List of Software Versions
System Disk Rev. 1

Getting Started Disk Rev. 1
System Diagnostic Disk Rev. 0

1752A

DATA ACQUISITION SYSTEM

System Guide

P/N 760553
May 1985 Rev 1 10/86 IFI._LJKEI

©1986, John Fluke Mfg. Co., Inc.

All rights reserved. Litho in U.S.A.

®

1752A Data Acquistion System

Contents

HOW TO USE THIS MANUAL 1-1
INtroductionottt e 1-3
The Manual Set e 1-3
Additional Manuals i 1-3
Organizationouiiiiiiieriiieriienaaenannenns 1-4
Usage Guide ...ttt 1-6
How to Read Syntax Diagrams 1-8
Sample Syntax Diagrams 1-9
Notation Conventionsoeeeuevnrennenanennnnnnnn. 1-10
SETTINGUP THE 1752A 2-1
The 1752A Data Acquisition System 2-3
Fluke Enhanced BASIC 2-4
Floppy Disk Operating Systemccvv.... 2-4
Data Acquisition and Control Software 2-5
Features i 2-6
Measurement and Control Modules 2-8
1752A Configurationsc.oviviiiiiiiniir ... 2-9
Option Configurationc.oooiiiiiiiiiiinan.... 2-9
Physical Layoutt 2-10
Unpacking ...t 2-12
Installation i 2-14
Environment i 2-14
Pre-Installation Checkout 2-15
Front Panel Controlsc.oociiiiiiiiiii... 2-20
Default Switch SettingsoiiiiLL. 2-21
Configuring the Measurement and Control Modules 2-21

i (continued on page ii)

CONTENTS, continued

Placementt e 2-22
Workbench Installation, 2-22
Rack Mountingccoiiiniiieeniniiiiiiinennnn. 2-24

Installing the Data Acquisition and Control System 2-26

Installing an IEEE-488 Systemt 2-28
Connecting the IEEE-488 Bus 2-29

ConCIUSION ...ttt e 2-30

3 SOFTWARE CONFIGURATION 3-1
Introductionc.oiiuiiiiiiii it enetnernneenns 3-2
"Loading the System Softwareccevvvieenn.. 33
Bootstrap Loaderccoiiiiiiiiiiiniiiiiinnaas 3-3
Self-Test Error Messagesceveuiieneneeneneenennnns 34
Other Errorsottt ittt iiiiiinenns 3-5
The Startup Command File 3-6
Setting the Timecoiiiiniiiiiinrnerennnnnnnns 3-7
The Operating Systemceiiiiirnnrrnennneenanns 39
Command Line Interpretercevvivinennnnnn. 3-10
Other Software on the System Disk 3-10
Making a New Operating Systemcccvvuieeennn.. 3-12
Introductioncoiiiiiiiiiiiiiiiiiiii it 3-12
A Note About Software Compatibility 3-12
Using the System Generation Utility 3-13
The FDOS Configuration Data Program 3-i5
Entering CONFIGttt iiiiinennnnn 3-15
Writing Configuration Datatoa File 3-16
CONFIG Program Help Information 3-16
Printing the CONFIG Program Version Number 3-17
The Compatibility Test Program 3-18
Running the Compatibility Program 3-18
Program Help Information 3-19
Printing More Data From Image Files 3-19
Directing OQutputtoa File 3-21
Using OTP ..ot i i it ieeinenaananns 3-21
COoNCIUSION .+ttt iiieiieetienerenneasnnnananns 3-22
4 DEVICESANDFILEScciiiiiiiinn... 4-1
Introductioncoviiiinietiiiiniieeeeennnnnnnnenn 4-2
DEVICES . viiiiiiit ittt i it it 4-3
Files . .oviiiii it i i i i i et iee i 4-5

i (continued on page iii)

CONTENTS, continued

System Level Fileso iiiiiiiiinennenn. 4-5
Other Filesoiiiiiiiiiiiiiniiiiiierinennennns 4-5
DeVICES i i e i ettt 4-6
RS-232 Ports (KBn:;, SPn:)coiiiiiiiiiinnninnn. 4-6
IEEE-488 Ports (GPn:)oviiiiiiiiiiiieiiiannnnn. 4-7
Floppy Disk Drives MFn:)ooiiiiiiiiiianns, 4-7
Electronic Disk (EDO0:)cciirviiiiinineenennnnnn. 4-8
Bubble Memory (MBn:)c.coiiiiiiiiiiii.., 4-8
Winchester Drive (WDn:)cooiiiiiniiiiieinn.. 4-8
Files .ottt i i i it et i e e 4-9
System Files ...t 49
Alias File i i i i et iee e 4-9
Command Filescoiiiiiiiiiiiiiiiinnan... 4-9
The Startup Command File 4-9
Other Command Files oo iiiiiniena... 4-10
Machine Executable Files 4-10
Language-Dependent Files0u... 4-10
Source Files ...ttt 4-10
Object Filesviiiiii ittt iiaeenn 4-10
The File Utility Programcciiiiiiinnnnennn.n 4-11
Introductioncovuiiiiineniinenrnnenennennnnnn 4-11
Entering the File Utility Program 4-11
The Help Commandcociiiiiiiiiiinienn... 4-11
Directory Allocationcoiiiiiiinineennennns 4-13
Using the File Utility Program 4-14
Wild Cards *and 7ccvvriieiiiineinnnnnenn. 4-15
Protection States +and -t 4-16
Switches I, D,and S ... vt i 4-17
Alphabetical Listing of Commands 4-18
(no option) Transfercovuirnininnennnnnnnn 4-18
/A Assign the System Device 4-20
/B Binary Transfercccoiiiiiiiiinnnn... 4-20
/C Configure Electronic Disk Space 4-20
/D Deleting Filescccooiiiiiiiiiiiiiiean. 4-21
/E Listing a Directory (Also /L and /Q) 4-21
/F Format, Verify, and Zero a File Device 4-24
/1 Interactive Transfer 4-25
JL LIStINg oottt ittt ittt iiie i eiien s 4-25
/M Merging ASCII Filescivvinn.... 4-26
/P Packing a File Structured Device 4-27
/Q Quick Directorycciiiiiiiiiiiiiiaa, 4-27
/R Renaminga File, 4-27
/S Scanning for Bad Blocks 4-27

iii (continued on page iv)

CONTENTS, con.inued

/T Transferring Files Without Error Check 4-28

/W Whole Copying a File Device 4-28

JX EXIt oottt i i et e, 4-30

/Z Zeroing a File Directoryc0cuu... 4-30

/+ /- Assigning Protection State 4-31

Syntax Diagramsiiiiiiiiiiiiiiiiiiie.n 4-32

Directly Executed Commands 4-32

Directory Listing Commands 4-32

File Transfer (Copy) Commands 4-33

File Rename Commandcoiiiuiieenn. 4-33

File Merge Commandcciiievenennnn.. 4-34

Whole Copy Commandccovvivinn.n. 4-34

File Deletion and Protection Commands 4-34

List Bad Blocks Command 4-35

Device Control Commandscoveueenn... 4-35

System Messagesovveiiiterinerrenrennenaannns 4-36

The Touch Copy Programcoviviiennen.n. 4-39

@703 1 oJ 1313 o3 o 449
5 COMMUNICATIONS ...ttt . 5-1
INtroductioncciiiuiiinntininrenernnennannnnan 5-2
., The IEEE488 Buscciviriiiiineninenenenennnnns 5-3
Bus Functions e 54
Interfacecciiiiiiiiiiii i i i i i 5-5
Bus Operating Modesccvvviiiiieennnnnnnn... 5-5
Command Modeottt iiinnnnennnn, 5-5
Data Modecoviiiiiiiiii ittt 5-7
Three-Wire Handshake 57
A Typical Instrumentation System 5-7
SEQUENCE .. vttitie it iettnraternerneneeneeaennanens 5-8
Multiple Controller Systemsccovvevnnn.nn. 5-9
IEEE-488 Communications Under Program Control 5-11

Example Commands from the BASIC Language 5-12
Sample BASIC Programccooiiinn.. 5-13
For More Informationccovvivniiin.. 5-15
Serial ComMmMUNICAtIONS .+ . .vvverernnerrnneeennnneennnnn 5-16
Set Utility Programiiiiiiiiininnennennnnn 5-16
Using the Set Utility Program 5-17

The Help Commandciiviiiiinennn... 5-18
Command Structureoeevevevnernnrennnnn 5-19
Syntax Diagramciiiiiiiiiiiiiinn.. 5-20
Device Selectioncooviiiiiiiiiiiiiiinn... 5-21

iv (continued on page v)

CONTENTS, continued

Setting Parameterscoiiiiiiiiiiiiiaann 5-21
Single Command Line Entryoii., 5-25
Error MesSagescuoveuiienneinirnnennennnennenns 5-26

Serial Communications Under Program Control 5-27
Sample BASIC Programcooiviiiiinnnn. 5-28
@703 3703 111 T o O 5-31
CREATING AND EDITING PROGRAMS 6-1
Introductionc.iiuniiiiiiiiiniiiriiiiiiiieaa, 6-2
Selecting a Programming Language 6-3
BASIE . i e e e 6-3
FORTRAN .. i ettt et i e eens 6-4
Assembly Languageottt 64
File Utility Programoiiiiiiiiiiiinennnnnnnn 6-5
Command Line Interpretercovveiivenvnnnnenn.. 6-5
Introductionccciiiiiiiiiii ittt i 6-5
Editing Features of the Command Line Interpreter 6-6
The Edit Programcciiiiiiinnen.. e 6-7
Introductionciiiiiiiiiiin i, 6-7
Entering the Editor Program 6-8
Exiting the Editor Program P 6-10
Operating Modescoviiiiiiiiiiinieinninnennnns 6-11
Global Commandsccviiitiinnrnrneenennennn. 6-12
Most Used Commandsc.ooveiiniiiennnnnn. 6-12

Cursor Positioningccoiiiiiiiinrennnnnnnn, 6-12

Text Insertion and Deletion 6-13

SubStitutioniiiiiiiiiit it i i 6-13

Marking Text ...ttt ittt 6-14

Searchingcvviiiiiin ittt i, 6-14
Command Modeciiiiiiiiiiniininennennn. 6-17

Markers ... i e i i e 6-17

The Yank Buffer oo i, 6-17

Search Commandsciiiiiivnnnnnen... 6-18

Metacharacterscoiiiiiiiiiniiiinennennn, 6-19
Command Mode Commandscouvunn. 6-20

Cursor Positioningviiiiiiiiiiininnn.., 6-20

Long Cursor Movementsc..evenvvunennnnnnnn 6-25

Search Commandscciiiiiiiiinnnn.n., 6-27

Marker Commandscvvvenininiinenennnnn. 6-29

Text Insertioncovvnunn.. ettt 6-30

Text Substitutioncoiviiiiiiiiiiiiniiinnnnn. 6-31

Case CONVEISION . ..vituinrrrnenennneennneennnnenns 6-32

v (continued on page vi)

CONTENTS, continued

Text Deletion Commandsoeeivenennnns 6-32
Control Commandscciiieririrnrnraraennas 6-35
Target Commandsooiiiiiiiiiiiiiiniinenenn, 6-37
Global Commandsccviuiivnrnnenrneenennnn, 6-39
Edit Program Messagesc.covviiviniiiiinennnnns 6-47
(@70 0103 113 L) o 6-48
7 AUTOMATING SYSTEM FUNCTIONS 7-1
INtroductionciiiuiieirinienerenreneennnennenns 7-2
Command Filesoiuiiiiiiiiiiiiiiiiinnnnnnnn 7-3
Special Characterscooiviiiiiiiiinrennerennnss 74
Sample Command Lineccciiiiiinnnnnnns. 7-5
The Startup Command File 7-6
Linking to Other Command Files 7-7

Establishing the Environment-

The BASIC SET SHELL Statementccovvvunnnenn 7-8
Allas File i i e 7-9
Creating ALIAsesovuiiiuinriiienerenreneensssanns 79
Error Messagescoiviiiiiiiernennrnnennnnnoonnas 7-11
Standard AlIAsesoveiiiitninrenenernennennns 7-11

Automating Utility Programscc0vvunenn. 7-15
The Time and Date Utilityccoviiiiiinennnnn. 7-15
Using the Time and Date Clockccou.nn. 7-15
Programming Language Commands 7-16
Set Utility Programccovuiiiniierenrennennnnn 7-17
File Utility Programc.ciiiiiuninnnnrnnennn 7-17

Sample Instrumentation Systemccc0iveunnnn. 7-18
Controlling the Sample Systemc.cc0viven... 7-20

Step 1: Start With a Flowchart 7-20
Step 2: Establish Bus Addresses 7-24
Step 3: Program the Modules 7-24
Step 4: Concatenatecvveveurnnennnnancens 7-27
Step 5: Debuggingcciiiiiiiiiiii i i 7-27
Step 6: Document the Program 7-28
Sample Program Listingcciiiiiinneennnn.. 7-29
The Startup Command Filet 7-32
A Caution to Systems Programmers 7-32
ConClUSION ..t ittt ittt ittt i irraeensnsenenannons 7-34

Vi (continued on page vii)

CONTENTS, continued

DISPLAY .. i e 8-1
INtroductionttt it ittt e 8-2
The Character Planeccoiiiiiiiiiiniennn, 8-3
Character SetS . ..uiveerreeineneeneneeneneneenennnnss 8-3
Custom Character Setscoveiiiiiienenirnennnns 8-3
Character Graphicscoiiiiiiiiiiiiiinnnenn, 84
Programming a Character Graphics Display 8-6
Program to Display Graphics Characters 8-6
Program to Display One Touch-Sense Keypad 8-7
Introduction to ANSI Standards 8-8
Special Display Control Characters 8-9
EScape SEqUENCESc.vvuiiirirnnnrnnnrernsnsnaneas 8-10
Numerically Defined Control Sequences 8-11
Selective Parametersociiiiiinerinnannens 8-14
Field Attributesc.iiiiiiiiinrinnennennnnnns 8-15
Character Attributesoeviineenernnrennnns 8-15
Non-Destructive Display Character 8-17
The Graphics Planeooiiiiiiiiiiiiiinnnnnnnnn. 8-18
Introduction to Graphics Routines 8-18
Addressing the Pixel Locations 8-21
Graphics Routinesccoiiiiiiiiiiieinnennn.. 8-21
Summary of Commandsccciiiiiieniiennnn. 8-22
DO T i e e e e 8-24
DRAW i e e e 8-25
ERAGRP ... i i it 8-26
GRPOFF, GRPON ittt 8-27
MOVE i e i et i 8-28
MOVER . i i ittt it 8-29
PAN e e e i e 8-30
PLOT i i et it e i i 8-31
PLOTR .o i i it it et e i ennen 8-32
C LABEL ..o 8-33
Printing the Graphics Plane 8-40
Graphics Print Routines0vinua... 841
Summary of Graphics Print Commands 841
GPOUT i it ettt e it e ineeenns 8-42
GPRINT . i it ettt i i 8-43
GRBYTE .. i i it it it iieenanns 845

Printing the Graphics Plane on Unsupported Printers 8-49

CoNCIUSION .ttt ittt ittt ittt teeeenennnsnsannnns 8-53

vii (continued on page viii)

CONTENTS, con inued

9 OPTIONS 9-1
Introduction 9-3
Peripherals 9-4
ACCESSOTICS .\ttt ittt et ettt e 9-5
OPHIONS .ottt e e e e 9-6
User Informationciiiiiiiiiiiiiain... 9-9

Installing Hardware Optionscccoiinn... 9-9

-002 Parallel Interface Board 9-13
-004/-005 Magnetic Bubble Memory 9-25
-006/-007 Memory Expansion Modules 9-29
-008 IEEE-488/RS-232-C Interface 9-33
-009 Dual Serial Interfaceo..... 9-37
-010 Analog Measurement Processor 9-55
-0I1 Analog Outputovitiiiiiiiii i, 9-63
-012 Counter/Totalizero, 9-69
1760A and 1761 A Disk Drive Systems 9-81
1765A Winchester Disk Drive 9-89
1702A Extender Chassis and Option

-013 Mainframe Interface 9-97

APPENDICES
A Specifications i A-1
B RS-232 Referencecoiiiiiiiiiiiiiiiiii, B-1
C IEEE-488 Referencec...cooiiiiiiii i, C-1
D GloSSary ..t D-1
E Custom Character Setscoiiiiiiiiieiiina.. E-1
F Primary Character Setccooiviiiiniin... F-1
G System Diagnostic Software G-1
H Fluke Sales and Service Centers H-1

INDEX

vill

Section 1
How To Use This Manual

CONTENTS

INtroductionttt i e -3
The Manual Set i 1-3
Additional Manuals i 1-3

Organizationeeeeeennmineee e 1-4

Usage GUIdeottt 1-6

How to Read Syntax Diagrams 1-8
Sample Syntax Diagramso L 1-9

Notation CONVENIONSttt tnee e etiianeeeeenneeenn. 1-10

1-1/1-2

How To Use This Manual

INTRODUCTION

The 1752A Data Acquisition System is supported by a complete
manual set. This manual, the 1752A System Guide, is the primary
reference source.

The Manual Set

The manual set consists of the following manuals:

o

1752A Getting Started Manual: First-time users should read the
Getting Started manual. It is designed to help you set up the 1752A
and begin using it.

1752A System Guide: The System Guide provides an easy-to-use
source of information for a variety of users. Whether this is your
first exposure to programmable instrumentation, or whether you
already have extensive programming experience, our intention has
been to anticipate and meet your needs for accurate, well organized
information. All support manuals are referenced here.

1752A Data Acquisition and Control Manual: This manual
presents complete documentation for the optional measurement
and control modules, including the 17XXA-002 Parallel Interface,
the 1752A-010 Analog Measurement Processor, the 1752A-011
Analog Output, and the 1752A-012 Counter/ Totalizer.

BASIC: This manual is a comprehensive tutorial for learning
Fluke BASIC.

BASIC Reference: This is a complete reference manual for Fluke
BASIC.

Additional Manuals

The following manuals are also available:

a

17XXA-002 Parallel Interface Manual: This manual provides
detailed documentation for the 17XXA-002 Parallel Interface
(PIB). The manual is shipped with the PIB and is included with the
manual set if the PIB is ordered with the 1752A Data Acquisition
System.

1722A/1752A Service Manual: This manual provides comprehen-
sive service information for the 1752A Data Acquisition System

and its options. The manual can be ordered using part number
732156.

1-3

How To Use This Manual

ORGANIZATION

This manual is organized into the following sections. These sections
represent categories of tasks. The sections are presented in the order
that most persons would perform those tasks.

Section 1 How to Use This Manual

Describes the organization of the System Guide and the conventions
used in the manual.

Section 2 Setting up the 1752A

Provides a first look at the 1752A and contains unpacking and set-up
information. Section 2 illustrates controls, indicators, and connectors,
and includes start-up procedures.

Section 3 Software Configuration

Describes the Operating System software and the other programsona
new System disk.

Section 4 Devices and Files

Describes the system’s resources and how to use them. This section
contains a complete description ‘of the File Utility Program.

Section 5 Communications

Tells how to use the 1752A to send and receive information using the
ports for the IEEE-488 bus and the RS-232 interface.

Section 6 Creating and Editing Programs

Explains how to use the Editor program to write and modify
programs.

Section 7 Automating System Functions

Explains how to use the various software and hardware resources to
automate the functions of the 1752A.

How To Use This Manual

Section 8 Display

Explains how to use the 1752A’s graphics capabilities to design
detailed and informative displays.

Section 9 Appendices

Contains useful reference material, including a list of options and
accessories and a glossary of terms.

If more information about a specific topic is needed, consult the Index.

How To Use This Manual

USAGE GUIDE
Evaluators

If you are evaluating the 1752 A for a particular application, the section
titled Setting Up the Controller describes the general capabilities and
functions of the unit. You might also read the introductions to each of
the other tab-divided sections to assess the software packages and
hardware configuration. The Specifications are given in Appendix A.

Beginning System Designers

For those with little or no experience in designing a programmable
instrumentation system, the Getting Started manual is the best place to
begin. This handy, stand-alone volume and accompanying disk will
familiarize you with the basic operation and layout of the 1752A. Then
you can use the System Guide as a reference for a variety of topics, or
consult one of the language manuals (e.g., BASIC). If you need more
familiarity with the IEEE-488 bus, see Section 5, Communications, or
Appendix C, IEEE-488 Interface References. More information is
available in Fluke Application Bulletin AB-36 (“IEEE Standard 488
Digital Interface for Programmable Instrumentation”) and Fluke
Technical Data Bulletin B0079 (“Communication Over the IEEE-488
Bus”™).

Programmers

If you already have some experience in programming, the sections on
Software Configuration or Automating System Functions are good
places to start. Section 4, Devices and Files, can help you become
familiar with the file conventions used in the 1752A. You may also wish
to refer to the Communications section for information about the
IEEE-488 bus and the RS-232 port.

Operators

1-6

An Operator’s Quick Reference Guide has been included following the
appendices in this manual. That Guide shows the location and
operation of all controls, care of the floppy disk, and what to do if
things don’t go as expected. Additional copies can be ordered using
Fluke Part Number 760637.

How To Use This Manual

Maintenance Personnel

Appendix G contains information necessary to diagnose and
troubleshoot problems at the module level. Using the System
Diagnostic Disk, a Service Technician can identify a problem and then
contact his local Fluke Technical Service Center for information about
how to replace the defective module using the Module Exchange
Program. Complete service information is available in the 1752A
Service Manual (Fluke Part Number 762567). For parts ordering
information call the parts department at 1-800-526-4731 (U.S.A. only).

How To Use Th's Manual

HOW TO READ SYNTAX DIAGRAMS

A syntax diagram is a graphical representation of how to construct a
valid command or statement in a programming language. It is a kind of
“shorthand” way of writing down all the rules for using the elements of
a language. Since they are used throughout this manual, learning how
to read them can be a great time saver.

1-8

(space)

(CTRL)/C

(explanation)

Words inside ovals must be entered exactly as they are
shown.

Words inside boxes with rounded corners indicate a
single key must be pressed, such as RETURN or ESC.

This indicates a space in the statement. (Press the
spacebar.)

To create a control character, hold down the control key
(CTRL), then press the other key. This one is a Control C;
it causes a break in the program.

A box with lower-case words inside means that you
supply some information. In this case, you would enter a
filename.

Words in parentheses are explanations of some kind.
They give added information about the nearest block or
path.

How To Use This Manual

Sample Syntax Diagram

From the left, any path that goes in the direction of the arrows is a
legitimate sequence for the parts of a statement. This sample shows the
correct syntax for naming a file. The translation is given below.

(no name) (default extension)

7

N 7\ (no extension) (

—D—

(space)

(maximum 6 characters) (maximum 3 characters)

A line exits the top of this diagram with no keyboard input. This
indicates that it is possible to not specify the filename or its
extension. In this case, the file would have “no name”, and the
system would assign a “default extension”.

Further down the diagram, you can see that there are other
possibilities. They are explained by the remarks, “maximum of 6
characters” for the name, and “maximum of 3 characters” for the
extension.

The filename can be any combination of letters, digits, the $ sign,
and spaces (up to six characters), and the extension can be up to
three of those characters.

The filename and extension must be separated by a period, as
shown in the oval block at the top center.

The remark “no extension” means that it is not necessary to specify
an extension, even though a file name is given. Notice however,
that this remark occurs after the period, so the period is necessary if
a name is specified.

Here are some examples of valid filenames according to the syntax
illustrated in the diagram:

TESTIN.$3A 1752A.RAC $$$$33.5$$

1-9

How To Use This Manual

NOTATION CONVENTIONS

The conventions listed here are used for illustrating keyboard entries
and to differentiate them from surrounding text. The braces,{};
brackets, [], and angle brackets, () ; are not part of the keystroke
sequence, but are used to separate parts of the sequence. Do not type
these symbols.

(XXX)

(XXX) |y

[xxx]

XXX

{xxx}

(xxx)

Means “press the xxx key”.
Example: (RETURN) indicates the RETURN key.

Means “hold down key xxx and then press y”.
Example: (CTRL)/C means to hold down the key
labeled CTRL and then press the key labeled C.

Indicates an optional input.

Example: [input filename] means to type the name of the
input filename if desired. If not, no entry is required, and a
default name will be used.

Means to type the name of the input as shown.

Example: BASIC means to type the program name
BASIC as shown.

Indicates a required user-defined input.
Example: {device}] means to type a device name of your
choice, as in MFO: for floppy disk drive 0.

This construction has two uses:

1. As a separate word, (xxx) means that xxx is printed
by the program. Example: (date) means that the
program prints today’s date at this point.

2. Attached to a procedure or function name, (XXX)
means that xxx is a required input of your choice; the
parentheses are a required part of the input. Example:
TIME(parameter) means that a procedure
specification is the literal name TIME followed by a
parameter that must be enclosed in parentheses.

Section 2
Setting up the Data Acquisition
System

CONTENTS
The 1752A Data Acquisition Systemcovvue... 2-3
Fluke Enhanced BASIC oo i, 2-4
Floppy Disk Operating Systemccoooevona... 2-4
Data Acquisition and Control Software 2-5
Features ...ttt e e 2-6
Measurement and Control Modules 2-8
1752A Configurationsc.oiviiieiiiieeennennnn.. 29
Option Configurationooeeeueeeeeniiineneeeennn. 29
Physical Layouto 2-10
Unpacking ..o e 2-12
Installationcouiiininii i e 2-14
Environment i e 2-14
Pre-Installation Checkout oii... 2-15
Front Panel Controls «--ccvveiimiiiiiiiiiiii i, 2-20
Default Switch Settingscooiiiiiiiiiinnnen... 2-21
Configuring the Measurement and Control Modules 2-21
Placement i e 2-22
Workbench Installationol 2-22
Rack Mounting i, 2-24
Installing the Data Acquisition and Control System 2-26
Installing an IEEE-488 Systemcoooiei.... 2-28
Connecting the IEEE-488 Bus 2-29
ConcluSIon ...ttt e 2-30

2-1/2-2

Setting Up the 1752A

THE 1752A DATA ACQUISITION SYSTEM

The Fluke 1752A Data Acquisition System is a microcomputer-based
system for use in analog and digital measurement and control
applications. The 1752A, like the Fluke 1722A, also functions as a
powerful instrument controller designed to support IEEE-488
instrumentation systems.

The standard 1752A comes with one 1752A-010 Analog Measurement
Processor. Through the use of optional additional plug-in modules,
the system can measure or output dc currents and voltages; measure
time and frequency of analog and TTL signals; count events with a
bi-directional totalizer; and interface with digital signals. The optional
modules available to provide these functions are:

O 1752A-010 Analog Measurement Processor

O 1752A-011 Analog Output

O 1752A-012 Counter/ Totalizer

O [17XXA-002 Parallel Interface

The 1752A also features a touch-sensitive display, which can replace
the keyboard for command entry. This feature allows semi-skilled or
non-programming personnel to control complex tasks with ease. The

operator can respond to screen prompts one step at a time, making
inputs by simply touching the screen.

2-3

Setting Up the 1752A

Fluke Enhanced BASIC

The standard 1752A includes Fluke Enhanced BASIC, which contains
a variety of single-word commands for measurement and control.
These commands simplify the task of writing programs for both data
acquisition and IEEE-488 compatible instrument control. FORTRAN
and Assembly Language modules may be linked to any BASIC
program for intensive data analysis. A text editor is included with the
1752A for creating and editing programs.

There are three forms of the BASIC language available to suit your
software development needs for data acquisition and control:

O Interpreted BASIC, for quick start up.

O Compiled BASIC, for applications requiring advanced structure
and higher execution speed.

O Extended BASIC, for very large, sophisticated programs.

Interpreted BASIC is included with the 1752A. Compiled BASIC and
Extended BASIC are available as options.

Floppy Disk Operating System

The 1752A’s Floppy Disk Operating System (FDOS) combines the
best features of both bench-top computers and minicomputers. And,
because the 1752A is a soft-loaded system, you can load new versions
and languages by simply inserting a disk. Like a bench-top unit, the
user can power-up the 1752A and immediately begin programming in
BASIC.

The task of developing application programs is simplified by advanced
operating system features such as the alias file, command files, system
shell command, an advanced editor, file utilities, the powerful File
Utility Program, and TCOPY. For example, you can copy an entire
disk by making a couple of touch selections displayed on the screen.
You can also set up command files to automate repetitive tasks, such as
multiple module compilation, or partial disk duplication. A system
command file can define a start-up sequence for turnkey operation.

Setting Up the 1752A

Data Acquisition and Control Software

The flexible measurement and control capabilities of the 1752A are
available to the programmer through a library of measurement and
control subroutines provided with the 1752A. The 1752A Data
Acquisition and Control manual provides detailed programming
information for these subroutines.

Since these subroutines are directly accessible from the BASIC
program, data acquisition and control tasks are greatly simplified.
Subroutines contain the minimum number of parameters required to
perform a basic data acquisition function. Subroutine names easily
identify the module they address and the function they perform. All
subroutines report errors in a standard BASIC format, allowing the
programmer to develop specialized error handling routines. The
features make programs easier to read and more self-documenting.

An analog measurement configuration program is also provided on
the Getting Started Disk that allows the user, through the touch-
sensitive display, to program each Analog Measurement Processor
and each of its channels. The program also monitors any single
channel on a bar graph, or displays all the data on all channels in a
table.

Setting Up the 1752A

FEATURES
Standard features of the 1752A are:

2-6

a

(m]

8]

Analog Measurement Processor with 32 single-ended or 16
differential analog input channels

Analog-to-digital conversion rates up to 1,000 per second
Measurement accuracy of 0.02% + 1 count

High-performance processor with Macrostore (TM) high-speed
floating point processing

400K -byte floppy disk drive

136K-bytes of read/write memory

E-Disk (TM) with memory allocatable in variable sizes
Fluke Enhanced BASIC Interpreter

Detachable programmer’s keyboard

Rack-mountable industry-standard packaging
Touch-sensitive, high-resolution graphics display
Real-time non-volatile calendar and clock

IEEE-488 (1980) Standard controller interface port
RS-232-C interface port

Four expansion slots for options (see below)

Options and accessories include:

o

(u]

Analog Measurement Processor, maximum three additional per
system

Line frequency sync transformer to increase normal mode
rejection to 50 dB (at 50 to 60 Hz)

Setting Up the 1752A

32-bit Parallel Interface module (a maximum of three per system)

Four-channel Analog Output module (a maximum of two per
system)

Counter/Totalizer input module (a maximum of two per system)
Memory expansion to over 2.0M bytes

Non-volatile bubble memory storage up to 1.3M bytes
Compiled BASIC software development system

Extended BASIC software development system

Extended FORTRAN IV subroutine development system

Assembly Language subroutine development system with
structured preprocessor and extended floating-point instructions

IEEE-488 (1980) and RS-232-C Interface modules

High performance Dual Serial Interface modules (a maximum of
three per system) configurable as RS-232-C, RS-422, or current
loop

Dual 400K-byte (800K-byte total) external disk drive system

10 M-byte Winchester Hard Disk Drive System

2-7

Setting Up the 1752A

MEASUREMENT AND CONTROL MODULES

The 1752A features a selection of optional measurement and control
modules. Each is briefly described below. For more information refer
to Section 9 under the appropriate option heading, or refer directly to
the 1752A Data Acquisition and Control manual.

2-8

m]

Analog Measurement Processor (Option 1752A-010)

The Analog Measurement Processor converts voltages or currents
to digital readings via 32 individually addressable input channels.
The input channels may be configured as 32 single-ended channels,
16 differential input channels, or combinations of single and
differential. Measurements are made in two voltage ranges (1V and
10V) and two current ranges (65 mA and 4 to 20 mA).

Analog Output (Option 1752A-011)

The Analog Output efficiently provides user-configured voltage or
current outputs to external control points. The outputs are
individually isolated. Output voltage is programmable over
-10.23V to +10.23V range. Output current is programmable over a
0 to 20.47 mA range.

Counter/ Totalizer (Option 1752A-012)

The Counter/Totalizer performs frequency, time, and totalizing
measurements. Frequency measurements are performed on TTL
or analog inputs at four different programmable gate times. Time
measurements are performed on TTL, analog, or gate inputs.
Intervals and periods can be measured by programming the slope
of the signal that starts and stops measurement.

Parallel Interface (Option 17XXA-002)

The Parallel Interface is a versatile option that provides 32 lines for
bidirectional data transmission between the 1752A and compatible
external devices. The Parallel Interface may be programmed for
either parallel data transfers or individual bit input and output.

Setting Up the 1752A

1752A CONFIGURATIONS

The standard 1752A includes one Analog Measurement Processor.
The 1752A is also available without the Analog Measurement
Processor, as Model 1752A-1. Model 1752A-1 is appropriate for users
that do not intend to measure voltage or current.

OPTION CONFIGURATION

The following table lists the slots available for the standard and
optional plug-in modules. The items in the table are included with the
1752A if they are ordered at the same time as the 1752A. In this table,
take particular notice of the constraints with module insertion; these
are indicated by either a ¥ or an *.

OPTIONS

SLOTS
1
Reserved for Video/Graphics/Keyboard Interface 2
° o . . . 3
o *x o . . ot o7 . . ° 4
o % ® % L) [) 01‘ e 1‘ 3 e ° e 5
° ° ° 6
Reserved for Single Board Computer 7

e Allowable Slot for Option
t Non I/0 must be used in slot above

* Takes up two slots. No board in slot above

Note:
Analog Measurement Processor is shipped in slot 5. Normally it may be used in
any of the Input/Output Options slots. Slot 6 has no Input/Output access.

Setting Up the 1752A

PHYSICAL LAYOUT

CARD CAGE POWER SUPPLY

FAN

AC INPUT
L

' 7

]

N Ny

Noly
——s| i/

CATHODE RAY TUBE

DISK DRIVE

2-10

Setting Up the 1752A
Physical Layout

TOUCH-SENSITIVE DISPLAY
DISK DRIVE DISK DRIVE
IN-USE IND\ICATOR

| \
\\ \ =f"
]
L ST

—)

—
KEYBOARD PLUG
ABORT
RESTART PUSHBUTTON
PUSHBUTTON
POWErR POWER
CORD SWITCH CARD CAGE
FUSE BRIGHTNESS CONTROL

/1]

=
B = —
3
EE
E 10 | i‘:ﬂ{—:
4
(Y| Q=P .
—\. \\ P
_ IEEE-488
SYSTEM GROUND TERMINAL CONNECTOR
RS-232-C
AIRFILTER coNNECTOR
Slots
Single Board Computer 7
Video/Graphics/Keyboard Interface 2

Analog Measurement Processor

5
Options 1, 3,4, 6
Memory Expansion Options 1,3, 4, 6
Measurement and Control Options 1, 3, 4
Input/Output Options 1, 3, 4

2-1

Setting Up the 1752A

UNPACKING

The 1752A is carefully packed for shipping to ensure that it arrives in
good condition. Unpack all the containers and check the packing
materials for accessories, cables, and manuals. Do not dispose of the
packing materials before inspecting them for shipping damage. If this
inspection reveals possible damage, notify the shipping agent
immediately. Then call a Fluke Sales Office or Customer Service
Center (see Appendix H). Use this checklist to be sure the shipment is
complete:

Unpacking Checklist

l. System Unit Mainframe

2. Keyboard

3. Power Cord

4. System Disk

5. Data Disk

6. Diagnostic Disk

7. Getting Started Disk and Manual

8. System Guide and Data Acquisition and Control Manual

9. BASIC Programming Manual Set

10. Programming Worksheets (pad of 50)
Other options or accessories may be included with the shipment.
Check the contents against your original order to ensure that all items
have arrived. A list of options and accessories is given in Appendix B.
If the 1752A needs to be shipped again at a later date, use the original
packing carton with all fillers properly in place. Fluke does not

recommend shipping the 1752A in a substitute container. To obtain an
approved container, call any Fluke Sales Office or Service Center.

Setting Up the 1752A
Unpacking

2-13

Setting Up the 1752A

INSTALLATION

Any microprocessor-based equipment is made up of two parts:
hardware and software. Installation usually involves a physical
installation and some sort of software configuration. This section
describes the physical installation of the 1752A. Software
configuration is covered in Section 3.

Before using this section to install and check out the 1752A, be sure you
are familiar with the location of all the connectors and controls. This
will assist you in setting up your system.

Environment

2-14

It is important to ensure that the location for the 1752A meets the
environmental requirements listed in the Specifications. Heat and
humidity are two of the worst enemies of electronic equipment,
particularly the floppy disk and its drive. Allow at least 10 cm (4 inches)
between the back of the unit and the wall to allow sufficient air flow for
the fan to cool the unit adequately.

Floppy disks are more sensitive to storage environments than the
1752A. If a disk becomes colder than 10°C (50°F), or warmer than
50°C (122°F), allow it to reach room temperature and humidity before
placing it in the 1752A. The checkout instructions below include other
disk handling precautions.

CAUTION

Low-humidity environments can contribute to static build-up.
Static discharges can permanently damage circuitry within the
1752A and erase information recorded on the floppy disk. To
prevent such damage, always make sure that the humidity is
above the minimum specified level and that the instrument is
properly grounded.

Setting Up the 1752A

Pre-installation Checkout

L.

Place the 1752A on a suitable table. Check the label on the rear
panel to ensure that the unit is set up for the proper line voltage,
and that the proper fuse is in place. If either the line voltage or
fuse are incorrect, ask your Fluke Technical Service Center for
assistance.

Check to see that any ordered options are installed. If
“installed” was specified on your order, the options should
already be in the 1752A. Otherwise they will be packed
separately.

Install any options that were not specified to be factory-
installed. Refer to the 1752A Data Acquisition and Control
manual or the manual shipped with the option for installation
instructions.

Release the door latch on the floppy disk drive by pressing in
on the top. Remove the protective shipping insert from the disk
drive.

CAUTION

Do not attempt to operate the 1752A before removing the
protective shipping insert. Doing so can damage the disk drive.

5. Attach the keyboard and line cord. Plug in the line cord and

turn on the power switch (rear panel).

6. Following the disk handling precautions on the next page,

gently insert the System Disk (label up) into the disk drive.

NOTE

Floppy disks supplied by Fluke use reinforced center rings to
help seat the disk on the spindle. If floppy disks without such
rings are used, first insert the disk, and gently close the door
without latching it. Reopen the door slightly, then close and
latch it. This ensures that the disk seats on the spindle, and
improves the reliability of reading and recording data.

2-15

Setting Up the 1752A
Floppy Disk Care

= Insert Carefully Never
Insertar Nunca
Inserer avec soin Jamais
Sorgfaltig Einsetzen Nie
A E W # X R i
D
Protect Never
Proteger Nunca
Proteger Jamais
Schutzen Nie
* = ISl
No
L No
10°C - 50°C Non
50°F - 122°F Falsch
E X

2-16

Setting Up the 1752A
Loading a Disk

7. When the disk is fully seated, close the drive by pressing in on
the bottom of the latch.

@.\ PRESS TOP OF DOOR LATCH TO RELEASE
7

2-17

Setting Up the 1752A
Booting Up

8. Press RESTART and watch the display. It should read:
T N

FLUKE 1752A DATA ACGUISITION SYSTEM
HELLO
BOOT Vn.n

_
_ 9,

9. Following this display, the 1752A performs a self-test that
checks out the internal circuitry. The display changes to read:

r)

()

FLUKE 1752A DATA ACQUISITION SYSTEM
SELF TEST IN PROGRESS

S /)

10. If the self-test is not successful, an error message is displayed on
the screen. If this happens, recheck the previous steps. For a
continuing failure, see the list of Self Test error messages in
Section 3. If everything seems to be in order, perform the
System Diagnostics as discussed in Appendix G. If further
assistance is required, contact your Fluke Service Center.

2-18

Setting Up the 1752A
Completing the Checkout

11. After the self-test is successfully completed, the 1752A loads
the Operating System software into main memory from the
System Disk. The display again changes to read:

/
([1\

FLUKE 1732A DATA ACQUISITION SYSTEM
LOADING

= /)

12. When the Operating System has been loaded from the floppy
disk into memory, the system asks for you to set the correct
time and date. When you have done this, the prompt for the
Fluke Disk Operating System is displayed:

FDOS Version %Z.y
Total System Memory — nnn Kbytes
E-Disk - n Kbytes, free — nnn Kbytes (nn blocks)

FDOS)

13. If all these steps have been successful, the 1752A is fully
functional, and the Pre-Installation Checkout is complete.
There is a more complete description of the system’s power up
activities in the next section, Software Configuration.

NOTE
Altered system software may not ask for the time and date, nor

show the FDOS prompt. The programmer can tell the
installer how the successfully loaded software will appear.

2-19

Setting Up the 1752A

Front Panel Controls

2-20

Refer to the figure on page 2-11 for the following discussion.

RESTART reloads the system software and restarts the user
application program (if a STRTUP.CMD file is
present), without disturbing any programs or data
on Electronic Disk.

ABORT interrupts the current user application program.
This function is programmable, and the action taken
is dependent on the application program. If the
application program does not specifically handle
this situation, the program is stopped.

Pressing the RESTART and ABORT keys simultaneously is the same
as turning the power off, then on again. The system software and user
application program are automatically reloaded from the disk.

CAUTION

The RESTART and ABORT keys only affect programs running on
the 1752A. Pressing these keys will not have any effect on the
status of other equipment or instrumentation connected to the
1752A. If required, the user program must take specific action to
place other equipment in the system in standby mode. For more
information, see Section 7, A Caution to Systems Programmers.

Setting Up the 1752A

Default Switch Settings

The Single Board Computer module in the 1752 A has a set of switches
that determine the default system configuration on power-up. These
switches define the baud rate of the RS-232-C port, the IEEE-488
device address, and whether the 1752A is to be designated “system
controller” or an “idle controller” in an IEEE-488 instrumentation
system with multiple controllers. The drawing below illustrates the
switch settings as configured at the factory. If you need to alter the
switch settings, consult the information in Section 9, Installing
Hardware Options, for instructions on removing the Single Board
Computer. Refer to Section 5, Communications, for complete
information on RS-232-C communications and multiple controller
systems.

‘ ,.‘[:1 . unused

|EEE-488 ADDRESS
0 0 0 0 0
SINGLE BOARD 0 0 o 1 1
COMPUTER MODULE

1 1 1 1 15

IEEE-488 CONTROLLER

0 0] | System Controller
1 T | Idle Controller
BAUD RATE

110
300
600
1200
2400
4800
9600
19200

“lalas|=|olojo)o
s |a|lo|lo|=|=|olo
- |Oo|=|Oo|=|O|=]|O

NOTE: 1 = on; 0 = off

Configuring the Measurement and Control Modules

See the 1752A Data Acquisition and Control manual for detailed

instructions for installing and configuring the measurement and
control modules.

2-21

Setting Up the 1752A
Placement

PLACEMENT

The 1752A can either be rack-mounted or used on a bench. Rack
mounting is preferred for more permanent installations or when the
system will be set up in an assembly-line application. In research and
development facilities, scientific or engineering laboratories, or other
locations where the 1752A will be portable, mount the system on a
rack.

Wherever the installation site is, choose a location where the display
will not be subject to glare from overhead lights or windows.

Workbench Installation

Normally, little thought is given to planning how to set up a test fixture
on a workbench; wherever things fit is usually where they are put.
However, a little planning can make the installation much more
versatile, efficient, and pleasant to work with.

1. Find a location for the 1752A where the touch-sensitive
display will be as close to eye level as possible. This prevents
long reaches for the operator that can become tiring, and
ensures that a parallax error will not cause the operator to
touch the screen at the wrong location.

CHARACTER CHARACTER

FACE OF TUBE FACE OF TUBE
TOUCH-SENSITIVE PANEL TOUCH -SENSITIVE
PANEL

RIGHT WRONG

2-22

Setting Up the 1752A
Placement

2. Position the keyboard so that the programmer is able to sit
directly in front of the screen, rather than off to one side.

3. If instruments will be repeatedly connected and disconnected,
make sure the back of the workbench is open and not againsta
wall. This makes connectors on the rear panel more easily
accessible.

4. Arrange other instruments on the bench so they are easy to see
and operate.

5. To protect information on the floppy disks, never place an
oscilloscope, soldering iron, or other sources of high voltage or
electromagnetic fields near the disk or disk drives.

6. Keep the equipment cables neatly organized. Dressing the
cables ensures that long cables will not degrade signal quality
among the instruments, keeps the work area neat, and helps
trace any problems that might occur.

2-23

Setting Up the 1752A
Placement

Rack Mounting

2-24

Installing the 1752A in an equipment rack requires more planning
than bench-top installation, because it is more difficult to change if
things don’t work out. Here are a few things to keep in mind as you
plan a rack-mounted installation:

1.

Plan for a way that the keyboard can be easily used after the
installation. Even though the keyboard will not be attached
during normal operation, it may be needed later to change
programs. If the 1752A can be left in the rack, you (or the
operator) can save time and effort.

If the programs will have a high degree of interaction between
the operator and the touch-sensitive display, consider
mounting the 1752A so that it will be at eye level from the
operator’s normal working position. If the operator stands, the
1752A should be mounted 1.5 meters (5 feet) above the floor. If
the operator sits, then it can be mounted lower. This will avoid
long reaches and parallax errors.

If programs will not require much interaction, place the
instrument with which the operator will be working most
frequently directly at eye level, and fill the rack outward from
there with those instruments used less frequently.

To protect the information on the floppy disks, position any
instruments that radiate electromagnetic fields as far away as
practical from the 1752A.

Dress the cables well to ensure good signal quality and to help
trace any problems that might occur.

Setting Up the 1752A
Placement

20
00
8EDDIDUIDD coo
~ Foo0Co0 === i
To

O

g

-
ce

®J[C)

Jo

3
offl - l|°? B

®| 0

2-25

Setting Up the 1752A
Installing the System

INSTALLING THE DATA ACQUISITION AND CONTROL
SYSTEM

2-26

The 1752A has three types of interfaces: the optional measurement and
control modules, the IEEE-488 interface, and the RS-232-C interface.

The optional measurement and control modules provide a variety of
interfaces to real-world measurement and process control. For
complete installation and programming instructions, refer to the
1752A Data Acquisition and Control manual.

The 1EEE-488 interface allows the 1752A to function as a powerful
Instrument Controller in an IEEE-488 system. Installation
instructions are provided below.

The RS-232-C interface lets you connect the 1752A to devices that use
the Electronic Industry Association’s RS-232-C Data
Communications Interface Standard. Installation instructions are
presented in Section 9, Options 17XXA-008 and 17XXA-009.

Setting Up the 1752A
Installing the System

1752A DATA
ACQUISITION SYSTEM

RS-232-C—>“ aeml iccc-Lea

O .o

\"ﬁ’
PROGRAMMABLE [e ——
POWER SUPPLY j

FREQUENCY |\
SYNTHESIZER \ |4

MEASUREMENT]""—‘_JJ'
\

AND | o
MICRO-SYSTEM CONTROL LINK
TROUBLESHOOTER B

OTHER 1752A l’T:: 5]

MEASUREMENT AND
CONTROL MODULE INTERFACE

YV by

Real-World Process

2-27

Setting Up the 1752A
Installing a IEEE-488 System

INSTALLING AN IEEE-488 SYSTEM

In addition to the 1752A’s data acquisition capabilities, the 1752A can
also function as a powerful instrument controller in an IEEE-488
instrumentation system. Because of the versatility of the 1752A, it is
not possible to give more than general guidelines on how to configure
it into a system. The drawing below illustrates an example system.

RS-232-C

I

© 1752A

FREQUENCY [l N

SYNTHESIZER™

Y

COUNTER

SERIAL PRINTER

UNIT UNDER TEST

2-28

Setting Up the 1752A
Installing a IEEE-488 System

Connecting the IEEE-488 Bus

One of the features of the IEEE-488 connector is that it has both male
and female connectors. Because of this, it is possible to stack all of the
connections (up to the maximum of 14) into one location, or to arrange
them in any other configuration desired. However, it is probably a
better idea to distribute the IEEE-488 connectors among the
instruments for two reasons:

1. In such an arrangement, the connectors do not extend as far,
and connector stress that could cause intermittent problems
later is eliminated.

2. Usinga distributed connector pattern, it is easier to change any
connector’s position than if the bus connections were all at the
same place.

The IEEE-488 standard states that total cable length in a system should
not exceed 20 meters (about 60 feet), and that no single cable should
exceed 4 meters (about 12 feet). Allow 2 meters (6 feet) of cable per
piece of equipment.

2-29

Setting Up the 1752A
Conclusion

CONCLUSION

2-30

This section has provided the necessary information for identifying the
features and getting familiar with the 1752A. Emphasis has been on
introducing the 1752A into its working environment and describing
briefly the capabilities of the unit. To complete your system, you must
still configure the system software and write test programs to verify
hardware installation.

The next section takes you step by step through the necessary
procedures that define the basic operating parameters of the 1752A.
Refer to the 1752A Data Acquisition and Control manual for complete
information about installing and operating the optional measurement
and control modules.

System Diagnostic information is included in Appendix G of this
manual, and complete service information is available in the 1752A
Service Manual (Fluke Part Number 762567).

Section 3
Software Configuration

CONTENTS
Introductioniitiiii i i i i e 3-2
Loading the System Softwarecc0vvuievnn.. 3-3
Bootstrap Loaderooiviiiiiiiii i 3-3
Self-Test Error Messagescovviiininennnnennn.. 34
Other Errors ...ttt ii it 3-5
The Startup Command File 3-6
Settingthe Time oottt 3-7
The Operating Systemoeurveeunneennnennnnns 39
Command Line Interpreterccvvivnenenn.. 3-10
Other Software on the System Disk 3-10
Making a New Operating Systemccvvvunenn.. 3-12
Introductionc.coiiiiiiiiiiiiiii i e 3-12
A Note About Software Compatibility 3-12
Using the System Generation Utility 3-13
The FDOS Configuration Data Program 3-15
Entering CONFIG ittt i i 3-15
Writing Configuration Datatoa File 3-16
CONFIG Program Help Information 3-16
Printing the CONFIG Program Version Number 3-17
The Compatibility Test Program 3-18
Running the Compatibility Program 3-18
Program Help Information e, 3-19
Printing More Data From Image Files 3-19
Directing Outputtoa File 3-21
Using OTP ..o i i e it i i 3-21
CONCIUSION ..t i i ieennnnn 3-22

3-1

Software Configuration

INTRODUCTION

3-2

The last section discussed how to set up the 1752A Data Acquisition
System from a physical point of view. This section describes the
software, which, together with the hardware, make up a functional
1752A. The section includes a description of the software that is
shipped with each new 1752A.

Software Configuration

LOADING THE SYSTEM SOFTWARE
Bootstrap Loader

When the 1752A is powered up, a small program that is permanently
recorded in memory has control of the internal microprocessor. This
program, the Bootstrap Loader, first says “HELLO”, then performs
two very important functions:

O It checks out the 1752A with a self-test to make sure all the
hardware is operating properly.

O It loads the system software.

The self-test checks the memory, processor, and the interfaces.

r N

FLUKE 1752A DATA ACGQUISITION SYSTEM
SELF TEST IN PROGRESS

_
_ ’)

The benefit of this automatic test at power-up is that if it is successful,
the 1752A’s hardware is verified as operational, and if a problem
occurs later, the hardware can be eliminated as the fault. If the test
fails, press RESTART and try again. If the problem persists, contact
your Fluke Customer Service Center.

Software Configuration

Self-Test Error Messages

3-4

If an error occurs during the self test, a message will be displayed that
takes the form:

FAILED: - xxx Test.

The xxx will indicate the test that failed, which may be any of the
following.

- ROM Test

- RS-232 Port Test

- Memory Mapper Test

- Macrostore Memory Test

- On-board Memory Test

- IEEE Controller Test

- Floppy Disk Controller Test

All of these messages indicate a non-recoverable hardware failure. Try
resetting the 1752A first, but if the error continues, make a note of the
test that failed, and contact your Fluke Service Representative.

After the Self test, the Bootstrap loader attempts to load the operating
system.

The Bootstrap loader searches for the system software on the floppy
disk, Electronic disk, then in the bubble memory if one is installed. If
the system software is found, it is loaded into main memory. The device
from which the system software was loaded is made'the system device.
(For more information about the system device, see Section 4, Devices
and Files.)

As soon as the operating system is loaded, it takes over from the
Bootstrap Loader, and the instructions recorded on the software disk
direct the controller’s activities from that point.

Other Errors

Software Configuration
Power Up

Some errors can occur during the power-up self-test, or any time
during the operation of the 1752A. The errors are always preceded by a
question mark indicating that they are not recoverable; the 1752A
continues to return the same error unless you take some corrective
action. These errors and the corrective action required are:

Message

7Disk Not Ready

?7Illegal Directory

?Device Error

7No System On Device

Meaning

Insert or reinsert the System disk.
Either there is no disk in the drive, orit
has been inserted incorrectly. Make
sure the disk drive door is latched.

The disk is faulty and must be replaced
before the 1752A will operate properly.
It may be possible to save the files from
the bad disk by using the File Utility
Program.

The system is having difficulty reading
the floppy disk. Check to be sure it is a
System disk, and that it is inserted
properly. If so, RESTART and try
again. If the failure continues, try
another System disk.

The 1752A does not recognize the disk
in the drive as a System Disk. Try
another System Disk. The wrong disk
may be inserted, or the disk may be
inserted incorrectly.

3-5

Software Configuration
Power Up

The Startup Command File

3-6

On a standard System disk, the operating system loads a special
command file called STRTUP.CMD. A command file is a collection
of keyboard commands that would otherwise have to be typed in.

Command files serve to automate commonly performed functions.
For more details, see section 4.

The STRTUP.CMD file on a standard disk loads two more programs:
The Time and Date Utility and the BASIC Interpreter program.

The STRTUP.CMD file is easily changed. After gaining some
familiarity with the 1752A, you may want to modify the startup file to
customize the 1752A’s functions at power-up. There is a complete

description of how to do that in Section 7, Automating System
Functions.

O If the file STRTUP.CMD is found, it is loaded, and the FDOS
prompt will not have been displayed. Instead, the display reads:

FDOS Version x.v
Total Systes Memory - nnn Kbytes
E-Disk - n Kbytes free - nn Kbytes (nn blocks)

Startup Comaand File Execution in Progress

Please Standbyv...

O Ifthefile STRTUP.CMD isnotfound, the Operating System takes
control. This would happen if the disk being loaded is not the

System Disk supplied with the 1752A, orif the STRTUP.CMD file
has been renamed or deleted.

0 The STRTUP.CMD file on the System Disk supplied with the
1752A first checks the Time and Date Utility to see if the time has
been set. If it has, it loads the BASIC Interpreter program and
transfers control to it.

Software Configuration
Setting the Time

Setting the Time

o If the time clock has not previously been set, the display will next
read:

Enter date: DD-MM-YY

0 Type in today’s date in numeric form, starting with the day, then
the month, and then the year. The entries must be separated by a
hyphen or other non-numeric character. Use the DELETE key to
correct any mistakes. Press (RETURN) and the display reads:

Enter timet: HH-MM

o Enter the time in 24-hour format: first the hour, then the minutes.
Separate the two by any non-numeric character. Press
(RETURN) to complete the operation.

The time on this clock is 8:20.
If it is before noon, enter 08 20;
if it is evening, enter 20 20.

3-7

Software Configuration
Power Up

O Once the date and time have been set, the BASIC Interpreter
program is loaded. The display reads:

[)
(~
Welcome to Fluke 1752A BASIC!
Ready
O g
J

3-8

0 The “Ready” prompt indicates that the BASIC Interpreter
program is running in the Immediate Mode.

If all these things have happened as described, the 1752A is operating
properly. The “Ready” prompt indicates that the 1752A has passed the
Self Test, that the STRTUP.CMD program has run properly, and that
the 1752A is now ready to receive commands in the BASIC language.

If you do not want to begin by programming in BASIC, it is a simple

matter to exit the BASIC Interpreter program, and begin working with

the Command Line Interpreter. To do that, type EXIT
(RETURN) . The prompt for the operating system is FDOS)

To get back to BASIC, just enter the word BASIC, and then
(RETURN)

Below is a description of the software modules that make up the
operating system on a new system software disk.

Software Configuration

THE OPERATING SYSTEM

Because the 1752A is a programmed instrument, its functions are
controlled by a master operating program. In the 1752A, this program
is the Floppy Disk Operating System (filename FDOS2.SYS). This
program is often referred to as “FDOS” in the 1752A Manual Set.

FDOS controls the hardware components of the 1752A. It takes
instructions from the keyboard or from a program, and directs the
functions of ports, manages the memory, and manipulates files to
convert the instructions into action.

FDOS is soft-loaded, which means that it is recorded on a disk, rather
than being permanently in the memory. The advantage of making
FDOS soft-loaded is that it can be easily maintained and updated.
Also, new software can easily be added without having to install special
hardware. FDOS is loaded into memory whenever the the instrument
is turned on.

For this reason, a floppy disk containing the Operating System file
(FDOS2.SYS) must be in place when the power is turned on or when
the RESTART button on the front panel is pressed. This file alone is
not sufficient for proper operation, however. Another file,
MACRO.SYS, which is also supplied on the 1752A System Disk must
be included on any disk which is to be used to start up the 1752A. This
file contains machine language subroutines used by the system
software and other programs.

One more file on the System Disk, ALIAS.SYS, is also loaded into
memory when the 1752A is booted up. This file is not required for
proper operation of the 1752A, but it contains abbreviations for
commonly used commands that can save time during programming.
The alias file is explained in more detail in Section 7.

Since it is possible to relocate the Operating System into Electronic
Disk or an optional Bubble Memory, and since the Bootstrap loader
looks at these devices when it cannot locate FDOS on the floppy disk,
it is not necessary to have the System Disk physically in place to load
the Operating System. In fact, the loading process can be considerably
speeded up by recording the Operating System into memory, and
loading from there rather than from the floppy disk.

3-9

Software Configuration
The Operating System

Command Line Interpreter

The part of the operating system that receives instructions from the
keyboard is called the Command Line Interpreter. The Commanc
Line Interpreter can accept either single command lines (instructions)
from the keyboard, or the instructions contained in a Command file.
Instructions can be entered either in lower case or upper case. To
distinguish commands from other text, this manual shows only upper

case.

Automating the 1752A using Command Files is described in detail in
Section 7, Automating System Functions.

Other Software on the System Disk

The following programs are provided to assist you in configuring the
1752A and in developing software:

3-10

TIME

SET

FUP

The Time and Date Utility. [filename TIME.FD2]

This utility program is used to set or read the time and
date maintained by the 1752A calendar/clock circuitry.
Once the clock is set to the correct time and date, it can be
used to imprint programs or data. It can also be used to
display the current setting. Battery power keeps it
accurate when the power is turned off. The Time and
Date Utility program is discussed in more detail in
Section 7, Automating System Functions.

The Set Utility. [filename SET.FD2]

This program changes the parameters at the RS-232-C
port. These parameters govern the way information is
sent and received between the 1752A and any devices
connected to the serial communications port. One
parameter, the length of time out, can also be changed for
the IEEE-488 port. The Set Utility program is discussed
in more detail in Section 5, Communications.

The File Utility Program. [filename FUP.FD2]

The File Utility is used to to create, delete, rename, and
copy files, and to channel them between the various
devices in the 1752A. The File Utility program is
described at the end of the next section, Devices and
Files.

EDIT

BASIC

SYSGEN

COMPAT

CONFIG

OTP

TCOPY

Software Configuration
The Operating System

The Editor program [filename EDIT.FD2] A program
for creating and editing other programs, the Editor lets
you insert, delete, search for, and replace characters,
lines, phrases, and strings in your files. See Section 6 for
details.

This is the program that enables the 1752A to run BASIC
language programs. The Fluke BASIC Programming
Manual set that is supplied with the 1752A is a complete
reference for the BASIC language.

The System Generation program. [filename
SYSGEN.FD2]

This program is used to create operating system software
to support configurations that include options.

The Compatibility Test program. [filename
COMPAT.FD2]

This program prints the names, version stamps, and other
data about an executable program file. A complete
description of the Compatibility program is included at
the end of this section.

The Configuration Data program. [filename
CONFIG.FD2)]

This program prints a list of the device names which the
currently executing Operating System is configured to
use. The program is described in detail at the end of this
section.

The Object Translator Program. [filename OTP.FD2]

OTP converts object files created by the FORTRAN
Compiler and the Assembler into a simpler format usable
with the BASIC Interpreter’s LINK statement. This
program is used with the Assembly Language option
(17XXA-201) and the FORTRAN option (17XXA-202)

The Touch-Copy program [filename TCOPY.FD2] A
program that uses the Touch-Sensitive Display for listing
and copying files or groups of files. TCOPY has a menu
mode and a command mode to serve a variety of
applications. See Section 4 for a description of all the
TCOPY options.

Software Configuration
Making a New Operating System

MAKING A NEW OPERATING SYSTEM
Introduction

The System Generation program is provided on the System Disk with
the filename SYSGEN.FD2. This program is a tool for making a new
Operating System. In addition to the standard software device drivers,
the file FDOS2.SYS that is supplied on the System Disk contains
software device drivers for the following optional modules for the
1752A:

17XXA-002 Parallel Interface Modules

[7XXA-004 and 17XXA-005 Bubble Memory Module
17XXA-009 Dual Serial Interface Module

1752A-010 Analog Measurement Processor

1752A-011 Analog Output

1752A-012 Counter/ Totalizer

If you do not have any of the above optional devices, you may wish to
create a new configuration of FDOS2.SYS using the System
Generation program. Doing so will free up the memory used by the
additional drivers and make it available for programs or Electronic
Disk.

Device drivers are also available for the following 1752A peripherals:

1760A and 1761 A Disk Drive Systems
1765A/ AB Winchester Disk Drive

If you have any of these peripherals, you must use the System
Generation program to reconfigure the operating system to include
these drivers before using them with the 1752A.

The CONFIG program described later in this section can be used to
determine the configuration of the Operating System currently in
memory.

A Note About Software Compatibility...

3-12

The System programs are software modules supplied with the 1752A
as files on the System Disk. These machine-language programs are
interdependent and are compatible in the combinations supplied with
the 1752A.

Software Configuration
Making a New Operating System

System programs are easily copied and erased, since they are treated as
any other file. The portability and copying ease of system software
allows you to take advantage of Fluke’s continuing program of
software development. However, it is possible to inadvertently record
incompatible modules onto the same disk. Therefore, it isimportant to
keep track of the various software modules on your disks. The
COMPAT program described in this section can assist you in keeping
track of compatible versions of software.

Use caution when copying new or updated software to make sure that
the modules are recorded in the same combinations as the original
disk. If a mistake is made, the operating system may not load the
incompatible module, and display an error message.

Experienced programmers often suggest keeping a record of any
changes made to software disks, to keep mistakes to a minimum and to
make it easier to track down any problems that might occur. One way
to do this is to use the /L option of the File Utility program to print a
listing and keep it with the floppy disk.

Using the System Generation Utility

The System Generation program requires some files in order to build
the operating system. Before beginning, use the File Utility Program to
make sure you have these files available on your system device:

SYSGEN.FD2 (the program that generates the new FDOS)
FDOS2 .LIB (library of modules to build FDOS)
FDOS2 .CFG (used by SYSGEN to generate the prompts)

Also, decide if you want to keep a copy of the original Operating
System configuration. If so, make a backup copy of the old version of
FDOS2.SYS before running SYSGEN. This can be done by renaming
the file using the File Utility Program (refer to Section 4, Devices and
Files).

1. From the FDOS) prompt, type SYSGEN (RETURN).

2. When the program has loaded, the screen will display the
System Generation Utility program identification, then will list
the names of files it is linking to, and then begin asking if you
want various drivers.

3. Answer Y to those that are desired, otherwise N. Only include
drivers for the devices you will be using.

3-13

Software Configuration
Making a New Operating System

3-14

4. After you answer all the questions, the program reads the
required software modules from the file named FDOS2.LIB,
and links them together to create the new operating system.

5. Press RESTART, and allow the new Operating System to
load. Test each module by using the File Utility Program to
scan (/S), format (/F), or zero (/ Z) the devices associated with
each driver. Or you may run the diagnostic program for the
desired module (refer to Appendix G, System Diagnostic
Software).

If the file that SYSGEN is writing (FDOS2.SYS is the default) is file
protected, the error message ?File protected is displayed and SYSGEN
exits.

If you want SYSGEN to place the new FDOS on a device other than
the system device, at step | enter “SYSGEN dvc:” where dvc is the
name of the device. For example, if MFO: is the system device, but you
want SYSGEN to put the new FDOS2.SYS file on EDO:, enter
SYSGEN EDO:(RETURN) from the FDOS) prompt.

If you want the output of SYSGEN to be named differently than
“FDOS2.SYS”, then enter “SYSGEN filename” from the FDOS)
prompt. For example, to name the output of SYSGEN
“FDOS2.NEW”, enter “SYSGEN FDOS2.NEW(RETURN)”. Only
an operating system with the name FDOS2.SYS can be booted and
executed on the controller. FUP can be used to rename the file
FDOS2.SYS.

THE FDOS CONFIGURATION DATA PROGRAM

Software Configuration

CONFIG. FD2

The FDOS Configuration Data program is a utility program supplied
on the System Disk with the file name CONFIG.FD2. It prints the
version number of the Floppy Disk Operating System (FDOS)
currently in use, and the device names of all peripheral devices which
FDOS has been configured to use.

Section 4 of this manual explains the the difference between serial and
file-structured devices.

Entering the FDOS Configuration Program

From the FDOS) prompt, type CONFIG (RETURN). The CONFIG
program will print the current FDOS version and configuration as

follows:
FDOS) CONF1Q A\
Devices configured with this FDOS (Version m.n)
EDO: File-structured
MFO: File-structured (8YO:)
KBY: Serial
KBO: Berial
GPO: Gerial
CP1: Gerial
MF1: File-structured
MF2: File-structured
MF3: File-structured
MF4: File-structured
WDO: File-structured
WD1: File-structured
WD2: File-structured
WD3: File-structured
FDOS)
o ’)
NOTES

1. If FDOS was configured with a Bubble Memory or a Dual
Serial Interface driver, and neither of these devices are installed
when the Controller is powered up, they will not appear on the
above list.

2. If E-Disk was not configured when CONFIG was run the
device name will not appear in the above list.

3. There are no device names for ports on the Parallel
Interface Board (17X XA-002), therefore it also will not appear
in the above list.

Notice that the entry for the floppy disk, MFO0:, also contains the name
SYO:. This indicates that the “default system device” (SYO:) is currently
assigned to device MFO:.

3-15

Software Configuration
CONFIG. FD2

Writing Configuration Data to a File

The CONFIG program can write its data to a file instead of the screen.
From the FDOS) prompt simply place a “)” character followed by a
legal file name into which the output from CONFIG should be placed:

FDOS)CONFIQ@)CONFIQ.DAT
FDOS)»

In this case, the configuration data will be written to the file
“CONFIG.DAT” on the current “system device”, named “SYO0:”. Any
legal FDOS file name may be used.

CONFIG Program Help Information

The CONFIG program prints a short help message in response to an
invalid command. A longer help message is printed in response to an
explicit request.

An invalid command causes a one-line “usage” message to be printed.
This is simply a quick reminder of how the CONFIG program expects
to be told to do its job. For example:

FDOS)CONFIG +_R&#¥
Usage: CONFIG [?7) [-version] [)filed

FDOS)

In this case CONFIG simply prints an example command line. The
square brackets surrounding the command line options simply
indicate that they may be omitted if desired.

3-16

Software Configuration
CONFIG. FD2

A slightly more involved help message is produced by the question-

mark command to CONFIG:

s

FDOS) config 7 ‘

first line,
starting in the first column, @ tab character, and the word
"File-structured” to indicate the device type. For example

FDOS) config

FDOS) config Mmyfile.cfg
will print the configuration data to the file "myfile.cfg".
FDOS)

\—

“Serial" or
the command:

will print the FDOS configuration to the 1732A display. The command:

‘

The “Config” program prints the devices which may be used with the version
of FDOS execu xng on your machine. The FDOS version number appears on the
A blank line follows. Succeeding lines contain a device name

~

\

/

Printing the CONFIG Program Version Number

The version number of the CONFIG program itself may be printed by

using the command:

FDOS)CONF1G ~VERSION
CONFIG Version m.n
FDOS)

The letters “m.n” will be replaced by the actual 2-digit version number

of the CONFIG program.

3-17

Software Configuration
COMPAT. FD2

THE COMPATIBILITY TEST PROGRAM

The Compatibility Test Program is a utility program supplied on the
System Disk with the file name COMPAT.FD2. It is a tool which
allows the version stamp of executable program files to be printed and
optionally checked for compatibility with any version of the Floppy
Disk Operating System (FDOS).

Executable programs (all files with extensions .SYS or .FD2) contain a
version stamp field when they are stored. This field records the version
of FDOS under which the file was created. The version stamp is not
necessarily the version number which is displayed when the program is
run. Forexample, a copy of the File Utility Program, called FUP.FD?2,
has a version stamp of 1.0 if it is meant to be executed with version 1.0
FDOS.

Running the Compatibility Program

From the FDOS) prompt, type COMPAT (RETURN). The
COMPAT program will (by default) print the version numbers of all
executable programs found on the current System Device (device
SYO0:). For example:

/

rFDOS) COMPAT

3-18

)

List of executable files (all versions)

MFQ: MACRO. 8YS
HFO:FDOB?.BYB
MFO: BAS D2
HFO:FUP FD
MFO: SET.FD2

EDIT.FD2
HFO:SYSOEN FDR
MFO: TIM
HFO:TCDFY F02

REER]
uw

Pt Pt B D P et b
e s
[13 13 13 14 13 17}

Notice that in this case the System Device (SY0:) was the floppy disk
MFO..

Software Configuration
COMPAT. FD2

Program Help Information

COMPAT will provide both long and short “help” messages. A short
“usage” message is produced in response to a command with invalid
syntax. This message is:

FDOS)COMPAT
Usage: COMPAT [?7) [(+-version=x.yl) [(+—fdos=x.y) [+—fdos] [+data)
[)fi1le) C[pattern...]

FDO8)

This message is a short reminder about the correct usage of
COMPAT's commands.

A longer help message is printed in response to the “?” command:

7 N

FDOS)COMPAT 7

The COMPAT program (version m.n) has the Ool)oulna options
+version=m.n Print programs created under FDOS version m.n
-version=m.n Print programs not created under FDOS version a.n
+fdos=m.n Print programs compatible with FDOS version m.n

-fdos=a.n Print programs not compatible with FDOS version a.n
+fdos Print programs compatible with current FDOS
~-fdos Print programs not compatible with current FDOS
+data Print data about program memory use and privilege
pattern Only check files n.t:ning pattern

aracters are

v 8 and .FD2 files on dvc:

» Zero or more of any character (except “.")
Ell(‘l! one of any character (except “.*)
[]

?
A-2 0-9 . 8 _ Characters to be matched exactly
S ’J

Printing More Data From Image Files

COMPAT can give more information than just the version number
about the files selected for printing. The command to do this is
+DATA.

More than one pattern may agpo.r. Pattern c
dve: Check all .SY

3-19

Software Configuration
COMPAT. FD2

~

FDOS)COMPAT MFO: WD1: +DATA

Lisnt of executable files (all versions):

File name Varsion Load Entry Size Overlay Space Mode

MFO: MACRO.BYS 1.2 Y0800)0800 Y13F2 No Kernel Privileged
MFO: FDOS2.8YS 1.2 Y0100)SDS4)AIFE No Kernel Privileged
MFO: BASIC.FD2 1.2 Y0000)B2E4)B33E Neo User Privileged
MFO: FUP.FD2 1.2 Y0000)0000 1386 No User User

MFO: BET. FD2 1.2 »0000)0000)11CO No User User
MFO-EDIT.FD2 1.2 Y0000)0000)3CB& Na User User

MFO: SYSCGEN.FD2 1.2 YEQOO)H)EQOQO0)1BB& No User User

MFO: TIME.FD 1.2 Y0000)0000 0318 No User User

WD1: BC. a 1.0 Y0001 Y0000 YA284 VYeas User User

WD1: BSCRUN 1.0 JAARS YAARQS)3308 No User User

WD1: HDT.FD2 1.0 YEOOO)EQOO No Kernel Privileged
£DOS)

/

The information printed by the +DATA command is simply the
information which FDOS uses to load a machine language program
into memory. The File name and Version fields have already been

discussed. The other information fields are:

I.oad is the first (lowest) memory address to be used when loading

the program into memory.

Entry 1s the memory address at which the program initialization
code begins. FDOS transfers control to this location to start

the program’s execution.

Size 1s the number of bytes which the program requires to hold
both instructions and any initialized data. More memory
than this may actually be required to execute the program.
For overlaid programs this number is the “longest overlay
path”, or the maximum memory used by any sequence of

overlays.

Overlay is “Yes” il the program uses overlays, otherwise “No”.

Space is “Kernel” if the program must be loaded into the lowest
64K bytes of memory (which is where FDOS is loaded), or
“User” if the programs may be loaded into any memory

region other than the lowest 64K bytes.

Mode is either “User” or “Privileged”. This indicates whether the
program executes in User mode, which prevents the use of
certain critical machine instructions, or in Privileged mode,
which permits the program to address any memory location

and to execute any machine instruction.

3-20

Software Configuration
Object Translator

Directing Output to a File

The output of COMPAT may be written to a file instead of to the
display simply by using a *“)” character followed by the name of the {ile
to be created. For example:

[

FDOS) COMPAT)COMPAT.DAT
FDOS)

In this case the output of COMPAT would be written to the file
COMPAT.DAT.

USING OTP

OTP (the Object Translator Program) converts object files created by
the FORTRAN Compiler (Option 17XXA-202) or the Assembler
(17XXA-201) into a simpler format that can be used with the BASIC
Interpreter’s LINK statement.

1.

Compile any FORTRAN subroutines by using the
FORTRAN Compiler (FC.FD2). If any FORTRAN
subroutines are used you use OTP in step 4.

Use the Assembler (ASM.FD2) to assemble any Assembly
Language subroutines. If any of the Assembly subroutines use
DSEG (Data SEGment) or CSEG (Common SEGment)
directives you use OTP in step 4.

Use the Linkage Editor program (LE.FD2) to doa PARTIAL
link of the object files created in steps 1 and 2 with the
Parameter Linkage Routine object file FERGMY.OBJ.

This step is optional, but see steps 1 and 2. Run the object file
created by step 3 through OTP to create an object file which
may be used by the BASIC Interpreter’s LINK statement.

Use the LINK statement in the BASIC Interpreter to load the
object file created in step 4 with anexecuting BASIC program.

3-2i

Software Configuration

CONCLUSION

3-22

This section has described the programs that are recorded on the
System Disk supplied with the 1752A. These programs are tools for the
system designer to use in setting up an instrumentation system. None
of these programs actually control an instrumentation system, but they
facilitate writing those programs that do.

To make use of these programs requires using some other tools,
referred to as the system’s resources: devices and files.

The next section introduces these system resources and explains how
to use each device and each type of file.

Section 4
Devices And Files

CONTENTS

INtroductionciiiiiiiiiii ittt 4-2
DEVICES ottt ittt ittt ittt it 4-3
S LT 4-5

DEVICES ottt ittt i i i i i i e e 4-6
RS-232 Ports (KBn:;, SPn:)cciiiiiiiiinnnn.. 4-6
IEEE-488 Ports (GPn:)oiviiiiiiiiiiiiiiiinnnn., 4-7
Floppy Disk Drives MFn:)oooiiiiiiiiiii... 4-7
Electronic Disk (EDO:)oiviiiiiiiiiiiiiininnnnnn. 4-8
Bubble Memory (MBn:)oiiiiiiiiiiiit, 4-8
Winchester Drive (WDn:)c.iiiiiiiiinennn.. 4-8

Flles oot i i it it ettt et e 49
System Filesoiiiiiiiiiiiniiiiiiii ittt iinnenn, 49
Allas File ... i i e 49
Command Filesccoiiiiiiiiiiiiiiiiniinnnn., 49
The Startup Command Filec0cu... 4-9
Other Command Filescciiiin... 4-10
Machine Executable Files 4-10
Language-Dependent Filesc.ovvva... 4-10

The File Utility Programcovviiiinrennennnn. 4-11
INtroductionoiiiiiiiiiiitiiiie ittt 4-11
Entering the File Utility Program 4-11
The Help Commandccoviiiiiiinnnnnnnn. 4-11
Directory Allocationcciiiiiiineennnnnnnnnnn 4-13
Using the File Utility Program 4-14
Alphabetical Listing of Commands 4-18
Syntax Diagramsc.iiiiiiiiiiiiiiiiaeeen. 4-32
System Messagesoviiiiieirnnnneeeeennnnnnennn 4-36

The Touch Copy Programccooea... 4-39

L0703 10) 1313 T« 449

Devices and Files
Introduction

INTRODUCTION

4-2

In Section 3, the 1752A Data Acquisition System was described as a
machine having two components: hardware and software. Together
they operate as a Data Acquisition System. Both the software and the
hardware are necessary parts of a working data acquisition computer.
This section expands that view, and introduces a third aspect of the
1752A: the resources with which it will perform the task of controlling
a Data Acquisition System.

In this chapter the concepts of devices and files are introduced since
they are key ideas for understanding the operation of the 1752A. The
resources of the 1752A are its devices and files. A device can be thought
of as a place to store information, like a file cabinet. Electronic files are
stored in the 1752A’s devices just as hardcopy files are stored in file
cabinets. Files can also be retrieved from a device just as from a file
cabinet. Devices and files are discussed together here because they are
so closely related. This section describes how to use the File Utility
program to manipulate devices and files. Section 7, Automating
System Functions, explains how to manipulate devices and files under
program control.

Devices and Files
Introduction

Devices

The term device is used in three different ways: external
instrumentation, file-structured devices, and non-file-structured
devices. Understanding the distinctions is essential to effective
programming.

Every IEEE-488 instrument is called a device, and the 1752A sends
information out to a device address when it sends program data to the
instrument, or it sends a command to the instrument to take a
measurement or to send back measurement data.

Instruments are devices external to the 1752A. The 1752A has a
number of internal devices as well. In this context, a device is a
hardware resource that can act as a source or destination of data. There
are two types of these internal devices. One type is called file-
structured, and can be thought of as a location to store programs or
data. File-structured devices include the floppy disk, Bubble memory,
and E-Disk. In general, only this type of device can be assigned the
function of system device (the one the 1752A assumes you mean if you
do not specify a device).

The other kind of internal device is usually called a serial device to
distinguish it as a pipeline for information, rather than as a location of
information. Notice that the term serial has a slightly different
meaning than usual when it refers to a device. It may be that a serial
device sends serial data, but not necessarily. Forexample, the RS-232-
C port is a serial device, and is used to send serial data; the IEEE-488
port is also a serial device, but the data is sent bit-parallel, byte-serial.

On power-up (a cold start), the bootstrap PROM checks the floppy
disk drive for the operating system program (FDOS). If it is not there,
the PROM checks the other file-structured devices, first the Electronic
Disk, and then bubble memory. If there is no system software resident
on one of those devices, an error message indicates that there is “no
system on device”.

When the RESTART button is pressed, the system performs a warm
start. A warm start differs from a cold start in that the memory is not
cleared, nor is the self test performed; only the Operating System is
loaded. If there are any files stored in the Electronic disk, they remain
intact.

Devices and Files
Introduction

The table below defines each of the 1752A’s devices. Notice that all
device names must have two alphabetic characters, followed by a
number, and ended with a colon. The colon must always be included

because it is part of the name.

4-4

DEVICE NAME SYSTEM RESOURCE TYPE
Standard System

KBO: Keyboard (Input) Serial

Display (Output)

KB1: RS-232 Port Serial

GPO: |EEE-488 Port Serial

MFO: Mini-Floppy Disk Drive File-structured
EDO: Electronic Disk File-structured

Optional Resources

KB2: Optional RS-232 Port Serial

(Option -008)
GP1: Optional IEEE-488 Port Serial

(Option -008)
SPO: - SP9: Optional Dual Serial Interface Serial

(Option -009)
MF1. - MF4: Optional Floppy Drives File-structured
MBO: - MB3: Optional Bubble Memory File-structured
WDO: - WD3: Optional Fixed Disk Drives File-structured

Devices and Files

Files

A file is an organized record of related information. The file type can
usually be identified by its extension (the three characters following the
file’s name, and it is separated from the filename by a period). The
1752A uses several types of files:
System Level Files
The following table lists the types of files used by the 1752A.

FILE TYPE EXTENSION DESCRIPTION*

System SYS Reserved for 1752A System Operations
Command CMD A collection of keyboard commands
FDOS FD2 Binary machine language
Configuration CFG Used by SYSGEN to generate FDOS2
Help HLP Data file for Help screens
Place holder BAD Indicates bad areas during packing
Source BAS Default extension
Lexical BAL Results when a file is SAVELed
Backup BAK Created by System editor program
Source FTN FORTRAN

Other Files
Assembler Source ASM Output of ASMPP, Input to ASM
Error File ERR Output of BC
Library LIB Input to LE, LM, and LL
General List LST Output of ASM, FC
Map File MAP Output of LL, LE
Object oBJ Output of BC, FC, ASM; input to LE, LL, LM
Preprocessor PRE Input to ASMPP
Temporary TMP Temporary file for BC, FC and LE

* Description abbreviations

ASM = Assembler

ASMPP = Assembler Pre-Processor
BC = BASIC compiler

FC = FORTRAN compiler

LE = Linkage Editor

LL = Linking Loader

LM = Library Manager

4-5

Devices and Files

DEVICES
RS-232-C Ports

All of the KB devices are serial. They are RS-232-C ports, and they
provide an entry and exit point for serial communications between the
1752A and other RS-232-C compatible equipment. RS-232-C is a
designation for a standard digital communications interface, and it
describes the connector and voltage levels used in bit-serial
communications. The standard permits many of the operating
characteristics to be changed, to allow the connection of many types of
equipment. Section 5, Communications, gives more information
about the standard and about how to change the 1752A’s RS-232-C
port parameters.

KBO:

KBO: is both an entry and exit point for information between the
1752A’s program and the outside world. As an input port, it is the
Y1700 Keyboard. As an output, it is the display itself. KBO: is
sometimes called the Console Device. None of the operating
parameters of KBO: can be changed except the baud rate, but it should
only be changed when using an external terminal. Otherwise, an error
will result.

KB1:

KBI: is the built-in RS-232-C port for connecting the 1752A to other
equipment that uses the standard interface. It is set to a standard
configuration on power up, and it can be customized to different
characteristics using the Set Utility program. See Section S for a
detailed discussion of this utility program. KB1: does not exist unless
the Video/Graphics/Keyboard module is installed in the 1752A.

KB2:

This device name is used for an optional RS-232 port, and is used if
Option 008 (IEEE-488 / RS-232 Interface) is installed. It operates
exactly like KBI:.

SPO: - SP9:

These are the device names for the ports on the Dual Serial Interface
Option -009. The ports are treated similarly to the KBn: devices. Up to
three modules can be installed, and each port can be configured for
RS-232-C, RS422, or 20 mA Current Loop electrical interfaces.

4-6

Devices and Files
Devices

IEEE-488 Ports

GPO:

GP1:

As shipped, the standard 1752A has a single IEEE-488 port. The IEEE-
488 port has the device name GPO: when it is used as a serial device
(output only), and Port 0 when it is used by a program as an instrument
port.

One application for GPO: is to use an IEEE-488 compatible printerasa
listing device. Rather than writing a “PRINT” program, information
can be sent out simply by specifying GPO: as the destination device.

The device name GP1: is used for the optional IEEE-488 port, and is
only implemented if Option -008 (IEEE-488 / RS-232-C Interface) is
installed. Its purpose and operation are identical to GPO:.

Floppy Disk Drives

MFO:

The integral 5-1/4 inch floppy disk drive provides the 1752A with
removable storage media (MF stands for mini-floppy). Using the
floppy disk drive, a collection of programs can be built up, so that a
different floppy disk would be used for each set of tests.

Floppy disks must be formatted prior to use. Formatting is the process
of sectioning off the disk so that information written onto it is allocated
to the proper location, and so that the 1752A is able to locate it again
after it is recorded. Floppy disks can be formatted either as single- or
double-sided (see File Utility program for details).

All floppy disk operations can be simplified by using File Utility
commands in a Command file and by using the 1752A’s Alias file.

The MFO: device is the default device at power up. It is possible to
designate another device as the location of system software, however.
See the discussion of the File Utility program’s Assign command.

MF1: MF2: MF3: MF4:

Four other disk devices can be connected to the 1752A at the IEEE-488
connector. The Fluke model 1760A is a single 5-1/4 inch unit, and the
1761 A has two drives. In this usage, each device acts similar to MFO:.
Operation over the IEEE-488 bus is transparent to the user.

When optional floppy disk drives are added, the System Generation
Utility program must be used to create new software to include the
necessary driver routines.

4-7

Devices and Files
Devices

Electronic Disk

EDO:
The EDO: device designates the Electronic Disk (E-Disk). The
programmer can designate portions of memory as “Electronic Disk”.
Any area of memory not used by the Operating System can be
designated as E-Disk. When E-Disk is used, it must first be configured,
a process that allocates how much space is to be used for E-Disk. For
details, see the File Utility program /C command later in this section.

Because the E-Disk device is implemented in random access memory,
it will perform any operation more than 100 times faster than if the
floppy disk is used. However, the memory is volatile, so any programs
or data stored in E-Disk are lost when the system is turned off.

Bubble Memory

MBO: - MB3:

These are the device names for Bubble Memory Options -004 and -005,
512 and 1024 blocks respectively. A block of memory is 512 bytes.

Regardless of the capacity of the Bubble Memory module(s) installed,
each module is a separate device, whose device designation is selected
by a switch setting on the board. Up to three Bubble Memory modules
can be installed in the 1752A card cage. When Bubble Memory is
added to a system, the System Generation Utility program must be
used to create new software to include the necessary driver routines.

The optional Bubble Memory modules provide the 1752A with a large
amount of additional non-volatile storage capacity.

Winchester Drive
WDO: - WD3:

WDO: through WD3: are the devices associated with the Winchester
Disk Drive, an optional 5-1/4 inch hard disk. It is connected to the
1752A at the IEEE-488 connector, just as any optional floppy disk
drives would be. If a 5M byte drive is installed, two devices are
available: WDO0: and WD1:. If the drive is the 10M byte version, all
four devices are available for additional on-line storage.

When A Winchester drive is added to a system, the System Generation
Utility program must be used to create new software to include the
necessary driver routines.

Devices and Files
Files

FILES

A file is a structured collection of information that the 1752A can use
to hold programs or data for later use. Most of the files supplied with
the 1752A contain programs. The program type is usually indicated by
the extension (three characters after the filename). Extensions are
always separated from the filename by a period.

System Files

System files have the SYS extension. Together, they make up the
collection of programs that are the 1752A’s system operation
programs.

Allas File

The alias file is a special type of system file that makes it possible to
condense long commands into shorter, more easily remembered ones.
The system alias file (filename ALIAS.SYS) is discussed in geater
detail in Sections 6 and 7.

Command Files

A Command file is a collection of keyboard commands. It has the
extension CMD. Using Command files makes it possible to automate
keyboard commands to the Operating System through the Command
Line Interpreter.

The Startup Command File

Command files allow the user to customize the operation during power
up and during normal operation of the 1752A. The Startup Command
file (filename STRTUP.CMD) is executed whenever the 1752A is
powered up or RESTARTed. Other user-named command files (with
the .CMD extension) can be used whenever the FDOS prompt is
displayed.

The STRTUP.CMD file on the System Disk supplied with the 1752A
checks the time and date clock to see if it has been set, then returns
control to the Operating System. The user can create a customized
STRTUP.CMD file to perform such functions as displaying special
messages at startup, setting the baud rates on the serial ports, and
loading the BASIC interpreter.

4-9

Devices and Files
Files

Other Command Files

In addition to the Startup Command file, others can be created to
automatically perform any sequence of keystrokes. The real usefulness
of a Command file is that it automatically performs commands that
otherwise would have to be keyed in individually each time the system
was used.

Command files are discussed in more detail in section 7, Automating
System Functions.

Machine Executable Files

These are binary machine language programs that can be run directly
by the microprocessor. They usually use the FD2 extension. Because
they are actual binary machine instructions, FD2 programs do not
have to be translated from a higher level language before the
microprocessor can perform their operations, as other programs must.

New files of this type are created using an optional linkage
editor/loader program.

FD2 files were called “Core Image Load” files in the 1720A, and used
the extension CIL.

Language-Dependent Files

Each programming language has unique properties just as human
languages do. Among these unique properties are the file types that
they use. In an effort to keep this discussion away from individual
languages, only generic file types are explained. For detailed
explanations of the file types used by a specific language, refer to the
individual programming language manual.

Source Files

Source files contain programs that are written in high-level language.
An optional assembler or compiler program translates source files into
an executable form.

Object Files

An object program is the result of the translation of a source program.
It may be an intermediate step to a machine-executable program, or it
may be a directly executable form of a program written in a high level-
language.

4-10

Devices and Files
FUP)

THE FILE UTILITY PROGRAM
Introduction

The File Utility program is a utility software file supplied on the
System Disk with the file name FUP.FD2. It gives the user control
over the files in any of the devices. A flexible structure provides other
useful capabilities. The examples in this section illustrate the many
ways that the File Utility program can be used.

Entering the File Utility Program

From the FDOS) prompt, type FUP (RETURN). The screen will
display the identification and prompt of the File Utility program:

FDOS> FUP
File Utility Prograam Version 1.y
FupP>

The Help Command

From the FUP) prompt, type ? (RETURN) to see a listing of the
command options.

This command causes the file FUP.HLP to be displayed. As supplied
on the System Disk, this file is a one-screen summary of command
options. An error message indicates if the file FUP.HLP is not found.

@ D)

Quick Summary of FUP Commands

Assign system device (device)/a Pack s.ecenncnennnnncnnann

Configure E— Disk .ovausnve edO: /cl{size) Protect vooieenesvenanons

Co q a file [(device)= J(Fxle)[/x] Oulck directory list . .
................... (file)/dli]d Renamecoeav0ecees (Fi

Extended directory 1li tﬂevxcz]/e Scan for bad blocks e

Format ..coceeunesn [devxce)/?ts][ce 5] Defeat error checking (file)=(file)/t

Dlrectorg 1i6t v evevcnscenn (devicel/1 Unprotectoeccncesan (f1le)/=-C[i]d

Merge ...e.0 (file)=(file)(,(file))}/m Whole copy <(device)=[devicellfilel/w

Zero directory .. [device]/x[s][segs)
Wildcsrds: "?" matches single character, 1. alias 57?s" matches “"alias.sxs"
. “#" matches any characters, i. e.: “ha.bas” matches all bas:c programs
Individual: place an "i" after command, i.e.: #.bak/di, *.fd2

> v,

Devices and Files
FUP)

4-12

All the command options are listed below with examples. There is an
explanation of each option later in this section.

USAGE EXAMPLE
Options
no option | Transfer MFO.TEST.BAK=EDO:TEST.BAS
/A Assign System Device EDO:/A
/B Binary File Copy MFO:FUP.SYS=MBO0:FUP.SYS/B
/C Configure E-Disk EDO:/C (block size)
/D Delete a File TEST.TMP/D
/E Extended Directory MFQ:/E or EDO:/E or /E
/F Format a Disk EDOQ:/F or MFO:/F3
/L List Directory MFO:/L or KB1:=EDO:/L or /L
/™M Merge ASCII Files TEST.NEW=TEST.1, TEST.2/M
/P Pack a Device MFOQ:/P or EDO:/P or /P
/Q Quick Directory EDO:/Q or MFO0:*.BAS/Q
/R Rename a File TEST.1=TEST.OLD/R
/S Scan for Bad Blocks MFO0:/S or /S
/T Transfer w/o Error Check | EDO:TEST.BAD=MFO:TEST.BAS/T
/W Whole Copy EDO:MFO:/W
/X Exit FUP /X
/1Z Zero File Directory EDO0:/Z or MF0:/Z or /Z
/+ Protect a File EDO0:1722A.INC/+
/- Unprotect a File MFO:RZDZ.WIZ/-
Switches
/D, /S Double- or Single-sided | MFO: /FD or MFO: /FS3
disk format
/I Interactive Switch EDO: =MFO0: *.*/I
Wildcards
* Match all characters in field| MFO: *.”/-I
? Match single character EDO: =MF0: TEST?.BAS

Devices and Files
FUP)

Directory Allocation

Unless otherwise specified during formatting, all of the 1752A’s file-
structured devices provide a directory that can contain 72 filenames. If
more files are needed, the File Utility program can allocate additional
segments for directory space. Each additional segment can also
contain 72 entries.

This capability can be particularly valuable when large file-structured
devices are added (e.g. Winchester drive, RAM Expansion modules),
or in those cases where a great many small files are to be recordedona
floppy disk. Notice that when an Extended Directory Listing (/E) is
requested for a device with multiple directory segments, the segments
may be separated by (not used) entries, even if the device is packed.

The command for allocating additional directory space on the floppy
disk, E-Disk, or Bubble Memory is /F, followed by the number of
directory segments desired. Formatting Winchester disks requires
using the WDUTIL program provided with the hard disk drive.

4-13

Devices and Files

FUP)

Using the File Utility Program

4-14

If an option affects more than one device or file, the first must be the
destination, and the second the source. If no device is specified, the
system defaults to the SYO: device. If no filename is specified, the
system uses a null filename. Finally, if no extension is specified, the
system uses the BAS extension. When both a device and filename are
specified, they are separated by a colon (:).

The complete name of a file takes the form:
dev:filename.ext

This is called a pathname. Often, a pathname can be specified without
directly naming each of its parts. This is done using defaults and
wildcards, which will be discussed in more detail later in this section.

CAUTION

It an existing file is specified as the destination, it will be
deleted without warning and replaced by information from
the specified source.

This manual uses upper case letters to indicate commands; however,
both upper- and lower-case entries are allowed. Each command line
must contain only one command.

All commands can be automated from FDOS through Command files
and aliases.

Wild Cards * and ?

Devices and Files
FUP)

A wild card is a character that can be used in place of another character
or string of characters. The File Utility program can use two wild cards
in the filename: the ? character, and the * character. Wild cards cannot
be used when specifying devices.

%k matches all characters from the wild card until another character
or the end of the filename or the extension.

Usage:

Example:

A*.BAS would match AA.BAS, Al1.BAS, and
AAL.BAS.

* BAS matches all files with the BAS extension.
* * matches all files.

To list all BAS files on the floppy disk:
*/ L

To delete everything stored in the E-Disk:
EDO:*.*/Dl

? matches any character in that position.

Usage:

Example:

A?.BAS matches A1.BAS and AA.BAS, but not
AA1.BAS.

To print the BASIC files named TEST1, TEST?2,
TEST3, TEST4, TESTS, TEST6, TEST7, TEST9,
and TESTA that are currently recorded on the floppy
disk, using a serial printer conected to the RS-232
port:

KB1:=MFO:TEST?.BAS/T

4-15

Devices and Files

FUP)

Protection States + and -

4-16

All files are assigned a protection state. A protected file (+ state) may
not be erased or rewritten. It is as if the protected file had a write
protection tab. If an attempt is made to erase or overwrite a protected
file, an error message indicates that the file must be unprotected before
continuing.

Newly created files are unprotected (- state), to allow them to be
changed easily. Once the file is complete, or in final form, it can be
made into a protected file to prevent accidental erasure or write-over.

The protection states are shown in extended directory listings, and are
changed with the /+ and /- command options.

CAUTION
The protection state is ignored during zeroing (/Z) and
formatting (/F) floppy disks, and during configuring E-Disk
space (/C). These commands delete all files assoclated with
the device regardless of protection state. Be sure to backup
any desired files before using these options.

Example 1.
To change the protection state of a file called DUTCH.PIM on the
floppy disk:

MF0:DUTCH.PIM/+

Example 2.
To unprotect all the files on the system device, using the individual
switch to insure a message before proceeding:

* %]

Devices and Files
FUP)

Switches |, D, and S

A switch modifies a command, and always follows it. Three are
available: the Interactive switch and the disk format switches D and S.

The Interactive switch permits individual selection of files to be copied,
transferred, deleted, and protected or unprotected. When the
Interactive switch is used with a file deletion command, a message
indicates which files are protected.

/{ When the Interactive switch is used with the no option command,

. separate the two device names with an = sign. The system requests
confirmation before completing the transfer. The Interactive switch
cannot be used with a file merge (/M) command, nor with any
commands that apply only to a device, such as /A, /C, /S, or /P.

Example 1.
To delete selected BAK files from the E-Disk:

EDO0:*.BAK /DI

Example 2.
To transfer selected files from the floppy disk to the display:

KB0: = MFO: *.*/1

The “D” switch selects double- or single-sided format for the floppy
disk. For double-sided, use the argument D after the Format or Zero
option. For single-sided, use the argument S. See the /F option for
more details about formatting floppy disks, the /C option for
information about configuring the Electronic disk, and /Z for details
about zeroing the directory of any disk device.

Example
To format the floppy disk as single-sided, with 5 segments:

MFO0:/FS5

4-17

Devices and Files
FUP) Commands

Alphabetical Listing of Commands
(no option) Transfer

4-18

If no option is specified, a communication channel is established
between the specified destination and source(s).

o Up to eight sources may be specified.

O When the destination is a file device (MF0:, ED0:) and no
destination filename is specified, the names of the source files are
used.

D If the source is not a file device (no name can be identified), the
resulting destination file will have the null name, unless one is
specifically named.

o If a single file is named as the destination for multiple files, only the
last file specified will effectively be copied. Use the /M option to
merge files.

The examples below show the ways in which the no option Transfer
command can be used. A short description precedes each example.

Example 1.
To make a copy called FILE.NEW of FILE.OLD (both on the System
Device):

FILENEW=FILE.OLD (RETURN)

The result will be that two identical files exist, one called FILE.OLD,
the other called FILE.NEW.

Example 2.
The display (KBO0:) is specified as destination, and T44.BAS on the

floppy disk (MFO0:) as source. This will display the file. Use Page Mode
if the file is longer than 16 lines.

KB0:=MF0:T44. BAS (RETURN)

Devices and Files
FUP) Commands

Example 3.

This command is equivalent to Example 2, if the System Device is the
floppy disk, and the Console Device is KB0:. By using defaults, 13 of
the 17 keystrokes have been eliminated in transfering T44.BAS from
the floppy disk to the display. The default filename extension is BAS.

T44 (RETURN)
Example 4.
To transfer ASCII data from the keyboard (KB0:) to a printer
connected to an optional serial port 2 (KB2:) In this example, a
(CTRL)/Z would terminate the transfer.

KB2:=KB0: (RETURN)

4-19

Devices and Files
FUP) Commands

/A Assign the System Device

The /A command option assigns the named device as the the System
Device, SYO: (the default file device).

The example assigns the Mini-Floppy Drive (MFO0:).
MF0:/A (RETURN)

/B Binary Transfer

The Binary Transfer option is only implemented to assist those who
have become proficient using the Fluke 1720A Instrument Controller.
For normal transfer of 1752A programs and data, use the no option or
/T commands. No errors will result.

The 1720A /B option transfers binary-coded data, such as system and
utility software files, lexical-form BASIC programs and virtual array
files. Up to eight individual source files can be specified, and wild cards
can be used to increase the number.

This example uses wild cards to transfer a group of date-coded files (for
the month of July) named RAC from the Electronic disk (EDO:) onto a
floppy disk (MFO:).

MF0:=EDO0:7?70783.RAC/B

/C Configure Electronic Disk Space

4-20

The /C option is followed by a number to indicate how many
blocks of Electronic disk are to be created. An argument of -1 (/C-1)
allocates all available memory as E-Disk. If the number argument is
left out, the E-Disk will be de-allocated. An argument of zero blocks
(/CO0) also de-allocates the Electronic disk.

After configuring E-Disk space, use the /F option if more than one
segment is desired.

NOTE

Though specified in blocks, space is allocated by the
page. Each page (4096 bytes) has 8 blocks, so the actual
number of blocks allocated will be a multiple of 8.

Devices and Files
FUP) Commands

/D Deleting Files

The /D option is used to delete up to eight specified files (more using
wild cards). Deleting a file leaves a gap in the file structure. Refer to the
Pack (/P) command option. When no file is specified, the null file is
deleted. A single command line can be used to delete files from more
than one device.

This example uses wild cards to delete all files havinga . TST extension
from the System Device, and all files whose names start RZDZ from
the floppy disk.

* TST,MF0:RZDZ.*/D
/E Listing a Directory (Also /L and /Q)

There are three ways to list directories. As with all File Utility program
options, the device must first be specified unless the directory of the
System Device is desired. If no destination device is specified, the
1752A assumes that the directory is to be sent to the display.

Wild cards can be used with all three listings to see only files whose
names or extensions match, and the directory entry for a single file can
also be obtained by specifying the file in the command line.

/E yields an Extended Listing. The extended listing includes all
unused file areas and the protection state of each file.

Packing a File Structured Device, below, tells how to restructure
the disk to remove unwanted blank areas.

/L is the normal listing of all files on the specified device. It displays
all 5 fields, but does not include the unused areas.

/Q gives a Quick listing. It does not display the file size, nor the date
the file was last updated. The filenames and their extensions are
displayed, six columns across the screen, rather than one column as
in the other two types of directory listings.

4-21

Devices and Files
FUP) Commands

4-22

Here is a portion of the extended directory for a 1752A System
Disk:

FUP WFO1/E N
Dirsectory of NFO! on 13-Jul-84 at 08:36

nase o8t size prot date

FDOS2 .SYS 60 C+) 13-Nav-84

MACRO .SYS 12 [€3) 13-Aor-84

ALIAS .SYS 1 [+ 04-Jan-84

FuP .FD2 10 (€] 09-Mav-84

TINE .FD2 2 C+] 09-Mav-84

SET .FD2 47 (2] 09-Nay-84

BASIC .FD2 34 C+] 08-Mav-84

EDIT .FD2 47 C+2 D8-May-84

STRTUP.CHD 1 [+ 13-Aor-84

SYSGEN.FD2 13 €+l 09-Nay-84

FDOS2 .CF6 1 (4] 13-Dec-84

FDOS2 .LI1B 102 [S2] 13-Nav-84

6RAPH .08J 4 (€3] 03-Jan-84

PIBLIB.OBJ 4 (€] 03-Jan-84

COMPAT.FD2 30 Ce] 08-nav-84

CONFIG.FD2 19 £+] 08-May-84 J

/

There are five fields: the name and extension of all the files
appear in the first two fields. The size field indicates the number of
blocks the file occupies. Each block is 512 bytes.

The prot field indicates the protection state of the file, and date is
the last date the file was updated.

Two entries may appear in the Extended Directory list that do not
appear in either the normal list or the quick listing:

(not used) indicates a blank area within the structure of the disk,
left when a file was deleted. The Pack command /P packs all
unused blocks into the end of the segment.

(temp ent) indicates that some problem occurred when a file was
open (being transferred or edited). Some typical examples would
be that the power was removed, or the RESTART button was
pressed during operation on an open file. The system places a
temporary entry in the segment to indicate that the file no longer
exists. To delete the temporary entry, pack the disk with the /P
command.

Devices and Files
FUP) Commands

Here is what the screen looks like when a Quick Listing is done for the

MFO0: device:

a \
FDOS2 .SYS MACRO .SYS ALIAS .SYS FUP .FD2 Fur -HLP TINE .FD2
SET .FD2 BASIC .FD2 EDIT .FD2 STRTUP.CMD SYSGEN.FD2 FDOS2.CF6
FDOS2 .LIB 6RAPH .08J PIBLIB.0BJ CORMPAT.FD2 CONFIG.FD2 OTP .FD2

In this example, a quick listing is sent to the optional serial port 2
(KB2:) of the directory of the floppy disk (MFO0:) and the Electronic

disk (EDO:):

KB2:=MF0:,ED0:/Q

(RETURN)

4-23

Devices and Files
FUP) Commands

/F Format a File Device

4-24

The /F option prepares a floppy disk (MFx:) or optional bubble
memory device (MBx:) to receive files by creating a completely new
magnetic structure on them. Because formatting writes new block
identification codes and standard data patterns throughout the device,
any device that is formatted will also be erased. Take care not to format
disks that have data or programs that you want to save.

When formatting the bubble memory or a floppy disk, a number can
follow the /F command to indicate the number of directory segments
to be established. For more information see the discussion “Directory
Allocation” at the beginning of this section. If no number is given, the
default is 1 segment, a useable amount for floppy disks, but restrictive
for the bubble memory, because it would not take full advantage of the
large amount of memory available. Since the directory for any one
segment can contain only 72 entries, selecting one segment results in a
maximum of 72 files, which is fine for most floppy disk applications,
but is not an efficient use of the mass storage available in bubble
memory or Winchester hard disks.

If a disk has suffered media damage, a message will display indicating
that it is not able to be formatted. If this happens, the disk is not
useable and should be replaced.

This option formats either floppy or Electronic disks, or Bubble
Memory devices.

Example 1:
This example formats, zeroes, and verifies a floppy disk:

MFO0:/F (RETURN)

Example 2:
This example formats a bubble memory device with 12 segments (864
possible files):

MBO0:/F12 (RETURN)

Example 3:
This example uses the double-sided switch to format a floppy disk as
double-sided, with 6 segments:

MF0:/ FD6

Devices and Files
FUP) Commands

/| Interactive Transfer

Besides its use as a command modifier, /I can be used alone to transfer
files interactively. Just as with other transfer commands (no option,
/B, and /T), wildcards are allowed. If no destination is specified, the
default device is KBO:. If no source pathname is given, the System
Device SYO0: and the null file are assumed.

Example:
This example transfers selected files from the E-Disk to the floppy
disk.

MFO0: = EDQ: *.*/1

/L Listing a Directory - See /E for all directory listings.

4-25

Devices and Files
FUP > Commands

/M Merging ASCII Files

4-26

The /M option merges up to eight ASCII source files into one
destination file. Binary files, such as System and utility software files,
lexical form BASIC programs (BAL extension), and virtual array files
cannot be merged. The source files remain intact, unless the destintion
has an identical filename (on the same device). Wild cards and the
Interactive switch cannot be used.

When the destination is a non-file device, the /M option removes the
(CTRL)/Z character (ASCII EOF) from the end of all but the last file.

CAUTION
When merging two BASIC programs, duplicate line numbers
can cause problems. When the BASIC Interpreter program
encounters a duplicate line number, the latest occurrence of
that line number is retained, and the previous occurrence is
deleted. Use the REN statement to renumber the programs to
different line number ranges before merging.

Here are two examples of how to make efficient use of the / M option:

Example 1.

This example creates a file on the floppy disk (MFO0:) called
PROGRM.T44. The new file contains TEST1.BAS and TEST2.BAS
from the floppy disk. The original files all remain intact.

MF0:PROGRM.T4=MFO0:TEST1,TEST2/M (RETURN)

Example 2.

This example appends keyboard input directly to the end of an existing
file without creating a new one. The destination file DEST.CPT
contains the old file DEST.CPT followed by keyboard inputs. A
keyboard entry of (CTRL)/Z terminates the keyboard portion of the
input.

DEST.CPT=DEST.CPT,KB0:/M (RETURN)

Devices and Files
FUP) Commands

/P Packing a File-Structured Device

The /P command option reorganizes a file-structured device. When
files are deleted, blank areas are left within the file structure. (See /F
for more information.) The /P option compacts these areas into one
contiguous space. It may be possible to make room for a file that
previously wouldn’t fit by packing the device. When this option is used,
the file structure is maintained. During packing, the keyboard is
disabled from display, but keystrokes are buffered. This feature makes
it possible, for example, to give the command /E during packing.
When packing is complete, the extended directory listing will display.

This example will pack the System Device:
/P (RETURN)

This example packs the Electronic disk and the floppy disk:
ED0:,MF0:/P (RETURN)

/Q Quick Directory - See /E for all directory listings.
/R Renaming a File

The /R option is used to rename a file. It has no effect on the size or
location of a file, because it only operates on the directory.

This example renames the file TEST4.BAS on the System Device to
PROG.T4:

PROG.T4=TEST4/R (RETURN)

/S Scanning for Bad Blocks

The /S option scans a file-structured device for bad blocks, and sends a
result message to the specified destination. Each block is read and
checked for errors. A check character is compared with one recorded
with the block. Any mismatches cause an error message.

Scanning for bad blocks is done to check for a faulty floppy disk or
Bubble Memory device. If you are having trouble reading or recording
on a disk, use the /S option to determine if the disk is useable. If bad
blocks are indicated, attempt to transfer the files to another disk, then
discard the faulty one. Bad blocks are a result of wear, age, or abuse.

4-27

Devices and Files
FUP) Commands

If no destination is specified for the result, any errors found will be
displayed on the console.

To scan the System Device and see the results displayed:
/S (RETURN)

This example scans the floppy disk and sends the results to serial
port 1:

KB1:=MF0:/S (RETURN)

/T Transferring Files Without Error Check

Except for inhibiting error checks, this command is identical to the no-
option command. It transfers files just as the no-option command
does, but does not check for device errors. If errors should occur, they
are ignored, and the file is transfered as is. This option can be used to
create backup copies of files that are suspected to contain errors.

/W Whole Copying a File Device

4-28

The /W option transfers some or all of the files on a file device at one
time using a single command. This option simplifies duplicating a
floppy disk.

The source and destination devices should be different. (If they are the
same, the result would be merely to record a file back to the same place
it was read from.) To duplicate all or part of a floppy disk, first copy
files into EDO:. Then insert a formatted disk and copy from EDO: to
MFO..

If the disk already contains files having the same name as those being
copied, the whole copy command deletes the existing file and replaces
it with the one being copied.

If E-Disk space is less than the total size of the files to be copied, break
the task into smaller parts by copying only some of the files on several
passes.

Devices and Files
FUP) Commands

The display indicates the name of the file being copied. The whole copy
process can be terminated before all files are copied by typing
(CTRL) /C during the copy of the last file desired. The file copy in
progress will be completed before the operation stops.

CAUTION
It CTRL)/P is used to terminate a whole copy, the file copy
in progress is aborted and the resulting partial file is closed.
Use (CTRL)/C to terminate whole coplies.

In this example, a whole copy is started by temporarily placing the
floppy disk contents into E-Disk storage. The wild card character
indicates the name of the first file to be copied. Note the display for the
last file copied, in case a second pass is needed.

EDO:=MFO:TEST.*/W (RETURN)

In the second part of the example, the floppy disk is exchanged for the
one which will contain the copied files. After noting the last file copied,
insert a disk that has been formatted (see /F). This command line then
copies the files to the disk from the E-Disk.

MFO0:=ED0:/W (RETURN)

If a second pass is needed, first zero the E-Disk (see /Z option below).
Now use the * wild card to start the whole copy again, beginning at the
first file that matches the wild card.

Notice the subtle difference in how the * wildcard character operates in
a whole copy from its normal use in transferring, copying, deleting,
protecting, and so forth. When used with the Whole Copy option, the *
in the filename indicates that the copy is to begin with the first file that
matches the extension.

For example, the command MF0:=EDO0:*.BAS/W would not

necessarily copy all the files with the BAS extension, but would begin
the whole copy with the first file that had a BAS extension.

4-29

Devices and Files
FUP > Commands

/X Exit

This command exits the File Utility program, and returns control to
the shell.

/Z Zeroing a Fi'e Directory

4-30

The /Z command zeroes the directory of one or more file devices.

The result of the /Z option is similar to the /F option if the device is
already formatted: no files are accessible when the operation is
complete. However, formatting is more time-consuming, and is not
necessary if the intent is merely to delete all files from a device.

Zeroing is not equivalent to formatting. The files remain after zeroing a
directory, but they are not able to be accessed because there is no
directory. After zeroing, the device retains the prior format.

Because zeroing deletes the directory of all files from the specified
device, the program requests an affirmative before proceeding. Entries
accepted as affirmative are YES, Y, yes, and y.

If a floppy disk or bubble memory are zeroed, the number of directory
segments does not need to be specified, because the current structure
remains intact.
This example zeroes the Electronic disk (EDO:)

EDO:/Z (RETURN)

This example zeroes the directory of the Electronic disk, and creates
four segments:

EDO0:/Z4 (RETURN)

Devices and Files
FUP) Commands

/+ and /- Assigning Protection State

The /+ and /- commands change the protection state of a file.
Directory listings indicate the current state inside brackets, and the
system automatically assigns the unprotected state () to newly created
files. A file must be unprotected before it can be deleted.

This example protects a file called SHDS.PAT that is currently
recorded in the bubble memory:

MBO0:SHDS.PAT/+ (RETURN)

This example uses a wild card to unprotect all files in the System device
having a TMP extension. The Interactive switch ensures that
confirmation is given before the unprotection.

*TMP/-1 RETURN

4-31

Devices and Files
Syntax Diagrams

FUP)

Syntax Diagrams
Directly Executed Commands

Directory Listing Commands

4-32

(KBF') (SYB: **)
| destination l source |
pathname () pathname '.
O =4

O A pathname can include device + filename + extension.
o All directory listings can use wildcards.

O If the device is not specified in the source pathname, the system
device or the last device specified will be used.

O If no destination device is specified, the default is to KBO:.

Devices and Files
Syntax Diagrams
FUP)

File Transfer (Copy) Commands

(KBg) (null tile)
destination source |
pathname pathname

destination
device

IT (copy) /- L@Uﬂl

—(-

/
O A pathname can include device + filename + extension.
O All transfer options can use the Individual Switch and wildcards.

0 If the device is not specified in the source pathname, the system
device or the last device specified will be used.

0 If no destination device is specified, the default is to KBO:.

File Rename Command

destination source
device pathname

(null file) (null file)
null file G null file v@ @

4-33

Devices and Files
Syntax Diagrams
FUP)

File Merge Command

(null file) T\ (null tile)

= /M RETURN
— 7/ \
destination source
pathname pathname
~(-

O Wild cards and the Interactive switch are not allowed.

O Each pathname must be separated by a comma.

Whole Copy Command

(SYg) N\ (SYg) (first file)
J — (
destination source ||
device device
(start)

O
-.@._4 RETURN — o
_NETURN

O Wild cards are allowed for the source filenames.

File Deletion and Protection Commands

(null file) RETURN "—"
O Lo
@
o— L=
A\ ()

o If device is not specified in the pathname, the system device or the
last device specified is used.

O The Interactive switch can be used to insure confirmation is
requested before deleting or changing the protection state.

O Wild cards are allowed.

4-34

Devices and Files
Syntax Diagrams

FUP)
List Bad Blocks Command
(KBH) (SY#) //_S\
A\

destination | source
pathname device

(o)—

N

o If device is not specified in the pathname, the system device or the
last device specified is used.

O Wild cards are allowed.

Device Control Commands

(SYH)

device

AR

(decontigure)

-
L

number of
blocks

(1

(d)
-
° 1._‘ number of
segments
-

(current)

number of I

segments

(current)
—(>
L
(D

RETURN

4-35

Devices and Files
FUP) Messages

System Messages

Messages from the system are a normal part of operation, and do not
always signify that an error has been made, though they are generally
referred to as “error messages”. Here are the meanings of messages you
might see from time to time when using the File Utility program. The
messages are listed alphabetically:

4-36

MESSAGE

?7Device error

?Device not ready

?Devices do not match

?7Directory overflow

?File already exists

?File protected

7?7 Help file not available

MEANING

A non-recoverable error was detected
during transfer to or from the floppy
disk or Electronic disk. This may also
occur when writing on an unformatted
floppy or Electronic disk.

The device is not ready. This usually
means that the disk is not inserted, or
the disk drive door is not shut.

A rename was attempted for files not
on the same device.

Two many files exist for another to be
copied or transferred to the device
because the drectory is full. To recover,
first backup all files, then use the /F
option to reformat a disk with more
segments.

A rename was attempted using a file
name already in use.

The specified file has a + protection
state assigned to it. Use the /-
command option to unprotect the file
before deletion.

A “? was entered and the file
FUP.HLP could not be located on the
System Device.

7Illegal file/device name

?7Illegal directory

7Itlegal option

7Itlegal option for device

?Incompatible format

?7Input queue overflow

7No end-of-file

?No rooms on device

?No such device

Devices and Files
FUP) Messages

A name in the command contains too
many characters or contains characters
other than letters, numbers, spaces, or
“$” signs.

The directory on the device is faulty. If
the device is a floppy disk, it is
damaged and should be replaced.
Backup all files first using the /T
option.

The command option selected was not
recognized. This is usually caused by
typing errors.

A command was given that would be
legal for some other device, but not for
the one specified.

An option was specified for a device
that does not accept the format. For
example, attempting to zero the E-
Disk as double-sided.

The RS-232 port was receiving data,
and some of it was lost. Use the Set RS-
232 Utility program to slow down the
baud rate or to enable the Stall
Input/Output feature.

An ASCII source file was not
terminated with (CTRL)/Z. Can also
be caused by running out of storage
space before the (CTRL)/Z is
transferred.

A copy or merge operation was
attempted, but the resulting file would
not fit on the specified device.

A device was specified that is not on the
list of recognized devices at the
beginning of this section. This is
usually caused by misspelling.

4-37

Devices and Files

FUP > Messages

7No such file

7Not enough memory

7Medium

?Number

7System

7Syntas

changed

too large

error

error

?Too many files

7Write protected

4-38

The file could not be found on the
device specified. This is usually caused
by misspelling, although the wrong
device may have been specified.

An attempt was made to configure
more E-Disk than is available in
memory.

The disk drive door was opened and
the disk removed during a read or
write operation.

The number specified in the command
is too large. This message occurs if the
number of directory segments specified
is more than the device is able to
contain.

This error should not occur under
normal use. It indicates an error in the
operating system or the File Utility
program. Contact a Fluke Service
Center and make an accurate report of
the conditions at the time the error
ocurred.

The form of the command input does
not match the requirements of a File
Utility program command. This is
normally caused by typing errors.

More than eight source files were
specified. Either break the task into
smaller parts, or use wild cards.

A write operation was attempted on
the floppy disk, but it has a write
protect tab.

Devices and Files
TCOPY

THE TOUCH-COPY PROGRAM
INTRODUCTION

The Touch-Copy Program is called TCOPY, and is provided on the
System Disk with the filename TCOPY.FD2. TCOPY lets you use the
Touch-Sensitive display to transfer files between any of the 1752A’s
file-structured devices. TCOPY is easy to learn and use because the
program is totally menu-driven, and it provides help information
about every command and option.

TCOPY does some of the things that are possible with the File Utility
Program, but it is better suited than FUP for many special copying
applications. For example, to use FUP to make a copy of an entire
floppy disk first requires configuring memory space as E-disk, then
using a whole copy command to transfer the files there, then swapping
disks, and finally, using whole copy again to transfer the files from E-
disk to the new floppy. On the other hand, TCOPY does not require a
lot of typing, but presents menu selections to touch, considerably
simplifying and speeding up the process.

Using TCOPY

From the FDOS prompt, type TCOPY (RETURN). The first menu
is shown here:

4)

(A
Tcopy (Version x.y)
Touch screen to choose » command.
COPY DIRECTORY HELP
QUIT
>),

4-39

Devices and Files

TCOPY

TCOPY COMMANDS

HELP

TCOPY has only two commands, DIRECTORY and COPY. The
directory command prints a listing of the files on a device. The copy
command lets you copy various files from one file-structured device to
another. Even if you only have one disk drive and no memory
expansion options installed, you can still make a copy of a disk.

To choose an option, simply touch a box. To erase a command any
time before STARTing it, touch the CANCEL box to return to the
main menu. At this point, you can start entering a new command or
touch QUIT to leave the program.

If you ever forget what the different commands and options do, use the
help facility to get a description. When you touch the HELP box in the
main menu, a list of topics appears. Select the topic by touching a box.
Most topics also require the selection of a subtopic.

The DIRECTORY Command

Usually the first thing to do before copying a disk is to check the
directory to make sure the proper disk is in the drive. The next few
pages describe the DIRECTORY command and its options.

HOW TO LIST A DIRECTORY

With the main menu on the screen, touch the DIRECTORY box. A
new menu appears, allowing you to choose the device which you want
listed. The two boxes that indicate the system device are highlighted. If
this is the device you want to select, just touch the START box. If it is
not, first touch a device name box (top row), and then a device number
(middle row).

When you press START, a list of the files on the selected device
appears on the screen. The list includes the size of the files in blocks,
their creation dates, and a plus sign if the file is protected. Touch the
CONTINUE box to proceed to the next page or to return to the main
menu from the last page.

Devices and Files
TCOPY

DIRECTORY OPTIONS

A number of DIRECTORY options let you limit or change the list of
files to be displayed. To use them, repeat the steps for displaying a
directory listing, but touch OPTIONS instead of START after you
choose the device. When an option has been entered, the program

returns to the option menu. To begin the directory listing, touch
START.

Each of the DIRECTORY options are described in the following
paragraphs.

o Displaying a Short Directory List

The SHORT option gives a more compact directory listing by
omitting the file protection, size and creation date fields (like the
FUP /Q option.)

o Selecting Files by Creation Date

The DATE option lets you select only files with particular creation
dates. When you touch the DATE box, a new menu displays. There
are two steps in choosing a date:

1. Select the type of limitation needed: whether you want files
that were created BEFORE, ON or AFTER a date. Another
menu appears to allow you to choose the date.

f .
Select files that are BEFORE, ON, or AFTER a date ‘\
that you will select.
BEFORE ON AFTER
CANCEL
= /)

4-41

Devices and Files

TCOPY

The next menu shows today’s date in three boxes on the top
row of the screen. To change the month, date, or year, touch
one of the three boxes, then use the arrows to change the value
in that box. You can then select a different part of the date to
change. When the date you want is in the boxes, touch the

START box.

NOTE

The selected date is not inclusive for the BEFORE and AFTER
options. Files created on that date are not listed. To select files
between two dates, combine the BEFORE and AFTER
Sfunctions. To do that, touch AFTER, then select the earlier
date. Now touch OPTIONS (instead of START), then DATE,
and select BEFORE. Finally, select the later date and touch
START.

O Selecting Files by Size

Selecting files according to their size works almost the same way as
selecting them by creation date. Touch the SIZE box, and then
either SMALLER, LARGER or EXACT. A size in blocks appears
in the top box on the screen. Use the arrows to change the size.
When the desired size is highlighted, touch the START box.

o Selecting Files by File Type

If you want to limit the listing to particular file types, touch the
FILES box on the options menu. Then choose from one of the

twelve file types on the screen and touch the START box.

SORTING THE DIRECTORY LIST

4-42

Normally the files in a directory list are unsorted. They appear on the
screen in the order they occur on the disk. It is possible to sort the files
in three ways, though. To use any of the SORT options, select the
option by touching the appropriate box in the OPTIONS menu.

SORT NAME Sorts the directory list alphabetically by filename.

SORT DATE Sorts the directory list by creation date. The most

recently created files are listed first.

SORT SIZE Sorts the directory by file size. The largest files are listed

first.

Devices and Files
TCOPY

The COPY Command

The COPY command makes copies of some or all of the files on a
device. It reads as many files as it has room for from one device and
records them to another. This cycle repeats until all files are copied.

If the source and target devices are the same, and have removable
media (such as a floppy disk) then TCOPY will prompt you for the
source and target disks when they are needed. If the device does not
have removable media, but the source and target devices are the same,
TCOPY will report an error and the copy operation will not be
performed.

COPYING AN ENTIRE DISK

You can copy an entire floppy disk even if you only have one disk drive.
This type of copying may require changing the disk a few times. Follow
these steps to copy an entire disk:

1.

Make sure that you have the disk you want to copy (the source
disk), and a blank, formatted disk (the target disk). See the
FUP /F option for directions on how to format disks.

Start up TCOPY and when the main menu appears, touch the
COPY box. The device menu appears, allowing you to select
the device from which you want files copied. If mf0: isn’t
selected, touch MF and then O:.

Touch CONTINUE. The device menu reappears to permit
selection of the device to which the files will be copied. Again,
make sure mf0: is selected.

Touch START. TCOPY now prompts you to insert the source
disk. When you’ve done that, touch the box on the screen. The
program begins reading files into memory. When memory is
full (or when the entire disk is in memory), TCOPY prompts
you to insert the blank target disk. This cycle repeats a few
times until all the files on the source disk have been copied.
When the entire copy is complete, the main menu displays
again. Use the DIRECTORY command to list the files that
were copied.

4-43

Devices and Files

TCOPY

CAUTION

TCOPY provides a reasonable amount of protection against
accidentally overwriting files. However, you may want to place
a write-protect tab on the source disk to prevent loss of
valuable programs and data in cases where the source and
target disks must be swapped several times during a copy
operation.

If TCOPY is aborted or if the disk is removed from the drive
during a copy, some of the files may be lost or the directory of
the target disk may be corrupted. Use the FUP /P option to
remove any (temp ent) files from the directory. If the directory
is unreadable, the disk must be reformatted using the FUP /F
option.

COPY OPTIONS

The COPY command has a number of options. To display a menu that
shows them, follow the instructions for the COPY command, but end
with OPTIONS instead of START. Three of the options (SIZE,
DATE and FILES) work exactly as they do for the DIRECTORY
command, limiting the copy to a desired group of files.

o INDIVIDUAL

Use the INDIVIDUAL option if more precise selection is needed than
the SIZE, DATE, or FILES options permit. When this option is used,
TCOPY requests confirmation before copying each file.

PROTECTED FILES

4-44

TCOPY can record onto a disk that is not blank. Unprotected files on
the target disk with the same name as a selected file on the source disk
will be deleted without warning before the file is transferred.

o If a protected file is found on the target disk, TCOPY asks for
permission before overwriting the file. The first time it asks,
TCOPY also offers the choice of treating all protected files the
same way.

Devices and Files
TCOPY

O If you elect to overwrite the first protected file on the disk, the
program asks if you want all protected files overwritten. If you
respond YES, then TCOPY will overwrite the rest of the protected
files without warning. If you answer NO, then TCOPY continues
to ask for overwrite permission.

o Ifyoudecided not to overwrite the first protected file, then TCOPY
asks if you want all protected files skipped. Answering YES causes
TCOPY to skip over all files protected on the target disk. By
responding NO, you direct TCOPY to continue asking for each
protected file.

Additional Features

Besides the DIRECTORY and COPY commands and their options,
the TCOPY program has some other features that can help simplify the
task of copying files and disks. The next two topics describe these
additional features.

COMBINING OPTIONS

Up to 15 options can be chosen for either a DIRECTORY or a COPY
command. One example of this feature was given in the description of
the DATE option. Here’s another example: say you want a directory
listing of all the binary machine language files larger than 10 blocks
and created after August 30, 1984. Touch the boxes shown below.

DIRECTORY
OPTIONS FILES * FD2
OPTIONS SIZE LARGER (scroll the number of blocks
to read 10)
OPTIONS DATE AFTER (scroll the date to read Aug 30
1984)
START

If no files fit all these conditions, TCOPY displays the message “No
files match pattern”.

4-45

Devices and Files

TCOPY

ENTERING TCOPY COMMANDS FROM THE KEYBOARD

4-46

Besides using the menus, there are two other ways to give commands to
TCOPY.

The first way is to type the entire command from the FDOS prompt.
For example, from FDOS, you can type:

TCOPY DIR *. ABC (RETURN)

to get a directory listing of all files having the extension ABC. This
method returns to FDOS after the TCOPY command has been
executed.

The second method of using TCOPY without the menus is to use the -C
option. This option puts you in TCOPY command mode. From
FDOS, type:

TCOPY -C (RETURN)

The TCOPY prompt appears. Now any TCOPY commands can be
typed directly. This feature is convenient once you become familiar
with the various capabilities of TCOPY, because it can be quicker than
working through the various menus.

As an example, if MFO: is the system device and you type:
COPY FUP.FD2 (RETURN)
from the TCOPY prompt, you will copy the File Utility Program

from one disk to another. The screen still prompts for the source and
target disks, just as the menus do.

Devices and Files
TCOPY

To use a sorting option with commands entered from FDOS, or from
the command mode, the word “sort” must appear, followed by the type
of sort. For example, to list all the files on the E-Disk that were created
after October 3, 1984, and sort the list alphabetically, use:

DIR EDO: AFTER OCT 3 1984 SORT NAME (RETURN)

All words, except for months (which must be at least 3 letters) can be
shortened to 2 letters and must be separated from each other by a
space.

To exit TCOPY’S command line mode, type:
QUIT (RETURN) or EXIT (RETURN)
USING TCOPY IN A COMMAND FILE

When TCOPY is called from a command file, it comes up in command
mode by default. This allows subsequent lines of the command file to
provide input to TCOPY as if they were typed from the keyboard.

If you want to call TCOPY from a command file and use the menus,
you must use the -M option. The line “TCOPY -M” will accomplish
this.

NOTE
If TCOPY is called as the last command in a command file, it

must be followed by a blank line. Otherwise TCOPY will start
up in menu mode if no option is specified.

4-47

Devices and Files
TCOPY

Error Messages

The TCOPY program returns the same error messages as FUP. For a
complete description of these messages, refer to “System Messages”
under the File Utility Program earlier in this section.

In addition, the following messages are returned by the TCOPY

program:

MESSAGE

Can’t find help on that topic.

Can’t open help file.

Extra command.

Illegal date.

No files match pattern.

Source and target devices
are the same.

Temporary files on device.

4-48

MEANING

The help file has been changed or
overwritten, and the help for that
particular subject is missing.

The help file (TCOPY.HLP) is
missing.

Only one command (DIRECT-
ORY or COPY) can be given at a
time.

An illegal date was entered, or a
year before 1972 or after 2003 was
specified.

No files were found on the source
disk that matched the patterns
and/or limitations given.

If the target device does not have
removable media (i.e. floppy
disk), then it must not be the same
device as the source.

Can only be removed by packing
the device. Only a warning. Does
not halt execution of the
command.

Devices and Files
TCOPY

Too many source devices listed. Only one source device may be
listed.

Too many words. Only 15 words may be entered
from command mode.

Unknown option. TCOPY was invoked with an
unknown argument.

CONCLUSION

This section has described the 1752A’s devices and files in some detail
and explained how to use the File Utility and TCOPY programs to
manipulate files. The devices can be thought of as names for the
various hardware parts of the system. Files are programs and data.

The next section, Communications, details the way that information
can be transferred between the 1752A and other devices by means of
two industry-standard connection methods: the IEEE-488
Instrumentation Standard, and the RS-232-C Digital
Communications Interface.

4-49/4-50

Section 5
Communications

CONTENTS
Introductionc.coiiiiiiiiiiiiiiiiiiiiiiiiieean, 5-2
The IEEE488 Busc.iiiiiiiiiiiiiiiiiiiinnn. 5-3
Bus Functionscoeiiiiiiiiinnnienrneenennns 54
Interfacecciiiiiiiiiii it i i i 5-5
Bus Operating Modesccoiiiiiiiiiiiiiinnnn. 5-5
Command Modecoiiiiiiiiiiiiininnn, 5-5
DataModeoiiiiiiiiiiii ittt 5-7
Three-Wire Handshake 5-7
A Typical Instrumentation System 5-7
SEQUENCE .. .vtiiiiiiiiit it iit it iiteeneenneaanaens 5-8
Multiple Controller Systemscovviiiiienn, 59
IEEE-488 Communications Under Program Control 5-11
Example Commands from the BASIC Language 5-12
Sample BASIC Programccoviiiiiennenn. 5-13
For More Informationcoviiiiiiiinnnn. 5-15
Serial CommUNICAtIONS . ..vvvvvnreennneennrernerannnnes 5-16
Set Utility Programcoiiiiiiiiiiiininnnnnn. 5-16
Using the Set Utility Program 5-17
The Help Commandc.iiiininnnnennnns 5-18
Command Structurecoeeveeenennenennnnans 5-19
Syntax Diagramcciiiiiiiiiiiniennnnenns 5-20
Device Selectionc.coieiiiiiiiiinernernenenna 5-21
Setting Parametersccciiiiiiiiiiniennnn 5-21
Single Command Line Entry 5-25
Error Messagesc.vvinienenrnnrnenennenennnnnnens 5-26
Serial Communications Under Program Control 5-27
Sample BASIC Programccoiiiiiiiiiieinnnn, 5-28
(@70} 1103 U130 « P 5-31

INTRODUCTION

5-2

The 1752A Data Acquisition System communicates to external
devices in two ways: by way of the IEEE-488 bus, and by way of the
EIA RS-232-C Data Communications Interface.

These two standards were developed to serve two different purposes:
the IEEE-488 as a standard connection between measurement
instruments, and the RS-232-C as a standard connection for serial data
communications.

Communications
IEEE-LBE

THE |IEEE-488 BUS

In 1975, the Institute of Electrical and Electronic Engineers (IEEE)
published a “Standard Digital Interface for Programmable
Instrumentation Systems”. This standard was revised in 1978, and a
supplement was published in 1980. The IEEE-488 standard has gained
acceptance throughout the instrumentation industry because it
permits a wide variety of measurement equipment to be connected
easily to form a programmable instrumentation system. The 1752A
implements the most recent version, including the 1980 supplement.

The IEEE-488 standard describes a bus architecture and defines the
timing and handshaking that occurs on the bus. Devices connected to
the bus may be talkers, listeners, or controllers.

The 1752A is able to control up to 14 instruments directly from the
single standard IEEE-488 connector. An additional Interface module
can be added to allow the 1752A to control more instruments.

The next few pages describe how the interface operates. Much of this
discussion is theoretical, and has been included here to help first time
users visualize an instrumentation system. Though it may appear that
the operation of an IEEE-488 system is a complicated matter, in fact it
is quite easy to use, and most of the details of bus operation are
transparent to the user.

In an IEEE-488 system, the 1752A is referred to as the instrument
controller.

Communications

Bus Functions

The instrument controller (the 1752A) establishes the role of each of
the connected instruments by sending commands to them and setting
up the correct communication channels. Each piece of equipment
recognizes its own address, which is set into it by configuration
switches when the system is assembled. Each connected instrument can
then respond to polling and receive or send data. Depending on its role
in the system, each instrument can also perform these functions:

5-4

0

a

a

Handshaking to establish and confirm the connection

Single address talking or listening

Request service to notify the controller that a function is complete
Respond to poll to answer the controller's request for status
Clear to return to a default state

Trigger to respond to the controller's command to perform a
function

The controller can perform these functions:

u]

(m]

Command devices to listen, talk, or perform a function
Trigger devices to perform a pre-programmed function
Clear devices to an initial state (defined by the device)

Poll devices for their status serially or in parallel
(one device at a time, or all at once)

Command devices to abort current operations
Command devices to enter the remote mode of operation

Pass control to another controller

Communications
iftE-LBa

Interface

There are 16 signal lines on the IEEE-488 bus; all are active low TTL
levels. The lines are divided into three categories:

1. Eight data lines
2. Three handshake lines
3. Five bus management lines

For your reference, Appendix C has a pinout diagram of the standard
interface connector and a description of each of the lines.

Bus Operating Modes

The bus operates in either command or data mode. A controller uses
the command mode to control the various instruments connected to
the bus. A talker or a controller uses the data mode to transfer
information or device dependent commands on the Data I/O lines.
The three handshaking signals officiate transfers on the bus.

Command Mode

The controller places the system into Command Mode by sending an
attention signal. All devices on the bus must then interpret the data
byte as a command message. Only a controller may issue commands.

There are four types of commands:

1. Addressed Commands (all devices are addressed to listen).
These are used to control a selected group of devices. The
command is preceded by a device address, because only those
devices previously commanded to listen must respond.

2. Universal Commands (all devices).
These commands are used to control all system devices. They
do not need to be preceded by an address because all devices
that are able to must respond to them.

5-5

Communications
iEEE-LBA

5-6

3. Addresses (all devices).

The controller uses these commands to designate devices as
talkers or listeners.

4. Secondary Commands (all devices are enabled by a primary
address or command).
These are the second byte of a two byte address, and are used
by the controller to implement “extended” talk and listen
functions. Secondary commands are used to send a second
address if the primary address has been accepted as part of the
address command.

Each type of command has a specific function in the activity of the bus,
and they are all designated by three letter mnemonics. All of these bus
functions are implemented in each of the programming languages
available for the 1752A. In some cases, a single command performs
more than one function; for example, the Fluke Enhanced BASIC
command TRIG (Trigger) addresses a set of instruments as listeners
and then triggers them.

Appendix C contains a complete listing of the Command Messages.
Refer to the appropriate programming language manual for
information about how to implement each of the commands in a given
language.

Communications
{ECE-LBa

Data Mode

The controller places the system into the data mode by setting the
attention line false. In this condition, all devices treat the information
on the bus as data. This data can originate from either a talker or the
controller. Data can flow from device to device on the bus (talker to
listener) in any mutually understood code or format, or the 1752A can
act as an interpreter accepting data from the talker and sending it out
to a listener.

Three-Wire Handshake

All IEEE-488 bus devices use a three-wire handshake to manage the
exchange of data. The signals are:

DAV- (Data Valid)
NRFD- (Not Ready For Data)
NDAC- (Not Data Accepted)

A Typical Instrumentation System

An example system is shown here to illustrate how the IEEE-488
interface can handle a variety of tasks. In Section 7, the same sample
setup shows how to automate these functions.

icke-L88

RS-232-C

e O ae)

1752A

FREQUENCY | ji
SYNTHESIZER™

-

SERIAL PRINTER

Communications
(EEE-LBA

In this example system, a sequence of events describes how a specific
measurement task is accomplished. In general terms, the controller
(the 1752A) programs the instruments and initiates the measurements.
The resulting data is returned to the controller, which then routes it to
the serial printer for printout.

Sequence

5-8

1. The controller initializes the interface devices.

2. The controller commands all devices to set their internal
conditions to a predefined state by sending a device clear
message.

3. The controller sends the listen address and program data to the
frequency synthesizer. The program data tells the frequency
synthesizer the output frequency and level.

4. The controller sends the unlisten command to the synthesizer,
then sends the listen address and program data for the
frequency counter. (Function and range, for example.)

5. The controller sends a program code to trigger the
measurement.

6. The controller sends the unlisten command, addresses itself to
listen, then sends the talk address of the measurement device.

7. When it completes its internal measurement cycle, the
frequency meter sends a request for service to the controller.
When the frequency meter’s request is recognized, it sends
(talks) the measurement data to the addressed listener, the
controller.

8. Under program control, the controller gathers the
measurement data and sends it via the RS-232 port to the
printer (first addressing the printer as a listener, as before).

This example shows how a typical system is connected and describes
the way the controller directs the tests. The program required to
actually do these steps depends on the programming language used.
Each programming language manual includes examples such as this
one to assist the programmer. In Section 7, Automating System
Functions, a BASIC language program is developed that will show
how a test program might be written to test this system.

Communications
{EEE-LBA

The basic system can be expanded by adding options to the controller
so that many more instruments can be connected. These options
provide a great deal of flexibility to the system designer. For example,
the RS-232 ports could be used to transmit the data via a modem to a
larger computer for analysis. Because of this flexibility, it is
recommended that you consult your Fluke representative in the early
design stages so the final system will perform efficiently in your
application.

Multiple Controller Systems

At power up, the 1752A can be designated either as the “system
controller” or as an “idle controller” on an IEEE-488 port. There can
only be one system controller on a port, and the controller is the only
device connected that is able to drive the control lines 1FC (interface
clear) and REN (remote enable). Likewise, there is only one “controller
in charge” on a port at a time and it is the only device that can send
interface messages by setting the ATN (attention) line true. The system
controller is the controller in charge when it is powered up.

The controller in charge can pass control to an idle controller. When
this happens, the idle controller becomes the controller in charge and
the former controller in charge becomes an idle controller. If the
system controller sets the 1FC line true, it gains control on the port and
becomes the controller in charge.

A switch on the Single Board Computer module (slot 7) designates the
power-up condition of the 1752A either as the system controller or as
an idle controller. The other switches of SW1 set the 1752A default
baud rate (the rate used unless changed by the Set Utility program),
and the 1752A’s IEEE-488 bus address. Refer to the following drawing
to set the switch.

Communications

2' 2
i
[

3 4 []] 70 9 10

SINGLE BOARD
COMPUTER MODULE

SWITCH 1
1 2 3 4 6 7 8 9 10
— |s2 s1 so sC A4 A3 A2 A1 |
X unused
|EEE-488 ADDRESS
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15
|IEEE-488 CONTROLLER
0 System Controller
1 Idle Controller
BAUD RATE
0 0 0 110
0 0 1 300
0 1 0 600
0 1 1 1200
1 0 0 2400
1 0 1 4800
1 1 0 9600
1 1 1 19200

Communications

IEEE-488 COMMUNICATIONS UNDER PROGRAM CONTROL

Each programming language available for the 1752A includes specific
commands to handle the IEEE-488 communications. The standard
was developed to permit the easy connection of an instrumentation

system, but two important rules should always be kept in mind as you
begin programming:

1. There may be any number of listeners at a given time.
2. There may only be one talker at a time.

There are other constraints, but these mostly depend on the
capabilities of the connected instruments. An example is the Fluke
8502A Digital Voltmeter, which must be allowed a three-second wait
between the time it is reset and the time it is programmed. Be sure to
adhere to the requirements of each particular instrument to simplify
your programming task.

5-11

Communications
iEEE-LBB

Example Commands from the BASIC Language

Here is a synopsis of the commands used in Fluke BASIC to control
communications over the IEEE-488 bus. For complete definitions and
requirements, see the BASIC Programming Manual.

INIT Initializes the bus.

CLEAR 3 n Addresses the specified device number as a listener,
and issues a selective device clear.

WAIT Followed by a number, suspends program execution
for the length of time indicated (milliseconds).

INPUT @ n A command string (in quotes) following this command
addresses the instrument as a listener, and programs it.

PRINT 3 n A variable follows this command to address the

instrument as a talker, and return the measurement
data to the controller.

5-12

Communications

Sample BASIC Program

This sample program shows how the most important bus commands
would be included in a BASIC language program to take a reading
from the Fluke 8502A Digital Voltmeter. Some features of the

program are:

O Between resetting the meter and sending it program data, thereisa
5-second wait to allow the meter to stabilize.

O Ten readings are taken to insure accuracy of the returned
measurement data.

O A 3-second wait is inserted between the last reading and the display
of measurement data.

?o back to &0 for next reading
et bus settle

ég ; Program for Fluke 8502A Digital Voltmeter
30 DIMR (9) ! dimension array
40 INIT PORT O ! initialize the bus
950 CLEAR @ 2 ! clear instrument 2 (DVM)
&0 WAIT 3000 ! let DVM settle
70 PRINT @2, "VR2TO" ! program DVM
80 FOR 1%Z = 0% TO 9% ! set up looﬁ for 10 readings
0 PRINT @ 2, "7 ! trigger DV
:?8 I?fUT @ 2, R (1I%) : get reading, send to array
i
130 FOR 1% = 0% TO 9% ! loop to displ di

{gg NEXTP?;NT IZ 3 R (I%) : prégt v:lutpo::Ir" nos

o ! return for ne
160 END ¢ value

5-13

Communications
|EEE-LBAE

5-14

Here is a line-by-line explanation of the sample program:

10
20
30
40

50

70

80

90

100

110

120

130
140

150

Program identification.

Blank line for readability.

Dimensions an array called R to hold up to ten readings (0-9).
Initializes Port 0, the built-in IEEE-488 bus.

Clears and addresses as a listener the DVM whose address is 2.
(Set up by switches in the instrument.)

Wait for 5 seconds to allow the DVM enough time to respond to
the clear signal, and to set up internally as a listener.

Programs the instrument with the command “VR2T0”, which
this particular instrument reads to mean, ‘use 10 volts DC scale,
and take single readings synchronously with the line (60 Hz)'.

Sets up an integer counter (I) withina ‘FOR-NEXT’ loop that will
take ten readings, and return them to the Conroller.

Addresses 2 as a listener, and sends a “?” which triggers the
measurement.

Addresses 2 as a talker, and puts the returned reading into the
location specified by 1% within array ‘R’.

Program returns to line 80, which increments the value of 1%, so
that as the FOR-NEXT loop is repeated, the next reading goes to
the next available location in the array R. After ten passes
through the loop, the program continues at line 120.

All measurements are complete, so this program step waits 3
seconds for the bus to settle.

Sets up another FOR-NEXT loop to display all ten readings.
Prints each value of 1% within the array R.

Sends program back to line 130 to increment 1%, and display the
next reading.

Communications
{EcE-LBa

In actual practice, this program could be greatly simplified. It is shown
here for illustration purposes only, although it could be used as is.
Some of the simplifications might be:

O Trigger the DVM ten times, but then send a command to have it
average the readings (many programmable instruments include
such mathematical abilities). The DVM would then return the
average, rather than ten readings.

O If the meter is unable to perform the mathematics, have it return all
ten readings, but finish this subroutine with a branch to an
averaging subroutine, and display only the average.

For More Information

System designers and programmers who are unfamiliar with the IEEE-
488 standard should obtain a copy of Fluke Application Bulletin 36
(IEEE Standard 488-1978 Digital Interface for Programmable
Instrumentation), and Technical Bulletin C0076 (Troubleshooting
Information for IEEFE-488 Systems). These publications provide the
background needed to set up an IEEE-488 system. Appendix C of this
manual provides useful reference material covering the interface
connector, handshaking protocol, commands, and message formats.

For an in-depth study of the IEEE-488 standard, a copy can be
obtained by writing to the Institute of Electrical and Electronic
Engineers, Inc., 345 East 47th Street, New York, NY, 10017.

5-15

Serial Communications
Set Utility Program

SERIAL COMMUNICATIONS

The RS-232 ports are connection points for devices that use the
Electronic Industy Association's RS-232C Data Communications
Interface Standard. Since it was first published, the RS-232 standard
has gained wide acceptance among manufacturers because it allows
various brands of equipment to use serial data communications to pass
information.

The standard describes the physical connector, the signals on each pin
of the connector, timing requirements, and the voltage levels of the
signals.

The standard allows variations to accommodate different
applications. Therefore, the 1752A software includes a program called
the Set Utility program that permits changing the values of the
parameters at the port.

Set Utility Program

5-16

The purpose of the Set Utility program is to configure the 1752A to
enable it to communicate with virtually any other piece of equipment
that uses the RS-232-C standard. The port parameters are set to
default values when the Operating System is loaded, and some
applications will not require changing the defaults.

These are the port characteristics that can be changed:
0 Baud Rate

0 Number of Data Bits

O Number of Stop Bits

0 Parity

0 End of Line and End of File Terminators

o Stall Input/Output Enable/Disable

g Time Out Value

Serial Communications

Using the Set Utility Program
Here is how to use the Set Utility program:

1. From the FDOS) prompt, enter:

SET (RETURN)

2. The screen will display the prompt:

Set Utility Program

FDOS> SET

Set Version 1.v

SET>

3. Specify the port to be changed, and use the command chart on
the next page to change the desired parameter(s).

4. Ifyouwould like to see the current parameters of a port, use the
List command. As with all Set Utility program commands,
specify the device first. Once the device has been specified, the
Set Utility program will assume that device until another is
specified.

KBI1: LIST (RETURN) -or- KB1: LI (RETURN)
This example illustrates the default parameters:

4‘\\

s

SET>» KB1:LI
Device

Baud Rate
Data Bits
Parity

Stop Bits
End of Line
End of File
Stall Input
Stall Output
Time Out

KB1:

9600

8

Even

1

10

26
disabled
enabled
[}

)

/

5. To exit the Set Utility program, type:

EXIT (RETURN) -or- EX (RETURNY

-or- {CTRLY|Z

5-17

Serial Communications
Set Utility Program

The Help Command

A help command lists all the available parameter selections. Type
? (RETURN) to see this display:

4)

4)
Cosmand Arguasent Function Erample
BR 73+110+134.5+150+300+600,+ 12001800 Set Baud Rate BR 2400

2000+2400+3600+4800+7200+9600+19200

0B 5161748 Data Bits DB 8
KBns Select Device KBO:
EOF <0 through 23%> (decimal) or ‘<char>’ End of File EOF 26
EOL <0 through 255> (decisal) or *<char>’ End of Line EoL 10
EX or EXIT Exit to FDOS EX

Ll or LIST List Configuration LI

PB EVENsy Ey ODDs O+ NONEs N Parity PB NONE
se 1y 1.3, 2 Stoo Bits S8 1
Ss1 ENABLEs Ey DISABLEs D Stall Input S1 E
S0 ENABLEs Ev DISABLEs D Stall Output SO E
TO <0 through 255> (seconds) Tiae Out T0 5

> v,

5-18

Serial Communications
Set Utility Program

Command Structure

The Set Utility program features a straightforward and flexible
command structure. After selecting a device, the current settings can be
listed and changed in any order.

O Commands can be entered singly or combined into a multiple
command line.

O Both upper- and lower-case entries are accepted.
0 All commands are terminated by (RETURN).
0 All commands can be automated by command files.

0 Parameters controlled by the program can be set independently for
each serial port.

O Plain language messages prevent setting parameters improperly

(out of allowable range, incorrect syntax, unspecified device, etc).
A table of all messages is given on page 5-26.

5-19

Set Utility Program
Syntax Diagram

Syntax Diagram

The syntax diagram below illustrates the proper syntax for all of the
commands available in the Set Utility program.

) Coe)

m SPACE HTparameter) RETURN

(no parameter: EX,LI)

O Any number of parameters can be specified for a port, as long as
each command is separated by a comma or a space.

0 The command line cannot exceed 80 characters (the capacity of
one line on the screen). If more are needed, use two separate
command lines.

O A single command line can be used to set parameters for more than
one device as long as a comma precedes each device name after the
first one.

O Any number of commands are allowed on the same command line
as long as each is separated by a comma or space.

5-20

Set Utility Program
Setting Parameters

Device Selection

A port device must be selected before the Set Utility program will
accept other commands. Device selection can be made a part of the
single command line. Once the device is selected, subsequent
commands affect that device until another is specified.

If a command is entered before specifying a device, the “no device
specified” message is displayed.

Attempting to specify a device other than a serial device (KB0: - KB2:,
GPO: - GP1;, SPO - SP9:) will cause the “illegal device” message to be
displayed.

All command inputs except baud rate are ignored for KBO0: (the
console device).

If the KBIl: port is already in use for an external monitor, its
parameters‘s cannot be changed, but will return the “illegal device”
message.

Setting Parameters
Baud Rate (BR)

Baud rate is the speed of information transfer. This command changes
the baud rate of the selected port to that specified by the command
argument.

In the following example, the baud rate of the optional Serial Port 2 is
set to 2400 baud:

KB2: BR 2400 (RETURN)

NOTE
The baud rate of the keyboard and display is 19.2 Kilobaud.
Setting KBO: to any other baud rate immediately disables both
the keyboard and the display. This condition can only be
remedied by pressing RESTART.

5-21

Set Utility Program
Setting Parameters

5-22

Character Length (DB)

The data bit command sets the number of data bits that will be
included in each character.

When character length is set to a value shorter than the actual data‘s
character length, the lower data bits (least significant) are used.

If the character length is set to a value higher than the actual data, the
remaining (most significant) bits are set to zero.

The following example selects Serial Port 1, and sets the character
length to 7 bits:

KBI1: DB 7 (RETURN)
Parity Bit (PB)

Parity is a method of error detection that adds an extra bit after the last
data bit of each word. This bit is set so that the total number of 1-bits in
each word is always even or odd. The parity command defines a parity
bit to be generated and checked for the selected port.

The command argument NONE or N eliminates the generation and
checking of the parity bit.

During input, parity is checked as defined by the Set Utility for each
character. If an error is detected, it is identified to the operating system
as a device error. This error can only be cleared by closing the channel
associated with the serial port.

During output, parity is generated as defined by the Set Utility
program, and appended to each character.

In this example Serial Port 2 is selected, and set up to generate and
check for even parity:

KB2: PB EVEN (RETURN)

Set Utility Program
Setting Parameters

Stop Bit (SB)

The stop bit command defines the number of bit-cell time periods
between characters transmitted to external equipment that requires
additional settling or synchronization time. This command does not
affect incoming data.

The following example defines a transmission word spacing of 1.5 bit-
cell time periods for Serial Port 1:

KB1: SB 1.5 (RETURN)
Stall Characters (Sl, SO)

Stall Input only affects data being received at the serial port. Whenit is
enabled, the 1752A sends X-OFF (decimal 19) when its input buffer is
3/4 full. When the buffer has been emptied to the 1/4 full point, the
1752A transmits X-ON (decimal 17).

Stall Output only affects data being sent from the 1752A. When Stall

Output is enabled, receipt of an X-OFF character causes the 1752A to
suspend transmission until it receives X-ON.

Stall Output only affects data being sent from the Controller. When
Stall Output is enabled, receipt of an X-OFF character causes the
Controller to suspend transmission until it receives X-ON.

This sample shows how both Stall Input and Stall Output would be
enabled for Serial Port 1:

KBI: SI E, SO E (RETURN)

5-23

Set Utility Program
Setting Parameters

5-24

Length of Time Out (TO)

The Time Out parameter affects both input and output data. During
input, if no data is received within the length of time specified by the
parameter, the 1752A resumes processing, rather than waiting
indefinitely.

When the 1752A sends data through a serial port, it does so by fillinga
buffer, and creating a path between the buffer and the port. If the
buffer becomes full, the 1752A waits for the time specified by the Time
Out parameter. If the buffer has not started to empty by then, the
attempted data transfer is abandoned.

This parameter ensures that the 1752A will not wait indefinitely for a
data transfer in either direction. Instead, the 1752A abandons the
attempt and continues processing.

Time Out is specified in seconds (0 to 255). The longest time out, 255
seconds, equals 4 minutes, 15 seconds. A time out value of 0 means the
1752A will not time out.

NOTFE

The Time Out value can also be used to change this
parameter at the IEEE-488 ports. For this usage,
specify the GPx: device, and specify the parameter
as usual. This is the only IEEE-488 parameter that
can be modified using this utility program.

In this example, the Time Out parameter for KB1:is set to 15 seconds.

KBI: TO 15 (RETURN)

Set Utility Program
Setting Parameters

Terminator Characters (EOL, EOF)

The terminator commands EOL and EOF define characters that will
be used to identify the end of a line or file. When received with
incoming data, a terminator generates an interrupt if enabled by the
user program.

EOL only affects data input: All Carriage Return and Line Feed
characters are deleted, but when the terminator character is received, a
Carriage Return, Line Feed sequence is appended. (The system does
not add a second Carriage Return or Line Feed if that character is the
terminator.) The resulting data is in the internal format of 1752A data.

EOF affects both input and output data:

o During input, each file terminator defined by Set is converted to
(CTRL)/Z (ASCII 26).

0 During output, each {CTRL)/Z character is converted to the file
terminator defined by the Set Utility.

This example shows a command line that defines a question mark as
line terminator, and the ASCII character 4 (EOT code or
(CNTRL)/D) as a file terminator for a port that was previously
defined:

EOL ‘? EOF 4 (RETURN)
Single Command Line Entry

During experimentation, you normally change the parameters one at a
time in order to find the correct combination for the device that is to be
communicating with the 1752A. During the development of working
software, however, it becomes increasingly important to begin
thinking about how to speed things up. Since any keyboard entries can
become part of a command file, it is efficient to make one entry in the
command file set the parameters needed at the RS-232-C port.

This example illustrates how all of the above commands could be

combined into a single command line to change the parameters at a
serial port:

KBI1: BR 2400 DB 7 PB E SB 1.5 EOL *” EOF 4 SI E SO E TO 15 EX
(RETURN)

5-25

Set Utility Program
Messages

Error Messages

Messages from the system are a normal part of operation, and do not
always signify that an error has been made, though they are generally
referred to as "error messages“. Here are the meanings of messages you
might see from time to time when using the Set Utility program:

MESSAGE

7TArgument maissing

7Argument out of range

7Bad argument

71'\egal device

?7No device specified

TUnknown command

7Attribute cannot be changed

5-26

MEANING

A command was entered without the
argument necessary to complete its
meaning.

A command argument was entered
which was beyond the range of
acceptable values.

A command argument was entered
which was not in the list of acceptable
arguments for that command.

KB2: was selected when an external
terminal was in use.

A command was entered before
specifying a device.

A command was entered that was not
recognized.

A parameter was specified that cannot
be changed for that port.

Serial Communications
Under Program Control

Serial Communications Under Program Control

To automatically set the parameters of the serial ports, a command file
must be written that uses Set Utility program commands. The
parameters cannot be modified by programs written in high level
languages (BASIC, Fortran). Once the port parameters are established
by the Command file, however, programs written in any language can
get information into and out of the port.

Keep in mind that the command file must first enter the Set Utility
program, and after parameters are changed, must exit it. Here is a
portion of a command file that does just that:

SET

KB1: BR 2400+0B 7.PB E+SB 1.53S1 E+S0 E+TO 15
EXIT

The following table illustrates the commands used in the BASIC and
FORTRAN languages to send and receive information via the serial
port. Notice that both languages include commands to first open the
channel, then either to send or recieve data through it. For more
information, consult the manual that covers the programming
language you are using.

BASIC
To send: To receive:
OPEN "KB1:" AS NEW FILE 1 OPEN KB1: AS FILE 1
PRINT #1, "TESTING" INPUT #1: AS
FORTRAN
CALL OPEN (2y "KB1:"sy 45 Oy IERR) READ (2+20) A
WRITE (2s 10) 1ERR 20 FORMAT (F10.4)
10 FORMAT ("ERROR CODE: °s1I19%) CALL CLOSE (2+ IERR)

5-27

Serial Communications
Sample Program

Sample BASIC Program

This sample program shows how these important commands would be
included in a BASIC language program that reads information froma
floppy disk in device MFO0:, and sends it out to a serial impact printer,
like the Fluke model 1776A. Some features of the program are:

0

@]

5-28

Prompts the operator for the name of the file to be printed.

Handles the most common error: specifying a file that doesn’t
exist.

Regardless of the size of the file, outputs the entire file, and stops
when printing is complete.

! Program to print a soecified file
1

QDIR ! List files

PRINT

PRINT °*ENTER FILENAME"® display prosot

INPUT AS filename is variable AS

IF A$ = "" THEN 60TO 330 agraceful exit

ON ERROR 60TO 220 error handler

CLCSE 1 make sure channel is closed
OPEN AS$ AS FILE 1 now open it.

CLOSE 2 make sure channel is closed

OPEN °'KB1:' AS NEW FILE 2
PRINT #2yCHRS$(12%)

INPUT LINE #1+ AS

PRINT &2, As

now ooen it. KR1: is printer
send form feed to printer
put one line of file into AS
output the Line to printer

60T0 140 repeat until done

' + Error Handler

! ERR (system variable) = lLast error

)

! - Error 305 File Not Found -

IF ERR = 305 THEN RENUME 230 ELSE 270 ' retry if file not found
PRINT °FILE NOT FOUND - TRY AGAIN’

WAIT 1000 \ 6070 30 ! pause 1 sec» start again
l

! - Error 307 End of File -

IF ERR = 307 THEN RESUME 280 ELSE RESUME 310 ! halt if EOF
PRINT °"TRANSFER COMPLETE"

CLOSE 1» 2 \ END ! close channelss halt

1

H - ALl Other Errors -

PRINT "ERROR - CANNOT TRANSFER FILE® ! hatt for all other errors
PRINT °*RETURNING TO BASIC®

CLOSE 1, 2 ! close channels

END ' hatt

Serial Communications
Sample Program

Leaving out the comment lines, here is a line-by-line explanation of
how this program operates:

30

40
50
60
70

80

90

100
110
120
130

The program begins by doing a quick directory listing to display
the files that are available for printing.

Puts a blank line on the screen for readability.

Displays the prompt message.

Assigns the response to the prompt as string variable A.

If there is a null string (no input) terminated by a (RETURN),
this line provides a graceful exit. This is used, for example, if the
directory listing indicates the file you want to print is not on this
disk.

Beginning of the error handler. Any error encountered sends the
program to line 220, where the error type is discovered, and
various exits are provided depending on the error type.

The CLOSE command is insurance that a previously opened
channel is closed prior to reopening. To OPEN an already open
channelis an error; to CLOSE one that hasn’t been opened is not.
After this ‘insurance’ command, the following line opens the file
designated as variable A as file 1, for input.

Opens the file.

Again, a command to insure the channel is closed before opening.

Serial port KBI: is opened as an output.

The printer (File 2) is sent a Top Of Form command, so that
printing will start at the beginning of a sheet.

5-29

Serial Communications
Sample Program

5-30

140
150

160

220

230

240

260

270

280

300

Each line of the file is input and sent to AS.
Each line is sent out to #2, the printer.

The return to line 140 gets the next line, so it can be PRINTed by
line 150.

The error handler begins here. Error 305 is returned if there is no
file with the name of the one specified as AS. If the error is 305,
then a message will be displayed at line 230, and allow a retry.

Prints the message that the file was not found.

After a one second wait, goes back to line 30 to display the
directory again.

The error was not 305, so now it is checked to see if it was 307, the
End of File. This is the exit when the entire file has been printed.
All other errors fall through to ending routine that closes the
channels and stops.

If the EOF was the error, prints the message that the transfer is
complete.

Closes the previously opened channels, sends the program to the
END statement to stop.

If the error was neither End of File or File Not Found, then it is
some other error that makes it impossible to transfer the file. In
this case, a message is printed, the channels are closed, and the
program stops. This line could be enhanced by incorporating the
actual error number for debugging purposes if this program is
included within some longer one.

This program illustrates how the important BASIC language
commands can be used to send data out the Serial port. While it is not
comprehensive, it does show some good programming techniques.
(And it works!)

Before using the RS-232 port, be sure to confirm that the parameters
specified in the SET Utility program match those of the connected
device.

Communications

CONCLUSION

This section has described the two ways that the 1752A communicates
with other pieces of equipment using worldwide standard connection
and protocol methods. This section has also shown how to make use of
the essential BASIC language commands to send and receive
information over its instrumentation bus and serial data
communications bus.

The next section, Creating and Editing Programs, will show how to
begin writing your own routines with a view to automating the
functions of the 1752A.

5-31/5-32

Section 6
Creating And Editing Programs

CONTENTS

Introductioncciiiiiiriiin it 6-2

Selecting a Programming Language 6-3
BASIC i e e e 6-3
FORT RAN .. i i i e et et e e e 6-4
Assembly Language i i i, 6-4

File Utility Program i, 6-5

Command Line Interpreterc.iviiiniinnnnnn.. 6-5
Introductionc.c.ciiiiiiiii it i i, 6-5
Editing Features of the Command Line Interpreter 6-6

The Edit Program i iiiiiiiiiiiinnnnnn. 6-7
Introductionottt i i i 6-7
Entering the Editor Program 6-8
Exiting the Editor Program 6-10
Operating Modesciiiiniiiiniinnnennnn. 6-11
Global Commandsoviiiiniennninnnennn.. 6-12
Most Used Commandsc.oviiiiiunenennnn.. 6-12
Command Modeccoiiiiiiiiiniiiininnnnnn. 6-17
Command Mode Commandsccovunun... 6-20
Edit Program Messagescciviiiiniinnnn.n. 6-47

ConClUSION ..ttt i i e e e 6-48

Creating And Editing Programs

INTRODUCTION

6-2

The 1752A Data Acquisition System is a special-purpose computer,
and like any computer, its instructions must be given in very precise
language. This section is designed to assist you in the task of writing
precise instructions.

There are a number of different facilities for writing and editing
programs. From Immediate mode BASIC, the command EDIT
presents a range of possibilities. This is the Editor of choice for
programs written in BASIC, because it is so well adapted to the task,
and because it is readily available, once you are “in BASIC”.

For creating other types of programs, such as Command files or Alias
files, the System Editor program (filename EDIT.FD?2) is easier to get
at. Also, you will have to use the System Editor if you are
programming in FORTRAN or some other language that does not
provide editing functions.

This section discusses these main topics:

Selecting a Programming Language

Creating Programs Using the File Utility Program
The Command Line Interpreter

The Edit Program

Creating And Editing Programs

SELECTING A PROGRAMMING LANGUAGE

There are three languages that can be used for programming the
1752A. The data acquisition and control capabilities for the 1752A’s
measurement and control options are available only in the BASIC
language. FORTRAN and Assembly Language routines may be
written and linked into BASIC to provide additional computational
capabilities and improved execution speed. Here is a guide to help in
selecting the most appropriate language for any particular application.

BASIC

BASIC is an acronym for Beginners All-Purpose Symbolic Instruction
Code. The BASIC language is used for about 909, of all programming
applications because it is fairly common, is easy to learn, and provides
most of the capabilities that are desired for instrumentation systems.
There are really two forms of the BASIC language: the normal
interpreted version, and a special compiled version.

Interpreted BASIC is an enhanced version of the BASIC language that
is common to most computers. It has a built-in editor, Immediate
Mode Commands, and runs programs interactively. These features
make program development easy and straightforward, even for
inexperienced users. Because it is the language of choice for most
applications, the interpreted version of BASIC is included with every
1752A.

Compiled BASIC is essentially the same language in a compiled form
to increase its execution speed. Compiled BASIC programs are written
using the System Editor program. They can be created in a more
structured form than conventional line-oriented BASIC programs.
The programs are compiled into a form that runs much faster than an
equivalent interpreted BASIC program. Compiled BASIC should be
used in applications where additional speed or a modular structure is
needed while retaining the familiar BASIC language elements.
Compiled BASIC is available as an optional accessory software
package which contains the software required to create and maintain
Compiled BASIC programs.

Extended BASIC is essentially the same as Compiled BASIC with the
additional capability for writing programs requiring a large memory
space. Extended BASIC allows the programmer to write large
programs without chaining program segments or creating overlays.
Extended BASIC is available as an optional accessory software
package which contains the software required to create and maintain
Extended BASIC programs.

6-3

Creating And Editing Programs
Selecting a Programming Language

FORTRAN

FORTRAN is also an acronym. It stands for Formula Translator.
FORTRAN is a useful language for scientific applications because of
the ease with which it manipulates numbers. BASIC provides most of
the same capabilities, but FORTRAN may be the better choice if many
of your current programs are already writtenin FORTRAN, if you are
experienced in programming in FORTRAN, or if the operation
requires greater speed. Because it is a compiled language, FORTRAN
offers high speed, but, like all compiled languages, it is more
complicated to work with.

Assembly Language

6-4

Assembly Language provides the programmer with access to all of the
capabilities of the TM S-99000 processor used in the 1752A. Assembly
Language programs can usually be both faster and shorter than
programs written in any other language. In addition, specialized
Input/Output and data conversion functions not otherwise available
sometimes must be written in Assembly Language. The penalty for this
flexibility is that Assembly Language programs usually take longer to
design, to write, and to debug than programs written in higher-level
programming languages.

When greater performance is required for a program written in a
higher-level language it is usually possible to replace time-consuming
operations with a faster Assembly language subroutine. This can be a
cost-effective solution if the amount of Assembly code is small
compared to the total size of the program.

Creating And Editing Programs
Light Editing

FILE UTILITY PROGRAM

It is possible to create, but not edit, programs using the File Utility
program. To implement this capability, use the File Utility program
command in the form:

(filename)= KB0O: {(RETURN)

Now, any keystrokes made will be filed at the System Device, and given
the filename specified. The end of the file must be indicated to the File
Utility program by the command (CTRL)/Z (EOF).

This facility is not used for creating long or complex programs because
there is no way to edit them. If an incorrect keystroke is not seen
immediately, it is necessary to either re-write the entire file, or else use
an editor program to correct it.

COMMAND LINE INTERPRETER
Introduction

The central program, FDOS, is always present in the system’s memory,
and its facilities are used by other programs. For example, when a
program written in BASIC is running, one is tempted to say “a BASIC
program is running”, but that would be inaccurate because it is actually
the BASIC Interpreter program that is running. It calls upon the
Operating System to provide file manipulation and other
Input/Output. The execution of a program and the Operating System
is interleaved.

In the same way, when the utility programs are in use, they direct the
activities of FDOS. The Operating System takes control only when:

1. The utility program requests an I/ O operation.

2. A severe hardware or software error occurs.
3. The FDOS) prompt is displayed.

An important feature of the Operating System is its Command Line
Interpreter. As its name implies, this is the portion of the Operating
System that accepts keyboard commands and acts on them. It permits
us to type FUP, for example, and be understood as saying, “Hello,
Operating System, what [want you to do is go out to the floppy disk
and find a program called the File Utility program. Read it into
memory, and pass control of the microcomputerto it.” The File Utility
program returns control when it receives the Exit command /X.

6-5

Creating And Editing Programs
Light Editing

Editing Features of the Command Line Interpreter

When a command line is being written, some rudimentary editing
functions are available. These features of the Operating System are
great time savers, because they speed up the creation of Command files
and access to utility programs. All the commands described are
available from from FDOS, BASIC, and the TIME, SET and File
Utility programs.

(CTRL)/F and (CTRL)/R

These are mnemonically named commands for Forward and Reverse.
(CTRL)/R causes the last line entered to be displayed again, and
repeats until the first command has been reached. When a former
command has been displayed, it is available for editing, thus providing
the 1752A with an elegant way to avoid repetitious typing.

Example:
Since the 1752A was turned on, these commands were entered:

FUP
RS232.CMD
/X

TIME

03 06 83

14 35

The first use of {CTRL) /R would display 14 35, the next 03 06 83, the
next TIME, then /X, RS232.CMD, and finally FUP. If (RETURN) is
pressed when any of these are displayed (the cursor can be anywhere on
the line), the system accepts the command just as if it had been typed in.
If you wanted to get back to the line “RS232.CMD” to run the
program, rather than having the File Utility program display it, you
would use {CTRL) /R until the display showed that line, then press
(RETURN). If you go all the way back to the line reading “FUP” by
mistake, just use {CTRL)/F to go forward.

These commands are circular. If (CTRL) /R were pressed once more
after “FUP” was displayed, the next thing to be displayed would be
14 35.

Creating And Editing Programs
Light Editing

Any time that (CTRL)/R or (CTRL)/F are used to display a
previously entered command, the command can be edited using the
arrow keys, DEL LINE and DEL CHAR keys, the DELETE key, or
the backspace (back to left margin), or LINE FEED (to end of line).
Once the line has been edited, pressing RETURN with the cursor
anywhere on the line will cause the command to be executed.

Other editing features of the Command Line Interpreter are:

(CTRL) /U
(CTRL)/T

(CTRL) /P

(CTRL)Y/Z
(CTRL)/C

(DELETE)

Key Repeat

Erases the current line.

Clears the screen, and positions the prompt on the
first line.

Aborts whatever operation is in progress, and returns
control to the Operating System (FDOS) prompt).

Used as the End Of File (EOF) command.

Interrupts an operation, and may abort it depending
on the operation in progress.

Deletes the character at the cursor position and
moves the cursor left one position. This action stops
at the prompt.

All keys, including control characters, repeat when
held down.

THE EDIT PROGRAM
Introduction

The Edit program is supplied on the System disk as a file named
EDIT.FD2. This editor is a visual one, as opposed to “blind” editors.
That is, the file is displayed as you edit it.

The Edit program provides a complete set of commands for
performing these functions:

a

o
O
0

Inserting Text

Searching, Replacing, and Marking Text

Positioning the Cursor
Changing Editor Modes

6-7

Creating And Editing Programs
Start Editing

Entering the Editor Program
From the FDOS) prompt, type:

EDIT (RETURN) or EDIT (filename) (RETURN)

In the first case, no file is specified. If this method is used as the entry to
the Editor, a filename must be specified later, when exiting the
program. The reverse is true if a filename is specified as you enter; one
must not be specified as you exit. If different filenames are given, the
result would be that two files would be created; the one specified at the
beginning of the editing session will be empty.

As always, if no device name is specified, the default is to the System
Device.

In this example, the file named FILE.NEW was specified:

[EDITING FILE "FILE.NEW" Cnew filel

If the file already exists, the bracketed “new file” would not be included
on the display.

If no file has been specified, only the cursor appears on the top line.

Creating and Editing Programs
Start Editing

The rest of the display depends on the file contents, but if the file is
being created, the display has omega symbols on the left, indicating
empty lines.

r .

EDITING FILE “FILE.NEW"

VDIAXIVII

There are some optional flags when entering the editor:

edit -r [filename]
Enter the editor and edit the file as “read only”. This is useful for
viewing a file that you do not wish to change but where using the editor
is more convenient than using FUP.

edit -c [filename]
Starts up the editor in command mode. See the section on operating
modes for a description of the different modes of the editor. A useful
system alias would be “e edit -c ?” if you prefer the editor to start up in
command mode.

edit -t [device] [filename]
With this option you can specify which device you want the temporary
files created with the “:r” command to be written to. If no device
follows the “-t” flag, then the system device (SYO0:) is assumed. See the
section on the global command “:r” for an explanation of this option.

Creating and Eding Programs
Exiting the Editor Program

Exiting the Editor Program

6-10

There are several ways to exit the Editor program. The most
commonly used are:

O Entering (CTRL)/C at any time while in the editor writes the file
and exits the editor. If there is no output file to be written and
changes have been made to the text in the buffer, a confirmation is
required to exit the editor.

o First record the changed file, then exit the Edit program:

(ESC) :w (RETURN) write the file
(ESC) :q (RETURN) exit the Editor

o Exit without recording the changes to the file:

(ESC) :q! (RETURN)

Other commands permit reading a file into the display while editing
another file.

Creating and Editing Program
Edit-Modes

Operating Modes

The Editor has two modes of operation. The Insertion mode is the
default, and is primarily used for inserting text, although it does allow
a certain amount of cursor and text manipulation. The Command
mode is used for more powerful cursor and text manipulation,
searching, and exiting the program.

Many Edit program commands result in a temporary return to the
Insertion mode. When these commands are used, (ESC} is the return
to Command mode. The purpose of these commands is to save the time
involved in exiting the Command mode, doing the insertion, then
returning to Command mode.

To change from Insertion to Command mode:
(ESC):@ (RETURN)

To change from Command to Insertion mode:
:@ (RETURN)

When either change mode command is given, the new operating mode
becomes the default.

On the first entry to the Edit program, Insertion mode is the default. If
Command mode is desired, the EDIT command can be modified by
using the -c switch. The entire command to enter the Edit program in
Command mode and begin editing FILE.NEW would read:

EDIT -c FILE.NEW (RETURN)

Creating And Editing Programs
Edit — Modes

Global Commands

Global commands operate in either mode. After they are executed, the
Editor returns to the default mode. They are used to read or write afile,
and check the status of the Editor. Global commands are always
preceded by a colon (:). The most commonly used ones are:

:w Writes the file.

:q Quits the Editor and returns to the Operating System.

:q! Quits the Editor without any changes from the current editing
session.

: Reads another file in during editing.

s Substitutes one string of characters for another.

NOTE

When in the Insertion mode, the Global command prefix is{ESC).

Most Used Commands

The entire command structure of the Editor program contains some
redundancy; also, some commands are used infrequently enough to

. not require a complete discussion. Most programs can be created and
edited using only a few of the available commands. The full capabilities
of the Edit program are presented at the end of this section.

Cursor Positioning

6-12

In the Insertion mode, the four arrow keys on the six-key auxilliary
keypad move the cusor in the direction shown by one space or one line.

In the Command mode, these keys can be preceded by a number to
move longer distances. For example, 20—~ would move the cursor 20
places right, and 20! would move it down 20 lines.

The lower-case letter “w” moves the cursor to the right by one word. If
a number precedes the “w”, the cursor moves right by the number of
words specified.

The lower-case letter “b” moves the cursor back by one word. If a
number precedes the letter “b”, the cursor moves back by that number
of words.

Creating And Editing Programs
Edit — Most Used Commands

Text Insertion and Deletion

In the Insertion mode, any characters typed are displayed and the
cursor is moved right one position. The (DEL LINE) and (DEL
CHAR) keys on the auxiliary keypad delete characters or the entire
line to the right of the cursor without moving the cursor. The
(DELETE) key (just above (RETURN)) erases single characters to
the left of the cursor, and moves the cursor left one position.

In the Command mode, typing the lower-case letter “a” returns
operation to the Insertion mode. Anything typed in strikes over the
already existing text, but it is displayed again when the (ESC) key is
pressed. The upper-case letter “A” is a command to add whatever text
follows, starting at the end of the line the cursoris on. To stop inserting
text, press (ESC).

To delete text in the Command mode, position the cursor anywhere on
the line and type (CTRL) / U; the entire line is deleted. (DEL CHAR)
and (DEL LINE) operate just as they do in Insertion mode. If a
number precedes them, that number of characters or lines to the right
of or down from the cursor are deleted. Similarly, the (DELETE) key
can be preceded by a number. For example, the command
3(DELETE) deletes three characters to the left of the cursor.

Substitution

The substitution (s) command replaces whatever text is to the right of
the cursor with a specified character. The form is [n]s {char} where [n]
is the number of characters to be substituted, and {char} is the
character to be substituted.

In this example, a time delay of 200 milliseconds was found to be
inadequate for a program, so the number 200 will be substituted for

1000. With the cursor positioned under the 2 of 200 the command
451000 changes the 200 to 1000, leaving the cursor at the end of the line.

60 WAIT 200 — 451000 —_— 60 WAIT 1000_

All Command mode returns to Insertion mode are terminated by
(ESC).

6-13

Creating And Editing Programs
Edit — Most Used Commands

Marking Text

Invisible markers can be placed anywhere in the text from the
Command mode. There can be 26 such markers in any file, one for each
lower-case letter in the alphabet. The command ma places a marker
named “a” at the cursor position. To return to that position after
subsequent editing, use the command ‘a.

Searching

Searching can only be done from the Command mode. The Find (F)
command operates only on the current line, and searches for a
character to the left of the cursor. The entire command takes the form
[n]F {char}, where n is a number of occurrences prior to the cursor
position, and {char} is the character to be searched for. In this example
of a line from a BASIC language program, the command F1 would
leave the cursor at the line number:

10 DIM AS$ (5% 5%)

The second type of search looks for patterns rather than single
characters. Each of the command characters must be preceded by
(ESC). The three command characters that the search command can
begin with are:

| searches forward throughout the buffer.

7 searches backward throughout the buffer.

! searches forward to the end of the file.

Whichever character begins the command, search commands always
take the form [cc] {pat} where cc is the command character, and {pat}
is the pattern to search for. The pattern searches are repeatable by

using the lower-case letter n to continue searching in the same
direction, and the upper-case N to reverse direction of the last search.

Creating And Editing Programs
Edit — Most Used Commands

In this example, the programmer wants to find all those occurrences in
a program where something is to be printed in normal size letters. The
cursor i postioned at the end of line 20. The command 'PRINT NS
would first locate the PRINT statement in line 400. The lower-case
letter n (next) would then locate the next occurance at line 9000.

20 NS$ = ESS$ + "p*

6-15

Creating And Editing Programs
The System Editor

INSERTION MODE COMMAND TABLE

ACTION RESULT COMMENTS
Cursor Posltioning
— Move cursor right one Ignored if cursor is at the last
position. position on the line.
-— Move cursor left one Ignored if cursor is at the left
I position. margin.
Move cursor up one line. Cursor remains in same

! position on next line unless it
is shorter; then it goes to the

1 end of the line.
Move cursor down one line. Acts the same as I
(BACKSPACE)
or Move cursor to the beginning
(CTRL/H) of the line.
(LINE FEED)
or Move cursor to the last

{CTRL)J position in the line.

Deletion Cémmands

— e ——— e -

(DEL CHAR)
or Delete character at the cursor
(CTRL D) | position.

(DELETE) | Delete character to the left of
the cursor.

(DEL LINE)
or Delete text from the cursor to
(CTRL E) | the end of the line.

6-16

Creating And Editing Programs
Edit — Command Mode

Command Mode

The Command Mode of the System Editor program provides for rapid
cursor placement, complex searches, deletions, and text marking. It
includes commands to move sections of a file into a “yank” buffer, so it
can be placed back into the file at another location. Many commands
provide a temporary return to the Insertion mode. These commands
must be terminated by (ESC) to return to the Command mode.

Markers
Each of the lower case letters on the keyboard can be used as a marker.
Markers are invisible, so if they will be used extensively, it is probably a
good idea to keep a tally sheet handy to aid in remembering where each
marker is placed.

To place a marker named “a” into a file, move the cursor to the desired
position, then give the command ma.

Now that marker “a” isin place, you can always return to that spot by a
search command. The marker is also used with yank buffers and delete
commands (see below.)

There is no provision for deleting markers. However, they are not
recorded with the file and so do not remain after the current editing
session. Also, the same marker can be moved simply by placing it
someplace else. The last placement is the one remembered by the
Editor program.

The Yank Buffer

A yank buffer is a location in memory available to store information.
Information is taken from the cursor location to a specified marker.

The yank buffer is one of the Editor’s more powerful features because it
can be used to relocate portions of a program as an aid to modifying it.
For example, if part of a program has inadvertently been left out, and
to include it requires restructuring the program, use the yank bufferto
move sections of the program from the screen and into memory, then
replace them as the new section is written. Another good use for the
yank buffer is as a holding area for a frequently written line of code,
such as a tightly formatted PRINT statement or a very long line.

ya removes text from the cursor to marker a.

p puts the buffer back into the text after the character where the
cursor is positioned.

P puts the buffer back into the text before the character where the
cursor is positioned.

6-17

Creating And Editing Programs
Edit — Command Mode

Search Commands

6-18

Searches can be performed from the cursor position either backwards
or forwards in a file. The search can be for markers, strings of
characters, lines or line positions, or to a string that matches a
metacharacter.

To search for the first occurrence in a file of the word PRINT, the
command most commonly used would be: 'PRINT

Other variations are to use the command characters / and ? to search
forward and backward on the current page.

The lower case letter n finds the next PRINT statement.

The upper case letter N locates the previous PRINT statement.

Metacharacters

Creating And Editing Programs
Edit — Command Mode

Metacharacters describe patterns of characters that may be more
complex than words or simple strings of characters. Metacharacters
are similar to wild cards, but are only used with search commands.

A (caret)

$ (dollar)

(dot)

Matches any single character in the line.
Example: ta.k matches talk, task, and tank, but not
take.

Matches at the beginning of a line.

Example: "PRINT would locate all the PRINT
statements in a program, as long as there were no line
numbers.

Matches at the end of a line.
Example: RESUME 5808 would locate all the lines in
a program that RESUMEs to line 580.

[1 (brackets) Match constructed patterns.

*

\

(dash)

(bang)

(star)

Example: [13579] matches any single-digit odd
number. [Pp]rint matches both Print and print.

With the bracket metacharacter, specifies a range of
characters (in ASCII order) as a character class.
Examples: [0-9] matches any single digit.

[- ~] matches all printable characters

(ASCII ‘blank’ to tilde)

Matches any character not in a specified character
class.
Example: [!a-zA-Z] matches everthing that is not a
letter.

The closure character; matches zero-or more
repetitions of character(s) matched by preceding
patterns.

Examples: X* matches zero or more upper-case X’s in
a row.

(.*) matches anything between parantheses.

(backslash) The escape operator; causes the character immediately

following to be treated as a literal character, even if it is
a metacharacter.

Example: The pattern \$ matches the dollar sign, not
the ‘end of line’ metacharacter. \ matches the backslash
character.

6-19

Creating And Editing Programs

Editor Commands

Command Mode Commands

The command mode provides complex cursor positioning, pattern
searches, text replacement, deletion, and insertion. In the section that
follows, each command is explained, and a five line section of a
program is used for the examples. The example program lines are
shown double-spaced to better illustrate the movements involved; in
actual practice, programs do not allow empty lines as shown here:

10 DIM AS$ (5%y 5%)

20 TRACE ON 110y AS O)

30 FOR 1% = 0% TO0 5%

40 As$ (I%y, O%) = CHRS C(ASCII C* °*)) + IV

50 GOSUB 110

Cursor Positioning
Moving the Cursor Forward
Command: [n]- -or- [n]l -or- [n] (SPACE)

Purpose:

To move the cursor to the right n characters.

Example:

The cursor is at the beginning of line 30.
The command 12— moves it to the equals sign:

30 FOR IZ%Z-= 0% TO 5%

Command: [n]|
Purpose: To move the cursor to column n.
Example: The cursor is under ‘C’ of CHRS (column 19) on line

40.
The command 38—-movesittocolumn 38 (thel of 19).

40 AS$ (I%y OX) = CHR$ (ASCII (* ")) + I%

6-20

Command:

Purpose:

Example:

Example:

Command:

Purpose:

Example:

Creating And Editing Programs
The System Editor
Moving the Cursor Forward

[n]w -and- n[W]

Lower-case: To move the cursor forward on a line the
specified number of words.
Upper-case: Operates on strings.

A word is made up of alphabetic and numeric
characters, and ends with a space, tab, or punctuation
mark, or symbols such as $, %, or &. A string can
include symbols in addition to the alphanumeric
characters. The cursor is left at the beginning of the
word or string.

The cursor is at the beginning of line 30.
The command 7w leaves the cursor under the word TO:

30 FOR I% = 0% TO 5%

The cursor is at the left margin of line 30.
The command 6W moves it to the 5 of 59,

30 FOR I% = 0% TO 5%

[n]e -and- [n]E

Lower-case: To move to the end of the specified word.
Upper-case: To move to the end of the specified string.

The cursor is at the beginning of line 30. The command
2e positions it at the R of FOR.

30 FOR I% = 0% TO 5%
A 4

6-21

Creating And Editing Programs
The System Editor
Moving the Cursor Forward

[n] $ -or- [n] (LINEFEED) -or- [n] <CTRL)/J

To move the cursor forward to the last position of line
n; the current line if n = 1, or if no number is used.

The cursor is at the left margin on line 30.
The command 3% moves it forward to the end of line 50:

DIM A$ (5% 5%)
TRACE ON 110 AS$ ()
FOR I%X = 0% TO 5%

A$ (I%» O%Z) = CHRS (ASCII (* ")) + I7

60SUBR 110

[n] + -or- [n] (RETURN) -or- [n] (<CTRL)/M

To move the cursor forward to the left margin n lines

down; if n = 1, the next line down.

Command:
Purpose:
Example:
10
20
30
5
Command:
Purpose:
Example:

10
20
30

6-22

The cursor is at the end of line 20.
The command 2+ moves it to the beginning of line 40:

DIM A$ (5X%y 5%)

TRACE ON 110, AS$ O

FOR I%X = 0% TO 5%

$ (ASCII (' *)) + 1%

AS (I%s O%)

B 11

Creating And Editing Programs
Moving the Cursor Backward

Moving the Cursor Backward

Command:

Purpose:

Example:

Command:

Purpose:

Example:

[n]b -and- [n]B

Lower-case: To move the cursor backward to the
beginning of a specified word.
Upper-case: To move the cursor backward to the
beginning of a specified string.

The cursor is under the R of ‘FOR’ of line 30.
The command 2b moves it to the 3 of 30:

30 FOR 1% = 0% TO 5%

[n]~ -or- [n] <(BACKSPACE) -or- [n] (CTRL)/H

To move the cursor from the current position to the left
margin of the nth line up. If n = 1, the cursor moves to
the left margin of the current line. The current line is
also used if no number or zero are given.

The cursor is at the end of line 50.

The command 3* moves the cursor to the beginning of
line 30:

10 DIM A$ (5%Zy 5%
20 TRACE ON 110, As O

30 FOR I% = 0% TO 5%

As$ (I%, O%) = CHR$ (ASCII (* ")) + I%

GOSUB 110

6-23

Creating And Eaiting Programs
Moving the Cursor Backward

Command: [n]- -or-[n] (RETURN. -or- [n]

Purpose: To move to the left margin of the nth line up.

Example: The cursor is at left margin of line 50.

The command 2- moves it to the left margin of line 30.

10 DIM AS$ (5%Zs 5%)
20 TRACE ON 110, AS O

30 FOR 1% = 0% TO 5%

40 A$ (I%y 0%) = CHR$ (ASCII (° ")) + I%
S0 6OSUB 110
Command: [n]t -or- [n]k
Purpose: Moves the cursor up n lines. Attempts to keep cursor

positioned in the same location on the new line. If the
target line is shorter, cursor moves to last position.

Example: The cursor is under the ‘A’ of ASCII in line 40.
The command 3t moves the cursor to the last position

of line 10:

10 DIM AS$ (5% 5%
20 TRACE ON 110y [AS O

30 FOR I% = 0% TqQ 5%,

40 AS (I%y 0% = R$ (ASCII (*

50 GOsuB 110

6-24

")) o+ IX%

Creating And Editing Programs

Moving the Cursor Down

Command:[n]{ -or- [n];

Purpose:

Moving the Cursor Down
and to End of Buffer

To move the cursor down n lines. If the cursor cannot

be kept in the same position because the target line is
shorter, it will be placed at the last position.

Example:

The cursor is at the last position of line 20.

The command 2} moves it to the space after CHRS in

line 40:

10 DIM A$ (5%,

20 TRACE ON 110
30 FOR 1% =
40 As$ (I%Zs O%) =

50 6OSUB 110

Long Cursor Movements
Moving to the End of the Buffer

Command: [n]g

Purpose:

3%)

AS ()__

0% 10 511‘
CHRSX(ASCII (* ")) + I%

To move the cursor to line n of the buffer. If n is not

specified, the cursor moves to the last line in the buffer.

Example:

Line 50 is the last line in the buffer. No matter where

the cursor is situated, the command g moves the cursor
to the beginning of line 50.

01

50 GOSUB 110

ANY LINE IN_BUFFER

6-25

Creating And Editing Programs

Long Cursor Movements

6-26

Moving to the End of the File

Command:

Purpose:

Example:

[n]G

Moves the cursor to the specified line of the current file.
If not specified, the cursor goes to the last line of the
file.

Same as lower-case if the entire file is in the buffer.

Moving By Screenfuls

Command:

Purpose:

Command:

Purpose:

Command:

Purpose:

Example:

Command:

Purpose:

H
To move the cursor to the top line of the screen. (High)
L

To move the cursor to the bottom line of the screen.
(Low)

[n] (<CTRL)/F

On extremely long files, moves forward by an entire
screenful (15 lines). The [n] indicates the number of
screenfuls to go forward.

The sample program lines are about 80 lines ahead in

the file. The command 5 <CTRL) /F will position the
cursor in the general vicinity of the program. (5 x 1575)

[n]{CTRL)/B

To move backwards by screenfuls, as in the prior
command.

Creating And Editing Programs
Search Commands

Search Commands
Searching for a Single Character

Command:

Purpose:

Example:

Command:

Purpose:

Command:

Purpose:

Command:

Purpose:

[n] f {c}
To move the cursor forward to the nth occurrence of a
character on the same line. If the character does not
occur the number of times specified, the command is
ignored.

The cursor is at the left margin position on line 40.
The command 2f$ leaves it under the § of ‘CHRY’

40 AS (1% 0O%) = CHRS (ASCII (' ")) + I%

50 GOS

[n] F {c}

Same as prior command, except searches backwards
for the character.

[n]t {c}

Same as [n] f {c} except leaves the cursor at the left of
the character specified.

[n] T {c}

Same as [n] f {c} except searches backward, and leaves
cursor at the right of the specified character.

6-27

Creating And Editing Programs
Search Commands

6-28

Searching For a Pattern

Command:

Purpose:

Example:

Command:

Purpose:

Command:

Purpose:

Command:

Purpose:

Command:

Purpose:

/ {pat}

Moves the cursor forward to the beginning of the
specified pattern. The pattern may be anywhere
between the current position and the end of the buffer.
If the pattern does not occur, the cursor remains, and
the message PATTERN NOT FOUND is displayed.
The cursor is at the first position of line 10.

The command /5% positions the cursor at the 5 of 5%
on the same line:

10 DIM AS$ (5%s 5%
S~ VvV

?{pat}

Same as prior command, but searches from present
position backwards to beginning of buffer.

{pat}

Same as / {pat}, except searches forward to the end of
the file.

n

To find the next occurence of a pattern specified by the
original /, ?, or ! command.

N

ngc as n(ext), but in opposite direction of the
original /, 7, or ! search.

Creating And Editing Programs
Marker Commands

Marker Commands
Placing a Marker
Command: m[x]
Purpose: To place an invisible marker in the text at the cursor
position. The [x] must be a lower-case alphabetical
character. If the same label is used a second time, the

first one is deleted. All markers are deleted if the file is
written (w), or when the Editor is quit (q).

Example: Place a marker named c at the string ‘CHRY’
Position the cursor at the ‘C’, and type mc.

Finding a Marker

Command: ‘[x]

Purpose: To find a previously defined marker. If no marker by
that name exists, the message “Mark not set” is
displayed.

Example: The cursor is at the beginning of line 10.

The command ‘c moves the cursor to the previously
defined marker at ‘CHRS’ on line 40.

0O DIM AS (57 5%)

TRACE ON 110,y AS$)
30 OR I%Z = 0% TO 57%
40 AS %y 0%) = CHR$ (ASCII (* ")) + 1%

50 GosuB 110

6-29

Creating And Editing Programs

Text Insertion

Text Insertion

Text can only be inserted from the insertion mode. However, for
convenience, many Command mode commands provide a shortcut
entry to and return from the Insertion mode. The return to Command
mode is one keystroke: (ESC) Here are the commands:

Command:

Purpose:

Example:

Command:

Purpose:

Example:

6-30

a-or- A

To append text to existing lines. To terminate the
insertion, use (ESC). If upper-case, first moves the
cursor to the end of the current line.

A comment is to be added to line 10.
Use the upper-case ‘A’ command to position the cursor
at the end of the line, and enter Insertion mode.

10 DIM AS$ (5% S5%)-

Text can now be inserted. Space over and begin the
comment with an exclamation point.

10 DIM (10,50» ' dimension a 5 bv 5 arrav-

To terminate the insertion, press (ESC)

i-or-1

To insert text at the cursor, moving other text off to the
right. The upper-case operates the same as lower case,
but first moves cursor to beginning of current line.
Terminate the insertion with (ESC).

In typing line 40, the word ‘ASCII’ was inadvertently
left out. The remainder of the line is all right. Position
the cursor at the space between the parantheses and
type the single letter command i.

40 AS$ (I%y O%Z) = CHRS ((°* °*)) + 1%

Now type the word ASCII. The result will be:

40 AS (I%y OX) = CHRS (ASCII_(C' ')) + I%

Terminate the insertion by typing (ESC)

Text Substitution

Command:

Purpose:

Example:

Command:

Purpose:

Example:

Creating And Editing Programs
Text Substitution

[n]s

The substitute command. The number of characters
specified are substituted at the cursor.

The word ASCII is accidentally typed as EBCDIC.
With the cursor positioned at the A of ASCII, the
command 6s will substitute EBCDIC for whatever
characters follow until (ESC) is pressed. The cursor is
left at the position following the substitution.

40 As$ (I%s OX) = CHRS (EBCDIC (* *)) + I%

The result will read:
40 A$ (I%10%) = CHR$ (ASCII_(*® ")) + 1%

r[c]

The replacement command allows whatever character
is at the cursor to be replaced by the specified
character. This command differs from the substitute
command in not entering the Insertion mode, except
for the single character replaced. There is no need to
press (ESC) to return to Command mode (you never
left it).

In line 10, the array to be dimensioned was given the
arguments (7%, 5%). To change the 7 to a 5, position
the cursor under the 7 and type the command rS5.

10 DIM AS (7%: 5%)

The result will be:
10 DIM A$ (5%, 5%)

6-31

Creating And Editing Programs
Case Conversion

Case Conversion

Command:

Purpose:

Example:

[n]™

To change the case of a number of characters, either
upper- to lower-case, or vice versa.

On line 40, ASCII was mistakenly typed ascii.

40 AS$ (I%Zs 0O%) = CHRS (ascii)) + IZ

Position the cursor at the first character, and give the
command 57 The cursor moves past the inverted text:

40 AS$ (1%Zy 0O%4) = CHRS (ASCII1)) + 11X

Text Deletion Commands

Small amounts of text can be deleted from the Insertion mode. The
Command mode expands the possibilities, and permits deletion of text
in varying amounts.

6-32

Deleting By Character Amounts

Command:

Purpose:

Example:

[n] <DEL CHAR) -or- [n]x -or- [n] {<CTRL)/D -or-
[n]s (<ESC>

Delete a specified number of characters (not spaces)
after the cursor.

In line 20, everything following TRACE ON is to be

deleted. Position the cursor at the space following
TRACE ON, and give the command 7x.

20 TRACE ON_110+ A$ O
The new line will read:

20 TRACE ON_

Command:

Purpose:

Command:

Purpose:

Command:

Purpose:

Command:

Purpose:

Example:

Creating And Editing Programs
Text Deletion

[n] (DELETE) -or- n[X]

Same as[n]x, except deletes from the cursor backwards.

[n]d["]

To delete all text from the cursor to the end of the nth
line prior to the cursor. If n = I, this command uses the
cursor line.

[n] d [$]

Same as prior command, but deletes from the cursor
forward.

[n]s (ESC?

This command is a special side-effect of the substiution
command [n]s. It deletes the specified number of
characters forward from the cursor. A block marker 1
is momentarily visible at the location to be deleted to,
until (<ESC) is pressed. If any keystrokes are made
before the (ESC) terminator, the characters will write
over whatever is currently at those positions. See also
the [n]s substitute command.

The cursor is on line 40. To delete the word ASCII and
the space and left paranthesis after it, use the command
7s (ESC»

40 AS$ (I%s O%Z) = CHRS (ASCII (1)) + I%

The result will be:

40 AS$ (I%y 0%X) = CHRS (_)) + Iz

6-33

Creating And Editing Programs

Text Deletion

Deleting By Line Amounts

Command:

Purpose:

Example:

Command:

Purpose:

Example:

[n]dl -or- [n](CTRL) /U

Delete the current line, and forward the number of
lines specified.

The cursor is in the middle of line 10.
The command 3dl deletes lines 10, 20, and 30. An
epsilon symbol is left on the deleted lines:

€
€
€
40 A$ (I%, 0%Z) = CHRS (ASCII (' ")) + 1%

50 GOSuB 110

[n]D -or- [n] (CTRL) /D

To delete forward from the cursor position to the end
of the nth line down.

As in the previous example, except that not all of line
10 is deleted. the Command 3D results in:

10 DIM AS (5%y S%)_

€

€

40 AS$ (I%y» O%) = CHRS C(ASCII (* *)) + IV

50 60SuUR 110

Deleting to a Marker

Command:

Purpose:

6-34

d'[x]

Delete from the cursor foward or backward to the
specified marker.

Creating And Editing Programs
Control Commands

Control Commands
Opening a New Line

Command:

Purpose:

Example:

Command:

Purpose:

0
Opens a line below the cursor line, and switches to
Insertion mode. Notice that the cursor line is
momentarily erased, but returns when the screen
repaints on leaving the Insertion mode (ESC).

A line is to be added between lines 10 and 20. Position
the cursor anywhere on line 10, and press the letter o
key.

10 DIM As$ (5%s 5%)

20 TRACE ON 110y AS O

o

Same as the lower-case command, except the line is
opened above the cursor.

6-35

Creating And Editing Programs
Control Commands — Joining Lines

6-36

Joining

Open Lines

Command: J

Purpose:

Example:

Joins the cursor line to the line below.

Lines 40 and 50 are to be combined into one line.
Position the cursor anywhere on line 40, and give the
command (must be upper case; lower case j is
equivalent to the down arrow).

40 AS$ (I%y 0%9 = CHR$ (ASCII (' ")) + I

50 GCSUe 110

The result will be:

40 As (I%s O%) = CHKR$ (ASCII (' ')>) + I% 50 GOSUB 110

Complete the new line by using (DEL CHAR) to
remove the line number 50, then separate the two
statements by a backslash (\).

40 A% (1% 0%) = CHR® (ASCII)) + I% \ GOSUB 110

Command: (CTRL)/L -or- <CTRL)/R

Purpose:

These commands eliminate unused lines by repainting
the screen. Any epsilon characters that have been
generated during an editing session will be dropped.

Translating Upper and Lower Case
Command: (CTRL) /A

Purpose:

This command is a toggle that maps upper case to
lower case and vice versa. It is only active in the
Insertion mode, and can be helpful for editing
FORTRAN programs or others that must be all upper-
case. [t allows one to enter lower-case commands (most
of the Edit program’s commands are lower-case) while
entering upper case text.

Creating And Editing Programs
Target Commands

Target Commands

Target commands have two parts, the command itself and a “target”
that specifies the extent of the command. The command determines
the action to be taken, such as deleting or yanking. The target specifies
the direction and number of characters that the action will be
performed on. Targets are the same cursor motions that were
presented earlier, “w” for word, for example. The user can delete a
word of text by the command “dw”. The “w” specifies that the deletion
will take place over a cursor motion of one word to the right.

By entering the command twice for the “d” and “c” commands, the
action will take place on the entire line. For example, the command
“4dd” would delete four lines of text.

The table below explains the three Target commands:

Change text from cursor to [n]c {target}

target (Enters Insertion mode:

terminate with (ESC)).

Delete from cursor to target. [n]d {target}

Yank from cursor to target. y[n] {target}

6-37

Creating And Editing Programs
Target Commands

The table below shows each of the Targets, and indicates the cursor
movement for each of them:

CURSOR MOVEMENT TARGET
Left margin of current line. A

Last character of current line. $

One space to the right. (SPACE)
To specified column. [n]|

Forward to the nth occurrence of c. f{c}

Forward to the character prior to F{c}
the nth occurrence of c.

Forward to the character after the t{c}
nth occurrence of c.

Back to the character after the T{c}
nth occurence of c.

Beginning of next word. w
Beginning of next string. A\

End of next word. e

End of next string. E
Beginning of previous word. b
Beginning of previous string. B

To a marker. *[mark]

6-38

Creating And Editing Programs
Global Commands

Global Commands

Global commands are available from either the Insertion or the
Command mode. They perform these functions:

0 Read from files into the buffer.

O Write from the buffer into a file.

O Page through a file.

O Toggle the default mode.

Check amount of available memory space.

o Display the software version.

o Exit to the the operating system.

All the Global commands must be preceded by a colon (:). From the

Insertion mode, they are preceded by (ESC): All Global commands
are terminated by (RETURN) or (ESC).

6-39

Creating And Editing Programs
Global Commands

Before using any of the Global commands, be sure you are familiar
with these terms:

=—— — ————— | —File: A complete package of
= — information, either data or a program,
== — —— recorded in a file-structured device.
= The file may be shorter or longer than
— —_— the buffer, but is generally longer. If it
== is longer, that portion that doesn’t fit is
= retained on the disk.

= — Buffer: An area of memory that the file
= = — is brought into for editing. Notice that
the buffer may not be large enough to
contain the entire file. This is
important, because some of the global
commands assist you in manipulating
portions of the file in and out of the
buffer.

Screen: The 15 lines of the buffer that
are displayed at any given time.

i
|
l|
Il

!
Il
4

Il
|

|
|
|

|
)l
|
|

|
|

ill
i

6-40

Creating And Editing Programs
Global Commands

Editing an Existing File

Command:

Purpose:

Example:

Command:

Purpose:

Example:

:e {filename.ext}

Reads the named file and opens a temporary file where
changes will be recorded. If there is no file by the name
specified, a message is displayed. This command is
equivalent to exiting the Edit program, and reentering
it from FDOS with the command EDIT {filename}.

Work has been finished on one file, and you wish to
save it and edit another. File the first one, but do not
exit the Edit program. To do this, use the Global
command :w to record the first file, then the :e
{filename} command to begin editing the next.

¢! {filename.ext}

Discards any changes to file being currently edited,
then begins editing the named file. This command is
equivalent to using the :q! command to exit the editor
without changing the file, and re-entering it from
FDOS with the EDIT {filename} command.

During editing, it is discovered that the wrong file is
being corrected. To exit without incorporating any
changes, but stay in the Edit program, re-file the first
program, and use the :e! {filename} command to bring
in the second.

Paging Through a File

Command:

Purpose:

‘P

Writes out the current contents of a buffer into the
output file, then loads the next page into the buffer,
displaying the first 15 lines. This command is
equivalent to :w followed by :r (see next page).

6-41

Creating And Editing Programs
Global Commands

6-42

Reading a File into the Buffer

The commands for reading in another file require temporary files to be
created. If the -t option is not specified on the command line then the
temporary files will be created on the same device as the input file.
Sometimes there is no room for the temporary files and the output file
on the same device. It then becomes convenient to use the -t option to
specify another device. For example, say you are editing a file on the
floppy disk and it is the default system device, SY0:. You know you will
be merging some other files into this file using the :r command. You
might want to start up the editor with the command:

edit -tedO: file.bas

This command instructs the editor to create the files needed for the :r
command on the device EDO:. This allows the largest amount of disk
space to be allocated on the system device for the output of the updated
copy of the input file. A temporary file created by a single :r command
will never exceed 50 blocks in size. Even in systems without extra
memory installed, the E-disk (device EDQ:) is a convenient device for
creating the temporary files.

Command: :r {filename}

Purpose: To read one file, and write it (or portions of it) out to
another file. The :r command is normally followed by a
:w command to facilitate merging files.

Example: A subroutine has already been developed,
debugged,and incorporated into a file named
ACDC.BAS. It has been found to have application
within another program currently being developed.
While creating the new file (call it SYNCH.BAS, for
example), read in ACDC using the :r command, and
delete everything except the desired subroutine. Now
write the new file using the :w command.

Command:

Purpose:

Example:

Command:

Purpose:

Example:

Creating And Editing Programs
Global Commands

:R {filename}

Same as the lower-case :r command, except that :p will
work without creating a temporary file.

A program is being created, and it is thought that a
particular subroutine can be incorporated. Use the :R
command to bring the file to the buffer. This command
allows you to page through the file without modifying
it.

:r -or- :R

Read from the current input file, inserting text at the
current cursor position. These commands are the same
as the other :r commands, except that no filename is
specified, so the file currently being edited is used.

A program in development has been designed with
cascaded loops, or with many repetitive lines of code.
Write the module to a file, then use the :r command to
repetitiously read it back to the screen.

6-43

Creating And Editing Programs
Global Commands

6-44

Substituting Patterns of Text

Command:

Purpose:

Example:

Command:

Purpose:

:s/ {oldpat} / {newpat} /

Substitute one pattern for another. The patterns may
be words, strings, or expressions. The substitution
begins at the current cursor position, and continues to
the end of the buffer.

During program development, it became necessary to
renumber the starting line of a subroutine. AllGOSUB
statements must be changed to reflect the new line
number. If the old line number was 1040, and the new
line number is 1060, use the command:

:S/ {oldpat} / {newpat} /

Same as the lower case example, except that this
command operates on the entire file, not just the buffer
contents.

Writing From the Buffer Into a File

Command:

Purpose:

:w {filename}

Writes the contents of the buffer to the named file. If
the output file is the same as the the current input file, it
is not necessary to specify a filename. This is the
normal command to record a new or revised program
to a file, either prior to exiting or before reading (see :r)
a new file to the buffer for editing.

Creating And Editing Programs
Global Commands

Toggling the Default Mode

Command:

Purpose:

Example:

@

This command changes the default mode between
Insertion and Command modes. Use the Insertion
mode for most normal keyboard entries of programs,
and light editing, like deletions and small cursor
movements. Use the Command mode for large
movements, searches, replacements, marking text, and
other more complicated editing.

To switch to Insertion mode from Command mode:
:@ (RETURN) -or-:@ (ESC)

To switch to Command mode from Insertion mode:
(ESCY:@ (RETURN) -or- (ESC):@ (ESC»

Checking Memory Space

Command:

Purpose:

Example:

‘m

Displays the size of the text in the buffer, the amount of
text in the yank buffer, and the amount of memory
space still available. The information is displayed on
the top line of the screen, and is given in bytes.

During an editing session in which a long program has
been entered, it is desired to check the amount of
memory remaining before continuing. If the text size is
approaching the size of the memory remaining, it may
be necessary to either clear the yank buffer before
proceeding (see the Command mode command Y). The
other alternative is to write the current buffer to the
file, then continue (see the Global command :w).

6-45

Creating And Editing Programs
Global Commands

6-46

When the :m command is given, the top line of the
display shows:

Tert size:

437+ Yank size: Os Soace remaininag: 36392

This display would indicate that only 437 bytes of the
buffer are in use, the yank buffer is clear, and that
nearly 37 Kbytes of buffer space is still available.

Displaying the Software Version

Command:

Purpose:

v

To check the Edit program version. This is not used
during normal Editing, but can be checked if needed as
an aid to tracking down a problem that is suspected to
be due to software incompatibility.

Exit to the Operating System

Command:

Purpose:

Command:

Purpose:

Example:

q

Returns to the Operating System when an editing
session is complete.

:q!

Same as the normal quit command, except that no
changes are recorded to the file.

During an editing session, some changes have been
made to the wrong program, and the revision would be
catastrophic if implemented, but would be a major
effort to correct. Use the :q! command to return to the
Operating System. Now the File Utility program can
be used to locate the correct program. If the filename of
the correct program is known, use the :e! {filename}
command. (See Editing an Existing Program, above.)

Creating And Editing Programs
The System Editor

Edit Program Messages
Because of the many commands and options that the Edit program
provides, it is likely that some error messages will occur during editing
sessions. The list below explains what each of the messages means, and
is a guide to corrective actions.

MESSAGE MEANING

Itlegal mark name A mark name was given thatis nota
lower-case alphabetic character.

Mark not set A mark was specified that has not
yet been assigned.

Invalid target The command does not exist, or has
been entered incorrectly. Insure that
the command is constructed

properly.

N A TR T2 R 8 [he substitution command was ill-
formed in some way. Can be caused
by an improper character or added
spaces in the command.

Invalid target A Target command has been given
for a target that does not exist.
Check that the target is available,
and that the command has been
constructed properly.

Yank buffer empty An attempt was made to put onto
the screen the contents of an already
empty yank buffer.

Can't open new output An attempt was made to record the

during ‘e'dit buffer to a file other than the input
file.

Either the media is write protected

or the directory is full.

6-47

Creating And Editing Programs
The System Editor

MESSAGE

No output file

No previous pattern

File medium swapped

CONCLUSION

MEANING

A new file is being created, but no
name was specified when the editing
session was started. To write out the
buffer to a file, you must specify a
filename using the :w or :q
commands.

A next pattern command ({ESC) N)
was attempted when no pattern was
first searched for.

The disk drive door was opened, and
the floppy disk removed during
editing.

This section has described how to use the System Editor program as a
tool for creating and modifying programs. While the descriptions are
accurate and complete, the best way to become familiar with the Edit
program is to actually use it. This section can be used as a guide while
you are trying out the various commands, and will be a useful reference

as you gain experience.

The next section shows how to use the various tools available to
automate the functions of the 1752A.

6-48

Section 7
Automating System Functions

CONTENTS
Introductionc.veiiiiiniirin ittt 7-2
Command Files ittt 7-3
Special Characterscovviiiiiniinnennennenn, 7-4
Sample Command Line 7-5
The Startup Command File 7-6
Linking to Other Command Files 7-7
Establishing the Environment-
The BASIC SET SHELL Statement 7-8
Alias File 7-9
Creating AlIasesvvevtiineinrnrnrnenenenennnns 7-9
Error Messagesccovuininininiiiniiineinnnens 7-11
Standard Aliasesciiiiiiiiiiiiiieiiaa., 7-11
Automating Utility Programs 7-15
The Time and Date Utility 7-15
Using the Time and Date Clock 7-15
Programming Language Commands 7-16
Set Utility Programcoiiiniiiinnnnn... 7-17
File Utility Programciviiinenn.... 7-17
Sample Instrumentation System 7-18
Controlling the Sample System 7-20
Step 1: Start With a Flowchart 7-20
Step 2: Establish Bus Addresses 7-24
Step 3: Program the Modules 7-24
Step 4: Concatenatecviiuvnennnennnns 7-27
Step 5: Debugging i, 7-27
Step 6: Document the Program 7-28
Sample Program Listing, 7-29
The Startup Command File 7-32
A Caution to Systems Programmers 7-32
ConClUSION ...ttt it 7-34

Automating System Functions

INTRODUCTION

The power of the 1752A Data Acquisition System is a direct function
of its programmability. This section describes how to program the
1752A to perform its various functions automatically. The major
topics in this section are:

Command Files

Establishing an Environment - the BASIC SET SHELL Statement
Alias File

Automating Utility Programs

Sample Instrumentation System

Automating System Functions

COMMAND FILES

The Operating System recognizes the contents of any file with the
extension .CMD as a string of ASCII characters (keyboard
commands) to the Command Line Interpreter. This feature provides
an advantage to the user by allowing a series of keyboard entries, such
as those required by a utility program, to be stored as a file. When such
a file is active, it can control the utility program without requiring a
long string of keyboard entries each time it is used.

In the following example a command file has been written that presets
Port 1 to a state required by a printer connected there. The file is called
SETPRT.CMD and is created from FDOS using the edit command.
All of the Set Utility commands used in this example are defined in
Section 5, and the edit program is described in Section 6.

L AT R-N-N-g 47
[~R-2-d-garN-g]

Any time the command file is active it can be aborted by {CTRL)/C,
or by pressing the front-panel ABORT switch. The message
“Command file aborted” is displayed, and control of the system
returns to the shell program.

NOTE

Some programs, like TIME and TCOPY, present a special case
when they are used as the last line in a command file. Since they
generally require user input, it is necessary to end the command
file with a blank line if they are the last command in the
command file.

7-3

Automating System Functions

Command Files

Special Characters

Certain characters take on a new meaning when they occur in a
command file. This section explains each of these characters, and then
gives an example of a command line using these special characters.

!

{}

Substituted by a line entered from the keyboard. Using an
exclamation point permits the creation of interactive
command files. When an exclamation point occurs in a
command file, later commands are not acted on until the
(RETURN) that terminates the input.

Causes the line immediately following to be displayed, untila
(RETURN), tilde, or exclamation point. An exclamation
point or tilde can be put on the displayed line to cancel the
display without a (RETURN). In this way, the Command file
can be made to wait for operator input before proceeding.

Any characters between braces is displayed. If the left brace
does not have a matching right brace, everything after the left
one will be displayed. These characters are used to display
portions of the Command file to allow easy debugging.

A metacharacter that is substituted by an argument passed to
the command file either from the keyboard or another
command file.

A metacharacter that is followed by a single digit (0-9), to be
substituted by a portion of the argument passed to the
command file either from the keyboard or another command
file. A portion is defined as a string of characters between the
space and end-of-line delimiters. $0 returns the name of the
command file (to invoke it repetitiously); $1 returns the first
portion of the argument, $2, the second, and so on. If no digit
follows the dollar sign, it is passed through unchanged.

The tilde clears any previous entry from the Touch-Sensitive
Display, and waits for the screen to be touched. Command files
cannot decode the location where the screen was touched.

Automating System Functions
Command Files

The backslash is the escape operator. Any character following
it is interpreted literally. &\ $5.00, for example, displays as
$5.00. There are two special cases of this character:

\e
converts to (ESC)

\b
converts to (BEL)

Sample Command Line

Assume this command line occured in a Command file:

&\e[8) 22H\ e[IMmTOUCH\e[1m SCREEN TO CONTINUE\b\e[m~Thank You.

The meaning of this line is:

Print at cursor position 8,22 (line 8, position 22), the word “TOUCH”
blinking (escape Sm), and print “SCREEN TO CONTINUE” in high
intensity (escape 1m), sound a tone (\ b), and wait for the screen to be
touched (~). When the screen is touched, print, “Thank You” on the
same line.

Automating System Functions
Command Files

The Startup Command File

The file named STRTUP.CMD runs automatically whenever the
system is powered up. Like all Command files, the Startup file can be
run by typing its name from the FDOS prompt; the extension is
unnecessary. The special thing about the Startup Command file is that
the Operating System looks for this file whenever the 1752A is powered
up or reset.

There are two major results of this feature. First, it allows the initial
setup and configuration of the 1752A to be preprogrammed; and
second, it permits the keyboard to be disconnected from the 1752A
once the programs have been developed to the point that they run
properly without it.

NOTE

While developing the Startup Command file, do not name it
STRTUP.CMD until it has been tested as a Command file
with some other name. If there is a problem e.g., an unending
loop is inadvertently created, it is much easier to correct the
error if it only occurs when the file is intentionally run, rather
than every time the 1752 A is turned on.

Automating System Functions
Command Files

Linking to Other Command Files

Assume that a Startup Command file looks like this:

SET

KBI1: BR600, PB E, TO 30
EXIT

TEST1.CMD

BASIC

RUN “RS232.SEL”

This Command file would begin by running the Set RS-232 Utility
program, establish the baud rate, parity bit, and time out parameters
for port KBl:. Then it exits the Utility program and performs the
keyboard commands contained in TEST1.CMD, another Command
file. When TEST]1 is complete (whatever it might be), control reverts to
the Startup Command file, which loads the BASIC Interpreter and
runs the program RS232.SEL.

Notice that the Command file can bring in another Command file. It is
possible, for example, for TEST1.CMD to call still another Command
file, say TEST2.CMD. Up to four of these branches are possible. If the
fourth Command file calls still a fifth, the first is lost, and any
subsequent commands that it contains will not be executed.

Assume that the program named RS232.SEL is a BASIC language
program that presents test selections to the operator. By using the
BASIC statement SET SHELL, a program can be designed that
returns to RS232.SEL when the ABORT button is pressed. Otherwise,
the system would return to FDOS, which provides no possibility for
operator input other than RESTART, ABORT, or both (a cold start).
None of these is of much value, since it means that the test must start
again from the beginning, loading the Operating System and the
Startup Command file.

7-7

Automating System Functions
Command Files

ESTABLISHING THE ENVIRONMENT -
THE BASIC SET SHELL STATEMENT

Part of the power of the 1752A is the opportunity it affords the
programmer to completely structure a programming environment.
This capability is a result of the Fluke Enhanced BASIC language
statement SET SHELL.

The SET SHELL statement is covered in detail in the BASIC
Programming Manual, but deserves mention here because it is so
intimately connected with programming the 1752A.

Assume the Startup Command file has these lines:

BASIC

SET SHELL*“MFO0:BASIC”
RUN “PROG!”

RUN “PROG2”

On power up, this Command file loads the BASIC Interpreter
program, and sets the system to a BASIC Environment. Next, it loads
and runs a BASIC language program called PROGI. No matter what
happens during execution of PROGI, including a “fatal error”,
recovery can be made by pressing the ABORT button. The result is
that PROG2 would be immediately executed. Upon completion, or
when the ABORT button is again pressed, the SET SHELL statement
returns control to the BASIC Interpreter program. This is what is
meant by establishing the BASIC environment, and is in fact a
variation of what the Getting Started disk does.

The Immediate mode BASIC statement SET SHELL (with no
arguments) resets the shell to the Operating System. Notice, however,
that when the BASIC Interpreter program executes this statement, it
does not immediately return to the FDOS) prompt, but to the BASIC
Ready prompt. Now, the EXIT command can be used to return to the
Operating System. When the shell is set to BASIC, any EXIT
commands merely exit the current program, and return you to the
BASIC shell, just like pressing RESTART.

Be careful not to use commands like “SET SHELL TIME”. Doing so
will set the environment to the Time and Date Utility program, which
will continually ask you the time of day, rather than doing anything
productive.

Automating System Functions
The Alias Files

ALIAS FILE

An alias, as the name implies, is a way to call something by a different
name. The purpose of an alias is to provide another programming
shortcut to help simplify the creation of programs for the 1752A.

During programming, you may want to shorten frequently used
commands (or command lines) by using an alias. Aliases are recorded
on the System Disk in a file called ALIAS.SYS. The standard aliases
provided with the 1752A can be seen easily by displaying this file. You
can use the System Editor program to add your own aliases or to
modify the standard ones.

Aliases provide another powerful feature of the Command Line
Interpreter. By observing which commands are being entered
repetitiously, a collection of shortened commnds can be created and
recorded in the file named ALIAS.SYS. The alias file is part of the
system software, and its contents become a part of the vocabulary of
the Command Line Interpreter during software loading. Since this is
true, aliases can be used within the Startup Command file, which does
not become active until after the software is loaded.

Aliases are operational whenever the FDOS) prompt is displayed.
They can only be used from the FDOS Command Line Interpreter.

Creating Aliases

By adding to the system alias file (ALIAS.SYS), you will be able to
abbreviate many commonly used commands into a single keystroke or
a short sequence of keystrokes. Be certain to observe the correct
syntax. Here is the required syntax for constructing an alias:

key(s) (< space command ~{ RETURN

7-9

Automating System Functions
The Alias Files

7-10

The command may contain the following metacharacters:
O Use the $ character to pass multiple arguments.
O Use the ? character to pass a single argument line.
According to the required syntax, the alias
cp fup $2=§1
translates into: FUP pathname2 = pathnamel (a useful copy alias).

When the alias is used, the syntax is:

[key(ﬂ—r}—1 <space> RETURN

0 Ifthe alias takes arguments, then each argument must be separated
by a space.

According to this syntax, to use the copy alias in the previous example,
you would type:

cp FILEl FILE2 (RETURN)

to copy the contents of FILEI to FILE2.

O The alphabetic case of an alias is significant, allowing you to use,
for example, D to delete files without using the Interactive switch,
and d to delete them but asking for confirmation first.

O If the ? or $ characters are used to pass arguments, they can accept
any character as the argument.

Automating System Functions
The Alias Files

Error Messages

During software loading, error messages indicate if the alias file is too
long, or if an [/O error occurs during the time that the alias table is
being built. In either case, the table is valid up to the point of the error.
The error messages are:

MESSAGE MEANING
7Alias file too long Alias file longer than 400
characters

7Unable to read alias file Data in alias file is either
corrupted or is non-existent.

Standard Aliases
If the file ALIAS.SYS is displayed, it will look like this:

£ fup ?

dir fup 7/1

qdir fup ?/q

edir fup 2/e

protect fup 7/+

unprotect fup 72/-
ack fup ?2/p
i1l fup ?/di

list fup KBO:?

assign fup 7/a

copy fup s2=9¢1

fup alias.sys

b basic

e edit ?

s set

t time

Each short expression on the left can be used instead of the longer
expression on the right. These standard aliases shorten often-used File
Utility program commands into brief, easily remembered keystroke
sequences.

Automating System Functions
The Alias File

7-12

Each of the aliases supplied on the System disk are explained here. The
form of the alias indicates how it is used, and the equivalent shows the
keystrokes that would normally have to be entered instead of the alias.

f Form: f {command} Equivalent: FUP
{command}
/X

The first alias, f, uses the ? metacharacter as an argument to the
command fup, so that the effect of the alias is to enter the File Utility
program, perform the FUP command indicated, and returnto FDOS.
If there is no argument, the metacharacter acts asa (RETURN), and
the effect is simply to enter the File Utility program.

dir Form: dir {pathname} Equivalent: FUP
{pathname}/L
/X

Enters the File Utility program and lists the contents of a device that is
indicated by the ? metacharacter.

qdir Form: qdir {pathname} Equivalent: FUP
{pathname} /Q
/X

The most frequently used directory listing command, this alias is the
same as dir, except does the Quick Listing of the named device. Use the
* wildcard in the filename field to list only the files with the desired
extension, or in the extension field to find all the files with a given
filename. Note that wildcards are not allowed in the device field.

edir Form: edir {device} Equivalent: FUP
{device} /E
/X

Yields the Extended Directory listing of the named device.

pack Form: pack {device} Equivalent: FUP
{device} /P
/X

Packs the named device to remove (not used) and (temp ent) entries
to make more room in the directory.

Automating System Functions
The Alias File

protect Form: protect {pathname} Equivalent: FUP
, {pathname} / +
/X

Protects the named files. Use wild cards and the defaults to extend the
capabilities of this alias.

unprotect Form: unprotect {pathname} Equivalent:

FUP
{pathname}/-
Removes the protection of the named files.
kill. Form: kill {pathname} Equivalent: FUP
{pathname} /DI
/X

Enters the File Utility program, and uses the ? metacharacter to delete
the named file. Notice that the Interactive switch is used to be certain
that confirmation is requested for each file to be deleted. In aliases of
this sort, it is important to make use of the Interactive switch, because
otherwise, kill *.* would delete all unprotected files without the “really
delete...?”” message.

list Form: list {filename} Equivalent: FUP
K BO:={filename}
/X

Enters File Utility, and uses the ? metacharacter to display a named
file.

assign Form: assign {device} Equivalent: FUP
{devicel/a

Enters File Utility, and assigns as SYO: (the System device) the device
that matches the ? metacharacter.

7-13

Automating System Functions
The Alias Files

7-14

copy Form: copy {source} {destination} Equivalent: FUP
{file1=file2}
/X

This copy alias accepts two arguments: $2 is the source device:file.ext,
and $1 is the destination. To use this alias to copy a file called
TEST.BAS from MFO0: to EDQ:, the construct would be:

COPY MFO:TEST.BAS EDO: <RETURN)
Notice that this alias contains an ingenious method of getting around
the normal system requirement of first specifying the destination and
then the source. The technique used in this alias will probably interest

you if you have experience in systems that require specifying the source
before the destination.

? Form: ? Equivalent: FUP
ALIAS.SYS
/X

This alias displays the file which holds its own definition.

b BASIC

This alias saves keystrokes, and simply loads the BASIC Interpreter
program.

e EDIT ?

Loads the System Editor program, and displays the first lines of the
specified file.

s SET

This alias provides a single-keystroke access to the SET Utility
program.

t TIME

This alias provides a single-keystroke access to the Time and Date
Utiltiy program.

Automating System Functions
Time Stamping

AUTOMATING UTILITY PROGRAMS
The Time and Date Utility

When a new 1752A arrives, one of the first things that is normally done
is to use the Time and Date Utility program to set the internal clock.
This clock can later be used by programs to perform an activity at a
specified time or to report the time when a condition was met or when a
piece of data was gathered.

The Time and Date Utility is a machine-language program supplied on
the System Disk with the file name TIME.FD2. When TIME.FD2 is
loaded into memory, it requests the user to set the time and date of the
internal time clock. (See section 3, Software Configuration, for details
about how to set the time and date.) When called from an active
command file, the Time and Date Utility program does not request
input unless status shows that the clock has lost power since the last
time-it was set.

Using the Time and Date Clock

The command language of the 1752A permits command files to use the
Time and Date Utility program. The TIME command can be modified
by the arguments -P, -T, and -F.

TIME -P Prints the current setting of the clock.

TIME -T Allows the clock to be set from the Touch-Sensitive
display.

TIME -F Forces the clock to display the current settings and wait
for input, just as if the clock had not been previously set.

Any combination of the arguments can be used. For example, this line
in a command file:

TIME -T -F

would display the current setting, and request operator input from the
Touch-Sensitive display.

If TIME is called as the last command in a command file, it must be
followed by a blank line. Otherwise, TIME will always request user
input to set the time whether or not the clock has lost power since the
last time it was set.

7-15

Automating System Functions
Time Stamping

Programming Language Commands

Each programming language available for use with the 1752A provides
commands that can be used to read out the time and date. The table
below is a synopsis of these commands. For more information, refer to
the individual programming manuals.

BASIC

TIMES$ Returns the actual time of day.

STIMES$ Same as TIMES, but includes seconds.

TIME Indicates in scientific notation the number of milliseconds
since the previous midnight.

DATES$ Returns the actual date.

FORTRAN

TIME Returns the number of milliseconds since the previous
midnight as a long integer (INTEGER *4).

DATE Returns the date as an integer in a 16-bit format.

ATIME The current time as an ASCII string in 24 hour format
(hh:mm:ss).

ADATE Current date as a 10-byte ASCII string (dd-Mmm-yy).

ITIME Returns the current time as an array of three integers in 24
hour format. (hh:mm:ss).

IDATE Returns the current date as an array of three integers
(dd mm yy).

7-16

Automating System Functions
Automating Ultilities

Set Utility Program

Not all of the functions in the Set Utility program are available as
programming language commands, so if you need to change any of the
port parameters under program control, you can use a command file.
Once a program determines which port parameters have to be changed
and what the appropriate value of each parameter should be, the
program can write this information out to a new command file and

execute it.

For example, if a running program has found that the baud rate at
KBI: should be set to 19,200, the following BASIC program lines
would create and run a command file to accomplish this:

1 fprinter!

10 OPEN ‘PRNTST.CMD’ AS NEW FILE 1
20 PRINT #1, ‘SET’

30 PRINT #1, ‘KBl: BR 19200’

40 PRINT #1, °‘EX°’

30 PRINT #1, ‘BASIC~’

&0 PRINT #1, ‘RUN MYPROOG'

70 CLOSE #1

80 EXEC ‘PRNTST’

NOTE

Take some care when using this method of changing port
characteristics if simultaneously using the SET SHELL
function. If a different shell has been set, it then becomes the
job of that shell to interpret all of the commands in an
executing command file.

File Utility Program

Like the Set Utility program, not all of the functions of the File Utility
program are available as programming language commands. The
method described above can also be used for automating File Utilities
from a program.

7-17

Automating System Functions
Programming the Controller

SAMPLE INSTRUMENTATION SYSTEM

In this section, the sample instrumentation system first introduced in
section 5 is used once again. Section 5 used it to demonstrate
programming techniques using both RS-232-C and IEEE-488
communications. In this section, the sample system is used to
demonstrate how a complete program for an IEEE-488 and RS-232-C
instrumentation system would be developed.

<

, \ FREQUENCY [

\ SYNTHESIZER \l'l\ tﬁ_\i
\/

COUNTER

SERIAL PRINTER

UNIT UNDER TEST

RS-232 Port: IEEE-488 Instrumentation Bus:

1776B Serial Impact Printer 1752A (Instrument Controller)
6071A Frequency Synthesizer
1953B Frequency Counter

7-18

Automating System Functions
Programming the Controller

The Unit Under Test is the undefined subject instrument. It doesn’t
matter what the UUT is; by its connection we can assume that it will
respond to a varying input frequency by varying its output frequency.
The Frequency Synthesizer is going to send a signal at some frequency,
and the Frequency Counter will read the result, sending it back to the
1752A.

One other instrument is connected in the sample system: the 1776B
Serial Impact printer. In this example, the printer will be used to give a
hardcopy of the test results. The printer, of course, is not necessary for
system operation, but is included to fill out the example program we
will be developing.

7-19

Automating System Functions
First, a Flowchart

Controlling The Sample System
Step 1: Start With a Flowchart

Developing a flowchart is a necessary part of developing software;
unfortunately, it is often not done because it sounds like an easy task to
string together a few lines of code and get some kind of meaningful
result. However, there are several good reasons to write a flowchart
before writing a program:

o First, with a flowchart to guide your efforts, you will write more
efficient programs, and be less likely to get sidetracked.

O Second, program debugging can be greatly simplified if a flowchart
is available that shows what the program is supposed to do.

O Third, the flowchart provides a valuable piece of documentation if
you want to modify or use parts of the program later.

0 Fourth, the flowchart will help others understand and/or modify
your program.

The flowchart is a graphical representation of how the program will
proceed. It translates an algorithm into a visual aid, so that the
interactions among the various parts of the program can easily be seen.
It also provides a valuable first step in the programming task, because
it breaks the job down into manageable modules, each of which can be
written in order, and then linked together.

7-20

Automating System Functions
First, a Flowchart

The flowchart for the sample instrumentation system might look
something like this:

on o n/(Lot

S8

7-21

Automating System Functions

7-22

First a Flowchart

As program development progresses, update the flowchart to
incorporate new ideas and program capabilitites. While the example
program was being written, four flowcharts were drawn, each one
showing slightly more refinement and detail.

When the program was complete, a final flowchart was drawn to show
how the actual program worked. The first flowchart can be thought of
simply as a guide for program writing, and the final flowchart as a
document that shows how the program operates.

The final flowchart for the sample is shown on the next page.

[|

Automating System Functions
First, a Flowchart

Command File

BASIC
RUN"FRQNCY.TST"

Set Up Module
0 Error Vector
ON ERROR D Dimension Array A$
O Escape Sequences
O Link to Grafix
0 Clear Screen
0 Box Subroutine
First Screen
Identifies
Program
Frequency
Synthesizer Module
o Clear bus <
0 Select Range
Filing Module
RANGE 1 RANGE 2 O File a$
> MFZ:FRQNCY.DAT
ERROR |HANDLER o Return to
_____________ B Frequency Counter Transfer Module
Module
: uDJ 0 Take 10 Readings
0 Clear Bus g o Send to Array Printer Module
o Close Channels z O Print at KB1:
o Clear Screen 8 O Return to
Transfer Module

Transfer Module
o FILE

0 PRINT
o Continue O CONTINUE

O Exit

Exit Module
O Clear Bus
O Close Channels
0 Clear Screen

»{ END

CONTINUE

7-23

Automating System Functions
First a Flowchart,
Then Begin Programming

Step 2: Establish Bus Addresses

The next step in developing a program for this system will be to
establish the addresses of all the IEEE-488 instruments. All Fluke
instruments are set by rear-panel switches, and usually conform to an
easily-remembered scheme. In both the Synthesizer and Counter of
this example, the address switches are binary-weighted; the manual
provided with the instrument gives complete details on how to set its
address.

In the sample system, bus addresses are set up as follows:

01 Frequency Synthesizer
02 Frequency Counter

Step 3: Program the Modules

7-24

Programming even this simple system can be too complex without
proper planning. Be judicious; program by parts, then link the parts
together. In this example, follow the flowchart to program the various
modules.

Setup Module

The Setup Module starts the program by establishing variables and
strings that will be used later. This module is sometimes thought of as
“housekeeping”. Here are some of the things that such a module can be
used for:

O Establish the location of the error handler routine.
O Assign the name of the array that will hold the test data.

O Assign escape sequences as variables to saving typing later in the
program.

O Link to an object file, so that there is no need to access the disk later
when the file is used.

0 Define subroutines that will be used throughout the program. This
program will use such a subroutine to draw the operator selection
boxes using the graphics plane.

Automating System Functions
First a Flowchart,
Then Begin Programming

First Screen

For most programs, it is a good practice to incorporate an
introductory screen to identify the program to the operator, and to ask
for the screen to be touched when the test setup is ready. This insures
that the correct disk is loaded, and gives the operator confidence that
everything is under control.

Frequency Synthesizer Module

This module is the first selection screen, and will do these things:

O Present the range selections available.

O Provide an exit selection in case the operator notices that the
wrong program has been loaded, or for some other reason wants to

quit testing when this screen is displayed.

O Accept the selection, and use it to: 1) Address the Synthesizer as a
listener, 2) put it into remote mode so it can be set by command
rather than its front panel switches, and 3) program the desired
output frequency.

O Ask the operator to wait while the synthesizer is being
programmed.

Frequency Counter Module

When the synthesizer has been programmed, the counter will be told to
begin reading the frequency output by the UUT and report the
resulting measurement data back to the 1752A. This portion of the
program will do the following:

O Indicate that the test is in progress.
O Address the Counter as a talker.

O Put the Counter into remote mode so it will be set by 1752A
commands rather than by its front panel switches.

O Trigger the readings.

O Collect the resultant data.

7-25

Automating System Functions
Program by Modules

7-26

Transfer Module

The Transfer Module is included so the operator can select where to
transfer the measurement data. It can be filed and/or printed, or
discarded by continuing the test or exiting. This module will:

O Display the test results.

0 Display selections for the Operator and accept the selection to
branch to the File or Print modules, to continue the program at the
Frequency Synthesizer Module, or to exit with no further testing.

Filing Module

If the operator elects to file the data, a channel is opened to the floppy
disk, and the data is recorded there. When filing is complete, the
program returns to the Transfer Module. Notice that in this sample
system, the data can only be filed once. In a real application, a virtual
array would probably be used in order to increase the amount of test
data that could be filed.

Printer Module

If the operator wishes to print the data, the program branches to the
Printer Module, and returns to the Transfer Module. In a real
application, this module would probably send an entire data file to the
printer, rather than just the array that contains the single set of test
data.

Error Handler

This module insures that if an error occurs while the program is
running, the program itself can handle it, rather than halting. It
displays a message to the operator that an error has occurred, some
information about the error, and requests a decision whether to
continue or exit. If Continue is selected, the program returns to the
Frequency Synthesizer Module. If Exit is selected, it goes immediately
to the exit module.

Exit Module

The Exit Module can be as short as one line: END. In this program,
however, two lines are used that include six separate commands, five of
which are “housekeeping”. The housekeeping commands clear the bus,
close all channels, and erase the display.

Automating System Functions
Program by Modules
Then Concatenate

Step 4. Concatenate

Now that each portion of the program has been written and found to
operate properly, they are linked together, or concatenated. During
the writing phase, the line numbers in each of the modules were given
the same first digit, and they were assigned in the range that the
eventual program would use them. For example, the Setup Module
was assigned numbers in the 100 to 199 range; the frequency counter
module 200 to 399, and so on.

Each module was recorded to a filename that recalled its place in the
order of things: Setup module to NEWI1.BAS, First Screen module to
NEW2.BAS, Frequency Synthesizer module to NEW3.BAS, and so
forth. It is a simple matter to use the File Utility program to merge the
modules. Then, when the program is loaded using the BASIC
Interpreter program, the line numbers can be renumbered using the
REN statement.

Step 5. Debugging

Many programmers write all the code, then start debugging. While this
approach may seem to be more efficient, in the long run it only leads to
trouble. Fix the little problems as they arise so they are less likely to
have larger effects later on.

For example, the program might seem to work, but have you tried
asking the Synthesizer to output maximum frequency? Minimum?
Before a program for this system is really up and running, we have to be
sure that it will accept any parameters. Perhaps the operator can be
instructed not to choose the highest range of the Synthesizer, because
the program still needs a little work. It is probably a better idea,
though, to eliminate those selections if that part of the program is still
being tested.

7-27

Automating System Functions
Debug the Program
and Document Your Work

Step 6:

7-28

Unfortunately, debugging is something of an arcane art. The
techniques used are not easily taught or learned, so most programmers
develop techniques of their own through experience. The BASIC
Programming Manual includes a section on debugging, and discusses
many proven techniques.

One technique is to “comment out” the program lines that cannot be
used until the actual system is set up. All that is involved is to put an
exclamation point immediately after the line number that you don’t
want as part of the program. During the development of the Frequency
Test program, for example, all the lines containing IEEE-488
commands were commented out because they would cause errors until
the IEEE instruments were connected. This technique leaves the
program relatively intact, and it is a simple matter to re-include any
dropped lines later.

Another technique is to insert GOTO statements to route program
execution around known areas. This could be used, for example, to not
include the First Screen module to save time. Another frequently used
technique is to put a RETURN statement at the first line of an
unfinished subroutine.

Document the Program

Be sure to adequately document your work. This is one of the last steps,
but one which you can work on as the program evolves. No program
should be undocumented. This means you! Someday, you will no
longer be with the Bitty Widget Corporation, but will have moved on
to the Mighty Widget Programming Consortium. What happens to
program maintenance when the Author leaves, but his programs don’t
give a hint as to how they work? As technology advances, all your
efforts will be thrown out if someone else is not able to look at the code
and see what you had in mind.

Not every line needs a comment, but leave some clues at least. Every
programmer, at some time, has needed to re-invent a routine simply
because it was more work to figure out what his predecessor had done
than it was to start from scratch.

Automating System Functions
Sample Program Listing

10 ! L IR 2 FREQUENCY TEST PROGRARN I I)
20 4

30 !

40 ! <your name>

S0 ! <date written>

60 ! <identification> ([test disk! filename francw.tstl

70 4

80 ! This rprosrems performs a8 freauency test in two ranges for the

?0 ! 6070/1A fraauency synthesizer and a 19353A freauency counter.
100 ! Notes:

110 !' - The 1953 Counter must have ortion C installed for Ranse 2.
120 ' - Rande 1 is 20 MHz outrut, ranse 2 is 200 MHz.

130 ! - The suynthesizer is IEEE-488 address 01, the counter is 02.
140 !

150 ! The prosres tskes ten measurements snd stores them in an arrau.
160 ! Then the results 3re diserlaved, and the orerator decides whether
170 ! to file or print the arraw, continue testing, or exit.

180 !

190 ! All orerstor selections sre made by touching the screen.

200 !

210 ! - Setur Module -

220 ' Error vector, array for data, escare sequences, link to "drarh"
230 !

240 ON ERROR GOTO 1510

250 DIAM A(11X)

260 BP$ = CHR$(7)

270 ES$ = CHR$(27) + “"[C24"

280 PRINT ES$;CHR$(27)+"C781";
290 LINK "GRAPH.OBJ"

300 GRPOFF \ ERAGRP (0X)

310 GOTO 470

320 !

330 ! Selection Box Subroutine
340 ! Draws a box around TSO keyus

#3in memorv arrsw to rcv dats
beer

ersse screen

clear the screen, disable cursor
link to sraphics obiect file
drarhics rlana off, then erase
display first screen

350 ¢

360 MOVE (XGX,YGX) ! current rosition is defined
370 AMOVE (XGX,YGX) ! current position is defined
380 PLOTR (8OX, 0X, 1X) ! eprior to the sosub commands
390 PLOTR (0OX, -SO0X, 1X)

400 PLOTR (-80X, 0OX, 1X) ! box is 80 x 30 rixels

410 PLOTR (0Z, 50X, 1X)

420 GRPON

430 RETURN

440 !

450 ! - First Screen -

460 !

470 PRINT BP$3 ES$) CPOS (6,34)3"FREQUENCY TEST";

480 PRINT CPOS (8,20):"Check all connactions, and arrly rower to the"j

490 PRINT CPOS (9,20)i"test instruments. Touch the screen when resdw.";
300 KRX = KEY \ WAIT FOR KEY \ KRX = KEY ! reset tso \ wait \ set key
510 !

520 ! - Freauencw Swunthesizer Module -

3530 !

340 PRINT ES$; \ GRPOFF \ ERAGRP (0%)

330 XGZ = 340X \ YGX = 150X \ GOSUB 340

560 XGX = 360X \ YGX = 100X \ GOSUB 360 ! draw three boxes

370 XGX = 360X \ YGZ = 30X \ GOSUB 340

580 PRINT CP0S(2,20)3"PLEASE SELECT FREQUENCY SYNTHESIZER RANGE"}

590 PRINT CFOS (7,25)3 "RANGE 13 20 MHz":

7-29

Automating System Functions
Sample Program Listing

600 PRINT CPOS (11,25);"“RANGE 2: 200 MHz"3
610 PRINT CPOS (15,37); "“EXIT";

620 KRZ = KEY \ WAIT FOR KEY \ KRX = KEY ! set resrponse
630 IF KRZ = 17X OR KRX = 27X THEN 680 ! rangda 1 selectaed
640 IF KRX = 37X OR KRX = 47X THEN 710 ! rande 2 selected
650 IF KRX = 56X OR KRXZ = 37X OR KRX = S8X THEN 1470 ! exit
660 PRINT BP$;3 ESS ! invalid - rerest
670 MWAIT 666 \ PRINT BP$3 \ GOTO S50
680 RX = 1 ! rande 1 prosdrams dats?
690 PD$ = “FR20MZ,AP1IV" ! 20 MHz @ 1.0 v
700 GOTO 710
710 RX = 2 ! ranse 2 prosrams dats:’
720 PD$ = "FR200MZ.,AP1V" ! 200 MHz @ 1.0 v
730 !
740 ! Selection msde, s0 Prosram instruments
750 !
760 GRPOFF \ ERAGRP (0X)
770 PRINT ES$} CPOS (4,32); " - PLEASE WAIT - "3
780 PRINT CPOS (6,23)3"Prosraeaming Sunthesizer for Range "iRX
790 INIT PORT O ' initialize the bus
8600 CLEAR @1 ! clesr sunthesizer
810 REMOTE @ 1 @ 2 ' both to remote
[}

820 PRINT @i, PD$
830 WAIT 666
1

send rrosrams dats

840

850 ! - Freauencw Counter Module -

860 !

870 PRINT CPOS (6,15)31" Meassurement In Prosress "3

880 CLEAR @2
890 FOR IX = 1 70 10
900 PRINT @2, "FOR2AOSOMIHIT" ! chnnl A, 10ms, ac courle, one samrle
?10 ! ! ser. outrut, SRQ, trigger
920 PRINT CPOS(16,40)31%3 ! disrlavs which count is beins done
)
.

?30 WAIT S00 takes 8 reading every half second
940 INPUT @2, A(IX) puts the measurements into srraw
950 NEXT 1IX

960 !

¢70 ! - Transfer Module -

980 !

990 ERAGRP (0X) \ GRPOFF

1000 PRINT BP$; ES$3 CPOS (2,1)3"TEST RESULTS:"3}
1010 PRINT CPOS (4,0)

1020 PRINT USING “HH.HHHNAAAAY, A(]1,.5),

1030 PRINT USING “#N.HHRNAAAAY, A(4..10),

1040 !

1050 XG6X = 76X \ YGX = 90X \ GOSUB 360

1060 XGX = 225X \ YGX = 90X \ GOSUB 340

1070 XG6X = 376X \ YGX = 90X \ GOSUB 360 ! draw the boxes
1080 XGX = 3530X \ YBX = 90X \ GOSUB 340

1090 PRINT CPOS (12,14)3 "FILE"ICPO0S(12,32)3"PRINT"ICP0S(12,49);"CONTINUE"
1100 PRINT CPOS (12,70); “EXIT"

1110 PRINT CPOS (16,33)3 "Plesse Touch Selection”}

1120 KRX = KEY \ WAIT FOR KEY \ KRX = KEY

1130 IF KRX = 41X OR KRX = 42X THEN 1210 ! file A in “FRANCY.DAT"
1140 IF KRX = 44X OR KRX = 45X THEN 1320 ! print the arrav

1150 IF KRX = 47X OR KRX = 48X THEN 540 ! back to test
1
[}

forust for disrlaus
2 rows, 5 coluans
arrasy elements 1-5
array elements 6-10

1160 IF KRX = 49X OR KRX = S0X THEN 1460 exit

1170 PRINT ES$; BP$: \ WAIT 666 \ GOTO 1000 invalid - rereat
1180 !

7-30

1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1430
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650

Automating System Functions
Sample Program Listing

! ~ Filins Module -

1

PRINT ES¢i CPOS (4,30);"One moment, filins";

MAIT 2000

CLOSE 1

OPEN "MFOIFRANCY.DAT" AS NEW FILE 1 ! filenswe “francw.dast”
PRINT #1, USING “HH.HWHRAAAAY, A(1.,10) ! store array elemwents 1-10
PRINT ES$; CPOS (4,20); "Dats has been filed - returning to menu”;

]

WAIT 750 \ GOTO 990 ! return to transfer module
]

! - Printer Module _

)

GRPOFF

PRINT ES$, CPOS (4,30)3 “One moment, printins”;

1]

CLOSE 1 ! - - - notet - - - !
OPEN 'KB1:' AS NEW FILE 1 ! be sure to check port raraseters !
PRINT #1, CHR$(12X) ! before uwaking this selection. H

PRINT #1, “TEST RESULTS"

PRINT #1, USING "HH.HHHNA~AAA", A(1..10)

PRINT ES$; CP0S(4,20); "Data has been rrinted - returning to menu";
CLOSE 1

WAIT 750 \ GOTO 990

1

i - Exit Module -
[)

CLEAR @1 \ CLOSE ALL

PRINT ES$; CHR$(27)+"[78h" \ GRPOFF \ ERAGRP (0X) \ END
]

'
'
GRPOFF \ ERAGRP (0XZ) \ PRINT ES$

XGX = 300X \ YGX = 130X \ GOSUB 360 ! draw the boxes
XGX = 300X \ YGX = 60X \ GOSUB 360

PRINT CPOS (3,5); "Sustem Error -"j}

FPRINT CPOS (4,5)3 "Check instruments and connections";

FRINT CPOS (5,3); "before continuing.";

PRINT BP$; CPOS (10.,40)3 “CONTINUE";

PRINT CPOS (1S5,42); "“EXIT";

KRZ = KEY \ WAIT FOR KEY \ KRX = KEY

IF KRX = 26X OR KRX = 34X THEN 1610 ELSE 1620 ! continue
GRPOFF \ ERAGRP (0X) \ PRINT ES¢ \ RESUME 990

IF KRX = 446X OR KRX = 356X THEN RESURE 1470 ! exit

[)

- Error Handler Module -

éRINT ESS) BP$J \ WAIT 666 \ GOTO 1550 ! invalid - rerest
'

7-31

Automating System Functions
A Stand-alone System

The Startup Command File

One final thing is needed to make the resulting program truly stand-
alone: the Startup Command file that will make all the rest happen
from power up. In this sample programming session, the Command
file will be the last thing written. It is a relatively minor portion of the
entire task; but without it, it would be necessary to leave the keyboard
attached to get the program operating. With it, the keyboard can be
detached entirely, and the program will run on its own whenever the
disk is loaded and power applied.

To complete the automation of this program, the Startup command
file must do two things:

O Load the BASIC Interpreter program.
O Run the Frequency Test program, FRQTST.BAS
Here is what the file STRTUP.CMD should look like:

BASIC
RUN “FRQTST”

A CAUTION TO SYSTEMS PROGRAMMERS

7-32

The 1752A Instrument Controller is sometimes used to control other
equipment that can generate potentially hazardous conditions (source
a high voltage, forexample). Care must be taken by the programmer to
insure that, if a program is terminated in the middle of a critical
function, the equipment will be programmed to remove the hazardous
condition.

Situations that can terminate a program prematurely include, but are
not limited to:

1. (CTRL)/Cor (CTRL)/P entered from the keyboard

2. RESTART and/or ABORT buttons pressed on the 1752A
front panel

3. Momentary power failure

4. Unexpected error conditions

Automating System Fungtions
A Caution to Systems Programmers

The (CTRL?>/C or ABORT can be trapped from within a BASIC
program using the ON (CTRL)/C GOTO statement. An exception
handler can be set up from within an Assembly Language, FORTRAN,
or C program, using the FDOS call, to trap an ABORT, (CTRL)/Cor
(CTRL)/P. These special handlers can then take whatever action is
necessary to remove the hazardous condition. Information about
exception handling can be found in Section 11 of the BASIC
Programming Manual and Section 6 of the Assembly Language
Programming Manual.

Under certain conditions {CTRL) /P will not be trapped, and the user
program will exit to FDOS. Whenever a user program is terminated
with (CTRL) /P, the SET SHELL command may be used to cause a
special shell program to be executed instead of returning to FDOS.
This shell program can then initialize all instruments in the system to a
safe condition. Information about the SET SHELL command can be
found elsewhere in this section and in the BASIC Reference Manual.

If the RESTART button is pressed, or a power failure occurs, the
1752 A will reload the system software and the user program is lost. In
this case, a startup command file can be executed to automatically run
an initialization program similar to the shell program mentioned
above. Information about using command files can be found elsewhere
in this section.

A general error handler should be included in the application program
to handle unexpected error conditions. Section 11 of the BASIC
Programming Manual contains information about error handling
techniques.

7-33

Automating System Functions

CONCLUSION

7-34

This section has given guidelines on automating the 1752A. It has used
a sample instrumentation system to show how to write and develop
programs that will be useful for a system of this sort. Larger systems
are of course possible; in fact up to 15 instruments can be connected
onto the same IEEE-488 bus. If another controller is one of them, 15
more are possible, and so on. No matter how big the final system is to
be, the guidelines given here should make the programming task much
easier.

Start with a flowchart. It will be a valuable guide once you’re down
inside all those GOSUBs and FOR-NEXTs. Program in small
amounts, then concatenate. Test each module; test each parameter;
test each selection. Make sure the program works as you designed it to
do. Finally, document your efforts. If you stay with the same company,
your task will be much easier if you don’t have to relearn the program
before you can update it. If you leave the company, your successor will
have a lot less trouble figuring out how the program was supposed to
operate.

Section 8

Display

CONTENTS

Introductiont i i i 8-2
The Character Plane iiiiiinian... 8-3
Character Setsc.iitiiniirin ittt ininaannnnn. 8-3
Custom Character Setsc.oviiiinieinennennnnn. 8-3
Character Graphics o i, 8-4
Programming a Character Graphics Display 8-6

Introduction to ANSI Standards 8-8
Special Display Control Characters 8-9
Escape Sequences ittt 8-10

The Graphics Planeo i, 8-18
Introduction to Graphics Routines 8-18
Addressing the Pixel Locations 8-21
Graphics Routines ...ttt invnn.. 8-21
Summary of Commandsiviiiiiiniaann.. 8-22

Printing the Graphics Plane 8-40
Graphics Print Routines c0iiiiinrun.. 8-41
Summary of Graphics Print Commands 8-41
Printing the Graphics Plane on Unsupported Printers 8-49

Conclusion ...t e 8-53

8-1

INTRODUCTION

8-2

The 1752A Data Acquisition System features a display that can
provide a great deal of visual information to the operator. Dot-
addressable graphics, coupled with the state-of-the-art touch- sensitive
display, makes it possible to design displays that are meaningful and
interesting, and that provide a high degree of interaction between the
operator and the 1752A.

The 1752A supports all of the features incorporated in the Fluke
1720A, but it expands the display capabilities by using more of the
ANSI Standard controls and by incorporating a set of graphics
routines contained in the object files “GRAPH.OBJ” and
“GPRINT.OBJ” on the System Disk.

The 1752A includes 256 displayable characters in two character sets.
The 128 characters in the standard set are the full ASCII set, and the
alternate character set can be customized for characters in languages
other than English, or for custom applications such as logos or other
special symbols.

The Display
The Character Plane

THE CHARACTER PLANE

Display information is stored in two separate sections of memory, the
character plane and the graphics plane. Each display memory is
independent; that is, they can be enabled or disabled separately. When
both are enabled, displayed characters can be made either opaque or
transparent to the graphics portion of the display.

A pad of 50 Programming Worksheets is provided with the 1752A. The
grids printed on the sheets are helpful in the design of displays that use
the touch-sensitive display. Columns and rows are indicated for both
normal- and double-size characters, and each of the 60 touch-sensitive
key locations is clearly marked.

Character Sets

The character set EPROM contains two character sets. The primary
character set is ASCII, with some Greek characters and commonly
used symbols. The table in appendix F shows the display responses for
the primary character set.

Custom Character Sets

Depending on the revision level of the Video-Graphics-Keyboard
module, the alternate character set may be a duplicate of the primary
set, or may be a selection of non-English characters and additional
symbols.

The character EPROM is a readily available 2732 type, which can be
programmed with very little effort to display any character set desired.
Appendix E of this manual explains how to design a custom character
set, and includes a short BASIC program that displays all the
characters in both character sets. When the program is run, the
primary set is displayed in double size characters. When you touch the
screen, the alternate set is displayed. The program toggles between
displaying first one set then the other, to allow you to compare them.

The Display
The Character Plane

Character Graphics

8-4

Besides individual characters, straight horizontal and vertical lines can
also be included in displays on the character plane. An example of this
usage is the program “MASTER.BAS” on the Getting Started disk.
This program uses only the character plane. The graphics plane could
easily display this grid, but is only needed for displays where diagonal
lines or motion simulation are used, as in the program called “WOW”
on the Getting Started Disk. In fact, the program titled “TOUCH” on
the Getting Started Disk displays all 60 touch sense locations using the
Graphics plane. The Graphics plane is discussed in more detail laterin
the section.

The table on the next page shows the graphics characters that are
contained in the character set EPROM. With character graphics
enabled, the characters 0 through 9 and the colon (:) result in the
display of these symbols.

1722A DISPLAY RESPONSE

The Display
The Character Plane

CHARACTER NORMAL SIZE | DOUBLE SIZE FUNCTION
0 D m Top Right Corner
1 D Top Left Corner
2 1 [| Bottom Right Corner
3 I j Bottom Left Corner
4 D ﬁ Top Intersect
5 [U E Right Intersect
6 l] m Left Intersect
7 I B Bottom Intersect
8 U B Horizontal Line
9 Il [[l Vertical Line
. [U m Crossed Line
NOTES:

1. To enable Graphics Mode. send the display ESC [3p or ESC [?3h
2. To disable Graphics Mode, send the display ESC [2p or ESC [?3I

3. In Graphics Mode, characters in the left column are displayed as shown.

4. Use the character names as defined to construct illustrations that do not change

form between normal and double size.

The Display
The Character Plane

Programming a Character Graphics Display

Two sample Interpreted BASIC programs are used here to illustrate
how to create a display using the 1752A Character Graphics capability.
The first program displays all of the graphics characters, first in normal
size, then in double size. The second program uses the characters to
display an area the size of approximately one touch-sensitive key. Both
of the programs make use of escape sequences to clear the screen and
put it into character graphics mode. The first program also uses an
escape sequence to make use of double-size character mode. These
control sequences are described in more detail later in the section.

Program to Display Graphics Characters

10 E$ = CHRS$(27) + "[" \ CL$ = E$ + "2J"

20 PRINT CLs$; ES$ + "3p"; CP0OS(B, 24);\G0SUB 30

30 PRINT CL$; E$ + "1;3p"; CP05(4,5)J \ €OSUB %S0
40 PRINT E‘ + ".25".CL$ \ €070

S0 PRINT " 3 4 5 6 7 e 9_: "

60 PRINTN PR!NT\ PRINT Please Touch the Screen”;

70 WAIT FOR KEY \ K% = KEY \ RETURN

In the first program, the first line establishes an escape sequence
variable E$ as ASCII 27 + the left bracket character. This sequence
saves typing the entire escape sequence later in the program. The
second part of line 10 establishes a variable CL$ (clear) as the escape
sequence just defined ((ESC)) +“[2J”. This sequence will be used later

in the program to clear the screen before each of the displays.

Line 20 clears the screen, then enables the graphics display (3p). The
line ends by sending the program to the subroutine at line 50, which
now prints the characters 0 through 9 and the colon (:), resulting in a

display of the 10 graphics characters.

When the subroutine is stopped by touching the screen, the program
returns to line 30, where the screen is again cleared, and the escape
sequence given the parameters to go to double size, and to once again

enable the graphics display (1;3p).

The display toggles between normal- and double-size characters for

comparison. The program stops when (CTRL) /C is pressed.

8-6

The Display
The Character Plane

Program to Display One Touch-Sense Keypad

This second sample program uses the graphics characters to draw a
box the size of one touch-sense keypad. Notice that the program begins
by assigning the escape sequences.

10 ES = CHR$(27) $ “t" \ CL$ = Es +°'20"
20 PRINT CL$; E$ + "3p";

30 PR!NT CP05(4,40). 'lBBBBBO”

40 PRINT CPOS(5, &

50 PRINT CPDS(6,40). "3889882"

60 PRINT CPDOS(B,37); "Touch to exit"

70 WAIT FOR KEY

80 PRINT Es$ + “"2p"

90 PRINT CPOS(B, you-
100 WAIT 2000 \ PRINT CLs R EN

The display resulting from this sample program looks like this:

G N

Touwch to Exit_

The Display
ANSI Standards

INTRODUCTION TO ANSI STANDARDS

The American National Standards Institute publishes ANSI Standard
X3.4, which describes the American Standard Code for Information
Interchange, or ASCII. Since its initial publication in 1968, ANSI X3.4
has become the industry accepted standard for defining a 7-bit
character code.

Another ANSI standard, X3.41, describes recommended code
extension techniques for use with ASCIIL. In essence, the standard
specifies how to represent ASCII in an 8-bit environment.

The 1752A Data Acquisition System implements both ANSI standard
X3.4 and applicable code extension techniques from ANSI standard
X3.41. This compliance assures the upward compatibility of Fluke
products as well as the ability of the 1752A to communicate effectively
with the products of other manufacturers.

The Display
ANSI Standards

Special Display Control Characters

Eleven of the ASCII characters are interpreted by the Video-Graphics-
Keyboard module (VGK) as display control characters. In addition to
these eleven control characters, two others (ASCII 24 and 26,
CANCEL and SUBSTITUTE) are used by the system’s
microprocessor to cancel a display control. These codes are not sent on

to the VGK module.

The display control characters as summarized in the next table, must
be preceeded by an escape sequence.

ASCII DISPLAY CONTROL CHARACTERS

RESULT

(CTRL); ASCIl | MNEMONIC

2 rxXc

z

0
7
8

10
11
12

13

14
15

|

I

|
|2
| 26
|

|

27

NUL
BEL
BS

HT

LF
vT
FF

CR

SO
S!
CAN
sSuB

Null; no action.
Sounds a tone.

Moves the cursor left one column, if it is not
already positioned at the leftmost column.

Moves the cursor to the next tab stop, (every
8 columns).

All of these commands move the cursor to the
next line down in the same column. The display
scrolls up if the cursor is on the bottom line.

Moves the cursor to the beginning of the current
line.

. Selects alternate character set.

Selects the standard character set.
Cancels a display control.

Substitutes a character sequence if sent as
part of the sequence.

Starts a display control character sequence.

The Display
ANSI Standards

Escape Sequences

8-10

Besides display control characters, the ANSI Standard also specifies a
set of Code Extension Techniques (Escape Sequences) which can be
used in controlling the display. These techniques use commands in the
form:

(ESC) [{parameter 1} ; {parameter 2} ; {parameter n} {terminator}

0O The (ESC) [is called the Control Sequence Identifier. All control
sequences except scrolling commands begin with this identifier.

O The parameters may be either numeric or selective. If the sequence
uses numeric parameters, and no number is given, zero is normally
assumed. Cursor controls assume 1 if no number is given.

O The terminator is always an alphabetic character.
Any number of commands can be specified within a given command

set as long as each is separated by a semicolon (;). Ill-formed
parameters are ignored.

The Display
ANSI Standards

Numerically-Defined Display Control Sequences

The 1752A uses the same display controls as those used for the Fluke
1720A, and some additional ones. Many of the sequences shown in the
table on the next page are equivalent to ANSI Standard Selective
Parameter Sequences, which are discussed later in this section.

The default conditions are indicated by an asterisk (*).

The Display
ANSI Standards

DISPLAY CONTROL SEQUENCES

CONTROL
FUNCTION SEQUENCE COMMENTS
Cursor Controls

Up n lines (ESC)[nA The cursor stops at the edge
Down n lines (ESC)[nB if the number given as an argu-
Right n columns (ESC)[nC ment results in movement past
Left n columns (ESC)[nD the edge of the screen.
Direct to line, column [{ESC)[I; ¢ H
Scroll down one line [(ESC)D
Scroll up one line (ESC)M
Scroll to start new line [(ESC)E

Erasing

To end of display
To start of display
All of display

To end of line
To start of line
All of line

Attributes

Attributes Off*
High Intensity
Underline
Blinking
Reverse Image

Cursor Status

Request cursor position
Cursor position report

Size of Characters

Normal
Double

Character Graphics

Disabled*
Enabled

8-12

(ESC) [J or (ESC)[0J
(ESCH[1J
(ESC) [2J

(ESC)[K or (ESC)[0K
(ESCY[1K
(ESC)Y [2K

(ESC)[m or (ESC)[Om
(ESC)[1m
(ESC)[4m
(ESC) [5m
(ESCH[7m

(ESC) [6n
(ESC)[I, ¢ R

(ESC)[p or (ESC)[0p
(ESC)[Ip

(ESC)[2p
(ESC)Y[3p

For a program to make use
of the report, a logical input
channel must exist between the
program and KBO:

These commands affect the
entire display.

These commands also affect
the graphics plane.

The Display
ANSI Standards

DISPLAY CONTROL SEQUENCES (cont)

CONTROL
FUNCTION SEQUENCE COMMENTS
Keyboard
Enabled* (ESC) [4p Even when disabled, the key-
Disabled (ESC) [5p board can respond to control
codes. To exit a locked condi-
tion, use (CTRL)/T to unlock
: the keyboard, reset the screen
to normal-size characters, home
‘I the cursor (upper left), and dis-
| able the graphics plane.
Cursor Type ;
Blinking Underscore* | (ESC) [0x
Steady Underscore (ESC) [1x
Blinking Block (ESC)[2x
Steady Block (ESC) [3x

*Indicates the default conditions.

The Display
ANSI Standards

Selective Parameters

Selective parameters are defined with a number followed by a number.
These parameters are always a string with the first character a question
mark (?), and the second a numeric character between 1 and 8. The
terminator is either the lower case letter ‘h’(SET or high), or the lower-
case letter ‘I'(RESET orlow). As with numerically defined parameters,
selective parameters are always started with the “Control Sequence

Identifier”, (ESC)J[.

O To SET a mode, the terminator is the lower case letter ‘h’.

0O To RESET a mode, terminate with a lower case letter ‘I’

The table below summarizes the ANSI Standard Selective parameters.

The defaults are indicated by an asterisk (*).

SUMMARY OF MODE SELECTIONS

MODE RESET (1) SET (h)
(Al Field Attributes” Character Attributes
22 Single Size* Double Size
73 Disable Character Graphics* Enable Character Graphics
4 Keyboard Unlocked* Keyboard Locked
75 Opaque to Graphics* Transparent to Graphics
?6 Disable Character Display Enable Character Display*
27 Disable Graphics Display Enable Graphics Display*
78 Disable Cursor Display Enabie Cursor Display*

*Indicates the default conditions.

The Display
ANSI Standards

Field Attributes

The field attributes are identical to the non-transparent field attributes
used on the 1720A. When this mode is RESET, all attributes, such as
blinking or inverse video, are defined for a field on the display before
the characters themselves are placed there. Both Field and Character
attributes use the numeric parameter escape sequences.

NOTE:
The refresh scanning rate exceeds the rate that characters are
written to the screen. Therefore, in the field attribute mode, the
underlining and reverse image commands will cause the entire
remaining display to momentarily exhibit the attribute until
the attributes-off command ((ESC)[m or (ESC)[0m) is
recieved.

To avoid the “flashing” associated with this phenomenon, first
position the cursor to the location for the attributes-off
command, then return it to the location for the attributes and
the message to be displayed.

The entire display is either in field or character attribute mode; field
mode is the default.

Character Attributes

In the character attribute mode, attributes are associated with
individual characters rather than with an area of the display. These
attributes do not use a display position, so it is possible to highlight a
single character within a word, for example.

If the ANSI Standard Mode “?1” is SET (h), then 1720A-type field
attributes are disabled, and character attributes are enabled.

In the character attribute mode, displays need not include the leading
and trailing spaces on the display associated with field attributes.
Additionally, new enhancements can be added without resetting
previously set ones. (They are “sticky”.) As new enhancements are sent
to the display, they are added to an already existing list until they are
reset by the reset enhancements command (ESC) [0m. When the set
mode command is first received, the screen is cleared, and the cursor is
homed.

As shown in the next table, many of the selective parameters have

equivalent numerically defined parameter control sequences. The
default conditions are indicated by an asterisk (*).

8-15

The Display
ANSI Standards

SELECTIVE PARAMETER DISPLAY CONTROLS

EQUIVALENT NUMERIC SEQUENCE

MODE
FUNCTION SELECTION

Attribute Mode

Field* (ESC) [?11

Character ({ESC)[?1h
Character Size

Normal* (ESC)[?2I

Double size (ESC)[?2h
Character Graphics

Disable* (ESC) [?3I

Enable (ESC) [?3h
Keyboard
Unlocked* (ESC) [?4I
Locked (ESC) [?4h
Opaque to Graphics* (ESC) [?5]
Transparent to Graphics | (ESC) [?5h
Character Display

Disable (ESC)[?6l

Enable* (ESC)[?6h
Graphics Plane

Disable* (ESC)[?7I

Enable (ESC)[?7h
Cursor Display

Disable (ESC)[?8I

Enable* (ESC)[?8h

No equivalent.

(ESC)(0p
(ESC) [1p

Similar to (ESC)[2p and (ESC)[3p,
except that these commands do not
affect the graphics plane.

(ESC)[4p
(ESC)(5p

When this command is received, any
graphics displays that cross display
character cells are hidden behind the
character cell, an area 8 pixels wide and
14 high. This mode is used to make
characters stand out from surrounding
graphics displays. Thereis no equivalent
capability for the 1720A Controller.

This mode causes displayed characters
to be transparent to the graphics
display. Any graphics displays that
cross a character cell are not ob-
structed by the cell. Select this mode
to blend characters into the graphics
display.

No equivalents.

No equivalents.

No equivalents.

*Indicates the default conditions.

8-16

The Display
ANSI Standards

Non-Destructive Display Character

Sometimes you may want to call attention to a word or phrase which is
already displayed on the screen by changing its display attributes. An
example of this would be a menu item which the user has selected by
touching the screen. To indicate the selection, it would be desirable to
highlight the characters which make up the selected menu item.

When character attributes are selected, there is a means of changing the
display attributes of a character on the screen without actually re-
writing the displayed character. That is the purpose of the non-
destructive display character. Whenever this character sequence is sent
to the display, the character at the current position of the cursor will
take on the most recently specified character attributes, without
changing the actual text on the display. In addition, the cursor moves
to the next character position, just as it would if you had sent a normal
text character to the display. In this way, any number of text characters
can be assigned new display attributes.

The non-destructive character consists of the two character sequence:

(ESC)=

As an example, suppose the text string “Hello world” has been
displayed in the upper left corner of the screen. We wish to assign
highlight attributes to each of the characters in this message. The
following fragment of a BASIC program could be used to perform this

operation.
100 ND$ = CHRS$(27%) + "= ! define the non-destructive character
110 HM$ = CHR$(27%) + "“[H" ! define the home cursor function
120 HL$ = CHR$(27%) + "[1m" ' define highlight attribute
130 PRINT HMS$; ! home the cursor
140 PRINT HLS, ! select highlight attribute
150 FOR 14 = 17 TO 11% ! use a loop to "touch" each character
140 PRINT NDS$; ! in the text string
170 NEXT I%

In this manner, the display attributes of any text string can be
modified, without re-writing the original message.

The Display
The Graphics Plane

THE GRAPHICS PLANE

Information to be displayed is held in two separate portions of
memory: the character plane and the graphics plane. Both of them can
be turned on and off using the ANSI Standard Control Sequences just
described. Additionally, the graphics plane can be turned on and off
using two of the routines in the Object File named “GRAPH.OBJ".

To use the Graphics Routines described in theis section, your program
must link to them. For example, using the BASIC Interpreter line

LINK “GRAPH”

early in the program will link the graphics routines and enable them to
be used throughout the program.

If you will be compiling the program with the BASIC Compiler, do not
include the LINK “GRAPH?” statement in the program. Instead, use
the Linking Loader (LL) to link your program‘s object file with the
graphics routines as shown here:

LLY I {program name), B$LOAD, GRAPH
LL)> O {program name)
LL)Y 6

Introduction to the Graphics Routines

The display memory is divided into a character plane, and a graphics
plane. Either plane can be enabled or disabled independently.

The graphics workspace is an array of dots called pixels, a contraction
of the words picture elements. In the horizontal direction, there are
2048 pixels, and in the vertical direction, there are 256. The display
screen provides a window into the graphics workspace that is 640 dots
wide and 224 dots high. The window can be positioned anywhere over
the graphics plane. Here is where it starts out:

8-18

The Display
The Graphics Plane

If the window position is moved beyond the edges of the graphics
plane, the display wraps around to the opposite edge. For example,
assume that these lines have been drawn in the graphics area:

.......

.....

.......................

vy i

R A IR BB B CEEEEEE BT e
gt dedtietrs ittty

.

b —

t
i

This is what happens when you move the window to overlap the right
hand boundary of the workspace:

Because of the wraparound effect, the resulting display will be:

8-19

The Display
The Graphics Plane

The next drawing illustrates what would happen if the window is
positioned so that it overlaps both a vertical and horizontal edge of the
graphics workspace. First, assume that these symbols have been place
in the four corners of the display, and the window positioned as shown:

The resulting display would be:

a N
| v

A o

S 7

This result may be either useful or surprising, depending on what you
had in mind as you designed the display. Note that the effect does not
hold true for the lower left reference corner of the window, which
cannot be moved outside the graphics workspace.

8-20

The Display
The Graphics Plane

Addressing the Pixel Positions

Dot positions are addressed by their X,Y coordinates. In the first
drawing, the display window was positioned so that its lower left
corner was at position 0,0 (the default starting position); the lower
right is at 639,0; upper left is at 0, 223, and the upper right corner is at
639,223. In the last drawing, the current position has been moved so
the lower left corner of the display is at 1722, 144,

Pixels can be turned on or off anywhere within the window. The rest of
this section describes the set of routines that control turning the pixels
on and off, and moving the current position.

Graphics Routines

The graphics routines described in this section are available to BASIC
programs. They arc recorded on the System disk in a file named
GRAPH.OBJ, and in a library file named GRAPH.LIB. FORTRAN
programs access these routines by using FLUK22.LIB on the
FORTRAN disk. There are additional graphics routines described in
the subsequent section, Printing the Graphics Plane.

Some of the routines turn the display on or off, and others move the
“current position”. Though the current pixel position is not displayed
(as a cursor shows the current position in the character plane), the
initial current position is always 0,0. As you can see by the drawings,
position 0,0 is the lower left corner of the display. The upper right
corner of the display window is position 639, 223. The upper right
corner of the entire graphics plane is at location 2047, 255.

As a program moves the pixel position, or pans the window around the
workspace, the routines keep track of the changing current position.

All the routines can be linked to programs generated by the BASIC
Interpreter and the BASIC and FORTRAN Compiler programs.

8-21

The Display
The Graphics Plane

Summary of Commmands

The table that follows describes each of the graphics routines. Note
that all the arguments must be integers except for the first arguments to
LLABEL. and LABELF. This means that in a BASIC language
program, for example, the arguments must be followed by the %
symbol. In FORTRAN, variable types are determined by the first
character in the variable name (Integers I though N), or by using the
TYPE statement. See the particular progamming language manual for

full details.

All of the following routines can be called by a BASIC or FORTRAN
program except for LABEL and LABELF. LABEL is called by a
BASIC program and LABELF is called by a FORTRAN program.

SUMMARY OF GRAPHICS ROUTINES

COMMAND

PURPOSE

DOT (X, Y, {type})

DRAW (X1, Y1, X2, Y2, {type})
ERAGRP ({type})

GRPOFF

GRPON

MOVE (X, Y)

MOVER (Xoffset, Yoffset)

PAN (X, Y)
PLOT (X, Y.{type})
PLOTR (Xoffset, Yoffset, {type})

LABEL(S$, D%, T%)

LABELF(STR,LENSTR,DIR,TYPE,

Draws a single dot at X, Y, returns to the
current position.

Draws a line from X1, Y1 to X2, Y2.
Erases the entire graphics plane.
Disables the graphics plane.
Enables the graphics plane.

Moves to absolute position X, Y.

Moves relative to amount specified by
the offset.

Sets display window position to X, Y.
Plots from current position to X, Y.

Plots relative to amount specified by
the offset.

Place string in graphics memory either
horizontal or vertical

ERROR)
*Type: -1 = INVERSE
0 = BLACK
1 =WHITE

8-22

The Display
The Graphics Plane

o The values of the X and Y arguments may not exceed 2047, and
may only be negative in the relative commands MOVER and
PLOTR.

0 The X argument is the number of pixels in the horizontal direction.
Since the screen is 640 pixels wide, the center is 320 pixels from the
left edge.

O The Y argument is the number of pixels in the vertical direction.
The screen is 224 pixels high, so the center is 112 pixels from the
bottom edge.

o The ‘Type’ argument determines whether the routine paints white
on black (1), black onto white (0), or the inverse of the color
already at that position (-1).

O The S$ argument is a string variable or string constant that is
placed in the graphics plane.

O The STR argument is an array with one characterin each byte that
is placed in the graphics plane.

0 The LENSTR argument specifies how many characters are in the
STR array.

o The D% and DIR arguments specify whether the string should be
placed in the graphics plane horizontally (0) or vertically (90).

In the pages that follow, each of the routines except LABELF is
described in detail, and some suggestions are given about the kinds of
things that each of them can be used for. Some of the descriptions
include program examples. The example listings are all shown as they
would appear in programs written for the BASIC Interpreter.

8-23

DOT
GRAPH.OBJ

Usage

DOT(X%, Y%, {type%]})

Description

This routine places a single dot at the specified coordinates, then
returns to the current pixel position. Because this routine returns to
the former pixel position it is useful in the construction of detailed
charts or graphs that require pixel resolution and are generated by a
mathematical formula that calculates each point from the same
position.

Parameters
X An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the dot.
Y An integer 0 to 255 that specifies the absolute vertical pixel

location for the dot.

type Aninteger value that specifies whether the dot is painted white
on black (1), black on white (0), or the inverse of the color
already at that position (-1).

Example

8-24

L
E
P
P
1
P
1
1
P

This BASIC program uses DOT to draw a sine wave. It first asks for
“Amplitude”, and then for “Period”. The amplitude is the peak-to-
peak pixel amplitude of the sine wave that will be drawn. The period is
used for frequency and sampling rate. Notice that the program does
not allow a period of less than 1. Selecting periods less than five results
in waveforms whose resolution is too coarse for the wave to be
observable.

"GRAPH" { link to graphics
AGRP (0%) \ GRPON erase, turn on graphics
INT CHR$(27) + "[2JU" clear character plane
INT CPOS (14,0); "Amplitude”; input amplitude

amplitude: dots peak—to-peak
INT CPOS (15,0); "Period"; input period (s.mgl:ng rate)
PUT P eriod: no. of dots/cycle
P = 0 THEN &0 = 0 is illegal
INT CHR$(27) + "r2U" clear character plane
OR X% = 1 to &40

IN
R
R
R
NP
R
N
F
R
F x across display

Y = A # SIN (X% /7 P) calculate y

Y% = 0.5 % (Y) + 2 integerize and offset y

DOT (X%, Y%, Y. dot at calc’ed position
NEXT X% continue calculation
C0TO 40 next value

DRAW
GRAPH.OBJ

Usage
DRAW(X1%, Y1%, X2%, Y2%, {type%})

Description

This routine draws a line from absolute position X1, Y1 to another
absolute location, X2, Y2. If the final position is beyond the edge of the
graphics plane, the line will end at the edge. The current pixel position
is not changed by DRAW.

Parameters

X1 An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the start of the line.

Yl An integer 0 to 255 that specifies the absolute vertical pixel
location for the start of the line.

X2 An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the end of the line.

Y2 An integer 0 to 255 that specifies the absolute vertical pixel
location for the end of the line.

type Aninteger value that specifies whether the line is painted white
on black (1), black on white (0), or the inverse of the color
already at that position (-1).

Example

Current position is 0,0. To draw a white diagonal line across the
display, use:

DRAW(O%Z, 0%, 6&39%, 223%, 1%)

8-25

ERAGRP
GRAPH.OBJ

Usage
ERAGRP {type%]}

Description

This routine erases the entire graphics plane to the color indicated by
{type%}, either green, black, or the reverse of the color before erasing.
Any data within the plane will be deleted. The character plane is
unaffected.

Parameters

type Aninteger value that specifies whether the screen is erased with
white (1), black (0), or the inverse of the color already at every
position in the graphics plane (-1).

Example

At the beginning of a program, use ERAGRP to prepare the Graphics
plane for the display.

ERAGRP (OX) ! Erase to black
ERAGRP (1%) ! Erase to green
ERAGRP (-1%) ! Create inverse image

8-26

GRPOFF, GRPON
GRAPH.OBJ

Usage
GRPOFF,GRPON

Description

These routines turn the graphics portion of a display off and on. The
memory is left intact; the routines only determine if the graphics plane
is displayed or not. The character plane is unaffected.

Example

A selection display has just been presented to the operator. When the
selection has been made, a new display is presented that contains new
graphics. Rather than using ERAGRP to erase the graphics plane,
however, it is desired to leave the contents alone because the test results
update the display for the next selection. In this case, use GRPOFF to
turn off the graphics display. When the display is updated, the program
uses GRPON to display the change.

8-27

MOVE
GRAPH.OBJ

Usage
MOVE(X%, Y%)

Description

This routine moves the current pixel location without drawing. If
either X% or Y% are outside of the graphics plane, the move stops at
the corresponding edge.

Parameters
X An integer 0 to 2047 that specifies the absolute horizontal pixel
location to move to.
Y An integer 0 to 255 that specifies the absolute vertical pixel
location to move to.
Example

A program has just drawn a diagonal line from the bottom left to the
upper right corner of the screen. Now, to “lift the pencil” to get back to
0,0, use the MOVE routine:

MOVE (0%, O%)

8-28

MOVER
GRAPH.OBJ

Usage
MOVER(Xoffset% Y offset%)

Description

This is the relative move routine. It moves the current pixel position to
a relative position within the graphics plane. The move is done without
drawing; if the new position is outside the graphics plane, the move
stops at the corresponding edge.

Parameters

Xoffset An integer -2047 to 2047 that specifies the relative number
of horizontal pixel locations to move.

Yoffset An integer -255 to 255 that specifies the relative number of
vertical pixel locations to move.

Example

A program is being designed that draws two figures that may appear
any place on the display. The second figure must appear immediately
to the right of the first. After the first figure is drawn, use the relative
move routine to move the current position relative to the ending
location of the first figure.

8-29

PAN
GRAPH.OBJ

Usage
PAN(X%, Y%)

Description

The PAN routine moves the window around the graphics workspace.
The reference is the lower left corner of the display window. Panning to
location (i,j) means that pixel (i,j) of the graphics memory will appear
at the lower left corner of the display window. PAN does not affect the
current pixel position.

Parameters
X An integer 0 to 2047 that specifies the horizontal pixel location
of the reference corner.
Y An integer 0 to 255 that specifies the vertical pixel location of
the reference corner.
Example

During a measurement session, data has been collected by a program,
and has become part of a data file. The operator then elects to view the
results of the day. The program inserts the raw data into a subroutine
that creates and draws a chart that cannot fit in one window. Use the
PAN routine to permit viewing the entire chart. Left and right arrow
keys can be made part of the display, to allow positioning the window
at any area of interest.

8-30

PLOT
GRAPH.OBJ

Usage
PLOT(X%, Y%, {type%})

Description

This routine draws a line from the current position to the location
indicated by the X and Y arguments. (Also see DRAW.) PLOT uses
the current position as the starting place to begin drawing, rather than
defining the starting position, as DRAW does. The current pixel
position is updated to X,Y.

Parameters
X An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the end of the line.
Y An integer 0 to 255 that specifies the absolute vertical pixel

location for the end of the line.

type Aninteger value that specifies whether the line is painted white
on black (1), black on white (0), or the inverse of the color
already at that position (-1).

Example

Use PLOT rather than DRAW in those instances where the starting
position will be unknown, but a line is desired from one place to some
other position. This routine can be used in constructing some types of
graphs, like pie-charts. As the program collects data, the value of the
data would be inserted into a Relative Move statement, and the PLOT
statement would draw the line from the starting point to the calculated
position (which then becomes the new current position).

8-31

PLOTR

GRAPH.OBJ

Usage

PLOTR(Xoffset%, Yoffset%, {type%?})

Description

The relative plot routine draws a line from the current position to the
location indicated by the Xoffset and Yoffset arguments; it is similar to
DRAW, except that as it returns to the starting position, continues
drawing; it doesn’t “lift the pencil”.

Parameters
Xoffset

Y offset

type

Example

An integer -2047 to 2047 that specifies the relative number
of horizontal pixel locations for the end of the line.

An integer -255 to 255 that specifies the relative number of
vertical pixel locations for the end of the line.

An integer value that specifies whether the line is painted
white on black (1), black on white (0), or the inverse of the
color already at that position (-1).

A triangular figure is to be drawn, and it may appear anywhere within
the graphics plane. Use the Plot Relative routine to draw the figure
relative to any starting position. This example draws a triangle that will
be black if the field is green, and green if the surroundings are black:

8-32

MOVE (0%, OX)

PLOTR(&0%, 60%, —1%)
PLOTR(60%, —60X, —-1%)
PLOTR(-120%, OX%s =-1%)

LABEL
GRAPH.OBJ

Usage
LABEL({string}, {direction}, {type})

Description

This routine places a string of characters in the graphics plane. These
characters appear exactly as they would if displayed normal size in the
character plane. The character string can be positioned horizontally or
vertically. The current pixel position determines the starting position
of the string. The current pixel position is updated so that a subsequent
LABEL routine call will cause string concatenation. See subsequent
examples on string positioning. If the final position of the string is
beyond the edge of graphics memory, the string will wrap around and
continue at the opposite edge.

The ILABEL routine puts a string into the graphics plane at the rate of
about 1/60 of a second per character which means that it takes about
1.3 seconds to draw an 80-character string.

If keyboard input occurs during a long series of drawing operations,
there could be up to a 6.5 second delay in responding to the input. This
delay time also occurs with {CTRL) /C, {CTRL) /P, and the ABORT.

Parameters

string This 1s a string coastant or a string variable. Each
character of the string is taken from the character
EPROM. If access to the alternate character set is desired,
the string should contain the ASCII control character SO
(shift out, decimal 14). All characters after SO are taken
from the alternate character set until the ASCII control
character SI (shift in, decimal 15) is encountered. The S1
causes selection to revert to the primary character set. The
default is the primary set, so all selection is from the
primary set unless SO is encountered.

The maximum length of a string that can be placed in the
graphics plane with a single LABEL call is 80 characters.
Since the control characters SO and Sl are not displayed,
they are not part of the 80 character string length. If the 80
character string length is exceeded the string will be
truncated.

8-33

LABEL
GRAPH.OBJ

8-34

direction

type

This is an integer 0 or 90. If the direction is 0, then the
string will be horizontally oriented in the graphics plane.
If a direction of 90 is given, the string will be positioned
vertically. See subsequent examples.

This is an integer 0, 1, or —1. It determines whether the
routine paints a white label on a black screen (1), black
label on a white background (0), or the inverse of the color
already at that position (-1).

LABEL
GRAPH.OBJ

Errors

2006 - direction argument not 0 or 90

Example 1

This BASIC program places a 26 character horizontal string in the
graphics plane. An initial MOVE changes the current position to
100,150, the place where the bottom left corner dot of the first
character cell of the string will be. LABEL updates the current position
to the dot immediately to the right of the bottom right corner of the last
character cell of the string (308,50). A horizontal character cell is 8 dots
wide and 14 dots high, so in this example the current position has been
updated in the horizontal direction by 208 dots (26 characters X 8
dots).

LINK ‘grapn’ \ LINK ‘xgraph” ! 1link to graphic routines

PRINT CHR$(27); “C2J" ! clear character olane

ERAGRP (0%) \ GRPON \ PAN(O%.,0%) ! erase & turn on graphics plane
MOVE(100%, 50%) |

LABEL('This 1s a horirontal label’, 0% 1%)

The following is what appears on the display screen after the above
program is run.

~)

This is a horizontal labdel

_ / N Y,

(100,50) (308,50)

8-35

LABEL
GRAPH.OBJ

Example 2

This BASIC program places a 24 character vertical string in the
graphics plane. An initial MOVE changes the current position to
300,10, the place where the bottom right corner dot of the first
character cell of the string will be. LABEL updates the current position
to the dot immediately above the top right corner of the last character
cell of the string (300,202). A vertical character cell is 14 dots wide and
8 dots high, so in this example the current position has been updated in
the vertical direction by 192 dots (24 characters X 8 dots).

! 1link to graphic routines

10 LINK rap
20 PRINT HR l(27 c2Ju" i clear character plane
30 ERAGRP (0%) GRPON \ PAN(O%, O%) i erase & turn on graphics plane

40 HDVE(QOOA,IO/)
30 LABEL(‘This is a vertical label’, 90% 1%)

8-36

The following is what appears on the display screen after the above
program is run.

/—(300,202)

r N
N y J

e

(/
X
]
S
-
e

LABEL
GRAPH.OBJ

Example 3

This BASIC program draws an X and Y axis with horizontal and
vertical labels on the axis. The MOVER and PLOTR commands are
used to show how the LABEL routine updates the current pixel

pO&HOﬂ.
LINK ‘graph’ ! 1ink to graphic routines
PRINT CHR$(27); "(2JU" ! clear character piane
ERAGRP(0%Z) \ GRPON \ PAN(QO%, O%) ! erase & turn on graphics plane
MDVE(zboA.SOA
LABEL(‘Thi the X-axis’, 0%, 1%)

HOVER(OA,19A) \ PLOTR(—-1447%, 0%, 1%)
MOVER (-5%, O%)

LABEL(‘This is the Y-axis'’, 0%, 1%)
MOVER (3%, OZ) \ PLOTR(O%, -144%, 1%)

The following is what appears on the display screen after the above
program is run.

7)

This is the Y-axis

This is the X-axis

8-37

LABEL
GRAPH.OBJ

Example 4

This BASIC program shows how the label command causes the
current pixel position to be updated so that strings can easily be

concatenated.
10 LINK ‘graph ! 1link to graphic routines
20 PRINT HR$(27).“I 20" ! clear character plane
30 ERAQGRP(0Z) \ GRPON \ PAN(O%, O%) ! erase & turn on graphics plane
40 MOVE (200%, 120%)
50 LABEL('ABCDEFGHIJKALM’, O%, 1%) ! some labeling to show concatenatior

&0 LABEL(’NDPORSTUVNXYZ » 0% %)
70 MOVE(200%, 100%
80 LABEL('ABCDEFOHIJKLHNDPDRSTUVHXYZ’ 0%, 1%)

The following is what appears on the display screen after the above
program is run.

4)

ABCDEFGHI JKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

8-38

LABEL
GRAPH.OBJ

Example 5

This BASIC program shows how the LABEL routine can access the
alternate character set.

NK ‘graph’
PRINT 8HR$(27);”[2J" ! clear character plane
ERAGRP (0%) \ GRPON \ PAN(O%, O%) ! erase & turn on graphics plane
SO$=CHRS$ (147%)
S1$=CHRS$(15%)

MOVE (150%, 130%)

LABEL (“String from primary character set®, 0%, 1%)

MOVE (150%, 110%)

LABEL (SO$+"String from alternate character set”, 0%, 1%)

100 MOVE (1507%, 90%)
110 LABEL("from primary“+SOs+"from alternate"+SIs$+"from primary”, 0%, 1%)

The following is what appears on the display screen after the above
program is run. This output would be different if a customized (non-
standard) character EPROM was being used.

/(q

Strirmg from primary character
Elrmez=T Fues 2k|pwa? [p AZIT2a]pT «p |

trom primargfFr=s £X|er2? [pfrom e imary

i)
m
—+

o 7)

8-39

The Display
Printing the Graphic Plane

PRINTING THE GRAPHICS PLANE

A printed image of the display screen window into the graphics plane
can be obtained by calling special routines from a BASIC or
FORTRAN program.

A printer must be attached to a 1752A RS-232-C port, KB1: or KB2:.
The Epson FX® and RX® series, the Epson MX-100® with
GRAFTRAX®, and the Tally® Model MT1605SE are the supported
printers. A routine is provided that allows flexibility in printing a
screen on other printers or a special assembly language module can be
written to support other printers. See the section “Printing the
Graphics Plan on Unsupported Printers”.

The Epson printers need to have the Epson Intelligent Serial
Interface® card (Epson Cat. No. 8148) installed. The Epson is
connected to the KBI: or KB2: port with Fluke printer cable Y1709.
The Epson printer and Epson serial interface DIP switches should all
be left in their factory default settings. Use the Set Utility program to
establish the following parameters:

SET
KB;; br 19200 db 8 pb n si e so e to 10
exi

The Tally®MT1605E printer should be connected to the KB1: or KB2:
port with Fluke printer cable Y1709. All DIP switches should be in the
OFF position except switch 4 in the 1/ O panel, which should be ON.
Use the set utility program to establish the following parameters:

SET
KB1: br 9600 db 8 pb n si e so e to 10
exit

[t is important to note that only the display screen window into the
graphics plane is printed. The character plane is not printed. A
convenient way to place characters in the graphics plane is provided by
the graphics routine, LABEL.

® Epson FX, RX, Epson MX-100, and GRAFTRAX are Registered Trademarks of Epson America, Inc.
®Tally is a Registered Trademark of Mannesmann Tally

8-40

The Display
Printing the Graphic Plane

Graphics Print Routines

The routines available to BASIC programs are recorded on the System
disk in a file named GPRINT.OBJ, and in a library file named
BASIC.LIB. FORTRAN programs access the graphics print routines
by using the library file named FLUK22.LIB on the FORTRAN disk.

Summary of Graphics Print Commands

The table that follows describes the graphics print routines. There are
two differently named routines for each graphics print capability, one
routine is called by a BASIC program and the other is called from
FORTRAN. All FORTRAN routine names end in an F; BASIC
routine names do not end in an F. All arguments are integers except
that the first argument to GRBYTE and GRBYTF is an integer array
name.

Summary of Graphics Print Routines
COMMAND PURPOSE

GPOUT({chan #} {printer type})
GPOUTF({unit #},{printer type} {error})

GPRINT
GPRNTF({error})

GRBYTE({array} {slice},{bit order})
GRBYTF({array} {slice},{order} {error})

designate serial port to which to
send screen and specify printer type

perform screen dump to printer

read screen slice and store in
array

In the pages that follow, each of the BASIC routines is described in
detail. Program examples are provided as they would appear in
programs written for the BASIC Interpreter. Error numbers given are
those that BASIC reports. The corresponding FORTRAN routines
are described in the FORTRAN manual.

8-41

GPOUT
GPRINT.OBJ

Usage
GPOUT({channel number}, {printer type})

Description

This routine designates a channel for the graphics screen data and the
type of printer that is used. This routine must be called before calling
the GPRINT routine. The GPRINT routine does the screen dumping
and GPOUT is called to prepare for printing.

Parameters

channel number An integer between 1 and 16 that corresponds to a
channel number specified in a previous OPEN
statement. The OPEN statement must have assigned
a channel to KBI: or KB2:.

printer type An integer between 0 and n that specifies what type
of printer is to be used for the graphics dump.

Printer Type Printer
0% Epson FX series
1% Epson RX series
2% Epson MX-100 with Graftrax

3% Tally MT 1605E
4% . .

: for user-defined printer types (See Printing
the Graphics Plane on Unsupported

n% Printers section)

Errors

302 - lllegal channel number
308 - Channel is not open
2001 - Undefined printer type

Example

This BASIC program excerpt specifies that the screen to be printed on
is an Epson FX printer that is connected to the KBI: port.

40 OPEN "KB1:" AS NEW FILE 3 ! assign channel 5 to KB1: .
30 GPOUT (5%, 0%) ! data to channel 5 & Epson FX printer

8-42

Usage

GPRINT
GPRINT.OBJ

GPRINT

Description

Errors

This routine causes the display screen window into the graphics plane
to be dumped to a printer. Any images in the character plane are
ignored. The BASIC statement after the call to GPRINT is executed
when the printing has finished or when an error has been detected.

Almost all input from the keyboard or touch sensitive display is
ignored until printing is done or an error is detected. Inputs that are not
ignored during the operation of GPRINT are (CTRL)/P,
(CTRL)/C, and the ABORT button. Any of these cause GPRINT.to
stop, but they have different effects than in a normal BASIC program.
These effects are:

O If GPRINT is called from the BASIC Interpreter, {CTRL) /C, or
the ABORT button will cause processing to resume at the next
BASIC statement. If (CTRL)/P is done while in character mode
(SET NOECHO), control passes to the statement after the
GPRINT call. In line mode, (CTRL) /P causes an exit to FDOS.

O If GPRINT is called from compiled BASIC while in character
mode or line mode, (CTRL)/P, {CTRIL.);C, and the ABORT
button will cause an exit to FDOS.

0O The BASIC ‘ON CTRL/C GOTO ... statement has no effect
during GPRINT execution. This means that whilea GPRINT isin
operation (CTRL)/C, the ABORT button, and possibly
(CTRL)/P will not be trapped as they normally would be.

311 - Non-recoverable device read/write error (timeout)

2002 - GPOUT not called yet

2003 - Printer timeout

2004 - KBO: is not the console device (a switch has been performed)

8-43

GPRINT
GPRINT.OBJ

Notes

I. Pressing the ABORT button during GPRINT can cause
BASIC error 311 (Non-recoverable device read / write error). A
(CTRL) /S done before or during GPRINT will always cause
a 311 error.

2. If <CTRL) /P is done during a GPRINT, it may be necessary
to power the printer off and on. This is to avoid extraneous
data to be printed at the start of a subsequent screen print.

Example

This BASIC program draws a picture and prints it on an Epson MX-
100 printer.

10 LINK ‘gprint’ ! 1link to graphic print routines

20 PRINT 8&R$(27)x“[2d“ ! clear character plane

30 ERAGRP(0O%) \ GRPON ! erase & turn on graphics plane

40 MOVE(250%. 80%)

3Q PLOTR(&0%, &0%, —-1%) ! draw a picture

50 PLOTR(&0%Z, =—-60%, -1%)

;8 PLOTR(-120%, 0%, -1%)

30 OPEN "KB1: " A5 NEW FILE 4 ! assign channel 4 to KB1:

100 GPOUT (4%, 2%) ! data to channel 4 & an Epson MX-100
110 GPRINT ! print graphics plane

120 CLOSE 4

8-44

Usage

GRBYTE
GPRINT.OBJ

GRBYTE({array address}, {slice number}, {slice row order})

Description

This routine fills an array with a “slice” of the display screen. Any
images residing in the character plane are ignored. This routine can be
used for printers not supported by the GPRINT routine, or for saving a
screen image file to print later.

Parameters

Slice

27

array address

slice number

This is the starting address of a 640 element integer
array. This array must be a main memory array; it
can not be a virtual array. The first address of the
array is specified by the array name followed by left
and right parentheses, for example A%(). The
program can fail if the array does not contain at least
640 elements.

An integer 0 through 27 which corresponds to an
eight dot high horizontal section of the display
screen. The following figure shows what is meant by
a “slice” of the screen and how the slices are
numbered.

T

640 dots

»
"| £~ 8 dots

28 slices
x8 dots/slice

224 dots
224 dots

8-45

GRBYTE
GPRINT.OBJ

slice row An integer that specifies the order in which the bits

order in each column of a slice are placed into the array. If
this argument is 0, the bottom row of a slice is placed
in the least significant bit of an array element. If the
argument is any other value, the top row of a slice is
placed in the least significant bit of an array element.
This argument is provided because of different
printer model conventions in addressing the print
head pins.

The GRBYTE routine takes a slice of the display screen and places the
information in the least significant bytes of the user’s array. If a dot
location is on (illuminated), then the bit in the array corresponding to
that dot location is a 1. The following figures show how a slice of the
screen is placed into the user’s array when the ‘slice row order
argument is 0.

SLICE TO ARRAY CORRESPONDENCE

Column
Row 1 2 3 A SLICE 640
1
2
3
4 8 dots
5
6
7
8
’|= 640 dots

8-46

GRBYTE
GPRINT.OBJ

USER ARRAY WHEN SLICE ROW ORDER ARGUMENT IS 0

Most Significant Byte Least Significant Byte
Word Slice Column
0 Row]
1]2]3fa[s[e]7]s
1 2
2
639 640

The following figure shows how a slice of the screen is entered into the user’s

array when the “slice row order” argument is not 0.

USER ARRAY WHEN SLICE ROW ORDER ARGUMENT IS NOT 0

Most Significant Byte Least Significant Byte
Word
0 Row
8l7|6]s]af[3]2]n
1
2
639

Slice Column
1

640

8-47

GRBYTE
GPRINT.OBJ

Errors

311 - Non-recoverable device read/ write error (timeout)
2004 - KBO: is not the console device (a switch has been performed)
2005 - Slice number not in 0 to 27 range

Note
Pressing the ABORT button during GRBYTE can sometimes cause
BASIC error 311 (Non-recoverable device read/write error). A
(CTRL)/S done before or during GRBYTE will always cause a 311
error.

Example
This BASIC program draws a picture and prints it on an Epson FX
printer using an IEEE port. The program assumes that the Epson’s
IEEE interface card has been set to device address 6.

10 LINK ‘grprint’ \ LINK °’ ph' ! 1ink to graphic print routines

20 ERAGRP (0%) \ GRPON \ PaN %P0

30 MOVE(O%

40 LOTR(OA.223Z.1£ ! draw a picture

SO PLOTR(639%, 0%, 1%)

50 PLOTR(O%, -223%, 1%)

70 PLOTR(—-639%, 0%, 1%)

80 DIM AX(5640%) ! array for a screen ‘slice’

90 PRINT @64, CHR$(27); ‘A’; CHR$(8); ! send code for printer line spacing

100 FOR S% = 0% TO 27%

110 GRBYTE(AZ(), S%, O%) ‘! a slice of screen to array A

120 PRINT @&, CHRS$(27); ‘#’; CHR$(&); ! send Tequired code to put Epson FX

130 PRINT @64, CHR$(128); CHR$(2); ! 1n graphics mode

130 FOR 1% = O% TO 639%

130 PRINT @6, CHR$(AZ(IZL)); ! send 8 dot column of slice to printer

160 NEXT 1%

170 PRINT @6 ! carriage return

180 NEXT S%

8-48

The Display
Unsupported Printers

PRINTING THE GRAPHICS PLANE ON UNSUPPORTED
PRINTERS

The printers supported by the GPOUT and GPRINT routines are the
Epson FX and RX, the Epson MX-100 with GRAFTRAX, and the
Tally MT1605E. There are two different ways to print the graphics
screen data on other printers.

1. The easiest method of printing the screen on various printers is
to use the GRBYTE routine. Flexibility to drive different
printers is achieved by making multiple calls to the GRBYTE
routine from a BASIC program and using the BASIC PRINT
statement. The GRBYTE routine retrieves the screen data and
the PRINT statement sends the screen data to a printer. See the
previous section that describes the GRBYTE routine.

The following is an example of a BASIC program that calls GRBYTE
and uses PRINT statements to print a screen image on a Prowriter
Model M8510B® printer.

10 ? rlnt’ \ LINK R 8 ! 1ink to graphic print routines
20 ERAORP \ GRPON PAN(O%, O%)
30 HOVE(OZ.O.

40 PLOTR(OZ%Z, 223%, 1%) ! draw a picture
S50 PLOTR(&39%, 0%, 1%)
60 PLOTR(OA,—223A.1/)
70 PLOTR(-639%, O%, 1%)
BO DIM AX(&40%)
OPEN “"KB1:" AS NEW FILE 2 ! assign channel 2 to KB1:
100 PRINT 02,CHR$(27),'T14 i ! send code for printer line spacing
110 FOR S% 0% TO 27%

120 CRBYTE(AL(), S%. 14) ! a slice of screen to array A

130 PRINT #2, CHR$(27); ‘'S00640°); ' put Prowriter M8510B in graphics mode
140 FOR 1% = 0%Z TO &39%

130 PRINT #2, CHR$(AK(I%X)); ! send 8 dot column of slice to printer
160 NEXT 1%

170 PRINT #2 ! carriage return

180 NEXT S%Z
190 CLOSE 1

Prowriter Model M8510B is a Registered Trademark of C. Itoh Electronics, Inc.

8-49

The Display
Unsupported Printers

AR S 2

type

8-50

2. Another method of printing on an unsupported printer is to

create an Assembly Language routine and tables modeled after
the assembly routines and tables for the supported printers.
These printer driver routines and tables are recorded on the
Assembly disk (Option 17XXA-201) in a file named
PRDRIV.PRE.

A new printer type value to be specified in the GPOUT routine
is defined by supplying a new entry in the file named
PTYPE.PRE. The Assembly disk has an image of this
Assembly Language source file.

By writing new routines and tables in PRDRIV.PRE and
making the appropriate entry in PTYPE.PRE, a BASIC
program only needs to call GPOUT and GPRINT to print the
display screen.

The steps to be taken and excerpts from the above mentioned
Assembly Language source are as follows:

a. Add a new printer type value and entry point name in
PTYPE.PRE. The following is the entire source of
PTYPE.PRE. Entries would be made before the ‘data 0,0’
line and after the ‘tally’ line.

‘ptype’
ptype) table of printer types & module names
epsond 1Epson FX & Epson RX driver
epsonm 1Epson MX driver
tally 1 Tally MT1605E
type module printer
O, epsont 1Epson FX
i, epsonf 1Epson RX
2, epsonm 1Epson MX
3, tally 1 Tally MT1603E
0,0 1null to mark end of table

([EX R EREER S

psoné

ks

epfdat

epstch

epstln

»
epterm

epterl

The Display
Unsupported Printers

b. Add a def statement for the new printer driver entry point
at the start of PRDRIV.PRE

c. Add anew module in PRDRIV.PRE that references a new
printer dependency table. The following is the module for
the Epson FX printer.

module: epsonf
function: To send graphics screen data to the Epson FX or RX printer
called via: bl from GPRINT

(all registers available except T11)
equ $ ientry point
clr rl ;
if @slicen eqw rl1 if at 1st screen slice
11 Ti,epfdat ; get Epson FX & RX printer dependencies table
mov r1,@prdptbd i
endif iendif
b edriver igo to common printer driver

d. Create a printer dependency tablein PRDRIV.PRE. Most
entries in this table are pointers to other tables that contain
the character sequences required by a particular printer.
The third entry in this table is the time in 10 millisecond
ticks that it takes for the printer to print its data buffer.
This entry is required for handling CTRL /C and the
ABORT button correctly. The order of entries within this
printer dependency table is very important. Use the
following table for the Epson FX printer as a guide.

Epson FX & RX dependency table

data epstch row start characters table address

data egstln iTow start characters table length

data 200 idelay in 10ms ticks for AC during printing
data epterm ; termination characters table address

data epterl ;termination characters table length

data [o) inull to mark end of this table

e. Create the tables containing the character sequences that
are required to put the printer in dot graphics mode. The
following are tables used by the Epson FX printer driver.
?Z' prson FX & RX row start characters
37 ;‘ESC A 8’ sets line feed spacing to 8/72"
27, ;
) i
128 i
2 i
$—epstch

POOHARRN

i 'ESC » & 128 2 graphics (90dpi) 640 dot row

M Cctetctorcterctet

[-Z- 2 W N-g-g-g-d-g-g-4-
{PpLLcCooos
3

o
et
nn

27 iEpson FX,RX,MX-100 screen dump term characters
‘e’ i 'ESC @’ master reset for Epson (power up state)

3
r
c

s-epterm'
even

8-51

The Display
Unsupported Printers

f. Assemble the modified PTYPE.PRE and PRDRIV.PRE.
Create a new GPRINT.OBJ file by issuing the following
Linkage Editor commands. The files PRINT.OBJ and
F$RGMY.OBJ that are referenced in these LE commands
are also provided on the Assembly disk.

le Epvint.obJ
task gprint
form ascii
part

ingl print, prdriv, ptype, fS$rgmy
en

g. Call the GPOUT routine in a BASIC program with the
new printer type value and then call the GPRINT routine.

8-52

The Display
Graphics Routines

CONCLUSION

This section has described the many features of the 1752A display. The
display is specifically designed for ease of use by both the programmer
and the operator. While maintaining compatibility with the display
capabilities of its predecessor, the Fluke 1 720A Instrument Controller,
the 1752A incorporates a greatly expanded set of graphics and display-
control features.

Taken as a whole, the 1752A boasts one of the most comprehensive
display packages in the instrumentation industry. When the
possibilities of the software are combined with the unique touch-
sensitive screen, the result is a powerful set of tools for the programmer
and operator alike.

8-53/8-54

Section 9
Options

CONTENTS

INtroductionttt 9-3

Peripherals ... i 9-4

ACCESSOTICS .\t vttt e et te ettt e e e e e ineeeanaaannns 9-5

OPtIONS .ttt ettt ettt et e 9-6

User Informationooiiiiiiiiiiiiiii .. 9-9
Installing Hardware Optionscooiiinonn. 9-9
-002 Parallel Interface Board 9-13
-004/-005 Magnetic Bubble Memory 9-25
-006/-007 Memory Expansion Modules 9-29
-008 IEEE-488/RS-232-C Interface 9-33
-009 Dual Serial Interface, 9-37
-010 Analog Measurement Processor 9-55
011 Analog Qutput ...ttt 9-63
-012 Counter/Totalizercoiiiviiiiiiiiinnnann. 9-69
1760A and 1761A Disk Drive Systems 9-81
1765A Winchester Disk Drive 9-89
1702A Extender Chassis and Option
-013 Mainframe Interface 9-97

9-1/9-2

INTRODUCTION

This section of the manual gathers into one area all information about
options available at the time of printing. Because new options are
always being investigated and released throughout the life of the

instrument, this section is expected to grow between printings of the
manual.

When a new option becomes available, first shipments are supported
by “User Information” sheets, which can be incorporated into this
section after the option is installed. The next printing of the manual
will then include the new sheets in this section. Be sure to contact your

local Fluke representative for the latest information about available
options.

The items discussed in this section are not included in the shipment
unless they are ordered at the same time as the 1752A. If specified on

the order, options will be installed at the factory. Otherwise, they may
be packaged separately.

Options

PERIPHERALS

All the peripherals listed here are separate products, and can be
ordered by the model numbers shown.

1702A I/O Extender Chassis

1760A Disk Drive System, 400K Byte

1761 A Dual Disk Drive System, 800K Byte
1765A/AB Winchester Disk Drive, 10M Byte

1780A InfoTouch Display

9-4

Options

ACCESORIES
Y1700 Keyboard
Y1706 Ten-pack of Blank Unformatted floppy disks (Certified)

P/N 533547
Pad of 50 Programmers Worksheets

Y1711 Reinforced Shipping Case
Y1704 Circuit Board Extender

IEEE-488 Cables

Y8021 Shielded, 1 meter
Y8022 Shielded, 2 meters
Y8023 Shileded, 4 meters

RS-232C Interface Cables

Standard (For DCE devices)
Y1707 2 meter
Y1708 10 meter

Null Modem (For other DTE devices)
Y1702 2 meter

Y1703 4 meter

Y1705 0.3 meter

Printer Cable
For connecting a serial printer.
Y1709 2 meter

170 Extender Cable
For connecting the 1752A and 1702A.

2402A-502

Rack Mount Kits

Y1790 Rack Mount Kit with 24-inch slides
Y1794 Rack Mount Kit with 18-inch slides

Side Carrying Handle
Y1795

Options

OPTIONS

Options are listed by a unique three-digit number appended to the
product family identifier. For example, the -004 option 256K Byte
Bubble Memory option is ordered using model number 17XXA-004.

Memory Expansion

Memory Expansion options greatly increase the available on-line
storage capabilities of the 1752A. Memory Expansion Modules can be
placed in any of the five unused options slots in the card cage. The
maximum dynamic RAM configuration increases the total on-line
system memory to about 2.6 megabytes; Bubble Memory can provide
up to approximately 1.3 megabytes. Combinations are possible; please
consult the Option Configuration Table later in this section for
complete details.

-004 256K-Byte Bubble Memory
-005 512K-Byte Bubble Memory
-006 256K-Byte RAM Expansion
-007 512K-Byte RAM Expansion

Interface Additions

Interface options expand the Input/ Output possibilities of the 1752A.

-002 Parallel Interface (slots 1,3,4,5)
-008 IEEE-488/RS-232C Interface (slots 4,5)
-009 Dual Serial Interface (slots 1,3,4,5)

Configuration Information

9-6

Use this table to determine allowable mainframe configurations of
available hardware options. Andotin a column indicates the slots that
the option can be placed in. For example, if all available slots are used
for 512K byte RAM expansion memory modules, the system has the
maximum memory configuration for this type of memory: 2.6M bytes,
but no slots are available for other modules. On the other hand, slots 1,
3, 4, and 6 could be used for additional memory, resulting in 2.1M
bytes of additonal memory, and slot 5 would still be available for one
of the I/ O options.

Additional expansion for measurement and control options are
provided by the 1702A Extender Chassis. Refer to Option Installation,
in the 1702A Instruction Manual for allowable option configurations.

Option Configuration Table

Options

[« []

Reserved for Single Board Computer

1

Reserved for Video/Graphics/Keyboard Interface 2

3 . 3 3 . o 3

°* LI ° ot ot ° . ot | 4
o« ° . ot ot . L] ot |5
6

7

e Allowable Slot for Option

t Non /0 must be used in slot above

#* Takes up two slots. No board in slot above

Note:

Analog Measurement Processor is shipped in slot 5. Normally it may be used in
any of the Input/Output Options slots. Slot 6 has no Input/QOutput access.

Software

For increased flexibility, these software options are available to allow
programming the 1752A in languages other than Interpreted BASIC,
which is supplied as the standard programming language. Each
language option is supplied as a floppy disk with an accompanying

Programming manual.

-201 Assembly Language Software Development System
-202 FORTRAN Software Development System

-203 Compiled BASIC Software Development System
-205 Extended BASIC Software Development System

9-7/9-8

1752A USER INFORMATION
Installing Hardware Options

INTRODUCTION

This information is provided to assist you in installing hardware
options into the 1752A Data Acquisition System. All options are
installed in the same way. The instructions here describe how to install
options into the 1752A’s card cage and give general directions on how
to check the options out.

Some of the options require some initial set-up. Be sure to refer to the
appropriate option User Information for a module’s unique
requirements before you start the installation.

If a new module fails to perform correctly on first applying power, be
sure to recheck your work. It may be that a small but important step
was missed, resulting in a failure of the new module to operate.

PRE-INSTALLATION CHECKOUT

Inspect the shipping carton for damage, and notify the shipper
immediately if it appears to have been damaged. Unwrap the module
and inspect it for damage. If everything seems to be in order, set any
selection switches or jumpers that are unique to the module. This
information is available in the individual sections that cover each of the
options.

User Information
Installing Hardware Options

INSTALLATION

1. Refer to the option User Information provided with the
module and perform any preliminary set-up steps.

2. Power down the 1752A; and remove the ac line cord.

3. Remove the rear card cage cover, illustrated below. Depending
on which modules are already installed, more screws than
those indicated may also have to be removed. The six screws
shown here are those that are removed from a 1752A with no
options installed.

(o]
\\ > o ol &

AN\

Remove these screws.

T U s | —
;\
\

4. Determine which location to use for the option:

Memory Options: Any open slot
17XX-008 Option: Slot 4 or 5 only
Other Input/Output Options: Slots 1, 3, 4, or 5 only

User Information
Installing Hardware Options

5. Carefully slide the option module into the card cage. Make
sure the module is fully seated in the card cage so that it makes
solid contact with the card-edge connector.

6. If an input/output option is being installed, remove the two
screws holding the solid oval plate onto the card cage cover.
After reinstalling the card cage cover, use the two screws to
attach the shield plate supplied with the option, to the card
cage cover. Afix the identification sticker to the outlined area
on the card cage cover.

® ol Jo =00
=) G~ (=]

of o=

® ®C=])

| [1 1T D o=

o ©:.=)
® ol T = o=,

9-11

User Information
Installing Hardware Options

7. Reinstall the power cord.

8. Once installation is complete, power up the 1752A and test the
module. Refer once again to the User Information provided
with the module for any special requirements or procedures.

9. Incase of problems with any new option, recheck your work to
insure that switches are set properly, and that the correct
jumpers are in place. Be sure that the board is fully seated in the
card cage. If everything is in order, but the failure continues,
refer to Appendix G, System Diagnostics, for troubleshooting
information, or call your local Fluke Service Center.

1752A USER INFORMATION

OPTION 17XXA-002
PARALLEL INTERFACE BOARD

INTRODUCTION

The 17XXA-002 Parallel Interface (PIB) adds two 16-bit parallel
interfaces to the 1752A. A maximum of three PIBs may be installed in
one 1752A system, for a total of six 16-bit ports. The PIB may be
installed in slots 1, 3, 4, or 5.

The PIB can adapt to some of the most unusual interface requirements
of connected devices. Using software drivers supplied by Fluke, the
PIB provides bidirectional transfer of bits (for monitoring and
controlling status), 16-bit words (for communication with BCD
instrumentation), or 512-word blocks (for maximum-speed data
transfer of 80K words per second). Handshake or strobe protocols may
also be selected under the control of the user’s program.

The PIB is controlled by subroutines supplied in the PIBLIB library on
the 1752A System Disk. The subroutines may be called from programs
written in several programming languages, including Fluke
Interpreted BASIC, Compiled BASIC, Extended BASIC, and
FORTRAN.

9-13

User Information
Parallel Interface Board

INCLUDED WITH THE OPTION

9-14

The photograph and table below show the items included with the
17XXA-002 option. The 17XXA-002 Parallel Interface manual
provides complete documentation for the PIB.

The floppy disk supplied with the PIB allows the PIB to operate in the
Fluke 1720A Instrument Controller. The disk is not needed when the
PIB is used in the 1752A. The PIBLIB software library and drivers are
already supplied on the 1752A system disk.

User Information
Parallel Interface Board

17XXA-002 PARALLEL INTERFACE OPTION CONTENTS

NUMBER

ITEM

JOHN FLUKE PART NUMBER

1

Parallel Interface Module
Instruction Manual
(2) Parallel Interface Cables

1720A PIB Software Disk

611947
732230
733907

630699

9-15

User Information
Parallel Interface Board

SPECIFICATIONS

HARDWARE SPECIFICATIONS

Portso Two independent 16-bit parallel ports, 25-pin D-
type subminiature female pin connectors.

Logical Interface Memory mapped, two memory locations per
port: data and status/control.

Line Characteristics Data I/0 lines are terminated resistively with diode
input protection, 2400 ohms to +5V, 5000 ohms to
ground.

LineSenseooiiiiie, Independent jumper-configurable active sense

level for each control line, and for input and
output data lines.

DataOut ..., Low: <0.4V @ 48 mA
High: >2.4V @ -0.4 mA
Datalnol Low: <0.8V.
High: >>2.0V.
Control Outoooiviiinnn. Low: <0.4V @ 8 mA.
High: >2.4V @ 400 uA
ControlIn ..., Low: <0.4V
High: >2.4v
Control Lines (each port) PCTRL (output)

PFLAG (input)
PDIR (output)
POEN (input)

Temperaturecoevnnnnn. 0 - 55 C storage
10 - 40 C operating

Dimensionsciiiiiiiinn.. 190.5 mm x 254.0 mm x 1.6 mm
(7-1/2" x 10" x 1-1/16")

SuppliedCable 1.98 m (6.5 ft) of 25 conductor 26-gauge
stranded copper wire.

Q1A

SOFTWARE SPECIFICATIONS

Drivers

Subroutine Library

Control Modes ...

Handshake Modes

.................

User Information
Parallel Interface Board

Supplied on System Software Disk:
Read/Write Bit

Read/Write Words (16 bits)
Read/Write Blocks (multiple words)

Supplied on System Software Disk:
chkbit - Check a bit
clrbit - Clear a bit
setbit - Set a bit
rdwrd - Read a word
wtwrd - Write a word
rdblk - Read a block
wtblk - Write a block
frdblk - Fast read a block
fwtblk - Fast write a block
popen - Open a port
pclose - Close a port

Mode 0: No Handshake

Mode 1: Input Handshake

Mode 2: Full Output Handshake
Mode 3: Strobe Output Handshake

No Handshake

Full Handshake Input
Strobe Input

Handshake Output
Strobe Output

9-17

User Information
Parallel Interface Board

INTERFACE DESCRIPTION

Port lines on the PIB provide bidirectional data transmission between
the 1752A and compatible external devices. The drawing of the cable
connector (below) names the signals and lists the logic states for each of
the lines at the interface.

PIN MNEMONIC WIRE COLOR DIRECTION

1 Shield Ground’ -

2 DP(13) Rec —
3 DP(8) Yellow —
4 DP(11) Green -
5 DP(10) Violet -—
6 DP(9) Grey —
7 DP(4) Red White -
8 DP(7) Yellow White —
9 DP(6) Green White —
10 DP(5) Violet Wnite —
" DP(0) Grev White —
12 OP(3) Yellow Reg —
13 DP(2) Green Red —
14 DPI14) Violet Rea —
15 DP(15) Grey Red —

TN \ 16 DPI2) Red Green

17 RETURN Red Black

18 RETURN Yellow Biack
19 RETURN Green Black
20 RETURN Violet Black

o

21 PFLG Red Grey -—
22 PIOE- Yellow Grey -—
23 PCTRL Green Grey —
24 PDIR Violet Grey —
25 DP(1) Grey Green -—

‘Pin 1 s connected 1o the cable shield This pin s not a
reference point for signals Its purpose 1S 1¢ connect the
cable shield to a system ground Make sure that use of this
connection does not result in circular grounding paths
(100ps) through the system Such ground loops can conduct
enough current to interfere with data transmission

-—indicates bidirectional data lines
-— indicates input to PIB
—indicates output by PIB

9-18

User Information
Parallel Interface Board

SOFTWARE LIBRARY (PIBLIB)

The next few pages summarize the subroqtines that control the PIB.
The required parameters are described immediately following the
descriptions of the subroutines.

CHKBIT
Parameters:

Description:

CLRBIT
Parameters:

Description:

SETBIT
Parameters:

Description:

RDWORD
Parameters:

Description:

Check bit
port, bit, bool
This routine checks a particular bit on a Parallel

Interface Port. It is equivalent to reading the port and
then isolating the specified bit position.

Clear bit
port, bit
This routine clears to zero a particular bit on a selected
port. It is equivalent to reading the port, ANDing the

bit with 0 in the appropriate position, and then writing
the data word back out to the port.

Set bit

port, bit

This routine sets a particular bit (output = high) on a
selected port. It is equivalent to reading the data
latched at the port, ORing the bit in the specified

position with 1, and then writing the data word back
out to the port.

Read word
port, word

This routine reads a selected port and writes the value
into a variable.

9-19

User Information
Parallel Interface Board

WTWORD

Parameters:

Description:

RDBLK

Parameters:

Description:

WTBLK

Parameters:

Description:

FRDBLK

Parameters:

Description:

FWTBLK

Parameters:

Description:

9-20

Write word
port, word

This routine writes a word from a variable to a
specified port.

Read block
port, block, count

This routine reads multiple words from a port into an
array.

Write block
port, block, count

This routine writes multiple words to a port from an
array.

Fast Read block
port, block, count
This routine reads a block of data from a port, as fast as

possible. It does not perform the error checking that is
done in a normal read of a block using RDBLK.

Fast Write block
port, block, count
This routine writes a block of data to a port as fast as

possible. It does not perform the error checking that is
done in a normal block write using WTBLK.

POPEN

Parameters:

Description:

PCLOSE

Parameters:

Description:

User Information
Parallel Interface Board

Open a port
port, mode, mask, timeout

POPEN opens a port in preparation for data transfer
at the interface.

Close a port
port
PCLOSE closes the specified port and returns the

hardware to a passive state similar to the power-up
condition.

9-21

User Information

Parallel Interface Board

Parameters

When the routines are used in a program, one or more parameters are
specified by the programmer. All parameters must be specified as

integers.

PORT

MODE

TIME OUT

BIT

BOOL

DIRECTION

MASK

9-22

The port number for the routine to operate on,
expressed as an integer in the range 0 - 15.

The Parallel Interface module operates in one of
four modes: No Handshake, Full Handshake,
and Strobe Input and Output Handshakes. With
the exception of No Handshake, the handshakes
synchronize incoming and outgoing data. The
table below lists the handshake names and the
mode number that the software recognizes.

HANDSHAKE MODES

NAME DEFINITION MODE
- No Handshake 0
HNDSHKIN Full Handshake Input 1
STROBEIN Strobe Input 1
HNDSHKOUT Full Handshake Output 2
STROBEOUT Strobe Output 3

The wait time before an incomplete handshake is
terminated.

The bit number to be checked, read, or written to,
expressed as an integer.

When a bit or word is read or checked, as in the
CHKBIT routine, the routine places a value into
the variable specified as BOOL.

An integer that indicates the desired transmission
direction of each bit on the port.

BLOCK

COUNT

User Information
Parallel Interface Board

This parameter is the array to which data will be

transferred using the Block subroutines RDBLK,
WRTBLK, FRDBLK, and FWTBLK.

CONCLUSION

For complete information about the Parallel Interface, refer to the

manual shipped with the PIB. That manual includes:

m]

[m]

Specifications
Interface timing
Sample programs
Performance Testing
Theory of Operation
Schematic

Interface Description

Software Library Description

Indicates how many array elements to transfer.

9-23/9-24

1752A USER INFORMATION
Option 17XXA-004/005
Magnetic Bubble Memory

INTRODUCTION

The Option 17XXA-004/-005 Bubble Memory Modules provide
additional memory for the 1752A.

Like a floppy disk, the Bubble Memory is treated by FDOS as a file-
structured device. Information is retained in the device when the power
is turned off.

The 17XXA-004 Bubble Memory Module contains 256K bytes of
memory; the 17XXA-005 module contains 512K bytes. The maximum
amount that can be installed in a system is 1.SM bytes (any
combination of three modules).

9-25

User Information
Magnetic Bubble Memory

PRE-INSTALLATION CHECKOUT

Inspect the shipping carton for damage. Notify the shipper
immediately if the carton appears to have been damaged in shipping.
Unwrap the module and inspect it for damage. If everything seems to
be in order, go on to the next step, setting the board’s address switch.

Board Addressing

In order for the Operating System (FDOS) - to operate properly using
bubble memory, there must be a unique address associated with each
Bubble Memory Module installed. Use the drawing below to locate the
board address switch (SW1).

o (.) .
w— I:J =
r D
e 0O .o A

D o — 088 ——=—
Ll‘ Q%E:@:J(:i_ X 7@ I '@ !y

®nfn?'..a ame -

The 1752A has five slots available for options. Bubble Memory
Modules can be installed inslots 1, 3,4, 5 or 6. The SW1 address switch
settings determine the device names, and the switch settings are
identical for Option -004 (256K bytes) or Option -005 (512K bytes).

9-26

User Information
Magnetic Bubble Memory

SWITCH POSITIONS
DEVICE NAME | ADDRESS CODE 1 2 3 4
MBO: 111X on on on X
MB1: 110X on on off X
MB2: 101X on off on X
MB3: 100X on off off X

NOTES: 1.“1” =on, “0” = off, “X” = don’t care.

2. Four device names are available. However, only three are
used at a time because only three modules can be installed at
one time.

9-27

User Information
Magnetic Bubble Memory

INSTALLATION AND CHECKOUT

9-28

1.

Once address switch SW1 has been set, follow the directions in
the Options Section “Installing Hardware Options” to install
the module into the 1752A’s card cage. Be sure to turn the
power off before beginning.

Power up the 1752A and insert the 1752A System Software
disk. If required, use the System Generation Utility program
(SYSGEN) to make a new System Software disk that includes
the Bubble Memory driver. Refer to Section 3 of the System
Guide for instructions.

When a new System Disk has been generated, press the
RESTART button and let the disk load the new FDOS.

Use the File Utility Program (FUP) to format the Bubble
Memory Module. Type MBx:/F, where x is the device number
given the module by its address switch setting. See Section 4 of
the System Guide for complete details about using FUP.

Test the new memory board by running the Bubble Memory
diagnostic, as described in Appendix G, “System Diagnostic
Software”, or by transferring files to and from the bubble
memory device using FUP.

If the diagnostic test executes successfully, your Bubble
Memory Module is now available for use.

If any trouble develops, first make sure that the address
selection switch is set properly, and that the module is seated
firmly in the card cage. If everything seems to be in order, but
the failure continues, refer to Appendix G, “System Diagnostic
Software”, or call your Fluke Technical Service Center for
assistance in tracking down the problem. The Bubble Memory
Module is included in Fluke’s Module Exchange Program.

1752A USER INFORMATION
Option 17XX-006/007

Memory Expansion Module

INTRODUCTION

The Option 17XX-006 and 007 Memory Expansion Modules provide
additional memory for the 1752A. This added memory can also be
configured as Electronic disk.

The Operating System treats memory configured as E-Disk as an
electronic version of a floppy disk. This means that files are stored and
retrieved from E-Disk in a formatted fashion like a floppy disk. See the
File Utility Program in Section 4 of the System Guide for instructions
on how to configure E-Disk space.

The 17XX-006 Memory Expansion Module contains 256K bytes of
dynamic RAM; the 17XX-007 module contains 512K bytes. Any
combination of up to four modules can be installed in a 1752A at a
time. If all four slots are filled with 17XX-007 boards, then the total
expansion memory added to the 1752A would be over 2.1M bytes.

9-29

User Information
Memory Expansion Module

PRE-INSTALLATION CHECKOUT

Inspect the shipping carton for damage. Notify the shipper
immediately if the carton appears to have been damaged in shipping.
Unwrap the module and inspect it for damage. If everything seems to
be in order, go on to the next step, setting the board‘s address switch.

Board Addressing

In order for the Operating System to operate properly using expanded
memory, each memory board installed must have unique addresses set.
Each module has a memory switch, located in the drawing below.

NI -__lt l
Hm-lf

- r ik _.‘1 A,

e
”‘l

50 Df—ﬂ_‘ﬂ = ULW_IEE]

9-30

User Information
Memory Expansion Module

The 1752A has four slots available for options. Expansion memory
modules can be installed into any or all of them. To assure proper
operation of diagnostics software, the first module added should be
given the address for Unit One as shown in the table below.
Subsequently added modules are given addresses in ascending unit
number order. The SW1 address switch settings shown below are
identical for Option -006 (256K bytes) or Option -007 (512K bytes).

UNIT NUMBER ADDRESS CODE SWITCH POSITIONS
1 2 3 4
1 1110 off off off on
2 1100 off off on on
3 1010 off on off on
4 1000 off on on on
NOTES

1) “0” = on and “1” = off on the option’s address switch label.

2) Although the 1752A may operate properly with addresses
set out of order, setting them in the recommended order
ensures that diagnostic software can correctly identify faulty
components, and will prevent possible contention problems
when mixing options -006 and -007.

Example:

Two -007 Options, and two -006 Options are to be installed. In this
case, we will set the addresses for the larger memory sizes first by
setting their switches to 1110 and 1100. Next, the first -006 option’s
switches are set to 1010, and the second one to 1000.

These settings leave a 256K byte gap between the memory addresses

occupied by the 006 modules. This gap is transparent when the
module is in use.

9-31

User Information
Memory Expansion Module

INSTALLATION AND CHECKOUT

9-32

1.

Follow the directions in the Options Section titled “Installing
Hardware Options™ to install the module into the 1752A’s card
cage. Be sure to turn the power off.

To check the new memory module, power up the system and
load the Operating System software. Observe the amount of
memory message that appears when FDOS loads. The
memory message should indicate the additional memory that is
now available, both in bytes and blocks. (1 block =512 bytes.)

To exercise the new memory, use the File Utility Program to
configure all available free blocks as E-Disk, then transfer a
large amount of files to the E-Disk, and see that they can be
read to the screen. If everything is in order, this is an adequate
check that the Memory Expansion Module is operational.
Section 4 of the 1752A System Guide, Devices and Files,
explains all the operations of the File Utility Program.

If any trouble develops, first recheck your work. Make sure
that the address selection switches are set properly, and that the
module is properly seated into the connector on the
motherboard. If everything seems to be in order, refer to
Appendix G, System Diagnostics, or call your Fluke Technical
Service Center for assistance in tracking down the trouble. The
Memory Expansion module is included in Fluke’s Module
Exchange Program.

1752A USER INFORMATION

Option 17XXA-008
IEEE-488/RS-232C Interface

INTRODUCTION

This section of the 1752A System Guide covers the Option 17X XA-008
IEEE488/RS-232-C Interface Module. The module provides the
1752A with one additional IEEE-488 port and one additional RS-232-
C port.

As shipped, the standard 1752A has a single IEEE-488 port and one
RS-232-C port. The IEEE-488 port has the device name GP0O: when
used as a serial device (output only), and the device name Port 0 when
used by a program as an instrument port. The standard configuration
RS-232-C port has the device name KBI:.

The IEEE488 port on the -008 option has the device name GP1: or
Port 1, and the RS-232 port has the device name KB2:. See Section 4 of
the System Guide for more information on devices.

9-33

User Information
IEEE-488/RS-232C Interface

PRE-INSTALLATION CHECKOUT

Inspect the shipping carton for damage. Notify the shipper
immediately if the carton appears to have been damaged in shipping.
Unwrap the module and inspect it for damage. If everything seems to
be in order, go on to the next step, Installation.

INSTALLATION

9-34

1.

Refer to the drawing below to locate and set the configuration
switches. The initial setup establishes the module’s IEEE-488
address as 0, and its function as “system controller”. This
switch setting also sets the RS-232 port to 4800 baud for power
up, but the baud rate can easily be changed later using the Set
Utility Program. See Section 5 of the System Guide for details.

NOTE

Both the standard IEEE-488 port and the one added by the -
008 option can be set up as “system controller”, because the
two ports are effectively two separate systems. However, if
both of them will be connected to the same bus, then one of the
ports must be set up as “idle controller”.

User Information
|IEEE-488/RS-232C Interface

SWITCH 1

1 2 3 4 5 6 7 8 9 10

— |s2 s1 s0 sC A4 A3 A2 A1 |
X unused
IEEE-488 ADDRESS
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15
IEEE-488 CONTROLLER
0 0 System Controller
1 1 Idle Controller
BAUD RATE
0 0 0 110
0 0 1 300
0 1 0 600
0 1 1 1200
1 0 0 2400
1 0 1 4800
1 1 0 9600
1 1 1 19200

NOTE: 1 = on; 0 = off

9-35

User Information
IEEE-488/RS-232C Interface

9-36

2. Once the switch has been set, use the directions in the Options

section “Installing Hardware Options” to install the -008
option into the 1752A.

Power up the 1752A and test the new interface by using the
System Diagnostic software. Appendix G of the System Guide
explains how to use the System Diagnostic software to test the -
008 option.

In case of problems with the new module, recheck your work to
ensure that the board is fully seated in the card cage, and that
port connectors are attached securely. If everything is in order
but the failure continues, refer to Appendix G for
troubleshooting information, or call your local Fluke Service
Center. The IEEE488/RS-232 Interface moduleisincluded in
Fluke’s Module Exchange Program.

1752A USER INFORMATION
OPTION 17XXA-009

DUAL SERIAL INTERFACE

INTRODUCTION

The 17XXA-009 Dual Serial Interface (DSI) provides the 1752A with
two additional serial communications ports. The ports are addressed
as SPO: through SP9: via the Set Utility program and high-level
languages. The ports are treated similarly to KB0: and KB1: on the
Single Board Computer (SBC), and KB2: on the IEEE/RS-232-C
Option (-008).

Up to three DSI modules can be installed in the 1752A. Each port may
be configured for these electrical interfaces:

o RS-232-C
0 RS422
0 20 mA Current Loop

Each port buffers incoming and outgoing data and signals the external
device when the buffers are nearly full to prevent loss of data. The
signaling method or protocol may be selected as discussed below. The
ports are controlled by a microprocessor which reduces the overhead
on the Single Board Computer (SBC). System throughput is a function
of the data being transferred at the floppy disk and the IEEE-488 and
KBx: ports. If the load from these devices is heavy, external devices will
be held off more frequently regardless of the data rate selected.

9-37

User Information
Dual Serial Interface

The Operating System (FDOS) which is supplied on the 1752A System
Disk includes a device driver for the -009 option. This operating system
must be used in order for your software to be able to access the Dual
Serial Interface. If necessary, you can reconfigure the operating system
by using this disk and following the instructions in Section 3 of the
1752A System Guide.

The disk also includes the Serial Port Software Driver (SP10.OBJ).
This driver allows a BASIC program to directly monitor and control
the various lines of the serial interface, including RS-422 ENABLE,
which some users may require. Information later in this section
describes the operation of the driver.

PRE-INSTALLATION CHECKOUT

Inspect the shipping carton for damage. Notify the shipper
immediately if the carton appears to have been damaged in shipping.
Unwrap the module and inspect it for damage.

INSTALLATION

9-38

The Option has been configured at the factory as follows:

Electrical Interface RS-232-C

Data rate 4800 Baud

Data Bits 7

Parity none

Stop Bits 2

Flow Control off

Board Address 0 (SPO: and SP1)

The jumpers and switches are set at the factory as shown in the figure
on the next page. Jumpers JPR1, 2, 3, 4,5, 6,29, and 35 are not user-
configurable and must remain in the positions shown. Check all
jumpers and switches to be sure they match the factory configuration.

Use the directions in the Options Section of the System Guide
“Installing Hardware Options” to install the -009 option into the
1752A.

If you have reconfigured the Operating System with the SYSGEN
Program, make sure that the Dual Serial Interface Driver has been
included. You can check this by rebooting the 1752 A with your version
of the Operating System and then running the CONFIG Program
supplied on the standard System Disk.

User Information
Dual Serial Interface

The signals for all three interface types are available on each of the port
connectors. Since this is a modification of the RS-232-C standard, the
redefined pins can be switched off using SW104 and SW204 when RS-
232-C is desired. This allows using cables with connections for signals
defined by the standard to be used. Refer to the section “Electrical
Interfaces” for connections to external devices.

In case of problems with the new module, recheck your work to ensure
that the board is fully seated in the card cage, and that the port
connectors, jumper positions, and switch settings are correct. If the
failure continues, refer to Appendix G for troubleshooting
information, or call your local Fluke Service Center. The Dual Serial
Interface is included in Fluke’s Module Exchange Program.

FACTORY CONFIGURATION

Sw3

Flow Control

12345678
OoN 111
OFF

SW101 and 201
Port Characteristics
12345 _6r7 8

{ {Even Port

ON
OFF |

SW104 and SW204
Signal Enable

12345678910
T

i

ON
OFF

0Odd Port
1234

|

" .
ON
OFF w ™
SW1
Board/Port Address
L '

et 3

Ch

Note: * indicates jumpers thatare not user-configurable.
Do not move these jumpers.

9-39

User Information
Dual Serial Interface

POWER ON CONFIGURATION

When the Dual Serial Interface is powered on, these things take place:
o The configuration switches are read.

O The RS-422 drivers are enabled.

0 The DSI waits for input or output.

The initial states of the control lines are shown later. See “Electrical
Interfaces - RS-232-C”.

PROTOCOLS
XON/XOFF

The ASCII Standard defines two codes that may be used to control
data transfer between devices. If the input buffer of the device receiving
data is full or nearly full, XOFF is sent to the transmitting device to
request the transmission be stopped. When the receiver can accept
more data, the XON code is sent to resume the transmission. The Set
Utility program can be used to enable or disable this protocol, and
refers to the protocol as “stall input” and “stall output”.

Secondary Request to Send (RS-232)

SRTS is a handshake line that is used for flow control with external
devices that cannot respond to XON/XOFF codes. The polarity of
SRTS is set by the Flow Control configuration switch (SW3).

RECONFIGURATION

9-40

The electrical interfaces and power-up configuration can be changed
using the switches and jumpers described in the following tables. After
the tables, the next sections discuss each interface and typical setups.
The Set Utility program can also be used to change port
characteristics. See Section 5 of the System Guide for details.

NOTE

The Port Characteristics and Flow Control switches are read
only at power-up.

Board/Port Addresses (SW1)

BOARD PORT 1234

O W =

1,0 |0000
3,2 (0001
54 |0010
7,6 (0011
9,8 |0100

J1 = EVEN Port
J2 = ODD Port

User Information
Dual Serial Interface

ON = 1 = closed = enabled
OFF = 0 = open = disabled

Port Characteristics (SW101 AND SW201)

1234

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

5678

19200 Baud 1
19200 0
9600

7200

4800

3600

2400

2000

1800

1200

600

300

150

134

110

75

11
10
01
00

—_

Data Bits: 8
7

Parity: even
odd
none
none

Stop Bits: 2
1

9-41

User Information
Dual Serial Interface

Flow Control (SW3)

12345678

Even Port

enable

0 disable
active high
active low

X X not used

—_

O =

0Odd Port

enable

0 disable

active high

0 active low
X X not used

—

—_

Port Connector Signal Enable Switches (SW104 and SW204)

—_

RS-422 Rx+

2 Rx-

3 20mA Rx+

4 Rx-

5 1-/-12v
6 12-/-12v

7 RS-422 Tx+

8 Tx-
20mA Tx+
10 Tx-

Clear To Send (CTS) Input to UART (JPR116 and JPR216)

Left CTS
Right CTS AND SRLSD

9-42

User Information
Dual Serial Interface

UART Receive Input (JPR117 and JPR217)
Left 20mA loop

Middle RS-422
Right RS-232-C

Voltage/Current Sources (JPR102, 103, 202, 203)

Left 20mA
Middle OFF
Right +12v

ELECTRICAL INTERFACES
RS-232-C

Maximums

Distance 50 ft
Data Rate 19200 Baud

Typical Applications

Data Communications Equipment (DCE)
(Use RS-232-C Cable)

Modems

Data Terminal Equipment (DTE)
(Use Null Modem Cable)

1780A
VT100
Printers (Use Null Modem Cable)

9-43

User Information
Dual Serial Interface

Port Connections

Pin Circuit Function

Received Data
Clear to Send
Data Set Ready

Ring Indicator

Secondary Received Line Signal
Detector

To DCE From DCE
Pin Circuit Function
1 | AA | Shield
7 | AB | Signal Common
2 | BB | Transmitted Data 3 | BA
4 | CA |Request to Send 5 |CB
20| CD |Data Terminal Ready 6 | CC
19 | SCA | Secondary Request to Send
11| UND | RS-232-B
22| CE
12| SCF
8 |CF

9-44

Received Line Signal Detector

The Clear To Send jumpers (JPR116 and 216) allow the CTS input to
the UART to be either the CB circuit or the logical AND of CB and
SCF. This feature is useful for external devices that use the SCF circuit
as a “busy” indicator.

Power-on States of the Control Lines

STATE

SIGNAL PIN
BB 2

CA 4
SCA 11,19
CD 20

MARK

ON

OFF

ON

User Information
Dual Serial Interface

NOTE

Clear To Send (Pin 5) controls the transmission from the port.
When it is ON, the corresponding UART is permitted to
transmit. When it is OFF, the UART stops transmitting,
beginning at the next character boundary. This behavior is a
function of the UART hardware, and always applies. It cannot
be disabled. Leave Pin 5 unterminated if not used by the
receiving device.

RS-232-C CONFIGURATION

; ¢
7
-
I-

/_J o =10 12345678910
. — E IS S on gl
= - OFF
2 Tt

T

=

!
- =t prrrn B
L .

Notes: * indicates jumpers that are not user-configurable. Do not
move these jumpers.

T indicates switches or jumpers that can be set as desired.
Refer to tables in the text for seitings.

9-45

User Information
Dual Serial Interface

RS-422

Maximums

Distance 4000 feet
Data Rate 19200 Baud

Typical Applications

2400B
1780A/ AU

Protection Networks

The circuitry incorporates protection networks on the drivers and
receivers to reduce susceptibility to high voltage transients and faults.

Port Connections

To External Device From External Device
PIN SWITCH | SIGNAL PIN |SWITCH | SIGNAL
9 7 Tx+ 14 1 Rx+
10 8 Tx- 15 2 Rx-
7 Signal

Ground

9-46

User Information
Dual Serial Interface

RS-422 CONFIGURATION

»
=
.
-
o
V]
N
", CRRIRIm 12345678910
s P ~_ON
[CE = OFF
= ot <l
b — I
Clw —
o 115
[
- o3+ f— T
I — - ma@

Notes:

* indicates jumpers that are not user-configurable. Do not
move these jumpers.

Tindicates switches or jumpers that can be set as desired.
Refer 1o tables in the text for settings.

9-47

User Information
Dual Serial Interface

20 MA LOOP
Maximums
Distance 1000 feet
Data Rate 4800 Baud
Voltage 30 Vdc
Typical Application
Teletype (TTY)

Port Connections

To External Device From External Device

PIN SWITCH | SIGNAL PIN SWITCH| SIGNAL
12 9 Tx+ 24 3 Rx+

23 10 Tx- 25 4 Rx-

18 5 11-/-12v 17 JPRx02 | 11+/+12v
16 6 12-/-12v 13 JPRx03 | 12+/+12v

9-48

User Information
Dual Serial Interface

20 MA CURRENT LOOP CONFIGURATION

i D+
. g S=Jt)
&
|
- 12345678910
)
*
.
*
[—=]
o =t
T
;L R T T
Notes: * indicates jumpers that are not user-configurable. Do not

move these jumpers.

tindicates switches or jumpers that can be set as desired.
Refer to tables in the text for settings.

9-49

User Information
Dual Serial Interface

USING THE DUAL SERIAL INTERFACE

The option -009 device driver in FDOS allows the programmer to use
the DSI from all languages and utility programs just as any other serial
device. The ports are specified as SPO: through SP9: depending on the
board address selected.

Two additional routines are provided to gain more direct control of the
interface lines. The user can read the current state of all the input and
output lines and can set the output lines to any state desired. The user
can also enable and disable the RS-422 drivers. These routines are
supplied in the following files for each programming language:

LANGUAGE FILENAME SUPPLIED WITH
Interpreted BASIC SPIO.OBJ 1752A System Disk
Compiled BASIC BASIC.LIB 17XXA-203 Compiled BASIC
Extended BASIC BASIC.LIB 17XXA-205 Extended BASIC
FORTRAN FLUK22.LIB 17XXA-202 FORTRAN

PROGRAMMING IN BASIC

The routines can be used from Interpreted BASIC, by using the LINK
statement as follows:

LINK “SPIO” (RETURN?

To use the routines in Compiled BASIC, use the FIND command in
the Linking Loader, as follows:

F BASIC (RETURN)

Description

9-50

The module consists of two routines: SPGETS and SPSETS.
SPGETS is called to get a “snapshot” of the inputs and outputs. A port
number between 0 and 9 is specified, along with an integer word into
which the status is to be stored by SPGETS. When it is called,
SPGETS retrieves the current input and output status and returns the
value to the caller in the specified integer variable. The state of each line
is represented by a corresponding bit in the status word. The bit
assignments are illustrated below.

User Information
Dual Serial Interface

SPSETS sets the state of the output lines. A port number between 0
and 9 is specified, along with an integer word which contains the
control data to be output to the control lines. The bit assignments in
the control word are identical to the assignments in the status word.
The input portion of the status/control word is ignored by this

function.

Usage

CALL SPGETS(port%, statusZ)
INTEGER port%

statusi

RS-232 input/output line status

CALL SPSETS(port%, statusi)
INTEGER porti%

status’

0 for SPO:
1 for SP1:
9" for SPY:
bit
value pin
1 20
2 19
4 11
a8 4
128 -
236 12
312 22
1024 8
2048 b
4096 S
O for SPO:
1 for SP1:

9 Por SPF:

description
Data Terminal Read
Secondarg Request
Undefine

Request To Send
RS-422 Output Enable

%o Send

Sec Rcv Line Sig Detector
Ring Indicator

Rcv Line Signal Detector
Data Set Ready

Clear To Send

RS-232 output line control

bit
value pin
1 20
2 19
4 11
8 4
128 -

description
Data Terminal Read
Secondarg Request
Undefine
Request To Send
RS5-422 Output Enable

*o Send

9-561

User Information
Dual Serial Interface

Errors

All errors are recoverable:

5100 FDOS function call failed (usually means option missing or
faulty)

5101 invalid port number

External Effects

The RS-232 output lines may be changed. Turning off Request To
Send inhibits transmission on the corresponding port.

FORTRAN PROGRAMMING

From FORTRAN, the routines are called in the same manner as they
are in BASIC, except that an error parameter is passed as follows:

CALL SPGETS (port, status, error)
CALL SPSETS (port, status, error)

If the error value returned is non-zero, then one of the following has
occurred:

No device driver in FDOS

Option missing or faulty
Illegal port number specified

9-52

User Information
Dual Serial Interface

ASSEMBLY LANGUAGE PROGRAMMING

The FDOS driver for the option supports all the applicable functions,
which are listed below. For a description of the call conventions, refer
to the FDOS direct 1/O functions for KBx: ports in the Assembly
Language Manual. The functions are:

Read a Record

Write a Record

(unused)

Initialize Driver

Get Port Configuration

Set Port Configuration

Return Number of characters/lines in Input Buffer
Get a Character

Put a Character

Send a Break

(unused)

(unused)

Return Number of Characters in Output Buffer

Full control of the UARTSs on the Dual Serial Interface option requires
one additional FDOS call, described below.

26 READ/WRITE RS-232 LINES
15 0

26

RS-232 INPUT/OUTPUT DATA

SET/GET FLAG

9-53

User Information
Dual Serial Interface

Description

This function either sets or gets the the current state of the RS-232
signal lines. When the Set/Get flag is non-zero, the lower byte of the
RS-232 data word is loaded into the latches that drive the RS-232 lines.
When the set/get flag is zero, the entire RS-232 data word is returned
with the current state of the RS-232 interface, including both input and
output lines.

In addition, this word also controls the RS-422 data driver. When the
422EN bit is set to one (1), the RS-422 driver is active. When 422EN is
set to zero (0), the RS422 output drivers are tri-stated.

The set function has no effect on the input signal lines. They are always
sampled directly during a get function.

Format of RS-232 Data Word

[READ ONLY) (READ/WRITE])
[15[14173 121 |1w0] 9|87 s|s]4 32|10
R S| 4 ! -S| s
clojLiRIR|2, | R R|{R D
T|ls|s| 1] 2l TiTlT|T
S|R| D s| € s|s|s|R
D | N

CIRCUIT NAME| CB
PIN NUMBER | 5

9-54

1752A USER INFORMATION
OPTION 1752A-010

ANALOG MEASUREMENT
PROCESSOR

INTRODUCTION

The 1752A-010 Analog Measurement Processor is a single-board, 14-
bit analog-to-digital converter that can be software configured for a
total of 32 single-ended channels, 16 differential channels, or a
combination of both. Range and filtering are programmable for each
channel. Conversion is accomplished with a microprocessor and a 16-
bit digital-to-analog converter, using a successive approximation
technique. The microprocessor controls input FET multiplexing,
sample and hold, data conversion, auto-zero, auto-calibration,
averaging, and range selection. The Analog Measurement Processor

interfaces directly with the 1752A bus without isolation, and inputs are
protected with fusible resistors.

The Analog Measurement Processor can be mounted inslots 1, 3,4, or
5 of the 1752A chassis. Analog inputs are accessible on two 26-pin
connectors at the rear of the chassis.

Features of the Analog Measurement Processor include:

32 addressable input channels
Two voltage ranges
Two current ranges

Single-ended and differential input modes
Selectable filtering

o0 g 0o o0

Synchronous and asynchronous scanning modes

a

External phase locking to line frequency to increase noise rejection

9-55

User Information
Analog Measurement Processor

Refer to the 1752A Data Acquisition and Control manual for further
information about these features.

1752A-010 Analog Measurement Processor

9-56

SPECIFICATIONS

Number of Channels

Synchronization Modes

Ranges
(full scale,
each channel)

Reading Rate

Accuracy (90 days, 10°C to 40°C)

Resolution (14 bits)

User Information
Analog Measurement Processor

32 single-ended or 16 differential (single-ended
and differential channels may be mixed.) Maxi-
mum of four Analog Measurement Processors
per 1752A. (128 single-ended channels).

Internally Synchronized: 5