
MenuBASIC ~

Program Development Software

For Interactive Programming
and Automatic Command Implementation

For Use with the 1722A Instrument Controller
and the 1752A Data Acquisition System

FLARE
Fluke Application Software

7 “Ne Ot . eer ¥

Model Number 17XXA-903 (Compiled Version)
Model Number 17XXA-905 (Extended Version)
P/N 792960
March 1896
Copyright 1986 John Fluke Mfg. Co., Inc.
All Rights Reserved

TABLE OF CONTENTS

Page

IMtroductionsscsscecsscosceccscscsssccscsscscscsscscssseceses 1
How MenuBASIC Workscccscssssscsccscecscsesscvens 2
Default Devicec.ccccsccscsscsccscccccccsscccsccscsess 3

System Requirementsccccsscccssscscececsecscscsceceees 3
Hardware Requirementsccecsscscsscccscsccssscees 3
Software RequireMentsccecccccccccsccccccccceccece 4

System Softwareccccccecces eeccvesees oececcccceces 4
Language Softwarecccee. a Oocccccccccersccccecs JH
MenuBASIC Software sececcccccccecececsceces 3

How To Use This Manualscscccecsseess seecccccececees 5
Notation Conventions dcnccccccsccscssscccccosesccoceces 6

Getting Started sesecesccnscesccssccsscessceees sevens
Before You Beginccccccoscccccccvcvccccccecccccccccecs 8
To Create A Working Disk ac secccceccccsees sceccceseceecs 9
A Sample Program sevecsccccccees sececcececccscosens ww. 10
Entering MenuBASICcsccscessssecscesees seensesseces 15
Configuring The E-Diskcscscsesessscssssscsecees 16

Configuring The E-Disk For Compiled BASIC. 16
Configuring The E-Disk For Extended BASIC. 17

Writing And Editing A Programcccces eececccces we. 20
Creating A New Program: The C Command 20
Entering The Editor: The E Command ween |
Using The Editor ...cccccccsssssssscsessscecccsscscececeees seas 21

Command Mode wissccccscscscscscccccsssecccscscececs wee 21
Moving Blocks Of Text ...s.scsscoscesesees seeesoes wee 23
Exiting The Editorcccccsccscscccceeces ve oeeeoecees 24

Programming ETrorssssscsscsscsscssssccescsscnscescess 24
Beautifying Your Program: The B Command 25

Saving And Running A Programccccsssssseseceneesees 26
Saving Your Program: The S Command+00 eT
Recalling Your Program: The O Command e7

TABLE OF CONTENTS (CONT)

Page

Listing Your Program: The L Command 28
Running Your Program: The R Command 29
Compiling Your Program: The CO Command 29
Changing the Default Library: The LI Command .. 30
Chaining Programs Togetherccscccsscccescseves 30

Using The Language006 sevccceee eo ccceccccccccceseeecs 31
BASIC Language Syntaxsse0 eo ceccecccccccccceces 31
BASIC Compiler and Extended BASIC Compiler

Optionsscccsecsscees oeecccees oeececccceccrcccccsecceecs 32
Commands That Should Be Avoided eoeccccccscescccoece 33

SET SHELLccccccccccsccccccccece oteccccscccccccscceenes 33

ASSIGN SYSTEM DEVICE . ocecccrccesscccoceseescsscces 33

EXECUTE oe beveccssccceccccscccccceseccosnccssccecos 33
Linking Predefined Modules ecesesssesscssssccosees 34
EYTOrscccccccescscsscccecccsccccsccccccces secccesees seeceseecees ST

Program ETTorsccccccscccscccsccvcccsecccssvccccessccescees OT
MenuBASIC Errorssscscscsscsscscees bosccccccceccecs sees 38

Using A Printercccecscsccsccscsees occcececcccecsccccees woe 39
Setting Up A Printer: The SP Command0.00. 39
Selecting The Printer Port: The PP Command . oseoe 39
Printing Your Program: The P Command wo 40
Printing Error Messages: The PE Command ~ 40
Printing Other Datasscecseseceeee seccsescccesescececs 40

File Utilities: The F Command oo cccccccsccccccces woe 41
Automating Start-Up And Other Functions 41
Appendices

A. The Editor: A Quick Reference Guide0. ~ A- A

B. Program Listings eeeecce SPCOSCHCHEHSOHHHSOO HOE SECS eeoeecacoes eco B-

INTRODUCTION

MenuBASIC is a language tool designed to simplify program
development for the Fluke 1722A Instrument Controller and
the 1752A Data Acquisition System. MenuBASIC provides a
simple, interactive environment with a three page menu for
command selection. Using only a few key strokes, the
programmer can command MenuBASIC to automatically
compile, link and run programs. With menu selection,
Single key commands can perform functions that may require
long command strings on other systems.

There are two versions of MenuBASIC: one for users of
Fluke Compiled BASIC (CBASIC) and another for users of
Fluke Extended BASIC (XBASIC). Because MenuBASIC
functions similarly in both applications, this manual is
written for users of both CBASIC and XBASIC. Both
versions of MenuBASIC provide access to the powerful BASIC
language, complete with advanced structures that make
programs more logical, more readable and easier to debug.

MenuBASIC also provides features that simplify systems
development such as full IEEE-488 support and a
multi-level interrupt structure. A powerful editor is
provided that can search, replace, cut and paste, and
interactively merge programs.

MenuBASIC provides complete file and serial port control,
allows you to link other BASIC, FORTRAN or Assembly
Modules, and to create command files to automate common

tasks.

MenuBASIC

How MenuBASIC Works

MenuBASIC software utilizes standard Fluke programs,
including the Floppy Disk Operating System (FDOS), Editor
(EDIT.FD2), File Utility Program (FUP.FD2) and Set Utility
Program (SET.FD2). In addition, the CBASIC version uses
the standard BASIC compiler (BC) and linking loader (LL).
The XBASIC version uses the extended BASIC compiler
(XBC) and the extended linking loader (XLL).

MenuBASIC automatically creates three versions of a file.
The first version is the source file. The source file is
created when you invoke the editor and is given the
extension .BAS. This is the file that you can edit.

The second version of the file, the object file, is

created when you exit the editor. The compiler takes the
source file and changes it into a format that the linking
loader can use. The object file has a .OBJ extension in
CBASIC and a .OBX extension in XBASIC.

The final version of the file is an executable file, also

created when you exit the editor. The executable file is
required for the operating system to be able to run your
program. The linking loader creates this file, gives it a
.FD2 extension and automatically deletes the object file.

MenuBASIC is simple to use because it automatically does
all of these steps for you. However, if you change a file
outside of the MenuBASIC program, it will not be
automatically compiled and linked and your existing
executable file will not be changed. In order to run the
new file, you will have to use the CO command or go
through the steps required to compile and link the program
yourself. See the 1722A or 1752A System Guide for more
information on compiling and linking a program.

MenuBASIC

Two BASIC programs make up MenuBASIC: MenuBASIC
itself, and ATOCMP, the automatic compilation program.
During most operations, MenuBASIC is the system
shell. MenuBASIC sets itself to the shell so that
control will always return to MenuBASIC, rather than
FDOS, when a program has finished execution.

After creating or editing a program, the ATOCMP program
creates two command files: AUTOBC.CMD, which performs
the compilation and AUTOLL.CMD, which performs the
linking. These command files are then automatically
executed and control is returned to MenuBASIC.

Default Device

MenuBASIC performs all operations on the E-Disk™.
Because E-Disk is faster and provides more memory than a
floppy disk, automatic compilation is faster and more
efficient. MenuBASIC assigns the E-Disk (ED0:) as the
system device.

Note, however, that most MenuBASIC commands (such as Save

and Old) will use the system device that was in effect
when MenuBASIC was invoked. For example, if you insert a
MenuBASIC disk and type mbasic at the FDOS> prompt,
once MenuBASIC is loaded, EDO: will be the system device,
but MenuBASIC will consider the floppy disk (MF0:) to be
the default device.

SYSTEM REQUIREMENTS

Hardware Requirements

MenuBASIC requires a 1722A Instrument Controller or 1752A
Data Acquisition System for proper functioning. In this
manual, the 1722A and 1752A will both be referred to as

the 17XXA.

MenuBASIC

MenuBASIC requires at least 450 blocks of E-Disk for
operation. To meet this requirement, optional memory
modules must be installed on the 17XXA. For programs
with less than 50 blocks (25K bytes) of source code, the
17XXA-006 256K-byte RAM Expansion is adequate. If
larger programs are anticipated, the 17XXA-007 512K-byte
RAM Expansion is recommended.

Software Requirements

In order to power-up or restart the 17XXA and to invoke
MenuBASIC, the following software must be installed on
the system device:

e System Software
e Compiled or Extended BASIC Software
e MenuBASIC Software

System Software

System Software is shipped standard with the 17XXA, and
includes the operating system (FDOS), the File Utility
Program (FUP), and the System Editor. The following
system software is required to run MenuBASIC;:

FDOS2.SYS FUP.HLP
MACRO.SYS_ SET.FD2
FUP.FD2 EDIT.FD2

Language Software

The Compiled BASIC software package (17XXA-203)
includes the BASIC Compiler (BC) and Linking Loader (LL).
The Extended BASIC software package (17XXA-205)
includes the Extended BASIC Compiler (XBC) and Linking
Loader (XLL). The following software is required to run
Compiled MenuBASIC:

MenuBASIC

BC.FD2 BSLOAD.OBJ
LL.FD2 BASIC.LIB
BSCRUN.FD2

The following software is required to run Extended
MenuBASIC:

XBC.FD2 BSXRUN.FD2
XLL.FD2 BASIC.LIB

MenuBASIC Software

The programs provided on the MenuBASIC disk are:

MBASIC.FD2 HEXMOD.BAS
ATOCMP.FD2 HEXTST.BAS

HEXMOD.BAS and HEXTST.BAS are not required for
MenuBASIC operation, but are required for the sample
program provided in this manual.

HOW TO USE THIS MANUAL

This manual presents information on the use of MenuBASIC
program development software. To help you to get
acquainted with the manual, this section presents manual
use instructions and a chart of conventions that are used
in the Flare software manuals. The next section explains
how to get started in MenuBASIC. To provide an overview
of MenuBASIC operation, a sample program is included.
Other sections explain how to use the editor to write and
edit a program, and how to save, recall, compile, link and

run your program. Tips on BASIC language syntax and
options follow. Printer use and automated start-up are
also covered. A quick reference guide for the editor and
program listings for the sample program are presented in
the appendices.

MenuBASIC

Notation Conventions

Fluke manuals use certain conventions to illustrate
keyboard entries and to differentiate these entries from
surrounding text. The braces, { }; brackets, []; and
angle brackets, < > are not part of the key stroke
sequence and should not be typed in.

<XXX >

<xxx>/y

[xxx]

XXX

{xxx}

Means "press the xxx key". Example: <RETURN>
indicates the Return key.

Means "hold down key xxx and then press y”.
Example: <CTRL>/C means to hold down the key
labeled CTRL and then press the key labeled C.

Indicates an optional input. Example: [input
filename] means to type the name of an input
file name. If no file name is typed, a default
name will be used.

Means to type the name of the input as shown.
Example: BASIC means to type the program
name BASIC as shown. |

Indicates a required user-defined input.
Example: {device} means to type a device name
of your choice, as in MFO: for floppy disk
drive 0.

MenuBASIC

(xxx) This construction has two uses:

1. As a separate word, (xxx) means that xxx
is printed by the program. Example:
(date) means that the program prints
today's date at this point.

. Attached to a procedure or function name,
(xxx) means that xxx is a required input

of your choice; the parentheses must also
be typed in. Example: TIME(parameter)
means that the word TIME must be typed
in, followed by a parameter that must be
enclosed in parentheses.

MenuBASIC

GETTING STARTED

This manual is written with the assumption that you are
familiar with the Fluke 1722A Instrument Controller or the
Fluke 1752A Data Acquisition System and either the Fluke
Compiled BASIC (CBASIC) or Fluke Extended BASIC
(XBASIC) language. If you are not, please read the
following materials:

e Getting Started: A New User's Guide to the 17XXA
Instrument Controller.

e The 17XXA System Guide.

e The CBASIC manual, or the XBASIC manual.

Before You Begin

Before you begin, you will need to make a backup copy of
the MenuBASIC disk and put the original copy of the disk
in a safe place.

To make copies of your disks, use the Touch-copy program
(Tcopy). Tcopy is an easy to learn, menu-driven program
that utilizes the Touch-Sense Display to transfer files
between the 17XXA's file-structured devices. Tcopy is
explained in more detail in the 17XXA System Guide.

As shipped, the MenuBASIC disk will not independently load
and run. You must either create a MenuBASIC working disk
or copy the MenuBASIC executable files onto the system
device (SY0:).

MenuBASIC

To Create A Working Disk

Creating a working disk will allow you to load and run the
MenuBASIC program on your 17XXA using only the working
disk.

1. Turn on the 17XXA.

2. Load the system disk.

3. Type

FDOS> tcopy <RETURN>

4. Follow the simple instructions, using the individual
option, to copy the following executable files from
the system disk onto your working disk:

FUP.FD2 EDIT.FD2
FUP.HLP FDOS2.SYS
SET.FD2 MACRO.SYS

5. If you will be using CBASIC, copy the following files
from your CBASIC backup disk:

BC.FD2 BSCRUN.FD2
LL.FD2 BASIC.LIB
BSLOAD.OBJ

If you will be using XBASIC, copy the following files
from your XBASIC backup disk:

ABC.FD2 BSXRUN.FD2
ALL.FD2 BASIC.LIB

MenuBASIC

6. Now copy the following files from your MenuBASIC disk
onto your working disk:

MBASIC.FD2 HEXMOD.BAS
ATOCMP.FD2 HEXTST.BAS

A Sample Program

A short tutorial is provided in this section to familiarize
you with MenuBASIC. A program is compiled, linked and
run automatically by the MenuBASIC routines.

The program HEXTST and the subroutine HEXMOD are
provided on the MenuBASIC disk. HEXTST converts
hexadecimal numbers into decimal numbers, calling the
subroutine HEXMOD, which is responsible for the
mathematical calculations. The subroutine HEXMOD must
be linked to HEXTST for HEXTST to run correctly.
Program listings for HEXMOD and HEXTST may be found
in Appendix B.

To compile and run HEXTST.BAS the following steps must
be performed:

e Compile the subroutine HEXMOD
e Compile the program HEXTST
e Link HEXTST and HEXMOD together
e Run HEXTST

1. To begin, enter MenuBASIC by typing:

FDOS> mbasic <RETURN>

MenuBASIC will begin its start-up routines and will notify
you if insufficient E-Disk space was allocated before
MenuBASIC was invoked.

-10-

MenuBASIC

If this is the case, the screen will display:

You have XXX blocks of E-Disk allocated, but

MenuBASIC needs at least 450 blocks.

Type a 0 to exit MenuBASIC and prevent E-Disk
configuration, or enter number of blocks you wish to
allocate?

@. Type in the number 450, and MenuBASIC will copy the
files that it needs to run from SY0O: onto E-Disk. It

will also set MenuBASIC as the shell. While MenuBASIC

is copying the files, the screen will flash the message:
Loading MenuBASIC System.

3. The screen will now display the first of three menu
pages. (See Figure 1 for an illustration of the first
page of the menu.) Press <RETURN> twice to see the
commands available on the other two screens.

Compiling And Linking HEXMOD

1. Since HEXMOD is an existing file, select the Old
(recall) command at the Enter Command? prompt by
typing:

o hexmod

This will recall the file HEXMOD.BAS. The message
User program: HEXMOD.BAS will appear in the upper
right-hand corner of the screen to indicate that
HEXMOD is the active program.

2. At the Enter Command? prompt, enter the editor by

typing

e

-l|llj-

MenuBASIC

(
a
e
d

4Ssalj)
U
a
a
u
0
g

NUuBW
J
I
S
y
a
n
u
e
W

euy,
“|

a
a
n
s
t
y

ZpuewwWwo)
3w938qUq

SUOT}JO9ETIS
suOW

UOJ
NuNIaY

eddy

w
e
u
s
o
u
d

unok
4
u
t
d
g

-

w
e
u
s
o
u
d

unoA
uny

-

w
e
i
d
o
u
d

u
a
u
j
o
u
e

([T[Te09d)
PTO

w
e
a
3
o
u
d

aunoAk
4Ipyq

w
e
i
s
o
u
d

Mau
B

3
4
e
a
u
)

'

OWom a

Q
:UOTSTAaY

UOTSUa\
p
a
T
I
d
w
o
)

--
dJISyqnuew

exnTY

-~12-

MenuBASIC

This puts you into the system editor with the current
user program, HEXMOD.BAS. Notice the first two lines
of the program.

'# /nl/e

'# m

The first line tells MenuBASIC that the program has no
line numbers and that it uses extended syntax.
Extended syntax means that the source code contains
extended language features such as continuation lines,
statement labels, long variable names, true
subroutines, and extended control statements. The

second line tells MenuBASIC that the following program
is a module, that it should not be linked, and that no

.FD2 file should be created for the module. The rest
of the program, HEXMOD.BAS, is an ordinary subroutine.

3. To exit the editor, type

<CTRL>/C

When you leave the editor it automatically compiles
and links the program.

Compiling And Linking HEXTST

1.

2.

Recall the main program, HEXTST, at the Enter

Command? prompt by typing:

o hextst

MenuBASIC will provide the following prompt:

Do you wish to save MF0: HEXMOD.BAS?

Since you did not make any changes to the file,
respond by typing no, or simply n.

-13-

MenuBASIC

If you had changed the file and wanted to save it,
you would type y, or yes. The message on the
right-hand corner of the screen now reads:

User program: MF0:HEXTST.BAS

3. Enter the editor at the Enter Command? prompt by
typing:

e

Notice the first two lines of the program:

'# /nl/e

!#i1 hexmod

The first line tells MenuBASIC that there are no line
numbers and that extended syntax is used, and the second
line tells MenuBASIC to include the file HEXMOD when it
links the program.

4. Exit the editor by typing:

<CTRL>/C

When you leave the editor, it automatically compiles and
links the program HEXTST and the subroutine that it calls,
HEXMOD.BAS.

Running HEXTST

1. To run the interactive HEXTST program, type

Enter Command? r

The screen will look like this:

Testing the sethex utility
Enter a hex string (max four characters) ?

~14-

MenuBASIC

2. Enter any four of the following characters: the
numbers 0 through 9, and the letters A through F. The
program will respond with the corresponding integer.

3. To exit the program and return to the MenuBASIC menu,
type:

<CTRL>/C

The program prints this information to the screen:

!Abort at line 7 in module $MAIN$
Type any key to continue

4. Type any key to return to the MenuBASIC menu.

If you try to leave MenuBASIC at this point, it will check
to see if the current user program has been modified. If
it has, MenuBASIC will ask if you want to save it. ALL
MODIFIED FILES MUST BE SAVED, OR THE WORK WILL
BE LOST.

Entering MenuBASIC

To enter MenuBASIC, insert your MenuBASIC working disk
and type

FDOS> mbasic

MenuBASIC will begin its start-up routines. If E-Disk
space was not allocated for your program before Menu-
BASIC was invoked, MenuBASIC will ask you to configure
the E-Disk. Program operation requires that at least
450 blocks of memory space be allocated as E-Disk.

-15-

MenuBASIC

Configuring The E-Disk

If the E-Disk was not configured before MenuBASIC was
invoked, the following message will be displayed:

You have XXX blocks of E-Disk allocated, but MenuBASIC

needs at least 450 blocks.

Type a 0 to exit MenuBASIC and prevent E-Disk
configuration, or enter number of blocks you wish to
allocate?

The number of blocks that you must allocate as E-Disk
depends on the version of MenuBASIC that you are using.

Configuring The E-Disk For Compiled BASIC

With Compiled MenuBASIC, all available memory space
should be allocated as E-Disk. For example, if you have a
17XXA-006 256K-byte RAM expansion module, at least
512 blocks are available to be configured as E-Disk. If you
have a 17XXA-007 512K-byte RAM expansion module, at
least 1024 blocks are available to be configured as E-Disk.

If there are important files on the E-Disk, enter 0 to
prevent their loss. Use the File Utility Program (FUP) or
the Tcopy program to save them to another device, and
then configure the E-Disk. (See the 17XXA System Guide
for more information on copying files.)

-~16-

MenuBASIC

Configuring The E-Disk For Extended BASIC

With Extended MenuBASIC, you must decide how much
space to dedicate for program space and how much for
E-Disk space. If there are important files on the E-Disk,
enter 0 and use the File Utility Program (FUP) or the
Tcopy program to save them to another device, and then
configure the E-Disk. (See the 17XXA System Guide for
more information on copying files.)

To decide on the number of blocks to allocate:

1. Determine the amount of memory available:
a. Take into account the 30K bytes provided as

standard program memory.
b. Add in the amount of additional memory available

on the optional memory board.

2. Estimate the size of your program. Unless your
program is unusually large, 100K bytes will be
adequate.

3. Subtract the amount of program space from the memory
available to find the E-Disk space available.

~l17-

MenuBASIC

4. Multiply this number by 2 (2 blocks per K-byte) to
arrive at the number of blocks to allocate.

Refer to Figure 2 for a sample configuration using a 17XXA
with a 17XXA-007 512 K-byte RAM expansion.

It doesn't hurt to round down, so in this case, 850 blocks
can be allocated as E-Disk.

After configuring the E-Disk, MenuBASIC will copy the
files that it needs from SYS: to EDO:, set MenuBASIC as

the shell and create a temporary data file. While
MenuBASIC is copying the files, the screen will flash the
message: Loading MenuBASIC System. MenuBASIC will
then display its menu. See Figure 1 for an illustration of
the first screen of the MenuBASIC menu. Hit <RETURN> to
view the second screen of the menu. Hit <RETURN> again
to view the third screen.

NOTE

MenuBASIC commands are not case-sensitive, and the

program will accept the abbreviations y and n for yes
and no.

-18-

MenuBASIC

ajTduexy
u
o
t
z
e
u
n
3
s
t
j
u
o
y

ASTG-qy
°g

aun3TYy

|
Auowap

|
|

SYeEOOTTY
a
q
A
q
-
y

dag
weadoudg

|

|
Of

S
X
O
O
T
E

S
H
O
O
T

a
o
e
d
s

a
o
e
d
s

A
U
o
u
a
y

pue
|

|
JO

u
e
q
u
n
y

JO
vequing

y¥STq-q
w
e
i
d
o
u
g

T
e
u
o
l
3
d
Q

-
p
u
e
q
s

|

|
|

|
|

S
H
O
O
T
Q

498
=

A
/
S
H
P
O
T
Q

GC
Kk

Aceh
=

MOOL
-

H2tS
+

HOE

~19-

MenuBASIC

WRITING AND EDITING A PROGRAM

Creating A New Program: The C Command

The C command is used to create a new program. From the
MenuBASIC menu, type:

Enter Command? c

MenuBASIC will ask you to enter the name of the program
to be created. If an alternate file name extension is
not specified, MenuBASIC will provide the extension .BAS.

Or you can type:

Enter Command? c {filename}

If you specify the file name of a program that already
exists, MenuBASIC will ask if you wish to replace it.
Answering yes will overwrite the original program with
your new program.

Once the user program is created, MenuBASIC will invoke
the editor. For more information on the editor, see the

section, Using the Editor, and the appendix to this
manual, as well as the 17XXA System Guide.

Exit the editor by typing:

<CTRL>/C

The program will be stored on the system device (ED0:)
unless a device name is specified. When you return to the
MenuBASIC menu, the program that you have just created
is the current user program. Its name appears after the
message, User Program:.

-~20-

MenuBASIC

Entering The Editor: The E Command

To edit a program from the main menu, simply type e. This
will allow you to edit the current user program.

Using The Editor

The editor is an easy to use screen-oriented editor with
advanced capabilities such as searching, file merging and
cut-and-paste. A few of the fundamentals are covered in
this manual. A complete discussion of the editor's
capabilities is provided in the 17XXA System Guide, and a
quick reference guide is provided in Appendix A of this
manual.

To move the cursor around in your program, use the arrow
keys. To insert text at any position, just place the
cursor where you want the text and type it in. To delete
text, use the delete (DELETE) and delete character (DEL
CHAR) keys. To delete the entire line to the right of the
cursor, use the delete line (DEL LINE) key. To insert a
new line, move to the end of the previous line and press
<RETURN>.

Command Mode

Pressing the Escape key <ESC> puts you into Command
mode, allowing you to access other, more powerful editing

features, such as cursor and text manipulation, searching,

and exiting the program.

To move the cursor to line n of your program, type:

<ESC> nG

To search for a pattern, type:

<ESC> /

-~2]-

MenuBASIC

The program will provide a slash at the upper left of the
screen and the cursor will appear after the slash. Enter
the string for which you are searching, followed by
<RETURN>.

To move ahead to the next occurrence of the string, type

<ESC> n

To search backwards in the text, type:

<ESC> ?

The program will provide a question mark at the upper left
of the screen and the cursor will appear after the
question mark. Type in the string for which you are
searching.

To repeat the search, type:

<ESC> n

Another feature is the ability to place invisible markers
anywhere in the text. There can be 26 such markers in any
file, one for each lower-case letter in the alphabet.
This command places the marker n at the cursor position:

<ESC> mn

To return to position n after subsequent editing, use the
command:

<ESC> “n

NOTE

The * character is not an apostrophe, but it is the
back quote character on the upper right of the top
row of keys.

~29-

MenuBASIC

There is no provision for deleting markers. However, they
are not recorded with the file and do not remain after the
current editing session. Also, the same marker can be
moved simply by placing it elsewhere. The editor will
remember only the most recent placement.

Moving Blocks Of Text

The editor also allows you to remove (yank) and insert
(paste) portions of text by storing the text in a buffer.
This temporary storage location in memory is called a yank
buffer. First, a copy is made of the text between the
cursor location and a specified marker and stored in the
yank buffer. The yanked text can then be placed at any
location in the file. The text remains in the yank buffer
until it is replaced by new text, or the editor is exited.

The yank buffer is especially useful if part of a program
has inadvertently been left out, and its inclusion
requires program restructuring. The yank buffer can be
used to remove program sections and hold them in memory
until the new section is written. Then they can be placed
in the appropriate location in the text.

Another good use for the yank buffer is as a holding area
for a frequently written line of code, such as a tightly
formatted PRINT statement or a very long line that you do
not want to re-type. See the 17XXA System Guide for more
information.

~23-

MenuBASIC

A summary of the yank commands follows:

<ESC> y*n removes text from the cursor to marker n.

<ESC> p___ (lower-case p) places the contents of the
buffer into the text following the cursor
position.

<ESC> P (upper-case P) places the contents of the
buffer into the text in front of the
cursor position.

Exiting The Editor

To exit the editor, save the changes you have made, and
return to the menu, type:

<CTRL>/C

There will be a short delay while MenuBASIC checks for
program errors. If any errors are found, the program will
display them before returning to the menu. See the
Errors section for more information.

If you want to discard the changes you made during the
editing session, press the escape key, followed by a colon
(:). The cursor will move to the top of the screen. Type
the letter gq, and an exclamation point:

<ESC>:q!

Programming Errors

Any errors that you make in writing or editing your
program will appear on the screen when you exit the
editor. Refer to the CBASIC or XBASIC manual for an

explanation of these errors.

~24-

MenuBASIC

MenuBASIC may also provide a message that certain words
are not recognized by the compiler. The cause of these
errors is usually mistyping. If they refer to modules or
application programs that are called, it may be that these
programs were not defined. Refer to the section, Linking
Predefined Modules, for more information.

The following errors usually mean that your E-Disk is
full:

I/O error: No room on device — Stop
I/O error: Read/write past physical end of file — Stop

The File Utilities command (F) will allow you to remove
files from your E-Disk so that there will be sufficient
room. See the heading, File Utilities: The F Command,
for more information. Selecting F puts you into FUP, the
File Utility program. The MenuBASIC program does not
have a delete command.

Beautifying Your Program: The B Command

The Beautify (B) command formats a program so that it is
easier to read and debug. The B command performs the
function of "Pretty Print" in other systems. Selecting B
from the MenuBASIC menu allows you to insert the number
of spaces (3 or 4 per tab stop) and the tab stop (indent
or start on the left) desired. MenuBASIC notifies you
when the file has been successfully translated.

-25-

MenuBASIC

SAVING AND RUNNING A PROGRAM

Like BASIC, MenuBASIC allows the user to work with one

program at a time. The current program is called the user
program and its name is displayed in the upper right-hand
corner of the menu screen. When a new program is created
or recalled, the message is updated to reflect the current
user program. When the Save command is executed, the
program is stored under the current user name. If no
device name is present in the user program name, the
default device name will be used. The default device will
be the device that was the system device when MenuBASIC
was invoked.

NOTE

Unlike BASIC, MenuBASIC allows you to work with
multiple programs in memory (E-Disk). While this is
convenient, if you get too many programs onto the
E-Disk, you may run out of space.

~26-

MenuBASIC

Saving Your Program: The S Command

The S command is used to save the current user program.
The program will be saved under the current user program
name. If no device is specified in the user program name,
the program will be stored on the device that was the
system device when MenuBASIC was invoked.

A program is automatically saved when you switch from one
user program to another using the C or O command and
answer yes to the prompt:

Do you wish to save (filename)?

Recalling Your Program: The O Command

To recall a program for use, use the O (Old) command. You
may specify the program name by typing:

Enter Command? o {program name}

-~27-

MenuBASIC

If you specify a device name as part of the program name,
MenuBASIC will bring in the program from that device. If
no device is specified, MenuBASIC will first check the
E-Disk, and, if the program is not found, will check the
default device. If the program is found, it will become
the current user program.

Examples:

Enter Command ? o
Enter name of program to be olded ? cat

will look for the program cat.bas, first on E-Disk,
and then on the default device. Cat.bas will become
the current user program.

Enter Command ? o mb0:test.001

will look for the program test.001 on bubble memory
(MBO:). MbO:test.001 will become the current user
program.

Listing Your Program: The L Command

To obtain a directory listing of your files, select the L
command from the menu. All files on EDO: (the system
device) will be listed to the screen. Pressing any key
will then cause MenuBASIC to list the files on the default
device to the screen. Type any key to return to the
MenuBASIC menu.

—~28-

MenuBASIC

Running Your Program: The R Command

You may execute a program using the R (Run) command. If
MenuBASIC has not compiled the program, it will
automatically compile it before attempting to execute it.

Typing:

Enter Command ? r

will run the current user program, or you may specify the
program to be run by typing:

Enter Command ? r {program name}

If a device name is specified in the R command, MenuBASIC
will search for the program on that device.

Compiling Your Program: The CO Command

When you exit the editor, your program is automatically
compiled and linked for you. With long programs, this can
be a slow process. The CO (Compile) command allows you
to break your program into smaller subroutines and compile
and link them without having to enter the editor.

For example, HEXTST.BAS is the main program that calls
the subroutine HEXMOD, which is contained in the module

HEXMOD.BAS. If you compile HEXMOD with the CO
command, an object file (.OBJ or .OBX) is produced that is
required for HEXTST to perform its link. Compiling and
linking HEXTST with the CO command produces an
executable file (.FD2) that you can run using the R (Run)
command.

~29—

MenuBASIC

NOTE

HEXTST could have been compiled and linked with the R
command, as long as there was not an executable
version of HEXTST already present. If an executable
file is present, it will be run and HEXTST will not
be re-compiled.

Changing the Default Library: The LI Command

A library is always required for operation of the Menu-
BASIC compiler. BASIC.LIB is the default library when
MenuBASIC is powered-up. The Library (LI) command lists
the current default library to the screen and prompts you
to enter a new default library. Enter the default library
name, omiting the .LIB extension. MenuBASIC provides the
extension for you. If you input a library name that is
not found by the program, the default library will not be
changed.

Chaining Programs Together

Chaining is a method that allows one program (Program A)
to execute another program (Program B). There are two
ways to chain two programs together. The first requires
that an executable (.FD2) version of Program B be
available. Program A can then execute a command to get
Program B from the floppy disk and execute the program.
In this example, the code in Program A might read:

12400 IF I% < 0 THEN RUN "MF0:B"

-30-

MenuBASIC

Note that this instruction has no effect on MenuBASIC's

user program. If A was the user program before this
instruction was executed, it will continue to be

afterward.

The second chaining method doesn't require an executable
(.FD2) file. MenuBASIC's Execute (EXEC) command is used
in combination with the R command. For example, if a
program were to run another program, phase2.002, stored in
bubble memory, the BASIC command in the program would be:

32000 EXEC "MBASIC" WITH "R MB0:PHASE2.002"

This instruction does affect the current user program.
The program chained to (in this case, phase2.002) will
become the MenuBASIC user program when the program is
executed. (See the heading, Commands That Should Be
Avoided, for more information on the EXEC command.)

USING THE LANGUAGE

BASIC Language Syntax

MenuBASIC allows the use of both Standard Syntax and
Extended Syntax. Standard Syntax is the BASIC syntax used
in the interpreted version of BASIC. Extended Syntax is
used in CBASIC and XBASIC to free the programmer from
the conventional BASIC restrictions of single lines and
two-character variable names.

Compiler and linker options are comment lines embedded in
a program that provide program information to MenuBASIC.
These options may fill as many lines as needed, but must
begin within the first three lines of the program.
MenuBASIC compiler options are covered in the following
section. Linker options are covered under the heading,
Linking Predefined Modules. For detailed information
on compiler and linker options, see the CBASIC or XBASIC
Manual.

-3]-

MenuBASIC

BASIC Compiler and Extended BASIC Compiler Options

The compiler automatically assumes Standard Syntax and
line numbers. However, CBASIC and XBASIC support a
number of compiler options that can’be accessed with
MenuBASIC:

e Extended Language Syntax - The /E Option

e Integer Conversion - The /I Option

e No Line Numbers - The /NL Option

e No Markers - The /NM Option

Syntax

!# {menubasic option}

Parameters

e Compiler options are preceded by a slash (/).
e All Compiler options must be on one line.
e Compiler options are not case-sensitive.

Example

A program using extended syntax, no line numbers and
integer conversion, might look like this:

! Automatic Calibration Program by T.R.D.
!# /nl/e/i
! Begin Instrument Set-Up

—32-

MenuBASIC

Commands That Should Be Avoided

MenuBASIC is a program development tool that is, by
design, not completely bullet-proof. Programs developed
by MenuBASIC will run with no errors under the fully
Fluke-supported CBASIC or XBASIC system. However, the
lesser-used BASIC commands: SET SHELL, ASSIGN System
Device, and EXEC (Execute) can short-circuit MenuBASIC's

operation and should be avoided.

SET SHELL

MenuBASIC sets the shell to itself for proper operation.
If you must use the Set Shell command, have your program
return the shell to EXEC MBASIC when it has finished
execution. Otherwise, you will either be exited to FDOS
or have to reboot the system.

ASSIGN System Device

If MenuBASIC is not resident on the device that you assign
as the system device, this command can cause you to exit
to FDOS and generate the error message: ? Can't load
shell.

EXECUTE

This command allows your program to chain to other
programs. (See the heading, Chaining Programs Together,
for more information). To Execute (EXEC) a command file,
you must set the shell to FDOS at the beginning of the
file you are chaining to, and invoke a return to MenuBASIC
at the end of the command file.

-33-

MenuBASIC

If you have a startup command file, STRTUP.CMD, that
looks like this:

& Startup Command File in Progress
fup
ed0:/c-1

ed0:=mf0:/w

/x

mbasic r testl.bas

a program, TEST1.BAS, that looks like this:

if x = "c" then

set shell

exec "cop"
endif

and a command file, COP.CMD, that looks like this:

fup
wd0:mf0:/w

/x

mbasic r testl

This series of files allows the system to boot-up and
begin running the main program, TEST1.BAS. Testl then
calls the command file COP.CMD, which calls MenuBASIC

to run testl again.

LINKING PREDEFINED MODULES

MenuBASIC allows you to link modules developed in BASIC,
FORTRAN, or Assembly language to your program. Files
to be linked must have an .OBJ extension in CBASIC or an
-OBX extension in XBASIC - they must be compiled before
they can be linked.

-34-

MenuBASIC

MenuBASIC linker options are comment lines embedded in
your program that provide program information to the
linking loader. MenuBASIC options may fill as many lines
as needed, but must begin within the first three lines of
the program. The linker options are

e Include - the I option, which links different modules
together

e Find - the F option, which locates library files

Syntax

!# i {object module}[,object module]
!#f {library file}[{,library file]

Parameters

e Include and find options may take up as many lines as
necessary, but must not be broken up by other program
lines.

e MenuBASIC provides file name extensions for the link-
ing loader; do not type file names with extensions.

Example

A program linking two modules, intcon and comm, might
look like this:

1000! System Test Program by D.S.
1010! Specify automatic integer conversion
1020!# /i
1030! Link modules
1040!# 1 intcon,comm

1050! Begin system initialization

—35-

MenuBASIC

A program linking the program HEXMOD, and a library,
TTBOX, and specifying no line numbers and extended
syntax, might look like the program listed below. (TTBOX
is the Touchscreen Toolbox, another Flare application
package available from Fluke.)

'# /nl/e

!# 1 hexmod

!# f ttbox

! Begin System Initialization

—~36-

MenuBASIC

ERRORS

Program Errors

Program errors fit into one of three classifications:
syntax errors, run-time errors, or logical errors. For
complete descriptions of these errors, see the CBASIC or
XBASIC manual.

Syntax errors are language usage errors. They will be
displayed on the screen when you leave an edit session, or
you may use the Print Errors (PE) command to list these
errors to a printer. The following program illustrates a
syntax error:

'# /nl/e
'

prnt “hello, world"
end

Since "print" in line 3 is misspelled, MenuBASIC will
display:

Total of 1 error in compilation.
Fatal errors found:
!Error 501 (illegal statement terminator) at line 3

Run-Time errors occur when you try to run your program.
If you have not used the No Markers (/NM) option,
MenuBASIC will display the errors and the line numbers on
which they occurred. The following program illustrates a
run-time error:

!# /nl/e

!
print "hello, world"
print A$
end

—37-

MenuBASIC

MenuBASIC will compile and link this program, but because
you have not defined A$, when you try to run it, the
following will be displayed:

hello, world

!Error 900 at line 4 in module $MAIN$

Logical errors are caused by errors in your program logic.
MenuBASIC cannot troubleshoot this type of error. It's up
to you to find these.

MenuBASIC Errors

Most errors in MenuBASIC are trapped, and appropriate
messages are printed. Some errors escape through the
filter, and may appear on the screen. For example, if
MenuBASIC bombed out with the message:

Error 305 at line 562 in FIND F

The file you specified probably does not exist, since an
error 305 means File not found.

See the CBASIC or XBASIC language manual for a complete
listing of the errors that may be reported by the run-time
or compiler programs.

—~38-

MenuBASIC

USING A PRINTER

Setting Up A Printer: The SP Command

Before a printer can be used, the Setup Serial Ports
command (SP) must be invoked. SP puts you into the Set
Utility Program and provides you with the prompt: SET>.

The purpose of the Set Utility program is to configure the
1V7XXA to enable it to communicate with virtually any
other piece of equipment that uses the RS-232-C standard.
The port parameters are set to default values when the
operating system is loaded, and some applications will not
require changing the defaults.

The default values are:

Device: KBl1:
Baud Rate: 9600
Data Bits: 8
Parity: even
Stop Bits: 1
End Of Line: 10
End Of File: 26
Stall Input: disabled
Stall Output: enabled
Time Out: 0

SET is exited by typing: SET> exit. Refer to the 17XXA
System Guide for more information on the SET program.

Selecting The Printer Port: The PP Command

Select the printer port that you wish to use with the PP
command. KB1: is the default printer port.

-—39-

MenuBASIC

Printing Your Program: The P command

To print your program, type P at the Enter Command?
prompt. The program will print out on the device
specified in the Select Printer Port (PP) command. For
example, if KBl: is specified in the PP command, P will

provide the message: Listing program on KB1:, and will
print to the device on KBI:.

Printing Error Messages: The PE Command

To print error messages, type PE in the menu. The program

will print out the program errors on the printer specified
in the Select Printer Port (PP) command.

Printing Other Data

To print anything else, you must print it using the File
Utility Program (FUP). To enter FUP, type F at the
MenuBASIC prompt. For more information on FUP, see the
17XXA System Guide.

In FUP, if you wanted to print a directory listing for
both MFO: and EDO: on the printer hooked up to KB1:, you
would type the following:

FUP> kbl:=mf0:/q Lists a directory of MFO: on the

printer
FUP> kbl:=ed0:/q Lists a directory of EDO: on the

printer

To exit FUP, type:

FUP> /X

-40-

MenuBASIC

FILE UTILITIES: THE F COMMAND

Type F in the menu to enter the File Utility Program
(FUP). FUP is a utility that gives the user full control
over files on any of the devices. MenuBASIC allows you to
enter FUP without having to save the current user program.
FUP provides you with the prompt, FUP>. To exit FUP,
type /X. See the 17XXA System Guide for more information
on FUP.

AUTOMATING START-UP AND OTHER FUNCTIONS

System command files may be used to run and compile
programs through MenuBASIC. Only two MenuBASIC
commands can be used in command files. They are the CO
(Compile) and R (Run) commands. For example, if a
program, HEXTST, has already been compiled, a command file
setting up the serial port to a baud rate of 4800, and then
running HEXTST could look like this:

set

kbl:

br 4800

ex

mbasic r hextst

If you are not familiar with command files, refer to the
17XXA System Guide under the heading, Automating
System Functions.

-~4]-

MenuBASIC

APPENDICES

Appendix A contains a quick reference guide for the system
editor. Appendix B contains listings for the sample
programs HEXMOD.BAS and HEXTST.BAS, which are used
in the Getting Started section of this manual.

MenuBASIC

APPENDIX A

The Editor: A Quick Reference Guide

This appendix provides a quick reference guide for the
system editor (EDIT.FD2) provided with MenuBASIC.

Insertion mode, Command mode, and Global commands are

covered. For more information on the editor, see the

I7XXA System Guide.

The editor has two modes of operation, Insertion mode and
Command mode. The Insertion mode is the default, and is

primarily used for inserting text, although it does allow
for some cursor and text manipulation. The Command mode
is used for more powerful cursor and text manipulation,
searching, and exiting. Many edit program commands result
in a temporary return to the Insertion mode. When these
commands are used, <ESC> will return you to Command
mode.

<backspace>, <linefeed>, |

Use these commands in Insertion Mode by preceding

With <ESC>

CURSOR POSITIONING

ti—— <backspace>, <linefeed>,

nig To line n of file
To top line of screen

n | Forward n screens

n | Backward n screens

n|W Forward n strings

n]| To column n

SEARCHING

COMMANDS

?{pattern} Backward in buffer to pattern
'{pattern} Forward to end of file for pattern
/{pattern } Forward in buffer to pattern
n Repeat previous search

N Repeat search in opposite direction

SEARCHING (contd)

METACHARACTERS (Match:)

Single character wild card

Beginning of line

$ End of line

[] Class (example: [aeiou])

[e-c] Class range (example: [0-9])

! Not in class (example: [!a-z]
{ Zero or more occurrences

(example: .#)
\ Treats following character as

literal (example:\$)

MARKER COMMANDS

m(x) Insert marker x at cursor

~ x Move to marker x

TEXT MANIPULATION

y (x) Copy from cursor to marker x into
yank buffer

[n]p Copy yank buffer into text n times
after cursor

Y Clear yank buffer

DELETION

[n] <delete>, <del char>, <del line>

d* (x) Delete to marker
[n]dl Delete to column n

{n}dB Delete m strings

INSERTION MODE: <ESC>: {single character} <RETURN>

COMMAND MODE: :{global character} <RETURN>

:@ Toggle default mode
>p Move forward 1 page

>m Memory left

:V Version number

:q Exit and save

:q! Exit and do not save

:s/ (old pattern)/(new pattern)/
Substitute old pattern for new

pattern ina file

MenuBASIC

APPENDIX B

Program Listings

The program HEXTST and the subroutine HEXMOD are
provided on the MenuBASIC disk. HEXTST converts
hexadecimal numbers into decimal numbers. HEXTST calls
the subroutine HEXMOD, which is responsible for the
mathematical calculations. The subroutine HEXMOD
must be linked to HEXTST for HEXTST to run correctly.

HEXTST.BAS

The main program HEXTST.BAS is included on the Menu-
BASIC disk to allow you to run the sample program in the
Getting Started section of this manual. HEXTST.BAS calls
the subroutine HEXMOD.BAS.

!#/nl/e

!# 1 hexmod
hexval%=0
loop

print "Testing the sethex utility"
print "Enter a hex string (max four characters) ";
input string$
sethex(string$,hexval%)
if hexval%=0 then

print "Illegal value entered:";string$
else

print "The integer was set to:";hexval%
endif
print

endloop

MenuBASIC

HEXMOD.BAS

The subroutine HEXMOD.BAS is included on the Menu-
BASIC disk. This subroutine performs some mathematical
calculations and must be linked to the main program
HEXTST.BAS in order for HEXTST to run correctly.

!# /nl/e

'# m

sub sethex(s$,v%)
s$=ucase$(s$)
v%=0

1%=len(s$)
if 1%>4 then 1%=0

for i%=1 to 1%

d%=instr(1%,"0123456789ABCDEF", mid(s$,i%, 1))-1

if d%<0 then

v%=0

i%=1%

else

d%=Ish(d%,4*(1%-i%))
v%=v% or d%

endif

next i%

subret

subend

MenuBASIC

RESTRICTED RIGHTS

This software is unpublished and contains the trade
secrets and confidential proprietary information of FLUKE.
Unless otherwise provided in the Software Agreement
associated herewith, it is licensed in confidence to the

user "AS IS" and is only to be reproduced for backup
purposes. Use, duplication or disclosure by the
Government is subject to restrictions as set forth in
paragraph (b)(3)(B) of the Rights in Technical Data and
Computer Software clause in DAR 7-104.9(c). Software
owned by John Fluke Mfg. Co., Inc., 6920 Seaway Blvd.,
Everett, WA 98206.

	0-1
	0-2
	0-3
	0-4
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	B-3
	B-4

