

BASIC

P/N 716639
January 1984 Rev 1 5/85 [=Lu KE]

a ® ©1985 John Fluke Mfg. Co., Inc

All rights reserved. Litho in U.S.A.

Contents

HOW TO USE THIS MANUAL 1-1
Introduction 1... .. ccc ccc ccc cece ee cee eee eeeeeee 1-3
BASIC Manual ccc cece cc cc cece eee teense eeee 1-5
BASIC Reference Manual cece cece eee eee 1-6
How to Read Syntax Diagramsccceceeeceees 1-7
Notation Conventions cece cece cece ec eeeceeeces 1-9

BASIC CONVENTIONS cc cece eee 2-1
Introduction cc cece cece cee cece ete e ec ee esse aeeee 2-3
OVETVIEW oo. ccc ccc ce ccc cece eee e eee eet eeeeeeeees 2-3
Exceptions to ANSI Standard BASIC5. 24
Running the BASIC Interpreter Program 2-5
Exiting BASIC oo... ce ccc ccc cc cece cece eee eees 2-6
BASIC Operating Modes ccc cece cece cece cece 2-7

Immediate Mode cece ccc cee ccc eet e eens 2-7
Edit Mode 2... .. ccc ccc cece cece cece eee ee teeeees 2-9
Run Mode 2... ccc cece ccc ccc cee ccc e cece eet e ee eeees 2-9
Step MOde 2... cece cece cece cree cece eee eeeeceeeeee 2-10

File NAaMe€S 2... cece eee ccc cece cece eee eee esse eeeeees 2-11

SYSTEM FUNCTIONS cc cece 3-1
Introduction ccc ccc ccc cece ete eee e eens eeees 3-3
OVETVIEW .. ccc ccc ccc cece cece eee eee ec eeeeeeeeeee 3-3
System Functions for File Management 3-4
COPY Statement ccc ccc cece cece eee eee eees 3-5
DIR Statement ccc cc cece ee cee e ee eee eee eee 3-5
EDIR Statement cc cece cee cee teen aes 3-5
KILL Statement ccc ccc cc cee ees 3-6

QDIR Statement cee cc cece ec eee cence 3-6
RENAME cece cc ccc cece cece cece eeeeeeeeces 3-6

I (continued on page ii)

CONTENTS, continued

Device Management Functions ccc cee ec eeeees 3-7
ASSIGN Statement 0. cc cece ccc eee eee eee 3-7
PACK Statement ccc ccc cece eee eee ee eeee 3-7
PROTECT Statement 0... cece cece eee eee 3-7
UNPROTECT Statement 0... cc cece ee ees 3-8

4 WRITING AND EDITING A PROGRAA 4-1
Introduction... . cc ccc eee eect eee eee eee eeeeeees 4-3
OVELVIEW 2. cece ccc cece eet eee e eee tee e eee eee eeeeeees 4-3
Special Function Keys ccc cece eee cece c eee ee eees 4-3

Delete Key ccc ccc ccc eee cee cee ee ee een ee eeees 4-3
PAGE MODE Switch and NEXT PAGE Keys 4-3
(CTRL) /Key-Modifier 2.0... 0... ccc ccc cece eens 4-4

Writing a Program cc cece eee cece eee eee eeeee 4-6
Entering a Program ccc ccc eee eect ec eee eee eees 4-7

Entering a Program from the Immediate Mode 4-7
LIST Command ccc cece ec cece cece ees 4-9
DELETE Command cc ccc cece eee eees 4-10
REN Command cc cece cece cree eee eeceee 4-11
Changing the Sequence of Program Lines 4-14

Entering a Program From the Edit Mode 4-15
Entering a Program Using the System Editor
Program (EDIT.FD2) ccc eee e cece cece reece 4-15

Editing a Program ccc cece cc cee eee eet eee eeees 4-16
The BASIC Editor 2... cece cc cee eee ee eees 4-17

Edit Mode Keys keene cece ene ee eeeeneee 4-19
Additional Editor Features ccc cece cee ees 4-22

5 STORING AND RUNNING A PROGRAN 5-1
INtroductiOnN ccc cece cece eee e cece eee eee nees 5-3
OVELVIEW occ ccc ccc eect ence e reece ete tee eeeeenes 5-3
Saving a Program cece cece ec cee eee e ene eaces 5-4

SAVE, RESAVE, SAVEL, and RESAVEL
Immediate Mode Commandscccccceeeeee 3-4

Running a Program ccc ccc cee cece e eee eeeees 5-6
OLD Immediate Mode Command06- 5-6
RUN Immediate Mode Command000- 5-8

6 DATA, OPERATORS, AND EXPRESSIONS 6-1
IntrOductiON 1... . ccc cc ccc cece eee cece tee eee eeeees 6-3
OVETVIEW 2. ccc ccc cece cece eee ete e tee eteeeseee 6-3

Data Types ccc cece ccc cee cece teen tee teeeeeeeeees 6-4
Floating-Point Data ccc cece eee eee ee eees 6-4

li (continued on page iii)

CONTENTS, continued

Floating-Point Constants 0 ccc cece eee eee 6-5
Integer Data eee ccc cece eee tee ee eenes 6-5
Integer Constants 1... ... ccc cece cee eee eee e teenies 6-6
String Data ccc ccc cece cece eee e cece ee eeees 6-6
String ConstantS ccc cece cece eee eee esse eens 6-7
System ConstantS cece cece ccc cece e eee eees 6-7

BASIC Variables cece ccc cee eee e tee eaes 6-8
Introduction To Variables ccc eee eee eee ees 6-8
Floating-Point Variables 0. ccc eee eee eee eee 6-8
Integer Variables cc cee ccc cee ccc ee eee eens 6-8
String Variables ccc cece ec cee cece eee ee eees 6-8
Array Variables 0. cece ce eee ec ence eee neeeee 6-9
System Variables ccc cece cece ee eee cece e ee eeee 6-11

Operators and Expressions cee cece cece eee cenee 6-12
Assignment Statement: = ccc cece eee eeee 6-12
Arithmetic Operators: + -— * / wo... cece cc eee ee eens 6-12
Relational Operators: = < > <> <= DS= 6-14

Numeric ComparisOnsSeccecceccccecececees 6-15
String Concatenation Operator: + cece ce ee eee 6-15
Logical (Bitwise) Operators ccc eee ee eee ees 6-16

Binary Numbers cc ccc cece cece eee eeees 6-16
Twos Complement Binary Numbers 6-18
AND Operator cece ee ee eet eee eeee 6-18
OR Operator 2... ccc cc cece eee ee eee teen eens 6-19
MOR Operator ccc ccc eee ee ee cee eee eeee 6-19
NOT Operator cc ccc eee eee cece ee eee eens 6-20

Operator Hierarchy ccc cece eee cee eee eee eeee 6-20
Use of Parentheses in Expressions000ceee: 6-22

DATA STORAGE ccc ccc ccc eee 7-1
Introduction cc ccc cece cece eee eee eee eee eeeees 7-3
OVETVIEW . oc cece ccc ccc cee eee e eee e eee eeenes 7-3
Using Arrays for Data Storage ccc eee ee eee 74

Array Types and Differences 0. ccc eee eens 7-5
Advantages and Disadvantagesccceeececeee 7-6

T1/O Channels ccc ccc eee eee eee eees 7-7
Channel Input and Output cee ce ee 7-7
OPENing an Output Channel 2. e ee eee 7-8
OPENing an Input Channel 0... cece ees 7-8
Close a Channel ccc eee cc ec ccc cee e ees 7-8
Specifying File SIZE 2.0... . ccc ccc cc eee eee eee 7-9

Sequential Data Filesccceueueeees Deve e ween eee eaes 7-10
Creating a Sequential File 0... ccc cc ee ee ees 7-10
Reading a Sequential File 0... cc ccc ee wees 7-11

ili (continued on page iv)

CONTENTS, continued

Creating Main Memory Arrays 0.2 c eee eee eee 7-13
Using Main Memory ArrayS cece ee eee etre eee 7-14

Using Main Memory Arrays as Ordinary Variables 7-14
Programming Techniques 0c ee eee cece ee ceeee 7-15
Two Dimensional Arrays cc eee eee ee ee eens 7-16
Multiple ArrayS cc cece cece cece ee eee ee eens 7-17
RediMensSiOnIng cece ec cece cece ee ee eee eee e ee enes 7-17
Main Memory Arrays and Program Chaining 7-18
Serial Storage of Main Memory Arrays in Mass Storage . 7-19

Device Storage Size Requirements005- 7-20
Device File Size Calculation 0... c eee ee eee 7-20
Disk Size Calculation Example-00000- 7-21

Virtual Array Files 20... .. ccc ccc cece ete eens 7-22
DefinitlIon 2... . ccc ccc cece ee ee teen e cece enna 7-24
Advantages and Disadvantages cece eee ecees 7-24
File Structure ccc ccc ccc cee eee eect eee eee e eee 7-26

ANalOZy co cccc cece ccc eee n cree cere eere seen ecenees 7-26
Virtual Array File Organization0 cece eeee 7-27
Storage Size Requirements 0.0 cee eee ences 7-29
Virtual Array Size Calculation 0... cece eee 7-30

Creating Virtual ArrayS 2... .. ccc ccc cette eee eees 7-32
Using Virtual ArrayS cece eee cee eee ete eee eeteee 7-33

Using Virtual Arrays as Ordinary Variables 7-33
Using Virtual Array Strings 00. e eee e cece eees 7-34

Programming Techniques cece cece cect rece eees 7-35
Array Element ACCESS cece cece eee ete eeee 7-35
Splitting Arrays Among Files cece ee eeeees 7-36
Reusing Virtual Array Declarations00008: 7-37
Equivalent Virtual Arrays cece eee ec eee eee 7-38

8 FUNCTIONS 0. ccc ccc ccc ccc cee cece eeees 8-1
Introduction cece ccc cee eee ee eee ee ee ee eeeeaes 8-3
OVETVIEW oo. cece cece ce ccc cect eee tence eee eeeeeeaeaes 8-3
General Purpose Mathematical Functions 8-4

ABSQ) Function 0. ccc ccc cece ee cee cece cesses 8-5
ASH() Function 0... ccc ccc cece cee ete etee cence 8-5
EXP() Function ccc ccc ccc cece cece nee eeees 8-5
INTQ) Function ccc ccc cece cee eee neeees 8-5
LNQ) Function 2... ... cee ccc ee cee cence tenses 8-6
LOG(Q) Function 0... ccc cece cece ect c cee eeees 8-6
LSHQ Function 0... ccc ccc cee cece eee ceeeees 8-6
MOD() Function cece ccc cee cee cence eee eaees 8-6
RND Function 0... cc ccc eee cee cece eee eeenes 8-7

iv (continued on page v)

CONTENTS, continued

SGN() Function 2.0... . ccc ccc ccc ccc cece eee eee eees 8-7
SQR(Q) Function 2... . ccc cece cee eet cee e eee enes 8-7

Trigonometric FUNCtIONS ccc cece eee eee teen eaee 8-8
ATN(Q) Function ccc cece ccc cece cent ee eeeees 8-9
COS() Function 2... .. ccc cee ce ccc cee ee eee eee e ee eees 8-9
SINQ Function ccc ccc ccc cee eee ee ee eeees 8-9
TAN() Function cc ccc ccc ccc eee e ee eees 8-9

String FUNCtIONS cc ccc cee eee cece e eee e eee aees 8-10
ASCIIQ) Function 2... ccc ccc ccc ccc cc ewe crete eeees 8-11]
CHRS() Function 2... ccc cece ccc ccc eee eect eens 8-1]
CPOS() Function 0... cece cc ccc cee eee ee eees 8-11
DUPLS() Function ccc ec ce cee eee eees 8-11
INSTRO Function cc ccc ccc ccc eee eee ee eeees 8-12
LCASES$() Function cece c cece cc eee cece eens 8-12
LEFT() Function ccc cc ccc cc cece eect enees 8-12
LEN() Function cc cece cc eee cece ee eee eens 8-12
MID(Q) Function cece cee cece eee teens eaes 8-12
NUMS() Function ccc cee cc eee cere eee teens 8-13
RADS() Function ccc eee ccc ee teenie eees 8-13
RIGHT() Function ccc ce ee ee ee ce eee 8-13

SPACES() Function ccc ccc ce ee cee eee eee 8-13

TABQ) Function ccc ccc ccc cc ccc cee e eee eeees 8-13
UCASES() Function ccc cece cee ee eee eee 8-14
VAL() Function 2... ccc ccc ccc eee eee cette ees 8-14

User-Defined Functions ccc cece eee eee e eee e eens 8-14

IEEE-488 Bus Input and Output Statements 9-1
INtrOdUCtION 2... cece cee cc cece cee eee eect eee eeees 9-3
OVETVICW . occ cece cece reece eee e eee e eee esse eeeeees 9-3
TEEE-488 Addressing ccc cece cect cece cece ee eee 9-4

Device Addressing ccc ccc cee cece cece eee ee eeee 9-5
Addressing Serial IEEE-488 Devices 9-7
Port Addressing cece cece cece ee eee es eeeeees 9-8

Initialization and Control Statements0000- 9-9
CLEAR Statement ccc ccc cc eee eee tenes 9-10
INIT Statement cee cc cc cc ee ce ee ce ee tere teenies 9-10
LOCAL Statement ccc ccc ce ce ee eee ees 9-1]
LOCKOUT Statement ccc cee cee eee 9-1]
ON PORT Statement cc cc ee wees 9-12
OFF PORT Statement ccc cee ee ee ee wees 9-12
PASSCONTROL Statement00. 9-12
REMOTE Statement cc ccc ee eee eee 9-12
SET SRQ Statement 0. ccc cee eee eee 9-13

v (continued on page vi)

CONTENTS, continued

10

TRIG Statement 0. ccc ee eee ec ce eee cece 9-13

TERM Statement cc ce ce ce ee tee cet 9-13

TIMEOUT Statement cc ee cee cee eee 9-13

Input and Output Statements cece eee eee eee 9-14
INPUT Statement cc cc ce cw ec we cee cee 9-14

INPUT LINE Statement cc cc ec eee ee ees 9-15

INPUT WBYTE Statement cc cw cc ee eee 9-15

INPUT LINE WBYTE Statement cc eees 9-15

PRINT and PRINT USING Statements 9-16

IEEE-488 Data Transfer Statements ccc ecees 9-17

RBYTE Statement ccc cc ecw ce eee wee tenes 9-18

WBYTE Statement or Clause cc cece cee ees 9-18

RBYTE WBYTE Statement ccc cee eee 9-18

RBIN Statement 0... ccc cee cee we ec eee cence 9-19

RBIN WBYTE Statement cc ccc cee eee eee 9-19

WBIN Statement cece cece eee cece cece ees 9-20

IEEE-488 Polling Statements cece eee eee eens 9-20
CONFIG Statement ccc ccc cece reece eee 9-21
ON SRQ and OFF SRQ Statements 0. eae 9-21
ON PPOL and OFF PPOL Statements 9-21

PORTSTATUS(Function 0... cece cece eee eens 9-22
PPL(Q) Function 2... .. ccc cc cece eee eee eee rene eeenes 9-22
SPL Function cc ccc cece cee eee e cece e ee eeees 9-22

WAIT Statement cc ce eee ce eee cee eee eeees 9-23

RS-232 SERIAL INPUT AND OUTPUT 10-1
Introduction ccc ec cc ee eee cc eee eee eres neeees 10-3

OVEFVIEW 2... ccc ec ccc cw ec cece ce eee e cece eee eeneeeens 10-3
RS-232-C Defined cc ccc cc cece eee eee eeees 10-4

Device and Port Addressing ccc cccececeseccces 10-5
Initialization .. 0... ccc ccc eee cc eee cece ce eeeee 10-6

1/O Channels ccc ccc cece eee eee cence nace 10-6
OPENing a Serial Communication Channel 10-7
CLOSEing a Serial Communications Channel 10-8

Output and Input cece eee cere eee eens 10-9
PRINT Statement 0. cc eee cc eee cece 10-9

INPUT Statement ccc ccc ee ce et cece 10-10

INCOUNT() Function 0... ccc cece cece eee cece 10-12
INCHAR() Function 0... cc ccc eee cece ee ewan 10-13
Sending BREAK ccc cece cece eee ete e cane 10-14

Establishing Serial Communicationse0ececeees 10-15

vi (continued on page vii)

11

CONTENTS, continued

INTERRUPT PROCESSING 11-1

Introduction ccc cee cc cee eee eee eee eet eeeeecs 11-3

OVErVIEW 2... ccc ccc ccc ccc ee cece eee reece eee eeeees 11-3

Types of Interrupts ccc cece ce ccc cee eee e eee 114
Error Interrupt cee cece cece cece eee eees 114
CTRL /C Interrupt cece ee eee 114

fin Interrupt 1... . ccc cc eee eee ee eee eee e eee eens 11-5
KEY Interrupt 2.0... . ccc cece cece ccc cece cette eens 11-5
PORT Interrupt cc ccc ccc eee ee eee eee e eee eeee 11-5
PPORT Interrupt cee cc ee ee ee et eect eee 11-5
SRQ Interrupt cece ee ee cece ee eee eens 11-5
PPOL Interrupt ccc ccc cc ccc etc ee ee ee ttt eeeeee 11-5
CLOCK Interrupt ccc eee cen 11-5
INTERVAL Interrupt cee cc ee eee eee 11-5

Hierarchy of Interrupts 0. cee eee eee eee eee 11-6
On-Event Interrupts cece cece cette eee eens 11-7

ON ERROR GOTO Statement008- 11-8

OFF ERROR Statement 0... eee ee eee 11-9

ON CTRL/C GOTO Statement00.8. 11-10
OFF CTRL/C Statement cece eee ee eee 11-11
ON #n GOTO Statement 0... cee cee ee eee 11-12

OFF #n Statement 0... cc ccc ce eee eee ee ee eee 11-13

ON KEY GOTO Statement 0. ee ee eee 11-14

OFF KEY Statement 0... cc eee ee eee er eee 11-15

ON PORT Statement cc cee ee cee ee eee 11-15

OFF PORT Statement cc cee eee ee 11-15

ON PPORT Statement 0... ccc eee ee ee ee 11-15

OFF PPORT Statement 0.00... ee ee eee 11-15

ON SRQ GOTO Statement 0... cee eee eee 11-16

OFF SRQ Statement cece ccc ee eee eens 11-17
ON PPOL GOTO Statement 2. cee eee 11-18

OFF PPOL Statement 0... ce eee ee eee 11-19

SET CLOCK Statement 0... cece eee ce ees 11-19

ON CLOCK Statement 0... cee eee ee ee 11-19

OFF CLOCK Statement 0... eee ee eee 11-19

SET INTERVAL Statement 000 11-20

ON INTERVAL Statement 0... eee ee 11-20

OFF INTERVAL Statement000. 11-20

RESUME Statement cee cee eee eee eee 11-21

WAIT FOR EVENT Interrupts 0.0.0 cee eee 11-22

WAIT Statement cc cc ee cee tere ee eet eeeetee 11-24

WAIT Time Statement 0... cee eee eee 11-24
WAIT FOR KEY Statement cc eee 11-25

vil (continued on page viii)

CONTENTS, continued

12

13

WAIT FOR SRQ Statement eee eee eee ees 11-26
WAIT FOR PPOL Statement-08- 1]-27

Errors and Error Handling cece cece eee eeeee 11-28
Fatal Errors 1.0... ccc ccc cee cee cc eee eee eee eee 11-28
Recoverable Errors 2... ccc ce ee eee eens 11-28
Warning Errors ec eee eee eee eee eee ee eens 11-29
Error Variables cece cece ccc cece ete e ee entenere 11-29

Interrupt Control Statements 0... cece eee eee ee 11-30
Interrupt Processing Program Examples 11-31

SUBROUTINES cece ce eee ee eee eee 12-1
IntroductiON 2... .. ccc cece cece ec cette eee eee e eee eeeee 12-3
OVEFVIEW 2... ccc eee ee eee eee eee eee eee eee [2-3
Using Internal Subroutines cc eee eee eee eee 12-4
Using External Subroutines cece eee ee eee eee 12-5

Software Requirements ccc cece eee ee eee 12-6
Subroutine NameS cee eee eee eee eet e teens 12-6
Assembly Language Subroutines000eeeeeee 12-7

Assembly Language Error Handler045- [2-7
FORTRAN Subroutines ccc cee cere eee ees 12-8
Subroutine Format cece cece ee eee teens 12-9

Introduction cece cee cee eee eee eee eee 12-9
Parameter Passing Mechanism00000: 12-9
The Parameter Decoding Subroutine, FSRGMY 12-10

Standard Assembly Language Subroutine Linkage
Mechanismcc cece eee eee eee e tence ee eeees 12-10

Multiple Subroutine Entry Points005. 12-13
Subroutine Parameter Formats ccc ee eeees 12-14

Introduction 1... .. cece cc eee ec ce eee eee teen tes 12-14
Basic Internal Data Formats 0. cece eee 12-14
Relationship Between Parameter Syntax And
Parameter FOrmat wo. cc cece cece ce ee ee eee eee eens 12-17

Passing String Values To and From Subroutines 12-19
Conversion of Strings to Internal Form 12-19
Conversion of Strings from Internal Form. 12-20

PROGRAM CHAINING eee 13-1
Introduction cc cee ccc eee eee eee eee teeeeaes 13-3
OVEIVIEW . occ ccc ec cece cette ee eee e tence eee ee te eeees 13-3
Statement Definitions ccc ccc ccc cee eee eee 13-4

RUN Program Statement 0.0.2... 0c eee eee ees 13-4

RUN WITH Statement 0... cece eee 13-6
EXEC Statement cece cece eee eee tee eens 13-6

vill (continued on page ix)

CONTENTS, continued

COM Statement cece ccc cece eee eens 13-8

Virtual Arrays in Chained Programs000- 13-9
Introduction to Virtual Array Chaining 13-9
Example of Chaining a Virtual Array 13-10
Using Sequential Data Files in Chained Programs 13-12

14 TOUCH SENSITIVE DISPLAY 14-1
DESCFIPtION Lo. cee ccc ee eee cee et ee eee eee ee eeeaee 14-3
Introduction cece ccc cece cece cee eee eneeees 14-3
Using the Display for Output 0... cee eee ee eee 14-4

The ASCII Character Set cece ccc ccc eee ee ees 14-5
Alternate Character Sets 2... . ec cece cece eee eens 14-6
Display Output Statements cee eee eens 14-7

PRINT Statement ccc cece cece teens 14-7
PRINT USING Statement 0... cc ee eee 14-8
CHRS() String Function ccc cee eee eee ee 14-9
TAB String Function ccc ee ee cece eee 14-9
CPOS String Function 0.0... cc eee ee eens 14-10

Special Display Control Characters0008- 14-12
Display Control Sequences cece eee eee ees 14-13

ANSI Compatible Display Control Sequences 14-14
Display Control Character Sequences000- 14-16
Cursor Positioning and Display Scrolling 14-17

Cursor Movement cc cece eee cee eee eees 14-17
Display Scrolling cece cc ec cece eee eee 14-18

EFaSIng . oc eee cc eee ec eee eee e eee nett ee ee eeeees 14-18
Mode Commands cc cece cece cece cece eee eeees 14-19

Character Visual Attributes 0... ccc cece ce ee eee 14-20
Field Attributes 2... ccc cc cece ec ee ee eee eens 14-22
Character Attributes 2.0... . 0. ccc eee eee ee ees 14-25
Non-destructive Display Character0000- 14-26
Character S1Z€ wo... ccc ccc ccc cence eee e eens 14-27

Character GraphicS cece ce cece ee eee teen enees 14-28
Keyboard Disable and Enable 0.0 eee eee 14-32

Using the Display for Input ccc ccc ee eee 14-33
Display Input Statements ccc cee ce eee ees 14-34

KEY Variable ccc cece ec cee eee eens 14-34
ON KEY and OFF KEY Statements 14-35
WAIT FOR KEY Statement 14-36

An Interactive Display Program0eceees 14-39

ix (continued on page x)

CONTENTS, continued

15 PROGRAM DEBUGGING 15-1
INtrOdUuctiON ... eee ccc cece eee ce eee tena ee eeees 15-3
OVEIVIEW oo. ccc ccc cece cee e eect eee eee e scenes eeees 15-3
Debugging Tools cece cece eee cece eee ne eees 154
TRACE ON Statement cece cee eee eee eee 15-4
Line Number Tracingcccccccccceccccecceees 15-5
Variable Tracing ccc ccc wee cee eee e eee ee eeees 15-8
Other Trace OptionS.......... ccc cece eee e cece eee eees 15-11
TRACE OFF Statement cc cece ee eens 15-13
STOP ON Statement cece eee eee eee eens 15-13
STEP Commandc ccc cece cece teen eee eeeees 15-14
CONT TO Command ccc ccc eee cee eee eeee 15-15

16 ERROR MESSAGEEGE ccc cece eee eee 16-1

APPENDICES
A Internal Structure of Variables cc cece eee A-l
B IEEE 488 Bus Messagescccccccccccccees B-1
C Wbyte Decimal Equivalents 0. ccc eee eee C-]
D Parallel Poll Enable Codes cece eee ees D-1
E Display Controls ccc ccc ee cee eee eee eens E-]
F Graphics Mode Characters cece ces ececeves F-]
G ASCII & IEEE Bus Codes ccc ccc cee eee G-|
H Assembly Language Error Handler00. H-1
I Fortran Interface Runtime Library0000- I-1

J Virtual Array Dimensioning Programcceeeaee J-1
K GraphicS ccc cece ccc eee cece e ee eenesees K-1
L Supplementary Syntax Diagrams cee eee wees L-1
M Glossary cece cece eee c eee c eee cree eee esate eeeenns M-1
N Reserved Words ccc ce cece cree cece er eeeeeeces N-1]

INDEX

Section 1

How To Use This Manual

CONTENTS

Imtroduction ccc ccc ccc tcc ce eee cee cece eee eens 1-3
BASIC Manual ccc ccc wee c eee eee e ete e cence 1-5

BASIC Reference Manual cc cc cee ec eee 1-6

How to Read Syntax Diagrams ccc cece ewes 1-7
Notation Conventionscc cece cece cence cece ees 1-9

1-1

How To Use This Manual

INTRODUCTION

When originally developed at Dartmouth College in 1964 the BASIC
computer language was intended to be a starting point for students
learning the rudiments of computer programming. The name BASIC
is an acronym for “Beginners All Purpose Symbolic Instruction
Code”. BASIC was intended to be simple and easy to learn.

Today, the BASIC Language is much more than a beginners language.
BASIC has evolved into a powerful, but easy-to-use programming
language that is used for more general-purpose programming than any
other computer language. BASIC is the de-facto standard for
microcomputers and instrument controllers.

This manual documents the BASIC Language option for the Fluke
17X XA series Instrument Controllers. The BASIC Language defined
for the 17X XA series is a superset of Standard (ANSI) BASIC with the
following enhancements:

O IEEE-488 bus operation and management.

O Graphics capability for the 17X XA series Instrument Controllers.

O Virtual Array storage (random-access disk files).

O BASIC program linkage to Assembly Language or FORTRAN
subroutines.

O Operator feedback from the Touch-Sensitive Overlay (TSO).

O System Variables for time-of-day, date, time, error handling,
available memory, touch-sense key, and file length.

O Dipirect port input and output.

O Device and file management functions.

O Error handling.

4+ow To Use This Manual

1-4

If you have never written a BASIC program before, you should obtain
and read the following reference:

BASIC from the Ground Up
David E. Simon
©1978 Hayden Book Company, Inc
Rochelle Park, NJ

Catalog #: 5760-1
ISBN 0-8104-5117-4

After familiarizing yourself with Standard BASIC, read the tutorial
sections of this manual.

If you are familiar with Standard BASIC, the various manual sections
may be consulted individually as required.

How To Use This Manual

BASIC MANUAL

This manual is divided into these major sections:

Section 1 How To Use This Manual
Describes the organization of the various manual sections, syntax
diagrams and notation conventions.

Section 2 BASIC Conventions
This section describes the differences between Fluke BASIC and
Standard BASIC, running and exiting the BASIC Interpreter
program, BASIC operating modes and file names.

Section 3 System Functions
Describes how to perform FDOS functions from within the BASIC
environment.

Section 4 Writing And Editing A Program
Describes the program writing process and the uses and usage of the
BASIC Editor and the System Editor.

Section 5 Storing And Running A Program
Describes how to store, load, and run a stored program.

Section 6 Data, Operators, And Expressions
Describes the various data types, variables, operators and expressions
used in Fluke BASIC.

Section 7 Data Storage
Describes data storage techniques using main memory and virtual
arrays aS well as the advantages and disadvantages of both.

Section 8 Functions
Describes and explains the various string and mathematical functions
available in Fluke BASIC

Section 9 IEEE-488 Bus I/O
Describes and explains the use of the IEEE-488 Bus Control
statements.

Section 10 RS-232 Serial !/O
Describes the RS-232 serial I/O ports and how to use them from a
BASIC Language program.

1-5

How To Use This Manual

Section 11. Interrupt Processing
Describes using the interrupts as a means of control and error-
recovery.

Section 12 Subroutines
Describes the use of subroutines in a BASIC program. How to use
subroutines written in Assembly Language and FORTRAN with
programs written in BASIC. How to pass parameters to and from each
program.

Section 13 Program Chaining
Describes how to run BASIC programs, and how to chain (connect) to
other BASIC, Assembly Language, or Command files.

Section 14 Touch Sensitive Display
Describes the display control codes, formatting, and graphics. Shows
how to use the Touch Sensitive Display for operator interface.

Section 15 Program Debugging
Describes techniques and tools used to correct errors in BASIC
programs.

Section 16 Error Messages
A numerical listing of error codes and their meanings.

APPENDICES
A collection of reference material and a glossary of terms.

INDEX
A thoroughly cross-referenced listing of items and topics explained in
this manual.

BASIC REFERENCE MANUAL

The BASIC Reference Manual contains an alphabetical listing of all
commands, statements, functions, and system variables. If you are
familiar with standard BASIC, you will be comfortable working with

this manual most of the time.

How To Use This Manual

HOW TO READ SYNTAX DIAGRAMS

A syntax diagram is a graphical representation of how to construct a
valid command or statement in a programming language. It is a kind of
“shorthand” way of writing down all the rules for using the elements of
a language. Since they are used throughout this manual, learning how
to read them can be a great time saver.

Croat)

Caaie)
Cee)

| filename |

(explanation)

Words inside ovals must be entered exactly as they are
shown.

Words inside boxes with rounded corners indicate a

single key must be pressed, such as RETURN or ESC.

This indicates a space in the statement. (Press the
spacebar.)

To create a control character, hold down the control key
(CTRL), then press the other key. This one is a Control C;
it causes a break in the program.

A box with lower-case words inside means that you
supply some information. In this case, you would enter a
filename.

Words in parentheses are explanations of some kind.
They give added information about the nearest block or
path.

How To Use This Manual

1-8

From the left, any path that goes in the direction of the arrows 1s a
legitimate sequence for the parts of a statement. This sample shows the
correct syntax for naming a file. The translation is given below.

(no name) (default extension)

4) 4 » (no extension)

—C)—

(maximum 6 characters) (maximum 3 characters)

A line exits the top of this diagram with no keyboard input. This
indicates that it is possible to not specify the filename or its extension.
In this case, the file would have no name, and the system would assign
a default extension.

Further down the diagram, you can see that there are other
possibilities. You can choose up to 6 characters for the filename,
moving once through the loop for each character chosen. Up to three
characters can be chosen for the extension.

Filename can be any combination of letters, digits, the $ sign, and

spaces.

The filename and extension must be separated by a period, as shown in
the oval block at the top center.

The remark “no extension” means that it is not necessary to specify an
extension, even though a file name is given. Notice however, that this
remark occurs after the period, so the period is necessary if a name is
specified.

Here are some examples of valid filenames according to the syntax
illustrated in the diagram:

TESTIN.$3A 1722A.RAC $$$$$$.5

How To Use This Manual

NOTATION CONVENTIONS

The conventions listed here are used for illustrating keyboard entries
and to differentiate them from surrounding text. The braces, {};

brackets, []; and angle brackets, (); are not part of the keystroke
sequence, but are used to separate parts of the sequence. Do not type
these symbols.

(XXX)

(XXX) /Y

[xxx]

XXX

{xxx}

(xxx)

Means “press the xxx key”.
Example: (RETURN) indicates the RETURN key.

Means “hold down key xxx and then press y”.
Example: ‘CTRL)/C means to hold down the key
labeled CTRL and then press the key labeled C.

Indicates an optional input.
Example: [input filename] means to type the name of the
input filename if desired. If not, no entry is required, anda
default name will be used.

Means to type the name of the input as shown.
Example: BASIC means to type the program name
BASIC as shown.

Indicates a required user-defined input.
Example: {device} means to typea device name of your
choice, as in MFO: for floppy disk drive 0.

This construction has two uses:

1. As a separate word, (xxx) means that xxx 1s printed
by the program. Example: (date) means that the
program prints today’s date at this point.

2. Attached to a procedure or function name, (xxx)
means that xxx 1s a required input of your choice; the
parentheses are a required part of the input. Example:
TIME(parameter) means that a procedure
specification 1s the literal name TIME followed by a
parameter that must be enclosed in parentheses.

Section 2

BASIC Conventions

CONTENTS

INtrOdUctiOn ccc cece cee cece cee eee eee eect neces 2-3
OVEFVIEW occ cee eee teen eee eee e eee eee enens 2-3
Exceptions to ANSI Standard BASIC 2-4
Running the BASIC Interpreter Program 2-5
Exiting BASIC ccc ccc cee eee ee ee eee reece eee enes 2-6
BASIC Operating Modes cc cece eee eee e eee 2-7

Immediate Mode cece cece cece eee e eee ee eees 2-7
Edit Mode ccc cece cece eee tree e eee eee eeeenees 2-9
Run Modee cee cc cece cece cece cece eeeeeeeeeeeeees 2-9
Step MOde ..ccseccccccccevecce severe esse eesseeeeees 2-10

File NAMmeS 2... cece ccc cee eee ee eee tee e eee e eee eeeees 2-11

2-1

BASIC Conventions

INTRODUCTION

The English language has certain conventions in syntax, grammar, and
conjugation (to name a few). English also has certain exceptions to
these rules. BASIC, a computer language but a language nonetheless,
has its own set of rules and exceptions.

OVERVIEW

This section of the manual describes the differences between Fluke
BASIC and ANSI Standard BASIC, a few things to watch out for
when converting a program written in Standard BASIC to Fluke
BASIC, how to run the BASIC Interpreter Program, how to exit the
BASIC Interpreter Program and an explanation of the BASIC
Interpreter Program’s various operating modes.

The BASIC Language Interpreter program for the 17XXA Series
Instrument Controller is based upon ANSI Standard X3J2/77-26
Minimal Basic. (Within this manual, the 17XXA Series Instrument
Controller will be referred to as the Instrument Controller or simply,

the Controller.) A comprehensive set of additional command
statements for control of IEEE-488 bus instrumentation has been
added as well as string-data operation, mass-storage control
commands, debugging features, FDOS operations, and other
extensions. Also included are statements for chaining multiple
programs in sequence and passing variables between programs. In
addition to these functions and features, the BASIC interpreter allows
use of Texas Instruments TMS-99000 Assembly language subroutines
and FORTRAN subroutines.

BASIC Conventions

EXCEPTIONS TO ANSI STANDARD BASIC

Fluke BASIC is an enhancement of ANSI Standard Minima! BASIC.
The enhancements include many statements for instrument control.
An ANSI Minimal BASIC program will run on the Instrument
Controller unless there is conflict in one of the following areas:

0 Dimensioned arrays must be defined by a dimension statement
prior to use in a program.

LOG is the logarithm to base 10. LN 1s an additional BASIC
function for natural logarithms (base e).

A GOTO within a FOR-NEXT loop is not allowed if the GOTO
transfers control permanently outside the loop.

The print format used for floating-point numbers greater than 7
digits in length is .1 to 1, instead of | to 10 as specified inthe ANSI
standard. For example, .01234567 is printed as .1234567E-01,
instead of 1.234567E-02.

TAB(X) will position the cursor at X+1 instead of X.

Variables are assigned in sequence, upon validation, in a multiple-
variable input list. The ANSI standard allows variable assignment
only upon validation of the entire input list.

The optional base of | for a dimensioned array is not supported.
Fluke BASIC arrays have a base of 0. For example, A(10) has

eleven elements numbered 0 through 10.

User defined functions must have arguments. For example, DEF
FNA(X) = expression is allowed while DEF FNA = expression is
not.

Multiple commands are allowed ona single line when separated by
the \ character.

Spaces may not appear between GO and SUB of GOSUB or
between GO and TO in GOTO.

IEEE-488-1980 Instrumentation Bus control statements.

BASIC Conventions

RUNNING THE BASIC INTERPRETER PROGRAM

BASIC is run from the FDOS_ prompt by typing the BASIC
Interpreter program file name: BASIC. Refer to the 1722A System
Guide for information on how to run the FDOS program. When
BASIC is run, the program produces the following display.

BASIC Version (x.y)

Ready

NOTE
Verify that the version number given for “x.y” agrees with the
version number at the beginning of this manual. If not, contact
a Fluke Customer Service Center for advice.

In addition, BASIC may be run at Power-On or when RESTART is
pressed. This is done with an active Command File that contains the
file name BASIC. Refer to the 1722A System Guide for information on
the Command File, STRTUP.CMD.

BASIC Conventions

EXITING BASIC

2-6

There are four ways to exit BASIC. Each returns control to FDOS,
resulting in the FDOS) prompt.

O From Immediate Mode (READY prompt) type EXIT and press
RETURN. This allows input/output operations to finish, closes
files, deletes the BASIC program in memory, and returns to the
FDOS Command Line Interpreter. If the BASIC program in
memory has been edited and not SAVE’d or RESAVE’d, the
following prompt is issued:

Program has been changed but not saved. Really EXIT?

If answered yes, the BASIC Interpreter will delete the program in
memory and exit to FDOS. If answered no, the EXIT routine is
aborted.

Execute an EXIT statement within a running program. This allows
input/output operations to finish, closes files, deletes the BASIC
program in memory, and returns to FDOS.

Press RESTART. This transfers control to the self-test and load

routine, terminates all operations of the Instrument Controller,
loads FDOS, and processes the Command File(STRTUP.CMD),
if there is one. The Instrument Controller User Manual contains

information on the Command File.

CAUTION

When RESTART is pressed, any I/O in progress is aborted and

the file directory may be destroyed.

Enter (CTRL?/P (press and hold the CTRL key, press the P key
then release both keys). This closes all files immediately, deletes the
BASIC program in memory, and loads FDOS. Output operations
are not finished before the files are closed.

CAUTION

lf a BASIC program is in memory and control is returned to

FDOS, that program will be deleted from memory.

BASIC Conventions

BASIC OPERATING MODES

BASIC has four modes: Immediate, Edit, Run, and Single-Step. The

“Ready” prompt is displayed whenever BASIC is in Immediate Mode
and ready to accept keyboard input. This is the mode that BASIC
starts in whenever it is entered from FDOS. Other modes are accessible
only from Immediate Mode.

Immediate Mode

Ar entry to BASIC is always into Immediate Mode, identified by the
prompt “Ready”. Immediate mode may be accessed from any other
BASIC mode by typing (CTRL) /C. Also, a running program will
return to Immediate Mode whenever the program executes a STOP or
END statement or if a fatal error occurs.

Exit from Immediate Mode to FDOS is accomplished by typing EXIT,
or by typing (CTRL)/P. A “Really Exit?” prompt is given if a
program exists in main memory that has been edited but not SAVE’d
or RESAVE’d. If the prompt is answered with “yes”, any program that
was in main memory is erased by the exit to FDOS, otherwise
Immeditate Mode is re-entered.

In Immediate Mode, command lines or program lines may be typed. A
command line consists of one or more BASIC statements; these
statements are typed either without a line number or with a line
number of zero. Multiple BASIC statements are separated by a
backslash character (\). An Immediate Mode command Is executed

immediately upon pressing RETURN. Some BASIC commands can
be executed only in Immediate Mode. These commands or statements
are identified as Immediate Mode Commands or IMCs. Subsequent
sections cover them in detail.

BASIC Conventions
BASIC Operating Modes

A program line isa command line preceded by a line number between |
and 32767. A program is a meaningful sequence of program lines. The
following diagrams illustrate these points:

command 71 statement |
-

line)
4

_)

One ==

se | ni program ——+ line no. -— L- command line L—> RETURN

remark line

remark line REM —| characters = —>

| | _. program p program line r)

BASIC Conventions
BASIC Operating Modes

Edit Mode

The entry to Edit Mode is made from Immediate Mode by entering
EDIT, or EDIT followed by a valid line number. Editing begins with
the lowest numbered line of the program memory unless a line number
is specified. The exit from Edit Mode to Immediate Mode is
accomplished by typing (CTRL) /C.

The editor provided as a part of Fluke BASIC 1s an easy-to-use screen-
oriented editor. Edit Mode allows the user to insert, delete, or modify
the characters that make up program lines in main memory. The
editing (arrow) keys in the upper right corner of the keyboard plus the
BACK SPACE, (CTRL) /U, Carriage Return, and LINE FEED keys

contro] the movement of the cursor and the deletion of text. The
remaining keys are used for text entry. Edit Mode stores program lines
in main memory for subsequent use by other modes.

Run Mode

The transition to Run Mode is made from Immediate Mode by typing
RUN, or RUN “file name”. Refer to the Input and Output section fora
discussion of file name prefixes that may be used to identify the
location of the program file to be run. If a file name is specified, the file
is first located on the specified or default file storage device and it is
then loaded into main memory.

When a program is present in main memory and BASIC is in
Immediate Mode, Run Mode may also be entered by an Immediate
Mode branch command: GOTO, GOSUB, ON GOTO, or ON

GOSUB followed by a valid line number. In addition, when a running
program has been stopped by (CTRL)/C, STOP, STOP ON, or
CONT TO, Run Mode may be resumed by typing CONT or CONT TO
followed by a valid line number. These concepts are discussed in the
section Program Debugging.

BASIC exits RUN Mode and returns to Immediate Mode under any of
the following conditions:

O The program executes a STOP or END statement.

O (CTRL)/C is entered at the programmer keyboard.

O The front panel ABORT button is pressed.

O A fatal error occurs.

BASIC Conventions
BASIC Operating Modes

In Run Mode, program lines are automatically executed in the
sequence defined by line numbers, except as directed by branch
instructions in statements.

Step Mode

Step Mode is entered from Immediate Mode by typing the STEP
command after a breakpointed stop set by CONT TO orSTOPON.A
RUN, CONT, CONT TO, GOTO, GOSUB, ON GOTO, or ON
GOSUB command will cause BASIC to enter Run Mode; typing any
other command will cause BASIC to enter Immediate Mode.

In Step Mode, one program line is executed after each RETURN key
entry, followed by a “STOP AT LINE line number” message. Step
Mode is discussed further in the Program Debugging section.

BASIC Conventions

FILE NAMES

Programs and data files on the Instrument Controller are stored on the
floppy, electronic disk or other file-structured media by name. File
names consist of | to 6 letters, numbers, spaces, or $ characters. File
names may be extended by a period character, followed by up to 3
letters, numbers, spaces, or $ characters. Most usage of file names in
program statements requires that they be enclosed in single or double
quotes. Some examples of file names are:

TEST
DATA.473
$25795.98
TESTB2.H44

Some file name extensions have special meaning to the Instrument
Controller:

.BAL Lexical form BASIC programs
BAS ASCII-text form BASIC programs
.FD2 Binary utility programs
-HLP System data files (Help)
SYS System binary programs
CMD Command file

Following are points to remember about file names for programs:

Oo A program is normally saved in a file with a “.BAS” extension
when an extension is not specified and the SAVE command 1s used.

O A program stored via the SAVEL command is saved with a
“ BAL” extension. See the SAVEL statement.

O The system will look for a file with the extension “.BAL” when
seeking a program with a file name that has no specified extension.

O The system will look for a file with the extension “.BAS” when
seeking a program with a file name that has no specified extension
for which a “.BAL” version could not be found.

O The location of the file may be specified as a prefix to the file name.
Use “MF0O:” for the floppy disk, or “ED0O:” for the optional
electronic disk. For example: SAVE “MFO:TEST.T12”.

O The default file location when not specified is called the System
Device. The Input and Output section includes a discussion of this
concept.

2-11

Section 3

System Functions

CONTENTS

Introduction cc ccc ccc cece rece tea e eee eeeeeees 3-3

OVETVIEW oo. cc ccc ccc ccc cece eee ete cece ence ecteeeeees 3-3

System Functions for File Management 3-4
COPY Statement ce ccc cee eee eect cee neees 3-5

DIR Statement cc ce cc ce ee ce eee eee 3-5

EDIR Statement ccc cee cc cette c eee ees 3-5

KILL Statement 0. cc cee cece cc eee eee ees 3-6

QDIR Statement 2... ccc eee eee e eens 3-6
RENAME Statement ccc cece cee cece eee 3-6

Device Management Functionsccceeeeeees 3-7
ASSIGN Statement 0... ccc ccc cee cc cece eee ees 3-7

PACK Statement 0. ccc cece ccc cece eee ceees 3-7

PROTECT Statement cc cece eee ccc eee 3-7

UNPROTECT Statement cee cc ee eee 3-8

System Functions

INTRODUCTION

File and device management are two important functions of a disk
operating system. The File Utility Program (FUP) isa general-purpose
file and device manager program accessible from FDOS. FUP
commands provide functions such as: device assignment, file copy, file
deletion, file rename, and media formatting.

OVERVIEW

The BASIC Interpreter program has a family of file and device
management statements. These statements may be used in the
immediate mode or as part of a program. The System Function
statements do not provide all of the capabilities of FUP nor are they
intended to replace FUP. Instead they are intended to allow a running
program to manage its own files without the necessity of leaving the
BASIC environment. FUP is described in Section 4 of the System
Guide.

System Functions

SYSTEM FUNCTIONS FOR FILE MANAGEMENT

During the execution of a BASIC program, it may be necessary or
desirable to allow the BASIC program to manipulate (manage) some
or all of the files on the various mass storage devices. For example, a
data collection program that operates through the course of a day may
use a copy of the master data file foreach new run of the data collection
program. Once the data collection portion program has been
successfully completed, the filename extension of the old master data
file is changed to “.bak” using the rename command, then the copy is
renamed to be the master data file. The following example makes this
concept clearer.

Starting conditions:

File: “mydata.vrt” the master file

Run program

Copy “mydata.vrt” to nudata.vrt.

Collect data, store on “nudata.vrt”

If data collection fails, the original data file has been preserved.

Data Collection done

rename “mydata.vrt” as “mydata.bak”
rename “nudata.vrt” as “mydata.vrt”

Files are ready for the next run.

As you can see, the original data file is always protected from being
accidentally destroyed by always using a copy of the orginal file, then
renaming it after a successful program run.

The File Management functions are presented here in alphabetical
order. Each of the functions is summarized in this section. For a more
complete treatment, along with a syntax diagram, refer to the
Reference volume of this manual set.

System Functions

File Management

NOTE

Many of the examples to follow have explicitly mentioned file
names. Since these file names are strings, the BASIC
interpreter program requires that they be enclosed in quotation
marks. Any of these quoted strings may also be arbitrary
string-valued expressions.

COPY Statement

The COPY statement copies one or more files to the screen or to
another file. The general form of the COPY statement is:

COPY “old.ext” TO “new.ext” ! copies to another file

or

COPY “foo.ext’ ! copies to the screen

Remember that both filenames are strings, therefore both must be
enclosed in double quotes. If no device 1s specified for “thisfile.ext” or
“thatfile.ext” then the system device (SYO:) is assumed.

DIR Statement

The DIR statement prints the directory of a file-structured device such
as MFO: or EDO:. The general form of the DIR statement is:

DIR “mf0:” ! lists on the screen

Or

DIR “mf0:” TO “dirfil.txt” ! copies directory to file

If the device name is omitted, the directory of the system device SY0: is

used. The format of the statement output resembles the /L directory
listing in FUP.

EDIR Statement

The EDIR statement is similar to the DIR statement except that
unused and tentative directory entries are also listed. The statement
syntax is identical to the DIR statement. The display format resembles
the /E listing in FUP.

System Functions

File Management

KILL Statement

The KILL statement deletes a specified file. The KILL statement takes
the following form:

KILL “mf0:file. bas”

If a device is not specified, the system device SYO: is used.

QDIR Statement

The QDIR statement prints a short or quick directory listing of only
the filenames. File size, protection codes or creation dates are not
given. The statement syntax is identical to the DIR statement. The
display format lists the filenames six per line.

RENAME Statement

The RENAME statement allows a file to be given a new name. The
general form 1s:

RENAME “oldfil.ext” AS “nufile.ext”

where oldfil.ext is the current filename and nufile.ext is the new
filename to be used. Again, SY0: is assumed if no device specification is
given with either filename.

System Functions

DEVICE MANAGEMENT FUNCTIONS

The device management functions permit a BASIC program to
perform additional FUP-like functions such as assigning a device,
packing to remove unused blocks, and setting or un-setting write
protection for a file.

ASSIGN Statement

The ASSIGN statement permits the user or a running program to
assign a particular device as the system device, SY0:. The general form
of the statement is:

ASSIGN “mf0:” ! assign the floppy disk as SYO:

Or

ASSIGN “ed0:” ! assign the E-disk as SYO:

An error will be reported if the named device is not a known file-
structured device.

PACK Statement

The PACK statement is used to remove unused sectors from the

specified mass storage device. The general form of the PACK
statement is:

PACK “mf0:”

If no device is given, the system device, SYO:, is used. If the PACK

statement is used in the immediate mode, a warning prompt is issued to
alert the user that a lengthy operation is in progress.

PROTECT Statement

FDOS permits files to be selectively write or delete protected. This
means that protected files may not be deleted or over-written (e.g. via
the KILL or OPEN AS NEW FILE statements). The general form of
the PROTECT statement 1s:

PROTECT “myfile.ext”

which sets the write protection for the named file.

3-7

UNPROTECT Statement

The UNPROTECT statement removes the protection set by the
PROTECT statement. The UNPROTECT statement is the
complement of the PROTECT statement. The general form of the
UNPROTECT statement is:

UNPROTECT “myfile.ext”

which un-sets the write protection for “myfile.ext”.

Section 4

Writing and Editing a Program

CONTENTS

Introduction ccc ccc cece cee etc eete cee eee ee ee eeeees 4-3
OVEIVIEW oo ccc ccc ccc cece eee tee e rene teers eeeeees 4-3
Special Function Keys ccc cece cece cece cece eeeees 4-3

Delete Key ccc ccc cece cece eee e eee eeees 4-3
PAGE MODE Switch and NEXT PAGE Keys 4-3
(CTRL) /Key-Modifier 0... ccc ccc ce cece eee 4-4

Writing a Program cece eee ccc eee e eee e ee eeees 4-6
Entering a Program cece cece cece reece eeeeees 4-7

Entering a Program from the Immediate Mode 4-7
LIST Command ccc ee ccc ccc eee eee eee 4-9
DELETE Command ccc ccc cece eect eee eeee 4-10
REN Command cc ccc ccc cece cree ee cccees 4-1]
Changing the Sequence of Program Lines 4-14

Entering a Program From the Edit Mode 4-15
Entering a Program Using the System Editor
program(EDIT.FD2) cc ccc cc ec ee cere ween 4-15

Editing a Program sec cece cece cere eee ee sees 4-16
The BASIC Editor cece ccc eee eee eees 4-17

Edit Mode Keys cece cc cece eect eee eeee 4-19
Additional Editor Features ccc cc eee eevee 4-22

Writing and Editing a Program

INTRODUCTION

Writing a program is the first step toward getting the controller to do
your bidding. This section describes the process of entering a program
into the memory of the controller, and making corrections to that
program.

OVERVIEW

A BASIC program is any meaningful sequence of Fluke BASIC
statements that (in Run Mode) directs the Instrument Controller and
its associated instrumentation to accomplish a desired task. The
program statements that make up a BASIC program are made up of
BASIC language elements and their optional modifiers or arguments.

SPECIAL FUNCTION KEYS

The Instrument Controller’s keyboard has several function keys which
extend the capability of the keyboard beyond the simple task of
entering text. These keys are described in the following paragraphs.

DELETE Key

The DELETE key deletes the character immediately to the left of the
cursor. If held down, it will repeatedly backspace and delete characters
until all characters to the left of the cursor are deleted.

PAGE MODE Switch and the NEXT PAGE Keys

PAGE MODE 1s an alternate action switch that selects and cancels
Page Mode. The Page Mode indicator on the switch is ON when Page
Mode is selected. When PAGE MODE is enabled, the scroll feature is

disabled and display is limited to one full screen. The NEXT PAGE
switch displays the next full screen from the top line down.

Writing and Editing a Program
Special Functions Keys

(CTRL /Key-Modifier

The (CTRL) / key is a key-modifier that is always used in conjunction
with another key, much like the shift key. Several of the (CTRL) /+
key combinations have special meanings to BASIC editor. They are:

O (CTRL)/C returns BASIC to Immediate Mode resulting in a
“Ready” display prompt. In addition, a common use of
(CTRL)/C is to terminate a program test run during program
development. Some further considerations are:

If an IEEE-488 Bus operation is in progress, (CTRL)/C stops the
transfer immediately.

In Edit Mode, (CTRL)? /C willstore the current line as edited if it is
syntactically correct. If not, the line is stored as it was before
editing.

The ABORT button is treated by BASIC as a (CTRL)/C; in
addition, a Device Clear message is sent to the IEEE-488
instrument ports.

In Run Mode, execution of an ON CTRL /C GOTO statement
inhibits a return to Immediate Mode. Instead, control is

transferred to the program line referenced. See the Interrupt
Processing section.

(CTRL)/ P stops any input/output operation in progress and
transfers control back to FDOS. This action is taken regardless of
what the Instrument Controller was doing previously.

CAUTION

(CTRL)/P deletes the user program in memory. Also,

(CTRL)/P might not properly terminate a file transfer

operation in progress (the buffers are not “flushed”).

(CTRL)/R restores the last line typed in the immediate mode.

This line may then be edited using the Edit Mode keys editing
features of the command line interpreter.

The edited line may be executed by pressing (RETURN),
regardless of the cursor position.

O

Writing and Editing a Program
Special Functions Keys

Each time (CTRL) /R is pressed, the last line entered is displayed,
until the first line entered has been reached.

Likewise, each time (CTRL) / F is pressed, the Controller steps the
command line memory forward and displays the next line, relative
to the current line.

Additional editing commands are described in Section 6 of the
System Guide.

(CTRL) /S stops the display from scrolling. (CTRL)/Q allows
the display to continue scrolling. If a running program displays
enough data to make the display scroll, (CTRL) /S will stop the
display for study. The program will suspend output to the display
until (CTRL) /Q 1s entered.

There are some differences between using (CTRL)/S and
(CTRL) /Q, and using Page Mode with the NEXT PAGE key for
control of display scrolling:

NEXT PAGE scrolls the next page onto the screen.

After a (CTRL) /S has been pressed, there is no indication of the
status of the system; e.g., no indicator as on the PAGE MODE key.
Thus, (CTRL)/S can cause the keyboard to appear “dead”.
(CTRL) /Q will clear this condition.

(CTRL) /T erases the display, moves the cursor to the upper left
corner, enables single-size characters, disables graphics mode and

all other display enhancements, and enables the keyboard. It then
sends a Carriage Return and Line Feed. The section on The Touch
Sensitive Display describes display enhancements.

(CTRL)/ U deletes the current line.

Writing and Editing a Program

WRITING A PROGRAM

There are many techniques used in writing a computer program.
Everyone has their own pet method. One common method is to simply
sit down in front of the keyboard and start writing. While this method
is probably the most direct, it can produce a program that, in
retrospect, is difficult to maintain and/or troubleshoot.

In contrast, a program that is well thought out and documented during
the writing process is generally easier to troubleshoot and maintain.
The following points highlight this process.

l. Make a general statement of the task. It should be as general as
possible.

Break this general statement into subtasks and sub-sub tasks.
Repeat this until each subtask represents one activity.

Describe each subtask using English-like or BASIC words
(pseudocode) to describe what needs to be done. This is the
time to think out program flow and execution sequence.

Write the actual program in BASIC from the pseudocode
produced in the previous step. Use the REM statement to
describe the activity taking place within each program block
(subtask).

Debug the program blocks produced above. If possible, debug
each one separately from the rest. It is much easier to isolate
errors in this fashion.

Connect the previously debugged program blocks into the final
program, write any connective subroutines or program lines,
and perform the final debugging.

The program shoud be ready to run at this point.

Writing and Editing a Program

ENTERING A PROGRAM

Entering a program is the process of typing a program into the
controller’s memory. There are three ways of doing this.

1. From the Immediate Mode, enter the program lines by typing
them on the keyboard.

2. Use the Edit Mode provided by the BASIC Interpreter
program. This is the easiest way to enter a program into the
Controller’s memory.

3. Use an external editor program to create an ASCII text file
that the BASIC Interpreter program can then load and run.

Entering a Program from the Immediate Mode

From the Immediate Mode, type the line number, followed by a space
and the rest of the program line.

eo) Program lines may be typed (entered) in any order. Regardless of
the sequence in which program lines are entered, BASIC will store
and execute them in line number order.

Program lines may be typed in upper- or lower-case. BASIC
converts lowercase entries for program statement keywords and
variables to uppercase (capitals).

Each program line must begin with a line number.

Each program line must not exceed 79 printable characters in
length, including the line number, plus one character space for the
carriage return, for a total of 80 characters.

If you accidentally (or on purpose) use the same line number twice,
the last line entered is the line that is kept.

Some checking is done for syntax errors (like mismatched
parentheses).

If you make an error while typing, use the delete key to make
corrections, or use the Edit mode of the Basic Interpreter program.

You can also retype the entire line.

Writing and Editing a Program
Entering a Program

4-8

O To insert a line, use any line number between the two lines where it
needs to be placed. BASIC will store the new line in the proper
sequence. This is why BASIC line numbers are normally
incremented by 10.

O To replace a line, type the new line with the line number of the old
line.

O To delete a line, type the line number only. Then press
(RETURN). See also DELETE below.

O Use the LIST command to observe the program as it currently
exists in memory.

O Each line may contain remarks only, or it may contain one or more
statements optionally followed by remarks.

O When all program lines have been entered, type (RUN) to runthe
program.

O Program lines may contain multiple statements (commands) which
are separated by the backslash character (\) but must not exceed
79 printable characters plus the carriage return.

O In general, BASIC executes all the statements on a multiple
statement line before going on to the next line. The IF-THEN
statement discussed later is one important exception to this general
rule.

This discussion presents Immediate Mode commands which aid in
creating or modifying a program. They are: LIST, DELETE, and
REN.

Writing and Editing a Program
Entering a Program

LIST Command

The LIST command displays a program or a portion of a program in
line number order.

0 Display starts at the first line of a program and proceeds to the last
line if line numbers are not specified.

One line is displayed if a single line number is specified. The
command is ignored if the line does not exist.

A portion of a program is displayed if two line numbers are
specified. The display will be the lines with numbers between and
including the specified lines numbers if they exist.

If the portion to be listed is larger than one display page (16 lines),
the display will scroll upwards until the last line specified has been
displayed.

Use Page Mode and the NEXT PAGE key, or (CTRL)/S and
(CTRL) /Q to stop and restart the display. These functions are
discussed earlier in this section.

The following examples illustrate common uses of the LIST
command:

COMMAND RESULTS

LIST Displays the entire program in memory from
the first line.

LIST 300 Displays only line 500 of the program if
it exists.

LIST 600-800 Displays a program segment beginning with
600 and 800, inclusive.

Writing and Editing a Program
Entering a Program

DELETE Command

The DELETE command deletes part or all of a program from memory.

0

0

The entire program is deleted when ALL 1s specified.

DELETE ALL also deletes Common Variables (see the COM
statement in the Program Chaining section of this manual and in
the Reference volume of this manual set).

One line is deleted if a single line number is specified. The
command is ignored if the line does not exist.

One line may also be deleted by typing the line number only,
followed by pressing RETURN.

The portion of the program between and including specified lines is
deleted if two line numbers are specified.

The following examples illustrate common uses of the DELETE
command.

COMMAND RESULTS

DELETE No action

DELETE ALL Deletes entire program

DELETE 100 Deletes only line 100

DELETE 200-300 Deletes lines 200 through 300

400 (RETURN >) Deletes line 400

Writing and Editing a Program

Entering a Program

REN Command

The REN command changes the line numbers of some or all of the
program lines in memory. Renumbering 1s useful to make room for
additional program lines.

0

0

REN cannot change the order of program lines.

REN changes all references to line numbers (1.e., GOTO, GOS UB,

etc.) in the program to reflect the new line numbers.

All items shown in the syntax diagram are optional except the
command word REN.

The entire program is renumbered when no line numbers are
specified.

One line is renumbered when a single line number Is specified. The
command 1s ignored if the line does not exist.

A portion of the program is renumbered when two line numbers
are specified.

The line number following AS specifies the new starting number of
the segment being renumbered. If this would rearrange the
sequence of the program, a fatal error occurs and the line
numbering remains unchanged.

When AS is not specified, and a line number or range of line
numbers is not specified following REN, the new starting line
number is 10.

When AS is not specified and a line number or range of line
numbers is specified following REN, the new starting line number
is the same as the old first line number of the range specified.

The value of the integer expression following STEP must be
positive. It defines the difference between any two consecutive,
renumbered lines.

If there is no STEP keyword, the line increment is 10.

If the value of the integer expression following STEP is so large

that the new line numbers would force the program to be
rearranged, a fatal error occurs and the lines are not changed.

4-11

Writing and Editing a Program

Entering a Program

The following program is used in the renumbering examples below:

CAUTION
Renumbering from lower to higher line numbers (with more

digits) may cause the renumbered lines to exceed the 79-

character maximum line length allowed by BASIC. Restricting

program lines to 74 characters maximum length will generally

eliminate this problem. This exception is on long lines which

include line number references (e.g., ON expression GOTO,

IF-THEN-ELSE with line numbers, etc).

NOTE
Program lines containing the ERL (error line) function may
have statements suchas IF ERL= 200 THEN RESUME 400.
The expression, the constant 200, is used as a line number
reference. It isnot changed during renumbering. It may need to
be changed to the correct line number manually.

10 A=1
20 PRINT A +A
30 AA +1
40 IF A <= 2 THEN 20
50 PRINT "Done!"
60 END

COMMAND RESULT

REN 60 AS 32767

REN 10-50 AS 5 STEP 5

REN

4-12

Change line 60 to read:

32767 END

Change lines 10 through 50 to read:

7] A = 1
10 PRINT A + A
15 A=A + 1
20 IF A ¢= 2 THEN 10
29 PRINT "Done!"

Note the changed reference in line
20.

This would in this case restore the
program back to its original form.

REN 60 AS 1000

REN 60 AS 1000 STEP 5

REN 10-500 AS 1000

Writing and Editing a Program

Entering a Program

Renumber only line 60 as line 1000.
An error results if any lines are
numbered between 60 and 1001,

since this would rearrange program
sequence.

Same as the previous example.
STEP is ignored when only one line
is renumbered.

Renumber lines 10 through 500 to
Start at 1000, in steps of 10.

4-13

Writing and Editing a Program

Entering a Program

Changing the Sequence of Program Lines

REN cannot be used to change the sequence of program lines. The
simplest way to change the sequence of program lines is to use Edit
Mode (discussed below) and change line numbers individually. The
process must also include changing line number references (GOTO,
etc.) so they will refer to the correct lines. Edit Mode, however, is not
best suited for the task when larger portions of a program are to be
moved, because of the time required. As an alternate method:

1. Delete part of the program.

2. Renumber the remaining portion.

3. SAVE it under a temporary file name.

4. Retrieve the original program again, using OLD.

5. Repeat this procedure as needed.

6. Use the File Utility Program to merge these files together in the
desired order. Refer to the Instrument Controller User Manual

for details.

Here are some points to keep in mind while changing the order of
program lines in this manner:

O FUP cannot merge lexical files. Use SAVE (or RESAVE but not
SAVEL or RESAVEL) to save the program segments to be
merged.

O A BASIC program cannot have more than one line for each line
number. If two or more program segments which have internal line
number conflicts are merged, the last occurrence of each line
number will be all that remains when the merged file is processed
by the BASIC interpreter. Ensure that all program segments use
different blocks of line numbers, in the rearranged sequence that
you need.

O Some of the line number references may be incorrect. Check and
correct branching line number references before running the
program.

Writing and Editing a Program

Entering a Program

Entering a Program From the Edit Mode

The BASIC Interpreter program has an easy-to-use screen-oriented
editor which can be used for program entry or correction. To use the
editor for program entry, type:

edit (RETURN)

from the Immediate Mode (the program memory must be clear), then
type the line number followed by the BASIC program line. Press
(RETURN) when you reach the end of the line to return the cursor to
the left edge of the screen and to open up a new line. The delete key
deletes characters to the left of the cursor. Use it to make minor
corrections to the program line.

While using the DELETE key 1s sufficient for simple corrections to a
program line, this can become quite tedious as the changes necessary
become more involved. Additional capabilities of the BASIC editor
are described later in this section under the heading of The BASIC
Editor.

Entering a Program Using the System Editor Program
(EDIT.FD2)

The System Editor program can be used to enter a BASIC program
and save it on a file-structured device such as a floppy disk. While this
may seem like an extra step, the external editor’s more powerful
instruction set can make the task of entering a lengthy program easier.

Use the System Editor program by typing the following command
from the FDOS_ prompt:

edit [filename]

The System Editor program has a complete set of editing commands
including cursor movement, character insertion and deletion, string
search, and search and replace. It is described in the Instrument
Controller System Guide.

If you enter a program using the System Editor program and later edit
it using the BASIC editor, be sure to use the SAVE or RESAVE (not
SAVEL or RESAVEL) command to save the program on a mass-
storage device (such as a floppy disk) before exiting BASIC. Doing this

ensures that an ASCII image of the program is saved, which is readable
by the System Editor program.

Writing and Editing a Program

EDITING A PROGRAM

Editing is the process of selectively changing portions of a program.
Usually editing is part of the debugging process when developing a
program. BASIC, being an interpreted language, makes this process
especially easy by allowing changes to be made and tested without
leaving the BASIC environment. This is done using the EDIT Mode.

O Load the program into the controller's memory using the OLD or
RUN commands, or by typing it in.

Enter the EDIT Mode by typing EDIT from the READY prompt.

Use the EDIT Mode commands to make the changes needed in the
program.

Once the changes have been made, return to the Immediate Mode
by typing a CTRL/C.

Type RUN to execute the program. This allows the effects of
program modification to be observed immediately.

If a problem persists, more powerful debugging techniques are
discussed later in this manual.

If the changes required are lengthy, or involved, it may be easier to use
the System Editor program to make the changes. This process is
discussed briefly here and in more detail in the System Editor manual.

0 Be sure to save an ASCII image of the program on the mass-
storage device before exiting the BASIC interpreter program (use
the SAVE or RESAVE command).

Run the editor program by typing: edit programname.ext.

The system editor cannot resolve line number conflicts, nor does it
perform any syntax checking.

When you are finished editing, be sure to save the modified file
before exiting the editor program.

Writing and Editing a Program
Editing a Program

O Run the BASIC interpreter program by typing: BASIC from the
FDOS' prompt. Run your program by typing: RUN
“programname” from the Ready prompt.

O Ifa problem persists, more powerful troubleshooting techniques
are discussed later in this manual.

The BASIC Editor

The editor provided as a part of the Fluke BASIC interpreter program
is an easy-to-use screen-oriented editor. The Edit Mode allows the user
to create, delete, or modify the characters that make up program lines
in main memory. Program lines are stored in main memory for
subsequent use by other modes. The editing keys in the upper right
corner of the keyboard plus the (CTRL)/U, BACK SPACE,
RETURN, and LINE FEED keys control the cursor and delete text.

The remaining keys are used for text entry. This section describes the
edit keys and their use along with other editor features.

O Edit Mode is entered from Immediate Mode by typing:

EDIT
or

EDIT line number.

O Editing begins with the lowest numbered line of the program in
memory unless another line is specified.

O No line number specification is used when beginning the edit of a
new program when no other program is in memory.

O Program entry procedure is the same as in Immediate Mode.

O Immediate Mode commands and program statements cannot be
executed while in Edit Mode.

O Exit from Edit Mode to Immediate mode by entering (CTRL) /C.

O The special edit keys on the programmer keyboard are enabled.

O Upto 15 lines of the program in memory are displayed, beginning
at the first line or at the line number given with the command.

4-17

Writing and Editing a Program

Editing a Program

4-18

O Edit Mode enables the user to scroll the cursor forward or
backward in a program as well as right or left on program lines.

Edit Mode enables the user to delete characters, portions of lines,

or entire lines.

Edit Mode also enables the user to duplicate entire program lines.
The following examples illustrate the two different uses of the
EDIT command.

COMMAND

EDIT

EDIT 1000

RESULT

Select Edit Mode and display up to 15 lines of the
program in memory, beginning with the first line. If
no program exists, the display is cleared and the
cursor is positioned to the upper left corner of the
display.

Select Edit Mode and display up to 15 lines of the
program in memory, beginning with the first line
greater than 999. If no program exists or the last line
number is less than 1000, the display is cleared and
the last line of the program 1s displayed at the top of
the screen.

Writing and Editing a Program

Editing a Program

Edit Mode Keys

Some of the keys on the programmer keyboard have special functions
that are enabled or modified in Edit Mode. Any key, if held down,
performs its function repeatedly. Figure 4-1. describes the special
functions of the Edit Mode Keys.

NOTE
Any edit command that will move the cursor from the current
line or (CTRL)/C is not accepted if the line does not pass a
check for correct syntax. A blinking error message (e.g.:
“Mismatched Quotes”) will be displayed until the line is
corrected.

Table 4-1. Edit Mode Keys

KEY ACTION

Move one position left. Ignored if already at

the left margin.

— | Move one position right. Ignored if already at
/ \ the right end of the line.

Move one position up. If the line above is
. shorter than the current column position,

move left to the end of that line. Scroll down
one line if the cursor is on the top line of the
display, and another line is available. This
action will not be done if the line does not pass
a syntax check.

| { Move one position down. If the line below is
/ \ shorter than the current column position,

move left to the end of that line. Scroll up one
line if the cursor is on the bottom line of the
display, and another line is available. This
action will not be done if the line does not pass
a syntax check.

Writing and Editing a Program
Editing a Program

Table 4-1. Edit Mode Keys (cont)

ACTION

CTRL

Delete from the cursor position to the end of
the line. If the cursor is at the left margin, delete
the entire line and move the rest of the program
up one line to fill the deletion.

Delete the character at the cursor position and
move the remaining characters left one
position to fill the deletion. When the key 1s
held down for repeat, the portion of the line to
the right of the cursor will progressively
disappear.

Delete the character to the left of the cursor
position and move the remaining characters
left one position to fill the deletion. When the
key is held down for repeat, the portion of the
line to the left of the cursor will progressively
disappear as the portion to the right moves to
the left margin. This key function 1s also
available in Immediate Mode.

Delete the current line.

Move to the left margin.

4-20

Writing and Editing a Program

Editing a Program

Table 4-1. Edit Mode Keys (cont)

KEY ACTION

LINE : .
Move to the right end of the line.

7 When the cursor is at the right end of the line,
open a new empty line below, and move to its
left margin.

\ —

RETURN When the cursor is not at the right end of the
; \ line, break the line into two lines. The cursor

Character Keys Insert characters at the current cursor position.

CTRL

\

position identifies the first character of the new
(second) line.

This action will not be done if the portion of the
line that was to the left of the cursor does not
pass a syntax check.

Each character entry moves the cursor right
one position along with any text to the right of
the cursor. Entries that would result in a line
length greater than 79 characters are not
accepted, and produce a beep sound.

+ Return to Immediate Mode.

4-21

Writing and Editing a Program
Editing a Program

Additional Editor Features

4-22

It is not necessary to insert a line in correct sequence. Regardless of the
order in which program lines are entered, the editor will store them in
memory in the correct line number sequence. When the cursor 1s
instructed to move from a line, the editor checks for some syntax
errors, such as omitting a quote, parenthesis, or line number. If a line
does not pass the check, an error message is displayed and the cursor is
not allowed to leave the line until the error 1s corrected.

If a program line is renumbered by deleting all or part of its line
number and then entering a new line number, a duplicate line will
result. One line will have the original line number, the other line will
have the new line number. This may be seen by scrolling the modified
line on and off the display, in EDIT mode. This can be convenient for
duplicating sections of programs.

If (CTRL) /C is entered when the current line will not pass the syntax
check, the blinking error message 1s displayed in Immediate Mode and
the line is not stored in memory.

There are many errors the editor will not detect, such as forgetting to
dimension an array or specifying GOTO with a nonexistent line
number. Such errors will be detected only when the program is run.

The cursor will not scroll above the lowest line number nor below the
highest line number in the program. If the cursor is in the middle of the
program and a new last line is entered at that position, the cursor will
not scroll down past that line. To correct this condition:

O The cursor may be scrolled in the opposite direction until the line
entered out of sequence disappears from the display. Reverse scroll
direction again and the line will then be in proper sequence.

O Type ‘CTRL)/C, and then type EDIT, followed by the line
number that needed editing. Lines will then be displayed in correct
sequence, allowing access to all lines.

Writing and Editing a Program

Editing a Program

The editor stores program lines in memory with the line number shown
on the display. If any other program line has the same line number as
that shown on the display, it is replaced with the contents of the line
shown on the display. This feature can be used to duplicate program
lines by changing only the line number and moving the cursor off the
line. The line with the previous line number is not deleted by this
process. The display, however, will show only the most recent line
number entered. To see both resulting lines, scroll the entered line off
the display and back on.

When a line is scrolled off the display with the same line number as a
line previously stored, the original line in memory will be replaced by
the one which is scrolled off. In order to prevent this from occurring,
assign each line a unique line number.

4-23

Section 5

Storing and Running a Program

CONTENTS

Introduction ccc cece ccc cee e eee cece cece ee eeenees 5-3
OVErVIEW oo. ccc ccc ccc cc cece c cece eee cette cece eeeeeeens 5-3
Saving &@ Program 2... cece eee cece cece eect eee ceeeees 5-4

SAVE, RESAVE, SAVEL, and RESAVEL
Immediate Mode Commands..............cccccccceecs 54

Running a Program cee cece cece cece eee cert eens 5-6
OLD Immediate Mode Command,..000. 5-6
RUN Immediate Mode Commandeeeeee: 5-8

Storing and Running a Program

INTRODUCTION

After writing a program and having it execute (run) successfully, most
users want to preserve the fruits of their labor, either for history or for
later use. This section describes how to save a program on one of the
file-structured devices (floppy disk or Electronic disk, for example),
load a previously saved program into memory, and how to load and
run a previously saved program.

OVERVIEW

The procedures discussed in the last section produce a program in main
memory. However, whenever the power is turned off or, the user exits
the BASIC interpreter program to FDOS (using EXIT or
(CTRL) /P), the program in memory is deleted. To save a program for
later use, it should be stored on a floppy disk.

Programs may also be stored in main memory on the Electronic disk.
This requires that a portion of main memory has been previously file-
structured using the FUP /C command, prior to running the BASIC
interpreter program. Electronic disk procedures are identical to those
for the floppy disk. Remember, however, that the electronic disk will
lose its contents whenever power is turned off.

Storing and Running a Program

SAVING A PROGRAM

Fluke BASIC has four statements that cause the program currently in
memory to be saved on the named device or the system device if no
device is specified. These statements are: SAVE, SAVEL, RESAVE,
and RESAVEL.

SAVE, RESAVE, SAVEL, and RESAVEL Immediate Mode
Commands

=) The SAVE and RESAVE statements save the program currently in
memory onto the named device, or the system device if none is
specified, in ASCII form. This form is suitable for later editing with
the System Editor or for printing on a hardcopy device.

The SAVEL and RESAVEL statements save the program
currently in memory onto the named device, or the system device if
none is specified, in lexical form. This form is an intermediate form
to the BASIC interpreter program that requires less file space and
fewer processing steps to load and run. In a nutshell, use the
SAVEL or RESAVEL statements to minimize the time necessary
to load the program into memory and begin execution.

NOTE
A program saved via SAVEL or RESAVEL may not be
executable (or loadable) if the version of Fluke BASIC under
which it was saved differs from the version under which it is to
be executed.

A program that has been stored on a file-structured device may be
edited with the BASIC Editor once it has been loaded into main
memory with the OLD or RUN statements.

The SAVE and SAVEL statements are interactive. Both
statements ask the user for permission before overwriting an
existing file. If the first letter in the answer is “y” or “Y” then the
existing file is overwritten. Any other response aborts the SAVE or
SAVEL statement.

The RESAVE and RESAVEL statements are not interactive. Both
statements write the program currently in main memory to the
named device, or to the system device (if no device is specified). If

the filename given already exists on the device, it is overwritten,
without asking.

Storing and Running a Program
Saving a Program

Example:
A program is currently in memory. To save this program on a floppy
disk, with a filename of TEST.BAS follow the procedure below. For
the purpose of this example, the device name (MF0:) is specified
explicitly. If MFO: is designated as the System Device, then the device
name specification may be omitted.

a >
f Read >
save "mfO: test. bas”

Replace existing file TEST.BAS7 no

Ready
resave

Ready

\
Le so

NOTE
Once the filename is given as an argument to the OLD, RUN,
or any of the SAVE commands, the filename is stored in the
Controller's memory. If any of these commands are used
subsequently, the filename is not required.

Storing and Running a Program

RUNNING A PROGRAM

BASIC provides two ways to retrieve a program from a floppy disk or
any other file-structured device. The OLD command loads a program
into memory and remains in Immediate Mode. The RUN command
loads a program into memory and immediately transfers control to the
program and places BASIC into the Run Mode.

OLD Immediate Mode Command

The OLD command 1s used to load a program into memory from a file-
structured device.

O The file name, including optional storage device prefix and name
extension, must be enclosed in quotes.

BASIC will look for the file on the System Device if the a device is
not specified as a file name prefix. Refer to the Input and Output
section for a discussion of the System Device.

BASIC will look for the file on a specified device if the device name
is included as a file name prefix (MFO: for the floppy disk, and
EDO: for the electronic disk).

This command assumes that the file named is a valid BASIC
program in either ASCII or lexical form. A discussion of lexical
form is included under SAVEL in the Reference Section of this

manual.

If the file name extension is .BAS or .BAL, it does not need to be

specified in the file name.

If no extension is specified, BASIC looks fora file with .BAL name
extension and loads that file if it exists.

If the file named does not exist with a .BAL extension, BASIC
looks for the file with a .BAS extension and loads it if it exists.

If the file exists in both lexical (BAL) and ASCII (.BAS) form,
BASIC will load the lexical form unless the command directly
specifies otherwise.

The following two examples illustrate two ways of using the OLD
Immediate Mode Command.

Storing and Running a Program
Running a Program

la
Ready
old "test"

Ready

Load the file named
TEST.BAL (if present)
TEST.BAS (if TEST. BAL
is not present) from the
default System Device
into memory.

>

{—
{~

Ready
old “*mf0O: test. 5"

File named
Tom the floppy m

h
 D

—,

Storing and Running a Program
Running a Program

RUN immediate Mode Command

The RUN command loads the named file from the named device and
immediately begins running the program just loaded. If no device is
specified, the System device (SY0:) is used. If no other file is specified,
the program in memory is run.

0 The file name, including optional storage device prefix and name
extension, must be enclosed in quotes.

BASIC will look for the file on the default System Device if a
device is not specified as a file name prefix. Refer Section 3 of the
System Guide for a discussion of the System Device. File names are
discussed in Section | and Section 2 of this manual.

BASIC will look for the file on the specified device if the device
name is included as a file name prefix (MFO: for the floppy disk,
and EDO: for the electronic disk).

This command assumes that the file named is a valid BASIC

program in either ASCII or lexical form. A discussion of lexical
form is included under SAVEL in the Reference volume of this

manual set.

If the file name extension is .BAS or .BAL, it does not need to be

specified in the file name.

If no extension is specified, BASIC looks for a file with .BAL name
extension and loads that file if it exists.

If the file named does not exist with a .BAL extension, BASIC
looks for the file with a .BAS extension and loads it if it exists.

If the file exists in both lexical (.BAL) and ASCII (.BAS) form,
BASIC will load the lexical form unless the command directly
specifies otherwise.

The RUN command may also be used in RUN mode to chain
(sequentially run) another BASIC program. This is described later
in this manual and in the Reference Section.

Section 6

Data, Operators, and Expressions

CONTENTS

Introduction 1... ... ccc cece cere eee e eee e tence eee ceeees 6-3
OVETVIEW oo cece cece ccc ee eee e eee teen ee eeeeseees 6-3
Data TypeS 2... . ccc ccc ccc cece cece e cece eee eeeeeceeeece 6-4

Floating-Point Data ccc cc ccc ecw c eee ee eens 6-4
Floating-Point Constants ccc cece cece cece eees 6-5
Integer Data 2... .. ccc ccc ccc cece tenet een ee eees 6-5
Integer Constants 0... cc cee cee cece eee tence eens 6-6
String Data cc ccc ccc cece eee eee cece eeeees 6-6
String ComstantS ccc cece eee eee cee e ence ences 6-7
System ConstantS ccc ccc cece cece eee cece eeeees 6-7

BASIC Variables ccc ccc ccc ccc cee cece eee eees 6-8
Introduction To Variables ccc cece wee eee ees 6-8
Floating Point Variables ccc cece cece eee eee 6-8
Integer Variables ccc ccc cee eee ee eees 6-8
String Variables ccc cece ete nce e eee ee eeees 6-8
Array Variables ccc ccc cece cee cence eens ees 6-9
System Variables ccc c cece eee cece eee eeees 6-11

Operators and Expressions cece cece cece cceees 6-12
Assignment Statement: = ccc cece cee cena 6-12
Arithmetic Operators: +-—* / ccc ec ccc cee teens 6-12
Relational Operators: = < > <> <= DS= .,....... 6-14

Numeric Comparisonsc cece cece cece cceees 6-15
String Concatenation Operator: +cc cece ee ees 6-15
Logical (Bitwise) Operators ccc cece eee cee eee 6-16

Binary Numbers ccc ccc ecc ccc cccvccccees 6-16
Twos Complement Binary Numbers000- 6-18
AND Operator 2... cc ccc ccc c cece cece cece eee ees 6-18

CONTENTS, continued

OR Operator 2... . cc cece cc cece eee eee eee eees 6-19
MOR Operator ccc ccc cece cece cence eee e ee eees 6-19
NOT Operator ..,... cc ccc ccc cece cece eee ee eeeseees 6-20

Operator Hierarchy ccc cece eee ee sce tees cee 6-20
Use of Parentheses in Expressions0ceeeceees 6-22

Data, Operators, and Expressions

INTRODUCTION

Data and Operators are the building blocks of a BASIC expression.
Data are the numbers and strings used in an expression. Operators are
used to perform various fundamental arithmetic and logical
Operations. Expressions combine data and operators into valid
BASIC program lines.

OVERVIEW

BASIC is designed with the ability to compute with numbers and
strings. This section covers the data, data types and operators used by
the programmer to build expressions. These expressions are a precise
list of directions which BASIC follows to compute a result.

Data, Operators, and Expressions

DATA TYPES

Floating-Point Data

6-4

Floating-point data has the following characteristics:

O

Oo

Decimal exponent range: +308 to —308.

Exact range: 2.2225074E-308 to 3.595386E+308.

Resolution: 15 decimal digits.

Inexactness in the numeric representation. This inexactness can
cause problems when comparing two floating-point numbers.

Memory requirement (per data item): 8 bytes.

Represented internally in binary in accordance with proposed
standard “IEEE Floating-Point Arithmetic for Microprocessors”.
Copies of this standard are available from The Institute of
Electrical and Electronic Engineers, 345 East 47th Street, New
York, New York, 10017.

Unless modified by a PRINT USING statement, floating-point data is
displayed with a leading space or sign and a trailing space. It is printed
out to seven significant digits. A value from .1 to 9999999 inclusive is
printed out directly. A number less than .1 1s printed out without E
notation if all of its significant digits can be printed. All other values
are printed in E notation (+0.dxxxxxxE+yyy), where d is a non-zero
digit, x is any digit, and trailing zeros are dropped.

Data, Operators, and Expressions

Data Types

Floating-Point Constants

Floating-point constants, often called real numbers, are represented in
a program in decimal or possibly scientific notation. The syntax
diagram illustrates the proper representation of floating-point
numbers. A number in scientific notation, with an exponent following
“E”, represents a number multiplied by a power of 10. Examples of
floating-point constants are:

005
6354.33
~134.7
-12E2 Represents —1200
0.13E-05 Represents .0000013
0.1E6 Represents 100000
~,1E-400 Floating-point number outside the legal range.

Returns error 602.

NOTE
The inexactness in representation of floating-point numbers
can cause problems when using the equality operator (=) to
compare two values. To check equality of floating-point
numbers, compare the absolute value of their difference to a
small enough limit. For example, use ABS(A - B) < 1E-15
instead of A = B.

integer Data

Integer data has the following characteristics:

O Range: -32768 to +32767

O Resolution: Integers

O Exactness.

O Memory requirement (per datum): 2 bytes

O Integer data is represented internally in binary but displayed by the
Instrument Controller in decimal without the modification process
described in Floating-Point Data.

Q Operations that call for an integer result are rounded to an integer,
if necessary.

6-5

Data, Operators, and Expressions

Data Types

Integer Constants

Integer constants are whole numbers identified by a “%” suffix on the
number.

Examples of integers are:

-0%
S%
-32000%
-40000% Outside the allowed range.

String Data

Strings are sequences of 8-bit positive integers that are normally
interpreted as ASCII characters. Strings are used to store characters
for messages to instruments and to the display, as well as for storage of
binary data taken from instruments. String data has the following
characteristics:

O Maximum length limited only by available memory or 16383
characters.

O Memory requirement: each string of 16 or less characters occupies
an 18-byte memory segment and an additional 18 bytes for each
additional 16 characters.

O String data is normally displayed by the Instrument Controller in
ASCII. See the Touch Sensitive Display section for exceptions.

O When interpreted as ASCII, the value of the most significant (8th)
bit is ignored. See Appendix G, ASCII/ITEEE-488 Bus Codes.

Data, Operators, and Expressions

Data Types

String Constants

String constants are expressed as a sequence of printable characters
(numerics, uppercase alphabetic characters, lowercase alphabetic
characters, printable symbols, e.g., *, -, [, etc). In most cases, string

constants must be enclosed in either single or double quotes. Enclosing
the statement in single quotes allows the use of double quotes in the
constant and vice versa. String constants need not be expressed in
quotes when part of a DATA statement or when entered after an
INPUT statement. Some examples of strings are:

A$ = “The result of 3.8 * PI is ”
INS = ‘Reply with “YES” or “NO”?

System Constants

Fluke BASIC makes available two floating-point constants. Under the
name PI is stored the value 3.14159265358979. The mathematical
function EXP(X) computes the result of raising the base (e) of the
natural logarithm to a power expressed by the value of X. The function
EXP(1) produces the stored value of e, 2.71828182845905. Refer to the
Functions section for further information.

Data, Operators, and Expressions

BASIC VARIABLES

Introduction To Variables

Variables are named data items that may be changed by the actions ofa
running program.

e) They may be defined by the program itself (user variables), or they
may be defined by the Instrument Controller operating software
(system variables).

User variables are assigned a value by the assignment statement, by
the READ statement, or by an INPUT statement.

An assignment statement assigns a value (the result of evaluating
an expression), to a variable. One form of an expression is a
constant. For example, A=2.

The READ statement and statements which input data associate a
variable name with a constant.

System variables store changing-event information, such as time of
day or length of last file opened, for use as required by a program.

Floating-Point Variables

Floating-point variables are designated by a letter followed by an
optional second character. The second character can be a letter or a
number. The following variable names are not allowed, since they are
keywords of Fluke BASIC: AS, FN, IF, LN, ON, OR, PI, TO.

Integer Variables

Integer variables are designated by a floating-point variable name
followed by a “%” character.

String Variables

String variables are designated by a floating-point variable name
followed by a “$” character.

6-8

Data, Operators, and Expressions

BASIC Variables

Array Variables

An array variable is a collection of variable data under one name.

0

D

Arrays consist of floating-point, integer, or string variables.

The variable name has either one or two subscripts to identify
individual items within the array.

Subscripts are enclosed in parentheses.

When two subscripts are used, they are separated by a comma.

It is helpful to view two-dimensional arrays as a matrix. The first
subscript is the row number, and the second subscript is the column
number. For example, FT%(3,18) identifies the integer in row 3,

column 18 of the array FT%(m%,n%).

A subrange (portion) of an array can be designated by specifying a
first and last subscript separated by two periods.

For Example:

AS§(3..7) Strings 3 through 7 of the string array A$.

FT%(2..4, 5..15) Rows 2 through 4 in columns 5 through 15 of
the integer array FT%.

O Inthe last example above, the second subscript is incremented or

decremented before the first. For example, the statement PRINT
FT%(2..4,5..15) will display the range FT%(2, 5 through 15) before
displaying FT%(3, 5 through 15).

O Array variables are distinct from simple variables. A and A(0) are
two different variables.

O Only one array variable can be associated with an identifier. A%(n)
and A%(m,c) are not simultaneously allowed.

O Memory space must be reserved for an array variable before it can
be used. See the discussion of the DIM statement in Section 7 of
this manual.

Data, Operators, and Expressions
BASIC Variables

O Virtual arrays are array variables accessible through a channel to
the floppy disk or the optional electronic disk. This feature allows a
program to take advantage of the much greater storage space
available on these mass storage devices. Refer to the Section 7 of
this manual.

O Some examples of array variables are:

A%(3)
B1%(2%, 3%)
A$(5)
C(3%)
D(2 ++ A * B,C)
D(D(2))

System Variables

Data, Operators, and Expressions

BASIC Variables

System variables store changing event information for use as required
by a program. They are accessed by name and return a result in
floating-point, integer, or string form as appropriate. The system
variables in Fluke BASIC are summarized in Table 6-1.

Table 6-1. System Variables

NAME TYPE EXAMPLE MEANING

CMDLINE$} String basic Command line as typed to the FDOS) prompt.

DATE$ String 08-Feb-83 Current date in the format DD-MM-YY.

ERL Integer 1120 Line number at which the most recent

BASIC program error occurred.

ERR Integer 305 Error code of the most recent error the

BASIC interpreter found in the program

being executed.

FLEN Integer 6 Length of the last file opened in 512-byte

blocks.

KEY Integer 20 Position number of the last Touch Sensitive

Display region pressea.

MEM Floating- | 29302 Amount of unused main memory, in bytes.

Point

RND Floating- | 0.2874767 Pseudo-random number greater than Qand

Point less than 1.

STIME$ | String 14:03:06 Current time of day in 24-hour format,

including seconds.

TIME Floating- | 0.5491405E+08 | Number of milliseconds since the previous

Point midnight.

TIME$ String 17:45 Current time of day in 24-hour format.

NOTE: Accessing the KEY system variable resets its value to zero after

access.

Data, Operators, and Expressions

OPERATORS AND EXPRESSIONS

Assignment Statement: =

When used as a program statement, with a variable to its left, and an
expression to its right, = assigns the result of evaluating the expression
to the variable. No test of equality is implied. This is the default form of
the LET statement. In the following example, the integer N% is
incremented by 1.

N% =N% + 1%

Arithmetic Operators: + - * /

Arithmetic operators act upon or between numbers or numeric
expressions to produce a numeric result. A numeric expression is
composed of an arithmetic operator and one or more operands. Table
6-2 summarizes the arithmetic operators. The following guidelines
apply:

O

6-12

The + and - operators can act upon a single number or numeric
expression (unary operation).

All other arithmetic operators act between two numbers or
numeric expressions.

Numeric variables can be used as numbers in expressions if they
have previously been assigned a value.

Floating-point numbers and integers may be intermixed. Integers
will automatically be converted to floating-point, if necessary.

When one integer is divided by another, the result is a truncated
integer quotient (the fraction or remainder is truncated). For
example:

2% | 5% is 0%
15% | 3% is 5%
17% | (-3%) 1s -5%.

When a result is assigned to a numeric variable, it is first
automatically converted to the data type of the numeric variable.

When a floating-point number is assigned to an integer variable it
is rounded to an integer value, not truncated.

Data, Operators, and Expressions

Computation speed is significantly faster when floating-point and
integer data types are not intermixed.

The result of evaluating an arithmetic expression may be used ina
larger expression or assigned to a variable for later use.

Except for +, arithmetic operators cannot be used on strings.

Table 6-2. Arithmetic Operators

OPERATOR NAME MEANING AND EXAMPLES

+ Positive Unary plus operator. Does not change

sign.

+ Add Add two numeric quantities.

— Negative Unary minus operator. Changes the sign.

— subtract Subtract two numeric quantities.

. Multiply Multiply two numeric quantities.

/ Divide Divide first numeric quantity (dividend) by

the second numeric quantity (divisor) to

produce a quotient.

A Exponentiate } Raise the first numeric quantity to a power

equal to the second numeric quantity.

Data, Operators, and Expressions

Relational Operators: = ‘ > ‘() (= =

6-14

Relational operators compare numeric values or character strings. A
relational expression returns an integer Boolean result of 0 for false,
and -1 for true. The structure of a statement determines whether the =
operator is used for a relational comparison or an assignment. Two
examples are as follows:

PRINT A =B_ Displays —-1 if A and B are equal.
A=B=C Assigns —1 to A if B and C are equal.

Table 6-3 lists and describes the relational operators in Fluke BASIC.
All of the relational operators are described in greater detail in the
Reference volume of this manual set.

Table 6-3. Relational Operators

OPERATOR ACTION

= Relational equality operator.

(Relational less than operator.

= Relational less than or equal to operator.

) Relational greater than operator.

= Relational greater than or equal to operator.

() Relational not equal operator.

Data, Operators, and Expressions

Numeric Comparisons

Numeric comparisons are made as follows:

O All negative numbers are “less than” zero or any positive number.

O Integers are converted to floating-point when a comparison is
between mixed numeric data types. This conversion requires
additional processing time.

O When an operator checks for equality or inequality of numeric
expressions, use integers wherever possible. This is due to the
inexactness, and rounding and truncation errors, of floating-point
values.

O Tocheck equality of floating-point numbers, compare the absolute
value of their difference to a small enough limit. For example, use
ABS(A - B) (1E-15 instead of A = B.

String Concatenation Operator: +

When used between character strings, + concatenates (connects) the
strings together. The following examples illustrate the use of this
operator.

EXPRESSION(S) RESULT

“BEGIN” + “OPERATION” BEGINOPERATION

“BEGIN ” + “OPERATION” BEGIN OPERATION

A$ = “ Volts”
“ENTER” + A$ ENTER Volts

A$ = “Millivolts”

“ENTER” + A$ ENTER Millivolts

Data, Operators, and Expressions

Logical (Bitwise) Operators

Logical operators AND, OR, XOR, NOT, operate on the binary digits

that make up an integer. NOT is a unary operator, acting upon one
integer. AND, OR, and XOR are binary operators, using the bits of
one integer to act upon another integer. Logical operators allow
examination or modification of integer bit patterns when they have
been used to store binary data, such as status or binary readings from
instrumentation.

Binary Numbers

6-16

To use logical operators effectively, it is necessary to understand the
binary number system, and how the Instrument Controller uses binary
numbers to represent integers.

The Instrument Controller uses a 16-bit (2-byte) word to store each
integer. Each bit position represents a weighted power of 2. The sum of
the weight column in the following chart is the number of separate
integers that can be represented with 16 bits less one because zero is an
additional integer.

BIT POSITION WEIGHT

—

©
©

Oo

S
H
A
N
A

W
h
O

me

©

ie
)

No

e
e

b
o
t

e
e
k

e
k

f
e
e

Mm

&
W

bh

OO

—
"

\O

NO

SUM: 65535

Data, Operators, and Expressions

Integer numbers are represented by setting appropriate bit positions to
1. Adding the weighted values of each position that is set to | gives the
decimal value of the integer. For example, the number 305 1s
represented by the binary pattern 0000 0001 0011 0001, as follows:

Position: 15 141312 111098 7654 3210

Setting: 0000 0 001 0011 0001

Since each bit that is set to | carries a binary weight, it is possible to
verify that the binary pattern 1s correct. adding the numbers 56 + 32 +
16 + 1 gives the decimal value 305.

Decimal numbers can be converted to binary by continuously dividing
by 2 and keeping track of the remainders (always | or 0). For example,
the number 305 is converted to binary as follows:

305 / 2=152 R=1
152 /2=76 R=0
16 | 2 = 38 R=0
38 / 2=19 R=0
1I9/2=9 R=1
9/2=4 R=1
4/2=2 R=0
2/2=1 R =0
1/2=0 R=1

Reading the remainder bits, from the bottom up, gives the result
100110001, the binary representation of 305.

6-17

Data, Operators, and Expressions

Twos Complement Binary Numbers

By using the most significant bit (15) to identify a negative integer, the
Instrument Controller divides the pattern into 32767 positive numbers,
the number 0, and 32768 negative numbers. Negative numbers are
represented in a form called twos complement. To change either to or
from twos complement form, the following steps are required:

1. Replace every 0 with a I.

2. Replace every | with a 0.

3. Add 1.

For example, to change the pattern 0000 0001 0011 0001 (4-305) to
twos complement form, first reverse 1’s and 0’s: 1111 1110 1100 1110,
and then add 1: 1111 1110 1100 1111 (-305). To change it back, first
reverse 1’s and 0’s: 0000 0001 0011 0000, and then add 1: 00000001 0011

0001.

AND Operator

AND returns an integer bit pattern with a 1-bit in every position where
both of two input integers have a 1-bit. The AND operator is useful to
check for the setting of particular bit(s) to 1 by operating on an
unknown status word with a mask word (number) having the
appropriate bit(s) set to 1. The following examples illustrate the results
of AND operations:

33% AND 305% 33% 0000 0000 0010 0001
305% 0000 0001 0011 0001

RESULT: 33% 0000 0000 0010 0001

-74% AND 305% -74% 1111 1111 1011 0110
305% 0000 0001 0011 0001

RESULT: 304% 0000 0001 0011 0000

6-18

Data, Operators, and Expressions

OR Operator

OR returns an integer bit pattern with a I-bit in every position where
either of two input integers have a 1-bit. The OR operator can be used
to check for the resetting of particular bit(s) to 0 by operating on an
unknown status word with a mask word (number) having the
appropriate bit(s) set to 0. The following examples illustrate the results
of OR operations:

33% OR 305% 33% 0000 0000 0010 0001
305% 0000 0001 0011 0001

RESULT: 305% 0000 0001 0011 0001

-74% OR 305% -74% 1111 1111 1011 0110
305% 0000 0001 0011 0001

RESULT: -73% 1111 1111 1011 O111

XOR Operator

XOR (Exclusive OR) returns an integer bit pattern with a |-bit in every
position where the bits of two input integers are opposite. A mask word
applied to an unknown integer through XOR will invert (1 to 0, and 0
to 1) all bit positions where the mask contains a |, and leave unchanged
all bit positions where the mask contains a 0. The following examples
illustrate the results of XOR operations:

33% XOR -1% 33% 0000 0000 0010 0001
—1% (N11 1111 1111 1111

RESULT: -34% L111 1111 1101 1110

-74% XOR 0% —74% 1111 1111 1011 0110
0% 0000 0000 0000 0000

RESULT: -74% T1111 1111 1011 0110

Data, Operators, and Expressions

NOT Operator

NOT is a unary operator that operates upon a single integer. NOT
returns a | bit in every position where the input integer had a0 bit, and
a 0 bit in every position where the input integer had a | bit. The
following examples illustrate the results of NOT operations:

NOT 33% 33% 0000 0000 0010 0001

RESULT: -34% 1111 1111 1101 1110

NOT -74% -74% 1111 1111 1011 O110

RESULT: 73% 0000 0000 0100 1001

Operator Hierarchy

As long as the results of individual operations are compatible with each
other, operators can be combined in any order within an expression.
However, BASIC follows certain internal rules of hierarchy when
evaluating expressions. Table 6-4 lists the operators discussed within
this section in seven levels of hierarchy.

O An expression is scanned left to right for level 1 operations
(exponentiation).

GO After performing these, the expression is scanned left to right for
level 2 operations (+ sign, — sign).

O This sequence is continued until level 7 operations have been
scanned and performed, if present.

O Within the same priority level, operations are performed in left to
right sequence.

O This sequence can be modified by the use of parentheses.

6-20

Data, Operators, and Expressions

The following example illustrates these concepts:

The expression: 1 +2* 7 4/ 3-5

is evaluated as (7 4) * (2 / 3) + 1 -— 5 (hierarchal order)

not as ((((1 + 2) * 7) 4) / 3) —5 (left-to-right order)

Table 6-4. Operator Priority

PRIORITY | OPERATOR | FUNCTION

s
 A Exponentiate

Positive Sign (Unary plus)

— Negative Sign (Unary minus)

Multiply

/ Divide

+ Add

— Subtract

(Less Than

) Greater Than

= Equals

) Not Equal To

Less Than or Equal To

= Greater Than or Equal To a
n
a
a
a
a
a
m
®

f
h
 &

W
W

NN

NM

6-21

Data, Operators, and Expressions

Use of Parentheses in Expressions

6-22

After the rules of operator hierarchy are satisfied, expression
evaluation normally proceeds from left to right. Parentheses can be
used to organize and change the evaluation sequence of expressions.
The following rules govern the interpretation of parentheses by Fluke
BASIC:

O

0

O

Parentheses have priority over all operators.

Each left parenthesis “(’ must have a corresponding right
parenthesis “‘)” 1.e., parentheses must appear in pairs.

A pair of parentheses may be nested within another pair. Line
length is the only limit to this nesting.

Evaluation of nested parentheses proceeds from the innermost pair
outwards.

Pairs of parentheses that are not nested within each other are
evaluated in left to right sequence.

Parentheses may also be used where they have no effect except
clarity to the programmer.

The following example illustrates these concepts. The variables have
the values A = 2, B= 3, C= 4, D = 5, and E = 6.

The expression A+ B* C+ D/ E will evaluate as:

24+3*445/6
2+ 12 + 833333...
14.83333....

The expression (A + B) * (C + D) / E will evaluate as:

(A+B)*(C+D)/E
(5) * (9)/6
45/6
7.5

.. avery different result.

Section 7

Data Storage

CONTENTS

INtrOGUCtION ... cece cece cee eee eee eee eee teens eeees 7-3
OVETVIEW 2. cc cece ec eee ete e eect e cece teste eeees 7-3
Using Arrays for Data Storage cece eee ees 7-4

Array Types and Differences 0c cece cee eee 7-5
Advantages and Disadvantages0cccceeceees 7-6

1/O Channels cc ccc ccc ec eee cece teen eee eeee 7-7
Channel Input and Output ccc ec ee ee 7-7
OPENing an Output Channel 0. eee eee 7-8
OPENing an Input Channel 0. c eee eee 7-8
Close a Channel ccc eee ce ccc cee eee e ee eee 7-8
Specifying File SIZE 2.0... ccc ccc ccc eee ees 7-9

Sequential Data Files ccc ccc cece ees 7-10
Creating a Sequential File ccc cece eee ees 7-10
Reading a Sequential File ccc cece cee eee 7-11

Creating Main Memory Arrays0ccccccccceccces 7-13
Using Main Memory ArraySc cece cece cece eecees 7-14

Using Main Memory Arrays as Ordinary Variables 7-14
Programming Techniques ccc ccc cccvcccccces 7-15
Two Dimensional ArrayScccc cece csc ccceees 7-16
Multiple ArrayS cc cee cece cece eee e tees e sees 7-17
Redimensioning cc cece cece cece e cee ee cee eceee 7-17
Main Memory Arrays and Program Chaining 7-18
Serial Storage of Main Memory Arrays in Mass Storage . 7-19

Device Storage Size Requirements 7-20
Device File Size Calculation0 cece wees 7-20
Disk Size Calculation Example 7-21

7-1

CONTENTS, continued

Virtual Array Files 2.0... ... ccc ccc ccc cece cee eee eeees 7-22
Defimition ccc ccc ccc cere ee cece eee eee en ee eeecens 7-24
Advantages and Disadvantagescc cc cceeecees 7-24
File Structure 2... ... ccc ccc ccc cece cece cece cece cens 7-26
Feat: (0) A 7-26
Virtual Array File Organization 2c cee eeee 7-27
Storage Size Requirements cece eee eeeeee 7-29
Virtual Array Size Calculation 2. ee eeee 7-30

Creating Virtual ArrayS ccc cece eee cere ee eees 7-32
Using Virtual ArrayS ccc ccc cece cee eee eee eaee 7-33

Using Virtual Arrays as Ordinary Variables 7-33
Using Virtual Array Strings cece cece neces 7-34

Programming TechniqueS 0c cece esc cc ce cceeees 7-35
Array Element ACCESS cece ec cee cence teens 7-35
Splitting Arrays Among Files cc cece cee eees 7-36
Reusing Virtual Array Declarations0008. 7-37
Equivalent Virtual Arrays cece eee cee eee eees 7-38

[-2

Data Storage

INTRODUCTION

Many program applications require data to be stored or retrieved from
some form of long term storage. For instance, a digital voltmeter
connected to the IEEE-488 bus does not have the capability to average
its readings over a long period of time. The solution is to take ten (or
however many) readings, store them, then use the math capability of
the Controller to compute the average.

Using simple variables to store the readings is effective, but addressing
these variables systematically in a program can be clumsy. A better
technique is to store the data in an array. This allows addressing via the
array subscript, which can be a numeric expression.

OVERVIEW

This section describes the techniques of data storage, both in main
memory and on file-structured devices. After discussing the
advantages and disadvantages of both, the methods of use and the
statements used are discussed.

7-3

Data Storage

USING ARRAYS FOR DATA STORAGE

An array is both a powerful and convenient method of storing a large
volume of data. There are 954 possible names for each type of simple
variable in Fluke BASIC. This may seem like a large number, but it is
not enough to store the readings from a typical digital voltmeter
measurement. Consider the problem of storing 5 readings using
sequential, but independent variables using a loop.

10 FOR xX = 1 TO 5
Oo GOSUB 100 ' subroutine to request date (yX)

3 IF X = 1 THEN A1Z% = Y%
40 IF X = 2 THEN A2QX = YX
30 IF X = 3 THEN A3Z = Y%

80 NEXT x
90 END
OO ! subroutine to get reading from dva

n 10 ! more code. return value yx
20 RETURN

1
1
1

This program fragment will work, but it is easy to see how involved and
clumsy it could get, especially if a large number of data items were
involved. Notice that each reading consumes a program line and one
variable name. Here is a program fragment using an array to
accomplish the same thing.

D (
20 FOR X = 1 TO 5
30 GOSUB 100 ! go get reading (y%)
40 AX(XZ) = Y%R
50 NEXT X
60 END
100 ! subroutine to get Veading from dva
110 ! more code, return value in y%
120 RETURN

In line 40, the array element is assigned the value returned from the
subroutine (Y%) at line 100. The next iteration through the loop
increments the value of X%, which also causes line 40 to assign Y% to
the next sequential array element.

If the number of readings to be made and stored were increased to
1000, the only program changes needed would be to lines 10 and 20. In
the first example 995 more program lines would need to be added
inside of the FOR-NEXT loop.

—
_

Data Storage
Using Arrays

Array Types and Differences

Fluke BASIC allows data values to be stored by one of the following
methods.

0 As a sequentially-accessed data file on a file-structured device. This
is essentially a list of data items.

In main memory. Main memory arrays may be one or two-
dimensional.

As a virtual array (random access data file) on a file-structured
device. The array may be one or two-dimensional.

7-5

Data Storage
Using Arrays

Advantages and Disadvantages

Each of the three storage methods has its strong and weak points.
These are summarized below.

O The sequential data file and virtual array are both stored on file-
structured devices. If the device is a non-volatile file-structured
device (such as the floppy disk or bubble memory), the array
storage is also non-volatile.

A main memory array, being stored in main memory (system
RAM), is susceptible to power failures, program chaining and
DELETE ALL statements.

A sequential data file must be accessed sequentially. If you want
the 405th element of the file, you must sequentially access the
preceeding 404 elements first, which can be time consuming.

Sequential data files must be written, then read. A sequential file
may not be simultaneous read/write.

Virtual arrays and main memory arrays are random access. Any
array element may be accessed at any time.

An array stored in main memory can have a shorter access time
than the same array stored on a file-structured device.

All three storage methods will accept integer, string or floating-
point (real) values.

The elements of a virtual string array have a definite, dimensioned
length. Elements of a main memory string array are limited in
length only by the amount of main memory available.

Virtual arrays can have up to 65,536 (64K) bytes of data (128
blocks).

Main memory arrays are limited to 28K bytes minus the program
size in K bytes. Assuming a 5K application program, this means a
23K maximum array size.

Virtual arrays and main memory arrays can be used like ordinary
program variables.

Data Storage

1/O CHANNELS

The Instrument Controller communicates between the BASIC

program and various devices by means of I/O channels.

The devices used for data storage are file-structured devices suchas:

MFO: (floppy disk)
EDO: (E-disk)
WDo0: (fixed disk drive)
MBO: (bubble memory)

There can be a maximum of 16 1/O channels open at any one time.
They are designated with the numbers | through 16.

The 1/O channels are also used to communicate with instruments
connected to the IEEE-488 bus and RS-232 devices. Refer to sections 9
and 10 of this manual.

Channel Input and Output

The BASIC statements used in conjunction with the I/O channels are
the PRINT statement and the INPUT statement.

O The PRINT statement is used to output data from the program to
the device via the I /O channel.

O The INPUT statement is used to input data from the device, via the
1/O ‘channel to the program.

O The #nclause is added to both the PRINT and INPUT statements
when they are used for channel I/O. The #n clause specifies the
channel number to be used for input or output.

O The PRINT and INPUT statements are fully described in the
Reference Section of this manual.

Data Storage
1/O Channels

OPENing an Output Channel

To designate an output channel, it is necessary to OPEN it AS aNEW
FILE. When an output channel is to be used for a virtual array, the
DIM clause is used in the OPEN statement.

Example

10 OPEN “MFO: EXAMPL. DAT“ AS NEW FILE 1 ‘ new file, channel 1
20 OPEN “EDO: TEST.DAT”" AS NEW FILE 2 { new #ile, channel 2
30 OPEN “MFO: TEST. VRT" AS NEW DIM FILE 3 ! virtual erray, chen 3
30 PRINT @1, “HELLO” ' output “HELLO” to channel 1
40 PRINT @#2, AS ! output AS to channel

NOTE
A virtual array also requires the use of the DIM statement.
Refer to the discussion of Virtual Arrays, elsewhere in this
section.

OPENing an Input Channel

To designate an input channel, it is necessary to OPEN it AS anOLD
FILE.

Example

. 10 OPEN “MFO: EXAMPL. DAT” aS LE 3 !input from channel 3
20 OPEN "EDO: TEST. DAT" AS OLD D PILE 4 input #rom channel 4

|! 90 £§QINPUT #3, AS i read first line. chan
4 40 INPUT #4, BS ! read firat line, chan

An error will result if an attempt is made to OPEN a channel that has
previously been OPENed but not CLOSEd. It is a good practice to
close channels at the end of a program unless files are passed to a
chained program.

CLOSE a Channel

7-8

The CLOSE statement closes the file associated with the channel

number given. It is a good idea to CLOSE a channel immediately prior
to OPENing that channel.

Example

10 CLOSE 1
2o CLO LOSE 2

Data Storage

I/O Channels

Specifying File SIZE

If no file size is specified, the largest contiguous file space will be
temporarily reserved for that file. This may not leave any device space
available for additional files. To overcome this, specify the SIZE in
blocks that you wish reserved on the device for that file. Methods for
calculating block size are described in the discussions of Main Memory
Arrays and Virtual Arrays.

Example

20 OPEN “MFO: FILES. DAT" AS NEW FILE 1 SIZE 2
30 OPEN “MFO: FILE4. DAT" AS NEW FILE 2 SIZE 8

Data Storage

SEQUENTIAL DATA FILES

A sequential data file is a list of data items, separated by (CR) (LF).
As its name implies, a sequential file must be read sequentially; there is
no means to access an item within the file except by reading all the
items that preceed it.

Sequential files store data in ASCII format and may be read using the
COPY statement or FUP. To copy a sequential file to the screen, type
the following command from BASIC:

COPY {pathname}

or, from FDOS:

FUP {pathname}

Creating a Sequential File

Creating a sequential file is best illustrated with a short program. The
discussion that follows describes the important points to remember.

19 CLOSE 1 ' be sure channel is closed before opening
@

30 OPEN “TEST. DAT" AS NEW FILE 1% !test.dat., new file. chan 1
40 FOR XX = 1 TO 3
30 PRINT @1, Y% ' output yX% ta channel 1
60 Yi = 2 &# YX ! do something to y%
70 NEXT X%
80 CLOSE 1
90 END

The example program opens a new file named “TEST.DAT”, then
writes the value of Y% to the file. The FOR-NEXT loop causes this to
repeat 5 times.

Line 10 closes the channel to avoid a possible error if the channel had
been opened previously and not closed.

Line 30 opens the file “TEST.DAT” and assigns channel | for data
transfers to the file. The NEW clause tells BASIC to open a NEW file
to store data. If the file“TEST.DAT” exists already, it is overwritten.

The PRINT statement within the FOR-NEXT loop sends the value of
Y% to channel | (and hence to the file).

Line 80 CLOSEs channel | (good housekeeping).

Data Storage
Sequential Data Files

Reading a Sequential File

Reading a sequential file is illustrated here with three examples. The
discussion that follows each program, and the comments within the
programs emphasize the important points.

Example 1

The COPY statement provides a very simple method of reading a
sequential file. It is so simple, however, that it is not possible to direct

the output anywhere else but to the display.

10 COPY “TEST. DAT”

Example 2

10 CLOSE 1 ! insurance
20 ' look at the fil enerated Previously
30 OPEN “TEST. DAT" AS D FILE
40 ON ERROR @OTO 100 ' use chis to detect end-of-file
50 INPUT @1, AZ ! load ai with data from file
60 PRINT AX ‘ show it!
70 Db SO ! repeat
100 IF ERR = 307 THEN 110 ELSE 130 ! err 307 = eof
110 PRINT SEND OF FILE REACHED”
120 ‘e)
130 PRINT “ERROR “; ERR; “OCCURED” |! other error than eof
150 CLOSE 1 N END

The example program opens the file created by the previous example
program, then reads each line of the file, prints the value, then loops
until the end-of-file is reached. When the end-of-file is reached, the
error handler at line 100 prints an appropriate message.

Line 10 ensures that the channel to be used in line 30 1s not already
open. An error will result if it is.

Line 30 opens the file “TEST.DAT” for reading (OLD clause) and
assigns it to channel | for data transfer.

Line 50 assigns the first line of the file to a%. Line 60 prints a% on the

display.

Line 70 causes an infinite (until an error) loop.

The error handler at line 100 prints the message at line 110 if the error
was caused by reaching the end-of-file, otherwise a brief (and
somewhat cryptic) error message is printed.

Line 150 closes the previously opened channel/file and exits.

Data Storage
Sequential Data Files

7-12

Example 3

The INCHAR function may also be used to read data from a
sequential data file. The INCHAR function is described in the
Reference volume of this manual set.

10 CLOSE 1 insurance
20 OPEN "TEST.DAT” AS OLD FILE i open file
30 CX = INCHAR(1%) read character
40 IF CX = 26 THEN 70 check for end of file
SO PRINT CHRO(C%X); rint it
60 GOTO 30 oop to do it again
70 CLOSE 1 \ END clean up: go home

Line 10 ensures that the channel has been closed before an attempt is
made to open it at line 20.

Line 20 opens the file “test.dat” and specifies that it shall be read (as
opposed to written) and associates it with 1/O channel #1.

Line 30 uses the INCHAR function to read one character from the

previously opened channel.

Line 40 checks C% for an end of file character and branches to line 70 if

C% is an end of file character.

Data Storage

CREATING MAIN MEMORY ARRAYS

A main memory array 1s simple to create and use. Use the following
steps to create a main memoty array.

1. Dimension the array using the DIM or COM statement. The
following statement dimensions a 100 element single-
dimensioned integer array using N1% as the array variable.
The use of the COM statement is described later in this section.

10 DIM N1%(100%)

2. Assign values to the array elements (in any sequence) by using
the LET or INPUT statements.

3. Array element values may be used using the LET or PRINT
(USING) statements or by using the array element as part of a
numeric or logical expression.

Data Storage

USING MAIN MEMORY ARRAYS

The following paragraphs present some suggestions for using main
memory arrays.

Using Main Memory Arrays as Ordinary Variables

7-14

Except for the required DIM (or COM) statement prior to use, a main
memory array can be treated as an ordinary variable. That is, data may
be stored or retrieved from any array element at any time, in any
sequence. The COM statement is discussed later in this section, Section
13 of this manual, and in the Reference volume of this manual set.

O Any legal variable name may be an array variable.

O Remember to use the DIM or COM statement first.

O Do not use the DIM or COM statement twice on the same array.

O If your program crashes, data stored in a main memory array is lost
after execution of a RUN or EDIT statement unless the COM
statement was used to allocate memory space for the array.

In the following example, elements of A% may be used wherever
integer array elements may be used.

10 DIM AX(255%)

The following example shows that data may be read from or written to
the array simply by writing the array name in an expression or
assigning a value to an array element.

305 IF AX(I%) >» OX THEN 350
390 ' more code
430 LET AX(I%) = ABB (AX(IX)) + 2%

Data Storage
Using Main Memory Arrays

Programming Techniques

The program given in the introduction to this section illustrates the
“nuts-and-bolts” of getting values into a main memory array. Getting
values out of the array in a sequential fashion is largely the same:

1. Set up a FOR-NEXT loop.

2. Read the array elements one-by-one using the LET or PRINT
statements.

3. Repeat step 2 as necessary.

Another method is to use array subranging. This is a special case of the
array element identifier. The first example displays all elements of the
array A$, which has previously been defined as having 20 elements in
line format. The second example displays only elements 5 through 10
in columnar format (note the semicolon).

The example program in Section 7 of the System Guide demonstrates
this method also. Look in the “Transfer Module” portion of the
program. The semicolon following the array subrange suppresses the
normal (CR) (LF) after each element, allowing display in multi-
columnar format.

Data St Orage
Using Main Memory Arrays

Two Dimensional Arrays

Until now, only one dimensional arrays have been used and discussed.
It may help to think of a one-dimensional array as a one row matrix.
For example, the preceeding example array, A$, represented as a
matrix would be:

<_ <_ Columns 0 through 19 >

ROW A3$(0) A$(1) A$(2) A$(3) A$(4) A$(5) A$(6) A$(7) A$(8) A$(9) ... A$(19)

Fluke BASIC allows two-dimensional arrays. A two-dimensional
array such as A$(1,4) has two subscripts in its array element identifier.
This additional subscript gives the program the ability to create more
elements than is possible with only one subscript. The additional
subscript also gives the program the capability of building a matrix
with ROWs as well as COLUMNS.

Suppose you had 3 production shifts and you wanted to store the total
number of instruments produced by each shift for one week (5 days).
The following program is an example of one way to do this task:

10 DIM P84(2%, 4%) ' dimension a 3 X 3 array
20 READ P8Z(0..2,0..4) ! read 15 values
30 ' SHIFT DAY DAY DAY DAY DAY
40 H 2 3 4 be
20 DATA 10, 12 9, 7» 10

70 DATA 9, 14, 10 ii, ii
80 }
90 DATA 11, 7, é, 8, 10

FOR I[% = 0% TO 2%
10 PRINT PSA(1%,0..4)3
20 PRINT
30 NEXT IX
40 END

The previous program takes the data and PRINTs it in the same
arrangement as the DATA statements. Note the subscript order is
always (ROW,COLUMN). The matrix for this array is shown below:

< PS%(ROW NO., 0..4) —

Col. 0 Col. | Col. 2 Col. 3 Col. 4

ROW 0 PS%(0,0) PS%(0,1) PS%(0,2) PS%(0,3) PS%(0,4)

ROW 1 PS%(1,0) PS%(1,1) PS%(1,2) PS%(1,3) PS%(1,4)

ROW2 PS%(2,0) PS%(2,1) PS%(2,2) PS%(2,3) PS%(2,4)

Data Storage
Using Main Memory Arrays

Multiple Arrays

More than one array may be dimensioned in a program, eg,:

BX(6, 10), AS(10, 100)

Redimensioning

BASIC programs are allowed to execute a DIM statement for each
variable only once. An error will result if the program attempts to
execute a specific DIM statement more than once. For this reason,
DIM statements should appear early in the program and should not be
included in subroutines. The only way around this is to re-RUN the
program. RUN causes BASIC to forget all previously executed DIM
statements.

Data Storage
Using Main Memory Arrays

Main Memory Arrays and Program Chaining

7-18

A main memory array must have been created with the COM
statement to survive program chaining. The COM statement replaces
the DIM statement for that array. The COM statement reserves
variables and arrays in a common area for reference by chained
programs.

O Only real (floating-point) and integer variables may be used with
the COM statement.

O String variables may not be stored in the common area.

O Use a virtual array for string variables that must be accessed by
chained programs.

GO All programs accessing a common area must use COM statements
that are identical in order, type, and array sizes; the actual variable
names, however, may be different.

O The contents of the common area are lost when the EXEC, EXIT,

or DELETE ALL statements are executed.

For example, assume that a chained program requires the use of three
floating point simple variables, an integer simple variable, a floating
point array, and an integer array defined in a previous program. The
first program could use a COM statement such as:

10 ' Program A
20 COM » B. C., FX. DI24X), TH(100%)

1050 RUN “B”
1060 END ! End of program A

The second program could then use:

10 H program B
QM LI, L2, LB. @X%,. K(24X%), PX(100%)

Note that while the names of the variables stored in the common area
have changed between programs, the order and type of the variables
are exactly the same.

Data Storage

Using Main Memory Arrays

Serial Storage of Main Memory Arrays in Mass Storage

A main memory array may be stored and retrieved from a mass storage

device. Two methods are possible:

O Store the array in a sequential data file.

O Store the array in a virtual array.

The following examples illustrate how array data can be serially stored

and retrieved from the disk (MFO0:). You may use a different array

name to retrieve data than you did to store the data; if the arrays are

alike in type (integer, floating-point, or string) and dimensions.

The first example program stores the letters “A” through “F” ina main

memory array, then writes that array to a sequential data file. The

second example program retrieves that array from the data file, then

prints the array.

o The array variable used in the second example could be any legal

string variable. The data file holds only the data with no clue to the

identity of the variable used to store the data.

f Data Storage:

J/10 ! “EXAM1. BAS"
(100 CLOSE 1 ! INITIALIZE
1110 OPEN “EXAM1. DAT" AS NEW FILE 1 SIZE 1 ! RESERVE & NAME DISK SPACE

s 43 ’ "NEW" in line 110 indicates new file created on the disk.

‘$20 DIM AS(5%) ! DECLARE 5 ELEMENT ARRAY

.\230 FOR 1% = O% TO 5%
\ 1440 AS(IX%) = CHRO(45% + IX) t ASSION LETTERS A --) F

150 NEXT I2%
140 PRINT @1, A®(OX%.. 95%) ! STORE ON DISK

70 CLOSE 1 ! CLOSE FILE
60

Data Retrieval:

10 !"EXAM2. BAS”
100 CLO i { INITIALIZE
10 OPEN “EXAM1.DAT" AS OLD FILE 1 ! OPEN FILE, ASSION CHANNEL

115! “OLD" in line 110 indicates file already exists on disk

128 DIM AS(5%)

138 INPUT LINE @1, AS®(OX%.. 5%) ! INPUT FILE DATA TO ARRAY

160 CLOSE 1 ! CLOSE FILE
28 PRINT AS(OX%. . SX) ' DISPLAY DATA FROM ARRAY

Data Storage
Using Main Memory Arrays

Device Storage Size Requirements

Before a main memory array can be stored, space must be reserved for
it on the file-structured device. When a new file is OPENed, the largest
available contiguous space on the storage medium (floppy disk or
other file-structured device) is allocated for the single file, unless the
SIZE is included in the OPEN statement. If two NEW files are
OPENed without a SIZE statement and there is only one contiguous
space available on the device, BASIC will display “? I/O error 306...”
telling you there is no more room on the storage device, when the
attempt is made to OPEN the second file. This will happen even though
there is enough room on the disk for all the data you plan to store in
each of the files

Device File Size Calculation

7-20

Size must be stated as an integer number of BLOCKS (1 BLOCK =
512 BYTES). An array file may contain more than one array. File
SIZE must be large enough to equal or exceed the total number of
storage bytes required by all of the REAL (floating-point), INTEGER,
and STRING elements you plan to use in the array file. Array values
are stored on the file-structured device as ASCII values. One byte of
device storage is required for each character stored.

Device requirements for serial storage (no comma after the variable):

1 byte per significant digit or string character
1 byte for the sign (even though it may be + and not be displayed)
1 byte for decimal point (reals only)
1 byte for an included space (except with PRINT USING) for reals
and integers

2 bytes for (CR) <(LF)
1 byte for EOF (end of file) character

Examples

PRINT @1, 3% requires 3 bytes
PRINT @1, ~3% requires 3 bytes
PRINT @1, USING “S@", -3% requires 4 bytes
PRINT @1, 3.285 requires 9 putes
PRINT @1, -3. 265 requires 9 bytes
PRINT @1, USING °S@. 040", -3. 285 requires 8 bytes
PRINT #1, %12345° requires 7 bytes

Data Storage

Using Main Memory Arrays

Disk Size Calculation Example

Calculate the SIZE requirement for the DIM statement in the
following program:

10 DIM 88(100), 1%(100),R(100)
CLOSE 1 20 L

30 OPEN “TEST.DAT”® AS NEW FILE 1 SIZE 6
40 OR JX = 1% TO 1 Fe
45 88(1%) = "1234567890" \ I1X%(U%) &© UK \ ROUK) = UX4PI
SO PRINT @1, 88(U%)
60 PRINT @1, USING “Seee", IX(UX)
70 PRINT #1, USING "S808. #6", R(UX)
80 NEXT I%
90

Assumptions:

1. All string elements = length of 10 characters

2. PRINT USING 1s utilized to ensure all reals are same length,
and all integers are the same length.

String Integer Real EOF

BYTE SIZE= 100 ((10+2) + (442) + (7+2)] + 1
= 100 [27] + 1
= 2701

BLOCK SIZE = 2701 / 512 = 5.275391

Since partial blocks are not allowed; the next highest integer = 6
Blocks.

Note: Looping 94 times instead of 100 permits a SIZE of 5 blocks.

7-21

Data Storage

VIRTUAL ARRAY FILES

A virtual array provides the BASIC programmer with an easy-to-use,
non-volatile means of program data storage. Once created, a virtual
array variable may be treated like any other BASIC variable. A virtual
array is bidirectional; you may read or write from it any time, in any
sequence.

7-22

A virtual array may be assigned values from a main memory array and
vice versa; virtual arrays can be used in equations with main memory
arrays. Virtual arrays are different from main memory arrays in the
following ways:

1. Main memory arrays reside in main memory. Virtual array
elements temporarily reside in a main memory buffer of 512
bytes (1 block) per channel (file) number. They permanently
reside on a file-structured storage medium. Virtual arrays may
also reside on E-disk (expansion RAM memory), however, E-
disk storage is volatile.

Main memory arrays are volatile because main memory is
volatile. Virtual arrays survive providing they have been
transferred from the main memory buffer to the non-volatile
file-structured storage medium (CLOSEing the file ensures
this).

Virtual arrays are not initialized by the DIM statement. Main
memory arrays are assigned initial values by the DIM
statement.

Main memory arrays are created with a DIM or a COM
(common main memory for program chaining) statement
(COM will not support string variables); virtual arrays are
created with an OPEN and a DIM# statement.

Virtual arrays can be made equivalent, (two arrays can share
the same area of file memory).

Virtual arrays do not require a COM statement in order to be
accessed by a chained program. COM is not needed and cannot
be used with virtual arrays. Main memory arrays require a
COM statement to survive program chaining.

10.

Il.

12.

Data Storage

Virtual Array Files

Elements of virtual array strings have a definite, dimensioned
length. Elements of main memory array strings are limited in
length only by the amount of main memory available.

Since main memory arrays must share main memory with the
BASIC program, the maximum amount of main memory
available for main memory arrays is limited to 28K bytes,
minus the size of the user program in K bytes.

A virtual array file can be as large as 65,536 bytes. The total
number of virtual array files is limited by the available file-
structured storage.

Virtual arrays are stored as binary data and cannot be viewed
by FUP.

Program execution errors automatically close virtual array
files, making virtual array data inaccessible from the
immediate mode, however, this data survives on the storage

medium and can be retrieved by a program. Main memory
arrays are accessible from the immediate mode after a program
execution error (crash).

Virtual array data survives a re-RUN or EDIT of the program,
but main memory array data 1s lost in both of these situations.

After reading the above comparison of virtual arrays and main
memory arrays, it can be said that virtual arrays behave “virtually” the
same as if they resided in main memory even though they actually
reside on one of the file-structured storage media. With the exception
of the OPEN, CLOSE and DIMg# statements required by virtual
arrays, the same identical programming code can be used
interchangeably for virtual arrays or main memory arrays; ignoring for
the moment the fact that virtual array strings require additional
considerations in some situations due to their fixed length.

7-23

Data Storage
Virtual Array Files

Definition

A virtual array is a collection of data stored in a random access file-
structured storage device, such as the floppy disk or bubble memory.
The data is stored in the Instrument Controller’s internal format
(binary) so that no conversion is required during input or output. After
a channel has been opened, the virtual array 1s available to the program
just like a main memory array.

Advantages and Disadvantages

Virtual arrays can be used to significantly extend the capability of a
program. You will probably want to use virtual arrays exclusively
except in situations where execution speed is critical.

Advantages:

I.

7-24

Non-volatile ---survives power down of the Controller;
survives program chaining and the DELETE ALL statement.

NOTE
A virtual array is non-volatile only if the file-structured device
on which it is stored is non-volatile.

Virtual arrays do not “consume” main memory, thus more
program space is available.

Random access means PRINT and INPUT statements are not

necessary for data I/O.

Supports equivalencing.

String data, in addition to numeric data, can be accessed by
chained programs.

Text messages can be stored on the storage medium rather than
in main memory. The same text can be used as often as needed.

The program can be restarted after a Controller power down
and returned to the exact place in the program where execution
ceased (due to powering down). (See note after point #1,
above.)

Data Storage

Virtual Array Files

Virtual arrays can be many times larger than main memory
arrays; up to 16 times (over 1024K bytes) as much data can
exist in virtual arrays when a floppy disk, E-disk, or
Winchester disk are used.

Disadvantages:

l. Virtual arrays are not allowed in RBYTE or WBYTE
statements.

Virtual arrays execute slower than main memory arrays. This
difference in execution speeds becomes significant when large
amounts of data are being sorted, assigned or operated upon.
Exact speed differences are dependent on the application and
device. For example, the E-disk is almost as fast as main
memory.

Unlike main memory arrays where the DIM statement assigns
a 0 value to floating-point (real) and integer elements and an
empty string, 1.e. “”, to string elements (note CHR§$(0) ‘“”);
newly created virtual arrays contain whatever byte
arrangement that exists on the storage medium where the
arrays reside. To guard against bogus data entering your
program, you may wish to initialize the entire array to some
known value prior to storing data in it.

1-25

Data Storage
Virtual Array Files

File Structure

Virtual arrays must reside on a specific physical space on the file-
structured device in order for the program to know where it can go to
store and retrieve data. An analogy to the disk file structure is a helpful
aid to understanding where virtual arrays are stored.

Analogy

7-26

Imagine you have a storage room (disk) which contains 80 file cabinets
(tracks) and each cabinet has 10 file drawers (blocks). Each file drawer
contains 512 folders. (bytes). The terms “Blocks” and “Sectors” are
used interchangeably.

The file name for a specific storage space for virtual arrays always
appears on the front of a drawer, 1.e., a file can never begin in the
middle of a drawer (block). Likewise, an array element cannot overlap
from one drawer to the next (all the bytes for an element must exist in
the same drawer (block). A specific file name can use as many as 128
drawers (blocks).

The disk directory contains the track and sector (block) associated
with each file name. This directory is consulted by the operating system
(FDOS) each time a file name is referenced by the program. File names
are associated with a channel number (file no.). To make our analogy
complete, let us further imagine that the file room (containing the 80
cabinets) is located in a very large building and you (the program) are
located away from the storage room and it 1s actually possible for you
to take any one of sixteen different routes (channels | through 16) to
reach the storage room. Before you store data or retrieve data from a
file drawer (name) it is necessary to specify which route (channel no.)
will be used to transport the data. As long as a file name has a drawer
OPEN, the designated route (channel no.) cannot be used for another
file name until the channel is CLOSEed, and the next file OPENed
using the same channel number.

Finally, imagine that you have a utility cart (buffer) to transport one
file drawer (512 byte block) back and forth between you (main
memory), and the disk (storeroom).

Data Storage
Virtual Array Files

In actuality, the contents are never removed from a disk block. Instead,
its contents are copied onto the main memory buffer and when the
buffer is sent back to update the disk, the buffer contents are copied
back into the file on the disk. The temporary file is the same size as the
entire permanent file.

Virtual Array File Organization

When a virtual array file is opened, BASIC creates a 512-byte (1 block)
buffer in main memory to hold the block of the file currently being used
(one buffer is created for each virtual array file). Each file is considered
to consist of a sequence of bytes, numbered 0 (first block) to n (last
block). The description of each virtual array contains the channel
number to which the file containing the array is attached, and the
address within the file at which the array starts (the array’s base
address).

The base address for a virtual array is determined when the DIM
statement declaring the array is processed. The base address assigned is
the next available (higher) address which will not cause an array
element to cross a block boundary. Each array element must be wholly
contained within a 512-byte block. This restriction may be defined as:
the base address of an array must be an integral multiple of the array
element length and no array element may be longer than 512 bytes.
This works since all virtual array elements have a length which is an
integral power of 2.

Since virtual arrays are assigned addresses in the file in the order in
which the arrays are declared in the DIM statement, the restrictions
noted in the paragraph above suggest that it is possible to allocate file
space efficiently or inefficiently when arrays having differing element
lengths are assigned to the same file. This depends on the order in
which array declarations appear in the DIM statement. To eliminate
wasted file space, the simplest rule is that virtual array declarations
should appear in the DIM statement (as read from left to right) in
decreasing order of array element lengths. This rule ensures that if an
element overlaps a block boundary, a minimum of space is left unused
in the previous block.

1-27

Data Storage
Virtual Array Files

7-28

NOTE
The unused space at the end of a virtual array file is available
for use if a subsequent DIM statement enlarges the file. See the
discussion that follows on equivalent virtual arrays.

In the following DIM statement, the arrays are allocated space as
shown below the statement.

DIM @1%. AS (10%) = 64%, B (10%, 9X), CX (1%, 4%)

A$ 11 elements of 64 bytes each = 704 bytes
B 110 elements of 8 bytes each = 880 bytes
C% 10 elements of 2 bytes each = 20 bytes

TOTAL: 1604 bytes

The total space needed is 68 bytes greater than 3 blocks (1604 — (3 *
512)). The blocks will be allocated as follows. Note that the first three
blocks are completely used, leaving only the extra 68 bytes for the
fourth block. The 444 bytes remaining in the fourth block are unused.

BLOCK VARIABLE ELEMENTS BYTES

l A$ 8 512

2 A$ 3 192
2 B 40 320

3 B 64 512

4 B 6 48
4 C% 10 20

Data Storage

Virtual Array Files

Suppose the DIM statement is changed to read:

DIM 1%. CX (1%, 4%), B (10%. 9%), AS (10%) = 64%

The total space needed remains 1604 bytes. The variables however, are
allocated to blocks as follows.

BLOCK VARIABLE ELEMENTS BYTES

| C% 10 20

unused — 4

| B 61 488

2 B 49 392

2 unused — 56

2 A$ | 64

3 A$ 8 512

4 A$ 2 128

Only 508 bytes of block 1 and 456 bytes of block 2 are used. The unused
portions, totalling 60 bytes, could not entirely contain one more data
element in the sequence assigned. As a result, block 4 has only 384
bytes available, instead of the possible 444.

Storage Size Requirements

Before a virtual array can be dimensioned, space must be reserved for it
on the disk. When a new virtual array file is OPENed, the largest
available contiguous space on the file-structured storage medium is
allocated for the single file, unless the SIZE is included in the OPEN
statement. If the NEW files are OPENed without a SIZE statement
and there is only one contiguous space available on the device, BASIC
will display “? I/O error 306...” telling you there is no more room on the
storage device, when the attempt is made to OPEN the second file. This
will happen even though there is enough room on the disk for all the
data you plan to store in each of the files.

7-29

Data Storage
Virtual Array Files

Virtual Array SIZE Calculation

7-30

SIZE must be stated as an integer number of BLOCKS (1 BLOCK =
512 BYTES). A virtual array file may contain more than one array. file
SIZE must be large enough to equal or exceed the total number of
storage bytes required by all of the floating-point (real) elements,
integer elements and string elements you plan to use in the virtual array
file. Each floating-point element occupies 8 bytes. each integer element
occupies 2 bytes. Each string element occupies | byte/character.
Elements are not allowed to overlap block boundaries. If an element is
too large to fit in the remaining storage space in a block, the remaining
space is left vacant and the element is placed in the next higher block.
To elminiate wasted file space, the simplest rule is that virtual array
declarations should appear in the DIM statement from left to right in
decreasing order of array element lengths.

Appendix J lists a program which allocates virtual arrays by blocks
according to your DIM statement.

String elements require special consideration since all elements for a
given string array variable name must be the same number of
characters in length *and* that length must be 2 or 4 or 8 or 16 or 32 or
64 or 128 or 256 or 512 characters, i.e., any power of 2 between w and
512 inclusive. String element length is assigned in the DIM statement.
If no length is specified, the default length is 16 characters.

Based on the above considerations, and given:

R = the No. of REAL elements in all FLOATING-POINT arrays
I =the No. of INTEGER elements in all INTEGER arrays
S =the No. of STRING characters in all STRING arrays
V = vacant bytes prior to boundaries of occupied blocks

the formula becomes:

SIZE =(R*8+1*2+S + V) BYTES/512 BYTES/BLOCK

Data Storage

Virtual Array Files

Example

DIM #1, AC10), AACS, 6), B%(30), BBX(3, 7), AS(10) = 8 AAS(5O., 50) = 2

Calculate the SIZE for the following virtual array dimension
statement:

R= 11+ (6*/7) = 53 elements for A(10) and AA(5,6)
I = 31+ (4 * 8) = 63 elements for B%(30) and BB%(3,7)
S = 11 * 8+ (51 * 51 * 2) = 5290 characters for A$(10) and

AAS$(50,50)

V=0

Block Allocation Table

424 88 38 80 394 4608 288 224
Bytes Bytes Bytes Bytes Bytes Bytes Bytes Bytes

53 44 19 10 197 2304 144 224
Reals | Integers |Integers| 8 Char. | 2 Char. | 2 Char. Strings | 2 Char. | Vacant

Strings | Strings _ Strings | Bytes

Block 1 Block 2 Blocks 3 thru 11 Block 12

NOTE
Remember element numbering starts with 0, e.g., DIM #1,
A(10) yields 11 elements; DIM #1, A(O) yields one element.

SIZE = (53 * 8 + 63 * 2 + 5290) / 512 = 11.40625 BLOCKS

Only whole blocks may be allocated, i1.e., SIZE must be an integer, the
next higher whole number is the correct answer: SIZE = 12 BLOCKS.

7-31

Data Storage

Virtual Array Files

CREATING VIRTUAL ARRAYS

Creating virtual arrays requires the following actions:

1. A filename must be associated with the virtual arrays. (OPEN
{filename} AS... statement.)

2. Achannelnumber must be associated with the filename. (FILE
n clause of OPEN... statement.)

3. A determination must be made to use NEW data (create a new
disk file for new data) or OLD data (data already in a virtual
array disk file). (AS {NEW, OLD} clause of OPEN
statement.)

4. The SIZE of the arrays in blocks should be stated. (SIZE clause
of OPEN statement.)

5. The arrays must be DIMensioned. (DIM statement)

6. The DIMension must be associated with the channel number

picked in step 2, above. (#n clause of DIM statement.)

7. The channel (file) must be CLOSEd in order to transport the
most current array data (contained in the buffer) to the disk.

The following example program illustrates the process of creating a
virtual array.

a

r
 ' insurance 10 OSE 1

15 ' new file, “test.vrt", vir array, chan 1, size @ 1 block
20 OPEN “TEST.VRT" AS NEW DIM FILE 1 SIZE 1
30 DIM @1, A(3%) dimension array a. 5 elements, chan 1
40 FOR IX = 0 TO 4% loop to load array
3O ACIZ) = I% assign valu
60 NEXT I loop
70 PRINT ACO.. 4) print array
80 CLOSE 1 Close channel/file
90 END

7-32

Data Storage

USING VIRTUAL ARRAYS

Once a virtual array file has been opened and a DIM statement for the
channel has been executed, the virtual array elements may be used just
as ordinary variables.

Using Virtual Arrays as Ordinary Variables

In the following example, elements of A% may be used wherever
integer array elements may be used, except in RBYTE, WBYTE, or
CALL statements. (See the section on IEEE-488 Bus Input and Output
Statements.)

10 OPEN “INTEOR. BIN" AS DIM FILE 1%
20 DIM @1%, AX(255%,. 127%)

The following example shows that data may be read from or written to
the file simply by writing the array name in an expression or assigning a
value to an array element.

305 IF AX(IX%. JX) » OX THEN 350
430 LET AX(K%. O%) = ABB (AX (KX, 1%)) + 2%

7-33

Data Storage

Using Virtual Array Files

Using Virtual Array Strings

7-34

Strings in virtual arrays are considered by BASIC to be of fixed length.
The default length is 16 characters, or as declared in the DIM
statement (see the DIM discussion in this section).

The following example specifies a virtual string array with character
elements. Line 390 will display the number 32 regardless of the value
assigned to that particular element of A$.

380 DIM @2%, A®(15%) = JAX
390 PRINT LEN(CAS®(IX%))

When characters are assigned to a virtual array string element, BASIC
will add null characters to the right end of the string until it equals the
declared string element length. This can be the source of subtle errors.
Consider the virtual array A$ of the previous example. The following
program section attempts to add an * character to all of the elements of
A$. This example will not work, and results in error 904 (string too
long for virtual array string field).

370 FOR 1% = OX TO 15%
380 AS(IX) = AS(IX) + “a”
390 NEXT I%

Each element of A$ is allocated 32 characters. The expression A$(1%)
+ “*” results in a 33-character string. When this string is assigned to
AS$(I%), error 904 (string too long for virtual array string field) results.
It is necessary to strip trailing null bytes from the virtual array string
value before appending the ‘*’ character.

The TRIM statement causes trailing null bytes to be removed from a
virtual array string. The format of the TRIM statement is:

TRIM t%

where t% specifies whether or not to trim trailing null bytes from a
virtual array string. If t% is zero, no trimming is performed. If t% is not
zero then all trailing null bytes are trimmed.

The TRIM statement must be issued before reading the first virtual
array string element for which null byte trimming is desired.

Data Storage
Using Virtual Array Files

PROGRAMMING TECHNIQUES

The key to the efficient use of virtual arrays is to minimize the number
of data transfers to or from the virtual array file. Whenever a virtual
array element is accessed, either to read its value or to assign to it anew
value, BASIC determines the block number and the file in which the
element exists. If the block required is not in the memory buffer, the
required block is moved from the file into the memory buffer. The
block previously held in the buffer is written to the file only if a change
in its contents occurred.

Array Element Access

Array elements in a file are stored in row-major order which means
that access to the elements, in the storage order, 1s most efficient when
the rightmost array subscript varies most quickly, as in the following
example:

650 FOR I% = OX TO 63%
640 FOR JX = OX TO 63%

4570 A% (1% J%) =
4680 NE
4690 NEXT I%

The form just discussed describes the most efficient access method for
initializing the array A%. When the array A% is stored on a floppy
disk, its initialization required 7.05 seconds. When the same array is
stored on the E-disk, its initialization required 4.71 seconds. The
following example is the least efficient access method:

4650 FOR I% = 0% TO 63%
FOR JX = OX TO 63%

4670 AX (J%, 1%) = O%
NEXT J%

4690 NEXT IX

This second example requires 254.33 seconds (8.05 seconds on ED0:),
36 times as long (1.7 times for ED0:) as the first example. The first
example requires a new block to be read for every 256 elements of A%
that are written. This second example, however, requires that a new
block be read for every four elements of A% that are written.

7-35

Data Storage
Using Virtual Array Files

Splitting Arrays Among Files

7-36

If information stored in different virtual arrays will often be required at
the same time, placing the arrays in separate files will speed processing.
The following example illustrates the value of utilizing separate files
for two parallel virtual arrays as opposed to placing both arrays within
the same file.

Example

In some programs it may not be possible to use the null stripping
function described previously in this section. This may be because the
null characters are part of the string data required. However, the true
string length can be determined without stripping the null characters.
If there is no character which may be used to specify the end of a string
in the virtual array, this information may be retained by placing an
integer array parallel to the string array. Thus, for each string element,
an integer element contains the length of the string.

In the following example, L%(I%) contains the length of string
AS$(I1%). The significant characters of element A$(1%) can be recovered
by a statement such as line 6370.

63465 OPEN "“DATA.VRT" AS DIM FILE 1%
6340 DIM @1%, AS(1023%) = 16%, L%(1023%)
6370 BS = LEFT (A®(IX), LACIZ))

A drawback to this method is that each time an element of A$ is read
from the beginning of the file, another block of the file must be read to
retrieve the corresponding element of L%.

A more efficient organization is to assign A§ to one virtual array file
and L% to another file. This will cause the BASIC Interpreter to assign
two buffers, one for the strings of A$ and one for the integers of L%.

4789 OPEN "DATA1.VRT" AS DIM FILE 1%
4790 OPEN “DATA2.VRT" AS DIM FILE 2%
4770 DIM @1%, AS(1023X%) = 16%
4780 DIM @2% 1X%(1023%)

In an actual test, accessing the elements of A§, one by one in increasing
order, the first example (with A$ and L% in one file) required 386
seconds. With A$ and L% in separate files, only 15.8 seconds were
required to perform that same processing, a 24:1 difference.

Data Storage

Using Virtual Array Files

Reusing Virtual Array Declarations

When a virtual array DIM statement has been executed, the variables
defined as virtual arrays remain defined even after the virtual array file
has been closed. However, an attempt to access a virtual array when
the channel has been closed will result in an error 308 (channel not
open). Since the variables remain defined, it is possible to close a
virtual array file and to later re-open it. Since the variables have
already been defined, a new DIM statement is not necessary to re-open
the file. Note, however, that the file must be re-opened using the same
channel number as that used inthe DIM statement defining the arrays.

If a number of separate virtual array files, all with the same data
organization, must be processed by a program, it is possible (if no two
files are to be processed simultaneously) to reuse the variable
definitions. Consider the following processing sequence:

OPEN first file
DIM virtual arrays

process first file
CLOSE first file
OPEN second file (on same channel as Ist file)

process 2nd file
CLOSE second file

In each processing loop, the same virtual array variables may be used
to process the file data.

1-37

Data Storage
Using Virtual Array Files

Equivalent Virtual Arrays

7-38

It is possible to execute multiple DIM statements for a single channel.
The second (and subsequent) DIM statements for a channel simply
redefine the file organization as shown below. The first DIM statement
allocates a 441-element array, A%, organized as a 21x21 matrix. The
second DIM statement does not allocate array B% following A% but
redefines the 441 integer elements of the file as a vector with the name
B% (similar to a FORTRAN equivalence).

110 DIM @1%, AX (20%, 20%)
120 DIM @1%, BX (440%)

NOTE
Fluke BASIC makes no check for the consistency of virtual
array equivalences. This is the responsibility of the
programmer.

Section 8

Functions

CONTENTS

Introduction cc cece ee eee cee eee eee eee teeees 8-3
OVEIVIEW 2. cc cece cee cece cent ee eee eee eeteeeeeees 8-3
General Purpose Mathematical Functions 8-4

ABS() Function 2... ccc ccc ccc eect eter e ee aees 8-5
ASH(Q) Function ccc cee cee eee een ee eenes 8-5
EXP() Function ccc ccc ee ec eee cee teen eeeees 8-5
INTQ) Function 2... .. cc cece ce cc ccc cee eee eee eees 8-5
LNQ) Function 2... cc cece eect ccc eee eeeeeee 8-6
LOG() Function 1... ccc ccc ccc cee cece e scenes 8-6
LSHQ) Function ccc cece cc ee cee cence eens 8-6
MOD() Function ccc ec cee cece eee eeeees 8-6
RND Function ccc ccc cence teen ee eeees 8-7
SGN() Function cc cece ccc cece eee eee ee eens 8-7
SQR(Q) Function 2... ccc cc cece ccc eee eee e neces 8-7

Trigonometric FunctionS ccc cece cee cee eee eens 8-8
ATN() Function cc ccc ccc cee cere eee ee eeeee 8-9
COS() Function cc ccc cece eee eee e eee eeeeees 8-9
SIN(Q) Function 2... . ccc ccc ccc cece cee eee teen eeees 8-9
TAN() Function cc ccc cece cece cece e eee neces 8-9

String FUNCHIONS 2... .. cece cece cect cee eee ee eeeees 8-10
ASCII() Function ccc ccc cece cece eee ee eees 8-11
CHRS(Q) Function 2... .. cc ccc ccc cc cece eee eee eeeees 8-11
CPOS() Function 1.0... ccc ccc ccc cece cee eee eee eees 8-11
DUPLSQ) Function 1... . ccc ce ccc ec ec ee eee eens 8-11
INSTRO Function cee cee cee ccc eee e tenes 8-12
LCASES() Function .isssessseereeeervevereeeerreeees Orb
LEFT() Function ccc ccc cc cece nce eeeeees 8-12

CONTENTS, continued

User-Defined Functions

LEN() Function 2... cc ccc eee c cece cece eeeeees 8-12
MIDQ Function cee cece cc cee eee eee eeees 8-12
NUMS&() Function ccc cece ec cee cece ee tees 8-13
RADS() Function cc cece cc eee eee cece ee eees 8-13
RIGHT() Function ccc eee ete eee ee eeees 8-13
SPACES() Function ccc cece cece cece eee ce cence 8-13
TABQ) Function cc cece ec ee we cee cee e cee eeeeee 8-13
UCASES$() Function ccc cece cece cece ee eesens 8-14
VALQ) Function cc ccc ccc cc cee eee e cece eeens 8-14

Functions

INTRODUCTION

Functions are predefined operations available in Fluke BASIC by
applying a function name to an appropriate set of arguments. The
availability of a wide range of functions can significantly simplify a
programming task. Mathematical functions perform calculations on
numeric quantities. String functions create, manipulate, measure, and
extract portions of character strings. In addition, Fluke BASIC also
allows the user to define specialized functions to meet the needs of
particular data processing and instrumentation control tasks. Referto
the discussion of the DEF FN statement at the end of this section and
in the Reference volume of this manual set.

OVERVIEW

This section is divided into four subject areas: General Purpose
Mathematical Functions, Trigonometric Functions, String Functions
and User-defined Functions. Effective use of functions requires a clear
understanding of proper data types and formats for input and expected
results.

8-3

Functions

GENERAL PURPOSE MATHEMATICAL FUNCTIONS

The general purpose mathematical functions supplied with Fluke
BASIC include an assortment of tools to simplify computation tasks
on collected data. Included are a square root function, natural and
common logarithms, exponentiation of e, absolute value, sign, and
greatest integer.

8-4

Mathematical functions perform calculations on numeric quantities.

o Mathematical functions operate on integer or floating-point
numbers.

Mathematical functions accept as input an expression that
evaluates to a numeric quantity.

Mathematical functions return an integer or floating-point
number.

Conversion between numeric data types (i.e., floating-point to
integer) is automatic where required by the function or specified by
the user. This conversion process requires additional processing
time.

The domain of acceptable input values for some functions is
limited or not continuous.

The range of resulting output values for some functions is not
continuous or has points of underflow (too close to zero) or
overflow (too large).

The definition of each function includes limitations of domain and

range.

Following is a summary of the Fluke BASIC General Purpose
Mathematical Functions. Each function is described briefly and its
format is shown. All! functions are fully described in the BASIC
Reference manual.

Functions

General Purpose Mathematical

ABS() Function

Format: ABS(numeric expression)

The ABS function returns the absolute value of a floating-point or
integer number. ABS has a floating-point number or integer, as an
argument, and returns a positive floating-point number or integer as a
result.

ASH() Function

Format: ASH(x%,count%)

The ASH function operates on binary integers (x%) by arithmetically
(signed) shifting them by count% bits. The ASH function arguments
are integers and any floating-point arguments are truncated to integer
values.

When count% is positive, a left shift is performed count% places and

zeroes are shifted in from the right. When count% is negative, a right
shift is performed by the number of places specified and the sign bit is
shifted in from the left. When count% 1s zero, no shift is performed and
x% is returned.

EXP() Function

Format: EXP(numeric expression)

The EXP function returns a floating-point number equal to the result
of raising the number e to an exponential power equal to the given
input value. EXP has a floating-point number as an argument, and
returns a floating-point number.

INT() Function

Format: INT(numeric expression)

The INT function returns the greatest integer less than or equal to a
given floating-point number. If INT.is given a floating-point
argument, a floating-point result is returned. An integer argument Is
returned unchanged, as an integer.

8-5

Functions

General Purpose Mathematical

LN() Function

Format: LN(numeric expression)

The LN function returns a floating-point number equal to the natural
logarithm (base e) of the input value. LN has a floating-point number
as an argument, and returns a floating-point number.

LOG() Function

Format: LOG(numeric expression)

The LOG function returns a floating-point number equal to the
common logarithm (base 10) of the input value. LOG has a floating-
point number as an argument, and returns a floating-point number.

LSH() Function

Format: LSH(x%,count%)

The LSH function operates on binary integers (x%) by logically
(unsigned) shifting them by count% bits. The LSH function arguments
are integers and any floating-point arguments are truncated to integer
values.

When count% is positive, a left shift is performed count% places and

zeroes are shifted in from the right. When count% is negative, a right
shift is performed by the number of places specified and zeroes are
shifted in from the left. When count% is zero, no shift is performed and

x% is returned.

MOD() Function

Format: MOD(x,y)

The MOD function returns the remainder produced by dividing two
integer or floating-point numbers (x,y). The MOD function is defined
as:

mod(x,y) = x — y * truncate(x/y)

in which the truncate operation drops any fractional result produced
by the division of x by y. The result always has the same sign as x. An
integer result is returned if x and y are both integers. A floating-point
result is returned if either x or y is floating-point.

Functions

General Purpose Mathematical

RND Function

Format: RND

The RND function uses an internal algorithm to produce a pseudo-
random number that 1s greater than zero and less than one. RND 1s not
a true function since it does not operate upon an argument. The
sequence of values returned by RND is repeatable unless by a
RANDOMIZE statement is used in the program each time the
program is run.

SGN() Function

Format: SGN(numeric expression)

The SGN function returns the sign of a floating-point or integer
number. This is called the signum function. SGN has a floating-point
or integer number as an argument, and returns one of three integers: |
if the argument was positive, 0 if the argument was zero, or —1 if the
argument was negative.

SQR() Function

Format: SQR(numeric expression)

The square root function returns a floating-point number equal to the
square root of the input value. SQR has a floating-point number as an
argument, and returns a floating-point number.

Functions

TRIGONOMETRIC FUNCTIONS

Fluke BASIC also includes four trigonometric functions: sine, cosine,
tangent, and arctangent. These functions have some discontinuities
and limits that can produce unexpected errors when used improperly.
The discussions that follow define these factors.

Trigonometric functions in Fluke BASIC use radian measure for
angular quantities.

O The value PI stored by Fluke BASIC (3.14159265358979)
represents an approximation of the ratio between the
circumference and the diameter of any circle.

O Radian measure defines the angular distance around a circle as
2*PI radians. This is the equivalent of 360 degrees.

O Angles are thus easily defined as fractional parts of PI. For
example:

PI radians = 180 degrees
PI / 2 radians = 90 degrees

O Toconvert from degrees to radians, multiply by (PI / 180).

O Toconvert from radians to degrees, multiply by (180 / PI).

O ©The descriptions of trigonometric functions that follow use radian
measure exclusively.

Following is asummary of available Trigonometric Functions found
in Fluke BASIC. A complete description of each function may be
found in the BASIC Reference manual.

Functions

Trigonometric

ATN() Function

Format: ATN(numeric expression)

The ATN function returns the principal arctangent (inverse tangent) 1n
radians of a floating-point numeric input value. ATN has a floating-
point number as an argument, and returns a floating-point number.

COS() Function

Format: COS(numeric expression)

The COS function returns the cosine of an angle that is expressed in
radians. COS has a floating-point number as an argument, and returns
a floating-point number.

SIN() Function

Format: SIN(numeric expression)

The SIN function returns the sine of an angle that is expressed in
radians. SIN has a floating-point number as an argument, and returns
a floating-point number.

TAN() Function

Format: TAN(numeric expression)

The TAN function returns the tangent of an angle that is expressed in
radians. TAN has a floating-point number as an arguments, and
returns a floating-point number.

8-9

Functions

STRING FUNCTIONS

String functions create, manipulate, and extract portions of character

strings.

O String functions operate only upon strings, but can have floating-
point numbers, integers, or character strings in their argument list.

O Integer results from string input include:

ASCII (decimal) value of a character.

Length of a string.

Number of characters within a string at which a substring was
located.

O String results from integer input include:

Character corresponding to an ASCII (decimal) value.

Specified left, right, or center substrings.

Space character strings, of either specified length or to a
specified column position.

Escape code sequence for positioning the display cursor.

O A string result is available in the format that PRINT or PRINT
USING would display a number.

O Floating-point numbers may be used in place of integer input.
BASIC will truncate as necessary and convert to integer form
(requires additional processing time). Note that truncation to
integer form may cause unexpected results.

O Numeric expressions may be used in place of floating-point or
integer numeric input.

O See Appendix G, ASCII/IEEE-488 Bus Codes, for a chart of

ASCII characters and corresponding decimal numbers.

Following is a Synopsis of the String Functions included in Fluke
BASIC. Each function is described fully in the BASIC Reference
manual.

8-10

Functions

String

ASCIlIi() Function

Format: ASCII(A$)

The ASCII function returns an integer equal to the ASCII (decimal)
value of the first character in the specified string. ASCII has a string as
an argument and returns an integer result. Refer to Appendix G,
ASCII/IEEE-488 Bus Codes, for a chart of ASCII characters and
corresponding decimal numbers.

CHR$() Function

Format: CHR$(x%)

The CHR$ function returns an ASCII string character corresponding
to an integer input. CHR$ has an integer as an argument, and returnsa
single-character string (8-bit binary pattern). The CHR$ function is
the logical opposite of the ASCII function.

NOTE
Some integers used in the CHR$ function result in display
commands when printed and do not appear on the screen. For
example PRINT CHR3$(7) activates the beeper.

CPOS() Function

Format: CPOS(R%,C%)

The CPOS function returns a string which directly positions the
display cursor when printed. CPOS has two integers as arguments (R%
= row, C% = column)and returns an 8-character string.

DUPLS$() Function

Format: DUPLS(A$,n%)
DUPL3(val%,

n%)

The DUPLS function returns a string of n% duplicated characters or
strings (A$). When the first argument to DUPLS is val%, val% is first
converted to its ASCII character equivalent (as in the CHR§()
function). Thus, DUPL$(“a”,5%) returns “‘aaaaa”’.

Functions

String

INSTR() Function

Format: INSTR (x%,A$,B$)

The INSTR function searches for a specified substring (B$) within a
string (A$) and returns the starting location of the substring. The
substring search begins at the character position specified by x%.
INSTR returns an integer result.

LCASE3$() Function

Format: LCASES(A$)

The LCASES function converts its alphabetic string argument (A$) to
lower-case. The range of ASCII characters affected is A to Z.

LEFT() Function

Format: LEFT(A$,n%)

The LEFT function returns a substring of the specified string (A$),
starting from the left. The number of characters returned is, if possible,
the number specified by the second argument (n%). LEFT has a string
and an integer as arguments, and returns a string result.

LEN() Function

Format: LEN(AS)

The LEN function returns the number of characters contained in a
string (A$). LEN has a string as an argument, and returns an integer.
The string count includes leading and trailing blanks and null
characters.

MiID() Function

Format: MID(A$,n1%,n2%)

The MID function returns a substring of the specified string (A$),
starting from the specified character position n1%), and including the
specified number of characters (n2%). MID has as arguments a string
and two integers, and returns a string.

Functions

String

NUMS$() Function

Two
Formats; NUMS$(x% or x)

NUMS(x% or x,A$)

The NUMS$ function returns a string of characters in the format that a
PRINT or PRINT USING statement would output the given number.
NUMS$ has as arguments an integer (x%) or a floating-point number
(x), and an optional character format string (A$), and returns a
numeric character string with appropriate spaces and decimal.

RAD$() Function

Format: RADS$(integer%, base%)

The RAD$ function returns a string that corresponds to integer%
using base%. Digits greater than 9 in the output string are returned as
“A” to “Z” floating-point arguments are first truncated to integer
values.

RIGHT() Function

Format: RIGHT(A$,n%)

The RIGHT function returns a substring of the specified string (A$),
starting from the specified character position (n%), to the right end of
the string. RIGHT has as arguments a string and an integer, and
returns a string.

SPACES() Function

Format: SPACES(x%)

The SPACES$ function returns a string of spaces as specified. SPACE$
has as argument an integer, and returns a string of spaces.

TAB() Function

Format: TAB(x%)

The TAB function returns a string of spaces that would advance the
current print position on an external printer to one column past the
specified column number. TAB has an integer as an argument, and

returns a string of spaces that may be preceded by Carriage Return and
Line Feed.

8-13

Functions

String

UCASES$() Function

Format: UCASES$(A$)

The UCASES$ function converts its alphabetic string argument (A$) to
upper-case. The range of ASCII characters affected 1s a to z.

VAL() Function

Format: VAL(A$)

The VAL function returns the floating-point numeric value of a
numeric string (A$). VAL has a string as an argument and returns a
floating-point number.

USER-DEFINED FUNCTIONS

Format: DEF FN{variablename}(argument[s]) {function definition}

The DEF FN statement allows functions to be defined for subsequent
use in expressions. The function name can be any variable name, such
as A%, FA§$, Z, including variables previously used in the program.

(e.g., FNA% does not conflict with A% already existing in the
program.)

The DEF FN statement applies the function defined by the function
definition to the argument[s] supplied. The arguments may be any of
the BASIC variable types and the result may also be any of the BASIC
variable types.

8-14

Section 9

IEEE-488 Bus I/O

CONTENTS

Introduction 1... . cc ccc ccc ec ce eee eee eee eee eees 9-3

OVEFVIEW . oc ccc cc cee ccc cee eee eee eee eects ee esos 9-3

IEEE-488 Addressing cc ccc cece cee eee e ee eeeaes 9-4
Device Addressing cece cece ete cece eee eee eeaes 9-5
Addressing Serial IEEE-488 Devices00.5. 9-7
Port Addressing ccc cece cece cece eee e eee e ee eees 9-8

Initialization and Control Statements000% 9-9

CLEAR Statement 0... cee ec eee ee ee ee eee 9-10

INIT Statement ccc cc tc cee ee ee te eee 9-10

LOCAL Statement ccc cece eee eee ee ee eee 9-11

LOCKOUT Statement 0... cee ee ee ees 9-1]

ON PORT Statement 0... cee cee eee eee eee 9-12

OFF PORT Statement 0... cc ce ee eee ees 9-12

PASSCONTROL Statement 0... cee ee ee ee 9-12

REMOTE Statement cc ce ee eee ee ee eee 9-12

SET SRQ Statement 2... .. ccc cc ce eee ee 9-13
TRIG Statement 0... ce ce eee ec eee cee teens 9-13

TERM Statement 0... cee cee ce ee ee eee tees 9-13

TIMEOUT Statement 0... ce cee eee eee 9-13

Input and Output Statements cece eee eee ees 9-14
INPUT Statement 0... cc ce ec eee ee eee eee 9-14

INPUT LINE Statement eee ee ees 9-15

INPUT WBYTE Statement 0... cece eee eee 9-15

INPUT LINE WBYTE Statement 9-15

PRINT and PRINT USING Statements 9-16

IEEE-488 Data Transfer Statements 0.00 00es 9-17
RBYTE Statement 0... cc ee ee ce ce ee eee ees 9-18

CONTENTS, continued

WBYTE Statement or Clause 0... cece eee ee 9-18

RBYTE WBYTE Statement cee eee eee 9-18

RBIN Statement 0... ccc ce ee ec eee ee ewes 9-19

RBIN WBYTE Statement 0... cee cee eee 9-19

WBIN Statement 0... ccc cc ee ee ec eee eee 9-20

IEEE-488 Polling Statements 0... ccc cece eee 9-20
CONFIG Statement 0... cc cc ce ce ee ee ee ee 9-2]

ON SRQ and OFF SRQ Statements 9-21
ON PPOL and OFF PPOL Statements 9-21

PORTSTATUSQ(Function 0... cc cee eee eee 9-22
PPL() Function cc ccc ccc cece ee cee eee cece 9-22
SPL Function ccc ccc ccc cc cece eee ees 9-22

WAIT Statement 0.0... cece cc eee cee cece eees 9-23

IEEE-488 Bus I/O

INTRODUCTION

The IEEE-488 bus standard is the backbone of a programmable
instrumentation system. Fluke BASIC has many statements intended
specifically for controlling instruments connected to the IEEE-488
bus.

Detailed information on instrument bus communication concepts and
messages, control lines and data lines, and on timing, is available in the
standard “IEEE-488-1980 Standard Digital Interface for
Programmable Instrumentation”. Copies of this standard are
available from The Institute of Electrical and Electronic Engineers,
345 East 47th Street, New York, New York 10017. Appendix B gives

the correspondence between BASIC commands and the sequence of
bus actions which actually take place. Other material may be found in
the 1722A System Guide, Fluke Application Bulletin AB-36, Fluke
Technical Bulletin C0076 and Appendices B through D of this manual.

OVERVIEW

Communications on the bus occur on a detailed signal and code level
as defined by the standard. However, for the most part, bus
communication can be viewed on a functional level. On this level the
user is concerned more about what is happening on the bus than the
actual processes. Bus communications are categorized as functional
messages exchanged between devices. Each bus device in a system may
be designed to implement only the messages which are important to its
system purpose.

This section describes the statements which are designed for
communication with instruments on the IEEE-488 buses. These
statements allow the Instrument Controller to control any type of bus-
compatible device. The following discussion of IEEE-488 bus
commnuications centers first on device and port addressing then on the
BASIC statements used for IEEE-488 bus communications. The
BASIC statements used for IEEE-488 bus communications are divided
into four groups: Initialization and Control, Input and Output, IEEE-
488 Data Transfer, and IEEE-488 Polling.

IEEE-488 Bus I/O

IEEE-488 ADDRESSING

The following paragraphs describe in general terms how BASIC
communicates directly with the IEEE-488 bus port or specific IEEE-
488 devices. The general discussion is followed by a descriptions of
device addressing, serial device addressing, and port addressing.
Device and port addresses are an integral part of many of the IEEE-488
related statements.

O The Instrument Controller has one IEEE-488 instrumentation bus

interface (port). A second IEEE-488 bus port may be added as an
option.

O Instruments connected to the controller via the IEEE-488 bus may
be addressed using their device address.

O After an instrument or group of instruments has been addressed,
the port address may be used for communications without device
addressing.

O Serial instruments, such as printers, may also be connected to the
controller via the IEEE-488 ports.

The INPUT, PRINT, RBIN, and WBIN statements are used to

transfer data to and from the Instrument Controller. Unlike the TRIG
or CLEAR statements, for example, these statements are not

necessarily tied to the IEEE-488 bus Controller in Charge (CIC)
functions. The @ device address specifier is used with these statements
to indicate that both of the following functions are to be performed:

1. Address one or more instruments as talkers or listeners. This is

a CIC function.

2. Transfer data to or from the IEEE-488 bus. This is a device

function.

The INPUT, PRINT, RBIN, and WBIN statements may also be used

without device addressing. This is not a CIC function, thus it may be
performed when the Instrument Controller is not the CIC, as is the case
after the PASSCONTROL statement ts issued.

O The PORT statement modifier is used to supress device addressing.

O This addresses the last instrument or instruments that were
addressed on the port specified by the PORT statement modifier.

IEEE-488 Bus I/O

Addressing

Device Addressing

Instruments (devices) connected to the bus are addressed using their
primary and/or secondary address. The following paragraphs describe
this process.

O Each device on a bus connected to a port has a primary address in
the range of 0 through 30. The address is normally determined by
switch settings on or in the instrument. A BASIC command
indicates a primary device address with the @ device address
specifier:

@ {device number}

The device number must correspond with the address switch
settings in the instrument.

The hundreds digit of the device number determines the port
assignment of the instrument being addressed: 0 for PORT 0, | for
PORT | (default is 0).

A device number is any numeric expression with a value in the
range 0 through 30 for an instrument connected to PORT 0, or in
the range 100 through 130 for an instrument connected to PORT 1.
The last two digits are the device number.

The IEEE-488 bus standard also allows instruments to have one or
more secondary addresses. The function associated with a
secondary address depends on the instrument design. A BASIC
command identifies a secondary address as part of the device
number:

@ {device number: secondary number}

The secondary number is any numeric expression with a value in
the range 0 through 31. The syntax 1s:

@ {device: secondary: secondary}

lEEE-488 Bus I/O
Addressing

9-6

More than one device may be addressed at once by listing device
numbers in the command. The @ character is the only separator in
a multiple device list (Commas are not used). Secondary address
numbers are optional. The device list syntax is as follows:

@ primary address: secondary addri: secondary addra2: ...

For example, the statement:

PRINT @1:3 @104, m$

sends the string m§$ to device I, secondary address 3 on port 0 and
to device 4 on port 1.

A device attached via the IEEE-488 bus may also be attached as a
serial device.

IEEE-488 Bus I/O

Addressing

Addressing Serial IEEE-488 Devices

Devices connected to the IEEE-488 bus as serial devices use a slightly
different addressing form. This address form associates the IEEE-488
device with a channel number for serial I/O.

O The channel must have been previously opened with the OPEN
statement. Use the # statement modifier when using this form of
addressing (for example, PRINT #). For example:

S00 OPEN "GPO: 3" AS NEW FILE 10%
510 PRINT #10%,. "MESSAGE 1"

The “file name” of an IEEE-488 device provides both the port
number and device address of the instrument. The file name is:

GPn:p.s

where:

n is the IEEE-488 “port number”, which ranges from 0 to 9.

p is the “primary device address”, which ranges from 0 to 30.

s is the “secondary device address”, which ranges from 0 to 31.

A primary address must be specified if a secondary address 1s used.
Thus, the address “GPO:.3” 1s illegal.

All device addressing may be suppressed by using a “file name” of
“GPn:”, which simply reads from or writes to a IEEE-488 port
without doing any addressing.

Secondary addressing 1s suppressed by omitting the “.s” portion of
the IEEE-488 “file name”.

When the “@” form of device addressing is used the PRINT
statement uses the “,” format specifier to indicate that the EOI

(End or Identify) message is to be sent with the last character of a
print string. This will not occur when using the “#” form of
addressing. This ensures that a PRINT statement directed to a
printer will operate in the same way whether, say, a printer is
interfaced via the RS-232 port or via the IEEE-488 bus.

lIEEE-488 Bus I/O
Addressing

Port Addressing

Port addressing is used to communicate with an instrument or group of
instruments after they have been previously addressed, without re-
addressing them. This form of addressing suppresses individual device
addresses and communicates directly with the named port.

The IEEE-488 port(s) are addressed by BASIC with the PORT
statement modifier (port expression). A port expression takes the
form:

PORT {numeric expression}

The value of the numeric expression used in a statement must be
either 0 or 1. Refer to the 17XX Instrument Controller System
Guide for identification of bus ports and information on cable
connections.

Once a device has been addressed, the PORT statement modifier

may be used to communicate directly with the device, bypassing
any device addressing. For example, the statement:

PRINT @4, A$

prints string A$ to device number 4 on IEEE-488 port 0. Now the
same device may be addressed in a subsequent statement with:

PRINT PORT O. AS

This form of the PRINT statement sends the string A$ to port 0
without performing any device addressing.

IEEE-488 Bus |/O

INITIALIZATION AND CONTROL STATEMENTS

The following paragraphs summarize Fluke BASIC statements which
initialize, set up, or otherwise manipulate instruments either before or
after data transfers. These statements are also listed in Table 9-1.
Complete descriptions of each statement may be found in the
Reference Section of this manual.

Table 9-1. Initialization and Control Statements Summary

STATEMENT DESCRIPTION

CLEAR Sends Device Clear or Selected Device Clear bus

messages. Sets instruments to a ready state.

INIT Halts port activity and prepares port for further

messages.

LOCAL Sets Remote Enable bus line false or sends Go To

Local bus message to instruments in device list.

LOCKOUT Disables local switch on all addressed instruments.

PASSCONTROL | Designates another |EEE-488 bus instrument to act

as Controller in Charge of the interface.

REMOTE Sets Remote Enable bus line true. Addresses any

devices specified as listeners.

SET SRQ Requests service from the current Controller in

Charge of the IEEE-488 bus interface.

TERM Selects a terminator character for designating the

end of an input stream from a device.

TIMEOUT Sets a limit on the time the Instrument Controller will

wait for a response to a request.

TRIG Addresses instruments in the device list and sends

Group Execute Trigger bus message.

9-9

IEEE-488 Bus 1|/O

Initialization and Control Statements

CLEAR Statement

Usage:

Usage:

The CLEAR statement sends a device clear or selected device clear

message to a specified port or device. The two forms of the CLEAR
statement are described below.

CLEAR [PORT {numeric expression}]

(device clear) message or SDC (selected device clear) message to the
specified IEEE-488 port. If the PORT statement modifier is not used, a
DCL message is sent to all ports.

CLEAR {device list}

The CLEAR statement, with a device list, addresses the devices given
in {device list} as listeners and sends a SDC (selected device clear)
message to them.

INIT Statement

Usage: INIT [PORT {numeric expression}]

INIT (INITialize) sends an IFC (interface clear) message followed by
REN (remote enable) and PPU (parallel poll unconfigure) to the
specified port or to both ports if not specified.

INIT places the bus in an idle state and sends the following commands
to the bus: REN (remote enable), IFC (interface clear), UNL
(unlisten), UNT (untalk), and PPU (parallel poll unconfigure).

lIEEE-488 Bus I/O

Initialization and Control Statements

LOCAL Statement

Usage:

Usage:

The LOCAL statement resets instruments to a local state. Typically,
this means that front panel controls are activated. Two forms of the
LOCAL statement permit port or device addressing.

LOCAL [PORT {numeric expression}]

This form of the LOCAL statement is the reverse of the REMOTE

statement. LOCAL, with a port specified, reverses all effects of the
LOCKOUT statement.

When a port is specified, REN is set false on the designated instrument
port. If a port number 1s not specified, REN is set false on both ports.

LOCAL [device list]

Issuing the LOCAL statement with a device list, sends a GTL (go to
local) message to the instruments identified in the device list.

LOCKOUT Statement

Usage: LOCKOUT [PORT {numeric expression}]

LOCKOUT disables not only front panel controls(as with REMOTE)
but also any “return to local” function button that may be on an
instrument. As defined in the IEEE-488-1978 Standard, any
instrument addressed to listen after receiving a local lockout command
will immediately be placed in the “Remote With Lockout State”.
LOCKOUT sets REN, and then sends a LLO (local lockout) message.

This sequence is sent on only one port if a port number is specified or
on both ports if the PORT statement modifier is not given.

\EEE-488 Bus I/O

Initialization and Control Statements

ON PORT Statement

Usage: ON PORT [p%] GOTO {line number}

The ON PORT statement permits the Instrument Controller to detect
commands sent to it by another controller. Port 0 is assumed if p% is

aot specified. If p% is a floating-point variable, the value is rounded to
its integer value. An overflow error may result from this action. Use the
PORTSTATUS statement to determine the exact cause of the
interrupt.

OFF PORT Statement

Usage: OFF PORT p%

The OFF PORT statement disables a previous ON PORT interrupt.
p% must be in the range of 0..1. Itis an error for p% to be outside of this

range. if p% is omitted, port 0 1s assumed.

PASSCONTROL Statement

Usage: PASSCONTROL {device}

The PASSCONTROL statement permits the Instrument Controller to
designate another IEEE-488 bus instrument to act as Controller in
Charge (CIC) of the interface. The new Controller in Charge is
designated inthe device clause of the PASSCONTROL statement.

REMOTE Statement

Usage:

Usage:

9-12

The REMOTE statement sets the REN (remote enable) line on the
IEEE-488 bus to true. The two forms of the REMOTE statement are
described below.

REMOTE [PORT {numeric expression}]

When a port number 1s specified with the REMOTE statement, REN is
set true on the specified port. If the PORT statement modifier is not
used, REN 1s set true on both ports.

REMOTE [device list]

When a device list is specified with the REMOTE statement, REN is
set true on the port represented by each instrument specified in the
device list. An MLA (my listen address) message is then sent to the
listed devices.

lEEE-488 Bus 1|/O

Initialization and Control Statements

SET SRQ Statement

Usage: SET SRQ [PORT {numeric expression}] WITH {status%}

The SET SRQ statement allows the Instrument Controller to request
service from the current Controller in Charge (CIC) of the IEEE-488
bus interface. Status% is the “serial poll data byte” returned to the CIC
after the CIC performs a serial poll of the Instrument Controller on the
specified port. If the PORT statement modifier is not used, port 0 is the
default.

TRIG Statement

Usage: TRIG {device list}

TRIG (TRIGger) addresses the set of instruments named in the device
list as listeners and then triggers them simultaneously. The effect of the
trigger is dependent upon the instrument. For example, a digital
multimeter may take a reading, or a source instrument may go from
standby to operate.

TERM Statement

Usage: TERM [string]

TERM allows the user to specify an arbitrary 8-bit byte that will also
terminate input. The terminating character is Line Feed CHR$(10)
when TERM is not used. The EOI line on the bus will always terminate
input, regardless of the use of the TERM statement.

TIMEOUT Statement

Usage: TIMEOUT {numeric expression}

TIMEOUT sets a limit on the amount of time the Instrument
Controller will wait for a response to an IEEE-488 bus request. This
prevents an instrument fault from halting the system. If the TIMEOUT
statement is not used, the time allowed defaults to 20 seconds.

9-13

IEEE-488 Bus |/O

INPUT AND OUTPUT STATEMENTS

This discussion summarizes INPUT and PRINT statements as they are
used for instruments on the IEEE-488 bus. These statements are
described in the Reference Section of this manual. Specific references
are provided after each statement definition. Table 9-2 presents a list of
the INPUT and PRINT statements. INPUT WBYTE is a specific
IEEE-488 bus statement which combines the characteristics of the
INPUT statement with a WBYTE clause described later in this section.
All of the statements listed in Table 9-2 will accept a port expression as
an alternative to a device address. This is described in the Reference
Section under “Devices”.

Table 9-2. IEEE-488 Bus Input and Output Statements Summary

STATEMENT DESCRIPTION

INPUT Accepts data from an instrument.

INPUT LINE Accepts a full line of data, including trailing

Carriage return and line feed.

INPUT WBYTE Outputs a bus message and receives data.

INPUT LINE WBYTE Outputs a bus message prior to receiving each

line of data.

PRINT Outputs a bus message or data to instruments.

PRINT USING Outputs data in the specified format to

instruments.

INPUT Statement

Usage:

9-14

INPUT {device}, {input variable list}
INPUT [PORT {numeric expression}] {input variable list}

INPUT is used to receive data from instruments on the IEEE-488 bus.
The only syntax difference in the INPUT statement for IEEE-488 bus
instruments is the use of a device specification instead of a channel
number.

lEEE-488 Bus I/O

Input and Output Statements

INPUT LINE Statement

Usage: INPUT LINE {device}, {input variable list}
INPUT LINE [PORT {numeric expression},] {input variable
list}

The INPUT LINE construction of the INPUT statement allows binary
data to be received from the bus and assigned to a string variable. The
only syntax difference in the INPUT LINE statement for IEEE-488
bus instruments is the use of a device specification or port expression
instead of a channel number.

INPUT WBYTE Statement

Usage: INPUT WBYTE {device}, {wbyte clause} {input variable list}
INPUT WBYTE[PORT {numeric expression} ,] {wbyte clause}
{input variable list}

The INPUT WBYTE statement transmits a bus message contained ina
WBYTE clause prior to receiving each data item. After the WBYTE
output, the specified instrument is addressed as a talker and one data
item is read. The WBYTE clause is then sent again and the next input
data item is read. This process is repeated until the input variable list
has been satisfied.

INPUT LINE WBYTE Statement

Usage: INPUT LINE WBYTE {device}, {wbyte clause} {input variable
list}

The INPUT LINE WBYTE statement allows binary data to be
received from the bus and assigned to a string variable (80 characters
maximum length). The INPUT LINE WBYTE statement transmits
the bus message contained in the WBYTE clause prior to receiving
each data item.

After the WBYTE output, the specified instrument is addressed as a

talker and one data line is read. The WBYTE clause is then sent again
and the next line of input is read. This process is repeated until the
input variable list has been satisfied.

IEEE-488 Bus I/O

Initialization and Control Statements

PRINT and PRINT USING Statements

Usage: PRINT {device list}, [print item(s)]

PRINT PORT {numeric expression}, USING {format string,}
[print item(s)]

PRINT and PRINT USING are used to output data to designated
listeners. The instruments which are to receive output data are
specified in a device list or in a port expression.

A PRINT or PRINT USING statement which is followed by a device
list addresses the specified devices as listeners. All other devices are
commanded to unlisten.

A PRINT PORT or PRINT PORT USING statement communicates
with an instrument or group of instruments after they have been
previously addressed, without re-addressing them.

Characters are sent exactly as a normal PRINT or PRINT USING
statement, except for the use of the comma and semicolon to format
the output. A comma following a data item in the output list indicates
the EOI bus line is to be set simultaneously with the last character of
that item. It does not indicate tabulation to 16 character columns by
sending extra spaces.

A Carriage Return and Line Feed, with the EOI bus line set
simultaneously with the Line Feed, follows the last data item in a
PRINT list when it is not terminated with either a comma or a
semicolon.

|EEE-488 Bus I/O

Data Transfer Statements

IEEE-488 DATA TRANSFER STATEMENTS

The following discussion summarizes Fluke BASIC statements which
provide direct access to the data lines and some of the control lines of
the IEEE-488 Instrumentation bus. These statements allow optimal
handling of the binary data sent by some instruments in “high speed”
mode. The data transfer statements are summarized in Table 9-3. Two
of the statements described below directly handle binary floating-point
information as described in the standard “IEEE Floating Point
Arithmetic for Microprocessors”. Copies of this standard are available
from The Institute of Electrical and Electronic Engineers, 345 East
47th Street, New York, New York, 10017. All of the statements listed in

Table 9-2 will accept a port expression as an alternative to a device
address. This is described earlier in this section.

Table 9-3. Data Transfer Statements Summary

STATEMENT DESCRIPTION

RBIN Inputs double and single-precision data in IEEE

standard floating point format.

RBIN WBYTE Outputs data designated by WBYTE prior to receiving

double and single-precision data in IEEE standard

floating point format.

RBYTE Inputs binary data bytes from the designated port.

RBYTE WBYTE | Outputs data designated by WBYTE prior to each

designated input cycle of binary data bytes.

WBIN Outputs double and single-precision data in IEEE-

standard floating point format.

WBYTE Sends an integer variable array as bus messages to the

designated port.

9-17

IEEE-488 Bus I/O

Data Transfer Statements

RBYTE Statement

Usage: RBYTE [PORT {numeric expression},] {integer variable array
subrange}

RBYTE (Read BYTE) reads a fixed-length block of arbitrary bit
binary data bytes from an instrument. The data from the instrument is
placed in a specified one-dimensional integer variable array. The array
may not be a virtual array.

WBYTE Statement or Clause

Usage: WBYTE [PORT {numeric expression},] {integer variable array
subrange}

WBYTE (Write BYTE) sends an arbitrary set of bus commands or
data bytes taken from the specified integer array(s) to a port. The
WBYTE statement is also used as a clause within some other IEEE-488
bus control statements. The integer array(s) used may not be virtual
arrays.

The ATN, EOI, and data lines of the instrument bus may be set as

desired with this command, with the restriction that ATN and EOI

may not be set true simultaneously (since this executes a parallel poll).

RBYTE WBYTE Statement

Usage: RBYTE [PORT {numeric expression},] {wbyte clause} {integer
variable array subrange}

The RBYTE statement with the added WBYTE clause is used for an
instrument that requires an explicit trigger for each reading. The
WBYTE clause added to the RBYTE statement provides a means of
sending commands or data to a port (via the WBYTE clause) prior to
reading the data as specified by RBYTE. The WBYTE data is sent
prior to each RBYTE cycle.

IEEE-488 Bus I/O

Data Transfer Statements

RBIN Statement

Usage: RBIN {device}, {variable list:[format specification]}
RBIN @, {variable list:format specification}
RBIN PORT {numeric expression}, {variable list:[format

specification] }

The RBIN (Read BINary) statement receives single- and double-
precision data in IEEE standard floating-point format from IEEE-488
bus instruments. The specified instrument device number is addressed
as a talker. The last port on which IEEE-488 bus I/O was performed 1s
used when the “@” character follows RBIN without a device specified.

A single floating-point value is received from the specified instrument
in the format specified in the format specification. The default format
is eight-byte double-precision.

RBIN WBYTE Statement

Usage: RBIN {device}, {wbyte clause} {variable list:[format
specification]}
RBIN @, {wbyte clause} {variable list:[format specification]}
RBIN PORT {numeric expression}, {variable list:[format
specification] }

The RBIN WBYTE statement receives single and double-precision
data in IEEE standard floating-point format from IEEE-488 bus
instruments. The specified instrument device number is addressed as a
talker. The last port on which IEEE-488 bus I/O was performed is used
when the “@” character follows RBIN without a device specified. The
data specified by the WBYTE clause is sent to the specified port before
the RBIN cycle. The WBYTE clause is discussed earlier in this section
and in the Reference Section of this manual.

A single floating-point value is received from the specified instrument
in the format specified in the format specification. The default format
is eight-byte double-precision.

IEEE-488 Bus I/O

Data Transfer Statements

WBIN Statement

Usage: WBIN {device list}, {real variable:[format specification]}
WBIN PORT {numeric expression}, {real variable:[format
specification]}

WBIN (Write BINary) sends numeric data to an IEEE-488 bus
instrument in single- or double-precision IEEE standard floating-
point format. The instrument with the specified device number is
addressed as a listener. Instrument addressing is skipped when the @
character follows WBIN without a device specified. Data is then
transmitted in the format specified; the default format is eight-byte
double-precision.

IEEE-488 POLLING STATEMENTS

9-20

The statements summarized in the following paragraphs and in Table
9-4 handle the polling, both serial and parallel, of instruments on the

IEEE-488 bus. A detailed description of each statement may be found
in the Reference Section.

Table 9-4. IEEE Polling Statements Summary

STATEMENT DESCRIPTION

CONFIG Configures an instrument for a parallel poll.

ON PPOL Enables automatic parallel polls.

OFF PPOL Disables automatic parallel polls.

ON SRQ Identifies a service request handling routine

and enables the controller to respond to SRQ.

OFF SRQ Disables service request response.

PORTSTATUS Function | Returns the port status code for the specified

port.

PPL Function Returns parallel poll value.

SPL Function Returns serial poll value.

WAIT Halts execution for the specified time or untll

an enabled interrupt occurs.

[EEE-488 Bus I/O

Polling Statements

CONFIG Statement

Usage: CONFIG {device} {TO numeric expression} {WITH numeric
expression}

CONFIG (CONFIGure) either configures or unconfigures an
instrument for parallel poll. The TO clause specifies the DIO line on
which the instrument should respond to a parallel poll. The WITH
clause specifies the active sense (0 or 1) the instrument should use in
responding to the poll.

If the “TO line WITH sense” clause is omitted, a PPD (Parallel Poll Disable)
message will be sent to the instrument.

ON SRQ and OFF SRQ Statements

Usage: ON SRQ [PORT {numeric expression}] GOTO {line number}
OFF SRQ [PORT {numeric expression}]

ON SRQ (ON Service ReQuest) allows a program to branch to a
service request routine when an SRQ (Service Request) is received
from an external device. OFF SRQ disables service request interrupt
processing. Port 0 is assumed when the port specification is omitted. A
resume statement branches back to the interrupted program.

There is no checking for SRQ after the occurrence of the SRQ
interrupt and the execution of RESUME.

ON PPOL and OFF PPOL Statements

Usage: ON PPOL[PORT {numeric expression} ,] GOTO {line number}
OFF PPOL [PORT {numeric expression}]

ON PPOL (On Parallel POLI) causes periodic parallel polls to be
performed on the specified port. All devices on the port are polled
simultaneously. If no port is specified, port 0 is assumed. Any parallel
polling in process is halted by any ON GOTO interrupt. The RESUME
statement causes parallel polling to continue.

O ON PPOL enables parallel polling.

O OFF PPOL disables parallel polling.

If the result of a poll is not zero, control is passed to the specified line

number. The line number indicates the beginning of a parallel poll
handling routine. RESUME returns control to the next statement after
the one completed when the interrupt occurred.

9-21

lEEE-488 Bus |/O
Polling Statements

PORTSTATUS() Function

Usage: PORTSTATUS(port p%)

The PORTSTATUS(function is provided to permit a program to
determine the status of an interface port. The PORTSTATUS
function returns the port status code (of type integer) for port p%. An
error will be reported if the value of p% is outside the range of [0..1]. In
the case of a floating point p%, the value will be truncated to an integer
value. An overflow error may be reported when this truncation is
performed.

PPL() Function

Usage: PPL(port p%)

PPL (Parallel Poll) performs a parallel poll of a specified instrument
bus port and returns an integer result between 0 and 255.

The correspondence between the IEEE-488 DIO lines and binary
bit numbers is as follows:

DIO Line Bit Number Numeric Weight

DI01 0
DI02 l 2
DI03 2 4
DI04 3 8
DI05 4 16
DI06 5 32
DI07 6 64
DI08 7 128

SPL Function

Usage:

9-22

SPL(device number)

SPL (Serial PoL]) performs a serial poll of a specified instrument and
returns an integer status byte result between 0 and 255. By sequentially
performing serial polls of instruments and checking for SRQ in the
status bytes, the SRQ routine can determine which instruments set
SRQ. By examining the remaining bits of some instruments, the SRQ
routine can determine why and take appropriate action.

IEEE-488 Bus !/O
Polling Statements

WAIT Statement

Usage: WAIT [time expression] [FOR KEY]
WAIT [time expression] [FOR PPOL]
WAIT [time expression] [FOR SRQ]
WAIT [time expression] [FOR TIME]
WAIT FOR TIME

WAIT suspends program execution until either the specified time
period elapses or until an enabled interrupt occurs. By specifying an
event to wait for (KEY, PPOL, or SRQ), an interrupt can be enabled

for only the duration of the waiting period. (See the Touch- Sensitive
Display section for a discussion of KEY.)

Wait time is indefinite if a time is not specified. The minimum wait time
is 10 milliseconds and the clock resolution is 10 milliseconds. The time
given in a time expression is specified according to one of the following
formats:

hh:mm:ss Hours, minutes, seconds (24 hours maximum).
hh:mm Hours and minutes.
milliseconds Up to 86400000 milliseconds (24 hours).

If the event specified is FOR TIME, the Controller will wait
unconditionally for the time interval specified by the numeric
expression to elapse.

When an interrupt that has been enabled by an ON statement occurs,
the program branches to the interrupt handling routine. If the
interrupt occured prior to the end of the WAIT period, a subsequent
WAIT FOR TIME statement will wait for the remainder of the WAIT
period. A RESUME will execute the statement following the WAIT.

9-23

Section 10

RS-232 Serial I/O

CONTENTS

INtroductiOnN cee ccc cece eee eee tee eee nee eeeeees 10-3
OVETVIEW cece cece ccc cece eee eee e eee eeeeteeeees 10-3
RS-232-C Defined ccc cece ccc eee teen eeees 10-4
Device and Port Addressing 0.00. cece eee eeees 10-5

[nitialization cece cece eee ete e eee eens 10-6
T1/O Channels cc. ccc ec ccc ee eee cree teen eens 10-6

OPENing a Serial Communication Channel 10-7
CLOSEing a Serial Communications Channel 10-8

Output and Input ee cece ee eee eens 10-9
PRINT Statement ccc cece ce eee eee eee ees 10-9
INPUT Statement ccc ccc cece cee eee eens 10-10
INCOUNT() Function ccc cece eee eens 10-12
INCHAR() Function 0.0... 0... ccc eee eee ees 10-13
Sending BREAK 2... .. ccc ec eee cent eee eees 10-14

Establishing Serial Communications0000eee 10-15

10-1

RS-232 Serial Input and Output

INTRODUCTION

The serial I/O ports on the Instrument Controller use the Electronic
Industry Association’s RS-232-C Data Communications Interface
Standard (RS-232).

RS-232 is the standard used by many devices that use serial data
communications to pass information. The RS-232 standard describes
the physical connector, the signals on each pin of the connector, timing
requirements, and the voltage levels of the signals.

RS-232 type devices include (and certainly aren’t limited to) printers,
modems, and data terminals.

OVERVIEW

This section describes the BASIC commands used for RS-232 input
and output via the serial I/O ports on the Instrument Controller.

10-3

RS-232 Serial Input and Output

RS-232-C DEFINED

EIA Standard RS-232-C (RS-232-C will be referred to as “RS-232” for
the balance of this section) provides the electronics industry with the
ground rules necessary for independent manufacturers to design and
produce both data terminal and data communication equipment that
conforms to a common interface requirement. As a result, a data
communications system can be formed by connecting an RS-232 data
terminal to an RS-232 data communication peripheral (such as a
teletype, modem, computer, etc.).

10-4

RS-232-C is a hardware standard which guarantees the following:

1. Each device using the RS-232 standard will use a standard 25-
pin connector which will mate to another standard 25-pin
connector of the opposite sex.

No matter how the cables are connected, no smoke or damage

will occur.

The data and handshaking lines will each be given a specific
name.

Additional information on RS-232 communications may be found in
the following publications:

l.

2.

1722A System Guide, Section 5, “Serial Communications”,

Fluke Application Information #B0101, “1720A RS-232-C
Interfacing to Serial Printers”.

EIA Standard RS-232-C, “Interface Between Data Terminal
Equipment and Data Communications Equipment employing
Serial Binary Data Interchange”, available from:

Electronic Industries Association
Engineering Department
2001 Ist Street, Northwest

Washington D.C. 20006

“Industrial Electronics Bulletin No 9 - Application Notes for
EIA Standard RS-232-C”, also available from the EIA.

RS-232 Serial Input and Output

Device and Port Addressing

DEVICE AND PORT ADDRESSING

The Instrument Controller has several devices that use serial

communications for data transfer between themselves and the

Controller. These devices and their device designations are:

DEVICE NAME DESIGNATION

Display and Programmer Keyboard K BO:
RS-232 Serial Port 1 KBI:
RS-232 Serial Port 2 (optional) KB2:
{7X XA-009 Dual Serial Interface SPO: - SP9:

These devices differ from the other devices used in and with the
controller: they are not file-structured devices. To avoid confusion,
remember which devices are file-structured and which ones are not.
Section 4 of the System Guide discusses devices and files.

10-5

RS-232 Serial Input and Output

Initialization

Before any input or output can take place from a serial port, it must be
initialized. This means that the data transmission rate, data format,

transmission protocols, parity, and other parameters must be set to
match those of the peripheral device. The SET utility program
performs this function. Run the SET program from BASIC by typing:

EXEC “set”

or from FDOS:

FDOS) set

The SET program 1s fully described in the System Guide.

1/O Channels

10-6

The Instrument Controller communicates between the BASIC

program and various devices by means of I/O channels.

There can be a maximum of 16 I/O channels open at any one time.
They are designated with the numbers | through 16. A device must be
associated with a channel for any data transfer to occur.

The I/O channels are also used to communicate with instruments
connected to the IEEE-488 bus as well as file-structured devices. Refer

to sections 7 and 9 of this manual.

RS-232 Serial Input and Output

Device and Port Addressing

OPENing a Serial Communication Channel

Usage: OPEN {device designation} AS OLD FILE {channel number}

This form of the OPEN statement is used to associate a device witha

channel number for serial input. The OPEN statement is also used to
associate a file with a channel number.

Usage: OPEN {device designation} AS NEW FILE {channel number}

Use this form of the OPEN statement to establish a channel for serial

output.

The following points apply to both usages of the OPEN statement for
serial I/O.

O All subsequent input from and output to the device is made by
reference to the channel number.

O The channel is sequential access. Data is sent to, or retrieved from,

sequential (serial) channels in serial order.

O The device designation string following OPEN indicates the name
of the device.

The AS NEW and AS OLD clauses of the OPEN statement indicate
specific actions for sequential channels. The following points discuss
these differences:

O AS must bespecified. If itis not followed by NEW or OLD, OLD 1s
assumed.

O NEW indicates an output channel (from the Controller, to the
device). OLD, or no specification, indicates an input channel (from
the device to the Controller).

The numeric expression following FILE indicates the channel number
to be assigned. Following are some points to be considered in selecting
a channel number:

O The value of the numeric expression must be between | and 16.

O Each channel number can only be used for one operation (input or
Output) at a time.

O Achannel that was previously opened for a different purpose, and
is no longer in use, must first be closed before being reassigned.

10-7

RS-232 Serial Input and Output

Device and Port Addressing

CLOSEing a Serial Communications Channel

Usage: CLOSE ALL
CLOSE [numeric expression]

The CLOSE statement frees a previously opened channel for other use.
As part of this process, some specific actions are taken:

O The input or output of data in memory to or from the specified
channel is first completed.

O Interrupts are disabled for the channel, if 1t was opened for input
from a serial (RS-232-C) port and interrupts had been enabled.
This is equivalent to an OFF #n statement in addition to closing the
channel.

O An End-of-File mark (CTRL/Z character) is then sent, if the
channel was opened for sequential output.

O All opened channels can be closed by the CLOSE ALL statement.
Channel numbers are separated by commas.

10-8

RS-232 Serial Input and Output

OUTPUT AND INPUT

The PRINT and INPUT statements are used to communicate with
system level serial devices through a previously opened channel. The
PRINT statement allows raw or formatted output toa printer or other
device. The INCOUNT() and INCHAR() functions are also described
in this section.

PRINT Statement

Usage: PRINT {#n,}[USING {format description,} string$; or, string2$]

The PRINT statement is described here for output to a device through
a previously opened channel. PRINT may also be used for direct
display output, or for output to instruments on the IEEE-488 bus.
These applications of PRINT are described in other sections in this
manual.

oO The numeric expression following PRINT selects a previously
opened channel. See the OPEN statement described in this section.

O The items to be printed are listed, separated by either acomma ora
semicolon.

O The items to be printed may include integer, floating point, and
string expressions, as well as subranges of arrays and virtual
arrays. Refer to Section 6 of this manual for a discussion of array
subranges.

O When the open channel is to a serial (RS-232-C) port, the End-Of-
File character transmitted will be as previously defined by the SET
Utility program.

O The USING option may be specified for formatted output. Refer
to the Reference Section for further details.

10-9

RS-232 Serial Input and Output
Output and Input

INPUT Statement

Usage:

10-10

INPUT [#n,] [LINE] {variable list}

INPUT is described here for data input from a device through a
previously opened channel. INPUT may also be used for direct
keyboard input, or for input from instruments on the IEEE-488 bus.
These applications of INPUT are described in other sections in this
manual.

O The optional LINE specification is discussed in the Reference
Section of this manual.

The numeric expression following INPUT or INPUT LINE selects
a previously opened channel. See the OPEN statement described in
this section.

The variables that will store the data input are listed, separated by a
comma.

The input data may include integer, floating point, and string
expressions, as well as subranges of arrays and virtual arrays. Refer
to Section 6 of this manual for a discussion of array subranges.

When the open channel is from a serial (RS-232) port, incoming
Carriage Return and Line Feed characters are deleted. A Carriage
Return, Line Feed sequence is appended after each occurrence of
the line terminator character defined by the SET RS-232 Utility
program. If Line Feed or Carriage Return is the line terminator,
this process does not duplicate it.

When the open channel is from a serial (RS-232) port, the End-of-
File character defined by the SET RS-232 Utility program is
deleted, and (CTRL/Z), CHR$(26), is put in its place.

BASIC does not send a prompt character, “?”, when input is from
a channel.

If the timeout expires for a device as initialized using the SET
utility, an error 300 will be generated.

The input statement is described in greater detail in the BASIC
Reference manual.

RS-232 Serial Input and Output
Output and Input

In the following example a sequential input channel from the keyboard
is opened. When lines 110 and 120 are executed, the message displayed
is the string at line 110. This technique allows an INPUT statement,
such as line 120, to be used without the usual “?” prompt.

10 OPEN "KBO:”" AS OLD FILE 2
20 Other statements

110 PRINT "ENTER THE SERIAL NO: ";
120 INPUT #2, SN$
1390 ! Other statements

In the following example, assume a device is attached to RS-232 Port |
which can print data sent to it and send data to the Instrument
Controller. Lines 20 and 30 assign KBI: simultaneously for input and
output, using separate channels. This program can send prompts on
the output channel (line 100) and receive data on the input channel
(line 120). An example of such a device is a printing computer terminal.
Note that a “?”’ is not sent at line 100. This simultaneous assignment for
input and output is not possible for a sequential channel to a file.

10 REM -- Demonstrate t and Output From Same Device Inpuy
20 OPEN ‘KB1;: AS OLD FIle 1 nput channel tf
30 OPEN ‘KB1: ’ AS NEW FILE 2 ' Output channel 2
<0 Other statements

100 PRINT #2, A$ ' Give prompt
110 INPUT #1, A(O..53) ' Get & values
120 { Other statements

10-11

RS-232 Serial Input and Output

Output and Input

INCOUNT() Function

Format: INCOUN T(channel%)

10-12

The number of input characters and/or lines available from a serial
device (console or RS-232 port) may be determined by the
INCOUNT\() (input count) function. In the example shown above,
channel% is the channel number (0 for the console) for which the

number of characters available is desired. The integer values returned
by INCOUNT(are:

0 no characters available
()0 number of characters and/or lines available

These values are returned as integers.

An I/O error 308 will be reported if either the channel specified is not
open (note that the console, which is “channel” zero, is always

considered “open”). An I/O error 322 will be reported if the device
attached to the channel is not a serial (RS-232 or console) device.

The result returned by INCOUNT(0%), which is the amount of data
available from the console, will be reported in terms of characters
available if the console is in NOECHO mode (see the SET NOECHO
statement). The result returned by INCOUNT(0%) will be reported in
terms of lines available if the console is in ECHO mode (see the SET
ECHO statement). An INPUT statement or INCHAR() function call
directed to the console will be blocked until the value returned by
INCOUNT() is not zero, which is to say:

1. NOECHO mode is active and a character has been typed, or

2. ECHO mode is active and a complete line has been typed.

RS-232 Serial Input and Output

Output and Input

The result returned for INCOUNT(n%), where n% (the channel
number) is not zero, will be returned as a combined line and character
count as follows:

nr of chars | nr of lines

high-byte low-byte

The high- and low-bytes may be separated using the LSH function and
a bit mask. A program example may be found in the Reference volume
entry for INCOUNT.

An INPUT statement which is to read data from the channel will be

blocked until the number of lines available is not zero. The INCHAR()
function is blocked untilthe number of characters available is not zero.

INCHAR() Function
Format: INCHAR(channel%)

INCHAR(0%)

A single character may be read from any open channel or from the
console by the INCHAR() function. In the example, channel% is the
channel number from which the next character is desired. If channel%

is zero the next character from the console will be returned. The
character values are returned by INCHAR() are integers, and will have
a value between 0 and 255 (0 and 127 when reading characters from the
console).

The INCHAR() function 1s useful when input must be processed on a
per-character basis or when data from the console keyboard is being
entered using NOECHO mode (see the SET NOECHO statement). A
BASIC program using INCHAR(0%) to read data from the console
must be prepared to process line editing ((CTRL) /U and DELETE)
characters as required by the application, since FDOS will not do so
during single-character input.

10-13

RS-232 Serial Input and Output

Output and Input

Sending BREAK

Usage: BREAK {device%}

The BREAK statement sends a break signal to an RS-232 port.
device% is the device number of an RS-232 port and is derived from the
device name as follows:

device% device name

] KBI:

2 KB?2:
3 KB3:

9 K BO:

Error 329 (illegal BREAK parameter) is reported if the value of
device% is outside of the range of device% = 1 and device% < 9.

10-14

RS-232 Serial Input and Output

ESTABLISHING SERIAL COMMUNICATIONS

Follow these steps for communicating with one of the serial devices.

1. Use the OPEN statement to establish an input or output
channel. It is good practice to CLOSE an I/O channel before
opening it.

2. Use the PRINT (USING) #n statement to send data to a serial
output channel.

3. Use the INPUT (LINE) #n statement to receive data from a
serial input channel.

4. Use the CLOSE statement to “disconnect” the I/O channel
from the BASIC program. The CLOSE statement is also used
before re-assigning a device to another channel.

5. Before running your program, use the SET Utility Program to
configure the serial port(s) to your device(s). This can be done
at turn-on via the Startup Command file. Both the SET utility
and the Startup Command file are described in the System
Guide.

10-15

Section 11

Interrupt Processing

CONTENTS

IntrOductiON cece cc cece eee eee ee ee eee eeees 11-3
OVEFVIEW oo. ccc ccc ccc eee eee e eee e ence eens eeees 11-3
Types of Interrupts ccc cece eee eee ete ee eeee 11-4

Error Interrupt cece cece cece cece eee e ees 11-4
(CTRL) /C Interrupt eee ee cc ee eee ees 11-4
fin Interrupt eee eee eee eee eee ene eees 11-5
KEY Interrupt cc cece ccc ec eee cette eee eens 11-5
PORT Interrupt ccc ec cc ee cece tenes 11-5
PPORT Interrupt ccc ccc ccc eee eee 11-5
SRQ Interrupt 2... .. cece ccc cc eee ee cece eee e eens 11-5
PPOL Interrupt cc cece eee ec cree ete eens 11-5
CLOCK Interrupt ccc cee ccc cc ee eee ee tees 11-5
INTERVAL Interrupt 0... eee ccc cee eee 11-5

Hierarchy of Interrupts ccc ccc eee eee eee ees 11-6
On-Event Interrupts cece cee eee eee eee teenies 11-7

ON ERROR GOTO Statement 11-8
OFF ERROR Statement 0... 0. ccc ee eee wees 11-9
ON CTRL/C GOTO Statement 11-10
OFF CTRL/C Statement cee eee eee 11-11
ON #n GOTO Statement cece cee eens 11-12
OFF #n Statement ccc cece ccc wees 11-13
ON KEY GOTO Statement cee ee eee 11-14
OFF KEY Statement cece cc ee ees 11-15
ON PORT Statement cece ccc ee ees 11-15
OFF PORT Statement 0... ccc ee ees 11-15

ON PPORT Statement 0... ccc ee eee ee eee 11-15
OFF PPORT Statement cece eee ee eee wees 11-15

CONTENTS, continued

ON SRQ GOTO Statement 0.0. cece eee ene 11-16
OFF SRQ Statement ccc cece ccc ee ee te ee eee 11-17
ON PPOL GOTO Statement 00000 11-18
OFF PPOL Statement cc cece cc eee cee eens 11-19
SET CLOCK Statement ccc cc ccc eee ne 11-19
ON CLOCK Statement 2... .. ccc ccc ccc cece ene 11-19
OFF CLOCK Statement cece eee eee 11-19
SET INTERVAL Statement 0... ccc eee eee 11-20
ON INTERVAL Statement ccc eee eee eee 11-20
OFF INTERVAL Statement cece eee eee 11-20
RESUME Statement ccc ccc eee eens 11-21

WAIT FOR EVENT Interrupts eee eee 11-22
WAIT Statement ccc cc cee eee cece ees 11-24
WAIT Time Statement cece eee ccc ce cece 11-24
WAIT FOR KEY Statement 0... ce eee eee 11-25
WAIT FOR SRQ Statement 0. eee eee 11-26
WAIT FOR PPOL Statement cee ee ee 11-27

Errors and Error Handling ccc cee e eee e eee 11-28
Fatal Errors 2... ccc ccc ccc ct cc eee cere cece eens 11-28
Recoverable Errors cc ccc eee ccc cece cee ences 11-28
Warning Errors cee cece cece reece ee eeeees 11-29
Error Variables cc cece cece cece cece esse cece 11-29

Interrupt Control Statements 0... eee eee ee eee 11-30
Interrupt Processing Program Examples 11-31

Interrupt Processing

INTRODUCTION

This section describes statements and functions which enable and
process interrupts to a BASIC program. Interrupts are a response to
events that may occur during normal program execution. For
example, if the operator determines that an instrument test is not
performing properly because of an outside influence (such as the
IEEE-488 Bus cables not connected), the ABORT switch can be
pressed to terminate the test. Since an operator may not have access to
the programming keyboard, the test program must have the ability to
analyze conditions, to make appropriate responses, and to restart
itself. Event interrupt processing tasks are determined by the
individual requirements of the system. Refer to Section 9 for further
information on IEEE-488 Bus Polling statements.

OVERVIEW

Interrupt processing is discussed in four subject areas. First is a
discussion of the types of interrupts, their priorities and their
heirarchies. Second, the techniques of enabling the Instrument
Controller to respond with a predefined section of program any
random time that an interrupting event occurs are discssed (ON
EVENT interrupts). Next is a discussion of the method of stopping
program execution at a particular point to wait for an event to occur
before proceeding (WAIT FOR EVENT interrupts). The final subject
area is a discussion of the handling of errors (Error Handling).
Program examples illustrate the concepts used.

Interrupt Processing

TYPES OF INTERRUPTS

Fluke BASIC recognizes nine types of interrupts. Interrupts are
recognized in order of their priority. These are listed with their priority
in Table 11-1.

Table 11-1. On-Event Statements

PRIORITY INTERRUPT TYPE

ON ERROR

ON CTRL/C

ON #n (RS-232-C Channel)

ON KEY (the Touch-Sensitive Display)

ON PORT

ON PPORT

ON SRQ (IEEE-488 Bus instrument service request)

ON PPOL (IEEE-488 Bus parallel poll)

ON CLOCK

ON INTERVAL Interrupts O
A
N

O
O
F

W
N

—

Error Interrupt

An error interrupt occurs when errors are detected during program
execution. Errors are divided into three levels that differentiate the
types of response possible.

oO Fatal Immediately terminates the program.

O Recoverable Statement processing stops immediately
then terminates the program unless
acknowledged by an error interrupt.

O Warning Program .continues running even if error
interrupt is not enabled.

(CTRL) /C Interrupt

A (CTRL)/C interrupt may be initiated from either of two sources:

O Pressing the ABORT button on the front panel.

O Entering (CTRL)/C on the programmer keyboard.

Interrupt Processing

Types of Interrupts

#n Interrupt

A #n interrupt occurs whenever a line or file terminator character, as
defined by the SET RS-232 Utility program, is received through an
open input channel from a serial (RS-232-C) port. The number
following “#” is the channel number.

KEY Interrupt

A KEY interrupt occurs whenever the Touch-Sensitive Display is
touched. The ON KEY statement causes an immediate branch to a
specified line number.

PORT Interrupt

A PORT interrupt occurs when a change in the state of an IEEE-488
bus port occurs (for example, being addressed as a Listener).

PPORT Interrupt

A PPORT interrupt occurs when a device connected to a parallel I/O
port toggles its handshake line to request an interrupt.

SRQ Interrupt

An SRQ interrupt occurs when an instrument on the selected IEEE-
488 port issues a service request.

PPOL Interrupt

A PPOL interrupt occurs when the parallel poll response from
instruments on the selected IEEE-488 Bus port is a non-zero value.

CLOCK Interrupt

A CLOCK interrupt occurs as a result of the ON CLOCK statement.
The interrupt occurs at the time set by the SET CLOCK statement.

INTERVAL Interrupt

A INTERVAL interrupt occurs as a result of the ON INTERVAL
statement. The interrupt occurs at the time set by the SET INTEVAL
Statement.

Interrupt Processing

Types of Interrupts

Hierarchy of Interrupts

11-6

Interrupts have a hierarchial relationship that avoids conflicts when
two or more interrupts become simultaneously active.

oO ERROR and (CTRL)/C can interrupt each other and share top
priority. They preempt acknowledgement of other interrupts.

Other interrupts that subsequently occur are not recognized until
after the ERROR or (CTRL) /C is acknowledged.

There is one difference between ERROR and (CTRL) /C.

1. If asecond ERROR occurs before the first is acknowledged,
the program terminates immediately.

2. Ifasecond (CTRL) /C occurs before the first is acknowledged,
the second 1s ignored.

Second priority is fn.

Third priority is KEY.

Fourth priority is PORT.

Fifth priority is PPORT.

Sixth priority is SRQ.

Seventh priority is PPOL.

Eigth priority is CLOCK.

Ninth priority is INTERVAL.

The #n, KEY, PORT, PPORT, SRQ, PPOL, CLOCK and
INTERVAL interrupts do not preempt each other. However, they
may be preempted by either ERROR or (CTRL) /C.

Interrupt Processing

ON-EVENT INTERRUPTS

On-event interrupts enable the Instrument Controller to respond to
events that occur at random times that cannot be known when the
program is written.

O There are three actions that occur with on-event interrupts:

1. If an ERROR or (CTRL)/C interrupt occurs during the
processing of an interrupt, the program is stopped or control is
transferred as required by the ERROR or (CTRL) /C.

2. If any other interrupts occur during the processing of an
interrupt, they are assigned a pending status untila RESUME
statement is encountered.

3. When a RESUME statement is processed, control is
transferred to the highest priority pending interrupt or to the
next statement following the one that was in process when the
interrupting event occurred.

O Interrupts are initially disabled.

O The interrupt must first be enabled (by ON event GOTO line
number) to allow the interrupting event to redirect the program
sequence.

O After completing a response to the interrupt that occurred, the
interrupt must be acknowledged with a RESUME statement.

O If interrupt response is no longer required, it may be disabled with
an OFF statement.

O Any or all interrupting conditions may be activated
simultaneously.

O Table 11-2 summarizes these actions.

Table 11-2. On-Event Statements

ACTION STATEMENT

Enable ON interrupt name GOTO line number

Acknowledge RESUME (line number)

Disable OFF interrupt name

Interrupt Processing

On-Event Interrupts

ON ERROR GOTO Statement

Usage: ON ERROR GOTO {line number}

The ON ERROR GOTO statement enables a program to respond toa
random occurrence of an error condition by transferring control to a
specified routine containing a user-defined response.

O When an error is detected, control transfers to the specified line
number immediately.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

Only level R and W errors can be processed by an error routine.
Level F errors always terminate the program.

Level R interrupts will terminate a program unlessan ON ERROR
GOTO statement has been executed so that the error condition can

be treated.

Without error processing, a level W error is ignored.

When an error condition has been detected, further checking for
interrupt conditions other than ERROR or (CTRL)/C is
suspended until a RESUME is executed.

When an error condition has been detected, the system variable
ERL will contain the line number at which the error occurred, and

ERR will contain the error number.

If a second error is detected before encountering a RESUME
statement, the program terminates immediately.

NOTE
Further interrupt processing except (CTRL)/C is suspended
untila RESUME statement is executed.

NOTE

A RESUME statement without a line number will re-execute

the statement that caused the error.

Interrupt Processing

On-Event Interrupts

If a (CTRL)/C interrupt occurs after error detection and before
encountering a RESUME statement, error processing 1s suspended
either temporarily or permanently. If the program includes
(CTRL)/C interrupt processing with a RESUME statement,
control will be returned to the error processing routine when
(CTRL) /C processing is completed. See the ON (CTRL)/C
GOTO statement in this section.

OFF ERROR Statement

Usage: OFF ERROR

The OFF ERROR statement disables the action of a previous ON
ERROR GOTO statement.

a) An OFF ERROR statement in an error processing routine will
terminate the program.

After an OFF ERROR statement has been executed, a level R

error will terminate the program.

After an OFF ERROR statement, a level W error will be ignored.

Interrupt Processing

On-Event Interrupts

ON CTRL/C GOTO Statement

Usage:

11-10

ON CTRL/C GOTO {line number}

The ON CTRL/C GOTO statement enables a program to respond toa

random occurrence of an ABORT switch or a (CTRL) /C keyboard

entry by transferring control toa specified program routine containing

a user defined response.

O When an ABORT switch or a (CTRL)/C keyboard entry is

detected, control transfers to the specified line number.

When the SET NOECHO statement has put the keyboard into
“character mode” a (CTRL)/P keyboard entry will transfer
control to the line number specified by ON CTRL/C.

The (CTRL) /C handling routine must explicitly acknowledge the
interrupt with a RESUME statement.

BASIC normally responds to the ABORT switch or a (CTRL) /C
keyboard input by terminating the program and returning to
Immediate Mode. This statement alters the normal interpreter
response.

When a ‘(CTRL)/C has been detected, further checking for
interrupt conditions other than ERROR is suspended until
RESUME is encountered.

Ifa second (CTRL) /C or ABORT is detected before encountering
a RESUME statement, it is ignored.

A RESUME statement will return control to execute the first

statement not completed when the (CTRL)/C or ABORT key
entry was detected.

NOTE
Further interrupt processing except ON ERROR is suspended
untila RESUME statement is performed.

Interrupt Processing

On-Event Interrupts

O Ifa level R or W error occurs after (CTRL)/C detection and
before encountering a RESUME statement, (CTRL)/C
processing is suspended either temporarily or permanently. If the
program includes error processing, control will be returned to the
(CTRL)/C processing routine when error processing 1s
completed. Without error processing, a level W erroz is ignored.
See the ON ERROR GOTO statement in this section.

NOTE
Since (CTRL)/C is the only way to manually stop a BASIC
program without deleting it, if not handled properly, a
(CTRL)/C interrupt to an ON CTRL/C subroutine can lock
a program into Run Mode.

OFF CTRL/C Statement

Usage: OFF CTRL/C

The OFF CTRL/C statement disables the action of a previous ON
CTRL/C GOTO statement.

An OFF CTRL/C statement in a (CTRL) /C interrupt processing
routine will cause the Instrument Controller to return to
Immediate Mode.

After an OFF CTRL/C statement, the ABORT switch or a
(CTRL) /C keyboard entry will return the controller to Immediate
Mode.

11-11

Interrupt Processing
On-Event Interrupts

ON #n GOTO Statement

Usage:

11-12

ON # {channel%} GOTO {line number}

The ON #n GOTO statement enables a program to respond to End-Of-
File characters received through a open input channel from a serial
(RS-232-C) port, control is transferred to the specified program
routine containing a user defined response whenever either terminator
character is received.

O When a terminator character is received through a open input
channel from a serial (RS-232-C) port, control is transferred to the
specified line number after completion of the current statement.

End-Of-Line and End-Of-File terminator characters are defined
by the SET utility program. Refer to the Instrument Controller
User Manual, November 1980 Revision (or later), for information.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.
Program control then resumes at the next statement following the
one that was completed when the terminator character was
received.

When a terminator character has been detected, further checking
for interrupt conditions other than ERROR or (CTRL)/C is
suspended until RESUME is encountered.

If this statement is used more than once ina program with the same
channel number, control is transferred to the line number
referenced in the most recently encountered ON #n GOTO
Statement.

Any of the 16 available user channels may be used. Refer to the
OPEN statement discussion is the Reference volume of this

manual set.

The referenced channel must be opened for input (OLD or not
specified) prior to the ON #n GOTO statement.

When interrupts occur on more than one channel simultaneously,
the lowest numbered channel has highest priority.

Interrupt Processing

On-Event Interrupts

OFF #n Statement

Usage: OFF #{channel%}

The OFF #nstatement disables the action of all previous ON #n GOTO
statements for the referenced channel.

O An OFF #n statement in a serial port interrupt processing routine
will disable further interrupts on the referenced channel, but will
not affect the interrupt processing that is in progress.

The OFF #n statement does not close the referenced channel.

If the channel is closed bya CLOSE n statement, further interrupts
are disabled and the OFF #n statement is unnecessary.

11-13

Interrupt Processing
On-Event Interrupts

ON KEY GOTO Statement

Usage:

11-14

ON KEY GOTO (line number}

The ON KEY GOTO statement enables a program to respond to the
occurrence of a key entry on the touch-sensitive display by transferring
control to a specified program routine containing a user defined
response.

O When a key entry 1s detected, control transfers to the specified line
number after completion of the current statement.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

When a KEY entry has been detected, further checking for
interrupt conditions other than ERROR or (CTRL)/C is
suspended until RESUME is encountered.

When a KEY entry has been detected, the system variable KEY will
contain the number of the last touch key pressed.

The system variable KEY is set whenever the Touch-Sensitive
Display is pressed in an active area, regardless of whether ON KEY
GOTO 1s used.

NOTE
Once the Touch-Sensitive Display is pressed in an active area,

the KEY variable remains set until it is read by a program
statement. (For example, K% = KEY) Once the KEY variable
is read by a program statement, its value is reset to zero.

If the system variable KEY is non-zero when ON KEY GOTO is
executed, control is immediately transferred to the specified line
number.

ON KEY does not reset the system KEY variable.

Interrupt Processing

On-Event Interrupts

OFF KEY Statement

Usage: OFF KEY

The OFF KEY statement disables the action of a previous ON KEY
GOTO statement.

O An OFF KEY statement ina key interrupt processing routine will
prevent the routine from being continuously reentered if the KEY
buffer is not reset in the routine.

O AnOFF KEY statement in any interrupt processing routine will
not have any additional effect.

ON PORT Statement

Usage: ON PORT p% GOTO line number

The ON PORT statement permits the Instrument Controller to detect
commands sent to it by another controller. Port 0 is assumed if p% is
not specified. If p% is a floating-point variable, the value is rounded to
its integer value. An overflow error may result from this action. Use the
PORTSTATUS statement to determine the exact cause of the
interrput.

OFF PORT Statement

Usage: OFF PORT p%

The OFF PORT statement disables a previous ON PORT interrupt.
p% must be in the range of 0..1. Itisan error for p% to be outside of this
range. If p% is omitted, port 0 is assumed.

ON PPORT Statement

Usage: ON PPORT port% GOTO line number

The ON PPORT statement enables a program to respond to data from
the optional Parallel Port by transferring control to a specified
program routine containing a user-defined response. If port% is not
specified, port 0 is used.

OFF PPORT Statement

Usage: OFF PPORT port%

The OFF PPORT statement disables a previous ON PPORT
statement. If port% is not specified, port 0 is used.

11-15

Interrupt Processing

On-Event Interrupts

ON SRQ GOTO Statement

Usage:

11-16

ON SRQ GOTO {line number}

The ON SRQ GOTO statement enables a program to respond to the
occurrence of a service request from an instrument by transferring
control to a specified program routine containing a user defined
response.

O The specified port is sampled after the completion of each
statement. If a port is not specified, port 0 is sampled.

When a service request is detected, control transfers to the specified
line number after completion of the current statement.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

When a service request has been detected, further checking for
interrupt conditions other than ERROR or (CTRL)/C is
suspended until RESUME is encountered.

An internal SRQ flag is set by a service request on the enabled port.
It is reset in the controller by performing a serial poll on any
instrument on the port requesting service (for example, Y% =
SPL(10)). However, depending on the instrument, SRQ will
probably be set again until the instrument requesting service is
serial polled. This will cause the service request routine to be
immediately reentered after the RESUME statement.

ON SRQ GOTO does not reset the internal SRQ flag.

When SRQs are present on both port 0 and port | simultaneously,
the SRQ on post 0 will be responded to first.

Interrupt Processing

On-Event Interrupts

OFF SRQ Statement

Usage: OFF SRQ

The OFF SRQ statement disables the action of a previous ON SRQ
GOTO statement.

0 An OFF SRQ statement ina Service request processing routine will
prevent the routine from being continuously reentered if it does not
reset the service request by performing a serial poll.

An OFF SRQ statement in any interrupt processing routine will
not have any additional effect.

11-17

Interrupt Processing

On-Event Interrupts

ON PPOL GOTO Statement

Usage:

11-18

ON PPOL GOTO {line number}

The ON PPOL GOTO statement enables a program to respond to a
positive parallel poll response from a configured instrument by
transferring control to a specified program routine containing a user
defined response.

O The ON PPOL GOTO statement initiates parallel polling on the
specified port, or on Port 0 if not specified. A poll will be
performed following the completion of each BASIC statement.

When a non-zero response to a parallel poll is detected, control
transfers to the specified line number after completion of the
current statement.

The program section following the specified line number must
explicitly acknowledge the interrupt with a RESUME statement.

When a non-zero response to a parallel poll has been detected,
further checking for interrupt conditions other than ERROR or
(CTRL)/C is suspended until RESUME is encountered.

If both Port 0 and Port | have PPOL interrupts enabled, port 0 will
be checked for a parallel poll response prior to checking Port 1.

NOTE
Some instruments clear a parallel poll bit when the condition
causing it disappears, or when the bus port is parallel polled.

When possible, the instrument responding to the parallel poll
should be programmed within the processing routine to reset
its poll response bit. If this bit remains set, the routine will be
immediately reentered after the RESUME statement.

Interrupt Processing

On-Event Interrupts

OFF PPOL Statement

Usage: OFF PPOL

The OFF PPOL statement disables the action of a previous ON PPOL
GOTO statement.

O An OFF PPOL statement in a parallel poll response routine will
prevent the routine from being immediately reentered after the
RESUME statement if the routine does not clear the instrument
poll response bit.

oO AnOFF PPOL statement in any interrupt processing routine will
not have any additional effect.

SET CLOCK Statement

Usage: SET CLOCK {time expression}

The SET CLOCK statement is used to indicate (set) the time to be used
for a timer interrupt. The SET CLOCK statement must be executed
before an ON CLOCK statement, or error 708 (timer not set) will
occur.

The time expression used may denote the interval time in any of the
O following formats:

hh:mm:ss Hours, minutes, seconds (24 hours
maximum).

hh:mm Hours and minutes.
milliseconds Up to 86400000 milliseconds (24 hours).

ON CLOCK Statement

Usage: ON CLOCK GOTO {line number}

The ON CLOCK statement is used to enable an interrupt that occurs at
a specific time of day. The SET CLOCK statement determines the
time-of-day that the interrupt occurs. The time reference for the ON
CLOCK statement is the System Clock built into the Controller.

OFF CLOCK Statement

Usage: OFF CLOCK

The OFF CLOCK statement disables a previously set ON CLOCK
interrupt.

11-19

Interrupt Processing

On-Event Interrupts

SET INTERVAL Statement

Usage: SET INTERVAL {time expression}

The SET INTERVAL statement is used to indicate (set) the interval
between timer interrupts. This statement must be used before a
corresponding ON INTERVAL statement or error 706 (timer not set)
will occur.

O The time expression used may denote the interval time in any of the
following formats:

hh:mm:ss Hours, minutes, seconds (24 hours

maximum).
hh:mm Hours and minutes.
milliseconds Up to 86400000 milliseconds (24 hours).

ON INTERVAL Statement

Usage: ON INTERVAL GOTO {line number}

The ON INTERVAL statement is used to enable an interrupt that
occurs at an interval chosen by the programmer. The SET
INTERVAL statement determines the interval used by the ON
INTERVAL statement. The time reference for the ON INTERVAL
statement is the System Clock built into the Controller.

OFF INTERVAL Statement

11-20

Usage: OFF INTERVAL

The OFF INTERVAL statement is used to disable a previously set ON
INTERVAL interrupt.

Interrupt Processing

On-Event Interrupts

RESUME Statement

Usage: RESUME [line number]

The RESUME statement acknowledges an interrupt and allows
program operation to resume with the next statement after the one
being completed when the interrupt occurred or at another specified
program location.

0 RESUME (no line number) branches to the statement following
the one being executed at the point where the interrupt occurred.

If the interrupt occurred in a multiple statement line, the program
resumes with the next statement on the line.

There are two exceptions:

1. Recoverable errors: The program resumes at the beginning of
the statement that caused the error.

2. Input Warning errors 801, 802, and 803: The INPUT statement

which caused the error requests the value to be entered again. It
did not accept the erroneous entry.

RESUME (line number) branches to the specified line number.

RESUME terminates the interrupt handler routine.

11-21

Interrupt Processing

WAIT FOR EVENT INTERRUPTS

The WAIT (time) (FOR event) statement suspends program execution
until the specified interrupt event occurs or the specified time elapses.

11-22

O

O

The interrupt is implicitly acknowledged by its occurrence.

WAIT may be followed by a numeric expression specifying a
maximum period of time to wait for the interrupt.

When the specified time elapses, interrupt checking stops and the
program continues with the next statement.

An interrupt previously enabled by an ON-GOTO statement
remains enabled during the waiting period, whether or not the
WAIT statement references it.

The time interval may be specified in any of the following ways:

hh:mm:ss Hours, minutes, seconds (24 hours
maximum).

hh:mm Hours and minutes.
milliseconds Up to 86400000 milliseconds (24 hours).

WAIT interrupts have four forms as shown in Table 1 1-3 with their
meanings. Each construction of the WAIT statement is separately
discussed below.

Interrupt Processing

On-Event Interrupts

Table 11-3. WAIT Interrupt Statements

STATEMENT FORM MEANING

WAIT Suspend program execution until a

(CTRL)/C or an interrupt enabled by ON-
GOTO occurs.

WAIT numeric expression Suspend program execution up to the

specified time limit until (CTRL)/C or an

interrupt enabled by ON-GOTO occurs.

WAIT FOR (KEY)(,)(PPOL)(,)(SRQ) Suspend program execution until
(CTRL)/C, the specified interrupt, or an

interrupt enabled by ON-GOTO occurs.

WAIT numeric expression Suspend program execution, up to the

FOR (KEY)(,)(PPOL)(,)(SRQ) specified time limit, until (CTRL)/C, the
specified interrupt, or an interrupt enabled

by ON-GOTO occurs.

WAIT FOR TIME Wait for remainder of time from the last

WAIT statement.

WAIT {numeric expression} FOR TIME! Non-interuptible WAIT statement.

11-23

Interrupt Processing

On-Event Interrupts

WAIT Statement

Usage: WAIT

The WAIT statement suspends operation of the program indefinitely.

O The ABORT switch, ora (CTRL) /C keyboard entry, will always

O

terminate the WAIT.

If an ON CTRL/C GOTO statement has been executed, the
ABORT switch or a (CTRL) /C keyboard entry will terminate the
WAIT and transfer control to the (CTRL) /C processing routine.

The WAIT statement takes the place of the (not allowed) construct
WAIT FOR CTRL/C, since this top priority interrupt always
remains enabled.

A KEY, serial port, SRQ, or PPOL interrupt will not terminate the
WAIT unless previously enabled by ON-event GOTO.

WAIT Time Statement

Usage:

11-24

WAIT [time expression]

The WAIT Time statement suspends operation of the program for the
specified length of time.

O Time may be specified in any of the following methods:

hh:mm:ss Hours, minutes, seconds (24 hours
maximum).

hh:mm Hours and minutes.
milliseconds Up to 86400000 milliseconds (24 hours).

Timer resolution is 10 milliseconds.

A negative time value results in a waiting time of 0.

Until the specified time period has elapsed, the WAIT can be
terminated in any of the ways defined above under the WAIT
statement.

Interrupt Processing

On-Event Interrupts

WAIT FOR KEY Statement

Usage: WAIT [time expression] FOR KEY

The WAIT FOR KEY statement suspends operation of the program
indefinitely until the Touch-Sensitive Display is pressed in the active
area.

Oo The WAIT can be terminated in any of the ways defined above
under the WAIT statement.

A time limit may be specified following the word WAIT as
described above under the WAIT Time Statement.

The WAIT is terminated whenever the Touch-Sensitive Display is
pressed in the active area.

A touch key input causes the program to continue with the next
statement unless a previous ON KEY GOTO statement has been
executed.

When a previous ON KEY GOTO statement has been executed, a
touch key input causes the program to transfer to the KEY
processing routine.

The system variable KEY is set whenever the Touch-Sensitive
Display is pressed in an active area, regardless of whether WAIT
FOR KEY is used. It remains set until it is read by a program
statement. (For example, K% = KEY)

Wait time is 0 if the system variable KEY is nonzero when WAIT
FOR KEY 1s executed.

11-25

Interrupt Processing

On-Event Interrupts

WAIT FOR SRQ Statement

Usage:

11-26

WAIT [time expression] FOR SRQ

The WAIT FOR SRQ statement suspends operation of the program
indefinitely until a service request 1s detected on either instrument port.

O The WAIT can be terminated in any of the ways defined above
under the WAIT statement.

A time limit may be specified following the word WAIT as
described above under the WAIT Time Statement.

The WAIT is terminated whenever a service request is detected on
either instrument port.

A service request causes the program to continue with the next
statement unless a previous ON SRQ GOTO statement has been
executed.

When a previous ON SRQ GOTO statement has been executed, a

service request causes the program to transfer to the service request
processing routine.

An internal SRQ flag is set by a service request. It is reset in the
controller by performing any serial poll (for example, Y% =
SPL(10)). However, depending on the instrument, SRQ will
probably not be set again until a serial poll is performed on the
instrument requesting service.

WAIT time is 0 if the internal SRQ flag was not reset after the last
service request.

WAIT FOR SRQ does not reset the internal SRQ flag.

Interrupt Processing

On-Event Interrupts

WAIT FOR PPOL Statement

Usage: WAIT [time expression] FOR PPOL

The WAIT FOR PPOL statement suspends operation of the program
and initiates continuous parallel polling indefinitely until a non-zero
parallel poll response is detected on either instrument port.

O The WAIT can be terminated in any of the ways defined above
under the WAIT statement.

O A time limit may be specified following the word WAIT as
described above under the WAIT Time Statement.

O The WAIT is terminated whenever a non-zero parallel poll
response is detected on either instrument port.

O A positive parallel poll response causes the program to continue
with the next statement unless a previous ON PPOL GOTO
statement has been executed.

O When a previous ON PPOL GOTO statement has been executed, a
non-zero parallel poll response causes the program to transfer to
the parallel poll processing routine.

O The program statements following WAIT FOR PPOL should
cause the parallel poll response bit of the responding instrument to
be reset, if possible.

O WAIT time is 0 if either instrument port has a non-zero parallel
poll response when WAIT FOR PPOL 1s executed.

O See the note in the description of ON PPOL GOTO in this section.

11-27

Interrupt Processing

ERRORS AND ERROR HANDLING

Section 17 and the Quick Reference Card list the errors which can
occur in executing BASIC statements. There are three levels: Fatal,
Recoverable, and Warning.

Fatal Errors

A fatal error (level F) terminates a program immediately, returns the
Instrument Controller to Immediate Mode, and displays an error
message.

O There is no way to recover a program from a level F error.

Recoverable Errors

A recoverable error (level R) terminates a program immediately,
returns the Instrument Controller to Immediate Mode, and displays an
error message.

O A level R error can be recovered from if:

1. It occurs after execution of anON ERROR GOTO statement.

2. The program routine referenced by ON ERROR GOTO
includes a RESUME statement.

3. A second error does not occur before the RESUME.

4. The program routine referenced by ON ERROR GOTO does
not include an OFF ERROR statement.

O An OFF ERROR statement causes subsequent level R errors to
terminate the program as described above.

11-28

Interrupt Processing

Error and Error Handling

Warning Errors

A warning error (level W) allows a program to continue running.

O

O

An error message 1s normally displayed.

An error message is not displayed if the four conditions described
above under level R errors are met.

Input warning errors 801 (too much data), 802 (not enough data),
and 803 (illegal character), caused by keyboard entries, request
that the entry be repeated. (“?” is displayed if input is from the
display.)

Error 803, caused by an illegal character in a VAL argument ora
non-keyboard input, truncates the bad character and all characters
following it. Characters up to the one causing the error are left
intact.

Error 904 (string longer than virtual array field) truncates all excess
characters, leaving the rest intact.

Error Variables

There are two system variables for errors that may be used as variables
in a program to determine what action to take when level R or W errors
occur:

0 ERL - the line number of the statement which caused the most

recent error.

ERR - the error number of the most recent error.

NOTE
ERL and ERR are reset when the RUN statement is executed

but not when GOTO or CONT is executed in Immediate
Mode.

11-29

Interrupt Processing

INTERRUPT CONTROL STATEMENTS

11-30

The Interrupt Control statements allow the BASIC program to disable
interrupts. The DISABLE statement disables all interrupts except for
ON ERROR and CTRL/C. The ENABLE statement re-enables the
interrupts after a DISABLE statement.

The DISABLE and ENABLE statements are used to isolate a “critical
section” of code from an unwanted branch to an interrupt service
routine.

While interrupts are never recognized during the execution of a single
statement (except for CTRL/C), a critical section that extends across
several statements must be able to disable interrupts to prevent
erroneous updating of any shared variables.

Any interrupts which occur after the execution of a DISABLE
statement are held pending the execution of an ENABLE statement.

Interrupt Processing

INTERRUPT PROCESSING PROGRAM EXAMPLES

The program examples presented below illustrate the concepts
developed in this section with portions of programs. These examples
are not complete programs.

In the following example, the programmer anticipated that the
variable I may be zero at some point and, rather than allow the
program to halt, included an error handling routine that checks ERR
for 603 (divide by zero error) and ERL for the line number of the
possible divide by zero error. (Other divide by zero errors presumably
should halt execution.) If the error or line number that caused the
interrupt are not the ones expected, then the OFF ERROR disables the
error handler routine and displays the error number and line number
of the error. If error 603 did occur at line 120 to generate the interrupt,
then the message is printed by line 1020. Line 1030 causes a branch to
line 130, and the “ON ERROR GOTO 1010” is still active.

20 ON ERROR GOTO 1010

110 se ee
120 A=#j 20/1
130 oe ee

00 1 ERROR HANDLER
10 IF ERR 603 OR ERL 120 THEN OFF ERROR
20 PRINT “DIVIDE BY ZERO ERROR"
30 RESUME 130

11-31

Interrupt Processing

Program Examples

11-32

The following example illustrates an appropriate way to terminate a
FOR-NEXT loop within a subroutine after resuming from an error
handling routine. The FOR-NEXT loop was reset to its terminal value
(-10) in the error handling routine so that the loop will not be repeated
when control is resumed from the error handler. If control is resumed
at line 4040 in the subroutine, error 521 (Illegal statement structure)
results. In this example, the FOR-NEXT loop is allowed to terminate
naturally.

30 ON ERROR GOTO 1010

100 DIM Y (20)
110 COSUB 4000
120 e s e e

1000 1 ERROR HANDLER
1010 IF ERR «<)> 606 THEN OFF ERROR \ ! Negative LOG Argument
1020 PRINT "LOG ARGUMENT (= 0”
1030 I
1040 RESUME 4030

4000 ' CALCULATE AND STORE LOS ROUTINE
4010 FOR I = 10 TO -10 STEP
4020 veyron I) = Loc (I)

4040 RETURN

The following example uses a bus timeout (error 408, timeout during
Bus I/O transfer) to terminate an input from the IEEE-488 Bus. When
the sending device has ceased output to the bus, the 100-millisecond
timeout set in line 100 generates an error that is handled in the error
handling routine at line 1000 by first checking to see if it is the proper
type of error. The error handling routine then determines which
reading was the last reading (line 1020), resets the FOR-NEXT loop,
and resumes executing at the NEXT statement. The statement GOTO
1050 at line 1010 causes a RESUME to re-execute any other statement
that causes an error. When it 1s re-executed, the program terminates
unless it is a Warning error because the error will occur again.

10 ON ERROR GOTO 1010

100 TIMEOUT 100 ! Set BUS timeout to 100 msecs.
110 FOR I% = OX TO 999%
120 INPUT LINE @ C3%, ROC(IZ)
130 NEXT I%
140 PRINT R® (OX. .NZ)
1350 TOP

1000 ’ TIMEOUT ERROR HANDLER
1010 ie ERR «> 498 THEN OFF ERROR

= - ' NX = Number of readings
1030 I% = 999% ! Properly terminates FOR-NEXT
1040 RESUME 130

Interrupt Processing

Program Examples

In the following example, RESUME returns control to the error
causing statement rather than to a specified line number. The value of
D is corrected in line 1010 so that the statement on line 30 will be re-
executed properly.

10 ON ERROR GOTO 1000
20 D#O0O
30 Is3/0D
40 PRINT "Iw"; I

1000 IF D¢() 0 GOTO 32767 ! To END statement
1010 D = 1&-76
1020 RESUME

32767 END

In the following example, D 1s not adjusted and the RESUME
statement branches to a PRINT statement.

10 ON ERROR GOTO 1010
20 D#0O
30 I= 3/0D
40 RINT “I=w"; I
30 RINT °D="; D

ERROR ROUTINE
F D¢) 0 GOTO 32767 ' To END statement
ESUME 350

32767

The following error routine checks for a valid input for a tangent value.
The error is produced on line 30 when BASIC tries to find the tangent
of the entered value. The likely error would be a divide by zero error.
RESUME branches to line 20 to allow re-entry of the A value.

10 ON ERROR GOTO 100
20 PRINT “Enter value for TANGENT"; / INPUT A
30 X = TAN (A)

100 IF ERR = 603 AND ERL = 30 THEN PRINT "ILLEGAL VALUE”
110 RESUME 20

11-33

Interrupt Processing

Program Examples

The following example uses the ERR system variable to check for a
number of possible error conditions and has the operator correct the
problem by using the Touch-Sensitive Display.

10 INIT PORT O ' Initialize Bus O
20 ON ERROR GOTO 1010 ' Enable error interrupt
30 CLOSE 2 ' Ensure file 2 not open
40 OPEN “DATA” AS NEW FILE 2 =! Open data file
45 PRINT "Enter the instrument’s eddress"
20 INPUT AD%X ' Enter device address

20 Command instrument to take readings

705 INPUT LINE @ ADZ. RS ' Input the reading

110 ' Other statements
120 PRINT #2, RS ' Save the reading on file 2

140 ' Other statements
150 !
900 STOP
910 '
920 '
1000 ! ERROR HANDLER
10035 ! heck for illegal entry
1010 IF ERR = 801 OR ERR = 803 GOTO 1040
1015 ! Check instrument address
1020 IF ERR «(> 401 AND ERR ¢ ») 402 GOTO 1060
1025 ‘ Display operator message
1030 PRINT “Wrong Bus address: reenter"
1040 RESUME 50 ' Re-execute line SO
1050 ' Check for good disk
1060 IF ERR <)>) 300 AND ERR ¢() 301 GOTO 1140
1070 IF ERR # 300 THEN PRINT "Load disk"; \ GOTO 1090
1080 PRINT "Remove write protect label";
1090 PRINT “Then touch display” ! Display message
1100 K = KEY ' Clear key buffer
1110 WAIT FOR KEY ' Enable and wait for key
1111 ' interrupt
1120 KA = KEY ' Clear key buffer
1130 RESUME ' Re-execute line 40
1130 OFF ERROR : Terminate program on other

errors

11-34

Interrupt Processing

Program Examples

In the following example, if a (CTRL)/C character is generated, the
error routine beginning at line 5000 will take control. The operator is
given the choice of continuing or halting execution of the program.
The operator enters either | (continue) or 2 (halt). If neither 1 or 2 1s
selected, the screen redisplays the choices. If 1 is selected, the
RESUME statement branches to the line that was being executed
when the (CTRL) /C character was encountered. If 2 is selected, the
OFF CTRL/C statement halts execution of the program and returns
to Immediate Mode.

10 ON CTRL/C GOTO S010

93000 ' <CTRL)/C TERMINATION ROUTINE
3010 PRINT “SELECT ONE"/ PRINT
9020 PRINT SPACES(21); “1 CONT INUVE”
3030 PRINT SPACE4(21); °2 STOP”
9040 PRINT SPM Ee pT C
3050 IF C «> 1 AND {> 2 GOTO 5010
9060 IF C = 2 THEN ‘OFF CTRL/C
93080 RESUME

In the following example, if ABORT or (CTRL)/C is pressed, the
ABORT routine at line 5010 is executed. The routine allows the
operator to confirm the ABORT or (CTRL)/C by selecting either |
(continue) or 2 (halt) readings. In this way, an inadvertent (CTRL) /C
or ABORT need not necessarily halt readings.

10 ON CTRL/C GOTO 3010

100 PRINT @ 3%, ‘’VR27’ ! Take readings from instrument 3
110 INPUT @ 3%. V
120 PRINT V
130 GOTO 100 ! Take another reading

3000 ‘ ABORT BUS READING ROUTINE
3010 PRINT “SELECT ONE" \ PRINT "1 = CONTINUE”
9015 PRINT an = STOP"
3020 INPUT
3030 IF A ra 1 AND A (>) 2 GOTO $010
3040 IF A = 1 THEN RESUME ELSE OFF CTRL/C

NOTE

Many of the preceeding examples used (CTRL)/C to
interrupt an IEEE-488 Bus operation. This interrupt method
should be used with care since (CTRL) /C aborts any bus I/O
in progress at the time of the interrupt. Premature termination
of bus I/O in this manner may leave instruments connected to
the bus in an undefined State.

11-35

Interrupt Processing
Program Examples

11-36

In this example, the WAIT statement requires that a 500 millisecond
delay be performed before printing the words “FLUKE Instrument
Controller”. The statement on line 120 clears the screen, then the

sequence is repeated until something, such as (CTRL) /C, interrupts.

100 WAIT SOO
110 PRINT CHRS (27%); "C2" ‘Erase screen
120 PRINT "FLUKE Instrument Controller”
130 eOTO 100

The WAIT statement on line 110 allows a two-second delay between
source generation (2V dc) from the 5100A (Fluke Calibrator) and
measurement on the 8500A (Fluke Digital Multimeter). This allows
the 5100A time to generate the source voltage before attempting to
make a measurement with the 8500A.

D% = 2000%
PRINT @ 1%, ‘2V,N’ ' 3100A Programmed for 2V dc

110 WAIT D%
120 PRINT @ 2%, ‘77
130 INPUT @ 2%, V ! Reading from BS00A
1 PRINT V

The following example reads the system clock each time the display is
touched. The Controller computes the difference and displays the
elapsed time between the first and second time the display is touched.
Note that the key buffer is initially cleared (line 30) to ensure a WAIT
at line 70 and cleared again at line 90 and 140 for the same purpose.

10 !' #444 TIMER #884
20 !
30 ' Clear key buffer
40 ES = CHRS(7+" C ’ ' Escape sequence for display
3O PRINT ES; ’2J’ ' Clear display
60 PRINT CPOS (6 26); "Touch to START"; ! Position cursor
61 KX = KEY ' and request start
70 WAIT FOR KEY ' Wait till display is touched
80 T1 = TIME | Find time from system clock
90 KX = KEY ' Clear key buffer
93 !' Position cursors display | time 1
100 PRINT ES; ‘J’; T1
110 PRINT CPOS(&S,. 26); "Touch to STOP “"; ! Position cursor
111 1+! and gispiey stop request
120 WAIT FOR ' Wait until display is touched
130 T2 = TIME ‘ Find time from system clock
140 Ki = Y ! pear ke buffer
1530 PRINT " T2 = "3; T2 : splay time
160 PRINT CPOS(10, 32); "ELAPSED TIME (TS-T 1) / 1000;
163 PRINT “SECONDS”
170 GOTO 60 ! Repeat program

Results from running this program:

Interrupt Processing

Program Examples

(—

fr

Touch to START Ti
Touch to STOP T2

ELAPSED TIME

Touch to START T1
Touch to STOP T2

ELAPSED TIME

2484420
2489580

3.16 SECONDS

2493550
2493930

0.38 SECONDS

i

11-37

Section 12

Subroutines

CONTENTS

IntroductiOnN cece cece cece cece eee tenet e ee eees 12-3
OVEFVIEW 2... cece ccc cee teen eee eee e eect ee enes 12-3
Using Internal Subroutines 0. ccc eee eee eee 12-4
Using External Subroutines 0... cc cece eee ees 12-5

Software Requirements ccc cece eee eee eens 12-6
Subroutine Names cece cc eee eee tent eens 12-6
Assembly Language Subroutines0000. 12-7
Assembly Language Error Handler 12-7

FORTRAN Subroutines cece cee ee eee 12-8
Subroutine Format ccc eee cee cee eee ees 12-9

Introduction ccc cece ccc eee eee e eee 12-9
Parameter Passing Mechanism0ee00. 12-9
The Parameter Decoding Subroutine, FSRGMY 12-10

Standard Assembly Language Subroutine Linkage
Mechanism cece cece ee eee e eee eee eee eee 12-10
Multiple Subroutine Entry Points26. 12-13

Subroutine Parameter Formats00 cee 12-14
Introduction ccc ccc ec cece eee eee ete neces 12-14
Basic Internal Data Formats 00 cece 12-14
Relationship Between Parameter Syntax And
Parameter Format ccc cc cee ee etc eee eee 12-17

Passing String Values To and From Subroutines 12-19
Conversion of Strings to Internal Form 12-19
Conversion of Strings from Internal Form.

12-1

Subroutines

INTRODUCTION

Subroutines simplify the programming of repetitive tasks. A
subroutine can take the place of a program section that is identically
used at several points in a program. Program and storage space are
conserved by changing a repetitive section of code with a single
subroutine.

In addition to subroutines that are contained within the body of a
BASIC program, BASIC allows the use of external subroutines as
well. An external subroutine is one that is external to the body of the
program. Fluke BASIC allows use of external subroutines written in
FORTRAN or Assembly Language.

OVERVIEW

This section describes the various methods of programming
subroutines, both internal and external and the BASIC statements

used for subroutine programming. This section also describes the
recommended subroutine format for assembly language subroutines.
This format will provide Assembly Language subroutines that are
compatible with Fluke Enhanced BASIC. The information in this
section also describes the formats of parameters which may be passed
to subroutines and the relationship between the BASIC language
CALL statement syntax and parameter formats. Appendix I describes
the limitations for FORTRAN subroutines to be used with BASIC.

12-3

Subroutines

USING INTERNAL SUBROUTINES

The GOSUB statement provides an unconditional branch to another
segment of the BASIC program. When program execution transfers to
the line number specified by the GOSUB statement, BASIC
remembers the line number of the GOSUB statement. When a
RETURN statement is executed, program execution transfers to the
next line following the GOSUB statement.

Refer to the GOSUB and RETURN statements for detailed
information. GOSUB statements may also be part of ON-GOS UB and
IF-THEN-ELSE statements.

Examples

The following example uses a subroutine to print a changing message.
Other program examples may be found in the Reference volume under
the following headings: GOSUB and GOTO.

10 sprosram exaaple i
AS = “Subroutine Demonstration”

30 @OOQS8SUB 100
40 AS = "This is a demonstration of a subroutine.”

60 PRINT “The subroutine uses the field attributes”
70 AS = * to make the example more interesting.

GOSUB 100
90 PRINT "All done.”

END
100 ! reverse video dis subroutine
110 PRINT CHRS(27) + jal + AS + CHRS(27) + "Cm"
120 RETURN

12-4

Subroutines

USING EXTERNAL SUBROUTINES

Fluke BASIC programs may also use subroutines that are external to
the body of the main program. These subroutines are in the form of
machine-executable object code. Subroutines may be written in Fluke
FORTRAN, TMS-99000 Assembly Language, or a user-supplied
language that produces TMS-99000 Machine Language. Refer to the
specific language manual for details.

There are several reasons for using external subroutines:

1. You may require the additional speed that may be provided by
subroutines in a directly machine executable form.

2. You may want to use another program development system
that produces TMS-99000 Machine Language.

3. You may be able to utilize existing libraries of FORTRAN or
Assembly Language subroutines.

4. You may want to take advantage of your existing
programming expertise in FORTRAN or Assembly
Language.

The LINK, CALL, and UNLINK statements provide for using
external subroutines.

The LINK statement loads external subroutines into the Instrument
Controller memory during execution of a BASIC language program.

The CALL statement executes these subroutines and, if desired,
exchanges parameters with the subroutines.

The UNLINK statement removes subroutines from memory.

See the LINK, CALL, and UNLINK statement descriptions for

details.

12-5

Subroutines

Using External

Software Requirements

Additional software is required to create Assembly Language or
FORTRAN subroutines for use with BASIC:

Assembly: The necessary Assembler, Linkage Editor, and
other programs are contained in the 17XXA-201
Assembly Language Option.

FORTRAN: The Fluke FORTRAN Compiler, FORTRAN
Interface Runtime Library, Object Translator
program, and Linkage Editor programs are
contained in the 17X XA-202 FORTRAN Language
Option.

Subroutine Names

12-6

Subroutine names have from one to six characters.

The first character must be a letter; the other five characters can be

any alphanumeric character(s).

The CALL statement differentiates the subroutine name from

BASIC statements.

1. If the BASIC language keyword (verb) CALL precedes the
subroutine name, there are no further restrictions on the
subroutine name.

2. If CALL does not precede the subroutine name, then the
leading characters in the subroutine name must not conflict
with a BASIC verb. The first of the following examples is a
legal subroutine call, but the second example is not a legal
subroutine because INIT is a valid BASIC verb.

EXAMPLE @1: 1 T ‘legal name
EXAMPLE @2: 100 P ‘illegal name

All subroutine names and all identifiers of subroutines read by

LINK have lowercase letters mapped into uppercase. For example,

VADD and vadd refer to the same subroutine.

Subroutines
Using External

Assembly Language Subroutines

The Assembler program (17XXA-201 Assembly Language Option)
creates relocatable object file subroutines (the files do not contain
AORG [absolute origin] directives) that can be used with BASIC. The
PARTIAL (partial link) command of the Linkage Editor program can
be used to combine several relocatable object files into a partially
linked module that can be used with BASIC. Any label in the Assembly
Language subroutine which is also named in a DEF (define external
symbol) assembler directive can be used as a subroutine entry point for
a BASIC program if it also meets the subroutine name requirements
described earlier.

Assembly Language Error Handler

For information on using the BASIC Error Handler along with
Assembly Language Subroutines, see Appendix H.

12-7

Subroutines

Using External

FORTRAN Subroutines

12-8

FORTRAN programs normally run under control of the FORTRAN
Runtime System program, which forms a link between the
FORTRAN program and the Operating System program of the
Instrument Controller. The FORTRAN Interface Runtime Library
(FTNS$IF.LIB) provides a link between the BASIC interpreter and
FORTRAN subroutines used with BASIC. Whenever a FORTRAN
subroutine is used with BASIC, this library must be linked with it. The
standard FORTRAN libraries are not needed. Subroutine statements,
format, restrictions and parameter passing are described in Appendix
I.

After the FORTRAN subroutines have been written, it must be

compiled, linked to the appropriate FORTRAN Library routines, and
then processed by the Object Translator Program to produce a
machine-language file that is compatible with the BASIC Interpreter
program. This process is summarized below. See Appendix I for
examples and the FORTRAN Compiler, Linker and Object
Translator Program manuals for additional information.

1. Write and compile the FORTRAN subroutines.

2. Link the object file produced by the FORTRAN compiler with
the FORTRAN Interface Runtime Libraries using the Linker
program. Use the PARTIAL command to specify a partially
linked version of the object file. The FORMAT command may
specify either Compressed or ASCII format output.

3. Use the Object Translator Program to convert the object file
produced by the Linker program toa form ci mpatible with the
BASIC Interpreter program.

Subroutines
Using External

Subroutine Format

Introduction

This information describes the recommended subroutine format. This
format will provide Assembly Language subroutines that are
compatible with Fluke BASIC and with future software products. The
paragraph entitled Subroutine Parameter Formats describes the
required format.

Parameter Passing Mechanism

When a CALL statement is executed, any parameter(s) included in the
statement are passed to the specified Assembly Language subroutine.

O A CALL statement creates code (internal to the BASIC
Interpreter) similar to the following Assembly Language
statements:

lwp @usrsub stransfer to user subroutine
data n inumber of parameters passed
data pi paddress of parameter
data pa saddress of parameter 2

data pn jaddress of parameter n

O The parameter addresses (pl, p2, ... pn) can be either direct or
indirect address pointers.

1. Ifthe low-order bit (the indirect bit) of the parameter address is
zero, then the parameter is a direct pointer. The address passed
to the subroutine is the address of the corresponding
subroutine parameter.

2. Ifthe low-order bit of the parameter address is set to one, the
parameter is an indirect pointer. The parameter passed to the
subroutine is the address of a word that either contains the

address of the parameter or contains the first indirect word in
an indirect pointer chain.

a. An indirect pointer chain isa series of indirect words. The
first indirect word points to a second indirect word; the
second indirect word points to yet another indirect word,
etc.

12-9

Subroutines

Using External

b. Find the address of the parameter by tracing down the
indirect pointer chain until a word having its lower order
bit set to zero is found. This word contains the address of

the desired parameter.

The following examples show the sequence of Assembly Language
statements that are equivalent to the following two example CALL
statements.

CALL STATEMENT:

1530 CALL VADD(A(),

1540 CALL REPORT

B(). KX)

RESULTING STATEMENT SEQUENCE

blwp e@VADD
ate 3

data Caddress of A(0O) >)
data (address of B(O))
data (address of KZ)

biwp @REPORT
data @]

The Parameter Decoding Subroutine, FSRGMY

The parameter decoding subroutine, FSRGMY.OBJ, is part of the
Instrument Controller Assembly Language Option. The FSRGMY
subroutine should be linked with each object file which is to be linked
with BASIC. Some of the actions of FSRGMY are described in the
material that follows.

Standard Assembly Language Subroutine Linkage Mechanism

A listing that shows the standard subroutine linkage mechanism
follows. An explanation of each numbered line follows the listing.

12-10

(1) IDT
(2) DEF
(3) REF
(4) USUB DATA
3) ENTRY L

(6) DATA
(7) DATA
(8) NAME TEXT

(9) RTWP
(10) WRASPC BS8
(11) DATA
(12) DATA
(193) DATA
(14) PARMS BSS

*USUB ‘
USUB
FSROMY
WRKSPC, ENTRY
@FSROMY
N
PARMS
‘USUB °

32
NAME
START

2#N

name of subprogram
identifier of “blwp’ vector
name of linkage manager
‘blwp’ vector to subroutine
decode subroutine parameters
number of parameters expected
pointer to parameter area

sname of subprogram

j
3
3
j
5

j
j

sbody of subprogram

sreturn to BASIC Interpreter
ssubroutine workspace
spointer to subroutine name
spointer entry address
ssubroutine type flag
sparameter address area

,other subroutine data

Subroutines

Using External

Numbered line explanation:

(1) The IDT statement provides a module name for the Instrument
Controller Linkage Editor program.

O The module name field must be enclosed by apostrophes
(single quotation marks).

O The module name field is one to eight characters long.

(2) The DEF statement makes the entry name (i.e., address of transfer
vector) available to BASIC and to other subroutines that can call
this subroutine.

(3) The REF statement declares the routine FSRGMY as an external
name (i.e., defined in another object program file).

(4) This DATA statement is the transfer vector used by BASIC to
transfer control to the subroutine.

O The first word assembled for the DATA statement contains

the address of the subroutine workspace.

O The second word assembled for the DATA statement
contains the entry address of the subroutine.

(5) This is the first instruction executed by the subroutine. The routine
FSRGMY, supplied with the Assembly Language Option, should
be linked with each object (.OBJ) file to be linked with BASIC. The
actions of F$RGMY are described as each action is encountered.

(6) This DATA statement is a parameter to FSRGMY. The statement
gives the number of parameters expected by the subroutine. If the
number of parameters passed to the subroutine does not match the
number expected, FSRGMY displays error 706 (parameter count
mismatch).

12-11

Subroutines

Using External

(7) This DATA statement, another parameter to F$RGMY, tells
FS$RGMY where to place the subroutine parameter addresses.

O F$RGMY converts all parameters with indirect bits set into
ordinary parameters. That is, FSRGMY traces down an
indirect pointer chain to find the direct pointer for the
parameter.

O The parameter area, starting at PARMS, is filled with
parameter pointers so that:

PARMS DATA (address of parameter 1)
DATA (address of parameter 2)
ees

DATA (address of parameter n>)

O Ifthe number of parameters is less than or equal to eight, RO
through R7 can be used to hold the parameter addresses
generated by FSRGMY. In this case, statement number (7)
should be:

DATA WRKSPC

O If no parameters are passed to the subroutine (1.e., n = 0),
omit DATA statement number (7).

(8) The TEXT directive gives the name of the subroutine to F$SRGMY.

O The subroutine name field must be enclosed by apostrophes
(single quotation marks).

O The subroutine name field is six characters long. If the name
is less than six characters, start the name at the left character

position and enter blank spaces into the remaining character
positions.

O The TEXT directive provides information about the
sequence of subroutine calls to be used in future error
handling capability.

(9) The RTWP instruction returns control to the BASIC Interpreter
or to the module that called this subroutine. Note that FSRGMY
sets the subroutine return address to point past the DATA

statements that make up the caller’s parameter list.

12-12

Subroutines

Using External

(10)The BSS statement reserves memory for the subroutine
workspace.

NOTE
The placement of statements (11), (12), and (13) is critical.
They must follow the subroutine workspace.

(11)This DATA word holds the address of the subroutine name
defined by statement number (8). This word is set by FSRGMY.

(12)This DATA word holds the subroutine entry address [1.e., address
of statement number (5)]. This word is set by FSRGMY.

(13)This DATA word is a subroutine type flag.

O This word should contain the number | (in binary).

O This word is not currently used by FSRGMY but is defined
for future product compatibility.

(14)The BSS statement reserves space for the subroutine parameters.

O Omit this area if no parameter are passed.

O See statement number (7) for an explanation of the contents
following a call to FSRGMY.

Multiple Subroutine Entry Points

The use of alternative workspaces and parameter areas is at the
programmer’s discretion. If a subroutine is entered at more than one
point, statements (2) and (4) through (8) of the Standard Subroutine
Linkage Mechanism should be present for each entry.

12-13

Subroutines

Using External

Subroutine Parameter Formats

Introduction

The information here describes the formats of parameters which may
be passed to Assembly Language programs and FORTRAN programs
and the relationship between the BASIC language CALL statement
syntax and parameter formats.

Basic Internal Data Formats

Parameters passed to Assembly Language or FORTRAN subroutines
can be in one of three formats: Integer, Floating Point, or Character
String.

O Inthe Integer format, parameters are 16-bit binary words arranged
in the following sequence:

15 --—--- 4 0

MSB LSB

1. The word is in twos-complement form.

2. Integers are always aligned on an even (word) address.

O Inthe floating-point format, parameters are 63-bit words arranged
in the IEEE double-precision format:

6 6 55 0
32 2 1

S | Exponent Fraction

Where: S is the sign bit (1 = negative)
Exponent is a biased (bias = 1023) binary exponent
Fraction is a binary fraction of the form 1. Fraction (The |
bit to the left of the fraction is implied. The binary
point is implied to be left of bit position 51.)

1. This means that a (normalized) floating-point number has the
value:

f= (-1) s* 2 (Exponent - 1023) «(1.Fraction)

12-14

Subroutines
Using External

2. All floating-point values used as parameters are normalized
and are represented as 4-word values in memory as shown
below.

3. Floating-point numbers are aligned on even (word) addresses.

Parameter pointer— | Sign, exponent, hi-order fraction

+ 2 bytes

+ 4 bytes

+ 6 bytes

Next fraction word (bits 47-32)

Next fraction word (bits 31-16)

Last fraction word (bits 15-0)

O Inthe Character-String format, the parameter is the address of the
string-head portion of a character string. A character string
consists of a string-head and a list of singly linked 16-character
string blocks.

1. String-head format is shown in the following figure:

Parameter pointer——» Address of the block

+2 bytes Number of characters in the string

a. The first word is a pointer to the first string block.

b. The second word is an integer that gives the number of
characters in the string.

2. The string-block format is shown in the following figure:

+0 bytes

+2 bytes

+4 bytes

+16 bytes

Address of the next string block

Character | Character 0

Character 3 Character 2

Character 15 Character 14

12-15

Subroutines

Using External

12-16

a. Each string-block has 16 characters.

b. The characters in each string block are in reverse order
(character 2 has an address | byte greater than character 3,
for example) due to the internal organization of the BASIC
Interpreter.

c. The last string block in the character string must have 0 set
into the location for the address of the next string block
because zero is never a valid address for a string block.

Arrays of scalar data types are allocated in row-major order (1.e., so
that the subscript furthest to the right varies most quickly as the array
elements are accessed in storage order). Arrays of integer and floating-
point numbers are simply iterated forms of the representations
described earlier. As the following figure shows, character-string
arrays consist of a series of string-head cells.

+0 Element (0,0)

+2 * size Element (0,1)

+4 * size Element (0,2)

+m * size Element (1,0)

+(m +1) * size Element (1,1)

Subroutines
Using External

Relationship Between Parameter Syntax And Parameter Format

Each parameter passed to an Assembly Language or FORTRAN
subroutine is an address (1.e., parameters are passed by reference). The
address can be the address of a variable, the address of an array, or the
address of a temporary location (generated to hold the result of an
expression). The BASIC Interpreter evaluates parameters according
to their syntax type. The parameter syntax can be a variable identifier,
array name, array element, expression, or constant.

O Ifa parameter is a variable identifier, the BASIC Interpreter uses
the address of the variable as a parameter.

I.

2.

The subroutine can return a result by changing the value of the
named identifier.

The “a%” in the following statement is an example of the
variable identifier parameter syntax.

100 glorp(aX)

O Ifthe parameter is an array name, the BASIC Interpreter uses the
address of array element (0) or (0,0) as the parameter. In this way,
an entire set of values may be made available to a subroutine.

1.

3.

An array name is the array identifier followed by the characters

().

An example of the array name parameter syntax is a$() in the
following example:

110 redo(ae())

The array name supplies no information about the array size. If
the array size is to be made available to the subroutine, the size
must be another parameter. For example, the 10% in the
statement:

110 redo(ae(), 10%)

A virtual array cannot be used as a parameter in this fashion
because it exists ina file and thus has no fixed memory address.

12-17

Subroutines

Using External

12-18

O A single array element is copied to a temporary location. The
address of this temporary location is used as the parameter. The
“a%(i% * 5%)” in the following statement is an example of the
array-element parameter syntax.

140 saddle(axk(ixX # S5%X%))

An expression, in this context, consists of at least one unary or

binary operator or a function call. The value computed by the
expression is placed in a temporary location. The address of this
temporary location is used as the parameter.

1. The parameter format (Integer, Floating Point, or Character
String) 1s determined by the normal rules of BASIC expression
evaluation.

2. The “-sin(a) * fna(int(a))” in the following statement is an
example of the expression parameter syntax.

120 undo(-sin(a) # fnalint(a)))

A constant is copied into a temporary location. The address of this
temporary location is used as the parameter. An example of a
constant parameter syntax is the “abc” string in the following
statement:

130 garble("abc”)

Subroutines

Using External

Passing String Values To and From Subroutines

The BASIC Interpreter uses a linked-list data structure to provide
variable-length strings. This internal data format is often difficult for
Assembly Language programmers to use. The 1722A BASIC
Interpreter provides two string conversion functions, which are called
by the TMS-99000 XOP instruction, to convert to and from the
BASIC internal string formats.

NOTE
It is absolutely essential that Assembly Language programs
not change either the string head pointers or the link fields in
BASIC strings. The penalty for not observing these rules is
system failure. It is recommended that only the following
interface functions be used for string parameter manipulation.

Conversion of Strings to Internal Form

In order to return a string result an Assembly Language program must
use the string replacement routine of BASIC. The interface of this
function strongly resembles that of the string unpacking routine.

1. The address of the string head (which is passed as a parameter
in the BASIC CALL statement) is placed in the Assembly
Language program’s RO.

2. The address of a buffer (allocated by the Assembly Language
program) is placed in the Assembly Language program’s R1.

3. The length of the string contained in the buffer, whose address
is in RI, 1s placed in the Assembly Language program’s R2.

After these parameters have been set by the Assembly Language
program the following instruction should be executed:

xop ri,1

This will cause a transfer of control to the BASIC Interpreter string
allocation routine. When the BASIC string allocation routine returns
no changes will have occurred in any of the Assembly Language
program’s registers or string buffers.

12-19

Subroutines

Using External

The following program fragment should serve as an example the use of
this interface function:

buffer
length

mov @strprm, ro srO = ptr to string parameter
ri, buffer iris ptr to buffer with new ...

be stri contents
mov @length, ra 172 = le ng h of new string
xop ri,1 5call BASIC replacement function

bss MAXLNO s ASCII string buff
data 0 slength of string in “buffer”

Conversion of Strings from Internal Form

Conversion of a string from BASIC’s internal (linked-list) form into a
packed

1.

ASCII buffer is done as follows:

The address of the string head (which is passed as a parameter
in the BASIC CALL statement) is placed in the Assembly
Language program’s RO.

The address of a buffer (allocated by the Assembly Language
program) is placed in the Assembly Language program’s R1.

The length of the buffer, whose address 1s in R1, 1s placed in the
Assembly Language program’s R2.

An offset is placed in the Assembly Language program’s R3.
This offset tells the BASIC Interpreter how many initial
characters to skip in the string before storing characters in the
Assembly Language program’s buffer. An offset of zero will
retrieve characters starting with the first character in the string
(that is, zero characters at the start of the string are skipped).

After these parameters have been set by the Assembly Language
program the following instruction should be executed:

x0p rod, 1

This will cause a transfer of control to the BASIC Interpreter string
unpacking routine.

12-20

Subroutines
Using External

The data returned by the BASIC Interpreter will tell the Assembly
Language program about the string actually placed in the buffer:

1.

4.

Characters from the string will be placed in the buffer pointed
to by the caller’s R1.

R2 will be set to contain the actual number of characters placed
in the buffer pointed to by RI. This value will be between zero
and the initial value of R2 (the maximum buffer length).

The processor’s CARRY flag will be reset if the string returned
was not longer than the buffer. If the CARRY flag 1s set (string
longer than buffer), the value of R2 will be equal to its initial
value; the ASCII buffer will be filled with the number of

characters indicated by R2.

No changes will be made to the contents of RO, R1, or R3.

As an example:

buffer
ovrflg

mov Qstrprm. ro srO = ptr to string parameter
li Ti, buffer sri @ ptr to string buffer
li Ta. MAXLN@ ir2 @ size of string buffer
clr Tr sr3 = O offset

{retrieve all chars in string}
xop ro, 1 +c@all BASIC unpacking routine
if sbuffer overflowed
seto @ovrflg ssignal buffer overflow
endif ’

bas MAXLNO sstring buffer area
data ‘"“buffer averflow” flag

12-21

Section 13

Program Chaining

CONTENTS

Introduction 2... . cece cece eee cece eee tee tee eenes 13-3
OVETVIEW occ ec c ccc ec cee ete ates eee eeeesees 13-3
Statement Definitions ccc eee cee tees 13+
RUN Program Statement cece eee wees 13-4
RUN WITH Statement ccc ee ec ce ees 13-6
EXEC Statement ccc ccc cece eee cee eees 13-6
COM Statement ccc ccc ccc eect tee eee 13-8

Virtual Arrays in Chained Programs000. 13-9
Introduction to Virtual Array:Chaining 13-9
Example of Chaining a Virtual Array 13-10
Using Sequential Data Files in Chained Programs 13-12

13-1

Program Chaining

INTRODUCTION

Specific tasks to be executed sequentially may be handled by physically
separate programs. Rather than use a GOSUB routine call, a RUN
statement is used to call a separate program into main memory to be
executed. This section describes the conventions and programming
techniques for program chaining and for calling command files.

Program chaining is useful when the size of a program becomes larger
than conveniently fits into user memory. Dividing a large program into
a number of smaller logical segments allows more variable storage and
processing capability in each program segment.

OVERVIEW

This section describes the RUN and CALL statements, virtual array
files, and sequential data files in a chained program structure. Cross
references are given for additional information available in this
manual on the RUN statement, virtual arrays, and the OPEN and
CLOSE statements.

13-3

Program Chaining

STATEMENT DEFINITIONS

Program statements described below are used for chaining multiple
programs that are stored on one of the file-structured devices. The
Immediate Mode use of RUN is described in Section 2 of this manual.

RUN Program Statement

Usage:

13-4

RUN [program name$]

The RUN statement restarts the program in main memory or loads and
runs a BASIC program available in file storage.

O Without a file name, RUN will restart the program in main
memory.

A file name may be specified as a quoted string or as a string
expression.

The current FDOS command line is not changed.

The program file will be searched for on the default System Device
if the file name is not prefixed with a device name such as MFO:.

If the file name extension is not.BAS or.BAL, it must be specified.
Error 305 (file not found) results if the file is not found.

When the file is located, it is loaded into main memory replacing
the previous program, and control is transferred to it.

Data stored in variables in the previous program is lost unless it
was reserved in a common area with a COM statement or stored in
a virtual array file.

All files left open are available for use by the chained program.
Virtual Array Dimension Statements (DIM#n) may be used to
allocate virtual arrays (on the virtual array files left open) 1n the
next program.

Program Chaining

Statement Definitions

The following example searches for a program file named TEST2 on
the System Device. If it is located, TEST2 is loaded into main memory

and executed.

105 050 RUN “TEST2* ! Chain to program TEST 2
1060 END

The following example searches for a program file under a name stored
in string BS. If the file is located, it is loaded into main memory and
executed.

1050 RUN BS ! Chain to program named by BS
1040 END

13-5

Program Chaining

Statement Definitions

RUN WITH Statement

Usage: RUN [program name$] [WITH command$]

The RUN WITH statement runs the BASIC program specified by the
string “program name$”. The optional WITH statement modifier
causes the BASIC interpreter program to replace the FDOS command
line with the string command$.

O This form of the RUN statement may be used to pass parameters to
another BASIC program via the FDOS command line.

O Use the CMDLINES function to read the FDOS command line.

The RUN WITH statement is identical to the RUN statement with the

following exceptions:

O The FDOS command line is changed to the string “program
name$” followed by a space character and the string command$.

EXEC Statement

Usage:

13-6

EXEC filename$ [WITH command$]

The EXEC statement permits a BASIC program to chain to a machine
language program or to a command (“.CMD’”) file.

O The EXEC statement is similar to the RUN statement (in that the
program that executes the statement is terminated immediately).

O When the program specified by the EXEC statement terminates,
control returns to FDOS unless the SET SHELL statement has
been previously executed.

O The EXEC statement may be used in the immediate mode.

O Filename$ is the name of the the executable or command file to be

executed.

O The optional WITH clause specifies a new command line to be
passed to the new program.

O The string command$ will act as though it had been entered
following the file name in a command to FDOS .

Program Chaining
Statement Definitions

oO If no device is specified, the device “SY0:” will be assumed.

O The only extensions permitted with this statement are “.CM D” and
“FD2”. If no extension 1s specified, a file with the extension
“CMD?” will be searched for first; if no “.CMD” file is found, the
BASIC system will then look for a “.FD2” file with that name.

O The command line argument plus the length of the file name (less
any “.CMD” or “.FD2” extension) may not exceed 80 characters.
This limitation is imposed by FDOS. The actual command line
passed to the EXEC‘ed program will be file$ (without any device
name or extension), and, if commandS$ is specified, a space and the

string given as command$. The entire line is terminated by a
carriage return character.

Example

BASIC STATEMENT FDOS EQUIVALENT

exec “edit” with "test.bas” syO:edit test.bas

exec "mfO: fup” mfO: Fup

exec "edit. fd2" with "foo" syO:edit.fd2 foo

13-7

Program Chaining

Statement Definitions

COM Statement

Usage: COM {variable list}

COM reserves variables and arrays in a common area for reference by
chained programs.

O Only floating-point and integer variables may be stored in the
common area.

O String variables may not be stored in the common area.

O String variables may be stored in virtual arrays for access by
chained programs. This technique is discussed later in this section.

O All programs accessing a common area must use COM statements
that are identical in order, type, and array sizes; the actual variable
names, however, may be different.

For example, assume that a chained program requires the use of three
floating-point simple variables, an integer simple variable, a floating-
point array, and an integer array defined in a previous program. The
first program could use a COM statement such as:

10 ' Program A
20 COM » B. C. FX, DI24X%), TX(100%)

1050 RUN “B"
1060 END ‘ End of program A

The second program could then use:

10 ' Pragram B
20 COM cy: L2. Ld. @4%, KA(24%),. PX(1002%)

Note that while the names of the variables stored in the common area
have changed between programs, the order and type of the variables
are exactly the same.

13-8

Program Chaining

VIRTUAL ARRAYS IN CHAINED PROGRAMS

Properly used, virtual arrays become a unique tool for controlling and
keeping track of multiple task sequences. It is possible, forexample, to
structure a floppy disk that will continue with the next task to complete
in a task list, even if the task is carried to another Controller and givena
RESTART. The paragraphs that follow discuss these techniques.

Introduction to Virtual Array Chaining

An advantage of using virtual arrays to pass chaining information is
that even if a power failure occurs, the status of the processing
performed by the set of programs is preserved in the virtual array.
When the capability to survive power failures is not required, chaining
information may be kept in a COM variable or array.

Virtual arrays can be used to control the execution of chained
programs. When writing a set of chained programs, opena channel for
a virtual array file with the number of elements matching the number
of chained programs called from the main program. (to chain three
programs, dimension the virtual array with 3 elements -- 0, |, and 2.)

Initialize this array to indicate no programs have been executed.

Each element of the array will take either an OFF or ON value which
indicates whether or not its associated program has been executed.
Each program sets an element of the array to the value which indicates
that the program has been run. To begin, initialize the elements to 0
(zero) then set the elements to | (one) as each program is executed. If
the programs are halted for any reason, the array values will show
which program was interrupted.

In this way, a rerun of the main program would execute only those
programs which have not yet been executed. Programs which were
executed before the interruption will not be rerun or will be rerun only
under the circumstances indicated by the programmer.

Virtual arrays may also be used as a common storage area for a set of
chained programs without using the COM statement. Once a virtual
array has been initialized, any program can use the array by using the
proper open, dimension, and closing sequences as described in the
section on Virtual Arrays.

13-9

Program Chaining
Virtual Arrays

Example of Chaining a Virtual Array

13-10

One program (named PROGO in this example) executes a set of n
programs in sequence so that if a program does not execute
successfully, it may be reexecuted. The virtual array file in this example
will be named CHAIN.BIN.

NOTE
Each of the programs (PROGI through PROGn) can have a
set of subordinate chained programs.

Assume there are five chained programs, with names PROGI,

PROG2, PROG3, PROG4, and PROGS. An initialization program

(called PROGIN in this example) is executed to create the file
CHAIN.BIN and to initialize the chaining information required to
indicate that none of the chained programs have been executed.

10 !
2° PROGIN - Initialize chaining information for PROGI

40 OPEN “CHAIN. BIN” AS NEW DIM FILE 1% SIZE 1%
30 DIM @#1%, AZX(32Z)
60 FOR IX = 1% TO 3%
70 AX(IZX) = O% ‘ Set to not-run
=f @] NEXT IZ
90 CLOSE 1% ;
100 RUN "“PROGO" ! Start program execution
110 END ' OF PROGIN

The EXEC program below checks the elements of the array in the file
CHAIN.BIN until a zero element 1s found:

10 '
z0 PROGCO - CHAIN TO THE NEXT INCOMPLETE PROGRAM

40 4
350 OPEN “CHAIN. BIN” AS DIM FILE 1%
60 DIM #1%, AZ(3%)
70 FOR 1% = 1% TO 3%
80 IF AZC(I%) ¢€ >) OX THEN 120
90 ! FOUND A PROGRAM THAT NEEDS TO BE RUN
100 CLOSE 1% ' Release Channel 1
110 RUN “PROG” + NUMG(IZ, "#°) !' Chain to PROG 1
120 NEXT I%
130 !
140 ! If control reaches this point,
130 : all programs have been completed.

170 CLOSE 1%
180 KILL °CHAIN. BIN” ' Release file space
190 PRINT “ALL PROGRAMS COMPLETED. "
200 END ! Of EXEC

Program Chaining
Virtual Arrays

Each of the programs, PROG]! through PROGS, performs the
processing required of them, but each should follow this format
(PROGI is illustrated).

88
0

=
pad

Pat

fat

Oud

eed

~
~

a
w

W o

8

: PROG 1 - Explanation of total program function

OPEN igAEN. BIN AS DIM FILE 1%

HXCIXZ) w 1% ' Signal that PROC] is complete
CLOSE 1% ! Rewrite status to file
RUN “PROGO” ' Chain through “EXEC”
END ! OF PROO1

13-11

Program Chaining
Virtual Arrays

Using Sequential Data Files in Chained Programs

13-12

Sequential data files may be used as common data storage areas for
chained programs. The major difference between using the sequential
file as opposed to the virtual array file is the difference in access
methods. Sequential files are non-random and must be read from or
written to sequentially. They are not array oriented and, therefore,
cannot be referenced via a dimensioned array name and element. If it is
convenient to use all data in a file in the order it has been stored, a

sequential data file is easier to use than a virtual data file.

For example, an instrument taking multiple readings produces data
(e.g., voltages) that should be stored for processing by a separate
program module. That data may be written into a sequential file by the
data collection segment of the program system (assuming use of
chained program techniques) in the order the data was read by the
instrument. A report generating program segment may then process
the data.

The principal use of sequential data files is the storage of variable
length ASCII character strings. Sequential files should not be used for
the storage of arbitrary binary data since some characters (CTRL/ Z,
Carriage Return, Line Feed) have a special meaning to the BASIC
system’s input and output routines.

ASCII data may be written to a sequential file or to an RS-232-C port
by means of the PRINT statement. For example:

1030 PRINT #5X%, “VALUE"s I%s ". "1 J%

Similar data may be read by an INPUT statement:

4010 INPUT #3%, AX(OX%.. 5%)

Note also that the contents of a sequential file may be examined or sent
to a printer by the File Utility Program (FUP). This is not true of
virtual array files.

Section 14

Touch Sensitive Display

CONTENTS

DESCTIPLION Lo. cece cee cece ete eee eee eect ee neeee 14-3
IMtrOductiON 1... .. eee eee eee tee eee eee eee eeee 14-3
Using the Display for Output cee eee eee 14-4

The ASCII Character Set ccc cece eee eee eee 14-5
Alternate Character Sets ccc ccc cece eee cee eee 14-6
Display Output Statements cee eee ee eee 14-7

PRINT Statement ccc eee ee 14-7
PRINT USING Statement 2. cee 14-8
CHRS$() String Function 0. ccc cee eee ees 14-9
TAB String Function cece ccc cece eee ees 14-9
CPOS String Function ccc cece eee eee 14-10

Special Display Contro] Characters00.- 14-12
Display Control Sequences cc cece eee eee eee 14-13

ANSI Compatible Display Control Sequences 14-14
Display Control Character Sequences00. 14-16
Cursor Positoning and Display Scrolling 14-17

Cursor Movement ccc cece ccc eect eeeeees 14-17
Display Scrolling cc ccc ccc eee eee teense 14-18

SO) 0 0 14-18
Mode Commands ccc cece eect reece eee eeeees 14-19

Character Visual Attributes 0... ccc cece eee 14-20
Field Attributes ccc ccc ccc ee eee eee tees 14-22
Character Attributes 0... cece cece ee eee eee 14-25
Non-destructive Display Character02. 14-26
Character SIZ€ cece ccc eee tenet eens 14-27

Character GraphicS cece cece ce cece ee ee ee eees 14-28
Keyboard Disable and Enable 00.0 cece eee 14-32

CONTENTS, continued

Using the Display for Input ccc eee eee e ee eee 14-33
Display Input Statements 0. cece eee e ewes 14-34

KEY Variable ccc cc cece cece ccc cere ences 14-34
ON KEY and OFF KEY Statements 14-35
WAIT FOR KEY Statement 2200. 14-36

An Interactive Display Program

14-2

Touch Sensitive Display

DESCRIPTION

The Instrument Controller’s display offers several useful features that
enable the design of customized operator message outputs. These
features include character graphics, display graphics, double-size
characters, reverse video, double intensity, and blinking. In addition,
the cursor control functions and erasing capabilities give the
programmer complete control over the display.

Input from the operator of an instrumentation system controlled by a
Fluke Instrument Controller is accomplished by means of the touch
sensitive panel overlaying the display. This panel is capable of
identifying | of 60 distinct blocks or touch areas when the operator
applies moderate touch pressure. By integrating display messages with
expected responses, an operator can be directed to supply needed
numerical or decision inputs without interfering with the process at
hand.

INTRODUCTION

This section discusses techniques for effectively using the Touch-
Sensitive Display feature of the Instrument Controller. The discussion
covers four general categories of display functions: output, controlling
the display, mode commands, and input.

14-3

Touch Sensitive Display

USING THE DISPLAY FOR OUTPUT

14-4

The usual use of the display is for output. The PRINT statement sends
information to the display. The PRINT USING statement sends
formatted information to the display. The information transferred to
the display uses the characters found in the ASCII Standard Character
set.

Touch Sensitive Display

Using the Display for Output

The ASCIll Character Set

The Controller uses ASCII characters for display as shown in
Appendix G. The first 32 characters in the ASCII Character Set
(numbered 0 through 31) are defined as control codes, which include
such functions as backspace (BS) or carriage return (CR). When
generated by the keyboard, many of these control codes are
intercepted, and a block (character number 127) is displayed in their
place. However, the CHR$(n%) string function can be used within a
program to generate any eight-bit code pattern for the display,
including the control codes.

Many of the control codes reserved by the ASCII standard are not used
by the Controller. However they are used by the display system to
provide some useful symbols. These symbols are stored ina ROM and
are separate from the graphics characters described later in this
section. Like other displayable ASCII characters from the ROM, these
symbols may be enhanced with higher intensity, reverse video,
blinking, and underlining.

NOTE
The John Fluke Mfg. Co., Inc. reserves the right to make
changes to the symbols contained in character generator
ROMS.

Here is a short program that will display all of the displayable
characters generated by the character ROM in double-size display
format. The block (character number 127) is displayed in place of all
control characters that are not displayable. The space character is just
left of the ”!. Touch the screen to clear the display.

10 ESS = CHR$(27) t, os \ BLS = geet ie7)
2O PRINT ESS + "Ip" OS(2, 3)3 $;
30 FOR I = 1 TO 6 v PRINT HRS (DT \ NEXT I
40 FOR I = 7 TO 13 N PRINT BLS; N NEXT I
30 FOR I = 14 TO 26 N PRINT CHRSC(I); \ NEXT I
60 PRINT BLS;
7O FOR I * 28 TO 31 \ PRINT CHRS(I)s N NEXT I
80 PRINT CPOS(4,3); \ FOR I # 32 TO 639 N PRINT CHRS(I)s \ NEXT I
90 PRINT CPOS(6,5)i; \ FOR I # 64 TO 95 \ PRINT CHRS(CI)Di \ NEXT I
100 PRINT CPOS(8,5); \ FOR I = 96 TO 127 N PRINT CHRO®(I); \ NEXT I
110 WAIT FOR KEY \ PRINT ESS + “p"s

14-5

Touch Sensitive Display

Using the Display for Output

Alternate Character Sets

14-6

An alternate character set can be designed to allow mathematical or
other special symbols, such as might be needed for foreign languages,
to be displayed. Appendix E of the 1722A System Guide describes
EPROM programming techniques to make use of this special ability.
To select the alternate character set, send the control character SHIFT

OUT [SO = CHR{§(14)] to the display; to select the normal set, send
SHIFT IN [SI = CHR§$(15)] to the display.

Touch Sensitive Display

Using the Display for Output

Display Output Statements

The following paragraphs describe the statements used to transfer
information to the display. Complete descriptions for each statement
may be found in the Reference volume of this manual set.

PRINT Statement

Usage: PRINT [string1$] [; or ,] [string2$] [; or ,] [stringn$] [; or ,]

The PRINT statement is used in Fluke BASIC to send code
information or characters to the display.

0 Any number of print items (described above as [string!$] etc.) may
follow the PRINT statement, up to the line length limit imposed by
the Controller.

All code sequences described in this section that affect the display
must be transmitted via PRINT to the display.

Character and code sequences for display purposes may be
conveniently stored in virtual arrays and called when needed bya
PRINT statement.

An output channel (NEW) may be opened to the display (K BO:),
using an OPEN statement. The PRINT statement would then
direct display output to that channel number.

The following examples illustrate PRINT usage within the context of
this definition:

STATEMENT MEANING

PRINT “Fluke Controller” Display “Fluke Controller”

DIM AS$(2)

AS<(0O)

Dimension a 3 string array.
= "Fluke Controller" Place message in the first string.

PRINT A®(0) Display message from the array element.

OPEN “KBO:

PRINT #3,

" AS NEW FILE 3 Open channel 3 to the display.

“Fluke” Send message to the display channel.

14-7

Touch Sensitive Display
Using the Display for Output

PRINT USING Statement

Usage:

14-8

PRINT USING {format description}, [string1$][, or ;][string2$]

The PRINT USING statement sends formatted data to the display.
PRINT USING is identical to PRINT except for the use of the string
mask for format description. The display format used is specified by a
string mask in the format description portion of the statement. The
string mask uses various ASCII characters to describe the appearance
of the formatted output.

For example:

100 P = pi ‘an irrational number
103 PRINT P ‘print the full value
110 PRINT USING “#. ##", P ‘print the value to 2 places

causes the following display:

Touch Sensitive Display

Using the Display for Output

CHR$() String Function

Format: CHR$ (numeric expression)

The CHR§() function creates an eight-bit ASCIl-coded string
character from the lower eight bits of the integer value of the numeric
expression.

The CHR&() function is most often used to send non-printable ASCII
characters to the display, such as the ASCII “ESC” character used for
display formatting. For example:

100 PRINT CHR$(27)+"Cip"; “FLUKE”™

displays ‘““FLUKE” on the display in double size letters.

TAB String Function

Format: TAB (n%)

The TAB function creates a string of space characters that would move
the current print position forward to column n+!. The value of n%

must be between 0 and 80. TAB is intended for use with printers, but
can also be used with the display.

The current print position is the total number of characters transmitted
since the last carriage return character, including all non-printable or
non-displayable characters.

O The current print position may be ahead of the display cursor if a
display control character sequence was included since the last
carriage return character. These character sequences are discussed
later in this section.

O A Carriage Return and Line Feed character sequence will precede
the string of spaces if the current print position is already at or
beyond column n.

The following example illustrates an alternate method tab function for
the display, using a defined function. The function works by returning
the cursor to the beginning of the line and then moving right to the
column specified by the function argument (column 33 in line 40). The
string functions in line 30 change the function argument to string form
and then remove space characters from either side of it.

19 ESS = CHRS (27) + "C" ' Control sequence identifier
CRS = CHRS(13) ' Carriage Retu

30 DEF FNTBS(C) = CRet Ese. + MID(NUMS(C), 2) LEN(NUMS(C))—2) + "Cc"
40 PRINT FNTBS$(33);

14-9

Touch Sensitive Display

Using the Display for Output

CPOS String Function

Format:

14-10

CPOS (line, column)

CPOS creates a string which, when sent to the display by a PRINT
statement, positions the cursor at the specified line and column.

0 The string is always eight characters long, in the form: ESCape [
line% ; column% H. For example, CPOS(3,20) is equivalent to
CHR$(27)+“(03;20H”.

The line and column are numeric expressions.

If the expression for line or column is floating-point, it must be
within the range of integers, and will be truncated to an integer.

If either the line or column 1s less than zero, a value of zero is

assigned.

If the line or column 1s greater than 99, a value of 99 is assigned.

Additional limits are imposed by the video display module:

I.

2.

A line or column number of zero 1s interpreted as one.

A line number greater than 16 is interpreted as 16.

A column number greater than 80 is interpreted as 80.

In double-size display mode, these limits are respectively line 1,
line 8, and column 40.

The CPOS function may be assigned to a string variable or added to
strings for display formatting. It may take various forms as shown in
the following examples which display “Fluke Instrument Controller”
at line 10, column 30.

Example |:

10 AS = CPOS(10, 30)
20 BS = AS + “Fluke Instrument Controller”
30 PRINT BS

Example 2:

10 PRINT CPO0S¢(10,30); “Fluke Instrument Controller”

Example 3:

10 PRINT CPOS(10,30) + “Fluke Instrument Controller”

The CPOS string function may also be used for more creative displays.
The following example displays a scaled SIN function, using CPOS:

10 ##e@ Display Sine Function ##s
20 !
30 FOR x 5 i go nee ‘Setup Joop for display length
40 Yu (2 * PI *# (X740)) f 9 ompute sine function
30 PRINT Cpasey, x): es ‘Position cursor and display +#
60 NEXT X ‘Loop

14-11

Touch Sensitive Display

Using the Display for Output

Special Display Control Characters

Twelve of the ASCII control characters are used by the Controller’s
display module. These characters are listed in Table 14-1. The ASCII
mnemonic is presented with the corresponding CHR§(n) for each of
these characters.

Table 14-1. Special Display Control Characters

CHR$(N) | NMEMONIC FUNCTION RESULT

CHR$(7) BEL BELL Activates the Instrument Con-

troller Beeper.

CHR$(8) BS BACKSPACE Moves the cursor to the left one

column, if not already positioned

at the leftmost column.

CHR$(9) HT HORIZONTAL TAB | Moves the cursor to the next tab

stop, located every 8 columns.

CHR$(10) LF LINE FEED These three commands all move

CHR$(11) VT VERTICAL TAB the cursor to the next lower line, in

CHR$(12) FF FORM FEED the same column. The display

scrolls upward if the cursor is on

the bottom line.

CHR$(14) SO SHIFT OUT Moves the cursor to the beginning

of the current line.

CHR$(15) Sl SHIFT IN Enables the alternate character set

(if programmed in character gen-

erator EPROM).

CHR$(13) CR CARRIAGE RETURN] Enables the standard character

set.

CHR$(24) CAN CANCEL Cancels a display control char-

acter sequence if sent as part of the

sequence.

CHR$(26) SUB SUBSTITUTE Cancels a display control char-

acter sequence if sent as part of the

sequence.

CHR$(27) ESC ESCAPE Starts a display control character

sequence, discussed later in this

section.

14-12

Touch Sensitive Display

DISPLAY CONTROL SEQUENCES

The Instrument Controller display uses two methods of defining
sequences of ASCII characters for added control of the display. One of
these methods is a subset of ANSI Standard X3.4. The other method is
used for certain display controls. This method also provides
compatibility with the mode control sequences used by the Fluke
1720A Instrument Controller.

These character sequences enable the user to customize operator
message outputs. Among the capabilities provided are character
graphics, double-size characters, reverse video, double intensity, and
blinking. The cursor control functions and erasing capabilities give the
programmer complete control over the display.

O Dizisplay control character sequences are sent to the display via a
PRINT statement.

O CHR§(27) is used to generate the ESCape code that prefixes each
control sequence.

O Use quotes around the characters that follow CHRS§(27) so that
PRINT will handle them as strings.

O These sequences are summarized in Appendix E.

14-12

Touch Sensitive Display

Display Control Sequences

ANSI Compatible Display Control Sequences

14-14

The ANSI compatible display control sequences are used to set or reset
display modes. The generalized command format for ANSI
compatible display control sequences 1s:

(esc[) [param1] ; [param2] ; [paramn] term

where <esc[) is the sequence:

CHR§(27) + “{”

and the parameters are defined as set or reset by “selective parameters”
rather than only by numeric characters. These parameters are always a
string of characters whose first character is a question mark (?), and the
second parameter a numeric character between | and 8. Any number
may be specified within a given command set, but ill-formed
parameters are ignored.

O To SET a mode, terminate the escape sequence with a lower case
letter ’h’.

QO To RESET a mode, terminate with a lower case letter ’!’.

O An easy way to remember these two letters 1s:

SET = logic 1 = high = “h”
RESET = logic 0 = low = “I”

Table 14-2 summarizes the ANSI Standard Mode Selections; defaults
are those listed as “Reset”. Each of these items is described later in this

section.

Touch Sensitive Display
Display Control Sequences

Table 14-2. ANSI Compatible Mode Selections

MODE RESET (1) SET (h)

21 Field Attributes Character Attributes

22 Single Size Double Size

23 Disable Character Graphics Enable Character Graphics

24 Keyboard Unlocked Keyboard Locked

25 Opaque to Graphics Transparent to Graphics

26 Disable Character Display Enable Character Display

27 Disable Graphics Display Enable Graphics Display

28 Disable Cursor Display Enable Cursor Display

For example, to disable the cursor display, execute the following
statement in the immediate mode (or as part of a program):

PRINT CHR$(27) + "£781"

14-15

Touch Sensitive Display

Display Contro! Sequences

Display Control Character Sequences

14-16

Display control character sequences are used to control the positioning
of the cursor, erasing the display, character enhancements (attributes),
and 1720A compatible mode selection. The generalized command
format for display control sequences is:

ESC [(task number) (;task number) (task letter)

O Use quotes around the characters that follow CHR§(27) so that
PRINT will handle them as strings.

O The semicolon separator is used to separate multiple task numbers
that have the same task letter.

O Use either + or ; to link strings together. For example, PRINT
CHR3$(27) + “[1;5;7m” selects high intensity, blinking, and reverse
image for all characters that follow.

O Other characters for display may immediately follow a display
control sequence. For example:

PRINT CHRS#(27) + "C€1;5:7m Fluke Instrument Controller”.

Table 14-3 lists the 1720A compatible mode control sequences. Each of
these is described in more detail later in this section.

Table 14-3. 1720A Compatible Mode Control Sequences

MODE MODE CONTROL SEQUENCE

normal size (ESC)+ “[p”

double size (ESC)+ “[1p”

character graphics ON (ESC)+ “[2p”

character graphics OFF (ESC)+ “[3p”

enable keyboard {ESC)+ “[4p”

disable keyboard {ESC)+ “[5p”

Touch Sensitive Display
Display Control Sequences

Cursor Positioning and Display Scrolling

The following paragraphs describe the control character sequences
required to control cursor movement, display scrolling, and cursor
status.

Cursor Movement

The cursor control character sequences can move the cursor to any
position on the screen, either relative to the current position or
absolutely, by designating line and column. Table 14-4 presents the
cursor controls, with the PRINT statement required to produce them
for the display. The semicolon shown at the end of each PRINT
statement inhibits the Carriage Return and Line Feed codes that
normally follow a print statement. Note that the string function
CPOS(L%,C%) produces an equivalent character string, and is used in
an identical manner. The CPOS string function was discussed earlier in
this section.

Table 14-4. Cursor Controls

ACTION PRINT STATEMENT* EXAMPLE

Up n lines PRINT ES$ + “nA”; PRINT ES$ + “4A”;

Down n lines PRINT ES$ + ‘“nB”; PRINT ES$ + “3B”:

Right n columns PRINT ES$ + “nC”; PRINT ES$ + “210”:

Left n columns PRINT ES$ + “nD”: PRINT ES$ + “17D”:

Direct to line, column | PRINT ES$ + “L,CH”; | PRINT ES$ + “5,23H”:

Direct to line, column | PRINT CPOS (L%,C%);| PRINT CPOS (5%,23%);

*This table assumes this previous assignment:

ES$ = CHR$(27) + “[”

14-17

Touch Sensitive Display
Display Control Sequences

Display Scrolling

Scrolling commands allow movement of the entire display up or down
when movement is beyond top or bottom limits. If the cursor is not at
the top or bottom of the display, no scrolling will take place. Table 14-5
lists the scrolling commands, and the BASIC statement required to
send them to the display.

Table 14-5. Scrolling Commands

ACTION PRINT STATEMENT“ EXAMPLE

Scroll down one** PRINT EX$ + “D”; PRINT EX$ + “D”:

Scroll up one** PRINT EX$ + “M”; PRINT EX$ + “M”:

Next line scroll"* PRINT EX$ + “E”; PRINT EX$ + “E”

“This table assumes this previous assignment:

EX$ = CHR$(27)

**No scrolling takes place if cursor is not at screen top or bottom.

Erasing

14-18

Commands are provided to allow a program to erase all or part of a
line or of an entire display. Table 14-6 summarizes the erasing
commands.

@ Erase commands do not occupy a character display position.

e@ Partial erase commands are relative to the current cursor position.

@e A semicolon placed at the end of an erase command will cause the
cursor position to remain unchanged.

Table 14-6. Erase Commands

ACTION PRINT STATEMENT

Erase to end of line PRINT CHR$(27) + “[K”;

Erase to end of line PRINT CHR$(27) + “[OK”;

Erase from start of line PRINT CHR$(27) + “[1K”;

Erase all of line PRINT CHR$(27) + “[2K”;

Erase to end of screen PRINT CHR$(27) + “[J”;

Erase to end of screen PRINT CHR$(27) + “[0J”;

Erase from start of screen PRINT CHR$(27) + “[1J”;

Erase all of screen PRINT CHR$(27) + “[2J”;

Touch Sensitive Display

MODE COMMANDS

Mode commands affect eight areas: the visual attributes of displayed
characters, the character size, the alternate graphics characters, the
disabling of keyboard inputs, the interaction of the character plane
with the graphics plane, the enabling of the character and/or display
graphics displays, and the suppression of the cursor display.

O Mode commands do not occupy a display character position.

O Each of these areas is discussed separately below.

O 1720A compatible mode commands are noted individually.

14-19

Touch Sensitive Display

Mode Commands

Character Visual Attributes

The visual attributes of a character (blinking, underlined, reverse
video, and highlighted) may be changed by a BASIC program. Two
methods of modifying visual attributes are used: field attributes and
character attributes.

14-20

0 Visual attributes are modified by sending a visual attribute
command string or enhancement string to the display viaa PRINT
statement.

Field attributes operate on an entire field of the Controller‘s
display; they are in effect until cancelled, overwritten by another
enhancement string or overwritten by any ASCII character.

When field attributes are used, a single or multiple enhancement

command occupies one character position on the display,
regardless of the length of the character string required.

Character attributes operate on a character-by-character basis.
Once an enhancement string is sent to the display, each succeeding
character sent to the display takes on those attributes. These
attributes may be cancelled or modified on a character-by-
character basis.

Character attributes are transparent; they require no display space.

Four different enhancements are available: high intensity,
underlining, blinking, and reverse image (dark characters on light
background).

Enhancement commands may be used in multiple combinations.

The Instrument Controller will also respond to the display control
commands used by the Fluke 1720A Instrument Controller. The
Instrument Controller must have the field attribute mode set in
order to use the 1720A display control commands.

Touch Sensitive Display

Mode Commands

Table 14-7 presents the enhancement commands, with the PRINT
statement required to produce them for the display. The semicolon
shown at the end of each PRINT statement inhibits the Carriage
Return and Line Feed codes that normally follow a print statement.
The enhancement commands are the same, regardless of which
attribute mode is set.

Table 14-7. Character Enhancement Commands

COMMAND PRINT STATEMENT

Enhancements OFF PRINT ES$ + “m”;

Enhancements OFF PRINT ES$ + “Om”;

High Intensity PRINT ES$ + “1m”;

Underline PRINT ES$ + “4m”;

Blinking PRINT ES$ + “5m”;
Reverse Image PRINT ES$ + “7m”;

NOTE: This table assumes the previous assignment:
ES$ — CHR$ + mi

14-21

Touch Sensitive Display

Mode Commands

Field Attributes

14-22

Field attributes affect the entire display of the Controller from the
point where they are placed on the screen, until cancelled. Field
attribute mode is the default display mode after the Controller 1s
restarted, or cold-started. Field attribute mode may also be set by
sending the string:

CHR®(27)+"C711"

to the display via a PRINT statement.

O Overwriting a display location containing an enhancement
command will delete the enhancement.

O Each enhancement command cancels all previous enhancements.

O Each field attribute command requires one character location on
the display when displayed, regardless of the length of the
character string required. This can cause unexpected results when
designing highly formatted screens.

When field attributes are used, the underline and reverse image
enhancements are subject to some limitations imposed by the video
module. The refresh scanning rate of the display exceeds the rate at
which characters are written into the display memory. Asa result, these
character enhancements will momentarily cause the entire remaining
display to have underlines or light background until the enhancements
OFF command is written into the display.

O This limitation only applies when using field attributes when
ser.ding characters to the display.

O The character attribute mode of the video module is not subject to
tnis limitation.

O Programs that use 1720A type display enhancements are
compatible in the field attribute mode.

Touch Sensitive Display
Mode Commands

To avoid this limitation, place the enhancements OFF command one
character location past the future location of the last character of the
message. Then back up to one location ahead of the start of the
message and print the enhancement selections along with the message.
Using the Display Worksheet (Fluke Part Number 533547, pad of 50)
makes this task easier. Remember that each enhancement command
occupies one display location and that the cursor moves forward one
location after a command 1s placed.

The following example shows the correct sequence of statements to
display “FLUKE?” in blinking letters on line 4, column 14. A ruler-line is
displayed on line 3 for a column number reference. When the program
is run, notice that the string “FLUKE” appears at line 4, column 14
because the display enhancement character sequence sent in line 60
takes up one display location.

10 ESS = CHRS(27) + °C’ ' set up escape sequence
13 PRINT eae ay ‘ field attri utes
20 PRINT ‘2° 4 ay
ao PRINT CPOS(3, 1)) “1294567890123456789 ruler for reference
30 PRINT CPOS(4, 19); ' move to clear end of message
40 PRINT ESS: tm! disable all enhancements

! move to Beginning of message
60 PRINT ESS; ‘Sm’; ' enable blinking letters

FLUKE ’ i display message

The following example displays “Fluke” as in the last example. This
time, the test string is stored in a string variable in line 20. The length of
the string is checked in line 30 and then used in line 70 to position the
disable enhancements command at the proper place in the display.
Line 100 enables all enhancements in a single command that will
occupy one display location.

10 ESS = CHRS(27) + "C*
20 MS Fluke"
30 LZ = LENIN)

standard escape sequence
put test string fh ere

t

i

' now store leng in L%
40 PRINT ES#+"2U”" i clear screen
SO PRINT ES8+"711" ' field attributes
60 PRINT CPOS(3, 1); “12345678901234567890" ‘ruler for reference
70 PRINT CPOS(4,13 + LZ + 1)3 ‘cursor to end of string
80 PRINT ESS; ‘m’; ' disable enhancements
90 PRINT CPOS(4, 1 13))3 ' cursor to beginning of string
100 PRINT ESS$+/1; 43 537m’ i! send the attributes out
119 eRaNT MS; ! print test string

Notice that in both of the preceeding programs, the CPOS() function is
used to place the current print location at row 4, column 13 (line 50 in
example #1, line 90 in example #2). Since the enhancement string
requires one display location, the message appears at line 4, column 14.

14-23

Touch Sensitive Display

Mode Commands

14-24

To experiment with the effects of field attributes, try removing
attributes from line 100, one at a time, to see their effects on the display.
Next, change line 70 to read:

70 PRINT CPOS(4.13 + L%4)3; ‘cursor to end of string

Note the effect of this change on the balance of the display. Now add
this line:

115 PRINT CPOS(10, 13); ‘FLUKE INSTRUMENT CONTROLLER ’

Note that the attributes stay set, because last character in the string
“FLUKE?” overwrites the disable enhancements command which line

70 placed at row 4, column 18.

Touch Sensitive Display

Mode Commands

Character Attributes

Character attributes achieve the same net effect as field attributes.

Character attributes use the same character enhancement commands

as field attributes, however, the Instrument Controller must first be set

to the character attribute mode by sending the following string to the
display:

CHRS(27)+°C 71h ’

When character attributes are enabled, the Instrument Controller’s

display responds to the character sequences described in ANSI
Standard X3.4. This standard defines sequences of ASCII characters
used to control the visual characteristics of a video display module.

O The character sequences used for display enhancements are listed
in Table 14-7, which was presented earlier in this section.

O Character attributes are said to be “transparent” and do not
require space on the display screen.

O After setting the character attribute mode as described above, send
the appropriate character sequences to the display module (using
the PRINT statement) to modify the visual characteristics of the
information displayed on the screen.

O Once a display enhancement character sequence is sent to the
display, all subsequent characters sent to the display acquire those
visual characteristics. This remains true until another display
enhancement character sequence is sent to the display.

The following program illustrates the use of character attributes.
When the program is run, the test string “FLUKE” is displayed in
flashing characters. Notice that the test string appears at line 4, column
13 since the display enhancement character sequence sent in line 60
does not require any display space. Compare this program with the
program presented earlier in this section under the heading: Field
Attributes.

10 ESS = CHRS$(27) + “C" ‘'predefine esc C sequence
20 M@ = “FLUKE” ‘test string
30 L% = LEN(MS) ‘length of test string
40 PRINT ES8+"2U" ‘clear screen
5SO PRINT ESS+"71h"% ‘character attributes
60 PRINT ESS+"5m" ‘blinking attribute
70 PRINT CPOS(4,13);MS8 ‘print the test string @ 4,13
89 PRINT ESS+"m" ‘reset attributes

14-25

Touch Sensitive Display
Mode Commands

Non-destructive Display Character

The non-destructive character 1s used to modify tne visual attributes of
characters that are already on the display screen. Thus, a program
could display a list of choices (a menu), then after allowing the user to
select an option, display that option by modifing its visual attributes.

The non-destructive character is

CHRS$(27)+ “=”

O The non-destructive display character is unique because it may be
sent to the display, *overlaying* an existing character, without
destroying (erasing) that character.

O Any character that is overwritten with the non-destructive
character takes on the visual attributes in effect at that time. In
essence, the new attributes for a given character or characters are
“painted” over them using the non-destructive display character.

O The non-destructive character advances the cursor by one position.

O The non-destructive character is ignored when field attributes have
been enabled.

The following program prints the test string “FLUKE” on the screen,
waits, then causes the test string flash, character by character. Since
character attributes do not require display space, the string remains
intact and in the same screen position.

14-26

10 ES$ = CHR$ (27) + "C" ;oredefine esc C sequence
20 MS = "FLUKE" est string
30 NDS = CHR ‘non destructive character
40 L% = LEN(‘length of test string
90 PRINT Esse" ‘clear screen
60 PRINT ESS+"71h"* ‘character attributes
70 PRINT CPOS (3, 1) "12349678901234967690" ‘a ruler line
80 PRINT CPOS(4, 13); MS rint the test string @ 4,13
90 ‘send out the “hight ight ser ane: then wait second
100 PRINT ESS: "1m";

FOR 1% = ach TO. L% ‘use. 2 loop to highlight | the rest
spat with the non destructive cha
P INT. cPastae is + 14%); NDS 120

130 walt 1900 ‘wait a second
140 NEX ‘do it again
150 PRINT TEse: ‘m’ ; ‘now reset everything
160 END

Touch Sensitive Display

Mode Commands

Character Size

Normal size: PRINT CHR§(27) + “[p”;
PRINT CHR$(27) + “[Op”;

Double size: PRINT CHR$(27) + “[1p”;

Character size commands affect the entire display by changing the
basic timing of the display scan. Double-size characters are doubled in
both height and width, occupying the area of four normal-size
characters. Such characters are more easily recognized from a
distance.

O Normal size allows 16 lines of up to 80 characters each.

O Double-size allows 8 lines of up to 40 characters each.

O Character size commands do not occupy a display character
position.

O Character size commands clear the screen and return the cursor to
the home (upper left) position. If the command is not terminated
with a semicolon, the cursor will then move down one line.

O The video display module will remain in normal- or double-size
display mode, according to the most recent character size
command, even if the program is completed.

O The video display module starts up in normal size display mode
until commanded to double-size.

O The edit command cancels any previous double-size commands.

14-27

Touch Sensitive Display
Mode Commands

Character Graphics

Enable graphics characters: PRINT CHR$(27) + “(?3h”
Disable graphics characters: PRINT CHR$(27) + “[?31”

14-28

The alternate graphics character set is presented in Figure 14-1. When
graphics mode is enabled, these characters are displayed from alternate
pattern generation circuitry in place of the numbers 0 through 9, and
the : character.

O Don’t confuse character graphics with display graphics. Display
graphics is described in Appendix K of this manual.

Graphics enable and disable commands do not occupy a character
display location.

Graphics characters cannot be given character enhancements.

Graphics characters may be enabled and disabled as many times as
desired within a single display. It is possible, for example, to
display a box around a number.

The names given to the graphics characters in Figure 14-1 are
significant. If the characters are used as their name indicates, a
display can be set up that changes in size only (not shape) as the
display mode is changed between normal and double-size.
Program code written in this manner can be used in other
application programs.

Graphics commands select a mode of the video display module.
The module will remain in the mode most recently selected even if
the program is completed.

The video display module starts up in normal (graphics disabled)
mode until commanded to enable graphics.

Character graphics and the graphics plane can be used
independently.

Touch Sensitive Display

Mode Commands

Figure 14-1. Alternate Graphics Character Set

CHARACTER NORMAL SIZE | DOUBLE SIZE FUNCTION

0 | Top Right Corner

Top Left Corner

Bottom Right Corner

Bottom Left Corner

Top Intersect

Right Intersect

Left Intersect

Bottom Intersect

Horizontal Line

Vertical Line

S
R
e
E
S
C
O
U
C
R
R
S

es

e
I

dl

S
E
S
E
)

or

B
e
B
e

Op

Be

BS
B
B
H

eS

S&
S

t
u

Crossed Line

NOTES:

1. To enable Graphics Mode, send the display ESC [3p or ESC [73h

2. To disable Graphics Mode, send the display ESC [2p or ESC [231

3. In Graphics Mode, characters in the left column are displayed as shown.

4 Use the character names as defined to construct illustrations that do not

change form between normal and double size.

14-29

Touch Sensitive Display
Mode Commands

14-30

The following program displays the graphics characters, first in
normal size, and then, when the screen is touched, in double-size.
Touching the screen a second time will clear the display and reset it to
normal size with character graphics disabled.

10 ESS = CHRS$(27) + “C" \ CLS = ESS + "QU"
20 PRINT CL$; ESS + nA OBO! CPOS(6, 24); \ GOSUB 350
30 PRINT CL$; ESS + “1; 3p"; CPOS(4,3); \ GOSUB 30
40 pRONT ESS + “;2p"s CLS

30 PRINT "O 1234356789 :"
60 WAIT FOR KEY \ KX = KEY \ RETURN

The following example program illustrates:

1. Use of the character graphics to draw a box.

2. Character size commands.

3. Display character enhancements.

This program will draw a box, and then display “FLUKE
INSTRUMENT CONTROLLER” underlined and in reverse image
within the box. Every two seconds the entire display will change from
normal to double-size and then back. Touching the screen will reset all
modes to normal and clear the screen.

In this example, the display is created by a subroutine. The same code
is used for both normal and double-size. This is due to two separate
techniques:

1. Graphics codes are used as defined by their names, without
reference to how they look.

2. Cursor movement is relative to the center point, established
before entering the subroutine.

Touch Sensitive Display

Mode Commands

: Display Demonstration Program

ON KEY GOTO 800 ‘Program exit path

String variables:

ESS = CHRS(27) + “C* ‘Control sequence identifier
NSS = ESS + ue ‘Normal size
DSS = ESS + “1Ip"* 'double-size
NCS = CPOS(8.) ‘Normal size center
DCS = CPOS(4, 20) ‘'double-size center
CRS = ESS + “Sp"* ‘Graphics mode
cos = ESS + "2p" ‘Clear graphics mode
Dis = ESS + “B" + ESS + “D" ‘Down one and left one
U1s = ESS + “A” + ESS + "D” ‘Up one and left one
Lis = ESS + "2D" ‘Left two
KMS = CPOS(1, 1) ‘Home position

First do it normal size:

PRINT NSS; NCS; ‘Normal size, center.
GOSVUB 390 ‘Display
WAIT 2000 ‘Wait 2 seconds

Then do it double-size:

PRINT DSS; DCS: | goublewsize, center
CGOSUB 390 -Dis
WAIT 2000 Wai 13 seconds

Then repeat the sequence:

coTO 210

The display subroutine: t

4

First draw a box:

PRINT ORS ‘Graphics mode
PRINT ESS. + "14D"; ESS + “2A"; ‘Left 14, up 2

PRINT "1"; ‘Upper left corner

FOR I = 1 TO 28
RI "8"; ‘Top line

NEXT I

PRINT "“O") ‘Upper right corner

FOR I = 1 TO 5
PRINT D118; “9"3 'Right side
NEXT I

PRINT DiS; °2"; ‘Lower right corner

FOR I = 1 TO 28
PRINT L18s "8"; ‘Bottom line
NEXT I

PRINT Lis; "3"; ‘Lower left corner

FOR I = 1709
PRINT U1$;s “9"; ‘Left side
NEXT I

PRINT cos ‘Clear graphics mode

Place the message in the box:

PRINT ESS + "25"; ES® + “26Ces ‘Down 2. right past message
PRINT ESS + "mm"; splay enhancements off
PRINT ESS + “26D"; iver just before message
PRINT ESS + “%4; 7m"; ‘Select character enhancements

NT “FLUKE INSTRUMENT CONTROLLER”;
PRINT HMMS; ‘Cursor to home position
RETURN

Clean up the display before leaving:

é ‘Empty the KEY buffer AX = KEY
PRINT CGS; NSS: 'Reset graphics, normal size
PRINT HM%; home position ‘normal size, home position

14-31

Touch Sensitive Display

Mode Commands

Keyboard Disable and Enable

Disable keyboard: PRINT CHR§(27) + “[?4h”
Enable keyboard: PRINT CHR$(27) + “[?41”

14-32

When the keyboard is disabled, all programmer keyboard inputs
except control codes are ignored.

O

O

The Touch-Sensitive Display remains active for inputs.

Disable and enable commands do not occupy a character display
position.

A semicolon (;) placed at the end of a keyboard enable or disable
command inhibits the transmission of Carriage Return and Line
Feed to the display.

Keyboard disable/enable status is a mode of the display module.
This status remains as defined in the most recent disable or enable
command, even after a program ends.

The Instrument Controller starts up with the keyboard enabled.

The keyboard is reenabled by entering (CTRL) /T.

Touch Sensitive Display

USING THE DISPLAY FOR INPUT

The Touch-Sensitive Display of the Instrument Controller allows
operation without a keyboard. This feature allows the user to design
operator input prompts in application programs that relate directly to
the task at hand. The operator 1s free to maintain his or her focus upon
the assigned task without the distraction of a complex keyboard or
non-relevant decisions.

Figure 14-2, Instrument Controller Programming Worksheet
illustrates the relationship between the Touch-Sensitive Overlay or
TSO and the locations of displayed characters. Note that the touch-
sensitive area is divided into 60 blocks numbered sequentially from the
upper left. Each block covers 3 double-size characters, or 12 normal-
size characters. Columns and rows of both normal and double-size
characters are numbered as the CPOS string function would address
them. This grid pattern worksheet is a useful planning tool available
from Fluke in pads of 50 sheets. Order Fluke part number 533547.

SINGLE -SIZE COLUMNS
1 5 10 iS 20 25 30 35 40 45 50 55 60 65 70 7S ao

Levccdoccodoccedeccedeccedecredacsedrcvedrcseteceedveccedeccebvccebvecebecrebeaaal

SPELL EET. TRUCE GTTGETLLT. TTN=
1 , { as Goes ne Oe es One Os Os GN Ged OD OO OO 7

—t|. ‘tite = aan tan spettetrpe TOUCH PANEL prptpryott —
2 dadt i} et, ta dal, ety dl i hod, rstedad dad dt. eeot edo dete dog .d ded. ded. 3

> ehilads 1 21:1) 3l- aii {. sft, |. 6}! 7! e a) 10} | 4 >
rT? " ' as nr ee ’ TT T ’ on me t = 6 CEPR ETT TTT EME & J

x __ tet. ctlehb i 12 : 43 14 “15f >]: 16 1 47 19 ig] . |‘ 20 6 &
ie a . 1 TT. r T TTT TT? + a ona. oa ons —_—

ee Bn ee Ae yey dl IT Epp 2
ir — ti ; 2: | 22) 23] 24 | 25 26]: 27 28 29 ; 30] ° , 4 &

PET | PTT TTT meet T)2 %
ar _ [3s 32 33 34 35 36 37 38 ! 393 40 t 10 WwW i —

rie § STE TET ETE ET. a ee
2 __ ia +442 ‘1 43 44 45 46 47 aa] | 4a} | sof 4

cont TUTTI INUURRUUUAUOOROOUGROUGUERES OnONDNE 2G
__ ++ $1 we 52 53] S4 ss S56 57 58 39 ; 60} | abd

LORE TAT Ul DELETE is
| ! | 2 | a| 4 | s | e| 7 | 8 | 9 lio i] Lrelalralisliel:zlel:sled ailededeadeslodedededadsailsdadadadadaasdsqdad

DOUBLE -SIZE COLUMNS

Notes.

Controller Programming Work Sheet FLUKE

Program Title Programmer Page of —o—_——

Reorder under Fiuse P/N 63364) Re 1 6/6) (pew of 60)

Figure 14-2. Controller Programming Work Sheet

14-33

Touch Sensitive Display
Using the Display for Input

Display Input Statements

The following paragraphs describe the KEY Variable, WAIT FOR
KEY, ON KEY GOTO, and OFF KEY statements. Each of these

BASIC statements is used by a BASIC program for getting user
responses from the TSO.

KEY Variable

The system variable KEY contains the number of the last TSO block
pressed. The KEY variable has the following characteristics:

0

O

14-34

KEY is an integer ranging from 0 to 60.

A KEY value of zero means that no TSO block has been pressed
since the last time the value of KEY was used by a BASIC
statement or since the last time a RUN command was executed.

When KEY 1s accessed by a program (e.g., “K% = KEY” or “IF
KEY = 0 THEN...”), it is set to zero.

KEY may be used in any context that requires an integer variable.

KEY cannot be assigned a value except by pressing the TSO.

Touch Sensitive Display
Using the Display for Input

ON KEY and OFF KEY Statements

Usage: ON KEY GOTO {line number}

OFF KEY

ON KEY GOTO (line number) 1s one form of the ON-event interrupt
enabling statement described in the Interrupt Processing section.

O When the ON KEY statement is encountered, the number stored in
KEY is repeatedly checked for non-zero.

A zero value for KEY causes the GOTO to be ignored until KEY
becomes non-zero.

Control transfers to the line number following GOTO if a non-zero
value for KEY 1s detected any time after the ON KEY Statement
has been executed.

The section of program referenced by GOTO may be an interrupt
processing routine, with a RESUME statement, or it may be a
program exit.

After control has been transferred, the next RESUME statement

transfers control back to the program line that would have been
executed next if the non-zero KEY had not been detected.

After control has been transferred, further KEY entries on the

Touch-Sensitive Display are ignored until a RESUME statement
iS encountered.

OFF KEY disables further checking of the value of KEY.

14-35

Touch Sensitive Display
Using the Display for Input

WAIT FOR KEY Statement

Usage:

14-36

WAIT [time expression] FOR KEY

(time) FOR KEY is one form of the WAIT FOR (event) statement
described in the Interrupt Processing section.

O When the WAIT FOR KEY statement is encountered, the number
stored in KEY is checked for non-zero.

The maximum time to wait may be specified by a number, numeric
expression, or time expression.

If the time to wait is expressed as a number or numeric expression,
it must evaluate to an integer between —32768 and 32767.

Time expressions allow the time to wait to be described in the
folowing form:

hh:mm:ss 'hours:minutes:seconds

A complete description of valid time expressions is described in the
Reference volume of this manual set under: WAIT FOR.

The statement is ignored if the specified time is zero or negative.

The wait time is indefinite (until the Touch-Sensitive Display is
pressed) if no time is specified.

A zero value for KEY will cause program execution to stop until
KEY becomes non-zero, or until the specified time has elapsed.

A non-zero value for KEY will immediately terminate the wait
condition, passing control to the next program statement.

Touch Sensitive Display

Using the Display for Input

The following example illustrates the KEY variable and the WAIT
FOR KEY interrupt. Line 10 clears the KEY buffer. This resets any
value it contained from touching the display before the program
started. Line 20 halts the program until the Touch-Sensitive Display is
touched. Line 30 prints the KEY number. Line 30 also clears the key
buffer. If the buffer were not cleared, line 20 would detect it again,
allowing line 30 to display the same key value repeatedly.

' clear key buffer
I ' display a message

20 WAIT FOR KEY ' enable key interrupt
30 PRINT ‘KEY = ’; KEY ' display key value

41
1

> m <

y
o
u
u

NJ

UW

The following example program displays the number of each key in
double-size directly under the spot that was touched.

O Flag KF% in line 80 enables the interrupt routine to clear the
“Touch the Display” message from the display.

After displaying a prompt message, line 120 halts the program until
the display is touched. Then line 130 enables the KEY interrupt.

Since the KEY buffer has a number in it from touching the display,
line 130 immediately branches to the interrupt routine, disabling
the KEY interrupt.

Since the KEY flag KF%is initially zero, line 220 clears the “Touch
the Display” message.

Line 230 sets the KF% flag to one, so that subsequent passes
through the routine will not clear the display.

Lines 240 through 290 compute the position of the spot that was
touched and display the KEY number at that spot.

Line 300 reenables the KEY interrupt and branches back to the
main routine. Since the ON KEY GOTO statement 1s still active,
line 140 waits for another touch on the display.

14-37

Touch Sensitive Display

Using the Display for Input

O If a touch occurs within 10 seconds, the interrupt routine is.
reentered.

O If a touch does not occur within 10 seconds, line 150 disables the

KEY interrupt and branches to line 80 starting the sequence over
again.

10 ##e Display Keys ##+#

30 ! Displays the KEY number of the spot touched. Clears
40 ' the display to start over if not touched within 10 seconds.

60 K% = KEY ‘Clear KEY buffer
70 ESS = CHRS$(27) + "C" ‘Display escape sequence
80 KFX = OX% ‘KEY flag
90 PRINT ESS; anv 0} ESS; “1p” 'Clear display, double-size
100 PRINT CPOS(4, 10); ‘Position cursor
110 RINT “Touch the Display!" 'Disp play prompt message
120 WALT FOR KEY ‘Wait until display is touched
130 ON KEY GOTO 200 ‘Enable KEY interrupt
140 WAIT 10000 Wait 10 seconds
1530 OFF KEY iDisable KEY interrupt
160 SOTO 80 ‘Loop

188 : aH Key Interrupt Routine ###

200 KA = KEY 'Get KEY number
210 IF KF% = 1% THEN 240 'First time through?
220 PRINT ESS; “2U" ‘Clear screen
230 KFXY = 1% 'Set KEY flag
240 K =m AL - 1% ‘Compute KEY index
250 TRY = INT (KAIZ / 10%) 'Compute touch panel Tow
260 DRA = TRA + 2% ‘Compute display ro
270 DCZ%Z = 6% + (KIZ —- 10% # TR) * 37% 'Compute display column
280 PRINT CEOS CORE DCA: ‘Position cursor to spot touched

PRINT USING "#8", K2%; Display key on spot touched
RESUME 140 ‘Wait for another key

14-38

Touch Sensitive Display
Using the Display for Input

An Interactive Display Program

The following program combines graphics and the KEY function to
create an interactive display without a keyboard. The display is a
matrix over the touch-sensitive area containing the characters 0-9, A-Z
+,-,*,/, SPACE, DELETE, and ENTER. It requests the operator to

enter information. As the operator touches the characters, they are
entered into string OE$ and displayed. Previous characters are deleted
when DELETE is touched. The operator entry subroutine returns to
the main program (operator entry loop) when ENTER is touched. A
typical user program could then use the operator entries in string OE$.
This example program simply requests another entry.

The first section of the program (up to line 1620) sets up the display.
Lines 1060 through 1460 create the display matrix by printing
concatenated strings of graphic characters. Lines 1470 through 1620
print the characters within the matrix. The DUPLS§() function is used
in lines 1360 to 1450 to simplify drawing the boxes used at the bottom
of the display.

The second section of the program requests operator entries. It
compares the KEY value against limits and adds the corresponding
ASCII character to string OES.

14-39

Touch Sensitive Display

Using the Display for Input

1900 #et Interactive Display Program ##+#

1028 Uses graphics and KEY function for operator keyboard

1038 Set Up the Display:

1060 DIM S$8#(11> ‘Dimension graphics variable
1070 ESS = CHRS(27) + “C"* {Display control identifier
1080 PRINT ESS + "73h" ‘enable chavacter yiraenics
1090 PRINT ESS + “2U" ‘clear the disp
1100 PRINT ESS + “711" ‘set field attributes mode
1110 Ts. = CPOS(2,10) + "1886888" ‘First line
1120 X 9
1130 As = “asgesss”
11490 COSUB 12100
1150 S$(O) = TS + “O”"
1160 TS = "358s8es8ss" ‘Part of 3rd, Sth, 7th lines
1170 AS = *: 88sses"
1180 GOSUB 12100
1190 TS = TS + "6"
1200 FOR I = 2 TQ 6 STEP 2 ‘Add CPOS to 3rd, Sth, 7th lines
1210 SS$(I) = CPOS(I+2,10) + TS
1220 NEXT I
1230 T$% = “*9" jPart of 2nd, ath, 6th, Sth lines
1240 xX = 10 ‘ how many tim
1250 AS = DUPLS(" *,35)4+"9" '¢5 SPACE THEN 9)
1260 GOSUB_ 12100 ‘subr to make grfix chr string from as

1279 ! Add CPOS to wae p sh 6th, Sth lines
1280 FOR I = 1 TO 7 ST
1290 S$(I) = épos(i+2, 10) *. Ts
1300 NEXT I
1310 T$ ™5°POS(10. 10) + "368688SsS" ‘9th line

=

1350 S8(8) = TS + “2” ' 8’s are 16 long
1360 S68 = DUPLS(" ", 6) ' a string of & spaces
1370 SPS = DUPLS(" *, 16) : @ string of 16 spaces
1380 Ti¢ = "i" + L$("8",16) + "0" ! a horizontal line
1389 !: set up box F908
1390 Ts = CP0S8(12,10) + Tis + S68 + Tis
1400 88(9) = TS + S68 + "1" + DUPLS("8",10) + "“O" '10th line
1409 ‘set up box sides
1410 TS=£CP08(13,10) + "9" + e+ "9" + S68 + "9" + SPS + "9" SP
1420 S8(10) = TS + S66 + °*9" + DUPLS(" *",10) + "9%
1430 T2s = “3" + DUPLS$("B",16) + “2”
1439 ! set up box bottoms
1440 TS = CP 8(14, 19) + Party + DUPLS(* "» 6) + T26 + DUPLS(* “, 6)
1450 8$(11) = TS “3" DUPLS("8",10) + “2”
1459 ! Displa the matrix: disable character graphics
1460 PRINT 8e(0..11); ES® + "731";
1470 1 ‘Display list row characters

1338 X = 69 ‘Display and row charecters

1530
13540 X = ‘Display 3rd row characters

1570 X = 83 ‘Display 4th row cheracters

1590 GOSUB 10320
1600 PRINT CPOS(9, 49)+4+"%+"; CPOS(9, S5)+"— *5
1602 PRINT Coe Fe ol ee CEOS. O72) "7s";

09 labe
1610 PRINT *“Cpast13. 16)+"ENTER@) CPOS(15. 41)+"SPACE™;
1612 PRINT CPO8(13. 61)+"DELETE”
1620 PRINT ESS + "781" ‘turn cursor off

1639 ## Operator Entry Loop #+#

1660 OPS = “ENTER SOMETHING” ‘Operator prompt
1670 GOSUB 10020 'Call operator entry routine

16% User program to utilize operator inputs should go here.

1710 GOTO 1660 'Loop
1720 STOP ‘End of program

14-40

Touch Sensitive Display

Using the Display for Input

1730 !
16008 ## Subroutine to Accept Operator Entries #+#

10020 no 'Null entry: display prompt & entry:
00 iirst time through, print the smh ones with a flashing ‘’-’

10040 PRINT | Cros(is td) + OPS + ESS+" ESS+"m" + ESS+"K"
100350 GOT 80
10069 tenis came don’t make the ‘~-’ flash
10070 PRINT ES8+"m" + CPOS(1,1) + OPS + “ — * + ESS+"K" + OES
10080 K = KEY i me ty KEY buffer
10090 WAIT FOR KEY t for display touch
10100 AX = KEY 'Get KEY number
10110 PRINT CHRS(7X); ‘Sound beeper
10120 Check for 0 -
10130 iF KX ¢ 112% THEN OES = OES + CHRS(47X% + KX)
10140 ! Check for A -— Z:
10150 IF KX »> 10% AND KX (37% THEN OES = CES+CHRS(S4E + KZ)
10160 IF KAZ = 37% THEN OES = $+ "+" ‘Check for +
10170 IF K% = 38% THEN OES = OES + “—" 'Check for —
10180 IF KX = 39% THEN OES = CES + "#" ‘Check for #
10190 IF KX = 40% THEN OES = OES + “/" 'Check for /
10200 ! Check for Delete
10210 IF KX = 39% OR Ka = 60x THEN OES#=LEFT (OES, LEN(OES)— 1%)
10220 ! Check for Spa
10230 IF KX > 34% AND Ki 38% THEN OES = OES +" *
10240 ! Check for Ente
10250 IF RX 20% AND KX . 534% THEN 10270 ELSE 10070
10260 ! spi ay messa
10270 PRINT: CPOS(16, 1)+ Your last entry: "; ES8+°"K"; OES;
10280 RETURN
10290
18308 ## Subroutine to Display Characters ##

10320 Azt®At+ 2 ‘Increment line number
10330 B ® 13 :Set column number
10340 FOR I = X ‘Loop on range of characters
10350 PRINT CPOS(A, BD + CHRS(I); 'Display character
10360 B = B + ‘Increment column
10370 NEXT I ‘Next character
10380 RETURN
10390 !
13208 ## Subroutine to Create Graphic Character Strings ##

12100 FOR I = 1 TO X ‘Loop on set of graphic parts
12110 T$® = TS + AS ‘Add set to temporary string
12120 NEXT I 'Next set
12130 RETURN
121490 !
32767 END

14-41

Section 15

Program Debugging

CONTENTS

Introduction cc ccc cc ce cc ee cc ce eee eee nee cece eens 15-3

OVEIVIEW 2... ccc ce ccc ce ec cece eee eee eee eee ee eeees 15-3

Debugging Tools ccc ee ccc eee cece eee ete eeeee 15-4
TRACE ON Statement 0 cee cece ee ee ee 15-4

Line Number Tracing ccc cece cece eee ccccees 15-5
Variable Tracing cece eee ence eens 15-8
Other Trace Options cc cece cee cece eee eee 15-11 —
TRACE OFF Statement 0.0... cece cee ee ee 15-13

STOP ON Statement cece eee ce ee ee ees 15-13

STEP Command ccc cece cece eee eee eeees 15-14

CONT TO Command ccc cece ee eee cease 15-15

15-1

Program Debugging

INTRODUCTION

A program is seldom perfect the first time it is typed in. Errors are
expected and Fluke BASIC provides several ways to detect and correct
them. Programming errors are called bugs. The procedures used to
find and correct errors are called debugging methods. This section
describes these methods.

Errors fall into two categories: errors in syntax and errors in logic.
Syntax errors are format or typographical errors, such as mismatched
parentheses or an unrecognizable keyword. The BASIC interpreter
will notify the programmer of most of these at the time the statement is
first typed in and notify him of any remaining syntax errors the first
time the program is run. The interpreter does not, however, notify the
programmer of logic errors which show up as incorrect program
results. Without additional tools these logic errors can be difficult to
locate. This section presents the tools provided for locating logic
errors.

OVERVIEW

This section describes debugging tools that are primarily useful for
locating logic errors. These tools allow the programmer to observe
program flow and variable assignment while the program executes
statements. These statements do not check for syntax errors. They are
designed to simplify the task of locating logic errors in the program.

15-3

Line Number Tracing

Program Debugging
Debugging Tools

A line number trace has the following forms:

STATEMENT

TRACE ON

TRACE ON line number

TRACE ON # channel

TRACE ON # channel, line number

MEANING

Trace line numbers from

the first line and send the

results to the display.

Trace line numbers from
the specified line and send
the results to the display.

Trace line numbers from

the first line and send the

results to the open
channel.

Trace line numbers from

the specified line and send
the results to the display.

15-5

Results:

Program Debugging

Debugging Tools

[—

4

le) Showing that the loop was
40 executed 3 times

15-7

Program Debugging
Debugging Tools

O A variable trace of an array may use the form A() as the variable.
The statement:

TRACE ON A()

means “TRACE ON all elements of array A”.

oO An array must be previously dimensioned before tracing.

O A variable trace and a line number trace will not execute

simultaneously.

O Two or more variable traces will execute simultaneously. For
example:

10 TRACE ON A
20 TRACE ON B

is equivalent to TRACE ON A,B.

O A variable trace occurring after a line number trace turns off the
line number trace.

A variable trace statement resembles the line number trace statement
except that a list of variable names 1s included. The following example
specifies trace output to channel 2, tracing to start at line 340, and
tracing of changes in values of A%, element (3,4) of array B, and all of
array A$:

30 TRACE ON @2%, 340, AX, B(3X%, 4%), ABC)

NOTE
A variable trace of an array cannot be done without first
dimensioning the array with a DIM statement.

15-9

Program Debugging

Debugging Tools

15-10

Variable trace display output takes the following form:

line number identifier type(indices) = new value

Where:

1. Line number is the number of the line in which the variable was

assigned a new value.

2. Identifier is the name of the variable.

3. Type is % for integers, $ for strings.

4. Indices identify which element of the array is being traced on
and displayed (for array elements only).

5. New value is the new value assigned.

This example shows the result of a trace of an array variable:

TRACE ON A (1, 2) Displays the value of A(1,2) when it is
assigned. For example:

220 A(1,2) = 47.3386

This example program illustrates the display resulting from a trace of
an integer array program:

10 DIM AX (2%, 2%)
20 TRACE ON AX%()
30 FOR 1% = 0% TO 2%
40 FOR UX = O% TO 2%
50 AX (1% J%) = IX # UX
60 NEXT J%
70 NEXT 1%
B80 TRACE OFF
90 END

Results:

(50 A%(0,0) = QO
9O AZ(O,1) = O
9O AX(O,2) = O
9O AX(1,0) = O
SO AX(1,1) = 1
SO AX(1.2) = 2
30 AX(2,0) = O
SO AZ(2,1) = 2
SO AX(2,2) = 4

Program Debugging
Debugging Tools

Other Trace Options

TRACE ON line number can be used to define a trace region within a
program. The example below traces the array A$ only in the
subroutine starting at line 110. Until TRACE OFF is executed,
TRACE ON continues to trace all variables for which a TRACE ON
was executed, and continues to send trace output to the specified
channel or the display.

DIM AS (5%,
TRACE ON T10, ee) Start tracing array As

ine
FOR 1% = OZ to 3%
A® (1%. OX) = CHRS (ASCII (° ’) + 1%)
GOSUB 110
NEXT IX
TRACE OFF
STOP

FOR JX = 1% TO
Ae ies J%) = AStI% JR —- 1%) + CHRO(ASCII(C’’) + 1% + JX)

TRACE ON 110
RETURN
END

The following trace display output results from running this program.
Refer to Appendix G, ASCII/ITEEE-1980 Bus Codes, and note the
display characters that follow SPACE, character number 32, for
clarification of these results.

O
R
I

RI
RI
ND

RO
R

OR
I

AI

RO
DD

OR
I

RO
R

RO
RI
EO
RI
RO
RO
MD
RI
RD
EO

RO

BI
E

pe
te

le
te

te
te

te
te

te
te

te
le

t-
te

te
to

te
te

te
rt

te
rt

et
st

et
et

et
e AS$(O,1) = !

A$(0O,2) = !*
A$(0,3) = !"*
AS(O0,4) = ! "88
A$(O,5) = !"882%
AS(1,1) = !"
AS(1,2) = !*
A$(1,3) = '"8S
AS(1,4) = !"8$%
AS(1,5) = ! "892%
A$(2,1) = "@
A$(2,2) = "%$
A$(2,3) = "#8%
AS(2,4) = "8S
AS(2,5) = "#BX& ’
A$(3,1) = #8
AS(3.2) = 48%
A9(3,9) = #92&
AS(3,4) = #9Z&’
AS(3.5) = #8X& ‘(
A$(4,1) = $%
A$(4,2) = 8XL%&
AS(4,3) = SZL&’
AS(4,4) = SLE’ ¢
AS(4,5) = $Z&°C)
AS(5,1) = 4&
AS(5,.2) = 2&’
A$(5,3) = 4&’(
AS(5,4) = %&°C)
AS(S,5) = £&'°()#

15-11

Program Debugging
Debugging Tools

It is also possible to send trace output to different channels. Output is
sent to one channel at a time. The following example illustrates this:

10 OPEN “TRACE1.DAT" AS NEW FILE 1%' First trace channel
20 OPEN “TRACE2. DAT" AS NEW FILE 2%! Second trace channel
100 TRACE ON AZ, BS(), CC) ' Send output to console
as0 TRACE ON #1% ! Send output to channel 1
a7 TRACE ON #2% ' Send output to channel 2
1010 TRACE OFF ' Discontinue all tracing

15-12

Program Debugging

Debugging Tools

TRACE OFF Statement

Usage: TRACE OFF

TRACE OFF disables any pending or active trace assigned in the
program and destroys the variable list.

The following example illustrates that TRACE ON starts only a line
number trace after TRACE OFF.

10 TRACE ON A. B ' Trace variables A and B
50 TRACE OFF ' Halt the variable trace
100 TRACE ON ' Start a line number trace

The following example illustrates a way to suspend tracing until a later
point in a program.

10 TRACE ON A. B ! Trace variables A and B
30 TRACE ON 100 ' Stop trace until line 100
100 ' Resume tracing variables A and B

STOP ON Statement

Usage: STOP ON _ line number

STOP ON line number, stops execution of a program.

O STOP ON line number, allows a program to be run in sections
during logic debugging.

O The program stops at the line number of the STOP when ON line
number is not included.

O The program stops at the line number following ON, without
executing it, when ON line number 1s included.

O STOP ON may be executed in either Immediate or Run Mode.

O STOP ON line number enables the STEP command (see below).

15-13

Program Debugging

Debugging Tools

STEP Command

Usage: STEP

15-14

The Immediate Mode STEP command sets a mode in which each

statement within a program is executed individually by pressing
RETURN.

Oo STEP must first be enabled by a breakpoint stop in a running
program, caused by STOP ON or CONT TO.

After a breakpoint stop, type STEP to select Step Mode.

From Step Mode, type CTRL C or any Immediate Mode
command to return to Immediate Mode.

Any BASIC command or statement that is available in Immediate
Mode can also be used to exit Step Mode.

In Step Mode, one statement is executed each time RETURN 1s
pressed.

After executing each statement, the display reads: STOP ON LINE
n, where n 1s the next line to be executed.

When used with a variable TRACE ON, the display will also show
changes in selected variables whenever a statement assigns a new
variable value.

Program Debugging

Debugging Tools

CONT TO Command

Usage: CONT [TO line number]

The Immediate Mode Continue To line number command causes

program execution to continue from a breakpoint stop caused by
STOP, STOP ON, CONT TO, or CTRL C.

) The CONT TO line number command is available only in
Immediate Mode.

CONT TO line number must first be enabled by a breakpoint stop
in a running program, caused by STOP, STOP ON, CONT TO, or
CTRL C.

Any subsequent action other than entering the CONT TO line
number command disables the command. The program must then
be rerun to the breakpoint.

Program execution continues at the statement following the last
statement executed.

When TO line number is included, program execution again stops
if the specified line number is encountered, and the statement is not
executed.

CONT TO can be used instead of or in addition to STOP ON and
CONT to move quickly through a subroutine or loop that has
already been confirmed during Step Mode logic debugging.

The following example program is in main memory during the
interaction that follows.

10 FOR I% = 1% TO 2%
20 PRINT I% + I%
30 NEXT I
40 PRINT “Finished. "

With the above program in main memory, the following sequence of
commands and RETURN entries would produce the responses shown.
Programmer entry is shown to the left, and Controller response is
shown to the right.

15-15

Program Debugging

Debugging Tools

PROGRAMMER ENTRIES CONTROLLER RESPONSES

Ready

STOP ON 10 Ready

RUN
Stop at line 10
Ready

STEP
Stop at line 10
Ready

(RETURN)
Stop at line 20
Ready

(RETURN) ,

Stop at line 30
Ready

(RETURN)
Stop at line 20
Ready

(RETURN) 4

Stop at line 30
Ready

(RETURN)
Stop at line 40
Ready

(RETURN)

Done!
Stop at line 50
Ready

STOP ON 10

Ready
RUN

Stop at line 10
Ready

CONT TO 40
2
4

Stop at line 40
Ready

CONT Finished.
Ready

15-16

Program Debugging

DEBUGGING TOOLS

TRACE ON Statement

Usage:

15-4

TRACE ON [#n,] [starting line number]
TRACE ON [#n,] [trace variable list]
TRACE ON [#n,] [line number] [trace variable list]

TRACE prints a record of line numbers encountered or changes in
variable values.

0 If a previously opened channel 1s specified, the results of the trace
are sent to the channel. Otherwise the results are sent to the display.

A starting line number for tracing may be specified. If 1t is not
specified, tracing starts with the first line following the execution of
the TRACE statement.

Tracing is activated when the specified start line, or the first line, is
encountered.

TRACE may be used in either Immediate or Run Mode.

Program Debugging
Debugging Tools

O A line number trace and a variable trace will not execute

concurrently.

O Aline number trace occurring after a variable trace specifies a new
line number after which variable tracing will resume, provided no
TRACE OFF occurred in the interim.

The following examples illustrate the results of different forms of line
number trace statements.

STATEMENT RESULT

30 TRACE ON Start a line number trace at the next

line following line 30.

500 TRACE ON 1275 Start a line number trace when line

1275 is reached.

750 TRACE ON # 3%, 400 Start a line number trace when line

400 is reached. Send the trace output
to channel 3.

The line number trace displays a series of numbers representing the line
numbers or the statements executed. The following example illustrates
typical results.

Program:

15-6

Program Debugging
Debugging Tools

Variable Tracing

15-8

A variable trace has the following forms:

STATEMENT MEANING

TRACE ON variable list. Trace changes in value of selected
variables from the first line and send
the results to the display.

TRACE ON #channel, variable list

Trace changes in value of selected
variables from the first line and send
the results to the open channel.

TRACE ON line number, variable list

Trace changes in value of selected
variables where the specified line is
encountered and send the results to the
display.

TRACE ON #channel, line number, variable list

Trace changes in value of selected
variables from the specified line and
send the results to the open channel.

O Ifa list of variables is specified, the trace is of changes in values of
those variables. Otherwise, the trace is of line numbers

encountered.

O A variable trace may specify one or more variables of any type:
string, integer, and floating point.

Section 16

Error Messages

16-1

Error Messages

FLUKE BASIC ERROR LIST

CODE | LEVEL‘ EXPLANATION

TYPE: OVERFLOW

0 F Memory overflow
1 F Virtual array file > 64K bytes long, or > 64K elements (XBC)

2 F Virtual array file too small for arrays

TYPE: SYSTEM

100 F BASIC interpreter or Runtime system internal error
101 F Incompatible lexical file or Extended BASIC program

TYPE: COMMAND

200 F Immediate mode error
201 F Cannot CONTinue
202 F STEP outside break mode

TYPE: 1/O

300 R Device not Ready
301 R Disk write protected
302 R Illegal channel number specified
303 R Channel already in use
304 R Invalid device name or device not present
305 R File not found on device
306 R No room on device
307 R Read/write past end of file
308 R Channel not open
309 R RS-232 channel input queue overflow
310 R Input line too long
311 R Disk read error
312 R Illegal filename syntax
313 F Random access to sequential file
314 F Sequential access to random file
315 F Virtual array assigned to sequential! device
317 R Illegal directory on device

318 R Read (write) from (to) output (input) file
319 R ON <channel> device not RS-232
320 F Object file error
321 R Device directory full
322 R Illegal operation for device
323 R File delete protected
324 R Can't RENAME file
325 R File medium swapped
326 R Can't load - too little memory
327 R Illegal image file format
328 R Command line too long
329 R RS-232 port number out of range
330 R Parallel port number out of range

16-2

BASIC ERROR LIST (cont)

Error Messages

CODE | LEVEL* EXPLANATION

TYPE: INSTRUMENT BUS CONTROL

400 R Illegal -488 port number
401 R Illegal -488 device address
402 R Illegal -488 secondary device address
403 R Incomplete -488 handshake
404 R Too many ports designated for -488 function
405 R No devices attached to -488 port
406 R No -488 ports available
407 R -488 port specified is unavailable
408 R -488 port timeout
409 R Illegal WBYTE data
410 R Parallel poll bit number out of range
411 R Parallel poll bit sense not O or 1
412 R -488 timeout limit out of range
413 R TERM string longer than one character

414 R No -488 driver in System
415 WwW SET SRQ status byte value out of range
416 R Illegal -488 operation for current port state

TYPE: SYNTAX

500 F Unrecognized statement
501 F Illegal character terminating statement
502 F Illegal subscript (<0)
503 F Mismatched parentheses

504 F Illegal let
505 F legal if
506 F Illegal line number
907 F Illegal PRINT
508 F Illegal format for PRINT or NUMS()
509 F Illegal INPUT statement
510 F Illegal array dimension size
511 F Badly formed define
512 F Illegal FOR statement
513 F FOR without NEXT

514** F NEXT without FOR (jump back into “for” loop)
515 F Unmatched quotes
516 F lll-formed expression
517 F Bad OPEN statement
518 F Bad CLOSE statement
519 F IEEE-488 syntax error
520 F Initial COM at illegal point in program
521 F Not a well-structured statement
522 F Illegal variable name
523 F ON statement syntax error
524 F OFF statement syntax error
525 F TRACE syntax error
526 F Illegal file size in open

16-3

Error Messages

FLUKE BASIC ERROR LIST (cont)

CODE | LevEL-| EXPLANATION
TYPE: SYNTAX (cont)

527 F RENumber parameter error
528 F RENumber syntax error
529 F ELSE without IF
530 F NEXT syntax error
531 F INPUT WBYTE requires IEEE-488 input
532 F Illegal subrange descriptor
533 F WBYTE/RBYTE data not integer type
534 F Can't specify column for WBYTE/RBYTE subrange
535 F Can't use undimensioned variable for WBYTE/RBYTE
536 F Virtual array illegal for WBYTE/RBYTE

537 F 2-dimensional array illegal with WBYTE/RBYTE I/O
538 F Illegal CONFIG statement
539 F Illegal RBYTE syntax
540 F RBYTE increment <=0
541 F Illegal RBYTE cycle length
542 F Illegal WBYTE clause syntax
543 F WBIN/RBIN precision error
544 F WAIT statement syntax error
545 F Illegal CALL statement
546 F Virtual array parameter illegal

947 F Parameter syntax error
548 F Illegal SET statement syntax or option
549 F Require file name for SAVE
550 F Illegal RENAME statement syntax

TYPE: MATH

600 F Illegal mode mixing
601 R Arithmetic overflow
602 R Arithmetic underflow
603 R Divide by zero

604 R Squaie root argument > 0
605 R Exponent too large
606 R Log argument <=0
607 R Trig function argument too large
608 R Illegal argument(s) for power operator
609 F Illegal floating-point operation code
610 F Unimplemented floating operation attempted

16-4

Error Messages

FLUKE BASIC ERROR LIST (cont)

CODE | LEVEL“ EXPLANATION

TYPE: TRANSFER

700 F Illegal GOTO or GOSUB
701 F RETURN without GOSUB
702 F RESUME outside interrupt handler
703 F CALL to undefined FN
704 R ON {expression} GOTO selector out of range
705 F CALL to undefined subroutine
706 F Parameter count mismatch for CALL
707 R Illegal time/date value

708 R Timer value not initialized for ON INTERVAL or ON CLOCK

TYPE: INPUT

800 R Out of DATA in READ
801 W Too much data entered for INPUT
802 W Too little data entered for INPUT
803 W Illegal character for INPUT or VAL()
804 F Bad format in data statement

TYPE: VARIABLE

900 F Access to undefined variable
901 W Redimension of array
902 R Subscript out of range
903 F COM of variable which is already defined
904 W String too long for virtual array field
905 F Incompatible COM declaration
906 F DIM’ within nested interrupt handler
907 F Bad XOP 1 call
908 F Illegal array parameter (memory vs. virtual)
909 F Illegal conformal dimenisoning parameter

* F=Fatal R=Recoverable W = Warning

*“A NEXT without FOR error may be caused by exiting a FOR-NEXT loop with a
GOTO statement within the loop. If this is executed repeatedly, a fatal user storage
overflow error will result. To prevent this from occurring, exit the loop by setting the
loop index variable to the maximum value, then use the GOTO statement to branch
to the line number containing the NEXT statement.

Here is an example:

10 for i% = 0 to 9%

40 if a(I%) <0 then I% = 9% / goto 100

mw

id

100 next i%

16-5

Appendices

CONTENTS

A Internal Structure of Variables0000- A-|!
B IEEE-488 Bus Messages ccc cece cece e eens B-1
C Wbyte Decimal Equivalents 0000 e ce eee C-]
D Parallel Poll Enable Codes cece D-1
E Display Controls cece cece eee E-|
F Graphics Mode Characters cece ewe eee F-]
G ASCII & IEEE Bus Codes ce eee eee G-]
H Assembly Language Error Handler H-]
I Fortran Interface Runtime Library I-]

J Virtual Array Dimensioning Program J-1
K GraphicS cc ccc cece ete eee eee ee neces K-1
L Supplementary Syntax Diagrams L-1
M_ Glossary 0. ccc cece cece cece ee eee eee eee ee eeee M-1
N_ Reserved Words cece ccc cece cece eee e eee N-1

Appendix A

Internal Structure of Variables

INTRODUCTION

The purpose of this appendix is to provide some information about the
means of data storage used by the BASIC processor which may be
helpful in applications programming.

VARIABLE STORAGE MEMORY REQUIREMENTS

Each variable used in a BASIC program is entered in one of several
symbol tables (depending upon its type) so that, when a reference to the
variable occurs, the BASIC interpreter has available the information
needed to find the variable’s value or address in memory. The amount
of space taken by each variable’s symbol table entry depends upon the
variable type, organization (simple or dimensioned) and where in
memory the variable is stored (e.g., COMmon or virtual array). We
will call the symbol table information “overhead” in the following
paragraphs; the overhead for each type of variable is detailed in Table
A-l.

Table A-1. Variable Storage Memory Requirements

Simple variable 4 bytes
Simple variable in COMmon 6 bytes
Dimensioned variable 8 bytes
Dimensioned variable in COMmon 10 bytes
Virtual array 14 bytes

In addition to the symbol table information, additional memory is
used to hold the value of the variable itself depending upon the variable
type. Table A-2 details the memory requirements for each variable type
for all variables EXCEPT those stored in virtual array.

Table A-2. Additional Memory Requirements

Integer 2 bytes
Floating-point 8 bytes
String 4 bytes + 18 bytes for every 16 characters in string.

Internal Structure of Variables

Storage Memory Requirements

The amount of memory required to represent a variable in main
memory (i.e., NOT in a virtual array) may be calculated using the
following formula:

m=stn*l

NOTE
m=total memory required (bytes)

s=symbol table overhead (bytes)

n=number of values represented (1 for a simple variable, or the
number of elements in an array).

I=length of a variable of that type (bytes).

The following examples illustrate the process of calculating memory
requirements.

1. A simple integer variable requires 6 = 4 + (1*2) bytes.

2. A floating-point array dimensioned to (19,39), which has a
total of 800 = (19 + 1)* (39 + 1) elements, would require a total
of 6408 = 8 + (800*8) bytes.

3. A simple string (having no characters assigned to it) would
require 8 = 4 + (1*4) bytes. If the string were assigned 50
characters, an additional 72 (1.e., 4*18) bytes would be used to
hold the value, since for every 16 characters (or for any
fragment of the string shorter than 16 characters) a total of 18
bytes is required.

4. A string array dimensioned to (24) contains a total of 25 =1+
24 elements. If all elements of the array were set to the null
string (having no characters assigned), the memory required
would be 108 = 8 + (25*4) bytes. As the elements of the array
were assigned non-null values, EACH array element’s
requirements would have to be calculated using the rule that
every 16 characters requires 18 bytes of additional storage.

Internal Structure of Variables

The memory requirements for a virtual array file may be calculated by
the formula:

m=n*v+512

NOTE
m = total memory required (bytes)

n = number of arrays declared in this virtual array file.

v = 14 bytes. This is the symbol table for each array declared
within the file.

The requirements for a virtual array file are basically the size of the I/O
buffer (512 bytes) which must be created when the file is OPENed (and
which disappears when the file is CLOSEd) plus 14 bytes (the symbol
table overhead for each array declared within the file) for every array
in the file. In the case of multiple DI Mension statements referring to
the same channel (see section 6 regarding Equivalent Virtual Arrays),
only one 512 byte buffer is created, but 14 bytes are still required for
every array definition.

/O BUFFER MEMORY REQUIREMENTS

Every time a OPEN statement is executed, some of the available
memory is allocated to provide a temporary data holding area called a
buffer. The size of the buffer created 1s always 512 bytes.

If insufficient memory is available, the BASIC interpreter will report a
memory overflow error (error number 0). Whenever a CLOSE
statement is executed, the memory used by the buffer is released for
other uses.

Internal Structure of Variables

A-4

COMMON MEMORY REQUIREMENTS

The COMmon area is a region of memory holding only the values of
variables, i.e., no symbol table data is present. During program
chaining, for example, the symbol table is destroyed, but the
COMmon area remains intact, so that another program has access to

COMmon data via the COM statement. The memory required by the
COMmon area may be calculated as:

m=(nr*r)+(n1*1)

NOTE
m=total memory required by COMmon (bytes)

nr=the total number of floating-point values contained in
COMmon

=the length of a floating-point value (8 bytes)

ni=the total number of integer values contained in COMmom

i=the length of an integer value (2 bytes).

The COMmon area will remain intact until the BASIC interpreter
ceases execution (via the EXIT or EXEC statement, or when the
CTRL/P key is pressed) or until a DELETE ALL statement is
executed, which reinitializes the BASIC interpreter.

Appendix B

IEEE-488 Bus Messages

INTRODUCTION

The IEEE-488 standard interface is a bus-structured interconnection
method. The bus has sixteen signal lines divided as follows: eight data
lines, five bus management lines, and three handshake lines. In

addition to these messages lines there are eight ground lines.

DATA LINES

The DATA lines carry raw data, Universal Commands, Address
Commands, Addressed Commands, and Device-dependent
Commands. Table B-1 presents the various commands which can be
sent on the data lines in command mode (determined by the state of the
ATN Bus Management Line line). Refer to Appendix G for the actual
codes involved.

BUS MANAGEMENT LINES

The bus management lines each have specific management or data
transfer control functions. Table B-2 presents the five specific
commands which call for some immediate action or flag a condition
existing on the interface. Each command corresponds to the bus wire
of the same name.

HANDSHAKE LINES

The three handshake lines are used to synchronize data transfers.
Table B-3 describes the three handshake lines.

NOTE
Any of these messages may also be given in the “not” form to
indicate the reverse message meaning. For instance, DAC
would indicate that data has been accepted.

COMMAND MESSAGE SEQUENCES

The various BASIC statements described in the IEEE-488 Bus Input
and Output Statements section initiate certain message sequences on
the bus. Table B-4 presents these message sequences.

IEEE-488 Bus Messages

Table B-1. Command Messages

O

O

O

Oo

0

O

O

O

O

Universal Commands (for all devices)

LLO-Local Lockout. Disables device LOCAL switches.

DCL-Device Clear. Clears each device to manufacturer’s default status.

PPU-Parallel Poll Unconfigure. Unconfigures all devices with
programmable remote configuration capability.

SPE-Serial Poll Enable. Causes a device to enter Serial Poll mode.

SPD-Serial Poll Disable. Disables data I/O lines from Serial Poll status.

Address Commands (or Addresses for each device comparing data I/O lines)

MLA-My Listen Address. Causes a Device to become a listener.

UNL-Unlisten. Disables a device from listener status.

MTA-My Talk Address. Causes a device to become a talker.

OTA-Other Talk Address. Disables a device from talker status if any
other device has received an MTA on data I/O lines 1-5.

UNT-Untalk. Disables a device from talker status whether or not another

talker has been assigned.

Addressed Commands (For Addressed-to-Listen devices)

GTL-Go To Local. Returns device from REMOTE mode.

SDC-Selected Device Clear. Clears a device to manufacturer’s default

status.

PPC-Parallel Poll Configure. Sets up device to be configured with the
PPE or PPD messages.

GET-Group Execute Trigger. Initiates a device function to a selected,
addressed group of devices.

TCT-Take Control. A talker device becomes a Controller In Charge.

|IEEE-488 Bus Messages

Table B-1. Command Messages (cont)

Secondary Commands (for all devices)

O MSA-My Secondary Address. Follows an MTA or MLA to allow the
device extended listener or talker capability.

O OSA-Other Secondary Address. Like an MSA except will not unaddress
if the first MTA equalled its address switch settings.

O PPD-Parallel Poll Disable. Unconfigures device.

O PPE-Parallel Poll Enable Configures device.

Device-Dependent Commands

O DAB-Data Byte. Any byte on the data I/O lines transferred between a
talker and one or more listeners.

O EOS-End of String. Line feed or carriage return written across the data
|/O lines to indicate an end of a logical string.

O NUL-Null. Zeros across the data I/O lines to initialize the bus.

O PPR-Parallel Poll Response. Response to a request for a Parallel Poll.

O STB-Status Byte. Response to an SPE (Serial Poll Enable). Concurrent
with RQS.

O SRQ-Service Request. Response to an SPE if Service is requested.

Table B-2. Bus Management Lines

QO ATN-Attention. Specifies how data is to be interpreted.

O |FC-Interface Clear. Resets interface of all devices to a known state.

O REN-Remote Enable. Prepares all devices for accepting remote (from
the Controller) commands.

O01 EOI-End or Identify. Indicates that a talker device has ended a multi-byte
transfer or that a controller is in a polling sequence.

O SRQ-Service Request. Indicates that a device wants to interrupt the

current sequence of events for attention.

lIEEE-488 Bus Messages

Table B-3. Handshake Lines

0 DAV-Data Valid. Indicates that a device has available and valid data on

the DATA line.

O NRFD-Not Ready for Data. Indicates that a listener device is not ready to
accept data.

O NDAC-Not Data Accepted. Indicates that a listener device has not yet
accepted data.

Table B-4. BASIC IEEE-488 Bus Command Messages Sequences

BASIC COMMAND MESSAGE SEQUENCE

CLEAR (by device) EOI
ATN
UNL
UNT
MLA (for each device)
SDC

CLEAR (by port) EOI
ATN
UNL
UNT
DCL

CONFIG (by device for unconfigure) EOI
ATN

UNL

UNT

MLA

PPD

UNL

CONFIG (to line with sense) EOI
ATN

UNL

UNT

MLA

PPC
PPE
UNL

B-4

lIEEE-488 Bus Messages

Table B-4. BASIC IEEE-488 Bus Command Messages Sequences (cont)

BASIC COMMAND MESSAGE SEQUENCE

INIT (by port) REN
ATN

IFC
IFC (after 100 usec wait)
EOI
ATN
UNL
UNT
PPU

INPUT LINE WBYTE (output WBYTE data)
EOI

NOTE

Issued only if device specified with INPUT statements.

(accept data byte)
(Output WBYTE data)

(accept data byte)

(output WYBTE data)

EOI
ATN
(accept data)

LOCAL (by device) EOI

MLA (for each device)
GTL

LOCAL (by port) REN

lIEEE-488 Bus Messages

Table B-4. BASIC IEEE-488 Bus Command Messages Sequences (cont)

BASIC COMMAND MESSAGE SEQUENCE

LOCKOUT (by port) REN
EOI
ATN
LLO

PASSCONTROL ATN
UNL
UNT
MTA

TCT
ATN

PPL ATN
EOI
(Accept poll status)

EOI

PRINT USING EOI

NOTE

Issued only if device(s) specified in PRINT statement.

MLA (for each device)
ATN

(output data)

RBYTE EOI
+

(accept data)

REMOTE (by device) REN

MLA (for each device

REMOTE (by port) REN

B-6

IEEE-488 Bus Messages

Table B-4. BASIC IEEE-488 Bus Command Messages Sequences (cont)

BASIC COMMAND MESSAGE SEQUENCE

SPL

TRIG

WBYTE

EOI
ATN
UNL
UNT
MTA

SPE
ATN

(accept status byte)

ATN
UNT
SPD

EOI
ATN
UNL
UNT
MLA (for each device)
GET

EOI (set as required)
ATN (set as required)
(Output data byte)
EOI (set as required)
ATN (set as required)
(Output data byte)

Appendix C

WBYTE Decimal Equivalents

NOTE

Refer to the WBYTE discussion in the IEEE-488 Bus Input and Output

Statements. Use these decimal values when building up an array of data bytes

to be output to the [IEEE-488 Bus.

Table C-1. Decimal Equivalents

BUS MESSAGE DECIMAL EQUIVALENT

EOI 256
ATN 912
GTL 913
GET 520
DCL 932
UNL 975
UNT 607

Table C-2. Address Messages

DEVICE ADDRESS | MLA| MTA| MSA| DEVICE ADDRESS|}MLA|MTA;|MSA

0 544 | 576 | 608 16 560 | 592 | 624
1 545 | 577 | 609 17 961 | 593 | 625
2 546 | 578 | 610 18 562 | 594 | 626
3 547 | 579 | 611 19 963 | 595 | 627
4 548 | 580 | 612 20 564 | 596 | 628
fs) 549 | 581 | 613 21 965 | 597 | 629
6 550 | 582 | 614 22 966 | 598 | 630
7 551 | 583 | 615 23 967 | 599 | 631
8 552 | 584 | 616 24 568 | 600 | 632
9 553 | 585 | 617 25 569 | 601 | 633

10 554 | 586 | 618 26 9/0 | 602 | 634
11 555 | 587 | 619 27 9/71 | 603 | 635
12 556 | 588 | 620 28 5/2 | 604 | 636
13 557 | 589 | 621 29 573 | 605 | 637
14 558 | 590 | 622 30 974 | 606 | 638
15 559 | 591 | 623 31 9/75 | 607 | 639

Appendix D

Parallel Poll Enable Codes

NOTE

Refer to the CONFIG statements discussion before using Table D-1.

Table D-1. Parallel Pall Enable Codes

RESPONSE LINE DECIMAL

DIO1 96
DIO02 97
DIO3 98

SENSE DI04 99
“QO” DI05 100

DIO6 101
D107 102
DI08 103

DIO1 104
DIO2 105
DIO3 106

SENSE DI04 107
gn DI05 108

DI06 109
DI07 110
DI08 111

D-1

Display Controls

Table E-1. Display Control Sequences

CONTROL
M T FUNCTION SEQUENCE COMMENTS

Cursor Controls

Up n lines (ESC) [nA The cursor stops at the

Down n lines (ESC) [nB edge if the number given

Right n columns (ESC) [nC as an argument results

Left n columns (ESC) [nD in movement past the

Direct to line, column (ESC) [l; cH edge of the screen.

Scroll down one line (ESC)D

Scroll up one line {ESC)M

Scroll to start new line (ESODE

Erasing

To end of display (ESC)[J or (ESC) [0J

To start of display (ESC) [1J

All of display (ESC) [2J

To end of line (ESC)[K or (ESC) [0K

To start of line (ESC) [1K

All of line (ESC) [2K

Attributes

Attributes Off* {ESC)[m_ or (ESC) [Om

High Intensity {ESC [1m

Underline {ESC [4m

Blinking (ESC) [5m

Reverse Image (ESC) [7m

Non-destructive (ESC)= Replaces any attributes

character in effect at the position

that it is directed to (via

the CPOS function, for

example).

E-2

Display Controls

Table E-2. Selective Parameter Display Controls

MODE EQUIVALENT

FUNCTION SELECTION NUMERIC SEQUENCE

Attribute Mode No equivalent.

Field* (ESC) [?11

Character (ESC) [?h

Character Size

Normal* (ESC) [721 (ESC) [Op

Double size (ESC) [22h (ESC) [1p

Character Graphics Similar to (ESC)[2p and

Disable” (ESC) [31 {ESC)[3p, except that these

Enable (ESC) [3h commands do not affect the

graphics plane.

Keyboard

Unlocked* (ESC) [74 (ESC) [4p

Locked (ESC) [4h (ESC) [5p

Opaque to Graphics” (ESC) [751 When this command is re-

ceived, any graphics displays

that cross display character

cells are hidden behind the

character cell, an area 8 pixels

wide and 14 high. This mode is

used to make characters stand

Out from surrounding graphics

displays. There is no equivalent

Capability for the 1720A Con-

troller.

Transparent to Graphics (ESC) [75h This mode causes displayed

characters to be transparent to

the graphics display. Any

graphics displays that cross a

character cell are not obstruct-

ed by the cell. Select this mode

to blend characters into the

graphics display.

E-4

Appendix E

Display Controls

DISPLAY CONTROLS

The two tables in this section list the display control sequences for the
display contained in the Instrument Controller. Table E-1 describes
the control sequences used to control the visual attributes of the
display. Table E-2 describes the ANSI Standard Selective Parameters
used by the Instrument Controller.

Display Controls

Table E-1. Display Control Sequences (cont)

CONTROL
FUNCTION SEQUENCE COMMENTS

Cursor Status

Request cursor position} ¢(ESC)[6n For a program to make

Cursor position report (ESC) (I, c R use of the report, a log-

Size of Characters

Normal"

Double

Character Graphics

Disabled*

Enabled

Keyboard

Enabled*

Disabled

Cursor Type

Blinking Underscore*

Steady Underscore

Blinking Block

Steady Block

(ESC)[p or ESC [0p

(ESC) 1p

(ESC) [2p
(ESC) [3p

(ESC) [4p

(ESC) [5p

(ESC) [Ox

(ESC) [1x

(ESC) [2x
(ESC) [3x

ical input channel must

exist between the pro-

gram and KBO:

These commands affect

the entire display.

These commands also

affect the graphics

plane.

Even when disabled, the

keyboard can respond

to control codes. To exit

a locked condition, use

(CTRL)/T to unlock the

keyboard, reset the

screen to normal-size

characters, home the

cursor (upper left), and

disable the graphics

plane.

“Indicates the default conditions.

Display Controls

Table E-2. Selective Parameter Display Controls

MODE EQUIVALENT

FUNCTION SELECTION NUMERIC SEQUENCE

Character Display No equivalents.

Disable (ESC) (76!

Enable” (ESC) [76h

Graphics Plane No equivalents.

Disable (ESC) [271

Enable* (ESC)[?7h

Cursor Display No equivalents.

Disable (ESC) [781

Enable* (ESC) [(?8h

“Indicates the default conditions.

NOTES: 1. Save typing by predefining ESC [as the following string:

ES$=CHR$(27)+"[”

2. Multiple enhancement or mode commands are separated by

semicolons.

Example: PRINT ES$;“1;5;7p”;

3. Display controls are introduced by “ESCape[” (scrolling controls

do not use “[”.) Any method that sends the required character

sequence to the display will give the above results. For example, if a

data file is created of “ESC/[” character sequences, typing the name of

the file in FUP mode will cause the display response.

E-5

Appendix F

Graphics Mode Characters

1722A DISPLAY RESPONSE

CHARACTER NORMAL SIZE} DOUBLE SIZE FUNCTION

0 LI il Top Right Corner

1 [] Top Left Corner

2 ll al Bottom Right Corner

3 It bh Bottom Left Corner

4 [TT Top Intersect

5 it r Right Intersect

6 ll il Left Intersect

7 it 7 Bottom Intersect

8 [a Horizontal Line

9 | i| Vertical Line

it TT Crossed Line

NOTES:

1. To enable Graphics Mode, send the display ESC[3p or ESC [?3h

2. To disable Graphics Mode, send the display ESC[2p or ESC [231

3. In Graphics Mode, characters in the left column are displayed as shown.

4. Use the character names as defined to construct illustrations that do not

change form between normal and double size.

F-1

Appendix G

ASCII/IEEE-488 Bus Codes

G-1

Appendix H

Assembly Language
Error Handler

INTRODUCTION

The assembly error handler provides a means of reporting error
conditions to the BASIC interpreter program when using an Assembly
language subroutine with BASIC.

USING A USER-SPECIFIED ERROR HANDLER SUBROUTINE

A user-specified error handler subroutine can use a form of XOP 0 to
get the BASIC error handler to report and to attempt recovery from
errors. This causes the BASIC error handler to treat the error as
appropriate to an error of the given recovery class (for example, Fatal,
Recoverable, or Warning Only).

The instruction format is as follows:

XOP @<error number & recovery class) ,0

Where error number & recovery class is encoded as follows:

IS 14 13 0

| Class | Error Number |

1. Class is encoded as:

0: Fatal
1: Recoverable

2: Warning only

2. Error Number can be any error number desired.

a. Error numbers from 0 to 999 are already assumed to have
predefined meanings.

b. Error numbers greater than 999 have the code “User”
printed as the error code. An example of a “User” code
instruction and the resulting message are as follows:

XOP #1000. 0

'User error 1000 at line (line number of the CALL statement)

H-1

Assembly Language Error Handler

EXAMPLE

The following example illustrates one approach to detecting error
conditions within an Assembly language subroutine. The example
program computes the RSS (root-sum-squares) of two passed
parameters (A & B), returning the answer in C and anerror flag in R%.

Here is the example program:

def DET

ref FSRGMY
+
DET data ws,det stransfer vector

idt ‘det’
*
det equ $ sentry point

b @FSRGMY sget the parameters
data 4 i
data T4#2+ws sput them in r4 through r7
text ‘DET ‘ s name
cir rs iclear overflow flag
ld #r4 sget x
md ro 5 xwx

. if Ov soverflow
seto rs sset flag

e endif i
std @temp ; Save
ld #r5 sget y
md ro sget u#

° if ov s overflow
seto rs set flag

° endif i
ad @temp 5xtx + yy

° if ov soverflow
seto rs ;set flag

e endif i
dsqr >SQRTCx#x + yy)
st *#r6& ireturn result
mov rs, #r7 ;return error flag
rtwp i done

*
ws bss 32 sworkspace
bss 4 3
data i sreentrant
temp bss 8 s temporary
end

+

This is the subroutine call from BASIC:

\°e = ON R~Z = 0% 3
B,
COTO 100) ‘goto error handler

this is the error handler

H-2

Appendix |

FORTRAN Interface
Runtime Library

FORTRAN INTERFACE RUNTIME LIBRARY

The FORTRAN Interface Runtime Library provides a link between
the BASIC Interpreterand FORTRAN subroutines used with BASIC.
The Fortran Interface Runtime Library implements most of the
FORTRAN language elements and also includes explicit parameter-
passing subroutines for string variable exchange and error message
exchange. The language elements available for FORTRAN
subroutines are described in this appendix.

The following restrictions apply:

O No I/O capability (such asa FORTRAN READ statement) is
provided. Attempts to use I/O will result in unresolved global
errors during the linking process.

O Only the data types which are compatible with BASIC are allowed:

Double-Precision Floating Point

Integer

Logical

Attempting to use other data types will result in unresolved global
errors during the linking process.

O Only the set of statements, intrinsic functions, and external
functions listed below under Available FORTRAN Language
Elements are used.

FORTRAN Interface Runtime Library

AVAILABLE FORTRAN LANGUAGE ELEMENTS

FORTRAN programs normally run under control of the FORTRAN
Runtime System program, which forms a link between the
FORTRAN program and the operating system program of the
Instrument Controller. Interpreted BASIC programs run under the
control of its own runtime system programs. In order for an
interpreted BASIC program to run subroutines which are written in
FORTRAN, the Fortran Interface Runtime Library of subroutines 1s
provided which implements the FORTRAN language elements
normally provided by the FORTRAN Runtime System program.
Whenever a FORTRAN subroutine 1s used, this library must be linked
with it.

The FORTRAN Interface Runtime Library does not include all of the
FORTRAN language elements. The statements, external functions,
and internal functions that are available are listed in tables below.
Refer to the FORTRAN Programmer’s Reference Manual for a
complete description of the FORTRAN language.

The following FORTRAN statements are allowed in subroutines that
will be used by BASIC (with the support of the FORTRAN Interface
Runtime Library):

ASSIGN DO INTEGER
BLOCK DATA DOUBLE PRECISION INTEGER*2
CALL END IMPLICIT
COM MON* EQUIVALENCE LOGICAL
CONTINUE EXTERNAL** REAL*8
COPY FUNCTION** RETURN
DATA GO TO SUBROUTINE
DIMENSION IF IF

*The COMMON area in a FORTRAN program is separate from the
COM area in BASIC programs.

**Note that, although EXTERNAL and FUNCTION are allowed,

they only work between FORTRAN subroutines, not between
FORTRAN subroutines and BASIC programs.

FORTRAN Interface Runtime Library

The following external functions are allowed in FORTRAN
subroutines that will be used by BASIC programs:

DATAN _ DSIN IOR
DCOS DSQRT ISHFT
DEXP IBCLR LAND
DLOG IBSET NOT
DLOGIO IBTEST
DMOD IEOR

The following intrinsic functions are allowed in FORTRAN
subroutines that will be used by BASIC programs:

DABS DSIGN MAX0
DMAX0 TABS MINO
DMAX!]1 IDIM MOD
DMINO IDINT
DMIN! ISIGN

All standard FORTRAN string manipulation functions are available.
These subroutines are as follows:

DNCASE INDEX IVERFY
KOMSTR LENGTH MFLD
SUBSTR TRANS UPCASE

FORTRAN Interface Runtime Library

USER SUBROUTINES

Three FORTRAN subroutines are provided to allow the programmer
to exchange string and error information between BASIC and
FORTRAN subroutines. The subroutines are:

GETSTR - Get a string from a BASIC program.

PUTSTR - Send a string to a BASIC program.

ERROR - Send an error sequence to a BASIC program.

Two of these subroutines are used for passing strings. The GETSTR
subroutine passes a string from a BASIC program into a linear array in
a FORTRAN routine. The PUTSTR subroutine passes a string froma
linear array in a FORTRAN routine Back to a string in a BASIC
program.

The ERROR subroutine provides the capability of passing error
information from a FORTRAN subroutine back to a BASIC
program. An error number and a severity code is sent which the
BASIC program uses to process the error. The error number allows
programmers to define a private error list. Severity codes are sent to
define the appropriate program response for Fatal, Recoverable, and
Warning level errors.

The following example shows how to use the string transfer
subroutines in this library to pass string variables to and from a BASIC
program. Refer to the descriptions of the GETSTR and PUTSTR
subroutines in the FORTRAN Interface Runtime Library Users
Manual and the DNCASE subroutine in Appendix D of the
FORTRAN Programmers Reference Manual, and refer to the
description of the CALL statement in this manual while studying this
example.

The calling statement in the BASIC program is:

100 ‘convert from output in to lowercase
110 ‘input in ut in BS. error code in ER%
120 CAL UPLOW(A®, BS,

FORTRAN Interface Runtime Library

and the FORTRAN subroutine where the library subroutines are used
1S:

SUBROUTINE UPLOW(A, B, ERR)
INTEGER A(1),B(1), ERR, LEN, STRING(40)
LEN=80
CAL. GETSTR(A, STRING, LEN)

(LEN .EQ@. -1) GOTO 9000
Cat DNCASE (STRING, LEN, IERR)
IF (IERR .NE. 0) GOTO 9000
GALL PUTSTR (STRING. B, TLEN)

RETURN

9000 ERR=-—1
RETURN

The CALL statement in the BASIC program branches to a
FORTRAN subroutine named UPLOW and passes the location of
three variables, two strings, A$ and B§, and an integer ER%.

The first line of the FORTRAN subroutine defines the subroutine
name UPLOW and the names of the variables which are exchanged
with the BASIC program. Since these variables are passed by location
reference and not by name, the FORTRAN subroutine uses these three
variables with its own names. A$ in the BASIC program will be called
A in the FORTRAN subroutine; B$ will be called B; and ER% will be

called ERR. The next program line declares the variable types: single-
dimensioned integer arrays for the two-byte string names, two integers
for an error log and a length counter, and an 80-byte integer array
STRING to be used for the string in the FORTRAN subroutine. In the
third line, the LEN integer is set to 80, the length of the target array.

The FORTRAN subroutine GETSTR is called to transfer a string
from the BASIC program to the FORTRAN subroutine. In this case,
the BASIC string A$ (FORTRAN variable A) is transferred to the
FORTRAN variable STRING. Following this, the LEN variable is
examined to determine if it contains a “target too large” error code
(-1), in which case control is transferred to line 9000 and subsequently
back to the BASIC program with ERR=-1.

If no error code is detected, the standard FORTRAN character
manipulation subroutine DNCASE is used to convert the uppercase
string to a lowercase string. Note that LEN contains the string length in
bytes if the GETSTR procedure was successful.

FORTRAN Interface Runtime Library

After once again checking for an error code (IERR<>0), the
PUTSTR subroutine is used to return STRING to the the BASIC
program (as B$ or FORTRAN B). The error code variable ERR (ER%
in the BASIC) is set to 0 to indicate a successful procedure, and control
is returned to the BASIC program.

After control returns to the the BASIC program, the variable B$
contains the lowercase version of the variable A$, and the variable
ER% contains a 0.

SUBROUTINE FORMAT

The following example illustrates the use of the CALL statement of the
BASIC to use a FORTRAN subroutine. Additional information can
be found in the Fortran Interface Runtime Library User Manual.

the BASIC Program:

10 DIM A(C999%) ‘DIMENSION ARRAY
20 LINK ‘STAT’ 'FORTRAN SUBROUTINE
30 FOR T%50% TO 99IIAZNACTIZ) =RND\NEXT 1%‘LOOP, FILL ARRAY
40 re) =) O 'RESET VARIABLES
SO CALL STATA): 100%, M. S) CALL SUBR.,.PASS VARIABLES
&0 PRINT ‘The mean value is ‘’:;M T ‘PRINT MEAN
790 PRINT “The standard deviation is ‘:;S' PRINT STD.

FORTRAN Subroutine

Cc
Cc This is an example of a FORTRAN subroutine called fram a
& the BASIC program.

Cc This subroutine calculates the mean and standard deviation
c of an array of double-precision values.

C SUBROUTINE STATCARRAY, N, MEAN, STDEV)

REAL #8 ARRAY(1), MEAN. STDEV, SUM, SUMSG@
C INTEGER I,N

SUM = 0
SUMSG@ = 0
DO 10 I=1,N

SUM = SUM + ARRAY(I)
SUMSG = SUMSG@ + ARRAY(I)#ARRAY(TI)

10 CONT INUE
MEAN = SUM/N
STDEV = DSGRT(SUMSG/N — MEAN#MEAN)

END

FORTRAN Interface Runtime Library

The following command file will generatea FORTRAN module which
can be linked with the BASIC. The file runs the FORTRAN Compiler
program, then the Linkage Editor program, then the Object Translator
program. Finally, the File Utility Program is run, the object file
deleted, and the memory packed. Control is then returned to the
Console Monitor.

COMMAND

FC
EDO: 7, ABO: , EDO: =7

LE 7, EDO: 7, EDO:

TASK 7
FORM ASCII
PARTIAL
INCL EDO: ?
FIND FTNSIF
END

OTP

Fu?

FUP
EDO: 7. OBU/D
EDO: /P

COMMENT

RUN FORTRAN COMPILER PROGRAM
PLACE THE OBJECT AND SOURCE FILES
ON EDO: AND THE LIST ON KBO:
RUN THE LINKAGE EDITOR, PLACE THE
OUTPUT AND SCRATCH FILES ON EDO:
CREATE PHASE O
CREATE ASCII FORMAT OUTPUT FILE
SPECIFY PARTIAL LINKAGE
LOAD THE INPUT FILE
LOAD THE FORTRAN INTERFACE MODULE
EXECUTE COMMANDS AND EXIT THE
LINKAGE EDITOR PROGRA
RUN THE OBJECT TRANSLATOR UTILITY
PROGRAM
TRANSLATE THE FILE TO BASIC
coe EI Le FORM.
RUN THE FILE UTILITY PROGRAM
DELETE. THE OBJECT FILE
PACK THE E-DISK
EXIT BACK TO CONSOLE MONITOR
PROGRAM

Appendix J

Virtual Array
Program imensioning D

te one
z
o

o
s

=

Ma
<

=
r

[+
4

a
z

So
~

c+
4

~

u
J
~

z

=~
<

nv
z

o
n
d
"

=~
~

z

z
6.

z

=

>

ol
~

=z
[6 |

fo)
<

2

a

xr
Z

a

oe
D

ad
ro

4
=z

|

“
~~

ht
i49)

<

a

c=]
i>)

a

=
M
l
s
 @

=z
aw

<

pe)
|

e
n
a
r

lJ
a

iéed
=

~

a

“~
-_—

=

<

[+
pm |

<

bad
us

a

-_
o

=z
z

oO
>

(=)
@

[> 4
hae

tre |
o~

~

=z
~
u
s

a

>

So
=x

[-*)
Pa]

ey)
C
e
e

>

~

<«
li.

~

QO
=

>

=

uJac
<

29)
ze

&

x

So
[=]

r
4

a

a
c
e

Ot
ta

x
n

wc
@

~

=

ad
ao

.
us

e
z

fo
es)

o
u

«x
<€

rad
w
r
t

@

=
~

a

O
-
-
e
e

<
<

o
e

<
n

=

Ps
da]

oad
=

o
w

Pi
~~

«&
(4

i
>

ao
W
w

~

aA
O
Z

=
Z
u
l

=z
tal

a

a
O

a
e
d

Y
K
u
c
t
s

~~
O
>
u
l
-

m
=

™
a

~

o
e

<
E

<
t
T
t
o
a
r

—

=

t
e

=
w

z
e
e

re
a

O
I

N
S

pom
FG

|
fe

f
e

for]
Of

&
o¢

la
x

=
=

oOo
F
u
l

lad
~~

w
t

+

o
o

Q
u

a

Se
<
«
w

>=
O
M
u

=
=

—
z
O

=z
ao

<
i

O
e

e
x

Lae
Lin

w
a

uJ
a

<
q

e
€

Z
<
z
Z
O
r

«
=

oo
iW

-
an

w
i

a
e
s

=~
Of}

L
c

QO
lJ

a
I

Oo
f
x
r

z
>

™
x
A
Z

~

oO
w
i

«
~
-
f

>

=

<
z

z

z

w
i
t
s

z=
w
e
e

S
K

L
I
e

™
=e
W
I
S

x

a

<
i
m
n

i=)
c
e

=z
lad

So
x=

~
a
&

re
<

o
m
a

=
“x

Z
E
W
H
w
o

=z
'

O
e

in
e
z

las
=

Lad
H
e

Oo
a
>

4
~-

S&S
a
d

™
zs

O
m
a

x

~

<x
w
i

t
w
e
e

o
u
.

x
o

lad
J

a

an
o
w
i
k
.

O
n
z
e

J
A
W

™
xz

=
O

Z
l

aw
“a

u
a
l

w
s

So
o
o

1

la
=z

ad
La.

od
O
r
e
m

o
w
n

bd
x

©8
€
é
&
r
F

~

ao
e
l

@

ul
—-

u
l
e

a
<

Lez]
lad

—_
<
a

<
.
J

ie
4

e
a

az
Z
u

oO
=

=
!

O
e

o
r
f

<

C-
d
]

x

<
a

uw
C
O
>
-
—
C
O
Z
H
T
Z
z

ld
x

W
d

e
s
t

o
uw

Z
z
!

z

a
2
z

a

Y
O

—™
0

2

oo
lad

>=
OF

Se
«
£
2

Z
H
I
D
r
e
D

oO
z

£
a
o
a
e
a
e

~

x=
w
i
l

wre
W
o

&

Z
Z

[a
- 4

|

2

>
a
b
e

Z
Z

C
u
e

T
o
x

=~
=

m
e
t

<

~

He
A
I

-
«

2
O
o

OQ
h
i
e

<
>

r- °)
a
e

2D
—
e
e
o
z
e
w

kL
>

a
n
a
a
x

=z
=
!

N
O

a
k
e

W
C

>

=~
ul

2
a
c
o

S
C
E
C
W
L
O
M
Y
W
O

J

=z
O
u
d

W
C

~

w~
[

O&
w
t

GA
D
D

Ww
feo)

oe
e
g
u
l

o~r~
2

a
s

=

a

So
W
o
r
e

u
m

o

z
i

S
f

~~
u
l

Lap]
lad

ta
C
e

L
o

Z
l

e
t

=
O

=
8

=

D
A
H
H
I
N
l
D
O
W
A
N
r
D
o
n

w
r

ue
G
I
N

ao
==

&£
R
e

=
e

So
°o

a
e
s

B
e

O
F

o
w

O
F

f-
=

foam
Se

|
A
M
N
O
W
N
M
N

W
E

m
i

O
f

oOo
w
n

<£<
Z
z

=

a.
-

=

a
n
n

e
S
Z
W
O
r
x
“
c
z
o

3

Zz
o
w
J
a
c
u

A
N
S

a
T

a

x
i

—
¢

“a
X
E

WwW
e
e

z

N
O
O
x
y
w

oO
'
M
W

£
Z
>
-
O

=

4

N

H
W
S
O

~
o
e

-

B
i
w
r

m
u

at
C
O

z
e

x<
ai

Q
W
x
~
O
r

2
O
r
A
x
X
H

B
u
h
l
e

-

=~
al’

4°
4

~
a
.

a.
'

w

a

O§F
4
a

WH
mm

om
»~

W
h

O
O
>

Z
z

o
c
a
u

o
m

3

-“
Wf

O
E

=

z
<
_

~~
w
i

»
w

w

lal
=

an
<

E
O
I
N

SS
W
H
O

F
L
O

WO
SO

<<
-
O
N
U
E

~

ac
r
i

a
w
e

mo
W
W

|=
|=.)

4

W
o
O

Oo
>»
2
m

O
W

S
W

-
O
w
e
s

o
w
m

C
e
W
W
S

>
oOo

a
t

-
~
s

c

K
e
z

a

F
P
O

F
F

&

ao
2

A

S
C
k
F
W
r
O
O
M

F
O
O

xX
a

=

C
O
r
r
e
z

p
e
d

Om
m
t

a

uw
<
e

G
a
n
n

G4€<=420AT5
W

<<
oo

eee
ee

e
e

>
ee

O
d

od
io)

=~
~

C
E
O

H
u

Uudae
ao

C
i

e
H

QO
=

=

l
L

e
e
e

e
o

a
Z
I
Z
O

A
M
W
e
A
a
O
o
w
W
I
a
o
C
a
T
>

&.
ZF

C
h
a
a
w

a
w

2

Q
i

a
z

Ww
o
w

7)
eS

w
w

C
o
r
r

Z
W
u
e

<
-
<
e
]
a

Z
O
Z
z

I
S

4

=

A
Z

Q

D
i

w
e
n
r
r
e

ao
o
t

N

<<
a
m

O
O
U
O
S

D
r
o
w

F
K
O
r
F
O
Z

B
O
U
L

Z
H

O
C
O
D
M
E

za
La,

OL.
Le.

C3
n
w

g
o
l

t
H

a
t

td
=>

o
O
m
m
n
o

o
F

fF
S
8
F
O
r
F
 DAD

B
Z
O
V
S
O
F
r
W
r
F
Y
i
I
W
E
S
e

x
w
w

O
F
Z
O
O
Z

Z
r

z

2
I

~
t

oO
q
a

=:
C
Y

a
m
M
m
a
k

O
A

z
=

-

wmeo—4
e
A
z
a
e
c
u
n
7
t
<
x

«x
z=

«=
=m

~
o

ao
G
O
!

ww
m
o
c

+
u&

©ooOo
D
D
D

SO
S
O
D

£&
£
2

O
8
0

-
<
€
0
d
c
r
e
5
D
0

«
a

off
«©

«
a

bpm
|

om
|

O
f

Ww
=

SO
k
h

N
M
U
M
S
E
Z
R
K
O
Z
O

Y
U
A
D
A
U
D
5
D

Z
2
Z
Z
O
O
C
O
r
w
W
r
O
Z
O
A

x
o

x
oo

O
O
F

a

a

*
»

£
2

ww
Ww

z

QO
C
e
c
e

w
w
z
Z
Z
o
n
o
O
o
r
~
s
a
c
t

*
<<

ex
Z
-
-

Z
Z

O
a

7)
Oo

=
@

oO
<

~

Z
O
O

C
e
e

H
w
y

D
H

D
H

re
~

-«
™

—

<

Z
v
i
v
e

f
e
e

W
N

s
SoS

2
0

W
W
W
Z
e
E
e
O
t
W

H
P
Z
e
z
s
z

H
A
U
R

E
N
U
M

om
=

ms
~

m
a
w

P
t

w
s

«
©
O

~~
£

—

Z
Z

A
Q
A
C
O
A
x
®
A
a
U
S
O
F
 FE

O
F
O
R
R
H

z

-
“4

n
m
i

z
>

o
n

@

=
e

—-
£€fm

C
e
e
o
r
t
i
i
j
o
~

C
E
C
E

a
n
n
e

n
n
r
-

+
oOo

=
m

z
z

x
«
Z
z

-
w
e
t

e
B

S
e

=

F
E

C
O
O
O
L

a
r
-
a

M
R
N
M
M
N
M
M
M
M
M

=
x

ao
-«

N

N
N
R

w
w

=m
fe 4

d
O

&

x

zeB®
ZZ

W
O
M

Ci
i

e
e

a
l
e

4

e
e

a
e

|
“

N
R
N
A
N
A
O
N

N
O

=
e
a
e

G
.
b
«

xz
Oo

w
e

wr
o
R
u
n
h
a
n
u
n
h
u

w
w
w

ww
w
s

e
w

er
s

=
M
M
N
R
N
R
M
N
M
O
N
L
C
N
s
s

~
G

=z
<

£
n

w
o

a
e

w&
A
m

n
w

NM
N
M
N
N
N
O
N
M
N
N
N
S
®

KK
LI

ZR
N
R
O
M
O
N
N
T
R
A
M
W
A
N
w
H

W
M

m
z
s
f
s
t
~
-
p

S
e

e
e

KH
O
O

W
e

N
N
R
N
N
N
N
R
N
N

W
e

U
Z

e
S

O
F

N
G
S

oO
K
C

Bw
M
P
A

N
h
U
N
n
U
e
h
a
e
a
s
e

se
Go

wm
H
B
H
B
A
e

M
u
a

E
E

ZZ
s
s

Q

w
w

C
M
O
Y
R
I
N
I
Z
>

C
E
S

W
W
E
Z
H
N
N
M
M
N
D
A
S

x
O
C
W

K
I
M
N
N
N
N
N
A
N
N
A
N
R
N
N
M

E
L
E

ZC
H
H
O

w
o

F
s

u
f

~~
1

@
M
E
E

A
N
O
S

O
R

O
O

H
e
r
e

Bm
O
O
o

«

b
a
h

=
e
:

Y
O
O
n
r
-
-
-
-
-

Z
Z
S
K
V
P
Z
L
Z
A
Z
Z
Z
Z
Z
Z
Z
-
-
A
A
~
x
-
-
-
-
-
-

ed
coe

ame
ool

o
r

k
e

Ue
O
Y

et
OD

C
e

|
-

o
o
o
q
q
d
o
o
c
o
o
c
o
o
e
o
o
o
o
0
o

c
o
o

o
o

o
o

o
o

o
o

o
o
c
o
o

o
m
a
e
c
e
n
o
c
o
c
o
m
o
q
q
o
o
m
o
c
e
e
c
o
e
q
a
c
o
e

c
o
e
d

e
o
o
e
o
o
0
o
d

C
O
S

N
G
R
D
O
O
C
H
O
O
S
O
G
C
S
O
A
N
M
C
N
O
K
R
D
D
O

A
N
M
S
T
N
O
G
A
D
A
O
A
N
M
T
N
V
O
A
R

O
B
A
O

A
A
N
M

T
L
I
D
O
A
N
N
M

T
R
A

D
O
O
A
N
M

E
I
N

O
R
D
O

A
N
E

N
O
N

E
N
G

O
N
G
O
I
N
G

P
S
N

0
wd

wd
ed

ot
et

ed
wat

ot
W
N

E
N

CNN
ON
E
N
N

N
P
D

D
D
D

D
D

N
e

N
E

NE
1
0
9

1
D

19
D
1

W
O
O

-~G
G
O
O

DO
W
O
S
R
A
R
R
A
R
E

&

J-1

Virtual Array Dimensioning Program

o
n

a
n

CE
n
o

a
e

a
o

re
o

a
N
M

las
=z

Zz
w
w
w

x
y
E

a
O
»
~

e
o

>

a
a
a

o
a

C=)
r

4
Zz

w
i
h

|

a

ome
ef

2
2
z
z

D
e

a
u

i.
4

c
e
r
e

&

s
o
o
s

lu
Lad

fo)
om

as
<<

=
e

Dod
=

B

pa |
n
a
w

N
n
N
o

Zz
o>

<

~
Z

W
e

i=
oo

z
z
z

©

s
ao

o
a
s
a

z
z

uJ
~

y
4:

4
|

=
hadbatias

=
me

eo
a

w

©

lad
ce

nw
O
W

l
£
£

=
<

o
a
0

w
t

~

l
a
m
e

m
e

el
ab

lad
pe

ag OUT
n”

~

lo
>

4
o
o
a
a
o

z
e

od
* |

La
S
C
w
o
w
o
r

j
1
z

A
u

~

=
D
i
a

m
=
N

w
w

=

Se
w
W
O
D
M
r
e
z

w
i
l
d

l
i
b

~

=
@
n

Mm
Q
O
S

W
i
l
l
s

o
P

@
>

=:
=

oO
f
r
P
x
Z
>
~

GC
£

cP
aad

a

o
u
c

a
o
a

=£
fo

4
=
z

wo
—-

B
Z
W
A
I
O
x
X
e
z
w

>
~
a

a

e
e

—
&

Ww
o
e

m=
°o

A
D

--
is

P a
<€

=

O
m

J
a

~

o
o

So
oh?)

o
o
o

O
N

=

s
s
s

r+)
a

S
O
U
W
W
O

|

N
e

z
z

ZF
}
¥
D

el
oe

ame
~~

«
<z

om
ca

Ye
>

23
Q
N
E
N
I
A
P
E

a
c

A
A
A

Z
u

WJ
z
m

-
«J

A
A
U

a

=

m
E

O
e

S
Z

l
a
t
h

w
r
t
 re

-
r

}-
e
S

A
O

it
r
r

CO
B

=

o
o
o
:

§
lad

2

F
O
U

W
x

N
O

r
e

<
<

€

€X
32D

Z
w

i
C
o
E

w
e

eB
=

N
N

T
e

ft
fe

Oo
2

A
t
w

S
u

bom
|

I
v
w
~
w

e
e

£

C
E
E

O
F

C
e
e

I
t

|

~
~
~

1
O
e

-
9

W
S

e
t

ZS
=z

1
p
a
r
e
n

o
e

Z
O

a
H
)

@&
w
o
e

Z
M
H

oO
m
a
:
o

i:
W
a

poh
hem

|
d
s

a
d

2
£

i:
-
=
>
}
>

f
e

€

-
W
t

Q
W

WwW
C
E
E

W
N

Qo
|

T
e
n

-
o
&

W
o
O
r
o
d
t
o
r

2

|
a
w
S
>

£

w
e

&

£

m
<

I
m
e
e
a
m
~
w

©

Z
l

Ww
WI I
J
O
Z
G

Z
u
l

e
t
x

i
HE

ow
on

late,
le

l
j

Of
Se

s
e
r

e
e

\
e
w
e

O
G

SS
B
O

—-
W
O
Z
e
D
O
H
O

‘
o
d
e

a
A

o
o

OF
:-

2
2

£
0

9

F
e
r
r
e

C
O
M

us
s
s
M
m
c

oO
Ss

De
o
P

4

a
e

e
e
,

M
O
S

o
z

p
e
r
e
r
e

~

«=
=

i
O
o
~
r

98
O
M

a

z

o
n
~

fF
N
W
O

Z
E
Z

&

F
Z

O
F

|
€
£
O
W

W
n

«e
> od

Z
Z
z
O
e

WI
tal

e
x
e
e

yd
a
w
w

o
o

oO
4
-
3

Ww
3

ad
=

a

w@
n
e
n
:
 St

-

* |
s
k

O
O

w
O

=>
o
a

e
t

o
t
f

B
O
Q

3
£
2
:

@
Q
a
-

-«
ae

o

-
A
a
r

x

o
r
-
O
o
z
Z
w

~

O
u

8

«~<dc<E
P
e

FE
N
-
-
M

oe
am

S
N

ez
C
W
O

Z

S
E
e
O

0

2
Z
O
Z
z

DO
KN

S
w
e

Ww
N
E
R

m
r
t

om
tO)

a
e

2

a
m

«
W
r
e
W

q
u
i
s
 Oo

-

x
a

O
O

a
a
c

SF
M
e
w

>

o
n

f
a
é
~

bailed
lad

O
a
t

2
F
H
Z
H
O

OC
m
=

W
i

~
a
j
I
W
O
Z

~
~

a
a

w
a
e

o
o

Oo
@

=~
2
0

££
N
R
N
N

CO
2

Z
3
Q
5
D

<€
A
M

Ww
C
C
K

O
D

N
N

S
o
z
a
3
a

}—-§
@
n
x
n
n
x

«

a
o
a

&

A

BW
C
W

r
F
w
d
O

&
*

BB
D
O
Z

WW
N
Z
I

A
K
S

OO
ekR

e
K

>=
wt

z
z

<

G
a
r

&

<
M

O
O

2

Z
a
z

mM
ws

6
0
2

=F
S
M
=
A
G

<C€
C
O
M
O
G
W

Z

a
l
e
e
 P
e

e
o
?

e
e

-
i

|
“

~

lal
wi

e
t
s

W
N

me
YD

w
e
n
s

~

&€
<
c
e

~N
°o

G
o
a
o
o

a

w
a
r

7?
@

1
2

A
a
n

E
o

x
d

=

@
O
~
n
N
r

CO
o
o
r

a
h
k
H

z
z

oO
a
t
i

-

w
e
r
e

pe
a

O
W

&€
r
N
N

£

w
o
t

<€
G
e
m
)

F&F
|
-
-
-
-
2
Z
Z

w
o
r

W
i
n

me
m
e
t
u
s

KK
€
m

0
8
>

<€
<
2

Ww
a
o

&
s

€

F
O
F

3

O
~
c
o
~

Ww
a
t
e

S
E
 o
l

Q

L
w
n
w

Ww
R
N

¢
=
O

&

e
w
w
w

O
W
)

EF
K
P
O

GK
Hh
O
e

W~-I
Oo

m
r
e

Q
R

t
e
t

meee:
a
n
n

Ze
o
m
e

o
o
e
e
s

~

r
e

N
N
R

F
>
-

OC
O
M
e

WOW
ss
d
a
w

fede
v
m

i
A
n
y

N
u

«Me
£
€
H
U

fO
S
K
K

O
C

CO
ot

=-s
O
o

-—
A
g
e
e

A
N

~

1
B
A
W

~

N

D
E
W

2
2
2

£
e

&

W
l

A

w
h
e

«

R
e
K
z

N
W

xn
e
e

|
o
n

~

Ww
=

L
f

&

N
N
N

@
=

Z
z
e
=
s

Ww
S
O
M

=
i
 +

=“
i‘

m
m
a

@g
K
o

©

X
E

>

<

eee
Loe

P
o
d

oe
O
Y

ee
|

~

~
t
a

~

<
t
c

o
~

Q

w
i
e

had
Z
a
i
d

|
A
C
a
r
e

a

N
-
-
-
-
-
-

N
V

re
E
E
E

-
o
e

<

a
g
o

W
w
W

=

C
Z
E
E
Q

«©
S
O
B
Z

e
e

» oa
N
A
R

~

>

e
e
 oa

ow
a

+
1

#
2
A
S

C
s

Sf
m
e
e

—
6
§
l
h
l
U
C
O
K
W
I
O
R
M

CS
=z

a
n
x
w
~

x

=)
O
O
O

o
r
e

~~
W
O

1
s
f

£

F
e
r

3
s
:

Z
s

2
ot

Pe
-~

+
>
>
>

“=
we

D
u

p
=

=40=4
=e

ces
e
t

me
i

~

o
w

>
~

a
w

N

A
Z

7B
F
e

©

—-—
~

S
E
Z

A
e
m
e
n

ae
at

o
n

v
e
r

fos
| ao F as |

tad
aad

Oo
-

-

had
xz
e
e

L
A
C
K
)

i
r
e
r
e
r
e

~
i

M
P
S

a
h

y
ae

4
M
H
O
M
O
=

@®
2

ZF
v
~
O
M
W

C
l

«x
P
I
P

PT
1

E
w
w

M
I
A

A
N
Z

w
w

p
0
4

ome
2
2
r
F
2

=

&

M
Y

WwW
O
w

£
D
>

K
o
m
e
:

w
r
e

N
+

w
t
 rH

e
t
e

m
n

n
o
o

So
@
s

<

uw
£

v
i
v
t
w
s

o

*
n
o
o
n

ed
O
n
e

a
n
n

«mM
N
M

M
N
O
O
N

2
3
2
2

e
o
u
c
s
i
n
n

O
M

WwW
u
s
e

W
O

«
4
€
<
c
c
e
c

K
e
z

J
I
O

M
K
~
O
N
O
>
-

7D
&
§
~
I
D
U
W

s
e
o

P
r
e

—-
A
T
O

a

a
m

mn
K
E

| aed
ood

oul
ell

oe
B
u
n
a

™

w
i
l
a
e
u

i
oe

r
i
o
t
 ot

me
M
N

O
l

ld
N
N

OW
a

o

e
e
e

e
o

R
a
n
n

L
F

N
N
O
N
F

A
n
A
A
N

.
>

2
4

N
R
N
R
I
E
N
M
E
E
I
N
M
X

m
T

o
u

t
l

«
u

t
w

wt
ot

ot
M
M
N
N
M
N
M

C
H
D

K
Y
P
U
O
K
M

N
N
N

S
t
e
w

O
e

we
e
w
w

S
E

OM
~

P
+

+
+

+
4

A
t
a

=O
tad
t
t

=
r

pe
e
u
M
E
N
M
O
N
e

o

N
N
N

_-
«

n~
N
R
w
w
w
e
w

w&
Zz

w
w
w

Z
2
z
z

N
N
M
O
N
O
L
A
M
G

O
T

i
d
a

ld
=

x
x

nel and
amd

anol
amo

mt
a
t
e
d

ve
N
N
N

m
d

=
me

q
o

OO
<
x
¥
H
2

Q
e

°
£
Z
2
z
Z

K
e

Kx
O
w

Z
Z
Z
Z
Z

N
I
D

WJ
>>

>
J

>

C
e
r

re
ae

2
m

6S
o
O
o

w
U
A

P=6
Dd

bd
=e

=e
x
K
&
n
w
o
w
d

W
i
e
d

D
e

c
a
o
g
k

x

Of
OF

=
Oc

a
3

=z
Z
u

«
N
N
O

fo
fe

gs
ae

ae
S

had
o
s
o

S
o

S
e
e

a
e

=

c
a
m

c
a
w
e

6
0
.
8
4
.
4
4
4
6
.

o
e
m

s
e
m
e

j
e
w

-

-

m
o
m
s

a
w
e

«~
z
e

[
Vag

h
a
e

m
+

@
e
m
-
m
o
m
s
a
e
s

eet
eT

e
k

ot e
[
o
l
o
i
s
f
o
l
a
l
a
l
a
l
e
l
a
l
a
l
o
l
o
l
n
l
e
l
a

[ofa lola
fofalololojaln(~lo[u

lanl
~fol—l=lol—

ol =l-]=]~) =)
S
O
G
O
O
N
O
S
S

O
O
O
O
S

O
O
O
O

O
S
O
O
A
N
M

F
N
G
R

D
R
O
W

N
M
T
N

OR
DOO

HANM
LING

D
R
O
A
N
M
T
L
I
O
R
D
O

O
A
N
A

DO
O
N

EI
LW

OR
DOO

MAM
L
I
O
R

O
0
0

0000
OO

wet
a

rtetet
ot ete

NEON
N
N

S
9
9

M
E

ee
ee

T
r
)

BD
DD

On
AOA

DO
O
O
D

wt ttt
ot et eted

att
ted

“
te

et
do

ete
ot ed ete

ond wt ot
o
t

a
x
l

_
"

o
n
t

e
x
t
-
a
x
t

o
n

w
t

o
t

w
t

o
t

F
R

O
S

O
E

U
E

o
t

Virtual Array Dimensioning Program

=

a

ta
al
|

<

om
=

s
a

=z
=x

~

=

QO
z

ve
-

zs
x

w

a.
zs

d
d

tad
oo

zs
=e

FE
5s

--
@&

=
a

>

Q

s
>

a4
z

a
z

aad
=

a

=
Zz

~

s
>

4
s

=
an

=

©

i
a

zs
Oo

tT
i

x

ad
=

-~
>

-

i
z

-

a

z
a
r
»

i
z

>
4

~

zs
zc

=

@

=
<
s

z=
=

=
lal

z=
a”

a
n

z
oe

s
oO

zs
u
J

z
>

@

«
=z

z
~

c
h

zs
n
z

nm
uu

=
Pe

3
~

Zz
w
=

>

=

=
=

u
j

z
=m

&€
€

Go
zs

~

=

z
=

t
o
n

ul
z

@

-
o

z
o

3

=
2

=
is

|
uJ

=
fa}

=
a

a
u

~

=z
a

Ww
WwW

-_
a

a
w
o

PY
s

w

&

w

x

a
ad

a
z

4

2
a

pom
|

ws
=

Qo
e
2
=

bad
=

@

=z
-

a

=
oe

oa
z
+
,

-

=
~

G

a
|

=>
&

ad
a

=
a”

O
n

a

<

we
o

-
—
=
z

load
=

ws
&

<€
Loe

uJ
~

=

s
fo)

<

€

3

Q

nw
Q
o

=

| om
s
e
s

40]
=“

=

S
s

a

So
3:
M
o
m

=

°o
~

a

o

~-
|
a

<
*
>

4
a.

=

r
w
a
d

=
<

>
w
O
s

WO
ad

oO
a

| a
es

=
|

=m
£
O
n
o

a&
=

m
s
l

=

&

~

w
m
)

|

=

|]
o
n

=z
a

wm
eo

-
a
v
r
o
w

a

ao
-~

w

=
>

=

-~
wt

r
e
r

r- *)
wi

Me
Zz

QO
a

eo
mM

ww
w
t

w
s

=

a

«

£

=

oe
~

GB
M
e
g
d
e
e

7

~

o
n
 =

;
<<

<
i
j
c
J
J

x

@

Zz
O
e

=z
a

tw
K-

&
-
e
r
 st

=

o
a

w

w
r
t

f
e

.
oe

4
-_—

s
e
m
a
n

la
-—-

D
s

e
a
s

w
t

z
l

am
H
O
C

So
G&G

ss
-

s
-

z
e

.
or. 3

-

Y
W
>
—
)

oe
om

ce
zs

}

i
xz

O
r
n

A
n

O
N

za
wi

So
@
o
o
o
o

1
wz
O
Z

n
n

m
=
z

uz
+

Zz
Z
2
Z
2
2
z
Z
z

l
™

z
=

N
G

L
=z

So
oe

La
oe

Le)
i

ws
4%

W

w
w

M
e

a
w

oO
Q
o
u
u
w

=
o
n

a
a
d

«
~
~

aw
3

2

2
9
2
2
3
2
5

uz
A
R

Z
e

o
H

Bz
A
N
N

zu
MN

xX
=
r

w
x
&
«

Mm
P
e
t
e

ao
a
e
n
e

wz
w
i
t

w

e
r

o
t
e

BR
B
V
I
)

oh
etet

ot
=

404
ER

w
e
t

e
t
e

e
t
n

Zs
w
n

B
S
B
E
B
E
E
S
E
T
I
S

N
w

=«
N
E
I

O
N
S
B
S
I
S
T

I
O
N

az
N
N

U
d
i

«2
O
N
M
D
X
T

n
w
o
a
x

Re
O
e

d
d

od
ol

od
od

oe
od

x
3
s

=

=
P
o
e

ul
B@

W
e

§
Z
S
Z
S
Z
I
Z
I
Z
z
Z
z

i
P
H

&
8

a
S
E
S
Z
S
Z

A
e

w

W
O

OB
RR

Hh
t
t

ot
t
t

I
x
x
x

KNOX
XK
R
H

H
M
O

K
O
O

DW
dead

P
O
L
O

O
O

W
i
d

*«
£
O

W
e
e
e
r
e
r
o

w
i
z

o
e

€
£
0
.
0
6
.
4
.
8
.
6
.
6
.
4

o
n
:

B
B
Z
-
-
-
-
-

E
a

2
4
4
4
0
6
6
4

Z
o
u

e
o
o
e
c
o
o
o
c
o
o
o
0
0
e

o
o
c
o
c
o
o
o
a
e
o
c
o
e
o
c
m
o
o
o
o
0
o
0
0
0
c
0
0
0
n
a

O
e
n
N
m
M
C
I
N
<
O

D
B
O
O
A
N
T
W
D
G
A

B
O
O
O
A
N
M

T
N

DOA
B
O
o
x
a
A
n
m
M
y

C
O
O
O
S
C

C
0
0
0

O
e
w
w
t

Ht
t
t
t

HH
I
O
N

O
O
O
O

O
O

0
0

OO
Owdt

w
i
t

i
w

A
N
N
A
N

A
A
N
I
N
N
A
N
A

NN
A
R
N
N
A
N

O
N
Y

M
M
M
M

M
M
M
m
m
M
m
m
M
m
m
m
m

J-3

Appendix K

Graphics

INTRODUCTION

The Instrument Controller display offers several useful features that
enable the design of customized operator message outputs. These
features include character graphics, graphics routines, double-size
characters, reverse video, double intensity, and blinking. In addition,

the cursor control functions and erasing capabilities give the
programmer complete control over the display. With the exception of
the graphics routines, these features are all discussed in Section 14 of
this manual set.

OVERVIEW

This appendix describes the graphics routines contained in the object
file:

GRAPH.OBJ

These routines may be used to create highly formatted displays. The
routines included allow plotting and drawing lines, relative to a point
or from absolute coordinates. Other routines allow placing a single dot
at a specified pixel location, moving (relative and absolute), erasing,
and disabling the graphics display.

Section 8 of the 1722A System Guide contains an excellent
introduction to display graphics. Read this section first, to familiarize
yourself with the terms and concepts used.

Graphics

GRAPHICS ROUTINES

Information to be displayed is held in two separate portions of
memory: the character plane and the graphics plane. Both of them can
be turned on and off using the ANSI Standard Mode Selections.
Additionally, the graphics plane can be turned on and off using two of
the routines in the Object File named “GRAPH.OBJ”.

To use the Graphics Routines, the program must link to the object file
prior to any command using the graphics plane. Your program must
have the line:

LINK “GRAPH”

before any graphics routines are executed. If you place the line early in
any program that will use the graphics display, it will save time by not
accessing the disk during program execution to load the graphics
routines into memory.

Graphics

Routines

Display Graphics Commands

The paragraphs that follow describe each of the graphics routines.
Note that all the arguments must be integers; i.e., they must be
followed by the symbol % in any BASIC language program that uses
them.

Graphics

Routines

Summary of Commmands

The table that follows describes each of the graphics routines. Note
that all the arguments must be integers except for the first arguments to
1 ABEL and LABELF. This means that in a BASIC language
program, for example, the arguments must be followed by the %

symbol. In FORTRAN, variable types are determined by the first
character in the variable name (Integers I though N), or by using the
TYPE statement. See the particular progamming language manual for
full details.

All of the following routines can be called by a BASIC or FORTRAN
program except for LABEL and LABELF. LABEL 1s called by a
BASIC program and LABELF 1s called by a FORTRAN program.

SUMMARY OF GRAPHICS ROUTINES

COMMAND PURPOSE

DOT (Xx, Y, {type})

DRAW (X1, Y1, X2, Y2, {type})

ERAGRP ({type})

GRPOFF

GRPON

MOVE (xX, Y)

MOVER (Xoffset, Yoffset)

PAN (X, Y)

PLOT (X, Y,{type})

PLOTR (Xoffset, Yoffset, {type})

LABEL(S$, D%, T%)

LABELF(STR,LENSTR,DIR,TYPE,

Draws a single dot at X, Y, returns to the

Current position.

Draws a line from X1, Y1 to X2, Y2.

Erases the entire graphics plane.

Disables the graphics plane.

Enables the graphics plane.

Moves to absolute position X, Y.

Moves relative to amount specified by

the offset.

Sets display window position to X, Y.

Plots from current position to X, Y.

Plots relative to amount specified by

the offset.

Place string in graphics memory either

horizontal or vertical

ERROR)

*Type: -1 = INVERSE

0 = BLACK

1 = WHITE

K-4

Graphics

Routines

O ©The values of the X and Y arguments may not exceed 2047, and
may only be negative in the relative commands MOVER and
PLOTR.

O The X argument is the number of pixels inthe horizontal direction.
Since the screen is 640 pixels wide, the center is 320 pixels from the
left edge.

O The Y argument is the number of pixels in the vertical direction.
The screen is 224 pixels high, so the center is 112 pixels from the
bottom edge.

O The ‘Type’ argument determines whether the routine paints white
on black (1), black onto white (0), or the inverse of the color

already at that position (-1).

O The S$ argument is a string variable or string constant that ts
placed in the graphics plane.

O The STR argument is an array with one character in each byte that
is placed in the graphics plane.

O The LENSTR argument specifies how many characters are in the
STR array.

O The D% and DIR arguments specify whether the string should be
placed in the graphics plane horizontally (0) or vertically (90).

In the pages that follow, each of the routines except LABELF is
described in detail, and some suggestions are given about the kinds of
things that each of them can be used for. Some of the descriptions
include program examples. The example listings are all shown as they
would appear in programs written for the BASIC Interpreter.

K-5

DOT
GRAPH.OBJ
Usage

DOT(X%, Y%, {type%})

Description

This routine places a single dot at the specified coordinates, then
returns to the current pixel position. Because this routine returns to
the former pixel position it is useful in the construction of detailed
charts or graphs that require pixel resolution and are generated by a
mathematical formula that calculates each point from the same
position.

Parameters

xX An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the dot.

Y An integer 0 to 255 that specifies the absolute vertical pixel

location for the dot.

type Aninteger value that specifies whether the dot is painted white
on black (1), black on white (0), or the inverse of the color
already at that position (--1).

Example

K-6

This BASIC program uses DOT to draw a sine wave. It first asks for
“Amplitude”, and then for “Period”. The amplitude 1s the peak-to-
peak pixel amplitude of the sine wave that will be drawn. The period 1s
used for frequency and sampling rate. Notice that the program does
not allow a period of less than |. Selecting periods less than five results
in waveforms whose resolution is too coarse for the wave to be
observable.

LINK "GRAPH ' link to graphics
ERAGRP CO%) \ GRPON
PRINT CHRS(27) + "C2"
PRINT CPOS (14.0); "Amplitude";

erase, turn on graphics
clear character plane
input amplitude

‘

INPUT A ' amplitude: dots peak-to-peak
PRINT CPOS (15,0); "Period"; ' input period sampling rate)
INPUT P t eriod: no. of dots/cycle
IF P = O THEN 60 ' = 0O is illegal
PRINT CHR®(27) + "C2U" ' clear character plane
FOR X% = 1 to 640 ' x across display

Y = A # SIN (XK / P) ' calculate y
Y% = 0.5 * (Y) ; 112 ' integerize and offset y
DOT (XX, YR, 1% : @ot at calc’ed position

NEXT X% ‘ continue calculation
COTO 40 ' next value

Usage

DRAW
GRAPH.OBJ

DRAW(X1%, Y1%, X2%, Y2%, {type%})

Description

This routine draws a line from absolute position X1, YI to another
absolute location, X2, Y2. If the final position is beyond the edge of the
graphics plane, the line will end at the edge. The current pixel position
is not changed by DRAW.

Parameters

Xi

Y!

X2

Y2

type

Example

An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the start of the line.

An integer 0 to 255 that specifies the absolute vertical pixel
location for the start of the line.

An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the end of the line.

An integer 0 to 255 that specifies the absolute vertical pixel
location for the end of the line.

An integer value that specifies whether the line is painted white
on black (1), black on white (0), or the inverse of the color

already at that position (-1).

Current position is 0,0. To draw a white diagonal line across the
display, use:

DRAW(O%, O% 639%, 223%, 1%)

K-7

ERAGRP
GRAPH.OBJ
Usage

FRAGRP {type%}

Description

This routine erases the entire graphics plane to the color indicated by
{type%}, either green, black, or the reverse of the color before erasing.
Any data within the plane will be deleted. The character plane is
unaffected.

Parameters

type An integer value that specifies whether the screen is erased with
white (1), black (0), or the inverse of the color already at every

position in the graphics plane (-1).

Example

At the beginning of a program, use ERAGRP to prepare the Graphics
plane for the display.

ERAGRP (OX) ' Erase to black
ERAGRP (1%) ' Erase to green
ERAGRP (-1%) ' Create inverse image

GRPOFF, GRPON
GRAPH.OBJ

Usage

GRPOFF,GRPON

Description

These routines turn the graphics portion of a display off and on. The
memory is left intact; the routines only determine if the graphics plane
is displayed or not. The character plane is unaffected.

Example

A selection display has just been presented to the operator. When the
selection has been made, a new display 1s presented that contains new
graphics. Rather than using ERAGRP to erase the graphics plane,
however, it is desired to leave the contents alone because the test results

update the display for the next selection. In this case, use GRPOFF to
turn off the graphics display. When the display is updated, the program
uses GRPON to display the change.

MOVE
GRAPH.OBJ
Usage

MOVE(X%, Y%)

Description

This routine moves the current pixel location without drawing. If
either X% or Y% are outside of the graphics plane, the move stops at
the corresponding edge.

Parameters

xX An integer 0 to 2047 that specifies the absolute horizontal pixel
location to move to.

Y An integer 0 to 255 that specifies the absolute vertical pixel
location to move to.

Example

A program has just drawn a diagonal line from the bottom left to the
upper right corner of the screen. Now, to “lift the pencil” to get back to
0,0, use the MOVE routine:

MOVE (0%, 0%)

MOVER
GRAPH.OBJ

Usage

MOVER(Xoffset%, Yoffset%)

Description

This is the relative move routine. It moves the current pixel position to
a relative position within the graphics plane. The move is done without
drawing; if the new position 1s outside the graphics plane, the move
stops at the corresponding edge.

Parameters

Xoffset An integer —2047 to 2047 that specifies the relative number
of horizontal pixel locations to move.

Yoffset An integer -255 to 255 that specifies the relative number of
vertical pixel locations to move.

Example

A program 1s being designed that draws two figures that may appear
any place on the display. The second figure must appear immediately
to the right of the first. After the first figure is drawn, use the relative
move routine to move the current position relative to the ending
location of the first figure.

K-11

PAN
GRAPH.OBJ

Usage

PAN(X%, Y%)

Description

The PAN routine moves the window around the graphics workspace.
The reference is the lower left corner of the display window. Positive
arguments move the reference corner to the right and up. Negative
arguments move the reference corner left and down. PAN does not
affect the current pixel position.

Parameters

xX An integer -2047 to 2047 that specifies the relative number of
horizontal pixel locations to move the reference corner.

Y An integer -255 to 255 that specifies the relative number of
vertical pixel locations to move the reference corner.

Example

During a measurement session, data has been collected by a program,
and has become part of a data file. The operator then elects to view the
results of the day. The program inserts the raw data into a subroutine
that creates and draws a chart that cannot fit in one window. Use the
PAN routine to permit viewing the entire chart. Left and right arrow
keys can be made part of the display, to allow positioning the window

at any area of interest.

PLOT
GRAPH.OBJ

Usage

PLOT(X%, Y%, {type%})

Description

This routine draws a line from the current position to the location
indicated by the X and Y arguments. (Also see DRAW.) PLOT uses
the current position as the starting place to begin drawing, rather than
defining the starting position, as DRAW does. The current pixel
position is updated to X,Y.

Parameters

X An integer 0 to 2047 that specifies the absolute horizontal pixel
location for the end of the line.

Y An integer 0 to 255 that specifies the absolute vertical pixel

location for the end of the line.

type An integer value that specifies whether the line is painted white
on black (1), black on white (0), or the inverse of the color

already at that position (-1).

Example

Use PLOT rather than DRAW in those instances where the starting
position will be unknown, but a line is desired from one place to some

other position. This routine can be used in constructing some types of
graphs, like pie-charts. As the program collects data, the value of the
data would be inserted into a Relative Move statement, and the PLOT

statement would draw the line from the starting point to the calculated
position (which then becomes the new current position).

PLOTR
GRAPH.OBJ
Usage

PLOTR(Xoffset%, Yoffset%, {type%})

Description

The relative plot routine draws a line from the current position to the
location indicated by the Xoffset and Yoffset arguments; it is similar to
DRAW, except that as it returns to the starting position, continues
drawing; it doesn’t “lift the pencil”.

Parameters

Xoffset An integer -2047 to 2047 that specifies the relative number
of horizontal pixel locations for the end of the line.

Yoffset An integer -255 to 255 that specifies the relative number of
vertical pixel locations for the end of the line.

type An integer value that specifies whether the line is painted
white on black (1), black on white (0), or the inverse of the
color already at that position (-1).

Example

A triangular figure is to be drawn, and it may appear anywhere within
the graphics plane. Use the Plot Relative routine to draw the figure
relative to any Starting position. This example draws a triangle that will
be black if the field is green, and green if the surroundings are black:

MOVE (OX, OX)
PLOTR(60%, 60%, -1

TR(60%, ~60%. -
%)

PLO 1%)
PLOTR(-120%, OZ, 1%)

LABEL
GRAPH.OBJ

Usage

LABEL({string}, {direction}, {type})

Description

This routine places a string of characters in the graphics plane. These
characters appear exactly as they would if displayed normal size in the
character plane. The character string can be positioned horizontally or
vertically. The current pixel position determines the starting position
of the string. The current pixel position is updated so that a subsequent
LABEL routine call will cause string concatenation. See subsequent
examples on string positioning. If the final position of the string 1s
beyond the edge of graphics memory, the string will wrap around and
continue at the opposite edge.

The LABEL routine puts a string into the graphics plane at the rate of
about 1/60 of a second per character which means that it takes about

|.3 seconds to draw an 80-character string.

If keyboard input occurs during a long series of drawing operations,
there could be up to a 6.5 second delay in responding to the input. This
delay time also occurs with (CTRL) /C, (CTRL) /P, andthe ABORT.

Parameters

string This is a string constant or a string variable. Each
character of the string is taken from the character
EPROM. If access to the alternate character set 1s desired,

the string should contain the ASCII control character SO
(shift out, decimal 14). All characters after SO are taken

from the alternate character set until the ASCII control
character SI (shift in, decimal 15) 1s encountered. The SI
causes selection to revert to the primary character set. The
default is the primary set, so all selection is from the
primary set unless SO is encountered.

The maximum length of a string that can be placed in the
graphics plane witha single LABEL call is 80 characters.
Since the control characters SO and SI are not displayed,
they are not part of the 80 character string length. If the 80
character string length is exceeded the string will be
truncated.

K-15

LABEL
GRAPH.OBJ

direction

type

This is an integer 0 or 90. If the direction 1s 0, then the
string will be horizontally oriented in the graphics plane.
If a direction of 90 is given, the string will be positioned

vertically. See subsequent examples.

This is an integer 0, |, or -1. It determines whether the
routine paints a white label on a black screen (1), black
label ona white background (0), or the inverse of the color
already at that position (-1).

Errors

LABEL
GRAPH.OBJ

2006 - direction argument not 0 or 90

Example 1

This BASIC program places a 26 character horizontal string in the

graphics plane. An initial MOVE changes the current position to
100,150, the place where the bottom left corner dot of the first
character cell of the string will be. LABEL updates the current position
to the dot immediately to the right of the bottom right corner of the last
character cell of the string (308,50). A horizontal character cell 1s 8 dots
wide and 14 dots high, so in this example the current position has been

updated in the horizontal direction by 208 dots (26 characters X 8
dots).

10 LINK ‘graph’ \ LINK ‘/xgraph’ ' Link to graphic routines
20 PRINT CHRS$(27); "C20" ' clear character olane
3O ERAGRP(O%) \ GRPON \ PAN(OZ, 0%) ' erase & tuTn on grapnics plane
40 MOVE (100%. 50%)
SO LABEL‘ This is a horizontal label’, 0%. 1%)

The following 1s what appears on the display screen after the above
program Is run.

(r ~ >

This 16 a horizontal label

(100,50) (308,50)

K-17

LABEL
GRAPH.OBJ

Example 2

This BASIC program places a 24 character vertical string in the
graphics plane. An initial MOVE changes the current position to
300,10, the place where the bottom right corner dot of the first
character cell of the string will be. LABEL updates the current position
to the dot immediately above the top right corner of the last character
cell of the string (300,202). A vertical character cell is 14 dots wide and
8 dots high, so in this example the current position has been updated in
the vertical direction by 192 dots (24 characters X 8 dots).

10 LINK ‘graph ' link to graphic routines
20 PRINT HRS (27); C2" ' clear character plane
30 ERAGRP (OZ) \ GRPON \ PAN(OZ, 0%) | erase & turn on graphics plane
40 MOVE (300%, 10%)
SO LABEL (’This is a vertical label’, 90%, 12%)

The following 1s what appears on the display screen after the above
program 1s run.

00208)

4 Z >
4 - ra \

a -_ —_
_ (300.10)

Example 3

LABEL
GRAPH.OBJ

This BASIC program draws an X and Y axis with horizontal and
vertical labels on the axis. The MOVER and PLOTR commands are
used to show how the LABEL routine updates the current pixel
position.

LINK raph’
PRINT CHR$(27); "C2uU"
ERAGRP (0%) \ GRPON \ PAN(O%, 0%)
MOVE (250%, 30%)
LABEL (‘This is the X-axis’, 0%, 1%)
MOVER (0%, 19%) \ PLOTR(-144%, O%, 1%)
MOVER (-S%, O7%)

the Y-axis’, 90%, 1%) LABEL (‘This is
MOVER (5%,0%) N PLOTR(O%, -1447%, 1%)

The following 1s what appears on
program Is run.

' link to graphic routines
' clear character piane
'‘ erase & turn on graphics plane

the display screen after the above

=
wi

A
MM

%
1
>

v
p<

pe)

w

on |

wv

£
~

This is the X-aris

iS 7

LABEL
GRAPH.OBJ

Example 4

This BASIC program shows how the label command causes the
current pixel position to be updated so that strings can easily be
concatenated.

10 LINK ‘graph’ ' link to graphic routines
20 PRINT CHRS$(27); "C2" ' clear character plane
30 ERAQGRP (OZ) \ GRPON \ PAN(OZ%, 07) ' erase & turn on graphics plane
40 MOVE (200%, 1207)
%O LABEL (‘ABCDEFGHIJALM’, 0%. 1%) ' some labeling to show concatenation
60 OBE ONT RSL UVHNYZ O%, 1%)
7O MOVE (200%, 100
80 LABEL (‘ABCDEFGHI UKLMNOPGRSTUVWXYZ ’, OX, 1%)

The following ts what appears on the display screen after the above
program 1s run.

oe ~

ABCDEFGHI JALMNOP QGRSTUVWXY Z

ABC DEF GHI JALMNOP GRSTUVUWX YZ

C X

K-20

LABEL
GRAPH.OBJ

Example 5

This BASIC program shows how the LABEL routine can access the
alternate character set.

LINK ‘graph ’
PRINT CHR$(27); “C2J" ' clear character plane
ERAGRP (OZ) \ GRPON N PAN(OZ, O7%) ' erase & turn on graphics plane
SOS6=CHRS$ (147%)
SI1S$2CHRS$(157%)
MOVE (150%, 130%)
LABEL ("String from primary character set”,0%. 1%)
MOVE (150%, 110%)

O LABEL (SO6+"String from alternate character set", 0%, 17)
100 MOVE (150%, 90%)
110 LABEL ("from primary"+SO8+"from alternate"+SI$+"from primary”, OZ, 17%)

The following 1s what appears on the display screen after the above
program is run. This output would be different if a customized (non-
standard) character EPROM was being used.

(_ ~

Strimg treom primacy character fet

IEjmett ForeF= tl pret [ep SBE reAlpw csi

fram pouroimaryrrRi SKL_ ewe t | a treom primary

S 4)

K-21

Graphics

PRINTING THE GRAPHICS PLANE

A printed image of the display screen window into the graphics plane
can be obtained by calling special routines from a BASIC or
FORTRAN program.

A printer must be attached toa 1722A RS-232 port, KBI: or KB2:. The
Epson FX® and RX® series, the Epson MX-100® with
GRAFTRAX®, and the Tally® Model MTI605E are the supported
printers. A routine is provided that allows flexibility in printing a
screen on other printers or a special assembly language module can be
written to support other printers. See the section “Printing the
Graphics Plane on Unsupported Printers”.

The Epson printers need to have the Epson Intelligent Serial
Interface® card (Epson Cat. No. 8148) installed. The Epson is
connected to the KBI: or KB2: port with Fluke printer cable Y1709.
The Epson printer and Epson serial interface DIP switches should all
be left in their factory default settings. Use the Set Utility program to
establish the following parameters:

SET
KB 1 br 19200 db 8S pb n $i e so e to 10
exi

Tally® MT1605E printer should be connected to the KBI: or KB2: port
with Fluke printer cable Y1709. All DIP switches should be inthe OFF
position except switch 4 in the I/O panel, which should be ON. Use the
set utility program to establish the following parameters:

SET
KB br 9600 db 8 pb n sie s0 e to 10
exi

It is important to note that only the display screen window into the
graphics plane is printed. The character plane is not printed. A
convenient way to place characters in the graphics plane is provided by
the graphics routine, LABEL.

® Epson FX. RX. Epson MX-100, and GRAFTRAX are Registered Trademarks of Epson America, Inc.

®Tally is a Registered Trademark of Mannesmann Tally

K-22

Graphics
Printing the Graphic Plane

Graphics Print Routines

The routines available to BASIC programs are recorded on the System
disk in a file named GPRINT.OBJ, and in a library file named
BASIC.LIB. FORTRAN programs access the graphics print routines
by using the library file named FLUK22.LIB on the FORTRAN disk.

Summary of Graphics Print Commands

The table that follows describes the graphics print routines. There are
two differently named routines for each graphics print capability, one
routine is called by a BASIC program and the other 1s called from
FORTRAN. All FORTRAN routine names end in an F; BASIC

routine names do not end in an F. All arguments are integers except
that the first argument to GRBYTE and GRBYTF 1s an integer array
name.

Summary of Graphics Print Routines

COMMAND PURPOSE

GPOUT({chan #}, {printer type})

GPOUTF ({unit #} {printer type}, {error})

GPRINT

GPRNTF({error})

GRBYTE({array} {slice} {bit order})

GRBYTF({array}. {slice}, {order}, {error})

designate serial port to which to

send screen and specify printer type

perform screen dump to printer

read screen slice and store in

array

In the pages that follow, each of the BASIC routines is described in

detail. Program examples are provided as they would appear in
programs written for the BASIC Interpreter. Error numbers given are
those that BASIC reports. The corresponding FORTRAN routines
are described in the FORTRAN manual.

K-23

GPOUT
GPRINT.OBJ
Usage

GPOUT({channel number}, {printer type})

Description

This routine designates a channel for the graphics screen data and the
tvpe of printer that is used. This routine must be called before calling
the GPRINT routine. The GPRINT routine does the screen dumping
and GPOUT is called to prepare for printing.

Parameters

channel number An integer between | and 16 that corresponds to a
channel number specified in a previous OPEN
statement. The OPEN statement must have assigned
a channel to KBI: or KB2:.

printer type An integer between 0 and n that specifies what type
of printer is to be used for the graphics dump.

Printer Type Printer

O% Epson FX series

1% Epson RX series

2% Epson MX-100 with Graftrax

3% Tally MT 1605E

4%
for user-defined printer types (See Printing

the Graphics Plane on Unsupported

7% Printers section)

Errors

302 - Illegal channel number
308 - Channel is not open
2001 - Undefined printer type

Example

This BASIC program excerpt specifies that the screen to be printed on
is an Epson FX printer that 1s connected to the KBI: port.

40 OPEN "KB1:" AS NEW FILE 5 ‘ assign channel 5 to KB1:
30 GPOUT (3%, 0%) ' data to channel 5 & Epson FX printer

K-24

Usage

GPRINT
GPRINT.OBJ

GPRINT

Description

Errors

This routine causes the display screen window into the graphics plane
to be dumped to a printer. Any images in the character plane are
ignored. The BASIC statement after the call to GPRINT 1s executed
when the printing has finished or when an error has been detected.

Almost all input from the keyboard or touch sensitive display 1s
ignored until printing is done or anerror is detected. Inputs that are not
ignored during the operation of GPRINT are (CTRL)/P,
(CTRL) /C, and the ABORT button. Any of these cause GPRINT to
stop, but they have different effects than in a normal BASIC program.
These effects are:

O If GPRINT is called from the BASIC Interpreter, (CTRL) /C, or
the ABORT button will cause processing to resume at the next
BASIC statement. If (CTRL) /P is done while in character mode
(SET NOECHO), control passes to the statement after the
GPRINT call. In line mode, (CTRL) /P causes an exit to FDOS.

If GPRINT 1s called from compiled BASIC while in character
mode or line mode, (CTRL)/P, (CTRL)/C, and the ABORT

button will cause an exit to FDOS.

The BASIC ‘ON CTRL/C GOTO ...’ statement has no effect

during GPRINT execution. This means that whilea GPRINT isin
operation (CTRL)/C, the ABORT button, and possibly
(CTRL)/P will not be trapped as they normally would be.

311 - Non-recoverable device read/write error (timeout)
2002 - GPOUT not called yet
2003 - Printer timeout
2004 - KBO: is not the console device (a switch has been performed)

K-25

GPRINT
GPRINT.OBJ
Notes

|. Pressing the ABORT button during GPRINT can cause
BASIC error 311 (Non-recoverable device read/write error). A
(CTRL) /S done before or during GPRINT will always cause
a 311 error.

2. If (CTRL)/P is done during a GPRINT, it may be necessary
to power the printer off and on. This is to avoid extraneous
data to be printed at the start of a subsequent screen print.

Example

This BASIC program draws a picture and prints it on an Epson MX-
100 printer.

10 LINK “apr ins- \N LINK ‘graph’ ! link to graphic & print routines
20 PRINT RS C27) "C20" ' clear character plane
30 ERAGRP(O%) \ GRPON ' erase & turn on graphics plane
40 MOVE (250%, 80%)
SO PLOTR(6&0%,. 60%, -1%) ‘ draw a picture
560 PLOTR(60%. -60%, —-1%)
70 PLOTR(-120%, O%, -1%)
80!
90 OPEN "“KB1:" AS NEW FILE 4 ' assign channel 4 to KBI:
1:00 GPOUT(4%, 2%) ' data to channel 4 & an Epson MX-100
{10 GPRINT ' print graphics plane
120 CLOSE 4

K-26

GRBYTE
GPRINT.OBJ

Usage

GRBYTE({array address}, {slice number}, {slice row order})

Description

This routine fills an array with a “slice” of the display screen. Any
images residing in the character plane are ignored. This routine can be
used for printers not supported by the GPRINT routine, or for saving a
screen image file to print later.

Parameters

array address This is the starting address of a 640 element integer
array. This array must be a main memory array; it
can not be a virtual array. The first address of the
array is specified by the array name followed by left
and right parentheses, for example A%(). The
program can failif the array does not contain at least
640 elements.

slice number An integer 0 through 27 which corresponds to an
eight dot high horizontal section of the display
screen. The following figure shows what is meant by
a “slice” of the screen and how the slices are
numbered.

Le 640 dot »|
Slice °” “| 8 dots

2 ry

28 slices
x8 dots/slice

224 dots

224 dots

27

K-27

GRBYTE
GPRINT.OBJ

slice row An integer that specifies the order in which the bits
order in each column of a slice are placed into the array. If

this argument is 0, the bottom row of aslice is placed
in the least significant bit of an array element. If the
argument is any other value, the top row of a slice is
placed in the least significant bit of an array element.
This argument is provided because of different
printer model conventions in addressing the print
head pins.

The GRBYTE routine takes a slice of the display screen and places the
information in the least significant bytes of the user’s array. If a dot
location is on (illuminated), then the bit in the array corresponding to
that dot location is a |. The following figures show how a slice of the
screen 1s placed into the user’s array when the ‘slice row order’
argument ts 0.

SLICE TO ARRAY CORRESPONDENCE

Column

Row 1 2.3 A SLICE 640

8 dots

O
N

D
o
n

fF

W
N

640 dots

K-28

GRBYTE
GPRINT.OBJ

USER ARRAY WHEN SLICE ROW ORDER ARGUMENT IS 0

Most Significant Byte Least Significant Byte
Word Slice Column

0 Row

‘T2[sJ«[sJe]7J[s
1 2

2

639 640

The following figure shows how a slice of the screen is entered into the user’s
array when the “slice row order” argument is not 0.

USER ARRAY WHEN SLICE ROW ORDER ARGUMENT IS NOT 0

Most Significant Byte Least Significant Byte
Word Row Slice Column

0 s|7]/6)/5]4]3]2]1 '

1 2

2

639 640

K-29

GRBYTE
GPRINT.OBJ
Errors

311 - Non-recoverable device read/write error (timeout)
2004 - KBO: is not the console device (a switch has been performed)
2005 - Slice number not in 0 to 27 range

Note

Pressing the ABORT button during GRBYTE can sometimes cause
BASIC error 311 (Non-recoverable device read/write error). A
(CTRL)/S done before or during GRBYTE will always cause a 311
error.

Example

This BASIC program draws a picture and prints it on an Epson FX
printer using an IEEE port. The program assumes that the Epson’s
IEEE interface card has been set to device address 6.

10 LINK ‘’gprint’ \N LINK ‘graph’ ! link to graphic & print routines
20 ERAGCRP (0%) \ GRPON \ PAN(O%, OZ)
30 MOVE (0%, 0%)
40 PLOTR(OZ%, 223%. 1%) ‘ draw a picture
3O PLOTR (639%, O%. 1%)
60 PLOTR(OX%, -223%., 1%)
70 PLOTR(~-439%, 0%, 1%)
80 DIM AX%(640%) ' array for a screen ‘slice’
90 PRINT @6, CHRS(27); ‘A’; CHRS(8); ' send code for printer line *pacans
100 FOR S&4 = O% TO 27%
110 GRBYTE(AZ(), SZ, O%) ' a slice of screen to array
120 PRINT @6, CHRS(27); ‘#’; CHR$(6); ! send required code to put Epson FX
130 PRINT @6, CHR$(128); CHRS(2)) ! in graphics mode
140 FOR I% # OZ TO 639%
150 PRINT @6. CHRS(AZCIXZ)); ‘ send @ dot column of slice to printer
160 NEXT I%
170 PRINT @6 ' carriage return
180 NEXT S%

K-30

Graphics

PRINTING THE GRAPHICS PLANE ON UNSUPPORTED
PRINTERS

The printers supported by the GPOUT and GPRINT routines are the
Epson FX and RX, the Epson MX-100 with GRAFTRAX, and the
Tally MTI160SE. There are two different ways to print the graphics
screen data on other printers.

1. The easiest method of printing the screen on various printers is
to use the GRBYTE routine. Flexibility to drive different
printers is achieved by making multiple calls to the GRBYTE
routine from a BASIC program and using the BASIC PRINT
statement. The GRBYTE routine retrieves the screen data and
the PRINT statement sends the screen data to a printer. See the
previous section that describes the GRBYTE routine.

The following is an example of a BASIC program that calls GRBYTE
and uses PRINT statements to print a screen image on a Prowriter
Model M8510B® printer.

10 LINK 218A)" on CNS +o
20 Sate GRPON PAN (z, 0%)

40 PLOTRCOZ, 05 29%, 1%) ‘ draw a picture
SO PLOTR(639%, 0%, 1%)
60 PLOTR(O%, -223%, 1%)
70 PLOTR(-639%, 0%, 1%)
80 DIM AZ(640%)

' link to graphic & print routines

90 OPEN "KB1:" AS NEW FILE 2 ' assign channel 2 to KB1:
100 PRINT #2, CHRS(27); °T147; ' send code for printer line spacing
110 FOR SX% = O% TO 27%
120 GCRBYTE(AXK()., S%. 1%) ' a slice of screen to array A
130 PRINT #2; CHR$(27); ‘SO0640’) ' put Prowriter ME@S10B in graphics mode
140 FOR IX% = O% TO 639%
1350 PRINT #2, CHRS(AXK(1%)); ' send & dot column of slice to printer
160 NEXT I%
7O PRINT #2 ' carriage return

180 NEXT S%
190 CLOSE 1

Prowriter Model M8510B is a Registered Trademark of C. Itoh Electronics, Inc.

K-31

Graphics
Unsupported Printers

2.

K-32

Another method of printing on an unsupported printer 1s to
create an Assembly Language routine and tables modeled after
the assembly routines and tables for the supported printers.
These printer driver routines and tables are recorded on the
Assembly disk (Option 17XXA-201) in a file named
PRDRIV.PRE.

A new printer type value to be specified inthe GPOUT routine
is defined by supplying a new entry in the file named
PTYPE.PRE. The Assembly disk has an image of this
Assembly Language source file.

By writing new routines and tables in PRDRIV.PRE and
making the appropriate entry in PTYPE.PRE, a BASIC
program only needs to call GPOUT and GPRINT to print the
display screen.

The steps to be taken and excerpts from the above mentioned
Assembly Language source are as follows:

a. Add a new printer type value and entry point name in
PTYPE.PRE. The following is the entire source of
PTYPE.PRE. Entries would be made before the ‘data 0,0”

line and after the ‘tally’ line.

‘ptype’

ptype steble of printer types & module names

epsonf 1sEpson FX & Epson RX driver
epsonm jEpson MX driver
tally 'Tally MT1605SE

type module printer

O,. epsonf sEpson FX
1, epsonf sEpson RX
a,epsonm sEpson MX
3 tally 1Tally MT1605E
0,0 snull to mark end of table

Graphics
Unsupported Printers

b. Add a def statement for the new printer driver entry point

at the start of PRDRIV.PRE

c. Add anew module in PRDRIV.PRE that references a new
printer dependency table. The following is the module for
the Epson FX printer.

epsonf

To send graphics screen data to the Epson FX or RX printer

bl from GPRINT
(all registers available except riil)

$s ientry point
Til i
@slicen eqw ri =:if at ist screen slice
Til,epfdat F get Epson FX & RX printer dependencies table
ri, @prdotb i

sendif
Qdriver 'go to common printer driver

d. Create a printer dependency tablein PRDRIV.PRE. Most
entries in this table are pointers to other tables that contain
the character sequences required by a particular printer.
The third entry in this table is the time in 10 millisecond
ticks that it takes for the printer to print its data buffer.
This entry is required for handling CTRL /C and the
ABORT button correctly. The order of entries within this
printer dependency table is very important. Use the
following table for the Epson FX printer as a guide.

Epson FX & RX dependency table

*
#* module:
*
* function:
*
#* called via:
*
*
epson? equ

cir
if
li
mov

+ endif

*
»
*»
epfdat

epstch

epstin

*
epterm

epterl

data epstch jirow start characters table address
data spatin sTow start charecters table length
data 200 idelay in 10ms ticks for AC during printing
data epterm ;:termination characters table address
data epterl :termination characters table length
data (0) snull to mark end of this table

e. Create the tables containing the character sequences that
are required to put the printer in dot graphics mode. The
following are tables used by the Epson FX printer driver.

byte 27 iEpson FX & RX row start characters
y e rd c ;

byte '’ESC A 8’ sets line feed spacing ta 8/72"
byte 2/7 i
byte ‘e i

byte 6 ;

byte 128 i
byte 2 > “ESC # 6 128 2° graphics (9Odpi)d 640 dot row
equ S-epstch
even

byte 27 sEpson FX,RX,MX-100 screen dump term characters
byte ‘e@’ i; ‘ESC @’ master reset for Epson (power up state)
equ S-epterm
even

K-33

Graphics
Unsupported Printers

f. Assemble the modified PTYPE.PRE and PRDRIV.PRE.
Create a new GPRINT.OBJ file by issuing the following
Linkage Editor commands. The files PRINT.OBJ and
FSRGMY.OBJ that are referenced in these LE commands
are also provided on the Assembly disk.

le gprint-ob)
task gprint
form ascii
part
ine! print. prdriv, ptype, fSrgqmy
en

g. Call the GPOUT routine in a BASIC program with the
new printer type value and then call the GPRINT routine.

K-34

Graphics

DISPLAY GRAPHICS PROGRAMMING EXAMPLE

The following program example illustrates using the graphics routines
to create a menu for use with the TSO. Multiple-use subroutines are
used to minimize program size. Lines 10 through 230 store constants
and initialize variables used through the program. These constants
include all of the character enhancement control sequences, even
though not all of them are used. Once program development is
complete, the unused control sequences may be removed.

The subroutine between lines 300 and 360 is used to draw 4 boxes on
the graphics plane. The FOR-NEXT loop in the subroutine calls the
box plotting subroutine at line 1870 and passes 4 parameters used by
the subroutine. These parameters determine the relative X and Y
position, the offset on the graphics plane, and the color used to plot the
box. The size of the box is fixed by the box plotting subroutine. The
boxes are labeled beginning at line 430 with the contents of string array
AO$.

At line 480 T% controls the wait time of the screen touch subroutine. If

T% = 0, then the wait time is infinite, otherwise the wait time is equal to

T% in milliseconds. When a TSO square is touched, the square number
is returned in K%.

Line 525 sends the character enhancements for blinking and high-
intensity characters to the display module. Line 527 sets T% to 10000,
which causes the screen touch subroutine to wait 10 seconds for TSO
input before returning.

A series of IF-THEN statements beginning at line 530 decodes the
input from the TSO and directs program execution to the proper point
in the program. If any of the IF-THEN statements are true, then the
subroutine at line 630 is called, otherwise the program loops back to
line 300 and re-draws the menu. The subroutine at line 630 prints the
non-destructive character (ESC=) over the selected menu entry,
causing the selected menu entry to take on the attributes set in line 525.

The plotting subroutine may be used to “undraw” the boxes from the
graphics plane. This is useful when other graphics material has been
acumulated on the graphics plane and you need to selectively erase the
boxes. The subroutine at line 3000 does this by setting F1% to 0 and

calling the box drawing subroutine at line 310.

K-35

Graphics

Program

40!
9O LINK
60 ON CTRL/C GOTO 1960

K-36

ERAGRP (0%)

“FIZ = 1%

ming Example

menu. bas

"GRAPH"

constant definitions
Fiz

A0$(107%
CHRS (27) +! C’
ESS+"2U"
ESS$+"711" N CAS ESS+" 71h”

NAS = ES$+"m"

ESS+"721" \N DSS ESS+" 72h"
CS$+ESS$+ 7351 °+DS$+ESS$+°781] °+

NDS CHRE(27) + “=”
' store names for menu
A0$(1) “run program”
A0S (5) “erase boxes”

PAN(OZ, OX”)
PRINT SUS

draw four hoxes

340% RL%~ = 20007% \ XC =
F 17 TO

F1i% does
IF Fi% = OZ% THEN RETURN
GRPON \ PAN (1540%. 13%)

them label
(ON CTRL/C GOTO 390 \ OFF KEY

'GRPON
paint menu

CAS; CPOS(1,0); AOS(1);
CPOS(3, 0); AOS(3);i
CPOS(3, 0); AOS(39);3

PRINT CPOQS(7, 0); AOS(7);
TA O \ GOSUB 2010
ON CTRL/C GOTO 1960
PRINT CHR$(7)

PRINT
PRINT
PRINT

—,
_

decipher which touch sense key it
PRINT FL3; HIS

rant Rat osts 0); k%i

Kx = 94
GOSUB 630 \ GOSUB 10

30% THEN S60 EL
\ GOSUB 1530
40% THEN S60 EL
\ GOSUB 3000
60% THEN GOTO 6

7h \ GOTO 1940
Sato 300

' subroutine to paint nd character
PRINT CPOS(X%, 0); DUPLS(NDS, LEN(AOS (
WAIT 2000 \N RETURN
GRPOFF \ PRINT CSS; CPOS(1,0); "menu
KZ = O \ RETURN
GRPOFF \ PRINT CS$;CPO0S(1,0);"
KZ = 0 \ RETURN

' routine to draw boxes
GRPON
BH? 604 \ BVA = 40%
MOVE (XGA+RLZ, YGX)
PLOTR(BHA, O04, Fl”)
PLOTR(O%, -BVZ%, F1%)
PLOTR(-BHZ, O%, Fl%)
PLOTR(O%. BVZ, F1%)
RETURN

GOSUB 630

menu

box horiz,
move to th
plot relat

OR KA = 10% THEN Fog0C be 350

ctrl/c handler

array for name storage
standard escape sequence
Clear screen
field \ character attr
flash \ normal attr
hi intensity
normal \ double size

“CAS ‘cleanup screen
on-destructive character

"Tun perogram #2"
“exit

: eginging
find ialize
‘initialize
‘erase the

of menu loop
window pos
display
graphics plane

fw = 1 TO draw,
Tl offset, xg
loop to draw boxes
box position
box draw subroutine

0 to erase
= x position

double duty as subr flag

' graphics on, set things up

‘on ctrl c do menu again

‘get tso key; t is wait time
'ctrl/ce to exit
‘to tell them they got a hit

was, make that entry flash
'flashing, hi intensity
'for debugging TSO locations

' selection #1
SE 370

{t selection #2
SE S90

' selection #3
OO ELSE 610

' exit
' invalid key,
on menu entry
MAI);

selection #1";

selection #2";

go back

\ GOSUB 2000

\ GOSUB 2000

box vert dimensions
e Tight place
ive to draw the box

1948!

Graphics
Programming Example

clean house; a? home
OFF CTRL/C N\ PRINT CS$%; NSS;
GRPOFF \ END

' touch screen routine
PRINT NASi CPOS(13, 5); "touch screen to continue”;
PRINT CHRS$(13); ‘alternate entry point
KA% = KEY 'zero KEY variable
IF TA (> O THEN WAIT TA FOR KEY N\ GOTO 2030 ‘optional wait time
IF TZ = O THEN WAIT FOR KEY \ GOTO 2030
KA = KEY N RETURN

‘ subroutine to erase boxes
GRPON ‘graphics on
FiZ = O \ WAIT 1000 ‘reset the flag; wait a second
GOSUB 310 49° erase them
TZ = 20000 \ GOSUB 200 twait 20 seconds for touch
Ke O \ RETURN ‘reset kA. return

K-37

Appendix L

Supplementary
Syntax Diagrams

program

command

line

numeric

expression

integer
expression

string

expression

These diagrams supplement those used throughout this manual. They
are in three categories: Program and Command Line Syntax,
Expression Syntax, and Miscellaneous Syntax. The last category
alphabetically lists fundamental syntactic elements at an elementary
level.

Program and Command Line Syntax

_| L (program line)

Statement: given in main sections of manual and in Reference.

+ Statement } N 7 —

~~

_,| L _ | expression F—

| ‘on | _. >} expression f

al ian Le _ | expression F—

L-1

Syntax Diagrams

\
_
/
 expression anal Simple expression a!

| NC ana)
NOT

{

NOT

>| simple expression _f)

simple — term |

expression J / ‘

aa
<>

HR
N

L term —+ factor r 7 <

f 7 |
factor

a

ie tactor —e| primary }

; * (7~X >| primary

L-2

primary
a

Syntax Diagrams

L + unsigned constant -_

Nf variable 7 lo

Nf system function | w
w

expression

CD ae |
a! ¢ ‘on be expression } —(}) }-—

Lal primary \wamaGea

Miscellaneous Syntax

7 | primary F#—

| array

variable

character

characters

a! di ; |
“>| dimensions F float variable - 7

\/

Nf integer variable 1

+ string variable |

L
| ASCII characters except carriage return and control characte rs b J

mal character L

(

L-3

Syntax Diagrams

| | constant —| float constant r

Nf integer coat |

=i String ———

aa unquoted string -S

device —-(e)—{ numeric expression KR;

numeric expression

(primary address)

device numeric expression |

Range 0 to 30. Port 0. 100 to
130 Port 1 (secondary address)

numeric expression

Range 0 to 31

device list >(}- Le)
device

digit o(| g { 0 +} 7

l

Syntax Diagrams

dimensions —C-L numeric expression } “Cl y-

numeric expression

float 7 digit ~
constant

. digit

Le tby

float variable ——+{ etter ~N 7 ——

al
id —} letter (rea!) —

letter (string)

digit x, (integer)

. __f a a input variable —_—*
variable list f A J »~

id | subrange

9)} 3)

L-5

Syntax Diagrams

R 0 to 32767
integer (- digit > (Range: 0 to 32767)

Range: - 32768 to 32767
integer —-{ digit % (Rang)

constant (

integer variable ——+{ letter } Xx _o(%) \ % }

(integer)

integer

variable subrange

_»|
|

id | subrange
1

J

letter | rh | uppercase ASCII alpha character }

line no. . integer “+t

numeric id —+/ letter I

letter (%)

digit

port expression PORT -| — numeric expression + (>)}—

print item -| expression —

subrange

Syntax Diagrams

program ——+| line no. — | command line RETURN
line

remark line

quoted ~C9 -— characters (except » FO ,Y ~
string

characters (except °) r aa | 99 a

range ———+| numeric expression t —_

Lo numeric expression

(real)

variable

subrange numeric expression

String +| String expression + —>

string — quoted string ‘I

constant

unquoted string

string variable ——+{ etter} x 7 -($)-

subrange —C{)>—{ range

Le_+ range

5 |

Syntax Diagrams

*CBASIC and XBASIC only

ABS, ASCII, ASH, ATN, CHR$, CMDFILE,
CMDLINE$, COS, CPOS, DATE$, DUPL$, ERL,
ERR, *ERR$, EXP, FLEN, INCHAR, INCOUNT,

rystem e| INSTR, INT, KEY, LCASE$, LEFT, LEN, LN, LOG, >
unction LSH, MEM, MID, MOD, NUM$, PI, PORTSTATUS,

PPL, RAD$, RIGHT, RND, SGN, SIN, SPACE$, SPL,

SQR, STIME$, TAB, TAN, TIME, TIME$, UCASE$,

VAL

(0-86400000 milliseconds)
port | ; ; ni
expression N —+| numeric expression = —>

(0-24 hours) (0-59 minutes) (hh:mm)
‘mm

+1 hh ECKL mm lo.
(0-59 seconds)

Ss

trace ef iq __,
variable list ff Wy N

dimensions

VT

ren Ge . stn. —+ character (except ° or)

character (except .)

variable | id L

(port 0)
wbyteclause WBYTE

PORT numeric expression 9

example A%(0..100):

| Finteger variable subrange}-——+(_)}»—

Appendix M

Glossary

ABORT

Front panel push switch that causes the Controller to send Device
Clear (DEL) and to simulate the entry of CTRL /C. When pressed
simultaneously with RESTART, causes the system to perform a cold
Start.

address

A coded number representing the location of an item. Examples
include bus address and program address.

Address command

A bus command from a controller commanding an instrument at a
designated address to talk or listen.

Addressed command

A bus command from a controller intended for all instruments that

have been addressed as talker or listener.

A shortened or more familiar form of a command. In the 1722A, al!

aliases must be recorded on a file named ALIAS.SYS which is read by
the FDOS program when the system is bootloaded.

application program

A user written program designed to perform specified functions in a
working environment.

array

A collection of data items, organized as a row x column matrix.

array element identifier

The subscript of an array variable that identifies the row and column of

the desired array element. In the expression: A$(3,5), (3,5) is the array
element identifier, referring to row 3, column S.

Glossary

ASCII

Acronymn for American Standard Code for Information Interchange.
ASCII is a standardized code set of 128 characters, including full
alphabetic (upper and lowercase), numerics, and a set of control
characters.

asynchronous data

Information transmitted at random times, normally one character ata
time, and at predefined, self-clocking baud rates. See synchronous
data.

BASIC

Beginner’s All-purpose Symbolic Instruction Code, a general purpose,
high-level language that has been widely accepted because of its
versatility and the ease with which it can be learned. Fluke BASIC has
added commands for instrument control.

baud rate

The serial transfer rate in bits per second including all framing bits used
to identify the start and end of characters or messages.

binary

A number system based on zero (0) and one (1) representations. It is
often used to represent data or instruction codes. There are only two
numbers, so digital computers can use binary for their operations
because each number can be represented as the state (on or off) of a
transistor.

bit

A contraction of binary digit. A bit is either a one or a zero and
respresents the smallest single unit of computer information. Bits are
often used in groups of eight to represent ASCII characters.

block

Memory size equal to 512 bytes.

bootstrap

A short program permanently recorded in ROM whose only function
is to read an operating system program from bulk storage into system
memory and transfer control to it.

buffer

Glossary

A temporary storage area in main memory used to store data.

bulk storage

bus

A device attached to a computer that can store much more program or
data information than the computer’s main memory can hold. the
Instrument Controller incorporates two types of bulk storage: floppy
disk and hard disk. Also called mass storage.

The IEEE-488-1980 standardized interconnection system used for
connecting instruments. Also, bus can refer to any set of parallel
connections that have the same meaning for each unit connected to
them.

Bus address

byte

A 7-bit code placed on the IEEE-488 bus in command mode to
designate an instrument as a talker or listener.

A grouping of eight bits of information into a coded representation of
all or part of a number or instruction. Often a 7-bit ASCII character is
referred to as a byte, with the eighth bit available for parity if needed.
Bytes are commonly considered as 8-bit storage areas to represent
ASCII characters.

chaining

A method of operating a program that is larger than available main
memory. The technique is to break the program into smaller elements,
and call in the next element from bulk storage as each succeeding
element is completed. Requires highly modular programming to be
effective. See structured programming.

channel

A communication path opened between an application program and a
file or a system device.

Glossary

character plane

The portion of the display memory that is used for displaying the
normal- and double-sized characters. The character set includes the
upper- and lower-case alphabet, the ten numerals, and punctuation.
See graphics plane.

character string

A grouping of ASCII characters.

cold start

The power-up activities of the Controller. These include clearing all
memory including E-Disk, performing a self-test, and loading the
operating system. A cold-start occurs when the system is powered up,
or when RESTART and ABORT are pressed simultaneously.

Command file

A file that, when designated active by FDOS, is used as a substitute for
keyboard inputs. In Fluke Instrument Controllers, a command file
with the name STRTUP.CMD 1s processed each time the Controller is
initialized by a cold start or power-on.

Command mode

An IJEEE-488 term indicating that a controller has set the ATN
(attention) line. In this mode, instruments on the bus are addressed or
unaddressed as talkers and listeners.

constants

Fixed values which may be floating-point, integer, or string data types.

control character

Used to produce specific actions such as terminating program
execution, exiting from the Editor, halting and restarting scrolling.

controller

A device connected to a bus capable of designating instruments as
talkers or listeners by using bus message sequences. A device does not
need to be programmable to act as a controller. However, only a
controller can examine the data or status of instruments to determine
appropriate conditions for designation changes. There can be only one
active controller on a bus at one time.

Glossary

CPU

Central processing unit, the controlling instruction and data processor
in any computer system. In the Fluke Instrument Controller, the CPU
is the microprocessor and its supporting components located on the
Single Board Computer module.

CRT

Cathode Ray Tube, the display screen on the Instrument Controller
front panel.

current position

The pixel location defined by X,Y coordinates in the graphics plane
that is the starting position for turning the beam on or off to paint a
line, or to move to another location. On power up, the current location
is XO, YO.

cursor

The visible pointer on the CRT display that allows the user to
recognize the position being pointed to by the system software.

data

Numerical information that has been collected for interpretation by a
program.

data base

A stored and defined collection of data that is made available for
report generation or further calculations by a program.

Data Base Management System (DBMS)

Any systematic approach to storing, updating, and retrieving
information as a common data base for many users.

data file

A file holding either random or sequential access information.
Contrasted to a program file.

Data lines

Eight of the sixteen bus lines which carry either data or multiline bus
messages (Universal, Addressed and Address commands).

M-5

Glossary

Data mode

The default mode of the bus when the controller has left the ATN
(attention) line false. All transfers of data or instructions are between
instruments.

data processing

The ability to perform calculations on collected data and formatting it
into readable reports.

debugging

Any method of detecting and correcting syntax and structure errors in
a program.

default

That option which system software selects when the user does not
specify an option.

device

A hardware resource that can act as a source or destination of data. In
this manual, device is used in two different ways: 1. To represent the
internal devices recognized by the Operating System. In this usage, the
Controller’s devices are identified by two letters, a number, and a

colon. For example, MFO: identifies the mini-floppy drive. 2. The
symbol “@” followed by a number from 0 to 30 represents external
devices, such as instruments connected to the IEEE-488 bus. The

BASIC language statement “PRINT @ 2” followed by program data
would address instrument 2 as a listener device, and send it program
data.

Device Address

A number used by a program to designate an external device for data
transfer.

Display control

An ANSI-standard character sequence of ASCII characters which
produces a desired display effect such as cursor position or reverse
image.

Glossary

E-Disk

Fluke Trade Mark for the Electronic disk, a memory configuration
that makes use of memory as if it were a file-structured device. See
Electronic Disk.

editor

A system software program that enables a user to generate and update
an application program.

EIA

Electronic Industries Association, publishers of standard RS-232-C
for serial data ports.

Electronic Disk

A portion of the memory designated as a file-structured device. Part of
the system’s dynamic RAM memory is configured so that it
functionally emulates a floppy disk. The electronic disk is about 100
times faster than the floppy disk and has no moving parts to wear or
cause noise.

EPROM

Erasable Programmable Read Only Memory. A ROM that can be
erased and reprogrammed by an equipment manufacturer using
specialized equipment.

Escape sequence

A string of characters including an escape (ESC) character, a numeric
parameter and a function code which is recognized as a Display
control.

expression

A combination of data-names, numeric literals, and named constants,
joined by one or more arithmetic operators in such a way that the
expression as a whole can be reduced to a single numeric value.

Extended Listener

A listener instrument that requires a two-byte address. See secondary
commands.

Glossary

Extended Talker

FDOS

file

A talker instrument that requires a two-byte address. See secondary
commands.

Floppy Disk Operating System program. FDOS is the executive
monitor program of the 1722A Instrument Controller, and is supplied
as a file on the System Disk with the filename FDOS2.SYS. Usually
called “the Operating System”, FDOS 1s the Controller’s central
program. When any other program is exited, FDOS takes control
(unless the BASIC statement SET SHELL has been used to change the
environment). The purpose of FDOS is to load other programs.

A collection of related information designated by name as a unit.

file-structured device

Any bulk memory device where programs and data may be stored and
retrieved via a system directory.

File Utility Program (FUP)

The file management program provided with the standard Fluke
Instrument Controller software package. Provided on the system disk
as a file with the name FUP.FD2, this utility program permits
directory listing, transferring, deleting, and renaming files, and
formatting, packing, and zeroing the Controller’s devices.

firmware

flag

Computer programs and data that are recorded in permanent memory.
See ROM.

A symbol that indicates a status condition. System flags can be used to
indicate the presence of command files or to indicate a state of system
readiness.

Glossary

floating-point variable

A representation of a general-purpose number. They are characterized
by wide range (up to 308 places from decimal) and high resolution (up
to 15 places). When displayed without modification, up to seven of the
digits are displayed, with the last one rounded if necessary. If the
decimal is out of range of the display, an exponent of ten is included to
bring it to just left of the first number. For example, .00123456789 is
displayed as 0.1234567e-02, and 1234567.89 is displayed as 1234568.
Note that the inexactness of floating-point representation occasionally
must be considered. For example, IF 7*(1.7)=1 will evaluate false. See

integer.

floppy disk

A bulk storage recording device that uses a flexible mylar disk similar
to recording tape to record programs and data. The location of
information on the disk is identified by track (distance from center)
and sector (pie-shaped radial subdivision).

flowchart

FUP

A pictorial, symbolic representation of a program. Various shapes
represent commands, computations, or decisions. A flowchart is the

recommended step between an algorithm specification and program
writing. It facilitates understanding and debugging because it breaks
the program down into logical, sequential modules.

See File Utility Program

graphics plane

The portion of the display memory where the lines and patterns
displayed by the graphics routines are stored. The area is measured in
pixels, rather than bytes. One pixel is the smallest amount of graphics
information that can be stored or displayed. The graphics plane is 2048
pixels long and 256 high. The display provides a moveable window
looking into the graphics plane. The window is 640 by 224 pixels. See
character plane.

Glossary

handshaking

Refers to the 3-wire hardware protocol used to exchange data on the
bus. The three bus lines (DAV, NRFD, and NDAC) indicate a remote

instrument’s readiness to send or receive data.

hexadecimal

A number system based on 16 digits. Sometimes called hex, the system
uses A, B, C, D, E, and F, to represent the numbers above 9.

high-level language

Any programming language that requires conversion through a
compiler or interpreter into machine code instructions. Examples of
high-level languages are BASIC and FORTRAN.

Institute of Electrical and Electronic Engineers, Inc., 345 East 47th
Street, New York, NY, 10017. The IEEE is the publisher of Standard

488-1978 used for interconnecting instruments to the Fluke Instrument
Controller through the bus.

IEEE-488-1980

A bus standard agreed upon by participating instrument
manufacturers for the interconnections of instruments into a
functional system. Also known as the GPIB (General Purpose
Instrumentation Bus). The standard is published and maintained by
the IEEE.

Immediate mode

A method to use BASIC directly as each line is typed in rather than
storing a sequence of lines as a program for later execution. In
Immediate Mode, line numbers are not used and each line is executed
as soon as the RETURN key is pressed.

Instrument Controller

In an IEEE-488 system, designates the piece of equipment that asserts
control over the bus, and which establishes the roles of other connected
euipment as listeners or talkers.

M-10

Glossary

integer variable

A representation of an exact number. They are characterized by
limited range (-32768 to 32767) and numeric resolution. Integers are
normally used for event counting, and for comparisions where
exactness is required. See also floating-point.

interface

A hardware and software connection of a device to a system. For
example, in the Fluke Instrument Controller, the DMA/ Floppy
Interface is needed for the system to gain access to the floppy disk.

interpreter

A system software program that interprets the statements of a high-
level language program (such as BASIC), producing and executing
machine code.

lexical file

An intermediate form of an application program that occupies less
space and eliminates some processing steps for the Fluke BASIC
Interpreter. Line numbers are represented in binary format and all
commands and operators are reduced to binary form. Lexical files
always have “.BAL” extensions.

listener

A bus device designated by a controller to receive data or instructions
from a designated talker or controller. There can be more than one
listener on a bus at the same time.

loader

A program which places another program into main memory for
execution.

logical expression

An expression containing variables, constants, function references,

etc., separated by logical operators and parentheses.

Glossary

logic operator

A function that performs comparisons, selections, matching, etc. In
BASIC, the logical operators are AND, OR, NOT, and XOR. These

are used for either Boolean operation or for bit-manipulation.

machine code

The coded bit-patterns of directly executable machine-dependent
computer instructions, represented by numbers or binary patterns.

machine-dependent program

A program that operates on a particular model of computer.

machine-independent program

A program that operates on any computer system that has the
necessary hardware and supporting software.

main memory

The RAM memory from which the microcomputer directly executes
all instructions and which 1s used for fast, intermediate storage of data
or programs.

main memory array

An array that is stored in main memory.

management lines

Five of the sixteen lines on an IEEE-488 bus. The lines are ATN
(Attention), IFC (Interface Clear), REN (Remote Enable), EOI (End
Or Identify), and SRQ (Service Request), and call for an immediate
and specific action, or flag a condition existing on the bus.

Operating System

A computer program that manages the resources of computer through
task scheduling, I/O handling, and file management. See FDOS.

operator

A term for symbols within an application program (such as + or <)
that identify operations to be performed.

Glossary

Operator’s Keyboard

The Touch-Sensitive Display.

parallel poll

A method of simultaneously checking the status of up to eight
instruments on a bus by assigning each instrument a data line to
transmit a service request.

parity

A method of error detection that uses one extra bit for each unit of
information (such as a byte). The parity bit is set to one or zero so that
the total number of one-bits in the byte is even or odd.

pathname

The full designation of a file. The three parts are the device name, file
name and extension. The first two are separated by acolon, and the last
two by a period.

pixel

Acronym for picture element; the smallest amount of visual
information that the display is able to resolve; one dot.

port

A connection point used for data transfer. See interface.

Primary command

An ASCII character typically used as a bus command.

program

Any meaningful sequence of computer instructions that cause a system
to accomplish a desired task.

PROM

Programmable Read Only Memory, a memory IC that can be
recorded by an equipment manufacturer using specialized equipment.

Glossary

protection state

Files prepared on the Controller are assigned a value, either + or — to
indicate the intent of the author either to prevent or allow alteration. A
file with the + state is protected and will not be written over. A — state
indicates that the file may be altered if desired. All newly created files
are assigned the - state. All files supplied on the System disk with the
Controller are protected. The File Utiltiy Program includes commands
for changing the protection state of files.

protocol

RAM

A set of rules for exchange of information between a system and a
device or between two systems.

Random Access Memory. Through common usage, the term has come
to mean the high-speed volatile semiconductor memory that is
normally used for system and user memory.

random access

raster

A method of obtaining information out of memory; each word of a file
can be accessed via its own discrete address. See also sequential access.

The scanning pattern of an electron beam ona CRT display. A raster
display uses the same scan pattern all the time, forming images by
turning the beam on and off at appropriate times.

RESTART

ROM

Front panel switch that resets the system. When pressed alone,
RESTART causes a warm start. When pressed at the same time as
ABORT, causes the system to perform a cold start.

Read Only Memory, used for permanently recorded computer
programs and data.

Glossary

RS-232-C

A digital communications standard agreed upon by participating
manufacturers of data communication equipment for the transfer of
serial digital data between data communication equipment (DCE) and
data terminal equipment (DTE). The 1722A is a DTE device. The
standard is published and maintained by the Electronic Industries
Association.

scientific notation

A system for describing real or integer numbers via a shorthand form
of floating-point notation.

Secondary command

IEEE-488 bus commands used to increase the address length of
extended talkers and listeners to two bytes.

serial data

Information transmitted one bit at a time over a single wire at a
predefined baud rate.

sequential access

A method of accessing data in a file by looking at each piece of data, in
order, until a match 1s found. See also random access.

serial poll

A method of sequentially determining which instrument on a bus has
requested service. One instrument at a time is checked via the eight
data lines.

serial port

An external connector that conforms to the industry standard RS-232-
C. Normally, asynchronous ASCII codes are used unless otherwise
desired.

Glossary

SET Utility Program

The program that changes the parameters of the 1722A’s serial
communications ports. Supplied on the System Disk with the filename
SET.FD2, this program permits configuring the Controller so it is able
to communicate with other devices that implement the RS-232 Serial
Data Communications standard. Parameters that can be changed
include baud rate, parity bit, number of bits per character, stall input
and output characters, and time out value.

shell

The Controller's environment, either defaulted to FDOS or changed
by the BASIC language SET SHELL statement. When a program
finishes, the Controller returns to the program named by the SET
SHELL statement, rather than to the FDOS prompt.

simple variable

Fluke BASIC program variable that is either an integer or floating-
point value (not a character string) and contains only one value (not
dimensional).

soft-sectored

In floppy disks, the beginning of every sector on a disk is determined by
checking certain data patterns. Hard-sectored disks have
predetermined sector beginnings designated by a physical marker,
such as a hole.

software

Computer programs and data recorded and used ona medium that can
be erased and rewritten by program command.

source

This term has two meanings: 1. The pathname where information
presently resides when using a File Utility Program command that
moves a file from one place to another; the input side of the channel. 2.
An instrument connected to the bus and transmitting either command
mode or data mode information.

string variable

An expression that represents collections of characters that may or
may not be numeric.

Glossary

structured programming

A method of programming which require an initial design process to
lay out the program structure in a modular form. Structured
programming minimizes ‘spaghetti code’ programs by keeping GOTO
statements to a minimum and by using subroutines to structure the
program into discrete, easily readable modules.

subroutine

A section of a program that performs a specific function on request of
the main program or another subroutine. Subroutines are used in
BASIC via the GOSUB statement.

synchronous data

Digital information transmitted in predetermined message block sizes
with a clock signal to synchronize the receiver. See asynchronous data.

syntax

The proper grammar required for an interpreter to recognize and
execute a program statement.

syntax diagram

A pictorial representation of the grammar required for the execution
of a program statement.

system

Any interconnection of instruments or other devices that cooperate to
accomplish a task. A controller is an essential part of a system
whenever the designations of talkers and listeners needs to be changed
during the task. A controller is a necessary part of any system that
requires data processing or a centralized control point.

System Device

The designated file-structured device on the Controller that acts as the
primary file storage module. The floppy disk or electronic disk may be
designated as the system device by the File Utility program’s Assign
option. The floppy disk drive (MFO:) is the default system device.

system directory

The listing of program and data files on a bulk storage, file structured
device.

M-17

Glossary

system memory

Those portions of the Random Access Memory allocated for use by the
operating system and utilities or BASIC Interpreter.

system software

The collection of programs used to handle file management procedures
on a system.

Talker

An IEEE-488 connected instrument that has been designated by the
controller on the bus to send data to listeners.

Time and Date Utility Program

The program that sets the time and date of the Controller’s real time
clock. Supplied on the System Disk with the filename TIME.FD2, this
program accepts the time and date by keyboard inputs, and transmits
the information to the real-time clock. With battery back-up, the clock
maintains the correct time and takes into account leap years. The clock
can be used to time and date stamp programs or data collected by
programs, or to perform an operation at a specified time.

Touch-Sensitive Display

The combination of the display screen and the touch-sensitive panel
which acts as the operator’s keyboard,

warm start

The activities the Controller performs when the RESTART switch 1s
pressed: ceases the current operation and reloads (reboots) the
Operating System. See cold start.

Universal command

A message sent across the data lines of a bus that affects all connected
instruments whether or not they are designated as listeners.

user memory

Area reserved in main memory for storage and execution of user-
written application programs and data.

Glossary

variable

A representation of a quantity, or the quantity itself, which can assume
any of a given set of values. A variable may be integer, string, or
floating point value designators.

virtual array

A matrix stored on a file-structured storage medium as a random
access file. Virtual arrays can be integer, string, or floating-point arrays
with one or two dimensions. Once a virtual array file has been opened
and the virtual array has been dimensioned, the array elements are
handled by the programmer exactly as they are in main memory array.

yank buffer

A temporary memory location where the System Editor program can
store data “yanked” from a file.

Appendix N

Reserved Words

Table N-I lists reserved words that conflict with BASIC language
statements. These reserved words may NOT be used in Interpreted
BASIC as

O Variable names

O Statement label names

O Literal subroutine names (in most cases)

The reserved words may be used as subroutine names with the
following restrictions:

Implied CALL statements may not be used with subroutines using
a reserved name. For example, the implied CALL statement toa
subroutine named STOP

STOP

will execute a BASIC STOP function. Use the statement

CALL STOP

to branch to the subroutine.

The name “FN” may not be used for any purpose other than a
user-defined function. All strings beginning with FN are
considered functions.

N-1

Table N-1. Reserved Words

ABS

ALL

AND

AS

ASCII

ASH

ASSIGN

ATN

BREAK

CALL

CHR$
CLEAR

CLOCK

CLOSE

CMDFILE

CMDLINE$

COM

CONFIG

CONT

COPY

COS

CPOS

CTRL/C

DATA

DATE

DATES

DEF

DELETE

DIM

DIR

DISABLE

DUPL$

ECHO

EDIR

EDIT

ELSE

ENABLE

END

ERL

ERR

ERROR
EXEC
EXIT
EXP
FILE
FLEN
FN
FOR
GOSUB
GOTO
IF
INCHAR
INCOUNT
INIT
INPUT
INSTR
INT
INTERVAL
KEY
KILL
LCASE$
LEFT
LEN
LET
LINE
LINK
LIST
LN
LOCAL
LOCKOUT
LOG
LSH
MEM
MID
MOD
NEW
NEXT
NOECHO
NOT
NUM$
OFF

OLD

ON

OPEN

OR

PACK

PASSCONTROL

Pl

PORT

PORTSTATUS

PPL

PPOL

PPORT

PRINT

PROTECT

QDIR

RAD$
RANDOMIZE

RBIN

RBYTE

READ

REM

REMOTE

REN

RENAME

RESAVE

RESAVEL

RESTORE

RESUME

RETURN

RIGHT

RND

RUN

SAVE

SAVEL

SET

SGN

SHELL

SIN

SIZE

SPACES
SPL

SQR

SRQ

STEP

STIMES

STOP

TAB

TAN

TERM

THEN

TIME

TIMES
TIMEOUT

TO

TRACE

TRIG

TRIM

UCASES$
UNLINK

UNPROTECT

USING

VAL

WAIT

WBIN

WBYTE

WITH

XOR

N-2

INDEX

r refers to a Statement number in the BASIC Reference manual.

Abbreviations, M-1

ABS, rl, 8-5

Alternate Character set, 14-6

AND, r69, 6-18

ANSI Standards, 2-4

Exceptions to, 2-4

Mode, 14-13

Arithmetic Operators, r-2, 6-12

Arrays

Advantages and Disadvantages, 7-6

CLOSE, r13, 7-8

Dimensioning, 7-13

Element Access, 7-35

Equivalent Virtual Arrays, 7-38

I/O Channels, 7-7, 7-8

In Chained Programs, 7-9, 13-9, 13-10

Main Memory Arrays, 7-13

DIM, r24, 7-14

using, 7-14

programming techniques, 7-15

storing, 7-19

device size requirements, 7-20

device size calculation, 7-21

two dimensional arrays, 7-16

Multiple Arrays, 7-17

OPEN, r99, 7-8

Organization, 7-27

Programming Techniques, 7-15

Redimensioning, 7-17

Reusing Declarations, 7-37

size, 7-9

TRACE ON array, 15-8

Types and Differences, 7-5

Two-Dimensional Arrays, 7-16

Using, 7-4

Strings, 7-34

Main Memory Arrays, 7-14

Main Memory Arrays as variables, 7-14

Variables, 6-9

Virtual Arrays, 7-22

Advantages and Disadvantages, 7-24

Array Element Access, 7-35

Chaining Techniques, 13-9

Creating, 7-32

Definition, 7-24

DIM, r24, 7-14

Equivalent Virtual Arrays, 7-38

file structure discussion, 7-26

File Organization, 7-27

Opening array file, 7-22

Programming Techniques, 7-35

Reusing declarations, 7-37

Size Requirements, 7-29

Size Calculation, 7-30

Splitting Among Files, 7-36

Index

Using, 7-33

as Ordinary Variables, 7-33

Virtual Array Strings, 7-34

Array Variables, r3

ASCH, r4, 8-11

ASCII Character Set, 14-5, G-1

ASH, r5, 8-5

Assembly Language

Error handler, H-1

Subroutines, 12-1, H-1

ASSIGN, r6, 3-7

Assignment Operator, r7

Assignment Statement (LET), r62, 6-12

ATN, r8, 8-9

BACK SPACE Key, 4-20

BASIC

Conventions, 2-1

Enhancements, 1-2

Editor, 4-17

Exceptions to ANSI, 2-4

Exiting, 2-6

Operating Modes, 2-7

Reference Textbook, 1-4

Running BASIC, 2-5

Variables, 6-8

Binary Numbers, 6-16

Twos Complement, 6-18

BREAK, r9, 10-14

CALL, rl10, 12-5

Chaining, 13-1

Virtual Arrays, 13-9

Changing the Sequence of Program Lines, 4-14

channel I/O, 7-7

Character

Attributes, 14-25

Graphics, 14-28, F-1

CHR$, rl11, 8-11, 14-9

CLEAR, r12, 9-9, 9-10

CLOSE, r13, 7-8

CMDFILE, r14

CMDLINES, r15, 13-6

COM, r16, 13-8

Common Memory Requirements, A-1

Conditional Expressions,

r41, r42, r118, r126, 11-8, 12-4

CONFIG, r17, 9-21

CONT TO, r18, 15-15

COPY, r19, 3-5, 7-10

COS, r20, 8-9

CPOS, r21, 8-11, 14-10

(CTRL /Key-Modifier, 4-4

(CTRL)/C, 4-4

(CTRL) /F, 4-5

(CTRL) /P, 4-4

(CTRL)/Q, 4-5

(CTRL)/R, 4-4

(CTRL)/S, 4-5

(CTRL)/T, 4-5

(CTRL)/U, 4-5

DATA

statement, r117

storage, 7-1

using arrays for, 7-4

types, 6-4, 738, r56, r147

DATE$, r150, 6-11

Debugging, 15-1

DEF FN, r22, 8-14

DELETE, r23, 4-10

Delete file (KILL), r58, 3-6

DELETE Key, 4-3, 4-20

DELETE CHAR Key, 4-20

DELETE LINE Key, 4-20

Device Management Functions, 3-7

ASSIGN, r6, 3-7

PACK, r100, 3-6

PROTECT, r109, 3-7

UNPROTECT, r161, 3-7

Devices, 9-5, M-l

DIM, r24, 13, 7-27

DIR, r25, 3-5

DISABLE, r26, 11-30

disable keyboard, 14-32

DISABLE CMDFILE, r27

Display

ANSI Compatible Control Sequences, 14-14

Character

Attributes, 14-20, E-1

Graphics, 14-28, F-1

size, 14-27

Control Characters, 14-12

summary, E-1

sequences, 14-13, 14-16, E-1

Cursor Control, 14-17

Erasing, 14-18

Field Attributes, 14-22

Graphics, K-1, F-1

Input, 14-33

KEY variable, r57, 14-34

Mode Commands, 14-19, 14-14

Non-destructive character, 14-26

Output, 14-4

Scrolling, 14-17

Visual Attributes, 14-20

DUPL$, r28, 8-11

EDIR, r29, 3-5

EDIT, r30, 4-15, 4-17

Edit Mode, 2-9

Keys, 4-19

editing

general, 2-9, 4-15

using edit mode, 4-17, 4-19, 4-22

using the system editor, 4-15

ENABLE, r31, 11-30

ENABLE CMDFILE, r32

END, r33

Entering a Program, 4-7

Immediate Mode, 4-7

Erase display screen, E-1, 14-18

ERL, r150, 6-11

ERR, r150, 6-11

Error

Handler, Assembly Language, H-1

Index

Interrupt, r89, 11-4

Levels, 11-6, 11-28

messages, 16-1

Variables, r150, 6-11, 11-29

EXEC, r34, 13-6

EXIT, r35, 2-6

Exiting BASIC, r35, r138, 2-6

EXP, r36, 8-5

Expressions, 6-12

F$RGMY, 12-10

Fatal Errors, 11-4, 11-8

Field Attributes, 14-20, 14-22

File Management

System Functions for, 3-4

File Names, 1-7, 2-11

files

random access, 7-6, 7-22

sequential, 7-6, 13-12

reading, 7-11

Virtual Array, 7-27

FLEN, r37, 6-11

Floating-Point, r38

Constants, 6-5

Data, 6-4

Variables, 6-8

FOR - NEXT, r39

Formatted Printing, r108, 14-7

FORTRAN Subroutines, I-1

Functions, 8-1

Math functions, r71, s8-4

String functions, 8-10

Trig functions, r156, 8-8

User Defined, r22, 8-14

GOSUB, r40, 12-4

GOTO, r41

Graphics, F-1, K-1

IEEE-488 Bus

Addressing, 9-4

Devices, 9-5

Index

Port, 9-8

Serial IEEE-488 devices, 9-7

Bus Codes, B-1

Bus Management Lines, B-1

Bus Messages, B-1

CLEAR, r12, 9-9, 9-10

COMFIG, r17, 9-21

Command Message Sequences, B-1

Control statements, 9-9

Data Lines, B-1

Data Transfer Statements, 9-17

Device addressing, 9-5

Handshake Lines, B-1

INIT, r45, 9-10

Initialization and Control, 9-9

Input and Output Statements, 9-14

INPUT, r46, 9-14

I/O, 9-14

LOCAL, r66, 9-11

LOCKOUT, r67, 9-11

OFF PPOL, r83, 9-21

OFF SRQ, r85, 9-21

ON PORT, r94, 9-12

ON PPOL, r95, 9-21

ON SRQ, r97, 9-21

PASSCONTROL, r101, 9-12

Polling Statements, 9-20

Port addressing, r102a, 9-8

PORTSTATUS, r103, 9-22

PPL, r104, 9-22

primary address, 9-4

PRINT, r105, r106, r107, 9-16

PRINT USING, r108, 9-16

RBIN, r113, 9-19

RBIN WBYTE, r114, 9-19

RBYTE, r115, 9-18

RBYTE WBYTE, r116, 9-18

REMOTE, r120, 9-12

secondary address, 9-5

SET SRQ, r138, 9-13

Standard, 9-3

SPL, r143, 9-22

TERM, r153, 9-13

TIMEOUT, r154, 9-13

TRIG, r157, 9-13

WAIT, r163, 9-23

WAIT FOR TIME, r164, 9-23

WBIN, 168, 9-20

WBYTE, r169, s9-18

IF conditional statement

IF - GOTO, r42

IF - THEN, r42

IF - THEN - ELSE, r42

Immediate Mode, 2-7

INCHAR, r43, 10-13

INCOUNT, r44, 10-12

INIT, r45, 9-9

INPUT, r46, r47, 9-14

LINE, r49, r50, r51, r52, 9-15

LINE 4n, r50

LINE @, r51

LINE WBYTE, r52, 9-15

WBYTE, r53, 9-15

#n, r48, 10-9

@, r47, 9-4

Input and Output Statements, r46, r105

IEEE-488, 9-14

INSTR, r54, 8-12

INT, 155, 8-5

Integer

constants, r56, 6-6

data, r56, 6-5

variables, r56, 6-8

Internal Data Format, 12-14

Internal Structure of Variables, A-1

Interrupt

Control Statements, 11-30

Error Handling, 11-28

Error Variables, 11-29

Errors

Fatal, 11-28

Recoverable, 11-28

Warning, 11-29

Hierarchy, 11-6

OFF EVENT Interrupts

CLOCK, r78, 11-19

CTRL/C, r76, 11-10

ERROR, r79, 11-7

INTERVAL, r80, 11-20

KEY, r81, 11-15

PORT, r82, 11-15

PPOL, r83, 11-19

PPORT, r84, 11-15

SRQ, r85, 11-11

#n, £77, 11-13

ON-EVENT Interrupts, 11-7

CLOCK, r87, 11-19

CTRL/C, r88, 11-10

ERROR, r89, 11-8

INTERVAL, r92, 11-20

KEY, r93, 11-14

PORT, r94, 11-15

PPOL, r95, 11-18

PPORT, 196, 11-15

SRQ, r97, 11-16

#n, r90, 11-12

Processing, 11-1

program examples, 11-31

RESUME, r125, 11-21

Types, 11-4

CLOCK, 11-5

Error, 11-4

KEY, 11-5

INTERVAL, 11-5

PORT, 11-5

PPOL, 11-5

PPORT, 11-5

SRQ, 11-5

CTRL /C, 11-4

#n, 11-5

WAIT Interrupts, r163, r164, 11-22, 11-23

WAIT time, r163, 11-24

WAIT FOR KEY, £165, 11-25

WAIT FOR PPOL, r166, 11-27

WAIT FOR SRQ, r167, 11-26

I/O Buffer Memory Requirements, A-3

Index

KEY Interrupt, rl65, 11-5, 11-14

KEY Variable, r57, 14-34

Keyboard enable and disable, 14-32, E-1

KILL, r58, 3-6

LCASE$, r59, 8-12

LEFT, r60, 8-12

LEN, r61, 8-12

LET, r62, r7, 6-12

LINE FEED Key, 4-21

line numbers, changing, 4-11, r121, r30

LINK, r63, 12-5

LIST, r64, 4-9

LN, r65

LOCAL, r66, 9-11

LOCKOUT, r67, 9-11

LOG, r68, 8-6

Logical Operators, r69, 6-16

Hierarchy, 6-20

Loops, r39

LSH, r70, 8-6

Main Memory Arrays, 7-13

using, 7-14

programming techniques, 7-15

storing, 7-19

device size requirements, 7-20

device size calculation, 7-20

two dimensional arrays, 7-16

Mathematical Functions, r71, 8-4

MEM, r72, 6-11

Memory requirements

common area, A-4

for 1/O buffer, A-3

for variables, A-1

MID, r73, 8-12

Mnemonics list, M-I

MOD, r74, 8-6

Modes, 2-7

display, 14-13, 14-14

multiple statements (\), 2-4, 2-7, 4-8

Index

NEXT, r39 OR, r69, 6-19

NEXT PAGE Key, 4-3 Output and Input (RS-232), 10-9

NOT, r69, 6-20

Non-destructive character, 14-26, E-1 PACK, r100, 3-7

NUMS$, r75, 8-13 PAGE Mode Switch, 4-3

Notation Conventions, 1-9 Parallel Poll Enable Codes, D-1

Numeric Comparisons, 6-16 Parameter Decoding Subroutine FSRGMY, 12-10

Parameter Passing Mechanism, 12-9

OFF event Parentheses (use), 6-22

OFF CLOCK, r78, 11-19 PASSCONTROL, r101, 9-12

OFF (CTRL) /C, r76, 11-11 PI (3.1417...), r102, 6-7

OFF ERROR, r79, 11-9 Polling statements, 9-20

OFF INTERVAL, r80, 11-20 PPL, r104, 9-22

OFF KEY, r81, 14-25, 11-15, 14-35 PPOL Interrupt, r95, 9-21

OFF PORT, r82, 11-15 PRINT, r105, 10-9, 14-7

OFF PPOL, r83, 11-19 PRINT #n, r107, 10-9

OFF PPORT, r84, 11-15 PRINT «, 1106

OFF SRQ, r85, 11-17 PRINT USING, 9-14, 9-16, 10-9, 14-8

OFF #n, r77, 11-13 Program Chaining

and main memory arrays, 7-18

OLD, r86, 5-6 chaining, 13-1

ON event Statement Definitions, 13-4

CLOCK, r87, 11-19 Using Sequential Files, 13-12

(CTRL)/C GOTO, r88, 11-10 program examples

Interrupts, 11-4 alternate TAB function, 14-9

ON ERROR GOTO, r89, 11-8 array chaining, 13-10

ON GOTO, r91 CPOS statement, 14-10

ON #n GOTO, 190, 11-12 character graphics, 14-28

ON GOSUB, r91 create a sequential file, 7-10

ON INTERVAL GOTO, r92, 11-20 display demo, 14-31

ON KEY GOTO, r93, 11-14 display graphics demo, K-3

ON PORT GOTO, r94, 11-15 using DEF FN, 8-14

ON PPOL GOTO, £95, 11-18 error handling, 11-31

ON PPORT GOTO, r96, 11-15 CTRL/C handler, 11-35

ON SRQ GOTO, r97, 11-16 using bus timeout, 11-32

using ERR and ERL, 11-29

OPEN, r98, r99 using RESUME, 11-21, 11-33
AS NEW, 7-8 GOSUB statement, r40, 12-4

AS OLD, 7-8 interactive display program, 14-39

virtual array, 7-32 interrupt processing, 11-31

Operating Modes, 2-7 LOAD ARRAY, 7-4

Operators and Expressions, 6-12 open output chan. to virtual array, 7-8

Operator Hierarchy, 6-20 open input chan. to virtual array, 7-8

6

Index

read IEEE-488 bus, 9-4 RS-232 Serial I/O, 10-1

read sequential file, 7-11 BREAK, r9, 10-14

TSO usage, 14-33 CLOSE, r13, 10-8

virtual array dimensioning, J-1 Defined, 10-4

visual attributes, 14-20 Device and Port Addressing, 10-5

WAIT statement, 11-36 echo mode, r134, r136, 10-12

Establishing Serial Communications, 10-15

Program Debugging, 15-1 INCHAR, r43, 10-13

CONT TO, r18, 15-15 INCOUNT, r44, 10-12

STEP, r144a, 15-14 INPUT, r46, r48, 10-10

STOP ON, r149, 15-13 I/O Channels, 10-6

TRACE ON/OFF, r155, r154A, 15-4, 15-13 noecho mode, 10-12

trace by line number, 15-5 OPEN, r98, 10-7

Variable tracing, 15-8 Output and Input, 10-9

Programming, 1-3 PRINT, r105, r107, 10-9, 14-7

PROTECT, £109, 3-7 PRINT USING, r108, 10-9, 14-8

RUN, r129, 5-8, 13-4
ODIR, r110, 3-6 RUN WITH, £129, 13-6

Run Mode, 2-9

Radian Angular Measure, r156, 8-8 Running A Program, 5-6

RAD$, r111, 8-13

RANDOMIZE, r112, 8-7 Saving A Program, 5-4, r130, r124

RBIN, r113, 9-19 SAVE, r130, 5-4

RBIN WBYTE, r114, 9-19 SAVEL, r130, 5-4

RBYTE, r115, 9-18 sequence of line numbers, changing, 4-14

RBYTE WBYTE, r116, 9-18 Sequential Data Files, 7-10, 13-12

READ, r117 SET CLOCK, r131, 11-19

Recoverable Errors, 11-28 SET CMDLINE$, r132

Relational Operators, r118, 6-14 SET DATE, r133

REM (!), r119, 4-6 SET ECHO, r134, 10-12

REMOTE, r120, 9-12 SET INTERVAL, r135, 11-20

REN, r121, 4-11 SET NOECHO, r136, 10-12

RENAME, r122, 3-6 SET SHELL, r138

RESAVE, r124, 5-4 SET SRQ, r137, 9-13

RESAVEL, r124, 5-4 SET TIME, r139

Reserved words, N-l SGN, r140, 8-7

RESTORE, r117 SIN, r141, 8-6

RESUME, r125, 11-7, 11-21 SPACE$, r142, 8-13

RETURN, r126, 12-4 Special Function Keys, 4-3

Reverse video (display), E-1, 14-20 SPL, r143, 9-22

RIGHT, r127, 8-13 SOR, r144, 8-7

RND, r128, 8-7 SRQ Interrupt, 1137, r97, 11-16, 9-20

STEP, r144A, 15-14

Index

Step Mode, 2-5, 2-10, 15-14 TIME$, r150, 6-11
STIME$, r145 Time expression, M-1, r163, 11-24

STOP, r148 TIMEOUT, r154, 9-13

STOP ON, r149, 15-13 Touch Sensitive Display, 14-1

String KEY System Variable, r57, 14-34

Comparisons, r146 ON KEY interrupt, r93, 11-14, 14-35

Constants, £147, 6-7 Using for input, 14-33

Using for Output, 14-4

Cursor movement, 14-17

Conversion to Internal Form, 12-19

Conversion from Internal Form, 12-20

Data, 6-6

Functions, 8-10

Variables, 6-8

Subroutine(s), 12-1

assembly language, 12-7

Format, 12-9

FORTRAN, 12-8

External, 12-5

Software Required, 12-6

Internal, 12-4

Linkage Mechanism, 12-10

Names, 12-6

Parameter Decoding, 12-10

Parameter Format, 12-14

Parameter Passing, 12-9

parameter syntax, 12-17

Symbol explanation, 1-8

Syntax

diagrams

Command Line, 2-8

Program Line, 2-8

Remark Line, 2-8

Program, 2-8

How to Read, 1-7

Supplementary, L-1

System

Constants, 6-7

Devices, 3-7

Variables, r150, 6-11

TAB, rl51, 8-13, 14-9

TAN, r152, 8-9

TERM, r153, 9-13

TIME, r150, 6-11

WAIT FOR KEY, £165, 14-36

TRACE OFF, £154A, 15-13

TRACE ON, £155, 15-4

Trace Options, 15-11

Trigonometric Functions, r156, 8-8

TRIG statement, r157, 9-13

TRIM, r158, 7-34

TSO (Touch Sensitive Overlay), 14-1

UCASES, r159, 8-14

underlining (display), 14-20, E-1

UNPROTECT, r161, 3-8

User Defined Functions, r22, 8-14

VAL, r162, 8-14

Variable Storage Requirements, A-1

Variable Structure, A-1

Variables, r38, r56, r147, r150, 6-8

Array, 6-9

Floating-Point, 6-8

Integer, 6-8

Introduction, 6-8

String, 6-8

System, 6-11

Virtual Arrays, 7-22

Advantages and Disadvantages, 7-24

Array Element Access, 7-35

Chaining Techniques, 13-9

Creating, 7-32

Definition, 7-24

DIM, 7-22

Dimensioning Program, J-1

Equivalent Virtual Arrays, 7-38

file structure discussion, 7-26

File Organization, 7-27

Opening array file, 7-32

Programming Techniques, 7-35

Reusing declarations, 7-37

Size Requirements, 7-29

Size Calculation, 7-30

Splitting Among Files, 7-36

Using, 7-33

as Ordinary Variables, 7-33

Virtual Array Strings, 7-34

WAIT, r163, 9-23, 11-24

WAIT FOR event, r164, 11-22

WAIT FOR KEY, r165, 11-25

WAIT FOR PPOL, r166, 11-27

WAIT FOR SRQ, £167, 11-26

WAIT FOR TIME, r164, 11-24

Index

WBIN, r168, 9-20

WBYTE, r169, 9-18

WBYTE Decimal Equivalents, C-1

Writing a Program, 4-6

XOR, r69, 6-19

Symbols

=,r7, 6-7, 6-8, 6-14

%, 156, 6-6

$, 1147, 6-7

+, r2, 6-13, 6-15

-,r2, 6-13

* £2, 6-13

/, 12, 6-13

a,r2, 6-13

!,rl19

@, r106, 9-4

	000-01
	000-02
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	00-10
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	15-01
	15-03
	15-05
	15-07
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-2
	15-4
	15-6
	15-8
	16-1
	16-2
	16-3
	16-4
	16-5
	16-6
	A-0
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	C-1
	C-2
	D-1
	D-2
	D-4
	D-6
	E-1
	E-3
	E-5
	E-6
	F-1
	F-2
	G-1
	G-2
	H-1
	H-2
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	I-7
	I-8
	J-1
	J-2
	J-3
	J-4
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	K-10
	K-11
	K-12
	K-13
	K-14
	K-15
	K-16
	K-17
	K-18
	K-19
	K-20
	K-21
	K-22
	K-23
	K-24
	K-25
	K-26
	K-27
	K-28
	K-29
	K-30
	K-31
	K-32
	K-33
	K-34
	K-35
	K-36
	K-37
	K-38
	L-1
	L-2
	L-3
	L-4
	L-5
	L-6
	L-7
	L-8
	M-01
	M-02
	M-03
	M-04
	M-05
	M-06
	M-07
	M-08
	M-09
	M-10
	M-11
	M-12
	M-13
	M-14
	M-15
	M-16
	M-17
	M-18
	M-19
	M-20
	N-1
	N-2
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10

