e

BC Microcomputer 32¢F16

Second Frocessor

Acorn FORTRAN 77 user gquide

Issue D

and related scftware was developed for
2y Topexsress ota: Cambridee, Sngiand.

> Zomrents
as describead

ang suggesticns should b2 addra2ssed to Acor
in the 32016 Second Frocessor User Guide.

Acorn FORTRAN 77 compiler user gquide

Contents

1. Introduction to Acorn FORTRAN 77
1.1 The FORTRAN 77 language

1.2 Acorn FORTRAN 77
1.3 Installation c...cieenniennan. ceaeeea
1.4 Using Acorn FORTRAN 77 PR

1.5 Example FORTRAN 77 programming session

2. Description of Acorn FORTRAN 77een... .
2.1 Language referenceesceenevaena
2.2 Restrictions and variations
2.3 Extensions to IS0Q 1539-198¢
3.1 Hexadecimal
3.2 The % character
o 2.3.3 FORTRAN 64 option .

3. Input/dutput ...e.co... ceeen
3.1. Unit numbers and files
3.2. Sequential filescvveneenn

1. Opens and ClOSES «.v.ounnenenn

.Z. Formatted IO

.3. Unformatted I0

3. .Direct Access files

J.4. OFEN and CLOSE

3.5. 1INQUIRE

o 3.5.1.

INGQUIRE by unit
INGQUIRE by file

3.6. BACKSFACE ceieens e
3.7. ENDFILE cveeeas PR

3.8, REWINDt ivnnnnnne s
3.9. FORMAT decoding ...eeeeoana-- -

2 3.9.1. Lower case letters

o 3.9.2. Extraneous repeat counts

o 3.9.3. Edit descriptor separators ..

c 3.9.4. Numeric edit descriptors

0 3.9.5. A editing .sveeereneecrriirnaan

¢ 3.9.6. Abbreviations and synonyms ..

o 3.9.7. Transfer of numeric items ...

4. Runtime library cesresanacnaactaaaaa .

ITssuse I

[SIS

[

14

£77.11

9.

Freparing FORTRAN 77 Programs ...-.c.cescocaes
S.1 Freparing FORTRAN 77 SOUNCE ..vsweeneenss
5.2 How to compile FORTRAN 77 programs

o J5.2.1 Compilation options
5.3 How to link a compiled program

Running FORTRAN 77 programs
6.1 Temporary files

Additional facilities S

Errors and debuggingeeieenanan cetcasecensasscccanns
B.1 Compile-time messSages .c.eeeennacanannn feees i taea
o 8.1.1 Front end errot messages ceaenccascas
0 8.1.2 Warning messages--.... feceveanacaanaea
0 8.1.3 Fatal compile errorsS c.eeeeeaaas ceacsececencns
o 8.1.4 Errors detected by the code generator
0 8.1.5 Code generator limits00 iiiieennn
B.2 RUN time Brrorsieiiei i iiieeitnn oesannnaannnns
o 8.2.1 Code 103 errors
array and substring errors
2.3 Input/output errors
8.3 Tracing FORTRAN 77 programs «....e...
Ueing FORTRAN 77 with other languages S e e e m e e

£77.111

19

Issue I

under the Panos
for the EBC
format 3isc, and
priate type (12
r floppy disc for

L.t The SFORTRAM 77 lansuaze

ragramming language mcst widely
ons. FORTRAN 77 is a standard

J=fini1tior has been used 1n the
several standard libraries or
Pie the NAG library and the GINO-F

isi

A

the Z2SEBC 32316
S (zee t:icn
zall rcutines

incluced. T
Frograms. Th

+

B

n
D
3

Second Frocasscr,
frograms are
mcoules

hutxcn disc and
and the host

sibuticn disc 1nto the top arive {drive 3/2)

{. Imnteoduct:ion o Acorn FORTRAN 77

ay te transferreas 1¥ 1t 1s DFS you

C i1n the iower drive (drive 1/3).

n <

m
-
[=B3

U

rogram ~11ll copy the appropriate files onto the filing
Iraiting Jirectorles srera necessary on the ADFS and
nas finishead, a FORTRAN 77 system will b2 readgy for
iling system. The distribution disc should be put

v
&
1
i
b
3
|1
I

corn SORTRAN 77

RAN 77 crgaram, thr=e main steps nave to be
Tirst. fhe scurca2 program 1s oreated using a text editor,

. Th1s 1= achieved by 1ssuing a

corn ooject farmat (AOF)
caily Zalled prog—-aor.

t

D = D

linkage. As with
the comsiler 1=

zpcve are2 i1ilustrated with a specific example

il FORTRSN 77 srogram is
n a file cailed prg

Frints their average on
with FORTRAN 77°s

1. Introduction to Acorn FORTRAN 77
achieved using the following Panos command:
77 prg
This will cause the object code to be stored in the file prg-aof. The
compilation 1is actually achieved in two phases. First the source is
converted into an intermediate format which is stored in a file called
fcode. Secondly. this is converted into the final AOF file. These two steps

are carried out automatically.

Before the program may be e:xecuted: it must be linked. This 1is performed
using the command:

link prg 77

The final relocatable image file (r1f) is created by the linker and is
called prg-rif. To execute the program, its name is typed as a command:

Prg

Typing 1n ten numbers with RETURN after each onewlll cause their average to
be printed out.

£77.3 Issue I

2. Description of Acorn FORTRAN 77

This chapter describes Acorn FORTRAN 77 with respect to the differences
between 1t and the standard cited in the next section. These difterences are
in the form of additions and enhancements to the standard, and limitations.

<.1 Language reference

The” published reference for FORTRAN 77 is the ANSI (Ameraican Natiocnal
Standards Institute) document ANST xX3. 9-1978, entitled
'Firrogramming language FORTRAN'. The document has the IS0 (International
Standards Organisation) reference IS0 1539--1983 (E).

It 1s assumed that the reader has access to the document mentioned above., or
to a text book based around the published FORTRAN 77 standard.

- Restrictions and variations on IS0 _1539-1984%

The oniy restrictions and variations present in Acorn FORTRAN 77 are related
to input &nd output (I0). They are described in detail in chapter 3.

2.3 Extensions to 1S5S0 1539-198¢

fAcorn FORTRAN 77 provides several ehancements to the standard which e
desctibed 1n tha chaptear. None of the changes 1s major, but for ma
partability 1t 1% recommended that only standard FORTRAN 77 is used.

Laum

2.3.1 Hexadecimalo

Acorn FORTRAN 77 allows hexadecimal constants to be used wherever a ordinary
constanmnt 1s allowed. A hexadecimal constant is of the formn:

?Tdigits .

T is a letter, specifying the type of the constant. It must be one of I, R.
0, C» L or H (for INTEGEF, REAL, DOUBLE FRECISION, COMFLEX» LOGICAL. and
CHARACTER respectively).

The type letter 1is followed by hexadecimal digits (#-9, A-F). There must
always bte an even number of digits (ie. an exact number of bytes).

The bytes in a CHARACTER hexadecimal constant are given 1in the order in
which they are to appear in store’s with other constants, the most
significant byte is given first. If the type of the constant is REAL»,
OOUBLLE FRECISION or COMFLEX. the number of bytes match the size of the item

Issue L[t

“. Description of Acorn FORTRAN 77

in store (4 or B); for INTEGER and LOGICAL constants., there may be fewer
bytes. For example:

character windows (%)
parameter (window = Thilc@S14ledc)
j = Ti1Z34
Her-e., window’ consists of the bytes 1C @5 14 1E @C, and 'j’ is set to the

decimal value 4660.

2.3.2 The % character

Acorn FORTRAN 77 allows the use of the character % 1dentifiers. It may be
used wherever a letter A to Z might be used. In order to make the compiler
recognise the % character, the +% option must be given in the compiler’s
command line. This 1s described in detail in chapter 5.

2.3.3 FORTRAN 66 _option

Another option (or "switch?®) which may be specified 1n the command line 1s
determines whether the compirler will be 1n "FORTRAN 664 mode’. When this 1%
the case, the action of MORTRAN changes as follows:

1 0O loops will always execute at least once

z Hollerth k) constants are allowed 1n DATA and CALL statements, and
quoted constants are NGT of CHARACTER tyee.

When tre FORTRAN 66 switch 18 used, beth Holleritlh and quoted constants are
treated 10 tne same way - they are not of CHARACTER type. The option 1%
peovided for ase with FORTRAN 44 programe which store character informatior
1 numeri1c data types.

For erample- the following calls will have 1dentaizal effects at un time 1f
the FORTRAN 66 switch 13 used:

~all jimC?abocd?’) and
call jim(4habcd)

The cude aenerator H option must be set 1f it is wished to use Hollerith
constante 1 DATA statements (csee chapter 3.

Run-—-time FORMATs must always be of CHARACTER type, even 1f the FORTRAN 66
switch 1s set.

£77.9 Issue I

3. Input/Qutput

This chapter describes how FORTRAN 77 input and output functions are
implemented on the 32016 Second Frocessor and how this affects programs.

3.1. Unit numbers and files

A FORTRAN 'unit number® is a means of referring to a file. In the Fanos
system, unit numbers in the range 1 to 6@ may be used, as well as the two *
units for the keyboard and screen.

A unit number may be connected to an external file either by means of an
OFEN statement or by assignments on the command line when the program is

run. If an OPEN statement with the FILE= specifier is used., the unit is
connected to the given filename. Otherwise, the command line parameters are
scanned.

The format of the command line is:

command C[(filel* [unit=filel»
that is an optional list of filenames folliowed by an optional list of
assignments of a particular unit to a named file. The initial series of
‘unkeyed’ filenames are connected to units 1, &, 3... Each ‘'keyed’ file |is
connected to the given unit number. All 'unkeyed’' definitions must precede
any 'keyed’ definitions.
Examples:

X.prog abc def
This associates the file ’abc’® with unit 1 and ’def’ with unit 2.

X.prog 1@=a.file
This associates the file 'a.file’' with unit 1@,

M.prog f.data 3Z=y.data 3=x.y

This associates 'f.data’ with unit 1, y.data’ with unit 32, and ’x.y’ with
unit 3.

The special filename * always refers to the terminal,. ie the keyboard and
the screen. In addition any units which are not connected to a file in an
OFEN statement or command line assignment refer to the terminal.

All files are closed automatically when a program terminates.

When writing to a sequential formatted file, a distinction is made between
files which are to be ’printed’ and those which are not. In the former
case, the first character of each record is taken as a ‘'carriage control’,
and does not form part of the data in the record. Since any file may
eventually be printed, some means 1is required in FORTRAN for specifying

Issue It 7.6

3. Input/Output

whether a given unit is to be treated as a ’printer’. This may be done in
one of two ways:

1 The two ’asterisk’ units, and all units in the range S@-60@, assume
‘printer® output by default.

]

Ruoting FORM=’FRINTER® in an OFEN statement for the unit causes
'printer’ output to be assumed for that unit (note that this is an
extension to the standard).

Note that ’printer’ output does not imply output to any physical printer
which may be connected to the machine. The carriage control characters
which are recognised, and their trepresentation in files, are described
below.

3.2. Sequential files

3.2.1. Opens_and closes3

An OFEN statement for a sequential file does not specify the direction of
transfer that is required, so the actual system open operation cannot be
done until the first READ or WRITE statement following the OFEN. For this
reason, an OFEN statement which refers to a file which does not exist will
not fail - the error will cccur when a READ or WRITE is attempted: but may
then be trapped by use of an ERR= specifier.

A sequential unit may be used without an explicit OFEN operation, in which
case the file is actually ‘'opened’ on the first READ or WRITE which refers
to the unit.

The following subroutine is an example of tne use of OFEN and ERR=. The
routine copies a named file to the terminal, using unit 1@.

subroutine copy(file)
character file*(x), line%72
open (14, file=file, err=100)
1 read(14, ’(a)’, end=104, err=10@) line
print (1%, a)’, line
goto 1
18@ close (1@)
end

Farmatted IO

Formatted (and list-directed) reads and writes are permitted on all files.

A formatted READ statement causes one or more records to be read from the
file or terminal. All input records are assumed to be extended indefinitely
with spaces, so that an input format may refer to more characters than are
actually present in the record.

£77.7 Issue I

3. Input/Output

Input from the terminal uses the Fanos BlockRead call. so that the normal
BBC Micro line-editing conventions apply. ESCAPE 1is treated as ’end of
file’', which may be trapped by an END= specifier in a READ statement.

For file input the characters carriage return (1IN and line feed (:®A) are
each recognised as record terminators. Form feed (:@C) characters: are
ignored. 1f the record contains more than 512 data characters, the rest are
ignored.

When writing a record to a file or terminal, the carriage con*rol
characters(s) are output first, followed by the data in the record.

Trailing spaces are removed from all output records.

The +ollowing carriage control characters are recognised:

chatracter effect
space LF
@ LF/LF (extra blank line)
1 CR/FF (newpage)
+ CR (overprint)
- noneg
The 1nitial iLF (spaces/#) or TR (1/+) is not output before the first record

1n the file.

When writing te a "non-printer’ file, the effect is the same as for a space
carriage control. An urnrrecognised control character 1s treated as space.

The * carrilage «control (an extension) may be of use when writing control
codes to the VIU driver.

When a file 15 closeds a line feed character is ouctput i1+ the final recioed
contained any data characters. Thi= 1s done autecmaticlly for all open +i1les
when a program terminates normally.

A write to a terminal file causes the record to be output to the screen
immediately- but the following carriage control characters will not be
output unti1l the next WRITE or FRINT statement. Therefore, a statement
like:
FRINT *, *Type an integer:®
may be used to output a ’prompt? to the terminal.
The follaowing exainple program illustrates interaction with a terminal file:
1 print *, ™
read (%, *, end=3) i
write(#®, Z) i, i%*i1
Z format (P +7, Zild)
goto 1
3 end

The + carriage control in the output format is used to prevent a blank line
occurring between the input line and the response.

If a prompt string is not used,. it will be necescsary to output ar extra

Issue T £77.8

LD LRV BRE v T ol TRAN

Q‘)QI\) AW Vvou . /J-d"L M\Z/,'%u/t :

1
openy (WM IT = 10, FiLe = "RAWVOW) fRn=

'p&:r/r&(l'}

3. Input/Output

3.3. Direct Access fi

A direct access file consists of a number of records, all of the same
length, which may be read and written in any order. The records are either
all formatted or all unformatted.

An OFEN statement, quoting the record length, is always required when using
a direct access file. The record length is measured in bytes, and formatted
records are padded to this length with spaces.

Direct access file starts with four special bytes which identify it give the
record length. These bytes are the characters DA’ followed by the record
length as a two-byte value (LS byte first). It is permissable to OFEN a
direct access file quoting a smaller record length than was given when the
file was created. .

The maximum permitted record length in a direct access OFEN is J12Z bytes.

If the file has been opened for updating or input, the first four bvte= of
the file are read and checked. The OFEN will fail if these bytes are
invalid or the specified record length is greater than the value used when
the file was created.

Since it is possible to both read and write to a direct access file, the
system open operation may be performed as part of the OFEN statement, rather
than being delayed to the next READ or WRITE, as is the case with sequential
OPENs. Therefore any errors which occur in the open may be trapped by an
ERR= specifier in the OFEN statement.

Note that a direct access OFEN may refer to an existing file only if it is
of the correct format.

Example program which uses direct access to write and read a file on unit
42:

open (42, access='direct’, file='dafile’., recl=16
+ err=109¢, iostat=ierr)

do 1 j = 28,1,-1
1 write(42, rec=j) j, j+1, j*j, j—-1

do2j = 1,19

read (42, rec=j) k> 1l» m

2 write(*, 3) ks 1. m
3 format (1x, 3i3)
stop
190 print *, 'OPEN fail: °’, ierr
end
Note that unformatted records are the default for direct access files. The

file ‘'dafile’ used in the above example need not exist already. but if it
does, it must be a valid direct access file with a record length not less
than 16.

Issue I £77.1@

3. Input/Output

3.4. OPEN and CLOSE

The OPEN and CLOSE statments have been discussed above. The NEW and OLD

values for the STATUS specifier in the OPEN statement are ignored.

3.5. INQUIRE

3.5.1. INQUIRE by unit

An INQUIRE by wunit operation gives information on a particular unit. The
EXIST specifier variable is set to .true. if the unit is in the valid range.
It is impossible to give accurate responses to the SEQUENTIAL. DIRECT.
FORMATTED and UNFORMATTED specifiers, so 'YES®' is returned if the unit is
actualy being used for the relevant access type, and *UNKNOWN’ is returned
otherwise. Note that a unit 1s NAMED only if a FILE specifier was quoted in
the OPEN statement for the wunit; command line file assignments are not
available to INRUIRE.

3.5.%. INQUIRE by file

An INQUIRE by file operation gives information on a particular filename. It
the file has been quoted in an OFEN statement for a unit (and not CLOSEd).
information deduced from that connection is returned (eg. DIRECT is set to
'YES? if the file 1is open for direct access), and the file is assumed to
exist. Otherwise, if the file exists EXIST reply is .true. and the
responses to the SERUENTIAL, DIRECT. FORMATTED and UNFORMATTED specifiers
are YUNKNOWN?,

3.6. BACKSFACE

BACKSPACE 1is allowed only at the start of a file, or immediately after an
ENDFILE operation on the unit. In the latter case, the ’end of file' status
is cancelled.

3.7. ENDFILE

The operation of ENDFILE is entirely internal to the run-time systems the
only effect is to set 'end of file’ status and forbid further access to the
file. This status may be cancelled by a subsequent BACKSFACE statement.

£77.11 Issue D

3. Input/Output
3.8. REWIND
REWIND is implemented as a close followed by an open. After executiing a

REWIND, the file is in a similar state to that arising after an QOFEN

statement - the system open operation is awaiting the next READ or WRITE
statement.

3.9. FORMAT decoding

Format specifications are decoded in a rather more liberal manner than
implied by the FORTRAN standard.

3.9.1. Lower case letters

Lower case can be used instead of upper case everywheres cases are
distingt ed onlwv in quoted strings and nH descriptors. and the D, E a~d G
edit dezcriptors (see below).

3.9. . Eotreneous repeat counts

lunexpected repeat counts are 1gnored - 1.e.. before '. T, /> 1, § and F ed1t
descriptars, owefore the sign of a FF edit descriptor. or before a _omme or
closing parenthesis.

3.9.3._Edit _deccriptur separators

Commas can be omitted except where the omission would cause ambiguity or a
change in meaning - thus it cannot be omitted between a repeatable edit
descriptor (such as IS) and an nH edit descriptor (such as 11Habcdefghijhki.

3.9.4. Numeric edit descriptors

As well as the standard forms Iw, Iw.m, Fw.d, Ew.d, Ew.dEe, Dw.d», Gw.d and
Gw. dEe, additional forms are:

Fw

DOw. dhe
Gw. dlle
Ow. dEe
Ew. dlie
Zw

z

When the exponent field width 1s specified. the letter used to introduce it
1s used in the output form (in the same case). If no exponent field width is
specified, then except for G edit descriptors the initial character of the

Issue [f£77.12

3. Input/Output
descriptor is used in the output form (again, in the same case).
If an exponent field width is given as zero, 2 is assumed; if on output the
given exponent field width is just too small for the exponent., the character

introducing the exponent field is supressed.

The Z edit descriptor provides input and output of numeric data in

hexadecimal form. On input, the Ffield width must equal the number of
hexadecimal digits contained in the value being read (eg. 8 for an INTEGER).
on output., the width should not be less than this values if greater., the

output is padded with leading spaces. A field width of =zero implies the
‘right? widths *Z' by itself is a shorthand for *Z@°. Currently, the bytes
in a numeric value are transferred in store order (LS first) when using Z
editings this 1is inconsistent with the form of hexadecimal constants in
source programs, and may be changed in the future.

3.9.5. A editing

The A edit descriptor can also handle numeric list items: the effects are
as recommended in Appendix C (Hollerith) of the FORTRAN 77 standard. If the
field width is zero the system will automatically use the right value for
the data type being transferred (4 or 8).

It must be emphasised this use of A editing was i1ntroduced solely to aid in
the transfer of FORTRAN 66 programs — it should not be used otherwise.

3.9.6. Abbreviations and_synonymns

@F can be abbreviated to F,

1X to X, and

Ti, TL1 and TRl to T, TL and TR respectively.
A7 is a synonym for A.

3.9.7. Transfer of numeric items

The I edit descriptor can be used to transfer real and double precision
vailues; F, E» D and G can be used to output an integer value. Note that the
external tform of a value that is to be transferred to an INTEGER 1list item
must not have a fractional part or a negative exponent.

£77.17 Issue D

4. Runtime libirary

Linking of FORTRAN AOF files with the library is performed using the Fanos
jinker as described in section S5.3. The FORTRAN library contains the
routines used for such tasks as 1nput and output.

S. Freparing FORTRAN 77 programs

This chapter describes in detail the procedure required for converting a
FORTRAN 77 source format into an executable relocatable image file. The
steps necessary have already been desciribed, but the various opticons
available (such as FORTRAN &6 mode) are explained here.

S.1 Preparing FORTRAN 77 source

It is assumed that source programs are prepared using one of the system’s
editors, and that the user knows how to use the editor sufficiently well to
do this.

Lines of source are eguivalent to images on a punched card system, and 1t is
important that certain fields start in particular columns:

A C or * in column 1 indicates a comment line

Line numbers appear in columns & to S /

A non-null, non—-space character in column & marks a continuation card

The statement proper appears 1n columns 7 to 7Z.

The auto—-indent capability of the editors makes 1t easier to kheep statements

aligned with, say, column 7 (providing that the first columng is aligned
properly).

5.2 How to compile FORTRAN 77 programs

The Fanos command to compile FORTRAN 77 programs has been given already in
its simplest form:

77 prg

There are, however, several other parts which may appear on the command
line. Its full specification is:

¥77 source [{list) listf] [(opt} optsl [(fcode} codefl [(identify)ijL(help)]

where *nings between square brackets ([...] are optional. words between
arigles Ubrackets <¢,..) are keywords which must be supplied if the parameter
following is given. The meanings of th keywords are:

list This should be followed by the name of a file to which the
ompiler will send a line—-numbered source listing, in addition to
any erraors encounterad during the compilation.

[sleln foliowing this keyword is a list of options to control the action

~f the compiler. The options are described in the next section.

N
F77.0% Issue I

) S. Preparing FORTRAN 77 programs

fcode The compiler takes %o phases to convert the source program to an

aof file. The first stage., called the 'front end’ converts the

FORTRAN 77 program into an intermediate form known as FCODE. The

second phase (code generation) converts the fcode file to an aof

file. The fcode option enables the user to give the name of the
intermediate file, which defaults to fcode.

identify If this keyword is cited in the command line, the compiler will
identify itself when called. This is wuseful for checking which
version of the compiler is in use.

help The compiler will respond to this keyword by printing help about
itself, eg the format of the command line expected.

Examples are:
77 prg

Simply compile the source and put the final AOF file in prg-aof.
77 myprog list mylist opt +1lt-x identify

Compile myprog, produce a compiled listing, set some options, and identify
the compiler's version.

S.2.1 Compilation options

There are two sets of compiler options. one for the front end and one for
the code generator. These are described separately. front end first.

The format of the option string is a list of characters, each of which may

be preceded by a + or - and followed by a parameter. The plus sign enables

the option and the minus sign disables it. The option letters are:

NT BN

L This produces a listing if enabled. The listing will be sent to the
standard output if no list file was cited, otherwise it will sent to the
listing file.

T If this option is enabled, calls to special trace routines are embedded
in the object code. Such calls are made on program unit entry, DO
statements, labelled executable statements. and subprogram calls. See
chapter 8 for details on tracing.

Wn This sets the warning message level. The value of n should be a digit
between # and 4. @ suppreses all warning messages. Level 1 allows
serious warnings to be printed, level 2 allows slighty less serious
warnings through. and so on up to level four which permits all warning
to be printed.

Xn This sets the width of the cross—-reference output produced by the
compiler. X is follwed by a number n which is the width wused. Cross
reference output begins when the END statement is encountered in the
program. It consists of a list of names in the program with the lines at
which they were encountered. Also listed are the program labels with the
line number at which the label occurred, the type of statement
(executable or not) on the line, and the lines which refer to the label.

Issue D £77.16

S. Preparing FORTRAN 77 programs
If the width is cited as @, no cross—-reference lsiting is produced.

& I1f this option is enabled. the character & may be used as a letter in
identifiers. If the character appears at the start of the name, it is
converted into the pair F. The facility is provided for use when writing
library subprograms (modules) for which it is necessary to invent names
not normally available.

-} This switch, when enabled, enables the front end to recognise
FORTRAN &46—-type programs., as explained in section 2.3.3.

The default settings for the front end switches are W2X@-&L.T6, ie warning
messages of level 1 and 2 are printed, no cross-reference listing is
produced. & it disallowed. no listing is produced (unless list is given in
the command line), no tracing code is generated and FORTRAN 66 mode is of¥f.

There are two opt:ons available for the code generator. They are:
cooe Cen e TIL
If this is enabled- the compiler will generate code for subscript bounds
checking in array and substring accesses. If an error is detected, the
run—-time system will give an appropriate message.

H When this option is enabled. Hollerith constants are allowed to appear
in DATA statements.

The default settings for the code generator's options are -BH, so to enable
either of the options they have to be cited explicitly, eg

f77 myprg opt +bt

to generate code for bounds checking and run-time tracing. Note ¢that in
general the Panos system does not distinguish between upper and lower case-
so either may be used in command lines.

5.3 How to link a com d_program

Once a source program has been compiled without error. the AOF file will be
created and may be linked using the Acorn linker. The technique for doing
this 1is the same for all of the compiled languages provided with the 32016
Second Frocessor. The only part that varies is the name of the library used.
For FORTRAN 77 this is f77-1lib.

To link a single AOF file, the command

link prog lib 77
would be wused. The file prog-—rif would be created as a result and could be
executed from Panos by typing it as a command. It is also possible to link

several AOF files and libraries. See the instructions on how to use the
Acorn linker in the Panos User Guide for more details.

£77.17 Issue D

&. Running FORTRAN 77 programs

As mentioned above a linked FORTRAN 77 object program may be executed by
typing its name from the the Fanos command prompt. The name of the program
must be accessible through the clispath variable. For example, the usual
directory for RIFs on the DFS is ’'r*. I¥

clispath
exts-—rif

"DFS::z."
e

then typing the RIF's name at command level (eg fortprg) will be translated
into Z.r.fortprg on the DFS.

&.1 Temporary files

The front end produces intermediate code in the fcode file (called FCODE by
default). This is used by the code generator. The file has the Panos suffix
—tmp so will be put into the directory specified by the exts$—tmp Fanos
variable, eg "junk.temp.-".

Issue D £77.18

Z. Additional facilities

The additional facilities provided by Acorn FORTRAN 77 have already been
covered.

+77.19 Issue D

8. Errors and debugqging

This chapter lists the error messages which are produced by the FORTRAN 77
system at various stages of the compilation and execution of programs.

B.1 Compile-time messages

While the program is being compiled. errors may be detected by the front end
and the code-generator. As usual with compiler systems there is a range of
error messages. from helpful 'warnings® that the programmer may be bending a
rule of FORTRAN 77 systax, to fatal 'system’ errors, which cause the
compiler to cease operation.

8.i.1 Front end error messages

This section describes errors of class 1 and Z. Class 1 errors are serious

errors which cause the front end to abandon the current statement. The
statement is printed. together with a line indicating where the error was
detected, and a line giving the.error number and an explanation. Thus if¥f

line 211 contained the faulty FORTRAN statement:
131 silly

then the message produced might be:
211 191 silly

L 211~ ¥
Error (code 173): Statement not recognised

Each error 1s identified by a positive number, and for each error number
there is an associated descriptive error message. Note that the error
messages are not all different:s the error number allows experts to know
precisely where in the compiler the error was detected, but for normal use
the error message should suffice.

The list below gives all of the class 1 error messages and their numbers:

@119 . Statement not allowed here
@129 FORMAT is not labelled

@13% ENTRY inside 00O or block IF
@141 ENTRY not allowed

@#17® Brackets not matched

@171 Statement not recognised
@172 Unmatched apostrophe
Statement not recognised
Unknown type

Expecting letter

Expecting letter

'(letter)’' already set
expression is not constant
EXTERNAL not allowed in BLOCK DATA

Issue [£77.20

Sole
S@11
SOz
Sezz

SO39

5264
S265
Stb6
S267
5268
Sr69
S27d
7810
7@11
7@z
TH13
7030
76

8.

Bad COMMON name

Expecting digit

Integer expected

Expecting name

not array element

'(name)*’ is not an integer variable
Inconsistent use of '<(name)’
Illegal use of '<(name)’

Invalid Keyword

UNIT npot given

Label ' <(nhumber)' already used
Illegal structure

Expression is not LOGICAL

Illegal structure

Integer expression required
*{name)’ is not an integer variable
Unexpected character ' (character)’ after GOTO
Illegal expression type

Expression is not LOGICAL

Invalid Keywaord

UNIT/FILE not given

UNIT and FILE both given

Invalid Keyword

UNIT not given

RETURN not allowed 1n main prograim
THEN must follow 'IF (lexp)’
Illegal DO terminal statement
Assignment to '<(name)’ not allowed
Invalid Keyword

UNIT not given

Expecting ' <(name)' here

Statement label expected

Zero is not allowed as a statement label
Statement label too long

Bac format or I1/0 list

Ead format or I1/0 1list

Mo Keyword

Invalid Keyword

Bad implied DO variable

BEad type for implied L[O variable
FMT=% not allowed here

Bad type for UNIT

"END= not allowed

Bad type for UNIT

Bad internal file

EBad type for UNIT

Bad type for UNIT

BEad type for UNIT

Bad type for UNIT

Rad type for UNIT
ERad/missing UNIT exprecssion
'(name)’ assumed size

Bad complex constant

length * (%) for function ' (name)’
'(* not allowed here
*(name)' not allowed here
Substring not allowed here
Expecting name

Errors and debugging

Issue D

8. Errors and debugging

7971 COMPLEX relations?
7188 Unknown operator
7199 Bad complex constant
7191 expecting name or constant
7192 Bad Hollerith constant
7193 Bad Hollerith constant
7194 1Illegal hex constant
720@ Bad character constant
72601 Empty character constant
219 Bad logical constant?
8020 Illegal statement in logical IF
B8mMZ1 Statement not allowed in BLOCK DATA
8¢08@ Expecting end of statement
B809® Expecting '<(character)’
8190 Item too long

Class 2 errors differ from class 1 errors in that the compiler does not
abandon processing of the current statement. Note that in some
circumstances, this can’ lead to spurious errors in the statement being
reported.

Note that some class Z error messages are given not at the line that caused
the error but at the point at which the error was detected - thus
information on missing labels is given at the end of the program unit
(rather than where the label is used)., and an attempt to SAVE something that
cannot be SAVEd will be reported at the end of the declarations for the
program unit.

P10@ illegal DO terminal statement

@140 ENTRY in FUNCTION has alternate returns
@158 More than (number) lines in statement
#151 Continuation marker not allowed here
@164 Bad end of file

19¢@ FUNCTION may not have alternate returns
2019 O’ (name)’ already used

3@ Inconsistent use of ' <(name)’

33@1 Unexpected ',

3B1¢ Substring expressions not constant

3@3¢ <(name)’ is not an intrinsic function
3w31 Inconsistent use of ' (name)’

3p4 HBlank common not allowed here

33S@ Bad lower bound expression for ' (name)’
3751 Bad upper bound expression for ' (name)’
3052 Incompatible declaration for ' {(name)’
3@7¢ ' <(name)’ in bad equivalence

3071 /<(name)/ in SAVE but not COMMON

3@72 Common block /<(name)/ partly CHARACTER
3@73 Y<(name)’ in bad equivalence

374 EQUIVALENCE involving '<(name)’ partly CHARACTER
3075 <(name’’ not allowed in SAVE

398®» Integer constant expression required
3@ Y<(name)’ in substring in EGQUIVALENCE
3@91 ’ <(name)’ wrong number of bounds in ERUIVALENCE
4931 '<name)’ not allowed here

4002’ (name)* (*)' not allowed

4319 Subscripts not constant

4@11 Substring expressions not constant

Issue D £77.22

4012
4013
4014
4015
4016
4021
4022
4023
4239
So21
Sa31
3032
081
3091
5131
3133
5160
5180
3194
S200
S201
5210
S2z0
S240
5232
-3l
60@1
7008
7020
7021
7031
7032
7040
7041
7042
7050
7070
7072
7080
7990
7110
7120
7122
7140
7141
7195
7197
7220
7230
8a0
8001
8010
8@11
8az22
=2

8az

8MzS
8dz6

£77.z

'{(name)' not allowed here
'{name)’ not in named COMMON
'(name)®’ is not local

Integer constant required here
Constant required here

Integer expression required
Integer expression required
Integer expression required
Illegal expression in implied DO
Keyword already used

Illegal type for DO variable
Variable required

Keyword already used

Keyword already used

Keyword already used

UNIT not integer

Illegal structure

Illegal jump ta labsl *<(number)'
Keyword alresady used

Wrong type

Not variable or array element
Wrong type

Bad format identifier

Bad I/0 list item for READ
"(name)' has assumed aize

Label '(number)’ ia undefined
Unclosed DO or blaock~IF

Operands for concatenation naot CHRARACTER
subscript not integer

*(name)' wrong number Qf subscripts
substring lower bound not integer
substring upper bound not integer
Bad arguments for ' <(name)’

Wrong number of arguments for *'<(name)®
Type mismatch,arg (number)
Illegal type conversion

Illegal type conversion

Illegal operand types

Illegal type for operand

'(name)’' not allowed here

' (name)®’ not COMMON

Bound for '<(name)' not constant
(name) (*)' not argument

‘Concatenation includes * (%) item

*(name)® not allowed here

O0dd number of hex digits

Odd number of hex digits

Bad exponent

Illegal type after °'-?

'(name)’ cannot be a dummy argument
*(name)’ occurs more than once
Y(name)’ is not CHARACTER

*(name)® is CHARACTER

Illegal “tharacter '<{(character)' in label
Zero statement label not allowed
Illegal jump at line <(number)
Unclosed DO/ IF block

Statement label already used

Errors and debugging

Issue D

8. Errors and debugging

89039 Inconsistent use of ' <(name)’

8040 Label '<(name)’ already used in different context
8041 Statement labeled '<(number)’ is non-executable
8042 1llegal reference to label ’ (number)’

8059 Inconsistent use of ' (name}’

806¢ Inconsistent use of *(name)’

8079 Type of '(name)’ already set

.1.2 Warning messages

By use of the W optian.: the user can instruct the Jront end to give advice
in the form of warnings. The messages are graded an their ‘severity'. Level
1 is the most serious. indicating faults such as having a statement that
cannot be reached because it is unlabelled and fallows a jump. Level = is
used to flag the use of extensions to standard FORTRAN 77. that might give
trouble when maving software to anather maching., Levels 3 and 4 are used to
indicate items that are legal but bad style: and thus possibly wmistakes. An
example of the last is the use of implicit typing of ideantifiers. which
would bhe an error (perhaps caused by a misspelling) 14 it was thaught that
all identifiers had been explicitly typed.

The warnings are listed belaow:

Level 1:
@152 last statement not END
#3153 PBlank statement - treated as comment
5148 FRINT treated as WRITE
S141 WRITE treated as PRINT
8p27 Statement cannot be executed

Warning 153 (blank statement) is produced only when the FORTRAN 66 option
is set.

Level 2:
16631 Program name omitted
7061 Long name ' (name)’
7196 Non-standard hexadecimal constant

Level 3:
8071 . *{(name)’ typed implicitly

8.1.3 Fatal compile errors

The front end performs a number of consistency checks, and will produce a
System Error message and abandon the compilation if one of these fails.
These errors should not occur in practice: if one does. the user should send
a copy of the program to the supplier of the compiler, to enable the fault
to be isolated and fixed.

Issue D £77.24

8. Errors and debugging

.1.4 Errors detected the code generator

Certain compile-time errors cannot be detected by the front end, but are
reported instead by the code generator. An example of this is the program:

common asb
equivalence (a.b)
end

This would produce the error message:

++++ Error near source line 3:
inconsistent equivalencing involving B

The error messages that can be produced by the code generator are:

argument out of range for CHAR
The intrinsic function CHAR has been used with a constant argument
outside the range @#-255.

local data area too large
The sire of the lacal storage area for the pragram unit exceeds
2,147,483, 647 bytes,

array (name) has invalid size

The size of the given array is negative or exceeds 2,147,483,647
bytes.

attempt to extend common block (name) backwards
An attempt has been made to extend a COMMON block backwards by means
of EQUIVALENCE statements

bad length for CHARACTER value
A value which is not positive has been used for a CHARACTER length.

{class) storage block containing (name) is too large
{class) 1is 1local or COMMON. The storage block containing the named
variable exceeds 2,147,483,647 bytes.

concatenation too long
The result of &a CHARACTER concatenation may exceed 2,147,483,647
characters.

conversion to integer failed
A REAL or DOUBLE PRECISION value is too large for conversion to an
integer.

I to R real conversion failed
A DOUBLE FRECISION value is too large for conversion to a REAL.

DATA statement too complicated
The variable list in a DATA statement is too complicated. It must be
simplified. :

division by zero attempted in constant expression

The divisor might be REAL. INTEGER, DOUBLE FRECISION or COMFLEX.

£77.25 Issue D

8. Errors and debugging

real constant too large
A REAL constant exceeds the permitted range.

double constant too large
A DOUBLE FRECISION constant exceeds the permitted range.

inconsistent equivalencing involving {(name)
The given vatriable is involved in inconsistent ERQUIVALENCE statements.

increment 1n DATA implied DO—lbop is zero
A DATA statement implied DO loop has a zero increment.

insufficient store for code generation
The code generator has run out of workspace. The program unit teing
compiled must be simplified.

insufficient values in DATA constant list
There are more variables than constants in a DATA statement.

integer invalid for length or si:ze
A value which is not positive has been used for a CHARACTER length or
array sirze.

lower bound exceeds upper bound in substring
In a substring. a constant lower bound exceeds the constant upper
bound.

lower bound of substring is less than one
A constant substring lower bound is less than one.

upper bound exceeds length in substring
A constant substring upper bound exceeds the length of the character
variable. ’

stack overtlow — program must be simplified
The internal expression stach has overflowed. The offending statement
must be simplified.

subscript below lower bound in dimension N
a constant array subscript is less than the lower bound in the given
dimension.

subscript exceeds upper bound in dimension N
A constant array subscript exceeds the upper bound in the given
dimension.

too many constants in DATA statement
There are more constants than variables in the DATA statement.

type mismatch in DATA statement
The type Gf the constant is illegal for the corresponding variable.

variable initialised more than once in DATA
A variable has been initialised more than once by DATA statements in
this program unit.

wrong number of hex bytes for constant of TYFE type
A hex constant has been given with the wrong number of digits.

Issue I +77.26

8. Errors and debugging

zero increment in DO-loop
A DO loop with a constant zero increment value has been used.

inconsistent use of (name)
The external subroutine or function <(name)> has been wused with
inconsistent argument types.
The last error would occur with the following program:
call abc(1.@)

call abc ()
end

B8.1.5 Code generataor limits

The code generator has certain internal limits on the complexity of each
orogram unit. These are:

code si:ze ?12BK bytes
number of labels 4096
number of local variables 819z
number of censtants 8192
number of COMMON blocks 2m48

number of external symbols 2048

These 1limits should never be exceeded in practice’ it is likely that the
code generator will run out of store before this happens.

8.2 Run time errors

All errors detected by the FORTRAN run—-time library produce a message of the
following form:

++++ EFROR N: text

N is an error number and ’text’ is a description of the error. This message
1s followed bhy a backtrace: in which each line gives the name of a program
unit. the addresses of the corresponding module table and data area (static

base) » and the offset of the call with the program unit. The data area
address may be used in conjunction with the storage map produced by the code
generator to examine the values of local variables. The link offset may be
compared with the statement number map produced by the code generator to
find the approximate position of the call. The addresses and link offset
are given 1n decimal. Nore that a name in & backtrace refers to the main
entrry point of the program unit, and so may not be the actual name used in a
call. .

Example:

++++ ERROR 14@@3: operand negative in SORT

£77.27 Issue D

8. Errors and debugging

Rout ine MoD data area link

F_INIT 608 7356 255

F_S2aRT 592 7292 41 N

DEF S44 7232 29

ARC Sz8 7172 16

F_MAIN S1z 7168 18
In this example, the main program (with default name) has called ABC, which
called DEF, which called S@RT (the name shown is the internal name for the
instrinsic function SART). The final routine (F_INIT) is the main error
handler.

The call to ABC in the main program was at byte of+set 18 from the start of
the code; tne call in ABC to DEF was at offset 16. etc.

8.2.1 Code 1@¢# errors

There is a series of simple errors which all have code 1920033 the text
message gives all the necessary information.

These ertrors are:

bad operands for double precision **
di**dZ where dl is negative

bad operands for real *%
rlvkr when 1 is negative

operand too large in DEXF
bad operand in DLOG
operand too large in CAERS

operand too large in DASIN
abs (arg) in DASIN or DACOS exceeds 1

operands are zero in DATANZ

operand too large in ASIN
abs(arg) in ASIN or ACOS exceeds 1

operands are zero in ATANZ
operand too large in EXP
bad operand in ALOG
operand negative in DSERT
operand negative in SGRT
(ch) edit descriptor cannot handle logical list item
Format descriptor used with a LOSICAL list item is not L3 (ch) is the

actual descriptor used.

Issue I +77.28

8. Errors and debugging

invalid logical in input
Formatted input field contains bad logical value
(ch) edit descriptor cannot handle character list item
Format descriptor used with a CHARACTER list item is not A3 <ch) is
the actual descriptor used.
(ch) edit descriptor cannot handle numeric list item
Invalid descriptor for numeric value. {ch) is the actual descriptor

used.

Z field width unsuitable
Wrong number of digits in hex (Z) input field for given type.

invalid number in input
Bad number (range or syntax) in formatted I, D, E, F or G input.

FORMAT - missing opening parenthesis

FORMAT - unexpected character <(ch?
Invalid character (ch) in FORMAT.

FORMAT - bad numeric descriptor
Bad syntax for numeric FORMAT descriptor.

FORMAT - cannot use ' when reading
Huoted string used in input FORMAT.

FORMAT - unerpected format end
Ena of FORMAT inside quoted string

FORMAT - cannol use H when reading
nH used in input FORMAT.

FORMAT - bad scale factor
Bad +nF or -nF construct.

FORMAT -- B must be followed by N or Z

FORMAT - too many opening parentheses
More than 24 nested opening parentheses (including the first).

FORMAT - trouble with reversion
No ~value has been read or written by the repeated part of the format
(this would cause an infinite loop if not trapped).

FORMAT - missing closing parenthesis

FORMAT - width missing or zero
EBad width in numeric edit descriptor

FORMAT - number too large

Bad complex data
Bad COMFLEX constant in list directed input.

LD repeat nct integer
Repzat count (r#*) inlist directed input is not valid

£77.29 Issue D

8. Errors and debugging

LD input data not REAL
Syntax or range error in REAL list directed input value.

LD input data not INTEGER
Syntax or range error in INTEGER list directed input value.

LD input data not DF
Syntax or range error in DOUBLE FRECISION list directed input value.

L

input data not LOGICAL
Syntax error in LOGICAL list directed input value.

LD input data not COMPLEX
Syntax or range ertor in COMPLEX list directed input value.

LI

input data not CHARACTER
Syntax error in CHARACTER list directed input value

LD repeat split CHARACTER
Attempt to split a repeated character constant across a record
boundary. (This is strictly legal, but almost impossible to implement

correctly).

Unformatted output too long
Unformatted record length exceeds maximum permitted (253 bytes).

Unformatted input record too short
Input record does not contain sufficient data.

mismatched use of ACCESS,. RECL in OFEN
ACCESS='I'IRECT' has been quoted in an OPEN which does not contain a
RECL specifier, or vice versa.

The following program fragment illustrates the ’trouble with reversion’
format error:

write(l, 1@) i, j
13 format (iS5. (1x))

8.2.2 Array and substring errors

There are two errors which may be produced from a program unit which bhas
been compiled with the ’bound checking’® option:

++++ ERROR 1@5@: array error near line N

An illegal array subscript has been used. The line number refers to the
FORTRAN source file.

++++ ERROR 1#51: substring error near line N

An illegal substring has been used.

Issue [£77.30

8. Errors and debugging

2.3 Input/output errors

Input/output errors are those which may be trapped by use of the END= and
ERR= specifiers in FORTRAN statements. If these are not used, an error
mesage and code are produced as described below? otherwise execution
continues, with the error code available by use of the IOSTAT specifier.

All the messages have the general form:
++++ ERROR N: FREFIX UNIT - reason

N is the error code; FREFIX describes the IO operation being attempted (it
may be OFEN. CLOSE, BACKSPACE. ENDFILE, REWIND or READ/WRITE), and UNIT is
the unit number, with * given for one of the asterisk units and ’internal’
for an internal file. The rest of the message gives more information about
the error.

End of file on input may be trapped with the ENI= specifier. The I0OSTAT
value in this case is -1. If END= is not used. the following ’'reason’ is
produced. with code 1@@@:

end of file

Other errors may be trapped with the ERR= specifier. The I0OSTAT value is
the corresponding error code, as listed below.

The following codes and 'reasons’® may be produced in IO error messages:

14@1 invalid unit number
Unit number not in range 1-6#.

1332 invalid attribute
Invalid attribute used in OFEN statement.

1333 duplicate use of file name
The same file name has been used more than once in an OFEN statement.

1934 invalid unit for operation
BACKSFACE/REWIND/ENDFILE attempted on unit connected for direct
access.

1805 error detected previously
An 10 error has been detected previously on this unit.

1096 direct access without OFEN
A direct access READ or WRITE has been used without an OFEN statement
for the unit.

1827 invalid use of unit
Inconsistent use of unit (formatted mixed with unformatted, sequential
mixed with direct access or ENDFILE done previously).

1438 input and output mixed
Input and output mixed on a sequential unit (without intervening
REWIND or OFEN).

1339 direct acccess not open for input

£77.31 Issue D

1910

8. Errors and debugging

The direct access file could not be opened for input (eg. file |is
write only).

direct acccess not open for output
The direct access file could not be opened for output (eg. file is
read only).

1811 end of file on output
An attempt has been made to write off the end of a sequential file (in
practice. this will occur with internal files only).
Z@9» not available
BACKSFACE operation is not available.
2@d1 bad unformatted record
A record in an unformatted file does not have the required structure,
2002 invalid access to terminal file
Attempt to use terminal as an unformatted or direct access file.
20M3 sequential open failed (message)
The actual reason for the failure (eg. 'Bad name’) is given in the
brackets.
20M4 direct access open failed (message)
The actual reason for the failure (eg. 'BRad name') is given in the
brackets.
2005 direct access 10 failed
For example, attempt to read past end of file.
2086 record length too large
The record length specified in a direct access OPEN exceeds the
permitted maximum (S12 bytes).
ZeM7 bad direct access file
A file used for direct access has invalid initial data or insufficient
record length.
2039 bad command line syntax
The following message indicates an error during program initialisation., and
may not be trapped. However it will will never occur in the Panos system:

open of asterisk units failed

Issue D £77.32

8. Errors and debugging

8.3 Tracing FORTRAN 77 programs

When compiling a program unit, the wuser wuse the Front End option T to
specify that calls to special trace routines are to be included in the code.

These routines will be invoked when:

entering the program units

leaving the program unit;

a labelled statement is about to be executed:

the THEN clause of an IF...THEN or ELSEIF...THEN construct is about to be
executed;

the ELSE clause of an IF...THEN or ELSEIF...THEN construct is about to be
executed;

& a DO statement is about to be executeds and

7 another subprogram unit is about to be invoked.

B U~

4]

The trace routines will output a message which starts with ***T and
indicates the type of trace point encountered; for some of these it will
also indicate a count (modulo 32768) of the number of times this trace point
has been met. A special routine called TRACE can be called with a single
LOGICAL argument to turn this tracing information on and off - note that
even if the trace output is off, the counting will still be done sc the
values produced will be correct if tracing is turned on again.

If the main program is compiled with tracing on, the user will be asked if
trace output is to be produced or suppressed. If the main program is
compiled without tracing. then trace output is initially enabled.

In addition to the TRACE routine, two further subroutines are supplied as
~art of the tracing package. The first of these is HISTOR (short for
HISTORY), which causes information to be output about the last few traced
subprogram calls. Each line of history information consists of a name,
which may be preceded by -) or by (-. A right arrow indicates a traced
cell of a subprogram, a left arrow indicates a traced exit from a program
urit, and a line with neither type of arrow indicates a traced entry to a
vrogram unit. Note that the name given when tracing entry and exit from a
sragram unit, is the name of the program unit itself rather than the name of
the entry called by the user.

The final routine provided is BACKTR (short for BACKTRACE) which output
information on the current nesting of program unit calls. The routine
should be given a single logical arguments if this is .TRUE. then the
HISTOR subroutine is invoked after the backtrace information bas been
produced.

£77.33 Issue D

2. Using FORTRAN 77 with other languages

It is poscsible to link FORTRAN modules with others written in languages such
as Pascal (in fact any other language which produces output conforming to
the Acorn Object Format and Acorn Cross—language Calling Standard). In
addition, FORTRAN 77 programs may be linked with the standard Panos library
routines documented in the Fanos Frogrammer's reference manual.

Issue D £77.34

	fortran00_0001
	fortran00_0002
	fortran00_0003
	fortran01_0001
	fortran01_0002
	fortran01_0003
	fortran01_0004
	fortran01_0005
	fortran01_0006
	fortran01_0007
	fortran01_0008
	fortran01_0009
	fortran01_0010
	fortran01_0011
	fortran01_0012
	fortran01_0013
	fortran01_0014
	fortran01_0015
	fortran01_0016
	fortran01_0017
	fortran01_0018
	fortran01_0019
	fortran01_0020
	fortran01_0021
	fortran01_0022
	fortran01_0023
	fortran01_0024
	fortran01_0025
	fortran01_0026
	fortran01_0027
	fortran01_0028
	fortran01_0029
	fortran01_0030
	fortran01_0031
	fortran01_0032
	fortran01_0033
	fortran01_0034

