
+

ne polar
software
systems

POLAR SYSTEMS

POLAR TEST LANGUAGE

VERSION 1.3

1/ Contents

1 CONTENTS

1 CONTENTS .. 10... ee te ee te eee eee ene 1-1

2 HOW TO USE THIS MANUAL ee ee ee ee ee es 2-1

2.1 HOW TO READ SYNTAX DIAGRAMS 2-2

2.2 NOTATION CONVENTIONS 000-2 c eee 2-5

3 INTRODUCTION 2... 0. 2c ce tt ee te ee eee 3-1

3.1 EXAMPLE OF PTL 2... eee ee eee eens 3-2

3.2 SOFTWARE SUPPLIED 2... 2.2.02 eee 3-2

3.3 PHASES IN USING PTL 2... .202 2000. 3-3

3.4 PTL OPERATING MODES 2020 e eee 3-3

3.4.1 Immediate Mode 0. cee eee eee teens 34

3.4.2 Interpreted Mode 0... ee eee eee eens 3-4

3.4.3 Compiled Mode 2... cee eee ee ees 3-4

3.5 EXAMPLE PTL PROCEDURE220020.% 3-6

3.6 STRUCTURE OF PTL PROCEDURES 3-7

3.7 PROCEDURES eee eee ee te ens 3-8

3.8 TASKS 2.2... . cc ee ee ee eee 3-8

3.9 STEPS... . ec ee te ee eens 3-9

3.10 BASIC STATEMENTS 2.2.02 cee ee ee eee 3-9

3.11 BASIC SUBROUTINES 2... 2.0. eee eee eee 3-10

3.12 IMPORTS ee eee ee ee et ee te ee ne 3-10

3.13 FILENAMES eee et te es 3-12

3.14 SPOOLFILES ce ee ee ns 3-12

4 SYSTEM GENERATION eee ee ee te et te eens 4-1

4.1 GETTING STARTED 2 ce eee ee ee 4-1

4.2 SELECT INSTRUMENT DRIVERS 4-2

4.3 PRINT SELECTED DRIVERS0.25. 4-5

4.4 GENERATE SYSTEM 2.0.0 ee eee tees 4-6

Polar Test Language 1-1

1/ Contents:

4.5 PROGRAMMABLE MENU KEYS...............000005. 4-8
4.6 SIZEOFE-DISK 0c cece cece eee eee eee 4-8

5 SYSTEM CONFIGURATION 0.0000 c cece eee cece eee 5-1
5.1 STARTING THE PTLSYSTEM0 000000 5-1
5.2 SELECT CONFIGURE 0000 0c cece cece eee e een 5-2
5.3. CONFIGURE 0... 0. cece ccc eee eens 5-2
5.4 CONFIGURE DEVICES 0.0000 cece eee eee. 5-3
5.5 CONFIGURE INSTRUMENTS 0.00000 cee euee 5-4
5.6 CONFIGURE CONNECTIONS 0.00000 cee ee eeeen 5-6
5.7 TEST CONFIGURATION 0.00000 eee e eee eeees 5-11

6 SYSTEM FUNCTIONS 0.0000 ccc eee eee eee eens 6-1
6.1 OVERVIEW 0.0... cc ccc cece cee eee een 6-1
6.2 THEPTLMENU (SHELL)0 00.0 0e ee eueee 6-2
6.3. DIRECT COMMAND LINES0 000000 ee 6-2
6.4 CHANGING THE MENU FUNCTIONS005. 6-3
6.5 USING THE MENU FUNCTIONS 0000-000 6-3

6.5.1 SELECT 2.0... 0.00. cece cece cee eee eae 6-3
6.5.2 EDIT,FUP,SET,TIME,FCOPY008. 6-5
6.5.3 PRINT 0.0.00 cece cece cee eee eee 6-8
6.5.4 MENU EDIT (Optional) 0000000 cece 6-11
6.5.55 RUN 1... ccc ccc eee een ene 6-12
6.5.6 COMPILE 0.00.00 cece cece eee eee eee 6-12
6.5.7 EXECUTE 0.0.0 cece cece cece eee neces 6-13
6.5.8 CONFIGURE 0000 cece cece eee eee ae 6-14

7 PTLCOMMAND REFERENCE 00.000 cee eee cues 7-1
7.1 OVERVIEW ... 0.0.0.0 aes 7-1
7.2 STRUCTURAL COMMANDS0 000.0 e eee 73

7.2.1 PROCEDURE() 0.0.0. c cece eee cece ee aes 73
7.2.2 END PROC...... 0.0 cece cece eee e eee 7-5

1-2 Polar Software Systems

1f'Coritents

7.2.3 START TASKO 0000 c ee eee cic eee lee 76
7.2.4 END TASK 0.00 cece een eens Lee S. 7-6

7.3. INSTRUMENT CONTROL COMMANDS05. 7-7

7.3.1 RESET 0... cece eee ee teens ry Ef
7.3.2 SETUP 2.0... ccc eee eens 2. 7-8
7.3.3 MEAS eee ccc eee eee eee eee cee 78
7.3.4 APPLY... 0... ccc eee te eee ees 7-10

7.3.5 DISAPPLY 0c cece eee ee eee nes .. 7-11
7.3.6 SWITCH 0... cc eee ees (. 7-12
7.3.7 DISCONNECT 0.00.00 cee eee cee ence eens 7-13

7.4 INPUT/OUTPUT COMMANDS0000e0 05 , 7-14

7.4.1 WRITE... 0... ee eee tenes 7-14
7.4.2 REPORT 0.0: c cece tee e ee ee ee i 7-17
7.4.3 ENTER 2.0... 0. ccc cece eee eee e ee eens 7-17

7.5 SPECIAL COMMANDS0000 ee eee eee >... 7-20

7.5.1 DELAY 1.2... 0... cece cece eee eee eee ees 7-20
7.5.2 EVAL 2... ccc ccc eee eee eee teenies 7-21

8 EDITING A PROCEDURE 0.0 cece eee eee eees 8-1

8.1 OVERVIEW 0... 0. ccc cece eee eee 8-1
8.2 FUNCTIONS FOR WRITING/EDITING2005. 8-1
8.3. USING MENUEDIT00 cee eee ence ee eee 8-2

9 TESTING A PROCEDURE 0.0 e cece eect ences 9-1
9.1 OVERVIEW 0.0 cece cee ee eee eee eens 9-1
9.2 IMMEDIATE MODE 000 cece eee eee ceaee 9-2
9.3. INTERPRETED MODE 000 e cece eeees 9-3

9.4 COMPILED MODE (EXECUTE)............000e eee eues 9-3
9.5 STORING A COMPILED PROCEDURE25. 9-4

10 OPERATOR DISK GENERATION 00000 c cece unease 10-1

10.1 SELECTION MENU............ 000 eee e eee ee eens 10-1

Polar Test Language 1-3

1/ Contents

11

12

14

10.2 PROCEDURE TRANSFER2220026- 10-3

10.3 CONFIGURATION TRANSFER62. 10-3

ADVANCED PROGRAMMING 02. eee eee eee eee 11-1

11.1 STANDARD PTL eee ee ee ee 11-1

11.2 IMPORT PTL VARIABLES2.2006. 11-4

11.3 CALL BY REFERENCE-....0-2. 25. e eee 11-5

11.4 BASIC STATEMENTS0 020202 ee 11-7

11.4.1 For .. Next loop...-...0 22.2 eee eee eee 11-7

11.4.2 Repeat... Untilloop-222006. 11-10

11.5 “LOOP ON FAIL" 2... ... ee ee ee ee ee ee ee 11-11

11.5.1 Continous ... 2... . cee ee ee eee 11-11

11.5.2 With loop count-.... 0... eee eee ee eee 11-11

11.5.3 With fault indication0-2006- 11-12

11.6 SUBROUTINES 0. eee ee ee ee ees 11-13

11.6.1 The REPORT subroutine 11-14

11.6.2 PTL Subroutines22220008. 11-17

11.6.3 Basic Subroutines 2.0000 cece 11-20

11.7 USER LIBRARY 2... 0... cee eee eee ees 11-21

11.7.1 Empty user library 2.00. ee eee eee 11-22

11.7.2 Update user library 2.0022 eee 11-22

11.7.3 Include a user library............0.22 0000 11-23

11.8 USE OF ERROR HANDLERS 11-25

SYSTEM DETAILS ... 2... ee ee ee 12-1

12.1 SYSTEM GENERATION 0.2.2... 2c eee ene 12-1

12.2 STORE MENU CONFIGURATION4.. 12-1

12.3 STEPS REQUIRED FOR COMPILATION 12-1

12.3.1 Creating a procedure-.0 2.0 cease 12-2

12.3.2 Optimize PTL 2... ee ee ee ee es 12-3

12.3.3 Compile Basic 2... . 0... ee eee eee eee 12-3

12.3.4 Link Libraries ... 1.0.2... . 0... ce ee eee ee eee 12-3

Polar Software Systems

1/:Contents !

12.4 CREATE A USER LIBRARY0.. .. 124

12.4.1 Compilation 2... cee eee ee eee eee 12-5

12.4.2 Main/subroutines2. 0c e eee eee 12-5

12.5 WARIABLES IN PTL 1... . ee ee ee et es 12-5

12.6 FILES REQUIRED FOR PTL 12-6

12.6.1 Program Files 0.0.0.2 eee eee eee eae 12-6

12.6.2 Extended Basic Compiler 12-7

12.6.3 Extended Linking Utility 12-7

12.6.4 Extended Basic Runtime06-. 12-7

12.6.5 Libraries 2... 1... ee ee te ees 12-7

13 APPENDICES cee ee ce ee te ee tee 13-1

A. Example Configuration Listing 2.2.00 eee eeeese 13-1

B Example Driver listng ... 2... 0... . cee ee ee ee eee es 13-4

Cc. Example Procedure 0.0... ee eee ee eee eee eee 13-7

D Example Result ... 0... ... 0... ce ee ee te ee tt ee 13-9

The following additional Options may be available at the end of this document :

PTL Driver Development Package

PTL Graphical User Interface

PTL Icon Editor Package

PTL Network Support

Polar Test Language 1-5

1/ Contents

1-6 Polar Software Systems

CHAPTER 2

HOW TO USE THIS MANUAL

2/ How to use this manual

2 HOW TO USE THIS MANUAL

This manual is divided into these major sections:

CHAPTER 2 How To Use This Manual

Describes the organization of the various manual chapters, syntax diagrams and

notation conventions.

CHAPTER 3 Introduction

This section gives a global introduction to PTL with examples, phases in using PTL,

the use of the different operating modes, the structure of PTL procedures and PTL

filenames.

CHAPTER 4 System Generation

Describes how to generate a PTL system disk which contains all required instrument

drivers.

CHAPTER 5 System Configuration

Describes how to use standard Fluke FDOS functions from within the PTL

environment.

CHAPTER 6 System Functions

Explains in detail all configurations to be made to define a system.

CHAPTER 7 PTL Command Reference

Describes the individual PTL commands in detail.

CHAPTER 8 Editing a procedure

Describes the procedure writing process and the usage of the menu functions.

CHAPTER 9 Testing a procedure

Describes the procedure testing and compilation process.

Polar Test Language 2-1

2/ How.to use this manual

2.1

CHAPTER 10 Operator Disk Generation

Explains how to create an easy to use operator disk.

CHAPTER 11 Advanced Programming

Gives a number of examples of PTL procedures, such that advanced users can make

better use of the system.

CHAPTER 12 System Details

Gives several details on the PTL system, for more insight in the PTL system.

CHAPTER 13 Appendices

A collection of examples of output of the system.

HOW TO READ SYNTAX DIAGRAMS

Although not all of them are used in this manual, an overview of all symbols as used

in the standard 1722A manuals has been provided for completeness.

A syntax diagram is a graphical representation of how to construct a valid command

or statement in a programming language. It is a kind of "shorthand" way of writing

down all the rules for using the elements of a language. Since they are used

throughout this manual, learning how to read them can be a great time saver.

Polar Software Systems

2/ How to use this manual

Words inside ovals must be entered exactly as they are shown.

RETURN Words inside boxes with round corners indicate a single key must be

pressed, such as RETURN or ESC.

This indicates a space in the statement. (Press the space bar.)

CTRL/C To create a control character, hold down the control key (CTRL),

then press the other key. This one is Control/C;

A box with lower-case words inside means that you supply some

information. In this case, you would enter a filename.

Words in parentheses are explanations of some kind. They give

added information about the nearest block or path.

From left to right, any path that goes in the direction of the arrows is a legitimate

sequence for the parts of a statement. The following example shows the correct syntax

for naming a file.

Polar Test Language 2-3

2/.How to. use this manual

2-4

The translation is given below.

: (no name) (default extension)
file ra 7 y x ~~

(no extension) (

atte H+} A 7S

atte

igi

(8
K

<space? (o
f

<space>

(maximum 6 characters) (maximum 3 characters)

A line exits the top of this diagram with no keyboard input. This indicates that it is

possible to NOT specify the filename or its extension. In this case, the file would

have "no name" and the system would assign a "default extension".

Further down the diagram, you can see that there are other possibilities. They are

explained by the remarks, "maximum of 6 characters" for the name and a "maximum

of 3 characters" for the extension.

Polar Software Systems

2/ How to use this manual |

The filename can be any combination of letters, digits, the $ sign and spaces (up to

six characters) and the extension can be up to three of those characters.

The filename and extension must be separated by a period, as shown in the oval block

at the top centre.

The remark "no extension" means that it is not necessary if a name is specified.

Here are some examples of valid filenames according to the syntax illustrated in the

diagram:

TESTIN.PTL DEMO.$3C $$$$$$.$$$

2.2 NOTATION CONVENTIONS

The conventions listed here are used for illustrating keyboard entries and to

differentiate them from surrounding text. The braces {}, brackets [] and angle

brackets < > are not part of the sequence. Do not type these symbols.

<XXX > Means "press the xxx Key"

Example : <RETURN > indicates the RETURN key.

<xx>/y Means Hold down key xx and then press y

Example: <CTRL>/C means to hold down the key labeled

CTRL and then press the key labeled C.

[xxx] Indicates an optional input.

Polar Test Language 2-5

2/ How to use this manual

XXX

Example: [input filename] means to type the name of the input

filename if desired. If not, no entry is required and a

default name will be used.

Means to type the name of the input as shown.

Example: BASIC means to type the program name BASIC as

shown.

Indicates a required user-defined input.

Example: {device} means to type a device name of your choice,

as in MFO: for floppy disk drive 0.

(xxx) This construction has two uses:

2-6

As a separate word, (xxx) means that xxx is printed by the program.

Example: (date) means that the program prints today’s date at this

point.

Attached to a procedure or function name, (xxx) means that xxx is

required input of your choice; the parentheses are required parts of the

input.

Example: TIME(parameter) means that a procedure specification

is the literal name

TIME followed by a parameter that must be enclosed in

parentheses.

Polar Software Systems

CHAPTER 3

INTRODUCTION

3/ Introduction

3 INTRODUCTION

The Polar Test Language has been developed for testing electrical and electronic

equipment. It is the solution for those applications in which complex test procedures

have to be created by technicians. PTL eliminates the need to control instruments in

a system with low level commands.

Although originally designed for the Fluke 1722A System Controller, PTL has been

meant not to be a computer oriented language, but a development tool for test

engineers with a thorough knowledge of test problems, but without time to be invested

in programming.

PTL is self documenting: it has been designed in such a way that a test procedure,

developed with PTL, can be used without any change for documentation purposes as

well.

Because PTL is so easy to use, time savings can be as much as 80% when a new

procedure has to be created.

The language is powerful enough to develop and execute complete tests, but is not

limited to its standard instruction set only. If desired, normal Fluke Extended Basic

statements can be added anywhere in a Polar Test Language procedure.

If necessary, even Fortran or Assembler routines can be included in PTL procedures.

Operators, using procedures generated with PTL, are guided through all procedure

steps without the use of the computer keyboard, decreasing the chance for wrong

input. This approach makes it possible for even unskilled personnel to execute

complicated test procedures.

Polar Test Language 3-1

3/ Introduction

3.1 EXAMPLE OF PTL

SUB Test (task)

On Error Subret

Procedure ("Name=’Amp test’ ;Version=’1.2’")

Start_task("Name=’ Supply test’")

Write ("To=Printer ;Type=Header")

Setup ("Instr=Power-supply;Voltage=12.6")

Setup ("Instr=Dmm; function=Vdc ; Range=20")

Apply ("Instr=Power-supply;To=Amp input")

Meas ("Instr=Dmm;At=Testpoint 1;Min=5.24;" &

+"Max=8.75,Units=’ Vdc’ ")

Write ("To=Printer;Type=Result")

End _task("")

End proc

SUBEND

3.2 SOFTWARE SUPPLIED

The Polar Test Language software is distributed on four or more disks in 1722A

format which contains:

o System Generator (Optionally Menu driven)

To generate a system disk

o Instrument drivers (One or more disks)

Contains the drivers for instruments

o Master Operator Disk

Is the original of new operator disks

o System disk

3-2 Polar Software Systems

3.3

3/ Introduction

A pre-generated disk for training purposes.

PHASES IN USING PTL

The following phases can be distinguished in using PTL:

- System generation

The system generator is used occasionally, to combine the PTL language with the

instrument information, contained in the instrument drivers. The result is a system

disk, which will be used regularly to create procedures.

- System Configuration

Before a system disk can be used, details about the system configuration must be

provided. These are: instrument addresses, logical names and the connections between

instruments and the unit under test.

- Writing a PTL procedure

Once configured, the system disk is ready to perform its functions. Test procedures

can be written, using a text editor or the advanced PTL menu editor.

- Testing a procedure

Procedures can be tested, using immediate commands, using the PTL interpreter and

using the compiler.

- Creating an operator version

Once a test procedure is created, it can be stored on an operator disk. Tests can now

be performed by inexperienced users, without the need of an operator keyboard.

Procedures are protected against modifications.

For a detailed description, refer to the next chapters.

Polar Test Language 3-3

3/ Introduction

3.4

3.4.1

3.4.2

3-4

PTL OPERATING MODES

PTL has three modes of operation: Immediate, Interpreted, and Compiled.

The Immediate Mode is the default mode, i.e. the mode PTL starts in whenever it is

entered from FDOS. Other modes are accessible only from Immediate Mode.

Immediate Mode

In Immediate Mode the PTL Interpreter accepts and executes PTL commands, typed

in from the keyboard, or selected from the available command list using the *©MENU’

function. No BASIC statements can be executed in Immediate Mode.

In addition, the Immediate Mode accepts the selection of the Main Menu functions

(like "SELECT’, ’FUP’ or PRINT’) as a command and executes it. Refer to the

description of the Main Menu for information on how to select Main Menu functions.

Interpreted Mode

The Interpreted Mode accepts input from a file, rather than from the keyboard and

can be used to execute a procedure by means of the RUN’ command from the PTL

Main Menu. The file, with the filename, extension and device selected by the

*"SELECT?’ function, will be executed.

As in Immediate Mode, only PTL commands are interpreted and executed. All

standard BASIC statements included in the procedure are skipped during run time.

For editing of existing or new procedures, the PTL Interpreter provides two different

edit functions, one being the standard Fluke Edit program which can be executed

directly from within PTL, the other being the *MENU EDIT?” function of the Main

Menu.

Polar Software Systems

3/ Introduction

3.4.3 Compiled Mode

The PTL Compiled Mode first optimises and compiles (translates) all PTL commands

before they are executed. This also means that all normal Fluke extended BASIC

statements can be added to a PTL Procedure. The optimization process combines both

PTL commands and BASIC statements to a file, executable from FDOS. Refer to the

description of the PTL Main Menu for more information on how to compile

Procedures.

Polar Test Language 3-5

3/ Introduction

3.5 EXAMPLE PTL PROCEDURE

The following is a typical example of a PTL

procedure:

Procedure ("Name=’Amp Test’ ;Programmer=’P.Olar’")

Start_Task ("Nr=1;Name=’ Power’)

Setup ("Instr=Dmm; Function=Vdc")

Setup ("Instr=Power;Output=12")

Meas ("Instr=Dmm;At=+5V;Min=4.8;Max=5.2)

Write ("To=Screen ;Type=Result")

End Task

Start_Task ("Nr=2 ;Name=’Gain’")

Setup ("Instr=Dmm; Function=Dbm")

Setup ("Instr=Generator ; Dbm=10 ; Herts=1000")

Apply ("Instr=Generator;To=’Amp In’")

Meas ("Instr=Dmm;At=Outp ;Min=33 .6;Max=34.9")

Write ("To=Screen;Type=Result")

End _ Task

End Proc

3-6 Polar Software Systems

3/ Introduction

3.6 STRUCTURE OF PTL PROCEDURES

A PTL Procedure consists of a number of Tasks which in turn contain a number of

Steps. This definition means that the structure of a PTL Procedure always looks like:

PROCEDURE TEST

START TASK 1

STEP

STEP
END_TASK

START TASK N

STEP

STEP

END_TASK

END PROC

The elements of the procedure will be explained in the following paragraphs.

Polar Test Language 3-7

3/ Introduction

3.7

3.8

3-8

PROCEDURES

A Procedure contains the elements needed to control all desired in- and output signals

for testing a unit under test.

The start and end of a Procedure must be identified by means of the terms

PROCEDURE and END PROC :

PROCEDURE ("...")

(Other procedure elements)

END _PROC("...")

Parameters can be used at both the beginning and the end of a procedure. Refer to the

description of the PTL Commands for more information on parameter passing.

TASKS

A Procedure consists of one or more Tasks. Each Task consists of a number of Steps

and has the following structure:

START TASK("...")

(Steps)

END_TASK

Parameters can be given at the beginning of the task. Refer to the description of the

PTL Commands for more information on parameter passing.

Polar Software Systems

3/ Introduction

3.9 STEPS

Each Task contains an unlimited number of Steps. These steps can be Basic

statements or PTL statements (actually high-level commands, which are often

composed of hundreds of normal BASIC statements).

More information on STEPS is given in the description of the PTL Commands.

3.10 BASIC STATEMENTS

As stated before, the PTL Interpreter is not a limitation, rather an enhancement of

standard Fluke 1722A Extended BASIC. This means that all legal Fluke Extended

BASIC statements can be used together with PTL commands without any restriction.

However, BASIC statements added to a PTL Procedure are only executed when PTL

operates in Compiled Mode.

Refer to “advanced programing" for further details.

Polar Test Language 3-9

3/ Introduction

3.11

3.12

3-10

BASIC SUBROUTINES

Procedures which have to be compiled with the standard FLUKE Extended BASIC

Compiler, must be embedded in a legal BASIC subroutine. The structure of such a

routine 1s:

SUB TEST (Task)

On error subret

Import Result ()

Procedure ("....")

End Proc("...")

SUBEND

As a parameter the actual task number is being passed.

Only one procedure can be defined per BASIC subroutine.

IMPORTS

In order to better control your test, several global variables are defined, the so called

imports:

Task A number which consists of two parts, separated by a period. The part

preceding the period indicates the task number, the part following the

period indicates the step within the task momentarily being executed.

The task number will be adjusted automatically and can be utilized in

BASIC by a procedure-writer.

Polar Software Systems

Pass %(0)

Pass %(1)

Pass %(2)

No _result%

Type%

ResultO

Result$

Max

3/ Introduction

Step pass

Task Pass

Procedure Pass

These three (status)flags indicate if the last executed step, task or

procedure respectively, passed or failed. A particular flag will be reset

to 0 if the associated part of the test failed, otherwise the flag will be

set to a value <> 0.

These flags can be used in Basic, for example to repeat or skip (a part

of) a test, depending on the flag value.

Contains the number of results in the ResultQ array the last measured

or entered data.

The type of results to be passed by a MEASURE, EVAL or ENTER

statement.

O= Not a valid result

1= Bit value(s)

2= Integer value(s)

3= Real value(s)

4= String value(s)

Contains the last numeric result from a MEASURE, EVAL or ENTER

statement.

Contains the last string result from a MEASURE, EVAL or ENTER

statement.

The minimum value specified in the lasts MEASURE, EVAL or

ENTER statement.

The maximum value specified in the last MEASURE, EVAL or

ENTER statement.

Polar Test Language 3-11

3/ Introduction

Units$

3.13 FILENAMES

The units specified in the last MEASURE, EVAL or ENTER

statement.

Procedures are treated as normal files and are stored on floppy, e-disk or other file-

structured media by name. File names consist of 1 to 6 letterssnumbers,spaces,or $

characters. File names may be extended by a period character, followed by up to 3

letters, numbers, spaces, or $ characters.

Some file name extensions have a special meaning to the Fluke 1722A Instrument

Controller:

-BAL

BAS

.FD2

-HLP

SYS

.CMD

.LIB

.LBX

-OBX

Lexical form of BASIC programs

ASCII-text form of BASIC programs

Binary utility programs

System data files (Help)

System binary programs

Command files

Library for assembly modules

Library for extended basic modules

Extended basic module

PTL adds the other extensions:

PTL

.DRV

3.14 SPOOLFILES

The extension for a PTL procedure

An instrument driver

For serial devices, PTL knows special spool files. Instead of directly printing to the

3-12 Polar Software Systems

3/ Introduction

device, PTL can store the testresults in a temporary file, which is printed at the end

of a procedure. Therefore the actual running of a test procedure is not delayed

because of the printing. Only at the end of the procedure, in most cases when a

operator has to change boards, a delay will occur.

Serial devices are: KBO:..KB2: RS232 ports

SP0:..SP3: RS232/422 ports

GP0:..GP1: IEEE ports

PCO:..PC9: Optional PTL network

Results will be spooled when a filename is specified after the device name. E.g.

KB1:SPOOL.DAT

It is necessary to specify the space available on disk for each spool file at start-up of

the PTL program. Use a /S option behind PTL:

E.g.: PTL10/S to specify 10 blocks

Polar Test Language 3-13

3/ Introduction

3-14 Polar Software Systems

CHAPTER 4

SYSTEM GENERATION

4.1

4/ System Generation

SYSTEM GENERATION

The System Generation program must be used to create a new system disk, optimised

for a specific test environment. This means that only the software modules

(instrument drivers) which are specified by the user, are linked together to create a

new PTL program. This approach has the advantage that as much disk space is left

as possible for other purposes,(editing and compiling) and that speed, especially

during editing, will be improved.

The following paragraphs describe the process of generating a new system disk which

contains all required instrument drivers.

GETTING STARTED

Switch on the 1722A Instrument Controller, and insert the disk with the label ’Polar

Test Language System Generator’.

In case the system has already been switched on, press < RESTART > + < ABORT >

simultaneously after the disk has been inserted.

Polar Test Language 4-1

4.2

4/ System Generation

After execution of the start-up command file, which copies several files to E-disk, the

following screen lay-out will appear:

f" PTL Yersion 1.x]

/ SELECT | | PRINT | | SYSGEN | | FUP 1 | SET | | EXIT |

Use this program to select instrument drivers

into a library that will be used for the creation

of PTL programs.

Touch <RETURN> to continue....__

. }

This indicates that the System Generator program has now been loaded and is ready

to be used.

In addition, the program "SYSGEN’ can be run from the FDOS prompt by typing the

filename: SYSGEN. Refer to the Fluke 1722A System Guide for information on how

to run the FDOS program.

SELECT INSTRUMENT DRIVERS

To generate a system disk, the user has to specify which instruments are used in the

system. This can be done by selecting software modules, called ’instrument drivers’,

to create new PTL system software that will ’understand’ all instrument dependent

commands and functions.

After <RETURN> has been pressed, use the cursor control keys to move the

Polar Software Systems

4/ System Generation

reverse video field to the "SELECT’ option from the menu and press <RETURN>.

The following display appears:

PTL Version 1x

| PRINT | [SYSGEN | | FUP | [SET |] EXIT |

Selected modules

[SELECT |

Continue with (next) instrument driver disk CY /N)

To select the desired instrument drivers from the supplied driver disk(s), insert the

disk ’PTL Instrument Drivers’ (which contains the driver library) and press <Y>.

If one of the other menu options has to be used then respond with <N>.

After <Y > has been pressed to select drivers, the system will start reading the disk

to display the names of files, recognized as instrument driver. Although all these

filenames are read from disk, only the names of the first nine drivers which are

found, are listed on the screen.

The following figure shows a typical 1722A display when using the SELECT’ menu

option.

Polar Test Language 4-3

4-4

4/ System Generation

q PTL Version 1x |
(eat | (Print | (_syscen_] [Fup | [SET }[exm]

Selected modules

¥ Systron Donner SHR Vers 1.0

Fluke 51004 Vers 1.1

v Philips PM6652..4 Vers 1.0

Fluke S444 “ors 70

Fluke 85064 Vers 1.1

HP 33254 Vers 1.0

Fluke S8404 Vers 1.1

¥ AEA Switch Yers 1.0

If more drivers are available, then the names which are not on the screen can be made

visible by using the cursor control Keys.

Using these cursor control keys makes it possible to scroll or step through the list of

instrument names. A reverse video field indicates the driver being selected. When

< RETURN > is pressed, a ’v’-mark will appear, in front of the selected driver, to

indicate all drivers currently selected. If, accidentally, a wrong driver is selected, it

can be de-selected by again pressing <RETURN> after positioning the reverse video

field on the driver to be deleted.

The selection process can be terminated by pressing the < ESC > key, but before the

system returns to the menu, the user will be asked if the selection of instrument

drivers has to be continued with a next disk.

If desired, the user can insert the next disk containing instrument drivers and press

<Y>. When reading the new disk, the drivers which have been selected previously,

are scrolled from the screen but can be made visible again by using the cursor control

keys.

After selecting all desired instrument drivers, the selection procedure can be

terminated by pressing <N> whenever the question "Continue with (next) instrument

Polar Software Systems

4/ System Generation

diver disk (Y/N)’ is displayed on the bottom display line.

4.3. PRINT SELECTED DRIVERS

After selecting the desired instrument drivers, it is possible to list the selected drivers

on the screen or on a printer, connected to one of the available printer ports.

To generate a listing of all selected drivers, the PRINT’ function must be selected

from the menu. This can be done with the cursor control keys as described in a

previous section. Before the listing is sent to a printer, it is necessary to select the

type of device where the listing has to be sent to. This can be done by pressing

<ESC> when the ’PRINT’ field is selected.

The following screen will appear:

‘a ‘

PTL Version 1.x

[SELECT |] [EGR] ["syscen] [_ Fup | [SET |] (EXIT J

Edit device name for printer :

The current printer device name is shown. All standard editing functions can be used

to edit the device name and the printer device.

Polar Test Language 4-5

4.4

4-6

4/ System Generation

The following device names are selectable:

KBO: Directs output to Screen

KB1: .. Serial port

KB2: .. Serial port

SPI: .. Serial port

SP2: .. Serial port

GP0:2 .. IEEE address 2

The default selection is KB1:

After typing in the desired device name, <ESC> must be pressed to confirm the

input.

Pressing <RETURN> while the ’PRINT’ option is selected sends a list of all

selected instrument drivers to the previously defined list device.

WARNING: If an RS-232 printer is used, please make sure that the port is correctly

set before printing. Refer to the standard Fluke SET utility.

GENERATE SYSTEM

To generate a new system disk, select the "SYSGEN’ function from the menu by

means of the cursor control keys and press <RETURN>.

The program will inform the user that the System Generation Disk must be inserted

again before system generation can be started.

Polar Software Systems

4/ System Generation

‘i *

PTL Yersion 1.x

Meseicacm) | FUP | | SET | {EXIT | { SELECT | | PRINT |

Put in the System Generation Disk

and touch <RETURN> to continue

or <ESC> to abort.

After the System Generation disk has been inserted and < RETURN > is pressed, the

creation of a new system disk starts automatically.

After a while the program will display the following message:

Please insert a blank disk

and touch <RETURN>.

If the disk is not empty, the system displays the following warning message:

This disk is not empty !!!

Touch <RETURN> to continue

or <ESC> to retry.

It 1s not necessary that the diskette has been formatted. The system will start

formatting the blank diskette if this hasn’t been done already. After this, the new

system will be transferred to the inserted disk.

Polar Test Language 4-7

4.5

4.6

4-8

4/ System Generation

After all files have been copied onto the floppy disk, the following message will be

displayed:

Disk ready.....

Take out and touch screen for next disk

or push <ABORT> to use this new disk.

By pressing <ABORT > the system performs a ’automatic’ start.

PROGRAMMABLE MENU KEYS

The menu keys: FUP, SET and EXIT are ’programmable’ using the <ESC> key.

This provides a method to execute the most commonly used system functions without

exiting the System Generator shell. Both the text, which identifies the key field, and

the system command that will be executed if that particular function is activated, can

be changed. Refer to the section "System Functions’ for a description of how to

change the functions of the menu keys.

SIZE OF E-DISK

It is suggested to use one megabyte memory expansion for ease of use. PTL can

however be run on a system with half a megabyte. To make sure that PTL will

always run at delivery, PTL is shipped for a .5 MByte system.

The size of the E-disk is stored in the file "EDISK.CMD" command files. This file

is a copy of either the file "1024KB.CMD" or of "S512KB.CMD".

Polar Software Systems

4/ System Generation

E.g. your system has 1024 KB. To configure the system, copy the file

"1024KB.CMD" to "EDISK.CMD" as follows:

1. Insert the SYSTEM GENERATOR disk.

2. Go to fup:

FUP

3. Assign the system to floppy:

MF90:/a

4. Copy "1024KB.CMD" to "EDISK.CMD":

EDISK.CMD=1024KB.CMD

Polar Test Language 4-9

4/ System Generation

4-10 Polar Software Systems

CHAPTER 5

SYSTEM CONFIGURATION

5/ System Configuration

5 SYSTEM CONFIGURATION

5.1 STARTING THE PTL SYSTEM

PTL will be run automatically from the system disk at power-on or when the front

panel restart key is pressed. After some time the operator disk is needed to continue

and the following text 1s displayed:

Please insert the Operator disk.

Then touch the screen.

When PTL is run, the program produces the following menu on the display.

ey 7

(Demo) PTL Version 1.x
[SEtecT | [_ EDIT |[Fur |[_ set | [TIME COPY
[PRINT | |MENUEDIT] | RUN | [COMPILE | | EXECUTE | GONE BORE]

In addition, PTL can be run from the FDOS prompt by typing the PTL program file

name: PTL. Refer to the Fluke 1722A System Guide for information how to run the

FDOS program.

CAUTION

Polar Test Language 5-1

5/ System Configuration

5.2

5.3

When using PTL, the E-Disk is assigned to be the system device. Files (e.g.

configuration) saved on the E-Disk will be lost whenever the 1722A is switched

off.

SELECT CONFIGURE

PTL offers the user the possibility to specify all system devices, from instruments to

single relay switches, by attaching a unique name to each of them.

This process of defining names and relations between names is called Configuration’

and is explained in detail in the following paragraphs, assuming that the ’Configure’

option has been selected from the PTL Main Menu. The section System functions’

describes how to select the ’Configure’ option.

CONFIGURE

When <RETURN > is pressed after the ’Configure’ option has been selected from

the PTL Main Menu, the user has to specify whether to start with a default set or edit

an existing set that has been configured already. The default set contains the default

configurations like IEEE addresses and instrument names, as defined in the device

drivers.

~

(Demo) PTL Yersion 1.x
| SELECT | | EDIT || FUP || SET | | TIME | COPY |
} PRINT | | MENU EDIT] | RUN {| | COMPILE | | EXECUTE | |JCONFIGURE

Select :

Edit e:sisting data

Start with a default set

a a

Polar Software Systems

5/ System Configuration

The cursor up and down keys can be used to move the reverse video field to the

desired option; <RETURN> must be pressed to confirm the selection.

After a selection has been made, the following menu appears on the screen:

* y
(Demo) PTL Version 1.x

|} SELECT || EDIT || FUP || SET } | TIME | coPY
| PRINT | [MENU EDIT] [| RUN || COMPILE | | EXECUTE | a

Configure :

Instruments

Connections

5.4 CONFIGURE DEVICES

This function must be used to define the names of, and the relation between logical

and physical devices to write to. The display shows the menu options as shown in the

following figure:

Polar Test Language 5-3

5/ System Configuration

5.5

5-4

q >

(Demo) PTL Version 1.x
| SELECT | | EDIT | [FUP | 0 | | TIME cory
| PRINT | [MENUEDIT] | RUN |] COMPILE | | EXECUTE |

CONFIGURE: DEVICES

SICREERM KBO:

PRINTER KB 1:
DISK MFO:

‘ ,

The logical device names are used later on, for example, in procedure steps like

WRITE("TO=SCREEN") to output information to the 1722A display (or printer or

disk).

To change the name of a device, move the reverse video block to the line and column

to be edited and use the normal edit functions, like <Linefeed >, < Del line> etc.,

to make changes. Because PTL does not check physical device names at this phase,

the user must be sure to enter a legal 1722A device name.

Spool files can be used to hold off printing until the procedure is finished. (see

chapter 3).

E.g. KB1:SPOOL1.DAT

After configuration of devices is complete, <ESC> returns control to the Configure

menu.

CONFIGURE INSTRUMENTS

When this option is selected, the display shows a list consisting of instrument driver

names, IEEE addresses and instrument identifiers. The following figure shows a

typical example of such an instrument list.

Polar Software Systems

5/ System Configuration

/
(Demo) PTL Version 1.x

| SELECT | | EDIT |] FUP | SET | | TIME COPY
|} PRINT | [MENUEDIT] | RUN | | COMPILE | | EXECUTE |

Configure instruments :

PM 6654 Timer /Counter TIMER “COUNTER
Fluke 88404 Multimeter 10 DMM
HP3S3254 Synthesizer /func. gen. 17? GENER ATOR

HP 33264 2 Chan Synthesizer 4.1 SYNTHESIZER

HP 3488 Switch Control Unit 11 SWITCH

TEK 2430 Scope 5 SCOPE

| Enter C=Copy , 0=On /Off , E=Exit :

The instrument names in the list are the result of the driver selections, made during

the System Generation process. The IEEE addresses and identifiers are either the

default data from the drivers or the result of previous editing.

JEEE addresses and instrument identifiers must be unique i.e. they can be used only

once in the configuration list as it is the only way for the system to identify or to

access individual instruments.

If specified in the driver, secondary addressing must be used. Two types can be

found:

- Real secondary addresses.

as specified by the IEEE standard

- Pseudo secondary addresses.

Pseudo means that the instrument is considered as consisting of more modules e.g.

a power unit with 4 supplies.

In both cases, the address must be specified as the main JEEE address, followed by

the secondary address, separated by a decimal point.

Polar Test Language 5-5

5/ System Configuration

5.6

5-6

As with most other PTL functions, the normal cursor control and editing Keys can be

used to step through the available list. or to change both the [EEE addresses and

identifiers (=instrument names).

If, by mistake, an illegal IEEE address is specified, a default address will be

substituted by the system, which can be edited again.

Pressing <ESC> displays the following options at the bottom of the screen :

C=Copy, O=On/Off, E=Exit

The Copy function allows the use of more then one instrument of the same type. As

stated before, the identifier and [EEE address of (identical) instruments must be

different, which can be accomplished by editing the appropriate fields.

The On/Off option can be used to temporarily ’remove’ an instrument from the

system or to ’re-install’ it, preventing error messages being displayed when the

instrument is not available.

Finally, the Exit function must be used to return to the Configure sub-menu. A

warning message will be displayed and no return takes place if two identical names

or IEEE addresses are used.

CONFIGURE CONNECTIONS

This option from the Configure sub-menu must be selected when connections between

individual instruments in the system and the UUT have to be defined.

When this function is selected, a list of the available instruments is displayed as, for

example, shown below.

Polar Software Systems

5/ System Configuration

rr ~*~

(Demo) PTL Version 1.x
| SELECT |} EDIT |] FUP | [SET | | TIME COPY
[PRINT | [MENUEDIT} [| RUN | [COMPILE | [| EXECUTE |

Configure connections:

Prt 8654 Tirier “Ceaunter TIMER “COUNTER

Fluke 88404 Multimeter DMM IN

HP33254 Synthesizer /func. gen. GENERATOR OUT

HP 33264 2 Chan Synthesizer SYNTHESIZER OUT

HP 3488 Switch Control Unit SWITCH SC 4N+0

TEK 2430 Scope SCOPE IN

The cursor up and down keys can be used to select the instrument, of which

connections in the system have to be defined. <RETURN> must be pressed to

confirm a selection.

Instruments in the list are either indicated as IN, OUT or SCAN or as a combination

of that. The following paragraphs explain the typical functions for all three instrument

types.

Polar Test Language 5-7

5/ System Configuration

5.8

IN

An instrument is indicated as IN’ if it can handle input signals and return information

to the Instrument Controller about voltage level, temperature, resistance, wave form

etc. Typical examples are Digital multimeters and Oscilloscopes. The function

*"MEAS:’ is a typical example of functions to be used for instruments of type ’IN’.

OUT

Instruments that can output anything, like voltage, current, resistance or AC signals,

are defined as OUT’ instruments. The ’APPLY’ function has been especially

designed to control this type of instrument.

SCAN

To make connections between system instruments and a UUT, remotely controllable

switches are needed. Instruments which contain these switches are defined as

’"SCAN?’-type instruments. Although the function of all available switches can be

defined by using the "Configure Connections’ option, individual switches can be

closed by means of the PTL SWITCH?’ function.

Note: Many ‘intelligent’ instruments today are capable to support more than one of

the ’IN’, OUT’ and ’SCAN’ functions simultaneously. This explains why

definitions like "SCAN+O’ are used.

The following example has been included for illustration purposes only.

Example:

Assume that the input of a digital multimeter (e.g. Fluke 8840A) has to be connected

to the output of an Amplifier on the UUT to measure the output level. As a stimulus,

a signal generator (e.g. HP 3325) must be connected to the input of the UUT

Polar Software Systems

5/ System Configuration

amplifier. A Switch Control Unit (HP 3488) has been chosen to control the in- and

outputs. To illustrate this, the figure below shows a diagram of the relevant hardware

connections.

rangon | 1 [1 3 3 4 § 6 7 8 9 19 DMM
HP 248384 sw fen Controller

HPSs25 4 a
Generator 1 2 J)4 5 7 8 93 10

Assume that, during "Configure instruments’, the F8840, H3325 and H3488 have

been configured as ’Multimeter’, Signal generator’ and ’Switch’ respectively.

Multimeter is connected to the UUT by means of relay no. 5 of scanner card no. 1

inside Switch, Signal generator by means of relay no. 3 of scanner card 2.

The connections for the multimeter are defined as follows:

Scanner : Switch

Name : Amplifier out

Command : 1-5

Switch delay : 20

For the signal generator :

Scanner : Switch

Polar Test Language 5-9

5/ System Configuration

5-10

Name : Amplifier in

Command : 2-3

Switch delay : 20

Note: Commands are of the form x-y where x and y are legal, instrument dependent

numbers. More connections may be defined on the same line by using a

’slash’ character as separator e.g.

2-3/4-6 or 2-3/4-6/7-9.

To enter these configurations, first select from the ’Configure connections’ menu the

FLUKE 8840A Multimeter and press <RETURN>.

If no connections have been defined before, the display shows nothing else then just

*Scanner’, Name’, "Command’ and ’Switch delay’.

Changes to the displayed system connections, if any, can be made by using the

standard cursor control and editing functions, while new entries only have to be typed

1n.

To simplify entries for the "Scanner’ column, a window will be displayed, allowing

the user to select the desired "Scan" device from the list, displayed in the window.

The following figure illustrates this.

‘al

(Dema) PTL Yersion

| SELECT | {| EDIT |{[FUP | —_ | | TIME | | =o
| PRINT | [MENU EDIT] | RUN | | COMPILE EXECUTE

Configure connections for input : CALIBR oR

Scanner Name Comman

Select from

Polar Software Systems

5/ System Configuration

This window shows the identifiers of all instruments which are defined as "SCAN’

types; in this case the window shows nothing else then the name SWITCH’, as it is

the only instrument of type "SCAN’. The cursor control keys can be used to select

the desired instrument from the window; <RETURN> confirms a selection and

returns control to the connection list.

Use the data from the given example to configure the F8840.

5.7 TEST CONFIGURATION

When these configurations have been defined, the user can return to the PTL Main

Menu by pressing <ESC> several times.

For this example, use the command line to select ">MEAS’ and ’Instr=Multimeter’

from the menu‘s. Note that, in this case, because only one connection has been

configured for the multimeter, the system automatically adds ’At=Amplifier out;’ to

the command line.

After returning to the command line entry level, select a new line by < LINEFEED>

<RETURN> and select the "APPLY’ function. When ’Instr=Signal generator’ is

selected, the system displays *"[o=Amplifier in’ and returns automatically to the

command line entry level, as only one connection has been defined for the Signal

generator.

Polar Test Language 5-11

5/ System Configuration

5-12 Polar Software Systems

CHAPTER 6

SYSTEM FUNCTIONS

6.1

6/ System Functions

SYSTEM FUNCTIONS

File and device management, serial communications control and text editing are

important functions of an operating system. The standard FLUKE 1722A FUP, SET

and EDIT programs are accessible from PTL by means of easy to use menu

selections. Exiting one of those programs automatically returns control to PTL.

In addition to the standard FDOS functions, PTL introduces a few new "system"

functions like PRINT’, "CONFIGURE’ and ’COMPILE’. Menu selections have been

provided for these functions which would otherwise need a significant amount of user

interaction.

OVERVIEW

The default PTL menu offers the following functions:

SELECT EDIT FUP SET TIME FCOPY

PRINT MENU EDIT RUN COMPILE EXECUTE CONFIGURE

The upper right 5 functions are software programmable i.e. the function of these keys

can be changed. For other functions, several important parameters can be changed as

described in this chapter.

Polar Test Language 6-1

6/ System Functions

6.2

6.3

THE PTL MENU (SHELL)

After loading the PTL program, the normal FDOS prompt will be replaced by the

following menu:

f (Demo) PTL Version 1.x
™~

| SELECT | EDIT || FUP | SET TIME COPY
| PRINT | [MENUEDIT] | RUN | | COMPILE | | EXECUTE | a

Selections from the main menu can be made by using the cursor control keys. The

function momentarily selected will be indicated by a reverse video field.

DIRECT COMMAND LINES

Except for the two lines with menu keys, 10 other lines are available for immediate

execution of any legal PTL command, typed in on the keyboard or selected from the

available menu options. All commands entered this way will be executed when the

’Esc’ key is pressed, before the system returns to the Main Menu.

Also refer to the chapter "Testing a procedure" for further information.

Polar Software Systems

6.4

6.5

6.5.1

6/ System Functions

CHANGING THE MENU FUNCTIONS

The function of several ’keys’ in the top row of the menu can be changed by pressing

the ESC key. This is described in the following paragraphs.

The information about the keys is stored in a file called "PTL.DAT" on the system

disk. After changing the menu functions, you should copy this file to the system disk

to make them permanent.

USING THE MENU FUNCTIONS

The use of the menu functions is fully explained in the following paragraphs.

Individual Main Menu functions have to be selected as follows:

1. Use the cursor control key to move the reverse video field to the field which

contains the desired function name.

2. Press the ’Return’ or ’Esc’ key, depending on

the action required as described below for

each function individually.

For the following descriptions, it is assumed that the described function has been

selected from the Main Menu as explained earlier.

For each function always two descriptions are given i.e. one explains what will

happen when the <Esc> key is pressed, the other describes the effect of pressing

the ’Return’ key after the function is selected.

SELECT

The "SELECT” function key can be used in two different ways:

1. To select the file to be used by other Main Menu functions.

Polar Test Language 6-3

6/ System Functions

2. To define the device name and the filename extension.

The following sequences will be recognized by the PTL program:

SELECT/<Esc>

To change the default device identifier or the filename extension, press ’Esc’. The

’"SELECT? field starts flashing and the following display appears:

rr

(Demo) PTL Version 1.x _]
eee | EDIT | {Fur | {set [Time | (cory

PRINT TER EDIT} [RUN | { COMPILE | | EXECUTE | SORE SORE

For the Select function enter now the:

Device name te select from :

And the file extension >: PTL

All normal edit functions can be used to make changes to the default device and

extension.

After the required changes have been made, a return to the Main Menu can be made

by pressing the ’Esc’ key or, if the extension field is selected, the Return’ key.

6-4 Polar Software Systems

6.5.2

6/ System Functions

SELECT/<Return>

To select a file, press <RETURN>. This forces the system to display all files from

the device and with the extension previously selected by means of the

SELECT/<ESC> function.

The SELECT?” field will be highlighted to indicate that this function is active.

The cursor control keys can be used to step through the list of filenames. The file

presently selected is indicated by a reverse video block. After the desired file has

been selected this way, both <ESC> or <RETURN> may be pressed to confirm

the selection.

If the text "><NEW>’ is selected and <RETURN> is pressed, the user will be

asked to type in the name of the new file.

After the filename has been typed and ’Return’ is pressed again, the filename will be

checked for validity. If no errors are detected, the system returns to the Main Menu,

displaying the selected filename in the upper left hand corner of the screen.

If an illegal filename is used, a general error message will be displayed together with

several options to retry, abort or exit from the error handler.

EDIT,FUP,SET,TIME,FCOPY

The function of those fields is to provide S user programmable function keys to

execute the most commonly used system functions.

The user can change both the text which identifies the key field and the system

command that will be executed if that particular function is activated. After selecting

one of those fields, e.g. "TIME’, the following message is displayed after <ESC >

1s pressed:

Polar Test Language 6-5

6/ System Functions

6-6

q (Demo) PTL Yersion 1.x

.

[SELECT |] [_ EDIT |] [_Furp | [__ set | L exer | COPY |
| PRINT | [MENUEDIT] | RUN || COMPILE | | EXECUTE CONF IGURE

For this key enter now:

Keyname : Baigis

Command : mf0:Time

*"Keyname’ is the name used in the menu to identify a menu key and Command’ the

function to be executed when that specific key is selected and <RETURN> is

pressed.

The ’Keyname’ or Command’ fields can be selected with the normal cursor control

keys.

Old text or typing errors can be deleted with the < DEL LINE> or <DEL CHAR>

keys. The use of the <RETURN> key is optional.

Pressing <ESC> returns control to the Main Menu. The selected field always

reflects any change that has been made to the key identifier.

Changes made to the menu are automatically saved on the system device (SY0:).

If <RETURN> is pressed then the command associated with the selected function

will be executed.

When the execution is terminated, the system returns to the PTL Main Menu, except

when the ’EXIT’ command is selected. This command returns control permanently

to FDOS.

Polar Software Systems

6/ System Functions

A command can be any valid FDOS command 1.e. the calling of a command file or

of a program. As with normal command files and programs, parameters can be

passed. In this case three special parameters are available:

?: The device selected under SELECT/ESC

? The filename selected with SELECT/RETURN

2? The extension selected under SELECT/ESC

To call the Fluke editor e.g. the command

MFO:EDIT ?:?.?

could be used

For the functions EDIT, FUP, SET and TIME refer to the Fluke 17xxA manuals.

FCOPY

The program FCOPY provides a more friendly way to copy files between memory

and disk than the standard FUP program. However, FCOPY can only be used to

transfer procedure and configuration files.

FCOPY /<RETURN>

Pressing <RETURN > displays the following menu:

Polar Test Language 6-7

6/ System Functions

6.5.3

6-8

(Demo) PTL Version
| SELECT | | hae } |__Fu | [set + | TIME | 1
| PRINT MENU EDIT | [Run | COMPILE EXECUTE | |CONFIGURE

Select Copy function:

Lad program from disk

Save program on disk

Load configuration from disk

Save configuration on disk

A selection can be made by moving the reverse video field to the appropriate menu

option. <RETURN> must be pressed to start the file transfer, <ESC > can be used

to abort the operation and return to the main menu.

PRINT

The PRINT function can be used to make a hard copy of programs, the system

configuration or the capabilities of the drivers (i.e. a list of all instrument dependent

PTL ’statements’ and functions, available)

PRINT/<ESC>

Pressing the <ESC > key offers the possibility to change the print device as indicated

in the followmg figure.

Polar Software Systems

6/ System Functions

yo ‘
(Demo) PTL VYersion 1.2

SELECT | [EDIT | [_ FUP | [|__SET | TIME | COPY |
[MENU EDIT] | RUN | | COMPILE | [EXECUTE | [CONFIGURE

For the Print command enter now :

Print device Mm EET:

Number of lines : 66

The following device names can be selected:

KBO: Directs output to Screen

KB1: .. Serial port

KB2: .. Serial port

SP1:.. Serial port

SP2: .. Serial port

GP0:2 .. IEEE address 2

The default selection is KB1:. Spoolfiles are allowed, e.g. KB1:SPOOL1.DAT.

The number of lines of a page must be set to be equal to the paper used. This ensures

that each new page will end with a page number on the last line. If the number of

lines equals 0, then no page brakes will be generated.

As with other functions, all standard edit functions can be used to change the

indicated device name.

Polar Test Language 6-9

6/ System Functions

PRINT /<RETURN>

After <RETURN > is pressed, the display shows the following print menu:

a

(Demo) PTL Version 1.x
SELECT EDIT FUP__ | |__SET } |_TIME | | COPY |

MENU iT] | RUN || COMPILE | [EXECUTE | [CONFIGURE

Select what to print:

Frage arr

Configuration

Drivers

PRINT PROGRAM

This function sends the contents of the program file, selected by means of the

*SELECT” function and displayed on top of the PTL main menu, to the output device,

selected with the PRINT/<ESC > function. The appendix contains an example.

PRINT CONFIGURATION

The complete system configuration will be listed when this option is used. The

Appendix contains an example of such a listing.

PRINT DRIVERS

Instrument dependent PTL ’statements’ and functions are part of the instrument

6-10 Polar Software Systems

6/ System Functions

drivers. When developing a PTL procedure, this information is needed to create the

test procedure.

The PRINT DRIVERS option provides a way to list all driver parameters, including

the associated (IEEE) control codes of those drivers, selected in the configuration.

The appendix contains a sample printout of a typical driver listing.

6.5.4 MENU EDIT (Optional)

This function allows the user to create or edit test procedures by simply making

selections from several, in many cases instrument-type dependent, sub-menu’s.

With this method, little knowledge is needed to produce test procedures for even

complicated test systems.

As all menu options, which can be selected, are displayed simultaneously,

*programming’ means moving around with the cursor control Keys and ’picking up’

required functions by pressing <RETURN>.

MENU EDIT/<ESC>

This sequence allows the user to define two different options for direct execution

(immediate mode). The following will be displayed:

Polar Test Language 6-11

6/ System Functions

6.5.5

6-12

’ (Demo) PTL Version

| SELECT | EDIT | FUP | |.__SET | | TIME COPY
| PRINT | | RUN || COMPILE | | EXECUTE eer

For the test mode enter now:

YES/NO wait for errors:

YES/NO clear on entry : NO

The displayed options allow the user to define:

o whether execution of a procedure has to be suspended or not whenever an ’error’

condition is detected.

o if the ’command lines’ have to be cleared or not each time they are used.

MENU EDIT/<RETURN>

This sequence starts the "(MENU EDIT’ function and is described in detail in the

section ’Writing And Editing A Procedure’.

RUN

The ’RUN’ option from the Main Menu must be used to execute a PTL procedure in

Interpreted mode. The only sequence accepted by the system is RUN/<RETURN>.

Polar Software Systems

6/ System Functions

RUN /<RETURN>

This sequence results in the execution of the procedure, selected by the “SELECT”

function and indicated in the top left hand corner of the display. Normal BASIC

statements, if included in a procedure, are not executed.

After execution, the system returns to the PTL Main Menu.

6.5.6 COMPILE

If it is desired to compile a procedure, the >COMPILE’ function must be selected

from the PTL Main Menu. This will start execution of a system Command File which

handles all commands to perform the required compilation and linking tasks. The

process of compiling and linking is described in the section Compiling And Linking.

COMPILE/<ESC>

If selected, the following menu appears:

’ (Demo) PTL Yersion

[SELECT | eo FUP SET TIME COPY
[PRINT | [MENU EDIT] [RUN HERE SuTE | ae

For the compile command enter now :

Command : &

YES/NO reset Routine : ‘Yes

The command gives the calling of the command file needed to compile the procedure.

Also it can be selected whether to Reset all instruments before executing the

Polar Test Language 6-13

6/ System Functions

6.5.7

6.5.8

6-14

procedure.

Also refer to the section “Advanced programming" for further information.

EXECUTE

After a procedure has been compiled, it can be executed by means of the

“EXECUTE” function.

EXECUTE /<RETURN>

This sequence starts execution of the procedure file which has previously been

selected with the "SELECT?’ function but with a file extension ’FD2’, no matter which

extension has been selected with the "SELECT/<ESC >’ sequence.

The EXECUTE/ESC sequence has no effect.

CONFIGURE

The ’CONFIGURE’ function is intended to define system parameters like I/O devices,

IEEE addresses, instrument identifiers (names) and connections.

CONFIGURE /<ESC>

To determine which IEEE addresses are used by the instruments, connected to the

Instrument Controller, the sequence ">CONFIGURE/<ESC>’ can be used. This

function returns the [EEE addresses of active instruments in the system. The

following figure shows an example.

Polar Software Systems

6/ System Functions

o” . ™
(Demo) PTL Version 1.x

| SELECT || EDIT | [| FUP | [SET | TIME {| |__copy
|} PRINT | [MENUEDIT] | RUN | | COMPILE | [| EXECUTE |

Active IEEE addresses are:

10,135

Touch <RETURN> to continue...

CONFIGURE /<RETURN>

The sequence >CONFIGURE/< RETURN >’ allows to configure the system. Refer

to chapter "SYSTEM CONFIGURATION" for a detailed description.

Polar Test Language 6-15

6/ System Functions

6-16 Polar Software Systems

CHAPTER 7

PTL COMMAND REFERENCE

7.1

7/ PTL Command Reference

PTL COMMAND REFERENCE

PTL Commands are predefined operations available in the Immediate, Interpreter and

Compiled Modes. The availability of those commands can significantly simplify the

process of writing a procedure.

In addition, a wide range of parameters is allowed for each command to adjust its

function to an appropriate task.

OVERVIEW

This section is divided into four subject areas: General Purpose Commands,

Instrument Control Commands, Input/output Commands and Special Function

Commands.

Only a little instrumentation background is required for use of any of the PTL

Commands.

PTL Commands always consists of a "command" field and one or more optional

“parameter” fields between brackets i.e.: Command("Parameters").

The following commands are recognized by PTL :

PROCEDURE("...") Starts a PTL procedure

END_ PROC("...") Terminates a PTL procedure

START TASK("...") Starts a new task within a PTL procedure.

END TASK Indicates the end of a PTL task.

RESET("...") Resets an instrument to a known state.

SETUP("...") Programs an instrument for a specific function.

MEAS("...") Instructs an instrument to take a new measurement.

APPLY("...") Enables the designated instrument.

DISAPPLY("...") Disables the designated instrument.

SWITCH("...") Switches on or off the designated connection.

Polar Test Language 7-1

7/ PTL Command Reference

DISCONNECT("...") Disconnects the designated instrument.

WRITE "...") Outputs text or results to screen, printer or disk.

ENTER("...") Instructs the operator to input information.

DELAY("...") Delays the execution of a procedure.

EVAL("...") Evaluates a result.

In addition, the ampersand (&) character can be used to split a command line into two

or more physical lines on the screen. Single language elements like commands,

numeric constants, may not be continued on a next line.

For long strings the plus (+) character can be used as shown in the next example:

WRITE ("“TO=SCREEN;TEXT=’A string like this one may NOT be

continued on a new line

like this.’")

This example line 1s illegal because the string is broken in the middle of the line. A

long string may be broken in the following manner:

WRITE ("TO=SCREEN;TEXT =’A string like this one" & + “may be continued

on a new line like this.’")

NOTE: The ampersand must be the last character of a line. Even spaces are

not allowed behind an ampersand. Use the < LineFeed> key to go to

the end of the line.

7-2 Polar Software Systems

7.2

7.2.1

7/ PTL Command Reference

STRUCTURAL COMMANDS

The General Purpose Commands supplied with PTL allow for easy structuring of a

procedure.

This version of PTL supplies the following General Purpose Commands:

PROCEDURE ("...")

END_PROC("...")

START TASK("...")

END TASK

This section describes those commands and their optional parameters in logical order.

PROCEDURE()

Format: PROCEDURE[("parameter;...parameter;|[parameter;...parameter; |")

Parameters: NAME=’...’ ; The name of this particular PTL Procedure.

VERSION =’...’; The version of a PTL Procedure.

PROG=’...’ The name of the procedure writer.

DATE=’...’ ; The date the procedure was created.

OPERATOR=’...’; Inquiry after the operator name.

S/N=’...’ ; Inquiry after an instrument serial number.

Each PTL Procedure must begin with the PTL Command ’PROCEDURE’. This

Command initializes the required system resources.

Name and version of the procedure, the name of the programmer and the date are

used for documentation purposes and can be included, if desired, in test reports.

If an inquiry after the operator name has been specified, the operator will be asked

Polar Test Language 7-3

7/ PTL Command Reference

74

by means of a user defined display message to enter a name, using the alphanumeric

keyboard drawn on the screen. This inquiry will only be made once, at the start of

a procedure. Each new time PROCEDURE will be encountered before the

END_ PROC, the inquiry will be skipped.

If an inquiry after the serial number has been included, a numeric keypad will be

displayed and the operator will be asked to input a serial number by means of a user

defined display message, before execution of the procedure continues. The inquiry

will be done each time the PROCEDURE statement will be encountered.

Example:

PROCEDURE ("NAME=’Example’ ; VERSION=’1.0/’ ;" &

+"PROG='’P. Olar’ ;DATE='21/09/91’ ;" &

+"OQPERATOR=’Enter your name’ ;" &

+"S/N=’Enter serial number’ ")

Details:

The procedure statement has the following functions:

- Store parameters

- If required and task=-1: ask for operator input

- If required: ask for serial number

- Make task=0

Polar Software Systems

7/ PTL Command Reference

7.2.2 END PROC

Format: END PROC[("parameter;")]

Parameters: CONTINUE=’...’ Asks the operator if the procedure has to be

repeated.

Every PTL Procedure must be terminated by an "END PROC’ command, to indicate

the end of a procedure. If the statement is not found, the procedure will continue to

run until stopped manually (by CTRL/C)

The optional parameter can be used to ask the operator if the procedure has to be

repeated or not, by means of a user defined display message and a Yes/No keypad

on the screen. If testing has to be continued (1.e. the Yes’ key has been pressed), the

number of the Task to be executed next will be preset to 1, forcing the system to start

at the beginning of the procedure. Otherwise the Task number will be reset to 0

which terminates execution of the procedure. If a ’null’ string (i.e. <return> only)

is entered after ">CONTINUE=’, then execution of the procedure will be terminated

as if no "CONTINUE=’ was used.

Example:

END_PROC ("CONTINUE=’Test a new modem?’ ")

Details:

The end_procedure has the following functions:

- If required: ask for operator input

- If not to stop: make task=0

Polar Test Language 7-5

7/ PTL Command Reference

7.2.3

7.2.4

746

START TASKO

Format: START TASK [("parameter")]

Parameters: NAME=’...’ Identifies a particular procedure task.

PTL procedures may contain a number of tasks. The command START TASK

identifies the beginning of a task. The text, entered for the optional parameter

"NAME’ can be used to explain the function of the task and will be displayed during

execution of that specific task.

Example:

START_TASK ("NAME=’ Initialize’ ")

Details:

The functions are:

- Store the parameters entered

- Task= Task+1

END TASK

Format: END_ TASK

Parameters: None

The command END_ TASK must be used to identify the end of a Procedure Task.

Example:

END TASK

Polar Software Systems

7.3

7.3.1

7/ PTL Command Reference

Details: none

INSTRUMENT CONTROL COMMANDS

PTL also includes three Instrument Control Commands: RESET, SETUP and MEAS.

These functions allow for complete control of any function of the instruments in the

system, like function and range selections, sample rate or triggering.

RESET

Format: RESET ("parameters")

Parameters: INSTR=... Reset the indicated instrument.

The RESET command can be used to reset any instrument in the system to its default

conditions. Always refer to the user manual of the instrument in question for

information on those default conditions.

Example:

RESET ("INSTR=DMM")

NOTE: In each compiled procedure, a complete reset of all instruments is

automatically included at the start of the procedure.

Details:

The driver is called with a reset command.

Polar Test Language 7-7

7/ PTL Command Reference

7.3.2 SETUP

Format: SETUP("parameters")

Parameters: INSTR=... Indicates instrument to be ’set up’.

227?

Instrument dependent parameters

227?

7.3.3

7-8

The SETUP command can be used to prepare the individual instruments in the system

for a specific task. The command includes parameters for all instrument dependent

functions like range selection, function control, measurement speed etc. Refer to the

print-out of the driver of the particular instruments for detailed information on all

remote-controllable functions.

Example:

SETUP ("INSTR=DMM ;y FUNCTION=dBm ; RANGE=- 60")

Details:

The driver is called with the setup parameters

MEAS

Format: MEAS("parameters")

Parameters: INSTR=... Indicates instrument to be used for a

measurement.

AT=... Identifies the connection(s) to be made by the

system.

Polar Software Systems

7/ PTL Command Reference

MIN=... Minimum value allowed for the measurement.

MAX=... Maximum value allowed for the measurement.

UNITS=... Engineering units to be used for the

measurement.

REMARK=... A remark to be printed

The MEAS command can be used to perform measurements on the unit under test,

using the indicated instrument. The command includes all "EVAL" parameters for

minimum and maximum values to generate pass/fail information as the result of a

specific measurement. UNITS’ are displayed together with the measurement value.

If specified, a user defined REPORT subroutine is performed after each "MEAS"

statement.

A ’MEAS’ command normally follows a "SETUP’ command.

Example:

MEAS ("INSTR=COUNTER ; AT=Tp5 ;MIN=15.5;MAK=16;" &

+"UNITS=' KHz’ ")

Note: A new MEAS command automatically ’resets’ connections, defined by a

preceding MEAS command.

Example:

MEAS ("Instr=Counter;At=Tp5") : Connect TpS

MEAS ("Instr=Counter;At=Tp6") : Disconnect Tp5

+ Connect Tp6

Details:

Polar Test Language 7-9

7/ PTL Command Reference

The following functions are performed:

- The scanner driver is called with the codes specified in the configuration to set the

relays.

- The measurement instrument driver is called to take measurements and store them

in RESULT.

- The evaluation function is called to check the results.

- The REPORT subroutine is called

7.3.4 APPLY

Format: APPLY("Parameters")

Parameters: INSTR=... Indicates instrument to be enabled.

7-10

TO=... Indicates connection to be made by an instrument

defined as ’Scan’

The APPLY command can be used to enable the output of an instrument, normally

after it has been set up with the SETUP command. The parameter ’TO’ is relevant

only if the INSTR parameter designates an instrument that is defined as "SCAN’. In

such a case, the effect of the APPLY command is that a connection will be made,

according to the configurations of the "SCAN’ instrument. Refer to the section

*System Configurations’ in this manual for more information on how to configure

Devices, Instruments and Connections.

Example:

APPLY ("Instr=Synthesizer;To=Amp input")

Notes: - Synthesizer and ’Amp input’ are names, chosen by the user during

configuration.

- Anew APPLY command automatically ’resets’ connections, defined

by a preceding APPLY command.

Polar Software Systems

7/ PTL Command Reference

Example:

APPLY ("Instr=Synthesizer;To=Amp input")

Connect Synth. to ‘Amp input’

APPLY ("Instr=Synthesizer;To=Mod input")

Disconnect from ’Amp input’ + connect to

‘Mod input’

Details:

The scanner driver is called with the parameters in the configuration file

7.3.5 DISAPPLY

Format: DISAPPLY("Parameters")

Parameters: INSTR=... Indicates instrument to be disabled.

TO=... Indicates the connection to be interrupted by an

instrument defined as ’Scan’.

The DISAPPLY is the opposite of the APPLY command and may be used to disable

the output of instruments, previously enabled with the APPLY command. The

parameter ’TO’ is relevant only if the INSTR parameter designates an instrument that

is defined as "SCAN’. In such a case, the effect of the DISAPPLY command is that

the connection, specified in the configurations of the "SCAN’ instrument, will be

interrupted. Refer to the section System Configurations’ in this manual for more

information on how to configure Devices, Instruments and Connections.

Polar Test Language 7-11

7/ PTL Command Reference

7.3.6

7-12

Example:

DISAPPLY ("Instr = Power-supply")

Note: ’Power-supply’ is a name, chosen by the user during configuration.

Details:

The driver is called with the parameters in the configuration file

SWITCH

Format: SWITCH("parameters")

Parameters: ’°...”=On/Off Identifies the connection to be switched. The connection

can either be switched on or off.

The SWITCH command can be used to control individual system connections by

using names, rather than low level identifiers like numbers of scanner cards,relays

etc.,

Names are defined during configuration of the SCAN’ instrument(s).

Example:

SWITCH ("Feedback=On;Freq comp=Off")

Note: *Feedback’ and ’Freq comp’ are names for switchable system connections,

chosen by the user during configuration.

Details:

The driver is called with the parameters in the configuration file

Polar Software Systems

7/ PTL Command Reference

7.3.7 DISCONNECT

Format: DISCONNECT ("parameter")

Parameters: INSTR=... Specifies the instrument to be disconnected.

The result of a DISCONNECT command is that all switches in the system, which

have been closed for the designated instrument, will be opened.

Example:

DISCONNECT("Instr=Counter")

Note: °*Counter’ is a name, chosen by the user during configuration.

Details:

All scanner drivers associated in the configuration file with the instrument are being

called to disconnect the instrument

Polar Test Language 7-13

7/ PTL Command Reference

7.4 INPUT/OUTPUT COMMANDS

7.4.1 WRITE

Format: WRITE(C"parameters")

Parameters: TO=(Options) Directs the output to a selectable device.

Options: SCREEN Directs output to the device ’screen’.

PRINTER Directs output to the device ’printer’.

DISK Directs output to the device disk’.

TYPE=(options) Indicates the type of data to be output to the

device, selected with the ’TO ’ parameter.

Options: HEADER Outputs a header

SHORT HEADER Outputs a shortened header.

RESULT Outputs the last result.

PASS Outputs the last result if a step passed.

PASS STEP Outputs the last result if a step passed.

PASS TASK Outputs results if a task passed.

PASS PROC Outputs results if a procedure passed.

FAIL Outputs the last result if a step failed.

FAIL STEP Outputs the last result if a step failed.

FAIL TASK Outputs results if a task failed.

FAIL PROC Outputs results if a procedure failed.

PASS/FAIL Outputs the last result if a step passed.

PASS/FAIL STEP Outputs the last result

PASS/FAIL TASK Outputs the result of a task.

PASS/FAIL PROC Outputs the result of a procedure.

REMARK =’,..’ Outputs a user defined text to the device,

7-14 Polar Software Systems

7/ PTL Command Reference

selected with the ’TO ’ parameter.

TEXT=’...’ Outputs a user defined text

The WRITE command can be used to output information to a user selectable device.

The output must be defined with the TYPE’ parameter and can be used to control the

layout and contents of test reports.

When the "HEADER’ type is used, a header will be displayed or printed as the first

full page of a report. This header contains the following items:

Procedure version Step

Programmer name Comment

System configuration Minimum

Test Actual

Unit Maximum

Operator name Units

Date Pass/Fail

An example of the screen lay-out is given below.

Test : Example Test date : 03-Oct-88 14:22

Version : ix / 21-08-86
Programmer : H. Bar
Configuration: 03-Oct-88 13:02 / PTL 1.x

Operator : T ESTER
Unit : 31 Operation mode : AUTO

Task : Set-up

Step Comment Minimum actual Maximum Units P/F

1.01 Y¥AC Check 1.35 1.41 1.45 ¥ RMS Pass

L ,

Polar Test Language 7-15

7/ PTL Command Reference

The "SHORT HEADER’ type differs from the "HEADER’ type in several ways.

First, only the Test, Unit, Operator name and Date will be output. Second, only a

few lines of the first page of the report will be reserved for the header. Refer to the

figure below for a representation of the "SHORT HEADER’ screen lay-out.

f ‘

Test : Example Unit: 41 Operator: T.ESTER O3-Oct-686

Step Comment Minimum Actual Maximum Units P/F

1.01 ¥YAC Check 1.35 1.41 1.45 ¥ RMS Pass

~~ #

Test results always contain the following items:

Task number

Remarks

Minimum value

Actual value

Maximum value

Units

Example:

WRITE (" TO=PRINTER; TYPE=PASS TASK; REMARK=’Test’")

7-16 Polar Software Systems

7.4.2

7.4.3

7/ PTL Command Reference

Details:

The results are being written to the device in the configuration file

REPORT

Report is a special subroutine which is called after each evaluation function, to

automatically perform one or more WRITE statements. The standard REPORT

subroutine is empty. However the user may put a special REPORT subroutine with

the appropriate WRITE statements before the test subroutine. This will then replace

the standard empty subroutine.

Example:

Sub Report

WRITE ("To=Screen;Type=Result")

WRITE ("To=Printer;Type=Fail")

Subend

Sub Test (Task)

Details:

in the PTL library, there is an empty Report subroutine, which will not be linked if

resolved beforehand

ENTER

Format: ENTER("parameters")

Polar Test Language 7-17

7/ PTL Command Reference

Parameters: WAIT=’...’ Halts execution of a procedure until the operator

touches the 1722A screen.

QUESTION=’...’ Asks the operator a user defined question.

NUMBER =’...’ Waits for the operator to input a number.

STRING=’...’ Waits for the operator to input text.

The WAIT parameter can be used to temporarily stop execution of a procedure. A

user defined text can be used for operator instructions etc.

This blinking, highlighted message will be displayed at the bottom display line.

Execution continues after the operator has touched the 1722A screen.

The parameter (QUESTION’ can be used to get simple yes/no input from the

operator. A user defined text (question) will be output to the screen, together with

YES and No key fields as illustrated in the figure below.

.... (User defined text)

YES NO

The operator can make a selection by pressing the appropriate key field on the screen.

The result will be stored in RESULT(0).

No=0, Yes< >0

7-18 Polar Software Systems

7/ PTL Command Reference

Whenever a number is required during execution of a procedure, the "NUMBER’

parameter can be used. The user defined text will be placed on the screen, together

with a numeric keypad, which can be used by the operator to enter the required

number. The figure below shows the screen when this function is used.

- *

... (User defined text)

L- JLo JL I L2 ILS |

‘Ji+)} tse

Lore} | 8 | L9_} Lent]

The result will be stored in RESULT(O)

The STRING parameter is almost equivalent to the "NUMBER’ parameter. The only

difference is that instead of a numeric keypad, an alpha-numeric keyboard will be

drawn on the screen to allow alpha-numeric input as can be seen in the following

figure.

Polar Test Language 7-19

7/ PTL Command Reference

... (User defined text)

Lo }L J L2 dL s dle bs Le diz dle tLe
LaJLet_e Leo }LetLe Ls JLeJ Le ly J
LK ILE; EMILs | Loy Ley le yt R Ls} LT]
LY tty Le Le PLY | bey be | LJ eee] Lent]

The result will be stored in RESULT$.

Example:

ENTERC"QUESTION = ’Measure between 1.23 and 1.34")

Details:

- The operator is asked to enter the response

- The result is put in RESULT in the form:

NO = 0, YES <> 0 in RESULT(0O), TYPE%=1

Number in RESULT(0), TYPE% =3

String in RESULT$, TYPE%=4

- The result is evaluated against the specified limits

- The REPORT subroutine is called

7.5. SPECIAL COMMANDS

7.5.1 DELAY

Format: DELAY ("parameters")

7-20 Polar Software Systems

7.5.2

7/ PTL Command Reference

Parameters: TIME=(value) The delay time in milliseconds

The DELAY’ command can be used to slow down execution of a procedure. This

can be necessary, for example, to allow set-up time for slow instruments like

DMM’s.

The ’TIME’ value must be in the range 0..100000.

Example:

DELAY ("TIME=65")

Details:

- The controller halts during the specified time.

EVAL

Format: EVAL("parameters")

Parameters: MIN=... Minimum value allowed for the measurement.

MAX=... Maximum value allowed for the measurement.

UNITS= Engineering units to be used for the measurement.

REMARK= A remark to be printed

Example:

EVAL ("Min=12 ;Max=12.4;Units=’V’")

Details:

- The previously gathered result in RESULTQ(Q will be evaluated to see whether it

iS a pass or a fail.

- As many results as given in NO RESULTS% will be evaluated. Only the total

result will be stored in PASS% i.e. PASS% = 1 if alll results passed.

- The type of evaluation depends on TYPE%:

Polar Test Language 7-21

7/ PTL Command Reference

0: No evaluation done

1: Each individual bit in Result will be checked against the corresponding limit

bit values in min and max.

E.g. if bit 5 in RESULTO=1, in MIN=0 and in MAX=0 then PASS % =0

2: A check is done on RESULT against the MIN and MAX limits

3: A check is done on RESULT against the MIN and MAX limits

4: PASS% =0

- If a subroutine REPORT is included in the procedure, EVAL will call this

routine to output its results.

7-22 Polar Software Systems

CHAPTER 8

EDITING A PROCEDURE

8.1

8.2

8/ Editing A Procedure

EDITING A PROCEDURE

Writing a procedure is the first step toward getting the controller to do your bidding.

This section describes the process of entering a procedure into memory of the

controller and making corrections to that procedure.

OVERVIEW

A PTL procedure is a meaningful sequence of PTL commands, possibly supplemented

by normal BASIC statements that (in RUN Mode) directs the Instrument Controller

and its associated instrumentation to accomplish a desired task.

FUNCTIONS FOR WRITING/EDITING

The PTL menu offers two different functions for writing or editing PTL procedures:

EDIT and (optionally) MENU EDIT.

The first method is to use the standard Fluke 1722A Edit program, with all its

standard features as described in Section 6 of the 1722A System Guide.

This method can be selected by means of the EDIT field in the PTL Main Menu.

The second and easiest method is the use of the MENU function. This method is

recommended for inexperienced users. Although with this method procedures are

generated, which contain PTL commands only, BASIC statements can be added at any

time if desired.

The rest of this chapter contains more information on how to use the menu selections.

As an alternative to the methods described above,the use of any other text processing

system to generate procedures can be mentioned. This approach has the advantage that

new procedures can be developed on a low cost system while the Instrument

Controller continues execution of previously written test procedures, thereby

Polar Test Language 8-1

8/ Editing A Procedure

8.3

increasing the overall system efficiency significantly.

Procedure files, when generated on a second computer, have to be transferred to the

1722A Instrument Controller which, for example, can be accomplished with the

standard 1722A FUP Utility or a simple BASIC program.

Files created in one of the methods mentioned above, can be edited, using any of the

other methods.

USING MENU EDIT

Although the name implies an edit function, "MENU EDIT" can be used to both

generate new procedures as well to edit existing procedures.

When the "MENU EDIT’ function has been selected as described in the chapter

"System Functions", the first page of the procedure, selected with the "SELECT"

function (indicated in the top left corner of the screen) will be displayed.

The MENU EDIT has a selected set of functions, compatible to the standard EDIT

program. On top of this it has a powerful menu function.

The standard 1722A edit keys (i.e. the cursor control keys, DELETE, DEL LINE,

DEL CHAR, BACKSPACE and LINE FEED) can be used to add or delete text.

Also the following commands are implemented:

<ESC> nG Go to line n (If n=0 go to end)

<ESC> n~%* Go n lines up

<ESC> nv Go n lines down

<ESC> / text Get the text specified looking downward

<ESC> ? text Get the text specified looking upwards

<ESC> n Get the same text again

<ESC> N Get same text again in the other direction

<ESC> :m Display the remaining memory

Polar Software Systems

8/ Editing A Procedure

<ESC> :q Quit the editor

<CTRL/C> Quit the editor

<ESC> : q! Quit the editor without update

<ESC> n# Go to task number n.

<ESC > bb Begin of block

<ESC >be End of block

<ESC >be Copy block

<ESC >bd Delete block

If <RETURN > is pressed on the end of a line (use: LINE FEED, RETURN), then

a new line is inserted. If < RETURN > is pressed anywhere else on the line, the text

will be replaced by a list of possible menu options.

NOTE: At the beginning of each line 4 spaces are automatically inserted to

allow for this function. By using the LINE FEED before inserting new

text manually, automatic indentation is accomplished.

The figure below represents a typical display when the "MENU EDIT’ function is

used.

End_proc Write

Start_task Enter

End_task Delay

Reset Eval

Setup

Meas

Apply
Disapply

Switch

Polar Test Language 8-3

8/ Editing A Procedure

8-4

The option list always reflects the actual entry level. This means that for any level,

e.g. procedure, task or step, the appropriate menu options are displayed. Selections

from the option list can be made simply by moving around in the list with the cursor

control keys and pressing the return key. The field presently selected will be indicated

by a reverse video field. After all selections have been made, the Esc key must be

pressed. Each time the Esc key is pressed, the system returns to the next higher level

and finally back to the file being edited.

Whenever <RETURN > is pressed while the cursor is not on an empty line, this

line will be deleted and replaced by the new menu selections being made.

The following figure shows another menu which is typical to the "MENU EDIT’

function.

’ a

Setup(" Instr=)

Tirner “counter

Dmm

Gener ator

Switch

Scope

Polar Software Systems

CHAPTER 9

TESTING A PROCEDURE

9.1

9/ Testing a Procedure

TESTING A PROCEDURE

After the source code of a procedure is created, it can be tested in several ways to

finally have the test code.

OVERVIEW

This section describes how testing of Procedures can be done. Three modes of

operation will be explained:

- Immediate mode

- Interpreted mode

- Compiled mode

The direct mode allows to type and execute commands directly, without storing them

for later use.

To use the system to perform all desired functions like taking measurements and

outputting stimulus, a suitable procedure must be created and executed. To distinguish

between the Interpreted and Compiled Mode of Operation, two different functions are

provided in the PTL Main Menu. The ’RUN’ function has to be used whenever a

procedure has to be executed in Interpreted Mode, while the "EXECUTE’ function

must be used to execute procedures after they have been compiled with the

*°COMPILE’ function. The only noticeable difference for the user between those two

functions is the speed of execution (when not using Basic statements).

Polar Test Language 9-1

9/ Testing a Procedure

9.2 IMMEDIATE MODE

The immediate mode is created specifically for testing special tommands or command

sequences. Direct mode can be started from the main menu by moving the cursor

below the function keys. Below these keys up to 10 lines can be used for direct

commands:

,
(Demo) PTL Version 1.2)

| SELECT }] | EDIT || FuP |[SET | | TIME | COPY |
| PRINT | |[MENUEDIT] [| RUN |] COMPILE | [| EXECUTE COMF IGURE

Setup C ‘Instr=Dmm jFunction=Vde JRange= Auto raed Rate=F ast’ 9

Pleagsh “Inste=Orinn -Aat=TP 1 etan=2.4 Pts 4 2 Units=

Write("To=Screen sType=Result™

The entry of commands will be done the same as with the MENU-EDIT function

described in the previous chapter. PTL commands can be typed in directly or a menu

can be used to select the appropriate commands.

To execute these commands, the <ESC > key should be pressed when finished with

entering the commands. At this moment the PTL commands entered will be executed

immediately. All PTL statements can be used. All non-PTL commands will not be

executed.

The MENU-EDIT/ESC sequence can be used to select from two functions for

immediate mode:

- Wait for errors : Asks to enter RETURN after execution of the commands.

9-2 Polar Software Systems

9.3

9.4

9/ Testing a Procedure

- Clear on entry : Clear all command lines when going to direct mode

Refer to the section "System Functions" for more details.

INTERPRETED MODE (RUN)

After a procedure has been created using an editor, the procedure can be interpreted

by selecting RUN/RETURN.

At that moment the entire procedure will be run sequentially, not looking at non-PTL

statements. This means that Basic statements will be skipped. At the end of the

procedure, the main menu will automatically return.

Each new statement is interpreted (translated) at the moment that it is executed which

means that execution will be slower than with compilation.

COMPILED MODE (EXECUTE)

To have a faster execution, a PTL compiler is included. This compiler translates a

procedure once before executing her. Therefore for each new execution, there is no

need for translation anymore, making execution much faster than interpretation.

Two function keys are available in the main menu of PTL: COMPILE and

EXECUTE.

COMPILE translates the procedure and the embedded BASIC statements into

executable code.

EXECUTE allows to run a compiled procedure.

The compilation process consists of three steps:

Polar Test Language 9-3

9/ Testing a Procedure

9.5

9-4

- Optimization: Creates direct instrument commands out of the PTL statements.

- Basic compilation: Translates all statements into machine readable code, using the

extended Basic compiler.

- Linking libraries: Links standard library functions with the code, using the

extended Linking Loader.

During each of these three steps error messages may appear.

During optimization the line numbers in the procedure file are being displayed. If a

PTL error occurred, an appropriate error message will be put behind the line number.

During Basic compilation, Standard extended Basic compiler error messages may

appear.

During Linking standard extended linking loader error messages may appear.

STORING A COMPILED PROCEDURE

In the PTL Main Menu, no special functions are provided to save procedures. The

reason for this is that the PTL program saves procedures automatically any time edit

functions have been used or the SELECT” function is used.

Note however that procedures will be stored on the system device SYO: which

defaults to EDO whenever you are running the PTL program. This implies that files

which have to be used after power of the System Controller has cycled, must be saved

on a non-volatile device like a floppy disk. This can be easily accomplished with the

FCOPY command, as described in the chapter "System Functions".

Polar Software Systems

CHAPTER 10

OPERATOR DISK GENERATION

10/ Operator Disk Generation

10 OPERATOR DISK GENERATION

Although the PTL program is very easy to use by a programmer, it is not intended

to be used by unskilled operators. Therefore, a Master Operator Disk’ is provided.

This disk contains a so called operator interface program’ which offers an operator

to execute test procedures by touching the screen. With this approach, the system can

be used by anyone, with very little chance of making mistakes.

Operator disks can be generated by making copies of the Master Operator Disk.

10.1 SELECTION MENU

The operator interface program can be loaded by pressing <RESTART >, after the

operator disk has been inserted.

To allow an operator to make a selection from one of several programs (e.g.test

procedures) by pressing the screen, a menu will be displayed that contains the names

of nine executable programs. If more than nine programs are available, both a "NEXT

PAGE’ and ’LAST PAGE’ key are provided on the display as well. The figure below

shows the screen lay-out.

y”
PTL OPERATOR UTILITY

Level test Program 2 Program 5S

Gain test Program 3 Program 6

Program 1 Program 4 Program 7?

. A

Polar Test Language 10-1

10/ Operator Disk Generation

10-2

A normal ASCII file is used for the display text imside the boxes. The

programmer/procedure writer can create these text files as follows:
1°)

 Make a copy of the original "Master Operator Disk’ to create a ’work disk’.

Run the normal EDIT program to create an ASCII file ©MASTER.DAT’.

Type in the desired display text and associated program name, separated by a

command terminated by <RETURN>.

Repeat the third step for all filenames.

Save the file on the work disk.

)
°)

o)
©

After this, the file looks like:

Level test, LEVEL

Gain test, GAIN

Program 5, PROGS

Program 6, PROG6

Program 7, PROG7

Also system programs like FUP can be executed. If more than nine lines are typed,

the software will automatically create a new ’page’ on the display.

The text is displayed in the following order:

Text 1 Text 4 Text 7

Text 2 Text 5 Text 8

Text 3 Text 6 Text 9

Text will be centered as good as possible within the boxes but is limited to 20

characters.

Polar Software Systems

10/ Operator Disk Generation

After exiting a selected program, control will be automatically returned to the menu.

10.2 PROCEDURE TRANSFER

After the text for the selection menu has been created, also the appropriate procedures

have to be transferred from the PTL System Disk to the Operator work disk. This can

be done using the FCOPY program from the PTL Main Menu.

10.3 CONFIGURATION TRANSFER

In order to be able to execute the procedures, the associated configuration file must

be available. The configuration can be transferred using the FCOPY program from

the PTL main menu.

Please note that a procedure cannot be executed with a configuration file, other than

the one with which it was created.

Polar Test Language 10-3

10/ Operator Disk Generation

10-4 Polar Software Systems

CHAPTER 11

ADVANCED PROGRAMMING

11

11.1

11/ Advanced Programming

ADVANCED PROGRAMMING

In this chapter, programming hints are provided for advanced programmers.

Specifically, the combination of PTL and Basic will be highlighted.

STANDARD PTL

A PTL program is a sequence of PTL statements, possibly enhanced with Basic

statements. In the following examples, PTL statements are shown in lower case and

Basic statements are shown in upper case.

The standard lay-out of a PTL procedure is as follows:

SUB Test (Task)

On Error Subret

Procedure ("")

End proc

SUBEND

The SUB and SUBEND statements are actually the begin and end of a true Basic

subroutine. The "On Error Subret" makes sure that possible errors are handled

properly, with the standard handler on a higher level.

The procedure("") and End _ proc are the beginning and the end of the PTL procedure.

A simple PTL procedure could look as follows:

Polar Test Language 11-1

11/ Advanced Programming

11-2

Write ("To=Printer ; Type=Header")

Setup ("Instr=Dmm; Function=Vdc; Range=20")

Meas ("Instr=Dmm;At=Testpoint 1;Units=’ Vdc’ ")

Write ("To=Printer;Type=Result")

This program sets up the printer and the DMM, takes one reading and prints the

results.

For long procedures and program flow statements like "Loop on Fail", a procedure

can be divided in several tasks:

Polar Software Systems

11/ Advanced Programming

SUB Test (Task)

On Error Subret

Procedure ("Name=’Unit 15 test’")

Start-task("Name=’ Setup’ ")

Endtask ("")

Start-task("Name=’Power supply test’")

Endtask ("")

Start-task("Name=’Tune Amplifier’")

Endtask ("")

Start-task("Name=’Verify total unit’")

Endtask ("")

End proc

SUBEND

Dividing a procedure into logical blocks (tasks) makes a procedure easier to

understand and easier to edit.

Each task again can consist of many steps (statements).

Polar Test Language 11-3

11/ Advanced Programming

E.g. to set the system up for measuring:

Write ("To=Screen ; Type=Header")

Setup ("Instr=Power-supply; Voltage=12.6")

Setup ("Instr=Dmm; Function=Vdc; Range=20")

or to perform a certain test:

Apply ("Instr=Power-supply;To=Amp input")

Meas ("Instr=Dmm;At=Testpoint 1;Min=5;Max=8.75;" &

+"Units=’Vdc’")

Write ("To=Screen ;Type=Result")

11.2 IMPORT PTL VARIABLES

PTL uses a number of global variables. These variables are made available to a

programmer via the Basic "IMPORT" statement (See chapter 3). This allows the user

to get results from PTL or to pass results to PTL.

E.g. The following example shows how to use this feature:

11-4 Polar Software Systems

11/ Advanced Programming

SUB Test (task)

On Error Subret

IMPORT RESULT () ,NO_ RESULTS , TYPES

Procedure ("Name=’Amp test’ ;Version='1.2’")

Start _task("Name=’ Supply test’")

Write ("To=Screen ; Type=Header")

OUTPUT=0

FOR L¥=0 TO 11

OUTPUT=OUTPUT+RESULT (L%)

NEXT L%

RESULT (0) =OUTPUT/12 ! Store average

NO RESULT%=1 ! 1 reading

TYPES =3 ! of type ‘real’

Eval

Write ("To=Screen;Type=Result;" &

+"Remark=’Level test’")

End _task("")

End proc

SUBEND

Chapter 3 gives an overview of the imports possible.

11.3 CALL BY REFERENCE

Sometimes it is desired to use Basic variables instead of constant numbers within PTL

statements. PTL supports such "Call by Reference"

Polar Test Language 11-5

11/ Advanced Programming

In the next example e.g. the Basic variable VARMIN and VARMAX are calculated

from the global variable array RESULTO:

SUB Test (task)

On Error Subret

IMPORT Result ()

Procedure ("Name=’Amp test’ ;Version=’1.2’")

Start _task("Name=’Supply test’")

Write ("To=Screen ; Type=Header")

Setup ("Instr=Power-supply;Voltage=12.6")

Setup ("Instr=Dmm; function=Vdc; Range=20")

Apply ("Instr=Power-supply;To=Amp input")

Meas ("Instr=Dmm;At=Testpoint 1;Min=5.25;" &

+"Max=8.75;Units=Vdc’")

Write ("To=Screen;Type=Result")

VARMIN=RESULT (0) -0.25

VARMAX=RESULT (0) +0.25

Meas ("Instr=Dmm;At=Testpoint 2;" &

+"Min= [VARMIN] ;Max= [VARMAX] ;units=’ Vdc’ ")

End _task("")

End proc

SUBEND

Explanation:

The PTL statement MEAS will take a measurement at Testpoint 1. VARMIN and

VARMAX are calculated as the limits for the measurement at testpoint 2.

11-6 Polar Software Systems

11/ Advanced Programming

11.4 BASIC STATEMENTS

11.4.1 For .. Next loop

At any point in a procedure, Basic statements can be inserted between PTL

statements.

SUB Test (task)

On Error Subret

IMPORT RESULT ()

Procedure ("Name=’Amp test’ ;Version='’1.2’")

Start _task("Name=’Supply test’ ")

Write ("To=Screen ;Type=Header")

Setup ("Instr=Power-supply;Voltage=12.6")

Setup ("Instr=Dmm; function=Vdc ; Range=20")

Apply ("Instr=Power-supply;To=Amp input")

Meas ("Instr=Dmm;At=Testpoint 1;Readings=12")

FOR L%=1 TO 11

RESULT (0) =RESULT (0) +RESULT (L%)

NEXT L%

RESULT (0) =RESULT (0) /12

Eval ("Min=0.53")

Write ("To=Screen;Type=Result")

End_task("")

End _proc

SUBEND

Polar Test Language 11-7

11/ Advanced Programming

This program calculates the average of the 12 readings. The result is evaluated against

a minimum value.

The next program uses a FOR-NEXT loop with a STEP clause to repeat a part of the

procedure a number of times with another (higher) value for LEVEL.

SUB Test (task)

On Error Subret

Procedure ("Name=’Amp test’ ;Version=’1.2'")

Start _task("Name=’Supply test’")

Write ("To=Printer ; Type=Header")

Setup ("Instr=Power-supply;Voltage=12.6")

Setup ("Instr=Dmm; function=Vdc; Range=20")

Apply ("Instr=Power-supply;To=Amp input")

Meas ("Instr=Dmm;At=Testpoint 1;Min=5.25;" &

+"Max=8.75;Units=Vdc’ ")

Write ("To=Printer ;Type=Result")

FOR LEVEL=2.25 TO 14.50 STEP 0.25

Meas ("Instr=Dmm;At=Testpoint 2;" &

+"min= [LEVELO.5] ;max= [LEVEL+0.5] ")

Write ("To=Printer;Type=Result")

NEXT LEVEL

End_task("")
End proc

SUBEND

11-8 Polar Software Systems

11/ Advanced Programming

The test results could look like:

Minimum Actual Maximum Units P/F

1.75 2.10123 2.75 Vdc PASS

2 2.28947 3 Vde PASS

2.25 2.51437 3.25 Vdc PASS

2.5 2.67591 3.5 Vde PASS

2.75 2.91780 3.75 Vdc PASS

3 3.74373 4 Vde PASS

3.25 3.49532 4.25 Vde PASS

3.5 4.00723 4.5 Vde PASS

3.75 4.22395 4.75 Vdc PASS

4 4.36194 5 Vde PASS

4.25 4.94184 5.25 Vdc PASS

4.5 5.02357 5.5 Vde PASS

4.75 5.48501 5.75 Vdc PASS

5 5.29983 6 Vde PASS

Polar Test Language 11-9

11/ Advanced Programming

11.4.2

11-10

Repeat .. Until loop

E.g. the next program uses a REPEAT .. UNTIL loop to wait for the voltage on test

point 1 to rise above 12.45 Volt.

SUB Test (task)

On Error Subret

IMPORT RESULT ()

Procedure ("Name=’Amp test’ ;Version=’1.2’'")

Start _task("Name=’Supply test’")

Write ("To=Screen ;Type=Header")

Setup ("Instr=Power-supply;Voltage=12.6")

Setup ("Instr=Dmm; function=Vdc; Range=20")

Apply ("Instr=Power-supply;To=Amp input")

REPEAT

Meas ("Instr=Dmm;At=Testpoint)

UNTIL RESULT (0) >12.45

Write ("To=Screen;Type=Result;")

End task("")

End proc

SUBEND

In a PTL listing virtually all other Basic statements can be used like IF .. THEN ..

ELSE and CASE statements. The [LEVEL+0.01] statement will do the calculations

at RUN-TIME. (Any other calculation with one or more variables and/or constants

is possible here).

Polar Software Systems

11/ Advanced Programming

11.5 "LOOP ON FAIL"

In a PTL procedure, any group of steps of tasks can be looped repeatedly until a

certain condition is satisfied.

In Basic there are several loop structures that can be used for this feature:

11.5.1 Continous

This loop will only terminate if the criteria have met.

REPEAT

---------- ! Statements to

~---- ee eee ! calibrate

~--------e ! an instrument

Meas ("Instr=Dmm;Min=3.48") ! Test performance

UNTIL PASS% (0)

11.5.2 With loop count

This is a loop on fail for which the amount of loops is limited by the loop counter.

Polar Test Language 11-11

11/ Advanced Programming

FOR COUNT%=1 TO 10

~--------- eee ! Statements to

------------- ! calibrate

------------- ! an instrument

Meas ("Instr=Dmm;Min=3 .48") ! Test

IF PASS%S(0) THEN LEAVE

NEXT COUNTS

In this example it is tried to calibrate an instrument, until the verification passes the

criteria. A maximum of 10 verifications may be done.

11.5.3 With fault indication

In most cases it is advisable to provide more than one way to terminate a loop.

Conditions are:

1. A test object is OK thus the test procedure can continue with the next step.

2. A test object fails repeatedly (E.g. out of calibration or defective). The procedure

must be stopped with an indication what (or where) the problem arose.

11-12 Polar Software Systems

11/ Advanced Programming

SUB Test (Task)

On Error Subret

Procedure ("")

------------- ! Statements to

we eee eee --e- ! setup system

coer rte ttc cee ! Statements to

~------------ ! calibrate

------------- ! an instrument

Meas ("Instr=Dmm;Min=3.48") ! Test if working

IF PASS%$(0)=0 THEN GOTO FATAL ERROR

Meas ("Instr=Dmm;Min=3 .54;Max=3.56") ! Test

IF PASS% (0) =1 THEN LEAVE

ENDLOOP

Write ("To=Screen;Type=Result")

End proc

SUBRET

FATAL ERROR:

Write ("To=Screen;Remark=’ Fatal Error in Power")

SUBEND

NOTE:

The loop-endloop is a basic loop structure without termination test nor loop counter.

The Basic statement "IF PASS%(0) THEN LEAVE" is actually a "GOTO" to the

next statement after the "END LOOP".

Any number or leaves (or goto’s) can be used in one LOOP-ENDLOOP structure.

Polar Test Language 11-13

11/ Advanced Programming

11.6

11.6.1

11-14

SUBROUTINES

In compiled Basic, subroutines can be made with local variables and with own names.

PTL supports those subroutines in compiled mode. Three types can be distinguished:

o REPORT subroutines

o PTL subroutines

o Basic subroutines

The REPORT subroutine

A MEAS statement includes (besides scanning and measuring) an EVAL statement.

In a PTL procedure, often many MEAS, and therefore EVAL, statements can be

found.

In most cases the result of such evaluation must be printed. In order to avoid many

"WRITE, TO=SCREEN" or "WRITE, TO=PRINTER" statements, one REPORT

routine is sufficient in compiled procedures. Normally, an empty report routine is

supplied in the PTL library, which means that nothing will be printed after an

evaluation (or measurement). This routine can be replaced with a user-supplied report

routine with "WRITE" statements.

The following is an example of a simple report:

Polar Software Systems

11/ Advanced Programming

SUB Test (Task)

ON ERROR SUBRET

Procedure ("Name=’Example Report’ ")

Write ("To=Screen ; Type=Header")

Write ("To=Printer;Type=Short header")

Meas ("Instr=Dmm;Min=3 ;Max=6 ;Remark=’ Test3’ ")

End proc

SUBEND

SUB Report

ON ERROR SUBRET

Write ("To=Screen;Type=Result")

Write ("To=Printer;Type=Fail")

SUBEND

For each meas statement the result will always be put on the screen. The results will

only be printed if the step failed.

NOTE: The Remark in the Meas (or Eval) statement will be used in all Write

statements in the report. It stays valid until a new remark is given.

In certain cases, the Report subroutines must not be used in all Meas statements. For

this purpose, a Report-Flag can be used as follows:

Polar Test Language 11-15

11/ Advanced Programming

11-16

SUB Test (Task)

ON ERROR SUBRET

EXPORT Report Flag%

Report Flagt=-1

Create a global flag

Turn Report on

Procedure ("Name=’Example Report flag’")

Report Flag%=0

FOR L%= 1 TO 10

NEXT L%

Report Flag%=-1

End Proc

SUBEND

SUB Report

ON ERROR SUBRET

IMPORT Report _Flag%

IF Report Flags THEN

With

Reporting

Report off

Loop

Without

Reporting

Report on

With

Reporting

Write ("To=Screen;Type=Result")

Polar Software Systems

11/ Advanced Programming

Write ("To=Printer;Type=Fail")

ENDIF

SUBEND

11.6.2 PTL Subroutines

A PTL procedure may be divided into subroutines e.g. for clarity or because the

procedure becomes too big for the compiler. In this case subroutines can be created

for each task. The main procedure may consist of calls to these subroutines only.

The following is a (partial) example of such procedure:

SUB Test (Task)

ON ERROR SUBRET

Procedure ("Name=’Example Sub-Tasks’")

CALL Initialise

CALL Test _Power

CALL Impedance

CALL Gain

End_ Proc

SUBEND

SUB Impedance

Start Task ("Name=’ Impedance’ ")

Setup ("Instr=Dmm; Function=Ohms")

Meas ("Instr=Dmm;At=Resist ;Min=49 .5;Max=50.5")

End Task

SUBEND

Although not shown here, also parameters can be passed to a subroutine. For such

Polar Test Language 11-17

11/ Advanced Programming

example see the next paragraph. For details refer to the Fluke extended compiled

Basic manual.

Due to the limitation of the Fluke Extended Basic Compiler, one single chunk of code

cannot contain more than 500 calls to other modules. This translates into 300 PTL

code lines.

Sub Test (task) _

On Error Subret | Normal

Procedure ("") | Program

-- eee | Status

— |
ae 4

CALL XYZ (TASK) | SPLIT
SUB END |— PROGRAM
SUB XYZ (TASK) | INTO TWO
On Error Subret | PARTS

—_ 4
----- | Normal

----- |— Program

End Proc | Statements

SUBEND J

A way around this problem is to split up the main program into two (or more) parts.

This is done with the 4 Basic lines in the middle of the PTL listing. These lines

a.

b

c.

d

11-18

Call the second part

End the first part

Start the second part

Handle the errors

Polar Software Systems

11/ Advanced Programming

NOTE:

The name XYZ can be any name, as long as it is not used elsewhere.

NOTE:

Splits are not allowed within a Basic LOOP or IF THEN structure. It causes

problems with GOTO’s and GOSUB’s.

PTL procedures, tasks and true subroutines are no problem.

Polar Test Language 11-19

11/ Advanced Programming

11.6.3 Basic Subroutines

Except for only PTL statements, also Basic statements can be used in a subroutine.

E.g. a Basic subroutine to calculate the average could look like:

SUB Test (task)

ON ERROR SUBRET

Procedure ("Name=’Amp test’ ;Version='’1.2’")

Start_task("Name=’Supply test’")

Write ("To=Screen ; Type=Header")

Setup ("Instr=Power-supply; Voltage=12.6")

Setup ("Instr=Dmm; function=Vdc;Range=20")

Apply ("Instr=Power-supply;To=Amp input")

Meas ("Instr=Dmm;At=TP-1;Readings=12")

LEVEL=0\ CALL AVERAGE (LEVEL)

Meas ("Instr=Dmm;At=TP-2 ;Min= [LEVEL- .01] ")

Write ("To=Screen;Type=Result")

End task("")

End proc

SUBEND

11-20 Polar Software Systems

11/ Advanced Programming

SUB AVERAGE (OUTPUT) ! Sub header

ON ERROR SUBRET

IMPORT RESULT () ! Conformal dimension

OUTPUT=0 ! Preset output

FOR L%=0 TO 11 ! Loop 12 times

OUTPUT=OUTPUT+RESULT (L2) ! Add value

NEXT L%

OUTPUT=OUTPUT/12 ! Calculate average

SUBEND ! End of routine

In order to communicate with the PTL statements, a subroutine can import global

variables just like the main program.

Subroutines must always be stored at the end of a program listing and can never be

embedded in another (subroutine) listing.

11.7 USER LIBRARY

Subroutines can also be compiled separately to be stored in a "user" library. In that

case the subroutine is available for all procedures and does not have to be included

in each listing to use it.

PTL supports a user library by providing appropriate command files to compile:

o without a user library : C.CMD

o to update the user library : CU.CMD

o to link with user library : CL.CMD

These command files should be installed under COMPILE/<ESC>

to use them.

Polar Test Language 11-21

11/ Advanced Programming

11.7.1

11.7.2

11-22

The following paragraphs explain how to exploit user libraries.

Empty user library

Before a user library can be used, it must be created. An empty user library called

USER.LBX is provided on the master operator disk which can be copied if required.

Update user library

After a subroutine has been created, using one of the editors, it must be compiled

with the special command file CU.CMD which also updates the user library. Do

such by changing the command file, specified under COMPILE/< ESC >

PTL normally adds a special reset routine to each procedure which resets all

instruments connected. Since this routine is only needed once in each procedure, this

option can be turned off for user library routines. Do such, by specifying NO under

the COMPILE/< ESC > question "Reset Yes/No".

When the COMPILE function is used now, the subroutine is compiled (PTL and

Basic) after which the user library is updated.

When merging a second module with the same name, the latest version of the two

will be used in the library (not necessarily the newly merged module).

Polar Software Systems

11/ Advanced Programming

IMPORTANT

The function copy procedure’ and ’copy configuration’ in FCOPY does not copy the

(changed) user library. This has to be done using fup at the end of a (useful) session.

Use:

FUP

MFO :=EDO.USER.LBX

/X

NOTE:

Every subroutine can use other subroutines. If these sub-subroutines are included in

the same module, they are also accessible as individual subroutines from procedures.

To make sure that the names of these routines do not collide with other subroutine

names.

NOTE:

A subroutine can contain Basic and PTL statements. However, if PTL statements are

included, the pre-processor uses the current configuration information to produce the

compact Basic equivalents. So, if the configuration is changed (e.g. new scanner

instructions for "at name"), the subroutines, using this information, needs to be re-

compiled.

11.7.3 Include a user library

A special command file CL.CMD is provided to include the user library. The

difference with the normal command file is, that the linker starts looking into the user

Polar Test Language 11-23

11/ Advanced Programming

11-24

library, to try to resolve subroutines, before looking in the PTL libraries.

There are a number of simple rules concerning the action of the linker:

Since the user library is called first, subroutines will be taken from this

library, before looking in the PTL libraries.

If there are routines in the library that are not called, the linker will include

only the requested routines.

If routines are called which are not in the user and PTL libraries, the linker

cannot and will not produce a program. The "MAP" file (Report file from the

linker) entails what went wrong.

If one or more routines export variables whose names are already used

elsewhere, a "MULTIPLY DEFINED" error will occur. Again the map file

and the Fluke linker documentation will tell what went wrong.

If one or more of the user subroutines use the same name as one of the

internal routines of the PTL system, a problem could occur. In this case the

user library routine will always be used instead of the PTL routines.

Using the library CL continuously does not add in program size. However it will take

some extra time for a program to be compiled, since the linker has to inspect the user

library.

Polar Software Systems

11/ Advanced Programming

11.8 USE OF ERROR HANDLERS

The "On Error Subret" statement passes Basic errors back to PTL. Correct handling

of errors in PTL depends on this statement, so never omit this statement in any

routine.

In certain cases it is needed to include an own error trap in your procedure. You can

use an "On Error" trap to a user error handler. To turn this error trap off, use "On

Error Subret".

SUB Example

ON ERROR SUBRET

wee ee eee ! Normal PTL or

we ee eee ! Basic lines

ON ERROR GOTO Trap ! user error handler

eee ee eee ! to protect

wee eee ! these lines

ON ERROR SUBRET ! PTL error handler

wee eee ! for these

wee we eee ! lines

SUBRET ! End of subroutine

Trap

cee et eee ! Error

we eee eee ! handler

RESUME

SUBEND ! End of subroutine

Polar Test Language 11-25

11/ Advanced Programming

11-26 Polar Software Systems

CHAPTER 12

SYSTEM DETAILS

12

12.1

12.2

12.3

12/ System Details

SYSTEM DETAILS

This section provides detailed information about the internal functioning of PTL.

SYSTEM GENERATION

During system generation the following steps are being performed:

- A driver library DRIVER.LBX is being created from the selected drivers.

- A subroutine with a driver table is created

- The PTL program is linked together with the libraries DRIVER, PTL and SYSTEM

- A library PTL.LBX is created as a subset from the main PTL library (Run-time

only).

- All important Files are copied from the generator disk to the system disk

STORE MENU CONFIGURATION

The menu configuration is stored in the file PTL.DAT. After making changes in the

menu, PTL.DAT will only be changed on E-disk. therefore copy this file to floppy

to make it permanent.

The same is true for the menu in system configuration, only this time the information

is stored in SYSGEN.DAT.

STEPS REQUIRED FOR COMPILATION

The following steps are required to create an executable procedure:

o Create a procedure

o Optimize PTL

o Compile Basic

Polar Test Language 12-1

12/ System Details

o Link libraries

_ The following diagram shows the sequence:

cis,

Test procedure I
”

Interpret.

Preproc.

1 PTL.TMP
+

Fortran Assembly Basic
| Compiler |

\-—" I A Linker l. i-—"|

User library _ PTL library

Test code

12.3.1 Creating a procedure

Procedures which have to be compiled can be created and modified using the PTL

MENU EDIT function, the standard System Editor program (EDIT.FD2), or any text

processing system that generates ASCII files.

The original (source) procedure can be written in any combination of legal PTL and

Extended Compiled BASIC commands and functions. Refer to the description of PTL

language elements or the Fluke 1722A Extended Compiled BASIC manual for all

information on those commands and functions.

12-2 Polar Software Systems

12/ System Details

12.3.2 Optimize PTL

Although not strictly required, PTL normally optimises the PTL commands. This

means that all English type commands are replaced by the equivalent "[EEE Codes".

The reason for this is that the code becomes more compact (a smaller program is

created) and the speed is significantly higher.

The standard PTL program performs this function automatically when the COMPILE

function is used. The result of the optimization is the file PTL.TMP.

12.3.3 Compile Basic

The standard Fluke Extended Basic compiler is used to compile the basic program.

If the normal command file C.CMD is used in the COMPILE function, PTL.TMP

will be compiled with the options: /I/E/NL.

The result is < procedure name > .OBX

12.3.4 Link Libraries

The standard Fluke Extended Linking Loader is used to link the object code together

with:

The main program

The PTL.LBX library

The DRIVER.LBX library

The SYSTEM.LIB library o
oO
o

O
86

The result is the file < Procedure name > .FD2.

The main program has the following structure:

Polar Test Language 12-3

12/ System Details

12.4

12-4

Initialize program

While task<=0

call test (task)

Endwhile

Close files

CREATE A USER LIBRARY

The user may create his own library of subroutines. These subroutines may contain

e.g.:

Procedure subroutines:

A procedure may be split up in small subroutines, consisting of one or more steps.

Each step can then be written as a basic subroutine, using PTL, and can be stored in

a user library. The main procedure could then consist of calls to these subroutines.

Special functions:

Special functions can be written in PTL, Basic, Fortran and Assembler. These

functions could include: Special evaluation of results, graphic routines etc. These

functions can be stored in a user library to be included automatically when needed.

PTL supports special subroutines and user libraries in two ways, both to be found

under the menu function COMPILE/<ESC>.

Polar Software Systems

12/ System Details

12.4.1 Compilation

The standard command file for compilation is c.cmd. To support user libraries, two

other command files are included.

C Compile a standard test procedure. Usage:

C <source file> <error file>

CU —_ Compile a user subroutine and store it in a user library USER.LBX. This

command file assumes the presence of the Extended Library Manager on

floppy usage:

CU <source file> <error file>

CL Compile a test procedure and link also a user library USER.LBX. Usage:

CL <source file> <error file >

12.4.2 Main/subroutines

Normally, (when selected in COMPILE/<ESC>) PTL adds a RESET SYSTEM

subroutine to the standard test subroutine, to reset all instruments being used in the

test procedure.

This is not desired when subroutines have to be written. For this reason this selection

can be turned off in COMPILE/<ESC>.

12.5. VARIABLES IN PTL

In some cases it might be desirable to use variables in the PTL statements. PTL

supports such "Call by reference", as a replacement for constants only. This can be

done by entering the variable name between square brackets instead of such constants.

Polar Test Language 12-5

12/ System Details

Example:

For Volts= 5 to 15 step 3

SETUP ("Instr=Power;Voltage=[Volts] ;Limit=1")

Next Volts

All valid Basic variables may be used.

Note: Interpretation for instrument capabilities will be done during compilation and

excludes variables. Therefore extreme care must be taken when using this

feature.

Note: Due to the fact that during PTL interpretation, Basic is skipped, these

variables can not be interpreted.

12.6 FILES REQUIRED FOR PTL

In addition to your PTL program, the following programs are on the system disk:

Note: The files listed below are the minimum, needed to compile and run a

PTL/BASIC procedure. Other files may be needed for more complex

programs.

12.6.1 Program Files

The PTL program consists of three files:

-PTL.FD2 The actual PTL program, including all instrument drivers to allow

direct and immediate mode.

- PTL.DAT Contains the information of the function keys: The names and the ESC

12-6 Polar Software Systems

12/ System Details

settings. Each time these settings are changed, this file must be put on

floppy to make the changes permanent.

- PTL.BIN Contains the configuration information for: devices, instruments and

connections. Also contains the screen lay-outs.

- SCREEN.DAT Contains all screens needed for the system.

12.6.2 Extended Basic Compiler

The Standard Fluke Extended Basic Compiler XBC.FD2 has been used for PTL.

12.6.3 Extended Linking Utility

The standard Fluke Extended Linking Utility XLL.FD2 has been used.

12.6.4 Extended Basic Runtime

The standard Extended Basic Runtime System BSXRUN.FD2 has been used

12.6.5 Libraries

Three libraries must be linked together (in this order) with the test procedure:

PTL.LBX : With all PTL statements

DRIVER.LBX All instrument drivers selected

SYSTEM.LIB Standard system functions for the 1722A hardware.

Polar Test Language 12-7

12/ System Details

A USER library may be added to include special user functions or test steps. This

library must be linked with a procedure before any of the previous ones.

12-8 Polar Software Systems

CHAPTER 13

APPENDICES

13/ Appendices

13 APPENDICES

A. Example Configuration Listing

The sample listing below represents a typical listing of a system configuration. To

clarify the terms used in the listing the following explanation is given.

The listing is divided into three groups : devices, instruments and connections.

DEVICES

The group ’devices’ shows the relation between device names and physical devices

(hardware). This means that a name like ’Screen’ will be translated to *KBO:’ any

time it is used.

INSTRUMENTS

This group shows the relation between the identifiers which can be used in programs,

the names of the instruments, their IEEE address and the type of instrument.

As can be seen in the listing, some instruments can be configured for any combination

of input, output and scan functions.

CONNECTIONS

The connections for each instrument are listed in this group, showing the following

items:

- Instrument identifier. This column contains the identifiers, defined during

’Configure Instruments’

- Type. The type of connection i.e. input,output or scan, is listed in this

column.

- Switch matrix. This column lists the identifiers of instruments defined as

*SCAN’.

Polar Test Language 13-1

13/ Appendices

13-2

Connection name. This column contains the names which can be used in

programs to identify a particular connection.

Code. The code field lists all connections to be made. These codes consist of

the scanner number, separated from the number of the relay (or electronic
3 switch) by a ’-’ (minus, NOT an underscore) character. If more connections

have to be defined on the same line, they must be separated by a ’/’ (slash)

character. The number of connections that can be defined on one line is

limited to 3.

Switch delay. This column contains the delay time in milliseconds the system

will wait (after the connection has been made) before it continues with the next

program step.

Polar Software Systems

--- Polar Test Language.

--- Customer: Polar ---

Nr Name

0 Screen

1 Printer

2 Disk

HP5335A Counter

HP3326A 2-Chan synth.

Thorn EMI SHR PS

Delta PSC 625R PS O
u

FP

W
DY

FF

O

Polar Test Language

Fluke 8842A Multimeter

HP3488A Sw.Control unit

Kepco TLD 488-16/4A PS

13/ Appendices

Version 1.2 - Configuration -

Printed at 08-Jun-87 14:04 ---

Address Program name Type

1.1 Counter in

2.1 Synthesizer out

3 Dmm in

6 Switch c+i/o

8. 0 Supply out

7 Test voltage out

4.1 Ref level out

13-3

13/ Appendices

--0cce Page 1 -----

eee ee ee eee ee ee eee Connections----------------------

Instruments Type Matrix Name Code Delay -

coc rec cro 2-7-7 cece r rr free ----- -----DMM

Input: SWITCH AMP IN 1-1 33

SWITCH AMP REF 1-2 44

SWITCH AMP OUT 1-3 55

SWITCH AUX REF 1-4 55

SUPPLY Output: SWITCH +5 2-3 44

TEST VOLTAGE Output: SWITCH TEST 1 4-1 33

SWITCH TEST 2 4-2 35

SWITCH TEST 3 4-3 35

REF LEVEL Output: SWITCH PLUS REF 5-1 55

SWITCH MIN REF 5-2 55

SWITCH AUX REF 5-3 55

------ Page 2 -----

B. Example Driver listing

The sample listing below represents a typical listing of instrument drivers in the form

of tables. To clarify the terms used in the listing the following explanation is given.

13-4 Polar Software Systems

13/ Appendices

The driver software contains several so called levels. These levels determine the menu

options being displayed whenever a selection from the menu has to be made. Assume

for this explanation that the function "SETUP’ has been chosen from the first menu

to prepare a Fluke 8840A multimeter to do some measurements. As can be seen in

the listing, level

1 is indicated as "FUNCTION’. The parameters,

i.e. the options that can be used with FUNCTION’, are VDC,VAC,2 WIRE OHM...

etc. The (EEE) commands to be sent to the 8840A are F1, F2, F3...etc.

respectively.

The ’New level’ column in the listing indicates the new menu options that will be

displayed after one of the above parameters have been chosen. Assume

FUNCTION=VDC has been selected. The new menu (level 2 , last column) contains

the options AUTO,0.2,2,20,200,1000 as parameters to the RANGE function. After

a selection from this menu has been made, return will be controlled to level 1, as

indicated in the column ’New level’ on each line of the RANGE function, displaying

the first menu again. This approach 1s used for any of the other menu options.

Polar Test Language 13-5

13/ Appendices

13-6

Customer:

Polar Test Language.

Polar ---

Version 1.2 Drivers ---

Printed at 08-Jun-87 14:04 ---

Level Function

F
P
R
P
e
H

F
P
N

P
P

RP

DN

RP
DN

PB Volt=

Cur limit=

Current=

Volt limit

Max

Min

Max

Min

Max

Min

Min

Min

volt=

volt=

curr=

Curr=

v lim=

v lim=

c lim=

Cc lim=

Parameter

-1000..1000

Q0..1000

0..1000

-1000..1000

-1000..1000

-1000..1000

.100

.100

.100

.100

.100

.100 o
O
o

O
O

Oo

O

IEEE

Polar Software Systems

13/ Appendices

C. Example Procedure

--- Polar Test Language. Version 1.2 ----- Example ---

--- Customer: Polar --- Printed at 08-Jun-87 14:04 ---

SUB Test (task)

On Error Subret

Procedure ("")

Start_task("Name=’SETUP SYSTEM’ ")

Write ("To=Screen;Type=Header")

Write ("To=Printer ; Type=Header")

Setup ("Instr=Supply;Volt=5;Current limit=4")

Apply ("Instr=Supply;To=+5")

End_task("")

Start _task("Name=’Test Power Supply’ ")

Setup ("Instr=Dmm; Function=Vdc;Range=20;" &

+"Reading rate+Fast")

Setup ("Instr=Test voltage;To=Test 2")

Meas ("Instr=Dmm;At=Amp ref;Min=8.2;Max=8.4;" &

Units=’ Vdc’ ;Remark=’Amplifier ref voltage’")

End _task("")

Start_task("Name=’Test Amplifier’")

Setup ("Instr=Dmm; Function=Vac;Range=20;" &

+"Reading rate=Medium")

Meas ("Instr=Dmm;At=Amp in;Min=12.4;Max=12.6;" &

Polar Test Language 13-7

13/ Appendices

+"Units=’ Vac’ ;Remark=’Amplifier local input’ ")

ieee Page 1---------

--- Polar Test Language. Version 1.2 ----- Example ---

--- Customer: Polar --- Printed at 08-Jun-87 14:04 ---

Meas ("Instr=Dmm;At=Amp in;Min=6.05;Max=6.45;" &

+"Units=’Vac’ ;Remark=’Amplifier Ref voltage’")

Meas ("Instr=Dmm;At=Amp out;Max=18.5;" &

+"Units=’ Vac’ ;Remark=’Output voltage’")

End_task("")

Write ("To=Screen;Type=Pass/fail test")

End_proc

SUBEND

SUB REPORT ()

On Error Subret

Write ("To=Screen;Type=Result")

Write ("To=Printer;Type=Result")

SUBEND

13-8 Polar Software Systems

D. Example Result

Minimum

1.75

Polar Test Language

u
n
o

u
P

PF

PP

PP

W
W

Dd

DY

ND

YN

ND

Actual

.10123

.28947

.51437

.67591

.91780

. 74373

.49532

.00723

.22395

. 36194

.94184

.02357

.48501

.29983

Maximum

2.75

13/ Appendices

Units

Vdc

Vdc

Vdc

Vdc

Vdc

Vdc

Vdc

Vdc

Vdc

Vdc

Vdc

Vdc

Vdc

Vdc

P/F

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

13-9

POLAR SYSTEMS

OPTION PTL-DRV

PTL Driver Development Package

DRV/ PTL Driver Development Package

1 CONTENTS

1 CONTENTS .. 1... te te ee te ee ens DRV 1

2 CREATING INSTRUMENT DRIVERS DRV 2

2.1 INTRODUCTION 2.2... 2. eee ee ee ee DRV 2

2.2 STRUCTURE DRIVER 2... 2... 0c eens DRV 4

2.3 INTERPRETER PART 0.0.2.0. ee eee eee DRV 7

2.3.1 Calling the driver 0... ... cee ee ew ee eens DRV 7

2.3.2 Detailed Example20 0220 eee DRV 8

2.3.3 Actions cece ee ee te eens DRV 9

2.3.4 Identification code 2.2.0 eee eee eee DRV 10

2.3.5 Drivercode 2... cee eee eee eee eee DRV 12

2.3.6 Select code eee ee et tte eens DRV 12

2.3.7 Example code 2.0.02 e eee DRV 16

2.4 RUN-TIME PART 2.2.2.2 eee weenie DRV 18

2.4.1 Calling the driver 0... ee eee eee ees DRV 18

2.4.2 Detailed example-......22 2c eee DRV 20

14. APPENDICES ee te te eens 14-1

A. Example Configuration Listng20-2 eee ee A-1

B. Example Driver listing 0.0 c eee eens B-8

C. Example Procedure 2 cee eee eee eee eee eens C-10

D Example Result 2... 0... 2. eee eee ee ee ee es D-12

Polar Test Language DRV-1

DRV/ PTL Driver Development Package

2.1

DRV-2

CREATING INSTRUMENT DRIVERS

This manual describes how to create instrument drivers for the Polar Test Language

PTL Version 1.3.

This information is supplied as option : PTL/DRV PTL Driver Development Package

INTRODUCTION

A special "Driver Engineering Disk" is provided to create or change instrument

drivers. To start, insert this disk in the controller and press "RESTART". All relevant

files will be copied to the E-disk. (Please note that all information on the E-disk will

be destroyed).

To edit a driver source, use the command "EDIT NAME.BAS". "NAME" stands for

the instrument name and is limited to 5 characters. PTL uses the following

convention:

o First letter: Instrument manufacturer

E.g. F for Fluke, H for HP

o 4 characters: Instrument identification

E.g. 8840 for a Fluke 8840A

3325 for a HP 3325A

For preparing (compiling and linking) a driver, use the command "MAKE NAME".

The command file "MAKE" will take care that:

o the program is compiled by the basic compiler

o a small library module is made with the name "NAME.DRV".

Polar Software Systems

DRV/ PTL Driver Development Package

If Basic errors are encountered in the Basic compiler, the process stops and no valid

",DRV" module is produced. If there is a ".DRV" module after a Basic error

message, this must be the result of a previous compilation, and is not the new

module.

The newly generated module should now be copied to an "INSTRUMENT DRIVER

DISK" which can be used for generating a PTL system.

NOTE:

The system generator program will select all the compiled drivers from a driver disk,

by looking for ".DRV" modules and checking these for valid driver codes. Only

correct files are considered to be candidates.

Other files on the same disk will not confuse the selection mechanism, so the

engineering disk could be used as an instrument driver disk.

Polar Test Language DRV-3

DRV/ PTL Driver Development Package

2.2 STRUCTURE DRIVER

An instrument driver is a module with two true Basic subroutines: an interpreter and

a run-time subroutine.

SUB I_NAME (passing area)

The interpreter routine is used in the PTL menu editor and in the interpreter and

compiler. It contains all capabilities of the instrument plus the translation into "ieee"

codes.

The run-time part is the actual driver for the instrument. This is the only part which

is included in the (final) compiled procedures.

The following diagram gives an indication of the PTL structure:

DRV-4 Polar Software Systems

DRV/ PTL Driver Development Package

Sources (-—-}—+ PTL

—_— |
Configure} | Language Editor

t+.
S| OS

|_Cntrl |_F8640 |_Inout |_Delay

Control F8840 Inout Delay

The following is a series of listings that will be built up to a real driver for a DMM

from Fluke, the 8840A.

Polar Test Language DRV-5

DRV/ PTL Driver Development Package

SUB I_F8840 (Action%, Address, Block, Command$)

ON ERROR SUBRET

Pcode$="XXXXXXXXKXKX CODE XXXXXXXXXX"

ITeeeS=""

Interp ("F8840", Address, Block%, Pcode$S, &

Command$, Ieee$)

F8840 (Address, Block%, Ieee$)

SUBEND

SUB £8840 (Address, Block%, Ieee$)

PRINT @Address, Ieees ! Send ieee string

SUBEND

This (simplified) listing, shows that the task for the interpreter part, is to fill a string

Pcode$ with driver information and to call the routine "interpreter".

This interpreter routine will translate the command from a user, given in the variable

Command$, with the use of the driver code in Pcode$. It produces the driver runtime

command Ieee$.

Ieee$ is passed to the run-time part of the driver where it is send to the instrument.

The following paragraphs describe the two parts of the driver in detail.

DRV-6 Polar Software Systems

DRV/ PTL Driver Development Package

2.3 INTERPRETER PART

2.3.1 Calling the driver

The driver must be called as follows:

I_ F8840 (Actions, Address, Block%, Command$)

The following parameters are needed in the passing area of the interpreter part:

Action% = The type of action to be performed:

10 = Reset

11 = Setup

12 = Measure

Address = The address of the device connected:

0..31 = IEEE address

The fractional part is the secondary address (if allowed). E.g. 12.05 means address

12 secondary 5

Block% = pointer to reserved space for local variables

Command$ = Command to be analyzed

In the following paragraphs, the driver will be detailed out.

Polar Test Language DRV-7

DRV/ PTL Driver Development Package

2.3.2 Detailed Example

The interpreter of the driver for the Fluke 8840A could look like:

SUB I_F8840 (Actions, Address, Block%, Command$)

ON ERROR SUBRET

SELECT Actions

CASE -1 ! Identify

Commands$="1NAME) Fluke 8840A Multimeter ~" &

+"D10,T1,L1,H31,B0, IDMM,v1.0{}|"

SUBRET

CASE 10 ! Reset

Pcode$=""

Teee$="*"

CASE 11 ! Setup

Pcode$="1FUNCTION}VDC~F1, {}OHM~F3, {}|"

ITeeeS="@a,"

ENDSELECT

Interp ("F8840", Address, Block%, PcodeS, &

Commands, Ieees)

F8840 (Address, Block%, Ieees)

SUBEND

DRV-8 Polar Software Systems

DRV/ PTL Driver Development Package

2.3.3 Actions

The action is used to define what action is required from the driver. The following

actions are available:

IDENTIFY = -l

PROCEDURE = 01

END PROC = 02

START TASK = 03

END TASK = 04

EVAL = 09

RESET = 10

SETUP = 11

MEAS = 12

APPLY = 13

DISAPPLY = 15

SWITCH = 16

DISCONNECT = 17

to = 18

at = 19

WRITE = 20

ENTER = 21

DELAY = 30

Identify is needed to identify the instrument to the system generator and the

configurator.

Polar Test Language DRV-9

DRV/ PTL Driver Development Package

2.3.4

Only action codes 10..19 must be resolved in the driver. Depending on the instrument

used, only a few actions could be used. E.g.:

- Measurement devices will generally use Reset, Setup and Meas.

- Generators will use Reset, Setup, Apply and Disapply.

- Scanners and digital output instruments will use Reset, Switch and Disconnect

(as direct commands from a user) and will also use "to" and “at" for scanning

other instruments.

Identification code

During system generation and system configuration the driver is called with action

code = -1 to get its identification code. In this identification code, information about

the type of driver is specified as follows:

"1NAME}Fluke 8840A Multimeter " &

+ "~D10,T1,L1,H31,B0,IDMM,V1.0{}/"

The length of the information code MUST BE ODD ! If the length is even, than add

a space somewhere in the code (e.g. behind Multimeter) to make the string odd.

The identification code is embedded in a rigid format as follows:

1NAME} <identifier> ~ <code> {}|

to be compatible with all other select codes used. This format is needed to be able to

be recognized as an instrument driver by the system generator. The select codes will

be explained in one of the next paragraphs.

DRV-10 Polar Software Systems

DRV/ PTL Driver Development Package

The < identifier > contains the name and type of instrument. In the previous example

this was:

Fluke 8840A Multimeter

The <code> contains several parameters. For the previous examples these where:

D10,T1,L1,H31,B0, IDMM, V1

with:

D= Default ieee address or port number

0 .. 31 = ieee address

70 .. 72 = screen - printer - disk

T= Type of instrument

0 = none

1 = input

2 = output

3 = input and output

4 = scanner

5 = scanner and input

6 = scanner and output

7 = scanner and input and output

L= Ieee address lower boundary

H= Jeee address upper boundary

l= Secondary address lower boundary

h= Secondary address upper boundary

B= Number of user blocks for local variables

Polar Test Language DRV-11

DRV/ PTL Driver Development Package

2.3.5

2.3.6

+n = n block in the dim file

O = no space reserved

-n = n blocks in main memory

I= Default identifier

V= Version of driver

Driver code

The driver code describes all capabilities of the instrument and its translation into the

"ieee" code. This is the coded version of the information which is printed when

"PRINT DRIVERS" is selected in the PTL program.

In the previous example we had as driver code:

"1FUNCTION}VDC~F1, { }}OHMS~F3, {} |

This should be understood as:

On level 1 we have as functions

- VDC which translates to ieee code "F1,"

- OHMS which translates to ieee code "F3,"

A driver code is one of the many select codes used in PTL. The format and

capabilities of the select codes is explained in the following paragraph.

Select code

A select code is a generalized format for all selections to be made at a certain part in

PTL. It gives a tree of choices.

The select code has the following format:

DRV-12 Polar Software Systems

DRV/ PTL Driver Development Package

code$="1SELECT}CHOICE 1~F1,{2}CHOICE 2~F2,{2}{|"

with:

1 = Level in the tree

SELECT = Start of command to be selected

\ = Separator

CHOICE 1 = Choice for a possible command

~ = Separator

Fl = Code to translate to

{2} = Level for next choices

= End of code string

E.g. the command "SELECT =CHOICE 1" will translate into code "F1,".

All selections with level 1 are always possible: In menu edit, they will always be

displayed. If a next level is specified, then ALSO selections on this new level are

valid. If no next level is specified, the level will stay unchanged.

There are 3 types of data possible:

1. Select from several possible words given by the code

2. Select a number

3. Select a string

The general format for the code is:

<n> <command >}

choice > ~ <ieee>{<m>}..<choice> ~ <ieee>{<m>}!

Polar Test Language DRV-13

DRV/ PTL Driver Development Package

With:

<n> = Level for command

<command > = A possible command at level n (upper case only)

<choice > = Possible choices for command:

- Text : must be exact match

- Min..Max : value between 2 limits

-$: can be any string

<ieee > = Equivalent ’ieee’ format for command

- Text : ieee will be text

- ..$.. : String will replace $

- ..#.. : Value will replace #

<m> = Second level for new command (first is always 1). m

may be deleted if no new value is required

Example 1: Numeric entry

code$="1VALUE}1..999~N#, {2} |"

1 = Level for command

VALUE = Name of variable to enter

} = Separator

1 = Lower boundary of value

- = Separator

999 = Higher boundary of value

DRV-14 Polar Software Systems

DRV/ PTL Driver Development Package

~ = Separator

N#, = Code for driver, where # will be replaced with number

{2} = Level for next choices

= End of code string

With this code a command like "VALUE=234;" will be translated into "ieee" code
"N234 , rT)

Also "Call by reference" with Basic variables is possible. A command like

"“VALUE=[LEVEL]" will be translated into "N" +NUM$ (LEVEL)+"," (compiler

only)

Polar Test Language DRV-15

DRV/ PTL Driver Development Package

Example 2: String input

code$="1TEXT}$~T’$’,{2}{"

1 = Level for access

TEXT = Name of function to select first

} = Separator

$ = Code for text entry

~ = Separator

T’$’, = Code for driver, where $ will be replaced by entered text

= Level for next choices {2}
= End of code string

With this code a command like "TEXT =’Hello world’;" will be translated into ’ieee’

code:

"T’ Hello world’ ,"

Also "Call by reference" with Basic variables is possible. A command like

"TEXT =[GREETING$]" will be translated into "T’" +GREETING$+"’," (compiler

only)

Unnecessary to say that in this case, the compiler cannot test the value of the passed

variable. So the user must either test himself with basic statements or write an

instrument driver that can handle invalid information.

2.3.7 Example code

To demonstrate selection codes, we now include the actual interpreter code for the

Fluke 8840A Digital Multimeter:

DRV-16 Polar Software Systems

DRV/ PTL Driver Development Package

pcode$= "1FUNCTION}VDC~F1,{2}2 WIRE OHM~F3,"

"{4}4 WIRE OHM~F4,{4} MA DC~F5,{5}"

"MA AC~F6,{5}|"

" 2RANGE }AUTO~RO, {1}0.2~R1, {1}2~R2,"

"{1}20~R3,{1}200~R4, {1}"

"1000~R5,{1}AUTO OFF~R7, {1}]"

" 3RANGE }AUTO~RO, {1}0.2~R1,{1}2~R2,"

"{1}20~R3, {1}200~R4,{1}"

"700~R5,{1}AUTO OFF~R7,{1}]"

"4RANGE }AUTO~RO, {1}200~R1, {1}2K~R2"

"{1}20K~R3, {1}200K~R4, {1}"

"2M~R5,{1}20M~R6,{1}AUTO OFF~R7"

"{1}i"
"SRANGE }AUTO~RO, {1}2000~R5, {1}AUTO"

"OFF~R7, {1}]"

"6V- &RANGE }AUTO~RO, {}0.2~R1,{}2~R2,'

"{}20~R3,{}200~R4,{}"

"700~R5,{}AUTO OFF~R7,{}|"

"6 IMPEDANCE }1. .999~@c#,{}|"

"TREADING RATE}SLOW~SO, { }MEDIUM~S1"

"{}FAST~S2,{}]"

"1TRIGGER MODE}INTERNAL~TO, {}"

"EXTERNAL~T1, {}|{"

"1OFFSET}OFF~BO, {}ON~B1, {}|"

"1 DISPLAY }NORMAL~DO, {}BLANK~D1, {}]|" +
+

t+

+
+

t+

+
t+

t+

t+

t
t

et
t+

t
t
t

t+

t+

t+
t+

+t
+

+

C
e

M
A
R
E

n
R
a
A
R
R
e
E
R
n
N
R
e
a
R
M

A
H
R

n
R
r
e
n
r
r
n
R
R
n
r
a
,
m

™

Note that the {level} is used to select which range is used for a certain function.

Polar Test Language DRV-17

DRV/ PTL Driver Development Package

2.4 RUN-TIME PART

2.4.1 Calling the driver

The second part of an instrument driver is used during run-time. It is the part which

adapts PTL to the instrument, whether it connected to the IEEE bus or to any other

interface. It is therefore not possible to give a fixed solution for all drivers.

The run-time subroutine is the only part which is linked to a compiled procedure.

This part must therefore be optimised for speed.

The structure of such driver is as follows:

SUB F8840 (Address, Blocks, Ieee$)

IMPORT Type%, No result%, Result ()

IF IeeeS="*" THEN ! if it is a reset command

clear @address ! reset instrument

ELSE

IF LEFT (Ieee$,2)="@a" THEN! command to measure

TRIG @Address ! Ask for a measurement

INPUT @Address, Result(0)! Get measurement

Type%s=3 ! Real result

No_result%=1 ! and tell it’s only one

ELSE ! setup the instrument

PRINT @Address, IeeeS ! Send ieee string

ENDIF ! end in/output test

ENDIF ! end reset test

SUBEND

DRV-18 Polar Software Systems

DRV/ PTL Driver Development Package

The driver must be called as follows:

F8840 (Address, Block%t, Ieees)

The following parameters are needed in the runtime part:

Input parameters:

Address = The address of the device connected

Block% = pointer to local variables

Ieee$ = Command to be executed

Imports :

No result$ - Number of results

Type% - Type of result

0 = No result

= Bit

2 = Integer

3 = Real

4 = String

Result(0) =- Result (real or integer) also be used for array 0..14

Result$ - Result (string)

Next _time(add)- array with wait times (indexed with ieee address)

The actual driver must handle all (exceptional) situations. It must therefore be able

to handle an instrument which is off-line, defective, over-ranged or non-existing. In

certain case this could result in time-outs during bus transfer, which could be trapped

with on-error statements.

Polar Test Language DRV-19

DRV/ PTL Driver Development Package

2.4.2 Detailed example

The following example is the actual Fluke 8840A driver:

WI%s=0

IMPORT Type%, No_result%, Result(), Next_time()

ON ERROR GOTO WRONG

TIMEOUT 3000

IF IeeesS="*" THEN ! Reset command

Next time (Address) =Time+3000 ! 3 sec wait time

ON ERROR GOTO No_instrument ! trap no

instrument

CLEAR @Address ! reset instrument

End init:

ON ERROR GOTO Wrong

ELSE ! Not a reset command

IF Next_time (Address) >Time+5000 THEN

Next_time (Address) =Next_time (Address) - 86400000

ENDIF

WHILE Next _time(Address) >Time |!

ENDWHILE

IF LEFT (Ieee$,2) ="@a" THEN !

wait for time

do we measure?

Type%=0 ! Not a valid result

TRIG @Address ! Ask a measurement

INPUT @Address, Result (0) !

Type%=3 ! Real result

No_result%=1 ! One result

ELSE

Get measurement

DRV-20 Polar Software Systems

DRV/ PTL Driver Development Package

PRINT @Address, Ieees ! send ieee string

Next time (Address) =Time+1000 ! 1 sec wait

ENDIF ! end meas/setup

ENDIF ! end reset

SUBRET

! --- Error handler ---

No_instrument :

RESUME End init

Wrong:

RESUME Back

Back:

Runtime_error (Ieee$, Err) ! Normal error

SUBEND

Note that wait times are handled by the Next time() variable. During reset,

wait time() is set to a moment of 3 seconds in future. If this driver is called again for

a setup or a measurement, and this moment has not been reached yet, the drive will

wait. This enables the whole system to perform other tasks while one or more

instruments are busy.

Polar Test Language DRV-21

POLAR SYSTEMS

OPTION PTL-GUI

PTL Graphical User Interface

GUI/ Graphics User Interface

1 CONTENTS

1 CONTENTS .. 10... te eee ee ee ee eae GUI-1

LIST OF FIGURES cee ee ee te ens GUI-3

2 INTRODUCTION 0... ce ee ee ee tens GUI4

3 COMPONENTS OF A GRAPH 2.2 cee eee eens GUI-6

3.1 Define... . cc ee ee ee et ee ene GUI-9

3.1.1 Def window 2... . ce ee ee ee et ens GUI-9

3.1.2 Def Axes... ... ce tens GUI-10

3.1.3 Def Limits... ee ee ee ens GUI-12

3.1.4 Deftext 2.2... ee ee et et ns GUI-14

4 PLOTTING DATA ce te tte en ne GUI-16

4.1 Plottypes ee eens GUI-16

4.1.1 X-tplots ce ee GUI-16

4.1.2 X-Y plots ee et ee tes GUI-17

4.2 Plot methods 0... cee eee ee et ens GUI-17

4.2.1 Limetypes cee ee te ee te es GUI-17

4.2.2 Arrayplot .. 0.0... ce ee ee ee ns GUI-18

4.2.3 Limeplot ee ee ns GUI-19

4.3. Printing 2... ee tte ee ee eee GUI-20

5 ADJUST OPTIONS 2c cee ee eee GUI-21

5.1 Single bargraph 0... cee eee ee ee ee eens GUI-21

S.1.1 Type .. 2... ce et et te ee es GUI-22

5.1.2 Tag ee ee ee ee ee ee eee GUI-23

5.1.3 Hihi- & Lolo- limits 2.0.2... 000000 GUI-23

5.1.4 Hi- and Lo- limits 0... 2.202 ee ee ee es GUI-24

5.1.5 Syntax ee ee eee GUI-24

Polar Test Language GUI-1

GUI/ Graphics User Interface

5.1.6 Example 0... .. 2 cee eee ee ee te ee ees GUI-25

5.2 Multiple bargraphs 2... ee eee ee eee ees GUI-25

S.2.1 Type ce ee ee ee ee ee GUI-26

5.2.2 Tag ccc cc te ee we ee et tte eee teens GUI-27

5.2.3 Umits 2.2... . ee ee ee ee ees GUI-27

5.2.4 Limit values... 2.2... ee ee te ee ens GUI-27

5.2.5 Limit checking 2.0... eee eee eens GUI-28

5.2.6 Syntax 2... ee ee eee ee ees GUI-28

5.2.7 Bargraphs update 2... cee eee eee ene GUI-29

6 INPUT OPTIONS 0... ee ee ee eee ee ee GUI-30

6.1 Slew keys cc ee eee ee ee ee ee eee GUI-30

6.1.1 Parameters... . 2... ee ee et ee ee GUI-31

6.1.2 Inputting data .. 2... . ee ees GUI-31

6.1.3 Syntax 2... ee ee ee eet eens GUI-32

6.2 Menuselection............ 0. cc ee eee eee eee tee GUI-32

6.2.1 Symtax 2... ec ee ew ee teens GUI-33

7 DEFAULT VALUES cece ee ee ee GUI-34

7.1 Plot default values 2... 2... .. . ee ee ee ee ee es GUI-34

7.2 Adjust default values .. 1.2... 0... . ee ee ee ees GUI-35

7.3 Plot implicit defining 0... eee eee eee ee GUI-35

8 DATABASE... 1... ee ee et ee ee GUI-37

8.1 TesultQ 2... tt te ee tw we ee ee es GUI-37

8.2 supply0 ... 2... . ee ee ee eet ee ee GUI-38

8.3 mo result% ©... . cee ee ee ee eee eee GUI-38

8.4 pass%Q) 2... cee ee eee eee ee ee ee eee eee GUI-38

INDEX 2.1... ee et et ee eee ee eee GUI-39

GUI-2 Polar Software Systems

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

GUI/ Graphics User Interface

LIST OF FIGURES

Sample graph ... 2... ... ce ee te tet ee ns GUI-6

Limit types 2.1... . ee et te eee ee ne GUI-13

Linetypes 2... ce t e ee w e eens GUI-18

Single bargraphs 0.2... .. 2c eee eee ee et eee GUI-22

Multiple bargraphs 0... cee eee ee eee ee eee GUI-25

Multiple pointers... 1... ee tee ee ee ens GUI-26

Polar Test Language GUI-3

GUI/ Graphics User Interface

2 INTRODUCTION

In order to be able to display results from tests & measurements, a graphics driver

may be included in the PTL-system. Graphs as results from measurements and/or

typed input may be directly, displayed "live", on the computer’s display.

Single line-pieces at a time, as well as whole arrays may be plotted, thereby having

the possibility of automatically displaying minimum and maximum limits.

A wide range of default-settings, all of which are determining the visual shape on the

screen, may be optionally altered with PTL’s user friendly menu selection system.

The graph may be plotted to one of six popular printers such as Epson, Apple or

Hewlett Packard.

In addition, to further enhance the 1722’s screen output, several test & measurement

adjustment features are available:

- Single or multiple bargraphs may present numerical data;

- Input from the operator may be obtained through slew-keys or menu

selections;

Single bargraphs, with either a bargraph- or needle-pointer, as well as arrays of up

to 8 bargraphs may be presented at a time, thereby having the possibility of

automatically displaying minimum and maximum limits.

For user’s input, a so called slew-key is incorporated, as well as a user-definable

menu-selector.

The single bargraph- or needlepointer options may be used together with the slew-key

module in one picture.

GUI-4 Polar Software Systems

GUI/ Graphics User Interface

To enable both the plot and the adjust screen enhancements, two commands are added

to the PTL language:

- Plot, to implement the plot options, and

- Adjust, to implement the adjustment screen enhancements

In the next chapters, first the Plot option will be described. Next, all the options for

the screen enhancement will be explained.

Polar Test Language GUI-5

Frequency versus Voltage outp

a =m aim
Frequency [KHz]

Legends

Polar Software Systems

GUI/ Graphics User Interface

(8), 9) Limits

Except for component (7), each of the above items are defined under the PTL menu

selection Plot Action. The following syntax diagram is available:

Syntax:

Action = Clear screen;

Def window;

Def axes;

Def Limits;

Def text;

Redraw definition;

Arrayplot;

Lineplot;

Dump ;

To start with a plot, the Clear Screen may be selected to clear the current contents

of the screen. From PTL, many options are available to define a plot to the wishes

of the user. The next paragraph will explore all the options of the Define selection.

When a plot is defined, result data may be on a line-piece by line-piece fashion, or

drawn all at once, using the Lineplot or Arrayplot options. Finally, a plot may be

dumped to a graphics printer. A selection of 6 types of printers is available to suit

most applications.

Polar Test Language GUI-7

GUI/ Graphics User Interface

3.1

3.1.1

GUI-8

Define

As mentioned above, many options are available to define a graphical PTL picture.

All of these options are available through the DEF <Type> menu selections. They

are:

- DEF WINDOW

This option defines the data-range of a plot. Four parameters Xmin, Xmax, Ymin,

and Ymax are defined;

- DEF AXES

This option enables the user to setup axes with ticks.

- DEF LIMITS

To visualize limits on measurements, PTL is also capable of drawing limits in the

graph.

- DEF TEXT

This option allows the user to draw some labels and titles for the graph;

- REDRAW DEFINITION

This option redraws the currently defined graph, based on both default and defined

parameters;

Def window

Each plot uses four parameters to determine the data-range of both the x-data and y-

data, called a window. They are for the x-data:

Polar Software Systems

GUI/ Graphics User Interface

- Xmin

- Xmax,

and for the y-data:

- Ymin

- Ymax

Example: When data is to be plotted, of which the data in the x-axis ranges from

0..100 mV, and the data in the y-axis varies from -100..100 mA, the four parameters

may have the following values:

Xmin = 0

Xmax = 100

Ymin = -100

Ymax = 100

Syntax:

Action = Define window; Xmin=<-1e99..1e99>5;

xmax=<

1e99..1e99>;Ymin=<-

1e99..1e99>; Ymax=< -

1e99..1e99>

3.1.2 Def Axes

Axes are defined using the following parameters:

- Xticks

Polar Test Language GUI-9

GUI/ Graphics User Interface

- Xskip

- Xformat

- Yticks

- Yskip

- Yformat

Both the x-axis and the y-axis have corresponding parameters, which have identical

functions. Therefore, only one explanation is required:

- Xticks, Yticks

Ticks represent the number of ticks drawn on an axis. The way a tick looks, is

determined together with the next parameter, the skip count.

- Xskip, Yskip

A skip-factor may alter the way ticks and the corresponding scales are drawn: At each

major tick a scale factor will be plotted. Every Xskip and Yskip ticks, a major tick

is drawn. A major tick is drawn a little larger than a minor tick.

Example: In the plot-example of figure 1, Xticks=24, Xskip=3.

- Xformat, Yformat

Scales are drawn as well on the plot, just below the x-axis, and just left of the y-axis.

The representation of both scales is defined using these parameters, with a standard

Fluke BASIC format (See PRINT USING syntax in the BASIC Reference manual for

details on the format). Example: "S###.#"

GUI-10 Polar Software Systems

GUI/ Graphics User Interface

Syntax:

Action =Def axes; Xticks=<1..100>;Yticks=<1..100>;

Xskip<1..25>; Xformat=<Format string>;

Yformat=<Format string>

Format string: = Basic format string (S###.###)

Warning: An erroneously defined formatstring may cause a fatal program error.

Be sure to enter a correct format.

3.1.3 Def Limits

The following figure illustrates the four possible types of limit presentations, if

enabled, of the graphical package:

Polar Test Language GUI-11

GUI/ Graphics User Interface

LIMIT #1
LIMIT #3 LIMIT #4

LIMIT #2 SLANTED LINES

LL 3
1 ; [

2
RECTANGULAR LINES

WK K \ \\
4a

2 N SHADED AREA

AX WQ{y@yUuwKM™M\WW

SHADED WITH LINES

Figure 2 Limit types

Each limit value is drawn at a major x-axis tick. Using limits, an operator obtains a

direct visual representation of, for instance, limit values on measurements. When the

shaded type is selected, a shading percentage may be entered to define the shading

raster. A typical value would be 2, 3 etc. A value of 1 will draw a solid box, a value

of 20 will draw a shading grid with shading lines 20 dots apart.

Syntax:

Action =Def limits; <Type>; <Set limit data>;

None

= Slanted

Rectangle

= Shaded; Shading raster= <1..20>

Type

GUI-12 Polar Software Systems

3.1.4

GUI/ Graphics User Interface

= Shaded + line; Shading raster= <1..20>

Set limit data := All limits; Minima=<- 1e99..1e99>;

Maxima=<-1e99..1e99>

:= One by one; [X=<-1e99..1e99>; Min=<-

1e99..1e99>; Max=<-1e99..1e99>5] []

Def text

The graphical support of PTL allows it to define text on the graphics screen. The

options are:

- Title;

- Xlegend;

- Ylegend;

- Title

A plot title, when defined, will be displayed at the center-top of the graphical screen.

Example:

"Voltage/current plot"

- Xlegend

A legend for the x-axis will be drawn, when possible, at the center of the right part

of a plot. Additional units, and/or an arrow may be added to this string. Example:

"--> Voltage [mv]".

Polar Test Language GUI-13

GUI/ Graphics User Interface

- Ylegend

As on the X-legend, a legend for the y-axis may be defined as well. The text is drawn

at a rotation of 90 degrees, and is, when possible, in a centered fashion. Example:

"--> Current [mA]".

Syntax:

Action= Deftext ;Title=<text>;Ylegend=<text>;

Xlegend=<text>

GUI-14 Polar Software Systems

4.1

4.1.1

GUI/ Graphics User Interface

PLOTTING DATA

Plottypes

Traditionally, two types of plots can be distinguished: an X-t plot, and an X-Y plot.

Both type of plots can be implemented in PTL by supplying the graphics driver the

correct database.

X-t plots

An X-t plot is typically a plot, where the time-relation of a signal, such as a

measurement, is being presented on the graphics screen. The x-axis functions as the

X-axis, and the y-axis as the signal.

In the graphics driver of PTL, a data point (x,,y,) is drawn as a line-piece to another

point (x,,y,;). Data points are retrieved from two array variables supply() and resultQ.

The x-points x, are retrieved from supply(1), and y-points from result(i). By filling the

supply-array with equally spaced values, the effect of time will be simulated. For

instance, when X-axis parameters are as follows:

Xmin=0, Xmax=100, Xlegend="--> Time (min)", Xticks=10, Xskip=1

and supply(0)=0, supply(1)=10, supply(2)=20 ..., the effect of an x-t plot will

become a fact.

It is the responsibility of the engineer to store all required data in resultQ), supply(Q

and no result% before calling the plot-driver.

Polar Test Language GUI-15

GUI/ Graphics User Interface

4.1.2 X-Y plots

An x-y plot is a plot, where different signals may be plotted versus other signals. For

instance, the relation between voltage and current may be plotted in an x-y plot.

To define such a plot in PTL, both the resultQ and supply(array can be filled with

measurement data. By selecting the correct data-window, plotting of both array’s will

be result in a neat x-y plot.

4.2 Plot methods

Besides the type of plots, two possibilities for the plot-action itself may be selected:

plotting all data in one plot-action, or, at a piece-by-piece fashion, where results of

measurements may be monitored on the graphics screen step by step.

4.2.1 Linetypes

There are several line-types defined. The following figure will demonstrate the types:

GUI-16 Polar Software Systems

4.2.2

GUI/ Graphics User Interface

Ea ee

NO MARKERS

Ea ee
CROSS MARKERS

SQUARE MARKERS

CIRCLE MARKERS

TRIANGLE MARKERS

Figure 3 _—Linetypes

Each type specifies the type of marker drawn at each point of the graph. When array-

or lineplot is selected, a linetype may be defined.

Arrayplot

When a plot is defined, data may be plotted. There are different types of plotting

available: each point (x,y) is connected with a line from the previous point (x0, y0),

or all the available data points (x;, y,;) will be plotted at once, one after another. In the

Action= menu, a selection can be made. Arrayplot selects PTL to plot all available

data at once. Data is plotted as follows:

All x-values are taken from the global array: supply(Q), and all y-values are obtained

from the global array resultQ. A point (x;, y,) is retrieved in the array’s in location

(i) of the array:

Polar Test Language GUI-17

GUI/ Graphics User Interface

X,;

Yi

supply (i)
result(i)

The number of results is stored in the global variable: no_result%, which is imported

in the plot-module. The engineer is responsible for maintenance of the three variables.

Syntax:

Action=Arrayplot; Linemarker=<Type of linemarker>;

GUI-18

Type of linemarker = None / Cross / Square / Circle

/ Triangle

Lineplot

Instead of plotting all data at the same time, a

line-by-line method may also be selected. This

method enables an operator to watch the result of

each measurement separately. Each line-piece will

be drawn using a point (x,y). Data may be plotted

from the keyboard, or from the variable result (0).

Each point (x,y) may be entered from the keyboard,

or result(0) may be used for the y-value.

Syntax:

Action=Lineplot; Linemarker=<Type of linemarker>;

; X=<-1e99..1e99>;

Polar Software Systems

GUI/ Graphics User Interface

>; Y=<Result / -1e99..1e99?;

Type of linemarker = None / Cross / Square / Circle

/Triangle

4.3 Printing

When a plot is completely drawn, it may optionally be dumped to a printer. PTL has

drivers for several printers:

- Epson FX

- Epson Rx

- Epson Mx-100

- Apple Write

- Star Delta

- HP Thinkjet

Syntax:

Action=Dump; Printer=<Printertype>

Polar Test Language GUI-19

GUI/ Graphics User Interface

5.1

ADJUST OPTIONS

Using the adjust statement, the following screen enhancements are available:

- Single bargraph

A large, horizontally drawn bargraph meter, with a bargraph pointer, filling a 1722

display’s top half;

- Single pointer

A large, horizontally drawn meter, with a needle-pointer type of pointer, filling the

display’s top half;

- Multiple bargraphs & pointers

Up to 8 vertically drawn bargraphs, each with an independent set of limit values, tags

and units, as well as pointer type;

In the following paragraphs each of the options will be described.

Single bargraph

A bargraph is an illustrative method of presenting a varying numerical quantity, on

the computer’s display screen.

Figure 1, demonstrates the display of such a single bargraph.

GUI-20 Polar Software Systems

5.1.1

GUI/ Graphics User Interface

o_ 208 cao _. 1000
WK | WG

115 875

Single pointer

Q 260 466 600 $60 1806

SUIMRTED EIGEN UU MUA ination iter dtiiiietit ghia din hyn Bia — 7

115 $75

Single Bargraph

Figure 4 Single bargraphs

A single bargraph may be defined using the following parameters:

- Type
- Tag

- Hihi limit value

- Hi limit value

- Lo limit value

- Lolo limit value

Type

Two types of pointers for the single bargraph are available:

1. Bargraph

This type of pointer resembles a thermometer scale: A bar will move on the screen

Polar Test Language GUI-21

GUI/ Graphics User Interface

5.1.2

from left to right: when a value is low the bar moves to the left of the picture, when

a value increases, the bar will move towards the right edge of the screen.

2. Meter scale

This type of pointer resembles an analog meter instrument, where a needlepointer

moves left or right dependent on the result value.

The latter pointer is somewhat faster to update, due to the fact that a lot more

drawing is involved in updating a bargraph. On the other side, a bargraph may be

visually more clear, since from a larger distance, a bargraph will be more

recognizable.

Using the bargraph pointer, another advantage is that when a signal goes beyond it’s

limit, the bargraph will be drawn highlighted (100% filled versus 50% filled

normally).

Tag

A tag may be drawn at the lefttop corner of the bargraph. Any text may be used here,

such as text, describing the bargraph (’ Voltage output [mV]’ etc).

5.1.3 Hihi- & Lolo- limits

Hihi- and lolo limit values will define the data-range of the data, plotted on the

bargraph. Typical limits are hardware channel limits, for example 4..20 mA, or 0-10

V. These two parameters are used internally by PTL to calculate the position on the

screen for live data (scaling factors).

GUI-22 Polar Software Systems

GUI/ Graphics User Interface

5.1.4 Hi- and Lo- limits

5.1.5

Hi- and Lo- limits are signal limits , determining the type of bar drawn on the screen.

When a signal exceeds either a high- or a low-limit value, the bar changes from 50%

filled, to a full 100% filled solid bar. When the signal de- or increases to a level

within these limits, the bar changes again back to a 50% filled bar. Hi- and low limit

detection is therefore realized visually. Of course, the latter is only true for a

bargraph pointer.

Syntax

To display/define a bargraph, use the following syntax diagram:

Adjust ("Action")

Action= Display; Mode= Single bargraph; <Options>

Options = Type= < Bargraph / Meter scale >;

Tag= ’Tag’;

Hihi limit= <-1e99..1e99>;

Hi limit= <-1e99..1e99>;

Lo limit= <-1e99..1e99>;

Lolo limit= <-1e99..1e99>.

To update a bargraph, use the following command:

Adjust ("Action=Update") ;

Polar Test Language GUI-23

GUI/ Graphics User Interface

5.1.6 Example

When an JEEE temperature meter gives a signal output of 0..100 DEG C, and the

process we want to monitor does not allow temperatures over 75 DEG C, and not

under 50 DEG C, a definition of a bargraph could be:

Type=Bargraph

Tag=’TEMP [DEG C] ’

Hihi limit= 100

Hi limit= 75

Lo limit= 50

Lolo limit= 0

5.2 Multiple bargraphs

With the Graphics User Interface, it is also possible to display an array of up to 8

bargraphs at the same time on the display. A picture may appear as shown in Figure 5

for all 8 bargraphs, or Figure 6 for all 8 meter scales :

VOLTAGE VOLTAGE | VOLTAGE VOLTAGE CURRENT FREQ FORCE POWER
31.415 45.998 83566 10.002 Ss@. eae 74128 88.432 1175

Ce} ee | Cav Cel Cereal CkHzI CNI CHP]
— 4 4 @ 4 < <

4} 4}
—

7 7 wo

4 4 }

19@0.oe0 1a@0e.ea 180000 1006.00 100.80 75000 1ee.G00a 1250

9@.00 66.67 7300 90.00 3e@.ea0 74500 90.00 1000
18.00 323.33 2500 1@.00 19.80 74490 1a.80@ e353

e e 3735 @ @ 74000 a a

Figure 5 Multiple bargraphs

GUI-24 Polar Software Systems

GUI/ Graphics User Interface

UOLTAGE J VOLTAGE | VOLTAGE | VOLTAGE | CURRENT FREQ FORCE POWER
91.415 45.990 O566 9.002 5@.900 74120 e080 .432 114753
cmv Cmvu) Cau) Crus Carl CkHz1 CNI CHP}
—— =< = € -—T"14 =< =—T"14 —T14 om ob

- Le = 2m = ed = a = = el _

ee el ra
= = “= “| “ _ = Le ee eueed

— — a —q Le 7 — — a —f — a

— —_ — 7 4 4 le -+ 4

7 Oe ed 7 4 — 7 -_ 7

44 _— — 4 + = — —

nal nel
— — —~ = — — — =

4 4 4 4 4 4 4 4

—_— — — — — —_— — le —

: ee ee ed aa

“LJ ~_L “Lt i a “LI, Lk “th 1k

168.80 180.e0 1eee80 1ee.e0 18e.e0 758098 18e.e0e8 12508
90.00 66.67 990.090 98.00 74500 99.00 1000
198.e8 33.33 2500@ 198.808 74498 18.80 ess
e e 2753 e e 74000 @ a

e e e

Figure 6 Multiple pointers

Each bargraph may be defined separately using the following parameters:

5.2.1 Type

Type

Tag

Units

Hihi limit

Hi limit

Lo limit

Lolo limit

As with single bargraphs, a type may be defined for each bargraph. Again, a type

may be bargraph or meter-scale, as well as Off. In the latter case, no bargraph is

drawn at all, in order to leave the location empty.

The needle-pointer may be selected in the more time-critical situations, and the

bargraph type in situations where an operator requires a clear indication of a signal

Polar Test Language GUI-25

GUI/ Graphics User Interface

5.2.2

5.2.3

5.2.4

value.

Both pointer types may be mixed in one picture.

Tag

A tag may be defined for each bargraph. The tag will be displayed in the top section

of the bargraph. A tag may be up to 8 characters long.

Units

Units may be defined to each bargraph. The units will be displayed in the top section

of the bargraph, just below the value field (See Figure 2). Together with the tag, and

live’ value, a signal will be displayed in the top section of the bargraph as follows:

<Tag>

< Value >

< Units >

Using a tag and units, a numerical presentation of measurement data will complement

the graphical section of the bargraph.

Limit values

Each bargraph is defined with four limit parameters: Hihi- and Lolo-limits,

parameters used to scale a measurement-value for the bargraph length, and Hi- and

Lo-limits, representing signal limit values. Each bargraph may have an individual set

of Hihi, Lolo, Hi- and Lo- limits. The example of Figure 2 will demonstrate several

GUI-26 Polar Software Systems

GUI/ Graphics User Interface

limit values. The four limit parameters will be displayed in the bottom section of the

bargraph as follows:

< Hihi limit >

< Hi limit >

<Lo limit >

< Lolo limit >

5.2.5 Limit checking

5.2.6

When a signal exceeds either one of the four limit values, the corresponding field will

be displayed in reverse video, in order to signal this situation to the operator. When

the signal’s error condition resets, the corresponding field will be displayed in normal

video again.

Using this method, a visual overview is obtained of the signals status’ situation.

Using a bargraph type of pointer, another limit checking method is selected: when a

signal exceeds limits, the bargraph will change from a 50% filled bar to a 100% solid

bargraph, thereby highlighting the bargraph in case of exceeding a limit.

Updating the pointers may take place one by one, or all 8 at one time.

Syntax

To define a set of 8 bargraph pointers, use the following syntax diagram:

Polar Test Language GUI-27

GUI/ Graphics User Interface

Adjust ("Action")

Action= Display; Mode= Multiple bargraphs; <Preset

Option>

Preset Option = <All / Single > < Options >

Options = Type= < Off / Bargraph / Meter scale >;

Tag= ’Tag’;

Hihi limit= <-1e99..1e99>;

Hi limit= <-1e99..1e99>;

Lo limit= <-1e99..1e99 >;

Lolo limit= <-1e99..1e99>.

5.2.7 Bargraphs update

To update the bargraphs, use the following command:

Adjust ("Action=Update") ;,

or

ADJUST ("Action=Update specific; Bargraph no=<No>") ;

When selecting the general update command, data from result(0) will be drawn at

bargraph 0, result(1) at bargraph 1,.....,result(7) at bargraph 7.

When selecting the specific update command, data will always be taken from

result(0), no matter which bargraph number is specified in the Update command.

GUI-28 Polar Software Systems

6.1

GUI/ Graphics User Interface

INPUT OPTIONS

The Graphical User Interface contains two methods of inputting data from the

operator:

- Slew keys

An alternative method to enter a number from an operator;

- Menu selection

An alternative method to let the operator make a choice between several options;

The following paragraphs will describe both options.

Slew keys

Obtaining a number from an operator may take place using a slew key-bar, as

demonstrated in the following figure:

Polar Test Language GUI-29

GUI/ Graphics User Interface

6.1.1

6.1.2

Parameters

The following parameters are defined for a slew key-bar:

- Slew text

This text will be displayed at the left top corner of the slew-key bar, and may be the

tag of a to-be-slewed signal;

- Slew step value

This parameter indicates the stepsize of a change in the PTL system variable result(0),

when a specific slew-key is pressed;

When the slew-keys are displayed first, the value in result(O) will be taken as the

starting value. Pressing the correct keys on the TSO will in- or decrement the current

value. When ’OK’ is entered, the current value will be restored in result(0), where

it may be picked up by the measurement driver.

Inputting data

Pressing the "-- --" field will decrement current slew value with 10 times the slew

step value;

Pressing the "-- " field will decrement the current slew value with 1 time the slew

step value;

Pressing the "++" field will increment the current slew value with 1 time the slew

step value;

Pressing the "++ ++" field will increment the current slew value with 10 times the

slew step value;

GUI-30 Polar Software Systems

6.2

GUI/ Graphics User Interface

Pressing "OK" will end the slew Key input session by setting the PTL system variable

pass%(0) to 1. The current slew value will be copied back to result(Q).

The slew input may concurrently take place with a single bargraph: The bargraph is

located at the top of the screen; the slew-key is located at the bottom of the screen.

Syntax

To draw & define the slew Key use:

Adjust ("Action=Display; Mode=Slew"; <Options>)

Options = Tag= °<Tag>’;

Slew step= <-1e99..1e99>;

To input a value using the slew, define as follows:

Adjust ("Action=Input; Type=Slew")

Menu selection

Another structure to enter data from the operator may take place using the menu-

selector. When used, on the screen, a list with options (fields) appear for the

operator. The currently selected field will be displayed in high-lighted, reverse video.

The screen-key, marked with ’Up’ will select a field above the currently selected

field;

Polar Test Language GUI-31

GUI/ Graphics User Interface

’Down’ will select a field under the currently selected field.

The key, marked with ’Select’ will select the currently selected field and end the

specific procedure. The selected field will be returned to PTL through the system

variable result(Q).

6.2.1 Syntax

Defining fields:

Adjust ("Action=Input; Type= Menu; <Parameters>") ;

Parameters= Menu title = ’°<Title>’

Max items = <1..12>;

Item no = <1..12>;

Item text = ’<text>’;

GUI-32 Polar Software Systems

GUI/ Graphics User Interface

7 DEFAULT VALUES

PlotQ and AdjustQ may be defined using explicit commands, however, all parameters

have default settings. In the next tables both default values will be displayed.

7.1 Plot default values

The following values are being used:

Polar Test Language GUI-33

GUI/ Graphics User Interface

7.2 Adjust default values

The following values are being used:

. 8

7.3 Plot implicit defining

Each plot parameter may be modified using the specific Plot Define commands. To

automate the process of composing a graph, several parameters are modified

implicitly. For instance, when a new Xmin-Xmax range is selected, automatically the

Xformat string is adapted to suit the new data-range. This generated string may be

GUI-34 Polar Software Systems

GUI/ Graphics User Interface

overwritten again, but in most cases this will not be necessary. A full list of implicit

parameter defining is given in the following table:

Polar Test Language GUI-35

GUI/ Graphics User Interface

8.1

DATABASE

In this chapter, the database as used by the plotting routines, are displayed and

defined. Each date is listed below:

result)

This array is defined in a PTL program as follows:

IMPORT result(25)

1. This array represents the y-axis values, and will be used by the graphics driver

to plot in the Arrayplot fashion all of the results of a measurement, or in the

Lineplot fashion, where result(O) will be used only.

2. result(O..7) represent the contents of the bargraphs 0..7, when applicable.

The number of elements used for a plot for the

Arrayplot method is defined by the variable no result%.

It is the responsibility of the engineer to supply the correct values in this array.

GUI-36 Polar Software Systems

8.2

8.3

8.4

GUI/ Graphics User Interface

supply ()

This array is defined as follows:

IMPORT supply(25)

and represents for the graphics driver the x-axis values, used in the Arrayplot

selection. When a line-by-line fashion is selected with Lineplot, only element #0 1s

used (supply(0)).

It is the responsibility of the engineer to supply the correct values in this array before

parsing it to SPLOTO.

no result%

The number of results of a measurement is stored in this variable. The number of

results for a plot, and therefore the number of line-pieces, is limited in PTL to 25.

pass%()

When a slew is setup, pass%(0) is reset to 0. During the slew procedure, pass%(0)

stays at 0 until °OK’ is pressed, at which time this flag is set: pass%(0)=1. Using

this method, the test program will know when the operator has entered a new value.

Polar Test Language GUI-37

GUI/ Graphics User Interface

INDEX

ob D0) 2 « Nea GUI-32

Select? 2... ee ee ee ee ee eee ee ee eee eee eee GUI-32

Up? wc ee ee ee ee ee ee ee ee GUI-31

(Xi, VIP we ee ee ee ee eee eee GUI-17

ACtlONn 2... ee te ee te ee et ee ee ee ee GUI-23, GUI-28

Action=Input 2... ec ee ee ee ee eee eee ee ees GUI-31

Apple Write 20... cc ee ee ee ee ee ee ee eee tee GUI-19

AITAY 2 ee ee ee ee et ee ee ees GUI-24, GUI-36

Arrayplot .. 0... 0.2... cee eee ee eet eee ees GUI-7, GUI-17, GUI-36, GUI-37

AITAYS 2. ee ee ee ee ees GUI4

Automate 2.0... tt ee te te te et te ee ees GUI-34

AXES 2. ce et ee ee tt ee eee ees GUI-6, GUI-8, GUI-9

Bargraph ... 2... . ee eee ee ee ee eee ee ee ne GUI-20, GUI-26

Bargraphs 0... ce ee te eee eee tees GUI4

BASIC 2... te ee ee eee eee eae GUI-10

Bottom... 2... ee ee ee te ee ee ee te ee eee GUI-27

Bottom section .. 0.1... ce et ee te ee te ee ee GUI-27

Center 2... ee ee et ee ee eee GUI-13

Center-top 2... ee ee ee ee ee ee ee ee GUI-13

Channel 2... ... ee ee et eet ee eee GUI-22

Clearimit .. 1... tt te ee ee ee ee ttt tees GUI-7

Command 2... cece te et ee ee tte ee ee ee es GUI-23, GUI-28

Commands cc tt te ee te te eee eee GUI-33

Component 2... . . . ee ee ee ee ee ee ee ete ns GUI-7

Data 2... ee et tt tt tt eet teens GUI-22, GUI-29

Data-range .. 1.0... ee ee ee ee ee ee ee ene GUI-8, GUI-22

Database 2.1... ee te ee ee ee eee eet ee eee GUI-36

Datapoints 22... ee ee ee ee eee ee ne GUI-17

Decrement ee ee te te ee ee ee eee eee tees GUI-30

GUI-38 Polar Software Systems

DEF <Type>2-00.8.

Default2...000 000

Default values

Default-settings006.

Define ... 2... ... eee ee ee ees

Dump eee eee eee eee

Epson eee ee ee ee ees

Epson FX 2.000 ee eee

Explanation.05000005

Explicit .. 2.2... 2.2.0.2. e ee eee eee

Explicitcommands

Field eee eee ee ee ee

Polar Test Language

GUI/ Graphics User Interface

Se eee ee ee ee ee GUI-8, GUI-23

See ee ee ee ee GUI-4, GUI-23, GUI-28

Se ee ee ee ee ee ee GUI-10

ar GUI-26

GUI-39

GUI/ Graphics User Interface

Hihi limit value 2... ee ee eee GUI-21

Hihi limit= 2... ee te ee ee ee te GUI-23, GUI-28

HP Thinkjet 2.0... . cc ee ee ee ee ee eee ee eee GUI-19

Image 2... ee ee ee ee ee ee ee ee ee ee ees GUI-6

Implicit defining .. 2... 2... ee ee ee te ee ee ee eee ee ee GUI-34

Import 2... ee ee ee ee ee ee ee ee ee ee GUI-18

Increase 2... ee eee ee ee ee ee ee ee ee GUI-23

Increment . 0... ee ee ee ee ee eee eee GUI-30

Individual... 0... eee ee eee eee tee ee GUI-26

Input 2... ee ee ee ee ee ee eee ee eee ee ee GUI4

Inputting 2... ee eee ee ee eee GUI-29

Item no =

a GUI-32

Item text =

Se ee ee eee ee ee eee ee ees GUI-32

Keyboard 2... . . ec ee ee ee ee eee eee eee GUI-18

Labels 2... te ee ee te ete ee te ees GUI-8

Legend .. 1... ce ee et ee ee eee ee ee eee GUI-14

Legends ... 1... ... ec ee ee ee ee ee eens GUI-6

Length .. 0... te ee ee ee ee ee ee ee eee GUI-26

Limit 2... ee ee ee ee ee ee eee GUI-37

Limit detection... 2... ee ee tt ee tees GUI-23

Limit presentations .. 1... 0... . cee we ee et ee te et ee ees GUI-11

Limits 2... ce ee es GUI4, GUI-7, GUI-8, GUI-11

Limitvalue .. 1.0... . ce te ee ee eee ee eee GUI-12

Line-by-line 2.1... ee te ee ee ee ee ee eee GUI-18

Line-piece .. 1... et te eee eee GUI-18, GUI-37

Line-pieces 2... ee et ee ee ee eee GUI-4, GUI-6

Lineplot . 0... ee ee ee eee GUI-7, GUI-36

Linetype . 0... ee eee ee ee ee ees GUI-16

Lo limit 2... ee ee ee eee ee ee GUI-25

GUI-40 Polar Software Systems

GUI/ Graphics User Interface

Lo limit value 2... 1... ee ee et ee eee GUI-21

Lo limit= 2... ee et ee ee ee ee ees GUI-23, GUI-28

Lolo limit . 0... ee ee ee eee eens GUI-25

Lolo limit value .. 1.1... . ee ee te tt ee GUI-21

Lolo limit= 2... ee ee ee ee teens GUI-23, GUI-28

Major 2... ee ee ee ee ee ee ee ee eee GUI-12

Majortick 2.2... ee ee ee ee ee ee ee ee GUI-10

Marker .. 1... ccc ee ee ee et tte ee ee eee GUI-17

Max itemS = 2.1... ce et tte ee ee eee GUI-32

Maximum cc tee ee eee eee ees GUI4

Measurement ... 1... cc ee et te te eens GUI-37

Measurements 0.00 cece eee eee eee ee ee ee ee eee GUI-8, GUI-12

Measurments .. 1... ee et ee te et tee ee eee GUI4

Menu eee tw we ee ee et ee te tee te ee te es GUI-8, GUI-29

Menu selection... 20... tt tt ee tees GUI-31

Menu title= 2... et ee eee ee eee GUI-32

Menu-selector ... 2... . . ce te te ee ee ete ee eee GUI-31

Minimum ce ee et ee ee eee ee tee ee eee GUI4

Minor tick 1... ... ce ee ee ee eee ete eee GUI-10

Multiple bargraphs 0. cece weet eee tee eee GUI-20, GUI-24

Needle-pointer .. 1... 2... ee tt tt tee et ee ees GUI-4

No result 2... . .. ce e ee ee e ee ee ee GUI-18

No result% . 2... cc ee ee ee eee GUI-36, GUI-37

Numerical... 1... ee te te ee et ee ee eee GUI-26

©) GUI-31

Operator... 6. ee ee ee ee ee ees GUI-12, GUI-18

Options ee eee ee te ee te tee GUI-23, GUI-28, GUI-31

Parameters GUI-7, GUI-8, GUI-9, GUI-21, GUI-22, GUI-26, GUI-30, GUI-32, GUI-34

Parsing 2.1... te ee ee ee ee ee te ete eee GUI-37

PaSS 2... ee ee ee ee ee ee ee ee ee ee ees GUI-31

Picture 2... ee te ee ee ee eee ee eee es GUI-8

Polar Test Language GUI-41

GUI/ Graphics User Interface

Plot 2... cc te eee ee te ee eee GUI-8, GUI-10

Point 2... ee ee ee eee eee GUI-18

Presentation .. 1... ... ec ee ee ee ee ee ee ee ee GUI-26

PRINT USING .. 10... . tee ee tee ee tees GUI-10

Printer 2... tt ee ee et ee ee GUI-7, GUI-19

Printers 2... et eee ee ee ees GUI-4

Reference manual 2... cee eee eee ee eens GUI-10

Representation .. 0... . . . te ee eee ee GUI-10

Result 2.2... . ee te et tt te teens GUI-17, GUI-18, GUI-32, GUI-36

Results... 2. ee ee et te ee eee eee GUI-4

Reverse videO cee ee ee eee ee ee ee ee ee ee GUI-27, GUI-31

Rotation .. 0... ee ee ee te ee ens GUI-14

Scale 1... te et eee te tee ee eee es GUI-10

Scale factor... ee ee ee ee ee ee GUI-10

Scales 2... ee ee et eee ee te eee GUI-10

Scaling factors 2... 1... ee et ee ee ne GUI-22

Screen 2... ee ee ee ees GUI-4

Screen-key 2... . ce te ee te eee eee eee eee eee GUI-31

Selection 2.2... .. ce te tt te te ee ees GUI-29

Settings 2... . te te ee ee ee ee eee ee ee GUI-33

Setup 2. ee eee ee GUI-8

Shape 2... ee ee ee et ee ee ee eee GUI4

Signal 2... ee ee ee ee ee ee ee ee GUI-23, GUI-26

Signal limits 2... ee ee te eee tee eens GUI-23

Single 2... ee ee ee ee ee eet ee ee ens GUI4

Single bargraph ... 1... cee ee ee ee tee ew eee GUI-20

Single pointer 2... ... et ee eee eet ee ee GUI-20

SKIP 2. ee ee te ee eee ee ee ee ee eee GUI-10

Slew 2... ee ee ee ee ee ee ee ee ees GUI-29, GUI-30

Slew step 2... ee ee ee ee ee ee ee te ee eee GUI-30

Slew step= 2... te eee ee eee tee ee eee GUI-31

GUI-42 Polar Software Systems

GUI/ Graphics User Interface

Slew text 2... ee ee ee ee ee eee

Slew-key

Solid bar

Star Delta

Stepsize

Structure

Supply
Supply(0)
Supply(25)

Syntax

Title

Top

Top section

Type=Slew .. 2... ee et eee ee ee ees

Typed input

Units

Visual representation

Visualize

Polar Test Language

GUI-9, GUI-10, GUI-11, GUI-12, GUI-14, GUI-18, GUI-19,

GUI-21, GUI-23, GUI-25, GUI-26, GUI-28,

GUI-8, GUI-13,

GUI-10,

GUI-23

GUI-31

GUI-22

GUI-12

GUI-26

GUI-43

GUI/ Graphics User Interface

Mformat 2... ee ee eee ee ee es GUI-10

Mlegend 2... . ee ee ee ee ee eee ee ee GUI-13

MMAX oe ee ee ee ee eee eas GUI-8

MMMM ow ee ee ee ee ee ee ee ee ee ee GUI-8

XSKIP 2. te eee ee te eee eee GUI-10

Mticks 2... ee eee ee ee ee eee GUI-9

Y-AXIS Ce ee ee ee eee ete eee GUI-9, GUI-36

Y-data 2. ee ee ee ee ee ee ee eee ee GUI-8

Yformat . 0... ee ee te ee eee ee ees GUI-10

Ylegend 2... Le ee te te et ee ee ee ee GUI-13

YMAX 2. ee te ee ee ee ee ee ee ee ee eee GUI-8

YM 2. ee ee ee ee ee eee GUI-8

YSKIP 2. ee ee ee eee ee ens GUI-10

D5 Ce) << GUI-10

GUI-44 Polar Software Systems

POLAR SYSTEMS

OPTION PTL-ICON

PTL Icon Editor Package

ICO/ Icon Editor Support

1 CONTENTS

1 CONTENTS ec et te tt et ee ete eee 1

2 CAPABILITIES PTL/ICO OPTION 2.2.2... eee eee 3

2.1 Introduction cc ee et ee es 3

2.2 Thelcon Editor 0... .. ccc eee ee te teens 3

2.3. Editor for pictures 2... 2... . et te te ee 3

2.4 Usepicturesin PTL ee ee eee ens 6

3 INTRODUCTION 0... eee ee ee ee te eee 7

3.1 Icon editor menus 2... cee eee ee te te ete eens 7

3.2 Files and the Icon Editor Program...20 eee eee 7

4 THE ICON EDITOR cee ee ee ee eens 9

4.1 Start the Icon Editor Program 2.00 ee eee 9

4.2 Exit from the Icon Editor Program200008. 9

4.3. Using the Icon Editor Program... 2.002 eee 10

4.4 Edit Picture... ee ee et ee te tees 11

4.4.1 Icon mode ee ee ee ee tens 14

4.4.2 Lime mode ee te es 18

4.4.3 Text mode cee ee et te tens 21

4.4.4 Key mode cee ee ee ee te te tee 24

4.4.5 Exit to the Master Menu 000 eeeeeee 26

4.5 Test Picture 2... 1... ee et ee ee ee ee ees 26

4.6 Print Picture ee te te ees 27

4.7 Edit Icon Definitions 2... 0... cc ee ee ee es 29

4.8 Exitfrom program cc eee ec ee et eens 30

5 USE OF ICONS IN PTL... 2. ee ee es 31

5.1 Display anicon cee ee ee ee ee ens 31

Polar Test Language ICO-1

ICO/ Icon Editor Support

5.2 Display text and numbers 2c eee eee eens 31

5.3. Getthe key touched cc eee eee ee eee eee 31

5.4 Wait until a valid key is touched..............0 022 e eee 32

5.5 Clearthe screen... 2... ec et eee te ee ee 32

5.6 Example... 2... ccc ee ee eee eee ee ee ne 32

ICO-2 Polar Software Systems

2.1

2.2

2.3

ICO/ Icon Editor Support

CAPABILITIES PTL/ICO OPTION

Introduction

This manual describes how to use the Icon Editor in the Polar Test Language PTL

Version 1.3.

This information is supplied as option :

PTL/ICO Icon Editor Support

The Icon Editor

The Icon Editor Program is a utility program for the Fluke 1722A Instrument

Controller and the Fluke 1752A Data Acquisition System. With the PTL/ICO module

two powerful features of the 1722/-52A display, graphics and the touch sensitive

overlay, are fully integrated with the Polar Test Language.

In almost all test applications there is a need for Interaction with an operator. Data

is presented to and commands are accepted from a operator. Graphics are very

effective in conveying information to a human, while a touch sensitive display is a

very effective control panel. Naturally, PTL users want to take full advantage of these

capabilities.

Until now, the bad news was that creating graphics-and-touch-display based “user

interfaces" was a very software intensive job. In Fluke’s experience no less than 50%

of a typical application program consist of user interface software! With standard PTL

most normal output is already handled by the language itself. With the Icon Editor

option in PTL the generation of effective graphics interfaces is made quick and easy,

offering a considerable time-saving in program development.

Editor for pictures

Polar Test Language ICO-3

ICO/ Icon Editor Support

The Icon Editor enables the user to prepare displays with both alphanumeric and

graphic information. This is done by making selections from a set of predefined

symbols, called Icons, and positioning these anywhere on the screen. Different sets

of icons may be used, depending on the kind of pictures that must be made.

Trim Pot until 5 Yolts reached: 4.56 ¥=——

Not Possible

Ae co
«zB. on on on oe
228 55 won ee oe ee

q Y

Figure 1: Example of a printed circuit board

Then the picture can be completed by drawing various styles of lines, for instance to

interconnect electronic symbols in a circuit diagram. Furthermore text can be added

to the picture as well as touch sensitive areas.

From all this information a display file is created which can be used in a PTL

procedure.

ICO-4 Polar Software Systems

ICO/ Icon Editor Support

H
h

¢ T ‘

aii 7 eay
Figure 2: Example of a radio with "electronic" icons

a
l

‘

The Icon Editor Program provides a complete set of commands to perform the

following functions.

* Selecting an icon from a set

* Positioning an icon on the screen

* Drawing lines of various styles

* Adding text and numeric data fields

* Adding touch sensitive zones

* Creating and editing icons

* Making a hard copy of the picture on a printer

Polar Test Language ICQ-5

ICO/ Icon Editor Support

2.4 Use pictures in PTL

After a picture has been stored on disk, it can be called from PTL. Test results can

be inserted into it and keys can be interrogated.

Supply Tanks
pp Pump 2

Flow 80 kg/s

Pump 1 | Temp 180

Hot os

STOP Area

2 Valve |

mo

. /
Figure 3: Example of "Chemical" icons

The following commands are available:

* Put a picture on the screen

* Add standard PTL variables

* Add results and parameters

* Get key touched

ICO-6 Polar Software Systems

ICO/ Icon Editor Support

3 INTRODUCTION

3.1 Icon editor menus

To use the Icon Editor Program you have to make appropriate selections from a

number of menus. Figure 4 shows the structure of these menus .

ST ART

i
fraser Selection Menu |

I | | _|

Edit ¢ Test) (Edit icon) [print) § Exit

| Edit mode (ei nt menu]

< icon l¢ Line \¢ Text Ces) Fluke 1776B >
Commodore 3022

Commodore 4022

Prowriter Mss10B8

Epson FX series

Epson RX series

Epson Mx-100

Tally MT 1605E
Start Delta 10&15 |

+
STOP

Figure 4: Icon Editor menu structure

3.2.‘ Files and the Icon Editor Program

With the Icon Editor program you can create or edit a Picture Source File, much like

creating a procedure with a text editor. When you stop execution of the Icon Editor

program, a second file is automatically generated by a built-in compiler: the Picture

Object File. The file name extension for Picture Source Files is ".PSR", while the

Polar Test Language 1CO-7

ICO/ Icon Editor Support

ICO-8

extension ".POB" is used for Picture Object Files.

Only Picture Source Files can be edited; at the end of the editing session a new

Picture object File is compiled. The Picture Object File is the "executable" form of

the picture file; it can be used in a PTL procedure

One more file is necessary to create or edit a picture: the Icon Definition File

(extension ".IDF). A given Icon Definition File contains a set of predefined icons,

e.g. electronic circuit symbols or piping engineering symbols. Several different Icon

Definition Files may be present with the Icon Editor program. When you start

execution of the Icon Editor program, you may specify the desired Icon Definition

File.

During execution of a PTL procedure, neither the picture Source File nor the Icon

Definition File are required to use an “operator interface" that was created with the

Icon Editor. Only the Picture Object File and the linkable subroutine are needed for

that.

Polar Software Systems

4.1

4.2

ICO/ Icon Editor Support

THE ICON EDITOR

Start the Icon Editor Program

In the PTL main menu choose the ICON key and press return to start the editor.

From the FDOS > prompt, type:

ICON <RETURN>

or

ICON [<device>] <icon definition file> <RETURN>

In the first case the default Icon Definition File is used (ELEC.IDF), containing a set

of symbols used in the electronics industry. The second method allows you to specify

a different Icon Definition File.

(Besides ELEC.IDF one other set of icons comes standard with version 1.6 of the

Icon Editor Support: CHEM.IDF, containing chemical symbols.)

If no device is specified with the Icon Definition File, the Icon Editor assumes that

the desired file resides on the system device.

Exit from the Icon Editor Program

In order to leave the Icon Editor Program, you must select the EXIT field in the

master selection menu. Type <CONTROL/C> or <CONTROL/P> to return to

the master menu from any of the sub-menus.

Polar Test Language ICO-9

ICO/ Icon Editor Support

4.3 Using the Icon Editor Program

Once you have started the Icon Editor Program, the master selection menu is

displayed. From this menu you can select the various operating modes. You do this

by selecting the required field with the up/down arrow keys and then depressing the

<RETURN> key. (The selected field is highlighted.)

Icon Editor Program Version 0.6

Select from:

| Edit Picture |

Test Picture

| Print Picture

| Icon Definition |

Exit Program

. i

Figure 5: Master selection menu

Select one of the following options:

* Edit Picture

* Test Picture

* Print Picture

* Edit [con Definitions

* Exit from Program

The following paragraphs give an explanation of these menu options.

ICO-10 Polar Software Systems

ICO/ Icon Editor Support

4.4 Edit Picture

This command causes the screen to be cleared, after which you are requested to enter

the name of the Picture Source File to be edited. This may be either a new file name

or an existing one.

al >»

Enter picture file name |
or type ‘?' toe see the directory.

+ St

Figure 6: Specifying a picture source file

The directory of the system device can be listed by typing a question mark. This is

very handy when you are not sure what the name of the file to be edited is.

Polar Test Language ICO-11

ICO/ Icon Editor Support

i

FDOS FD2 MACRO SYS ALIAS SYS BSXRUNFD2 SET FD2 TIME Fp2 |

FUP FD2 FUP HLF) «=ICON «=FD2 DEMO PSR DEMO FOB ELEC IDF

DEMO PTL DEMO FD2 PICT BAK PICT PSR PICT .QBJ

Enter picture file name [? _|
or type ‘?' toe see the directory.

‘.

Figure 7: Listing the file directory

Once you have entered the file name the screen is cleared again, whereupon the

picture to be edited appears. In case a new Picture Source File was specified, the

display will remain blank. The edit menu is displayed at the top of the screen.

ICO-12 Polar Software Systems

ICO/ Icon Editor Support:

,
Select: l=lcon mode, T=Text mode, L=Line mode, K=Key mode, E=Exit.

~. F a

Figure 8: The edit mode menu

Now type I, L, T, K, or E to select from:

* Tcon mode

* Line mode

* Text mode

* Key mode

* Exit to Master Selection Menu

After editing the picture, you can make the changes permanent by selecting the Exit

command from the edit menu. At this point a new source file is created (*.PSR) and

the previous source file, if any, is renamed to "*.BAK (for back-up). In addition a

compiled display file (*.POB) is generated. Note that "*" stands for the name of the

file. See figures 9 and 10.

Polar Test Language ICO-13

ICO/ Icon Editor Support

DF

ot Ne
Figure 9: Creating a new picture file

ADF

|
a

* BAK
Figure 10: Editing an existing picture file

4.4.1 Icon mode

In this mode you can select icons from the Icon Definition File.

First type "S" (for Select) in order to display all the available icons. Then move the

cursor to the desired icon with the arrow keys and press <RETURN> to validate

your selection.

ICO-14 Polar Software Systems

ICO/ Icon Editor Support

f ‘

° ° © fc) €3) 0)) [>]

-@ 2 " 9

ss m oonm

ooo0000 ooO0es@

ome 2 Meo

Figure 11: Selecting an icon

The picture that you are editing is displayed again and you can move the solid square

cursor with the arrow keys. Press the <RETURN> key to place the selected icon

at the cursor position.

Polar Test Language ICO-15

ICO/ Icon Editor Support

Figure 12: Putting a selected icon on the screen

The same icon may be put on the screen at another location by moving the cursor and

hitting <RETURN> again. The last icon selection remains valid until a new one is

made.

In order to speed up cursor movements, the arrow keys can be preceded with a repeat

factor. For example "100->" moves the cursor 100 pixel positions to the right.

During the editing process you may find out that an icon should be moved to another

position on the screen. To do this you must "lock" the cursor on that icon. Four keys

serve this purpose: <BACKSPACE > to lock the cursor on the first icon you placed,

"F" (Forward) to lock on the next one, "B" (Back) to lock on the previous one and

<LINEFEED > to lock on the one you placed last. When you hit any of these four

keys, the message "(Locked)" appears at the top of the screen. Now you can use the

cursor control keys to move the icon around. You may add a repeat factor if desired.

ICO-16 Polar Software Systems

ICO/ Icon Editor Support

Once the icon is where you want it, you can rotate it with the "R" key, erase it with

the <DELETE> key or fix its place with the <RETURN> key. Either

<DELETE> or <RETURN> unlocks the cursor from the icon. The message

"(Locked)" will disappear.

Summary of key commands:

S - Selects Displays the icons in the Icon Definition File.

<RETURN> Selects an icon from the Icon Definition File. Also fixes

the icon at the cursor position and unlocks the cursor.

<ESC > Returns control to the edit menu.

<BACKSPACE> Locks the cursor on the icon that was placed first.

<LINEFEED > Locks the cursor on the most recently placed icon.

R - Rotate Rotates the icon on which the cursor is locked counter

clockwise by 90 degrees.

B - Back Locks the cursor on the previous icon.

F - Forward Locks the cursor on the next icon.

<DELETE> Deletes the icon on which the cursor is locked.

Polar Test Language ICO-17

ICO/ Icon Editor Support

4.4.2 Line mode

In this mode you can draw lines anywhere on the screen and in any direction. A line

consists of a series of dots, or "pixels" (picture elements). The screen capacity is 244

x 640 pixels.

In the line mode the cursor is an X type cross. It can be moved around with the four

arrow keys, one pixel position at a time.

Because of the high resolution (large number) of pixels/cm) the cursor moves only

a small distance each time an arrow key 1s hit. To speed up cursor movements the

arrow keys can be used with a repeat factor. For example "120->" moves the cursor

120 pixels to the right.

‘. Ps

Figure 13: Display in line mode

To draw a line first fix the begin point of the line at the cursor position by hitting the

<RETURN> key. Then move the cursor to the desired end point. The line will

ICO-18 Polar Software Systems

ICO/ Icon Editot Sitpport’:

follow the cursor like a rubber band. You can fix the location of the end point by :

pressing <RETURN> a second time.

If an existing line must be moved, then first lock the cursor on either its begin point

or its end point. Four keys can be used for this: <BACKSPACE > to lock the cursor

on the begin point of the line that was drawn first, "F" (Forward) to lock the cursor

on the next point "B" (Backward) to lock the cursor on the previous point and

<LINEFEED > to lock the cursor on the end point of the line that was drawn last.

Striking any of these four keys causes a "(Locked)" message to appear at the top of

the screen. Now move the line’s end or begin point with the arrow Keys (optionally

with a repeat factor).

Note that if two line segments meet, e.g. at the corner of a rectangle, that the

Forward or Backward keys must be pressed to step from the end point of the first line

to the begin point of the next and vice versa, even though these points coincide on the

screen.

Once the desired place is reached, the line style can be changed with the "C" key (for

Change), the line can be erased with the < DELETE> key or fixed in place with the

<RETURN> key. Either <DELETE> or <RETURN> unlocks the cursor from

the line.

Polar Test Language ICO-19

ICQ/ Icon Editor Support

%,

Figure 14: Line style changed to dotted line

Summary of key commands:

<RETURN >

<ESC>

<BACKSPACE >

< LINEFEED >

B - Back

F Forward

ICO-20

Fixes the begin point of a line at the cursor position.

Returns control to the edit menu.

Locks the cursor on the begin point of the line drawn

first.

Locks the cursor on the end point of the line drawn last.

Locks the cursor on the previous point.

Locks the cursor on the next point.

Polar Software Systems

I€O/ Icon Editor Suppdrt:

<DELETE> Deletes the line on which the cursor is locKed.

C - Change Changes the style of the line on which the cursor is locked.

Each time "C" is hit, the next line type will be chosen. The

available styles are solid, bold, and three types of dotted and

dashed lines.

4.4.3 Text mode

In this mode the Icon Editor Program behaves like a simple text editor. Move the text

cursor with the four arrow keys to the place where you want to put text. After fixing

the beginning of the text field with the <RETURN> key, type in the line of text.

The only editing feature available at this point is the <DELETE> key, which deletes

the last entered character. When the line is in order, make it permanent with the

<RETURN> key.

Existing text fields cannot be edited or moved like icons and lines. If you need to

change or relocate a text line then delete the line at the old location and retype it at

the new location.

To delete a text line first look the cursor on the text field. Four keys reserved for

this: <BACKSPACE > to lock the cursor on the first text field entered, "F" to lock

the cursor on the next text field, "B" to lock the cursor on the previous text field and

<LINEFEED > to lock the cursor on the text field that was entered most recently.

When you hit any of these four keys, a "(Locked)" message appears at the top of the

screen. Now you can erase the text field with the < DELETE> key.

Summary of commands:

<RETURN> Fixes the beginning of the text field at the cursor

Polar Test Language ICO-21

ICO/ Icon Editor Support

<ESC >

<BACKSPACE>

<LINEFEED >

B - Back

F Forward

<DELETE>

position and enables the insertion of characters. A

second <RETURN> terminates insertion and stores

the text line.

Returns control to the edit menu.

Locks the cursor on the first text field entered.

Locks the cursor on the last text field entered.

Locks the cursor on the previous text field.

Locks the cursor on the next text field.

Deletes the text field on which the cursor is locked.

Two types of text are allowed:

4.4.3.1 Regular text

This text will be displayed in the final program "as is".

4.4.3.2 Variable text

Variable text, PTL variables, can be put between the regular text. These numeric

values and strings are inserted in a picture at run-time. All variables are preceded by

an ’@’ sign, followed by format information and a letter to indicate the variable to

be displayed.

ICO-22 Polar Software Systems

ICO? Icon Bator Support

E.g. the text "The result is @###.4A mV"

will display the last PTL result with one decimal behind and 3 numbers in front of

the decimal point.

E.g.: “The result is 123.4 mV"

The variable text must be followed by a space character (if more text follows) or by

no characters at all (at the end of a text line).

4.4.3.3 PTL variables allowed

The following variables can be inserted in the text:

Letter Description Default length

A Result(0) 8

B Units 4

C Minimum limit 8

D Maximum limit 8

E Pass/ Fail step 4

F Pass/ Fail task 4

G Pass/ Fail procedure 4

H Procedure name 32

I Procedure version 16

J Procedure date 16

K Task name 32

L Task number 2

M Test date 15

N Serial number of UUT 16

O Remark string 32

Polar Test Language ICo-33

ICQ/ Icon Editor Support

4.4.3.4 Formatting variables

4.4.4

Variables must be specified with a-format: Three different formats are allowed:

- Basic Format

This format is used exactly like the format modifier in the BASIC "PRINT USING"

statement. The first character of a format modifier must be a "#" or "S". If a Basic

format is used for strings, then only the length of the format string will be used to

define the number of characters to be displayed.

Example: @S##.##C will display the minimum with 2 numbers before and two behind

the decimal point.

- Free Format

This format uses the default formatting of Basic for numbers and strings. The length

specified will be used to cut off to total length of the result. If the format will not fit,

*°’s will be used to indicate the error. The format modifier must be a number. If no

number is specified, then the default length will be used.

Example: @10A will display the result in free format, to a maximum length

of 10.

@K will display the task name with trailing spaces, to a default length of

32 characters

Key mode

In this mode you can add touch sensitive areas (keys) to the picture. These touch keys

are reverse video rectangles of 6 by 2 characters, that are aligned with the 60

rectangular touch zones on the transparent screen overlay.

ICO-24 Polar Software Systems

ICO;/ Icon Editor Support

Once you have entered the key mode, a rectangular cursor with the size of a:touch

key appears. With the cursor control keys you can move the rectangle to the desired

position. When you then hit <RETURN>, a message appears at the top of the

screen, prompting you to enter the key number.

This must be a number in the range of 1 through 255; when the display is used in an

application program, the linkable module will pass this key number to the user

program when the key is touched.

After entering the key number the text cursor appears in the key. You can now enter

two lines of text, although the length of these “lines” is limited by the size of the

touch key. Each of the two required, simply hit < RETURN > twice.

A touch key can be deleted from the screen by moving the rectangular cursor to it and

hitting <DELETE>.

Summary of key commands:

<RETURN> Puts a touch key at the current cursor position. Once

this is done, enter a key number (i through 255) and

two lines of text.

<ESC > Returns control to the edit menu.

<DELETE> Deletes the touch key at the cursor position.

Polar Test Language ICO-25

ICO/. Teon Editor. Support

4.4.5 Exit tothe Master Menu

4.5

When ‘this command is selected, the edited picture is made permanent and the Picture

Object: File is generated. The display is cleared, after which the Master Selection

Menu appears.

Test Picture

The purpose of the test mode is that you can verify the touch key numbers and the

array index numbers for the numeric data fields (explained below). This information

is needed to correctly integrate the user interfaces that are designed with the Icon

Editor into a user program.

Selection of the test mode causes the screen to be cleared, after which you are

prompted to enter the name of the file to be tested. The directory of the system device

can be listed by typing a question mark. This is convenient when you do not

remember exactly what the name of the file to be tested is. The whole picture with

all icons, lines, keys and text will be displayed.

In order to assign values to the numeric data fields in a picture, the user program

must pass a number array to the linkable display subroutine. In the test mode, each

format field shows its index in this number array.

ICO-26 Polar Software Systems

ICG; icon Editcr Sapport

ee Trim Pot until 5 Volts reached: 4.56 ¥——=—>

Not Possible
000d
6096

a =>

© MM te
&

bog Gm:
eq & _ mie Ce =
«38.5 oo
2! Ele = A

L
/

Figure 15: Testing a picture file

When a touch key is pressed, the linkable subroutine passes the key number to the

user program. In the test mode the number of each key can be viewed by touching

it. |

4.6 Print Picture

This commands clears the screen, after which you are prompted to enter the name of

the file to be printed. The directory of the system device can be listed by giving a

question mark, in case you do not precisely remember the name of the file to be

printed.

Polar Test Language ICO-27

IGQO/Acon, Editor, Support

Print picture

' Select printer type —
> fe 7 Epson FX series

Epson RX series
Epson MX-100

Tally MT 1605E

Anple writer
Start Delta 10&15
HP Thinkjet CIEEE)
HP Thinkjet (RS232)
Prowriter M8570B

Exit

‘ee

Figure 16: Printer menu

Then the printer menu is displayed. The UP and DOWN arrow keys allow you to

select one of the following printers.

1) Epson FX Series

2) Epson RX Series

3) Epson MX-100 W 6

4) Tally MT 1065 E

5) Apple Writer

6) Star Delta 10 & 15

7) HP Thinkjet (EEE)

8) HP Thinkjet (RS232)

ICO-28 Polar Software Systems

iCO/. icon Editor Uupport

4.7 Edit Icon Definitions

This command allows you to edit the icons in the Icon Definition File.

Selecting this command first causes all icons to be displayed. With the cursor control

keys a particular icon can then be selected. Upon hitting <RETURN >, a threefold

magnification of the selected icon is displayed inside a rectangle. The rectangular

frame indicates the outer limits of the space available for the icon.

Editing an icon is similar to the line edit mode in editing a picture. The commands

for drawing lines, moving them around and deleting them are identical, but here the

lines are used to create an icon. Once the icon is finished, the icon selection page can

be displayed again by hitting the <ESC> key.

[

\ }
Figure 17: Icon being edited

The edited Icon Definition File will be saved when you select Exit from the master

menu.

Polar Test Language ICO-29

ICO/. Jeon Editor Support

Summary of commands:

yp -SRETURN?D |... ‘When icog.selection page is shown: changes display to

magnified picture of the selected icon, enabling icon

editing. When in icon edit mode: fixes the begin point

of a line in the 1con window at the cursor position.

<ESC> Makes icon selection page reappear when magnified

icon is shown. Causes exit to edit menu when icon

selection page is shown.

<BACKSPACE > Locks the cursor on the begin point of the first line

drawn.

<LINEFEED > Locks the cursor on the end point of the last line drawn.

B - Back Locks the cursor on the previous end or begin point.

F _ Forward . Locks the cursor on the next begin or end point.

<DELETE> Deletes the line on the end or begin point of which the

cursor is locked.

4.8 Exit from program

When you select the Exit option from the master menu, execution of the Icon Editor

program is terminated. If you modified any icons, the changes are made permanent

in the Icon Definition File.

ICO-30 Polar Software Systems

IC™ Icon Editor Support:

5 USE OF ICONS IN PTL

After a Picture OBject File is generated, it can be used within a PTL procedure. For

this purpose the following commands are added to PTL:

5.1 Display an icon

ICON ("Mode=Display;Picture-file-name=’...’")

This command displays the icon picture with the name specified. The default

extension is .POB |

5.2 Display text and numbers

ICON ("Mode=Update")

With this command the variable text and numbers for the picture will be updated. The

text and numbers are specified in the text fields of the icon picture and can be results

and other PTL globals.

5.3 Get the key touched

ICON ("Mode=Get_ fkey")

This command will get the function key value, as specified in the icon picture, if the

screen is touched. If the screen is not touched, a value of "0" will be returned. The

function key will be returned in a new import PTL variable Fkey%.

Polar Test Language ICO-31

{CQ/ Icon Editor Support

5.4 Wait until a valid key is touched

ICON ("Mode=Wait_fkey")

This command will wait until an operator touches a valid (non zero) function key, as

specified in the icon picture. The function key will be returned in a new import PTL

variable Fkey%.

5.5 Clear the screen

ICON ("Mode=Clear-screén")

With this command the screen will be erased.

5.6 Example

The following example will display a icon picture "Test". In this picture a

measurement is displayed continuously until a valid function Key is touched. Then the

screen is cleared.

ICO-32 Polar Software Systems

iCQY Icon Editor Support

SUB Test (Task)

On error Subret

Import Fkey%

Proc ("Name=icon test")

Icon ("Mode=Display; Picture-file-name=’Test’")

Loop

Meas ("Instr=Dmm;At=input")

Icon ("Mode=Update")

Icon ("Mode=Getkey")

Until Fkey%<>0

Icon ("Mode=Clear-screen")

End Proc

SUBEND

Polar Test Language ICO-33

NET/ Network Support

1 CONTENTS

1 CONTENTS 1... ee eens NET-1

2 THE PTL NETWORK 2... eee te es NET-2

2.1 Introduction ee we ee ee ee te ee ens NET-2

2.2 Capabilities... . ee ee ee ee ee es NET-2

3 OVERVIEW cc ee ee ee eee ee NET-3

3.1 Hardware ... cc ee ee ee ee ees NET-3

3.2 Software 2... . et tt ee ees NET-4

4 INSTALLATION ce eee et ee tee ene NET-6

4.1 Nodes ccc ccc ee te tt ee eee eee NET-6

4.2 1722 setup .. 1... ee ee ee ee ee tee NET-7

4.3 Cabling cc ce ee tt et ee NET-7

4.4 Fileserver cc ee ee te ns NET-7

5 OPERATION FILESERVER 2... 0.2 ee eee eee eee NET-10

S.1 Startup... ee te et tes NET-10

5.2 System status window 0c ee eee eee cence NET-11

5.3 User status window ee eee ee eet te es NET-13

5.4 Configuration window cece ee eee nee NET-15

6 NETWORK UTILITY PROGRAMS2000- NET-16

7 WARNING MESSAGES 2.2... 2. eee eee ee eee NET-18

Polar Test Language NET-1

NET/ Network Support

2.1

NET-2

THE PTL NETWORK

Introduction

This manual describes how to use an RS232 network for the Polar Test Language

PTL Version 1.3.

This information is supplied as option :

- PTL/NET PTL Network support

- PTL/SER Network server Software

2.2 Capabilities

In order to be able to share both files on different PTL systems, as well as resources

on an IBM-PC/XT/AT compatible computer, PTL is extended to support these

requirements through a network.

With an XT as the network fileserver connected to the network, it’s printer, floppy

disk as well as it’s winchester harddisk become available to all PTL systems. Files

can be written by one system, and read back to another. Also, one file may be written

to by several other PTL systems, in order to build a large database etc. Each PTL

user may be ’logged in’ to it’s dedicated own subdirectory on the harddisk, or all

users may share the same directory.

On the fileserver’s display screen a windowing based operator interface will allow to

display several status pages, as well as to configure the network’s transmission

characteristics.

The use of the network itself is made transparent to the user by means of additional

(network-) devices PCO..PC9. In this manner, all of the flexability of PTL will be

maintained completely.

Polar Software Systems

3 OVERVIEW

3.1 Hardware

RS$-232

ees DEL Node

Coax high speed

USER2
|:

—_
RS-232

guereen Node

transmissie

Figure 1

ene Node

IBM-PC

| COMPATIBLE

NET/ Network Support

The network itself consists of several intelligent "Clearway" nodes, each with an RS-

232 interface to a computer, and a fast, coaxial connection between each node.

Maximum transmission speed between two nodes is 98000 Baud. Transmission speed

maximum of the RS232 interfaces is 9600 Baud. Each node is known to another node

by it’s individual address. Connections can be made from one node to another, where

the node’s software is taking care for buffering of data sent back and forth.

Polar Test Language NET-3

NET/ Network Support

3.2

NET-4

The network consists of several users (PTL systems) and one IBM-compatible

network fileserver, connected together through the nodes, as figure 1 demonstrates.

Software

As far as software concerns, the extensions required to support the network will

appear completely transparent in PTL, by means of an additional set of devices

PCO..PC9. Each device has a dedicated use in the fileserver, as the table in the

following page will show.

PTL Devices versus MSDOS drives table

Polar Software Systems

NET/ Network Support

On the display screen on the MS-DOS compatible computer, the file-server, several

status pages will allow an operator to view the status of any of the connected (PTL-)

users, as well as the status of the system itself. From this console, some modifications

to the networking characteristics are allowed as well.

Polar Test Language NET-5S

NET/ Network Support

4.1

NET-6

INSTALLATION

Nodes

Each Clearway node may be configured in software for it’s (interface) transmission

characteristics. The following protocol is required for the use with the fileserver

software:

9600 Baud interface speed

8 databits, No parity, 1 stopbit

Modifications of the protocol characteristics can be done in any terminal emulating

software package, such as TTY.FD2 (1722), or PROCOMM.EXE (MS_DOS). When

setup correctly, the protocol characteristics may be saved in non-volatile memory.

All users have to be set to a unique address. This address is included in the setup

string as follows:

ss-9XB9XuuD . POLAR- SLAVE -uu

where ss means server (always 99)

uu means user (01..98)

Example: user 03: setupstring =

99 -9XBIX03D.POLAR-SLAVE- 03

The fileserver’s node should be set to the following configuration:

Polar Software Systems

4.2

4.3

4.4

NET/ Network Support

00 -9XB9X99Z@POLAR-MASTER-99

The commands to setup the node are as follows :

TTY <CR> Start the terminal emulation

“D Go to control mode of the node

N New setup string

No Answer to prompt

< New characters > Type until all changes done

Y Answer to prompt

1722 setup

Port is KB1:, baudrate = 9600, 8 bit, No parity, 1 stopbit, Stall in- and output

disabled, 2 sec timeout.

The startup commandfile should in the 1722 slave should setup the 1722A port for

9600 baud 2 sec timeout, then login in the network with the utility program LOGIN

USERO1 and then run the MASTER program to select the PTL test programs. At the

end of the day, the command LOGOUT will close all open files.

Cabling

Connection Clearway network to 1722A with rs232 modem cable (straight 1 to 1) and

to Server computer to COM1 port via 9 pin to 25 pin (modem) cable.

Fileserver

The network fileserver should be installed once from the installation floppy disk onto

Polar Test Language NET-7

NET/ Network Support

the winchester disk C: as follows:

After system startup, insert the installation floppy in drive A:, and type at the DOS-

prompt the followmg command:

A: INSTALL<CR>

Automatically the following directories/ files are being created/ copied:

C:\FSERVER Network directory

FSERVER.EXE Network fileserver software

FSERVER.CNF Configuration file

NETSTART.BAT Startup batchfile

C:\FSERVER\USERO1 User 01 subdirectory

C:\FSERVER\USERO2 User 02 subdirectory

C:\FSERVER\USERO9 User 09 subdirectory

The installation procedure will take a few moments. When the DOS-prompt

reappears, installation is finished. At this time, the CONFIG.SYS file in the root-

directory has to be edited, to correct the number of allowed open files. The next

commands may be added, edited:

FILES =nn

BUFFERS =mm

nn Number of open files (20)

mm Number of file-buffers (20)

NET-8 Polar Software Systems

NET/ Network Support

The number of open files in the file-server is set by file-server startup at the

commandline as follows:

FSERVER /F:xx /U:y

where xx is the total maximum number of files for all users together to be opened at

the same time, and y is the maximum number of files for one user to open at a time.

When the commandline argument /F:xx is altered, the configuration file

CONFIG.SYS should be edited as well.

NOTE: Whenever the CONFIG.SYS file is edited, the computer should be

rebooted to take the changes into effect.

Polar Test Language NET-9

POLAR SYSTEMS

OPTION PTL-NET

PTL Network Support

NET/ Network Support

5 QPERATION FILESERVER

5.1 Startup

A startup batchfile is provided with the system, to automate the startup procedure of

the network. The following tasks are executed:

Each networkdevice PCO..PC9 is initialized to a port, device, or path. For instance,

the following example may be used:

PTL

PCO:

PC1:

PC2:

PC3:

PC4:

PCS:

PC6:

PC7:

PC8:

PC9:

Initialization

MODE LPT1:132

MODE LPT2:80

MODE COM2:9600,N,8,1,P

SUBST D: C:\FSERVER

SUBST E: C:\DOS

SUBST F: C:\

SUBST G: A:\TESTDATA

Device/Path

Printer 1

Printer 2

Serial dev 2

Floppy A:

Floppy B:

Winchester C:

Sub. drive D:

Sub. drive E:

Sub. drive F:

Sub. drive G:

To activate the bachfile, type at the commandline prompt the following command:

NETSTART<CR>

and the above mentioned initializations will take place.

The at delivery time included file NETSTART.BAT may be altered to the specific

NET-10 Polar Software Systems

5.2

NET/ Network Support

needs of the application; for instance, the substituted drives may be altered etc. Any

ASCII text-editor such as EDLIN.COM can alter the contents of NETSTART.BAT.

After the startup has finished, the main window of the fileserver is presented on the

fileserver console. Three possible windows may be accessed from here :

- System status window

This window contains information about the status of the fileserver;

- User status windows

These windows contain information about each individual user;

- Configuration window

Network interface characteristics may be altered in this window.

All windows are updated with data from the PTL networking systems instantaneously,

e.g. while selecting the status window of user 1, the window is updated with live data

etc.

System status window

This window may be selected from the main pulldown menu, and contains the

following items :

- Transmit Queue Size

The RS-232 outbound space will be displayed here. Enough space

should be available to process commands from the users (>2048

bytes);

- Transmit Status

Polar Test Language NET-11

NET/ Network Support

NET-12

The last occurred transmit error will be displayed here; this item

should be normally 0 (no error). A serial error may occur at small

transmit space or any hardware errors.

Transmit Errors

This item displays the count of transmit errors. At each error, this item

is incremented by one, and should therefore be normally 0.

Receive Queue Size

Analogue with the transmit queue space, the receive queue space

displays the inbound space. During receival of messages from the PTL

systems, the receive space will temporarily decrease, and should be

large enough to process a complete message from a user.

Receive Status

Whenever a protocol error occurs at receival of messages from a user,

this item will contain a non-zero value.

Receive Errors

Every time an error occurs at data receival, this errorcount will be

incremented by one.

Last OpCode

The last received operation code will be displayed in this field.

Last User

The user number of the last received message will be displayed in this

field.

Sequence number

For statistical overview, every time a command is received, this

Polar Software Systems

NET/ Network Support

sequencenumber is incremented by one.

- Usage

This number represents the number of open filehandles of the

fileserver, and therefore represents a usage- indication of the

fileserver.

- User messages

Messages as received from a user are displayed on a binary base in

this field.

The system status window may be exited at any time by pressing a key on the

keyboard. No interferance will take place with the receival and handling of user-

messages because of the low priority of this keyboard task.

5.3 User status window

The user status window represents the status of a specific user. The following fields

are available:

- Status

The status field in the user window represents the login state : either

’Logged In’ or ’Logged Out’.

- OpCode

The last issued command from a user is being displayed in this field.

- Count

Each time a user is sending a message to the fileserver, this count is

Polar Test Language NET-13

NET/ Network Support

NET-14

incremented by one. The count 1s reset at each login command.

Directory

The current directory, which a specific PTL-system may use, will be

displayed in this field.

Userdata

Each command, as received from a user, will be displayed in this field.

Since the protocol in use is a binary one, some non-printable ascii

characters will be displayed as well as normal ’printable’ ascii.

Replydata

Each command from a user will imply a specific response from the

fileserver to the user in question. This reply message will be displayed

here, and since the message is also using a binary protocol, some non-

printable ascii characters will be displayed in this field.

Filename

At each file-related command, the name of the corresponding file will

be displayed in this field.

Type

With each file, a filetype is defined as well, such as ASCII, Device

LPT1:, Device LPT2: etc. This filetype is displayed in the field:

*Type’.

Access

A file’s access rights are displayed in this field. The access rights are:

’R’ for read only, ’W’ for write only, or ’A’ for append.

Handle

Polar Software Systems

5.4

NET/ Network Support

Each file-related operation has a corresponding filehandle number,

which is displayed in this field.

A user status window may be exited at any time by pressing a key on the keyboard.

No interferance will take place with the receival and handling of user-messages

because of the low priority of this keyboard task. At this point, another selection may

take place.

Configuration window

In the configuration window, the following fields may be altered:

- Networkport (COM1/COM2)

- Server Network id. (1-99)

- Baudrate serial port

- Parity (N/E/O/S/M)

- Databits (5/6/7/8)

- Stopbits (1/2)

- Transmit buffer (2..60000)

- Receive buffer (2..60000)

Each parameter is affecting the transmission characteristics of the fileserver’s node,

and mey be altered during operation. The current parameters are displayed in the

corresponding fields. By entering the <Ctrl> and <CR>-key at the same time, the

menu is exited, and the new parameters will be actualized instantly.

Warning: All messages currently in the receive-queue of the fileserver, will be

lost when parameters are modified, so that either one of the parameters

should be modified at system startup only.

Polar Test Language NET-15

NET/ Network Support

6 NETWORK UTILITY PROGRAMS

For the communication with the network server a number of 1722 FDOS utility

programs can be used.

These programs can be used in a startup commandfile to make contakt with the

network server and to setup the right environment (sub directory).

- LOGIN

To log into the network server and to set the work directory to G: USERxx, where xx

is the user number (node number).

-CD G:<PATH>

To change the work directory on the network server to G:< PATH>.

- DIR G:<PATH>

To give a directory of the directory G:<PATH>. This directory listing can be as

usual in the IBM world with size and date or with a /Q flag in condensed format with

only the file names.

- TYPE <NAME>

To see the file <NAME> on the screen. Note that "LIST.PTL" and

"PC3:LIST.PTL" are both on the network directory, and "ED0:LIST.PTL" is on the

local E-Disk.

- PRINT <NAME>

To print the file < NAME> on the network printer (LPT1:). Note that "LIST.PTL"

and "PCS5:LIST.PTL" are both on the network directory, and "EDO:LIST.PTL" is on

the local E-Disk.

NET-16 Polar Software Systems

NET/ Network Support

- COPY <NAME1> [<NAME2>]

Will copy <NAMEI> to <NAME2>. Note that the commands COPY

PC8:LIST.PTL EDO:LIST.PTL and COPY LIST.PTL will both copy the file

LIST.PTL from the server to the local E-Disk. (If the second name is not given, the

local E-Disk is assumed.)

- DEL <NAME>

Will delete the file <NAME> from the server working directory.

- LOGOUT

Will close the path to the server.

Polar Test Language NET-17

NET/ Network Support

7 WARNING MESSAGES

Each command, or message from a user may introduce a possible error- or warning

message.

For PTL-systems, some error or warning messages will not be returned, since PTL

itself takes care for the file-server protocol.

The following messages may be returned to indicate an error:

- Bad open argument

The file could not be opened due to a wrong open mode (Not a ’R’, ’A’, or ’"W

- Bad file number, filehandle

The filehandle as sent to the fileserver, is currently not attached to a file. Open the

file before usage.

- Bad file type

The file specified has a non-valid type. Legal types are: ASCII, Device LPT1:,

Device LPT2: or Device COM2:

- Bad open mode

The file related to the command has a wrong open-mode, such as an attempt to write

to a file, opened for read only etc.

- Bad directory

The directory as specified in a command does not exist.

- Device file could not be opened

The device (spool-)file as specified (LPT1:, LPT2: or COM2:) could not be opened,

NET-18 Polar Software Systems

NET/ Network Support

due to a harddisk error.

- EOF

An attempt was made to read from a file, after it has encountered the end of file

mark.

- Error writing data, Write error

A write to a file could not be executed, due to file-error(s).

- Error reading from file, Read error

A read from file could not be performed, due to file- error(s).

- Error in logout procedure

An error occurred during the logout procedure, at which time all opened files are

closed.

- Error while printing

An MS-DOS error occurred during printing to a specified print-device, such as

LPT1:, LPT2:, COM2:. Check the printer connected.

- File not found

The file(s) searched for in a directory related command could not be found.

- File could not be closed

The file specified could not be closed. Possibly the file was not open, or a DOS error

occurred during closing.

- File could not be deleted

The file specified could not be deleted. The file could be write-protected, or not-

existing.

Polar Test Language NET-19

NET/ Network Support

- File could not be opened

The file in question could not be opened. Several causes can create this message, such

as disk full, bad filename etc.

- No more free filehandles left

An attempt was made to open more files than the file-server can handle. See

installation chapter on the number of open files.

- Too many files opened

A specific user is not allowed to open more files than specified at startup. (See

installation). An attempt was made to open more files at a time.

- Unable to create TMP file

A tempory filename could not be opened, so a spool-file could not be created. This

error should normally not occur.

- User path allowed with G: only !

The command Changedirectory (CD), or Login are used without the fixed prefix
"G:

NET-20 Polar Software Systems

	00-0000
	00-1
	01-0
	01-1
	01-2
	01-3
	01-4
	01-5
	01-6
	02-0
	02-1
	02-2
	02-3
	02-4
	02-5
	02-6
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-00
	08-01
	08-02
	08-03
	08-04
	09-00
	09-01
	09-02
	09-03
	09-04
	10-00
	10-01
	10-02
	10-03
	10-04
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-00
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	DRV-00
	DRV-01
	DRV-02
	DRV-03
	DRV-04
	DRV-05
	DRV-06
	DRV-07
	DRV-08
	DRV-09
	DRV-10
	DRV-11
	DRV-12
	DRV-13
	DRV-14
	DRV-15
	DRV-16
	DRV-17
	DRV-18
	DRV-19
	DRV-20
	DRV-21
	DRV-22
	GUI-00
	GUI-01
	GUI-02
	GUI-03
	GUI-04
	GUI-05
	GUI-06
	GUI-07
	GUI-08
	GUI-09
	GUI-10
	GUI-11
	GUI-12
	GUI-13
	GUI-14
	GUI-15
	GUI-16
	GUI-17
	GUI-18
	GUI-19
	GUI-20
	GUI-21
	GUI-22
	GUI-23
	GUI-24
	GUI-25
	GUI-26
	GUI-27
	GUI-28
	GUI-29
	GUI-30
	GUI-31
	GUI-32
	GUI-33
	GUI-34
	GUI-35
	GUI-36
	GUI-37
	GUI-38
	GUI-39
	GUI-40
	GUI-41
	GUI-42
	GUI-43
	GUI-44
	ICO-00
	ICO-01
	ICO-02
	ICO-03
	ICO-04
	ICO-05
	ICO-06
	ICO-07
	ICO-08
	ICO-09
	ICO-10
	ICO-11
	ICO-12
	ICO-13
	ICO-14
	ICO-15
	ICO-16
	ICO-17
	ICO-18
	ICO-19
	ICO-20
	ICO-21
	ICO-22
	ICO-23
	ICO-24
	ICO-25
	ICO-26
	ICO-27
	ICO-28
	ICO-29
	ICO-30
	ICO-31
	ICO-32
	ICO-33
	ICO-34
	NET-0
	NET-01
	NET-02
	NET-03
	NET-04
	NET-05
	NET-06
	NET-07
	NET-08
	NET-09
	NET-10
	NET-11
	NET-12
	NET-13
	NET-14
	NET-15
	NET-16
	NET-17
	NET-18
	NET-19
	NET-20

