FLUKE
®

BASIC

P/N 716639 I I
January 1984 Rev 15/85 FLU KE
©1985 John Fluke Mfg. Co., Inc

All rights reserved. Litho in U.S.A.

®

Contents

HOWTO USE THISMANUAL 1-1
INtrodUCtION o vvvvtnt ittt ittt it eenenreneeneennnnnnas 1-3
BASIC Manual ...viiiiiiiiiiiiiitenneenneenneennnns 1-5
BASIC Reference Manualccoiiiiiiiiiinneennnn. 1-6
How to Read Syntax Diagramsccvveeneennnn 1-7
Notation CONVENtIONS . ..vvtvir e rereneeneneeneensnns 19
BASIC CONVENTIONS ...ttt 2-1
| G908 oY 10 Te15 Lo) + KN 2-3
OVBIVIEW o vttt et ietteeeneneenenseneessoneenensnneas 2-3
Exceptions to ANSI Standard BASIC 24
Running the BASIC Interpreter Program 2-5
Exiting BASIC ... ittt ittt ittt 2-6
BASIC Operating Modesoovviiiiiiiiinnnennnnnnn.. 2-7
Immediate Modeoviiiiiiiiiiiiiiiineerenennnns 2-7
Edit Mode ...iviiiiiii ittt i ittt et enneneenenn 2-9
RUn Mode ..iiiiiiiiii ittt it ittt ieneeeneenns 2-9
Step Mode ..ottt i i i i e 2-10
File Names . ..vvtiitntniiiiitinieneeneneeneoneneanens 2-11
SYSTEMFUNCTIONSiiiiiiiiiinnnn. 3-1
INtroduction ..vvvitiiii i it i et et e e, 3-3
OV IV EW vttt ittt ittt et et ettt enenenenseoeoanenenenans 3-3
System Functions for File Management 34
COPY Statementvvvtiinerenrenneeeneenneennees 3-5
DIR Statementovviititinntrnnnneeeoennnnesens 3-5
EDIR Statementviitiiitinnennneenneennnans 3-5
KILL Statementvvtiintiin e eenneenneenneann 3-6
QDIR Statementiitiiiiiiiiiii e 3-6
RENAME it i i ettt it ieteneenennens 3-6

i (continued on page ii)

CONTENTS, continued

Device Management Functions 3-7
ASSIGN Statementoviiiiiiinirnnnnennnnennn. 3-7
PACK Statementcoiiiiiiiiiiiiiiinnnnnnnn. 3-7
PROTECT Statementcuoveiieuineneennennenns 3-7
UNPROTECT Statementcvvvivrnennennnnn. 3-8

4 WRITING AND EDITING A PROGRAM 4-1

INtroductionvuuiirintininnereeenennenneenennnns 4-3

OVEIVIEW it itt e ete ettt et ieeannetoeeasasnnsnaansnsns 4-3

Special Function Keys ..ottt 4-3
Delete Key ...vviriiiiiiirii i iirieinenneeenennnnns 4-3
PAGE MODE Switch and NEXT PAGE Keys 4-3
(CTRL)Y/Key-Modifierccoviiiiieiineinennnn. 44

Writing a Programcoiiiiiiiiiiiiiiiin i 4-6

Entering a Programcoiiiiiiiiiiiiiininanen 4-7
Entering a Program from the Immediate Mode 4-7

LIST Commandccciiiiiiiiiinrnnnnennnannns 4-9
DELETE Commandcciiiiiiiinnnnenennnn 4-10
REN Commandcovviiiitninrnnnnenennennnns 4-11
Changing the Sequence of Program Lines 4-14
Entering a Program From the Edit Mode 4-15
Entering a Program Using the System Editor
Program (EDIT.FD2)ivuiiiiiiiiiiiiiinnennnnens 4-15

Editing a Programc.coitiiuiiinneneennennennnns 4-16

The BASIC Editoriiiiiiiiiii i iiinernnnnn 4-17

Edit Mode Keysiiiiiniiiin it iiiinenennnnns 4-19

Additional Editor Featuresc.cv.... 4-22

5 STORING AND RUNNING A PROGRAM veo. 5-1

INtroductioncciiiiiniiiiiii ittt 5-3

OVEIVIEW ittt ttinetineeennesonneronnesonnnronnneas 5-3

Savinga Program o0ttt i i i 54
SAVE, RESAVE, SAVEL, and RESAVEL
Immediate Mode Commandscovviivennne. 54

Running a Programccoiiiiiiiniiniininennnnn 5-6
OLD Immediate Mode Command 5-6
RUN Immediate Mode Command 5-8

6 DATA, OPERATORS, AND EXPRESSIONS 6-1

INtroductioniiuiiiiiiiiiinriertnrenernnennennnn 6-3

OVEIVIEW ittt ittt i iiiiiee e teneeeeenannnnns 6-3

Data Types «.uvveiiiniiiiiiiiiiiiiineeenaeennnnnens 64
Floating-Point Dataooiiiiiiiiiieinn, 64

ii (continued on page iii)

CONTENTS, continued

Floating-Point Constantsccciivuvenennnn. 6-5
Integer Data ..ottt 6-5
Integer Constantsc.oovuiiinienerenrenrenennnnnn 6-6
String Data ...t i i i i e e e e 6-6
String Constantsc.oovienrnnenrrerneneenenannn 6-7
System Constantsoviiireiieninereeniaenanan 6-7
BASIC Variablescoiiiiiiiiiinniieiieiiennnnnns 6-8
Introduction To Variablesciiviun.. 6-8
Floating-Point Variables 6-8
Integer Variablescoiiiiiiiiiiiiiiiin.. 6-8
String Variablesottt i e 6-8
Array Variablesottt 6-9
System Variablesc.coviiiiiiiiiiiiiiiiie.n. 6-11
Operators and Expressionsccvvveeiunnnnnennn.. 6-12
Assignment Statement: = 0t 6-12
Arithmetic Operators: + - * |/ i iiiiinnnnns 6-12
Relational Operators: = < > <> <= >= ,......... 6-14
Numeric COmMpPAariSONSveeernrneeneneenenennns 6-15
String Concatenation Operator: +ccuvnn. 6-15
Logical (Bitwise) Operatorsccoevvuvenennennn. 6-16
Binary Numberscciuiiiiiinininiennennnnnn. 6-16
Twos Complement Binary Numbers 6-18
AND Operatorivieiiinin i iiinenenreennnns 6-18
OR Operatorviiniiiiniinenennrnenneeennnnns 6-19
XOR Operator . .o.veeiitnnreernerneneenenenannns 6-19
NOT Operatorovverernenenrnenrneneneneannnans 6-20
Operator Hierarchyc.ciiiiiiiiiiinninnenn... 6-20
Use of Parentheses in Expressions 6-22
DATASTORAGEcciiiiiii i, 7-1
Introductioncciiiiiiiiiii i i i i e 7-3
OVEIVIEW ittt et e tte et eeteeeeneanenenaneenenennas 7-3
Using Arrays for Data Storageco.... 74
Array Types and Differencescovin. 7-5
Advantages and Disadvantagesccun.... 7-6
[/OChannelsciiiiiiiiiiiiiiiiiiinininnennnn. 7-7
Channel Input and Outputcciiivenan.. 7-7
OPENing an Output Channelot 7-8
OPENing an Input Channel 7-8
CloseaChannel 0. i, 7-8
Specifying File SIZE ..., 7-9
Sequential Data Files Y A3 [
Creating a Sequential File 7-10
Reading a Sequential File 7-11

iii (continued on page iv)

CONTENTS, continued

Creating Main Memory Arraysccovviiieinnannnn. 7-13
Using Main Memory Arraysccoiiieennneennnnnn 7-14
Using Main Memory Arrays as Ordinary Variables 7-14
Programming Techniquescoovviiiiinns. 7-15
Two Dimensional Arraysceveeeneneenrnnennens 7-16
Multiple AITays . .vvvuiiiiiiiiininninnenenenenens 7-17
Redimensioningoeeieiieneneneneneneananananns 7-17
Main Memory Arrays and Program Chaining 7-18

Serial Storage of Main Memory Arrays in Mass Storage . 7-19

Device Storage Size Requirements 7-20
Device File Size Calculation 7-20
Disk Size Calculation Example 7-21
Virtual Array Filescooiiiiiii i, 7-22
Definitionoiiniiiinii it i i i e 7-24
Advantages and Disadvantages 7-24
File Structurecoviiiiiiniiiniininnrrneennenns 7-26
ANalogy . it i e i e e 7-26
Virtual Array File Organization 7-27
Storage Size Requirements 7-29
Virtual Array Size Calculation 7-30
Creating Virtual Arrayscoveiiirnnennnnnnennnn. 7-32
Using Virtual Arrayscoiiiiiiiiiinnnnneninenenenn. 7-33
Using Virtual Arrays as Ordinary Variables 7-33
Using Virtual Array Stringscoveveniniennenennnn. 7-34
Programming Techniquesccvviiiiiniinnnnnnn. 7-35
Array Element AcCCessovviniiniiiiiiiiiiiniiniinnen 7-35
Splitting Arrays Among Files 7-36
Reusing Virtual Array Declarations 7-37
Equivalent Virtual Arraysccvviiniinnennnnnnn 7-38
8 FUNCTIONS it 8-1
Introductionottt e 8-3
LD T 8-3
General Purpose Mathematical Functions 84
ABS() Functioncoiiiiiiiiiiiiiiiiinn, 8-5
ASH() Functionooiuiiiiiniiiniiiininnnn, 8-5
EXP() Functioncoiuiiiiiiiiiiinninnnnnnnn. 8-5
INT() Functionoiiiiiiiiiiiiiii .. 8-5
LNQ Functioncoo i, 8-6
LOG() Functionc.coiiiiiiiiiiiiiiiiiinnennn. 8-6
LSH(Q Functioniiiiiiiiiiiin i, 8-6
MOD() Function ..., 8-6
RND Functionooiiiiiiiiiii i, 8-7

iv (continued on page v)

CONTENTS, continued

SGN(Functioncciiiiiiiiiiiiinniineinnnnnnns 8-7
SQRO Functioncoviiiiinniinreneennrenennanns 8-7
Trigonometric Functionsccovviiiiiiinnnenn. 8-8
ATNQ Functioncoiviiuiiiiiiiniiinnennnnennnns 8-9
COSO Functionvvviiiiininrenenennennennnnns 89
SINO FUnCtionoveveniieenennenenneneneenenanns 8-9
TANQ Functioncoiitiiiininnininnenenenennns 8-9
String Functionsoiiiiiiiiiiiriiiiriiiinenannenns 8-10
ASCII() Functioncieeinienrennnrnennonannsns 8-11
CHRS$() Functioncciiiiiiiiiiiniiniinnnnnnn. 8-11
CPOSO Functioncoveiiininennenrnnenennennns 8-11
DUPLS() Functioncoviiiivnnenrnnnnnnnennns 8-11
INSTR() Functioncoviiiiiiniieinnnnnenennnn. 8-12
LCASES() Functionccoviiiiiiinnnennnnnnnnn. 8-12
LEFT() Functioncoiiiiiiiiiiiennernrnnnnnnns 8-12
LENQO Functioncoviiiienrenennnnenenaeannnss 8-12
MID() Functioncoviitiininneneneenenenneases 8-12
NUMS() Functioncceviiiinennenrnennennnnnns 8-13
RADS() Functioncciiiiiiiiiininrnnenennennns 8-13
RIGHT() Functioncciiiiiiiinnneninnnnennnn 8-13
SPACES() Functionciiiiiiiiiiiinnnnnnnnn, 8-13
TAB(Functionciiiiiiiiiineninenennnnnnns 8-13
UCASES() Functioncciiiiiiinininnnnennnn. 8-14
VAL Functionc.ceiiiiiiiiinrneneennnnnnens 8-14
User-Defined Functionscc0iiiiiiniinennnnn. 8-14
IEEE-488 Bus Input and Output Statements 9-1
Introductionviiiiiineeeenennenennenennnnennan 9-3
OVEIVIEW vttt iereensasesnenenenensesnsesenesenennns 9-3
IEEE-488 AddAressingovveivninnneennneennnannnn 94
Device Addressingcoveieirenenenrnenennenennens 9-5
Addressing Serial IEEE-488 Devices 9-7
Port Addressingccoviiiiiiiineineinennennennns 9-8
Initialization and Control Statements 9-9
CLEAR Statementccciivivenenrneennnnnnnnns 9-10
INIT Statementcoitiiiiiiiniininrnrenenennnn 9-10
LOCAL Statementovevvuvenenennenennennnnns 9-11
LOCKOUT Statementoveevinenenennenennnn. 9-11
ON PORT Statementc.ccevinininnnennnnennnns 9-12
OFF PORT Statementccvviiiiiniinennennnnn. 9-12
PASSCONTROL Statementccovvivennnnnn. 9-12
REMOTE Statementccoviiiiiiiinenennnn. 9-12
SET SRQ Statementovvuiirniinnennenneenennnns 9-13

v (continued on page vi)

CONTENTS, continued

10

TRIG Statementccvvieereenrenrneneeneenennns 9-13
TERM Statementcoeiiiinenenenenonnnnnannns 9-13
TIMEOUT Statementcvveeeneneenennenenannes 9-13
Input and Output Statementscccvvivviiiennn. 9-14
INPUT Statementcvieineieenernnenneaeannnns 9-14
INPUT LINE Statementcccviteunennenennens 9-15
INPUT WBYTE Statementcvviviieerenennens 9-15
INPUT LINE WBYTE Statementcccovvvennnn 9-15
PRINT and PRINT USING Statements 9-16
IEEE-488 Data Transfer Statementsc.cvc0vevenn. 9-17
RBYTE Statementcccvitititnenrnenennneanas 9-18
WBYTE Statement or Clauseovveienenennnens 9-18
RBYTE WBYTE Statementccvvivivennnnn 9-18
RBIN Statementcccveieinrnenenenrnrennenenas 9-19
RBIN WBYTE Statementcciciieieenecnennnn 9-19
WBIN Statementc.ccoiiiirieneneneeeeennaanss 9-20
IEEE-488 Polling Statementscccvveeeeeeneenennes 9-20
CONFIG Statementceeeveneeneennsnneenneens 9-21
ON SRQ and OFF SRQ Statementsccveveennn 9-21
ON PPOL and OFF PPOL Statementsc.c0v.. 9-21
PORTSTATUS(Functioncciviiiiveivnnnnnnns 9-22
PPL() Functioncciiuiiiiuiienineenrnnnnenns oo 9222
SPL FUunCtionc.ciitiiiinenrnernennenenennenens 9-22
WAIT Statementuvtitinenineninenenrensnenenns 9-23
RS-232 SERIAL INPUT AND OUTPUT oo 10-1
Introductioniuiiineninininineneneeennenenensnenns 10-3
OVEIVIEW vt ittt ieneeeeeeeesesesesonensnsasnsnonens 10-3
RS-232-C Definedvviviiiiiiiininiieneneneenennas 104
Device and Port Addressingcuovveveeneennraneanns 10-5
Initializationccovtiiiniinininnenenens Ceveee 10-6
[/OChannelsccivviiiiniininennernnennennnnns 10-6
OPENIing a Serial Communication Channel,... 10-7
CLOSEing a Serial Communications Channel 10-8
Output and Inputoiiiiiiiiii ittt iiiieinrierannns 10-9
PRINT Statementcovieieitntnnenennnennnns 10-9
INPUT Statementccvvuinineneneneneneennnns 10-10
INCOUNT() Functioncciiiiiiiinnnennnnens 10-12
INCHAR() Functioncoviiiiiiiiniinnennennnnn 10-13
Sending BREAK it .. 10-14
Establishing Serial Communicationscovvvvvunn. 10-15

Vi (continued on page vii)

1"

CONTENTS, continued

INTERRUPT PROCESSING 111
Introduction ...ttt ittt i i i e e e 11-3
OVEIVIEW & it i it ittt ineee it eneenenennennnnenennnnens 11-3
Types of Interruptscovviiiiniineneinnnnnnnnn. 114
Error Interruptttt i i i 114
CTRL /CInterruptitiiiii it iniiinrnrenens 114
Hn Interrupt ... i e e 11-5
KEY Interrupt ...ttt ittt iiiiinnenens 11-5
PORT Interruptcoiiiiiiiininiiiiiiinnnnnenens 11-5
PPORT Interruptcoiiiiiiiiiiininennennn. 11-5
SRQ Interruptcoiiiiiii it i it 11-5
PPOL Interruptcoiuiiniiiiniinennrnennnnnenns 11-5
CLOCK Interruptoutiiiiiin ettt ineannnnnnn 11-5
INTERVAL Interruptcooniiiiiienininennennn. 11-5
Hierarchy of Interruptsoiiiiiiiiiiinnennnnn. 11-6
On-Event Interrupts ovieninrtnenrnnrnennnnensns 11-7
ON ERROR GOTO Statementccovvevuenn.. 11-8
OFF ERROR Statementc.ciiitiinnennnnn. 11-9
ON CTRL/C GOTO Statementcoeuveuenennn 11-10
OFF CTRL/C Statementovueenenrenenennnns 11-11
ON #n GOTO Statementcovereennenenenenn. 11-12
OFF #n Statementouotiitinnernneennneennnns 11-13
ON KEY GOTO Statementccovvtvnnennennn. 11-14
OFF KEY Statementc.ciiiitiitinennnnn.. 11-15
ON PORT Statementccveenteneviennennennns 11-15
OFF PORT Statementccitiiennennenn.. 11-15
ON PPORT Statementccovveeinenenenenennnns 11-15
OFF PPORT Statementccvvitiininenennnnnn. 11-15
ON SRQ GOTO Statementcovvvevrneennnnn. 11-16
OFF SRQ Statementcciiitiiernennennnnnns 11-17
ON PPOL GOTO Statementcvevtvvvnenennnn. 11-18
OFF PPOL Statementccviiiiinnennnnnnn 11-19
SET CLOCK Statementcocvvienenrnnneenennn 11-19
ON CLOCK Statementcocvevvnrnnnnenenennn 11-19
OFF CLOCK Statementcovivvveeeenenennnn. 11-19
SET INTERVAL Statementccvvviuvenn. 11-20
ON INTERVAL Statementcovevivnenennn.. 11-20
OFF INTERVAL Statementccovvvnnn.. 11-20
RESUME Statementc.ccivtitiiininninenenens 11-21
WAIT FOR EVENT Interruptscovvvivenenn.n. 11-22
WAIT Statementccovetierenrnnrnos Cevae vees 11-24
WAIT Time Statementcccivirneeneennnnnn.. 11-24
WAIT FOR KEY Statementcccuvun... 11-25

vii (continued on page viii)

CONTENTS, continued

12

13

WAIT FOR SRQ Statementcoviiiinnnennns 11-26
WAIT FOR PPOL Statementccovvueeneenn.. 11-27
Errors and Error Handlingo, 11-28
Fatal Errorsottt 11-28
Recoverable Errorscooviiiiiniiniininn., 11-28
Warning Errorsot 11-29
Error Variablescciiiiiiiiinenennneneninnn.. 11-29
Interrupt Control Statementscooiviuniennnn 11-30
Interrupt Processing Program Examples 11-31
SUBROUTINES ...ttt 12-1
INtroductionvt vt eie ettt inreennneennenens 12-3
OVEIVIEW vttt ettt ie e eanenneesnsanenroeennnnss 12-3
Using Internal Subroutinescoooviviinennnen... 124
Using External Subroutinescovvuivinrenn.n. 12-5
Software Requirementsc..ovevuiennenennnnnn 12-6
Subroutine Namescovuiiirinnneninennnn.n. 12-6

Assembly Language Subroutines 12-7

Assembly Language Error Handler 12-7
FORTRAN Subroutinescovviiiiiiinnennnns 12-8
Subroutine Formato iiiiiiinininnnnn 12-9
Introductioncvieintiiennenennnnennnnns 12-9
Parameter Passing Mechanism 12-9
The Parameter Decoding Subroutine, FSRGMY 12-10
Standard Assembly Language Subroutine Linkage
Mechanismoviiiinii ittt it 12-10
Multiple Subroutine Entry Points 12-13
Subroutine Parameter Formats 12-14
INtroductioniiiirinnnnrerenennnenrnnnnnns 12-14
Basic Internal Data Formats 12-14
Relationship Between Parameter Syntax And
Parameter Formatccoviiirnenenn.n 12-17
Passing String Values To and From Subroutines 12-19
Conversion of Strings to Internal Form 12-19
Conversion of Strings from Internal Form. 12-20
PROGRAM CHAININGcoou... 13-1
Introductioncoiiiiiiiiiniineieiniiea 13-3
OVEIVIEW &ttt ettt te e e enennenrenensonennnernennns 13-3
Statement Definitionsc.oveiinnrineneinenenns 134
RUN Program Statementcvvuuan.. 134
RUN WITH Statementcc0ivvennen.. 13-6
EXEC Statementcovuvtneinenenennenennenns 13-6

viii (continued on page ix)

CONTENTS, continued

COM Statementoveniiiininnenennnnennnnennns 13-8
Virtual Arrays in Chained Programs 13-9
Introduction to Virtual Array Chaining 13-9
Example of Chaining a Virtual Array 13-10
Using Sequential Data Files in Chained Programs 13-12
14 TOUCH SENSITIVE DISPLAY 14-1
DESCIIPtION . vvvet ittt iee e ennenneenereneaneonnenns 14-3
Introductioncoiiiiiiiiiiiiii it it 14-3
Using the Display for Outputccovvun.... 144
The ASCII Character Setcvviiiiniinnnennnn. 14-5
Alternate Character Sets civveieinnenennn.n 14-6
Display Output Statementscvvevenennen.. 14-7
PRINT Statementcccitiiiiiiinnnnrnnnnn. 14-7
PRINT USING Statementccvvivenen.n. 14-8
CHRS$() String Functionccoiivvivnnn. 14-9
TAB String Functiono, 14-9
CPOS String Functioncciiiiiien... 14-10
Special Display Control Characters 14-12
Display Control Sequencesccvveverneeneennenn. 14-13
ANSI Compatible Display Control Sequences 14-14
Display Control Character Sequences 14-16
Cursor Positioning and Display Scrolling 14-17
Cursor Movementovvvinienenrneenennennns 14-17
Display Scrollingcvviiiiniiniinnnennenn. 14-18
Erasing ...ovniriiniiinineeneneeeeneenenennenennns 14-18
Mode Commandscovviiiiineninnnnenennenennnnnns 14-19
Character Visual Attributescovvivvnn.. 14-20
Field Attributesccuviuiiniineneinenennnnnn 14-22
Character Attributescoiviiiirinennenn. 14-25
Non-destructive Display Character 14-26
Character Sizevuiinrrntnenenrneenenennens 14-27
Character Graphicsccoiviiiiiiiinninneenn.. 14-28
Keyboard Disable and Enable 14-32
Using the Display for Inputccivvinn... 14-33
Display Input Statementsc.covvivennenneennenn. 14-34
KEY Variablecoiiiiiiiiiniiiiiinnenn.. 14-34
ON KEY and OFF KEY Statements 14-35
WAIT FOR KEY Statement 14-36
An Interactive Display Program 14-39

ix (continued on page x)

CONTENTS, continued

15 PROGRAM DEBUGGING 15-1
Introductioncuiiiiiiirrnnetiernnrnnronnennons 15-3
OVEIVIEW it tinin e e tetesasetesssenessoenansnsnanns 15-3
Debugging ToOls ...vvniiieiineiniinnrneenennnaenanns 154

TRACE ON Statementccvvveenrnrnnenencennns 154
Line Number Tracingcoveviiveneneenenennenns 15-5
Variable Tracingccviuveiinernennnnenrnnennns 15-8
Other Trace OptionS . .. vvvvrtieenneeneenneeneenennnns 15-11
TRACE OFF Statementccciviveirnnensnnens 15-13
STOP ON Statementcoevveeenranenennenons 15-13
STEP Commandc.covuiieunetnnennennenneannns 15-14
CONTTO Commandcovvienenerrnrnnnnnnnnnns 15-15

16 ERRORMESSAGEScciiviiinnns 16-1

APPENDICES
A Internal Structure of Variables A-1
B IEEE 488 Bus Messagescocevienininenenennns B-1
C Whbyte Decimal Equivalentsccovivvnenn.. C-1
D Parallel Poll Enable Codescc0viveennnnn. D-1
E Display Controlsccveiiiiiiiiinnrinnennenns E-1
F Graphics Mode Characterscovevvuneennnennn F-1
G ASCHH & IEEEBus Codesccivvvunennnenn. G-1
H Assembly Language Error Handler H-1
I Fortran Interface Runtime Library I-1
J Virtual Array Dimensioning Program J-1
K Graphicsviiiiiiiiiiieinninnnnnnnas Cerreean K-1
L Supplementary Syntax Diagramsc000unen L-1
M GlOSSAIY vttt ittt iereenereereraoanrnsannas M-1
N Reserved Words ..ovvveniniiniinenrnenernennansnns N-1

INDEX

Section 1
How To Use This Manual

CONTENTS
INtrodUCtion .ot vitii it it it i ettt e e 1-3
BASIC Manualiitiiiiiiiiiit ittt ittt ennennnnnns 1-5
BASIC Reference Manualccoiiiiiininnnnn. 1-6
How to Read Syntax Diagrams 1-7
Notation CONVENLIONS & vvvr vt rneenenerneeneeneenennnns 19

How To Use This Manual

INTRODUCTION

When originally developed at Dartmouth College in 1964 the BASIC
computer language was intended to be a starting point for students
learning the rudiments of computer programming. The name BASIC
is an acronym for “Beginners All Purpose Symbolic Instruction
Code”. BASIC was intended to be simple and easy to learn.

Today, the BASIC Language is much more than a beginners language.
BASIC has evolved into a powerful, but easy-to-use programming
language that is used for more general-purpose programming than any
other computer language. BASIC is the de-facto standard for
microcomputers and instrument controllers.

This manual documents the BASIC Language option for the Fluke
17X XA series Instrument Controllers. The BASIC Language defined

for the I7XXA series is a superset of Standard (ANSI) BASIC with the
following enhancements:

o IEEE-488 bus operation and management.
0 Graphics capability for the 17X XA series Instrument Controllers.
O Virtual Array storage (random-access disk files).

0 BASIC program linkage to Assembly Language or FORTRAN
subroutines.

0O Operator feedback from the Touch-Sensitive Overlay (TSO).

O System Variables for time-of-day, date, time, error handling,
available memory, touch-sense key, and file length.

O Direct port input and output.
0 Device and file management functions.

o Error handling.

4ow To Use This Manual

1-4

If you have never written a BASIC program before, you should obtain
and read the following reference:

BASIC from the Ground Up
David E. Simon

©1978 Hayden Book Company, Inc
Rochelle Park, NJ

Catalog #: 5760-1

ISBN 0-8104-51174

After familiarizing yourself with Standard BASIC, read the tutorial
sections of this manual.

If you are familiar with Standard BASIC, the various manual sections
may be consulted individually as required.

How To Use This Manual

BASIC MANUAL
This manual is divided into these major sections:

Section 1 How To Use This Manual
Describes the organization of the various manual sections, syntax
diagrams and notation conventions.

Section 2 BASIC Conventions

This section describes the differences between Fluke BASIC and
Standard BASIC, running and exiting the BASIC Interpreter
program, BASIC operating modes and file names.

Section 3 System Functions

Describes how to perform FDOS functions from within the BASIC
environment.

Section 4 Writing And Editing A Program
Describes the program writing process and the uses and usage of the
BASIC Editor and the System Editor.

Section 5 Storing And Running A Program

Describes how to store, load, and run a stored program.

Section 6 Data, Operators, And Expressions

Describes the various data types, variables, operators and expressions
used in Fluke BASIC.

Section 7 Data Storage
Describes data storage techniques using main memory and virtual
arrays as well as the advantages and disadvantages of both.

Section 8 Functions

Describes and explains the various string and mathematical functions
available in Fluke BASIC

Section 9 |EEE-488 Bus 1/0

Describes and explains the use of the IEEE-488 Bus Control
statements.

Section 10 RS-232 Serial 1/0

Describes the RS-232 serial 1/O ports and how to use them from a
BASIC Language program.

1-5

How To Use This Manual

Section 11 Interrupt Processing
Describes using the interrupts as a means of control and error-
recovery.

Section 12 Subroutines

Describes the use of subroutines in a BASIC program. How to use
subroutines written in Assembly Language and FORTRAN with
programs written in BASIC. How to pass parameters to and from each
program.

Section 13 Program Chaining
Describes how to run BASIC programs, and how to chain (connect) to
other BASIC, Assembly Language, or Command files.

Section 14 Touch Sensitive Display
Describes the display control codes, formatting, and graphics. Shows
how to use the Touch Sensitive Display for operator interface.

Section 15 Program Debugging
Describes techniques and tools used to correct errors in BASIC
programs.

Section 16 Error Messages
A numerical listing of error codes and their meanings.

APPENDICES

A collection of reference material and a glossary of terms.

INDEX

A thoroughly cross-referenced listing of items and topics explained in
this manual.

BASIC REFERENCE MANUAL

The BASIC Reference Manual contains an alphabetical listing of all
commands, statements, functions, and system variables. If you are
familiar with standard BASIC, you will be comfortable working with
this manual most of the time.

How To Use This Manual

HOW TO READ SYNTAX DIAGRAMS

A syntax diagram is a graphical representation of how to construct a
valid command or statement in a programming language. It is a kind of
“shorthand” way of writing down all the rules for using the elements of
a language. Since they are used throughout this manual, learning how
to read them can be a great time saver.

(space)

(CTRL)/C

(explanation)

Words inside ovals must be entered exactly as they are
shown.

Words inside boxes with rounded corners indicate a
single key must be pressed, such as RETURN or ESC.

This indicates a space in the statement. (Press the
spacebar.)

To create a control character, hold down the control key
(CTRL), then press the other key. This one is a Control C;
it causes a break in the program.

A box with lower-case words inside means that you

supply some information. In this case, you would enter a
filename.

Words in parentheses are explanations of some kind.
They give added information about the nearest block or
path.

How To Use This Manual

1-8

From the left, any path that goes in the direction of the arrows is a
legitimate sequence for the parts of a statement. This sample shows the
correct syntax for naming a file. The translation is given below.

(no name) (default extension)

7N 7N (no extension)

M_.®._.J

(maximum 6 characters) (maximum 3 characters)

A line exits the top of this diagram with no keyboard input. This
indicates that it is possible to not specify the filename or its extension.
In this case, the file would have no name, and the system would assign
a default extension.

Further down the diagram, you can see that there are other
possibilities. You can choose up to 6 characters for the filename,
moving once through the loop for each character chosen. Up to three
characters can be chosen for the extension.

Filename can be any combination of letters, digits, the $ sign, and
spaces.

The filename and extension must be separated by a period, as shown in
the oval block at the top center.

The remark “no extension” means that it is not necessary to specify an
extension, even though a file name is given. Notice however, that this
remark occurs after the period, so the period is necessary if a name is
specified.

Here are some examples of valid filenames according to the syntax
illustrated in the diagram:

TESTIN.$3A 1722A.RAC $55588.58%

How To Use This Manual

NOTATION CONVENTIONS

The conventions listed here are used for illustrating keyboard entries
and to differentiate them from surrounding text. The braces,{};
brackets, []; and angle brackets, () ; are not part of the keystroke
sequence, but are used to separate parts of the sequence. Do not type
these symbols.

(XXX)

(XXX)]y

[xxx]

XXX

{xxx}

(xxx)

Means “press the xxx key”.
Example: (RETURN) indicates the RETURN key.

Means “hold down key xxx and then press y”.
Example: (CTRL)/C means to hold down the key
labeled CTRL and then press the key labeled C.

Indicates an optional input.

Example: [input filename] means to type the name of the
input filename if desired. If not, no entry is required, and a
default name will be used.

Means to type the name of the input as shown.
Example: BASIC means to type the program name
BASIC as shown.

Indicates a required user-defined input.
Example: {device] means to type a device name of your
choice, as in MFO: for floppy disk drive 0.

This construction has two uses:

1. As a separate word, (xxx) means that xxx is printed
by the program. Example: (date) means that the
program prints today’s date at this point.

2. Attached to a procedure or function name, (xxx)
means that xxx is a required input of your choice; the
parentheses are a required part of the input. Example:
TIME(parameter) means that a procedure
specification is the literal name TIME followed by a
parameter that must be enclosed in parentheses.

Section 2
BASIC Conventions

CONTENTS
INtroducCtion . ..vvittii ittt iiiiiiie e, 2-3
OVEIVIEW 4ttt tnenenrnennroecnsensnsaeseensesonsnsnnes 2-3
Exceptions to ANSI Standard BASIC 24
Running the BASIC Interpreter Program 2-5
Exiting BASIC ... it i e 2-6
BASIC Operating Modescoviiiiiiiiiiinennn. 2-7
Immediate Modecooiiiiiiiiiiiiiii i 2-7
Edit Mode ...ovviiiiiiii i it e 29
RunMode ... cvviiiiiiiiiiiiiiiiiiiiiiii i, 29
Step Mode ...viiiiiiii ittt i e i 2-10
File Namesovuiiuiniiiiiniiiiiiiiiiiiinnnennennens 2-11

2-1

BASIC Conventions

INTRODUCTION

The English language has certain conventions in syntax, grammar, and
conjugation (to name a few). English also has certain exceptions to
these rules. BASIC, a computer language but a language nonetheless,
has its own set of rules and exceptions.

OVERVIEW

This section of the manual describes the differences between Fluke
BASIC and ANSI Standard BASIC, a few things to watch out for
when converting a program written in Standard BASIC to Fluke
BASIC, how to run the BASIC Interpreter Program, how to exit the
BASIC Interpreter Program and an explanation of the BASIC
Interpreter Program’s various operating modes.

The BASIC Language Interpreter program for the 17XXA Series
Instrument Controller is based upon ANSI Standard X3J2/77-26
Minimal Basic. (Within this manual, the 17XXA Series Instrument
Controller will be referred to as the Instrument Controller or simply,
the Controller.) A comprehensive set of additional command
statements for control of IEEE-488 bus instrumentation has been
added as well as string-data operation, mass-storage control
commands, debugging features, FDOS operations, and other
extensions. Also included are statements for chaining multiple
programs in sequence and passing variables between programs. In
addition to these functions and features, the BASIC interpreter allows
use of Texas Instruments TMS-99000 Assembly language subroutines
and FORTRAN subroutines.

BASIC Conventions

EXCEPTIONS TO ANSI STANDARD BASIC

Fluke BASIC is an enhancement of ANSI Standard Minimal BASIC.
The enhancements include many statements for instrument control.
An ANSI Minimal BASIC program will run on the Instrument
Controller unless there is conflict in one of the following areas:

0 Dimensioned arrays must be defined by a dimension statement
prior to use in a program.

o LOG is the logarithm to base 10. LN is an additional BASIC
function for natural logarithms (base €).

o A GOTO within a FOR-NEXT loop is not allowed if the GOTO
transfers control permanently outside the loop.

O The print format used for floating-point numbers greater than 7
digits in length is .1 to 1, instead of 1 to 10 as specified in the ANSI
standard. For example, .01234567 is printed as .1234567E-01,
instead of 1.234567E-02.

0 TAB(X) will position the cursor at X+1 instead of X.

O Variables are assigned in sequence, upon validation, in a multiple-
variable input list. The ANSI standard allows variable assignment
only upon validation of the entire input list.

O The optional base of 1 for a dimensioned array is not supported.
Fluke BASIC arrays have a base of 0. For example, A(10) has
eleven elements numbered 0 through 10.

O User defined functions must have arguments. For example, DEF
FNA(X) = expression is allowed while DEF FNA = expression is
not.

O Multiple commands are allowed on a single line when separated by
the \ character.

O Spaces may not appear between GO and SUB of GOSUB or
between GO and TO in GOTO.

0 [EEE-488-1980 Instrumentation Bus control statements.

BASIC Conventions

RUNNING THE BASIC INTERPRETER PROGRAM

BASIC is run from the FDOS prompt by typing the BASIC
Interpreter program file name: BASIC. Refer to the 1722A System
Guide for information on how to run the FDOS program. When
BASIC is run, the program produces the following display.

BASIC Version (x.y)
Ready

NOTE
Verify that the version number given for “x.y” agrees with the
version number at the beginning of this manual. If not, contact
a Fluke Customer Service Center for advice.

In addition, BASIC may be run at Power-On or when RESTART is
pressed. This is done with an active Command File that contains the
file name BASIC. Refer to the 1722A System Guide for information on
the Command File, STRTUP.CMD.

BASIC Conventions

EXITING BASIC

2-6

There are four ways to exit BASIC. Each returns control to FDOS,
resulting in the FDOS) prompt.

O From Immediate Mode (READY prompt) type EXIT and press

RETURN. This allows input/output operations to finish, closes
files, deletes the BASIC program in memory, and returns to the
FDOS Command Line Interpreter. If the BASIC program in
memory has been edited and not SAVE’'d or RESAVE'd, the
following prompt is issued:

Program has been changed but not saved. Really EXIT?

If answered yes, the BASIC Interpreter will delete the program in
memory and exit to FDOS. If answered no, the EXIT routine is
aborted.

Execute an EXIT statement within a running program. This allows
input/output operations to finish, closes files, deletes the BASIC
program in memory, and returns to FDOS.

Press RESTART. This transfers control to the self-test and load
routine, terminates all operations of the Instrument Controller,
loads FDOS, and processes the Command File(STRTUP.CMD),
if there is one. The Instrument Controller User Manual contains
information on the Command File.

CAUTION
When RESTART is pressed, any I/0 in progress is aborted and
the file directory may be destroyed.

Enter (CTRL?/P (press and hold the CTRL key, press the P key
then release both keys). This closes all files immediately, deletes the
BASIC program in memory, and loads FDOS. Output operations
are not finished before the files are closed.

CAUTION
If a BASIC program is in memory and control is returned to
FDOS, that program will be deleted from memory.

BASIC Conventions

BASIC OPERATING MODES

BASIC has four modes: Immediate, Edit, Run, and Single-Step. The
“Ready” prompt is displayed whenever BASIC is in Immediate Mode
and ready to accept keyboard input. This is the mode that BASIC
starts in whenever it is entered from FDOS. Other modes are accessible
only from Immediate Mode.

Immediate Mode

Ar entry to BASIC is always into Immediate Mode, identified by the
prompt “Ready”. Immediate mode may be accessed from any other
BASIC mode by typing {CTRL)/C. Also, a running program will
return to Immediate Mode whenever the program executesa STOP or
END statement or if a fatal error occurs.

Exit from Immediate Mode to FDOS is accomplished by typing EXIT,
or by typing (CTRL)/P. A “Really Exit?” prompt is given if a
program exists in main memory that has been edited but not SAVE’d
or RESAVE’d. If the prompt is answered with “yes”, any program that
was in main memory is erased by the exit to FDOS, otherwise
Immeditate Mode is re-entered.

In Immediate Mode, command lines or program lines may be typed. A
command line consists of one or more BASIC statements; these
statements are typed either without a line number or with a line
number of zero. Multiple BASIC statements are separated by a
backslash character (\). An Immediate Mode command is executed
immediately upon pressing RETURN. Some BASIC commands can
be executed only in Immediate Mode. These commands or statements
are identified as Immediate Mode Commands or IMCs. Subsequent
sections cover them in detail.

BASIC Conventions
BASIC Operating Modes

A program line is a command line preceded by a line number between 1
and 32767. A program is a meaningful sequence of program lines. The

command statement

line

following diagrams illustrate these points:

L&
program w JL command line RETURN
L remark line

line

remark line REM — characters —

[]

program F program line I W

BASIC Conventions
BASIC Operating Modes

Edit Mode

The entry to Edit Mode is made from Immediate Mode by entering
EDIT, or EDIT followed by a valid line number. Editing begins with
the lowest numbered line of the program memory unless a line number
is specified. The exit from Edit Mode to Immediate Mode is
accomplished by typing (CTRL)/C.

The editor provided as a part of Fluke BASIC is an easy-to-use screen-
oriented editor. Edit Mode allows the user to insert, delete, or modify
the characters that make up program lines in main memory. The
editing (arrow) keys in the upper right corner of the keyboard plus the
BACK SPACE, {(CTRL)/U, Carriage Return, and LINE FEED keys
control the movement of the cursor and the deletion of text. The
remaining keys are used for text entry. Edit Mode stores program lines
in main memory for subsequent use by other modes.

Run Mode

The transition to Run Mode is made from Immediate Mode by typing
RUN, or RUN “file name”. Refer to the Input and Output section fora
discussion of file name prefixes that may be used to identify the
location of the program file to be run. If a file name is specified, the file
is first located on the specified or default file storage device and it is
then loaded into main memory.

When a program is present in main memory and BASIC is in
Immediate Mode, Run Mode may also be entered by an Immediate
Mode branch command: GOTO, GOSUB, ON GOTO, or ON
GOSUB followed by a valid line number. In addition, when a running
program has been stopped by (CTRL)/C, STOP, STOP ON, or
CONT TO, Run Mode may be resumed by typing CONT or CONT TO
followed by a valid line number. These concepts are discussed in the
section Program Debugging.

BASIC exits RUN Mode and returns to Immediate Mode under any of
the following conditions:

0 The program executes a STOP or END statement.
0o (CTRL)/C is entered at the programmer keyboard.
O The front panel ABORT button is pressed.

O A fatal error occurs.

BASIC Conventions
BASIC Operating Modes

In Run Mode, program lines are automatically executed in the
sequence defined by line numbers, except as directed by branch
instructions in statements.

Step Mode

2-10

Step Mode is entered from Immediate Mode by typing the STEP
command after a breakpointed stop set by CONT TO or STOPON. A
RUN, CONT, CONT TO, GOTO, GOSUB, ON GOTO, or ON
GOSUB command will cause BASIC to enter Run Mode; typing any
other command will cause BASIC to enter Immediate Mode.

In Step Mode, one program line is executed after each RETURN key
entry, followed by a “STOP AT LINE line number” message. Step
Mode is discussed further in the Program Debugging section.

BASIC Conventions

FILE NAMES

Programs and data files on the Instrument Controller are stored on the

floppy, electronic disk or other file-structured media by name. File
names consist of | to 6 letters, numbers, spaces, or $ characters. File
names may be extended by a period character, followed by up to 3
letters, numbers, spaces, or $ characters. Most usage of file names in
program statements requires that they be enclosed in single or double
quotes. Some examples of file names are:

TEST
DATA.473
$25795.98
TESTB2.H44

Some file name extensions have special meaning to the Instrument
Controller:

.BAL Lexical form BASIC programs
.BAS ASCII-text form BASIC programs
.FD2 Binary utility programs

.HLP System data files (Help)

.SYS System binary programs

.CMD Command file

Following are points to remember about file names for programs:

O A program is normally saved in a file with a “.BAS” extension
when an extensmn is not specified and the SAVE command is used.

O A program stored via the SAVEL command is saved with a
“ BAL” extension. See the SAVEL statement.

O The system will look for a file with the extension “.BAL” when
seeking a program with a file name that has no specified extension.

O The system will look for a file with the extension “.BAS” when
seeking a program with a file name that has no specified extension
for which a “.BAL” version could not be found.

O The location of the file may be specified as a prefix to the file name.
Use “MFO0:” for the floppy disk, or “EDO0:” for the optional
electronic disk. For example: SAVE “MFO0:TEST.T12”.

O The default file location when not specified is called the System
Device. The Input and Output section includes a discussion of this
concept.

2-11

Section

3

System Functions

CONTENTS
Introductionciiiiiiniiinin ittt et 3-3
OV BIVIEW vttt it te e tetenenrneneneneneenensnnnennnenns 3-3
System Functions for File Management 34
COPY Statementvuininininrnnnneenenenenenens 3-5
DIR Statementcvuininirninrinrenrnrenennenns 3-5
EDIR Statementccviiviinivnrennineeneennnns 3-5
KILL Statementvutvvnninineneenenernneneens. 3-6
QDIR Statementciiitiii it it 3-6
RENAME Statementootvitiiinnnnrnnennnn. 3-6
Device Management Functionsccovvvunven.. 3-7
ASSIGN Statementovviveiinrneneenenrneenennns 3-7
PACK Statementcoovtiiitininenenenennenennns 3-7
PROTECT Statementovvtvrininenenennennnnn. 3-7
UNPROTECT Statementovvvirerrinenrnenennns 3-8

System Functions

INTRODUCTION

File and device management are two important functions of a disk
operating system. The File Utility Program (FUP) is a general-purpose
file and device manager program accessible from FDOS. FUP
commands provide functions such as: device assignment, file copy, file
deletion, file rename, and media formatting.

OVERVIEW

The BASIC Interpreter program has a family of file and device
management statements. These statements may be used in the
immediate mode or as part of a program. The System Function
statements do not provide all of the capabilities of FUP nor are they
intended to replace FUP. Instead they are intended to allow a running
program to manage its own files without the necessity of leaving the
BASIC environment. FUP is described in Section 4 of the System
Guide.

System Functions

SYSTEM FUNCTIONS FOR FILE MANAGEMENT

During the execution of a BASIC program, it may be necessary or
desirable to allow the BASIC program to manipulate (manage) some
or all of the files on the various mass storage devices. For example, a
data collection program that operates through the course of a day may
use a copy of the master data file for each new run of the data collection
program. Once the data collection portion program has been
successfully completed, the filename extension of the old master data
file is changed to “.bak” using the rename command, then the copy is
renamed to be the master data file. The following example makes this
concept clearer.

Starting conditions:
File: “mydata.vrt” the master file
Run program
Copy “mydata.vrt” to nudata.vrt.
Collect data, store on “nudata.vrt”
If data collection fails, the original data file has been preserved.

Data Collection done

rename “mydata.vrt” as “mydata.bak”
rename “nudata.vrt” as “mydata.vrt”

Files are ready for the next run.

As you can see, the original data file is always protected from being
accidentally destroyed by always using a copy of the orginal file, then
renaming it after a successful program run.

The File Management functions are presented here in alphabetical
order. Each of the functions is summarized in this section. For a more
complete treatment, along with a syntax diagram, refer to the
Reference volume of this manual set.

System Functions
File Management

NOTE
Many of the examples to follow have explicitly mentioned file
names. Since these file names are strings, the BASIC
interpreter program requires that they be enclosed in quotation
marks. Any of these quoted strings may also be arbitrary
string-valued expressions.

COPY Statement

The COPY statement copies one or more files to the screen or to
another file. The general form of the COPY statement is:

COPY “old.ext” TO “new.ext” ! copies to another file

or
COPY “foo.ext’ ! copies to the screen

Remember that both filenames are strings, therefore both must be
enclosed in double quotes. If no device is specified for “thisfile.ext” or
“thatfile.ext” then the system device (SYO:) is assumed.

DIR Statement

The DIR statement prints the directory of a file-structured device such
as MFO: or EDO:. The general form of the DIR statement is:

DIR “mf0:” ! lists on the screen
or
DIR “mf0:” TO “dirfil.txt” ! copies directory to file
If the device name is omitted, the directory of the system device SYO: is
used. The format of the statement output resembles the /L directory

listing in FUP.

EDIR Statement

The EDIR statement is similar to the DIR statement except that
unused and tentative directory entries are also listed. The statement
syntax is identical to the DIR statement. The display format resembles
the /E listing in FUP.

System Functions
File Management

KILL Statement

The KILL statement deletes a specified file. The KILL statement takes
the following form:

KILL “mf0:file.bas”
If a device is not specified, the system device SYO: is used.

QDIR Statement

The QDIR statement prints a short or quick directory listing of only
the filenames. File size, protection codes or creation dates are not
given. The statement syntax is identical to the DIR statement. The
display format lists the filenames six per line.

RENAME Statement

The RENAME statement allows a file to be given a new name. The
general form is:

RENAME “oldfil.ext” AS “nufile.ext”

where oldfil.ext is the current filename and nufile.ext is the new
filename to be used. Again, SYO: is assumed if no device specification is
given with either filename.

System Functions

DEVICE MANAGEMENT FUNCTIONS

The device management functions permit a BASIC program to
perform additional FUP-like functions such as assigning a device,
packing to remove unused blocks, and setting or un-setting write
protection for a file.

ASSIGN Statement

The ASSIGN statement permits the user or a running program to

assign a particular device as the system device, SY0:. The general form
of the statement is:

ASSIGN “mf0:” ! assign the floppy disk as SYO:

or

ASSIGN “ed0:” ! assign the E-disk as SYO:

An error will be reported if the named device is not a known file-
structured device.
PACK Statement

The PACK statement is used to remove unused sectors from the

specified mass storage device. The general form of the PACK
statement is:

PACK “mf0:”

If no device is given, the system device, SYO:, is used. If the PACK
statement is used in the immediate mode, a warning prompt is issued to
alert the user that a lengthy operation is in progress.

PROTECT Statement

FDOS permits files to be selectively write or delete protected. This
means that protected files may not be deleted or over-written (e.g. via
the KILL or OPEN AS NEW FILE statements). The general form of
the PROTECT statement is:

PROTECT “myfile.ext”

which sets the write protection for the named file.

UNPROTECT Statement

The UNPROTECT statement removes the protection set by the
PROTECT statement. The UNPROTECT statement is the

complement of the PROTECT statement. The general form of the
UNPROTECT statement is:

UNPROTECT “myfile.ext”

which un-sets the write protection for “myfile.ext”.

Section 4
Writing and Editing a Program

CONTENTS
Introductionoiiiiienriienrnnenennenenennennns 4-3
OVEIVIEW .t tvtitin it et iatrneneesensaeensnssasasnannss 4-3
Special Function Keyscoviiiniiiiiiiniininnennnnn. 4-3
Delete Key ..ottt iiiiininrnnennnns 4-3
PAGE MODE Switch and NEXT PAGE Keys 4-3
(CTRL)/Key-Modifiercovviiiiiiinennnnnnnn.. 44
Writing a Programcovtiiiiininieenrnrennnenns 4-6
Entering a Programcoiiiiiiniinininnnnennnnens 4-7
Entering a Program from the Immediate Mode 4-7
LISTCommandcciiiiiinnenrnnenennnnennnns 4-9
DELETE Commandcovtiiiiiienrnnrenennns 4-10
RENCommandciiiiiiininnenrnnnnennnnen. 4-11
Changing the Sequence of Program Lines 4-14
Entering a Program From the Edit Mode 4-15
Entering a Program Using the System Editor
program(EDIT.FD2)cciiiiiiiiiiiiinnnnnnn. 4-15
Editing a Programcciiiiiniiennenrennnennnnnns 4-16
The BASIC Editorciviiiiiniiniineennrieennnnnns 4-17
Edit Mode Keysviiiiiiiiiiiniiiiinnnnennenn. 4-19
Additional Editor Featurescc0uunn. 4-22

Writing and Editing a Program

INTRODUCTION

Writing a program is the first step toward getting the controller to do
your bidding. This section describes the process of entering a program
into the memory of the controller, and making corrections to that
program.

OVERVIEW

A BASIC program is any meaningful sequence of Fluke BASIC
statements that (in Run Mode) directs the Instrument Controller and
its associated instrumentation to accomplish a desired task. The
program statements that make up a BASIC program are made up of
BASIC language elements and their optional modifiers or arguments.

SPECIAL FUNCTION KEYS

The Instrument Controller’s keyboard has several function keys which
extend the capability of the keyboard beyond the simple task of
entering text. These keys are described in the following paragraphs.

DELETE Key

The DELETE key deletes the character immediately to the left of the
cursor. If held down, it will repeatedly backspace and delete characters
until all characters to the left of the cursor are deleted.

PAGE MODE Switch and the NEXT PAGE Keys

PAGE MODE is an alternate action switch that selects and cancels
Page Mode. The Page Mode indicator on the switch is ON when Page
Mode is selected. When PAGE MODE is enabled, the scroll feature is
disabled and display is limited to one full screen. The NEXT PAGE
switch displays the next full screen from the top line down.

Writing and Editing a Program
Special Functions Keys

(CTRDL /Key-Modifier

The {CTRL)/ key is a key-modifier that is always used in conjunction
with another key, much like the shift key. Several of the (CTRL)/+
key combinations have special meanings to BASIC editor. They are:

u]

(CTRL)/C returns BASIC to Immediate Mode resulting in a
“Ready” display prompt. In addition, a common use of
(CTRL)/C is to terminate a program test run during program
development. Some further considerations are:

If an IEEE-488 Bus operation is in progress, {CTRL)/C stops the
transfer immediately.

In Edit Mode, {CTRL?/C will store the current line as edited if it is
syntactically correct. If not, the line is stored as it was before
editing.

The ABORT button is treated by BASIC as a {CTRL)/C; in
addition, a Device Clear message is sent to the IEEE-488
instrument ports.

In Run Mode, execution of an ON CTRL /C GOTO statement
inhibits a return to Immediate Mode. Instead, control is
transferred to the program line referenced. See the Interrupt
Processing section.

(CTRL)/ P stops any input/output operation in progress and
transfers control back to FDOS. This action is taken regardless of
what the Instrument Controller was doing previously.

CAUTION
(CTRL)/P deletes the user program in memory. Also,
(CTRL)/P might not properly terminate a file transfer
operation in progress (the butfers are not “flushed”).

(CTRL)/R restores the last line typed in the immediate mode.

This line may then be edited using the Edit Mode keys editing
features of the command line interpreter.

The edited line may be executed by pressing (RETURN),
regardless of the cursor position.

o

Writing and Editing a Program
Special Functions Keys

Each time (CTRL) /R is pressed, the last line entered is displayed,
until the first line entered has been reached.

Likewise, each time (CTRL) /F is pressed, the Controller steps the
command line memory forward and displays the next line, relative
to the current line.

Additional editing commands are described in Section 6 of the
System Guide.

(CTRL)/S stops the display from scrolling. {CTRL)/Q allows
the display to continue scrolling. If a running program displays
enough data to make the display scroll, {CTRL)/S will stop the
display for study. The program will suspend output to the display
until {CTRL)/Q is entered.

There are some differences between using (CTRL)/S and
(CTRL)/Q, and using Page Mode with the NEXT PAGE key for
control of display scrolling:

NEXT PAGE scrolls the next page onto the screen.

After a (CTRL)/S has been pressed, there is no indication of the
status of the system; e.g., no indicator as on the PAGE MODE key.
Thus, {CTRL)/S can cause the keyboard to appear “dead”.
(CTRL) /Q will clear this condition.

(CTRL) /T erases the display, moves the cursor to the upper left
corner, enables single-size characters, disables graphics mode and
all other display enhancements, and enables the keyboard. It then
sends a Carriage Return and Line Feed. The section on The Touch
Sensitive Display describes display enhancements.

(CTRL)/ U deletes the current line.

4-5

Writing and Editing a Program

WRITING A PROGRAM

There are many techniques used in writing a computer program.
Everyone has their own pet method. One common method is to simply
sit down in front of the keyboard and start writing. While this method
is probably the most direct, it can produce a program that, in
retrospect, is difficult to maintain and/or troubleshoot.

4-6

In contrast, a program that is well thought out and documented during
the writing process is generally easier to troubleshoot and maintain.
The following points highlight this process.

1.

Make a general statement of the task. It should be as general as
possible.

Break this general statement into subtasks and sub-sub tasks.
Repeat this until each subtask represents one activity.

Describe each subtask using English-like or BASIC words
(pseudocode) to describe what needs to be done. This is the
time to think out program flow and execution sequence.

Write the actual program in BASIC from the pseudocode
produced in the previous step. Use the REM statement to
describe the activity taking place within each program block
(subtask).

Debug the program blocks produced above. If possible, debug
each one separately from the rest. It is much easier to isolate
errors in this fashion.

Connect the previously debugged program blocks into the final
program, write any connective subroutines or program lines,
and perform the final debugging.

The program shoud be ready to run at this point.

Writing and Editing a Program

ENTERING A PROGRAM

Entering a program is the process of typing a program into the
controller’s memory. There are three ways of doing this.

1. From the Immediate Mode, enter the program lines by typing
them on the keyboard.

2. Use the Edit Mode provided by the BASIC Interpreter
program. This is the easiest way to enter a program into the
Controller’s memory.

3. Use an external editor program to create an ASCII text file
that the BASIC Interpreter program can then load and run.

Entering a Program from the Immediate Mode

From the Immediate Mode, type the line number, followed by a space
and the rest of the program line.

o

Program lines may be typed (entered) in any order. Regardless of
the sequence in which program lines are entered, BASIC will store
and execute them in line number order.

Program lines may be typed in upper- or lower-case. BASIC
converts lowercase entries for program statement keywords and
variables to uppercase (capitals).

Each program line must begin with a line number.

Each program line must not exceed 79 printable characters in
length, including the line number, plus one character space for the
carriage return, for a total of 80 characters.

If you accidentally (or on purpose) use the same line number twice,
the last line entered is the line that is kept.

Some checking is done for syntax errors (like mismatched
parentheses).

If you make an error while typing, use the delete key to make
corrections, or use the Edit mode of the Basic Interpreter program.
You can also retype the entire line.

Writing and Editing a Program
Entering a Program

4-8

O To insert a line, use any line number between the two lines where it
needs to be placed. BASIC will store the new line in the proper
sequence. This is why BASIC line numbers are normally
incremented by 10.

O To replace a line, type the new line with the line number of the old
line.

O To delete a line, type the line number only. Then press
(RETURN). See also DELETE below.

O Use the LIST command to observe the program as it currently
exists in memory.

0 Each line may contain remarks only, or it may contain one or more
statements optionally followed by remarks.

O When all program lines have been entered, type (RUN) to run the
program.

O Program lines may contain multiple statements (commands) which
are separated by the backslash character (\) but must not exceed
79 printable characters plus the carriage return.

O In general, BASIC executes all the statements on a multiple
statement line before going on to the next line. The IF-THEN
statement discussed later is one important exception to this general
rule.

This discussion presents Immediate Mode commands which aid in
creating or modifying a program. They are: LIST, DELETE, and
REN.

Writing and Editing a Program
Entering a Program

LIST Command

The LIST command displays a program or a portion of a program in
line number order.

(m]

Display starts at the first line of a program and proceeds to the last
line if line numbers are not specified.

One line is displayed if a single line number is specified. The
command is ignored if the line does not exist.

A portion of a program is displayed if two line numbers are
specified. The display will be the lines with numbers between and
including the specified lines numbers if they exist.

If the portion to be listed is larger than one display page (16 lines),
the display will scroll upwards until the last line specified has been
displayed.

Use Page Mode and the NEXT PAGE key, or (CTRL)/S and
(CTRL)/Q to stop and restart the display. These functions are
discussed earlier in this section.

The following examples illustrate common uses of the LIST

command:

COMMAND RESULTS

LIST Displays the entire program in memory from
the first line.

LIST 3500 Displays only line 500 of the program, if
it exists.

LIST 600-800 Displags a program segment beginning with
600 and 800, inclusive.

Writing and Editing a Program
Entering a Program

DELETE Command

The DELETE command deletes part or all of a program from memory.

4-10

m]

m]

The entire program is deleted when ALL is specified.

DELETE ALL also deletes Common Variables (see the COM
statement in the Program Chaining section of this manual and in
the Reference volume of this manual set).

One line is deleted if a single line number is specified. The
command is ignored if the line does not exist.

One line may also be deleted by typing the line number only,
followed by pressing RETURN.

The portion of the program between and including specified lines is
deleted if two line numbers are specified.

The following examples illustrate common uses of the DELETE

command.

COMMAND RESULTS

DELETE No action

DELETE ALL Deletes entire program

DELETE 100 Deletes only line 100

DELETE 200-300 Deletes lines 200 through 300
400 ¢(RETURN) Deletes line 400

Writing and Editing a Program
Entering a Program

REN Command

The REN command changes the line numbers of some or all of the
program lines in memory. Renumbering is useful to make room for
additional program lines.

]

(m]

REN cannot change the order of program lines.

REN changes all references to line numbers (i.e., GOTO, GOSUB,
etc.) in the program to reflect the new line numbers.

All items shown in the syntax diagram are optional except the
command word REN.

The entire program is renumbered when no line numbers are
specified.

One line is renumbered when a single line number is specified. The
command is ignored if the line does not exist.

A portion of the program is renumbered when two line numbers
are specified.

The line number following AS specifies the new starting number of
the segment being renumbered. If this would rearrange the
sequence of the program, a fatal error occurs and the line
numbering remains unchanged.

When AS is not specified, and a line number or range of line
numbers is not specified following REN, the new starting line
number is 10.

When AS is not specified and a line number or range of line
numbers is specified following REN, the new starting line number
is the same as the old first line number of the range specified.

The value of the integer expression following STEP must be
positive. It defines the difference between any two consecutive,
renumbered lines.

If there is no STEP keyword, the line increment is 10.

If the value of the integer expression following STEP is so large
that the new line numbers would force the program to be
rearranged, a fatal error occurs and the lines are not changed.

4-11

Writing and Editing a Program
Entering a Program

4-12

CAUTION

Renumbering from lower to higher line numbers (with more
digits) may cause the renumbered lines to exceed the 79-
character maximum line length allowed by BASIC. Restricting
program lines to 74 characters maximum length will generally
eliminate this problem. This exception is on long lines which
include line number references (e.g., ON expression GOTO,
IF-THEN-ELSE with line numbers, etc).

NOTE

Program lines containing the ERL (error line) function may
have statements such as IF ERL =200 THEN RESUME 400.
The expression, the constant 200, is used as a line number
reference. It is not changed during renumbering. It may need to
be changed to the correct line number manually.

The following program is used in the renumbering examples below:

10 A =1
20 PRINT A + A
30 A=A+1
40 IF A (= 2 THEN 20
S0 PRINT "Done!"
60 END
COMMAND RESULT
REN 60 AS 32767 Change line 60 to read:
32767 END
REN 10-30 AS 3 STEP S Change lines 10 through 50 to read:
5 A=
To PRINT A + A
15 A=A+
30 TE A= 3 THEN 10
25 PRINT "Done'!"
Note the changed reference in line
20.
REN This would in this case restore the

program back to its original form.

REN 60 AS 1000

REN 60 AS 1000 STEP 3

REN 10-300 AS 1000

Writing and Editing a Program
Entering a Program

Renumber only line 60 as line 1000.
An error results if any lines are
numbered between 60 and 1001,
since this would rearrange program
sequence.

Same as the previous example.
STEP is ignored when only one line
is renumbered.

Renumber lines 10 through 500 to
start at 1000, in steps of 10.

4-13

Writing and Editing a Program
Entering a Program

Changing the Sequence of Program Lines

4-14

REN cannot be used to change the sequence of program lines. The
simplest way to change the sequence of program lines is to use Edit
Mode (discussed below) and change line numbers individually. The
process must also include changing line number references (GOTO,
etc.) so they will refer to the correct lines. Edit Mode, however, is not
best suited for the task when larger portions of a program are to be
moved, because of the time required. As an alternate method:

1. Delete part of the program.

2. Renumber the remaining portion.

3. SAVE it under a temporary file name.

4. Retrieve the original program again, using OLD.
5. Repeat this procedure as needed.

6. Use the File Utility Program to merge these files together in the
desired order. Refer to the Instrument Controller User Manual
for details.

Here are some points to keep in mind while changing the order of
program lines in this manner:

O FUP cannot merge lexical files. Use SAVE (or RESAVE but not
SAVEL or RESAVEL) to save the program segments to be
merged.

0 A BASIC program cannot have more than one line for each line
number. If two or more program segments which have internal line
number conflicts are merged, the last occurrence of each line
number will be all that remains when the merged file is processed
by the BASIC interpreter. Ensure that all program segments use
different blocks of line numbers, in the rearranged sequence that
you need.

O Some of the line number references may be incorrect. Check and
correct branching line number references before running the
program.

Writing and Editing a Program
Entering a Program

Entering a Program From the Edit Mode

The BASIC Interpreter program has an easy-to-use screen-oriented
editor which can be used for program entry or correction. To use the
editor for program entry, type:

edit (RETURN)

from the Immediate Mode (the program memory must be clear), then
type the line number followed by the BASIC program line. Press
(RETURN) when you reach the end of the line to return the cursor to
the left edge of the screen and to open up a new line. The delete key
deletes characters to the left of the cursor. Use it to make minor
corrections to the program line.

While using the DELETE key is sufficient for simple corrections to a
program line, this can become quite tedious as the changes necessary
become more involved. Additional capabilities of the BASIC editor
are described later in this section under the heading of The BASIC
Editor.

Entering a Program Using the System Editor Program
(EDIT.FD2)

The System Editor program can be used to enter a BASIC program
and save it on a file-structured device such as a floppy disk. While this
may seem like an extra step, the external editor’s more powerful
instruction set can make the task of entering a lengthy program easier.

Use the System Editor program by typing the following command
from the FDOS prompt:

edit [filename]

The System Editor program has a complete set of editing commands
including cursor movement, character insertion and deletion, string
search, and search and replace. It is described in the Instrument
Controller System Guide.

If you enter a program using the System Editor program and later edit
it using the BASIC editor, be sure to use the SAVE or RESAVE (not
SAVEL or RESAVEL) command to save the program on a mass-
storage device (such as a floppy disk) before exiting BASIC. Doing this
ensures that an ASCII image of the program is saved, which is readable
by the System Editor program.

4-15

Writing and Editing a Program

EDITING A PROGRAM

Editing is the process of selectively changing portions of a program.
Usually editing is part of the debugging process when developing a
program. BASIC, being an interpreted language, makes this process
especially easy by allowing changes to be made and tested without
leaving the BASIC environment. This is done using the EDIT Mode.

a

Load the program into the controller’s memory using the OLD or
RUN commands, or by typing it in.

Enter the EDIT Mode by typing EDIT from the READY prompt.

Use the EDIT Mode commands to make the changes needed in the
program.

Once the changes have been made, return to the Immediate Mode
by typinga CTRL/C.

Type RUN to execute the program. This allows the effects of
program modification to be observed immediately.

If a problem persists, more powerful debugging techniques are
discussed later in this manual.

If the changes required are lengthy, or involved, it may be easier to use
the System Editor program to make the changes. This process is
discussed briefly here and in more detail in the System Editor manual.

0

Be sure to save an ASCII image of the program on the mass-
storage device before exiting the BASIC interpreter program (use
the SAVE or RESAVE command).

Run the editor program by typing: edit programname.ext.

The system editor cannot resolve line number conflicts, nor does it
perform any syntax checking.

When you are finished editing, be sure to save the modified file
before exiting the editor program.

Writing and Editing a Program
Editing a Program

0 Run the BASIC interpreter program by typing: BASIC from the
FDOS prompt. Run your program by typing: RUN
“programname” from the Ready prompt.

O If a problem persists, more powerful troubleshooting techniques
are discussed later in this manual.

The BASIC Editor

The editor provided as a part of the Fluke BASIC interpreter program
is an easy-to-use screen-oriented editor. The Edit Mode allows the user
to create, delete, or modify the characters that make up program lines
in main memory. Program lines are stored in main memory for
subsequent use by other modes. The editing keys in the upper right
corner of the keyboard plus the (CTRL)/U, BACK SPACE,
RETURN, and LINE FEED keys control the cursor and delete text.
The remaining keys are used for text entry. This section describes the
edit keys and their use along with other editor features.

O Edit Mode is entered from Immediate Mode by typing:
EDIT
or

EDIT line number.

0 Editing begins with the lowest numbered line of the program in
memory unless another line is specified.

O No line number specification is used when beginning the edit of a
new program when no other program is in memory.

O Program entry procedure is the same as in Immediate Mode.

O Immediate Mode commands and program statements cannot be
executed while in Edit Mode.

O Exit from Edit Mode to Immediate mode by entering (CTRL)/C.
0 The special edit keys on the programmer keyboard are enabled.

O Up to 15 lines of the program in memory are displayed, beginning
at the first line or at the line number given with the command.

4-17

Writing and Editing a Program
Editing a Program

4-18

o Edit Mode enables the user to scroll the cursor forward or
backward in a program as well as right or left on program lines.

O Edit Mode enables the user to delete characters, portions of lines,
or entire lines.

Edit Mode also enables the user to duplicate entire program lines.

The following examples illustrate the two different uses of the
EDIT command.

COMMAND

EDIT

EDIT 1000

RESULT

Select Edit Mode and display up to 15 lines of the
program in memory, beginning with the first line. If
no program exists, the display is cleared and the

cursor is positioned to the upper left corner of the
display.

Select Edit Mode and display up to 15 lines of the
program in memory, beginning with the first line
greater than 999. If no program exists or the last line
number is less than 1000, the display is cleared and

the last line of the program is displayed at the top of
the screen.

Edit Mode Keys

Writing and Editing a Program
Editing a Program

Some of the keys on the programmer keyboard have special functions
that are enabled or modified in Edit Mode. Any key, if held down,
performs its function repeatedly. Figure 4-1. describes the special
functions of the Edit Mode Keys.

NOTE

Any edit command that will move the cursor from the current
line or {CTRL)/C is not accepted if the line does not pass a
check for correct syntax. A blinking error message (e.g.:
“Mismatched Quotes”) will be displayed until the line is

corrected.

Table 4-1. Edit Mode Keys

KEY

ACTION

Move one position left. Ignored if already at
the left margin.

Move one position right. Ignored if already at
the right end of the line.

Move one position up. If the line above is
shorter than the current column position,
move left to the end of that line. Scroll down
one line if the cursor is on the top line of the
display, and another line is available. This
action will not be done if the line does not pass
a syntax check.

Move one position down. If the line below is
shorter than the current column position,
move left to the end of that line. Scroll up one
line if the cursor is on the bottom line of the
display, and another line is available. This
action will not be done if the line does not pass
a syntax check.

4-19

Writing and Editing a Program
Editing a Program

Table 4-1. Edit Mode Keys (cont)

KEY ACTION
/
Delete from the cursor position to the end of
/ \ the line. If the cursor is at the left margin, delete

DEL
CHAR

DELETE

CTRL

BACK
SPACE

the entire line and move the rest of the program
up one line to fill the deletion.

Delete the character at the cursor position and
move the remaining characters left one
position to fill the deletion. When the key is
held down for repeat, the portion of the line to
the right of the cursor will progressively
disappear.

Delete the character to the left of the cursor
position and move the remaining characters
left one position to fill the deletion. When the
key is held down for repeat, the portion of the
line to the left of the cursor will progressively
disappear as the portion to the right moves to
the left margin. This key function is also
available in Immediate Mode.

Delete the current line.

Move to the left margin.

4-20

Writing and Editing a Program
Editing a Program

Table 4-1. Edit Mode Keys (cont)

KEY ACTION
Move to the right end of the line.
/ When the cursor is at the right end of the line,

open a new empty line below, and move to its
left margin.

When the cursor is not at the right end of the
| 8 line, break the line into two lines. The cursor
position identifies the first character of the new
(second) line.

This action will not be done if the portion of the
line that was to the left of the cursor does not
pass a syntax check.

Character Keys Insert characters at the current cursor position.
Each character entry moves the cursor right
one position along with any text to the right of
the cursor. Entries that would result in a line
length greater than 79 characters are not
accepted, and produce a beep sound.

+ Return to Immediate Mode.

\ / \

4-21

Writing and Editing a Program
Editing a Program

Additional Editor Features

4-22

It is not necessary to insert a line in correct sequence. Regardless of the
order in which program lines are entered, the editor will store them in
memory in the correct line number sequence. When the cursor is
instructed to move from a line, the editor checks for some syntax
errors, such as omitting a quote, parenthesis, or line number. If a line
does not pass the check, an error message is displayed and the cursor is
not allowed to leave the line until the error is corrected.

If a program line is renumbered by deleting all or part of its line
number and then entering a new line number, a duplicate line will
result. One line will have the original line number, the other line will
have the new line number. This may be seen by scrolling the modified
line on and off the display, in EDIT mode. This can be convenient for
duplicating sections of programs.

If (CTRL)/C is entered when the current line will not pass the syntax

check, the blinking error message is displayed in Immediate Mode and
the line is not stored in memory.

There are many errors the editor will not detect, such as forgetting to
dimension an array or specifying GOTO with a nonexistent line
number. Such errors will be detected only when the program is run.

The cursor will not scroll above the lowest line number nor below the
highest line number in the program. If the cursoris in the middle of the
program and a new last line is entered at that position, the cursor will
not scroll down past that line. To correct this condition:

O The cursor may be scrolled in the opposite direction until the line
entered out of sequence disappears from the display. Reverse scroll
direction again and the line will then be in proper sequence.

0 Type (CTRL)/C, and then type EDIT, followed by the line
number that needed editing. Lines will then be displayed in correct
sequence, allowing access to all lines.

Writing and Editing a Program
Editing a Program

The editor stores program lines in memory with the line number shown
on the display. If any other program line has the same line number as
that shown on the display, it is replaced with the contents of the line
shown on the display. This feature can be used to duplicate program
lines by changing only the line number and moving the cursor off the
line. The line with the previous line number is not deleted by this
process. The display, however, will show only the most recent line
number entered. To see both resulting lines, scroll the entered line off
the display and back on.

When a line is scrolled off the display with the same line number as a
line previously stored, the original line in memory will be replaced by
the one which is scrolled off. In order to prevent this from occurring,
assign each line a unique line number.

4-23

Section 5
Storing and Running a Program

CONTENTS
| 918 o Yo 10T 4 T) o R 5-3
(01755 T T3 5-3
Savinga Programcciiiiiiiiiiiiii i 54
SAVE. RESAVE, SAVEL, and RESAVEL
Immediate Mode Commands.......covivvveiennenennnn. 54
Running a Programoiiiiiiiiiiinineneennnnnn. 5-6
OLD Immediate Mode Commandchvuen.. 5-6
RUN Immediate Mode Commandc.covvvunn.. 5-8

Storing and Running a Program

INTRODUCTION

After writing a program and having it execute (run) successfully, most
users want to preserve the fruits of their labor, either for history or for
later use. This section describes how to save a program on one of the
file-structured devices (floppy disk or Electronic disk, for example),
load a previously saved program into memory, and how to load and
run a previously saved program.

OVERVIEW

The procedures discussed in the last section produce a program in main
memory. However, whenever the power is turned off or, the user exits
the BASIC interpreter program to FDOS (using EXIT or
(CTRL) /P), the program in memory is deleted. To save a program for
later use, it should be stored on a floppy disk.

Programs may also be stored in main memory on the Electronic disk.
This requires that a portion of main memory has been previously file-
structured using the FUP /C command, prior to running the BASIC
interpreter program. Electronic disk procedures are identical to those
for the floppy disk. Remember, however, that the electronic disk will
lose its contents whenever power is turned off.

Storing and Running a Program

SAVING A PROGRAM

Fluke BASIC has four statements that cause the program currently in
memory to be saved on the named device or the system device if no
device is specified. These statements are: SAVE, SAVEL, RESAVE,
and RESAVEL.

SAVE, RESAVE, SAVEL, and RESAVEL Immediate Mode
Commands

0

The SAVE and RESAVE statements save the program currently in
memory onto the named device, or the system device if none is
specified, in ASCII form. This form is suitable for later editing with
the System Editor or for printing on a hardcopy device.

The SAVEL and RESAVEL statements save the program
currently in memory onto the named device, or the system device if
none is specified, in lexical form. This form is an intermediate form
to the BASIC interpreter program that requires less file space and
fewer processing steps to load and run. In a nutshell, use the
SAVEL or RESAVEL statements to minimize the time necessary
to load the program into memory and begin execution.

NOTE
A program saved via SAVEL or RESAVEL may not be
executable (or loadable) if the version of Fluke BASIC under
which it was saved differs from the version under which it is to
be executed.

A program that has been stored on a file-structured device may be
edited with the BASIC Editor once it has been loaded into main
memory with the OLD or RUN statements.

The SAVE and SAVEL statements are interactive. Both
statements ask the user for permission before overwriting an
existing file. If the first letter in the answer is “y” or “Y” then the

existing file is overwritten. Any other response aborts the SAVE or
SAVEL statement.

The RESAVE and RESAVEL statements are not interactive. Both
statements write the program currently in main memory to the
named device, or to the system device (if no device is specified). If
the filename given already exists on the device, it is overwritten,
without asking.

Storing and Running a Program
Saving a Program

Example:

A program is currently in memory. To save this program on a floppy
disk, with a filename of TEST.BAS follow the procedure below. For
the purpose of this example, the device name (MFO0:) is specified
explicitly. If MFO: is designated as the System Device, then the device
name specification may be omitted.

4 —)

' ™\
Ready
save "mfO: test.bas”

Replace existing file TEST.BAS? no

Ready
resave

Ready
\.
. 7

NOTE
Once the filename is given as an argument to the OLD, RUN,
or any of the SAVE commands, the filename is stored in the
Controller’s memory. If any of these commands are used
subsequently, the filename is not required.

Storing and Running a Program

RUNNING A PROGRAM

BASIC provides two ways to retrieve a program from a floppy disk or
any other file-structured device. The OLD command loads a program
into memory and remains in Immediate Mode. The RUN command
loads a program into memory and immediately transfers control to the
program and places BASIC into the Run Mode.

OLD Immediate Mode Command

The OLD command is used to load a program into memory from a file-
structured device.

5-6

u]

The file name, including optional storage device prefix and name
extension, must be enclosed in quotes.

BASIC will look for the file on the System Device if the a device is
not specified as a file name prefix. Refer to the Input and Output
section for a discussion of the System Device.

BASIC will look for the file on a specified device if the device name
is included as a file name prefix (MFO: for the floppy disk, and
EDO: for the electronic disk).

This command assumes that the file named is a valid BASIC
program in either ASCII or lexical form. A discussion of lexical
form is included under SAVEL in the Reference Section of this
manual.

If the file name extension is .BAS or .BAL, it does not need to be
specified in the file name.

If no extension is specified, BASIC looks for a file with .BAL name
extension and loads that file if it exists.

If the file named does not exist with a .BAL extension, BASIC
looks for the file with a .BAS extension and loads it if it exists.

If the file exists in both lexical ((BAL) and ASCII (.BAS) form,
BASIC will load the lexical form unless the command directly
specifies otherwise.

The following two examples illustrate two ways of using the OLD
Immediate Mode Command.

Storing and Running a Program
Running a Program

Read“
old "test"

Ready

Load the file named
TEST.BAL (if present)
TEST.BAS (if TEST.BAL

is not present) from the
default System Device
into memory.

Read”
old "mfO: test. 5"
Ready

Load the file named
IESI.S from the floppy
isk.

Storing and Running a Program
Running a Program

RUN Immediate Mode Command

The RUN command loads the named file from the named device and
immediately begins running the program just loaded. If no device is
specified, the System device (SYO0:) is used. If no other file is specified,
the program in memory is run.

o

The file name, including optional storage device prefix and name
extension, must be enclosed in quotes.

BASIC will look for the file on the default System Device if a
device is not specified as a file name prefix. Refer Section 3 of the
System Guide for a discussion of the System Device. File names are
discussed in Section 1 and Section 2 of this manual.

BASIC will look for the file on the specified device if the device
name is included as a file name prefix (MFO0: for the floppy disk,
and EDO: for the electronic disk).

This command assumes that the file named is a valid BASIC
program in either ASCII or lexical form. A discussion of lexical
form is included under SAVEL in the Reference volume of this
manual set.

If the file name extension is .BAS or .BAL, it does not need to be
specified in the file name.

If no extension is specified, BASIC looks for a file with .BAL name
extension and loads that file if it exists.

If the file named does not exist with a .BAL extension, BASIC
looks for the file with a .BAS extension and loads it if it exists.

If the file exists in both lexical ((BAL) and ASCII (.BAS) form,
BASIC will load the lexical form unless the command directly
specifies otherwise.

The RUN command may also be used in RUN mode to chain
(sequentially run) another BASIC program. This is described later
in this manual and in the Reference Section.

Section 6
Data, Operators, and Expressions

CONTENTS
Introductionceviiiiiiiiiiiiietieennennennaenns 6-3
OVEIVIEW .t ivtinieretnrnnsnrostosnenesneoasnnnnsnnnas 6-3
Data Typesovviiiiiiiiiiiiiiiiiiiiiirnennnnnennns 6-4
Floating-Point Dataciiiiiiinnnnn., 6-4
Floating-Point Constantsccevievnnerennnnnn 6-5
Integer Datacciiiiiiiiiiiiniiiininninennnnnn. 6-5
Integer Constantscoviiiiiiinnrinrennennnnanns 6-6
String Datacoiiiiiiiiiii it i i it 6-6
String Constantscceiiiiiiiieneeiereannaa. 6-7
System Constantsceevevereerenenennenennennnns 6-7
BASIC Variablescciiiiiiiiniiieiiiiiinennnnnn. 6-8
Introduction To Variablescciivvenn.. 6-8
Floating Point Variablescccovvivenn.. 6-8
Integer Variablescccuiiiiiiiiniinennennnnnnns 6-8
String Variablescovitiiiiiiiiiiiiiii i, 6-8
Array Variablescooiiiiiiiiiii it it 6-9
System Variablesccoiiiiiiiiiiiiiiiiiiiiia.., 6-11
Operators and EXpressionsc.cooveeveennnnnenennnnn 6-12
Assignment Statement: = ..., . i ittt 6-12
Arithmetic Operators: + — * / i iirinrnennnnen. 6-12
Relational Operators: = < > <> <= >= ,....... 6-14
Numeric COmMPAriSONseuvvevernerneennennns 6-15
String Concatenation Operator: +c.coovveunn.. 6-15
Logical (Bitwise) Operatorsoeevvereernennnns 6-16
Binary Numberscovviiiiiiiiiiiiiiiinnn... 6-16
Twos Complement Binary Numbers 6-18
AND Operator ...oivivineirneeeennneennnennneenns 6-18

CONTENTS, continued

OR Operatoriuiiiiiiiiinininienennnnnesnenns 6-19
XOR Operator ...vvvviiiinninneresenneesenssaneens 6-19
NOT Operator .. cceeveeierreneronnesonnssonnannns 6-20
Operator Hierarchycoiiiiiiiiiiiiiniiinnne, 6-20
Use of Parentheses in Expressionsccevevnnn 6-22

Data, Operators, and Expressions

INTRODUCTION

Data and Operators are the building blocks of a BASIC expression.
Data are the numbers and strings used in an expression. Operators are
used to perform various fundamental arithmetic and logical
operations. Expressions combine data and operators into valid
BASIC program lines.

OVERVIEW

BASIC is designed with the ability to compute with numbers and
strings. This section covers the data, data types and operators used by
the programmer to build expressions. These expressions are a precise
list of directions which BASIC follows to compute a result.

Data, Operators, and Expressions

DATA TYPES
Floating-Point Data

Floating-point data has the following characteristics:

6-4

o

m]

Decimal exponent range: +308 to -308.
Exact range: 2.2225074E-308 to 3.595386E+308.
Resolution: 15 decimal digits.

Inexactness in the numeric representation. This inexactness can
cause problems when comparing two floating-point numbers.

Memory requirement (per data item): 8 bytes.

Represented internally in binary in accordance with proposed
standard “IEEE Floating-Point Arithmetic for Microprocessors”.
Copies of this standard are available from The Institute of
Electrical and Electronic Engineers, 345 East 47th Street, New
York, New York, 10017.

Unless modified by a PRINT USING statement, floating-point data is
displayed with a leading space or sign and a trailing space. It is printed
out to seven significant digits. A value from .1 to 9999999 inclusive is
printed out directly. A number less than .1 is printed out without E
notation if all of its significant digits can be printed. All other values
are printed in E notation (+0.dxxxxxxE+yyy), where d is a non-zero
digit, x is any digit, and trailing zeros are dropped.

Data, Operators, and Expressions
Data Types

Floating-Point Constants

Floating-point constants, often called real numbers, are represented in
a program in decimal or possibly scientific notation. The syntax
diagram illustrates the proper representation of floating-point
numbers. A number in scientific notation, with an exponent following
“E”, represents a number multiplied by a power of 10. Examples of
floating-point constants are:

.005

6354.33

-134.7

-12E2 Represents —1200
0.13E-05 Represents .0000013
0.1E6 Represents 100000

-.1E400 Floating-point number outside the legal range.
Returns error 602.

NOTE
The inexactness in representation of floating-point numbers
can cause problems when using the equality operator (=) to
compare two values. To check equality of floating-point
numbers, compare the absolute value of their difference to a
small enough limit. For example, use ABS(A - B) < 1E-15
instead of A = B.
Integer Data

Integer data has the following characteristics:

O Range: -32768 to +32767

O Resolution: Integers

O Exactness.

o Memory requirement (per datum): 2 bytes

O Integer data is represented internally in binary but displayed by the
Instrument Controller in decimal without the modification process

described in Floating-Point Data.

O Operations that call for an integer result are rounded to an integer,
if necessary.

6-5

Data, Operators, and Expressions
Data Types

Integer Constants

Integer constants are whole numbers identified by a “%” suffix on the
number.

Examples of integers are:

_0%

5%

-32000%

—40000% Outside the allowed range.

String Data

Strings are sequences of 8-bit positive integers that are normally
interpreted as ASCII characters. Strings are used to store characters
for messages to instruments and to the display, as well as for storage of
binary data taken from instruments. String data has the following
characteristics:

0 Maximum length limited only by available memory or 16383
characters.

O Memory requirement: each string of 16 or less characters occupies
an 18-byte memory segment and an additional 18 bytes for each
additional 16 characters.

O String data is normally displayed by the Instrument Controller in
ASCII. See the Touch Sensitive Display section for exceptions.

0O When interpreted as ASCII, the value of the most significant (8th)
bit is ignored. See Appendix G, ASCII/IEEE-488 Bus Codes.

Data, Operators, and Expressions
Data Types

String Constants

String constants are expressed as a sequence of printable characters
(numerics, uppercase alphabetic characters, lowercase alphabetic
characters, printable symbols, e.g., *, -, [, etc). In most cases, string
constants must be enclosed in either single or double quotes. Enclosing
the statement in single quotes allows the use of double quotes in the
constant and vice versa. String constants need not be expressed in
quotes when part of a DATA statement or when entered after an
INPUT statement. Some examples of strings are:

AS$ = “The result of 3.8 * Pl is
IN$ = ‘Reply with “YES” or “NO”’

System Constants

Fluke BASIC makes available two floating-point constants. Under the
name Pl is stored the value 3.14159265358979. The mathematical
function EXP(X) computes the result of raising the base (e¢) of the
natural logarithm to a power expressed by the value of X. The function
EXP(1) produces the stored value of e, 2.71828182845905. Refer to the
Functions section for further information.

Data, Operators, and Expressions

BASIC VARIABLES
Introduction To Variables

Variables are named data items that may be changed by the actions of a
running program.

o

They may be defined by the program itself (user variables), or they
may be defined by the Instrument Controller operating software
(system variables).

User variables are assigned a value by the assignment statement, by
the READ statement, or by an INPUT statement.

An assignment statement assigns a value (the result of evaluating
an expression), to a variable. One form of an expression is a
constant. For example, A=2.

The READ statement and statements which input data associate a
variable name with a constant.

System variables store changing-event information, such as time of
day or length of last file opened, for use as required by a program.

Floating-Point Variables

Floating-point variables are designated by a letter followed by an
optional second character. The second character can be a letter or a
number. The following variable names are not allowed, since they are
keywords of Fluke BASIC: AS, FN, IF, LN, ON, OR, PI, TO.

Integer Variables

Integer variables are designated by a floating-point variable name
followed by a “%” character.

String Variables

String variables are designated by a floating-point variable name
followed by a “$” character.

Data, Operators, and Expressions
BASIC Variables

Array Variables
An array variable is a collection of variable data under one name.

o

m]

Arrays consist of floating-point, integer, or string variables.

The variable name has either one or two subscripts to identify
individual items within the array.

Subscripts are enclosed in parentheses.

When two subscripts are used, they are separated by a comma.
It is helpful to view two-dimensional arrays as a matrix. The first
subscript is the row number, and the second subscript is the column
number. For example, FT%(3,18) identifies the integer in row 3,

column 18 of the array FT%(m%,n%).

A subrange (portion) of an array can be designated by specifyinga
first and last subscript separated by two periods.

For Example:

A$(3..7) Strings 3 through 7 of the string array AS$.
FT%(2.4, 5..15) Rows 2 through 4 in columns 5 through 15 of
the integer array FT%.

O In the last example above, the second subscript is incremented or
decremented before the first. For example, the statement PRINT
FT%(2..4,5..15) will display the range FT%(2, 5 through 15) before
displaying FT9%(3, 5 through 15).

O Array variables are distinct from simple variables. A and A(0) are
two different variables.

0 Only one array variable can be associated with an identifier. A%(n)
and A%(m,c) are not simultaneously allowed.

0 Memory space must be reserved for an array variable before it can

be used. See the discussion of the DIM statement in Section 7 of
this manual.

Data, Operators, and Expressions
BASIC Variables

O Virtual arrays are array variables accessible through a channel to
the floppy disk or the optional electronic disk. This feature allows a
program to take advantage of the much greater storage space

available on these mass storage devices. Refer to the Section 7 of
this manual.

0 Some examples of array variables are:

A%(3)

B1%(2%, 3%)
AS$(5)

C(3%)

D2+ A * B, O)
D(D(2))

System Variables

Data, Operators, and Expressions
BASIC Variables

System variables store changing event information for use as required
by a program. They are accessed by name and return a result in
floating-point, integer, or string form as appropriate. The system
variables in Fluke BASIC are summarized in Table 6-1.

Table 6-1. System Variables

NAME TYPE EXAMPLE MEANING

CMDLINE$| String basic Command line as typed to the FDOS) prompt.

DATES$ String 08-Feb-83 Current date in the format DD-MM-YY.

ERL Integer 1120 Line number at which the most recent
BASIC program error occurred.

ERR Integer 305 Error code of the most recent error the
BASIC interpreter found in the program
being executed.

FLEN Integer 6 Length of the last file opened in 512-byte
blocks.

KEY Integer 20 Position number of the last Touch Sensitive
Display region pressec.

MEM Floating- | 29302 Amount of unused main memory, in bytes.

Point
RND Floating- | 0.2874767 Pseudo-random number greater than O and
Point less than 1.

STIME$ | String 14:03:06 Current time of day in 24-hour format,
including seconds.

TIME Floating- | 0.5491405E+08 | Number of milliseconds since the previous

Point midnight.
TIMES String 17:45 Current time of day in 24-hour format.
NOTE: Accessing the KEY system variable resets its value to zero after
access.

Data, Operators, and Expressions

OPERATORS AND EXPRESSIONS
Assignment Statement: =

When used as a program statement, with a variable to its left, and an
expression to its right, = assigns the result of evaluating the expression
to the variable. No test of equality is implied. This is the default form of
the LET statement. In the following example, the integer N% is
incremented by 1.

N%=N% + 1%

Arithmetic Operators: + - * /

Arithmetic operators act upon or between numbers or numeric
expressions to produce a numeric result. A numeric expression is
composed of an arithmetic operator and one or more operands. Table
6-2 summarizes the arithmetic operators. The following guidelines

apply:

a

6-12

The + and - operators can act upon a single number or numeric
expression (unary operation).

All other arithmetic operators act between two numbers or
numeric expressions.

Numeric variables can be used as numbers in expressions if they
have previously been assigned a value.

Floating-point numbers and integers may be intermixed. Integers
will automatically be converted to floating-point, if necessary.

When one integer is divided by another, the result is a truncated
integer quotient (the fraction or remainder is truncated). For
example:

2% | 5% is 0%
15% | 3% is 5%
17% | (-3%) is ~5%.

When a result is assigned to a numeric variable, it is first
automatically converted to the data type of the numeric variable.

When a floating-point number is assigned to an integer variable it
is rounded to an integer value, not truncated.

Data, Operators, and Expressions

Computation speed is significantly faster when floating-point and
integer data types are not intermixed.

The result of evaluating an arithmetic expression may be used in a
larger expression or assigned to a variable for later use.

Except for +, arithmetic operators cannot be used on strings.

Table 6-2. Arithmetic Operators

OPERATOR NAME MEANING AND EXAMPLES

+ Positive Unary plus operator. Does not change
sign.

+ Add Add two numeric quantities.

— Negative Unary minus operator. Changes the sign.

— subtract Subtract two numeric quantities.

* Multiply Multiply two numeric quantities.

/ Divide Divide first numeric quantity (dividend) by
the second numeric quantity (divisor) to
produce a quotient.

A Exponentiate | Raise the first numeric quantity to a power
equal to the second numeric quantity.

Data, Operators, and Expressions

Relational Operators: = ¢) () (=)=

6-14

Relational operators compare numeric values or character strings. A
relational expression returns an integer Boolean result of 0 for false,
and -1 for true. The structure of a statement determines whether the =
operator is used for a relational comparison or an assignment. Two
examples are as follows:

PRINT A = B Displays -1 if A and B are equal.
A=B=C Assigns -1 to A if B and C are equal.

Table 6-3 lists and describes the relational operators in Fluke BASIC.

All of the relational operators are described in greater detail in the
Reference volume of this manual set.

Table 6-3. Relational Operators

OPERATOR ACTION
= Relational equality operator.
4 Relational less than operator.
(= Relational less than or equal to operator.
) Relational greater than operator.
)= Relational greater than or equal to operator.
) Relational not equal operator.

Data, Operators, and Expressions

Numeric Comparisons

Numeric comparisons are made as follows:
O All negative numbers are “less than” zero or any positive number.

o Integers are converted to floating-point when a comparison is
between mixed numeric data types. This conversion requires
additional processing time.

0 When an operator checks for equality or inequality of numeric
expressions, use integers wherever possible. This is due to the
inexactness, and rounding and truncation errors, of floating-point
values.

o To check equality of floating-point numbers, compare the absolute
value of their difference to a small enough limit. For example, use
ABS(A - B) (1E-15 instead of A = B.

String Concatenation Operator: +

When used between character strings, + concatenates (connects) the
strings together. The following examples illustrate the use of this

operator.
EXPRESSION(S) RESULT
“BEGIN” + “OPERATION” BEGINOPERATION
“BEGIN ” + “OPERATION” BEGIN OPERATION

A% = “ Volts”
“ENTER” + A$ ENTER Volts

A$ = “Millivolts”

“ENTER” + AS$ ENTERMillivolts

6-15

Data, Operators, and Expressions

Logical (Bitwise) Operators

Logical operators AND, OR, XOR, NOT, operate on the binary digits
that make up an integer. NOT is a unary operator, acting upon one
integer. AND, OR, and XOR are binary operators, using the bits of
one integer to act upon another integer. Logical operators allow
examination or modification of integer bit patterns when they have
been used to store binary data, such as status or binary readings from
instrumentation.

Binary Numbers

6-16

To use logical operators effectively, it is necessary to understand the
binary number system, and how the Instrument Controller uses binary
numbers to represent integers.

The Instrument Controller uses a 16-bit (2-byte) word to store each
integer. Each bit position represents a weighted power of 2. The sum of
the weight column in the following chart is the number of separate
integers that can be represented with 16 bits less one because zero is an
additional integer.

BIT POSITION WEIGHT

P

—_— OOV NOWnae W N —O
3]
[\S]

bttt
nhwen
—
(o2}
w
oo
H

SUM: 65535

Data, Operators, and Expressions

Integer numbers are represented by setting appropriate bit positions to
1. Adding the weighted values of each position that is set to 1 gives the
decimal value of the integer. For example, the number 305 is
represented by the binary pattern 0000 0001 0011 0001, as follows:

Position: 15141312 111098 7654 3210

Settingg 0 0 0 0 0 001 0011 0001
Since each bit that is set to 1 carries a binary weight, it is possible to
verify that the binary pattern is correct. adding the numbers 56 + 32 +
16 + 1 gives the decimal value 305.
Decimal numbers can be converted to binary by continuously dividing

by 2 and keeping track of the remainders (always 1 or 0). For example,
the number 305 is converted to binary as follows:

305/ 2 =152 R=1
152/2=176 R=0
76 | 2 = 38 R=0
38/2=19 R=0
19/2=9 R=1
9/2=4 R=1
4/2=2 R=0
2/2=1 R=0
1/2=0 R=1

Reading the remainder bits, from the bottom up, gives the result
100110001, the binary representation of 305.

6-17

Data, Operators, and Expressions

Twos Complement Binary Numbers

By using the most significant bit (15) to identify a negative integer, the
Instrument Controller divides the pattern into 32767 positive numbers,
the number 0, and 32768 negative numbers. Negative numbers are
represented in a form called twos complement. To change either to or
from twos complement form, the following steps are required:

1. Replace every 0 with a 1.
2. Replace every 1 with a 0.
3. Add 1.

For example, to change the pattern 0000 0001 0011 0001 (+305) to
twos complement form, first reverse 1’s and 0°s: 1111 1110 1100 1110,
and then add 1: 1111 1110 1100 1111 (-305). To change it back, first
reverse 1’sand 0’s: 0000 0001 0011 0000, and then add 1: 0000 0001 0011
0001.

AND Operator

AND returns an integer bit pattern with a 1-bit in every position where
both of two input integers have a 1-bit. The AND operator is useful to
check for the setting of particular bit(s) to 1 by operating on an
unknown status word with a mask word (number) having the
appropriate bit(s) set to 1. The following examples illustrate the results
of AND operations:

33% AND 305% 33% 0000 0000 0010 0001
305% 0000 0001 0011 0001

RESULT: 33% 0000 0000 0010 0001

-74% AND 305% -74% 1111 1111 1011 0110
305% 0000 0001 0011 0001

RESULT: 304% 0000 0001 0011 0000

6-18

Data, Operators, and Expressions

OR Operator

OR returns an integer bit pattern with a 1-bit in every position where
either of two input integers have a 1-bit. The OR operator can be used
to check for the resetting of particular bit(s) to 0 by operating on an
unknown status word with a mask word (number) having the
appropriate bit(s) set to 0. The following examples illustrate the results
of OR operations:

33% OR 305% 33% 0000 0000 0010 0001
305% 0000 0001 0011 0001

RESULT: 305% 0000 0001 0011 0001

-74% OR 305% -74% 1111 1111 1011 0110
305% 0000 0001 0011 0001

RESULT: -73% 1111 1111 1011 0111

XOR Operator

XOR (Exclusive OR) returns an integer bit pattern with a 1-bit in every
position where the bits of two input integers are opposite. A mask word
applied to an unknown integer through XOR will invert (1 to 0, and 0
to 1) all bit positions where the mask contains a 1, and leave unchanged
all bit positions where the mask contains a 0. The following examples
illustrate the results of XOR operations:

33% XOR -1% 339% 0000 0000 0010 0001
-1% 1111 1111 1111 1111

RESULT: -34% 1111 1111 1101 1110

-74% XOR 0% -74% 1111 1111 1011 0110
0% 0000 0000 0000 0000

RESULT: -74% 1111 1111 1011 0110

6-19

Data, Operators, and Expressions

NOT Operator

NOT is a unary operator that operates upon a single integer. NOT
returns a 1 bit in every position where the input integer had a 0 bit, and
a 0 bit in every position where the input integer had a 1 bit. The
following examples illustrate the results of NOT operations:

NOT 33% 33% 0000 0000 0010 0001
RESULT: -34% 1111 1111 1101 1110
NOT -74% -74% 1111 1111 1011 0110
RESULT: 73% 0000 0000 0100 1001

Operator Hierarchy

6-20

As long as the results of individual operations are compatible with each
other, operators can be combined in any order within an expression.
However, BASIC follows certain internal rules of hierarchy when
evaluating expressions. Table 64 lists the operators discussed within
this section in seven levels of hierarchy.

O An expression is scanned left to right for level 1 operations
(exponentiation).

o After performing these, the expression is scanned left to right for
level 2 operations (+ sign, — sign).

o This sequence is continued until level 7 operations have been
scanned and performed, if present.

O Within the same priority level, operations are performed in left to
right sequence.

O This sequence can be modified by the use of parentheses.

Data, Operators, and Expressions

The following example illustrates these concepts:
The expression: 1 +2*7 4/3-5
is evaluated as (7 4) * (2 / 3) + 1 - 5 (hierarchal order)

not as (1 +2) *7) 4) / 3) - 5 (left-to-right order)

Table 6-4. Operator Priority
PRIORITY | OPERATOR | FUNCTION

—

A Exponentiate

Positive Sign (Unary plus)
Negative Sign (Unary minus)

Multiply
Divide
Add
Subtract

I+ ~

Less Than

Greater Than

Equals

Not Equal To

Less Than or Equal To
Greater Than or Equal To

OO AbA WW NN
I~ ~

~ A A~
I~

6-21

Data, Operators, and Expressions

Use of Parentheses in Expressions

After the rules of operator hierarchy are satisfied, expression
evaluation normally proceeds from left to right. Parentheses can be
used to organize and change the evaluation sequence of expressions.
The following rules govern the interpretation of parentheses by Fluke
BASIC:

6-22

u]

a

o

Parentheses have priority over all operators.

Each left parenthesis “(” must have a corresponding right
parenthesis “)” i.e., parentheses must appear in pairs.

A pair of parentheses may be nested within another pair. Line
length is the only limit to this nesting.

Evaluation of nested parentheses proceeds from the innermost pair
outwards.

Pairs of parentheses that are not nested within each other are
evaluated in left to right sequence.

Parentheses may also be used where they have no effect except
clarity to the programmer.

The following example illustrates these concepts. The variables have
the values A =2, B=3,C=4,D =5, and E = 6.

The expression A + B * C + D / E will evaluate as:

243%44+5/6
24 12 + .833333....
14.83333....

The expression (A + B) * (C + D) / E will evaluate as:

(A + B) * (C + D)/E
5)*9/6

45/6

7.5

. . a very different result.

Section 7

Data Storage

CONTENTS
Introductioncoiiiii ittt i i it 7-3
OVEIVIEW ittt ittt it iit it ittt ttetaseeennenannannanns 7-3
Using Arrays for Data Storagecc..... 74
Array Types and Differences 7-5
Advantages and Disadvantages 7-6
I/OChannelsoiuiiiiiiiiiiiir i iieinennnnnnenns 7-7
Channel Inputand Outputcoviieiiinnnnn... 7-7
OPENing an Output Channel 7-8
OPENing an Input Channel 7-8
CloseaChannelcoviiiiiiiiiiin i ineennn 7-8
Specifying File SIZE ...ttt 79
Sequential Data Filescciiiiiiiiiiiina.., 7-10
Creating a Sequential File 7-10
Reading a Sequential File 7-11
Creating Main Memory AITayscoveevivnnenenennnn 7-13
Using Main Memory AITaysoeeveernenennnnennnnns 7-14
Using Main Memory Arrays as Ordinary Variables 7-14
Programming Techniquesccviiviinennnn.. 7-15
Two Dimensional AITaysoeevunrnenennenennnn. 7-16
Multiple Arraysc.coviiiiiiiiiiiiiiriiieenneaan. 7-17
Redimensioningcciveuveunenrnerneennennenns 7-17
Main Memory Arrays and Program Chaining 7-18

Serial Storage of Main Memory Arrays in Mass Storage . 7-19

Device Storage Size Requirements 7-20
Device File Size Calculation 7-20
Disk Size Calculation Example 7-21

7-1

CONTENTS, continued

Virtual Array Filesoviiiiiiiiiiiiiiiiiininnnnnnnn. 7-22
Definition ..ottt iin ittt ittt 7-24
Advantages and Disadvantagescouun.. 7-24
File Structureccciiiiiiiiiiiniinnnenneennnns 7-26

Analogy ... i i i e 7-26
Virtual Array File Organization 7-27
Storage Size Requirementscoeuveeennnns 7-29
Virtual Array Size Calculation 7-30

Creating Virtual AIrayscceeeieeneneeeenennenenns 7-32

Using Virtual AITays ..ovvveeeerneenennenenrnnenennennas 7-33
Using Virtual Arrays as Ordinary Variables 7-33
Using Virtual Array Stringsccovveieeneennnnn. 7-34

Programming Techniquesccvveieiinnrnennennn. 7-35
Array Element ACCESSvvveenenrenrnennenennenenns 7-35
Splitting Arrays Among Files 7-36
Reusing Virtual Array Declarations 7-37
Equivalent Virtual Arraysc.evveiieenrnnennnnn 7-38

Data Storage

INTRODUCTION

Many program applications require data to be stored or retrieved from
some form of long term storage. For instance, a digital voltmeter
connected to the IEEE488 bus does not have the capability to average
its readings over a long period of time. The solution is to take ten (or
however many) readings, store them, then use the math capability of
the Controller to compute the average.

Using simple variables to store the readings is effective, but addressing
these variables systematically in a program can be clumsy. A better
technique is to store the data in an array. This allows addressing via the
array subscript, which can be a numeric expression.

OVERVIEW

This section describes the techniques of data storage, both in main
memory and on file-structured devices. After discussing the
advantages and disadvantages of both, the methods of use and the
statements used are discussed.

Data Storage

USING ARRAYS FOR DATA STORAGE

An array is both a powerful and convenient method of storing a large
volume of data. There are 954 possible names for each type of simple
variable in Fluke BASIC. This may seem like a large number, but it is
not enough to store the readings from a typical digital voltmeter
measurement. Consider the problem of storing 5 readings using
sequential, but independent variables using a loop.

10 FOR X = 1 TO 3
20 ©0SUB 10! ! subroutine to request data (yX)

0
THEN Al% = YX

30 IF X = 1

40 IF X = 2 THEN A2X% = Y%

30 IF X = 3 THEN A3% = Y%

80 NEXT X

90 END

100 ! subroutine to get roadtn! from dva
110 ! more code. rveturn value in yX

120 RETURN

This program fragment will work, but it is easy to see how involved and
clumsy it could get, especially if a large number of data items were
involved. Notice that each reading consumes a program line and one
variable name. Here is a program fragment using an array to
accomplish the same thing.

10 DIM AX(6X)

20 FOR X = 1 TO

30 GOSUB 100 ! go get reading (yX)

40 AX(XX) Y%

30 NEXT X

60 END

100 ! subroutine to get ro.dtn! from dve
110 ! more code, return value in yX

120 RETURN

In line 40, the array element is assigned the value returned from the
subroutine (Y%) at line 100. The next iteration through the loop
increments the value of X%, which also causes line 40 to assign Y% to
the next sequential array element.

If the number of readings to be made and stored were increased to
1000, the only program changes needed would be to lines 10 and 20. In
the first example 995 more program lines would need to be added
inside of the FOR-NEXT loop.

S

Data Storage
Using Arrays

Array Types and Differences

Fluke BASIC allows data values to be stored by one of the following
methods.

a

As a sequentially-accessed data file on a file-structured device. This
is essentially a list of data items.

In main memory. Main memory arrays may be one or two-
dimensional.

As a virtual array (random access data file) on a file-structured
device. The array may be one or two-dimensional.

7-5

Data Storage

Using Arrays

Advantages and Disadvantages

Each of the three storage methods has its strong and weak points.
These are summarized below.

a

The sequential data file and virtual array are both stored on file-
structured devices. If the device is a non-volatile file-structured
device (such as the floppy disk or bubble memory), the array
storage is also non-volatile.

A main memory array, being stored in main memory (system
RAM), is susceptible to power failures, program chaining and
DELETE ALL statements.

A sequential data file must be accessed sequentially. If you want
the 405th element of the file, you must sequentially access the
preceeding 404 elements first, which can be time consuming.

Sequential data files must be written, then read. A sequential file
may not be simultaneous read/ write.

Virtual arrays and main memory arrays are random access. Any
array element may be accessed at any time.

An array stored in main memory can have a shorter access time
than the same array stored on a file-structured device.

All three storage methods will accept integer, string or floating-
point (real) values.

The elements of a virtual string array have a definite, dimensioned
length. Elements of a main memory string array are limited in
length only by the amount of main memory available.

Virtual arrays can have up to 65,536 (64K) bytes of data (128
blocks).

Main memory arrays are limited to 28K bytes minus the program
size in K bytes. Assuming a SK application program, this means a
23K maximum array size.

Virtual arrays and main memory arrays can be used like ordinary
program variables.

Data Storage

1/0 CHANNELS

The Instrument Controller communicates between the BASIC
program and various devices by means of 1/O channels.

The devices used for data storage are file-structured devices such as:

MFO: (floppy disk)
EDO: (E-disk)

WDO: (fixed disk drive)
MBO0: (bubble memory)

There can be a maximum of 16 1/O channels open at any one time.
They are designated with the numbers 1 through 16.

The 1/O channels are also used to communicate with instruments
connected to the IEEE-488 bus and RS-232 devices. Refer to sections 9
and 10 of this manual.

Channel Input and Output

The BASIC statements used in conjunction with the I/ O channels are
the PRINT statement and the INPUT statement.

u]

o

o

0

The PRINT statement is used to output data from the program to
the device via the [/O channel.

The I,NPUT statement is used to input data from the device, via the
1/O’channel to the program.

The #n clause is added to both the PRINT and INPUT statements
when they are used for channel 1/O. The #n clause specifies the
channel number to be used for input or output.

The PRINT and INPUT statements are fully described in the
Reference Section of this manual.

Data Storage
/0 Channels

OPENing an Output Channel

To designate an output channel, it is necessary to OPEN it AS aNEW
FILE. When an output channel is to be used for a virtual array, the

DIM clause is used in the OPEN statement.

Example

10 OPEN “MFO: EXAMPL.DAT" A8 NEW FILE 1 ! new

20 OPEN “EDO: TEST.DAT® A8 NEW FILE 2 ! new

30 OPEN_"MFO: TEST.VRT" A8 NEW DIM FILE 3 ! vir "
30 PRINT &1, “HELLO" ! output "HELLO
40 PRINT #2, AS ! output AS

NOTE

ile, channel 1
ile, channel

to channel

1 4

]

ttnl array: chan 3
to channel

A virtual array also requires the use of the DIM statement.
Refer to the discussion of Virtual Arrays, elsewhere in this

section.

OPENing an Input Channel

To designate an input channel, it is necessary to OPEN it AS an OLD

FILE.

Example
VI8 BE IS BRI BRI © s e
) 30 INPUT %3, AS i resd fires

' input from channel 4
line, chan

./ 40 INPUT #4, B ! read first line, chan

An error will result if an attempt is made to OPEN a channel that has
previously been OPENed but not CLOSEJ. It is a good practice to
close channels at the end of a program unless files are passed to a

chained program.

CLOSE a Channel

The CLOSE statement closes the file associated with the channel
number given. It is a good idea to CLOSE a channel immediately prior

to OPENing that channel.

Example

10 CLOSE 1
20 CLOSBE 2

Data Storage
1/0 Channels

Specifying File SIZE

If no file size is specified, the largest contiguous file space will be
temporarily reserved for that file. This may not leave any device space
available for additional files. To overcome this, specify the SIZE in
blocks that you wish reserved on the device for that file. Methods for
calculating block size are described in the discussions of Main Memory
Arrays and Virtual Arrays.

Example

20 OPEN “MFO:FILE3.DAT" A8 NEW FILE 1 SIZE 2
30 OPEN “MFO:FILEA.DAT" A8 NEW FILE 2 SIZE 8

Data Storage

SEQUENTIAL DATA FILES

A sequential data file is a list of data items, separated by {CR) (LF).
As its name implies, a sequential file must be read sequentially; there is
no means to access an item within the file except by reading all the
items that preceed it.

Sequential files store data in ASCII format and may be read using the
COPY statement or FUP. To copy a sequential file to the screen, type
the following command from BASIC:

COPY {pathname}
or, from FDOS:

FUP {pathname}

Creating a Sequential File

Creating a sequential file is best illustrated with a short program. The
discussion that follows describes the important points to remember.

%8 $L08E11 ! be sure channel is closed before opening
-
30 OPEN "TEBT DAT" A8 NEW FILE 1% !test.dat, new file, chan 1
40 FOR XX = 1 TO 3
30 PRINT Ol. Y% ! output 21 to channol 1
60 Y4 = * Y% i do something to y%
70 NEXT xx
80 CLOSE 1
90 END

The example program opens a new file named “TEST.DAT”, then
writes the value of Y% to the file. The FOR-NEXT loop causes this to
repeat S times.

Line 10 closes the channel to avoid a possible error if the channel had
been opened previously and not closed.

Line 30 opens the file “TEST.DAT” and assigns channel 1 for data
transfers to the file. The NEW clause tells BASIC to open a NEW file
to store data. If the file “TEST.DAT?” exists already, it is overwritten.

The PRINT statement within the FOR-NEXT loop sends the value of
Y% to channel 1 (and hence to the file).

Line 80 CLOSEs channel 1 (good housekeeping).

Data Storage
Sequential Data Files

Reading a Sequential File

Reading a sequential file is illustrated here with three examples. The
discussion that follows each program, and the comments within the
programs emphasize the important points.

Example 1

The COPY statement provides a very simple method of reading a
sequential file. It is so simple, however, that it is not possible to direct
the output anywhere else but to the display.

10 COPY “TEST.DAT"

Example 2
10 CLO BE 1 ' lnourlnco
20 ! look at £11 enerated provtouolu
30 OPEN 'TEBT DAT" AB D FILE
40 ON ERROR Q0T0 100 ! use thts to detect end-of-file
30 INPUT @ A% { load aX with data from file
&0 PRINT Ax ' show 1%.

70 Q0TO
100 IF ERR = 307 THEN llO ELgE 130 ! err 307 = eof
110 PB%ETlgEND OF FILE REACHED"

0
130 PRINT “ERROR “; ERR; "OCCURED" ! other errvor than eof
150 CLOSE 1 \ END

The example program opens the file created by the previous example
program, then reads each line of the file, prints the value, then loops
until the end-of-file is reached. When the end-of-file is reached, the
error handler at line 100 prints an appropriate message.

Line 10 ensures that the channel to be used in line 30 is not already
open. An error will result if it is.

Line 30 opens the file “TEST.DAT” for reading (OLD clause) and
assigns it to channel 1 for data transfer.

Line 50 assigns the first line of the file to a%. Line 60 prints a% on the
display.

Line 70 causes an infinite (until an error) loop.
The error handler at line 100 prints the message at line 110 if the error

was caused by reaching the end-of-file, otherwise a brief (and
somewhat cryptic) error message is printed.

Line 150 closes the previously opened channel/file and exits.

Data Storage
Sequential Data Files

Example 3

The INCHAR function may also be used to read data from a
sequential data file. The INCHAR function is described in the
Reference volume of this manual set.

insurance

open file

read character

check for end of file
rint it

oop to do it lgnin
clean ups go home

CLOSE 1
20 DPEN “TEBT.DAT“ A8 OLD FILE 1
30 CX = INCH 1%)
40 IF C%4 = 26 T HEN 70
30 PRINT CHR$(CX))

Q0TO 30
70 CLOSE 1 \ END

Line 10 ensures that the channel has been closed before an attempt is
made to open it at line 20.

Line 20 opens the file “test.dat” and specifies that it shall be read (as
opposed to written) and associates it with 1/O channel #1.

Line 30 uses the INCHAR function to read one character from the
previously opened channel.

Line 40 checks C9% for an end of file character and branches to line 70 if
C% is an end of file character.

Data Storage

CREATING MAIN MEMORY ARRAYS

A main memory array is simple to create and use. Use the following
steps to create a main memory array.

1. Dimension the array using the DIM or COM statement. The
following statement dimensions a 100 element single-
dimensioned integer array using N19% as the array variable.
The use of the COM statement is described later in this section.

10 DIM N1X(100%)

2. Assign values to the array elements (in any sequence) by using
the LET or INPUT statements.

3. Array element values may be used using the LET or PRINT
(USING) statements or by using the array element as part of a
numeric or logical expression.

Data Storage

USING MAIN MEMORY ARRAYS

The following paragraphs present some suggestions for using main
memory arrays.

Using Main Memory Arrays as Ordinary Variables

7-14

Except for the required DIM (or COM) statement prior to use, a main
memory array can be treated as an ordinary variable. That is, data may
be stored or retrieved from any array element at any time, in any
sequence. The COM statement is discussed later in this section, Section
13 of this manual, and in the Reference volume of this manual set.

O Any legal variable name may be an array variable.
O Remember to use the DIM or COM statement first.
0 Do not use the DIM or COM statement twice on the same array.

0 If your program crashes, data stored in a main memory array is lost
after execution of a RUN or EDIT statement unless the COM
statement was used to allocate memory space for the array.

In the following example, elements of A% may be used wherever
integer array elements may be used.

10 DIM AX(233%)

The following example shows that data may be read from or written to
the array simply by writing the array name in an expression or
assigning a value to an array element.

309 IF AX(IX)) OX THEN 3%0
330 ! more code
430 LET AX(IX) = AB8S (AX(IX)) + 2%

Data Storage
Using Main Memory Arrays

Programming Techniques

The program given in the introduction to this section illustrates the
“nuts-and-bolts” of getting values into a main memory array. Getting
values out of the array in a sequential fashion is largely the same:

1. Set up a FOR-NEXT loop.

2. Read the array elements one-by-one using the LET or PRINT
statements.

3. Repeat step 2 as necessary.

Another method is to use array subranging. This is a special case of the
array element identifier. The first example displays all elements of the
array AS$, which has previously been defined as having 20 elements in
line format. The second example displays only elements S through 10
in columnar format (note the semicolon).

10 PRINT A$(0..19)
20 PRINT A$(S..10);

The example program in Section 7 of the System Guide demonstrates
this method also. Look in the “Transfer Module” portion of the
program. The semicolon following the array subrange suppresses the
normal (CR) (LF) after each element, allowing display in multi-
columnar format.

Data Storage
Using Main Memory Arrays

Two Dimensional Arrays

Until now, only one dimensional arrays have been used and discussed.
It may help to think of a one-dimensional array as a one row matrix.
For example, the preceeding example array, A$, represented as a
matrix would be:

- Columns 0 through 19 >

ROW AS$(0) AS(1) A$(2) AS(3) AS(4) AS(5) AS(6) AS(7) AS(8) AS(9) ... AS(19)

PS%
(0..2
Col. 0)

Fluke BASIC allows two-dimensional arrays. A two-dimensional
array such as A$(1,4) has two subscripts in its array element identifier.
This additional subscript gives the program the ability to create more
elements than is possible with only one subscript. The additional
subscript also gives the program the capability of building a matrix
with ROWs as well as COLUMN .

Suppose you had 3 production shifts and you wanted to store the total
number of instruments produced by each shift for one week (5 days).
The following program is an example of one way to do this task:

10 DIM PS%(2%, 42) ! dimension a 3 X 9 array
20 READ P8%(0..2,0..4) ! read 139 values
30 ' BHIFT DAY DAY DAY DAY DAY
40 i 1 2 3 4 3

28 ' DATA 10, 12, 9 7, 10
38) DATA 9, 14, 10, 11, 11

90 DATA 11, 7, b, 8, 10
100 FOR IX = 0% TO 2%
110 PRINT P8%X(1%,0..4):
120 PRINT
130 NEXT I%
140 END

The previous program takes the data and PRINTS it in the same
arrangement as the DATA statements. Note the subscript order is
always (ROW,COLUMN). The matrix for this array is shown below:

- PS%(ROW NO., 0..4) >
Col. 0 Col. 1 Col. 2 Col. 3 Col. 4

ROW 0 PS%(0,0) PS%(0,1) PS%(0,2) PS%(0,3) PS%(0,4)
ROW 1 PS%(1,0) PS%(1,1) PS%(1,2) PS%(1,3) PS%(1,4)
ROW 2 PS%(2,0) PS%(2,1) PS%(2,2) PS%(2,3) PS%(2,4)

Data Storage
Using Main Memory Arrays

Multiple Arrays
More than one array may be dimensioned in a program, eg,:

10 DIM AX(J, 3), BX(6,10), AS(10,100)
20 DIM RL(1000)
30 DIM A3(10,10)

Redimensioning

BASIC programs are allowed to execute a DIM statement for each
variable only once. An error will result if the program attempts to
execute a specific DIM statement more than once. For this reason,
DIM statements should appear early in the program and should not be
included in subroutines. The only way around this is to re-RUN the
program. RUN causes BASIC to forget all previously executed DIM
statements.

Data Storage
Using Main Memory Arrays

Main Memory Arrays and Program Chaining

7-18

A main memory array must have been created with the COM
statement to survive program chaining. The COM statement replaces
the DIM statement for that array. The COM statement reserves
variables and arrays in a common area for reference by chained
programs.

0 Only real (floating-point) and integer variables may be used with
the COM statement.

O String variables may not be stored in the common area.

O Use a virtual array for string variables that must be accessed by
chained programs.

O All programs accessing a common area must use COM statements
that are identical in order, type, and array sizes; the actual variable
names, however, may be different.

O The contents of the common area are lost when the EXEC, EXIT,
or DELETE ALL statements are executed.

For example, assume that a chained program requires the use of three
floating point simple variables, an integer simple variable, a floating
point array, and an integer array defined in a previous program. The
first program could use a COM statement such as:

10 ! Program A
20 COM » By C» FX, D(24%), TA(100%)

1090 RUN “B*
1060 END ! End of program A

The second program could then use:

10 ! Program B
20 coM L’. L2, L3, Q%, K(24X%), PX(100%)

Note that while the names of the variables stored in the common area
have changed between programs, the order and type of the variables
are exactly the same.

Data Storage
Using Main Memory Arrays$

Serial Storage of Main Memory Arrays in Mass Storage

A main memory array may be stored and retrieved from a mass storage
device. Two methods are possible:

O Store the array in a sequential data file.
O Store the array in a virtual array.

The following examples illustrate how array data can be serially stored
and retrieved from the disk (MFO0:). You may use a different array
name to retrieve data than you did to store the data; if the arrays are
alike in type (integer, floating-point, or string) and dimensions.

The first example program stores the letters “A” through“F” ina main
memory array, then writes that array to a sequential data file. The
second example program retrieves that array from the data file, then
prints the array.

o The array variable used in the second example could be any legal
string variable. The data file holds only the data with no clue to the
identity of the variable used to store the data.

N

Data Storage:

o ! “EXAM1.BAS"

00 CLOSE 1 ! INITIALIZE
110 OPEN "EXAM1.DAT" A8 NEW FILE § BIZE 1 ! RESERVE & NAME DISK SPACE
{ 55 I “NEW®" in 1ine 110 indicates new file created on the disk.

0 DIM AS(D | DECLARE 35 ELEMENT ARRAY

i 1130 I% = 0% TO 9%
| 1140 AS(I%) = CHR8$(63% + IX) ! ASSION LETTERS A --) F

190 NEXT_I%

160 PRINT #1, AS(OX..9%) ! B8TORE ON DISK

;8 ghgﬁt 1 ! CLOBE FILE

Data Retrieval:

10 1 “EXAM2. BAB"

100 CLOSE !t INITIALIZE

110 OPEN “EXAM1.DAT™ A8 OLD FILE 1 i OPEN FILE: ASSION CHANNEL
118 ' “OLD" in line 110 indicates file already exists on disk

igg QIH AS(S%)

};8 !NPUT LINE #1, AS(OX..3%) ! INPUT FILE DATA TO ARRAY
160 CLOSBE 1 ! CLOSBE FILE

};8 Eﬁ%“‘ AS(O%. . 9%) i DISPLAY DATA FROM ARRAY

Data Storage
Using Main Memory Arrays

Device Storage Size Requirements

Before a main memory array can be stored, space must be reserved for
it on the file-structured device. When a new file is OPENed, the largest
available contiguous space on the storage medium (floppy disk or
other file-structured device) is allocated for the single file, unless the
SIZE is included in the OPEN statement. If two NEW files are
OPENed without a SIZE statement and there is only one contiguous
space available on the device, BASIC will display “? I/ O error 306...”
telling you there is no more room on the storage device, when the
attempt is made to OPEN the second file. This will happen even though
there is enough room on the disk for all the data you plan to store in
each of the files

Device File Size Calculation

7-20

Size must be stated as an integer number of BLOCKS (1 BLOCK =
512 BYTES). An array file may contain more than one array. File
SIZE must be large enough to equal or exceed the total number of
storage bytes required by all of the REAL (floating-point), INTEGER,
and STRING elements you plan to use in the array file. Array values
are stored on the file-structured device as ASCII values. One byte of
device storage is required for each character stored.

Device requirements for serial storage (no comma after the variable):

1 byte per significant digit or string character

1 byte for the sign (even though it may be + and not be displayed)

1 byte for decimal point (reals only)

1 byte for an included space (except with PRINT USING) for reals
and integers

2 bytes for (CR) (LF)

1 byte for EOF (end of file) character

Examples
PRINT #1, 3% requires 3 bytes
PRINT #1, -3% requires O bytes
PRINT #1, UBSINO “8#", -3% requires 4 bytes
PRINT #1, 3,28% requires 9 20“'
PRINT &1, -3.289% requires 9 bytes
PRINT #1, USING "86.846", -3.289 requires 8 bytes
PRINT #1, "12345" requires 7 bytes

Data Storage
Using Main Memory Arrays

Disk Size Calculation Example

Calculate the SIZE requirement for the DIM statement in the
following program:

10 DIM 88(100), I%(100),R(100)

20
30 OPEN “TEST.DAT" A8 NEW FILE 1 S8IZE 6
40 FOR JX = {X TO 1

43 88(1I%) = '32345?7890' N IR(JR) = JX \ R(UX) = JA+P]

]
60 PRINT #1, USING "S##s*, IX(JX)
70 PRINT #1, USING "S###.#8%, R(JX)

Assumptions:
1. All string elements = length of 10 characters

2. PRINT USING is utilized to ensure all reals are same length,
and all integers are the same length.

String Integer Real EOF
BYTE SIZE= 100 [(10+2) + (4+2) + (7+2)] + |
=100[27] + 1
= 2701
BLOCK SIZE = 2701 / 512 = 5.275391

Since partial blocks are not allowed; the next highest integer = 6
Blocks.

Note: Looping 94 times instead of 100 permits a SIZE of 5 blocks.

7-21

Data Storage

VIRTUAL ARRAY FILES

A virtual array provides the BASIC programmer with an easy-to-use,
non-volatile means of program data storage. Once created, a virtual
array variable may be treated like any other BASIC variable. A virtual
array is bidirectional; you may read or write from it any time, in any
sequence.

7-22

A virtual array may be assigned values from a main memory array and
vice versa; virtual arrays can be used in equations with main memory
arrays. Virtual arrays are different from main memory arrays in the
following ways:

l.

Main memory arrays reside in main memory. Virtual array
elements temporarily reside in a main memory buffer of 512
bytes (1 block) per channel (file) number. They permanently
reside on a file-structured storage medium. Virtual arrays may
also reside on E-disk (expansion RAM memory), however, E-
disk storage is volatile.

Main memory arrays are volatile because main memory is
volatile. Virtual arrays survive providing they have been
transferred from the main memory buffer to the non-volatile
file-structured storage medium (CLOSEing the file ensures
this).

Virtual arrays are not initialized by the DIM statement. Main
memory arrays are assigned initial values by the DIM
statement.

Main memory arrays are created with a DIM or a COM
(common main memory for program chaining) statement
(COM will not support string variables); virtual arrays are
created with an OPEN and a DIM# statement.

Virtual arrays can be made equivalent, (two arrays can share
the same area of file memory).

Virtual arrays do not require a COM statement in order to be
accessed by a chained program. COM is not needed and cannot
be used with virtual arrays. Main memory arrays require a
COM statement to survive program chaining.

7.

10.

11.

12.

Data Storage
Virtual Array Files

Elements of virtual array strings have a definite, dimensioned
length. Elements of main memory array strings are limited in
length only by the amount of main memory available.

Since main memory arrays must share main memory with the
BASIC program, the maximum amount of main memory
available for main memory arrays is limited to 28K bytes,
minus the size of the user program in K bytes.

A virtual array file can be as large as 65,536 bytes. The total
number of virtual array files is limited by the available file-
structured storage.

Virtual arrays are stored as binary data and cannot be viewed
by FUP.

Program execution errors automatically close virtual array
files, making virtual array data inaccessible from the
immediate mode, however, this data survives on the storage
medium and can be retrieved by a program. Main memory
arrays are accessible from the immediate mode after a program
execution error (crash).

Virtual array data survives a re-RUN or EDIT of the program,
but main memory array data is lost in both of these situations.

After reading the above comparison of virtual arrays and main
memory arrays, it can be said that virtual arrays behave “virtually” the
same as if they resided in main memory even though they actually
reside on one of the file-structured storage media. With the exception
of the OPEN, CLOSE and DIM# statements required by virtual
arrays, the same identical programming code can be used
interchangeably for virtual arrays or main memory arrays; ignoring for
the moment the fact that virtual array strings require additional
considerations in some situations due to their fixed length.

7-23

Data Storage

Virtual Array Files

Definition

A virtual array is a collection of data stored in a random access file-
structured storage device, such as the floppy disk or bubble memory.
The data is stored in the Instrument Controller’s internal format
(binary) so that no conversion is required during input or output. After
a channel has been opened, the virtual array is available to the program
just like a main memory array.

Advantages and Disadvantages

Virtual arrays can be used to significantly extend the capability of a
program. You will probably want to use virtual arrays exclusively
except in situations where execution speed is critical.

Advantages:

1.

7-24

Non-volatile ---survives power down of the Controller;
survives program chaining and the DELETE ALL statement.

NOTE

A virtual array is non-volatile only if the file-structured device
on which it is stored is non-volatile.

Virtual arrays do not “consume” main memory, thus more
program space is available.

Random access means PRINT and INPUT statements are not
necessary for data I/O.

Supports equivalencing.

String data, in addition to numeric data, can be accessed by
chained programs.

Text messages can be stored on the storage medium rather than
in main memory. The same text can be used as often as needed.

The program can be restarted after a Controller power down
and returned to the exact place in the program where execution
ceased (due to powering down). (See note after point #l1,
above.)

Data Storage
Virtual Array Files

Virtual arrays can be many times larger than main memory
arrays; up to 16 times (over 1024K bytes) as much data can
exist in virtual arrays when a floppy disk, E-disk, or
Winchester disk are used.

Disadvantages:

1.

Virtual arrays are not allowed in RBYTE or WBYTE
statements.

Virtual arrays execute slower than main memory arrays. This
difference in execution speeds becomes significant when large
amounts of data are being sorted, assigned or operated upon.
Exact speed differences are dependent on the application and
device. For example, the E-disk is almost as fast as main
memory.

Unlike main memory arrays where the DIM statement assigns
a 0 value to floating-point (real) and integer elements and an
empty string, i.e. “”, to string elements (note CHR$(0) *);
newly created virtual arrays contain whatever byte
arrangement that exists on the storage medium where the
arrays reside. To guard against bogus data entering your
program, you may wish to initialize the entire array to some
known value prior to storing data in it.

7-25

Data Storage
Virtual Array Files

File Structure

Virtual arrays must reside on a specific physical space on the file-
structured device in order for the program to know where it can go to
store and retrieve data. An analogy to the disk file structure is a helpful
aid to understanding where virtual arrays are stored.

Analogy

7-26

Imagine you have a storage room (disk) which contains 80 file cabinets
(tracks) and each cabinet has 10 file drawers (blocks). Each file drawer
contains 512 folders. (bytes). The terms “Blocks” and “Sectors” are
used interchangeably.

The file name for a specific storage space for virtual arrays always
appears on the front of a drawer, i.e., a file can never begin in the
middle of a drawer (block). Likewise, an array element cannot overlap
from one drawer to the next (all the bytes for an element must exist in
the same drawer (block). A specific file name can use as many as 128
drawers (blocks).

The disk directory contains the track and sector (block) associated
with each file name. This directory is consulted by the operating system
(FDOS) each time a file name is referenced by the program. File names
are associated with a channel number (file no.). To make our analogy
complete, let us further imagine that the file room (containing the 80
cabinets) is located in a very large building and you (the program) are
located away from the storage room and it is actually possible for you
to take any one of sixteen different routes (channels 1 through 16) to
reach the storage room. Before you store data or retrieve data from a
file drawer (name) it is necessary to specify which route (channel no.)
will be used to transport the data. As long as a file name has a drawer
OPEN, the designated route (channel no.) cannot be used for another
file name until the channel is CLOSEed, and the next file OPENed
using the same channel number.

Finally, imagine that you have a utility cart (buffer) to transport one
file drawer (512 byte block) back and forth between you (main
memory), and the disk (storeroom).

Data Storage
Virtual Array Files

In actuality, the contents are never removed from a disk block. Instead,
its contents are copied onto the main memory buffer and when the
buffer is sent back to update the disk, the buffer contents are copied
back into the file on the disk. The temporary file is the same size as the
entire permanent file.

Virtual Array File Organization

When a virtual array file is opened, BASIC creates a 512-byte (1 block)
buffer in main memory to hold the block of the file currently being used
(one buffer is created for each virtual array file). Each file is considered
to consist of a sequence of bytes, numbered 0 (first block) to n (last
block). The description of each virtual array contains the channel
number to which the file containing the array is attached, and the
address within the file at which the array starts (the array’s base
address).

The base address for a virtual array is determined when the DIM
statement declaring the array is processed. The base address assigned is
the next available (higher) address which will not cause an array
element to cross a block boundary. Each array element must be wholly
contained within a 512-byte block. This restriction may be defined as:
the base address of an array must be an integral multiple of the array
element length and no array element may be longer than 512 bytes.
This works since all virtual array elements have a length which is an
integral power of 2.

Since virtual arrays are assigned addresses in the file in the order in
which the arrays are declared in the DIM statement, the restrictions
noted in the paragraph above suggest that it is possible to allocate file
space efficiently or inefficiently when arrays having differing element
lengths are assigned to the same file. This depends on the order in
which array declarations appear in the DIM statement. To eliminate
wasted file space, the simplest rule is that virtual array declarations
should appear in the DIM statement (as read from left to right) in
decreasing order of array element lengths. This rule ensures that if an
element overlaps a block boundary, a minimum of space is left unused
in the previous block.

7-27

Data Storage
Virtual Array Files

7-28

NOTE
The unused space at the end of a virtual array file is available
for use if a subsequent DIM statement enlarges the file. See the
discussion that follows on equivalent virtual arrays.

In the following DIM statement, the arrays are allocated space as
shown below the statement.

DIM #1%, AS (10X%) = 44%, B (10%, 9%), CX (1%, 4%)

AS$ 11 elements of 64 bytes each = 704 bytes
B 110 elements of 8 bytes each = 880 bytes
C% 10 elements of 2 bytes each = 20 bytes

TOTAL: 1604 bytes

The total space needed is 68 bytes greater than 3 blocks (1604 — (3 *
512)). The blocks will be allocated as follows. Note that the first three
blocks are completely used, leaving only the extra 68 bytes for the
fourth block. The 444 bytes remaining in the fourth block are unused.

BLOCK VARIABLE ELEMENTS BYTES
1 A$ 8 512
2 A% 3 192
2 B 40 320
3 B 64 512
4 B 6 48
4 C% 10 20

Data Storage
Virtual Array Files

Suppose the DIM statement is changed to read:

DIM #1%, CX (1%, 4%), B (10%, 9%), AS (10X) = 64%

The total space needed remains 1604 bytes. The variables however, are
allocated to blocks as follows.

BLOCK VARIABLE ELEMENTS BYTES

| C% 10 20

unused — 4
1 B 61 488
2 B 49 392
2 unused — 56
2 AS 1 64
3 AS 8 512
4 AS 2 128

Only 508 bytes of block 1 and 456 bytes of block 2 are used. The unused
portions, totalling 60 bytes, could not entirely contain one more data
element in the sequence assigned. As a result, block 4 has only 384
bytes available, instead of the possible 444.

Storage Size Requirements

Before a virtual array can be dimensioned, space must be reserved for it
on the disk. When a new virtual array file is OPENed, the largest
available contiguous space on the file-structured storage medium is
allocated for the single file, unless the SIZE is included in the OPEN
statement. If the NEW files are OPENed without a SIZE statement
and there is only one contiguous space available on the device, BASIC
will display “? 1/ O error 306...” telling you there is no more room on the
storage device, when the attempt is made to OPEN the second file. This
will happen even though there is enough room on the disk for all the
data you plan to store in each of the files.

7-29

Data Storage
Virtual Array Files

Virtual Array SIZE Calculation

7-30

SIZE must be stated as an integer number of BLOCKS (1 BLOCK =
512 BYTES). A virtual array file may contain more than one array. file
SIZE must be large enough to equal or exceed the total number of
storage bytes required by all of the floating-point (real) elements,
integer elements and string elements you plan to use in the virtual array
file. Each floating-point element occupies 8 bytes. each integer element
occupies 2 bytes. Each string element occupies 1 byte/character.
Elements are not allowed to overlap block boundaries. If an element is
too large to fit in the remaining storage space in a block, the remaining
space is left vacant and the element is placed in the next higher block.
To elminiate wasted file space, the simplest rule is that virtual array
declarations should appear in the DIM statement from left to right in
decreasing order of array element lengths.

Appendix J lists a program which allocates virtual arrays by blocks
according to your DIM statement.

String elements require special consideration since all elements for a
given string array variable name must be the same number of
characters in length *and* that length must be 2 or4 or8 or 16 or 32 or
64 or 128 or 256 or 512 characters, i.e., any power of 2 between w and
512 inclusive. String element length is assigned in the DIM statement.
If no length is specified, the default length is 16 characters.

Based on the above considerations, and given:

R = the No. of REAL elements in all FLOATING-POINT arrays
I = the No. of INTEGER elements in all INTEGER arrays

S = the No. of STRING characters in all STRING arrays

V = vacant bytes prior to boundaries of occupied blocks

the formula becomes:

SIZE=(R*8+1*2+S + V)BYTES/512 BYTES/BLOCK

Data Storage
Virtual Array Files

Example

DIM #1, A(10), AA(S,6), BX(30), BBX(3,7), AS(10) = 8, AAS(50,30) = 2

Calculate the SIZE for the following virtual array dimension
statement:

R= 11+(6*7) = 53 elements for A(10) and AA(S,6)
I =314+(4*8) = 63 elements for B9%(30) and BB%(3,7)
S = 11 *8+ (51 *51 * 2) = 5290 characters for A$(10) and
AAS$(50,50)
V=0
Block Allocation Table
424 88 38 80 394 4608 288 224
Bytes Bytes Bytes Bytes Bytes Bytes Bytes Bytes
53 44 19 10 197 53(;4 144 224
Reals | Integers |Integers | 8 Char. | 2 Char. | 2 Char. Strings | 2 Char. | Vacant
Strings | Strings , Strings | Bytes
Block 1 Block 2 Blocks 3 thru 11 Block 12
NOTE

Remember element numbering starts with 0, e.g., DIM #1,
A(10) yields 11 elements; DIM #1, A(0) yields one element.

SIZE = (53 * 8 + 63 * 2 + 5290) / 512 = 11.40625 BLOCKS

Only whole blocks may be allocated, i.e., SIZE must be an integer, the
next higher whole number is the correct answer: SIZE = 12 BLOCKS.

7-31

Data Storage
Virtual Array Files

CREATING VIRTUAL ARRAYS

7-32

Creating virtual arrays requires the following actions:

1. A filename must be associated with the virtual arrays. (OPEN
{filename} AS... statement.)

2. A channelnumber must be associated with the filename. (FILE
n clause of OPEN... statement.)

3. A determination must be made to use NEW data (create a new
disk file for new data) or OLD data (data already in a virtual
array disk file). (AS {NEW, OLD} clause of OPEN
statement.)

4. The SIZE of the arrays in blocks should be stated. (SIZE clause
of OPEN statement.)

5. The arrays must be DIMensioned. (DIM statement)

6. The DIMension must be associated with the channel number
picked in step 2, above. (#n clause of DIM statement.)

7. The channel (file) must be CLOSEd in order to transport the
most current array data (contained in the buffer) to the disk.

The following example program illustrates the process of creating a
virtual array.

CLDBE l ! tnluranco

10

13 le, “test “, virtual array, chan 1, size = 1 block
20 DPEN 'TEBT VRT* AB NEu DIM FILE 1 S8IZE 1

30 DIM #1, A(3X) dimension array a, 3 elements, chan 1
40 FOR Ix = O TO 4% ' loog to lond array

30 A(I%) = IX i ass gn value

60 NEXT I i

70 PRINT A(O..4) i prtnt array

80 CLOSE i close channel/file

90 END

Data Storage

USING VIRTUAL ARRAYS

Once a virtual array file has been opened and a DIM statement for the
channel has been executed, the virtual array elements may be used just
as ordinary variables.

Using Virtual Arrays as Ordinary Variables

In the following example, elements of A% may be used wherever
integer array elements may be used, except in RBYTE, WBYTE, or
CALL statements. (See the section on IEEE488 Bus Input and Output
Statements.)

10 OPEN “INTEOR.BIN" A8 DIM FILE 1%
20 DIM #1X, AX(233%X, 127%)

The following example shows that data may be read from or written to
the file simply by writing the array name in an expression or assigning a
value to an array element.

309 IF_AX(IX, JX)) OX THEN 330
430 LET AX(KX, OX%) = ABS (AX (KX, 1%)) + ax

7-33

Data Storage
Using Virtual Array Files

Using Virtual Array Strings

7-34

Strings in virtual arrays are considered by BASIC to be of fixed length.
The default length is 16 characters, or as declared in the DIM
statement (see the DIM discussion in this section).

The following example specifies a virtual string array with character
elements. Line 390 will display the number 32 regardless of the value
assigned to that particular element of AS$.

3680 DIM #2%, AS(19%) = 32X
390 PRINT LEN(AS(IX))

When characters are assigned to a virtual array string element, BASIC
will add null characters to the right end of the string until it equals the
declared string element length. This can be the source of subtle errors.
Consider the virtual array A$ of the previous example. The following
program section attempts to add an * character to all of the elements of
AS$. This example will not work, and results in error 904 (string too
long for virtual array string field).
370 FOR_I% = 0% TO

19%
980 AS(IX) = AS(IX) + “a*
990 NEXT IX

Each element of AS is allocated 32 characters. The expression A$(1%)
+ “*” results in a 33-character string. When this string is assigned to
A$(1%), error 904 (string too long for virtual array string field) results.
It is necessary to strip trailing null bytes from the virtual array string
value before appending the ‘¥ character.

The TRIM statement causes trailing null bytes to be removed from a
virtual array string. The format of the TRIM statement is:

TRIM tX

where t% specifies whether or not to trim trailing null bytes from a
virtual array string. If t% is zero, no trimming is performed. If t% is not
zero then all trailing null bytes are trimmed.

The TRIM statement must be issued before reading the first virtual
array string element for which null byte trimming is desired.

Data Storage
Using Virtual Array Files

PROGRAMMING TECHNIQUES

The key to the efficient use of virtual arrays is to minimize the number
of data transfers to or from the virtual array file. Whenever a virtual
array element is accessed, either to read its value or to assign to it a new
value, BASIC determines the block number and the file in which the
element exists. If the block required is not in the memory buffer, the
required block is moved from the file into the memory buffer. The
block previously held in the buffer is written to the file only if a change
in its contents occurred.

Array Element Access

Array elements in a file are stored in row-major order which means
that access to the elements, in the storage order, is most efficient when
the rightmost array subscript varies most quickly, as in the following

example:
4550 FOR 1% = OX TO_63%
4650 FOR J% = OX TO 43%
44670 A% (1%, -
4680 NEXT_ J%

The form just discussed describes the most efficient access method for
initializing the array A%. When the array A% is stored on a floppy
disk, its initialization required 7.05 seconds. When the same array is
stored on the E-disk, its initialization required 4.71 seconds. The
following example is the least efficient access method:

46350 FDR I%X = OX TO 63%

4660 JX = 0% TO 63%
4670 A% (J%, IX) = 0%
44680 NEXT JX

4690 NEXT I%

This second example requires 254.33 seconds (8.05 seconds on EDOQ:),
36 times as long (1.7 times for EDO:) as the first example. The first
example requires a new block to be read for every 256 elements of A%
that are written. This second example, however, requires that a new
block be read for every four elements of A% that are written.

7-35

Data Storage
Using Virtual Array Files

Splitting Arrays Among Files

7-36

If information stored in different virtual arrays will often be required at
the same time, placing the arrays in separate files will speed processing.
The following example illustrates the value of utilizing separate files
for two parallel virtual arrays as opposed to placing both arrays within
the same file.

Example

In some programs it may not be possible to use the null stripping
function described previously in this section. This may be because the
null characters are part of the string data required. However, the true
string length can be determined without stripping the null characters.
If there is no character which may be used to specify the end of a string
in the virtual array, this information may be retained by placing an
integer array parallel to the string array. Thus, for each string element,
an integer element contains the length of the string.

In the following example, L9%(1%) contains the length of string
AS$(1%). The significant characters of element A$(1%) can be recovered
by a statement such as line 6370.

6343 OPEN "DATA.VRT" AS DIM FILE

1%
6360 DIM #1%, A$(1023%) = 14X, LX(1023X)
6370 Bs = LEFT (AS(IX), LXA(IX))

A drawback to this method is that each time an element of A$ is read
from the beginning of the file, another block of the file must beread to
retrieve the corresponding element of L%.

A more efficient organization is to assign A$ to one virtual array file
and L% to another file. This will cause the BASIC Interpreter to assign
two buffers, one for the strings of A$ and one for the integers of L%.
4783 OPEN "DATA1.VRT" A8 DIM FILE 1X%
4790 OPEN "DATA2.VRT" A8 DIM FILE 2%

4770 DIM 81X, AS(1023X) = 16%
4780 DIM #2%, LX(1023%)

In an actual test, accessing the elements of A$, one by one in increasing
order, the first example (with A$ and L% in one file) required 386
seconds. With A$ and L% in separate files, only 15.8 seconds were
required to perform that same processing, a 24:1 difference.

Data Storage
Using Virtual Array Files

Reusing Virtual Array Declarations

When a virtual array DIM statement has been executed, the variables
defined as virtual arrays remain defined even after the virtual array file
has been closed. However, an attempt to access a virtual array when
the channel has been closed will result in an error 308 (channel not
open). Since the variables remain defined, it is possible to close a
virtual array file and to later re-open it. Since the variables have
already been defined, a new DIM statement is not necessary to re-open
the file. Note, however, that the file must be re-opened using the same
channel number as that used in the DIM statement defining the arrays.

If a number of separate virtual array files, all with the same data
organization, must be processed by a program, it is possible (if no two
files are to be processed simultaneously) to reuse the variable
definitions. Consider the following processing sequence:

OPEN first file

DIM virtual arrays
process first file

CLOSE first file

OPEN second file (on same channel as Ist file)
process 2nd file

CLOSE second file

In each processing loop, the same virtual array variables may be used
to process the file data.

7-37

Data Storage
Using Virtual Array Files

Equivalent Virtual Arrays

7-38

It is possible to execute multiple DIM statements for a single channel.
The second (and subsequent) DIM statements for a channel simply
redefine the file organization as shown below. The first DIM statement
allocates a 441-element array, A%, organized as a 21x21 matrix. The
second DIM statement does not allocate array B% following A% but
redefines the 441 integer elements of the file as a vector with the name
B% (similar to a FORTRAN equivalence).

110 DIM #1%, AX (20%, 20X)
120 DIM #1X, BX (440%)

NOTE
Fluke BASIC makes no check for the consistency of virtual
array equivalences. This is the responsibility of the
programmer.

Section 8
Functions

CONTENTS

Introductioncoiiiiiiiiii i it i i e, 8-3

OVEIVIEW ot vtitet it ieetn e eeerensaeneanenanaennenns 8-3

General Purpose Mathematical Functions 84
ABS(Functioncoieiiiiineiiinenrnnenennnn. 8-5
ASH(Functionccoiitiininnninnnnennenennnns 8-5
EXP() Functionccvuiiiiiiniinineinnnnnnnnenn. 8-5
INTO Functionc.ccieieinienenenenennnnennnnns 8-5
LNQO Functionccviuiuninennenrnennenrenennnns 8-6
LOG() Functioncociiiiinienenennenennenennnns 8-6
LSH(O Functioncciuiiiiiiiiiiniinnnnnnnnn. 8-6
MOD() Functioncveiiuiinirineninennenennnns 8-6
RND Functioncoiiiiiiiniiieiennnennennenns 8-7
SGNQ FUnCtionuiiiiiinentnineennnenenenenenens 8-7
SQR() Functioncoiiitiiniinenennenenrnnenennnn 8-7

Trigonometric Functionscciiiiiiiiiiinnnne. 8-8
ATN(Q Functionccuiiiininiinininnenennenenns 8-9
COS(O) Functioncciiiiiiiiiiinnnnenennnnnnns 8-9
SINO Functioncoiiiiiiiiiiiiiiineiieiinnennenn. 8-9
TANQO Functionooiiiiiiiiiiiiiiiiininenennens 8-9

String Functionscoiiiiiiiiiin ittt 8-10
ASCII() Functionccoveiieinenneenennnennnnns 8-11
CHRS) Functionccoiiiiiniininennnennnnennns 8-11
CPOS() Functionvuiiiitnininnenenennennnnenns 8-11
DUPLS() Functioncoviiiiiiinnnnnnnnnnnennns 8-11
INSTR(Functioncovuieiiiiniiiinnenenenns 8-12
LCASES$() Function ...vvvvvvevvinnrrvnnrsrnnnnininss 812
LEFT() Functioncccviiiiiiiniiinnnennnnnnnn 8-12

CONTENTS, continued

LENQ Functioncciitiiiiiiiiiiirennennnnnanns 8-12
MID() Functionc.oiiiinnenineenennenennnnenns 8-12
NUMS() Functioncceiiieneennneencneennenns 8-13
RADS() Functioncoiiiiiiiiiniinrennnnnsnns 8-13
RIGHT() Functionccceiieieninreneneenenaens 8-13
SPACES() FUNCtioneevuuuinneeennnnnnennennnnns 8-13
TAB() Functionciiiitiiniinenrnnnnennnnnns 8-13
UCASES() Functionc.ccoiiiiiniiineennnnnnnnns 8-14
VAL FUnctioncoviiiiiiniiiienneneneenennns 8-14

User-Defined Functions

Functions

INTRODUCTION

Functions are predefined operations available in Fluke BASIC by
applying a function name to an appropriate set of arguments. The
availability of a wide range of functions can significantly simplify a
programming task. Mathematical functions perform calculations on
numeric quantities. String functions create, manipulate, measure, and
extract portions of character strings. In addition, Fluke BASIC also
allows the user to define specialized functions to meet the needs of
particular data processing and instrumentation control tasks. Referto
the discussion of the DEF FN statement at the end of this section and
in the Reference volume of this manual set.

OVERVIEW

This section is divided into four subject areas: General Purpose
Mathematical Functions, Trigonometric Functions, String Functions
and User-defined Functions. Effective use of functions requires a clear
understanding of proper data types and formats for input and expected
results.

8-3

Functions

GENERAL PURPOSE MATHEMATICAL FUNCTIONS

The general purpose mathematical functions supplied with Fluke
BASIC include an assortment of tools to simplify computation tasks
on collected data. Included are a square root function, natural and
common logarithms, exponentiation of e, absolute value, sign, and
greatest integer.

Mathematical functions perform calculations on numeric quantities.

[m]

Mathematical functions operate on integer or floating-point
numbers.

Mathematical functions accept as input an expression that
evaluates to a numeric quantity.

Mathematical functions return an integer or floating-point
number.

Conversion between numeric data types (i.e., floating-point to
integer) is automatic where required by the function or specified by
the user. This conversion process requires additional processing
time.

The domain of acceptable input values for some functions is
limited or not continuous.

The range of resulting output values for some functions is not
continuous or has points of underflow (too close to zero) or
overflow (too large).

The definition of each function includes limitations of domain and
range.

Following is a summary of the Fluke BASIC General Purpose
Mathematical Functions. Each function is described briefly and its
format is shown. All functions are fully described in the BASIC
Reference manual.

Functions
General Purpose Mathematical

ABS() Function

Format: ABS(numeric expression)

The ABS function returns the absolute value of a floating-point or
integer number. ABS has a floating-point number or integer, as an
argument, and returns a positive floating-point number or integer as a
result.

ASH() Function
Format: ASH(x%,count%)

The ASH function operates on binary integers (x%) by arithmetically
(signed) shifting them by count% bits. The ASH function arguments
are integers and any floating-point arguments are truncated to integer
values.

When count% is positive, a left shift is performed count% places and
zeroes are shifted in from the right. When count% is negative, a right
shift is performed by the number of places specified and the sign bit is
shifted in from the left. When count% is zero, no shift is performed and
X% is returned.

EXP() Function

Format: EXP(numeric expression)

The EXP function returns a floating-point number equal to the result
of raising the number e to an exponential power equal to the given

input value. EXP has a floating-point number as an argument, and
returns a floating-point number.

INT() Function

Format: INT(numeric expression)

The INT function returns the greatest integer less than or equal to a
given floating-point number. If INT.is given a floating-point
argument, a floating-point result is returned. An integer argument is
returned unchanged, as an integer.

Functions
General Purpose Mathematical

LN() Function

Format: LN(numeric expression)

The LN function returns a floating-point number equal to the natural
logarithm (base €) of the input value. LN has a floating-point number
as an argument, and returns a floating-point number.

LOG() Function

Format: LOG(numeric expression)

The LOG function returns a floating-point number equal to the
common logarithm (base 10) of the input value. LOG has a floating-
point number as an argument, and returns a floating-point number.

LSH() Function
Format: LSH(x%,count%)

The LSH function operates on binary integers (x%) by logically
(unsigned) shifting them by count% bits. The LSH function arguments
are integers and any floating-point arguments are truncated to integer
values.

When count% is positive, a left shift is performed count9% places and
zeroes are shifted in from the right. When count9; is negative, a right
shift is performed by the number of places specified and zeroes are
shifted in from the left. When count% is zero, no shift is performed and
X% is returned.

MOD() Function
Format: MOD(x,y)

The MOD function returns the remainder produced by dividing two
integer or floating-point numbers (x,y). The MOD function is defined
as:

mod(X,y) = X - y * truncate(x/y)

in which the truncate operation drops any fractional result produced
by the division of x by y. The result always has the same sign as x. An
integer result is returned if x and y are both integers. A floating-point
result is returned if either x or y is floating-point.

Functions
General Purpose Mathematical

RND Function
Format: RND

The RND function uses an internal algorithm to produce a pseudo-
random number that is greater than zero and less than one. RND is not
a true function since it does not operate upon an argument. The
sequence of values returned by RND is repeatable unless by a
RANDOMIZE statement is used in the program each time the
program is run.

SGN() Function

Format: SGN(numeric expression)

The SGN function returns the sign of a floating-point or integer
number. This is called the signum function. SGN has a floating-point
or integer number as an argument, and returns one of three integers: 1
if the argument was positive, 0 if the argument was zero, or -1 if the
argument was negative.

SQR() Function

Format: SQR(numeric expression)

The square root function returns a floating-point number equal to the
square root of the input value. SQR has a floating-point number as an
argument, and returns a floating-point number.

Functions

TRIGONOMETRIC FUNCTIONS

Fluke BASIC also includes four trigonometric functions: sine, cosine,
tangent, and arctangent. These functions have some discontinuities
and limits that can produce unexpected errors when used improperly.
The discussions that follow define these factors.

Trigonometric functions in Fluke BASIC use radian measure for
angular quantities.

o The value Pl stored by Fluke BASIC (3.14159265358979)
represents an approximation of the ratio between the
circumference and the diameter of any circle.

O Radian measure defines the angular distance around a circle as
2*PI radians. This is the equivalent of 360 degrees.

O Angles are thus easily defined as fractional parts of Pl. For
example:

Pl radians = 180 degrees
PI / 2 radians = 90 degrees

0o To convert from degrees to radians, multiply by (PI / 180).
0 To convert from radians to degrees, multiply by (180 / PI).

0 The descriptions of trigonometric functions that follow use radian
measure exclusively.

Following is a summary of available Trigonometric Functions found
in Fluke BASIC. A complete description of each function may be
found in the BASIC Reference manual.

Functions
Trigonometric

ATN() Function

Format: ATN(numeric expression)

The ATN function returns the principal arctangent (inverse tangent) in
radians of a floating-point numeric input value. ATN has a floating-
point number as an argument, and returns a floating-point number.

COS() Function

Format: COS(numeric expression)

The COS function returns the cosine of an angle that is expressed in
radians. COS has a floating-point number as an argument, and returns
a floating-point number.

SIN() Function

Format: SIN(numeric expression)

The SIN function returns the sine of an angle that is expressed in
radians. SIN has a floating-point number as an argument, and returns
a floating-point number.

TAN() Function
Format: TAN(numeric expression)
The TAN function returns the tangent of an angle that is expressed in

radians. TAN has a floating-point number as an arguments, and
returns a floating-point number.

8-9

Functions

STRING FUNCTIONS

String functions create, manipulate, and extract portions of character
strings.

o String functions operate only upon strings, but can have floating-
point numbers, integers, or character strings in their argument list.

O Integer results from string input include:
ASCII (decimal) value of a character.
Length of a string.

Number of characters within a string at which a substring was
located.

O String results from integer input include:
Character corresponding to an ASCII (decimal) value.
Specified left, right, or center substrings.

Space character strings, of either specified length or to a
specified column position.

Escape code sequence for positioning the display cursor.

O A string result is available in the format that PRINT or PRINT
USING would display a number.

O Floating-point numbers may be used in place of integer input.
BASIC will truncate as necessary and convert to integer form
(requires additional processing time). Note that truncation to
integer form may cause unexpected results.

O Numeric expressions may be used in place of floating-point or
integer numeric input.

o See Appendix G, ASCII/IEEE-488 Bus Codes, for a chart of
ASCII characters and corresponding decimal numbers.

Following is a synopsis of the String Functions included in Fluke
BASIC. Each function is described fully in the BASIC Reference
manual.

8-10

Functions
String

ASCII() Function
Format: ASCII(AS)

The ASCII function returns an integer equal to the ASCII (decimal)
value of the first character in the specified string. ASCII has a string as
an argument and returns an integer result. Refer to Appendix G,
ASCII/IEEE-488 Bus Codes, for a chart of ASCII characters and
corresponding decimal numbers.

CHRS$() Function
Format; CHR$(x%)

The CHRS function returns an ASCII string character corresponding
to an integer input. CHR S has an integer as an argument, and returns a
single-character string (8-bit binary pattern). The CHRS$ function is
the logical opposite of the ASCII function.

NOTE
Some integers used in the CHRS function result in display
commands when printed and do not appear on the screen. For
example PRINT CHRS$(7) activates the beeper.

CPOS() Function
Format: CPOS(R%,C%)

The CPOS function returns a string which directly positions the
display cursor when printed. CPOS has two integers as arguments (R%
= row, C% = column)and returns an 8-character string.

DUPLS$() Function

Format: DUPLS$(A$,n%)
DUPL$(val%,
n%)

The DUPLS function returns a string of n% duplicated characters or
strings (A$). When the first argument to DUPLS is val%, val% is first
converted to its ASCII character equivalent (as in the CHRS$()
function). Thus, DUPL$(*a”,5%) returns “aaaaa”.

Functions
String

INSTR() Function

Format: INSTR (x%,AS$,BS)
The INSTR function searches for a specified substring (B$) within a
string (A$) and returns the starting location of the substring. The

substring search begins at the character position specified by x%.
INSTR returns an integer result.

LCASE$() Function
Format: LCASE$(AS)

The LCASES function converts its alphabetic string argument (A$) to
lower-case. The range of ASCII characters affected is A to Z.

LEFT() Function
Format: LEFT(A$,n%)

The LEFT function returns a substring of the specified string (AS$),
starting from the left. The number of characters returned is, if possible,
the number specified by the second argument (n%). LEFT has a string
and an integer as arguments, and returns a string result.

LEN() Function
Format: LEN(A9)

The LEN function returns the number of characters contained in a
string (A$). LEN has a string as an argument, and returns an integer.

The string count includes leading and trailing blanks and null
characters.

MID() Function
Format: MID(AS$,n1%,n2%)

The MID function returns a substring of the specified string (A$),
starting from the specified character position n1%), and including the
specified number of characters (n2%). MID has as arguments a string
and two integers, and returns a string.

Functions
String

NUMS$() Function

Two
Formats: NUMS$(x% or x)
NUMS$(x% or x,A$)

The NUMS function returns a string of characters in the format that a
PRINT or PRINT USING statement would output the given number.
NUMS has as arguments an integer (x%) or a floating-point number
(x), and an optional character format string (AS$), and returns a
numeric character string with appropriate spaces and decimal.

RAD$() Function

Format: RADS$(integer%,base%)
The RADS$ function returns a string that corresponds to integer%
using base%. Digits greater than 9 in the output string are returned as

“A” to “Z” floating-point arguments are first truncated to integer
values.

RIGHT() Function

Format: RIGHT(A$,n%)
The RIGHT function returns a substring of the specified string (A$),
starting from the specified character position (n%), to the right end of

the string. RIGHT has as arguments a string and an integer, and
returns a string.

SPACES$() Function
Format: SPACES$(x%)

The SPACES function returns a string of spaces as specified. SPACES$
has as argument an integer, and returns a string of spaces.

TAB() Function
Format: TAB(x%)

The TAB function returns a string of spaces that would advance the
current print position on an external printer to one column past the
specified column number. TAB has an integer as an argument, and
returns a string of spaces that may be preceded by Carriage Return and
Line Feed.

8-13

Functions
String

UCASES$() Function
Format: UCASES$(AS)

The UCASES function converts its alphabetic string argument (A$) to
upper-case. The range of ASCII characters affected is a to z.

VAL() Function
Format: VAL(AS)

The VAL function returns the floating-point numeric value of a
numeric string (A$). VAL has a string as an argument and returns a
floating-point number.

USER-DEFINED FUNCTIONS

Format: DEF FN{variablename}(argument[s]) {function definition}

The DEF FN statement allows functions to be defined for subsequent
use in expressions. The function name can be any variable name, such
as A%, FAS, Z, including variables previously used in the program.
(e.g., FNA9% does not conflict with A% already existing in the
program.)

The DEF FN statement applies the function defined by the function
definition to the argument[s] supplied. The arguments may be any of
the BASIC variable types and the result may also be any of the BASIC
variable types.

8-14

Section 9

IEEE-488 Bus 1/0

CONTENTS

INtrodUCtion .. vttt ittt it ittt et 9-3

(011755 1 1= 9-3

IEEE488 Addressingccvviiuveneniennenenennnnnn, 94
Device Addressing . ..ovvvvtniennnenreeneenenennnns 9-5
Addressing Serial IEEE-488 Devices 9-7
Port Addressingovviiiiiininn ittt 9-8

Initialization and Control Statementsccovvuun. 9-9
CLEAR Statementovvientennennnnnnnneneenns 9-10
INIT Statementvviitiniiiinenneennnennnnnns 9-10
LOCAL Statementcvitiitinennennennennennnns 9-11
LOCKOUT Statementvveenrvnrenrnnnnnnnnens 9-11
ON PORT Statementoevvitinnrennneenneennns 9-12
OFF PORT Statementccvttiiiiiinreennnnnns 9-12
PASSCONTROL Statementccvereireneennnn. 9-12
REMOTE Statementcvuiieiieineinennennenns 9-12
SET SRQ Statementovvvenenrenenenrnnnnennns 9-13
TRIG Statementouintininnnrinnneenennennenns 9-13
TERM Statementc.iuiitiintennennennennenns 9-13
TIMEOUT Statementccvtiiiirtineenennennenns 9-13

Input and Output Statementsccivvienrnnnn.. 9-14
INPUT Statementv.uvttnieninninnennenneneenenns 9-14
INPUT LINE Statementcccviiitiiirnnnenn. 9-15
INPUT WBYTE Statementccoivivvvnnenn. 9-15
INPUT LINE WBYTE Statementco..... 9-15
PRINT and PRINT USING Statements 9-16

IEEE-488 Data Transfer Statementscovvvvnnn. 9-17
RBYTE Statementoittiiitiiiiininnnennnn. 9-18

CONTENTS, continued

WBYTE Statementor Clauseccvvvvevnenn.. 9-18
RBYTE WBYTE Statementcciivtivnnennn. 9-18
RBIN Statementc.cctiiiiiinrinnrennnrennnnns 9-19
RBIN WBYTE Statementccviiiriiiennnennn 9-19
WBIN Statementcovvtiinintinrenennennennns 9-20
IEEE-488 Polling Statementsccovivenenvennn.. 9-20
CONFIG Statementouvirritnnennenrnnnennennns 9-21
ON SRQ and OFF SRQ Statements 9-21
ON PPOL and OFF PPOL Statements 9-21
PORTSTATUS() Functionciiviuivnnnnn. 9-22
PPLO) Functionccciiiiiiiiiininennnnennnnns 9-22
SPL FUNCHION . ittt ittt ittt it ieeeninnenneneennns 9-22
WAIT Statementcovviitiiieinnrennneenneenneens 9-23

IEEE-488 Bus I/0

INTRODUCTION

The IEEE-488 bus standard is the backbone of a programmable
instrumentation system. Fluke BASIC has many statements intended
specifically for controlling instruments connected to the IEEE-488
bus.

Detailed information on instrument bus communication concepts and
messages, control lines and data lines, and on timing, is available in the
standard “IEEE-488-1980 Standard Digital Interface for
Programmable Instrumentation”. Copies of this standard are
available from The Institute of Electrical and Electronic Engineers,
345 East 47th Street, New York, New York 10017. Appendix B gives
the correspondence between BASIC commands and the sequence of
bus actions which actually take place. Other material may be found in
the 1722A System Guide, Fluke Application Bulletin AB-36, Fluke
Technical Bulletin C0076 and Appendices B through D of this manual.

OVERVIEW

Communications on the bus occur on a detailed signal and code level
as defined by the standard. However, for the most part, bus
communication can be viewed on a functional level. On this level the
user is concerned more about what is happening on the bus than the
actual processes. Bus communications are categorized as functional
messages exchanged between devices. Each bus device in a system may
be designed to implement only the messages which are important to its
system purpose.

This section describes the statements which are designed for
communication with instruments on the IEEE-488 buses. These
statements allow the Instrument Controller to control any type of bus-
compatible device. The following discussion of IEEE-488 bus
commnuications centers first on device and port addressing then on the
BASIC statements used for IEEE488 bus communications. The
BASIC statements used for IEEE-488 bus communications are divided
into four groups: Initialization and Control, Input and Output, IEEE-
488 Data Transfer, and IEEE-488 Polling.

IEEE-488 Bus I/0

IEEE-488 ADDRESSING

The following paragraphs describe in general terms how BASIC
communicates directly with the IEEE488 bus port or specific IEEE-
488 devices. The general discussion is followed by a descriptions of
device addressing, serial device addressing, and port addressing.
Device and port addresses are an integral part of many of the IEEE-488
related statements.

0O The Instrument Controller has one IEEE-488 instrumentation bus
interface (port). A second IEEE-488 bus port may be added as an
option.

0 Instruments connected to the controller via the IEEE-488 bus may
be addressed using their device address.

O After an instrument or group of instruments has been addressed,
the port address may be used for communications without device
addressing.

O Serial instruments, such as printers, may also be connected to the
controller via the IEEE-488 ports.

The INPUT, PRINT, RBIN, and WBIN statements are used to
transfer data to and from the Instrument Controller. Unlike the TRIG
or CLEAR statements, for example, these statements are not
necessarily tied to the IEEE488 bus Controller in Charge (CIC)
functions. The @ device address specifier is used with these statements
to indicate that both of the following functions are to be performed:

1. Address one or more instruments as talkers or listeners. This is
a CIC function.

2. Transfer data to or from the IEEE-488 bus. This is a device
function.

The INPUT, PRINT, RBIN, and WBIN statements may also be used
without device addressing. This is not a CIC function, thus it may be
performed when the Instrument Controller is not the CIC, as is the case
after the PASSCONTROL statement is issued.

0 The PORT statement modifier is used to supress device addressing.

o This addresses the last instrument or instruments that were
addressed on the port specified by the PORT statement modifier.

IEEE-488 Bus 1/0
Addressing

Device Addressing

Instruments (devices) connected to the bus are addressed using their
primary and/ or secondary address. The following paragraphs describe
this process.

[m]

Each device on a bus connected to a port has a primary address in
the range of 0 through 30. The address is normally determined by
switch settings on or in the instrument. A BASIC command
indicates a primary device address with the @ device address
specifier:

@ {device number}

The device number must correspond with the address switch
settings in the instrument.

The hundreds digit of the device number determines the port
assignment of the instrument being addressed: 0 for PORT 0, | for
PORT 1 (default is 0).

A device number is any numeric expression with a value in the
range 0 through 30 for an instrument connected to PORT 0, or in
the range 100 through 130 for an instrument connected to PORT 1.
The last two digits are the device number.

The IEEE-488 bus standard also allows instruments to have one or
more secondary addresses. The function associated with a
secondary address depends on the instrument design. A BASIC
command identifies a secondary address as part of the device
number:

@ {(device number: secondary number)

The secondary number is any numeric expression with a value in
the range 0 through 31. The syntax is:

@ {device: secondary:. secondaryl}

IEEE-488 Bus I/0

Addressing

9-6

More than one device may be addressed at once by listing device
numbers in the command. The @ character is the only separatorin
a multiple device list (commas are not used). Secondary address
numbers are optional. The device list syntax is as follows:

@ primary address: secondary addri: secondary addr2: ...
For example, the statement:

PRINT @1:3 @104, m$

sends the string m$ to device 1, secondary address 3 on port 0 and
to device 4 on port 1.

A device attached via the IEEE-488 bus may also be attached as a
serial device.

IEEE-488 Bus 1/0
Addressing

Addressing Serial IEEE-488 Devices

Devices connected to the IEEE-488 bus as serial devices use a slightly
different addressing form. This address form associates the IEEE-488
device with a channel number for serial 1/0.

a

The channel must have been previously opened with the OPEN
statement. Use the # statement modifier when using this form of
addressing (for example, PRINT #). For example:

500 OPEN "GPO:3" AS NEW FILE 10%
510 PRINT #10%, "MESSAGE 1"

The “file name” of an IEEE-488 device provides both the port
number and device address of the instrument. The file name is:

GPn:p.s
where:
n is the IEEE-488 “port number”, which ranges from 0 to 9.
p is the “primary device address”, which ranges from 0 to 30.
s is the “secondary device address”, which ranges from 0 to 31.

A primary address must be specified if a secondary address is used.
Thus, the address “GP0:.3” is illegal.

All device addressing may be suppressed by using a “file name” of
“GPn:”, which simply reads from or writes to a IEEE-488 port
without doing any addressing.

Secondary addressing is suppressed by omitting the “.s” portion of
the IEEE488 “file name”.

When the “@” form of device addressing is used the PRINT
statement uses the “,” format specifier to indicate that the EOI
(End or Identify) message is to be sent with the last character of a
print string. This will not occur when using the “#” form of
addressing. This ensures that a PRINT statement directed to a
printer will operate in the same way whether, say, a printer is
interfaced via the RS-232 port or via the IEEE-488 bus.

|EEE-488 Bus 1/0

Addressing

Port Addressing

Port addressing is used to communicate with an instrument or group of
instruments after they have been previously addressed, without re-
addressing them. This form of addressing suppresses individual device
addresses and communicates directly with the named port.

The IEEE-488 port(s) are addressed by BASIC with the PORT
statement modifier (port expression). A port expression takes the
form:

PORT {numeric expression)

The value of the numeric expression used in a statement must be
either 0 or 1. Refer to the 17XX Instrument Controller System
Guide for identification of bus ports and information on cable
connections.

Once a device has been addressed, the PORT statement modifier
may be used to communicate directly with the device, bypassing
any device addressing. For example, the statement:

PRINT @4, AS

prints string A$ to device number 4 on IEEE-488 port 0. Now the
same device may be addressed in a subsequent statement with:

PRINT PORT O, AS$

This form of the PRINT statement sends the string A$ to port 0
without performing any device addressing.

IEEE-488 Bus 1/0

INITIALIZATION AND CONTROL STATEMENTS

The following paragraphs summarize Fluke BASIC statements which
initialize, set up, or otherwise manipulate instruments either before or
after data transfers. These statements are also listed in Table 9-1.
Complete descriptions of each statement may be found in the
Reference Section of this manual.

Table 9-1. Initialization and Control Statements Summary
STATEMENT DESCRIPTION

CLEAR Sends Device Clear or Selected Device Clear bus
messages. Sets instruments to a ready state.

INIT Halts port activity and prepares port for further
messages.
LOCAL Sets Remote Enable bus line false or sends Go To

Local bus message to instruments in device list.
LOCKOUT Disables local switch on all addressed instruments.

PASSCONTROL | Designates another IEEE-488 bus instrument to act
as Controller in Charge of the interface.

REMOTE Sets Remote Enable bus line true. Addresses any
devices specified as listeners.

SET SRQ Requests service from the current Controller in
Charge of the IEEE-488 bus interface.

TERM Selects a terminator character for designating the
end of an input stream from a device.

TIMEOUT Sets a limitonthe time the Instrument Controller will
wait for a response to a request.

TRIG Addresses instruments in the device list and sends
Group Execute Trigger bus message.

9-9

IEEE-488 Bus 1/0
Initialization and Control Statements

CLEAR Statement

Usage:

Usage:

The CLEAR statement sends a device clear or selected device clear
message to a specified port or device. The two forms of the CLEAR
staterncny are described below.

CLEAR [PORT {numeric expression}]

(device clear) message or SDC (selected device clear) message to the
specified IEEE-488 port. If the PORT statement modifier is not used, a
DCL message is sent to all ports.

CLEAR {device list}
The CLEAR statement, with a device list, addresses the devices given

in {device list} as listeners and sends a SDC (selected device clear)
message to them.

INIT Statement

Usage:

INIT [PORT {numeric expression}]

INIT (INITialize) sends an IFC (interface clear) message followed by
REN (remote enable) and PPU (parallel poll unconfigure) to the
specified port or to both ports if not specified.

INIT places the bus in an idle state and sends the following commands
to the bus: REN (remote enable), IFC (interface clear), UNL
(unlisten), UNT (untalk), and PPU (parallel poll unconfigure).

IEEE-488 Bus |I/O
Initialization and Control Statements

LOCAL Statement

Usage:

Usage:

The LOCAL statement resets instruments to a local state. Typically,
this means that front panel controls are activated. Two forms of the
LOCAL statement permit port or device addressing.

LOCAL [PORT {numeric expression}]
This form of the LOCAL statement is the reverse of the REMOTE

statement. LOCAL, with a port specified, reverses all effects of the
LOCKOUT statement.

When a port is specified, REN is set false on the designated instrument
port. If a port number is not specified, REN is set false on both ports.

LOCAL [device list]

Issuing the LOCAL statement with a device list, sends a GTL (go to
local) message to the instruments identified in the device list.

LOCKOUT Statement

Usage:

LOCKOUT [PORT {numeric expression}]

LOCKOUT disables not only front panel controls (as with REMOTE)
but also any “return to local” function button that may be on an
instrument. As defined in the IEEE-488-1978 Standard, any
instrument addressed to listen after receiving a local lockout command
will immediately be placed in the “Remote With Lockout State”.
LOCKOUT sets REN, and then sends a LLO (local lockout) message.

This sequence is sent on only one port if a port number is specified or
on both ports if the PORT statement modifier is not given.

9-11

|IEEE-488 Bus 1/0
Initialization and Control Statements

ON PORT Statement
Usage: ON PORT [p%] GOTO ({line number}

The ON PORT statement permits the Instrument Controller to detect
commands sent to it by another controller. Port 0 is assumed if p% is
aot specified. If p% is a floating-point variable, the value is rounded to
its integer value. An overflow error may result from this action. Use the
PORTSTATUS statement to determine the exact cause of the

interrupt.
OFF PORT Statement
Usage: OFF PORT p%

The OFF PORT statement disables a previous ON PORT interrupt.
p% must be in the range of 0..1. Itis an error for p% to be outside of this
range. if p% is omitted, port 0 is assumed.

PASSCONTROL Statement
Usage: PASSCONTROL {device}

The PASSCONTROL statement permits the Instrument Controller to
designate another IEEE-488 bus instrument to act as Controller in
Charge (CIC) of the interface. The new Controller in Charge is
designated in the device clause of the PASSCONTROL statement.

REMOTE Statement

The REMOTE statement sets the REN (remote enable) line on the
IEEE-488 bus to true. The two forms of the REMOTE statement are
described below.

Usage: REMOTE [PORT {numeric expression}]

When a port number is specified with the REMOTE statement, REN is
set true on the specified port. If the PORT statement modifier is not
used, REN is set true on both ports.

Usage: REMOTE [device list]

When a device list is specified with the REMOTE statement, REN is
set true on the port represented by each instrument specified in the

device list. An MLA (my listen address) message is then sent to the
listed devices.

|EEE-488 Bus 1/0
Initialization and Control Statements

SET SRQ Statement

Usage:

SET SRQ [PORT {numeric expression}] WITH {status%}

The SET SRQ statement allows the Instrument Controller to request
service from the current Controller in Charge (CIC) of the IEEE-488
bus interface. Status% is the “serial poll data byte” returned to the CIC
after the CIC performs a serial poll of the Instrument Controller on the
specified port. If the PORT statement modifier is not used, port 0 is the
default.

TRIG Statement

Usage:

TRIG {device list}

TRIG (TRIGger) addresses the set of instruments named in the device
list as listeners and then triggers them simultaneously. The effect of the
trigger is dependent upon the instrument. For example, a digital
multimeter may take a reading, or a source instrument may go from
standby to operate.

TERM Statement

Usage:

TERM [string]

TERM allows the user to specify an arbitrary 8-bit byte that will also
terminate input. The terminating character is Line Feed CHR$(10)
when TERM is not used. The EOI line on the bus will always terminate
input, regardless of the use of the TERM statement.

TIMEOUT Statement

Usage:

TIMEOUT {numeric expression}

TIMEOUT sets a limit on the amount of time the Instrument
Controller will wait for a response to an IEEE-488 bus request. This
prevents an instrument fault from halting the system. If the TIMEOUT
statement is not used, the time allowed defaults to 20 seconds.

IEEE-488 Bus 1/0

INPUT AND OUTPUT STATEMENTS

This discussion summarizes INPUT and PRINT statements as they are
used for instruments on the IEEE-488 bus. These statements are
described in the Reference Section of this manual. Specific references
are provided after each statement definition. Table 9-2 presents a list of
the INPUT and PRINT statements. INPUT WBYTE is a specific
IEEE-488 bus statement which combines the characteristics of the
INPUT statement with a WBYTE clause described later in this section.
All of the statements listed in Table 9-2 will accept a port expression as
an alternative to a device address. This is described in the Reference
Section under “Devices”.

Table 9-2. IEEE-488 Bus Input and Output Statements Summary

STATEMENT DESCRIPTION
INPUT Accepts data from an instrument.
INPUT LINE Accepts a full line of data, including trailing

carriage return and line feed.
INPUT WBYTE Outputs a bus message and receives data.

INPUT LINE WBYTE Outputs a bus message prior to receiving each

line of data.
PRINT Outputs a bus message or data to instruments.
PRINT USING Outputs data in the specified format to
instruments.

INPUT Statement

Usage:

9-14

INPUT {device}, {input variable list}
INPUT [PORT {numeric expression}] {input variable list}

INPUT is used to receive data from instruments on the IEEE-488 bus.
The only syntax difference in the INPUT statement for IEEE-488 bus
instruments is the use of a device specification instead of a channel
number.

IEEE-488 Bus 1/0
Input and Output Statements

INPUT LINE Statement

Usage: INPUT LINE {device}, {input variable list}
INPUT LINE [PORT {numeric expression},] {input variable
list}

The INPUT LINE construction of the INPUT statement allows binary
data to be received from the bus and assigned to a string variable. The
only syntax difference in the INPUT LINE statement for IEEE-488
bus instruments is the use of a device specification or port expression
instead of a channel number.

INPUT WBYTE Statement

Usage: INPUT WBYTE {device}l, {wbyte clause} {input variable list}
INPUT WBYTE [PORT {numeric expression},] {wbyte clause}
{input variable list}

The INPUT WBYTE statement transmits a bus message contained in a
WBYTE clause prior to receiving each data item. After the WBYTE
output, the specified instrument is addressed as a talker and one data
item is read. The WBYTE clause is then sent again and the next input
data item is read. This process is repeated until the input variable list
has been satisfied.

INPUT LINE WBYTE Statement

Usage: INPUT LINE WBYTE {device}, {wbyte clause} {input variable
list}

The INPUT LINE WBYTE statement allows binary data to be
received from the bus and assigned to a string variable (80 characters
maximum length). The INPUT LINE WBYTE statement transmits
the bus message contained in the WBYTE clause prior to receiving
each data item.

After the WBYTE output, the specified instrument is addressed as a
talker and one data line is read. The WBYTE clause is then sent again
and the next line of input is read. This process is repeated until the
input variable list has been satisfied.

IEEE-488 Bus I/0
Initialization and Control Statements

PRINT and PRINT USING Statements

Usage:

9-16

PRINT {device list}, [print item(s)]

PRINT PORT {numeric expression}, USING {format string,}
[print item(s)]

PRINT and PRINT USING are used to output data to designated
listeners. The instruments which are to receive output data are
specified in a device list or in a port expression.

A PRINT or PRINT USING statement which is followed by a device
list addresses the specified devices as listeners. All other devices are
commanded to unlisten.

A PRINT PORT or PRINT PORT USING statement communicates
with an instrument or group of instruments after they have been
previously addressed, without re-addressing them.

Characters are sent exactly as a normal PRINT or PRINT USING
statement, except for the use of the comma and semicolon to format
the output. A comma following a data item in the output list indicates
the EOI bus line is to be set simultaneously with the last character of
that item. It does not indicate tabulation to 16 character columns by
sending extra spaces.

A Carriage Return and Line Feed, with the EOI bus line set
simultaneously with the Line Feed, follows the last data item in a
PRINT list when it is not terminated with either a comma or a
semicolon.

IEEE-488 Bus I/0
Data Transfer Statements

IEEE-488 DATA TRANSFER STATEMENTS

The following discussion summarizes Fluke BASIC statements which
provide direct access to the data lines and some of the control lines of
the IEEE488 Instrumentation bus. These statements allow optimal
handling of the binary data sent by some instruments in “high speed”
mode. The data transfer statements are summarized in Table 9-3. Two
of the statements described below directly handle binary floating-point
information as described in the standard “lIEEE Floating Point
Arithmetic for Microprocessors”. Copies of this standard are available
from The Institute of Electrical and Electronic Engineers, 345 East
47th Street, New York, New York, 10017. All of the statements listed in
Table 9-2 will accept a port expression as an alternative to a device
address. This is described earlier in this section.

Table 9-3. Data Transfer Statements Summary

STATEMENT DESCRIPTION

RBIN Inputs double and single-precision data in |IEEE
standard floating point format.

RBIN WBYTE Outputs data designated by WBYTE prior to receiving
double and single-precision data in IEEE standard
floating point format.

RBYTE Inputs binary data bytes from the designated port.

RBYTE WBYTE | Outputs data designated by WBYTE prior to each
designated input cycle of binary data bytes.

WBIN Outputs double and single-precision data in IEEE-
standard floating point format.

WBYTE Sends an integer variable array as bus messages to the
designated port.

9-17

|IEEE-488 Bus I/0
Data Transfer Statements

RBYTE Statement

Usage:

RBYTE [PORT {numeric expression},] {integer variable array
subrange}

RBYTE (Read BYTE) reads a fixed-length block of arbitrary bit
binary data bytes from an instrument. The data from the instrument is
placed in a specified one-dimensional integer variable array. The array
may not be a virtual array.

WBYTE Statement or Clause

Usage:

WBYTE [PORT {numeric expression},] {integer variable array
subrange}

WBYTE (Write BYTE) sends an arbitrary set of bus commands or
data bytes taken from the specified integer array(s) to a port. The
WBYTE statement is also used as a clause within some other IEEE-488
bus control statements. The integer array(s) used may not be virtual
arrays.

The ATN, EOI, and data lines of the instrument bus may be set as
desired with this command, with the restriction that ATN and EOI
may not be set true simultaneously (since this executes a parallel poll).

RBYTE WBYTE Statement

Usage:

RBYTE [PORT {numeric expression},] {wbyte clause} {integer
variable array subrange}

The RBYTE statement with the added WBYTE clause is used for an
instrument that requires an explicit trigger for each reading. The
WBYTE clause added to the RBYTE statement provides a means of
sending commands or data to a port (via the WBYTE clause) prior to
reading the data as specified by RBYTE. The WBYTE data is sent
prior to each RBYTE cycle.

|EEE-488 Bus I/0
Data Transfer Statements

RBIN Statement

Usage:

RBIN {device}, {variable list:[format specification]}

RBIN @, {variable list:format specification}

RBIN PORT ({numeric expression}, {variable list:[format
specification] }

The RBIN (Read BINary) statement receives single- and double-
precision data in IEEE standard floating-point format from IEEE-488
bus instruments. The specified instrument device number is addressed
as a talker. The last port on which IEEE-488 bus I/ O was performed is
used when the “@” character follows RBIN without a device specified.

A single floating-point value is received from the specified instrument
in the format specified in the format specification. The default format
is eight-byte double-precision.

RBIN WBYTE Statement

Usage:

RBIN {device}, {wbyte clause} {variable list:[format
specification]}

RBIN @, {wbyte clause} {variable list:[format specification]}

RBIN PORT {numeric expression}, {variable list:[format
specification]}

The RBIN WBYTE statement receives single and double-precision
data in IEEE standard floating-point format from IEEE-488 bus
instruments. The specified instrument device number is addressed as a
talker. The last port on which IEEE-488 bus I/ O was performed is used
when the “@” character follows RBIN without a device specified. The
data specified by the WBYTE clause is sent to the specified port before
the RBIN cycle. The WBYTE clause is discussed earlier in this section
and in the Reference Section of this manual.

A single floating-point value is received from the specified instrument
in the format specified in the format specification. The default format
is eight-byte double-precision.

|IEEE-488 Bus 1/0
Data Transfer Statements

WBIN Statement

Usage:

WBIN {device list}, {real variable:[format specification]}
WBIN PORT {numeric expression}, {real variable:[format
specification]}

WBIN (Write BINary) sends numeric data to an IEEE-488 bus
instrument in single- or double-precision IEEE standard floating-
point format. The instrument with the specified device number is
addressed as a listener. Instrument addressing is skipped when the @
character follows WBIN without a device specified. Data is then
transmitted in the format specified; the default format is eight-byte
double-precision.

IEEE-488 POLLING STATEMENTS

9-20

The statements summarized in the following paragraphs and in Table
9-4 handle the polling, both serial and parallel, of instruments on the
IEEE-488 bus. A detailed description of each statement may be found
in the Reference Section.

Table 9-4. IEEE Polling Statements Summary

STATEMENT DESCRIPTION
CONFIG Configures an instrument for a parallel poll.
ON PPOL Enables automatic parallel polls.
OFF PPOL Disables automatic parallel polls.
ON SRQ Identifies a service request handling routine

and enables the controller to respond to SRQ.
OFF SRQ Disables service request response.

PORTSTATUS Function | Returns the port status code for the specified

port.
PPL Function Returns parallel poll value.
SPL Function Returns serial poll value.
WAIT Halts execution for the specified time or until

an enabled interrupt occurs.

IEEE-488 Bus 1/0
Polling Statements

CONFIG Statement

Usage:

CONFIG {device} {TO numeric expression} {WITH numeric
expression}

CONFIG (CONFIGure) either configures or unconfigures an
instrument for parallel poll. The TO clause specifies the DIO line on
which the instrument should respond to a parallel poll. The WITH
clause specifies the active sense (0 or 1) the instrument should use in
responding to the poll.

If the “TO line WITH sense” clause is omitted, a PPD (Parallel Poll Disable)
message will be sent to the instrument.

ON SRQ and OFF SRQ Statements

Usage:

ON SRQ [PORT {numeric expression}] GOTO {line number}
OFF SRQ [PORT {numeric expression}]

ON SRQ (ON Service ReQuest) allows a program to branch to a
service request routine when an SRQ (Service Request) is received
from an external device. OFF SRQ disables service request interrupt
processing. Port 0 is assumed when the port specification is omitted. A
resume statement branches back to the interrupted program.

There is no checking for SRQ after the occurrence of the SRQ
interrupt and the execution of RESUME.

ON PPOL and OFF PPOL Statements

Usage:

ON PPOL [PORT {numeric expression},] GOTO {line number}
OFF PPOL [PORT {numeric expression}]

ON PPOL (On Parallel POLI) causes periodic parallel polls to be
performed on the specified port. All devices on the port are polled
simultaneously. If no port is specified, port 0 is assumed. Any parallel
polling in process is halted by any ON GOTO interrupt. The RESUME
statement causes parallel polling to continue.

O ON PPOL enables parallel polling.

0 OFF PPOL disables parallel polling.

If the result of a poll is not zero, control is passed to the specified line
number. The line number indicates the beginning of a parallel poll

handling routine. RESUME returns control to the next statement after
the one completed when the interrupt occurred.

9-21

|IEEE-488 Bus I/0
Polling Statements

PORTSTATUS() Function

Usage:

PORTSTATUS(port p%)

The PORTSTATUS() function is provided to permit a program to
determine the status of an interface port. The PORTSTATUS
function returns the port status code (of type integer) for port p%. An
error will be reported if the value of p%is outside the range of [0..1]. In
the case of a floating point p%, the value will be truncated to an integer
value. An overflow error may be reported when this truncation is
performed.

PPL() Function

Usage:

PPL(port p%)

PPL (Parallel Poll) performs a parallel poll of a specified instrument
bus port and returns an integer result between 0 and 255.

The correspondence between the IEEE-488 DIO lines and binary
bit numbers is as follows:

DIO Line Bit Number Numeric Weight

DIOI 0 1
DI02 1 2
DI03 2 4
DI04 3 8
DIOS 4 16
DI06 5 32
DI07 6 64
DIO08 7 128

SPL Function

Usage:

9-22

SPL(device number)

SPL (Serial PoLl) performs a serial poll of a specified instrument and
returns an integer status byte result between 0 and 255. By sequentially
performing serial polls of instruments and checking for SRQ in the
status bytes, the SRQ routine can determine which instruments set
SRQ. By examining the remaining bits of some instruments, the SRQ
routine can determine why and take appropriate action.

IEEE-488 Bus 1/0
Polling Statements

WAIT Statement

Usage:

WAIT [time expression] [FOR KEY]
WAIT [time expression] [FOR PPOL]
WAIT [time expression] [FOR SRQ]
WAIT [time expression] [FOR TIME]
WAIT FOR TIME

WAIT suspends program execution until either the specified time
period elapses or until an enabled interrupt occurs. By specifying an
event to wait for (KEY, PPOL, or SRQ), an interrupt can be enabled
for only the duration of the waiting period. (See the Touch- Sensitive
Display section for a discussion of KEY.)

Wait time is indefinite if a time is not specified. The minimum wait time
is 10 milliseconds and the clock resolution is 10 milliseconds. The time
given in a time expression is specified according to one of the following
formats:

hh:mm:ss Hours, minutes, seconds (24 hours maximum).
hh:mm Hours and minutes.
milliseconds Up to 86400000 milliseconds (24 hours).

If the event specified is FOR TIME, the Controller will wait
unconditionally for the time interval specified by the numeric
expression to elapse.

When an interrupt that has been enabled by an ON statement occurs,
the program branches to the interrupt handling routine. If the
interrupt occured prior to the end of the WAIT period, a subsequent
WAIT FOR TIME statement will wait for the remainder of the WAIT
period. A RESUME will execute the statement following the WAIT.

9-23

Section 10
RS-232 Serial 1/0

CONTENTS
Introductionoiiiiiiiiii it i i it i i 10-3
[173 7 (O 10-3
RS-232-C Definedovvviiiiinniiinniiinnennnnnn. 104
Device and Port Addressingccoivivinvnennnn.n. 10-5
Initializationcoveiiiiiiiniiniinnrnnennennnnn 10-6
I/OChannelscoiiiiiiiiinii ittt 10-6
OPENing a Serial Communication Channel 10-7
CLOSEing a Serial Communications Channel 10-8
Outputand Inputcoiiiiiiiiiiii ittt 10-9
PRINT Statementccoviiiiiniiniinnnnnennn.. 10-9
INPUT Statementcovuiiniininennnenennnnnn. 10-10
INCOUNT() Functioncovvuiviinennennennnn 10-12
INCHAR() Functioncoviiiiiiininnan... 10-13
Sending BREAKo, 10-14
Establishing Serial Communicationsou... 10-15

10-1

RS-232 Serial Input and Output

INTRODUCTION

The serial I/ O ports on the Instrument Controller use the Electronic
Industry Association’s RS-232-C Data Communications Interface
Standard (RS-232).

RS-232 is the standard used by many devices that use serial data
communications to pass information. The RS-232 standard describes
the physical connector, the signals on each pin of the connector, timing
requirements, and the voltage levels of the signals.

RS-232 type devices include (and certainly aren’t limited to) printers,
modems, and data terminals.

OVERVIEW

This section describes the BASIC commands used for RS-232 input
and output via the serial I/ O ports on the Instrument Controller.

10-3

RS-232 Serial Input and Output

RS-232-C DEFINED

EIA Standard RS-232-C (RS-232-C will be referred to as “RS-232” for
the balance of this section) provides the electronics industry with the
ground rules necessary for independent manufacturers to design and
produce both data terminal and data communication equipment that
conforms to a common interface requirement. As a result, a data
communications system can be formed by connecting an RS-232 data
terminal to an RS-232 data communication peripheral (such as a
teletype, modem, computer, etc.).

10-4

RS-232-C is a hardware standard which guarantees the following:

1.

Each device using the RS-232 standard will use a standard 25-
pin connector which will mate to another standard 25-pin
connector of the opposite sex.

No matter how the cables are connected, no smoke or damage
will occur.

The data and handshaking lines will each be given a specific
name.

Additional information on RS-232 communications may be found in
the following publications:

1.

2.

1722A System Guide, Section 5, “Serial Communications”,

Fluke Application Information #B0101, “1720A RS-232-C
Interfacing to Serial Printers”.

EIA Standard RS-232-C, “Interface Between Data Terminal
Equipment and Data Communications Equipment employing
Serial Binary Data Interchange”, available from:

Electronic Industries Association
Engineering Department

2001 1st Street, Northwest
Washington D.C. 20006

“Industrial Electronics Bulletin No 9 - Application Notes for
EIA Standard RS-232-C”, also available from the EIA.

RS-232 Serial Input and Output
Device and Port Addressing

DEVICE AND PORT ADDRESSING

The Instrument Controller has several devices that use serial
communications for data transfer between themselves and the
Controller. These devices and their device designations are:

DEVICE NAME DESIGNATION
Display and Programmer Keyboard KBO:

RS-232 Serial Port 1 KBI:

RS-232 Serial Port 2 (optional) KB2:
17XXA-009 Dual Serial Interface SPO: - SP9:

These devices differ from the other devices used in and with the
controller: they are not file-structured devices. To avoid confusion,
remember which devices are file-structured and which ones are not.
Section 4 of the System Guide discusses devices and files.

10-5

RS-232 Serial Input and Output

Initialization

Before any input or output can take place from a serial port, it must be
initialized. This means that the data transmission rate, data format,
transmission protocols, parity, and other parameters must be set to
match those of the peripheral device. The SET utility program
performs this function. Run the SET program from BASIC by typing:
EXEC “set”
or from FDOS:
FDOS) set

The SET program is fully described in the System Guide.

I/0 Channels

10-6

The Instrument Controller communicates between the BASIC
program and various devices by means of 1/O channels.

There can be a maximum of 16 1/O channels open at any one time.
They are designated with the numbers 1 through 16. A device must be
associated with a channel for any data transfer to occur.

The 1/O channels are also used to communicate with instruments
connected to the IEEE-488 bus as well as file-structured devices. Refer
to sections 7 and 9 of this manual.

RS-232 Serial Input and Output
Device and Port Addressing

OPENIing a Serial Communication Channel

Usage:

Usage:

OPEN {device designation} AS OLD FILE {channel number}

This form of the OPEN statement is used to associate a device with a
channel number for serial input. The OPEN statement is also used to
associate a file with a channel number.

OPEN {device designation} AS NEW FILE {channel number}

Use this form of the OPEN statement to establish a channel for serial
output.

The following points apply to both usages of the OPEN statement for
serial 1/0.

o All subsequent input from and output to the device is made by
reference to the channel number.

O The channel is sequential access. Data is sent to, or retrieved from,
sequential (serial) channels in serial order.

O The device designation string following OPEN indicates the name
of the device.

The AS NEW and AS OLD clauses of the OPEN statement indicate
specific actions for sequential channels. The following points discuss
these differences:

O AS must bespecified. If it is not followed by NEW or OLD, OLD is
assumed.

O NEW indicates an output channel (from the Controller, to the
device). OLD, or no specification, indicates an input channel (from
the device to the Controller).

The numeric expression following FILE indicates the channel number
to be assigned. Following are some points to be considered in selecting
a channel number:

O The value of the numeric expression must be between 1 and 16.

0 Each channel number can only be used for one operation (input or
output) at a time.

O A channel that was previously opened for a different purpose, and
is no longer in use, must first be closed before being reassigned.

10-7

RS-232 Serial Input and Output
Device and Port Addressing

CLOSEing a Serial Communications Channel

Usage: CLOSE ALL
CLOSE [numeric expression]

The CLOSE statement frees a previously opened channel for other use.
As part of this process, some specific actions are taken:

O The input or output of data in memory to or from the specified
channel is first completed.

O Interrupts are disabled for the channel, if it was opened for input
from a serial (RS-232-C) port and interrupts had been enabled.
This is equivalent to an OFF #nstatement in addition to closing the
channel.

O An End-of-File mark (CTRL/Z character) is then sent, if the
channel was opened for sequential output.

O All opened channels can be closed by the CLOSE ALL statement.
Channel numbers are separated by commas.

10-8

RS-232 Serial Input and Output

OUTPUT AND INPUT

The PRINT and INPUT statements are used to communicate with
system level serial devices through a previously opened channel. The
PRINT statement allows raw or formatted output to a printer or other
device. The INCOUNT() and INCHAR() functions are also described
in this section.

PRINT Statement

Usage:

PRINT {#n,}[USING {format description,} string$; or, string2$]

The PRINT statement is described here for output to a device through
a previously opened channel. PRINT may also be used for direct
display output, or for output to instruments on the IEEE-488 bus.
These applications of PRINT are described in other sections in this
manual.

o The numeric expression following PRINT selects a previously

opened channel. See the OPEN statement described in this section.

The items to be printed are listed, separated by eitheracommaora
semicolon.

The items to be printed may include integer, floating point, and
string expressions, as well as subranges of arrays and virtual
arrays. Refer to Section 6 of this manual for a discussion of array
subranges.

When the open channel is to a serial (RS-232-C) port, the End-Of-
File character transmitted will be as previously defined by the SET
Utility program.

The USING option may be specified for formatted output. Refer
to the Reference Section for further details.

10-9

RS-232 Serial Input and Output
Output and Input

INPUT Statement

Usage:

10-10

INPUT[#n,] [LINE] {variable list}

INPUT is described here for data input from a device through a
previously opened channel. INPUT may also be used for direct
keyboard input, or for input from instruments on the IEEE-488 bus.
These applications of INPUT are described in other sections in this
manual.

a

The optional LINE specification is discussed in the Reference
Section of this manual.

The numeric expression following INPUT or INPUT LINE selects
a previously opened channel. See the OPEN statement described in
this section.

The variables that will store the data input are listed, separated by a
comma.

The input data may include integer, floating point, and string
expressions, as well as subranges of arrays and virtual arrays. Refer
to Section 6 of this manual for a discussion of array subranges.

When the open channel is from a serial (RS-232) port, incoming
Carriage Return and Line Feed characters are deleted. A Carriage
Return, Line Feed sequence is appended after each occurrence of
the line terminator character defined by the SET RS-232 Utility
program. If Line Feed or Carriage Return is the line terminator,
this process does not duplicate it.

When the open channel is from a serial (RS-232) port, the End-of-
File character defined by the SET RS-232 Utility program is
deleted, and (CTRL/Z), CHR$(26), is put in its place.

BASIC does not send a prompt character, “? ”, when input is from
a channel.

If the timeout expires for a device as initialized using the SET
utility, an error 300 will be generated.

The input statement is described in greater detail in the BASIC
Reference manual.

RS-232 Serial Input and Output
Output and Input

In the following example a sequential input channel from the keyboard
is opened. When lines 110 and 120 are executed, the message displayed
is the string at line 110. This technique allows an INPUT statement,
such as line 120, to be used without the usual “?” prompt.

10 OPEN "KBO: " AS OLD FILE 2

gg : Other statements
110 PRINT "ENTER THE SERIAL NO: "
20 INPUT #2, SN$

1
130 ! Other statements

In the following example, assume a device is attached to RS-232 Port 1
which can print data sent to it and send data to the Instrument
Controller. Lines 20 and 30 assign KB1: simultaneously for input and
output, using separate channels. This program can send prompts on
the output channel (line 100) and receive data on the input channel
(line 120). An example of such a device is a printing computer terminal.
Note that a“?” is not sent at line 100. This simultaneous assignment for
input and output is not possible for a sequential channel to a file.

10 REM -- Demonltrntc In[ut and Outgut From Same Device
20 OPEN ‘KB1: ‘ OLD FILE nput channel 1

30 OPEN ‘KB1: / AB NEW FILE ! Output channel 2

gO : Other statements

o] !

100 PRINT #2, AsS ! @ive prompt

110 INPUT #1, A(0..9) i Qet & values

120 ' Other statements

10-11

RS-232 Serial Input and Output
Output and Input

INCOUNT() Function
Format: INCOUNT(channel%)

10-12

The number of input characters and/or lines available from a serial
device (console or RS-232 port) may be determined by the
INCOUNTY() (input count) function. In the example shown above,
channel% is the channel number (0 for the console) for which the
number of characters available is desired. The integer values returned
by INCOUNTY() are:

0 no characters available
()0 number of characters and/or lines available

These values are returned as integers.

An 1/0 error 308 will be reported if either the channel specified is not
open (note that the console, which is “channel” zero, is always
considered “open”). An I/O error 322 will be reported if the device
attached to the channel is not a serial (RS-232 or console) device.

The result returned by INCOUNT(0%), which is the amount of data
available from the console, will be reported in terms of characters
available if the console is in NOECHO mode (see the SET NOECHO
statement). The result returned by INCOUNT(0%) will be reported in
terms of lines available if the console is in ECHO mode (see the SET
ECHO statement). An INPUT statement or INCHAR() function call
directed to the console will be blocked until the value returned by
INCOUNTY() is not zero, which is to say:

1. NOECHO mode is active and a character has been typed, or

2. ECHO mode is active and a complete line has been typed.

RS-232 Serial Input and Output
Output and Input

The result returned for INCOUNT(n%), where n% (the channel
number) is not zero, will be returned as a combined line and character
count as follows:

nr of chars | nr of lines

high-byte low-byte

The high- and low-bytes may be separated using the LSH function and
a bit mask. A program example may be found in the Reference volume
entry for INCOUNT.

An INPUT statement which is to read data from the channel will be
blocked until the number of lines available is not zero. The INCHAR()
function is blocked until the number of characters available is not zero.

INCHAR() Function

Format: INCHAR(channel%)
INCHAR(0%)

A single character may be read from any open channel or from the
console by the INCHAR() function. In the example, channel% is the
channel number from which the next character is desired. If channel%
is zero the next character from the console will be returned. The
character values are returned by INCHAR() are integers, and will have
a value between 0 and 255 (0 and 127 when reading characters from the
console).

The INCHAR() function is useful when input must be processed on a
per-character basis or when data from the console keyboard is being
entered using NOECHO mode (see the SET NOECHO statement). A
BASIC program using INCHAR(0%) to read data from the console
must be prepared to process line editing ((CTRL) /U and DELETE)
characters as required by the application, since FDOS will not do so
during single-character input.

10-13

RS-232 Serial Input and Output
Output and Input

Sending BREAK
Usage: BREAK {device%}
The BREAK statement sends a break signal to an RS-232 port.

device%, is the device number of an RS-232 port and is derived from the
device name as follows:

device% device name
1 KB1:
2 KB2:
3 KB3:
9 K B9:

Error 329 (illegal BREAK parameter) is reported if the value of
device% is outside of the range of device% = 1 and device% < 9.

10-14

RS-232 Serial Input and Output

ESTABLISHING SERIAL COMMUNICATIONS

Follow these steps for communicating with one of the serial devices.

1.

Use the OPEN statement to establish an input or output
channel. It is good practice to CLOSE an I/ O channel before
opening it.

Use the PRINT (USING) #n statement to send data to a serial
output channel.

Use the INPUT (LINE) #n statement to receive data from a
serial input channel.

Use the CLOSE statement to “disconnect” the 1/O channel
from the BASIC program. The CLOSE statement is also used
before re-assigning a device to another channel.

Before running your program, use the SET Utility Program to
configure the serial port(s) to your device(s). This can be done
at turn-on via the Startup Command file. Both the SET utility
and the Startup Command file are described in the System
Guide.

10-15

Section 11
Interrupt Processing

CONTENTS

Introductionc.oiiuiiiiiiiiiiiiii it 11-3

[0 2073 T T 11-3

Types of Interruptscoiiiiniiiiinnnnnennannnn. 114
Error Interruptoiiiiiiii i i i i i e 114
(CTRL) /C Interruptoiniiiininiinninrnnenennns 114
Hn Interrupt ..ottt e i i e 11-5
KEY Interruptciiiiiniiin i iieininnnnnennn 11-5
PORT Interruptciiiiiiiiiiiiii i it ieannn, 11-5
PPORT Interruptccoiiiiiiiniiniinnnnennnnn. 11-5
SRQ Interruptcoviiiniiiin ittt ii i, 11-5
PPOL Interruptcovviiiiiiiniininnennennnnnnnn. 11-5
CLOCK Interruptvviiiineninnenennneennnnnnnn 11-5
INTERVAL Interruptcoiitiiiiiii i, 11-5

Hierarchy of Interruptscoovuiiiiiiiiiininnnn.. 11-6

On-Event Interrupts coiiiiiiiiiiiiiiiniinne, 11-7
ON ERROR GOTO Statementcccvevnen... 11-8
OFF ERROR Statementccovivuevnnnn.. 119
ON CTRL/C GOTO Statementcovevueenn.. 11-10
OFF CTRL/C Statementccuviuinenenrnnnnnnns 11-11
ON #n GOTO Statementcovvvvrnrineennenn. 11-12
OFF #in Statementccoiuiinenennennnennnnnnn 11-13
ON KEY GOTO Statementccuviervunnnennn. 11-14
OFF KEY Statementccoiiiiitininenenanans 11-15
ON PORT Statementcviiiiiiinniinenennn. 11-15
OFF PORT Statementc.cvtitiinnininenennn. 11-15
ON PPORT Statementccoiiiiiinrinnennenn. 11-15
OFF PPORT Statementccoviierrnrennennenn. 11-15

CONTENTS, continued

ON SRQ GOTO Statementccovveenieennnennns 11-16
OFF SRQ Statementciiiiiiiiiiiiienennn 11-17
ON PPOL GOTO Statementc.covvenunennnn. 11-18
OFF PPOL Statementccciuiieenneneenennnn 11-19
SET CLOCK Statementccouevevueennnnnneeennnn 11-19
ON CLOCK Statementccoeeeenreeneenneernnns 11-19
OFF CLOCK Statementcceverveeeeenennnns 11-19
SET INTERVAL Statementccovvivnnennennn. 11-20
ON INTERVAL Statementcovveiieennneennns 11-20
OFF INTERVAL Statementccccviieinneennns 11-20
RESUME Statementccvitiiitnnneenneennnnns 11-21
WAIT FOR EVENT Interruptscccviieiuennnnnnn 11-22
WAIT Statementvvtirnrinnreenneeneeennoennnes 11-24
WAIT Time Statementcvevieeneenennennennns 11-24
WAIT FOR KEY Statementccciivviennnnn.. 11-25
WAIT FOR SRQ Statementcccvvivnennnn.. 11-26
WAIT FOR PPOL Statementccvvvvenuenn.. 11-27
Errors and Error Handlingcivvivunon... 11-28
Fatal Errorsciiiiiiiiiiiiiiiiiiinernnneanns 11-28
Recoverable Errorscooviiiiiiiiiiiniinennennns 11-28
Warning Errorsoiiiiiiiiiiiiiiiiii it 11-29
Error Variablesciuiiiiniiiiinninenenenenens 11-29
Interrupt Control Statementscccovvvenenneenn.. 11-30
Interrupt Processing Program Examples 11-31

Interrupt Processing

INTRODUCTION

This section describes statements and functions which enable and
process interrupts to a BASIC program. Interrupts are a response to
events that may occur during normal program execution. For
example, if the operator determines that an instrument test is not
performing properly because of an outside influence (such as the
IEEE-488 Bus cables not connected), the ABORT switch can be
pressed to terminate the test. Since an operator may not have access to
the programming keyboard, the test program must have the ability to
analyze conditions, to make appropriate responses, and to restart
itself. Event interrupt processing tasks are determined by the
individual requirements of the system. Refer to Section 9 for further
information on IEEE488 Bus Polling statements.

OVERVIEW

Interrupt processing is discussed in four subject areas. First is a
discussion of the types of interrupts, their priorities and their
heirarchies. Second, the techniques of enabling the Instrument
Controller to respond with a predefined section of program any
random time that an interrupting event occurs are discssed (ON
EVENT interrupts). Next is a discussion of the method of stopping
program execution at a particular point to wait for an event to occur
before proceeding (WAIT FOR EVENT interrupts). The final subject
area is a discussion of the handling of errors (Error Handling).
Program examples illustrate the concepts used.

11-3

Interrupt Processing

TYPES OF INTERRUPTS

Fluke BASIC recognizes nine types of interrupts. Interrupts are
recognized in order of their priority. These are listed with their priority
in Table 11-1.
Table 11-1. On-Event Statements
PRIORITY INTERRUPT TYPE

ON ERROR

ON CTRL/C

ON #n (RS-232-C Channel)

ON KEY (the Touch-Sensitive Display)

ON PORT

ON PPORT

ON SRQ (IEEE-488 Bus instrument service request)
ON PPOL (IEEE-488 Bus parallel poll)

ON CLOCK

ON INTERVAL Interrupts

O O NOOHEWN = 2

Error Interrupt

An error interrupt occurs when errors are detected during program
execution. Errors are divided into three levels that differentiate the
types of response possible.

o Fatal Immediately terminates the program.
O Recoverable Statement processing stops immediately

then terminates the program unless
acknowledged by an error interrupt.

0

Warning Program continues running even if error
interrupt is not enabled.

(CTRL) /C Interrupt

A (CTRL)/C interrupt may be initiated from either of two sources:
O Pressing the ABORT button on the front panel.

0 Entering {CTRL)/C on the programmer keyboard.

11-4

Interrupt Processing
Types of Interrupts

#n Interrupt

A #n interrupt occurs whenever a line or file terminator character, as
defined by the SET RS-232 Utility program, is received through an
open input channel from a serial (RS-232-C) port. The number
following “#” is the channel number.

KEY Interrupt
A KEY interrupt occurs whenever the Touch-Sensitive Display is
touched. The ON KEY statement causes an immediate branch to a
specified line number.

PORT Interrupt
A PORT interrupt occurs when a change in the state of an IEEE-488
bus port occurs (for example, being addressed as a Listengr).

PPORT Interrupt
A PPORT interrupt occurs when a device connected to a parallel I/ O
port toggles its handshake line to request an interrupt.

SRQ Interrupt
An SRQ interrupt occurs when an instrument on the selected IEEE-
488 port issues a service request.

PPOL Interrupt

A PPOL interrupt occurs when the parallel poll response from
instruments on the selected IEEE488 Bus port is a non-zero value.

CLOCK Iinterrupt
A CLOCK interrupt occurs as a result of the ON CLOCK statement.
The interrupt occurs at the time set by the SET CLOCK statement.
INTERVAL Interrupt

A INTERVAL interrupt occurs as a result of the ON INTERVAL
statement. The interrupt occurs at the time set by the SET INTEVAL
statement.

Interrupt Processing
Types of Interrupts

Hierarchy of Interrupts

Interrupts have a hierarchial relationship that avoids conflicts when
two or more interrupts become simultaneously active.

11-6

u]

ERROR and (CTRL)/C can interrupt each other and share top
priority. They preempt acknowledgement of other interrupts.

Other interrupts that subsequently occur are not recognized until
after the ERROR or (CTRL)/C is acknowledged.

There is one difference between ERROR and (CTRL)/C.

1. If a second ERROR occurs before the first is acknowledged,
the program terminates immediately.

2. Ifasecond {CTRL)/C occurs before the firstis acknowledged,
the second is ignored.

Second priority is #n.

Third priority is KEY.

Fourth priority is PORT.

Fifth priority is PPORT.

Sixth priority is SRQ.

Seventh priority is PPOL.

Eigth priority is CLOCK.

Ninth priority is INTERVAL.

The #n, KEY, PORT, PPORT, SRQ, PPOL, CLOCK and

INTERVAL interrupts do not preempt each other. However, they
may be preempted by either ERROR or (CTRL)/C.

Interrupt Processing

ON-EVENT INTERRUPTS

On-event interrupts enable the Instrument Controller to respond to
events that occur at random times that cannot be known when the
program is written.

o There are three actions that occur with on-event interrupts:

1. If an ERROR or (CTRL)/C interrupt occurs during the
processing of an interrupt, the program is stopped or control is
transferred as required by the ERROR or (CTRL)/C.

2. If any other interrupts occur during the processing of an
interrupt, they are assigned a pending status untila RESUME
statement is encountered.

3. When a RESUME statement is processed, control is
transferred to the highest priority pending interrupt or to the
next statement following the one that was in process when the
interrupting event occurred.

O Interrupts are initially disabled.

0 The interrupt must first be enabled (by ON event GOTO line
number) to allow the interrupting event to redirect the program
sequence.

O After completing a response to the interrupt that occurred, the
interrupt must be acknowledged with a RESUME statement.

O If interrupt response is no longer required, it may be disabled with
an OFF statement.

O Any or all interrupting conditions may be activated
simultaneously.

O Table 11-2 summarizes these actions.

Table 11-2. On-Event Statements

ACTION STATEMENT
Enable ON interrupt name GOTO line number
Acknowledge RESUME (line number)
Disable OFF interrupt name

11-7

Interrupt Processing
On-Event Interrupts

ON ERROR GOTO Statement

Usage:

ON ERROR GOTO {line number}

The ON ERROR GOTO statement enables a program to respond toa
random occurrence of an error condition by transferring control to a
specified routine containing a user-defined response.

m]

When an error is detected, control transfers to the specified line
number immediately.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

Only level R and W errors can be processed by an error routine.
Level F errors always terminate the program.

Level R interrupts will terminate a program unlessan ON ERROR
GOTO statement has been executed so that the error condition can
be treated.

Without error processing, a level W error is ignored.

When an error condition has been detected, further checking for
interrupt conditions other than ERROR or (CTRL)/C is
suspended until a RESUME is executed.

When an error condition has been detected, the system variable
ERL will contain the line number at which the error occurred, and
ERR will contain the error number.

If a second error is detected before encountering a RESUME
statement, the program terminates immediately.

NOTE
Further interrupt processing except {CTRL)/C is suspended
until a RESUME statement is executed.

NOTE
A RESUME statement without a line number will re-execute
the statement that caused the error.

m]

Interrupt Processing
On-Event Interrupts

If a {CTRL)/C interrupt occurs after error detection and before
encountering a RESUME statement, error processing is suspended
either temporarily or permanently. If the program includes
(CTRL)/C interrupt processing with a RESUME statement,
control will be returned to the error processing routine when
(CTRL)/C processing is completed. ~See the ON (CTRL)/C
GOTO statement in this section.

OFF ERROR Statement

Usage:

OFF ERROR

The OFF ERROR statement disables the action of a previous ON
ERROR GOTO statement.

0

An OFF ERROR statement in an error processing routine will
terminate the program.

After an OFF ERROR statement has been executed, a level R
error will terminate the program.

After an OFF ERROR statement, a level W error will be ignored.

Interrupt Processing
On-Event Interrupts

ON CTRL/C GOTO Statement

Usage:

11-10

ON CTRL/C GOTO {line number}

The ON CTRL/C GOTO statement enables a program to respond to a
random occurrence of an ABORT switch or a (CTRL) /C keyboard
entry by transferring control to a specified program routine containing
a user defined response.

a

When an ABORT switch or a (CTRL)/C keyboard entry is
detected, control transfers to the specified line number.

When the SET NOECHO statement has put the keyboard into
“character mode” a (CTRL)/P keyboard entry will transfer
control to the line number specified by ON CTRL/C.

The {CTRL) /C handling routine must explicitly acknowledge the
interrupt with a RESUME statement.

BASIC normally responds to the ABORT switch ora (CTRL)/C
keyboard input by terminating the program and returning to
Immediate Mode. This statement alters the normal interpreter
response.

When a (CTRL)/C has been detected, further checking for

interrupt conditions other than ERROR is suspended until
RESUME is encountered.

If a second {CTRL) /C or ABORT is detected before encountering
a RESUME statement, it is ignored.

A RESUME statement will return control to execute the first

statement not completed when the {CTRL)/C or ABORT key
entry was detected.

NOTE
Further interrupt processing except ON ERROR is suspended
until a RESUME statement is performed.

Iinterrupt Processing
On-Event Interrupts

O If a level R or W error occurs after {CTRL)/C detection and
before encountering a RESUME statement, (CTRL)/C
processing is suspended either temporarily or permanently. If the
program includes error processing, control will be returned to the
(CTRL)/C processing routine when error processing is
completed. Without error processing, a level W error is ignored.
See the ON ERROR GOTO statement in this section.

NOTE
Since (CTRL)/C is the only way to manually stop a BASIC
program without deleting it, if not handled properly, a
(CTRL)/C interrupt to an ON CTRL/ C subroutine can lock
a program into Run Mode.

OFF CTRL/C Statement
Usage: OFF CTRL/C

The OFF CTRL/C statement disables the action of a previous ON
CTRL/C GOTO statement.

An OFF CTRL/C statement in a (CTRL) /C interrupt processing
routine will cause the Instrument Controller to return to
Immediate Mode.

After an OFF CTRL/C statement, the ABORT switch or a

(CTRL)/C keyboard entry will return the controller to Immediate
Mode.

11-11

interrupt Processing
On-Event Interrupts

ON #n GOTO Statement

Usage:

11-12

ON #{channel%} GOTO {line number}

The ON #n GOTO statement enables a program to respond to End-Of-
File characters received through a open input channel from a serial
(RS-232-C) port, control is transferred to the specified program
routine containing a user defined response whenever either terminator
character is received.

a

When a terminator character is received through a open input
channel from a serial (RS-232-C) port, control is transferred to the
specified line number after completion of the current statement.

End-Of-Line and End-Of-File terminator characters are defined
by the SET utility program. Refer to the Instrument Controller
User Manual, November 1980 Revision (or later), for information.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.
Program control then resumes at the next statement following the
one that was completed when the terminator character was
received.

When a terminator character has been detected, further checking
for interrupt conditions other than ERROR or (CTRL)/C is
suspended until RESUME is encountered.

If this statement is used more than once in a program with the same
channel number, control is transferred to the line number
referenced in the most recently encountered ON #n GOTO
statement.

Any of the 16 available user channels may be used. Refer to the
OPEN statement discussion is the Reference volume of this
manual set.

The referenced channel must be opened for input (OLD or not
specified) prior to the ON #n GOTO statement.

When interrupts occur on more than one channel simultaneously,
the lowest numbered channel has highest priority.

Interrupt Processing
On-Event Interrupts

OFF #n Statement

Usage:

OFF #{channel%}

The OFF #nstatement disables the action of all previous ON #n GOTO
statements for the referenced channel.

a

An OFF #n statement in a serial port interrupt processing routine
will disable further interrupts on the referenced channel, but will
not affect the interrupt processing that is in progress.

The OFF #n statement does not close the referenced channel.

If the channel is closed by a CLOSE n statement, further interrupts
are disabled and the OFF #n statement is unnecessary.

11-13

Interrupt Processing
On-Event Interrupts

ON KEY GOTO Statement

Usage:

11-14

ON KEY GOTO ({line number}

The ON KEY GOTO statement enables a program to respond to the
occurrence of a key entry on the touch-sensitive display by transferring
control to a specified program routine containing a user defined
response.

a

When a key entry is detected, control transfers to the specified line
number after completion of the current statement.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

When a KEY entry has been detected, further checking for
interrupt conditions other than ERROR or (CTRL)/C is
suspended until RESUME is encountered.

When a KEY entry has been detected, the system variable KEY will
contain the number of the last touch key pressed.

The system variable KEY is set whenever the Touch-Sensitive
Display is pressed in an active area, regardless of whether ON KEY
GOTO is used.

NOTE
Once the Touch-Sensitive Display is pressed in an active area,
the KEY variable remains set until it is read by a program
statement. (For example, K% = KEY) Once the KEY variable
is read by a program statement, its value is reset to zero.

If the system variable KEY is non-zero when ON KEY GOTO is
executed, control is immediately transferred to the specified line
number.

ON KEY does not reset the system KEY variable.

Interrupt Processing
On-Event Interrupts

OFF KEY Statement
Usage: OFF KEY

The OFF KEY statement disables the action of a previous ON KEY
GOTO statement.

o An OFF KEY statement in a key interrupt processing routine will
prevent the routine from being continuously reentered if the KEY
buffer is not reset in the routine.

o An OFF KEY statement in any interrupt processing routine will
not have any additional effect.

ON PORT Statement
Usage: ON PORT p% GOTO line number

The ON PORT statement permits the Instrument Controller to detect
commands sent to it by another controller. Port 0 is assumed if p% is
not specified. If p% is a floating-point variable, the value is rounded to
its integer value. An overflow error may result from this action. Use the
PORTSTATUS statement to determine the exact cause of the

interrput.
OFF PORT Statement
Usage: OFF PORT p%

The OFF PORT statement disables a previous ON PORT interrupt.
p% must be in the range of 0..1. Itis an error for p% to be outside of this
range. If p% is omitted, port 0 is assumed.

ON PPORT Statement
Usage: ON PPORT port% GOTO line number

The ON PPORT statement enables a program to respond to data from
the optional Parallel Port by transferring control to a specified
program routine containing a user-defined response. If port% is not
specified, port 0 is used.

OFF PPORT Statement
Usage: OFF PPORT port%
The OFF PPORT statement disables a previous ON PPORT

statement. If port% is not specified, port 0 is used.

11-15

interrupt Processing
On-Event Interrupts

ON SRQ GOTO Statement

Usage:

11-16

ON SRQ GOTO ({line number}

The ON SRQ GOTO statement enables a program to respond to the
occurrence of a service request from an instrument by transferring
control to a specified program routine containing a user defined
response.

m]

The specified port is sampled after the completion of each
statement. If a port is not specified, port 0 is sampled.

When a service request is detected, control transfers to the specified
line number after completion of the current statement.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

When a service request has been detected, further checking for
interrupt conditions other than ERROR or (CTRL)/C is
suspended until RESUME is encountered.

An internal SRQ flagis set by a service request on the enabled port.
It is reset in the controller by performing a serial poll on any
instrument on the port requesting service (for example, Y% =
SPL(10)). However, depending on the instrument, SRQ will
probably be set again until the instrument requesting service is
serial polled. This will cause the service request routine to be
immediately reentered after the RESUME statement.

ON SRQ GOTO does not reset the internal SRQ flag.

When SRQs are present on both port 0 and port | simultaneously,
the SRQ on post 0 will be responded to first.

Interrupt Processing
On-Event Interrupts

OFF SRQ Statement

Usage:

OFF SRQ

The OFF SRQ statement disables the action of a previous ON SRQ
GOTO statement.

w]

An OFF SRQ statement in a service request processing routine will
prevent the routine from being continuously reentered if it does not
reset the service request by performing a serial poll.

An OFF SRQ statement in any interrupt processing routine will
not have any additional effect.

11-17

Interrupt Processing
On-Event Interrupts

ON PPOL GOTO Statement

Usage:

11-18

ON PPOL GOTO {line number}

The ON PPOL GOTO statement enables a program to respond to a
positive parallel poll response from a configured instrument by
transferring control to a specified program routine containing a user
defined response.

a

The ON PPOL GOTO statement initiates parallel polling on the
specified port, or on Port 0 if not specified. A poll will be
performed following the completion of each BASIC statement.

When a non-zero response to a parallel poll is detected, control
transfers to the specified line number after completion of the
current statement.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

When a non-zero response to a parallel poll has been detected,
further checking for interrupt conditions other than ERROR or
(CTRL)/C is suspended until RESUME is encountered.

If both Port 0 and Port 1 have PPOL interrupts enabled, port 0 will
be checked for a parallel poll response prior to checking Port 1.

NOTE
Some instruments clear a parallel poll bit when the condition
causing it disappears, or when the bus port is parallel polled.

When possible, the instrument responding to the parallel poll
should be programmed within the processing routine to reset
its poll response bit. If this bit remains set, the routine will be
immediately reentered after the RESUME statement.

Interrupt Processing
On-Event Interrupts

OFF PPOL Statement
Usage: OFF PPOL

The OFF PPOL statement disables the action of a previous ON PPOL
GOTO statement.

0 An OFF PPOL statement in a parallel poll response routine will
prevent the routine from being immediately reentered after the
RESUME statement if the routine does not clear the instrument
poll response bit.

o An OFF PPOL statement in any interrupt processing routine will
not have any additional effect.

SET CLOCK Statement
Usage: SET CLOCK {time expression}

The SET CLOCK statement is used to indicate (set) the time to be used
for a timer interrupt. The SET CLOCK statement must be executed
before an ON CLOCK statement, or error 708 (timer not set) will
occur.

The time expression used may denote the interval time in any of the
o following formats:

hh:mm:ss Hours, minutes, seconds (24 hours
maximum).
hh:mm Hours and minutes.

milliseconds Up to 86400000 milliseconds (24 hours).
ON CLOCK Statement
Usage: ON CLOCK GOTO {line number}

The ON CLOCK statement is used to enable an interrupt that occurs at
a specific time of day. The SET CLOCK statement determines the
time-of-day that the interrupt occurs. The time reference for the ON
CLOCK statement is the System Clock built into the Controller.

OFF CLOCK Statement
Usage: OFF CLOCK

The OFF CLOCK statement disables a previously set ON CLOCK
interrupt.

11-19

Interrupt Processing
On-Event Interrupts

SET INTERVAL Statement

Usage:

SET INTERVAL f{time expression}

The SET INTERVAL statement is used to indicate (set) the interval
between timer interrupts. This statement must be used before a

corresponding ON INTERVAL statement or error 706 (timer not set)
will occur.

O The time expression used may denote the interval time in any of the
following formats:

hh:mm:ss Hours, minutes, seconds (24 hours
maximum).

hh:mm Hours and minutes.

milliseconds Up to 86400000 milliseconds (24 hours).

ON INTERVAL Statement

Usage:

ON INTERVAL GOTO {line number}

The ON INTERVAL statement is used to enable an interrupt that
occurs at an interval chosen by the programmer. The SET
INTERVAL statement determines the interval used by the ON
INTERVAL statement. The time reference for the ON INTERVAL
statement is the System Clock built into the Controller.

OFF INTERVAL Statement

11-20

Usage: OFF INTERVAL

The OFF INTERVAL statement is used to disable a previously set ON
INTERVAL interrupt.

Interrupt Processing
On-Event Interrupts

RESUME Statement

Usage:

RESUME [line number]
The RESUME statement acknowledges an interrupt and allows
program operation to resume with the next statement after the one
being completed when the interrupt occurred or at another specified
program location.

0 RESUME (no line number) branches to the statement following
the one being executed at the point where the interrupt occurred.

O If the interrupt occurred in a multiple statement line, the program
resumes with the next statement on the line.

O There are two exceptions:

1. Recoverable errors: The program resumes at the beginning of
the statement that caused the error.

2. Input Warning errors 801, 802, and 803: The INPUT statement
which caused the error requests the value to be entered again. It
did not accept the erroneous entry.

0 RESUME (line number) branches to the specified line number.

0 RESUME terminates the interrupt handler routine.

11-21

Interrupt Processing

WAIT FOR EVENT INTERRUPTS

The WAIT (time) (FOR event) statement suspends program execution
until the specified interrupt event occurs or the specified time elapses.

11-22

a

a

The interrupt is implicitly acknowledged by its occurrence.

WAIT may be followed by a numeric expression specifying a
maximum period of time to wait for the interrupt.

When the specified time elapses, interrupt checking stops and the
program continues with the next statement.

An interrupt previously enabled by an ON-GOTO statement
remains enabled during the waiting period, whether or not the
WAIT statement references it.

The time interval may be specified in any of the following ways:

hh:mm:ss Hours, minutes, seconds (24 hours
maximum).
hh:mm Hours and minutes.

milliseconds Up to 86400000 milliseconds (24 hours).

WAIT interrupts have four forms as shown in Table 11-3 with their
meanings. Each construction of the WAIT statement is separately
discussed below.

Interrupt Processing
On-Event Interrupts

Table 11-3. WAIT Interrupt Statements

STATEMENT FORM

MEANING

WAIT

WAIT numeric expression

WAIT FOR (KEY)(,)(PPOL)(,)(SRQ)

WAIT numeric expression
FOR (KEY)(,)(PPOL)(,)(SRQ)

WAIT FOR TIME

WAIT {numeric expression} FOR TIME

Suspend program execution until a
{(CTRL)/C or an interrupt enabled by ON-
GOTO occurs.

Suspend program execution up to the
specified time limit until <CTRL)/C or an
interrupt enabled by ON-GOTO occurs.

Suspend program execution until
(CTRL)/C, the specified interrupt, or an
interrupt enabled by ON-GOTO occurs.

Suspend program execution, up to the
specified time limit, until {CTRL)/C, the
specified interrupt, or an interrupt enabled
by ON-GOTO occurs.

Wait for remainder of time from the last
WAIT statement.

Non-interuptible WAIT statement.

11-23

Interrupt Processing
On-Event Interrupts

WAIT Statement

Usage:

WAIT
The WAIT statement suspends operation of the program indefinitely.

o The ABORT switch, ora {CTRL) /C keyboard entry, will always
terminate the WAIT.

o If an ON CTRL/C GOTO statement has been executed, the
ABORT switch ora (CTRL)/C keyboard entry will terminate the
WAIT and transfer control to the {CTRL) / C processing routine.

O The WAIT statement takes the place of the (not allowed) construct
WAIT FOR CTRL/C, since this top priority interrupt always
remains enabled.

O AKEY, serial port, SRQ, or PPOL interrupt will not terminate the
WAIT unless previously enabled by ON-event GOTO.

WAIT Time Statement

Usage:

11-24

WAIT [time expression]

The WAIT Time statement suspends operation of the program for the
specified length of time.

0 Time may be specified in any of the following methods:

hh:mm:ss Hours, minutes, seconds (24 hours
maximum).
hh:mm Hours and minutes.

milliseconds Up to 86400000 milliseconds (24 hours).
O Timer resolution is 10 milliseconds.
O A negative time value results in a waiting time of 0.
O Until the specified time period has elapsed, the WAIT can be

terminated in any of the ways defined above under the WAIT
statement.

Interrupt Processing
On-Event Interrupts

WAIT FOR KEY Statement

Usage:

WAIT [time expression] FOR KEY

The WAIT FOR KEY statement suspends operation of the program
indefinitely until the Touch-Sensitive Display is pressed in the active
area.

u]

The WAIT can be terminated in any of the ways defined above
under the WAIT statement.

A time limit may be specified following the word WAIT as
described above under the WAIT Time Statement.

The WAIT is terminated whenever the Touch-Sensitive Display is
pressed in the active area.

A touch key input causes the program to continue with the next
statement unless a previous ON KEY GOTO statement has been
executed.

When a previous ON KEY GOTO statement has been executed, a
touch key input causes the program to transfer to the KEY
processing routine.

The system variable KEY is set whenever the Touch-Sensitive
Display is pressed in an active area, regardless of whether WAIT
FOR KEY is used. It remains set until it is read by a program
statement. (For example, K% = KEY)

Wait time is 0 if the system variable KEY is nonzero when WAIT
FOR KEY is executed.

11-25

Interrupt Processing
On-Event Interrupts

WAIT FOR SRQ Statement

Usage:

11-26

WAIT [time expression] FOR SRQ

The WAIT FOR SRQ statement suspends operation of the program
indefinitely until a service request is detected on either instrument port.

o

The WAIT can be terminated in any of the ways defined above
under the WAIT statement.

A time limit may be specified following the word WAIT as
described above under the WAIT Time Statement.

The WAIT is terminated whenever a service request is detected on
either instrument port.

A service request causes the program to continue with the next
statement unless a previous ON SRQ GOTO statement has been
executed.

When a previous ON SRQ GOTO statement has been executed, a
service request causes the program to transfer to the service request
processing routine.

An internal SRQ flag is set by a service request. It is reset in the
controller by performing any serial poll (for example, Y% =
SPL(10)). However, depending on the instrument, SRQ will
probably not be set again until a serial poll is performed on the
instrument requesting service.

WAIT time is 0 if the internal SRQ flag was not reset after the last
service request.

WAIT FOR SRQ does not reset the internal SRQ flag.

Interrupt Processing
On-Event Interrupts

WAIT FOR PPOL Statement

Usage:

WAIT [time expression] FOR PPOL

The WAIT FOR PPOL statement suspends operation of the program
and initiates continuous parallel polling indefinitely until a non-zero
parallel poll response is detected on either instrument port.

o The WAIT can be terminated in any of the ways defined above
under the WAIT statement.

O A time limit may be specified following the word WAIT as
described above under the WAIT Time Statement.

O The WAIT is terminated whenever a non-zero parallel poll
response is detected on either instrument port.

O A positive parallel poll response causes the program to continue
with the next statement unless a previous ON PPOL GOTO
statement has been executed.

O When a previous ON PPOL GOTO statement has been executed, a
non-zero parallel poll response causes the program to transfer to
the parallel poll processing routine.

0 The program statements following WAIT FOR PPOL should
cause the parallel poll response bit of the responding instrument to
be reset, if possible.

o WAIT time is 0 if either instrument port has a non-zero parallel
poll response when WAIT FOR PPOL is executed.

O See the note in the description of ON PPOL GOTO in this section.

11-27

Interrupt Processing

ERRORS AND ERROR HANDLING

Section 17 and the Quick Reference Card list the errors which can
occur in executing BASIC statements. There are three levels: Fatal,
Recoverable, and Warning.

Fatal Errors

A fatal error (level F) terminates a program immediately, returns the
Instrument Controller to Immediate Mode, and displays an error
message.

o There is no way to recover a program from a level F error.

Recoverable Errors
A recoverable error (level R) terminates a program immediately,
returns the Instrument Controller to Immediate Mode, and displays an
error message.
O A level R error can be recovered from if:

1. It occurs after execution of an ON ERROR GOTO statement.

2. The program routine referenced by ON ERROR GOTO
includes a RESUME statement.

3. A second error does not occur before the RESUME.

4. The program routine referenced by ON ERROR GOTO does
not include an OFF ERROR statement.

0 An OFF ERROR statement causes subsequent level R errors to
terminate the program as described above.

11-28

Interrupt Processing
Error and Error Handling

Warning Errors

A warning error (level W) allows a program to continue running.

a

a

An error message is normally displayed.

An error message is not displayed if the four conditions described
above under level R errors are met.

Input warning errors 801 (too much data), 802 (not enough data),
and 803 (illegal character), caused by keyboard entries, request
that the entry be repeated. (“?” is displayed if input is from the
display.)

Error 803, caused by an illegal character in a VAL argument or a
non-keyboard input, truncates the bad character and all characters
following it. Characters up to the one causing the error are left
intact.

Error 904 (string longer than virtual array field) truncates all excess
characters, leaving the rest intact.

Error Varlables

There are two system variables for errors that may be used as variables
in a program to determine what action to take when level R or W errors
occur:

u]

ERL - the line number of the statement which caused the most
recent error.

ERR - the error number of the most recent error.
NOTE
ERL and ERR are reset when the RUN statement is executed

but not when GOTO or CONT is executed in Immediate
Mode.

11-29

Interrupt Processing

INTERRUPT CONTROL STATEMENTS

11-30

The Interrupt Control statements allow the BASIC program to disable
interrupts. The DISABLE statement disables all interrupts except for
ON ERROR and CTRL/C. The ENABLE statement re-enables the
interrupts after a DISABLE statement.

The DISABLE and ENABLE statements are used to isolate a “critical
section” of code from an unwanted branch to an interrupt service
routine.

While interrupts are never recognized during the execution of a single
statement (except for CTRL/C), a critical section that extends across
several statements must be able to disable interrupts to prevent
erroneous updating of any shared variables.

Any interrupts which occur after the execution of a DISABLE
statement are held pending the execution of an ENABLE statement.

Interrupt Processing

INTERRUPT PROCESSING PROGRAM EXAMPLES

The program examples presented below illustrate the concepts
developed in this section with portions of programs. These examples
are not complete programs.

In the following example, the programmer anticipated that the
variable 1 may be zero at some point and, rather than allow the
program to halt, included an error handling routine that checks ERR
for 603 (divide by zero error) and ERL for the line number of the
possible divide by zero error. (Other divide by zero errors presumably
should halt execution.) If the error or line number that caused the
interrupt are not the ones expected, then the OFF ERROR disables the
error handler routine and displays the error number and line number
of the error. If error 603 did occur at line 120 to generate the interrupt,
then the message is printed by line 1020. Line 1030 causes a branch to
line 130, and the “ON ERROR GOTO 1010” is still active.

20 ON ERROR @OTO 1010
110 e e .

120 A=20/1

130 A

00 ' ERROR HANDLER

10 IF ERR 603 OR ERL ¢() 120 THEN OFF ERROR
20 PRINT "DIVIDE BY ZERQ ERROR"

30 RESUME 130

11-31

Interrupt Processing
Program Examples

11-32

The following example illustrates an appropriate way to terminate a
FOR-NEXT loop within a subroutine after resuming from an error
handling routine. The FOR-NEXT loop was reset to its terminal value
(-10) in the error handling routine so that the loop will not be repeated
when control is resumed from the error handler. If control is resumed
at line 4040 in the subroutine, error 521 (Illegal statement structure)
results. In this example, the FOR-NEXT loop is allowed to terminate
naturally.

30 ON ERROR QOTO 1010

100 DIM Y (20)

110 GOSUB 4000

120 . e . .

1000 " ERROR HANDLER

1010 IF ERR () 606 THEN OFF ERROR \ ! Negative LOG Argument
1020 PRINT “L0OG ARGUMENT (= O

1040 RESUME 4030

4000 ! CALCULATE AND STORE LO@ ROUTINE
4010 FOR 1 = 10 TO -10 STEP -1
4020 Y (10 + I) = LOG (I)

NEXT I

4040 RETURN

The following example uses a bus timeout (error 408, timeout during
Bus I/ O transfer) to terminate an input from the IEEE-488 Bus. When
the sending device has ceased output to the bus, the 100-millisecond
timeout set in line 100 generates an error that is handled in the error
handling routine at line 1000 by first checking to see if it is the proper
type of error. The error handling routine then determines which
reading was the last reading (line 1020), resets the FOR-NEXT loop,
and resumes executing at the NEXT statement. The statement GOTO
1050 at line 1010 causes a RESUME to re-execute any other statement
that causes an error. When it is re-executed, the program terminates
unless it is @ warning error because the error will occur again.

10 ON ERROR ©0TO 1010
100 TIMEOUT 100 ! Set BUS timeout to 100 msecs.
110 FOR IX = O%X TO 999%
120 INPUT LINE @ C3%, Re(I%)
130 NEXT I%
140 PRINT R$ (OX..NX)
130 STOP
1000 ! TIMEOUT ERROR HANDLER
}858 h; ER?I() tg? THEN OFF ERROR
- = ! NX = Number of readings
1030 1% = 999% ! Properly terminates FBR—NEXT
1040 RESUME 130

Interrupt Processing
Program Examples

In the following example, RESUME returns control to the error
causing statement rather than to a specified line number. The value of
D is corrected in line 1010 so that the statement on line 30 will be re-
executed properly.

10 ON ERROR GOTO 1000

20 D=0

30 I =3 /D

40 PRINT "I="; I

1000 IF D () _0 Q0TO 32767 ! To END statement
101 1E-76

(<}
1020 RESUHE

32767 END

In the following example, D is not adjusted and the RESUME
statement branches to a PRINT statement.

10 ON ERROR GOTO 1010

20 D=0

30 I =3 /D

40 PRINT “I="; 1

30 PRINT “D="; D

1000 ! ERROR ROUTINE

1010 IF D () O QOTO 32767 ! To END statement
1020 RESUME 30

32767 END

The following error routine checks for a valid input for a tangent value.
The error is produced on line 30 when BASIC tries to find the tangent
of the entered value. The likely error would be a divide by zero error.
RESUME branches to line 20 to allow re-entry of the A value.

10 ERROR GOTO 100

20 PRINT “Entlr value for TANGENT";/ INPUT A

30 X = TAN (A

100 IF ERR = 603 AND ERL = 30 THEN PRINT "ILLEGAL VALUE"
110 RESUME 20

11-33

Interrupt Processing
Program Examples

The following example uses the ERR system variable to check for a
number of possible error conditions and has the operator correct the
problem by using the Touch-Sensitive Display.

10 INIT PORT O ' Initialize Bus O

20 ON ERROR GOTO 1010 ! Enable error interrupt
30 CLOSE 2 ! Ensure file 2 not open
40 OPEN “DATA" AS NEW FILE 2 ! Open data file

45 PRINT "Enter the instrument’s address”

58 }NPUT ADX ! Enter device address

-1

58 : CQmmnnd instrument to take readings

?80 {NPUT LINE @ ADY%, Rs ! Input the reading

110 ! Other statements

%gg QRINT #2, RS ! Bave the reading on file 2
140 ! Other statements

150 '

900 sSTOP

910 '

920 '

1000 ! ERROR HANDLER

1003 ! heck for illegal ent

1010 IF ERR = 801 OR ERR = 803 GOT 1040

1015 Check instrument addr

1020 XF ERR <) 401 AND ERR (¢) 402 ODTD 1060

1025 isp la! operator message

1030 PRINT “Hrong us address: reenter”

1040 RESUME 50 ! Re—execute line 30
1050 ! Check for good

1060 IF ERR () 300 AND ERR <) 301 @OTO 1140

1070 IF ERR = 300 THEN PRINT "Load disk"; \ ©0OTO 1090
1080 PRINT "Remove write protect label’;

1090 PRINT "Then touch display” ! D:spl.r menils

1100 K KEY ! Clear key buffer

1110 HAIT FOR KEY ! Enable and wait for key
1111 ! interrupt

1120 K = KEY ! Clear key buffer

1130 RESUME ! Re—execute line 40
}{gg OFF ERROR : Terminate program on other

eTrTTors

11-34

Interrupt Processing
Program Examples

In the following example, if a {CTRL)/C character is generated, the
error routine beginning at line 5000 will take control. The operator is
given the choice of continuing or halting execution of the program.
The operator enters either 1 (continue) or 2 (halt). If neither | or 2 is
selected, the screen redisplays the choices. If 1 is selected, the
RESUME statement branches to the line that was being executed
when the (CTRL)/C character was encountered. If 2 is selected, the
OFF CTRL/C statement halts execution of the program and returns
to Immediate Mode.

10 ON CTRL/C ©0TO 35010
9000 1 ¢(CTRL)/C TERHINATIDN ROUTINE
3010 PRINT “SELECT ONE"/ PRINT

9020 PRINT SPACE’(RI);“! CONTINVE"
3030 PRINT SPACE4(21); 2 STOP*"

35040 PRINT SFACE4(21);\!NPUT Cc
3030 IF C (> 1 AND C (> 2 GOTO 5010
5060 IF C = 2 THEN DFF CTRL/C

3080 RESUME

In the following example, if ABORT or (CTRL)/C is pressed, the
ABORT routine at line 5010 is executed. The routine allows the
operator to confirm the ABORT or (CTRL)/C by selecting either 1
(continue) or 2 (halt) readings. In this way, an inadvertent (CTRL)/C
or ABORT need not necessarily halt readings.

10 ON CTRL/C ©€0TO 3010

100 PRINT @ 3%, ‘VR27° ! Take readings from instrument 3
110 INPUT @ 3%, V

120 PRINT V

1 €070 100 ! Take another reading
3000 I ABORT BUS READING ROUTI

NE
3010 PRINT "SELECT ONE" \ PRINT "1 = CONTINUE"
INT "2 = STOP"

PR
3020 INPUT A
3030 IF A () 1 AND A () 2 GOTO 5010
3040 IF A = 1 THEN RESUME ELSE OFF CTRL/C

NOTE

Many of the preceeding examples used (CTRL)/C to
interrupt an [EEE-488 Bus operation. This interrupt method
should be used with care since {CTRL) | Cabortsany bus 1] O
in progress at the time of the interrupt. Premature termination
of bus I/ O in this manner may leave instruments connected to
the bus in an undefined state.

11-35

Interrupt Processing
Program Examples

11-36

In this example, the WAIT statement requires that a 500 millisecond
delay be performed before printing the words “FLUKE Instrument
Controller”. The statement on line 120 clears the screen, then the
sequence is repeated until something, such as {CTRL)/C, interrupts.

100 WAIT S00

110 PRINT CHRS$ (27%); “rLaJ” !Erase screen
120 PRINT "FLUKE Instrument Controller”

130 Q0TO 100

The WAIT statement on line 110 allows a two-second delay between
source generation (2V dc) from the 5100A (Fluke Calibrator) and
measurement on the 8500A (Fluke Digital Multimeter). This allows
the 5100A time to generate the source voltage before attempting to
make a measurement with the 8500A.

DY = 2000%

PRINT @ 1%, ‘QV.N’ ! 5100A Programmed for 2V dc
110 WAIT DY
120 PRINT @ 2%, ‘7’
130 ;g?gT s a%x v ! Reading from 8300A

The following example reads the system clock each time the display is
touched. The Controller computes the difference and displays the
elapsed time between the first and second time the display is touched.
Note that the key buffer is initially cleared (line 30) to ensure a WAIT
at line 70 and cleared again at line 90 and 140 for the same purpose.

10 ! #nas TIMER ##&%

20 !

30 ! Clear key buffer

40 E$ = CHR$(7))+’ ! Escape sequence for display
S0 PRINT Es$; ‘2J’ i Clear display

60 PRINT CPOS (&, 26)5 “"Touch to 8TART"; ' Position cursor
61 KX = KEY ! and ro}uest start

70 WAIT FOR _KEY ! Wait till display is touched
80 T1 = TIME i Find time from system clock
90 KX = KEY X i Clear key buffer

93 ! Position cursor; dxnel.¥ time 1

100 PRINT ES; ‘J’; " T1 =

110 PRINT CPOS(8. 26); "Touch to 8TOP "; ! Position cursor
111 ! and dxsnlau stop request

120 WAIT FOR KEY ! Wait until display is touched
130 T2 = TIME ! Find time from system clock
140 KX = KEY ' Clolr ke buFGQr

130 PRINT * T2 = ", T2 pl.“ !1

160 PRINT CPOS(!O.GQ): "ELAPSED TIHE (T2 Tl) / 1000;
169 PRINT “SECONDS

170 GOTO 60 ! Repeat program

Results from running this program:

Interrupt Processing
Program Examples

/

r

Touch to START T1
Touch to STOP T2

ELAPSED TIME

Touch to START T1i
Touch to STOP T2

ELAPSED TIME

2484420
2489580

9. 16 SECONDS

2493550
2493930

0.38 SECONDS

n

11-37

Section 12
Subroutines

CONTENTS
Introductioncviiiiiiiii i i e i 12-3
OVEIVIEW & ittt iinie i ineenenennenneenanensoneennnas 12-3
Using Internal Subroutinesccoviiiian... 124
Using External Subroutines 12-5
Software Requirementscciviiinvinennnn.. 12-6
Subroutine Namesccoiuiiiininrnnnnnennnn 12-6
Assembly Language Subroutines 12-7
Assembly Language Error Handler 12-7
FORTRAN Subroutinesc.cvivinennvnnn... 12-8
Subroutine Format ittt 12-9
Introductionciiiiiiiiiii ittt 12-9
Parameter Passing Mechanism 12-9
The Parameter Decoding Subroutine, FSRGMY 12-10
Standard Assembly Language Subroutine Linkage
Mechanismcooiiniiiin it iiiiinnnnn. 12-10
Multiple Subroutine Entry Points 12-13
Subroutine Parameter Formats 12-14
Introductionviiiiniieiinnnennannnns 12-14
Basic Internal Data Formats 12-14
Relationship Between Parameter Syntax And
ParameterFormat 12-17
Passing String Values To and From Subroutines 12-19

Conversion of Strings to Internal Form 12-19
Conversion of Strings from Internal Form.

12-1

Subroutines

INTRODUCTION

Subroutines simplify the programming of repetitive tasks. A
subroutine can take the place of a program section that is identically
used at several points in a program. Program and storage space are
conserved by changing a repetitive section of code with a single
subroutine.

In addition to subroutines that are contained within the body of a
BASIC program, BASIC allows the use of external subroutines as
well. An external subroutine is one that is external to the body of the
program. Fluke BASIC allows use of external subroutines written in
FORTRAN or Assembly Language.

OVERVIEW

This section describes the various methods of programming
subroutines, both internal and external and the BASIC statements
used for subroutine programming. This section also describes the
recommended subroutine format for assembly language subroutines.
This format will provide Assembly Language subroutines that are
compatible with Fluke Enhanced BASIC. The information in this
section also describes the formats of parameters which may be passed
to subroutines and the relationship between the BASIC language
CALL statement syntax and parameter formats. Appendix I describes
the limitations for FORTRAN subroutines to be used with BASIC.

12-3

Subroutines

USING INTERNAL SUBROUTINES

The GOSUB statement provides an unconditional branch to another
segment of the BASIC program. When program execution transfers to
the line number specified by the GOSUB statement, BASIC
remembers the line number of the GOSUB statement. When a
RETURN statement is executed, program execution transfers to the
next line following the GOSUB statement.

Refer to the GOSUB and RETURN statements for detailed
information. GOSUB statements may also be part of ON-GOSUB and
IF-THEN-ELSE statements.

Examples

The following example uses a subroutine to print a changing message.
Other program examples may be found in the Reference volume under
the following headings: GOSUB and GOTO.

!grogr.m example 1

2 A8 = *Suybroutine Demonstration”

30 0©08suUB 100

40 AS$ = "This is a demonstration of a subroutine.”

[~]0:=1V)
60 PRINT “The subroutine uses the field attributes”
70 A8 = * to make the example more interesting.”

©08UB 100
90 PRINT “All done."”
S END
100 ! reverse video dis subroutine

la
110 PRINT CHR$(27) + " 7nH + A$ + CHR$(27) + "[m"
120 RETURN

12-4

Subroutines

USING EXTERNAL SUBROUTINES

Fluke BASIC programs may also use subroutines that are external to
the body of the main program. These subroutines are in the form of
machine-executable object code. Subroutines may be written in Fluke
FORTRAN, TMS-99000 Assembly Language, or a user-supplied
language that produces TMS-99000 Machine Language. Refer to the
specific language manual for details.

There are several reasons for using external subroutines:

1. Youmay require the additional speed that may be provided by
subroutines in a directly machine executable form.

2. You may want to use another program development system
that produces TMS-99000 Machine Language.

3. You may be able to utilize existing libraries of FORTRAN or
Assembly Language subroutines.

4. You may want to take advantage of your existing
programming expertise in FORTRAN or Assembly
Language.

The LINK, CALL, and UNLINK statements provide for using
external subroutines.

The LINK statement loads external subroutines into the Instrument
Controller memory during execution of a BASIC language program.

The CALL statement executes these subroutines and, if desired,
exchanges parameters with the subroutines.

The UNLINK statement removes subroutines from memory.

See the LINK, CALL, and UNLINK statement descriptions for
details.

12-56

Subroutines
Using External

Software Requirements

Additional software is required to create Assembly Language or
FORTRAN subroutines for use with BASIC:

Assembly: The necessary Assembler, Linkage Editor, and

other programs are contained in the 17XXA-201
Assembly Language Option.

FORTRAN: The Fluke FORTRAN Compiler, FORTRAN

Interface Runtime Library, Object Translator
program, and Linkage Editor programs are
contained inthe 17XXA-202 FORTRAN Language
Option.

Subroutine Names

12-6

Subroutine names have from one to six characters.

The first character must be a letter; the other five characters can be
any alphanumeric character(s).

The CALL statement differentiates the subroutine name from
BASIC statements.

1. If the BASIC language keyword (verb) CALL precedes the
subroutine name, there are no further restrictions on the
subroutine name.

2. If CALL does not precede the subroutine name, then the
leading characters in the subroutine name must not conflict
with a BASIC verb. The first of the following examples is a
legal subroutine call, but the second example is not a legal
subroutine because INIT is a valid BASIC verb.

EXAMPLE #1: 100 PINIT !lngnl name
EXAMPLE #2: 100 INITP ‘illegal name

All subroutine names and all identifiers of subroutines read by
LINK have lowercase letters mapped into uppercase. For example,
VADD and vadd refer to the same subroutine.

Subroutines
Using External

Assembly Language Subroutines

The Assembler program (17XXA-201 Assembly Language Option)
creates relocatable object file subroutines (the files do not contain
AORG [absolute origin] directives) that can be used with BASIC. The
PARTIAL (partial link) command of the Linkage Editor program can
be used to combine several relocatable object files into a partially
linked module that can be used with BASIC. Any label inthe Assembly
Language subroutine which is also named in a DEF (define external
symbol) assembler directive can be used as a subroutine entry point for
a BASIC program if it also meets the subroutine name requirements
described earlier.

Assembly Language Error Handler

For information on using the BASIC Error Handler along with
Assembly Language Subroutines, see Appendix H.

12-7

Subroutines
Using External

FORTRAN Subroutines

12-8

FORTRAN programs normally run under control of the FORTRAN
Runtime System program, which forms a link between the
FORTRAN program and the Operating System program of the
Instrument Controller. The FORTRAN Interface Runtime Library
(FTNSIF.LIB) provides a link between the BASIC interpreter and
FORTRAN subroutines used with BASIC. Whenever a FORTRAN
subroutine is used with BASIC, this library must be linked with it. The
standard FORTR AN libraries are not needed. Subroutine statements,

format, restrictions and parameter passing are described in Appendix
L.

After the FORTRAN subroutines have been written, it must be
compiled, linked to the appropriate FORTRAN Library routines, and
then processed by the Object Translator Program to produce a
machine-language file that is compatible with the BASIC Interpreter
program. This process is summarized below. See Appendix I for
examples and the FORTRAN Compiler, Linker and Object
Translator Program manuals for additional information.

1. Write and compile the FORTRAN subroutines.

2. Link the object file produced by the FORTRAN compiler with
the FORTRAN Interface Runtime Libraries using the Linker
program. Use the PARTIAL command to specify a partially
linked version of the object file. The FORMAT command may
specify either Compressed or ASCII format output.

3. Use the Object Translator Program to convert the object file
produced by the Linker program to a form ccmpatible with the
BASIC Interpreter program.

Subroutines
Using External

Subroutine Format
Introduction

This information describes the recommended subroutine format. This
format will provide Assembly Language subroutines that are
compatible with Fluke BASIC and with future software products. The
paragraph entitled Subroutine Parameter Formats describes the
required format.

Parameter Passing Mechanism
When a CALL statement is executed, any parameter(s) included in the
statement are passed to the specified Assembly Language subroutine.

0O A CALL statement creates code (internal to the BASIC
Interpreter) similar to the following Assembly Language

statements:
blwp @usrsub i transfer to user subroutine
data n inumber of parameters passed
data p1 jaddress of parameter
data pa jaddress of parameter 2
:l'n'to pn jaddress of parameter n

0o The parameter addresses (pl, p2, ... pn) can be either direct or
indirect address pointers.

1. If the low-order bit (the indirect bit) of the parameter address is
zero, then the parameter is a direct pointer. The address passed
to the subroutine is the address of the corresponding
subroutine parameter.

2. If the low-order bit of the parameter address is set to one, the
parameter is an indirect pointer. The parameter passed to the
subroutine is the address of a word that either contains the
address of the parameter or contains the first indirect word in
an indirect pointer chain.

a. An indirect pointer chain is a series of indirect words. The
first indirect word points to a second indirect word; the
second indirect word points to yet another indirect word,
etc.

12-9

Subroutines
Using External

b. Find the address of the parameter by tracing down the
indirect pointer chain until a word having its lower order
bit set to zero is found. This word contains the address of

the desired parameter.

The following examples show the sequence of Assembly Language
statements that are equivalent to the following two example CALL

statements.

CALL STATEMENT:

1330 CALL VADD(A(),

1340 CALL REPORT

B(),

KX)

RESULTING STATEMENT SEQUENCE
blwp @VADD
d 3

data (address of A(0))
data (address of B(0))
data (address of K%)
blwp @REPORT

data 0

The Parameter Decoding Subroutine, FERGMY

The parameter decoding subroutine, FSRGMY.OBJ, is part of the
Instrument Controller Assembly Language Option. The FSRGMY
subroutine should be linked with each object file which is to be linked
with BASIC. Some of the actions of FERGMY are described in the

material that follows.

Standard Assembly Language Subroutine Linkage Mechanism

A listing that shows the standard subroutine linkage mechanism
follows. An explanation of each numbered line follows the listing.

(1) IDT
(2) DEF
(3) REF
54) USUB DATA
3) ENTRY BL
(6) DATA
(7) DATA
(8) NAME TEXT
(9) RTWP
(10) WRKBPC BSS
(11) DATA
(12) DATA
(13) DATA
(14) PARMS BSS
END

12-10

‘USUB
USUB
F

N
PARMS
‘UsuB

32
NAME
?TART

2#N

2

¢

SROMY
WRKBPC, ENTRY
@FSROMY

iname of subprogram
iidentifier of ’blwp’ vector
iname of linkage manager

) ‘blwp’ vector to subroutine
jdecode subroutine parameters
inumber of parameters expected
ipointer to parameter area
iname of subprogram

ybody of subprogram

jreturn to BASIC Interpreter
Jsubroutine workspace
jpointer to subroutine name
ipointer entry address

i subroutine type flag
Jjparameter address area

jother subroutine data

Subroutines
Using External

Numbered line explanation:

(1) The IDT statement provides a module name for the Instrument
Controller Linkage Editor program.

0 The module name field must be enclosed by apostrophes
(single quotation marks).

0O The module name field is one to eight characters long.

(2) The DEF statement makes the entry name (i.e., address of transfer
vector) available to BASIC and to other subroutines that can call
this subroutine.

(3) The REF statement declares the routine FSRGMY as an external
name (i.e., defined in another object program file).

(4) This DATA statement is the transfer vector used by BASIC to
transfer control to the subroutine.

O The first word assembled for the DATA statement contains
the address of the subroutine workspace.

O The second word assembled for the DATA statement
contains the entry address of the subroutine.

(5) This is the first instruction executed by the subroutine. The routine
FSRGMY, supplied with the Assembly Language Option, should
be linked with each object (.OBJ) file to be linked with BASIC. The
actions of FERGMY are described as each action is encountered.

(6) This DATA statement is a parameter to FSRGMY. The statement
gives the number of parameters expected by the subroutine. If the
number of parameters passed to the subroutine does not match the
number expected, FSRGMY displays error 706 (parameter count
mismatch).

12-11

Subroutines
Using External

(7) This DATA statement, another parameter to FSRGMY, tells
FSRGMY where to place the subroutine parameter addresses.

o F$RGMY converts all parameters with indirect bits set into
ordinary parameters. That is, FSRGMY traces down an
indirect pointer chain to find the direct pointer for the
parameter.

o The parameter area, starting at PARMS, is filled with
parameter pointers so that:

ress of parameter 1)

PARMS DATA (add
DATA (address of parameter 2)

DATA (address of parameter n)

O If the number of parameters is less than or equal to eight, R0
through R7 can be used to hold the parameter addresses
generated by FSRGMY. In this case, statement number (7)
should be:

DATA WRKSPC

0 If no parameters are passed to the subroutine (i.e., n = 0),
omit DATA statement number (7).

(8) The TEXT directive gives the name of the subroutine to FSRGMY.

0 The subroutine name field must be enclosed by apostrophes
(single quotation marks).

O The subroutine name field is six characters long. If the name
is less than six characters, start the name at the left character
position and enter blank spacesinto the remaining character
positions.

0 The TEXT directive provides information about the
sequence of subroutine calls to be used in future error
handling capability.

(9) The RTWP instruction returns control to the BASIC Interpreter
or to the module that called this subroutine. Note that FERGMY
sets the subroutine return address to point past the DATA
statements that make up the caller’s parameter list.

12-12

Subroutines
Using External

(10)The BSS statement reserves memory for the subroutine
workspace.

NOTE
The placement of statements (11), (12), and (13) is critical.
They must follow the subroutine workspace.

(1NThis DATA word holds the address of the subroutine name
defined by statement number (8). This word is set by FERGMY.

(12)This DATA word holds the subroutine entry address [i.e., address
of statement number (5)]. This word is set by FERGMY.

(13)This DATA word is a subroutine type flag.
O This word should contain the number 1 (in binary).

0 This word is not currently used by FSRGMY but is defined
for future product compatibility.

(14)The BSS statement reserves space for the subroutine parameters.
O Omit this area if no parameter are passed.

O Seestatement number (7) for an explanation of the contents
following a call to FSRGMY.

Multiple Subroutine Entry Points

The use of alternative workspaces and parameter areas is at the
programmer’s discretion. If a subroutine is entered at more than one
point, statements (2) and (4) through (8) of the Standard Subroutine
Linkage Mechanism should be present for each entry.

12-13

Subroutines
Using External

Subroutine Parameter Formats

Introduction

The information here describes the formats of parameters which may
be passed to Assembly Language programsand FORTRAN programs
and the relationship between the BASIC language CALL statement

syntax and parameter formats.

Basic Internal Data Formats

Parameters passed to Assembly Language or FORTRAN subroutines
can be in one of three formats: Integer, Floating Point, or Character

String.

o Inthe Integer format, parameters are 16-bit binary words arranged

in the following sequence:

MSB

1. The word is in twos-complement form.
2. Integers are always aligned on an even (word) address.

O Inthe floating-point format, parameters are 63-bit words arranged

15 - —————"

0

in the IEEE double-precision format:

66
32

55
21

LSB

S | Exponent

Fraction

Where: S is the sign bit (1 = negative)

Exponent is a biased (bias = 1023) binary exponent
Fraction is a binary fraction of the form 1. Fraction (The 1
bit to the left of the fraction is implied. The binary

point is implied to be left of bit position 51.)

1. This means that a (normalized) floating-point number has the

value:

f= (—l) s*2 (Exponent - 1023) '(l.Fraction)

12-14

Subroutines
Using External

2. All floating-point values used as parameters are normalized
and are represented as 4-word values in memory as shown

below.

3. Floating-point numbers are aligned on even (word) addresses.

Parameter pointer— | Sign, exponent, hi-order fraction

+ 2 bytes
+ 4 bytes

+ 6 bytes

Next fraction word (bits 47-32)

Next fraction word (bits 31-16)

Last fraction word (bits 15-0)

O Inthe Character-String format, the parameter is the address of the
string-head portion of a character string. A character string
consists of a string-head and a list of singly linked 16-character

string blocks.

1. String-head format is shown in the following figure:

Parameter pointer— Address of the block

+2 bytes

Number of characters in the string

a. The first word is a pointer to the first string block.

b. The second word is an integer that gives the number of
characters in the string.

2. The string-block format is shown in the following figure:

+0 bytes
+2 bytes

+4 bytes

+16 bytes

Address of the next string block

Character 1 Character 0

Character 3 Character 2

Character 15 Character 14

12-15

Subroutines
Using External

12-16

a. Each string-block has 16 characters.

b. The characters in each string block are in reverse order
(character 2 has an address | byte greater than character 3,
for example) due to the internal organization of the BASIC
Interpreter.

c. The last string block in the character string must have 0 set
into the location for the address of the next string block
because zero is never a valid address for a string block.

Arrays of scalar data types are allocated in row-major order (i.e., so
that the subscript furthest to the right varies most quickly as the array
elements are accessed in storage order). Arrays of integer and floating-
point numbers are simply iterated forms of the representations
described earlier. As the following figure shows, character-string
arrays consist of a series of string-head cells.

+0 Element (0,0)
+2 * size Element (0,1)
+4 * size Element (0,2)
+m * size Element (1,0)
+(m +1) * size Element (1,1)

Subroutines
Using External

Relationship Between Parameter Syntax And Parameter Format

Each parameter passed to an Assembly Language or FORTRAN
subroutine is an address (i.e., parameters are passed by reference). The
address can be the address of a variable, the address of an array, or the
address of a temporary location (generated to hold the result of an
expression). The BASIC Interpreter evaluates parameters according
to their syntax type. The parameter syntax can be a variable identifier,
array name, array element, expression, or constant.

0 If a parameter is a variable identifier, the BASIC Interpreter uses
the address of the variable as a parameter.

1.

The subroutine can return a result by changing the value of the
named identifier.

The “a%” in the following statement is an example of the
variable identifier parameter syntax.

100 glorplaXk)

O If the parameter is an array name, the BASIC Interpreter uses the
address of array element (0) or (0,0) as the parameter. In this way,
an entire set of values may be made available to a subroutine.

1.

An array name is the array identifier followed by the characters

0.

An example of the array name parameter syntax is a$() in the
following example:

110 redo(as())

The array name supplies no information about the array size. If
the array size is to be made available to the subroutine, the size
must be another parameter. For example, the 10% in the
statement:

110 redo(at(), 10%)

A virtual array cannot be used as a parameter in this fashion
because it exists in a file and thus has no fixed memory address.

12-17

Subroutines
Using External

12-18

O A single array element is copied to a temporary location. The

address of this temporary location is used as the parameter. The
“a%(i% * 5%)” in the following statement is an example of the
array-element parameter syntax.

140 saddle(aXx(iX # 3X))

An expression, in this context, consists of at least one unary or
binary operator or a function call. The value computed by the
expression is placed in a temporary location. The address of this
temporary location is used as the parameter.

I. The parameter format (Integer, Floating Point, or Character
String) is determined by the normal rules of BASIC expression
evaluation.

2. The “-sin(a) * fna(int(a))” in the following statement is an
example of the expression parameter syntax.

120 undo(-sin(a) # fna(int(a)))

A constant is copied into a temporary location. The address of this
temporary location is used as the parameter. An example of a
constant parameter syntax is the “abc” string in the following
statement:

130 garble("abc")

Subroutines
Using External

Passing String Values To and From Subroutines

The BASIC Interpreter uses a linked-list data structure to provide
variable-length strings. This internal data format is often difficult for
Assembly Language programmers to use. The 1722A BASIC
Interpreter provides two string conversion functions, which are called
by the TMS-99000 XOP instruction, to convert to and from the
BASIC internal string formats.

NOTE
It is absolutely essential that Assembly Language programs
not change either the string head pointers or the link fields in
BASIC strings. The penalty for not observing these rules is
system failure. It is recommended that only the following
interface functions be used for string parameter manipulation.

Conversion of Strings to Internal Form

In order to return a string result an Assembly Language program must
use the string replacement routine of BASIC. The interface of this
function strongly resembles that of the string unpacking routine.

1. The address of the string head (which is passed as a parameter
in the BASIC CALL statement) is placed in the Assembly
Language program’s RO.

2. The address of a buffer (allocated by the Assembly Language
program) is placed in the Assembly Language program’s R1.

3. The length of the string contained in the buffer, whose address
is in R1, is placed in the Assembly Language program’s R2.

After these parameters have been set by the Assembly Language
program the following instruction should be executed:

xop r1,1

This will cause a transfer of control to the BASIC Interpreter string
allocation routine. When the BASIC string allocation routine returns

no changes will have occurred in any of the Assembly Language
program’s registers or string buffers.

12-19

Subroutines
Using External

The following program fragment should serve as an example the use of
this interface function:

mov estrprm, rO 1iTO = ptr to string parameter

11 ri,buffer iTl = tr to buffer with new ...
- Je stri contents

mov @length, r2 ir2 = le ! h of new string

xop ri,1 jcall BASIC replacement function
buffer bss MAXLNG 1ABCI1 string buffe
length data [} 1length of string in "buffer”

Conversion of Strings from Internal Form

Conversion of a string from BASIC’s internal (linked-list) form into a
packed ASCII buffer is done as follows:

1. The address of the string head (which is passed as a parameter
in the BASIC CALL statement) is placed in the Assembly
Language program’s RO.

2. The address of a buffer (allocated by the Assembly Language
program) is placed in the Assembly Language program’s R1.

3. The length of the buffer, whose address isin R1, is placed in the
Assembly Language program’s R2.

4. An offset is placed in the Assembly Language program’s R3.
This offset tells the BASIC Interpreter how many initial
characters to skip in the string before storing characters in the
Assembly Language program’s buffer. An offset of zero will
retrieve characters starting with the first character in the string
(that is, zero characters at the start of the string are skipped).

After these parameters have been set by the Assembly Language
program the following instruction should be executed:

xop r0, 1

This will cause a transfer of control to the BASIC Interpreter string
unpacking routine.

12-20

Subroutines
Using External

The data returned by the BASIC Interpreter will tell the Assembly
Language program about the string actually placed in the buffer:

1.

4.

As an example:

buffer
ovrflg

Characters from the string will be placed in the buffer pointed
to by the caller’s R1.

R2 will be set to contain the actual number of characters placed
in the buffer pointed to by R1. This value will be between zero
and the initial value of R2 (the maximum buffer length).

The processor's CARRY flag will be reset if the string returned
was not longer than the buffer. If the CARRY flagisset (string
longer than buffer), the value of R2 will be equal to its initial
value; the ASCII buffer will be filled with the number of

characters indicated by R2.

No changes will be made to the contents of RO, R1, or R3.

QC* W rx N~

I8 B0 =m0

<

-

tn® At ©

* »0

>

@strpra, rO
ri,buffer
ra, MAXLNG
r3

r0,1
c
Qovrflg

MAXLNG
0

tr to string gnr.notor
tr to string buffer
ize of string buffer
offset

eve all chars in string)
ABIC unpacking routine
overflowed

buffer overflow

sonAI9

buffer area
T averflow”" flag

- -

i)
Ter
c
[1-]

12-21

Section 13
Program Chaining

CONTENTS

Introductioncocuiiiiininin ittt i e 13-3

[173 o 1 13-3

Statement Definitionsccoiviiiiiiiiiinennnann. 134
RUN Program Statementc.cvivevninennnn.. 134
RUN WITH Statementccovviiiiinnnn.. 13-6
EXEC Statementcvueienninnennennenneennennns 13-6
COM Statementcvevinrneenennnneneneeeennnnnns 13-8

Virtual Arrays in Chained Programs 13-9
Introduction to Virtual ArrayChaining 13-9
Example of Chaining a Virtual Array 13-10
Using Sequential Data Files in Chained Programs 13-12

13-1

Program Chaining

INTRODUCTION

Specific tasks to be executed sequentially may be handled by physically
separate programs. Rather than use a GOSUB routine call, a RUN
statement is used to call a separate program into main memory to be
executed. This section describes the conventions and programming
techniques for program chaining and for calling command files.

Program chaining is useful when the size of a program becomes larger
than conveniently fits into user memory. Dividing a large program into
a number of smaller logical segments allows more variable storage and
processing capability in each program segment.

OVERVIEW

This section describes the RUN and CALL statements, virtual array
files, and sequential data files in a chained program structure. Cross
references are given for additional information available in this
manual on the RUN statement, virtual arrays, and the OPEN and
CLOSE statements.

13-3

Program Chaining

STATEMENT DEFINITIONS

Program statements described below are used for chaining multiple
programs that are stored on one of the file-structured devices. The
Immediate Mode use of RUN is described in Section 2 of this manual.

RUN Program Statement

Usage:

RUN [program name$]

The RUN statement restarts the program in main memory or loads and
runs a BASIC program available in file storage.

m]

13-4

Without a file name, RUN will restart the program in main
memory.

A file name may be specified as a quoted string or as a string
expression.

The current FDOS command line is not changed.

The program file will be searched for on the default System Device
if the file name is not prefixed with a device name such as MFO:.

If the file name extension isnot .BAS or .BAL, it must be specified.
Error 305 (file not found) results if the file is not found.

When the file is located, it is loaded into main memory replacing
the previous program, and control is transferred to it.

Data stored in variables in the previous program is lost unless it
was reserved in a common area with a COM statement or stored in
a virtual array file.

All files left open are available for use by the chained program.
Virtual Array Dimension Statements (DIM#n) may be used to
allocate virtual arrays (on the virtual array files left open) in the
next program.

Program Chaining
Statement Definitions

The following example searches for a program file named TEST2 on
the System Device. If it is located, TEST2 is loaded into main memory
and executed.

1050 RUN “TEST2" ! Chain to program TEST 2
1060 END

The following example searches for a program file under a name stored
in string BS. If the file is located, it is loaded into main memory and
executed.

1050 RUN Bs ! Chain to program named by BS$
10460 END

13-5

Program Chaining
Statement Definitions

RUN WITH Statement

Usage:

RUN [program name$] [WITH command$]

The RUN WITH statement runs the BASIC program specified by the
string “program name$”. The optional WITH statement modifier
causes the BASIC interpreter program to replace the FDOS command
line with the string command$.

o This form of the RUN statement may be used to pass parameters to
another BASIC program via the FDOS command line.

O Use the CMDLINES function to read the FDOS command line.

The RUN WITH statement is identical to the RUN statement with the
following exceptions:

o The FDOS command line is changed to the string “program
name$” followed by a space character and the string command$.

EXEC Statement

Usage:

13-6

EXEC filename$ [WITH command$]

The EXEC statement permits a BASIC program to chain to a machine
language program or to a command (“.CMD?”) file.

O The EXEC statement is similar to the RUN statement (in that the
program that executes the statement is terminated immediately).

O When the program specified by the EXEC statement terminates,
control returns to FDOS unless the SET SHELL statement has
been previously executed.

O The EXEC statement may be used in the immediate mode.

O Filename$ is the name of the the executable or command file to be
executed.

O The optional WITH clause specifies a new command line to be
passed to the new program.

O The string command$ will act as though it had been entered
following the file name in a command to FDOS .

Program Chaining
Statement Definitions

o If no device is specified, the device “SYO0:” will be assumed.

0 The only extensions permitted with this statement are “*.CMD” and
“ FD2”. If no extension is specified, a file with the extension
“.CMD” will be searched for first; if no “.CMD?” file is found, the
BASIC system will then look for a “.FD2” file with that name.

0 The command line argument plus the length of the file name (less
any “.CMD?” or “.FD2” extension) may not exceed 80 characters.
This limitation is imposed by FDOS. The actual command line
passed to the EXEC'ed program will be file$ (without any device
name or extension), and, if commands$ is specified, a space and the
string given as command$. The entire line is terminated by a
carriage return character.

Example

BASIC STATEMENT FDOS EQUIVALENT

exec “"edit" with "test.bas" syO: edit test.bas

exec "mfO: fup” mfO: fup

exec “"edit. fd2" with "foo" sy0: edit. fd2 foo

13-7

Program Chaining
Statement Definitions

COM Statement

Usage:

13-8

COM ({variable list}

COM reserves variables and arrays in a common area for reference by
chained programs.

O Only floating-point and integer variables may be stored in the
common area.

O String variables may not be stored in the common area.

o String variables may be stored in virtual arrays for access by
chained programs. This technique is discussed later in this section.

O All programs accessing a common area must use COM statements
that are identical in order, type, and array sizes; the actual variable
names, however, may be different.

For example, assume that a chained program requires the use of three
floating-point simple variables, an integer simple variable, a floating-
point array, and an integer array defined in a previous program. The
first program could use a COM statement such as:

10 ! Program A
20 coM » By C, FX, D(24%X), TAC(100%X)

1050 RUN “B*
1060 END ! End of program A
The second program could then use:

10 ! Program B
20 COM Lg. L2, L3, a%, K(24X), PX(100%)

Note that while the names of the variables stored in the common area
have changed between programs, the order and type of the variables
are exactly the same.

Program Chaining

VIRTUAL ARRAYS IN CHAINED PROGRAMS

Properly used, virtual arrays become a unique tool for controlling and
keeping track of multiple task sequences. It is possible, for example, to
structure a floppy disk that will continue with the next task to complete
in a task list, even if the task is carried to another Controller and given a
RESTART. The paragraphs that follow discuss these techniques.

Introduction to Virtual Array Chaining

An advantage of using virtual arrays to pass chaining information is
that even if a power failure occurs, the status of the processing
performed by the set of programs is preserved in the virtual array.
When the capability to survive power failures is not required, chaining
information may be kept in a COM variable or array.

Virtual arrays can be used to control the execution of chained
programs. When writing a set of chained programs, open a channel for
a virtual array file with the number of elements matching the number
of chained programs called from the main program. (to chain three
programs, dimension the virtual array with 3 elements -- 0, 1, and 2.)
Initialize this array to indicate no programs have been executed.

Each element of the array will take either an OFF or ON value which
indicates whether or not its associated program has been executed.
Each program sets an element of the array to the value which indicates
that the program has been run. To begin, initialize the elements to 0
(zero) then set the elements to 1 (one) as each program is executed. If
the programs are halted for any reason, the array values will show
which program was interrupted.

In this way, a rerun of the main program would execute only those
programs which have not yet been executed. Programs which were
executed before the interruption will not be rerun or will be rerun only
under the circumstances indicated by the programmer.

Virtual arrays may also be used as a common storage area for a set of
chained programs without using the COM statement. Once a virtual
array has been initialized, any program can use the array by using the
proper open, dimension, and closing sequences as described in the
section on Virtual Arrays.

13-9

Program Chaining
Virtual Arrays

Example of Chaining a Virtual Array

13-10

One program (named PROGO in this example) executes a set of n
programs in sequence so that if a program does not execute
successfully, it may be reexecuted. The virtual array file in this example
will be named CHAIN.BIN.

NOTE
Each of the programs (PROGI through PROGn) can have a
set of subordinate chained programs.

Assume there are five chained programs, with names PROGI,
PROG2, PROG3, PROG4, and PROGS. An initialization program
(called PROGIN in this example) is executed to create the file
CHAIN.BIN and to initialize the chaining information required to
indicate that none of the chained programs have been executed.

1
gg z PROGIN - Initialize chaining information for PROG1
40 OPEN “"CHAIN.BIN®" AS NEW DIM FILE 1% SIZE 1%
30 DIM #1%, AX(3%X)
60 FOR IX = 1% TO 9%
70 AX(IX) = O% ! Bet to not-run
80 NEXT I%
90 CLOSE 1% .
100 RUN "PROGO" ! Start program eaxecution
110 END ! Of PROGIN

The EXEC program below checks the elements of the array in the file
CHAIN.BIN until a zero element is found:

10 '

gg : PROQGO - CHAIN TO THE NEXT INCOMPLETE PROGRAM
40 !

30 OPEN "CHAIN.BIN" AS DIM FILE 1%

&0 DIM #1X, AX(3X)

70 FOR 1% = 1% TO 9%

80 IF_AX(I%) ¢() OX THEN 120

90 ! FOUND A PROGRAM THAT NEEDS TO BE RUN

CLOSE 1% ! Release Channel 1
RUN "PROG"™ + NUMS(IX, “#") ! Chain to PROGC 1
yEXT I%

! I# control reaches this point,
: all programs have been completed.

t-n-n-h-»nnu-:u
B33ITARENES

CLOSE 1%
KILL “CHAIN.BIN”* ! Release file space
PRINT “ALL PROGRAMS CDHPLETEDB; EXEC

Program Chaining
Virtual Arrays

Each of the programs, PROGI! through PROGS, performs the
processing required of them, but each should follow this format
(PROGT1 is illustrated).

10 '

g : PROG 1 - Explanation of total program function

10000 OPEN “"CHAIN.BIN" AS DIM FILE 1%

10010 DIM #1%, CHX(3X)

10020 CH%(1%) = 1X ! Signal that PROG1 is complete
10030 OSE 1% ! Rewrite status to file

10040 RUN "PROGO" ! Chain through “EXEC"

10030 END ! Of PROO1

13-11

Program Chaining
Virtual Arrays

Using Sequential Data Files in Chained Programs

13-12

Sequential data files may be used as common data storage areas for
chained programs. The major difference between using the sequential
file as opposed to the virtual array file is the difference in access
methods. Sequential files are non-random and must be read from or
written to sequentially. They are not array oriented and, therefore,
cannot be referenced via a dimensioned array name and element. If it is
convenient to use all data in a file in the order it has been stored, a
sequential data file is easier to use than a virtual data file.

For example, an instrument taking multiple readings produces data
(e.g., voltages) that should be stored for processing by a separate
program module. That data may be written into a sequential file by the
data collection segment of the program system (assuming use of
chained program techniques) in the order the data was read by the
instrument. A report generating program segment may then process
the data.

The principal use of sequential data files is the storage of variable
length ASCII character strings. Sequential files should not be used for
the storage of arbitrary binary data since some characters (CTRL/Z,
Carriage Return, Line Feed) have a special meaning to the BASIC
system’s input and output routines.

ASCII data may be written to a sequential file or to an RS-232-C port
by means of the PRINT statement. For example:

1030 PRINT #3%, “VALUE") I% ",") J%

Similar data may be read by an INPUT statement:

4010 INPUT #3%, A%(OX..3%)

Note also that the contents of a sequential file may be examined or sent
to a printer by the File Utility Program (FUP). This is not true of
virtual array files.

Section 14
Touch Sensitive Display

CONTENTS
| T-2103 ¢ o1 T) « R 14-3
INntroductionco.iiuiiiniint ittt i 14-3
Using the Display for Outputcovvuiiunn. 144
The ASCII Character Setcoviiininrnnnnennnn.. 14-5
Alternate Character Sets ccivtiiiienennnnnn. 14-6
Display Output Statementscocvveeenrnnnnn 14-7
PRINT Statementcoitiiiitninrnnenennnns 14-7
PRINT USING Statementcc0vvveunn... 14-8
CHRS$() String Functionccvvvvnnn.. 14-9
TAB String Functioncoiiviiiinn... 14-9
CPOS String Functioncooviiviineinenn.. 14-10
Special Display Control Characters 14-12
Display Control Sequencescovveiveereneennennns 14-13
ANSI Compatible Display Control Sequences 14-14
Display Control Character Sequences 14-16
Cursor Positoning and Display Scrolling 14-17
Cursor Movementcooiiiiininnnnenennnnenns 14-17
Display Scrollingcvviiitininiinineirinennnnn 14-18
Erasing ..vvviiiiiiiiitiie i nnietneeneennnnnens 14-18
Mode Commandsovviiiiiiinrinrenerneenenneennnn 14-19
Character Visual Attributescoovvvunnnnn. 14-20
Field Attributescooiiiiiiniiiinennnneennn. 14-22
Character Attributesccivviiveinnnnnnn.. 14-25
Non-destructive Display Character 14-26
Character Sizecoviiiiiiiii i, 14-27
Character Graphicsccoiiiiniiiininnennnn.. 14-28
Keyboard Disable and Enable 14-32

CONTENTS, continued

Using the Display for Inputcooiiiiiiiin.. 14-33
Display Input Statementsccoiiiiiiiieienn. 14-34
KEY Variablecciiiiiiiiiiiiiiniinnennnnes 14-34

ON KEY and OFF KEY Statements 14-35
WAIT FOR KEY Statementccv.... 14-36

An Interactive Display Program 14-39

14-2

Touch Sensitive Display

DESCRIPTION

The Instrument Controller’s display offers several useful features that
enable the design of customized operator message outputs. These
features include character graphics, display graphics, double-size
characters, reverse video, double intensity, and blinking. In addition,
the cursor control functions and erasing capabilities give the
programmer complete control over the display.

Input from the operator of an instrumentation system controlled by a
Fluke Instrument Controller is accomplished by means of the touch
sensitive panel overlaying the display. This panel is capable of
identifying 1 of 60 distinct blocks or touch areas when the operator
applies moderate touch pressure. By integrating display messages with
expected responses, an operator can be directed to supply needed
numerical or decision inputs without interfering with the process at
hand.

INTRODUCTION

This section discusses techniques for effectively using the Touch-
Sensitive Display feature of the Instrument Controller. The discussion
covers four general categories of display functions: output, controlling
the display, mode commands, and input.

14-3

Touch Sensitive Display

USING THE DISPLAY FOR OUTPUT

14-4

The usual use of the display is for output. The PRINT statement sends
information to the display. The PRINT USING statement sends
formatted information to the display. The information transferred to
the display uses the characters found in the ASCII Standard Character
set.

Touch Sensitive Display
Using the Display for Output

The ASCII Character Set

The Controller uses ASCII characters for display as shown in
Appendix G. The first 32 characters in the ASCII Character Set
(numbered 0 through 31) are defined as control codes, which include
such functions as backspace (BS) or carriage return (CR). When
generated by the keyboard, many of these control codes are
intercepted, and a block (character number 127) is displayed in their
place. However, the CHR$(n%) string function can be used within a
program to generate any eight-bit code pattern for the display,
including the control codes.

Many of the control codes reserved by the ASCII standard are not used
by the Controller. However they are used by the display system to
provide some useful symbols. These symbols are stored in a ROM and
are separate from the graphics characters described later in this
section. Like other displayable ASCII characters from the ROM, these
symbols may be enhanced with higher intensity, reverse video,
blinking, and underlining.

NOTE
The John Fluke Mfg. Co., Inc. reserves the right to make

changes to the symbols contained in character generator
ROMS.

Here is a short program that will display all of the displayable
characters generated by the character ROM in double-size display
format. The block (character number 127) is displayed in place of all
control characters that are not displayable. The space character is just
left of the ”!“. Touch the screen to clear the display.

10 ESS$ = CHR$(27) + "C“ \ BLS = CHR$(127)

20 PRINT ES$ + "1p" as(a, 9)s

30 FOR I =1 TO & \ PRINT CHR‘(I): \ NEXT 1
40 FOR I = 7 TO 13 \ PRINT BL®: \ NEXT I

30 FOR I = 14 TO 26 \ PRINT CHR$(1); \ NEXT I

BLS:
70 FOR I = 28 TO 31 \ PRINT CHRS$(I); \ NEXT I

80 PRINT CPOS(4,3); \ FOR I = 32 7O 63 \ PRINT CHRS$(I);\ NEXT I
90 PRINT CPOS(&6:3)s \ FOR I = &4 TO 93 \ PRINT CHRS$(I);\ NEXT I
100 PRINT CPOS(8,3); \ FOR I = 96 TO 127 \ PRINT CHR®$(I);\ NEXT 1

110 WAIT FOR KEY \ PRINT ES$ + "p"“;

14-5

Touch Sensitive Display
Using the Display for Output

Alternate Character Sets

14-6

An alternate character set can be designed to allow mathematical or
other special symbols, such as might be needed for foreign languages,
to be displayed. Appendix E of the 1722A System Guide describes
EPROM programming techniques to make use of this special ability.
To select the alternate character set, send the control character SHIFT
OUT [SO = CHR$(14)] to the display; to select the normal set, send
SHIFT IN [SI = CHR$(15)] to the display.

Touch Sensitive Display
Using the Display for Output

Display Output Statements

The following paragraphs describe the statements used to transfer
information to the display. Complete descriptions for each statement
may be found in the Reference volume of this manual set.

PRINT Statement

Usage:

PRINT [stringl$] [; or,] [string2$] [; or ,] [stringn$] [; or ,]

The PRINT statement is used in Fluke BASIC to send code
information or characters to the display.

o

Any number of print items (described above as[stringl$] etc.) may
follow the PRINT statement, up to the line length limit imposed by
the Controller.

All code sequences described in this section that affect the display
must be transmitted via PRINT to the display.

Character and code sequences for display purposes may be
conveniently stored in virtual arrays and called when needed by a
PRINT statement.

An output channel (NEW) may be opened to the display (KB0:),
using an OPEN statement. The PRINT statement would then
direct display output to that channel number.

The following examples illustrate PRINT usage within the context of
this definition:

STATEMENT MEANING

PRINT "Fluke Controller* Display “Fluke Controller”

DIM AS(2)
AS$(0)

Dimension a 3 string array.
= "Fluke Controller* Place message in the first string.

PRINT A$(O) Display message from the array element.

OPEN "KBO:

PRINT #3,

" AS NEW FILE 3 Open channel 3 to the display.

“Fluke® Send message to the display channel.

14-7

Touch Sensitive Display
Using the Display for Output

PRINT USING Statement
Usage: PRINT USING {format description}, [stringl$][, or ;][string2$]

The PRINT USING statement sends formatted data to the display.
PRINT USING is identical to PRINT except for the use of the string
mask for format description. The display format used is specified by a
string mask in the format description portion of the statement. The
string mask uses various ASCII characters to describe the appearance
of the formatted output.

For example:

100 P = pi ‘an irrational number
103 PR!N% P ‘print the full value
110 PRINT USING "#.##", P 'print the value to 2 places

causes the following display:

e >

run
3.141393
3.14

14-8

Touch Sensitive Display
Using the Display for Output

CHR$() String Function

Format:

CHRS (numeric expression)

The CHRS$() function creates an eight-bit ASCll-coded string
character from the lower eight bits of the integer value of the numeric
expression.

The CHRS$() function is most often used to send non-printable ASCII
characters to the display, such as the ASCII “ESC” character used for
display formatting. For example:

100 PRINT CHR$(27)+"({1p"; "FLUKE"™

displays “FLUKE” on the display in double size letters.

TAB String Function
Format: TAB (n%)

The TAB function creates a string of space characters that would move
the current print position forward to column n+!. The value of n%
must be between 0 and 80. TAB is intended for use with printers, but
can also be used with the display.

The current print position is the total number of characters transmitted
since the last carriage return character, including all non-printable or
non-displayable characters.

O The current print position may be ahead of the display cursor if a
display control character sequence was included since the last
carriage return character. These character sequences are discussed
later in this section.

O A Carriage Return and Line Feed character sequence will precede
the string of spaces if the current print position is already at or
beyond column n.

The following example illustrates an alternate method tab function for
the display, using a defined function. The function works by returning
the cursor to the beginning of the line and then moving right to the
column specified by the function argument (column 33 in line 40). The
string functions in line 30 change the function argument to string form

and then remove space characters from either side of it.
10 ES$ = CHRO(27) + """ ! Control loquoncc identifier
20 CR$ = CHR$(13) Carriage Retu

30 DEF FNTBS$(C) = CR$+ESS + HID(NUH‘(C),2.LEN(NUH’(C))—2) + "C*"
40 PRINT FNTB$(33); “HERE

14-9

Touch Sensitive Display
Using the Display for Output

CPOS String Function

Format:

14-10

CPOS (line, column)

CPOS creates a string which, when sent to the display by a PRINT
statement, positions the cursor at the specified line and column.

0

The string is always eight characters long, in the form: ESCape [
line% ; column% H. For example, CPOS(3,20) is equivalent to
CHR$(27)+“[03;20H".

The line and column are numeric expressions.

If the expression for line or column is floating-point, it must be
within the range of integers, and will be truncated to an integer.

If either the line or column is less than zero, a value of zero is

a

ssigned.

If the line or column is greater than 99, a value of 99 is assigned.

Additional limits are imposed by the video display module:

1.

2.

A line or column number of zero is interpreted as one.
A line number greater than 16 is interpreted as 16.
A column number greater than 80 is interpreted as 80.

In double-size display mode, these limits are respectively line I,
line 8, and column 40.

The CPOS function may be assigned to a string variable or added to
strings for display formatting. It may take various forms as shown in
the following examples which display “Fluke Instrument Controller”
at line 10, column 30.

Example 1:

10 As = CP0OS(10, 30)
20 BS = AS + "Fluke Instrument Controller”
30 PRINT Bs

Example 2:

10 PRINT CPOS(10,30); “Fluke Instrument Controller"
Example 3:
10 PRINT CPOS(10,30) + “Fluke Instrument Controller”

The CPOS string function may also be used for more creative displays.
The following example displays a scaled SIN function, using CPOS:

10 : ##% Display Sine Function #as

20

30 FDR x - 1 to BO 'Setup !oos for display length

40 (2 # PI 0 (X/40)) + 9 ompute sine function
30 PRINT CPOS(Y.X)) ‘n’ 'Position cursor and display =

60 NEXT ‘Loop

14-11

Touch Sensitive Display
Using the Display for Output

Special Display Control Characters

Twelve of the ASCII control characters are used by the Controller’s
display module. These characters are listed in Table 14-1. The ASCII
mnemonic is presented with the corresponding CHR$(n) for each of
these characters.

Table 14-1. Special Display Control Characters

CHR$(N) | NMEMONIC FUNCTION RESULT

CHR$(7) BEL BELL Activates the Instrument Con-
troller Beeper.

CHR$(8) BS BACKSPACE Moves the cursor to the left one
column, if not already positioned
at the leftmost column.

CHR$(9) HT HORIZONTAL TAB | Moves the cursor to the next tab
stop, located every 8 columns.

CHR$(10) LF LINE FEED These three commands all move

CHR$(11) vT VERTICAL TAB the cursor to the next lower line, in

CHR$(12) FF FORM FEED the same column. The display
scrolls upward if the cursor is on
the bottom line.

CHR$(14) SO SHIFT OUT Moves the cursor to the beginning
of the current line.

CHR$(15) Sl SHIFT IN Enables the alternate character set
(if programmed in character gen-
erator EPROM).

CHR$(13) CR CARRIAGE RETURN| Enables the standard character
set.

CHR$(24) CAN CANCEL Cancels a display control char-
acter sequence if sent as part of the
sequence.

CHR$(26) SuB SUBSTITUTE Cancels a display control char-
acter sequence if sent as part of the
sequence.

CHR$(27) ESC ESCAPE Starts a display control character
sequence, discussed later in this
section.

14-12

Touch Sensitive Display

DISPLAY CONTROL SEQUENCES

The Instrument Controller display uses two methods of defining
sequences of ASCII characters for added control of the display. One of
these methods is a subset of ANSI Standard X3.4. The other method is
used for certain display controls. This method also provides
compatibility with the mode control sequences used by the Fluke
1720A Instrument Controller.

These character sequences enable the user to customize operator
message outputs. Among the capabilities provided are character
graphics, double-size characters, reverse video, double intensity, and
blinking. The cursor control functions and erasing capabilities give the
programmer complete control over the display.

O Display control character sequences are sent to the display via a
PRINT statement.

0O CHRS$(27) is used to generate the ESCape code that prefixes each
control sequence.

O Use quotes around the characters that follow CHR$(27) so that
PRINT will handle them as strings.

O These sequences are summarized in Appendix E.

14-13

Touch Sensitive Display
Display Control Sequences

ANSI Compatible Display Control Sequences

14-14

The ANSI compatible display control sequences are used to set or reset
display modes. The generalized command format for ANSI
compatible display control sequences is:

(esc[) [paraml] ; [param2] ; [paramn] term
where (esc[) is the sequence:
CHRS$(27) + “[”

and the parameters are defined as set or reset by “selective parameters”
rather than only by numeric characters. These parameters are always a
string of characters whose first character is a question mark (?), and the
second parameter a numeric character between 1 and 8. Any number
may be specified within a given command set, but ill-formed
parameters are ignored.

O To SET a mode, terminate the escape sequence with a lower case
letter ’h’.

O To RESET a mode, terminate with a lower case letter ’I.

O An easy way to remember these two letters is:

SET = logic 1 = high =“h”
RESET = logic 0 = low = “I”

Table 14-2 summarizes the ANSI Standard Mode Selections; defaults
are those listed as “Reset”. Each of these items is described later in this
section.

Touch Sensitive Display
Display Control Sequences

Table 14-2. ANSI Compatible Mode Selections

MODE RESET (1) SET (h)
Yal Field Attributes Character Attributes
72 Single Size Double Size
73 Disable Character Graphics Enable Character Graphics
24 Keyboard Unlocked Keyboard Locked
?5 Opaque to Graphics Transparent to Graphics
76 Disable Character Display Enable Character Display
27 Disable Graphics Display Enable Graphics Display
78 Disable Cursor Display Enable Cursor Display

For example, to disable the cursor display, execute the following
statement in the immediate mode (or as part of a program):

PRINT CHR$(27) + “[?781“

14-15

Touch Sensitive Display
Display Control Sequences

Display Control Character Sequences

14-16

Display control character sequences are used to control the positioning
of the cursor, erasing the display, character enhancements (attributes),
and 1720A compatible mode selection. The generalized command

format for display control sequences is:

ESC [(task number) (;task number) (task letter)

O Use quotes around the characters that follow CHR$(27) so that

PRINT will handle them as strings.

O The semicolon separator is used to separate multiple task numbers
that have the same task letter.

O Use either + or ; to link strings together. For example, PRINT
CHRS$(27) + “[1;5;7m” selects high intensity, blinking, and reverse

image for all characters that follow.

0O Other characters for display may immediately follow a display
control sequence. For example:

PRINT CHR$(27) + "C1;3:17m Fluke Instrument Controller”.

Table 14-3 lists the 1720A compatible mode control sequences. Each of

these is described in more detail later in this section.

Table 14-3. 1720A Compatible Mode Control Sequences

MODE MODE CONTROL SEQUENCE
normal size (ESC)+ “[p”
double size (ESC)+ “[1p”
character graphics ON (ESC)+ “[2p”
character graphics OFF (ESC)+ “[3p”
enable keyboard {(ESC)+ “[4p”
disable keyboard (ESC)>+ “[5p”

Touch Sensitive Display
Display Control Sequences

Cursor Positioning and Display Scrolling

The following paragraphs describe the control character sequences
required to control cursor movement, display scrolling, and cursor
status.

Cursor Movement

The cursor control character sequences can move the cursor to any
position on the screen, either relative to the current position or
absolutely, by designating line and column. Table 144 presents the
cursor controls, with the PRINT statement required to produce them
for the display. The semicolon shown at the end of each PRINT
statement inhibits the Carriage Return and Line Feed codes that
normally follow a print statement. Note that the string function
CPOS(L%,C%) produces an equivalent character string, and is used in
an identical manner. The CPOS string function was discussed earlier in
this section.

Table 14-4. Cursor Controls

ACTION PRINT STATEMENT* EXAMPLE
Up n lines PRINT ES$ + “nA™; PRINT ES$ + “4A™;
Down n lines PRINT ES$ + “nB”; PRINT ES$ + “3B";
Right n columns PRINT ES$ + “nC"; PRINT ES$ + “21C";
Left n columns PRINT ES$ + “nD"; PRINT ES$ + “17D";
Direct to line, column | PRINT ES$ + “L,CH”; | PRINT ES$ + “5,23H";
Direct to line, column | PRINT CPOS (L%,C%);| PRINT CPOS (5%,23%);

*This table assumes this previous assignment:
ES$ = CHR$(27) + “[”

14-17

Touch Sensitive Display
Display Control Sequences

Display Scrolling

Scrolling commands allow movement of the entire display up or down
when movement is beyond top or bottom limits. If the cursor is not at
the top or bottom eof the display, no scrolling will take place. Table 14-5
lists the scrolling commands, and the BASIC statement required to
send them to the display.

Table 14-5. Scrolling Commands

ACTION PRINT STATEMENT* EXAMPLE
Scroll down one** PRINT EX$ + “D™; PRINT EX$ + “D";
Scroll up one** PRINT EX$ + “M"; PRINT EX$ + “M";
Next line scroll** PRINT EX$ + “E"; PRINT EX$ + “E";

*This table assumes this previous assignment:
EX$ = CHR$(27)
**No scrolling takes place if cursor is not at screen top or bottom.

Erasing
Commands are provided to allow a program to erase all or part of a
line or of an entire display. Table 14-6 summarizes the erasing
commands.
e Erase commands do not occupy a character display position.

e Partial erase commands are relative to the current cursor position.

® A semicolon placed at the end of an erase command will cause the
cursor position to remain unchanged.

Table 14-6. Erase Commands

ACTION PRINT STATEMENT
Erase to end of line PRINT CHR$(27) + “[K";
Erase to end of line PRINT CHR$(27) + “[OK"™;
Erase from start of line PRINT CHR$(27) + “[1K";
Erase all of line PRINT CHR$(27) + “[2K";
Era~e to end of screen PRINT CHR$(27) + “[J";
Erase to end of screen PRINT CHR$(27) + “[0J";
Erase from start of screen PRINT CHR$(27) + “[1J";
Erase all of screen PRINT CHR$(27) + “[2J";

14-18

Touch Sensitive Display

MODE COMMANDS

Mode commands affect eight areas: the visual attributes of displayed
characters, the character size, the alternate graphics characters, the
disabling of keyboard inputs, the interaction of the character plane
with the graphics plane, the enabling of the character and/or display
graphics displays, and the suppression of the cursor display.

O Mode commands do not occupy a display character position.

0 Each of these areas is discussed separately below.

O 1720A compatible mode commands are noted individually.

14-19

Touch Sensitive Display
Mode Commands

Character Visual Attributes

The visual attributes of a character (blinking, underlined, reverse
video, and highlighted) may be changed by a BASIC program. Two
methods of modifying visual attributes are used: field attributes and
character attributes.

14-20

n]

Visual attributes are modified by sending a visual attribute
command string or enhancement string to the display viaa PRINT
statement.

Field attributes operate on an entire field of the Controller's
display; they are in effect until cancelled, overwritten by another
enhancement string or overwritten by any ASCII character.

When field attributes are used, a single or multiple enhancement
command occupies one character position on the display,
regardless of the length of the character string required.

Character attributes operate on a character-by-character basis.
Once an enhancement string is sent to the display, each succeeding
character sent to the display takes on those attributes. These
attributes may be cancelled or modified on a character-by-
character basis.

Character attributes are transparent; they require no display space.

Four different enhancements are available: high intensity,
underlining, blinking, and reverse image (dark characters on light
background).

Enhancement commands may be used in multiple combinations.

The Instrument Controller will also respond to the display control
commands used by the Fluke 1720A Instrument Controller. The
Instrument Controller must have the field attribute mode set in
order to use the 1720A display control commands.

Touch Sensitive Display
Mode Commands

Table 14-7 presents the enhancement commands, with the PRINT
statement required to produce them for the display. The semicolon
shown at the end of each PRINT statement inhibits the Carriage
Return and Line Feed codes that normally follow a print statement.
The enhancement commands are the same, regardless of which
attribute mode is set.

Table 14-7. Character Enhancement Commands

COMMAND PRINT STATEMENT
Enhancements OFF PRINT ES$ + “m"”;
Enhancements OFF PRINT ES$ + “Om";
High Intensity PRINT ES$ + “1m”;
Underline PRINT ES$ + “4m”;
Blinking PRINT ES$ + “5m";
Reverse Image PRINT ES$ + “Tm";

NOTE: This table assumes the previous assignment:
ES$ = CHR$ + “{”

14-21

Touch Sensitive Display
Mode Commands

Field Attributes

14-22

Field attributes affect the entire display of the Controller from the
point where they are placed on the screen, until cancelled. Field
attribute mode is the default display mode after the Controller is
restarted, or cold-started. Field attribute mode may also be set by
sending the string:

CHR$(27)+*[711"
to the display via a PRINT statement.

o Overwriting a display location containing an enhancement
command will delete the enhancement.

o Each enhancement command cancels all previous enhancements.

o Each field attribute command requires one character location on
the display when displayed, regardless of the length of the
character string required. This can cause unexpected results when
designing highly formatted screens.

When field attributes are used, the underline and reverse image
enhancements are subject to some limitations imposed by the video
module. The refresh scanning rate of the display exceeds the rate at
which characters are written into the display memory. As a result, these
character enhancements will momentarily cause the entire remaining
display to have underlines or light background until the enhancements
OFF command is written into the display.

O This limitation only applies when using field attributes when
ser:ding characters to the display.

O The character attribute mode of the video module is not subject to
tnis limitation.

0 Programs that use 1720A type display enhancements are
compatible in the field attribute mode.

Touch Sensitive Display
Mode Commands

To avoid this limitation, place the enhancements OFF command one
character location past the future location of the last character of the
message. Then back up to one location ahead of the start of the
message and print the enhancement selections along with the message.
Using the Display Worksheet (Fluke Part Number 533547, pad of 50)
makes this task easier. Remember that each enhancement command
occupies one display location and that the cursor moves forward one
location after a command is placed.

The following example shows the correct sequence of statements to
display “FLUKE” in blinking letters on line 4, column 4. A ruler-line is
displayed on line 3 for a column number reference. When the program
is run, notice that the string “FLUKE” appears at line 4, column 14
because the display enhancement character sequence sent in line 60
takes up one display location.

10 ESS = CHR$(27) + ‘C’ ! set up oscago sequence

13 PRINT ES‘*"II' i Piald attri utes

20 PRINT E ‘2J° 8 ?

23 PRINT CPOS(S.1))"1234567390123456789 Truler for reference
30 PRINT CPOS(4,19) ' move to clear end of message

490 PRINT ESS: ’m’ ! disable all enhancements

30 PRINT CPOS(4,13)) ! move to boginntn? of message

60 PRINT ES%; ‘Sm’; i enable blinking letters

70 PRINT ‘FLUKE’ i display message

The following example displays “Fluke” as in the last example. This
time, the test string is stored in a string variable in line 20. The length of
the string is checked in line 30 and then used in line 70 to position the
disable enhancements command at the proper place in the display.
Line 100 enables all enhancements in a single command that will
occupy one display location.

10 ES$ = CHR$(27) + "(" standard escape soquonco
M$ = "Fluke"

l
20 uke i put test strin% here
Q0 L% = LEN(MS) i now store length in L%
40 PRINT ESs+“2u" i cloar screen
INT ESS+"?711" : attributes

90 PR fie
&0 PRINT CPOS(S.1):“12345679901234567890' 'Tuler for reference
70 PRINT CPOS(4,13 + LX + 1); !cursor to end of string

90 PRINT ESS; ‘m’) ! disable enhancements

O PRINT CPOS(4,13) i cursor to beginning of string
100 PRINT ES$+‘1; 4.517n ;1 send the attributes out
iég EzBNT M ! print test string

Notice that in both of the preceeding programs, the CPOS() function is
used to place the current print location at row 4, column 13 (line 50 in
example #1, line 90 in example #2). Since the enhancement string
requires one display location, the message appears at line 4, column 14.

14-23

Touch Sensitive Display
Mode Commands

14-24

To experiment with the effects of field attributes, try removing
attributes from line 100, one at a time, to see their effects on the display.
Next, change line 70 to read:

70 PRINT CP0OS(4,13 + L%); '!'cursor to end of string

Note the effect of this change on the balance of the display. Now add
this line:

113 PRINT CPOS(10, 13); ‘FLUKE INSTRUMENT CONTROLLER‘
Note that the attributes stay set, because last character in the string

“FLUKE” overwrites the disable enhancements command which line
70 placed at row 4, column 18.

Touch Sensitive Display
Mode Commands

Character Attributes

Character attributes achieve the same net effect as field attributes.
Character attributes use the same character enhancement commands
as field attributes, however, the Instrument Controller must first be set
to the character attribute mode by sending the following string to the
display:

CHR$(27)+'L71h’

When character attributes are enabled, the Instrument Controller’s
display responds to the character sequences described in ANSI
Standard X3.4. This standard defines sequences of ASCII characters
used to control the visual characteristics of a video display module.

O The character sequences used for display enhancements are listed
in Table 14-7, which was presented earlier in this section.

O Character attributes are said to be “transparent” and do not
require space on the display screen.

O After setting the character attribute mode as described above, send
the appropriate character sequences to the display module (using
the PRINT statement) to modify the visual characteristics of the
information displayed on the screen.

0 Once a display enhancement character sequence is sent to the
display, all subsequent characters sent to the display acquire those
visual characteristics. This remains true until another display
enhancement character sequence is sent to the display.

The following program illustrates the use of character attributes.
When the program is run, the test string “FLUKE” is displayed in
flashing characters. Notice that the test string appears at line 4, column
13 since the display enhancement character sequence sent in line 60
does not require any display space. Compare this program with the
program presented earlier in this section under the heading: Field

Attributes.
10 ES$ = CHR$(27) + “[(" !predefine esc [sequence
20 M$ = “FLUKE" {test strin%
30 L% = LEN(MS) !length of test string
40 PRINT ESs+"2J" ‘clear screen
30 PRINT ES$+"71h* ‘character attributeas
60 PRINT ES$+"3m" 'blinking attribute
70 PRINT CPOS(4,13);M$!print the test string @ 4,13
gg EﬁsNT ES$+"m" ‘Teset attributes

14-25

Touch Sensitive Display
Mode Commands

Non-destructive Display Character

The non-destructive character is used to modify tne visual attributes of

characters that are already on the display screen. Thus, a program
could display a list of choices (a menu), then after allowing the user to
select an option, display that option by modifing its visual attributes.

The non-destructive character is

CHRS$(27)+ “="

o The non-destructive display character is unique because it may be
sent to the display, *overlaying* an existing character, without

destroying (erasing) that character.

O Any character that is overwritten with the non-destructive
character takes on the visual attributes in effect at that time. In
essence, the new attributes for a given character or characters are

“painted” over them using the non-destructive display character.

0 Thenon-destructive character advances the cursor by one position.

O The non-destructive character is ignored when field attributes have

been enabled.

The following program prints the test string “FLUKE” on the screen,
waits, then causes the test string flash, character by character. Since
character attributes do not require display space, the string remains

intact and in the same screen position.

= "FL

10 ES$ = CHR‘(27) + " grndof:no esc [sequence
Me KE" est string

30 ND$ = CHR$(27)+“-" inon dostructivo character

40 LY = LEN(MS ‘length of test string

S50 PRINT ES!*“:J“ !clear screen

60 PRINT ES$+"?1h* ‘character attributes

70 PRINT CPOS(S.1),"12343&739012343&7890" ‘a ruler line
80 PRINT CPOS(4,13); Ms rint the test string @ 4,13
90 !'send out the hzghl!xh strlng. then wait second
100 PRINT ESS; "im";

110 FUR IZ - 0 TO L% 'uso a loop to highltqht the rest
115 g one with the non destructive cha

120 P INT CP05(4.13 + 1%4)iNDS$

130 NAK 'wait a second

140 NEX ‘do it again

150 PR!NT EStx'm H 'now reset everything

160 END

14-26

Touch Sensitive Display
Mode Commands

Character Size
Normal sizez PRINT CHR$(27) + “[p™;

PRINT CHR$(27) + “[0p”;

Double size: PRINT CHR$(27) + “[1p”;

Character size commands affect the entire display by changing the
basic timing of the display scan. Double-size characters are doubled in
both height and width, occupying the area of four normal-size
characters. Such characters are more easily recognized from a

distance.

O Normal size allows 16 lines of up to 80 characters each.

o Double-size allows 8 lines of up to 40 characters each.

O Character size commands do not occupy a display character
position.

0 Character size commands clear the screen and return the cursor to
the home (upper left) position. If the command is not terminated
with a semicolon, the cursor will then move down one line.

0 The video display module will remain in normal- or double-size
display mode, according to the most recent character size
command, even if the program is completed.

o The video display module starts up in normal size display mode
until commanded to double-size.

O The edit command cancels any previous double-size commands.

14-27

Touch Sensitive Display
Mode Commands

Character Graphics

Enable graphics characters: PRINT CHR$(27) + “[?3h”
Disable graphics characters: PRINT CHR$(27) + “[?31”

14-28

The alternate graphics character set is presented in Figure 14-1. When
graphics mode is enabled, these characters are displayed from alternate
pattern generation circuitry in place of the numbers 0 through 9, and
the : character.

o

Don’t confuse character graphics with display graphics. Display
graphics is described in Appendix K of this manual.

Graphics enable and disable commands do not occupy a character
display location.

Graphics characters cannot be given character enhancements.

Graphics characters may be enabled and disabled as many times as
desired within a single display. It is possible, for example, to
display a box around a number.

The names given to the graphics characters in Figure 14-1 are
significant. If the characters are used as their name indicates, a
display can be set up that changes in size only (not shape) as the
display mode is changed between normal and double-size.
Program code written in this manner can be used in other
application programs.

Graphics commands select a mode of the video display module.
The module will remain in the mode most recently selected even if
the program is completed.

The video display module starts up in normal (graphics disabled)
mode until commanded to enable graphics.

Character graphics and the graphics plane can be used
independently.

Touch Sensitive Display

Mode Commands

Figure 14-1. Alternate Graphics Character Set

CHARACTER

NORMAL SIZE

DOUBLE SIZE

FUNCTION

0 N

B B O B B S O B8 8

TSI 4L Sl

Top Right Corner

Top Left Corner

Bottom Right Corner

Bottom Left Corner

Top Intersect

Right Intersect

Left Intersect

Bottom Intersect

Horizontal Line

Vertical Line

Crossed Line

NOTES:

1.

2
3.
4

To enable Graphics Mode, send the display ESC [3p or ESC [?3h

To disable Graphics Mode, send the display ESC [2p or ESC [?3I

In Graphics Mode, characters in the left column are displayed as shown.
Use the character names as defined to construct illustrations that do not

change form between normal and double size.

14-29

Touch Sensitive Display
Mode Commands

14-30

The following program displays the graphics characters, first in
normal size, and then, when the screen is touched, in double-size.
Touching the screen a second time will clear the display and reset it to
normal size with character graphics disabled.

10 ES$ = CHR$(27) + “[" \ CL$ = ES$ + “2U*

20 PRINT CLS$; ES$ + ";3p"; CPOS(8,24); \ €OSUB 350
30 PRINT CL$: ES$ + "1;3p"; CPOS(4,3); \ GOSUB 50
40 g?égT ES$ + ";2p"; CLS

50 PRINT "0 1 234956789 :"
&0 WAIT FOR KEY \ KX = KEY \ RETURN

The following example program illustrates:

1. Use of the character graphics to draw a box.

2. Character size commands.

3. Display character enhancements.
This program will draw a box, and then display “FLUKE
INSTRUMENT CONTROLLER” underlined and in reverse image
within the box. Every two seconds the entire display will change from

normal to double-size and then back. Touching the screen will reset all
modes to normal and clear the screen.

In this example, the display is created by a subroutine. The same code
is used for both normal and double-size. This is due to two separate
techniques:

1. Graphics codes are used as defined by their names, without
reference to how they look.

2. Cursor movement is relative to the center point, established
before entering the subroutine.

Touch Sensitive Display
Mode Commands

E Display Demonstration Program

?N KEY GOTO 800 !Program exit path

g String variables:

ESS = CHR$(27) + “C* !Control sequence identifier
NES$ = ES$ + “g' ‘Normal size

DS¢ = ES$ + “1p” ‘double-size

NC$ = CPOS(8.) !Normal size center
DCe = CP0OS(4, 20) ‘double~size center
ORS = ES$ + “3p" !@Graphics mode

COos = ESS + "22‘ !Clear graphics mode
Dis = ES$ + "B* + ESS® + "D" 'Down one and left one
Uls = ESS + "A* + ESS$ + "D” 'Up one and left one
L1S = ESs + "2D" ‘Left two

ﬁﬂt = CPOS(1,1) 'Home position

g First do it normal size:

PRINT NS$; NCS; !Normal size, center.
QOSUB 390 !Dtgglau

QAIT 2000 'Wait 2 seconds

g Then do it double-size:

PRINT DS$; DCS$i 'double-size, center
@0SuUB 390 ‘Display

?AIT 2000 ‘Wait 2 seconds

g Then repeat the sequence:

?oro 210

2 The display subroutine:

2 First draw a box:

PRINT GRS 'Graphics mode

?RINT EG$ + "14D"; ESS + "2A"; !'Left 14, up 2
fR!NT "1%; ‘Upper left corner
FOR I = 1 TO 28

PRINT “8"; !Top line

yEXT

fRINT 0" !Upper right corner
FOR I = 1 TO 3

PRINT Dis$; “9%; 'Right side

NEXT I

eRINT D1s; “2%; ‘Lower vight corner
FOR I = 1 TO 28

PRINT L1%; “8%; ‘Bottom line

vEXT I

fRINT L1is; "3%; ‘Lower left corner
FOR I = 1 TO 9

PRINT Uls; “9%; ‘Left side

QEXT I

fanT ces 'Clear graphics mode

é Place the message in the box:

PRINT ES$ + "2B") ES® + "26C"; 'Down 2, right past message
PRINT ES$ + “"m*; !Disglnu enhancements oféf

PRINT ES$ + "26D"; ‘Left, Jjust before message

PRINT ES$ + “4; 7m"; !Select character enhancements
PRINT "FLUKE INSTRUMENT CONTROLLER";

:g%s;NHﬂtn '!Cursor to home position

g Clean uvp the display before leaving:
. 'Empty the KEY buffer

K% = KEY
PRINT CG$: NS$, 'Reset graphics, normal size
ES%NT HMS$; home position 'normal size, home position

14-31

Touch Sensitive Display
Mode Commands

Keyboard Disable and Enable

Disable keyboard: PRINT CHR$(27) + “[74h”
Enable keyboard: PRINT CHRS$(27) + “[241”

14-32

When the keyboard is disabled, all programmer keyboard inputs
except control codes are ignored.

a

m]

The Touch-Sensitive Display remains active for inputs.

Disable and enable commands do not occupy a character display
position.

A semicolon (;) placed at the end of a keyboard enable or disable
command inhibits the transmission of Carriage Return and Line
Feed to the display.

Keyboard disable/enable status is a mode of the display module.
This status remains as defined in the most recent disable or enable
command, even after a program ends.

The Instrument Controller starts up with the keyboard enabled.

The keyboard is reenabled by entering (<CTRL)/T.

Touch Sensitive Display

USING THE DISPLAY FOR INPUT

The Touch-Sensitive Display of the Instrument Controller allows
operation without a keyboard. This feature allows the user to design
operator input prompts in application programs that relate directly to
the task at hand. The operator is free to maintain his or her focus upon
the assigned task without the distraction of a complex keyboard or
non-relevant decisions.

Figure 14-2, Instrument Controller Programming Worksheet
illustrates the relationship between the Touch-Sensitive Overlay or
TSO and the locations of displayed characters. Note that the touch-
sensitive area is divided into 60 blocks numbered sequentially from the
upper left. Each block covers 3 double-size characters, or 12 normal-
size characters. Columns and rows of both normal and double-size
characters are numbered as the CPOS string function would address
them. This grid pattern worksheet is a useful planning tool available
from Fluke in pads of 50 sheets. Order Fluke part number 533547.

SINGLE -SIZE COLUMNS
1 s 10 15 20 es 30 as 0 a5 %0 59 60 65 70 7% [
IIIlllllllllllllllIIIIIII'IIIIIIIIIIIIIIIIII||IIIIlI|II|IIHIIIII'IIIIII‘II|I|II|
— - T . " —
! N e Il'”l;lwll 1 %
— |14 : s TOUCH PANEL Pttt -
2 YRR LER B T NEES RR LR RE RR N FR TR Y N 0 PN I P I I I I SO I R I 2
E;" i N i 2 i3 “ s 6! 7] [9 R 4 g
4 + + + + T t -
G, .| T T T TR THTEELTE T 535
L n 12 sl e S s e 1117 18 9] 1] a0 ! 6
: * T T T -
o RN N R B RO U e ey
5 — Al e 22]illa3 24] | 25 26 27 28 2of | 3o} '}/ LG
. ',]I.i;l.lll [T T I HHN d 2
w_ ! 2 L] B E] 34 3s 36 37 38 3s «0| ; 10w
a AT LR e e p o ot Tlea
8_ 8 L a1 a2 143 aa as 46 47 48 49 30| 12 Z
-+ + : + ==
S T P T T e T T T T T T Ty B
_ NS 51 s2 53 S4 ssl|]]se 57 sel . |!s9 6o] 14
T T T I T | » I
M R HENERRGE I e el s
| 1 Izl 3' als'sl 7'.' ’llbl\IllE'l:i'lQ'l!)'lGll7|IO'IS'?JElladziZJZJZAQAZJZJQJ DIIJA:NJ:J:J:J:H{:J:J«J
DOUBLE-SIZE COLUMNS
Notes.
Controller Programming Work Sheet FLUKE
Program Title Programmer — _______ Page ___ of __ A=t
Reoraer under Fruse PN 633641 Rev 1 683 (e 1 501

Figure 14-2. Controller Programming Work Sheet

14-33

Touch Sensitive Display
Using the Display for Input

Display Input Statements

The following paragraphs describe the KEY Variable, WAIT FOR
KEY, ON KEY GOTO, and OFF KEY statements. Each of these
BASIC statements is used by a BASIC program for getting user
responses from the TSO.

KEY Variable

The system variable KEY contains the number of the last TSO block
pressed. The KEY variable has the following characteristics:

u]

[m]

14-34

KEY is an integer ranging from 0 to 60.

A KEY value of zero means that no TSO block has been pressed
since the last time the value of KEY was used by a BASIC
statement or since the last time a RUN command was executed.

When KEY is accessed by a program (e.g., “K% = KEY” or “IF
KEY = 0 THEN...”), it is set to zero.

KEY may be used in any context that requires an integer variable.

KEY cannot be assigned a value except by pressing the TSO.

Touch Sensitive Display
Using the Display for Input

ON KEY and OFF KEY Statements

Usage:

ON KEY GOTO ({line number}
OFF KEY

ON KEY GOTO (line number) is one form of the ON-event interrupt
enabling statement described in the Interrupt Processing section.

@]

When the ON KEY statement is encountered, the number stored in
KEY is repeatedly checked for non-zero.

A zero value for KEY causes the GOTO to be ignored until KEY
becomes non-zero.

Control transfers to the line number following GOTO if a non-zero
value for KEY is detected any time after the ON KEY Statement
has been executed.

The section of program referenced by GOTO may be an interrupt
processing routine, with a RESUME statement, or it may be a
program exit.

After control has been transferred, the next RESUME statement
transfers control back to the program line that would have been
executed next if the non-zero KEY had not been detected.

After control has been transferred, further KEY entries on the
Touch-Sensitive Display are ignored until a RESUME statement
is encountered.

OFF KEY disables further checking of the value of KEY.

14-35

Touch Sensitive Display
Using the Display for Input

WAIT FOR KEY Statement

Usage:

14-36

WAIT [time expression] FOR KEY

(time) FOR KEY is one form of the WAIT FOR (event) statement
described in the Interrupt Processing section.

@]

When the WAIT FOR KEY statement is encountered, the number
stored in KEY is checked for non-zero.

The maximum time to wait may be specified by a number, numeric
expression, or time expression.

If the time to wait is expressed as a number or numeric expression,
it must evaluate to an integer between -32768 and 32767.

Time expressions allow the time to wait to be described in the
folowing form:

hh:mm:ss thours: minutes:seconds

A complete description of valid time expressions is described in the
Reference volume of this manual set under: WAIT FOR.

The statement is ignored if the specified time is zero or negative.

The wait time is indefinite (until the Touch-Sensitive Display is
pressed) if no time is specified.

A zero value for KEY will cause program execution to stop until
KEY becomes non-zero, or until the specified time has elapsed.

A non-zero value for KEY will immediately terminate the wait
condition, passing control to the next program statement.

Touch Sensitive Display
Using the Display for Input

The following example illustrates the KEY variable and the WAIT
FOR KEY interrupt. Line 10 clears the KEY buffer. This resets any
value it contained from touching the display before the program
started. Line 20 halts the program until the Touch-Sensitive Display is
touched. Line 30 prints the KEY number. Line 30 also clears the key
buffer. If the buffer were not cleared, line 20 would detect it again,
allowing line 30 to display the same key value repeatedly.

10 K4 = KEY ! clear key buffer

15 PRINT "Touch me " ! display a message
20 WAIT FOR _KEY ! enable key interrupt
30 PRINT ‘KEY = ‘; KEY ! display key value

40 e0TO 20

Sample displayed results:

41
1

x
m
<
AR RN
N
w

The following example program displays the number of each key in
double-size directly under the spot that was touched.

0

Flag KF% in line 80 enables the interrupt routine to clear the
“Touch the Display” message from the display.

After displaying a prompt message, line 120 halts the program until
the display is touched. Then line 130 enables the KEY interrupt.

Since the KEY buffer has a numberin it from touching the display,
line 130 immediately branches to the interrupt routine, disabling
the KEY interrupt.

Since the KEY flag KF% is initially zero, line 220 clears the “Touch
the Display” message.

Line 230 sets the KF% flag to one, so that subsequent passes
through the routine will not clear the display.

Lines 240 through 290 compute the position of the spot that was
touched and display the KEY number at that spot.

Line 300 reenables the KEY interrupt and branches back to the

main routine. Since the ON KEY GOTO statement is still active,
line 140 waits for another touch on the display.

14-37

Touch Sensitive Display
Using the Display for Input

14-38

If a touch occurs within 10 seconds, the interrupt routine is.
reentered.

If a touch does not occur within 10 seconds, line 150 disables the
KEY interrupt and branches to line 80 starting the sequence over
again.

: #ue Display Keys ##s
i Displays the KEY number of the spot touched. Clears
! the display to start over if not touched within 10 seconds.

K% = KEY !Clear KEY buffer
ESS = CHR$(27) + "(" 'Diiplaq escape sequence
KF4 = O% 'KEY flag
PRINT ESs; "2J“ ES‘: ”lp 'Clear display, double-size
PRINT CPOS(4, 1 'Position cursor
RINT “Touch tho Dl!plau'" 'Displaa prompt message
WAIT FOR KEY ‘Wait until display is touched
ON KEY 6OTO 200 'Enabl. KEY interrupt
WAIT 10000 Wait 10 seconds
OFF KEY 'Dtsablo KEY interrupt
?OTO 80 'Loop
: ##% Key Interrupt Routine #as
K% = KEY !Get KEY number
IF KF%Z = 1% THEN 240 IFirst time through?
PRINT ESS; "“2J" !Clear _screen
KFYL = 1% !Set KEY flag
KIX = K4 - 1% !Compute KEY index
TRY = INT (KI%Z / 10%) !Compute touch panel row
DRZ = TR% + 2% !Compute display row
DCY = &% + (KIX — 10% # TRXL) #» 3% 'Computo display column
PRINT CPDE(DRZ,DCA)x 'Position cursor to spot touched

PRINT USING "##", KX 'Dilglau key on spot touched
RESUME 140 ‘Wait for another key

Touch Sensitive Display
Using the Display for Input

An Interactive Display Program

The following program combines graphics and the KEY function to
create an interactive display without a keyboard. The display is a
matrix over the touch-sensitive area containing the characters 0-9, A-Z
+,-,*,/,SPACE, DELETE, and ENTER. It requests the operator to
enter information. As the operator touches the characters, they are
entered into string OE$ and displayed. Previous characters are deleted
when DELETE is touched. The operator entry subroutine returns to
the main program (operator entry loop) when ENTER is touched. A
typical user program could then use the operator entries in string OES.
This example program simply requests another entry.

The first section of the program (up to line 1620) sets up the display.
Lines 1060 through 1460 create the display matrix by printing
concatenated strings of graphic characters. Lines 1470 through 1620
print the characters within the matrix. The DUPLS$() function is used
in lines 1360 to 1450 to simplify drawing the boxes used at the bottom
of the display.

The second section of the program requests operator entries. It

compares the KEY value against limits and adds the corresponding
ASCII character to string OES.

14-39

Touch Sensitive Display
Using the Display for Input

14-40

N=O
Q00

PRI RI R =0 5t dut ot et put Pt ot Dot Pt
8083838388

NN
[T JA]

Dt 1 1t (b P D o Pt b e Bk b Bk b
o000

Interactive Display Program ##s
Uses graphics and KEY function for operator keyboard
Set Up the Display:

DIM S®(11) ‘Dimension graphics variable
ES$ = CHR$(27) + “C* ‘Disglaq control identifier
PRINT ES$ + "?3h" ‘enable charactor grnphicn
PRINT ES$ + “2J% ‘clear the disp

PRINT ES$ + *711" ‘set field nttributoQ mode

;t -9CPDS(2.10) + *188888" 'First line

As = “488888"

COSUB 12100

S$(0) = T$ + “O"

T = “588888" !Part of 3rd, 9th, 7th lines
AS = ":88888"

Q0SUB_12100

TS = TS + “6"
FOR I = 2 TO & STEP 2 _!Add CPOS to 3rd, 3th, 7th lines
S$(I) = CPOS(I+2,10) + T$

NEXT I
T$ = “9= ‘Part of 2nd. Ath. béth, 8th lines
X = 10 ! how many ti
A$ = DUPL$(" =, 3)+"9~ i(3 SPACE THEN 9)
ggsusriaxoo !subr to make gr'ix chr string from as
-

! Add CPO8 to 2"6. 4th: 6th, 8th lines

280 FOR I = 1 TO 7 ST

88(1) = CPDB(I+2;10) + TS
NEXT I

I’ -QCPOS(IODIO) + "388888" !9th line
-

30 As = “788888"
GCOsSuy

S8(8) = T8 + “2* ! 8's are 16 long

S48 = DUPLS("” *,6) '! a string of 6 spaces

SP$ = DUPL$(" ", 16) ! & string of 16 spaces

Tlt = ={" 4+ DUPL®("8",16) + "O* ! a horizontal line
set up box tog-

Tt = CPUS(12,1 + Tis + 868 + T1

G8(F) = TS + S6&8 + "1™ + DUPLO('B'.IO) + "0" !'10th line

‘set up box sides
Te=CPOB(13, 10) + "9" + SPS + "9 + 848 + "9 + §PS + "9*
S8(10) = T8 + 568 + “9% + DUPLS$(" *,10) + ="9*=
T28 = “3% + DUPLS("B", 16) + “2"
! set up box bottoms
T8 = CP 8(14.10) g T20 + DUPLS(" ",6) + T28 + DUPLS(" *,8)
88(11) = T8 3 PLS$("8", 10) + =2"
! Displa tnc matrll. dtsabl. character graphics
PRINT 88{(0..11); ESs + “731*
‘Displnu 1st row characters

X = &9 ‘Display 2nd rvow characters
X = 73 !Display 3rd row characters

X = 89 'Display 4th row characters
@OSUB 10:

320
0 PRINT CPOS(9, 49)+"+"; CPOS(9, 33)+%~ =;

PRINT CPOS(?.bl)*'i‘iCPDB(9,67) +*/"

abe
PRINT CPDS?IS.16)+”ENTER'1CPOS(13.41)*“8PACE“1
PRINT CPO8S(13, 61)+"DELETE"

fRINT ESS® + “781" ‘turn cursor ofé

é ## Operator Entry Loop ##

OP$ = “"ENTER SOMETHING" 'Dp.rator prompt

?OSUB 10020 'Call operator entry routine

2 User program to utilize operator inputs should go here.
©0TO 1660 'Loop

sTOP ‘End of program

Touch Sensitive Display
Using the Display for Input

OOO.: ## Subroutine to Accept Operator Entries ##

- ne ‘Null .ntfz dt:plaq grompt & ontrq
'0 rst time through. prin th grong with a fla it
PRINT CPDS(I 1) + OPS$ + ES$+“Sm + ESS$+"m" + ES +uR"

‘ehls timn don’t make the ‘=’ flash
PRINT ESt+‘n' + CPOS(1,1) + OPS + " — " + ESS+"K"” + OES

80 K = ‘Engt KEY buffer
UAIT FDR KEY t for display touch
K% = KEY !Get KEY number
PR!NT CHRS$(7X); !Sound beeper

Check for O - 9:
{F chg I:Z'THEN OEC = OES® + CHRS(A7X + KX)
! ec or
IF KX > 10% AND KX (371 THEN OES = QES+CHRS (94X + KX)
IF KX = 3742 THEN OES OES "+"* !'Check for +
F K% = 387 THEN OES$ = OES + ®=" t'Check for -
; KX = 39X THEN OES = QES + "#" !Check for @
-
F
F

KX = 40X THEN OES OES$ + /" !Check for /
Check for Delete:
KX = 397 OR KX = 60X THEN OES=LEFT(OES, LEN(OES$)- 1%)
Check for Spac
K%) 34% AND K% (38X THEN OEs$ = OEs$ + * *
Check for Ente
F K7) 507 AND Kx ¢ 34% THEN 10270 ELSE 10070
! g ? message:
PRINT CPOS{16, 1)+"Your last entry: "; ESS+“K"; 0ES:
RETURN

1
I
1
'
1
1
i
'

Subroutine to Display Characters

)
I
i

A

B

F

= A + 2 ‘Increment line number

= 13 'Sot column number

OR I = ‘Loop on range of characters
PRINT CPOS(A.B) + CHR$(1); 'Diiplag character
B =B + !Increment column
NEXT I iNext character

?ETURN

é ## Subroutine to Create Craphic Character Strings ##

FOR I = 1 TO X ‘Loop on set of graphic parts
O Ts = T$ + As 'Add set to temporary string

NEXT I 'Next set

RETURN

1

END

14-41

Section 15

Program Debugging

CONTENTS

Introductionouviiviniii i i i e e e e 15-3

OVBIVIEW ottt ittt ittt ie et neneennenseneeneneeneenes 15-3

Debugging Toolscooiiiiiiiiiiiiiiii i, 154
TRACE ON Statementccvvtiirininennneennnnn 154
Line Number Tracingcoveirivrnenennnnennn. 15-5
Variable Tracingcccvuiuininninnnnenennnnn. 15-8
Other Trace OPtionsvvuiiinneennnennnneennnns 15-11 —
TRACE OFF Statementcovtiintiininnnnnn. 15-13
STOP ON Statementvitiiinvnnrineenneennns 15-13
STEP Commandcooviiitinirennrennennneenns 15-14
CONTTOCommandovvvnreninnenneneenenns 15-15

15-1

Program Debugging

INTRODUCTION

A program is seldom perfect the first time it is typed in. Errors are
expected and Fluke BASIC provides several ways to detect and correct
them. Programming errors are called bugs. The procedures used to
find and correct errors are called debugging methods. This section
describes these methods.

Errors fall into two categories: errors in syntax and errors in logic.
Syntax errors are format or typographical errors, such as mismatched
parentheses or an unrecognizable keyword. The BASIC interpreter
will notify the programmer of most of these at the time the statement is
first typed in and notify him of any remaining syntax errors the first
time the program is run. The interpreter does not, however, notify the
programmer of logic errors which show up as incorrect program
results. Without additional tools these logic errors can be difficult to
locate. This section presents the tools provided for locating logic
errors.

OVERVIEW

This section describes debugging tools that are primarily useful for
locating logic errors. These tools allow the programmer to observe
program flow and variable assignment while the program executes
statements. These statements do not check for syntax errors. They are
designed to simplify the task of locating logic errors in the program.

15-3

Line Number Tracing

Program Debugging
Debugging Tools

A line number trace has the following forms:

STATEMENT

TRACE ON

TRACE ON line number

TRACE ON # channel

TRACE ON # channel, line number

MEANING

Trace line numbers from
the first line and send the
results to the display.

Trace line numbers from
the specified line and send
the results to the display.

Trace line numbers from
the first line and send the
results to the open
channel.

Trace line numbers from

the specified line and send
the results to the display.

15-5

Program Debugging
Debugging Tools

Results:

/f)

30 S8howing that the loop was
40 executed 3 times

15-7

Program Debugging
Debugging Tools

O A variable trace of an array may use the form A() as the variable.
The statement:

TRACE ON A()
means “TRACE ON all elements of array A”.
O An array must be previously dimensioned before tracing.

O A variable trace and a line number trace will not execute
simultaneously.

0 Two or more variable traces will execute simultaneously. For
example:

10 TRACE

ON A
20 TRACE ON B

is equivalent to TRACE ON A,B.

O A variable trace occurring after a line number trace turns off the
line number trace.

A variable trace statement resembles the line number trace statement
except that a list of variable names is included. The following example
specifies trace output to channel 2, tracing to start at line 340, and
tracing of changes in values of A%, element (3,4) of array B, and all of
array AS:

30 TRACE ON #2X, 340, AX., B(3X, 4X), As()

NOTE
A variable trace of an array cannot be done without first
dimensioning the array with a DIM statement.

15-9

Program Debugging
Debugging Tools

15-10

Variable trace display output takes the following form:
line number identifier type(indices) = new value

Where:

1. Line number is the number of the line in which the variable was

assigned a new value.
2. Identifier is the name of the variable.

3. Type is % for integers, $ for strings.

4. Indices identify which element of the array is being traced on

and displayed (for array elements only).

5. New value is the new value assigned.

This example shows the result of a trace of an array variable:

TRACE ON A (1, 2) Displays the value of A(1,2) when it is

assigned. For example:

220 A(1,2) = 47.3386

This example program illustrates the display resulting from a trace of

an integer array program;

20 TRACE ON A%(
30 FOR I% = 0% TO 2%
40 OR JX = OX TO
50 A% (IX, JX) = IX # JU%
&0 NEXT J%
70 NEXT I%
80 TRACE OFF
90 END
Results:

30 A%(0,0) = 0
30 AX(0,1) = O
30 AX%(0,2) = 0
30 AX(1,0) = O
30 AX%(1,1) = 1
30 AX(1.2) = 2
50 AX%(2,0) = O
30 AX(2,1) = 2
S50 AX(2,2) = 4

Program Debugging
Debugging Tools

Other Trace Options

TRACE ON line number can be used to define a trace region within a
program. The example below traces the array A$ only in the
subroutine starting at line 110. Until TRACE OFF is executed,
TRACE ON continues to trace all variables for which a TRACE ON
was executed, and continues to send trace output to the specified
channel or the display.

DIM A8 (DX,
TRACE ON llOo A‘() : Btl;t tr:géng array As

! at line
FOR IX = OX to 5%
A8 (I%, OX) = CHRS (ASCII (’ ‘) + I%)
©0SUB 110
NEXT I%
TRACE OFF
q sTOP

FOR JX = 1% TO
AS (IX, JX) = A‘(IX. JE = 1%) + CHRS(ASCII(‘’‘) + I%X + JX)

NEXT J%

TRACE ON 110
RETURN

END

The following trace display output results from running this program.
Refer to Appendix G, ASCII/IEEE-1980 Bus Codes, and note the
display characters that follow SPACE, character number 32, for
clarification of these results.

88888888888888888888

Pt P o P P i i P P P P ik Do P b Db b b P b b b Pt
o0

5858

120

A8(0, 1) = !
A$(0,2) = !*
A$(0,3) = !'“p
AS(0,4) = !"p8
AS(0,3) = !“#8%
AS(1,1) = '™
AS(1,2) = !'“®
AS(1,3) = !"#8
AS(1,4) = !“#S$%
A$(1,3) = '".‘Z&
AS(2,1) =
AS(2,2) = "Oi
AS(2,3) = “#8%
AS(2,4) = "#s8
AS(2,3) = “#eAk’
AS(3,1) = #8
AS8(3,2) = #8%
AS(3,3) = #8%Y&
AS(3,4) = #8L&’
AS(3,3) = #BAK‘(
AS(4,1) = ¢
AS(4,2) = S$L&
AS(4,3) = $%&’
AS(4,4) = S$A&‘(
AS(4,3) = $A&‘()
AS(D, 1) = L%
AS(3, 2) = L&’
AS(D,3) = L&‘(
AS(3,4) = X&‘()
AS(D, D) = Lk’'()»

15-11

Program Debugging
Debugging Tools

It is also possible to send trace output to different channels. Output is
sent to one channel at a time. The following example illustrates this:

10 OPEN "TRACE1.DAT" A8 NEW FILE 1%' First trace channel
20 OPEN "TRACE2.DAT"” AS NEW FILE 2%' Second trace channel
100 TRACE ON A%, B$(), C() ! Send output to console
2350 TRACE ON #1% ! Send output to channel 1
370 TRACE ON #2% ! Send output to channel 2
{8:1!8 TRACE OFF ! Discontinue all tracing

15-12

Program Debugging
Debugging Tools

TRACE OFF Statement

Usage:

TRACE OFF

TRACE OFF disables any pending or active trace assigned in the
program and destroys the variable list.

The following example illustrates that TRACE ON starts only a line
number trace after TRACE OFF.

10 TRACE ON A, B ! Trace variables A and B
ACE OFF ! Halt the variable trace
lOO TRACE ON ! Start a line number trace

The following example illustrates a way to suspend tracing until a later
point in a program.

10 ACE ON A, ! Trace variables A and B
30 TRACE ON IOO i B8top trace until line 100
100 ! Resume tracing variables A and B

STOP ON Statement

Usage:

STOP ON line number
STOP ON line number, stops execution of a program.

O STOP ON line number, allows a program to be run in sections
during logic debugging.

0 The program stops at the line number of the STOP when ON line
number is not included.

O The program stops at the line number following ON, without
executing it, when ON line number is included.

O STOP ON may be executed in either Immediate or Run Mode.

o STOP ON line number enables the STEP command (see below).

15-13

Program Debugging
Debugging Tools

STEP Command
Usage: STEP

15-14

The Immediate Mode STEP command sets a mode in which each
statement within a program is executed individually by pressing
RETURN.

m]

STEP must first be enabled by a breakpoint stop in a running
program, caused by STOP ON or CONT TO.

After a breakpoint stop, type STEP to select Step Mode.

From Step Mode, type CTRL C or any Immediate Mode
command to return to Immediate Mode.

Any BASIC command or statement that is available in Immediate
Mode can also be used to exit Step Mode.

In Step Mode, one statement is executed each time RETURN is
pressed.

After executing each statement, the display reads: STOP ON LINE
n, where n is the next line to be executed.

When used with a variable TR ACE ON, the display will also show
changes in selected variables whenever a statement assigns a new
variable value.

Program Debugging
Debugging Tools

CONT TO Command
Usage: CONT [TO line number]

The Immediate Mode Continue To line number command causes
program execution to continue from a breakpoint stop caused by
STOP, STOP ON, CONT TO, or CTRL C.

o The CONT TO line number command is available only in
Immediate Mode.

0 CONT TO line number must first be enabled by a breakpoint stop
in a running program, caused by STOP, STOP ON, CONTTO, or
CTRL C.

O Any subsequent action other than entering the CONT TO line
number command disables the command. The program must then
be rerun to the breakpoint.

O Program execution continues at the statement following the last
statement executed.

0 When TO line number is included, program execution again stops
if the specified line number is encountered, and the statement is not
executed.

O CONT TO can be used instead of or in addition to STOP ON and
CONT to move quickly through a subroutine or loop that has
already been confirmed during Step Mode logic debugging.

The following example program is in main memory during the
interaction that follows.

10 FOR IX = 1% TO 2%
20 PRINT 1% + IX%

30 NEXT IX

40 PRINT "Finished."
30 END

With the above program in main memory, the following sequence of
commands and RETURN entries would produce the responses shown.
Programmer entry is shown to the left, and Controller response is
shown to the right.

15-15

Program Debugging
Debugging Tools

15-16

PROGRAMMER ENTRIES CONTROLLER RESPONSES
Ready
STOP ON 10 Ready
RUN
Stop at line 10
Ready
STEP
Stop at line 10
Ready
(RETURN)
Stop at line 20
Ready
(RETURN))
Stop at line 30
Ready
(RETURN)»
Stop at line 20
Ready
(RETURN) .
Stop at line 30
Ready
(RETURN)
Stop at line 40
Ready
(RETURN)
Done!
Stop at line 50
Ready
STOP ON 10
Ready
RUN
Stop at line 10
Ready
CONT TO 40
2
4
Stop at line 40
Ready
CONT Finished.
Ready

Program Debugging

DEBUGGING TOOLS
TRACE ON Statement

Usage:

15-4

TRACE ON [#n,] [starting line number]
TRACE ON [#n,] [trace variable list]
TRACE ON [#n,] [line number] [trace variable list]

TRACE prints a record of line numbers encountered or changes in
variable values.

(8]

If a previously opened channel is specified, the results of the trace
are sent to the channel. Otherwise the results are sent to the display.

A starting line number for tracing may be specified. If it is not
specified, tracing starts with the first line following the execution of
the TRACE statement.

Tracing is activated when the specified start line, or the first line, is
encountered.

TRACE may be used in either Immediate or Run Mode.

Program Debugging
Debugging Tools

15-6

O A line number trace and a variable trace will not execute
concurrently.

O A line number trace occurring after a variable trace specifies a new
line number after which variable tracing will resume, provided no
TRACE OFF occurred in the interim.

The following examples illustrate the results of different forms of line
number trace statements.

STATEMENT RESULT

30 TRACE ON Start a line number trace at the next
line following line 30.

500 TRACE ON 1275 Start a line number trace when line
1275 is reached.

750 TRACE ON # 3%, 400 Start a line number trace when line
400 is reached. Send the trace output
to channel 3.

The line number trace displays a series of numbers representing the line
numbers or the statements executed. The following example illustrates
typical results.

Program:
10 TRACE _ON
20 IX = 0%
30 IZ = IX + 1%
40 IF I% ¢ 3% THEN 30
50 TRACE OFF
60 END

Program Debugging
Debugging Tools

Variable Tracing

15-8

A variable trace has the following forms:
STATEMENT MEANING

TRACE ON variable list. Trace changes in value of selected
variables from the first line and send
the results to the display.

TRACE ON #channel, variable list

Trace changes in value of selected
variables from the first line and send
the results to the open channel.

TRACE ON line number, variable list

Trace changes in value of selected
variables where the specified line is
encountered and send the results to the
display.

TRACE ON f#channel, line number, variable list

Trace changes in value of selected
variables from the specified line and
send the results to the open channel.

O If a list of variables is specified, the trace is of changes in values of
those variables. Otherwise, the trace is of line numbers
encountered.

O A variable trace may specify one or more variables of any type:
string, integer, and floating point.

Section 16
Error Messages

16-1

Error Messages

FLUKE BASIC ERROR LIST

CODE | LEVEL" EXPLANATION
TYPE: OVERFLOW
0 F Memory overflow
1 F Virtual array file > 64K bytes long, or > 64K elements (XBC)
2 F Virtual array file too small for arrays
TYPE: SYSTEM
100 F BASIC interpreter or Runtime system internal error
101 F Incompatible lexical file or Extended BASIC program
TYPE: COMMAND
200 F Immediate mode error
201 F Cannot CONTinue
202 F STEP outside break mode
TYPE: /O
300 R Device not Ready
301 R Disk write protected
302 R Illegal channel number specified
303 R Channel already in use
304 R Invalid device name or device not present
305 R File not found on device
306 R No room on device
307 R Read/write past end of file
308 R Channel not open
309 R RS-232 channel input queue overflow
310 R Input line too long
31 R Disk read error
312 R Illegal filename syntax
313 F Random access to sequential file
314 F Sequential access to random file
315 F Virtual array assigned to sequential device
317 R Illegal directory on device
318 R Read (write) from (to) output (input) file
319 R ON <channel> device not RS-232
320 F Object file error
321 R Device directory full
322 R Illegal operation for device
323 R File delete protected
324 R Can't RENAME file
325 R File medium swapped
326 R Can't load - too little memory
327 R Illegal image file format
328 R Command line too long
329 R RS-232 port number out of range
330 R Parallel port number out of range

16-2

BASIC ERROR LIST (cont)

Error Messages

CODE | LEVEL* EXPLANATION
TYPE: INSTRUMENT BUS CONTROL

400 R Illegal -488 port number

401 R Illegal -488 device address

402 R Illegal -488 secondary device address

403 R Incomplete -488 handshake

404 R Too many ports designated for -488 function

405 R No devices attached to -488 port

406 R No -488 ports available

407 R -488 port specified is unavailable

408 R -488 port timeout

409 R Illegal WBYTE data

410 R Parallel poll bit number out of range

411 R Parallel poll bit sense not 0 or 1

412 R -488 timeout limit out of range

413 R TERM string longer than one character

414 R No -488 driver in System

415 W SET SRAQ status byte value out of range

416 R Illegal -488 operation for current port state
TYPE: SYNTAX

500 F Unrecognized statement

501 F lllegal character terminating statement

502 F Ilegal subscript (<0)

503 F Mismatched parentheses

504 F Illegal let

505 F Illegal if

506 F Illegal line number

507 F Illegal PRINT

508 F lllegal format for PRINT or NUM$()

509 F Illegal INPUT statement

510 F Illegal array dimension size

511 F Badly formed define

512 F Illegal FOR statement

513 F FOR without NEXT

514+ F NEXT without FOR (jump back into “for” loop)

515 F Unmatched quotes

516 F Ill-formed expression

517 F Bad OPEN statement

518 F Bad CLOSE statement

519 F IEEE-488 syntax error

520 F Initial COM at illegal point in program

521 F Not a well-structured statement

522 F Illegal variable name

523 F ON statement syntax error

524 F OFF statement syntax error

525 F TRACE syntax error

526 F lllegal file size in open

16-3

Error Messages

FLUKE BASIC ERROR LIST (cont)

coDE | LEVEL:| EXPLANATION
TYPE: SYNTAX (cont)
527 F RENumber parameter error
528 F RENumber syntax error
529 F ELSE without IF
530 F NEXT syntax error
531 F INPUT WBYTE requires IEEE-488 input
532 F Illegal subrange descriptor
533 F WBYTE/RBYTE data not integer type
534 F Can't specify column for WBYTE/RBYTE subrange
535 F Can't use undimensioned variable for WBYTE/RBYTE
536 F Virtual array illegal for WBYTE/RBYTE
537 F 2-dimensional array illegal with WBYTE/RBYTE 1/0
538 F lllegal CONFIG statement
539 F lllegal RBYTE syntax
540 F '‘RBYTE increment <=0
541 F Illegal RBYTE cycle length
542 F Illegal WBYTE clause syntax
543 F WBIN/RBIN precision error
544 F WAIT statement syntax error
545 F lllegal CALL statement
546 F Virtual array parameter illegal
547 F Parameter syntax error
548 F Illegal SET statement syntax or option
549 F Require file name for SAVE
550 F Ilegal RENAME statement syntax
TYPE: MATH
600 F lllegal mode mixing
601 R Arithmetic overflow
602 R Arithmetic underflow
603 R Divide by zero
604 R Squaie root argument > 0
605 R Exponent too large
606 R Log argument <=0
607 R Trig function argument too large
608 R Illegal argument(s) for power operator
609 F lllegal floating-point operation code
610 F Unimplemented floating operation attempted

16-4

Error Messages

FLUKE BASIC ERROR LIST (cont)

CODE | LEVEL* EXPLANATION
TYPE: TRANSFER

700 F Illegal GOTO or GOSUB

701 F RETURN without GOSUB

702 F RESUME outside interrupt handler

703 F CALL to undefined FN

704 R ON {expression} GOTO selector out of range

705 F CALL to undefined subroutine

706 F Parameter count mismatch for CALL

707 R lllegal time/date value

708 R Timer value not initialized for ON INTERVAL or ON CLOCK
TYPE: INPUT

800 R Out of DATA in READ

801 w Too much data entered for INPUT

802 W Too little data entered for INPUT

803 W lllegal character for INPUT or VAL()

804 F Bad format in data statement
TYPE: VARIABLE

900 F Access to undefined variable

901 W Redimension of array

902 R Subscript out of range

903 F COM of variable which is already defined

904 w String too long for virtual array field

905 F Incompatible COM declaration

906 F DIM’ within nested interrupt handler

907 F Bad XOP 1 call

908 F Ilegal array parameter (memory vs. virtual)

909 F lllegal conformal dimenisoning parameter

* F = Fatal R = Recoverable = W = Warning

*"A NEXT without FOR error may be caused by exiting a FOR-NEXT loop with a
GOTO statement within the loop. If this is executed repeatedly, a fatal user storage
overflow error will result. To prevent this from occurring, exit the loop by setting the
loop index variable to the maximum value, then use the GOTO statement to branch

to the

Here i

line number containing the NEXT statement.
s an example:

10 for i% = 0 to 9%

40 if a(I%) <O then I% = 9% / goto 100

"

"

100 next i%

16-5

Appendices

CONTENTS

A Internal Structure of Variables A-1
B 1EEE-488 Bus Messagescovivveveninnnnnnn. B-1
C Whbyte Decimal Equivalents C-1
D Parallel Poll Enable Codes D-1
E Display Controlsccciiiiiiiiiininnnnennnnn. E-1

F Graphics Mode Charactersccciivvunvnnn. F-1
G ASCIH & IEEEBusCodesccevvivinnnnnnn.. G-1
H Assembly Language Error Handler H-1
I Fortran Interface Runtime Library I-1

J Virtual Array Dimensioning Program J-1

K Graphics ...ttt ittt iiiiie e K-1
L Supplementary Syntax Diagrams L-1
M GlOSSAIY t vttt ittt teenetnenaeennenaansansas M-1

N Reserved Words v oo vviiiiiiiiiiieititnnnneeennns N-1

Appendix A
Internal Structure of Variables

INTRODUCTION

The purpose of this appendix is to provide some information about the
means of data storage used by the BASIC processor which may be
helpful in applications programming.

VARIABLE STORAGE MEMORY REQUIREMENTS

Each variable used in a BASIC program is entered in one of several
symbol tables (depending upon its type) so that, when a reference to the
variable occurs, the BASIC interpreter has available the information
needed to find the variable’s value or address in memory. The amount
of space taken by each variable’s symbol table entry depends upon the
variable type, organization (simple or dimensioned) and where in
memory the variable is stored (e.g., COMmon or virtual array). We
will call the symbol table information “overhead” in the following
paragraphs; the overhead for each type of variable is detailed in Table

A-lL
Table A-1. Variable Storage Memory Requirements
Simple variable 4 bytes
Simple variable in COMmon 6 bytes
Dimensioned variable 8 bytes
Dimensioned variable in COMmon 10 bytes
Virtual array 14 bytes

In addition to the symbol table information, additional memory is
used to hold the value of the variable itself depending upon the variable
type. Table A-2 details the memory requirements for each variable type
for all variables EXCEPT those stored in virtual array.

Table A-2. Additional Memory Requirements

Integer 2 bytes
Floating-point 8 bytes
String 4 bytes + 18 bytes for every 16 characters in string

Internal Structure of Variables
Storage Memory Requirements

The amount of memory required to represent a variable in main
memory (i.e., NOT in a virtual array) may be calculated using the
following formula:

m=s+n*]

NOTE
m=total memory required (bytes)

s=symbol table overhead (bytes)

n=number of values represented (1 for a simple variable, or the
number of elements in an array).

I=length of a variable of that type (bytes).

The following examples illustrate the process of calculating memory
requirements.

1. A simple integer variable requires 6 = 4 + (1*2) bytes.

2. A floating-point array dimensioned to (19,39), which has a
total of 800 = (19 + 1)* (39 + 1) elements, would require a total
of 6408 = 8 + (800*8) bytes.

3. A simple string (having no characters assigned to it) would
require 8 = 4 + (1*4) bytes. If the string were assigned 50
characters, an additional 72 (i.e., 4*18) bytes would be used to
hold the value, since for every 16 characters (or for any
fragment of the string shorter than 16 characters) a total of 18
bytes is required.

4. A string array dimensioned to (24) contains a total of 25 =1+
24 elements. If all elements of the array were set to the null
string (having no characters assigned), the memory required
would be 108 = 8 + (25*4) bytes. As the elements of the array
were assigned non-null values, EACH array element’s
requirements would have to be calculated using the rule that
every 16 characters requires 18 bytes of additional storage.

Internal Structure of Variables

The memory requirements for a virtual array file may be calculated by
the formula:

m=n*v+512

NOTE
m = total memory required (bytes)

n = number of arrays declared in this virtual array file.

v = 14 bytes. This is the symbol table for each array declared
within the file.

The requirements for a virtual array file are basically the size of the I/ O
buffer (512 bytes) which must be created when the file is OPENed (and
which disappears when the file is CLOSEd) plus 14 bytes (the symbol
table overhead for each array declared within the file) for every array
in the file. In the case of multiple DIMension statements referring to
the same channel (see section 6 regarding Equivalent Virtual Arrays),
only one 512 byte buffer is created, but 14 bytes are still required for
every array definition.

I/0 BUFFER MEMORY REQUIREMENTS

Every time a OPEN statement is executed, some of the available

memory is allocated to provide a temporary data holding area called a
buffer. The size of the buffer created is always 512 bytes.

If insufficient memory is available, the BASIC interpreter will report a
memory overflow error (error number 0). Whenever a CLOSE
statement is executed, the memory used by the buffer is released for
other uses.

Internal Structure of Variables

A4

COMMON MEMORY REQUIREMENTS

The COMmon area is a region of memory holding only the values of
variables, i.e., no symbol table data is present. During program
chaining, for example, the symbol table is destroyed, but the
COMmon area remains intact, so that another program has access to
COMmon data via the COM statement. The memory required by the
COMmon area may be calculated as:

m=(nr*r)+(ni*i)

NOTE
m=total memory required by COMmon (bytes)

nr=the total number of floating-point values contained in
COMmon

r=the length of a floating-point value (8 bytes)
ni=the total number of integer values contained in COMmom
i=the length of an integer value (2 bytes).
The COMmon area will remain intact until the BASIC interpreter
ceases execution (via the EXIT or EXEC statement, or when the

CTRL/P key is pressed) or until a DELETE ALL statement is
executed, which reinitializes the BASIC interpreter.

Appendix B
IEEE-488 Bus Messages

INTRODUCTION

The IEEE-488 standard interface is a bus-structured interconnection
method. The bus has sixteen signal lines divided as follows: eight data
lines, five bus management lines, and three handshake lines. In
addition to these messages lines there are eight ground lines.

DATA LINES

The DATA lines carry raw data, Universal Commands, Address
Commands, Addressed Commands, and Device-dependent
Commands. Table B-1 presents the various commands which can be
sent on the data lines in command mode (determined by the state of the
ATN Bus Management Line line). Refer to Appendix G for the actual
codes involved.

BUS MANAGEMENT LINES

The bus management lines each have specific management or data
transfer control functions. Table B-2 presents the five specific
commands which call for some immediate action or flag a condition
existing on the interface. Each command corresponds to the bus wire
of the same name.

HANDSHAKE LINES

The three handshake lines are used to synchronize data transfers.
Table B-3 describes the three handshake lines.

NOTE
Any of these messages may also be given in the “not” form to
indicate the reverse message meaning. For instance, DAC
would indicate that data has been accepted.

COMMAND MESSAGE SEQUENCES

The various BASIC statements described in the IEEE-488 Bus Input
and Output Statements section initiate certain message sequences on
the bus. Table B4 presents these message sequences.

IEEE-488 Bus Messages

Table B-1. Command Messages

a

a

a

m]

0

a

a

a

u]

u]

a

Universal Commands (for all devices)

LLO-Local Lockout. Disables device LOCAL switches.
DCL-Device Clear. Clears each device to manufacturer’s default status.

PPU-Parallel Poll Unconfigure. Unconfigures all devices with
programmable remote configuration capability.

SPE-Serial Poll Enable. Causes a device to enter Serial Poll mode.

SPD-Serial Poll Disable. Disables data I/O lines from Serial Poll status.

Address Commands (or Addresses for each device comparing data 1/O lines)

MLA-My Listen Address. Causes a Device to become a listener.
UNL-Unlisten. Disables a device from listener status.
MTA-My Talk Address. Causes a device to become a talker.

OTA-Other Talk Address. Disables a device from talker status if any
other device has received an MTA on data |/O lines 1-5.

UNT-Untalk. Disables a device from talker status whether or not another
talker has been assigned.

Addressed Commands (For Addressed-to-Listen devices)

GTL-Go To Local. Returns device from REMOTE mode.

SDC-Selected Device Clear. Clears a device to manufacturer’'s default
status.

PPC-Parallel Poll Configure. Sets up device to be configured with the
PPE or PPD messages.

GET-Group Execute Trigger. Initiates a device function to a selected,
addressed group of devices.

TCT-Take Control. A talker device becomes a Controller In Charge.

IEEE-488 Bus Messages

Table B-1. Command Messages (cont)

Secondary Commands (for all devices)

0O MSA-My Secondary Address. Follows an MTA or MLA to allow the
device extended listener or talker capability.

O OSA-Other Secondary Address. Like an MSA except will not unaddress
if the first MTA equalled its address switch settings.

O PPD-Parallel Poll Disable. Unconfigures device.
O PPE-Parallel Poll Enable Configures device.
Device-Dependent Commands

0 DAB-Data Byte. Any byte on the data I/0O lines transferred between a
talker and one or more listeners.

O EOS-End of String. Line feed or carriage return written across the data
1/0 lines to indicate an end of a logical string.

o NUL-Null. Zeros across the data 1/0 lines to initialize the bus.
O PPR-Parallel Poll Response. Response to a request for a Parallel Poll.

O STB-Status Byte. Response to an SPE (Serial Poll Enable). Concurrent
with RQS.

O SRQ-Service Request. Response to an SPE if Service is requested.

Table B-2. Bus Management Lines

O ATN-Attention. Specifies how data is to be interpreted.
O IFC-Interface Clear. Resets interface of all devices to a known state.

O REN-Remote Enable. Prepares all devices for accepting remote (from
the Controller) commands.

O EOI-Endor ldentify. Indicates that a talker device has ended a multi-byte
transfer or that a controller is in a polling sequence.

O SRQ-Service Request. Indicates that a device wants to interrupt the
current sequence of events for attention.

IEEE-488 Bus Messages

Table B-3. Handshake Lines

O DAV-Data Valid. Indicates that a device has available and valid data on
the DATA line.

0O NRFD-Not Ready for Data. Indicates that a listener device is not ready to
accept data.

O NDAC-Not Data Accepted. Indicates that a listener device has not yet
accepted data.

Table B-4. BASIC IEEE-488 Bus Command Messages Sequences

BASIC COMMAND MESSAGE SEQUENCE

CLEAR (by device) EOI
ATN
UNL
UNT
MLA (for each device)
SDC

CLEAR (by port) EOI
ATN
UNL
UNT
DCL

CONFIG (by device for unconfigure) EOI
ATN
UNL
UNT
MLA
PPD
UNL

CONFIG (to line with sense) EOI
ATN
UNL
UNT
MLA
PPC
PPE
UNL

B-4

IEEE-488 Bus Messages

Table B-4. BASIC |IEEE-488 Bus Command Messages Sequences (cont)

BASIC COMMAND

MESSAGE SEQUENCE

INIT (by port)

INPUT LINE WBYTE

Issued only if device specified with INPUT statements.

LOCAL (by device)

LOCAL (by port)

REN

ATN

IFC

IFC (after 100 usec wait)
EOI

ATN

UNL

UNT

PPU

(output WBYTE data)
EOI

ATN

UNL

UNT

MTA

ATN

(accept data byte)
(output WBYTE data)
EO1

ATN

(accept data byte)

(output WYBTE data)
EOL

ATN

(accept data)

EOI
ATN
UNL
UNT
MLA (for each device)
GTL

REN

|IEEE-488 Bus Messages

Table B-4. BASIC IEEE-488 Bus Command Messages Sequences (cont)

BASIC COMMAND MESSAGE SEQUENCE

LOCKOUT (by port) REN
EOI

ATN
LLO

PASSCONTROL ATN
UNL
UNT
MTA
TCT
ATN

PPL ATN
EOI
(Accept poll status)
EOT
PRINT USING EOI

ATN
UNL

NOTE
Issued only if device(s) specified in PRINT statement.

MLA (for each device)
ATN

(output data)

RBYTE EOI
ATN
(accept data)
REMOTE (by device) REN
EOT
ATN
UNL

UNT
MLA (for each device

REMOTE (by port) REN

B-6

IEEE-488 Bus Messages

Table B-4. BASIC IEEE-488 Bus Command Messages Sequences (cont)

BASIC COMMAND

MESSAGE SEQUENCE

SPL

TRIG

WBYTE

EOI
ATN
UNL
UNT
MTA
SPE
ATN
(accept status byte)
ATN
UNT
SPD

EOI
ATN
UNL
UNT
MLA (for each device)
GET

EOI (set as required)
ATN (set as required)
(output data byte)
EOI (set as required)
ATN (set as required)
(output data byte)

Appendix C
WBYTE Decimal Equivalents

NOTE

Refer to the WBYTE discussion in the IEEE-488 Bus Input and Output
Statements. Use these decimal values when building up an array of data bytes
to be output to the IEEE-488 Bus.

Table C-1. Decimal Equivalents

BUS MESSAGE DECIMAL EQUIVALENT
EOI 256
ATN 512
GTL 513
GET 520
DCL 532
UNL 575
UNT 607

Table C-2. Address Messages

DEVICE ADDRESS | MLA| MTA | MSA |DEVICE ADDRESS |[MLA|MTA | MSA
0 544 | 576 | 608 16 560 | 592 | 624
1 545 | 577 | 609 17 561 | 593 | 625
2 546 | 578 | 610 18 562 | 594 | 626
3 547 | 579 | 611 19 563 | 595 | 627
4 548 | 580 | 612 20 564 | 596 | 628
5 549 | 581 | 613 21 565 | 597 | 629
6 550 | 582 | 614 22 566 | 598 | 630
7 551 | 583 | 615 23 567 | 599 | 631
8 552 | 584 | 616 24 568 | 600 | 632
9 553 | 585 | 617 25 569 | 601 | 633

10 554 | 586 | 618 26 570 | 602 | 634
11 555 | 587 | 619 27 571 | 603 | 635
12 556 | 588 | 620 28 572 | 604 | 636
13 557 | 589 | 621 29 573 | 605 | 637
14 558 | 590 | 622 30 574 | 606 | 638
15 559 | 591 | 623 31 575 | 607 | 639

Appendix D
Parallel Poll Enable Codes

NOTE
Refer to the CONFIG statements discussion before using Table D-1.

Table D-1. Parallel Pall Enable Codes

RESPONSE LINE DECIMAL

DI01 96

D102 97

Dl03 98

SENSE Dio4 99
"0 Dl05 100
D106 101

DIo7 102

DI08 103

DI01 104

Dl02 105

D103 106

SENSE Dio4 107
“qr D105 108
DI06 109

D107 110

DI08 111

D-1

Display Controls

Table E-1. Display Control Sequences

CONTROL

Erasing
To end of display
To start of display
All of display

To end of line
To start of line
All of line

Attributes
Attributes Off*
High Intensity
Underline
Blinking
Reverse Image

Non-destructive
character

(ESCH[J or (ESC)[0J
(ESC)[1J
(ESC)[2J

(ESC)[K or (ESC)[0K
(ESC)[1K
(ESC)[2K

(ESCY[m or (ESC)[Om
(ESC [1m
(ESC [4m
(ESC)[5m
(ESC)[7m

(ESC)=

FUNCTION SEQUENCE COMMENTS
Cursor Controls
Up n lines (ESC)[nA The cursor stops at the
Down n lines (ESC)[nB edge if the number given
Right n columns (ESC)[nC as an argument results
Left n columns (ESC)[nD in movement past the
Direct to line, column (ESC)[l; cH edge of the screen.
Scroll down one line (ESC)D
Scroll up one line (ESCYM
Scroll to start new line (ESC)E

Replaces any attributes
in effect at the position
that it is directed to (via
the CPOS function, for
example).

Display Controls

Table E-2. Selective Parameter Display Controls

MODE EQUIVALENT
FUNCTION SELECTION NUMERIC SEQUENCE
Attribute Mode No equivalent.
Field* (ESC)[?11
Character {ESC)[?h
Character Size
Normal* (ESC)[?2i (ESC)[0p
Double size (ESC)[?2h (ESC)[1p
Character Graphics Similar to (ESC)[2p and
Disable* (ESC)[3I {ESC)[3p, except that these
Enable {ESC)[3h commands do not affect the
graphics plane.
Keyboard
Unlocked* (ESC)[?4I {ESC)[4p
Locked (ESC)[4h (ESC)[5p
Opaque to Graphics* (ESC)[?5] When this command is re-
ceived, any graphics displays
that cross display character
cells are hidden behind the
character cell, an area 8 pixels
wide and 14 high. This mode is
used to make characters stand
out from surrounding graphics
displays. There is no equivalent
capability for the 1720A Con-
troller.
Transparent to Graphics (ESC) [?5h This mode causes displayed

characters to be transparent to
the graphics display. Any
graphics displays that cross a
character cell are not obstruct-
ed by the cell. Select this mode
to blend characters into the
graphics display.

Appendix E
Display Controls

DISPLAY CONTROLS

The two tables in this section list the display control sequences for the
display contained in the Instrument Controller. Table E-1 describes
the control sequences used to control the visual attributes of the
display. Table E-2 describes the ANSI Standard Selective Parameters
used by the Instrument Controller.

Display Controls

Table E-1. Display Control Sequences (cont)
CONTROL
FUNCTION SEQUENCE COMMENTS
Cursor Status
Request cursor position| (ESC)[6n For a program to make
Cursor position report (ESC)[I,cR use of the report, a log-

Size of Characters
Normal*
Double

Character Graphics
Disabled*
Enabled

Keyboard
Enabled*
Disabled

Cursor Type
Blinking Underscore*
Steady Underscore
Blinking Block
Steady Block

(ESC)[p or ESC [0p
(ESC)1p

(ESC)[2p
(ESC)[3p

(ESC)[4p
(ESC)[5p

(ESC)[0x
(ESC)[1x
(ESC)[2x
(ESC)[3x

ical input channel must
exist between the pro-
gram and KBO:

These commands affect
the entire display.

These commands also
affect the graphics
plane.

Even when disabled, the
keyboard can respond
to control codes. To exit
a locked condition, use
(CTRL)/T to unlock the
keyboard, reset the
screen to normal-size
characters, home the
cursor (upper left), and
disable the graphics
plane.

*Indicates the default conditions.

Display Controls

Table E-2. Selective Parameter Display Controls

MODE EQUIVALENT
FUNCTION SELECTION NUMERIC SEQUENCE
Character Display No equivalents.
Disable {ESC)[76l
Enable* (ESC)[?6h
Graphics Plane No equivalents.
Disable (ESC)[?7I
Enable* (ESC)[?7h
Cursor Display No equivalents.
Disable (ESC)[?8I
Enable* (ESC)[?8h

*Indicates the default conditions.

NOTES: 1. Save typing by predefining ESC [as the following string:
ES$=CHRS$(27)+"["

2. Multiple enhancement or mode commands are separated by
semicolons.

Example: PRINT ES$;“1;5;7p";

3. Display controls are introduced by “ESCape[” (scrolling controls
do not use “[”.) Any method that sends the required character
sequence to the display will give the above results. For example, if a
data file is created of “ESC[” character sequences, typing the name of
the file in FUP mode will cause the display response.

Appendix F

Graphics Mode Characters

1722A DISPLAY RESPONSE

CHARACTER NORMAL SIZE | DOUBLE SIZE FUNCTION
0 D il Top Right Corner
1 J ﬁ Top Left Corner
2 Il m Bottom Right Corner
3 Il j Bottom Left Corner
4 D m Top Intersect
5 I ‘:ﬁ Right Intersect
6 Il m Left intersect
7 il ﬁ Bottom Intersect
8 O a Horizontal Line
9 il m Vertical Line
m m Crossed Line
NOTES:

1. To enable Graphics Mode, send the display ESC[3p or ESC [?3h

2. To disable Graphics Mode, send the display ESC[2p or ESC [?3I

3. In Graphics Mode, characters in the left column are displayed as shown.
4. Use the character names as defined to construct illustrations that do not

change form between normal and double size.

F-1

Appendix G
ASCII/IEEE-488 Bus Codes

G-1

Appendix H
Assembly Language
Error Handler

INTRODUCTION

The assembly error handler provides a means of reporting error
conditions to the BASIC interpreter program when using an Assembly
language subroutine with BASIC.

USING A USER-SPECIFIED ERROR HANDLER SUBROUTINE

A user-specified error handler subroutine can use a form of XOP 0 to
get the BASIC error handler to report and to attempt recovery from
errors. This causes the BASIC error handler to treat the error as
appropriate to an error of the given recovery class (for example, Fatal,
Recoverable, or Warning Only).

The instruction format is as follows:
XOP @ (error number & recovery class),0

Where error number & recovery class is encoded as follows:

15 14 13 0
[Class | Error Number |

1. Class is encoded as:

0: Fatal
1: Recoverable
2: Warning only

2. Error Number can be any error number desired.

a. Error numbers from 0 to 999 are already assumed to have
predefined meanings.

b. Error numbers greater than 999 have the code “User”
printed as the error code. An example of a “User” code
instruction and the resulting message are as follows:

XOP @1000, 0
'User error 1000 at line (line number of the CALL statement)

H-1

Assembly Language Error Handler

EXAMPLE

The following example illustrates one approach to detecting error
conditions within an Assembly language subroutine. The example
program computes the RSS (root-sum-squares) of two passed
parameters (A & B), returning the answerin C and an error flag in R%.

Here is the example program:

det DET
Tef FS$RGMY
»
DET data ws, det } transfer vector
idt ‘det”’
-
det o}u] sontrz point
b @F SRCMY iget the parameters
data 4 H
data T4#2+ws iput them in r4 through r7
text ‘DET ‘ i name
clr 8 .clear overflow flag
1d T4 .ge x
md r0 P XX
- if ov ;ovor?lou
seto ™8 iset flag
. endif H
std @temp i save
1d *rd iget y
md r0 iget !
o if ov i overflow
seto r8 .sot flag
. endif
ad @temp x*x + y#y
- if ov Anverflow
seto T8 iset flag
- endif 3
dsgr i SGRT(x#x + y#y)
st *rb ireturn result
mov r8, #1v7 iteturn error flag
rtwp idone
-
ws bss 32 iworkspace
bss 4 i
data 1 i Teentrant
tezp bss 8 } temporary
en

This is the subroutine call from BASIC:

\ C =0\ RLA = 0%
» _Cs R%)
0TO 100 ‘goto error handler

this is the error handler

H-2

Appendix |
FORTRAN Interface

Runtime Library

FORTRAN INTERFACE RUNTIME LIBRARY

The FORTRAN Interface Runtime Library provides a link between
the BASIC Interpreterand FORTR AN subroutines used with BASIC.
The Fortran Interface Runtime Library implements most of the
FORTRAN language elements and also includes explicit parameter-
passing subroutines for string variable exchange and error message
exchange. The language elements available for FORTRAN
subroutines are described in this appendix.

The following restrictions apply:

O No I/O capability (such as a FORTRAN READ statement) is
provided. Attempts to use I/O will result in unresolved global
errors during the linking process.

O Only the data types which are compatible with BASIC are allowed:

Double-Precision Floating Point
Integer
Logical

Attempting to use other data types will result in unresolved global
errors during the linking process.

o Only the set of statements, intrinsic functions, and external
functions listed below under Available FORTRAN Language
Elements are used.

FORTRAN Interface Runtime Library

AVAILABLE FORTRAN LANGUAGE ELEMENTS

FORTRAN programs normally run under control of the FORTRAN
Runtime System program, which forms a link between the
FORTRAN program and the operating system program of the
Instrument Controller. Interpreted BASIC programs run under the
control of its own runtime system programs. In order for an
interpreted BASIC program to run subroutines which are written in
FORTRAN, the Fortran Interface Runtime Library of subroutines is
provided which implements the FORTRAN language elements
normally provided by the FORTRAN Runtime System program.
Whenever a FORTR AN subroutine is used, this library must be linked
with it.

The FORTRAN Interface Runtime Library does not include all of the
FORTRAN language elements. The statements, external functions,
and internal functions that are available are listed in tables below.
Refer to the FORTRAN Programmer’s Reference Manual for a
complete description of the FORTRAN language.

The following FORTRAN statements are allowed in subroutines that
will be used by BASIC (with the support of the FORTR AN Interface
Runtime Library):

ASSIGN DO INTEGER
BLOCK DATA DOUBLE PRECISION INTEGER*2
CALL END IMPLICIT
COMMON* EQUIVALENCE LOGICAL
CONTINUE EXTERNAL** REAL*8
COPY FUNCTION** RETURN
DATA GO TO SUBROUTINE
DIMENSION IF IF

*The COMMON area in a FORTRAN program is separate from the
COM area in BASIC programs.

**Note that, although EXTERNAL and FUNCTION are allowed,
they only work between FORTRAN subroutines, not between
FORTRAN subroutines and BASIC programs.

FORTRAN Interface Runtime Library

The following external functions are allowed in FORTRAN
subroutines that will be used by BASIC programs:

DATAN DSIN IOR
DCOS DSQRT ISHFT
DEXP IBCLR LAND

DLOG IBSET NOT
DLOG10 IBTEST
DMOD IEOR

The following intrinsic functions are allowed in FORTRAN
subroutines that will be used by BASIC programs:

DABS DSIGN MAXO0
DMAXO0 IABS MINO
DMAXI1 IDIM MOD

DMINO IDINT
DMINI1 ISIGN

All standard FORTRAN string manipulation functions are available.
These subroutines are as follows:

DNCASE INDEX IVERFY
KOMSTR LENGTH MFLD
SUBSTR TRANS UPCASE

FORTRAN Interface Runtime Library

USER SUBROUTINES

Three FORTRAN subroutines are provided to allow the programmer
to exchange string and error information between BASIC and
FORTRAN subroutines. The subroutines are:

GETSTR - Get a string from a BASIC program.
PUTSTR - Send a string to a BASIC program.
ERROR - Send an error sequence to a BASIC program.

Two of these subroutines are used for passing strings. The GETSTR
subroutine passes a string from a BASIC program into a linear array in
a FORTRAN routine. The PUTSTR subroutine passes a string froma
linear array in a FORTRAN routine Back to a string in a BASIC
program.

The ERROR subroutine provides the capability of passing error
information from a FORTRAN subroutine back to a BASIC
program. An error number and a severity code is sent which the
BASIC program uses to process the error. The error number allows
programmers to define a private error list. Severity codes are sent to
define the appropriate program response for Fatal, Recoverable, and
Warning level errors.

The following example shows how to use the string transfer
subroutines in this library to pass string variables to and from a BASIC
program. Refer to the descriptions of the GETSTR and PUTSTR
subroutines in the FORTRAN Interface Runtime Library Users
Manual and the DNCASE subroutine in Appendix D of the
FORTRAN Programmers Reference Manual, and refer to the
description of the CALL statement in this manual while studying this
example.

The calling statement in the BASIC program is:

100 !convert From upgercase to lowercase
110 tinput in ut in BS$, error code in ER%
120 CAL UPLOH(AO,Bi'

FORTRAN Interface Runtime Library

and the FORTR AN subroutine where the library subroutines are used
is:

SUBROUTINE UPLOW(A, B, ERR)

INTEGER A(1),B(1),ERR, LEN, STRING(40)

LEN=80
CALL GETSTR (A, BTRING LEN)
(LEN .EQ. -1) GOTO 9000
CALL DNCASE(STRING,LEN,IERR)

IF (IERR .NE. GOTO 2000
CALL PUTSTR(STRING B, LEN)
RETURN

9000 ERR=-1
RETURN

The CALL statement in the BASIC program branches to a
FORTRAN subroutine named UPLOW and passes the location of
three variables, two strings, A$ and B$, and an integer ER%.

The first line of the FORTRAN subroutine defines the subroutine
name UPLOW and the names of the variables which are exchanged
with the BASIC program. Since these variables are passed by location
reference and not by name, the FORTR AN subroutine uses these three
variables with its own names. A$ in the BASIC program will be called
A in the FORTR AN subroutine; B$ will be called B; and ER%, will be
called ERR. The next program line declares the variable types: single-
dimensioned integer arrays for the two-byte string names, two integers
for an error log and a length counter, and an 80-byte integer array
STRING to be used for the string in the FORTR AN subroutine. In the
third line, the LEN integer is set to 80, the length of the target array.

The FORTRAN subroutine GETSTR is called to transfer a string
from the BASIC program to the FORTR AN subroutine. In this case,
the BASIC string A$ (FORTRAN variable A) is transferred to the
FORTRAN variable STRING. Following this, the LEN variable is
examined to determine if it contains a “target too large” error code
(-1), in which case control is transferred to line 9000 and subsequently
back to the BASIC program with ERR=-1.

If no error code is detected, the standard FORTRAN character
manipulation subroutine DNCASE is used to convert the uppercase
string to a lowercase string. Note that LEN contains the string length in
bytes if the GETSTR procedure was successful.

FORTRAN Interface Runtime Library

After once again checking for an error code (IERR<>0), the
PUTSTR subroutine is used to return STRING to the the BASIC
program (as B$ or FORTRAN B). The error code variable ERR (ER%
in the BASIC) is set to 0 to indicate a successful procedure, and control

is returned to the BASIC program.

After control returns to the the BASIC program, the variable B$
contains the lowercase version of the variable A$, and the variable

ER9%, contains a 0.

SUBROUTINE FORMAT

The following example illustrates the use of the CALL statement of the
BASIC to use a FORTRAN subroutine. Additional information can

be found in the Fortran Interface Runtime Library User Manual.

the BASIC Program:

DIM A(979%) 'DIMENSION ARRAY
LINK ‘STAT’ 'F ORTRAN SUBROUTINE
FOR IX-OA TO FFFE\A(IXL)=RND\NEXT IZ‘LGOP: FILL ARRAY

o S o SET VARIABLES
CALL STAT(A() 100%, M. S)
PRINT ‘The mean value is ;M !PRINT MEAN
EzéNT ‘The standard deviation is ‘;S' PRINT STD. DEV.

FORTRAN Subroutine

annOnnOnNn

(2]

(2]

10

This is an example of a FORTRAN subroutine called from a
the BASIC program.

This subroutine calculates the mean and standard deviation
of an array of double—precision values.

SUBROUTINE STAT(ARRAY, N, MEAN, STDEV)
REAL #8 ARRAY(1), MEAN, STDEV., SUM, SUMSQ
INTEGER I, N

SUM = O
SUMSQ = O
DO 10 I=i,N
SUM = SUM + ARRAY(I)
SUMSQ = SUMSQ + ARRAY(I)#ARRAY(I)
CONTINUE
MEAN = SUM
STDEV = DSGRT(SUHSG/N - MEAN#MEAN)
ENp

'CALL SUBR. . PASS VARIABLES

FORTRAN Interface Runtime Library

The following command file will generate a FORTR AN module which
can be linked with the BASIC. The file runs the FORTR AN Compiler
program, then the Linkage Editor program, then the Object Translator
program. Finally, the File Utility Program is run, the object file
deleted, and the memory packed. Control is then returned to the
Console Monitor.

COMMAND COMMENT

FC RUN FORTRAN COMPILER PROGRAM

EDO: 7, KBO: , EDO: =? PLACE THE OBJECT AND SOURCE FILES
ON EDO: AND THE LIST ON KBO:

LE 7,EDO: 7, EDO: RUN THE LINKAGE EDITOR, PLACE THE
OUTPUT AND SCRATCH FILES ON EDO:

ASK 7 CREATE PHASE 0

FORM ASCII CREATE ASCI1 FORMAT OUTPUT FILE

PARTIAL SPECIFY PARTIAL L INKAG

INCL EDO: ? LOAD THE INPUT FILE

FIND FTNSIF LOAD THE FORTRAN INTERFACE MODULE

END EXECUTE COMMANDS AND EXIT THE
LINKAGE EDITOR PROGR

oTP RUN THE OBJECT TRANSLATDR UTILITY
PROGRAM

Tm=? TRANSLATE THE FILE TO BASIC
COHPATIBLE FORM.

FuP THE FILE UTILITY PROGRAM

EDO: 7. OBJ/D DELETE THE OBJECT FILE

EDO: /P PACK THE E-DISK

/% EXIT BACK TO CONSOLE MONITOR
PROGRAM

Appendix J
Virtual Array
Program

imensioning

D

»
- 2 e
o=
> W
< | ot
[- 3 0oz
Q » [4 -~ Lire
z (o) < » = [od' 4
- N z = G
x - > > ~ = [~}
<o < L] 2] » = bR 2d
- > [- 3 E 3 N = ~—
(%2} < -4 Q o @« L muwe
z [-3 < ™) - - N
w (-3 122 Lt ~ « -
b < [4 3 < » w ol
- (=4 x z (3} > -
o [d x 'S [} - ~ = Lo Sad
o > o x @ » w xx=
> > < 'S ~ Q k4 > 2 wiac
< 1] < & » o o xz -] o<
[-4"] xw0n @ < ~ - 4 Q - w x T
xo ow € < Ead - @ = ~] O=-re
<< Ok e - P— = o » ~ @
[- 4 i o >w -~ -4 BT = zw x - S
10 [--1--] >uaxT N N W= = = ~a - - ==
<= <XTX- - < b = ZEX » a 0! R
=10 [-4-4 (2] - 3104 w ox o0 = = oW w - > €
[oo ww -] & <d > oW - = -z z B <1 O
@xx el we w Q TCd J ¢ < ZIOM L = [T - @0) M
= £ Q w Jws o X > = *¥ O M -~ O X1 A~k
b= Ll <z z z wex X - X>Wad » x WwWaexT » a <IN
Q << x w o I - n < [T =] x® ¥ ZILL—WO x I O~
'Y p = w 2 Lond - o - > o OO = ® O & ~ X i vies
ol [-4: 4 wd -} « Ol ONZC JOoul = x =-O T » - Ll e
(=4 oo 0 w z - >OrmX ALY » x O CaT~ > B = e
W > Ll agc « [} -4 <Q <d 4 & 2 = Tw o 3 -1 O
Q- < T <o W KD =CQITHIXT W ® WI>>»q - w oz z
zZZ 4 OO Lol 4 w [W= & CX I~ Q 2 oo ~ T Wi food
w3 o XX [- 44 - [-] >0cadme CXELUWX~TOTX - L Tl < »n - Ql ~&
DO W i <O @© @~ D EEOT W L > QuooX z -1 NA.
L = On > - [} 200 ETCUWLO~X WO w k4 wuo - & 1 o
w<e a Do w -3] [=1- [WIVT] O 1 w3 X [=] © woxax N~ o X! -7
- 0 wX [<2] wlna WL 3 U= o " QAHNTOONTOON UR L OINN
@ - & - X o (= wxd B OX i O = - 22 —“MONN— WX =i Oe
o~ W <« XX [g -8 - 3 0nun . EZUWOrXZO 2 < oJaOuL NI @ X1 e
- ITC W e z NBXLW O 'V £ZT>O =~ a N —<uuwo ~n - B e
Lo TV R - 4 4 T x [VWX~ TOFOAXH Ol - e bl [- % W
[-4 - O GO O = - > Wh-QO > ZTZ oow Om= D - J ux X z< - | -
w o w x 2] < >0oJda X WNo b 0 O < >Oonun ~ @€ =i [ad
B W - = WO [3 >0 Jm OuWEW Ju >owWwxo W =~ C-WWo - O al ~=
£ =X Qa =0 -l @ & @ @ O OFWFEcA oA X - - QX = W =l N
W <+ < ~~ GO0 W < -« D> ot Q - T wa a X! -
QL Jd = [l B T T 4 <dCICYW ADUDOUOONT> » W X <lhaad L 3 O -
W Dw M B ww X Zukx <2 ZUZZ JC o - ~Z B DN
Q O < A 000X DFOW FOFOZT OO0 L-Z~ QDX > LNLLO N~ @1
o > BNNO O F— OFOFID] XZOOHWFHIWEX x W »x= OZOOZX zn Zz DI wa
o 4«3 = EE ANl WD Z = - —_—t XILITUNICT * z = - ~@ o M »
M Qo <+ L ©00 D33 © O02D £ L QOQ * I3 » » LI 4 b =] - ' or
W -~ O L VOUVEZ-OZTO JIIDI ZXTOOHWHOIUN x N x2 O OOk -] 3
- L N w =z O CECEL UWZZOUOWVFIT = < x ZX-ZZWV « - [} O ~»
o < ~ X OO cEX>wWX) DDt -~ % b d - < b Sadad
e X1 N = ©C Q0 WWWZCEOCW FIZ-ZZX UM URNEN UNUNIN x 3 M e Ne—eremimmee —————- AN E 2o
- Od - =; - ZT QOODXUWOFI= ==~ Zz x - X - L = >
o e == € ZEXOX I JO> qCEQICLEL ~A~~A~~~A~A~aAs @ X o = n zZ = <L ~
Wz 3 « X = OOOUCLW AR NRMNNNNNNNN « = o = N MNNRN - [Al
4O G I =% X w” HRHAE ittt X X o X X %) MNNNRDON N » <=1 3
[T O B - spuUnNENURY R tutatututetutututothrdi.d H = NNNNNNRONENDN~ >OC = <
£T;n v BE L -~~~ Fadad N NNNNNONRNNS x W 2 NMONNTD-MO=NG 0w ® S22
QU == = W W > NNRNNNRRN U D-W>JC>NQ>G6 X O ® mMmisnunununsaes C % WRERZX
Xw XXX X == Q ww COOX=TIUAZ> C-CFE WWIZZOOONWUDIDC X OW X I NNNNNNNRNNNRR SC1 X ovee -
Wo> =3 = un *® e X R JE=ONMITDONDO0 =N & NI
m U" R ettt o ZZXZZZEZIZEZZ--QOQAX ===
0000000000000 000C000000000000000IN0 [=1=1=114 o000 2000

OCONVNTDOCO0CO~MNMTNIONDIO =NMTNINDEO=NMITNINBOOD = =NMTNVONNMITNANDCO=NMECNONDO=NMNINON
=N NN T U0 ot ot ot vt vt vt ot w4 vt N NN NN N N NN N MM MM MM MMM € O e N INVBINNNNNNNINY0CGG OV T OINRNANNNANN

J-1

Program

imensioning

Virtual Array D

-
»n * o~
W © wONM
= T o~
-3
ao > aaa
b g < W
bod x ITITXT
x»n & o000
o C e 0D
W~ wnw T
ZXIX O
e bl e
oW | ExxT »
-0 —_——— g
-ZzX oo T~
= =N
-N M ®0WOoD W am
oua @Ol T
ev o A& W o -
-1--] [o000 ON
zZZ X >0 - -
<W zzm
> > T QO | >>> O
€€ € & DO TW | CIT
X & < Ok XEX U~
e o ZTU A X &xx TM
€€ € -WC VU W C<T wN
E W= Q R
el W Ww & & XTIX =~
OO0 O XX &XO O Kk am
mUOo O Eaialad -
ZXZ X 2T O~ | QOO WN
00 © ImWw [-
o lall ol 3@ = @ -
b b M- =3 - =N
- - O -~ X wm
Wy B - W W D
OO0 © & ~ A0 & MNNN O
ae & o € W F—Jdo o~
< M WO 4 XX m
s ~ w e JN
7 @& 0 ~nas Qe
N 2 O Ol & MNNN =~
CO VO <« CIT W CAO &=
NN + =0 4 www oOou
@cme @S A w4 NN -
NI 2 €O O >»>> O
~ N O W ZXEZX <
oM - w o wo
0 ® X& > <
Ow QG ™ @)
Qe <« WO ww
o a <+ \ I X
@ RS ~ wWo | 34
- @® » T -X
N A/ - = ® -
» ~ Q- R wl
MNNOMU: @ TU T NONR W
ZTX-XZT = O A W O O
o &X: « W £ et o
OOVOOENE W W Ul Wa
A e - A~ x<
NONMNIN AW W NN} W
MNTNECINX =~ <OO T
vt vl WX~ L W s~ =X
THNINOT® O O MNNN -
NNROANOLNG O Ww W
<@ QO XU Q= + TTT &
" D= O oo
[-4 w3 T L
oo o
e -———eimemims mceimee

noco =1}

[}
W
xr-
Q>
oa [~}
- w
X ol -3
ww o -
> - 3 2
- < > Wi =] -
s [- 3 oaly "N w -~
o o« W o [4 n
= < DDC E" -
- Tl o« ~
- "} RESEOTLN 0w ™
273 3 € WOIFT W W >
<< = - O FXZ> O & —1 «
@© -z w = ZLWOOXEXW >m -
» o [=1} > < 2 Oo~Td © -~
= - R © - OWWwWod W .| N
» < bt o D ONENUJ—- agc -~
» - ~~Ud [=] = e lal el 1 [g ~ NN
» 2 *0O0:= 1 w D =OJdd LwXx wo L]
= b 3 NN 4 -3 QT DOQCwW TW b=l B St
» 2 @~ 1 G IM WYL ==X z o=
x Q BN O 1 W3 LOUI-CX X DL | >
= Q1 TCT =N - wWou=QaTO- D 1 ~Aw3d
= < | e~ 0 ZTW W JdJOZTAZTW Sl | N
Bl i QL X D& P WOCIU~NO OQC— e~
» w TzmMmaC O O > OZTF-ZT B 0
= - OO © LU M —ecmcmimm. -= T OM P~ NEO
b d > ZZD~ J W . XL J v~
= aQ » s @ s OO wo 3 0@
= (-3 [~] Q=X O>OoTW ~ oWl v ~<<
= Xwa X XU O AT O N > W N
LR Ll " L] s © = XD =0 COCT X Xroen >
= ~ZWO Qa - W >JuWoxXT o0 d A g
2 ZDI C ~AU=FA W CT-OD NN VOD3 > eNN «
B IO L NI ~A>: O Xk>Jd P el ZIEL C CGrome &
% OUD I X~=N~ <€ XOdMDW X I3 U O~ &
- O AN A~ & < N o O0VU A RN
XJd > @Ow=N O OO AN ZTTOU B Qdd -
L WO € GA~) = ==X] WO> WLCT =~ =W X
< FOF U4 vwEdw> O =g =G} Q e W
& >JO 4 ~OF-ad | lotadil It - _——a
O A+ W : CovqC W [- 4 44 NN 1~
o - =z 0 - AT AN ~ 1 BN -
X WWW Q ==~0C~- < RN==T N n [
Q& NNN X -z O WM =0 > - I Laa o
L LW O ~ -~ ~ << <
ZT Jddd i Q<O - M=o VR Ead o ad
- CCC i XXX > > N~ -~ >= .~ .
C e OXWOD < =z DN~ » 2 cee
T k- < +1 = lalal Lo * >=>=>=
.t -2 3 e -~ O~ > ~ ~
» ZTX A » N2 O Pl oo
B A~ | N > MM A XX
» MY | Tww NI~ ~NZ ~~ Pt
o memee s N+ -EN St N KL
» NBON D OlrN AN~ 2 NN NNRoON 232
» <CTCT<C<T —X>_J0 MN>>OJO>T) >»_JD! e
» Lo o d od LR e I AT LR -t
» [=] - n e b, 'S Eatatay - E = £+ 3
» u -ttt vt MMM D> MNNN>-
» -~ EEEZEX B sttt O W - [l diE]
» » R X w~n ZXTZT ™
b NXx | o nd ot Lalalai b g PNIEN Pt
x Owiw ZTIXTXT N>=_J>~ > day> e -
» HNXN Dt Dt et et Bt XWWWBDI i D &a.a X
» NND [-4:3-4:4-4 o W
e D G A AQ G = - - - - -

0080000000000 NCC0000000C000C0000C00000C00000

0901.22345 67890123‘567

OO0

QetNM T INON DO~ NN VN DO O =M T ON DO NM LI CADO O~ (NM
QO0O0TC O TOC OO vttt vt vt wmtomt vt vt ot vt NN NN NN M 1 MMM M MM M) 0~

J-2

Virtual Array Dimensioning Program

-
«
w
-
-
<
- =
H «Q
z x
~ - Q
= Ead -
= xX u o
b e
= - = - -
= @a > Q
» 2 @ X @
= - - » -
= ~ 3 x 3
b O = o]]
= 0 M W] »n fod
= ~ > 1 = - «
= Q - > i = x >
= < -~ a = <=
= - = w = ~ [-4%]
= ol s Q = xw
b 3 O - z = ~ <k
= nw T N w = » >=
= W o > 2 = x Wi
= - <] = ~ x
- > e W = - -0
= Qa2 = "] » -] W
= (=] = o xu -~
= o w w - = L4 w o
L w x u x - - Qx x
- 7] 3 w = Q [} ~
2 B x »] oz -
@ Z > > = - -]
-4 < 4 ax - 7 o ®
< @« J (=] -z -
- - & < 'S W -~ t 3 H
o € € O Q » 0o
[od - 2 =z w - x -z [3
o = um - (=4 ~ [(=]
> - eXJgX [% x » wo H
< s NO: O - o @ o
-4 - TO~O [-4 p=1 - ol
a ~ e le~l) (3 - " O x
w N o ~ava [@ ~ = > -
IR LR IR] @ W o Q [4
an ~ w2 2 2 & - < x S
~N D @recd (7] ~ -0
- -~ < <Jd<cI X o T W x
= N Lol ol o o 4 Lad Qo w WX MW
- .~ saaa w - 0 X o3 LX
x -~ > eeee (-3 G 8 2z T
= > >d>d - -
- > i = ONNR ~ ON
- W o0 000 i » ouX NN =X
= + X ZZZX 1 - zx o <
= 0 Pt bt et i - 7 Vv - N
. - O o, = o~ DD
= 1 3 D333 n AN << +N
s ~ANN - M X - N
B Medvt & & waa R 2 .~ n et
B EWIN) vt vtot vt vt bt B eI vt X N
B w\EBEBXEXN MNNM X2 NIOANBEEEDIQN~
- MNNJ U@m<C ® @NXIX NI
B -0 %® DX |t 4 w
8 Wi XTIXTZZITW = o i LEZIZZZ w0
B BB It bt bt bt N MICIC ¥ DAL = DCIt it i 4 KOO
s JJ>xExaaa > W x O WEXXXO WX
e CCA0d 0000 - EEZ === T ZToadolk TOW

000000000000 0000000000000 000000000C
O=NMTINON DO Ow NN ON DO O =AM TN ON D OO~ NI
o000 oot =1=1='-1:

OO CN NN N NN N C NC el "

Appendix K
Graphics

INTRODUCTION

The Instrument Controller display offers several useful features that
enable the design of customized operator message outputs. These
features include character graphics, graphics routines, double-size
characters, reverse video, double intensity, and blinking. In addition,
the cursor control functions and erasing capabilities give the
programmer complete control over the display. With the exception of
the graphics routines, these features are all discussed in Section 14 of
this manual set.

OVERVIEW

This appendix describes the graphics routines contained in the object
file:

GRAPH.OBJ

These routines may be used to create highly formatted displays. The
routines included allow plotting and drawing lines, relative to a point
or from absolute coordinates. Other routines allow placing a single dot
at a specified pixel location, moving (relative and absolute), erasing,
and disabling the graphics display.

Section 8 of the 1722A System Guide contains an excellent
introduction to display graphics. Read this section first, to familiarize
yourself with the terms and concepts used.

K-1

Graphics

GRAPHICS ROUTINES

Information to be displayed is held in two separate portions of
memory: the character plane and the graphics plane. Both of them can
be turned on and off using the ANSI Standard Mode Selections.
Additionally, the graphics plane can be turned on and off using two of
the routines in the Object File named “GRAPH.OBJ”.

To use the Graphics Routines, the program must link to the object file
prior to any command using the graphics plane. Your program must
have the line:

LINK “GRAPH”

before any graphics routines are executed. If you place the line early in
any program that will use the graphics display, it will save time by not
accessing the disk during program execution to load the graphics
routines into memory.

Graphics
Routines

Display Graphics Commands

The paragraphs that follow describe each of the graphics routines.
Note that all the arguments must be integers; i.e., they must be
followed by the symbol % in any BASIC language program that uses
them.

Graphics
Routines

Summary of Commmands

The table that follows describes each of the graphics routines. Note
that all the arguments must be integers except for the first arguments to
1.,LABEL and LABELF. This means that in a BASIC language
program, for example, the arguments must be followed by the %
symbol. In FORTRAN, variable types are determined by the first
character in the variable name (Integers I though N), or by using the
TYPE statement. See the particular progamming languagze manual for

full details.

All of the following routines can be called by a BASIC or FORTRAN
program except for LABEL and LABELF. LABEL is called by a
BASIC program and LABELF is called by a FORTRAN program.

SUMMARY OF GRAPHICS ROUTINES

COMMAND

PURPOSE

DOT (X, V, {type})

DRAW (X1, Y1, X2, Y2, {type})
ERAGRP ({type})

GRPOFF

GRPON

MOVE (X, Y)

MOVER (Xoffset, Yoffset)

PAN (X, Y)
PLOT (X, Y.{type})
PLOTR (Xoffset, Yoffset, {type})

LABEL(S$, D%, T%)

LABELF(STR,LENSTR,DIR, TYPE,

Draws a single dot at X, Y, returns to the
current position.

Draws a line from X1, Y1 to X2, Y2.
Erases the entire graphics plane.
Disables the graphics plane.
Enables the graphics plane.

Moves to absolute position X, Y.

Moves relative to amount specified by
the offset.

Sets display window position to X, Y.
Plots from current position to X, Y.

Plots relative to amount specified by
the offset.

Place string in graphics memory either
horizontal or vertical

ERROR)
*Type: -1 = INVERSE
0 = BLACK
1 =WHITE

K-4

Graphics
Routines

o The values of the X and Y arguments may not exceed 2047, and
may only be negative in the relative commands MOVER and
PLOTR.

0 The X argument is the number of pixels in the horizontal direction.
Since the screen is 640 pixels wide, the center is 320 pixels from the
left edge.

O The Y argument is the number of pixels in the vertical direction.
The screen is 224 pixels high, so the center is 112 pixels from the
bottom edge.

o The ‘Type’ argument determines whether the routine paints white
on black (1), black onto white (0), or the inverse of the color
already at that position (-1).

O The S$ argument is a string variable or string constant that is
placed in the graphics plane.

O The STR argument is an array with one characterin each byte that
is placed in the graphics plane.

0O The LENSTR argument specifies how many characters are in the
STR array.

0 The D% and DIR arguments specify whether the string should be
placed in the graphics plane horizontally (0) or vertically (90).

In the pages that follow, each of the routines except LABELF is
described in detail, and some suggestions are given about the kinds of
things that each of them can be used for. Some of the descriptions
include program examples. The example listings are all shown as they
would appear in programs written for the BASIC Interpreter.

K-5

DOT
GRAPH.OBJ

Usage

DOT(X%, Y%, {type%})

Description

This routine places a single dot at the specified coordinates, then
returns to the current pixel position. Because this routine returns to
the former pixel position it is useful in the construction of detailed
charts or graphs that require pixel resolution and are generated by a
mathematical formula that calculates each point from the same
position.

Parameters
X An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the dot.
Y An integer 0 to 255 that specifies the absolute vertical pixel

location for the dot.

type Aninteger value that specifies whether the dot is painted white
on black (1), black on white (0), or the inverse of the color
already at that position (-1).

Example

K-6

This BASIC program uses DOT to draw a sine wave. It first asks for
“Amplitude”, and then for “Period”. The amplitude is the peak-to-
peak pixel amplitude of the sine wave that will be drawn. The period is
used for frequency and sampling rate. Notice that the program does
not allow a period of less than 1. Selecting periods less than five results
in waveforms whose resolution is too coarse for the wave to be
observable.

LINK "GRAPH" { link to graphics

ERAGRP (0%) \ GRPON

P
P
1

erase, turn on graphics
clear character plane

input amplitude

amplitude: dots peak-—-to-peak

RINT CHRS$(27) + "[2JU"
RINT CPOS (14,0); "Amplitude";

NPUT A

PRINT CPOS (15,0): "Period"; input period (snmgling rate)
INPUT P eriod. no. of dots/cycle
;; = 0 THE = 0 is illegal

clear character plane
x across display
calculate y

R X% = 1 to 640

PyU

P N 60

éNT CHR®$(27) + "[2u"
z = A # SIN (X% / P)

7% = 0.5 =& (Y) + 112 integerize and offset y

DOT (X%, Y% 1%) dot at calc'’ed position
NEXT X% continue calculation
e0TOD 40 next value

Usage

DRAW
GRAPH.OBJ

DRAW(X1%, Y1%, X2%, Y2%, {type%})

Description

This routine draws a line from absolute position X1, Y1 to another
absolute location, X2, Y2. If the final position is beyond the edge of the
graphics plane, the line will end at the edge. The current pixel position
is not changed by DRAW.

Parameters
X1

Yl

X2

Y2

type

Example

An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the start of the line.

An integer 0 to 255 that specifies the absolute vertical pixel
location for the start of the line.

An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the end of the line.

An integer 0 to 255 that specifies the absolute vertical pixel
location for the end of the line.

An integer value that specifies whether the line is painted white
on black (1), black on white (0), or the inverse of the color
already at that position (-1).

Current position is 0,0. To draw a white diagonal line across the
display, use:

DRAW(O%, O%, 639%, 223%, 1%)

K-7

ERAGRP
GRAPH.OBJ

Usage
ERAGRP {type%}

Description

This routine erases the entire graphics plane to the color indicated by
{type%]}, either green, black, or the reverse of the color before erasing.
Any data within the plane will be deleted. The character plane is
unaffected.

Parameters

type An integer value that specifies whether the screen is erased with
white (1), black (0), or the inverse of the color already at every
position in the graphics plane (-1).

Example

At the beginning of a program, use ERAGRP to prepare the Graphics
plane for the display.

ERAGRP (OX) ! Erase to black
ERAGRP (1:) ! Erase to green
ERAGRP (-1%) ! Create inverse image

GRPOFF, GRPON
GRAPH.OBJ

Usage
GRPOFF,GRPON

Description

These routines turn the graphics portion of a display off and on. The
memory is left intact; the routines only determine if the graphics plane
is displayed or not. The character plane is unaffected.

Example

A selection display has just been presented to the operator. When the
selection has been made, a new display is presented that contains new
graphics. Rather than using ERAGRP to erase the graphics plane,
however, it is desired to leave the contents alone because the test results
update the display for the next selection. In this case, use GRPOFF to
turn off the graphics display. When the display is updated, the program
uses GRPON to display the change.

K-9

MOVE
GRAPH.OBJ

Usage
MOVE(X%, Y%)

Description

This routine moves the current pixel location without drawing. If
either X% or Y% are outside of the graphics plane, the move stops at
the corresponding edge.

Parameters
X An integer 0 to 2047 that specifies the absolute horizontal pixel
location to move to.
Y An integer 0 to 255 that specifies the absolute vertical pixel
location to move to.
Example

A program has just drawn a diagonal line from the bottom left to the
upper right corner of the screen. Now, to “lift the pencil” to get back to
0,0, use the MOVE routine:

MOVE (0%, O%)

MOVER
GRAPH.OBJ

Usage
MOVER(Xoffset%, Y offset%)

Description

This is the relative move routine. It moves the current pixel position to
a relative position within the graphics plane. The move is done without
drawing; if the new position is outside the graphics plane, the move
stops at the corresponding edge.

Parameters

Xoffset An integer -2047 to 2047 that specifies the relative number
of horizontal pixel locations to move.

Yoffset An integer -255 to 255 that specifies the relative number of
vertical pixel locations to move.

Example

A program is being designed that draws two figures that may appear
any place on the display. The second figure must appear immediately
to the right of the first. After the first figure is drawn, use the relative
move routine to move the current position relative to the ending
location of the first figure.

K-11

PAN
GRAPH.OBJ

Usage
PAN(X%, Y%)

Description

The PAN routine moves the window around the graphics workspace.
The reference is the lower left corner of the display window. Positive
arguments move the reference corner to the right and up. Negative
arguments move the reference corner left and down. PAN does not
affect the current pixel position.

Parameters

X An integer -2047 to 2047 that specifies the relative number of
horizontal pixel locations to move the reference corner.

Y An integer -255 to 255 that specifies the relative number of
vertical pixel locations to move the reference corner.

Example

During a measurement session, data has been collected by a program,
and has become part of a data file. The operator then elects to view the
results of the day. The program inserts the raw data into a subroutine
that creates and draws a chart that cannot fit in one window. Use the
PAN routine to permit viewing the entire chart. Left and right arrow
keys can be made part of the display, to allow positioning the window
at any area of interest.

K-12

PLOT
GRAPH.OBJ

Usage
PLOT(X%, Y%, {type%})

Description

This routine draws a line from the current position to the location
indicated by the X and Y arguments. (Also see DRAW.) PLOT uses
the current position as the starting place to begin drawing, rather than
defining the starting position, as DRAW does. The current pixel
position is updated to X,Y.

Parameters
X An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the end of the line.
Y An integer 0 to 255 that specifies the absolute vertical pixel

location for the end of the line.

type Aninteger value that specifies whether the line is painted white
on black (1), black on white (0), or the inverse of the color
already at that position (-1).

Example

Use PLOT rather than DRAW in those instances where the starting
position will be unknown, but a line is desired from one place to some
other position. This routine can be used in constructing some types of
graphs, like pie-charts. As the program collects data, the value of the
data would be inserted into a Relative Move statement, and the PLOT
statement would draw the line from the starting point to the calculated
position (which then becomes the new current position).

PLOTR
GRAPH.OBJ

Usage
PLOTR(Xoffset%, Yoffset%, {type%})

Description

The relative plot routine draws a line from the current position to the
location indicated by the Xoffset and Yoffset arguments; it is similar to
DRAW, except that as it returns to the starting position, continues
drawing; it doesn’t “lift the pencil”.

Parameters

Xoffset An integer -2047 to 2047 that specifies the relative number
of horizontal pixel locations for the end of the line.

Yoffset An integer -255 to 255 that specifies the relative number of
vertical pixel locations for the end of the line.

type An integer value that specifies whether the line is painted
white on black (1), black on white (0), or the inverse of the
color already at that position (-1).

Example

A triangular figure is to be drawn, and it may appear anywhere within
the graphics plane. Use the Plot Relative routine to draw the figure
relative to any starting position. This example draws a triangle that will
be black if the field is green, and green if the surroundings are black:

MOVE (OX, OX)
PLOTR(&60%, 60%, -1%)
PLOTR(60%, —60X, =-1X)
PLOTR(-120%, OX%, -1X)

LABEL
GRAPH.OBJ

Usage
LABEL({string}, {direction}, {typel)

Description

This routine places a string of characters in the graphics plane. These
characters appear exactly as they would if displayed normal size in the
character plane. The character string can be positioned horizontally or
vertically. The current pixel position determines the starting position
of the string. The current pixel position is updated so that a subsequent
LLABEL routine call will cause string concatenation. See subsequent
examples on string positioning. If the final position of the string is
beyond the edge of graphics memory, the string will wrap around and
continue at the opposite edge.

The LABEL routine puts a string into the graphics plane at the rate of
about 1/60 of a second per character which means that it takes about
1.3 seconds to draw an 80-character string.

If keyboard input occurs during a long series of drawing operations,
there could be up to a 6.5 second delay in responding to the input. This
delay time also occurs with {CTRL) /C, (CTRL) /P, and the ABORT.

Parameters

string This is a string constant or a string variable. Each
character of the string is taken from the character
EPROM. If access to the alternate character set is desired,
the string should contain the ASCII control character SO
(shift out, decimal 14). All characters after SO are taken
from the alternate character set until the ASCII control
character SI (shift in, decimal 15) is encountered. The Sl
causes selection to revert to the primary character set. The
default is the primary set, so all selection is from the
primary set unless SO is encountered.

The maximum length of a string that can be placed in the
graphics plane with a single LABEL call is 80 characters.
Since the control characters SO and Sl are not displayed,
they are not part of the 80 character string length. 1f the 80
character string length is exceeded the string will be
truncated.

K-15

LABEL
GRAPH.OBJ

direction This is an integer 0 or 90. If the direction is 0, then the
string will be horizontally oriented in the graphics plane.
If a direction of 90 is given, the string will be positioned
vertically. See subsequent examples.

type This is an integer 0, 1, or -1. It determines whether the
routine paints a white label on a black screen (1), black
label on a white background (0), or the inverse of the color
already at that position (-1).

Errors

LABEL
GRAPH.OBJ

2006 - direction argument not 0 or 90

Example 1

This BASIC program places a 26 character horizontal string in the
graphics plane. An initial MOVE changes the current position to
100,150, the place where the bottom left corner dot of the first
character cell of the string will be. LABEL updates the current position
to the dot immediately to the right of the bottom right corner of the last
character cell of the string (308,50). A horizontal character cell is 8 dots
wide and 14 dots high, so in this example the current position has been
updated in the horizontal direction by 208 dots (26 characters X 8
dots).

10 LINK ‘grapnh’ \ LINK ‘xgraph’ ' 1ink to graphic routines

20 PRINTY CHR$(27); “(2JU" ‘! clear character olane

30 ERAGRP(0%) \ GRPON \ PAN(O%, O%) ' erase & turn on grapnhics plane
40 MOVE (1007, 5S0%)

30 LABEL{'This is a horizontal label’, 0% 1%)

The following is what appears on the display screen after the above
program is run.

-)

This is a horizontal laocel

(100,50) (308,50)

K-17

LABEL
GRAPH.OBJ

Example 2

This BASIC program places a 24 character vertical string in the
graphics plane. An initial MOVE changes the current position to
300,10, the place where the bottom right corner dot of the first
character cell of the string will be. LABEL updates the current position
to the dot immediately above the top right corner of the last character
cell of the string (300,202). A vertical character cell is 14 dots wide and
8 dots high, so in this example the current position has been updated in
the vertical direction by 192 dots (24 characters X 8 dots).

10 LINK raph ' 1link to graphic routines
20 PRINT HR$(27) cau” ! clear character plane
30 ERAGRP (O%Z) \ GRPON \ PAN(O%. O%) i erase & turn on graphics plane

40 MOVE (300%, 10%)
S50 LABEL(’‘This is a vertical label’, ?0%, 1%)

The following is what appears on the display screen after the above
program is run.

/—(300,202)
[Z)

r 7)
_ E\ _J
_ AN J

\—(300,10)

Example 3

LABEL
GRAPH.OBJ

This BASIC program draws an X and Y axis with horizontal and
vertical labels on the axis. The MOVER and PLLOTR commands are
used to show how the LABEL routine updates the current pixel

position.
10 LINK ‘graph’
20 PRINT HR$(27); "[2J"
30 ERAGRP(0%) \ GRPON \ PAN(OZ, O%)
40 MOVE (250%, 30%)

LABEL('This is the X-axis’, 0%, 1%)
MOVER (0%, 19%) \ PLOTR(-144%, 0%, 1%)

MOVER (-3%, O%)
the Y-axis'’, 0%, 1%)

LABEL(‘'This is
MOVER (3%, OZ) \ PLOTR(O%, -144%, 1%)

! 1link to graphic routines
! clear character piane
‘! erase & turn on graphics plane

The following is what appears on the display screen after the above

program is run.

$

(r

This is the