX

LTEST.BAS (contd)

ELSE

IF lbl$ <> "" THEN ! If it is a delete then

PRINT CHR$(27); "{D"; ! Back up one character.
PRINT " "; ! Erase by printing a space.
PRINT CHR$(27); "[D"; ! Back up one character.
lb1$ = LEFT(1b1$, LEN(1b1$) -1%) ! Remove char-

ENDIF ! acter from

ENDIF ! string.
ENDIF

ENDIF

ENDWHILE

PLACE(14%,3%,4%,1%,1b1$,1%,"", touch$) ! Place new label.
ENDLOOP

check done:

REPORT(id$, touch$)
IF id$ = "END" THEN RESUME byebye ! If done goto

~™SUME ! byebye.

byebye:

CLOSE 1% ! Close the keyboard port.
PRINT CHR$(7); ! Echo a beep.
PRINT CHR$(27);"(2J" ! Clear the screen.

END

B-13

TOUCHSCREEN TOOLBOX

APPENDIX C

Note To Users of TSODRV.LIB

A preliminary version of the Touchscreen Toolbox was made
available to some users, under the name TSODRV.LIB. If you
have used this version of the software, note that the touchkey
sizes and parameters have changed. The pre-release version of
the Touchscreen Toolbox used the following touchkey sizes for
TPAD:

E=1x2

F=2xl

G=2x3

G
a
A
W
P

Wo
m

Wo
tt

W
w
W

=

M
M

W
W

WY

y
on

See Figure 2 for the new touchkey sizes.

TOUCHSCREEN TOOLBOX

APPENDIX D

Erasing "Pull-down Menus"

A screen can be designed to display menus overlaying graphics.
This "pull-down menu" effect is possible because the
Touchscreen Toolbox drivers utilize only the character plane,
while the graphics plane remains undisturbed.

Example Using KEYPAD

When using the "pull-down menu" effect with KEYPAD, an erase
will not automatically cause graphics to reappear. The keypad,
for example, can be placed in any of eight different locations
on the screen. The software performs an erase by replacing the
keypad with spaces in the opaque to graphics mode. Spaces are
not transparent in the opaque to graphics mode, so that when
the keypad is erased, graphics can't be seen. To cause the
graphics to reappear, one of the erase commands must be used to
place an ASCII 0 (null) into screen memory.

If you want to erase after creating the "pull-down menu" effect
using KEYPAD, the following solution is available:

Use 1 or 9 for the position of keypad and then erase to the
left or erase to the right.

This can be accomplished using the following code:

KEYPAD(1%,value,0%,"ENTER NUMBER")
FOR i% = 2% TO 15%
PRINT CPOS(i%,28%)
PRINT CHR$(27);"[1K"; ! Erase to beginning of line.
NEXT i%

TOUCHSCREEN TOOLBOX

For a KEYPAD on the far right in the screen the code would be:

KEYPAD(8%,value,0O%,"ENTER NUMBER")

FOR i% = 2% TO 15%

PRINT CPOS(i%,53%)
PRINT CHR$(27);"(2K"s ! Erase to end of line.
NEXT i%

If there is more than one successive call to KEYPAD, use the
same sequence of erase% values, replacing the last one with 2%.
Otherwise, the keypad will be erased twice.

Example: Using ALPHA

When using ALPHA to create a "pull-down menu" effect, there are
three possible solutions:

1. Erase the whole screen.

2. Erase to the beginning of the line.
3. Erase to the end of the line.

The first option removes everything from the screen. The
second two options allow you to save portions of the screen
(the top, bottom, and the right OR left edge).

TOUCHSCREEN TOOLBOX

These erasures are accomplished as follows:

ALPHA(string$,0%,"ENTER YOUR NAME")
FOR i% = 2% TO 15%
PRINT CPOS(i%, 11%)
PRINT CHR$(27);"(2K"; ! Erase to end of line.
NEXT i%

ALPHA(string$,0%,"ENTER YOUR NAME")
FOR i% = 2% TO 15%
PRINT CPOS(i%,70%)
PRINT CHRS(27);"{1K"3 ! Erase to beginning of line.
NEXT i%

ALPHA(string$,0%,"ENTER YOUR NAME")
PRINT CHR$(27);"(2J"; ! Erase whole screen.

Changes to the erase% sequences are the same as the changes for
KEYPAD.

TOUCHSCREEN TOOLBOX

RESTRICTED RIGHTS

This software is unpublished and contains the trade
secrets and confidential proprietary information of
FLUKE. Unless otherwise provided in the Software
Agreement associated herewith, it is licensed in
confidence to the user "AS IS" and is only to be
reproduced for backup purposes. Use, duplication or
disclosure by the Government is subject to restrictions
as set forth in paragraph (b)(3)(B) of the Rights in
Technical Data and Computer Software clause in DAR
7-104.9(c). Software owned by John Fluke Mfg. Co.,
Inc., 6920 Seaway Blvd., Everett, WA 98206.

	0-01
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	A-1
	A-2
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-1
	C-2
	D-1
	D-2
	D-3
	D-4

