
Extended BASIC

ELUKE
®

Extended BASIC

P/N 760496

MARCH 1985 H~-LUJ K E
©1985 John Fluke Mfg. Co., Inc.
All rights reserved. Litho in U.S.A.

WARRANTY

John Fluke Mfg. Co., Inc. (Fluke) warrants this instrument to be free from defects in
material and workmanship under normal use and service for a period of one (1) year
from date of shipment. Software is warranted to operate in accordance with its
programmed instructions on appropriate Fluke instruments. It is not warranted to be
error free. This warranty extends only to the original purchaser and shall not apply to
fuses, computer media, batteries or any instrument which, in Fluke’s sole opinion, has
been subject to misuse, alteration, abuse or abnormal conditions of operation or

handling.

Fluke’s obligation under this warranty is limited to repair or replacement of an
instrument which is returned to an authorized service center within the warranty period
and is determined, upon examination by Fluke, to be defective. If Fluke determines that
the defect or malfunction has been caused by misuse, alteration, abuse, or abnormal
conditions of operation or handling, Fluke will repair the instrument and bill purchaser
for the reasonable cost of repair. If the instrument is not covered by this warranty, Fluke
will, if requested by purchaser, submit an estimate of the repair costs before work is
started.

To obtain repair service under this warranty purchaser must forward the instrument,
(transportation prepaid) and a description of the malfunction to the nearest Fluke
Service Center. The instrument shall be repaired at the Service Center or at the factory,
at Fluke’s option, and returned to purchaser, transportation prepaid. The instrument
should be shipped in the original packing carton or a rigid container padded with at
least four inches of shock absorbing material. FLUKE ASSUMES NO RISK FOR IN-
TRANSIT DAMAGE.

THE FOREGOING WARRANTY IS PURCHASER’S SOLE AND EXCLUSIVE REMEDY
AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
FOR ANY PARTICULAR PURPOSE OR USE. FLUKE SHALL NOT BE LIABLE FOR
ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OR
LOSS WHETHER IN CONTRACT, TORT, OR OTHERWISE.

CLAIMS

Immediately upon arrival, purchaser shall check the packing container against the
enclosed packing list and shall, within thirty (30) days of arrival, give Fluke notice of
shortages or any nonconformity with the terms of the order. If purchaser fails to give
notice, the delivery shall be deemed to conform with the terms of the order.

The purchaser assumes all risk of loss or damage to instruments upon delivery by Fluke
to the carrier. If an instrument is damaged in-transit, PURCHASER MUST FILE ALL
CLAIMS FOR DAMAGE WITH THE CARRIER to obtain compensation. Upon request
by purchaser, Fluke will submit an estimate of the cost to repair shipment damage.

Fluke will be happy to answer all questions to enhance the use of this instrument. Please
address your requests or correspondence to: JOHN FLUKE MFG. CO., INC., P.O. BOX

C9090, EVERETT, WA 98206, ATTN: Sales Dept. For European Customers: Fluke
(Holland) B.V., P.O. Box 5053, 5004 EB, Tilburg, The Netherlands.

EXTENDED BASIC MANUAL INSTRUCTIONS

Under this instruction sheet you will find the following items:

O Quick Reference Card.

O Reference pages beginning with “Array Variable” and ending with
“While”.

O Manual pages for Extended BASIC.

The Quick Reference Card replaces the original one (Form F740) and
its update (Form F691). The new card includes all of the commands for
IBASIC, CBASIC AND XBASIC. Insert the Quick Reference Card
into the BASIC Reference binder.

If your Reference manual has already been updated for XBASIC,
discard the Reference pages.

Insert the Reference pages into the BASIC Reference binder according
to the number on the upper right hand corner of the reference page. If
one of the new reference pages has the same reference number as an
existing reference page, the new page replaces the old one. The new
pages add keywords that relate to Compiled and Extended BASIC and
modify the pages that are unique to Interpreted BASIC.

Insert the Manual pages for Extended BASIC into the empty binder
marked “EXTENDED BASIC”.

The Extended BASIC MANUAL is an adjunct to the Interpreted
BASIC manual set. When using the Extended BASIC manual, you will
need the BASIC manual and the 1722A System Guide available for
reference.

Contents

GETTING STARTED................. 0... ccc cee ee eee 1-1

INtrOductiOn ccc ccc cc cee eee eee eect eee eens 1-3
Copying A Program Using Tcopy Lec eae 1-5
Writing a Program cece eee ee eee eee eee 1-9
Compiling a Program cece ccc eee eee eeee I-11
LINKING 2... . ccc cece ce cee eee eet e eee e eens 1-12
Running the Program ccc cece eee cece ene 1-13

Getting Full Use of Extended BASIC 1-14
What About Errors? 2.1... . cece ee eee 1-17
Simplifying the Process 0... cece cece eee eee enee 1-18

Using E-Disk or a Winchester 0.0 c cece 1-18
Using Command Files 0.0.0... cece cee eee eens 1-18

CONCLUSION 2... . ccc ccc ccc eee eee eee eeeeeee 1-18

EXTENDED BASIC0.0 0.0. eee ee 2-1

Introduction cece ce cee eee cee teen eee ee eae 2-3
The Extended Basic Language 0c. eee ee eeee 2-4
Program Development with Extended BASIC 2-6
Language Names cece cece eter eees 2-6

Conventions Used in This Manual00 2 eee eeee 2-7
Statement Descriptions cece cee eee eee eee 2-7
How to Read Syntax Diagrams 0. cece ee ees 2-8
Notation Conventions 0. ccc cece eee ee eee eeee 2-10

Extended BASIC Syntax ccc ccc cee eee eens 2-11
Standard SYMAX viscsccccccccc cece cece ecevecneuteees 2-11

i (continued on page ii)

CONTENTS, continued

Extended Syntax /E Option 0... cece eee eee eee 2-12
Statement Labels 0.0... ce cc ce ee ce eee 2-12

Long Variable Names in XBASIC 2-13
Long Variable Names In Extended Syntax 2-14
Continuation Lines 0.0... ccc eee ec ee cee 2-15

Omitted Line Numbers /NL Option 2-17
Automatic Integer Conversion /I Option 2-18

Differences in Variables 0.0... cc ccc eee cee eee 2-19

Variable ArrayS 1.0... .. ccc ccc eee cee eee e eae 2-19
ERR$ System Variable 0. ccc cece eee eens 2-20

Modified Statements cc cee cc eee ec eee ees 2-21

CALL Statement 0... cc cc cc ec ee nee 2-21

Parameters ccc ccc cee ee ee eee ee eee teens 2-22

Global Variable and Subroutine Names 2-22

COM Statement 0 ccc ec ee ee ec ee eee eee 2-24

DIM Statement ce ee ee ee ce eee 2-25

Three Dimensional Arrays ce eee eee ee eeee 2-25
Array Use in Subroutines 0. cece eee ees 2-25
Conformal Dimensioningcce cece eceees 2-26
Redimensioning Main Memory or Common Arrays 2-28
Redimensioning Virtual Arrays0e cece ewes 2-28

FOR and NEXT Statements 0c cc cee eees 2-29
ON-GOTO Statements 0... cee eee ce ee eee 2-30

REM Statement 0... 0. ccc ce ee ce ee cece 2-31

RESTORE Statement 0.0.0... cee cee eee eee 2-31

STOP Statement 0.0. . ce ee ee ee ee eee 2-31

TRACE Statement 0.0... cc ee ee cc ee ce ee eee 2-32

Branch Statements 0... 0. cece ee ec eee tee 2-32

Extended BASIC Statements 0... ee ee cee ee eee 2-34

SUB Statement 0... ce ce ee cee ee ee eee 2-35

SUBEND Statement Cece c ee cee cece eee eee eee 2-36

SUBRET Statement 0... ce eee ee ee ee eee 2-37

ON-SUBRET Statement0.... 0. ee eee 2-38

Control Flow Statements 0. cc eee eee eee 2-40

Extended IF Statement 0... cee eee ee 2-40

LEAVE Statement 0... 0. cece ee ce eee ee eee 2-42

LOOP Statement 0.0... cc cc cee ce eee 2-43

REPEAT Statement 0... ccc ccc cee ce eee 2-44
SELECT Statement 0... 0... cece eee eee 2-45

WHILE Statement 0... ee ee ee es 2-48

li (continued on page iil)

CONTENTS, continued

Statements Unique To Extended BASIC 2-49
EXPORT Statement eee eee eee ee eee 2-49
IMPORT Statement ccc eee ee eee eee ees 2-51

Unused Interpreted BASIC Instructions 2-52

EXTENDED BASIC COMPILER 3-1

Introduction 2... ... cee ccc cece cece eee teen ences 3-3
Creating Source Code ccc ccc ec cece eee eees 3-4
Compiling into Object Code 0. cece eee eee 3-4
Linking a Program Together cc cece eeeeees 3-5
Running Extended BASIC Programs06- 3-6
Memory Allocation in Extended BASIC 3-7
New File Types cc ccc cece ee cee eee e eee neees 3-7

The Extended BASIC Compiler0. 2200 3-8
Installation OvervieW cc cece ccc e eee e eee eeeeees 3-8
Installation ... ccc ccc cee ce eee eee eee e eens 3-9
Running the Extended BASIC Compiler Program 3-11
Using the Extended BASIC Compiler Program 3-12
Exiting the Extended BASIC Compiler Program 3-16

Extended BASIC Compiler Options 0200 3-17
Extended Language Syntax: The /E Option 3-17
Integer Conversion: The /I Option604. 3-17
No Line Numbers: The /NL Option 3-18
No Markers: The /NM Option0. cece ee eees 3-18

Extended BASIC Compiler Errors 0.2 eee eens 3-19
Linking The Object Files 0... ccc cece eee ee eee nee 3-22

Overview of the Linkage Process 2.22 e eee 3-22
Linking a Program cece eee ccc ee eee eens 3-23

Using the Command File cece eee ee eee 3-25

EXTENDED BASIC RUNTIME SYSTEM 4-1

Introduction 2... ccc cc ccc cece eee eee e ence eenes 4-3
Running the Extended BASIC Runtime
System Program cece eee cece eee teen eeees 4-3

Running the Runtime System Program Automatically 4-3
Running the Runtime System Program from
the Keyboard ccc ccc ccc eee eee cent eee eees 4-4

Using the Runtime System Program000e eee 4-6

Exiting the Extended BASIC Runtime System 4-7
Runtime System Messages ccc eee ce eee eceeeeeee 4-8
Runtime System Error Checking cece eeeeeee 4-9

iii (continued on page iv)

CONTENTS, continued

5 EXTENDED BASIC LINKAGE UTILITIES 5-1

Introduction 2... . ccc cece ee cee ee eee cece enna 5-3
The Extended BASIC Linking Loader Program 5-4

Executing the XLL Program 0.2.0 ee eee eee 5-4
Terminating the XLL Program00200005- 5-4
Using the XLL Program cece eee eee eee eee 5-5
XLL File Name Conventions 2c eee eee eee 5-7
Extended Linking Loader Commands 5-8
END/GO Command ccc eee ee eee eee eee 5-10
FIND Command cece eee eee ee eee 5-11
INCLUDE Command 2. eee eee eee ee 5-13
MAP Command cece eee eee cee eee eens 5-15
OUTPUT Command eee eee eee eee 5-17

Extended BASIC Linking Loader Error Messages 5-18
Extended BASIC Linking Loader Map Format 5-19

Module List 1... ... ccc ccc eee ee ec eee teense 5-20
Symbol Table 0... cee eee eee eens 5-22
Common Symbol Table 0. eee ee eee ee 5-24
Error Message Table cece eee eee cece 5-24

The Extended BASIC Library Manager Program 5-25
Executing the XLM Program0. cece eeeeees 5-25
Terminating the XLM Program2 eee ees 5-25
Using the XLM Program 2. ccc ee eee e eee eeees 5-26
XLM File Name Conventions0 ee eee ee eee 5-27
Extended BASIC Library Manager Commands 5-28

[C-COPy oo. ccc eeeeee eee ee eee eeees 5-30
/D- Delete Lecce cece e eee ee eee e eee 5-31

/E- Extended List 0... c cece cece ee eens 5-32
[L- List... ccc cc ccc cece eee eee eee eee eeee 5-34
/M - Merge ccc ccc cc cence eee teense teense 5-35
[X- EXit 2c ccc eee cee tence eee e eee 5-36
SE ws Co) | 0 5-37

Extended BASIC Library Manager Error Messages 5-38

6 EXTENDED BASIC ERROR MESSAGES. 6-1

Introduction 2.2... . cee ccc ccc eect eee ete ences 6-3
Runtime and Compiler Errors 0. 0c ce eee ee eee 6-3
Extended Linking Loader Error Messages04- 6-8

Extended Library Manager Error Messages 6-15

iv (continued on page v)

CONTENTS, continued

APPENDICES

A Supplementary Syntax Terminology Diagrams A-|!
B ASCII/TEEE Bus Codes 0. cc cece eee eens B-1
C Extended BASIC Language Software C-]
D_ Reserved Words ccc cece cere cece eee eee ee eeeees D-1
E Integrating Subroutines from Other Languages E-|
F GI1OSSary 2... c cece cece eee ee eee eee eect eee eee eeeee F-]

INDEX

VW/VI

Section 1

Getting Started

CONTENTS

Introduction ccc ccc ee ccc ee eee eee eeees 1-3
Copying A Program Using Tcopy00e cence 1-5
Writing a Program cece cece cece tenes 1-9
Compiling a Program 0c ccc eee eee ee eee eens I-11]
Linking 2... . ccc ccc cee eee eect eee eneeeees 1-12
Running the Program ccc ccc cee eee teens 1-13

Getting Full Use of Extended BASIC 1-14
What About Errors? 2... eee eens 1-17
Simplifying the Process ccc ccc e ee cece eens 1-18

Using E-Disk or a Winchester 0.000 cee eeee 1-18
Using Command Files 0... 0... cece ee eee 1-18

Conclusion cece cee eee eee eee ee eee enees 1-18

1-1/1-2

Getting Started

INTRODUCTION

Section | of the manual is intended to introduce you to Fluke
Extended BASIC (XBASIC) and to give you some hands-on
experience. If you have never used a compiled high-level language
before, we suggest that you take the time now to read through this
material, enter the sample program, and see what the compiler can do
for you and your program.

This tutorial is written with the assumption that you are familiar with
both the Fluke Instrument Controller and the Fluke BASIC
Interpreter program. If you are not, please read the following manuals:

O Getting Started: A New User’s Guide to the 1722A Instrument
Controller

O BASIC: Sections | through 5.

You should also have the 1722A System Guide available for reference.

Compiling a program is only slightly more difficult than writing and
executing a program using an interpreter. Executing a compiled
program in XBASIC requires four steps:

1. Write the program.

2. Compile the program.

3. Link the program.

4. Run the program.

Before you get going, you need to do the following:

1. Make backup copies of:

a. The Fluke 1722A System Disk

b. The Extended BASIC Disk

2. Put the original copies of the System Disk and the Extended
BASIC Disk in a safe place.

3. Copy selected programs from the system disk onto the
Extended BASIC disk to create a working disk. All of the files
from the system disk will not fit on the XBASIC disk.

1-3

Getting Started

To copy the files you need, use either the File Utility Program (FUP) or
the Touch-copy program (Tcopy). The File Utility Progrdm requires ©
an extra memory board. It is explained in the 1722A System Guide.

Tcopy is a menu-driven program that utilizes the 1722A’s Touch-
Sensitive Display to transfer files between the controller’s file-
structured devices. Tcopy allows you to copy large files quickly, and
without a memory board. Tcopy may also be used with only one disk
drive. Tcopy is easy to learn and use because the program 1s totally
menu-driven, and it provides on-line Help information. Unlike FUP,
Tcopy allows you to select the files to be copied by date, by size, or
both. Tcopy 1s explained in more detail below and in the 1722A System
Guide. Tcopy is provided on the System Disk with the file name
TCOPY.FD2.

To create your XBASIC working disk, you will need to copy the
following files from the System Disk:

“ BASIC.FD2 _
_ FDOS2.SYS
\ EDIT.FD2
| BASIC.LIB ’
. MACRO.SYS) ©

! FUP.FD2
/ ALIAS.SYS
L

Getting Started

Copying a Program Using Tcopy

Tcopy is a simple menu-driven program that can be used to copy whole
disks or separate files. This tutorial section will step through the
procedures used to create a working disk. We will copy selected files
from the System Disk onto the XBASIC Disk, using the
INDIVIDUAL option. More information about Tcopy is available
on-line by pressing the HELP option after the program is begun.

1. Begin by inserting the backup copy of the System Disk into the
disk drive on the Controller and closing the disk drive door.
Turn on the 1722A. If it is already on, simultaneously press
restart and abort. Remember that pressing these keys also
clears the EDO: device.

With the system disk in place, the screen will look like this:

(>
FDOS Version x.y
Total System Memory -134 Kbytes
E-Disk - 0 Kbytes, free - Kbytes (64 blocks)

Startup Command File execution in progress.
Please Stand by pros

Welcome to Fluke 1722A BASIC!

Ready

- 4
If the version number (x.y) does not match the number on the front
of this manual, call a Fluke Customer Service Center for advice.

2. To reach the command level, type

Exit (RETURN>D

1-5

Getting Started

3. The controller will respond with the FDOS prompt. Type

tcopy (RETURN>

The first menu looks like this:

(r Tcopy (version x.y) >
Touch screen to choose a comaand.

COPY DIRECTORY HELP

QUIT

S —
4. Select the COPY option by touching that box on the screen.

The screen will prompt you to select a device to be copied.
Select MF and O:, the floppy disk drive, and press
CONTINUE. (If you select the wrong command, press the
CANCEL box, instead of the START box, and you will return
to the main menu.)

Getting Started

5. Tcopy will prompt you to choose a target device. Since you are
copying from one floppy disk to another, again select MF and

The screen will now look like this:

(—

4 >
Choose a target device.

rir ED MB WD

9 1 2 3 4

OPTIONS START CANCEL

e J)
y

6. Press OPTIONS. The screen will display the choices: DATE,
SIZE, FILES, INDIVIDUAL, START and CANCEL. Select
INDIVIDUAL and START.

Tcopy will prompt you to insert the source disk and touch the
box. The system disk has already been inserted, so just touch
the SOURCE box.

Tcopy will then ask you to insert the target disk and touch the
box. Insert the XBASIC backup disk, close the disk-drive door
and touch the TARGET box. Tcopy will prompt you with each
file name and request confirmation before copying each file.

Protected files should be copied and all protected files should
be overwritten. If a protected file is found on the target disk,
Tcopy will ask for permission before overwriting the file.

1-7

Getting Started

9.

10.

To create a working disk that will allow you to complete the
programming sessions in the rest of this section, copy the
following files from the System Disk:

BASIC.FD2
FDOS2.SYS
EDIT.FD2
BASIC.LIB
MACRO.SYS
FUP.FD2
ALIAS.SYS

Tcopy will prompt you to insert the source disk and touch the
SOURCE box. Then you will be prompted to insert the Target
disk and touch the TARGET box. Tcopy may repeat this
several times, depending on the amount of E-disk memory
available.

When Tcopy is finished, you will be returned to the first screen.
You can choose to CONTINUE, QUIT, or seek HELP.

Working your way through the HELP menus will assist you in
learning more about the Tcopy program. Touching QUIT will
return you to the FDOS prompt.

CAUTION

1-8

If Tcopy is aborted or if the disk is removed from the drive

during a copy, some of the files may be lost or the directory of

the target disk may be corrupted. Use the FUP/P option to

remove any ‘temp ent) files from the directory. If the directory

is unreadable, the disk must be reformated using the FUP/F

option.

Getting Started

Writing a Program

Use the BASIC interpreter’s editor to enter and debug this program.
Before exiting the BASIC interpreter, run the program and note the
time required for execution, then save it as “MF0:SAMPLE.BAS”.

Do not remove the disk from the Controller’s disk drive until you have
finished this exercise.

Enter the BASIC interpreter program by typing

FDOS> BASIC

Type in the sample program:

Wa

PRINT "Example xbasicyibasic program with line numbers”
RINT "START" \ T

¢

n
c
t
n

4
x
2
0

K
R
t
*
A
W

ww

ro
r

R 3 CHRS$(13);
3+4-5
000

1 705

SS
BI

SY
AR

SE

ve
er

3 8

105 T1 = TIME
110 PRINT ‘Elapsed time was ";(T1 - T) / 1000; “seconds.”
120 END
1000 RETURN

To return to the Ready prompt, press (CTRL) /C.

The program computes a number, then loads that number into all
elements of a five-element array. This is repeated 1000 times. The loop
counter’s value is displayed on the screen while program execution
time is calculated. The system clock value is stored at the beginning and
end of program execution, and some math 1s performed. Execution
time is displayed on the screen at the end of the program.

Getting Started

Before running the program, make sure to clear the Page Mode
Button. If the button is lit, the program will not run properly. Type
RUN to run the program.

C >
Read
RUN 4
Exanp le xbasic/ibasic program with line numbers

Elapsed time was 16.01 seconds.

Ready

\> y,
er)

Using the BASIC interpreter is one way of entering an Extended

BASIC program. Other options are possible, especially if you wish to

take full advantage of the program statements that are unique to

Extended BASIC.

Before exiting the BASIC interpreter to FDOS, save your program by

typing

Save “MFO: SAMPLE.BAS”

Getting Started

Compiling a Program

Now that the sample program has been entered and run, let’s compile
it. First exit to FDOS and make sure that the mini-floppy disk drive 1s
the System Device by typing the following:

FUP MFO: /A

Remember to terminate each command line by pressing (RETURN).

Now run the BASIC Compiler program by typing the following from
the FDOS) prompt:

XBC

Once the BASIC Compiler program is started, it will respond with:

a ~
Extended BASIC Compiler Version x.y

XBC >

Let’s compile SAMPLE.BAS. Enter the following line at the XBC)
prompt:

=SAMPLE

The compiler should respond like this:

— +)
XBC > =SAMPLE
Total of O errors in compilation.

What you just did was to compile the BASIC program
SAMPLE.BAS, putting the object code (compiler output) into the file
“MF0:SAMPLE.OBX”.

Since the compiler program returned zero errors in compilation, you
can assume that your program compiled correctly. The next step is
linking.

1-11

Getting Started

Linking

We will link the program SAMPLE.BAS with the Linking Loader
program, XLL.FD2. At this point, you should have the FDOS
prompt on the screen. Run the Linking Loader program by typing:

XLL

After the XLL program is loaded into the Controller’s memory, the
screen should look like this:

=
(cr ~

FDOS >XLL
Extended BASIC Linking Loader Version x.y

XLL >

In response to the XLL prompt, enter each of the following command
lines:

INCLUDE SAMPLE
OUTPUT SAMPLE
FAP
GO

The XLL program now begins the loading process. The first command
line tells XLL to use the object file created by XBC as its input. The
second line tells XLL to name the output file SAMPLE.FD2. The
third line tells XLL to display the load map. The fourth line tells XLL
to begin. When XLL finishes, control will return to FDOS.

The XLL program has now converted your program into machine
executable format, added the header information that allows the

Extended BASIC Runtime System program to be loaded
automatically, and written the completed file on the disk. The load
map, with program information, is displayed and the program is ready
to run. See Section 5 for a complete discussion of the load map.

Getting Started

Running the Program

Running the program is simple. From the FDOS? prompt, type:

SAMPLE

The screen should look like this:

. >)
FDOS >SAPIPLE
exaaple xbasic/ibasic program with line numbers

ELAPSED TIME WAS 11.02 SECONDS.
FDOS)

> —)
Compare the execution time for the compiled program with the
execution time when the program was run by the BASIC interpreter.
Which is faster?

Getting Started

GETTING FULL USE OF EXTENDED BASIC

By now you have seen how easy it is to compile a BASIC program
written for use with the BASIC interpreter. The example program
showed a clear-cut speed advantage after compilation and linking.
These are only some of the advantages offered by the Extended BASIC
Language.

Taking full advantage of the features offered by Extended BASIC
requires new statements and a slightly different syntax. The new syntax
is called Extended Syntax. It permits the BASIC programmer to use
variable names that are longer than two characters and permits
program labels instead of line numbers for branch instruction targets
(ike GOTO and GOS UB). Other syntactic options are offered as well,
and are discussed elsewhere in this manual.

Let’s look at a few of the advantages offered by the extended syntax
option and Extended BASIC’s control flow statements. The Getting
Started Disk contains an IBASIC program stored as the source file,
LACE.BAS. You may use this program to compare the readability of
Extended BASIC’S extended syntax.

Create a disk file containing the following program using the System
Editor program (EDIT.FD2). If you aren’t familiar with the System
Editor, you can find a good tutorial in Section 6 of the 1722A System
Guide.

O If you don’t like typing, omit the lines beginning with “!”.

O The keywords and statements must be entered exactly as shown.
The indentations are for visual clarity and need not be entered as
shown.

Getting Started

At the FDOS) prompt, type

EDIT LACE1.BAS.

' clear screen and graphics plane
PRINT CHR$(27)3 "[2J
ERAGRP (0X) \ GRPON

! initialize constants
xcenterZ = 320% \ ucenter’é = 112%
xscale=120 \ yscale = 100
deg to_rad = PI / 180

LOOP

! gmake 20 different variations
FOR no pt = 2% TO 212

ERAGRP (02)
!' calculate number of degrees between points - angle inc
angle_inc = 360 / no_of_points%

! for each point
FOR curr_pointZ = 0Z% TO no_of_points% - 12

! calculate radian angle of current point - angle
angle = curr_pointZ ® angle_inc * deg to rad

! compute x and y coordinates of current point
curr_xZ% = xcenterZ% + xscale # SIN(angle)
curr_y% = ycenterZ + yscale * COS(angle)

1 from next point to the rest of the points
FOR next_pointZ% = curr_point% TO curr_pointZ + no_of pointsz

! move to current point
MOVE (curr xZ, curr _yX%)

' calculate angle from current point to next point
next angle = next_pointZ *® angle_inc * deg _to rad

! calculate next x and
nextx% = xcenterZ + xscale ® SIN(next_angle)
nexty% = ycenter% + yscale * COS(next_angle)

! draw line to next point
PLOT(nextxZ, nexty%, 1%)

NEXT next_pointZ

NEXT curr_pointz

NEXT no_of_pointsz

! start all over again
OOP

Now that you’ve entered the program, notice how readable the long
variable names make it. Next, notice how the indented block structure

makes it easy to associate each of the nested FOR statements with its
own NEXT statement. Last, look at the use of the LOOP-ENDLOOP

statements to create a loop with 20 variations.

Getting Started

Save the file by typing

CESC> :W CRETURND

Exit the editor by typing

CESC> :@ (RETURN)

Compile LACEI.BAS by typing

FDOS> XBC
XBC> =LACE1

Oops! Look at all those error messages! What’s wrong? Ooh-ooh I
forgot the command-line options that tell the compiler that the source
program used extended syntax and no line numbers. Try again.

XBC
XBC) =LACE1/E/NL

Yes, that was it. No compiler errors this time. Now to link it. Use the
linking loader to link and load the object file.

XLL
XLL> I LACE
MiL> O LACEL
XLL> FIND BASIC
XLL> G

If everything went right, you should have the FDOS prompt on the
display again. If so, run the new program:

FDOS> LACEI

Type (CTRL)/C to exit LACE].

NOTE

It’s impossible to even attempt to show the expected program
results in printed form.

Getting Started

What About Errors?

Typically, when the compiler detects an error, an error message
appears on the display indicating the line number where the error
occurred. If an error does occur, take note of the line numbers

displayed. Then use the System Editor’s “G” command to go to that
line and correct the error. An error that occurs during the linkage
process will either appear in the linkage utility program’s error file or
on the display.

It’s not likely that an error will appear in the sample program because it
was written and debugged using the BASIC interpreter. If the program
were written using the system editor, the BASIC interpreter would not
check the syntax. Syntax errors would be found by the compiler. As an
experiment, try introducing a deliberate error, such as commenting out
the NEXT statement or dropping a quote mark from a PRINT
statement.

The compiler’s error messages are listed in Section 6 and on the Quick
Reference Card. Some of these are considerably different from those
issued by the BASIC interpreter. The quantity of error messages issued
by the compiler can also vary greatly, depending on the nature of the
error. For example, forgetting to include the /NL command-line
option will cause a flurry of error messages, even from a small
program.

Getting Started

Simplifying the Process

While the actual processes involved are not tremendously complicated,
there is a certain amount of time spent typing command lines into the
Controller or just waiting for programs to finish running. Here are
some suggestions that can minimize some of the delays and relieve
some of the tedium of repeatedly typing the same thing over and over.

Using E-Disk or a Winchester

Long programs may take significant amounts of time to compile and
link. Much of this time is spent writing the various output files onto the
mass-storage device. You can save time by using a storage medium
with high I/O throughput capability, such as the E-Disk or the
optional Winchester fixed disk drive.

Using Command Files

Typing information into each program at the appropriate time
consumes a lot of time when compiling and linking a program. A
command file, written for a specific program, takes the drudgery out of
typing the same thing, over and over again as a program is developed
and debugged. Use the system editor to create the command file. A
working command file is supplied on the Extended BASIC
distribution disk. This command file (XBCC.CMD) can be used to
compile a BASIC program originally written for Interpreted BASIC.
Other command files may be found on the 17XXA Instrument
Controller System disk, in the System Guide, and at the end of Section
3 of this manual.

Conclusion

You have learned how to use Tcopy to copy individual programs, and
have presented and explained the command lines for the compiler and
linker programs. We have compared the increased speed in execution
of a compiled and linked program to the same program run by an
interpreter. Finally, we have explored a few of the features that are
unique to the BASIC compiler.

Section 2

Extended BASIC

CONTENTS

INtrOduction 2... cc ccc ccc cece eee eee eee nees 2-3
The Extended Basic Language00 eee eee 2-4
Program Development with Extended BASIC 2-6
Language Names cece cece cece cence eeees 2-6

Conventions Used in This Manual0000 ee eee 2-7
Statement Descriptions cece eee ee eee eee 2-7
How to Read Syntax Diagrams 2. cee eens 2-8
Notation Conventions 0c cc cece cece eee eeeee 2-10

Extended BASIC Syntax cc cece eee eens 2-11
Standard Syntax 2... . cece ccc eee eee ee eees 2-11
Extended Syntax /E Option 000 eee eee eeee 2-12

Statement Labels ec ccc eee etc eee 2-12
Long Variable Names in XBASIC04.4. 2-13
Long Variable Names In Extended Syntax 2-14
Continuation Lines ccc cece cece cee eee eee 2-15

Omitted Line Numbers /NL Option 2-17
Automatic Integer Conversion /I Option 2-18

Hferences in Variables 0... cece cee tee eee eees 2-19
(> Variable ArrayS 2.0... 0. ccc ccc cece ee eee nee 2-19

~ ERR$ System Variable 0.0... ccc cc cee cee eee eee ee 2-20
Modified Statements 0. ce ccc eee eet eee enes 2-21
CALL Statement cee etnies 2-2]

Parameters 2.0... ccc ee cece eee cee eee e eee eens 2-22
Global Variable and Subroutine Names 2-22

CONTENTS, continued

2-2

DIM Statement 0... ec eee eee ae 2-25

Three Dimensional Arrays Aer... . 6. eee ee eee 2-25
Array Use in Subroutines 0... ccc eee eee eee 2-25
Conformal Dimensioning000e eee e ee eeee 2-26
Redimensioning Main Memory or Common Arrays 2-28
Redimensioning Virtual Arrays 00 ee eee 2-28

FOR and NEXT Statements0...........000- 2-29

ON-GOTO Statements 0... ccc ee ee cee 2-30

REM Statement 0.0... ccc cee ce cee cee eee 2-31

RESTORE Statement 0.0... ce ee ee ee ee ee 2-31

STOP Statement ... 0... ee ee ee ee ee eee 2-31

TRACE Statement 0... ccc ee ec ce cee eee 2-32

Branch Statements 0... 0... cece eee ee et ee ee eee 2-32

Extended BASIC Statements 0... cee eee ee ees 2-34

SUB Statement 0... cc ec ee ee eee ee ee eee 2-35

SUBEND Statement 0... cee eee ee ec eee 2-36

SUBRET Statement 0... cee ee ce ee ees 2-37

ON-SUBRET Statement0....0..... 0. eee 2-38

Control Flow Statements 0... cee eee eee ee ee 2-40

Extended IF Statement0...... 00. ce eee 2-40

LEAVE Statement 0... .. 0... cece eee ee ee eee ~. 2-42

LOOP Statement 0... eee ee ee eee 2-43

REPEAT Statement 0... 0... cece ce ec eee 2-44

SELECT Statement00.0 00... ee ee ee ee 2-45

WHILE Statement 0... ee ee ee ee 2-48

Statements Unique To Extended BASIC 2-49
EXPORT Statement 00... ce ee eee eee ee ees 2-49

IMPORT Statement 0... 0. ccc ee ee eee eee 2-51

Unused Interpreted BASIC Instructions 2-52

Extended Basic

INTRODUCTION

Extended BASIC, Compiled BASIC and Interpreted BASIC are
similar forms of the BASIC language. Many descriptions in the Fluke
BASIC Manual apply to all three forms. The Reference volume of the
BASIC manual set covers Extended, Compiled, and Interpreted
BASIC. In the Reference volume, language elements that are unique to
XBASIC are marked

(XBASIC)

in the upper right corner of the page.

A Quick Reference Card, included in the manual set, contains a
summary of the functions of Interpreted, Compiled and Extended
BASIC. Use the reference card along with the Fluke BASIC Reference
manual.

Section 2 of the Extended BASIC Manual introduces the Extended
BASIC Language and explains Extended BASIC Syntax and
programming statements. This section redefines statements that are
similar to Interpreted BASIC but function differently, describes
statements shared with Compiled BASIC, and describes statements
unique to Extended Basic. The final pages list Interpreted BASIC
statements that are not used in Extended BASIC.

Extended BASIC has some error codes that are different from
Interpreted BASIC. These are listed in Section 6.

Unlike Interpreted BASIC, which uses only the interpreter program,
Extended BASIC programs are developed using several programs: an
editor, a compiler, and several linkage utility programs. Other sections
of this manual describe the execution of Extended BASIC on the
Instrument Controller, the program development process, and the
linkage utility programs.

2-3

Extended Basic

The Extended Basic Language

2-4

Extended BASIC is a compiled language, derived from Fluke
Compiled BASIC. Extended BASIC utilizes the extended memory
available in the Fluke 1722A Instrument Controller. Programs
developed in Extended BASIC can occupy almost the entire four
megabytes of memory that can be addressed by the TMS-99000
processor.

The extended version of BASIC programming language uses the
BASIC compiler to translate a program into machine-executable code.
The compiled version of the BASIC programming language, used in
both Extended and Compiled BASIC, is essentially the same as the
interpreted version. The key difference between compiled and
interpreted languages 1s:

O The BASIC interpreter program translates a BASIC program into
machine-executable code one line at a time while the program isin
progress.

O The BASIC compiler program translates a BASIC program all at
once, before the program is run. When the translated program is
run, it is actually executed by the Runtime System Program.

The advantage of a compiled program is that program execution is not
slowed waiting for translation at each step. A compiled program
operates much faster than an interpreted one. This speed may make a
critical difference in applications that cannot tolerate the processing
delays of the Interpreted BASIC language.

The use of extended memory causes Extended Basic to be somewhat
slower than Compiled Basic. Extended BASIC 1s useful in applications
requiring very large programs where speed is not a primary
consideration.

Because of the overhead involved in executing a program from
extended memory, Extended BASIC is not as fast as Fluke Compiled
BASIC; but it 1s faster than Interpreted BASIC.

Extended Basic

Compiled programs are more compact than interpreted programs. The
compiler makes more efficient use of space because it can translate the
entire program at one time. There is more memory space available,
since the interpreter program does not have to be available at the same
time as the program.

Extended BASIC programs have the ability to use true subroutines
written in Extended and Compiled BASIC. However, Compiled
BASIC subroutines must be recompiled by XBC, the Extended
BASIC Compiler, before linking. True subroutines may be developed
separately from the calling program, may have parameters exchanged
between them and the calling routine, and may have local variables
that are not accessible from other program segments. True subroutines
may be maintained in libraries for general use. True subroutines are
defined by SUB and SUBEND statements that bracket them.
Interpreted BASIC can use true subroutines, but only those written in
another language such as FORTRAN or 99000 Assembly, not BASIC.
Extended BASIC can use local subroutines like normal BASIC, or
true subroutines written in FORTRAN, 99000 Assembly, Compiled,
or Extended BASIC. Unlike CBASIC subroutines, XBASIC

subroutines cannot be called from FORTRAN or Assembly programs.

Extended BASIC improves readability by allowing extended program
line syntax and long variable names. Since the BASIC compiler
program does not rely on line numbers, Extended programs may be
written using descriptive labels instead of line numbers as targets for
branch instructions. The BASIC compiler also allows source program
lines to be continued on more than one display line. This permits the
programmer to impart a visual structure to the program for better
comprehension. Last, the interpreter program’s two-character
restriction on variable names is lifted, allowing descriptive variable
names to be used.

Extended BASIC shares several capabilities with Compiled BASIC
that are not directly related to the compiled nature of the language.
Statements shared with Compiled BASIC simplify writing program
segments involving loops and conditional branching. New statements
in Extended BASIC (IMPORT and EXPORT) declare and use global
variables.

Extended BASIC statements and syntax (both standard and extended
syntax) are all extensions to ANSI Standard BASIC. Extended
BASIC is a true superset of Compiled BASIC, except in one minor
respect. Extended BASIC works exactly like CBASIC, but it allows
longer XBASIC subroutine names in CALL statements.

2-5

Extended Basic

Program Development with Extended BASIC

Extended BASIC programs are developed using several utility
programs and run with a separate Runtime System Program. An
editor program or the editor mode in the BASIC interpreter is used to
create and modify the source program. A compiler program translates
the source code into an object code file. A linking loader program is
used to construct an executable file by combining object code files and
subroutines and configuring them for FDOS. The BASIC Runtime
System program is loaded into memory and run with the program that
results from compiling the source code. All of these programs are
included in the Extended BASIC package.

Language Names

2-6

There are three versions of the BASIC programming language
available for Fluke Instrument Controllers. The names of these

versions as used in this manual are:

Interpreted BASIC Also referred to as BASIC, Fluke
Enhanced BASIC, or IBASIC. This is the

standard version of the BASIC language.
It is the closest version to standard ANSI

BASIC.

Compiled BASIC Also referred to as CBASIC. This is the
compiled version of the BASIC language.
It is faster than Interpreted BASIC, and
uses less memory.

Extended BASIC Also referred to as XBASIC. It is the
language described in this manual.
XBASIC is similar to Compiled Basic.

Extended Basic

Conventions

CONVENTIONS USED IN THIS MANUAL

The following paragraphs describe the conventions used in this
manual. Subsequent sections may have conventions of their own,
which are defined on a per-section basis.

Statement Descriptions

Each Extended BASIC statement is described in a standard format.

O Each statement is described in this manual and in the Reference

volume of the IBASIC/CBASIC/XBASIC manual set.

O The statement description in this manual is an abridged
description. The purpose of the statement is described and an
example of the command-line syntax is given.

O The statement description in the Reference volume is the complete
description. This description contains the syntax diagram, an
example of the command-line syntax, a complete description of the
statement, and in most cases, some programming examples.

2-/

Extended Basic

Conventions

How to Read Syntax Diagrams

A syntax diagram is a graphic representation of the construction of a
valid command or statement in a programming language. The syntax
diagram is a shorthand way of writing down all the rules for using the
elements of a language. Since syntax diagrams are used throughout
this manual, learning to read them can be a great time saver.

2-8

Coon)

Caerum
Cine)

j filename |

(explanation)

Words inside ovals must be entered exactly as they are
shown.

Words inside boxes with rounded corners indicate a
single key to be pressed, such as RETURN or ESC.

This indicates a space in the statement. (Press the
spacebar.)

To create a control character, hold down the control key
(CTRL), then press the other key. This one is a Control C;
it causes a break in the program.

A box with lower case words inside means that you supply
some information. In this case, you would enter a file
name.

Words in parentheses are explanations of some kind.
They give added information about the nearest block or
path.

Extended Basic

Conventions

From the left, any path that goes in the direction of the arrows is a
legitimate sequence for the parts of a statement. This sample shows the
correct syntax for naming a file. The translation is given below.

(no name) (detault extension)
eS 7N\

>
(no extension)

NG) 1)

(maximum 6 characters) (maximum 3 characters)

0 A line exits the top of this diagram with no keyboard input. This
indicates that it is possible to not specify the file name or its
extension. In this case, the file would have no name, and the system
would assign a default extension.

O Further down the diagram, you can see that there are other
possibilities. You can chose up to six characters for the file name,
moving once through the loop for each character chosen. Up to
three characters can be chosen for the extension.

O File name and extension characters can be any combination of
letters, digits, the $ sign, and spaces.

O The file name and extension must be separated by a period as
shown in the oval block at the top center.

O The remark “no extension” means that it is not necessary to specify
an extension, even though a file name is given. Notice, however,
that this remark occurs after the period, so the period is necessary if
a name is specified.

O Here are some examples of valid file names according to the syntax
illustrated in the diagram:

TESTIN.$3A 1722A.RAC $$$$$$.$$$

Extended Basic

Conventions

Notation Conventions

The conventions listed here are used for illustrating keyboard entries

and to differentiate these entries from surrounding text. The braces, { };

brackets, []; and angle brackets, () are not part of the keystroke

sequence, but are used to separate parts of the sequence. Do not type

these symbols.

(XXX)

(XXX) /Y

[xxx]

XXX

{xxx}

(xxx)

2-10

Means “press the xxx key”.
Example: (RETURN) indicates the RETURN key.

Means “hold down key xxx and then press y”.
Example: (CTRL)/C means to hold down the key
labeled CTRL, and then press the key labeled C.

Indicates an optional input. Example: [input filename]
means to type the name of the input file name if desired. If
no file name is input, a default name will be used.

Means to type the name of the input as shown.
Example: BASIC means to type the program name
BASIC as shown.

Indicates a required user-defined input.
Example: {device} means to type a device name of your
choice, as in MFO: for floppy disk drive 0.

This construction has two uses:

1. As a separate word, (xxx) means that xxx 1s printed
by the program. Example: (date) means that the
program prints today’s date at this point.

2. Attached to a procedure or function name, (xxx)
means that xxx 1s a required input of your choice; the
parentheses are a required part of the input. Example:
TIME(parameter) means that a procedure
specification is the literal name TIME followed by a
parameter that must be enclosed in parentheses.

Extended Basic

Syntax

EXTENDED BASIC SYNTAX

Extended BASIC programs may use the same syntax as interpreted
BASIC programs (line number plus program statements). In addition,
there are two syntactic options available: Standard Syntax and
Extended Syntax.

O Standard Syntax with the BASIC compiler allows the use of
program labels or line numbers as branch instruction targets.

O The Extended Syntax command-line option allows continuation
lines and long variable names.

O The Extended Syntax option allows a free-form program layout
that improves readability. Program line numbers may also be
omitted when the /NL command-line option 1s used.

Using any of the Extended Syntax features requires a command-line
option string when compiling. All of the command-line options are
described in Section 3 of this manual. No options are needed to
accommodate the additional Standard Syntax. Standard Syntax and
Extended Syntax are described below.

Standard Syntax

Standard Syntax allows the standard BASIC syntax as used in the
interpreted version of BASIC. If you have a program that runs using
the BASIC interpreter, the Standard Syntax is all that you need to
compile the program.

O Command-line options are not needed to handle this syntax
feature.

Extended Basic

Syntax

Extended Syntax /E Option

The Extended Syntax feature frees the programmer from the
restrictions of single lines and two-character variable names of
conventional BASIC.

The /E command-line option must be used when compiling programs
using Extended Syntax (long variable names and continued lines). See
Section 3 of this manual for additional information on the various
command-line options.

program line label + Tr? —>| RETURN |

—>4 command line

>

—f

—p>} line no. > Lin remark line +

commandline >> statement_ 7

pote |

Lamm RETURN

Statement Labels

label line —> id ROC »

A statement label is a name that identifies an Extended BASIC
program line. The label may be used in place of a line number in any
branch instruction. (See Branch Statements in this section.)

O A statement label consists of any legal variable name, followed by a
colon character (:).

O A statement label may only appear at the beginning of a
statement.

O A statement label may appear as the only component on a line.

O These are all legal statement labels:

a:
al:

begin:
dvm:

2-12

Extended Basic

Syntax

Long Variable Names in XBASIC

The Extended BASIC language allows variable names of any length,
unlike Interpreted BASIC, which allows only two. Longer, more
descriptive variable names improve the readability of the program.

O The first eight characters of a name must be unique. For example:

CONTROLLOCK
CONTROLLER

are considered to be the same variable.

O Thecase ofall variable names is ignored. For example, these names
are all be considered to be the same:

NAME

name

NaMe

naME

O Variable names may also include an underline character to
improve readability. These variable names have been clarified with
the addition of underline characters:

PAPER _ FEED
OHMS— ADJUST
TOTAL_INPUT__VALUE

2-13

Extended Basic

Syntax

Long Variable Names In Extended Syntax

The characteristics of variable names change when Extended Syntax 1s
used.

O When long names are used, spaces, tabs, parenthesis, or arithmetic

a)

operators must be used around all keywords, variable names,
subroutine names, and numbers. For example,

IFCOUNTER=SCORE THENMARKER=MARKER +1

won't work if Extended Syntax is used. It is impossible for the
compiler to determine what to do. The example statement needs to
be clarified by adding spaces:

IF COUNTER=SCORE THEN MARKER=MARKER+1

The Extended Syntax allows variable names to begin with
keywords.

Variable names may not begin with the letters FN, even though the
Extended Syntax is used. The BASIC Compiler program will
interpret all strings that begin with FN as user-defined functions.

Extended Basic

Syntax

Continuation Lines

In Extended BASIC, program structure is not tied closely to line
numbers. As a result, statements may be longer than the width of the
Controller’s screen. The Extended Syntax option allows a
programmer to insert (RETURN) characters into a program line to
improve readability without having those (RETURN) characters
signify the end of the line. (RETURN) characters used for line
continuation are preceded by an ampersand (&) character.

O The embedded (RETURN) characters are required if the BASIC
source program 1s going to be printed, manipulated using the File
Utility program, or used with other facilities with a fixed line length
that is shorter than the Extended BASIC line.

For example, trying to print a 150-character command line on an
80 column printer will cause the printer to print the first 80
characters of the line over to the right margin, then print the
remaining 70 characters on top of each other in the last column.
Imbedding (RETURN) characters in the text (using the &
character) will allow the printer to print the entire program line on
more than one printed line.

O Aside from its function as a continuation marker, an ampersand 1s
functionally equivalent to a space in the program line.

O All statements may be continued.

O A single language element, (a keyword, variable name, string, or
numeric constant) may not be continued.

For example:

100 PRINT "A long string like this one say NOT &
be continued to a new line”

The example program line is illegal because the string is broken in
mid-line. You can overcome this problem by breaking the string in
two and concatenating the string.

100 PRINT "A long string like this one gay" &
+ "be continued to a new line like this."

2-15

Extended Basic

Syntax

2-16

The compiler will support a minimum of 24 continued lines (80
character line). The total number of continued lines could be as
many as 200 per initial line, depending on the amount of memory
available.

The maximum length of a continued line is 2000 characters. A line
can be continued indefinitely until the maximum character count Is
reached.

A continued line, no matter how many times it is extended to a new
display line, is considered one line for the purposes of error
reporting.

Remarks (identified by the ! character only) may be placed
anywhere in a continued command line that a space character is
legal, and terminated with a continuation character (&). This
allows remarks to be placed into continued lines as shown below:

IF PAGE LENGTH (LINE _COUNT THEN ! IF AT END OF PACE &
leEMee FORIMFEEDS ! SKIP TO NEXT PAGE &

The BASIC Compiler program does not require the imbedded
(RETURN) characters. Only line-length limited programs such as
the File Utility program, and peripherals such as line printers,
require imbedded (RETURN) characters.

For example, the Extended Syntax option (with long variable names
and continued lines) allows the programmer to create a single
Extended BASIC command line that looks like this:

1% 'BEGIN CAP COUNTER PROCEDURE
IF BOTTLE COUNTER)» CAP COUNTER &
ase GOTO 200 | THE LABEL CHECKING PROCEDURE &

‘exp Gate RESET ! TO RECYCLE THE BOTTLE CAP SEQUENCE &

1END PROCEDURE.

Extended Basic

Syntax

Omitted Line Numbers /NL Option

An Extended BASIC programmer has the option of using line
numbers on every statement, as in Interpreted BASIC, or using line
numbers only as needed for statement labels.

The /NL command-line option specifies to the BASIC Compiler
program that line numbers are not used. Command-line options are
discussed in Section 3 of this manual.

O If the /NL option is not used, a line number must appear at the
start of every non-continued line.

O Line numbers (if used) must be in increasing numerical order.

O All line numbers in a single source program file must occur in
increasing numerical order.

O Line numbers may not be duplicated within a single source
program (including true subroutines which are part of the single
source file).

O There are no restrictions to duplicating line numbers in true
subroutines that are compiled separately.

With the /NL option, the following code segment is legal.

START:
IF A=12 THEN £

GoTo FINISH &
SE

GOTO START 2%
FINISH:

If line numbers are not used, system messages will refer to lines in
sequential order from the beginning of the program. For example, a
message referring to an error in line 13 will refer to the thirteenth line
from the top of the program, not a line numbered 13.

2-17

Extended Basic

Syntax

Automatic Integer Conversion /|I Option

2-18

The BASIC Compiler program can convert eligible constants into
integers, whether or not a % character follows the number. Bypassing
the % character saves program space and reduces the programmer’s
typing time. Integer operations typically execute more quickly than
floating-point operations, so a speed advantage Is realized, too.

The /I command-line option invokes the automatic integer feature of
the BASIC compiler. The command-line options are described in
Section 3 of this manual.

O Any integer will be stored as an integer, with or without a %
character following it.

© A number may be exempted from conversion to an integer by
including a decimal point or an exponent field.

For example, these two numbers will be stored as integers:

5
312

To reserve these two numbers as floating-point numbers, include a
decimal point or an exponent:

5.
312E0

Extended Basic

DIFFERENCES IN VARIABLES

Extended BASIC is similar to Compiled Basic in the treatment of
variables. Both differ from Interpreted Basic in the expansion of
Variable Arrays to three dimensions, and in incorporating the system
variable, ERR$. In addition, if Extended Syntax is used, a variable
name may consist of more than two characters.

Variable Arrays

In Extended BASIC, variable arrays may have three dimensions. For
example, it is possible to have an array element

A(2,9,6)

Other specifications that apply to dimensioned arrays in Interpreted
BASIC (with the exception of name length) apply as before.

For the syntax of the DIM statement associated with three-
dimensional arrays, see the DIM Statement elsewhere in this section
and in the Reference volume.

2-19

Extended Basic

ERRS$ System Variable

2-20

The ERR$ System Variable contains a string that is the name of a
module where an error occurred. This is a companion to the ERR
System Variable that exists in IBASIC, which contains the error
number. For subroutines, the name that ERR$ will contain is the one
specified by the SUB statement. (Refer to The SUB Statement
elsewhere in this section.) For the Main program segment, the name
will be $MAIN$.

For example, suppose an arithmetic overflow occurs in a subroutine
named SCORE. Checking the ERR and ERR§ variables, shows that
they contain

ERR=601 (Arithmetic Overflow)
ERR$=SCORE

This variable is useful in program development and in error handling
subroutines. It allows the programmer to determine the source of an
error. When properly written, the error handler may output its own
error messages, perhaps tailored to the exact experience level of the
end user of the program.

Extended Basic

Modified Statements

MODIFIED STATEMENTS

The statements described below are similar to Interpreted BASIC
statements, but operate slightly differently in Extended BASIC
programs. Only the differences between Extended and Interpreted, or
Extended and Compiled statements are described.

Some statements in Interpreted BASIC operate in both the Immediate
Mode and in the Run Mode. In Extended and Compiled BASIC, these
statements only operate in the Run Mode. If this is the only difference,
the statements are not described here.

Use these statement descriptions to supplement the descriptions that
are in the Fluke BASIC Programming Manual. The statements are
described alphabetically.

CALL Statement

The CALL Statement works slightly differently in IBASIC, CBASIC
and XBASIC.

With CBASIC:

O The number of parameters exchanged with the calling routine is
not limited to 10.

O Subroutine names may be of any length. In CBASIC, only the first
six characters of the subroutine name are significant.

With XBASIC:

O Subroutine names may still be of any length, but different types of
subroutines recognize different numbers of characters as
significant.

O Forcalls to Assembly or FORTRAN subroutines, only the first s1x
characters of the subroutine name are significant. For calls to
XBASIC subroutines, the first eight characters are significant.

2-21

Extended Basic

Modified Statements

Parameters

There is no limit to the number of parameters that may be exchanged
between a true subroutine (a subroutine bracketed by SUB and
SUBEND statements) and its calling routine.

Global Variable and Subroutine Names

2-22

In Extended BASIC, as in Compiled BASIC, variable and subroutine
names may be of any length, but are limited in the number of
significant characters. Global variable names (used in EXPORT and
IMPORT statements) are significant to 8 characters. All names are
converted to upper case in the output file.

BASIC subroutine names are also significant to 8 characters and are
converted to upper case in the .OBX file.

BASIC CALL statements that refer to machine code subroutines
should use names that are not more than 6 characters long. A long
name in the .OBX file, generated by the Extended Basic Compiler, will
not be matched by the Extended Library Linker Program with the
shorter name in the .OBJ or .LIB file. (See Section 3 for a discussion of
file types.)

Note that even though longer subroutine names are allowed to
improve readability, only the first six or eight characters are significant
in subroutine names.

For example, the two names

CONTROLLER
CONTROLLOCK

appear to be different, although the first six characters are the same. If
they are calls to Assembly or FORTRAN subroutines, the first six
characters are significant, and they will be considered the same
subroutine. If they are calls to XBASIC subroutines, or global variable
names used in EXPORT and IMPORT statements, the first eight
characters will be significant, and two different subroutines will be
called.

Extended Basic

Modified Statements

To simplify programming, use the following rules when Assembly or
FORTRAN routines are called:

O Remember that Extended BASIC converts subroutine names to
upper case. This means that an Assembly program should use
upper case labels for entry points that may be called from BASIC.
The FORTRAN Compiler always generates upper case labels for
subroutines, so this should not be a problem.

O IfaCALL statement refers toa FORTRAN or Assembly routine,
remember that the subroutine name used in the CALL statement
should be less than or equal to 6 characters long. A long name in
the .OBX file, generated by the Extended Basic Compiler, will not
be matched by the Extended Library Linker Program with the
shorter name in the .OBJ or .LIB file.

2-23

Extended Basic

Modified Statements

COM Statement

2-24

The COM statement is used for sharing variables between chained
programs. In addition, Extended BASIC programs also use the COM
statement to make certain variables accessible to both calling routines
and true subroutines.

O The COM statement must be used first in the Main program
segment to assign variables in common. After that, any subroutine
can access these variables in common. For example, in the Main
program, this statement

COM A, B%(40)

assigns the two items: the real variable A, and the array B%, with 41

elements in common to all program sections. Later, a subroutine
may use all or some of these variables with another COM
statement. This statement

COM Q, G%(40)

in a subroutine specifies that the real variable and array from the
Main program segment may also be used in this subroutine.

Note that the actual names used in the subroutine COM statement
are not significant. In the example above, the subroutine’s variable
Q is the same as A tin the Main program.

O All COM statements (whether in a main program, a subroutine, or
a chained program) must allocate the same amount of space (the

same number of variables of the same type).

O No strings may be used with the COM statement.

Extended Basic

Modified Statements

DIM Statement

In Extended BASIC, variable arrays may be dimensioned to three
dimensions, and arrays may be exchanged by reference between calling
routines and true subroutines.

Three Dimensional Arrays

The DIM Statement may be used to dimension arrays up to three
dimensions, as opposed to two dimensions in Interpreted BASIC.
(Refer to the earlier discussion of Variable Arrays for more
information.)

For example, this statement:

DIM A(5,4,8)

defines a three-dimensional array of six elements (0 through 5), with
each element containing five sub-elements (0 through 4), and each sub-
element containing nine sub-sub-elements (0 through 8). Refer to
Appendix A for the supplementary syntax diagram for dimensions.

Array Use in Subroutines

The DIM statement 1s changed to allow subroutines to use arrays that
are passed by reference from the calling routine. There are two ways in
which this is accomplished, conformal dimensioning and
redimensioning.

2-25

Extended Basic

Modified Statements

Conformal Dimensioning

2-26

Conformal dimensioning is the recommended method for passing
arrays by reference to subroutines. The following program segment is
an example of conformal dimensioning:

100 SUB ABC(KZ(), 12)
110: DIN KX)

Line 100 defines a true subroutine named ABC with two parameters
exchanged between it and its calling routine (see SUB Statement). The
DIM statement in line 110 specifies that the variable array K%() will

have the same number of dimensions (subscripts) and the same
dimension limits as it does in the calling routine.

O The variable array may bea virtual array or a normal array in Main
memory or Common memory.

O The number of dimensions(subscripts) used in the subroutine must
match the dimensions in the array. For example, if K%() is a two-
dimensional array, but the subroutine tries to use it as a one-
dimensional array, an error will result.

O The dimension limits of the array will be the same in the subroutine
as in the calling routine. In the above example, if the original
dimension on K%() was

DIM K%(10)

in the calling routine, an attempt to use array element K%(11), will
cause a Subscript Out of Range error.

O The data type of the original array will be used in the subroutine. In
the example, K%() is an array of integer variables. An attempt to
use this array for another data type (floating-point for instance)
will result in an error.

Extended Basic

Modified Statements

O Conformal dimensioning may be used across more than one level
of subroutines. For example, a Main program segment calls
Subroutine A, which in turn calls Subroutine B. A DIM statement

in Subroutine B may be used to access an array that was originally
dimensioned in the Main program segment. The array does not
have to be used in Subroutine A in order to be used in Subroutine
B.

O An array may be originally dimensioned in a subroutine, then
dimensioned conformally in subsequent subroutines that are called
from it. The original DIM statement does not have to be in the
Main program segment.

2-27

Extended Basic

Modified Statements

Redimensioning Main Memory or Common Arrays

The second method for dimensioning a variable array in a subroutine ts
to redefine the array dimensions in the subroutine. For example, in the
following statements

100 SUB ABC(KZ(), IZ)
110 DIM KZ(100)

Line 100 defines a true subroutine named ABC with two parameters
exchanged between it and its calling routine (see SUB Statement). The
DIM statement in line 110 dimensions array K%() to a 101-element
single-dimension array.

O The new dimensions for the array only apply within this
subroutine.

O Virtual arrays may not be redimensioned with this method. An
Illegal Parameter DIM error (error 908) will occur if an attempt is
made to redimension a virtual array.

Redimensioning Virtual Arrays

If a subroutine uses a virtual array element, but conformal
dimensioning is not desired, the following method may be used:

100 SUB ABC(KZ(), I%, JX)
et DIM #1Z, KX(JX)

Line 100 defines a true subroutine named ABC, which exchanges three
items with its calling routine (see SUB Statement). The DIM statement
in line 110 dimensions the array K%() and assigns a channel number by
means of the values passed from the calling routine.

O An Illegal Parameter DIM error (error 908) will occur if the
parameter is not a virtual array or if the array is attached to a
channel other than the one specified in the DIM statement.

2-28

Extended Basic

Modified Statements

FOR and NEXT Statements

FOR and NEXT Statements operate essentially the same in IBASIC,
CBASIC AND XBASIC programs. Compiled and Extended BASIC
differ from Interpreted BASIC in two ways:

O Only one NEXT statement is permitted for each FOR statement.
Multiple NEXT statements in a FOR/NEXT loop are not
permitted.

O Exits via statements other than NEXT statements (GOTO for
instance) are permitted.

2-29

Extended Basic

Modified Statements

ON-GOTO Statements

2-30

ON-GOTO interrupt processing statements in Extended BASIC
subroutines may be nested in different subroutine levels. ON-GOTO
interrupts that have been nested within other subroutines become local
to that subroutine. This means that they are only active while the
subroutine that contains the ON-GOTO statement is processing.

In the following program fragment, the ON CTRL/C statement in the
MAIN program segment sets up a CTRL/C handler named TRAP.
Any CTRL/C interrupts received during the execution of this portion
of the program will branch to the handler at TRAP.

Within the MAIN segment, a subroutine call is made to subroutine
SUBL. This subroutine sets up a local CTRL/C handler called
SUB_TRAP. Any CTRL/C interrupts received during this portion
of the program will branch to the local CTRL/C handler,
SUB__TRAP. Once program execution returns to the MAIN
segment, the CTRL/C handler called TRAP is active once more.

PAIN:
ON CTRL/C GOTO TRAP

CALL SUBL (AZ, BZ)

STOP
TRAP:

! ctril/c handler for main

RESUME
SUB SUBL (AZ, BZ)

ON CTRL/C GOTO SUB_TRAP !goto local ctril/c handler

SUBRET
SUB TRAP:

! local ctrl/c handler

RESUME
SUBEND

Extended Basic

Modified Statements

REM Statement

The ! form of the REM statement may be embedded into continued
lines for better readability. The Extended Syntax option allows a
programmer to insert (RETURN) characters into a program line to
improve readability without having those (RETURN) characters
signify the end of the line. (RETURN> characters used for line
continuation are preceded by an ampersand (&) character.

O Remarks (identified by the ! character only) may be placed
anywhere in a continued command line that a space character is
legal, and terminated with a continuation character (&). This
allows remarks to be placed into continued lines as shown below:

IF PAGE LENGTH < LINE COUNT THEN ! IF AT END OF PAGE &
more FORMFEEDS ! SKIP TO MEXT PAGE &
[FENDI

RESTORE Statement

The RESTORE statement resets the pointer to a data item that will be
read more than once in a program. It is used in conjunction with the
Read and Data statements. In Extended BASIC, the RESTORE

statement may refer to a labeled line as well as to a line number. See the
descriptions under Branch Statements and Statement Labels
elsewhere in this section.

STOP Statement

Only the simple form of the STOP statement is allowed in Extended
BASIC. The STOP ON (line number) form of the STOP statement is
used only for interactive debugging in Interpreted BASIC programs.

2-31

Extended Basic

Modified Statements

TRACE Statement

The only form of the TRACE statement used in Extended BASIC
programs lists line numbers and subroutine names. Traces of variables
and trace results sent to a channel are not permitted in compiled
programs. The form of the TRACE statement that specifies a
beginning line number is intended for interactive debugging of BASIC
programs and is not used in Extended BASIC.

Here is an example of a trace ina Main program segment, showing line
numbers and subroutine names.

S$MAINS
@130
@145
@150
SUBI
@10
@30

Branch Statements

2-32

In Interpreted BASIC, all of the BASIC statements that involve a
branch of control may branch to a line number. In Extended BASIC,
they may also branch to a labeled line. The statements that branch are:

GOTO
ON-GOTO
IF-GOTO
IF-THEN GOTO
IF-THEN GOTO-ELSE GOTO
RESTORE
RESUME

Note that, while RESUME is not a branch statement, it is included

here for consistency. Its use of line references is similar to a branch
instruction.

The following syntax diagram shows the target that may be inserted
into any of the syntax diagrams for the statements listed above.

>| line no. t >

Lor label >|

Extended Basic

Modified Statements

O The label must be defined in the same program unit (1.e., in the
main program or a subroutine) in which it is used.

O GOTOs must be included in IF-THEN and IF-THEN-ELSE
statements to distinguish a label from a subroutine name. For
example, the statement

100 IF V=0 THEN MEASURE ELSE DISPLAY

specifies that a subroutine named MEASURE will be called
implicitly if V=0, and a subroutine named DISPLAY will be called
if V does not equal 0. To make these into branches to labels, insert
GOTOs into the same statement:

100 IF V=0 THEN GOTO MEASURE ELSE GOTO DISPLAY

Now the statement will branch to a line labeled MEASURE if V=0;

otherwise, the statement will branch to a line labeled DISPLAY.

For a description of statement labels, see Statement Labels earlier in
this section.

2-33

Extended Basic

Statements

EXTENDED BASIC STATEMENTS

2-34

The following statements are unique to the compiled versions of the
BASIC language. These statements provide the capability to use true
subroutines and to improve program control flow. A complete
description of each statement is included below.

The Extended BASIC subroutine statements are used to create true
subroutines in BASIC. Unlike Interpreted BASIC, which only uses
true subroutines written in a language other than BASIC
(FORTRAN, Assembly, etc.), Extended BASIC programs may also
use true subroutines written in Compiled and Extended BASIC.

Extended Basic

Statements

SUB Statement

Usage: SUB {subroutine name}(parameter list)

The SUB statement defines a true Extended BASIC subroutine. All
statements following the SUB statement (until terminated by a
SUBEND statement) constitute an Extended BASIC subroutine. The
SUB statement also defines a list of parameters that will be passed to
that subroutine from the calling routine.

O The SUB statement must be the first statement on a program line.

O Parameters may be passed from a calling routine by value (as an
expression) or by reference (by name, as a variable or an entire
array name).

An example of a SUB statement 1s

100 SUB DVM(READINGSZ(), MESSAGES, SCALE)

which identifies the beginning of a subroutine named DVM that will
exchange three parameters with a calling routine. The parameters are
an integer array READINGS3$Q), a string called MESSAGES, and a
floating-point parameter named SCALE. All of the statements
between this SUB statement and the next SUBEND statement are part
of the subroutine DVM.

This sample subroutine will be used via a CALL statement like this:

100 CALL DVIMCAZ(),.B$,C)

When the subroutine DVM runs, it will use the variable array A%()
from the calling routine, with the local name of READINGS%(). B$
From the calling routine will be used in the subroutine as MESSAGES,
and C will be used as SCALE.

2-35

Extended Basic

Statements

SUBEND Statement

2-36

Usage: SUBEND

The SUBEND statement marks the end of a true subroutine. All of the

statements occurring between this statement and the last SUB
statement constitute a subroutine.

O Only one SUBEND statement may be used with each SUB
Statement.

O The SUBEND statement returns program control to the routine
that called the subroutine.

Extended Basic

Statements

SUBRET Statement

Usage: SUBRET

The SUBRET statement returns control from a subroutine back to the
calling routine. SUBRET is used to return to a calling routine from
places other than at the end of a subroutine.

O Any number of SUBRET statements may be used in a subroutine.

O The SUBRET statement must be used within the body of a
subroutine.

O The SUBRET statement is analogous to the RETURN statement
in BASIC subroutines that are entered with aGOSUB statement.

2-37

Extended Basic

Statements

ON-SUBRET Statement

2-38

Usage: ON [condition] SUBRET

The SUBRET statement may be used as an instruction for processing
an interrupt that occurs while a program is executing a subroutine.
When an interrupt occurs, the SUBRET statement causes control to
transfer from the subroutine back to its calling routine. The interrupt
will still be in effect when control returns, which allows interrupt
processing via an ON-GOTO statement in the calling routine.

O Any of the available interrupts (ERROR, CTRL/C, etc) may be
handled by an ON-SUBRET statement.

O Any number of ON-SUBRET statements may be cascaded before
reaching the point where interrupt processing occurs. This allows
several layers of subroutines to return to a main program (if
desired) before processing interrupts.

For example, a Main program segment calls subroutine A, which in
turn calls subroutine B, which in turn calls subroutine C. An interrupt
occurs while subroutine C is in progress. ON-SUBRET statements in
subroutines A, B, and C would send control all the way back to the

Main segment in turn, where interrupt processing can be performed.

IMAIN
ON CTRL/C GOTO TRAP

CALL A

END

A
ON CTRL/C SUBRET
CALL B

SUBEND

SUB B
ON CTRL/C SUBRET

si e
g
.

Extended Basic

Statements

Note that, without the ON-SUBRET statement, an interrupt that
occurs in a subroutine will be processed by an interrupt handling
statement in the calling routine (if one exists), after which control 1s
returned to the subroutine at the spot where the interrupt occurred.
After using an ON-SUBRET statement to respond to an interrupt, the
subroutine where the interrupt occurred must be reentered with
another CALL statement.

2-39

Extended Basic

Statements

Control Flow Statements

Extended BASIC offers several means of altering the control of flow
during program execution. In addition to the FOR-NEXT, IF-THEN-
ELSE, GOSUB, and GOTO statements found in Interpreted BASIC,

XBASIC provides several means of creating loops, exiting loops, and
allowing conditional branching. Descriptions of these statements are
found in the following paragraphs.

Extended IF Statement

2-40

Usage: IF [expression] THEN
program statements

ELSIF [expression] THEN
program statements

ELSIF [expression] THEN
program statements

ELSE [expression]
program statements

ENDIF

The IF statement provides the principal means of selecting between
several alternative courses of action. For instance, consider the

amount of code required by a set of nested IF-THEN-ELSE
statements used to select one action based on a value.

10 if a = 0 then 999 else 20
20 if a = 1 then 100 else 30
30 if a = 2 then 200 else 40
40 if a = 3 then 300 else 50

999 close all \ exit

The Extended IF statement makes this easier by allowing the ELSE
condition to be the next IF condition. For example,

begin:
if a = 0 then

call subO (}
elsif a = 1 then

elsif a = 3 then
call sub3 ()

else
print “selection not possible"
paint cpos(15, 10); "Touch Screen to Continue”

= key \ wait 00:01 for key
goto begin

endif

Extended Basic

Statements

An Extended IF is distinguished by an IF statement that has nothing
(except an optional trailing remark and the end of the line) following
the THEN keyword. The entire Extended IF consists of the following
elements:

O An “IF {expression} THEN” statement that starts the IF. The
statements following the THEN are executed if the {expression} is
true (nonzero).

Zero or more “ELSIF {expression} THEN” statements that select
one of several alternatives if the initial “IF {expression} THEN”
clause was not selected. An ELSIF statement is executed if the
{expression} is true (nonzero). The ELSIF statements are

executed in the order in which they appear in the source program.

An optional “ELSE” statement that is executed if none of the other
alternatives were selected. Note that at most one ELSE may be
used with any given Extended IF.

A mandatory “ENDIF” statement that terminates the Extended
IF.

These Extended IF statements must be the only statements in a
program line. This restriction eliminates any interaction with
“simple IF” statements, which are still part of the Extended BASIC
language.

Extended IF statements may be nested to any desired depth; no
confusion (at least where the compiler is concerned) is possible. We
recommend that you indent the program text to make it easier to
determine which code is under the control of which IF.

2-41

Extended Basic

Statements

LEAVE Statement

2-42

Usage: LEAVE
LEAVE IF {expression}

The LEAVE statement is used to leave a structured loop (WHILE,
REPEAT, LOOP, or FOR). It has the two forms shown above.

O The first form (LEAVE) simply jumps out of the innermost loop
unconditionally.

O The second form (LEAVE IF) leaves the loop only if the
{expression} has a true (nonzero) value.

O The LEAVE statement may be subordinate to an IF or other
statement; it simply causes an exit from the innermost loop in
which it occurs.

The following program fragment illustrates the two constructions of
the LEAVE statement.

LOOP
PRINT “Enter a value”;
INPUT aZ
IF (a% ¢ OZ) THEN

PRINT “Negative. Leaving the loop”
LEAVE

ELSIF (a% (= 102%) THEN
PRINT “Between 0 and 10"
LEAVE IF aX = 5% ! leave for 5

PRINT “Greater than 10."
ENDIF

ENDLOOP

Extended Basic

Statements

LOOP Statement

Usage: LOOP ! begin infinite loop

. Statements ...

ENDLOOP

The LOOP statement can be used to implement an infinite loop.

O The LOOP statement has no explicit termination test; it normally
uses the LEAVE statement to provide a loop exit.

O Control stays within the LOOP - ENDLOOP keywords until a
LEAVE statement, GOTO statement, or interrupt is encountered.

The following program fragment repeatedly asks for another value
until a zero is entered from the keyboard. The LEAVE statement
causes control to leave the loop when the value received is zero.

LOOP
PRINT “Enter another value";
INPUT aZ
LEAVE IF aZ = OZ
PRINT "Try again...”

ENDLOOP

2-43

Extended Basic

Statements

REPEAT Statement

2-44

Usage: REPEAT

7 Statements ...

UNTIL { expression }

The REPEAT statement introduces a REPEAT - UNTIL loop. Unlike
the WHILE loop a REPEAT - UNTIL loop makes its termination test
at the bottom of the loop rather than at the top.

O A REPEAT - UNTIL loop ts always executed at least once, since
the termination test is not made until the bottom of the loop has
been traversed.

O The action of this loop is to execute the statements in the loop body
repeatedly until the value of the {expression} 1s true (nonzero).

The following loop reads lines of input from channel 2 until a line
Starting with a letter is found:

REPEAT
PRINT "Reading another line"
INPUT LIME #24, a$
ch$ = LEFT(LCASE$(a$), 12)

UNTIL "a" (= ch$ AND ch$ (= "2"

Extended Basic

Statements

SELECT Statement

Usage: SELECT {selector expression }
CASE {case expression }

_.. Statements ...

CASE {case expression }

7 Statements ...

CASE ELSE ! anything not caught above

. statements ...

ENDSELECT

The SELECT statement implements an “n-way” branch, depending
upon the value of a “selecting” expression. In other languages, the
SELECT statement is sometimes known as a CASE statement.

O The case expression is a comma-separated list of values formated
as:

< expression
=> expression
<> expression
= expression
< expression
> expression
expression
expression__1 .. expression _ 2

2-45

Extended Basic

Statements

2-46

The form:

CASE expression__I .. expression _2

says that if the value of the {selector expression} falls between the
values expression__I and expression __2, that is:

expression__1 < selector expression < expression _2

then the corresponding CASE should be executed.

The “selector” may be any data type including strings.

The CASE clauses simply indicate the values of the {selector
expression} for which the corresponding piece of code should be
executed. The tests for the different cases are performed in the
Same order as their appearance in the program until one of the
cases matches the value required. At this point, the code following
the CASE is executed until the next CASE occurs, then control

flows to the ENDSELECT statement; the remaining cases are not
evaluated.

Any of the CASE expressions may involve variables.

An “illegal mode mixing” error is reported if the value of the
selector and case values are not compatible (1.e., number compared
with string).

You can specify an empty CASE clause (a CASE without any
statements following). This permits an explicit “do nothing” CASE
to weed out selector values for which no action should be
performed. This is illustrated in the following example.

Extended Basic

Statements

As an example of the SELECT statement, consider the following
program fragment:

while (len(string$) «(= 5Z and eofZ = 0%)
chard = getchar (channel)
select (char)

case 132 ! cara return
leave { leave WHILE loop

case 26% ! EOF
eofZ = -12 ! signal end of file

case 32%, 9% .. 10% ! space, tab, linefeed
! do nothing

case {(32%, = 127% ! other control character
print “Funny character”; charZ; “encountered”

case 48Z .. 57%, 65% .. WZ ! digit or uppercase
strings = strings$ + chr$(charZ)

case 972% ! lowercase letter oe 122%
strings = strings + ucase$(chrs$(charZ))

case else ! other punctuation
punct$ = punct$ + chr$(char2)

endse lect

!
; select course of action from short option list

select (string$ + puncts)

case a$ + "1!"

print "Quick mode”

case "end”
leave

case "quit"
exit

endse lect
endwhile

2-47

Extended Basic

Statements

WHILE Statement

Usage: WHILE {expression}

... Statements ...

ENDWHILE

The WHILE statement introduces a WHILE loop. The {expression} 1s
rounded to an integer and evaluated. While the expression’s value is
true (nonzero), the loop surrounded by the keywords WHILE and
ENDWHILE is executed. For example:

WHILE 1% (105% OR 1% >) 240%
CALL getval(iz)
PRINT "The new value is”; 124

ENDUHILE

O The {expression} is evaluated at the top of the loop, thus the loop is
not executed if the {expression} is evaluated as false.

2-48

Extended Basic

Statements

STATEMENTS UNIQUE TO EXTENDED BASIC

EXPORT and IMPORT, statements unique to the Fluke extended
version of the BASIC language, declare and use global variables.
Global variables allow global access to variables between programs
and subroutines. EXPORT defines and reserves memory space for a
global variable. IMPORT references the address of a global variable
for compiler access to variables in another program module.

EXPORT Statement

Usage: EXPORT {variable list }

Unlike the COM statement, which is used to communicate between

different programs, the EXPORT statement is used to communicate
between subprograms that are part of one executable program.
EXPORT is used to declare a set of variables and arrays as global
variables, assigning memory space to the variables and arrays in the
variable list and publishing the variable names in the output .OBX file
as global variable definitions.

O Variables and arrays in the variable list may be integer, floating-
point, or string variables.

O Arrays must be dimensioned so that the Extended Basic compiler
can notify the Extended Linking Loader to reserve storage space
for them. Dimension values must be constant integers or integer-
valued real numbers.

2-49

Extended Basic

Statements

O Global variables are always preset to zero (for numbers) or the null
string (for strings) when the program begins execution.

A program module is a BASIC main program or a true subroutine.
The following rules govern variables in program modules:

O A variable may not be named in bothan EXPORT statement anda
DIM, COM, IMPORT, or another EXPORT statement in the

same program module.

O Any number of EXPORT statements may appear in a single
program module.

O A global variable should be declared in an EXPORT statement
before using it in another BASIC statement in the same program
module.

The following program segment illustrates the use of the EXPORT
statement:

10 sub get_readings(hostany2)
20 export Fusheadongn (100)
30 import dvmAddressz, dvmGetDatas
40 print @dvmAddressz, dvaGetData$
20 for 1% = 1% to howtlanys
60 input @dvmAddressz, dvaReadings(izZ)
79 next 1%
80 subend

Line 20 defines dvmReadings as a global variable (array) and reserves
memory space for 100 elements. The variable dvmReadings may now
be accessed from other programs and subroutines. (The IMPORT
statement accesses the global variable, dvmAddress% from another

program or subroutine where it was defined with an EXPORT
statement.)

2-50

Extended Basic

Statements

IMPORT Statement

Usage: IMPORT {variable list}

The IMPORT statement is used to declare a set of variables, which

have been defined in a program module (BASIC main program ora
true subroutine), as global variables. IMPORT publishes the variable
names in the output .OBX file as global variable references.

O Variables and arrays in the variable list may be integer, floating-
point, or string variables.

An array declared in an IMPORT statement should use only an
empty pair of parentheses “()” in the IMPORT statement to
indicate that the variable is an array. No array subscripts may be
used in the IMPORT statement itself.

A variable may not be named in bothan IMPORT statement anda
DIM, COM, EXPORT, or another IMPORT statement in the

same program module.

Any number of IMPORT statements may appear in a single
program module.

A global variable should be declared in an IMPORT statement
before using it in another BASIC statement in the same program
module.

The following program segment illustrates the use of the IMPORT
Statement:

10 sub printStrings(startz, finish%, channelZ)
20 import arrays
30 for 1% = startZ to finishZ
4) print fchannelZ, array$(i2z)
30 next iz
60 subend

Line 20 in subprogram printStrings accesses the global variable array$
from another subprogram or main program. The empty parentheses
indicate that the variable is an array.

2-51

Extended Basic

Unused IBASIC Instructions

UNUSED INTERPRETED BASIC INSTRUCTIONS

2-52

Extended BASIC does not have the operating modes that Interpreted
BASIC does. Of the four modes in Interpreted BASIC (the Immediate
mode, the Edit mode, the Run mode, and the Step mode), Extended

BASIC only retains the Run mode. Therefore, none of the Immediate
mode, Edit mode, or Step mode commands are used in Extended
BASIC. Attempting to use these commands with Extended BASIC
will cause a syntax error. In Extended BASIC, editing functions are
performed by a Text Editor utility program. Statements and
commands not used in the extended version of the BASIC language are
listed in Table 2-1.

Extended Basic

Unused IBASIC Instructions

Table 2-1. Unused Instructions

INSTRUCTION DESCRIPTION

CONT The CONTinue Command is a program debugging com-

mand that is used only in the Immediate mode. Extended

BASIC does not have an Immediate mode.

DELETE The DELETE Command is a editing command that is used

only in the Immediate mode. Extended BASIC does not

have an Immediate mode. Editing is done with an editor

accessory program.

EDIT The EDIT Command is used only in the Immediate mode.

Extended BASIC does not have an Immediate mode. Edit-

ing is done with an editor accessory program.

LINK The LINK Command is used to load external subroutines.

External subroutines are linked in during the linking pro-

cess, using the Linking Loader or Linkage Editor

programs.

LIST The LIST Command is used only in the Immediate mode.

Extended BASIC does not have an Immediate mode.

OLD The OLD Command is used only in the Immediate mode.

Extended BASIC does not have an Immediate mode.

REN The RENumber Command is an editing command that is

used only in the Immediate mode. Extended BASIC does

not have an Immediate mode.

RESAVE and RESAVEL

SAVE and RESAVE

These statements are not used in Extended BASIC. Pro-

gram editing and managing are done with a separate Editor

accessory program.

STEP The STEP Command is a program debugging command

that is used only in the Immediate mode. Extended BASIC

does not have an Immediate mode.

UNLINK The UNLINK Command is used to delete external subrou-

tines from memory in the interpreted version of BASIC.

2-53/2-54

Section 3

Extended BASIC Compiler

CONTENTS

INtrOdUCTION 1... eee ccc ee eee tent eect eenees 3-3
Creating Source Code ccc ccc cc cece eee ees 3-4
Compiling into Object Code 0... cc cee eee eens 3-4
Linking a Program Together 0. cee eee eeeee 3-5
Running Extended BASIC Programs006+ 3-6
Memory Allocation in Extended BASIC 3-7
New File Types ccc ccc cece cee cee cece eee e eens . 3-7

The Extended BASIC Compiler 0.0.0. e eee eee 3-8
Installation OvervieW 0... cc cece eee e eee ee eens 3-8
Installation 2... . cece cee cee eee teen eens 3-9
Running the Extended BASIC Compiler Program 3-11
Using the Extended BASIC Compiler Program 3-12
Exiting the Extended BASIC Compiler Program 3-16

Extended BASIC Compiler Options00000: 3-17
Extended Language Syntax: The /E Option 3-17
Integer Conversion: The /I Option000000- 3-17
No Line Numbers: The /NL Option4.0. 3-18
No Markers: The /NM Option0 0c eee eees 3-18

Extended BASIC Compiler Errors02. cee eee 3-19
Linking The Object Files 0... ccc ce ccc cee eee 3-22

Overview of the Linkage Process 00 cece eeee 3-22
Linking a Program ccc ccc ccc eee eee teens 3-23

Using the Command File 0... ccc ec cee eee 3-25

3-1/3-2

Extended Basic Compiler

INTRODUCTION

This section describes the creation of an Extended BASIC program
and its conversion into machine language for execution by the
Instrument Controller. In addition to your BASIC program, this
process requires the following programs:

O Extended Basic Compiler (XBC.FD2)

O Linkage Utilities (XLL.FD2, XLM.FD2)

O Extended BASIC Runtime System (BSXRUN.FD2)

The programs listed are the minimum needed to compile and run an
Extended BASIC program. Other programs may be needed for more
complex programs.

NOTE
For Compiled BASIC users:

Extended BASIC programs are compiled in much the same
way as Compiled BASIC programs. Utility programs, such as
EDIT and FUP, are still used with Extended BASIC. The only
changes in program utility tools involve programs that must
generate, use or manipulate the new library formats and the
Extended BASIC object format, OBX.

3-3

Extended Basic Compiler

Creating Source Code

Extended BASIC language source code is created and modified using
the System Editor program (EDIT.FD2). The original (source)
program is written in the Extended BASIC language, using the
program elements described in Section 2 of this maual and the
Reference volume of the manual set. The System Editor (EDIT
program), used to modify the program, is described in the 1722A
System Guide.

Source programs may also be created and modified using the Edit
mode in the BASIC Interpreter program (BASIC.FD2). Programs
created or modified using the BASIC Interpreter program may only
contain statements and syntax that are legal for Interpreted BASIC
programs.

Compiling into Object Code

3-4

After the source program is created in the Extended BASIC language,
it must be translated into object code. During the translation process,
the compiler program performs some diagnostic functions and checks
for Extended BASIC language syntax errors. If errors occur, the
System Editor program is used to make corrections (while using the
manual set for reference, as necessary). The Extended BASIC
Compiler program has options that are entered in its command line to
process optional language features. The Extended BASIC Compiler’s
command-line options are described later in this section.

The Extended BASIC Compiler will accept any of the following
program forms as the source file:

O A main program (.BAS) alone.

O A main program followed by true subroutines.

O One or more true subroutines.

The Extended BASIC Compiler, XBC, is almost identical in operation
to the standard BASIC Compiler, BC. The visible differences are:

O The “/A” (ASCII output file) option has no effect (but is still
accepted).

O The output file extension has been changed from .OBJ to .OBX.

Extended Basic Compiler

Linking a Program Together

After compiling, object files must be linked together to make an
executable file using XLL, the Extended Linking Loader program.
XLL combines program sections into a main program segment,
combines subroutines with the main program, and adjusts memory
references in the program. XLL replaces the LL and LE programs used
with Compiled BASIC, FORTRAN, and Assembly. XLL has the
capability to link FORTRAN and Assembly subroutines with
Extended BASIC programs. The XLL program also provides a load
map indicating the amount of extended memory used by XBASIC
programs.

Extended BASIC programs are combined into libraries using the
Extended Library Manager, XLM. XLM replaces the LM program
used with Compiled BASIC, FORTRAN, and Assembly. It operates
in much the same way as the LM program does. Refer to the Linkage
Utilities section for more information.

3-5

Extended Basic Compiler

Running Extended BASIC Programs

Extended BASIC programs will not run directly on the Instrument
Controller. The output format of the Extended BASIC Compiler is an
intermediate code rather than actual machine code. The Extended
BASIC Runtime System program (BSXRUN.FD2) interprets this
intermediate code at runtime. Although the Runtime System program
interprets the intermediate code produced by the compiler, execution
time is reduced because all of the syntax checking has been already
done by the Extended BASIC Compiler program.

The Runtime System program checks for operational errors in the
Extended BASIC programs as they run. Operational errors may either
be reported to the user with error messages or processed internally,
depending upon the program. Errors should be corrected using a text
editor program, and the compile and link edit process should be
repeated.

BSXRUN accepts the extended address pointers used in Extended
BASIC, but otherwise appears identical to Compiled BASIC’s
BSCRUN program. Enough extended memory (NOT allocated as E-
disk) must be available for XBASIC programs. The amount of
extended memory required is given on the load map produced by the
XLL program. Refer to Section 4 for a thorough explanation of the
Runtime System.

Extended Basic Compiler

Memory Allocation in Extended BASIC

Memory use affects the architecture of programs executed using
Extended BASIC. There are two memory regions in Extended BASIC:
the machine code segment and the BASIC code segment.

The machine code segment is a 64K byte memory region in which any
machine language (Assembly or FORTRAN) modules are placed,
together with any global variables. The machine code segment size is
determined by the 16-bit address used by the TMS-99000 processor.
This segment contains any machine language subroutines, BASIC
variables, and the BSXRUN program. The size of this segment size
limits the number of Assembly and FORTRAN subroutines that may
be used and the amount of data (variables and main-memory arrays)
that may be used at any one time.

The BASIC code segment is a much larger memory region into which
the BASIC main program and subroutines are placed. The BASIC
code segment size is limited by the amount of memory installed in the
1722A, which may not exceed 4 megabytes. Note that the
(approximately) 32K bytes required for FDOS, the 64K bytes for the
machine code segment, and any memory used for E-disk will reduce
the amount of memory available for the BASIC code segment.

New File Types

Two new file formats, .OBX and .LIB, are designed for easy generation
and quick linking, both important issues when you are generating large
programs.

The use of extended memory has required the definition of a new
object format. The binary format of Extended BASIC object files
(.OBX) is easily manipulated by the XLL and XLM programs. Due to
the flexibility provided by the .OBX file format, global variables are
supported. .OBX files are a counterpart to the .OBJ files produced by
other language processors.

.LBX files are Extended BASIC object library files. These files are
created by the XLM library generator and’are random libraries, unlike
the .LIB library files in Compiled BASIC, which are sequential. For
more information on XLM and XLL, see the Linkage Utilities section.

3-7

Extended Basic Compiler

THE EXTENDED BASIC COMPILER

The Extended BASIC Compiler program 1s part of the Fluke 17X XA-
205 Extended BASIC Language Option Packages for the Fluke 1722A
series Instrument Controllers. The compiler program 1s one of several
programs supplied with the language option.

The file name of the Extended BASIC Compiler program is
XBC.FD2. The program is contained on a 5-1/4 inch floppy disk.

installation Overview

3-8

For small programs, the Extended BASIC Compiler program and the
source program to be compiled may be installed on any file-structured
device prior to compilation. A high-capacity, file-structured device
capable of high-speed I/O, such as the E-Disk, assigned as the System
Device, will yield the fastest compilation time with a minimum of
keyboard input. For large programs, the Extended BASIC Compiler
program should remain on the floppy disk with the source program on
the E-Disk, thereby reserving maximum memory space on the E-Disk
for temporary and output files.

Installation

Extended Basic Compiler

Installation

To install the Extended BASIC Compiler program and Extended
BASIC source program in the suggested large-program configuration,
follow these steps: (Be sure to terminate the command line by pressing
the (RETURN) key.)

I.

2.

Set the instrument Power Switch to ON.

Insert a floppy disk that contains the current versions of the
system software. The system software will complete the
initialization process and load FDOS, resulting in the FDOS
prompt.

Enter the File Utility program and configure the E-Disk from
FDOS by typing:

FUP
EDO: /Cnn

where nn is a large enough number of blocks to ensure
adequate storage capacity for the source program and all
scratch files.

The Extended BASIC Compiler requires 64K of user space for
execution. The E-Disk must be configured so that 64K (32
blocks) of user space remains after configuration. If there is
insufficient RAM available for an adequately sized E-Disk,
then additional file-structured storage is required.

CAUTION

Configuring the E-Disk will destroy any files that may already
be on the E-Disk. If files are on the E-Disk, do not configure the
E-Disk before saving these files on a floppy disk or determining

that they are expendable. See the 1722A System Gulde if you

need help in saving the files.

NOTE

If files are already on the E-Disk, it is already configured.
Instead of configuring the E-Disk, type the File Utility
command to zero the E- Disk.

EDO: /Z(RETURN>

3-9

Extended Basic Compiler

Installation

3-10

4. Insert the disk containing the Extended BASIC source
program into the disk drive.

5. Install the source program on the E-Disk by typing

EDO: =(source program name >< RETURN>

6. Assign the E-Disk as the system device (SY0:) by
typing

EDO: /A< RETURN >

7. Insert a disk containing the BASIC Compiler program
into the disk drive.

8. Verify that the files copied to the E-Disk were indeed
copied by typing

/Q

9. Exit the File Utility program by typing

/XCRETURN >

NOTE

The Extended BASIC Compiler program consists of several
overlaid program segments that share the same sections of
memory. If the Extended BASIC Compiler program is being
used from the floppy disk drive (M FO:), the disk must remain
in the disk drive while the program is running to ensure that
portions of the program are available as they are needed. Do
NOT remove the disk from the drive while the program is
running.

The software is now in the suggested configuration for maximum use
of memory. Other configurations are also possible. See the System
Guide if you need help in using the File Utility program to install other
configurations.

With the software installed as desired, refer to the following
paragraph, which describes how to enter and use the Extended BASIC
Compiler program.

Extended Basic Compiler

Running the Extended BASIC Compiler Program

If the Extended BASIC Compiler program is installed on the system
device (SY0:), type the file name

XBC

to run the Extended BASIC Compiler program from FDOS.

If the instructions for installing the Extended BASIC Compiler
program in the large-program configuration listed above are followed,
the program will not be on the system device. If the program is on the
floppy disk drive as suggested, type

FIFO: XBC

In either case, do not type the file name extension .FD2.

As with other software for the Controller, the Extended BASIC
Compiler program may be controlled by a command file. Acommand
file is a series of operator inputs contained in a text file. The command
file is initiated from FDOS, after which it controls program execution
just as if the commands originated at the keyboard. A command file for
implementing an Extended BASIC program, including inputs for this
Extended BASIC Compiler program, is part of the software that
makes up Extended BASIC. Command files may be terminated under
certain error conditions (see BASIC Compiler Errors).

The Extended BASIC Compiler program will not work with the lexical
code created by the RESAVEL or SAVEL command in Interpreted
BASIC.

When you first enter the Extended BASIC Compiler program, it
displays:

Extended BASIC Compiler Version (x.y)

XBC >

NOTE

Verify that the version number (x.y) matches the number on
the front of this manual. If it does not, call a Fluke Customer
Service Center for advice.

Extended Basic Compiler

Using the Extended BASIC Compiler Program

The Extended BASIC Compiler program translates a source program
that is written in the Extended BASIC language into an object file. The
source program is an ASCII file previously created with the Editor
program included on the system disk. The source program may also be
a BASIC program created by the BASIC Interpreter program.

If a subset of the BASIC language is used that is common to both the
interpreted and compiled versions, the BASIC interpreter program my
be used in the EDIT mode to create a source program. Note that the
SAVE command must be used to store programs in an ASCII format.

In response to the Extended BASIC program prompt XBC), type a
command line specifying the names of the object file to be produced,
the error file (if any), the temporary file device, the input file, and the
options to be affected (see Extended BASIC Compiler Options), using
the following syntax:

(.OBX) (KBO:) (SY0O:)

(.ERR)

output ; error | ; | temporary

file file file device

(BAS)

_ input Vv
_ file fp N _

Extended Basic Compiler

The name of the output file is optional. If a file name is not
specified, the file name will be created with the same name as the
input file name and the extension .OBX.

The output file name extension is optional. The default extension
for the output file name is .OBX.

The error file name is optional. Ifa file name is not specified, errors
are printed on the display (K BO:). If an error file name 1s specified,
its file name extension defaults to .ERR unless you specify
otherwise.

The temporary device name is optional. The default temporary
device is the System Device (SY0:).

The input file name is mandatory.

The input file name extension is optional. The default extension for
the input file is .BAS.

Any number of options may be included, up to the maximum space
available on the command line.

Multiple options may be specified in any order.

If multiple options are used, they are entered at the end of the
command line without separation by commas or spaces. For
example:

{command line}/E/NL/NM

If a <?) is typed by itself in response to the Extended BASIC
Compiler program prompt, this summary of the command syntax
is displayed:

Command format: [Object][,[Error][, ?mp:]]=Source[/Switches]

Object the output object (.OBX) file name (optional)
Error the output error (.ERR) file name (optional)
Tmp: the device to use for scratch files (optional)
=Source the input source (.BAS) file name (required)

3-13

Extended Basic Compiler

3-14

The Switches (all optional) are:

/E permits the use of long variable names
/I converts numeric constants to integer where possible
INL permits line numbers in the source program to be omitted
/NM omits line number markers in the compiled output

The output file is the file that will contain the compiled program after
the Extended BASIC Compiler program is finished. The error file will
contain a list of any compilation errors that occurred during
compilation. Temporary files will be created on the specified
temporary device, then deleted before compilation is finished. The
input file is the Extended BASIC source program that is to be
compiled.

The optional names and default file name extensions allow a program
to be compiled with minimal keyboard input. For example, the
command line

» TEST=TEST

creates an output file named TEST.OBX and an error file named
TEST.ERR. Note that no comma is necessary after the error file
specification to denote the default temporary device. The command
line

» €D0: =TEST

specifies that an output file named TEST be created with the default
file name extension .OBX. Errors will be printed to K BO:, the default.
The E-Disk (ED0:) will be used for the temporary files. The command
line

» RUN1=DEMO. SRC/E

creates an output file named DEMO.OBX, with the same file name as
the input file but with the default output file name extension of .OBX.
An error file is created with the specified name and the default error file
name extension (RUNI.ERR). The output files are created from the
specified DEMO.SRC input file. The / E option denotes that this input
file is an extended format file. (See Compiler Options.)

Extended Basic Compiler

When the command line is terminated with a (RETURN), the

Extended BASIC Compiler program begins compiling the source
program. The Extended BASIC source code statements are analyzed
and translated into an object format that is compatible with the
Linking Loader program.

If errors are encountered during compilation, error messages are
printed on the display. If an error file is named in the command line,
the error messages are listed in that file (rather than on the display).
Error messages are discussed later in this section.

Temporary files, which the Extended BASIC Compiler program
creates during compilation, are removed from the disk before the
compiler program finishes.

3-15

Extended Basic Compiler

Exiting the Extended BASIC Compiler Program

3-16

The Extended BASIC Compiler program returns control to FDOS
after compilation is completed. Type (CTRL) /Z to exit from the
Extended BASIC Compiler program prompt. Type (CTRL) /C to exit
the Extended BASIC Compiler program at any other time.

NOTE

Ifa (CTRL) / P is used to exit the Extended BASIC Compiler
program, the temporary files that are used during compilation
may be left on the temporary file device. If the Extended
BASIC Compiler program is used again, these files will be
automatically overwritten. However, some additional device
space will be required. If this additional space is not available,
or if the Extended BASIC Compiler program is not used again,
the temporary file should be deleted. Use the File Utility
program (FUP.FD2) to check for these files (8BCO0$.TMP
and $BC01$.TM P) and to delete them if they are present. Refer
to the 1722A System Guide for help.

Extended Basic Compiler

Options

EXTENDED BASIC COMPILER OPTIONS

The Extended BASIC language contains several optional features
designed to allow the programmer more flexibility in controlling input
and output file format and in using memory space. The Extended
BASIC Compiler program uses command-line option strings
(switches) to accommodate each of these language options. See the
syntax diagram under Using the Extended BASIC Compiler Program
for use of the command-line options.

Extended Language Syntax: The /E Option

The /E option specifies that the source code contains extended
language features such as continuation lines, statement labels, long
variable identifiers (names), true subroutines, and extended flow of
control statements. When the extended language syntax language
option is used, keywords and numbers must be separated by spaces,
tabs, or punctuation. This restriction on syntax makes the translating
task easier and reduces compilation time.

The command file used with the Extended Syntax option is
XBCE.CMD. This command file is similar to XBCC.CMD.

Integer Conversion: The /I Option

The /I option directs the compiler program to convert floating-point
constants to integers where possible. Integer constants occupy less
memory space and permit faster execution than do floating-point
constants. Under control of the /I option, the floating-point value 5
will be treated internally as if it had been specified as an integer (5%).
Whenever it is desired that a floating-point value be used as a value
rather than as an integer, it should be written in a floating-point format
exclusively. For example, write 5 as 5. or as SEO to protect it from being
converted to an integer.

Extended Basic Compiler

Options

No Line Numbers: The /NL Option

The /NL option specifies that there are no line numbers in the input
program. This option allows the programmer the convenience of not
having to use line numbers for each line in a source program.

The / NL option must be specified if the source program does not have
line numbers. If the /NL option is not specified, Missing Line Number
error messages will result.

When line numbers are not used in a program, error messages that
would normally refer to line numbers refer to sequential lines of text,
beginning with line 1. For example, an error reported in line 4 does not
refer to a line labeled 4, but to the fourth line from the top of the
program.

No Markers: The /NM Option

3-18

The /NM option specifies that no line number markers are to be placed
in the output file. Normally, the Extended BASIC Compiler program
places markers in the output file to allow error messages to refer to
specific line numbers. These markers occupy additional memory space
that may be at a premium. The / NM option allows the user to create an
output file that does not contain these markers. If the / NM option is
used, error messages, interrupt messages, and stop messages will report
line number 0.

Extended Basic Compiler

Errors

EXTENDED BASIC COMPILER ERRORS

The Extended BASIC Compiler program detects errors in BASIC
language syntax and data types during compilation. If the program
finds errors it displays error messages on the screen as they occur. In
addition, errors may be recorded in an error file. If you desire an error
file, specify its name in the command line that configures compilation.
See Entering the Extended BASIC Compiler Program for a
description of the command line syntax required.

If you entered the Extended BASIC Compiler with a command file,
and if an error is encountered during compilation, the command file
will be terminated after completion of the Compiler program. This
prevents the command file from attempting to link faulty object files
and allows the programmer to correct the errors.

There are two types of errors that may be reported from the Extended
BASIC Compiler program. Some of the BASIC language errors are of
the form

Error number (xxx) at line (xxx)

Section 6 of this manual contains a description of these errors. Other
errors that may be reported from the Extended BASIC Compiler
program are listed in Table 3-1.

3-19

Extended Basic Compiler

Errors

Table 3-1. Compiler Error Messages

(array name) must be parameter for DIM ()

Cycle length illegal for WBYTE

DIM () illegal for $MAIN$

Duplicate formal parameter (identifier)

Duplicate line number (line number)

Duplicate subroutine (Subroutine name)

END in subroutine: use SUBEND instead

|/O error: ?\llegal file descriptor — Stop

|/O error: Channel in use — Stop

|/O error: Channel not open — Stop

|/O error: Device hardware error — Stop

|/O error: Device name mismatch — Stop

|/O error: Device not ready — Stop

|/O error: File does not exist — Stop

|/O error: File medium was swapped — Stop

|/O error: Ill-formed filename — Stop

!/O error: Medium write protected — Stop

[/O error: No channels available — Stop

|/O error: No room on device — Stop

1/O error: Non-existent memory — Stop

1/O error: RS-232 buffer overrun — Stop

|/O error: Read/write past physical end of file — Stop

I!|-formed numeric constant

Illegal LOCAL statement

Illegal LOCKOUT statement

Illegal RBIN statement

Illegal READ statement

Illegal REMOTE statement

Illegal RESTORE statement

Illegal RESUME statement

Illegal SIZE statement

Illegal STOP statement

Illegal SUB statement

Illegal TRIG statement

Illegal WBIN statement

Illegal channel

legal character ‘(character)’ in line (line number)

Illegal time value

3-20

Extended Basic Compiler

Errors

Table 3-1. Compiler Error Messages (cont)

Integer constant too large

Label (identifier) never defined

Label (identifier) redefined

Label for subroutine illegal

Line number (line number) out of order

MEMORY OVERFLOW (GEN), Stop

MEMORY OVERFLOW (PARSE), Stop

Mismatched parameter type for function (identifier)

Missing line number

Missing SUBEND statement

ON .. SUBRET illegal in $MAIN$

Statement(s) following SUBEND

SUBEND illegal in $MAIN$

SUBRET illegal! in $MAIN$

Too many subroutines!

The following error message denotes an error that

occurred in the Extended BASIC Compiler program
itself. If such an error occurs, contact a Fluke Customer

Service Center for help.

Compiler error — <internal routine name>, Stop

3-21

Extended Basic Compiler

Linking

LINKING THE OBJECT FILES

After the Extended BASIC source program has been successfully
compiled into an object file, it must be linked. The linkage process is
also used to include separately generated program modules that have
been generated by the Extended BASIC Compiler, the Assembler, or

the FORTRAN compiler.

This discussion of the linkage process 1s limited to linking an Extended
BASIC program to form an executable program. Other aspects of the
use and operation of the various Linkage Utility programs are
discussed and described in the Linkage Utilities section of this manual.

Overview of the Linkage Process

3-22

As described earlier, the Extended BASIC Compiler produces an
object file of intermediate code. The Linkage Utility program must
first combine the source program’s object file with several other
program modules, then adjust memory references in order to make an
executable program.

A program may be loaded into the Controller’s memory and executed
if the following object file is linked via the linkage process:

File name Purpose

MYPROG.OBX _ The source program’s object file.

When this file is linked, the resulting program will automatically run
the Runtime System. If errors occur during the linkage process refer
to the Extended Linkage Utilities (Extended Linking Loader) section
for help.

Extended Basic Compiler

Linking

Linking a Program

The following paragraphs describe a generalized procedure for linking
program modules together to create an executable program. Specific
information for each of the Linkage Utility programs may be found in
the Linkage Utilities section of this manual.

You will need the following software:

(programname).OBX The Extended BASIC program
XLL.FD2 The Extended Linking Loader program

The Extended Linking Loader program must be used to link Extended
BASIC programs, using the following procedure:

In the procedure, the command-line examples assume that the files
needed are present on the System Device (SY0:). If this is not true,
assign the appropriate device as the System Device or explicitly give
the device designation with the file name. For example:

MF0:MYPROG.OBX

1. Run the Extended Linking Loader program from FDOS by
typing:

XLL

2. Use the Include command to specify the program segments to
be combined. Enter the following items at the XLL prompt:

I <(prograaname >

For example, if the program to be compiled were named
CLEVER.OBX, the XLL command-line would look like this:

I CLEVER

3. Use the O command to specify the file name for the executable
file to be produced.

0 <outputfi lename >

3-23

Extended Basic Compiler

Linking

3-24

4. Usethe M command to specify the file name to be used for the
MAP file. This file contains the module location map, table of
external references, and any error messages. This step may be
ignored for relatively simple programs that do not involve
multiple object files.

M (mapfilename >

5. Use the G command to start the linkage process.

G

6. The Extended Linking Loader program will now begin the
linkage process. When the program has finished, control will
be returned to FDOS and the output of the Extended Linking
Loader program will be in the file specified in step 3.

7. Run the completed program from FDOS by typing: ,

(outputfi lename >

Note that the file name extension is not used.

Note also that linkage processes differ between Compiled BASIC and
Extended BASIC programs. Extended BASIC programs do not use
the routine BSLOAD. The XLL program automatically puts an
equivalent program module, {filename}.FD2, into the output file.

The compilation/ linkage process is a natural use foracommand file. A
simple command file that helps to simplify and automate this function
is described next.

Extended Basic Compiler

Command Files

USING THE COMMAND FILE

XBCC.CMD is a command file that creates simple (non-overlay
structured) Extended BASIC programs. The command file contains
the user inputs at each step for compiling and linking programs. Refer
to the System Guide for an explanation of command files.

To begin the command file for creating a program, type

XBCC (filename > [File naege extension not required

in response to the FDOS) prompt. The command file will be used asa
series of keyboard-like inputs, with the specified file name used
wherever question marks appear.

The command file for creating Extended BASIC programs without
overlays and without extended syntax is:

XBC 'load Extended BASIC Compiler
&Compiling... Idispla message
=? lsubstitute file name and compile
XLL 'load linking loader
aLinking... Idispla y essa ;
I? Isubstitute file name and link with runtime

Isystem loader program
0” IXLL output to file name
N's Igap to display
G 'go do it
FUP 7.0BX/D lremove object file

1. The first step in the command file loads and runs the Extended
BASIC Compiler program.

2. Line 3 specifies the files to be created. The output file will have
the same name as the input file, with the default extension
.FD2. The error file will be printed on KBO:. Temporary files
will be placed on the system device SY0:. The question mark (?)
indicates that the name that was specified in the command line
will be used here. The default file name extension (.BAS) is
used for the source file.

3. Line 4 loads and runs the Extended Linking Loader program
after the Extended BASIC Compiler program is finished.

4. Following that, the input to the Linking Loader is specified as
the output file from the Extended BASIC Compiler program
(<name).OBX).

3-25

Extended Basic Compiler

Command Files

The output of the Extended Linking Loader is specified as the
Original file name with the default extension .FD2 in line 8.

Line 9 directs the map file to be printed on the screen.

Line 10 begins processing of the Extended Linking Loader
program.

After the Extended Linking Loader program finishes and
returns control to FDOS, the next line loads and runs the File

Utility program.

The File Utility program is used to delete the .OBX file that was
created by the compiler program and used for input by the
Extended Linking Loader program. The object file is no longer
needed.

10. Control returns to FDOS.

3-26

Section 4

Extended BASIC Runtime System

CONTENTS

Introduction 2... ccc ccc ccc cece eee eee eee eee ences 4-3
Running the Extended BASIC Runtime
System Program ccc ccc eee eee cee eee eee e eee eaes 4-3

Running the Runtime System Program
Automatically 0... cc ce ccc cece eee cent eee eeee 4-3
Running the Runtime System Program
from the Keyboard cece et ee eeees 4-4

Using the Runtime System Program000000: 4-6
Exiting the Extended BASIC Runtime System 4-7
Runtime System Messagescc cece cece e ee eeeees 4-8
Runtime System Error Checking0 cece eee cece 4-9

4-1/4-2

Extended Basic Runtime System

INTRODUCTION

The Extended BASIC Runtime System program provides a runtime
environment to run BASIC programs in image file form. The Runtime
System program is needed because Extended BASIC programs are not
machine language programs, and the 17XXA Series Instrument
Controllers cannot execute them directly. The Runtime System
program runs at the same time as Extended BASIC programs (hence
the term Runtime System) and adapts the Controller so that it will run
them.

RUNNING THE EXTENDED BASIC RUNTIME SYSTEM
PROGRAM

The Extended BASIC Runtime System program may be run
automatically by running a correctly compiled and linked Extended
BASIC program or it may be run independently from FDOS like other
programs.

Running the Runtime System Program Automatically

A standard sub-program must be linked to an Extended BASIC
program that automatically loads and executes the Runtime System
program. The standard sub-program is included by the Extended
Linking Loader program.

The Runtime System loader program automatically searches through
all of the file-structured devices for the Runtime System program. If
the Runtime System program is found, it is loaded and run
automatically, after which the Extended BASIC program is run. If the
Runtime System is not found, the message

INo BASIC Runtiae Systes

is printed, and control returns to FDOS.

If the message

System Error

is printed, some kind of error has happened while you are trying to load
the Runtime System. Trying to run the Runtime System program from
the FDOS) prompt may be the reason the Runtime System program
couldn’t be loaded.

4-3

Extended Basic Runtime System

Running the Runtime System Program from the Keyboard

There are two ways that you can run the Extended BASIC Runtime
System program from the keyboard:

O By entering the program name by itself

O By combining the name of the Runtime System program with the
name of the Extended BASIC program

The first method is the same as in other Instrument Controller
programs. Type the program name in response to the FDOS prompt:

BSXRUN

The Runtime System will respond with

(r —~
XBASIC Runtime System Version (x.y)
Program Nase?

NOTE

Verify that the version number (x.y) matches the version
number on the front of this manual. If the version number does
not match, contact a Fluke Customer Service Center for
advice.

For example, to run a program named WOW.FD2, type

‘ > r

FDOS >BSXRUN
XBASIC Runtiae System Version (x.y)
Programa Nase?

4-4

Extended Basic Runtime System

If the Runtime System program is not available, FDOS will print

Wile not found

The alternate way to enter the Runtime System program is to include
the name of the Runtime System program and the Extended BASIC
program together on the same FDOS command line. For example,

FDOS BSXRUN WOW

If the Runtime System program is not available, FDOS will print the
error message above.

4-5

Extended Basic Runtime System

USING THE RUNTIME SYSTEM PROGRAM

If the Runtime System is entered without a program name on the
command line, the program will prompt the user for the name of a
compiled BASIC program to run. Enter the name of the Extended
BASIC program in response to this prompt.

If the alternate entry method is used, combining the names of the
Runtime System and program in a single command line, the Runtime
System will already have the program name.

The Runtime System program will search for this program and execute
it. If the program cannot be found, the Runtime System program will
print

Program not found

followed by a repeat of the prompt

Program nase?

Once the Extended BASIC program is found, no further interaction
occurs with the user, except for error processing as described later in
this section.

Extended Basic Runtime System

EXITING THE EXTENDED BASIC RUNTIME SYSTEM

The Extended BASIC Runtime System program returns control to
FDOS whenever the Extended BASIC program being run executes an
END statement, an EXIT statement, or a STOP statement.

To exit the Extended BASIC Runtime System program from a
“Program name?” prompt, type

(CTRL)/Z or (CTRL)/P

Control also returns to FDOS after a Recoverable error occurs if an
error handling routine is not used.

If the BASIC program does not include a CTRL/C handler, you can
enter (CTRL)/C from the keyboard to return control to FDOS. If
the console isin ECHOmode, (CTRL)/P willalso return control to
FDOS. If a CTRL/C handler does exist, and the console is in
NOECHO mode, you can enter (CTRL/P) from the keyboard to
branch to the CTRL/C handler.

4-7

Extended Basic Runtime System

RUNTIME SYSTEM MESSAGES

4-8

The Runtime System program prints messages on the screen to inform
the user whenever a STOP statement occurs, the ABORT key 1s
pressed, a (CTRL) /C is entered (unless an ON CTRL/C-interrupt
handling statement is used), or when errors occur.

Whenever a STOP statement occurs in a program, this message is
printed on the display

STOP at line <line number) in aodule <module name)

and control returns to FDOS.

An untrapped (CTRL) /C input or an ABORT key causes the
Runtime System program to print

Abort at line <(line number) in aodule <(maodule name)

on the display and return control to FDOS.

The messages that are printed in response to errors are described below
under Runtime System Error Checking.

NOTE

Ifthe No Markers option is used for compiling the program, all
system messages will refer to line zero.

If the No Line number optional syntax is used, line numbers
will refer to program lines in sequence. For example, line 14
will refer to the fourteenth line from the top of the program.

Extended Basic Runtime System

RUNTIME SYSTEM ERROR CHECKING

The Extended BASIC Runtime System program monitors the
Extended BASIC program for language errors that occur while the
program is running (syntax errors have already been diagnosed by the
Extended BASIC Compiler program). Fatal errors will cause the
Runtime System to print an error message and terminate the program,
returning control to FDOS. The message for a fatal error is

fError (error number) at line <(line number) in aodule (module name)

Recoverable errors will either cause an error message to be printed, or
ifan ON ERROR interrupt processing statement is pending, will cause
control to be transferred to the error processing routine. A recoverable
error will have the format

MError (error nu@ber> at line (line number) in smodule (aodule name)

If an error handling routine is used, no error message is printed.

NOTE

If the No Markers option is used for compiling the program, all
system messages will refer to line zero.

If the No Line number optional syntax is used, line numbers
will refer to program lines in sequence. For example, line 14
will refer to the fourteenth line from the top of the program.

Section 6 of this manual contains a list of the error numbers that may
be reported by the Runtime System program.

4-9/4-10

Section 5

Extended BASIC Linkage Utilities

CONTENTS

Introduction 2... . cece cc eee cece eee eee eeeeeee 5-3
The Extended BASIC Linking Loader Program 5-4

Executing the XLL Program cece ee eee eee 5-4
Terminating the XLL Program 0c eee ewes 5-4
Using the XLL Program cc cece ee eee eee 5-5
XLL File Name Conventions cece cece eeces 5-7
Extended Linking Loader Commands 5-8
END/GO Command 00. c cee eee ee eens 5-10
FIND Command cece cece cece eee enes 5-11
INCLUDE Command eee eee eens 5-13
MAP Command cece eee cece eee eees 5-15
OUTPUT Command cece ee eee ee eee 5-17

Extended BASIC Linking Loader Error Messages 5-18
Extended BASIC Linking Loader Map Format 5-19

Module List ccc ccc eee eee ee eens 5-20
Symbol Table ccc ccc ee eens 5-22
Common Symbol Table cece eee 5-24
Error Message Table 0. cece eee ee eee eee 5-24

The Extended BASIC Library Manager Program 5-25
Executing the XLM Program cece eeeeees 5-25
Terminating the XLM Program00e ee eeees 5-25
Using the XLM Program 0.0 cece cee eeceeeeee 5-26
XLM File Name Conventions 2. cece eee eeee 5-27

CONTENTS, continued

9-2

Extended BASIC Library Manager Commands 5-28
[C- COPY wo. ccc ccc ccc cee eee cece eee eee ee eees 5-30
/D- Delete ccc ccc eee cece eees 5-31
/E - Extended List 0... ccc ec ccc eee eee ene 5-32
[L- List co... ccc ccc cece cece een eee e eens 5-34
/M - Merge ccc cece eee ee eee eee eee eens 5-35
-K- EXit .o occ ccc cece eee eee een eee n tees eee 5-36
a = Co) | 0 5-37

Extended BASIC Library Manager Error Messages 5-38

Linkage Utility Programs

INTRODUCTION

Two linkage utility programs are available with Extended BASIC on
the Fluke 1722A Instrument Controller:

O The Extended Linking Loader Program, XLL

O The Extended Library Manager Program, XLM

The Extended Linking Loader program is used to link Extended
BASIC programs. XLL combines program sections into a main
program segment, combines subroutines with the main program, and
adjusts memory references in the program. XLL replaces the LL and
LE programs used with the Compiled BASIC, FORTRAN, and
Assembly languages.

The Extended Library Manager is used to combine Extended BASIC
programs into libraries. XLM replaces the LM program used with the
Compiled BASIC, FORTRAN, and Assembly languages. XLM
Operates in much the same way as the LM program does, but it creates
random, rather than sequential libraries.

5-3

Extended Basic Linking Loader

~~

THE EXTENDED BASIC LINKING LOADER PROGRAM

The Extended, BASIC Linking Loader program isa linkage editor that
combines object modules produced by the Extended BASIC Compiler
(XBC) into a single executable image file. XLL can also combine XBC
object modules with object modules produced by the Assembler or the
FORTRAN Compiler. Any of these object modules can be taken from
libraries of previously compiled or assembled source programs.

The file name of the Extended BASIC Linking Loader program is
XLL.FD2. This program is distributed on a 5-1/4 inch floppy disk
with the rest of the Extended BASIC system.

CAUTION

The XLL program uses overlays. If XLL is loaded from a floppy

disk, this disk MUST NOT be removed from the disk drive while

XLL is running.

Executing the XLL Program

To execute the XLL program, from the FDOS command line prompt,
type:

XLL(RETURN >

Terminating the XLL Program

The XLL program will automatically exit to FDOS when its
processing is completed. To stop XLL at any time, type (CTRL)/P.
To exit to FDOS, type (CTRL) /Z in response to the XLL) prompt.

5-4

Extended Basic Linking Loader

Using the XLL Program

The XLL program must be used to create an executable program
(.FD2 file) from the .OBX (Extended BASIC object) files produced by
the Extended BASIC Compiler program, XBC.

When first started the XLL program displays:

r, »

Extended BASIC Linking Loader Version x.y

XLL >

NOTE

If the major version number (x) does not match the major
version number on the front of this manual, call a Fluke
Customer Service Center for advice.

Respond to XLL’s prompts using Extended Linking Loader
commands. These commands are detailed below.

1. Use the INCLUDE command to enter the names of the
Extended BASIC object modules (.OBX files) and machine
language object modules (.OBJ files) to be included in the final
executable program.

2. Use the FIND command to enter the names of any Extended
BASIC libraries (.LBX files, created by XLM) or machine
language libraries (.LIB files, created by the Library Manager
program, LM) which contain additional needed object
modules.

3. Use the OUTPUT command to name the final executable

image (.FD2) file.

4. Use the MAP command to request a load rnap if desired.

5. Use the GO or END command to start the linkage process.

5-5

Extended Basic Linking Loader

Once the GO or END command has been given, XLL will proceed to
link the modules together. All of the input files named by INCLUDE
and FIND commands are searched once. This search is performed in
the order in which the files were named by the INCLUDE and FIND
commands. The command sequence

XLL include filei.obx, file2.obx
XLLOfind libi. lbx
MLL include file3.oab j
XLL output isage
XLL go

would cause XLL to search file! .obx, file2.0bx, libI.lbx, and file3.obj
in exactly that order. When a library file is encountered in the input list,
that library is searched once at that point. Any library modules that
contain a definition for an unresolved external reference are scheduled
for loading.

Once all of the input files and libraries have been examined, XLL
assigns addresses to all modules, external symbols, and common
regions and prints a load map (if requested). XLL will terminate
execution at this point if any external symbols are undefined or
multiply defined. X_LL then rereads the input modules that will appear
in the output file, creates the executable image (.F D2) file, and returns
control to FDOS.

As soon as the FDOS) prompt ts displayed, the file named by the
OUTPUT command may be executed by typing its name.

Extended Basic Linking Loader

XLL File Name Conventions

XLL permits the use of “wild card” characters to match input
(INCLUDE and MAP command) file names. These wild cards are the
asterisk “*”, which matches zero or more arbitrary characters in a file
name or in an extension, and the question mark “?”, which matches any
one character in a file name or extension. File names that contain wild
card characters are called patterns.

Examples of file name patterns and the file names that they can match
are listed below. Arbitrary characters are indicated with an “x”.

Pattern

A*A

A?A

A?*A

A?A*

A*B*A

A? BFA

Could Match

AA, AxA, AxxA, AxxxA, AxxxxA

AxA

AxA, AxxA, AxxxA, AxxxxA

AxA, AxAx, AxAxx, AxAxxx

ABA, AxBA, AxxBA, AxxxBA, ABxA, ABxxA,

ABxxxA AxBxA, AxxBxA, AxBxxA, ...

AxBA, AxBxA, AxBxxA

There are two limitations on the use of wild cards with XLL.

O Wild cards may not be used in device names.

O Wild cards may not be used in output file names.

o-/

Extended Basic Linking Loader

Commands

Extended Linking Loader Commands

XLL commands specify the names of files to be used during the linking
process and are entered in response to the XLL) prompt. These
commands are:

9-8

Command Description

(CTRL)/Z Terminate XLL and return to the FDOS) prompt.

? Print a short description of the commands available.

END End of specifications; begin linking.

FIND Search these libraries for needed object modules.

GO End of specifications; begin linking.

INCLUDE Include object modules in these files.

MAP Load map file specification.

OUTPUT Output file specification.

Guidelines for these commands are:

O

O

Only one command may be given on each line.

Commands may be abbreviated. For example, the FIND
command may be abbreviated as “F”, “FI”, or “FIN”.

Commands and file names may be entered in upper case, lower
case, or a mixture of both.

At least one space must separate a command and any file names
which follow it.

At least one INCLUDE command must be given.

The order of INCLUDE and FIND commands determines the
sequence in which modules will be linked and libraries searched,

Extended Basic Linking Loader

Commands

O The order and placement of the OUTPUT and MAP commands is
not important, but at least one OUTPUT command must be given
prior to the END or GO command.

An END or GO command must be used to terminate command

input and start the linking process.

The syntax for file specifications (where required) 1s:

[device:] filename [.extension]

The device field is optional and defaults to one of two devices.
Default will be to the last device name given on the command line.
If no device name has been given on the command line, default will
be to the system device, SYO:.

The extension is also optional. The default extensions applicable to
any given command are detailed in the following sections.

5-9

Extended Basic Linking Loader

END/GO Command

END

GO

Terminate Command Input and Begin Linking

Syntax Diagram

Vv) END T { RETURN |

Description

9-10

The END or GO command tells XLL that all of the necessary files and
options have been specified and that the actual linking process should
begin. If no INCLUDE or OUTPUT command has been given, XLL
will say so and reissue the XLL) prompt.

XLL will not create an output file if any errors occur during the linkage
process. If no errors occur, the output image will be written to the file
named in the last OUTPUT command. Whether or not errors occur,

XLL will return control to FDOS when its processing has finished.

FIND

Extended Basic Linking Loader

FIND Command

Search Libraries for Needed Modules

Syntax Diagram

.LBX
-LIB

—>(_ FIND i tin +>

Description

FIND names library files that may contain modules to be linked with
other files named in INCLUDE commands. Libraries are collections
of standard and proven modules in object file format. (They have been
compiled or assembled.) Libraries are created and modified through
the use of library manager programs. See the CBASIC, Assembly, or
FORTRAN manual, or the Extended BASIC Library Manager
(Linkage Utilities section) in this manual for information on creating
and modifying libraries.

0

O

The FIND command 1s optional.

More than one FIND command may be used.

The FIND command name may be abbreviated to one or more
letters.

More than one library may be specified in a FIND command;
multiple library file names are separated with commas.

Library modules are linked only if they are needed. A library
module is “needed” if the module contains a definition fora global
symbol (for example, a subroutine or data item name) that has
been referenced by a preceding module and that has not yet been
defined by another module.

Extended Basic Linking Loader

FIND Command

O The default extensions for library file names are .LIB (machine
language library) and .LBX (Extended BASIC library). The
command

XLL find libl

will match either or both of the library names “libl.lbx” and
“libl.lib”. The library “libl.lbx” will be searched first.

O Wild card file name patterns may be used to specify FIND file
names.

O If one of the files named in the FIND command cannot be located,
the linking loader will print

File not found

and the entire command line will be ignored.

All files named by the FIND command must reside on file-
structured devices.

Examples

Two examples of FIND command usage follow.

XLL find edi: flib

Search a library “wd1:flib.lbx” (if present) and then a library named
“wd1:flib.lib” (if present). If neither of these files exist, an error
message will be printed.

XLL OF @f0: genk. lbx,srclib. lib

Search all .LBX libraries on device MFO: whose names start with the
characters “gen”, and then search the library “mf0:srclib.lib”. Note
that a device name specification in an input list applies to all file name
patterns that follow until another device’s name appears.

9-12

Extended Basic Linking Loader

INCLUDE Command

INCLUDE

Unconditionally Include an Object File

Syntax Diagram

.OBX
OBJ

>» on ie oJ) —_—

Description

The INCLUDE command specifies the names of object files that
contain program segments to be combined. These object files may be
machine language object (.OBJ) files created by the FORTRAN
Compiler or the Assembler. They may also be Extended BASIC object
(.OBX) files created by the Extended BASIC Compiler, XBC.

=) The INCLUDE command name may be abbreviated to one or
more letters.

More than one file may be specified by each INCLUDE command;
multiple file names are separated by commas.

At least one INCLUDE command must be given.

If multiple INCLUDE files are specified, they are linked in the
order specified.

Unlike library files (specified by the FIND command), the modules
contained in INCLUDE files are linked whether or not they are
referenced by other object modules.

Exactly one of the INCLUDE files or FIND modules must contain
a BASIC main program (a symbol named “$MAIN$’”).

The default extensions supplied are .OBX for Extended BASIC
object files and .OBJ for machine language object files.

Machine language object (.OBJ) files may be in either ASCII or
binary (compressed) format.

Extended Basic Linking Loader

INCLUDE Command

O If a machine language object library (.LIB) file is named in an
INCLUDE command, all of the modules in that library will be
loaded.

O An Extended BASIC object library (.LBX) file should not be used
with an INCLUDE command. These libraries use a random
organization that is not compatible with the .OBX file format and
will generate a diagnostic when processed by XLL.

O Wild card file name patterns may be used to specify INCLUDE file
names.

O If one of the files named in the INCLUDE command cannot be
located, the linking loader will print

File not found

and the entire command line will be ignored.

O All files named by the INCLUDE command must reside on file-
structured devices.

Examples

5-14

Two examples of INCLUDE command usage follow.

XLL include tx#,ed0: ax?.0bj

Include all .OBX and .OBJ files whose names start with the characters

“tx” on device SYO:, as well as all .OBJ files whose names are three

characters long and which start with the characters “mx” on device
EDO:.

MLL >i a@fO: libl. lib, file2, wd: fi le3.obx

Include the files “‘mf0:lib1l.lib’’, ‘‘mf0:file2.obj’’ and/or
“mf0:file2.obx”, and “‘wd0:file3.obx”. Note that a device name

specification applies to all following file names until another device
name Is given.

MAP

Extended Basic Linking Loader

MAP Command

Generate a Load Map

Syntax Diagram

———»(MAP) RETURN |——___»
MAP

filename

Description

The MAP command requests that a load map of the generated
program be created by XLL. This file contains:

1. A list of all modules included as part of the output image
(.FD2) file, including the load address of each module.

2. An alphabetic list of all global symbols and their locations.

3. A list of all common variables and arrays, both blank and
labeled, defined by the machine language object programs.

4. A list of all undefined or multiply-defined global symbols.

A list of rules for MAP command usage follows. See Extended BASIC
Linking Loader Map Format, below, for a description of the map
generated by XLL.

O

2)

The MAP command 1s optional.

A linkage map will not be generated unless a MAP command is
given.

The MAP command may be abbreviated to one or more letters.

Only one file name may be given with the MAP command.

If no file name is given with the MAP command the map will be
printed to the console (device KB0:).

The default extension for the map file is .MAP.

No wild card characters may be used in the map file specification.

9-15

Extended Basic Linking Loader

MAP Command

Examples

Two examples of MAP command usage follow.

XLL >map

Print a load map to the console, device K BO:.

XLL >a mbO: zippo

Print a load map to file “mb0:zippo.map”.

9-16

Extended Basic Linking Loader

OUTPUT Command

OUTPUT

Specify the Name of the Output File

Syntax Diagram

FD2

——»>(__ OUTPUT)————»{__ filename +=» ReTuRN. }/-—>

Description

The OUTPUT command specifies the name of the executable file to be
produced. The output file is an image of an executable program which
may be loaded and executed by the Extended BASIC Runtime System,
BSXRUN.

O The OUTPUT command may be abbreviated to one or more
letters.

O Only one output file name may be given with an OUTPUT
command.

O Atleastone OUTPUT command must be given. If more than one is
given the output file specified by the last OUTPUT command will
be used.

O The default extension of the output file is .FD2.

O No wild card characters may be used in the output file
specification.

Example

XLL out testl

Write the output of XLL to file “sy0:test!.fd2”.

5-17

Extended Basic Linking Loader

Error Messages

Extended BASIC Linking Loader Error Messages

9-18

The XLL program operates in two phases: the input phase and the
execution phase. The input phase takes place from the time XLL
begins execution until an END or GO command is issued. The
execution phase occurs between the time the END or GO command is
issued and XLL returns to FDOS.

Errors that occur in the input phase are recoverable. The line for which
the diagnostics are produced is ignored and may be re-entered with the
necessary corrections.

NOTE

If the commands to XLL are taken from a command file, an
input phase error will return control to FDOS and further
command file input will be suppressed.

Errors that occur during execution are usually fatal. XLL will not
create an output file if any of these errors occur. See the Error
Messages section for lists of XLL general execution and I/O error
messages.

Extended Basic Linking Loader

Map Format

Extended BASIC Linking Loader Map Format

The XLL program, under control of the MAP command, produces a
detailed listing of the modules that have been linked together to
produce an executable program. This listing is called a load map, and is
stored in a print image file. The load map is in the following four parts:

1. The module list, which gives the names of the linked modules,
along with their type, address, length, and other information.

2. The symbol table, which is an alphabetical list of all global
symbols in the modules on the module list.

3. The common symbol table, which lists all common regions
allocated.

4. A listing of error messages for all multi-defined or undefined
symbols referenced by the program.

The map format is illustrated by an actual load map produced by XLL.
The following commands were given to XLL, with WDI: used as the
system device:

XLL >i edO: aain, od1: alpha, beta, graph
XLLOF flib, util, bench
XiL>o edO: main
Mil >m edO: main
XLL >g

9-19

Extended Basic Linking Loader

Map Format

Module List

The first part of the load map, the module list, lists the names of the
linked modules, their number, type, starting address, number of bytes
used, date and time of compilation or assembly, name of the program
that created the object module, and the file from which the module was
read. Refer to Figure 5-1 for the example of the module list produced

5-20

by XLL.
An explanation of each field follows:

Module

Number

Type

Base

Length

is the name of the module (module identifier, or IDT).
For Extended BASIC programs this is the name of the
.OBX file. Certain names, however, have special
meanings. “$GLOBAL” refers to memory reserved for
EXPORT variables; “§$DATA” refers either to DATA

statement memory or to data segment memory in
Assembly or FORTRAN programs.

is the ordinal number of the module in the input. Other
parts of the load map use this number to identify the
module in which a symbol was defined or referenced.

is the module type. Currently, the types are:
OBX for INCLUDE Extended BASIC modules;

OBJ for INCLUDE Assembly or FORTRAN
modules;

LIB for FIND Assembly or FORTRAN modules;
LBX for FIND Extended BASIC modules.

is the starting address of the module in memory. Notice
that 4-digit hexadecimal addresses refer to the 64K-
byte machine code memory segment, and 8-digit
hexadecimal addresses refer to the Extended BASIC
memory segment. While each segment starts at address
zero, only the machine-code segment will start at
physical address zero when the program is executed;
the Extended BASIC memory segment will actually be
loaded into a different set of addresses by the
BSXRUN program.

is the number of bytes (in hexadecimal) used by a
module. The length is a 4-digit number for modules
loaded into the machine code segment, and is 8 digits
for modules loaded into the Extended BASIC segment.

Extended Basic Linking Loader

Map Format

Date, Time are the date and time at which the module was

compiled or assembled.

Creator is the name of the program that created the object
module. Some common names are: LE for the Linkage
Editor, ASM for the Assembler, FC for the
FORTRAN Compiler, and XBC for the Extended
BASIC Compiler.

File is the name of the file from which the module was read.
This name is printed only for the first module taken
from any particular file.

At the bottom of the page is a summary of the memory requirements
for the complete program. Of particular interest is the “Extended
memory required”, which indicates how much free memory (which
must not be allocated to E-disk) is required in order to execute the
program.

Extended BASIC Linking Loader (XLL) Version 1.0 05-Oct-84 14:17 Page 1

Module Number Type Base Length Date Time Creator File

MATH 1 O8BX 00000000 00000004 05-Oct-84 14:16 XBC EDO: MAIN. OBX
$GLOBAL 0000 0208
ALPHA OBJ 0208 QO03E 07-Aug-84 14:46 FC WO1: ALPHA. OBJ
$DATA 0244 0034
ETA 3 OBJ 027A 0036 07-Aug-84 14:47 FC WO1: BETA. OBJ

$DATA O2B0 0034
graph 4 OBJ 02ZE4 0230 05-Jan-84 14:30 LE WD1: GRAPH. OBJ
$ritp > LIB 0514 0140 14-Sep-83 16:34 ASN WO1: FLIB.LIB

SIN 6 LIB 0634 O1AE 1 -B1 13:47 ASN
FSRUSP 7 LIB 0802 0000 14-Sep-83 16:18 ASM
SOATA 0802 OOFA
RELSV 8 LIB O8FC 04846 25-Aug-83 08:41 ASM
FSEATL 9 LIB 0OC3 14-Sep-81 11:49 ASM
FSERRC 10 LIB 0E 44 010C 15-Sep-81 08:24 ASH
F SRPAU 11 LIB OF 32 QOOBA 17-Jan-84 17:25 ASK
F $XSuUP 12 LIB 100C 00OA6 09-Sep-83 13:09 ASH
F$XLOG 13 LIB 1082 0052 19-Jan-83 10:24 ASH
F$xI0 14 LIB 1104 O40E 09-Sep-83 13:10 ASN
F $RURK 15 LIB 1512 0000 19-Jan-83 10:21 ASM
SOATA 1512 0100
F$XFCB 16 LIB 1612 0000 19-Jan-83 10:21 ASH
SOATA 1612 01C2
STARR 17 LBX 000000C46 00006272 05-Oct-84 14:01 XBC WO1: UTIL. LBX
TEXT17 18 LBX 00006358 O0004DF4 04-Oct-84 08:06 XBC

BLKJCK 19 LBX 000081C4 O0002Z5AA 05-Oct-84 14:01 XBC
GE : XBC
BUBBLE 21 LBX 00012378 OOOOO1EA 05-Oct-84 14:13 XBC WO1: BENCH. LBX
TICTOC 22 LBX 00012582 0000027A 05-Oct-84 09:09 XBC
SIEVE 23 LBX OOO12Z7FC OO0001A4 05-Oct-84 14:12 XBC

Machine code segment size: 6160 bytes (6.0 Kb)
BASIC code segment size: 76192 bytes (74.4 ytes)
Extended memory required: 152 blocks (76 Kbytes

Figure 5-1. Module List

5-21

Extended Basic Linking Loader
Map Format

Symbol Table

9-22

The symbol table is an alphabetical list of all global symbols in the
linked modules. The first field contains the name of the global
identifier. This field is ordered alphabetically, except when linking very
large programs. Other fields indicate the symbol type, hexadecimal
value, and module number in which the symbol is defined. Refer to
Figure 5-2 for an example of the Symbol Table Format.

An explanation of each field follows:

Name

Type

Value

is the global identifier itself. For EXPORTed (global)
BASIC variables, these names resemble the forms in the

source program: a floating-point variable is marked with a
trailing “#”; arrays are marked with trailing brackets “[]”.

is a one-letter code that indicates the symbol type.
These codes are:
“B” for a BASIC subroutine name,

“C” for a labeled COMMON segment name,
“G” for a BASIC global variable,
“OQ” for an Assembly or FORTRAN subroutine or global
data item name,

“U” for an undefined symbol.
A letter code may be followed by an asterisk “*”, which
indicates that the symbol is not referenced by another
module.

is the value assigned to a symbol, expressed as a
hexadecimal number. For BASIC subroutines this is an 8-
digit (extended memory) address. An absolute value is
printed with a trailing asterisk, “*’’.

Number is the module number in which the symbol is defined.

Extended Basic Linking Loader

Map Format

Extended BASIC Linking Loader (XLL) Version 1.0 05-Oct-84 14:17 Page 2

Name Type Value Nuaber Name Type Value Number

SMAINS BH QOOOO002ZA 1 ABC C 17D4
ALPHA 0 0208 2 BETA 0 027A
BLKJICK B 00008 604 1v BUBBLE B 90012422 21

H
COUNTERSZ[E J] Gx OO3E 1 DEVICESS£} Gx OOOE 1

0 O2E4 4 All 0 0312 4
ERAGRP 0 034C 4 FSBUFS 0 17D2 16
FSEATL 0 OD82 9 FSEBAZ Ox 008s 9
FSEDBZ 0 ODAG 9 FSEINA 0 ODAC 9
FSERRC 0 O£46 10 FSERRS 0 OE4C 10
FSERST 0 OF7C 11 FSESGL Ox OD82 9
FSIRLD 0 0956 8 FSIRNC 0 0718 8
FSIRML 0 O71A 8 FSIRMV Ox 0976 8
FSIRMM On OAS& 8 FSIRPK 0 OA72 8
FSIRSB 0 O90C 8 FSIRSC 0 OF0A 8
FSIRSS 0 ocsc 8 FSIRST 0 09646 8
FSROBL Ox 0652 5 FSRERB 0 1544 15
FSRGIY 0 0402 4 FSRITP 0 03514 5
FSRPAU On 2 i1 FSRREL 0 0652 5
FSRURK 0 1512 15 FSRWSP 0 0602 7
F$XBC 0 OOFE™ 15 FSXCLF Ox 1014 12
F$XCLS 0 100C 12 F$XCOL On OOFAR 15
FSXEOF 0 14 FSXERR 0 1084 12
FS$XFCB 0 1612 16 FSXFCE 0 17CA 16
FSXFLN Ox 0016" 16 FSXFLS 0 1442 14
F$XLOG 0 1082 13 FSXPSE 0 1070 12
F$XRED On 1104 14 FSXRIR 0 0000 (14
FS$XRND Ox 153A 15 FSXRST 0 108— 12
FSXSLI 0 14 FSXSTI 0 0000 14
FSXxSTP 0 107C 12 FSXTRA Ox 1088 12
FSXWIR 0 14 FSXWRT on 1200 14
FS On 0828 7 FILEMAMES Gn 0000 1
GEP B QOQ00E444 20 GRPOFF 0 O36E 4
GRPON 0 0388 4 LASTVALUH Gx 0006 1
MOVE Ox O3A2 4 Ox OSTA 4
PAN 0 O3F2 4 PLOT On O41A 4
PLOTR On 0448 4 READINGSS#I] Gx 010C 1
SIEVE B 00012854 23 0 06468 6
STARR B 00001842 17 TEXT17 B O0006E10 18
TICTOC B 00012620 22 f$r gay On OMD2 4

Figure 5-2. Symbol Table

5-23

Extended Basic Linking Loader

Map Format

Common Symbol Table

The common symbol table lists all of the labeled and blank common
regions assigned by XLL. Refer to Figure 5-3 for an example of the
Common Symbol Table format.

An explanation of each column follows:

Common Name is the name assigned to the common region. In the
case of blank common, the name is printed as
“S$BLANK”.

Origin is the address (in hexadecimal) assigned to the
common region in the machine code segment.

Length is the number (in hexadecimal) of bytes reserved for
the common region.

Extended BASIC Linking Loader (XLL) Version 1.0 05-Oct-84 14:17 Page 3

Coaaon Naae Origin Length

ABC 17D4 0028
SBLANK 17FC 0014

Figure 5-3. Common Symbol Table

Error Message Table

The fourth page lists error messages for all multi-defined or undefined
symbols referenced by XLM. If symbol reference errors are found, this
table will list the symbol name, the problem (whether the symbol is
multi-defined or undefined), and the module in which the problem is
found.

9-24

Extended Basic Library Manager

THE EXTENDED BASIC LIBRARY MANAGER PROGRAM

The Extended BASIC Library Manager program, XLM, creates and
maintains software libraries. Software libraries are collections of
standard and proven program modules that are used as part of other
programs. XLM provides the capability to create libraries and to
merge, delete, list, and copy modules in libraries. Extended BASIC
libraries include a symbol dictionary to make efficient external symbol
searches possible.

The Extended BASIC Library Manager program resides on a 5-1/4
inch floppy disk, distributed with the rest of the XBASIC system. It has
the file name of XLM.FD2.

Executing the XLM Program

To start execution of the Extended BASIC Library Manager program
from the FDOS command line (interpreter) prompt, type:

XLIMK RETURN >

Terminating the XLM Program

Type /X or (CTRL)/Z at the end of a command line to exit from the
Extended BASIC Library Manager program and return to FDOS.
Type «CTRL)/P to exit the Extended BASIC Library Manager
program at any other time.

9-25

Extended Basic Library Manager

Using the XLM Program

The Extended BASIC Library Manager program is used to create new
libraries and to insert, delete, replace and copy modules within
libraries. In addition, the Extended BASIC Library Manager program
supplies listings of module names, and optionally, listings of the
external references and definitions for each module.

When first started, the Extended BASIC Library Manager program
displays:

f >
Extended Library Manager Version x.y

XLII)

NOTE

If the major version number (x) does not match the major
version number on the front of this manual, call a Fluke
Customer Service Center for advice.

Each command line is processed as soon as the (RETURN) key is
pressed. The Library Manager performs the required functions and
returns control to the user with the XLM) prompt. If errors are
encountered, the command 1s ignored and an error message is printed.
See Extended BASIC Library Manager Error Messages in the Error
Messages section for complete descriptions.

9-26

Extended Basic Library Manager

XLM File Name Conventions

XLM, like XLL, permits the use of wild card characters to match input
file names. These wild cards are the asterisk “*” that matches zero or
more arbitrary characters in a file name or in an extension, and the
question mark “?”, that matches any one character in a file name or
extension. File names that contain wild card characters are called
patterns.

Examples of file name patterns, and the file names which they can
match, are listed below. Arbitrary characters are indicated with an “x”.

Pattern Could Match

A*A AA, AxA, AxxA, AxxxA, AxxxxA

A?A AxA

A?*A AxA, AxxA, AxxxA, AxxxxA

A? A* AxA, AxAx, AxAxx, AxAxxx

A*B¥A ABA, AxBA, AxxBA, AxxxBA, ABxA, ABxxA,

ABxxxA AxBxA, AxxBxA, AxBxxA, ...

With XLM, wild card characters may not be used in module names.

9-2/7

Extended Basic Library Manager

Commands

Extended BASIC Library Manager Commands

XLM commands create and maintain libraries of program modules.
Commands are entered in response to the XLM) prompt.

9-28

COMMAND _ DESCRIPTION

IC

/D

/E

iL

1M

IX

?

Copy modules from a library to separate object files.

Delete modules from a library.

Extended list. Sends external symbol information to
the screen or output file.

List library module information to the screen or
output file.

Merge object files into a library.

Exit and return to the FDOS) prompt.

Help. Lists the commands and gives an example for
each.

Guidelines for these commands are:

oO Both upper-case and lower-case entries are accepted. They are
always equivalent.

Only one command may be entered on a line.

For each command (except exit and help), the general syntax is as
follows:

[output]=input command

Two types of input files are recognized, object files and library files.
Library files must be followed by opening and closing parentheses.
A list of library modules may be listed within the parentheses. If the
output file is not specified, the first input library name will be used,
and the proper extension will be added.

Extended Basic Library Manager

Commands

O The syntax for file specifications (where required) is:

[device:] {filename} [.extension]

The extension is optional. If no extension is given for a library file, it is
assumed to be .LBX. For object files and modules, the default is .OBX.
The device is also optional and will default to SY0:, the system device.
If a device is specified in the input section of a command, that device
becomes the default for that command only.

9-29

Extended Basic Library Manager

Copy Command

/C

Copy
Syntax Diagram

device
(.1bx)

> = filename module

{, a
YY

—>{/C_)——>_ RETURN }

Description

The Copy command reads the named object modules and copies them
to individual files. If an output device is specified, the files are created
on that device. Any output file specification is ignored. Modules may
be taken from more than one library. If modules from two or more
libraries have the same name, the most recent version is copied. Object
files may not be given as input to a Copy command.

Examples

9-30

XLM=1ib1() /c
XLM dedO0: =1ib2(mod1, aod2) /c

The first example copies all of the modules in lib! .1bx to individual files
on the system default device (SY0:). The second copies the modules
modl.obx and mod2.obx from the library lib2.lbx on SY0O: to
individual files on EDO0:.

Extended Basic Library Manager

Delete Command

/D

Delete

Syntax Diagram

(IDX)

you SS module

4 $s] A.

a a

—>{/0)— {RETURN |

Description

The Delete command removes modules from a library. More than one
library may be given as input. Each input library must have at least one
module listed. Object files may not be listed as input to a Delete
command. If more than one library is given in the input list, the output
library contains all modules from all libraries listed which have not
been deleted.

Examples

XL out lib=1ib1(modé, aod2) /d
XLM out lib=libi(modl, mod2), 1ib2(mod1) /d

The first example takes all but two of the modules from lib1.lbx and
makes a new library called outlib.lbx. The second copies parts of two
libraries into outlib.lbx. If some of the modules from the two libraries
have the same name, only the most recent are included in the output.

9-31

Extended Basic Library Manager

Extended List Command

/E

Extended List

Syntax Diagram

(Ist)

Pag FILE Ly
aa
Ne

(.0bx)

1 filename

- ‘
filename (>)

Ab
(tx) module

{, \e—
YY

Le) —p{ RETURN |

Description

The Extended List command sends information about external
symbols to the screen or a file. The output contains a list of external
references and definitions for each module or object file. If no output
file is specified, the information is printed on the standard output
device.

5-32

Extended Basic Library Manager

Extended List Command

Example

Here is a sample command and its corresponding output:

XLPl=q. Ibx (assoc, key) /e

Library Map of SY0:@.LBX on 12-Ju1-84 at 14:17

ASSOC. O8X 02-Ju 1-84 08:55

definitions:

ASSOC

references:

FSXRIR FSRGMY FSDEV ISCrDL

KEY. O8X 03-u 1-84 10:06

definitions:

KEY

references:

F SRGMY ISWORK

TS$DEVL

9-33

Extended Basic Library Manager
List Command

/L

List

Syntax Diagram

Ast (Ist)
Pag cid FUE FS

(.0bx)

file |
J

file. (

(.1bx)
module

On
L.)- —p{ RETURN |

Description

The List command sends information about the modules ina library or
object file to the screen or a file. If no output file is specified, the
information is printed on the standard output device.

Example

Here is a sample command and its corresponding output:

XLP =x. lbx(mod1, aod2)/1

Library Pap of SYO:X.LBX on 13-Jul-84 at 10:28

PIOD1 . OBX 05-Ju1-84 07:15
FOD2. O8X 03-Ju1-84 08: 346

9-34

Extended Basic Library Manager

Merge Command

/M

Merge

Syntax Diagram

(bx)

rag Ci FILE
af aN
Ne

(.0bx)

file | } .
file RCL

(.1bx)
module

TY‘
NE py

L577). —p{ RETURN |

Description

The Merge command combines object files into a library. Existing
library modules may also be included as input to the new library. If two
modules appear with the same name, only the most recent module will
be included in the output library.

Examples

XL out lib=ed0: aod1, maod2, inlib(aod5) /a
XLAD1Lib3=1lib1(), a0od7/m

The first example combines mod!.obx, mod2.o0bx and a module from
inlib.lbx into outlib.l!bx. All three input files are from the device ED0:.
The output file is stored on SYO:. The second example combines all
modules in libI.lbx with the object file mod7.obx and stores the output
in the library lib3.1bx.

9-35

Extended Basic Library Manager

Exit Command

/X

Exit

syntax Diagram

(/x {RETURN |

Description

The Exit command causes the Extended Library Manager to exit and
return to FDOS. /X may be typed anywhere on a command line. All
other inputs on the command line are ignored.

0-36

Extended Basic Library Manager

Help Command

?

Help

Syntax Diagram

sf) »(? —p{ RETURN |

Description

The Help command prints a list of the commands and an example for
each.

Example

When the Help command is used, the screen appears as follows.

(, ~

Command Function Exaap le
/C copy MFO: =MATH() /C
/D Delete MATH. LBX=MATH. LBX(SIN, COS) /D
SE Extended list MATH.LST=MATH.LBX() /E
7L List MATH. LSTSIATH.LBX() /L
/ti Mer MATH. LBX=SIN. O8X, COS. OBX/M
1% Exi ‘Xx

4) (

5-37

Extended Basic Library Manager

Error Messages

Extended BASIC Library Manager Error Messages

When an error occurs, the Extended BASIC Library Manager
program prints an appropriate message and returns to the XLM
prompt. See the Error Messages Section for a list of XLM errors and
their meanings.

5-38

Section 6

Extended BASIC Error Messages

CONTENTS

Introduction 2... .. ce ccc ccc ccc ee eee ete eee e eee 6-3
Runtime and Compiler Errors 0c ee eee eee eeees 6-3
Extended Linking Loader Error Messages-... 6-8
Extended Library Manager Error Messages05. 6-15

6-1/6-2

Error Messages

INTRODUCTION

This section describes three types of error messages:

O Errors reported by the Extended BASIC Runtime system or
Extended BASIC Compiler programs

O Extended Linking Loader error messages

O Extended Library Manager error messages

RUNTIME AND COMPILER ERRORS

The list of error codes that may be reported by the Extended BASIC
Runtime System program or the Extended BASIC Compiler program
is provided in Table 6-1. This list, rather than the error list in the Fluke
Enhanced BASIC Programming Manual, should be used for
reference.

6-3

Error Messages

Table 6-1. Fluke Extended BASIC Error List

CODE | LEVEL’ EXPLANATION

TYPE: OVERFLOW

0 F Memory overflow
1 F Virtual array file > 64K bytes long, or > 54K elements (XBC)
2 F Virtual array file too small for arrays

TYPE: SYSTEM

100 F BASIC interpreter or Runtime system internal error
101 F Incompatible lexical file or Extended BASIC program

TYPE: COMMAND

200 F Immediate mode error
201 F Cannot CONTinue
202 F STEP outside break mode

TYPE: 1/O

300 R Device not Ready
301 R Disk write protected
302 R Illegal channel number specified
303 R Channel already in use
304 R Invalid device name or device not present
305 R File not found on device
306 R No room on device
307 R Read/write past end of file
308 R Channel not open
309 R RS-232 channel input queue overflow
310 R Input line too long
311 R Disk read error
312 R Illegal filename syntax
313 F Random access to sequential file
314 F Sequential access to random file
315 F Virtual array assigned to sequential device
317 R Illegal directory on device
318 R Read (write) from (to) output (input) file
319 R ON <channel> device not RS-232
320 F Object file error
321 R Device directory full
322 R Illegal operation for device
323 R File delete protected
324 R Can't RENAME file
325 R File medium swapped
326 R Can't load - too little memory
327 R Illegal image file format
328 R Command line too long
329 R RS-232 port number out of range
330 R Parallel port number out of range

6-4

Table 6-1. Fluke Extended BASIC Error List (cont)

Error Messages

CODE LEVEL*| EXPLANATION

TYPE: INSTRUMENT BUS CONTROL

400 R Illegal -488 port number
401 R Illegal -488 device address
402 R Illegal -488 secondary device address
403 R Incomplete -488 handshake
404 R Too many ports designated for -488 function
405 R No devices attached to -488 port
406 R No -488 ports available
407 R -488 port specified is unavailable
408 R -488 port timeout
409 R Illegal WBYTE data
410 R Parallel poll bit number out of range
411 R Parallel poll bit sense not 0 or 1
412 R -488 timeout limit out of range
413 R TERM string longer than one character
414 R No -488 driver in System
415 WwW SET SRQ status byte value out of range
416 R Illegal -488 operation for current port state

TYPE: SYNTAX

500 F Unrecognized statement
501 F Illegal character terminating statement
502 F Illegal subscript (<0)
503 F Mismatched parentheses
504 F Illegal let
505 F Illegal if
506 F Illegal line number
507 F Illegal PRINT
508 F Illegal format for PRINT or NUM$()
509 F Illegal INPUT statement
510 F Illegal array dimension size
511 F Badly formed define
512 F Illegal FOR statement
513 F FOR without NEXT

514 F NEXT without FOR (jump back into “for” loop)
515 F Unmatched quotes
516 F IIl-formed expression
517 F Bad OPEN statement
518 F Bad CLOSE statement
519 F IEEE-488 syntax error
520 F Initial COM at illegal point in program
521 F Not a well-structured statement
522 F Illegal variable name
523 F ON statement syntax error
524 F OFF statement syntax error

929 F TRACE syntax error
526 F Illegal file size in open

6-5

Error Messages

Table 6-1. Fluke Extended BASIC Error List (cont)

CODE | LEvEL*| EXPLANATION
TYPE: SYNTAX (cont)

527 F RENumber parameter error
528 F RENumber syntax error
529 F ELSE without IF
530 F NEXT syntax error
531 F INPUT WBYTE requires IEEE-488 input
532 F Illegal subrange descriptor
533 F WBYTE/RBYTE data not integer type
534 F Can't specify column for WBYTE/RBYTE subrange
535 F Can't use undimensioned variable for WBYTE/RBYTE
536 F Virtual array illegal for WBYTE/RBYTE
537 F 2-dimensional array illegal with WBYTE/RBYTE I/O
538 F Illegal CONFIG statement
939 F Illegal RBYTE syntax
540 F |RBYTE increment <=0
541 F Illegal RBYTE cycle length
542 F Illegal WBYTE clause syntax
543 F WBIN/RBIN precision error
544 F WAIT statement syntax error
545 F Illegal CALL statement
546 F Virtual array parameter illegal
547 F Parameter syntax error ;
548 F Illegal SET statement syntax or option
549 F Require file name for SAVE
550 F Illegal RENAME statement syntax

TYPE: MATH

600 F Illegal mode mixing
601 R Arithmetic overflow
602 R Arithmetic underflow
603 R Divide by zero
604 R Square root argument > 0
605 R Exponent too large
606 R Log argument <=0
607 R Trig function argument too large
608 R Illegal argument(s) for power operator
609 F Illegal floating-point operation code
610 F Unimplemented floating operation attempted

Error Messages

Table 6-1. Fluke Extended BASIC Error List (cont)

CODE | LEVEL* EXPLANATION

TYPE: TRANSFER

700 F Illegal GOTO or GOSUB
701 F RETURN without GOSUB
702 F RESUME outside interrupt handler
703 F CALL to undefined FN
704 R ON expression GOTO selector out of range

705 F CALL to undefined subroutine
706 F Parameter count mismatch for CALL
707 R Illegal time/date value

708 R Timer value not initialized for ON INTERVAL or ON CLOCK

TYPE: INPUT

800 R Out of DATA in READ
801 W Too much data entered for INPUT
802 W Too little data entered for INPUT
803 W Illegal character for INPUT or VAL()
804 F Bad format in data statement

TYPE: VARIABLE

900 F Access to undefined variable
901 W Redimension of array
902 R Subscript out of range
903 F COM of variable which is already defined
904 WwW String too long for virtual array field
905 F Incompatible COM declaration
906 F DIM’ within nested interrupt handler
907 F Bad XOP 1 call
908 F legal array parameter (memory vs. virtual)
909 F Illegal conformal dimenisoning parameter

* F = Fatal

= Recoverable

W = Warning

XLL Error Messages

EXTENDED LINKING LOADER ERROR MESSAGES

Extended Linking Loader Error Messages may be divided into two
types:

O General execution errors

O I/O errors

General execution errors, followed by their descriptions, are listed in
Table 6-2. I/O error codes that may appear with XLL are listed in
Table 6-3.

Table 6-2. Extended Linking Loader Error Messages

Error Message Explanation

“(character)” is an illegal command character

The character described cannot appear in a command.

“(device)” is an invalid device name

The device given in the command cannot be a device name.

“(string)” is not a legal file name pattern

The pattern given is not a valid file name pattern.

“<string>” is nota valid command

The command given is not a command recognized by XLL.

Can't create file “(filename)” — ¢1/O error)

The named file cannot be created for the reason given.

Can’t open input file “(filename)” — (I/O error >

The named file cannot be opened for reading for the reason given.

Can't use CBASIC symbol “(name)” in module (number)

The Extended BASIC subroutine named cannot be called from the

Assembly or FORTRAN language subroutine whose module

number is given.

Can't use file “(filename)” — Require file-structured device

Only file-structured devices may be used for input and output

image files.

6-8

XLL Error Messages

Table 6-2. Extended Linking Loader Error Messages (cont)

Error Message Explanation

Can't write to file “(filename)” — File is protected

The named output file is protected against overwriting.

Comma or end-of-line must follow file name

Something other thana"“,” or the end ofthe line follows the name of

a file in a command to XLL.

Directory error for device “{device name)”: — ¢!/O error)

The device directory cannot be read for the reason given. This

error may occur if input files are serial devices.

Duplicate MAIN program in file “(filename)”

More than one BASIC main program is present in the input file. The

file names of the additional main programs are printed.

End of line expected after “end” or “go”

Only the end of the input line may appear after an END or GO

commana.

File “(filename)” has improper format

The input file named has a format that cannot be an object or library

file.

File ‘“<filename)” has no object modules

The input file named contains no object modules prior to the end of

file mark.

File name(s) must follow command keyword

The FIND, INCLUDE, and OUTPUT commands require a file name

following the command keyword.

FIND is useless prior to INCLUDE

If no INCLUDE commands precede a FIND command the libraries

cannot resolve any undefined external references. No modules

from the libraries can possibly be included.

llega! object tag “(character)” in file “(filename)”

The character shown cannot appear in a .OBJ or .LIB file.

XLL Error Messages

Table 6-2. Extended Linking Loader Error Messages (cont)

Error Message Explanation

Internal program error: (module code)

The XLL program has detected an error in its own processing.

Contact a Fluke Customer Service Center for advice.

Label “(name)”: conflicting definition

The label shown has been defined as both acommon region anda

procedure name.

Library “(filename)” in illegal format

The library named has a format that cannot be a .LBX library.

Machine code segment is too large for memory!

The sizes of the machine code object modules plus the size of the

BASIC global variable region exceeds 64K bytes, the address limit

of the processor.

Memory overflow — cannot continue

The number of files, load modules, and symbols defined by the

input to XLL exceeds the memory capacity of the processor.

No files match the pattern “(pattern)”

A pattern given with an INCLUDE or FIND command does not

match any of the file names on the file storage device.

No MAIN program present

None of the BASIC program modules contains a main program.

No input file specified

An END or GO command was given before any INCLUDE files were

specified.

No output file specified

An END or GO command was given before any OUTPUT file was

specified.

No symbol table in library “(filename)”

No symbol table (external definition dictionary) could be found in

the .LBX file named.

Table 6-2. Extended Linking Loader Error Messages (cont)

Error Message Explanation

Object file error: Absolute loadbias address illegal, file (filename)

Absolute load addresses and load biases are not permitted in

machine code object modules used with Extended BASIC.

Object file error: Bad symbol table attributes, file ¢ filename)

The Extended BASIC module (from a .OBX or .LBX file) has an

illegal symbol table. This may be due to an error in the BASIC

Compiler or in the Extended Library Manager. Contact a Fluke

Customer Service Center.

Object file error: Call to non-subroutine, file (filename)

A CALL statement in a BASIC program refers to the name of a

labeled COMMON region in a machine code module.

Object file error: Can’t read object header, file < filename)

The initial record of an object module cannot be read. A preceding

|/O error message should indicate the reason.

Object file error: Checksum error, file (filename)

An object module in a .OBJ or .LIB file contains invalid data.

Object file error: Entry address ignored, file (filename)

A machine code object module (.OBUJ or .LIB file) contains an entry

point definition. Execution of a program may only begin with the

BASIC main program.

Object file error: \llegal (odd address) backchain, file ¢ filename)

A machine code object module (.OBJ or .LIB file) contains an illegal

external reference chain address.

Object file error: Illegal character in identifier: “(char)”, file (filename)

The object file named probably contains invalid data; an external

symbol has a non-printing character.

Object file error: Illegal hexadecimal data, file ¢ filename)

A machine code object module (.OBJ or .LIB file) contains an illegal

character where a hexadecimal number is required.

XLL Error Messages

Table 6-2. Extended Linking Loader Error Messages (cont)

Error Message Explanation

Object file error: Invalid $DATA segment number, file (filename)

The $DATA segment of a machine code module must be numbered

zero.

Object file error: Invalid E-tag offset in module (number), file ¢ filename)

The index attached to an E-tag in the machine code module named

exceeds the number of external references in the module.

Object file error: Invalid OBX tag type, file «filename)

An invalid object code tag was found in the .OBX file named.

Object file error: Invalid symbol number, file ¢ filename >

An invalid symbol table reference was found in a .OBX module.

Object file error: Premature end of file, file «filename)

The physical end of the file was reached before the logical end of

an object module was processed.

Object file error: Ref to undefined COMMON segment, file ¢ filename)

A machine code object module made a reference to a COMMON

segment that had not been defined.

Object file error: Too many COMMON segments, file (filename)

Only 127 COMMON segments may be referenced in any one

machine code object module.

Object file error: Too many external references in module (number), file (filename)

Only 1024 external symbols may occur in any machine code or

compiled BASIC subroutine.

Only one output or map file name permitted

Only one file name may be specified with a MAP or OUTPUT

command.

Output file too large: maximum is (number) blocks

The program is larger than the maximum output file size of 4

megabytes.

6-12

XLL Error Messages

Table 6-2. Extended Linking Loader Error Messages (cont)

Error Message Explanation

Output file too small - (number) blocks needed

The largest space that could be allocated on the output device is

too small to hold the output image file.

Patterns illegal in output and map file names

Wild card file name characters cannot be used in output file names.

Patterns not permitted in device names

Wild card file name characters cannot be used in device names.

Read error in file “<¢ filename)’ — (I/O error)

An error occurred while trying to read the file named.

Symbol “(name)”: conflicting definition in module (number)

The symbol named is defined both as a labeled COMMON region

and as a program variable or entry point. Consult the load map for

information on all of the modules that contain symbol definitions.

Symbol “(name)”: duplicate definition in module (number)

The symbol named has been defined more than once. Consult the

load map for information about on all of the modules that contain

symbol definitions.

Symbol “(name)” is undefined

The symbol named is referenced but never defined. Consult the

load map for information on the module or modules making refer-

ence to the symbol.

The OUTPUT command requires a file name

The OUTPUT command must be followed by the name of the

output file to be created.

Unable to load overlay — (I/O error)

The XLL program consists of four overlays. If an overlay cannot be

loaded, the program prints this message and exits to FDOS. Be

sure that XLL’s loading device is operating and that the disk, if any,

is not swapped during XLL’s execution.

Write error in file “(filename)” — (1/O error)

The output or map file cannot be written to for the reason given.

6-13

XLL I/O Error Messages

Table 6-3. Extended Linking Loader |/O Error Messages

I/O ERROR MESSAGE EXPLANATION

Device does not exist

Device hardware error

Device not ready

Directory overflow

File does not exist

File is protected

File medium swapped

Illegal device directory

Illegal device or file name

Illegal operation for device

Medium write protected

No end-of-file character

No FDOS driver for device

No memory for |/O buffer

No room on device

Read/write past physical

end of file

The device is unknown to the operating system.

The device is inoperable or the file medium is faulty.

The device is not powered up or does not

contain a disk.

No room exists in the device directory for another

file name.

The file name could not be found in the device’s

file directory.

The file’s directory entry prohibits overwriting or

deleting the file.

The disk in a disk drive was either changed or

removed and re-inserted while files were being

accessed by XLL.

The device directory is in illegal format.

A device or file name has invalid syntax or

characters.

An operation was attempted that is illegal for the

device. (For example, reading the directory of a

serial channel.)

The device or disk cannot be written to.

A .LIB or .OBJ file does not end with an end

of file character.

There is no FDOS module that knows how to work

with the device named in the error message.

XLL does not have enough free memory left to

create an |/O buffer area for this file.

No room exists on the device to permit the creation

of another file.

For an output file: the file is not large enough. Foran

input file: the file is incomplete or has been

truncated.

6-14

XLM Error Messages

EXTENDED LIBRARY MANAGER ERROR MESSAGES

When an error occurs, the Extended BASIC Library Manager
program prints an appropriate message and returns to the XLM
prompt. Table 6-4 lists these messages and a description of each.

Table 6-4. Extended Library Manager Error Messages

ERROR MESSAGE EXPLANATION

An = must follow the output file

An equal sign must separate the output specification from the input

list.

Can't create {object file}

The copy command (/C) could not successfully create the named

object file.

Can't create temporary file

The delete (/D) or merge (/M) command could not successfully

create the temporary file.

Can't open library {library name}

The named library can't be found or read.

Can't open object file {file name }

The named object file can’t be found or read.

Can't use a serial device for that command

An attempt was made to use a Serial device as input or outputfora

copy, delete, or merge command.

Commands:/c, /d, /e, /|, /m, /x or ?

A non-existent command was entered.

Device error

A non-recoverable error was detected during transfer to or from

the floppy or electronic disk.

Device not ready

The disk is not inserted, or the disk drive door is open.

XLM Error Messages

Table 6-4. Extended Library Manager Error Messages (cont)

ERROR MESSAGE EXPLANATION

End input list with command

No command was given, or illegal characters are present in the

input list.

End of library hit unexpectedly

End of file was reached while searching through an existing library.

The library should be recreated.

Fatal errors - library not altered

A new library was not created due to errors encountered during the

generation of the temporary library.

File name too long

File name is longer than 15 characters.

First input library can’t be a pattern

When using the delete or merge commands, the first input must not

be a pattern.

lf no output is specified, the first input must be a library

in adelete or merge commana, the first input must be a library when

no output is specified before the equal sign. The default output is

generated using this library name.

Illegal characters in input list

Characters that are not allowed in file names are included in the

input list.

Illegal characters in module list

Characters that are not allowed in file names are included in the

module list.

Incorrectly formed symbol in module {name }

The module named has a symbol that is not ended with null bytes.

6-16

XLM Error Messages

Table 6-4. Extended Library Manager Error Messages (cont)

ERROR MESSAGE EXPLANATION

Library {library name} does not contain {module name}

The module specified as a member of the library listed is not found

in the library.

Library module not in proper format

A library module is not in the proper format. The library should be

recreated.

Library not in proper format

An input library is notin the proper format. The wrong file may have

been accidentally specified.

Multiply defined symbol: {symbol name} in modules {module 1} and {module 2}

The modules listed both define the given symbol.

No files match the pattern { pattern}

No file on the specified device matches the pattern given.

No such device

The device specified does not exist.

Object file not in proper format

An object file is not in the proper format. File may not actually be an

object file.

Object files not allowed with delete and copy commands

Use FUP to delete or copy object files.

Patterns not allowed in module list

Patterns are only allowed in library and object file names.

Start with a file name or /X to exit

Thecommandline must start with the output file, an equal sign if no

output file is specified, or an /X.

Use FUP to delete a whole library

No modules were specified in a delete command.

6-17/6-18

Section 7

Data Storage

CONTENTS

IMtrOoductiOnN ... cece ccc eee eee eect tee ene ee eens 7-3
OVEFVIEW 2... cc ccc cc cree cece cette nee ee eeeeaees 7-3
Using Arrays for Data Storage ccc eee cee eens 7-4

Array Types and Differences 0c. ccc e ewe eee 7-5
Advantages and Disadvantagesccc ee ecceeees 14

T1/O Channels 2... .. ccc ccc ccc ce cc eect cere eees 7-7
Channel Input and Output cee cee ce eee tenes 7-7
OPENing an Output Channel 0... cee eee eee 7-8
OPENing an Input Channel 0. cece eee eee 7-8
Close a Channel cc ccc ccc ccc ccc cee eee ee eeee 7-8
Specifying File SIZE cece cece ce eee eee 7-9

Sequential Data Files ccc cc cee ec cee cere eens 7-10
Creating a Sequential File ccc cc eee eee 7-10
Reading a Sequential File cece eee ees 7-11

Creating Main Memory Arrays cece cece ccc eeces 7-13
Using Main Memory ArrayS ccc cece cee c cee eeens 7-14

Using Main Memory Arrays as Ordinary Variables 7-14
Programming TechniqueS cece cee ce cee eceees 7-15
Two Dimensional ArrayS cc cece ee cee e eee ceees 7-16
Multiple Arrays 2... ... cc cece ccc eee cece etter ee eees 7-17
RediMemsioning cece cece cece cree cee ee ceneeees 7-17
Main Memory Arrays and Program Chaining 7-18
Serial Storage of Main Memory Arrays in Mass Storage . 7-19

Device Storage Size Requirements0 0000. 7-20
Device File Size Calculation 0.0... cece ee eee 7-20
Disk Size Calculation Example0000- 7-21

7-1

-~

CONTENTS, continued

Virtual Array Files ccc cece eect eect tenes 7-22
Defimition 2... . cece ccc ccc teen e eee eeeeeees 7-24
Advantages and Disadvantages cece eee cccces 7-24
File Structure ccc ccc cee cece eee eee eenee 7-26

ANalOZy ... ccc cece ccc ete e ee ee ee ee eee eee eee e ene 7-26
Virtual Array File Organization2000005 7-27
Storage Size Requirementsc cece eee neces 7-29
Virtual Array Size Calculation 000 ee eee 7-30

Creating Virtual ArrayS ccc ccc eee cere eeeeee 7-32
Using Virtual Arrays ccc cc ce cece e eee eeees 7-33

Using Virtual Arrays as Ordinary Variables 7-33
Using Virtual Array Strings cece cee ee cece eens 7-34

Programming Techniquesc cece eeccceetccccees 7-35
Array Element AcceSs ccc cece eee e cece cence 7-35
Splitting Arrays Among Files 2. cc eeeeceeeee 7-36
Reusing Virtual Array Declarations00000: 7-37
Equivalent Virtual Arrays cc cece eee e cece e eee 7-38

Data Storage

INTRODUCTION

Many program applications require data to be stored or retrieved from
some form of long term storage. For instance, a digital voltmeter
connected to the IEEE-488 bus does not have the capability to average
its readings over a long period of time. The solution 1s to take ten (or
however many) readings, store them, then use the math capability of
the Controller to compute the average.

Using simple variables to store the readings is effective, but addressing
these variables systematically in a program can be clumsy. A better
technique is to store the data in an array. This allows addressing via the
array subscript, which can be a numeric expression.

OVERVIEW

This section describes the techniques of data storage, both in main
memory and on file-structured devices. After discussing the
advantages and disadvantages of both, the methods of use and the
statements used are discussed.

Data Storage

USING ARRAYS FOR DATA STORAGE

An array is both a powerful and convenient method of storing a large
volume of data. There are 954 possible names for each type of simple
variable in Fluke BASIC. This may seem like a large number, but it 1s
not enough to store the readings from a typical digital voltmeter
measurement. Consider the problem of storing 5 readings using
sequential, but independent variables using a loop.

10 T
20 @CGOSUB 100 ' subroutine to request date (yX)
320 IF X = 1 THEN A1X = V%
40 IF X = 2 THEN A2ZX = YX
30 IF X @ 3 THEN ASX = YZ

GO NEXT X
90 END
100 ! subroutine to get Veading from éva
110 ! more code, return value in yZ
120 RETURN

This program fragment will work, but it is easy to see how involved and
clumsy it could get, especially if a large number of data items were
involved. Notice that each reading consumes a program line and one
variable name. Here is a program fragment using an array to
accomplish the same thing.

10 DIM AZX(6Z)
F #» 1 TO 8
COSUB 100 ! go get reading (y%)

> = Y%

ubroutine to get Veading from dva
ore code, return value in y%

In line 40, the array element is assigned the value returned from the
subroutine (Y%) at line 100. The next iteration through the loop
increments the value of X%, which also causes line 40 to assign Y% to
the next sequential array element.

If the number of readings to be made and stored were increased to
1000, the only program changes needed would be to lines 10 and 20. In
the first example 995 more program lines would need to be added
inside of the FOR-NEXT loop.

Data Storage
Using Arrays

Array Types and Differences

Fluke BASIC allows data values to be stored by one of the following
methods.

a) As a sequentially-accessed data file ona file-structured device. This
is essentially a list of data items.

In main memory. Main memory arrays may be one or two-
dimensional.

As a virtual array (random access data file) on a file-structured
device. The array may be one or two-dimensional.

7-5

Data Storage

Using Arrays

Advantages and Disadvantages

Each of the three storage methods has its strong and weak points.
These are summarized below.

a) The sequential data file and virtual array are both stored on file-
structured devices. If the device is a non-volatile file-structured
device (such as the floppy disk or bubble memory), the array
storage is also non-volatile.

A main memory array, being stored in main memory (system
RAM), is susceptible to power failures, program chaining and
DELETE ALL statements.

A sequential data file must be accessed sequentially. If you want
the 405th element of the file, you must sequentially access the
preceeding 404 elements first, which can be time consuming.

Sequential data files must be written, then read. A sequential file
may not be simultaneous read/write.

Virtual arrays and main memory arrays are random access. Any
array element may be accessed at any time.

An array stored in main memory can have a shorter access time
than the same array stored on a file-structured device.

All three storage methods will accept integer, string or floating-
point (real) values.

The elements of a virtual string array have a definite, dimensioned
length. Elements of a main memory string array are limited in
length only by the amount of main memory available.

Virtual arrays can have up to 65,536 (64K) bytes of data (128
blocks).

Main memory arrays are limited to 28K bytes minus the program
size in K bytes. Assuming a 5K application program, this means a
23K maximum array size.

Virtual arrays and main memory arrays can be used like ordinary
program variables.

Data Storage

1/O CHANNELS

The Instrument Controller communicates between the BASIC
program and various devices by means of I/O channels.

The devices used for data storage are file-structured devices suchas:

MFO: (floppy disk)
EDO: (E-disk)
WDo0: (fixed disk drive)
MBO: (bubble memory)

There can be a maximum of 16 I/O channels open at any one time.
They are designated with the numbers | through 16.

The I/O channels are also used to communicate with instruments
connected to the IEEE-488 bus and RS-232 devices. Refer to sections 9

and 10 of this manual.

Channel Input and Output

The BASIC statements used in conjunction with the 1/O channels are
the PRINT statement and the INPUT statement.

O The PRINT statement is used to output data from the program to
the device via the I/O channel.

O The INPUT statement is used to input data from the device, via the

]/O channel to the program.

O The #n clause is added to both the PRINT and INPUT statements
when they are used for channel I/O. The #n clause specifies the
channel number to be used for input or output.

0 The PRINT and INPUT statements are fully described in the
Reference Section of this manual.

Data Storage
I/O Channels

OPENiIng an Output Channel

To designate an output channel, it is necessary to OPEN it AS aNEW
FILE. When an output channel is to be used for a virtual array, the
DIM clause is used in the OPEN statement.

Example

10 OPEN tro: EXAMPL. DAT" AS NEW FILE 1 ‘ new file, channel 1
20 OPEN “EDO: TEST. DAT” NEW FILE 2 i new @ile, channel 2
30 OPEN “MFO: TEST. VRT” AS NEW DIM FILE 3 ! virtual array, chen
30 PRINT @1, “HELLO® { output "HELLO" to channel
40 PRINT @2. AS ' eutput AS to channel 2

NOTE

A virtual array also requires the use of the DIM statement.
Refer to the discussion of Virtual Arrays, elsewhere in this
section.

OPENiIng an Input Channel

To designate an input channel, it is necessary to OPEN it AS an OLD
FILE.

Example

10 OPEN “MFO: EXAMPL. DAT" AS FILE 3 iio ut from channel 3
oe SENT BOO AEST. DAT™ AS OLD 1Le-8 : 4 nput froe channel 4 3

’ é ine rs ne. chan
40 INPUT 64, BS ! read first line, chan 4

An error will result if an attempt is made to OPEN a channel that has
previously been OPENed but not CLOSEd. It is a good practice to
close channels at the end of a program unless files are passed to a
chained program.

CLOSE a Channel

The CLOSE statement closes the file associated with the channel
number given. It is a good idea to CLOSE a channel immediately prior
to OPENing that channel.

Example

10 CLOSE i
a0 CLOSE 2

Data Storage
I/O Channels

Specifying File SIZE

If no file size is specified, the largest contiguous file space will be
temporarily reserved for that file. This may not leave any device space
available for additional files. To overcome this, specify the SIZE in

blocks that you wish reserved on the device for that file. Methods for
calculating block size are described in the discussions of Main Memory
Arrays and Virtual Arrays.

Example

7-9

Data Storage

SEQUENTIAL DATA FILES

A sequential data file is a list of data items, separated by (CR) (LF).
As its name implies, a sequential file must be read sequentially; there is
no means to access an item within the file except by reading all the
items that preceed it.

Sequential files store data in ASCII format and may be read using the
COPY statement or FUP. To copy a sequential file to the screen, type
the following command from BASIC:

COPY {pathname}

or, from FDOS:

FUP {pathname}

Creating a Sequential File

7-10

Creating a sequential file is best illustrated with a short program. The
discussion that follows describes the important points to remember.

19 close ‘ be sure chennel is closed before opening
Ss

30 OPEN “TEST. DAT" AS NEW FILE 1% ‘test.dat. new file, chan 1
40 FOR XX = 1 TO 5%
30 PRINT @1, Y% ‘ output y% to channel 1
60 Vi = 2 & Y% ' do something to y%
70 NEXT XX
60 CLOBE 1
90 END

The example program opens a new file named “TEST.DAT”, then
writes the value of Y% to the file. The FOR-NEXT loop causes this to
repeat 5 times.

Line 10 closes the channel to avoid a possible error if the channel had
been opened previously and not closed.

Line 30 opens the file “FEST.DAT” and assigns channel | for data
transfers to the file. The NEW clause tells BASIC to open a NEW file
to store data. If the file “TEST.DAT” exists already, it is overwritten.

The PRINT statement within the FOR-NEXT loop sends the value of
Y% to channel | (and hence to the file).

Line 80 CLOSEs channel | (good housekeeping).

Data Storage
Sequential Data Files

Reading a Sequential File

Reading a sequential file is illustrated here with three examples. The
discussion that follows each program, and the comments within the
programs emphasize the important points.

Example 1

The COPY statement provides a very simple method of reading a
sequential file. It is so simple, however, that itis not possible to direct
the output anywhere else but to the display.

10 COPY “TEST. DAT"

Example 2

29 i t the tile ge ted previously ook @ e e genera
28 OPEN “TEST. DAT* AS Arp Five 1°
40 ON ERROR GOTO 100 ‘ use this to detect end-of-file
30 INPUT @1, AZ 1 load aX with data from file

$8 «OTD SO. i Pepeat.. repea
100 IF ERR = 307 THEN 110 ELBE 130 ! err 307 = eof
110 PRINT SEND OF FILE REACHED”

130 PRINT "ERROR “; ERR) “OCCURED” ! other error than eof
1530 CLOSE 1 \N

The example program opens the file created by the previous example
program, then reads each line of the file, prints the value, then loops
until the end-of-file 1s reached. When the end-of-file is reached, the
error handler at line 100 prints an appropriate message.

Line 10 ensures that the channel to be used in line 30 is not already
open. An error will result if it is.

Line 30 opens the file “TEST.DAT” for reading (OLD clause) and
assigns it to channel | for data transfer.

Line 50 assigns the first line of the file to a%. Line 60 prints a% on the
display.

Line 70 causes an infinite (until an error) loop.

The error handler at line 100 prints the message at line 110 if the error
was caused by reaching the end-of-file, otherwise a brief (and
somewhat cryptic) error message is printed.

Line 150 closes the previously opened channel/file and exits.

Data Storage
Sequential Data Files

7-12

Example 3

The INCHAR function may also be used to read data from a
sequential data file. The INCHAR function 1s described in the
Reference volume of this manual set.

10 CLOSE 1 insurance
20 OPEN “TEST. DAT® AS OLD FILE 1 open file
390 CX s INCHAR(1%) read charecter
40 IF CX = 26 THEN 70 check for end of file
SO PRINT CHRO(CX): Tint it
60 GOTO 30 oop to do it again
70 CLOSE 1 \ END clean up) go home

Line 10 ensures that the channel has been closed before an attempt is
made to open it at line 20.

Line 20 opens the file “test.dat” and specifies that it shall be read (as
opposed to written) and associates it with I/O channel #1.

Line 30 uses the INCHAR function to read one character from the

previously opened channel.

Line 40 checks C% for an end of file character and branches to line 70 if

C% is an end of file character.

Data Storage

CREATING MAIN MEMORY ARRAYS

A main memory array is simple to create and use. Use the following
steps to create a main memory array.

1. Dimension the array using the DIM or COM statement. The
following statement dimensions a 100 element single-
dimensioned integer array using N1% as the array variable.
The use of the COM statement 1s described later in this section.

10 DIM N1X(100%)

2. Assign values to the array elements (in any sequence) by using
the LET or INPUT statements.

3. Array element values may be used using the LET or PRINT
(USING) statements or by using the array element as part of a
numeric or logical expression.

7-13

Data Storage

USING MAIN MEMORY ARRAYS

The following paragraphs present some suggestions for using main
memory arrays.

Using Main Memory Arrays as Ordinary Variables

7-14

Except for the required DIM (or COM) statement prior to use, a main
memory array can be treated as an ordinary variable. That is, data may
be stored or retrieved from any array element at any time, in any
sequence. The COM statement is discussed later in this section, Section
13 of this manual, and in the Reference volume of this manual set.

Q Any legal variable name may be an array variable.

O Remember to use the DIM or COM statement first.

O Do not use the DIM or COM statement twice on the same array.

O If your program crashes, data stored ina main memory array is lost
after execution of a RUN or EDIT statement unless the COM
statement was used to allocate memory space for the array.

In the following example, elements of A% may be used wherever
integer array elements may be used.

10 DIM AX(255%)

The following example shows that data may be read from or written to
the array simply by writing the array name in an expression or
assigning a value to an array element.

305 IF AX(IZ%) » OX THEN 330
330 ' more code
430 LET AXCIX%) = ABB (AX(IX)) + 2X

Data Storage
Using Main Memory Arrays

Programming Techniques

The program given in the introduction to this section illustrates the
“nuts-and-bolts” of getting values into a main memory array. Getting
values out of the array in a sequential fashion is largely the same:

1. Set up a FOR-NEXT loop.

2. Read the array elements one-by-one using the LET or PRINT
statements.

3. Repeat step 2 as necessary.

Another method is to use array subranging. This is a special case of the
array element identifier. The first example displays all elements of the
array A$, which has previously been defined as having 20 elements in
line format. The second example displays only elements 5 through 10
in columnar format (note the semicolon).

10 PRINT AS (0..19)
20 PRINT AS(5..10) j

The example program in Section 7 of the System Guide demonstrates
this method also. Look in the “Transfer Module” portion of the
program. The semicolon following the array subrange suppresses the
normal (CR) (LF) after each element, allowing display in multi-
columnar format.

7-15

a,

Data Storage
Using Main Memory Arrays

Two Dimensional Arrays

Until now, only one dimensional arrays have been used and discussed.
It may help to think of a one-dimensional array as a one row matrix.
For example, the preceeding example array, A$, represented as a
matrix would be:

+ Columns 0 through 19 >

ROW A$ (0) A$(1) A$(2) A$(3) A$(4) A$(5) A$(6) A$(7) A$(8) A$(9) ... A$(19)

Fluke BASIC allows two-dimensional arrays. A two-dimensional
array such as A$(1.4) has two subscripts in its array element identifier.
This additional subscript gives the program the ability to create more
elements than is possible with only one subscript. The additional
subscript also gives the program the capability of building a matrix
with ROWs as well as COLUMNS.

Suppose you had 3 production shifts and you wanted to store the total
number of instruments produced by each shift for one week (5 days).
The following program is an example of one way to do this task:

10 IM PSX(2%, 4%) ' dimension a 3X 3S array

30 SHIFT DAY DAY DAY DAY
40 1 a | 4

D
20 READ P8X%(0..2,0..4) ! read 15 values

! DAY
! 1 5
' DATA 10, 12. 9, 7. 10

H

90
60
70 DATA 9, 14, 10, 1, J
80 3
90 DATA 11, 7, é, 6, 10

100 FOR 1% = OZ TO 2%
110 PRINT PSA(1I%,0..4))
120 PRINT
130 NEXT I%
140 END

The previous program takes the data and PRINTs it in the same
arrangement as the DATA statements. Note the subscript order is
always (ROW,COLUMN). The matrix for this array is shown below:

+ PS%(ROW NO., 0..4) >

Col. 0 Col. 1 Col. 2 Col. 3 Col. 4

PS% ROW 0 PS%(0,0) PS%(0,1) PS%(0,2) PS%(0,3) PS%(0,4)

(0..2 ROW 1 PS%(1,0) PS%(1,1) PS%(1,2) PS%(1,3) PS%(1,4)

Col. 0) ROW2 = PS%(2,0) PS%(2,1) PS%(2,2) PS%(2,3) PS%(2,4)

Data Storage
Using Main Memory Arrays

Multiple Arrays

More than one array may be dimensioned in a program, eg,:

10 DIM AX(3.5), BX(6,10), AS(10, 100)
e) pin RL (1000)

IM A35(10, 10)

Redimensioning

BASIC programs are allowed to execute a DIM statement for each
variable only once. An error will result if the program attempts to
execute a specific DIM statement more than once. For this reason,
DIM statements should appear early in the program and should not be
included in subroutines. The only way around this is to re-RUN the
program. RUN causes BASIC to forget all previously executed DIM
statements.

Data Storage
Using Main Memory Arrays

Main Memory Arrays and Program Chaining

7-18

A main memory array must have been created with the COM
statement to survive program chaining. The COM statement replaces
the DIM statement for that array. The COM statement reserves
variables and arrays in a common area for reference by chained
programs.

Oo Only real (floating-point) and integer variables may be used with
the COM statement.

String variables may not be stored in the common area.

Use a virtual array for string variables that must be accessed by
chained programs.

All programs accessing a common area must use COM statements
that are identical in order, type, and array sizes; the actual variable
names, however, may be different.

The contents of the common area are lost when the EXEC, EXIT,

or DELETE ALL statements are executed.

For example, assume that a chained program requires the use of three
floating point simple variables, an integer simple variable, a floating
point array, and an integer array defined in a previous program. The
first program could use a COM statement such as:

10 t Program A
ys) com » B. CC. FX D(24X%), TX(100%)

1050 RUN "B"
1060 END ! End of program A

The second program could then use:

10 ¢ programs B
20 com Li, L2. LB. @X%. KCQ24X%), PXC100X%)

Note that while the names of the variables stored in the common area
have changed between programs, the order and type of the variables
are exactly the same.

Data Storage
Using Main Memory Arrays

Serial Storage of Main Memory Arrays in Mass Storage

A main memory array may be stored and retrieved from a mass storage
device. Two methods are possible:

O Store the array in a sequential data file.

O Store the array in a virtual array.

The following examples illustrate how array data can be serially stored
and retrieved from the disk (MFO:). You may use a different array
name to retrieve data than you did to store the data; if the arrays are
alike in type (integer, floating-point, or string) and dimensions.

The first example program stores the letters “A” through “F” in a main
memory array, then writes that array to a sequential data file. The
second example program retrieves that array from the data file, then
prints the array.

O The array variable used in the second example could be any legal
string variable. The data file holds only the data with no clue to the
identity of the variable used to store the data.

Data Storage:

10 $ eet: BAS"
100 CLOSE ! INITIALIZE
110 OPEN “EXAMI. DAT" AS NEW FILE 1 SIZE 1 ! RESERVE & NAME DISK SPACE
33 ' "NEW" in line 110 indicates new file created on the disk.

O DIM AS®(SX%) { DECLARE 3S ELEMENT ARRAY
30 FOR 1% #= OX TO 3%

140 AS(IX%) = CHRO(65SX% + IX) ' ASSION LETTERS A --) F
150 NEXT I%
160 PRINT @1, AS(OX..35%) ! STORE ON DISK
170 CLOSE 1 ' CLOSE FILE
1860 END

Data Retrieval:

10 !"EXAM2. BAS”
100 CLOSE 1 ' INITIALIZE
110 OPEN “EXAM1.DAT" AS OLD F i OPEN FILE, ASSION CHANNEL
115 ! "OLD" in line 110 indicates. file already exists on disk
120 DIM A$(5%)

140 INPUT LINE @1, AS(OX.. 35%) ' INPUT FILE DATA TO ARRAY

160 CLOSE 1 ' CLOSE FILE
170 PRINT A®(OX.. 3%) ' DISPLAY DATA FROM ARRAY

Data Storage
Using Main Memory Arrays

Device Storage Size Requirements

Before a main memory array can be stored, space must be reserved for
it on the file-structured device. When a new file is OPENed, the largest
available contiguous space on the storage medium (floppy disk or
other file-structured device) 1s allocated for the single file, unless the
SIZE is included in the OPEN statement. If two NEW files are
OPENed without a SIZE statement and there is only one contiguous
space available on the device, BASIC will display “? I/O error 306...”
telling you there is no more room on the storage device, when the
attempt is made to OPEN the second file. This will happen even though
there is enough room on the disk for all the data you plan to store in
each of the files

Device File Size Calculation

7-20

Size must be stated as an integer number of BLOCKS (1 BLOCK =
512 BYTES). An array file may contain more than one array. File
SIZE must be large enough to equal or exceed the total number of
storage bytes required by all of the REAL (floating-point), INTEGER,
and STRING elements you plan to use in the array file. Array values
are stored on the file-structured device as ASCII values. One byte of
device storage 1s required for each character stored.

Device requirements for serial storage (no comma after the variable):

] byte per significant digit or string character
] byte for the sign (even though it may be + and not be displayed)
1 byte for decimal point (reals only)
1 byte for an included space (except with PRINT USING) for reals
and integers

2 bytes for (CR) (LF)
1 byte for EOF (end of file) character

Examples

PRINT @1, 3% requires 5S bytes
PRINT @1, ~3% requires 3 bytes
PRINT @1. USING °S®", -3% requires 4 bytes
PRINT @1, 3.285 requires 9 bytes
PRINT @1. -3. 265 requires 9 bytes
PRINT @1, ING °8@. 000", -3. 285 requires © bytes
PRINT @1, °12345" requires 7 bytes

Data Storage
Using Main Memory Arrays

Disk Size Calculation Example

Calculate the SIZE requirement for the DIM statement in the
following program:

10 fas B6(100). 31%(100),R(100)

30 OPEN y EST, DAT" ag NEW FILE 1 SIZE 6
40 FOR vx = 1% TO 1
45 86(1X%) = "1234567890" \ IX(UK) © UK N R(UK) © UXePI
SO PRINT @1, 86(JX)
60 PRINT @1, USING “See”, IX(UX)
70 PRINT @1, USING “S800. 08". R(UX)
60 NEXT IX
90 CLOSE 1
100 END

Assumptions:

1. All string elements = length of 10 characters

2. PRINT USING is utilized to ensure all reals are same length,
and all integers are the same length.

String Integer Real EOF

BYTE SIZE= 100 ((10+2) + (442) + (7+2)] + 1
= 100 [27] + 1
= 2701

BLOCK SIZE = 2701 / 512 = 5.275391

Since partial blocks are not allowed; the next highest integer = 6
Blocks.

Note: Looping 94 times instead of 100 permits a SIZE of 5 blocks.

7-21

Data Storage

VIRTUAL ARRAY FILES

A virtual array provides the BASIC programmer with an easy-to-use,
non-volatile means of program data storage. Once created, a virtual
array variable may be treated like any other BASIC variable. A virtual
array 1s bidirectional; you may read or write from it any time, in any
sequence.

7-22

A virtual array may be assigned values from a main memory array and
vice versa; virtual arrays can be used in equations with main memory
arrays. Virtual arrays are different from main memory arrays in the
following ways:

l. Main memory arrays reside in main memory. Virtual array
elements temporarily reside in a main memory buffer of 512
bytes (1 block) per channel (file) number. They permanently
reside on a file-structured storage medium. Virtual arrays may
also reside on E-disk (expansion RAM memory), however, E-
disk storage is volatile.

Main memory arrays are volatile because main memory is
volatile. Virtual arrays survive providing they have been
transferred from the main memory buffer to the non-volatile
file-structured storage medium (CLOSEing the file ensures
this).

Virtual arrays are not initialized by the DIM statement. Main
memory arrays are assigned initial values by the DIM
statement.

Main memory arrays are created with a DIM or a COM
(common main memory for program chaining) statement
(COM will not support string variables); virtual arrays are
created with an OPEN and a DIM+# statement.

Virtual arrays can be made equivalent, (two arrays can share

the same area of file memory).

Virtual arrays do not require a COM statement in order to be
accessed by achained program. COM 1s not needed and cannot
be used with virtual arrays. Main memory arrays require a
COM statement to survive program chaining.

10.

I.

12.

Data Storage
Virtual Array Files

Elements of virtual array strings have a definite, dimensioned
length. Elements of main memory array strings are limited in
length only by the amount of main memory available.

Since main memory arrays must share main memory with the
BASIC program, the maximum amount of main memory
available for main memory arrays is limited to 28K bytes,
minus the size of the user program in K bytes.

A virtual array file can be as large as 65,536 bytes. The total
number of virtual array files is limited by the available file-
structured storage.

Virtual arrays are stored as binary data and cannot be viewed
by FUP.

Program execution errors automatically close virtual array
files, making virtual array data inaccessible from the
immediate mode, however, this data survives on the storage
medium and can be retrieved by a program. Main memory
arrays are accessible from the immediate mode after a program
execution error (crash).

Virtual array data survives a re-RUN or EDIT of the program,
but main memory array data is lost in both of these situations.

After reading the above comparison of virtual arrays and main
memory arrays, it can be said that virtual arrays behave “virtually” the
same as if they resided in main memory even though they actually
reside on one of the file-structured storage media. With the exception
of the OPEN, CLOSE and DIM# statements required by virtual
arrays, the same identical programming code can be used
interchangeably for virtual arrays or main memory arrays; ignoring for
the moment the fact that virtual array strings require additional
considerations in some situations due to their fixed length.

7-23

Data Storage
Virtual Array Files

Definition

A virtual array is a collection of data stored in a random access file-
structured storage device, such as the floppy disk or bubble memory.
The data is stored in the Instrument Controller’s internal format
(binary) so that no conversion is required during input or output. After
a channel has been opened, the virtual array is available to the program
just like a main memory array.

Advantages and Disadvantages

Virtual arrays can be used to significantly extend the capability of a
program. You will probably want to use virtual arrays exclusively
except in situations where execution speed is critical.

Advantages:

l.

7-24

Non-volatile ---survives power down of the Controller;
survives program chaining and the DELETE ALL statement.

NOTE
A virtual array is non-volatile only if the file-structured device
on which it is stored is non-volatile.

Virtual arrays do not “consume” main memory, thus more
program space is available.

Random access means PRINT and INPUT statements are not

necessary for data I/O.

Supports equivalencing.

String data, in addition to numeric data, can be accessed by
chained programs.

Text messages can be stored on the storage medium rather than
in main memory. The same text can be used as often as needed.

The program can be restarted after a Controller power down
and returned to the exact place in the program where execution
ceased (due to powering down). (See note after point #1,
above.)

Data Storage
Virtual Array Files

Virtual arrays can be many times larger than main memory
arrays; up to 16 times (over 1024K bytes) as much data can
exist in virtual arrays when a floppy disk, E-disk, or
Winchester disk are used.

Disadvantages:

I. Virtual arrays are not allowed in RBYTE or WBYTE
statements.

Virtual arrays execute slower than main memory arrays. This
difference in execution speeds becomes significant when large
amounts of data are being sorted, assigned or operated upon.
Exact speed differences are dependent on the application and
device. For example, the E-disk is almost as fast as main
memory.

Unlike main memory arrays where the DIM statement assigns
a 0 value to floating-point (real) and integer elements and an
empty string, i.e. “”’, to string elements (note CHR$(0) “”);
newly created virtual arrays contain whatever byte
arrangement that exists on the storage medium where the
arrays reside. To guard against bogus data entering your
program, you may wish to initialize the entire array to some
known value prior to storing data in it.

7-25

Data Storage
Virtual Array Files

File Structure

Virtual arrays must reside on a specific physical space on the file-
structured device in order for the program to know where it can go to
store and retrieve data. An analogy to the disk file structure is a helpful
aid to understanding where virtual arrays are stored.

Analogy

7-26

Imagine you have a storage room (disk) which contains 80 file cabinets
(tracks) and each cabinet has 10 file drawers (blocks). Each file drawer
contains 512 folders (bytes). The terms “Blocks” and “Sectors” are
used interchangeably.

The file name for a specific storage space for virtual arrays always
appears on the front of a drawer, 1.e., a file can never begin in the
middle of a drawer (block). Likewise, an array element cannot overlap
from one drawer to the next (all the bytes for an element must exist in
the same drawer (block). A specific file name can use as many as 128
drawers (blocks).

The disk directory contains the track and sector (block) associated
with each file name. This directory is consulted by the operating system
(FDOS) each time a file name is referenced by the program. File names
are associated with a channel number (file no.). To make our analogy
complete, let us further imagine that the file room (containing the 80
cabinets) is located in a very large building and you (the program) are
located away from the storage room and it is actually possible for you
to take any one of sixteen different routes (channels | through 16) to
reach the storage room. Before vou store data or retrieve data froma
file drawer (name) it 1s necessary to specify which route (channel no.)
will be used to transport the data. As long asa file name has a drawer
OPEN, the designated route (channel no.) cannot be used for another
file name until the channel 1s CLOSEed, and the next file OPENed
using the same channel number.

Finally, imagine that you have a utility cart (buffer) to transport one
file drawer (512 byte block) back and forth between you (main
memory), and the disk (storeroom).

Data Storage
Virtual Array Files

In actuality, the contents are never removed from a disk block. Instead,
its contents are copied onto the main memory buffer and when the
buffer is sent back to update the disk, the buffer contents are copied

back into the file on the disk. The temporary file is the same size as the
entire permanent file.

Virtual Array File Organization

When a virtual array file is opened, BASIC creates a 512-byte (1 block)
buffer in main memory to hold the block of the file currently being used
(one buffer is created for each virtual array file). Each file is considered
to consist of a sequence of bytes, numbered 0 (first block) to n (last
block). The description of each virtual array contains the channel
number to which the file containing the array is attached, and the
address within the file at which the array starts (the array’s base
address).

The base address for a virtual array is determined when the DIM
statement declaring the array 1s processed. The base address assigned 1s
the next available (higher) address which will not cause an array
element to cross a block boundary. Each array element must be wholly
contained within a 512-byte block. This restriction may be defined as:
the base address of an array must be an integral multiple of the array
element length and no array element may be longer than 512 bytes.
This works since all virtual array elements have a length which is an
integral power of 2.

Since virtual arrays are assigned addresses in the file in the order in
which the arrays are declared in the DIM statement, the restrictions
noted in the paragraph above suggest that it is possible to allocate file
space efficiently or inefficiently when arrays having differing element
lengths are assigned to the same file. This depends on the order in
which array declarations appear in the DIM statement. To eliminate
wasted file space, the simplest rule is that virtual array declarations
should appear in the DIM statement (as read from left to right) in
decreasing order of array element lengths. This rule ensures that if an
element overlaps a block boundary, a minimum of space is left unused
in the previous block.

7-27

Data Storage
Virtual Array Files

NOTE
The unused space at the end of a virtual array file is available
for use ifa subsequent DIM statement enlarges the file. See the
discussion that follows on equivalent virtual arrays.

In the following DIM statement, the arrays are allocated space as
shown below the statement.

DIM @1%. A® (10%) = 64%, B (10%. 9X), CX (1%, 4%)

A$ 11 elements of 64 bytes each = 704 bytes
B 110 elements of 8 bytes each = 880 bytes
C% 10 elements of 2 bytes each = 20 bytes

TOTAL: 1604 bytes

The total space needed is 68 bytes greater than 3 blocks (1604 - (3 *
512)). The blocks will be allocated as follows. Note that the first three
blocks are completely used, leaving only the extra 68 bytes for the
fourth block. The 444 bytes remaining in the fourth block are unused.

BLOCK VARIABLE ELEMENTS BYTES

l A$ 8 512

2 A$ 3 192
2 B 40 320

3 B 64 512

4 B 6 48
4 C% 10 20

1-28

Data Storage
Virtual Array Files

Suppose the DIM statement is changed to read:

DIM @1%. CX (1%, 4%), B (10%, 9X), AB (10X) = GAZ

The total space needed remains 1604 bytes. The variables however, are
allocated to blocks as follows.

BLOCK VARIABLE ELEMENTS BYTES

] C% 10 20

l unused — 4

] B 61 488

2 B 49 392

2 unused — 56

2 A$] 64

3 A$ 8 512

4 A$ 2 128

Only 508 bytes of block | and 456 bytes of block 2 are used. The unused
portions, totalling 60 bytes, could not entirely contain one more data
element in the sequence assigned. As a result, block 4 has only 384
bytes available, instead of the possible 444.

Storage Size Requirements

Before a virtual array can be dimensioned, space must be reserved for it
on the disk. When a new virtual array file is OPENed, the largest
available contiguous space on the file-structured storage medium is
allocated for the single file, unless the SIZE is included in the OPEN
statement. If the NEW files are OPENed without a SIZE statement
and there 1s only one contiguous space available on the device, BASIC
will display “? I/O error 306...” telling you there is no more room on the
storage device, when the attempt is made to OPEN the second file. This
will happen even though there is enough room on the disk for all the
data you plan to store in each of the files.

7-29

Data Storage
Virtual Array Files

Virtual Array SIZE Calculation

7-30

SIZE must be stated as an integer number of BLOCKS (1 BLOCK =
512 BYTES). A virtual array file may contain more than one array. file
SIZE must be large enough to equal or exceed the total number of
storage bytes required by all of the floating-point (real) elements,
integer elements and string elements you plan to use in the virtual array
file. Each floating-point element occupies 8 bytes. each integer element
occupies 2 bytes. Each string element occupies | byte/character.
Elements are not allowed to overlap block boundaries. If an element is
too large to fit in the remaining storage space ina block, the remaining
space is left vacant and the element 1s placed in the next higher block.
To elminiate wasted file space, the simplest rule is that virtual array
declarations should appear in the DIM statement from left to right in
decreasing order of array element lengths.

Appendix J lists a program which allocates virtual arrays by blocks
according to your DIM statement.

String elements require special consideration since all elements for a
given string array variable name must be the same number of
characters in length *and* that length must be 2 or 4 or 8 or 16 or 32 or
64 or 128 or 256 or 512 characters, i.e., any power of 2 between w and
512 inclusive. String element length 1s assigned in the DIM statement.
If no length is specified, the default length is 16 characters.

Based on the above considerations, and given:

R = the No. of REAL elements in all FLOATING-POINT arrays
I =the No. of INTEGER elements in all INTEGER arrays
S =the No. of STRING characters in all STRING arrays
V = vacant bytes prior to boundaries of occupied blocks

the formula becomes:

SIZE =(R*8+1*2+S + V) BYTES/512 BYTES/BLOCK

Data Storage
Virtual Array Files

Example

DIM @1, AC10), AACS, @), BX(30), BBX(3.7), AS(10) = @ AAS(50, 50) = 2

Calculate the SIZE for the following virtual array dimension
statement:

R= 11+ (6* 7) = 53 elements for A(10) and AA(5,6)
I] = 31+ (4 * 8) = 63 elements for B%(30) and BB%(3,7)
S = 11 * 8+ (51 * 51 * 2) = 5290 characters for A$(10) and

AA§$(50,50)

V=0

Block Allocation Table

424 88 38 80 394 4608 288 224

Bytes Bytes Bytes Bytes Bytes Bytes Bytes Bytes

53 44 19 10 197 2304 144 224
Reals | Integers {Integers} 8 Char. | 2 Char. | 2 Char. Strings | 2 Char. | Vacant

Strings | Strings _ Strings | Bytes

Block 1 Block 2 Blocks 3 thru 11 Block 12

NOTE

Remember element numbering starts with 0, e.g., DIM #1,
A(10) yields 11 elements; DIM #1, A(O) yields one element.

SIZE = (53 * 8 + 63 * 2 + 5290) / 512 = 11.40625 BLOCKS

Only whole blocks may be allocated, i.e., SIZE must be an integer, the
next higher whole number is the correct answer: SIZE = 12 BLOCKS.

7-31

Data Storage
Virtual Array Files

CREATING VIRTUAL ARRAYS

Creating virtual arrays requires the following actions:

1. A filename must be associated with the virtual arrays. (OPEN
{filename} AS... statement.)

2. Achannel number must be associated with the filename. (FILE
n clause of OPEN... statement.)

3. A determination must be made to use NEW data (create a new
disk file for new data) or OLD data (data already in a virtual
array disk file), (AS {NEW, OLD} clause of OPEN
Statement.)

4. The SIZE of the arrays in blocks should be stated. (SIZE clause
of OPEN statement.)

5. The arrays must be DIMensioned. (DIM statement)

6. The DIMension must be associated with the channel number

picked in step 2, above. (#n clause of DIM statement.)

7. The channel (file) must be CLOSEd in order to transport the
most current array data (contained in the buffer) to the disk.

The following example program illustrates the process of creating a
virtual array.

10 CLOSE 1 ' insurance
i3 ' new file, “test.vrt", virtual array, chan 1, size = 1 block
20 OPEN “TEST. VRT" AS NEW DIM FILE 1 SIZE 1
30 DIM @1, A(3X) dimension array a. 3 elements, chan 1
40 FOR 1% = 0 TO 4% loop to load array
SO AC(IZ) = IX assign value
60 NEXT I oop
70 PRINT ACO... 4) print array
60 CLOSE 1 Close channel/file
90 END

7-32

Data Storage

USING VIRTUAL ARRAYS

Once a virtual array file has been opened and a DIM statement for the
channel has been executed, the virtual array elements may be used just
as ordinary variables.

Using Virtual Arrays as Ordinary Variables

In the following example, elements of A% may be used wherever
integer array elements may be used, except in RBYTE, WBYTE, or
CALL statements. (See the section on IEEE-488 Bus Input and Output
Statements.)

10 OPEN “INTEOR. BIN” AS DIM FILE 1%
20 DIM @1%. AX(255X%,. 127%)

The following example shows that data may be read from or written to
the file simply by writing the array name in an expression or assigning a
value to an array element.

305 TF AX(IX%, JK) 2 OX THEN 350
430 LET AX(KX, OX) = ABB (AX (KX, 12%)) + 2%

1-33

Data Storage
Using Virtual Array Files

Using Virtual Array Strings

7-34

Strings in virtual arrays are considered by BASIC to be of fixed length.
The default length is 16 characters, or as declared in the DIM
statement (see the DIM discussion in this section).

The following example specifies a virtual string array with character
elements. Line 390 will display the number 32 regardless of the value
assigned to that particular element of A$.

380 DIM @2%, AS(19%) |= 32X
390 PRINT LENCAS(IX))

When characters are assigned to a virtual array string element, BASIC
will add null characters to the right end of the string until it equals the
declared string element length. This can be the source of subtle errors.
Consider the virtual array A$ of the previous example. The following
program section attempts to add an * character to all of the elements of
A$. This example will not work, and results in error 904 (string too
long for virtual array string field).

370 FOR IX = OX TO 15%
380 AS(IX) @ AS(IX) + “a”
990 NEXT IX

Each element of A$ 1s allocated 32 characters. The expression A$(I%)
+ “*” results in a 33-character string. When this string is assigned to
A3S(I%), error 904 (string too long for virtual array string field) results.
It 1s necessary to strip trailing null bytes from the virtual array string
value before appending the ‘*’ character.

The TRIM statement causes trailing null bytes to be removed from a
virtual array string. The format of the TRIM statement is:

TRIM tx

where t% specifies whether or not to trim trailing null bytes from a
virtual array string. If t% is zero, no trimming is performed. If t% is not
zero then all trailing null bytes are trimmed.

The TRIM statement must be issued before reading the first virtual
array string element for which null byte trimming 1s desired.

Data Storage
Using Virtual Array Files

PROGRAMMING TECHNIQUES

The key to the efficient use of virtual arrays is to minimize the number
of data transfers to or from the virtual array file. Whenever a virtual
array element is accessed, either to read its value or to assign to it anew
value, BASIC determines the block number and the file in which the
element exists. If the block required is not in the memory buffer, the
required block is moved from the file into the memory buffer. The
block previously held in the buffer is written to the file only if a change
in its contents occurred.

Array Element Access

Array elements in a file are stored in row-major order which means
that access to the elements, in the storage order, is most efficient when

the rightmost array subscript varies most quickly, as in the following
example:

6350 FOR 1% = 0% TO 63%
FOR JX = OX TO 63%

1S AX (1%, Jk) = O%
6 NEXT JX b
1690 NEXT I%

4
4
4

The form just discussed describes the most efficient access method for
initializing the array A%. When the array A% is stored on a floppy
disk, its initialization required 7.05 seconds. When the same array is
stored on the E-disk, its initialization required 4.7] seconds. The
following example is the least efficient access method:

550 FOR 1% = OX% TO 63%
660 FOR JX = OX TO 63%

b
a
h

@ oO
 a

This second example requires 254.33 seconds (8.05 seconds on ED0:),
36 times as long (1.7 times for ED0O:) as the first example. The first
example requires a new block to be read for every 256 elements of A%
that are written. This second example, however, requires that a new
block be read for every four elements of A% that are written.

7-35

Data Storage
Using Virtual Array Files

Splitting Arrays Among Files

7-36

If information stored in different virtual arrays will often be required at
the same time, placing the arrays in separate files will speed processing.
The following example illustrates the value of utilizing separate files
for two parallel virtual arrays as opposed to placing both arrays within
the same file.

Example

In some programs it may not be possible to use the null stripping
function described previously in this section. This may be because the
null characters are part of the string data required. However, the true
string length can be determined without stripping the null characters.
If there is no character which may be used to specify the end of a string
in the virtual array, this information may be retained by placing an
integer array parallel to the string array. Thus, for each string element,
an integer element contains the length of the string.

In the following example, L%(I%) contains the length of string
A$(1%). The significant characters of element A$(I%) can be recovered
by a statement such as line 6370.

6365 OPEN “DATA.VRT" AS DIM FILE 1%
6360 DIM @1%,. AS(1023%) = 16%, LZ(1023%)
6370 BS = LEFT (AG(IX), LXCIX))

A drawback to this method is that each time an element of A$ is read
from the beginning of the file, another block of the file must be read to
retrieve the corresponding element of L%.

A more efficient organization is to assign A§ to one virtual array file
and L% to another file. This will cause the BASIC Interpreter to assign
two buffers, one for the strings of A$ and one for the integers of L%.

4785 OPEN “DATAI.VRT" AS DIM FILE 1
4790 OPEN “DATA2.VRT” AS DIM FILE 2

1 4770 DIM @1% AS(1023%) =
4760 DIM @2%, LX(1023%)

In an actual test, accessing the elements of A$, one by one in increasing
order, the first example (with A$ and L% in one file) required 386
seconds. With A$ and L% in separate files, only 15.8 seconds were
required to perform that same processing, a 24:1 difference.

Data Storage
Using Virtual Array Files

Reusing Virtual Array Declarations

When a virtual array DIM statement has been executed, the variables
defined as virtual arrays remain defined even after the virtual array file
has been closed. However, an attempt to access a virtual array when

the channel has been closed will result in an error 308 (channel not
open). Since the variables remain defined, it is possible to close a
virtual array file and to later re-open it. Since the variables have
already been defined, a new DIM statement is not necessary to re-open
the file. Note, however, that the file must be re-opened using the same
channel number as that used inthe DIM statement defining the arrays.

If a number of separate virtual array files, all with the same data
organization, must be processed by a program, it is possible (if no two
files are to be processed simultaneously) to reuse the variable
definitions. Consider the following processing sequence:

OPEN first file
DIM virtual arrays

process first file
CLOSE first file
OPEN second file (on same channel as Ist file)

process 2nd file
CLOSE second file

In each processing loop, the same virtual array variables may be used
to process the file data.

7-37

Data Storage
Using Virtual Array Files

Equivalent Virtual Arrays

1-38

It is possible to execute multiple DIM statements for a single channel.
The second (and subsequent) DIM statements for a channel simply
redefine the file organization as shown below. The first DIM statement
allocates a 441-element array, A%, organized as a 21x21] matrix. The
second DIM statement does not allocate array B% following A% but

redefines the 441 integer elements of the file as a vector with the name
B% (similar to a FORTRAN equivalence).

AZ (20%, 20%)
BX (440%)

NOTE
Fluke BASIC makes no check for the consistency of virtual
array equivalences. This is the responsibility of the
programmer.

Appendices

CONTENTS

A Supplementary Syntax Terminology Diagrams A-!
B ASCII/TEEE Bus Codes............. 0.0 cee cee eee eee B-|
C Extended BASIC Language Software C-]
D_ Reserved Words 0c cc cece cece cece cece eees D-|
FE Integrating Subroutines from Other Languages E-]
I © COSSS<5-9 F-]

7-1/7-2

Appendix A

Supplementary Syntax
Terminology Diagrams

dimensions C1) frumeric expression

LO spa seat

(real)

+)
LO-+am Tai

id (extended syntax) ——>} letter 7

—P letter

>) digit =

6

+} —

__

Sf

(string)

(integer)

7 an

|
parameter ——P} id + . —— 7

ri) (

(integer)

Vv

A-1

Supplementary Syntax Diagrams

_t
Case ‘

selection
has

CU
LL
Y

(same as =) \

A-2

fi, ;
eee

| expression | 7 lL

we

aad expression 1 F (- + -——J expression 2 +

Appendix B

ASCII/IEEE Bus Codes

B-1/B-2

Appendix C

Extended BASIC
Language Software

This appendix describes the programs supplied with the 1722A-203
Extended BASIC Language option. Each program is listed along with
a short description followed by the name of the reference manual that
describes the software. Any special installation or operational
requirements are also listed here.

XBC.FD2

XLL.FD2

XLM.FD2

Extended BASIC Compiler program. This
program is used to translate the Extended
BASIC source program into a machine-
language file. The Extended BASIC Compiler
program is described in the Extended BASIC
Manual.

The Extended BASIC Compiler is an overlay-
structured program. The BASIC Compiler
requires 64K of user space to execute. If the
Compiler resides on a floppy disk, the disk may
not be removed while XBC is running.

Extended Linking Loader program. The
Extended Linking Loader program is a simple
linkage editor that is used to create executable
programs from compiled files. Refer to the
Linkage Utilities Section in the Extended
BASIC Manual.

Extended Library Manager program. The
Extended Library Manager program is used to
create and maintain libraries of Extended
BASIC program modules and subroutines for
use with Extended BASIC programs. Refer to
the Linkage Utilities section in the Extended
BASIC Manual.

XBASIC Language Software

C-2

BSXRUN.FD2

FITNS$IF.LIB

XBCC.CMD

XBCE.CMD

Extended BASIC Runtime System program.
The Runtime System program converts the
Instrument Controller into a machine that runs
Extended BASIC programs. Refer to Section 3
of the Extended BASIC Manual.

The Extended BASIC Runtime System
program must be run whenever Extended
BASIC programs are used on the Instrument
Controller. This program must be on a file-
structured device whenever a Extended BASIC
program is run. The Extended BASIC
Runtime system program requires 64K of user
space for execution. The Runtime system
program is described in Section 4 of the
Extended BASIC Manual.

FORTRAN Interface Runtime Library. This
is a library of FORTRAN subroutines that
replace the FORTRAN Runtime System
program when FORTRAN subroutines are
used from compiled BASIC programs. In
addition, the FORTRAN Interface Runtime

Library contains subroutines to be used in
FORTRAN subroutines for exchanging
strings and error codes between FORTRAN
subroutines and compiled BASIC programs.
Refer to Appendix E of this manual.

Extended BASIC Command File. This is a
command file that automatically performs the
sequence of commands to create simple (not
Overlay-structured) Extended BASIC
programs.

Extended BASIC Command File. This
command file is similar to XBCC.CMD. Use

this command file for Extended BASIC

programs that use the Extended Syntax option

(/E).

Appendix D

Reserved Words

Table D-I lists reserved words that conflict with BASIC language
statements. These reserved words may NOT be used in Extended
BASIC as

O Variable name

O Statement label names

O Literal subroutine names (in most cases)

The reserved words may be used as subroutine names with the
following restrictions:

O Implied CALL statements may not be used with subroutines using
a reserved name. For example, the implied CALL statement to a
subroutine named STOP

STOP

will execute a BASIC STOP function. Use the statement

CALL STOP

to branch to the subroutine.

O The name “FN” may not be used for any other purpose than a
user-defined function. All strings beginning with FN are
considered functions.

D-1

Reserved Words

Table D-2. Reserved Words

ABS

ALL

AND

AS

ASCII

ASH

ASSIGN

ATN

BREAK

CALL

CASE

CHR$
CLEAR

CLOCK

CLOSE

CMDFILE

CMDLINE$

COM

CONFIG

COPY

COS

CPOS

CTRL/C

DATA

DATE

DATE$

DEF

DIM

DIR

DISABLE

DUPL$

ECHO

EDIR

ELSE

ELSIF

ENABLE

END

ENDIF

ENDLOOP

ENDSELECT

ENDWHILE

ERL

ERR

ERR$

ERROR

EXEC

EXIT

EXP

EXPORT

FILE

FLEN

FN

FOR

GOSUB

GOTO

IF

IMPORT

INCHAR

INCOUNT

INIT

INPUT

INSTR

INT

INTERVAL

KEY

KILL

LCASE$

LEAVE

LEFT

LEN

LET

LINE

LN

LOCAL

LOCKOUT

LOG

LOOP

LSH

MEM

MID

MOD

NEW

NEXT

NOECHO

NOT

NUM$

OFF

OLD

ON

OPEN

OR

PACK

PASSCONTROL

Pl

PORT

PORTSTATUS

PPL
PPOL
PPORT
PRINT
PROTECT

QDIR

RADS

RANDOMIZE

RBIN

RBYTE

READ

REM

REMOTE

RENAME

REPEAT

RESTORE

RESUME

RETURN

RIGHT

RND

RUN

SELECT

SET

SGN

SHELL

SIN

SIZE

SPACE$

SPL

SQR

SRQ

STEP

STIME$

STOP

SUB

SUBEND

SUBRET

TAB

TAN

TERM

THEN

TIME

TIMES

TIMEOUT

TO

TRACE

TRIG

TRIM

UCASE$
UNPROTECT

UNTIL

USING

VAL

WAIT

WBIN

WBYTE

WHILE

WITH

XOR

Appendix E

Integrating Subroutines
From Other Languages

INTRODUCTION

This appendix to the Extended BASIC Programming Manual
describes some factors to be considered when designing a program that
is composed of elements written in different programming languages.

Extended BASIC programs are composed of a main program segment
that is written in the Extended BASIC language and optionally,
subroutines that are written in the Extended BASIC, Compiled
BASIC, FORTRAN, and Assembly languages. When using a mixture
of subroutines from different source languages, a programmer must be
aware of two potential problems: passing incompatible data types and
illegal use of conformal dimensioning.

NOTE

Extended BASIC subroutines may not be used unless the main
program is also written in Extended BASIC (so that the
Extended BASIC Runtime program will be running).

CAUTION

Unlike CBASIC subroutines, XBASIC subroutines may not be
called by FORTRAN or Assembly language programs. If this is
attempted, the Extended BASIC Linking Loader (XLL) will
report an error when the program is linked.

E-1

Integrating Subroutines from Other Languages

PARAMETER DATA TYPES

Not all programming languages use the same data types. When
subroutines written in different languages are mixed in one program,
you must take care to make sure that parameters that are passed

between program segments are a type that is available in the language
in which the other program ts written. Table E-1 shows the data types
that are compatible between programs written in Extended BASIC
(and Compiled and Interpreted BASIC) and programs written in
FORTRAN. While specific data types are not part of Assembly
language programs, any of the data types used by programs written in
Extended BASIC or FORTRAN may be used at the discretion of the
programmer. Refer to the FORTRAN Programmer’s Reference
Manual or the BASIC Manual for information about the specific
FORTRAN and BASIC data formats for use in Assembly language
programs.

Table E-1. Compatible Data Types

EXTENDED BASIC FORTRAN

Real Double-Precision Floating-Point (REAL * 8)

Integer Simple Integer (INTERGER * 2)

String (not used)

(not used) Real (Single-Precision Floating-Point)

{not used) Complex

Integer Logical

«not used) Fixed

E-2

Integrating Subroutines from Other Languages

The following example shows how a variable must be defined as a
double-precision floating-point type before being passed back to an
Extended BASIC program as a Real number.

Extended BASIC:

CALL FORSUB(COUNTER)

FORTRAN:

SUBROUTINE FORSUB(COUNT)
DOUBLE PRECISION COUNT

RETURN
END

The Extended BASIC floating-point variable COUNTER is passed to
the FORTRAN subroutine FORSUB which declares the double-
precision variable COUNT. COUNT is used by FORSUB to accept
and return the processed value of the Extended BASIC variable
COUNTER.

E-3

Integrating Subroutines from Other Languages

DIMENSIONING

E-4

Multiply-dimensioned arrays become disorganized when exchanging
dimensioned arrays between program segments that are written in
different languages.

Following is an example of a call toa FORTRAN subroutine. In this
instance, an array needs to be redimensioned to fit the characteristics
of the language in which the program segment is written. This code
segment illustrates a call to a subroutine that is written in FORTRAN
from a program that is written in Extended BASIC.

20 : Extended BASIC main program

40 DIM AC100)

100 CALL FORTRN(A(), 1012)

The program calls a FORTRAN subroutine named FORTRN and
passes two parameters to it: the array A and the size of the array. The
array was previously dimensioned to 100. Because BASIC arrays begin
with element 0, the array contains 101 elements numbered 0 through
100.

The subroutine FORTRN 1s:

C
C FORTRAN SUBROUTINE USED WITH EXTENDED BASIC
C

SUBROUTINE FORTRN(A, 1)
DOUBLE PRECISION ACI)

RETURN
END

The subroutine FORTRN 1s defined in the first program line after the
heading with two parameters: A (which was A() in the program that
called this subroutine) and | (which was 101%).

Integrating Subroutines from Other Languages

Multidimensional Arrays

A conflict arises when passing arrays with more than one dimension
between FORTRAN subroutines and BASIC program segments
because of the different way that arrays are handled in each language.
Arrays are stored in different sequences, which means that array
elements are not numbered in the same way. Figure E-! shows a sample
two-dimensional array as it would appear in both BASIC and
FORTRAN.

BASIC FORTRAN

DIM A%(2,2) INTEGER A(3,3)

(0,0) (1,1)

(0,1) (2,1)

(0,2) |— Subscripts —»j (3,1)
(1,0) Increase Differently (1.2)

(1,1) J— Second Subscript (2,2)
(1,2) Varies Faster (3,2)

(2,0) First Subscript —j (1,3)
(2,1) Varies Faster (2,3)

(2,2) (3,3)

Row Major Format Column Major Format

Figure E-1. Array Formats

Note that the sequence of element storage is different. In the example
shown in Figure E-1l, a value which is stored as (0,2) in a BASIC

program would be element (3,1) if that array was passed to a
FORTRAN subroutine. The confusion which results between the two
formats makes passing multidimensional arrays between languages
undesirable.

E-5/E-6

Appendix F

Glossary

This Appendix is a supplementary glossary of terms that occur in this
manual. Use this Appendix with Appendix M in the Fluke BASIC
Manual.

COMMAND-LINE OPTION

An addition to the command line of a program that configures the
program to handle special events. For example, the BASIC Compiler
program must be configured so that it will correctly compile programs
that use Extended BASIC language options. These command-line
options consist of a slash character (/) followed by various letters. The
command-line below directs the BASIC Compiler program to compile
a program named TEST that uses the optional extended syntax.

=TEST/E

Command-line options are sometimes known as switches.

COMPILER

A program that translates a source program written in a high-level
programming language into a machine-coded object file. The resulting
file is normally linked with other files and converted into an executable
program using the Linking Loader or Linkage Editor programs.

COMPILED LANGUAGE

A language where source programs are completely translated into
machine code, then executed in a separate step. This is in contrast to an
Interpreted Language, where source statements are translated and
executed one at a time.

CONFORMAL DIMENSIONING

A method of transferring attributes of a DIMensioned variable
(number of dimensions and dimension size) to a true subroutine.

F-1

Glossary

CONTINUED LINE

An Extended BASIC program line that contains imbedded
(RETURN) characters to allow it to be used by utilities with limited
line width capabilities or to impart a visual structure to the line.
Imbedded (RETURN)s are preceded by an ampersand character (&)
to distinguish them from (RETURN) characters at the end of a
program line.

EXTENDED BASIC

A compiled BASIC language, similar to Compiled BASIC, which
takes advantage of the extended memory of the Fluke 1722A
Instrument Controller.

EXTENDED SYNTAX

An optional syntax provided by Extended BASIC to allow the
programmer some freedom in structuring program lines and creating
variable and subroutine names. The main features of the optional
extended syntax are the use of continued lines, long variable names,

true subroutines, and improved block structured control flow. The /E
switch must be used to inform the BASIC Compiler program that a
source program uses extended syntax.

GLOBAL VARIABLE

A variable that may be shared between modules in an Extended
BASIC program. Global variables are defined and used via the
EXPORT and IMPORT statements.

INTERPRETED BASIC

The standard version of the BASIC language. The BASIC Interpreter
program translates a BASIC program into machine-executable code
one line at a time while the program is in progress. It is the closest
version to standard ANSI BASIC.

KEYWORD

A word that has a special meaning as part of a BASIC language
statement.

F-2

Glossary

LABELS

Labels are special words that may be placed at the beginning of a
statement to identify that statement with a name. Thereafter,
statements that normally refer to line numbers, such as GOTO and
RESTORE, may refer to this label instead.

LIBRARY

A collection of modules that is maintained in a common file. The files
in a library usually have related functions (for example, files collected
together to form a matrix math library). In Compiled BASIC, libraries
are arranged sequentially in the library so that there are no backward
references. In Extended BASIC, libraries are arranged randomly.

LIBRARY MANAGER

A machine language program that is used to create and maintain
libraries of program modules. The Extended Library Manager, XLM,
replaces the LM program used with the Compiled BASIC,
FORTRAN, and Assembly languages. It operates in much the same
way as the LM program does, but creates random, rather than
sequential libraries.

LINKING LOADER

A program that links Extended BASIC programs. The Extended
Linking Loader, XLL, combines program sections into a main
program segment, combines subroutines with the main program, and
adjusts memory references in the program. The Runtime System is
enabled and input and output files are created. XLL replaces the LL
and LE programs used with the Compiled BASIC, FORTRAN, and

Assembly languages.

LOAD MAP

Detailed listing of the modules that comprise an executable program,
produced by the Extended Linking Loader Program, XLL, under
control of the MAP command. The load map is stored 1n a print image
file.

LOCAL SUBROUTINES

Subroutines that are entered using a GOSUB command and exited
with a RETURN command. They are created and compiled as part of
the same file as the program segment (either a main program or a true
subroutine) that uses them.

F-3

Glossary

MODULES

Object file program segments, either sections of main program bodies
or subroutines.

OBJECT FILE

A file consisting of machine-executable information. It 1s normally the
output of a compiler program. The object file usually needs to be
linked with other program modules and loaded into memory before
executing.

OPTION

A language feature that is available, but need not be used. Any time
that an option is used, the BASIC Compiler program must be
configured, via the command line, to compile the optional language
feature properly.

OVERLAY

A subroutine that shares memory space with other parts of the
program. A large program may be structured with overlays to use less
memory space. Program sections are loaded into memory as needed.

PARAMETERS

Variables or constants that are exchanged between true subroutines
and their calling routines are called parameters.

PASS BY REFERENCE

This is the parameter-passing convention used by Extended and
Compiled BASIC and FORTRAN. The address of the parameter is
passed to the subroutine so that any changes made to the parameter in
the subroutine changes the value of the variable with which the
subroutine was called (they are the same data item). Pass by Reference
is also known as Pass by Address.

In the following example, subroutine SUB! actually changes the value
of variable A.

A=1
CALL SUB1(A)
1A = 2...5U81 CHANCES THE VALUE OF A

F-4

Glossary

PASS BY VALUE

This parameter-passing convention passes the value of the parameter
to the subroutine rather than to the address. Thus, changes to the
parameter within the subroutine do not affect the variable with which
the subroutine was called.

When an expression or constant is the parameter to a subroutine, it
acts as if it were passed by value. Extended BASIC first copies the
value of the expression or constant to a temporary location, then uses
pass by reference to pass the address of the temporary location to the
subroutine, rather than the address of the original variable. This
protects the variable from changes in value caused by the subroutine.

CALL SUBIC (A))
1A = 1...5U81 USES THE VALUE A WITHOUT CHANGING IT

SUB SUB1(B)
B=2
SUBEND

PHYSICAL LINE

The 80-character width of the Instrument Controller’s display.

PROGRAM LINE

A complete BASIC line, ending with a (RETURN) character. It may
consist of several continued lines.

RELOCATION

The process of creating a new copy of a program that will load into
memory in a different place than a previous copy.

RESERVED WORD

A word that may not be used as a variable name, subroutine name, or
label name because it conflicts with a BASIC statement or operator.

RUNTIME

Operations that occur or program functions that are used while a
program is running, as opposed to operations that occur during
compiling or linking.

F-5

Glossary

RUNTIME SYSTEM

A program that makes it possible for a machine to run Extended
BASIC programs. The output format of the Extended BASIC
Compiler is an intermediate code rather than machine code. At
runtime, the Runtime System program translates this intermediate
code into machine recognizable statements.

SOURCE PROGRAM

The original program, whether it is written in a high-level language like
FORTRAN or BASIC, or in a low-level language like Assembly. A
source program needs to be translated into a machine-executable form
before use.

STATEMENT LABEL

A name that identifies a program line, in the same way that a line
number does. The label may be used in place of a line number in any
branch instruction.

TRUE SUBROUTINES

Subroutines that may be created and compiled separately from a
calling routine, that may exchange parameters with a calling routine,
and may contain local variables that are not accessible from other parts
of the program. True subroutines are defined by the SUB and
SUBEND statements that bracket them. They are entered via CALL
statements and exited via SUBEND or SUBRET statements.

F-6

INDEX

r refers to a statement number in the BASIC Reference manual

ANSI standard BASIC, 2-5

Arrays, 2-19, r3

conformal dimensioning, 2-26, E-4

multidimensional, E-5

redimensioning, 2-28

redimensioning virtual arrays, 2-28

use in Subroutines, 2-25

variable, 2-26, 2-28

ASCII/IEEE-488 bus codes, B-1

Automatic integer conversion, 2-18

BASIC compiler, 3-3

BASIC compiler errors, 3-19

BASIC compiler options, 3-17

Branch statements, 2-32, 2-33

BSXRUN, 4-3, 4-4

(CTRL)/C, 4-7, 2-10 (CTRL)/Z, 4-7

CALL statement, 2-21, r10

Case (SELECT statement), 2-45, r130a

COM statement, 2-24, r16

Command files, 1-18, 3-11

Command line option, 3-12, 3-17

Compiled BASIC (CBASIC), 2-3, 2-4

Compiled language, 1-3, 2-4

Compiler

command format, 3-13

command line options, 3-4, 3-12, 3-17

configuration switches, 3-9, 3-19

default filename extensions, 3-13, 3-14,

3-25

errors, 3-19, 6-3

exiting, 3-16

installation, 3-9

options, 3-17

temporary files, 3-14, 3-15, 3-16

Compiling

into Object Code, 3-4

long programs, 3-18

programs, 1-3, 1-11

XBASIC program, 3-4

Conformal dimensioning, 2-26, E-1

CONT TO command, 2-53, r18

Continuation lines in extended syntax, 2-11, 2-15

Control flow statements, 2-40

Conventions used in this manual, 2-7

notation, 2-10

statement descriptions, 2-21

syntax, 2-5, 2-8

COPY command, 5-30

Copying a program using T-copy, 1-5

Creating source code, 3-4

DELETE command, 2-53, r23, 5-31

DIM statement, 2-19, 2-25, r24

Dimensioning, 2-26, 2-27, 2-49, E-4

differences, 2-26 through 2-28

variables, 2-19, 2-25

E-disk, 1-18

EDIT command, 2-53, r30

Editing programs

with IBASIC, 1-9

with the system editor, 1-14, 1-15

ELSE (IF-THEN-ELSE statement), 2-32, r42

(EXTENDED IF statement), 2-40, r36a

ELSEIF (EXTENDED IF statement), 2-40, r36a

ENDIF (EXTENDED IF statement), 2-40, r36a

ENDLOOP (LOOP statement), 2-43, r69a

ENDSELECT (SELECT statement), 2-45, r130a

ENDWHILE (WHILE statement), 2-48, r170

END/GO command, 5-8, 5-10

ERR$ System Variable, 2-19, 2-20

Error messages, 6-1 through 6-17

Runtime and compiler errors, 6-3

XLL error messages, 6-8

XLL I/O error messages, 6-14

XLM error messages, 6-15

Executing the XLL program, 5-4

Executing the XLM program, 5-25

Index

EXIT command, 5-36

Exiting the Extended BASIC runtime
system, 4-7

Exiting the Extended BASIC compiler
program, 3-16

EXPORT statement, 2-5, 2-49, r-35a

Extended BASIC (XBASIC), 2-1

command file, C-2

IF-GOTO statement, 2-32, r42

IF-THEN-ELSE statement, 2-32, r42

IMPORT statement, 2-51, r42a

INCLUDE command, 5-5, 5-13

Integer conversion, 2-18

/1 option, 3-17

Integrating subroutines from other languages, E-1

Interpreted BASIC (IBASIC), 2-3, 2-6

compiler program, 3-4, C-1 compiling an existing program, 3-4
differences from IBASIC, 2-21

language, 2-3, 2-4
unused instructions, 2-52

Interrupts, 2-30, 2-38
language software, C-1

library manager program, 5-3, 5-25,C-l Labels, 2-5, 2-12, 2-23

linking loader program, 5-3, 5-4, C-1 in branch instructions, 2-5
modified statements, 2-21 Language

program development, 2-6 names, 2-6

runtime system program, 4-3, C-2

similarities with IBASIC, 2-4

statements, 2-5, 2-34

syntax, 2-11

unique statements, 2-34, 2-49

Extended IF statement, 2-40, r36a

Extended language syntax /E
option, 2-12, 3-17

software, C-1

LEAVE statement, 2-42, r59a

Library Manager program, 3-5, 5-3, 5-25

commands, 5-28

error messages, 5-38, 6-15

executing the library manager program, 5-25

filename conventions, 5-27

terminating the library manager program, 5-25
EXTENDED LIST command, 5-28, 5-32

Extended syntax, 1-14, 2-11, 2-12

File names, 2-9, 5-7, 5-27

File types, new, 3-7

FIND command, 5-5, 5-11

FOR-NEXT statements, 2-29, r39

FORTRAN interface runtime library, C-2

FORTRAN subroutines, E-5

Getting full use of Extended BASIC, 1-14

Getting started, 1-3

Global variables, 2-49, 2-50, 2-51

GOTO, 2-32, 2-40, r41, r42

HELP command, 5-37

How to read syntax diagrams, 2-8

using the library manager program, 5-26

LINK command, 2-53, r63

Linkage utility programs, 5-1

Linking, 1-12, 3-5, 3-22, 3-23
Linking object files, 3-5

Linking Loader program, 3-5, 3-23, 5-3, 5-4

executing the linking loader program, 5-4

error messages, 5-18, 6-8

error message table, 5-24

commands, 5-8

common symbol table, 5-24

filename conventions, 5-7

map format, 5-19

module list format, 5-20

symbol table, 5-22

terminating the linking loader program, 5-4

using the linking loader program, 5-5

Linking programs, 1-12

LIST command, 2-53, 5-34, r64

Load map, 5-6, 5-15

Long variable names in extended syntax, 2-14

Long variable names in XBASIC, 2-13

LOOP statement, 2-43, r69a

MAP command, 5-15

Map format, 5-19

Memory allocation in Extended BASIC, 3-7

Memory requirements, 3-6

MERGE command, 5-35

Modified statements, 2-21

Module list, 5-20

Multidimensional arrays, E-5

New file types, 3-7

NEXT statement, 2-29

No line numbers /NL option, 2-17, 3-18

No markers /NM option, 3-18

Notation conventions, 2-10

Object code, 3-4

Object files, 3-5, 3-7, 3-22

OLD command, 2-53, r86

Omitted line numbers, 2-17 , 3-18

ON-GOTO statement, 2-30, r91

ON-SUBRET statement, 2-38, r97a

OUTPUT command, 5-17

Overview of the linkage process, 3-22

CTRL /P, 4-7

Parameter data types, E-2

Parameter passing, E-2

Program development with

Extended BASIC, 2-6

Programs

benchmark, 1-9

LACE1, 1-15

XBCC.CMD, 1-18

Index

Redimensioning main memory or common

arrays, 2-28

REM statement, 2-31, rl119

REPEAT statement, 2-44

Required programs, C-1

for linkage, 3-23

Reserved words, D-1

RESTORE statement, 2-31, r117

RESUME statement, 2-32, r125

Running

extended BASIC programs, 3-6, 1-13

compiler program, 3-11

runtime system program, 4-3

runtime system program automatically, 4-3

runtime system program from the

keyboard, 4-4

Runtime system, 3-6, 3-22, 4-1

error checking, 4-9

errors at runtime, 3-6, 4-3, 4-9, 6-3

exiting, 4-7

loading the program, 4-3

messages, 4-8

operation, 3-6, 4-3, 4-6

program execution, 3-6

SELECT statement, 2-45, r130a

Software required, 3-23

Source code, 2-6

Standard syntax, 2-J1

Statement descriptions, 2-7

Statement labels, 2-12

STEP command, 2-52, r144a

STOP statement, 2-31, r148

SUB statement, 2-35, r149a

SUBEND statement, 2-36, r149b

SUBRET statement, 2-37, r149c

Index

Subroutines UNLINK command, 2-53, r160

array use, 2-25 Unique statements in XBASIC, 2-49

names, 2-5, 2-21, 2-22, 2-23 UNTIL (REPEAT statement), 2-44, r123

ON-SUBRET, 2-38, r97a Unused interpreted BASIC instructions, 2-52

other languages, E-1 Using

parameter passing, E-5 Basic compiler program, 3-12

SUB, 2-35, r149a command files, 1-18, 3-25

SUBEND, 2-36, r149b e-disk or a Winchester, 1-18

SUBRET, 2-37, r149c runtime system program, 4-6

true, 2-5 XLL program, 5-5

Syntax XLM program, 5-26

differences, 2-11

extended, 2-11, 2-12 through 2-33 Variables

standard, 2-11 arrays, 2-19

supplementary syntax diagrams, A-1 differences in, 2-19

Symbol table, 5-22 global, 2-49, 2-50, 2-51

System variables, 2-20, r150 names, 2-22

Virtual arrays, 2-28

Tcopy program, 1-4, 1-5

Temporary files, 3-13 WHILE statement, 2-48, r170

Terminating the XLL program, 5-4 Winchester disk, 1-18

Terminating the XLM program, 5-25 Writing a program, 1-9

Three dimensional arrays, 2-25

TRACE statement, 2-32

True subroutines, 2-5, see also subroutines

	0-1
	0-2
	0-3
	0-4
	0-5
	00-0
	00-1
	00-2
	00-3
	00-4
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	A-0
	A-1
	A-2
	B-1
	B-2
	C-1
	C-2
	D-1
	D-2
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	Index-1
	Index-2
	Index-3
	Index-4

