
BASIC Reference

RKLUKE
®

BASIC Reference

P/N 718833

January 1984 FLUKE
©1984 John Fluke Mfg. Co., Inc.
All rights reserved. Litho in U.S.A.

Format

ABS(numeric expression)

Description

ABS() iB
Function

The ABS() function returns the absolute value of a floating point or
integer number.

O ABS has a floating-point number or integer, as an argument, and
returns a positive floating-point number or integer.

O ABS changes a negative value to positive, but has no effect on
positive values or zero.

O The domain of input values is any positive or negative floating
point or integer value, or zero.

O The range of output values is positive floating point or integer
values, and zero.

Examples

The following examples illustrate the usage of the ABS() function. In
these examples, x% = -12344, y% = 12345, x = -54 e 99

{—

Va

Read
print abs(x%), abs(y%), abs(x)
12344 13545

Ready

0. S4E+101

>)

ARITHMETIC Operators EB
+-4/

Description

Arithmetic operators act upon or between numbers or numeric
expressions to produce a numeric result. A numeric expression is
composed of an arithmetic operator and one or more operands. The
following guidelines apply:

O The + and — operators can act upon a single number or numeric
expression (unary operation).

QO All arithmetic operators act between two numbers or numeric
expressions.

O Numeric variables can be used as numbers in expressions if they
have previously been assigned a value.

O Floating-point numbers and integers may be intermixed. Integers
will automatically be converted to floating-point, if necessary.

O When one integer is divided by another, the result is a truncated
integer quotient (the fraction or remainder is truncated). For
example:

2% | 5% is 0%

15% / 3% is 5%

17% | (-3%) is —5%.

O When aresult is assigned to a numeric variable, it is automatically
converted to the assigned data type.

O When a floating-point number is assigned to an integer variable it
is rounded, not truncated.

O Computation speed is significantly faster when floating-point and
integer data types are not intermixed.

O The result of evaluating an arithmetic expression may be used ina
larger expression or assigned to a variable for later use.

O Except for +, arithmetic operators cannot be used on strings.

ARITHMETIC Operators
+-*/

Arithmetic Operators

OPERATOR NAME MEANING AND EXAMPLES

+ Positive

+ Add

— Negative

— Subtract

* Multiply

/ Divide

Unary plus operator. Does not change sign.
+ 58.4
+ D
1% =+ KR%

Add two numeric quantities.
.382 + .046
A+B
RE% = CK + T%
IF C% = K% + 1% THEN RESUME

Unary minus operator. Changes the sign.
— 73.138
-~KV
C% = - ST%

Subtract two numeric quantities.
46332.33 — 473.88
C-D
T% = RE% - CK
IF D% = T% - 10% THEN WAIT FOR KEY

Multiply two numeric quantities.
44.21 * 3.992
3.582 * RR
K% =4* 1%
IF X > 4.77 * CK THEN Y = Y * 5.76

Divide first numeric quantity (dividend) by the
second numeric quantity (divisor) to produce a
quotient.

3.584 / 0.338
KV / 2%
MA =V/ KO
PRINT C / PI

ARITHMETIC Operators
+-*/

~ Exponentiate Raise the first numeric quantity to a power equal
to the second numeric quantity.

PI * R72%
LS = VR~2.886E-6

NOTE

Exponentiation is left associative, meaning that ABC is evaluated as
(A~B)C.

ARRAY Variable EB

Format

legal variable name (row%, column%)

Syntax Diagram

array variable N a | float variable FT 1 subscripts F— —

a integer variable =

sell string variable Fe

An array variable is a collection of variable data under one name.

O Arrays consist of floating-point, integer, or string variables.

O The variable name has either one or two subscripts to identify
individual items within the array.

O Subscripts are enclosed in parentheses.

O When two subscripts are used, they are separated by a comma.

O It is helpful to view two-dimensional arrays as a matrix. The first
subscript is the row number, and the second subscript is the column
number. For example, FT%(3,18) identifies the integer in row 3,

column 18 of the array FT%(m,n).

O A subrange (portion) of an array can be designated by specifying a
first and last subscript separated by two periods.

Example

For Example:

A§(3..7) Strings 3 through 7 of the string array A$.

FT%(2..4, 5..15) Rows 2 through 4 in columns 5 through 15 of the

integer array FT%.

O Inthe last example above, the second subscript is incremented or
decremented before the first. For example, the statement PRINT
FT%(2..4,5..15) will display the range FT%(2, 5 through 15) before
displaying FT%(3, 5 through 15).

ARRAY Variable

O Array variables are distinct from simple variables. A and A(Q) are
two different variables.

OQ Only one array variable can be associated with an identifier. A%(n)
and A%(m,n) are not simultaneously allowed.

O Memory space must be reserved for an array variable before it can
be used. See the discussion of the DIM statement.

O Virtual arrays are array variables accessible through a channeltoa
file-structured storage device. This feature allows a program to
take advantage of the much greater storage space available on
these mass storage devices. Refer to the section on Data Storage.

O Some examples of array variables are:

A%(3)
B1%(2%, 3%)
AS(5)
C(3%)
D(2 + A * B, C)
D(D(2))

ASCI|()
Function

Format

ASCII (string$)

Description

The ASCII function returns an integer equal to the ASCII (decimal)
value of the first character of its string argument.

O ASCII has a string as an argument and yields an integer result.

O The string may be any length, subject only to string length limits.

O Refer to Appendix G, ASCII/TEEE-488 Bus Codes, for a chart of
ASCII characters and corresponding decimal numbers.

O Range of possible results is 0 to 255.

O ASCII characters generated by the Instrument Controller’s
Console give results from 0 to 127. The most significant bit (7) 1s
reset to 0.

O Result is 128 higher when the most significant bit (7) in the
character is set to 1. This allows string characters to be examined as
8-bit binary data bytes.

O A null (no characters) string input produces a 0 result.

O The ASCII function may be used in any expression or statement
that allows the use of an integer variable.

ASCII()
Function

Examples

The following examples illustrate the results of different uses of the
ASCII function. A$ = “NOW” and B§ = “” (null string).

STATEMENT

PRINT ASCII (A®)

BX = ASCII (AS)

IF ASCII (C8) = 13% THEN 1200

PRINT ASCII (BS + AS)

PRINT ASCII (°N")

RESULT

Display 78, the ASCII value of
"NY" e first character of
string Ae.

Places 78. the ASCII value of
“N"”, the first character of
string AS, into integer
variable Bi.

Branch to line 1200 if th
first character of string “cs is
a Carriage Return.

Display 78. The null string has
an ASCII value of zero: B®
(null) + A® (NOW) equals "NOW"
C"N" is still the first
character).

Display 78. A string variable
may also be used.

ASH()
Function

Format

AS H(arg%,count%)

Description

The ASH() function performs a signed arithmetic shift on binary
integers (arg%) by shifting it by a given number of bits (count%).

O The function arguments are considered to be integers; any floating-
point arguments will be truncated to integer.

O This operation may cause an arithmetic overflow (error 601) to be
reported if the argument cannot be represented as an integer.

O The ASH(function shifts arg% right or left by count% bits. This is
an arithmetic shift, which means that the sign bit (most significant
bit) is propagated (shifted in from the left) if a right shift is
performed.

Example

Right Shifts

A right shift is accomplished by using one of the two shift functions,
ASH(or LSHO, with a negative shift count. The shift is performed by
taking the absolute value of the shift count and then shifting the
argument right by that number of bits.

The ASH() (arithmetic shift) function copies the sign bit of a number
when performing a right shift. As an example:

100 PRINT "Shift count”, "Hex", "Decimal", "Binary"
110 FOR I%=0% TO -15% STEP -1%
120 J% = ASH(-32768%, I%)
130 PRINT I%, RAD®(JU%, 16%), J%, RADS(U%, 2%)
140 NEXT I%

ASH()
Function

prints the following:

Shift Count He x Decimal Binary
6) 8000 -3276 1000000000000000

—1 co0oo -16384 1100000000000000
-2 EOOO -B192 1110000000000000
-3 FOOO -4096 1111000000000000
—-4 F800 -~2048 1111100000000000
-5 FCOO -1024 1111110000000000
-—& FEOO —-35312 1111111000000000
-7 FFOO -256 11111111 00000000
-8 FFS8O -128 1111111110000000
-9 FFCO -64 1111111111000000
-10 FFEO -32 1111111111100000
-11 FFFO -164 1111111111110000
-12 FFFS -8 1111111111111000
-13 FFFC —-4 1111111111111100
-14 FFFE —-2 1111111111111110
-15 FRFFF —1 TLLLLLL1111111111

NOTE

The sign bit is copied as the number is shifted to the right, so
that when a negative number is right-shifted it remains a
negative number.

Left Shifts

A left shift is accomplished by using one of the two shift functions,
ASH() or LSHO, witha positive shift count. The shift is performed by
shifting the argument left by the number of bits indicated.

In the case of a left shift both ASH() and LSH() generate identical
results. The program:

PRINT 100 "Shaft count",, "Hex", “Decimal", "Binary"
110 FOR I%=0% TO 15%
120 J% = AGH(1%, 17)
130 H = RAD$(JZ, 16%) \ BS = RADS(UZ, 2%)
140 BBS = DUPL#("0", 16-LEN(B$)) + BS
150 PRINT I%, DUPL#("0", 4% —- LEN(CHS));i HH, J%, BBS
160 NEXT I%

ASH()
Function

prints the following:

Shift Count He x Decimal Binar
O ooo!1 1 0000000000000001
1 0002 2 Q0000000000000010
2 0004 4 0000000000000100
3 0008 8 0000000000001000
4 0010 16 0000000000010000
5 0020 32 0000000000100000
& 0040 64 0000000001 000000
7 0080 128 0000000010000000
8 0100 206 0000000100000000
9 0200 912 0000001000000000
10 0400 1024 0000010000000000
11 o8s00 2048 0000100000000000
12 1000 4096 0001000000000000
13 2000 8192 0010000000000000
14 4000 16384 0100000000000000
15 8000 -327686 1000000000000000

Remarks

Compare the ASH() function to the LSH() function.

ASSIGN EB
Statement

Usage

variable = { expression, variable, or function}

Syntax Diagram

—+> ASSIGN }-——-| device$ ke —

Description

When used as a program statement, with a variable to its left, and an
expression to its right, = assigns the result of evaluating the expression
to the variable. No equality is implied. This is the default form of the
LET statement.

Example

In the following example, the integer N% is incremented by 1.

N% =N% + 1%

This example shows a variable assigned tothe value of a function:

T$=STIMES

ASSIGNMENT &@
Operator

Format

variable = expression
variable = variable

variable = function

Description

When used as a program statement, with a variable to its left, and an
expression to its right, = assigns the result of evaluating the expression
to the variable. No equality is implied. This is the default form of the
LET statement.

Example

In the following example, the integer N% is incremented by |.

NX = NX + 1%

This example shows a variable assigned to the value of a function:

TS=STIMES

ATN()
Function

Format

ATN(numeric expression)

Description

The ATN function returns the principal arctangent, in radians, of a
floating-point numeric input value.

ATN has a floating-point number as an argument, and returns a
floating-point result.

The arctangent is the inverse of the tangent. ATN returns an angle,
expressed in radians, whose tangent value is the given input.

The range of input values is any floating-point number. The range of
output values is between and including the limits of + PI/2. Input
values within approximately I1E-16 of 0, result in an output of 0.
Underflow error does not occur.

Example

Read
PRINT ATN(45)

8578 1.5485

Ready

BREAK &
Statement

Usage

BREAK device%

Syntax Diagram

BREAK ———-{ BREAK)-————~| device’ --——

Description

The BREAK statement sends a break signal to the RS-232 port
designated by device%. Device% is the device number of a RS-232 port
and is derived from the device name as follows.

device% device name

l kbl:

2 kb?2:

3 kb3:

9 kb9:

Error 329 (illegal break parameter) is reported if the value of device% is
outside of the range: 1 <= device% <= 9.

Example

100 BREAK 1% ‘send break to kbi:

Usage

CALL @&S
Statement

CALL {unquoted string} (optional parameter list)

Syntax Diagram

CALL |

Description

ae |] unquoted string r

at
7m bs
—C—

The CALL statement executes a subroutine file loaded by the LINK
statement.

O The CALL statement can be used in either Immediate or Run

mode.

O As shown in the syntax diagram, the CALL statement verb is not
required. This is called “an implied CALL”. If CALL is not used,
then the leading characters of the unquoted string must not conflict
with a BASIC verb.

The unquoted string contains the subroutine name. The subroutine
must be present in memory when the CALL statement is executed.
If the subroutine is not present, error 705 (Call to undefined
subroutine) is displayed.

Zero (0) to 10 parameters can be passed to a subroutine as part ofa
CALL statement.

1. Parameters can be:

a. Variables

b. Constants

c. Expressions

d. Arrays (but not virtual arrays)

e. Individual array elements

CALL
Statement

2. The parameter list must be enclosed in parentheses.

3. Individual parameters must be separated by commas.

4. The required parameter format is described in the Subroutine
section of this manual.

CHR$()
Function

Format

CHR§(numeric expression)

Description

The CHR$ function retuns as ASCII string character corresponding to
the decimal value of an integer or floating-point numeric expression.

O The expression may be either integer or floating point.

O The allowable range of values is -32768 to 32767.

O If the expression has a floating point result, it is converted to an
integer by truncation, 1.e., the integer value will be the largest
integer smaller than or equal to the floating point value.

O When sent tothe display via PRINT, the character displayed or the
control response corresponds to the integer represented by the
lower seven bits of the value of the numeric expression. For
example, PRINT CHR$(72) displays the letter H, just as PRINT
“H” does.

O CHR$(x) will generate 7-bit ASCII codes corresponding to the
decimal! column in Appendix G if the numbers 0 through 127 are
used.

O To set the eighth bit to 1, add 128 to the value in the decimal
column corresponding to the desired character or code pattern.

CHR3()
Function

Example

The following example illustrates the results of common uses of the
CHR$ function.

1000 A = 64 \ BA = 50% \ CK = 7O4%Z
1010 PRINT CHR® (A) ' Displays "@e"
1020 ' (ASCII value of "@" is 64)
1030 BS = CHRS (BZ) \ Assign "2" to BS
1040 ' (ASCII valve of 2 is 50)
1050 PRINT CHRS (35) + CHR® (C%)! Displays "TF"
1060 ' (ASCII value of 7 is 35)
1070 ' (ASCII of F is
1080 PRINT CHRS (A + BA + 3) ‘ Dispia s "vu"
1090 ' (ASCII value of u is 117)
1100 PRINT CHR# (2880) ' Displays "@"
1110 ' (ignores Upper 7 bits)
1120 PRINT CHR (72.65) ' Displays "H"
1130 ' (Truncates fraction)

NOTE

Some integers used in the CHR$ function
result in display commands when printed
and do not appear on the screen. For
example PRINT CHR$(7) activates the
beeper.

CLEARS
Statement

Usage:

CLEAR [device(s)]
CLEAR PORT [number or expression]

Syntax Diagram

(both ports) ~ CLEAR ——>(CLEAR -

PORT | numeric expression 4

| + |
device list]

Description

CLEAR sends a device clear or selected device clear message to the
specified device(s), to all devices on the specified instrument port, orto
all devices on both instrument ports.

CLEAR without a device list sends a device clear (DCL) message.

oO CLEAR, without a port specified, sends DCL to both IEEE-488
Bus ports.

O To send DCL to only one port, the word PORT must be used,

followed by an expression or number that evaluates to 0 or I.

CLEAR with a device list sends a selected device clear (SDC) message.

O Instruments listed are addressed to be listeners.

O SDC (selected device clear) is then sent to the designated port(s).

Example

The following examples illustrate common uses of the CLEAR
statement:

STATEMENT RESULT

CLEAR Clear al1 instruments on both ports.

CLEAR @ 1 @ 102 Clear device 1 on part O. and device 2 on
port i

CLEAR PORT 1 Clear all devices on port 1

CLOSERS
Statement

Usage

CLOSE [numeric expression]
CLOSE ALL

Syntax Diagram

—~(_ css) numeric expression

Le]
The CLOSE statement frees a previously opened channel for other use.
The CLOSE statement requires a comma separated number list as an
argument. The CLOSE ALL statement 1s equivalent to a numeric list
of all channels.

Description

As part of this process, some specific actions are taken:

O The input or output of data in memory to or from the specified
channel is first completed.

O Interrupts are disabled for the channel if it was opened for input
from a serial (RS-232-C) port and interrupts were enabled. This is
equivalent to an OFF #n statement in addition to closing the
channel.

O An End-of-File mark (CTRL/Z character) is then sent, if the
channel was opened for sequential output.

O Makes extra space reserved for a NEW file available again.

CLOSE
Statement

Example

The following example illustrates the effect of reserving more space for
a new file than is actually used when the file is closed. If only 25 blocks
are actually written to the file when line 510 is executed, the extra five
blocks assigned to the file become available as free space on MFO: (1.e.,
usable by another OPEN command). Only the 25 blocks containing
the information written by the program would remain as part of the file
RESIST.DAT.

20 AS = "MFO:" \ BS = "RESIST. DAT"
30 OPEN AS + BS AS NEW FILE 3% SIZE 30%
40 ' Other statements
310 CLOSE 3%

CMDFILE
Function

Format

CMDFILE

Description

An executing BASIC program can determine whether or not it has
been called as a result of command file processing by using the
CMDFILE function. This function is called as : CMDFILE.

0 CMDFILE returns E1% if a command file is active and 0% if no

command file is active.

Example

1000 ! Subroutine "Delete a file" given in variable "se"
1010 Confirm deletion only if a command file is NOT active.

1025 s6 = "foo. bas"
10390 if cmdfile then 1070
1040 print “Really clobber file “s s;
1050 input line an$
1060 if ucaseS(left(an®, 1%)) ¢> “Y" then 1080
1070 kill s$
1080 return

CMDLINE$
System Function

Description

The CMDLINES function reads the current FDOS command line and
returns a string result. The length of the string is limited to 80
characters, the limit of the FDOS command line.

O Memory overflow is the only error that can result from the use of
the CMDLINES$ function.

O The CMDLINES$ function may be used to read arguments from the
FDOS command line.

Remarks

See the entry for the SET CMDLINES statement.

COMES
Statement

Usage

COM {id list}

Syntax Diagram

COMmon —-(com }-— —| id |

Lee |

| _f{,\«
QS

Description

COM reserves variables and arrays ina COMmon area for reference
by chained programs. COM arguments are valid BASIC array,
integer, and floating-point variable names in a comma separated (“,””)
list. Array variables must include their size declaration.

O Only floating-point and integer variables may be stored in the
common area.

O String variables may not be stored in the common area.

O String variables may be stored in virtual arrays for access by
chained programs. This technique is discussed in Section 7: Data
Storage.

O All programs accessing a common area must use COM statements
that are identical in order, type, and array sizes; the actual variable
names, however, may be different.

Example

For example, assume that a chained program requires the use of three
floating point simple variables, an integer simple variable, a floating-
point array, and an integer array defined in a previous program. The
first program could use a COM statement such as:

10 ' Program A
20 COM » B, C, FA. DI24%), TACIOOA)

1050 RUN "B"
1060 END !' End of program A

COM
Statement

The second program could then use:

10 ' Program B
20 com Li, L2, 3, @%, K(24%), P%(100%)

Note that while the names of the variables stored in the common area
have changed between programs, the order and type of the variables
are exactly the same.

CONFIGES
Statement

Usage

CONFIG [device TO priority WITH sense]

Syntax Diagram:

CONFIGure ——(_ conFig }—-{ device FJ

(unconfigure)

(priority) (sense)

(To) numeric expression WITH numeric expression

Description

CONFIG (CONFIGure) will either configure or unconfigure an
instrument for parallel poll.

O TO specifies the DIO line on which the instrument should respond
to a parallel poll.

O The WITH clause specifies the active sense (0 or 1) the instrument
should use in responding to the poll.

O Ifthe “TO line WITH sense’ clause is omitted, a PPD (Parallel Poll
Disable) message will be sent to the instrument.

O Several instruments may be configured to respond with the same
sense (1 or 0) on the same DIO line.

O If the sense is 1, then their poll bits are logically ORed.

O If the sense is 0, then their poll bits are logically ANDed.

O Use the OR configuration to determine whether any instrument is
busy or-needs service.

O Use the AND configuration to determine if all instruments are
busy or need service.

CONFIG
Statement

Example

The following example configures device 4 on port 0 to respond on
DIO2 with a 1 as affirmative poll response.

O 14070 CONFIG @ 4 TO 2 WITH 1

The following example configures device 21 on port | to respond on
DIO7 with a zero as affirmative poll response.

O 26480 CONFIG @ 121 TO 7 WITH O

The following example disables device 4 on port 0 from responding to
parallel polls.

oO 580 CONFIG @ 4

Remarks

Compare the CONFIG statement with the PPL Function.

CONT TOG
immediate Mode Command

Usage

CONT

CONT TO {linenumber }

Syntax Diagrams

t CONTinue CONT wesw —>| RETURN

line no. __f

Description

The Immediate Mode CONT TO line number command causes
program execution to continue from a breakpoint stop caused by
STOP, STOP ON, CONT TO, or (CTRL) /C.

O The CONT TO line number command is available only in
Immediate Mode.

QO CONT TO line number must first be enabled by a breakpoint stop
in a running program, caused by STOP, STOP ON, CONT TO, or
(CTRL) /C.

O Any subsequent action other than entering the CONT TO line
number command disables the command. The program must then
be rerun to the breakpoint.

O Program execution continues at the statement following the last
statement executed.

O When TO line number is included, program execution again stops
if the specified line number is encountered, and the statement is not
executed.

O CONT TO can be used instead of or in addition to STOP ON and
CONT to move quickly through a subroutine or loop that has
already been confirmed during Step Mode logic debugging.

CONT TO
Immediate Mode Command

Example

The following example program is in main memory during the
interaction that follows.

10 FOR I% = 1% TO 2%
20 PRINT I% + I%
30 NEXT I%
40 PRINT “Done!"
30 END

With the above program in main memory, the following sequence of
commands and RETURN entries would produce the responses shown.
Programmer entry is shown to the left, and Controller response is
shown to the right.

PROGRAMMER ENTRIES CONTROLLER RESPONSES

STOP ON 10 Ready
RUN Ready

Stop at line 10
Ready

Stop at line 10
Ready

Stop at line 20
Ready

2

Stop at line 30
Ready

Stop at line 20
Ready

4

Stop at line 30
Ready

Stop at line 40
Ready

STEP

CRETURN)

(RETURN)

CRETURN)

(RETURN)

(RETURN)

(RETURN)
Done!

Stop at line 30

STOP ON 10 Ready
RUN Ready

Stop at line 10
Ready

2
4

Stop at line 40
Ready

CONT TQ 40

CONT
Done!
Ready

COPY Gi
Statement

Usage

COPY {oldfile$} [TO newfile$]

Syntax Diagram
oldfile

COPY — COPY +} SV8: >| flenameS >=

device

display

newfile

SY
TO ~) filenameS

device

The COPY statement will copy a file either to the screen or to another
file.

Description

O For any oldfile$ or newfile$ the device “SY0:” is assumed if no
device is specified.

O The extension “.BAS” is supplied if no filename extension 1s
specified.

O If the TO clause is omitted, the input file 1s copied to the screen.

O If both the input and output files reside on file-structured devices, a
block-mode (binary) transfer is performed, which permits binary
files to be copied. If this is not the case, the file is assumed to be an
ASCII stream (having a line structure and terminated by a
(CTRL) /Z character), in which case the transfer is performed line-
by-line.

O Almost any I/O error may occur when this statement 1s executed.
In addition, if any of the filename expressions are not strings, error
312 (illegal filename) will be reported.

COPY
Statement

Examples

copy "sort"
copy "bi.dat" to nf$
copy "kbi:" to "new. dat"
copy "mfl:" + b2e + ".cil” to “edO: prog.cil”

NOTE
If a COPY from device KB@: (the console keyboard) is
performed, the keyboard is immediately placed in the ECHO
mode (see the SET ECHO and SET NOECHO statements).

COS() Es
Function

Format

COS (angle in radians)

Description

The COS function returns the cosine of an angle that 1s expressed in
radians.

O COS has a floating-point number as an argument, and returns a
floating-point number.

O The range of input values is between and including the limits of
+32767 radians (10430.06 pi radians). Error 607 results from
input values outside these bounds.

O The range of output values is between and including the limits of
+1 and — l.

O Input values within approximately 1E-16 of integer multiples of
PI/2 give a result of zero, rather than underflow error.

Example

(—

(.
Ready
print cos(45)
0. 325322

Ready

7 i

CPOS() iB
Function

Format

CPOS(R,C)

Description

The CPOS function returns a string which, when sent to the display
with the PRINT statement, positions the display cursor to the row and
column coordinates given as arguments.

O CPOS has two numeric expressions (R and C) as arguments and
yields an 8-character string. The string 1s always eight characters
long, in the form: ESCape [row ; column H. For example,
CPOS(3,20) is equivalent to CHR§(27)+“[03;20H”.

O Both numeric expressions may use integer or floating-point
numbers.

O If the expression for line or column is floating point, it must be
within the range of integers, and will be truncated to an integer.

O The domain of acceptable input is -32768 to 32767.

O The range of row numbers acceptable to the display is 0 to 16 in
normal display mode, and 0 to 8 in double size display mode.

O The range of column numbers acceptable to the display is 0 to 80 in
normal display mode, and 0 to 40 in double size display mode.

O If either the line or column is less than zero, a value of zero is

assigned. Thus display positions 0 and | are identical.

O If the line or column is greater than 99, a value of 99 1s assigned.

O Numeric strings in the result are two characters in length. Numbers
between 0 and 9 are given a leading 0.

QO Additional limits are imposed by the video display module:

1. A line or column number of zero is interpreted as one.

2. A line number greater than 16 is interpreted as 16.

3. A column number greater than 80 is interpreted as 80.

4. Indouble-size display mode, these limits are respectively line 1,
line 8, and column 40.

CPOS()
Function

Examples

The following examples illustrate the results of different uses of the
CPOS function.

STATEMENT RESULTS

PRINT CPO8S (2, 4); Place the cursor at row 2
column 4.

PRINT CHRS$(27); “CO2i O4H", Place the cursor at row 2
column 4. This is identical to
the previous example.

AS = CPO8(2, 4) Place the string "ESCape
CO2; O4H" into A&.

PRINT CPOS(A, B); "HELLO" Displays “HELLO” at row A,
column B.

PRINT CPOS(CA+5, B)i “HELLO” Displays “HELLO” at row A+5,
column 8B.

The CPOS function may be assigned to a string variable or added to
strings for display formatting. It may take various forms as shown in
the following examples which display “Fluke Instrument Controller”
at line 10, column 30.

Example 1:

10 AS = CPOS(10)
20 BS = AS + "“F e Instrument Controller"
30 PRINT BS

Example 2:

10 PRINT CPOS(10, 30); "Fluke Instrument Controller”

The CPOS string function may also be used for more creative displays.
The following example displays a scaled SIN function, using CPOS:

10 ### Display Sine Function ##+#

30 FOR X = 1 to 80 'Setup loop for display length
40 Y = 6 # SIN (2 # PI # (X/40)) + ‘Compute scaled sine function
SO PRINT CPOS(Y,X)i ‘#3 ‘Position cursor and display +#
60 NEXT X ‘Loop

The following example illustrates a method of causing the cursor to
disappear during a double-size message display. The technique is to
move the cursor alternately to the lower left and lower right corners.
Normally, the ON KEY interrupt would be enabled (discussed later in
this section), allowing operator input to break the loop:

1000 PRINT CPOS(8, 1)
1010 PRINT CPOS(S8, 40)
1030 GOTO 1000

DEF FNS
Statement

Usage

DEF FN[function name] (argument list)

Syntax Diagram

wre CeO +O DE) firs}

Description

The DEF FN statement allows functions to be defined for subsequent
use in expressions.

O The function name can be any variable name, such as A%, FAS, Z,
including variables previously used in the program. (e.g., FNA%
does not conflict with A% already existing in the program.)

O The argument named must be a simple variable name (i.e., not
subscripted).

O The argument name is local to the definition. This means that the
same variable name used elsewhere in the program does not affect
and is not affected by the definition of the function or by the
function’s execution.

O An argument name must be included in the function definition
even if it is not used.

O The argument name is enclosed in parentheses following the name
of the function.

O Miultiple arguments are not allowed.

DEF FN
Statement

Example

The following example defines user function A to be three times the
argument passed to the function, designated as X. After the function
has been defined it may be used anywhere in the program just as if it
were a system function, 1.e., as a part of an expression.

10 DEF FNA(X) = 3 # X
20 X = §
30 PRINT FNA(7)
40 REM

Assigns 5 to
Displays 21

Defines function as 3 #* X
x

(3 times 7),
not 15 (3 times X)

The following examples illustrate the use of a system function and the
use of a system constant as part of the definition of a user function. In
this example, user function C returns the arcsine of the input value and
(line 200), user function R converts the input value from radians to
degrees. The remainder of the program gets an input value, finds the
arcsine. converts the result to radians, then prints the answer.

100 DEF FNB(C) = ATN (C / SQR (1 - C *# C)) !
200 DEF FNR(R) = R * (180 / PI) '
300 PRINT “value to convert "i; \ INPUT X ‘
400 A = FNB(X) '
900 B = R(A) :
600 PRINT "The arcsine of "Xi" is "; Bi" degre
700 END

Sample program run:

define function B
define function C
get data —
Calc arcsine
convert to degrees
es." ' answer

r
a

Ready
Run
Value to convert ? .5
The arcsine of .5 is 30 degrees.

Ready

DELETEES
Immediate Mode Command

Usage

DELETE {ALL}

DELETE {linenumber}
DELETE {from linenumber - to linenumber}

Syntax Diagram

GT _ DELETE DELETE —_— ALL 7 >| RETURN

Le
first)

‘7 (one line only)
line no. S

(last)

line no.

Description

The DELETE command deletes part or all of a program from
memory.

O The entire program is deleted when ALL is specified.

O DELETE ALL also deletes Common Variables (see the COM
statement in the Program Chaining section).

O One line is deleted if a single line number is specified. The
command 1s ignored if the line does not exist.

O One line may also be deleted by typing the line number only,
followed by pressing RETURN.

O The portion of the program between and including specified lines is
deleted if two line numbers are specified.

DELETE
Immediate Mode Command

Examples

The following examples illustrate common uses of the DELETE
command.

COMMAND

DELETE

DELETE ALL

DELETE 100

DELETE 200-300

400 RETURN

RESULTS

No action

Deletes entire program and the COM
variables

Deletes only line 100

Deletes lines 200 through 300

Deletes line 400

DIMES
Statement

Usage
DIM [id(dimensions)]
DIM #[open channel],[id(dimensions)]
DIM #fopen channel],fid(dimensions) = length]

Syntax Diagram
(main memory array)

DiMension DIM < y if +{ a {dimensions }) 7

_{,»
Neer

(open channel)

| numeric expression C)—

t 1
7 mall 1d f-4} dimensions F imax string 16) N

(max string)

numeric expression

Lf.
VS

Description
The DIM statement reserves memory or file space for arrays in main
memory or on a file-structured device. The DIM statement has the
following characteristics when used for a main-memory array.

O An array is a set of variables.

O Each variable is an “element” of the array.

O The maximum array index for each dimension may be specified as
one less than the required number of elements, as element counting
begins with zero.

O One or two dimensions may be specified.

O =A two-dimensional array may be considered as a matrix with the
first dimension representing rows and the second dimension
representing columns.

oO A single DIM statement may dimension one or more arrays,
separated by commas.

DIM
Statement

The DIM (DIMension) statement may also be used to assign a
previously opened channel to a virtual array and informs BASIC
about data organization within the file. Virtual arrays are stored ona
file-structured device and are treated as random-access files. The DIM
statement has the following characteristics when used to describe a
virtual array.

0 The # character and numeric expression following DIM specify an
open channel from | to 16.

String array declarations may specify the maximum length, in
characters, of each element string.

This length specification follows the array identifier and array size
specification. For example, DIM #4, Q$(63%, 63%) = 8% declares
Q§ to be a virtual array, through channel 4, containing 64 X 64
string elements of 8 characters each.

String element lengths in virtual arrays must be a power of 2
between 2 and 512 (2, 4, 8, 16, 32, 64, 128, 256, or 512).

16 characters per string is assumed when no length is specified.

The virtual array DIM statement does not initialize string or
numeric variables to nulls or zeros as does the ordinary DIM
statement. For this reason, a value must be assigned to virtual
array elements before they can be used as source variables. After
being dimensioned they contain whatever bit patterns are in their
respective disk storage areas.

Examples

Main Memory Arrays

The following examples illustrate some common uses of the DIM
statement, with comments on the results of each statement.

MEANING

DIM A(5) Dimensions a six-element one-dimensional! floating
point array with the following elements:

P
P
P
P
P
>
Y
D

U
a
W
N
-
o
O

DIM
Statement

DIM A%(2, 3) Dimensions a twelve-element two-dimensional integer

array with 3 rows (0-2) and 4 columns (0-3):

DIM OPS(5) Dimensions a six-element string array that could be
used to store operator messages.

DIM A(5), A%(2,3), OP$(5)

This statement accomplishes the tasks of the three
previous examples in one statement.

Virtual Arrays

In the following example, line 10 specifies that the virtual array file
“RESULT.VRT” will be 20 blocks long and accessible on channel 1.
Line 20 assigns four virtual arrays to the open channel 1.

10 OPEN "RESULT.VRT" AS NEW DI FILE
20 DIM #1, AS(63%) = 128%, C 4)»

M
31

Note that the data will fit in 20 blocks, but not in 19:

ARRAY #OF ELEMENTS SIZE # OF CHARACTERS

A$ 64 128 8192
C$ 32 16 512
B 4] 8 328
A% 501 2 1002

TOTAL: 10034 bytes (or characters) dupl

19 blocks = (19 * 512) = 9728 characters
20 blocks = (20 * 512) = 10240 characters

DIR ES
Statement

Usage

DIR [device$] [TO filename$]

Syntax Diagram

SYB:

{ave

display

lees Sv8: ~ filename$ |

Lo +f

Description

The DIR statement prints the directory of a file-structured device.

O Device§$ is the name of the device for which a directory listing is
desired (which is “SY0:” if omitted), and filename$ is the name of a
file to which the directory listing is to be sent (which is “K BO:” if
omitted).

O The format of the output resembles a “/L” directory listing in FUP.
The format of the output 1s:

Directory of XXX: on dd-mm-yy at hh:mm:ss
Name .Ext Size Prot Date
XXXXXX.Xxx n[*] dd-mm-y

Total of n blocks in n files, n free blocks.

O Note that I/O errors may be reported by this statement.

Examples

The following examples represent typical uses of the DIR statement.

Usage

DISABLE

Syntax Diagram

DISABLE (DISABLE

DISABLEES
Statement

Description

The DISABLE statement disables all interrupt types (except ON
ERROR and ON CTRL/C) until a corresponding ENABLE
statement is executed.

DISABLE CMDFILEES
Statement

Usage

DISABLE CMDFILE

Syntax Diagram

DISABLE
CMOFILE —_——_{ DISABLE CMOFILE)}____

Description

The DISABLE CMDFILE suspends command file execution to
permit input from the keyboard.

O AnINPUT statement is used to retrieve input from the user rather
than from the command file.

O The Disable CMDFILE can also be used to permanently suspend
command file execution because of a program detected error.

Examples

The ENABLE CMDFILE statement “undoes” the effect of DISABLE
CMDFILE. For example, to retrieve a line of keyboard input whether
or not a command file is active may be done as follows:

10 print "What is the name of the dump device";
20 disable cmdfile
30 input line dv
40 enable cmdfile

To stop command file execution, a program may use the following
scheme:

10 !
20 Error exit section ~-- disable command file and exit.

40 print "An “; er$s “error has occurred.”
SO disable cmdfile
60 exit

Remarks

The ENABLE CMDFILE 1s the logical complement of the DISABLE
CMDFILE statement.

DUPLS$() ZB
Function

Format

DUPLS&string$, count%)

DUPLS$(val%, count%)

Description

The DUPLS() function provides a means to create a string of zero or
more duplicated characters or strings.

O DUPLS() requires an integer argument (count%) and returns a
string of zero or more duplicated characters or strings (string$).

O If count% 1s a floating point value it will be truncated to integer.
This operation may cause an arithmetic overflow (error 601). If
the value of count% 1s less than equal to zero, DUPLS() will return
a null string result.

O If the value of string$ is the null string, DUPLS() will return a null
string result.

O When string$ is the first parameter, count% gives the number of
duplicates of string$ to be produced. Note that this implies that if
string$ contains n characters, the length of the result returned by
DUPLS() will be n * count% characters long.

O When val% is the first parameter, val% is converted to a one

character string in the same manner as the CHR§() function would
convert it to a string.

O The value of val% is truncated to use only the low-order eight bits
of the integer value.

O If val% is expressed as a floating point quantity, the value will be
truncated to integer which may cause an arithmetic overflow (error
601).

DUPL$()
Function

Example

The principal value of DUPLS$() is to initialize strings, print banners,
create character graphics strings, and to optionally pad strings with a
certain character. Printing a 4-character hexadecimal value (with
leading zeroes) could be accomplished with DUPLS() as follows:

10 print "Value";
2O input 1%
30 s& = radé(iz%, 162%)
40 print "Hex "} DUPLS$C"0", 4% - len(s$))i s&

Which produces:

(—

(ready
Run
Value? 15
Hex OOOF

J)

Ready

XS 4)
Note that line 40 in the program shown above could also have been
written as:

print “Hex "; dupl$(48%. 4% -—- len(s8)); s&

OF aS:

print "Hex "; duplSlascii("O"), 4% — len(s$));s s$

EDIRES
Statement

Usage

EDIR [device$] [TO filename$]

Syntax Diagram

aaa SYB:

Ds
cen)

display

SYS: io
les = filename$ _

Description

The EDIR statement prints the directory of a file-structured device.

O Device$ is the name of the device for which a directory listing is
desired (which is “SY0:” if omitted), and filename$ is the name of a
file to which the directory listing is to be sent (which is “KBO:” if
omitted).

O The format of the output resembles a“/E” directory listing in FUP.

O An unused (or empty) directory entry is listed as

(not used) nnn

(in which “nnn” is the size in blocks).

O A tentative directory entry (a “new” file which has been opened but
never closed) is listed as

(temp ent) nnn

(in which “nnn” is the size in blocks).

EDIR
Statement

O The format of the output is:

Directory of XXX: on dd-Mmm-yy at hh:mm:ss
name .ext size prot date
XXXXXX.XXx nnn [*] dd-Mmm-yy
(not used) nnn
(temp ent) nnn
Total of n blocks in n files, n free blocks.

O Note that I/O errors may be reported by this statement.

Examples

The following examples represent typical uses of the EDIR statement.

edir
edir “mmo: “
edir dv® to "kba2: "

EDIT &s
Immediate Mode Command

Usage

EDIT [{linenumber]

Description

The editor provided as a part of the Fluke BASIC Interpreter program
is an easy-to-use character-oriented editor. The Edit Mode allows the
user to create, delete, or modify the characters that make up program
lines in main memory. Program lines are stored in main memory for
subsequent use by other modes. The editing keys in the upper right
corner of the keyboard plus the (CTRL)/U, BACK SPACE,
RETURN, and LINE FEED keys control the cursor and delete text.
The remaining keys are used for text entry. This section describes the
edit keys and their use along with other editor features.

O Edit Mode is entered from Immediate Mode by typing:

EDIT «<RETURN)

or

EDIT line number (RETURN)

O Editing begins with the lowest numbered line of the program in
memory unless another line is specified.

O No line number specification is used when beginning the edit of a
new program when no other program is in memory.

O Program entry procedure is the same as in Immediate Mode.

QO Immediate Mode commands and program statements cannot be
executed while in Edit Mode.

O Exit from Edit Mode to Immediate mode by entering (CTRL) /C.

O The special edit keys on the programmer keyboard are enabled.

O Upto 15 lines of the program in memory are displayed, beginning
at the first line or at the line number given with the command.

O Edit Mode enables the user to scroll the cursor forward or
backward in a program as well as right or left on program lines.

EDIT
Immediate Mode Command

O Edit Mode enables the user to delete characters, portions of lines,
or entire lines.

O Edit Mode also enables the user to duplicate entire program lines.
The following examples illustrate the two different uses of the
EDIT command.

COMMAND RESULT

EDIT Select Edit Mode and display up to 15 lines of the
program in memory, beginning with the first line. If no
program exists, the display is cleared and the cursor is
positioned to the upper left corner of the display.

EDIT 1000 = Select Edit Mode and display up to 15 lines of the
program in memory, beginning with the first line
greater than 999. If no program exists or the last line
number is less than 1000, the display is cleared and the
last line of the program is displayed on the top of the
screen.

EDIT
Immediate Mode Command

Edit Mode Keys

Some of the keys on the programmer keyboard have special functions
that are enabled or modified in Edit Mode. Any key, if held down,
performs its function repeatedly. The figure below describes the special
functions of the Edit Mode Keys.

NOTE
Any edit command that will move the cursor from the current
line or (CTRL)/C is not accepted if the line does not pass a
check for correct syntax. A blinking error message (e.g.:
“Mismatched Quotes”) will be displayed until the line is
corrected.

ACTION

the left margin.

KEY

Move one position left. Ignored if already at

EE] Move one position right. Ignored if already at
the right end of the line.

Move one position up. If the line above is
shorter than the current column position,
move left to the end of that line. Scroll down
one line if the cursor is on the top line of the
display, and another line is available. This
action will not be done if the line does not pass
a syntax check.

; Move one position down. If the line below is
shorter than the current column position,

| move left to the end of that line. Scroll up one
line if the cursor is on the bottom line of the
display, and another line is available. This
action will not be done if the line does not pass
a syntax check.

EDIT
Immediate Mode Command

KEY ACTION

DEL
LINE

DEL
CHAR

DELETE

\

CTRL

BACK

SPACE

Delete from the cursor position to the end of
the line. If the cursor is at the left margin, delete
the entire line and move the rest of the program
up one line to fill the deletion.

Delete the character at the cursor position and
move the remaining characters left one
position to fill the deletion. When the key is
held down for repeat, the portion of the line to
the right of the cursor will progressively
disappear.

Delete the character to the left of the cursor
position and move the remaining characters
left one position to fill the deletion. When the
key is held down for repeat, the portion of the
line to the left of the cursor will progressively
disappear as the portion to the right moves to
the left margin. This key function 1s also
available in Immediate Mode.

Delete the current line.

Move to the left margin.

EDIT
Immediate Mode Command

KEY ACTION

NE : .
Move to the right end of the line.

When the cursor 1s at the right end of the line,
open a new empty line below, and move to its
left margin.

RETURN When the cursor is not at the right end of the
line, break the line into two lines. The cursor
position identifies the first character of the new
(second) line.

This action will not be done if the portion of the
line that was to the left of the cursor does not
pass a syntax check.

Character Keys Insert characters at the current cursor position.
Fach character entry moves the cursor right
one position along with any text to the right of
the cursor. Entries that would result in a line
length greater than 79 characters are not
accepted, and produce a beep sound.

+ Return to Immediate Mode.

EDIT
Immediate Mode Command

Additional Editor Features

It is not necessary to insert a line in correct sequence. Regardless of the
order in which program lines are entered, the editor will store them in
memory in the correct line number sequence. When the cursor is
instructed to move from a line, the editor checks for some syntax
errors, such as omitting a quote, parenthesis, or line number. If a line
does not pass the check, an error message is displayed and the cursor is
not allowed to leave the line until the error is corrected.

If a program line is renumbered by deleting all or part of its line
number and then entering a new line number, a duplicate line will
result. One line will have the original line number, the other line will
have the new line number. This may be seen by scrolling the modified
line on and off the display, in EDIT mode.

If (CTRL) /C is entered when the current line will not pass the syntax
check, the blinking error message is displayed in Immediate Mode and
the line is not stored in memory.

There are many errors the editor will not detect, such as forgetting to
dimension an array or specifying GOTO with a nonexistent line
number. Such errors will be detected only when the program is run.

The cursor will not scroll above the lowest line number nor below the
highest line number in the program. If the cursor is in the middle of the
program and a new last line is entered at that position, the cursor will
not scroll down past that line. To correct this condition:

O The cursor may be scrolled in the opposite direction until the line
entered out of sequence disappears from the display. Reverse scroll
direction again and the line will then be in proper sequence.

O Type ‘CTRL)/C, and then type EDIT, followed by the line
number that needed editing. Lines will then be displayed in correct
sequence, allowing access to all lines.

EDIT
Immediate Mode Command

The editor stores program lines in memory with the line number shown
on the display. If any other program line has the same line number as
that shown on the display, it is replaced with the contents of the line
shown on the display. This feature can be used to duplicate program
lines by changing only the line number and moving the cursor off the
line. The line with the previous line number is not deleted by this
process. The display, however, will show only the most recent line
number entered. To see both resulting lines, scroll the entered line off
the display and back on.

When a line is scrolled off the display with the same line number as a
line previously stored, the original line in memory will be replaced by
the one which is scrolled off. In order to prevent this from occurring,
assign each line a unique line number.

ENABLE ES
Statement

Usage

ENABLE

Syntax Diagram

ENABLE ENABLE (\. .
L y

Description

The ENABLE statement re-enables all interrupts previously turned off
by means of the DISABLE statement.

ENABLE CMDFILEES
Statement

Usage

ENABLE CMDFILE

Syntax Diagram

ENABLE (™. ff \ ~
CMDFILE ENABLE _ CMOFILE _J

Description

The ENABLE CMDFILE statement re-enables command file
execution after a previous DISABLE CMDFILE statement.

Examples

The ENABLE CMDFILE statement “undoes” the effect of DISABLE
CMDFILE. For example, to retrieve a line of keyboard input whether
Or not a command file is active may be done as follows:

10 print “What is the name of the dump device";
20 disable cmdfile
30 input line dv$%
40 enable cmdfile

To stop command file execution, a program may use the following
scheme:

10 !
20 Error exit section -- disable command file and exit.

40 print "An "; er$i “error has occurred."
SO disable cmdfile
60 exit

Remarks

The DISABLE CMDFILE statement ts the logical complement of the
ENABLE CMDFILE statement.

END Es
Statement

Usage

END

Syntax Diagram

END END >

Description

The END statement is used to indicate the absolute end or the end of

the main body of a program.

O Subroutine code may follow the END statement.

O Code following END will not be executed unless it has been
accessed bya GOSUB or GOTO (orimplied GOTO via IF... THEN
with a line number).

O END 1s optional.

O Executing the END statement causes an immediate return to the
Immediate mode.

Example

The suggested use of this statement is to designate the physical end of
your program:

32767 END

EXECES
Statement

Usage

EXEC filename$ [WITH command$]

Syntax Diagram

—-} files cmd D

la —~, SY8:]
EXEC “(exec —)-———

— file$.fd2 on

L with =} {strings |

Description

The EXEC statement permits a BASIC program to chain to a machine
language program or to a command (*.CMD?”’) file.

O The EXEC statement ts similar to the RUN statement (in that the
program that executes the statement is terminated immediately).

O File$ is the name of the the executable or command file to be

executed.

O The optional WITH clause specifies a new command line to be
passed to the new program.

O The string command§$ will act as though it had been entered
following the file name in a command to FDOS.

O If no device is specified, the device “SY0:” will be assumed.

O The only extensions permitted with this statement are “.CMD” and
“FD2”. If no extension is specified, a file with the extension
“CMD” will be searched for first; if no “.CMD” file is found, the
BASIC system will then look for a “.FD2”File with that name.

EXEC
Statement

O

Example

The command line argument plus the length of the file name (less
any “.CMD” or “.FD2” extension) may not exceed 80 characters.
This limitation is imposed by FDOS. The actual command line
passed to the EXEC’ed program will be file$ (without any device
name or extension), and, if commandS$ is specified, a space and the
string given as command$. The entire line is terminated by a
carriage return character.

BASIC STATEMENT FDOS EQUIVALENT

exec "edit" with “test. bas” syO: edit test.bas

exec "mfi1: fup” mfil: fup

exec "mfO: fup” mfO: fup

exec "edit. fd2" with “foo” syO: edit foo

EXIT Es
Statement

Usage

EXIT

Syntax Diagram

\ EXIT -

Description

The EXIT statement causes an immediate termination of program
execution. The controller then loads and executes the program
specified in the SET SHELL statement or FDOS.

The EXIT statement may also be given in the Immediate Mode. The
EXIT statement, when given in the Immediate Mode, will ask the user

if he really wants to exit, before actually exiting, if the program
currently in main memory has been edited but not SAVED or
RESAVE’d (SAVEL or RESAVEL, also).

Example

‘) (.
Ready
old “test”

Ready
S print “hello”
exit
Program has been changed but not saved. Really EXIT? n

EXP()Es
Function

Format

EXP (numeric expression)

Description

The EXP function returns a floating-point number equal to the result
of raising the number e to the power equal to the given input value.

O EXP has a floating-point number as an argument, and returns a
floating-point number.

O The value used by the Instrument Controller for e is
2.71828 182845905

| The domain of input values is negative numbers, zero, and positive
numbers up to and including 708. Error 605 results when an input
of 709 or greater is used.

O Input values of -709 or less produce a result of 0.

Example

1010 PRINT EXP(21) ' Display eA21

FLENES
System Variable

Description

FLEN is a system variable set to the length, in blocks, of the last file

opened on a file-structured device.

O FLEN may be used with OPEN to check the number of blocks in
an open file before attempting to use a new file.

O One or more open files may need to be closed and perhaps deleted
(see KILL) before opening a new file if the disk memory available is
not sufficient to hold all opened files in contiguous areas.

Example

In the following example, channel 1 1s closed only if the last file opened
has a length greater than five blocks. This may be done to limit open
files and conserve disk space.

IF FLEN)3% THEN CLOSE 1%

FLOATING-POINT Es
Variables

Syntax Diagram

float

constant

digit

iis
> ae al

float variable ——-[etter JE > . 7

We

Description

Floating-point data has the following characteristics:

0

0

Decimal exponent range: +308 to —308.

Exact range: 2.2225074E-308 to 3.595386E+308.

Resolution: 15 decimal digits.

Inexactness in the numeric representation.

Memory requirement (per data item): 8 bytes.

Represented internally in binary in accordance with proposed
standard “IEEE Floating-Point Arithmetic for Microprocessors”.
Copies of this standard are available from The Institute of
Electrical and Electronic Engineers, 345 East 47th Street, New
York, New York, 10017.

FLOATING-POINT
Variables

Unless modified by a PRINT USING statement, floating-point
data is displayed with a leading space or sign and a trailing space. It
is printed out to seven significant digits. A value from .1 to 9999999
inclusive is printed out directly. A number less than .1 is printed out
without E notation if all of its significant digits can be printed. All
other values are printed in E notation (+0.dxxxxxxE+tyyy), where
d is a non-zero digit, x is any digit, and trailing zeros are dropped.

NOTE
Floating-point numbers may be displayed with up to 15
significant digits by using the PRINT USING Statement. Use a
format specifier that represents the number of significant digits
that you want displayed.

Floating-Point Constants

Floating-point constants, often called real numbers, are

represented in a program in decimal or possibly scientific notation.
The syntax diagram illustrates the proper representation of
floating-point numbers. A number in scientific notation, with an
exponent following “E”, represents a number multiplied by a
power of 10. Examples of floating-point constants are:

005
6354.33
-134.7
-12E2 Represents —1200
0.13E-05 Represents .0000013
0.1E6 Represents 100000
—-.1E-400 Floating-point number outside the legal range.

Returns error 602.

Floating-Point Variables

Floating-point variables are designated by a letter followed by an
optional second character. The second character can bea letter ora
number. The following variable names are not allowed, since they
are keywords of Fluke BASIC: AS, FN, IF, LN, ON, OR, PI, TO.

FOR and NEXT ES
Statements

Usage

FOR {index} = {begin} TO {end} [STEP {step}]
program steps
more program steps
etc...

NEXT {index}

Syntax Diagram
(Start)

FOR —~(FoR =| numeric d eC] [rumen expression

(end)

(step - +1)
U__. numeric expression i -

‘L STEP numeric expression 4

NEXT next) —+{ numeric i¢ FR -

Description

The FOR statement sets up a loop which repeatedly executes the
statements contained between the FOR statement and the NEXT
statement.

O There must not be a FOR without a NEXT, ora NEXT without a
FOR.

O The FOR statement specifies the number of times the loop is to be
repeated by specifying limit points and step increment of the index.

O If no step increment is specified, step +1 is assumed.

O The index must be numeric.

O The index must not be an array element.

O Whena FOR statement is initially encountered, the index value is
compared to the limit. If the index is past the limit, the FOR-
NEXT loop is not executed.

O The NEXT statement compares the index with the limit after
incrementing it.

FOR and NEXT
Statements

O When two or more FOR-NEXT loops are nested, each FOR
statement must have a corresponding NEXT statement.
Furthermore, the innermost FOR statement must match the

innermost NEXT statement, and so on, to the outermost FOR-

NEXT statement pair.

Examples

The following examples compare two different ways of constructing
program loops, using the FOR - NEXT, and using IF - GOTO. Note
the different comparisons at line 100, depending on the sign of the
STEP.

FOR - NEXT

10 FOR I = 1 TO -3 STEP

20! Other statements
30!
100 NEXT I
110 ! Other statements

10 FOR J = 10 TO 100 STEP 20

20' Other statements
30!
100 NEXT J
110 ! Other statements

IF - GOTO

10 I = 1
15 IF I ¢ ¢-3) GOTO 110
206i Other statements

100 I=I + (-2) \ GOTO 20
110 ! Other statements

10 J = 10
15 IF Jv >) 100 GOTO 110
20; Other statements

100 J=Jv + 20 \ GOTO 20
110 !' Other statements

The following example loops five times, and then prints the index
value. Note that the index has incremented to six.

10 FOR I%"1% TQ 9A
20 PRINT I[%
30
40

NEXT I%
PRINT "Jndex Value is"i IZ

The display will show:

! Increments by 1 thro
' Bisplay value of I% vah toop
' Repeat loop until F=5%

x
3

(—

/

Index value is 6

Ready

FOR and NEXT
Statements

The following example illustrates what happens when the index never
equals the final value.

10 FOR AZ = CX% TO D% STEP 2%
20 PRINT A%
30 NEXT AZ
40 REM

The display will show:

CZ = 3 and DZ = 10
Display value of Az
Increments AZ by
Loops until AX = 10

ya
(=

Le 4)
If line 10 used C and D rather than C% and D%, and if C= .6and D=
10.6, the display would show:

a
—

Nee

>)

Na

because real values are rounded before assignment to an integer
variable.

FOR and NEXT
Statements

The following example illustrates the nesting of two FOR - NEXT
loops. Note that one blank line occurs between first and second display
lines. This happens because the last value displayed in the line above
did not have 16 columns available, causing a carriage return-line feed
in the display (See PRINT command).

10 FOR I% = 1% TO 4%
20 FOR JX = 1% TO 35% STEP 1% J
30 PRINT I%:; J%, ‘ Print values and then tab
40 REM ' to next column
50 NEXT JX
60 PRINT ' Move to the next line
7O NEXT I% I
80 REM INDENTING SHOWN FOR CLARITY

The display will show:

- >
1 1 1 2 1 3 1 4 i 9

U
N
)

p
a
o

ue
One

U
W
A
)

Ub
lw
W

L »
= y,
The following example decrements the index by -.1.

10 FOR I = 1 70 0.3 STEP -.1
20 PRINT 1;
30 NEXT I

The display will show:

a Ready >)
run

1 0.9 0.8 0.7 O.6 O.S5

Ready

FOR and NEXT
Statements

The following example shows what happens when a GOTO statement
branches out of a FOR-NEXT loop and returns to the loop beginning.

10 for x = 1 to 100000
20 y = 1 +
30 prin 4
40 goto
90 next x
60 end

Which results in the following display:

left out for brevity

'Ovf error O at line 20

Ready

= Ss

GOSUBES
Statement

Usage

GOSUB {linenumber}

Syntax Diagram

Go suB— GOSUB -| line no. -_-——>

Description

The GOSUB statement transfers control to the beginning of a
subroutine. The RETURN statement terminates the subroutine and
returns control back to the statement following the GOSUB.

O BASIC allows nested subroutines.

O Within a subroutine, a GOSUB may call another or the same
subroutine.

oO AGOTO within a subroutine should not pass control permanently
to a program segment outside of the context of the subroutine.

O Any valid BASIC statements may be used in the body of a
subroutine. Available memory is the only limit to the length of
subroutines.

Example

In the following example the subroutine displays the operator’s
options and obtains his or her choices. Control is transferred to the
subroutine at line 180. The display subroutine calls another subroutine
(line 1300) to obtain identification of the selected choice (line 1080).
When the RETURN statement at line 1390 is executed, control is

transferred to line 1090. Three subroutine options are illustrated, each
with different interpretations for GOSUB and RETURN.

The following points should be noted about this example:

O GOTO 31000 causes termination of the test without returning from
the subroutine. This normally does not represent good program
structure.

GOSUB
Statment

O ELSE 1500 causes control to be transferred to lines 1500 - 1590

which can be considered an extended part of subroutine 1000. The
RETURN at line 1590 will cause line 190 to be executed next.

RETURN at line 1090 will cause immediate termination of the

subroutine 1000. Line 190 is executed next.

1 ! Other statements
180 SOSUB 1000 ' Get operator choice
190 !' Other statements
999 STOP
1000 REM -- SUBROUTINE -- Display and Execute Operator Options
1010 PRINT "Enter choice by pressing Gisplay. ;
1020 PRINT\PRINT ' Skip 2 lines
1030 NT " CContinue test)" ' KRA = 1 or 2
1040 PRINT\PRINT\PRINT i i i

ust Instrument)" ’
1060 PRINT\PRINT\PRINT ' Skip 3 lines

PRINT " CTerminate TestJ”
1080 GOSUB 1300 ' Get choice, KRZ
1090 IF KRZ)2% THEN IF KARZ)4% GOTO 31000 ELSE 1500 ELSE RETURN
1300 REM --— SUBROUTINE -- Get response from Keyboard
1310 !' On exit KRAZ will be the row touched (from 1 to 6)
1320 ' KC% will be the column touched (from 1 to 10)
1330 ' Other statements
1390 RETURN
1500 REM -- SUBROUTINE ~— Adjust Instruments
1510 !' Other statements
1590 RETURN
31000 REM -- Termination Routine
31010 ' Place instruments in standby state and save test results
31020 ! Other statements
32767 END

GOTORS
Statement

Usage

GOTO {linenumber}

Syntax Diagram

GOTO GOTO —+| line no. - _,

Description

The GOTO statement causes a program to unconditionally branch to
the specified line number.

O GOTO must not be used to branch out of a FOR-NEXT loop. A
user storage overflow (error 0) will eventually result.

O A GOTO statement may be used to begin running a program,
starting with any line number in the program. When a GOTO
statement is used to run a program, many of the normalactions of a

O RUN statement are not performed, such as reseting variables and
random numbers. This may be useful in program debugging.

Example

The following program example illustrates one use of the GOTO
statement. The GOTO statement at line 80 causes line 30 to be executed
next:

10 REM -- Main Program Routine
20 REM

' Set-up Sequences
' Test #1
' Test #2
' Test #3
! Test #4
' Start Again

Ui

Oo

oO
 O W Cc

w Oo

O Oo
 ©)

RQ COTA 3a

Remarks

Compare the GOTO statement with the GOSUB statement.

IF-GOTORS
IF-THEN

IF-THEN-ELSE
Statement

Usage

IF {condition} GOTO {linenumber}
IF {condition} THEN {BASIC statement}
IF {condition} THEN {BASIC statement} ELSE {BASIC statement}

Syntax Diagram

(condition)
IF GOTO).
iF THEN Cote GOTO line no. ae

py THEN > “ Statement ry

| (next line if condition false)

Le _ jine no. -}—_»”

a

\

Description

The IF statement evaluates a condition represented by an expression.
The resulting course of action depends on the result of that evaluation
and the structure of the statement.

NOTE
Relational expressions such as A=B, A%<3%, AS$>=B3

evaluate as -1 if true and 0 if false.

O The conditional expression must result in a value representable as
an integer.

IF-THEN-ELSE
Statement

O A non-zero result is TRUE. A zero result is FALSE.

O Control passes to the line number following GOTO, or to the
statement or line number following THEN, if the result is TRUE.

O Control passes to the next program line if the result is FALSE and
ELSE is not specified.

O Control passes to the statement or line number following ELSE if
the result is FALSE and ELSE 1s specified.

O A line number must follow GOTO, if it is used.

O Aline number oravalid BASIC statement must follow THEN, if it

is used.

O Multiple statements, separated by the“\” character, may be used
after THEN, and after ELSE. Each statement will be done in

sequence only if control is passed to that portion of the IF
statement as defined above.

Examples

The following examples illustrate the results of various uses of the IF
statement:

STATEMENT RESULTS

IF A THEN 100 If A is non-zero, go to line
100. If A is zero go to the
next line.

IF A>B THEN A=B If A is greater than B, set
A equal to B. Then go to
the next line.

IF NOT A% GOTO 500 If A% equals -1 (logical
true), ignore this state-
ment and go to the next
line. Otherwise, go to line
500.

IF A%+B% GOTO 500

IF A%+B% THEN A=B*5B=10

IF A% OR B% GOTO 500

IF A+B=C THEN PRINT C

IF (<A) AND (A<6) THEN 450

IF-THEN-ELSE
Statement

If A%+B% is non-zero

(A% not equal to —B%),

go to line 500. Otherwise
go to the next line.

If A%+B% is non-zero

(A% not equal to —B%),
assign B*5 to A, and

assign 10 to B. Then go to
the next line.

If either A% or B%is non-

zero, go to line 500.
Otherwise go to the next
line.

If A+B equals C, display
value of C. Then go to the
next line.

If the value of A lies
within the open interval
(1,6) transfer control to
line 450.

The following program example shows some common uses of the IF
statement. The relational expression in line 140 uses the AND operator
to ensure that both conditions are true before transferring control to
line 5000.

1
AND (SN% ¢ 11500%) GOTO 5000

‘Print prompt

‘Equivalent to IF...-90TO 110

100 REM -- Determine Test to
110 PRINT “ENTER UNIT SERIAL NUMBER" j
120 INPUT SNZ%
130 IF SN%) 123563% THEN 110
140 IF (11000% (= SNZ)
150 REM -- Run Standard Test
160 ' Other statements
5000 REM -- Run Test for ‘Special’
5010 ' Other statements

IF-THEN-ELSE
Statement

The following example shows how the IF statement acts on various
values. Examining the results will aid in understanding the IF
statement. Note that line 100 transfers control back to line 30 except
when A% is 0.

10 REM -- lustration with neeaer
20 PRINT “INTEGER OALUES: “ONE” S Con TODD", "DIVISIBLE BY FOUR"
GO INPUT A%
40 PRINT AZ, NOT AZ, ‘Print values and tab
30 IF A“ AND 1% THEN PRINT ‘YES; 'Is AX odd?
6O PRINT, 'Go to next tab on display
70 IF A%” AND 3% THEN PRINT; \ GOTO 90 'Is AZ divisible
80 PRINT ‘YES’; 'b four?
90 PRINT ‘Line Feed
100 IF AZ THEN 30
110 END

Results:

INTEGER VALUE ONES COMPL. gop DIVISIBLE BY FOUR

4 -5 YES
1568 -1569 YES
9 -10 YES

-3468 367 YES
-1 QO YES
-4 3 YES

0) -1 YES

The following example includes the ELSE option. When A 1s less than
5, B will be set to FNS(A) and the statements following line 200 will be
executed until the STOP statement on line 290 is encountered. When A
is greater than or equal to 5, B will be set to FNT(A) and the statements
following Line 300 will be executed.

10 ' Other statements
100 IF A ¢ 3 THEN 300 ELSE 300
200 B = FNS(A) ' Use ‘S’ function
210 ' Other statements
290 STOP
300 B = FNTCA) ' Use ’°T’ function
310 ! Other statements

The following example shows the ELSE option followed directly by
statements. When A is less than B, J is set to B raised to the power A,
and T is set to 0. When A is greater than or equal to B, J is set to the
value of A raised to the power B, and T is set to 1.

IF A <B THEN J = BA\T =

IF-THEN-ELSE
Statement

The following example illustrates nested IF-THEN-ELSE statements.
The ELSE is always associated with the closest IF and THEN
statement to the left that is not already associated with another ELSE,
as indicated by the diagram below the statement. (Note: This statement
computes M = minimum of A, B, or C.

IF A<B THEN IF A<C THEN M=A ELSE M=C ELSE IF B<C
THEN M=B ELSE M=C

The logic is as follows:

If A is less than B, and then if A 1s less than C, A is the minimum (M).

If A is less than B, and then if A 1s greater than or equal to C, C is the
minimum (M).

If A is greater than or equal to B, and then if Bis less than C, B is the
minimum (M).

If A is greater than or equal to B, and then if B is greater than or equal
to C, C is the minimum (M).

c
n

INCHAR ()
Function

Format

INCHAR(channel%)

Description

The INCHAR() function reads a single character from any open
channel or from the keyboard. Channel% is an integer which specifies
the channel from which the next character is desired. If the channel
number is zero, the next character from the keyboard will be returned.

Character values are returned by INCHAR() as integers, and will have
have a value between 0 and 255 (0 and 127 when reading characters
from the keyboard).

Use the INCHAR() function when input must be processed on a per-
character basis or when data from the keyboard 1s being entered using
NOECHO mode (see the SET NOECHO statement).

O A BASIC program using INCHAR(0%) to read data from the
keyboard must be prepared to process line editing ((CTRL)/U
and DELETE) characters as required by the application, since the
Operating System may not do so during single-character input.

O Noend of file character processing is performed by the INCHAR()
function. When reading an ASCII file, the BASIC program must
be prepared to process end of file (CHR$(26%)) characters
properly.

Example

The example shows a short program segment which gets a single
integer value (C%) from channel 1. Line 200 checks to see if the
character is the ASCII End-of-File character 26 and branches off toa

- simple message at line 500 if EOF is found.

100 CX@INCHAR (1%) ' Fetch e single character from CH. 1
200 IF CX%=#26% THEN 300 ' Pick of Ff End-of-File character
210 PRINT C% ' Show the value

500 PRINT “End of file" ! Print EOF message
910 STOP

INCOUNT() a
Function

Format

INCOUNT(channel%)

Description

The INCOUNT function determines the number of input characters
and/or lines available from a serial device (keyboard or RS-232 port).

Channel% is the channel number for which the number of characters

available is desired. Channel 0% is the keyboard.

The integer values returned by INCOUNT() are:

0 No characters available.
>0 Number of characters and/or lines available.

Zero will always be returned for an IEEE-488 channel.

An I/O error 308 (channel not open) will be reported if the channel
specified is not open (the keyboard — channel 0% -- is always open). An
1/O error 322 (illegal operation for device type) will be reported if the
device attached to the channel is not a serial (RS-232 or keyboard)
device.

The result returned for the keyboard channel will depend upon the
current mode.

O If the keyboard is in NOECHO mode (see the SET NOECHO
statement), results returned by INCOUNT(0%) will be reported in
terms of characters available.

O Ifthe keyboard isin ECHO mode (see the SET ECHO statement),
the result returned by INCOUNT(0%) will be reported in terms of
lines available.

O A line isa string of text up to and including an end of line character,
CHR$(13).

INCOUNT()
Function

The result for RS-232 channels will be returned as a combined line and

character count:

nr of chars | nr of lines |

high-byte low-byte

An INPUT statement will be blocked until the “number of lines” value

returned by INCOUNT() is nonzero.

An INCHAR function call waits until the “number of characters”

value returned by INCOUNT is nonzero.

O Data from RS-232 channels as read by INPUT will be blocked
until the number of lines available is nonzero.

O An INCHAR() function is blocked only until the number of
characters available is nonzero (the number of lines does not
matter).

Example

This example shows how the INCOUNT function can be used to poll
an RS-232 port for input before using an INPUT statement to retreive
the data. If an INPUT statement had been used without the
INCOUNT function, then the program would have been hung up at
that point waiting for data.

100 C%Z=INCOUNT (1%) port 1 for available input
200 IF C% «<> O%Z AND 255% THEN COSUB 1000
201 ' Branch to input routine if data’s
202 ' available -- otherwise continue.

1000 neues date from the port when it’s ready.
1010 INPU D%
1020 RETURN

INCOUNT()
Function

The following example is a program segment which shows how to
isolate the upper and lower bytes from the integer result.

200 ! One way to isolate high and low bytes from one integer
2i0 |! if you need them
220 OPEN "KBO:" AS FILE 1% !
230 SET NOECHO
240 IN% = INCOUNT(17%)
290 LZ = INZ AND 255% '
260 C% = LSHCINA’, —-8%)

Take input from keuboard
Disable echo to screen
INA = input char count
L% # lines available
Cz # chars available ...

Line 250 uses a bit mask to isolate the low-order byte of the value
returned by INCOUNT(), which is the available line count. Line 260
uses a logical right shift to isolate the high-order byte returned by
INCOUNT(), which is the number of characters available.

INIT Ee
Statement

Usage

INIT

Syntax Diagram

INITialize INIT —e— ~
PORT numeric expression a4

Description

The INIT (INITialize) statement initializes the specified port (port 0),
or all available IEEE-488 ports if not specified. This statement may be
used only by the system controller (SYC function).

O INIT places the bus in an idle state.

O INIT sends REN (Remote Enable), IFC (Interface Clear), UNL
(Unlisten), UNT (Untalk), and PPU (Parallel POLL Unconfigure)
messages.

O REN enables remote programming of instruments.

O IFC unaddresses all listeners and talkers (places all talker and
listener functions in an idle state) and terminates all handshakes
(places source and acceptor handshakes in either an idle or wait
state). IFC also causes any other Controller-In-Charge (CIC) to
give up control of the IEEE-488 bus.

O UNL unlistens any listeners (removes instruments from the
LISTEN state).

O UNT untalks any talkers (removes instruments from TALK state).

O PPU places devices with remote parallel poll programming
capability into idle state. Such devices may be reconfigured for
parallel poll with the CONFIG statement described in this section.

O INIT, without a port specified, initializes all available ports.

INIT
Statement

O To initialize only one port, the word PORT must be used, followed
by an expression or number that evaluates to the desired port
number (0 or 1).

Example

The following examples illustrate uses of the INIT statement:

STATEMENT MEANING

INIT Initialize all IEEE-488 interfaces.

INIT PORT 1 Initialize all instruments on the optional
IEEE-488 port 1.

INIT PORT A% Initialize all instruments on the IEEE-488

port identified by the value of A% (must be 0

or 1).

INPUT Ep
Statement

Usage

INPUT

Syntax Diagram

(data items to be comma-separated)

INPUT INPUT

LINE |

| iconsole input)

\ /

(Port) expression wbyte clause =

input variable list »s

Description

The INPUT statement assigns inputs from devices (either the keyboard
or RS-232 devices) or files to variables. This discussion describes
keyboard inputs only. A separate description of the INPUT statement
as it is used for assigning inputs from external devices follows.

O One or more variables, separated by commas, must follow the
INPUT statement.

O INPUT displays a ? character, followed by a space, and halts the
program until data is entered and RETURN is pressed.

O If RETURN is pressed without entering anything else, numeric
variables are assigned 0 and strings are assigned a null string.

O INPUT assigns keyboard entries, separated by commas, to the
variables in sequential order.

O The entry type must match the variable type. String or floating-
point data cannot be assigned to an integer variable, for example.

INPUT
Statement

O If an error occurs during assignment, a warning message will be
displayed on the screen and a new prompt character, “?”, will be
given. All variables must then be entered again.

O Strings may be entered in quoted or unquoted form.

O An unquoted string may not contain a comma or begin with a
quote.

O Leading spaces in an unquoted string will be ignored.

O A string must be enclosed with quotes to contain commas or
leading spaces.

O Internal quotes must be different from enclosing quotes.

Example

The following examples illustrate common uses of INPUT.

INPUT A$ Displays ?. Assigns the entry to A$.

INPUT B%, AS Displays ?. Assigns the entries (e.g., 1776,
GEORGE) as follows: B% = 1776 and A$ =
“GEORGE”.

In the following example the program will halt until the RETURN key
is pressed. It then will display your entry and request another.

10 REM -—- Demonstrate characteristics of string input
20 '! Error 801 is ‘Too much data entered’
20 : Error 803 is ‘Illegal character in input’

100 PRINT ‘INPUT A STRING ’; ' Get the string
10 INPUT A$ i

120 PRINT ‘THE STRING IS: ‘’3 A$
t PRINT OO NT 'Skip two lines

Running this program gives results as follows:

INPUT
Statement

a

(INPUT A_ STRING? EXAMPLE STRING ONE
THE STRING IS: EXAMPLE STRING ONE

INPUT A STRING? Inserting a,

7Input error 801 at line 110
? Placing the °’.’ in quotes won’t help

7Input error 801 at line 110
? ‘Se piace the entire string with a,
THE ST

INPUT A STRING? ° Will also give an error

5 input error 803 at line 110
7? ‘The gugtes must match’
THE STRING IS: The quotes must match

INPUT A STRING?

gives an error

in quotes’ |
ING IS: So place the entire string with a .in quotes

~ \

J an y,

The example program below requires three inputs, integer, floating
point, and string, separated by commas.

300 REM -—- Enter test parameters
310 PRINT "ENTER TEST ER, NOMINAL VALUE. UNITS”;
320 I T%, NV, U
530 IF TX @OTO 510

Running this program gives results as follows:

! Equivalent to IF Tx< >0 GOTO 310

~ r
(—_ ™

ENTER TEST NUMBER, NOMINAL VALUE. UNITS? 101, 2.222, mV
ENTER TEST NUMBER, NOMINAL VALUE, UNITS? 104. 8.888, mV
ENTER TEST NUMBER, NOMINAL VALUE, UNITS? 201, 1,¥V
ENTER TEST NUMBER, NOMINAL VALUE, UNITS? 203, 100,V
ENTER TEST NUMBER, NOMINAL VALUE, UNITS? 301, 100, mA
ENTER TEST NUMBER, NOMINAL VALUE, UNITS? 302, 1,A

7,

INPUT #n im
Statement

Usage

INPUT {# channel}, {variable list}

Syntax Diagram

(data items to be comma-separated)

INPUT INPUT :

LINE |

| (console input)

1
>] numeric expression = [/™™ ’

2 A ae
ae

expression —_f wbyte clause

L4 input variable ist

device

Description

INPUT is described here for data input from a system level device
through a previously opened channel. INPUT may also be used for
direct keyboard input, or for input from instruments on the IEEE-488-
1978 buses. These applications of INPUT are described individually
elsewhere in this manual.

O The optional LINE specification is discussed in the entry for the
INPUT LINE #n statement, elsewhere in this section.

O The numeric expression following INPUT or INPUT LINE selects
a previously opened channel. Refer to the entry for the OPEN
statement.

O The variables that will store the data input are listed, separated by a
comma.

O The input data may include integer, floating-point, and string

expressions, as well as subranges of arrays and virtual arrays. Refer
to Section 6 of this manual set for a discussion of array subranges.

1

INPUT#n
Statement

0 When the open channel is from a serial (RS-323-C) port, incoming
Carriage Return and Line Feed characters are deleted. A Carriage
Return, Line Feed sequence is appended after each occurrence of
the line terminator character defined by the SET Utility program.
If Line Feed or Carriage Return 1s the line terminator, this process
does not duplicate it.

QO When the open channel is from a serial (RS-232-C) port, the End-
of-File character defined by the SET Utility program is deleted,
and CTRL/Z , CHR§(26), is put in its place.

O Input to a two-dimensional array subrange is assigned in the “row-
major” manner described in the PRINT discussion in this section.
Columns (second dimension) increment most often, and rows (first
dimension) increment least often.

O Input to a two-dimensional array subrange must be ona single line
separated by commas.

O Input data must be specified in a line of not more than 80
characters when using this method to input values to an array.

O BASIC does not senda prompt character, “?”, when input is froma
channel.

Examples

In the following example a sequential input channel from the keyboard
is opened. When lines 110 and 120 are executed, the message displayed
is the string at line 110. This technique allows an INPUT statement,
such as line 120, to be used without the usual “?” prompt.

10 OPEN “KBO:“ AS OLD FILE 2
20 : Other statements

110 PRINT “ENTER THE SERIAL NO: "3
120 INPUT #2, SNS
130 ' Other statenents

INPUT #n
Statement

In the following example, assume a device is attached to RS-232-C
Port | which can print data sent to it and send data to the Instrument
Controller. Lines 20 and 30 assign K BI: simultaneously for input and
output, using separate channels. This program can send prompts on
the output channel (line 100) and receive data on the input channel
(line 120). An example of such a device is a printing computer terminal.
Note that a “?” is not sent at line 100. This simultaneous assignment for
input and output is not possible for a sequential channel to a file.

REM -- Demonstrate Input and Output From Same Device
20 OPEN ‘KBi: ’ AS OLD FILE 1 ' Input channel i
30 OPEN ‘KB1: ° AS NEW FILE 2 ' Output channel 2
a0 : Other statements

100 PRINT #2, AS ' Give prompt
110 INPUT #1, ACO..3S) ' Get 6 values
120 ! Other statements

INPUT Ezy
Statement

Usage

INPUT {variable}

Syntax Diagram

(data items to be comma-separated)
INPUT INPUT :

LINE

(console input)

ae | # numenc expression -

evice

(Port) expression wbyte clause —

input variable list p=

Description

The INPUT @ statement is used to receive data from instruments on
the IEEE-488 Bus.

O The only syntax difference in the INPUT statement for IEEE-488
Bus instruments is the use of a device specification instead of a
channel number.

O Only one device number may be specified.

O Input data items must be separated by commas.

O Input data is terminated by a Line Feed character or an alternate
character specified by a previous TERM statement. The EOI Bus
line may also be used by the transmitting instrument to terminate
input.

INPUT
Statement

O The instrument is addressed as a talker prior to reading data.

O The INPUT statement can be structured so that the Instrument
Controller will not address an instrument that has been previously
addressed. This will increase the speed of data input. INPUT
assumes there is a talker already on the bus when the @ character
follows INPUT without a device specified. Incoming bus data is
then simply assigned directly to the specified variables.

Example

The following example addresses device 2 on port | as a talker, and
then reads four floating-point (ASCII) values. The first three values
should be terminated by commas, and the fourth (last) value should
have a Line Feed as a terminator, unless a TERM statement has

defined a different terminator character. The EOI line may also be used
to terminate the last input.

2470 INPUT @ 102, A(1%.. 4%)

following example uses a TERM statement to limit the terminator of
the string A$ to the EOI Bus line. This will allow the instrument at
device number 10 to transmit binary data or status information.

4100 REM -- Get Readings from Instrument
4110 TERM ' Limit terminator to EOI
4120 PRINT @ 10, "ASB?" ! Set up instrument
4130 INPUT @ 10, AS ' Get data
4140 ‘ other statements

The next example shows how INPUT can be used without a specific
device designated.

3000 REM ~-- Get series of readings
9010 INPUT @ 4, A ! Get dummy readings
3020 FOR I#1 TO 100
9030 INPUT @, RC ' Get 100 readings
3040 NEXT I ' from same device
93030 ' other statements

INPUT LINE GS
Statement

Usage

INPUT LINE{variable}

Syntax Diagram

idata items to be comma-separated)

INPUT INPUT

LINE

(console input)

i LED al numeric expression | “<>

ae device |

L PORT expression ~ f 7 a nd \

_{ input variable list == \ pul v

Description

The optional LINE specification of the INPUT statement changes the
assignment process in the following ways:

0 String variables may contain any characters except RETURN,
Line Feed, (CTRL)/Z, and system control codes
(e.g.: (CTRL)/P).

O All characters entered, including leading spaces, quotes, and

commas, are assigned to the string variable. Only the line
terminating character is not assigned.

O The line terminating character is normally RETURN for keyboard
input, and Line Feed for the IEEE-488 and RS-232-C ports.

O The line terminating character for both IEEE-488 ports can be
redefined in a user program by use of the TERM statement.

O The line terminating character for each RS-232-C port can be

individually redefined by SET utility commands that may be
included in a command file.

INPUT LINE
Statement

O The line terminating character for keyboard input cannot be
redefined.

O Numeric values input from the keyboard may be entered in one line
separated by commas, or in multiple lines separated by RETURN
entries.

O A question mark prompt will be displayed whenever more data is
required.

Examples

The following example requires the operator to enter a string of
characters terminated by RETURN, and then enter two numeric
values separated by commas or RETURN entries. The string may
include quotes and commas. The last numeric entry must be followed
by RETURN:

INPUT LINE A$, B, C

This next example uses a 105 element array to hold 35 sets of three data
values each. Line 70 then requests the first five sets of data values:

10 —--—- Obtain Test Data

30 DIM TD (34, 2) ' 35 S-element test results
40 PRINT “Enter data for 3 tests: ”
50 PRINT \N PRINT
60 PRINT "TEST NUMBER", "NOMINAL VALUE", “TOLERANCE (%)"
28 INPUT LINE TD (0..4,0..2) 3 sets of S-element data

The test data may be entered in many ways. Three examples follow:

1. 7 1, ae a: Od, a: 4, 4, e Od,

7 4, 8.8, .O2. 3, 10, .O1

2. ? 1, 2.2: - O02

7 2 4.4, .~O2
? a - & °

7 4 8.8, .O2
73, 10, .01

3. 71
7 22
7 .02
7 a

7 3
7 10
7 .O1

INPUT LINE
Statement

The next example uses INPUT LINE to request operator comments
for storage in a separate data file. The four blocks reserved will hold up
to 2048 characters, or about two full screens of comments. A

RETURN entry terminates each line, writes it to the file, and requests
the next line. Line 1100 checks first fora RETURN entry with no
comments indicating either that the operator has no comments or is
done (two RETURN entries).

1900 Reserve 4 blocks (2048 bytes) for coments:

1920 OPEN “REMARK. DAT” As NEW FILE 3 SIZE 4

oso Get operator comments on test:

1060 PRINT "Do you have any comments?" \ PRINT
1070 PRINT “Enter RETURN if you have no comments, ”
1060 PRINT “or terminate your commments”";
1090 PRINT “with two RE N entries.”
1100 INPUT LINE A$
1110 IF A® (> "" THEN PRINT #3, AS \ GOTO 1090
1120 CLOSE 3

INPUT LINE #n&
Statement

Usage

INPUT LINE {# channel%}, {variable list}

Syntax Diagram

(data items to be comma-separated)

INPUT INPUT ,

LINE]

| (console input)

—>| numeric expression -F

a A ae
device -— an | 9 }

PORT expression Las clause |

Lo Input variable list >

INPUT LINE #n 1s described here for data input from a serial device
(such as the keyboard or the RS-232 port) through a previously opened
channel. The INPUT LINE #ndiffers from the INPUT #n statement as

follows:

Description

O String variables may contain any characters except RETURN,
Line Feed, {CTRL}/Z, and system control codes
(e.g.: {CTRL} /P).

O All characters entered, including leading spaces, quotes, and
commas, are assigned to the string variable. Only the line
terminating character is not assigned.

O The input terminating character is Line Feed for the RS-232-C
ports.

O The line terminating character for each RS-232-C port can be
individually redefined by SET utility commands that may be
included in a command file.

O Refer to the INPUT #n statement for additional information.

INPUT LINE #n
Statement

Example

The following example configures the RS-232 port, KBl:, as a
bidirectional serial port. Assume the following:

O A RS-232 compatible terminal or teletype-like device is connected
to KBI:.

O KBI: has been configured to be compatible with the remote
terminal. Use the SET utility program if this is not true.

O The eol (end-of-line) character is: CR, [CHR$(13)].

The example program opens KBI: as channel #1 for input, then opens
K BI: as channel #2 for input. The program sends a prompt string to the
remote terminal, waits for the required input, then displays the data on
the Controller’s display.

Ba
gs
od
00
 CLOSE ALL ‘insurance

OPEN “kb1:° AS NEW FILE 2% ‘for output to terminal
OPEN “kbi:"* AS OLD FILE 1% 'for input to controller
PRINT @#2% “input data: a, b, and c" !prompt to get data
INPUT LINE @1%. AS, BS, CS ! get it
PRINT AS, BS, CS ' display on controller
GOTO 40

INPUT LINERS
Statement

Usage

INPUT LINE @ {device address%, variable}
INPUT LINE {port p%, variable}

Syntax Diagram

(data items to be comma-separated)

INPUT INPUT

LINE

(console input)

‘ /

ram ~~ numeric expression - Cm

Nf device —

' PORT expression To L —

64 input variable list le a put v

Description

The INPUT LINE construction of the INPUT statement allows binary
data to be received from the bus and assigned to a string variable.

O The only syntax difference in the INPUT LINE statement for
IEEE-488 Bus instruments is the use of a device specification or
port number instead of a channel number.

O Only one device number may be specified.

O Input data items may be separated by commas or by the
terminating character.

O If PORT P%is used, the named port is addressed directly, without
device addressing.

O The terminating character is Line Feed, unless an alternate
character is specified by a previous TERM statement.

O The EOI Bus line may also be used by the transmitting instrument
to terminate input.

INPUT LINE
Statement

O ach input data item to a string variable may be up to 512
characters in length.

O When a device address is given, the instrument is addressed as a
talker prior to reading data.

O Each variable or specified array location must receive an entry.

O The INPUT LINE statement can be structured so that the
Instrument Controller will not address an instrument that has been
previously addressed. This will increase the speed of data input.
INPUT LINE assumes there is a talker already on the bus when the
@ character follows INPUT LINE without a device specified.
Incoming bus data 1s then simply assigned directly to the specified
variables.

Oo A String assigned a value by INPUT LINE will include the
terminating character.

Examples

The following example allows a less restrictive data format than a
simple INPUT statement. Any or all of the ASCII floating point values
may be terminated by a Line Feed or the EOI line. Otherwise, this
example is similar to the first INPUT statement example (see INPUT).

INPUT LINE @ 102, A(1%..4%)

LINE is commonly used to read strings which represent numeric data
from instruments. Some instruments, however, transmit data with a

left justified sign for ease of direct reading on a printer. The resulting
string cannot be directly evaluated. The following subroutine removes
the spaces between a sign and a numeric string. The string that was
created by INPUT LINE 1s A$.

S% = INSTR (1%, AS, ’+’) ' Search for a +
IF S% = O THEN S% = INSTR (1%, AS, °-’) ' If none, search for a -
IF S% THEN St = MID(AS, G%, 1%)! 3S is sign, if found
S% = 3% + 1%
IF ASCII (RIGHT(CAS$, SZ) = 32% THEN 1030! Skip s
AS = S$ + RIGHT (AS, SZ) ' AS is now sign f
REM ' by numerics.

paces
ollowed

INPUT LINE WBYTE ES
Statement

Usage

INPUT LINE {Port/device Address,} WBYTE {WBYTE Clause}
Variable

Syntax Diagram

(data items to be comma-separated)

(console input)

ap numeric expression F

rl device -—

PORT expression LS clause

[- input variable ist >

Description

The INPUT LINE WBYTE construction of the INPUT statement
allows binary data to be received from the bus and assigned to a string
variable, and transmits a bus message contained in a WBYTE clause
prior to receiving each data item.

INPUT INPUT

Q
u
e

it
O Only one device number may be specified.

O Input data items may be separated by commas or by the
terminating character.

O The terminating character is Line Feed, unless an alternate
character is specified by a previous TERM statement.

O The EO! bus line may also be used by the transmitting instrument
to terminate input.

O Each data item input to a string variable may be up to 80 characters
in length.

INPUT LINE WBYTE
Statement

a) The instrument is addressed as a talker only once, prior to all data
readings.

INPUT LINE WBYTE can be structured so that the Instrument
Controller will not address an instrument that has been previously
addressed. This will increase the speed of data input. INPUT LINE
WBYTE assumes there is a talker already on the bus when the @
character follows INPUT LINE without a device specified.

A string assigned a value by INPUT LINE WBYTE will include the
terminating character.

The WBYTE clause selects a subrange of an integer array for
output. This may contain addressing, bus messages and device-
dependent data. See the discussion of the WBYTE statement.

The WBYTE clause does not need to be sent to the same
instrument port from which input is being taken.

Make sure that the WBYTE output does not unaddress the
instrument as a talker if it is sent to the port from which input is
read.

After the WBYTE output, the specified instrument is addressed as
a talker and one data line is read.

The WBYTE clause is then sent again and the next line of input is
read. This process is repeated until the input data list has been
satisfied.

INPUT LINE WBYTE
Statement

Examples

The following example sends a one-character trigger to an already-
addressed listener on port 1 via the WBYTE clause. It then addresses
device | on port 0 as a talker. Each floating-point ASCII value read
from port 0 is placed in an element of A after the trigger command is
sent.

The sequence is:

1. Send A%(0%) on port |

2. Read A(0%) on port 0

3. Send A%(0%) on port |

4. Read A(1%) on port 0

39. Send A%(0%) on port |

40. Read A(19%) on port 0

3750 INPUT LINE @ 1%, {WBYTE PORT 1%, A%(0%)}
A(0%..19%)

The following example initializes instrument port 0 and then sends a
string of bus messages via the WBYTE clause. The array A% contains
the following six commands: A%(0) = UNL, A%(1) = UNT, A%(2) =
MLA 2, A%(3) = GET, A%(4) = UNL, and A%(5) = MTA 2.
Instrument device 2 on port 0 1s triggered 50 times, each time reading a
string into the next element of array A$.

INPUT LINE WBYTE
Statement

The sequence is:

1. Send A%(0%..5%)

2. Read A$(0%)

3. Send A%(0%..5%)

4. Read A$(1%)

99. Send A%(0%..5%)

100. Read A$(49%)

10 INIT PORT 0%

20 INPUT LINE PORT 0,{WBYTE A%(0%..5%)} A$(0%..49%)

Usage

INPUT WBYTEES
Statement

INPUT WBYTE @{device variable}
INPUT WBYTE{port p% variable}

Syntax Diagram

(data items to be comma-separated)

INPUT INPUT

LINE

(console input)

Lies. — numeric expression ~—Y
Nf device -— —(,», ee /

_j

ae,

| PORT expression 4S Li —

_{ nput arable list ne ~ input v

Description

INPUT WBYTE transmits a Bus message contained in a WBYTE
clause prior to receiving each data item.

2)

0

O

Only one device number may be specified.

Input data items must be separated by commas.

The terminating character is Line Feed, unless an alternate
character is specified by a previous TERM statement.

The EOI Bus line may also be used by the transmitting instrument
to terminate input.

The instrument is addressed as a talker only once, prior to all data
readings.

INPUT WBYTE
Statement

0 INPUT WBYTE can be structured so that the Instrument
Controller will not address an instrument that has been previously
addressed. This will increase the speed of data input. INPUT
WBYTE assumes there is a talker already on the bus when the @
character follows INPUT without a device specified.

The WBYTE clause selects a subrange of an integer array for
output. This may contain addressing, bus messages and device
dependent data. See the discussion of the WBYTE statement in this
section.

The WBYTE clause does not need to be sent to the same
instrument port from which input is being taken.

Make sure that the WBYTE output does not unaddress the
instrument as a talker if it is sent to the port from which input 1s
read.

The WBYTE clause is then sent again and the next input data item
is read. This process is repeated until the input data list has been
satisfied.

After the WBYTE output, the specified instrument is addressed as
a talker and one data item is read.

INPUT WBYTE
Statement

Examples

The following example sends a one-character trigger to an already-
addressed listener on port | via the WBYTE clause. It then addresses
device | on port 0 as a talker. Each floating-point ASCII value read
from port 0 is placed in an element of A after the trigger command is
sent.

The sequence is:

1. Send A%(0%) on port |

2. Read A(0%) on port 0

3. Send A%(0%) on port |

4. Read A(1%) on port 0

39. Send A%(0%) on port |

40. Read A(19%) on port 0

3750 INPUT @ 1%, {WBYTE PORT 1%, A%(0%)} AC(O%.19%)

INPUT WBYTE
Statement

The following example initializes instrument port 0 and then sends a
string of bus messages via the WBYTE clause. The array A% contains
the following six commands: A%(0) = UNL, A%(1) = UNT, A%(2) =
MLA 2, A%(3) = GET, A%(4) = UNL, and A%(5) = MTA 2.
Instrument device 2 on port 0 is triggered 50 times, each time reading a
string into the next element of array A$.

The sequence is:

1. Send A%(0%..5%)

2. Read A$(0%)

3. Send A%(0%..5%)

4. Read A$(1%)

99. Send A%(0%..5%)

100. Read A$(49%)

10 IN
20 IN

PORT OZ% IT
PUT PORTO, {WBYTE AZ(O%..3%)} AB(OZ.. 49%)

INSTR()
Function

Format

INSTR (start%, string$, substring$)

Description

The INSTR function searches for a specified substring within a string
and returns the starting location of the substring.

O INSTR has an integer (start%) and two strings (string$ and
substring$) as arguments, and returns an integer.

O The integer argument is the starting character position for the
search.

O The first string is the string to be searched.

O The second string is the substring to be searched for.

O The substring must be exactly and wholly contained within the
string for the search to be successful.

O INSTR returns 0 when the substring is not found.

O INSTR returns 0 when the starting character position is greater
than the length of the string.

O INSTR returns, in integer form, the position in the string of the
first character of the substring when the substring is found.

O INSTR returns the number of the starting character position when
the substring is null, and the starting character position is less than
the length of the string.

Example

The following program generates the interaction printed below it.

1000 ! Demonstrate INSTR Function
1020 AS = This string has 35 characters in it”*
1030 PRINT “The given string is: "; As
1040 PRINT yvee the substring to be found”;

BS PRINT 1050 INPUT
1060 PRINT sy vee the start position ”;

70 INPUT S% PRINT 10
GO PRINT “INSTR ("3 SX%i ’. "%s ABS 7%, "4s BR: 7") me? ;

1100 PRINT INSTR (SX. AS, BS) \ PRINT
1120 1040

INSTR()
Function

The results of running this program are:

The given string is: This string has 35 characters in it
Type the substring to be found? has
Type the starting position? 6

(6, "This string has 35 characters in it", "has") = 13

Note that the INSTR function returned 13 -- the “h” of “has”.

Type the substring to be found? has
Type the starting position? 14
INSTR (14, “This string has 35 characters in it”, “has") = O

There is no “has” after character 14 to the end of A$, so the INSTR

function returned 0.

Type the substring to be found? strung
Tape, the starting position? 1

(1, "This string has 33 characters in it", “strung”) = 0

There is no “strung” in A$, so the INSTR function returned 0.

Type the gubstring to be found? IN
Tyee the starting position? 1
INSTR (1, “This string has 35 characters in it”, “IN") = O

Note that the search is sensitive to whether or not the letters are

capitalized.

Type the substring to be found? in (space)
Type the starting position? i aan
INSTR (1, “This string has 35 characters in it”, in") = 9

“in” is found embedded in the word “string”. It begins at character 9 of

A$.

Type the substring to be found? in
Type the starting position? 1 ;
INSTR (1, “This string has 35 characters in it®, "in ") = 3i

Search for the three letters i - n - (space) to find the word “in” by itself,
rather than “in” in “string”.

Type the substring to be found?
e the starting position? 5

IN TR (3S. "This string has 35 characters in it", "") = 5

A null substring returns the starting location.

Type the substring to be found?
Type the starting position? 36
INSTR (36, “This string has 35 characters in it", "") = 0

A search for a null string beyond the end of A$ returns 0.

INT()
Function

Format

INT (numeric expression)

Description

The INT function returns the largest integer value that is less than or
equal to the specified floating-point or integer number.

O INT hasa floating-point input number and returns a floating-point
result. The result may be assigned to an integer variable.

O The domain of input values is any positive or negative floating-
point value, or zero.

O The range of output values is positive and negative floating-point
values, and zero.

O If INT is given an integer argument, e.g., INT (A%), INT will
return the integer argument unchanged (i.e. INT(A%) = A%).

Example

These immediate mode examples show how the INT function works:

PRINT INT(12. 34)

PRINT INT (0. 097346)

An integer value is returned unchanged:

PRINT INT(-2)

Negative arguments produce:

PRINT INT (-7. 0097)

Note that the INT function returns the largest integer value that is less
than or equal to the entire input value. For negative numbers, this will
be one smaller than the integer portion of the input number (-8 in the
example).

INTEGER DatafEs

Syntax Diagram

integer ff digit % (Range: -32768 to 32767) .

constant » (L

integer variable ——+{ letter } x 7 —(% -— —>

digit a
Integer data has the following characteristics:

O Range: -32768 to +32767

O Resolution: Integers

O Exactness

O Memory requirement (per datum): 2 bytes

O Integer data is represented internally in binary but displayed by the
Instrument Controller in decimal without the modification process
described in Floating-Point Data.

O Operations that call for an integer result are rounded to an integer,
if necessary.

INTEGER Data

Integer Constants

Integer constants are whole numbers identified by a “%” suffix on the
number.

Examples

-0%

5%

-~32000%

-40000% Outside the allowed range.

Integer Variables

Integer variables are designated by a floating-point variable name
followed by a “%” character.

KEY a
System Variable

Description

The system variable KEY contains the number of the last Touch-
Sensitive Key that was pressed. The KEY variable has the following
characteristics:

O KEY 1s an integer ranging from 0 to 60.

O A KEY value of 0 means that no Touch-Sensitive Key has been
pressed since the last time the value of KEY was used by a BASIC
statement or since the last ttme a RUN command was executed.

O When KEY isused bya program (e.g.,“K%= KEY” or“IF KEY =
0 THEN...”), it is subsequently set to 0.

O KEY may be used in any context that requires an integer variable.

O KEY cannot be assigned a value except by pressing the Touch-
Sensitive Display.

Example

The following example shows the KEY variable being used to
determine Touch-Sensitive Keyboard entries.

1200 Kh = KEY
1201 IF K% «> O THEN 2600 ! If the display. s been touched
1202 goto the the key handler

600 ! Key handler
2610 ! Look for ke eys 21 or 41
2620 IF KZ @ 21 GOTO ete) ' @o to YES if 21 was touched
2630 IF KZ = 41 GOTO 3000 ! Go to EXIT if 41 was touched
2640 PRINT CHRS$(7), ' Beep and
2450 ODTO 1200 ' repeat if any others were touched

KILL &&s
Statement

Usage

KILL “filename”

Syntax Diagram

(full file name)

Description

The KILL statement deletes a specified file.

O A file name must be specified, enclosed in single or double quotes.

O The default file name extension is“. ” (3 spaces). Any other file
name extension must be specifically stated.

O Error 305 results if an attempt is made to kill a file that is not found.

O The file is deleted from the default System Device (SY0:) if the file
name is not preceded by a device sepcification.

Example

The following example illustrates the KILL statement used to delete
FILE.DAT from the directory of the System Device.

KILL “FILE.DAT”

This next example has a file of four blocks (2048 characters) to
save intermediate status information during the program. This
“check pointing” file may be used to recover from power failures,
etc. When the program terminates, the file is no longer needed, so
it is deleted at line 32766.

10 REM --— Meter Calibration Progr am

20 OPEN “CHECK.PT" AS NEW FILE 2 SIZE 4 '! Check pointing file

32766 KILL “CHECK.PT" ' Delete check pt file
32767 END

LCASES ES
Function

Format

LCASES(argument string$)

Description

The LCASE$ function converts a string to lower case.

O The argument must be a string variable.

O The output is a string (of the same length as the argument string$)
with all alphabetic characters converted to lower-case.

Example

This example shows a string which 1s received from the keyboard being
converted to lower case before decoding.

120 INPUT A$ ' Fetch a string from the user
130 ALS=LCASE (A$) ‘ and convert i to lower case
131 before vu ‘ e se.
140 IF ASCIIS(ALS) 996 AND ASCIIS(AL$)(101 THEN 1000 ELSE 120
141 ' Look for a-d only

LEFT () is
Function

Usage

LEFT (string$, number of characters%)

Description

The LEFT function returns a substring of the specified string, starting
from the left. The number of characters returned is, if possible, the
number specified by the second argument.

O LEFT has a string and an integer as arguments, and returns a
string.

O LEFT returns a null string when the number of characters is
specified as 0.

O LEFT returns an identical string when the number of characters 1s
specified equal to or longer than the string.

Example

In the following examples, the string A$ contains the characters “THIS
IS THE FIRST EXAMPLE STRING”, and L% = 11%.

STATEMENT RESULT

X$ = LEFT (A$, L%) X$ = “THIS IS THE”, the leftmost

11 characters of AS.

PRINT X$; “LEFT PART” Displays “THIS IS THE LEFT
PART”.

LEN()
Function

Format

LEN (string$)

Description

The LEN function returns the number of characters contained in a

string.

O LEN has a string as an argument, and yields an integer.

O The string count includes leading and trailing blanks and null
characters.

O LEN returns 0 from a null string (no characters) input.

Example

The following examples illustrate the results of uses of the LEN
function.

STATEMENT RESULTS

X% = LEN (A$) Place the length of string A§ into the

integer variable X%.

PRINT LEN (A$) Display the length of A$. Forexample,
if A$ contains “HELLO!’’, 6 is
displayed.

LET
Statement

Format

[LET] {variable} = {expression}

Syntax Diagram

LET —>| variable PE > ewrtes810n

LET

Description

The LET statement evaluates an expression and assigns the results toa
specified variable.

O The data types of the expression and the variable must be either
numeric or string, not mixed.

O A numeric expression will be converted if necessary to integer or
floating point as required by the variable.

O The word LET is optional.

O The = sign is an assignment operator. It does not imply equality.

O The absolute value of a floating-point value is rounded to an
integer, the proper sign is assigned, and the value is then assigned to
the integer variable.

LET
Statement

Example

The following examples show the results of assigning values of
expressions of one type to variables of another type:

Statement Result

LET A%=-3.2 A% has value -3

B%=- 12.6 B% has value -13

LET A1%=4.8 A1l% has value 5

X=12%+A1% X has value 17

Y="12E3” Error 600, no change in Y

S$=“HELLO”+"“THERE” S$ contains HELLO THERE

LET SX$=12% Error 600, no change in SX$

N% =N% + 1% N% is incremented by |

; LINK ES
Statement

Usage

LINK {filename}

Syntax Diagram

LINK ———»{ LINK +} aathname _——_—_

Description

The LINK statement loads an object file which contains one or more
Assembly Language or FORTRAN subroutine(s) into the Instrument
Controller memory.

O The object file is named in the pathname shown in the LINK syntax
diagram. The pathname must contain the file name and may also

‘contain a device name and a file extension. The pathname must be
\/ enclosed in quote characters (“).

1. Ifa device name is not specified, the System Device (SY0:) is
searched for the file.

42 If a file extension is not specified, the Instrument Controller
V uses the default extension .OBJ.

O Ifthe specified file is not found, error code 305 (file not found) is
displayed.

O If the specified file is found, the subroutine(s) in the file is(are)
loaded into the Instrument Controller memory.

O Multiple LINK commands can be used to load different object
files.

O LINK can be used in both Immediate and Run modes.

O LINK commands must follow all COM statements in the program
because COM storage must be defined before loading any
subroutine(s).

Example

14225 LINK "tests.rep" ! Load the subroutines in the
142264 ' "tests.rep” object file

LIST
Immediate Mode Command

Format

LIST [{linenumber]
LIST [start-finish linenumbers]

Description

The LIST command displays a program or a portion of a program in
line number order.

O Display starts at the first line of a program and proceeds to the last
line if line numbers are not specified.

O One line is displayed if a single line number is specified. The
command is ignored if the line does not exist.

O A portion of a program is displayed if two line numbers are
specified. The display will be the lines with numbers between and
including the specified lines numbers if they exist.

O If the portion to be listed is larger than one display page (16 lines),
the display will scroll upwards until the last line specified has been
displayed.

O1 Use Page Mode and the NEXT PAGE key, or (CTRL)/S and
(CTRL)/Q to stop and restart the display. These functions are
discussed earlier in Section 4 of this manual set.

Examples

The following examples illustrate common uses of the LIST
command:

COMMAND RESULTS

LIST Displays the entire program in memory from the
first line.

LIST 500 Displays only line 500 of the program, if it exists.

LIST 600-600 Displays a program segment beginning with the first
line after 599 and ending with the last line before
801.

LN() as
Function

Format

LN (numeric expression)

Description

The LN function returns a floating-point number equal to the natural
logarithm of the input value.

O LN has a floating-point argument and returns a floating-point
result.

O The natural logarithm is the exponential power that, if applied to
the number e, produces the given input value.

O The value used by the Instrument Controller for e is
2.71828182845905

O The domain of input values is positive numbers. Error 606 results
when zero or a negative number is used as input.

Example

7

(PRIN. ~
PRINT LN(S5014)
8.519989

LOCALES
Statement

Usage

LOCAL [device list or port expression]

Syntax Diagram

(both ports)
LOCAL LOCAL — N 7

PORT numeric expression i,

| doyirce liet Le | device list F

Description

LOCAL resets instruments to a local state. Typically, this means that
Front Panel controls are activated.

Without a device list, LOCAL is the reverse of REMOTE.

O REN is set false on both ports if a port number is not specified.

O REN | sset false only on the designated instrument port when a port
is specified.

0 LOCAL, without a device list, reverses all effects of the
LOCKOUT statement.

With a device list, LOCAL sends a GTL (Go To Local) message on the
ports identified in the device list.

O The instruments specified are first addressed as listeners.

O The GTL message is then sent.

O If LOCKOUT was previously sent, the GIL message will not
activate the front panel of the instrument.

LOCAL
Statement

Example

The following examples illustrate common usage of the LOCAL
statement:

STATEMENT RESULT

LOCAL Set REN false on both ports.

LOCAL PORT | Set REN false on port 1.

LOCAL @ 103:4 Send GTL message to the instrument on port 1
at address 3, secondary address 4.

LOCAL @ 7 @113 Send GTL messages to the instrument on port
0 at address 7, and to the instrument on port |
at address 13.

The following example illustrates the use of LOCAL to return an
instrument temporarily to local control. Line 1180 returns the
instrument to REMOTE control.

110 INIT ' Initialize both ports
120 REMOTE @ 2 @ 104 ' Place instruments in remote
120 other statements

1100 REM -—— Subroutine: Special instrument Usage
1110 LOCAL ore instrument to local
1120 PRINT “SET INSTRUMENT TO PERFORM TEST"
1130 other statements

1160 REMOTE @ 104 ' Place instrument in remote

LOCKOUT &@
Statement

Usage

LOCKOUT [PORT p%]

Syntax Diagram

th
LOCKOUT LOCKOUT

(both ports)
_

L_. PORT numeric mpesson SL

Description

The LOCKOUT statement disables not only Front Panel controls (as
with REMOTE) but also any “return to local” function button that
may be on an instrument. As defined in the IEEE-488-1978 Standard,
any instrument addressed to listen after receiving a local lockout
command will immediately be placed in the “Remote With Lockout
State”.

oO LOCKOUT implements the LLO (Local Lockout) capability on
the IEEE-488 Bus.

0 LOCKOUT sets REN, and then sends LLO.

O This sequence is sent on both ports if no port number is given.

O This sequence is sent on only one port if a port number is specified.

Example

The following example uses the REMOTE statement with a device list
after the LOCKOUT statement to immediately disable all local
instrument control. The device addresses sent at line 160 place the
instruments in “Remote With Lockout State” since LOCKOUT was
previously sent at line 150.

10Q REM—-Initizlize Ports: Disable Local Instrument Ccntrol]
110 ' Instruments are at Port 0: address 2) 7 9
120 ! And at Port 1: address 1
130 ‘
140 INIT
150 LOCKOUT
160 REMOTE @20@e872@9 @ 101
170 '‘ other statements

LOCKOUT
Statement

The following example uses LOCKOUT to place instruments on port 0
into a state such that whenever they are used, they enter the “Remote
With Lockout State”. The CLEAR statement at line 100 insures that
no previously addressed instrument is placed in “Remote With
Lockout State”. At line 140, when the instrument at address 2 of port 0
is addressed as a listener and sent the message “F2R0”,, it is placed in
“Remote With Lockout State” (as previously required by line 100).

20 other statements

100 CLEAR ‘ Unlisten, Untalk all devices
110 LOCKOUT PORT O
120 ' other statements
130 '
140 PRINT @ 2, "F2R0"

LOG() 3
Function

Format

LOG (numeric expression)

Description

The LOG function returns a floating-point number equal to the
common logarithm (log base 10) of the input value.

O LOG has a floating-point argument and returns a floating-point
number.

O The common logarithm is the exponential power that, if applied to
the number 10, produces the given input value.

O The domain of input values is positive numbers. Error 606 results
when zero or a negative number is used as input.

O The range of output values is —307 to +308.

Example

PRINT LOG(5014)
3.700184

LOGICAL @
Operators

Description

Logical operators AND, OR, XOR, NOT, operate on the binary digits
that make up an integer. NOT is a unary operator, acting upon one
integer. AND, OR, and XOR are binary operators, using the bits of
one integer to act upon another integer. Logical operators allow
examination or modification of integer bit patterns when they have
been used to store binary data, such as status or binary readings from
instrumentation.

Binary Numbers

To use logical operators effectively, it is necessary to understand the
binary number system and how the Instrument Controller uses binary
numbers to represent integers.

The Instrument Controller uses a 16-bit (2-byte) word to store each
integer. Each bit position represents a weighted power of 2. The sum of
the weight column in the following chart is the number of separate
integers that can be represented with 16 bits less one because zero is an
additional integer.

BIT POSITION WEIGHT

0 l

l 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

1] 2048

12 4096

13 8192
14 16384

15 32768

SUM: 65535

LOGICAL
Operators

Integer numbers are represented by setting appropriate bit positions to
1. Adding the weighted values of each position that is set to 1 gives the
decimal value of the integer. For example, the number 305 is
represented by the binary pattern 0000 0001 0011 0001, as follows:

Position: 15 141312 111098 7654 3210

Setting 0000 0 001 OOI1!1 OOD!

Since each bit that is set to | carries a binary weight, it is possible to
verify that the binary pattern is correct. Adding the numbers 256 + 32
+ 16 + 1 gives the decimal value 305.

Decimal numbers can be converted to binary by continuously dividing
by 2 and keeping track of the remainders (always | or 0). For example,
the number 305 is converted to binary as follows:

305 /2=152 R=1
152/2=76 R=0
76/2=38 R=0
38/2=19 R=0
19/2=9 R=1
9/2=4 R=1
4/2=2 R=0
2/2=1 R=0
1/2=0 R=1

Reading the remainder bits, from the bottom up, gives the result
100110001, the binary representation of 30S.

Twos Complement Binary Numbers

By using the most significant bit (15) to identify a negative integer, the
Instrument Controller divides the pattern into 32767 positive numbers,
the number 0, and 32768 negative numbers. Negative numbers are
represented in a form called twos complement. To change either to or
from twos complement form, the following steps are required:

1. Replace every | with a 0.

2. Replace every 0 with a I.

3. Add I.

LOGICAL
Operators

For example, to change the pattern 0000 0001 0011 0001 (+305) to
twos complement form, first reverse 1’s and 0’s: 1111 1110 1100 1110,

and then add 1: 1111 1110 1100 1111 (—305). To change it back, first
reverse 1’s and 0’s: 0000 0001 0011 0000, and then add 1: 0000 0001 0011

0001.

AND Operator

AND returns an integer bit pattern with a |-bit in every position where
both of two input integers have a 1-bit. The AND operator is useful to
check for the setting of particular bit(s) to 1 by operating on an
unknown status word with a mask word (number) having the
appropriate bit(s) set to 1. The following examples illustrate the results
of AND operations:

33% AND 305% 33% 0000 0000 0010 0001
305% 0000 0001 0011 0001

RESULT: 33% 0000 0000 0010 0001

-74% AND 305% ~74% 1111 1111 1011 0110
305% 0000 0001 0011 0001

RESULT: 304% 0000 0001 0011 0000

OR Operator

OR returns an integer bit pattern with a |-bit in every position where
either of two input integers have a 1-bit. The OR operator can be used
to check for the resetting of particular bit(s) to 0 by operating on an
unknown status word with a mask word (number) having the
appropriate bit(s) set to 0. The following examples illustrate the results
of OR operations:

33% OR 305% 33% 0000 0000 0010 0001
305% 0000 0001 0011 0001

RESULT: 305% 0000 0001 0011 0001

LOGICAL
Operators

-74% OR 305% -74% 1111 1111 1011 0110
305% 0000 000! 0011 0001

RESULT: -73% T1i1 1111 1011 0111

XOR Operator

XOR (Exclusive OR) returns an integer bit pattern with a 1-bit in every
position where the bits of two input integers are opposite. A mask word
applied to an unknown integer through XOR will invert (1 to 0, and 0
to 1) all bit positions where the mask contains a 1, and leave unchanged
all bit positions where the mask contains a 0. The following examples
illustrate the results of XOR operations:

33% XOR -1% 33% 0000 0000 0010 0001
-1% JL TL tl 1111

RESULT: -34% L111 1111 1101 1110

-74% XOR 0% -74% I1111 1111 1011 0110
0% 0000 0000 0000 0000

RESULT: -74% L111 1111 1011 0110

NOT Operator

NOT is a unary operator that operates upon a single integer. NOT
returns a | bit in every position where the input integer had a0 bit, and
a 0 bit in every position where the input integer had a | bit. The
following examples illustrate the results of NOT operations:

NOT 33% 33% 0000 0000 0010 0001

RESULT: -34% L111 1111 1101 1110

NOT -74% -74% 1111 1111 1011 0110

RESULT: 73% 0000 0000 0100 1001

LSH() i
Function

Format

LSH(arg%,count%)

Description

The LSH() function performs an unsigned logical shift on a binary
integer (arg%) by shifting it by a given number of bits (count%).

O The function arguments are considered to be integers; any floating-
point arguments will be truncated to integer.

O This operation may cause an arithmetic overflow (error 601) to be
reported if the argument cannot be represented as an integer.

O The LSH function shifts arg% right or left by count% bits. This isa
logical (or unsigned) shift, which means that, unlike the ASH
function, zeroes are propagated (shifted in from the left) when a
right shift is performed.

Examples

Right Shifts

A right shift is accomplished by using one of the two shift functions,
ASH() or LSHO), with a negative shift count. The shift is performed by
taking the absolute value of the shift count and then shifting the
argument right by that number of bits.

The LSH() (logical shift) function does not copy the sign bit; it
unconditionally copies zeroes from the left. As an example:

100 print "Shift count", "Hex", "Decimal"
110 for i*=0O% to -15% step -1%
120 J%4 = lsh(-32768%., if)
130 print 14, rad$(jy%, 164), y%
140 next i2%

LSH()
Function

prints the following:

Shift Count He x Decimal
O B000 -32768

-1 -4000 16384
-2 2000 8192
-3 1000 4096
-4 800 2048
-3 400 1024
—-6 200 912
-7 100 256
-8 80 126
-9 40 64
-10 20 32
-—11 10 16
-12 8 8
-13 4 4
-14 2 a
-15 1 1

NOTE

The sign bit is not copied as the number is shifted to the right,
so that when a negative number is right-shifted it becomes a
positive number.

Left Shifts

A left shift is accomplished by using one of the two shift functions,
ASH(or LSHO), with a positive shift count. The shift is performed by
shifting the argument left by the number of bits indicated.

In the case of a left shift both ASH() and LSH() generate identical
results. The program:

O print “Shift count", “Hex", “Decimal”
O for i%=O% to 15%
‘@) jJ*% = IshC1A% 1%)
O hS@ = rad$(yA, 16%
O print i2, oplet“o", 4% —- len(h®))i h®, y%
O next i4%

prints the following:

Shift Count

ts
ne

e
ee

ee

QO

N
O
P
W

O
W
h
U
M
H
O

Remarks

LSH()
Function

Decimal

Compare the LSH() function to the ASH() function.

MATHEMATICAL
Functions

Description

The mathematical functions supplied with Fluke BASIC include an
assortment of tools to simplify computation tasks on collected data.
Included are a square root function, natural and common logarithms,
exponentiation of e, absolute value, sign, and greatest integer.

O Mathematical functions operate on integer or floating-point
numbers.

O Mathematical functions accept as input an expression that
evaluates to a numeric quantity.

O Mathematical functions return an integer or floating-point
number.

O Conversion between numeric data types is automatic where
required by the function or specified by the user. This conversion
process requires additional processing time.

O The domain of acceptable input values for some functions is
limited or not continuous.

O The range of resulting output values for some functions is not
continuous or has points of underflow (too close to zero) or
overflow (too large).

O The definition of each function includes limitations of domain and

range.

Refer to the individual descriptions of each math function for details:

SOR Square root
LN natural logarithms
LOG ~~ common logarithms
EXP exponentiation of e
ABS absolute value
SGN — signum
INT greatest integer
MOD _ remaindering

MEM Ga
System Variable

Description

The MEM System Variable contains the amount of user memory that
is currently available expressed in Bytes.

oO MEM contains a floating-point value.

O MEM may be used in any context that requires a floating-point
variable.

O MEM cannot be assigned a value by a program.

Example

This example displays the contents of the MEM variable.

PRINT MEM ! Display the amount of memory available

The example below shows a test to determine if there is less than 1024
bytes of free memory.

IF MEM < 1024 THEN 2400 ! Check for less than 1K available

MID() Gs
Function

Format

MID (string$, start%, number of characters%)

Description

The MID function returns a substring of the specified string, starting
from the specified character position, and including the specified
number of characters.

O MID has a string and two integers as arguments, and returns a
string result.

O MID(AS, S%, N%) is equivalent to LEFT(RIGHT(A$§, S%), N%).

O MIDreturns a null string when the number of characters specified
is Zero.

O MID returns a null string when the starting character position
specified is more than the length of the string.

O MID returns an identical string when the starting character
position specified is 0 or 1, and the number of characters specified
is equal to or longer than the string.

O Arguments entered as real numbers will be truncated to the integer
value.

Example

In the following examples, the string A$ contains the characters “THIS
IS THE FIRST EXAMPLE STRING”.

STATEMENT RESULT

Z$ = MID (A$, 13%, 13%) ZS = “FIRST EXAMPLE”, 13
characters of A$ starting at position 13.

X$ = MID (A$, 2.6, 50) Z$ = “SHIS IS THE FIRST
EXAMPLE STRING”. Note that 2.6
was truncated to 2 and that length = 50
returned the remainder of the string.

MOD() 23
Function

Format

MOD(expression, expression)

Description

The MOD() (modulo) function returns the remainder that is produced
by dividing two integer or floating-point numbers. The MOD()
function is defined as

mod(x, y) = x — (y * truncate(x / y))

in which the truncate operation simply drops any fractional result
produced by the division of x by y. The result is x treated as a number
modulo y; this result always has the same sign as x. The result type
returned by MOD() 1s integer only if both arguments are integers; if
either or both arguments are floating point the computation will be
performed using floating-point arithmetic.

Example

PRINT MOD(11, 3)

The number 3 will divide into 11 three times (9) leaving a remainder of
two.

PRINT MOD(2, 9)

Two doesn’t divide into nine at all -- the remainder is two.

The program below uses the MOD function to help convert numbers
from decimal! to octal. This can also be done with the RAD§() function.

33 ' Convert Decimal (1-63) to Octal (1-77) 110
11060 PRINT "Enter decimal”;
11070 INPUT D ' Fetch decimal
11075 IF D > 63 OR D<¢ 1 COTO 11060 ' Dump any out of range
11080 W=INT(D/8)#10 ' Compute whole part
11090 R=MOD(8, D) ' Compute remainder
11100 PRINT “Octal equivalent is ";W+R ' Display the conversion
11110 GOTO 11060 .

NUMS()@
Function

Format

NUMS$ (integer or floating point number)
NUMS (integer or floating point number, string)

Description

The NUMS$ function returns a string of characters in the format that a
PRINT or PRINT USING statement would output the given number.

O NUMS$ has an integer or a floating-point number and an optional
character string as arguments, and yields a numeric character
string with appropriate spaces and decimal.

O When input is limited to an integer or floating-point number,
NUMS$ returns a character string in the format that PRINT would
output the number. For example, if the input number is 1.00000,
NUMS returns “ 1 ”. (Note leading and trailing space.)

O When input includes a comma followed by a character string,
NUM S$ returns a character string in the same format that PRINT
USING would output the number using the specified string. For
example, if the input is 5.5, with the format string “#.44#~~-,
NUMS$ returns “5.50E+00”.

O Refer to the discussion of the PRINT USING statement for proper
formatting of the input string and the resulting output string.

Example

The following examples illustrate the results of using the NUM$
function.

STATEMENT RESULT

Y$ = NUMS$ (10.5) Y$ is assigned the string “ 10.5 ”.

Y$ = NUMS$ (X * A) Same as above, except that an
expression is used.

Z$ = NUM$ (10.5, “##.##’) ZS is assigned the string “10.50”.

Z$ = NUM$ (X, S$) Same as above, except a format, S§, is
used.

OFF CTRL/ CU
Statement

Usage

OFF CTRL/C

Syntax Diagram

OFF | CTRL/C CTRL/C — : —
KEY (channel)
ERROR

—C# »>— numeric expression = SRQ

KEY

f
f

PPOL

PPORT

PORT uf
SRO (port 0).

PPOL PORT numeric expression

PORT

PPORT numeric expression i;

L
E
E
K

| ae

INTERVAL }—

CLOCK q

Description

The OFF CTRL/C statement disables the action of a previous ON

CTRL/C GOTO statement.

oO An OFF CTRL/C statement in a CTRL/C interrupt processing

routine will cause the Instrument Controller to return to

Immediate Mode.

O After an OFF CTRL/C statement, the ABORT switch or a

(CTRL) /C keyboard entry will return the controller to Immediate

Mode.

OFF #ni
Statement

Usage

OFF #(expression)

Syntax Diagram

OFF ae OFF CTRL/C 7 >

KEY (channel)
ERROR \

—~C# f rumeric expression

KEY

“T
.

SA (port 0)

Lame expression

NC prot) — numeric expression fe _/

ne are ae
ee

Description

The OFF #n statement disables the action of all previous ON #n GOTO
statements for the specified channel.

O An OFF #n statement ina serial port interrupt processing routine
will disable further interrupts on the referenced channel, but will
not affect the interrupt processing that 1s in progress.

O The OFF #n statement does not close the referenced channel.

O Ifthe channel is closed bya CLOSE nstatement, further interrupts
are disabled and the OFF #n statement is unnecessary.

Example

OFF #2 B-232 interrupts from 123495
123944

OFF CLOCK Ei
Statement

Usage

OFF CLOCK

Syntax Diagram

OFF CLOCK —~{_ OFF CLOCK =)

Description

The OFF CLOCK statement cancels any previously issued ON
CLOCK interrupt.

Remarks

Refer to the ON CLOCK statement.

OFF ERRORES
Statement

Usage

OFF ERROR

Syntax Diagram

OFF 7 CTRL/C CTRL/C >

KEY (channel)
ERROR

——C# —t cumeri expression - SRQ

PPOL

PPORT
PORT

i
g

w
m

:

ERROR

(port 0 SAO p)

PPOL PORT numeric expression

PORT

PPORT —|

C
E
E
.

oh
J

numeric expression

a

Description

The OFF ERROR statement disables the action of a previous ON
ERROR GOTO statement.

O An OFF ERROR statement in an error processing routine will
terminate the program.

O After an OFF ERROR statement has been executed, a level R

(recoverable) error will terminate the program.

O Afteran OFF ERROR statement, a level W (warning) error will be
ignored.

Example

43210 OFF ERROR : Suspend error interrupts

OFF INTERVALS
Statement

Usage

OFF INTERVAL

Syntax Diagram

OFF INTERVAL —>(__OFF INTERVAL) -

Description

The OFF INTERVAL statement cancels any previously issued ON
INTERVAL interrupt.

Remarks

Refer to the ON INTERVAL statement.

Usage

OFF KEY

Syntax Diagram

OFF | CTRL/C (oF)
#n

KEY
ERROR
SRO
PPOL
PPORT
PORT

Description

CTRL/C ee

OFF KEY &B
Statement

“4

Co numeric expression —

(channel)

SRQ
(port 0)

PPOL

PORT

PORT numeric expression

a |
—] numeric expression 1 p —

The OFF KEY statement disables the action of a previous ON KEY
GOTO statement.

O An OFF KEY statement in a key-interrupt processing routine will
prevent the routine from being continuously reentered if the KEY
buffer is not reset in the routine.

O OFF KEY disables further checking of the value of KEY.

O An OFF KEY statement in any interrupt-processing routine will
not have any additional effect.

Example

13579 OFF KEY ' Stop checking for key-entry interrupts

Usage

OFF PPOL

Syntax Diagram

OFF | CTRL/C

#n

KEY

ERROR

SRQ
PPOL
PPORT

PORT

OFF PPOLES
Statement

ao

——C# {tamer expression

(channel)

KEY i ERROR

SRQ

PPOL

PORT

PPORT

INTERVAL

L
E
L
L
L

(port 0)

PORT numeric expression

numeric expression f= /

CLOCK

Description

The OFF PPOL statement disables the action of a previous ON PPOL
GOTO statement.

oT

O An OFF PPOL statement in a parallel poll response routine will
prevent the routine from being immediately reentered after the
RESUME statement if the routine does not clear the instrument
poll response bit.

An OFF PPOL statement in any interrupt processing routine will
not have any additional effect.

Example

12120 OFF PPOL ' Disable parallel poll response

OFF PPORT Es
Statement

Usage

OFF PPORT {numeric expression}

Syntax Diagram

OFF PPORT———-{__ OFF PPORT =9)}————]_ numeric expression [>

Description

The OFF PPORT statement cancels the action of a previous ON
PPORT GOTO statement on the parallel port specified by the numeric
expression.

Remarks

Refer to the ON PPORT statement.

OFF SRQES
Statement

Usage
OFF SRQ [port {numeric expression}]

Syntax Diagram

OFF CTRL/C

#n
KEY

ERROR

SRQ
PPOL

OFF CTRL/C ~

> (channel)

~# »>—-| numeric expression

PPORT

PORT

* m
m

~<

ERROR a9
(port 0).

PORT numeric expression

numeric expression

SRQ

PPOL

PORT

PPORT

INTERVAL

o
n

Ce

e
e

He CLOCK
Qa

Description

The OFF SRQ statement disables the action of a previous ON SRQ
GOTO statement.

O AnOFFSRQstatement in a service request processing routine will
prevent the routine from being continuously reentered if it does not
reset the service request by performing a serial poll.

O An OFF SRQ statement in any interrupt processing routine will
not have any additional effect.

Example

7090 OFF SRQ@ ' Disable further responses to Service Request

OFF PORT
Statement

Usage

OFF PORT{[expression]

Syntax Diagram

OFF | CTRL/C CTRL/C o cr 7
KEY (channel)

na \ ~Co# ay cumeric expression — YY

PPOL
PPORT KEY

JS PORT

Ca /
(port 0)

SRQ S

numeric expression /

N(rr087 —+ numeric expression t _/

Description

The OFF PORT statement disables the action of a previous ON PORT
GOTO statement.

QO Port 0 interrupts are disabled if no port expression is specified.

Example

9090 OFF PORT '! Disable further responses to Port Status changes

OLD £3
Immediate Mode Command

Usage

OLD {pathname}

Syntax Diagram

—_————-(OLO)- ~ pathname | —

Description

The OLD immediate mode command 1s used to load a program into
memory from an input, device or file.

The pathname, including the optional storage device prefix, filename,
and name extension, must be inclosed in quotes.

O OLD may only be used in Immediate mode.

O BASIC will look for the file on the System Device SY0: if a device
name is not specified.

O BASIC will look for the file on a specified device if the device name
is included as a file name prefix.

O This command assumes that the file named is a valid BASIC

program in either ASCII or lexical form.

O If the file name extension is .BAS or .BAL, it does not need to be

specified in the file name.

O If no extension is specified, BASIC looks for a file with .BAL name
extension and loads that file if it exists.

O If the file named does not exist with a .BAL extension, BASIC
looks for the file with a .BAS extension and loads it if it exists.

O If the file exists in both lexical (BAL) and ASCII (.BAS) form,
BASIC will load the lexical form unless the command directly
specifies otherwise.

O The OLD command will save the name of a file to be used if a

subsequent SAVE, SAVEL, RESAVE, or RESAVEL command is
given for which the filename is omitted.

OLD
Immediate Mode Command

Example

The following examples illustrate use of the OLD command:

COMMAND

OLD “TEST”

OLD “MFO:TEST.5”

OLD “TRAC.TOR”

SAVEL

RESULT

Load the file named TEST.BAL (if present)
or TEST.BAS (Gf TEST.BAL is not present)
from the default System Device into
memory.

Load the file named TEST.5 from the floppy

disk.

Load the file TRAC.TOR from the System
Device.

Save a lexical version of TRAC.TOR in

TRAC.BAL.

Usage

ON CLOCK GOTO {linenumber}

Syntax Diagram

ON | CLOCK

ON CLOCK
Statement

CTRL/C

GoTo CoN) CLOCK

wr cTAL/C

NC +] rue expression >=

(port 0)

Le numeric expression

(port 0)

numeric expression

_ |
GOTO linenumber rT

l

ERROR
#n
KEY

INTERVAL

PPOL

PPORT
SAQ nn ERROR }-

en | INTERVAL -

KEY

\o-(PORT

PPOL

\e-{ PPORT }—

Description

The ON CLOCK GOTO statement is used to create an interrupt at a
specific time of day.

0 The time must be set using the SET CLOCK statement prior to
using the ON CLOCK GOTO statement.

statement is executed.

The ON CLOCK interrupt remains in effect untilan OFF CLOCK

gO ARESUME statement is required to terminate the clock interrupt
handler.

ON CLOCK
Statement

Example

This simple example

BEY CLOCK 18:00 ! Set the clock to 6:00 PM
ON CLOCK @OTO 12000 ' And enable an interrupt at that time

will set an interrupt at six o’clock every evening.

The following example can be used to reschedule a CLOCK interrupt
every hour:

11010 NH = INT CTIME 4 24.0) + 1.0 ! Define Next_Hour
11020 IF NH > 23-0 THEN NH = 0.0
11030 SET CLOCK ' Set clock time
11040 ON CLOCK coro 12010

12010 ! Clock interrupt handler
12020 NH = INT(TIME / 24.0) + 1.0 ' Redefine Next_Hour
12030 IF NH >) 23.0 THEN NH = 0.0
12040 SET CLOCK NH ' Reschedule interrupt
12050 ! Other statements
12060 RESUME

ON CTRL/C EB
Statement

Usage

ON CTRL/C GOTO linenumber

Syntax Diagram

\
ON SRL GOTO Con) CLOCK 7

ERROR

#n CTRL/C
KEY
INTERVAL
PORT END
PPOL
PPORT

KEY

NC tamer expression ->—

(pert 0)
PORT

(Po) aa numeric expression

(port 0)

|
—— { PORT a numeric expression t

|
GOTO linenumber fr =~

U
T
E
E
L
L
L

Description

The ON CTRL/C GOTO statement enables a program to respond toa
random occurrence of an ABORT switch or a (CTRL) /C keyboard
entry by transferring control to a specified program routine containing
a user-defined response.

O Whenan ABORT switch ora CTRL/C keyboard entry is detected,
control transfers to the specified line number.

O The CTRL/C handling routine must explicitly acknowledge the
interrupt with a RESUME statement.

ON CTRL/C
Statement

QO BASIC normally responds to the ABORT switch or a (CTRL) /C
keyboard input by terminating the program and returning to
Immediate Mode. This statement alters the normal interpreter
response.

O WhenaCTIRL/C has been detected, further checking for interrupt
conditions other than ERROR is suspended until RESUME is
encountered.

0 Ifasecond CTRL/C is detected before encountering a RESUME
statement, it is ignored.

O A RESUME statement will return control to execute the first

statement not completed when the CTRL/C or ABORT key entry
was detected.

NOTE
Further interrupt processing is suspended untila RESUME
statement is performed.

If a level R or W (recoverable or warning) error occurs after
CTRL/C detection and before encountering a RESUME
statement, CTRL/C processing is suspended either temporarily or
permanently. If the program includes error processing, control will
be returned to the CTRL/C processing routine when error
processing is completed. Without error processing, a level W error
is ignored.

NOTE
Since CTRL/C is the only way to manually stop a BASIC
program without deleting it, if not handled properly, a
CTRL/C interrupt to an ON CTRL/C subroutine can lock a
program into Run Mode.

When the keyboard is in the “noecho” mode (see the SET
NOECHO statement), a CIRL/P entry will also transfer control
to the CITRL/C handler.

ON CTRL/C
Statement

Example

The following example shows portions of a program used to create a
CTRL/C interrupt handler.

140 ON CTRL/C GOTO 13800 !' Set up vector for AC int. handler
150 !' Other statements

13790 ' AC Interrupt handler
13800 ' AC handling statements

135000 RESUME ! Continue with the program

ON ERROR
Statement

Usage

ON ERROR GOTO ({linenumber}

Syntax Diagram

on! cuock | Goto C om) clock = 7

én CTRL/C
KEY
INTERVAL
PORT END
PPOL
PPORT
SRO ERROR i INTERVAL

KEY

aa
numeric expression im |
P
L
L
L

E
L
E

L
L

(pert 0)
PORT

PPOL Loe expression

(port 0)

iT

PPORT : (PORT numeric expression I

ft GOTO linenumber —

Description

The ON ERROR GOTO statement enables a program to respond toa
random occurrence of an error condition by transferring control to a
specified routine containing a user-defined response.

O When an error is detected, control transfers to the specified line
number immediately.

O The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

ON ERROR
Statement

O Only level R and W (recoverable or warning) errors can be
processed by an error routine. Level F (fatal) errors always
terminate the program.

O Level R interrupts will terminate a program unless an ON ERROR
GOTO statement has been executed so that the error condition can
be treated.

O Without error processing, a level W error is ignored.

O When an error condition has been detected, further checking for
interrupt conditions other than ERROR or (CTRL)/C is
suspended until a RESUME is executed.

O When an error condition has been detected, the system variable
ERL will contain the line number at which the error occurred, and

ERR will contain the error number.

O If a second error is detected before encountering a RESUME
statement, the program terminates immediately.

NOTE
Further interrupt processing is suspended untila RESUME
statement is performed.

O If a (CTRL)/C interrupt occurs after error detection and before
encountering a RESUME statement, error processing is suspended
either temporarily or permanently. If the program includes
(CTRL)/C interrupt processing with a RESUME statement,
control will be returned to the error-processing routine when
(CTRL) /C processing is completed.

O A RESUME statement that does not specify a linenumber will
return control to re-execute the statement that caused the error.

ON ERROR
Statement

Example

The code segments below illustrate how to create a user-defined Error
Handler.

120 ON ERROR GOTO 8990 ! Create an error-handling vector
130 ! Other statements

8990 ' Error-handling routin
2000 IF ERL< 112045 AND ERR(3300 THEN 9020 !' Look for a Disk Not

' Loaded error at line 12045
oot PRINT “Insert a disk and try again" ! and display some help.
3020 RESUME

ON #n
Statement

Usage

ON # {expression} GOTO {linenumber}

Syntax Diagram

on | cock | coro C om) clock)= 7
CTAL/C
ERROR
fin CTRL/C
KEY
INTERVAL
PORT END

PPOL

PPORT
SRO \—(ERROR}

INTERVAL

KEY

(pert 0)
\e{ PORT —

PPOL Lo expression

(port 0
PORT P NC rant >) —

(sag) (PORT { numeric expression [-——4

(c0T0) 4 | Le (soto) linenumber cc >

_/
_/

/

_/

/

Ce ter xeon Fe /
_/

a

Description

The ON #n GOTO statement enables a program to respond to End-Of-
Line or End-Of-File characters received through an open input
channel from a serial (RS-232-C) port. Control is transferred to the
specified program routine containing a user-defined response
whenever either terminator character is received.

O When a terminator character is received through an open input
channel from a serial (RS-232-C) port, control is transferred to the
specified line number after completion of the current statement.

ON #n
Statement

3B) End-Of-Line and End-Of-File terminator characters are defined

by the SET utility program.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.
Program control then resumes at the next statement following the
one that was completed when the terminator character was
received.

When a terminator character has been detected, further checking
for interrupt conditions other than ERROR or (CTRL)/C is
suspended until the RESUME statement is encountered.

If this statement is used more than once in a program with the same
channel number, control is transferred to the line number

referenced in the most recently encountered ON #n GOTO
Statement.

Any of the sixteen available user channels may be used.

The referenced channel must be opened for input (OLD or not
specified) prior to the ON #n GOTO statement.

When interrupts occur on more than one channel simultaneously,
the lowest numbered channel has highest priority.

! Set up two RE&-232 channel interrupt vectors
ON @2 GOTO 21000 ' Channel 2 handler @ 21000

oO
oO
O ON #3 GOTO 26000 ' Channel 3 handler @ 26000
QO ! Other statements

eo; @) O ! Channel 2 interrupt handler
O ' Other statements
O RESUME

' Channel 3 interrupt handler
! Other statements
ESUME 3

ON...GOTO iB
ON...GOSUB

Statement

Usage

ON {expression} GOTO {line list}
ON {expression} GOSUB {line list}

Syntax Diagram

—+C on +] numeric expression GOTO/GOSUB }—| linenumber list

Description

The ON GOTO and ON GOSUB statements define multiple control
branches. Control transfers to on of the lines listed in the statement,

depending upon the current value of the expression.

O The expression must be numeric.

O The expression is evaluated and rounded to obtain an integer.

O The integer is used as an index to select a line number from the list
contained in the statement.

O The range of the integer must be between | and the number of line
numbers contained in the list.

O The branch of control may be either a GOTO transfer (refer to the
GOTO statement) or a subroutine call (see the GOS UB statement).

Example

The following example illustrates a common use of ON-GOTO:

Statement Meaning

ON A GOTO 400, 500, 600 Transfers control to line 400 if A= 1, to

line 500 if A = 2, or to line 600 if A=3.

The following example illustrates one use of ON-GOTO at line 1030.
Since the expression is normally rounded, INT(LOG(R)) is used
instead of LOG(R) to ensure that the voltage divider is used for all
values less than | volt (1000 millivolts).

ON...GOTO
ON...GOSUB
Statement

1000 REM -- Connect Instrument to Test Station
1010 ! R on input is the value of the voltage to be applied
1020 ' R is in millivolts and is between 10 and 1046
1030 ON INT(LOO (R)) GOTO 1200, 1200, 1300, 1300, 1400, 1400
1200 REM -— Setup External Voltage Divider
1210 ! Other statements
1290 GOTO 1500
1300 REM -- Connect Instrument Directly
1310 !' Other statements
1390 OOTO 1500
1400 REM -~— Give High Voltage Warning and Then Connect Instrument
1410 ! Other statements
1490 GOTO 1300
1500 REM — Take Readings
1310 " Other statements

ON INTERVAL
Statement

Usage

ON INTERVAL GOTO {line number}

Syntax Diagram

on | ctock | coro (oN) CLOCK
CTRL/C
ERROR

#n CTRL/C
KEY

INTERVAL
PORT

PPOL
PPORT

SRQ ERROR

mm

=z

So

Hou
e

INTERVAL

KEY |
L
E
E

L
L
L

numeric expression =

(port 0)
PORT

PPOL Le Numeric expression

(port 0)

H8

PPORT

‘+ PORT Numeric expression 4

{I

GOTO linenumber T

Description

The ON INTERVAL statement activates an interrupt at previously
specified periodic interval. An interval interrupts is enabled by:

1. Using a SET INTERVAL statement to specify the interval
period to be used, and

2. Arming the interrupt and selecting an interrupt handler by
executing an ON INTERVAL statement.

ON INTERVAL
Statement

The intervals are calculated so that the execution time of the interrupt
handler will not affect the timing. Assume that the statement:

100 SET INTERVAL 0:0:1 ! one second

has been executed. If the interrupt handler takes 20 milliseconds to
execute, the next interval interrupt will occur one second after the last
interrupt, not one second plus 20 milliseconds after the last interrupt.

The intervals are calculated so that the execution time of the interrupt
handler will not affect the timing. If the interrupt handler takes 20
milliseconds to execute, the next interval interrupt will occur one
second after the last interrupt, not one second plus 20 milliseconds
after the last interrupt.

If the interval time 1s short and a statement (say, an INPUT statement
from an instrument) takes longer than the timing interval, the interval
interrupt will occur as soon as the long statement is finished.
Subsequent interval interrupts will continue to occur at the same
timing intervals as before. Refer to the timing diagram:

Interval interrupts occur at the vertical arrows.

[*<—_fona statement} >

rt 4 yf.
¥ v mz.

0 1 2

time——»>

o
x
—

p
«

O
K

Interval interrupts occur at the x's.

The ON INTERVAL statement may be disabled by executing an OFF
INTERVAL statement.

Example

A periodic (interval) interrupt is activated by:

120 SET INTERVAL 1500 ' get interrupt every 1500 ms
130 ON INTERVAL GOTO ... ' activate interrupt

ON KEY Gs
Statement

Usage

ON KEY GOTO {line number}

Syntax Diagram

ON | CLOCK GOTO CLOCK cock | eoro—eC ow ye cuacx 7
ERROR

/ #n no CTRL/C _
KEY

INTERVAL /
PORT END

PPOL
PPORT /

SRQ | ERROR =)

om INTERVAL) /

KEY JS

NC tue expression + _/

(port 0) Can /
PPOL Ly numeric a,

ort 0
PPORT /

— __. L_.(coro)——»} linenumber in ~—>

Description

The ON KEY statement enables a program to respond to the
occurrence of a key entry on the touch-sensitive display by transferring
control to a specified program routine containing a user-defined
response.

O When a key entry is detected, control transfers to the specified line
number after completion of the current statement.

O The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

1

ON KEY
Statement

O

0

Example

When a KEY entry has been detected, further checking for
interrupt conditions other than ERROR or CTRL/ C is suspended
until RESUME is encountered.

When a KEY entry has been detected, the system variable KEY will
contain the number of the last touch key pressed.

The system variable KEY is set whenever the Touch-Sensitive
Display is pressed in an active area, regardless of whether ON KEY
GOTO is used. It remains set until it is read by a program
statement. (For example, K% = K EY)

If the system variable KEY is non-zero when ON KEY GOTO is
executed, control is immediately transferred to the specified line
number.

ON KEY does not reset the system KEY variable.

120 ON KEY GOTO 1200 ! Activate key interrupt

1200 ! Key interrupt handler
1210 KX = KEY
1215 IF KZ = 20 GOTO 1300 ' took for key number 20
1220 IF KX = 40 GOTO 1350 ‘ Look for key number 40
1230 PRINT "Try aegain*® ! Print notice
i2 RESUME ' And try again

Usage

O

ON PORT EB
Statement

N PORT [PORT p%] GOTO {linenumber }

Syntax Diagram

ON | CLOCK GOTO (oN) CLOCK

CTRL/C /
ERROR

/
#n CTRL/C
KEY

INTERVAL /
PORT END

PPOL
PPORT

J SRQ \aom ERROR —

om INTERVAL —

KEY /

NC tn tamer expression -— _/

(port 0) y
NC pont)—

(PPoL LL numeric expression —,

(port 0)
NC pron) — /

Le — GOTO linenumber im

Description

The ON PORT statement enables a program to respond to an IEEE-
488 port status change by transferring control to a specified program
routine containing a user-defined response.

O When a status change is detected, control transfers to the specified
line number after completion of the current statement.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

ON PORT
Statement

O When a status change has been detected, further checking for
interrupt conditions other than ERROR or CTRL/C is suspended
until RESUME 1s encountered.

O One interrupt vector is permitted for every configured port.

O When the port expression is omitted, port 0 is used.

O The port number given in the port expression must be in the range
of [0..1].

O Floating-point port numbers will be rounded to an integer.

O A status change interrupt 1s triggered whenever:

1. A DCL command 1s received by the controller,

2. A GET command is received by the controller,

3. The first serial poll of the controller (after a SET SRQ
statement has been executed) is performed by the Controller in
Charge,

4. A change in the state (i.e.
the controller IEEE-488 interface driver occurs.

, Idle, controller, talker, listener) of

The PORTSTATUS() function may used to determine the exact cause
of the interrupt.

110,

Example

130 ON PORT OOTO 1000
i30 ON PORT 1 GOTO 1900

1000 ! Port interrupt
1000 Sry = PORTSTATUS TPZ)
1010 BAX = 5ST% AND 3%
1020 TRY = ST% AND 16%
1030 CL% = STX AN
1040 PL% = STZ AND 4%
1050 IF TR% THEN ...
1060 IF CL% THEN...
1070 IF PL% THEN
1080 ON SAX + 1% OOTO 1090,
1090

1100

1110

1120

1900 : Port 1 interrupt handler

1110,

:

:

read
isola
trig
rece

Activate port O interrupt
! Activate port 1 interrupt

ort’s status
e gantroller state

ered
ved BCL or SDC?

was SRQ@ acknowledged?
action for GET command
action for clear command
action for SRQ@ acknowledge
1120
code

code

code

code

for idle part

for Controller

for Listener

for Talker

ON PPOLE&S
Statement

Usage

ON PPOL [PORT p%] GOTO {line number}

Syntax Diagram

ERROR
fn

ON | CLOCK GOTO CLOCK cock Co ttc = 7

nen CTAL/C)-

KEY

/

ie z S/
/

_/

PPOL
PPORT

SRQ \e{ ERROR)=

KEY /

NC inter expression [> _/

NC pont) (port 0) y

Lo expression a,

NC Front) — (port 0) /

numeric expression eH

q i Es GOTO linenumber —a

The ON PPOL GOTO statement enables a program to respond to a
positive parallel poll response from a configured instrument by
transferring control to a specified program routine containing a user
defined response.

O The ON PPOL GOTO statement initiates parallel polling on the
specified port, or on Port 0 if not specified. A poll will be
performed following the completion of each BASIC statement.

ON PPOL
Statement

O When positive response to a parallel poll is detected, control
transfers to the specified line number after completion of the
current statement.

O The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

O When a positive response to a parallel poll has been detected,
further checking for interrupt conditions other than ERROR or
CTRL/C 1s suspended until RESUME is encountered.

O If both Port 0 and Port 1 have PPOL interrupts enabled, port 0 will
be checked for a parallel poll response prior to checking Port 1.

NOTE
Some instruments clear a parallel poll bit when the condition
causing it disappears, or when the bus port is parallel polled.

When possible, the instrument responding to the parallel poll
should be programmed within the processing routine to reset
its poll response bit. If this bit remains set, the routine will be
immediately reentered after the RESUME statement.

Example

In the following example, line 10 indicates that the PPOL handling
routine starts at line 1000. At line 550, the PPOL is disabled by OFF
PPOL, and the program is halted by STOP.

10 ON PPOL GOTO 1000 ' Poll port O
20 other statements

5350 OFF PPOL N STOP
1000 ‘ Port O PPOL handler
1010 ' other statements
1020 '
1070 RESUME ' Return from PPOL handler

ON PPORT &
Statement

Usage

ON PPORT [PORT p%] GOTO {line number}

Syntax Diagram

"|e | 7
Key \> CTRL/C }- y

—" =>
PPOL

me Ca) S
om INTERVAL } /

KEY y,

NC tn tumeric expression S
ao

PORT “_ /

— Li numeric expression a

NC pron) _ /

Numeric expression eH

linenumber = ——>

Description

The ON PPORT statement enables a program to respond to data from
the optional Parallel Port by transferring control to a specified
program routine containing a user-defined response.

0 When data is detected, control transfers to the specified line

number after completion of the current statement.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

ON PPORT
Statement

O When data has been detected, further checking for interrupt
conditions other than ERROR or CTRL/C is suspended until
RESUME is encountered.

O One interrupt vector is permitted for every port.

’“O When the port expression is omitted, port 0 is used.

O The port number given in the port expression must be in the range
of [0..15].

O Floating-point port numbers will be rounded to an integer.

O Aninterrupt is triggered whenever a data bit/ byte/ word is received
on the specified Parallel Port.

Usage

ON SRQ EB
Statement

ON SRQ [PORT P%] GOTO {line number}

Syntax Diagram

ON | CLOCK

CTRL/C

ERROR
#n

KEY
INTERVAL
PORT

PPOL

PPORT

SRQ

GOTO (om) CLOCK

CTRL/C

™

END

NC arenvar)— INTERVAL

KEY

Cn} turmeric expression -—

(port 0)

Loe expression

(port 0) P
L
E

L
L

E
L
L

(srg) PORT numeric expression

Description

{1

. her Le
linenumber ‘—

The ON SRQ GOTO statement enables a program to respond to the
occurrence of a service request from an instrument by transferring
control to a specified program routine containing a user defined
response.

O The specified port is sampled after the completion of each
statement. If a port is not specified, port 0 is sampled.

When a service request is detected, control transfers to the specified
line number after completion of the current statement.

ON SRQ
Statement

2) The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

When a service request has been detected, further checking for
interrupt conditions other than ERROR or CTRL/C is suspended
until RESUME is encountered.

An internal SRQ flag is set by a service request on the enabled port.
It is reset in the controller by performing a serial poll on any
instrument on the port requesting service (for example, Y% =
SPL(10)). However, depending on the instrument, SRQ will
probably be set again until the instrument requesting service is
serial polled. This will cause the service request routine to be
immediately reentered after the RESUME statement.

ON SRQ GOTO does not reset the internal SRQ flag.

When SRQs are present on both port 0 and port | simultaneously,
the SRQ on port 0 will be responded to first.

Separate SRQ vectors may be set for each port.

“OPEN &
Statement

Usage

OPEN {filename$} AS [NEW or OLD] FILE {channel%} [SIZE
blocks]

Syntax Diagram

(file or device)
(old)

Coren) (output only)

(input only)

(sequential) FILE numeric expression
(random)

C om) Note: Virtual arrays are bidirectional.

| (largest possible)

(blocks)

NOTE: 1 block = 512 bytes numeric expression
or characters

Description

The OPEN statement assigns a data communication channel
numbered between | and 16 to a file or device. The following points
apply to any use of the OPEN statement:

O All subsequent input from and output to the file or device is made
by reference to the channel number.

O The channel is sequential access, unless it is a virtual-array channel.
Data is sent to, or retrieved from, sequential channels in serial
order.

O A virtual-array channel, requiring the DIM specification, is
random access. Data is sent to, or retrieved from, virtual arrays in
any order.

O The string following OPEN indicates the name of the file or device.
The default extension for file names is”. “ (3 spaces).

OPEN
Statement

The AS NEW, AS OLD, and DIM optional constructions of the

OPEN statement indicate specific and different actions for sequential
and random channels. The following points discuss these differences:

0

O

AS must be specified. If itis not followed by NEW or OLD, OLD 1s
assumed.

DIM specifies a random-access virtual-array file.

For a sequential channel, NEW indicates an output channel. OLD,
or no specification, indicates an input channel.

For a random-access virtual-array channel, NEW indicates that an
existing file by the specified name is to be deleted, if there is one.

For a random-access virtual-array channel, OLD (or no
specification) indicates that an existing file by the specified name is
to be accessed. If the file is not found, error 305 results.

Random-access virtual-array channels are bidirectional.

The numeric expression following FILE indicates the channel number
to be assigned. Following are some points to be considered in selecting
a channel number:

a)

0

The value of the numeric expression must be between | and 16.

Each channel number can only be used for one operation at a time.

A channel that was previously opened for a different purpose, and
is no longer in use, must first be closed before being reassigned.

SIZE has significance only for NEW files. It is ignored for OLD
files. The following points discuss some of the implications of the
SIZE specification:

The numeric expression following SIZE specifies the number of
512 character blocks to be reserved for a new file.

A new file opened without a size specification will be assigned the
largest available contiguous area.

Examples

Remarks

The

OPEN
Statement

The first new file opened on a device is assigned all available free
space if there is only one free area available. An attempt to open
another new file on the same device, before the first new file is

closed, results in error 306 (no room on device).

SIZE may be used to limit the amount of space reserved so that a
second new file can be opened on the same device.

SIZE may also be used to verify that a new file will have required
space available. For example, if a file requires 40 blocks, the
statement:

OPEN “EDO:TEST.ARC” AS NEW FILE 1% SIZE 40%

Will cause error 306 if 40 contiguous blocks are not available on the
Electronic Disk (device name ED0:).

The SIZE of a sequential file is the number of 512 character blocks
needed to hold the file.

10 OPEN "TEST.ARY" AS NEW FILE 1 SIZE 30
20 OPEN "TEST.OLD" AS FILE 2
30 OPEN “KBO: AS NEW FILE 15

use of the OPEN statement for virtual arrays is discussed
elsewhere in this section.

OPEN Es
Statement

Usage

OPEN {filename$} AS [NEW or OLD] DIM FILE {channel}
[SIZE blocks]

Syntax Diagram

(file or device)

OPEN string
(old)

(Output only)

(input only)

numeric expression

Note: Virtual arrays are bidirectional.

(largest possible)

(blocks)

numeric expression

OPEN assigns a channel number to one or more virtual arrays
(random access files).

(sequential)

(random)

NOTE: 1 block = 512 bytes
or characters

Description

O A file name specification must follow OPEN.

QO The file will be on the default System Device (SY0:) unless a device
specification is included with the file name.

O A virtual array may only exist ona file-structured device due to the
random access requirement.

OQ Unlike ordinary channels described, virtual-array channels are
bidirectional.

O NEW specifies that the file will replace any existing file found with
the specified name.

O OLD specifies that the channel will be associated with an existing
file. Error 305 results if the file cannot be found.

OPEN
Statement

O

O

OLD is assumed when neither NEW nor OLD 11s specified.

DIM must be included to specify that the channel opened will bea
random-access file.

The numeric expression following FILE designates the channel
number.

Channels are integer numbers | through 16.

Error 303 results if the channel is already in use.

The numeric expression following SIZE specifies the number of
512-byte blocks to be allocated for a NEW file.

The largest available contiguous space is allocated for a NEW file
when SIZE is not specified.

SIZE is ignored for OLD files.

SIZE may need to be specified to open two or more NEW files
simultaneously on the same device. If the device is packed, or has
not had any file deletions, there is only one contiguous space
available.

Each floating-point element occupies 8 bytes (64 bits).

Each integer element occupies 2 bytes (16 bits)

Each string element occupies 16 characters, unless specified
otherwise by the DIM statement.

When the channel is closed, information supplied by the DIM
statement is used to reduce the space allocated to the virtual array
to that actually required.

OPEN
Statement

Example

The following program fragment illustrates the use of the OPEN
statement, as applied to virtual arrays (random access files).

10 OPEN “ARRAY.VRT" AS OLD DIM FILE 1 SIZE 10
20 OPEN "TEST.BIN® AS NEW DIM FILE 2
30 ' more code
40 ' more code
30 DIM #1, AR$(9,9)232, BBZ(939)
60 DIM #2, TE(199)
70 '‘ more code

Remarks

Refer to the DIM statement for additional examples of declaring
virtual arrays.

PACK G3
Statement

Usage:

PACK [device$]

Syntax Diagram:

(sy@:)
PACK ——(PACK —

device$

The PACK statement is used to reorganize a file-structured device to
consolidate unused areas. When files are deleted, blank areas are left
within the file structure. The PACK statement compacts these areas
into one contiguous file space. It may be possible to make room fora
file that wouldn’t otherwise fit by packing the device.

Description

O Note that this statement may take some time to be completed;
CTRL/C and CTRL/P are disabled while this statement is in
progress.

O The device specification string must be enclosed in matching
quotes.

O If this statement is issued in immediate mode with no command file

active the message

Packing XXX:

is printed to alert the user that a lengthy operation is in progress.
The message will not appear if the PACK statement is executed by
a program or during the execution of an immediate mode
command in a command file. Packing “sy0:” will result in the
actual device name being printed instead of “SY0:”.

PACK
Statement

Example

The following display dialog illustrates using the PACK statement in
the immediate mode:

K =
PACK
Packing MFO:

Ready
PACK “ml: "
Packing MF1:

Ready

S Y
In the first example, the PACK statement was used in the immediate
mode to pack the System Device (since no device was specified). The
System Device was MFO:.

In the second example, MF1: was specified and packed.

PASSCONTROL GiB
Statement

Usage

PASSCONTROL device

Syntax Diagram

PASSCONTROL ————e{ PASSCONTROL)——————l_ device | —__.

Once the CIC function has been passed to a different controller on the
bus, the Controller may regain control of the bus in one of two ways:

O Ifthe Controlleris the “System Controller” (that is, the SYC switch
is set true on the SBC) it can use the INIT statement. This sets the
IFC (InterFace Clear) line and causes any other Controller-In-
Charge (CIC) to relinquish control to the System Controller.
Usually this form of “seizing control” is only done as a last resort.

O If the 1722A is not a System Controller and performs a
Passcontrol, it can only regain control by having a Controller In
Charge pass control back to it.

Description

The PASSCONTROL statement permits the Instrument Controller to
designate another IEEE-488 bus instrument to act as Controller in
Charge of the interface.

Example

The statement:

PASSCONTROL @23

addresses device 23 as a talker and issues a “take control” command to

it. Runtime errors diagnosed are those which might occur with any
addressed command (e.g., illegal device address, not CIC, etc.).

Pi Ga
System Constant

Format

PI

Description

The system constant PI stores the value 3.14159265358979. PI
represents the ratio of the circumference to the diameter of a circle.

O PI is stored as a floating-point constant

O PI may be used as any other floating-point variable, except that
other values may not be assigned to it.

Example

The following example program computes the circumference of a
circle.

' compute the circumference of a circle
30 PRINT “diameter “ \ INPUT D
30 C = PI # D
40 PRINT "The circumference is: “"s5C
270 END

PORT Expression &3
Statement Modifier

Usage

PORT {numeric expression}

Syntax Diagram

PORT PORT if numeric expression a eed

Description

A PORT expression modifies a Fluke BASIC statement to
communicate with an instrument or group of instruments after they
have been previously addressed, without re-addressing them. Using a
PORT expression as part of a BASIC statement suppresses individual
device addresses and communicates directly with the named port.

The [EEE-488 port(s) are addressed by BASIC with the PORT
statement modifier (port expression). A port expression takes the
form:

PORT {numeric expression}

O The numeric expression used ina statement must evaluate to either
0 or 1. Refer to the 17XX Instrument Controller System Guide for
identification of bus ports and information on cable connections.

O Once a device has been addressed, a PORT expression may be used
to communicate directly with the device, bypassing any device
addressing. For example, the statement:

PRINT @4, AS

prints string A$ to device number 4 on IEEE-488 port 0. Now the
same device may be addressed in a subsequent statement with:

PRINT PORT O. AS

This form of the PRINT statement sends the string A$ to port 0
without performing any device addressing.

PORTSTATUS() G3
Function

Format:

PORTSTATUS(p%)

Description

The PORTSTATUS(function determines the status of an interface
port.

© PORTSTATUSO(O returns an integer containing the port status
code for the specified port.

O The port number must be either 0 or 1. A floating-point value will
be truncated to its integer value.

The PORTSTATUSQ function returns an integer result having the
following format:

MSB LSB
| --- 0 --- | GET | DCL | SPMS | status |

IS 5 4 3 2 1 0 __ bit numbers

The fields are:

GET is a Single bit set nonzero if a GET (Group Execute Trigger)
command has been received since the last time the
PORTSTATUSO(O function was used.

DCL is a Single bit set nonzero if a DCL (Device Clear) command
has been received since the last time the PORTSTATUSQ
function was used.

SPMS is a single bit which indicates that a serial poll of the
controller has been performed by the Controller in Charge
since a SET SRQ statement was executed. This indicates
that the SRQ generated by the BASIC program has been
acknowledged by the Controller in Charge.

PORTSTATUS()
Function

Status is a two-bit integer which encodes the current state of the
IEEE-488 interface port. The status should be interpreted as
follows:

0 means that the interface 1s idle (the controller is not the

Controller in Charge, not addressed as a listener, and not
addressed as a talker). The status of an unconfigured port
is always returned as zero.

means that the controller is the Controller in Charge on
this port. If the SYC (system controller) switch on the
IEEE-488 interface board is set true, the controller will be
in the CIC state when the Operating System program 1s
loaded (upon power-up or after the RESTART button is
pressed).

means that the 1722A has been addressed as a listener on

this port. This implies that an INPUT statement should
be executed to read a command from the Controller in
Charge of the interface on this port.

means that the 1722A has been addressed as a talker on
this port. This implies that a PRINT statement should be
executed to send data to the Controller in Charge of the
interface on this port.

The DCL, GET, and SPMS status bits are set and reset automatically.
The GET, DCL, and SPMS status bits for a particular port will be

reset to zero when

1. The PORTSTATUS() function for the port is used, or when

2. A RESUME statement is executed which terminates the ON

PORT interrupt handler for the port.

Example

PORTSTATUS()
Function

The following code segment is an example of the use of the
PORTSTATUS(function. This code can be used either to determine
the cause of an ON PORT interrupt or simply to periodically poll the
state of the IEEE-488 bus.

1020 TR% =
} - -4

O PLZ =
1050 IF TRA
1060 IF CL%
1070 IF PLZ
10680 ON SAZ

PORTSTATUS(TPZ) '
STZ AND 3% !
STZ AND 16% !
STZ AND 82% !
STZ AND 4% !
THEN ...- '
THEN ... !
THEN ... '

Tread ort’s status

isolate controller state
triggered?
received DCL or SDC?
was SRQ acknowledged?
action for GET command
action for clear command
action for SRQ@ acknowledge
1120
code for idle port

code for Controller

code for Listener

code for Talker

PPL() G3
Function

Usage

PPL (port number)

Description

PPL (Parallel Poll) performs a Parallel Poll of a specified instrument
bus port and returns an integer result.

O The result is an integer value between 0 and 255.

O Refer to Appendix I, ASCII/IEEE-488 Bus Codes, for a chart of
binary patterns and decimal numbers. To use this chart, read the
value returned by PPL in the decimal column and read the binary
pattern in the binary column.

O The correspondence between the IEEE-488 DIO lines and binary
bit numbers is as follows:

DIO Line Bit Number Numeric Weight

DIO1 0 l
DIO2 J 2
DIO3 2 4
D104 3 8
DIOS 4 16
DIO6 5 32
DIO7 6 64
DIO8 7 128

Example

The following example assigns the results of a parallel poll of port Oto
the integer variable Y%.

4710 YA = PPL(O4)

An AND may be used to test individual bits of the parallel poll result.
The following example performs a parallel poll of port 1. If the DIO8
line were asserted true, the statement(s) following THEN would be
executed.

6460 IF PPL(1%) AND 128% THEN ...

PRINT Gi
Statement

Usage

PRINT expression

Syntax Diagram
(to the display)

PRINT PRINT <
(channel)

—G)-L numeric expression ot

N _~ } /
~| device list [—_

PORT numeric expression oan

(unformatted) (blank line)

(format)

Cosne {stn +) oe
Ci

—-
The PRINT statement sends string, integer, or floating-point data to
the display, an opened Channel or the IEEE-488 Bus.

v

Description

O PRINT sends data to the display unless otherwise specified in the
statement.

O A single PRINT statement can send the results of more than one
expression, including single or multiple constants or variables.

O Successive data items following PRINT must be separated by a
comma or semicolon, to format the display.

O Unless otherwise specified, the data sent by a PRINT statement
will be followed by a pair of ASCII control characters (carriage
return and line feed).

O A comma or semicolon may be used to terminate a PRINT
statement and suppress the Carriage Return and Line Feed
Characters sent at end-of line. This will cause a succeeding PRINT
statement to display data on the same line.

PRINT
Statement

D

Examples

Data items separated by commas are displayed in 16-character
print fields with up to five print fields per line.

If a data item is longer than one print field the next data item falls
into the next empty print field even if the next print field is a
succeeding 80 character line.

A numeric data item is displayed with a leading space or sign, and a
trailing space. It is printed out to seven significant digits. A value
from .1 to 9999999 inclusive is printed out directly. A number less
than .1 is printed out without E notation if all of its significant
digits can be printed. All other values are printed in E notation
(+-0.dxxxxxxE-+yyy), where d isa non-zero digit, x is any digit, yyy
is the exponent, and trailing zeros are dropped.

Data items separated by semicolons are displayed side-by-side with
no added spaces (other than those generated during numeric to
decimal ASCII conversions).

PRINT returns the cursor to the left-hand end of the next display
line if the last data item is not followed by a comma or semicolon,
or if no data items are specified.

If the cursor is on the bottom line, PRINT scrolls the display
upwards one line, unless the PRINT command is a cursor
positioning command, or the display is in Page Mode.

The following examples illustrate some common uses of the PRINT
statement:

STATEMENT RESULTING DISPLAY %

PRINT,,, (48 spaces)

PRINT 4,5 4 (15 spaces) 5 (1 space) *

PRINT 5;-6; 5-6 *

A$=“Hz”

PRINT “K”;A$; KHz%

PRINT
Statement

The following program example illustrates typical usage of PRINT
statements to display readings taken from a voltmeter. The ”,“ 1s used
to format the displays in columns, and the ”;“ to print out the units
together with the values. The comma at the end of line 1090 ensures
that "** FAILED *** will be printed on the same line as test results
that were found out of limits. Line 1120 ensures that when the test does
not fail, any further data will not be displayed on the same line. The”;
at the end of lines 1100 and 1110 suppresses the carriage return and line
feed after "** FAILED *** is displayed. Therefore, line 1120 has the
same effect whether the test passes or fails.

1000 REM -- Display Readings In Volts and Display Limits
1010 R is value tfead t voltmeter
1020 LL is lower Limi
1030 ' UL is upper
1040 ' Print # FAILED: ae if reading
1070 io is agings tolerances

1070 PRINT "LOWER LIMIT", "READING", COPPER® LIMIT"
1080 PRINT ‘Leave blank line
1090 PRINT LLi ’V’, Ri ’V’%, Ubi ’V’,
1100 IF LL >) R THEN PRINT ‘## FAILED ##°’) ‘Below tolerance
1110 IF UL «(R THEN PRINT ‘## FAILED ##°) 'Above tolerance
1120 PRINT 'Next line

Assume LL has the value 2.9 and UL has the value 3.1. Then for
various values of R, the display would appear as follows:

LOWER LIMIT READING UPPER LIMIT

2.9V 2.87V 3.1V ## FAILED #+#

LOWER LIMIT READING UPPER LIMIT

2.9V 3. O4V 3.1V

LOWER LIMIT READING UPPER LIMIT

2.9V 3. 103V 3.1V ## FAILED ##

The following example shows PRINT as an Immediate Mode
command. The result of the command is a single line of values as
follows:

Cr ~>
PRINT 2: EXP(2), 43 EXP(4), 63 EXP(6), 8: EXP(8)

2 7.389056 4 3$4.59615 6 403.4288 8 2980. 958

NOTE
EX P(n) is the result of raising e (the natural log base) to the
power n.

PRINT @ 3
Statement

Usage a Ny
PRINT [USING] @ [device list/expression
PRINT [USING] PORT p%, expression

Syntax Diagram

(to the display)
PRINT PRINT

» (channel)

been CD anal numeric expression

LG) +f aner expression [—

(unformatted) (blank Itne)

v

(format)

USING Cr)

Description Co |

PRINT and PRINT USING are used to output data to designated
listeners. The instruments which are to receive output data are
specified in a device list.

print item

O A PRINT or PRINT USING command which is followed by a
device list addresses the specified devices as listeners.

O All other devices are commanded to unlisten.

O When only an @ character follows PRINT or PRINT USING,

with no device numbers, then no listen, unlisten, talk, or untalk
commands are sent. Data is sent to the last bus address. This will
increase the speed of data output.

O One or both instrument ports may be represented in the device list.

O Output data is sent character by character.

PRINT@
Statement

O Characters are sent exactly as anormal PRINT or PRINT USING.
statement, except for the use of the comma and semicolon to
format the output.

O Acomma following a data item in the output list indicates the EO!
Bus line is to be set simultaneously with the last character of that
item. It does not indicate tabulation to 16 character columns by
sending extra spaces.

O A Carriage Return and Line Feed, with the EOI Bus line set
simultaneously with the Line Feed, follows the last data item in a
PRINT list when it is not terminated with either a comma or a
semicolon.

O Array subranges may be included in the output list.

O A comma or semicolon following a subrange specification is
equivalent to listing each element of the array subrange followed
by the comma or semicolon.

Examples

The following example sends the characters “FORA3” to the DVM if
the value F1 is 0 and R1 is 3. Note the use of the mask “#” to eliminate
the leading and trailing space that would normally be printed with F1
and R1. After the 3, a Carriage Return and a Line Feed (with EOI set
true) 1s sent.

1700 REM --— Program DVM on Port 1, Address 4
1710 ' Send function and range: Fi and Ri
1720 PRINT @ 104%, USING “#", "FF"; Fis "RA"; Ri

The following Immediate Mode PRINT statement addresses
instruments on port 0 at device 2 and at device 4 with secondary
address 6 as listeners. It then sends out the contents of strings A$(3)
through A§$(6) and sets EOI true with the last byte of each string.

PRINT @ 2 @ 4:6, AS$(3%.. 6%),

PRINT@
Statement

The following example selects the instrument at address 2 as a listener
at line 100. The indicated data is then sent and the instrument remains a
listener. Since there is no other instrument bus activity before line 200,
the characters ”R1?“ will be sent to the same instrument.

PRINT @ 2. “F153R07" Set up instrument

other non-instrument statements

PRINT @ “R17” Change range of instrument
other statements

PRINT #n
Statement

Usage

PRINT expression

Syntax Diagram
(to the display)

PRINT PRINT
| (channel)

numeric expression)

PORT numeric expression f=

(unformatted) (blank line)

(format) (

Cusine) oe ee

Ci)
/ ’ a

AN

+>

Description

PRINT is described here for output to a file through a previously
opened channel. PRINT may also be used for direct display output, or
for output to instruments on the [EEE-488-1980 bus. These
applications of PRINT are described in other sections in this manual.

O The numeric expression following PRINT selects a previously
opened channel. See the OPEN statement described in this section.

O The items to be printed are listed, separated by either acomma ora
semicolon.

O The items to be printed may include integer, floating point, and
string expressions, as well as subranges of arrays and virtual
arrays. Refer to the section on Data, Data Types, and Expressions,
for a discussion of array subranges.

O When the channel is attached to an RS-232 port, the End-of-File
character (as defined by the SET Utility program) will be
substituted for any (CTRL) /Z, CHR$(26), characters.

PRINT #n
Statement

O The USING option may be specified for formatted output. Refer
to the PRINT USING section for details.

Examples

The following examples illustrate some of the implications of
specifying an array subrange in a PRINT statement. For a one-
dimensional array, the designation A(m..n) is equivalent to the list of
elements A(m) through A(n). Formatting may be as follows:

1. With semicolons:

PRINT A(m..n);

is equivalent to:

PRINT A(m); A(mbl!); ...; A(n);

2. With commas:

PRINT A(m..n),

is equivalent to:

PRINT A(m), A(mbl), ..., A(n),

3. With neither commas nor semicolons:

PRINT A(m..n)

is equivalent to:

PRINT A(m)

PRINT A(m+1)

PRINT A(n)

PRINT #n
Statement

The following example illustrates the sequence of output of a two-
dimensional array subrange. As with one-dimensional output, the
formatting may be with semicolons, commas, or neither. This sequence
is often described as ”row-major “, 1.e., the first subscript (the row)
changes slowest.

PRINT A(m..n, r..s)

is equivalent to:

PRINT A(n, r)

PRINT A(n, rb1l)

PRINT A(m, s)

PRINT A(mbIl, r)

PRINT A(mbl, rb)

PRINT A(mbl, s)

PRINT A(n, 1)

PRINT A(n, rbl)

PRINT A(n, s)

In the following three examples, NV(I) is a 11-element array used to
store 10 expected nominal values for readings to be taken by an
instrument. (Element zero is not used.) The 10 actual readings are in
the array R(I). The examples illustrate different options for the
printout format.

PRINT #n
Statement

This first example produces three columns of data. Each element of
data is printed out in default format. Note that this results in some
items that are difficult to read, especially in the column marked
% ERROR. The comma between the elements of the PRINT statement

(line 1050) produces the columns.

OPEN "KB1:" AS NEW FILE 1
Other statements

GOSUB 1000
Other statements

CLOSE 1 \ STOP
REM -—- Subroutine: Output Readings To Printer
PRINT #1 ' Blank line
PRINT #1, ‘NOMINAL VALUE’, READING’, ’X ERROR’ ‘! Headin

ERENT 8s yo 10 | Blank’ Line
PRINT #1, NVCI), RCI), (RCI) — NVCI)) /S NVCI)D # ioo” ny resuits:
NEXT I
RETURN

Results:

a \
NOMINAL VALUE READING XERROR

aaa a. 19327 -1. 20296
e 444 4.361702 -1.831896

6. 666 6. 758841 « 392795
8.6888 8.891673 « 4133037E-01

-a.ada ~2. 246359 -1.09624¢é
—-4, 444 -4. 50368 1.342932
-6. 646 —-4. 3456357 -1.8035925
-8. 8688 —-8. 715492 -1. 94090
100 98. 70009 -1.2999193

~100 —-99. 386468 0. 6133201

Va y
Le y,

This second example is an improvement on the previous one. The
USING option of the PRINT statement formats the output as
described in the entry for the PRINT USING STATEMENT. The
semicolons (;) in line 1050 separate numeric data elements from units
designators (in this case, V for voltage). This results in a more readable

format. Note the asterisks (*) in the last line of the % ERROR column,

this results when a numeric value does not fit within the designated
mask. The actual value in default format follows the question mark.

PRINT #n
Statement

10 OPEN “KB1:"* AS NEW FILE 1

250 CLOSE 1 \ STOP
1000 REM --— Subroutine: Output Readings To Printer
1005 ! Linearity Ss:
1010 PRINT #1, Usine. “Se0. #HN’, CLIN: “+; NV(1..4)5
1013 PRINT #1 ' Blank line
1020 PRINT #1, USING ‘’S##. #84’, ‘’RDGS: “5 R12. 4); !' Print readings

1030 PRINT #1 ' Blank line
1049 PRINT #1 ‘ Blark line
1043 ' Negative Linearity:
1050 PRINT #1, USING ’S##. 080°’, ‘NEG LIN: °; NV(5..8);
10335 PRINT ans ' Blank line
1037 ' Ne tive readin

100 PRINT #1, USING “S##. #88’, “NEG RDCS: °’; R(5..8);
1063 PRINT #1 Blank line
1070 RETURN

Results:

(, ~
NOMINAL VALUE READING % ERROR

2.222V 2~1938V -1.2%
4. 444V 4. 362V —-1.9%

6. 666V 6. 759V 1. 4%
8. 88seVv 8. 892V 0. O%

—-2.222vV —-2. 246V 1.1%
—-4. 444V —-4. 304V 1.3%

-6. 666V —-6. S46V -1.8%
-8. 8B3V -B.713V —-1.9%

100. OOOV 98. 7O00V -1.3%
-100. OO0OV Oo. OOOV HERA

This third example illustrates the use of a subrange specification to

print selected elements of an array. Elements of arrays NV and R, the
nominal values and readings, are each printed one after the other,

using a subrange specification. The string mask following USING is
organized to space the elements. The semicolons used in the PRINT
statement allow many elements to be printed on one line. Note the use
of the PRINT statement at lines 1015, 1030, 1040, 1055, and 1065 to

force a Carriage Return and Line Feed.

10 OPEN "“KB1i:" AS NEW FILE i1
26 Other statements

200 GOSUB 1000
210 ! Other statements
z20 |!
2050 CLOSE 1 \ STOP

1000 REM -- Subroutine: Output Readings To Printer
1010 PRINT #1 ' Blank line
1020 PRINT #1, ‘NOMINAL VALUE’, READING’, ‘°%X ERROR’ ' Headin
1030 PRINT @1, ' Blank line
1040 FOR I = 1 TO 10 ' Print results:

1080 PRINT #1, NV(ZT), RET), (RET) — NUCL) Z NUCI) # 100
1060 NEXT I
1070 RETURN

PRINT #n
Statement

Results:

ya

NEG LIN: -2.222 -4. 444
NEG RDGS: ~-2.246 -4. 504

(—

LIN: 2.222 4.444 6.666 8.888
RDGS: 2.195 4.362 6.739 8.892

PRINT #n
Statement

10 OPEN “KB1:" AS NEW FILE 1

250 CLOSE 1 \ STOP
1000 REM -- Subroutine: Output Readings To Printer
1005 ' Linearity Ss:
1010 PRINT #1, USING “S##. #88, “LIN: ‘; NVG1.. 4);
1015 PRINT #1 ' Blank line
1020 PRINT #1, USING ‘’S#8. ##8@°, ‘RDGS: “; R¢C1..4); !' Print readings
1030 PRINT #1 ' Blank line
1049 PRINT #1 ‘ Blark line
1045 ' Negative Line
1050 PRINT #1, USING “stl. #4%', “NEC LIN: 7’; NV(5..8);
1035 PRINT #1 ' Blank line
1057 ' Negative readi
1060 PRIN? #1, USING “S8e. #88’, “NEG RDCS: ‘; R(5..8);
10635 PRINT #1 Blank line
1070 RETURN

Results:

(- =
NOMINAL VALUE READING % ERROR

4. 444V 4. 362V —-1.9%

6. 666V &. 7359V 1.4%
- 888V 8. 892V 0. 0%

-2.222V ~2. 246V 1.1%
—-4. 444V —-4. 504V 1.3%

-6. 666V -&. S46V -1.8%
-8. B8B3V -B.7135V —-1.9%

100. O00V 98. 700V -1.3%
-100. OOOV - 00 HH

> 7

This third example illustrates the use of a subrange specification to
print selected elements of an array. Elements of arrays NV and R, the

nominal values and readings, are each printed one after the other,

using a subrange specification. The string mask following USING is
organized to space the elements. The semicolons used in the PRINT
statement allow many elements to be printed on one line. Note the use

of the PRINT statement at lines 1015, 1030, 1040, 1055, and 1065 to

force a Carriage Return and Line Feed.

10 OPEN “KBi:" AS NEW FILE 1
20 Other statements

200 GOSUB 1000
210 ' Other statements
zzo!
250 CLOSE 1 \ STOP
1000 REM -- Subroutine: Output Readings To Printer
1010 PRINT #1 ! Blank line
1020 PRINT #1, ‘NOMINAL VALUE’, READING’, ‘% ERROR’ ‘' Headin
1030 PRINT #1, i Blank line
1040 FOR I = 1 TO 10 ' Print results:
1050 PRINT #1, NV(IT), RED), (ROT) — NVLID) / NVCT) # 106
1060 NEXT I
1070 RETURN

PRINT #n
Statement

Results:

(—

/

LIN: g@-222 4.444
RDGS: 2.1935 4.362
NEG LIN: -2.222 -4. 444
NEG RDGS: -2.246 -4. 504

6.666 8.888

Usage:

PRINT USING
Statement

PRINT USING format ; expression

Syntax Diagram:

PRINT
(to the display)

PRINT ~
(channel)

Dena CD anal numeric expression

2 ee |
N | device list - —

Gen) [ae expression -—

(unformatted) (blank line)

"A
(format)] /

USING @

oe |

Description

The optional USING specification of the Print Statement designates a
specific format for data output.

0 The string mask following USING specifies the format for all
numeric information to be output. Table | presents the string mask
characters.

The string mask may be predefined in a string variable, or must be
enclosed in quotes.

Leading zeros are not output, except that one leading zero is
output whenever there are no significant digits to the left of the
decimal.

A space is output in the position reserved for a sign when the sign is
positive.

Data is rounded at the least significant digit specified in mask when
it contains additional digits.

The string mask has no effect on string output.

PRINT USING
Statement

O If the number cannot be represented using the format indicated,
the string printed will be a field of asterisk (*) characters filling the
entire number field (i.e. the asterisk string will take the same space
allocated by the format string for the number).

O Format overflow may be caused by any of the following
conditions:

1. A negative number must be printed but no sign position (S or P
in the format string) has been specified.

2. The field width to the left of the radix (decimal) point is too
small to hold the number. This will never occur with the
exponential format.

3. A two-digit exponent field has been specified, but the actual
exponent magnitude is greater than 99.

PRINT USING
Statement

Table 1

CHARACTER MEANING

Corc

AAAN

AAAAA

Indicates that the comma (,) 1s to be used for the radix
point. If the ”,“ specification is used to comma-separate
the output with the ”"C“ format specification, the period
(.) is used as the digit separator. This conforms to the
European numeric formatting conventions.

Indicates that the sign should always be printed. A “+”
will be printed for positive numbers.

Reserves a position for a sign symbol (+ or -). When
positive, a space is output. When negative, a “—” character
is used. Only one “S” may be used in the mask, and it must
be the first character.

Reserves a position for a digit or a space.

Reserves a position for a decimal point. Only one”.“ may
be used in the mask. When a comma 1s included in the
mask, it must precede the decimal point.

Indicates that acommais to be placed every three digits to
the left of the decimal point. When a decimal point is
included in the mask, it must follow the comma.

Reserves four positions for an exponent. When used,
these four carets must be the last characters in the mask.
The output will be left justified, using the number of digits
and the decimal position defined in the mask, followed by
”E+mn” or E-mn”. The number output for “mn” is the
number of places the decimal point must be moved to
restore the original form of the number (“ for right, - for
left).

As above, except “4*%* ” reserves five positions for an
exponent. The exponent is printed as a 3-digit field.

PRINT USING
Statement

Examples

The following example illustrates PRINT USING processing various
number forms through the same string mask:

PRINT USING "S#@e#ee, .@8", -.9, 99, 9999, 99999, “Nine”

(-». 90 979.00 9,999.00 940 Nine)

This next example illustrates a PRINT USING statement in a program
that reads numeric data and then displays it in two different special
purpose fromats using masks stored in string variables.

100 AS = “SHHHH,. 90° \ BS = ", OHH"
110 FOR I = 1 TO 4
120 READ A. B
130 PRINT As Bs TAB (20)) "8"5
140 PRINT USING AS, A,
150 PRINT USING BS, B
160 NEXT I
170 DATA 9999.99, .888. .03, .00368, .00002230, -.12
160 DATA 222222, 7777

(.

Ready

9999.99 0.888 89, 999.99 - 86s
0.03 0.00368 s 0.03 ~ 004
0. 0000223 ~-0.12 $. 3408
agadaa 7777 tb tb 0b HHT

The following example illustrates the effects of exponential notation as
output by PRINT USING:

f ~
PRINT USING “S@8. @4HAAAA", .0004, 9E-14, -4356

40. OOOE-03 90. OOOE-13 -43. S60E+02

PROTECT
Statement

Usage

PROTECT {file$}

—-(PROTECT) —} files be

Laws 5

Description

The PROTECT statement assigns a protection code to a specified file
to prevent it from being deleted (e.g., via KILL or OPEN AS NEW
FILE).

Syntax Diagram

O The “+” protection code is visible using the DIR or EDIR
statements to examine the directory containing the specified file.

O Attempting to delete a protected file will result in an error.

Example

The instruction

10255 PROTECT "RPFILE. TMP"

assigns a “+” protection code to the file RPFILE.TMP to protect it
from deletion.

QDIR GB
Statement

Usage

QDIR [device$] [TO filename$]

Syntax Diagram

—y oir 7 = ’

a EDIR D—

La) ES

| display

. —>

filename$ __|

La device if

The QDIR statement prints a short (or “quick”) directory listing in
which only the filenames (not the sizes, protection codes, or file
creation dates) are given.

Description

O Device$ is the optional name of the device for which a directory
listing is desired (which is “SY0:” if omitted).

O Filename$ is the optional name of a file to which the directory
listing 1s to be sent (which is “KBO:” if omitted).

The output format ts:

filel file2 file3 filed fileS file6

file7

Example

The statement

QDIR

displays the directory of SY0: on KBO: (the display).

RADS$() GiB
Function

Usage

RADS$(integer%, base%)

Description

The RAD$ function converts a numeric value to a printable string of
digits in a non-decimal base. It returns a string (without leading zeroes
or blank padding) corresponding to integer% as a number using the
given base base%.

O “digits” greater than 9 in the output string will be returned as “A”
through “Z”.

O Any floating-point arguments will be truncated to an integer,
which may cause an arithmetic overflow (error 603).

O The value of intger% is limited to the range of integers.

O The sign of base% determines whether or not a “—” character will
precede the ASCII representation of the number. If base% 1s
positive, no “—” character will precede a negative integer%. If
base% is negative, a “—” character will precede the representation
for a negative integer%.

O Anerror516(ill-formed expression) will be reported if the absolute
value of base% is less than or equal to 1.

O If the value of base% is greater than 36, strange characters may
appear in the string produced by RAD$().

Example

PRINT RADE(-16%. 16%), RADE(-16%, -16%)

would print

FFFO ~10

The statement

PRINT RAD®(32%, 16%), RAD®(32%, 8%), RADS(32%, 2%)

would print

20 40 100000

RANDOMIZE &
Statement

Usage
RANDOMIZE

Syntax Diagram

RANDOMIZE RANDOMIZE ~

Description

The RANDOMIZE statement generates a random seed number from
the system clock that is used internally by the RND function. The
RND function normally creates a repeatable psuedo-random series of
numbers. When the RANDOMIZE statement is used, the RND

function creates a truely random non-repeatable sequence of numbers.

0 RANDOMIZE may be used in the immediate mode to influence
random numbers which are also used in the immediate mode.

O It is recommended that RANDOMIZE be used only once in a
program. Repeated RANDOMIZE statements may cause the
RND function to produce non-random results.

Example

Following is an example of how the RANDOMIZE statement works
in a program. The example begins with a program WITHOUT a
randomize statement:

100 FOR I#1 TO 3 ' For 3 times
110 PRINT RND; ' Print a random number
120 NEXT I

Running this program any number of times will each produce exactly
the same results, because without the RANDOMIZE statement, the

RND function prints a repeatable sequence (which is reset to the
beginning by the RUN statement):

0. 2874767 0. 1992549 0. 1633877 0. 3702594E-01 0. 2543282E-01

Adding the line

90 RANDOMIZE ' Create a random seed

to the program above creates a new random set of numbers each time
that the program is run.

Statement

Usage
RBIN [device], [wbyte clause] [variable or array subrange]
RBIN [port numeric expression], [wbyte clause] [variable or array
subrange]

Syntax Diagram
(input only)

RBIN RBIN —} device

Read Binary

wbyte clause
mH _y j numeric expression

(double precision)
val real variable ie \

~C

Description

The RBIN (Read BINary) statement receives single- and double-
precision data in IEEE standard floating-point format from IEEE-488
bus instruments.

O The specified instrument device number is addressed as a talker.

O Instrument addressing is skipped when the @ character follows
RBIN without a device specified.

O When the statement includes a WBYTE clause, data specified by
the WBYTE clause is then sent to the specified port. See the
WBYTE statement.

O The WBYTE clause selects a subrange of an integer array for
output. This may contain addressing, bus messages, and device-
dependent data.

O The WBYTE clause does not need to be sent to the same

instrument port from which input is being taken.

O Make sure that the WBYTE output does not unaddress the
instrument as a talker if it is sent to the port from which input is
read.

O A single floating-point value is then received from the specified
instrument. The value must be in the selected format.

RBIN
Statement

O :4 specifies a four-byte single-precision number.

O :8 specifies an eight-byte double-precision number.

O The default format is eight-byte double-precision.

O The variable or array subrange to receive the data must be floating-
point variable type.

O Single-precision data is converted to double-precision (internal
format) and assigned to the floating-point variable. No conversion
is necessary for data received in double-precision form.

O If additional data is to be received, and a WBYTE clause is
specified, the data specified by the WBYTE clause is sent again
prior to each reading.

Example

The following example addresses device 5 on port | as a talker, and
then reads six single-precision floating-point values from port |. The
single-precision data will be converted to double-precision and
assigned to elements 0 through 4 of array A and to variable C.

36350 RBIN @ 105%. A(O..4):4 €:4

The following example reads one double-precision value from the port
0. It assigns the value to variable B. Note that no device addressing is
performed since a “port” address is specified.

109740 RBIN PORT O. B:8

RBIN
Statement

The following example reads 30 double-precision (8-byte) values from
device 20 on port 0. Prior to reading each value from port 0, the
WBYTE data (C%(0..5)) will be sent to port 0. The values are assigned
to matrix B in the following order:

B(0,0)
B(0,1)

B(0,5)
B(1,0)

B(4,4)
B(4,5)

4720 RBIN @ 20%. {WBYTE PORT OX, CX(OX..5%)} BC(OX.. 4%, OX... 9%)

RBIN WBYTE Gia
Statement

icEE-L88

Usage

RBIN {device}, {wbyte clause} {real variable list}
RBIN @, {wbyte clause} {real variable list}
RBIN {port expression}, {wbyte clause} {real variable list}

Syntax Diagram

uinput only)
RABIN RBIN —| device ’
Read Binary

‘eo wbyte clause
Le! numeric expression

i +] real variable
f= (double precision)

_

Lo
e

VYJ
Description

The RBIN WBYTE (Read BINary WBYTE) statement addresses the
specified device(s) as talker(s), sends the data specified by the WBYTE
clause, then receives single- and double- precision data in IEEE
standard floating-point format from IEEE-488 bus instruments.

O The specified instrument device number is addressed as a talker.

O Instrument addressing is skipped when the @ character follows
RBIN without a device specified.

O The WBYTE clause sends data specified by the WBYTE clause to
the specified port. See the WBYTE statement.

O The WBYTE clause selects a subrange of an integer array for
output. This may contain addressing, bus messages, and device-
dependent data.

O The WBYTE clause does not need to be sent to the same

instrument port from which input is being taken.

O Make sure that the WBYTE output does not unaddress the
instrument as a talker if it is sent to the port from which input is
read.

RBIN WBYTE
Statement

im)

Example

A single floating-point value is then received from the specified
instrument. The value must be in the selected format.

:-4 specifies a four-byte single-precision number.

°8 specifies an eight-byte double-precision number.

The default format is eight-byte double-precision.

The variable or array subrange to receive the data must be floating-
point variable type.

Single-precision data is converted to double-precision (internal
format) and assigned to the floating-point variable. No conversion
is necessary for data received in double- precision forfn.

If additional data is to be received, and a WBYTE clause is
specified, the data specified by the WBYTE clause is sent again
prior to each reading.

The following example reads 30 double-precision (8-byte) values from
device 20 on port 0. Prior to reading each value from port 0, the
WBYTE data (C%(0..5)) will be sent to port 0. The values are assigned
to matrix B in the following order:

B(0,0)
B(O,1)

B(0,5)
B(1,0)

B(4,4)
B(4,5)

4720 RBIN @ 20%, {WBYTE PORT O%, C%(0OX%..5%)} BI(OX.. 4%, OX. . GX)

Remarks

Refer to the RBIN statment.

RBYTE Gi
Statement

Usage
RBYTE |PORT numeric expression,] [integer variable subrange]

Syntax Diagram

(port 0)
RBYTE RBYTE :

Read Byte
porT =} 0%

input only)

woyteclause}—J

example A%(0..1000)
(full subrange)

integer variable subrange

(cycle length)

numeric expression

mun > km

VY *

Description

The RBYTE (Read BYTE) statement reads a fixed-length block of
arbitrary binary data bytes from an instrument. The data from the
instrument is placed in a specified integer variable array.

O The array must have only a single dimension (subscript).

O The array must be integer type.

O A virtual array may not be used.

O The ATN Bus line is first set false.

O Data is then read into the integer array elements as follows (bit 0 is
low-order):

BITS CONTENTS

0-7 8-bit data byte

8 Set to 1 if EOI was asserted by the talking device with this
data byte

9-15 Set to zero

RBYTE
Statement

oO A data byte sent with EOI asserted will then have the following
characteristics:

1. Its numeric value will be greater than 255.

2. An AND with the 28 bit will produce a non-zero value. For
example:

IF AZCS%) AND 2564 THEN ...(E0OI is true)

O RBYTE performs no device addressing. The WBYTE clause may
be used to address an instrument as a talker.

O Cycle length is described in the RBYTE WBYTE statement.

Example

The following example reads one data byte from port 0 into element 0
of the integer array A%. The instrument has already been addressed to
talk.

a35So0 RBYTE PORT 0%. AX(0%)

The following example reads fifteen data bytes from port 0 (the default
port) into array A%, elements 0 through 14. Then seven data bytes are
read, also from port 0, into elements 12 through 18 of the array C%.

9890 RBYTE AA(O%..144), CX(12%.. 18%)

The following example uses RBYTE to take 100 readings, each three
bytes long. To insure that the readings are correct, each third byte is
tested to see that EOI was set.

1200 REM -- Subroutine: Cet Instrument Reading
1236 other statements to set up instrument as talker, etc.

1250 ! Now get readings
1260 RBYTE PORT PX, R(1%..9300%)
1270 ! Insure that EOI is sent every third byte
1280 EFX = O ! Error Flag = False
1290 FOR 1% = 3% TO 300% STEP 3%! Error Flag = True?
1300 IF NOT (RC(IX) AND 256%) THEN I% = 300% \ EF% = -1
1310 NEXT I%
1320 IF EF% GOTO 1400 ! Error exit
1330 RETURN

Usage

RBYTE WBYTE Gi
Statement

RBYTE [PORT p%,]] [WBYTE] [integer array subrange]

Syntax Diagram
(port 0)

RBYTE (ReYTE)

Read Byt

(input only)

Le |

example A%(0..1000)
(full subrange) |

integer variable subrange

(cycle length)

numeric expression

C:)

Description

The WBYTE clause added to the RBYTE statement provides a means
of sending commands or data to a port (via the WBYTE clause) prior
to reading the data as specified by RBYTE.

O RBYTE WBYTE can be used for an instrument that requires an
explicit trigger for each reading.

The WBYTE data is sent prior to each RBYTE cycle.

The cycle length 1s Specthied by the value of the expression
following the colon “:”

If no cycle length 1s specified, it is assumed to be the length of the
array subrange received.

Only one WBYTE subrange may be specified.

Each array must have only a single dimension (subscript).

Each array must be of the integer data type.

No virtual arrays may be used.

RBIN WBYTE
Statement

O The total number of bytes read must be evenly divisible by the
number of bytes per cycle. An RBYTE data specification
A%(1..N):M reads a total of N bytes in N/M cycles of M bytes
each.

Example

The following example transmits the WBYTE data (elements 0
through 4 of array A%) on port | prior to reading elements 0 through 5
of array B% (from port 0), and prior to reading elements 0 through 1! 1
of array C% (also from port 0). Each array subrange constitutes an
RBYTE cycle.

6840 RBYTE {WBYTE PORT 1%, AX(0%.~44)} B2Z(0%..5%), CH(O%Z.. 11%)

The following example receives data read from port 0 (elements 0
through 59 of array A%) in 20 cycles of 3 bytes each. The WBYTE data
is sent to port 0 prior toeach RBYTE cycle. This statement will send an
explicit trigger for each reading if the array Z%(0..5) is assigned as the
D% array was in the third example of the WBYTE description.

3380 RBYTE {WBYTE Z2%(OX%..5%)} AX(OZ%.. 39%): 3%

The sequence of this statement is:

Send Z%(0..5)

Read A%(0..2) . . . (first 3 elements)
Send Z%(0..5)
Read A%(3..5) . . . (second 3 elements)
Send Z%(0..5) W

P
w
N
S

39. Send Z%(0...5)
40. Read A%(57..59) . . . (last 3 elements)

READ, DATA, and RESTORE
Statement

Usage

READ data

DATA data list

RESTORE linenumber

Syntax Diagram

(first DATA statement)
RESTORE RESTORE ——

Ley line +f

Description

The READ, DATA, and RESTORE statements work together as

follows:

O The DATA statement defines a sequence of data items to be
processed by the READ statement. The data items within a single
DATA statement are separated by commas.

O The READ statement assigns data values toa series of one or more
variables.

O An array subrange may also be used with the READ statement.

READ A(0..5)

O The READ statement assigns the next available data items in
sequence to the variables referenced.

O The DATA data types must match the corresponding READ
variable types (strings for string variables, etc.).

READ, DATA, and RESTORE
Statement

The DATA statement may occur before or after the READ
statement.

The DATA statement must be the last or only statement in the
program line. The line may contain no trailing remarks.
Everything following DATA 1s considered to be data.

Legal data items are: quoted or unquoted strings or numeric
constants.

An unquoted string must not begin with a quote and must not
contain commas.

Leading spaces are ignored unless within a quoted string field.

Numeric constants may not be quoted.

A data pointer tracks which data items have been read.

A DATA statement may contain more items than a subsequent
READ statement contains variables.

A second READ statement may continue reading data (assigning
data items to its variables) at the point the first READ statement
stopped reading.

The RESTORE statement resets the pointer to the first data item
of the first DATA statement in the program so that the items may
be read again.

If RESTORE specifies a line number, the pointer resets to the first
data item of the first DATA statement in or after that program line.

The RESTORE statement may be executed before all data items
have been read from a DATA statement.

It is not necessary to RESTORE the DATA items if they will be
read only once in the program.

READ, DATA, and RESTORE
Statement

Usage

READ data

DATA data list

RESTORE linenumber

Syntax Diagram

READ ———(READ mall input variable list + _

DATA DATA S = >

first DATA statement RESTORE RESTORE (rs Statement) _.

Lo line 4 f

Description

The READ, DATA, and RESTORE statements work together as
follows:

QO The DATA statement defines a sequence of data items to be
processed by the READ statement. The data items within a single
DATA statement are separated by commas.

O The READ statement assigns data values toa series of one or more
variables.

O An array subrange may also be used with the READ statement.

READ A(0..5)

O The READ statement assigns the next available data items in
sequence to the variables referenced.

O The DATA data types must match the corresponding READ
variable types (strings for string variables, etc.).

READ, DATA, and RESTORE
Statement

O The DATA statement may occur before or after the READ
statement.

The DATA statement must be the last or only statement in the
program line. The line may contain no trailing remarks.
Everything following DATA is considered to be data.

Legal data items are: quoted or unquoted strings or numeric
constants.

An unquoted string must not begin with a quote and must not
contain commas.

Leading spaces are ignored unless within a quoted string field.

Numeric constants may not be quoted.

A data pointer tracks which data items have been read.

A DATA statement may contain more items than a subsequent
READ statement contains variables.

A second READ statement may continue reading data (assigning
data items to its variables) at the point the first READ statement
stopped reading.

The RESTORE statement resets the pointer to the first data item
of the first DATA statement in the program so that the items may
be read again.

If RESTORE specifies a line number, the pointer resets to the first
data item of the first DATA statement in or after that program line.

The RESTORE statement may be executed before all data items
have been read from a DATA statement.

It is not necessary to RESTORE the DATA items if they will be
read only once in the program.

READ, DATA, and RESTORE
Statement

Examples

This example illustrates the use of a FOR - NEXT loop to read a list of
data items. Each item 1s a floating-point number, so only one READ
statement is necessary. To save each of the data items, use arrays and
change line 110 to: READ A(I%). The RESTORE statement in this
example would be useful only if the data values were to be used again in
the program.

19 DATA 1.1, ad.a2, 3.93 4.4% 3.3
! Other statements

750 FOR ee ie TO 32
110
120 PRINT A
130 NEXT I%
140 RESTORE

‘Running this program gives results as follows:

The following example illustrates multiple READ statements and a
selective RESTORE statement. Note the double quotes used in the
first DATA statement. The double quote is used to allow commas to be
inserted in the string data. Note that if the quotes were omitted from
line 10, A$ would be TEST FOR HIGH, and line 120 would give an
error since the next data element would be LOW, which is not a

number. Also note line 410 which resets the data pointer to allow
reading the numeric values of line 20. The string data on line 10 is used
only once.

10 DATA ‘’TEST FOR HIGH. LOW, AND MEAN VALUES. ’
20 DATA 10; 7.35 9
3O READ AS \ PRINT AS ! Print out heading
100 REM -- Continuously Make Checks
110 ! Check for readings higher than upper limit
120 READ UL Get the upper limit
130 ! Other statements
210 ! Check for readings lower than lower limit
220 READ LiL ' Get the lower limit
230 ' Other statements
310 ! compute mean and compare to expected valu
320 REA Cet the expected value
330 ! Other statements
400 REM -- Reset instruments and Prepare for Next Test
410 RESTORE 20 ' Reset data pointer to UL
420 ! Other statements
300 COTO 110

The program segment that follows causes error 804 (bad DATA
format) when statement 110 is executed, since the “!” character is nota
legal part of a floating-point number.

100 DATA 1,3,4 ' Configuration data
110 READ A,B,C

RELATIONAL Operators EE

Description

Relational operators compare numeric values or character strings. A
relational expression returns an integer Boolean result of 0 for false,
and —1 for true. The structure of a statement determines whether the =
operator is used for a relational comparison or an assignment.

The relational operators are:

= equal

(less than

) greater than

() not equal

(= less than or equal

y= greater than or equal

Numeric comparisons are made as follows:

O All negative numbers are “less than“ zero or any positive number.

O Integers are converted to floating-point when a comparison is
between mixed numeric data types. This conversion requires
additional processing time.

O When an operator checks for equality or inequality of numeric
expressions, use integers wherever possible. This is due to the
inexactness, and rounding and truncation errors, of floating-point
values.

O To check equality of floating-point numbers, compare the absolute
value of their difference to a small enough limit. For example, use
ABS(A — B) ¢ IE-I5 instead of A =B.

RELATIONAL Operators

Examples

IF A = B THEN 1290

This example transfers program control to line 1290 if the contents of
variable A equals the contents of variable B.

IF CS% <= BF% PRINT “Success!”

The message is printed if the contents of CS% are less than or equal to
the contents of BF%. If BF% contains five, then the message is
displayed if CS% contains five or anything less. If CS% is six or more,
the PRINT portion of the instruction is skipped.

REM Gis
Statement

Usage

REM [remarks]
! [remarks]

Syntax Diagram

REMark -{ REM)}—
|

Lie_! Liat

Description

The REM statement, or the ! character, allows remarks to be inserted

into a program for documentation purposes.

O Either REM or! may immediately follow the line number.

O Remarks may follow any program statement except DATA.

O When the REM form follows a program statement, it must be
separated from the statement by the \ character.

O Anything following REM orthe! character is considered a remark,
and is ignored by BASIC.

Example

The following example illustrates some common uses of ! and the
REM statement:

10 REM -- RESISTOR NETWORK VERIFICATION
20 ! 1276 — R129
30 |
40 REM — Program History
3sO |! Rev. No. Date Author
60 ! 1.0 1/21/79 B. Hansen
7O ! 2.0 11/13/79 WN. Kelly
499 REM — end header
SOO PRINT ‘Mount Resistor on Fixture’ \REM Prepare for Test
910 PRINT ‘Then Press RETUR ;Display promp
320 INPUT A$ ‘Accept ejboard entry

REMOTE G3
Statement

Usage
REMOTE [PORT numeric expression]
REMOTE [device list]

Syntax Diagram

(both ports)
REMOTE REMOTE —_ S 7

PORT pe i,

—~| device list |

Description

REMOTE sets the REN (Remote Enable) line on the IEEE-488 bus to

true.

O REN 1s set true on both ports if no port number is given.

O REN 1s set true only on the specified port when a port number is
specified.

O REMOTE may be followed by a device list.

O When REMOTE 1s followed by a device list, REN is set true on the
port or ports represented by instruments in the device list.

O After this, the listed devices are addressed to listen (sentan MLA
message).

O Normally this places the instruments into remote mode, depending
on the instrument design.

REMOTE
Statement

Example

In the following example, instrument port 0 is initialized at line 110.
This sets REN true. However, the instruments on the bus are not in
remote state until they have received a MLA message. Line 120 sends
the addresses (2 and 4).

119 INIT PORT O
120

1
2 REMOTE @ 2 @ 4

The following example is similar to the previous one. Note the use of
the variable A% to designate the port number and B to designate the
address of the device by adding A%*100 to B. This program correctly
addresses the instrument without regard to which port it is on.

110 INIT PORT AZ
120 REMOTE @ AA * 100 + B

The following statement sets REN true on both port 0 and |.

310 REMOTE

Usage

REN Gp
Immediate Mode Command

REN
REN [start-stop] AS [new start] STEP [step size]

Syntax

(entire program)
RENumber REN

(first) (
| | line no. | (one line only) _,

(last)

line no. -4

(start with 10) (step by 10) _

(start)

line no. STEP integer

Description

The REN command changes the line numbers of some or all of the
program lines in memory. Renumbering is useful to make room for
additional program lines.

0

O

REN cannot change the order of program lines.

REN changes all references to line numbers (i.e... GOTO, GOSUB,

etc.) in the program to reflect the new line numbers.

All items shown in the syntax diagram are optional except the
command word REN.

The entire program is renumbered when no line numbers are
specified.

One line is renumbered when a single line number is specified. The
command is ignored if the line does not exist.

A portion of the program is renumbered when two line numbers
are specified.

REN
Immediate Mode Command

0 The line number following AS specifies the new starting number of
the segment being renumbered. If this would rearrange the
sequence of the program, a fatal error occurs and the line
numbering remains unchanged.

When AS is not specified, and a line number or range of line
numbers is not specified following REN, the new starting line
number 1s 10.

When AS is not specified and a line number or range of line
numbers is specified following REN, the new starting line number
is the same as the old first line number of the range specified.

The value of the integer expression following STEP must be
positive. It defines the difference between any two consecutive,
renumbered lines.

If there is no STEP keyword, the line increment is 10.

If the value of the integer expression following STEP is so large
that the new line numbers would force the program to be
rearranged, a fatal error occurs and the lines are not changed.

CAUTION
Renumbering from lower to higher line numbers (with more

digits) may cause the renumbered lines to exceed the 79-

character maximum line length allowed by BASIC. Restricting

program lines to 74 characters maximum length will generally

eliminate this problem. This exception is on long lines which

include line number references (e.g., ON expression GOTO,

IF-THEN-ELSE with line numbers, etc).

NOTE
Program lines containing the ERL (error line) function may
have statements suchas IF ERL= 200 THEN RESUME 400.
The expression, the constant 200, is used as a line number
reference. It isnot changed during renumbering. It may need to

be changed to the correct line number manually.

REN
Immediate Mode Command

Q

Examples

The following program is used in the renumbering examples below:

10 A=
20 PRINT A +
30 AAT 1
40 IF A(=2
50 PRINT "Don
60 END

COMMAND

REN 60 AS 32767

REN 10-50 AS 5 STEP 5S

REN

REN 60 AS 1000

REN 60 AS 1000 STEP 5

REN 10-500 AS 1000

_ RESULT

Change line 60 to read:

32747 END

Change lines 10 through 50 to read:

3 Azi1
10 PRINT A +A
13 Az A+ i1
20 IF A ¢= 2 THEN 10
ao PRINT “Done!”

Note the changed reference in line
20.

This would in this case restore the
program back to its original form.

Renumber only line 60 as line 1000.
An error results if any lines are
numbered between 60 and 1001,

since this would rearrange program
sequence.

Same as the previous example.
STEP is ignored when only one line
is renumbered.

Renumber lines 10 through 500 to
start at 1000, in steps of 10.

RENAME &&3
Statement

Usage

RENAME {oldfile$} AS {newfile$}

Syntax Diagram

RENAME —(RENAME) Sve: ~| filenames >—

——| device

| SYB: -—] ears {~ieranes

device

Description

The RENAME statement gives a file a new name.

O Oldfile$ is the current filename and newfile$ is the new filename to

be used.

O The device ”"SYO:“ is assumed if none is given.

O The extension ”.BAS“ is assumed if an extension is omitted.

Example

RENAME ”PROG.FD2* AS ”"NPROG.FD2*“
RENAME ”MFI:TESTI° AS ”"MF1:TEST2°

RESAVE &&3
RESAVEL

Usage Statements

RESAVE [filename]
RESAVEL [filename]

Syntax Diagram

USE LAST filename$

———~(_RESAvE + | filename$ | \

= device$

USE LAST filename$

—(RESAVEL = {— ——-| filenames .
w/) “Ll J

La device$

Description

The RESAVE and RESAVEL are an alternative to the SAVE and
SAVEL commands. The SAVE and SAVEL commands ask whether
or not the user wants to overwrite an existing .BAS or .BAL file. The
RESAVE and RESAVEL commands will assume that any existing
program file of the same name should be overwritten, and will not ask
the user to confirm that the file should be clobbered.

O The RESAVE statement stores an ASCII program. See the SAVE
Statement.

O The RESAVEL statement stores an lexical format program. See
the SAVEL statement.

O The RESAVE statement always uses the default file name
extension .BAS. If your program uses a different extension than

.BAS, you must specify the entire filename each time the RESAVE
statement is used.

RESAVE
RESAVEL
Statements

O The RESAVEL statement always uses the default file name
extension .BAL.

Example

(> Ready
OLD *TEST"

Ready
SAVE "TEST"
Replace existing file TEST. BAS? NO

Ready
RESAVE "*°TEST®

Ready

S 4)

RESUME G3
Statement

Usage

RESUME [line number]

Syntax Diagram

RESUME ——»(RESUME (next line no.)

The RESUME statement acknowledges an interrupt and allows
program operation to resume with the next statement after the one
being completed when the interrupt occurred or at another specified
program location.

Description

O RESUME (no line number) branches to the statement following
the one being executed at the point where the interrupt occurred.

O If the interrupt occurred in a multiple-statement line, the program
resumes with the next statement on the line. There are two

exceptions:

1. Recoverable errors: The program resumes at the beginning of
the statement that caused the error.

2. Input Warning errors 801, 802, and 803: The INPUT statement
which caused the error requests the value to be entered again. It
did not accept the erroneous entry.

O RESUME (line number) branches to the specified line number.

O RESUME terminates the interrupt handler routine.

RETURN &
Statement

Usage

RETURN

Description

The RETURN statement is used after a GOSUB statement to

terminate the subroutine and return control to the program statement
following the GOSUB.

O A RETURN statement without a matching GOSUB will cause
error 701 (RETURN without GOSUB).

Example

10 PRINT “hello world”
20 GOSUB 100
30 PRINT "I am the greatest"

END
100 ! this is a subroutine
110 PRINT “To err _ is human. but it takes a computer ";
120 PRINT "to really blow it."
130 RETURN

RIGHT() Ea
Function

Usage
RIGHT (string$, start%)

Description

The RIGHT function returns a substring of the specified string,
(string$) starting from the specified character position, (string%) to the
right end of the string.

O The RIGHT function returns a null string when the starting
character position specified is greater than the string length.

O The RIGHT function returns a null string when the starting
character position specified is longer than the string.

O RIGHT returns an identical string when the starting character
position is specified as 0 or 1.

Example

In the following examples, the string A$ contains the characters ”»THIS
IS THE FIRST EXAMPLE STRING“.

STATEMENT RESULT

YS = RIGHT (AS, 27%) YS = “STRING”, the characters of
AS starting 27 characters
from the left.

PRINT "RIGHT "3 RIGHT (AS, 27%) Displays "RIGHT STRING".

RND £3
Function

Format

RND

Description

The RND function produces a pseudo-random number that is greater
than zero and less than one.

O The range of output values is positive floating-point values greater
than zero and less than one.

O The sequence of values returned by RND 1s repeatable unless
preceded by a RANDOMIZE statement.

O To expand the range of RND, multiply it by the desired range.

O To move the range of RND away from zero, add or subtract the
desired movement.

O To include the endpoints (0 and 1), use:

(INT (RND * (1E15 + 1))) / 1EI5

Example

This example shows how to create a random number between 0 and 10.

3200 R=RND#10 ! Create a random number between O and 10.

The example below creates a random integer between 13 and 14.

4600 RZ=INT(RND+13)

The program line below creates a random number in a compressed
range between .5 and |.

1115 R=(RND/2)+.5

RUN EES
Statement

Usage

RUN [filename]

Syntax Diagram

RUN AUN (program in memory) | RETURN

(Immediate Mode}
(program name)

filename$

a RUN filenames -}— ~

(RUN Mode}

commands

Description

The RUN statement restarts the program in main memory, or loads
and runs a program available in file storage.

O Without a file name, RUN will restart the program in main
memory.

O A file name may be specified as a quoted string or as a string
expression.

O The WITH statement modifier replaces the FDOS command line
with the string “filename$”, followed by a space character, and the
string “command$”.

oO If the WITH statement modifier is not used, the current FDOS

command line remains unchanged.

O The program file will be searched for on the default System Device
(SY0:) if the file name is not prefixed with a device name such as
MFO:.

O Error 305 (file not found) results if the file is not found.

O When the file is located, it 1s loaded into main memory replacing
the previous program, and control is transferred to it.

RUN
Statement

O Data stored in variables in the previous program is lost unless it
was reserved in a common area with a COM statement or stored in
a virtual array file.

O Virtual array files left open remain available to the next program,
provided they are dimensioned in the new program identically and
use the same variable names.

See the OLD command explain for loading “.BAL” in preference to
“BAS”.

oO If no filename extension is used, the BASIC interpreter first looks
for a filename extension in “.BAL”. If none is found, it then looks

for a filename extension in “.BAS”.

O A filename extension of “.BAL” requires less time to load into the
Controller's memory than the same fit program with a “.BAS”
extension. The lexial file requires less processing for conversion to
internal form by the BASIC interpreter program.

Example

The following example searches for a program file named TEST2 on
the System Device. If it is located, TEST2 1s loaded into main memory
and executed.

10350 RUN BS ' Chain to program named by BS
1060 END

The following example searches for a program file under a name stored
in string BS. If the file is located, it is loaded into main memory and
executed.

1050 RUN "“TEST2"” ' Chain to program TEST 2
1060 END

The following example searches for a program file named “prog!” and
replaces the FDOS command line with “PROGI” and “-a -b -c”. The
FDOS command line is then read and displayed.

10 'RUN WITH program example

20 RUN "progli”" WITH "-a —-b —c”
30 end

RUN
Statement

This is the program that the previous program chains to:

10 'progl.bas
20 ! rogram chained to from previous example
30 PRINT CMDLINES
49 end

Remarks

Compare the RUN statement with the OLD statement. Compare the
RUN WITH statement with the EXEC WITH statement.

SAVE EES
SAVEL

Statements
Usage

SAVE [filename$]
SAVEL [filename$]

Syntax Diagram

USE LAST filename$

—(SAVE ¢ —| filenameS J __,.

| device$

USE LAST filename$

—C SAVEL DB, -| tilename$ |

| device$

Description

The SAVE and SAVEL statements are used to store the user program
currently residing in memory as a file. SAVE stores the file in ASCII
text form. SAVEL stores the file in lexically analyzed form. A
discussion of these forms follows.

O A file name may be specified. It must be enclosed in single or
double quotes. The file name may also be specified by a string
variable.

O If no file name is specified, the same name will be used that was
used in the OLD statement or the RUN statement that was used to
load the program into memory.

O If no file name is specified for a new file, an error will occur.

SAVE
SAVEL
Statement

0 The file is stored on the default System Device if the file name is not
preceded by MFO: for the floppy disk, or EDO: for the optional
electronic disk. Refer to the Input and Output Statements section
for a discussion of the default System Device concept.

SAVE adds the file name extension .BAS when an extension is not

specified.

BASIC will request a confirming YES from the keyboard if an
attempt is made to store a file under an existing file name. To avoid
this interruption in a running program, use the RESAVE
statement or first delete the file using a KILL statement.

SAVE stores the ASCII form of the program in the largest
available file space.

SAVEL stores the lexical form of the program in the first available
file space large enough to hold it. Note that this is different from
SAVE.

SAVE may also be used to obtain a printed listing of a program. To
do so, specify the device name as either KB1: (RS-232-C Port 1) or
KB2: (RS-232-C Port 2). The file name and extension are not
required. See the User Manual for details on setting serial port
baud rates.

In lexically analyzed form, a user program has binary numbers in place
of ASCII character strings to represent line numbers, keywords, and
operators. This form occupies less space and eliminates a processing
step. Fluke BASIC programs in main memory are always in lexically
analyzed form, even during editing. BASIC changes them to ASCII
character form when needed for display or for storage by a SAVE
statement.

Working copies of user programs should be saved in lexically analyzed
form, using SAVEL. In this form, programs will occupy less file
storage space and will load into memory quicker.

NOTE
A program saved via SAVEL may not be executable if the
version of Fluke BASIC under which it was saved differs from
the version under which it is to be executed.

SAVE
SAVEL

Statement

The lexically analyzed form of a program cannot be displayed directly
by the Utility program or sent to an external printer. Consequently,
backup copies of user programs should be saved in ASCII character
form, using SAVE. In this form, different versions of Fluke BASIC
will be able to load and interpret the program.

Example

Examples of SAVE and SAVEL used in immediate mode follow:

STATEMENT

SAVE

SAVE "TEST1"

SAVEL ‘MFO: TEST2’

SAVE ‘EDO: DATA. T71°

SAVE “KB1: *

RESULT

Save the program currently in
memory, in ASCII character form, on
the System device, using the same
name that was used to OLD it into
memory or RUN it. The default
filename extension .BAS is always
used.

Save the program currently in
memory, in ASCII character form, on
the System Device, under the name
TEST1.BAS.

Save the program currently in
memory, in lexically analyzed form, on
the floppy disk (MFO:), under the name
TEST2.BAL.

Save the program currently in
memory, in ASCII character form, on
the optional electronic disk (ED0:),
under the name DATA.T71.

Send the program currently in
memory, in ASCII character form, to

RS-232-C Serial Port 1.

SET CLOCK EB
Statement

Usage
SET CLOCK {time expression}

Syntax Diagram

—C CLOCK Dee

scaek SET >> < —< INTERVAL = time value pe

L_ TIME RE

Description

The SET CLOCK statement is used to indicate the time to be used fora

timer interrupt. The SET CLOCK statement must be executed before
an ON CLOCK statement, or an error 708 will occur.

The time may be expressed either in hours, minutes, and seconds, or as
milliseconds (10 milliseconds minimum). The maximum time
allowable is 24 hours. The following are all legal time values:

1:00 one hour

0:0:01 one second

0:10 ten minutes

hr:0:0 “hr” hours

tv “tv” milliseconds
time+1000 current time plus | second

Note that the the “hh:mm:ss” form permits the seconds field to be
omitted.

Clock interrupts are enabled by using a SET CLOCK statement to
specify the time of day to be used, and activating the interrupt and
selecting an interrupt handler by executing an ON CLOCK statement.

Example

The following sequence is used to activate the time of day interrupt:

99 SET CLOCK 10:00 ‘ set interrupt at 10 AM 1
110 ON CLOCK GOTO ... ' activate interrupt

SET CMDLINES GES
Statement

Usage:

SET CMDLINES {string expression}

Syntax Diagram:

———~(__setcmouines)-——~]_string-expression$ + _

Description

The SET CMDLINES$ statement sets (writes the string expression to)
the FDOS command line.

O The maximum permissible string length in the command line is 80
characters. Error 328 is diagnosed (command line too long) if the
length of the {string expression} is too long.

O Ifthere are any imbedded carriage return characters [CHR$(13)]in
the {string expression}, the command line set by FDOS is
terminated at the point where the carriage return character occurs.

Example

The example program demonstrates the CMDLINES$ statement and
truncation of the command line caused by an imbedded carriage return
character.

10 SET CMDLINES “Hello world”
PRINT ’ 20 "*; CMDLINES °"’ \ PRINT

3 String with embedded carriage return. Watch this..

60 SET CMDLINES "Truncated" + CHRS(13%) + " here”
23 PRINT CMDLINES

Running this program creates the following console display.

“Hello world”

Truncated

Remarks

See the entry for the CMDLINES$ function.

SET DATE GE
Statement

Usage

SET DATE (date)

Syntax Diagram

Cnt ar FO O
Description

The SET DATE statement sets the contents of the system calendar.

O The SET DATE statement may be used froma BASIC program or
from the immediate mode.

O The (date) parameter is expressed as

(day) “,” (month) “,” (year)

in which the valid ranges are

Parameter Range

(day) 1 .. [28..31] (depends on month)
(month) 1... 12
(year) 83 .. 99

O If an invalid date is specified a (recoverable) error 707 will be
reported.

Example

Some examples of setting the date are:

SET DATE 11. 11, 83

to set the date on the I 1th of November, 1983, and

SET DATE 3> 10, 84

to set the date on the 3rd of October, 1984.

SET ECHO G3
Statement

Usage:

SET ECHO

Syntax Diagram:

{ ~\ — SET ECHO }- >

Description

The SET ECHO statement is one of two statements used to control the
keyboard mode. The SET ECHO statement puts the keyboard into
normal “line” or “echo” mode, in which keystrokes are echoed by the
Operating System, and in which the “line editing” keys ((CTRL) /U,
(CTRL)/R, DELETE, etc.) are active. In echo mode, a statement
which reads a line (using the INPUT statement) will not be completed
until a complete line has been entered by the user from the keyboard.

Example

1020 SET ECHO ! Set echo keyboard mode

Remarks

Compare the SET NOECHO statement, which puts the keyboard into
the editing (“character”) mode in which no control characters (except
(CTRL)/S, (CTRL) /Q, (CTRL)/C, and (CTRL)/P) are trapped
by the Operating System.

SET INTERVAL G3
Statement

Usage
SET INTERVAL time expression

Syntax Diagram

CLOCK

SET —>(s legal time value ser st INTERVAL 9 ee

on TIME

Description

The SET INTERVAL statement is used to indicate the interval
between timer interrupts. The SET INTERVAL statement must be
executed before the corresponding ON INTERVAL statement, or an
error 708 will occur.

The interval time may be expressed either in hours, minutes, and
seconds, or as milliseconds (10 milliseconds minimum). The maximum
time allowable is 24 hours. The following are all legal interval values:

1:00 one hour

0:0:01 one second

0:10 ten minutes

hr:0:0 “hr” hours

tv “tv” milliseconds

Note that the the “hh:mm:ss” form permits the seconds field to be
omitted.

Interval interrupts are enabled by: Using a SET INTERVAL
statement to specify the interval period to be used, and activating the
interrupt and selecting an interrupt handler by executing an ON
INTERVAL statement.

Example

A periodic interrupt is activated by:

120 SET INTERVAL 1500 ' set interrupt every 1500 m
130 ON INTERVAL GOTO ... ' activate interrupt” °

SET NOECHO GES
Statement

Usage

SET NOECHO

Syntax Diagram

af \ © SET NOECHO P

Description

The SET NOECHO statement puts the keyboard into editing, or
“character” mode in which no control characters (except (CTRL) /S,
(CTRL) /Q, (CTRL)/C, and ‘(CTRL)/P) are trapped by the
Operating System. All characters except (CTRL) /S and (CTRL) /Q
(which control the speed of data transfer to and from the keyboard) are
returned to the BASIC program, but the (CTRL)/C interrupts are
still active in this state (they will also trap (CTRL) /P). This mode
prevents the Operating System from echoing characters, prevents
certain control character recognition, and causes each individual key
code to be returned as soon as the key is struck (rather than when a
complete line has been entered). Character mode input is primarily
useful for user-written editors which need both, to closely control the
screen layout, and to handle single keystrokes (e.g., the “arrow” keys).

QO In NOECHO mode, characters entered from the keyboard are not
echoed to the display by the Operating System. The BASIC
program itself must explicitly display (by using the PRINT
statement) any characters which should appear on the screen.

O In NOECHO mode the (CTRL) /U, DELETE, and (CTRL)/R
keys are not processed by the Operating System. Any processing of
such characters must be done in the the BASIC program.

O Both (CFRL)/C and (CTRL)/P will cause a (CTRL)/C
interrupt to occur. This means that the Interpreter will return to
Immediate Mode when either (CTRL)/C or (CTRL)/P is
entered unlessanON (CTRL) /C handler has been specified by the
executing BASIC program. The (CTRL) /C or (CTRL)/P
character codes may be returned to the program and may be
processed using the INCHAR(0%) function.

SET NOECHO
Statement

0

Example

Remarks

When the SET NOECHO statement 1s used, the BASIC program
absolutely must not use an INPUT statement which does not use a
channel number such as:

INPUT AS

The use of this statement form will immediately put the keyboard
back into the echo mode since the input statement operates on the
basis of lines, not characters. (It 1s, of course, possible to use

another SET NOECHO statement to put the keyboard back into
noecho mode after the INPUT statement has been executed.) All
noecho mode keyboard input must be performed using the
INCHAR(function, which retrieves input one character at a time.

Using the COPY statement when data is copied from device K BO:
(for example, COPY “KBO:” TO “KBI:”) will immediately place
the keyboard in ECHO mode because the COPY statement reads
lines from the keyboard.

When the Interpreter returns to Immediate Mode the keyboard
will be returned to echo mode; there is no way to defeat this process

since the Interpreter reads lines from the keyboard.

220535 SET NOECHO ' Set the keyboard mode to "no echo"

Compare the SET ECHO statement, which puts the keyboard into
normal “line” or “echo” mode, in which keystrokes are echoed by
Operating System, the “line editing” keys (CTRL/U, CTRL/R,
DELETE, etc.) are active, and in which reads a line (using the INPUT
statement) or a character (using the INCHAR() function) will not be
completed until a complete line has been entered by the user from the
keyboard.

SET SRQ
Statement

Usage

SET SRQ [PORT {numerice expression}] {WITH status%}

Syntax Diagram

SET T SR
-

PORT Numeric expression

Description

The SET SRQ statement requests service from the current Controller
in Charge (CIC) of the IEEE-488 bus interface by sending a Service
Request (SRQ) message.

O status% is the “serial poll data byte” returned when the CIC
performs a serial poll.

O The numeric expression forthe IEEE-488 port must be either 0 (for
the standard IEEE-488 port) or | (optional IEEE-488 port).

O If no port is specified, port 0 will be used.

O Both port numeric expression and status% must be numeric. They
will be rounded to an integer if necessary. An error will be reported
if:

1. Either the port numeric expression or status% is not numeric,
or

2. An overflow occurs when either the port numeric expression
or status% is converted to integer, or

3. The value of p% is not in the closed interval [0..1], or

4. The value of status% is not in the closed interval [0..255].

SET SRQ
Statement

Example

The statement

SET SR@ PORT 1 WITH 5

would send the SRQ message on port 1. When a serial poll is
performed, the integer 5 [with an Request Service (RQS) bit] will be
returned to the CIC (on port 1) as the status of the 1722A. (Note that
the RQS bit is the 2° bit in the status byte.)

The statement

SET SR@ WITH ASCII("A")

would send the SRQ message on port 0 with a status byte of 65
(corresponding to “A”).

When the first serial poll following the use of the SET SRQ statement
is performed, the RQS bit will be set; subsequent serial polls will cause

the 1722A to respond with the same bit pattern less the RQS bit.

SET SHELL G3
Statement

Usage
SET SHELL [device$][filename$]

Syntax Diagram

SY@:
———(_ si SHELL }— y — filenames : —

= device$ _|

TERMINATE SHELL

Description

The SET SHELL statement specifies a program other than the default
Operating System user interface (FDOS prompt) to be used when a
program exits.

O File$ is a string expression which specifies the filename of a
program. If the string file$ is omitted, the default FDOS user
interface will be used.

Example

The BASIC Interpreter can be used as a shell as follows:

SET SHELL “MFO: BASIC”
EXEC "MFO: FUP”

The statements will execute the File Utility program (FUP) and, when
the FUP program terminates, return to the BASIC Intepreter.

Note that the effect of the SET SHELL statement can sometimes be

confusing. Consider:

4 >)
f BEFdvett “nro: pasic* _

EXIT
BASIC Version 1.0

Ready

SET SHELL
Statement

Note that when BASIC is the shell, an EXIT statement simply reloads
the Interpreter. This can be corrected by using:

Va
y

Read
SET AHELL

Ready
EXIT

FDOS >

~

Usage

SET TIME G3
Statement

SET TIME [time expression]

Syntax Diagram

CLOCK

SET ; legal time value clock SET INTERVAL Q ec >

TIME

Description

The SET TIME Statement sets the value of the system clock.

0 The time may be set from a BASIC program or from the immediate
mode.

The time may be expressed as:

6c, 99
e hours minutes [“:” seconds]

or

milliseconds

The valid ranges for the parameters are:

Parameter Range

hours 0 .. 24

minutes 0 .. 59

seconds 0 .. 59

milliseconds 0 .. 86400000

Time is considered to use a 24-hour clock. An hours value of 241s
acceptable only if the minutes and seconds are both zero.

If only a (milliseconds) term is specified, it is assumed to be
milliseconds since midnight (with a 10-millisecond resolution).

SET TIME
Statement

Example

SET TIME 13:40:01 ! Set the clock to 1:40:01 PM.

SET TIME 40000 ! Set the clock to 40 seconds after

midnight

SET TIME TIME + 1000 ! Set the clock ahead 1000 millliseconds

SGN() GS
Function

Format

SGN (numeric expression)

Description

The SGN function returns the sign of a floating-point or integer
number. This is called the signum function.

O SGN has a floating-point or integer number as an argument, and
returns one of three integers: 1, 0, or —1.

| indicates a positive number.

Q indicates a value of 0.

-1 indicates a negative number.

O The domain of input values is any positive or negative floating-
point or integer value, or zero.

Example

_ (c .
PRINT A. SON(A)
27.093 1

Ready
PRINT B. SGN(B)
O ‘@)

Ready

SIN() 2
Function

Format

SIN (angle in radians)

Description

The SIN function returns the sine of an angle that is expressed in
radians.

O SIN has a floating-point number as an argument, and returns a
floating-point result.

O The range of the input values is between and including the limits of
+ 32767 radians. Error 607 results from input values outside these
bounds.

O The range of output values is between and including the limits of —1
to +1.

O Input values within approximately 1E-16 of integer multiples of PI
give a result of zero, rather than underflow error.

Example

The following example shows the SIN function being used to display
the sine of an angle entered in degrees:

OS !' Display the sine of an angle in DEGREES
6610 PRINT “Enter angle in degrees”; ! Print prompt
6620 INPUT A ' Fetch the angle

30 PRINT SIN(A#(PI/180)) ! Print sine

SPACES() Sz
Function

Format

SPACES (number of spaces)

Description

The SPACES function returns a string of spaces as specified.

O SPACES has an integer as an argument, and returns a string of
spaces equal in length to its integer argument.

O SPACES$ is useful for formatting display and print outputs.

Example

The following example illustrates results of using SPACE$ to format a
display.

10 NX = SX
400 AS = "This is the first example”
450 BS = "“STRING"*
300 PRINT AS; SPACES (N%)); BS

Display results:

This is the first example: STRING

SPL() Gs
Function

Format

SPL (device number)

Description

The SPL (Serial Poll) function performs a serial poll of a specified
instrument and returns an integer status byte result. By sequentially
performing serial polls of instruments and checking for SRQ in the
status bytes, the SRQ routine can determine which instruments set
SRQ. By examining the remaining bits of some instruments, the SRQ
routine can determine why the SRQ bit was set and take appropriate
action.

O SPL is the only way to reset the interrupt status of ON SRQ.

O The result will be from 0 to 255.

O SPL may be performed at any time, although it is normally used in
an SRQ handling routine.

O When a serial poll is performed on an instrument, the instrument
returns a status byte. Bit 6 of the status byte is set to | if the polled
instrument is the one that requested service.

O The remaining bits may indicate other status information of the
instrument. Consult the instrument manual for their meanings.

O The instrument asserting SRQ true should deassert SRQ when it is
serial polled.

O More than one instrument can hold SRQ true at the same time.

0 Refer to Appendix G, ASCII/ITEEE-488 Bus Codes, for a chart of
binary bytes and decimal numbers.

O The Request Service bit of the serial poll response may be tested by:

IF SPL (device) AND 64% THEN ...

SPL()
Function

Example

The following example performs a serial poll on device 16 with
secondary address 13 (on port 0). Then the statement(s) following
THEN are executed if a non-zero result is returned by the instrument.

3390 IF SPL(16%: 13%) THEN ...

The following example assigns the result of a serial poll of device DV%
on port P% to the variable Y%.

6820 YR = SPL(PX # 100% + DV%)

As shown in Appendix G, 64 has the binary pattern 0100 0000 (bit 6
set). The following example uses AND 64% with the value of SPL to
see which device caused the service request. The value of SPL is first
saved in Y% and then manipulated several times in routine 5110-5190.
This is necessary since the instrument asserting SRQ only gives its
status once for this service request. Line 5130 checks for other status
byte information.

' other statements to handle
' voltmeter status

3100 REM -- SRQ@ Handler - Port O
9110 Y% = SPL(VMA) ' Voltmeter handling
3120 IF NOT (Y% AND 64%) THEN 3200
313 VYi% = YX AND (NOT 64%) ' Get status apart from SR@

15
19

e
l
e
l
e
l
e
l
e
l
e
l
e
l
o
)

7c

V
U

U
V

V
v

RESUME
YX = SPL(CNX) ' Counter handling
IF NOT (YX AND 64%) THEN 3300
' other statements to handle
' counter status
RESUME

' statements for other instruments

SQR() G3
Function

Format

SQR (numeric expression)

Description

The SQR (Square Root) function returns a floating-point number
equal to the square root of the input value.

O ©SQR has a floating-point number as an argument, and returns a
floating-point result.

O The square root is the value which, if multiplied by itself, produces
the given input value.

O The domain of input values is positive numbers and zero. Error 604
results when a negative number is used as input.

Example

(_ ~
PRINT SQR (49)

Ready

STEP &
Immediate Mode Command

Format

STEP

Description

The Immediate Mode STEP command sets a mode in which each

statement within a program is executed individually by pressing
RETURN.

O STEP must first be enabled by a breakpoint stop in a running
program, caused by STOP ON or CONT TO.

O After a breakpoint stop, type STEP to select Step Mode.

O From Step Mode, type CTRL C or any Immediate Mode
command to return to Immediate Mode.

O Any BASIC command or statement that is available in Immediate
Mode can also be used to exit Step Mode.

O In Step Mode, one statement is executed each time RETURN is
pressed.

O After executing each statement, the display reads: STOP ON LINE
n, where n is the next line to be executed.

O When used with a variable TRACE ON, the display will also show
changes in selected variables whenever a statement assigns a new
variable value.

STIMES Gis
System Variable

Format

STIMES

Description

The function STIME$ (seconds time) returns the current time of day as
the eight-character string

hh:mm:ss

in which

hh is the hour (24-hour format)

mm _ is the minute within the hour

SS is the second within the minute.

Any fractional seconds component is truncated.

Example

This example prints the time (including seconds) in the Immediate
Mode.

PRINT STIMES

10: 03: 48

If the time is really 11:29:53.6 (1.e., 53.6 seconds past the minute) the
string returned by STIMES() is 11:29:53.

STRING Ei
Comparisons

Description

Strings are compared on the basis of character matching, order within
the standard ASCII code set, and overall length.

O A String character value is its relative position in the ASCII code
table (see Appendix I). This means, for example, that all capital
letters are less than any lower-case letter.

O String comparisons are done left to right, character for character.
The first inequality determines “less than” or “greater than”.

O If no inequality is found, the shorter string is “less than”.

O Strings must be identical to be equal.

O The operators are the same as the numerical operators, with the
addition of a concatenation operator.

= equal
< less than
> greater than
<> not equal
< less than or equal
= greater than or equal

+ concatenates (connects) strings together

STRING
Comparisons

Examples

The following examples illustrate the rules for string comparisons:

TRUE COMPARISON REASON

"" ¢ any other string “? is a string with no

elements.

"2" ¢ MAze Space is less than “A”.

“76 ¢ MAN Space is less than “A”.

"LONG STRING" ¢ "LONGER STRING" Space is less than “E”.

“ey”

"1999" ¢ "20" is less than “2”.

"ON" ¢ "ONE" “ON” has fewer char-
acters.

These are examples using the concatenation operator:

EXPRESSION(S) RESULT

“BEGIN + "OPERATION" BEGINOPERATION
“BEGIN " + "OPERATION" BEGIN OPERATION

CENTER" che, ENTER Volts

CENTER ayo ts ENTERMillivolts

STRINGS &

Description

Strings are sequences of 8-bit positive integers that are normally
interpreted as ASCII characters. Strings are used to store characters
for messages to instruments and to the display, as well as for storage of
binary data taken from instruments. String data has the following
characteristics:

O Maximum length limited only by available memory or 16383
characters, whichever is smaller.

O Memory requirement: each string of 16 or less characters occupies
an 18-byte memory segment and an additional 18 bytes for each
additional 16 characters. eo

O String data is normally displayed by the Instrument Controller in
ASCII. See the Touch-Sensitive Display section for exceptions.

O When interpreted as ASCII, the value of the most significant (8th)
bit is ignored.

String Constants

String constants are expressed as a sequence of printable characters
(numerics, uppercase alphabetic characters, lowercase alphabetic
characters, printable symbols, e.g., *, -, [, etc). In most cases, string

constants must be enclosed in either single or double quotes. Enclosing
the statement in single quotes allows the use of double quotes in the
constant and vice versa. String constants need not be expressed in
quotes when part of a DATA statement or when entered after an
INPUT statement. Some examples of strings are:

AS = “The result of 3.6 * PI is "
INS = ‘Reply with "YES" or "NO" ’

String Variables

String variables are designated by a floating-point variable name
followed by a “$” character.

STOP Ez
Statement

Usage

STOP

Syntax Diagram

STOP ——e({ STOP \— (stop here) =

Description

The STOP statement halts execution of the BASIC program and
displays the line number where the STOP occurred.

O STOP terminates program execution.

O STOP can be used to indicate “dead end” code branches, either
because of errors or because of logical structuring.

Example

The following example illustrates a common use of STOP:

10 REM -- TEST PROGRAM
20 : Other statements
30 !
999 STOP ! End of mai
1000 REM -- SUBROUTINES of main procedure
1010 ' Other statements
SOOO END

STOP ON EB
Statement

Usage

STOP ON {line number}

Syntax Diagram

STOP STOP stop neve) =>
ar ar no. ae

Description

The STOP ON statement, stops execution of a program.

O STOP ON line number, allows a program to be run in sections
during logic debugging.

O The program stops at the line number of the STOP when ON line
number is not included.

O The program stops at the line number following ON, without
executing it, when ON line number is included.

O STOP ON may be executed in either Immediate or Run Mode.

O STOP ON line number enables the STEP command.

Description

SYSTEM GE
Variables

System variables store changing event information for use as required
by a program. They are accessed by name and return a result in
floating-point, integer, or string form as appropriate. The table below
lists the system variables and gives their meaning and form.

System Variables

TYPE NAME EXAMPLE MEANING

DATES String 08-Feb-8 1 Current date in the format
DD-MM-YY.

ERL Integer 1120 Line number at which the
most recent BASIC pro-
gram error occurred.

ERR Integer 305 Error code of the most
recent error the BASIC
interpreter found in the
program being executed.

FLEN Integer 6 Length of the last file
opened in 512-byte blocks.

KEY Integer 20 Position number of the last
Touch-Sensitive Display
region pressed.

MEM Floating- | 29302 Amount of unused main

Point memory, expressed in
bytes.

RND Floating- 0.2874767 Pseudo-random number
Point greater than 0 and less than

1. Repeatable if not
preceded by RANDOM-
IZE.

TIME Floating- | 0.5491405E+08 | Number of milliseconds
Point since the previous mid-

night.

SYSTEM
Variables

TIME$ String 17:45 Current time of day in 24-
hour format.

STIMES String 17:45:19 Current time of day,
including seconds.

CMDFILE Integer —| Command file active.

CMDLINE$| String BASIC Current Operating System
command line.

TAB() G3
Function

Format

TAB (column number)

Description

The TAB function returns a string of spaces that would advance the
current print position on an external printer to one column past the
specified column number.

O TAB has an integer as an argument, and yields a string of spaces
that may be preceded by Carriage Return and Line Feed.

O Any positive integer may be used (0 to 32767). TAB does not limit
the length of a line.

O Because TAB 1s intended for an external printer, column position
may be different than the display cursor.

O Thecurrent print position used by TAB to compute the number of
spaces required is the total number of characters since the last
Carriage Return and Line Feed.

O The display cursor column position will be different from the
current print position when the current line contains a display
control command, such as CPOS.

O The count for current print position includes every character
transmitted, and does not assume that the printer responds to any
positioning commands.

O A Carriage Return and Line Feed sequence precedes the string of
spaces when the current print position is more than one column
beyond the specified column number.

O TAB returns a null string when the current print position is one
greater that the specified column number.

TAB()
Function

Example

The following examples illustrate the results of uses of the TAB
function with the display. The display cursor position is initially at
column |.

PRINT TAB(5), “HELLO”
Advance 5 spaces (column 6) and
display “HELLO”.

PRINT “HELLO”; TAB(3); “THERE”

Display “HELLO”, move the
cursor down one line, and display
“THERE” without leading
spaces. Column 4 (TAB (3) + 1) 1s
left of the cursor after displaying
“HELLO”.

PRINT CPOS(6, 3); TAB(5); “HELLO”

Display “HELLO” at the start of
line 7. Column 6 (TAB (5) +1) is
left of the current print position
since CPOS (6,3) is an 8-character
string, bringing the current print
position to 9, even though the
display cursor moves to row 6,
column 3. All CPOS statements
result in an 8-character string.
That is: LEN (CPOS(r,c))=8.

PRINT CPOS(6, 3); TAB(13); “HELLO”

Display “HELLO” at column 8
on line 6. Since CPOS (6,3) is an
8-character string, the current
position 1s 9 when the TAB to
column 14 (13 + 1) 1s calculated.
TAB returns 5 spaces (14 — 9),
moving the display cursor from its
actual column 3 position to
column 8. All CPOS statements

result in an 8-character string.
That is: LEN (CPOS(r,c))=8.

TAB()
Function

The following example displays the numbers 100 through 154 in 10
columns that are each 8 spaces wide. The column number index is
added to the bottom for reference. The extra space to the left of each
column is for the sign (blank = positive). The PRINT statement in line
50 advances the cursor to the next line. Refer to the section General
Purpose Fluke Basic Statements for a discussion of FOR-NEXT
program loops.

10 FOR I = 100 TO 150 STEP 5
20 FOR K = 0 TO 4
30 PRINT TAB(& *# K)s I+Ks
40 NEXT K
50 PRINT
60 NEXT I

Results:

(r ~ \
100 101 102 103 104
105 106 107 108 109
110 111 112 113 114
115 116 117 118 119
120 121 122 123 124
123 126 127 128 129
130 131 132 133 134
133 136 137 138 139
140 141 142 143 144
145 146 147 148 149
150 151 i352 153 154

TAN() Ea
Function

Format

TAN (angle in radians)

Description

The TAN function returns the tangent of an angle that is expressed in
radians.

O TAN has a floating-point number as an argument, and returns a
floating-point number.

O The range of input values is between and including the limits of +
32767 radians. Error 607 results from input values outside these
bounds.

O Input values within approximately 1E-16 of integer multiples of
PI/2 result in error 603. The tangent function has infinite
discontinuities at these points.

Example

The following example displays the tangent of an angle that is entered
in degrees:

6900 ! Display tangent of angle (degree units)
6910 PRINT “Enter angle in degrees); ' Print prompt
6920 INPUT A ' Fetch angle
6930 PRINT TANCACPI/180)) ' Display result

TERM &&
Statement

Usage

TERM [terminating character]

Syntax Diagram

(EOI)
TERMinator TERM al

Ls att

Description

TERM (TERMinator) may be used to specify an 8-bit character,
which when received from an IEEE-488 bus device in response to an
INPUT statement, will act as a line terminator for the input data.

O The EOI (End Or Identify) line on the Bus will always terminate
input regardless of the use of the TERM statement.

O TERM allows the user to specify an arbitrary 8-bit byte that will
also terminate input.

O The terminating character is Line feed when TERM is not used.

O The terminating event is limited to the EOI bus control line when
TERM is used without a character specified. In this mode, all 8-bit
values are acceptable as input.

O Only one terminating character may be specified at a time.

Example

The following examples illustrate common uses of TERM:

STATEMENT MEANING

TERM ‘7° Select the question mark character as an
input terminator.

TERM CHRS(255%) Select a character with all bits set to one (in
an 8-bit byte) as the input terminator.

TERM Limit input termination to the EOI line of
the Bus.

TERM ’! Null character specification. Limit input
termination to the EOI line of the Bus.

TIMEOUT GES
Statement

Usage:

TIMEOUT [numeric expression]

Syntax Diagram:

(milliseconds)

ra _. TIMEOUT TIMEOUT —~| numeric expression r >

Description

TIMEOUT sets a limit on the amount of time the Instrument
Controller will wait for a response to an IEEE-488 bus request. This
prevents an instrument fault from halting the system.

O Error 408 results when the specified time is exceeded.

O The time allowed is 20 seconds when TIMEOUT is not used.

O The expression designates wait time in milliseconds.

O The range is 0 to 32767 milliseconds. Actual resolution is 10
milliseconds.

O Timeout protection is disabled by specifying zero milliseconds.
This is especially useful during analysis of commands on the bus
with a bus analyzer.

NOTE
The length of timeout at the IEEE-488 port can also be
changed by the SET Utility program. Any time up to 255
seconds (4 minutes, 15 seconds) can be specified.

The following examples illustrate common uses of TIMEOUT.

STATEMENT RESULT

TIMEQUT SOO Set timeout limit to 500 milliseconds.

TIMEOUT 0% Disable timeout protection

TRACE OFF 5
Statement

Usage

TRACE OFF

Syntax Diagram

(disable trace)
TRACE TRACE OFF

Description

TRACE OFF disables any pending or active trace assigned in the
program and destroys the variable list:

Examples

The following example illustrates that TRACE ON starts only a line
number trace after TRACE OFF:

10 TRACE ON A, B ' Trace variables A and B
5O_ TRACE OFF ' Halt the variable trace
100 TRACE ON ' Start a line number trace

The following example illustrates a way to suspend tracing until a later
point in a program.

10 TRACE ON A, B ' Trace variables A and B
30 TRACE ON 100 ' Stop trace until line 100
100 ' Resume tracing variables A and B

TRACE ON GES
Statement

Usage
TRACE ON [linenumber] [trace variable list]
TRACE ON {channel #n] {linenumber] [trace variable list]

Syntax Diagram

(disable trace)
TRACE y

(results to channel)

numeric oe

>

trace line numbers

(start)

trace variable list line no.

Description

TRACE prints a record of line numbers encountered or changes in
variable values.

O Ifa previously opened channel is specified, the results of the trace
are sent to the channel. Otherwise, the results are sent to the

display.

O A Starting line number for tracing may be specified. If it is not
specified, tracing starts with the first line following the execution of
the TRACE statement.

O Tracing is activated when the specified start line or the first line is
encountered.

O TRACE may be used in either Immediate or Run Mode.

TRACE ON
Statement

Line Number Tracing

A line number trace has the following forms:

STATEMENT MEANING

TRACE ON Trace line numbers from the
first line and send the results

to the display.

TRACE ON line number Trace line numbers from the
specified line and send the
results to the display.

TRACE ON @ channel Trace line numbers from the
first line and send the results

to the open channel.

TRACE ON @ channel, line number Trace line numbers from the
specified line and send the
results to the display.

O A line number trace and a variable trace will not execute

concurrently.

Oo A line number trace occurring after a variable trace specifies a new
line number after which variable tracing will resume, provided no
TRACE OFF occurred in the interim.

TRACE ON
Statement

Example

The following examples illustrate the results of different forms of line
number trace statements.

STATEMENT RESULT

30 TRACE ON Start a line number trace at the next

line following line 30.

500 TRACE ON 1275 Start a line number trace when line

1275 1s reached.

750 TRACE ON # 3% 400 °&Start a line number trace when line
400 is reached. Send the trace output
to channel 3.

The line number trace displays a series of numbers representing the line
numbers or the statements executed. The following example illustrates
typical results.

Program

10 TRACE ON
20 I% = 0%
30 IX = I% + 1%
40 IF 1% (3% THEN 30
50 TRACE OFF
60 END

Results
2

30 Showing that the loop was
40 executed 3 times

TRACE ON
Statement

Variable Tracing

A variable trace has the following forms:

STATEMENT

TRACE ON variable list.

TRACE ON @channel. variable list

TRACE ON line number. variable list

MEANING

Trace changes in value
of selected variables

from the first line, and

send the results to the

display.

Trace changes in value
of selected variables
from the first line, and

send the results to the

open channel.

Trace changes in value
of selected variables
where the specified line
is encountered, and

send the results to the

display.

TRACE ON @channel., line number, variable list

Trace changes in value
of selected variables
from the specified line,
and send the results to
the open channel.

O Ifa list of variables is specified, the trace is of changes in values of
those variables. Otherwise, the trace is of line numbers

encountered.

O A variable trace may specify one or more variables of any type:
string, integer, and floating point.

O A variable trace of an array may use the form A() as the variable.
A() means “TRACE ON all elements of array A”.

TRACE ON
Statement

O An array must be previously dimensioned before tracing.

O A variable trace and a line number trace will not execute

simultaneously.

O Two or more variable traces will execute simultaneously. For
example, TRACE ON A followed by TRACE ON Bis equivalent

to TRACE ON A,B.

O A variable trace occurring after a line number trace turns off the
line number trace.

A variable trace statement resembles the line number trace statement
except that a list of variable names is included. The following example
specifies trace output to channel 2, tracing to start at line 340, and
tracing of changes in values of A%, element (3,4) of array B, and all of
array A§:

30 TRACE ON #24, 340, AX, BCG4, 44), ASO)

NOTE
A variable trace of an array cannot be done without first dimensioning
the array with a DIM statement.

Variable trace display output takes the following form:

line number identifier type(indices) = new value

Where:

1. Line number is the number of the line in which the variable was

assigned a new value.

2. Identifier is the name of the variable.

3. Type is % for integers, $ for strings.

4. Indices identify which element of the array is being traced on
and displayed (for array elements only).

5. New value is the new value assigned.

TRACE ON
Statement

This example shows the result of a trace of an array variable:

TRACE ON A (1, 2) Displays the value of
A(1,2) when it is assigned.
For example,

220 A(1,2) = 47.3386

This example program illustrates the display resulting from a trace of
an integer array program:

10 DIM AX (2%, 2%)
20 TRACE ON A%()
30 1% = OX% TO 2%

FOR UX = 0% T
50 A% (1%, JU%) = 1% * U%
60 J%
70 NEXT 1%
680 TRACE OFF
90 END

Results

(- ~
50 A%(0,0) = O
50 Ax(0,1) = O
50 AxX(0,2) = O
SO AX%(1,0) =O
5O AX(1,1) = 1
SO AX(1,2) = 2
SO AX(2,0) = O
SO AX(2,1) = 2
SO AX(2,2) = 4

Other Trace Options

TRACE ON line number can be used to define a trace region within a
program. The example below traces the array A$ only in the
subroutine starting at line 110. Until TRACE OFF is executed,
TRACE ON continues to trace all variables for which a TRACE ON
was executed, and continues to send trace output to the specified
channel or the display.

TRACE ON

10 DIM A® (3%, 3%)
20 TRACE ON 110. AS#() ' Start tracing array AS at

line 110
30 !
40 FOR IX% = OX% to S44
30 AS (1% OZ) = CHRB (ASCII (% ’) + I%)
60 Q@OSUB 110
70 NEXT I%
80 TRACE OFF
90 STOP
100 !
110 FOR JX = 1% TO 3% .
120 Ae gle JX) = AS (IK, JK —- 1%) + CHR® CASCII(’ ’°) + TK

+

130 NEXT J%
140 TRACE ON 110
150 RETURN
140 END

The following trace display output results from running this program.
Refer to Appendix I, ASCII/IEEE-1978 Bus Codes, and note the
display characters that follow SPACE, character number 32, for
clarification of these results.

(, >)
120 AS(O,1) =. ! »
120 A$(O,2) = {"
120 A$(0.3) = !"#
120 AS$(0O,4) = ' "RS
120 A$(0,5) = !“88%
120 AS(1,1) = {"
120 AS(1,2) = !"@
120 AS(1,9) = "8S
120 AS(1,4) = '"8X
120 AS(1,35) = '"GOX&
120 AS(2,1) = “@
120 AS(2,2) = "HS
120 A$(2,3) = "#$%
120 AS(2,4) = "@8X&
120 AS$(2,5) = /RHEXE’
120 A$(3,1) = #$
120 AS(3,2) = #S%
120 A$(3,9) = #94&
120 A$(3,4) = #878’
120 AS$(3,93) = #828’ (
120 AS(4,1) = 8%
120 AS(4,2) = 8XL&
120 A$(4,.3) = 82%‘
120 A$(4,4) = BAR’
120 AS$(4,5) = S$£&’()
120 AS(S,1) = X&
120 AS(5.2) = Lk’
120 A$(S,9) = 4&’¢
120 A$(5.4) = £&’
120 AS(S,.5) = £&'()#

Si Y
Nee y,

It is also possible to send trace output to different channels. Output is
sent to one channel at a time. The following example illustrates this:

10 OPEN “TRACE1. DAT" AS NEW FILE 1%! First trace channel
20 OPEN “TRACE2. DAT" AS NEW FILE 2%! Second trace channel
100 TRACE ON AX, BSC), CC) ' Send output to console
290 TRACE ON #1% ' Send output to channel 1
370 RACE ON #2% ' Send output to channel 2
1030 TR OF > Discontinue a11 tracing

TRIGONOMETRIC Gi
Functions

Description

Fluke BASIC includes four trigonometric functions: sine, cosine,

tangent, and arctangent. These functions have some discontinuities
and limits that can produce unexpected errors when used improperly.
The discussion that follows defines these factors.

Radian Angular Measure

Trigonometric functions in Fluke BASIC use radian measure for
angular quantities. This is a simple concept that fits trigonometric
calculations better than the use of degrees.

0

O

O

The value PI stored by Fluke BASIC (3.14159265358979)
represents an approximation of the ratio between the
circumference and the diameter of any circle.

Radian measure defines the angular distance around a circle as
2*PI radians. This is the equivalent of 360 degrees.

Angles are thus easily defined as fractional parts of PI. For
example: PI radians = 180 degrees PI / 2 radians = 90 degrees

To convert from degrees to radians, multiply by (PI / 180).

To convert from radians to degrees, multiply by (180 / PI).

Functions Available

The available trigonometric functions are:

SIN Function

COS Function

TAN Function

ATN Function

See the individual descriptions of these functions for details.

TRIG Ga
Statement

Usage

TRIG {device list}

Syntax Diagram

TRIGger ——-(_ TRIG —+| device list i _.

Description

The TRIG (TRIGger) statement addresses a set of instruments as
listeners and then triggers them simultaneously. The effect of the
trigger is dependent upon the instrument. For example, a digital
multimeter may take a reading, or a source instrument may go from
standby to operate.

O TRIG addresses the specified devices as listeners.

O The controller then sends a GET (Group Execute Trigger) message
on the bus or buses represented in the device list.

Examples

The following examples illustrate common uses of TRIG:

STATEMENT RESULT

TRIG @ 22% @ 3% Trigger devices 22 and 3 on port 0.

TRIG @ 1% @ 105% Trigger device 1 on port 0, and

device 5 on port 1.

TRIM G3
Statement

Usage:

TRIM integer

Syntax Diagram:

TRIM ———»{_ TRIM} | 1% —

Description

The TRIM statement specifies how trailing null (zero) bytes will be
handled when using string variables from virtual-array files.

O The integer value determines how null bytes will be trimmed as
follows:

0 A zero value specifies that no trimming will be done.

non-zero Any non-zero value specifies that all trailing zero bytes
will be removed, which makes the virtual array string
variables appear to be just like normal string variables.

O A floating-point value will be rounded to an integer.

Example

TRIM 1 ' Activate trailing null byte suppression

TRIM O ' Stop trimming null bytes

UCASES$ Gs
Function

Usage

UCASE$=(argument string$)

Description

The UCASES$ function converts strings to upper case (capitals).

O The argument must be a string variable.

O The output is a string (of the same length as the argument string$)
with all alphabetic characters converted to upper-case.

Example

This example shows a string which is received from the keyboard being
converted to upper case before decoding.

INPUT A$ ' Fetch a string from the user
AUS=UCASE (AS) ' and convert it to upper case

' before use.
IF ASCIIS(CALS$) 964 AND ASCIIS(AL$)(69 THEN 1000 ELSE 120

120
130
131
140
141 ' Look for A-D only

UNLINK
Statement

Usage
UNLINK {filename$}

Syntax Diagram

——+(__UNLINK =)» ——+

Description

The UNLINK statement removes all reference to Assembly Language
or FORTRAN subroutines from memory, making the previously
reserved memory space available for other uses. Individual Assembly
Language or FORTRAN subroutines cannot be selectively removed
from memory.

O Memory freed by UNLINK is available for other uses.

O UNLINK can be used in either the Immediate or the Run mode.

UNPROTECT &iu
Statement

Usage

UNPROTECT ({file$}

Syntax Diagram

yume >: 7— | files

—>{ UNPROTECT)}-—

Description

The UNPROTECT statement changes the protection code for a
specified file to allow it to be deleted (e.g., via KILL or OPEN AS
NEW FILE).

O The “—”’ protection code is visible using the DIR or EDIR
statements to examine the directory containing the specified file.

O Attempting to delete a protected file without using the
UNPROTECT statement will result in an error.

Example

The instruction

10125 UNPROTECT "CSFILE. TMP”

assigns a “—” protection code to the file RPFILE.TMP to allow it to be
deleted.

VAL() &23
Function

Format

VAL (string)

Description

The VAL function returns the floating-point numeric value of a
numeric string.

O VAL has a string as an argument and yields a floating-point
number.

O The string argument to VAL should be a legal floating-point
number.

O String input consisting only of spaces, or a null (empty) string,
returns the value 0.

O Spaces and Nulls may precede the input numeric string.

O Spaces, Nulls, Carriage Returns, and Line Feeds may follow the
input numeric string.

O Error 803 results when the input string contains non-numeric
elements.

Example

The following examples illustrate results of common uses of VAL.

STATEMENT RESULTS

Y = VAL (AS) The value of the numeric string A$ is assigned to the
floating-point variable Y. For example, if A$
contains “1000”, Y is assigned the value 1000.

z= vac «" ") Assign Z the value 0. (The string consists only of
spaces).

WAIT GE
Statement

Usage

WAIT [time expression]

Syntax Diagram

WAIT WAIT "

(milliseconds)

numeric expression

(CTRL C or ABORT)

>)
Description =

WAIT suspends program execution until either the specified time
period elapses. Other forms of the WAIT statement allow waiting for
an event (KEY, PPOL, or SRQ) to occur. These forms of the WAIT
statement are described separately and as a group elsewhere in the
Reference Section of this manual.

oO Wait time is indefinite if a time is not specified.

O The Wait time (expressed in milliseconds) should be a positive
integer, an expression that evaluates to a positive integer, or a legal
time value. The WAIT statement is ignored if the wait time is zero
or negative.

WAIT
Statement

O The time may be expressed either in hours, minutes, and seconds,
or as milliseconds (10 milliseconds minimum). The maximum time
allowable is 24 hours. The following are all legal time expressions.

expression meaning

1:00 one hour

0:0:01 one second

0:10 ten minutes

hr:0:0 “hr” hours

t “t” milliseconds

time+1000 current time plus | second

Note
The “hh:mm:ss” form permits the seconds field to be omitted.

O The minimum wait time is 10 milliseconds.

O Clock resolution is 10 milliseconds.

O Interrupt processing that has been previously activated by ON
SRQ, ON PPOL, or ON KEY remains active, capable of

terminating the wait.

O When an interrupt that has been enabled by an ON statement
occurs, the program branches to the interrupt handling routine.
The RESUME statement at the end of that routine branches back
to the statement following WAIT.

O <CTRL)/C or the ABORT switch will terminate the WAIT. If the
program does not include a (CTRL) /C handler, the program will
be halted and control returned to Immediate Mode.

WAIT
Statement

Examples

The following examples illustrate the uses of the WAIT statement.

4490 WAIT 300 ‘wait 300 milliseconds
3000 WAIT 13:00 ‘wait 13 hours
6000 WAIT O00: 00: 10 ‘wait 10 seconds

The following example illustrates the use of WAIT in requiring
program execution to halt for the period of time, in milliseconds,
supplied by the integer variable D%.

980 WAIT DZ

Often a program must take into account external events, such as the
length of time a programmable instrument needs to respond to
program data. Use the WAIT statement to ensure proper timing of the
test system. This example sends program data to a Fluke Model 6070B
frequency synthesizer, then waits 1 second for the instrument to settle
before going to the next program step.

390 Print
60 WAIT 1

@ 1 “FR2OOMZ, AP'!V" ' 200 MHz, 1 Volt amplitude
000 ' wait 1 second

1000 RESUME

WAIT G3
Statement

Usage

WAIT [time expression] FOR | KEY
PPOL
SRQ
TIME

Syntax Diagram

FoR KEY | = WAIT |
FOR PPOL

FOR SRQ

FOR TIME time expression

a (CTRL C or ABORT}

WAIT

a
FOR

\

Ve

TIME

_f,)
ee

Description

The WAIT [time expression] [FOR event] statement suspends
program execution until the specified interrupt event occurs or the
specified time elapses.

O The interrupt is implicitly acknowledged by its occurrence.

O WAIT may be followed by a time expression specifying a period of
time to wait for the interrupt.

O The time may be expressed either in hours, minutes, and seconds,

or as milliseconds (10 milliseconds minimum). The maximum time
allowable is 24 hours. The following are all legal time expressions.

1

WAIT
Statement

0

O

expression meaning
1:00 one hour

0:0:01 one second

0:10 ten minutes

hr:0:0 “hr” hours

t “t” milliseconds

time+1000 current time plus | second

Note

The “hh:mm:ss” form permits the seconds field to be omitted.

When the specified time elapses, interrupt checking stops and the
program continues with the next statement.

An interrupt previously enabled by an ON-GOTO statement
remains enabled during the waiting period, whether or not the
WAIT statement references it.

When a [time expression] is used with the WAIT statement and the
specified interrupt occurs before the expiration of the [time
expression], program execution can be delayed by the remainder of
the time denoted by the [time expression] by using the WAIT FOR
TIME statement. The following diagram and program fragment
displays the relationship between the WAIT and WAIT FOR
TIME statements.

%00 WAIT 0:0:10 FOR KEY ‘wait 10 secs for ke
510 WAIT FOR TIME ‘force wait fcr remainder
%20 GOSUB 3000 ‘now do something

(—<$— WAIT 0:0:10 FOR KEY)

0 * xX

10 seconds

key pressed

(WAIT FOR TIME)

4 seconds 10 seconds

WAIT interrupts have four general forms as shown in the table
below. Each construction of the WAIT statement is separately
discussed below. Each of the four interrupt types is discussed
separately elsewhere in the Reference Section.

WAIT
Statement

WAIT Interrupt Statements

STATEMENT FORM

WAIT

WAIT time expression

WAIT FOR KEY, PPOL, SRQ

MEANING

Suspend program execu-
tion until a CTRL/C or
an interrupt enabled by
ON-GOTO occurs.

Suspend program execu-
tion up to the specified
time limit until CTRL/C
or an interrupt enabled by
ON-GOTO occurs.

Suspend program execu-
tion until CTRL/C, the
specified interrupt, or an
interrupt enabled by ON-
GOTO occurs.

WAIT time expression FOR KEY, PPOL, SRQ

Suspend program execu-
tion, up to the specified
time limit, until

CTRL/C, the specified
interrupt, or an interrupt
enabled by ON-GOTO
occurs.

WAIT
Statement

Example

The following program causes the Controller to wait 10 seconds fora
touch sense key entry. If no entry is sensed, execution continues. If an
entry is sensed, execution continues at a subroutine. The waiting
period terminates when 10 seconds have elapsed, or when the TSO is
touched. The elapsed time from line 130 to the program end is reported
before exiting back to BASIC.

100 ON KEY GOTO 900 ‘do this when tso touched
110 AZ = KEY ‘zero the tso
120 PRINT "touch: the screen” ‘tell what to do
130 T = TIME ‘get the time
140 WAIT 00:00:10 FOR KEY 'wait 10 seconds for key
130 T1 = TIME get time
160 PRINT “you didn’t touch anyth
170 PRINT “elapsed time = "; (T-T1 7 000; " seconds"
180 END
4as7g sf! eves touch subroutine
500 OFF EY ‘disable the tso
910 T1 = TIME ‘get the time
520 PRINT ee touched the screen at "i; KEY;
930 GOTO 17

When this program is run, the elapsed time varies, depending on when
the TSO was touched, if at all.

The following program 1s a variation on the preceeding program. This
illustrates the use of the WAIT FOR TIME statement to force waiting
for the full time interval specified in the previous WAIT [time
expression] [FOR event] statement. When the program is run, note
that the elapsed time reported is approximately 10 seconds, regardless
of when the screen was actually touched.

‘wait for key example #2
20 PRINT "touch the screen when ready"
30 K4Z = KEY \ T = TIME ‘clear the tso0, store begin time
40 WAIT 10000 FOR KEY \ K% = KEY ‘wait 10 secs, get key val
20 IF KAZ (>) O THEN 80 ELSE 60 ‘if no keyess
60 Ti = TIRE \ PRINT “you didn’t touch anything. did you?”
70 9eOTO
80 T2 = Tim 'get time screen was touched
90 PRINT "you touched the screen in "; (T2-T1)/1000;" seconds”
100 WAIT FOR TIME jwait remainder of time
110 T1 = TIM et the time
120 PRINT “elapsed time = Hy (TIT) 1000; " seconds"
130 GOTO 20
140 END

WAIT FOR KEY &&
Statement

Usage

WAIT [time expression] FOR KEY

Syntax Diagram

WAIT | FOR KEY ng GALL ae
FOR PPOL
FOR SRQ
FOR TIME time expression

(CTRL C or ABORT)

FOR
"A

Description

The WAIT FOR KEY statement suspends operation of the program
until the Touch-Sensitive Display is pressed in the active area.

O Whenthe WAIT FOR KEY statement is encountered, the number

stored in KEY is checked for non-zero.

O A zero value for KEY will cause program execution to stop until
KEY becomes non-zero, or until the specified time has elapsed.

O A non-zero value for KEY will immediately terminate the wait
condition, passing control to the next program statement.

oO A time limit may be specified following the word WAIT as
described under the WAIT Time Statement.

WAIT FOR KEY
Statement

D The statement will be ignored if the specified time is zero or
negative.

The wait time will be indefinite (until the Touch-Sensitive Display
is pressed) if no time is specified.

The WAIT is terminated whenever the Touch-Sensitive Display is
pressed in the active area.

A touch key input causes the program to continue with the next
statement unless a previous ON KEY GOTO statement has been
executed.

When a previous ON KEY GOTO statement has been executed, a
touch key input causes the program to transfer to the KEY
processing routine.

The system variable KEY is set whenever the Touch-Sensitive
Display is pressed in an active area, regardless of whether WAIT
FOR KEY 1s used. It remains set until it is read by a program
statement. (For example, K% = KEY)

Wait time is 0 if the system variable KEY is nonzero when WAIT
FOR KEY is executed.

The WAIT can be terminated in any of the ways defined above
under the WAIT statement.

WAIT FOR KEY
Statement

Example

The following example illustrates the KEY variable and the WAIT
FOR KEY interrupt. Line 10 clears the KEY buffer. This resets any
value it contained from touching the display before the program
started. Line 20 halts the program until the Touch-Sensitive Display is
touched. Line 30 prints the KEY number. Line 30 also clears the key
buffer. If the buffer were not cleared, line 20 would detect it again,
allowing line 30 to display the same key value repeatedly.

10 KX = KEY ' Clear key buffer
20 WAIT FOR KEY ' Enable key interrupt
30 PRINT ‘KEY = ‘3; KEY ' Display key valve
40 COTO 20

Sample displayed results:

x 2
“
u
n
e
e

rm

The following example program displays the number of each key in
double-size directly under the spot that was touched.

O Flag KF% in line 80 enables the interrupt routine to clear the
“Touch the Display” message from the display.

O After displaying a prompt message, line 120 halts the program until
the display is touched. Then line 130 enables the KEY interrupt.

O Since the KEY buffer has a number in it from touching the display,
line 130 immediately branches to the interrupt routine, disabling
the KEY interrupt.

O Since the KEY flag KF%is initially zero, line 220 clears the “Touch
the Display” message.

O Line 230 sets the KF% flag to one, so that subsequent passes
through the routine will not clear the display.

O Lines 240 through 290 compute the position of the spot that was
touched and display the KEY number at that spot.

WAIT FOR KEY
Statement

O Line 300 reenables the KEY interrupt and branches back to the
main routine. Since the ON KEY GOTO statement is still active,

line 140 waits for another touch on the display.

O If a touch occurs within 10 seconds, the interrupt routine is
reentered.

O Ifa touch does not occur within 10 seconds, line 150 disables the
KEY interrupt and branches to line 80 starting the sequence over
again.

ie 44% Display Keys #++

30 ' Displays the KEY number of the spot touched. Clears
$0 the display if not touched within 10 seconds.

60 AX = KEY 'Clear KEY buffer
70 ES@® = CHRS$(27) + "C" ‘Display escape sequence
80 KFX = O% ‘KEY flag
90 PRINT ESS; “2J"; ES@; “1p” ‘Clear display, double-size
100 PRINT CPOS(¢4, 10); ‘Position cursor
110 PRINT “Touch the Displaysy ‘Display prompt message
120 WAIT FOR KEY ‘Wait until display is touched
130 ON KEY GOTO 200 ‘Enable KEY interrupt
140 WAIT 10000 'Wait 10 seconds
150 FF KEY ‘Disable KEY interrupt
160 GOTO 80 ‘Loop

180 ! HH Key Interrupt Routine ##+#
190 ! 200 KA ® KE Get KEY number
210 IF KF% = 1% THEN 240 First time through?
220 PRINT ESS "“2J" Clear screen
230 KAFX = 1% Bet KEY flag
240 KIA = KA —- 1% Compute KEY index
2530 TRZX = INT (KIX / 10%) !Compute touch panel row
260 DRA = TRA + 2% Compute display row
270 DCK = 6% + (KIX —- 10% # TRA) *# 3% !Compute column
280 PRINT CPOS(DR%, DCX): Position cursor to spot touched
290 PRINT USING "#8", KZ; Display key on spot touched
300 RESUME 140 Wait for another key

Usage

WAIT FOR PPOL&&S
Statement

WAIT [time expression] FOR PPOL

Syntax Diagram

WAIT | FOR KEY | === WAIT) \ WAIT)
FOR PPOL) [
FOR SRQ
FOR TIME time expression

(CTRL C or ABORT) _

FOR | ar . 7™~
KEY

Cm
+—_——

Description

The WAIT FOR PPOL statement suspends operation of the program
and initiates continuous parallel polling indefinitely until a positive
parallel poll response is detected on the instrument port.

0 The WAIT can be terminated in any of the ways defined above
under the WAIT statement.

A time limit may be specified following the word WAIT as
described for the WAIT FOR [event] Statement.

The WAIT is terminated whenever a positive parallel poll response
is detected on the instrument port (both are checked if the optional
IEEE-488 port is installed).

A positive parallel poll response causes the program to continue
with the next statement unless a previous ON PPOL GOTO
statement has been executed.

WAIT FOR PPOL
Statement

O When a previous ON PPOL GOTO statement has been executed, a
positive parallel poll response causes the program to transfer to the
parallel poll processing routine.

O The program statements following WAIT FOR PPOL should
cause the parallel poll response bit of the responding instrument to
be reset, if possible.

O WAIT time is 0 if either instrument port has a positive parallel poll
response when WAIT FOR PPOL is executed.

O See the note in the description of ON PPOL GOTO in this section.

WAIT FOR SRQ G2
Statement

Usage

WAIT [time expression] FOR SRQ

Syntax Diagram

WAIT | FOR KEY WAIT

FOR PPOL

a sine time expression

| (CTRL C or ABORT)

SL
KEY

Description =<; <+——_—4

The WAIT FOR SRQ statement suspends operation of the program
indefinitely until a service request is detected on the instrument port.
Both ports are checked if the optional IEEE-488 module is installed.

O The WAIT can be terminated in any of the ways defined under the
WAIT statement.

O A time limit may be specified following the word WAIT as
described for the WAIT FOR [event] Statement.

O The WAIT is terminated whenever a service request is detected on
either instrument port.

O A service request causes the program to continue with the next
statement unless a previous ON SRQ GOTO statement has been
executed.

O When a previous ON SRQ GOTO statement has been executed, a

service request causes the program to transfer to the service request
processing routine.

WAIT FOR SRQ
Statement

O An internal SRQ flag is set by a service request. It is reset in the
controller by performing any serial poll (for example, Y% =
SPL(10)). However, depending on the instrument, SRQ will
probably not be set again until a serial poll is performed on the
instrument requesting service.

O WAIT time is 0 if the internal SRQ flag was not reset after the last
service request.

O WAIT FOR SRQ does not reset the internal SRQ flag.

WBIN 3
Statement

Usage
WBIN {device or port p%},{integer array subrange}[secondary
address]

Syntax Diagram

WBIN WBIN —e) device list ’

Write Binary

PORT

a niin,

real variable oF) a

Loy precision f

ax — 5 a

Description

WBIN (Write BINary) sends numeric data to an IEEE-488 bus
instrument in single- or double-precision IEEE standard floating point
format.

O The instrument with the specified device number is addressed as a
listener.

O Instrument addressing is skipped when the @ character follows
WBIN without a device specified.

O Data is then transmitted in the specified format.

O Precision :4 specifies conversion to a four-byte single-precision
number.

O Precision :8 specifies an eight-byte double-precision number (no
conversion required).

O The default format is eight-byte double-precision.

WBIN
Statement

Example

The following example addresses device 4 with secondary address 2 on
port 0 as a listener, and then transmits the values of BI and Z (elements

1% through J%) in single-precision format.

4790 WBIN @ 4:2, B1:4, Z(IZ..JL): 4

The following example addresses device | on port 0 and device 20 on
port | as listeners, and then transmits the specified values from array D
in double-precision format to both port 0 and port I (since both ports
have been addressed). Values are transmitted from the array in the
same order as those written in the third example for RBIN. Rows are
output in column order.

2500 WBIN @ 1% @ 120%, D(O%Z..14, 3K. 7H)

Usage

WBYTE Gt
Statement

WBYTE [PORT p%,]{integer array subrange}

Syntax Diagram

(port 0)
WBYTE WBYTE

Write Byte

PORT | numeric expression

example A (0 1000)

és integer variable subrange F —

,«< ,

Description

WBYTE (Write BYTE) sends an arbitrary set of bus commands or
data bytes to a port. The ATN, EOI, and data lines of the instrument

bus may be set as desired with this command, with the restriction that
ATN and EOI may not be set true simultaneously (since this causes a
parallel poll).

O

0

The array must have only a single dimension (subscript).

The array must be integer type.

A virtual array may not be used.

Data transmitted by WBYTE is taken directly from specified
integer arrays (one byte per array element).

Data within each array element is formatted as follows (bit 0 is low-
order):

BITS CONTENTS

0-7 8-bit data byte

8 Send EOI if set to 1

9 Send ATN if set to |

10-15 Ignored

WBYTE
Statement

O WBYTE performs no automatic device addressing.

O The data sent from the array, however, may designate talker or
listeners.

O WBYTE is used as a clause within some other IEEE-488 bus
control statements. When used as a clause, it is enclosed in braces

as WBYTE... , and may only have one subrange designated.

Example

The following example sends a binary data byte contained in array
element 0 of array A% to port I:

7440 WBYTE PORT 1%, AZ(O%)

The following example sends seven data bytes from array A%
(elements | through 7 in order) and two data bytes from array B%
(elements 12 and 13) to port 0.

30080 WBYTE PORT O%, AZXC1%..7%), BACI2L£.. 13%)

The following example illustrates one way the integer array may be
defined and sent on port 0, the default port:

110 ' Assign arrey for programming instrument
120 DZCO) = $12% 63%. ' ATN and UNL
121 DZ(1) = 312% + 9YS% ' ATN and UNT
122 DZ(2) = 312% + 34% ' ATN and listen address of 2
123 DAC(G) = 63% : "7" for trigger
124 DZ(4) = 512% + 93% ! ATN and UNL
1235 DZ(3) = 312ZK% + 652% ' ATN and talk address of i
130 ' Send data on port C
140 WBYTE DZ(O%..5%

	1-000
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112
	1-113
	1-114
	1-115
	1-116
	1-117
	1-118
	1-119
	1-120
	1-121
	1-122
	1-123
	1-124
	1-125
	1-126
	1-127
	1-128
	1-129
	1-130
	1-131
	1-132
	1-133
	1-134
	1-135
	1-136
	1-137
	1-138
	1-139
	1-140
	1-141
	1-142
	1-143
	1-144
	1-145
	1-146
	1-147
	1-148
	1-149
	1-150
	1-151
	1-152
	1-153
	1-154
	1-155
	1-156
	1-157
	1-158
	1-159
	1-160
	1-161
	1-162
	1-163
	1-164
	1-165
	1-166
	1-167
	1-168
	1-169
	1-170
	1-171
	1-172
	1-173
	1-174
	1-175
	1-176
	1-177
	1-178
	1-179
	1-180
	1-181
	1-182
	1-183
	1-184
	1-185
	1-186
	1-187
	1-188
	1-189
	1-190
	1-191
	1-192
	1-193
	1-194
	1-195
	1-196
	1-197
	1-198
	1-199
	1-200
	1-201
	1-202
	1-203
	1-204
	1-205
	1-206
	1-207
	1-208
	1-209
	1-210
	1-211
	1-212
	1-213
	1-214
	1-215
	1-216
	1-217
	1-218
	1-219
	1-220
	1-221
	1-222
	1-223
	1-224
	1-225
	1-226
	1-227
	1-228
	1-229
	1-230
	1-231
	1-232
	1-233
	1-234
	1-235
	1-236
	1-237
	1-238
	1-239
	1-240
	1-241
	1-242
	1-243
	1-244
	1-245
	1-246
	1-247
	1-248
	1-249
	1-250
	1-251
	1-252
	1-253
	1-254
	1-255
	1-256
	1-257
	1-258
	1-259
	1-260
	1-261
	1-262
	1-263
	1-264
	1-265
	1-266
	1-267
	1-268
	1-269
	1-270
	1-271
	1-272
	1-273
	1-274
	1-275
	1-276
	1-277
	1-278
	1-279
	1-280
	1-281
	1-282
	1-283
	1-284
	1-285
	1-286
	1-287
	1-288
	1-289
	1-290
	1-291
	1-292
	1-293
	1-294
	1-295
	1-296
	1-297
	1-298
	1-299
	1-300
	1-301
	1-302
	1-303
	1-304
	1-305
	1-306
	1-307
	1-308
	1-309
	1-310
	1-311
	1-312
	1-313
	1-314
	1-315
	1-316
	1-317
	1-318
	1-319
	1-320
	1-321
	1-322
	1-323
	1-324
	1-325
	1-326
	1-327
	1-328
	1-329
	1-330
	1-331
	1-332
	1-333
	1-334
	1-335
	1-336
	1-337
	1-338
	1-339
	1-340
	1-341
	1-342
	1-343
	1-344
	1-345
	1-346
	1-347
	1-348
	1-349
	1-350
	1-351
	1-352
	1-353
	1-354
	1-355
	1-356
	1-357
	1-358
	1-359
	1-360
	1-361
	1-362
	1-363
	1-364
	1-365
	1-366
	1-367
	1-368
	1-369
	1-370
	1-371
	1-372
	1-373
	1-374
	1-375
	1-376
	1-377
	1-378
	1-379
	1-380
	1-381
	1-382
	1-383
	1-384
	1-385
	1-386
	1-387
	1-388
	1-389
	1-390
	1-391
	1-392
	1-393
	1-394
	1-395
	1-396
	1-397
	1-398
	1-399
	1-400
	1-401
	1-402
	1-403
	1-404
	1-405
	1-406
	1-407
	1-408
	1-409
	1-410
	1-411
	1-412
	1-413
	1-414
	1-415
	1-416
	1-417
	1-418
	1-419
	1-420
	1-421
	1-422
	1-423
	1-424
	1-425
	1-426
	1-427
	1-428

