
ARRAY Variable EB

Format

legal variable name (row%, column%)

Syntax Diagram

atray variable Wk float variable sets —>

Nf integer variable =

ey string variable FE

Description

An array variable is a collection of variable data under one name.

O Arrays consist of floating-point, integer, or string variables.

O The variable name has either one or two subscripts to identify
individual items within the array.

O Compiled and Extended BASIC allow three-dimensional arrays.
Array variable names may have from one to three subscripts.

O Subscripts are enclosed in parentheses.

O When two subscripts are used, they are separated by a comma.

O It is helpful to view two-dimensional arrays as a matrix. The first
subscript is the row number, and the second subscript is the column
number. For example, FIT%(3,18) identifies the integer in row 3,

column 18 of the array FT%(m,n).

O A subrange (portion) of an array can be designated by specifying a
first and last subscript separated by two periods. For example,
FT% (1..3, 15..18) identifies all integers from row | to row 3,

columns 1|5 through 18 of the array FT%.

O Subranges may only be used with certain I/O statements(PRINT,
INPUT, RBYTE, WBYTE, RBIN, WBIN, READ). Subranges

specify the array elements to be read or written.

ARRAY Variable

O Array variables are distinct from simple variables. A and A(0) are
two different variables.

O Only one array variable can be associated with an identifier. A%(n)
and A%(m,n) are not simultaneously allowed.

O Memory space must be reserved for an array variable before it can
be used. See the discussion of the DIM statement.

QO Virtual arrays are array variables accessible througha channeltoa
file-structured storage device. This feature allows a program to
take advantage of the much greater storage space available on

these mass storage devices. Refer to the section on Data Storage.

O Some examples of array variables are:

A%(3)
B1%(2%, 3%)
AS(5)
C(3%)
DI2+A*B,C)
D(D(2))

A§(3..7) Strings 3 through 7 of the string array A$.

FT%(2..4, 5..15) Rows 2 through 4 in columns 5 through 15 of
the integer array FT%.

O Inthe last example above, the second subscript is incremented or
decremented before the first. For example, the statement PRINT
FT%(2..4,5..15) will display the range FT%(2, 5 through 15) before

displaying FI%(3, 5 through 15).

Usage

CALL Gi
Statement

CALL {unquoted string} (optional parameter list)

Syntax Diagram

CALL

Description

>> unquoted string =

CALL ()

7}_parm be

—C:

The CALL statement executes a subroutine file loaded by the LINK
statement.

O The CALL statement can be used in either Immediate or Run

0

mode.

As shown in the syntax diagram, the CALL statement verb is not

required. This 1s called ‘tan implied CALL”. If CALL 1s not used,
then the leading characters of the unquoted string must not conflict
with a BASIC verb.

The unquoted string contains the subroutine name. The subroutine
must be present in memory when the CALL statement is executed.
If the subroutine is not present, error 705 (Call to undefined

subroutine) is displayed.

Zero (0) to 10 parameters can be passed to a subroutine as part ofa
CALL statement.

1. Parameters can be:

a.

b.

Variables

Constants

Expressions

Arrays (but not virtual arrays)

Individual array elements

CALL
Statement

a)

2. The parameter list must be enclosed in parentheses.

3. Individual parameters must be separated by commas.

4. The required parameter format is described in the Subroutine
section of the BASIC manual.

The number of parameters that can be exchanged with the calling
routine is not limited to 10 when the CALL statement is used with
Compiled or Extended BASIC.

Compiled BASIC subroutine names may be of any length, but are
limited to 6 significant characters. All subroutine names are
converted to upper case in the output file.

In Extended BASIC Only

0

O

Global variable and subroutine names may be of any length, but
are limited to 8 significant characters. All names are converted to
upper case in the .OBX file.

BASIC CALL statements that refer to machine code subroutines
should use names that are not more than 6 characters long. Names
longer than 6 characters will not be matched by the Extended
Library Linker program.

To simplify programming, use the following rules when Assembly
or FORTRAN routines are called:

1. Because Extended BASIC converts subroutine names to
upper case, Assembly programs should use upper case labels
for entry points that may be called from BASIC. This is not a
problem in FORTRAN, where the compiler always generates
upper case labels for subroutines.

2. The subroutine name used in a CALL statement to a
FORTRAN or Assembly routine should be less than or equal
to 6 characters long.

COM@S
Statement

Usage

COM {id list}

Syntax Diagram

COMmon —+(COM }- —| id L- —_—

Lee |

(, \~-
QQ

Description

COM reserves variables and arrays in a COMmon area for reference
by chained programs. COM arguments are valid BASIC array,
integer, and floating-point variable names in a comma separated (“,”’)
list. Array variables must include their size declaration.

O Only floating-point and integer variables may be stored in the
common area.

O String variables may not be stored in the common area.

O String variables may be stored in virtual arrays for access by
chained programs. This technique is discussed in Section 7 of the
BASIC manual.

O All programs accessing a common area must use COM statements
that are identical in order, type, and array sizes; the actual variable
names, however, may be different.

Example

For example, assume that a chained program requires the use of three
floating point simple variables, an integer simple variable, a floating-
point array, and an integer array defined in a previous program. The
first program could use a COM statement such as:

10 ' Program A
20 cOM » B, C. FA, Dt24%), TACIOOA)

1030 RUN "B"
1060 END ' End of program A

COM
Statement

The second program could then use:

10 ' Program B
20 com Li, L2, La, @%, K(24%), P%(100%)

Note that while the names of the variables stored in the common area
have changed between programs, the order and type of the variables
are exactly the same.

Differences in Extended and Compiled BASIC

In addition to sharing variables between chained programs, Extended
and Compiled BASIC programs also use the COM statement to make
certain variables accessible to both calling routines and true
subroutines.

O The COM statement must be used first in the Main program
segment to assign variables as Common ones. After that, any
subroutine may have access to these variables referring to them as
Common.

O All COM statements (whether in a main program, a subroutine, or
a chained program) must allocate the same amount of space (the
same number of variables of the same type).

O No strings or entire arrays may be exchanged via the COM
Statement.

Statement

Extended and Compiled BASIC Examples

In the Main program, this statement

COM A, B%(40)

assigns the two items A, and the array B%, with 4 elements. as

Common to all program sections. Later, a subroutine may USE 2 OF
some of these variables with another COM statement. In this example,
this statement

COM Q, G%(40)

in a subroutine specifies that Q and the array G%, with 41 elements,
from the Main program segment may also be used in this subroutine.

Note that the actual names used in the subroutine COM statement are
not significant. In the example above, the subroutine’s variable Q isthe
same as A in the Main program.

CONT TOMS
Immediate Mode Command

Usage

CONT

CONT TO {linenumber }

Syntax Diagrams

(no stop)
CONTinue CONT —— RETURN |

line ae

Description

The Immediate Mode CONT TO line number command causes

program execution to continue from a breakpoint stop caused by
STOP, STOP ON, CONT TO, or (CTRL)/C.

O The CONT TO line number command is available only in
Immediate Mode.

O CONT TO line number must first be enabled by a breakpoint stop
in a running program, caused by STOP, STOP ON, CONT TO, or
(CTRL) /C.

O Any subsequent action other than entering the CONT TO line
number command disables the command. The program must then
be rerun to the breakpoint.

O Program execution continues at the statement following the last
statement executed.

O When TO line number is included, program execution again stops
if the specified line number is encountered, and the statement is not
executed.

O CONT TO can be used instead of or in addition to STOP ON and
CONT to move quickly through a subroutine or loop that has
already been confirmed during Step Mode logic debugging.

CONT TO
Immediate Mode Command

Example

The following example program is in main memory during the
interaction that follows.

10 FOR 1% = 1% TO 2%
20 PRINT I% + 1%
30 NEXT
40 PRINT "Done!"
30 END

With the above program in main memory, the following sequence of
commands and RETURN entries would produce the responses shown.
Programmer entry is shown to the left, and Controller response 1s

shown to the right.

PROGRAMMER ENTRIES CONTROLLER RESPONSES

STOP ON 10 Ready
RUN Ready

Stop at line 10
Ready

Stop at line 10
Ready

Stop at line 20
Ready

2

Stop at line 30
Ready

Stop at line 20
Ready

4

Stop at line 30
Ready

Stop at line 40
Ready

STEP

(RETURN)

(RETURN)

CRETURN)

(RETURN)

(RETURN)

(RETURN)

Done!

Stop at line 30

STOP ON 10 Ready
Ready

Stop at line 10
Ready

2
4

Stop at line 40
Ready

RUN

CONT TO 40

CONT
Done!
Ready

Remarks

This command is not used in Compiled or Extended BASIC. If you
attempt to use this command, the BASIC Compiler will report a
syntax error.

DELETES
Immediate Mode Command

Usage

DELETE {ALL}

DELETE {linenumber}
DELETE {from linenumber - to linenumber}

Syntax Diagram

DELETE OELETE x —o-(ALL }- if —| RETURN |

(first)

line no
(one line only)

0 FK

a

line no}

The DELETE command deletes part or all of a program from
memory.

Description

O The entire program is deleted when ALL is specified.

O DELETE ALL also deletes Common Variables (see the COM
statement in the Program Chaining section of the BASIC manual).

O One line is deleted if a single line number is specified. The
command is ignored if the line does not exist.

O One line may also be deleted by typing the line number only,
followed by pressing RETURN.

O The portion of the program between and including specified lines is
deleted if two line numbers are specified.

DELETE
Immediate Mode Command

Examples

The following examples illustrate common uses of the DELETE
command.

COMMAND RESULTS

DELETE No action

DELETE ALL Deletes entire program and the COM
variables

DELETE 100 Deletes only line 100

DELETE 200-300 Deletes lines 200 through 300

400 RETURN Deletes line 400

Remarks

This command is not used in Compiled or Extended BASIC. If you
attempt to use this command, the BASIC Compiler wil! report a
syntax error.

Usage

DIMES
Statement

DIM [id(dimensions)]
DIM #[open channel],[id(dimensions)]
DIM #[open channel],[id(dimensions) = length]

IBASIC Syntax Diagram
main memory arra

DiMension—{ DIM a. J 7 aa

(open channel)

Nepti numeric expression C+

(max string 16) dimensions | ,
(max string)

Le = anal umeric expression

CO
Additional CBASIC and XBASIC Syntax

1M —>C om »——>{ ia F > D- —_>

Description
The DIM statement reserves memory or file space for arrays in main
memory or on a file-structured device. The DIM statement has the
following characteristics when used for a main-memory array.

O

O

0

An array is a set of variables.

Each variable is an “element” of the array.

The maximum array index for each dimension may be specified as
one less than the required number of elements, as element counting
begins with zero.

One or two dimensions may be specified.

Compiled and Extended BASIC allow three-dimensional arrays.
See below.

A two-dimensional array may be considered as a matrix with the
first dimension representing rows and the second dimension
representing columns.

A single DIM statement may dimension one or more arrays,
separated by commas.

DIM
Statement

The DIM (DIMension) statement may also be used to assign a
previously opened channel to a virtual array and informs BASIC
about data organization within the file. Virtual arrays are stored ona
file-structured device and are treated as random-access files. The DIM
statement has the following characteristics when used to describe a
virtual array.

Oo The # character and numeric expression following DIM specify an
open channel from | to 16.

String array declarations may specify the maximum length, in
characters, of each element string.

This length specification follows the array identifier and array size
specification. For example, DIM #4, Q$(63%, 63%) = 8% declares

Q§ to be a virtual array, through channel 4, containing 64 X 64
string elements of 8 characters each.

String element lengths in virtual arrays must be a power of 2
between 2 and 512 (2, 4, 8, 16, 32, 64, 128, 256, or 512).

16 characters per string is assumed when no length 1s specified.

The virtual array DIM statement does not initialize string or
numeric variables to nulls or zeros as does the ordinary DIM
statement. For this reason, a value must be assigned to virtual
array elements before they can be used as source variables. After
being dimensioned they contain whatever bit patterns are in their
respective disk storage areas.

Examples

Main Memory Arrays

The following examples illustrate some common uses of the DIM
statement, with comments on the results of each statement.

MEANING

DIM A(5) Dimensions a six-element one-dimensional floating
point array with the following elements:

P
>
>
P
>
P
P
>
P

P
u
n
o

DIM
Statement

DIM A%(2, 3) Dimensions a twelve-element two-dimensional integer

array with 3 rows (0-2) and 4 columns (0-3):

DIM OP§(5) Dimensions a six-element string array that could be
used to store operator messages.

DIM A(5), A%(2,3), OPS$(5)

This statement accomplishes the tasks of the three
previous examples in one statement.

Virtual Arrays

In the following example, line 10 specifies that the virtual array file
“RESULT.VRT” will be 20 blocks long and accessible on channel |.
Line 20 assigns four virtual arrays to the open channel 1.

10 OPEN "RESULT.VRT" AS NEW DIM FILE 1 SIZE 20
20 DIM #1, A®(63%) = 126%, C®(31%), B(40%), ALZ(500%)

Note that the data will fit in 20 blocks, but not in 19:

ARRAY #OF ELEMENTS SIZE # OF CHARACTERS

A$ 64 128 8192
C$ 32 16 512
B 4] 8 328
A% 501 2 1002

TOTAL: 10034 bytes (or characters) dupl

19 blocks = (19 * 512) = 9728 characters
20. blocks = (20 * 512) = 10240 characters

DIM
Statement

Using Arrays in Compiled and Extended BASIC

In Compiled and Extended BASIC, the DIM statement is modified to
allow variable arrays to three dimensions. The modified DIM
statement also allows the exchange of arrays by reference between
calling routines and true subroutines.

Three-Dimensional Arrays

The DIM Statement may be used to dimension arrays up to three
dimensions.

For example, this statement:
DIn ACS, 4, 8)

defines a three-dimensional array of six elements (0 through 5), with
each element containing five sub-elements (0 through 4), and each sub-
element containing nine sub-sub-elements (0 through 8). Refer to the
supplementary syntax diagram for “dimensions” in Appendix A of the
Compiled BASIC or Extended BASIC manuals. The diagram above
should be used in combination with the syntax diagram in Appendix
A.

Passing Arrays to Subroutines

Arrays may be passed by reference to subroutines. There are two ways
to do this. The first technique is known as conformal dimensioning.
This is the preferred method.

The following program segment is an example of conformal
dimensioning:

100 SUB ABC(KX%(), I%)
110 DIM K%0)
120 @®eaes

Line 100 defines a true subroutine named ABC with two parameters

exchanged between it and its calling routine (see SUB Statement). The
DIM statement in line 110 specifies that the variable array K%() will
have the same number of dimensions (subscripts) and the same
dimension limits as it does in the calling routine.

O The variable array may be a normal array in Main Memory, in
Common memory, or a virtual array.

DIM

Statement

The number of dimensions (subscripts) used in the subroutine must
match the dimensions in the array. For example, if K%() is a two-
dimensional array, but the subroutine tries use it as a one-
dimensional array, an error will result.

The dimension limits of the array will be the same in the subroutine
as in the calling routine. In the above example, if the original
dimension on K%() was

DIM K%(10)

in the calling routine, an attempt to use, for example, array element

K%(11), will cause a Subscript Out of Range error.

The data type of the original array will be used in the subroutine. In
the example, K%() is an array of integer variables. An attempt to
use this array for another data type (floating-point for instance)
will result in an error.

Conformal dimensioning may be used across more than one level
of subroutines. For example, a Main program segment calls
Subroutine A, which in turn calls Subroutine B. A DIM statement

Subroutine B may be used to access an array that was originally
dimensioned in the Main program segment. The array does not
have to be used in Subroutine A in order to be used in Subroutine

B.

An array may be originally dimensioned in a subroutine, then
dimensioned conformally in subsequent subroutines that are called
from it. The original DIM statement does not have to be in the
Main program segment.

This method will NOT work for subroutines that will be called by
FORTRAN or Assembly programs. Use the second method,
described below, for these applications.

The second method is to dimension a variable array in a subroutine is
to redefine the array dimensions in the subroutine. For example, the
following statements

200 SUB ABC (KZ(), IZ)
oO DIM KX (100%)

DIM
Statement

Line 200 defines a true subroutine named ABC with two parameters
exchanged between it and its calling routine (see SUB Statement). The
DIM statement in line 210 dimensions array K%() to a 101 element

single-dimension array.

O The new dimensions for the array only apply within this
subroutine.

O Virtual arrays may not be redimensioned with this method. An
Illegal Parameter DIM error (error 908) will occur if an attempt is

made to redimension a virtual array.

oO This method MUST be used if the subroutine will be called by a
FORTRAN or Assembly program.

If a subroutine uses a virtual array element, but conformal

dimensioning is not desired, the following method may be used:

300 SUB ABC (KX(), 1%, JX)
310 DIM WIZ, KX(JZ)

Line 300 defines a true subroutine named ABC, which exchanges three
items with its calling routine (see SUB Statement). The DIM statement
in line 310 dimensions the array K%() and assigns a channel number by
means of the values passed from the calling routine.

QO An Illegal Parameter DIM error (error 908) will occur if the
parameter is not a virtual array or if the array is attached to a
channel other than the one specified in the DIM statement.

EDIT ES
Immediate Mode Command

Usage

EDIT [linenumber]

Description

The editor provided as a part of the Fluke BASIC Interpreter program
is an easy-to-use character-oriented editor. The Edit Mode allows the
user to create, delete, or modify the characters that make up program
lines in main memory. Program lines are stored in main memory for
subsequent use by other modes. The editing keys in the upper right
corner of the keyboard plus the (CTRL)/U, BACK SPACE,
RETURN, and LINE FEED keys control the cursor and delete text.
The remaining keys are used for text entry. This section describes the
edit keys and their use along with other editor features.

O Edit Mode is entered from Immediate Mode by typing:

EDIT <RETURN)

or
EDIT line number (RETURN)

O Editing begins with the lowest numbered line of the program in
memory unless another line is specified.

O No line number specification is used when beginning the edit of a
new program when no other program is in memory.

O Program entry procedure is the same as in Immediate Mode.

O Immediate Mode commands and program statements cannot be
executed while in Edit Mode.

O Exit from Edit Mode to Immediate mode by entering (CTRL) /C.

O The special edit keys on the programmer keyboard are enabled.

O Upto 15 lines of the program in memory are displayed, beginning
at the first line or at the line number given with the command.

O Edit Mode enables the user to scroll the cursor forward or
backward in a program as well as right or left on program lines.

EDIT
Immediate Mode Command

O Edit Mode enables the user to delete characters, portions of lines,
or entire lines.

O Edit Mode also enables the user to duplicate entire program lines.
The following examples illustrate the two different uses of the
EDIT command.

COMMAND RESULT

EDIT Select Edit Mode and display up to 15 lines of the
program in memory, beginning with the first line. If no
program exists, the display is cleared and the cursor is
positioned to the upper left corner of the display.

EDIT 1000 Select Edit Mode and display up to 15 lines of the
program in memory, beginning with the first line
greater than 999. If no program exists or the last line
number is less than 1000, the display is cleared and the
last line of the program is displayed on the top of the
screen.

EDIT
Immediate Mode Command

Edit Mode Keys

Some of the keys on the programmer keyboard have special functions
that are enabled or modified in Edit Mode. Any key, if held down,

performs its function repeatedly. The figure below describes the special
functions of the Edit Mode Keys.

NOTE
Any edit command that will move the cursor from the current
line or (CTRL)/C is not accepted if the line does not pass a

check for correct syntax. A blinking error message (e.g.:

“Mismatched Quotes”) will be displayed until the line is
corrected.

KEY ACTION

Move one position left. Ignored if already at

the left margin.

Move one position right. Ignored if already at
the right end of the line.

Move one position up. If the line above is
shorter than the current column position,

move left to the end of that line. Scroll down
one line if the cursor is on the top line of the
display, and another line 1s available. This
action will not be done if the line does not pass
a syntax check.

Move one position down. If the line below is
shorter than the current column position,
move left to the end of that line. Scroll up one
line if the cursor is on the bottom line of the
display, and another line is available. This
action will not be done if the line does not pass
a syntax check.

EDIT
Immediate Mode Command

KEY ACTION

DEL
LINE

DEL
CHAR

DELETE

CTRL

BACK

SPACE

Delete from the cursor position to the end of
the line. If the cursor is at the left margin, delete
the entire line and move the rest of the program
up one line to fill the deletion.

Delete the character at the cursor position and
move the remaining characters left one
position to fill the deletion. When the key 1s
held down for repeat, the portion of the line to
the right of the cursor will progressively
disappear.

Delete the character to the left of the cursor
position and move the remaining characters
left one position to fill the deletion. When the
key is held down for repeat, the portion of the
line to the left of the cursor will progressively
disappear as the portion to the right moves to
the left margin. This key function is also
available in Immediate Mode.

Delete the current line.

Move to the left margin.

EDIT
Immediate Mode Command

KEY ACTION

NE . .
Move to the right end of the line.

When the cursor is at the right end of the line,
Open a new empty line below, and move to its
left margin.

RETURN When the cursor is not at the right end of the
line, break the line into two lines. The cursor
position identifies the first character of the new
(second) line.

This action will not be done if the portion of the
line that was to the left of the cursor does not
pass a syntax check.

Character Keys Insert characters at the current cursor position.
Each character entry moves the cursor right
one position along with any text to the right of
the cursor. Entries that would result in a line
length greater than 79 characters are not
accepted, and produce a beep sound.

+ Return to Immediate Mode.

EDIT
immediate Mode Command

Additional Editor Features

It is not necessary to insert a line in correct sequence. Regardless of the
order in which program lines are entered, the editor will store them in
memory in the correct line number sequence. When the cursor 1s
instructed to move from a line, the editor checks for some syntax

errors, such as omitting a quote, parenthesis, or line number. If a line
does not pass the check, an error message 1s displayed and the cursor 1s
not allowed to leave the line until the error is corrected.

If a program line is renumbered by deleting all or part of its line
number and then entering a new line number, a duplicate line will
result. One line will have the original line number, the other line will
have the new line number. This may be seen by scrolling the modified
line on and off the display, in EDIT mode.

If (CTRL) /C 1s entered when the current line will not pass the syntax
check, the blinking error message is displayed in Immediate Mode and
the line is not stored in memory.

There are many errors the editor will not detect, such as forgetting to
dimension an array or specifying GOTO with a nonexistent line
number. Such errors will be detected only when the program is run.

The cursor will not scroll above the lowest line number nor below the
highest line number in the program. If the cursor is in the middle of the
program and a new last line is entered at that position, the cursor will
not scroll down past that line. To correct this condition:

O The cursor may be scrolled in the opposite direction until the line
entered out of sequence disappears from the display. Reverse scroll
direction again and the line will then be in proper sequence.

O Type (CTRL)/C, and then type EDIT, followed by the line
number that needed editing. Lines will then be displayed in correct
sequence, allowing access to all lines.

EDIT
Immediate Mode Command

The editor stores program lines in memory with the line number shown
on the display. If any other program line has the same line number as
that shown on the display, it is replaced with the contents of the line
shown on the display. This feature can be used to duplicate program
lines by changing only the line number and moving the cursor off the
line. The line with the previous line number is not deleted by this
process. The display, however, will show only the most recent line
number entered. To see both resulting lines, scroll the entered line off
the display and back on.

When a line is scrolled off the display with the same line number as a
line previously stored, the original line in memory will be replaced by
the one which is scrolled off. In order to prevent this from occurring,
assign each line a unique line number.

Remarks

This command is not used in Compiled or Extended BASIC. If you
attempt to use this command, the BASIC Compiler will report a
syntax error.

« XBASIC)

EXPORT EE
Statement

Usage

EXPORT {variable list}

Syntax Diagram

~@ Pm EXPORT ——

ar PL_iaentitier } +

integer

Description

The EXPORT statement is used to declare a set of variables and arrays
as global variables. EXPORT assigns memory to the variables and
arrays in the list of variables and publishes the variable names in the
output .OBX file as global variable definitions.

O EXPORT statements can be used in BASIC main programs or true
-subroutines (bracketed by SUB and SUBEND).

O Variables and arrays in the variable list may be integer, floating-
point, or string variables.

O Arrays must be DIMensioned so that the Extended Basic Compiler
can notify the Extended Linking Loader to reserve storage space
for them. Dimension values must be constant integers or integer-
valued real numbers.

O A variable may not be named in bothan EXPORT statement anda
DIM, COM, IMPORT, or another EXPORT statement in the

same program module.

O Any number of EXPORT statements may appear in a single
program module.

EXPORT
Statement

O A global variable should be declared in an EXPORT statement
before it is used in another BASIC statement in the same program
module.

O Global variables are always preset to zero (for numbers) or the null
string (for strings) when the program begins execution.

Example

The following example illustrates the use of the EXPORT statement:

10 sub get_readings(hosfany%)
20 export dvaReadings(100)
30 import dvmAddressZ, dvaGetDatas
40 print @dvmAddressz, dvaCetDatas
50 for iX = 1% to hoetianyx
60 input @dvaAddressz, dvaReadings(iZ)
70 next iz
80 subend

Usage

IF [expression] THEN
program statements

ELSIF [expression] THEN
program statements

ELSIF [expression] THEN
program statements

ELSE [expression]
program statements

ENDIF

Syntax Diagram

See page 2

Description

COBASIC) CELTD
EXTENDED IF Egg

Statement

The extended IF statement extends the IF-THEN-ELSE statement by
allowing the ELSE condition to be the next IF condition and by
allowing multiple statement lines between the THEN and ELSE
clauses. For example,

cal
elsif a = 3 then

call sub3 ()

4™= key Vw
oto begin:

endif”

@&

(A
ct
 sible"

Screen to Continue "
rT key

EXTENDED IF
Statement

— > IF expression -—{__ THEN) >

sar
<q

RETURN > RETURN ELSIF)—4 expression -—
compiled BASIC «)

statement

—¢
>

4

Lec THEN > &{ RETURN +

Le Sameer

___f acripn } — | RETURN }

compiled BASIC
statement

—<¢

ELSE > RETURN

| Loo eee

q

[
—q—

Sf —™_.
—> 7. ENDIF —> RETURN

compiled BASIC comment
statement

>—

EXTENDED IF
Statement

A extended IF is distinguished by an IF statement which has nothing
(except an optional trailing remark and the end of the line) following
the THEN keyword. The entire extended IF consists of the following
elements:

O An“IF expression THEN” statement which starts the IF. The
statements following the THEN are executed ifthe expression 1s
true (nonzero).

O Zero or more “ELSIF expression THEN” statements which
select one of several alternatives if the initial “IF expression
THEN” clause was not selected. An ELSIF statement is executed if
the expression is true (nonzero). The ELSIF statements are
executed in the order in which they appear in the source program.

QO An optional “ELSE” statement which is executed if none of the
other alternatives was selected. Note that at most one ELSE may
be used with any given extended IF.

O A mandatory “ENDIF” statement which terminates the extended
IF.

O Extended IF statements must be the only statements in a program
line. This restriction eliminates any interaction with “simple IF”
Statements which are still part of the Compiled and Extended
BASIC languages.

O Extended IF statements may be nested to any desired depth; no
confusion (at least where the compiler is concerned) 1s possible. We
recommend that you indent the program text to make it easier to
determine which code is under the control of which IF.

FOR and NEXT &
Statements

Usage

FOR {index} = {begin} TO {end} [STEP {step}]
program steps
more program steps
etc...

NEXT {index}

Syntax Diagram
(Start)

FOR —-(_ FOR =| numeric id +=) turmeric expression

rend)

| numeric expression + x
(step +1)

STEP numeric orsson ES

NEXT NEXT —+| numeric id | -

Description

The FOR statement sets up a loop which repeatedly executes the
statements contained between the FOR statement and the NEXT

statement.

QO There must not bea FOR without a NEXT, ora NEXT without a

FOR.

O The FOR statement specifies the number of times the loop is to be
repeated by specifying limit points and step increment of the index.

O If no step increment is specified, step +1 1s assumed.

O The index must be numeric.

O The index must not be an array element.

O Whena FOR statement is initially encountered, the index value is
compared to the limit. If the index is past the limit, the FOR-
NEXT loop is not executed.

O The NEXT statement compares the index with the limit after
incrementing it.

FOR and NEXT
Statements

O Using a GOTO statement to branch permanently out of a FOR-
NEXT loop is a potential time bomb (see Examples, below.) A
better solution is to test for the loop exit condition, then set the
value of the loop counter variable to the value of the TO portion of
the FOR statement, then branch to the NEXT statement. This

applies only to the BASIC interpreter.

QO Branching permanently out of a FOR-NEXT loop via a GOTO
statement is permitted in Compiled and Extended BASIC.

O When two FOR-NEXT loops are nested, each FOR statement
must have a corresponding NEXT statement. Furthermore, the
innermost FOR statement must match the innermost NEXT
statement, and so on, to the outermost FOR-NEXT statement

pair.

O Compiled and Extended BASIC do not allow multiple NEXT
statements within a FOR-NEXT loop. Each FOR statement must
have one and only one NEXT statement.

Examples

FOR and NEXT
Statements

The following examples compare two different ways of constructing
program loops, using the FOR - NEXT, and using IF - GOTO. Note
the different comparisons at line 100, depending on the sign of the
STEP.

FOR - NEXT

10 FOR I = 1 TO -5S STEP -2

20!
30!
100 NEXT I
110 ! Other statements

Other statements

10 FOR J #= 10 TO 100 STEP 20

20' Other statements
30!
100 NEXT J
110 ' Other statements

The following example loops five

IF - GOTO

10 I = 1
15 IF I ¢ ¢-3) GOTO 110
20; Other statements

100 I=I + (-2) \ @0TO 20
110 ' Other statements

10 J = 10
153 IF Jv)» 100 GOTO 110
20 Other statements

100 vzJ + 20 \ GOTO 20
110 ' Other statements

times, and then prints the index
value. Note that the index has incremented to six.

40 FOR I1%481% TO 3%
O PRINT IX

3O NEXT I%
40 PRINT “Jndex Value is"i IZ

The display will show:

i ppgcgments by 1 through loop
isplay value of I%

7 Repeat loop until F=3%

ya
a

Index value is 6

+

FOR and NEXT
Statements

The following example illustrates what happens when the index never
equals the final value.

10 FOR AZ = CX TO D% STEP 2% ! CZ = 3 and DZ = 10°
QO PRINT AZ ' Display value of Az

30 NEXT AX ! Increments AZ by
QO REM ' Loops until Ax = 10

The display will show:

— =>

S —s
If line 10 used C and D rather than C% and D%, and if C= .6 and D=
10.6, the display would show:

C > ast
3
>]

3
Ready

i y,
QS yw

because real values are rounded before assignment to an integer

variable.

FOR and NEXT
Statements

The following example illustrates the nesting of two FOR - NEXT
loops. Note that one blank line occurs between first and second display
lines. This happens because the last value displayed in the line above
did not have 16 columns available, causing a carriage return-line feed
in the display (See PRINT command).

10 FOR I% = 1% TO 4%
20 FOR JX = 1% TO 3% STEP IX
30 PRINT IX; , ' Print values and then tab
40 REM ' to next column
30 NEXT JX
50 PRINT ‘ Move to the next line
7O NEXT I%
8O REM INDENTING SHOWN FOR CLARITY

The display will show:

ooo)

T
A
T

Pa
t

pnt

pe
t

@
W
A
)

U
h
L
W

S 2
The following example decrements the index by -.1.

10 FOR I = 1 T0 0.5 STEP -.1
20 PRINT I;
30 NEXT I

The display will show:
(—

[Ready _
1 0.9 0.8 0.7 0.6 O.53

Ready

FOR a nd NEXT
Statement

The following example shows what happens when a GOTO statement
branches out of a FOR-NEXT loop and returns to the loop beginning.

10 for x = 1 to 100000
20 y = 1 +

30 prin 4
40 goto 1
50 next x
60 end

Which results in the following display:

left out for brevity

'Ovf error O at line 20

Ready

GOSUBES
Statement

Usage

GOSUB {linenumber}

Syntax Diagram

(IBASIC)

GO SUB GOSUB +) line no

Los label

(CBASIC and XBASIC only)

Description

The GOSUB statement transfers control to the beginning of a
subroutine. The RETURN statement terminates the subroutine and
returns control back to the statement following the GOSUB.

O BASIC allows nested subroutines.

O Within a subroutine, a GOSUB may call another or the same
subroutine.

Oo AGOTO within a subroutine should not pass control permanently
to a program segment outside of the context of the subroutine.

O Any valid BASIC statements may be used in the body of a
subroutine. Available memory is the only limit to the length of
subroutines.

O InCompiled and Extended BASIC, GOSUB causes program flow
to branch to the specified program label.

GOSUB
Statment

Example

In the following example the subroutine displays the operator’s
options and obtains his or her choices. Control is transferred to the
subroutine at line 180. The display subroutine calls another subroutine
(line 1300) to obtain identification of the selected choice (line 1080).
When the RETURN statement at line 1390 is executed, control is
transferred to line 1090. Three subroutine options are illustrated, each
with different interpretations for GOSUB and RETURN.

The following points should be noted about this example:

0 GOTO 31000 causes termination of the test without returning from
the subroutine. This normally does not represent good program
structure.

ELSE 1500 causes control to be transferred to lines 1500 - 1590

which can be considered an extended part of subroutine 1000. The
RETURN at line 1590 will cause line 190 to be executed next.

RETURN at line 1090 will cause immediate termination of the

subroutine 1000. Line 190 is executed next.

100 ' Other statements
180 @GOSUB 1000 ' Get operator choice
190 !' Other statements
999 STOP
1000 REM -- SUBROUTINE -- Display and Execute Operator Options
1010 PRINT "Enter choice by pressing display!
1020 PRINT\PRINT ip 2 lines
1030 PRINT CContinue test)" ' KRKZ = 1 or 2
1040 PRINT\PRINT\PRINT ' Skip 3 lines
1050 PRINT CAd just Instrument)” ' KRZ = 3 or 4
1060 PRINT\PRINTAPRI T ' Skip 3 lines
1070 PRINT CTerminate Test)” 7 AR®. = 5 or
1080 GOSUB 1300 choice, KARZ
1090 IF KR%)2% THEN IF KRZ)4X% COTO 31000 ELSE 1500 ELSE RETURN
1300 REM -- SUBROUTINE -- Get response from Keyboard
1310 ' On exit KARZ will be the row touched (from i to 4)
1320 ' KC% will be the column touched (from 1 to 10)
1330 ' Other statements
1390 RETURN
1500 REM -- SUBROUTINE -—— Adjust Instruments
1510 !' Othee statements
1590 RETURN
31000 REM -—- Termination Routine
31010 ! Place instruments in standby state and save test results
31020 ! Other statements
32767 END

GOTORS
Statement

Usage

GOTO {linenumber}

Syntax Diagram
(1BASIC)

GOTO —+(_ sor —| ine ol oo —~

| (CBASIC and XBASIC) |

label

Description

The GOTO statement causes a program to unconditionally branch to
the specified line number. In Compiled and Extended BASIC, it also
causes an unconditional branch to a program label.

O InInterpreted BASIC, GOTO must not be used to branch out of a
FOR-NEXT loop. If GOTO is used in Interpreted BASIC, a user
storage overflow (error 0) will eventually result.

O A GOTO statement may be used to begin running a program,
starting with any line number in the program. When a GOTO
statement is used to run a program, many of the normal actions ofa
RUN statement are not performed, such as reseting variables and

random numbers. This may be useful in program debugging.

O In Compiled and Extended BASIC, GOTO causes the program
flow to branch to the specified program label.

Example

The following program example illustrates one use of the GOTO
statement. The GOTO statement at line 80 causes line 30 to be executed
next:

10 REM -- Main Program Routine
20 REM
30 GOSUB 4000 Set-up Sequences
40 GOSUB 5000 1 Test
50 GOSUB 6000 Test #2
60 GOSUB 7000 Test #3
70 GOSUB 8000 Test #4
QO COTa 30a Start Again

GOTO
Statement

Compiled and Extended BASIC Example

The GOTO statement causes program flow to transfer to the specified
program label depending upon the value of the string variable name$.

foo:

if name$ = “FLUKE” then

goto success

else

goto failure
endif

SUCCESS:

failure:

Remarks

Compare the GOTO statement with the GOSUB statement.

IF-GOTORS
IF-THEN

IF-THEN-ELSE
Statement

Usage

IF {condition} GOTO {linenumber}
IF {condition} goto statement label !CBASIC only

IF {condition} THEN {BASIC statement}
IF {condition} THEN {BASIC statement} ELSE {BASIC statement}

Syntax Diagram

(condition)
IF GOTO 3
IF THEN Cio expression Fe soro

; i= Tt line no. f

eer BD: “Pi statement .

a (next line if condition false)

Luce >> . pt line ,

7—*

+ bo Statement f »

\

Description

The IF statement evaluates a condition represented by an expression.
The resulting course of action depends on the result of that evaluation
and the structure of the statement.

NOTE
Relational expressions such as A=B, A%<3%, AS>=B$
evaluate as -1 if true and 0 if false.

O The conditional expression must result in a value representable as
an integer.

IF-THEN-ELSE
Statement

0 A non-zero result is TRUE. A zero result is FALSE.

O Control passes to the line number following GOTO, or to the
statement or line number following THEN, if the result is TRUE.

O Control passes to the next program line if the result is FALSE and
ELSE 1s not specified.

O Control passes to the statement or line number following ELSE if
the result is FALSE and ELSE is specified.

O A line number must follow GOTO, if it is used.

O Aline number oravalid BASIC statement must follow THEN, if it

is used.

O In Extended and Compiled BASIC, a program statement label
may be used in lieu of the line number in any of the forms of the IF
statement. The GOTO keyword is required to distinguish a branch

to a statement label from a branch to a named subroutine.

O Multiple statements, separated by the“\”character, may be used
after THEN, and after ELSE. Each statement will be done in

sequence only if control is passed to that portion of the IF
statement as defined above.

Examples

The following examples illustrate the results of various uses of the IF
statement:

STATEMENT RESULTS

IF A THEN 100 If A is non-zero, goto line
100. If A is zero go to the
next line.

IF A>B THEN A=B If A is greater than B, set
A equal to B. Then go to
the next line.

IF NOT A% GOTO 500 If A% equals -1 (logical
true), ignore this state-
ment and go to the next
line. Otherwise, go to line
500.

IF-THEN-ELSE
Statement

IF A%+B% GOTO 500 If A%+B% is non-zero
(A% not equal to -B%),
go to line 500. Otherwise
go to the next line.

IF A%+B% THEN A=B*5B=10 If A%+B% is non-zero

(A% not equal to —-B%),
assign B*5 to A, and
assign 10 to B. Then go to
the next line.

IF A% OR B% GOTO 500 If either A% or B% 1s non-

zero, go to line 500.
Otherwise go to the next
line.

IF A+B=C THEN PRINT C If A+B equals C, display
value of C. Then go to the
next line.

IF (l<A) AND (A<6) THEN 450 If the value of A lies
within the open interval
(1,6) transfer control to
line 450.

The following program example shows some common uses of the IF
statement. The relational expression in line 140 uses the AND operator
to ensure that both conditions are true before transferring control to
line 5000.

100 REM -- Determine Test to Ru
110 PRINT “ENTER UNIT SERIAL NUMBER" j 'Print prompt
120 INPUT SNZ%
130 IF SNZ%) 12563% THEN 110 ‘Equivalent to IF...@0TO 110
140 IF (11000% (= SN%) AND (SNZ <¢ 11500%) GOTO S000
150 REM -- Run Standard Test

5000 REM -- Run Test for ‘Special’

IF-THEN-ELSE
Statement

The following example shows how the IF statement acts on various
values. Examining the results will aid in understanding the IF
statement. Note that line 100 transfers control back to line 30 except
when A% 1s 0.

10 REM -- Illustrati of with integer
20 PRINT “INTEGER VA UE", ONE” S COMPL. TODD", "“DIVISIBLE BY FOUR"
30 INPUT &AZ%
40 PRINT A%,. NOT AZ ‘Print values and tab

50 IF A% AND 1% THEN PRINT ‘YES; 'Is AX odd?
60 PRINT, 'Go to next tab on display
70 IF AZ AND 3% THEN PRINT; \ GOTO 90 'Is AA divisible
80 PRINT ‘YES’; ‘by four?

90 PRINT 'Line Feed
100 IF AZ THEN 30
110 END

Results:

INTEGER VALUE ONES COMPL. ODD
1 -2 YES

-3 YES
1568 -1549 YES

-10 YES
-368 5367 YES
-1 O YES
-4 3 YES

O -1 YES

The following example includes the ELSE option. When A is less than
5, B will be set to FNS(A) and the statements following line 200 will be
executed until the STOP statement on line 290 is encountered. When A

is greater than or equal to 5, B will be set to FNT(A) and the statements

following Line 300 will be executed.

10 ' Other statement
100 IF A<¢« 3 THEN 300 ELSE 300
200 B = FNS(A) ' Use ‘S’ function
210 ' Other statements

300 B = FNT(A) ' Use ’°T’ function

DIVISIBLE BY FOUR

The following example shows the ELSE option followed directly by
statements. When A is less than B, J is set to B raised to the power A,

and T is set to 0. When A 1s greater than or equal to B, J is set to the
value of A raised to the power B, and T is set to 1.

IF A<B THEN J = BA\T = ELSE J = AB\T = l

IF-THEN-ELSE
Statement

The following example illustrates nested IF-THEN-ELSE statements.
The ELSE is always associated with the closest IF and THEN
statement to the left that is not already associated with another ELSE,
as indicated by the diagram below the statement. (Note: This statement
computes M = minimum of A, B, or C.

IF ACB THEN IF A<C THEN M=A ELSE M=C ELSE IF B<C
THEN M=B ELSE M=C

The logic is as follows:

If A is less than B, and then if A is less than C, A is the minimum (M).

If A is less than B, and then if A is greater than or equal to C, C 1s the

minimum (M).

If A is greater than or equal to B, and then if B 1s less than C, B is the
minimum (M).

If A is greater than or equal to B, and then if B is greater than or equal
to C, C is the minimum (M).

Extended and Compiled BASIC Examples

The following examples show the use of program statement labels in
Extended and Compiled BASIC.

STATEMENT RESULTS

IF A THEN GOTO DMM Branch to statement label DMM:

IF X% =5% THEN & Branch to label GET DATA:

GOTO GET DATA & if x% = 5%, otherwise goto

ELSE GOTO BEGIN label BEGIN:

Remarks

Refer also to the complex IF statement, Reference #36a.

(XBASIC)

IMPORT G3
Statement

Usage

IMPORT {variable list }

Syntax Diagram

IMPORT identifier }

he] ont C%
_{. \¢
ae

Description

The IMPORT statement is used to declare a set of variables, which

have been defined.in a BASIC main program or a true subroutine, as
global variables. IMPORT publishes the variable names in the output

.OBX file as global variable references.

O Variables and arrays in the variable list may be integer, floating-
point, or string variables.

O An array declared in an IMPORT statement should use only an
empty pair of parentheses “()” in the IMPORT statement to
indicate that the variable is an array. No array subscripts may be
used in the IMPORT statement itself.

O A variable may not be named in bothan IMPORT statement anda
DIM, COM, EXPORT, or another IMPORT statement in the

same program module.

O Any number of IMPORT statements may appear in a single
program module.

O A global variable should be declared in an IMPORT statement
before using it in another BASIC statement in the same program
module.

Example

The following program illustrates the use of the IMPORT statement:

10 sub printStrings(startz, finishzZ, channelZ)
20 import array$(
30 for ix = start% to finish%
40 print WchannelZ, array$(iZ)
350 next iz
60 subend

CxBasic) TET

LEAVE Ey
Statement

Usage

LEAVE

LEAVE IF {expression}

Syntax Diagram

—~__ —>(LEAVE)

L_ IF -— na

Description

The LEAVE statement is used to leave a structured loop (WHILE,
REPEAT, LOOP, or FOR.) The LEAVE statement has two forms:

LEAVE

LEAVE IF {expression}

oO The first form (LEAVE) simply jumps out of the innermost loop
unconditionally.

O Anexpression is anything that can be evaluated to true or not true.

O The second form (LEAVE IF) leaves the loop only if the
{expression} has a true (nonzero) value.

O The LEAVE statement may be subordinate to an IF or other
statement; it simply causes an exit from the innermost loop in
which it occurs.

Examples

The following program fragment illustrates the two constructions of
the LEAVE statement.

P

PRINT "Enter a value";
INPUT a%
IF (aX € O2%) THEN

PRINT "Negative. Leaving the loop”
LEAVE

ELSIF (az 10%) THEN
NT “Between O and 10"

LEAVE IF ai = 9%
ELSE

ENDIF
ENDLOOP

PRINT “Greater than 10."

' leave for 53

LINK Es
Statement

Usage

LINK {filename}

Syntax Diagram

LINK —— @ LINK} +f filename |= —_

Description

The LINK statement loads an object file which contains one or more
Assembly Language or FORTRAN subroutine(s) into the Instrument
Controller memory.

O The object file is named in the filename shown in the LINK syntax
diagram. The filename must contain the file name and may also
contain a device name and a file extension. The filename must be
enclosed in quote characters (“).

1. Ifa device name is not specified, the System Device (SY0:) 1s
searched for the file.

2. Ifa file extension is not specified, the Instrument Controller
uses the default extension .OBJ.

vee

0 If the specified file is not found, error code 305 (file not found) is
displayed.

O If the specified file is found, the subroutine(s) in the file is(are)
loaded into the Instrument Controller memory.

O Multiple LINK commands can be used to load different object
files.

O LINK can be used in both Immediate and Run modes.

O LINK commands must follow all COM statements in the program
because COM storage must be defined before loading any
subroutine(s).

Example

14225 LINK "“tests.rep" ! Load the subroutines in the
14226 ' “"tests.rep" object file

LINK
Statement

Remarks

This command is not used in Compiled or Extended BASIC.
Attempting to use it will cause the BASIC Compiler to report a syntax
error.

LIST
Immediate Mode Command

Format

LIST [linenumber]
LIST [start-finish linenumbers]

Description

The LIST command displays a program or a portion of a program in
line number order.

O Display starts at the first line of a program and proceeds to the last
line if line numbers are not specified.

O One line is displayed if a single line number is specified. The
command ts ignored if the line does not exist.

O A portion of a program is displayed if two line numbers are
specified. The display will be the lines with numbers between and
including the specified lines numbers if they exist.

O If the portion to be listed is larger than one display page (16 lines),
the display will scroll upwards until the last line specified has been
displayed.

O Use Page Mode and the NEXT PAGE key, or (CTRL)/S and

(CTRL)/Q to stop and restart the display. These functions are
discussed in Section 4 of the BASIC manual.

Examples

The following examples illustrate common uses of the LIST
command:

COMMAND RESULTS

LIST Displays the entire program in memory from the
first line.

LIST 500 Displays only line 500 of the program, if it exists.

LIST 600-800 Displays a program segment beginning with the first
line after 599 and ending with the last line before

801,

LIST

Immediate Mode Command

Remarks

This command is not used in Compiled or Extended BASIC. If you
attempt to use this command, the BASIC Compiler will report a
syntax error.

ECTETST CBASIC |

LOOPES
Statement

Usage

LOOP

statements

more statements

ENDLOOP

Syntax Diagram

—P>{ oP)}— —(ENDLOOP }————>

-_ BASIC —_

Description

The LOOP statement implements an infinite loop. A LOOP -
ENDLOOP pair has the following form:

LOOP ' begin infinite loop

cae statements ...

ENDLOOP

The LOOP statement has no explicit termination test; it normally
uses the LEAVE statement (described elsewhere) to provide a loop
exit.

Control stays within the LOOP - ENDLOOP keywords until a
LEAVE statement, GOTO statement, or interrupt is encountered.

Example

The following program fragment repeatedly asks for another value
until a zero is entered from the keyboard. The LEAVE statement
causes control to leave the loop when the value received is zero.

LOOP
PRINT “Enter another value";

INPUT a%
LEAVE IF aX 2 0%
PRINT “Try again....”"™

ENDLOOP

Remarks

Refer also to the REPEAT and the WHILE statements.

OLD Es
Immediate Mode Command

Usage

OLD {filename}

Syntax Diagram

—~ OLO eR : | ilename i. ——

Description

The OLD immediate mode command 1s used to load a program into
memory from an input, device or file.

The filename, including the optional storage device prefix, filename,
and name extension, must be enclosed in quotes.

O OLD may only be used in Immediate mode.

O BASIC will look for the file on the System Device SY0: if a device
name is not specified.

O BASIC will look for the file on a specified device if the device name
is included as a file name prefix.

QO This command assumes that the file named is a valid BASIC

program in either ASCII or lexical form.

O If the file name extension 1s .BAS or .BAL, it does not need to be

specified in the file name.

O If no extension is specified, BASIC looks fora file with .BAL name
extension and loads that file if it exists.

O If the file named does not exist with a .BAL extension, BASIC

looks for the file with a .BAS extension and loads it if it exists.

O If the file exists in both lexical (.BAL) and ASCII (.BAS) form,
BASIC will load the lexical form unless the command directly
specifies otherwise.

0 The OLD command will save the name of a file to be used if a
subsequent SAVE, SAVEL, RESAVE, or RESAVEL command 1s
given for which the filename is omitted.

OLD
Immediate Mode Command

Example

The following examples illustrate use of the OLD command:

COMMAND RESULT

OLD “TEST” Load the file named TEST.BAL (if present)
or TEST.BAS (if TEST.BAL 1s not present)
from the default System Device into
memory.

OLD “MFO0:TEST.5” Load the fue named TEST.S5 from the floppy

disk.

OLD “TRAC.TOR” Load the file TRAC.TOR from the System
Device.

SAVEL Save a lexical version of TRAC.TOR in

TRAC.BAL.

Remarks

This command is not used in Compiled or Extended BASIC. If you
attempt to use this command, the BASIC Compiler will report a
syntax error.

ON...GOTO iB
ON...GOSUB

Statement

Usage

ON {expression} GOTO (line list}
ON {expression} GOSUB {line list}

ON {expression} GOTO {statement label list}
ON {expression} GOSUB {statement label list}

Syntax Diagram

—+C on }—+{ numeric expression GOTO/GOSUB }-—e| linenumber list

Description

The ON GOTO and ON GOSUB statements define multiple control
branches. Control transfers to one of the lines listed in the statement,

depending on the current value of the expression.

O The expression must be numeric.

O The expression is evaluated and rounded to obtain an integer.

O The integer is used as an index to select a line number from the list
contained in the statement.

O The range of the integer must be between | and the number of line
numbers contained in the list.

O The branch of control may be either a GOTO transfer (refer to the
GOTO statement) ora subroutine call (see the GOS UB statement).

O In Compiled and Extended BASIC, the target of the branch of
control may be a statement label or a line number.

ON...GOTO
ON...GOSUB
Statement

Example

The following example illustrates a common use of ON-GOTO:

Statement Meaning

ON A GOTO 400, 500, 600 Transfers control to line 400if A=1, to
line 500 if A = 2, or to line 600 if A=3.

ON A GOTO FOO, GFB, Transfers control to label FOO: if
PWL A=1, to label GFB: if A=2, or to label

PWL: if A=3. Program statement
labels are only allowed in Compiled
and Extended BASIC.

The following example illustrates one use of ON-GOTO at line 1030.
Since the expression is normally rounded, INT(LOG(R)) is used
instead of LOG(R) to ensure that the voltage divider is used for all
values less than | volt (1000 millivolts).

: REM —-- Connect Instrument to Test Station
' R on input is the value of the voltage to be aepplied
' R is in millivolts and is between 10 and 10A6
ON INT (LOO (RD) eoTa 1200, 1200, 1300. 1300, 1400. 1400
REM — Set tue External Voltage Diviger

: hah a statements
e0TO
REM -- Connect Instrument Directly

' Other statements
TO 13500

B5
88
8e

=
 o-

_ Oo

REM -- Give High Voltage Warning and Then Connect Instrument
'‘ Other statements
GOTO 1500
REM — Take Readings

' Other statements Q=
®

DO

Go
d

at

po
d

Pe
d

Pad

On
t

Pot

Pr
d

fd

PO

pd

Po
d

HO

e8
85

oe

o

(XBASIC) @eer-Wi[e

ON-SUBRET £8
Statement

Usage
ON {condition} SUBRET

Syntax Diagram

ON 7 CLOCK GOTO ON CLOCK \—

ERROR CTAL/C }

KEY po
INTERVAL NC enon)
PORT
PPOL

SRQ

KEY

Ss numeric expression ioe

NC Pron)

PPORT Lor expression

port 0
(Pont

Le numeric expression _f

-(~susnct >. { SUBRET }— ——=

Description

The SUBRET statement may be used as an instruction for processing
an interrupt that occurs while a program is executing a subroutine.
When an interrupt occurs, this statement causes control to transfer
from the subroutine back to it’s calling routine via a SUBRET
statement. The interrupt will still be in effect when control returns,
which allows interrupt processing via an ON-GOTO statement in the
calling routine.

O Any of the available interrupts (ERROR, CTRL/C, etc) may be
handled by an ON-SUBRET statement.

ON-SUBRET
Statement

O Any number of ON-SUBRET statements may be cascaded before
reaching the point where interrupt processing occurs. This allows
several layers of subroutines to return to a main program (if
desired) before processing interrupts.

For example, a Main program segment calls subroutine A, which in
turn calls subroutine B, which in turn calls subroutine C. An interrupt
occurs while subroutine C is in progress. ON-SUBRET statements in
subroutines A, B, and C would send control all the way back to the

Main segment in turn, where interrupt processing might be performed.

'MAIN
ON CTRL/C GOTO TRAP

CALL A

A
ON CTRL/C SUBRET
CALL B

SUBEND

SUB B
ON CTRL/C SUBRET

CALL C
SUBEND

SUB C
ON CTRL/C SUBRET

SUBEND

Note that, without the ON-SUBRET statement, an interrupt which
occurs in a subroutine will be processed by an interrupt handling
statement in the calling routine (if one exists), after which control is
returned to the subroutine at the spot where the interrupt occurred.
After using an ON-SUBRET statement to respond to an interrupt, the
subroutine where the interrupt occurred must be reentered with
another CALL statement.

READ, DATA, and RESTORE
Statement

Usage

READ {data}
DATA {data list }
RESTORE {linenumber}

Syntax Diagram

READ nat READ —-| input variable list + >

__.| L
DATA DATA S constant f >

RE
(first DATA statement)

TORE _.

RESTORE —+(restore) —§
7

ry _, line no

(CBASIC only)

f label — /-e

Description

The READ, DATA, and RESTORE statements work together as
follows:

O The DATA statement defines a sequence of data items to be
processed by the READ statement. The data items within a single
DATA statement are separated by commas.

O The READ statement assigns data values toa series of one or more
variables.

O An array subrange may also be used with the READ statement.

READ A(0..5)

O The READ statement assigns the next available data items in
sequence to the variables referenced.

O The DATA data types must match the corresponding READ
variable types (strings for string variables, etc.).

READ, DATA, and RESTORE
Statement

O The DATA statement may occur before or after the READ
statement.

The DATA statement must be the last or only statement in the
program line. The line may contain no trailing remarks.
Everything following DATA 1s considered to be data.

Legal data items are: quoted or unquoted strings or numeric
constants.

An unquoted string must not begin with a quote and must not
contain commas.

Leading spaces are ignored unless within a quoted string field.

Numeric constants may not be quoted.

A data pointer tracks which data items have been read.

A DATA statement may contain more items than a subsequent
READ statement contains variables.

A second READ statement may continue reading data (assigning
data items to its variables) at the point the first READ statement
stopped reading.

The RESTORE statement resets the pointer to the first data item
of the first DATA statement in the program so that the items may
be read again.

If RESTORE specifies a line number, the pointer resets to the first
data item of the first DATA statement in or after that program line.

The RESTORE statement may be executed before all data items
have been read from a DATA statement.

It is not necessary to RESTORE the DATA items if they will be
read only once in the program.

Compiled and Extended BASIC allow a statement label to be used
instead of a line number for the RESTORE statement.

READ, DATA, and RESTORE
Statement

Examples

This example illustrates the use of a FOR - NEXT loop to read a list of
data items. Each item is a floating-point number, so only one READ
statement is necessary. To save each of the data items, use arrays and
change line 110 to: READ A(I%). The RESTORE statement tn this
example would be useful only if the data values were to be used again in
the program.

10 DATA 1.1, 2.a, 3.3 4.4 53.9
! Other statements

750 FoR Tem 1h TO 3%
110 AD

140 RESTORE

Running this program gives results as follows:

The following example illustrates multiple READ statements and a
selective RESTORE statement. Note the double quotes used in the
first DATA statement. The double quote is used to allow commas to be
inserted in the string data. Note that if the quotes were omitted from
line 10, A$ would be TEST FOR HIGH, and line 120 would give an
error since the next data element would be LOW, which is not a

number. Also note line 410 which resets the data pointer to allow
reading the numeric values of line 20. The string data on line 10 is used
only once.

10 DATA ‘TEST FOR HIGH, LOW, AND MEAN VALUES. ’
20 DATA 10. 7.3, 9
3O READ A® \ PRINT AS ' Print out heading
100 REM -- Continuously Make Checks
110 ! Check for readings higher than upper Limit
120 READ UL Get the upper limit
130 ! Other statements
210 ! Check for readings lower than lower limit
220 READ LL ' Get the lower limit
230 ' Other statements
310 ! compute mean and compare to expected valu
320 REA Get the expected value
30 ' Other statements

£00 REM -- Reset instruments and Prepare for Next Test
410 RESTORE 20 ' Reset data pointer to VL
420 ' Other statements
3900 GOTO 110

The program segment that follows causes error 804 (bad DATA
format) when statement 110 1s executed, since the ‘“!” character is nota
legal part of a floating-point number.

100 DATA 1,3,4 ' Configuration data
110 READ A,B,C

Usage

RENI
Immediate Mode Command

REN
REN [start-stop] AS [new start] STEP [step size]

Syntax

‘entire program)
RENumber REN 7

(first)

fone tine only)
line no mm! . Y /

(last)

line no ioe

(Start with 10) (step by 10) -_

(Start)

AS line no STEP integer

Description

The REN command changes the line numbers of some or all of the
program lines in memory. Renumbering is useful to make room for
additional program lines.

0

O

REN cannot change the order of program lines.

REN changes all references to line numbers (1.e., GOTO, GOSUB,

etc.) in the program to reflect the new line numbers.

All items shown in the syntax diagram are optional except the
command word REN.

The entire program is renumbered when no line numbers are
specified.

One line is renumbered when a single line number is specified. The
command is ignored if the line does not exist.

A portion of the program is renumbered when two line numbers
are specified.

REN
Immediate Mode Command

0 The line number following AS specifies the new starting number of
the segment being renumbered. If this would rearrange the
sequence of the program, a fatal error occurs and the line
numbering remains unchanged.

When AS is not specified, and a line number or range of line

numbers is not specified following REN, the new starting line
number is 10.

When AS is not specified and a line number or range of line
numbers is specified following REN, the new starting line number

is the same as the old first line number of the range specified.

The value of the integer expression following STEP must be
positive. It defines the difference between any two consecutive,
renumbered lines.

If there is no STEP keyword, the line increment is 10.

If the value of the integer expression following STEP is so large
that the new line numbers would force the program to be
rearranged, a fatal error occurs and the lines are not changed.

CAUTION

Renumbering from lower to higher line numbers (with more

digits) may cause the renumbered lines to exceed the 79-

character maximum line length allowed by BASIC. Restricting

program lines to 74 characters maximum length will generally

eliminate this problem. This exception is on long lines which

include line number references (e.g., ON expression GOTO,

IF-THEN-ELSE with line numbers, etc).

NOTE
Program lines containing the ERL (error line) function may
have statements suchas IF ERL = 200 THEN RESUME 400.
The expression, the constant 200, is used as a line number
reference. It isnot changed during renumbering. It may need to
be changed to the correct line number manually.

REN
Immediate Mode Command

Examples

The following program is used in the renumbering examples below:

10 A=!
20 PRINT A + A
30 Aw A + 1
40 IF A «(= 2 THEN
370 PRINT "Done!"
60 END

COMMAND

REN 60 AS 32767

REN 10-50 AS 5 STEP 5

REN

REN 60 AS 1000

REN 60 AS 1000 STEP 5

REN 10-500 AS 1000

RESULT

Change line 60 to read:

32767 END

Change lines 10 through S50 to read:

re] Az 1
10 PRINT A +A
13 AwzA+i
20 IF A (= 2 THEN 10

. a3 PRINT “Done'”

Note the changed reference in line
20.

This would in this case restore the

program back to its original form.

Renumber only line 60 as line 1000.
An error results if any lines are
numbered between 60 and 1001,

since this would rearrange program
sequence.

Same as the previous example.
STEP is ignored when only one line
is renumbered.

Renumber lines 10 through 500 to
start at 1000, in steps of 10.

REN
Immediate Mode Command

Remarks

This command is not used in Compiled or Extended BASIC. If you
attempt to use this command, the BASIC Compiler will report a
syntax error.

(XBASIC) @eer-Uie

REPEAT and UNTIL @
Statement

Usage

REPEAT

Statements

more statements

UNTIL expression

Syntax Diagram

—P(REPEAT)}— >

(oe BASIC camer |

> A ai hl mC UNTIL on expression -

Description

The REPEAT statement introduces a REPEAT - UNTIL loop. Unlike
the WHILE loop a REPEAT - UNTIL loop makes its termination test
at the bottom of the loop rather than at the top. The REPEAT -
UNTIL loop has the following form:

REPEAT

cae statements ...

UNTIL expression}

O A REPEAT - UNTIL loop is always executed at least once, since
the termination test is not made until the loop has been traversed.

QO The action of this loop is to execute the statements in the loop body
repeatedly until the value of the expression is true (nonzero).

O Anexpression is anything that can be evaluated to true or not true.

REPEAT and UNTIL
Statement

Example

The following loop reads lines of input from channel 2 until a line
starting with a letter is found:

REPEAT
PRINT "Reading another line”
INPUT LINE #22, a$
chS = LEFT(LCASES$(aS), 1%)

UNTIL “a” (= chS® AND chs «(= °2z”"

RESAVE G23
RESAVEL

Usage Statements

RESAVE [filename$]
RESAVEL [filename$]

Syntax Diagram

USE LAST filename$

————(_hESAVE —| filenames | -

ai device$

USE LAST filename$

——(__rsavel \ —-| filenames | -

a_i device$

Description

The RESAVE and RESAVEL are an alternative to the SAVE and
SAVEL commands. The SAVE and SAVEL commands ask whether
or not the user wants to overwrite an existing .BAS or .BAL file. The
RESAVE and RESAVEL commands will assume that any existing
program file of the same name should be overwritten, and will not ask
the user to confirm that the file should be clobbered.

O The RESAVE statement stores an ASCII program. See the SAVE
statement.

O The RESAVEL statement stores an lexical format program. See
the SAVEL statement.

O The RESAVE statement always uses the default file name
extension .BAS. If your program uses a different extension than

.BAS, you must specify the entire filename each time the RESAVE
statement 1s used.

RESAVE
RESAVEL
Statements

O The RESAVEL statement always uses the default file name
extension .BAL.

Example

(~)
Ready
OLD *TEST”

Ready
SAVE "TEST"
Replace existing file TEST. BAS? NO

Ready
RESAVE “TEST”

Ready

= ,

Remarks

This command is not used in Compiled or Extended BASIC.
Attempting to use it will cause the BASIC Compiler to report a syntax
error. Compiled and Extended BASIC do not have an Immediate
mode.

RESUME
Statement

Usage

RESUME [line number]

Syntax Diagram

(first DATA statement)
RESUME RESUME N 7 -

— line no i,

(CBASIC ——

f

Description L_™

The RESUME statement acknowledges an interrupt and allows
program operation to resume with the next statement after the one
being completed when the interrupt occurred or at another specified
program location.

O For interrupts other than ON/ERROR interrupts, RESUME (no
line number) branches to the statement following the one being
executed at the point where the interrupt occurred.

O For ON ERROR interrupts, the Statement causing the error is
branched to when no line number is specified.

O If the interrupt occurred in a multiple-statement line, the program
resumes with the next statement on the line. There are two
exceptions:

1. Recoverable errors: The program resumes at the beginning of
the statement that caused the error.

2. Input Warning errors 801, 802, and 803: The INPUT statement

which caused the error requests the value to be entered again. It
did not accept the erroneous entry.

O RESUME (line number) branches to the specified line number.

O RESUME [label] branches to the specified statement label in
Compiled and Extended BASIC only.

O RESUME terminates the interrupt handler routine.

SAVE ES
SAVEL

Statements
Usage

SAVE [filename$]
SAVEL [filename$]

Syntax Diagram

USE LAST filename$

——(SAVE } —-| filename$ te —~

_— devices

USE LAST filename$

—~(SAVEL DB; 4 —| filename$ ke ~

+} devices

Description

The SAVE and SAVEL statements are used to store the user program
currently residing in memory as a file. SAVE stores the file in ASCII]
text form. SAVEL stores the file in lexically analyzed form. A
discussion of these forms follows.

O A file name may be specified. It must be enclosed in single or
double quotes. The file name may also be specified by a string
variable.

O If no file name is specified, the same name will be used that was

used in the OLD statement or the RUN statement that was used to

load the program into memory.

QO If no file name is specified for a new file, an error will occur.

SAVE
SAVEL
Statement

O The file is stored on the default System Device if the file name is not
preceded by MFO: for the floppy disk, or EDO: for the optional
electronic disk. Refer to the Input and Output Statements section
for a discussion of the default System Device concept.

SAVE adds the file name extension .BAS when anextension is not

specified.

BASIC will request a confirming YES from the keyboard if an
attempt is made to store a file under an existing file name. To avoid
this interruption in a running program, use the RESAVE
statement or first delete the file using a KILL statement.

SAVE stores the ASCII form of the program in the largest
available file space.

SAVEL stores the lexical form of the program inthe first available
file space large enough to hold it. Note that this is different from
SAVE.

SAVE may also be used to obtain a printed listing of a program. To
do so, specify the device name as either KB1I: (RS-232-C Port !) or

KB2: (RS-232-C Port 2). The file name and extension are not
required. See the User Manual for details on setting serial port
baud rates.

In lexically analyzed form, a user program has binary numbers in place
of ASCII character strings to represent line numbers, keywords, and
operators. This form occupies less space and eliminates a processing
step. Fluke BASIC programs in main memory are always in lexically
analyzed form, even during editing. BASIC changes them to ASCII
character form when needed for display or for storage by a SAVE
statement.

Working copies of user programs should be saved in lexically analyzed
form, using SAVEL. In this form, programs will occupy less file
storage space and will load into memory quicker.

NOTE
A program saved via SAVEL may not be executable if the
version of Fluke BASIC under which it was saved differs from
the version under which it is to be executed.

SAVE
SAVEL

Statement

The lexically analyzed form of a program cannot be displayed directly
by the Utility program or sent to an external printer. Consequently,
backup copies of user programs should be saved in ASCII character
form, using SAVE. In this form, different versions of Fluke BASIC
will be able to load and interpret the program.

Example

Examples of SAVE and SAVEL used in immediate mode follow:

STATEMENT

SAVE

SAVE "“TEST1"

SAVEL ‘MFO: TEST2’

SAVE ‘EDO: DATA. T71’

SAVE "“KB1: *

Remarks

RESULT

Save the program currently in
memory, in ASCII character form, on
the System device, using the same
name that was used to OLD it into
memory or RUN it. The default
filename extension .BAS is always
used.

Save the program currently in
memory, in ASCII character form, on

the System Device, under the name
TESTI.BAS.

Save the program currently in
memory, in lexically analyzed form, on
the floppy disk (MFO:), under the name
TEST2.BAL.

Save the program currently in
memory, in ASCII character form, on
the optional electronic disk (ED0:),
under the name DATA.T71.

Send the program currently in
memory, in ASCII character form, to
RS-232-C Serial Port 1.

This command is not used in Compiled or Extended BASIC.
Attempting to use it will cause the BASIC Compiler to report a syntax
error. Compiled and Extended BASIC do not have an Immediate
mode.

Cxeasic) QED

SELECT Gey
Statement

Usage

SELECT selector expression
CASE {case expression} ! test first condition

. statements ...

CASE {case expression} ! test second condition

. Statements ...

CASE {case expression} ! test next condition, and so on

. statements ...

CASE ELSE ! anything not caught above

. statements ...

ENDSELECT

Syntax Diagram

i _| ‘an —>(_ SELECT Da —_ selector expression Fo

CASE)———} case expression -— .

compiled BASIC statement

> y—>(ENDSELECT >_>

‘Lo ELSE -— _ w

er, BASIC ee

SELECT
Statement

Description

The SELECT statement implements an “n-way” branch, depending
upon the value of a “selecting” expression. The SELECT statement 1s
sometimes known as a CASE statement in other languages.

O The {case expression} is a comma-separated list of values
formatted as:

= expression
>= expression
<> expression
= expression or expression
< expression
> expression
expression
expression I .. expression 2

O The form:

CASE expression | .. expression 2

says that if the value of the selector expression falls between the
values expression | and expression 2, that 1s:

expression | <= selector expression <= expression 2

then the corresponding CASE should be executed.

O The {selector expression} may be either a number or a string.

O Thespace CASE clauses simply indicate the values of the {selector
expression} for which the corresponding piece of code should be
executed. The tests for the different CASEs are performed in the
Same order as their appearance in the program until one of the
CASEs matches the value required. At this point, the code

’ following the CASE 1s executed until the next CASE occurs; then
control flows to the ENDSELECT statement; the remaining
CASEs are not evaluated.

O An empty CASE clause (a CASE without any statements

following) 1s also allowed. This permits an explicit “do nothing”
CASE to weed out selector values for which no action should be
performed. This is illustrated in the example.

Example

SELECT
Statement

Any of the CASE expressions may involve variables.

The SELECT statement also permits selector expression to be
an integer, floating-point, or string value.

An “illegal mode mixing” error is reported if the value of the
selector and case values are not compatible (1.e., number compared
with string).

The following program fragment illustrates the use of the SELECT
statement.

while (len(stringt) «= 3% and eof% = 0%)

endwhile

charZz = getchar(channel%)
select (char%)

case 13% ' carriage return
leave ' leave WHILE loop

case 26% ' €0OF
eofZ = -1% ' signal end of file

case 32%, 9% .. 10% ' space, tab, linefeed
' do nothing

case ¢ 32%, = 127% ' other control character
print “Funny character"; char%i "encountered"

case 48% .. 37%, 63% .. 9O% ' digit or uppercase
strings = strings + chr#(chard)

case 97% .. 1227 ' lowercase letter
strings = strings + ucase$(chrS(char%))

case else ' other punctuation

punctS = punctS + chrs(char%)

endselect

{

' select course of action from short option list

select (string + punct$)

case aS + "I"

print "Quick mode"

case "end"
leave

case "quit"
exit

endselect

STEP &
Immediate Mode Command

Format

STEP

Description

The Immediate Mode STEP command sets a mode in which each

statement within a program is executed individually by pressing
RETURN.

O STEP must first be enabled by a breakpoint stop in a running
program, caused by STOP ON or CONT TO.

O After a breakpoint stop, type STEP to select Step Mode.

O From Step Mode, type ‘CTRL)/C or any Immediate Mode
command to return to Immediate Mode.

O Any BASIC command or statement that is available in Immediate
Mode can also be used to exit Step Mode.

O In Step Mode, one statement is executed each time RETURN 1s
pressed.

O After executing each statement, the display reads: STOP ON LINE
n, where n is the next line to be executed.

O When used with a variable TRACE ON, the display will also show
changes in selected variables whenever a statement assigns a new
variable value.

Remarks

This command is not used in Compiled or Extended BASIC.
Attempting to use it will cause the BASIC Compiler to report a syntax
error. Compiled and Extended BASIC do not have an Immediate
mode.

STOP Ga
Statement

Usage

STOP

Syntax Diagram

STOP > STOP }— >

Description

The STOP statement halts execution of the BASIC program and
displays the line number where the STOP occurred.

O Thisis the only form of the STOP statement allowed by Compiled
and Extended BASIC.

O STOP terminates program execution.

O STOP can be used to indicate “dead end” code branches, either

because of errors or because of logical structuring.

Example

The following example illustrates a common use of STOP:

10 REM -- TEST PROGRAM
26 : Other statements

999 STOP ! End of mai d
1000 REM -- SUBROUTINES ain procedure
1010 ' Other statements
S000 END

STOP ON EB
Statement

Usage

STOP ON {line number}

Syntax Diagram

STOP (STOP) (stop here) >

Sar aT 7 6

Description

The STOP ON statement stops execution of a program.

O STOP ON line number, allows a program to be run in sections
during logic debugging.

O The program stops at the line number of the STOP when ON line
number is not included.

O The program stops at the line number following ON, without
executing it, when ON line number is included.

O STOP ON may be executed in either Immediate or Run Mode.

QO STOP ON line number enables the STEP command.

Remarks

This command is not used in Compiled or Extended BASIC.
Attempting to use it will cause the BASIC Compiler to report a syntax
error. Compiled and Extended BASIC do not have an Immediate
mode.

CxBasic) STD

SUB ES
Statement

Usage
SUB {subroutine name}(parameter list)

Syntax Diagram

SUB (SUB) id |

parameter

Description

The SUB statement marks the beginning of a true Compiled or
Extended BASIC subroutine. All statements between the SUB
statement and a SUBEND statement (see definition below) constitute
a Compiled or Extended BASIC subroutine. The SUB statement also
defines a list of parameters that will be passed to that subroutine from
the calling routine.

O The SUB statement must be the first statement on a program line.

O Parameters may be passed from a calling routine by value (as an
expression) or by reference (by name, such as a variable or an entire
array name).

An example of a SUB statement is

100 SUB DVM(READINGS%(), MESSAGES, SCALE)

which identifies the beginning of a subroutine named DVM that will
exchange three parameters with a calling routine. The parameters are
an integer array READINGS%(), a string called MESSAGES, and a
floating-point parameter named SCALE. All of the statements
between this SUB statement and the next following SUBEND

statement are part of the subroutine DVM.

SUB
Statement

This sample subroutine will be used via a CALL statement like this:

100 CALL DVM(A%(),B$,C)

When the subroutine DVM runs, it will use the variable array A%() out
of the calling routine, only with the local name of READINGS%(). BS

From the calling routine will be used in the subroutine as MESSAGES,
and C will be used as SCALE.

COBASIC) CEESTD
SUBENDE
Statement

Usage

SUBEND

Syntax Diagram

SUBEND >(SUBENO > —p>

Description

The SUBEND statement marks the end of atruesubroutine. All of the

statements occurring between this statement and the last previous SUB
statement constitute a subroutine.

O Only one SUBEND statement may be used with each SUB
statement.

O The SUBEND statement returns program control to the routine
that called the subroutine.

(XBASIC) @eizy toile

SUBRET
Statement

Usage

SUBRET

Syntax Diagram

v SUBRET —>(SUBRET =

Description

The SUBRET statement returns control from a subroutine back to the

calling routine. It is used to return to acalling routine from places other
than at the end of a subroutine.

O Any number of SUBRET statements may be used in a subroutine.

O The SUBRET statement must be used within the body of a
subroutine.

O The SUBRET Statement is analogous to the RETURN statement
in BASIC subroutines that are entered with aGOSUB statement.

SYSTEM EE

Variables

Description

System variables store changing event information for use as required
by a program. They are accessed by name and return a result in

floating-point, integer, or string form as appropriate. The table below
lists the system variables and gives their meaning and form.

System Variables

NAME TYPE EXAMPLE MEANING

DATES$ ' String 08-Feb-8 1 Current date in the format

DD-MM-YY.

ERL Integer 1120 Line number at which the
most recent BASIC pro-
gram error occurred.

ERR Integer 305 Error code of the most
recent error the BASIC
interpreter found in the
program being executed.

ERR$ String SMAIN$ Name of subroutine where

error occured.

FLEN Integer 6 Length of the last file
opened in 512-byte blocks.

KEY Integer 20 Position number of the last
Touch-Sensitive Display
region pressed.

MEM Floating- | 29302 Amount of unused main
Point memory, expressed in

bytes.

RND Floating- 0.2874767 Pseudo-random number

Point greater than 0 and less than
1. Repeatable if not
preceded by RANDOM-
IZE.

SYSTEM
Variables

TIME Floating- | 0.5491405E+08| Number of milliseconds
Point since the previous mid-

night.

TIME$ String 17:45 Current time of day in 24-
hour format.

STIME$ String 17:45:19 Current time of day,
including seconds.

CMDFILE Integer -| Command file active.

CMDLINE$|_ String BASIC Current Operating System
command line.

TRACE ON GES
Statement

IBASIC Usage

TRACE ON
TRACE ON [linenumber][trace variable list]
TRACE ON [channel#n][linenumber][trace variable list]

Syntax Diagram

(disable trace)
TRACE

Y (results to the display)

(results to channel!)

numeric —|

(from beginnin saeue (trace line numbers) __

(start)

ine no trace variable list

CBASIC and XBASIC Usage

TRACE ON

Syntax Diagram

TRACE —P(__ —>(_ TRACE)- pi <space> | > 0 N }—>
(CBASIC and XBASIC)

numeric expression

Description

TRACE prints a record of line numbers encountered or changes in
variable values.

O Ifa previously opened channel is specified, the results of the trace
are sent to the channel. Otherwise, the results are sent to the

display.

O A starting line number for tracing may be specified. If it is not
specified, tracing starts with the first line following the execution of
the TRACE statement.

O Tracing is activated when the specified start line or the first line 1s

encountered.

TRACE ON
Statement

Line Number Tracing

O TRACE may be used in either Immediate or Run Mode.

O The only form of the TRACE statement allowed in Compiled and
Extended: BASIC is listed in the CBASIC and XBASIC Usage
syntax diagram. Both CBASIC and XBASIC permit line number
traces to be sent to a channel, but variable tracing is not allowed.

A line number trace has the following forms:

STATEMENT MEANING

TRACE ON Trace line numbers from the

first line and send the results

to the display.

TRACE ON line number Trace line numbers from the

specified line and send the
results to the display.

TRACE ON @ channel Trace line numbers from the
first line and send the results

to the open channel.

TRACE ON @ channel, line number Trace line numbers from the
specified line and send the
results to the display.

O A line number trace and a variable trace will not execute

concurrently.

O A line number trace occurring after a variable trace specifies a new
line number after which variable tracing will resume, provided no
TRACE OFF occurred in the interim.

TRACE ON
Statement

Example

The following examples illustrate the results of different forms of line
number trace statements.

STATEMENT RESULT

30 TRACE ON Start a line number trace at the next

line following line 30.

500 TRACE ON 1275 Start a line number trace when line

1275 1s reached.

750 TRACE ON # 3%, 400 °&Start a line number trace when line

400 1s reached. Send the trace output
to channel 3.

The line number trace displays a series of numbers representing the line
numbers or the statements executed. The following example illustrates
typical results.

Program

30 Showing that the loop was
40 executed 3 times

TRACE ON
Statement

Variable Tracing

A variable trace has the following forms:

STATEMENT MEANING

TRACE ON variable list. Trace changes in value
of selected variables

from the first line, and

send the results to the

display.

TRACE ON @chennel, variable list Trace changes in value

of selected variables

from the first line, and

send the results to the

open channel.

TRACE ON line number, variable list Trace changes in value
of selected variables
where the specified line
is encountered, and
send the results to the

display.

TRACE ON @channel, line number, variable list

Trace changes in value
of selected variables
from the specified line,

and send the results to

the open channel.

O Ifa list of variables is specified, the trace is of changes in values of

those variables. Otherwise, the trace is of line numbers

encountered.

O A variable trace may specify one or more variables of any type:
String, integer, and floating point.

O A variable trace of an array may use the form A() as the variable.
A() means “TRACE ON all elements of array A”.

TRACE ON
Statement

O An array must be previously dimensioned before tracing.

O A variable trace and a line number trace will not execute

simultaneously.

O Two or more variable traces will execute simultaneously. For
example, TRACE ON A followed by TRACE ON Bis equivalent
to TRACE ON A,B.

O A variable trace occurring after a line number trace turns off the
line number trace.

A variable trace statement resembles the line number trace statement
except that a list of variable names ts included. The following example
specifies trace output to channel 2, tracing to start at line 340, and
tracing of changes in values of A%, element (3,4) of array B, and all of
array A$:

JO TRACE ON #2%, 340, AX, B(Sh, 4%), ASC)

NOTE
A variable trace of an array cannot be done without first dimensioning
the array with a DIM statement.

Variable trace display output takes the following form:

line number identifier type(indices) = new value

Where:

1. Line number is the number of the line in which the variable was

assigned a new value.

2. Identifier is the name of the variable.

3. Type is % for integers, $ for strings.

4. Indices identify which element of the array is being traced on
and displayed (for array elements only).

5. New value is the new value assigned.

TRACE ON
Statement

This example shows the result of a trace of an array variable:

TRACE ON A (1, 2) Displays the value of
A(1,2) when it is assigned.
For example,

220 A(1,2) = 47.3386

This example program illustrates the display resulting from a trace of
an integer array program:

10 DIM AX (2%, 2%)
20 TRACE ON A%()
30 FOR IX = O% TO 2%
40 FOR UX = O% TO 2X
50 AZ (1%, J%) = Ik * UK
60 NEXT JU%
70 NEXT I%
80 TRACE OFF
90 END

Results

- ~
50 Ax(0,0) = O
50 Ax(0.1) =O
50 AX(0O,2) = O
50 A%(1,0) = O
5O AX(1,1) = 1
SO AX(1,2) = 2
SO AX(2,0) = O
30 AX(2,1) = 2
SO AX(2,2) = 4

Other Trace Options

TRACE ON line number can be used to define a trace region within a
program. The example below traces the array A$ only in the
subroutine starting at line 110. Until TRACE OFF is executed,

TRACE ON continues to trace all variables for which a TRACE ON
was executed, and continues to send trace output to the specified
channel or the display.

TRACE ON
Statement

DIM AS (35%, SX)
TRACE ON 110, A®() ' Start tracing array AS at

line 110
i)

FOR IX = O% to S%
AS (1%, OZ) @ CHRS (ASCII (’% “%) + IK)

TRACE OFF
STOP

FOR vx = 1% TO 3% .
AS (1%, JX) = AB (IX, US - 1%) + CHR® (ASCII(’ ’) + I%
+ JX)
NEXT JX
TRACE ON 110
RETURN
END

The following trace display output results from running this program.
Refer to Appendix I, ASCII/IEEE-1978 Bus Codes, and note the
display characters that follow SPACE, character number 32, for
clarification of these results.

Cc

a

o
o
o
c
o
o
o
o
o
q
9

0
0
0
0
0
0
0
0
8
0

P=
0

bad
 p

end
 G

ud
bad

Gad

 f
ast

Ped

 f
as

ped

Pra

fra

fat

Dad

Ped
 G

ad
Ges

t
Pen

d
Pad

Pu

fee
d

Dud

feu
d

Pd

Pad
 G

ad
Pre

d
=o

Oud

Pa
d

S
Y

S
r
e
e

e
t
e
t
e
t
e
b
e
e
t
e
r
e
t
e
t
e
s

9
0
9
0
0
0
0
0
0
3
0
0

>
AG6(0O,1) = !

A$(O,2) = !"
A$(0,3) = !'"*
A$(0,4) = '"8S
A$(0,35) = !'"“@8%
AS(1,1) = !"
AS(1,2) = !"@
A$(1,3) = '"#S
AS(1,4) = '"88X
AS(1,3) = '"SBX&
AS$(2,1) = "@
AS(2,2) = "8S
A$(2,3) = "#87%
AS(2,4) = "88%
AS(2,35) = ;*RHEXE& ’
AS$(3,1) = #$
AG(3,2) = #$%
A$(3,9) 2 #8924&
AS(3,4) = #E%&’
AS(3,53) = @892& ’ (
AS(4,1) = 82%
AS(4,2) = 84%
AS$(4,3) = 628’
AS$(4,4) = SAR’ (
AS(4,35) = $24&'()
AS(S.1) = %A&
A$(5,.2) = £&’
AS(5,3) = K&’
AS$(35,4) = £&°C)
AS(5,35) = £&’()4

S
\ _/

It is also possible to send trace output to different channels. Output is
sent to one channel at a time. The following example illustrates this:

OPEN “TRACE1.DAT" AS NEW FILE 1%! First trace channel
OPEN "GRACES. DAT. AS (NEW FILE az' Second trace channel
TRACE AX, BS(), Send output to console
TRACE ON #1% ' Send output to channel 1
TRACE ON #2% ' Send output to channel 2
ERACE OFF ! Discontinue all tracing

TRACE ON
Statement

TRACE OFF Statement

TRACE OFF disables any pending or active trace assigned in the
program and destroys the variable list.

The following example illustrates that TRACE ON starts only a line
number trace after TRACE OFF:

10 TRACE ON A. B ' Trace variables A and B
30 TRACE OFF ' Halt the variable trace
100 TRACE ON ' Start a line number trace

The following example illustrates a way to suspend tracing until a later
point in a program:

10 TRACE ON A. B ' Trace variables A and B
v1 @) TRACE ON 100 ' Stop trace until line 100
100 ' Resume tracing variables A and B

UNLINK &
Statement

Usage
UNLINK

Syntax Diagram

——+(__UNLINK. =)}»——+

Description

The UNLINK statement removes all reference to Assembly Language
or FORTRAN subroutines from memory, making the previously
reserved memory space available for other uses. Individual Assembly
Language or FORTRAN subroutines cannot be selectively removed
from memory.

O Memory freed by UNLINK 1s available for other uses.

O UNLINK can be used in either the Immediate or the Run mode.

O UNLINK cannot be used in Compiled or Extended BASIC
programs.

(XBASIC) @eieEte

WHILERLS
Statement

Usage

WHILE {expression}

Statements

more statements

ENDWHILE

Syntax Diagram

—p(WHILE expression - —>

<q

> >(ENDWHILE

Ce BASIC statement 1

Description

The WHILE statement introduces a WHILE loop. Its form is:

WHILE fexpression>}

wee statements .

ENDWHILE

The {expression} is rounded to integer and evaluated. While the
expression’s value is true (nonzero), the loop surrounded by the
keywords WHILE and ENDWHILE is executed.

O The expression is evaluated at the top of the loop, thus the loop is
not executed if the expression evaluates to not true.

O Anexpression is anything that can be evaluated as true or not true.

WHILE
Statement

Example

This program fragment calls a subroutine named GET VAL as long as
the value returned by the subroutine is less than 105% or greater than
240%.

WHILE i4% ¢« 103% OR iZ% >) 240%
CALL getval(ixz)
PRINT "The new value is"; i%

ENDWHILE

Remarks

The WHILE statement evaluates its loop control statement at the
beginning of the loop. The REPEAT - UNTIL statement evaluates its
loop control statement at the end of the loop.

	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112

