+

\7 polar
software
sSystems

POLAR SYSTEMS

POLAR TEST LANGUAGE

VERSION 1.3

1/ Contents

1 CONTENTS

1 CONTENTS & i ittt ettt et e et e e e et e et e e e 1-1
2 HOW TO USE THIS MANUALttt 2-1
2.1 HOW TO READ SYNTAX DIAGRAMS 2-2

2.2 NOTATION CONVENTIONS 2-5

3 INTRODUCTION . . o oottt et ettt ettt e e aee s 3-1
3.1 EXAMPLEOFPTLt 3-2

3.2 SOFTWARE SUPPLIEDiiiiiettennennnnn. 32

33 PHASESINUSINGPTL, 33

34 PTLOPERATINGMODES0t 33

3.4.1 ImmediateModettt 34

342 InterpretedMode, 34

343 CompiledMode00iiiiieeenenenn. 34

3.5 EXAMPLEPTLPROCEDUREc.0... 3-6

3.6 STRUCTURE OF PTLPROCEDURES 3-7

3.7 PROCEDURES ittt i iiieee 3-8

3.8 TASKS .. e e e 3-8

3.9 STEPS .. .o e e e 39

3.10 BASIC STATEMENTS it 39

3.11 BASICSUBROUTINESttt 3-10

3.12 IMPORTS ...t et e e e e e e 3-10

3.13 FILENAMES i i i e e 3-12

3.14 SPOOLFILESttt ittt ittt e it e 3-12

4 SYSTEM GENERATIONttt it i iieeeeann 4-1
4.1 GETTINGSTARTED, 4-1

4.2 SELECT INSTRUMENT DRIVERS 4-2

4.3 PRINT SELECTED DRIVERS0iuuinn.. 4-5

44 GENERATE SYSTEMt iitiiiiinnnnnnnnn 4-6

Polar Test Language 1-1

1/ Contents

4.5 PROGRAMMABLE MENUKEYSoovuuiinennn... 4-8
4.6 SIZEOFEDISK . ..o oottt et 4-8

5§ SYSTEM CONFIGURATION . .. evvoeteeeee e 5-1
5.1 STARTING THE PTL SYSTEM vvieeeenaaannn. 5-1

52 SELECT CONFIGURE voeeeaeaaae, 52

53 CONFIGURE . .. evtee e e e e 52

5.4 CONFIGURE DEVICES eoteeee e 53

5.5 CONFIGURE INSTRUMENTSuviannnannnenn.. 54

5.6 CONFIGURE CONNECTIONSouuuimnnnnnnnnn. 56

5.7 TEST CONFIGURATION euuneeinanannn.. 5-11

6 SYSTEM FUNCTIONS . . . e e e eeeee e e et 6-1
6.1 OVERVIEWttt 6-1

6.2 THE PTLMENU (SHELL) ... vvoeteeeeeeaenn 6-2

6.3 DIRECT COMMAND LINES ooovveeteeneeaennnn. 6-2

6.4 CHANGING THE MENU FUNCTIONSoooo.... 6-3

6.5 USING THE MENU FUNCTIONSo voveeeeenenn 6-3

6.5.1 SELECT . . v voe et ettt e 6-3

6.5.2 EDIT,FUP,SET,TIME,FCOPY uuuunn... 6-5

6.5.3 PRINT . .o vvoeee e e e e e 6-8

6.5.4 MENU EDIT (Optional)oooueunennennnnn.. 6-11

6.5.5 RUN . oottt e e e e 6-12

6.5.6 COMPILE oo vttt e e 6-12

6.5.7 EXECUTE ... veotee et e e 6-13

6.5.8 CONFIGUREo ooee e 6-14

7 PTLCOMMAND REFERENCEt vttt e, 7-1
71 OVERVIEW ...ttt e 7-1

7.2 STRUCTURAL COMMANDS veeeeeneeenn.. 7-3

7.2.1 PROCEDURE() . .ot voiteeee e 7-3

722 END PROC . .ttt e e et 7-5

1-2 Polar Software Systems

17"Coritents

723 START TASKQovvvennennen:lina.tl. 76

724 ENDTASK . ..o i e 76

7.3 INSTRUMENT CONTROL COMMANDS 7-7

7.3.1 RESET .o oiv et e e 1

732 SETUP . oottt e e e e .78

733 MEAS ... S5 1-8

T34 APPLY . ittt e 7-10

7.3.5 DISAPPLY .. oo ii it e L. 711

7.3.6 SWITCH . . oo vttt e e e e 712

7.37 DISCONNECT . ..ttt ti ettt i ens 7-13

7.4 INPUT/OUTPUT COMMANDSovrinnennnn.. . 7-14

741 WRITE . . ittt et e e e 7-14

742 REPORT . ..o oot e Giols 1T

743 ENTER ..ottt e .. 117

7.5 SPECIAL COMMANDSo'viiennnennnn.. :.. 720

7.5.1 DELAY oottt ittt 7-20

752 EVAL e 7-21

8 EDITING APROCEDURE . . .\t tvtiit ittt eeee e ae e 8-1
8.1 OVERVIEWttt e 8-1

8.2 FUNCTIONS FOR WRITING/EDITING 8-1

83 USING MENUEDITtiittitei e 8-2

9 TESTING APROCEDURE . ..\ vtiti e e e e e 9-1
9.1 OVERVIEW . ..ttt ittt 9-1

9.2 IMMEDIATEMODEttt 92

9.3 INTERPRETEDMODEotiiiiennnnnn.. 9-3

9.4 COMPILED MODE (EXECUTE)ot tv e 93

9.5 STORING A COMPILED PROCEDURE 94

10 OPERATOR DISK GENERATIONviieieennnnnnn. 10-1
10.1 SELECTIONMENU\ ti it te e ee e 10-1

Polar Test Language 13

1/ Contents

11

12

14

10.2 PROCEDURE TRANSFER 10-3
10.3 CONFIGURATION TRANSFER 10-3
ADVANCED PROGRAMMINGc.tiiiiiiiitnnnnnne.. 11-1
11.1 STANDARD PTL i, 11-1
11.2 IMPORT PTL VARIABLES 0. 114
113 CALLBYREFERENCE, 11-5
11.4 BASIC STATEMENTS e 11-7
11.4.1 For..Nextloop............ 11-7
11.4.2 Repeat.. Untilloop 11-10
11.5 "LOOP ON FAIL" it i ii e 11-11
11.5.1 Continous v vt v vt it ittt 11-11
11.5.2 With loopcountovivvne.... 11-11
11.5.3 With fault indication 11-12
11,6 SUBROUTINESttt 11-13
11.6.1 The REPORT subroutine 11-14
11.6.2 PTL Subroutinesocvvuenn. 11-17
11.6.3 Basic Subroutines 0oL 11-20
117 USERLIBRARY ittt iiii i e, 11-21
11.7.1 Empty user library 11-22
11.7.2 Updateuserlibrary 11-22
11.7.3 Includeauserlibrary 11-23
11.8 USE OF ERROR HANDLERS 11-25
SYSTEM DETAILS e e e et e e 12-1
12.1 SYSTEM GENERATION, 12-1
12.2 STORE MENU CONFIGURATION 12-1
12.3 STEPS REQUIRED FOR COMPILATION 12-1
12.3.1 Creatingaprocedure 12-2
12.3.2 Optimize PTL 12-3
12.3.3 CompileBasic 12-3
12.3.4 Link Libraries 12-3

Polar Software Systems

1/:Contents'

12.4 CREATE AUSERLIBRARY L 124
12.4.1 Compilationctiiiiiiinnne.. 12-5

12.4.2 Main/subroutines e 12-5

125 VARIABLESINPTL 12-5
12.6 FILES REQUIRED FORPTL 12-6
12.6.1 ProgramFiles 12-6

12.6.2 Extended Basic Compiler 12-7

12.6.3 Extended Linking Utility 12-7

12.6.4 Extended Basic Runtime 12-7

12.6.5 Libraries 12-7

13 APPENDICES i i e e 13-1
A. Example Configuration Listing 13-1
B. Example Driverlisting, 134
C. Example Procedure 13-7
D. Example Result 139

The following additional Options may be available at the end of this document :

PTL Driver Development Package
PTL Graphical User Interface
PTL Icon Editor Package

PTL Network Support

Polar Test Language 1-5

1/ Contents

1-6 Polar Software Systems

CHAPTER 2

HOW TO USE THIS MANUAL

2/ How to use this manual

2 HOW TO USE THIS MANUAL
This manual is divided into these major sections:

CHAPTER 2 How To Use This Manual
Describes the organization of the various manual chapters, syntax diagrams and
notation conventions.

CHAPTER 3 Introduction
This section gives a global introduction to PTL with examples, phases in using PTL,
the use of the different operating modes, the structure of PTL procedures and PTL

filenames.

CHAPTER 4 System Generation

Describes how to generate a PTL system disk which contains all required instrument
drivers.

CHAPTER 5 System Configuration

Describes how to use standard Fluke FDOS functions from within the PTL
environment.

CHAPTER 6 System Functions

Explains in detail all configurations to be made to define a system.

CHAPTER 7 PTL Command Reference
Describes the individual PTL commands in detail.

CHAPTER 8 Editing a procedure
Describes the procedure writing process and the usage of the menu functions.

CHAPTER 9 Testing a procedure
Describes the procedure testing and compilation process.

Polar Test Language 2-1

2/ How.-to use this manual

2.1

22

CHAPTER 10 Operator Disk Generation
Explains how to create an easy to use operator disk.

CHAPTER 11 Advanced Programming
Gives a number of examples of PTL procedures, such that advanced users can make
better use of the system.

CHAPTER 12 System Details
Gives several details on the PTL system, for more insight in the PTL system.

CHAPTER 13 Appendices
A collection of examples of output of the system.

HOW TO READ SYNTAX DIAGRAMS

Although not all of them are used in this manual, an overview of all symbols as used
in the standard 1722A manuals has been provided for completeness.

A syntax diagram is a graphical representation of how to construct a valid command
or statement in a programming language. It is a kind of "shorthand" way of writing
down all the rules for using the elements of a language. Since they are used
throughout this manual, learning how to read them can be a great time saver.

Polar Software Systems

2/ How to use this' manual

Words inside ovals must be entered exactly as they are shown.

RETURN Words inside boxes with round corners indicate a single key must be
pressed, such as RETURN or ESC.

This indicates a space in the statement. (Press the space bar.)

CTRL/C To create a control character, hold down the control key (CTRL),
then press the other key. This one is Control/C;
A box with lower-case words inside means that you supply some

information. In this case, you would enter a filename.

Words in parentheses are explanations of some kind. They give
added information about the nearest block or path.

From left to right, any path that goes in the direction of the arrows is a legitimate

sequence for the parts of a statement. The following example shows the correct syntax
for naming a file.

Polar Test Language 2-3

2/.How to. use this manual

24

The translation is given below.

@ (no name) (default extension)

-

) () (no extension) (
WAVA 7Y
s

(maximum 6 characters) (maximum 3 characters)

A line exits the top of this diagram with no keyboard input. This indicates that it is
possible to NOT specify the filename or its extension. In this case, the file would
have "no name" and the system would assign a "default extension".

Further down the diagram, you can see that there are other possibilities. They are

explained by the remarks, "maximum of 6 characters" for the name and a "maximum
of 3 characters" for the extension.

Polar Software Systems

2/ How to use this manaal

The filename can be any combination of letters, digits, the $ sign and spaces (up to
six characters) and the extension can be up to three of those characters.

The filename and extension must be separated by a period, as shown in the oval block
at the top centre.

The remark "no extension" means that it is not necessary if a name is specified.

Here are some examples of valid filenames according to the syntax illustrated in the
diagram:

TESTIN.PTL DEMO.$3C $$555$.58$

2.2 NOTATION CONVENTIONS
The conventions listed here are used for illustrating keyboard entries and to
differentiate them from surrounding text. The braces {}, brackets [] and angle

brackets < > are not part of the sequence. Do not type these symbols.

< XXX > Means "press the xxx key"
Example : <RETURN> indicates the RETURN key.

<xx>/y Means Hold down key xx and then press y
Example : <CTRL>/C means to hold down the key labeled
CTRL and then press the key labeled C.

[xxx] Indicates an optional input.

Polar Test Language 25

2/ How to use this manual

XXX

{xxx}

Example : [input filename] means to type the name of the input
filename if desired. If not, no entry is required and a
default name will be used.

Means to type the name of the input as shown.
Example : BASIC means to type the program name BASIC as
shown.

Indicates a required user-defined input.
Example : {device} means to type a device name of your choice,
as in MFO: for floppy disk drive 0.

(xxx) This construction has two uses:

26

As a separate word, (xxx) means that xxx is printed by the program.

Example: (date) means that the program prints today’s date at this
point.

Attached to a procedure or function name, (xxx) means that xxx is

required input of your choice; the parentheses are required parts of the

input.

Example : TIME(parameter) means that a procedure specification
is the literal name
TIME followed by a parameter that must be enclosed in
parentheses.

Polar Software Systems

CHAPTER 3

INTRODUCTION

3/ Introduction

3 INTRODUCTION

The Polar Test Language has been developed for testing electrical and electronic
equipment. It is the solution for those applications in which complex test procedures
have to be created by technicians. PTL eliminates the need to control instruments in
a system with low level commands.

Although originally designed for the Fluke 1722A System Controller, PTL has been
meant not to be a computer oriented language, but a development tool for test
engineers with a thorough knowledge of test problems, but without time to be invested
in programming.

PTL is self documenting: it has been designed in such a way that a test procedure,
developed with PTL, can be used without any change for documentation purposes as
well.

Because PTL is so easy to use, time savings can be as much as 80% when a new
procedure has to be created.

The language is powerful enough to develop and execute complete tests, but is not
limited to its standard instruction set only. If desired, normal Fluke Extended Basic
statements can be added anywhere in a Polar Test Language procedure.

If necessary, even Fortran or Assembler routines can be included in PTL procedures.

Operators, using procedures generated with PTL, are guided through all procedure
steps without the use of the computer keyboard, decreasing the chance for wrong
input. This approach makes it possible for even unskilled personnel to execute
complicated test procedures.

Polar Test Language 31

3/ Introduction

3.1 EXAMPLE OF PTL

SUB Test (task)
On Error Subret
Procedure ("Name='Amp test’;Version='1.2'")
Start_task ("Name='Supply test’")
Write ("To=Printer;Type=Header")
Setup ("Instr=Power-supply;Voltage=12.6")
Setup ("Instr=Dmm; function=Vdc;Range=20")
Apply ("Instr=Power-supply;To=Amp input")
Meas ("Instr=Dmm;At=Testpoint 1;Min=5.24;" &
+"Max=8.75,Units="Vdc’")
Write ("To=Printer; Type=Result")
End_task("")
End_proc
SUBEND

3.2 SOFTWARE SUPPLIED

The Polar Test Language software is distributed on four or more disks in 1722A
format which contains:

o System Generator (Optionally Menu driven)
To generate a system disk

o Instrument drivers (One or more disks)
Contains the drivers for instruments

o Master Operator Disk
Is the original of new operator disks

o System disk

32 Polar Software Systems

33

3/ Introduction

A pre-generated disk for training purposes.
PHASES IN USING PTL
The following phases can be distinguished in using PTL:

- System generation

The system generator is used occasionally, to combine the PTL language with the
instrument information, contained in the instrument drivers. The result is a system
disk, which will be used regularly to create procedures.

- System Configuration

Before a system disk can be used, details about the system configuration must be
provided. These are: instrument addresses, logical names and the connections between
instruments and the unit under test.

- Writing a PTL procedure
Once configured, the system disk is ready to perform its functions. Test procedures
can be written, using a text editor or the advanced PTL menu editor.

- Testing a procedure
Procedures can be tested, using immediate commands, using the PTL interpreter and
using the compiler.

- Creating an operator version

Once a test procedure is created, it can be stored on an operator disk. Tests can now
be performed by inexperienced users, without the need of an operator keyboard.
Procedures are protected against modifications.

For a detailed description, refer to the next chapters.

Polar Test Language 33

3/ Introduction

34

34.1

342

34

PTL OPERATING MODES

PTL has three modes of operation: Immediate, Interpreted, and Compiled.
The Immediate Mode is the default mode, i.e. the mode PTL starts in whenever it is
entered from FDOS. Other modes are accessible only from Immediate Mode.

Immediate Mode

In Immediate Mode the PTL Interpreter accepts and executes PTL commands, typed
in from the keyboard, or selected from the available command list using the ’MENU’
function. No BASIC statements can be executed in Immediate Mode.

In addition, the Immediate Mode accepts the selection of the Main Menu functions
(like *SELECT’, ’FUP’ or ’PRINT’) as a command and executes it. Refer to the
description of the Main Menu for information on how to select Main Menu functions.

Interpreted Mode

The Interpreted Mode accepts input from a file, rather than from the keyboard and
can be used to execute a procedure by means of the 'RUN’ command from the PTL
Main Menu. The file, with the filename, extension and device selected by the
>SELECT’ function, will be executed.

As in Immediate Mode, only PTL commands are interpreted and executed. All
standard BASIC statements included in the procedure are skipped during run time.

For editing of existing or new procedures, the PTL Interpreter provides two different
edit functions, one being the standard Fluke Edit program which can be executed
directly from within PTL, the other being the '"MENU EDIT’ function of the Main
Menu.

Polar Software Systems

3/ Introduction’

3.4.3 Compiled Mode

The PTL Compiled Mode first optimises and compiles (translates) all PTL commands
before they are executed. This also means that all normal Fluke extended BASIC
statements can be added to a PTL Procedure. The optimization process combines both
PTL commands and BASIC statements to a file, executable from FDOS. Refer to the
description of the PTL Main Menu for more information on how to compile

Procedures.

Polar Test Language 35

3/ Introduction

3.5 EXAMPLE PTL PROCEDURE

The following is a typical example of a PTL
procedure:

Procedure ("Name='Amp Test’ ;Programmer='P.Olar’")
Start_Task ("Nr=1;Name='Power’)
Setup ("Instr=Dmm; Function=Vdc")
Setup ("Instr=Power;Output=12")
Meas ("Instr=Dmm;At=+5V;Min=4.8;Max=5.2)
Write ("To=Screen;Type=Result")
End_Task

Start_Task ("Nr=2;Name='Gain’")
Setup ("Instr=Dmm; Function=Dbm")
Setup ("Instr=Generator;Dbm=10;Herts=1000")
Apply ("Instr=Generator;To='Amp In’")
Meas ("Instr=Dmm;At=0Outp;Min=33.6;Max=34.9")
Write ("To=Screen;Type=Result")

End Task

End_Proc

3-6 Polar Software Systems

3/ Introduction

3.6 STRUCTURE OF PTL PROCEDURES

A PTL Procedure consists of a number of Tasks which in turn contain a number of
Steps. This definition means that the structure of a PTL Procedure always looks like:

PROCEDURE TEST
START TASK 1

STEP

STEP
END_TASK

START TASK N
STEP

STEP
END_TASK

END_PROC

The elements of the procedure will be explained in the following paragraphs.

Polar Test Language 3-7

3/ Introduction

3.7

38

38

PROCEDURES
A Procedure contains the elements needed to control all desired in- and output signals
for testing a unit under test.

The start and end of a Procedure must be identified by means of the terms
PROCEDURE and END PROC :

PROCEDURE ("...")
(Other procedure elements)
END_PROC("...")

Parameters can be used at both the beginning and the end of a procedure. Refer to the
description of the PTL Commands for more information on parameter passing.

TASKS

A Procedure consists of one or more Tasks. Each Task consists of a number of Steps
and has the following structure:

START TASK("...")
(Steps)
END_TASK

Parameters can be given at the beginning of the task. Refer to the description of the
PTL Commands for more information on parameter passing.

Polar Software Systems

3/ Introduction

3.9 STEPS

Each Task contains an unlimited number of Steps. These steps can be Basic
statements or PTL statements (actually high-level commands, which are often
composed of hundreds of normal BASIC statements).

More information on STEPS is given in the description of the PTL Commands.

3.10 BASIC STATEMENTS
As stated before, the PTL Interpreter is not a limitation, rather an enhancement of
standard Fluke 1722A Extended BASIC. This means that all legal Fluke Extended
BASIC statements can be used together with PTL commands without any restriction.
However, BASIC statements added to a PTL Procedure are only executed when PTL

operates in Compiled Mode.

Refer to "advanced programing" for further details.

Polar Test Language 39

3/ Introduction

3.11

3.12

3-10

BASIC SUBROUTINES

Procedures which have to be compiled with the standard FLUKE Extended BASIC
Compiler, must be embedded in a legal BASIC subroutine. The structure of such a

routine is:
SUB TEST (Task)

On error subret
Import Result ()

Procedure("....")

End_Proc("...")
SUBEND
As a parameter the actual task number is being passed.
Only one procedure can be defined per BASIC subroutine.
IMPORTS

In order to better control your test, several global variables are defined, the so called
imports:

Task A number which consists of two parts, separated by a period. The part
preceding the period indicates the task number, the part following the
period indicates the step within the task momentarily being executed.
The task number will be adjusted automatically and can be utilized in
BASIC by a procedure-writer.

Polar Software Systems

Pass%(0)
Pass%(1)
Pass%(2)

No_result%

Type %

ResultQ

Result$

3/ Introduction

Step pass

Task Pass

Procedure Pass

These three (status)flags indicate if the last executed step, task or
procedure respectively, passed or failed. A particular flag will be reset
to O if the associated part of the test failed, otherwise the flag will be
set to a value <> 0.

These flags can be used in Basic, for example to repeat or skip (a part
of) a test, depending on the flag value.

Contains the number of results in the Result() array the last measured
or entered data.

The type of results to be passed by a MEASURE, EVAL or ENTER
statement.

0= Not a valid result

1= Bit value(s)

2= Integer value(s)

3= Real value(s)

4= String value(s)

Contains the last numeric result from a MEASURE, EVAL or ENTER
statement.

Contains the last string result from a MEASURE, EVAL or ENTER
statement.

The minimum value specified in the last MEASURE, EVAL or
ENTER statement.

The maximum value specified in the last MEASURE, EVAL or
ENTER statement.

Polar Test Language 3-11

3/ Introduction

Units$

3.13 FILENAMES

The units specified in the last MEASURE, EVAL or ENTER
statement.

Procedures are treated as normal files and are stored on floppy, e-disk or other file-

structured media by name. File names consist of 1 to 6 letters,numbers,spaces,or $
characters. File names may be extended by a period character, followed by up to 3

letters, numbers, spaces, or $ characters.
Some file name extensions have a special meaning to the Fluke 1722A Instrument

Controller:

.BAL
.BAS
.FD2
.HLP
SYS
.CMD
.LIB
.LBX
.OBX

Lexical form of BASIC programs
ASCII-text form of BASIC programs
Binary utility programs

System data files (Help)

System binary programs

Command files

Library for assembly modules
Library for extended basic modules
Extended basic module

PTL adds the other extensions:

.PTL
.DRV

3.14 SPOOLFILES

The extension for a PTL procedure
An instrument driver

For serial devices, PTL knows special spool files. Instead of directly printing to the

3-12

Polar Software Systems

3/ Introduction

device, PTL can store the testresults in a temporary file, which is printed at the end
of a procedure. Therefore the actual running of a test procedure is not delayed
because of the printing. Only at the end of the procedure, in most cases when a
operator has to change boards, a delay will occur.

Serial devices are: KBO:..KB2: RS232 ports

SPO0:..SP3: RS232/422 ports
GPO:..GP1: IEEE ports
PCO:..PC9: Optional PTL network

Results will be spooled when a filename is specified after the device name. E.g.
KB1:SPOOL.DAT

It is necessary to specify the space available on disk for each spool file at start-up of

the PTL program. Use a /S option behind PTL:
E.g.: PTL 10/S to specify 10 blocks

Polar Test Language 3-13

3/ Introduction

3-14 Polar Software Systems

CHAPTER 4

SYSTEM GENERATION

4.1

4/ System Generation

SYSTEM GENERATION

The System Generation program must be used to create a new system disk, optimised
for a specific test environment. This means that only the software modules
(instrument drivers) which are specified by the user, are linked together to create a
new PTL program. This approach has the advantage that as much disk space is left
as possible for other purposes,(editing and compiling) and that speed, especially
during editing, will be improved.

The following paragraphs describe the process of generating a new system disk which
contains all required instrument drivers.

GETTING STARTED

Switch on the 1722A Instrument Controller, and insert the disk with the label *Polar
Test Language System Generator’.

In case the system has already been switched on, press <RESTART > + < ABORT >
simultaneously after the disk has been inserted.

Polar Test Language 4-1

4.2

4-2

4/ System Generation

After execution of the start-up command file, which copies several files to E-disk, the
following screen lay-out will appear:

4

PTL Yersion 1.x
[SELECT | [PRINT]| [SYSGEN | | FUP] [SET] [EXIT]

Use this program to select instrument drivers
into a library that will be used for the creation
of PTL programs.

Touch <RETURN> to continue....__

This indicates that the System Generator program has now been loaded and is ready
to be used.

In addition, the program 'SYSGEN’ can be run from the FDOS prompt by typing the
filename: SYSGEN. Refer to the Fluke 1722 A System Guide for information on how
to run the FDOS program.

SELECT INSTRUMENT DRIVERS

To generate a system disk, the user has to specify which instruments are used in the
system. This can be done by selecting software modules, called *instrument drivers’,
to create new PTL system software that will *understand’ all instrument dependent

commands and functions.

After <RETURN> has been pressed, use the cursor control keys to move the

Polar Software Systems

4/ System Generation

reverse video field to the 'SELECT’ option from the menu and press <RETURN>.

The following display appears:

PTL Version 1.x
EEERE] [FRint | [Svscen | [for | [_ser | [exit |

Selected modules

Continue with (next) instrument driver disk (Y /N)

To select the desired instrument drivers from the supplied driver disk(s), insert the
disk 'PTL Instrument Drivers’ (which contains the driver library) and press <Y >.

If one of the other menu options has to be used then respond with <N>.

After <Y > has been pressed to select drivers, the system will start reading the disk
to display the names of files, recognized as instrument driver. Although all these
filenames are read from disk, only the names of the first nine drivers which are
found, are listed on the screen.

The following figure shows a typical 1722A display when using the 'SELECT’ menu
option.

Polar Test Language 43

44

4/ System Generation

4

PTL Version 1.x
[EEEsl] [PrRiNT | [Syseen | [ruPp | [sET | [EXIT]

Selected modules

v Systron Donner SHR Vers 1.0
Fluke S100A Vers 1.1

v Philips PM6652. 4 Vers 1.0
Floke Sd4404 YYers 1.0

Fluke 8506 4 Vers 1.1

HP 3325A Vers 1.0

Fluke 88404 Vers 1.1
v AEA Switch Yers 1.0

If more drivers are available, then the names which are not on the screen can be made
visible by using the cursor control keys.

Using these cursor control keys makes it possible to scroll or step through the list of
instrument names. A reverse video field indicates the driver being selected. When
<RETURN> is pressed, a ’v’-mark will appear, in front of the selected driver, to
indicate all drivers currently selected. If, accidentally, a wrong driver is selected, it
can be de-selected by again pressing <RETURN > after positioning the reverse video
field on the driver to be deleted.

The selection process can be terminated by pressing the <ESC > key, but before the
system returns to the menu, the user will be asked if the selection of instrument
drivers has to be continued with a next disk.

If desired, the user can insert the next disk containing instrument drivers and press
<Y >. When reading the new disk, the drivers which have been selected previously,
are scrolled from the screen but can be made visible again by using the cursor control
keys.

After selecting all desired instrument drivers, the selection procedure can be
terminated by pressing <N > whenever the question ’Continue with (next) instrument

Polar Software Systems

4.3

4/ System Generation

diver disk (Y/N)’ is displayed on the bottom display line.

PRINT SELECTED DRIVERS

After selecting the desired instrument drivers, it is possible to list the selected drivers

on the screen or on a printer, connected to one of the available printer ports.

To generate a listing of all selected drivers, the 'PRINT’ function must be selected

from the menu. This can be done with the cursor control keys as described in a

previous section. Before the listing is sent to a printer, it is necessary to select the

type of device where the listing has to be sent to. This can be done by pressing

<ESC > when the 'PRINT"’ field is selected.

The following screen will appear:

4

N

PTL Version 1.x
SELeCT | [MIGEZEEN] [SvseeN | [rup | [_ser_ | [Exm__]

Edit device name for printer:

The current printer device name is shown. All standard editing functions can be used

to edit the device name and the printer device.

Polar Test Language

4-5

4.4

4-6

4/ System Generation

The following device names are selectable:

KBO: Directs output to Screen

KB1: .. Serial port
KB2: .. Serial port
SP1: .. Serial port
SP2: .. Serial port
GPO:2 .. IEEE address 2

The default selection is KB1:
After typing in the desired device name, <ESC> must be pressed to confirm the

input.

Pressing <RETURN> while the 'PRINT’ option is selected sends a list of all
selected instrument drivers to the previously defined list device.

WARNING: If an RS-232 printer is used, please make sure that the port is correctly
set before printing. Refer to the standard Fluke SET utility.

GENERATE SYSTEM
To generate a new system disk, select the "’SYSGEN’ function from the menu by
means of the cursor control keys and press <RETURN>.

The program will inform the user that the System Generation Disk must be inserted
again before system generation can be started.

Polar Software Systems

4/ System Generation

'S .

PTL Yersion 1.x

=GN [For] [ser] [exim]

[[seLecT] [PRINT]

Put in the System Gener ation Disk
and touch <RETURN?> to continue

or <ESC?> to abort.

After the System Generation disk has been inserted and <RETURN > is pressed, the
creation of a new system disk starts automatically.

After a while the program will display the following message:
Please insert a blank disk
and touch <RETURN>.
If the disk is not empty, the system displays the following warning message:
This disk is not empty !!!
Touch <RETURN> to continue
or <ESC> to retry.
It is not necessary that the diskette has been formatted. The system will start

formatting the blank diskette if this hasn’t been done already. After this, the new
system will be transferred to the inserted disk.

Polar Test Language 4-7

4.5

4.6

48

4/ System Generation

After all files have been copied onto the floppy disk, the following message will be
displayed:

Disk ready.....
Take out and touch screen for next disk
or push <ABORT> to use this new disk.

By pressing < ABORT > the system performs a ’automatic’ start.

PROGRAMMABLE MENU KEYS

The menu keys: FUP, SET and EXIT are ’programmable’ using the <ESC> key.
This provides a method to execute the most commonly used system functions without
exiting the System Generator shell. Both the text, which identifies the key field, and
the system command that will be executed if that particular function is activated, can
be changed. Refer to the section ’System Functions’ for a description of how to
change the functions of the menu keys.

SIZE OF E-DISK
It is suggested to use one megabyte memory expansion for ease of use. PTL can
however be run on a system with half a megabyte. To make sure that PTL will

always run at delivery, PTL is shipped for a .5 MByte system.

The size of the E-disk is stored in the file "EDISK.CMD" command files. This file
is a copy of either the file "1024KB.CMD" or of "512KB.CMD".

Polar Software Systems

4/ System Generation

E.g. your system has 1024 KB. To configure the system, copy the file
"1024KB.CMD" to "EDISK.CMD" as follows:

1. Insert the SYSTEM GENERATOR disk.

2. Go to fup:
FUP

3. Assign the system to floppy:
MFO0:/a

4. Copy "1024KB.CMD" to "EDISK.CMD":
EDISK.CMD =1024KB.CMD

Polar Test Language 4-9

4/ System Generation

4-10 Polar Software Systems

CHAPTER 5

SYSTEM CONFIGURATION

5/ System Configuration

5 SYSTEM CONFIGURATION

5.1 STARTING THE PTL SYSTEM
PTL will be run automatically from the system disk at power-on or when the front
panel restart key is pressed. After some time the operator disk is needed to continue

and the following text is displayed:

Please insert the Operator disk.
Then touch the screen.

When PTL is run, the program produces the following menu on the display.

N

4
(Demo) PTL Yersion 1.x
[SELECT | EDIT FUP

| | | [_sET] TIME COPY
[PRINT | [MENUEDIT| [RUN___| [COMPILE | [EXECUTE | [CONFIGURE

In addition, PTL can be run from the FDOS prompt by typing the PTL program file
name: PTL. Refer to the Fluke 1722A System Guide for information how to run the
FDOS program.

CAUTION

Polar Test Language 5-1

5/ System Configuration

5.2

53

5-2

When using PTL, the E-Disk is assigned to be the system device. Files (e.g.
configuration) saved on the E-Disk will be lost whenever the 1722A is switched
off.

SELECT CONFIGURE

PTL offers the user the possibility to specify all system devices, from instruments to
single relay switches, by attaching a unique name to each of them.

This process of defining names and relations between names is called ’Configuration’
and is explained in detail in the following paragraphs, assuming that the ’Configure’
option has been selected from the PTL Main Menu. The section ’System functions’
describes how to select the *Configure’ option.

CONFIGURE

When <RETURN > is pressed after the ’Configure’ option has been selected from
the PTL Main Menu, the user has to specify whether to start with a default set or edit
an existing set that has been configured already. The default set contains the default
configurations like IEEE addresses and instrument names, as defined in the device

drivers.
(Demo) Yersion
I SELECT | | EDIT I | FUP | SET TIME COPY
PRINT MENU EDIT RUN comMpP ILEj EXECUTE CONF IGURE
Select :
Edit exizting data
Start with a default set
-, P

Polar Software Systems

5/ System Configuration

The cursor up and down keys can be used to move the reverse video field to the
desired option; <RETURN > must be pressed to confirm the selection.

After a selection has been made, the following menu appears on the screen:

"N

Instruments

Connections

s
(Demo) PTL Version 1.%
SELECT | [_EDIT | [_Fup | [__SET | [TIME | I COPY |
PRINT [MENUEDIT] [RUN | [[COMPILE | [EXECUTE | [CONFIGURE
Configure:

5.4 CONFIGURE DEVICES

This function must be used to define the names of, and the relation between logical

and physical devices to write to. The display shows the menu options as shown in the

following figure:

Polar Test Language

53

5/ System Configuration

5.5

54

r .
(Demo) PTL Version 1.x

[SELecT | [epir | [FuP_ | [SET | [THME__] COPY

[PRINT_| [MENUEDIT| | _RUN__ | | COMPILE | [EXECUTE |

CONFIGURE : DEVICES

k8o
PRINTER KB 1:
DISK MFO:
- P

The logical device names are used later on, for example, in procedure steps like
WRITE("TO=SCREEN") to output information to the 1722A display (or printer or
disk).

To change the name of a device, move the reverse video block to the line and column
to be edited and use the normal edit functions, like <Linefeed>, <Del line > etc.,
to make changes. Because PTL does not check physical device names at this phase,
the user must be sure to enter a legal 1722A device name.

Spool files can be used to hold off printing until the procedure is finished. (see
chapter 3).

E.g. KB1:SPOOL1.DAT

After configuration of devices is complete, <ESC > returns control to the Configure
menu.

CONFIGURE INSTRUMENTS
When this option is selected, the display shows a list consisting of instrument driver

names, IEEE addresses and instrument identifiers. The following figure shows a
typical example of such an instrument list.

Polar Software Systems

5/ System Configuration

[(Demo) PTL Version 1x)
[[sELECT | [__EDIT] I FUP | [sET 1 TIME___ | [copY
[PRINT] [MENUEDIT] RUN L CoMPILE | [EXECUTE |
Configure instruments :

PM 6654 Timer /Counter TIMER /COUNTER

Fluke 8840A Multimeter 10 DMM

HP33254A Synthesizer /func. gen. 17 GENERATOR

HP 3326 A 2 Chan Synthesizer 41 SYNTHESIZER

HP 3488 Switch Control Unit 11 SWITCH

TEK 2430 Scope S SCOPE
LEnier C=Copy , 0=0n /Off , E=Exit :

e

The instrument names in the list are the result of the driver selections, made during
the System Generation process. The IEEE addresses and identifiers are either the
default data from the drivers or the result of previous editing.

IEEE addresses and instrument identifiers must be unique i.e. they can be used only
once in the configuration list as it is the only way for the system to identify or to
access individual instruments.

If specified in the driver, secondary addressing must be used. Two types can be
found:
- Real secondary addresses.

as specified by the IEEE standard
- Pseudo secondary addresses.
Pseudo means that the instrument is considered as consisting of more modules e.g.
a power unit with 4 supplies.

In both cases, the address must be specified as the main IEEE address, followed by
the secondary address, separated by a decimal point.

Polar Test Language 5-5

5/ System Configuration

5.6

5-6

As with most other PTL functions, the normal cursor control and editing keys can be
used to step through the available list. or to change both the IEEE addresses and
identifiers (=instrument names).

If, by mistake, an illegal IEEE address is specified, a default address will be
substituted by the system, which can be edited again.

Pressing <ESC > displays the following options at the bottom of the screen :
C=Copy, O=0n/Off, E=Exit

The Copy function allows the use of more then one instrument of the same type. As
stated before, the identifier and IEEE address of (identical) instruments must be
different, which can be accomplished by editing the appropriate fields.

The On/Off option can be used to temporarily ’remove’ an instrument from the
system or to ’re-install’ it, preventing error messages being displayed when the
instrument is not available.

Finally, the Exit function must be used to return to the Configure sub-menu. A
warning message will be displayed and no return takes place if two identical names
or IEEE addresses are used.

CONFIGURE CONNECTIONS

This option from the Configure sub-menu must be selected when connections between
individual instruments in the system and the UUT have to be defined.

When this function is selected, a list of the available instruments is displayed as, for
example, shown below.

Polar Software Systems

5/ System Configuration

(" (Demo) PTL Version 1.x)
SeLect | [eom | [FuP | [SET 1 [Time | [copy
| PRINT I [MEnu EDIT] [RUN | [ComPiE | [EXECUTE |

Configure connections:

X TIMER SCOUNTER g
F1uke 8840A Muuimeter DMM IN
HP33254A Synthesizer /func. gen. GENERATOR ouT
HP 3326 A 2 Chan Synthesizer SYNTHESIZER ouT
HP 3488 Switch Control Unit SWITCH SCAN+O
TEK 2430 Scope SCOPE IN

The cursor up and down keys can be used to select the instrument, of which
connections in the system have to be defined. <RETURN> must be pressed to
confirm a selection.

Instruments in the list are either indicated as IN, OUT or SCAN or as a combination

of that. The following paragraphs explain the typical functions for all three instrument
types.

Polar Test Language 5-7

5/ System Configuration

58

IN

An instrument is indicated as "IN’ if it can handle input signals and return information
to the Instrument Controller about voltage level, temperature, resistance, wave form
etc. Typical examples are Digital multimeters and Oscilloscopes. The function
"MEAS’ is a typical example of functions to be used for instruments of type 'IN’.

ouT

Instruments that can output anything, like voltage, current, resistance or AC signals,
are defined as ’OUT’ instruments. The ’APPLY’ function has been especially
designed to control this type of instrument.

SCAN

To make connections between system instruments and a UUT, remotely controllable
switches are needed. Instruments which contain these switches are defined as
’SCAN’-type instruments. Although the function of all available switches can be
defined by using the ’Configure Connections’ option, individual switches can be
closed by means of the PTL "SWITCH’ function.

Note: Many ’intelligent’ instruments today are capable to support more than one of
the ’IN’, ’OUT’ and 'SCAN’ functions simultaneously. This explains why
definitions like 'SCAN+O’ are used.

The following example has been included for illustration purposes only.

Example:

Assume that the input of a digital multimeter (e.g. Fluke 8840A) has to be connected

to the output of an Amplifier on the UUT to measure the output level. As a stimulus,
a signal generator (e.g. HP 3325) must be connected to the input of the UUT

Polar Software Systems

5/ System Configuration

amplifier. A Switch Control Unit (HP 3488) has been chosen to control the in- and
outputs. To illustrate this, the figure below shows a diagram of the relevant hardware

connections.
FE840 4 1 |12 345 6 789 10
DMM T T T T T 1 L] T 1
HP 3488 A Switch Controller
HPS325 A I S I S S
Generator 1 2 14 s ‘-5 7 8 9 10

N

-

AMP
IN

uuT

)

AMP
ouT

Assume that, during ’Configure instruments’, the F8840, H3325 and H3488 have
been configured as ’Multimeter’, *Signal generator’ and *Switch’ respectively.
Multimeter is connected to the UUT by means of relay no. S of scanner card no. 1
inside Switch, Signal generator by means of relay no. 3 of scanner card 2.

The connections for the multimeter are defined as follows:

Scanner : Switch
Name : Amplifier out
Command : 15

Switch delay 120

For the signal generator :

Scanner : Switch

Polar Test Language 5-9

5/ System Configuration

5-10

Name : Amplifier in
Command : 23
Switch delay 120

Note: Commands are of the form x-y where x and y are legal, instrument dependent
numbers. More connections may be defined on the same line by using a
’slash’ character as separator e.g.
2-3/4-6 or 2-3/4-6/7-9.

To enter these configurations, first select from the 'Configure connections’ menu the
FLUKE 8840A Multimeter and press <RETURN>.

If no connections have been defined before, the display shows nothing else then just
’Scanner’, "Name’, ’Command’ and ’Switch delay’.

Changes to the displayed system connections, if any, can be made by using the
standard cursor control and editing functions, while new entries only have to be typed
in.

To simplify entries for the *Scanner’ column, a window will be displayed, allowing
the user to select the desired *Scan" device from the list, displayed in the window.
The following figure illustrates this.

4
(Demo) PTL Version
[SELECT] EDIT FUP | SET | | TIME | | COPY I
_PRINT | [MENU EDITI | RUN COMPILE EXECUTE
Configure connections for 1nput CALIBRATOR
Scanner Narme Comman

Select from

Polar Software Systems

5.7

5/ System Configuration

This window shows the identifiers of all instruments which are defined as "'SCAN’
types; in this case the window shows nothing else then the name "SWITCH’, as it is
the only instrument of type 'SCAN’. The cursor control keys can be used to select
the desired instrument from the window; <RETURN> confirms a selection and
returns control to the connection list.

Use the data from the given example to configure the F8840.

TEST CONFIGURATION

When these configurations have been defined, the user can return to the PTL Main
Menu by pressing <ESC> several times.

For this example, use the command line to select "MEAS’ and ’Instr=Multimeter’
from the menu‘s. Note that, in this case, because only one connection has been
configured for the multimeter, the system automatically adds ’At=Amplifier out;’ to
the command line.

After returning to the command line entry level, select a new line by <LINEFEED >
<RETURN> and select the ’APPLY’ function. When ’Instr=Signal generator’ is
selected, the system displays 'To=Amplifier in’ and returns automatically to the
command line entry level, as only one connection has been defined for the Signal
generator.

Polar Test Language 5-11

5/ System Configuration

5-12 Polar Software Systems

CHAPTER 6

SYSTEM FUNCTIONS

6.1

6/ System Functions

SYSTEM FUNCTIONS

File and device management, serial communications control and text editing are
important functions of an operating system. The standard FLUKE 1722A FUP, SET
and EDIT programs are accessible from PTL by means of easy to use menu
selections. Exiting one of those programs automatically returns control to PTL.

In addition to the standard FDOS functions, PTL introduces a few new "system"
functions like 'PRINT’, ’CONFIGURE’ and ’"COMPILE’. Menu selections have been
provided for these functions which would otherwise need a significant amount of user
interaction.

OVERVIEW

The default PTL menu offers the following functions:

SELECT EDIT FUP SET TIME FCOPY
PRINT MENU EDIT RUN COMPILE EXECUTE CONFIGURE

The upper right 5 functions are software programmable i.e. the function of these keys
can be changed. For other functions, several important parameters can be changed as
described in this chapter.

Polar Test Language 6-1

6/ System Functions

6.2

6.3

6-2

THE PTL MENU (SHELL)

After loading the PTL program, the normal FDOS prompt will be replaced by the
following menu:

N

”
(Demo) PTL Version 1.X

[SELECT] EDIT | [_Fup] | SET | | TIME I | CoPY l
[_PRINT | [MENUEDIT] [_RUN _ | | COMPILE EXECUTE CONF IGURE

Selections from the main menu can be made by using the cursor control keys. The
function momentarily selected will be indicated by a reverse video field.

DIRECT COMMAND LINES

Except for the two lines with menu keys, 10 other lines are available for immediate
execution of any legal PTL command, typed in on the keyboard or selected from the
available menu options. All commands entered this way will be executed when the
’Esc’ key is pressed, before the system returns to the Main Menu.

Also refer to the chapter "Testing a procedure" for further information.

Polar Software Systems

6.4

6.5

6.5.1

6/ System Functions

CHANGING THE MENU FUNCTIONS

The function of several ’keys’ in the top row of the menu can be changed by pressing
the ESC key. This is described in the following paragraphs.

The information about the keys is stored in a file called "PTL.DAT" on the system
disk. After changing the menu functions, you should copy this file to the system disk
to make them permanent.

USING THE MENU FUNCTIONS

The use of the menu functions is fully explained in the following paragraphs.
Individual Main Menu functions have to be selected as follows:

1. Use the cursor control key to move the reverse video field to the field which
contains the desired function name.
2. Press the 'Return’ or ’Esc’ key, depending on
the action required as described below for
each function individually.

For the following descriptions, it is assumed that the described function has been
selected from the Main Menu as explained earlier.

For each function always two descriptions are given i.e. one explains what will
happen when the <Esc> key is pressed, the other describes the effect of pressing
the 'Return’ key after the function is selected.

SELECT

The *SELECT’ function key can be used in two different ways:

1. To select the file to be used by other Main Menu functions.

Polar Test Language 6-3

6/ System Functions

2. To define the device name and the filename extension.
The following sequences will be recognized by the PTL program:

SELECT/<Esc>

To change the default device identifier or the filename extension, press *Esc’. The
*SELECT’ field starts flashing and the following display appears:

4
(Demo) PTL Version 1.x
|m] eoim | [_Fup | [sET | TiME____| [_copy
PRINT | [MENUEDIT| [RUN | [COMPILE | [EXECUTE | [CONFIGURE

For the Select function enter now the:
Device name te select from :

And the file extension : PTL

All normal edit functions can be used to make changes to the default device and
extension.

After the required changes have been made, a return to the Main Menu can be made
by pressing the ’Esc’ key or, if the extension field is selected, the *Return’ key.

64 Polar Software Systems

6.5.2

6/ System Functions

SELECT/<Return>

To select a file, press <RETURN >. This forces the system to display all files from
the device and with the extension previously selected by means of the
SELECT/<ESC> function.

The 'SELECT”’ field will be highlighted to indicate that this function is active.

The cursor control keys can be used to step through the list of filenames. The file
presently selected is indicated by a reverse video block. After the desired file has
been selected this way, both <ESC> or <RETURN > may be pressed to confirm
the selection.

If the text *<NEW>"’ is selected and <RETURN> is pressed, the user will be
asked to type in the name of the new file.

After the filename has been typed and *Return’ is pressed again, the filename will be
checked for validity. If no errors are detected, the system returns to the Main Menu,
displaying the selected filename in the upper left hand corner of the screen.

If an illegal filename is used, a general error message will be displayed together with
several options to retry, abort or exit from the error handler.

EDIT,FUP,SET, TIME,FCOPY

The function of those fields is to provide 5 user programmable function keys to
execute the most commonly used system functions.

The user can change both the text which identifies the key field and the system
command that will be executed if that particular function is activated. After selecting
one of those fields, e.g. 'TIME’, the following message is displayed after <ESC >
is pressed:

Polar Test Language 6-5

6/ System Functions

6-6

[(Demo) PTL Yersion 1.X
[seEcecT | [Eoim | [FUP_] [sET] 'm1 COPY
[CPRINT | [MENUEDIT]| [RUN | [[COMPILE | [EXECUTE | [CONFIGURE

For this key enter now:
Keyname : JIQI3

Command : mf0 :Time

’Keyname’ is the name used in the menu to identify a menu key and ’Command’ the
function to be executed when that specific key is selected and <RETURN> is
pressed.

The ’Keyname’ or ’‘Command’ fields can be selected with the normal cursor control
keys.

Old text or typing errors can be deleted with the <DEL LINE > or <DEL CHAR >
keys. The use of the <RETURN> key is optional.

Pressing <ESC> returns control to the Main Menu. The selected field always
reflects any change that has been made to the key identifier.

Changes made to the menu are automatically saved on the system device (SYO:).

If <RETURN> is pressed then the command associated with the selected function
will be executed.
When the execution is terminated, the system returns to the PTL Main Menu, except

when the ’EXIT’ command is selected. This command returns control permanently
to FDOS.

Polar Software Systems

6/ System Functions

A command can be any valid FDOS command i.e. the calling of a command file or
of a program. As with normal command files and programs, parameters can be
passed. In this case three special parameters are available:

?: The device selected under SELECT/ESC

? The filename selected with SELECT/RETURN

.? The extension selected under SELECT/ESC

To call the Fluke editor e.g. the command
MFO:EDIT ?:2.?

could be used

For the functions EDIT, FUP, SET and TIME refer to the Fluke 17xxA manuals.

FCOPY

The program FCOPY provides a more friendly way to copy files between memory
and disk than the standard FUP program. However, FCOPY can only be used to
transfer procedure and configuration files.

FCOPY/<RETURN>

Pressing <RETURN> displays the following menu:

Polar Test Language 6-7

6/ System Functions

6.5.3

6-8

N

—

(Demo) PTL Version 1.x
[setecTt] [ebiT | [FoP__ | [_sET] TIME Im
[PRINT | [MENUEDIT| [RUN___| [[coMPILE | | EXECUTE | CONF IGURE

Select Copy function:

Liozd pragreane from dizk

Save program on disk
Load configuration from disk

Save configuration on disk

A selection can be made by moving the reverse video field to the appropriate menu
option. <RETURN> must be pressed to start the file transfer, <ESC > can be used
to abort the operation and return to the main menu.

PRINT

The PRINT function can be used to make a hard copy of programs, the system
configuration or the capabilities of the drivers (i.e. a list of all instrument dependent
PTL ’statements’ and functions, available)

PRINT/<ESC>

Pressing the <ESC > key offers the possibility to change the print device as indicated
in the following figure.

Polar Software Systems

6/ System Functions

N

'
(Demo) PTL Version 1.2
SELECT EDIT] [_FuP] [SET] TIME] | COPY l
MENU EDIT| | RUN] [COMPILE | EXECUTE | |[CONFIGURE

For the Print command enter now :

Print device M HE

Number of lines : 66

The following device names can be selected:

KBO: Directs output to Screen

KB1: .. Serial port
KB2: .. Serial port
SP1: .. Serial port
SpP2: .. Serial port
GPO:2 .. IEEE address 2

The default selection is KB1:. Spoolfiles are allowed, e.g. KB1:SPOOL1.DAT.
The number of lines of a page must be set to be equal to the paper used. This ensures
that each new page will end with a page number on the last line. If the number of

lines equals O, then no page brakes will be generated.

As with other functions, all standard edit functions can be used to change the
indicated device name.

Polar Test Language 6-9

6/ System Functions

6-10

PRINT/<RETURN>

After <RETURN > is pressed, the display shows the following print menu:

-~
(Demo) PTL Version 1.x W
SELECT EDIT] [__FupP] [_sET] TIME] COPY
MENUEDIT| [RUN___ | [COMPILE | | EXECUTE | |CONFII3URE|
Select what to print:

Configuration

Drivers

PRINT PROGRAM

This function sends the contents of the program file, selected by means of the
*SELECT’ function and displayed on top of the PTL main menu, to the output device,
selected with the PRINT/ <ESC > function. The appendix contains an example.

PRINT CONFIGURATION

The complete system configuration will be listed when this option is used. The
Appendix contains an example of such a listing.

PRINT DRIVERS

Instrument dependent PTL ’statements’ and functions are part of the instrument

Polar Software Systems

6.54

6/ System Functions

drivers. When developing a PTL procedure, this information is needed to create the
test procedure.

The PRINT DRIVERS option provides a way to list all driver parameters, including
the associated (IEEE) control codes of those drivers, selected in the configuration.
The appendix contains a sample printout of a typical driver listing.

MENU EDIT (Optional)

This function allows the user to create or edit test procedures by simply making
selections from several, in many cases instrument-type dependent, sub-menu’s.
With this method, little knowledge is needed to produce test procedures for even
complicated test systems.

As all menu options, which can be selected, are displayed simultaneously,
’programming’ means moving around with the cursor control keys and ’picking up’
required functions by pressing <RETURN>.

MENU EDIT/<ESC>

This sequence allows the user to define two different options for direct execution
(immediate mode). The following will be displayed:

Polar Test Language 6-11

6/ System Functions

6.5.5

6-12

[(Demo) PTL Yersion

SELECT EDIT FUP SET | [TIME | CDPY |
| PRINT | RUN COMPILE | [EXECUTE CONF IGURE

For the test mode enter now:
YES/NO wait for errors : WES

YES/NO clear on entry NO

The displayed options allow the user to define:

o whether execution of a procedure has to be suspended or not whenever an ’error’
condition is detected.

o if the 'command lines’ have to be cleared or not each time they are used.

MENU EDIT/<RETURN>

This sequence starts the "’MENU EDIT’ function and is described in detail in the
section *Writing And Editing A Procedure’.

RUN

The 'RUN’ option from the Main Menu must be used to execute a PTL procedure in
Interpreted mode. The only sequence accepted by the system is RUN/ <RETURN >.

Polar Software Systems

6/ System Functions

RUN/<RETURN>

This sequence results in the execution of the procedure, selected by the "'SELECT’
function and indicated in the top left hand corner of the display. Normal BASIC
statements, if included in a procedure, are not executed.

After execution, the system returns to the PTL Main Menu.

6.5.6 COMPILE
If it is desired to compile a procedure, the "COMPILE’ function must be selected
from the PTL Main Menu. This will start execution of a system Command File which
handles all commands to perform the required compilation and linking tasks. The
process of compiling and linking is described in the section Compiling And Linking.

COMPILE/<ESC>

If selected, the following menu appears:

[(Demo) PTL Version

| SELECT | [_EpiT FUP SET | TIME | COPY
PRINT [MENU EDIT RUN EXECUTE CONF IGURE

For the compile command enter now :

Command :

YES/NO reset Routine : Yes

The command gives the calling of the command file needed to compile the procedure.

Also it can be selected whether to Reset all instruments before executing the

Polar Test Language 6-13

6/ System Functions

6.5.7

6.5.8

6-14

procedure.
Also refer to the section "Advanced programming" for further information.
EXECUTE

After a procedure has been compiled, it can be executed by means of the
’EXECUTE’ function.

EXECUTE/<RETURN>
This sequence starts execution of the procedure file which has previously been
selected with the "'SELECT’ function but with a file extension ’FD2’, no matter which

extension has been selected with the 'SELECT/ <ESC >’ sequence.

The EXECUTE /ESC sequence has no effect.

CONFIGURE

The ’"CONFIGURE’ function is intended to define system parameters like I/O devices,
IEEE addresses, instrument identifiers (names) and connections.
CONFIGURE/<ESC>

To determine which IEEE addresses are used by the instruments, connected to the
Instrument Controller, the sequence ’"CONFIGURE/<ESC>’ can be used. This

function returns the IEEE addresses of active instruments in the system. The
following figure shows an example.

Polar Software Systems

6/ System Functions

Ny

[(Dermo) PTL VYersion 1.
[SELECT | EDIT | FUP [sET | TIME] COPY
[PRINT | |[MENUEDIT) RUN | COMPILE | EXECUTE |

Active IEEE addresses are:

10, 13

Touch <RETURN?> to continue. . .

CONFIGURE /<RETURN>

The sequence 'CONFIGURE/<RETURN >’ allows to configure the system. Refer
to chapter "SYSTEM CONFIGURATION" for a detailed description.

Polar Test Language

6-15

6/ System Functions

6-16 Polar Software Systems

CHAPTER 7

PTL. COMMAND REFERENCE

7.1

7/ PTL Command Reference

PTL COMMAND REFERENCE

PTL Commands are predefined operations available in the Inmediate, Interpreter and
Compiled Modes. The availability of those commands can significantly simplify the
process of writing a procedure.
In addition, a wide range of parameters is allowed for each command to adjust its
function to an appropriate task.

OVERVIEW

This section is divided into four subject areas: General Purpose Commands,
Instrument Control Commands, Input/output Commands and Special Function
Commands.
Only a little instrumentation background is required for use of any of the PTL
Commands.

PTL Commands always consists of a "command" field and one or more optional
"parameter” fields between brackets i.e.: Command("Parameters").

The following commands are recognized by PTL :

PROCEDURE("...") Starts a PTL procedure

END_PROC("...") Terminates a PTL procedure

START _TASK("...") Starts a new task within a PTL procedure.
END_TASK Indicates the end of a PTL task.

RESET("...") Resets an instrument to a known state.
SETUP("...") Programs an instrument for a specific function.
MEAS("...") Instructs an instrument to take a new measurement.
APPLY("...") Enables the designated instrument.
DISAPPLY("...") Disables the designated instrument.

SWITCH("...") Switches on or off the designated connection.

Polar Test Language 7-1

7/ PTL Command Reference

DISCONNECT("...") Disconnects the designated instrument.
WRITE("...") Outputs text or results to screen, printer or disk.
ENTER("...") Instructs the operator to input information.
DELAY("...") Delays the execution of a procedure.
EVAL("...") Evaluates a result.

In addition, the ampersand (&) character can be used to split a command line into two
or more physical lines on the screen. Single language elements like commands,
numeric constants, may not be continued on a next line.

For long strings the plus (+) character can be used as shown in the next example:

WRITE ("TO=SCREEN;TEXT="A string like this one may NOT be
continued on a new line
like this.’")

This example line is illegal because the string is broken in the middle of the line. A
long string may be broken in the following manner:

WRITE ("TO=SCREEN;TEXT ="A string like this one" & + "may be continued
on a new line like this.’")

NOTE: The ampersand must be the last character of a line. Even spaces are

not allowed behind an ampersand. Use the <LineFeed > key to go to
the end of the line.

7-2 Polar Software Systems

7.2

7.2.1

7/ PTL Command Reference

STRUCTURAL COMMANDS

The General Purpose Commands supplied with PTL allow for easy structuring of a
procedure.
This version of PTL supplies the following General Purpose Commands:

PROCEDURE ("...")
END_PROC("...")
START TASK("...")
END_TASK

This section describes those commands and their optional parameters in logical order.

PROCEDURE()
Format: PROCEDURE]("parameter;...parameter;][parameter;...parameter;]")
Parameters: NAME="..." ; The name of this particular PTL Procedure.
VERSION="...%; The version of a PTL Procedure.
PROG="...%; The name of the procedure writer.
DATE="..." ; The date the procedure was created.
OPERATOR="...”; Inquiry after the operator name.
SIN="..." ; Inquiry after an instrument serial number.

Each PTL Procedure must begin with the PTL Command ’PROCEDURE’. This
Command initializes the required system resources.

Name and version of the procedure, the name of the programmer and the date are
used for documentation purposes and can be included, if desired, in test reports.

If an inquiry after the operator name has been specified, the operator will be asked

Polar Test Language 73

7/ PTL Command Reference

74

by means of a user defined display message to enter a name, using the alphanumeric
keyboard drawn on the screen. This inquiry will only be made once, at the start of
a procedure. Each new time PROCEDURE will be encountered before the
END _PROC, the inquiry will be skipped.

If an inquiry after the serial number has been included, a numeric keypad will be
displayed and the operator will be asked to input a serial number by means of a user
defined display message, before execution of the procedure continues. The inquiry
will be done each time the PROCEDURE statement will be encountered.

Example:

PROCEDURE ("NAME="'Example’ ;VERSION='1.0';" &
+"PROG='P. Olar’ ;DATE='21/09/91' ;" &
+"OPERATOR='Enter your name’ ;" &
+"S/N='Enter serial number’")

Details:

The procedure statement has the following functions:
- Store parameters
- If required and task=-1: ask for operator input
- If required: ask for serial number
- Make task=0

Polar Software Systems

7/ PTL Command Reference

7.2.2 END PROC
Format: END PROC[("parameter;")]

Parameters: CONTINUE="...” Asks the operator if the procedure has to be

repeated.

Every PTL Procedure must be terminated by an ’JEND PROC’ command, to indicate
the end of a procedure. If the statement is not found, the procedure will continue to
run until stopped manually (by CTRL/C)

The optional parameter can be used to ask the operator if the procedure has to be
repeated or not, by means of a user defined display message and a Yes/No keypad
on the screen. If testing has to be continued (i.e. the *Yes’ key has been pressed), the
number of the Task to be executed next will be preset to 1, forcing the system to start
at the beginning of the procedure. Otherwise the Task number will be reset to 0
which terminates execution of the procedure. If a 'null’ string (i.e. <return> only)
is entered after "CONTINUE =", then execution of the procedure will be terminated
as if no "CONTINUE=" was used.

Example:
END_PROC ("CONTINUE='Test a new modem?’")

Details:
The end_procedure has the following functions:

- If required: ask for operator input
- If not to stop: make task=0

Polar Test Language 7-5

7/ PTL Command Reference

7.2.3

7.2.4

7-6

START TASK()
Format: START TASK [("parameter")]
Parameters: NAME="..." Identifies a particular procedure task.

PTL procedures may contain a number of tasks. The command START TASK
identifies the beginning of a task. The text, entered for the optional parameter
’NAME’ can be used to explain the function of the task and will be displayed during
execution of that specific task.
Example:
START_TASK("NAME='Initialize’")
Details:
The functions are:
- Store the parameters entered
- Task= Task+1
END TASK
Format: END _TASK
Parameters: None

The command END_TASK must be used to identify the end of a Procedure Task.

Example:
END_TASK

Polar Software Systems

7.3

7.3.1

7/ PTL Command Reference

Details: none

INSTRUMENT CONTROL COMMANDS

PTL also includes three Instrument Control Commands: RESET, SETUP and MEAS.
These functions allow for complete control of any function of the instruments in the
system, like function and range selections, sample rate or triggering.

RESET
Format: RESET("parameters")
Parameters: INSTR=... Reset the indicated instrument.

The RESET command can be used to reset any instrument in the system to its default
conditions. Always refer to the user manual of the instrument in question for
information on those default conditions.

Example:
RESET ("INSTR=DMM")

NOTE: In each compiled procedure, a complete reset of all instruments is
automatically included at the start of the procedure.

Details:

The driver is called with a reset command.

Polar Test Language 7-7

7/ PTL Command Reference

7.3.2

7.33

7-8

SETUP
Format: SETUP("parameters")
Parameters: INSTR=... Indicates instrument to be ’set up’.
277?
Instrument dependent parameters
277?

The SETUP command can be used to prepare the individual instruments in the system
for a specific task. The command includes parameters for all instrument dependent
functions like range selection, function control, measurement speed etc. Refer to the
print-out of the driver of the particular instruments for detailed information on all
remote-controllable functions.

Example:

SETUP ("INSTR=DMM; FUNCTION=dBm; RANGE=-60")

Details:

The driver is called with the setup parameters

MEAS
Format: MEAS("parameters")
Parameters: INSTR=... Indicates instrument to be wused for a
measurement.
AT=... Identifies the connection(s) to be made by the
system.
Polar Software Systems

7/ PTL Command Reference

MIN=... Minimum value allowed for the measurement.

MAX=... Maximum value allowed for the measurement.

UNITS=... Engineering units to be wused for the
measurement.

REMARK=... A remark to be printed

The MEAS command can be used to perform measurements on the unit under test,
using the indicated instrument. The command includes all "EVAL" parameters for
minimum and maximum values to generate pass/fail information as the result of a
specific measurement. "UNITS’ are displayed together with the measurement value.

If specified, a user defined REPORT subroutine is performed after each "MEAS"
statement.

A "MEAS’ command normally follows a *SETUP’ command.
Example:
MEAS ("INSTR=COUNTER; AT=Tp5;MIN=15.5;MAX=16;" &

+"UNITS='KHz' ")

Note: A new MEAS command automatically ’resets’ connections, defined by a
preceding MEAS command.

Example:
MEAS ("Instr=Counter;At=Tp5") : Connect Tp5

MEAS ("Instr=Counter;At=Tp6") : Disconnect Tp5
+ Connect Tp6

Details:

Polar Test Language 7-9

7/ PTL Command Reference

The following functions are performed:
- The scanner driver is called with the codes specified in the configuration to set the
relays.
- The measurement instrument driver is called to take measurements and store them
in RESULT.
- The evaluation function is called to check the results.
- The REPORT subroutine is called

7.3.4 APPLY
Format: APPLY("Parameters")
Parameters: INSTR=... Indicates instrument to be enabled.

TO=... Indicates connection to be made by an instrument
defined as ’Scan’

The APPLY command can be used to enable the output of an instrument, normally
after it has been set up with the SETUP command. The parameter *"TO’ is relevant
only if the INSTR parameter designates an instrument that is defined as ’SCAN’. In
such a case, the effect of the APPLY command is that a connection will be made,
according to the configurations of the ’SCAN’ instrument. Refer to the section
’System Configurations’ in this manual for more information on how to configure
Devices, Instruments and Connections.

Example:
APPLY ("Instr=Synthesizer;To=Amp input")
Notes: - Synthesizer and ’Amp input’ are names, chosen by the user during
configuration.

- A new APPLY command automatically ’resets’ connections, defined
by a preceding APPLY command.

7-10 Polar Software Systems

7/ PTL Command Reference

Example:
APPLY ("Instr=Synthesizer;To=Amp input")
Connect Synth. to ‘Amp input’
APPLY ("Instr=Synthesizer;To=Mod input")
Disconnect from ’Amp input’ + connect to
'Mod input’

Details:

The scanner driver is called with the parameters in the configuration file

7.3.5 DISAPPLY

Format: DISAPPLY("Parameters")
Parameters: INSTR=... Indicates instrument to be disabled.
TO=... Indicates the connection to be interrupted by an

instrument defined as ’Scan’.

The DISAPPLY is the opposite of the APPLY command and may be used to disable
the output of instruments, previously enabled with the APPLY command. The
parameter *'TO’ is relevant only if the INSTR parameter designates an instrument that
is defined as "SCAN’. In such a case, the effect of the DISAPPLY command is that
the connection, specified in the configurations of the 'SCAN’ instrument, will be
interrupted. Refer to the section ’System Configurations’ in this manual for more
information on how to configure Devices, Instruments and Connections.

Polar Test Language 7-11

7/ PTL Command Reference

7.3.6

7-12

Example:
DISAPPLY ("Instr=Power-supply")

Note: ’Power-supply’ is a name, chosen by the user during configuration.

Details:

The driver is called with the parameters in the configuration file

SWITCH
Format: SWITCH("parameters")
Parameters: ’...”=On/Off Identifies the connection to be switched. The connection

can either be switched on or off.
The SWITCH command can be used to control individual system connections by
using names, rather than low level identifiers like numbers of scanner cards,relays
etc.,

Names are defined during configuration of the 'SCAN’ instrument(s).

Example:
SWITCH ("Feedback=0n;Freq comp=0ff")

Note: ’Feedback’ and ’Freq comp’ are names for switchable system connections,
chosen by the user during configuration.

Details:

The driver is called with the parameters in the configuration file

Polar Software Systems

7/ PTL Command Reference

7.3.7 DISCONNECT
Format: DISCONNECT("parameter")
Parameters: INSTR=... Specifies the instrument to be disconnected.

The result of a DISCONNECT command is that all switches in the system, which
have been closed for the designated instrument, will be opened.

Example:
DISCONNECT("Instr=Counter")

Note: ’Counter’ is a name, chosen by the user during configuration.
Details:

All scanner drivers associated in the configuration file with the instrument are being
called to disconnect the instrument

Polar Test Language 7-13

7/ PTL Command Reference

7.4 INPUT/OUTPUT COMMANDS

7.4.1 WRITE
Format: WRITE("parameters")
Parameters: TO=(Options) Directs the output to a selectable device.
Options: SCREEN Directs output to the device ’screen’.
PRINTER Directs output to the device ’printer’.
DISK Directs output to the device ’disk’.
TYPE =(options) Indicates the type of data to be output to the
device, selected with the *'TO ’ parameter.
Options: HEADER Outputs a header
SHORT HEADER Outputs a shortened header.
RESULT Outputs the last result.
PASS Outputs the last result if a step passed.
PASS STEP Outputs the last result if a step passed.
PASS TASK Outputs results if a task passed.
PASS PROC Outputs results if a procedure passed.
FAIL Outputs the last result if a step failed.
FAIL STEP Outputs the last result if a step failed.
FAIL TASK Outputs results if a task failed.
FAIL PROC Outputs results if a procedure failed.
PASS/FAIL Outputs the last result if a step passed.
PASS/FAIL STEP Outputs the last result
PASS/FAIL TASK Outputs the result of a task.
PASS/FAIL PROC Outputs the result of a procedure.
REMARK="..." Outputs a user defined text to the device,

7-14 Polar Software Systems

7/ PTL Command Reference

selected with the *TO ’ parameter.
TEXT="..." Outputs a user defined text

The WRITE command can be used to output information to a user selectable device.
The output must be defined with the *TYPE’ parameter and can be used to control the
layout and contents of test reports.

When the "THEADER’ type is used, a header will be displayed or printed as the first
full page of a report. This header contains the following items:

Procedure version Step
Programmer name Comment
System configuration Minimum
Test Actual
Unit Maximum
Operator name Units
Date Pass/Fail

An example of the screen lay-out is given below.

Test : Examp]e Test date : 03-0ct-88 14:22
Yersion :1x / 21-08-88

Programmer : H. Bar

Configuration: 03-0ct-88 13:02 / PTL 1.x

Operator : T ESTER
Unit ;31 Operation mode : AUTO
Task : Set-up
Step Comment Minimum Actual Maximum Units P/F
1.01 YAC Check 1.35 1.41 1.45 ¥ RMS Pass
) N >

Polar Test Language 7-15

7/ PTL Command Reference

The 'SHORT HEADER’ type differs from the 'HEADER’ type in several ways.
First, only the Test, Unit, Operator name and Date will be output. Second, only a
few lines of the first page of the report will be reserved for the header. Refer to the
figure below for a representation of the 'SHORT HEADER’ screen lay-out.

' & Ny
Test : Example Unit: 31 Operator: T.ESTER 03-0ct-86
Step Comment Minimum Actual Maximum Units P/F
1.01 VYAC Check 1.35 1.41 1.45 ¥ RMS Pass
. y

Test results always contain the following items:

Task number
Remarks
Minimum value
Actual value
Maximum value
Units

Example:
WRITE ("TO=PRINTER; TYPE=PASS_TASK; REMARK='Test’")

7-16 Polar Software Systems

7.4.2

7.4.3

7/ PTL Command Reference

Details:

The results are being written to the device in the configuration file

REPORT

Report is a special subroutine which is called after each evaluation function, to
automatically perform one or more WRITE statements. The standard REPORT
subroutine is empty. However the user may put a special REPORT subroutine with
the appropriate WRITE statements before the test subroutine. This will then replace
the standard empty subroutine.

Example:
Sub Report
WRITE ("To=Screen;Type=Result")
WRITE ("To=Printer;Type=Fail")
Subend
Sub Test (Task)
Details:

in the PTL library, there is an empty Report subroutine, which will not be linked if
resolved beforehand

ENTER

Format: ENTER("parameters")

Polar Test Language 7-17

7/ PTL Command Reference

Parameters: WAIT="..." Halts execution of a procedure until the operator
touches the 1722A screen.
QUESTION="...” Asks the operator a user defined question.
NUMBER="...’ Waits for the operator to input a number.
STRING="...’ Waits for the operator to input text.

The WAIT parameter can be used to temporarily stop execution of a procedure. A
user defined text can be used for operator instructions etc.

This blinking, highlighted message will be displayed at the bottom display line.
Execution continues after the operator has touched the 1722A screen.

The parameter ’QUESTION’ can be used to get simple yes/mo input from the
operator. A user defined text (question) will be output to the screen, together with
YES and No key fields as illustrated in the figure below.

.... (User defined text)

YES NO

The operator can make a selection by pressing the appropriate key field on the screen.
The result will be stored in RESULT(0).

No=0, Yes< >0

7-18 Polar Software Systems

7/ PTL Command Reference

Whenever a number is required during execution of a procedure, the "NUMBER’
parameter can be used. The user defined text will be placed on the screen, together
with a numeric keypad, which can be used by the operator to enter the required
number. The figure below shows the screen when this function is used.

h

.... (User defined text)

EN RN ERER

ERIERIER KR

[oec] (e] [] [enT]

The result will be stored in RESULT(0)

The STRING parameter is almost equivalent to the ’'NUMBER’ parameter. The only
difference is that instead of a numeric keypad, an alpha-numeric keyboard will be
drawn on the screen to allow alpha-numeric input as can be seen in the following
figure.

Polar Test Language 7-19

7/ PTL Command Reference

... (User defined text)

el EdEI]]zl] =]

[ad e] el] e e e v]] o]
[Jled[m][n][o][Pl[a]l[r]ls][T]
Lo Ty w1l [y J [z][=][_][oe] [ent]

The result will be stored in RESULTS.

Example:
ENTER("QUESTION ="Measure between 1.23 and 1.34’")

Details:

- The operator is asked to enter the response

- The result is put in RESULT in the form:
NO = 0, YES <> 0 in RESULT(0), TYPE% =1
Number in RESULT(0), TYPE% =3
String in RESULT$, TYPE%=4

- The result is evaluated against the specified limits

- The REPORT subroutine is called

7.5 SPECIAL COMMANDS
7.5.1 DELAY

Format: DELAY ("parameters")

7-20 Polar Software Systems

7.5.2

7/ PTL Command Reference

Parameters: TIME=(value) The delay time in milliseconds

The "DELAY’ command can be used to slow down execution of a procedure. This
can be necessary, for example, to allow set-up time for slow instruments like
DMM’s.

The 'TIME’ value must be in the range 0..100000.

Example:
DELAY ("TIME=65")

Details:
- The controller halts during the specified time.

EVAL

Format: EVAL("parameters")

Parameters: MIN=... Minimum value allowed for the measurement.
MAX=... Maximum value allowed for the measurement.
UNITS = Engineering units to be used for the measurement.
REMARK= A remark to be printed

Example:

EVAL("Min=12;Max=12.4;Units="'V'")

Details:
- The previously gathered result in RESULT() will be evaluated to see whether it
is a pass or a fail.
- As many results as given in NO_RESULTS% will be evaluated. Only the total
result will be stored in PASS% i.e. PASS% = 1 if all results passed.
- The type of evaluation depends on TYPE%:

Polar Test Language 7-21

7/ PTL Command Reference

0: No evaluation done
1: Each individual bit in Result will be checked against the corresponding limit
bit values in min and max.
E.g. if bit 5 in RESULT(=1, in MIN=0 and in MAX=0 then PASS% =0
2: A check is done on RESULT against the MIN and MAX limits
3: A check is done on RESULT against the MIN and MAX limits
4: PASS% =0

- If a subroutine REPORT is included in the procedure, EVAL will call this
routine to output its results.

7-22 Polar Software Systems

CHAPTER 8

EDITING A PROCEDURE

8.1

8.2

8/ Editing A Procedure

EDITING A PROCEDURE

Writing a procedure is the first step toward getting the controller to do your bidding.
This section describes the process of entering a procedure into memory of the
controller and making corrections to that procedure.

OVERVIEW

A PTL procedure is a meaningful sequence of PTL commands, possibly supplemented
by normal BASIC statements that (in RUN Mode) directs the Instrument Controller
and its associated instrumentation to accomplish a desired task.

FUNCTIONS FOR WRITING/EDITING

The PTL menu offers two different functions for writing or editing PTL procedures:
EDIT and (optionally) MENU EDIT.

The first method is to use the standard Fluke 1722A Edit program, with all its
standard features as described in Section 6 of the 1722A System Guide.
This method can be selected by means of the EDIT field in the PTL Main Menu.

The second and easiest method is the use of the MENU function. This method is
recommended for inexperienced users. Although with this method procedures are
generated, which contain PTL commands only, BASIC statements can be added at any
time if desired.

The rest of this chapter contains more information on how to use the menu selections.
As an alternative to the methods described above,the use of any other text processing
system to generate procedures can be mentioned. This approach has the advantage that
new procedures can be developed on a low cost system while the Instrument
Controller continues execution of previously written test procedures, thereby

Polar Test Language 8-1

8/ Editing A Procedure

8.3

8-2

increasing the overall system efficiency significantly.

Procedure files, when generated on a second computer, have to be transferred to the
1722A Instrument Controller which, for example, can be accomplished with the
standard 1722A FUP Utility or a simple BASIC program.

Files created in one of the methods mentioned above, can be edited, using any of the
other methods.

USING MENU EDIT

Although the name implies an edit function, "MENU EDIT" can be used to both
generate new procedures as well to edit existing procedures.

When the "MENU EDIT’ function has been selected as described in the chapter
"System Functions", the first page of the procedure, selected with the "SELECT"
function (indicated in the top left corner of the screen) will be displayed.

The MENU EDIT has a selected set of functions, compatible to the standard EDIT
program. On top of this it has a powerful menu function.

The standard 1722A edit keys (i.e. the cursor control keys, DELETE, DEL LINE,
DEL CHAR, BACKSPACE and LINE FEED) can be used to add or delete text.

Also the following commands are implemented:

<ESC> n G Go to line n (If n=0 go to end)
<ESC>n"* Go n lines up

<ESC>nv Go n lines down

<ESC> / text Get the text specified looking downward
<ESC> ? text Get the text specified looking upwards
<ESC> n Get the same text again

<ESC> N Get same text again in the other direction
<ESC>:m Display the remaining memory

Polar Software Systems

8/ Editing A Procedure

<ESC> :q Quit the editor

<CTRL/C> Quit the editor

<ESC> :q! Quit the editor without update
<ESC> n # Go to task number n.
<ESC>bb Begin of block

<ESC>be End of block

<ESC>bc Copy block

<ESC>bd Delete block

If <RETURN > is pressed on the end of a line (use: LINE FEED, RETURN), then
a new line is inserted. If <RETURN > is pressed anywhere else on the line, the text
will be replaced by a list of possible menu options.

NOTE: At the beginning of each line 4 spaces are automatically inserted to
allow for this function. By using the LINE FEED before inserting new
text manually, automatic indentation is accomplished.

The figure below represents a typical display when the "MENU EDIT’ function is

used.

Frocedure

End_proc Write
Start_task Enter
End_task Delay
Reset Eval
Setup

Meas

Apply

Disapply

Switch

Polar Test Language 8-3

8/ Editing A Procedure

84

The option list always reflects the actual entry level. This means that for any level,
e.g. procedure, task or step, the appropriate menu options are displayed. Selections
from the option list can be made simply by moving around in the list with the cursor
control keys and pressing the return key. The field presently selected will be indicated
by a reverse video field. After all selections have been made, the Esc key must be
pressed. Each time the Esc key is pressed, the system returns to the next higher level
and finally back to the file being edited.

Whenever <RETURN?> is pressed while the cursor is not on an empty line, this
line will be deleted and replaced by the new menu selections being made.

The following figure shows another menu which is typical to the "MENU EDIT’
function.

a N
Setup(” Instr=
Tirmer ."Il: cunter
Dmm
Generator
Switch
Scope
N 7

Polar Software Systems

CHAPTER 9

TESTING A PROCEDURE

9.1

9/ Testing a Procedure

TESTING A PROCEDURE

After the source code of a procedure is created, it can be tested in several ways to
finally have the test code.

OVERVIEW

This section describes how testing of Procedures can be done. Three modes of
operation will be explained:

- Immediate mode
- Interpreted mode
- Compiled mode

The direct mode allows to type and execute commands directly, without storing them
for later use.

To use the system to perform all desired functions like taking measurements and
outputting stimulus, a suitable procedure must be created and executed. To distinguish
between the Interpreted and Compiled Mode of Operation, two different functions are
provided in the PTL Main Menu. The ’RUN’ function has to be used whenever a
procedure has to be executed in Interpreted Mode, while the ’JEXECUTE’ function
must be used to execute procedures after they have been compiled with the
’COMPILE’ function. The only noticeable difference for the user between those two
functions is the speed of execution (When not using Basic statements).

Polar Test Language 9-1

9/ Testing a Procedure

9.2 IMMEDIATE MODE

The immediate mode is created specifically for testing special tommands or command

sequences. Direct mode can be started from the main menu by moving the cursor

below the function keys. Below these keys up to 10 lines can be used for direct

commands:

(" (Demo)

PTL Version

12

[SELECT] EDIT][_Fupr

1 [seT_]

L PRINT] [MENUEDIT| [RUN

| [comMPILE_|

TIME
EXECUTE

COPY
CONF IGURE

tre=Crarn ;At=TF1 Fhin=
o=Screen ;Type=Result”

Setup(*Instr=Dmm Functlon='~ldc Range—Auto Read\ng Rate—Fast")
Flzazl Vins :

A Fla=d 2 mte=

The entry of commands will be done the same as with the MENU-EDIT function
described in the previous chapter. PTL commands can be typed in directly or a menu

can be used to select the appropriate commands.
To execute these commands, the <ESC > key should be pressed when finished with
entering the commands. At this moment the PTL commands entered will be executed

immediately. All PTL statements can be used. All non-PTL commands will not be

executed.

The MENU-EDIT/ESC sequence can be used to select from two functions for

immediate mode:

- Wait for errors : Asks to enter RETURN after execution of the commands.

9-2

Polar Software Systems

9.3

9.4

9/ Testing a Procedure

- Clear on entry : Clear all command lines when going to direct mode

Refer to the section "System Functions" for more details.

INTERPRETED MODE (RUN)

After a procedure has been created using an editor, the procedure can be interpreted
by selecting RUN/RETURN.

At that moment the entire procedure will be run sequentially, not looking at non-PTL
statements. This means that Basic statements will be skipped. At the end of the
procedure, the main menu will automatically return.

Each new statement is interpreted (translated) at the moment that it is executed which
means that execution will be slower than with compilation.

COMPILED MODE (EXECUTE)

To have a faster execution, a PTL compiler is included. This compiler translates a
procedure once before executing her. Therefore for each new execution, there is no
need for translation anymore, making execution much faster than interpretation.

Two function keys are available in the main menu of PTL: COMPILE and
EXECUTE.

COMPILE translates the procedure and the embedded BASIC statements into
executable code.

EXECUTE allows to run a compiled procedure.

The compilation process consists of three steps:

Polar Test Language 9-3

9/ Testing a Procedure

9.5

94

- Optimization: Creates direct instrument commands out of the PTL statements.

- Basic compilation: Translates all statements into machine readable code, using the
extended Basic compiler.

- Linking libraries: Links standard library functions with the code, using the
extended Linking Loader.

During each of these three steps error messages may appear.

During optimization the line numbers in the procedure file are being displayed. If a
PTL error occurred, an appropriate error message will be put behind the line number.
During Basic compilation, Standard extended Basic compiler error messages may
appear.

During Linking standard extended linking loader error messages may appear.

STORING A COMPILED PROCEDURE

In the PTL Main Menu, no special functions are provided to save procedures. The
reason for this is that the PTL program saves procedures automatically any time edit
functions have been used or the 'SELECT’ function is used.

Note however that procedures will be stored on the system device SYO: which
defaults to EDO whenever you are running the PTL program. This implies that files
which have to be used after power of the System Controller has cycled, must be saved
on a non-volatile device like a floppy disk. This can be easily accomplished with the
FCOPY command, as described in the chapter "System Functions".

Polar Software Systems

CHAPTER 10

OPERATOR DISK GENERATION

10/ Operator Disk Generation

10 OPERATOR DISK GENERATION

Although the PTL program is very easy to use by a programmer, it is not intended
to be used by unskilled operators. Therefore, a "Master Operator Disk’ is provided.
This disk contains a so called ’operator interface program’ which offers an operator
to execute test procedures by touching the screen. With this approach, the system can
be used by anyone, with very little chance of making mistakes.

Operator disks can be generated by making copies of the Master Operator Disk.

10.1 SELECTION MENU

The operator interface program can be loaded by pressing <RESTART >, after the
operator disk has been inserted.

To allow an operator to make a selection from one of several programs (e.g.test
procedures) by pressing the screen, a menu will be displayed that contains the names
of nine executable programs. If more than nine programs are available, both a "NEXT
PAGE’ and ’LAST PAGE’ key are provided on the display as well. The figure below
shows the screen lay-out.

[PTL OPERATOR UTILITY
Level test Program 2 Program S
Gain test Program 3 Program 6
Program 1 Program 4 Program 7

\ p.

Polar Test Language 10-1

10/ Operator Disk Generation

10-2

A normal ASCII file is used for the display text inside the boxes. The
programmer/procedure writer can create these text files as follows:

Make a copy of the original "Master Operator Disk’ to create a *work disk’.
Run the normal EDIT program to create an ASCII file '"MASTER.DAT’.
Type in the desired display text and associated program name, separated by a
command terminated by <RETURN>.

Repeat the third step for all filenames.

o Save the file on the work disk.

© o ©

(=]

After this, the file looks like:

Level test, LEVEL
Gain test, GAIN

Program 5, PROGS
Program 6, PROG6
Program 7, PROG7

Also system programs like FUP can be executed. If more than nine lines are typed,
the software will automatically create a new ’page’ on the display.
The text is displayed in the following order:

Text 1 Text 4 Text 7
Text 2 Text 5 Text 8
Text 3 Text 6 Text 9

Text will be centered as good as possible within the boxes but is limited to 20
characters.

Polar Software Systems

10/ Operator Disk Generation

After exiting a selected program, control will be automatically returned to the menu.

10.2 PROCEDURE TRANSFER

After the text for the selection menu has been created, also the appropriate procedures
have to be transferred from the PTL System Disk to the Operator work disk. This can
be done using the FCOPY program from the PTL Main Menu.

10.3 CONFIGURATION TRANSFER

In order to be able to execute the procedures, the associated configuration file must
be available. The configuration can be transferred using the FCOPY program from
the PTL main menu.

Please note that a procedure cannot be executed with a configuration file, other than
the one with which it was created.

Polar Test Language 103

10/ Operator Disk Generation

104 Polar Software Systems

CHAPTER 11

ADVANCED PROGRAMMING

11/ Advanced Programming

11 ADVANCED PROGRAMMING

In this chapter, programming hints are provided for advanced programmers.
Specifically, the combination of PTL and Basic will be highlighted.

11.1 STANDARD PTL

A PTL program is a sequence of PTL statements, possibly enhanced with Basic
statements. In the following examples, PTL statements are shown in lower case and
Basic statements are shown in upper case.

The standard lay-out of a PTL procedure is as follows:

SUB Test (Task)
On Error Subret
Procedure ("")

End proc
SUBEND

The SUB and SUBEND statements are actually the begin and end of a true Basic
subroutine. The "On Error Subret" makes sure that possible errors are handled
properly, with the standard handler on a higher level.

The procedure("") and End_proc are the beginning and the end of the PTL procedure.

A simple PTL procedure could look as follows:

Polar Test Language 11-1

11/ Advanced Programming

11-2

Write ("To=Printer;Type=Header")

Setup ("Instr=Dmm; Function=Vdc;Range=20")
Meas ("Instr=Dmm;At=Testpoint 1;Units='Vdc’")
Write ("To=Printer; Type=Result")

This program sets up the printer and the DMM, takes one reading and prints the
results.

For long procedures and program flow statements like "Loop on Fail", a procedure
can be divided in several tasks:

Polar Software Systems

11/ Advanced Programming

SUB Test (Task)
On Error Subret
Procedure ("Name='Unit 15 test’")

Start-task ("Name='Setup’")

Endtask("")

Start-task ("Name='Power supply test’")

Endtask("")

Start-task ("Name='Tune Amplifier’")

Endtask("")

Start-task ("Name='Verify total unit’")

Endtask("")

End proc
SUBEND

Dividing a procedure into logical blocks (tasks) makes a procedure easier to
understand and easier to edit.

Each task again can consist of many steps (statements).

Polar Test Language 11-3

11/ Advanced Programming

E.g. to set the system up for measuring:

Write ("To=Screen; Type=Header")
Setup ("Instr=Power-supply;Voltage=12.6")
Setup ("Instr=Dmm; Function=Vdc;Range=20")

or to perform a certain test:
Apply ("Instr=Power-supply;To=Amp input")
Meas ("Instr=Dmm;At=Testpoint 1;Min=5;Max=8.75;" &
+"Units='Vvdc’")
Write ("To=Screen;Type=Result")
11.2 IMPORT PTL VARIABLES
PTL uses a number of global variables. These variables are made available to a
programmer via the Basic "IMPORT" statement (See chapter 3). This allows the user

to get results from PTL or to pass results to PTL.

E.g. The following example shows how to use this feature:

114 Polar Software Systems

11/ Advanced Programming

SUB Test (task)
On Error Subret
IMPORT RESULT () ,NO_ RESULT%, TYPE%

Procedure ("Name='Amp test’;Version='1.2'")
Start_task ("Name='Supply test’'")
Write ("To=Screen;Type=Header")

OUTPUT=0
FOR L%=0 TO 11
OUTPUT=0UTPUT+RESULT (L%)

NEXT L%

RESULT (0) =OUTPUT/12 ! Store average
NO_RESULT%=1 ! 1 reading
TYPE%=3 ! of type ’'real’
Eval

Write ("To=Screen;Type=Result;" &
+"Remark='Level test’™")
End_task("")
End_proc
SUBEND

Chapter 3 gives an overview of the imports possible.

11.3 CALL BY REFERENCE

Sometimes it is desired to use Basic variables instead of constant numbers within PTL
statements. PTL supports such "Call by Reference"

Polar Test Language 11-5

11/ Advanced Programming

In the next example e.g. the Basic variable VARMIN and VARMAX are calculated
from the global variable array RESULT():

SUB Test (task)

On Error Subret

IMPORT Result ()

Procedure ("Name='Amp test’;Version='1.2'")

Start_task ("Name='Supply test’")

Write ("To=Screen;Type=Header")
Setup ("Instr=Power-supply;Voltage=12.6")
Setup ("Instr=Dmm; function=Vdc;Range=20")
Apply ("Instr=Power-supply;To=Amp input")
Meas ("Instr=Dmm;At=Testpoint 1;Min=5.25;" &
+"Max=8.75;Units=Vdc’")
Write ("To=Screen;Type=Result")

VARMIN=RESULT (0) -0.25

VARMAX=RESULT (0) +0.25

Meas ("Instr=Dmm;At=Testpoint 2;" &
+"Min= [VARMIN] ;Max= [VARMAX] ;units='Vvdc’")

End_task("")
End_proc
SUBEND

Explanation:

The PTL statement MEAS will take a measurement at Testpoint 1. VARMIN and
VARMAX are calculated as the limits for the measurement at testpoint 2.

11-6 Polar Software Systems

11/ Advanced Programming

11.4 BASIC STATEMENTS
11.4.1 For .. Next loop

At any point in a procedure, Basic statements can be inserted between PTL
statements.

SUB Test (task)

On Error Subret

IMPORT RESULT ()

Procedure ("Name='Amp test’;Version=’1.2'")

Start_task ("Name='Supply test’")

Write ("To=Screen;Type=Header")
Setup ("Instr=Power-supply;Voltage=12.6")
Setup ("Instr=Dmm; function=Vdc;Range=20")
Apply ("Instr=Power-supply;To=Amp input")

Meas ("Instr=Dmm;At=Testpoint 1;Readings=12")
FOR L%=1 TO 11
RESULT (0) =RESULT (0) +RESULT (L%)
NEXT L%
RESULT (0) =RESULT (0) /12
Eval ("Min=0.53")

Write ("To=Screen; Type=Result")
End_task("")
End_proc
SUBEND

Polar Test Language 11-7

11/ Advanced Programming

This program calculates the average of the 12 readings. The result is evaluated against
a minimum value.

The next program uses a FOR-NEXT loop with a STEP clause to repeat a part of the
procedure a number of times with another (higher) value for LEVEL.

SUB Test (task)

On Error Subret

Procedure ("Name='Amp test’;Version='1.2'")

Start_task ("Name='Supply test’")

Write ("To=Printer;Type=Header")
Setup ("Instr=Power-supply;Voltage=12.6")
Setup ("Instr=Dmm; function=Vdc;Range=20")
Apply ("Instr=Power-supply;To=Amp input")
Meas ("Instr=Dmm;At=Testpoint 1;Min=5.25;" &
+"Max=8.75;Units=Vdc’")
Write ("To=Printer;Type=Result")

FOR LEVEL=2.25 TO 14.50 STEP 0.25
Meas ("Instr=Dmm;At=Testpoint 2;" &
+"min= [LEVELO.5] ;max= [LEVEL+0.5] ")
Write ("To=Printer;Type=Result")
NEXT LEVEL

End_task("")

End_proc
SUBEND

11-8 Polar Software Systems

11/ Advanced Programming

The test results could look like:

Minimum Actual Maximum Units P/F
1.75 2.10123 2.75 Vdc PASS
2 2.28947 3 Vdc PASS
2.25 2.51437 3.25 vdc PASS
2.5 2.67591 3.5 Vvdc PASS
2.75 2.91780 3.75 Vdc PASS
3 3.74373 4 vdc PASS
3.25 3.49532 4.25 vdc PASS
3.5 4.00723 4.5 Vdc PASS
3.75 4.22395 4.75 Vdc PASS
4 4.36194 5 Vdc PASS

4 .25 4.94184 5.25 Vdc PASS
4.5 5.02357 5.5 vdc PASS
4.75 5.48501 5.75 vdc PASS
5 5.29983 6 vdc PASS

Polar Test Language 11-9

11/ Advanced Programming

11.4.2 Repeat .. Until loop

E.g. the next program uses a REPEAT .. UNTIL loop to wait for the voltage on test
point 1 to rise above 12.45 Volt.

SUB Test (task)

On Error Subret

IMPORT RESULT ()

Procedure ("Name='Amp test’;Version='1.2"'")

Start_task ("Name='Supply test’")

Write ("To=Screen; Type=Header")
Setup ("Instr=Power-supply;Voltage=12.6")
Setup ("Instr=Dmm; function=Vdc;Range=20")
Apply ("Instr=Power-supply;To=Amp input")

REPEAT
Meas ("Instr=Dmm;At=Testpoint)
UNTIL RESULT(0) >12.45

Write ("To=Screen; Type=Result;")
End_task("")
End_proc
SUBEND

In a PTL listing virtually all other Basic statements can be used like IF .. THEN ..
ELSE and CASE statements. The [LEVEL +0.01] statement will do the calculations
at RUN-TIME. (Any other calculation with one or more variables and/or constants
is possible here).

11-10 Polar Software Systems

11/ Advanced Programming

11.5 "LOOP ON FAIL"
In a PTL procedure, any group of steps of tasks can be looped repeatedly until a

certain condition is satisfied.
In Basic there are several loop structures that can be used for this feature:

11.5.1 Continous

This loop will only terminate if the criteria have met.

REPEAT
.......... ! Statements to
.......... ! calibrate
.......... ! an instrument
Meas ("Instr=Dmm;Min=3.48") ! Test performance

UNTIL PASS% (0)

11.5.2 With loop count

This is a loop on fail for which the amount of loops is limited by the loop counter.

Polar Test Language 11-11

11/ Advanced Programming

FOR COUNT%=1 TO 10
............. ! Statements to
............. ! calibrate
............. ! an instrument
Meas ("Instr=Dmm;Min=3.48") ! Test
IF PASS%(0) THEN LEAVE

NEXT COUNT%

In this example it is tried to calibrate an instrument, until the verification passes the
criteria. A maximum of 10 verifications may be done.
11.5.3 With fault indication

In most cases it is advisable to provide more than one way to terminate a loop.
Conditions are:

1. A test object is OK thus the test procedure can continue with the next step.

2. A test object fails repeatedly (E.g. out of calibration or defective). The procedure
must be stopped with an indication what (or where) the problem arose.

11-12 Polar Software Systems

11/ Advanced Programming

SUB Test (Task)

On Error Subret

Procedure ("")
............. ! Statements to
............. ! setup system

------------- ! Statements to
------------- ! calibrate
------------- ! an instrument
Meas ("Instr=Dmm;Min=3.48") ! Test if working
IF PASS% (0) =0 THEN GOTO FATAL ERROR
Meas ("Instr=Dmm;Min=3.54;Max=3.56") ! Test
IF PASS%(0)=1 THEN LEAVE

ENDLOOP

Write ("To=Screen;Type=Result")
End_proc
SUBRET

FATAL ERROR:

Write ("To=Screen;Remark=’Fatal Error in Power")
SUBEND

NOTE:

The loop-endloop is a basic loop structure without termination test nor loop counter.

The Basic statement "IF PASS%(0) THEN LEAVE" is actually a "GOTO" to the
next statement after the "END LOOP".

Any number or leaves (or goto’s) can be used in one LOOP-ENDLOOP structure.

Polar Test Language 11-13

11/ Advanced Programming

11.6 SUBROUTINES

In compiled Basic, subroutines can be made with local variables and with own names.
PTL supports those subroutines in compiled mode. Three types can be distinguished:

o REPORT subroutines
o PTL subroutines
o Basic subroutines

11.6.1 The REPORT subroutine

A MEAS statement includes (besides scanning and measuring) an EVAL statement.
In a PTL procedure, often many MEAS, and therefore EVAL, statements can be
found.

In most cases the result of such evaluation must be printed. In order to avoid many
"WRITE, TO=SCREEN" or "WRITE, TO=PRINTER" statements, one REPORT
routine is sufficient in compiled procedures. Normally, an empty report routine is
supplied in the PTL library, which means that nothing will be printed after an
evaluation (or measurement). This routine can be replaced with a user-supplied report
routine with "WRITE" statements.

The following is an example of a simple report:

11-14 Polar Software Systems

11/ Advanced Programming

SUB Test (Task)
ON ERROR SUBRET
Procedure ("Name='Example Report’")
Write ("To=Screen;Type=Header")
Write ("To=Printer;Type=Short header")
Meas ("Instr=Dmm;Min=3;Max=6;Remark='Test3’'")
End_proc
SUBEND

SUB Report
ON ERROR SUBRET
Write ("To=Screen;Type=Result")
Write ("To=Printer;Type=Fail")
SUBEND

For each meas statement the result will always be put on the screen. The results will
only be printed if the step failed.

NOTE: The Remark in the Meas (or Eval) statement will be used in all Write
statements in the report. It stays valid until a new remark is given.

In certain cases, the Report subroutines must not be used in all Meas statements. For
this purpose, a Report-Flag can be used as follows:

Polar Test Language 11-15

11/ Advanced Programming

SUB Test (Task)

ON ERROR SUBRET

EXPORT Report_Flag% ! Create a global flag
Report_Flag%=-1 ! Turn Report on
Procedure ("Name='Example Report flag’")

....... ! With
....... ! Reporting
Report_Flag%=0 ! Report off
FOR L%= 1 TO 10 ! Loop

! Without

! Reporting

NEXT L%

Report_Flag%=-1 ! Report on
....... ! With
....... ! Reporting

End_Proc
SUBEND
SUB Report

ON ERROR SUBRET
IMPORT Report_Flag%

IF Report_Flag% THEN
Write ("To=Screen; Type=Result")

11-16 Polar Software Systems

11/ Advanced Programming

Write ("To=Printer;Type=Fail")
ENDIF
SUBEND

11.6.2 PTL Subroutines

A PTL procedure may be divided into subroutines e.g. for clarity or because the
procedure becomes too big for the compiler. In this case subroutines can be created
for each task. The main procedure may consist of calls to these subroutines only.

The following is a (partial) example of such procedure:

SUB Test (Task)
ON ERROR SUBRET
Procedure ("Name='Example Sub-Tasks’")
CALL Initialise
CALL Test_Power
CALL Impedance
CALL Gain
End_Proc
SUBEND

SUB Impedance
Start_Task ("Name='Impedance’")
Setup ("Instr=Dmm; Function=Ohms")
Meas ("Instr=Dmm;At=Resist;Min=49.5;Max=50.5")
End Task
SUBEND

Although not shown here, also parameters can be passed to a subroutine. For such

Polar Test Language 11-17

11/ Advanced Programming

example see the next paragraph. For details refer to the Fluke extended compiled
Basic manual.

Due to the limitation of the Fluke Extended Basic Compiler, one single chunk of code
cannot contain more than 500 calls to other modules. This translates into 300 PTL
code lines.

Sub Test (task)

-
On Error Subret | Normal
Procedure ("") — Program
----- | Status
..... |
----- -
CALL XYZ (TASK) | SPLIT
SUB END — PROGRAM
SUB XYZ (TASK) | INTO TWO
On Error Subret | PARTS
----- -
----- | Normal
----- |— Program
End Proc | Statements
SUBEND -

A way around this problem is to split up the main program into two (or more) parts.

This is done with the 4 Basic lines in the middle of the PTL listing. These lines
a. Call the second part

b End the first part

c. Start the second part

d Handle the errors

11-18 Polar Software Systems

11/ Advanced Programming

NOTE:

The name XYZ can be any name, as long as it is not used elsewhere.

NOTE:

Splits are not allowed within a Basic LOOP or IF THEN structure. It causes
problems with GOTO’s and GOSUB’s.

PTL procedures, tasks and true subroutines are no problem.

Polar Test Language 11-19

11/ Advanced Programming

11.6.3 Basic Subroutines

Except for only PTL statements, also Basic statements can be used in a subroutine.
E.g. a Basic subroutine to calculate the average could look like:

SUB Test (task)

ON ERROR SUBRET

Procedure ("Name='Amp test’;Version='1.2'")

Start_task ("Name=’Supply test’")

Write ("To=Screen;Type=Header")
Setup ("Instr=Power-supply;Voltage=12.6")
Setup ("Instr=Dmm; function=Vdc;Range=20")
Apply ("Instr=Power-supply;To=Amp input")

Meas ("Instr=Dmm;At=TP-1;Readings=12")
LEVEL=0\ CALL AVERAGE (LEVEL)

Meas ("Instr=Dmm;At=TP-2;Min=[LEVEL-.01]")
Write ("To=Screen;Type=Result")
End task("")
End_proc
SUBEND

11-20 Polar Software Systems

11/ Advanced Programming

SUB AVERAGE (OUTPUT) ! Sub header

ON ERROR SUBRET

IMPORT RESULT () ! Conformal dimension
OUTPUT=0 ! Preset output
FOR L%=0 TO 11 ! Loop 12 times

OUTPUT=0UTPUT+RESULT (L%) ! Add value

NEXT L%
OUTPUT=0UTPUT/12 ! Calculate average

SUBEND ! End of routine

In order to communicate with the PTL statements, a subroutine can import global
variables just like the main program.

Subroutines must always be stored at the end of a program listing and can never be
embedded in another (subroutine) listing.

11.7 USER LIBRARY
Subroutines can also be compiled separately to be stored in a "user" library. In that
case the subroutine is available for all procedures and does not have to be included

in each listing to use it.

PTL supports a user library by providing appropriate command files to compile:

o without a user library : C.CMD
o to update the user library : CU.CMD
o to link with user library : CL.CMD

These command files should be installed under COMPILE/<ESC >
to use them.

Polar Test Language 11-21

11/ Advanced Programming

11.7.1

11.7.2

11-22

The following paragraphs explain how to exploit user libraries.

Empty user library

Before a user library can be used, it must be created. An empty user library called
USER.LBX is provided on the master operator disk which can be copied if required.

Update user library

After a subroutine has been created, using one of the editors, it must be compiled
with the special command file CU.CMD which also updates the user library. Do
such by changing the command file, specified under COMPILE/ <ESC >

PTL normally adds a special reset routine to each procedure which resets all
instruments connected. Since this routine is only needed once in each procedure, this
option can be turned off for user library routines. Do such, by specifying NO under
the COMPILE/ <ESC > question "Reset Yes/No".

When the COMPILE function is used now, the subroutine is compiled (PTL and
Basic) after which the user library is updated.

When merging a second module with the same name, the latest version of the two
will be used in the library (not necessarily the newly merged module).

Polar Software Systems

11/ Advanced Programming

IMPORTANT

The function ’copy procedure’ and ’copy configuration’ in FCOPY does not copy the
(changed) user library. This has to be done using fup at the end of a (useful) session.

Use:
FUP
MFO:=EDO.USER.LBX
/X

NOTE:

Every subroutine can use other subroutines. If these sub-subroutines are included in
the same module, they are also accessible as individual subroutines from procedures.
To make sure that the names of these routines do not collide with other subroutine
names.

NOTE:

A subroutine can contain Basic and PTL statements. However, if PTL statements are
included, the pre-processor uses the current configuration information to produce the
compact Basic equivalents. So, if the configuration is changed (e.g. new scanner
instructions for "at name"), the subroutines, using this information, needs to be re-
compiled.

11.7.3 Include a user library

A special command file CL.CMD is provided to include the user library. The
difference with the normal command file is, that the linker starts looking into the user

Polar Test Language 11-23

11/ Advanced Programming

11-24

library, to try to resolve subroutines, before looking in the PTL libraries.

There are a number of simple rules concerning the action of the linker:

Since the user library is called first, subroutines will be taken from this
library, before looking in the PTL libraries.

If there are routines in the library that are not called, the linker will include
only the requested routines.

If routines are called which are not in the user and PTL libraries, the linker
cannot and will not produce a program. The "MAP" file (Report file from the
linker) entails what went wrong.

If one or more routines export variables whose names are already used
elsewhere, a "MULTIPLY DEFINED" error will occur. Again the map file
and the Fluke linker documentation will tell what went wrong.

If one or more of the user subroutines use the same name as one of the
internal routines of the PTL system, a problem could occur. In this case the
user library routine will always be used instead of the PTL routines.

Using the library CL continuously does not add in program size. However it will take
some extra time for a program to be compiled, since the linker has to inspect the user
library.

Polar Software Systems

11/ Advanced Programming

11.8 USE OF ERROR HANDLERS

The "On Error Subret" statement passes Basic errors back to PTL. Correct handling
of errors in PTL depends on this statement, so never omit this statement in any

routine.

In certain cases it is needed to include an own error trap in your procedure. You can
use an "On Error" trap to a user error handler. To turn this error trap off, use "On
Error Subret”.

SUB Example

ON ERROR SUBRET
......... ! Normal PTL or
......... ! Basic lines
ON ERROR GOTO Trap ! user error handler
......... ! to protect
......... ! these lines
ON ERROR SUBRET ! PTL error handler
......... ! for these

......... ! lines
SUBRET ! End of subroutine
Trap:

......... ! Error

......... ! handler

RESUME
SUBEND ! End of subroutine

Polar Test Language 11-25

11/ Advanced Programming

11-26 Polar Software Systems

CHAPTER 12

SYSTEM DETAILS

12/ System Details

12 SYSTEM DETAILS

This section provides detailed information about the internal functioning of PTL.

12.1 SYSTEM GENERATION

During system generation the following steps are being performed:

- A driver library DRIVER.LBX is being created from the selected drivers.

- A subroutine with a driver table is created

- The PTL program is linked together with the libraries DRIVER, PTL and SYSTEM

- A library PTL.LBX is created as a subset from the main PTL library (Run-time
only).

- All important Files are copied from the generator disk to the system disk

12.2 STORE MENU CONFIGURATION
The menu configuration is stored in the file PTL.DAT. After making changes in the
menu, PTL.DAT will only be changed on E-disk. therefore copy this file to floppy

to make it permanent.

The same is true for the menu in system configuration, only this time the information
is stored in SYSGEN.DAT.

12.3 STEPS REQUIRED FOR COMPILATION
The following steps are required to create an executable procedure:
o Create a procedure

o Optimize PTL
o Compile Basic

Polar Test Language 12-1

12/ System Details

o Link libraries

. The following diagram shows the sequence:

Editor I | IBM PC] | Menu l |Kegboard|
L]
pily
Test procedure ~—]——"'
Inte;‘;ret.
Preproc.

$PTLS . TMP

IFortranI IAssemblgl | Basic l

User library

12.3.1 Creating a procedure

Procedures which have to be compiled can be created and modified using the PTL
MENU EDIT function, the standard System Editor program (EDIT.FD2), or any text
processing system that generates ASCII files.

The original (source) procedure can be written in any combination of legal PTL and
Extended Compiled BASIC commands and functions. Refer to the description of PTL
language elements or the Fluke 1722A Extended Compiled BASIC manual for all

information on those commands and functions.

12-2 Polar Software Systems

12/ System Details

12.3.2 Optimize PTL

Although not strictly required, PTL normally optimises the PTL commands. This
means that all English type commands are replaced by the equivalent "IEEE Codes".
The reason for this is that the code becomes more compact (a smaller program is
created) and the speed is significantly higher.

The standard PTL program performs this function automatically when the COMPILE
function is used. The result of the optimization is the file SPTL$.TMP.

12.3.3 Compile Basic

The standard Fluke Extended Basic compiler is used to compile the basic program.
If the normal command file C.CMD is used in the COMPILE function, PTL.TMP
will be compiled with the options: /I/E/NL.

The result is <procedure name >.0BX

12.3.4 Link Libraries

The standard Fluke Extended Linking Loader is used to link the object code together
with:

The main program

The PTL.LBX library
The DRIVER.LBX library
The SYSTEM.LIB library

© ©0 o ©

The result is the file <Procedure name >.FD2.

The main program has the following structure:

Polar Test Language 12-3

12/ System Details

Initialize program
While task<=0
call test(task)

Endwhile

Close files

12.4 CREATE A USER LIBRARY

The user may create his own library of subroutines. These subroutines may contain
e.g.:

Procedure subroutines:

A procedure may be split up in small subroutines, consisting of one or more steps.
Each step can then be written as a basic subroutine, using PTL, and can be stored in
a user library. The main procedure could then consist of calls to these subroutines.

Special functions:
Special functions can be written in PTL, Basic, Fortran and Assembler. These

functions could include: Special evaluation of results, graphic routines etc. These
functions can be stored in a user library to be included automatically when needed.

PTL supports special subroutines and user libraries in two ways, both to be found
under the menu function COMPILE/<ESC >.

124 Polar Software Systems

12/ System Details

124.1 Compilation

The standard command file for compilation is c.cmd. To support user libraries, two
other command files are included.

C Compile a standard test procedure. Usage:
C <source file> <error file >

CU Compile a user subroutine and store it in a user library USER.LBX. This
command file assumes the presence of the Extended Library Manager on
floppy usage:

CU <source file> <error file >

CL Compile a test procedure and link also a user library USER.LBX. Usage:
CL <source file> <error file>

124.2 Main/subroutines
Normally, (when selected in COMPILE/<ESC>) PTL adds a RESET_SYSTEM
subroutine to the standard test subroutine, to reset all instruments being used in the
test procedure.
This is not desired when subroutines have to be written. For this reason this selection
can be turned off in COMPILE/<ESC>.

12.5 VARIABLES IN PTL
In some cases it might be desirable to use variables in the PTL statements. PTL

supports such "Call by reference”, as a replacement for constants only. This can be
done by entering the variable name between square brackets instead of such constants.

Polar Test Language 12-5

12/ System Details

Example:
For Volts= 5 to 15 step 3
SETUP ("Instr=Power;Voltage=[Volts] ;Limit=1")
Next Volts

All valid Basic variables may be used.

Note: Interpretation for instrument capabilities will be done during compilation and
excludes variables. Therefore extreme care must be taken when using this
feature.

Note: Due to the fact that during PTL interpretation, Basic is skipped, these
variables can not be interpreted.

12,6 FILES REQUIRED FOR PTL

In addition to your PTL program, the following programs are on the system disk:

Note: The files listed below are the minimum, needed to compile and run a
PTL/BASIC procedure. Other files may be needed for more complex
programs.

12.6.1 Program Files

The PTL program consists of three files:

- PTL.FD2 The actual PTL program, including all instrument drivers to allow
direct and immediate mode.

- PTL.DAT Contains the information of the function keys: The names and the ESC

12-6 Polar Software Systems

12/ System Details

settings. Each time these settings are changed, this file must be put on
floppy to make the changes permanent.

- PTL.BIN Contains the configuration information for: devices, instruments and
connections. Also contains the screen lay-outs.

- SCREEN.DAT Contains all screens needed for the system.

12.6.2 Extended Basic Compiler

The Standard Fluke Extended Basic Compiler XBC.FD2 has been used for PTL.

12.,6.3 Extended Linking Utility

The standard Fluke Extended Linking Utility XI.LL.FD2 has been used.

12.6.4 Extended Basic Runtime

The standard Extended Basic Runtime System BSXRUN.FD2 has been used

12.6.5 Libraries

Three libraries must be linked together (in this order) with the test procedure:

PTL.LBX : With all PTL statements
DRIVER.LBX All instrument drivers selected
SYSTEM.LIB Standard system functions for the 1722A hardware.

Polar Test Language 12-7

12/ System Details

A USER library may be added to include special user functions or test steps. This
library must be linked with a procedure before any of the previous ones.

12-8 Polar Software Systems

CHAPTER 13

APPENDICES

13/ Appendices

13 APPENDICES
A. Example Configuration Listing

The sample listing below represents a typical listing of a system configuration. To
clarify the terms used in the listing the following explanation is given.
The listing is divided into three groups : devices, instruments and connections.

DEVICES

The group ’devices’ shows the relation between device names and physical devices
(hardware). This means that a name like ’Screen’ will be translated to ’KBO:’ any
time it is used.

INSTRUMENTS

This group shows the relation between the identifiers which can be used in programs,
the names of the instruments, their IEEE address and the type of instrument.

As can be seen in the listing, some instruments can be configured for any combination
of input, output and scan functions.

CONNECTIONS

The connections for each instrument are listed in this group, showing the following
items:

- Instrument identifier. This column contains the identifiers, defined during
’Configure Instruments’

- Type. The type of connection i.e. input,output or scan, is listed in this
column.

- Switch matrix. This column lists the identifiers of instruments defined as
’SCAN’.

Polar Test Language 13-1

13/ Appendices

13-2

Connection name. This column contains the names which can be used in
programs to identify a particular connection.

Code. The code field lists all connections to be made. These codes consist of
the scanner number, separated from the number of the relay (or electronic

)

switch) by a ’-’ (minus, NOT an underscore) character. If more connections
have to be defined on the same line, they must be separated by a ’/* (slash)
character. The number of connections that can be defined on one line is
limited to 3.

Switch delay. This column contains the delay time in milliseconds the system
will wait (after the connection has been made) before it continues with the next

program step.

Polar Software Systems

--- Polar Test Language.
--- Customer: Polar ---

Nr Name

0 Screen
1 Printer
2 Disk

Nr Instrument Name

HP5335A Counter
HP3326A 2-Chan synth.

Thorn EMI SHR PS
Delta PSC 625R PS

o N1 Bk W NN K O

Polar Test Language

Fluke 8842A Multimeter
HP3488A Sw.Control unit
Kepco TLD 488-16/4A PS

13/ Appendices

Version 1.2 - Configuration -
Printed at 08-Jun-87 14:04 ---

Address Program name Type

1.1 Counter in

2.1 Synthesizer out
3 Dmm in

6 Switch c+i/o
8. 0 Supply out
7 Test voltage out
4. 1 Ref level out

13-3

13/ Appendices

------ Page 1 -----
---------------------- Connectiong----------------------
Instruments Type Matrix Name Code Delay -
------------ ---- LR R IR ----- -----DMM

Input: SWITCH AMP IN 1-1 33
SWITCH AMP REF 1-2 44
SWITCH AMP OUT 1-3 55
SWITCH AUX REF 1-4 55
SUPPLY Output: SWITCH +5 2-3 44
TEST VOLTAGE Output: SWITCH TEST 1 4-1 33
SWITCH TEST 2 4-2 35
SWITCH TEST 3 4-3 35
REF LEVEL Output: SWITCH PLUS REF 5-1 55
SWITCH MIN REF 5-2 55
SWITCH AUX REF 5-3 55
------ Page 2 -----

B. Example Driver listing

The sample listing below represents a typical listing of instrument drivers in the form
of tables. To clarify the terms used in the listing the following explanation is given.

134 Polar Software Systems

13/ Appendices

The driver software contains several so called levels. These levels determine the menu

options being displayed whenever a selection from the menu has to be made. Assume

for this explanation that the function *SETUP’ has been chosen from the first menu

to prepare a Fluke 8840A multimeter to do some measurements. As can be seen in

the listing, level

1 is indicated as 'FUNCTION’. The parameters,

i.e. the options that can be used with 'TFUNCTION’, are VDC,VAC,2 WIRE OHM...
etc. The (IEEE) commands to be sent to the 8840A are F1, F2, F3...etc.
respectively.

The New level’ column in the listing indicates the new menu options that will be
displayed after one of the above parameters have been chosen. Assume
FUNCTION=VDC has been selected. The new menu (level 2 , last column) contains
the options AUTO,0.2,2,20,200,1000 as parameters to the RANGE function. After
a selection from this menu has been made, return will be controlled to level 1, as
indicated in the column 'New level’ on each line of the RANGE function, displaying
the first menu again. This approach is used for any of the other menu options.

Polar Test Language 13-5

13/ Appendices

13-6

--- Polar Test Language. Version 1.2

--- Customer:

----- Drivers ---

Polar --- Printed at 08-Jun-87 14:04 ---

Name
level

Setup

Level Function

Volt=

Cur

limit=

Current=
Volt limit

Max
Min
Max
Min
Max
Min
Min
Min

volt=
volt=
curr=
curr=
v lim=
v lim=
c lim=
¢ lim=

Parameter

-1000..1000
0..1000
0..1000
-1000..1000
-1000..1000
-1000..1000
.100

.100

.100

.100

.100

.100

O O O O O o

IEEE New

Polar Software Systems

Polar Test Language

13/ Appendices

Example Procedure

--- Polar Test Language. Version 1.2 ----- Example ---
--- Customer: Polar --- Printed at 08-Jun-87 14:04 ---

SUB Test (task)
On Error Subret
Procedure ("")

Start_task ("Name=’SETUP SYSTEM’")
Write ("To=Screen;Type=Header")
Write ("To=Printer; Type=Header")
Setup ("Instr=Supply;Volt=5;Current limit=4")
Apply ("Instr=Supply;To=+5")
End_task("")

Start_task ("Name=’'Test Power Supply’")
Setup ("Instr=Dmm; Function=Vdc;Range=20;" &
+"Reading rate+Fast")
Setup ("Instr=Test voltage;To=Test 2")
Meas ("Instr=Dmm;At=Amp ref;Min=8.2;Max=8.4;" &
Units='Vdc’ ;Remark='Amplifier ref voltage’")

End_task("")

Start_task ("Name='Test Amplifier’")
Setup ("Instr=Dmm;Function=Vac;Range=20;" &
+"Reading rate=Medium")
Meas ("Instr=Dmm;At=Amp in;Min=12.4;Max=12.6;" &

13-7

13/ Appendices

+"Units='Vac’ ;Remark='Amplifier local input’")

--------- Page 1---------
--- Polar Test Language. Version 1.2 ----- Example ---
--- Customer: Polar --- Printed at 08-Jun-87 14:04 ---

Meas ("Instr=Dmm;At=Amp in;Min=6.05;Max=6.45;" &

+"Units='Vac’ ;Remark='Amplifier Ref voltage’")

Meas ("Instr=Dmm;At=Amp out;Max=18.5;" &

+"Units='Vac’ ;Remark='Output voltage’")
End_task("")

Write ("To=Screen;Type=Pass/fail test")
End_proc
SUBEND

SUB REPORT ()
On Error Subret
Write ("To=Screen;Type=Result")
Write ("To=Printer; Type=Result")
SUBEND

138 Polar Software Systems

D. Example Result

Minimum

1.75
2
2.25
2.5
2.75
3
3.25
3.5
3.75
4

Polar Test Language

Actual
2.10123
2.28947
2.51437
2.67591
2.91780
3.74373
3.49532
4.00723
4.22395
4.36194
4.94184
5.02357
5.48501
5.29983

Maximum

2.75

3.5

4.5

5.5

13/ Appendices

Units
Vdc
Vdc
vdc
Vvdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc

P/F
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS

13-9

POLAR SYSTEMS

OPTION PTL-DRV

PTL Driver Development Package

DRYV/ PTL Driver Development Package

1 CONTENTS

1 CONTENTS ...ttt ettt e ettt i DRV 1
2 CREATING INSTRUMENT DRIVERS DRV 2
2.1 INTRODUCTION ittt ittt DRV 2

2.2 STRUCTUREDRIVER DRV 4

2.3 INTERPRETERPART DRV 7

2.3.1 Callingthedriverccuouuuuiuieeeencn DRV 7

2.3.2 Detailed Example, DRV 8

233 ACtIONS it DRV 9

2.3.4 Identificationcode DRV 10

2.3.5 Drivercodet DRV 12

2.3.6 Selectcodeiiiiiiiiiiiiie DRV 12

237 Examplecode DRV 16

24 RUN-TIMEPART, DRV 18

2.4.1 Callingthedrivercovuiiiuennn. DRV 18

2.4.2 Detailedexample, DRV 20

14. APPENDICES ittt et i i i 14-1
A. Example Configuration Listing A-1

B Example Driverlisting i, B-8

C. Example Procedure C-10

D Example Result D-12

Polar Test Language DRV-1

DRV/ PTL Driver Development Package

2.1

CREATING INSTRUMENT DRIVERS

This manual describes how to create instrument drivers for the Polar Test Language
PTL Version 1.3.

This information is supplied as option : PTL/DRV PTL Driver Development Package

INTRODUCTION

A special "Driver Engineering Disk" is provided to create or change instrument
drivers. To start, insert this disk in the controller and press "RESTART". All relevant
files will be copied to the E-disk. (Please note that all information on the E-disk will
be destroyed).

To edit a driver source, use the command "EDIT NAME.BAS". "NAME" stands for
the instrument name and is limited to 5 characters. PTL uses the following
convention:

o First letter: Instrument manufacturer
E.g. F for Fluke, H for HP
o 4 characters: Instrument identification
E.g. 8840 for a Fluke 8840A
3325 for a HP 3325A

For preparing (compiling and linking) a driver, use the command "MAKE NAME".
The command file "MAKE" will take care that:

o the program is compiled by the basic compiler
o a small library module is made with the name "NAME.DRV".

DRV-2 Polar Software Systems

DRYV/ PTL Driver Development Package

If Basic errors are encountered in the Basic compiler, the process stops and no valid
".DRV" module is produced. If there is a ".DRV" module after a Basic error
message, this must be the result of a previous compilation, and is not the new
module.

The newly generated module should now be copied to an "INSTRUMENT DRIVER
DISK" which can be used for generating a PTL system.

NOTE:

The system generator program will select all the compiled drivers from a driver disk,
by looking for ".DRV" modules and checking these for valid driver codes. Only
correct files are considered to be candidates.

Other files on the same disk will not confuse the selection mechanism, so the
engineering disk could be used as an instrument driver disk.

Polar Test Language DRV-3

DRV/ PTL Driver Development Package

2.2 STRUCTURE DRIVER

An instrument driver is a module with two true Basic subroutines: an interpreter and

a run-time subroutine.

SUB I_NAME (passing area)

.............

The interpreter routine is used in the PTL menu editor and in the interpreter and
compiler. It contains all capabilities of the instrument plus the translation into "ieee"
codes.

The run-time part is the actual driver for the instrument. This is the only part which
is included in the (final) compiled procedures.

The following diagram gives an indication of the PTL structure:

DRV4 Polar Software Systems

DRV/ PTL Driver Development Package

Sources E:Ej‘—‘ PTL
Configure | | Language Editor
[—_Cntrl |_F8840 I_Inout |_Delay
Control F8840 [nout Delay

The following is a series of listings that will be built up to a real driver for a DMM
from Fluke, the 8840A.

Polar Test Language

DRV-5

DRYV/ PTL Driver Development Package

SUB I_F8840 (Action%, Address, Block%, Command$)
ON ERROR SUBRET

Pcode$="XXXXXXXXXX CODE XXXXXXXXXX"

IeeeS=""

Interp ("F8840", Address, Block%, Pcode$, &
Command$, Ieee$)
F8840 (Address, Block%, Ieee$)
SUBEND

SUB £8840 (Address, Block%, Ieee$)

PRINT @Address, Ieee$! Send ieee string
SUBEND

This (simplified) listing, shows that the task for the interpreter part, is to fill a string
Pcode$ with driver information and to call the routine "interpreter".

This interpreter routine will translate the command from a user, given in the variable
Command$, with the use of the driver code in Pcode$. It produces the driver runtime
command leee$.

Ieee$ is passed to the run-time part of the driver where it is send to the instrument.

The following paragraphs describe the two parts of the driver in detail.

DRV-6 Polar Software Systems

DRV/ PTL Driver Development Package

2.3 INTERPRETER PART

2.3.1 Calling the driver
The driver must be called as follows:
I_F8840 (Action%, Address, Block%, Command$)
The following parameters are needed in the passing area of the interpreter part:
Action% = The type of action to be performed:
10 = Reset
11 = Setup
12 = Measure
Address = The address of the device connected:

0..31 = IEEE address

The fractional part is the secondary address (if allowed). E.g. 12.05 means address
12 secondary 5

Block% = pointer to reserved space for local variables

Command$ = Command to be analyzed

In the following paragraphs, the driver will be detailed out.

Polar Test Language DRV-7

DRV/ PTL Driver Development Package

2.3.2 Detailed Example

The interpreter of the driver for the Fluke 8840A could look like:

SUB I_F8840 (Action%, Address, Block%, Command$)
ON ERROR SUBRET

SELECT Action%

CASE -1 ! Identify

Command$="1NAME) Fluke 8840A Multimeter ~" &
+"D10,T1,L1,H31,B0,IDMM,V1.0{}}"

SUBRET

CASE 10 ! Reset
Pcodes$=""
Ieee$="*"

CASE 11 ! Setup

Pcode$="1FUNCTION}VDC~F1, { JOHM~F3, {}|"
Ieee$="@a,"
ENDSELECT

Interp ("F8840", Address, Block%, Pcode$, &
Command$, Ieee$)

F8840 (Address, Block%, Ieee$)

SUBEND

DRV-8 Polar Software Systems

233

Actions

actions are available:

IDENTIFY

PROCEDURE
END_PROC
START TASK
END_TASK

EVAL

RESET
SETUP

MEAS

APPLY
DISAPPLY
SWITCH
DISCONNECT
to

at

WRITE
ENTER

DELAY

configurator.

Polar Test Language

09
10

=11

12
13
15
16
17
18
19

DRV/ PTL Driver Development Package

The action is used to define what action is required from the driver. The following

Identify is needed to identify the instrument to the system generator and the

DRV-9

DRV/ PTL Driver Development Package

234

Only action codes 10..19 must be resolved in the driver. Depending on the instrument
used, only a few actions could be used. E.g.:

- Measurement devices will generally use Reset, Setup and Meas.

- Generators will use Reset, Setup, Apply and Disapply.

- Scanners and digital output instruments will use Reset, Switch and Disconnect
(as direct commands from a user) and will also use "to" and "at" for scanning
other instruments.

Identification code
During system generation and system configuration the driver is called with action

code = -1 to get its identification code. In this identification code, information about
the type of driver is specified as follows:

"1NAME }Fluke 8840A Multimeter " &
+ "~D10,T1,L1,H31,B0,IDMM,V1.0{}|"

The length of the information code MUST BE ODD ! If the length is even, than add
a space somewhere in the code (e.g. behind Multimeter) to make the string odd.

The identification code is embedded in a rigid format as follows:
1INAME} <identifier> ~ <code> ({}|
to be compatible with all other select codes used. This format is needed to be able to

be recognized as an instrument driver by the system generator. The select codes will
be explained in one of the next paragraphs.

DRV-10 Polar Software Systems

DRYV/ PTL Driver Development Package

The <identifier > contains the name and type of instrument. In the previous example
this was:

Fluke 8840A Multimeter

The <code> contains several parameters. For the previous examples these where:
D10,T1,L1,H31,B0,IDMM, V1

with:

D= Default ieee address or port number
0 .. 31 = ieee address

70 .. 72 = screen - printer - disk

T = Type of instrument
0 = none

input

output
= input and output
= scanner

scanner and input

AN A W=

scanner and output

7 = scanner and input and output
L= Ieee address lower boundary
H= Jeee address upper boundary

1= Secondary address lower boundary
h= Secondary address upper boundary

B= Number of user blocks for local variables

Polar Test Language DRV-11

DRYV/ PTL Driver Development Package

2.3.5

2.3.6

+n = n block in the dim file
0 = no space reserved
-n = n blocks in main memory

I= Default identifier
V= Version of driver

Driver code

The driver code describes all capabilities of the instrument and its translation into the
"ieee" code. This is the coded version of the information which is printed when
"PRINT DRIVERS" is selected in the PTL program.

In the previous example we had as driver code:
"1FUNCTION}VDC~F1, { JOHMS~F3, {}|
This should be understood as:
On level 1 we have as functions
- VDC which translates to ieee code "F1,"

- OHMS which translates to ieee code "F3,"

A driver code is one of the many select codes used in PTL. The format and
capabilities of the select codes is explained in the following paragraph.

Select code
A select code is a generalized format for all selections to be made at a certain part in

PTL. It gives a tree of choices.
The select code has the following format:

DRV-12 Polar Software Systems

DRV/ PTL Driver Development Package

code$="1SELECT}CHOICE 1~F1, {2}CHOICE 2~F2,{2}|"

with:
1 = Level in the tree
SELECT = Start of command to be selected
} = Separator
CHOICE 1 = Choice for a possible command
~ = Separator
F1 = Code to translate to

{2} = Level for next choices
| = End of code string

E.g. the command "SELECT =CHOICE 1" will translate into code "F1,".
All selections with level 1 are always possible: In menu edit, they will always be

displayed. If a next level is specified, then ALSO selections on this new level are
valid. If no next level is specified, the level will stay unchanged.

There are 3 types of data possible:

1. Select from several possible words given by the code
2. Select a number
3. Select a string

The general format for the code is:

<n> <command >}
choice > ~ <jeee >{<m>}.. <choice > ~ <ieee >{<m>}|

Polar Test Language DRV-13

DRV/ PTL Driver Development Package

With:

<n>

< command >

< choice >

<ieee>

<m>

Example 1: Numeric entry

Level for command
A possible command at level n (upper case only)

Possible choices for command:

- Text : must be exact match
- Min..Max : value between 2 limits
-$: can be any string

Equivalent ’ieee’ format for command
- Text : ieee will be text
- ..$.. : String will replace $
- ..#.. : Value will replace #

Second level for new command (first is always 1). m
may be deleted if no new value is required

code$="1VALUE}1..999~N#, {2} |"

VALUE

999

DRV-14

Level for command
Name of variable to enter
Separator

Lower boundary of value
Separator

Higher boundary of value

Polar Software Systems

DRV/ PTL Driver Development Package

~ = Separator

N#, Code for driver, where # will be replaced with number
{2} = Level for next choices

I = End of code string

With this code a command like "VALUE=234;" will be translated into "ieee" code
"N234,"

Also "Call by reference" with Basic variables is possible. A command like

"VALUE=[LEVEL]" will be translated into "N"+NUMS$(LEVEL)+"," (compiler
only)

Polar Test Language DRV-15

DRV/ PTL Driver Development Package

Example 2: String input

code$="1TEXT}$~T’$", {2} "

1 = Level for access

TEXT = Name of function to select first

} = Separator

$ = Code for text entry

~ = Separator

%, = Code for driver, where $ will be replaced by entered text

Level for next choices

{2}

! = End of code string

With this code a command like "TEXT =’Hello world’;" will be translated into ’ieee’
code:
"T’Hello world’,"

Also "Call by reference” with Basic variables is possible. A command like
"TEXT =[GREETINGS]" will be translated into "T’" + GREETING$+"’," (compiler
only)

Unnecessary to say that in this case, the compiler cannot test the value of the passed
variable. So the user must either test himself with basic statements or write an
instrument driver that can handle invalid information.

2.3.7 Example code

To demonstrate selection codes, we now include the actual interpreter code for the
Fluke 8840A Digital Multimeter:

DRV-16 Polar Software Systems

DRV/ PTL Driver Development Package

'l

pcode$= "1FUNCTION}VDC~F1,{2}2 WIRE OHM~F3,"
"{4}4 WIRE OHM~F4, {4} MA DC~F5, {5}"
"MA AC~F6,{5}|"

"2RANGE }AUTO~RO, {1}0.2~R1, {1}2~R2,"
"{1}20~R3, {1}200~R4, {1}"

"1000~R5, {1}AUTO OFF~R7,{1}|"
"3RANGE }AUTO~RO, {1}0.2~R1, {1}2~R2,"
"{1}20~R3, {1}200~R4, {1}"

"700~RS, {1}AUTO OFF~R7,{1}|"
"4RANGE }AUTO~RO, {1}200~R1, {1}2K~R2"
"{1}20K~R3, {1}200K~R4, {1} "

"2M~RS, {1}20M~R6, {1}AUTO OFF~R7"
"{1} i n

"SRANGE }AUTO~RO, {1}2000~R5, {1}AUTO"
"OFF~R7, {1} |"

"6V- &RANGE }AUTO~RO, {}0.2~R1, {}2~R2, "
"{}20~R3, {}200~R4, {}"
"700~R5, { }AUTO OFF~R7,{}|"
"6IMPEDANCE}1..999~ac#, {}|"
"1READING RATE}SLOW~SO, { }MEDIUM~S1"
v{}FasT~s2,{}|"

"1TRIGGER MODE }INTERNAL~TO, {}"
"EXTERNAL~T1, {} "
"10FFSET}OFF~BO, { }JON~B1, {}|"
"1DISPLAY }NORMAL~DO, { }BLANK~D1, {}|{"

+ 0+ + + + o+ o+ o+ o+ o+ F F o+ o+ + 4+ o+
B pppo e opp PR R R R R R R R

Note that the {level} is used to select which range is used for a certain function.

Polar Test Language DRV-17

DRV/ PTL Driver Development Package

2.4 RUN-TIME PART

2.4.1 Calling the driver
The second part of an instrument driver is used during run-time. It is the part which
adapts PTL to the instrument, whether it connected to the IEEE bus or to any other

interface. It is therefore not possible to give a fixed solution for all drivers.

The run-time subroutine is the only part which is linked to a compiled procedure.
This part must therefore be optimised for speed.

The structure of such driver is as follows:

SUB F8840 (Address, Block%, Ieee$)
IMPORT Type%, No_result%, Result()

IF Ieee$="*" THEN ! if it is a reset command
clear @address ! reset instrument
ELSE
IF LEFT (Ieee$,2)="@a" THEN! command to measure
TRIG @Address ! Ask for a measurement
INPUT @Address, Result(0)! Get measurement
Type%=3 ! Real result
No_result$%=1 ! and tell it’s only one
ELSE ! setup the instrument
PRINT @Address, Ieee$! Send ieee string
ENDIF ! end in/output test
ENDIF ! end reset test
SUBEND

DRV-18 Polar Software Systems

DRYV/ PTL Driver Development Package

The driver must be called as follows:
F8840 (Address, Block%, Ieee$)
The following parameters are needed in the runtime part:

Input parameters:
Address = The address of the device connected

Block% = pointer to local variables
Ieee$ = Command to be executed
Imports :

No_result$ - Number of results
Type% - Type of result

0 = No result

= Bit

2 = Integer

3 = Real

4 = String
Result(0) - Result (real or integer) also be used for array 0..14
Result$ - Result (string)

Next_time(add)- array with wait times (indexed with ieee address)

The actual driver must handle all (exceptional) situations. It must therefore be able
to handle an instrument which is off-line, defective, over-ranged or non-existing. In
certain case this could result in time-outs during bus transfer, which could be trapped

with on-error statements.

Polar Test Language DRV-19

DRYV/ PTL Driver Development Package

2.4.2 Detailed example

The following example is the actual Fluke 8840A driver:

WT%=0

IMPORT Type%, No_result%, Result(), Next_time()
ON ERROR GOTO WRONG

TIMEOUT 3000

IF Ieee$="*" THEN ! Reset command
Next_time (Address) =Time+3000 ! 3 sec wait time
ON ERROR GOTO No_instrument ! trap no
instrument
CLEAR @Address ! reset instrument
End_init:
ON ERROR GOTO Wrong
ELSE ! Not a reset command

IF Next_time (Address) >Time+5000 THEN
Next_time (Address) =Next_time (Address) -86400000

ENDIF
WHILE Next_time (Address)>Time ! wait for time
ENDWHILE
IF LEFT (Ieee$,2)="@a" THEN ! do we measure?
Type%=0 ! Not a valid result
TRIG @Address ! Ask a measurement
INPUT @Address, Result (0) ! Get measurement
Type%=3 ! Real result
No_result¥%=1 ! One result
ELSE

DRV-20 Polar Software Systems

DRYV/ PTL Driver Development Package

PRINT @Address, Ieee$! send ieee string
Next_time (Address) =Time+1000 ! 1 sec wait
ENDIF ! end meas/setup
ENDIF ! end reset
SUBRET

! --- Error handler ---

No_instrument:
RESUME End_init

Wrong:
RESUME Back

Back:
Runtime_error (Ieee$, Err) ! Normal error

SUBEND

Note that wait times are handled by the Next time() variable. During reset,
wait_time() is set to a moment of 3 seconds in future. If this driver is called again for
a setup or a measurement, and this moment has not been reached yet, the drive will
wait. This enables the whole system to perform other tasks while one or more
instruments are busy.

Polar Test Language DRV-21

POLAR SYSTEMS

OPTION PTL-GUI

PTL Graphical User Interface

GUI/ Graphics User Interface

1 CONTENTS

1 CONTENTS .ottt ettt e et e ettt ee s GUI-1
LISTOF FIGURES ittt ittt ettt e e einneaen GUI-3

2 INTRODUCTION . . .ttt it e et e et et e et et e et e ee e GUI4
3 COMPONENTS OF AGRAPH ittt iieeee e GUI-6
3.1 Define ... vttt e e e e e e e GUI-9

3.1.1 Defwindowc0iiiiiniininnnnenennn.. GUI-9

3.1.2 Def AXeS - v vttt ittt e e e e e e GUI-10

3,13 DefLimits . . . o v v v vttt et e e e GUI-12

3.1.4 DefteXt . ..o viiiii ittt e, GUI-14

4 PLOTTING DATA ..ottt e et ettt et ettt e GUI-16
4.1 Plottypesttt e e e e e e e e GUI-16

4.1.1 XAplots . vvt i e e e e e e e e GUI-16

4.1.2 X-Yplots ..o e e e e GUI-17

42 Plotmethods it GUI-17

4.2.1 Linetypeso v ottt e e e GUI-17

4.2.2 Armayplot GUI-18

423 Lineplotottt e e e e e e e GUI-19

43 Printing e e GUI-20

5 ADJUST OPTIONS . . .ottt et ittt e et ettt e e iieaeen GUI-21
5.1 Singlebargraphttt GUI-21

5011 Type v oot e e e e e e GUI-22

5.1.2 Tag oottt e e e e e GUI-23

5.1.3 Hihi- & Lolo-limits GUI-23

514 Hi-andLo-limits000uuu... GUI-24

5.1.5 Syntax ... e e e GUI-24

Polar Test Language GUI-1

GUY/ Graphics User Interface

5.1.6 Examplettt e GUI-25

5.2 Multiple bargraphs e GUI-25

521 Type oo it e e e e e GUI-26

522 Tag v it e e e e GUI-27

523 Units .. vv ittt e e GUI-27

524 Limitvaluesttt GUI-27

5.2.5 Limitcheckingt iniueinieeennnn. GUI-28

526 Syntax e e e e GUI-28

5.2.7 Bargraphsupdatecciiii.n GUI-29

6 INPUT OPTIONSttt ittt et e it et e GUI-30
6.1 SlewkKkeys ittt e e e e GUI-30

6.1.1 Parameters.ottt eeennnnnnn. GUI-31

6.1.2 Inputtingdata 00 GUI-31

6.1.3 Syntax e e e GUI-32

6.2 Menuselectionttt e GUI-32

6.2.1 Syntax e e GUI-33

7 DEFAULT VALUES ittt it it eie e GUI-34
7.1 Plotdefaultvaluest iiniiuiueennenn. GUI-34

7.2 Adjustdefaultvalues ittt GUI-35

7.3 Plotimplicitdefining GUI-35

8 DATABASE e e GUI-37
81 result) e e e GUI-37

8.2 supply(... e e e GUI-38

83 moresulth GUI-38

84 passB() .. it e e e GUI-38
INDEX . .. e e e GUI-39

GUI-2 Polar Software Systems

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

GUI/ Graphics User Interface

LIST OF FIGURES
Samplegraph e e GUI-6
Limittypesottt e e e e e GUI-13
Linetypesottt i ittt e e e e GUI-18
Single bargraphs e e e GUI-22
Multiple bargraphs o ool oL, GUI-25
Multiple pointers oot v ittt e e e, GUI-26

Polar Test Language GUI-3

GUY/ Graphics User Interface

2 INTRODUCTION

In order to be able to display results from tests & measurements, a graphics driver
may be included in the PTL-system. Graphs as results from measurements and/or
typed input may be directly, displayed "live", on the computer’s display.
Single line-pieces at a time, as well as whole arrays may be plotted, thereby having
the possibility of automatically displaying minimum and maximum limits.

A wide range of default-settings, all of which are determining the visual shape on the
screen, may be optionally altered with PTL’s user friendly menu selection system.

The graph may be plotted to one of six popular printers such as Epson, Apple or
Hewlett Packard.

In addition, to further enhance the 1722’s screen output, several test & measurement
adjustment features are available:

- Single or multiple bargraphs may present numerical data;

- Input from the operator may be obtained through slew-keys or menu
selections;

Single bargraphs, with either a bargraph- or needle-pointer, as well as arrays of up
to 8 bargraphs may be presented at a time, thereby having the possibility of

automatically displaying minimum and maximum limits.

For user’s input, a so called slew-key is incorporated, as well as a user-definable
menu-selector.

The single bargraph- or needlepointer options may be used together with the slew-key
module in one picture.

GUI4 Polar Software Systems

GUV/ Graphics User Interface

To enable both the plot and the adjust screen enhancements, two commands are added
to the PTL language:

- Plot, to implement the plot options, and
- Adjust, to implement the adjustment screen enhancements

In the next chapters, first the Plot option will be described. Next, all the options for
the screen enhancement will be explained.

Polar Test Language GUI-S

eeeeeee

GUV/ Graphics User Interface

®), 9) Limits

Except for component (7), each of the above items are defined under the PTL menu
selection Plot Action. The following syntax diagram is available:

Syntax:

Action = Clear screen;
Def window;
Def axes;
Def Limits;
Def text;
Redraw definition;
Arrayplot;
Lineplot;
Dump ;

To start with a plot, the Clear Screen may be selected to clear the current contents
of the screen. From PTL, many options are available to define a plot to the wishes
of the user. The next paragraph will explore all the options of the Define selection.

When a plot is defined, result data may be on a line-piece by line-piece fashion, or
drawn all at once, using the Lineplot or Arrayplot options. Finally, a plot may be
dumped to a graphics printer. A selection of 6 types of printers is available to suit

most applications.

Polar Test Language GUI-7

GUI/ Graphics User Interface

3.1

3.1.1

GUI-8

Define

As mentioned above, many options are available to define a graphical PTL picture.
All of these options are available through the DEF <Type > menu selections. They
are:

- DEF WINDOW
This option defines the data-range of a plot. Four parameters Xmin, Xmax, Ymin,
and Ymax are defined;

- DEF AXES
This option enables the user to setup axes with ticks.

- DEF LIMITS
To visualize limits on measurements, PTL is also capable of drawing limits in the
graph.

- DEF TEXT

This option allows the user to draw some labels and titles for the graph;

- REDRAW DEFINITION
This option redraws the currently defined graph, based on both default and defined
parameters;

Def window

Each plot uses four parameters to determine the data-range of both the x-data and y-
data, called a window. They are for the x-data:

Polar Software Systems

- Xmin

- Xmax,

and for the y-data:

- Ymin

- Ymax

GUV/ Graphics User Interface

Example: When data is to be plotted, of which the data in the x-axis ranges from
0..100 mV, and the data in the y-axis varies from -100..100 mA, the four parameters

may have the following values:

Xmin =

Xmax
Ymin

Ymax =

Syntax:

100
-100
100

Action = Define window;

3.1.2 Def Axes

Axes are defined using the following parameters:

- Xticks

Polar Test Language

Xmin=<-1e99..1e99>;
Xmax=<
1€99..1e99>;Y¥min=<-
1e99..1e99>; Ymax=<-
le99..1e99>

GUI-9

GUI/ Graphics User Interface

- Xskip
- Xformat

- Yticks
- Yskip
- Yformat

Both the x-axis and the y-axis have corresponding parameters, which have identical
functions. Therefore, only one explanation is required:

- Xticks, Yticks
Ticks represent the number of ticks drawn on an axis. The way a tick looks, is
determined together with the next parameter, the skip count.

- Xskip, Yskip

A skip-factor may alter the way ticks and the corresponding scales are drawn: At each
major tick a scale factor will be plotted. Every Xskip and Yskip ticks, a major tick
is drawn. A major tick is drawn a little larger than a minor tick.

Example: In the plot-example of figure 1, Xticks=24, Xskip=3.

- Xformat, Yformat

Scales are drawn as well on the plot, just below the x-axis, and just left of the y-axis.
The representation of both scales is defined using these parameters, with a standard
Fluke BASIC format (See PRINT USING syntax in the BASIC Reference manual for
details on the format). Example: "S###.#"

GUI-10 Polar Software Systems

GUY/ Graphics User Interface

Syntax:

Action =Def axes; Xticks=<l1l..100>;Yticks=<1l..100>;
Xskip<l..25>; Xformat=<Format string>;
Yformat=<Format string>

Format string: = Basic format string (S###.###)

Warning: An erroneously defined formatstring may cause a fatal program error.
Be sure to enter a correct format.

3.1.3 Def Limits

The following figure illustrates the four possible types of limit presentations, if
enabled, of the graphical package:

Polar Test Language GUI-11

GUI/ Graphics User Interface

LIMIT #1
LIMIT #3 LIMIT #4
LIMIT %2 SLANTED LINES

b 3

t b
4

RECTANGULAR LINES

N \

B
1 3

))

SHADED AREA

O SHADED WITH LINES

Y

Figure 2 Limit types

Each limit value is drawn at a major x-axis tick. Using limits, an operator obtains a
direct visual representation of, for instance, limit values on measurements. When the
shaded type is selected, a shading percentage may be entered to define the shading
raster. A typical value would be 2, 3 etc. A value of 1 will draw a solid box, a value
of 20 will draw a shading grid with shading lines 20 dots apart.

Syntax:

Action =Def limits; <Type>; <Set limit data>;

Type := None

Slanted

Rectangle

= Shaded; Shading raster=<1..20>

Il

GUI-12 Polar Software Systems

3.14

GUV/ Graphics User Interface

1= Shaded +line; Shading raster=<1..20>

Set limit data := All limits; Minima=<- 1e99..1e99>;
Maxima=<-1e99..1e99>

:= One by one; [X=<-1e99..1e99>; Min=<-
1e99..1e99>; Max=<-1e99..1e99>] []

Def text

The graphical support of PTL allows it to define text on the graphics screen. The
options are:

- Title;
- Xlegend;
- Ylegend;

- Title

A plot title, when defined, will be displayed at the center-top of the graphical screen.
Example:

"Voltage/current plot"

- Xlegend
A legend for the x-axis will be drawn, when possible, at the center of the right part
of a plot. Additional units, and/or an arrow may be added to this string. Example:

"--> Voltage [mV]".

Polar Test Language GUI-13

GUY/ Graphics User Interface

- Ylegend

As on the X-legend, a legend for the y-axis may be defined as well. The text is drawn
at a rotation of 90 degrees, and is, when possible, in a centered fashion. Example:
"--> Current [mA]".

Syntax:

Action= Deftext;Title=<text>;Ylegend=<text>;
Xlegend=<text>

GUI-14 Polar Software Systems

4.1

GUI/ Graphics User Interface

PLOTTING DATA

Plottypes

Traditionally, two types of plots can be distinguished: an X-t plot, and an X-Y plot.
Both type of plots can be implemented in PTL by supplying the graphics driver the
correct database.

X-t plots

An X-t plot is typically a plot, where the time-relation of a signal, such as a
measurement, is being presented on the graphics screen. The x-axis functions as the
x-axis, and the y-axis as the signal.

In the graphics driver of PTL, a data point (x,,y;) is drawn as a line-piece to another
point (x;,y;). Data points are retrieved from two array variables supply() and result().
The x-points x; are retrieved from supply(i), and y-points from result(i). By filling the
supply-array with equally spaced values, the effect of time will be simulated. For
instance, when x-axis parameters are as follows:

Xmin=0, Xmax=100, Xlegend="--> Time (min)", Xticks=10, Xskip=1

and supply(0)=0, supply(1)=10, supply(2)=20 ..., the effect of an x-t plot will
become a fact.

It is the responsibility of the engineer to store all required data in result(), supply()
and no_result% before calling the plot-driver.

Polar Test Language GUI-15

GUI/ Graphics User Interface

4.1.2 X-Y plots

An x-y plot is a plot, where different signals may be plotted versus other signals. For
instance, the relation between voltage and current may be plotted in an x-y plot.

To define such a plot in PTL, both the result() and supply() array can be filled with

measurement data. By selecting the correct data-window, plotting of both array’s will
be result in a neat x-y plot.

4.2 Plot methods

Besides the type of plots, two possibilities for the plot-action itself may be selected:
plotting all data in one plot-action, or, at a piece-by-piece fashion, where results of
measurements may be monitored on the graphics screen step by step.

4.2.1 Linetypes

There are several line-types defined. The following figure will demonstrate the types:

GUI-16 Polar Software Systems

4.2.2

GUV/ Graphics User Interface

NO MARKERS

N T —

CROSS MARKERS

N T T
'/\/,/‘\\/

SQUARE MARKERS

CIRCLE MARKERS

TRIANGLE MARKERS

Figure 3 Linetypes

Each type specifies the type of marker drawn at each point of the graph. When array-
or lineplot is selected, a linetype may be defined.

Arrayplot

When a plot is defined, data may be plotted. There are different types of plotting
available: each point (x,y) is connected with a line from the previous point (x0, y0),
or all the available data points (x;, y;) will be plotted at once, one after another. In the
Action= menu, a selection can be made. Arrayplot selects PTL to plot all available
data at once. Data is plotted as follows:

All x-values are taken from the global array: supply(), and all y-values are obtained
from the global array result(). A point (x;, y;) is retrieved in the array’s in location
(i) of the array:

Polar Test Language GUI-17

GUI/ Graphics User Interface

X;
Yi

supply (i)
result(i)

The number of results is stored in the global variable: no_result%, which is imported

in the plot-module. The engineer is responsible for maintenance of the three variables.

Syntax:

Action=Arrayplot; Linemarker=<Type of linemarkers;

GUI-18

Type of linemarker = None / Cross / Square / Circle

/ Triangle

Lineplot

Instead of plotting all data at the same time, a
line-by-line method may also be selected. This
method enables an operator to watch the result of
each measurement separately. Each line-piece will
be drawn using a point (x,y). Data may be plotted
from the keyboard, or from the variable result(0).

Each point (x,y) may be entered from the keyboard,
or result(0) may be used for the y-value.

Syntax:

Action=Lineplot; Linemarker=<Type of linemarker>;

; X=<-1e99..1e99>;

Polar Software Systems

GUI/ Graphics User Interface

; Y=<Result / -1e99..1e997?;

Type of linemarker = None / Cross / Square / Circle
/Triangle

4.3 Printing

When a plot is completely drawn, it may optionally be dumped to a printer. PTL has

drivers for several printers:

- Epson FX

- Epson Rx

- Epson Mx-100
- Apple Write

- Star Delta

- HP Thinkjet

Syntax:

Action=Dump; Printer=<Printertype>

Polar Test Language GUI-19

GUI/ Graphics User Interface

5.1

ADJUST OPTIONS

Using the adjust statement, the following screen enhancements are available:

- Single bargraph

A large, horizontally drawn bargraph meter, with a bargraph pointer, filling a 1722
display’s top half;

- Single pointer

A large, horizontally drawn meter, with a needle-pointer type of pointer, filling the
display’s top half;

- Multiple bargraphs & pointers

Up to 8 vertically drawn bargraphs, each with an independent set of limit values, tags

and units, as well as pointer type;

In the following paragraphs each of the options will be described.

Single bargraph

A bargraph is an illustrative method of presenting a varying numerical quantity, on
the computer’s display screen.

Figure 1, demonstrates the display of such a single bargraph.

GUI-20 Polar Software Systems

GUV/ Graphics User Interface

"] 200 400 6080 1] 1000

115 8735

Single pointer

"] 200 400 600 8060 1000

- e

115 875

Single Bargraph
Figure 4 Single bargraphs

A single bargraph may be defined using the following parameters:

- Type

- Tag

- Hihi limit value
- Hi limit value

- Lo limit value

- Lolo limit value

5.1.1 Type

Two types of pointers for the single bargraph are available:

1. Bargraph
This type of pointer resembles a thermometer scale: A bar will move on the screen

Polar Test Language GUI-21

GUI/ Graphics User Interface

5.1.2

from left to right: when a value is low the bar moves to the left of the picture, when
a value increases, the bar will move towards the right edge of the screen.

2. Meter scale
This type of pointer resembles an analog meter instrument, where a needlepointer
moves left or right dependent on the result value.

The latter pointer is somewhat faster to update, due to the fact that a lot more
drawing is involved in updating a bargraph. On the other side, a bargraph may be
visually more clear, since from a larger distance, a bargraph will be more
recognizable.

Using the bargraph pointer, another advantage is that when a signal goes beyond it’s
limit, the bargraph will be drawn highlighted (100% filled versus 50% filled
normally).

Tag

A tag may be drawn at the lefttop corner of the bargraph. Any text may be used here,
such as text, describing the bargraph (’Voltage output [mV]’ etc).

5.1.3 Hihi- & Lolo- limits

Hihi- and lolo limit values will define the data-range of the data, plotted on the
bargraph. Typical limits are hardware channel limits, for example 4..20 mA, or 0-10
V. These two parameters are used internally by PTL to calculate the position on the
screen for live data (scaling factors).

GUI-22 Polar Software Systems

GUI/ Graphics User Interface

5.1.4 Hi- and Lo- limits

5.1.5

Hi- and Lo- limits are signal limits , determining the type of bar drawn on the screen.
When a signal exceeds either a high- or a low-limit value, the bar changes from 50%
filled, to a full 100% filled solid bar. When the signal de- or increases to a level
within these limits, the bar changes again back to a 50% filled bar. Hi- and low limit
detection is therefore realized visually. Of course, the latter is only true for a
bargraph pointer.

Syntax
To display/define a bargraph, use the following syntax diagram:
Adjust ("Action")
Action= Display; Mode= Single bargraph; <Options>
Options= Type= <Bargraph / Meter scale >;
Tag= 'Tag’;
Hihi limit= <-1€99..1e99>;
Hi limit= <-1€99..1e99>;
Lo limit= <-1e¢99..1e99>;
Lolo limit= <-1e99..1e99>.

To update a bargraph, use the following command:

Adjust ("Action=Update") ;

Polar Test Language GUI-23

GUI/ Graphics User Interface

5.1.6 Example

When an IEEE temperature meter gives a signal output of 0..100 DEG C, and the
process we want to monitor does not allow temperatures over 75 DEG C, and not
under 50 DEG C, a definition of a bargraph could be:

Type=Bargraph
Tag='TEMP [DEG C]’
Hihi limit= 100
Hi limit= 75

Lo limit= 50
Lolo limit= 0

5.2 Multiple bargraphs

With the Graphics User Interface, it is also possible to display an array of up to 8
bargraphs at the same time on the display. A picture may appear as shown in Figure 5
for all 8 bargraphs, or Figure 6 for all 8 meter scales :

VUOLTAGE [UOLTAGE | VOLTAGE | VOLTAGE | CURRENT FREQ FORCE POHER
31.415 45.998 8566 18. 86z 56.eaa 2?ai128 s8.432 1175
Cnul [T} CLmuUl CmUl CLmAl CkH=1 ©N] CHP]
.
1@e.ea 1@a.ea 1aea8 1ea.a8 10@.88 75@@a8 106.08 1ase
20.00 66.67 7500 %20. 00 20.00 74500 90.00 1000
18.88 33.33 ases 18.88 18.88 7aa98@ 1@.0a ess
a L I?s L a 74000 L]]

Figure 5 Multiple bargraphs

GUI-24 Polar Software Systems

GUI/ Graphics User Interface

UOLTAGE | UOLTAGE | VOLTAGE | VOLTAGE | CURRENT FREQ FORCE FOMER
31.413 45.990@ 8566 9.002 50.000 74120 00.432 117S
Cmy3 Cmul Lmul CmuUl [T] [kHz1 N] CHP3
—_ —_ T paniiih —_ —_ e i Ja—
4 L . e 4k s 4k .
——— *

4 . s = 4 . = J

=1 - | 1 | - -1 e - -1 I

- - = . — = - .

1 e —— — — — . _

u —~ . . . - . .

- . - * - — - - -

. - - — — - . .

o T T -_-—- o 7 7 -]

h S 4 U 1Y S Y g S 5y 4 e L 4
1@8.008 1@8.08 180608 1608.80 1008.008 75008 188.08 1ase
%0.00 66.67 90.00 20.00 74300 %0.00 1000
10@.08 33.33 asea T 18.00 74498 18.080 ass
)) 273)) 74000) a

Figure 6 Multiple pointers

Each bargraph may be defined separately using the following parameters:

- Type

- Tag

- Units

- Hihi limit
- Hi limit

- Lo limit

- Lolo limit

5.2.1 Type
As with single bargraphs, a type may be defined for each bargraph. Again, a type
may be bargraph or meter-scale, as well as Off. In the latter case, no bargraph is

drawn at all, in order to leave the location empty.

The needle-pointer may be selected in the more time-critical situations, and the
bargraph type in situations where an operator requires a clear indication of a signal

Polar Test Language GUI-25

GUI/ Graphics User Interface

5.2.2

5.2.3

5.24

value.

Both pointer types may be mixed in one picture.

Tag

A tag may be defined for each bargraph. The tag will be displayed in the top section
of the bargraph. A tag may be up to 8 characters long.

Units

Units may be defined to each bargraph. The units will be displayed in the top section
of the bargraph, just below the value field (See Figure 2). Together with the tag, and
’live’ value, a signal will be displayed in the top section of the bargraph as follows:

<Tag>
< Value >
< Units >

Using a tag and units, a numerical presentation of measurement data will complement
the graphical section of the bargraph.

Limit values

Each bargraph is defined with four limit parameters: Hihi- and Lolo-limits,
parameters used to scale a measurement-value for the bargraph length, and Hi- and
Lo-limits, representing signal limit values. Each bargraph may have an individual set
of Hihi, Lolo, Hi- and Lo- limits. The example of Figure 2 will demonstrate several

GUI-26 Polar Software Systems

GUI/ Graphics User Interface

limit values. The four limit parameters will be displayed in the bottom section of the
bargraph as follows:

< Hihi limit >
<Hi limit>
<Lo limit>
< Lolo limit >

5.2.5 Limit checking

5.2.6

When a signal exceeds either one of the four limit values, the corresponding field will
be displayed in reverse video, in order to signal this situation to the operator. When
the signal’s error condition resets, the corresponding field will be displayed in normal
video again.

Using this method, a visual overview is obtained of the signals status’ situation.
Using a bargraph type of pointer, another limit checking method is selected: when a

signal exceeds limits, the bargraph will change from a 50% filled bar to a 100% solid
bargraph, thereby highlighting the bargraph in case of exceeding a limit.

Updating the pointers may take place one by one, or all 8 at one time.

Syntax

To define a set of 8 bargraph pointers, use the following syntax diagram:

Polar Test Language GUI-27

GUI/ Graphics User Interface

Adjust ("Action")

Action= Display; Mode= Multiple bargraphs; <Preset
Option>

Preset Option = <All / Single > <Options >
Options = Type= < Off / Bargraph / Meter scale > ;
Tag= 'Tag’;
Hihi limit= <-1¢99..1e99>;
Hi limit= <-1¢99..1e99>;
Lo limit= <-1¢99..1e99>;
Lolo limit= <-1¢99..1e99>.
5.2.7 Bargraphs update
To update the bargraphs, use the following command:
Adjust ("Action=Update") ;,
or

ADJUST ("Action=Update specific; Bargraph no=<No>");

When selecting the general update command, data from result(0) will be drawn at
bargraph 0, result(1) at bargraph 1,.....,result(7) at bargraph 7.

When selecting the specific update command, data will always be taken from
result(0), no matter which bargraph number is specified in the Update command.

GUI-28 Polar Software Systems

6.1

GUV/ Graphics User Interface

INPUT OPTIONS

The Graphical User Interface contains two methods of inputting data from the
operator:

- Slew keys
An alternative method to enter a number from an operator;

- Menu selection
An alternative method to let the operator make a choice between several options;

The following paragraphs will describe both options.

Slew keys

Obtaining a number from an operator may take place using a slew key-bar, as
demonstrated in the following figure:

Voltage [mv] = 1:

Sl SRR | :

Polar Test Language GUI-29

GUI/ Graphics User Interface

6.1.1

6.1.2

Parameters
The following parameters are defined for a slew key-bar:

- Slew text
This text will be displayed at the left top corner of the slew-key bar, and may be the
tag of a to-be-slewed signal;

- Slew step value
This parameter indicates the stepsize of a change in the PTL system variable result(0),
when a specific slew-key is pressed;

When the slew-keys are displayed first, the value in result(0) will be taken as the
starting value. Pressing the correct keys on the TSO will in- or decrement the current
value. When *OK’ is entered, the current value will be restored in result(0), where
it may be picked up by the measurement driver.

Inputting data

Pressing the "-- --" field will decrement current slew value with 10 times the slew
step value;

Pressing the "-- " field will decrement the current slew value with 1 time the slew
step value;
Pressing the "+ +" field will increment the current slew value with 1 time the slew
step value;

Pressing the "+ + + +" field will increment the current slew value with 10 times the
slew step value;

GUI-30 Polar Software Systems

6.1.3

6.2

GUI/ Graphics User Interface

Pressing "OK" will end the slew key input session by setting the PTL system variable
pass%(0) to 1. The current slew value will be copied back to result(0).

The slew input may concurrently take place with a single bargraph: The bargraph is
located at the top of the screen; the slew-key is located at the bottom of the screen.
Syntax

To draw & define the slew key use:

Adjust ("Action=Display; Mode=Slew"; <Options>)

Options= Tag="<Tag>";
Slew step= <-1€99..1e99>;

To input a value using the slew, define as follows:

Adjust ("Action=Input; Type=Slew")

Menu selection

Another structure to enter data from the operator may take place using the menu-
selector. When used, on the screen, a list with options (fields) appear for the
operator. The currently selected field will be displayed in high-lighted, reverse video.

The screen-key, marked with 'Up’ will select a field above the currently selected
field;

Polar Test Language GUI-31

GUI/ Graphics User Interface

’Down’ will select a field under the currently selected field.
The key, marked with ’Select’ will select the currently selected field and end the
specific procedure. The selected field will be returned to PTL through the system
variable result(0).

6.2.1 Syntax

Defining fields:

Adjust ("Action=Input; Type= Menu; <Parameters>");

Parameters= Menu title = "<Title>’
Max items = <1..12>;
Item no = <1..12>;
Item text ="<text>’;

GUI-32 Polar Software Systems

GUV/ Graphics User Interface

7 DEFAULT VALUES

Plot() and Adjust() may be defined using explicit commands, however, all parameters
have default settings. In the next tables both default values will be displayed.

7.1 Plot default values

The following values are being used:

Polar Test Language GUI-33

GUI/ Graphics User Interface

7.2 Adjust default values

The following values are being used:

Parameter ‘Default value -

. Screentype

Type

Tag
Units

Hihi limit
Hi limit
Lo limit
Lolo limit o0

Slew key step
Slew title

. "Slew value ="

7.3 Plot implicit defining

Each plot parameter may be modified using the specific Plot Define commands. To
automate the process of composing a graph, several parameters are modified
implicitly. For instance, when a new Xmin-Xmax range is selected, automatically the
Xformat string is adapted to suit the new data-range. This generated string may be

GUI-34 Polar Software Systems

GUL/ Graphics User Interface

overwritten again, but in most cases this will not be necessary. A full list of implicit
parameter defining is given in the following table:

. parameter ~ huto-defines

Xmin or Xmax Xformat

 Y¥min or Ymax ~ Yformat

Polar Test Language GUI-35

GUI/ Graphics User Interface

8 DATABASE
In this chapter, the database as used by the plotting routines, are displayed and
defined. Each date is listed below:
8.1 result)
This array is defined in a PTL program as follows:
IMPORT result(25)
1. This array represents the y-axis values, and will be used by the graphics driver
to plot in the Arrayplot fashion all of the results of a measurement, or in the
Lineplot fashion, where result(0) will be used only.

2. result(0..7) represent the contents of the bargraphs 0..7, when applicable.

The number of elements used for a plot for the
Arrayplot method is defined by the variable no_result%.

It is the responsibility of the engineer to supply the correct values in this array.

GUI-36 Polar Software Systems

8.2

8.3

8.4

GUV/ Graphics User Interface

supply()

This array is defined as follows:
IMPORT supply(25)

and represents for the graphics driver the x-axis values, used in the Arrayplot
selection. When a line-by-line fashion is selected with Lineplot, only element #0 is
used (supply(0)).

It is the responsibility of the engineer to supply the correct values in this array before
parsing it to SPLOT().

no_result%

The number of results of a measurement is stored in this variable. The number of
results for a plot, and therefore the number of line-pieces, is limited in PTL to 25.
pass%()

When a slew is setup, pass%(0) is reset to 0. During the slew procedure, pass%/(0)

stays at O until ’OK’ is pressed, at which time this flag is set: pass%(0)=1. Using
this method, the test program will know when the operator has entered a new value.

Polar Test Language GUI-37

GUI/ Graphics User Interface

INDEX
B0 T GUI-32
SeleCt” L e e e e e e e GUI-32
L GUI-31
0. T 5 T GUI-17
72X 5 U) « W GUI-23, GUI-28
Action=Input e GUI-31
Apple Writeo it e e e e e GUI-19
N 5 2 GUI-24, GUI-36
Arrayplot e GUI-7, GUI-17, GUI-36, GUI-37
7 o € GUI4
AUIOMAE . . . vttt e e e e GUI-34
AXES « it e e e e e e GUI-6, GUI-8, GUI-9
Bargraph i GUI-20, GUI-26
Bargraphs e e e e GUI4
BASIC . . e e e e GUI-10
Bottom e e e e GUI-27
Bottom sectiono v ittt e e e e GUI-27
L= 1T GUI-13
Center-tOP . v v v v vt e e e e e e GUI-13
Channel i e e e e GUI-22
Clearinit o vttt it e e e e e e e e GUI-7
Commandottt e e GUI-23, GUI-28
Commands v vttt e e e e e e e e e GUI-33
ComPOonent v vttt i e e e e e GUI-7
Data e e e e GUI-22, GUI-29
Data-range e e e GUI-8, GUI-22
Databasettt e e e e e e GUI-36
Datapoints e e e e e GUI-17
Decrement e e e GUI-30

GUI-38 Polar Software Systems

DEF <Type>
Default
Default values
Default-settings
Define
Display
Driver
Drivers,
Dumpc0ovvin

Epson
Epson FX
Explanation
Explicit
Explicit commands
Field

Polar Test Language

GUV/ Graphics User Interface

.................... GUI-8, GUI-23
.............. GUI4, GUI-23, GUI-28

......................... GUI-10

......................... GUI-17
......................... GUI-26

......................... GUI-21

GUI-39

GUY/ Graphics User Interface

Hihi imit value i e e GUI-21
Hihi imit=ttt ittt e GUI-23, GUI-28
HP Thinkjeto vttt ettt it ettt et et e GUI-19
Image it e e e e e GUI-6
Implicitdefiningt v ittt e e e GUI-34
Import e e e GUI-18
INCTEASE . & v ittt e et e e e e e e e e e e e GUI-23
Increment e e GUI-30
Individual e e e GUI-26
11 1L GUI4
Inputtingt e e e GUI-29
Item no =

e GUI-32
Item text =

e GUI-32
Keyboardttt e e e e e GUI-18
Labels v it e e e e e e e e GUI-8
Legendt e e e e GUI-14
Legendso i ittt e e e e e e e e e GUI-6
73 (3 GUI-26
LMt . .ttt e e et e e e e e e e e e e e e e e e GUI-37
Limitdetection vttt ittt et e e e e e e GUI-23
Limit presentationso v v ittt ittt GUI-11
Limitsttt e GUI4, GUI-7, GUI-8, GUI-11
Limitvalue it e e e e e GUI-12
Line-by-linettt ittt e e GUI-18
Line-piece oo vttt i e e e GUI-18, GUI-37
Line-piecesottt e e e e GUI4, GUI-6
Lineplot i e e GUI-7, GUI-36
5T o T GUI-16
Lolimit e e e e e e e GUI-25

GUI40 Polar Software Systems

GUI/ Graphics User Interface

Lolimitvaluettt einnnneeeennnnnn GUI-21
Lolimit= it e e e GUI-23, GUI-28
Lolo lmit . . . oo vttt ettt et e e e e e e e e e GUI-25
Lololimit value ittt eennan GUI-21
Lolo imit= i ittt ettt et GUI-23, GUI-28
Major . .t e e e e GUI-12
Majortick it e e GUI-10
MarKer e e e e e GUI-17
Maxitems = ittt e e e GUI-32
Maximumt e e e e e e GUI4
Measurement oo vttt e e e e e e e e e GUI-37
Measurementsot v v it ittt ettt e GUI-8, GUI-12
Measurments oo v vttt ittt e e e e e e GUI4
11 (=5 1L GUI-8, GUI-29
Menu selection v v vttt e e e e e e e GUI-31
Menutitle= i e e GUI-32
Menu-selectorttt ittt e e e GUI-31
MInimum0ttt e e e e e e e e GUI4
Minortickttt e e e e e GUI-10
Multiple bargraphs e GUI-20, GUI-24
Needle-pointero v ittt et ettt e e e e e GUI4
No result e e GUI-18
NoresultTo oot i i e GUI-36, GUI-37
Numericalttt i e e e e e GUI-26
1) N GUI-31
Operator v vt ittt e e e GUI-12, GUI-18
OptionS . . . v vttt et e e et e e GUI-23, GUI-28, GUI-31
Parameters GUI-7, GUI-8, GUI-9, GUI-21, GUI-22, GUI-26, GUI-30, GUI-32, GUI-34
Parsing e e e GUI-37
Pass . . e e e e e e GUI-31
Pictureo e e e e e GUI-8

Polar Test Language GUI41

GUY/ Graphics User Interface

Plot .. e e e e GUI-8, GUI-10
Point e e e GUI-18
Presentationttt GUI-26
PRINT USING ittt ittt et e et et e e e e e GUI-10
Printer e e GUI-7, GUI-19
Printers e e e GUI4
Referencemanual i GUI-10
Representationttt GUI-10
Result00 iiiiiiiinnnnnn GUI-17, GUI-18, GUI-32, GUI-36
Results e e e e GUI4
Reversevideot itinnnnnn GUI-27, GUI-31
Rotation i e GUI-14
Scale . .. e e e e e GUI-10
Scalefactor oo i e e e e GUI-10
Scales e e e e GUI-10
Scaling factorso e e e e e e GUI-22
T3 L= GUI4
Screen-Key i e e e GUI-31
Selection e e e e e e e e GUI-29
SOt ES . v v it e e e e e e e e GUI-33
St . . e e e e e e e e e e GUI-8
Shape . ..o e e e e e GUI4
Signal e e GUI-23, GUI-26
Signal imitso e e e e GUI-23
Single . .. e e e e e e e e GUI4
Single bargraph e e GUI-20
Single pointer i e e e GUI-20
SKID vt e e e e e e e e e e e GUI-10
Slew . e e e e GUI-29, GUI-30
T GUI-30
Slew Step= e e e e e GUI-31

GUI42 Polar Software Systems

GUI/ Graphics User Interface

R =5 GUI-30
SleW-KeY . ittt e e e e e e GUI4, GUI-30
SOHA bar e e e e e e GUI-23
Star Delta oo e e e e e GUI-19
StePSIZE . . o e e e i e e GUI-30
StrUCtUTEe e e e GUI-31
SUPDIY - o e e GUI-17
Supply(0) . . o it e e e e e GUI-37
SUPPLY(2S) .« v e e e e e GUI-37
Syntax GUI-9, GUI-10, GUI-11, GUI-12, GUI-14, GUI-18, GUI-19, GUI-23
Tag ...ttt GUI-21, GUI-23, GUI-25, GUI-26, GUI-28, GUI-31
0 - GUI4
TEXT .o e GUI-8, GUI-13, GUI-22
TICK o e e e e e GUI-10, GUI-12
10 < GUI-8
Time-criticalot i e e e e e e GUI-25
Title . .. e e e e e GUI-6, GUI-13
1o GUI-26
TOpSECtion . . . o v v v ittt e e GUI-26
Type=Slew e e e GUI-31
Typedinput e e e e GUI4
UBItS & .t e e e e e e e e e e GUI-25, GUI-26
Update oot GUI-23, GUI-28
User-definablettt innnnneeneenns GUI4
Variable oot e e e e e GUI-18
1 1 GUI4
Visual representation i e e GUI-12
Visualize i e e e e GUI-8
WIndoW . . .o e e e e e e e e GUI-8
XeaXiS .ttt e e GUI-9, GUI-12, GUI-37
D GUI-8

Polar Test Language GUI43

GUV/ Graphics User Interface

Xformat e e e e e GUI-10
Xlegendot e e e e GUI-13
D€ .S GUI-8
XMIN .« e e e e e e e e e e e e e GUI-8
D €3 < | GUI-10
XUCKS & it e e e e e e e e e e e GUI-9
Y-akis .o e e e GUI-9, GUI-36
Y-data . .. e e e e e e e GUI-8
Yformat e e e e GUI-10
Ylegendo e e e e GUI-13
YmaK .. e e e e e e e e GUI-8
Ymin . .. e e e e e e GUI-8
D <1 GUI-10
YtCKS .o e e e e e e e e GUI-10

GUI-44 Polar Software Systems

POLAR SYSTEMS

OPTION PTL-ICON

PTL Icon Editor Package

ICO/ Icon Editor Support

1 CONTENTS

1 CONTENTS .o ittt ittt ittt e ettt ettt eeennanas 1
2 CAPABILITIES PTL/ICOOPTIONottt it iie e n 3
2.1 Imtroductioniiiiiii e e e 3

22 ThelconEditort iiinnnennnn 3

2.3 Editorforpicturesttt e 3

24 Usepicturesin PTL 6

3 INTRODUCTION . .ttt e ettt et et ettt e e e e 7
3.1 Iconeditor Menusovviv i it et ennnneeeneeeenns 7

3.2 Files and the Icon Editor Program 7

4 THE ICON EDITOR . . .ottt t i ettt et ettt eeteee e ieeeenns 9
4.1 Start the Icon Editor Program 9

4.2 Exit from the Icon Editor Program 9

4.3 Using the Icon Editor Program 10

44 EditPicture e e 11

44.1 Jeonmodettt 14

44.2 Linemodet iiinnnean. 18

443 Textmodeottt ittt e e 21

444 Keymodettt innennnteenneenn 24

44.5 Exittothe Master Menuc.0..... 26

4.5 TestPicturettt e 26

4.6 PrintPicturettt e 27

4.7 EditIcon Definitionsttt 29

4.8 Exitfromprogramc..iitiitirnneenn 30

5 USEOFICONS IN PTLttt ittt ittt et ettt e e i eann 31
5.1 Displayaniconttt e 31

Polar Test Language ICO-1

ICO/ Icon Editor Support

5.2 Displaytextand numbers 31
53 Getthekeytouched 31
5.4 Wait until a valid key istouched 32
55 Clearthescreenu ittt inneeeennnnn 32
56 Example......... i e e 32

ICO-2 Polar Software Systems

2.1

2.2

23

ICO/ Icon Editor Support

CAPABILITIES PTL/ICO OPTION
Introduction

This manual describes how to use the Icon Editor in the Polar Test Language PTL
Version 1.3.

This information is supplied as option :
PTL/ICO Icon Editor Support

The Icon Editor

The Icon Editor Program is a utility program for the Fluke 1722A Instrument
Controller and the Fluke 1752A Data Acquisition System. With the PTL/ICO module
two powerful features of the 1722/-52A display, graphics and the touch sensitive
overlay, are fully integrated with the Polar Test Language.

In almost all test applications there is a need for Interaction with an operator. Data
is presented to and commands are accepted from a operator. Graphics are very
effective in conveying information to a human, while a touch sensitive display is a
very effective control panel. Naturally, PTL users want to take full advantage of these
capabilities.

Until now, the bad news was that creating graphics-and-touch-display based "user
interfaces" was a very software intensive job. In Fluke’s experience no less than 50%
of a typical application program consist of user interface software! With standard PTL
most normal output is already handled by the language itself. With the Icon Editor
option in PTL the generation of effective graphics interfaces is made quick and easy,
offering a considerable time-saving in program development.

Editor for pictures

Polar Test Language ICO-3

ICO/ Icon Editor Support

The Icon Editor enables the user to prepare displays with both alphanumeric and
graphic information. This is done by making selections from a set of predefined
symbols, called Icons, and positioning these anywhere on the screen. Different sets
of icons may be used, depending on the kind of pictures that must be made.

Trim Pot until 5 Volts reached: 4.56 ¥ =

Not Possible

B @ _ 0 -
“CEE g e --
SUSE ST o o oo o .
. r,

Figure 1: Example of a printed circuit board

Then the picture can be completed by drawing various styles of lines, for instance to
interconnect electronic symbols in a circuit diagram. Furthermore text can be added
to the picture as well as touch sensitive areas.

From all this information a display file is created which can be used in a PTL
procedure.

ICO4 Polar Software Systems

ICO/ Icon Editor Support

38
Tho

Uil oy

\, /

Figure 2: Example of a radio with "electronic" icons

The Icon Editor Program provides a complete set of commands to perform the
following functions.

* Selecting an icon from a set

* Positioning an icon on the screen

* Drawing lines of various styles

* Adding text and numeric data fields

* Adding touch sensitive zones

* Creating and editing icons

* Making a hard copy of the picture on a printer

Polar Test Language ICO-5

ICO/ Icon Editor Support

2.4 Use pictures in PTL

After a picture has been stored on disk, it can be called from PTL. Test results can
be inserted into it and keys can be interrogated.

Supply Tanks

P 2
Flow 80 kg/s ume
Pump 1 1 Temp 180

Hot
STOP Area

Valve 1

\ /

Figure 3: Example of "Chemical" icons

The following commands are available:

* Put a picture on the screen
* Add standard PTL variables
* Add results and parameters
* Get key touched

ICO-6 Polar Software Systems

ICO/ Icon Editor Support

3 INTRODUCTION

3.1 Icon editor menus

To use the Icon Editor Program you have to make appropriate selections from a
number of menus. Figure 4 shows the structure of these menus .

START

{Mastor Selection Menu I
I

| I 1
(Edit J (Test J (Edit 16@ (Print) (Exit J
‘ Text) ‘ Key) ‘ Exit) Fluke 1776B
]

Commodore 3022
Commodore 4022
Prowriter M85108
Epson FX series
Epson RX series
Epson MX-100
Tally MT 1605E
Start Delta 10&15

L
sToP

Figure 4: Icon Editor menu structure

3.2 Files and the Icon Editor Program

With the Icon Editor program you can create or edit a Picture Source File, much like
creating a procedure with a text editor. When you stop execution of the Icon Editor
program, a second file is automatically generated by a built-in compiler: the Picture
Object File. The file name extension for Picture Source Files is ".PSR", while the

Polar Test Language 1CO-7

ICO/ Icon Editor Support

ICO-8

extension ".POB" is used for Picture Object Files.

Only Picture Source Files can be edited; at the end of the editing session a new
Picture object File is compiled. The Picture Object File is the "executable" form of
the picture file; it can be used in a PTL procedure

One more file is necessary to create or edit a picture: the Icon Definition File
(extension ".IDF). A given Icon Definition File contains a set of predefined icons,
e.g. electronic circuit symbols or piping engineering symbols. Several different Icon
Definition Files may be present with the Icon Editor program. When you start
execution of the Icon Editor program, you may specify the desired Icon Definition
File.

During execution of a PTL procedure, neither the picture Source File nor the Icon
Definition File are required to use an "operator interface" that was created with the
Icon Editor. Only the Picture Object File and the linkable subroutine are needed for
that.

Polar Software Systems

4.1

ICO/ Icon Editor Support

THE ICON EDITOR

Start the Icon Editor Program

In the PTL main menu choose the ICON key and press return to start the editor.
From the FDOS > prompt, type:

ICON <RETURN>
or
ICON [<device>]<icon definition file> <RETURN>

In the first case the default Icon Definition File is used (ELEC.IDF), containing a set
of symbols used in the electronics industry. The second method allows you to specify
a different Icon Definition File.

(Besides ELEC.IDF one other set of icons comes standard with version 1.6 of the
Icon Editor Support: CHEM.IDF, containing chemical symbols.)

If no device is specified with the Icon Definition File, the Icon Editor assumes that
the desired file resides on the system device.

Exit from the Icon Editor Program

In order to leave the Icon Editor Program, you must select the EXIT field in the

master selection menu. Type <CONTROL/C> or <CONTROL/P> to return to
the master menu from any of the sub-menus.

Polar Test Language ICO-9

ICO/ Icon Editor Support

4.3 Using the Icon Editor Program

Once you have started the Icon Editor Program, the master selection menu is
displayed. From this menu you can select the various operating modes. You do this
by selecting the required field with the up/down arrow keys and then depressing the
<RETURN> key. (The selected field is highlighted.)

lcon Editor Program Version 0.6

Select from:

| Edit Picture |

[Test Picture |

Fr‘int Picture |

|Tcon Definition |

| Exit Program I

\, y

Figure 5: Master selection menu

Select one of the following options:
* Edit Picture

* Test Picture

* Print Picture

* Edit Icon Definitions

* Exit from Program

The following paragraphs give an explanation of these menu options.

ICO-10 Polar Software Systems

ICO/ Icon Editor Support

4.4 Edit Picture

This command causes the screen to be cleared, after which you are requested to enter
the name of the Picture Source File to be edited. This may be either a new file name
or an existing one.

r N

Enter picture file name |:]

or type '?’ toe see the directory.

\ r

Figure 6: Specifying a picture source file

The directory of the system device can be listed by typing a question mark. This is
very handy when you are not sure what the name of the file to be edited is.

Polar Test Language ICO-11

ICO/ Icon Editor Support

4 '
FDOS FD2 MACRO SYS ALIAS SYS BSXRUNFD2 SET FD2 TIME FD2
FUP FD2 FUP HLP ICON FD2 DEMO PSR DEMO .POB ELEC .IDF
DEMO PTL DEMO FD2 PICT BAK PICT PSR PICT .0BJ

Enter picture file name
or type '?' toe see the directory.

\ 7

Figure 7: Listing the file directory

Once you have entered the file name the screen is cleared again, whereupon the
picture to be edited appears. In case a new Picture Source File was specified, the
display will remain blank. The edit menu is displayed at the top of the screen.

ICO-12 Polar Software Systems

ICO/ Icon Editor Support:

'
Select: I=lcon mode, T=Text mode, L=Line mode,, K=Key mode, E=Exit.

\, 7

Figure 8: The edit mode menu

Now type I, L, T, K, or E to select from:
* Icon mode

* Line mode

* Text mode

* Key mode

* Exit to Master Selection Menu

After editing the picture, you can make the changes permanent by selecting the Exit
command from the edit menu. At this point a new source file is created (*.PSR) and
the previous source file, if any, is renamed to "*.BAK (for back-up). In addition a
compiled display file (*.POB) is generated. Note that "*" stands for the name of the
file. See figures 9 and 10.

Polar Test Language ICO-13

ICO/ Icon Editor Support

DF

¥ PSR
EDIT o
Figure 9: Creating a new picture file
DF
— *P3R
wR——f EDIT ot
* BAK

Figure 10: Editing an existing picture file

4.4.1 Icon mode

In this mode you can select icons from the Icon Definition File.

First type "S" (for Select) in order to display all the available icons. Then move the
cursor to the desired icon with the arrow keys and press <RETURN> to validate
your selection.

ICO-14 Polar Software Systems

ICO/ Icon Editor Support

* ° O o} @ a E E
- & e ﬁ @
S m o om

00 o000 ooOee®
woos el RO D

Figure 11: Selecting an icon

The picture that you are editing is displayed again and you can move the solid square
cursor with the arrow keys. Press the <RETURN > key to place the selected icon

at the cursor position.

Polar Test Language ICO-15

ICO/ Icon Editor Support

\ J

Figure 12: Putting a selected icon on the screen

The same icon may be put on the screen at another location by moving the cursor and
hitting <RETURN > again. The last icon selection remains valid until a new one is
made.

In order to speed up cursor movements, the arrow keys can be preceded with a repeat
factor. For example "100->" moves the cursor 100 pixel positions to the right.

During the editing process you may find out that an icon should be moved to another
position on the screen. To do this you must "lock" the cursor on that icon. Four keys
serve this purpose: <BACKSPACE > to lock the cursor on the first icon you placed,
"F" (Forward) to lock on the next one, "B" (Back) to lock on the previous one and
<LINEFEED > to lock on the one you placed last. When you hit any of these four
keys, the message "(Locked)" appears at the top of the screen. Now you can use the
cursor control keys to move the icon around. You may add a repeat factor if desired.

ICO-16 Polar Software Systems

ICO/ Icon Editor Supi:oﬁ'

Once the icon is where you want it, you can rotate it with the "R" Kkey, erase it with

the <DELETE> key or

fix its place with the <RETURN> key. Either

<DELETE> or <RETURN> unlocks the cursor from the icon. The message

"(Locked)" will disappear.
Summary of key commands:
S - Selects

<RETURN>

<ESC>
<BACKSPACE >
<LINEFEED >

R - Rotate

B - Back
F - Forward

<DELETE>

Polar Test Language

Displays the icons in the Icon Definition File.

Selects an icon from the Icon Definition File. Also fixes
the icon at the cursor position and unlocks the cursor.

Returns control to the edit menu.
Locks the cursor on the icon that was placed first.
Locks the cursor on the most recently placed icon.

Rotates the icon on which the cursor is locked counter
clockwise by 90 degrees.

Locks the cursor on the previous icon.
Locks the cursor on the next icon.

Deletes the icon on which the cursor is locked.

ICO-17

ICO/ Icon Editor Support

4.4.2 Line mode

In this mode you can draw lines anywhere on the screen and in any direction. A line
consists of a series of dots, or "pixels" (picture elements). The screen capacity is 244
x 640 pixels.

In the line mode the cursor is an X type cross. It can be moved around with the four
arrow keys, one pixel position at a time.

Because of the high resolution (large number) of pixels/cm) the cursor moves only
a small distance each time an arrow key is hit. To speed up cursor movements the
arrow keys can be used with a repeat factor. For example "120->" moves the cursor
120 pixels to the right.

“, 7

Figure 13: Display in line mode

To draw a line first fix the begin point of the line at the cursor position by hitting the
<RETURN> key. Then move the cursor to the desired end point. The line will

ICO-18 Polar Software Systems

ICO/ Iéon: Editot Stipport

follow the cursor like a rubber band. You can fix the location of the end point by’
pressing <RETURN> a second time.

If an existing line must be moved, then first lock the cursor on either its begin point
or its end point. Four keys can be used for this: <BACKSPACE > to lock the cursor
on the begin point of the line that was drawn first, "F" (Forward) to lock the cursor
on the next point "B" (Backward) to lock the cursor on the previous point and
<LINEFEED > to lock the cursor on the end point of the line that was drawn last.

Striking any of these four keys causes a "(Locked)" message to appear at the top of
the screen. Now move the line’s end or begin point with the arrow keys (optionally
with a repeat factor).

Note that if two line segments meet, e.g. at the corner of a rectangle, that the
Forward or Backward keys must be pressed to step from the end point of the first line
to the begin point of the next and vice versa, even though these points coincide on the
screen.

Once the desired place is reached, the line style can be changed with the "C" key (for
Change), the line can be erased with the <DELETE > key or fixed in place with the
<RETURN> key. Either <DELETE > or <RETURN > unlocks the cursor from
the line.

Polar Test Language ICO-19

ICQ/ Icon Editor Support

.

Figure 14: Line style changed to dotted line

Summary of key commands:
<RETURN>
<ESC>

<BACKSPACE >

< LINEFEED >
B - Back

F _ Forward

ICO-20

Fixes the begin point of a line at the cursor position.
Returns control to the edit menu.

Locks the cursor on the begin point of the line drawn
first.

Locks the cursor on the end point of the line drawn last.
Locks the cursor on the previous point.

Locks the cursor on the next point.

Polar Software Systems

4.4.3

I€O/ Iéon Editor Stpprt:

<DELETE> Deletes the line on which the cursor is locKed.

C - Change Changes the style of the line on which the cursor is locked.
Each time "C" is hit, the next line type will be chosen. The
available styles are solid, bold, and three types of dotted and
dashed lines.

Text mode

In this mode the Icon Editor Program behaves like a simple text editor. Move the text
cursor with the four arrow keys to the place where you want to put text. After fixing
the beginning of the text field with the <RETURN> key, type in the line of text.
The only editing feature available at this point is the <DELETE > key, which deletes
the last entered character. When the line is in order, make it permanent with the
<RETURN> key.

Existing text fields cannot be edited or moved like icons and lines. If you need to
change or relocate a text line then delete the line at the old location and retype it at
the new location.

To delete a text line first look the cursor on the text field. Four keys reserved for
this: <BACKSPACE > to lock the cursor on the first text field entered, "F" to lock
the cursor on the next text field, "B" to lock the cursor on the previous text field and
<LINEFEED > to lock the cursor on the text field that was entered most recently.
When you hit any of these four keys, a "(Locked)" message appears at the top of the
screen. Now you can erase the text field with the <DELETE > key.

Summary of commands:

<RETURN> Fixes the beginning of the text field at the cursor

Polar Test Language I1CO-21

ICO/ Icon Editor Support

<ESC>

<BACKSPACE >

<LINEFEED >

B - Back

F _ Forward

position and enables the insertion of characters. A
second <RETURN> terminates insertion and stores
the text line.

Returns control to the edit menu.

Locks the cursor on the first text field entered.

Locks the cursor on the last text field entered.
Locks the cursor on the previous text field.

Locks the cursor on the next text field.

<DELETE > Deletes the text field on which the cursor is locked.
Two types of text are allowed:
4.43.1 Regular text

This text will be displayed in the final program "as is".

4.4.3.2 Variable text

Variable text, PTL variables, can be put between the regular text. These numeric

values and strings are inserted in a picture at run-time. All variables are preceded by

an '@’ sign, followed by format information and a letter to indicate the variable to

be displayed.

1CO-22

Polar Software Systems

E.g. the text "The result is @###.#A mV"

- 1CO! Teon Edltor Stpport

will display the last PTL result with one decimal behind and 3 numbers in front of

the decimal point.

E.g.: "The result is 123.4 mV"

The variable text must be followed by a space character (if more text follows) or by

no characters at all (at the end of a text line).

4.4.3.3 PTL variables allowed

The following variables can be inserted in the text:

Letter Description

cCzZrR-T-"I@DmQUmmWmOoQwy

Polar Test Language

Default length
Result(0) 8
Units 4
Minimum limit 8
Maximum limit 8
Pass/ Fail step 4
Pass/ Fail task 4
Pass/ Fail procedure 4
Procedure name 32
Procedure version 16
Procedure date 16
Task name 32
Task number 2
Test date 15
Serial number of UUT 16
Remark string 32

1CO-33

ICQ/ Icon Editor Support

4.4.3.4 Formatting variables

4.4.4

Variables must be specified with a-format. Three different formats are allowed:

- Basic Format

This format is used exactly like the format modifier in the BASIC "PRINT USING"
statement. The first character of a format modifier must be a "#" or "S". If a Basic
format is used for strings, then only the length of the format string will be used to
define the number of characters to be displayed.

Example: @S##.##C will display the minimum with 2 numbers before and two behind
the decimal point.

- Free Format

This format uses the default formatting of Basic for numbers and strings. The length
specified will be used to cut off to total length of the result. If the format will not fit,
*’s will be used to indicate the error. The format modifier must be a number. If no
number is specified, then the default length will be used.

Example: @10A will display the result in free format, to a maximum length
of 10.

@K will display the task name with trailing spaces, to a default length of
32 characters

Key mode
In this mode you can add touch sensitive areas (keys) to the picture. These touch keys

are reverse video rectangles of 6 by 2 characters, that are aligned with the 60
rectangular touch zones on the transparent screen overlay.

ICO-24 Polar Software Systems

ICO/ Icon Editot Support

Once you have entered the key mode, a rectangular cursor with the size of a touch
key appears. With the cursor control keys you can move the rectangle to the desired
position. When you then hit <RETURN>, a message appears at the top of the
screen, prompting you to enter the key number.

This must be a number in the range of 1 through 255; when the display is used in an
application program, the linkable module will pass this key number to the user
program when the key is touched.

After entering the key number the text cursor appears in the key. You can now enter
two lines of text, although the length of these "lines" is limited by the size of the
touch key. Each of the two required, simply hit <RETURN> twice.

A touch key can be deleted from the screen by moving the rectangular cursor to it and
hitting <DELETE>.

Summary of key commands:

<RETURN> Puts a touch key at the current cursor position. Once
this is done, enter a key number (i through 255) and
two lines of text.

<ESC> Returns control to the edit menu.

<DELETE > Deletes the touch key at the cursor position.

Polar Test Language 1CO-25

¥CO/ Jcon-Editor- Support

4.4.5 Exittothe Master Menu

When;‘;;hjs command is selected, the edited picture is made permanent and the Picture
Object - File is generated. The display is cleared, after which the Master Selection
Menu appears.

4.5 Test Picture

The purpose of the test mode is that you can verify the touch key numbers and the
array index numbers for the numeric data fields (explained below). This information
is needed to correctly integrate the user interfaces that are designed with the Icon
Editor into a user program.

Selection of the test mode causes the screen to be cleared, after which you are
prompted to enter the name of the file to be tested. The directory of the system device
can be listed by typing a question mark. This is convenient when you do not
remember exactly what the name of the file to be tested is. The whole picture with
all icons, lines, keys and text will be displayed.

In order to assign values to the numeric data fields in a picture, the user program

must pass a number array to the linkable display subroutine. In the test mode, each
format field shows its index in this number array.

I€C0-26 Polar Software Systems

ICG/ icon Editcr Sapport

— —
f Trim Pot until 5 Volts reached: 4.56 ¥ —> | EEE [g]
®
Not Possible =
0000
4000
a o
a2
- o
&
[e] ®=0¢¢¢ ”“”“-”"““. =
«“ §§3 .. R N 8 B N B |
SlziE = (OO O O -
\ /

Figure 15: Testing a picture file

When a touch key is pressed, the linkable subroutine passes the key number to the
user program. In the test mode the number of each key can be viewed by touching
it.

4.6 Print Picture
This commands clears the screen, after which you are prompted to enter the name of

the file to be printed. The directory of the system device can be listed by giving a
question mark, in case you do not precisely remember the name of the file to be

printed.

Polar Test Language ICO-27

1GO/.Acon Editoy,. Support

Print picture

" Select printer type
[" |Epson FX series
Epson RX series
Epson MX-100

Tally MT 1605E
Apple writer
Start Delta 10&15
HP Thinkjet (IEEE)
HP Thinkjet (R5232)
Prowriter M8570B
Exit

-

Figure 16: Printer menu

Then the printer menu is displayed. The UP and DOWN arrow keys allow you to
select one of the following printers.

1) Epson FX Series

2) Epson RX Series

3) Epson MX-100 W 6
4) Tally MT 1065 E

5) Apple Writer

6) Star Delta 10 & 15
7) HP Thinkjet (IEEE)
8) HP Thinkjet (RS232)

1CO-28 Polar Software Systems

00/ Icon Editor Cupport

4.7 Edit Icon Definitions

This command allows you to edit the icons in the Icon Definition File.

Selecting this command first causes all icons to be displayed. With the cursor control
keys a particular icon can then be selected. Upon hitting <RETURN >, a threefold
magnification of the selected icon is displayed inside a rectangle. The rectangular
frame indicates the outer limits of the space available for the icon.

Editing an icon is similar to the line edit mode in editing a picture. The commands
for drawing lines, moving them around and deleting them are identical, but here the
lines are used to create an icon. Once the icon is finished, the icon selection page can
be displayed again by hitting the <ESC> Kkey.

\ /
Figure 17: Icon being edited

The edited Icon Definition File will be saved when you select Exit from the master
menu.

Polar Test Language ICO-29

ICO/ Jcon Efditor. Support

Summary of commands:

< RETURN> .. ‘When icop.selection page is shown: changes display to
. magnified picture of the selected icon, enabling icon
editing. When in icon edit mode: fixes the begin point

of a line in the icon window at the cursor position.

<ESC> Makes icon selection page reappear when magnified
icon is shown. Causes exit to edit menu when icon
selection page is shown.

<BACKSPACE > Locks the cursor on the begin point of the first line
drawn.

<LINEFEED > Locks the cursor on the end point of the last line drawn.

B - Back Locks the cursor on the previous end or begin point.

F _ Forward . Locks the cursor on the next begin or end point.

<DELETE > Deietes the line on the end or begin point of which the

cursor is locked.

4.8 Exit from program
When you éelect the Ex'it\(_J.ptipn from the master menu, execution of the Icon Editor

program is terminated. If you modified any icons, the changes are made permanent
in the Icon Definition File.

ICO-30 Polar Software Systems

5.1

5.2

5.3

'IC7/ Teoa Editor Support:

USE OF ICONS IN PTL

After a Picture OBject File is generated, it can be used within a PTL procedure. For
this purpose the following commsnds are added to PTL:
Display an icon
ICON ("Mode=Display;Picture-file-name=’'...’")
This command displays the icon picture with the name specified. The default
extension is .POB '
Display text and numbers
ICON ("Mode=Update")
With this command the variable text and numbers for the picture will be updatéd. The

text and numbers are specified in the text fields of the icon picture and can be results
and other PTL globals. \

Get the key touched
ICON ("Mode=Get_fkey")
This command will get the function key value, as specified in the icon picture, if the

screen is touched. If the screen is not touched, a value of "0" wiil be returned. The
function key will be returned in a new import PTL variable Fkey %.

Polar Test Language ICO-31

1G9/ Jcon Editor Support

5.4 Wait until a valid key is touched
ICON ("Mode=Wait_fkey")
This command will wait until an operator touches a valid (non zero) function key, as
specified in the icon picture. The function key will be returned in a new import PTL
variable Fkey%.
5.5 Clear the screen

ICON ("Mode=Clear-screen")

With this command the screen will be erased.

5.6 Example
The following example will display a icon picture "Test". In this picture a

measurement is displayed continuously until a valid function key is touched. Then the
screen is cleared.

ICO-32 Polar Software Systems

iCQ/ Tcon Editor Support

SUB Test (Task)
On error Subret
Import Fkey%

Proc ("Name=icon_test")
Icon("Mode=Display;Picture-file-name='Test’")
Loop
Meas ("Instr=Dmm;At=input")
Icon ("Mode=Updatnr")
Icon ("Mode=Getkey")

Until Fkey%<>0

Icon ("Mode=Clear-screen")

End_Proc
SUBEND

Polar Test Language ICO-33

NET/ Network Support

1 CONTENTS

1 CONTENTS ..ttt e e e e e e et e e e e e e e et NET-1
2 THE PTL NETWORK ittt ittt ennnnn NET-2
2.1 Introductionttt e NET-2
2.2 Capabilitieso i e e NET-2
3 OVERVIEW . .. ittt ittt et e e e et e e NET-3
3.1 Hardware i i e e e e e NET-3
3.2 SOftWAIE e e e e e e e e e e NET4
4 INSTALLATIONttt it ittt et e et e tee e NET-6
4.1 NOdeS . . v vttt it ettt et e e e e e e e e, NET-6
4.2 17228etUP . . i e e e e e e e NET-7
43 Cablingttt e e e e NET-7
4.4 Fileserver . . . v v v ittt it e e e e e e e e e e e NET-7
5 OPERATION FILESERVERttt iiiinnnnnn. NET-10
5.1 Startup e e e e e e NET-10
52 Systemstatuswindow NET-11
53 Userstatus windowt v ittt ittt NET-13
5.4 Configuration windowt ennnenn.. NET-15
6 NETWORK UTILITY PROGRAMS it ii i i NET-16
7 WARNING MESSAGES ittt ittt e e e e e NET-18

Polar Test Language NET-1

NET/ Network Support

2.1

NET-2

THE PTL NETWORK

Introduction

This manual describes how to use an RS232 network for the Polar Test Language
PTL Version 1.3.

This information is supplied as option :
- PTL/NET PTL Network support
- PTL/SER Network server Software

2.2 Capabilities

In order to be able to share both files on different PTL systems, as well as resources
on an IBM-PC/XT/AT compatible computer, PTL is extended to support these
requirements through a network.

With an XT as the network fileserver connected to the network, it’s printer, floppy
disk as well as it’s winchester harddisk become available to all PTL systems. Files
can be written by one system, and read back to another. Also, one file may be written
to by several other PTL systems, in order to build a large database etc. Each PTL
user may be ’logged in’ to it’s dedicated own subdirectory on the harddisk, or all
users may share the same directory.

On the fileserver’s display screen a windowing based operator interface will allow to
display several status pages, as well as to configure the network’s transmission
characteristics.

The use of the network itself is made transparent to the user by means of additional

(network-) devices PCO..PC9. In this manner, all of the flexability of PTL will be
maintained completely.

Polar Software Systems

NET/ Network Support

3 OVERVIEW

3.1 Hardware

UISERL

[

B

Node

Coax high speed transmissie /\’

Node FILESERVER

IBM-PC
COMPATIBLE

Figure 1

The network itself consists of several intelligent "Clearway" nodes, each with an RS-
232 interface to a computer, and a fast, coaxial connection between each node.
Maximum transmission speed between two nodes is 98000 Baud. Transmission speed
maximum of the RS232 interfaces is 9600 Baud. Each node is known to another node
by it’s individual address. Connections can be made from one node to another, where
the node’s software is taking care for buffering of data sent back and forth.

Polar Test Language NET-3

NET/ Network Support

32

NETH4

The network consists of several users (PTL systems) and one IBM-compatible
network fileserver, connected together through the nodes, as figure 1 demonstrates.

Software

As far as software concerns, the extensions required to support the network will
appear completely transparent in PTL, by means of an additional set of devices
PCO0..PC9. Each device has a dedicated use in the fileserver, as the table in the
following page will show.

PTL Devices versus MSDOS drives table

Polar Software Systems

NET/ Network Support

On the display screen on the MS-DOS compatible computer, the file-server, several
status pages will allow an operator to view the status of any of the connected (PTL-)
users, as well as the status of the system itself. From this console, some modifications
to the networking characteristics are allowed as well.

Polar Test Language NET-5

NET/ Network Support

4.1

NET-6

INSTALLATION

Nodes
Each Clearway node may be configured in software for it’s (interface) transmission
characteristics. The following protocol is required for the use with the fileserver

software:

9600 Baud interface speed
8 databits, No parity, 1 stopbit

Modifications of the protocol characteristics can be done in any terminal emulating

software package, such as TTY.FD2 (1722), or PROCOMM.EXE (MS_DOS). When
setup correctly, the protocol characteristics may be saved in non-volatile memory.

All users have to be set to a unique address. This address is included in the setup
string as follows:

ss-9XB9XuuD . POLAR - SLAVE -uu

where ss means server (always 99)
uu means user (01..98)

Example: user 03: setupstring =

99-9XB9X03D.POLAR-SLAVE-03

The fileserver’s node should be set to the following configuration:

Polar Software Systems

4.2

4.3

4.4

NET/ Network Support

00-9XB9X99Z@POLAR-MASTER-99

The commands to setup the node are as follows :

TTY<CR> Start the terminal emulation

“D Go to control mode of the node
N New setup string

No Answer to prompt

<New characters > Type until all changes done

Y Answer to prompt

1722 setup

Port is KB1:, baudrate = 9600, 8 bit, No parity, 1 stopbit, Stall in- and output
disabled, 2 sec timeout.

The startup commandfile should in the 1722 slave should setup the 1722A port for
9600 baud 2 sec timeout, then login in the network with the utility program LOGIN
USERO1 and then run the MASTER program to select the PTL test programs. At the
end of the day, the command LOGOUT will close all open files.

Cabling

Connection Clearway network to 1722 A with rs232 modem cable (straight 1 to 1) and
to Server computer to COM1 port via 9 pin to 25 pin (modem) cable.

Fileserver

The network fileserver should be installed once from the installation floppy disk onto

Polar Test Language NET-7

NET/ Network Support

the winchester disk C: as follows:

After system startup, insert the installation floppy in drive A:, and type at the DOS-
prompt the following command:

A:INSTALL<CR>

Automatically the following directories/ files are being created/ copied:

C:\FSERVER Network directory
FSERVER.EXE Network fileserver software
FSERVER.CNF Configuration file
NETSTART.BAT Startup batchfile

C:\FSERVER\USERO(1 User 01 subdirectory
C:\FSERVER\USER(2 User 02 subdirectory

C:\FSERVER\USER(09 User 09 subdirectory

The installation procedure will take a few moments. When the DOS-prompt
reappears, installation is finished. At this time, the CONFIG.SYS file in the root-
directory has to be edited, to correct the number of allowed open files. The next
commands may be added, edited:

FILES=nn
BUFFERS =mm

nn Number of open files (20)
mm Number of file-buffers (20)

NET-8 Polar Software Systems

NET/ Network Support

The number of open files in the file-server is set by file-server startup at the
commandline as follows:

FSERVER /F:xx /U:y

where xx is the total maximum number of files for all users together to be opened at
the same time, and y is the maximum number of files for one user to open at a time.

When the commandline argument /F:xx is altered, the configuration file
CONFIG.SYS should be edited as well.

NOTE: Whenever the CONFIG.SYS file is edited, the computer should be
rebooted to take the changes into effect.

Polar Test Language NET-9

POLAR SYSTEMS

OPTION PTL-NET

PTL Network Support

NET/ Network Support

5 OPERATION FILESERVER

5.1 Startup

A startup batchfile is provided with the system, to automate the startup procedure of

the network. The following tasks are executed:

Each networkdevice PCO..PC9 is initialized to a port, device, or path. For instance,
the following example may be used:

PTL

PCO:
PC1:
PC2:
PC3:
PC4:
PCs:
PCé:
PC7:
PC8:
PC9:

Initialization

MODE LPT1:132
MODE LPT2:80
MODE COM2:9600,N,8,1,P

SUBST D: C:\FSERVER
SUBST E: C:\DOS
SUBST F: C:\

SUBST G: A:\TESTDATA

Device/Path

Printer 1
Printer 2
Serial dev 2
Floppy A:
Floppy B:
Winchester C:
Sub. drive D:
Sub. drive E:
Sub. drive F:
Sub. drive G:

To activate the bachfile, type at the commandline prompt the following command:

NETSTART<CR>

and the above mentioned initializations will take place.

The at delivery time included file NETSTART.BAT may be altered to the specific

NET-10

Polar Software Systems

5.2

NET/ Network Support

needs of the application; for instance, the substituted drives may be altered etc. Any
ASCII text-editor such as EDLIN.COM can alter the contents of NETSTART.BAT.

After the startup has finished, the main window of the fileserver is presented on the
fileserver console. Three possible windows may be accessed from here :

- System status window
This window contains information about the status of the fileserver;

- User status windows
These windows contain information about each individual user;

- Configuration window
Network interface characteristics may be altered in this window.

All windows are updated with data from the PTL networking systems instantaneously,
e.g. while selecting the status window of user 1, the window is updated with live data
etc.

System status window

This window may be selected from the main pulldown menu, and contains the
following items :

- Transmit Queue Size
The RS-232 outbound space will be displayed here. Enough space
should be available to process commands from the users (>2048
bytes);

- Transmit Status

Polar Test Language NET-11

NET/ Network Support

NET-12

The last occurred transmit error will be displayed here; this item
should be normally O (no error). A serial error may occur at small
transmit space or any hardware errors.

Transmit Errors
This item displays the count of transmit errors. At each error, this item
is incremented by one, and should therefore be normally 0.

Receive Queue Size
Analogue with the transmit queue space, the receive queue space
displays the inbound space. During receival of messages from the PTL
systems, the receive space will temporarily decrease, and should be
large enough to process a complete message from a user.

Receive Status
Whenever a protocol error occurs at receival of messages from a user,
this item will contain a non-zero value.

Receive Errors
Every time an error occurs at data receival, this errorcount will be
incremented by one.

Last OpCode
The last received operation code will be displayed in this field.

Last User
The user number of the last received message will be displayed in this
field.

Sequence number
For statistical overview, every time a command is received, this

Polar Software Systems

NET/ Network Support

sequencenumber is incremented by one.

- Usage
This number represents the number of open filehandles of the
fileserver, and therefore represents a usage- indication of the
fileserver.

- User messages
Messages as received from a user are displayed on a binary base in
this field.

The system status window may be exited at any time by pressing a key on the

keyboard. No interferance will take place with the receival and handling of user-
messages because of the low priority of this keyboard task.

5.3 User status window

The user status window represents the status of a specific user. The following fields
are available:

- Status
The status field in the user window represents the login state : either

’Logged In’ or ’Logged Out’.

- OpCode
The last issued command from a user is being displayed in this field.
- Count

Each time a user is sending a message to the fileserver, this count is

Polar Test Language NET-13

NET/ Network Support

NET-14

incremented by one. The count is reset at each login command.

Directory
The current directory, which a specific PTL-system may use, will be
displayed in this field.

Userdata
Each command, as received from a user, will be displayed in this field.
Since the protocol in use is a binary one, some non-printable ascii
characters will be displayed as well as normal ’printable’ ascii.

Replydata
Each command from a user will imply a specific response from the
fileserver to the user in question. This reply message will be displayed
here, and since the message is also using a binary protocol, some non-
printable ascii characters will be displayed in this field.

Filename
At each file-related command, the name of the corresponding file will
be displayed in this field.

Type
With each file, a filetype is defined as well, such as ASCII, Device
LPT1:, Device LPT2: etc. This filetype is displayed in the field:
*Type’.

Access
A file’s access rights are displayed in this field. The access rights are:

"R’ for read only, "W’ for write only, or A’ for append.

Handle

Polar Software Systems

NET/ Network Support

Each file-related operation has a corresponding filehandle number,
which is displayed in this field.

A user status window may be exited at any time by pressing a key on the keyboard.
No interferance will take place with the receival and handling of user-messages
because of the low priority of this keyboard task. At this point, another selection may
take place.

5.4 Configuration window
In the configuration window, the following fields may be altered:

- Networkport (COM1/COM2)
- Server Network id. (1-99)

- Baudrate serial port

- Parity (N/E/O/S/M)

- Databits (5/6/7/8)

- Stopbits (1/2)

- Transmit buffer (2..60000)

- Receive buffer (2..60000)

Each parameter is affecting the transmission characteristics of the fileserver’s node,
and mey be altered during operation. The current parameters are displayed in the
corresponding fields. By entering the <Ctrl> and <CR > -key at the same time, the
menu is exited, and the new parameters will be actualized instantly.

Warning: All messages currently in the receive-queue of the fileserver, will be

lost when parameters are modified, so that either one of the parameters
should be modified at system startup only.

Polar Test Language NET-15

NET/ Network Support

6 NETWORK UTILITY PROGRAMS

For the communication with the network server a number of 1722 FDOS utility
programs can be used.

These programs can be used in a startup commandfile to make contakt with the
network server and to setup the right environment (sub directory).

- LOGIN
To log into the network server and to set the work directory to G:USERxx, where xx
is the user number (node number).

-CD G:<PATH>
To change the work directory on the network server to G: <PATH>.

-DIR G:<PATH>
To give a directory of the directory G: <PATH>. This directory listing can be as
usual in the IBM world with size and date or with a /Q flag in condensed format with
only the file names.

- TYPE <NAME>

To see the file <NAME> on the screen. Note that "LIST.PTL" and
"PC3:LIST.PTL" are both on the network directory, and "EDO:LIST.PTL" is on the
local E-Disk.

- PRINT <NAME>

To print the file <NAME > on the network printer (LPT1:). Note that "LIST.PTL"
and "PCS:LIST.PTL" are both on the network directory, and "EDO:LIST.PTL" is on
the local E-Disk.

NET-16 Polar Software Systems

NET/ Network Support

- COPY <NAME1l> [<NAME2>]

Will copy <NAME1> to <NAME2>. Note that the commands COPY
PC8:LIST.PTL EDO:LIST.PTL and COPY LIST.PTL will both copy the file
LIST.PTL from the server to the local E-Disk. (If the second name is not given, the
local E-Disk is assumed.)

- DEL <NAME>
Will delete the file <NAME > from the server working directory.

- LOGOUT
Will close the path to the server.

Polar Test Language NET-17

NET/ Network Support

7 WARNING MESSAGES

Each command, or message from a user may introduce a possible error- or warning
message.

For PTL-systems, some error or warning messages will not be returned, since PTL
itself takes care for the file-server protocol.

The following messages may be returned to indicate an error:

- Bad open argument
The file could not be opened due to a wrong open mode (Not a 'R’, ’A’, or 'W

- Bad file number, filehandle
The filehandle as sent to the fileserver, is currently not attached to a file. Open the
file before usage.

- Bad file type
The file specified has a non-valid type. Legal types are: ASCII, Device LPT1:,
Device LPT2: or Device COM2:

- Bad open mode
The file related to the command has a wrong open-mode, such as an attempt to write

to a file, opened for read only etc.

- Bad directory
The directory as specified in a command does not exist.

- Device file could not be opened
The device (spool-)file as specified (LPT1:, LPT2: or COM2:) could not be opened,

NET-18 Polar Software Systems

NET/ Network Support

due to a harddisk error.

- EOF
An attempt was made to read from a file, after it has encountered the end of file
mark.

- Error writing data, Write error
A write to a file could not be executed, due to file-error(s).

- Error reading from file, Read error
A read from file could not be performed, due to file- error(s).

- Error in logout procedure
An error occurred during the logout procedure, at which time all opened files are
closed.

- Error while printing
An MS-DOS error occurred during printing to a specified print-device, such as
LPT1:, LPT2:, COM2:. Check the printer connected.

- File not found
The file(s) searched for in a directory related command could not be found.

- File could not be closed
The file specified could not be closed. Possibly the file was not open, or a DOS error
occurred during closing.

- File could not be deleted

The file specified could not be deleted. The file could be write-protected, or not-
existing.

Polar Test Language NET-19

NET/ Network Support

- File could not be opened
The file in question could not be opened. Several causes can create this message, such
as disk full, bad filename etc.

- No more free filehandles left
An attempt was made to open more files than the file-server can handle. See
installation chapter on the number of open files.

- Too many files opened
A specific user is not allowed to open more files than specified at startup. (See
installation). An attempt was made to open more files at a time.

- Unable to create TMP file
A tempory filename could not be opened, so a spool-file could not be created. This
error should normally not occur.

- User path allowed with G: only !

The command Changedirectory (CD), or Login are used without the fixed prefix
"G: ".

NET-20 Polar Software Systems

	00-0000
	00-1
	01-0
	01-1
	01-2
	01-3
	01-4
	01-5
	01-6
	02-0
	02-1
	02-2
	02-3
	02-4
	02-5
	02-6
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-00
	08-01
	08-02
	08-03
	08-04
	09-00
	09-01
	09-02
	09-03
	09-04
	10-00
	10-01
	10-02
	10-03
	10-04
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-00
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	DRV-00
	DRV-01
	DRV-02
	DRV-03
	DRV-04
	DRV-05
	DRV-06
	DRV-07
	DRV-08
	DRV-09
	DRV-10
	DRV-11
	DRV-12
	DRV-13
	DRV-14
	DRV-15
	DRV-16
	DRV-17
	DRV-18
	DRV-19
	DRV-20
	DRV-21
	DRV-22
	GUI-00
	GUI-01
	GUI-02
	GUI-03
	GUI-04
	GUI-05
	GUI-06
	GUI-07
	GUI-08
	GUI-09
	GUI-10
	GUI-11
	GUI-12
	GUI-13
	GUI-14
	GUI-15
	GUI-16
	GUI-17
	GUI-18
	GUI-19
	GUI-20
	GUI-21
	GUI-22
	GUI-23
	GUI-24
	GUI-25
	GUI-26
	GUI-27
	GUI-28
	GUI-29
	GUI-30
	GUI-31
	GUI-32
	GUI-33
	GUI-34
	GUI-35
	GUI-36
	GUI-37
	GUI-38
	GUI-39
	GUI-40
	GUI-41
	GUI-42
	GUI-43
	GUI-44
	ICO-00
	ICO-01
	ICO-02
	ICO-03
	ICO-04
	ICO-05
	ICO-06
	ICO-07
	ICO-08
	ICO-09
	ICO-10
	ICO-11
	ICO-12
	ICO-13
	ICO-14
	ICO-15
	ICO-16
	ICO-17
	ICO-18
	ICO-19
	ICO-20
	ICO-21
	ICO-22
	ICO-23
	ICO-24
	ICO-25
	ICO-26
	ICO-27
	ICO-28
	ICO-29
	ICO-30
	ICO-31
	ICO-32
	ICO-33
	ICO-34
	NET-0
	NET-01
	NET-02
	NET-03
	NET-04
	NET-05
	NET-06
	NET-07
	NET-08
	NET-09
	NET-10
	NET-11
	NET-12
	NET-13
	NET-14
	NET-15
	NET-16
	NET-17
	NET-18
	NET-19
	NET-20

