
Aztec C86 Release Doc

Aztec C86, Version 3.40B for PCDOS/MSDOS

Addition to the Release Document

Commercial Users Only

There are two known bugs with malloc in version 3.40b. The first

is that malloc is unable to return from failure at appropriate times in

large model. To fix this, you must dearchive misc.arc to get the source

for malloc, and recompile the source. The problem is not in the

source, but how it was compiled.

The second bug in malloc is that it hangs if you try to free space in

the middle of a block. To adjust this you must change the following

lines in the malloc source

while (inuse(temp = chain(ptr)))

ptr -> next = temp -> next,

to:

while(!inuse(temp=chain(ptr)))

{
ptr -> next = temp -> next;

if (temp == current)
current = &first;

Aztec C86, v3.40 Release Document

-n As of release 3.40, the compiler defaults to collecting
information needed by the linker to create the .dbg file for
the source level debugger. The -n option tells the compiler
not to collect and save this information thus resulting in an
increase in compilation speed.

+s This option tells the compiler to put string constants in the
code segment. This option is useful if you are creating
ROMable code.

+b This option tells the compiler to put out code to check for
stack overflow. If a stack overflow occurs, a ’stack overflow,
raise stack size’ message will be output. This message is
contained in a module, _ stkover, in c.lib that can be
modified by the user if different behavior is desired.

3.4 New linker options

Two new options -g, and -g have been added to the linker to turn
on/off the collection of the symbol table information needed when
using the source level debugger. A manual page listing these options is
located in the additional documentation section of this document.

-g Collect source level debug information. This information 1s
put into a file whose name consists of filename.dbg, where
filename is the name specified by the -o option or defaults
to the name of the first object file listed. The .dbg file is
automatically looked for when you invoke sdb.

-¢g Turn off the collection of source level debug information
for all files following it.

Both options apply only to those files listed after the option on the
command line. Both options may be used on the same command line,
-g will turn on the collection of information for all files after it until
the end or a -g is encountered. A -g will turn off collection of debug
information until a -g is encountered.

3.5 New large model linker

bin is a large model linker that can be used to link files that were
too large to link with Jn. If you received an ’out of memory’ message
using /n, you should try linking using bin.

3.6 New C driver

c is a utility that allows you to compile, assemble, and link
programs with only one command. See the additional documentation

section for more information.

3.7 Enhanced cnm, obd, sqz.

cnm, obd, and sqz have been enhanced to support the object file
changes related to the source level debugger. These programs will

~3-

Release Document Aztec C86, v3.40

work on object files created by previous versions of the compiler,
assembler, and linker. Object files created using version 3.3b or greater
must use the corresponding version of these utilities.

3.8 Changes to z

Zz has been corrected to allow a blank in the search and replacement
strings. Previously a blank in the search string would yield an error
message while a blank in the replacement string would yield an
incomplete replacement.

3.9 New options for obj

Two new options have been added to obj. A manual page listing
these options is located in the additional documentation section of this
document.

-u_—- This option tells obj NOT to strip trailing underscores from
names.

-s This option causes obj to truncate external names to 8
characters.

3.10 File sharing and record locking.

Additional modes have been added to fcntl.h to support the MS-
DOS 3.1 file sharing features. These modes can be used by the open
function.

A new function, filelock, allows file locking on files opened by the
open function.

Manual pages describing filelock and the new options available to
open are located in the additional documentation section of this release
document.

4. Fixed Bugs

This section describes the bugs in version 3.2e of Aztec C86 that
have been fixed in version 3.40.

4.1 Bugs fixed in cc

1. Fixed problem with expressions involving multiple
assignments fo floating point variables.

2. Fixed problem with long multiples by constants when using
the +1 and +2 options.

3. Fixed a parsing bug which caused error messages on double
&& double and double || double expressions.

4. Fixed a bug in the +f option which caused it to generate code
that could not be assembled.

Casts of longs to pointers now work properly in large model.
Fixed a bug in the tracking of register variables and pointers.
Fixed a bug in the handling of bit field references. I
N

-4-

Aztec C86, v3.40 Release Document

4.2 Bugs fixed in the library

1. tmpfile now correctly deletes the temporary file on program
termination.

2. clock now works correctly.
3. The rounding problem in conversion of floating point

variables to ascii is fixed.
4. Bugin _ exit was fixed.
5. Bug in scr_eos was fixed.
6. Bug in circ was fixed.

4.3 Bugs fixed in prof

Bug in profiling programs greater than 32K has been fixed.

4.4 Bugs fixed in hex86

Fixed problem with the -j option.

4.5 Bugs fixed in z

Fixed bug in !!.

4.6 Bug fixed in make enhancement document.

The definition of command line macros to make was
erroneously documented in release 3.2E as requiring a -D
option. The corrected manual pages can be found in the
addendum section of this document.

4.7 Bug fixed in bdosx and dosx manual page.

The parameters to bdosx and dosx were incorrectly
documented in release 3.2E. The corrected manual page is
located in the addendum section of this document.

4.8 Bug fixed in scdir manual pages.

scdir was incorrectly documented as being called scndir in
release 3.2E. The corrected manual pages can be found in the
addendum section of this document.

5. Known Problems

The following are known problems at time this version was
released. These items will be fixed in a later release.

5.1 sdb

The following limitation exists in the current version of the source
level debugger. This will be fixed in a later release.

* Memory change breakpoints and user declaration of variables are
not implemented at this time.

Release Document Aztec C86, v3.40

5.2 obj

obj will not support the source level debugger information that may
now be found in the object modules. obj will only work on programs
compiled with the -n compiler option.

5.3. cc

* In large data model, references of the form:

*(char *) 0xb0000000

will cause an internal compiler error.

* Misplaced colons or errors in indexing expressions may cause the
compiler to generate an internal compiler error message after an
appropriate error message.

Aztec C86, v3.40 Release Document

6. Packaging

The Aztec C86 Developer package is a subset of the Commercial
package. This section lists the files that are common to both the
Developer and the Commercial packages. The additional files for the
Commercial package are listed in the next section.

6.1 Developer and Commercial contents

CC.EXE Optimizing C Compiler
(generates 8086 code by default)

CCB.EXE Non-optimizing C Compiler
AS. EXE Assembler
LN. EXE Linker
BLN. EXE Large Model Linker

OBJ. EXE Aztec C-to-Microsoft object convertor
DB.EXE Debugger
SDB.EXE Source level debugger
LBEXE Object file librarian
ORD.EXE Object library generation utility
CNM.EXE Object file utility
OBD.EXE Object file utility
SQZ.EXE Object file utility
CRC.EXE CRC utility
ARCV.COM _ Source archive utility
MAKE.EXE Make program
C.EXE C driver
PROF. EXE monitor program
TERM.EXE Terminal emulator program

It includes the following libraries, each of which uses the ‘small
code’ and ‘small data’ memory model:

C.LIB Library of non-floating point functions
M.LIB Library of floating point functions

(non-8087 version)
M87.LIB Library of floating point functions

(8087 version)
M87S.LIB Library of floating point functions

(sensing version)
S.LIB Screen functions
G.LIB Graphics functions

There is another version of each of the above libraries, to support
the ‘large code’, ‘large data’ memory model. The name of the other
version of a library is derived by appending a character to the name of
the “small code’, ‘small data’ version of the library, as follows:

« For ‘large code’, ‘large data’, append the character ‘I’.

Thus, for example, the name of the ‘large code’, ‘large data’ version
of c.lib is cl. lib.

Release Document Aztec C86, v3.40

The following object modules are included:

OVLD.O, OVLDPATH.O, OVBGN.O
Object modules for overlay support

CRTO.OBJ Object module of Startup routine for
programs linked with Microsoft libraries

It includes several header files, which can be included in C
programs. These files have extension .H.

It contains the source file STKSIZ.C, which is used to control the
size of a program’s stack and heap, and the relative positioning of these
two areas. For details, see the Programming Organization section of
the Technical Information chapter.

It includes the source to a sample C program in the file EXMPL.C.

It includes the following files that contain source archives, which
can be unpacked using the ARCV program:

S.ARC Screen functions
G.ARC Graphics functions
TERM.ARC _ terminal emulator programs

6.2 Additions for the Commercial package only

The following executable programs are supplied only on the
Commercial package:

Z.EXE Text editor (non-memory mapped)
PCZ EXE Text editor (PC memory mapped)
CTAGS.COM Text editor utility
DIFF.EXE DIFF compare program
GREP.EXE pattern matching utility
LS.EXE File listing utility
HEX86.EXE ROM hex code generator

Two additional sets of libraries are provided to support the ‘large
code’, ‘small data’ and ‘small code’, ‘large data’ memory models. The
names of these libraries are derived by appending two characters to the
end of the ‘small code’, ‘small data’ libraries listed on the previous
page. These characters are as follows:

* For ‘large code’, ‘small data’, append the characters ‘Ic’.
* For ‘small code’, ‘large data’, append the characters ‘Id’.

For example, the name of the ‘large code’, ‘small data’ version of
c.lib 1s clc.lib.

The following object modules are included:

SROM.O Object module of Startup routine for ROMable
| programs that use ‘small code, small data’

LROM.O Object module of Startup routine for ROMable

-§-

Aztec C86, v3.40 Release Document

programs that use ‘large code, large data’
LCROM.O Object module of Startup routine for ROMable

programs that use ‘large code, small data’
LDROM.O Object module of Startup routine for ROMable

programs that use ‘small code, large data’

Additional source archives are provided which can be unpacked
using the ARCV program:

STDIO.ARC Standard I/O functions
MISC.ARC Miscellaneous functions
MCH86.ARC Miscellaneous functions
MATH.ARC _ Floating point functions
DOS20.ARC DOS 2.x functions
CPM86.ARC CP/M-86 functions
DOS11.ARC PC-DOS/MS-DOS 1.1 functions

The file CRCLIST contains the CRC values for the files. You can
compute the CRC values of the files we sent you and then compare
them with their expected values, using the program CRC. For
example, entering

CRC *.*

computes the CRC of all the files on the current directory of the
default drive.

7. Technical support information

While we do our best to ship problem free software, sometimes the
unknown does happen and problems occur. Manx has a technical
Support staff ready to help you out if you should encounter problems
while using our software. At the very end of this document is a
discussion of how to make the most out of the technical support that
Manx offers. In addition, we have added problem report forms for the
reporting of any problems you may encounter with our software.

Release Document Aztec C86, v3.40

8. Additional Documentation

This section contains documentation that has been added since the
manual was printed as well as documentation that has been updated.
This section discusses the following topics:

Tutorial for the new source level debugger, sdb.
New C driver, c.
“New options’ pages for the compiler, linker, and obj utility.
Corrected manual pages for make, bdosx and scdir.
Additions to the manual pages for open.
New filelock function.
Technical Support Information. *

*%
+

%&
+

FF

F&
F

FF

FF

A short tutorial for the new source level debugger sdb is the first
section appended to this document. This takes you through the startup
and some of the more commonly used commands. The indepth
documentation found in the manual includes an overview of the
commands followed by full detail on each command, and a summary.
You should place this tutorial in your manual in front of the sdebug
section.

Complete documentation for the C driver, c, is the second section
appended to this document. You should place this document at the end
of the Unitools chapter after the documentation of db.

Next are pages for the compiler, linker and obj utility. Each page
contains the new options added in this release. These pages should be
added to their respective sections in the manual.

Two library functions and the definition of command line macros
for make were incorrectly documented for release 3.2E. The correct
manual pages for make, bdosx and scdir are included next. These pages
replace ones received as part of release 3.2E. If you did not receive
release 3.2E, place the make document in the unitools section near the
make utility, and the library functions in the Uib86 section of your
manual.

The documentation of the new options available to open should be
placed after open in the lib section of your manual.

The documentation of the new /filelock function should be added to
the section lib86.

A discussion of MANX technical support and how to make the most
of it is next. Included are the phone numbers for both the voice lines
and the bulletin board system. Also included are problem report forms
that may be used if you should encounter a problem that you wish to
mail to us. A good place for this information is at the very end of

your manual.

-10-

Aztec C86, v3.40 Release Document

The next section includes documentation for those features that
were added to the package after the manual went to print. If you have
received release 3.2E, you already have this doc. Included are:

* New features for db.

* New options for hex86.

* New profile program.

* New monitor program.

* New screen functions.

-1l1-

Release Document Aztec C86, v3.40

-12-

Aztec C86

for

PCDOS, MSDOS, CP/M-86,

and the

$086 Family of ROM Systems

version 3.2

Copyright (c) 1986 by Manx Software Systems, Inc.

All Rights Reserved

Worldwide

Distributed by:
Manx Software Systems, Inc.

P.O. Box 55
Shrewsbury, N.J. 07701

-ll-

USE RESTRICTIONS

The components of Aztec C86 are licensed software products. Manx
Software Systems reserves all distribution rights to these products, Use
of these products is prohibited without a valid license agreement. The
license agreement is provided with each package. Before using any of
these products the license agreement must be signed and mailed to:

Manx Software Systems
P. O. Box 55

Shrewsbury, N. J 07701

The license agreement limits use of these products to one machine.
Any uses of these products that might lead to the creation of or
distribution of unauthorized copies of these products will be a breach
of the licensing agreement and Manx Software Systems will excercise
its right to reclaim the original and any and all copies derived in whole
or in part from first or later generations and to pursue any appropriate
legal actions.

Software that is developed with the Aztec C86 can be run on
machines that are not licensed for these products as long as no part of
the Aztec C software, libraries, supporting files, or documentation is
distributed with or required by the software. In the latter case a
licensed copy of the appropriate Aztec C software is required for each
machine utilizing the software. There is no licensing required for
executable modules that include runtime library routines.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision (b)(3)(ii) of the Rights in
Technical Data and Computer Software clause at 52.227-7013. DAC
#84-1, 1 March 1984. DOD Far Supplement.

COPYRIGHT

Copyright (C) 1981, 1982, 1984, 1985 by Manx Software Systems. All
rights reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
Otherwise, without prior written permission of Manx Software
Systems, Box 55, Shrewsbury, N. J. 07701.

- iii -

DISCLAIMER

Manx Software Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose.
Manx Software Systems reserves the right to revise this publication
and to make changes from time to time in the content hereof without
obligation of Manx Software Systems to notify any person of such
revision or changes.

TRADEMARKS

Aztec C, Manx AS, and Manx LN are trademarks of Manx Software
Systems. CP/M-80 and CP/M-86 are trademarks of Digital Research.
MSDOS 1s a trademark of Microsoft. PCDOS is a trademark of IBM.
UNIX is a trademark of Bell Laboratories. Macintosh is a trademark of
Apple Computer.

-iv-

Manual Revision History

February 1983 occ. ccccccccecscsssececesscenscscsssecececessssaeeececesesseseeesees First Edition
December 1984 wii ccccccccccecsssssssssensccecceeececeecececesceesseeees Second Edition
May 1985 uuu. cecssscssssssssscccecesscceecessesececceesenenececesenarscscesessaneeeees Third Edition
February 1986 uuu... ecsccscccsssssrecccsssssesecsscssnecececessacececsessncaeeens Fourth Edition

Summary of Contents

8086-specific chapters

title code

OVELVIEW oo. ceceeecscssssssesssscscsssesessssssssscassessssssssecssacasasasssssssasasereseseseesesesceceeees OV

Tutorial Introductioncccsssssssssssccecsesesssesessssescssssssevssesesereucesseseseccececeees tut

The Compiler oo... ccscsscsssscscsescssscscsssesescsssesssssssevsssesesesseececceeeceseceeeececccen. cc

The Assembler oo... ccsssssscssssssesssessssssesssssessesssssscssssssssssssvasevesescecececeseeececssees as

The Linker oe ccsssssssscsesssssssscsssscessesusesessssessssssessssssssessavavatecesescececesesecs, In

Utility Programs .o...ccsssssssscsssscsesecssssssecssscsssssssssevseeeeececececeeeseseceececececce. util

Library Functions Overview: 8086 Information0....006....... libov86
8086 FUNCTIONS oo... ecesscsessssssssssscceccsesssscsesssssssssssssssssaueeuseseceseecscesesecece. lib86

Technical Information oo... ccssscsccssssssesssscssssssssvssessssessecsseeecescecececce. tech
UMItOOIS ooo ecsssssssessesecssstsscssseseceesessssesscsusacsssasssssssscaceseeeceseececeseece unitools

Source Level Debugger oo. sssssssssssssssssssesecsseseceseeeeeccecseseeeeescecccccc. sdb

Assembly Language Debugger oo.....ccccccccscccssscsssssescssosecesecesecceeecesesececcecec. db

System Independent Chapters

Overview of Library FUnctions .0.....ccccccccscssscss scsscsccececceccsesececcceceececcec. libov

System -Independent FUNCTIONScccccscssssess sessscsscscesseseccceceeeceseceeeeeecccces lib

STYLS ose eccsessseee ccssssssssssscesscececesssessasssessssssesssasesssavspesseseseeececceeesesececcecce. Style

Compiler Error Messagescccccscccsssceses scssssssssssesesessscecsesesescececeeececesecccce, err

Index

INdeOX osc cccssseees ssssssssescscsesssssssvscscscacesesasssscssacseasasssssassvasasacaeucecsesecceesesecs index

- Vii -

Contents

OVELVIEW ...ccecccccccccccsssssssssssssssssscsssssssssscsssscsssscscsscscscssssccssseesesencecsccecesescesceseeees OV

Tutorial Imtroduction 0.0... esscessssssceececesssscceccecssssccsescececescesesscseaeseeseseeees tut
1. Installing Aztec C86 oo. cccsccsecessssneccesssscseececessssneeecessnsneeeescesennnees 3
2. Creating an executable programcececessessesesceceeceeecesesesenees 7
3. Where to 20 from here oui cesesccesssssessscessccsssccecsccsceesseseeseeeseeeees 8

The Comp itlerccccccccscsee cssssssssssssssssssscscscssscssccssscsscsscscssscessscecsscecescvecseseesees cc
1. Operating IMStructiOns i ecsssceecesescecscecesssseesesesseececessssecssenees 5

1.1 The C Source File cocci ccccccscsscccescsssscccsscsssssssessscsssessesseess 6
1.2 The Output Files oo. ee ccccscscccccccsececsscessssscscsssssssssssssseeees 7

1.2.1 Creating an Object Code File wou... cecsseeseesececeseeees 7
1.2.2 Creating just an Assembly Language Source File 8

1.3 Searching for #include FileS wo... ce scssssscecsesessscsseeesenens 9
1.3.1 The -T Option cocci cccccscssscsccccececessssssssesesesscsessssens 9
1.3.2 The INCLUDE Environment Variable00. ww... 10
1.3.3. The Search Order for #include Filesw eee ee eee 10

1.4 Memory Models oui ccc eccssscsccscecsscsscseccscessssssessssecsecessesesesenees 1]
1.4.1 How a Memory Model is Selected oo. eee eeeeeeeceeee 12
1.4.2 Multi-module Programs oo... cccccccccccscecssecsesesssessesesees 13
1.4.3 Program Organization oo..cciceeccsccssscsccsssssssscsssccecsssccsessseees 15
1.4.4 ’Large model’ versus Overlays .u.....cccccsccsssececssesescosseees 15
1.4.5 Implementation of the Memory Models0...00....000. 16

2. Compiler Options ou... .ceccescsccsssssecessseccscssccesssssssssscssscecsreseesosseees 19
2.1 Summary of the Options wo. csssssccccsssssssseccesesssssceeesens 19

2.1.1 Machine-Independent Utility Options wo eee 19
2.1.2 Table Manipulation Options oo... ee cecesssecscsccceceece ces 19
2.1.3 8086 Options for the Optimizing Compilers 20
2.1.4 8086 Options for the Non-optimizing Compilers 21

2.2 The OptiOMs uu....cccccccccccccccccscsssssssccceccsssssscsceccscesssssssssscsesscesesesseess 22
2.2.1 Machine-Independent Utility Options wu. 22
2.2.2 Table Manipulation Options ou... cccecsssecseseessseeeees 23
2.2.3 8086 Options for the Optimizing Compilers 26
2.2.4 8086 Options for the Non-optimizing Compilers 29

3. Programming Information ooo... cesecessecessseecessceecessscesesseceeenses 31
3.1 Supported Language Features oo eecscssececessssseceeesesenses 31

3.1.1 Preprocessor Statements oo... cescecscscccescccsscseessecseessseees 31
BLLD.1 Macro wi. ecccsceececrerccrerccscrcrectecsscesessssesssseseecesceces 31

3.1.1.2 Conditional Compilationcc.ccccccccccsssccscecesceeeee 34
FELEMEL oo... cccccccsscsssessssssscsssscscsccccsccectscescescesesseaecaesaceuceessesees 35
FELENCEL oo... cesecssescscsssessssssccscsscseccecssccsccasesseecesssseaecseseceseaens 35
FEAL oe eccsssssccsesscssecsessscscscsscscssassacsecasescesacscessssessceseacaceneessns 35

3.1.1.3 More Preprocessor Statementscccccccccssesesoseess 36
FEINCIUCE ou... ee ceccsssesccsscsscsscceccesccescessssrcecescecens asceesessceeeescees 36
FELINEssesssssccessssscssescscccecescsssseseccsacecsscsescaceassuccaseaceseseccssenens 36
FFASM ANC HENAASMccsccesccsssccssseececceceseccecescecssaccesscces 36

3.1.2 More Featurescicccccccscscccscccsscsscsscssssccsscessceseccsecseccesses 37
Structure ASSISNMENE oo... eescecceccecesscescescssssscesesscseceseseees 37
Line Continuation oo... cccsccccsscsscecescesscsecscsscssccacesecsecsssescee 37
The void Data Type .u...ccccccecccscesccsscescesscescessesssessecsssssssecesses 38
Special SyMbols ce cscsssssscsscssesscscceccsescssceesssecsuessscseceeeseeses 38
FILE ie eccssessccssesscssssssscsceceesseetseeseceens 38

| | 38
FUNC i eeccccccscssssesssssscssssescectectecsesseenens 38

3.1.3 Special Features of Aztec C oiie..cccccccccccssssccccsesceccecececcecces 39
String Merging ou... ccsccssccesccsceccecssssescsesssesssescsscssesesecseses 39
Reserved Wordscccccssscssssssscssscessecsssecsccecessecssccessscssasessesces 39
Global Variablesccccsccccssscscssscescsescescecsecssessscecsssesesevece 39

3.2 Data Formats .0....ccccccsccsccccccssssccesceccesessesscsscsscsescsssessecsecsceseees 41
B21 Char oie eesscsscssssscscccscecceccescsscsecssessecessssssssscsssssecsarseeeceeees 4]
3.2.2 POUND oo... ccceccssscsscssesccsscececcccscsscscescssscaesssssesescesescscesecseceee 4]
3.2.3 INt, SHOT ou cesccscscsscssssescccsscsssscseccessssececceceserseccecececces 4]
3.2.4 LONG wre cccccsssscsscsssssccecccsecsescescsssssecsscssssssssscsecseesecessecescececces 4]
3.2.5 float and double wo cccccscsssscsccssesscsssssssceesessecsecseces 42

3.3. Floating Point Exceptions ..0......c..ccccccssscssssscessssssseececseeseescceeces 42
3.4 Writing Machine-Independent Codecccccccccccscccecceccoeecceeees 42

3.4.1 Compatibility between Aztec C Product ...cccccccccccccesee. 42
3.4.2 Sign Extension for char variablesccccccccccccsccscccoceseceece. 43
3.4.3 The MPU... Symbols oo. cescsssssscsccsscssssescsscscosseseccecees 43

3.5 Using Long Pointers woe cccscccescssssscsccssscssssscsscscceseseeseces 44
3.5.1 Passing Long Pointers Between Functionscccccccccsse. 44
3.5.2 Expressions involving Long Pointersccccccccccssesseseee 46
3.5.3 Creating and Accessing Huge ArrayScccccscccccccceseeseee, 48

4. Error MESS&6Scsccccsscsscscescesseccsscescsscsssssceececsssesssssceseseseceecseceecece 50

The ASSEmbler .0.........ccccsssessscsssssscscssccceccessssesessesssssesesscstesscesssssscsevscsercessesecees as
1. Operating Imstructions wo. ccsccsscscsscsessccssscssssessssessscsececcesseseecce 5

L.1 The Source File wo... ccccssccssscsscsscssscsscsccssesscssssssssscssccesseeseeees 5
1.2 The Object Code File woe ccccsccssscssscscessesssssscceceecsssceseeeeeees 6
1.3 The Listing File wo... ccscscccscssscsccsscsessecsesscssesssssssseessecseess 6
1.4 Searching for include’ Files wo... ec ccscssssscsccsececsssesscsesesceseee 6

2. Assembler Options .u..cecccccsccsscesseccosssscssccsessecsscscssscesessecececeseceecece 9
3. Programmer Information wo cscscccscssesessssscsssssccscessscssssseceseceseee 10

3.1 SYMtaX oo esssssessssesssscscsssscccscecsscssessssssesesscesesssesssscsecsensces 10
3.2 SYMDOIS oe essessssssssssscscsccsccsssssssesccsescssescesssssesscssssessesecsesaceceeces 1]

3.3 SEQMENtATION ooo. ecccceessssssccsssecsssscecsccsssssscesssesssceseecessceesesseers 13
3.3.1 The SEGMENT and ENDS Directives 13
3.3.2 Multiple Definitions for a Segment oo... eects eeees 14
3.3.3 Nested Segmentscccssssecessececsseecessseecesceeessseseecsseeees 14
3.3.4 The Default Segment occ ccsctcccccsssscecessseeesssees 15
3.3.5 The ASSUME Directive oo... ccc ecscccesesssssscccesesssssscsesees 15
3.3.6 Using the Uninitialized Data Segment ee 16

3.4 Globally-accessible Symbols ou... kk ecccssssseecssescssseeececneesees 16
3.4.1 The PUBLIC Directive woe ccesessssssssssssssssssseees 16
3.4.2 The GLOBAL Directive 2.0... cece eeeeeceececeececeeceees 17
3.4.3 The EXTRN Directive dececscsssssssssssssssssssessscessesscesesces 17
3.4.4 Interactions of GLOBAL, PUBLIC, and EXTRN 18

3.5 Operands and EXpreSSioMsccccccssesssssssessssssssssssscececoeseens 19
3.5.1 ReQiStersc..ccceescsssecccsssssssccsscccsssssccssesssscscssssescssssesesessesees 19
3.5.2 Immediate Operands oo... ec cccssesssssscsccscecsccceceecceceesesees 19
3.5.3 Memory Operandsccescscsssssscccecesssscsssssssscescssessssseees 20
3.5.4 Operand ExpreSSionsccccccsssscccccescsssssscccccceceeceeeeseseees 23
3.5.5 The Arithmetic Operators ou... .cccccecceccsssecccccecessescceceees 23

HIGH and LOW oie cccsssscsccssssssscccccsscsssssececesessssceerons 23
Addition and Subtraction oo... iecccescsccsccsssescccsescsccecccseesens 23
Multiplication and DiviSion icc... cecesesesssccecessssccececsessececs 23
The Shift Operators oo. ccsccccsccessssecccscecsssseecsssscesesecees 24
The Relational Operators 0.00... cccsccseccscesssesscccecessserecececes 24
The Logical Operatorsccccccsccsccssscccssssccsscsscessccescssseeeesees 24

3.5.6 Attribute-overriding Operators oo... eccscsececsecseceeeeees 25
SESBMEN OVESTIG’ cece cccssssssseccsscssscccccessssssecececcseseecerens 25
|e 25
NS) (0) 50 Rn 27

3.5.7 Attribute-value Operatorscccccccsccccsssssscccesesssssscceeces 27
THIS ici cccesssscccscccsccccscsssssccecscssccesssssssssccesscsssssecesescsesscseeens 27
SEG wiccccsccscsscosssssssssscccesscsssscccceecscssssssccccscecessesesessccscceceececeeerenees 28
OFFSET oii cccssccscsssssssssccccscssscssecccesecscsscssscccscesececesesesesrecees 28
TYPE cic ccscscssscsccscessscsssscsccscncsccsssssccscecescosssesssscccsessccessesenacs 29
LENGTH. wii cccsccssssscceccscscscssscsccccecescesscecscsccccessssessesenees 29
S) A 29

3.5.8 Operator Precedence oo... ce ccecececssssssssssscsssssssscersececees 30
3.6 IMStructiOns ou... ceccsscecsssscccsscscccsssccsscscsscececsseccecessacccesssseeeees 30
3.7 DUTECtIVES oo... cle cecccssccescccessccesssccesecccsessccessccccessccecessreescesraceesecs 31

ASSUME ooiiiecccccesscccsssscccssscsscsssccecscsccscesccsscesecsncescessseccesesereeseeses 31
BSS ciuuiiicecscccccssssscccsssssscccecsssccccsecsssscecessscsesscesesesecscscesesessaceceesessanecs 31
DB, DW, and DD weenie ccccccccssssceccecscssscssesscssssssesecessscsacees 32
END. Livi cccccccsscssccccscescsssccccecescsccssssccescscesscsssssccesscccesesscscssseccccesees 34
EQU oiieiccccsscccsssscsscssscscsssssscossscscesssscessesssscscsssscssscesecesssssscsscssesesesees 35
TL. ssssccccssaccensececesnaccesscecccecosecesscecsescusesceseccusesceseccteccnscecasenscacececcsenscens 36
EVEN uuu cecccccccssccccsssscccscsscccsssssecesseccecesscesscsssccecsseseccesesscccessssseeceoes 36
EXTERN ooo cccccccssccscscccsssssssccsscsssccecssossssscescessssccessssscesereescecesssacees 37

GLOBAL. ooo cccccstccccessseecsscessceees sessecesssssssscccsscscssceseessesssesacees 37
3 5 ©) 0) ne 37

LABEL, oie. .eeeeccsscssccsscssessscsccsscteccssecsecsscssscesceeacesaecesesscacessseseessceaees 38
LARGECODE oo... ccccccsssssscsssssecssssscssscescessceccscesssessescsarcesceeseenees 38
MOD 186 ue cecccscesescecteccesssecescsscesescscsessessescsscsescsssesacsesecteeasensceaes 39
NAME oc ccecsssssssessecsssecsceesssessscecsecsssscsssssssscsssscsccecssecessesesseessesens 39
) 39
PROC and ENDP. ouuwe..eecceececccsccessessssccscccssccsssssssscescaccescecescecseseees 39
PUBLIC woe ccescsessccessscseecccsssscecsscssssescccosecesscsesscsecescesseceacesseseees 42
RECORD. oon. ceceecccssssssessccsscesssesssssscssccessscsecssesescessesseaceacsenscesssenecs 42
SEGMENT. 1.00... ce eccessssesscessecsccssesssccsccescecssccencescecescesssecescenscceacenes 44

3.8 Macro Directives .o...cccccscssssssccscccsccssscessscssssscessscsececssesescesseees 44
3.8.1 Local Symbols oo. ccesccscccscecsccsssccssccsescessecessccesssceses 46
3.8.2 Concatenating Parameters to Textccccccscesccsseesseees 47
3.8.3, Concatenating Parameters to Parameterscc:c000. 48
3.8.4 Parameter Substitution in Quoted Strings 49
3.8.5 Passing a Symbol’s Value to a Macrocccccesecsscesceeee: 50
3.8.6 Passing Comma-containing Parameters to a Macro 50
3.8.7 Nesting Macro .u..itcccsccsccsccscsssssscesseescesccsscessecseseescesses 51
3.8.8 Repeatedly Assembling a Block of Statements 53
3.8.9 Summary of the Macro Directivesc..cccccccescssessseeees 56

END. ounce eecsscesscessesecescecnscscssessecsssssscccsessccsscenssenscessseeesecaeens 56
EXITM ooo ceeccsscessscscescccessesssessscssesssscseessscseacescesseceseeseseecseees 56
TRP ue ecscssseesssceccecsssescssssssscsscsssccssssssesesssecssseeccessecereccneceens 56
TRPC oo eeccsccsscsssssccsscsccsscsscsssssssssccssceseceacesaceaceesecuecaeceassesensceees 56
LOCAL. weecccssssssessesecescesssescesssssssccssscessscssssacsescsescesessacensecuecns 56
MACRO... .eecscsssecsscssseccssccssscsssscsssccsssseccsccesescecacesssecsecaaecanees 56
PURGE oun. ceecsccsscessecsssesccessscecsecsssccsscccscececcecececssccesscceasecesseces 57
REPT oo ccesesscessecccescecssssssccssscsssssecessecsscsescsssecececeecsenseseees 57

3.9 Conditional Directives wo... cesccsecscsscsescescescesscescssssseceessees 57
TF oie esscscessessssssscessecceessscnscscesesssesssessseseecssseeacesscescecsuceeseesteens 58
TEE oo ctccsecsscssscesseccsescesssscsscssccsesssecesescsscsescenssescecsseeescesueees 59
DE coe ee eesececssessscesseeseecceecsssecescesssosssccscsesscecsecsseecersecesseensceess 59
TE 2 oo. eesssccssessessesscsccssescscesssscsessasscscsscecescscecessesssesesssesscacensecesens 59
TFDEF ooo ccsccsscsssesscsscssscsscsscscscsssesccesssccessccescsacessecseseseceeses 59
TFNDEP oui ceccessesscsscesscsscesscsssescsceseccececsseesesceaccnsscaecneccesces 59
TFB oo cecccsccsscessesscsssecscsscesssssssssscecescscscescscecessssesssacessessecsaccaeens 59
TENB uu... cscsccsssesscesssccsescessscsssccesescescacescsssscsescensscessecssceeseesueces 59
TEIN ounce ecccsccscessesccessssssessscsscsscssssscessssssesecseccsnceseeessenaccasees 60
TE DIE occ ccsscsscsscssscsscesscsssssssssscssccecessscossssecesessccessecsecsuesaeces 60
ELSE uu... cecsessssscseescscessessssscssesssscssccccsssessecesaceesesssssencesesacsaeaseaces 60
ENDIF ounce ccsccsscessesccscccesssccsssssssssscecessessscscacesacesecececesescecneces 60

3.10 COdEMACTOS .0.... ce ceesscssccscesscsscsccscccccescssccssessssescesceseceecussecenserees 60
3.10.1 Specifiers ooo. ceccscccsccscsssccssscessccecssescecescecsscscesescesesoes 62
3.10.2 Modifiersccccscssssssccsccsecsccsecceccsececsscsccssssssessesseceees 63
3.10.3 Range Specifiers vce cesccscscssccsscsscessscccsesecscsscessesecs 63

3.10.4 The Codemacro Directives wo cecseccssescsseccscseees 64
SEGFIX ooecccccsccsesssscsssssssssssssscsscscscssccsecsceecsseeeccsessasesecseeseenes 64
NOSEGFIX uuu. cccccsssssssccsssssssscsccsecsscssccsssscscosecesescsseusenssanes 65

RELB oo ceccccssessssecsssecssccessecescssscsccssscsssssessesessseecessecessseeseeceees 66
RE UW oe cccccscccessseccesscscessceecsssssecsssesesecsscccescssscescessseccececscees 66
DB, DW, and DD. ooo ccccccssccecsesscecessscssssscsescssessececessnees 66
User-defined Record Directives ooo... ccecccsssssscecsesceeeces 67

3.10.5 The Dotshift operator oo... cecccsscessccscccessccsscccssceesees 67
3.10.6 The PROCLEN Symbol oo... cesccsessseccesecssessees 68
3.10.7 Matching Codemacros to Instructionsc.scesee 69

The Linker oi... cceesscssssssccscessssscssccscsscesscsessseceacescesacessessceaaeceecuscesesssesscesses In
1. Introduction to Hnking oo. i cscsecsesssscssessscssccsccsscsscssseseseseeeseeses 3
2. Using the Linker wc ccccscscccscsscceccsssssscsssseccesccescessecsecsseceeceecsersns 7
3. Linker Options oo. ccceccccccccccsscssccescecsccecsscessscccsscssscessecssrecseccesseens 9
4. Linker Error Messagesccccccssscsscscceccccsscscceccecsecesees seseeseeeseeenees 17

Utility Programs oo... cecccsccssscscecsscecsscscccsssecessecsesscsscsessecsscecsscsensesencees util
ArCV (Source dearchiver)ccccccceccccscsssscsssscssscssssccssscecesscsesescesessecerecees 4
cnm (Object file utility) oc ecccccccscccsccsscsessccesescsssecsssserecsenas 5
CHC (File verificatOr) we... eccccsssccccssssccsscsssscececessecssccecscceesecseseesecsenecs 9
hex86 (ROM Hex Generator) uv. scsscsscsscceccecsscssscsscecsecessccseeees 10
Ib (Object module librarian) wove cecscecesecescccsscccsecessecseseenees 11
Is (List GirectOry COMTENES ooo. ccscsscssccsccsccecccscccsscsscssscscsscesesscessees 22
Obd (Object file utility) ooo le ecccscccsssccsecsssecssccesccssceesssserens 25
obj (MSDOS/PCDOS Object code generator) oo... ceeeeesesscseseeees 26
ord (Object library generation utility) oo... cesssscesscescssesscesseseees 27
prof (Execution profiler) voici scsccssssssscescesscsscescssecsssscsssecesccssssoes 28
SqzZ (Object file utility) ooo ec scseccccsscssscsessescsssesssessccsscsseceesees 29
term (terminal emulator for IBM PC) ooo... cccccccccesccsscesesccesseseees 30

Library Overview: 8086 Information .0.......ccccscccesssceseccecsscssceseeseee libov86

8086 FUNCTIONS 0... ccsscsscssccsesscssssscssscecesceccssscsasuecseccesssessssaseessescesseees 11b86
TNX oo. eeecsssessesscescesscessessssscsssscessssseccescesscescsssecsssssesssesaceuacsascessssseseeseeenens 5
The fUnctions 00... ceessscscesscsscsssccececcesccsscessecsssssecsecseecsessaccessssssesesecenees 7

Technical Information wo... ccc ccee coccecccsccecsceccssecsscsscssecsscsecssscssesescessees tech
1. Program Organization oo... cecscsssscccsscssscscececcesssceecsescesseceasceseecsessees 4

1.1 The program areas oie cecsscccsscsssssscsssecssssccsssecesesscsessecsesseees 5
1.2 Factors affecting Program Organizationccccccccccscsssssccseess 7
1.3. Symbols related to Program Organizationccccccscsssscesees 13
1.4 Startup routine Termination Codesccccccccccscssssssscescoseeee 14

2. Overlay Supportcecccecccssssscscccessccsscscssessscessecsssesssecesssseseccsssceees 15
2.1 Introduction to Overlays wo.ecicescscsccscccsscescssccssesccssseseseesscses 15
2.2 Programmer Information... cccccccccscsssccsccssececcsccesccsseesees 19

3, LADrArieS oo... eessessesesscssssssssscssescsccecesscacscceceacecsseacssesscascsesacsucsecasecens 25
4. Cross Development 20... esccccsscsssscsssscccsssecessccessssssesssescesecceseceeeeces 26
5. Using the PCDOS/MSDOS Linker .o...cccccccceccscccsccssssscesccscessees 27

6. Assembly Language FUnctionscccccscscsssssscsssscscsssssssssssecsesees 30
6.1 Conventions for C-callable Functions .0.........ccccccsssssssscesseseees 30

- Xii -

6.2 Assembly Language Macroccccscssscccceccsssssscececsssssscccesseeees 33
6.3 Embedded Assembler Source wou... ciceccccsccssssecesssssscesscsescens 39

7. Generating ROMable Code wii ceccccsssscssecsscscecsscscsscesesescesseeeees 4)
7.1 Features of ROMable Programscccccsesssccssssecsseeseesseeees 4)
7.2 Special ROM-related Programsccccsssscessssecsssscsssscssseeeees 42
7.3 The Procedure ou... ccccccccsccceecsscscecssessscsscscessscccssescusescnseseeesseeens 42
7.4 Description Of Wex86 wii cccescccccccccssssscccescesssssscececesssssscceesesees 43

15060 cele) ee unitools
diff (Source File Comparator) wu... iccccscssssssscssscscscssscesssscssssessessess 6
grep (Pattern Matcher) ooo... cccssstsesecscsssscesssesssscscsscesscssesesssssseeess 10
make (Program Maintainance Utility) oo... cccsssseeeseesseseeceeees 16

1. The Basics... ccccecscccsssssscssssccsssscscssscssssssscsssssscsssssscsseceecsssssceeas 16
1.1 What MAKE dO€ ooo. ccccccccsesscesevsvsesessvsssssssssssscseees 17
1.2 The makefile oon. ic csscssssscsccssssssssccsesssssssscessssssesesers 17
1.3 RuleS coi eccccccsssscsssssscceccceccccsecscscssescssssssssssssssssssssssssssseaes 19

1.3.1 MAKE ’S use Of rule ooo. ccccssececcssssrecscesseeeeeseeees 20
1.3.2 An Example wie cccccccccccccccececescececescssesessesessssesees 20
1.3.3 Interaction or rules and dependency entries 21

2. Advanced Features .occcicccccscssssssscsccsssssscccescsssseccecessecssscceceeees 21
2.1 Dependent files voici ccc cesssssccssscccsssscscsscececcsssceseeeesesees 21
2.2 MACLOScccccccsscccsssecesssscccsssssccscessscecessccecessssccececesereesenessceens 22

2.2.1 USING MACLOSccccccsscsssscessssssssssescecsssssssscecssseceseseesasees 22
2.2.2 Defining macros in a makefile wu. 22
2.2.3 Defining macros in a command line oo. 23
2.2.4 Macros used by built-in rules oo... ee eeceeceeeee 23
2.2.5 Special MACTOSc.cccccccccssssscccssssesssccccecesssecccececessseecsers 23

2.3 RUIES oiuv.eeccecssscsccessscscessscccesseccscsssssscscssssessessccscsssscsseseserscsesees 24
2.3.1 Rule defimition oo... ce eeeccccsscccecsssecessssscecesceeseeees 24
2.3.2 Built-in rules wo. cecesssccsssscccecssscccsesssscscesscecceesenees 25

2.4 COMMAMNAS 1.0.0... eceeccssscecsssvcessccecsssccsssscesssecscescssesessacessseecesses 26
2.4.1 Allowed commands uu... ccceeeccccccessscsccccecesessececceceeees 26
2.4.2 Logging commands and aborting MAKE 26
2.4.3 Long command IIne€S oo... ce ccecscecesesscececesscececceeees 26

2.5 Makefile Syntaxccccssscscssscsssssssssesssccsssssccssccessececsseeceeesces 27
2.5.1 COMMEMEScccsscsssscsssscsscccsscccssccecsscessscecessececescecsececes 27
2.5.2 Lime COMTINUATION oi ciccecccssceeccsscsssscececcecsescecseees 27

2.6 Starting MAKE ou cccsccssccssccessccscessecsseccessscecssceesereces 28
2.6.1 The command lme wo ccc cccecsccsccccsssssscessssceseeseees 28
2.6.2 MAKE’s standard output oo... ececscccsscccessseccesseees 29

2.7 Executing COMMAMNAS uu... ssscsseccsscccsssccsceceeecessseeeeees 29
2.8 Differences between the Manx and UNIX MAKEs 29

aes =>.¢:100) 0) (oc 30
3.1 Example 1 vice eccccccccccccsssssssecccessssscccecessnsrscscecesssereccees 30
3.2 Example 2 icc cicccccssccccscseccssccecessccessscccessccecseeccscessscsensceees 31

Z- the teXt CMIOL vccccccsccscsscsscssssscsscsscsssessessscssssescsscsccssssscssersseesers 34
1. Getting Started ove ccsccsscssscsssccssessscsssscsesssscssssessseesceceeees 37

1.1 Creating a mew file oo... scccccsccssscssscscsscecsecccsseessssssecseeeees 37

1.2 Editing an existing file oo. ccccesccssccsccccsccssscssessesceeees 40
© More COMMAMNAS ec cscssssceccssscsscssccessececcssscessccsccsscesascessecsecs 45

2.1 Introduction oo... ccsssssscccccccscssescsscccescsescessececseceessseeess 46
2.2. Paging and SCrolling wel cccecssssccsscccsccesccccsssececcesceees 48
2.3. Searching for Strings oo... eeeccccsscscsececscccescceseccsccesceees 49

2.3.1 The other string search commandscccccccseeeee 49
2.3.2 Regular EXPresSiOnscesscecscscsceccccscssccescessceseens 49
2.3.3 Disabling extended pattern matching0.. 50

2.4. Local MOVES ou... cssssscsssssscsscsescsscssssscscsseccsscscssersecsecsuscesceees 52
2.4.1 Moving around on the SCreen o........ccccssssccesceessceseees 52
2.4.2 Moving within a line oo. cle cccsceccessccssscesceccseeeens 52
2.4.3 Word MOVEMENES 0.00... cececccecesccescessscsescescsscseccsecessens 53
2.4.4 Moves within C programsc.cccccscccsssssscescecsssessees 53
2.4.5 Marking and returning ooo... ccccccccssscescsscesscesseees 54
2.4.6 Adyusting the SCreen oo. eecsccsssssscessssscsecssesseesens 55

2.5. Making Changescccccssccscssscsccssssscsssssccscsssssesscsscessesseees 56
2.5.1 Small Changes ou... cescsscscsssceccescsssssscsscsescsecceccesceees 56
2.5.2 Operators for deleting and changing text 56
2.5.3 Deleting and changing Linesccccccccccsscsssscseecessees 57
2.5.4 Moving blocks of text .oceccicccesscccsccsscssecsscssssssscessees 57
2.5.5 Duplicating blocks Of text wove ceesscssscsscssssccceccsssees 58
2.5.6 Named buffers occ ceeecccccccscessscsscssscscsscsssceseeees 59
2.5.7 Moving text between files oo... cessccccsscecsescssceseeess 60
2.5.8 Shifting text voccccccccssccccscsscssccersccescsssccseecscesssceeeses 60
2.5.9 Undoing and redoing changescccccsccsccesesssssees 60

2.6. Inserting text oo... ccccscccccsscsscsscscccscsssscescssccessessccscessscseecesseees 61
2.6.1 Additional commands ou... ceccccessssssssscsscecsecscesesees 61
2.6.2 Insert Mode COMMANAScccccccsccescecescccsssccecscssceoes 61

2.7. MAacr0Scsccsscssescsscssesessscscsscscccecescscssessssescssssucsessecsuscessceseseens 63
2.7.1 Immediate macro definitionc..ccceccssssescescesccesceses 63
2.7.2 Examplesccccccsscesscsscccsscssscsscsssceccecsssecscesesseseecesenseees 63
2.7.3 Indirect macro definition .0.......cccccccccscscssssccecccecsceeseee 64
2.7.4 Re-€XECULINY MACKOS oo cecsssecssscescssesscecesssecseseeseees 65

2.8 The Ex-like command oo... ccscssssssscsssscsscsccsssscsssecsecseseees 67
2.8.1 Addresses in Ex commandcccccccssccscssesessscesssceceees 67
2.8.2 The ’substitutute’ command o........cccccccccsccscsscessesseces 68
2.8.3 The ’&’ (repeat last substitution) command 69

2.9. Starting and stopping Z oo. cccssssccceccsssssessssscsscsesecseeceees 70
2.10. Accessing files occu ccccccsssccceccecsescsscscssessessssssssssssesessceees 73

2.10.1 File mame ou... cccscsccsscssssssscsssscescsssscesesessscsesessees 73
2.10.2 Writing files ool cscccsscssscescsssecsssssscssesscssseeees 73
2.10.3 Reading files wi... ceesccccccsscosccsseccsssssccscsescecesecees 74
2.10.4 Editing another file oo... ce ccccsscsccscsssscsscscsesceees 74
2.10.5 File ists oo... tsssscssssscscscsscscesceescescesssccsscssscecssscssseeecs 76
2.10.6 Tagsccccccssssssscsscsssscsssscscscsscssssssssceessessssecsessassessesesseses 76
2.10.7 The CTAGS utility occ cecccscssescscsscsssesssssoses 77

2.11. Executing system commandscccccccssscesssssssscssssssesees 719
95 a ©) 9) 5 (0) 1 . 80

- XIV -

2.13. Z. VS. VA c.cscccccccecccsssssessssssssscsccccccccececescececesestesecsecescesesesceceees 81
2.14. System dependent features .0... i ccssceceesssseeceserseeeeees 82

2.14.1 IBM PC features woo cecesccessessssscecessssessesssssens 82
3. Command SUMMALY cc ccscccsssssssscsssscssscsscecescsseessecsseeessesaes 85

Source Level Debugger ou... cccsscssessscccssscescsssseecscessseesessssceeeeesseeeees sdb
1. OVELVICW uu... cccsccecsssccsscsssscssssccssescsssscscscessssessscecessscesessecescesessesesescesseaees 5

1.1) Basic COMMANAS .0..........cesssssscessscscecessreecescsseececesseeecesessceteceessanes 5
1.2 NAM ..0........cccccscssccccsssssscecescssceecesessccesescesseseeesesceseessaueescecessseneeecees 6

1.2.1 Code and Data Symbols oo... ccc escecsesstececensreeseesssnecees 6
1.2.2 Operator Usage of Names cc cscccsscecssssceccssscessseseeseees 6

1.3 Loading programs and SYMDOIS ..0.. le eccecesescecsesececeeeseessees 6
1.4 Breakpoimnts oo... cece cccecssssessssccccccssccecscssscecccsecececesesssssssccesecceseese 7
1.5 Memory-change breakpointsccccscsssccecessssessesssssnsesceseees 8
1.6 Separate screens for programs and Sdb ooo ecesecessseeseeseee 8
1.7 Trace MOde oii... ccccscsccesssssscccscececescesesesscscsseseesececosesecceeeeeseseersess 9
1.8 Backtracing oo... cccsccccssssssssscscsssssscsscesccssessseecasesecsssesessssssecsss 9
1.9 Macroccccccccccscsssssscescecscssscsssceeccssuscesssacscscesescuecsessscesaesssasesesssece 9
1.10 Displaying source fileS woo. ecesccsscccessssesesessseeeneesees seseseeeees 9
L.11 Other features wo... cc ecsccecsssccscescsssescescessscecesssseessesseesans 10

2. USing SDB owiiiiciiccccscsssssccsssscccsssccecsssccccssssscecesessscccessssceceesssssecssesees 11
2.1 Starting SDB ooo secccscsseecscsssecessscesscsscesssesescesessesseesseees 11
2.2 COMMAMNASccecssscsccsscssscecssssssssccccescscsccceecessssseeseecescsssseeessesees 11

2.2.1 Definitions ooo... cece scssscesssceeccsccsssscssssesssesscscsscesscesssassseees 1]
2.3 COMMANA ACESCLIPtiONS oo. esccssssssccccccessssccccscesssssssesessees 13

2.3.1 The BREAKPOINT (b) commands ou... cece ceeeeeee 13
2.3.2 The DISPLAY (d) commandsiieec ccc cccccessecseeceeeeeeee 16
2.3.3. The ’Find source string’ (/) command. eee 20
2.3.4 The FRAME (f) commands ou. ccscsccccscscsecesesseeeeees 21
2.3.5 The GO (g) COMMAMNAS ou... cee ee cesecceececeseccccesssececeees 21
2.3.6 The INPUT (4) commands 20.0... cececcccececececeseccessesceeeees 22
2.3.7 The LOAD (1) commands 2.000... eeeeseeccesesecccceessensceees 23
2.3.8 The MODIFY MEMORY (m) commands 24
2.3.9 The OUTPUT (0) command oo... ecececesesceeceseeseees 25
2.3.10 The PRINT (p) command oui. ec cecceesceessssessesssseeseees 25
2.3.11 The QUIT (q) COMMANA ou... eeeeesseee sees sesesseseeees 32
2.3.12 The REGISTER (1) Command. ou... cecesessseeececeseeees 33
2.3.13 The SINGLE STEP (s) commands cece ceeeeeeees 33
2.3.14 The UNASSEMBLE (u) commands 0... eee 34
2.3.15 The VARIABLE (v) command ou... eeeceseeeeeeeeeees 34
2.3.16 The MACRO (x) commands 2.0... ceecsecesssssesceeseessseees 35
2.3.17 The EXPRESSION commands 2.0.0.0... cececesessesessseceees 35
2.3.18 The ’Redirect command input’ (<) commands 36
2.3.19 The HELP (7) command ou... ccesssscssscessscesseesseees 36
2.3.20 The ’Change Mode’ (z) command ou... cece sects ceseeeee 37

3. COMMAN SUMMALY uiivcccccscssssersccssessscsscssscsesssesssessscssssessessees 38

Assembly Language Debugger ou... cccssccceccssscescecsssceesesssccescsseceeseess db

~ XV -

TL.) Basic Command wii ccsecssssecesscssscsscsscsesccsessssssessssecseseseeceees 5
1.2 NAM uuu... cecsssssssscssssssssscscssescsctscscescsecsesssscaesscsesscsessssssscsassesscssuecees 5

1.2.1 Code and Data Symbols oo... ccccsssssscscsscssccscsscsecsessesces 6
1.2.2 Operator Usage of Namesccccccccssssccssscessesssscseseecceceses 6

1.3 Loading programs and symbols .0.00.......ccccccssssssscsssscescscscssscsssesees 6
1.4 Breakpoint oc. cecccscsccsscsscsscsscscsssssessessscssesssssescescsescesescssecessee 7
1.5 Memory-change breakpoints 000... .ccccccccsscsscsscescecssssescssscecceees 8
1.6 Separate screens for programs and DBececcccccccccesccccssesceeceeee 8
1.7) Trace mode oi ccccessssssscscssscssccscesccesccescessccsecssecsecescssscesessessseeses 9
1.8 Backtracing ou... ceesscsscsssssscsscccessesessscssscsecssssssssssesseseccesccsssesceees 9
1.9 Macrocscssssssscsssscssssscsscsscssescsscscssccsssesssssersessnseseseccaessseceseseeseeees 9
1.10 Displaying source files wo... eeccscsssssssscsssscescseccsesscecccscesseeees 9
1.11 Other features 0... ccsscsscccccsccecceccssccesesssecsecssssscesessessecesece 9

2. USING DB ou. cecssssssssssssssscsscscsscscescecssssscsssacssceacssesessesscenssesesaseeeees 1]
2.1 Starting DB wow csscsssscsscsccsccccsscssescssescsscssssscaesccescsecsuseeses 11
2.2 Commands ee eeeeceees seseceesssecsssceecscescessessesssecscesceseccescecases ces 1]

2.2.1 Defimitions o....ccccccccsccsscscsssscssssssescescsssscsscsssecsscsesesceeeees 1]
2.3 Command AESCLIPtiONScccecsssssssscsscsceccssccscesecesececcccccececces 16

2.3.1 The BREAKPOINT (b) commandsccccccccccsscsssceseee. 16
2.3.2 The CLEAR (c) commandsccccccccsssssccsssscescssscceseseee: 19
2.3.3. The DISPLAY (d) commands ou... cecssecescceseseeeeees 19
2.3.4 The ’Find source string’ (f) COMMANA ceocecccccccscccceceseceee. 23
2.3.5 The GO (g) commandsccecssccccssesscssssscsecseececcceceece. 24
2.3.6 The INPUT (1) commands 200.0... ccecccccsscssssceseccesececsecece. 25
2.3.7 The LOAD (1) commandsc.ccccccccccssseccocscseecees Veceeseees 25
2.3.8 The MODIFY MEMORY (m) commandsc.cccceceseee. 27
2.3.9 The OUTPUT (0) commandscccccccccccscscsescececceecceccece. 29
2.3.10 The PRINT (p) Commandcc.cccccccccccsceccceccscececccecceceeee 29
2.3.11 The QUIT (q) command oo cccscscescscescscsscsescssseess 35
2.3.12 The REGISTER (r) COMMANA 2.0... cecceccccccssssescescseccescece. 36
2.3.13 The SINGLE STEP (s) commandsccccccccsscsssscoceecee 36
2.3.14 The UNASSEMBLE (u) commandscccccccscssessseseees 37
2.3.15 The VARIABLE (v) commandsccccccccsccscesceccceceece. 37
2.3.16 The MACRO (xX) COMMANAeececsessessssssescesceessesceee: 38
2.3.17 The ’Display Expression’ command.ccccccccscesseseceee. 38
2.3.18 The ’Redirect command input’ (<) command 39
2.3.19 The HELP (?) command 0........cccccsccccssssseccsssscssseccoccecsee. 39

3. Command SuMMAry ou. cccccscssccsssssccessssscsccsssscsevecceeeeseces 40

Overview Of Library Functions oo... cecsccccsccssesssscssecssssssscececceeceseesee libov
TL. I/O OVErVIEW ou... ecceccsssscssssscsscsscccescssccsssscsscesessessssscsesserecsarsecsecsecseeecce: 4

1.1 Pre-opened devices, command line argscccccscssccescssessoceees 4
1.2 Fike 1/O wu cecsescssssssssssssssssscsceccececcsssescscesssescesscscsassssesscsseececeeseees 6

1.2.1 Sequential I/O wu cessscscsscsssscsssssscssssssscsecscesecseseeeses 6
1.2.2 Random 1/0 wicccccccccsccccscssscsssscsccsssescsscsscsscssssessscseceeceees 6
1.2.3 Opening Files wo. ccccccssscsssssssssscscsssssssssscssssesseresceececes 6

1.3) Device 1/O wc cccssssscsscsscscescscsssssscsscessssssecsecsscsesssssesscsessesseseeees 7

- XVi -

1.3.1 Console 1/O wicccecccccccesscsrccecessssesecesescseeeeecesssceeceeeseessseeees 7
1.3.2 I/O to Other Devicesccceecesscececeseeceeeseeesseeseseeseseasenses 7

1.4 Mixing unbuffered and standard I/O calls oe eeeeees 7
2. Standard I/O Overviewcccccecsscecssecessececssccessscessceceseseeeeceeeeoscees 9

2.1 Opening files and GeViCeS occ eeecessecssceseeessececsececceeeeeeessssoneees 9
2.2 ClOSING StreAMScccecccessssecessseccecsseccecessceeececsseseesosssesenscsseeeecs 9
2.3 Sequential [/O wu. ccceseccessssscccecessnsnececesesecceececesssseeesoessoesees 10
2.4 Random I/O oie ccccecccsssescecssrecessssececeseccecesseeecessseseesessseeeseees 10
2.5 Buffering wo... cecscecssecsssccecnseesssccscsececscecesseeescsseeossseaseseesees 10
2.6 EYrOrs woccccccsccsccccscscsssssscssssssssscscccccccecscecsesssesesesessenssssnsccacacscsseoeeees 1]
2.7 The standard I/O functions oc ccsssceseeceseeceesseeeeseeeeseeoeees 12

3. Unbuffered 1/O Overview ou... cceeecccesssseceessecceesssececsssneeceeeseeeeeses 14
3.1 File 1/O cece ecsssecssescccscesceceseececsecsesscesssescsseecssesesseeeecaeeesees 15
Ae DY en's (<n 14 © Si 15

3.2.1 Unbuffered I/O to the Console ce ceececeseseeteeees 15
3.2.2 Unbuffered I/O to Non-Console Devices06 16

4, Console I/O Overview ou... .cceccsssccesscecssececsnsececsececeseccesesseceeceaeeeens 17
4.1 Line-oriented input ooo... ee cccssessccececesssceeseesessseecesseeeceeees 17
4.2 Character-oriented input oo... ccececcececesssssseneenececeeceessesees 18
4.3 USINg 10Ctl oc eecsccsstecsescecssrcceesncecssneceessceceseseeceseneesesseeesosses 19
4.4 The sgtty fields oo... eecsssecsssecssseesccessececeeecessececenseceseeesseeees 19
AS Examples oo... eececesessscssssssscscccececcccececeseececesessssssessesseesseseesenees 20

5. Dynamic Buffer AlOCationcccccseessscecssnececeseceseseeeessseesesseees 22
6 Error Processing OVervieW ouu......ccceesccccessssccecesscsecccececessecceecsenseeees 23

INCE™X ou. eie ec secceccssccccsssccccsssccccsssccsscccccsscccccssccccsccceccsccessccccscsesessceccscseeecaseusscecs 5

The fUMCtIONS ou... ccccscccccesssseccescsssseceeceesscececesssscecececesssscacececeeesesaeececeeeees 8

Stylecccccccssssssscscsssssecees coucessceecesesscccccesessssceeeeecessaeeeecscessaeececesesceacesesesees Style
L. Imtroduction wou... cececcssssceccsscsscccesssscstccecesssscceccscesssauaeececessserasececeseees 3
2. Structured PrograM MING ..uu.....ccessscccceesssececsesssccessssrcesssesececessseeseeeees 7
3. Top-down Program Ingcccsssssececssssseeeececessnseaeececescsacaeececeseees 8
4. Defensive Programming and Debugging cc ceseeceesseeeeeeeens 10
5. Things to watch out fOr wou... ccscccesssecessececssecessseecesseeecesseeecenees 15

Compiler Error Codesc....cccscsee ccsssscscescssscececesessnecececesesseeececesessasaeeecees err
1. SUMMALY cee eeceeececessccecescsssscececesessnaeececessnaneeecesesscacececesesssenaeesesessees 4
2. EXplamatiomscccscscssssssccccesesssssscceccesceccsscssceceseessceessesenseseesesceceseess 7
3. Fatal Error MEeSSagescccccssssscessssscecensceeesessrecesssaceecesssanecsesseeees 35

- XVI -

- XVIll -

OVERVIEW

- ov.1 -

OVERVIEW Aztec C86

- ov.2 -

Aztec C86 OVERVIEW

Overview

Aztec C86 is a set of programs for translating programs written in
the C programming language into a form which can be executed on
8086 systems running PC-DOS, MS-DOS, or CP/M-86.

Aztec C86 can also be used to create programs that will run on a
ROM-based 8086 system.

The development can be done on a PC-DOS, MS-DOS, or CP/M-86
System; it can also be done on several other types of systems, as
described below, and the executable code downloaded to the target
machine.

There are several different Aztec C86 Systems, providing different
features. The following is a list of features that are in the Aztec C86
Commercial System. Not all of these features are supported by the
other Aztec C86 Systems.

* The full C language, as defined in the book The Cc
Programming Language, by Brian Kernighan and Dennis
Ritchie, is supported. This now includes the bit field data
type and many of the System 5 extensions to the C language.

* Floating point operations can be performed either by software
routines or by the 8087 math chip. The choice can be made
when a program is linked, by linking the program with the
appropriate version of the math library. The choice can be
made dynamically, when the program is started, by linking the
program with the ’sensing’ math library; in this case, the 8087
will be used if it’s on the machine on which the program is
currently running, and the software routines will be used if
it’s not.

* Programs can be created that use the 80186 instructions.

* An extensive set of user-callable functions is provided;

* Programs can be created that use the ’small code’ or "large
code’ memory model and/or the ’small data’ or ‘large data’
memory model. ’Large code’ allows a program to have as
much memory-resident executable code as desired. ’Large
data’ allows a program to have 64K bytes of global and static
data, 64K bytes of stack space for automatic variables, and
unlimited space for dynamically-allocated buffers.

* Overlays are supported, allowing programs to be created and
executed that are larger than available memory;

- OV.3 -

OVERVIEW Aztec C86

* Object modules and libraries created with the Aztec C86
compiler and assembler can be linked together with either the
Aztec linker or the PC-DOS/MS-DOS linker, link.

* Aztec C86-compiled and assembled object modules and libraries can be linked with object modules and libraries that
have been created using other manufacturers’ compilers and
assemblers, such as those from Lattice and Computer
Innovations.

* With some versions of Aztec C86, several utility programs are provided that are similar to UNIX programs: Z, a text editor, which is like the UNIX vi editor; make, which automates some
of the steps in program development and maintainance; grep,
a pattern-matcher; diff, a program that determines the
difference in source files:

* Modular programming is supported, allowing the components
of a program to be compiled and assembled Separately, and then linked together;

* Assembly language code can either be combined in-line with
C source code, or placed in separate modules which are then
linked with C modules;

* A powerful symbolic debugger is provided.
There are two classes of user-callable functions: system independent and system dependent. The System-independent functions are compatible with their UNIX counterparts and with the system- independent functions provided with Aztec C packages for other systems. Use of these functions allows programs to be recompiled for use on UNIX-based systems or on other Systems supported by Aztec C with little or no change.

The system-dependent functions allow programs to take advantage of special features of a system.

Versions

Several Aztec C86 packages are available, for use in different environments:

* The PCDOS/MSDOS package and the code it generates run
on systems using PCDOS or MSDOS, version 2.0 or later. With some versions of this package you can generate
Programs that will run on systems using CP/M-86, or on PCDOS/MSDOS version 1.1.

* The CP/M-86 package and the code it generates run on CP/M-86. With some versions of this package you can
generate programs that will run on systems using
MSDOS/PCDOS.

- OV.4 -

Aztec C86 OVERVIEW

* The UNIX package runs on a system which uses the UNIX
operating system, and generates code which runs on PCDOS
or MSDOS systems or on CP/M-86 systems.

Components

Aztec C86 contains the following components:

* The compiler, assembler, linker, and object file librarian;

* Object libraries containing user-callable functions and support
functions;

* Several utility programs, including, with some packages,
programs similar to the UNIX programs make, grep, diff, and
a symbolic debugger.

Preview

This manual is divided into two sections, each of which if in turn
divided into chapters. The first section presents 8086-specific
information; the second describes features that are common to all
Aztec C packages. Each chapter is identified by a symbol.

The 8086-specific chapters and their identifying codes are:

tut describes how to get started with Aztec C86: it discusses
the installation of Aztec C86 and gives an overview of the
process for turning a C source program into an executable
form;

cc, as, and /n present detailed information on the compiler,
assembler, and linker;

util describes some of the utility programs provided with
Aztec C86; |

libov86 presents 8086-specific overview information;

lib86 describes the 8086-specific functions provided with
Aztec C86;

tech discusses several miscellaneous topics, including program
organization, overlays, cross development, libraries provided
with Aztec C86, using the Microsoft linker, generating
ROMable code, and writing assembly language functions that
can call and be called by C functions.

unitools describes the utility programs Z, make, grep, and diff,
which are similar to UNIX programs.

sdb describes the source level debugger;

db describes the assembly language debugger;

The System-independent chapters and their codes are:

- ov.5 -

OVERVIEW Aztec C86

libov presents an overview of the system-independent features

lib describes the system-independent functions provided with
Aztec C86;

style discusses several topics related to the development of C
programs;

err lists and describes the error messages which are generated
by the compiler and linker.

- OV.6 -

TUTORIAL INTRODUCTION

- tut.I1 -

TUTORIAL Aztec C86

Chapter Contents

Tutorial Introduction oo... cccccssccssscssssscssscsssssssssssseseseseesecececseceeesecccecccce, tut
I. Installing Aztec C86 ou. csscscsssscscsssssssscsssssssesseetececseseseecesececcceecce, 3
2. Creating an executable program .o.c.ccccccccccccssssccssesceecesecececeeececeecececen. 7
3. Where to g0 from here wii ecccssesesssesssssssssssescesesecsesecceceseseseeececececce, 8

- tut.2 -

Aztec C86 TUTORIAL

Tutorial Introduction

This chapter describes how to start using your Aztec C86 software.
The chapter has three sections: the first describes how to install Aztec C86; the second describes the procedure to create an executable
program from a simple C source program; and the third introduces some features of Aztec C86 that you may want to investigate further.

1. Installing Aztec C86

Manx has sent you your Aztec C86 software on one or more floppy
disks. If your system Supports only single-sided disk drives, we may
have used reversible disks, and put files on both surfaces of a single
disk. In this case, each side of a disk that we have used will have a
label. To access the files on a particular side of a reversible disk, put
the disk in the drive with that side facing the drive’s read/write heads.

The disks we have sent you are not bootable; that is, they don’t
contain the operating system (DOS or CP/M-86). In order to use them, you will have to boot the Operating system from one of your
own disks.

Back up the disks

The first thing you should do with your Aztec C disks is make a copy of them. This can be done using the standard operating system
copy utility.

Check the Files

Before you start using your Aztec C software, you should verify
that all the files are there, by comparing a directory of the provided files with a list that’s in the release document.

The crc utility that’s on your disk computes a unique number for a file, called its cre. If you wonder whether a file is corrupted, you can compare its crc number with its correct value, which is listed in the
file crclist.

A complete description of crc is provided in the Utility Programs chapter. To compute the ere of all files on the b: drive, enter

cre b:*,*

Create a working disk

A ’working disk’ is a disk that contains just the most frequently- used Aztec C files. When developing programs, you will have the working disk in one drive, and a disk containing the programs being

- tut.3 -

TUTORIAL Aztec C86

developed in another drive.

Thus, before you can begin using Aztec C, you must create a
working disk.

You can link object modules together using either the Aztec linker
In or the PCDOS/MSDOS linker link. For now, we’ll assume that you
want to use the Aztec linker. At the end of this section, we'll show
you how to modify the working disk for use with the PCDOS/MSDOS
linker.

Here are the steps to create a working disk:

1. The first file you need on your working disk contains the C
compiler. Some Aztec C86 packages contain two C compilers,
with the versions differing in the speed of compilation, the
optimization of the generated code, and support for the 80186
and 80286 processors. To get started, you can just copy the cc
compiler to the working disk. Later on, you can select another
compiler, if desired. The compiler chapter and the release
document describe the features of the compilers.

The name of the file containing a program is derived from
the name of the program by appending an extension to the
program name: the extension is .exe for PCDOS/MSDOS, and
.cmd for CP/M-86. Thus, the name of the file containing the cc
compiler is cc.exe on PCDOS/MSDOS and cc.cmd on CP/M-86.

Next, copy the as assembler and the Jn linker to the working disk.
3. Now copy any header files you need to the working disk. A

“header file" is a file containing C source code which another
program includes in itself with the #include statement. The
header files provided with the Aztec package have extension ".h".

4. Finally, copy the object libraries you need to the working disk.
the libraries that you will need initially are c.lib and mlib, which
contain the non-floating-point functions and floating-point
functions, respectively. These libraries use the *small code’ and
"small data’ memory model. Other versions of these libraries that
support other memory models are provided with some packages.
See the Libraries section of the Technical Information chapter
for details.

If your working disk can’t hold all these files, we recommend that
you put the compiler, assembler, and header files on one disk, and the
linker and libraries on another disk.

The working disk and the PCDOS/MSDOS linker

If you want to use the PCDOS/MSDOS linker instead of the Aztec
linker you must modify your working disk, as follows:

- tut.4 -

Aztec C86 TUTORIAL

1. Replace the Aztec linker m on your working disk with the
PCDOS/MSDOS linker.

Copy the Aztec utility program obj onto the working disk. This
program converts object modules from Aztec format into
PCDOS/MSDOS format.

Copy the special startup routine crt0.obj to the working disk.

Using obj, convert c.lib and mlib to PCDOS/MSDOS format by
entering:

obj c.lib mc.lib
obj m.lib mm.lib

The converted libraries are in the files mclib and mmlib. You
can now remove c.lib and mlib from the working disk.

- tut.5 -

TUTORIAL
Aztec C86

0. | Editor |

|

/ C
| source file |

/
|

1. | Aztec C Compiler |

|

/ assembler \
| source file |

/
|

2. ! Assembler |

|

oN
/ | |

| |

3. | : : | / subroutine \ | Link Editor Ignenne | library |

| \ /

| executable file |

/
|

4. |
| Program execution |

Figure 1: Developing C programs with Aztec C

- tut.6 -

Aztec C86 TUTORIAL

2. Creating an Executable Program

Figure 1 graphically depicts the steps to create an executable program from aC source program.

The following paragraphs will first present the actual commands to create an executable version of the sample program exmpl.c that is on the distribution disk, when using the Aztec linker. Then follows a brief description of each of the commands. For complete descriptions of these programs, see subsequent chapters in this manual.
At the end of this section is a description of the commands for converting exmpl.c into an executable program when using the PCDOS/MSDOS linker.

Typically, when developing programs, you will have your working disk in the a: drive and a disk containing your own files in the b: drive. The following discussion assume that this is the case. The commands to generate an executable version of exmpl.c, when using the Aztec linker, are:

cc b:exmpl.c step 1 & 2: compile and assemble
In b:exmpLo c.lib Step 3: link

Step 0: Create the Source Program

Any text editor can be used to create C source programs.
Step 1: Compile

cc translates a C source program into an assembly language
program. This translation is called compilation. The command to compile the C source that’s in the file exmpl.c which is in the Current user area on the b: drive is:

ce b:exmpl.c

cc writes the assembly language source for the C program toa temporary file in the current area on the b: drive, and then starts the assembler. The ’current area’ on PCDOS/MSDOS is the current directory and on CP/M-86 is the Current user area.
Step 2: Assemble

as, which is automatically started by the compiler, unless you specify otherwise, translates an assembly language source program into relocatable object code.

It writes the object code to the file exmplLo in the current area on the b: drive, and then automatically deletes the temporary assembler source file, since it is no longer needed.
Step 3: Link

The object module version of the exmpl program must next be
linked to needed functions that are in the c.lib library of object

- tut.7 -

TUTORIAL Aztec C86

modules and converted into an executable form. This is done by
entering:

In b:exmpLo c.lib

The output of the linker is sent to the file exmplexe on
PCDOS/MSDOS, and to exmpl.cmd on CP/M-86, in the current
area on the b: drive.

During the link step, the linker will search libraries specified to it;
when it finds a module containing a needed function, it will include
the module in the executable file it’s building.

All C programs need to be linked with c.iib (or an equivalent, if the
program uses a memory model other than ’small code’/ ’small data’.
This library contains the non-floating point functions which are
defined in the functions chapter, lib of this manual. It also contains
functions which are called by compiler-generated code.

If a program performs floating point operations, it must also be
linked with a math library. The math library that you will use when
getting familiar with Aztec C is mlib. This uses small code’, ’small
data’, and uses software routines to perform the floating point
Operations. Other versions of the math library are available. See the
Libraries section of the Technical Information chapter for details.

When a program is linked with a math library, that library must be
specified before c.lib. For example, if exmpl.c performed floating
point, the following would link it:

In b:exmpLo m.lib c.lib

Creating an executable program, when using the PCDOS/MSDOS linker
If you are using the PCDOS/MSDOS linker, the following

commands will convert exmpl.c into an executable program:

cc exmpl.c
obj exmpl.o
link crt0+exmpLexmplexmpl,,mc

3. Where to go from here

You now have a working disk and have used it to create an
executable program from a C source file. Since the C language
supported by Aztec C is fully UNIX-compatible, and since Aztec C86
supports a large subset of the standard UNIX functions, you can
proceed to develop programs without immediately reading the rest of
this manual, with assurance that that Aztec C behaves like the version
of UNIX with which you are familiar, or like the textbook on UNIX
and C that you are reading.

To be able to make full use of Aztec C, however, you must read the
rest of this manual. Some topics of interest:

- tut.8 -

Aztec C86
TUTORIAL

* You should peruse the Library Functions chapters. We have
provided a lot of functions, including 8086-specific ones, and
an awareness of them may save you from reimplementing
some of them.

* As your programs get larger, you may want to either use one
of the large memory model options or partition them into
overlays. Memory models are discussed in the Operator Information section of the Compiler chapter, and Overlays in
the Technical Information chapter. Use of alternate memory
models for a program requires use of alternate versions of the c.lib and mlib. The libraries provided with Aztec C are discussed in the Libraries section of the Technical Information chapter.

* You have control over several factors that determine how a program 1s organized in memory. Some of the most important of these determine the size of the program’s stack and heap areas, and whether a program’s stack is above or below the heap. (the heap is the area from which buffers are dynamically allocated). With the heap above the stack, the heap can grow and contract dynamically, and with it the space allocated to the Program, to satisfy requests for buffers. For 4 discussion of program organization, see the Technical Information chapter.

* The version of the math library that we have discussed in this chapter, m.lib, performs floating point operations using software routines, and requires the program to use the small code’ and ’small data’ memory models. Other versions of the math library are provided that use the 8087 to perform floating point operations, and that use different memory models. With some of the math libraries, the choice of software- or 8087-execution of floating point operations is made when the program is linked. For Others, the choice is made when the program is started: an 8087 will be used if available, and software routines otherwise. The Libraries section of the Technical Information chapter has the details.
* Use of the PCDOS/MSDOS linker instead of the Aztec linker is discussed in detail in the section "Using the PCDOS/MSDOS Linker" section of the Technical Information chapter.

* You may want to create modules that can call functions in other manufacturers’ libraries; for example, those of Lattice or Computer Inovations. Or you may want to create modules or libraries that can be called by modules that have been
created with other manufacturers’ compiler and assembler. The compiler options relevant to this are discussed in the

- tut.9 -

TUTORIAL Aztec C86

Options section of the Compiler chapter. In this case, you
must use the PCDOS/MSDOS linker dink. This is discussed in
the section "Using the PCDOS/MSDOS Linker", in the
Technical Information chapter.

* The creation of ROMable code is discussed in the Technical
Information chapter.

* If you want to write assembly language routines that can call
and be called by C functions, see the "Assembler Functions"
section of the Technical Information chapter and the
Programmer Information section of the Assembler chapter.

* The compiler has an option that causes it to generate code
that uses 80186 instructions. If you have a machine that has
and 80186 or 80286 microprocessor, you may want to compile
your programs using this option, and recompile the libraries
using this option. See the Options section of the Compiler
chapter for details.

- tut.10 -

THE COMPILER

-cel -

COMPILER Aztec C86

Chapter Contents

The Comp tlercccccsccs csscssccsscscccsscescecscssescssssssscssscecsssscecescssssccscesscescesecens cc
1. Operating Instructions ooo... cc cessscsssscssscccsssscsscscscsscesssessccesseeccesees 5

1.1 The C Source File woe eeecssssssecccesccssscecsscccssecsecsesesssseces 6
1.2 The Output Files wo. ecsssssssccsscccsecsssecscecsssessssestsssseessesees 7

1.2.1 Creating an Object Code File occ cccccccccssscsscesssccscsesees 7
1.2.2 Creating just an Assembly Language Source File 8

1.3 Searching for #include Files wo... ccceccccssscsscesccssscesecssseceeeees 9
1.3.1) The -] Option won eescsccccssscsesccssccsscecssccssessseesesces 9
1.3.2 The INCLUDE Environment Variablecc.ccccccee. 10
1.3.3 The Search Order for #include Filesccccccccccsseeee 10

1.4 Memory Models ou....cccccccccccccscsssccccssscccsscsssscssssssssecescecsecserecseeees 11
1.4.1 How a Memory Model is Selected woo... ccceecscsseceeseeeees 12
1.4.2 Maulti-module Programs .oi....eccccccceccccsssccesssccessccescececssseses 13
1.4.3) Program Orgamization woo... eeseeccescscsececcecccssccsscccessecsecs 15
1.4.4 ’Large model’ versus Overlays .0.0..........ccccccsssescesseessseseees 15
1.4.5 Implementation of the Memory Modelss00000 16

2. Compiler Options oo. cecscssccecsscecccsscccsscssccssscccscsssseseseesecececcesecees 19
2.1 Summary of the Options 20... ccccsccscssscoccsssesscecsesscsssseeseeessee 19

2.1.1 Machine-Independent Utility Optionsccccceeseecees 19
2.1.2 Table Manipulation Options .0..........cccccccccccsssecscecseeeceeeces 19
2.1.3 8086 Options for the Optimizing Compilers 20
2.1.4 8086 Options for the Non-optimizing Compilers 21

2.2 The Options oo...ccccccccccccsccssssecccssscsscssccsscesseccsscsssssssssessesesecceree es 22
2.2.1 Machine-Independent Utility Optionscccccccccccccees 22
2.2.2 Table Manipulation Optionsccccscsccsscccsscsseccesceseces 23
2.2.3 8086 Options for the Optimizing Compilers 26
2.2.4 8086 Options for the Non-optimizing Compilers 29

3. Programming Information oo... secscsccescecscsscessesssecsssscccesceseeeces 31
3.1 Supported Language Features oo... cccccsccscesssccesssesccessesssseeces 31

3.1.1 Preprocessor Statements oo... sccccscssccesccscescccsscesceseseses 31
BLD. Macro ou... .cccscscccsscssscccccscssssccessecsssceseessecuessssesssenses 31

FEELING ooo... eeccscssscessssscsscssscscesceccesccsscseccessssecaecsscsacssceseeees 31
3.1.1.2 Conditional Compilationccccccccccccccscoscecscesecceces 34

FULGCE oie escscscsssscsscsscsscsscceceecescecsccscseucesersccaeceecesessseseesss 35
FLUENCE oo. ssscessssscsssccccescccscesscceececsacscscessessscsecesseessseeseens 35
FEAL oo. eecesesessscscscescssssssscceseacassseccesccescecesssaecsessessceucsaesseeseessee 35

3.1.1.3 More Preprocessor Statementscccccccscccsccsseees 36
FEINCIUCE ou... eeesesscssscssssscceccscsssssecescecesessccescecssccascsscesscessens 36
FELINE oo. .ccessessesscssesscssecscsscsscsescnceecsecesecsssesscesssecaeerscssesscesseess 36
FFASM ANG HENAASM 2... ecesscccessccssssssssccseccessecessrescssasces 36

3.1.2 More Features oo... cescsssccssssscescccsscsescsssccsscsscsssccescessens 37
Structure ASSISNMENE oo... cecsesccscceccescececcesscceascescecsseeeses 37

- cc.2 -

Aztec C86 COMPILER

Line Continuation wove cecccsscsssccssccssessssscssscessscessscesscesees 37
The void Data Typecccccccccesccesssseccsssssccecessesccssssessesesseess 38
Special SYMDOIScccccsccsssssssssssssessscsssscsssssesssscsssececseesssseeees 38
FIDE ee eceseeeseeseeseesessesseeeeseessenseeeeeeeses 38

LINE oo haeeeeeccccsccscssssseecsssscececesseeecescsseeceseesneesseesseeenens 38
FUNC ee ceecseceeeeseeeesnseneesceeeteeeseseeees 38

3.1.3 Special Features of Aztec C viii cccccscscccccescscssseceeeeees 39
String Merging ou... cesssscsssssscecessccscessssccecessesecessesscesssesees 39
Reserved Words .0.........cccccssssssssssscccssccsceesececesssccsseescessscssesssessees 39
Global Variables uci ccssscssssesssscssssscessceseecsesssecssescesesces 39

3.2 Data Format S ooo... ccccccsssccssssssesssscscccesessceescecescesscesssscscssesssees 4]
BiQ.1 CIAL cece eececccceccececccesceccececccescecescecscceccccsscecsscecccsssscsssssssssscssesees 4]
3.2.2 POINTEDccccceccessscececsseccecssssesssscesecesssceceesssscescesseeeeeseeees 4)
3.2.3 AMt, SHOP wees ccscssssssscccescsssssssssesccesessccecssseseeees 4]
A: (0) 0 ce 4]
3.2.5 float and double wi. csccsscecscscsssecssssssesscssseeessesees 42

3.3 Floating Point Exceptions oo... ce ceccstccsscsscssscsscssessessseeeee 42
3.4 Writing Machine-Independent Code ou... eee eeeceeceesessseeees 42

3.4.1 Compatibility between Aztec C Products0.... 42
3.4.2 Sign Extension for char variablesccscessseceeeeecees 43
3.4.3 The MPU... Symbols woo ccececessssssseccccesscesesssssseeees 43

3.5 Using Long Pointers oii ccetseccsssccssscccssssecscssccescsseesecseeeees 44
3.5.1 Passing Long Pointers Between Functions 44
3.5.2 Expressions involving Long Pointerseeeeeceseeeeeee 46
3.5.3 Creating and Accessing Huge ArraySccccssssececseceeee 48

4. Error MESS&6Sccccssssccsssccsssccsssssscssccesesscccecsseserseccececeececeatecessnecs 50

= cc.3 -

COMPILER Aztec C86

- cc.4 -

Aztec C86 COMPILER

The Compiler

This chapter describes how to use the Aztec C compiler. It is not
intended to be a complete guide to the C language; for that, you must
consult other texts. One such text is The C Programming Language, by
Kernighan and Ritchie. The Aztec C compiler was implemented
according to the language description in the Kernighan and Ritchie
book.

As mentioned in the Tutorial chapter, some Aztec C86 Systems
provide two C compilers, supporting different features. The cc
compiler in the Developer and Commercial Aztec C86 Systems
supports the full C language (now including bit fields), generates
optimized code, can optionally generate code that takes advantage of
the 80186 and 80286 processors, and supports the large memory
models. The ccb compiler in the Developer and Commercial Systems
and the cc compiler in the Personal System support the full C language
except for bit fields, quickly generate non-optimized code, can’t
generate 80186 and 80286 code, and don’t support the large memory
models. All the compilers are operationally the same, with the
exception of the 8086-specific options. Modules that are compiled
with different compilers can be linked together into one program. The
only place in this chapter where we make a distinction between the
compilers is in the discussion of the 8086-specific options.

This chapter has four major sections: the first describes how to use
the compiler, the second describes the compiler options, the third
describes information related to the writing of programs, and the
fourth describes error processing,

1. Compiler Operating Instructions

The compiler is invoked by a command of the format:

cc [-options] filename.c

where [-options] specify optional parameters, and filename.c is the
name of the file containing the C source program. Options can appear
either before or after the name of the C source file.

The compiler reads C source statements from the input file,
translates them to assembly language source, and writes the result to
another file.

When the compiler is done, it activates the Manx assembler, unless

it’s told not to. The assembler translates the assembly language source
to relocatable object code, writes the result to another file, and deletes

- cc.5 -

COMPILER Aztec C86

the assembly language source file. The compiler -A option tells the
compiler not to start the assembler.

1.1 The C source file

On the command line, the name of the file containing the C source
can optionally specify the drive on which the file is located. If not
specified, it’s assumed to be on the default drive.

1.1.1 Source files on MSDOS and PCDOS.

On MSDOS and PCDOS, the source file name can optionally
specify a path to the directory containing the file. By default, it’s
assumed to be in the current directory on the specified drive. For
example, with the following command the compiler looks for
filename.c on drive a:, directory \source\ subs:

cc a:\source\subs\filename.c

and for the following command, with b: as the default drive and
\ modules as the current directory, the compiler looks for filename.c on
the 5; drive, directory \modules:

cc filename.c

1.1.2 Source files on CP/M-86.

On CP/M-86, the source filename can optionally specify the user
area containing the file. If not present, it’s assumed to be in the
current user area on the specified drive. For example, with the
following command, the compiler will look for clock.c on drive h:, user
3:

cc 5/b:clock.c

As shown in this example, a CP/M-86 filename consists of (1)
optionally, a user area followed by a backslash, (2) optionally, a drive
identifier, followed by a colon, (3) the file name, and (4) optionally, a
period followed by an extension. On CP/M-86, any file name passed to
a Manx program has this format. |

For another CP/M-86 example, if the default drive is c:, and the
current user area is 8, with the following command, the compiler will
look for generate.c on drive c-, user 8:

cc generate.c

1.1.3 More source file information.

The extension on the source file name is optional. If not specified,
it’s assumed to be .c. For example, with the following command, the
compiler will assume the file name is text.c:

cc text

The compiler will append .c to the source file name only if it doesn’t

- €C.6 -

Aztec C86 COMPILER

find a period in the file name. So if the name of the source file really

doesn’t have an extension, you must compile it like this:

cc filename.

The period in the name prevents the compiler from tacking on .c to

the name.

1.2 The output files

1.2.1 Creating an object code file

Normally, when you compile a C program you are interested in the

relocatable object code for the program, and not in its assembly

language source. Because of this, the compiler by default writes the

assembly language source for a C program to an intermediate file and

then automatically starts the assembler. The assembler then translates
the assembly language source to relocatable object code, writes this
code to a file, and erases the intermediate file.

By default, the object code generated by a compiler-started
assembler is sent to a file whose name is derived from that of the file
containing the C source by changing its extension to .o. This file 1s
placed in the area that contains the C source file. On MSDOS and
PCDOS, the area is the directory containing the source file, and on
CP/M-86 it’s the user area containing the source file. For example, if

the compiler is started with the command

ce prog.c

the file prog.o will be created, containing the relocatable object code

for the program.

The name of the file containing the object code created by a
compiler-started assembler can also be explicitly specified when the
compiler is started, using the compiler’s -O option. For example, the
command

cc -O myobj.rel prog.c

compiles and assembles the C source that’s in the file prog.c, writing

the object code to the file myobj.rel.

When the compiler is going to automatically start the assembler, it
by default writes the assembly language source to a temporary file
named cimpxxx.xxx, where the x’s are replaced by digits in such a
way that the name becomes unique.

On MSDOS and PCDOS the temporary file is placed in the drive
and directory specified by the environment variable CCTEMP. If this
variable doesn’t exist, the file is placed in the current directory on the

default drive.

The format of CCTEMP is

- cc.7 -

COMPILER Aztec C86

[d:][path\]
where the brackets indicate an optional field. The fields have the
following meanings:

* d: is the identifier of the drive on which the file is to be
placed; if not specified, the default drive is used.

* path\ specifies the directories that must be passed through to
reach the directory in which the temporary file is to be
placed. If not specified, the file is placed in the root directory
on the selected drive. When path is specified, it must have a
trailing backslash character.

For example, the first command that follows sets CCTEMP so that the
temporary file is placed in the root directory on the c: drive; the
second causes it to be placed in the compile\temp directory on the
default drive; the third causes it to be placed in the tmp directory on
the d: drive:

set CCTEMP=c:

set CCTEMP=compile\temp\
set CCTEMP=d:tmp\

Note that a terminating backslash is required when a subdirectory is
explicitly specified, but not when just the drive is specified.

On CP/M-86 the temporary file is always placed in the current user
area of the default drive.

If you are interested in the assembly language source, but still want
the compiler to start the assembler, specify the option -T when you
Start the compiler. This will cause the compiler to send the assembly
language source to a file whose name is derived from that of the file
containing the C source by changing its extension to .asm. The C
source statements will be included as comments in the assembly
language source. For example, the command

ce -T prog.c

compiles and assembles prog.c, creating the files prog.asm and prog.o.

1.2.2 Creating just an assembly language file

There are some programs for which you don’t want the compiler to
automatically start the assembler. For example, you may want to
modify the assembly language generated by the compiler for a
particular program. Or you may want the assembly language source
Sent to a location, such as a RAM disk, where it wouldn’t normally be
sent when the compiler activates the assembler.

In such cases, you can use the compiler’s -A option, which prevents
the compiler from starting the assembler.

When you compile a program using the -A option, you can tell the
compiler the name and location of the file to which it should write the

- cc8 -

Aztec C86 COMPILER

assembly language source, using the -O option.

If you don’t use the -O option but do use the -A option, the
compiler will choose the name and location of the assembly language
source file: it will send the assembly language source to a file whose
name is derived from that of the C source file by changing the
extension to .asm, and place this file in the same area as the one that
contains the C source file. On MSDOS and PCDOS, the area is the
directory containing the source file, and on CP/M-86 it’s the user area
on the drive containing the source file.

For example, the command

ce -A prog.c

compiles, without assembling, the C source that’s in prog.c, sending the
assembly language source to prog.asm.

As another example, the command

cc -A -O e:temp.asm prog.c

compiles, without assembling, the C source that’s in prog.c, sending the
assembly language source to the file temp.asm on the drive e..

When the -A option is used, the option -T causes the compiler to
include the C source statements as comments in the assembly language
source.

1.3 Searching for #include files

You can make the compiler search for #include files in a sequence
of areas, thus allowing source files and #include files to be contained in
different areas.

Areas can be specified with the -I compiler option, and, on MSDOS
and PCDOS, with the INCLUDE environment variable. The compiler
itself also selects a few areas to search. The maximum number of
searched areas is eight.

If the file name in the #include statement specifies a drive id, user
area, Or path, only the single area specified in the statement is
searched.

1.3.1 The -I option.

A -I option defines a single area to be searched. The area descriptor
follows the -I, with no intervening blanks.

1.3.1.1 The -I option on MSDOS and PCDOS

On MSDOS and PCDOS, the -I option looks just like you’d expect:

-Ib:\incfiles

defines the directory \inc files on drive b:.

- cc.9 -

COMPILER Aztec C86

1.3.1.2 The -I option on CP/M-86

On CP/M-86, the area descriptor following the -I consists of (1) an
optional user number followed by a slash, and (2) an optional drive
identifier. For example, the following defines user area 5 on drive c:

-I5/c:

The user number is optional, and defaults to the current user number:

-Id:

defines the current user area on the d: drive. The drive id is also
optional, and defaults to the default drive:

-14/

defines user area 4 on the default drive.

1.3.2 The INCLUDE environment variable.

On MSDOS and PCDOS, the INCLUDE environment variable also
defines directories to be searched for #include files. This variable has
the same format as the PATH environment variable. That is,
something like the following, which defines three areas to be searched:

set INCLUDE=b:\ incl;c:\cc\ine?;a:

1.3.3 The search order for include files

1.3.3.1 The search order on MSDOS and PCDOS.

On MSDOS and PCDOS, directories are searched in the following
order:

1. If the #include statement delimited the file name with the
double quote character, ", the current directory on the default
drive is searched. If delimited by angle brackets, < and >, this
area isn’t automatically searched.

2. The directories defined in -I options are searched, in the
order listed on the command line.

3. The directories defined in the INCLUDE environment
variable are searched, in the order listed.

1.3.3.2 The search order on CP/M-86.

On CP/M-86, user areas are searched in the following order:

1. If the #include statement delimited the file name with the
double quote character ("), the current user area on the
default drive is searched. If delimited by angle brackets, < and
>, this area isn’t automatically searched.

2. The directories specified in -I options are searched, in the
order listed on the command line.

- cc.10 -

Aztec C86 COMPILER

3. If the current user number isn’t zero, user area 0 on the

default drive is searched.

4. If the default drive isn’t A:, and if the A: drive is logged in,

that is, has been accessed, user area 0 on the A: drive 1S

searched.

1.4 Memory models

This section discusses the different memory models supported by

Aztec C86. The cc compiler that is in the Developer and Commercial

Aztec C86 Systems allows you to select the memory model that a

program will use. The ccb compiler that is provided with these systems

and the cc compiler that is provided with the Personal Aztec C86

System supports just one model: ’small code’ and ’small data’.

A program created by Aztec C86 is organized into several sections.

The memory model selected for a program determines how large the

program’s sections can be.

The sections of a program are these:

* code, containing the program’s executable code;
* data, containing the program’s global and static data;

* stack, containing its automatic variables, control information,

and temporary variables;
* heap, an area from which buffers are dynamically allocated.

There are two attributes to a program’s memory model. One

determines the amount of executable code the program can have. This

attribute can specify that a program is to have small code or large code:

* small code limits a program to 64K bytes of code, if the
program isn’t partitioned into overlays;

« large code means that there’s no limit to the size of a

program’s code.

The other attribute to a program’s memory model determines the
amount of data the program can have. This attribute can specify that a
program is to have small data or large data:

* small data limits the sum of the sizes of a program’s data,
stack, and heap sections to 64K bytes;

* large data allows the program’s data section to be up to 64K

bytes long, its stack to be up to 64K bytes long, and its heap to
be any size up to the remaining amount of memory.

Even with ’large data’ there is a limitation on the size of data
objects such as arrays and dynamically allocated buffers: they can’t

normally contain more than 64K bytes. Bigger arrays and buffers can

be created, but their fields can be accessed only by using 8086-specific

code.

-cecll -

COMPILER Aztec C86

One other important characteristic of "large data’ programs is that
they can directly access any memory location, since such a program
uses long pointers (four bytes containing segment and offset
components) to data objects. A ’small data’ program uses short
pointers (two bytes containing just an offset within the program’s data
area) to data objects, and hence can’t directly access memory outside
its data area.

When a program uses either ’large code’ or large data’ it obviously
has one advantage over a ’small code’, ’small data’ version of the same
program: it can be bigger. It also has some disadvantages:

The program is larger:
It takes longer to load the program;
For ’large code’, function calls and returns take longer;
For ‘large data’, it takes longer to access a variable via a
pointer;

* For ‘large data’, the ability to access any location in memory
means that the program can accidentally destroy any location
in memory, possibly resulting in unexplained crashes or other
anti-social behavior.

e+

&
%£
F

£€
£

Thus, indiscriminate use of the large code’ and/or large data’ memory
model options for programs is not recommended.

Only .exe programs that run on PC-DOS or MS-DOS, version 2.0 or
later can use the ’large code’ or "large data’ memory model. DOS 2.x
com programs, DOS 1.1 programs, and CP/M-86 programs must use
*small code’ and ’small data’.

1.4.1 Selecting a module’s memory model

The memory model to be used by a module is selected when the
module is compiled. With the cc compiler that is in the Developer and
Commercial Aztec C86 Systems, you can explicitly select a module’s
memory model using the following compiler options:

+LC Large code, small data;
+LD Small code, large data:
+L Large code, large data.

With this compiler, if a module is compiled without the specification
of a memory model, it will have the ’small code’, ’small data’ memory
model.

With the ccb compiler that is in the Develop and Commercial
Systems, and the cc compiler that is in the Personal System, a module
always has the ’small code’, ’small data’ memory model.

For example, the following commands compile prog.c to use
different memory models;

- cc.12 -

Aztec C86 COMPILER

command memory model
cc prog small code, small data
cc +LC prog large code, small data
cc +LD prog small code, large data
cc +LC +LD prog large code, large data
cc +L prog large code, large data

Compiling a module to use the large data’ memory model just
causes the module’s data object pointers to be long pointers. In order
for the program to actually have the large data areas, it must be linked
with a ’large data’ version of c.ib, which includes a special startup
routine that sets up the program’s data areas. This is discussed below.

1.4.2 Multi-module programs

A C program contains multiple modules, which are linked together
to form the executable program. In this section we want to discuss the
relationship of the memory models that are used by a program’s
modules.

1.4.2.1 You can’t mix ’large code’ and ’small code’ modules

All modules that are linked together to form an executable program
must use the same memory model code option. That is, they must
either all use the ’small code’ or all use the ’large code’ memory model
option.

1.4.2.2 Mixing ’large data’ and ’small data’ modules

There are two characteristics to a program’s data memory model:
the maximum size of its memory-resident data areas, and the size of
pointers to data objects. As mentioned above, the former
characteristic is given to a program by the startup routine with which
the program is linked; this in turn depends on whether the program is
linked with a ’large data’ or ’small data’ version of c.Jlib. The latter
characteristic is given to an individual module when it is compiled.

Usually, you'll want a program to have either large data areas and
long data object pointers, or small data areas and short data object
pointers. And you will prefer for a program to use small data areas
and short data object pointers whenever possible, since the use of long
pointers makes a program larger and slower.

It is possible and occasionally useful, however, to mix together in
the same program modules that use different memory model data
options. This allows you to keep a program’s size down and its speed
up, by compiling most of its modules to use the ’small data’ memory
model, and by linking it with a ’small data’ version of c.lib, while still
allowing the program to directly access any location in memory, via
modules that have been compiled to use the "large data’ memory

model.

- cc.13 -

COMPILER Aztec C86

For example, if you are writing a driver that can be called by other
programs, you could place the functions that initialize the interrupt
vector table and that access the caller’s memory space in *large data’
modules and the rest of the program’s functions in ’small data’
modules.

The only requirements for a program that mixes modules that use
different data memory models are:

* It must be linked with a version of clib that uses the ’small
data’ memory model.

* When a pointer to a data object is passed between two
functions or when a global pointer is referenced by two
functions, the functions must use the same memory model
data option.

1.4.2.3. Libraries

The rules presented above concerning the mixing of modules that
use different memory models also apply when some of the modules are
in libraries. Thus, it’s possible that you may need up to four versions
of a library, corresponding to the four possible combinations of
memory model options. In a particular version of a library, all
modules must have been generated to use the same memory model
options.

For example, there are four possible versions of c.lib, whose
modules use the following combinations of memory models:

*small code’, ’small data’,
"large code’, ’large data’,
small code’, ’large data’
"large code, ’small data’ +

&¢

€&

*

Similarly, there are four possible versions of each of the other
libraries provided with Aztec C86.

For most libraries, the only difference between a ’small data’ and
"large data’ version of the library is that for the ’small data’ library the
modules are compiled to use short pointers to data objects, and for the
‘large data’ library they are compiled to use long pointers to data
objects. For c.lib, the versions also contain a different startup routine:
a *small data’ version contains sbegin, while a "large data’ version
contains lbegin. sbegin gives a program the ’small data’ memory
organization (ie, a single physical data segment), while begin gives a
program the ‘large data’ memory organization (ie, separate data and
Stack segments, and separate heap space).

The following rules define the libraries that you should use:

* Use a ’small code’ or ‘large code’ version of a library,
depending on whether your modules use ’small code’ or large
code’;

- cc.14 -

Aztec C86 COMPILER

* Use a ’small data’ version of a library if any of your modules
uses ’small data’. Use a ’large data’ version of a library only if

all of your modules use "large data’.

Since it is illegal to link together modules that use different
memory model code options, the linker will generate an error message
in this case. However, since it is legal to link together modules that
use different memory model data options, the linker won’t generate a
message in this case. Thus, you must be careful when mixing modules
that use different memory model data options, since the linker can’t
know whether it was intentional, or whether the resulting code is
correct.

There are several Aztec C86 packages available. They don’t all
provide all four memory model versions of each library. For more
information, see the Libraries section of the Technical Information
chapter and the release document.

1.4.3 Program Organization

The memory model that is selected for a program affects how the
program is organized in memory. For a discussion of this, see the
section "Program Organization" in the Technical Information chapter.

1.4.4 *large model’ versus overlays

Normally, when a program is created by the Manx Linker, the
entire program resides in memory. If you have a big program you can
select one of the large memory models for the program. The program
has then acquired the negative features noted above; in addition, the
machine on which the program is to run must have enough memory
for the entire program to reside in memory at once.

An alternative way to create the program is to partition it into
overlays. When a program is partitioned into overlays, only those parts
that are actually being executed need to be in memory at once. Thus,
a program containing overlays can be as large as needed, regardless of
the amount of memory available on the machine on which the
program is to run.

There is degradation in performance of an overlaid program
compared to a non-overlaid version of the same program, since the
overlays must be loaded into memory from disk before they can be
executed. But with judicious partitioning of the program, the affect of
the loading of overlays can sometimes be minimized.

A program cannot use both overlays and a large memory model.

1.4.5 Implementation of the memory models

The following paragraphs discuss the memory models supported by
Aztec C86 in more detail than was discussed above. You don’t need to
read this discussion in order to create programs that use a large

-cc.15$ -

COMPILER Aztec C86

memory model.

1.4.5.1 Small code

The executable code for a program that uses the ’small code’
memory model is contained in a single logical segment, and all
functions are ’near’ procedures. The CS register is set up to point to
the beginning of this segment, and is never changed. All references to
functions, such as function calls and pointers to functions, are
represented by two bytes, which contain the offset of the function
from the beginning of the code segment. These offsets are determined
when the program is linked, and hence don’t require adjustment when
the program is loaded.

1.4.5.2 Large code

The executable code for a program that uses the ‘large code’
memory model is contained in multiple logical segments, each
containing the functions declared in a single module. When a function
is active, the CS segment register points to the beginning of the
segment containing the function.

Thus, on entry to or exit from a function in a program that is using
large code option, the CS segment register must be modified. This is
not the case for programs that use the small code option. Hence,
function calls and returns are executed slightly faster for ’small code’
programs for ‘large code’ programs.

When a program uses the large code option, the address of a
function is contained in four bytes in a ’call’ instruction or in a
variable that points to a function: two bytes contain the paragraph
number of the beginning of the segment containing the function, and
the other two contain the offset of the function’s entry point from the
beginning of the segment. As noted above, function addresses are
represented by two bytes in programs using the small code option.
Hence, a program will be larger if it uses the large code option than if
it uses the small code option.

If a program uses the large code option, the paragraph numbers of
the logical segments that contain functions aren’t known until the
program is loaded. Thus, fields within a large code program that
contain function addresses (that is, function calls and variables that
point to functions) must be modified when the program is loaded into
memory. Only the paragraph number of a function reference needs to
be modified; the offset of the function within its segment is correctly
determined when the program is linked. This modification isn’t
necessary for ’small code’ programs. Hence, a program will take longer
to load if it uses the large code’ memory model than if it uses the
*small code’ memory model.

- cc. 16 -

Aztec C86 COMPILER

1.4.5.3 Small data

The data-containing sections of a program that has been linked with
a "small data’ version of c.ib are organized into a single section of
memory, as described in the Program Organization section of the
Technical Information chapter. The DS, ES, and SS segment registers
are initialized to the beginning of this block when the program is
loaded, and don’t change. Note that while ES is initialized to the same
value as DS, no Aztec function or program requires it to have a

particular value.

Data object pointers in modules that have been compiled to use the
’small data’? memory model are two bytes long, consisting of the offset
of the object from the beginning of the physical data segment. The
linker determines these offsets; hence they don’t have to be adjusted
when the program is loaded into memory.

1.4.5.4 Large data

The data-containing sections of a program that has been linked with
a ’large data’ version of c.lib are organized into three separate blocks of
memory, as described in the Program Organization section of the
Technical Information chapter.

For a ‘large data’ program, all its modules must be compiled to use
the ’large data’ memory model. This causes its data object pointers to
be four bytes long; two bytes contain the paragraph number of the
beginning of the segment that contains the item, and the other two
bytes contain the offset of the item within this segment.

When a program accesses a variable in one of the data sections
directly (that is, not via a pointer), the access is as fast when the
program uses ‘large data’ as when it uses ’small data’. This is because
the compiler-generated code knows which segment the item is in and
which segment register points to this segment, and hence can generate
code that accesses the item without having to load a segment register
with the paragraph number of the segment.

When a program accesses a variable via a pointer, the access is
Slower if the program uses large data’ than if it uses ’small data’. The
reason for this is that a “large data’ program must load a four-byte
pointer into registers, while a ’small data’ program must only load a
two-byte pointer.

If a program pre-initializes a pointer to a data item with a
declaration such as

char *cp=&a;

the pointer must be adjusted when the program is loaded into memory.
The reason for this is that the starting address of the segment
containing the pointed-at item is not known until the program is
loaded. The offset of the item within its segment is determined when

- cc.17 -

COMPILER Aztec C86

the program is linked, and hence need not be modified when the
program is loaded. For a ’small data’ program, pre-initialized pointers
to data items don’t have to be adjusted when the program is loaded;
Hence, a program will take longer to load if it uses large data’ than if
it uses ’small data’.

- cc.18 -

Aztec C86 COMPILER

2. Compiler Options

2.1 Summary of options

There are two types of options in Aztec C compilers: machine
independent and machine dependent. The machine-independent
options are provided on all Aztec C compilers. They are identified by

a leading minus sign.

The Aztec C compiler for each target system has its own, machine-

dependent, options. Such options are identified by a leading plus sign.

There is one set of 8086-specific options for the cc compiler that is
in the Developer and Commercial Aztec C86 Systems. There is

another set of 8086-specific options for the ccb compiler that is in

these systems and for the cc compiler that is in the Personal System.
In the description of options that follow, we refer to the cc compiler
that is in the Developer and Commercial Systems as the ’Optimizing
Compiler’. We refer to the ccb compiler that’s in these systems and the
cc compiler that’s in the Personal System as ’Non-Optimizing

Compilers’.

2.1.1 Machine-independent utility Options

-A Prevents the compiler from starting the assembler.

-D Defines a symbol for the preprocessor.

-] Defines an area to be searched for files specified in a
#include statement.

-O Used to specify an alternate output file.

-S Don’t print warning messages.

-T Include C source statements in the assembly code
output as comments. Each source statement appears
before the assembly code it generates.

-B Don’t pause after every fifth error to ask if the
compiler should continue. See the Errors section of
this chapter for details.

2.1.2 Table Manipulation Options

The following options allow you to specify the size of the tables
used by the compiler. They are preceded by a minus sign, indicating
that they are common to all Aztec compilers.

-E Specifies the size of the expression table.

-L Specifies the size of the local symbol table.

-Y Specifies the maximum number of outstanding cases

allowed in a switch.

- cc.19 -

COMPILER Aztec C86

-Z Specifies the size of the table for literal strings.

2.1.3 8086 options for the Optimizing Compiler

The following options are available for the optimizing compiler, cc,
that is provided with the Developer and Commercial Aztec C86
Systems.

+F Generate fast, rather than compact, code.

+C Generate compact, rather than fast, code.

+N Save register variables before all function calls, and
restore them afterwards. This option must be
specified when calling functions in modules that have
been compiled by other compilers, such as Lattice and
CI/C86.

+D Module calls Lattice-compiled function that returns a
long. The compiler will generate code to convert long
values returned by called functions to Aztec format.

+DF Module is being called by Lattice-compiled function.
The compiler will generate code to return long values
in Lattice format.

+U Convert uninitialized global variables into externs.

+R Disable register tracking between statements.

+0 Generate code for an 8086 or 8088 processor.

+] Generate code for an 80186 processor.

+2 Generate code for an 80286 processor.

+LC Generate code that uses the "large code’, ’small data’
memory model. (for more information on memory
models, see the Operator Information section of this
chapter).

+LD Generate code that uses the ’small code’, "large data’
memory model

+I Generate code that uses the ‘large code’, ’large data’
memory model

+A The module being compiled does not use ’aliases’ of
the form *ptr for a named variable when assigning
values to the variable.

+M When a statement is encountered that requires
multiplication by a constant, always use the 8086
"multiply’ instruction.

- cc.20 -

Aztec C86 COMPILER

2.1.4 8086 options for the Non-optimizing Compilers

The following 8086 options are provided for non-optimizing Aztec
C86 compilers. As mentioned above, these compilers are the cc
compiler that is provided with the Personal Aztec C86 System, and the
ccb compiler that is provided with the Developer and Commercial
Aztec C86 Systems.

+F Forces frame allocation to take place in-line rather
than through a call to a library function.

+U Same as the optimizing compilers’ +U option.
+J Generate short, rather than long, conditional jump

instructions.

- cc.21 -

COMPILER Aztec C86

2.2 Detailed description of the options

2.2.1 Machine-independent utility options

The -D Option (Define a macro)

The -D option defines a symbol in the same way as the
preprocessor directive, #de fine. Its usage is as follows:

cc -Dmacro[=text] prog.c

For example,

cc -DMAXLEN=1000 prog.c

is equivalent to inserting the following line at the beginning of the
program:

#define MAXLEN — 1000

Since the -D option causes a symbol to be defined for the
preprocessor, this can be used in conjunction with the preprocessor
directive, #ifdef, to selectively include code in a compilation. A
common example is code such as the following:

#ifdef DEBUG
printf("value: %d\n", i);

#endif

This debugging code would be included in the compiled source by
the following command:

cc -dDEBUG program.c

When no substitution text is specified, the symbol is defined as the
numerical value, one.

The -I Option (Include another source file)

The -J option causes the compiler to search in a specified area for
files included in the source code. On MSDOS and PCDOS, the area is a
directory on a drive; on CP/M-86, it’s a user area on a drive.

The name of the area immediately follows the -I, with no
intervening spaces. For example, on MSDOS and PCDOS, the
following defines directory \source\inc on drive b: as a search area:

-Ib:\source\inc

On CP/M-86, the area consists of (1) optionally, a user number and
Slash, (2) optionally, a drive id. The user number defaults to the
current user number, and the drive defaults to the default drive. For
example, the following defines user 8 on drive c: as a search area:

-I8/c:

For more details, see the Compiler Operating Instructions, above.

- cc.22 -

Aztec C86 COMPILER

The -S Option (Be Silent)

The compiler considers some errors to be genuine errors and others
to be possible errors. For the first type of error, the compiler always
generates an error message. For the second, it generates a warning
message. The -S option causes the compiler to not print warning
messages.

2.2.2 Table Manipulation Options

The compiler has several memory-resident tables in which to store
information about a program it is compiling. Some of these tables are
used to keep track of the symbols defined within the program, and
some as a "scratch pad" for temporarily storing information.

The compiler uses the following tables: macro/global symbol table,
local symbol table, label table, string table, expression work table, and
case statement work table.

The sizes of these tables are determined when the compiler starts.
For all tables except the macro/global symbol table, the size can be
specified by the user with a command line option; if the user doesn’t
specify the size of one of these tables, the compiler sets it to a default
value.

The macro/global symbol table is located in memory above all the
Other tables. Its size is set after all the other table sizes have been set,
so that it uses all the rest of available memory. Hence, the user can’t
set the size of this table.

If a table overflows, the compiler will print an error message and
stop. If any table except the macro/global symbol table overflowed, the
compilation can be restarted, using a different size for the table which
overflowed. If the macro/global symbol table overflowed, the
compilation can be restarted, using smaller sizes for one or more of the
other tables.

2.2.2.1 The Macro/Global Symbol Table

This table is where macros defined with the #define statement are
remembered. It also contains information about all global symbols.

If this table overflows, the message

Out of Memory!

will be printed.

2.2.2.2 The Local Symbol Table and the -L Option

New symbols can be declared after any open brace. Most
commonly, a declaration list appears at the beginning of a function

body. The symbols declared here are added to the local symbol table. If
a variable is declared in the body of, say, a for loop, it is added to the
table. When the compiler has finished compiling the loop, that entry in

- cc.23 -

COMPILER Aztec C86

the table is freed up. And when it has finished the function, the table
will be empty.

The default size of the table is 40 entries. Since each entry
consumes 26 bytes, the table begins at 520 bytes. If the table overflows,
the compiler will send a message to the screen and stop.

The number of entries in the table can be adjusted with the -L
option. The following compilation will use a table of 75 entries, or
almost 2000 bytes:

cc -L75 program.c

2.2.2.3. The Expression Table and the -E Option

This is the area where the "current" expression is handled. It is the
compiler’s work space as it interprets a line of C code. The various
parts of the line are stored here while the statement is being compiled.
When the compiler moves on to the next expression, this space is again
freed for use.

The default value for -E is 80 entries. Each "entry" in the table
consumes 14 bytes in memory. So the expression table starts at 840
bytes. Each operand and operator in an expression is one entry in the
expression table-- another fourteen bytes. The term, "operator",
includes each function and each comma in an argument list, as well as
the symbols you would normally expect (+, &, ~, etc.). There are some
other rules for determining the number of entries an expression will
require. Since they are not straightforward and are subject to change,
they will not be discussed here.

The following expression uses 15 entries in the table:

a= b+ function(a+ 7, b, d) * x

Everything is an entry except for the ")", including the commas which
separate the function arguments.

If the expression table overflows, the compiler will generate error
number 36, "no more expression space."

This command will reserve space for 100 entries (1400 bytes) in the
expression table:

cc -E100 filename

The option must be given before the filename. There can be no space
between the option letter and the value.

2.2.2.4 The Case Table and the -Y Option

When the compiler looks at a switch statement, it builds a table of
the cases in it. When it "leaves" the switch statement, it frees up the
entries for that switch. For example, the following will use a maximum
of four entries in the case table:

- cc.24 -

Aztec C86 COMPILER

Switch (a) {
case 0: /* one */

at= 1;
break;

case 1: /* two */
switch (x) {
case ’a’: /* three */

funcl (a);
break;

case ’b’: /* four */
func2 (b);
break;

} /* release the last two */

case 3: /* total ends at three */
func2 (a);
break:

}

The table defaults to 100 entries, each using up four bytes. If the
compiler returns with an error 76 ("case table exhausted"), you will
have to recompile with a new size, as in:

cc -Y100 file

2.2.2.5 The String Table and the -Z Option

This is where the compiler saves "literals", or strings. The size of
this area defaults to 2000 bytes. Each string occupies a number of bytes
equal to the size of the string. The size of a string is just the number
of characters in it plus one (for the null terminator).

If the string table overflows, the compiler will generate error 2,
"string space exhausted". The following command will reserve 3000
bytes for the string table:

cc -Z3000 file

- cc.25 -

COMPILER Aztec C86

2.2.3 8086 options for the Optimizing Compiler

The +F Option (Generate Fast Code)

The +F option causes the compiler to select code sequences that
yield the fastest possible execution time, even at the cost of increased
program size.

The +C Option (Generate Small Code)

The +C option causes the compiler to select code sequences that
yield the smallest resultant program size, even at the cost of reduced
execution speed.

The +N Option (Foreign Functions)

The +N option causes the compiler to generate code for function
calls that saves registers that contain register variables before issuing
the function call and that restores the registers afterwards.

This option is not needed when calling functions that are in
modules that have been compiled by Aztec C, since such modules
preserve the caller’s register variables.

It’s only. needed when calling functions that are in modules that
have been compiled by other C compilers, such as Lattice and CI/C86,
if those functions don’t preserve register variables,

The +D Option (Lattice Interface)

The +D option must be specified for modules that call Lattice-
compiled functions that return a long int. It causes the compiler to
generate code that fetches the returned value from the registers in
which Lattice-compiled functions return long ints, (AX and BX) rather
than from those in which Aztec-compiled functions return long ints
(AX and DX). This option need not be used when calling CI/C8&6-
compiled functions that return longs, since they return longs in the
same registers as Aztec C86-compiled functions.

If this option is specified when compiling a module, all functions
called by the module that return a long must return the value in AX
and BX. That is, the module can’t call both Lattice-compiled functions
and Aztec C86-compiled functions that return longs.

The +DF Option (Lattice Interface)

The +DF option must be specified when compiling a module
containing a function that returns a long, and that will either be called
by a Lattice-compiled function or be called by a function that has been
compiled with the Aztec compiler using the +D option. The option
causes the compiler to return the long value in the registers in which
the Lattice function will expect to find it (AX and BX) rather than the
registers that Aztec C86-compiled functions normally use (AX and
DX).

- c¢.26 -

Aztec C86 COMPILER

The +0, +1, and +2 Options (Processor Selection)

The +0, +1, and +2 options define the type of processor for which

the compiler is to generate code:

option processor
+0 8086/8088
+1 80186
+2 80286

If these options aren’t specified, the cc compiler that is supplied
with the Developer and Commercial Aztec C86 Systems will generate
code for the 8086/8088 processors.

The +R option (Forget Registers)

The +R option causes the compiler to forget the contents of
registers between statements. If the +R option is not used, the
compiler will track contents of registers throughout each user function,
attempting to minimize register reloads.

The +U Option (Globals to Externs)

The +U option converts global variables into externs. For example,
if a program is compiled with the +U option, int 7 outside any function
becomes extern int i. This option is useful when compiling modules
that will be linked with the MS-DOS/PC-DOS linker.

The universal way of defining a global integer, i, is to have the
statement, int i, in one file and the statement, extern int i in all other
program files in which the variable is used. The int 7 is a "definition" of
the variable since it causes space to be reserved in memory for the
variable. The extern causes no memory to be reserved; it says, "This
variable is defined somewhere else but it is going to be used in this file
of the program."

When using the Aztec assembler and linker, the only requirement is
that a global variable must be defined at least once. So in this example,
it is also possible to have int i in every file; the "extern" keyword is not
extremely significant in this case. Although there may turn out to be
more than one global int i in the program, memory will be allocated for

just one. This is also the behavior under UNIX.

The situation is slightly different when employing the MS-
DOS/PC-DOS linker. In this case, a global variable must be defined
exactly once. That is, extern int i must appear in every declaration
except one, which must be an int i. This is where the +U option 1s
useful. By specifying it for all but a single source file, you will not
have to worry about having too many or not enough externs; the
"externs" can be left off entirely since they will be tacked on under the
+U option.

- €C.27 -

COMPILER Aztec C86

A global initialization is immune to the +U option. Hence, int i = 3;
is unchanged by it. Initializing a global variable to zero will cause it to
be ignored by +U. This is one means for forcing a data definition
when using this option.

The +a option

The +a option tells the compiler that, in the module being
compiled, there are no assignments of the form

*otr= ...

where pir is a pointer to a named variable. With this information, the
compiler can generate better code for the module.

For example, suppose a module contains the declarations

int i, *ip;

The following assignment is allowed in a module that’s compiled with
the +a option:

i= 1;

But if ip points to the named variable i, the following assignment
prevents the module from being compiled with the +a option:

*ip=1;
A module can be compiled with the +a option and still contain

assignments of the form *ptr=... providing that ptr doesn’t point to a
named variable. For example, if pir points to an element of a
statically- or dynamically-allocated array, the assignment of values to
the array elements using statements of the form *ptr=... do not
preclude the compilation of the module using the +a option.

As implied by the above paragraph, statically-allocated arrays are
not considered to be named variables; hence, values can be assigned to
their elements using *ptr=... or a/i]=... statements without preventing
the compilation of the module with the +a option.

Structures, whether statically- or dynamically-allocated, are also not
considered to be named variables. Thus, the following statements do
not prevent the module from being compiled with the +a option:

struct xx s, *sp;
sp=&s;
*sp=...:

The compilers normally track registers, that is, remember that a
register contains a constant or the value of a named variable, so that
they don’t unneccessarily generate code to load a register with a
constant or variable whose value is already in a register. The
compilers also assume by default that an assignment of the form *ptr=
may assign a value to a named variable. Because they can’t know the

- cc.28 -

Aztec C86 COMPILER

named variable, if any, that such an assignment affects, they must,
upon encountering such an assignment, forget the contents of all
registers that they thought contained values of named variables.

When a module is compiled with the +a option, the compilers
assume that assignments of the form *ptr= don’t affect the values of
named variables. Thus, they can generate better code, since they need
not forget that a register contains the value of a named variable when
they encounter a *ptr=... assignment.

The +m option

When the compiler encounters a statement that requires
multiplication of a value by a constant, it will normally either generate
code that performs the operation by a sequence of 8086 ’shift’? and
’add’ instructions, or generate an 8086 ’multiply’ instruction, with the
choice depending on the number of instructions in the sequence (if six
or fewer instructions, use the sequence, otherwise use the multiply
instruction). A ’shift/add’ sequence executes faster than the ’multiply’
instruction, but requires more code.

The +m option causes the compiler to always generate a ’multiply’
instruction, thus resulting in code that executes slower but that is
smaller.

Like +m, the +c option also causes the compiler to always generate
a "multiply’ instruction when a non floating point value needs to be
multiplied by a constant. However, the +c option also causes the
compiler to generate other code that reduces code size at the expense
of increased execution time, including the following: at the beginning
of a function, it generates a call to an internal subroutine, rather than
in-line code, that performs function initialization; when a switch
Statement is encountered, it generates a call to an internal subroutine,
rather than generating in-line code, that process the switch.

For some programs, such as those that perform lots of operations
on arrays of structures, the generation of a multiply’ instruction than a
*shift/add’ sequence to process multiplication of a variable by a
constant can dramatically decrease the size of the program, and is
worth the increased execution time; the decreased code size caused by
the other +c selections, on the other hand, are not deemed worth the
increased execution time. For such programs, the +m option was
invented.

2.2.4 8086 options for the non-optimizing compilers

The +F Option (Generate fast code)

The +F option for the non-optimizing C86 compiler causes
function entry code to be generated in-line. Normally, every compiled
C function begins with a call to a routine in club. This option replaces
this call with the equivalent code.

- cc.29 -

COMPILER Aztec C86

This results in a small savings in execution speed every time the
compiled function is called. If the function is called repeatedly, the
savings can add up to a large difference in the execution time of the
program. As a side effect, this option will slightly increase the size of
the compiled code.

The +J Option (Generate short branches)

The +J option for the non-optimizing C86 compiler, which must be
used with care, causes the compiler to generate code that is somewhat
faster and smaller, by creating short conditional jump instructions
rather than long. By default, the compiler generates long conditional
jumps.

A short jump can jump to an instruction within approximately 128
bytes of itself, whereas a long jump can jump to any instruction within
the code segment.

The 8086 and 8088 don’t actually have a long conditional jump
instruction, so the compiler simulates one with a ’codemacro’
instruction consisting of a short conditional jump, and a long
unconditional jump.

This option cannot be used with all programs: it will sometimes
create programs that cannot be linked. The reason for this is that the
compiler, when it generates a short jump instruction, doesn’t know if
the destination of the jump is within range of the jump or not.

Short jumps which are out of range can be detected by the Manx
assembler (backward jumps only), the linker, or the sqz utility.

So, use this option with care: if your program links, all short jumps
were within range; otherwise, go back and recompile the unlinkable
modules without the +/ option.

The +U Option (Globals to Externs)

The +U option is the same for both the non-optimizing and
optimizing Aztec C86 compilers. See its description in the section on
options of the optimizing compilers for details.

- cc.30 -

Aztec C86 COMPILER

3. Writing programs

The previous sections of this chapter discussed operational features
of Aztec C86; that is, presented information that an operator would
use to compile a C program. In this section, we want to present
information of interest to those who are actually writing programs to
be compiled with Aztec C86.

3.1 Supported language features

Aztec C86 supports the entire C language as defined in The C
Programming Language by Kernighan and Ritchie. This now includes
the bit field data type.

It also supports additional features, as described below.

3.1.1 Preprocessor statements

Aztec C86 supports the following preprocessor statements, all of
which begin with a #.

3.1.1.1 Macros

A macro is a symbol that has an associated character string. When
the compiler is reading a C source file and encounters a macro name,
it replaces the name with its associated string.

Basic definition and use of macros

A macro can be defined in two ways: from within a C source
program, using the #define preprocessor statement; and from the
command that starts the compiler, using the -D option.

The #define statement within a C program defines a macro. This
statement has the form

#define name string

where name is the name of the macro and string is its associated string.
When the preprocessor subsequently encounters the string name in the
source, it replaces it with the associated string, string.

For example, the following code defines the macro named
MAXFILE. The declaration of table then creates an array of 8
integers.

#define MAXFILE 8

int table[MA XFILE]
The compiler option -D is used to define a macro in the command

line that starts the compiler. This option has the form

-Dname=def

where name is the name of the macro, and def is its associated string.
When a macro is defined in this way, spaces are not allowed in

- cc.3l -

COMPILER Aztec C86

-Dname=def; this entire string must be passed to cc as a single
argument.

The =def part is optional; if not given, a string containing the
single character "1" is associated with name.

For example, the definition of MAXFILE could have been made
with the following command:

cc -DMAXFILE=8 prog

where prog.c is the name of the file being compiled. And if
MAXFILE was to be assigned a value of 1, the compiler could have
been started with either of the following commands:

cc -DMAXFILE=1 prog
cc -DMAXFILE prog

Macros having parameters

A macro can have named parameters. A macro having parameters
is defined within a C program with a statement of the form

#define name(parm1.,,...,parmx) string

This statement defines a macro named name that has arguments,
associating with it the string string. When the preprocessor encounters
the string name(argl.,...,argx) it replaces the string with string: in the
process, it performs parameter substitution, replacing every occurrence
of parm! in string by arg1, and so on. |

In the definition, no spaces are allowed between the name of the
macro and the (. Spaces are allowed in string.

For example, the following code first defines a macro named abs
that computes the absolute value of its argument. It then uses this
macro to compute the absolute value of the expression a+b.

#define abs(x) ((x) > 0 ? (x) : -(x))

y = abs(at+b):

As with parameterless macros, parameterized macros can also be
defined in the command that starts the compiler. The syntax is the
same; namely |

cc -Dname=def prog

As with parameterless macros that are defined with the -D option, the
entire -Dname=def string must not contain any spaces.

Thus, the abs macro that was defined above using the #de fine
statement could also be defined when the compiler is started using the
statement

- cc.32 -

Aztec C86 COMPILER

cc -Dabs(x)=((x)>0?(x):-(x)) prog

where prog.c is the name of the file to be compiled.

Undefining macros

Macros can be undefined from within a C program, with the
Statement

#undef name

where name is the name of the macro being undefined.

More features of macros

This section discusses several additional features of the definition
and use of macros.

* A macro name can be any valid C name.

* When the compiler finds the beginning of a symbol name in a C
source file, it reads the entire name before checking to see if the
name is a macro. For example, consider the following code:

#define a 3
#define b 4
#define ab 56
int y=ab;

This creates the integer variable y; it’s initialized to 56, not 34.

* Macros can be defined in terms of other macros.

Thus, the following statements

#define a y
#define ba
int b;

causes an integer variable named y to be defined.

* Macro expansion doesn’t occur in #define or #undef statements.

For example, consider the following statements:

#define a y
#define ba
#undef a
int b;

This example causes an integer variable named a to be created If
macro expansion occurred when 5 was being defined, the name of
the created variable would have been y.

* Macro names are not recognized in character constants or quoted

strings during the processing of normal C statements.

- cc.33 -

COMPILER Aztec C86

For example,

#define a 12345
char y[]="a";

creates a character array named jy, initializing it with the string "a",
and not with the string "12345",

Macro names are not recognized in character constants or quoted
strings during macro definition.

Thus,

#define b 123
#define a "b"
char y[]=a;

creates a character array named y, initializing it with the string "b",
and not to "123",

* Macro parameters are recognized and substituted in a macro’s
associated string, even when the parameters are in character
constants or quoted strings.

For example,

#define b(a) "a"
char y[] = b(123);

creates a character array named y, initializing it to "123".

* A macro must not be defined when an attempt is made to define it
in a #define statement.

For example, the following statements generate an error:

#define ab
#define ac

while these don’t:

#define a b
#undef a
#define ac

3.1.1.2 Conditional compilation statements

Aztec C86 supports several preprocesssor statements that makes the
compilation of blocks of statements conditional.

The simplest use of the conditional compilation statements is to
begin the block with one of the #if... statements and end it with the
#endif statement. For example, in the following code the block of
Statements within the #ifdef and #endif statements will be compiled if
and only if the symbol DEBUG has been defined:

- 0.34 -

Aztec C86 COMPILER

#ifdef DEBUG
/* the block goes here */
/* it’s compiled only if DEBUG is defined */
#endif

You can also have one or another block be compiled, depending on
specified conditions, using the #else statement:

#ifdef LARGE

/* this block compiled only if LARGE is defined */
#else

/* this block compiled only if LARGE is not defined */
#endif

Those are the two basic conditional compilation constructs. These
constructs can be nested, in which case an #else will pair up with the
nearest preceding #i/....

The following paragraphs define the different forms of #if...
statements.

#ifdef nae

This statement causes the block which follows to be compiled
only if the symbol name is defined. The definition could have
been made using the #de/fine statement or using the compiler’s
-D option. If mame was defined, and then later undefined by
#unde f, the block won’t be compiled.

#ifndef name

This statement causes the block of statements that follows to be
compiled if the symbol name is not defined. The definition of
name that would cause the block to not be compiled could have
been made using the #de/fine statement or using the compiler’s
-D option. If the symbol was defined, and then later undefined
by #undef, the block will be compiled.

#if expression

This statement causes the block of statements which follows to be
compiled if and only if the expression evaluates to non-zero.
expression must be built from constant integer values. All binary
non-assignment C operators, the ?: operator, the unary operators
-, !, and ~ are allowed in expression. Their precedence is the
same as for normal C statements.

For example, the following code will be compiled only if the
symbol MAXFILES is defined and has a value greater than 5:

- c¢.35 -

COMPILER . Aztec C86

#if MAXFILES > 5

/* code to be compiled if MAXFILES > 5 */

#endif

3.1.1.3. More preprocessor statements

In addition to statements for defining and undefining macros and
for making the compilation of statements conditional, the preprocessor
Supports several other statements. These statements are discussed in
this section.

#include <filenarre>

#include "filename”

Causes the contents of filename to be read and compiled. For
more information on this statement and on the places that the
compiler searches for the file, see the description on include files
in section | of this chapter.

#line line__number “filename”

Causes the compiler to think that the line number of the next
line to be compiled is line__ number, and that the name of the file
being compiled is filename. If "filename" is not given, the
current file name is unchanged.

#asm and #endasm

Aztec C86 allows C programs to contain in-line assembly
language source. The assembly language code begins and ends
with the preprocessor directives #asm and #endasm, respectively.

When the compiler encounters a #asm statement, it copies
lines from the C source file to the assembly language file that it’s
generating, until it finds a #endasm statement. The #asm and
#endasm statements are not copied.

While the compiler is copying assembly language source, it
doesn’t try to process or interpret the lines that it reads. In
particular, it won’t perform macro substitution.

A program that uses #asm ...#tendasm must avoid the
following placing in-line assembly code immediately following an
if block; that is, it should avoid the following code:

- cc.36 -

Aztec C86 COMPILER

if (...){

}
#asm

#endasm

The code generated by the compiler will test the condition and if
false branch to the statement following the #endasm instead of to
the beginning of the assembly language code. To have the
compiler generate code that will branch to the beginning of the
assembly language code, you must include a null statement
between the end of the if block and the asm statement

if (...){
i

#asm

#endasm

3.1.2 More features

In addition to the preprocessor statements described above, Aztec
C86 supports several language features that aren’t described in the K &
R text.

Structure assignment

Aztec C86 supports structure assignment. With this feature, a
program can cause one structure to be copied into another using the
assignment operator.

For example, if sJ and s2 are structures of the same type, you can
Say:

Sl = s2;

thus causing the contents of structure sl to be copied into structure s2.

Unlike other operators, the assignment operator doesn’t have a
value when it’s used to copy a structure. Thus, you can’t say things
like "a = b = c", or "(a=b).fld" when a, b, and c are structures.

Line continuation

If the compiler finds a source line whose last character is a
backslash, \, it will consider the following line to be part of the current

line, without the backslash. For example, the following statements
define a character array containing the string "abcdef":

- cC.37 -

COMPILER Aztec C86

char array[]="ab\
cd\
ef";

The void data type

Functions that don’t return a value can be declared to return a void.
This provides a safety check on the use of such functions: if a void
function attempts to return a value, or if a function tries to use the
value returned by a void function, the compiler will generate an error
message.

Variables can be declared to point to a void, and functions can be
declared as returning a pointer to a void.

Unlike other pointers, a pointer to a void can be assigned to a
pointer to any type of object, and vice versa. For other types of
pointers, the compiler will generate a warning message if an attempt is
made to assign one pointer to another, when the types of objects
pointed at by the two pointers differ.

That is, the compiler will generate a warning message for the
assignment statement in the following program:

main()

char *cp;
int *ip;
ip = Cp;

The compiler won’t complain about the following program:

main()

char *cp;
void *getbuf();
cp = getbuf();

Special symbols

Aztec C86 supports the following symbols:

__FILE____ Name of the file being compiled. This is a
character string.

___LINE___ Number of the line currently being
compiled. This is an integer.

___FUNC Name of the function currently being
compiled. This is a character string.

In case you can’t tell, these symbols begin and end with two
underscore characters.

- cc.38 -

Aztec C86 COMPILER

For example,

printf("file= %s\n", FILE);
printf("line= %d\n", LINE);
printf("func=%s\ n", FUNC

3.1.3 Special features

The following features are supported by Aztec C86, but not by any
of the UNIX C compilers.

String merging

The compiler will merge adjacent character strings. For example,

printf("file="_ FILE __" line= %d func=" ___FUNC __,
___LINE ss);

Long names

Symbol names are significant to 31 characters. This includes
external symbols, which are significant to 31 characters throughout
assembly and linkage.

Reserved words

const, signed, and volatile are reserved keywords, and must not be
used as symbol names in your programs.

Global variables

Aztec C supports the rule of the standard C language regarding
global variables that are to be accessed by several modules. This rule
requires that in the modules that want to access such a variable, exactly
one module declare it without the extern keyword and all others
declare it with the extern keyword. _

Previous versions of Aztec C did not strictly enforce this rule when
the Aztec linker Jn was used to link programs. In these versions, the
following modified version of the rule was enforced:

* multiple modules could declare the same variable, with the
extern keyword being optional:

* when several modules declared a variable without using the
extern keyword, the amount of space reserved for the variable
was set to the largest size specified by the various
declarations;

* when one module declared a variable using the extern
keyword, at least one other module must declare the variable
without using the extern keyword:

* at most one module could specify an initial value for a global
variable;

* when a module specified an initial value for a global variable,
the amount of storage reserved for the variable was set to the
amount specified in the declaration that specified an initial

- cc.39 -

COMPILER Aztec C86

value, regardless of the amounts specified in the other
declarations.

In order both to enforce the standard C rule regarding global
variables and to provide compatibility with previous versions of Aztec
C, the current Aztec linker will generate code consistent with the
previous versions, but will by default generate a "multiply defined
symbol" message when multiple modules are found that declare a
global variable without the extern keyword. The -M linker option can
be used to cause the linker to treat global variables just as they were in
previous versions of Aztec C; in this case, the "multiply defined
symbol" message won’t occur when several modules declare the same
variable without the extern keyword, as long as no more than one
specifies an initial value for the variable. If multiple modules declare
an initial value for the same variable this message will be issued,
regardless of the use of the -M option.

Both previous and the current versions of Aztec C prevent a global
symbol from being both a variable name and a function name. When
such a situation arises, the linker will issue the "multiply defined
symbol" message, regardless of the use of the -M option.

If you have programs whose modules follow the modified version
of the rule regarding global variables, and you either want to link the
modules using the Aztec linker without having to specify the -M linker
option and without having the "multiply defined symbols" message
appear, Or you want to link the modules using the PCDOS/MSDOS
linker, the compiler’s -U option can be useful. When a module is
compiled with this option, all the declarations of global variables that
don’t specify an initial value are implicitly turned into extern
declarations. Thus, you can place the declarations of a program’s
global but uninitialized variables into one file, place #include
statements for that file in the modules that need those variables, and
compile one of the modules without the -U option, and the others with
it.

There are three assembly language directives that create globally-
accessible variables: public, which causes a variable that is defined in
the module using a db, dw, or dd directive to be made globally-
accessible; global, which both creates a variable in the uninitialized
data area and makes it globally accessible; and extrn, which permits a
module to access a variable that is defined in another module using
public or global. When the Aztec compiler encounters a declaration of
a variable outside a function, it generates a global, public, or extrn
directive for the variable, depending on the declaration and on
whether the compiler was started with the +U option:

* A global directive is generated if the declaration doesn’t
specify an initial value for the variable, and the declaration
doesn’t specify the extern keyword, and the +U option isn’t

- cc.40 -

Aztec C86 COMPILER

used.

* A public directive is generated if the declaration specifies an
initial value for the variable.

* An extrn directive is generated if the declaration declares the
variable to be an extern, or if the +U option is used.

For a discussion of global variables in assembly language terms, see
the discussion of globally-accessible variables in the Programmer
Information section of the Assembler chapter.

3.2 Data formats

3.2.1 char

Variables of type char are one byte long, and can be signed or
unsigned. By default, a char variable is signed.

When a signed char variable is used in an expression, it’s converted
to a 16-bit integer by propagating the most significant bit. Thus, a char
variable whose value is between 128 and 255 will appear to be a
negative number if used in‘an expression.

When an unsigned char variable is used in an expression, it’s
converted to a 16-bit integer in the range 0 to 255.

A character in a char is in ASCII format.

3.2.2 pointer

Pointer variables are either two or four bytes long, depending on

the memory model that the program is using.

Function pointers are two bytes long if the program uses the ’small

code’ memory model option, and four if it uses "large code’.

Pointers to data items are two bytes long if the proram uses the
*small data’ memory model option, and four if it uses "large data’.

3.2.3 int, short

Variables of type short and int are two bytes long, and can be signed
or unsigned.

A negative value is stored in two’s complement format. A -2 stored
at location 100 would look like:

location contents in hex
100 FE
101 FF

3.2.4 long

Variables of type long occupy four bytes, and can be signed or

unsigned.

- cc.41 -

COMPILER Aztec C86

Negative values are stored in two’s complement representation.
Longs are stored sequentially with the least significant byte stored at
the lowest memory address and the most significant byte at the highest
memory address.

3.2.5 float and double

Variables of type float are represented in 32 bits, and those of type
double are represented in 64 bits. They are in standard 8087 format.

3.3 Floating Point Exceptions

Floating point operations are performed either by an 8087 co-
processor or by software, depending on the version of mlib with which
a program is linked.

If software routines perform the calculations, the routines check for
overflow, underflow, and division by zero. When the software floating
point functions return to the caller, the global integer flterr indicates
whether an exception has occurred, as follows:

flterr value returned meaning
0 computed value no error has occurred
1 +/- TINY VAL underflow
2 +/- HUGE VAL overflow
3 +/- HUGE VAL division by zero

The symbols HUGE_VAL and TINY VAL are defined in the file
math.h.

When an 8087 performs floating point calculations, floating point
exceptions are not detected, and flterr is not used.

3.4 Writing machine-independent code

The Aztec family of C compilers are almost entirely compatible.
The degree of compatibility of the Aztec C compilers with v7 CG,
system 3 C, system 5 C, and XENIX C is also extremely high. There
are, however, some differences. The following paragraphs discuss
things you should be aware of when writing C programs that will run
in a variety of environments.

If you want to write C programs that will run on different
machines, don’t use bit fields or enumerated data types, and don’t pass
Structures between functions. Some compilers support these features,
and some don’t.

3.4.1 Compatibility Between Aztec Products

Within releases, code can be easily moved from one
implementation of Aztec C to another. Where release numbers differ
(i.e. 1.06 and 2.0) code is upward compatible, but some changes may
be needed to move code down to a lower numbered release. The
downward compatibility problems can be eliminated by not using new

- cc.42 -

Aztec C86 COMPILER

features of the higher numbered releases.

3.4.2 Sign Extension For Character Variables

If the declaration of a char variable doesn’t specify whether the
variable is signed or unsigned, the code generated for some machines
assumes that the variable is signed and others that it’s unsigned. For
example, none of the 8 bit implementations of Aztec C sign extend
characters used in arithmetic computations, whereas all 16 bit
implementations do sign extend characters. This incompatibility can be
corrected by declaring characters used in arithmetic computations as
unsigned, or by AND’ing characters used in arithmetic expressions
with 255 (Oxff). For instance:

char a=129;
int b;
b = (a & Oxff) * 21;

3.4.3 The MPU... symbols

To simplify the task of writing programs that must have some
system dependent code, each of the Aztec C compilers defines a
symbol which identifies the machine on which the compiler-generated
code will run. These symbols, and their corresponding processors, are:

symbol processor
MPU68000 68000
MPU8086 8086/8088
MPU80186 80186/80286
MPU6502 6502
MPU8080 8080
MPUZ80 Z80

Only one of these symbols will be defined for a particular compiler.

For example, the following program fragment contains several
machine-dependent blocks of code. When the program is compiled for
execution on a particular processor, just one of these blocks will be
compiled: the one containing code for that processor.

#ifdef MPU68000
/* 68000 code */

#else
#ifdef MPU8086

/* 8086 code */
#else
#ifdef MPU8080

/* 8080 code */
#endif
#endif

#endif

- cc.43 -

COMPILER Aztec C86

3.5 Using long pointers

A pointer is either two or four bytes long: a two-byte pointer is
called a ’short pointer’, and a four-byte pointer is called a "long
pointer’. A program’s function pointers will be short or long,
depending on whether the program’s modules use ’small code’ or "large
code’. Similarly, a module’s pointers to data objects will be short or
long, depending on whether the module uses ’small data’ or "large data’.

There are several things of which you should be aware when using
long pointers:

* You must explicitly specify the passing of a long pointer
between functions, because of the difference in size of ints
and long pointers.

* Normally, you can use long pointers in expressions just as you
would a short pointer. However, if you create unusual data
objects, or access data objects in unusual ways, your program
may not behave as you expect.

These topics are discussed in the following sections.

3.5.1 Passing pointers between functions

This section presents rules that a program should follow when
passing pointers between functions. These rules should be followed by
all programs, whether they use short or long pointers; that way, if a
program uses a small memory model, you can easily convert it to a
large memory model.

* Declare functions that return pointers

If a function returns a pointer, a module that calls the function and
the function itself should say so. Otherwise, the compiler will assume
that the function returns an int, which is a two-byte value. If the
called function returns a small pointer, the resulting program will
work, since small pointers are also two bytes long. But if the called
function returns a long pointer, the program won’t work, since long
pointers are four bytes long.

For example, the following code correctly specifies that the
function f() returns a char pointer:

char *cp, *f();

cp = f();
“cp = ’a’;

If the declaration char *f() was omitted, the program would work if f()
returned a short pointer, but if it returned a long pointer the
assignment cp=f() will set the segment component of cp to an incorrect
value (to be specific, it sets it to a 16-bit value generated by
propagating the most significant bit of the offset returned by f()). The

- c¢.44 -

Aztec C86 COMPILER

statement *cp=’a’ then will set ’a’ somewhere within the operating
system, and the operating system will probably crash mysteriously at

some later time.

* Declare function arguments that are pointers

If a pointer is passed as an argument to a function, the function

should say so.

If it doesn’t, the compiler will assume that the argument is a two-
byte int. This assumption will do no harm, and the program will work,
if the function is passed a short pointer, but if it’s passed a long
pointer, the program won’t work.

For example, consider the following function, f(), which is passed a
character pointer and an integer.

f(cp,i)
char *cp; int i;

{
Int a=1;

x(cp,5);

}
Suppose that the declaration char *cp was missing. If the module
containing f() used short data pointers, the function would behave
correctly. But if it used long data pointers, the assignment a=
wouldn’t work, because the compiler-generated code’s idea of the
location of i would be incorrect. And the function call x(cp,5) would
pass only the offset part of cp, which would result in x() not being able
to access whatever cp pointed at, and in x() not being able to correctly
access its second argument.

* Declare constant pointers to functions

If a constant pointer is passed to a function, the caller should cast
the constant to be a pointer. Otherwise, as usual, the call will be
correctly done if a short pointer is passed, but not if a long pointer is
passed. :

For example, a null pointer should be passed to the function f() as
follows:

f((char *) 0);

If it was passed using the statement f(0), the call would pass only two
null bytes instead of four. This would be all right if a short pointer
was to be passed, but not if a long pointer was needed.

Within stdio.h is the definition

#define NULL (void *) 0

You should not use NULL to pass a null function pointer, since NULL

- cc.45§ -

COMPILER Aztec C86

is a null pointer to a data object. If you do, and the program uses
"large data’ and ’small code’ or ’small data’ and "large code’, an
incorrect number of bytes will be passed. The following statement
creates the symbol NULLFP that can be used as a null function
pointer:

#define NULLFP (int (*)()) 0

3.5.2 Expressions involving long pointers to data objects

There are several facts about a large data’ program that allows the
compiler to give the program special characteristics that make it
smaller and faster than it would otherwise be. These facts are:

* Long pointers are in segment/offset form, with the most
significant word of a long pointer containing the starting
paragraph number of a segment that contains the referenced
object, and the other word containing the offset of the object
from the beginning of the segment.

* The maximum size of a data object, such as an int, array,
Structure, union, or a buffer that is allocated by one of the
Aztec functions, is 64K bytes. This is also the maximum size
of a physical segment.

* When a call is made to one of the Aztec functions to
dynamically allocate a buffer, the function returns the long
pointer in ’canonical form’, in which the offset component is
between 0 and 15.

* Any field within a standard data object can be accessed by
manipulating just the offset component of the object’s base
address.

The special characteristics that the compiler gives to a large data’
program because of these facts are described below.

* Long pointer arithmetic doesn’t affect the segment number

When a long pointer is used in an expression, the value of which is
another pointer, the resultant pointer points at an object that is in the
same physical segment as the pointer that’s in the expression.

In other words, when an integer is added or subtracted from a long
pointer, the arithmetic is performed using just the offset portion of the
original pointer; the segment portion of the resultant pointer is the
same as that of the original pointer.

Since a data object can’t occupy more than a single physical
segment, and since C does not approve of a program’s generating the
address of one data object from that of another, this characteristic of
"large data’ programs should be satisfactory for most programs.

- €c.46 -

Aztec C86 COMPILER

For programs that need data objects that are bigger than 64K bytes,
and that need to move a pointer around within the entire object, see
below.

* Subtraction of two long pointers doesn’t use their segment numbers

When two long pointers are subtracted, the compiler assumes that
the pointers reference objects that are in the same physical segment,
and that the segment components of the two pointers are the same.
The compiler then generates code that subtracts just the offset
components of the pointers, and not on their segment parts.

Here are some things things relating to the subtraction of long
pointers of which you should be aware:

* The number of bytes between locations referenced by two
long data pointers can be determined by directly subtracting
the pointers (that is, by saying something like cpl - cp2) only
if the locations are in the same data object (and it’s a standard
data object) or if the locations are either both in the
program’s physical data segment or both in the program’s
physical stack segment.

For other cases, you can subtract two long pointers by (1)
calling the function _ ptrdiff or by (2) converting the pointers
to absolute addresses, using the ptrtoabs function, and then
directly subtracting the absolute addresses.

* When two long pointers reference fields in the same
dynamically-allocated buffer, you can compare them by
directly subtracting them and testing the resultant value. You
can’t do this if they reference fields in different dynamically-
allocated buffers.

* If you allocate a non-standard data object that is bigger than
64K bytes, you can’t compute the number of bytes between
two arbitrary locations in the object by simply subtracting
pointers to the locations.

See below for an example of a program that accesses fields
within a buffer that’s bigger than 64K bytes.

* Pointer comparisons sometimes compare the segment numbers

When two pointers are compared, the compiler assumes that the
pointers reference objects that are in the same physical segment, and
that their segment components are the same, if one of the pointers is a
constant or is generated by taking the address of a variable. In this
case, the compiler-generated code compares just the offset components
of the two pointers.

For example, the code generated for the following expression
compares just the offsets of the pointers:

- cc.47 -

COMPILER Aztec C86

char *cp;
int i, af 10);

if (&ali] < cp)

If two pointer variables are compared, the compiler makes no
assumptions about the segments in which the referenced objects reside.
In this case, the compiler generates code that first compares the
Sscgment components and then, when neccessary, compares the offset
components.

For example, the code generated for the following expression
compares first the segment numbers and then the offset components of
the pointers:

char *cpl, *cp2:

if (cpl < cp2)

If the segment component of cpl is less than that of cp2, the
comparison is true. If it’s greater than that of cp2, the comparison is
false. If it’s equal, then the value of the comparison depends on the
relationship of the offset components.

The code generated by the compiler to compare two pointer
variables is suitable for most programs. However, if your program
itself manipulates the segment component of a pointer variable, you
must be careful when you compare the value of that variable to other
pointer variables.

3.5.3 Creating and accessing huge arrays

Aztec C86 provides several functions that allow a program to easily
access arrays that contain more than 64K bytes. These are:

function purpose
ptrtoabs convert long ptr to absolute address
abstoptr convert absolute address to long ptr
__ptradd add a long value to a long pointer
__ptrdiff subtract two long pointers

An absolute address is a 20-bit value that uniquely defines a
location in memory. Thus, one way to use these functions to access
the elements of a huge array is to keep the address of the element
being accessed in absolute format, converting it to pointer format only
when necessary. For example, the following program, which uses the
large data memory model, dynamically allocates a 100K-byte array and
then goes into a loop, calling the function process to process each word
of the array.

- cc.48 -

Aztec C86 COMPILER

void *abstoptr(),*sbrk();
long ptrtoabs();
long bv, lv, ev;
unsigned seg, off;
main()

{
bv=ptrtoabs(sbrk(0)); /* get ptr to array */
if ((brk(abstoptr(bv+100000))) /* allocate array */

exit(3); /* exit if array can’t be allocated */
ev = bv+100000; /* end of array */
for (lv=bv; Iv<ev; Iv +=2)

process(abstoptr(Iv));

}
To allocate a 100K-byte buffer, the program has to be somewhat

devious, since the normal buffer-allocation functions can’t allocate

buffers that are bigger than 64K bytes. It first calls sbrk to get the

pointer to the current top of allocated heap space. It converts this

pointer to a 20-bit absolute address, adds 100,000 to this address to get

the ending address of the 100K-byte buffer, converts the ending

address to a segment/offset pointer, and calls brk to set the top of

allocated heap space to this address.

The program could also have used the __ptradd function instead of
abstoptr and ptrtoabs, but this would have been a little less efficient,
since the addition of a value to a long pointer takes longer than the
addition of the value to a long int.

- cc.49 -

COMPILER Aztec C86

4. Error checking

Compiler errors come in two varieties-- fatal and not fatal. Fatal
errors cause the compiler to make a final statement and stop. Running
out of memory and finding no input are examples of fatal errors. Both
kinds of errors are described in the Errors chapter. The non-fatal sort
are introduced below.

The compiler will report any errors it finds in the source file. It
will first print out a line of code, followed by a line containing the
up-arrow (caret) character. The up-arrow in this line indicates where
the compiler was in the source line when it detected the error. The
compiler will then display a line containing the following:

* The name of the source file containing the line;
* The number of the line within the file:
* An error code;
* A message describing the error;
* The symbol which caused the error, when appropriate.

The error codes are defined and described in the Errors chapter.

The compiler writes error messages to its standard output. Thus,
error messages normally go to the console, but they can be associated
with another device or file by redirecting standard output in the usual
manner. For example,

cc prog errors sent to the console
cc prog >outerr errors sent to the file outerr

The compiler normally pauses after every fifth error, and sends a
message to its standard output asking you want to continue. The
compiler will continue only if you enter a line beginning with the
character ’y’. If you don’t want the compiler to pause in this manner,
(if, for example, the compiler’s standard output has been redirected to
a file) specify the -B option when you start the compiler.

The compiler is not always able to give a precise description of an
error. Usually, it must proceed to the next item in the file to ascertain
that an error was encountered. Once an error is found, it is not
Obvious how to interpret the subsequent code, since the compiler
cannot second-guess the programmer’s intentions. This may cause it to
flag perfectly good syntax as an error.

If errors arise at compile time, it is a general rule of thumb that the
very first error should be corrected first. This may clear up some of
the errors which follow.

The best way to attack an error is first to look up the meaning of
the error code in the back of this manual. Some hints are given there
as to what.the problem might be. And you will find it easier to
understand the error and the message if you know why the compiler
produced that particular code. The error codes indicate what the

- cc.50 -

Aztec C86 COMPILER

compiler was doing when the error was found.

-cc.51 -

COMPILER Aztec C86

- cc.5§2 -

Aztec C86

cc

COMPILER

New Options for CC

The following options have been added to the compiler, cc.

“nN

+S

+b

As of release 3.4A, the compiler defaults to collecting
information needed by the linker to create the .dbg file for
the source level debugger. The -n option tells the compiler
not to collect and save this information thus resulting in an
increase in compilation speed.

This option tells the compiler to put string constants in the
code segment. This option is useful if you are creating
ROMable code.

This option tells the compiler to put out code to check for
stack overflow. If a stack overflow occurs, a ’stack overflow,
raise stack size’ message will be output. This message is
contained in a module, _ stkover, in c.lib that can be
modified by the user if different behavior is desired.

cc-ap. | v3.4a

COMPILER Aztec C86

v3.4a cc-ap.2 cc

Aztec C86 C Driver

NAME

c - c driver

SYNOPSIS

c [options] file! [file2 file3 ...] [-Imylibl -Imylib2 ...]

DESCRIPTION

The driver is designed to compile, assemble and link using one
command. You can specify a single file, multiple files, or a file which
contains a list of files that are to be compiled, assembled and linked
together to create one executable file. Filenames can optionally
specify multiple files, using the "wildcard" characters (? and *). The
name of the executable is derived by taking the first file specified and
appending .exe unless you use the -o linker option.

The actions taken by the driver are dependent on the options given
and on the filenames and extensions.

* A .c extension will cause the file to compiled, assembled, and
linked.

* A .asm will cause the file to be assembled and linked.

* A .o will cause the file to be linked only.

Specifying the library names to the linker is optional. The c library,
c.lib, will always be linked in with the appropriate memory model
version based on the options to the compiler. For example, typing the
following line:

c foo.c fum.asm

will cause the driver to compile and assemble foo, assemble fum, link
both programs together with c.lib and create an executable called
foo.exe.

To compile and link using the large code, large data model, and the
math library, you would type the following:

c +1 foo.c fum.asm -lm

will cause the driver to compile and assemble foo, assemble fum, link
both programs together with cl.lib and mLlib and create an executable
called foo.exe. This assumes that fumasm has been previously
compiled using the large model option. If not, a mixed model error
will result.

If you have more than one file that must be compiled, and/or
assembled, and linked to create an executable, you could use the -/
option. This option allows you to include a file containing the names

of the modules desired. For example, to include a file filelist and link
in the graphics library:

C Driver Aztec C86

c -f filelist -lg

OPTIONS

1. Driver Options

-f file

-C

Read command arguments from file.

Don’t invoke the linker.

2. Compiler Options

-1

-Z

+]

+lc

+ld

Prevents the compiler from starting assembler.

Don’t pause after every fifth error.

Defines a symbol for the preprocessor.

example: -dmaxlen=100 prog.c

Specifies the size of expression table.

example: -e100

Defines an area to be searched for files specified in a
#include statement.

example: -ib:urceinc

Specifies the size of the local symbol table.

example: -L200

Do not collect source level debugger information.

Don’t print warning messages.

Include c source statements in the assembly code
output as comments.

Specifies the maximum number of outstanding cases
allowed in a switch.

example: -y100

Specifies the size of the table for literal strings.

example: -z100

Generate code that uses the ‘large code’,‘large data’
memory model

Generate code that uses the ‘large code’,‘small data’
memory model

Generate code that uses the ‘small code’,‘large data’
memory model.

Aztec C86

-B addr

-C addr

-D addr

a)

C Driver

3. Linker Options

When linking a DOS .com file, set the program’s base
address to the hex value addr.

When linking an .exe program that will be burned into
ROM, set the starting paragraph number of the
program’s code segments to the hex value addr.

When linking an .exe program that will be burned into
ROM, set the starting paragraph number of the
program’s data segments to the hex value addr.

Enables the collection of source level debugger
information for all files listed after it on the command
line. (This information is put into a .dbg file.)

Search the library name.lib for needed modules.

Don’t issue symbol’
messages.

‘multiply defined warning

Don’t abort if there are undefined symbols.

Write executable code to the file named file.

Disables the collection of source level debugger
information for all files listed after it on the command
line.

Tell DOS not to load the program unless at least size
bytes is available for its stack and heap.

example: -S 400 1.e. 400 is hex value.

Generate a symbol table file (for DB).

When linking a DOS .com file, set the starting offset
of the program’s uninitialized data segment to the hex
value addr.

Be verbose.

Tell DOS to allocate memory to the program so that
the program doesn’t have more than size paragraphs
for its stack and heap.

example: -x 400 1.e. 400 is hex value.

C Driver Aztec C86

THE ASSEMBLER

- as.l -

ASSEMBLER Aztec C86

Chapter Contents

The ASSEMDIerccssscccsssssesscssescecsscececsscecessccecssssssscscsssececesscecessssseceseceecs as
1. Operating IMStructiONns wou... cccscccessscccessscesecsccsscccecsseccecseeceseeees 5

1.1 The Source File wow ccccccccssssccssssscessccsscccsssssecescsececscssnrenees 5
1.2 The Object Code File woo. cccccscecssccssscssccssseceseessscessseseeees 6
1.3 The Listing File wo... icici ccssscsssccscsccecssescessececsssecessscccecsececeseeees 6
1.4 Searching for ’include’ Files wo... cece cccscccsssceceseccccessscecesecees 6

2. ASSEMbler Optionse ee cesesssssccsssssssccssessscececessrrscccecsserscceseecseeners 9
3. Programmer Information oo. cecccecssceccssccecsccececsccecessccecetscees 10

3.1 SYNTAX woe eeecsssssssscssscesssscessscccscsssscesessccscscescececesceeecessecscsens 10
OAM) 2 0010.0) cre 1]
3.3 SEGMENTATION ou... cececscesscesssssscccscessccessscssssssssscscesescesesessescecsees 13

3.3.1 The SEGMENT and ENDS Directives0....ccc00 13
3.3.2 Multiple Definitions for a Segment ..0....... cece eeeseeeeee 14
3.3.3 Nested Segment occ cccsccssscsssscsssecessccsssccecsececscceeseasenees 14
3.3.4 The Default Segment woe cece ccceccecsccesescecesescnees 15
3.3.5 The ASSUME Directive wo... cesssceceesscecesesecceceecnace 15
3.3.6 Using the Uninitialized Data Segment0. 16

3.4 Globally-accessible Symbols oo... ceesccscessecececcecessccecesscees 16
3.4.1 The PUBLIC Directive woe lc ceccccccessscccssescecenseees 16
3.4.2 The GLOBAL Directive wo cceesccccecsceccccessssssceceees 17
3.4.3 The EXTRN Directive oii ceccccccccessccecessccecessscesenscees 17
3.4.4 Interactions of GLOBAL, PUBLIC, and EXTRN 18

3.5 Operands and EXpreSSI0scccccscsssccccccssssssscecscccccescecesssseees 19
3.5.1 ReQisters oo... sccssssssessscscsscsssssccscescssscssssceessescessscesssceceeceees 19
3.5.2 Immediate Operands i ecesssecccscsscccecessrsccesessececeens 19
3.5.3 Memory Operands o........ccccscsscccsscscsssccecesssscccececenstecececeees 20
3.5.4 Operand Expressions .0.........cccccccccssscccescessccecscsscccesecsccscees 23
3.5.5 The Arithmetic Operators .o...c....cccccccccccesssscssccecessssseccceces 23

HIGH and LOW oiuwiiiccccccccscsccccssscccsscececsccecsssscssessccesstercesenees 23
Addition and Subtraction wicciccccccescccsssccssscsscessececeeceseeees 23
Multiplication and Division wie. ccescccceccccecscecsccccssecsece 23
The Shift Operators oo. sccsccccsscscccssssccsstsccesesscscssssesenecs 24
The Relational Operatorscccsccecccsscecccssccccesscecesssscceeeees 24
The Logical Operatorscccccccsccccssscessscescececssssccececsseceeerers 24

3.5.6 Attribute-overriding Operators oo... ccecescseccssececeeceees 25
SELMENE OVETTIAES o..cceccecccccsssessssscscsscecssescescececscsscecescecesesscees 25
PTR oiiiieececcccccsssseccecssesssccececsecscscssssssescessssssesescesssssssscesesessceeeceees 25
NS) (0) 0 27

3.5.7 Attribute-value Operators 0... ce ccccccsscccsscececcecssceceees 27

6S 0 A 2]
SEG wiececcccssssscccsssscecsssscsccssssescssscscscsssesessssscsscssecsscssssaecsssssccesseens 28

Aztec C86 ASSEMBLER

OFFSET ou...eececcsssscssssssssscscsscsssccssecscesssssscscscsesscesssssscessceseceeeceees 28
TYPE wii cecsccssscecsstecessccessecccesssssssssscsssssesssseccessesceecsseeersacsons 29
LENGTH. oii. ceccsscssscescecssessccsscesscsccscccssscessecscesscesseceseeereceass 29
SIZE wieeccccsssssecsssceccecsssscccesssscssessssccssssecscsssscssceccceseacecescecesceess 29

3.5.8 Operator Precedence ooui.....eeececcccsssccececessccosessscececscceceseees 30
3.6 IMStructiONs cc scsessssscscescssecsscssececcecsecesscessscescseccessccessecssceass 30
3.7 DIT€CtIVESceccsessessscssessssscssscseceececacencecascacccaecsessascsscsesceasecnscases 31

ASSUMEcccecssssssssccssessecsscessscssscsecssscsscscsscssccessecscseacesaeceseecaueaass 3]
BSS oe eeessesssssssssessesscescesecessessssssesscsccescsccessscascacecaecacensceeacsensenssensenacs 31
DB, DW, and DD weil ccscscsccccsececescscecsscessccessssccessscsereceens 32
END. oun eccessssccsssessceeceeccescsssscesnsesescsesssccesescsesesacescsesscesnceascesaecaseaees 34
FQU ooeeeccccssssscsscssccseesceseecsscsssssssscscsccscscsesscscesceeceescesaceauecsesasensces 35
= essscsssssccecsseesesssssssssnssscessscececstessesesseseessssesecssecsceceseecessseecesesesaces senses 36
EVEN ue. .ceecesccssscsssceceeesssssssesssccssscsccssascsaceceecececessacensccssaececseceasacsacs 36
EXT RN uu. ecsscessceseccessesceessscessscsssccseccsscecececseeesscesecceceesecaecenseenars 37
GLOBAL ce ceccesssssessssssssscsscssccsscsssscaccaceccssccessesacssccsscscessessssenses 37
GROUP. oun. .eeeecessesssessesscsssssscsscssceseccscescceacecaecececressseaccesceesssuaeenecaacs 37
INCLUDE unc c cc ccsccsscsesscssvssscsscssccssesscsscessceecescesacencecsesasensens 37
LABEL oe eecccssscssecssseccscssscscssssssccseecsscscsscsssceseacessececacsseaeceenceeaes 38
LARGECODE ou... ccccccssssscessssssscccsssscccsccesscessecessccscssesececeesacsass 38
MOD 186 uu... eeecsssssccsssesscecsscsccssccsscecscscesscessacesuecesceessessccensecsueess 39
NAME oe cecsscssscsscecsssesceessscecssssssccecscsssscsesecesessecessscesseesessceeseenacs 39
©) <n 39
PROC and ENDP. uuu... ccccssccscssccscccsssscecesccessscescsesacsssceseccesceees 39
PUBLIC 0.0... cecceccsscssscsscessssscsssssessecssessecesescesscascacssscensesncesseenacaaes 42
RECORD. oo. ceccsccssssssscsscsssssvescsscsscseccessscecaseacescssscessssccescnscsascaacsaes 42
SEGMENT. ou... ccccsscssessesscsscsscsssssssesscsssscsesesccessesesssesesecsuccassnessesees 44

3.8 Macro Directivesccccscsscscscsccescseccescsssssscesccsccescssessccsseees 44
3.8.1 Local Symbols wove cessccssceccessecssccescessececcsseessccescseeees 46
3.8.2 Concatenating Parameters to Textccccccccsscsccscessceeee: 47
3.8.3, Concatenating Parameters to Parameterscccccce. 48
3.8.4 Parameter Substitution in Quoted Stringsc..8. 49
3.8.5 Passing a Symbol’s Value to a Macrocccceccssssesceeees, 50
3.8.6 Passing Comma-containing Parameters to a Macro 50
3.8.7 Nesting Macro .u...cccccscsscsssccscsscssscessseccssscsscessccssceescesses 51
3.8.8 Repeatedly Assembling a Block of Statements 53
3.8.9 Summary of the Macro Directivescccccccccsscssessesesseee, 56

ENDM. oo cccsccsscccsecsssecceessssecsssssesesssccsceessscesscesssccesseceaaecesse ces 56
EXITM un. cecessscessecsssessessssesssssssccscecescsssssecsscsessesensecestecesseens 56
IRP oe cccsseccssessscecsssecssseessescsssssssccessscesscceceseecescscesescecensececseees 56
TRPC oo ececsssssscssscessecssescceussscscsscsseccssessecscsssscesescesesessecesesereaeens 56
LOCAL. uuu eccsessscessecsssecseecsscoccssssacesscceseessssscssceceaeceneecessesnsneens 56
MACRO) 0... cccsesssscsscecsssccessececessssecsssccessececesceceseccessaceceusecenseees 56
PURGE oon eccccscssscsssesssesssssssssscsssscsssssscesessscceccessscescceussseesueces 57
REPT occ ccssessscecsscsssecscecsscecsssssssosseceseecessecsscesssesetseecaaecesseees 57

3.9 Conditional Directives wc csssessccsssesccceseseecscsessesessees 57
TF ee eesccssccesssessssessssecssessscecsssscsssccssscessscessaceseseecessccecenseceatecesseees 58
TEE oo cesccsscssssessccessecseessssessscecsecssscceecsssssessscssesesseseacecesescesseees 59

ASSEMBLER Aztec C86

LE .u..ccccceccccccessssssssscccscsssssccccsscecsssssssececsscccscsccecceccececsssssssacasoceceess 59
LE 2cccccsccccccessscssssccccscsssseccecescsccssssssscecesessessenscecececessnssseceosesssees 59
| 5) D)) 59
TENDERcccccssccccsccccecccssssscscscccsscsscscecccecccccscscecesescesseeseseeeees 59
TFB ouu.cccecccccccsssssssscccscscsssscccccccssssscsssceccescscsseccccecececessssseananacessens 59
TENB.ccccccecesscsccscsccscssssscccccecsssscsscsescescssccesacaceacceceesssensessacsonses 59
TFIID ou... .ccceccsssscccccccsccsssssscccccsssscssceccseecececsssccceccccesessesssssceoeees 60
TFDIPF .oicc.c...cceccsssssscccccscscscccccccscescssssccccccsssssscceccescececessssssanacaeeseess 60
ELSE uu .eccccccccccssssssesccscscssssscccccecssscsscsccccessscsscssnensscescesseseessnaceeeees 60
ENDIF .0........ccccsccsccccssssssscceccssscssscccceccessscscnscseccescesessssesnceececesseees 60

3.10 COGEMACTOScccccccccccccsccsscsssccsssssssssscscescecccccecessessecescecesoreaessseees 60
3.10.1 Specifiers ou... cccsssccscssccssrccsssscessssecesssccesscsscessesessssessess 62
3.10.2 Modifierscccccccccccecccseccccccccccccccseseccecescecrecsecescesesssseeees 63
3.10.3 Range Specifierscccsccssscercesseceseesessesesessssessssenseces 63
3.10.4 The Codemacro Directives woiciicccccccccccccscecesseeseeeseees 64

SEGFIX o.ccccccssscssscecessssssssscceccsscssscccscscecscscsccsecececesssssssananeaeees 64
NOSEGFLIX oieecccccccccccsssssccccscsscsssscccccscossscnseeccescecseessnseceeeeceseeses 65
MODRM. ccesscssscccccssssssssccccecscscesscscececccessssseececececeseseseeeenaes 65
RELB oiiiee....cccecscsccsccccecesecscccccccesssscsscccssecsccsssscceceececesseessnsnseseeees 66
RELW uiii...cccssscsssccccsssssscccccccsscssscccccccscsscsscccecesessscessssesnseceesesceees 66
DB, DW, and DD. oo. ceccssecscsscececsnsececessccessssecsesesseeseesonseees 66
User-defined Record Directives ce cecsscssssessssecececenees 67

3.10.5 The Dotshift Operator ou... cccsscscecccrcececessssessrsrseeenees 67
3.10.6 The PROCLEN Symbol ccc csssccccessssnneccesessesseeeeees 68
3.10.7 Matching Codemacros to Instructionseeeeeeeeee 69

- as.4 -

Aztec C86 ASSEMBLER

The Assembler

This chapter describes the Manx AS assembler. It has three
sections; the first describes how to operate the assembler, the second
describes the assembler’s options, and the third contains information of
interest to those writing assembly language programs.

1. Operating Instructions

The assembler is activated by entering on the command line:

as [-options] filename.asm

where [-options] specify optional parameters and filename.asm is the
name of the file to be assembled.

The assembler reads assembly language source statements from the
input file, translates them to relocatable object code, and writes the
result to another file. The assembler can optionally write a listing to a
third file.

The following paragraphs describe the input and output files and
the assembler options.

1.1 The Source File

The source file name can either specify the disk drive containing
the file or not. If it’s not specified, the assembler assumes the file is on
the default drive.

1.1.1 Source files on MSDOS and PCDOS

On MSDOS and PCDOS, the source file name can optionally
specify the directory containing the file. By default, it’s assumed to be
the current directory on the specified drive. For example, for the
following command the assembler looks for filename.asm on drive a:,
directory \ assem\ src:

as a:\assem\src\ filename.asm

and for the following, the assembler looks for filename.asm on the
current directory of the default drive:

as filename.asm

1.1.2 Source files on CP/M-86

On CP/M-86, the source file name can optionally specify the user
area containing the file. It defaults to the current user area on the
default drive. The format of a CP/M-86 filename is defined in the
compiler chapter. For example, with the following command the

- as.5 -

ASSEMBLER Aztec C86

assembler will look for subs.asm on user 9, drive d:

as 9/d:subs.asm

The user number defaults to the current user and the drive defaults to
the default drive.

The -ZAP option causes the assembler to delete the source file
when it finishes. This option is used by the compiler, when it creates a
temporary file containing assembler source and then starts the
assembler.

1.2 The Object Code File

The name of the file to which the compiler writes object code to
the file specified by the -O option; if this option isn’t used, the
assembler chooses the name and location of the object file.

When the -O option isn’t used, the object file is created on the
same drive and directory (for MSDOS or PCDOS) or user area (for
CP/M-86) as the source file. The object file name is the same as the
source file name, with the extension changed to .o.

When the -O option is used, the object file name follows the -O,
with spaces between the -O and the file name. The file name can
specify the drive and/or the directory (for MSDOS and PCDOS) or
user area (for CP/M-86). For example, the following will assemble
subs.asm and send the object code to subs.o86:

as -o subs.086 subs.asm

1.3 The listing file

The -L option causes the assembler to create a file containing a
listing of the program being assembled. The file is on the same drive
and directory (for MSDOS and PCDOS) or user area (for CP/M-86) as
the object code file. It’s name is the same as that of the object code
file, with the extension changed to .Jst.

1.4 Searching for include files

You can make the assembler search for include files in a sequence
of areas, thus allowing source files and include files to be contained in
different areas. For DOS, an ’area’ is a directory on a drive; for
CP/M-86, it’s a user area on a drive.

Areas can be specified with the -I assembler option, and, on
MSDOS and PCDOS, with the INCLUDE environment variable. The
assembler itself also selects a few areas to search. The maximum
number of searched areas is eight.

If the file name in the include directive specifies a drive id, user
area, or path, only the single area specified in the statement is
searched.

- as.6 -

Aztec C86 ASSEMBLER

1.4.1 The -I option.

A -I option defines a single area to be searched. The area descriptor
follows the -I, with no intervening blanks.

1.4.1.1 The -I option on MSDOS and PCDOS

On MSDOS and PCDOS, the -I option looks just like you’d expect:

-Ib:\incfiles

defines the directory \incfiles on drive b:.

1.4.1.2 The -I option on CP/M-86

On CP/M-86, the area descriptor following the -I consists of (1) an
optional user number followed by a slash, and (2) an optional drive
identifier. For example, the following defines user area 5 on drive c:

-I5/c:

The user number is optional, and defaults to the current user number:

-Id:

defines the current user area on the d: drive. The drive id is also
optional, and defaults to the default drive:

-14/

defines user area 4 on the default drive.

1.4.2 The INCLUDE environment variable.

On MSDOS and PCDOS, the INCLUDE environment variable also
defines directories to be searched for include files. This variable has
the same format as the PATH environment variable. That is,
something like the following, which defines three areas to be searched:

set INCLUDE=b:\incl;c:\cc\inc2;a:

1.4.3 The search order for indude files

1.4.3.1 The search order on MSDOS and PCDOS.

On MSDOS and PCDOS, directories are searched in the following
order:

1. The currrent directory on the default drive is searched.

2. The directories defined in -I options are searched, in the
order listed on the command line.

3. The directories defined in the INCLUDE environment
variable are searched, in the order listed.

1.4.3.2 The search order on CP/M-86.

On CP/M-86, user areas are searched in the following order:

- as.7 -

ASSEMBLER Aztec C86

The current user area on the default drive is searched.

2. The directories specified in -I options are searched, in the

order listed on the command line.

3. If the current user number isn’t zero, user area 0 on the

default drive is searched.

4. If the default drive isn’t A:, and if the A: drive is logged in,

that is, has been accessed, user area 0 on the A: drive is

searched.

- as.8 -

Aztec C86 Options ASSEMBLER

2. Assembler Options

The assembler supports the following options:

-O objfile Send object code to ob jfile.

-ZAP

-186

-Sn

-L

Delete the source file after assembling it.

Enable generation 80186-specific
instructions.

of code for

Make ’n’ squeeze passes through the file, converting
long branch and jump instructions to short. If this
option isn’t used, the assembler makes just two passes
through the file, and doesn’t squeeze the code.

Defines an area to be searched for files specified in a
#include statement. For more information, see the
Operating Instructions section of the Assembler
chapter, above.

Send a program listing to a file. All statements in a
macro expansion that actually generate code are listed.
The name of the file is derived from that of the file to
which the object code is sent by changing the
extension to ’.Ist’.

Send a listing to a file. All statements in a macro
expansion are listed, including those that aren’t
actually assembled due to their inclusion in a
conditional block whose condition is false. The name
of the file is derived in the same way as for the -L
option.

Send a listing to a file. The statements in a macro
expansion aren’t listed. The name of the listing file is
derived in the same way as for the -L option.

Same as -L, except the listing is sent to the console.

Same as -LA, except the listing is sent to the console.

Same as -LS, except the listing is sent to the console.

Don’t list false conditionals. If this option is specified
and if the assembler is generating a listing, it won’t list
statements whose assembly is conditional, if their
condition is false.

-Dsym[=const]
Creates the symbol sym, assigning it the constant const.
If =const isn’t specified, sym is assigned the value 1.

- as.9 -

ASSEMBLER Programmer Information Aztec C86

3. Programmer Information

as iS a relocating assembler: it translates an assembly language
program into relocatable object code, which must then be converted
into executable machine code by a linker. You can use either the
Aztec /n linker or, after feeding the object module through the Aztec
obj utility, the standard PC-DOS/MS-DOS link linker.

as supports many of the features of the PC-DOS/MS-DOS masm
assembler, including all the standard 8086 and 80186 instructions,
macros, conditional assembly, global symbols, and many of the masm
directives.

as allows a program to be partioned into segments in a manner that
is similar yet different from the segmentation supported by masm.

as also supports codemacros in a manner similar to that supported
by Intel’s own 8086 assembler. This feature allows you to create your
own assembly language instructions.

The remainder of this section discusses the following topics:

* Syntax, which describes the syntax of assembly language
statements.

* Symbol, which describes the attributes of symbol names.
* Segmentation, which describes how you divide an assembly

language program into segments.
* Global symbols, which describes how an assembly language

module accesses symbols in other modules.
* Operands, which describes the operands to instructions and

directives, and the operators that can be used to construct
operand expressions.

* Instructions, which discusses the instructions supported by the
assembler.

* Directives, which discusses the directives supported by as,
except for those related to macro definition, conditional
assembly, and codemacro definition.

* Macros, which describes as’s support for macros.
* Conditional Assembly, which describes how to partition an

assembly language program into blocks whose assembly
depends on certain conditions being met.

* Codemacros, which describes how to create your own assembly
language instructions.

3.1 Syntax

An assembly language program consists of a sequence of statements.
Each statement is on a single line, which can contain up to 256
characters. There are two types of statements: instructions, which are
translated into machine code, and directives, which pass information to
the assembler.

- as.10 -

Aztec C86 Language Syntax ASSEMBLER

A statement has the form:

name operation operand, operand ‘comment

where:

* name is the name of the statement.
* operation 1s the name of the instruction or directive that the

assembler is to perform for the statement.
* The operand fields are expressions, separated by commas, that

the assembler is to perform the operation on.
* comment is a comment, which the assembler ignores, that you

use to describe the statement.

A particular statement may not need all the fields described above.
For example, a statement can contain just a comment. And the
Statement

ret

contains just the operation field: ret is the name of the 8086 return
instruction.

The fields in a statement can be separated by blanks or tabs, and
don’t have to begin in specific positions on a line.

Symbol names

A symbol name can be built up from the alphabetic characters A
through Z; the numerical digits 0 through 9; and the following special
characters: ? @ _ §$. The first character in a name must not be a digit.

For symbols that are used as statement names, the assembler
distinguishes between upper and lower case characters. For other
symbols (instruction and directive names, etc), the assembler doesn’t
care about the case of the alphabetic characters in the symbol. For
example, a statement that contains the 8086 return instruction could be
coded in any of the following forms:

ret

Ret

RET

And the following statements create two distinct symbols as variable
names: Byar and bvar.

Bvar db 10
bvar db 10

A symbol can contain as many characters as desired. However,
only the first 63 are significant.

3.2 Symbols

The as assembler has a very small instruction set; in fact, there are
fewer instruction mnemonics than there are 8086 machine

- as.11 -

ASSEMBLER Symbols Aztec C86

instructions. Most instruction mnemonics can generate any of several
hardware instructions; the assembler uses attributes of an instruction’s
operands to decide which hardware instruction to generate.

For example, there are several different hardware instructions for
moving data around. There is just one instruction mnemonic for
moving data around, mov, and the assembler uses the attributes of the
operands to a particular mov instruction to decide which hardware
move instruction to generate.

When a symbol is defined, the assembler will store its name and its
attributes. Then, when the symbol is used in an instruction, the
assembler will recall the symbol’s attributes. There are several operand
operators that allow you to obtain or to override the attributes of a
symbol. These are discussed in the Operands section of this chapter.

One of the attributes of a symbol is its type. This can specify a
constant, which is an absolute number; a variable, which refers to a
data item in memory, or a label, which refers to a memory location
that can be called or jumped to.

Variables

Another attribute of a variable or label is its segment, which is the
starting paragraph number of the segment in which the symbol is
defined.

A variable or label also has an o ffset attribute, which is the distance
in bytes from the symbol to the beginning in memory of the segment
in which it is defined.

There are several types of variables. They are:

* byte - a one-byte data item.

* word - a two-byte data item.

* dword - a four-byte data item.

A variable is defined using one of the data definition directives db,
dw, dd, bss, global. or using the label directive.

Labels

There are two types of labels:

* near - represents a label that will be accessed by a ’near’ call or
jump instruction. For such an instruction, the instruction and
the target label must lie in the same physical code segment.
When a ’near’ call or jump is made, the contents of the IP
register are set to the offset of the label from the beginning of
the physical segment containning it, and the CS segment
register is unchanged.

~ as.12 -

Aztec C86 Symbols ASSEMBLER

* far - represents a label that will be accessed by a ’far’ call or
jump instruction. For such an instruction, the instruction and
the target label need not be in the same physical code
segment. When a ’far’ call or jump is made, both the IP and
the CS registers are changed.

A label is defined in the following ways: (1) in the name field of an
instruction, followed by a’:’; (2) using a proc directive; (3) using a label
directive.

3.3 Segmentation

as allows a module’s code and data to be partitioned into three
segments: a code segment, which contains the program’s executable
code and, optionally, data; an initialized data segment, that contains
data but no code, and an uninitialized data segment, which contains
uninitialized variables.

Variables in a module’s initialized data segment can be defined to
have an initial value, if desired. When a program is loaded, initialized
variables in this segment will assume their specified values: variables
whose initial value depends on where the program is loaded will be set
by the loader; other initialized variables will have been preset by the
linker. The initial value of uninitialized variables in this segment is
indeterminate.

When a linked program begins execution, variables in its
uninitialized data segment will automatically be cleared.

When modules are linked together, all the modules’ initialized data
segments are appended one to another, as are the modules’
uninitialized data segments. The two resulting segments will reside in
the same physical segment, the maximum size of which is 64K bytes.
If the program was linked to have the ’small data’ memory model, the
two data segments will share the physical segment with the program’s
stack and heap. If the program was linked to have the ’large data’
memory model, the two data segments will have the entire physical
segment to themselves; the program will have a separate stack segment,
and it will use as much space above the program as needed for its heap.

When modules are linked together, the code segments of the
modules that use the ’small code’ memory model (that is, that don’t
contain the largecode directive) will be appended one to another into a
single physical segment, the maximum size of which is 64K bytes. The
code segments of modules that use the "large code’ memory model will
each occupy its own physical segment, whose maximum size is 64K.
bytes.

3.3.1 The SEGMENT and ENDS Directives

The segment and ends directives surround a sequence of statements
and define the segment that is to contain the code and data generated

- as.13 -

ASSEMBLER Program Segmentation Aztec C86

for the statements. The directives have the form

segname segment [align-type] [combine-type] [’cname’]

Segname ends

segname is the name of the segment into which the surrounded
code and data is to be placed. This can be either codeseg or dataseg, to
specify the code segment or initialized data segment, respectively.

The align-type operand specifies on what type of boundary in
memory the segment will be located. It can have one of the following
values:

* para - Paragraph alignment. The segment will be on a
paragraph boundary; that is, it will begin at a byte whose
address is divisible by 16 (ie, an address whose least
significant hexadecimal digit is 0). If align-type isn’t
specified, the segment will have para alignment.

* byte - Byte alignment. The segment can start at any location.
* word - Word alignment. The segment must begin at a byte

whose address is even. See the even directive.
* page - Page alignment. The segment must begin at an address

whose least significant two hex digits are 00.

The combine-type operand is provided for compatibility with other
8086 assemblers, and has no effect on the as assembler. If specified,
this operand must have one of the following values: public, common,
stack, memory, at expr.

The ‘cname’ operand is also provided for compatibility with other
8086 assemblers, and has no effect on the as assembler. If specified,
this operand must be a character string, surrounded by single or double
quotes.

3.3.2 Multiple definitions for a segment

You may open and close a segment using the segment and ends
directives within a module as many times as you want. All parts of
such a segment will be joined together by the assembler.

3.3.3 Nested segments

The assembler allows segments to be ’nested’; that is, one segment
can be opened and closed using the segment and ends directives while
another is still open. The assembler will separate the code and data for
the two segments so that the one won’t be imbedded in the other when
the program is actually in memory.

For example, the following code nests dataseg within codeseg:

- as.14 -

Aztec C86 Program Segmentation ASSEMBLER

codeseg segment

wes ;begin assembling into codeseg
dataseg segment

wes sassemble into dataseg
dataseg ends

wee ;continue assembling into codeseg
codeseg ends

The assembler will extract the data defined in dataseg so that dataseg
won’t be contained in codeseg when the program is loaded into
memory.

When a segment is nested within another, the nested segment must
be closed before the other segment is closed. For example, the
following is an error:

codeseg segment

dataseg segment

codeseg ends
dataseg ends

3.3.4 The default segment

If a program contains statements that aren’t within an open
segment, the generated code will be placed in codeseg.

3.3.5 The ASSUME Directive

The assume directive identifies to the assembler the segments that
are pointed at by segment registers. It has the form:

assume seg-reg:segname [,Seg-reg:segname ...]

The assembler uses this information when it is processing
instructions that access memory, and which don’t explicitly specify the
segment register to be used in the memory access. In such a case, if
the segment register that should be used is the same as the segment
register that the instruction will use by default, the assembler will just
output the code for the instruction. If the desired and default segment
registers differ, the assembler will automatically output a prefix byte
before the instruction, which will force the instruction to select the
proper segment register. If the desired segment isn’t pointed at by a
segment register, the assembler will display an error message.

The first form of assume defines the contents of individual segment
registers. The second form tells the assembler not to make any
assumptions about the contents of the segment registers.

In the first form, assume is passed a list of items, separated by

commas, each defining the contents of a particular segment register.
An item has the form seg-reg-segname, where seg-reg is the name of

- as.15 -

ASSEMBLER Program Segmentation Aztec C86

the segment register; that is, CS, DS, ES, or SS.

segname can be one of the following:

* The name of the segment whose starting paragraph number is
in seg-reg.

* seg name, where name is the name of a variable of label that is
contained in a logical segment whose starting paragraph
number 1s in seg-reg.

* nothing, if the assembler is not to make any assumptions about
the contents of seg-reg.

For example, the assume statement in the following program tells
the assembler that the logical segment named codeseg is pointed at by
CS, that segment dataseg is pointed at by DS and ES, and that the
assembler shouldn’t make any assumptions about the contents of SS:

assume cs:codeseg, ds:dataseg, es:dataseg, ss:nothing
dataseg segment para
dl dw ?
dataseg ends
codeseg segment para

mov ax,dl

codeseg ends

Because of the assume statement in the above program, the program
doesn’t have to explicitly specify the segment register to be used in the
mov instruction. Without the assume directive, the mov instruction
would have had to specify the segment register that it used; that is,

mov ax, ds:dl

3.3.6 Using the Uninitialized Data Segment

The bss and global directives create variables in the uninitialized
data segment. For more information on these directives, see the
Directives section of this chapter.

3.4 Globally-accessible symbols

as creates object modules that can be linked together into an
executable program. Each module may define ’global symbols’; that is,
labels, variables, and constant symbols that other modules may use.

There are three directives relevant to the creation and use of global
symbols: public, global, and extrn.

3.4.1 The PUBLIC Directive

The public directive makes symbols that are defined in a module

accessible by other modules. The symbols can have been defined in
the name field of an instruction, or using the /abe/ directive, or using

- as.16 -

Aztec C86 Globally-Accessible Symbols ASSEMBLER

the egu directive.

The public directive has the form:

public name [,name ...]

where the name operands are the names of symbols defined in the
module that are to be made accessible by other modules.

For example, the following code creates the variables var] and var2
and the label /b/ and makes them accessible by other modules.

public varl, var2, Ibl
dataseg segment
varl dw?

dataseg ends
codeseg segment
IbI:

var2 dd ?

codeseg ends

3.4.2 The GLOBAL Directive

The global directive reserves space in the uninitialized data area,
creates a variable name that refers to that space, and makes the name
accessible by other modules. The directive has the form:

global sym:type,size

where the operand defines the attributes of the created variable, as
follows:

* sym - the name of the variable;
* type - its type. This can be byte, word, or dword.
* size - the number of bytes to be reserved for the variable.

For example, the following statement creates the globally-accessible
variable gbl, whose type is word:

global gbl:word,10

Ten bytes will be reserved for the variable, and it will be located in the
uninitialized data segment, unless the overriden by the declaration of
gbl in other modules’ global and public directives. This overriding is
discussed below.

3.4.3 The EXTRN Directive

The extrn directive allows a module to access global symbols, which
have been defined in other modules using the public and/or global
directives. The directive has one or more comma-separated operands,

- as.17 -

ASSEMBLER Globally-Accessible Symbols Aztec C86

each of which defines the attributes of one global symbol. It has the
form:

extrn name:type [,name:type ...]

where name is the name of a global symbol and type is its type. type
can be byte, word, dword, near, or far.

The extrn directive must be contained in the segment in which the
variables are actually located, or in the dataseg segment if they are in
the uninitialized data area.

For example, the following code demonstrates how a module can
use the extrn directive to access the variables and labels var, varl, var2,
and /bi that are defined using the public and global directives shown
above:

dataseg segment
extrn var:byte, varl:word, gbl:word

dataseg ends
codeseg segment

extrn Ibl:near, var2:dword
codeseg ends

3.4.4 Interactions of the GLOBAL, PUBLIC, and EXTRN Directives

A globally-accessible variable can be defined using the global
directive in some modules, using the extrn directive in other modules,
and using the public directive in at most one module. If the variable is
defined using an extrn directive in one module, it must be defined
using a global or public directive in at least one other module.

When a variable is defined using global directives in one or more
modules and is not specified in a public directive, an amount of space
in the uninitialized data area is reserved for the variable that is equal
to the largest size specified for it in the global directives. For example,
if the variable var is defined in different modules using the following
declarations, it will have 20 bytes reserved for it when it is linked:

global var:byte,10 smodule a’s declaration
global var:byte,20 ;smodule b’s declaration
global var:byte,0 ;smodule c’s declaration

When a variable is specified in a module’s public directive, the
variable will be located in the segment in which it is defined,
regardless of its specification in other modules’ global directives. In
this case, the global directives don’t have any effect on the amount of
space reserved for the variable; the statement in the module containing
the public directive that actually creates the variable defines its space.
For example, if a module contains the declarations

- as.18 -

Aztec C86 Globally-Accessible Symbols ASSEMBLER

dataseg segment
public var

var byte 5 dup(?)
dataseg ends

and it is linked with the three modules shown above, which define var
using global directives, then 5 bytes are reserved for var in the dataseg
segment.

In order to alert you to accidental duplication of globally-accessible
names in different modules, the Aztec linker will issue a "multiply-
defined symbol" message when it encounters a global or public symbol
in one module that matches a name in another module, and then
proceed to generate code as discussed above. The -M linker option
will prevent the linker from issuing these messages for global and
public definitions of symbols that obey the rules; for those that don’t, it
will still generate an error message.

The PCDOS/MSDOS linker dink does not support the global
directive; obj, the Aztec program that converts object modules from
Aztec to PCDOS/MSDOS format so that they can be linked with link,
translates the definition of a variable using global into an equivalent
definition using the public directive, and a db, dw, or dd directive.
These converted directives don’t allow the same variable to be defined
in different modules using the public directive. Thus, if a program is
to be linked using the PCDOS/MSDOS linker, a globally-accessible
variable must be defined using exactly one global or public directive in
all the modules that are linked together.

3.5 Operands and expressions

3.5.1 Registers

8086 registers are referenced using their standard names: CS, DS,
SS, ES, AL, AH, BL, BH, CL, CH, DL, DH, AX, BX, CX, DX, SP, BP,
SI, DI

as does not support the 8087 instruction mnemonics, and the
standard names for the 8087 registers, st(0), ...st(7), are not reserved
symbols in as.

3.5.2 Immediate operands (constants)

as allows an instruction operand to be a constant; that is, a number
that has no attributes other than its value. The following types of
constants are supported:

* Binary (base 2): A sequence of 0’s and 1’s followed by the
letter B. For example: 10010110B and I11B.

* Octal (base 8): A sequence of digits 0 through 7 followed

either by the letter Q or the letter O. For example: 1777Q
and 560.

- as.19 -

ASSEMBLER Instruction Operands Aztec C86

* Decimal (base 10): A sequence of digits 0 through 9,
optionally followed by the letter D. For example: 1234 and
1234D

* Hexadecimal (base 16): A sequence of digits 0 through 9
and/or letters A through F, followed by the letter H. The
sequence must begin with one of the digits 0 through 9. For
example: OFFFFH.

* ASCII Character: One or more characters surrounded by
single or double quotes. When a quoted character is used as
an instruction operand, the character’s ASCII value is used.
Character strings containing more than two characters are
only valid for the db, dw, and dd directives.

3.5.3. Memory operands

An operand in memory is specified using an "address expression".
Address expressions are specified using the standard 8086 syntax. This
syntax is described in the following paragraphs.

Accessing data in memory

The simplest type of address expression that accesses data is just the
name of the variable containing the data, plus or minus a constant.
For example,

add dx,count -add contents of count to DX
add abc+4,cx -add CX to contents of abc+4
add abc[4],cx ssame as the above

An address expression can also specify that a data operand resides
in memory at an offset computed by adding together any or all of the
following:

* An 8- or 16-bit displacement
* The contents of a base register
* The contents of an index register.

If a base or index register is used, its name is surrounded by square
brackets.

As an example of a memory operand that doesn’t involve a register,
the following instruction moves the contents of the word at location
count+6 into AX:

Mov ax,count+6

If the operand’s offset is specified by just a constant, the constant
must be surrounded by square brackets. For example, the next
instruction moves 0 into AX, while the one after it moves the contents
of the word at the beginning of the segment pointed at by the DS

segment register into AX:

- as.20 -

Aztec C86 Instruction Operands ASSEMBLER

mov ax,0
mov ax,[0]

The following instructions demonstrate how an offset can be
specified using just a register. The first instruction moves the contents
of the word pointed at by BX into AX, while the second moves the
contents of AX to the word pointed at by SI:

mov ax,[bx]
mov [si], ax

The next instructions use one register and a displacement to define
the location of an operand. The first instruction moves into AX the
contents of the word whose offset from the beginning of the data
segment equals that of the variable table plus the contents of register
SI. The second and third instructions move the contents of AX to the
memory word whose offset from the beginning of the data segment
equals that of the variable data plus 4 plus the contents of BP.

mov ax, table[si]
mov data+4[bp],cx
mov [data+4+bp],cx

The following equivalent instructions use an index register, base
register, and a displacement to define the location of an operand:

mov ax,table+4[bp][di]
mov ax,table+4[bp+di] ;same as the above
mov ax,[table+4+bp+di] ;same as the above
add [bx][si],32

Operands to jump and call instructions

A call or jump instruction can specify the address to which control
is to be transferred within the instruction. For example,

call Ibl

Ibi:

It can also specify a variable which contains the address to which
control is to be transferred. For example,

XX dw subl
yy dd sub2

call xx — :near call to sub!
jmp ss yy ‘far call to sub2

A jump or call instruction can transfer control to a location whose
offset if in any 16-bit general-purpose, base, or index register. In this
case, the register name isn’t surrounded by square brackets. For
example,

- as.21 -

ASSEMBLER Instruction Operands Aztec C86

jmp = =s ax ‘jump to location whose offset is in AX

A call or jump instruction can transfer control to a location whose
offset and, optionally, its segment number: are in a memory location,
where the offset of the memory location is in a base or index register.
In this case, the register name is surrounded by square brackets. For
example

call word ptr [si]
call dword ptr [bx]

In the above example, the first instruction performs a near call to the
location whose offset is contained in a word in memory. The offset of
this word is contained in SI. The second instruction performs a far call
to the location whose offset and segment number is contained in a
doubleword in memory. The offset of this double word is contained in
BX.

A jump or call instruction can specify that the target address is
contained in a memory location whose offset is defined by the sum of
a displacement, contents of a base register, and contents of an index
register. For example,

table dw subl, sub2, ...

jmp table[si] snear jump
jmp —_-word ptr [bp][di]

Which segment register is used?

An instruction can only access a memory operand that is contained
in a physical segment whose segment number is in one of the four
segment registers. The assembler and the 8086 itself will select the
segment register to be used in a memory access, if an instruction
doesn’t explicitly specify one, using the following rules:

* If the operand contains a variable or label name, the segment
register that points to the segment containing the variable or
label is used. The assume directive defines the contents of the
segment registers.

* Otherwise, if the operand uses BP or if the instruction is a
stack instruction, the SS segment register is used.

* Otherwise, the DS segment register is used.

An address expression can explicitly specify the segment register
that points to the segment containing the expression’s operand by
preceding the expression with the name of the segment register,
followed by acolon. For example, the first instruction below fetches a
word from the segment pointed at by SS, while the second fetches the
operand from the segment pointed at by DS:

- as.22 -

Aztec C86 Instruction Operands ASSEMBLER

mov ax,[bp]
mov ax,ds:[bp]

3.5.4 Operand Expressions

An expression that is used as an instruction’s operand can be
created using the operators described in the following paragraphs.

3.5.5 Arithmetic Operators

The HIGH and LOW Operators

high operand
low operand

high and low have as their value the most significant and least
significant bytes, respectively, of operand. operand can be an
expression having a constant value; in this case, the resulting
value is also constant. operand can also be a relocatable
expression; in this case, the resulting value is also relocatable.

For example, the following mov instruction moves the most
significant byte of the address of the variable abc into AH:

abc dw ?
mov’ ah,high abc

The Addition and Subtraction Operators

Addition: operand + operand
Subtraction: operand - operand

When object modules are linked using as, any of the operands
can be relocatable or constants. When they are linked using the
PCDOS/MSDOS linker (after using obj to convert them to
PCDOS/MSDOS format), the following restrictions apply:

* For addition, at most one of the operands can be
relocatable.

* For subtraction, either or both the operands can be
relocatable. |

The Multiplication and Division Operators

Multiplication: operand * operand
Division: operand / operand
Modulo: operand MOD operand

These operators may only be used on operands that are constant
expressions. The result is always a constant.

- as.23 -

ASSEMBLER Instruction Operands Aztec C86

The Shift Operators

Shift right: operand shr count
Shift left operand shl count

These operators shift operand the number of bits specified by
count. Bits shifted into the operand are set to 0. Both operand
and count must be expressions that evaluate to absolute numbers.

For example, the following instruction moves into AX the
constant Ofh, which is derived by shifting Ofah right 4 bits.

add ax,Ofah shr 4

The Relational Operators

equal: opl eg op2
not equal: opl ne op2
less than: opl It op2
less than or equal: op! le op2
greater than: opl gt op2
greater than or equal: opl ge op2

The relational operators compare two operands, op! and op2,
returning an 8- or 16-bit value that is all ones if the relationship
is true, and all zeroes if it’s false.

Both operands must be expressions that evaluate to an
absolute number.

For example,

count = 5

if count It 5

The Logical Operators

op! or op2
opl xor op2
opl and op2
not opl

The logical operators may only be used with expressions that
evaluate to an absolute number. They return an absolute
number.

or performs a logical ’or’ of the two operands. For each pair
of bits, the resultant bit is 0 if both operand bits are 0, and is 1
otherwise. For example,

10011B or 01010B = 11011B

- as.24 -

Aztec C86 Instruction Operands ASSEMBLER

xor performs an exclusive ’or’ on the bits in the two operands.
For each pair of bits, the resultant bit is 1 if exactly one of the
operand bits is 1, and is 0 otherwise. For example,

10011B xor 01010B = 11001B

and performs a logical ’and’ of the bits in the two operands.
For each pair of bits, the resultant bit is 1 if both of the operand

bits is 1, and is 0 otherwise. For example,

101010B and 111B = 10B

not performs a logical negation of its operand, converting 1’s
to 0’s and 0’s to 1’s. For example,

not 101001B = 10110B.

3.5.6 Attribute-overriding operators

The Segment Override Operator, ’:’

segreg.addrexpr

The segment override operator, :, is used to explicitly specify the
segment register that is to be used to access a memory operand.
If this operator isn’t used, the assembler will decide which
segment register must be used to access the operand and, if
necessary, output a segment-selection prefix for the instruction.

addrexpr is the address expression whose corresponding
memory operand is to be accessed, and segreg is the name of the
segment register to be used for the access.

One common use of this operator is to override the segment
register that the hardware by default selects to access an operand.
For example, the following instruction will access the memory
operand using the DS segment register:

mov ax,[bx]

If the operand is contained in a physical segment that is pointed
at by ES, the following instruction could be used to access it:

mov ax,es:[bx]

In this case, the instruction that is assembled will be preceded by
a "segment override prefix" that forces the processor to use ES to
access the operand.

The PTR Operator

type pir expr

The ptr operator sets the type of the operand expression expr to
type.

- as.25 -

ASSEMBLER Instruction Operands Aztec C86

For most of the 8086 instruction mnemonics, there are several
hardware instructions. When the assembler encounters an
instruction, it uses the types of the instruction’s operands to
decide which hardware instruction it should generate. In many
cases, the assembler can determine the type of an expression
from the type of the symbols that are in the expression. For
example:

wvar dw ?
bvar db ?

inc wvar ;increment a two-byte field
inc bvar ;incrementa one-byte field

The assembler knows that wvar is the name of a word field and
that bvar is the name of a byte field. Thus, for the first inc
instruction it correctly generates the hardware instruction that
increments a word in memory. And for the second it generates
the hardware instruction that increments a byte in memory.

There are some operands for which the assembler can’t
determine the type of the operand. For example, the assembler
can’t decide whether the operand in the following instruction
refers to a byte or word:

inc [bx]

In cases like this, the ptr operator can be used to explicitly state
the type of the operand:

inc word ptr [bx]
inc byte ptr [bx]

The operand of the first instruction above is stated to be a word,
and that of the second instruction is stated to be a byte.

The ptr operator can also be used to override the assembler’s
idea of the type of an operand. For example, for the first
instruction that follows the assembler generates code that moves
the immediate value 10 into AX. And for the second instruction
it generates code that moves the contents of the word at offset 10
into the segment pointed at by the DS segment register into AX.

mov’ ax,l0
mov’ ax,word ptr 10

As another example, the following code accesses separately
the two bytes of a word variable:

mov _ al, byte ptr aword ;get low order byte
mov bl, byte ptr aword+1 get high order byte

The type field of the ptr operator can have the following
values:

- aS.26 -

Aztec C86 Instruction Operands ASSEMBLER

byte
word
dword
near
far &

©
%&
+

F&
F

FF

The SHORT Operator

short Ibl

The short operator is used within the operand of a jmp
instruction to specify that a forward-referenced label, Jb/, 1s
within 127 bytes of the instruction. With this information, the
assembler can generate a two-byte instead of a three-byte

instruction for the jmp.

If despite your claim, the linker finds that Jb] is not within

127 bytes of the jmp, it will report an error.

3.5.7 Attribute-value operators

The THIS Operator

this ty pe

The this operator is used within an equ statement to create a
symbol whose segment and offset components are those of the
current segment and the current offset in that segment,
respectively, and whose type is type.

this is frequently used to create an alternate name and type for

a data item. For example:

aword equ this word
bytel db ?
byte2 db ?

Using the this operator with the egu directive is equivalent to
using the label directive. The above example could also have
been coded using the lable directive as:

aword label word
bytel db ?
byte2 db ?

The symbol $ is equivalent to this near. For example,

XX equ $

jmp xx

The type operand to the this operator can have the following

values:

* byte

- as.27 -

ASSEMBLER Instruction Operands Aztec C86

* word
* dword
* near

* far

The SEG Operator

seg varlab

The seg operator has as its value the beginning paragraph number
of the segment in which name is contained. This value is
relocatable; that is, it isn’t known until the program is loaded into
memory. varlab is the name of a variable or label.

For example, the strt variable that follows contains the starting
paragraph number of the dataseg segment, and the mov
instruction moves dataseg’s starting paragraph number into AX:

dataseg segment
dl dw ?

Strt dw seg dl starting para no of dataseg
dataseg ends

codeseg segment

mov ax,seg dl ;get dataseg base

The OFFSET Operator

offset varlab

The offset operator has as its value the offset of varlab, which is a
variable or label, from the beginning of the segment in which
varlab is contained.

The type of the resulting value is ’relocatable immediate’; this
causes the assembler to match an instruction that uses the offset
operator to an ’immediate’, rather than a ’memory reference’,
version of the hardware instruction.

For example, the first instruction that follows is a memory
reference instruction; it moves the contents of the memory
location named table into bx. The second instruction is an
immediate instruction; it moves the offset of the memory
location named table from the beginning of the segment
containing it into bx.

mov bx, table smove contents of table into bx
mov bx,offset table ;move offset of table into bx

- as.28 -

Aztec C86 Instruction Operands ASSEMBLER

The TYPE Operator

type varlab

The type operator has as its value an integer constant that
identifies the type of the operand varlab, which 1s the name of a
variable or label. This operator is useful in sequences of code
that process the elements of an array or table.

The types of varlab and the corresponding values of the type
operator are:

varlab type
byte 1
word 2
dword 4
near 255
far 254

For an example, see the description of the length operator,
below.

The LENGTH Operator

length var

The length operator returns the number of elements (bytes,
words, or dwords) that have been allocated for the variable var.
This operator is useful in instruction sequences that process the
elements of a table or array.

For example, the following code processes the elements of tb/:

mov cx,length tbl ;get # of elements in tbl
mov _ si,0 ‘index into tbl

doone:
mov. ax, tbI[s1] sget current tbl element
ves sprocess it
add si,type tbl sincr SI to next element
loop doone

The SIZE Operator

size var

The size operator returns the number of bytes allocated for a
variable. This value is related to the values of the length and type
operators as follows:

size = length * type

For example

- as.29 -

ASSEMBLER Instruction Operands Aztec C86

wtbl dw 100 dup (?)
btbl db 100 dup (?)

mov ax,size wtbl -ax=200
mov ax,length wtbl ;ax=100
mov ax,size btbl sax= 100
mov’ ax,length btbl ;ax=100

3.5.8 Operator Precedence

The expression operators are listed below in decreasing order of
precedence. An expression is evaluated from left to right, following
the precedence rules. You can use parentheses to specify the order in
which an expression should be evaluated.

Highest precedence

Square-brackets and the /ength and size operators.

ptr, of fset, seg, type, this, and segment override (segreg:name)

high and low

* /, mod, shr, shl

Unary + and -

Binary + and -

eq, ne, lt, le, gt, ge

not

C0

P
e
N
n
N
D
n
Y
M

F
Y
N

SF

and

me
nd

2 or and xor

11. short
Lowest precedence

3.6 Instructions

as supports all the standard 8086, 8088, and 80186 instructions, plus
some special instructions. It does not support the 8087 instructions.

as has a feature, codemacros, with which you can define, and then
invoke, your own instructions. Codemacros are described in another
section of this chapter.

Most of the special instructions supported by as are conditional
branch instructions, whose target location can be anywhere in the
current code segment. The standard conditional jump instructions
require that the target address be inside a small interval of code
centered around the jump instruction.

When a conditional branch instruction is assembled, the equivalent
jump instruction will be generated if the target of the branch can be

- as.30 -

Aztec C86 Instructions ASSEMBLER

reached by the jump instruction. Otherwise, the assembler will
generate two hardware instructions for the branch: an unconditional
jump to the target (which can access any location in the code segment),
preceded by a conditional jump around the unconditional jump. This
preceding conditional jump tests for a condition that is the opposite of
the one specified by the branch instruction.

The special branch instructions and their corresponding jump
instructions are:

branch jump
beq je
bne jne
bit jl
ble jle

bgt jg
bge jge
blo jb
blos jbe
bhi ja
bhis jae

The other special instructions supported by as are nil, which does
nothing and which generates no code; and x/atb, which is the same as
the standard x/at instruction, but which doesn’t require an operand,
and which assumes that the translate table is in the segment pointed at
by the DS segment register (ie, it won’t automatically output a segment
override prefix).

3.7 Directives

The ASSUME Directive

assume seg-reg-segname, ...
or

assume nothing

assume identifies to the assembler the segments that are pointed
at by segment registers. This directive is discussed in the
"Segmentation" section of this chapter.

The BSS Directive

bss sym-ty pe,size

The bss directive creates a variable that will be placed in the
program’s uninitialized data area. This area immediately follows
the program’s dataseg segment, and is automatically cleared by
the startup routine that is in the standard versions of c.lib.

The operands to bss define the attributes of the created
variable, as follows:

- aS.31 -

ASSEMBLER Directives Aztec C86

* sym - the name of the variable;
* type - its type. This can be byte, word, or dword.
* size - the number of bytes to be reserved for the

variable.

By default, a symbol defined with the bss directive is local to
the module in which it is defined; that is, it can’t be accessed by
other modules. It can be made globally accessible using the public
directive.

The global directive defines uninitialized variables that can be
accessed by other programs. Normally, you should use global to
create an uninitialized global variable.

The bss and public can be useful for creating a globally-
accessible area in the uninitialized data area that can be accessed
using more than one name. This can’t be done using the global
directive. For example, the following code allocates 10 bytes in
the uninitialized data area, which can be accessed by the names
fred and susan:

public fred, susan
bss fred:0,byte
bss susan: 10, byte

The DB, DW, and DD Directives

[var] db val [,val, val...]
[var] dw val [,val, val...]
[var] dd val [,val, val...]

The db, dw, and dd directives reserve one or more fields of
memory, optionally initializes them, and optionally defines a
variable. The number of bytes per field for db, dw, and dd is
one, two, and four, respectively.

var is a variable name, and is optional. If specified, the name
is entered into the symbol table with the following attributes:

attribute value

type byte (for db), word (dw), or dword (dd)

segment the starting paragraph number of the segment in
which var is defined.

offset the distance in bytes of var from the beginning
of the segment.

length the number of fields defined in the directive.

size the number of bytes defined in the directive.

Each val operand causes one or more fields of memory to be
reserved and optionally initialized. The assembler processes the

- aS.32 -

Aztec C86 Directives ASSEMBLER

val operands from left to right, reserving space within the current
segment at successively higher addresses.

A val can be one of the following:

* An expression that evaluates to a constant. In this case,
a single field is reserved for the operand and 1s
initialized to the value of the expression. For example,
the first directive that follows reserves a one byte field,
and initializes it to the decimal value 10. The second
reserves a two-byte field, and initializes it to the
hexadecimal value 1234h (with 12h in the highest-
addressed byte). The third reserves a four-byte field,
and initializes it to hex 1234h (with O in the highest-
addressed word and 1234h in the lowest).

db 10
dw 1234h
dd 1234h

* An address expression, for dw and dd. That is, a
relocatable expression whose type is variable or label.
For dw, the offset attribute of the expression is set in
the field. (that is, the distance of the location
referenced by the expression from the beginning of the
segment containing it). For dd, both the segment and
offset components of the expression are set in the four-
byte field, with the segment number in the highest-
addressed two bytes.

For example, suppose var is the name of a variable in
the dataseg segment. Then the dw statement below
reserves two bytes and places the offset of var in it. And
the dd statement reserves four bytes, placing the
segment number of dataseg in the two highest-addressed
bytes and the offset of var from the beginning of dataseg
in the two low-addressed bytes.

dw var
dd var

The offset of var is determined when the program is
linked. The starting paragraph number of dataseg isn’t
known until the program is loaded, so the loader has to
adjust the two high-order bytes of the dd statement
when it loads the program.

* For dw and dd, an operand can be a segment name, or
an expression that evaluates to the starting paragraph
number of a segment (such as seg name). The paragraph
number is set in the highest-addressed two bytes for dd,
and the low-addressed bytes are set to zero.

- as.33 -

ASSEMBLER Directives Aztec C86

* A db, dw, or dd operand can be a question mark. In this
case, a single field is reserved for the operand, and is not
initialized. For example,

db ?
dw ?
dd ?

reserve one byte, word, and double word, respectively,
and don’t initialize them.

* For db, an operand can be a character string, surrounded
by a pair of single or double quotes. The characters in
the string will occupy successively higher memory
locations. For example,

db "This is a string"
db ’as is this’

* An operand to db, dw, or dd can be a repeated
reservation and initialization of the form

count dup (vall, val2, ...)

where each val is a legal operand of the directive
containing it, and count is a constant. This type of
operand is equivalent to replicating the operands

vall, val2, ...

count times in a statement.

For example, the following statement reserves 5 bytes
of memory, without initializing it:

db 5 dup (?)

The following statement reserves 10 sets of three four-
byte fields. In each set, the first four-byte field is
initialized to count, the second to start, and the third is
uninitialized:

dd 10 dup (count, start, ?)

dup items can contain strings, as in

db 5 dup Chello’, ’goodbye’)
db 8 dup (5, "albert")

And they can contain nested dup fields, as in

db 15 dupChello’, 3 dup(goodbye’))

The END Directive

end [expr]

- as.34 -

Aztec C86 Directives ASSEMBLER

The end directive identifies the end of an assembly language
program.

The optional parameter expr identifies the address at which
execution will begin in a program. If several modules are linked
together to form an executable program, at most one of them can
specify the program’s starting address. And if, when an
executable program is linked, none of its modules specifies a
Starting address for the program, execution will begin at the first
byte in the program’s first code segment.

The EQU Directive

name equ expr

equ creates an entry in the symbol table for the symbol name,
assigning it the value of expr.

name must not already be defined (that is, have an entry in
the symbol table). If you want to create identifiers whose value
can be redefined, use the = directive.

expr can be any of the following:

* A variable or label name. This name can be a forward
reference, if necessary; that is, the statement defining
the name can follow the equ statement. For example,
both the egu statements that follow are legal:

dl dw ?
newl equ dl
new2 equ d2
d2 dw ?

* An integer numeric constant. For example,

Size equ 10

* A valid expression involving constants, variables and
labels. For example,

e] equ 2+ 3
e2 equ el and 4
e3 equ di +8
dl dw ?

* An 8086 register name. For example,

count equ CX

pointer equ bx
mov count,10
movi pointer, offset array

* 8086 instruction names. For example,

- as.35 -

ASSEMBLER Directives Aztec C86

get equ mov
bump equ inc

get ax, bx
bump ax

* A register expression. For example,

argl equ -4[bp]
Icl1 equ O[bp]

mov ax,argl
mov _ibx,icl1

expr cannot be an external identifier (that is, an identifier
defined in the extrn directive).

The ’=’ (equal sign) Directive

name = expr

The = directive assigns the value of the constant expression expr
to the identifier name.

name can be either a new identifier or one that was previously
defined using the = directive. In the latter case, the new value
replaces the old.

The = directive is similar to equ. It differs in that it allows
identifiers to be redefined, and can only be assigned a constant
expression as a value.

For example, the first statement below creates the symbol sum
and assigns it the value 0. The second statement redefines sum to
7. And the last statement increments the current value of sum by
one.

sum = 0

sum sm 7

sum = sum+ |

An identifier created using the = directive can’t have its value
redefined using egu. For example, since in the above statements
sum was created using =, its value couldn’t be redefined using
sum equ 8.

Similarly, an identifier created using egu can’t have its value
redefined using =.

The EVEN Directive

even

The even directive ensures that the data following the directive is
aligned on a word boundary. If the following data would
otherwise begin on an odd-numbered byte, even outputs a single

- as.36 -

Aztec C86 Directives ASSEMBLER

byte consisting of a nop instruction (0). If the code or data would
begin on an even-numbered byte, even does nothing.

even can be used to speed up execution of programs that will
run on 8086, 80186, or 80286 processors. The reason for this is
that on these processors, but not on an 8088 _ processor,
instructions that access a word in memory execute slightly faster
if the word begins on an even-numbered address.

even can only be used in the data segment, and cannot be used
if the segment is byte-aligned.

The EXTRN Directive

extrn name.type [,name.type,...]

extrn defines the names and types of symbols that have been
declared to be "public" or "global" in other modules, and thus
allows the program being assembled to reference those symbols.
For more information, see the section entitled "Globally-
accessible Symbols" in this chapter.

The GLOBAL Directive

global sym:type,size

The global directive creates a global variable that will be placed in
the program’s uninitialized data area. For more information, see
the section entitled "Globally-accessible Symbols" in this chapter.

The GROUP Directive

name GROUP §segname, segname, ...

The group directive, which is supported by the PC-DOS/MS-
DOS assembler, masm, is accepted by as, but doesn’t have any
effect, since the assembler doesn’t support Intel-style grouping of
segments.

The INCLUDE Directive

include filename

The include directive causes as to suspend assembly of the file
that contains the directive and to assemble the source that is in
the specified file, filename. When the assembler finishes with the
include file, assembly of the file containing the include directive
continues.

The include statement allows you place statements that are
common to several assembly language programs in one file.

Other files can access these statements using an include statement,
eliminating the need to repeat the statements in each file that

- as.37 -

ASSEMBLER Directives Aztec C86

uses them.

There is no limit to the number of include statements that a
single file can contain, and a file specified in an include directive
can itself contain an include directive. The maximum depth of
include file nesting is five files; this means that when one file
includes another, which includes another, and so on, the total
number of files in this chain can’t exceed five.

The LABEL Directive

name label type

The label directive creates a variable or label named name, which
has the following attributes:

* Type: the value of the type operand. This can be byte,
word, dword, near, or far.

* Segment: the segment into which code and data are
currently being assembled.

* Offset: the current offset within that segment.

label is useful when several names, possibly having different
type attributes, need to be associated with the same location.

For example, the following code allows a program to easily
access two consecutive bytes as both a word and as two separate
bytes:

aword label word

alow db ?
ahigh db ?

label can also be used to define secondary entry points within
a procedure that has been defined with the proc ... endp
directives. For example,

main proc far

Sec label far

main endp

If you use the label directive in this way, be careful that the type
of the label matches the type of the procedure in which it is
contained.

The LARGECODE Directive

largecode

The largecode directive specifies that the module being assembled
is to use the large code memory model. This causes the
program’s codeseg segment to be a separate segment when the

- as.38 -

Aztec C86 Directives ASSEMBLER

module is linked into a program.

If the largecode directive isn’t specified, the module will use
the small code memory model. In this case, when the module is
linked into a program, its codeseg will be joined with the codeseg
of all other modules that were assembled to use the small
memory model, into a single segment.

The MOD186 Directive

mod186

The mod186 directive specifies that the module will run on a
80186 or compatible processor. This allows the module to
contain 80186 instructions.

If this directive isn’t specified, and if the program contains
80186 instructions, the assembler will flag them as an error.

The NAME Directive

name module-name

The name directive defines the name of the object module
generated for an assembly language source file.

A module name contains up to eight characters. module-name
can contain any number of characters, but only the first eight are
used.

The only time a module needs a name is when it’s in a
library. When the librarian /b places a named object module in a
library, that name is given to the library’s copy of the module.
When it places an unnamed module in a library, /b derives the
name of the library’s copy of the module from the name of the
input file, by removing the drive, path, and extension
components of the file name.

The ORG Directive

org expr

The org directive sets the location counter within the current
segment to expr.

The PROC and ENDP Directives

proc__name proc [proc_type]

proc__name endp

The proc and endp directives are used to delimit a related
Sequence of instructions, such as a subroutine.

- as.39 -

ASSEMBLER Directives Aztec C86

The proc directive creates the label proc _ name. The optional
operand proc_type defines the type of the label; if specified, it
can be either near or far. If the type operand is not specified,
proc__name 1s given type far if the module is being assembled to
use the large code memory model (that is, it contains the
largecode directive), and is given type near otherwise.

The type assigned to proc name controls the type of return
instruction that is generated for each ret instruction within the
proc ... endp directives: if proc_name is of type near, then near
returns are generated; and if proc_ name is of type far, then far
returns are generated.

For example, the following program fragment defines a near
procedure, np, and a far procedure, fp, and shows calls to them:

codeseg segment para
np proc near

vee sthe proc’s code
ret ‘this will be a near return

np endp
fp proc far

‘code for the proc
ret sthis will be a far return

fp endp

call np ;a near call
call fp :a far call

codeseg ends

There can be several labels that serve as entry points into the
Statements within a pair of proc ... endp directives. If the
procedure is of type near, the entry point labels can be defined
using the label directive or in the label field of an instruction.
For example, the following near procedure can be entered at the
labels main, secl, or sec2:

main proc. near

secl label near

sec2: mov ax,bx

ret 3a Near return

If the procedure is of type far, secondary entry points can
only be defined using the lJabel directive. Other labels can be

defined within the procedure in the label field of instructions,
but these can only be used as the target of jump instructions that
are contained in the procedure, and not as labels that can be

- as.40 -

Aztec C86 Directives ASSEMBLER

called from outside of the procedure. For example, in the
following code, the near label t/ can be jumped to by code that is
within the subr proc, but it can’t be called from code outside of
the proc. The far label ¢2 can be called from outside the proc,
but you probably wouldn’t jump to it from code that’s in the
proc.

codeseg segment para public
subr proc far

tl: mov ax,bx

t2 label far

subr endp
call subr _—_;far call to subr
call t2 ‘far call to t2
call tl “tnear call to tl **don’t do this**

codeseg ends

procs can be nested; that is, one proc can be contained within
another. For example, in the following code, the far proc main
contains the near proc subr.

codeseg segment para public
main proc far

subr proc near
ves ;code for subr
ret snear return from subr

subr endp
wee ;code for main
call subr _s;near call to subr

main endp
codeseg ends

There is no "block structuring" of procs; that is, execution can
fall into a nested proc. “Falling into" a nested procedure is
usually an error, as shown in the following erroneous example:

- as.41 -

ASSEMBLER Directives Aztec C86

pl proc far
mov ax,bx
add ax, 12

p2 proc near
LI: MOV axX,CXx

ret

p2 endp
sub ax, |
ret

pl endp

The programmer expected that the next instruction to be
executed after the add in the p/ proc would be the sub that
follows the p2 proc; actually, the next instruction to be executed
will be the mov in the p2 proc. This program will crash, because
a call to the far proc p/ will result in a near return, at the ret
that’s in p2.

The PUBLIC Directive

public sym [,sym ...]

The public directive identifies the symbols defined in the
program being assembled that can be accessed by other modules.
For more information, see the section entitled "Globally-
accessible symbols" in this chapter.

The RECORD Directive

recname record fldname-width [=initval] [,...]

The record directive creates user-defined directive that can be
used in a codemacro. When such a user-defined directive is
encountered during the expansion of a codemacro, the assembler
combines specified values into a byte or word and then outputs
the result. The record directive also defines a template that is
associated with the user-defined directive. The template for a
user-defined directive has the following uses:

* it defines whether a byte or word will be generated
when the directive is invoked,

* it organizes the bits in the byte or word into named
fields,

* it optionally assigns a default value to the fields.

In the synopsis, recname is the name of the user-defined
directive.

The record directive has one or more operands, separated by

commas, each of which defines the attributes of a field within
the template that is created for the user’s directive. As shown in
the synopsis, the operand for a field contains the following items:

- as.42 -

Aztec C86 Directives ASSEMBLER

* fldname is the field’s name.
* fldwidth is the number of bits it contains.
* jnitval is the default value for the field. This value is

optional; if not specified, it’s assumed to be 0. When the
user-defined directive is used, and a byte or word is
generated for it, a value will be set in each of the
record’s fields. The user-defined directive can
optionally specify the value of the fields. For those
fields for which the directive doesn’t specify a value, the
field is set to its default value.

The record directive doesn’t explicitly specify whether the
created template contains a byte or a word. This is determined
from the size of the individual fields: if the sum of the field sizes
is less than 8 bits, the template will occupy one byte; if the sum
is greater than 8, the template will occupy a word.

Also, the record directive doesn’t explicitly specify the
location of a template’s fields. This is determined from the sizes
of the template’s fields: the fields in the template are contiguous
and are right-justified, with the last field defined in the record
directive that created the record’s template occupying the least
significant bits in the template.

For example, the following record directive creates a directive
named errflgs and associates with it a template containing three
fields: ioerr, containing 3 bits; syserr, containing 4 bits; and
memerr, containing | bit.

errflgs record ioerr:3, syserr:4, memerr:1

The template contains a single byte, since that is all that 1s
needed to hold the record. The memerr field will occupy the least
significant bit of the template; syserr field will occupy the next
four most significant bits; and the ioerr field will occupy the most
significant bits. No initial value was specified for the fields;
because of this, when the errflgs directive is used, those fields for
which initial values aren’t explicitly specified will be set to 0.

A template need not specify all the fields in a template. In
this case, the template’s defined fields will be right-justified, with
the undefined bits occupying the most significant bits in the
template. For example, the following record directive creates a
directive named partly and associates with it a _ template
containing two named fields: hi, containing 6 bits, and low,
containing 5 bits.

partly record hi:6=32, low.5=24

The template is 16 bits wide, with its Jow occupying the least
significant 5 bits, the hi field occupying the next most significant
6 bits, and the most significant 5 bits of the storage being

- as.43 -

ASSEMBLER Directives Aztec C86

unnamed and unused.

In the last example, a default value was specified for each of
the template’s fields. If a partly directive is used and the
directive doesn’t specify the initial value of the hi field, the field
will be initialized to 32. Similarly, the default initialization
value of the /ow field is 24.

Using a User-defined Record Directive

A user-defined record directive can only be used in a codemacro.
This is discussed in the Codemacro section of this chapter.

The SEGMENT and ENDS Directives

segname segment [align_type] [comb-type] [’cname’]

segname ends

The segment and ends directive identify the logical segment
containing the code and data that are defined between the
directives, and define the attributes of the segment. For more
information, see the "Segmentation" section of this chapter.

3.8 Macro directives

as provides support for macros. The as macro features are
compatible with those provided by the MS-DOS/PC-DOS assembler.

A macro 1s a named sequence of statements, which is defined when
a program is assembled. Each time a macro is "invoked" (that is, its
name appears in the operation field of a source line), the macro’s
Statements are assembled.

A macro can have named parameters, with the names appearing in
the statements within the macro. When a macro having parameters is
invoked, the actual parameters for the macro (that is, the operands in
the invoking line) replace the parameter names and then the resulting
statements of the macro are assembled.

A macro definition begins with the macro directive and ends with
the endm directive. The block of statements that will be assembled
whenever a macro is invoked appear between these two statements.

As an example of a parameterless macro, the following statements
define the macro begin, which might be used when entering a
subroutine:

begin macro
push bp ssave bp
mov sp,bp__;set new frame pointer

add sp,10 reserve 10 bytes on stack for locals
endm send of macro definition

- as.44 -

Aztec C86 Macros ASSEMBLER

This macro is invoked within a program as follows:

input proc near _ ;entry point for the input subr
begin sset up stack & stack regs for subr
wee sbody of the input proc

input endp ‘end of input
output proc near ;entry point for the output subr

begin sinitial code for subr
wes sbody of the output proc

output endp send of output

Thus, the input and output subroutines that use macros are
equivalent to the following:

input proc. near _ ;entry point for the input subr
push bp
mov ___ bp,sp
add sp, 10
wes ‘body of the input proc

input endp send of input
output proc near ;entry point for the output subr

push bp
mov ___ bp,sp
add sp, 10
wee sbody of the output proc

output endp send of output

As you can see, use of macros makes the source program shorter, and
frequently makes it easier to understand.

For an example of a macro with parameters, let’s modify the begin
macro so that it can push a invoker-specified register and add an
invoker-specified amount to the stack pointer:

begin macro reg,size
push bp
push __ reg ;push specified register
mov ___ bp,sp

add sp,size ;add specified value to stack pointer
endm send of macro definition

In this macro, the name of the parameter specifying the register to be
pushed is reg, and the name of the parameter specifying the amount to
be added to the stack pointer is size.

Now let’s modify the input and output subroutines to use the
modified begin macro. input will tell begin to push register AX and add
20 bytes to the stack pointer; output will tell begin to push register BX
and add 30 bytes to the stack pointer:

- as.4§ -

ASSEMBLER Macros Aztec C86

input proc. near _ ;entry point for the input subr

begin ax,20
wes ‘body of input

input endp ‘end of input
output proc near ;entry point for the output subr

begin bx,30
wes ‘body of subr

output endp ‘end of output

When the modified begin macro is invoked in the input subroutine, the
assembler assembles the macro’s statements, replacing each occurrence
of the parameter named reg within the macro’s statements with the
character string "ax", and each occurrence of the size parameter with
the character string "20". Similarly, when the modified begin macro 1s
invoked in the output subroutine, the assembler assembles the macro’s
statements, replacing each occurrence of the parameter named reg with
"bx", and each occurrence of the size parameter with "30". The
macro-ized input and output subroutines are thus equivalent to the
following:

input proc near ;entry point for the input subr
push bp
push ax
mov __ bp,sp
add sp,20
ves ‘body of input

input endp ‘end of input
output proc near ;entry point for the output subr

push bp
push bx
mov __ bp,sp
add sp,30
ve sbody of subr

output endp send of output

3.8.1 Local symbols

It is sometimes neccessary to define symbols in a macro invocation
which won’t conflict with other symbols defined in the program and
that won’t conflict with the symbols created by other invocations of
the same macro. For example, the following macro creates the label /b/
whenever it is invoked:

bump macro
test ax,4
jz Ibl
add bx,10

Ibl:

endm

There are two problems with this macro: first, the programmer will

~- as.46 -

Aztec C86 Macros ASSEMBLER

have to insure that a program that uses bump doesn’t itself contain the
label Jbl Second, the program will only be able to call bump once; if it
calls it more than once, /b/ will be multiply defined.

The local directive can solve these problems. This directive, which
must precede all other type of statements in a macro definition, creates
symbols that are unique for each invocation of a macro. For example,
if the statement

local Ibl

is added to the beginning of the bump macro, then bump can be used as
often as desired in a program, and the macro’s /b/ symbol won’t
conflict with a /b/ symbol in the main body of the program.

3.8.2 Concatenating parameters to text

When the assembler is processing a macro invocation, it can
unambiguously spot a parameter name within the macro’s statements if
the name is surrounded by delimiter characters such as newline, tab,
space, brackets, etc. For example, consider the following macro
definition:

sum macro a

add ax,a
jmp Ibla
endm

sum has one parameter, a. When sum is invoked, the assembler will
spot only one occurrence of the parameter name in the macro’s
statements: as the second operand to the add statement. This
occurrence of the name is separated by the delimiters ’,’ and the
newline character. There are several other occurrences of the
parameter name in the macro’s statements (such as the ’a’ 1n ’add’, ’ax’,
and ’lbla’), but since they aren’t surrounded on both ends by
delimiters, they aren’t considered to be parameter names. Thus, if the
sum macro is invoked with the statement

sum one

the assembler will generate and assemble the following statements:

add ax,one
jmp Ibla

If a parameter name appears in a statement within a macro and the
name isn’t surrounded on both sides by delimiters, you can tell the
assembler to spot this occurrence of the parameter name during an
invocation of the macro by putting an & character at the ends of the
name that aren’t joined to delimiters. During the invocation the
assembler will replace the parameter name and the surrounding &

characters with the actual value of the parameter.

- as.47 -

ASSEMBLER Macros Aztec C86

For example, let’s modify the sum macro so that the assembler will
recognize the a in the jmp statement as a parameter name:

sum macro a

add ax,a
jmp = iIbl&a
endm

When this modified sum macro is invoked with the statement

sum one

the assembler will generate and assemble the following code:

add ax,one
jmp __siIblone

To demonstrate how the assembler can spot a macro name that is
entirely surrounded by text, let’s modify the sum macro again:

sum macro a

add ax,a
jmp =e. Ibl&a&xyz
endm

We still want the a in the jmp statement to be recognized by the
assembler as being a macro name. Since both ends of it are delimited
by text and not by delimiter characters, an & character is needed at
each of its ends. When this macro is invoked with

sum one

the assembler will generate and assemble

add ax,one
jmp Iblonexyz

3.8.3 Concatenating parameters to parameters

Using the & character, a macro statement can also specify that the
value of two or more macro parameters are to be concatenated when
the macro is invoked. For example:

space macro pl,p2
pl&&p2 dw ?

endm

Note that two & characters are used in the dw statement. This is done
because of the way the assembler performs parameter substitution:
when the macro is invoked, the assembler will replace pl& with the
value of pl, and &p2 with the value of p2. As a convenience, the
assembler allows you to abbreviate two adjacent & characters with just
one; so pl&&p2 could have been abbreviated to pl&p2.

When the space macro is invoked with the line

- as.48 -

Aztec C86 Macros ASSEMBLER

space reg,min

the following statement is generated and assembled:

regmin dw ?

3.8.4 Parameter substitution within quoted strings

When a macro is invoked, the assembler doesn’t normally replace a
parameter name found in a quoted string with the parameter’s value.
For example, consider the storage macro:

Storage macro a
db "a"

endm

When storage is invoked with the statement

Storage abc

the assembler will generate and assemble the statement
db "og"

To have the quoted a replaced by the value of the parameter named
a, prefix the parameter name with an & character:

Storage macro a
db " sta"

endm

With this version of the storage macro, the statement

Storage abc

now generates

db "abc"

Modifying the definition of storage to

storage macro a
db "x&ca&y"
endm

And invoking it with

Storage abc

generates

db "xabcy"

The use of & to identify a macro parameter name is less flexible
when the name is inside a quoted string than when it’s outside: when
inside, the macro name must be preceded by an &. It can have a
terminating &, if needed to separate the name from text that follows,
but it must always have a preceding &. Thus, the following definition
of storage is invalid:

- as.49 -

ASSEMBLER Macros Aztec C86

Storage macro a
db "a&" = sinvalid
end

3.8.5 Passing a symbol’s value to a macro

Normally, when a character string is specified as an operand in a
macro invocation, the assembler replaces occurrences of the operand’s
corresponding macro parameter name with that character string as it
processes the macro. If the character string is the name of a symbol
that has been given a constant value, using the egu or = directives, you
can alternatively have the parameter name replaced with the symbol’s
value instead of its name. To request this, prefix the symbol name
with the character % in the statement that invokes the macro.

For example, consider the following macro:

load macro val

mov ax,val
endm

If load is invoked with the statement

load count

the following statement will be generated:

mov ax,count

If it is invoked with the following statements:

count =]

load %count

the following statement will be generated:

mov ax,l

In this second invocation, the % character tells the assembler to replace
occurrences of the a parameter with the value of the count symbol and
not with the string count.

3.8.6 Passing comma-containing arguments to macros

When a macro is invoked, commas separate the arguments that are
to be passed to the macro. These commas are not passed to the macro.
If a comma occurs in a quoted string, the assembler will consider it to

be part of the string and not an argument separator.

A macro invocation can pass a comma-containing string that isn’t
quoted to a macro by surrounding the string with angle brackets <>.
The assembler passes the string, without the angle brackets, to the
macro as a single argument.

For example, consider the macro top:

- as.50 -

Aztec C86 Macros ASSEMBLER

top macro pl,p2
dw
db
endm

Invoking top with

top

generates

db
db

Invoking top with

top

generates

dw
db

3.8.7 Nesting macros

pl

p2

a,b,c,d

<a,b,c>,d

a,b,c
d

Macros can be "nested"; that is, the definition of one macro can
contain a statement that invokes another macro, including the macro
being defined. For example, the following code defines two macros,
outer and inner. outer calls inner.

outer macro

db
inner
endm

inner macro

The statement:

generates:

db
dw

pl,p2
pl

p2

p3
p3

1,2

]
2

As an example of a macro that calls itself, consider the storage
macro, which allocates a sequence of bytes of storage, containing
successively smaller values:

- as.51 -

ASSEMBLER Macros Aztec C86

storage macro count
db count
if count-1
storage %count-1
endif
endm

The statement:

Storage 3

generates:

db 3
db 2
db]

The expansion of a macro invocation that is nested within another
macro occurs when the outer level macro is invoked. Consider, for
example, the following code. First, two macros, outer and inner, are
defined, where outer invokes inner. Then outer is invoked, inner is
redefined, and outer is invoked again. Finally, inner is purged again.

inner macro ;define inner
db 5
endm

outer macro :define outer
dw 4
inner
endm

outer -invoke outer
purge inner ;delete inner

inner macro ;define a new inner
db 6
endm

outer ;invoke outer
purge imner spurge inner

This code generates the following:

dw 4
db 5
dw 4
db 6

which is what you’d expect with macro expansion occurring when a
macro is invoked.

If the last purge of inner is omitted, the assembler will generate the
following code:

~ as.52 -

Aztec C86 Macros ASSEMBLER

dw 4
db 6
dw 4
db 6

The reason for this is that when the assembler makes its second, code-
generation pass, through the source file, and encounters the first
definition of inner, it will not process it if inner is still defined from
the first pass.

3.8.8 Directives for repeatedly assembling a block of statements

There are three directives that cause the assembler to assemble a
block of statements multiple times: rept, irp, and irpc. The block begins
with one of these directives and ends with the endm directive.

These directives can be used to define a block of statements either
within or without a macro definition. In the former case, the block
isn’t assembled until the macro in which it is defined is invoked. In
the latter case, the block is assembled just at the point in the program
where it is defined; it doesn’t have a name, and hence can’t be invoked
for assembly at another point in the program.

One of the directives, rept, doesn’t support parameter definition
and substitution; its statements are simply assembled a specified
number of times. The other two directives, irp and irpc, each defines a
parameter name and a list of values. A block defined using one of
these directives is assembled once for each of the values; during a
single assembly of the block, occurrences of the parameter name in the
block are replaced by the current value.

A block defined using one of these directives can use some of the
features available to macros:

* Tt can define local symbols , using the Jocal directive.
* It can prematurely exit from the assembly of the block, using

the exitm directive.
* A parameter can be joined to text using the & character;
* The value of a constant symbol can be passed to the block as

an argument rather than its name, by prefixing the name with
the % character;

3.8.8.1 The REPT Directive

The rept directive has the form:

rept const_ expr

where const__expr is a constant expression that defines the number of
times the directive’s block of statements is to be assembled.

For example,

- as.53 -

ASSEMBLER Macros Aztec C86

x = 0
rept 4
db x

x = x+1
endm

generates the equivalent of the statements

db 0
db]
db 2
db 3

If this block of statements occurs outside of a macro definition, the
assembler generates the db statements at the point in the program
where it encounters the block, and the block can never be invoked
again. If it occurs inside a macro definition, the assembler generates
the db statements when the macro is invoked. The macro can be
invoked of often as desired, with its rept block assembled anew each
time. For example, consider the macro gen, which contains a slightly
modified version of the above rept block:

gen macro initval, count
x = initval ;set x to the starting value, initval

rept count ;generate the db statement count times
db x

x = x+1
endm_§;end of the rept block
endm_;end of the gen macro

The rept block inside the gen macro won’t be assembled until gen is
invoked. If gen is invoked at one point with the statement:

gen 10,3

the equivalent of the following statements are assembled:

db 10
db 11
db 12

3.8.8.2 The IRP directive

The irp directive has the form:

irp param, <arglist>

where param is the name of a parameter and <arglist> is a list of actual
arguments that are separated by commas and surrounded by angle
brackets.

The irp directive’s block of statements are assembled once for each
argument in arglist. Each time the block is assembled, occurrences of
the parameter name param in the block are replaced with the current

- as.54 -

Aztec C86 Macros ASSEMBLER

argument.

For example,

irp x, <1,2,3>
db x
endm

generates the following:

db 1
db 2
db 3

In the following example, the macro bump increments the locations
whose names are passed to it by a specified value:

bump macro val, list
irp X, <list>
add x, val
endm_;end of irp
endm_ ;end of bump macro

If bump is called with:

bump 10, <count, a, ax>

the following code is generated:

add count, 10
add a,10
add ax,10

3.8.8.3 The IRPC directive

The irpc directive has the form:

irpc param, string

where param is the name of the directive’s parameter and string is a
character string. The directive’s block of statements are assembled
once for each character in string. Each time the block is assembled,
occurrences of the parameter name param are replaced with the

current character from string.

For example,

irpc x, 0123
db x
endm

generates:

- as.5§ -

ASSEMBLER Macros Aztec C86

db 0
db 1
db 2
db 3

3.8.9 Summary of the macro directives

The ENDM Directive

endm

Identifies the end of a block of statements that begins with macro,
rept, irp, OY irpe.

The EXITM Directive

exitm

exitm causes the assembler to terminate the expansion of a macro
or repetition directive. If the block containing exitm is contained
within another block, the outer level block continues to be
expanded. A block containing exitm must still be terminated
with the endm directive; exitm and endm are not interchangeable.

The IRP Directive

irp param, <arglist>

irp causes its block to be assembled several times, once for each
argument in arglist; each time the block is assembled, occurrences
of param in the block are replaced with the current arglist
argument.

The IRPC Directive

irpc param, string

irpc causes its block to be assembled several times, once for each
character in string; each time the block is assembled, occurrences
of param in the block are replaced with the current character in
string.

The LOCAL Directive

local name [,name ...]

local is used within a macro block to create unique names for the
names namel, name2, ... When namel, name2, ... are encountered
in the block, they are replaced with their unique name.

The MACRO Directive

macname macro [param [, param ...]]

- as.56 -

Aztec C86 Macros ASSEMBLER

macro begins the definition of a macro. It has the form:

macname macro arg, arga, ...

where macname is the macro’s name and argl, arg2, ... are the
names of its arguments.

The PURGE Directive

purge name [, name ...]

purge deletes the definition of a macro, allowing its space in
internal tables to be reused.

A macro cannot be redefined without first using purge to
delete the previous definition.

The REPT Directive

rept expr

rept begins a block of statements that are to be assembled expr
times.

3.9 Conditional directives

as supports several directives with which you can specify that parts
of your program should be assembled only if certain conditions are
satisfied.

To make assembly of a sequence of statements conditional, begin
the block with one of the if directives, which specifies the condition
that must be met for the block to be assembled, and terminate the
block with the endif directive. Such a block has this form:

if condition
wes ‘statements to be assembled if condition is true
endif

You can also specify that one block of statements is to be assembled
if a condition is true and that another is to be assembled if the
condition is false. The two blocks have this form:

if condition
‘statements to be assembled if condition is true

else

wes ‘statements to be assembled if condition 1s false
endif

You can nest blocks of statements whose assembly is conditional, to
any level. This means that a block of statements whose assembly is
conditional can itself contain blocks of statements that are surrounded
by the conditional assembly directives. For example

- as.57 -

ASSEMBLER Conditional Directives Aztec C86

if cond!

ves ;statements to be assembled if cond! is true
if cond2

ves ;statements to be assembled if condl and cond? are true
endif ;endif for ’if cond2’
ves ;more statements to be assembled if cond! is true
endif ;endif for ’if cond!’

Another example:

if cond!

ves ;statements to be assembled if cond1 is true
if cond2

;statements to be assembled if condl and cond? are true
else

‘statements to be assembled if cond! is true
sand cond? is false

endif ;endif for ’if cond2’
wes ;more statements to be assembled if cond! is true
endif ;endif for ’if condl’

The else and endif directives pair up with the nearest preceding if
directive. Because of this, a block of statements whose assembly is
conditional can’t be partially within and partially outside another such
block; it must either be entirely within or entirely outside.

Here are the conditional directives:

The IF Directive

if const expr

const_ expr 1s an expression having a constant value, which is
built from constants, the names of symbols having a constant
value, the names of macro arguments, and operators described in
the section on operand operators that act on constant arguments.
When computing the value of an expression in an if statement,
the assembler uses the value of a symbol or macro argument, and
not its name.

The if directive’s condition is true if the value of the
expression is nonzero, and is false if the value is zero.

For example,

if count It 5

;statements to be assembled when count < 5
else

ee ;statements to be assembled when count >= 5
endif

- as.58 -

Aztec C86 Conditional Directives ASSEMBLER

The IFE Directive

ife const__expr

const__exp is an expression having a constant value, as described

in the discussion of the if directive. The ife directive’s condition

is true if the value of the expression is zero, and is false if the

value is nonzero.

The IF1 Directive

ifl

if1 is true if the assembler is making its first pass through the

source file, and is false otherwise.

The IF2 Directive

if2

if2 is true if the assembler is making its second pass, or a sqeeze

pass, through the source file, and is false otherwise.

The IFDEF Directive

ifdef symbol

ifdef is true if symbol is defined or has been declared external,

and is false otherwise.

The IFNDEF Directive

ifndef symbol

ifndef is true if symbol is not defined and has not been declared

external, and is false otherwise.

The IFB Directive |

ifb <arg>

ifb is true if arg is blank or if the entire argument to fb,

including the angle brackets, is not present, and is false
otherwise. The angle brackets around arg are required.

ifb is primarily used within macros, to determine whether a
particular parameter has been passed to the macro.

The IFNB Directive

ifnb <arg>

ifnb is true is arg is not blank, and is false otherwise. The angle

brackets around arg are required.

- as.59 -

ASSEMBLER Conditional Directives Aztec C86

As with ifb, ifnb is used primarily within macros.

The IFIDN Directive

ifidn <argl>, <arg2>

argI and arg2 are character strings. ifidn is true if the two strings
are identical, and is false otherwise. The angle brackets around
arg! and arg2 are required.

ifidn 1s used primarily within macros to determine the value
of a character string argument in a call to the macro.

The IFDIF Directive

ifdif <argl>, <arg2>

ifdif is true if the character strings arg] and arg2 are not
identical, and is false otherwise. The angle brackets around the
arguments are required.

As with ifidn, ifdif is used primarily within macros.

The ELSE Directive

else

The else directive can be used with an if directive to specify a
block of code that is to be assembled if the if directive condition
is false. Only one else directive is allowed for an if directive.

The ENDIF Directive

endif

The endif directive identifies the end of a block of statements
whose assembly is conditional. endif terminates the most recent,
unterminated if directive.

3.10 Codemacros

A codemacro is a named sequence of directives. When the
assembler encounters a codemacro’s name in the operation field of a
statement, it generates code as directed by the codemacro’s directives.

All the instructions supported by as are implemented as
codemacros. You can define your own codemacros, thereby creating
your own customized instruction set. For example, the following
statements invoke the codemacros mov, myinst, and add:

mov bx,mem
myinst [bx], ax
add ax,)

mov and add are codemacros whose definitions are built into the

- as.60 -

Aztec C86 Codemacros ASSEMBLER

assembler. myinst is a codemacro that was defined within the program
sometime prior to its invocation.

A’ codemacro can have parameters. When a _ parameterized
codemacro is invoked, parameters are specified as operands to the
instruction; as the assembler processes the codemacro invocation, it
replaces the names of the parameters in the codemacro’s definition
with the parameter values. In the above code, for example, bx and
mem are parameters to the moy instruction. As the assembler processes
the mov codemacro’s directives, it replaces occurrences of the
codemacro’s first parameter name with bx and occurrences of the
second parameter name with mem.

Codemacros can have the same name. For example, there are
eleven different codemacros that have the name add.

The definition of a codemacro specifies the number of operands
that an invocation of the codemacro can have and the types of the
operands. When a codemacro name is encountered in a statement, the
assembler examines the definitions of codemacros having that name,
beginning with the last such codemacro that was defined. When it
finds one whose requirements are met by the invocation’s actual
parameters, it processes that codemacro.

A codemacro definition begins with a codemacro directive and ends
with the endm directive. In between these two directives are directives
that form the body of the codemacro.

The codemacro directive has the following form:

codemacro name [param_list]

where name is the name of the codemacro, and param__list is a list of
items, separated by commas, each of which defines the name and
attributes of one of the codemacro’s parameters.

A param_ list item has the form:

pname:specifier [modifier] [range]

where pname is the name of the parameter, specifier is a letter defining
the type that the corresponding actual parameter of an invocation of
this codemacro must have, modifier is an optional letter that imposes
further requirements on the actual parameter, and range is an optional
expression, or pair of expressions separated by a comma, that is
surrounded by parentheses and that imposes even more requirements
on the actual parameter.

An alternative form of the statement that begins a codemacro is

codemacro name prefx

This form is used to define a codemacro that is to be used as a prefix
to other instructions. For example, the standard codemacros lock and

- as.6l1 -

ASSEMBLER Codemacros Aztec C86

rep are defined using this form of the codemacro directive.

Only a few directives can occur within a codemacro definition.
These are:

segfix
nosegfix
modrm

x
&

©
&£

£

&
&

&

=) <

Record initialization

These directives are discussed later in this section.

Here are some simple codemacros:

CodeMacro CLC
db Of8h
Endm

CodeMacro POPF
db 9dh
Endm

CodeMacro ADD dst:Ab, srce:Db
db 4

The first codemacro defines a codemacro named CLC. It will match a
statement having CLC in its operation field, with no operands. When
such a statement is found, the codemacro causes the assembler to
output the byte Of8h. Similarly, the POPF codemacro matches a
statement whose instruction is POPF and that doesn’t have any
operands. When such a statement is found, the assembler will output
the byte 9dh.

The third codemacro defines one of the eleven codemacros whose
name is ADD. It has two parameters, named dst and src. This ADD
codemacro will match an ADD instruction having two operands, the
first being either AL or AH, and the second being a constant
expression.

3.10.1 Specifiers

A parameter’s specifier letter defines the type of actual parameter
that will match the parameter. The letters and their associated types:

specifier parameter type

- as.62 -

Aztec C86 Codemacros ASSEMBLER

A Accumulator; that is, AX or AL

C Code; that is, a label expression only.

D Data; that is, an immediate expression having a
constant value.

E Effective address; either an M (memory reference) or
R (register).

M Memory reference; either a variable (with or without
indexing) or a bracketed register expression.

R General Register only: not an address expression, not
a register in brackets, and not a segment register.

S Segment register only: CS, DS, ES, or SS.

xX Direct memory reference; a simple variable name
with no indexing.

3.10.2 Modifiers

The optional modifier letter for a codemacro’s parameter further
defines the type of instruction operand that will match the parameter.
The meaning of the modifier depends on the parameter’s type:

* For variables, the modifier defines the size of the operand: ’b’
for byte, ’w’ for word, ’@ for dword.

* For labels, the modifier defines the type and distance of the
operand from the invoking statement: ’b’ for a near label
within in a small interval surrounding the invoking statement
(-128 to 127 bytes), ’w for a near label that’s outside this
interval, and ’d’ for a far label.

* For constants, the modifier defines the size of the constant:
’b’ for -256 to 255, ’w’ for constants outside this range but still
between -65536 and 65535.

3.10.3 Range Specifiers

The optional range specifier for a codemacro’s parameter defines
even more requirements that an invoking statement’s operand must
meet if the statement is to match the codemacro. A range specifier
consists of an expression, or a pair of expressions separated by a
comma, that is surrounded by parentheses. Each expression must be a
register or must evaluate to a constant number.

If a register or pair of registers is specified, an operand will match
the parameter only if it is one of the range’s registers. If a single
constant is specified as the range, an operand must have that value in
order to match the parameter. If a pair of constants is specified as the
range, an operand must have a number in that interval in order to
match the parameter.

- as.63 -

ASSEMBLER Codemacros Aztec C86

For example, here are the first lines of three codemacros that use
the range specifier:

codemacro IN dst Aw, port Rw(DX)
codemacro ROR dst Ew, count Rb(CL)
codemacro ESC — opcode:Db(0,63), adds:Eb

The first codemacro directive begins one of the IN instruction’s
codemacros. For an IN statement to match this codemacro, the
instruction’s second operand must be the DX register.

The second codemacro directive begins one of the ROR
instruction’s codemacros. For an ROR instruction to match this
codemacro, the instruction’s second operand must be the CL register.

The third codemacro directive begins the ESC codemacro. For an
instruction to match this codemacro, the instruction’s first operand
must be a constant expression whose value is between 0 and 63.

3.10.4 The Codemacro Directives

3.10.4.1 The SEGFIX directive

The seg fix directive has the form:

segfix param name

where param_name is the name of a codemacro parameter. This
parameter must specify a memory address; that is, its specifier must be
E, M, or X.

When the assembler is generating code for an instruction, seg fix
causes the assembler to determine whether the memory operand
corresponding to param__name can be accessed using the instruction’s
default, hardware-selected segment register. If not, the assembler will
output a segment-override prefix as the first byte of the instruction. If
the prefix isn’t needed, the assembler won’t output it.

The assembler knows that when a segment-override prefix isn’t
specified in an instruction, the 8086 hardware uses the SS segment
register to access the instruction’s memory operand if the memory
operand uses the BP base register; otherwise, it uses the DS segment
register.

The assembler decides which segment register is needed to access
an instruction’s memory operand as follows:

* If the operand specifies the segment register to use, using the
segment selector operator, :, then of course that’s the segment
register that is needed.

* Otherwise, if the operand contains a variable or label name,
then the needed segment register is the one that points to the
segment containing the variable or label, as defined by the
assume directive.

- as.64 -

Aztec C86 Codemacros ASSEMBLER

* Otherwise, if the operand uses the BP base register, then SS is
needed.

* Otherwise, DS is needed.

3.10.4.2 The NOSEGFIX Directive

The noseg fix directive has the form:

nosegfix segreg, param name

where segreg is one of the segment register and param_name is the
name of a codemacro parameter that has a memory address specifier
(that is, its specifier is E, M, X).

When the assembler is generating code for an instruction, the
nosegfix directive causes it to verify that the actual operand
corresponding to param_name can be accessed using the segreg
segment register. If not, the assembler reports an error.

noseg fix 1s used in instructions, such as CMPS, MOVS, SCAS, and
STOS, where a memory operand can only be accessed by the ES
segment register.

3.10.4.3 The MODRM Directive

The modrm directive causes the assembler to generate the ModRM
byte for an instruction. If the instruction calls for an 8- or 16-bit
displacement, modrm generates that as well. The modrm directive has
the form

modrm regfld, modrmfld

where regfld defines the contents of the ModRM byte’s reg field, and
modrmfld defines the contents of the ModRM byte’s mod and rm fields
and, when necessary, the contents of the displacement bytes.

regfld can be either an absolute number or the name of one of the
codemacro’s parameters. If it’s a number, that same value is always set
in the instruction’s reg field when the instruction is used. If it’s a
parameter name, then the corresponding actual parameter, which is
usually a register number, is set in the instruction’s reg field. An
instruction can specify a register by its name, of course; the assembler
will place the register’s number in the modrm byte’s reg field.

modrmfld is the name of a codemacro parameter. When the
assembler is generating code for an instruction, it determines whether
the actual parameter that corresponds to the modrmfld parameter is a
register, variable, or indexed variable and constructs the instruction’s
mod and r/m fields. If the operand also needs an 8- or 16-bit
displacement, the assembler generates that, too.

As an example of a codemacro that uses modrm, here is one of the
codemacros for the mov instruction:

- as.65 -

ASSEMBLER Codemacros Aztec C86

codemacro MOV dst:Rw, src:Ew
segfix src
db 8bh
modrm dst, src
endm

Because of the specifiers on the two parameters, this codemacro will
match those MOV instructions whose first operand is a 16-bit general
register, and whose second operand designates a 16-bit register or
memory location.

Continuing with this example, the instruction

mov dx, [bx][si]

will match this codemacro, generating the two bytes

10001101 10010000

The first byte is the instruction code for moving a 16-bit value from
memory or register into a register. The second byte is the ModRM
byte, with the destination register, DX, encoded as 010 in bits 3-5, a
Mod field of 10 in bits 6 and 7, and an RM field of 000 in bits 0-2.

3.10.4.4 The RELB and RELW Directives

The relb and relw directives are used in the codemacros for call and
jump instructions. They tell the assembler to output an 8- or 16-bit
displacement, respectively, from the end of the instruction being
processed to the label specified in the instruction.

The directives have the form:

relb param name
relw param_ name

where param_name is the name of a codemacro parameter that has a
°Cb’ or ’Cw’ specifier, respectively.

For example, here are two codemacros that use relb and relw:

codemacro JMP place:Cw
db 0e9h
relw place
endm

codemacro JE place:Cb
db 74h
relb place
endm

3.10.4.5 The DB, DW, and DD Directives

When the assembler encounters a db, dw, and dd directive as it is
generating code for an instruction, it generates a byte, word, or
doubleword, respectively.

~ as.66 -

Aztec C86 Codemacros ASSEMBLER

The directives have the form:

db cmac_ expr
dw cmac__expr
dd cmac_ expr

where cmac_expr is either an absolute number, without forward
references; the name of a codemacro parameter; or the name of a
codemacro parameter with a dot-recordfield shift operator.

Unlike the use of these directives outside a codemacro, these
directives when used within a codemacro cannot specify a list of values
separated by commas,-and cannot use the DUP construct.

3.10.4.6 User-defined Record Directives

The record initialization directive has the form

recname <pl, p2, ...>

where recname is the name of a record that was previously defined
using the record directive (see the Directives section), and pl, p2, ...
are operands.

When the assembler encounters a user-defined record directive
while generating code for an instruction, it will put together and
output a byte or word (depending on the record definition) from the
values in the record’s operand list.

For example, here is the definition of the record r53, and its use in
the codemacro for the version of the dec instruction that decrements a
16-bit general register:

R53 Record RF1:5,RF2:3
codemacro dec dst:rw

r53. <01001b, dst>
endm

When the assembler encounters a dec instruction that matches this
codemacro, it will output a byte whose most significant 5 bits are
01001 and whose least significant 3 bits are the number of the register
that is specified as the operand of the instruction.

3.10.5 Using the Dot operator to Shift Parameters

There is a special operator, the dot operator, that can be used in a
codemacro definition on the operands of the db, dw, dd, and record
initialization directives. The operator has the form

param__name.field__name

where param_name is the name of codemacro parameter whose
corresponding operand will be an absolute number. field name is the
name of a record field.

- as.67 -

ASSEMBLER Codemacros Aztec C86

When the assembler encounters an expression containing a dot
Operator as it is generating code for an instruction, it shifts the
operand corrresponding to param_name to the right, using the shift
count defined by field__ name.

The shift count for a record field name is the number of bits
between the field and the least significant bit of its record. For
example, with the record definition

R233 record rf6:2, mid3:3, rf7:3

the shift counts of the fields rf6, mid3, and rf7 are 6, 3, and 0,
respectively.

The dot-shift operator is used in the codemacros for the ESC
instruction. Here is one of them:

R53 Record RF1:5,RF2:3
R233 Record RF6:2, Mid3:3, RF7:3

codemacro esc opcode:db(0,63), addr:Eb
segfix addr
r53 <11011b, opcode.mid3>
modrm opcode, addr

endm

When the assembler encounters an esc instruction that matches this
codemacro, it will output a byte for the r53 directive whose most
significant five bits are 11011 and whose least significant 3 bits are the
value of the actual esc operand, shifted right 3 bits.

3.10.6 The PROCLEN Symbol

The special symbol proclen equals 0 within a near proc and Offh
inside a far proc. It also equals 0 outside of PROC ... endp blocks.
This symbol is used by the codemacros for the ret instructions to
generate the correct machine instruction to return from a call to a near
or far proc.

For example, the codemacro for the version of the ret instruction
that doesn’t add a value to the stack 1s:

R413 Record RF8:4, RF9:1, RF10:3

codemacro Ret
r413 <Och, proclen, 3>

endm |

When the assembler encounters a parameter-less ret instruction it will
output one byte whose most significant four bits are 1100 and whose
least significant three bits are 011. The bit in the middle will be 0 if
the instruction is in a near proc and | if it is in a far proc.

- as.68 -

Aztec C86 Codemacros ASSEMBLER

3.10.7 Matching Instructions to Codemacros

When the assembler encounters an instruction, it searches the
codemacros that have that name, beginning with the last one defined,
looking for one for which the number of codemacro and instruction
parameters are the same, and for which the attributes of each of the
instruction’s and codemacro’s parameters match.

The following rules are used to decide if an instruction parameter
matches a codemacro parameter:

Specifiers

* In pass 1, a forward reference matches C, D, E, M, X.

* AX and AL match A, E, R.

* A label matches C.

* A number matches D.

* A non-indexed variable matches E, M, X.

* An indexed variable or register expression matches E, R.

* A segment register matches S.

Modifiers

Once an instruction’s parameter has matched the specifier of a
codemacro’s parameter, an attempt is made to match the instruction’s
parameter to the modifier of the codemacro’s parameter. Modifier
matching depends on the type of the instruction’s parameter.

For a number: |

* A number between -256 and 255 matches ’b’ only.

* Other numbers match ’w’ only.

For a label:

* A near label that is accessable from the current contents of the
CS segment register (as defined by the assume directive) and
that is in the range -126 to +129 from the beginning of the
instruction matches only ’b’. An expression that is explicitly
typed using the short operator also matches only ’b’.

* Another near label that is accessable from the current contents
of CS matches only ’w.

* A far label matches ’d’.

For a variable:

* A variable of type byte matches ’b’.

* A variable of type word matches ’w’.

- as.69 -

ASSEMBLER Codemacros Aztec C86

« A variable of type dword matches ’d’.

A forward reference matches any modifier, except when typing
information is specified in the instruction’s operand (eg, byte ptr).

If an index-register expression is used as an operand in a multi-
operand instruction and its type can’t be determined from _ the
expression itself (eg, [bx]), the operand type will be determined from
that of the other operand, if possible. In this case, if the other operand
is a number, the operand being matched will match only ’w. If the
instruction contains just a single operand, it matches no modifier.

Ranges

Range specifiers are legal only for number and register parameters
(that is, whose specifier is A, D, R, or S). If the range is just a single
value, an actual operand must be that value in order to match. If the
range is a pair of values, the actual operand must be the specified
range in order to match. Forward references do not match a
codemacro’s parameter if the parameter contains a range specifier.

As an example of codemacro matching, consider the 8086 add
instruction: there are eleven add codemacros, which match the
following combinations of source and destination operands:

Destination Source
memory byte immediate byte
memory word immediate byte (not between -128 & 127)
memory word immediate byte (from -128 to 127)
memory word immediate word
AL immediate byte
AX immediate byte
AX immediate word
memory byte or byte register byte register

. memory word or word register word register
10. byte register memory byte or byte register
11. word register memory word or word register

Here are the first lines for each of the add codemacro definitions,
which correspond to the above operand list:

OS

N
A
A
R
W
N
-

- as.70 -

Aztec C86 Codemacros ASSEMBLER

CodeMacro Add dst:Eb, src:Db
CodeMacro Add dst:Ew, src:Db
CodeMacro Add dst:Ew, srce:Db(-128, 127)
CodeMacro Add dst:Ew, src: Dw
CodeMacro Add dst:Ab, sre:Db
CodeMacro Add dst:Aw, srce:Db
CodeMacro Add dst:Aw, src: Dw
CodeMacro Add dst:Eb, srce:Rb
CodeMacro Add dst:Ew, src:Rw
CodeMacro Add dst:Rb, src:Eb
CodeMacro Add dst:Rw, src: Ew

When the assembler is trying to find a codemacro that matches an
add instruction, it begins with the last add codemacro defined, number
11, and searches backwards. Thus, the ordering of codemacros for an
instruction is very important.

Here are some examples on the matching of actual add instructions
to the add codemacros. For these examples, assume that bvar and wvar
are byte and word variables, respectively:

add
add
add
add
add
add
add
add
add
add
add
add

ax,250 ;matches add codemacro # 6
ax,300 ;#7
bx, wvar;# 11
bx,dx ;#11
bvar,al ;#8
bvar,254 #1]
wvar,cx;#9
dh, bvar[si] [#10
al,3 #5
wvar, 35648 #4
[bx][si],ah #8
wvar,255 #2

- as.71 -

ASSEMBLER Codemacros Aztec C86

- as.72 -

THE LINKER

- In.1 -

LINKER Aztec C86

Chapter Contents

The Linker wie ccssscsssscsssscssscesssscssscecsscscsscsssssscsssscssssscssscesssessssasesssce cess In
1. Introduction to Lnking oe ececssscsssscsssesssssessececeseesescesssessesseeeees 3
2. Using the Linker oii ccsssscccscssssccsssescscsseescsesseeescsssesecsceseeeeeceses 7
3. Limker Options ou... cscssssccecessssccvscsssssscsscsscsssessesscnsecessesscseeseescesssaners 9
4. Linker Error Messages .0............ccccccccsscssssssscscesscessecsseneeseseecessssnsesaeees 17

- In.2 -

Aztec C86 LINKER

The Linker

The Manx linker has two functions:

* It ties together the pieces of a program which have been
compiled and assembled separately;

* It converts the linked pieces to a format which can be loaded
and executed.

The pieces must have been created by the Manx assembler.

The first section of this chapter presents a brief introduction to
linking and what the linker does. If you have had previous experience
with linkage editors, you may wish to continue reading with the
second section, entitled "Using the Linker." There you will find a
concise description of the command format for the linker.

1. Introduction to linking

Relocatable Object Files

The object code produced by the assembler is "relocatable" because
it can be loaded anywhere in memory. One task of the linker is to
assign specific addresses to the parts of the program. This tells the
operating system where to load the program when it is run.

Linking hello.o

It is very unusual for a C program to consist of a single, self-
contained module. Let’s consider a simple program which prints "hello,
world" using the function, printf. The terminology here is precise;
printf is a function and not an intrinsic feature of the language. It is a
function which you might have written, but it already happens to be
provided in the file, c.lib. This file is a library of all the standard i/o
functions. It also contains many support routines which are called in
the code generated by the compiler. These routines aid in integer
arithmetic, operating system support, etc.

When the linker sees that a call to printf was made, it pulls the
function from the library and combines it with the "hello, world"
program. The link command would look like this:

In hello.o c.lib

When hello.c was compiled, calls were made to some invisible support
functions in the library. So linking without the standard library will

cause some unfamiliar symbols to be undefined. All programs will
need to be linked with c.lib.

- In.3 -

LINKER Aztec C86

The Linking Process

Since the standard library contains only a limited number of
general purpose functions, all but the most trivial programs are certain
to call user-defined functions. It is up to the linker to connect a>
function call with the definition of the function somewhere in the
code.

In the example given below, the linker will find two function calls
in file 1. The reference to func! is "resolved" when the definition of
funcl is found in the same file. The following command

In filel.o c.lib

will cause an error indicating that func2 is an undefined symbol. The
reason 1s that the definition of func2 is in another file, namely file2.0.
The linkage has to include this file in order to be successful:

In filel.o file2.0 c.lib

file 1 file 2

main() func2()

{
funcl(); return;
func2(); }

}

funcl() |

return;

}

Libraries

A library is a collection of object files put together by a librarian.
Libraries intended for use with /n must be built with the Manx
librarian, /b. This utility is described in the Utility Programs chapter.

All the object files specified to the linker will be "pulled into" the
linkage; they are automatically included in the final executable file.
However, when a library is encountered, it is searched. Only those
modules in the library which satisfy a previous function call are pulled
in.

For Example

Consider the "hello, world" example. Having looked at the module,
hello.o, the linker has built a list of undefined symbols. This list
includes all the global symbols that have been referenced but not
defined. Global variables and all function names are considered to be
global symbols.

The list of undefined’s for hello.o includes the symbol printf. When
the linker reaches the standard library, this is one of the symbols it

- In.4 -

Aztec C86 LINKER

will be looking for. It will discover that printf is defined in a library
module whose name also happens to be printf. (There is not any
necessary relation between the name of a library module and the
functions defined within it.)

The linker pulls in the printf module in order to resolve the
reference to the printf function.

Files are examined in the order in which they are specified on the
command line. So the following linkages are equivalent:

In hello.o

In c.lib hello.o

Since no symbols are undefined when the linker searches c./ib in the
second line, no modules are pulled in. It is good practice to leave all
libraries at the end of the command line, with the standard library last
of all.

The Order of Library Modules

For the same reason, the order of the modules within a library is
significant. The linker searches a library once, from beginning to end.
If a module is pulled in at any point, and that module introduces a new
undefined symbol, then that symbol is added to the running list of
undefined’s. The linker will not search the library twice to resolve any
references which remain unresolved. A common error lies in the
following situation:

module of program re ferences (function calls)
main.o getinput, do__ calc
input.o gets
calc.o put_ value
output.o printf

Suppose we build a library to hold the last three modules of this
program. Then our link step will look like this:

In main.o proglib.lib c.lib

But it is important that proglib.lib is built in the right order. Let’s
assume that main() calls two functions, getinput() and do_calc().
getinput() is defined in the module input.o. It in turn calls the standard
library function gets(). do_calc() is in calc.o and calls put_value().
put__value() 1s 1n output.o and calls print f().

What happens at link time if proglib.lib is built as follows?

proglib.lib: input.o

output.o

calc.o

After main.o, the linker has getinput and do__calc undefined (as well as
some other support functions in c./ib). Then it begins the search of

- In.5 -

LINKER Aztec C86

proglib.lib. It looks at the library module, input, first. Since that module
defines getinput, that symbol is taken off the list of undefined’s. But
gets 18s added to it.

The symbols do_calc and gets are undefined when the linker
examines the module, output. Since neither of these symbols are
defined there, that module is ignored. In the next module, calc, the
reference to do_calc is resolved but put value is a new undefined
symbol.

The linker still has gets and put value undefined. It then moves on
to clib, where gets is resolved. But the call to put value is never
satisfied. The error from the linker will look like this:

Undefined symbol: put_ value __

This means that the module defining put value was not pulled into the
linkage. The reason, as we saw, was that put value was not an
undefined symbol when the output module was passed over. This
problem would not occur with the library built this way:

proglib. lib: input.o
calc.o
output.o

The standard libraries were put together with much care so that this
kind of problem would not arise.

Occasionally it becomes difficult or impossible to build a library so
that all references are resolved. In the example, the problem could be
solved with the following command:

In main.o proglib.lib proglib.lib c.lib

The second time through proglib.lib, the linker will pull in the
module output. The reason this is not the most satisfactory solution is
that the linker has to search the library twice; this will lengthen the
time needed to link.

- In.6 -

Aztec C86 LINKER

2. Using the Linker

The general form of a linkage is as follows:

In [-options] filel.o [file2.0 etc] [lib1.lib etc]

The linker combines object modules produced by the Manx
assembler into an executable program. It can search libraries of object
modules for functions needed to complete the linkage; including just
the needed modules in the executable program. The linker makes just
a single pass through a library, so that only forward references within a
library will be resolved.

The executable file

The linker can create both .exe and .com files for PCDOS and
MSDOS. It creates .cmd files for CP/M-86.

The name of the executable output file can be selected using the -O
linker option. If this option isn’t used, the linker will derive the name
of the output file from that of the first object file listed on the
command line, by changing its extension to .exe on MSDOS and
PCDOS, and to .cmd on CP/M-86. In the default case, the executable
file will be located in the same area as the first object file. (an "area" is
a directory on a drive, on MSDOS and PCDOS, and is a user area on a
drive, on CP/M-86). For example,

In prog.o c.lib

will produce the disk file prog.exe, on MSDOS and PCDOS, and the
file prog.cmd on CP/M-86. The standard library, c.lib, will have to be
included in most linkages.

A different output file can be specified with the -O option, as in
the following command:

In -o program.com mod1l.o mod2.0 c.lib

This command also shows how several individual modules can be
linked together. A "module", in this sense, is a section of a program
containing a limited number of functions, usually related. These
modules are compiled and assembled separately and linked together to
produce an executable file.

Libraries

Several libraries of object modules are provided with Aztec C86.
The most frequently-used of these are c.Jlib, which contains the non-
floating point functions and which use the ’small code’ and ’small data’
memory model; and m.lib, which contains the floating point functions,
which perform the operations using software routines, and which use
the ’small code’ and ’small data’ memory model. Other libraries are

provided with some versions of Aztec C86; for their description, see
the Libraries section of the Technical Information chapter.

- In.7 -

LINKER Aztec C86

All programs must be linked with one of the versions of c.lib. In
addition to containing all the non-floating point functions described in
the Functions chapter, it contains internal functions which are called
by compiler-generated code, such as functions to perform long
arithmetic. |

Programs that perform floating point operations must be linked
with one of the versions of miJib, in addition to a version of c.lib. The
floating point library must be specified on the linker command line
before c.lib.

Libraries of user modules can also be searched by the linker. These
are created with the Manx /b program, and must be listed on the linker
command line before the Manx libraries.

For example, the following links the module program.o, searching
the libraries mylib.lib, new.lib, m.lib, and c.lib for needed modules:

In program.o mylib.lib new.lib m.lib c.lib

Each of the libraries will be searched once in the order in which
they appear on the command line.

Libraries can be conveniently specified using the -L option. For
example, the following command is equivalent to the following:

In -o program.o -lmylib -Inew -Im -lc

For more information, see the description of the -Z option in the
Options section of this chapter.

- In.8 -

Aztec C86 LINKER

3. Linker Options

3.1 Summary of options

3.1.1

3.1.2

General Purpose Options

-O file Write executable code to the file named file.

-Lname Search the library name.lib for needed modules.

-F file Read command arguments from file.

-T Generate a symbol table file.

-M Don’t issue warning messages.

-N Don’t abort if there are undefined symbols.

-S size Tell DOS not to load the program unless at least size
bytes is available for its stack and heap. size is a hex
value.

-X size Tell DOS to allocate memory to the program so that
the program doesn’t have more than size paragraphs
(16-byte blocks) for its stack and heap. size is a hex
value. Only valid .exe programs running on DOS 2.0
or later.

-V Be verbose.

Options for Segment Address Specification

-B addr When linking a DOS .com file, set the program’s base
address to the hex value addr.

-C addr When linking an .exe program that will be burned into
ROM, set the starting paragraph number of the
program’s code segments to the hex value addr.

When linking a .com program, set the starting offset of
the program’s code segment from the beginning of the
physical segment containing the program to the hex
value addr.

-D addr When linking an .exe program that will be burned into
ROM, set the starting paragraph number of the
program’s data segments to the hex value addr.

When linking a DOS .com file, set the starting offset of
the program’s initialized data segment to the hex value
addr.

-U addr When linking a DOS .com file, set the starting offset of
the program’s uninitialized data segment to the hex
value addr.

- In.9 -

LINKER Aztec C86

3.1.3. Options for Overlay Usage

-R

+C size

+D size

Create a symbol table to be used when linking
overlays.

Reserve size bytes at end of the program’s code
segment (the overlay’s code segment is loaded here).
size 1s a hex value.

Reserve size bytes at end of the program’s initialized
and uninitialized data segments (the overlay’s data is
loaded here). size is a hex value.

- In.10 -

Aztec C86 LINKER

3.2 Detailed description of the options

3.2.1 General Purpose Options:

The -O option

The -O option can be used to specify the name of the file to which
the linker is to write the executable program. The name of this file is
in the parameter that follows the -O. For example, the following
command writes the executable program to the file prog.com.

In -o prog.com prog.o c.lib

If this option isn’t used, the linker derives the name of the
executable file from that of the first input file, by changing its
extension to .exe on DOS and to .cmd on CP/M-86.

The linker decides what type of executable program to create, based
on the extension of the file to which it is written. Thus, if you’re
creating a program that will run on CP/M-86, the extension of the
executable file must be .cmd. And if you’re creating a DOS program,
its extension must be .exe or .com.

The -L option

The -Z option provides a convenient means of specifying to the
linker a library that it should search, when the extension of the library
is .lib.

On DOS, the name of the library is derived by concatenating the
value of the environment variable CLIB, the letters that immediately
follow the -Z option, and the string Jib. For example, with the
libraries subs.lib, io.lib, m.lib, and c.lib in a directory specified by CLIB,
you can link the module prog.o, and have the linker search the libraries
for needed modules by entering

In prog.o -lIsubs -lio -lm -Ic

CLIB is set using the DOS set command. For example, the first
command that follows sets CLJB when the libraries are in the root
directory on the c. drive; the second sets it when they are in the
directory \cc\ libs on the default drive, and the third sets it when they
are in the directory libs on the d: drive:

set CLIB=c:
set CLIB=\cc\libs\
set CLIB=d:\ libs\

Note the terminating backslash on the CLIJB variable when the
libraries are not in a root directory. This is required since the linker
simply prepends the value of the CLIB variable to the -L string.

On CP/M-86, the linker derives the name of the file containing a
library that is specified in a -L option by appending .iib to the string
that immediately follows the -L.

-In.11 -

LINKER Aztec C86

The -F option

-F file causes the linker to merge the contents of the given file with
the command line arguments. For example, the following command
causes the linker to create an executable program in the file
myprog.exe (on DOS) or myprog.cmd (on CP/M-86). The linker
includes the modules myprog.o, modl.o, and mod2.o0 in the program,
and searches the libraries mylib.lib and c.lib for needed modules.

In myprog.o -f argfil c.lib

where the file arg fil, contains the following:

modl.o mod2.o
mylib.lib

The linker arguments in argfile can be separated by tabs, spaces, or
newlines.

There are several uses for the -F option. The most obvious is to
supply the names of modules that are frequently linked together. Since
all the modules named are automatically pulled into the linkage, the
linker does not spend any time in searching, as with a library.
Furthermore, any linker option except -F can be given in a -F file. -F
can appear on the command line more than once, and in any order.
The arguments are processed in the order in which they are read, as
always.

The -T option

The -T option creates a disk file which contains a symbol table for
the linkage. This file is just a text file which lists each symbol with a
hexadecimal address. This address is either the entry point for a
function or the location in memory of a data item. A perusal of this
file will indicate which functions were actually included in the
program.

The symbol table file will have the same name as that of the file
containing the executable program, with extension changed to .sym.
This file can be used in conjunction with the Manx db debugger or
with the Digital Research debugger, SID86.

There are several special symbols which will appear in the table.
They are defined in the Program Organization section of the Technical
Information chapter.

The -M option

The linker issues the message "multiply defined symbol" when it
finds a symbol that is defined with the assembly language directives
global or public in more than one module. The -M option causes the
linker to suppress this message unless the symbol is defined in more
than one public directive.

- In.12 -

Aztec C86 LINKER

To maintain compatibility with previous versions of Aztec C, the
linker will generate code for a variable that is defined in multiple
global statements and in at most one public statement, and also issue the
“multiply defined symbol" message. Thus, if you use the global and
public directives in this way, and don’t want to get this message, use
the -M option to suppress them.

The definition of a symbol in more than one public directive is
never valid, so the -M option doesn’t suppress messages in this case.

For more information, see the discussion on global symbols in the
Programmer Information sections of the Compiler and Assembler
chapters.

The -N option

Normally, the linker halts without generating an executable
program if there are undefined symbols; that is, symbols that are
defined in one module using the assembly language extrn directive but
that aren’t defined in another module using a global or public directive.

The -N option causes the linker to go ahead and generate an
executable program anyway.

The -S option

The -S size option can be used when linking programs that will run
on PCDOS or MSDOS, to tell DOS to load the program only if there is
enough memory for the program to have a stack and heap whose
combined size is at least size bytes, where size is a hex value.

If this option isn’t specified, the size defaults to 4K bytes.

This option is provided for compatibility with earlier versions of
Aztec C, and is not useful now: the global variables | STKSIZ and
__HEAPSIZ define the sizes of these areas; if the startup routine is not
able to give the program the requested space for its stack and heap, it
will halt the program.

The -X option

The -X size option can be used when linking .exe programs that will
run on PCDOS or MSDOS 2.0 or later, to tell DOS to allocate memory
to the program such that it has at most size paragraphs (16-byte blocks)
available for its stack and heap. size is a hex value.

If this option isn’t specified, the size defaults to a huge value.

When a DOS program starts, the startup routine will allocate as
much memory to the program as it needs and can use, and frees the
rest of memory. If the program’s stack is below its heap, then the -Y
option is not useful at all, because the size of the program’s heap will

grow automatically to satisfy program requests for dynamically-
allocated buffers.

- In.13 -

LINKER Aztec C86

If the program’s stack is above its heap, the -X option may be used
to create a program whose allocated memory is less than the maximum
allowed amount.

For more information, see the Program Organization section of the
Technical Information chapter.

The -V option

The -V option causes the linker to send a progress report of the
linkage to the screen as each input file is processed. This is useful in
tracking down undefined symbols and other errors which may occur
while linking.

3.2.2 Options for segment address specification

The linker organizes a program into three areas: code, initialized
data, and uninitialized data areas. the following paragraphs discuss the
positioning of these areas using the linker’s -C, -D, -U, and -B options.

For more information on a program’s areas, see the Program
Organization section of the Technical Information chapter.

3.2.2.1 Segment specification for .exe programs

An .exe program that is created by the linker has some fields
containing long pointers whose values must be adjusted when the
starting addresses of the program’s segments are known. Normally,
DOS determines these addresses and adjusts the long pointer fields
when it loads the program, using information that the linker sets in the
beginning of the .exe file.

If the program is to be burned into ROM, the linker itself must
adjust the long pointer fields. For it to do this, you must tell it the
Starting addresses of the program’s code and data areas, using the -C
codebgn and -D databgn options. codebgn and databgn are the starting
paragraph numbers, in hex, of the program’s code and data areas,
respectively.

For example, if the program prog.exe is to be burned into ROM,
and its code and data are to start at paragraphs Oxf000 and 0,
respectively, then the command to link it could be

In -C £000 -D 0 -o prog.exe srom.o prog.o -lc

For more information on generating ROMable code, see the
Technical Information chapter.

3.2.2.2 Segment specification for .com programs

When you create a .com program, the program will occupy a single
physical segment and won’t contain any fields that need adjustment
when the program is loaded. You normally won’t need to specify the
location of the program’s areas within the physical segment, but if you
do, the offset of the start of the logical code, initialized data, and

- In.14 -

Aztec C86 LINKER

uninitialized data segments from the beginning of the physical segment
containing them can be specified by the -C, -D, and -U linker options,
respectively. A fourth linker option, -B, will set the "base address" of
the program. These options are followed by the desired offset, in hex.

By default, the base address is at 0x100, the logical code segment
starts at 0Ox103, the initialized data follows the code, and the
uninitialized data follows the initialized data.

A .com file contains a memory image of the program, from its base
address through the end of its code or initialized data segments
(whichever is higher). This image is loaded into its physical segment,
with the first byte in the file loaded at the offset specified by the base
address.

When the program is to be loaded by DOS, the base address must
be 0x100; the DOS loader simply loads the contents of the .com file
into the program’s physical segment, with the first byte in the file
loaded at offset 0x100, and transfers control to 0x100.

The program is expected to begin execution at its base address.
Most programs have a startup routine, which performs initialization
activities and then calls the program’s main function. This startup
routine is usually somewhere in the middle of the program, so at the
base address the linker will normally set a near jump instruction to the
Startup routine.

You can explicitly specify that a label in a module is the beginning
of a startup routine by placing the label in the operand field of the
module’s assembly language end directive. For example, the sbegin
module in c.lib contains the function $begin. This label is declared in a
public directive and also in the module’s end directive. When a C
module is compiled, the compiler always generates a reference to
Sbegin, thus, when the program is linked, /m will include the sbegin
module from clib and place a jump to it in the first byte of the
program’s .com file (ie, at its base address).

If the linker doesn’t find a startup routine when it links a program,
it won’t set the jump instruction at the program’s base address. In this
case, if you don’t specify a starting offset for the program’s code
segment, it will begin right at the base address.

For example, the following command sets the base address of

prog.com to 0x500:

In -b 500 -o prog.com prog.o -lc

Because none of the other segment selection options were used in this
example, the program’s code will begin at offset 0x503, followed by its
initialized data, followed by its uninitialized data.

In the next example, the program’s base address is set to 0x200, the
offset of its code, initialized data, and uninitialized data segments to

- In.15 -

LINKER Aztec C86

0x500, 0x1000, and 0x3000, respectively:

In -b 200 -c 500 -d 1000 -u 3000 prog.o -Ic

3.2.3. Options for Overlay Usage

The -R option causes the linker to generate a file containing the
symbol table. It’s used when linking a program which calls overlays.

The name of the symbol table file is derived from that of the
executable file by changing the extension to .rsm. The file is placed in
the same area as the executable file.

The +C and +D options effectively increase the size of the code and
data segments of the linked program. For example,

In +c 3000 +d 1000 prog.o -lIc

will reserve 0x3000 bytes in the code segment and 0x1000 bytes in the
data segment for overlays. See the Technical Information chapter for
more details.

- In.16 -

Aztec C86 Error Messages LINKER

4. Linker Error Messages

4.1 Summary of Error Messages

4.1.1 Command line errors:

1.

N
>

&
oN

i

a

e

—
pe

R
W
w
N

SK

B
A
N

P
W
N

B
P
N
D
U
Y
N

P
W
N

PE

B
H
M

aN

unknown option ’<bad option letter>’

too few arguments in command line.

No input given!

Cannot have nested -f options.

too few arguments in -f file: <filename>

multiple <origin> declarations, last one used.

1/O errors:

can’t open <filename>, err=<error number>

Cannot open -f file: <filename>

I/O error (<error number>) reading/writing output file

Cannot write output file

Cannot create output file: <filename>

Cannot create symbol table output

Cannot create overlay symbol table output

Corrupted object files:

object file is bad!

invalid operator in evaluate <hex value>

library format is invalid!

Cannot read module from <input> on pass2

can’t find symbol, <symbol name>, on pass two

<filename> is not a rel file!

Errors in use of Memory:

Insufficient memory!

Too many symbols!

-C or -D value less than base address

Code and data regions overlap

Errors arising from source code:

Undefined symbol: <symbol name>

-In.17 -

LINKER Error Messages Aztec C86

2. <symbol name> multiply defined

3. passl(<hex value>) and pass2(<hex value>) values differ:

4. symbol type differs on pass two: <symbol name>

>. Attempt to Initialize Data in Root

6. undefined COMMON <symbol name>

- In. 18 -

Aztec C86 Error Messages LINKER

4.2 Description of Linker Error Messages

When invoked, the linker processes the arguments given it,
performs the linkage requested, and generates an executable output
file on the disk. The first line to appear on the screen is a banner
which indicates that the linker has been loaded and is running. If
everything goes well, the base address message will follow and the
linker will finish. The linker may encounter an error while it is
running, in which case it will send a message to the screen.

Errors may be reported at a variety of points during the linking
process. /n does its work in two stages, known as pass | and pass 2. The
base address message is printed at the end of pass 1, so any errors
occurring after that have been detected during pass 2 of the linker.

Following is a list of the messages which the linker will generate in
response to an error. The messages are grouped according to the source
of the errors which cause them. Elements which are variable are
enclosed by angled brackets: <>.

4.2.1 Command line errors:

1. unknown option ’<bad option letter>’

An option letter has been specified which the linker does not
recognize. Only the letter will be ignored; everything else on the
command line has been preserved, and the linker will try to execute
what it has interpreted. See the Options section of this chapter for a
list of options which are supported.

2. too few arguments in command line.

Several of the linker options have an associated value or name, such
as -B 2000. If a needed value is missing, the linker will give this
message and die.

3. No input given!

The linker will quit immediately if not given any input to process.

4. Cannot have nested -f options.

A file which is given as a -f argument can contain any option letter
except -f itself. However, more than one -f is allowed on a command
line.

5. too few arguments in -f file: <filename>

An option letter specified in the file, "filename," requires a value or
name to follow it. If an option appears at the end of the file, its
associated value may not appear back on the command line.

6. multiple <origin> declarations, last one used.

The message will specify that one of the segment address selection
options, -C, -D, or -U, was specified more than once in the command

-In.19 -

LINKER Error Messages Aztec C86

line:

The linker will use the last value specified for a segment address.

4.2.2 I/O errors:

1. can’t open <filename>, err=<errno>

If any file in the command line cannot be opened, this message
will be sent to the screen, specifying the filename and the current
value of errno.

2. Cannot open -f file: <filename>

A file given with the -f option cannot be opened.

3. I/Oerror (<errno>) reading/writing output file

An error reading or writing the output file probably means there is
no more disk space available. In particular, a block of the output file
was written to disk and then could not be read back. The current value
of errno is given in these messages.

4. Cannot write output file

The description of the previous message applies to this one, too.

5. Cannot create output file: <filename>

This message usually indicates that all available directory space on
the disk has been exhausted.

6. Cannot create symbol table output

The -T option was given in the command line, but the file
containing the linkage symbol table cannot be written to disk. It is
possible that there is no more space on the disk.

7. Cannot create overlay symbol table output

Occurs when using the -R option. The file containing the overlay
symbol table cannot be written to disk.

4.2.3 Corrupted object files:

1. object file is bad!

This is the most explicit indication that an object file in the linkage
has been corrupted. The solution is simply to recompile and assemble
the source file.

2. invalid operator in evaluate <hex value>

This is really the same as the previous error message. Unless you
have changed the object code by hand, the file has been corrupted.

- In.20 -

Aztec C86 Error Messages LINKER

3. library format is invalid!

A library in the linkage has been corrupted.

4. Cannot read module from <input> on pass2

Indicates that a module has been corrupted between pass 1 and pass
2. On a multiuser system, it is possible that another user changed the
file while the linker was running. Otherwise, the error was probably
due to a hardware failure.

5. can’t find symbol, <symbol name>, on pass two

Same as the previous message.

6. <filename> is not a rel file!

A file given to the linker does not contain relocatable object code
which dn can process. For instance, a source file may have been
included in the link.

4.2.4 Errors in use of memory:

1. Insufficient memory!

The linkage process needs memory space for Jn, global and local
symbol tables, and approximately 5K for buffers. Just as with
compilation, most memory use is devoted to the program software and
symbol tables. Since /m is not especially large, only an extremely
complicated linkage might run out of memory.

2. Too many symbols!

This is another way of saying that not enough memory was
available for the symbol tables needed for the linkage.

3. -C or -D value less than base address

It is not possible for the starting address of the code or data to be
less than the base address of the program, which is specified by the
option, -B.

4. Code and Data Regions Overlap

By default, data resides above the code area in memory. The
starting addresses of both areas must be spaced far enough apart to
accommodate all the code. If the -D option is used to begin the data
area in the middle of the code, this error message will be put out.

4.2.5 Errors arising from source code:

1. Undefined symbol: <symbol name>

A global symbol name has remained undefined. This is commonly a
function which has been referenced in the source code but not
included anywhere in the fink.

-In.21 -

LINKER Error Messages Aztec C86

2. <symbol name> multiply defined

A global symbol has been defined more than once. For instance, if
two functions are accidentally given the same name, this message will
be generated.

3. pass1(<hex value>) and pass2(<hex value>) values differ:

This message may be generated during pass 2 following a ’multiply
defined’ message in pass I.

4. symbol type differs on pass two: <symbol name>

Same as the previous message.

5. Attempt to Initialize Data in Root

On the source code level, this means that a global symbol was
defined in the root of an overlay and then initialized in an overlay
module. For example,

root: overlay:

int 1; int 1 = 3;

The problem arises because the initialization is performed by the
linker, but the variable to be initialized is in an entirely different file.

The situation which follows is valid because the assignment
statement is evaluated at run time:

root: overlay:

int 1; int 14;
function()

i= 3;

}
6. undefined COMMON <symbol name>

This error now occurs only in reference to the user’s own assembly
language routines. It is generated by a COMMON block of size zero.

- In.22 -

Aztec C86 LINKER

New Options for LN

1. New /n linker options

Two new options -g, and -g have been added to the linker to turn
on/off the collection of the symbol table information needed when
using the source level debugger.

-g Collect source level debug information. This information is
put into a file whose name consists of filename.dbg, where
filename is the name specified by the -o option or defaults
to the name of the first object file listed. The .dbg file is
automatically looked for when you invoke sdb.

-q Turn off the collection of source level debug information
for all files following it.

Both options apply only to those files listed after the option on the
command line. Both options may be used on the same command line,
-g will turn on the collection of information for all files after it until
the end or a -g is encountered. A -g will turn off collection of debug
information until a -g is encountered.

2. New large model linker

bin is a large model linker that can be used to link files that were
too large to link with /n. If you received an ‘out of memory’ message
using bin, you should try linking using /nl.

In In-ap. 1 v3.4a

LINKER Aztec C86

v3.4a In-ap.2 In

UTILITY PROGRAMS

- util.1 -

UTILITIES Aztec C86

Chapter Contents

Utility Programs .0..........c.. scssscscsscsscccscsessscesccsccecsccscscececsscssscescesssaccescenscass util
AKCV (Source dearchiver) wiv... cccsscscssscsscessscsscscsesscceccsssecsscessecsesceesens 4
cnm (Object file utility) ...cuceesscscessssccssscssessscssesecsessescsessscsesens 5
CYC (File verificator) wo... ecsscccsssccccescecsscccecescssecssessssecescesscescescsceees 9
hex86 (ROM Hex Gemerator) ou... ccccsccsssssscssssescescssscssesssecssecsessess 10
Ib (Object module librarian) wo eseseeccssescescscescssescsscesceceees 11
Is) (list directory COMtENES wou cscsceseccecssccsscsseccseccsceccescsssessscceees 22
Obd (Object file utility) oo. ececcccccecseccsscesssscssersesssssesesseses 25
obj (MSDOS/PCDOS Object code generator)eecsccsessceseseeees 26
ord (Object library generation utility) 0... ccscsscscssessecscessseees 27
prof (Execution profiler) occ cscsccescccssscescessssccssecsessecscscsscsses 28
SqZ (Object file utility) occ ecccsccsscssccsscssscesessssssccsscsseceseeees 29
term (terminal emulator for IBM PC) ooo. eccsscssceccecsssceceeseses 30

- util.2 -

Aztec C86 UTILITIES

Utility Programs

This chapter describes utility programs that are provided with
Aztec C86. For a description of other utility programs, which are
provided in some Aztec C86 packages, see the Debugger Utilities
chapter and the Unitools chapter.

- util.3 -

ARCV ARCV

NAME

arcv - source dearchiver

SYNOPSIS

arcv arcfile [dest-area]

DESCRIPTION

arcy extracts the source from the archive file arcfile and places the
results in separate files. You can’t create archive files yourself; you can
just unpack those that are provided with some versions of Aztec C86.

The optional parameter dest-area defines the area in which the files
are created, where on DOS and ’area’ is a directory on a drive and on
CP/M-86 it’s a user area on a drive. arcv generates the name of a file
it wants to create by prepending the dest-area parameter to the file
name as recorded in the archive. Thus, if dest-area isn’t specified, the
files will be created on the current area, which on DOS is the current
directory on the default drive, and on CP/M-86 is the current user
area on the default drive.

For example, the file stdio.arc contains the source for all the
standard 1/o files. To create these files in the current area, enter:

arcv stdio.arc

On DOS, the first of the following two commands will create the
files on the root directory on the b: drive, and the second on the \ src
directory on the c. drive:

arcv stdio.arc b:
arcv stdio.arc c:\src\

Because arcy prepends the dest-area parameter to a file name, the
terminating backslash is required when dest-area contains a directory
name.

On CP/M-86, the first of the following two commands will create
the files on the current user area on the b: drive, and the second on
user area 4 on the c: drive:

arcv stdio.arc b:
arcv stdio.arc 4/c:

- util.4 -

CNM Aztec Utility Program CNM

NAME

cnm - display object file info

SYNOPSIS

cnm [-sol] file [file ...]

DESCRIPTION

cnm displays the size and symbols of its object file arguments. The
files can be object modules created by the Manx assembler, libraries of
object modules created by the Manx librarian /b, and ’rsm’ files created
by the Manx linker during the linking of an overlay root.

For example, the following displays the size and symbols for the
object module subl.o, the library c.lib, and the rsm file root.rsnr

cnm subl.o c.lib root.rsm

By default, the information is sent to the console. It can be
redirected to a file or device in the normal way. For example, the
following three commands send information about subl.o to the
display, the file dispfile, and the printer, respectively:

cnm subl.o
cnm subl.o > dispfile
cnm >lst: subl.o

A filename can optionally specify multiple files, using the
"wildcard" characters ? and *. These have their standard meanings: 7
matches a single character; * matches zero or more characters. For
example

ae) Specifies all files with extent ’.0’
a??. lib Specifies all files whose filename has three characters,

the first of which is ’a’, and whose extent is ’.lib’

The first line listed by cnm for an object module has the following
format:

file (module): code: cc data: dd udata: uu total: tt (Oxhh)

where

* file is the name of the file containing the module,
* module is the name of the module; if the module is unnamed,

this field and its surrounding parentheses aren’t printed;
* cc is the number of bytes in the module’s code segment, in

decimal;
* dd is the number of bytes in the module’s initialized data

segment, in decimal:

* uu is the number of bytes in the module’s uninitialized data
segment, in decimal;

* tt is the total number of bytes in the module’s three segments,

- util.5 -

CNM Aztec Utility Program CNM

in decimal;
* hh is the total number of bytes in the module’s three

segments, in hexadecimal.

If cnm displays information about more than one module, it
displays four totals just before it finishes, listing the sum of the sizes
of the modules’ code segments, initialized data segments, and
uninitialized data segments, and the sum of the sizes of all segments of
all modules. Each sum is in decimal; the total of all segments is also
given in hexadecimal.

The -s option tells cnm to display just the sizes of the object
modules. If this option isn’t specified, cnm also displays information
about each named symbol in the object modules.

When cnm displays information about the modules’ named symbols,
the -/ option tells cnm to display each symbol’s information on a
separate line and to display all of the characters in a symbol’s name; if
this option. isn’t used, cum displays the information about several
symbols on a line and only displays the first eight characters of a
symbol’s name.

The -o option tells cnm to prefix each line generated for an object
module with the name of the file containing the module and the
module name in parentheses (if the module is named). If this option
isn’t specified, this information is listed just once for each module:
prefixed to the first line generated for the module.

The -o option is useful when using cnm in combination with grep.
For example, the following commands will display all information
about the module perror in the library c.lib:

cnm -o c.lib >tmp
grep perror tmp

cnm displays information about an module’s ’named’ symbols; that
is, about the symbols that begin with something other than a dollar
sign followed by a digit. For example, the symbol quad is named, so
information about it would be displayed; the symbol $0123 is
unnamed, so information about it would not be displayed.

For each named symbol in a module, cnm displays its name, a two-
character code specifying its type, and an associated value. The value
displayed depends on the type of the symbol.

If the first character of a symbol’s type code is lower case, the
symbol can only be accessed by the module; that is, it’s local to the
module. If this character is upper case, the symbol is global to the
module: either the module has defined the symbol and is allowing
other modules to access it or the module needs to access the symbol,
which must be defined as a global or public symbol in another module.
The type codes are:

- util.6 -

CNM

ab

a4

dt

Cm

rf

OV

un

Aztec Utility Program CNM

The symbol was defined using the assembler’s
EQUATE directive. The value listed is the equated
value of its symbol.

The compiler doesn’t generate symbols of this type.

The symbol is in the code segment. The value is the
offset of the symbol within the code segment.

The compiler generates this type symbol for function
names. Static functions are local to the function, and
so have type pg; all other functions are global, that is,
callable from other programs, and hence have type Pg.

The symbol is in the initialized data segment. The
value is the offset of the symbol from the start of the
data segment. :

The compiler generates symbols of this type for
initialized variables which are declared outside any
function. Static variables are local to the program and
so have type dt; all other variables are global, that is,
accessable from other programs, and hence have type
Dt.

The symbol is the name of a segment whose
combine-type is COMMON. The value is the size of
the segment, in bytes. Cm is in upper case because
common block names are always global.

The compiler doesn’t generate this type symbol.

The symbol is defined within a segment whose
combine-type is COMMON. The value is the offset of
the symbol from the beginning of the segment.

The compiler doesn’t generate this type symbol.

When an overlay is being linked and that overlay itself
calls another overlay, this type of symbol can appear
in the rsm file for the overlay that is being linked. It
indicates that the symbol is defined in the program
that is going to call the overlay that is being linked.

The value is the offset of the symbol from the
beginning of the physical segment that contains it.

The symbol is used but not defined within the
program. The value has no meaning.

Un symbols (that is, the u is capitalized) have been
defined with the assembly language directive extrn.

The compiler generates Un symbols for functions that
are called but not defined within the program, for

- util.7 -

CNM

bs

Gl

Aztec Utility Program CNM

variables that are declared to be extern and that are
actually used within the program, and _ for
uninitialized, global dimensionless arrays. Variables
which are declared to be extern but which are not used
within the program aren’t mentioned in the assembly
language source file generated by the compiler and
hence don’t appear in the object file.

The symbol is in the uninitalized data segment. The
value is the space reserved for the symbol.

The compiler generates bs symbols for static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

The assembler generates bs symbols for symbols
defined using the bss assembler directive.

The symbol is in the uninitialized data segment. The
value is the space reserved for the symbol.

The compiler generates G/ symbols for non-static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

The assembler generates G/ symbols for variables
declared using the global directive which have a non-
Zero SI1Ze.

- util. -

CRC CRC generator CRC

NAME

cre - Utility for generating the CRC for files

SYNOPSIS

crc files

DESCRIPTION
cre computes a number, called the CRC, for the specified files. By

using the standard ’wild-card’ characters, files can specify multiple
files.

The CRC for a file 1s entirely dependent on the file’s contents, and
it is very unlikely that two files whose contents are different will have
the same CRCs. Thus, crc can be used to determine whether a file has
the expected contents.

The file crclist that is on the Aztec C disks lists the CRC values for
each of the files on the disks. By comparing these values with those
computed by your own running of crc, you can easily determine
whether what we thought we sent you is what you got.

As an example of the usage of crc, the following command
computes the crc of all files whose extension is .c

crc F.c

- util.9 -

HEX86 Intel Hex Generator HEX86

NAME

hex86 - Intel Hex Generator

SYNOPSIS

hex86 [-zeos] infile [outfile]

DESCRIPTION

hex86 1s used when generating ROMable programs. It converts an
.exe file to Intel hex format, which can then be read by a ROM
programmer.

For more information, see the section entitled "Generating
ROMable Code" in the Technical Information chapter.

- util.10 -

LB Object file librarian LB

NAME

lb - object file librarian

SYNOPSIS

Ib library [options] [mod1 mod? ...]

DESCRIPTION

lb is a program that creates and manipulates libraries of object
modules. The modules must be created by the Manx assembler.

This description of /b is divided into three sections: the first
describes briefly /b’s arguments and options, the second /b’s basic
features, and the third the rest of /b’s features.

1. The arguments to /b

1.1 The ibrary argument

When started, /b acts upon a single library file. The first argument
to lb (library, in the synopsis) is the name of this file. The filename
extension for library 1s optional; if not specified, it’s assumed to be ./ib.

1.2 The options argument

There are two types of options argument: function code options, and
qualifier options. These options will be summarized in the following
paragraphs, and then described in detail below.

1.2.1 Function code options

When /b is started, it performs one function on the specified
library, as defined by the options argument. The functions that /b can
perform, and their corresponding option codes, are:

function code
create a library (no code)
add modules to a library -a, -1, -b
list library modules -t
move modules within a library -m
replace modules -r
delete modules -d
extract modules -X
ensure module uniqueness -u
define module extension -e
help -h

In the synopsis, the options argument is surrounded by square
brackets. This indicates that the argument is optional; if a code isn’t
specified, /b assumes that a library is to be created.

- util.11 -

LB Object file librarian LB

1.2.2 Qualifier options

In addition to a function code, the options argument can optionally
specify a qualifier, that modifies /b’s behavior as it is performing the
requested function. The qualifiers and their codes are:

verbose -V

silent -S

The qualifier can be included in the same argument as the function
code, or as a separate argument. For example, to cause /b to append
modules to a library, and be silent when doing it, any of the following
option arguments could be specified:

“as

“Sa

“a -S

“S -a

1.3 The nod arguments

The arguments modl, mod2, etc. are the names of the object
modules, or the files containing these modules, that /b 1s to use. For
some functions, /b requires an object module name, and for others it
requires the name of a file containing an object module. In the latter
case, the file’s extension is optional; if not specified, the /b that’s
supplied with native Aztec C systems assumes that it’s .o, and the Jb
that’s supplied with cross development versions of Aztec C assumes
that the extension is .r. You can explicitly define the default module
extension using the -e option.

1.4 Reading arguments from another file

lb has a special argument, -f filename, that causes it to read
command line arguments from the specified file. When done, it
continues reading arguments from the command line. Arguments can
be read from more than one file, but the file specified in a -f filename
argument can’t itself contain a -f filename argument.

2. Basic features of lb

In this section we want to describe the basic features of Jb. With
this knowledge in hand, you can start using /b, and then read about the
rest of the features of /b at your leisure.

The basic things you need to know about /b, and which thus are
described in this section, are:

* How to create a library

* How to list the names of modules in a library

* How modules get their names

- util.12 -

LB Object file librarian LB

* Order of modules in a library

* Getting /b arguments from a file

Thus, with the information presented in this section you can create
libraries and get a list of the modules in libraries. The third section of
this description shows you how to modify selected modules within a
library.

2.1 Creating a Library

A library is created by starting /b with a command line that
specifies the name of the library file to be created and the names of
the files whose object modules are to be copied into the library. It
doesn’t contain a function code, and it’s this absence of a function
code that tells /b that it is to create a library.

For example, the following command creates the library exmpl.lib,
copying into it the object modules that are in the files objl.o and
ob j2.0:

Ib exmplL.lib objl.o obj2.0

Making use of /b’s assumptions about file names for which no
extension is specified, the following command is equivalent to the
above command:

lb exmpl objl obj2

An object module file from which modules are read into a new
library can itself be a library created by /b. In this case, all the
modules in the input library are copied into the new library.

2.1.1 The temporary library

When /b creates a library or modifies an existing library, it first
creates a new library with a temporary name. If the function was
successfully performed, /b erases the file having the same name as the
specified library, and then renames the new library, giving it the name
of the specified library. Thus, /b makes sure it can create a library
before erasing an existing one.

Note that there must be room on the disk for both the old library
and the new.

2.2 Getting the table of contents for a library

To list the names of the modules in a library, use /b’s -t option. For
example, the following command lists the modules that are in exmpl.lib:

lb exmpl -t

The list will include some **D/R** entries. These identify blocks
within the library that contain control information. They are created
and deleted automatically as needed, and cannot be changed by you.

- util.13 -

LB Object file librarian LB

2.3 How modules get their names

When a module is copied into a library from a file containing a
single object module (that is, from an object module generated by the
Manx assembler), the name of the module within the library is derived
from the name of the input file by deleting the input file’s volume,
path, and extension components.

For example, in the example given above, the names of the object
modules in exmpl.lib are obj] and ob/j2.

An input file can itself be a library. In this case, a module’s name
in the new library is the same as its name in the input library.

2.4 Order in a library

The order of modules in a library is important, since the linker
makes only a single pass through a library when it is searching for
modules. For a discussion of this, see the tutorial section of the
Linker chapter.

When /b creates a library, it places modules in the library in the
order in which it reads them. Thus, in the example given above, the
modules will be in the library in the following order:

objl obj2

As another example, suppose that the library oldlib.lib contains the
following modules, in the order specified:

subl sub2 = sub3

If the library newlib.lib is created with the command

Ib newlib mod! oldlib.lib mod2 mod3

the contents of the newly-created newlib.lib will be:

modi subl sub2 sub3 mod2 mod3

The ord utility program can be used to create a library whose
modules are optimally sorted. For information, see its description later
in this chapter.

2.5 Getting /b arguments from a file

For libraries containing many modules, it is frequently
inconvenient, if not impossible, to enter all the arguments to /b on a
single command line. In this case, /b’s -f filename feature can be of
use: when 7b finds this option, it opens the specified file and starts
reading command arguments from it. After finishing the file, it
continues to scan the command line.

For example, suppose the file build contains the line

exmpl objl obj2

- util.14 -

LB Object file librarian LB

Then entering the command

Ib -f build

causes /b to get its arguments from the file build, which causes /b to
create the library exmpl.lib containing objl and obj2.

Arguments in a -f file can be separated by any sequence of
whitespace characters ('whitespace’ being blanks, tabs, and newlines).
Thus, arguments in a -f file can be on separate lines, if desired.

The /b command line can contain multiple -f arguments, allowing /b
arguments to be read from several files. For example, if some of the
object modules that are to be placed in exmpllib are defined in
arith.inc, input.inc, and output.inc, then the following command could be
used to create exmopl.lib. |

Ib exmpl -f arith.inc -f input.inc -f output.inc

A -f file can contain any valid /b argument, except for another -f.
That is, -f files can’t be nested.

3. Advanced /b features

In this section we describe the rest of the functions that /b can
perform. These primarily involve manipulating selected modules
within a library.

3.1 Adding modules to a library

lb allows you to add modules to an existing library. The modules
can be added before or after a specified module in the library or can
be added to the beginning or end of the library.

The options that select /b’s add function are:

option function
-b target add modules before the module target
-1 target same as -b target
-a target add modules after the module target
-b+ add modules to the beginning of the library
-i+ same as -b+
-at add modules to the end of the library

In an /b command that selects the add function, the names of the
files containing modules to be added follows the add option code (and
the target module name, when appropriate). A file can contain a single
module or a library of modules.

Modules are added in the order that they are specified. Ifa library
is to be added, its modules are added in the order they occur in the

input library.

- util.15 -

LB Object file librarian LB

3.1.1 Adding modules before an existing module

As an example of the addition of modules before a selected module,
suppose that the library exmpllib contains the modules

objl obj2 obj3

The command

lb exmpl -i obj2 mod1 mod2

adds the modules in the files modJ.o and mod2.0 to exmpl.lib, placing
them before the module obj2. The resultant exmpl.lib looking like this:

objl modl mod2 obj2- obj3

Note that in the Jb command we didn’t need to specify the
extension of either the file containing the library to which modules
were to be added or the extension of the files containing the modules
to be added. /b assumed that the extension of the file containing the
target library was .lib, and that the extension of the other files was .o.

As an example of the addition of one library to another, suppose
that the library mylib.lib contains the modules

mod! mod2 mod3

and that the library exmpl.lib contains

objl obj2 obj3

Then the command

Ib -b obj2 mylib.lib

adds the modules in myliblib to exmpllib, resulting in exmpl.lib
containing

objl modl mod2 mod3 obj2- obj3

Note that in this example, we had to specify the extension of the
input file mylib.lib. If we hadn’t included it, 5 would have assumed
that the file was named mylib.o.

3.1.2 Adding modules after an existing module

As an example of adding modules after a specified module, the
command

Ib exmpl -a objl mod1 mod2

will insert modI and mod2 after objl in the library exmpl.lib. If
exmplLlib originally contained

objl obj2 obj3

then after the addition, it contains

- util.16 -

LB Object file librarian LB

objl modi mod2 obj2 obj3

3.1.3 Adding modules at the beginning or end of a library

The options -b+ and -a+ tell Jb to add the modules whose names
follow the option to the beginning or end of a library, respectively.
Unlike the -i and -a options, these options aren’t followed by the name
of an existing module in the library.

For example, given the library exmpl.lib containing

objl obj2

the following command will add the modules mod1 and mod2 to the
beginning of exmpl.lib:

lb exmpl -1+ modl mod2

resulting in exmpl.lib containing

mod! mod2 obj! obj2

The following command will add the same modules to the end of
the library:

lb exmpl -a+ mod1 mod2

resulting in exmpl.lib containing

objl obj2 modi mod2

3.2 Moving modules within a library

Modules which‘ already exist in a library can be easily moved about,
using the move option, -m.

As with the options for adding modules to an existing library, there
are several forms of move functions:

option meaning
-mb target move modules before the module target
-ma target move modules after the module target
-mb+ move modules to the beginning of the library
-mat move modules to the end of the library

In the /5 command, the names of the modules to be moved follows
the ’move’ option code.

The modules are moved in the order in which they are found in
the original library, not in the order in which they are listed in the /b
command.

3.2.1 Moving modules before an existing module

As an example of the movement of modules to a position before an
existing module in a library, suppose that the library exmpl.lib contains

- util.17 -

LB Object file librarian LB

objl obj2 obj3 obj4 9 obj5 obj6

The following command moves obj3 before obj2:

lb exmpl -mb obj2 obj3

putting the modules in the order:

objl obj3 obj2 obj4 obj5 obj6

And, given the library in the original order again, the following
command moves o0bj6, obj2, and obj1 before obj3:

Ib exmpl -mb obj3 obj6 obj2 objl

putting the library in the order:

objl obj2 obj6 obj3 obj4 = obj5

As an example of the movement of modules to a position after an
existing module, suppose that the library exmpl.lib is back in its
original order. Then the command

Ib exmpl -ma obj4 obj3 obj2

moves obj3 and obj2 after obj4, resulting in the library

objl obj4 obj2 obj obj5 obj6

3.2.2 Moving modules to the beginning or end of a library

The options for moving modules to the beginning or end of a
library are -mb+ and -ma+, respectively.

For example, given the library exmpl.lib with contents

objl obj2 obj3 obj4 obj5 obj6

the following command will move obj3 and obj5 to the beginning of
the library:

Ib exmpl -mb+ obj5 obj3

resulting in exmpl.lib having the order

obj3 obj5 objl obj2 obj4 obj6

And the following command will move obj2 to the end of the
library:

lb exmpl -ma+ obj2

3.3 Deleting Modules

Modules can be deleted from a library using /b’s -d option. The
command for deletion has the form

Ib libname -d mod! mod? ...

where mod1, mod2, ... are the names of the modules to be deleted.

- util.18 -

LB Object file librarian LB

For example, suppose that exmpl.lib contains

objl obj2 obj3 obj4 obj5 obj6

The following command deletes obj3 and obj5 from this library:

Ib exmpl -d obj3 obj5

3.4 Replacing Modules

The /b option ’replace’ is used to replace one module in a library
with one or more other modules.

The ’replace’ option has the form -r target, where target is the name
of the module being replaced. In a command that uses the ’replace’
option, the names of the files whose modules are to replace the target
module follow the ’replace’ option and its associated target module.
Such a file can contain a single module or a library of modules.

Thus, an /b command to replace a module has the form:

lb library -r target mod! mod? ...

For example, suppose that the library exmpl.lib looks like this:

objl obj2 obj3 obj4

Then to replace obj3 with the modules in the files mod1.o and mod2.0,
the following command could be used:

Ib exmpl -r 0bj3 modl mod2

resulting in exmpl.lib containing

Objl obj2 mod! mod2 objé4

3.5 Uniqueness

lb allows libraries to be created containing duplicate modules, where
one module is a duplicate of another if it has the same name.

The option -u causes /b to delete duplicate modules in a library,
resulting in a library in which each module name is unique. In
particular, the -u option causes /b to scan through a library, looking at
module names. Any modules found that are duplicates of previous
modules are deleted.

For example, suppose that the library exmpllib contains the
following:

objl obj2 obj3 objl obj3

The command

lb exmpl -u

will delete the second copies of the modules obj] and 0bj2, leaving the
library looking like this:

- util.19 -

LB Object file librarian LB

objl obj2 obj3

3.6 Extracting modules from a Library

The Jb option -x extracts modules from a library and puts them in
separate files, without modifying the library.

The names of the modules to be extracted follows the -x option. If
no modules are specified, all modules in the library are extracted.

When a module is extracted, it’s written to a new file; the file has
same name as the module and extension .o.

For example, given the library exmpl.lib containing the modules

objl obj2 obj3

The command

lb exmpl -x

extracts all modules from the library, writing obj! to objl.o, obj2 to
obj2.o, and obj3 to obj3.0.

And the command

lb exmpl -x obj2

extracts just obj2 from the library.

3.7 The ’verbose’ option

The ’verbose’ option, -v, causes /b to be verbose; that is, to tell you
what it’s doing.

This option can be specified as part of another option, or all by
itself. For example, the following command creates a library in a
chatty manner:

lb exmpl -v mod!1 mod2 mod3

And the following equivalent commands cause /b to remove some
modules and to be verbose:

lb exmpl -dv mod!l mod2
lb exmpl -d -v mod! mod2

3.8 The ’silence’ option

The ’silence’ option, -s, tells Jb not to display its signon message.

This option is especially useful when redirecting the output of a list
command to a disk file, as described below.

3.9 Rebuilding a library

The following commands provide a convenient way to rebuild a
library:

- util.20 -

LB Object file librarian LB

lb exmpl -st > tfil
lb exmpl -f tfil

The first command writes the names of the modules in exmpl.lib to
the file ¢fil. The second command then rebuilds the library, using as
arguments the listing generated by the first command.

The -s option to the first command prevents /b from sending
information to ¢fil that would foul up the second command. The
names sent to ¢fil include entries for the directory blocks, **D/R**, but
these are ignored by /b.

3.10 Defining the default module extension.

Specification of the extension of an object module file is optional;
the /b that comes with native development versions of Aztec C assumes
that the extension is .o, and the /b that comes with cross development
versions of Aztec C assumes that it’s .r. You can explicitly define the
default extension using the -e option. This option has the form

-e .ext

For example, the following command creates a library; the
extension of the input object module files 1s .7.

lb my.lib -e .1 mod! mod2 mod3

3.11 Help

The -h option is provided for brief lapses of memory, and will
generate a summary of /b functions and options.

- util.21 -

LS LS

NAME

Is - list directory contents

SYNOPSIS

Is [-options] [namel name? ...]

DESCRIPTION

ls displays information about the files and directories namel,
name2, ... If no names are specified, /s displays information about all
the files and directories in the current directory on the default drive.
For example, the following command displays information about the
files subl.o and sub/.c in the default drive’s current directory, and the
directory d.\ include:

Is subl.o subl.c d:\include

A name can optionally specify multiple files, using the "wildcard
characters” * and ?. These have their standard meaning: * matches one
Or more characters, and ? matches a single character. For example, the
following command displayes information about all files that have
extension .c and that are in the directory c.\ src.

Is c:\src*.c

Wildcard characters can be used only in file names, and not in
directory or drive names. A wildcard character won’t match the
period that separates a file or directory name and its extension. Thus,
the command /s * will list just the files and directories that don’t have
extensions.

ls sends the information to its standard output. This information
thus by default is sent to the console, but can be redirected to a file or
other device in the normal way. For example, the first of the
following commands displays on the console information about files
that have extension .o and that are in the current directory. The
second and third commands send information about the same files to
the file info.obj and to the printer prn, respectively:

Is *.0
Is *.0 >info.obj
Is *o >prn

ls by default displays information in ’short form’, listing just the names
of the specified files and directories. You can also specify the -/ option
to cause /s to display information in ’long form’, listing lots of
information.

Even when long form is specified, Js will only list the name of
specified directories. To list the contents of a directory, you must
specify the files in the directory, using wildcard characters. For
example, to see the contents of the directory \ work, you would say

- util.22 -

LS LS

Ils \work*.*

When /s sends information in short form to the console, the names
are in columns on the screen, with a dash preceding directory names.
When the information is sent to a file or other device, the names are
listed one per line, and a directory name isn’t by default preceded by a

dash.

ls sorts the list it’s going to display. By default, the list is sorted
alphabetically; you can also specify options to cause /s to sort based on
other the list such as ’last modified’ time and file size, and, for a given
criteria, to sort in the reverse of the normal order. default drives.

All options to /s must be specified in one parameter to Js. This
parameter begins with a dash and comes before the file and directory
names. /s supports the following options:

-l List in long form. For a description of the ’long form’
information, see below.

-b When listing in long form, list the number of 512-byte
blocks that a file uses, in addition to the other
information.

-a List all files, including those whose first character is a
period (such as. and ..).

-p When listing in short form, precede directory names
with a dash.

-t Sort by ’last-modified’ time.

-S Sort by file size.

-r Reverse the order of the sort. For example, when
sorting alphabetically, list names beginning with °z’
first and those beginning with ’a’ last.

When displaying in long form, the line on which information is
displayed for a file or directory has the following form:

dshr bytesize (blksize) daté name

The first four letters define attributes of the file or directory. If it
doesn’t have an attribute, the letter is replaced with a dash. The
meaning of the letters are:

d Directory
S System file
h Hidden file
r Read-only file

The other fields in a long form listing have the following meaning:

bytesize Number of bytes in a file. This field is zero for a
directory.

- util.23 -

LS

biksize

date

name

LS

Number of 512-byte blocks that the file uses. This
field is zero for a directory, and is only listed when
the -b option is specified.
Date and time at which the file was last modified. If
the file was modified within the last six months, this
field lists the month, day, and time of modification;
otherwise, it lists the month, day, and year of
modification.
The name of the file or directory.

- util.24 -

OBD Aztec Utility Program OBD

NAME

obd - list object code

SYNOPSIS

obd <objfile>

DESCRIPTION

obd lists the loader items in an object file. It has a single parameter,

which is the name of the object file.

- uil.25 -

OBJ Microsoft object generator OBJ

NAME

obj -- convert object modules from Aztec to Microsoft format

SYNOPSIS

obj [options] infile [outfile]

DESCRIPTION

obj converts object modules from Aztec to Microsoft format. The
resultant files can then be linked using the Microsoft linker with other
Microsoft object files to produce an executable program.

For more information, see the section entitled "Using the Microsoft
Linker" in the Technical Information chapter.

Options

obj supports the following options:

-u Don’t strip trailing underscores from names.
-§ Truncate external names to eight characters.

- util.26 -

ORD Aztec Utility Program ORD

NAME

ord - sort object module list

SYNOPSIS

ord [-v] [infile [outfile]]

DESCRIPTION

ord sorts a list of object file names. A library of the object modules
that is generated from the sorted list by the object module librarian, /6,
will have a minimum number of ’backward references’; that is, global
symbols that are defined in one module and referenced in a later

module.

Since the specification of a library to the linker causes it to search

the library just once, a library having no backward references need be

specified just once when linking a program, and a library having
backward references may need to be specified multiple times.

infile is the name of a file containing an unordered list of file
names. These files contain the object modules that are to be put into a
library. If infile isn’t specified, this list is read from ora’s standard
input. The file names can be separated by space, tab, or newline

characters.

outfile is the name of the file to which the sorted list is written. If
it’s not specified, the list is written to ora’s standard output. out file can

only be specified if infile is also specified.

The -v option causes ord to be verbose, sending messages to its

standard error device as it proceeds.

- util.27 -

PROF Profiler report program PROF

NAME

prof - execution profiler report program

SYNOPSIS

prof -s symfile [-m monfile] [-[ant]] [-[xo]] [-[zh]]

DESCRIPTION

prof processes a monitor file produced by the monitor function, and
produces a report on the execution of the monitored program. For
each function in the range specified in monitor, prof counts the
number of ticks encountered in that function and determines the
percentage of program run time spent in the function.

Options

-S The -s argument is the name of the symbol table file
for the program generated by the linker -t option. This
argument must be present.

-m The -m option allows the user to specify the monitor
output file to be processed. If this option is not
present, prof assumes the file is named mon.out (the
name always used by monitor) and is on the current
directory.

The -t, -a, and -n options determine the sorting of lines in the
report.

-t Sort by percentage of time spent in function, greatest
to least (This option is the default).

-a Sort by address of function.

-n Sort alphabetically by function name.

The -o and -x options cause prof to display the addresses of the
functions in the report along with their names.

-O Specify function addresses in octal.

-x Specify function addresses in hexadecimal.

-Z The -z option causes all symbols in the range specified
in the call to monitor to be displayed, regardless of
whether any ticks were encountered in_ these
functions. The default is to supress listing any
unencountered functions.

-h The -h option causes prof to suppress printing its
normal header in the report. This is useful if the
information is to undergo further processing.

- util.28 -

SQZ Aztec Utility Program SQZ

NAME

sqz - squeeze an object library

SYNOPSIS

sqz file [outfile]

DESCRIPTION

sqz compresses an object module that was created by the Manx

assembler.

The first parameter is the name of the file containing the module
to be compressed. The second parameter, which is optional, is the
name of the file to which the compressed module will be written.

If the output file is specified, the original file isn’t modified or

erased.

If the output file isn’t specified, sqgz creates the compressed module
in a file having a temporary name, erases the original file, and renames
the output file to the name of the original file. The temporary name is
derived from the input file name by changing it’s extent to .sqz.

If the output file isn’t specified and an error occurs during the
creation of the compressed module the original file isn’t erased or
modified.

- util.29 -

TERM TERM

NAME

term - Terminal Emulator

SYNOPSIS

term [baud]

DESCRIPTION

term is a terminal emulation program that allows an IBM PC
operator to talk to another computer. To the other system, the IBM
PC will appear to be a terminal that supports some of the special
features of the ADM-3A terminal.

term reads characters from the keyboard and writes them to the
serial interface whose base address is 0x3f8. It also reads characters
from this interface and writes them to the console. This address is
normally associated with the PC-DOS device com1.

The optional parameter baud defines the baud rate of the i/o ports.
If not specified, it’s assumed to be 9600 baud.

The source for term is in the archive termarc. Files can be
extracted from this archive using the Manx utility program arcy.

- util.30 -

LIBRARY FUNCTIONS OVERVIEW:

8086 INFORMATION

- libov86.1 -

LIBRARY Aztec C86

- libov86.2 -

Aztec C86 LIBRARY

Library Functions Overview:

8086 Information

The Library Functions Overview chapter presented overview
information that is independent of the system on which your programs
run. This chapter presents overview information about the library
functions that is specific to programs that run on an 8086 under
PCDOS, MSDOS, or CP/M-86.

The sections in this appendix and in the Overview of Library
Functions chapter are numbered. The information discussed in a
section of this appendix relates to the section in the Overview of
Library Functions chapter that has the same number.

1. Overview of I/O: 8086 Information

For systems using PCDOS and MSDOS, the operating system places
a limit on the maximum number of devices and files simultaneously
open for standard and unbuffered i/o: this limit is defined by the
operating system’s configuration option named FILES. The default
value for FILES is 10.

The Aztec C i/o routines impose a further restriction, limiting the
number of files and devices that can be simultaneously open for
standard 1/o to eleven, regardless of the value of FILES.

For systems using CP/M-86, a maximum of eleven files and
devices, including the standard i/o devices, can be open at once for
both standard and unbuffered i/o. When this limit is reached, an open
file or device must be closed before another can be opened.

1.1 Pre-opened devices and command line arguments

For programs running on an 8086, whether under PCDOS,
MSDOS, or CP/M-86, a null pointer is the first item in the array that
is pointed at by the second argument of the of the program’s main
function. That is, if the main function begins

main(argc, argv)
int argc; char *argv{];

- libov86.3 -

LIBRARY Aztec C86

then argv/0/] is a null pointer.

1.2 File I/O

1.2.1 Sequential I/O

On PCDOS/MSDOS, data can always be correctly appended to a
file, since PCDOS/MSDOS keep track of the exact number of bytes
that have been written to the file.

On CP/M-86 it isn’t always possible to correctly append data to a
file, since this system doesn’t keep track of the exact number of bytes
that have been written to a file; see below for details.

1.2.2 Random 1/O

On PCDOS/MSDOS, positioning of a file using fseek or lseek is
always correctly done, since these systems keep track of the exact
number of bytes that have written to the file.

On CP/M-86, a file can always be correctly positioned relative to
its beginning and current position. But positioning relative to its end
can’t always be correctly done, since this system doesn’t keep track of
the exact number of bytes that have been written to the file. This is
discussed in the following paragraphs.

Finding the end of a file on CP/M-86

UNIX keeps track of the last character written to a file. Since the
Aztec I/O functions attempt to make a file look like a UNIX file to a
program, when a program requests that a file be positioned relative to
its end (that is, relative to the last character which was written to it),
the Aztec C routines must try to locate the last character which was
written to it. This can always be done if the operating system on which
Aztec C is running also keeps track of the last character written to a
file.

PCDOS and MSDOS do this, and so positioning relative to the end
of a file on these systems is always correctly done.

However, CP/M-86 only keeps track of the last record written to a
file, and not the last character. Because of this, it is not always
possible for the Aztec C i/o functions to determine the last character
written to the file, when the program in which they are contained is
running on CP/M-86. And because of this, it is not always possible
for a program running on CP/M-86 to correctly position a file relative
to its end.

When a program running on CP/M-86 requests positioning of a file
relative to its end, the Aztec i/o functions try to find the last character
written to the file. They always succeed if the file contains only text;
for files containing arbitrary data, they may not succeed.

- libov86.4 -

Aztec C86 LIBRARY

To locate the last valid character in a file on CP/M-86, the Aztec
routines use the following fact: when a file is created on these systems
using Aztec C, the last record in the file is padded at the end with the
special character which denotes the end of a text file. For CP/M-86,
the special character is control-z. If the program exactly filled the last
record, it won’t have any padding.

When a program requests that a file be positioned relative to its
end, the Aztec C i/o routines search the file’s last record; end of file is
declared to be located at the position following the last non-end-of-file
character.

For files of text, this algorithm always correctly determines the last
character in the file, so appending to text files is always correctly done.

For other files, this algorithm will still correctly determine the last
valid character in the file...most of the time. However, if the last valid
characters in the file are end-of-file characters, the file will be
incorrectly positioned.

1.2.3 Opening Files

1.2.3.1 Opening files on PCDOS and MSDOS

When opening a file on systems running PCDOS or MSDOS, the
filename has the standard DOS 2.x format; that is, it consists of an
optional drive identifier, an optional directory path, and a filename.
The drive defaults to the default drive and the directory to the current
directory.

1.2.3.2 Opening files on CP/M-86

On CP/M-86, the character string which specifies the file to be
opened has the following fields, which must be in the order listed: (1)
a user number followed by a forward slash, (2) a drive identifier
followed by a colon, (3) the filename, (4) a period followed by an
extension. Only the third field is mandatory. If a user number isn’t
specified, the file is assumed to be on the current user. If the drive
isn’t specified, the file is assumed to be on the default drive.

For example, the following are valid file names:

file.ext file.ext is on default drive, current user
b:file.ext file.ext is on b: drive, current user
15/file.ext file.ext is on default drive, user 15
12/c:file.ext file.ext is on c: drive, user 12

A program can have files located in several different user areas
open at once.

There are several functions which may be useful to programs which
need to access files in various user areas: getusr, which returns the
current user number; setusr, which sets the current user number; and
rstusr, which resets the current user number. See the USER section in

- libov86.5 -

LIBRARY Aztec C86

the 8086 Functions chapter for more details.

1.3 Device I/O

On PCDOS/MSDOS, a program accesses devices using their
standard PCDOS/MSDOS names.

On CP/M-86, a program accesses devices using the following

names:

Device name
keyboard con:
display con:
printer prn:

" Ist:
RS232 in rdr:
RS232 out pun:

2. Overview of Standard I/O; 8086 Information

2.5 Buffering

On PCDOS, MSDOS, and CP/M-86, the size of a buffer used for

standard I/O 1s 1024 bytes.

4. Console I/O Overview: 8086 Information

4.2 Character-oriented Input

4.2.1 Character-oriented Input on CP/M-86

On CP/M-86, a program issuing a read request to the console when
it is in character- oriented input mode will wait until at least one
character has been typed.

If the console is in RAW mode or in CBREAK mode with ECHO
turned off, an unbuffered read request for more than a single character
may return before all requested characters have been typed. That 1s, if
the operator doesn’t type the characters fast enough, the read operation
will time-out and return whatever characters have been entered up to
that point. For example, if a program issues the call

read(0, buf, 80);

to read 80 characters into buf from the console, with the console in
RAW or CBREAK without ECHO modes, the read will return at least
one character, but may return fewer than 80 characters, if the operator

doesn’t type fast enough.

If the console is in CBREAK mode with ECHO enabled, a read
request to the console always returns the requested number of
characters; that is, the operator can take his or her own sweet time

entering characters.

- libov86.6 -

Aztec C86 LIBRARY

4.2.2 Character-oriented Input on PCDOS and MSDOS

A read request to the console will always return the requested
number of characters.

4.4 The sgity fields

4.4.1 The sg __flags field

On PCDOS and MSDOS, some bits in the sg flags field have
meaning to MSDOS and PCDOS, in addition to the ones we have
described. Thus, on MSDOS and PCDOS systems, a program that
wants to change the console options must fetch the current options
using the TIOCGETP mode of ioctl, modify as desired just the bits that
we have defined in this chapter, and then call ioct] to set the new
options.

When a program terminates, the console stays in the mode set by
the program. So programs which change the console options from their
default settings should set them back before terminating.

- libov86.7 -

LIBRARY Aztec C86

~- libov86.8 -

8086 FUNCTIONS

- 1ib86.1 -

8086 Functions Aztec C86

Chapter Contents

SO86 FUNCTIONSccccccecccsccssssceccccccccsssscescecccecsscesceccsccessescccssecessescesseess lib86
INCE X ooiie.s cee ccccccssscccscccscscccssccccsscccescessccecsccecscccuscscesscecsssecsscesssccssscesscenseceoasees 5

The functions ou... ccecssscsscecccccccssscsceccccccccssssccccsccssssscccesccscsesceceseccsscoees 7

- lib86.2 -

Aztec C86 8086 Functions

8086 Functions

This chapter describes functions which are available only to
programs which are running on 8086- and 8088-based systems and
which use as an operating system MSDOS, PCDOS, or CP/M-86.

As with the System Independent Functions chapter, this chapter is
divided into sections, each of which describes a group of related
functions.

Some of the functions in this section will only run on a specific
operating system. The header to a section defines the systems on which
the section’s functions will run, as does the index which follows this
introduction. The codes defining the systems on which functions run
are:

DOS Function runs on any version of MSDOS or PCDOS;
DOS2x MSDOS or PCDOS, version 2.x or later;
DOS11 MSDOS or PCDOS, version 1.1;
PCDOS PCDOS, any version;
CP/M-86 CP/M-86, any version.

As with the system independent functions, the header to a section
has a parenthesised letter that specifies the library containing the
section’s functions. The codes and their related libraries are:

C c.lib;
S s. lib;
G g.lib.

c.lib contains only functions for the system on which the your
Aztec C86 programs run. Thus, a parenthesized ’c’ in a section’s title
doesn’t always mean that the section’s functions are included in your
c.lib. The functions are in c.lib only if they are available on all 8086-
based systems or on your specific system. For example, if you have the
PCDOS version of Aztec C86, your c.lib includes, in addition to
system-independent functions, functions which will run on any 8086-
based system and functions which run on PCDOS/MSDOS, version
2.x. It doesn’t contain functions which run on CP/M-86 or on
MSDOS/PCDOS, version 1.1.

Some Aztec C86 packages contain libraries that can be used in place
of c.lib, to support different memory models or to generate code that
will run in different environments. For more information, see the
release document.

For Apprentice C, the library functions are all in the run-time
system, and not in libraries.

- 11b86.3 -

8086 Functions Aztec C86

Index to 8086 Functions

This section lists the 8086-specific functions that are provided with
Aztec C86. The list is sorted alphabetically by function name. For
each function it gives the function’s name, the title of the section in
which the function is described, a phrase describing the function’s
purpose, and a parenthesised code that defines the systems on which
the function is provided. The codes are defined at the beginning of
this chapter, with the exception of ’all’, which of course means that the
function is provided for all systems.

function page description

abstoptr LONGPTER absolute addr to seg:off ptr (DOS2x)
ACCESS oo. esesseeeeee ACCESS. uueeececcececssceeees determine file accessibility (all)
asctime TIMEcecseseeee convert data & time to ASCII (DOS)
ASSETE ..eeceseeeeeee ASSERT woe ceeceeeeeeee verify program assertion (all)
| 06 (0) DOS wweeccceeeeeeee issue DOS int 21 function call (DOS)
0x6 (0) BDO uu... .eccceccseceeees issue CPM86 BDOS call (CPM86)
| 0X6 (0):), Ge BDOSX issue bdos call with a far pointer (DOS2x)
Drccececeeeee BREAK. oun... cccscssssccssscsssecssssssceeees set heap pointer (all)
Chdir0. DIRECTORY change current directory (DOS2x)
chmod0...... CHMOD oo ceccceeseseeeee set attributes of file (DOS2x)
Circle oe CIRCLE ouiiccccccccsccssccecsssecsssecees draw a circle (PCDOS)
ClOCK o.oo CLOCK 1... cccescscesecessscscsssecessecessscsssssscese get time (DOS)
(oe) (0) ae COLOR. ou... ccccccccsscsssecssssssscccsssceseecees set color (PCDOS)
__csread CSREAD owe ecccsceeceeeeee read into code segment (all)
Ctime oe TIME convert binary data & time to ASCII (DOS)
(6 (0) seeeeee | DIO ene issue DOS int 21 function call (DOS)
dostime TIMEccscscsssccscsscccccesecceecsseseees get data & time (DOS)
(6 (0):), BDOSX issue DOS int 21 call with far ptr (DOS2x)
0 101 0 DUP open second file descriptor for file (DOS2x)
execl, etc EXEC ... jump to another program (DOS2x & CPM86)
6 | rn EXIT ou... cesssssceceessssecsssereeees terminate program (all)
__OXIt eens EXITcccccssssscccssecosssecsssscensnes terminate program (all)
farcall ww... FARCALL oo. cceeeee ; ... issue far call (all)
fobinit000..... FCBINIT uuu... ccesccsssscssscssseceseseees initialize an FCB (all)
FAUD ou... ccsscecseeee DUP open second file descriptor for file (DOS2x)
fexecl, fexecv .. FEXEC ou cccsssssseeees call another program (DOS2x)
ftime ou... FILETIME get or set file’s date & time (DOS2x)
getcwd0. DIRECTORY get name of current directory (DOS2x)

BCTENV asseueeee GETENY get value of environment variable (DOS2x)
PetusS4r oo... USER won eecccceeee get current user number (CPM86)
gmtime TIME ou .cceecccccsssccssessseees convert date & time (DOS2x)

- 1ib86.4 -

Aztec C86 8086 Functions

ground COLOR oo ccccccccssseceeseees set background color (PCDOS)
inportb, etc | ©) 6 pee read from a port (all)
_ int sp... MONITOR set monitoring clock speed (PCDOS)
line, lineto LINE oui. cecccsseecesseesesssessssscseesees draw a line (PCDOS)
localtime TIME uo... eeeeeeees sesessseseees convert date & time (DOS2x)
memccpy, etc .. MEMORY ooo cece cecececeeee memory operations (all)
mktemp MKTEMPP make name for temporary file (all)
1001016 (re NY (@) D) Sane set screen mode (PCDOS)
monitor MONITOR 2... ceseseesseeeees profiling function (PCDOS)
movblock MOVBLOCK eee move block of memory (all)
mkdir DIRECTORY ou... eee make a directory (DOS2x)
Outportb, etc PORT won eccccccescscecesssseceosssceeee write to a port (all)
palette 0.0.00... COLOR. occeccccccccsscesssseccssssecsecssees set palette (PCDOS)
peekb, peekw... PEEK wu... eeceeeee get memory byte or word (all)
perror, etc PERROResee ecsceesceeeeess write error message (all)
POINt0... POINT wie ecccccsscscssssssssssnseeees plot a point (PCDOS)
pokeb, pokew .. PEEK. ou... ccccccecsssseees set memory byte or word (all)
__ptradd, LONGPTR long pointer arithmetic (DOS2x)
__ptrdiff, LONGPTR00.00....... long pointer arithmetic (DOS2x)
ptrtoabs LONGP'TR. seg:off ptr to absolute addr (DOS2x)
FMI oe... cece DIRECTORY0. remove a directory (DOS2x)
PStUSF woo... USER .. reset user number to previous value (CPM86)
TSVStK ooo... cceeceeeeee BREAK. ou... ccecccsesssssseeeees set heap-stack boundary (all)
S) 0) 6. e BREAK. occ ccccccsccssseeccceseccecesseeeees set heap pointer (all)
SCCID vee. ceseeceeevees SCDIR ouu...ccsssscsssecessscsssssecessscncees Scan directory (DOS2x)
scr__curs, etc ... SCREEN access console via ROM BIOS (PCDOS)
signal ou... SIGNAL define how to handle a signal (DOS2x)
Segread SEGREAD get contents of segment registers (all)
SCCUSTc0000 USER oo eeccccsceeee set current user number (CPM86)
Statcccccecsseeeees CHMOD eee ccccscssseeceseeceee get file attributes (DOS2x)
SYSINE oo... eesseeeeees FARCALL wii esececeeee execute int instruction (all)
SysSteM06 SYSTEM0.. call program or batch file (DOS2x)
TIME oe eeeeee TIME.ccccesssescesssssssecesseeees get date & time (DOS2x)
tmpfile 00.000... TMPFILE create & open temporary file (all)
tmpnam TMPNAM make name for temporary file (all)
utiIME FILETIME get or set file’s date & time (DOS2x)
WAIt c.ccccccccceceseee FEXEC get rtn code from fexec-ed program (DOS2x)

- 1ib86.5 -

ACCESS (C) DOS and CP/M-86 Function ACCESS

NAME
access - determine accessibility of a file or directory

SYNOPSIS
int access (filename, mode)
char *filename;
int mode;

DESCRIPTION
access determines whether a file or directory can be accessed in
the way that the calling function wants to access it. It can also
be used to just test for the existence of a file or directory.

filename points to the name of the file or directory; this name
optionally contains the drive and path of directories that must
be passed through to get to the file or directory. If the drive
component isn’t specified, the file or directory is assumed to
reside on the default drive. If the path component isn’t
specified, the file or directory is assumed to reside in the
current directory on the specified drive.

mode is an int that specifies the type of access desired:
mode meaning
4 read
2 write
| execute (if a file) or search (if a directory)
0 check existence of the file or directory.

If the existence of the file or directory is being checked Cie,
mode=0), access returns 0 if the file exists and -1 if it doesn’t.
In the latter case, access also sets the symbolic value ENOENT in
the global integer errno.

When access is called to determine if a file can be accessed in a
certain way (ie, mode isn’t 0), access returns 0 if the file can be
accessed in the desired manner; otherwise, it returns -1 and sets
a code in the global integer errno that defines why the access is
not permitted.

When asked, access says that a directory can be read or written;
this means that a program can create and delete files on the
directory, not that it can directly read and write the directory
itself.

The symbolic values that access may set in errno when it’s called
with a non-zero mode parameter are:

errno meaning

ENOTDIR A component of the path prefix is not a
directory.

- 1ib86.6 -

ACCESS (C) DOS and CP/M-86 Function ACCESS

ENOENT The file or directory doesn’t exist.

EACCES The file or directory can’t be accessed in
the desired manner.

SEE ALSO
The "Errors" section of the Library Overview chapter discusses
errno.

- 1ib86.7 -

ASSERT (Macro) DOS and CPM86 Function ASSERT

NAME
assert - verify program assertion

SYNOPSIS
#include <assert. h>

assert (expr)
int expr;

DESCRIPTION
assert 1s useful for putting diagnostic messages in a program.
When executed, it will determine whether the expression expr is
true or false. If false, it prints the message

Assertion failed: expr, file fff, line Innn

where fff is the name of the source file and mnn is the line
number of the assert statement.

To prevent assertion statements from being compiled in a
program, compile the program with the option -DNDEBUG, or
place the statement #define NDEBUG ahead of the statement
#include <assert.h>.

- 1ib86.8 -

BDOS (C) CP/M-86 function BDOS

NAME
bdos

SYNOPSIS
bdos(func, dx) /* CP/M-86 version */

DESCRIPTION
bdos issues CP/M-86 bdos call number func, with register DX
set to dx.

It returns as its value the contents of AL, as set by CP/M-86.

- 11b86.9 -

BDOSX(C) DOS 2.x Functions BDOSX

NAME

bdosx, dosx -- perform a bdos call with a far pointer

SYNOPSIS
int bdosx(func, dsdxval, cxval)
int func;
int cxval;
int *dsdxval;

int dosx(func, bxval, cxval, dsdxval, dival, sival)
int func;
int bxval, cxval, sival, dival;
int *dsdxval;

DESCRIPTION

Many MSDOS/PCDOS system calls require an argument that is
pointed to by the register pair ds-dx. This is no problem in small
data models as the entire data segment is addressable from the
default value of ds. In large data models, however, pointers
always contain a segment portion and are not necessarily
addressable with the default ds.

The bdosx and dosx functions provide equivalent functionality
to bdos and dos calls, respectively, when such pointers are
required in large data memory models.

- 11b86.10 -

BREAK (C) DOS and CP/M-86 functions BREAK

NAME
sbrk, brk, rsvstk

SYNOPSIS
brk(ptr)
void *ptr;

void *sbrk(size)

rsvstk(size)

DESCRIPTION
sbrk and brk provide an elementary means of allocating and
deallocating space from the heap. More sophisticated buffer
management schemes can be built using these functions; for
example, the standard functions malloc, free, etc call sbrk to get
heap space, which they then manage for the calling functions.

sbrk increments a pointer, called the "heap pointer’, by size
bytes, and, if successful, returns the value that the pointer had
on entry. Initially, the heap pointer points to the base of the
heap. size is a signed int; if it is negative, the heap pointer is
decremented by the specified amount and the value that it had
on entry is returned. Thus, you must be careful when calling
sbrk: if you try to pass it a value greater than 32K, sbrk will
interpret it as a negative number, and decrement the heap
pointer instead of incrementing It.

brk sets the heap pointer to ptr, and returns 0 if successful.

For programs whose stack is below the heap, the size of the
heap, and the amount of space allocated to the program, will
expand or contract automatically as necessary, such that the
resultant memory allocated to the program contains the smallest
integral number of 1K-byte blocks needed to just contain the
entire program and the location referenced by the updated heap
pointer. For example, if brk is called to set the heap pointer
either above the top of the space currently allocated to the heap
or below the location currently pointed at by the heap pointer,
brk computes the number of 1K-byte blocks that the program
needs to just contain the location pointed at by the brk
parameter, and then issues a DOS setblock call to allocate that
number of blocks to the program.

For programs whose stack is above the heap, the heap cannot
automatically grow. If a sbrk or brk call is made that would
result in the heap pointer passing beyond the end of the heap,
an error code is returned. For these programs, the function
rsystk can be called to set the heap-stack boundary size bytes
below the current top of the stack, thus changing the amount of

space allocated to the heap and stack.

- 1ib86.11 -

BREAK (C) DOS and CP/M-86 functions BREAK

SEE ALSO
The functions malloc, free, etc, implement a dynamic buffer-
allocation scheme using the sbrk function. See the Dynamic
Buffer Allocation section of the Library Functions Overviews
chapter for more information.

The standard 1/o functions usually call malloc and free to allocate
and release buffers for use by i/o streams. This is discussed in
the Standard I/O section of the Library Functions Overviews.

Your program can safely mix calls to the malloc functions,
standard i/o calls, and calls to sbrk and brk, as long as the your
calls to sbrk and brk don’t decrement the heap pointer. Mixing
sbrk and brk calls that decrement the heap pointer with calls to
the malloc functions and/or the standard i/o functions is
dangerous and probably shouldn’t be done by normal programs.

For more information on the heap and its relationship to the
other areas of a program, see the Program Organization section
of the Technical Information chapter.

ERRORS
sbrk and brk return -1 if an error occurs, after setting the global
integer errno to the symbolic value ENOMEM.

- 1ib86.12 -

CHMOD (C) DOS 2.x Functions CHMOD

NAME
chmod, stat

SYNOPSIS
chmod(name, attr) /* DOS 2.x functions */
char *name;

stat(name, buf)
char *name, *buf;

DESCRIPTION
chmod sets the attribute byte of file name to attr.

stat returns the attribute byte, date and time, and size of the file
name. This information is returned in buf, which has the
following format:

Struct stat {
char st__attr;
long st__mtime;
long st__ size;

}
This structure, and the meaning of the bits in the attribute and
time fields are defined in the header file stat.h, and in the TIME
section.

name can optionally specify the drive on which the file is
located and the path to it.

ERRORS
chmod and stat return -1 if they fail, after setting a code in the
global integer errno. The Errors section of the Library Overview
chapter describes these codes.

- 1ib86.13 -

CIRCLE (G) PCDOS Graphics Functions CIRCLE

NAME
circle, set__asp

SYNOPSIS
void circle (x, y,r) /* IBM PC-only function */
int x, y, Fr;

void set_asp(x_ asp, y_asp) /* IBM PC-only function */
int x asp, y_ asp;

DESCRIPTION
circle draws a circle with center (x,y) and radius r.

The aspect of the circle is determined by the global variables,
__ xaspect and __yaspect. These values are set automatically when
the mode function is called, and can also be altered directly or
by calling set asp.

SEE ALSO
color, line, mode, point

- 1ib86.14 -

CLOC

NAME

K (G) DOS Function CLOCK

clock - get time

SYNOPSIS
#include <time.h>

clock t clock()

DESCRIPTION
clock is used to determine the time interval between events that

occur within a 48-hour period.

clock usually returns the number of hundredths of seconds that
have elapsed since the beginning of the day. If a new day has
begun since the last call to clock, clock instead returns the
number of hundredths of seconds that have elapsed since the
beginning of the previous day. The returned value can be
divided by the macro CLK__TCK, which is defined 1n time.h, to
determine the number of seconds that have elapsed.

clock _t, which is also defined in time.h, is a long, allowing
intervals between calls to clock to be determined by simply

subtracting the values returned by clock.

- 1ib86.15 -

COLOR (G) PCDOS Graphics Functions COLOR

NAME

color, palette, ground

SYNOPSIS
void color (c) /* IBM PC-only function */
int c;

void palette (c) /* IBM PC-only function */
int ¢;

void ground (c) /* IBM PC-only function */
int ¢;

DESCRIPTION

color defines the color that will be used when a point is plotted
by point. This information is stored in the global variable,
__color. The argument is interpreted as follows:

’w, ’W’, ’y’, ’Y’, 3 - white or yellow
’m’, "M’, ’r’, ’R’, 2 - magenta or red
’c’, °C", ’g’, ’G’, 1 - cyan or green
anything else - background

The colors that are used depend upon the current color
configuration.

palette sets the current palette with int 16. The palette can be
either "cyan, magenta, white" or "green, red, yellow’, chosen by
a non-zero argument and a zero argument, respectively.

ground sets the background color with int 16. The argument can
be valued 0 - 15. The background color will be set as follows:

0 - black 8 - dark gray
1 - blue 9 - light blue
2 - green 10 - light green
3 - cyan 11 - light cyan
4- red 12 - light red
5 - magenta 13 - light magenta
6 - brown 14 - yellow
7 - light gray 15 - white

SEE ALSO
mode, circle, line, point

- 11b86.16 -

CSREAD (C) DOS and CP/M-86 Function CSREAD

NAME
__csread

SYNOPSIS
__csread(fd, addr, len)
char *addr;

DESCRIPTION
csread is equivalent to the function read, except it reads data

into the code segment rather than the data segment.

fd is the file descriptor associated with the file or device to be
read;

addr is the offset within the code segment into which data is to

be read;

len is the number of bytes to be read.

__csread returns the number of bytes read. 0 means that the end
of the input has been reached.

ERRORS
csread returns -1 if an error occurs, after setting a code in the

global integer errno. The codes are defined in the Errors section

of the Library Overview chapter.

- 1ib86.17 -

DIRECTORY (C) DOS 2.x Functions DIRECTORY

NAME
mkdir, rmdir, chdir, getcwd

SYNOPSIS
mkdir(name) /* DOS 2.x functions */
char *name;

rmdir(name)
char *name;

chdir(name)
char *name;

char *getcwd(buf, size)
char *buf:

DESCRIPTION
These functions perform directory-related activities.

mkdir, rmdir, and chdir create a directory, remove a directory,
and change the current directory, respectively. For them, the
argument name is a character string specifying the drive on
which the directory is located and the path to the directory.
They return 0 if no error occurred.

getcwd returns as its value a pointer to a character string
specifying the name of the current working directory on the
default drive. If the first parameter to getcwd, that is, buf, is
non-null, the name is placed in buf. Otherwise, getcwd calls
malloc to dynamically allocate a buffer of size bytes into which
the name is placed.

ERRORS
If mkdir, rmdir, or chdir fails, it sets an error code in the global
integer errno and returns -1 as its value. These codes are defined
in the Errors section of the Library Overview chapter.

If getcwd fails, it returns 0, after freeing the dynamically
allocated buffer, if any.

- 11b86.18 -

DOS (

NAME

C) DOS Functions DOS

dos, bdos

SYNOPSIS
dos(func, bx, cx, dx, di, si) /* DOS 2.x Function */

bdos(func, dx, cx) /* DOS 1.1 & 2.x Function */

DESCRIPTION
These functions issue a DOS functions call, using interrupt 21h.

func is the number of the function. The number can be in the

low or high order byte of func; in either case, it will be loaded

into register AH. :

The other arguments are loaded into registers before the int 21h

is performed: for example, the argument cx is loaded into

register CX.

For the dos function, if int 21h returns with the carry flag reset,

dos returns as its value the contents of register AX, as set by int

21h. Otherwise, the contents of AX are set in the global integer
errno and dos returns -1 as its value.

The bdos function always returns the contents of AL, as set by

int 21h, as its value.

- 1ib86.19 -

DUP (C) DOS 2.x Functions DUP

NAME
dup, fdup

SYNOPSIS
dup(oldfd) /* DOS 2.x functions */

fdup(oldfd, newfd)

DESCRIPTION
These functions perform a second opening, for unbuffered i/o,
of a file or device, returning as their value a file descriptor. The
file or device can then be accessed by either the original file
descriptor or the returned file descriptor.

The parameter old fd is the original file descriptor.

dup and fdup differ in that dup selects the second file descriptor,
while the caller passes fdup the second file descriptor.

For fdup, if the second file descriptor is already associated
with an open file or device, it will be closed before being
reopened.

ERRORS
If dup or fdup fails, it sets an error code in the global integer
errno and returns -1 as its value. These codes are defined in the
Errors section of the Library Overview chapter.

- 11b86.20 -

EXEC (C) DOS 2.x and CP/M-86 Functions EXEC

NAME
execl, execv, execlp, execvp

SYNOPSIS
execl(name, arg0, argl, arg2, ..., argn, 0)
char *name, *arg0, *argl, *arg2, ...;

execv(name, argv)

char *name, *argv[];

-execlp(name, arg0, argl, arg2, ..., argn, 0)
char ‘name, *arg0, *argl, *arg2, ...;

execvyp(name, argv)

char *name, *argv[];

DESCRIPTION
These functions load, and transfer control to, another program.
The called program is loaded on top of the calling program;
thus, if the exec function succeeds, it doesn’t return to the

caller.

Both programs which have been created using the Aztec
software and those that haven’t can be called.

On DOS, Both .com and .exe programs can be called.

The following paragraphs will first describe the parameters to
the exec functions, then describe the differences between the
functions, and finally discuss other features of the functions.

Parameters

name is the name of the file containing the program to be
loaded. On DOS, name can specify the drive on which the file is
located, and the path to the file. On CP/M-86, name can specify
the drive on which the file is located.

The exec functions can pass arguments to the called program.
execl and execlp build a command line by concatenating the
strings pointed at by argl, arg2, and so on. If a C program is
being called, its main function will see arg] as argv[1], arg2 as
argv[2], and so on. arg0, which on UNIX 1s normally the name
of the program being called, isn’t part of the constructed
command line; also, argv/0] of a called C program is always a
pointer to a null string. Even though arg0 isn’t passed to a
program when using Aztec C86, it must still be specified, even
if it’s just a pointer to a null string. We recommend that you set
it to a pointer to the name of the called program, for UNIX

compatibility.

execv and execvp build a command line by concatenating the
strings pointed at by argv/1], argv[2], and so on. The argv array
must be have a null pointer as its last entry. If a C program is

- 1ib86.21 -

EXEC (C) DOS 2.x and CP /M-86 Functions EXEC

being called, its main function will see the calling function’s
argv[i] as its argv[i]. argv[0], which on UNIX is normally the
name of the program being called, isn’t part of the constructed
command line; also, argv/0] of a called C program is always a
pointer to a null string. Even though argv/0/] isn’t passed to a
program when using Aztec C86, it must still be specified, even
if it’s just a pointer to a null string. We recommend that you set
it to a pointer to the name of the called program, for UNIX
compatibility. |

The Functions

execl and execv load a program from the specified file: exec/ is
useful when a fixed number of arguments are being passed to a
program. execv is useful for programs which are passed a
variable number of arguments.

On DOS, execlp and execvp search a list of directories for the
program to be loaded. The first directory searched is the current
directory on the default drive. If the program isn’t there, the
directories specified in the PATH environment variable are
searched. For these two functions, if the filename doesn’t have
an extension, the exec functions will first append .com to the
name and search for a file having this extended name. If this
search fails, .exe will be appended to the name and the search
will begin again.

On CP/M-86, execl and execip are identical, as are execv and
execyp.

DOS Information

If an exec function fails, for example because the file doesn’t
exist, it will return -1 as its value.

Files opened for unbuffered i/o in the calling program will also
be open in the called program, and will have the same file
descriptors. :

Files opened for standard i/o in the calling program won’t be
open for standard i/o in the called program, although they will
be open for unbuffered i/o. Thus, before a program activates
another using an exec function, it should cause the buffered
data for files opened for standard i/o to be written to disk,
using either the fclose or fflush functions.

The standard input, standard output, and standard error devices
are open in the called program to the same devices or files as in
the calling program. For the reasons discussed above, care is
needed when either the calling or called program accesses these
logical devices using standard i/o calls.

- 1ib86.22 -

EXEC (C) DOS 2.x and CP/M-86 Functions EXEC

The environment of the called program is the same as that of

the calling program.

CP/M-86 Information

On CP/M-86, files open in the calling program aren’t open in

the called program. Thus, the calling program should close all

files before issuing an exec function.

SEE ALSO
The FEXEC functions also load and execute another program;

they differ from the EXEC functions in that they return to the

caller.

The system function will execute a DOS command, whether

built-in, batch file, or executable file.

- lib86.23 -

EXIT (C) DOS and CP/M-86 Functions EXIT

NAME
exit, exit

SYNOPSIS
exit(code)

__exit(code)

DESCRIPTION
These functions cause a program to terminate and control to
return to the operating system.

For programs which are activated by batch or submit files, code
can be used to control the continuation of them following the
termination of the program. On MSDOS and PCDOS, the batch
file can directly examine code, and act accordingly.

On CP/M-86, if code is non-zero and if the A: drive is logged
in, the file A:$$$.SUB will be erased, thus preventing the
continuation of an active submit file.

exit and _ exit differ in that exit closes all files opened for
standard 1/0, while __ exit doesn’t.

- 1ib86.24 -

FARCALL (C) DOS and CP/M-86 Function FARCALL

NAME
farcall, sysint

SYNOPSIS
farcall(ip, cs, inregs, outregs)
struct regs *inregs, *outregs;

sysint(sint, inregs, outregs)
struct regs *inregs, *outregs;

DESCRIPTION
farcall issues a far call to the function located at cs:ip.

sysint issues interrupt number sint.

Before the far call or interrupt is issued, the registers are loaded
from the block of memory pointed at by inregs; after the far call
or interrupt returns, the registers are stored in the block of

memory pointed at by outregs.

inregs and outregs can point to the same block of memory.

farcall returns as its value the contents that were in the
processor’s status register on return from the far call function.

sysint returns as its value the state of the flags as set by the
interrupt routine.

The blocks pointed at by inregs and outregs have the following
format:

Struct regs {
int AX;
int BX;
int CX;
int DX;
int SI;
int DI;
int DS;
int ES;

- 1ib86.25 -

FCBINIT (C) DOS and CP/M-86 Function FCBINIT

NAME
fcbinit

SYNOPSIS
fcbinit(name, fcb)
char *name, *fcb;

DESCRIPTION
fcbinit initializes an fcb pointed at by fcb with the filename
pointed at by name.

The following comments apply to the name parameter:

* The drive identifier in the file name is optional; if not
present, the file is assumed to be on the default drive;

The extension in the file name is optional; if not present,
it’s assumed to be all blanks;

The characters ? and * can appear in the file name; in the
latter case, then it and all remaining characters in the
filename or extension are set to ?;

On DOS, the name can’t specify a path, since the fcb will
be used for DOS 1.1-compatible i/o, which doesn’t support
paths;

On CP/M-86, the name can specify a user number. See the
I/O overview section for the format of a name.

On DOS, fcbinit can return the following values:

0 If no errors occurred;
] If ? or * was in the file name;
255 If the drive identifier was invalid;
-] If the file name was invalid.

On CP/M-86, it can return:

the user number, if specified in the file name:
255 if the user number wasn’t specified.

- 1ib86.26 -

FEXEC (C) DOS 2.x Functions FEXEC

NAME

fexecl, fexecv

SYNOPSIS
fexecl(name, arg0, argl, arg2,..., argn, 0) /* DOS 2.x Functions
char *name, *arg0, *argl, *arg2, ..., *argn;

fexecv(name, argv)

char *name, *argyv[];

wait()

DESCRIPTION
The fexec functions load and call another program. The calling
program is suspended while the called program is executing; the
fexec function returns when the called program terminates.

wait returns as its value the return code from the fexec-executed
program.

The parameters

name specifies the name of the file from which the program is
to be loaded, and optionally, the drive on which it’s located and
the path to it.

The fexec functions can pass arguments to the called program.
fexecl builds a command line by concatenating the strings
pointed at by argl, arg2, and so on. If a C program is being
called, its main function will see argl as argv[1], arg2 as
argv[2], and so on. arg0, which on UNIX is normally the name
of the program being called, isn’t part of the constructed
command line; also, argv/0] of a called C program is always set
to a pointer to a null string. Even though arg0 isn’t passed to a
program when using Aztec C86, it must still be specified, even
if it’s just a pointer to a null string. We recommend that you set
it to a pointer to the name of the called program, for UNIX

compatibility.

fexecv builds a command line by concatenating the strings
pointed at by argv/{1], argv{[2], and so on. The argy array must
have a null pointer as its last entry. If a C program is being
called, its main function will see the calling function’s argv/i/ as
its argv[i]. argv[0], which on UNIX is normally the name of
the program being called, isn’t part of the constructed command
line; also, argv/{0] of a called C program is always a pointer to a
null string. Even though argv/0/ isn’t passed to a program
when using Aztec C86, it must still be specified, even if it’s just
a pointer to a null string. We recommend that you set it to a
pointer to the name of the called program, for UNIX
compatibility.

The Functions

- 1ib86.27 -

FEXEC (C) DOS 2.x Functions FEXEC

fexecl is useful when a fixed number of arguments must be
passed, and fexev when a variable number of arguments must be
passed.

Other Information

The fexec functions load the called program after the calling
program in memory.

Files opened for unbuffered i/o in the calling program will also
be open in the called program, and will have the same file
descriptors.

Files opened for standard i/o in the calling program won’t be
open for standard i/o in the called program, although they will
be open for unbuffered i/o. Thus, before a program activates
another using an fexec function, it should cause the buffered
data for files opened for standard i/o to be written to disk,
using either the fclose or fflush functions.

The standard input, standard output, and standard error devices
are open in the called program to the same devices or files as in
the calling program. For the reasons discussed above, care is
needed when either the calling or called program accesses these
logical devices using standard i/o calls.

The environment of the called program is the same as that of
the calling program.

SEE ALSO
The EXEC functions also load programs. Since they overlay the
calling program, they allow a larger program to be loaded. They
never return to the caller.

The system function can execute a DOS built-in command, batch
command, or executable file.

ERRORS
If an fexec function fails, it returns -1 as its value after setting a
code in the global integer errno. These codes are defined in the
Errors section of the Library Overview chapter.

- 11b86.28 -

FILETIME (C) DOS 2.x Functions FILETIME

NAME
ftime, utime

SYNOPSIS
long ftime(0, fd) /* get */
long ftime(1, fd, newtime) /* set */
long newtime;

struct utimebuf {
long actime; /* not used on DOS */
long modtime; /* modification date and time */

};

utime(name, timeptr)
char *name; struct utimebuf *timeptr;

DESCRIPTION
These functions are used to get and set a file’s date and time,
which are stored in the directory entry for the file.

ftime can be used when the file is already open; the fd argument
is the unbuffered i/o file descriptor associated with the file.

ftime can both get and set a file’s date and time:
If the first argument to ftime is 0, ftime returns as its value
the date and time for the file.

If the first argument to ftime is non-zero, ftime sets the
file’s date and time to the value in newtime. It returns 0 if

no errors occurred.

utime can be used to set the date and time for a file, which can
be either open or closed. name points to a character string
specifying the name of the file, the drive it’s on, and the path to
it.

If timeptr is not a null pointer utime will set the file’s date and
time to the the value of the modtime field in the structure
pointed at by timeptr. If timeptr is a null pointer, utime will set
the file’s date and time to the current date and time.

utime returns 0 if no errors occurred.

The Jong time and date fields that are passed to, and returned
by, these functions have the following format (bit 0 is the least
significant bit in the field, bit 31 the most significant):

- 1ib86.29 -

FILETIME (C) DOS 2.x Functions FILETIME

bits meaning
0-4 seconds/2
5-10 minutes
11-15 hours
16-20 day of month
21-24 month (0=Jan....)
25-31 year since 1980

ERRORS
If an error occurs, ftime and utime return -1, after setting a code
in the global integer errno. These codes are defined in the Errors
section of the Library Overview chapter.

- 1ib86.30 -

GETENV (C) DOS 2.x Function GETENV

NAME
getenv

SYNOPSIS
char *getenv(name) /* DOS 2.x function */
char *name;

DESCRIPTION
geteny returns a pointer to the character string associated with
the environment variable name, or 0 if the variable isn’t in the
environment.

The character string is in a static buffer and will be overwritten
when the next call is made to geteny.

- 1ib86.31 -

LINE (G) PCDOS Graphics Functions LINE

NAME
line, lineto

SYNOPSIS
void line (x1, yl, x2, y2) /* IBM PC-only function */
int x1, yl, x2, y2;

void lineto (x2, y2) /* IBM PC-only function */
int x2, y2;

DESCRIPTION
line draws a line from (x1, yl) to (x2, y2).

lineto draws a line from the last point drawn to or plotted, to
(x2, y2).

lineto assumes that the coordinates of the point at which it is to
start are stored in the global integers _oldx and _ oldy. These
fields are set by:

* line and lineto, to the coordinates of the last point plotted
in these fields;

* The point-plotting function, point, to the coordinates of
the plotted point;

* Direct assignment from the user’s program.

SEE ALSO
circle, color, mode, point

- 1ib86.32 -

LONGPTR (C) DOS 2.x Functions LONGPTR

NAME
ptrtoabs & abstoptr - long pointer conversion functions

SYNOPSIS
long ptrtoabs(Iptr)
void * Iptr; /* Iptr is a long pointer */

void *abstoptr(laddr)
long laddr;

void * _ptradd(Iptr, val)
void *Iptr; long val;

long _ ptrdiff(Iptr1, Iptr2)
void *Iptr1, *Iptr2;

DESCRIPTION
ptrtoabs takes a long pointer /ptr that is in segment/offset form
and returns as its value the absolute address of the referenced
location.

abstoptr takes the absolute address of a location and returns as its
value a long pointer to the location, in segment/offset form.
The segment is selected so that the offset is between 0 and 15.

__ptradd takes a long value val and a long pointer (ptr, and
returns as its value the sum of the two.

__ptrdiff takes two long pointers, IJptr] Iptr2, that are in
segment/offset form, and returns as its value their difference.

SEE ALSO
The compiler chapter discusses long pointers and absolute
addresses and demonstrates how these functions can be used to
access arrays that contain more than 64K bytes.

- 1ib86.33 -

MEMORY (C) MEMORY

NAME
memccpy, memchr, memcmp, memset - memory operations

SYNOPSIS
#include <memory.h>

char *memccpy (dst, src, c, n)
char *dst, *sre;
int c, n;

char *memcpy (dst, src, n)
char *dst, src;
int n;

char *memset (buf, c, n)
char *buf;
int c,n;

char *memchr (buf, c, n)
char *buf;
int c,n;

int memcmp (buf1, buf2, n)
char *buf1, *buf2;
int n;

DESCRIPTION
These functions operate efficiently on areas of memory, copying
characters from one area to another, searching an area for a
character, and setting the bytes in an area to a specified value.
Unlike the string functions, which are described in the STRING
section, these functions don’t automatically stop when they find
a null character.

memccpy copies characters from the memory area src into dst,
stopping after the first occurrence of the character c or after n
characters have been moved, whichever comes first. If c was
found and moved, memccpy returns a pointer to the byte
following c in dst; otherwise, it returns a NULL pointer.

memcpy copies n bytes from memory area src to dst, and returns
dst as its value.

memccpy and memcpy always copy from the first byte in src to
the last. Because of this, if the two areas overlap, the dst area
may not be an exact copy of the src.

memset sets the first n bytes in memory area buf to c, and
returns buf as its value.

memchr searches the first n bytes of the memory area buf for
the character c. If it finds the character, it returns as its value a
pointer to it; otherwise, it returns a NULL pointer.

- 1ib86.34 -

MEMORY (C) MEMORY

memcmp compares the first n bytes of the memory areas pointed
at by buf] and buf2. It returns an integer that is less than, equal
to, or greater than 0, depending on whether bufl is
lexicographically less than, equal to, or greater than bu/2.

The file memory.h declares the types of these functions.

SEE ALSO
The non-UNIX functions movmem and setmem are equivalent to
memcpy and memset, respectively, except that their parameters
are in a different order.

Functions for operating on null-terminated strings are described
in the STRING section of the system-independent function
section.

- 1ib86.35 -

MKTEMP (C) DOS 2.x Function MKTEMP

NAME
mktemp - make a unique file name

SYNOPSIS
char *
mktemp (template)
char *template;

DESCRIPTION
mktemp replaces the character string pointed at by template with
the name of a non-existent file, and returns as its value a
pointer to the string.

The string pointed at by template should look like a file name
whose last few characters are Xs with an optional imbedded
period.

mktemp replaces the Xs with a letter followed by the least
significant digits of the starting address of its program’s data
segment. The letter will be between ’A’ and ’Z, and will be
chosen such that the resulting character string isn’t the name of
an existing file.

DIAGNOSTICS
For a given character string, mktemp will try to convert the
string into one of 26 file names. If all of these files exist,
mktemp will replace the first character pointed at by template
with a null character.

SEE ALSO
tmpfile, tmpnam

EXAMPLES
The following program calls mktemp to get a character string
that it can use as a file name. If the program’s data segment
begins at the decimal address 123456, then the generated name
will be one of the strings abcA23.456, abcB23.456, ...,
abcZ23.456. If all these strings are the names of existing files,
mktemp will replace the first character of the string passed to it,
a in this case, with 0.

- 11b86.36 -

MKTEMP (C) DOS 2.x Function MKTEMP

#include <stdio.h>
main()

{
char *fname, *mktemp();
FILE *fp, fopen();
fname=mktemp("abcX XX. XXX")==0)
if ('*fname){

printf("mktemp failed");
exit(1);

} else
fp=fopen(fname, "w");

- 1ib86.37 -

MODE (G) PCDOS Graphics Function MODE

NAME
mode - set screen mode

SYNOPSIS
int mode (c) /* IBM PC-only function */
int c

DESCRIPTION
This function, which can only be used on an IBM PC, sets the
screen mode by issuing an interrupt hex 10. The parameter is
-interpreted as follows:

0 - 40 x 25 b/w
] - 40 x 25 color
2- 80 x 25 b/w

80 x 25 color
’m’, ’M’, or 4 -

320 x 200 color
5 - 320 x 200 b/w
’h’, "H’, 6 _

640 x 200 b/w

An argument out of range will cause the function to return a -1
and take no action. Otherwise, the following global variables are
set:

__plotf - to determine the plotting function for point
__Xaspect, _yaspect - to determine curvature of circles
__max_x- limit on horizontal coordinate

SEE ALSO
point, circle, line, color

DIAGNOSTICS
mode will return -1 when its argument is out of range.

EXAMPLE
To enter high res mode, the following calls are equivalent:

mode (’H’);
mode (6);

- 1ib86.38 -

MONITOR(C) IBM PC Function MONITOR

NAME
monitor, int_ sp - profiling functions

SYNOPSIS
/* functions for IBM PC & compatibles only */

int monitor(lowpc, highpc, buffer, size, numcalls)
int (*lowpc)Q;

int (*highpce)Q;
short *buffer;
int size;
int numcalls;

int int _ sp(speed)
int speed;

DESCRIPTION
monitor is a function which sets up the IBM-PC to perform
runtime analysis of where the user program is spending its
execution time. This is accomplished by trapping the IBM-PC
clock interrupt and recording a tick if the current execution
address at the clock interrupt is in the address range being

analyzed.

Once the analysis is complete the tick summary is written to a
file called mon.out which can be used as input to the prof utility
to produce a report of runtime activity. monitor 1s called once
with non-zero arguments to initiate analysis and once with all
zero arguments to terminate analysis.

Since the IBM-PC clock is set normally to such a poor time
granularity (~18.2 interrupts/sec), a special routine int_ sp 1s
provided to set the monitoring clock speed to a higher rate.
Rates permitted are from 18 (the default rate) to 120 interrupts
per second. 60 interrupts per second provides a reasonable time
granularity. monitor will restore the default speed when it 1s

-called to write out the mon.out file. In addition, any exit or
Cntrl-C exit from the program will be trapped and will reset the
default speed.

Non-IBM-PC users may be able to produce a working version of
monitor for their systems by customizing clk.asm, which is in
dos20.arc (Commercial package only). Otherwise, monitor
Should not be used on anything but guaranteed IBM-PC
compatibles.

These functions have only been tested on IBM-PC, XT, and AT

processors.

EXAMPLE
The simplest way to describe the use of monitor is through an
example.

- Lib86.39 -

MONITOR(C) IBM PC Function MONITOR

Suppose there is a program foo.c for which analysis is desired.
At the start of the main routine of foo.c, place the following
code:

#ifdef MONITOR
/* Corg & _Cend are always the first & last addresses */
/* in the program: */
int _Corg();
int Cend();
#define MONSIZE 2000 /* use fine granularity */
/* buffer for monitor to gather ticks: */
short monbuf[MONSIZE]};
#endif

Then comes main for foo.c with the calls to monitor.

/* ... Global declarations ... */

main()

/* ... local declarations ... */

/* ... first executable statement of program ... */

#ifdef MONITOR

/* set clock for 60 interrupts per second: *
int__sp(60);
/* start monitoring the program: */
monitor(_ Corg, _Cend, monbuf, MONSIZE, 0);

#endif

/* ... main body of program ... */

/* ... last statement of program ... */

#ifdef MONITOR
/* turn off monitoring and write out mon.out file: */
monitor(0,0,0,0,0);

#endif

}

In this example, all of the functions of the program are being
monitored, since the monitor routine’s arguments /Jowpc and
highpe are set to the erigin and end of the user program,
respectively. These arguments control how much of the program
will be examined. If the arguments were main and printf,
respectively, all of the functions physically before main and
after (and including) printf would be ignored in the analysis.
These arguments to monitor MUST be declared as functions
prior to the monitor call.

The remaining arguments to monitor monbuf and MONSIZE,
provide the system with an area to store tick counts prior to

- 1ib86.40 -

MONITOR(C) IBM PC Function MONITOR

writing the mon.out file. It is important to make the buffer
provided as large as possible, since the number of locations in
this array determines the space granularity of the analysis.

For example, if the code for the program is 5000 bytes long and
the entire program is being analyzed, a buffer size of 1000
would mean that every five bytes of the program would have its
own bucket for collecting ticks, while a buffer size of 100 would
mean that every 50 bytes of program would have its own
bucket. Functions shorter than 50 bytes might not show up at all
in the prof report for such a program, even though they were
heavily executed.

The last argument, numcalls, represents an as yet unimplemented
facility in monitor, and is provided for UNIX(tm) compatibility
only.

Linking a program with monitor calls

When linking a program containing monitor calls, the user
Should be careful to use the -t option which produces a symbol
table for the program, as this is needed for running the prof
utility which produces the report.

- 1ib86.41 -

MOVBLOCK (C) DOS and CP/M-86 Function MOVBLOCK

NAME
movblock

SYNOPSIS
movblock(from_ off, from_ seg, to_ off, to__seg, len)

DESCRIPTION
movblock moves a block of data from one area of memory to
another.

from_seg and from_off define the beginning of the source
block: from_seg is the paragraph number of the segment in
which it’s located and from_off is the offset in bytes of the
block from the beginning of this segment.

to_seg and to off define the beginning of the destination
block: to__seg is the paragraph number of the segment in which
it’s located, and to_ off is the offset in bytes of the block from
the beginning of this segment;

len is the number of bytes to move.

movblock always copies from the beginning of the source block
to the end.

- 1ib86.42 -

PEEK (C) DOS and CP/M-86 Functions PEEK

NAME
peekw, peekb, pokew, pokeb - examine & modify memory

SYNOPSIS
/* peeks & pokes taking a long pointer: */

peek w(Iptr)
void *Iptr; /* Iptr is a long pointer */

peek b(Iptr)
void *Iptr;

pokew(Iptr, val)
void *Iptr;

pokeb(Iptr, val)
void *Iptr;

/* peeks & pokes when the segment & offset components */
/* are passed as separate arguments: */

peek w(offset, segment)

peekb(offset, segment)

pokew(offset, segment, val)

pokeb(offset, segment, val)

DESCRIPTION
These functions get and set either one or two bytes located
anywhere in memory.

When a program uses long pointers, the entire pointer to the
location to be accessed can be passed as a single argument. In
the synopsis, this is shown as (ptr.

When a program uses short pointers, the pointer to the location
to be accessed must be passed as two arguments. A program
using long pointers can also pass the location address as two
arguments, if desired. In the synopsis, these two arguments are
shown as segment and offset, where segment is the paragraph
number of the segment in which the target field is located and
offset is the offset in bytes of the target field from the
beginning of this segment.

peekw returns as its value the word (that is, two bytes) at the
target location.

peekb returns as its value the byte at the target location.

pokew sets the word at the target location to val.

pokeb sets the byte at the target location to val.

- lib86.43 -

PERROR (C) DOS and CPM86 Funtion PERROR

NAME

perror, errno, sys_errlist, sys _nerr - system error messages

SYNOPSIS.
int perror (s)
char *s;

#include <errno.h>

extern int errno;

extern char *sys_ errlist[];

extern int sys__nerr;

DESCRIPTION
When a library function detects an error, it will generally set an
error code, which is a positive integer, in the global integer
errno and return an appropriate, function-dependent value.

sys__errlist 1s an array of pointers to character strings, each of
which is a message corresponding to an errno error code. That
is, when an error occurs, errno can be used as an index into
sys__errlist to get a message corresponding to the error. The
messages don’t contain a newline character.

The maximum value that can be placed in errno, and the total
number of entries in sys _errlist, is in the global integer
syS__nerr.

The extern declarations of errno, sys_errlist, and sys _nerr are in
errno.h.

When an error occurs, perror can be called to write a message
describing the error on the standard error device. The message
consists of the following:

* s, the string pointed at by the argument to perror,
* acolon and a blank,
* the sys_errlist message corresponding to the current

value of errno,
* a newline character.

perror returns 0 if errno contains a valid value; otherwise it
returns -1 without printing a message.

SEE ALSO
Error Overview (O)

- 11b86.44 -

POINT (G) PCDOS Graphics Function POINT

NAME
point

SYNOPSIS
int point (x, y) /* IBM PC-only Function */
int x, y;

DESCRIPTION
This function plots a point on the medium or high resolution
screen. The origin, (0,0), is in the lower left hand corner of the
screen.

A second function is also provided in source form. It performs a
system interrupt to plot the point. This is included for
compatibility reasons.

Either function will set _oldx and _oldy to the values, x and y,
respectively.

SEE ALSO
circle, color, line, mode

- 1ib86.45 -

PORT (C) DOS and CP/M-86 Functions PORT

NAME
inportb, inportw, outportb, outportw

SYNOPSIS
inportb(port)

inportw(port)

outportb(port, val)

outportw(port, val)

DESCRIPTION
These functions transfer data to and from the 1/o device whose
address 1s port.

inportb inputs a single byte, which it returns as its value.

inportw inputs a word (two bytes), which it returns as its value.

outportb outputs the least significant byte of val.

outportw outputs both bytes of val.

- 11b86.46 -

SCDIR(C) DOS 2.x Function SCDIR

NAME
scdir -- return the name of the next file matching pattern

SYNOPSIS
char * scdir(pat)
char * pat;

DESCRIPTION
scdir is a function which permits the user to perform wild card
expansion on file name patterns using native MSDOS/PCDOS
facilities.

When scdir is called with a pattern, it returns a pointer to a static
area containing the null terminated name of the next file which
matches the pattern or zero if no more files match the pattern.
Since the area containing the name is statically allocated, the
name will be overwritten by subsequent calls to scdir.

EXAMPLE
main()

{
char *sav[100];
register char *pat;
register int 1;

/* find all c files in current dir */

pat = "*.c";
i= 0;

while ((ptr = scdir(pat)) && i < 100) {

sav[i] = malloc(strlen(ptr)+1);
strcpy(sav[it++], ptr);

/* rest of program */

- 1ib86.47 -

SCREEN (S) IBM PC Screen Functions SCREEN

NAME

screen manipulation functions:
scr_ clear, scr_ home, scr__curs, scr_ loc, scr_ ol,
scr__eos, scr__linsert, scr__Idelete, scr__cinsert,
scr__cdelete, scr__invers, scr__echo, scr__putc,
scr_ getc, scr_ poll, scr__ call
scr_ printf, scr__puts, scr_setatr, scr getatr, scr__resatr

SYNOPSIS
scr_ setatr(background,forground,intensity, blink)

scr getatr()

scr_resatr(attribute)

scr__invers(flg)
int flg;
scr clear() /* IBM PC-only functions */

scr home()

scr curs(lin, col)
int lin, col;

scr_loc(lin, col)
int *lin, *col;

scr_ eol()

scr eos()

scr_ linsert()

scr_Idelete()

scr cinsert()

scr_ cdelete()

scr_echo(flg)
int flg;

scr putc(c)
int ¢c;

scr_ getc()

scr_pollQ

scr puts(str)
char *str;

scr_ printf(fmt, args ...)
char *fmt;

scr_ call(ax, bx, cx, dx)
int ax, bx, cx, dx;

- 1ib86.48 -

SCREEN (S) IBM PC Screen Functions SCREEN

DESCRIPTION
These functions can only be used on IBM PC systems. They
access the console and keyboard by making calls directly to the
ROM BIOS. There are functions to clear the screen, position
the cursor, insert and delete characters and lines, enable and
disable inverse video mode, enable and disable echo mode, get
and put characters, and issue the video i/o int 10 assembly

language call.

These functions are designed to be used on a console that is in
80x25 mode, although some of them may work in other modes.

Setting character attributes

When writing a character to the console, many of these
functions set the attributes of the character to the value
contained in the least significant byte in the global integer
__attrib. The following functions access __ attrib:

scr__setatr() sets the _ attrib variable to the given foreground,
background colors and for blinking and intensity. There are 8
colors defined in color.h. The background may use any one of
those colors. The foreground may also have the intensity set, so
that there are 16 colors for foreground.

scr__setatr() returns the packed attribute, which can be used in
scr__resatr().

scr__getatr() returns the current attribute setting, which can also

be used in scr_resatr().

scr__resatr() returns the old attribute setting, and installs the new

attribute specified.

scr_invers sets _ attrib to 0x7 or 0x70, depending on whether
the flg parameter to scr_invers is zero or non-zero, respectively.
An attribute of 7 causes a character to be black on a white
background, while 0x70 causes it to be white on a black
background. For both values, the characters will be visible,
non-blinking, and normal intensity.

Other screen functions

scr__clear sets each character on the screen to a blank, and sets
the attributes of each character to the value contained in

attrib.

scr_home homes the cursor to the upper left hand corner of

the screen.

scr__curs moves the cursor to the line and column specified by
the Jin and col parameters, respectively. With the console in
80x25 mode, there are 25 lines, each containing 80 columns or

- 1ib86.49 -

SCREEN (S) IBM PC Screen Functions SCREEN

characters; line numbers range between O and 24, inclusive;
column numbers range between 0 and 79, inclusive; and the line
and column number of the top left corner of the screen are both
0.

scr__loc places the line and column number at which the cursor
is located in Jin and col, respectively.

scr__eol erases the line at which the cursor is located, from the
current cursor position to the end of the line. It does this by
writing a blank character to each position that is to be erased,
and setting its attribute to the value contained in attrib.

scr__eos erases the screen from the current cursor position to the
end of the screen. It does this by writing a blank character to
each position that is to be erased, and setting its attribute to the
value contained in __ attrib.

scr_linsert inserts a line of blank characters at the cursor
location, moving the lines below the cursor down one line. The
attributes of the characters on the inserted line are set to the
value contained in __ attrib.

scr__Idelete deletes the line at the cursor location, moving the
lines below the cursor up one line and placing a line of blank
characters at the bottom of the screen. The attributes of the
characters on the inserted line are set to the value contained in

attrib.

scr__cinsert inserts a blank character at the cursor location,
shifting right one character the characters in the line which are
on the right of the cursor. The attributes of the position at
which the blank was written are set to the value contained in

attrib.

scr__cdelete deletes the character at the cursor location, shifting
left one character the characters in the line which are on the
right of the cursor. A blank character is written to the last
position on the line (column number 79), and its attributes are
set to the value contained in __ attrib.

scr__putc writes c, the character that is passed to it, to the
current cursor location, setting the attributes of the position to
the value contained in __ attrib.

scr_ echo sets the global integer echo to the value specified by
the flg parameter to scr_echo. This variable controls the
echoing of characters by scr__getc, as defined below.

scr_getc reads a character from the keyboard, waiting if a key

hasn’t been depressed, and echoes it to the screen if the global
integer _ echo is non-zero. scr_getc returns one of the
following values:

- 1ib86.50 -

SCREEN (S) IBM PC Screen Functions SCREEN

* For normal characters, its ASCII value (a number
between decimal 0 and 127).

* For special characters, a number between 128 and 255.
* For control-break, -2.

Special characters are those for which the ROM BIOS returns an
extended code consisting of a null character followed by a
second code. For these characters, scr__getc returns as its value
the second code returned by the BIOS, with 0x80 OR-ed in. As
an example, for the function key Fl the ROM BIOS returns an
extended function whose second code is 0x3b; so for this key
scr__getc returns Oxbb. See the "Keyboard Encoding and Usage"
section of the IBM Technical Reference manual for a complete
list of the keys for which the ROM BIOS returns an extended
code.

scr__poll is used to determine if a key has been typed, without
waiting if not, without removing the key from the BIOS input
buffer, and without echoing the character to the console.
scr__poll returns -1 if no character is available; otherwise it
returns values that have the same meanings as scr__getc.

Since scr__poll doesn’t remove a character from the input buffer,
a program that has determined, by calling scr_ poll, that a
character is available should then call scr__getc to actually read
the character and remove it from the input buffer.

scr__printf() and scr__puts() work exactly the same as their
standard C counterparts. The difference is that these routines
can use the 3 attribute setting routines to allow for color.

scr_call issues the ROM BIOS video i/o call, int 10, after
loading the registers AX, BX, CX, and DX with scr_calls
parameters ax, bx, cx, and dx. It returns as its value the
contents of AX.

EXAMPLES
Here is an example that uses scr__setatr to change the color that
scr__printf and scr__puts will use next. The default color used by
scr__printf and scr__puts will be the last color that was set. If no
previous color has been set then it will default to white on

black.

Colors are defined in the file color.h.
scr_setatr(CYAN,GREEN,LOW,NO _ BLINK);

scr__printf("hello world\n");

This will print "hello world" with a cyan background, green low
intensity forground, and non blinking.

- 1lib86.51 -

SEGREAD (C) DOS and CP/M-86 Function SEGREAD

NAME
segread

SYNOPSIS
segread(ptr)
unsigned ptr{[];

DESCRIPTION
segread returns the values of the segment registers in the 8-byte
field pointed at by pir.

The ptr array is organized as follows:

ptr element segment register
0 CS
] SS
2 DS
3 ES

- 1ib86.52 -

SIGNAL (C) DOS 2.x Function SIGNAL

NAME
signal - define how to handle a signal

SYNOPSIS
#include <signal.h>
void (*signal (sig, func))Q
int sig;
int (*func)(Q);

DESCRIPTION |
signal specifies that the signal whose number is sig is to be
handled as defined by func. A ’signal’ is a special, asyncronous
event such as an operator-initiated interrupt or an arithmetic

fault.

Signals and the sig parameter

The following list defines the symbolic values that sig can have,
and the signal associated with each value. These values are
defined in signal.h. Although a program can specify any of
these values for sig, the only one that currently has any effect is

SIGINT.

SIGINT Operator-initiated interrupt (ie, operator
typed control-break or control-C on a PC).

SIGABRT Abnormal termination.
SIGFPE Erroneous arithmetic operation, such as a

divide by zero or an operation resulting in
an overflow.

SIGILL Invalid function image.
SIGSEGV Invalid access to a data object.
SIGTERM Termination request.

Signal processing and the func parameter

func defines the action to be performed on receipt of the
specified signal. It can be one of three values: SJG_ DFL,

SIG__IGN, or a function address.

If the func for a signal is SIG_DFL, the program will be
terminated by the operating system, without execution of the
normal Aztec C exit code. This could result in a loss of
information in files opened for standard output. The func for
all of a program’s signals is SJG_ DFL until the program calls
signal and specifies otherwise.

If the func for a signal is SIG__IGN, the signal will be ignored.

Any other value for func is assumed to be the address of a
function. In this case, when the specified signal occurs, the

function will be called, passing the signal’s number as the
function’s only argument. Before the function is called, the
value of func for the received signal will be set to SIG__DFL.

- 1ib86.53 -

SIGNAL (C) DOS 2.x Function SIGNAL

The function associated with a signal can terminate its program,
if desired, by calling exit or longjmp. It can also return to the
program at the point of interruption by issuing a return
Statement.

When a program activates another program, by calling one of
the exec, fexec, or system functions, the func for the signals of
the called program are initially set to SJG__DFL, regardless of
their setting in the calling program. If the called program
returns to the calling program, the func for the signals in the
calling program resume the value that they had just prior to the
activation of the called program.

Return values from signal

If a requested change is accepted, signal returns the value that
the specified signal’s func had on entry to signal. If the change
is rejected, signal returns the value SIG__ERR and the global int
errno 18 set to indicate the error. Currently, the only cause for
rejection is an invalid signal number, causing errno to be set to
EINV AL.

EXAMPLES
The following program calls signal, so that upon receipt of an
operator-initiated interrupt (on the PC, this means that control-
C or control-BREAK is typed) the program can shut itself down
in an orderly fashion, closing opened files, deleting temporary
files, and so on.

#include <signal.h>
main()

signal(SIGINT, shutdown);
/* normal program execution */

}
shutdown(sig)
int sig;

printf("received signal %d\n", sig);
.. /* termination code */
exit(1);

- 11b86.54 -

SYSTEM (C) DOS 2.x Function SYSTEM

NAME
system

SYNOPSIS
system(cmd) /* DOS 2.x function */
char *cmd;

DESCRIPTION
system causes the command processor to execute the command

pointed at by cmd. The command can be a DOS built-in

command, batch command, or transient command. When the

command terminates, system returns to the caller.

system first searches the environment for the variable

COMSPEC; if found, the command is executed by the command

processor file specified by this variable. If an alternate command

processor isn’t specified, the standard DOS command processor,

in the file command.com, executes the command.

Files opened for unbuffered i/o in the calling program will also

be open in the command processor and the called program, and

will have the same file descriptors.

Files opened for standard i/o in the calling program won’t be

open for standard i/o in the called program, although they will
be open for unbuffered i/o. Thus, before a program activates
another using system, it should cause the buffered data for files
opened for standard i/o to be written to disk, using either the

fclose or f flush functions.

The standard input, standard output, and standard error devices

are open in the called program to the same devices or files as in

the calling program. For the reasons discussed above, care is

needed when either the calling or called program accesses these
logical devices using standard 1/0 calls.

The environment of the command processor and the called
program is the same as that of the called program.

SEE ALSO
exec, fexec

ERRORS
If system fails, it returns -1 as its value, and in some cases may
set a code in the global integer errno. These codes are described
in the Errors section of the Library Overview chapter.

- 1ib86.55 -

TIME (C) DOS Functions TIME

NAME
time, dostime, ctime, localtime, gmtime, asctime

SYNOPSIS
long time(tloc) /* DOS functions */
long *tloc;

dos time(buf)
struct tm *buf;

char *ctime(clock)
long *clock;

#include "time.h"

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
Struct tm *tm;

DESCRIPTION
time and dostime return the date and time, which they get from
the operating system. The other functions convert the date and
time, which are passed as arguments, to another format.

time returns the current date and time packed into a long int. If
its argument ¢loc is non-null, the return value is also stored in
the field pointed at by the argument. The format of the value
returned by time is described below.

dostime returns the current date and time in the buffer pointed
at by its argument, buf. The format of this buffer is described
below.

ctime, localtime, and gmtime convert a date and time pointed at
by their argument, which is in a format such as returned by
time, to another format:

ctime converts the time to a 26-character ASCII string of
the form

Mon Apr 30 10:04:52 1984\n\0

localtime and gmtime unpack the date and time into a
structure and return a pointer to it. The structure, named
tm, 18 described below and defined in the header file
time.h.

asctime converts a date and time pointed at by its
argument, which is in a structure such as returned by
localtime and gmtime, to a 26-character ASCII string in the

- 1ib86.56 -

TIME (C) DOS Functions TIME

same form as returned by cuime.

The long int returned by time and passed to ctime, localtime, and
gmtime has the following form (bit 0 is the least significant bit
in the field, bit 31 the most significant):

bits meaning
0-4 seconds/2
5-10 minutes
11-15 hours
16-20 day of month
21-24 month (0=Jan....)
25-31 year since 1980

The long int fields used by the functions described in the
FILETIME section also have the above format.

The structure returned by dostime, localtime and gmtime, and
passed to asctime, has the following format:

Struct tm {
short tm_ sec; /* seconds */
short tm__min; /* minutes */
short tm hour: /* hours */
short tm mday; /* day of the month */
short tm__mon; /* month */
short tm__year; /* year since 1900 */
short tm__wday;/* day of the week (0 = Sunday */
short tm__yday; /* day of year */
short tm__isdst; /* not used */
short tm__hsec; /* hundredths of seconds */

- lib86.57 -

TMPFILE (C) DOS and CPM86 Function TMPFILE

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>
FILE *
tmpfile ()

DESCRIPTION
tmpfile creates a temporary file and opens it for standard i/o in
update (w+) mode. tmpfile returns as its value the file’s FILE
pointer.

When the temporary file is closed, either because the program
explicitly closes it or because the program terminates, the
temporary file will automatically be deleted.

SEE ALSO
tmpnam, mktemp

- 11b86.58 -

TMPNAM (C) DOS and CPM86 Function TMPNAM

NAME
tmpnam - create a name for a temporary file

SYNOPSIS
char *tmpnam (s)
char *s;

DESCRIPTION

tmpnam creates a character string that can be used as the name
of a temporary file and returns as its value a pointer to the
string. The generated string is not the name of an existing file.

s optionally points to an area into which the name will be
generated. This must contain at least L_tmpnam bytes, where
L__tmpnam is a constant defined in stdio.h.

s can also be a NULL pointer. In this case, the name will be
generated in an internal array. The contents of this array are
destroyed each time tmpnam is called with a NULL argument.

The generated name is prefixed with the string that is associated
with the symbol P_tmpnam, this symbol is defined in sidio.h.
In the distribution version of stdio.h, P_tmpnam is a null string;
this results in the generated name specifying a file that will be
located in the ’current area’. The location of this area is system
dependent: on PC-DOS/MS-DOS 2.x, it’s the current directory
on the default drive; on CP/M-86, it’s the current user area on

the default drive.

SEE ALSO
tmpfile, mktemp

- lib86.59 -

USER (C) CP/M-86 Functions USER

NAME

getusr, setusr, rstusr

SYNOPSIS
getusr() /* CP/M-86 functions */

setusr(user)

rstusr()

DESCRIPTION
getusr returns the current user number as its value.

setusr sets the user number to user. The user number which was
active on entry to setusr is saved for subsequent use by rstusr.

rstusr resets the user number to the value which was saved
during the last call to setusr.

- 1ib86.60 -

OPEN(C) DOS 3.x Functions OPEN

NAME
open - additional modes for file sharing

DESCRIPTION
As of release 3.4a, open supports DOS 3.1 file sharing. The
header file fcntl.h contains these additional modes:

mode meaning

O_DENYRW deny read, deny write

O DENYW deny write

O DENYR deny read

O DENYN © deny nothing

O_ INHER inherit attributes

OQ COMP compatibility mode

These modes are different from the other modes allowed by
open in that they must be or’d and not added.

NOTE: no support is provided for /fopening shared files.
However, you can get shared file support for stream I/O
through the use of fdopen which converts a file opened by open
into a stream.

SEE ALSO
For more information on file sharing, refer to the section on
Interrupts, DOS function call 0x3D, in the PCDOS Technical
Reference manual, version 3.00.

EXAMPLES

lib

To create, open, and restrict the read and write priviledges on a
file, testfile:

fd = open("testfile", O CREAT|O DENRW);

To use the standard I/O functions on a shared file it must first
be opened by open and then by /fdopen:

#include "fcntl.h"
FILE *fp, *fdopen();
int fd;

fd = open("testfile’, O CREAT|O_DENRW);

fp = fdopen(fd, "r+");

open.ap.1 v3.4a

OPEN(C) DOS 3.x Functions OPEN

v3.4a open.ap.2 lib

BDOSX(C) DOS 2.x Functions BDOSX

NAME

bdosx, dosx -- perform a bdos call with a far pointer

SYNOPSIS
int bdosx(func, dsdxval, cxval)
int func;
int cxval;
int *dsdxval;

int dosx(func, bxval, cxval, dsdxval, dival, sival)
int func;
int bxval, cxval, sival, dival:;
int *dsdxval;

DESCRIPTION
Many MSDOS/PCDOS system calls require an argument that is
pointed to by the register pair ds-dx. This is no problem in small
data models as the entire data segment is addressable from the
default value of ds. In large data models, however, pointers
always contain a segment portion and are not necessarily
addressable with the default ds.

The bdosx and dosx functions provide equivalent functionality
to bdos and dos calls, respectively, when such pointers are
required in large data memory models.

1ib86 bdosx.1! v3.4

BDOSX(C) DOS 2.x Functions BDOSX

v3.4 bdosx.2 lib86

FILELOCK(C) DOS 3.x Functions FILELOCK

NAME

filelock - lock a region within a file

SYNOPSIS
int filelock(fd, flag, offset, length)
int fd, flag;
long offset, length;

DESCRIPTION
filelock locks or unlocks a region of a file that has been opened
for unbuffered I/O.

fd is the file descriptor associated with the file.

flag indicates the action to be done: 0 = lock, J = unlock.

filelock will lock/unlock a region starting at offset bytes from
the beginning of a file for length bytes.

If filelock is successful, it will return a zero.

NOTE: care should be exercised when locking files used by stdio
Streams due to some buffering that takes place.

SEE ALSO
Unbuffered I/O (O).

For more information on file locking, refer to the section on
Interrupts, DOS function call 0x5C, in the PCDOS Technical
Reference manual, version 3.00.

DIAGNOSTICS
If filelock fails, it will return -1 as its value and set an error code
in the global integer errno.

1ib86 lib86.ap.1 v3.4a

FILELOCK(C) DOS 3.x Functions FILELOCK

v3.4a lib86.ap.2 lib86

SCDIR(C) DOS 2.x Functions SCDIR

NAME
scdir -- return the name of the next file matching pattern

SYNOPSIS
char * scdir(pat)
char *pat;

DESCRIPTION

scdir is a function which permits the user to perform wild card
expansion on file name patterns using native MSDOS/PCDOS
facilities.

When scdir is called with a pattern, it returns a pointer to a static
area containing the null terminated name of the next file which
matches the pattern or zero if no more files match the pattern.
Since the area containing the name is statically allocated, the
name will be overwritten by subsequent calls to scdir.

EXAMPLE
main()

{
char *sav[100];
register char *pat;
register int i;

/* We're looking for all c files on the current directory */

pat = "*.c";
1= 0;

while ((ptr = scdir(pat)) && i < 100) {

sav[i] = malloc(strlen(ptr)+1);
strcpy(sav[i++], ptr);

/* rest of program */

1ib86 scdir.1 v3.2e

SCDIR(C) DOS 2.x Functions SCDIR

v3.2e scdir.2 lib86

TECHNICAL INFORMATION

- tech.1 -

TECH INFO Aztec C86

Chapter Contents

Techrrical Informationcccccsess coccsssscccccecscssssssecsesccececsccsececsescecescees tech
1. Program Organizationcccccccssssccssscssssscsssssccsssscscsscscsssscsesscececeecees 4

L.1 The program areas oui... ccccccccccssssccccessssssecsccsssssceesessscsccsscsssseees 5
1.2 Factors affecting Program Organizationccccceescccsssseceees 7
1.3 Symbols related to Program Organizationcccccsseeseeees 13
1.4 Startup routine Termination Codes ou. cececcscccsssssrsceeeees 14

2. Overlay Support ou... .ccccccccccccccccscccccccscscsssssscscscscsseccccccceseececescsescevseces 15
2.1 Introduction to Overlays w..ciccececsscccssscesscceccscccecscecesscecceserees 15
2.2 Programmer Information ooo ccsssscscessscccesstcccessssececeess 19

3. LADrAries ou... cecsscssesssssseccsscccessccccsssscecescessececesseseccacecsscasecesensecesenees 25
4. Cross Development oo... cccesscccscscccsecsssccocssscecessteccecsscsscsessesecees 26
5. Using the PCDOS/MSDOS Linker oo... ccccccsssececcessscesscesseceees 27
6. Assembly Language Functionscccccscccccsscsssssscecscsscscssscessessees 30

6.1 Conventions for C-callable Functionsc...ccccccscssscsssseseees 30
6.2 Assembly Language Macrosccccscccscsscesccssscsssceccecsscssccerseess 33
6.3 Embedded Assembler Source wou... ccscescecssceccessccessessecessees 39

7. Generating ROMable code wow... escscsssscescscscsscssssssesssessccceccsssseecss 41
7.1 Features of ROMable Programs 000.00... .ccccccscessceccecsccssccesceees 41
7.2 Special ROM-related Programsescccsesccsscsssscesceeeeees 42
7.3 The Procedure ou... ccccsccsscsscsscssscsscsssscscsesececessccsccsseceecseceasenses 42
7.4 Description Of hex86 wc cccccscccescscessssccecssccceccscecesscceceeesees 43

- tech.2 -

Aztec C86 TECH INFO

Technical Information

This chapter discusses technical topics, and topics that couldn’t be

conveniently discussed elsewhere.

It’s divided into the following sections:

1. Program Organization. Discusses the factors that affect the
memory organization of a program.

Overlays. Describes overlays: what they are, and how they are

used.

Libraries. Discusses the object module libraries that are
provided with Aztec C86.

Cross Development. Discusses the development of CP/M-86
programs with the PC-DOS/MS-DOS version of Aztec C86,
and the development of MS-DOS/PC-DOS programs with the
CP/M-86 version of Aztec C86.

Using the MS-DOS/PC-DOS Linker. Describes how to use
the MS-DOS/PC-DOS linker link to create an executable
program from object modules that have been generated by the
Aztec C86 compiler and assembler.

Mixing Assembler and C Routines. Describes how to interface
assembly language routines with C routines.

Generating ROMable code.

- tech.3 -

TECH INFO Program Organization Aztec C86

1. Program Organization

An executable program is organized into several areas. In previous
chapters we peripherally discussed these areas, while discussing other
topics. In this section we want to focus on these areas.

Some of the information in this section just paraphrases
previously-presented information, and some is brand new. New
information related to programs that run on DOS 2.0 or later, which
you should be on the lookout for as you read this section, includes a
discussion of the global variables _STKLOW, — STKSIZ, and
__HEAPSIZ, which in many, but not all, cases determine whether a
program’s stack area is below its heap or vice versa, the size of the
stack area, and the initial size of the heap.

Another new topic related to programs that run on DOS 2.0 or later
concerns the total amount of memory allocated to the program: when a
program’s stack is below its heap, the program is initially allocated just
enough memory to contain all its areas; the heap, and with it the total
space allocated to the program, will automatically grow and contract as
necessary to satisfy the program’s needs. When the stack is above the
heap, the total size of the program is fixed and won’t change as the
program is running.

An executable program is organized into the following areas:

* code area, containing the program’s executable code;
* overlay code area, into which code for the program’s overlays

are loaded;
* nitialized data area;
* uninitialized data area;
* overlay data area, into which data for the program’s overlays

are loaded;
* stack area, containing the program’s stack;
* heap, from which buffers are dynamically allocated.

There are several factors that determine the size of these areas and
their position in memory. These are:

* The operating system that the program runs on.
* Whether the program uses the large code or small code

memory model.
* Whether the program is linked with a version of c.lib that uses

the ‘large data’ or ’small data’ memory model.
* On PC- and MS-DOS, version 2.0 or later, whether the

program is an .exe or a.com file.
* The value of the int _STKLOW, which in most cases

determines whether the stack is below the heap or vice versa.
* The value of the unsigned int STKSIZ, which defines the

size of the stack area.
* The value of the unsigned int _HEAPSIZ, which defines the

- tech.4 -

Aztec C86 Program Organization TECH INFO

size of the heap area in some cases.
* The value specified in the linker’s -X option when the

program was linked, in some cases.

Programs that run on PC-DOS or MS-DOS, version 2.0 or later,
have the most control over the size and placement of program areas.
Programs that run on PC-DOS or MS-DOS, version 1.1, or on CP/M-
86 have limited control; these programs are discussed at the end of this

section.

The following paragraphs first generally discuss the different areas
of a program. Then follows a discussion of the areas of a program
when using specific combinations of factors.

1.1 The Program Areas

1.1.1 The Code Area

The use of large or small code memory model by a program affects
the maximum size of the program’s memory-resident, executable code:
a ’large code’ program can have unlimited code, all of which must be
memory resident; a small code’ program can have at most 64K bytes
of executable code. The code memory model used by a program
doesn’t affect the size or relative placement of the program’s other
areas, and so won’t be discussed much in the following paragraphs.

For either ‘large code’ or ’small code’ programs, the linker sets the
size of the code area for the program so that it’s just big enough to
hold the program’s executable code.

Only .exe programs on DOS 2.0 or later can use a large memory
model. DOS .com programs, DOS 1.1 programs, and CP/M-86
programs must use the ’small code’ and ’small data’ memory model.

1.1.2 The Overlay Code Area

An overlay’s code is placed in the overlay code area. You set the
size of the overlay code area when you link the program, using the

linker’s +C option.

To use overlays, a program must use the ’small code’ and ’small
data’ memory model options. A PCDOS/MDSOS program must be in

an .exe file, and not in a.com file.

1.1.3 The Initialized Data, Uninitialized Data, and Overlay Data Areas

The linker sets the size of the initialized and uninitialized data
areas so that they’re just big enough to hold the data that goes in these
areas. You set the size of the overlay data area for a program when
you link it, using the linker’s +D option.

The maximum size of these areas depends on several factors, which

we will discuss later.

- tech.5 -

TECH INFO Program Organization Aztec C86

1.1.4 The Stack and Heap Areas

The stack and heap areas of a program are always adjacent.
However, for programs that run on DOS 2.0 or later, you can usually
control whether the stack is above the heap or vice versa. Programs
that are linked with a version of c.lib that uses the ’large data’ memory
model always has the stack below the heap.

By default, programs that are linked with a version of c.lib that uses
the ’small data’ memory model have the stack above the heap, but you
can override this, forcing the stack to be placed below the heap.

When a program’s stack is below its heap, the program will initially
be allocated just the minimum amount of space necessary to hold the
program. The heap has an initial size, but it, and the total space
allocated to the program, will expand and contract as necessary to
satisfy the program’s requests for dynamically allocated buffers.

Thus, the advantage of a program whose stack is below its heap is
that the program will occupy just the amount of space it actually needs.
The disadvantage is that the area used by the stack is a fixed size,
allowing the possibility that the stack may overflow its area and
overwrite the program’s global data.

When a program’s stack is above its heap, the program will be
allocated a fixed amount of memory, with its code and data located at
the bottom: of the area, its stack area at the top, and its heap in
between.

The advantage to locating a program’s stack above its heap is that
the program can dynamically change the boundary between its stack
and heap (by calling the function rsvstk). The disadvantage is that the
program will typically use more or less memory than it actually needs.

1.1.4.1 The STKLOW, STKSIZ, and HEAPSIZ variables

For ’small data’ programs running on DOS 2.0 or later, the global
int _ STKLOW defines whether the program’s stack is below or above
its heap: 1 for stack below heap, 0 for stack above heap.

For programs running on DOS 2.0 or later, the unsigned int
__STKSIZ defines the number of paragraphs (16-byte blocks) in the
program’s stack area.

Similarly, the unsigned int _ HEAPSIZ defines the number of
paragraphs that are initially in the program’s heap area. For programs
whose stack is above the heap, its stack is at the top of its allocated
memory, its code and data are at the bottom, and the heap is allocated
all space in between; thus, in this case, _HEAPSIZ has no effect.

These three variables are defined in the module stklow within the

various versions of clib. The source for this module is in the file
stksiz.c. The default settings for these variables are:

- tech.6 -

Aztec C86 Program Organization TECH INFO

int STKLOW = 0;
int STKSIZ = 4096/16; /* (in paragraphs) */
int HEAPSIZ = 4096/16; /* (in paragraphs) */

This results in a program whose stack is above its heap (’small data’
programs only), and whose stack and heap each contain 4K bytes.

To change the default values of any of these variables, you should
modify, compile, and assemble stksiz.c. Then either replace the stksiz
module in the version of c.lib that you are using with the resultant
module, or link the modified stksiz into your programs before c.lib is
searched by the linker.

If you want to override any of these variables, you must redefine
ALL of them. If you only redefine one of them, you will get a
multiply defined message from the linker.

1.2 Program organization for different combinations of factors

Program organization is affected by several factors. We have
discussed the factors above; now we want to make the discussion more
concrete by explicitly defining the organization of programs that use
specific combinations of factors.

Program organization for the following combinations of factors for
programs that will run on DOS 2.0 or later are discussed:

large data, .exe;
small data, .exe, stack below heap;
small data, .exe, stack above heap;
small data, .com, stack below heap;
small data, .com, stack above heap;

The term ’small data’ means that the program is linked with a
version of c.lib that uses the ’small data’? memory model.

*%
*

©
F&

F
F&

€

Then follows a discussion of program organization for programs
that run on DOS version 1.1 and/or CP/M-86.

- tech.7 -

TECH INFO Program Organization Aztec C86

1.2.1 Large data, .exe programs

A program that runs on DOS, v 2.0 or later, uses the ‘large data’
memory model, and is in a file having extension .exe has the following
organization:

| Heap | high memory
| |

| Stack |

| |

Uninited Data | |
| |
| Inited Data |

| |

| Code |
| | low memory

Programs of this type have the following additional features:

* It can use either the "large code’ or ’small code’ memory
model;

64K bytes is the maximum total size of the block of memory
containing the initialized d data, uninitialized data, and overlay
code areas;

_STKSIZ defines the size of the stack; the maximum size of
the stack is 64K bytes.
__HEAPSIZ defines the number of paragraphs initially
allocated to the heap. The heap, and with it the total amount
of memory allocated to the program, will automatically grow
as necessary. The maximum size of the heap is limited only
by the amount of available memory.
The stack area is always below the heap, regardless of the
setting of _STKLOW.
It cannot use overlays.

- tech.8 -

Aztec C86 Program Organization TECH INFO

1.2.2 ’Small data’, .exe, ’stack below heap’ programs

A program that uses the ’small data’ memory model (that is, that 1s
linked with a version of c.lib that uses the ’small data’ memory model),
is contained in an .exe file, has its stack below its heap, and runs on
DOS version 2.0 or later has the following organization:

Heap high memory

Stack

| |
| |
| |
| |
| Overlay Data Area |
| (small model only) — |
| |
1 1

| |
| |
| 1

| |
| |

Uninited Data

Inited Data

Overlay Code Area
(small model only)

| |
| |
| |
| Code |

| | low memory

This type of program has the following additional features:

* It can use either the "large code’ or ’small code’ memory
model;
Its non-code areas are in a single block of memory, the
maximum size of which is 64K bytes.
__STKSIZ defines the number of paragraphs in the program’s
stack area; there’s no exact limit on the stack size, other than
the limit on the block containing it and the other areas.
HEAPSIZ defines the number of paragraphs that are

initially in the program’s heap. The size of the heap, and with
it the amount of space allocated to the program, will expand
automatically as necessary to meet the program’s needs.
There isn’t an exact limit on the size of the heap, other than
the limit on the block containing it and the other areas.
The variable _STKLOW must be non-zero, of course, to force
the stack to be set below the heap.

- tech.9 -

TECH INFO Program Organization Aztec C86

1.2.3 ’Small data’, .exe, ’stack above heap’ programs

A program that uses the ’small data’ memory model (ie, that is
linked with a ’small data’ version of c.lib), 1s contained in an .exe file,
has its stack above its heap, and runs on DOS version 2.0 or later, has
the following organization:

Stack high memory

Heap

| |
1 i
1 i

| |
| |
| Overlay Data Area _ |
| (small model only) — |
| |
1 i

| |
| |
| |
| |

Uninited Data

Inited Data

Overlay Code Area
(small model only)

|
|
|
| Code

| low memory

This type of program has the following additional features:

oe It can use either the ‘large code’ or ’small code’ memory
model;
Its non-code areas are in a single block of memory, the
maximum size of which is 64K bytes. As mentioned above,
DOS will attempt to allocate 64K bytes to the block, unless
you request a smaller block using the linker’s -X option.
The variable _STKLOW must be zero, of course, to force the
stack to be set above the heap.
__STKSIZ defines the initial size of the program’s stack area.
As mentioned above, within the block of memory that
contains the heap, the heap will be allocated all the space that
isn’t used by the other areas.
The total size of the program is set when the program is
loaded and can’t be changed. The boundary between the heap
and stack can be dynamically changed by the program, by
calling the rsvstk function.

- tech.10 -

Aztec C86 Program Organization TECH INFO

1.2.4 *small data’, .com, ’stack below heap’ programs

A program that uses the ’small data’ memory model, is contained in
a .com file, has its stack below its heap, and runs on DOS, v2.0 or later,
has the following organization:

Heap high memory

Stack

Inited Data

|
|
|
|

Uninited Data |
|
|

|
|

Code |

| low memory

This type of program has the following additional features:

*

*

*

It must use the ’small code’ memory model.
The total size of the block of memory occupied by the
program can’t exceed 64K bytes. The program is initially
allocated just enough memory to hold all of its areas.
The size of the program’s stack is defined by _ STKSIZ.
There isn’t an exact limit on the size of the stack, other than
the limit on the size of the block containing the program.
The initial number of paragraphs in the program’s heap are
defined by _ HEAPSIZ. The heap will expand automatically
as necessary when requests for dynamically-allocated buffers
are made until the program reaches its 64K byte limit.
It cannot use overlays.

1.2.5 *Small data’, .com, ’stack above heap’ programs

A program that uses the ’small data’ memory model, that is in a
.com file, whose stack is above its heap, and that runs on DOS, v2.0 or
later, has the following organization:

Stack high memory

Heap

Inited Data

| |
| |
1 1

| |
| |
| Uninited Data |

| |
| |
| |
! 1

| Code |

| | low memory

- tech.11 -

TECH INFO Program Organization Aztec C86

This type of program has the following additional features:

*

rs

ok

The program must use the ’small code’ memory model.
The maximum size of the block of memory containing the
program’s areas is 64K bytes. DOS will allocate as much
memory as possible to the program, up to the 64K byte limit.
The linker’s -X option has no effect on .com files.
Initially, the size of the stack area is set as specified by
_ STKSIZ,

Initially, the heap is given that part of memory allocated to
the program that isn’t used by the program’s other areas.
The program can dynamically change the boundary between
the stack and heap by calling the rsvstk function.
It cannot use overlays.

1.2.6 Programs on DOS 1.1 and CP/M-86

A DOS .exe or CP/M-86 .cmd program looks like this:

Stack high memory

Heap

Overlay Data Area

Uninited Data

Inited Data

Overlay Code Area | |
| |
| Code |
| | low memory

This type of program has the following additional features: ©
x The program must use the ’small code’ and ’small data’
memory models.
The maximum size of the block containing the program’s
code areas is 64K bytes, as is the maximum size of the block
containing the program’s non-code areas. The operating
system allocate as much space as possible to the program, up
to the 64K-byte limit. On CP/M-86, but not on DOS 1.1, you
can use the linker’s -X option to request a smaller limit.
The initial size of the program’s stack area is 2 K bytes.
Within the area allocated to the program’s non-code areas, the
heap will be given all space not used by the program’s other
areas.
The program can dynamically change the boundary between

- tech.12 -

Aztec C86 Program Organization TECH INFO

the stack and heap areas by calling the rsystk function.

A DOS .com file looks like this:

Stack high memory

Heap

Inited Data

|
|

|

|
|

Uninited Data |

|
|
]

J

|
|

Code
low memory

This type of program has the following additional features:

* It must use the ’small code’ and ’small data’ memory models.
« The maximum size of the block containing the program is

64K bytes. DOS will allocate as much space as possible to the
program, up to the 64K-byte limit. The linker’s -X option has
no effect on .com programs, or on DOS 1.1 programs.

* The initial size of the program’s stack area is 2 K bytes.
* The heap will be given all space not used by the program’s

other areas.
* The program can dynamically change the boundary between

the stack and heap areas by calling the rsvstk function.
* It cannot use overlays.

1.3 Symbols related to Program Organization

The following global symbols are related to program organization.
The symbols are given in the form that an assembly language program
would use to access them.

_ Corg _

_ Cend__

_ Dorg |

_ Dend__

__Uorg _

_ Uend__

__mbot__

Name of the beginning of the program’s code.

Name of the first byte beyond the program’s
executable code.

Name of the beginning of the program’s initialized
data.

Name of the first byte beyond the program’s
initialized data.

Name of the beginning of the program’s uninitialized
data.

Name of the first byte beyond the program’s
uninitialized data.

Name of a field containing a pointer to the beginning
of the program’s heap.

- tech.13 -

TECH INFO Program Organization Aztec C86

SMEMRY Name of a field containing a pointer to the next byte

__mtop _

__sbot__

__dsval__

__csval__

PSP

to be allocated from the heap.

Name of a field containing a pointer to the first byte
beyond the program’s heap.

Name of a field containing a pointer to the bottom of
the program’s stack area (small data model only).

Name of a word containing the paragraph number at
which the program’s data begins.

Name of a word containing the paragraph number at
which the program’s code begins.

Name of a word containing the paragraph number at
which the program’s Program Segment Prefix begins.

_STKSIZ Name of a word containing the number of
paragraphs in the program’s stack area.

__HEAPSIZ __ Name of a word containing the initial number of
paragraphs in the program’s heap area.

_STKLOW __ Name of a word specifying whether the stack is to
be below the heap (1) or vice versa (0).

The pointer fields contain short pointers for ’small data’ programs
and long pointers for "large data’ programs.

A C module can access all the above symbols, except for $MEMRY,
by removing the appended underscore from the symbol name.

1.4 Startup routine termination codes

There are a few instances when the startup routine will not be able
to properly start its program. In these cases, it will terminate with a
non-zero return code. The return codes and their meanings are:

code

254

253

meaning

The startup routine first attempts to allocate exactly as
much memory to its program as is needed, by issuing
a setblock DOS call. If DOS rejects this call, the
Startup routine then tries to allocate just the amount
that DOS says is available. If this second call fails, the
Startup routine exits with return code 254.

If an attempt is made to start a .com program that has
been linked with the ’large data’ startup routine /begin,
the startup routine exits with return code 253.

- tech.14 -

Aztec C86 Overlay Support TECH INFO

2. Overlay Support

In order to allow users to run programs which are larger than the
limited memory size of a microcomputer, Manx provides overlay
support. This feature allows a user to divide a program into several
segments. One of the segments, called the root segment, is always in
memory. The other segments, called overlays, reside on disk and are
only brought into memory when requested by the root segment. There
are only two areas of memory into which the overlays are loaded: one
for the executable code part of an overlay, and one for its data.

If an overlay is in memory when the root requests that another be
loaded, the newly specified overlay overlays the first, that is, replaces

it in memory.

The Manx linker allows overlays to be "nested"; that is, an overlay
at one level can call another overlay nested one level deeper. However,
an overlay cannot call an overlay which is at the same level.

This description is divided into two sections. The first presents
basic information about creating overlays, and the second presents
more information.

2.1 Introduction to overlays

What is an Overlay?

An overlay is one or more sections of executable code that
run in the same area of memory. The advantage of an overlay,
therefore, is that it allows the user to run programs of
unlimited size in a machine which has a limited memory
capacity.

How do I Call an Overlay From a Program

The following is the format for calling an overlay:

ovloader(overlay name,pl, p2, p3...)

ovloaders first parameter must be the name of the overlay
file. The parameters p/, p2, and p3 are passed directly to the
overlay. The overlay is loaded from a file whose name is
overlay name and whose extent 1s .ovr.

ovloader returns as its value the value which was returned
by the overlay.

How do I make a function an overlay?

The function, ovloader, loads the overlay and then passes
control to ovbgn, a function which is linked with every
overlay. ovbgn in turn calls ovmain. ovmain must be the name

of your function which takes control when the overlay is
loaded. This function can then call any other function which
is in Memory.

- tech.15 -

TECH INFO Overlay Support Aztec C86

So other than the naming of ovmain, the overlay does not
have to know that it is an overlay. ovmain executes and
returns just like any other function.

What Files are Created on the Disk?

.exe or .cmd
The file which contains the root has the extent .exe on
MSDOS or PCDOS, and .cmd on CP/M-86. A DOS
.com program cannot have overlays.

.OVr There is one file for each overlay, the extent of which
iS .OVr.

sm There is a file containing the relocatable symbol table
with the extent .rsm for the root and for each overlay
that invokes another overlay.

What about Overlaying Large Model Programs?

A program that calls overlays must use the ’small code’ memory
model Individual modules in the root can be compiled to use long
pointers to data objects, but the program must be linked with a ’small
data’ version of c.lib, and none of the overlay modules can be compiled
to use long pointers to data objects.

Sample Run:

step command
1) In +c 1020 +d a00 -r myroot.o ovloader.o -lm -Ic

2) In mysubl.o myroot.rsm ovbgn.o -lm -lc

3) In mysub2.0 myroot.rsm ovbgn.o -Im -Ic

In this example, there are three modules which comprise the
program, namely, myroot.o, mysubl.o and mysub2.o. The first step
serves two purposes, to create the executable file and to generate a file,
myroot.rsm. On MSDOS and PCDOS, the executable file is named
myroot.exe; on CP/M-86, it’s named myroot.cmd.

This second file is called the relocatable symbol table. It contains
information about the contents of the root module which is needed
when an overlay is linked.

The +C and +D options are explained below. The -R option
specifies that the following module is a root. An .rsm file for that
module will be created.

The module ovloader.o contains the routine which loads the overlay
into memory.

The second step links the first overlay, mysubl.o. The .rsm file for

the root must be included in the linkage. The module ovbgn.o is the
startup routine which calls ovmain.

- tech.16 -

Aztec C86 Overlay Support TECH INFO

Step three performs the linkage of the second overlay in a manner

identical to the first.

Figure 1 shows a program, run as a single module, that can be
logically divided into three segments. Figure 2 shows the same
program run as an overlay. In figure 2, module 1 and module 2 occupy
the same memory locations. A possible flow of control would be for
the base routine to call module 1, module | then returns to the root
and the root calls module 2, module 2 returns to the root and the root
calls module 1 again. Then module | returns to the root the root exits

to the operating system.

Notice that all overlay segments must return to their caller and that
overlays at the same level cannot directly invoke each other.

- tech.17 -

TECH INFO Overlay Support

Code Segment CS addr Data Segment

root code 0 root data

module 1 code module | data

module 2 code

NO

©

[o,
<)
©

heap area

|
|
:

3280 | module 2 data

|
|
|
| stack area

|

Picture of a non-overlayed program
Figure 1

Code Segment CS addr Data Segment

| root code 0 | root data

| |
| area for 2080 _—swW{ area for
| overlay code | overlay data

| module 1 code | module 1 data
| & module 2 code | & module 2 data
| go here) | go here)

|
|
|

| (both | | (both
|
|
|

| |
heap area

stack area

Aztec C86

DS addr

Layout of the Program in Figure 1 as an Overlay
Figure 2

- tech.18 -

Aztec C86 Overlay Support TECH INFO

2.2 Programmer Information

The root loads an overlay by calling the Manx-supplied function
ovloader, which must reside in the root. The call has the form

ovloader(ovlyname, pl, p2, ...)

where ovlyname is a pointer to a character string identifying the
overlay name, and pl, p2, ... are parameters that are to be passed to the
overlay as its first, second, ... parameters.

ovloader derives the name of the file containing the overlay by
appending .ovr to the string pointed at by ovlyname.

On DOS 2.0 or later, there are two versions of ovloader, the one in
the file ovldpath.o will search for the overlay in the directories defined
by the PATH environment variable; that is, it will search the same
directories that are searched by DOS for a command program. The
one in the file ovid.o will look in just the current directory on the
default drive.

On DOS 1.1 and CP/M-86, oviloader looks for an overlay in just the
current area on the default drive, where the area is the current
directory on DOS and is the current user area on CP/M-86.

When the overlay is loaded, control passes to the Manx- supplied
function ovbgn, which must be linked with the overlay. In turn, ovbgn
transfers control to the function in the overlay whose name is ovmain.
ovmain receives the arguments passed to ovloader.

When ovmain completes its processing, it simply returns. Control
then passes back to the root at the instruction in the user’s program
following the one that called ovloader. The value returned by ovloader
is the value which was returned by ovmain.

Overlays can be nested; that is, an overlay can call a second overlay,
provided that they are not at the same nesting level. Also, an overlay
can access any global functions and variables which are defined in the
calling segment.

The +C and +D options

When the root module is linked (with the -r option), the linker has
to reserve some space into which the overlay can be loaded. This is
done using the +C and +D linker options.

The +C option reserves space in the root’s physical code segment.

An overlay’s code is loaded into this space.

The +D option reserves space in the root’s physical data segment.
An overlay’s data is loaded into this space.

If overlays are nested, a called overlay is located in memory
immediately following the calling overlay. The amount of space
reserved for the overlays must be enough to hold the longest ’thread’

- tech.19 -

TECH INFO Overlay Support Aztec C86

of overlays.

Creating a root and overlays

To create a root and one or more overlays, the Manx linker must
be run several times. Each execution creates one program (root or
overlay) and places it in a separate disk file. The first execution must
create the root. This execution also creates a file containing a symbol
table, which must be specified during the subsequent executions of the
linker which create the overlays.

On DOS, the extension of the file containing the root must be .exe.

When creating a program (root or overlay) which calls an overlay,
the option -R must be specified; this causes the linker to generate a
symbol table for use in linking the called overlay. The table is in a file
whose filename is the same as that of the first file specified in the
command line and whose extent is .rsm. |

When creating an overlay, the .rsm file which was generated during
the linking of the calling program must be specified. This causes the
linker to create an overlay in the file whose filename is the same as
that of the first file specified in the command line and whose extent is
.OVY,

If an overlay is both called by a root or overlay, and itself calls
another overlay, the command line to the linker must specify both the
.rsm file of the calling program and the ’-R’ option.

Two examples follow. The first demonstrates overlay usage when
overlays are not ’nested’. The second demonstrates nested overlays.

Example 1

In this example, the root segment, which consists of the function
main and any neccesary run-time library routines, behaves as follows:

1. It calls the overlay ovly/, passing it a pointer to the string "first
message".

It prints the integer value returned to it by ovly/;

3. It calls the overlay ovly2, passing it a pointer to the string "second
message";

4. It prints the integer value returned to it by ovly2.

The overlay segment ovly/ consists of the function ovly], the Manx
function ovbgn, and any neccesary run-time library routines. It prints
the message "in ovlyl" plus whatever character string was passed to it
by main.

The overlay segment ovly2 consists of the function ovly2, the

function ovbgn, and any neccesary run-time library routines. It prints
the message "in ovly2", plus whatever character string was passed to it

- tech.20 -

Aztec C86 Overlay Support TECH INFO

by main.

Here then is the main function:

main()

int a;
a= ovioader("ovly1","first message");
printf("in main. ovlyl returned %d\n", a);
a = ovloader("ovly2","second message");
printf("in main. ovly2 returned %d\n",a);

}
Here 1s ovlyI1:

ovmain(a)
char *a;

printf("in ovly1. %s\n",a);
return |;

}
Here is ovly2:

ovmain(a)
char *a;

printf("in ovly2. %s\n",a);
return 2;

}
The following commands link the root (which is 1n the file root.c)

and the overlays:

In -R +C 4000 +D 1000 root.o ovloader.o -lc
In ovlyl.o ovbgn.o rootrsm -lc
In ovly2.0 ovbgn.o root.rsm -lc

The command to link the root reserves 0x4000 bytes for the
overlay’s code and 0x1000 bytes for it’s data. Techniques for
determining this value are discussed below.

When the segments are generated and the root activated, the
following messages appear on the console:

in ovlyl. first message.
in main. ovlyl returned 1.
in ovly2. second message.
in main. ovly2 returned 2.

Example 2: nested overlays

In this example, there are three segments: a root segment, root, and
two overlays segments, ovlyl and ovly2. root calls ovlyl, which calls

- tech.21 -

TECH INFO Overlay Support Aztec C86

ovly2. ovly2 just returns.

Here is the root:

main()

ovloader("ovly1","in ovly1"):

}
Here is ovly1:

ovmain(a)
char * a;

printf("%s\n",a);
ovloader("ovly2", "in ovly2");

}
Here is ovly2:

ovmain(a)
char *a;

printf("%s\ n",a);

The following commands link the root and the two overlays:

In -R root.o ovloader.o -lc
In -R ovlyl.o ovbgn.o root.rsm -lc
In ovly2.0 ovbgn.o ovlyl.rsm -Ic

When executed, the following messages appear on the console:

in ovlyl
in ovly2

Determining the size of the overlay area

When you link the root module, you will have to know how much
memory to reserve for the overlay, that is, you will have to know how
large the overlay is. But since the overlays haven’t been linked yet,
how can you know how much space is needed for overlays?

The easiest way is to guess. That is, estimate the size and go ahead
and link the root and the overlays, keeping track of the size of the
code and data for the overlays as reported by the linker.

After all overlays have been linked, the size of the area need for
overlays is the size of the largest overlay (if overlays aren’t nested) or
the size of the longest ’thread’ of overlays (if they are nested). You can
then go back and relink the root, if necessary, with this value. You
won’t have to relink any overlays, since the +C and +D options don’t
affect the position of the overlays in memory.

- tech.22 -

Aztec C86 Overlay Support TECH INFO

Error messages from ovloader

If an error occurs while loading an overlay, ovloader will print a
message of the form

Error %d loading overlay %s

where %d is a number defining the error and %s is the name of the

overlay. The error codes and their meanings are:

10 Can’t open overlay file
20 Can’t read overlay header record
30 Invalid header record
40 Overlay data overlaps with heap
50 Error reading overlay
60 Overlay code or data overlaps caller’s code or data

Possible Problems

A possible source of difficulty in using overlays concerns initialized
data. In the following program module, a global variable is initialized:

int 1= 3;

function()

return;

}
The initialization of "i" is performed by the linker, rather than at

run time. In the same program, the following module is allowed:

int 1;

main()

function();

}
The global variables in each module refer to the same integer, "i".

At link time, this variable is set to the value 3. Although this works
when the two modules are linked together, a problem arises when the
first module is linked as an overlay:

In func.o ovbgn.o main.rsm -lc

From the .rsm file, the linker knows that int i has been declared in
main.o, the root. But it tries to initialize 7 from the statement in the
func.o module. This attempt fails because the variable i is part of
main.o, a module which is not included in the linkage.

An attempt to initialize, in an overlay, a variable which has been
declared in the root will produce an error:

attempt to initialize data in root

- tech.23 -

TECH INFO Overlay Support Aztec C86

The simple solution is to change the statement, int i = 3, to the
following:

int i;
i= 3;

This assignment will be performed at run time, so that the linker
does not try to perform an initialization.

- tech.24 -

Aztec C86 Libraries TECH INFO

3. Aztec C86 libraries

The standard library that is provided with Aztec C86 is c.lib. Your
package may have several versions of this library: for example, some
that support different memory models, and that allow you to create
programs that will run on other systems. For a description of the
versions that are provided with your package, see the release
document. And for more information on cross development, see the
section of the same name in this chapter.

There are several different math libraries available with Aztec C86:
one uses the 8087; another provides software emulation of the 8087.
Another, the ’sensing library’, uses the 8087 if it is available on the
system on which the linked program runs, and otherwise uses software

emulation.

There are several different versions of each math library, which

support different memory models.

Not all Aztec C86 packages provide all the math libraries. For a
description of those that are provided with your package, see the

release document.

- tech.25 -

TECH INFO Libraries Aztec C86

4. Cross Development

With the PRO extensions to Aztec C86, programs can be created
that will run on other 8086-based systems: with the MSDOS/PCDOS
version, programs can be created to run on MSDOS/PCDOS, version
1.1, and on CP/M-86. With the CP/M-86 version, programs can be
created to run on any version of MSDOS or PCDOS.

To do this, a program is linked in the normal manner, with the
following exceptions:

* Another library is used instead of c.jlib. The library used
depends on the target system:

dos20.ib Program will run on MSDOS/PCDOS,
version 2.x;

dosll.lib Program will run on MSDOS/PCDOS,
version 1.1;

cpm86.lib Program will run on CP/M-86.

* The extension of the executable file generated by the linker
must be:

exe Or .com
If the program is to run on MSDOS or
PCDOS, any version;

.cmd If the program is to run on CP/M-86.

Programs that are to run on CP/M-86 or DOS 1.1 must use the
*small code’ and ’small data’ memory models. Programs that are to run
on DOS 2.0 or later can use any memory model.

For programs which perform floating point, one of the math
libraries is used, just as if the program was being linked to run on the
host system.

- tech.26 -

Aztec C86 Using the PC-DOS/MS-DOS Linker TECH INFO

5. Using the PC-DOS/MS-DOS Linker

You can use the PC-DOS/MS-DOS linker instead of the Aztec
linker to link object modules that have been generated by the Aztec C
compiler and assembler and that are to run on DOS, version 2.0 or
later. To do this, you must (1) convert the object modules from Aztec
to PC-DOS/MS-DOS format using the Aztec utility program obj, and
(2) include the special startup routine crt0.obj as the first module in

the program.

You can also link modules that have been converted from Aztec
format with modules that are in PC-DOS/MS-DOS format and that
have been created using other Manufacturer’s compilers and
assemblers. For this to work, all the modules must use the same
conventions regarding the calling of functions, register usage, and so
on.

A program generated using the PC-DOS/MS-DOS linker and the
Aztec compiler and assembler can use any of the features available to
programs linked with the Aztec linker, except for overlays.

A simple example

The following commands create an executable version of the C
source program that’s in the file exmpl.c:

cc exmpl.c
obj exmpl.o
link crt0+exmpl,exmpl,,mc

cc compiles and assembles the C source, leaving the Aztec format
object module in the file exmpl.o. obj converts the object module to
PC-DOS/MS-DOS format, placing the result in the file exmpl.obj. link
links the object module together with the startup routine crt0.obj and
the library mc.lib, writing the executable program to exmpl.exe.

The library mc.lib with which the exmpl program was linked is a
PC-DOS/MS-DOS-format version of the Aztec-format library c.lib. It
was generated by feeding c.lib through obj, as follows:

obj c.lib mc.lib

If the exmpl program performed floating point, the command for
linking the program would have been:

link crt0+exmpl,exmpl,,mm+mec

The first two commands would not have to be changed. In this
command, mm refers to the library mmlib, which is a PC-DOS/MS-
DOS-format version of the Aztec-format library mlb. It was

generated by the command

obj m.lib mm.lib

- tech.27 -

TECH INFO _ Using the PC-DOS/MS-DOS Linker Aztec C86

Using obj

obj converts the object modules that are in a specified file from
Aztec to PC-DOS/MS-DOS format, writing the result to another file.
obj is started with a command of the form

obj infile [outfile]

infile is the name of the file containing the Aztec-format object
modules. infile can contain a single object module (created by the
Aztec assembler, as) or a library of object modules (created by the
Aztec librarian, /b).

The optional parameter outfile is the name of the file to which the
PC-DOS/MS-DOS object modules will be written. If this parameter is
not specified, the output will be sent to a file whose name is derived
from that of the input file name, by changing the extension to .obj.
For example,

obj subr.o

reads Aztec-format object modules from the file subr.o and writes PC-
DOS/MS-DOS-format object modules to the file subr.obj.

Converting the libraries

As we demonstrated in the above examples, when the PC-
DOS/MS-DOS linker is used to link converted versions of modules
that were generated by the Aztec C compiler and assembler, PC-
DOS/MS-DOS-format versions of the Aztec libraries must be included
in the linkage. These versions of the Aztec libraries are generated
using obj.

Global variables

When you use the MS-DOS/PC-DOS linker to link multiple
modules that have been generated with the Aztec compiler and
assembler, the standard C rule regarding global variables must be
followed. According to this rule, a global variable must be declared
extern in all but one of the modules that reference the variable.

For example, if modules a, b, and c all reference the global variable
gvar, then gvar could be declared as int gvar in a, and as extern int gvar
in bande.

The Aztec linker supports both this rule and the modified version
of the rule that was supported by earlier versions of Aztec C. This
modified rule allows several modules to declare the same variable, with
the extern keyword being optional in all of them, requiring only that at
most one module’s declaration specify an initial value for the variable.
If you have programs whose modules follow the modified rule
regarding global variables, and you want to now link the programs
using the MS-DOS/PC-DOS linker, you can use the compiler’s +U
option. When a module is compiled with this option, the module’s

- tech.28 -

Aztec C86 Using the PC-DOS/MS-DOS Linker TECH INFO

uninitialized global variables are made into externs.

For example, you can place all uninitialized global variables in one

header file and then have modules that need these global variables

include this file. Then compile with the +U option all files but one

that include this header file.

The reason that the Aztec linker is able to support the modified
version of the C rule on global variables is that it supports the global

assembly language directive. The PCDOS/MSDOS linker doesn’t

support the global directive, so when obj converts an object module

from Aztec to PCDOS/MSDOS format, it must convert each global

directive into directives that the PCDOS/MSDOS linker understands.

These directives are a public and a storage-reservation directive.

For more information on global variables, see the Programmer
Information sections of the Compiler and Assembler chapters.

- tech.29 -

Aztec C86 Assembly-Language Functions TECH INFO

count and a global, initialized int named ‘otal using the statement:

int count, total=1;

An assembly language module can access these variables by using the
following directives:

dataseg segment
extrn count_:word, total_:word

dataseg ends

The above discussion assumes that the C modules and the assembly
language modules follow the standard rule in the C language regarding
external variables. This rule requires a global variable to be defined
without the extern keyword in exactly one module, and with that
keyword in all other modules. Aztec C also supports a relaxed version
of this rule. For information on this, see the discussion on External
variables in the Programmer Information sections of the Compiler and
Assembler chapters, and the description of the -D option in the Linker
chapter.

6.1.3 *Small code’ and ’Large code’ programs

All modules that are linked together into a program must use the
same code model; that is, they must either all use the ’small code’
memory model, or all use the "large code’ memory model.

An assembly language module will use ’large code’ if it contains the
largecode directive, and will use ’small code’ otherwise.

The entry point to an assembly language function can be defined
using the proc directive. In this case, the operand to proc that defines
whether the function is a near or far proc is optional; if not specified,
the assembler sets the type to near if the module uses ’small code’, and
to far if it uses "large code’.

The entry point can also be defined using the label directive. In
this case, the program must explicitly specify the type of the entry
point, whether near or far.

When the ’small code’ memory model is being used, an entry point
can be defined in the label field of an instruction.

Finally, an entry point can be defined using the macros that are
provided with Aztec C; this is described below.

6.1.4 *Small data’ and ‘large data’ programs

The modules in a program can use different data memory models.
The only restriction is that a pointer to a data object can be passed
between two functions only if they use the same data memory model.

An assembly language module doesn’t do anything special to declare

that it uses ’small data’ or "large data’: it just goes ahead and uses short
or long pointers to data objects.

- tech.31 -

TECH INFO Assembly-Language Functions Aztec C86

A long pointer is represented within a four byte field in
segmentioffset form, with the segment paragraph number in the most
significant word of the field and the offset from the beginning of the
segment in the least significant word.

6.1.5 Names of external functions and variables

The C compiler translates the name of a function or variable to
assembly language by truncating the name to 31 characters and then
appending an underscore character. Thus, assembly language modules
that are to be accessible from C-language modules or that are to access
C modules must obey this convention.

For example, the following C language module calls the function
bmp, which simply adds 10 to the global int count. A C-language
module refers to this function as bmp, and an assembly-language
module refers to it as bmp_.

int count;
main()

bmp();

An assembly language version of bmp__ could be:

dataseg segment
extrn count :word

dataseg ends
codeseg segment

public bmp _
bmp ___ proc

add count_,10
ret

bmp__ endp
codeseg ends

6.1.6 Function calls and returns

The assembly language code generated by the compiler for a C
language call to another function pushes the arguments onto the stack,
in the reverse order in which they were specified in the call’s
argument list, and then calls the function.

An assembly language function returns to a C function caller by
issuing a ret instruction, leaving the caller’s arguments on the stack.
The caller then removes the arguments from the stack.

An int or short pointer is returned by an assembly language
function in register AX; a long or long pointer is returned in registers
AX and DX, with the most significant word in DX. Floating point
values are returned in internal memory locations, and are not discussed
here.

- tech.32 -

Aztec C86 Assembly-Language Functions TECH INFO

For example, consider the following assembly language function,
sub__, that takes two int arguments that are passed to it on the stack,
subtracts them, and returns the difference as the function value. A C-
language function will refer to this function using the name sub.

codeseg segment para
public sub _

sub_—s proc
mov___—ibx,sp
mov ax,[bx+2] sget first argument
sub ax,[bx+4] ‘subtract second argument
ret

subs endp
codeseg ends

This function is coded in such a way that it can only be used in a
*small code’ program. We’ll recode it below, using the Aztec C macros,
so that it can be used by either a "large code’ or ’small code’ program
without requiring recoding.

The following C function calls sub to subtract 6 from a, and stores
the difference inc.

main()

int a,b,c;

c= sub(a,b);
}

6.1.7 Register usage

An assembly language function that is called by a C function must
preserve the segment registers and registers BP, SP, SI, and DI.

6.2 Assembly-language Macros

Aztec C provides a set of assembly language macros in the file
Imacros.h, which can be used by assembly language modules that are to
be called by C language functions. These macros simplify the task of
writing such a module, allowing it to be accessed by programs that use
different memory models.

To gain access to these macros, an assembly language module must
contain the directive

include Imacros.h

at the beginning of the module. The assembler will search for this file
as defined in the Assembler chapter. .

In addition, the symbol MODEL should be defined, either with an
equ directive contained within the module or with the -D option when
the module is assembled. MODEL must be defined before Imacros.h is

- tech.33 -

TECH INFO Assembly-Language Functions Aztec C86

included. The least significant bit of MODEL defines the code model
used by the module and the program containing it: 0 for ’small code’
and 1 for "large code’. The next bit defines the data model used by the
module: 0 for ’small data’ and 1 for ’large data’; As usual, ’small data’
and *large data’ mean that the module uses short or long pointers to
data objects, respectively (at least when receiving data pointers from,
or passing data pointers to, another module).

For example, the following commands assemble the file prog.asm,
with the resulting code using different memory models:

command memory model
as -DMODEL=0 prog small code, small data
as -DMODEL=! prog large code, small data
as -DMODEL=? prog small code, large data
as -DMODEL=3 prog large code, large data

If a program uses the ’large code’ memory model, the macros
automatically create two symbols: FARPROC, assigning it the value 1,
and FPTRSIZE, assigning it the value 4. FARPROC’s existence
specifies that the function uses the "large code’ memory model.
FPTRSIZE defines the number of bytes in a pointer to a function.

If the program uses the ’small code’ memory model, the macros
create FPTRSIZE and assign it the value 2, specifying that function
pointers are two bytes long.

If the program uses the ‘large data’ memory model, the macros
create the symbol LONGPTR, assigning it the value 1. Here are the
macros:

The PROCDEF macro

procdef pname [,<arglist>]

The procdef macro defines the C-callable function named
pname _, which a C module will refer to as pname, by issuing a
proc directive for pname_. The type of the proc, ie near or far,
will be set according to the memory model used by the program.

The macro automatically appends an underscore to pname;
thus, pname looks just like it does in a C-language statement.

The optional parameter <arglist> defines the arguments that
are passed to the function. It consists of a list of comma-
separated items, each of which defines one argument, with the
entire list being surrounded by angle brackets, <>. An item
consists of a pair of comma-separated values, and is itself
surrounded by angle brackets. The first value in an argument’s
item is the name by which the module can access the argument
on the stack, and the second value defines the type of the
argument.

- tech.34 -

Aztec C86 Assembly-Language Functions TECH INFO

The allowed codes for an argument’s type value, and the types
that the macro sets for the argument are:

code type
byte byte
word word
dword dword
cdouble qword
ptr data pointer
fptr function pointer

The actual type of a data pointer depends on the memory
model used by the module: for ’small data’ the type of a ptr
argument is word, and for ‘large data’ it’s dword. Similarly, the
type of a function pointer will be word or dword, depending on
whether the module uses ’small code’ or ’large code’.

For example, the assembly language function sub that was
defined above could be recoded to use the macros as:

include Imacros.h
procdef sub, <<argl,word>,<arg2,word>>
mov-_ax,arg! ;get first argument
sub ax,arg2 ;subtract second argument
pret ‘return from sub (macro defined below)
pend sub sthis macro is defined below
finish sas is this one

The use of these macros allows the program to refer to the
function arguments by name instead of by their location on the
stack; the recoded sub module refers to its first argument as arg]
instead of 2[bx], and refers to its second argument as arg2 instead
of 4[bx]. In addition, the program doesn’t have to be modified
in order for it to be used by a "large code’ program, whereas the
non-macroized version will have to be modified.

If arglist is specified, the macro also pushes BP onto the stack
and sets a new value in BP; it is this known value in BP that
allows a function to refer to an argument on the stack by name
instead of by its position on the stack. When BP has been
automatically saved on entry to a function, the macro that is used
to exit the function also automatically restores it.

The PEND Macro

pend pname

The pend macro defines the end of the pname function, which
was previously defined using the procdef macro.

- tech.35 -

TECH INFO Assembly-Language Functions Aztec C86

The INTERNAL Macro

internal pname

The internal macro defines the function pname, which 1s
globally-accessible but which can’t be called from C functions. It
simply issues the directives

public pname
pname proc

The ENTRDEF Macro

entrdef pname [,<arglist>]

The entrdef macro defines a secondary, C-callable entry point
pname_, which aC module will refer to using the name pname,
by issuing a public directive for pname_.

pname should be specified just as it will be called by a C
function, as the macro automatically appends an underscore to it.

As with the procdef macro, arglist is an optional list of items
that define the arguments that will be passed to pname. See the
procdef macro for a discussion of arglist.

As with procdef, entrdef automatically saves BP if an arglist is
specified, sets a new value in it that allows programs to access
arguments on the stack by name, and causes it to be restored on
exit from the function.

The INTRDEF Macro

intrdef pname

The intrdef macro defines the secondary entry point pname,
which is globally-accessible but which can’t be called by C
functions.

The PRET Macro

pret

The pret macro is used to return from a function whose entry
point was defined by one of the above macros. It automatically
restores BP, if it was saved by the entry macro, and then returns.

The LDPTR Macro

Idptr of freg, src [,segreg]

The /dptr macro loads a pointer to the data object that is in the
memory location referenced by src.

- tech.36 -

Aztec C86 Assembly-Language Functions TECH INFO

The offset component of the object’s address is loaded into
the register specified by offreg. If the program uses the ’small
data’ memory model, this is all that the macro does.

If the module uses the ’large data’ memory model, the
segment component of the object’s address is also loaded into a
segment register. This register can be explicitly specified using
the segreg argument. Otherwise, DS is used if offreg is SI, and
ES is used if offreg is DI.

For example, the sub function defined above can be modified
to take pointers to the int values that are to be subtracted:

include Imacros.h
procdef sub, <<arg|ptr, ptr>,<arg2ptr, ptr>>
pushds ‘push ds if using large data
Idptr di, arglptr,ds ;get ptr to argl in ds:di
mov ax,[di]
Idptr di, arg2ptr,ds ;get ptr to arg2 in ds:di
sub ax,[di]
popds ‘pop ds if it was saved
pret

pend sub

This version of sub can be used without modification, regardless
of the memory model used by the program.

The RETPTRM Macro

retptrm — src

The retptrm macro can be used by a function that returns as its
value a pointer to a data object. It loads a data object pointer
from the memory location referenced by src into the register or
registers in which pointers are returned. The function using the
macro can then simply return to the caller.

For example, the following function, func, performs some
operations and then returns the data pointer that is in the
argument mempir to the caller. This module can be used by a
program using any type of memory model, without modification.

procdef func, <<memptr, ptr>>

retptrm memptr

pret

pend func

The RETPTRR Macro

retptrr of freg [,segreg]

The retptrm macro can be used by a function that returns as its

- tech.37 -

TECH INFO Assembly-Language Functions Aztec C86

value a pointer to a data object. It loads the offset component of
the pointer into AX from the register specified by offreg. If the
module uses the ‘large data’ memory model it also loads the
segment component of the pointer into DX from the register
specified by segreg. The function using retptrr can then simply
return, and the pointer will be returned to the caller.

The RETNULL Macro

retnull

The retnull macro can be used by a function that returns as its
value a null pointer to a data object. It loads 0 as the offset
component of the pointer into AX. If the module uses the ’large
data’ memory model, it also loads 0 as the segment component of
the pointer into DX. The function using retnull can then simply
return, and the pointer will be returned to the caller.

The PUSHDS and POPDS Macros

pushds
and

popds

The pushds and popds macros push and pop the DS segment
register, respectively, only if the program uses the "large data’
memory model.

The FINISH Macro

finish

The finish macro issues the directive

codeseg ends

6.2.1 Example

Here is the code for the rindex function, which uses the Aztec C
macros:

- tech.38 -

Aztec C86 Assembly-Language Functions TECH INFO

:Copyright (C) 1983 by Manx Software Systems
include Imacros.h
procdef rindex, <<string,ptr>,<chr,byte>>
pushf
cld
push di

ifndef LONGPTR
mov__ di,ds
mov __ eS, di

endif
Idptr _di,string,es
mov dx,di ‘save for later
sub ax,ax
mov__ cx, 7fffH

repne_ scasb
mov cx,di
sub cx,dx ‘compute length of string
dec di ‘backup to null byte
mov alLchr ‘get byte to look for
std snow go backwards

repne scasb
mov ax,di
je found
retnull
pop di
popf
pret

found:
retptrr ax,es

inc ax
pop di

popf
pret

pend =_ rindex
finish
end

6.3 Embedded Assembler Source

Assembly language statements can be embedded in a "C" program
between an #asm and an #endasm statement. The pound sign (#) must
Stand in column one of the line, and the letters must be lower case.

Embedded assembler code must preserve the contents of the BP,
SP, SI, DI registers, and the segment registers. It should make no
assumptions about the contents of the registers, since the code that the
compiler currently generates for C statements may change in the
future.

- tech.39 -

TECH INFO Assembly-Language Functions Aztec C86

Normally, the compiler keeps track of the contents of registers, in
order to avoid having to generate code that unneccesarily reloads a
value that is already in a register. When the compiler encounters
embedded assembly language code, it forgets the contents of registers.
Thus, embedding assembly language code in a C module may actually
make the module less efficient.

In general, it is safest to contain assembly code in a separate,
assembly-language, module rather than embedding it in C source.

- tech.40 -

Aztec C86 Generating ROMable code TECH INFO

7. Generating ROMable code

Programs created using the Aztec C86 software can be burned into
ROM. The standard Aztec development software automatically places
a program’s executable code, initialized data, and uninitialized data in
separate segments.

This discussion is divided into several sections: the first describes
the features of ROMable programs; the second describes the special
programs provided with Aztec C for creating ROMable code; the third
demonstrates how to create a ROMable program; and the last describes
hex86, a utility program that generates Intel hex code for a program.

7.1 Features of ROMable programs

Programs created with the Aztec software that are intended to be
burned into ROM have the following features:

* The program can use any memory model;

* The program’s stack is located in a 2K byte area within the
program’s uninitialized data area.

* Global and static variables can be pre-initialized. This means
that the declaration of a variable outside of a function can
define the value that the variable is to have when the program
begins executing.

* Uninitialized global and static variables are automatically
cleared when the program begins executing.

* Optionally, the program can automatically gain control on
System reset or power-up.

* The program can be contained in any number of ROMs.
Optionally, the program’s even- and odd-numbered bytes can
be contained in separate ROMs.

* The program’s code and data can start at locations that you
define using the linker’s -C and -D options.

* You can specify the location within the first ROM at which
the program is to begin.

7.2 Special ROM-related programs

Aztec C86 includes the following programs that are of use in the
development of ROMable programs:

* Special startup routines, one of which must be used by ROM-
based programs instead of the standard startup routine. The
files containing object module versions of the startup routines
are:

+ srom.o, for programs that use the ’small code’ and
*small data’ memory model;

- tech.41 -

TECH INFO Generating ROMable code Aztec C86

+ lrom.o, for large code’, ’large data’ programs;
+ lcrom.o, for ’large code’, ’small data’ programs;
+ ldromo, for ’small code’, large data’ programs.

These object modules are generated from the assembler
source file Jrom.asm. When this file is assembled, the symbol
MODEL, which can be defined using the assembler’s -D
option, defines the memory model:

-D option Memory Model
none Small code, small data
-DMODEL=1 Large code, small data
-DMODEL=2 Small code, large data
-DMODEL=3 Large code, large data

* hex&6, a utility program that converts an executable program
generated by the Aztec linker to Intel loader format. Many
machines that burn programs into ROM require that the
program be input to the machine in this format.

In order to allow a program to have preinitialized global and static
data, hex86 causes the ROM to contain a copy of the program’s
initialized data segment following the program’s code. When the
program starts, the startup routines copies the initialized data from
ROM to RAM.

7.3 The procedure for generating ROMable code

To create a ROMable program, compile and assemble it in the usual
way; link it, following the rules described below; generate Intel hex
code for the program, by feeding it through hex86; and then feed the
hex code into the ROM burner.

The following rules must be followed when linking the program:

* the starting paragraph numbers of the program’s code and data
must be specified using the linker’s -C and -D options.

* The file to which the linker sends the linked program must
have extension .exe.

* A special startup routine, which corresponds to the program’s
memory model, must be explicitly included in the program.

For example, the following commands generate a ROMable, ’small
code’, ’small data’ program that contains the three user-written
modules main, in, and out, the sromo startup routine, and any needed
modules from c.lib. It uses a 2K-byte ROM that begins at paragraph
number Oxff80. Its data begins at paragraph 0x40. The startup routine
in sromo will gain control of the processor on system reset or power-
up.

hexS6 places a far jump instruction at location Oxffff0 to the
beginning of the startup routine that is in sromo. When the processor

- tech.42 -

Aztec C86 Generating ROMable code TECH INFO

is reset, Or On power-up, this startup routine will copy the initialized
data from ROM into RAM, clear the uninitialized data area in RAM,
set up the segment registers, stack pointer, and several other fields, and
branch to the program’s main function.

Here now are the commands:

cc main
cc in
cc out
In -C ff80 -D 40 -o main.exe main.o in.o out.o srom.o -Ic
hex86 main.exe

The Intel hex code for the program, generated by hex86, is in the file
main.hex and can be fed into a ROM burner.

7.4 Description of hex86

hex86 converts a program’s executable code and a copy of its
initialized data to Intel hex code, which is suitable for input to a ROM
programmer.

Burning programs into multiple ROMs

By default, hex86 generates Intel hex code for one ROM chip,
which will contain all the program’s code and a copy of its initialized
data. It can optionally generate Intel hex code for several ROMs,
placing the code for each ROM in a separate file. It can also optionally
place the Intel hex code for the program’s even- and odd-numbered
bytes in separate files; for this, hex86 must be run twice: once to
generate the files for the ROMs that contain the even-numbered bytes,
and once for the ROMs that contain the odd-numbered bytes.

Code and initialized data

The copy of the program’s initialized data will follow the program’s
executable code in ROM. By default, the executable code will begin at
the beginning of the first ROM. Using the -B option, you can have
the code begin at a specified offset within this ROM.

Using the linker

A program that is converted by hex86 is constrained as follows: it
must have been linked with the Aztec linker; the extension of the file
containing it must be .exe; when it was linked its starting code and data
addresses must have been specified using the linker’s -C and -D
options. The program can use any memory model and can be any size.

Reset code

In addition to translating the code that’s in a disk file into Intel hex
code, hex86 can generate system reset code; that is, code that, when

burned into ROM, will begin at the location to which the processor
will transfer control on system reset (Oxffff:0). This code consists of

- tech.43 -

TECH INFO Generating ROMable code Aztec C86

(1) optional hex code that you specify when you start hex86, (2)
optionally followed by a jump instruction to the startup routine that is
in the main body of the program. The hex code is specified using the
-j option, while the jump to the startup routine is suppressed by
specifying the -z option.

The ability to place special hex code at the reset address is useful
for 80186-based systems, for which system reset causes all except the
last 1K of memory to be disabled. If your program is larger than IK,
the special code at the reset address must enable memory before

jumping to the program.

The ability to suppress the placing of a jump instruction at the
system reset address is useful for code that won’t reside at the top of
the system’s address space; it’s also useful for programs that want
complete control over the program’s reset code (via the -/ option).

In order for hex86 to know where in the ROM to place the reset
code, it must know the size of each ROM and the total size of all the
ROMs. It assumes that each ROM is 2K bytes and that the total size is
2K (ie, that there is just one ROM). These assumptions can be
overriden using the -P and -S options.

hex86 operating instructions

hex86 is started with a command of the form:

hex86 [-options] infile

infile is the name of the .exe file containing the linked program. It
can’t contain any relocation records; thus, if hex86 terminates with the
message "input file contains relocation records", it usually means that
you didn’t specify the -C and -D options when linking the program.

hex86 derives the output file names from input file name, by
changing its extension as follows:

* If none of the -P, -E and -O options are specified, the output
file’s extension 1S .hex.

* If the -P option is specified, but the -E and -O options aren’t,
hex86 will generate multiple files, one for each ROM. The
extension of the output files are 400, .hO1, ...499, with the
number indicating its code’s position in the memory space.

* If the -E or -O option is specified, but the -P option isn’t, the
output extension is .Axe or .hxo, respectively.

* If the -E and -P options are specified, hex86 generates
multiple files containing the program’s even numbered bytes,
with one file for each ROM. The output file names have
extension .c00, .e01],e99. The number of a file’s extension
indicates the position of its code in the memory space.

* If the -O and -P options are specified, hex86 generates
multiple files containing the program’s odd-numbered bytes,

- tech.44 -

Aztec C86 Generating ROMable code TECH INFO

with one file for each ROM. The output file names have
extension .000, .o01,099. The number of a file’s extension
indicates the position of its code in the memory space.

hex86 supports the following options:

The -J option

Causes hex86 to place special code at the system reset address.

The hex values for the code immediately follow the -j option,
with no intervening spaces.

When -j is specified and -z isn’t, hex86 places a jump to the
program’s startup routine immediately after the -/ code.

hex86 will display an error message if the total amount of reset
code (-j code and jump instruction) exceeds the 16 byte
maximum.

The -Z option

Suppresses the creation of the jump instruction to the program’s
Startup routine. When -z isn’t specified, this jump instruction is
placed at the system reset address immediately following the
optional -j code. You should use the -z option if the ROM will
not occupy the top of the processor’s memory space or if the
ROM code is not to receive control on system startup. If you
use the -Z option, it is your responsibility to place the proper
branch at the reset address.

The -E and -O options

The -E and -O options cause hex86 to produce output files
containing only the program’s bytes that have even- or odd-
numbered addresses, respectively. Only one of these options
can be used with a particular invocation of hex86. These
options are useful when programming 8-bit ROMs for use on an
8086 (which has a 16-bit data bus).

The -S option

This option specifies the total size of the ROMs used by the
program, in kilobytes. If this option isn’t specified, the total
size is assumed to be 2K bytes. If the -E or -O options are
specified, the size given should still be the total size of the
ROMs. For example, if two 2Kb ROMs are being programmed
with odd and even bytes of the input data, the invocation of
hex86 for the even byte file should be

hex86 -e -s4 infile.exe

It is crucial that this option be specified correctly as it is used by
the hex utility to calculate both the address of the system reset
branch location and the address in high physical memory of the

- tech.45 -

TECH INFO Generating ROMable code Aztec C86

ROM code segment.

The -P option

The -P option is used when a program is too big to fit in one
ROM. It defines the size of each ROM, and has the format

-pn

where 7 is the size of each ROM, in Kbytes. When -P is used,
the -S option must be too. For example, if 1K ROMs are being
used, and the program needs three of them, and separate ROMs
aren’t being used for odd and even bytes, the command to start
hex86 would be:

hex86 -s3 -p1 infile.exe

The -B option

The -B option defines the offset within the first ROM at which
the program is to begin. It has the form

-bx

where x is the offset in hex. For example, suppose the program
rupt contains code that initializes the interrupt vectors, which
begin at 0x400, and is followed by the interrupt handlers. The
command to hex86, when an 8K ROM is used, might be

hex86 -b400 -z -s8 rupt.exe

The -z option is used since the startup vector need not be
initialized.

- tech.46 -

UNITOOLS

- unitools.1 -

UNITOOLS Aztec C86

Chapter Contents

1 OS 00k 0 \0) ee ee unitools
diff (Source File COMparator)ccssccsssscssssssseeccssrsessnecssneccssecesssees 6
grep (Pattern Matcher) oui... sscsccsssersesssesssecessccesessecsesseeeseseeeceees 10
make (Program Maintainance Utility)ecssecesscesssceseseecesseees 16

1. The Basics wu... cccccssccssscessscessseccesccccceseecescesecsteccssseeecessnsesssereessnees 16
1.1 What MAKE dos 000.0... cccccccscscsccesessssssesssececsecesserenees 17
1.2 The makefile won. eccccccscssccssssccesssssccecessssecessceeseseeens 17
1.3 Rules cuir cccescssscccscsssscccecesssescessssseseescesscsseesesesssseeeeees 19

1.3.1 MAKE’s use Of rules woe ccccsctsccccccesessesceseeeeees 20
1.3.2 Am Example oo... ce essscscccsceccccsecscccscscescccecseecsseseces 20
1.3.3 Interaction or rules and dependency entries 21

2. AAGvanced FeatuL [esccccccccscsssscecescecescsescesceceesececescecesereneeeasens 21
2.1 Dependent files ou... eccccccccccecececcccscssssssssssssssssscssscsenees 21
2.2 MacProccccccccccccccccccccssscsscsscscscsccscececesersctessssceseeesceeceacsssesceees 22

2.2.1 USING MAISccccssccscsssseccsssssseescscssscscecececssseeseecsees 22
2.2.2 Defining macros in a makefile ooo... eeeeeesenees 22
2.2.3 Defining macros in a command Iine cece 23
2.2.4 Macros used by built-in rules wo cece cee seeee 23
2.2.5 Special MACTOScccccescccccssscssssccsssssesessssesesssesssseeasecsees 23

2.3 RUIES civic ccccscsssecescsssssccscsssccccccescsscscsccssssecsscesesssesssseesceseeess 24
2.3.1 Rule Gefimition wc cccccccccssceccssssescecsssscescsssecesseees 24
2.3.2 Built-1n rules occ ccssssccsccssssccccssccssssecsessesssscesers 25

2.4 COMMANAS oui. ccs sececesssssssessssssccsseseceescecescsccesscscescesseeeseees 26
2.4.1 Allowed COMMANAScccccececescsseescessecsecescsssseseeees 26
2.4.2 Logging commands and aborting MAKE 26
2.4.3 Long command LIne ou... eee ceccesssseseccsecesessscsssneeees 26

2.5 Makefile Syntax ..0.........cccccsssscscssecceseccecsscecessseesessssssscecesssess 2/7
2.5.1 COMMENES ou... ceececccecssscetssceccvsecsssssssessseccecosssesesenees 27
2.5.2 Lime COMLINUATION ou... ceecccccesssscccssessscesesssesccescsesessees 27

2.6 Starting MAKE uuu eccceccecesseccseccscseecesseecssssecesseesssenees 28
2.6.1 The command LIne wu cccccessesscsecesessseescnseeeeeseees 28
2.6.2 MAKE’S Standard Output woe cctcccceeceseceveeees 29

2.7 Executing COMMAMAS ou... ecsccsscsssseescessceesecesseescssseeseeces 29
2.8 Differences between the Manx and UNIX MAKEs 29

3. Examples 2.0.0.0... ecccccessccssscssscsssescscscecesscscccesesscscscescsecesseseserseseeens 30
Oe Ge oC: 00) 0) (oi ee 30
OAD >. C100) 0) ee 31

Z.- the text CCItOL uve cesssccecsccccsstesssssrscsssesscsccssesscsscesseseescessesceses 34
1. Getting Started oo... ccscscsssssccssscessseecessreessssesesssescesseeeceees 37

1.1 Creating a new file occ ccccscsssstscsscsccsscsscscsscesssseseeseess 37
1.2 Editing an existing filecssssccssnsccessceccessrsesssesseeseees 40

- unitools.2 -

Aztec C86 UNITOOLS

2. More COMMANAS ...0........ccsscsescsccescscscccsecessececccssccsssessccecccescecsaceess 45
2.1 IMtrOductioncccsssssscssscscccscscsscssccsssssssccscscssscsssecssccessecesers 46
2.2. Paging and Scrolling ou. ccscccessccssscscccsscsssccssessscesssens 48
2.3. Searching for Strimgsccecscssscsscssecssccssccsssccccssesseesecsees 49

2.3.1 The other string search commandscccccceeee 49
2.3.2 Regular CXpressions ooo... cecscscsssccsccecsscecsccsssccseececerees 49
2.3.3 Disabling extended pattern matching 50

2.4. LOCAl MOVEScesscscscessscsscecssssseccssccccsesessssscecessecessceeseeees 52
2.4.1 Moving around on the SCreen ooo... eeecesceecsseecceeeee 52
2.4.2 Moving within a me oo. cceccesscsssscssccessccesseces 52
2.4.3 Word MOVEMENTS oo... eecseccceccscecsessccesecceseccecerees 53
2.4.4 Moves within C programs oc. sccsccesssssssssssceeseees 53
2.4.5 Marking and returning oui... ccecccsesccceccecessecesscees 54
2.4.6 Adjusting the SCreen wo. lececcsssssccssccsscccecssesceseees 55

2.5. Making changescccsssccssscssssssccssccsssceccessecssccsssssescesseces 56
2.5.1 Small Changescccccsscssscssccssscsscscscssssscscesecesseesseens 56
2.5.2 Operators for deleting and changing text 56
2.5.3 Deleting and changing Lines .0...........cccssccsccesseeeescesees 57
2.5.4 Moving blocks of text cocci ecscssscecceescescessecesesesces 57
2.5.) Duplicating blocks of text wo. eecssssccssscsecesseesseces 58
2.5.6 Named buffers oo... ssceccssccsccssscsscsssscsssccssccscessscesseens 59
2.5.7 Moving text between files... ..cececccsscessessccssesesees 60
2.5.8 Shifting text oo... cssccsccsccssccscessscescsesccssscescseecerces 60
2.5.9 Undoing and redoing changescccccssscscceeseesse. 60

2.6. IMSETtiNg teXt 00... csccscccsccesccscscscccsscssccesccesecssscesssscsscessesees 61
2.6.1 Additional commands oo... ececscsceccesscessesscceeeseses 61
2.6.2 Insert Mode COMMAMNAS 20... eecesscecceescescessecceecesces 61

2.7. MACTOScsccccsscssssecsessscescsccseccscscccseceseccnsscescsasessescascscsscecsecess 63
2.7.1 Immediate macro definitioncccccccccsccsssssescesceees 63
2.7.2 Examples .i.....cc.cccccsssscessscsssccessesscecsccscsccscecsscecsecsssececes 63
2.7.3 Indirect macro definition oo... eeccssscessecesesescesseees 64
2.7.4 Re-€XeCUtiNG MACTOS .oie....eccecscssscccesccessscccsscesscssescsoes 65

2.8 The Ex-like Command... ecceccccssceesccssscsssesscssscecssces 67
2.8.1 Addresses in Ex cOMmmMANAS 0..........cccscesssessscessscesssees 67
2.8.2 The ’substitutute’ command c..ccccescccsesesssecssceeee 68
2.8.3 The ’&’ (repeat last substitution) command 69

2.9. Starting and stopping Z ou. ecccsccsscsscccssscssscsssccsssesceces 70
2.10. Accessing fil€S oo... eccsscsscsccscessccscccscsscsscsccssensessecssesseess 73

2.10.1 File mame oo... cccccssccscsscscccscsssssescsersscssseseecaceees 73
2.10.2 Writing files wo. cccccccssscsscccsccssscssccescecsrsesssesses 73
2.10.3 Reading files oo... ccsecsccsccssccescscscsscscccsscsssseceseeees 74
2.10.4 Editing another file oo. ceccccesscsscssscesceeeeees 74
2.10.5 File Lists occ cccssssssssccsccsscsscsscscscsscscsssscsssssscescrssceseeees 76
2.10.6 Tagscccccscsscssscsscsssccsesssecsssscsssssecescecsecescsesescesseceaecenees 76
2.10.7 The CTAGS utility occ ecccsecssscsscssccsscenees 77

2.11. Executing system commandsccscssscscsssesesesesssssesesees 79
2.12. OPtiONs wicciccccccccccsccccsscsssccscscccsccccsssscssscescrssscsescesstscsscecceers 80
2.13. ZVS. V1 ..ccccccssssssscsscsssssstecssccssscscssssccssssscececcesssssccscessscesssecasees 81

- unitools.3 -

UNITOOLS Aztec C86

2.14. System dependent features ou... cecsscssscescessssscceeceees 82
2.14.1 IBM PC features wo... cccccccecccsscccssssssessscccececssceees 82

3. Command SUMMA ryccccsssssssccsssssscsceccssssescesesessecessesesesenens 85

- unitools.4 -

Aztec C86 UNITOOLS

Unitools

This chapter describes the Aztec C utility programs z, make, grep,
and diff. z is similar to the UNIX text editor vi; the others are similar
to the UNIX programs of the same names.

- unitools.5 -

DIFF File Comparator DIFF

NAME

diff - Source file comparison utility

SYNOPSIS

diff [-b] filel file2

DESCRIPTION

diff is a program, similar to the UNIX program of the same name,
that determines the differences between two files containing text. file]
and file2 are the names of the files to be compared.

1. The -b option

The -b option causes diff to ignore trailing blanks (spaces and tabs)
and to consider strings of blanks to be identical. If this option isn’t
specified, diff considers two lines to be the same only if they match
exactly.

For example, if file] contains the the line

Aabc$

(“ and §$ stand for "the beginning of the line" and "the end of the line",
respectively, and aren’t actually in the file) and if file2 contains the
line

Aabc §$

then diff would consider the two lines to be the same or different,
depending on whether or not it was started with the -b option.

And diff would consider the lines

Aa b c$

and

Aa b c$

to be the same or different, depending on whether or not it was started
with the -b option.

diff will never consider blanks to match a null string, regardless of
whether -b was used or not. So diff will never consider the lines

Aabc$

and

Aa bc$

to be the same.

- unitools.6 -

DIFF File Comparator DIFF

2. The conversion list

diff writes, to its standard output, a "conversion list" that describes
the changes that need to be made to file] to convert it into file2. The
list is organized into a sequence of items, each of which describes one
operation that must be performed on file].

2.1 Conversion items

There are three types of operations that can be specified in a
conversion list item:

* adding lines to filel from /file2;
* deleting lines from /fileJ;
* replacing (changing) file lines with file2 lines.

A conversion list item consists of a command line, followed by the
lines in the two files that are affected by the item’s operation.

2.1.1 The command line

An item’s command line contains a letter describing the operation
to be performed: ’a’ for adding lines, ’d’ for deleting lines, and ’c’ for
changing lines.

Preceding and following the letter are the numbers of the lines in
filel and file2, respectively, that are affected by the command. If a
range of lines in a file are affected, just the beginning and ending line
numbers are listed, separated by a comma.

For example, the following command line says to add line 3 of file2
after line 5 of file/:

2a3

and the next command line says to add lines 8,9, and 10 of file2 after
line 16 of fileJ:

16a8,10

The next command line says to delete lines 100 through 150 from
filel, and that the last line in file2 that matched a file] line was number
75:

100, 150d75

The following command says to replace (change) line 32 in file]
with line 33 in file2:

32c¢33

and the next command says to replace lines 453 through 500 in filel
with lines 490 through 499 in file2:

453,500c490,499

- unitools.7 -

DIFF File Comparator DIFF

2.1.2 The affected lines

As mentioned above, the lines affected by a conversion item’s
Operation are listed after the item’s command line. The affected lines
from file! are listed first, flagged with a preceding ’<’. Then come the
affected lines from file2, flagged with a preceding ’>’. The file] and
file2 lines are separated by the line

For example, the following conversion item says to add line 6 of file2
after line 4 of file]. Line 6 of file2 is "for (i=1; i<10;++i)":

4a6
> for (i=1; i<10;++i)

Since no lines from file] are affected by an ’add’ conversion item, only
the file2 lines that will be added to file] are listed, and the separator
line "---" is omitted.

The following conversion item says to delete lines 100 and 101
from file], and that the last file2 line that matched a file/ line was
numbered 110. The deleted lines were "int a;" and "double b;". Only
the deleted lines are listed, and the separator line Man=" 4S omitted:

100,101d110
< int a;
< double b;

The following conversion item says to replace lines 53 through 56
in file] with lines 60 and 61 in file2. Lines 53 through 56 in file] are
"if (a=b){"," d= a;"," at+;", and "}". Lines 60 and 61 of file2 are
"if (a==b)" and "d = at++;".

53,55c60,61
< if (a=b){
< d=4;
< att;
<}

> if (a==b)
> d= att;

3. Differences between the UNIX and Manx versions of diff

The Manx and UNIX versions of diff are actually most similar
when the latter program is invoked with the -h option. As with the
UNIX diff when used with the -h option, the Manx diff works best
when changed stretches are short and well separated, and works with
files of unlimited length.

Unlike the UNIX diff, the Manx diff doesn’t support the options e,
f, or h.

- unitools.8 -

DIFF File Comparator DIFF

Unlike the UNIX diff, the Manx version requires that both
operands to diff be actual files. Because of this, the Manx version of
diff doesn’t support the features of the UNIX version which allows
one operand to be a directory name, (to specify a file in that directory
having the same name as the other operand), and which allows one
operand to be ’-’ (to specify diffs standard input instead of a file).

- unitools.9 -

GREP Pattern-matching utility GREP

NAME

grep - pattern-matching program

SYNOPSIS

grep [-cflnv] pattern [files]

DESCRIPTION

grep 1S a program, similar to the UNIX program of the same
name, that searches files for lines containing a pattern. By
default, such lines are written to grep’s standard output.

1. Input files
The files parameter is a list of files to be searched. If no files are

specified, grep searches its standard input. Each file name can specify
a single file to be searched. A name can also specify a class of files
to be searched, using the special characters ’* and ’?’. The
character ’** matches any string of characters in a file name, and ’?
matches any single character. For example,

grep int main.c subl.c sub2.c

searches main.c, subl.c, and sub2.c for the string int. The command

grep int *.c

searches all files whose extension is .c for the string int. The command

grep int a*.txt b*.doc

searches for the string int in each file whose (1) extension is .txt and
first character is a and whose (2) extension is .doc and first character
is b. The command

grep int sub?.c

searches for the string int in each file whose filename contains four
characters, the first three being sub, and whose extension is .c.

2. Options

The following options are supported:

V Print all lines that don’t match the pattern.
Cc Print just the name of each file and the number of

matching lines that it contained.
| Print the names of just the files that contain matching

lines.
n Precede each matching line that’s printed by its

relative line number within the file that contains it.
f A character in the pattern will match both its upper

and lower case equivalent.

- unitools.10 -

GREP Pattern-matching utility GREP

3. Patterns

A pattern consists of a limited form of regular expression. It
describes a set of character strings, any of whose members are said to
be matched by the regular expression.

Some patterns match just a single character; others, which match
strings, can be constructed from those that match single characters. In
the following paragraphs, we’ll first describe the patterns that match
a single character, and then describe patterns that match strings of

characters.

3.1 Matching single characters

The patterns that match a single character are these:

* An ordinary character (that is, one other than the special
characters described below) matches itself.

* A period (.) is a pattern that matches any character except
newline.

* A non-empty string of characters enclosed in square
brackets, [], matches any one character in that string. For
example, the pattern

[ad9@]
matches any one of the characters a, d, 9, or @.

If, however, the string begins with the caret character
(*), the regular expression matches any character except
the other enclosed characters and newline. The ’*’ has this
special meaning only if it is the first character of the string.
For example, the pattern — |

[~ad9@]

matches any single character except a, d, 9, or @.

The minus character ,-, can be used to indicate a range of
consecutive ASCII characters. For example, [0-9] is equivalent
to [0123456789].

* A backslash (\) followed by a special character matches the
special character itself. The special characters are:

.. *, [, and \, which are always special, except when
they appear in square brackets, [].

“ (caret), which is special when it is at the
beginning of an entire regular expression (as
discussed in 3.4) and when it immediately follows
the left of a pair of square brackets.

$, which is special at the end of an entire regular

- unitools.11 -

GREP Pattern-matching utility GREP

expression (discussed in 3.4).

3.2 Matching character strings

Patterns can be concatenated. In this case, the resulting pattern
matches strings whose substrings match each of the concatenated
patterns. For example, the pattern

abc

matches the string abc. This pattern is built from the patterns a, b, and
c. The pattern

a.c

matches strings containing three characters, whose first and last
characters are a and c, respectively, such as

abc

a@c
axc

3.3 Matching repeating characters

A pattern can be built by appending an asterick (*) to a pattern
that matches a single character. The resulting pattern matches zero or
more occurrences of the single-character pattern For example, the
pattern

q*

matches any line containing zero or more a characters. And the pattern

sub[1-4]*end

matches lines containing strings such as

subend
sub132132end

3.4 Matching strings that begin or end lines

An entire pattern may be constrained to match only character
Strings that occur at the beginning or the end of a line, by
beginning or ending the pattern with the character °*’ or $’,
respectively. For example, the pattern

“main

matches the line that begins

main

but not one that begins

the main ...

The pattern

- unitools.12 -

GREP Pattern-matching utility GREP

line$

matches the line ending in

... the end of the line

but not the line ending in

a hard-hit line drive.

4. Examples

4.1 Simple string matching

The following command will search the files filel.txt and file2.txt
and print the lines containing the word hereto fore:

grep heretofore file1.txt file2.txt

If you aren’t interested in the specific lines of these files, but
just want to know the names of: the files containing the word
hereto fore, you could enter

grep -l heretofore filel.txt file2.txt

The above two examples ignore lines in which heretofore contains
capital letters, such as when it begins a sentence. The following
command will cover this situation:

grep -lf heretofore file1.txt file2.txt

grep processes all options at once, so multiple options must be
specified in one dash parameter. For example, the command

grep -l -f heretofore file1.txt file2.txt

won’t work.

4.2 The special character ’.’

Suppose you want to find all lines in the file prog.c that contain a
four-character string whose first and last characters are ’m’ and ’n’,
respectively, and whose other characters you don’t care about. The
command

grep M..n prog.c

will do the trick, since the special character ’.” matches any single
character.

4.3 The backslash character

There are occasions when you want to find the character ’.’ in a
file, and don’t want grep to consider it to be special. In this case, you
can use the backslash character, ’\’, to turn off the special meaning of

the next character.

- unitools.13 -

GREP Pattern-matching utility GREP

For example, suppose you want to find all lines containing

.PP

Entering

grep .PP prog.doc

isn’t adequate, because it will find lines such as

THE APPLICATION OF

since the ’.’ matches the letter ’A’. But if you enter

grep \.PP prog.doc

grep will print just what you want.

The backslash character can be used to turn off the special
meaning of any special character. For example,

grep \\n prog.c
finds all lines in prog.c containing the string ’\n’.

4.4 The dollar sign and the caret ($ and “*)

Suppose you want to find the number of the line on which the
definition of the function add occurs in the file arith.c. Entering

grep -n add arith.c

isn’t good, because it will print lines in which add is called in addition
to the line you’re interested in. Assuming that you begin all function
definitions at the beginning of a line, you could enter

grep “add arith.c

to accomplish your purpose.

The character ’$’ is a companion to ’*’, and stands for ’the end of
the line’. So if you want to find all lines in file.doc that end in the
string time, you could enter

grep time$ file.doc

And the following will find all lines that contain just .PP-

grep “\.PP$

4.5 Using brackets

Suppose that you want to find all lines in the file file.doc that begin
with a digit. The command

grep *[0123456789] file.doc

will do just that. This command can be abbreviated as

grep “[0-9] file.doc

- unitools.14 -

GREP Pattern-matching utility GREP

And if you wanted to print all lines that don’t begin with a digit,
you could enter

grep “[“*0-9] file.doc

4.6 Repeated characters

Suppose you want to find all lines in the file prog.c that contain
strings whose first character is ’e? and whose last character is ’2’.
The command

grep e.*z prog.c

will do that. The ’e’ matches an ’e’, the ’.* matches zero or more
arbitrary characters, and the ’z’ matches a ’z’.

5. Differences between the Manx and UNIX versions of grep

The Manx and UNIX versions of grep differ in the options they
accept and the patterns they match.

5.1 Option differences

* The option -f is supported only by the Manx grep.

* The options -b and -s are supported only by the UNIX grep.

5.2 Pattern differences

Basically, the patterns accepted by the Manx grep are a subset of

those accepted by the UNIX grep.

* The Manx grep doesn’t allow a regular expression to be surrounded

by ’\(and ’\)’.
* The Manx grep doesn’t accept the construct ’\{m\}’.

* The Manx grep doesn’t allow a right bracket, ’]’, to be specified
within brackets.

* Quoted strings can’t be passed to the Manx grep. For example, the
Manx grep won't accept

grep "this is a fine kettle of fish’ file.doc

- unitools.15 -

MAKE Program maintenance utility MAKE

NAME

make - Program maintenance utility

SYNOPSIS

make [-n] [-f makefile] [-a] [name1 name? ...]

DESCRIPTION

make is a program, similar to the UNIX program of the same name,
whose primary function is to create, and keep up-to-date, files that are
created from other files, such as programs, libraries, and archives.

When told to make a file, make first ensures that the files from
which the target file is created are up-to-date or current, recreating
just the ones that aren’t. Then, if the target file is not current, make
creates it.

Inter-file dependencies and the commands which must be executed
to create files are specified in a file called the ’makefile’, which you
must write.

make has a rule-processing capability, which allows it to infer,
without being explicitly told, the files on which a file depends and the
commands which must be executed to create a file. Some rules are
built into make; you can define others within the makefile.

A rule tells make something like this:

"a target file having extension ’.x’ depends on the file
having the same basic name and-extension ’.y’. To
create such a target file, apply the commands ...".

Rules simplify the task of writing a makefile: a file’s dependency
information and command sequences need be explicitly specified in a
makefile only if this information can’t be inferred by the application
of a rule.

make has a macro capability. A character string can be associated
with a macro name; when the macro name is invoked in the makefile,
it’s replaced by its string.

Preview

The rest of this description of make is divided into the following
sections:

1. The basics
2. Advanced features
3. Examples

1. The basics

In this section we want to present the basic features of make, with
which you'll be able to start using make. Section 2 describes the other

- unitools.16 -

MAKE Program maintenance utility MAKE

features of make.

Before you can begin using make, you must know what make does,
how to create a simple makefile that contains dependency entries, how
to take advantage of make’s rule-processing capability, and, finally,
how to tell make to make a file. Each of these topics is discussed in the
following paragraphs.

1.1 What make does

The main function of make is to make a target file "current", where
a file is considered "current" if the files on which it depends are
current and if it was modified more recently than its prerequisite files.
To make a file current, make makes the prerequisite files current;
then, if the target file is not current, make executes the commands
associated with the file, which usually recreates the file.

As you can see, make is inherently recursive: making a file current
involves making each of its prerequisite files current; making these
files current involves making each of their prerequisite files current;
and so on.

make is very efficient: it only creates or recreates files that aren’t
current. If a file on which a target file depends 1s current, make leaves
it alone. If the target file itself is current, make will announce the fact
and halt without modifying the target.

It is important to have the time and date set for make to
behave properly, since make uses the ’last modified’ times
that are recorded in files’ directory entries to decide if a
target file is not current.

1.2 The makefile

When make starts, one of the first things it does is to read a file,
which you must write, called the ’makefile’. This file contains
dependency entries defining inter-file dependencies and the commands
that must be executed to make a file current. It also contains rule
definitions and macro definitions.

In the following paragraphs, we want to just describe dependency
entries. In section 2 we discuss the somewhat more advanced topics of
rule and macro definition.

A dependency entry in a makefile defines one or more target files,
the files on which the targets depend, and the operating system
commands that are to be executed when any of the targets is not
current. The first line of the entry specifies the target files and the
files on which they depend; the line begins with the target file names,
followed by a colon, followed by one or more spaces or tabs, followed

by the names of the prerequisite files. It’s important to place spaces or
tabs after the colon that separates target and dependent files; on
systems that allow colons in file names, this allows make to distinguish

- unitools.17 -

MAKE Program maintenance utility MAKE

between the two uses of the colon character.

The commands are on the following lines of the dependency
information entry. The first character of a command line must be a
tab; make assumes that the command lines end with the last line not
beginning with a tab.

For example,consider the following dependency entry:

prog.com: prog.o subl.o sub2.0
In -o prog.com prog.o subl.o sub2.0 -Ic

This entry says that the file prog.com depends on the files prog.o,
subl.o, and sub2.0. It also says that if prog.com is not current, make
should execute the Jn command. make considers prog.com to be current
if it exists and if it has been modified more recently than prog.o,
subl.o, and sub2.0. |

The above entry describes only the dependence of prog.com on
prog.o, subl.o, and sub2.0. It doesn’t define the files on which the ’.o’
files depend. For that, we need either additional dependency entries in
the makefile or a rule that can be applied to create ’.o’ files from ’.c’
files.

For now, we’ll add dependency entries in the makefile for prog.o,
subl.o, and sub2.0, which will define the files on which the object
modules depend and the commands to be executed when an object
module is not current. In section 1.3 we’ll then modify the makefile to
make use of make’s built-in rule for creating a ’.o’ file from a’.c’ file.

Suppose that the ’.o’ files are created from the C source files prog.c,
subl.c, and sub2.c; that subl.c and sub2.c contain a statement to include
the file defs.h and that prog.c doesn’t contain any #include statements.
Then the following long-winded makefile could be used to explicitly
define all the information needed to make prog.com

prog.com: prog.o subl.o sub2.0

In -o prog.com prog.o subl.o sub2.0 -le -

prog.o: prog.c

cc prog.c

subl.o: subl.c defs.h
ce subl.c

sub2.0: sub2.c defs.h
cc sub2.c

This makefile contains four dependency entries: for prog.com,
prog.o, subl.o, and sub2.0. Each entry defines the files on which its
target file depends and the commands to be executed when its target
isn’t current. The order of the dependency entries in the makefile is
not important.

- unitools.18 -

MAKE Program maintenance utility MAKE

We can use this makefile to make any of the four target files
defined in it. If none of the target files exists, then entering

make prog.com

will cause make to compile and assemble all three object modules from
their C source files, and then create prog.com by linking the object
modules together.

Suppose that you create prog.com and then modify subl.c. Then
telling make to make prog.com will cause make to compile and assemble
just subl.c, and then recreate prog.com.

If you then modify defs.h, and then tell make to make prog.com,
make will compile and assemble subl.c and sub2.c, and then recreate
prog.com.

You can tell make to make any file defined as a target in a
dependency entry. Thus, if you want to make sub2.0 current, you could
enter

make sub2.0

A makefile can contain dependency entries for unrelated files. For
example, the following dependency entries can be added to the above
makefile:

hello.exe: hello.o
In hello.o -Ic

hello.o: hello.c

cc hello.c

With these dependency entries, you can tell make to make hello.exe
and hello.o, in addition to prog.com and its object files.

1.3 Rules

You can see that the makefile describing a program built from
many .o files would be huge if it had to explicitly state that each .o file
depends on its .c source file and is made current by compiling its
source file.

This 1s where rules are useful. When a rule can be applied to a file
that make has been told to make or that is a direct or indirect
prerequisite of it, the rule allows make to infer, without being
explicitly told, the name of a file on which the target file depends
and/or the commands that must be executed to make it current. This
in turn allows makefiles to be very compact, just specifying
information that make can’t infer by the application of a rule.

Some rules are built into make; you can define others in a makefile.

In the rest of this section, we’re going to describe the properties of
rules and how you write makefiles that make use of make’s built-in
rule for creating a.o file from a.c file. For more information on rules,

- unitools.19 -

MAKE Program maintenance utility MAKE

including a complete list of built-in rules and how to define rules in a
makefile, see section 2.2.

1.3.1 make’s use of rules

A rule specifies a target extension, source extension, and sequence
of commands. Given a file that make wants to make, it searches the
rules known to it for one that meets the following conditions:

* The rule’s target extension is the same as the file’s extension;

* A file exists that has the same basic name as the file make is
working on and that has the rule’s source extension.

If a rule is found that meets these conditions, make applies the first
such rule to the file it’s working on, as follows:

* The file having the source extension is defined to be a
prerequisite of the file with the target extension:

* If the file having the target extension doesn’t have a
command sequence associated with it, the rule’s commands
are defined to be the ones that will make the file current.

One rule built into make, for converting .c files into .o files, says

"a file having extension ’.o’ depends on the file
having the same basic name, with extension ’.c’. To
make current such a.o file, execute the command

CC X.C

where ’x’ is the name of the file"

Another built-in rule exists for converting .asm files into .o files,
using the Manx assembler.

1.3.2 An example

The .c to .o rule allows us to abbreviate the long-winded makefile
given in section 1.2 as follows:

prog.com: prog.o subl.o sub2.0
In -o prog.com prog.o subl.o sub2.0 -lc

subl.o sub2.0: defs.h

In this abbreviated makefile, a dependency entry for prog.o isn’t
needed; using the built-in ’.c to .o’ rule, make infers that the prog.o
depends on prog.c and that the command cc prog.c will make prog.o
current.

The abbreviated makefile says that both subl.o and sub2.0 depend
on defs.h. It doesn’t say that they also depend on sub/.c and sub2.c,
respectively, or that the compiler must be run to make them current;
make infers this information from the .c to .o rule. The only
information given in the dependency entry is that which make couldn’t

- unitools.20 -

MAKE Program maintenance utility MAKE

infer by itself: that the two object files depend on defs.h.

1.3.3 Interaction of rules and dependency entries

As we showed in the above example, a rule allows you to leave
some dependency information unspecified in a makefile. The prog.o
entry in the long-winded makefile of section 1.2 was not needed, since
its information could be inferred by the .c to .o rule. And the
dependence of subl.o and sub2.0 on their respective C source files, and
the commands needed to create the object files was also not needed,
since the information could be inferred from the .c to .o rule.

There are occasions when you don’t want a rule to be applied; in
this case, information specified in a dependency entry will override
that which would be inferred from a rule. For example, the following
dependency entry in a makefile

add.o:
cc -DFLOAT add.c

will cause add.o to be compiled using the specified command rather
than the command specified by the .c to .o rule. make still infers the
dependence of add.o on add.c, using the .c to .o rule, however.

2. Advanced features

In the last section we presented the basic features of make, with
which you can start using make. In this section, we present the rest of
make’s features.

2.1 Dependent Files

A dependent file can be in a different volume or directory than its
target file, with the following provisos.

If the file name contains a colon (for example, because the file
name defines the volume on which the file is located), the colon must
be followed by characters other than spaces or tabs, so that make can
distinguish between this use of the colon character and its use as a
separator between the target and dependent files in a dependency line.
This shouldn’t be a problem, since most systems don’t allow file names
to contain spaces or tabs.

All references to a file must use the same name. For example, if a
file is referred to in one place using the name

/root/src/foo.c

then all references to the file must use this exact same name.

On PCDOS and MSDOS, note that the following names may refer
to different files:

- unitools.21 -

MAKE Program maintenance utility MAKE

a:dir/sub/foo.c
a: /dir/sub/foo.c.

For the first name, the search for foo.c begins with the current
directory on the a: drive; for the second, the search begins with the
root directory on the a: drive.

2.2 Macros

make has a simple macro capability that allows character strings to
be associated with a macro name and to be represented in the makefile
by the name. In the following paragraphs, we’re first going to describe
how to use macros within a makefile, then how they are defined, and
finally some special features of macros.

2.2.1 Using macros

Within a makefile, a macro is invoked by preceding its name with a
dollar sign; macro names longer than one character must be
parenthesized. For example, the following are valid macro invocations:

$(CFLAGS)

The last two invocations are identical.

When make encounters a macro invocation in a dependency line or
command line of a makefile, it replaces it with the character string
associated with the macro. For example, suppose that the macro
OBJECTS is associated with the string ao b.o co d.o. Then the
dependency entries:

prog.exe: prog.o 2.0 b.o c.o d.o
In prog.o 2.0 b.o c.o do

a.o b.o c.o d.o: defs.h

within a makefile could be abbreviated as:

prog.exe: prog.o $(OBJECTS)
In prog.o $(OBJECTS)

$(OBJECTS): defs.h

There are three special macros: $$, $*, and $@. $$ represents the
dollar sign. The other two are discussed below.

2.2.2 Defining macros in a makefile

A macro is defined in a makefile by a line consisting of the macro
name, followed by the character ’=’, followed by the character string to
be associated with the macro.

- unitools.22 -

MAKE Program maintenance utility MAKE

For example, the macro OBJECTS, used above, could be defined in
the makefile by the line

OBJECTS = a.0 b.o c.0 d.o

A makefile can contain any number of macro definition entries. A
macro definition must appear in the makefile before the lines in which
it is used. .

2.2.3 Defining macros in a command line

A macro can be defined in the command line that starts make. The
syntax for a command line definition has the following form:

mac=str

where mac is the name of the macro, and sr is its value.

str cannot contain spaces or tabs.

For example, the following command assigns the value -DFLOAT to
the macro CFLAGS:

make CFLAGS=-DFLOAT

The assignment of a value to a macro in a command line overrides
an assignment in a makefile statement.

2.2.4 Macros used by built-in rules

make has two macros, CFLAGS and AFLAGS, that are used by the
built-in rules. These macros by default are assigned the null string.
This can be overriden by a macro definition entry in the makefile.

For example, the following would cause CFLAGS to be assigned
the string "-T":

CFLAGS = -T

These macros are discussed below in the description of built-in
rules.

2.2.5 Special macros

Before issuing any command, two special macros are set: $@ is
assigned the full name of the target file to be made, and $* is the name
of the target file, without its extension. Unlike other macros, these can
only be used in command lines, not in dependency lines.

For example, suppose that the files x.c, y.c, and z.c need to be
compiled using the option "-DFLOAT". The following dependency
entry could be used:

X.0 y.O Z.O:
cc -DFLOAT $%.c

When make decides that x.o needs to be recreated from x.c, it will
assign $* the string "x", and the command

- unitools.23 -

MAKE Program maintenance utility MAKE

cc -DFLOAT x.c

will be executed. Similarly, when y.o or z.o is made, the command cc
-DFLOAT y.c or cc -DFLOAT z.c will be executed.

The special macros can also be used in command lines associated
with rules. In fact, the $@ macro is primarily used by rules. We’ll
discuss this more in the description of rules, below.

2.3 Rules

In section 1, we presented the basic features of rules: what they are
and how they are used. We also noted that rules could be defined in
the makefile and that some rules are built into make. In the following
paragraphs, we describe how rules are defined in a makefile and list
the built-in rules.

2.3.1 Rule definition

A rule consists of a source extension, target extension, and
command list. In a makefile, an entry defining a rule consists of a line
defining the two extensions, followed by lines containing the
commands.

The line defining the extensions consists of the source extension,
immediately followed by the target extension, followed by a colon.

All command lines associated with a rule must begin with a tab
character. The first line following the extension line that doesn’t begin
with a tab terminates the commands for the rule.

For example, the following rule defines how to create a file having
extension .rel from one having extension .c:

.c.rel:
cc -0 $@ $*.c

The first line declares that the rule’s source and target extension are .c
and .rel, respectively.

The second line, which must begin with a tab, is the command to
be executed when a .rel file is to be created using the rule.

Note the existence of the special macros $@ and $* in the
command line. Before the command is executed to create a .re/ target
file using the rule, the macro $@ is replaced by the full name of the
target file, and the macro $* by the name of the target, less its
extension.

Thus, if make decides that the file x.rel needs to be created using
this rule, it will issue the command

cc -o x.rel x.c

If a rule defined in a makefile has the same source and target
extensions as a built-in rule, the commands associated with the

- unitools.24 -

MAKE Program maintenance utility MAKE

makefile version of the rule replace those of the built-in version. For
example, the built-in rule for creating a .o file from a.c file looks like
this:

.C.0:
cc $(CFLAGS) $*.c

If you want the rule to generate an assembly language listing,
include the following rule in your makefile:

.C.0:
cc $(CFLAGS) -a $*.c
as -ZAP -1 $*.asm

2.3.2 Built-in rules

The following rules are built into make. The order of the rules is
important, since make searches the list beginning with the first one,
and applies the first applicable rule that it finds.

.C.0:
cc $(CFLAGS) -o $@ $*.c

.c.oby:
cc $(CFLAGS) $*.c
obj $*.0 $@

.asm.oby:
as $(AFLAGS) $*.asm
obj $*.0 $@

.asm.0: |
as $(AFLAGS) -o $@ $*.asm

.a86.0:
as $(AFLAGS) -o $@ $*.a86

The two macros CFLAGS and AFLAGS that are used in the built-
in rules are built into make, having the null character string as their
values. To have make use other options when applying one of the
built-in rules, you can define the macro in the makefile.

For example, if you want the options -T and -DDEBUG to be used
when make applies the .c.o rule, you can include the line

CFLAGS = -T -DDEBUG

in the makefile. Another way to accomplish the same result is to
redefine the .c.o rule in the makefile; this, however, would use more
lines in the makefile than the macro redefinition.

- unitools.25 -

MAKE Program maintenance utility MAKE

2.4 Commands

In this section we want to discuss the execution of operating system
commands by make.

2.4.1 Allowed commands

A command line in a dependency entry or rule within a makefile
can specify any command that you can enter at the keyboard. This
includes batch commands, commands built into the operating system,
and commands that cause a program to be loaded and executed from a
disk file.

2.4.2 Logging commands and aborting make

Normally, before make executes a command, it writes the command
to its standard output device; and when the command terminates, make
halts if the command’s return code was non-zero. Either or both of
these actions can be suppressed for a command, by preceding the
command in the makefile with a special character:

@ Tells make not to log the command;
- Tells make to ignore the command’s return code.

For example, consider the following dependency entry in a
makefile:

prog.exe: 2.0 b.o c.o do
In -o prog.exe a.o b.o c.0 d.o -Ic
@echo all done

When the echo command is executed, the command itself won’t be
logged to the console.

2.4.3 Long command lines

Makefile commands that start a Manx program, such as cc, as, or In,
or that start a program created with cc, as, In, and c.lib, can specify a
command line containing up to 2048 characters.

For example, if a program depends on fifty modules, you could
associate them with the macro OBJECTS in the makefile, and also
include the dependency entry

prog.exe: $(OBJECTS)
In -o prog.exe $(OBJECTS) -Ic

This will result in a very long command line being passed to Jn.

In the next section we will describe how OBJECTS could be
defined.

For the execution of other commands, the command line can
contain at most 127 characters.

- unitools.26 -

MAKE Program maintenance utility MAKE

2.5 Makefile syntax

We’ve already presented most of the syntax of a makefile; that 1s,
how to define rules, macros, and dependencies. In this section we want
to present two features of the makefile syntax not presented elsewhere:
comments and line continuation.

2.5.1 Comments

make assumes that any line in a makefile whose first character is
’#” iS a comment, and ignores it. For example:

+

the following rule generates an 8080 object module
from aC source file:
#:

.c.080:
cc80 -o cc.tmp $*.c
as80 -ZAP -o $*.080 cc.tmp

2.5.2 Line continuation

Many of the items in a makefile must be on a single line: a macro
definition, the file dependency information in a dependency entry,
and a command that make is to execute must each be on a single line.

You can tell make that several makefile lines should be considered
to be a single line by terminating each of the lines, except the last,
with the backslash character, ’\’. When make sees this, it replaces the
current line’s backslash and newline, and the next line’s leading blanks
and tabs by a single blank, thus effectively joining the lines together.

The maximum length of a makefile line after joining continued
lines is 2048 characters.

For example, the following macro definition equates OBJ to a string
consisting of all the specified object module names.

OBJ = printf.o fprintf.o format.o\
scanf.o fscanf.o scan.o\
getchar.o getc.o

| As another example, the following dependency entry defines the
dependence of driver.lib on several object modules, and specifies the
command for making driver.lib:

driver.lib: driver.o printer.o \
in.o \
out.o

Ib driver.lib driver.o\
printer.o \
in.o outo

- unitools.27 -

MAKE Program maintenance utility MAKE

This second example could have been more cleanly expressed using
a macro:

DRIVOBJ= driver.o printer.o\
in.o out.o

driver.lib: $(DRIVOBJ)
Ib driver.lib $(DRIVOBJ)

This was done to show that dependency lines and command lines can
be continued, too.

2.6 Starting make

You've already seen how make is told to make a single file.
Entering

make filename

makes the file named filename, which must be described by a
dependency entry in the makefile. And entering

make

makes the first file listed as a target file in the first dependency entry
in the makefile.

In both of these cases, make assumes the makefile is named
*makefile’ and that it’s in the current directory on the default drive.

In this section we want to describe the other features available
when starting make.

2.6.1 The command line

The complete syntax of the command line that starts make is:

make [-n] [-f makefile] [-a] [-dmacro=str] [filel] [file2] ...

Square brackets indicate that the enclosed parameter is optional.

The parameters filel, file2 ... are the names of the files to be made.
Each file must be described in a dependency entry in the makefile.
They are made in the order listed on the command line.

The other command line parameters are options, and can be
entered in upper or lower case. Their meanings are:

-n Suppresses command execution. make logs the
commands it would execute to its standard
output device, but doesn’t execute them.

-f makefile Specifies the name of the makefile
-a Forces make to make all files upon which the

specified target files directly or indirectly
depend, and to make the target files, even those
that it considers current.

-dMACROsstr

- unitools.28 -

MAKE Program maintenance utility MAKE

Creates a macro named MACRO, and assigns str
as its value.

2.6.2 make’s standard output

make logs commands and error messages to its standard output
device. This can be redirected in the standard way. For example, to
make the first target file in the first dependency entry and log
messages to the file out, enter

make >out

The standard input and output devices of programs started by make
are set as they are for make itself, unless one or both of them are
explicitly redirected in the command that starts the program.

2.7 Executing commands

When make decides that a command needs to be executed, it
executes it immediately, and waits for the command to finish. It
activates a command whose code is contained in a disk file by issuing
an fexec function call. It activates DOS built-in commands and batch
commands by calling the system function, which causes a new copy of
the command processor to be loaded. Thus, to use make, your system
must have enough memory for DOS, make, and whatever programs are
loaded by make to be in memory simultaneously.

2.8 Differences between the Manx and UNIX ’make’ programs

The Manx make supports a subset of the features of the UNIX
make. The following comments present features of the UNIX make
that aren’t supported by the Manx make.

* The UNIX make will let you make a file that isn’t defined as a
target in a makefile dependency entry, so long as a rule can be
applied to create it. The Manx make doesn’t allow this. For
example, if you want to create the file hello.o from the file hello.c
you could say, on UNIX

make hello.o

even if hello.o wasn’t defined to be a target in a makefile
dependency entry. With the Manx make, you would have to have a
dependency entry in a makefile that defines hello.o as a target.

* The UNIX make supports the following options, which aren’t
supported by the Manx make:

p, 1, k, s, r, b, e, m, t, d, q

The Manx make supports the option ’-a’, which isn’t supported by
the UNIX make.

* The special names .DEFAULT, .PRECIOUS, SILENT, and
IGNORE are supported only by the UNIX make.

- unitools.29 -

MAKE Program maintenance utility MAKE

3.

Only the UNIX make allows the makefile to be read from make’s
Standard input.

Only the UNIX make supports the special macros $<, $?, and $%,
and allows an upper case D or F to be appended to the special
macros, which thus modifies the meaning of the macro.

Only the UNIX make requires that the suffixes for additional rules
be defined in a SUFFIXES statement.

Only the UNIX make allows macros to be defined on the command
line that activates make.

Only the UNIX make allows a target to depend on a member of a
library or archive.

Examples

3.1 First example

This example shows a makefile for making several programs. Note
the entry for arc. This doesn’t result in the generation of a file called
arc; it’s just used so that we can generate arcv and mkarcyv by entering
make are.

- unitools.30 -

MAKE Program maintenance utility MAKE

rules:
+:

.c.080:
cc80 -DTINY -o $@ $*.c

+:

macros:
+

OBJ=make.o parse.o scandir.o dumptree.o rules.o command.o
+:

dependency entry for making make:
+:

make.com: $(OBJ) cntlc.o envcopy.o
In -o make.com $(OBJ) envcopy.o cntlc.o -Ic

+

dependency entries for making arcv & mkarcv:
+:

arc: mkarcv.com arcv.com
@echo done

mkarcv.com: mkarcv.o
In -o mkarcv.com mkarcv.o -lc

arcv.com : arcv.o
In -o arcv.com arcv.o -lIc

+:

dependency entries for making CP/M-80 versions of arcv & mkarcv:
+#

mkarcv80.com: mkarcv.o8&0
In80 -o mkarcv80.com mkarcv.o80 -It -Ic

arcv80.com: arcv.o80
In80 -o arcv80.com arcv.o80 -It -Ic

$(OBJ): libc.h make.h

3.2 Second example

This example uses make to make a library, my.lib. Three directories
are involved: the directory libc and two of its subdirectories, sys and
misc. The C and assembly language source files are in the two
subdirectories. There are makefiles in each of the three directories,
and this example makes use of all of them. With the current directory
being libc, you enter

make my.lib

This starts make, which reads the makefile in the libe directory. make

will change the current directory to sys and then start another make
program.

- unitools.31 -

MAKE Program maintenance utility MAKE

This second make compiles and assembles all the source files in the
sys directory, using the makefile that’s in the sys directory.

When the ’sys’ make finishes, the ’libc’? make regains control, and
then starts yet another make, which compiles and assembles all the
source files in the misc subdirectory, using the makefile that’s in the
misc directory.

When the ’misc’ make is done, the ’libc’ make regains control and
builds my.lib. You can then remove the object files in the
subdirectories by entering

make clean ——

3.2.1 The makefile in the *libe’ directory

my.lib: sys:mk misc.mk
del my.lib
Ib my.lib -f my.bld
@echo my.lib done

sys.mk:
cd sys
make
cd..

misc.mk
cd misc
make
cd ..

clean:
cd sys
make clean

make clean
cd ..

- unitools.32 -

MAKE Program maintenance utility MAKE

3.2.2 Makefile for the ’sys’ directory

REL=asctime.o bdos.o begin.o chmod.o croot.o csread.o ctime.o \
dostime.o dup.o exec.o execl.o execlp.o execv.o execvp.o \
fexec.o fexecl.o fexecv.o ftime.o getcwd.o getenv.o \
isatty.o localtim.o mkdir.o open.o stat.o system.o time.o\
utime.o wait.o dioctlo ttyi0.o access.o syserr.o

COPT=
HEADER-../header

.C.0:
cc $(COPT) -IS(HEADER) $¥*.c -o $@
sqz $@

.asm.0:
as $*.asm -o $@
sqz $@

all: $(REL)
@echo sys done

clean:.

del *.o

3.2.3 Makefile for the ’misc’ directory

REL=atoi.0 atoLo calloc.o ctype.o format.o malloc.o qsort.o \
sprintf.o sscanf.o fformat.o fscan.o

COPT=
HEADER-=}../header

.C.0:
cc $(COPT) -IS(HEADER) $*.c -o $@
sqz $@

as $*.asm -o $@
sqz $@

all: $CREL)
@echo misc done

fformat.o: format.c
cc -I$(HEADER) -DFLOAT format.c -o fformat.o

fscan.o: scan.c
cc -IS(HEADER) -DFLOAT scan.c -o fscan.o

clean:
del *.o

- unitools.33 -

Z

NAME

z - A text editor

SYNOPSIS

z [files]

DESCRIPTION

Z is a text editor which is especially useful for creating source
programs in the C programming language. It has the following features:

* It’s very similar to the Unix editor vz if you know vi, you
know Z.

It’s a full-screen editor: the screen acts as a window into the
file being edited.

Z has a wealth of commands, and commands are specified
with just a few keystrokes, allowing editing to be performed
quickly and efficiently. The simple and natural way of
entering commands and the mnemonic assignment of
commands to keys makes the commands easy to remember
and use.

Z has commands for the following:

+ Bringing different sections of a file into view;
+ Inserting text;
+ Making changes to text;
+ Rearranging text by moving blocks of text around and

by inserting text from other files;
+ Accessing files;
+ Searching for character strings and "regular expressions".

Z has several commands which are useful for editing C
programs: there are commands for finding matching
parentheses, square brackets, and curly braces; for finding the
beginning of the next or preceding function; and for finding
the next or preceding blank line.

Most commands can be easily executed repeatedly.

Sequences of commands, called macros, can be defined and
executed one or more times.

Changes are made to an in-memory copy of a file; the file
itself isn’t changed until a command is explicitly given;

Z has a feature which is useful when editing a large number
of related files: the operator can request that a file containing

a certain function be edited; Z will automatically find the file
and prepare it for editing.

- unitools.34 -

Z LZ

Requirements

Z runs on several systems, including

* IBM PC, running PCDOS version 2.0 or later
* 8086-based ‘systems running CP/M-86 and using an ADM-3A

or LSI terminal;
* The Macintosh
* The Amiga
* TRS-80, model 4, using TRSDOS

For 8086-based systems, Z requires at least 128KB of memory and
allows you to edit programs containing up to 58 K bytes of text.

For 8080- and Z80-based systems, Z requires 64 KB of memory and
allows you edit programs containing up to 11 K bytes of text.

Components

The Z package contains two programs:

Z, the text editor;

ctags, a utility for creating a file which relates tags to C source
files.

Preview

The remainder of this description of Z is divided into the following
sections:

getting started , which describes how to quickly start using Z;

commands and features , which presents an overview of the
features and commands of Z;

summary , which summarizes the Z commands.

- unitools.35 -

Z Z

1, GETTING STARTED

Z is a very powerful tool for creating and editing C source
programs, but its wealth of commands and options can be
overwhelming to someone not familiar with it. The purpose of this
chapter is to get you using Z as quickly as possible, by presenting a
small subset of the Z commands, with which programs can be created
and edited. Then, with the ability to create and edit programs, you can
continue reading the rest of this manual at your leisure to learn about
the other features and commands of Z.

This section is divided into two subsections: the first describes how
to create a new C program, and the second how to edit an existing
program.

- unitools.36 -

Z Creating a new program Z

1.1 Creating a new program

Z is activated by entering a command of the form:

z hello.c

where hello.c is the name of the file to be edited. Since we’re creating a
new program, the file doesn’t exist yet, so Z says so by displaying a
message on its status line (which may be either the first or last line of
the display, depending on the system on which Z is running). On
systems that use the first display line for status information, the screen
then looks like this:

"hello.c" no such file or directory
eed

on!

~

~!

with the cursor on the left-hand column of the second line. On systems
that use the last display line for status information, the screen looks
like this:

~~?!

hello.c doesn’t exist

with the cursor on the left-hand column of the first line.

Z is now waiting for you to enter a command.

The screen

As mentioned above, Z uses the one line of the display for
displaying information and for echoing the characters of some
commands which are entered. On the Macintosh, the last line is the
status line; on other systems, the first line is the status line.

The rest of the lines on the screen are used to display text of the

file being edited.

The tilde characters on the screen lines are Zs way of saying that
the end of the file has been reached: these characters are not actually

in the file.

Modes of Z

Z has two modes: command and insert, which allow you to enter

commands and to insert text, respectively.

- unitools.37 -

Z Creating a new program Z

In this section, we’ll spend most of our time in insert mode, using
commands only to enter insert mode and to exit Z. When we get to the
next section, 1n which we edit a file, we'll discuss more commands.

Insert mode

With Z in insert mode, characters that you type are entered into a
memory-resident buffer; the characters don’t appear in the file until
you exit insert mode and explicitly issue a command which causes Z to
write the buffer to the file.

Z has several commands for entering insert mode; the one we want
to use is i, which allows text to be entered before the cursor. So type i.
Notice that Z doesn’t echo this command on the screen; it only does
that for a few commands. Notice also that we are in command mode,
as evidenced by the message

<insert mode>

on the right-hand side of the status line.

Now you can enter a program, just as you would on a typewriter.
Notice that the cursor is positioned where the next character will be
entered. Try entering the "hello world" program:

main()

printf("hello, world\n");

When you hit the <return> key after entering the printf line, the
cursor was left positioned on the next line of the screen underneath
the first non-white space character of the preceding line. This feature,
which is known as "autoindent", is useful when creating C programs,
encouraging statements within a compound statement to be indented
and lined up. Autoindent can be disabled and enabled, and we’ll show
you how later.

We want the closing curly brace of the main function to be on the
first column of the line, not indented. So type the backspace key to get
back to the first column, and then type the ’)’ key.

The backspace key can also be used to backspace over characters
that you incorrectly type.

When you’re done inserting the program, hit the escape key to exit
insert mode and return to command mode. The key used as the escape
key varies from system to system. On the IBM PC, the key labeled
ESC is the escape key. On the TRS-80, models III and 4, the key
labeled BREAK is the escape key. And on the Macintosh, the
backquote key, ‘, is the escape key. |

- unitools.38 -_

Z Creating a new program Z

Exiting Z

To write the program you’ve just entered from the text buffer to
the disk file hello.c and then exit Z, type ZZ.

Occasionally you may want to exit Z without writing the text
you’ve entered to a file; in this case, type

:q!

followed by a carriage return, CR.

- unitools.39 -

Z Editing an existing file Z

1.2 Editing an Existing File

In this section we’re going to present a few commands which will
allow you to make changes to an existing file.

Starting and stopping Z

You get in and out of Z when editing an existing file just as you do
when creating a new file. To start Z, enter

z hello.c

where hello.c is the name of the file to be edited. And to stop Z and
save the changes you’ve made, put Z in command mode and enter:

ZZ,

Z knows if you made changes to the original text or not; if you did, it
saves the original file by changing the extension of its name to .bak
and then writes the modified text to a new file having the specified
name. If a .bak file with that name already exists, it will be deleted
before the rename occurs.

If you didn’t make any changes, the ZZ command causes Z to halt
without changing any disk files.

The command -g¢!/ will cause Z to halt without writing anything to
the file being edited.

Going back to the startup of Z, Z reads the specified file into the
text buffer, displays the first screenful of the file’s text, displays the
file’s statistics (name, number of lines, number of characters) on the
Status line, positions the cursor at the first character of the first line,
and enters command mode, waiting for you to enter a command.

The qursor

Before describing the commands for viewing and changing the text
in Z’s memory-resident buffer, we need to discuss the cursor.

In Z, the character position in the text which is pointed at by the
cursor acts as a reference point: most commands perform an action
relative to that position. For example, the i command, described in the
last section, allows you to enter text before the cursor. And the x
command, to be discussed, deletes the character at which the cursor is
located.

So we will be describing two types of commands in this section:
those that move the cursor around in the text, thus bringing different
sections of text into view, and those that modify text in the vicinity of
the cursor.

Moving around in the text: scrolling

The text you created in section 1, for the "hello, world" program,
easily fit on a single screen. But most text files are too large to be

- unitools.40 -

Z Editing an existing file Z

viewed all at once, so we need commands to bring different sections

into view.

Two such commands are the "scroll" commands: "scroll down",
represented by the character control-D, and "scroll up", represented by
control-U. That is, to execute the "scroll down" command, you hold
down the control key and then depress the ’D’ key.

The key used as the control key differs from system to system. On
the IBM PC, it’s the key labeled ’Ctrl’. On the Macintosh, it’s the
cloverleaf key (the key next to the ’Option’ key that has the unusual

symbol).

In the rest of this manual, we will refer to control characters using
notation of the form “D rather than control-D, for brevity. Thus, the
"scroll up" and "scroll down" commands are represented as “U and “D,

respectively.

A scroll command moves the screen up or down in the file,
bringing another half-screen’s worth of text into view. It’s as if the text
was on a reel of tape and the screen is a viewer: scrolling down moves
the viewer down the reel, and scrolling up moves the viewer up the
reel.

When scrolling, the cursor will be left on the same position within
the text after the scroll as before, if that position is still within view.
Otherwise, the cursor is moved to a line in the text which was newly

brought into view.

Moving around in the text: the °Go’ command

Scrolling is one way to move around in the text, but it’s slow. If we
have a large text file, to which we want to append text, it would take a
long time and many scroll commands to reach the end.

The go command, g, is one way to move rapidly to the point of
interest in the text: entering g by itself will move the cursor to the end
of the text and, if necessary, redraw the screen with the text which
precedes it. :

The g command can also be preceded by the number of the line of
interest; in this case, the cursor is moved to the beginning of that line.
So to move back to the first line of text, enter:

lg
The g command can be used to move to any line within the text,

but since you usually don’t know the numbers of the lines, the g
command is mainly used to move to the beginning and end of the text.

Moving around in the text: string searching

So, scrolling allows us to take a casual stroll through text, and the g
command to move rapidly to the beginning and end of the file. What

- unitools.41 -

Z Editing an existing file Z,

we need is a command to rapidly move to a specific point in the
middle of the text.

The "string search" command, /, is such a command. When you
enter /, followed by the string of interest, followed by a carriage
return, Z searches forward in the text from the cursor position,
looking for the string If Z reaches the end of the text without finding
the string, it will "wrap around", and continue searching from the
beginning of the text

If the string is found, the cursor is positioned at its first character
and, if necessary, the screen is redrawn with its surrounding text.

If the string isn’t found, a message saying so is displayed on the
Status line of the screen and the cursor isn’t moved.

While the "string search" command and its string are being entered,
the characters are displayed on the status line, and normal editing
operations can be used, such as backspacing over mistyped characters.

Z remembers the last string searched for. To repeat the search,
enter the "find next string" command, zn.

Finely tuned moves

With the commands presented up to now, you can move to the area
of interest in the text. The next few paragraphs present commands
which move the cursor from somewhere within the area of interest to
a specific character position, from which changes will be made.

Some commands for this, from the many available in Z, are:

- and CR (carriage return)

Move the cursor up and down one line, respectively,
to the first non-whitespace character on the line;

space and backspace

Move the cursor right and left, respectively, on the
line on which the cursor is located.

These commands can be preceded by a number, which cause the
command to be performed the specified number of times. For
example,

3-

moves the cursor up three lines, and

5<space>

moves the cursor right five characters. Note that <space> represents
the space bar.

Deleting text

You now have a repetoire of commands which allow you to move
the cursor fairly quickly to any location in a text file. We’re ready to

- unitools.42 -

Z Editing an existing file Z

move on to a few commands for modifying the text.

Two such commands, for deleting text, are "delete character", x,

and "delete line", dd:

x Deletes the character under the cursor;

dd Deletes the entire line on which the cursor 1s located.

Each of these commands can be preceded by a number, causing the
command to be repeated the specified number of times. For example,

2X

deletes two characters, and

3dd

deletes three lines.

More insert commands

You already know one command for inserting text: i, which allows
text to be inserted before the cursor. We need a few more insert

commands:

a Enters insert mode such that text is inserted following
the cursor;

O Creates a blank line below the current line (ie, the
line on which the cursor is located), moves the cursor
to the new line, and enters insert mode;

O Same as o, but the new line is above the current line.

Summary

With the set of commands presented in this chapter, you can edit
any text file. You should continue reading this manual, to learn more
about Z, while you use the basic command set for performing your

editing chores.

You'll find that Z has many more capabilities, which allow you to
perform functions more quickly, with fewer keystrokes, than with the
basic command set, and which allow you to perform functions which
you can’t perform with the basic command set.

The commands in the basic set are listed on the next page.

- unitools.43 -

Z Editing an existing file Z

Starting and stopping Z

Z filenameStart Z, and prepare ’filename’ for editing
ZZ, Stop Z, and write modified text to the edit file
:q! Stop Z, without writing anything to the edit file

scrolling

AD Move down half a screenful
AU Move up half a screenful

Moving the cursor

g Move the cursor to the end of the text, or to a specific
line

/str Search for the character string "str" and move the
cursor to it

n Search again, using the same string
- Move cursor up a line
CR Move cursor down a line
space | Move cursor right one character
backspace Move cursor left one character

Inserting text

i Insert before cursor
a Insert after cursor
a) Insert new line below current line
O Insert new line above current line

Deleting text

x Delete character under cursor
dd Delete line on which cursor is located

- unitools.44 -

Z LZ

2. More commands

In this section we’re going to describe the rest of the features and
commands of Z, building and expanding on the information presented
in the previous chapter. The section is organized into subsections;
some describe a group of related commands, some a particular feature,
and some how to perform a specific function with Z

- unitools.45 -

Z Introduction Z

2.1 Introduction

Before getting into the Z commands, we want to discuss in more
detail the way that Z displays information on the screen and the way
that commands are entered.

2.1.1 The screen

We’ve already discussed the basic details on Z’s use of the screen.
There’s just a few more things to discuss: the display of unprintable
characters and the display of lines which don’t fit on the screen.

2.1.1.1 Displaying unprintable characters

A file edited by Z can contain any character whose ASCII value in
decimal is less than 128, including unprintable characters, such as SOH,
LF, and ESC. Z displays unprintable characters as two characters; the
first is “, and the second is the character whose ASCII value equals
that of the character itself plus 0x40. For example, the unprintable
character SOH is displayed as the pair of characters “A, since the
ASCII value of SOH is 1, and 1 plus 0x40 is 0x41, which is the ASCII
value for the character A>,

2.1.1.2 Displaying lines that don’t fit on the screen

In the previous chapter we said that lines beyond the end of the file
are displayed with the character ~ in the first column of the line on
the screen. When you see the ~ character in the leftmost column of a
line on the screen, this usually signifies that this line of the display
doesn’t contain a line of text. Lines which don’t fit on the screen are
displayed by Z in a similar manner, as you’ll soon see.

Z allows lines to be entered which are longer than a screen line.
Normally, Z simply displays such lines on several screen lines. In some
cases, however, the entire line won’t fit on the screen. For example, if
the cursor is positioned at the beginning of the file, it may not be
possible to display the text of an entire big line at the bottom of the
screen. In this case, Z displays an @ character in the first column of
the screen lines on which the text would be displayed.

Thus, when you see the @ character in the leftmost column of a
line on the screen, this usually signifies that the text which would have
appeared on this line of the screen was too big, and not that the @
character is in the text.

2.1.2 Commands

When most commands are entered, Z doesn’t echo the characters
on the screen. For some commands, however, it does. In this latter
category are the commands whose first character begins with - and
with the string search commands.

For these commands, the characters are displayed on the screen’s
status line, and can be backspaced over and reentered, if necessary.

- unitools.46 -

Z Introduction Z

Also, Z doesn’t act on such commands until you type the carriage

return key, CR.

2.1.3 Special Keys

There are two keys that have special meaning for Z: the escape key,
which is used to exit insert mode, and the control key, which is used
in conjunction with another key to generate control characters. The
actual keys used for these functions varies from system to system, as
mentioned in the previous chapter.

The escape key is ESC on the IBM PC. On the TRS-80, models III
and 4, it’s the BREAK key. And on the Macintosh, it’s the backquote
key, °.

The control key is ’Ctrl’ on the IBM PC. On theMacintosh it’s the
key next to the Option’ key that has the cloverleaf symbol.

On the Macintosh, there are times when you want to generate a
backquote, and not escape. For example, backquote is a cursor motion
command to Z. To generate backquote, hold down the control key (the
key next to the option key), and then type backquote.

- unitools.47 -

Z Paging and Scrolling Z

2.2 Paging and Scrolling

In the last chapter we described commands for scrolling through
text, “U and “D. Another pair of commands allow you to page, instead
of scroll, through text. They are *B and “F, which page backwards and
forwards, respectively.

A page command brings the previous or next screenful of text into
view by redrawing the screen with the new text. Whereas scrolling was
described as a viewer moving over a reel of tape, paging can be
described as the turning of pages of a book.

Paging moves you through text more quickly than scrolling does.
However, since paging redraws the screen all at once, while scrolling
changes it gradually, it’s often more difficult to keep a sense of
continuity when paging than when scrolling. As an aid to continuity
when paging, two lines of text which were previously in view are still
in view after paging.

In the discussion of scrolling in the last chapter, we neglected to
mention that the scroll commands can be preceded by a value
specifying the number of lines to be scrolled up or down. If a number
isn’t specified, the last scroll value entered is used; if a scroll value was
never entered, it defaults to half a screen’s worth of lines. Separate
values are maintained for scrolling up and for scrolling down.

The scrolling and paging commands necessarily move the cursor
within the text, but they can’t be used to home the cursor to an exact
position at which changes are to be made. For this, you’ll have to use
commands described in subsequent sections.

- unitools.48 -

Z Searching for Strings Z,

2.3 Searching for strings

In the previous chapter, we described the string search command,
/, Which causes Z to scan forward, looking for the string. In this
section, we describe the rest of the searching capabilities of Z. First,
the rest of the string searching commands are described; then, the
capability of Z to match patterns called "regular expressions", of which
specific character strings are a special case, is described.

2.3.1 The other string-searching commands

The other string-searching commands are:

? Behaves like /, but Z finds the previous occurence of
the string rather than the next;

n Repeats the last string-search command;

N Repeats the last string-search command, but in the
opposite direction;

“se WS=0 and :se ws=1
Turns the wrap scan option off or on, respectively.

When Z reaches the end or beginning of text without finding the
String of interest, it normally "wraps around" to the opposite end of the
text and continues the search. It does this because by default the "wrap
scan" option is on. This option can be disabled by entering the "set
option" command:

‘se ws=0

thus causing the search to end when it reaches the end of text. The
option can be reenabled by entering:

‘se ws= |

Note that for this colon command, as for all colon commands,
carriage return must be typed before the command is executed.

2.3.2 Regular expressions

The string you tell Z to search for is actually a "regular expression".
A regular expression is a pattern which is matched to character strings.
The pattern can define a specific sequence of characters which
comprise the string; in this case, only that specific string matches the
pattern. The pattern can also contain special characters which match a
class of characters; in this case, the pattern can match any of a number
of character strings.

For example, one such special construct is square brackets
surrounding a character string; this matches any character in the
enclosed string. So the regular expression

ab[xyz]cd

- unitools.49 -

Z Searching for Strings Z

matches the strings

abxcd
abycd
abzcd

Another special character is *, which matches any number of
occurences of the preceding pattern. For example, the regular
expression

ab*c

matches many strings, including

and so on. And the pattern

ab[xyz]*cd

matches many strings, including:

abcd
abxcd
abxycd
abzzxcd

and so on.

The complete list of special characters and constructs that can be
included in regular expressions is:

A When the first character of a pattern, it matches the
beginning of the line |

$ When the last character of a pattern, it matches the
end of the line;
Matches any single character;

< Matches the beginning of a word;
> Matches the end of a word;
[str] Matches any single character in the enclosed string;
[“str] Matches any single character not in the enclosed

string;
[x-y] Matches any character between x and y;
* Matches any number of occurences of the preceding

pattern.

2.3.3 Disabling extended pattern matching

The "magic" option enables and disables the extended pattern
matching capability. To turn off this option, enter:

‘se ma=0

And to turn it on, enter:

- unitools.50 -

Z Searching for Strings Z

‘se ma=1

By default, extended pattern matching is disabled.

With the magic option off, only the characters “ and § are special
in patterns.

- unitools.51 -

Z Local Moves Z

2.4 Local Moves

In this section we’re going to present more commands for moving
the cursor fairly short distances; up or down a few lines, along the line
on which it’s located, and so on. We’ve already presented several,
namely CR (carriage return), space, and backspace; but there are many
more, reflecting the importance of finely-tuned, quickly-executed
movements to the user.

2.4.1 Moving around on the screen:

Here are some commands for moving the cursor short distances:

h Moves to the left one character;
j Moves down one line, leaving the cursor in the same

column;
k Moves up one line, leaving the cursor in the same

column;
l Moves right one cursor;

The keys *H, LF, *K, and *L are synonyms for h,j,k, and 1,
respectively.

These commands can be preceded by a number, which specifies the
number of times the command is to be repeated.

Z has commands for moving the cursor to the top, middle, and
bottom of the screen; they are H, M, and L, respectively. The cursor is
positioned at the beginning of the line to which it’s moved.

Remember the - command, which moved the cursor up a line, to
the first non-whitespace character? As you might expect, + will move
the cursor down a line, to the first non-whitespace character. + is thus
equivalent to CR, the command presented in the last chapter.

2.4.2 Moving within a line

We’ve already presented several commands for moving the cursor
around within the line on which it’s located:

h, “H, backspace Left one character;
1, “L, space Right one character;

Here are a few more:

A Moves the cursor to the first non-whitespace character
on the line;

0 Moves to the first character on the line;
$ Moves to the last character on the line;

A few commands fetch another character from the keyboard, search
for that character, beginning at the current cursor location, and leave

the cursor near the character:

f Scan forward, looking for the character, and leave the

- unitools.52 -

Z Local Moves Z

cursor on it;
t Same as f, but leave the cursor on the character

preceding the found character;
F Same as f, but scan backwards;
T Same as t, but scan backwards.

Repeat the last f, t, F, or T command;
Repeat the last f, t, F, or T command in the opposite
direction.

ca
e

ey

we

Finally, the command | moves the cursor to the column whose
number precedes the command. For example, the following command
moves the cursor to column 56 on the current line:

56]

2.4.3 Word movements

Z has several commands for moving the cursor to the beginning or
end of a word which is near the cursor:

Ww Moves to the beginning of the next word;
b Moves to the beginning of the previous word;
e Moves to the end of the current word.

For the preceding commands, a “word" is defined in the normal
way: a string of alphabetical and numerical characters surrounded by
whitespace or punctuation. There is a variant of each of these
commands, differing only in the definition of a "word": they think that
a word is any string of non-whitespace characters surrounded by
whitespace. The variant of each of these commands is identified by the
same letter, but in upper case instead of lower:

W Moves to the beginning of the next big word;
B Moves to the beginning of the previous big word;
E To the end of the current big word.

Each of these commands can be preceded by a number, specifying
the number of times the command is to be repeated. For example,

Sw

moves forward five words.

The word movement commands will cross line boundaries, if
necessary, to find the word they’re looking for.

2.4.4 Moves within C programs

Z has several commands for moving the cursor within C programs:

]] and [[Move to the opening curly brace, {, of the next or
previous function, respectively;

% Move to the parenthesis, square bracket, or curly
bracket which matches the one on which the cursor is
currently located;

- unitools.53 -

Z Local Moves Z

{ and } Move to the preceding or next blank line.

The [[and]] commands assume that the opening and closing curly
braces for a function are in the first column of a line, and that all
other curly braces are indented.

As an example of the *%’ command, given the statement:

while (((a = getchar()) != EOF) && (c != ’a’))

with the cursor on the parenthesis immediately following the ’while’,
the % command will move the cursor to the last closing parenthesis on
the line.

2.4.55 Marking and returning

Z has commands which allow you to set markers in the text and
later return to a marker. Twenty six markers are available, identified
by the alphabetical letters.

Unlike the other commands described in this section, these
commands are not limited to moves within the current area of the
cursor - they can move the cursor anywhere within the text.

A marker is set at the current cursor location using the command

mx

where x is the letter with which you want to mark the location.

There are two commands for returning to a marked position:

‘x Moves the cursor to the location marked with the
letter °x’;

"x Moves the cursor to the first non-whitespace character
on the line containing the ’x’ marker.

Remember, to generate backquote on the Macintosh, hold down the
control key and then type backquote.

Occasionally, you may accidently move the cursor far from the
desired position. There are two single quote commands for returning
you to the area from which you moved:

66
Returns the cursor to its exact starting point;
Returns the cursor to the first non-whitespace
character on the line from which the cursor was
moved.

99

For example, if the cursor is on the line:

if (a>=’m’ && a <= 2’)

at the character ’<’, then following a command which moves the cursor

far away, the command “ will return the cursor to the ’<’ character,
and the command ” will return it to the beginning of the word ’if.

- unitools.54 -

Z Local Moves Z

2.4.6 Adjusting the screen

The z command is used to redraw the screen, with a certain line at
the top, middle, or bottom of the screen.

To use it, place the cursor on the desired line, then enter the Z
command, followed by one of these characters:

CR To place the line at the top of the screen;
, To place it in the middle of the screen;
- To place it at the bottom.

The z command isn’t a true cursor motion command, because the
cursor is in the same position in the text after the command as before.

- unitools.55 -

Z Making Changes Z,

2.5 Making changes

That concludes the presentation of cursor movement commands.
The next several sections describe commands for making changes to
the text.

2.5.1 Small changes

In this section we present commands for making small changes.
We’ ve already presented two such commands in the previous chapter:

x Which deletes the character at which the cursor is
located;

dd Which deletes the line at which the cursor is located.

The other commands are:

xX Delete the character which precedes the cursor; can be
preceded by a count of the number of characters to be
deleted;

D Delete the rest of the line, starting at the cursor
position;

rx Replace the character at the cursor with ’x’;
R Start overlaying characters, beginning at the cursor.

Type the escape key to terminate the command.
(Remember, this key differs from system to system);

S Delete the character at the cursor and enter insert
mode; when preceded by a number, that number of
characters are deleted before entering insert mode;

S Delete the line at the cursor and enter insert mode;
when preceded by a count, that number of lines are
deleted before entering insert mode;

C Delete the rest of the line, beginning at the cursor,
and enter insert mode;

J Join the line on which the cursor is positioned with
the following line; when preceded by a count, that
many lines are joined.

2.5.2 Operators for deleting and changing text

Z has a small number of commands, called ’operators’, for
modifying text. They all have the same form, consisting of a single
letter command, optionally preceded by a count and always followed
by a cursor motion command. The count specifies the number of times
the command is to be executed. The command affects the text from
the current cursor position to the destination of the cursor motion
command, if the starting and ending position of the cursor are on the
same line. If these positions are on different lines, the command
affects all lines between and including the lines which contain the

starting position and ending positions.

- unitools.56 -

Z Making Changes Z

In this section, we’re going to describe the operators for deleting
and changing text, d andc.

d Deletes text as defined by the cursor motion
command;

Cc Same as d, but Z enters insert mode following the
deletion.

For example,

dw Deletes text from the current cursor location to the
beginning of the next word;

3dw Deletes text from the cursor to the beginning of the
third word;

d3w Same as ’3dw’;

db Deletes text from the current to the beginning of the
previous word;

d‘a Deletes text from the cursor to the marker ’a’, if the
marker and the starting cursor position are on the
same line. Otherwise, deletes lines from that on which
the cursor is located through that on which the marker
is located; On the Macintosh, generate backquote by
holding down the control key and then typing the
backquote key.

d/var Deletes text either from the cursor to the string "var"
or between the lines at which the cursor is currently
located and that on which the string is located.

d$ Deletes the rest of the characters on the line, and
hence is equivalent to D.

2.5.3 Deleting and changing lines

In the last chapter, we presented a command for deleting lines: dd.
As you can see now, this is a special form of the d command, because
the character following the first d is not a cursor motion command.

For all the operator commands, typing the command character
twice will affect whole lines. Thus, typing cc will clear the line on
which the cursor is located and enter insert mode. Preceding cc with a
number will compress the specified number of lines to a single blank
line and enter insert mode on that line.

2.5.4 Moving blocks of text

When text is deleted using the d or c command, it’s moved to a
buffer called the "unnamed buffer". (There are other buffers available,
which have names. More about them later).

Data in the unnamed buffer can be copied into the main text
buffer using one of the "put" commands:

p Copies the unnamed buffer into the main text buffer,
after the cursor;

- unitools.57 -

Z Making Changes Z,

P Same as p, but the text is placed before the cursor.

Thus, the delete and put commands together provide a convenient
way to move blocks of text within a file.

The contents of the unnamed buffer is very volatile: when any
command is issued that modifies the text, the text which was modified
is placed in the unnamed buffer. This is done so that the modification
can be ’undone’, if necessary, using one of the ’undo’ commands. For
example, if you delete a character using the x command, the deleted
character is placed in the unnamed buffer, replacing whatever was in
there. So you have to be careful when moving text via the unnamed
buffer: if you delete text into the unnamed buffer, expecting to put it
back somewhere, then issue another command which modifies the text
before issuing the put command, the deleted text is no longer in the
unnamed buffer.

As you'll see, the named buffers can also be used to move blocks of
text, and their contents are not volatile.

2.5.5 Duplicating blocks of text: the ’yank’ operator

The ’yank’ operator, y, copies text into the unnamed buffer without
first deleting it from the main text buffer. When used with the ’put’
command, it thus provides a convenient way for duplicating a block of
text. | |

Since y is an operator, it has the same form as the other operators:
an optional count, followed by the y command, followed by a cursor
motion command. The command yanks the text from the cursor
position to the destination of the cursor motion command, if the
starting and ending positions are on the same line. If they are on
separate lines, a whole number of lines are yanked, from that on which
the cursor is currently located through that to which the cursor would
be moved by the cursor motion command. The text is yanked into the
unnamed buffer.

For example,

yw Copies text from the cursor to the next word into the
unnamed buffer;

y3w Copies text from the cursor to the beginning of the
third word;

3yw Same as ’y3w;
y‘a Copies text from the cursor location to the marker ’a’

into the unnamed buffer, if the two positions are on
the same line. Otherwise, copies entire lines between
and including those containing the two positions.

As a special case, the command yy will yank a specified number of
whole lines. The command Y is a synonym for yy. For example,

yy Yanks the line at which the cursor is located;

- unitools.58 -

Z Making Changes Z

3Y Yanks three lines, beginning with the one on which
the cursor is located.

2.5.6 Named buffers

In addition to the unnamed buffers, Z has twenty six named
buffers, each identified by a letter of the alphabet, which can used for
rearranging text. Text can be deleted or yanked into a named buffer
and put from it back into the main text buffer.

The advantage of these buffers over the unnamed buffer in
rearranging text is that their contents are not volatile: when you put
something in a named buffer, it stays there, and won’t be overwritten
unexpectedly. Also, as you’ll see, the named buffers can be used to
move text from one file to another.

To yank text into a named buffer, use the yank operator, preceded
by a double quote and the buffer name, and followed by a cursor
motion command. For example, the following will yank three words
into the ’a’ buffer:

"ay3w

and the following yanks four lines into the ’b’ buffer, beginning with
the line on which the cursor is located:

"b4yy

Text is deleted into a named buffer in the same way: the delete
command is used, preceded by a double quote and the buffer name.
For example, to delete characters from the cursor to the ’a’ marker
into the ’h’ buffer:

"hd'a

The preceding command, when the source and destination cursor
positions are on separate lines, will delete a number of whole lines into
the ’h’ buffer, from that on which the cursor is initially located
through that containing the destination position.

As you remember, on the Macintosh, the backquote key is
interpreted as the escape key. To generate a real backquote for use in
the preceding example, you must hold down the control key (the key
with the strange symbol next to the option key) and then type

backquote.

To delete ten lines into the ’c’ buffer:

"clOdd

Text in a named buffer is put back into the main text using the
’put? commands p and P, preceded by a double quote and the buffer

name. For example:

ap Puts text from the ’a’ buffer, after the cursor;

- unitools.59 -

Z, Making Changes Z,

ZP Puts text from the ’z’ buffer, before the cursor.

2.5.7 Moving text between files

The named buffers are conveniently used to move text from one
file to another. First yank or delete text from one file into a named
buffer; then switch and begin editing the target file, using the -e
command:

‘e filename

(More on this later). Then move the cursor to the desired position;
then put text from the named buffer.

This technique only works when using named buffers, not with the
unnamed buffer. When switching to a new file, the unnamed buffer is
cleared, but the named buffers are not.

2.5.8 Shifting text

The last two operator commands to introduce are the ’shift’
operators, < and >, which are used to shift text left and right a
tabwidth, respectively.

For example,

>/str

shifts right one tab width the lines from that on which the cursor is
located through that containing the string "str".

Following the standard operator syntax, repeating the shift operator
twice affects a number of whole lines:

5<< Shifts five lines left;
>> Shifts one line right.

2.5.9 Undoing and redoing changes

Z remembers the last change you made, and has a command, u,
which undoes it, restoring the text to its original state.

Z also remembers all the changes which were made to the last line
which was modified. Another ’undo’ command, U, undoes all changes
made to that line.

Finally, the period command, ’.’, reexecutes the last command that
modified text.

- unitools.60 -

Z Inserting Text Z

2.6 Inserting text

We’ve already presented most of the commands for entering insert
mode:

Append after cursor;
Insert before cursor;
Open new line below cursor;
Open new line above cursor;
Delete to end of line, then enter insert mode;
Delete characters, then enter insert mode;
Delete lines, then enter insert mode; N

X

A
Q
O
O
®

In this section we want to present the remaining few commands for
entering insert mode, and present some other features of insert mode.

2.6.1 Additional insert commands

The other commands for entering insert mode are:

A Append characters at the end of the line on which the
cursor is located. This is equivalent to $a;

I Insert before the first non-whitespace character on the
current line. This is equivalent to “7.

2.6.2 Insert mode commands

Some editing can be done on text entered during insert mode,
using the following control characters:

backspace Delete the last character entered;
“AH Same as *backspace’ character;
AD Same as "backspace’;
AX Erase to beginning of insert on current line;
AV Enter next character into text without attempting to

interpret it.

“V is used to enter non-printing characters into the text. For
example, to enter the character ’control-A’ into the text, type

AVA

That is, hold down the control key, then type the ’V’ key, then the ’A’
key, then release the control key. As mentioned earlier, non-printing
characters are displayed as two characters: ’*’ followed by a character
whose ASCII code equals that of the non- printing character plus 0x40.

2.6.3 Autoindent

The Z ’autoindent’ option is useful when entering C programs.
When you are in insert mode and type the ’carriage return’ key, with
the autoindent option enabled, the cursor will be automatically

indented on the new line to the same column on which the first non-
whitespace character appeared on the previous line. This feature is
useful for editing C programs because it encourages statements which

- unitools.61 -

Z Inserting Text Z

are part of the same compound statement to be indented the same
amount, thus making the program more readable.

Z autoindents a line by inserting tab and space characters at the
beginning of a new line. If you don’t want to be indented that much,
you can backspace over these automatically inserted tabs and spaces
until you reach the desired degree of indentation.

The autoindent option can be selectively enabled and disabled using
the ’set options’ command:

‘se ai=0 _—to disable autoindent
‘se ai=l _— to enable autoindent

When Z 1s activated, autoindent is enabled.

- unitools.62 -

Z Macros Z

2.7 Macros

Z allows you to define a sequence of commands, called a ’macro’,
and then execute the macro one or more times.

When a macro is defined to Z, it’s placed in a special buffer, called
the macro buffer, and then executed once. There are two ways to
define a macro to Z: immediately and indirectly.

2.7.1 Immediate macro definition

An ’immediate’ macro definition is initiated by typing the
characters

>

Z responds by clearing the status line, displaying these characters on
the line, and waiting for you to enter the sequence of commands.

As you enter the commands, Z displays them on the status line and
enters them immediately into the macro buffer; that’s why it’s called
"immediate macro definition’.

If you make a mistake while entering commands, you can simply
backspace and enter the correct characters.

To terminate the definition, type the carriage return key. Z will
then execute the sequence of commands in the macro buffer. The
contents of this buffer are not altered by executing the macro, so you
can reexecute the macro without reentering it, as described below.

2.7.2 Some examples

The following macro advances the cursor one line, and deletes the
first word on the new line:

+dw

contains two commands: +, which advances the cursor, and dw, which
deletes the word beneath the cursor.

The next macro moves the cursor to the previous line and deletes
the last character on the line:

-$x

It contains three commands: -, which moves the cursor to the previous
line; 8, which moves the cursor to the last character on that line; and
x, which deletes the character beneath the cursor.

You can also insert text using a macro. You enter insert mode using
one of the normal insert commands. The characters which follow the
insert command on the macro line, up to a terminating escape
character, are then inserted into the text. The escape character causes

Z to return to command mode and continue executing commands in
the macro which follow the insert command.

- unitools.63 -

Z Macros z

Remember, the key used as the escape character differs from
system to system. See section | of this chapter for details.

For example, the following macro advances the cursor to the next
line, deletes the second word on the line, inserts the character string
"and furthermore", and deletes the last word on the line:

+wdwiand furthermore<ESC>$bdw

The last macro contains the following commands:

+ Advances the cursor to the next line;
w Moves the cursor to the second word on the line;
dw Deletes the word beneath the cursor;
iand furthermore<ESC>

Inserts the text "and furthermore". <ESC> stands for
the escape key;

$ Moves the cursor to the last character on the line;
b Moves the cursor to the beginning of the last word on

the line;
dw Deletes that word.

Z also allows you to search for a string from within a macro. Enter
in the macro the ’string search’ command (for example, /), followed
by the string, followed by the ESC character. For example, the
following macro moves the cursor to the word "Ralph" and deletes it

/Ralph<ESC>dw

It contains the commands

/Ralph<ESC>
Moves the cursor to "Ralph". <ESC> stands for the
escape key;

dw Deletes "Ralph".

The following macro finds "Ralph" and replaces it with "Sarah":

/Ralph<ESC>cwSarah<ESC>

It contains the commands:

/Ralph<ESC>

Moves the cursor to "Ralph";
cwsarah<ESC>

Changes "Ralph" to "Sarah".

2.7.3 Indirect macro definition

The other way of defining a macro is to yank a line containing a
sequence of commands from the main text buffer into a named buffer
and then have Z move the contents of the named buffer to the macro
buffer.

- unitools.64 -

Z Macros ZL

Commands for indirect macro definition are:

@x Causes Z to move the contents of the ’x’ buffer to the
macro buffer and then execute it once;

XV A synonym for ’@x’.

Indirect macro definition of macros has several advantages over
immediate definition: for one, if a macro defined immediately is
incorrect, you have to reenter the entire macro. With an indirectly
defined macro, you can edit the macro definition in the main text
buffer and then move it back to the macro buffer.

Another advantage is that you can store several macros in the
named buffers and easily reexecute a macro, without having to reenter
it. With immediate definition, when a new macro is defined, the
previously defined macro is lost, and must be reentered to be
reexecuted.

One difference between entering macros immediately and via the
text buffer and named buffer concerns the method for specifying the
end of a search string and for exiting insert mode. With immediate
definition, you do this by typing the ESC key directly. For indirect
definition, in which the macro is first entered into the main text
buffer, typing the ESC key would cause Z to exit insert mode, not to
enter the ESC key into to text of the macro. In this case, you enter the
ESC key by first typing control-V, then ESC. This causes Z to enter
the ESC character into the text of the macro and remain in insert
mode.

2.7.4 Re-executing macros

Once a macro is defined and is in the macro buffer, it can be re-
executed by typing one of the commands:

@@
Vv

Preceding the command with a count will cause the macro to be
executed the specified number of times.

2.7.5 Wrapping around during macro execution

While executing a macro, Z may reach the beginning or end of the
text, and want to continue beyond that point. This is especially true
when reexecuting macros. The ’macro wrap’ option, wm, specifies
whether Z should terminate the macro execution at that point, or
continue at the opposite end of the text.

This option is enabled and disabled using the ’set options’
command:

se wm=0 To disable macro wrapping;
‘se wm= 1 To enable it.

- unitools.65 -

Macros

When Z starts, this option is enabled.

- unitools.66 -

Z Ex Commands Z

2.8 The Ex-like commands

The ’substitute’ and ’repeat last substitution’ commands are part of
a set of commands that are being added to the Z editor and that are
similar to commands in the UNIX Ex editor. In this section we will
first generally describe the syntax of these commands, then the
substitute’ command, and finally the ’repeat last substitution’
command.

The Ex-like commands consist of a leading colon, followed by zero,
one, or two addresses identifying the lines to be affected by the
command, followed by a single-letter command, followed by command
parameters, and terminated by a carriage return. Most commands have
a default set of lines that they affect, thus frequently allowing you to
enter commands without explicitly specifying a range.

These commands support regular expressions, as defined in the Z
documentation, for identifying addresses and strings to be searched for.

2.8.1 Addresses in Ex commands

An address can be one of the following:

* A period, ., addresses the current line; that is, the line on
which the cursor is located.

* The character $ addresses the last line in the edit buffer.

* A decimal number n addresses the n-th line in the edit buffer.

* *x addreses the line marked with the mark name x. Lines are
marked with the m command.

* A regular expression surrounded by slashes (/) addresses the
first line containing a string that matches the regular
expression. The search begins with the line following the
current line and continues towards the end of the edit buffer.
If a line isn’t found when the end of the buffer is reached,
and if Zs ws option is set to | (1e, by the -se ws=] command)
the search continues at the beginning of the buffer, stopping
when the current line is reached.

* A regular expression surrounded by question marks (?) also
addresses the first line containing a string that matches the
regular expression. But in this case, the search begins with
the line preceding the current line in the edit buffer and
continues towards the beginning of the buffer. If a line isn’t
found when the beginning of the buffer is reached, and if Z’s
ws option is set to 1 (ie, by the -se ws=] command) the search
continues at the end of the buffer, stopping when the current
line is reached.

* An address followed by a plus or a minus sign, which in turn
is followed by a decimal number n addresses the n-th line

- unitools.67 -

Z, Ex Commands Z

following or preceding the line identified by the address.

When two addresses are entered to define the range of lines
affected by a command, the addresses are usually separated by a
comma. They can also be separated by a semicolon; in this latter case,
the current line is set to the line defined by the first address, and then
the line corresponding to the second address is located.

When no value is specified for the first address in an address range,
it’s assumed to be the current line or the first line in the buffer,
depending on whether the second address was preceded with a comma
or a semicolon. When no value is specified for the second address in
an address range, it’s assumed to be the last line in the buffer. Thus, if
neither the beginning nor the ending address of a range is specified,
the range consists of either all the lines in the buffer or the lines from
the current through the last line in the buffer, depending on whether
comma or semicolon is used to separate the unspecified addresses.

2.8.2 The ’substitute’ command

The ’substitute’ command has the following form:

‘[range]s/pat/rep/[options]

where square brackets surround a parameter to indicate that the
parameter is optional.

Z searches the lines specified by range for strings that match the
regular expression pat, replacing them with the rep string. If range
isn’t specified, just the current line is searched. When the command is
completed, the cursor is left on the character following the last
replaced string.

Normally, Z automatically replaces a string that matches pat.
Specifying c as an option causes Z instead to pause when it finds a
matching string, ask if you want the string to be replaced, and make
the replacement only if you give your permission.

Normally, Z will replace only the first pat-matching string on a line.
Specifying g as an option causes Z instead to replace all matching
strings on a line; in this case, after Z replaces a string on a line, it
continues searching for more strings on the line at the character
following the replaced string.

An ampersand (&) in the replacement string rep is replaced by the
string that matched pat. The special meaning of & can be suppressed
by preceding it with a backslash, \.

A replacement string consisting of just the percent character (%) is
replaced in the current substitution by the replacement string that was
used in the last substitution. The special meaning of % can be
suppressed by preceding it with a backslash, \.

- unitools.68 -

Z Ex Commands Z

2.8.2.1 Examples

:S/abc/def/
Search the line on which the cursor is located for the
string abc; if found, replace it with the string def.

"1,$s/ab*c/xyz/s
Search all lines in the edit buffer for strings that begin
with a, end in c, and have zero or more b’s in
between; replace such strings with xyz. On any given
line, only the first occurrence of a string that matches
the pattern is replaced.

*/{/;/}/s/for/ while/c
Find the first line following the current line that
contains a {; then find the first line following this line
that contains a }. In the lines between and including
these lines, search for the string for; for each such
string, ask if it should be replaced; if yes, replace it
with while.

2.8.3 The ’& (repeat last substitution) command

The & command has the form

‘[range] &

where brackets indicate that the parameters are optional.

The & command causes the last ’substitute’ command to be
executed again, using the same search pattern, replacement string, and
options as were used in the previous command. The command
searches the lines that are specified in the & command’s range; if range
isn’t specified, the substitution is performed on just the current line.

- unitools.69 -

Z, Starting and Stopping Z Z,

2.9 Starting and stopping Z

You already know how to start and stop Z, from the previous
chapter. In this section we present more information related to the
Starting and stopping of Z.

2.9.1 Starting Z

In the previous chapter, we said that Z was started by specifying
the name of the file to be edited on the command line:

Z filename

Z can also be started without specifying a file name or by
specifying a list of files to be edited.

2.9.1.1 Starting Z without a filename

When Z is started without a filename being specified, you will
normally tell Z the name of the file to be edited, once it’s active, using
the -e command:

‘e filename

It isn’t absolutely necessary for Z to know the name of the file
you're editing: Z will allow you to create and modify text in the text
buffer without knowing the name of the file to which you intend to
write the text. But then you'll have to explicitly tell Z to write the text,
using the command

-w filename

Z can’t automatically write the text, since it doesn’t know which file
you're editing.

2.9.1.2 Starting Z with a list of files

Z can be started and passed a list of names of files to be edited, as
follows:

Z file! file2 ...

Z will remember the list, and make the first file in the list the edit
file’; that is, read the file into the main text buffer and allow it to be
edited.

Z has a command, -n, which will make the next file in the list the
edit file, after writing the contents of the text buffer back to the
current edit file.

File lists are discussed in more detail below.

2.9.1.3 The options file

Z has several options for controlling its operation in different

situations. You’ve already met most of them, including the
"autoindent’, ’macro wrap’, and other options. The complete list of

- unitools.70 -

Z, Starting and Stopping Z Z,

options will be presented later. In this section, we want to present
another feature of Z related to options; the ability to set options
automatically, when Z is started.

When Z starts, it will read options from the file named ’z.opt’, if it
exists. Z looks for the file in different places on different systems.

On PCDOS and on the Macintosh, the environment variable ZOPT
defines the name of the options file. If this variable doesn’t exist, or if
the file isn’t found there, Z then looks for the file z.opt on the current
directory on the default drive.

Each line in the options file defines the value of one option, with a
statement of the form

opt=val

where ’opt’? is the name of the option, and ’val’ is its value. For
example, the following sets the ’tab width’ option to 8 characters:

ts=8

2.9.1.4 Setting options for a file

When Z makes a file the ’edit file’ by reading it into the edit
buffer, the file itself can specify the options to be in effect during its
edit session. This feature is most useful in editing files which have
different tab settings.

A file specifies option values by including strings of the form

:opt=val

in the first ten lines of the file. For example, the following line could
be used near the front of a C program, causing a tab width of 8
characters to be used:

/* :ts=8 */

When Z starts editing a file, the tab width 1s set back to the default

- unitools.71 -

Z Starting and Stopping Z Z

value, 4 characters, before the file is scanned for option settings.

2.9.2 Stopping Z

In the preceding chapter we presented the following commands for
stopping Z.:

ZZ If the file’s text in the edit buffer has been modified,
the text 1s written to the file, after changing the
extension of the original file to ".bak".

:q! Stops Z without writing the text to the file.

Two other commands for exiting Z are:

:wq Which is the name as ZZ, except that the text in the
main text buffer is always written to the file, even if
no changes have been made;

"q Which conditionally stops Z. If no changes were made
to the file’s text, Z stops; otherwise, it displays a
message and remains active.

- unitools.72 -

Z Accessing Files Z

2.10 Accessing files

Z has other commands for accessing files besides ZZ and :wq, and
we’re going to discuss them in this chapter.

Z usually knows the name of the file you are editing, and in the
sections that follow we will call this the ’edit file’. Z makes use of this
knowledge, allowing you to write to the edit file without specifying it
by name. For example, the ZZ command writes text to the edit file
without requiring you to enter the name of the file.

Some commands allow you to access files without redefining Z’s
idea of the edit file. The commands described in the next two
subsections fall into this category.

Other commands cause Z to terminate editing of one file and begin
editing another; this new file becomes the edit file. The commands
described in the other sections of this section are of this type.

2.10.1 File names

In the Z commands that require a file name, the name is usually
entered using the standard system conventions. However, some
characters are special to Z:

Refers to the last edit file;
% Refers to the current edit file;
\ Causes the next character to be used in the filename

and not be interpreted.

To enter a file name which contains these characters, precede the
special character with the character ’\’. For example, on PCDOS, to
edit the file

a:\subs\ hello.c

use the command

-e \\subs\\hello.c

On PCDOS, the ’/’ character can also be used as a separator
between directories and between a directory and file name. Thus, the
above command could also be entered as:

-¢ /subs/hello.c

2.10.2 Writing files

The command -w writes the contents of the main text buffer to a
file, without redefining the identity of the current edit file. It has the
following forms:

[Ww Write to the current edit file;
“WwW Write to the specified file;
“wi Same as ’:w filename’, but the file is overwritten if it

exists.

- unitools.73 -

Z, Accessing Files Z

As with all colon commands, carriage return must be typed to cause
Z to execute the command.

When entered without a filename, -w creates a new file having the
name of the current edit file and writes the contents of the edit buffer
to it. This form of the :;w command is commonly used to periodically
save text during a long edit session, to guard against system failures.

The option bk tells Z whether it should save the original edit file
before creating a new one. If bk is 1 the original will be saved, and if
0 it won’t. Z saves the original file by changing its name to .bak. An
existing .bak file will be erased before the rename occurs. For details
on setting options, see the Options section.

When a filename is entered with the :w command, the text is
written to that file, if it doesn’t already exist. If it does, nothing is
written, and Z displays a message on the status line; in this case you
must use the .w/ form of the command to overwrite the file.

The .w/ command unconditionally writes the text to the specified
file, after truncating the file, if it exists, so that nothing is in it. Unlike
the -w command which doesn’t specify a file name, the :w! command
doesn’t save the original file as a ".bak" file.

2.10.3 Reading files

The command

‘r filename

merges one file with a file being edited, without redefining the
identity of the edit file.

It reads the contents of the specified file into the main text buffer,
inserting the new text following the line on which the cursor is
located. It doesn’t alter text which is already in the edit buffer.

2.10.4 Editing another file
The following commands cause Z to stop editing one file and begin

editing another, which thus becomes the ’edit file’:

7e Edit the specified file;
e! Edit the file, discarding changes to the current edit

file;
7€ Reload the current edit file;
e! Reload the current edit file, discarding changes;
:€ Re-edit the previous edit file;

A“ Synonym for ’:e #’. (the command is ’control-*’).

Z begins editing another file by erasing the contents of the main
text buffer and the unnamed buffer, resetting the tab width to four
characters, redrawing the display with the first screenful of lines from
the file, and setting the cursor at the first character in the text.

- unitools.74 -

Z Accessing Files Z

When switching to a new edit file, Z doesn’t change the contents of
the named buffers. Thus, these buffers can be used to hold text which
is to be moved from one file to another and to contain commonly used
macros.

The command

‘e filename

causes the specified file to conditionally become the edit file. The
condition is that changes must not have been made to the text of the
current edit file since it was last written to disk. If this condition is
met, then the switch is made; otherwise, Z displays a message on the
status line and nothing is changed: the identity of the edit file is the
same, the contents of the edit buffer are not modified, and the options
are not changed.

If Z doesn’t let you switch edit files when you enter

:e¢ filename

and you want to save the changes to the current edit file, enter the
sequence:

[Ww
:e filename

You can unconditionally cause Z to begin editing a new file by
entering:

‘e! filename

In this case, Z doesn’t care whether or not you made changes to the
current edit file since it was last written to disk; it begins editing the
new file without changing the previous edit file.

Sometimes the text in the edit file may get hopelessly scrambled,
and you want to get a fresh copy of the edit file contents. The
command

‘e!

specified without a file name will do just that.

Z not only remembers the name of the current edit file you’re
editing; it remembers the name of the last file you edited as well. Z
allows you to refer to this name using the character ’#’ in ‘:e
commands, thus providing a quick means to re-edit the previous edit
file:

:¢ #

causes the previous edit file to conditionally become the current edit
file, and

- unitools.75 -

Z Accessing Files Z

:e! #

causes it to unconditionally become the edit file.

The command “% (that is, control-*) is asynonym for ’:e #’.

Z also remembers the position at which the cursor was located in
the previous edit file, and when you begin re-editing this file it sets
the cursor back to this position.

2.10.5 File lists

Zs ’file list?’ feature is convenient to use when you have several
files to edit: you pass Z a list of the files and begin editing the first
one. When you’re finished with one file, a command switches to the
next file in the list, after automatically saving the changes to the
current edit file. An option to the command prevents Z from saving
changes, and another command "rewinds" the file list so that you’re
back editing the first file in the list again.

There’s two ways to pass the list of files to be edited to Z: as
parameters to the command that starts Z, and as parameters to the ’:n’
command. In each case, Z remembers the list and makes the first file
in the list the ’edit file’. For example,

Z filel file2 file3

starts Z and defines the list of files filel, file2, and file3. Z makes file]
the edit file; that is, prepares it for editing by reading it into the edit
buffer and displaying its first lines.

When Z is active, the command

"n file4 fileS file 6

defines a new list of files: file4 file5 and file6. Z makes file4 the edit
file.

When used without a files list, the ’:n’ command switches from one
file in the list to the next

n Writes the text in the edit buffer to the current edit
file before switching:

:n! Switches without writing anything to the current edit
file.

The ’:rew command "rewinds" the file list; that is, makes the first
file in the list the edit file. This command behaves like the ’:n’
command, in that it by default writes changes to the current edit file
before rewinding; and when an exclamation mark is appended to the
comand, the rewind occurs without writing to the current edit file.

2.10.6 Tags

Z has a feature useful for editing large C programs which contain
many functions distributed over several files. With the aid of a cross-

- unitools.76 -

Z Accessing Files Z

reference file relating ’tags’, that is, function names, to the files

containing them, you simply tell Z the name of the function that you

want to edit and Z makes the file containing it the edit file by reading
it into the edit buffer and positioning the cursor to the function.

The following commands specify the tag of the function to be

edited:

‘ta tag Position to the function named ’tag’ in the appropriate
file, if the current edit file is up to date;

‘ta! tag Same as ’:ta tag’, but the switch to the new file occurs
even if the current edit file isn’t up to date.

When using the ’:ta’ command, the current edit file is considered
up to date’ if the text in the edit buffer hasn’t been modified since it
was last written to the file. When used without the trailing ’!’, the ’:ta’
command won’t switch edit files if the current edit file isn’t up to date;
it'll just display a message on the status line. You can then either write

the text in the edit buffer to the file and re-enter the ’:ta’ command, or

immediately enter the ’:ta!’ command, to switch edit files anyway.

The command

“]
that is, control-], is convenient when, while editing or viewing one
function, you want to edit or examine a function which it calls. You
just set the cursor to the name of the called function and enter ’“]’; Z
will make the file containing the called function the edit file, and
position the cursor to this function.

For example, while examining the file cridvr.c,. you may come
across a call to the function pcdvr, and want to take a look at it. By
positioning the cursor at the beginning of the word ’pcdvr’ and typing
Al’, Z will make the file containing pcdvr the edit file and leave the
cursor positioned at this function.

2.10.7 The CTAGS utility

The utility program ctags creates the cross reference file, tags,
which relates function names to the file containing them.

ctags is activated by a command of the form

ctags filel file2 ...

where filel, ..., are names of files whose functions are to be placed in

the cross reference file. A file name can specify a group of files using

the character ’*’. For example:

ae

specifies all files whose extension is ".c", and

- unitools.77 -

Z Accessing Files Z,

f*c

specifies all files whose first character is ’f and whose extension is ".c".

ctags considers a character string in a file it is scanning to be a
function name, for inclusion in the cross reference file if it’s a valid C
name which begins on the first column of a line and which is
terminated by an open parenthesis character. Thus, the function which
begins

FILE *
fopen(...

would be included in the cross reference, but the function which
begins

FILE * fopen(...

wouldn’t.

clags creates the cross reference file, tags, in the current directory
on the default drive.

When a tags command is given, Z searches for this file in locations
which differ from system to system. On PCDOS, it searches for the
file in the current directory on the default drive.

- unitools.78 -

Z Executing System Commands Z

2.11 Executing system commands

On PCDOS, Z has two commands which allow you to execute
system commands while Z is active and then return to Z.:

‘!cmd Executes the system command ’cmd’;
a Re-executes the last command.

For example,

‘Idir *.c

executes the system command ’dir *.c’ and returns to Z.

- unitools.79 -

Z

2.12 Options

Options Z

Z has has several options under user control which define how Z
behaves in certain situations. Most of these options have been
discussed peripherally in previous sections, when appropriate. In this
section we want to focus on the options.

Each option is identified by a code. The options and their codes
are:

al

eb

ma

ts

wm

WS

bk

The ’auto-indent’ option. When this option is enabled
and you begin inserting text on a new line, Z
automatically indents the line by inserting tabs and
Spaces so that the first character you type will be
located in the same column as the first non-whitespace
character on the previous line. By default, this option
is enabled.

The ’error bells’ option. When this option is enabled,
Z will beep when you make a mistake. By default, this
option is enabled.

The ’magic’ option. When this option is enabled,
regular expessions used in string searches can include
extended pattern matching characters. Otherwise, only
the characters ’*’ and ’$’ are special and the extended
pattern matching constructs are gotten by preceding
them with ”’. By default, this option is disabled.

The ’tab set’? option. Specifies the number of
characters between tab settings. By default, the tab
width is four characters.

The ’wrap on macro’ option. When this option is
enabled, and a macro being executed reaches the end
of the buffer, the macro will wrap around to the
beginning of the buffer and continue. By default, this
option is enabled.

The ’wrap on search’ option. When this option is
enabled, and a search for a string reaches the end of
the buffer without finding the string, the search
continues at the opposite end of the buffer. By
default, this option is enabled.

This option defines whether Z, when a -w command is
entered to write the edit buffer to the current edit
file, should save the original edit file before creating a
new one.

An option is enabled by setting it to 1, and disabled by setting it to
0.

- unitools.80 -

Z Z vs. Vi Z

2.13 Z vs. Vi

Z is very similar to the UNIX editor VI:

* Both are full-screen editors, display text in the same way, and
reserve one line of the display for messages;

* They have the same two modes: command and insert;

* Z supports most of the Vi commands. The Z commands are
activated by the same keystrokes and perform the same
functions as their Vi counterparts.

Zand Vi differ in the following ways:

* In Z, the buffer in which text is edited is entirely within RAM
memory; in Vi, the buffer is both in memory and on disk. Because
of this, Z is restricted in the size of program that can be edited, but
Vi is not;

A single copy of Vi can be configured to use any type terminal. A
single copy of Z is pre-configured to use just one terminal:

Vi has an underlying editor, ex, whose commands can be executed
while Vi is active. Z doesn’t have an underlying editor. However, Z
does support some ex commands directly; these are the commands
whose first character is ’:’. (Vi interprets the *:’ as a request to
execute the ex command which is entered after the ’:’):

Vi has commands and options useful for editing documents and for
editing LISP programs, but Z doesn’t;

With Vi, you can create a shell and suspend Vi while executing
commands from within the new shell. With some Vis, you can also
suspend Vi while executing commands from the shell that activated
Vi. Z doesn’t support either of these features, although it will allow
you to suspend Z while executing a single system command;

Vi saves the last nine deleted blocks of text, and has commands
with which it can recover them, if necessary. Z lets you recover the
last deleted block;

With Vi, operator commands can affect exactly the characters
between the starting and ending cursor positions, even when the
positions are on different lines. It has variations of these commands
which allow whole lines to be affected, between and including the
lines containing the two positions.

In Z, operator commands in which the starting and ending
cursor positions are on different lines always affect whole lines,
between and including the lines containing the two positions.

- unitools.81 -

Z System-dependent features Z

2.14 System-dependent features

2.14.1 IBM PC Features

The following features are supported by the PCDOS version of the
Z text editor:

* Two versions of Z are supplied.
* The PC’s cursor-motion keys move the cursor.
* The function keys cause macros to be executed.

These features are discussed in the following paragraphs.

2.14.1.1 Two versions of Z

Two versions of the editor supplied, z and pcz, which differ only in
the speed with which they access the screen.

Both editors require an IBM PC or an IBM PC look-alike. pcz
performs direct screen I/O and is much faster at drawing the screen
than z. It runs only on systems with very close compatibility with an
IBM PC.

z 1s slower than pcz and requires ROM BIOS compatibility with the
IBM PC.

2.14.1.2 Key substitutions

When you type certain special keys on a PC keyboard, keys that
normally don’t have any meaning to Z, Z substitutes for these keys
characters that do have meaning to Z The following table lists these
special keys and the characters that are substituted for them. As shown
in the table, for each special key up to three possible substitutions can
be made: the Normal column indicates the substitutions when neither
the shift nor the control key is being held down when a key is typed;
the Shift and Control columns define the substitutions that are made
when a special key is typed while the shift or control key is being held
down, respectively.

- unitools.82 -

Z System-dependent features Z

Typed ke Substituted characters

yP y Normal | Shift | Control

Home “ lg Z\r
Up Arrow k H

PgUp AU AB [[
Left Arrow h B b
5 (keypad) %

End $ G Z-
Down Arrow j L

PgDn “D AF 1]
Ins i O
Del x D

- (keypad) - -
+ (keypad) + +

In this table, \r stands for "carriage return"; and * stands for
“control key".

If you type one of the special keys while in insert mode, except
when holding down the shift key, Z will return to edit mode and then
execute the command that corresponds to the substituted characters.
In the special case, that is, typing a special key with shift depressed
while in edit mode, the appropriate character is entered into the edit
buffer.

You can enable and disable the substitutions that are normally made
when a special key is typed with the shift key depressed, by setting the
option xt to | or 0, respectively (ie, by entering -se xt=J or -se xt=0).

2.14.1.3 Function key macros

With the PC version of Z, macros containing up to 19 characters
can be associated with function keys and then executed when the
function key is typed. Up to four macros can be associated with a
given function key: the macro that’s executed depends on whether the
shift, control, alternate, or none of these is depressed when the
function key is typed.

You can execute a function key macro while in insert mode; in this
case, Z will return to edit mode and then execute the macro.

To define the macro that’s associated with a function key, enter a
command of the form

-s© XnN=Macro

where n is the number of the function key. x is s, c, a, or f,
depending on whether the macro is to be executed when the function
key is typed in conjunction with the shift, control, or alternate key, or

with none of them, respectively.

- unitools.83 -

Z

For a list of the macros that are associated with the function keys,
type -se all.

For your convenience, Z,
commonly-used commands with the function keys. This association is
listed in the following table. You can of course redefine the function
key-macro association as described above. In this table, \r stands for

System-dependent features

when

the carriage return character.

it starts, associates

Function key Associated Macros

Normal Shift Control Alternate

Fl x\r :ql\r W\r "a
F2 :! iM! ‘dir ’a
F3 > @@ "b
F4 "se se ts= ‘se ma= ’b
F5 rew\r rew\r "Cc
F6 ‘ta ‘ta! A] "C
F7 e#\r e! #\r ‘f\r "d
F8 7e e! ‘e\r ’"d
F9 n\r n!\r n ‘se xt=O\r
F10 w\r wi “Ww se xt=1\r

- unitools.84 -

LZ

3. Command Summary

Starting Z

Zz name

Z namel name?

The Display

~ lines
@ lines
AX.

tabs

Options

ai=1/0
eb=1/0
ma=0/1
ts=val
wm=1/0
ws=1/0
bk=1/0

Adjusting the Screen

AF
AB
AD
AU
zCR
Z-

Z.

Positioning within File

Command Summary

edit file name
edit file namel, rest via :n

lines past end of file
lines that don’t fit on screen
control characters
expand to spaces, cursor on last

auto-indent on/off
error bells on/off
magic off/on
tab width (4)
wrap on search when executing macro
wrap on search scan
save original file as .bak

forward screenful
backward screenful
scroll down half screen
scroll up half screen
redraw, current line at top
redraw, current line at bottom
redraw, current line at center

go to line (default is end of file)
go to line (default is end of file)
move cursor to pat searching forwards
move cursor to pat searching backwards
repeat last / or ?
repeat last / or ? in reverse direction
next nag"

previous "“{"
find matching (), {}, or [].

- unitools.85 -

Command Summary

Marking and Returning

66
previous context
first non-white at previous context
mark position with letter ’x’
to mark ’x’
first non-white at mark ’x’

top of screen
middle of screen
bottom of screen
next line, first non-white
next line, first non-white
previous line, first non-white
next line, same column
next line, same column
previous line, same column
previous line, same column

beginning of line
first non-white at beginning of line
end of line
forward a character
forward a character
forward a character
backwards a character
backwards a character
find character ’x’ forward
find character ’x’ backwards
position before character ’x’ forward
position before character ’x’ backwards
repeat last f, F, t or T
repeat last f, F, t or T in reverse
direction
move to specified column number

- unitools.86 -

Z

Words and Paragraphs
m
a
m

br

©
w
o
s

<

Insert and Replace

Command Summary

word forward
blank delimited word forward
back word
back blank delimited word
end of word
end of blank delimited word
to next blank line
to previous blank line

append after cursor
append at end of line
insert before cursor
insert before first non-blank in line
open line below current line
open line above current line
replace single character with ’x’
replace characters

Corrections During Insert

erase last character
erase last character
erase to beginning of insert on current line
insert following character directly

delete
delete and insert
left shift
right shift
yank

- unitools.87 -

Command Summary

Miscellaneous Operations

D delete rest of line
C change rest of line
S substitute characters
S substitute lines
J join lines
x delete characters starting at cursor
xX delete characters before cursor
Y yank lines

Yank and Put

p put after current
P put before current
"xp put from buffer ’x’
"xy yank to buffer ’x’
"xd delete to buffer ’x’

Undo and Redo

u undo last change
U restore current line

repeat last change command

Macros

(@x execute macro in buffer ’x’
"XV execute macro in buffer ’x’
(@@ repeat last macro
V repeat last macro

- unitools.88 -

Z

Colon Commands

‘e name
7e
-e! name
‘el

‘f
AG
n
:n!
7n argl arg?
‘rew
‘rew!l
:ta tag
A

‘tal tag
‘!cmd
Ml
7>macro
‘set optl=val opt2=val ...
‘se optl=val opt2=val ...
‘set all

:[range]s/pat/rep/[options]
‘[range]&

Command Summary

edit file name
reedit last file
edit file name, discarding changes
reedit last file, discarding changes
edit alternate file
edit alternate file
edit alternate file, discarding changes
read file "name" into current file
write back to file being edited
write back to file and quit
write to file "name" if does not exist
write to file "name", delete if exists
quit

quit, discarding changes
quit, saving file if modified
quit, saving file if modified
show current file and line
show current file and line
edit next file in list
edit next file in list, discarding changes
specify new list
point back to beginning of list
point back to beginning, discarding changes
position to tag in appropriate file
same as :ta using word at cursor
position to tag, discarding changes
execute cmd, then return (PCDOS only)
re-execute last cmd (PCDOS only)

specify and execute immediate macro
set editor options
set editor options

display current option settings
substitute rep for pat in range

repeat last substitute command

- unitools.89 -

Command Summary

- unitools.90 -

MAKE MAKE

Enhancements to MAKE

The following enhancements have been added to the make utility:

1. Dependencies on files in directories and drives other than the
current one are now supported.

2. Command line macros now supported.

3. Command line options are now order independent.

These enhancements are discussed in detail below.

1. Different directory and drive dependencies

make has been enhanced to permit dependencies on files in
directories and drives other than the current directory and drive. In
previous versions of make, the following dependency line was illegal:

foo.o: a:../front/cc.h

make will now allow the drive name in a directory specification, but
the following rules must be used:

* The colon (’:’) is used in two places, one to mark a dependency,
and one to specify another disk drive. A colon that is marking a
dependency must have a tab or a space on any side of it,
otherwise it is taken to be an alternate drive specification.

* If you specify a file to be in a different drive, do not refer to the
file later with a different path name. This will confuse make and
the consequences from it are undefined.

Here is an example of what NOT to do.

foo.c : a:../src/fo0.0

and then later name it by ...

a: /root/src/foo.c

The forward slash or the backward slash may be used in any
combination to specify other directories.

a:dir/sub/foo.c IS NOT THE SAME AS _— a:/dir/sub/foo.c.

The first name will look for foo.c starting with the current

directory drive a is set to, the second name will look for foo.c in
the path starting at drive a’s top directory, even if this was all
taking place from a makefile on drive b. This is because MS-DOS

unitools make-ap. | v3.2e

MAKE MAKE

remembers a current directory for each drive.

2. Command line macros

You can also define Macros from the command line. Here are
some examples.

make COPT=-DDEBUG
make OBJ=foo.o

However, you cannot specify a macro with whitespace in it.

make NOGOOD=fo00.0 slug.o splat.o

This would define the macro NOGOOD to be foo.o only, and then try
and "make" the files slug.o and splat.o.

Any command line macro specified will override any macro with
the same name in the makefile, for the duration of that execution of
make.

3. Command line argument order

Command line arguments may now be specified in any order.

v3.2e make-ap.2 unitools

OBJ OBJ

New Options for OBJ

1. New obj options

Two new options have been added to obj.

-u_—s- This option tells obj NOT to strip trailing underscores from
names.

-s This option causes obj to truncate external names to 8
characters.

util obj-ap. 1 v3.4a

OBJ OBJ

v3.4a obj-ap.2 util

SOURCE LEVEL DEBUGGER

- sdb.1 -

SDB Aztec C86

Chapter Contents

Source Level Debugger oui. escessscsssscsscsssececssceseseccsssssssscseccesersesszeecs sdb
L. OVETVIEW occ ccssscsssccsssccsssccsscccssscoscscssecessesessscscescscsscecsscecsssecssccessacessnees 5

1.1) Basic Commands wu... cscccccsssssssccessccsssssccecssssecesssscecsecsseeeeees 5
L.2 NAM ou... .cceccsscccessececsssecsssscecsssecssescossecsosscscecsssscsssecscsssececsssesesssees 6

1.2.1 Code and Data SymboIs oo... cceccceccssecccescssrcecscseceees 6
1.2.2 Operator Usage of Names ou... cccscccssccsssccsssecsssesssseeseeees 6

1.3 Loading programs and SyMbolscccceccccccesccceseccececscccensnees 6
1.4 Breakpoint wou... cc ccsssecsssscscssccsssccssssecessssecsccccesscecessceccscseecescecs 7
1.5 Memory-change breakpoints ou... cccsececsscsssscscecsscesecsscesesseees 8
1.6 Separate screens for programs and SAB uu. cccsseseeccccesseens 8
1.7 Trace MmOd€ ou... .ccccscsssssssscsssscecsssececsssscecssecssssesscecesssencesessnensceees 9
1.8 Backtracing ou... ccsssssecsssccsscccsssccsssssssecessscesessscsscesssceeseceecereceees 9
1.9 Macrocccccsssccssscesscssscccsscccsecsssssccscssssscsosessesescecsececsececsseecnsaeeees 9
1.10 Displaying source files wo. cccesccsesccsseccecccecccccecsceesscecsececees 9
1.11 Other features wo. ccsscccsscccssssssssccssccesscsssccscssceceeceeseescees 10

2. USING SDB wiicccccccssssesssssssscssscssssssccssscsscessscscseesacessseessesesasenaceesaeces 1]
2.1 Starting SDB wo csseccsecssscsscecsccecescsssscssecessecescecseceenes 1]
2.2 COMMAMNASccsssssscsssccssscesecsccsssscessecscscesscessesssecssceccenscceseaseces 1]

2.2.1 Defimitions 0.0... .cccccccssscccscsccccssscssccsscceccsssscesssecesseceseesscecsaes 11
2.3 Command eSCriptionscesesscccesesssecccecscscececcocssccecceccuscces 13

2.3.1 The BREAKPOINT (b) commandsecceceeseereee 13
2.3.2 The DISPLAY (d) command oi.......cccecccscssscceesecccecesecees 16
2.3.3 The ’Find source string’ (/) command.cecceeeeees 20
2.3.4 The FRAME (f) commands occ ececcscccesssscesssscceess 21
2.3.5 The GO (g) command wo. eecsssscsssecsssesecscsscssssseceess 21
2.3.6 The INPUT (1) commands oo... ceccsssecscccecsssserececeees 22
2.3.7 The LOAD (1) Commands .00...i. cc ceeecscesscsscececeeccecesscecs 23
2.3.8 The MODIFY MEMORY (m) commands00 24
2.3.9 The OUTPUT (0) commands wou eccesesecesescecssseceess 25
2.3.10 The PRINT (p) command 200... eecsscecesseccecessceccesscees 25
2.3.11 The QUIT (q) Command oie cccssccessecccessscecescceees 32
2.3.12 The REGISTER (r) commando... eeeececccecesssseececeees 33
2.3.13 The SINGLE STEP (s) commands cece eeececeeseeeees 33
2.3.14 The UNASSEMBLE (u) commands oo. ce eceeeeeeeee 34
2.3.15 The VARIABLE (v) command o.oo. ccccceeeceseceseeees 34
2.3.16 The MACRO (x) Command .0..........ceeceecessececesessccecessnece 35
2.3.17 The EXPRESSION commands eee eeseceseecesseeeceees 35
2.3.18 The ’Redirect command input’ (<) commands 36
2.3.19 The HELP (?) command 20.0... eececccesccesseccceseccecsescceees 36

2.3.20 The "Change Mode’ (Z) Command. uu... cecceeeeeseeee 37
3. Command SuMMALY ou... ccsssscecsssscscesssceccsscsscssssescesssescscssseees 38

Aztec C86 SDB

Source Level Debugger

This chapter describes the source level debugger utility sdb that is
provided with some versions of Aztec C86. For a description of the
assembly language debugger, db, see the Assembly Language Debugger
chapter. For a description of other utility programs that are provided
in some Aztec C86 packages, see the Utilities and Unitools chapters.

- sdb.3 -

SDB Source Debugger SDB

NAME

sdb - source level debugger

SYNOPSIS

sdb [options] [progfile] [arg] arg? ...]

DESCRIPTION

sdb is used to debug programs which have been created using the
Aztec C compiler, assembler, and linker.

sdb has all the standard features of a source language debugger.
Some of these features are:

* allows the user to debug at the C source level and at the assembly
language level,

* allows the user to reference memory locations using full C
expressions, (including function calls and conditionals using the
variable names from the source program)

* keeps track of the types and locations of the variables so you
don’t have to,

* allows the display and modification of variables using their C
source names,

* allows the creation of macros that can be saved and reused in the
next sdb session,

* allows the user to display structures and arrays and their
members using their C source names.

In addition, sdb has features specifically tailored to its use with
Aztec C, such as the ability to list the name and parameters of the
currently executing function, and the function that called it, and so on,
back to the initial function. Another special feature is the ability to
display, on entry and exit from each function, the function’s
parameters and return value.

Requirements

A minimum of 256 K bytes of RAM memory is recommended for
use with sdb. The debugger itself uses about 128K.

sdb can only be used on 8086, 8018x, 8028x, and 8088-based
systems running MSDOS or PCDOS, version 2.0 or later.

Preview

The remainder of this description of sdb is in three sections:
overview, which describes sdb features in more detail and introduces
the commands; usage, which describes in full detail how to use sdb;
and a command summary.

- sdb.4 -

SDB Source Debugger SDB

1. Overview

sdb commands consist of one or two characters, the first of which
identifies the command category. If there’s only one command in the
category, then the command has just this one letter; otherwise, the
command has a second letter which identifies the specific operation to
be performed.

1.1 Basic commands

sdb has two types of commands for examining memory: display and
print, whose first characters are d and p, respectively. The ‘display’
commands db and dw simply display hexadecimal bytes and words.

The ‘print? command, p, is more powerful, allowing you to print
variables, arrays, and structures by name, without you having to worry
about data types. For example, you can tell sdb to print a structure
whose name is symbol by typing p symbol, and sdb will figure out the
data types and print the structure and it’s members in the proper
format. You can also display strings that are pointed to by a structure
member using the p command.

The ‘evaluate’? command, e, allows you to perform general C
expression evaluation, including calls to C functions, assignment, pre-
and post- increment and decrement, casts, and conditionals.

The ‘register’ command, 7, displays and modifies the 8086 registers.

The ‘frame’ command, f, allows you to walk up and down the call
frame.

The ‘memory modify’ commands, m, modify memory.

The u commands ‘unassemble’ code; that is, display it symbolically,
in a form similar to its appearance in an assembly language source file.

The s, ¢, and g commands cause the user’s program to be executed.
s and t commands "single step" the user’s program; that is, execute a
specified number of instructions in the user’s program and then return
control to sdb. g commands transfer control of the processor
unconditionally to the user’s program. In this case, sdb regains control
when the user’s program terminates, when an error occurs (such as
division by zero), or when a "breakpoint" is taken. Breakpoints are
discussed below.

? is the help command: it causes sdb to display a summary of all sdb
commands. For some command categories, you can get information
about the commands in a category by typing the first letter of the
category's commands followed by a ?. For example, typing m? gets
you information about the memory modification commands (all of
whose first letter 1s 7).

- sdb.5 -

SDB Source Debugger SDB

1.2 Names

sdb allows memory locations to be referenced by name as well as by
location. It learns a program’s variable names by reading the file
containing the program’s symbol table. The linker generates a symbol
table file for a program in response to the -g option. Ways of causing
sdb to read the symbol table are described below.

sdb allows global symbols, automatic variables, static variables,
arrays and structures to be accessed by name.

The operator can also define names to sdb using the vy command,
and the ‘clear symbols’ command, cs, will remove symbols from the
memory-resident symbol table.

1.2.1 Code and Data symbols.

sdb classifies symbols as being either code or data symbols; that 1s,
as referring to a location in a physical code segment or the physical
data segment. All symbols in the program’s symbol table file which
occur between the special linker symbols _Corg and _Cend__ are
considered to be code symbols, and all others are data symbols. This
classification of symbols frees the operator from having to specify the
physical segment in which a symbol is located, when using commands
which reference the location; the debugger knows which segment it’s
in. The classification is also of use when unassembling memory.

There are two commands for viewing the symbols which are known
to sdb: dc and dd, which display code and data symbols, respectively.

1.2.2 Operator usage of names.

When a C source program is compiled, all global symbols are
truncated to a maximum of 31 characters and are then appended with
an underscore character.

To refer to symbols which, in a C source file contain less than 31
characters, the inclusion of the appended underscore character is
optional: if it’s specified, sdb will search for just that symbol in it’s
symbol table. Otherwise, it will first search for the specified symbol; if
the search fails, 1t will then append an underscore to the name and
search again. |

To refer to symbols which contain 32 or more characters, only the
first 31 are significant; sdb ignores all other characters in the name.

1.3 Loading programs and symbols

A program and its symbols can be loaded into memory when sdb is
started; in this case, the command line defines the program to be
loaded. The sdb ‘load program’ command, /p, can also be used. If sdb is

started with a program name specified on the command line, the Ip
command can be used to reload the same program for another
debugging session. If sdb is started without specifying a program

- sdb.6 -

SDB Source Debugger SDB

name, the /p command must be issued with the desired program name.
Only one user program can be in memory at once.

When told to load a program, sdb automatically tries to load the
program’s symbol table, too; it assumes the symbol table file has the
same name as the program file, with the extension changed to .dbg.

When the /p command finds a symbol table file, it clears the symbol
table of all symbols, other than those defined with vy commands, before
loading the new symbols.

When a program exits, it must be reloaded with the Jp command
before execution can begin again.

A memory map can be obtained using the dm command.

1.4 Breakpoints

Before transferring control of the processor to a user’s program in
response to a g command, sdb can set "breakpoints" at specified
locations in the code. When the user’s program reaches a breakpoint,
sdb regains control.

A breakpoint has a ‘skip count’ associated with it, which allows a
breakpoint to be passed several times before actually taking the
breakpoint and returning control to sdb and the user. When a
breakpoint is reached, sdb is always activated; it increments a counter
associated with the breakpoint. When the counter’s value is greater
than the breakpoint’s skip count, the breakpoint is taken; that is, sdb
retains control of the processor. Otherwise, sdb returns control of the
processor to the user’s program after the breakpoint. By default, a
breakpoint’s skip count is 0; thus, each time the breakpoint is reached,
it’s taken.

A breakpoint can also have a sequence of sdb commands associated
with it. When a breakpoint is taken, these commands will be executed
before sdb allows the operator to enter commands. For example, if you
just want to examine a variable each time a certain location in the
code is reached and then have the program continue execution, you
could define a breakpoint at the location, and specify a list of
commands to do just that: the first command in the sequence would be
a d command to display memory, and the second would be a g
command to continue execution of the program.

There are two ways to define breakpoints: with the g command,
and with special breakpoint commands, whose first letter is b.

The breakpoint commands manipulate a table of breakpoints: there
are commands for entering breakpoints into the table, displaying the
entries, reseting their counters, and removing them from the table.

There’s a difference between a breakpoint defined in a g command
and those in the breakpoint table: the g command breakpoint is

- sdb.7 -

SDB Source Debugger SDB

temporary, while a breakpoint table is more permanent (it exists until
removed from the table). Before transferring control to the user’s
program in response to a g command, sdb sets all breakpoints that are
in the breakpoint table and that are specified in the g command itself.
When a breakpoint is taken, sdb removes all breakpoints from the code
and forgets all about the g command breakpoint. The breakpoint table
breakpoints, however, are still in the table and will be set back in
memory when control is again returned to the user’s program. |

sdb remembers the skip counter associated with a breakpoint which
is in the breakpoint table: when it sets breakpoints in memory, the
count for such a breakpoint is set to its remembered value (that is, its
value in the table); and when a breakpoint is taken, the accumulated
count for the breakpoints in memory are saved in the breakpoint table.

1.5 Memory-change breakpoints

The breakpoints described above are taken when a program reaches
a specified point in the code. A second type of breakpoint, called a
memory-change breakpoint, is taken when a specified memory
location is changed from or set to a particular value.

With a memory-change breakpoint set, sdb will detect either the
function or the instruction which modifies the specified memory
location, depending on whether the user’s program was activated using
a g command or is being single-stepped using an s command,
respectively.

When the user’s program is activated with a g command and a
memory-change breakpoint is set, sdb will examine the specified
memory location on entry to, and exit from, each function. It will take
a breakpoint, that is, interrupt execution of the program and return
control to the operator, when the contents of the memory location
meets the specified condition.

When an s command is used to single-step a program and a
memory-change breakpoint is set, sdb will examine the specified
memory location after each instruction is executed, and take a
breakpoint when appropriate.

The bm command is used to set and remove memory-change
breakpoints.

1.6 Separate screens for programs and sdb

When used on an IBM PC or an equivalent, sdb can optionally
maintain separate screens for itself and for a program that is being
debugged. With this feature enabled, a program-generated screen is
displayed while a program is executing, and a screen of operator-sdb

interactions 1s displayed while sdb is executing.

This feature is implemented as follows: when a program encounters
a breakpoint, sdb saves the contents of the screen and displays the

- sdb.8 -

SDB Source Debugger SDB

debug screen; similarly, when sdb continues a program, it saves the
debug screen and restores the program screen.

To enable this feature, specify the -w option when you start sdb.
This option must precede the name of the program that is to debugged.

Two sdb commands are related to separate program/debug screens:

* The w command causes sdb to toggle between displaying the
debug and program screen.

* The W command disables screen saving and restoring,

1.7 Trace mode

sdb supports two ‘trace modes’, which displays information
whenever a function is entered or exited, or when a source line is
passed.

With the first mode enabled, on entry to, and exit from, a function,
the function name, its arguments, and return values are displayed.

The commands bt and bT affect trace mode: bt enables and disables
call trace mode, and bT enables and disables source line trace mode.

1.8 Backtracing

When sdb regains control from an executing program (for example,
because a breakpoint was taken), it has the ability to display
information on how the program got to its current location: the ds and
dS commands will display information about the currently executing
function, and the function which called it, and so on, back to the Manx
function Croot, which called the user’s function main.

ds displays, for each function, its name, arguments which were
passed to it, and the address to which it will return. dS displays the
function’s automatic variables as well.

1.9 Macros

sdb allows the user to define and execute ‘macros’; that is, a
sequence of sdb commands.

Macros are written to a file which is saved so that the macros can
be reused in a subsequent session. The file name for the saved macros
is derived by taking the program name and appending a .mac.

The sdb command x is used both to define and execute a macro.

1.10 Displaying source files

Since sdb is a source level debugger, it allows the user to display
source files, thus providing a convenient means to examine the source

of a program being debugged.

Only a single source file can be examined at a time. The ‘display
source lines’ command, d/, and the ‘context’ command, c, can be used

- sdb.9 -

SDB Source Debugger SDB

to display its lines.

The ‘find string’ command, /, will find a character string in the

source file.

1.11 Other features

Some other features of sdb which haven’t yet been discussed are:

* The ‘input’ and ‘output’ commands, i and o, will transfer data

to and from an 1/0 port;

* The ‘redirect stdin’ command, <, causes sdb to read commands
from a specified device or file and then continue reading
commands from the console. The <> command allows
redirection of both input and output. The ‘log’ commands, >
and >>, allow the logging of either all I/O or commands only

to a separate file.

* The ‘evaluate expression’ commands, = and e, do just that.

* The ‘help’ command, 7, lists commands.

- sdb.10 -

SDB Source Debugger SDB

2. Using SDB

2.1 Starting SDB

sdb is started with a command of the form:

sdb [option] [progfile] [arg] arg2 ...]

where the optional parameter [option] is any of the following:

-sSPATH where PATH is a string to be prefixed to source
file names upon file opening

-w use separate windows for debugger and program
-a start debugger in assembly mode - default is C

source mode

and the optional parameter / prog file] is the name of a file containing a
program to be debugged, and the optional parameters argl, arg2, ...,
are character strings to be passed to the program.

The extension on the program filename is optional; if not specified,
a search is first made for a file with the extension .exe. If that search
fails, another is made with the extension .com.

sdb looks for a period, ‘.’, to decide whether the program file name
contains an extension. Thus, to specify a program which doesn’t have
an extension, include a period at the end of the file name.

If the program file name specifies a drive or directory, sdb searches
for the program file in just that particular area. Otherwise, it searches
the current directory on the default drive.

The "arg" parameters are passed to the program using the argv
parameter of the program’s main function: arg] is pointed at by
argv[1], arg2 by argv[2], and so on. argv/0] always contains zero.

2.2 Commands

This section describes in detail the sdb commands. It first defines
some terms that are used in the command descriptions. These terms
are expr, term, addr, range, and cmdlist.

2.2.1 Definitions

2.2.1.1 The Definition of EXPR

An EXPR is any valid C expression.

For example, an EXPR can consist of a single term, a series of
terms separated by operators, the use of registers by their standard
names, or 16 bit values representing memory locations of the form
segment:offset.

Here are some examples of EXPR:

- sdb.11 -

SDB Source Debugger SDB

S1
x + 2.0
(i == j)?2:3
ds:0x4127

sin(y)
array j]

2.2.1.2 The Definition of ADDR

An ADDR is the name of a C variable, an address constant or a C
expression that yields an address. Examples of an ADDR are as
follows:

linkmain.c.19 address of the code corresponding
to line 19 of linkmain.c

19 same as above if current file is linkmain.c
main address of main

cs:0x 1532 address formed by using the current
code and an offset of 0x1532

token J] address of jth element of array token

2.2.1.3 The Definition of RANGE

A RANGE defines a block of memory. It has one of the following
forms:

ADDR,CNT
ADDR to ADDR (the word ‘to’ must be included)
ADDR
,CNT

The form ADDR,CNT specifies the starting address, ADDR, and a
number, CNT. CNT is interpreted differently by different commands.
For example, the ‘disassemble code’ command, u, will display CNT
lines, while the ‘display bytes’ command, db, will display CNT bytes.

The form ADDR to ADDR specifies the starting and ending
addresses of the range.

A full range need not be explicitly specified, because db remembers
the last-used range and will set unspecified RANGE parameters from
the remembered values:

* When a RANGE is specified which consists of a single
ADDR, the last used CNT is used.

* When a RANGE is specified which consists of ‘,CNT, the
next consecutive address is used, and the remembered count
is changed to the new value.

* When nothing is specified as the RANGE, the next
consecutive address is used as the starting ADDR, and the
CNT is set to the remembered value.

- sdb.12 -

SDB Source Debugger SDB

2.2.1.4 The Definition of CMDLIST

A CMDLIST its a list of commands. It consists of a sequence of
commands or macros separated by semicolons:

COMMAND [;COMMAND ...]

If a macro is in a CMDLIST, it must be the last command in the list.

2.3 Command descriptions

The following descriptions of debugger commands uses terms and
concepts which were presented in the preceding sections.

The commands are listed alphabetically. For an index, see the
command summary which follows the descriptions.

2.3.1 The Breakpoint Commands

bm - Set Memory-Change Breakpoint

Syntax:
bm
bm ADDR == [VAL]
bm ADDR != [VAL]

Description:

This command is used to set and clear a memory-change
breakpoint, with the parameterized version used to set
breakpoints and the parameter-less version to clear them.

In the parameterized form of the commands, ADDR specifies the
field to be monitored.

With the ‘==’ form, the breakpoint will be triggered when the
debugger detects that the field is equal to the specified value,
VAL.

With the ‘!=’ form, the breakpoint will be triggered when the
debugger detects that the field is different from the specified
value.

The VAL parameter is optional. If not specified, it defaults to the
current value at the ADDR.

- sdb.13 -

SDB Source Debugger SDB

be - Clear a single breakpoint
bC - Clear all breakpoints

Syntax:
bc ADDR
bC

Description:

These commands delete breakpoints from the breakpoint table.

bc deletes the single breakpoint specified by the address ADDR,
and bC deletes all breakpoints from the table.

bd - Display breakpoints

Syntax:
bd

Description:

bd displays all entries in the breakpoint table.

For each breakpoint, the following information is displayed:

* Its address, using a symbolic name, if possible;

* The number of times it’s been ‘hit’ without a
breakpoint being taken.

* The skip count for it;

* The command list for it, if any.

For example, a bd display might be:

address hits skip command
cs:printf _ l 2
cs:putc__ 0 0 db ds:__Cbuffs

In this example, two breakpoints are in the table. The first 1s at
the beginning of the function printf; a breakpoint will be taken
for it every third time it is reached, and no command will be
executed. Given its current hit count, a breakpoint will be taken
the next time printf__ is reached.

The second breakpoint is at the function putc__; a breakpoint will
be taken each time the function is reached, and will display
memory, in bytes, starting at ds: Cbuffs.

- sdb.14 -

SDB Source Debugger SDB

br - Reset breakpoint counters

Syntax:
br [ADDR]

Description:

br resets the ‘hit’ counter for the specified breakpoint which is at
the address, ADDR. If ADDR isn’t given, the ‘hit’ counters for
all breakpoints in the breakpoint table are reset.

bs - Set or modify a breakpoint

Syntax:

[#] bs ADDR [;CMDLIST]

Description:

bs enters a breakpoint into the breakpoint table, or modifies an

existing entry.

The optional parameter # is the skip count for the breakpoint. If
not specified, the skip count is set to 0, meaning that each time
the breakpoint is reached it will be taken.

The optional parameter CMDLIST is a list of debugger
commands to be executed when the breakpoint is taken.

bt - Toggle the call trace mode flag
bT - Toggle the source line trace mode flag

Syntax:
bt
bT

Description:

bt and bT toggle the call trace mode and source line trace mode
flags, respectively. The state of the trace mode flag determines
whether trace mode is enabled or disabled.

In call trace mode, the debugger will print the names and
arguments of each call within the program as it executes. On
return, the value of the function’s return will be printed.

In source line trace mode, each statement of the program will be

displayed just before it is executed.

- sdb.15 -

Source Debugger SDB

2.3.2 The Display Commands

- Display memory in bytes
- Display memory in words

Display memory in last format

Syntax:

db [RANGE]
dw [RANGE]
ad [RANGE]

Description:

The db and dw commands display successive bytes and words of
memory, respectively. d displays memory using the last format
specified; for example, if d is entered, and db was the last ‘display
memory’ command, then d will display bytes, too.

The starting address of the RANGE parameter is optional; if not
specified, it defaults to the ending address of the last display’s
RANGE, plus one.

Each line of the display begins with the segment and address,
followed by a hexadecimal display of 16 bytes or 8 words,
followed by an ASCII display, by bytes, of the same data. For the
ASCII display, values falling outside the range 0x20 to Ox7f are
displayed as a period.

If the ending address does not fall on a multiple of 16 bytes, only
the number of bytes or words specified in the last line will be
displayed.

de - Display all code symbols

Syntax:

dc

Description:

dc lists all the code symbols in the memory-resident symbol table
and all user-defined symbols.

For each symbol, its name and address are displayed.

dd - Display all data symbols

Syntax:

dd

Description:

- sdb.16 -

SDB Source Debugger SDB

dd lists all the data symbols in the memory-resident symbol table.

For each symbol, its name and address are displayed.

df - Display source file lines

Syntax:
df [FILENAME] [RANGE]

Description:

df displays lines from the source file which was specified by the
FILENAME parameter.

The RANGE parameter specifies the numbers of the lines to be

displayed.

The starting line number is optional; if not specified, the display
starts with the "current" line.

The current line in a source file is set by the source file
commands df and f, as follows:

* When the file is first loaded with the df command, the
first line in the file is the current line.

* When the last source file command was ‘display source’,
df, the current line is the line following the last one

displayed;

* When the last source file command was ‘find string’, f,
the current line is the line in which the string was
found.

df also sets the "F-dot" for the source file to the number of the
first line displayed. The F-dot is the line referred to when the
starting line number of the range in a df command specifies a
period (.). Also, source string searches begin at the line following

the F-dot line.

Each displayed line is preceded with a line number in decimal, a
colon, and the line itself.

dg - Display global values

Syntax:

dg

Description:

For each data symbol in the debugger’s symbol table, dg displays
the type, name, and value for that symbol. If the symbol is an

- sdb.17 -

SDB Source Debugger SDB

array of structures, each element in the array will be printed.

dm - Display memory map

Syntax:
dm

Description:

dm displays a memory map of allocated memory, beginning with
the debugger program itself.

An entry gives information about one allocated block of memory.
It has the following form:

XXXX! OWNer=yyyy SiZ¢=ZZZZZ

where xxxx is the paragraph number at which the block begins,
yyyy is the Program Segment Prefix of the process that owns the
block, and zzzzz is the number of bytes in the block, in decimal.

For example:

10cf: owner=10d0 size=85264
25al: owner=25aa size=112
25a9: owner=25aa size=69168
368d: owner=0000 size=38688

The debugger occupies the block that begins at paragraph 0x10cf:
the Program Segment Prefix for db begins at paragraph 0x10d0;
the number of bytes in db’s block is 85264. The environment of
the program being debugged begins at paragraph 0x25al, and the
Program Segment Prefix for the program begins at paragraph
Ox25aa. The program itself occupies the block beginning at
paragraph 0x25a9. Memory beginning at paragraph 0x368d is
unallocated.

Note that both the block containing program and the block
containing its environment are owned by the PSP of the
program.

dn - Display 8087 State

Syntax:
dn

Description:

dn displays the state of the 8087, in the following format:

- sdb.18 -

SDB

ds
dS

Source Debugger SDB

cccc __SSSS tttt
iilo 33) oolo oohi
st(0): top stack element
st(1): next stack element

st(7): last stack element

where

cccc 1s the control word
ssss 1S the status word
tttt is the tag word
iilo is the least significant 16 bits of the instruction
pointer

* jjjj, most significant 4 bits are the most significant 4
bits of the instruction pointer and the least significant 11
bits are the opcode

* golo is the least significant 12 bits of the operand pointer
* oohi has as its most significant four bits the most

significant four bits of the operand pointer, and its least
significant 12 bits are 0.

« st(O), ... are the contents of the stack registers.
All values are in hexadecimal.

¢
&£

+

Display Stack Backtrace
- Display Stack, Function Args, and Autos Backtrace

Syntax:
[#] ds

[#] dS

Description:

ds displays information about the current function, the function
which called it, and so on in reverse order of invocation, back to
Croot, the Manx function which called the user’s function main.

The optional ‘#’ parameter specifies the number of stack frames
to be displayed.

For each function, the information consists of the function’s
name and the parameters passed to it

Arguments are displayed according to their type. If no type
information is available, the arguments are displayed as a Series
of 16-bit hex values. Argument of type long or double, when
displayed as hex, will be displayed as separate words.

ds determines the number of parameters by looking at the
instructions which follow the address to which the function will

return.

- sdb.19 -

SDB Source Debugger SDB

ds assumes that the BP register points to the C stack frame for
the current function, unless the current instruction is within 6
bytes of the start of the function.

dS causes the function to be displayed with the types, names, and
values of each function argument. Below this, the values of all
automatic variables will be displayed.

c - Display Source Context

Syntax:

Cc

Description:

This command will display 10 lines of source centered on the
current line.

2.3.3 The ‘Find Source String’ Command

/ - find string in source file

Syntax:

/ STRING

Description:

This command searches the current source file (that is, the one
specified by the last Jp command) for a specified string.

The search begins at the line following the current line.

If the string is found, the current line and the F-dot line of the
source file is set to the line containing the string: otherwise,
these values are unchanged.

STRING is the character string to be located, and consists of all
characters following the / and preceeding the carriage return.

If the first character of the string is ‘*’, the search will begin with
the first character on a line. In this case, ‘*’ isn’t part of the
search string.

The ‘current line’ and F-dot line for a source file are defined in
the description of the df command.

- sdb.20 -

SDB Source Debugger SDB

2.3.4 The ‘Frame ’ Commands

fu) - frame up command
fd - frame down command

Syntax:
fu
fd

Description:

Normally, you are only allowed to view variables that are visible
by C rules at the point where execution stopped. That is, you
cannot refer to local variables of functions that are not the
"current" active function. sdb allows you to get around this
restraint by allowing you to change what the "current" function
iS.

The fu command allows you to walk up the call frame and
displays the line from which the call was issued. By changing
frames, you can view all the local variables of the now "current"
function. You can walk up the frame until you get to the initial
function.

The fd commands allows you to walk down the frame displaying
the function call of the previous frame.

2.3.5 The Go commands

g - Execute the program
G -_ Execute the program, without setting table breakpoints

Syntax:
[#]g [@ <function>] [ADDR] [;CMDLIST]
[#]G [@ <function>] [ADDR] [;CMDLIST]

Description:

The g commands transfer control of the processor to the user’s
program, at the address specified by CS:IP. The user’s program
then executes until it terminates, an error such as division by
zero occurs, or a breakpoint is taken; control then returns to the
debugger program.

The parameters to the ‘g’ commands allow one or two temporary
breakpoints to be set in memory before the user’s program is
executed.

The difference between the ‘g’ and the ‘G’ command is that the
‘G’ command sets in memory just the breakpoints specified in

the command itself, while the ‘g’ command also sets the
breakpoints specified in the breakpoint table.

- sdb.21 -

SDB Source Debugger SDB

The ‘#’ and ‘ADDR’ parameters define one of the temporary
breakpoints that a Go command can set:

* # 1s the skip count for the breakpoint; it defaults to
zero, meaning that the breakpoint is taken every time
it’s reached:

* ADDR is the address for the breakpoint;

The ‘@ <function>’ parameter specifies that a temporary

breakpoint is to be set at the return address of the specified
function. If the function isn’t specified, it defaults to the current
function. If a function is specified, the breakpoint is set to the
address to which the function will return. In this case, the
breakpoint isn’t set until the function is entered; thus, in
programs which call the function from several different places,
the breakpoint will be set at the actual address to which the
function will return.

The *;CMDLIST parameter defines a sequence of debugger
commands, separated by semicolons, that the debugger is to
execute once a breakpoint which is specified in the ‘go’
command is taken. If this parameter isn’t specified, it defaults to
the command list used for the last temporary breakpoint.

If sdb is maintaining separate screens for the program and itself,
it restores the program screen before transferring control to the
program. For more information on this, see the discussion of
Separate screens in section | of this sdb documentation.

Before setting breakpoints and transferring control to the user’s
program, the debugger single-steps the user’s program, (that is,
causes it to execute one instruction). This allows the operator to
transfer control to a location in the program at which there is a
breakpoint, without immediately triggering a breakpoint and re-
entry to the debugger.

2.3.6 The Input Commands

ib
iw

Input byte from port
Input word from port

Syntax:
ib PORT
iw PORT

Description:

ib and iw input a byte or word, respectively, from the i/o port,
PORT.

- sdb.22 -

SDB Source Debugger SDB

2.3.7 The LOAD Command

Ip - Load program

Syntax:

lp
lp prog file [arg] arg2 ...]

Description:

lp loads a program into memory. If a symbol table file can be
found for the program, it will be loaded, too.

If the Jp command is given without parameters, the last Ip
command is re-executed. The following comments describe the
parameterized version of Ip.

Loading the program

The parameter progfile specifies the file containing the program.
The extension on the file name is optional.If not given, a search
is made for the file with extension ".exe"; if this fails, another is
made for the file with extension ".com". To specify a program
file which doesn’t have an extension, use a period after the
filename.

If the program file name specifies a drive or path, the file is
searched for in just that location; otherwise, it’s searched for on
the current directory of the default drive.

If an attempt is made to load a program when sdb was invoked
with a program name or a previous /p progfile was executed will
cause an error to be printed and the command ignored.

Loading the symbol table

The name of the file containing the symbol table is assumed to
be the same as the program file name, with the extension
changed to ".dbg".

After the program is loaded, its program segment prefix (PSP) is
initialized with the arguments arg], arg2, etc. These are available
to the program as the main function’s arguments argv/1/,
argv[2], and so on. argv/[0] is set to 0, and argc is set to the
number of "arg" parameters.

The U-dot (that is, the value of the period parameter associated
with the u commands) is set to CS:IP. The D-dot (the value of
the period parameter for the d and m commands) is set to DS:0.

Once a program exits, it must be reloaded with an /p command
before it can begin again. |

- sdb.23 -

SDB Source Debugger

2.3.8 The Memory Modification Commands

mb - Modify bytes of memory
mw - Modify words of memory

Syntax:

mb ADDR EXPRI [EXPR2...]
mw ADDR EXPRI [EXPR2 ...]

Description:

db and dw modify bytes and words of memory, respectively.

SDB

The parameter ADDR specifies the address of the first byte or
word to be modified.

The EXPR parameters are expressions, whose resulting values are
set in memory, with EXPRI set in the first byte or word
specified, EXPR2 set in the next higher byte or word, and so on.

The EXPR parameters can be separated by spaces or commas.

mc - Compare memory

Syntax:

mc RANGE = ADDR

Description:

mc compares two blocks of memory and, for each comparison
which fails, displays the corresponding segment, address, and
value.

RANGE specifies one of the blocks of memory. The second
begins at ADDR and has the same length as the first block.

- Fill memory

Syntax:

mf RANGE = EXPR

Description:

mf sets each byte in a block of memory to a specified value.

The RANGE parameter specifies the memory block, and EXPR
an expression whose resulting value is the value to be set in the
range.

- sdb.24 -

SDB Source Debugger SDB

mm - Move memory

Syntax:
mm RANGE = ADDR

Description:

mm copies one block of memory to another.

The RANGE parameter specifies the source block and ADDR
the starting address of the block to be modified.

ms - Search memory

Syntax:
ms RANGE = EXPRI1 [EXPR2...]

Description:

ms searches a block of memory for a sequence of bytes having
specified values. For each match, the corresponding address of
the start of the string is displayed.

RANGE specifies the block of memory. The EXPR parameters
are expressions, each of whose resulting values is one byte of the
search sequence.

2.3.9 The Output Commands

ob - Output byte to i/o port
ow - Output word to i/o port

Syntax:
ob PORT,EXPR
ow PORT.EXPR

Description:

ob and ow output a byte or word, respectively, to an 1/o port.

PORT is the address of the port. EXPR is an expression whose
resulting value is the value to be output.

2.3.10 The ’Print? Command

p - formatted print

Format:
p [@format] [ADDR]

Description:

- sdb.25 -

SDB Source Debugger SDB

p generates a formatted display of C variables, arrays, and
structures, by converting data items in memory to a displayable
form as directed by it’s type or the optional conversion string
format.

format is an optional list of format specifications, each of which
defines the type of a data item and the conversion to be
performed on it.

ADDR specifies the address of the first data item that p is to
convert and display.

In the absence of the format string, p looks at the ADDR to be
printed, gets it’s typing information from the symbol table, builds
and executes the appropriate format string. For example, to print
a structure named symbol you simply enter:

p symbol

which might result in:

struct symboltb symbol = {
ints flag = 10
char *s_ name = 0OxFF42
ints value[2] = {

10,5

}
}

If you then want to display the string pointed to by
symbols name, you simply type:

p @s *symbol.s__name

The @ indicates that you are overriding the default format for
pointer to char and the s indicates that the format is string. The
result might be:

“pointer"

If you wish to create your own format string, here is a
description of the use of format by p. p works its way through
the format string, converting and displaying data items in
memory as requested by the format string items. When p reaches
an item in the format string, it converts the data item at its
current address’ as directed by the format item. When it finishes
processing a format string item, it increments its current address
by the size of the data item that it just processed, so as to be
ready to process the next data item as directed by the next format
string item.

If ADDR is not entered, the starting address is assumed to be the
print command’s ’current address’. Normally, this is the address
of the first byte beyond the last data item converted by the last p

~- sdb.26 -

SDB Source Debugger SDB

command. However, there is a format item that causes p to
remember the address contained in the current data item, and
then make that the current address after it finishes processing the
entire format string.

The format items have the form

where

[rpt][indir__flgs][size]desc__code

* desc_code is a single-letter code that defines the type of
the data item and the conversion to be performed upon
it. For example, the code d says ’take the two-byte
binary value at the current address, convert it to
decimal, and print it’. So if var is an int, the following
command could be used to print its value in decimal:

Dp @d var

The code x says "take the two-byte binary value at the
current address, convert it to hexadecimal, and print the
result". So the hexadecimal value of var could be
printed with the command:

D (@X var

indir is a string of zero or more * and/or # characters,
which are indirection indicators specifying that the
value at the current data item is a pointer to a chain of
zero Or more pointers, the last of which points to an
object whose type and requested conversion are defined
by desc__code.

To find the data object corresponding to a format item
that has indirection indicators, p begins by setting its
idea of the address of the data object to the current
address. It then works its way from left to right through
the indirection indicators; for each indicator it replaces
its current idea of the data object address with the
pointer that is in the field at this address. The data
object address is distinct from the current address: at the
end of this process, the p command’s current address is
simply incremented past the first pointer.

A * specifies that the pointer within the field referenced
by the current data object address is two bytes long.
This pointer is the offset component of the new data
object address from the last segment referenced.

A # = specifies that the pointer within the field
referenced by the current data object address is four
bytes long. The most significant word of this pointer is

- sdb.27 -

SDB Source Debugger SDB

the segment component of the new data object address,
and the least significant word is its offset component.

For example, if the variable cp is a short pointer to a
character string (that is, its declaration is char *cp), then
the string pointed at by cp could be printed by the
command

p @*s cp

Here we have made use of the s desc code, which
specifies that the data object is a character string, and
that the string’s characters are to be printed, with
possible modifications as noted below, up to a
terminating null character. After this command, the p
command’s current address is set to the byte
immediately following cp.

As another example, if a module uses the ’large data’
memory model (that is, its pointers to data objects are
four bytes long), and if cpp is a pointer to an array of
pointers to character strings (that is, the declaration of
cpp 18 char **cpp), then the string pointed at by the first
element of the array could be displayed with the
command

D @##S cpp

Following this command, the p command’s current
address is set to the byte following cpp.

The rpt parameter of a format item defines the number
of times that the item is to be processed. It allows a
sequence of rpt identical format items to be abbreviated
by just one such item with a leading rpt count.

For example, if a is an array of floats, then the first five
items in this array could be displayed with the command

p@5fa
This command uses the fact that the desc_code to
convert a four-byte floating point value at the current
address to a displayable value is f. This command is
equivalent to the command pfffffa. At the end of this
command, the p command’s current address is set to the
address of the byte following the last displayed float.

The size parameter of a format item defines the number
of data items that are to be converted and printed.

When the format item doesn’t use indirection, size has
the same effect as rpt, for example, in the p5f a
command above, the 5 could be interpreted as being a

- sdb.28 -

SDB Source Debugger SDB

size parameter instead of a rpt parameter.

When the format item does use indirection, then the size
parameter defines the number of data items to be
converted and printed at the end of the indirection
chain. For example, if a module using the ’small data’
memory model defines /pp as a pointer to an array of
pointers to longs (that is, the declaration of Ipp is long
**ip), then the following command would display the
first four /ongs pointed at by the first element of the
pointer array:

p @**4D Ipp

Here we have used the D desc_code, which specifies
that a four-byte signed binary value is to converted to
decimal and printed. The following command would
display the first three Jongs pointed at by the first three
elements of the pointer array:

p @3*4D *lpp

To demonstrate further the difference between the rpt and size
fields in a format item, consider the format items 4*d and *4d.
The first causes the print command to take the item at the
current address as a short pointer, increment the current address
by two, convert to decimal and print the two-byte value
referenced by the pointer, and then repeat the process three
more times. At the end of the process, the current address has
been advanced by eight.

The second item causes the print command to again take the item
at the current address as a short pointer, increment the current
address by two, and then convert to decimal and print the four
successive two-byte values that begin at the address defined by
the pointer. At the end of the process, the current address has
been advanced by two.

As an example of the use of format strings containing several
format items, consider the following code in a program that uses
short data pointers:

struct {
int *ip;
float fit;
char *cp;

} var = {&i, 3.14159, “ralph” };
int 1=2;

The command

Dp @*d2-x f*s2-x var

- sdb.29 -

SDB Source Debugger SDB

will print

2 xxxx 3.14159 ralph

where xxxx is the hexadecimal address of i and yyyy is the

hexadecimal address of the string.

A complete list of the desc codes

We have introduced some of the desc_codes above. Here is a list of

the basic desc__codes:

Convert to hexadecimal and print a byte.

Convert to decimal and print a two-byte signed binary

value.
Convert to decimal and print a four-byte signed

binary value.
Convert and print a four-byte float.
Convert and print an eight-byte double.
Define the precision to be used in the display of
floating point values; that is the number of digits to be
displayed to the right of the decimal point. This
number precedes the period. For more information,

see below.
Convert to octal and print a two-byte field.
Convert to octal and print an eight-byte field.
Convert to hexadecimal and print a 2-byte field.
Convert to hexadecimal and print a 4-byte field.
Convert to decimal and print an unsigned, two-byte

value.
Convert to decimal and print an unsigned, four-byte
value.
Print a short, two-byte pointer in segment:offset form.
Print a long, four-byte pointer in segment:offset form.

Print a character.
Print a character.
Print a string up to a terminating null byte.
Print a string up to a terminating null byte.

m
r

op

a
c

ac
#
h
x
O
O

N
A

CQ
O

W
S

Codes for printing floating point numbers

When a floating point number is displayed in response to an f or F

desc __code, the ’precision’ of the display (that is, the number of digits

displayed to the right of the decimal point) is determined by the most

recently-entered period desc-code; if a period code hasn’t been entered,

the precision of the display defaults to 7 digits for floats and 16 for

doubles.

The period desc__code consists of a period preceded by the number of

digits of precision. For example, the following command contains two

desc codes: the first sets the precision to 2 digits; the second then

displays a float, listing two digits to the right of the decimal point.

- sdb.30 -

SDB Source Debugger SDB

p@2.F

Codes for printing characters

For the C and S desc__codes, each character is printed "as is", with no
translations.

For the c and s codes, printable ASCII characters (that 1s, whose hex
value is between 0x20 and 0x7f) are printed "as is". A character whose
hex value is less than 0x20 is printed as two characters: * followed by
the printable character whose hex value equals the original character’s
value plus 0x40. A character whose hex value is 0x80 or greater is
displayed as a * character followed by the one or two characters that
would be printed for the character whose hex value equals that of the
original character less 0x80. For example, 0x41, Oxl, and 0x81 would
be printed as A, “A, and ’*A, respectively.

Special purpose codes

The following desc__codes can be used to assist in the formatting of the
p output:

character output
Norn Output a newline character
Rorr Output a blank character
T ort Output a tab character
“string” output “string”

These characters can be preceded by a count specifying the number of
characters or strings to be output.

Codes for setting the p command’s current address

The next group of desc_codes change the p command’s notion of the
current address. They don’t cause any printing.

Back up the current address by the size of the last data
item.

- or + Back up or advance, respectively, the current address
by size bytes, where size is a decimal value preceding
the - code. If size isn’t specified, it defaults to one
byte.

Aora Remember the long or short pointer, respectively, that
is contained in the current data object; If this pointer
is not null, set the p command’s current address to this
value after the entire format string has been
processed.

If the pointer is null, set the p command’s current
address to the value it had before the entire format
string was processed.

The A and a desc_codes are useful for printing the elements of a
linked list. For example, consider the following code, which defines

- sdb.31 -

SDB Source Debugger SDB

the structure for a symbol table item, and declares sym_ head to be a
pointer to this structure. The program that uses this structure and
field will chain symbol table items together, and set a pointer to the
head of the chain in sym_head.

struct symbol {
struct symbol * sym_ next;
char *sym_ name;
unsigned sym_ val;

} *sym_head;

The following command would display the symbol table item pointed
at by sym_head and then set the p command’s current address to the
next symbol table item, which is pointed at by the sym_ next field in
the first 1tem:

p @A’symbol name="# snt"value="x sym_head

After this command is entered, you can display successive symbol table
items by simply entering

Dp

The p command’s current address is correctly set to the next table
item, and since a format string isn’t specified, the p command will use
the one that it last used.

You can print out multiple symbol table items by entering a single p
command. To do this, place a comma and the maximum number of
items to be printed after the command’s starting address. The
command will follow the chain, printing symbol table items until it
either prints the specified number of items or it prints an item whose
sym__next pointer is null. In the latter case, it will terminate and leave
the p command’s current address set to the address of the last symbol
table item. For example, entering

p @A’symbol name="# snt’value="x sym_head,100

will print symbol table items until it either prints 100 items or it prints
an item having a null sym_ next pointer.

2.3.11 The Quit command

q - Quit the debugger

Syntax:

q

Description:

q terminates the program being debugged, restores any modified

interrupt vectors, and returns control to the operating system.

- sdb.32 -

SDB Source Debugger SDB

2.3.12 The Register command

r - Register display

Syntax:
r

r <reg>=EXPR

Description:

r displays and modifies the registers, including the status
registers, of the program being debugged.

The parameter-less version displays the registers.

The parameterized version modifies the contents of a register,
with <reg> being the name of the register to be modified, and
EXPR an expression whose resulting value is to be set into the
register.

2.3.13 The Single Step commands

s - Single step into calls with display
S - Single step into calls without display
t - Single step over calls with display
T - Single step over calls without display

Syntax:

[#]s
[#]S
[#]t
[#]T

Description:

These commands ‘single step’ the user’s program; that is, execute
its instructions one by one.

The optional ‘#’ parameter specifies the number of instructions
to be executed; it defaults to one instruction.

The s and S commands differ in that s displays information after
each single step, whereas S only displays information after the
last single step. The same is true for the t and T commands.

The s and ¢ commands differ in that the s commands single step
into calls when encountered while the ¢ command ttreats a
function call as a single step and will step over it.

The displayed information consists of the source line of the next
instruction to be executed.

When single-stepping, breakpoints aren’t enabled.

- sdb.33 -

SDB Source Debugger SDB

2.3.14 The Unassemble commands

u - Unassemble memory, with symbols
U - Unassemble memory, without symbols

Syntax:
u RANGE
U RANGE

Description:

These commands ‘disassemble’ a range of memory; that is,
display the assembly language instructions in the range.

Both the u and U commands make use of the symbol table during
disassembly. They differ in that the « command will include the
symbolstoffset as part of the assembly language while the U
command will print locations in hex with the sysmbol and offset
for the location displayed at the far right of the line. Also, the U
command displays, for each instruction, the hex value of each
byte of the instruction, whereas the « command won’t.

With the u command, the disassembly of an instruction which
references memory displays the location as the symbol nearest to
the location plus an offset, if possible. With the U command, the
location is displayed as a hexadecimal value.

The RANGE parameter specifies the area of memory to be
disassembled. It gives the starting address, and either the number
of instructions to be disassembled, or the ending address of the
area.

Both comands display the source lines and autos as comments.

2.3.15 The Variable command

vy - Create a new symbol

Syntax:
v TYPE SYMBOL

Description:

The vy command is used to create a new symbol.

TYPE is the SYMBOL’s type such as int, short, char, etc.
SYMBOL is the name of the symbol being created. The
SYMBOL must be a unique symbol whose name is at least two
characters in length. The naming of SYMBOL must follow the
regular C declaration rules.

All symbols created using this command will be treated as globals.

- sdb.34 -

SDB Source Debugger SDB

2.3.16 The Macro commands

x - Create Macro command
X - Display Macro command

Syntax:
x macroname CMDLIST
X

Description:

The x command defines or executes a sequence of debugger
commands, called a ‘macro’. X lists the defined macros.

A macroname consists of a sequence of alphanumeric
characters,the first of which must be an alphabetic, with a limit
of 40 characters. Case is not significant.

A macro is defined by typing the letter ‘x’, followed by the name
with which the macro is to be associated. Then follows the
macro’s list of debugger commands, with the commands separated

by semicolons.

A macro is executed by typing ‘x’, followed by the name with
which the macro is associated, followed by a carriage return.

The macros which have been defined can be listed using the

command X.

2.3.17 The EXPRESSION Commands

= - Display the value of an expression in several formats
e - evaluate an expression

Syntax:
= EXPR
e EXPR

Description:

The = command displays the value of an expression.

The expression is displayed in several formats: hexadecimal,
signed decimal, unsigned decimal, octal, binary, and ASCII If a
symbol table has been loaded, the closest symbol is displayed as

well.

Some expressions involve a segment as well as an address. In this
case, the segment is displayed at the beginning of the line,
followed by a‘“v’.

The e command allows you to perform C expression evaluation,
including calls to C functions, assignment, pre- and _ post-
increment and decrement, casts, and conditionals. For example:

- sdb.35 -

Source Debugger SDB

e c = getchar()

might result in

=10

2.3.18 The ‘Redirect command input/output’ Command

Redirect command input
- Redirect command input/output

Log all I/O
- Log commands only

Syntax:
< filename
<> device
> filename
>> filename

Description:

The < command causes the debugger to read and execute
commands from the specified file. This command provides a
convenient means for defining macros or variables.

When the end of the file is reached, the debugger returns to the
console for commands.

The <> command causes the debugger to take its input from the
device given.

The > command causes the debugger to log all input and output
to the specified file. This feature allows you to keep a record of
the commands and responses for a debugging session.

The >> command causes the debugger to log only commands to
the specified file. This is useful if you wish to re-execute a
sequence of commands to reproduce a problem.

2.3.19 The Help command

? - list commands

Syntax:
?

Description:

This command lists the debugger commands. For groups of
related commands, the listing usually lists the first letter of the
commands followed by a ?. You can get a listing of all the
commands in such a group by typing the letter, the ?, and return.

For example, the listing for the ‘display’ commands is d?: thus
you can type d? followed by return to get a listing of all the
‘display’ commands.

- sdb.36 -

SDB Source Debugger SDB

2.3.20 The Change Mode command

Zz - change mode command

Syntax:
Zz

Description:

The z command allows you to switch from source mode to
assembly mode and back again.

By default, the debugger starts in source mode unless you specify
the -a option on the command line.

- sdb.37 -

SDB

3. Command Summary

breakpoint commands

bs
bt/bT

display commands

db/dw/d

find source string

/

change frame commands

fu
fd

go commands

g/G
port input commands

ib/iw

load commands

Ip

Source Debugger SDB

set memory-change breakpoint
clear one/all breakpoints
display the breakpoint table
reset the breakpoint counters
set or modify a breakpoint
enable/disable trace mode

display memory in bytes/words/last format
display code/data symbols
display source file lines
display global values
display memory map
display 8087 status
display stack backtrace
display source context

find string in source file

walk up the call frame
walk down the call frame

execute user’s program

input byte/word from port

load program

memory modification commands

mb/mw
mc
mf
mm
ms

port output commands

ob/ow

modify bytes/words of memory
compare areas of memory
fill memory
move memory
search memory

output byte/word to port

- sdb.38 -

SDB Source Debugger SDB

formatted print commands

p generate formatted print

quit command

q quit debugger

register command

r register display

single step commands

s/S single step with/without display, stepping into
function calls

t/T single step with/without display, stepping over
function calls

unassembly commands

u/U unassemble memory

variable command

Vv create symbol

macro command

x/X define or execute/display a command macro

expression commands

= display value of an expression in several formats
e evaluate an expression

redirect command input

< redirect command input
<> redirect command input/output
> log all input/output
>> log commands only

help command

? list debugger commands

commands for screen saving and restoring

Ww display saved screen (debug or program)
W disable screen saving and restoring

change mode command

Z Switch from source to assembly mode and back

- sdb.39 -

SDB Source Debugger SDB

- sdb.40 -

Aztec C86 SDB Tutorial

SDB Tutorial

This document forms a brief tutorial on use of the source-level
debugger, detailed reference documentation is provided in the SDB
manual supplied with this package.

1. Getting Started

Since source-level debug mode is the default mode for the
compiler, no changes need be made to your compiling directives in
order to make use of the debugger. The linker, however, only produces
the .dbg file needed by sdb if the -g option is specified. Note: the -g
option must be specified on the link command line before any object
files upon which you wish to be able to run sdb.

For general use of the debugger, you should make use of the help
screens, which can be obtained by entering ?<return>. Futher detail is
provided for many of the commands by entering the first letter of the
command followed by ?<return>. Some brief directions for using sdb
follow.

2. Starting the sdb

The command for starting sdb is of the form:

sdb [options] [progfile] [arg] arg2 ...]

where the optional parameter [options] is any of the following:

-sPATHwhere PATH is a string to be prefixed to source
file names upon file opening

-w use separate windows for debugger and program
-a start debugger in assembly mode - default is C

source mode

and the optional parameter / prog file] is the name of a file containing a
program to be debugged, and the optional parameters argl, arg2, ...,
are character strings to be passed to the program.

When invoked, sdb will load the program to be debugged, start it,
and then stop at the entry point to the main function, displaying that
line.

3. Displaying sections of the source file.

Two commands, c and df, are provided for displaying the user’s
source file. c displays the current source line together with the five
lines that precede and follow it. It takes no arguments.

The format of the df command is:

df [FILENAME,] RANGE

where FILENAME is the name of a file to be displayed. FILENAME

_1-

Tutorial SDB Aztec C86

is optional and defaults to the current file if none is specified.
FILENAME can be used to display lines from a file that is not the
current one.

RANGE is one of the following:

LINE

LINE to LINE (the word ‘to’ must be included)
LINE,COUNT

LINE and COUNT are expressions yielding an integer result.

If LINE is specified alone, the line indicated is displayed together
with the next nine lines from the file.

As with all display commands, hitting <return> after issuing the
command will cause the next ten lines of source to be displayed.

4. Running the program.

Once the program has been loaded, debugging consists of Setting
breakpoints: and running the program. Breakpoints can be one-time
breakpoints or can be set as permanent breakpoints.

If you don’t wish to set permanent breakpoints, you can contol
execution of the program using the single step and go commands.

The format of a single step command is:

[COUNT]s
[COUNT]S
[COUNT]t
[COUNT]T

where COUNT is a positive integer which causes the debugger to
single step COUNT times, printing information for each breakpoint,
before stopping.

The difference between s and ¢ is that s single steps into calls while
t single steps across calls. In effect, ¢ treats a call as a single line.

S and T will step COUNT times displaying information only for the
last breakpoint taken. S will step into calls just like s while T will treat
calls as a single line.

In source level mode (the default), single step is by source line. In
assembly mode, (set by typing z<return>) single step is by instruction.

If single stepping encounters a function for which no source line
information is available (a library function for example), single
stepping into the function will cause the debugger to step over the call
just like t¢.

To set a permanent breakpoint type:

Aztec C86 SDB Tutorial

[COUNT]bs ADDR[,COMMAND]

where ADDR 118:

[FILENAME].LINE
FUNCTION[.LINE]
ADDRESSEXPRESSION

COUNT is an integer expression. COMMAND is a set of debugger
commands separated by semicolons. For example, you can enter:

bs linkmain.c.39

This will set a breakpoint on line 39 of linkmain.c. Alternatively,

bs getfld.10

will set a breakpoint at line 10 in the function getfld.

bs getfld+10

will set a breakpoint at ten bytes beyond the start of getfld.

Finally, to make the program go, you simply type g<return>. The
program will execute until it encounters a breakpoint or terminates.

The format of the go command is:

g [@][ADDR]

where ADDR is as described above and ‘@’ means go until hitting a
return after ADDR. ADDR is set as a temporary breakpoint and won’t
be remembered after execution of the command. For example:

s@

means go until the current function returns.

g linkmain.c.39

means go to line 39 in linkmain.c

5. Displaying the trace of calls

It is often useful to know where the program is in a set of nested
calls, and what the arguments and local variables are to each of the
calls. to display the nested stack of calls in sdb, simply type ds<return>.
Each of the calls currently active will be displayed together with its
arguments. Each argument is displayed in a form appropriate to its
type. Typing dS<return> causes the functions to be displayed with the
types, names, and values of each function argument, and auto
variables.

For example:

ds

might cause the following display

._3-

Tutorial SDB Aztec C86

main_(1,0xFF35)
Croot_()

while

dS

could cause:

main(int argc = 1, char **argv = 0xFF35)
inti=0
long j= -1
char name[8] = "hello."

Croot_()

6. Displaying values and computing expressions.

sdb provides some simple, but powerful facilities for displaying
variables, arrays, and structures. These are the p (print) and the e
(evaluate) commands. For example, to print a structure named symbol
you simply enter:

p symbol

which might result in:

struct symboltb symbol = {
ints flag = 10
char *s name = OxFF42
ints value[2] = {

}
>

}
Suppose then you want to display the string pointed to by

symbol.s name. You simply type:

Pp @s *symbol.s name

The @ indicates that you are overriding the default format for
pointer to char and the s indicates that the new format is String.

So the result might be:

"pointer"

In addition to the print command, the debugger has an evaluate
command, so you can perform general C expression evaluation,
including calls to C functions, assignment, pre- and post- increment
and decrement, casts, and conditionals.

e c= getchar()

might result in

Aztec C86 SDB Tutorial

=10

7. Walking up and down the frames.

In using the expressions shown above the user is generally limited
to refering to variables that are visible by C rules at the point where
execution stopped. That is, you cannot refer to local variables of
functions that are not active or are not the "current" function. (Statics,
however, may be referred to by qualifying them with the name of the
file or function they were declared in. e.g. linkmain.cname or
main.name).

In order to refer to names in other active functions you can change
sdb’s notion of what the current function is by walking up and down
the call frames, using the commands fu for frame up, and fd for frame
down. These commands walk up the call frames, displaying the line
from which the next frame down was called and making visible all of
the current call’s local variables.

8. Displaying assembly.

Finally, you can display the assembly code at any address with the
unassemble command. Its format is:

u ADDR
U ADDR

where ADDR is as described above.

u does a disassembly with symbols substituted where possible for
global and local variables. U disassembles without symbol substitution
but with the hex for the code shown as well as the assembly.

9. Bugs

See the known bug list accompanying this package. Two features,
memory change breakpoints and declaration of new symbols are not in
this release. Also, large programs may exhaust the debugger’s memory.
All of these problems, will, of course, be remedied as soon as possible.

Tutorial SDB Aztec C86

ASSEMBLY LANGUAGE DEBUGGER

- db.1 -

DB Aztec C86

Chapter Contents

Assembly Language Debugger ou... ccceccsscscesssccecccsscceserccesecsssceserenes db
1. OVETVICW oo... eecccscscessecessccsssccssecsssecssscsscccsescescecececssessuscecsscscascecsessenscecsees 5

L.1 Basic Commands o..........ccccccssscscssssceccssssccesesccececesscccesesececscsseracers 5
1.2 Names uu... ceesccsssssssccsscessccssscsscccssscccccssccssscecsecsessessccessccsssecsssecsecs 5

1.2.1 Code and Data Symbols wo. cessscsssceecceccecsesecsecessees 6
1.2.2 Operator Usage of Names oo... cescccssccecsscecescccsssecssseceses 6

1.3 Loading programs and Symbols .0.0.0........cccccsscsssccsccscsccsssecsssesees 6
1.4 Breakpoint oo... cccsccccsssccsssscescccccecsccecssccceesssccecsececseccscescecessuens 7
1.5 Memory-change breakpoints 2.0... ccceccccccsccccecsscecssccecsssccesseecs 8
1.6 Separate screens for programs and DB o.....ecccccccccccsscccecssssceessees 8
1.7 Trace MOE ou... cesssssccsscssccscsssessscceccseccessccescsssscsssceseccuesesseseeess 9
1.8 Backtracing oo... cccscsssssccssscssccssssssssccsscessscseccessscssessccsssecesecessceesons 9
1.9 MATOScscsccsssssscssessssscssscsscccccssscescsescsssessecesesscescsascesesscesseessecsens 9
1.10 Displaying source files wo... cececcecscescscssscsscssccescesccssccesceees 9
1.11 Other features ou. csssccssssccscscsssecssssscssssescesesercsseesseceees 9

2. USING DB uuicsesssscsscsscssscscccsscscecssecessesesessscesscssessccescesscecccssesessceseens 1]
2.1 Starting DB ou. csccssccscsccscccsccssecescssccsscssssssessecsssccesesecseeses 1]
2.2 COMMAMNAScccsssssscsscsescssssccssccssssessescssccecssscessentessessescscseesces 11

2.2.1 Defimitions ccc cssccsccsssssscsssceccescccssssesccssccsscsescsescsscnsssens 11
2.3 CoMMAN AESCLIPtiONS .0.......eecessscessccecsssccssccsescecesccscececseeeees 16

2.3.1 The BREAKPOINT (b) commandsccccccccscsccssosssoes 16
2.3:2 The CLEAR (C) commands .0.......eecsccsssssccscescesssssssccseeees 19
2.3.3 The DISPLAY (d) commandscccccccsssscsesssesesecseees 19
2.3.4 The ’Find source string’ (f) commandccccccccsccseees 23
2.3.5 The GO (g) commands 2........ccccccscccccccsssecesscecssccessssceseees 24
2.3.6 The INPUT (1) commands 20000... cceccsssssccsssessscsccsessscees 25
2.3.7 The LOAD (1) Commands 00.0... cesccssesccceccescscsccsesesseees 25
2.3.8 The MODIFY MEMORY (m) commandscc006. 27
2.3.9 The OUTPUT (0) commandscccecesccccsssecccscesesssesees 29
2.3.10 The PRINT (p) commandccccccccscscsessscecsscececcececceees 29
2.3.11 The QUIT (q) command. oo. ccccccscsscsssssececssscscseseeees 35
2.3.12 The REGISTER (1) commandcccccsccsscsesscsssesssssseees 36
2.3.13 The SINGLE STEP (s) commandccccccccccssecsssceeoes 36
2.3.14 The UNASSEMBLE (u) commandscccccccccsesseeees 37
2.3.15 The VARIABLE (v) commandsccccccscssssescssesseseees 37
2.3.16 The MACRO (xX) COMMANGA oe. ceeeseccscssccecsesssescescccees 38
2.3.17 The "Display Expression’ comMandcccccccccscsesseeee 38
2.3.18 The "Redirect command input’ (<) command 39
2.3.19 The HELP (?) command 200... ccccccccccsssssccessececcssscecesceees 39

3. Command Summary .occcccccscscscscscssssececcssssssessssssessssscsesesssscsesees 40

- db.2 -

Aztec C86 DB

Assembly Language Debugger

This chapter describes the assembly language debugger, db, that is
provided with some versions of Aztec C86. For a description of the
source level debugger, sdb, see the Source Level Debugger chapter.
For a description of other utility programs that are provided in some
Aztec C86 packages, see the Utilities and Unitools chapters.

- db.3 -

DB Debugger DB

NAME

db - symbolic debugger

SYNOPSIS

db [progfile] [arg1 arg? ...]

DESCRIPTION

db is used to debug programs which have been created using the
Aztec C compiler, assembler, and linker.

db has all the standard features of an assembly language debugger. It
also has features not found in all debuggers, such as the ability to
reference memory locations by name as well as by address, the ability
to define sequences of commands to be macros, which can then be
activated by entering a single letter, and a flexible mechanism for
handling breakpoints.

In addition, db has features specifically tailored to its use with
Aztec C, such as the ability to list the name and parameters of the
currently executing function, and the function that called it, and so on,
back to the initial function. Another special feature is the ability to
display, on entry and exit from each function, the function’s
parameters and return value.

Requirements

A minimum of 256 K bytes of RAM memory is recommended for
use with db. The debugger itself uses about 96K.

db can only be used on 8086-and 8088-based systems running
MSDOS or PCDOS, version 2.0 or later.

Preview

The remainder of this description of db is in three sections:
overview, which describes db features in more detail and introduces the
commands; usage, which describes in full detail how to use db; and a
command summary.

- db.4 -

DB Debugger DB

1. Overview

db commands consist of one or two characters, the first of which
identifies the command category. If there’s only one command in the
category, then the command has just this one letter; otherwise, the
command has a second letter which identifies the specific operation to
be performed.

1.1 Basic commands

db has two types of commands for examining memory: display and
print, whose first characters are d and p, respectively. The ’display’
commands db and dw simply display hexadecimal bytes and words.

The ’print command, p, is more powerful, being able to convert a
sequence of one or more possibly different types of data items to
ASCIL For example, you can tell it that beginning at the location var
are a sequence of the following items: an int, a float, and a pointer to a
char string. The p command will convert the two binary items to
ASCII and print them, and display the referenced character string.

The ’register’ command, r, displays and modifies the 8086 registers.

The ’memory modify’ commands, m, modify memory.

The u commands ’unassemble’ code; that is, display it symbolically,
in a form similar to its appearance in an assembly language source file.

The s and g commands cause the user’s program to be executed. s
commands "single step" the user’s program; that is, execute a specified
number of instructions in the user’s program and then return control
to db. g commands transfer control of the processor unconditionally to
the user’s program. In this case, db regains control when the user’s
program terminates, when an error occurs (such as division by zero),
or when a "breakpoint" is taken. Breakpoints are discussed below.

? 1s the help command: it causes db to display a summary of all db
commands. For some command categories, you can get information
about the commands in a category by typing the first letter of the
category’s commands followed by a ?. For example, typing mm? gets
you information about the memory modification commands (all of
whose first letter is m).

1.2 Names

db allows memory locations to be referenced by name as well as by
location. It learns a program’s global names by reading the file
containing the program’s symbol table and placing them in a memory-
resident symbol table. The linker generates a symbol table file for a
program in response to the -T option. Ways of causing db to read the

symbol table are described below.

db only allows global symbols to be accessed by name; automatic
variables and static variables can’t be accessed by name.

- db.5 -

DB Debugger DB

The operator can also define names to db using the v command, and
the ’clear symbols’ command, cs, will remove symbols from the
memory-resident symbol table.

1.2.1 Code and Data symbols.

db classifies symbols as being either code or data symbols; that is,
as referring to a location in a physical code segment or the physical
data segment. All symbols in the program’s symbol table file which
occur between the special linker symbols _Corg_ and ___Cend_.. are
considered to be code symbols, and all others are data symbols. This
classification of symbols frees the operator from having to specify the
physical segment in which a symbol is located, when using commands
which reference the location; the debugger knows which segment it’s
in. The classification is also of use when unassembling memory.

There are two commands for viewing the symbols which are known
to db. dc and dd, which display code and data symbols, respectively.

1.2.2 Operator usage of names.

When a C source program is compiled, all global symbols are
truncated to a maximum of 31 characters and are then appended with
an underscore character.

To refer to symbols which, in a C source file contain less than 31
characters, the inclusion of the appended underscore character is
optional: if it’s specified, db will search for just that symbol in it’s
symbol table. Otherwise, it will first search for the specified symbol; if
the search fails, it will then append an underscore to the name and
search again.

To refer to symbols which contain 32 or more characters, only the
first 31 are significant; db ignores all other characters in the name.

1.3 Loading programs and symbols

A program and its symbols can be loaded into memory when db is
started; in this case, the command line defines the program to be
loaded. The db ’load program’ command, Jp, can also be used. When
told to load a program, db automatically tries to load the program’s
symbol table, too; it assumes the symbol table file has the same name
as the program file, with the extension changed to .sym.

When the symbol table file doesn’t obey this convention, the "load
symbols’ command, Js, can be used.

When the /p command finds a symbol table file, it clears the symbol
table of all symbols, other than those defined with vy commands, before
loading the new symbols. The /s command, on the other hand, doesn’t
clear the symbol table first: it simply loads all the symbols. If it finds a
symbol that is already in the table, it enters the new value and issues a
warning message.

- db.6 -

DB Debugger DB

Only one user program can be in memory at once. If an /p
command is entered before a currently loaded program has exited, the
current program is terminated by the debugger before the new
program is loaded.

When a program exits, it must be reloaded with the /p command

before execution can begin again.

A memory map can be obtained using the dm command.

1.4 Breakpoints

Before transferring control of the processor to a user’s program in
response to a g command, db can set "breakpoints" at specified
locations in the code. When the user’s program reaches a breakpoint,

db regains control.

A breakpoint has a ’skip count’ associated with it, which allows a
breakpoint to be passed several times before actually taking the
breakpoint and returning control to db and the user. When a
breakpoint is reached, db is always activated; it increments a counter
associated with the breakpoint. When the counter’s value is greater
than the breakpoint’s skip count, the breakpoint is taken; that is, db
retains control of the processor. Otherwise, db returns control of the
processor to the user’s program after the breakpoint. By default, a
breakpoint’s skip count is 0; thus, each time the breakpoint is reached,

it’s taken.

A breakpoint can also have a sequence of db commands associated
with it. When a breakpoint is taken, these commands will be executed
before db allows the operator to enter commands. For example, if you
just want to examine a variable each time a certain location in the
code is reached and then have the program continue execution, you
could define a breakpoint at the location, and specify a list of
commands to do just that: the first command in the sequence would be
a d command to display memory, and the second would be a g
command to continue execution of the program.

There are two ways to define breakpoints: with the g command,
and with special breakpoint commands, whose first letter is D.

The breakpoint commands manipulate a table of breakpoints: there
are commands for entering breakpoints into the table, displaying the
entries, reseting their counters, and removing them from the table.

There’s a difference between a breakpoint defined in a g command
and those in the breakpoint table: the g command breakpoint is
temporary, while a breakpoint table is more permanent (it exists until
removed from the table). Before transferring control to the user’s

program in response to a g command, db sets all breakpoints that are in
the breakpoint table and that are specified in the g command itself.
When a breakpoint is taken, db removes all breakpoints from the code

- db.7 -

DB Debugger DB

and forgets all about the g command breakpoint. The breakpoint table
breakpoints, however, are still in the table and will be set back in
memory when control is again returned to the user’s program.

db remembers the skip counter associated with a breakpoint which
is in the breakpoint table: when it sets breakpoints in memory, the
count for such a breakpoint is set to its remembered value (that is, its
value in the table); and when a breakpoint is taken, the accumulated
count for the breakpoints in memory are saved in the breakpoint table.

1.5 Memory-change breakpoints

The breakpoints described above are taken when a program reaches
a specified point in the code. A second type of breakpoint, called a
memory-change breakpoint, is taken when a specified memory
location is changed from or set to a particular value.

With a memory-change breakpoint set, db will detect either the
function or the instruction which modifies the specified memory
location, depending on whether the user’s program was activated using
a g command or is being single-stepped using an s command,
respectively.

When the user’s program is activated with a g command and a
memory-change breakpoint is set, db will examine the specified
memory location on entry to, and exit from, each function. It will take
a breakpoint, that is, interrupt execution of the program and return
control to the operator, when the contents of the memory location
meets the specified condition.

When an s command is used to single-step a program and a
memory-change breakpoint is set, db will examine the specified
memory location after each instruction is executed, and take a
breakpoint when appropriate.

The bb and bw commands are used to set and remove memory-
change breakpoints.

1.6 Separate screens for programs and db

When used on an IBM PC or an equivalent, db can optionally
maintain separate screens for itself and for a program that is being
debugged. With this feature enabled, a program-generated screen is
displayed while a program is executing, and a screen of operator-db
interactions is displayed while db is executing.

This feature is implemented as follows: when a program encounters
a breakpoint, db saves the contents of the screen and displays the
debug screen; similarly, when db continues a program, it saves the
debug screen and restores the program screen.

To enable this feature, specify the -w option when you start db.
This option must precede the name of the program that is to debugged.

- db.8 -

DB Debugger DB

Two ab commands are related to separate program/debug screens:

* The w command causes db to toggle between displaying the
debug and program screen.

* The W command disables screen saving and restoring.

1.7 Trace mode

db supports a ’trace mode’, which displays information whenever a
function is entered or exited.

With this mode enabled, on entry to a function, the function name
and its arguments are displayed, and, optionally, on exit from a
function, its return value is displayed.

The commands bt and bT affect trace mode: bt enables and disables
trace mode, and b7 enables and disables the display of function exit
information.

1.8 Backtracing

When db regains control from an executing program (for example,
because a breakpoint was taken), it has the ability to display
information on how the program got to its current location: the ds
command will display information about the currently executing
function, and the function which called it, and so on, back to the Manx
function Croot, which called the user’s function main.

ds displays, for each function, its name, arguments which were
passed to it, and the address to which it will return.

1.9 Macros

db allows the user to define and excute ’macros’; that is, a sequence
of db commands.

A macro is associated with a single alphabetical character, so up to
26 macros can be known to db at any time.

The db command «x is used both to define and execute a macro.

1.10 Displaying source files

db allows the user to display source files, thus providing a
convenient means to examine the source of a program being debugged.

Only a single source file can be examined at a time. The ’load
source file’ command, /f, defines the source file to be displayed, and
the ’display source lines’ command, df, displays its lines.

The ’find string’ command, f, will find a character string in the
source file.

1.11 Other features

Some other features of db which haven’t yet been discussed are:

- db.9 -

DB Debugger DB

The ’input’ and ’output’ commands, i and o, will transfer data
to and from an i/o port;

The ’redirect stdin’ command, <, causes db to read commands
from a specified device or file and then continue reading
commands from the console;

The ’evaluate expression’ command, =, does just that.

The *help’ command, ?, lists commands.

- db.10 -

DB Debugger DB

2. Using DB

2.1 Starting DB

db is started with a command of the form:

db [progfile] [arg] arg2 ...]

where the optional parameter /progfile] is the name of a file containg
a program to be debugged, and the optional parameters arg/, arg2, ...,
are character strings to be passed to the program.

The extension on the program filename is optional; if not specified,
a search is first made for a file with the extension .exe. If that search
fails, another is made with the extension .com.

db looks for a period, ’.’, to decide whether the program file name
contains an extension. Thus, to specify a program which doesn’t have
an extension, include a period at the end of the file name.

If the program file name specifies a drive or directory, db searches
for the program file in just that particular area. Otherwise, it searches
the current directory on the default drive.

The "arg" parameters are passed to the program using the argv
parameter of the program’s main function: arg] is pointed at by
argv[I], arg2 by argv[2], and so on. argv/[0] always contains zero.

2.2 Commands

This section describes in detail the db commands. It first defines
some terms that are used in the command descriptions. These terms
are expr, term, addr, range, and cmdlist.

2.2.1 Definitions

2.2.1.1 The Definition of EXPR

An EXPR has the following form:

TERM [binop TERM ...]

That is, an EXPR can be a single TERM or a series of TERMS
separated by binary operators. The binary operators are:

+ - addition
- + subtraction
* - multiplication
/ - division
% - modulus
& - bitwise and
| - bitwise inclusive or
~ - bitwise exclusive or

All operators have the same precedence, and an unparenthesized
EXPR is evaluated left to right. If you want to override the default

- db.11 -

DB Debugger DB

order of evaluation of an expression, you can parenthesize the relevant
parts of the expression.

An EXPR has a 16-bit value. The operators that are applied to the
TERMS out of which the EXPR is built affect just this 16-bit value.

When an EXPR refers to a memory location (that is, it is built up
from an ADDR), the 16-bit value is the offset of the location from the
beginning of the segment containing it. In this case, the EXPR can
also specify the beginning paragraph number of the segment
containing the location. For more discussion about this, see the
description of ADDR below.

2.2.1.2 The Definition of TERM

A TERM always resolves to a numeric value, and can be one of the
following:

REGISTER
CONSTANT

@ [function]
(EXPR)

These names are defined in the following paragraphs.

REGISTER

Registers are specified by their standard names; that is, AX, BX,
and so on. The value of the TERM is the contents of the register.

CONSTANT

A CONSTANT can be a decimal, hexadecimal, or octal number, or
a character.

You can explicitly define the radix of a numerical constant as
follows:

* A sequence of digits preceded by ’0x’ is taken to be a
hexadecimal number.

* A sequence of digits preceded by ’0o’ is taken to be an octal
value.

* A sequence of digits terminated by a decimal point is taken to
be a decimal value.

When the radix of a number isn’t explicitly specified, db assumes
that it uses the current default radix. By default, the default radix is

- db.12 -

DB Debugger DB

decimal. It can be changed using the n command, as follows:

command default radix
nx hexadecimal
no octal
nd decimal

A character is represented by the character, surrounded by single
quotes, as in ’x’. The value of a character constant is its ASCII value.

Certain characters, the single quote ’, and the backslash \ may also
be defined within the single quotes. These are identified by a leading
backslash character, and are:

char hex value db notation
newline Oa \n
horizontal tab 09 \t
backspace 08 \b
carriage return Od \r
form feed Oc \f
backslash 5c \
single quote 27 \?
bit pattern ddd \ ddd

ADDR

A TERM can be an ADDR; that is, a reference to a location in
memory. See the definition of ADDR, below, for more details.

*ADDR

When a TERM consists of a * followed by an ADDR, the value of
the TERM is the contents of the 16-bit field referred to by the ADDR.
For example,

*VAR The contents of the VAR field;
*BX The contents of the 16-bit field in the data segment

pointed at by BX;

*SP The contents of the 16-bit field on the top of the
stack;

*(LBL+2) The contents of the 16-bit field referred to by LBL+2:

Because an ADDR can itself be an EXPR, the *ADDR term may
require extra parentheses. For example,

¥sp+2

is equivalent to *(sp+2) and not (*sp)+2. The value of the first
interpretation is the contents of the second word on the stack, while
the value of the second is two plus the contents of the first word on
the stack.

- db.13 -

DB Debugger DB

ADDR

The value of #ADDR is the contents of the doubleword field
referenced by ADDR. The contents of the most significant word
becomes the segment component of the resulting TERM, and the
contents of the other word becomes the offset value of the TERM.

period(.)

The value of a TERM consisting of a period, ’.’, is the starting
address ADDR of the last similar command. For example, if ten bytes
of memory were displayed using the db command, as in

db ds:0x100,10

then ’.” would be set to ds:0x100 for the next db or dw command. If
the next db or dw command is

dw.

the same 10 bytes would be displayed as words.

The ’.’ has a separate value for the u command, for the db, dw, and
m commands, for the p command, and for the df command. An m
command never modifies its associated ’.’.

@ [function]

The @ symbol has as its value the return address of the specified
function. The function name is optional, and defaults to the current
function. The main use for @ is in the g command.

For example,

£@

transfers control to the user’s program, and sets a breakpoint at the
return address of the current function.

As another example,

g @putc

transfers control to the user’s program. When the function putc is
reached, a breakpoint will be set at the address to which it will return.

2.2.1.3 The Definition of ADDR

An ADDR defines the address of a location in memory, and has the
form:

[EXPR:]EXPR

The rightmost EXPR is the offset of the location from the
beginning of the segment containing it.

The optional EXPR: defines the beginning paragraph number of the
segment containing the location; if not specified, the paragraph

- db.14 -

DB Debugger DB

number will be determined as follows:

* If the offset uses a symbol, the paragraph number is the
segment component of the symbol name;

* If the offset uses the SP or BP registers, the paragraph
number is the contents of the SS register;

* If the offset uses the IP register, the paragraph number is the
contents of the CS register;

* If the offset uses any other register, the paragraph number is
the contents of the DS register.

For cases not covered by the above, the segment paragraph number
will default to the last segment number used, or, if none, the default
segment number for the particular command being executed.

Here are some examples of ADDR:

cSiip Address of program counter;
ip Equivalent to cs:ip;
csimain+ 10
main+10

ds- 16:0 The beginning of the segment 256 bytes
before DS;

(*sp+ 10):(*sp+8) A reference to a location whose segment
paragraph number and offset are on the
stack;

#S5p+8 Same as the above
data+*(bp+6)

2.2.1.4 The Definition of RANGE

A RANGE defines a block of memory. It has one of the following
forms:

ADDR,CNT
ADDR>ADDR
ADDR
»;CNT

The form ADDR,CNT specifies the starting address, ADDR, and a
number, CNT. CNT is interpreted differently by different commands.
For example, the ’disassemble code’ command, u, will display CNT
lines, while the ’display bytes’ command, db, will display CNT bytes.

The form ADDR>ADDR specifies the starting and ending
addresses of the range.

A full range need not be explicitly specified, because db remembers

the last-used range and will set unspecified RANGE parameters from
the remembered values:

- db.15 -

DB Debugger DB

* When a RANGE is specified which consists of a single
ADDR, the last used CNT is used.

* When a RANGE is specified which consists of ’,CNT’, the
next consecutive address is used, and the remembered count
is changed to the new value.

* When nothing is specified as the RANGE, the next
consecutive address is used as the starting ADDR, and the
CNT is set to the remembered value.

2.2.1.5 The Definition of CMDLIST

A CMDLIST is a list of commands. It consists of a sequence of
commands or macros separated by semicolons:

COMMAND [;COMMAND]

If a macro is in a CMDLIST, it must be the last command in the list.

2.3 Command descriptions

The following descriptions of debugger commands uses terms and
concepts which were presented in the preceding sections.

The commands are listed alphabetically. For an index, see the
command summary which follows the descriptions.

2.3.1 The Breakpoint Commands

bb - Set Byte Memory-Change Breakpoint
bw - Set Word Memory-Change Breakpoint

Syntax:
bb
bw
bb ADDR == [VAL]
bb ADDR != [VAL]
bw ADDR == [VAL]
bw ADDR != [VAL]

Description:

These commands are used to set and clear a memory-change
breakpoint, with the parameterized versions used to set
breakpoints and the parameter-less version to clear them. The bb
command is used to monitor a one-byte field, and the bw
command to monitor a two-byte (word) field.

In the parameterized form of the commands, ADDR specifies the
field to be monitored.

With the ’==’ form, the breakpoint will be triggered when the
debugger detects that the field is equal to the specified value,
VAL.

- db.16 -

DB

be -

Debugger DB

With the ‘I=’ form, the breakpoint will be triggered when the
debugger detects that the field is different from the specified
value.

The VAL parameter is optional. If not specified, it defaults to the
current value at the ADDR.

Before memory-change breakpoints can be set in a program,
control must be passed to the program, using a g command. For
example, you could load the program, then enter

g main

to start it executing and then return control to the debugger, and
then set the memory-change breakpoints.

The reason for this is that when a program is loaded its data
segment register, DS, doesn’t point to the program’s data
segment. Hence, any memory-change breakpoints which are set
before DS is initialized are set to incorrect addresses. The
initialization of DS is done by the Manx functions which execute
before control is passed to the user’s main function, so memory-
change breakpoints can safely be set once control reaches main.

Clear a single breakpoint
bC - Clear all breakpoints

Syntax:
bc ADDR
bC

Description:

bd -

These commands delete breakpoints from the breakpoint table.

be deletes the single breakpoint specified by the address ADDR,
and bC deletes all breakpoints from the table.

Display breakpoints

Syntax:
bd

Description:

bd displays all entries in the breakpoint table.

For each breakpoint, the following information is displayed:

* Its address, using a symbolic name, if possible;

- db.17 -

DB Debugger DB

* The number of times it’s been “hit? without a
breakpoint being taken.

* The skip count for it;

* The command list for it, if any.

For example, a bd display might be:

address hits skip | command
cs:printf 1 2
cs:putc _ 0 0 db ds: Cbuffs

In this example, two breakpoints are in the table. The first is at
the beginning of the function printf; a breakpoint will be taken
for it every third time it is reached, and no command will be
executed. Given its current hit count, a breakpoint will be taken
the next time printf__ is reached.

The second breakpoint is at the function putc_; a breakpoint will
be taken each time the function is reached, and will display
memory, in bytes, starting at ds: Cbuffs.

br - Reset breakpoint counters

Syntax:
br [ADDR]

Description:

br resets the "hit? counter for the specified breakpoint which is at
the address, ADDR. If ADDR isn’t given, the ’hit’ counters for
all breakpoints in the breakpoint table are reset.

bs - Set or modify a breakpoint

Syntax:

[#] bs ADDR [;CMDLIST]

Description:

bs enters a breakpoint into the breakpoint table, or modifies an
existing entry.

The optional parameter # is the skip count for the breakpoint. If
not specified, the skip count is set to 0, meaning that each time
the breakpoint is reached it will be taken.

The optional parameter CMDLIST is a list of debugger
commands to be executed when the breakpoint is taken.

- db.18 -

DB Debugger DB

bt - Toggle the trace mode flag
bT - Toggle the return trace mode flag

Syntax:
bt
bT

Description:

bt and bT toggle the trace mode and return trace mode flags,
respectively.

The state of the trace mode flag determines whether trace mode
is enabled or disabled.

The state of the return trace mode flag determines whether the
tracing of a function’s return is enabled or disabled. If trace mode
is disabled, the return trace mode flag has no effect.

2.3.2 The Clear Commands

cs - Clear symbol table

Syntax:
cS

Description:

cs removes all symbols from the debugger’s memory-resident
symbol table, except for symbols which the operator has entered
using the y command.

When a program is loaded using the Jp command, the cs
command is automatically called.

2.3.3 The Display Commands

db - Display memory in bytes
dw - Display memory in words
d - Display memory in last format

Syntax:

db [RANGE]
dw [RANGE]
ad [RANGE]

Description:

The db and dw commands display successive bytes and words of
memory, respectively. d displays memory using the last format
specified; for example, if d is entered, and db was the last *display
memory’ command, then d will display bytes, too.

- db.19 -

DB Debugger DB

The starting address of the RANGE parameter is optional; if not
specified, it defaults to the ending address of the last display’s
RANGE, plus one.

Each line of the display begins with the segment and address,
followed by a hexadecimal display of 16 bytes or 8 words,
followed by an ASCII display, by bytes, of the same data. For the
ASCII display, values falling outside the range 0x20 to Ox7f are
displayed as a period.

If the ending address does not fall on a multiple of 16 bytes, only
the number of bytes or words specified in the last line will be
displayed.

dc - Display all code symbols

Syntax:
dc

Description:

dc lists all the code symbols in the memory-resident symbol table
and all user-defined symbols.

For each symbol, its name and address are displayed.

dd - Display all data symbols

Syntax:
dd

Description:

dd lists all the data symbols in the memory-resident symbol table.

For each symbol, its name and address are displayed.

df - Display source file lines

Syntax:
df [RANGE]

Description:

df displays lines from the source file which was specified in the
last 1f command.

The RANGE parameter specifies the numbers of the lines to be
displayed.

- db.20 -

DB

dg

Debugger DB

The starting line number is optional; if not specified, the display
Starts with the "current" line.

The current line in a source file is set by the source file
commands /f, df, and f, as follows:

* When the file is first loaded with the /f command, the
first line in the file is the current line;

* When the last source file command was ’display source’,
df, the current line is the line following the last one
displayed:

* When the last source file command was ’find string’, /,
the current line is the line in which the string was
found.

df also sets the "F-dot" for the source file to the number of the
first line displayed. The F-dot is the line referred to when the
starting line number of the range in a df command specifies a
period (.). Also, source string searches begin at the line following
the F-dot line.

Each displayed line is preceded with a line number in decimal, a
colon, and the line itself.

Display global values

Syntax:

dg

Description:

dm

For each data symbol in the debugger’s symbol table, dg displays
the contents of the 16-bit field referenced by that symbol.

- Display memory map

Syntax:
dm

Description:

dm displays a memory map of allocated memory, beginning with
the debugger program itself.

An entry gives information about one allocated block of memory.
It has the following form:

XXXX: OWNEr=yyyy SiZC=ZZZZZ

where xxxx 1s the paragraph number at which the block begins,

- db.21 -

DB

dn

Debugger DB

yyyy is the Program Segment Prefix of the process that owns the
block, and zzzzz is the number of bytes in the block, in decimal.

For example:

10cf: owner=10d0 size=85264
25al: owner=25aa size=112
25a9: owner=25aa $ize=69168
368d: owner=0000 size=38688

The debugger occupies the block that begins at paragraph 0x10cf;
the Program Segment Prefix for db begins at paragraph 0x10d0;
the number of bytes in db’s block is 85264. The environment of
the program being debugged begins at paragraph 0x25al, and the
Program Segment Prefix for the program begins at paragraph
Ox25aa. The program itself occupies the block beginning at
paragraph 0x25a9. Memory beginning at paragraph 0x368d is
unallocated.

Note that both the block containing program and the block
containing its environment are owned by the PSP of the
program.

- Display 8087 State

Syntax:
dn

Description:

dn displays the state of the 8087, in the following format:

cccc _—s SSSS tttt
lilo J oolo ——oohi
st(0): top stack element
st(1): next stack element

st(7): last stack element

where

cccc 1s the control word
ssss 18 the status word
tttt is the tag word
lilo is the least significant 16 bits of the instruction
pointer

* jjjJj, Most significant 4 bits are the most significant 4
bits of the instruction pointer and the least significant 11
bits are the opcode

* oolo is the least significant 12 bits of the operand pointer
* oohi has as its most significant four bits the most

*&

%&
£+

£

- db.22 -

DB Debugger DB

significant four bits of the operand pointer, and its least
significant 12 bits are 0.

* st(O), ... are the contents of the stack registers.
All values are in hexadecimal.

ds - Display Stack Backtrace

Syntax:
ds

Description:

ds displays information about the current function, the function
whic called it, and so on, back to Croot, the Manx function which
called the user’s function main.

For each function, the information consists of the function’s
name, the parameters passed to it, and the address to which it will
return.

The arguments are displayed as a series of 16-bit hex values. If an
argument is actually of type long or double, it will be displayed as
separate words.

ds determines the number of parameters by looking at the
instructions which follow the address to which the function will
return.

ds assumes that the BP register points to the C stack frame for
the current function, unless the current instruction is within 6
bytes of the start of the function.

2.3.4 The ’Find Source String’ Command

f - find string in source file

Syntax:
fSTRING

Description:

This command searches the current source file (that is, the one
specified by the last /f command) for a specified string.

The search begins at the line following the current line.

If the string is found, the current line and the F-dot line of the
source file is set to the line containing the string; otherwise,
these values are unchanged.

STRING is the character string to be located, and consists of all
characters following the f and preceeding the carriage return.

- db.23 -

DB Debugger DB

If the first character of the string is ’“’, the search will begin with
the first character on a line. In this case, ’*’ isn’t part of the
search string.

The ’current line‘ and F-dot line for a source file are defined in
the description of the df command.

2.3.5 The Go commands

g - Execute the program |
G -_ Execute the program, without setting table breakpoints

Syntax:
[#]g [@ <function>] [ADDR] [;CMDLIST]
[#]G [@ <function>] [ADDR] [;CMDLIST]

Description:

The g commands transfer control of the processor to the user’s
program, at the address specified by CS:IP. The user’s program
then executes until it terminates, an error such as division by
zero occurs, or a breakpoint is taken; control then returns to the
debugger program.

The parameters to the ’g’ commands allow one or two temporary
breakpoints to be set in memory before the user’s program is
executed.

The difference between the ’g’ and the ’G’ command is that the
°G’ command sets in memory just the breakpoints specified in
the command itself, while the ’g’ command also sets the
breakpoints specified in the breakpoint table.

The ’#’ and ’ADDR’ parameters define one of the temporary
breakpoints that a Go command can set:

* # is the skip count for the breakpoint; it defaults to
zero, meaning that the breakpoint is taken every time
it’s reached;

* ADDR 1s the address for the breakpoint;

The ’@ <function>’ parameter specifies that a temporary
breakpoint is to be set at the return address of the specified
function. If the function isn’t specified, it defaults to the current
function. If a function is specified, the breakpoint is set to the
address to which the function will return. In this case, the
breakpoint isn’t set until the function is entered; thus, in
programs which call the function from several different places,
the breakpoint will be set at the actual address to which the

function will return.

The *;CMDLIST parameter defines a sequence of debugger
commands, separated by semicolons, that the debugger is to

- db.24 -

DB

2.3.6

ib -
iw -

Debugger DB

execute once a breakpoint which is specified in the ’go’
command is taken. If this parameter isn’t specified, it defaults to
the command list used for the last temporary breakpoint.

If db is maintaining separate screens for the program and itself, it
restores the program screen before transferring control to the
program. For more information on this, see the discussion of
separate screens in section | of this db documentation.

Before setting breakpoints and transferring control to the user’s
program, the debugger single-steps the user’s program, (that is,
causes it to execute one instruction). This allows the operator to
transfer control to a location in the program at which there is a
breakpoint, without immediately triggering a breakpoint and re-
entry to the debugger.

The Input Commands

Input byte from port
Input word from port

Syntax:
ib PORT
Ww PORT

Description:

2.3.7

lf -

ib and iw input a byte or word, respectively, from the i/o port,
PORT.

The Load Commands

Load a source file

Syntax:
lf filename

Description:

Ip -

lf opens the specified source file for subsequent examination by
the df command.

If a file has already been opened by a previous Jf, it’s closed
before the new file is opened.

Load program

Syntax:

lp
Ip progfile [arg] arg2 ...]

Description:

- db.25 -

DB Debugger DB

lp loads a program into memory. If a symbol table file can be
found for the program, it will be loaded, too.

If the /p command is given without parameters, the last Ip
command is re-executed. The following comments describe the
parameterized version of lp.

Loading the program

The parameter progfile specifies the file containing the program.
The extension on the file name is optional. If not given, a search
is made for the file with extension ".exe"; if this fails, another is
made for the file with extension ".com". To specify a program
file which doesn’t have an extension, use a period after the
filename.

If the program file name specifies a drive or path, the file is
searched for in just that location; otherwise, it’s searched for on
the current directory of the default drive.

If an attempt is made to load a program before a currently loaded
program has terminated, the current program will be terminated
by the debugger before the new program is loaded.

Loading the symbol table

After the program is loaded, the memory-resident symbol table is
cleared of all symbols except for those defined with the vy
command, and an attempt is made to locate and load the
program’s symbol table. The name of the file containing the
symbol table is assumed to be the same as the program file name,
with the extension changed to ".sym".

If the symbol table is in a file not obeying this convention, it can
be explicitly loaded using the ’load symbols’ command, Js.

And then...

After the program is loaded, its program segment prefix (PSP) is
initialized with the arguments arg], arg2, etc. These are available
to the program as the main function’s arguments argv/1/,
argv[2], and so on. argv[0] is set to 0, and argc is set to the
number of "arg" parameters.

The U-dot (that 1s, the value of the period parameter associated
with the u commands) is set to CS:IP. The D-dot (the value of
the period parameter for the d and m commands) 1s set to DS:0.

Once a program exits, it must be reloaded with an /p command
before it can begin again.

- db.26 -

DB Debugger DB

Is - load symbols

Syntax:
ls <filename>

Description:

ls loads symbols from the specified symbol table file into the
debugger’s memory-resident symbol table, after first clearing the
memory-resident table of all but those symbols defined with the v
command.

The parameter </filename> specifies the file to be loaded. The
extension on this name is optional; if not given, it’s assumed to
be "sym". To specify a file which doesn’t have an extension,
include a period at the end of the name.

If the file name gives a drive or path, it’s searched for just on the
specified area. Otherwise, it’s searched for on the current
directory on the default drive.

2.3.8 The Memory Modification Commands

mb - Modify bytes of memory
mw - Modify words of memory

Syntax:

mb ADDR EXPRI [EXPR2...]
mw ADDR EXPRI [EXPR2...]

Description:

db and dw modify bytes and words of memory, respectively.

The parameter ADDR specifies the address of the first byte or
word to be modified.

The EXPR parameters are expressions, whose resulting values are
set in memory, with EXPRI set in the first byte or word
specified, EXPR2 set in the next higher byte or word, and so on.

The EXPR parameters can be separated by spaces or commas.

mc - Compare memory

Syntax:

mc RANGE = ADDR

Description:

mc compares two blocks of memory and, for each comparison
which fails, displays the corresponding segment, address, and

- db.27 -

DB Debugger DB

value.

RANGE specifies one of the blocks of memory. The second
begins at ADDR and has the same length as the first block.

mf - Fill memory

Syntax:
mf RANGE = EXPR

Description:

mf sets each byte in a block of memory to a specified value.

The RANGE parameter specifies the memory block, and EXPR
an expression whose resulting value is the value to be set in the
range.

mm - Move memory

Syntax:
mm RANGE = ADDR

Description:

mm copies one block of memory to another.

The RANGE parameter specifies the source block and ADDR
the starting address of the block to be modified.

ms - Search memory

Syntax:

ms RANGE = EXPRI [EXPR2 ...]

Description:

ms searches a block of memory for a sequence of bytes having
specified values. For each match, the corresponding address of
the start of the string is displayed.

RANGE specifies the block of memory. The EXPR parameters
are expressions, each of whose resulting values is one byte of the
search sequence.

- db.28 -

DB Debugger DB

2.3.9 The Output Commands

ob - Output byte to i/o port
ow - Output word to i/o port

Syntax:
ob PORT=EXPR
ow PORT=EXPR

Description:

ob and ow output a byte or word, respectively, to an i/o port.

PORT is the address of the port. EXPR is an expression whose
resulting value is the value to be output.

2.3.10 The ’Print? Command

p - formatted print

Format:
p[format] [ADDR] [,COUNT]

Description:

p generates a formatted display of memory of a section of
memory, by converting data items in memory to a displayable
form as directed by the format conversion string format.

format is a list of format specifications, each of which defines the
type of a data item and the conversion to be performed on it.

p works its way through the format string, converting and
displaying data items in memory. as requested by the format
string items. When p reaches an item in the format string, it
converts the data item at its current address’ as directed by the
format item. When it finishes processing a format string item, it
increments its current address by the size of the data item that it
just processed, so as to be ready to process the next data item as
directed by the next format string item.

The format string is optional; if not specified, the format string
used by the previous p command is used.

ADDR specifies the address of the first data item that p is to
convert and display. If ADDR is not entered, the starting address
is assumed to be the print command’s ’current address’.
Normally, this is the address of the first byte beyond the last data
item converted by the last p command. However, there is a
format item that causes p to remember the address contained in

the current data item, and then make that the current address
after it finishes processing the entire format string.

- db.29 -

DB Debugger DB

COUNT specifies the number of times that p is to work its way
through the format string. Each time through, p begins at the
current address that was left by the last time through. If COUNT
isn’t specified, it defaults to one time.

The format items have the form

where

*

[rpt][indir__flgs][size]desc__code

desc__code is a single-letter code that defines the type of
the data item and the conversion to be performed upon
it. For example, the code d says ’take the two-byte
binary value at the current address, convert it to
decimal, and print it’. So if var is an int, the following
command could be used to print its value in decimal:

pd var

The code x says "take the two-byte binary value at the
current address, convert it to hexadecimal, and print the
result". So the hexadecimal value of var could be
printed with the command:

px var

indir is a string of zero or more * and/or # characters,
which are indirection indicators specifying that the
value at the current data item is a pointer to a chain of
zero Or more pointers, the last of which points to an
object whose type and requested conversion are defined
by desc__code.

To find the data object corresponding to a format item
that has indirection indicators, p begins by setting its
idea of the address of the data object to the current
address. It then works its way from left to right through
the indirection indicators; for each indicator it replaces
its current idea of the data object address with the
pointer that is in the field at this address. The data
object address is distinct from the current address: at the
end of this process, the p command’s current address is
simply incremented past the first pointer.

A * specifies that the pointer within the field referenced
by the current data object address is two bytes long.
This pointer is the offset component of the new data
object address from the last segment referenced.

A # specifies that the pointer within the field
referenced by the current data object address is four
bytes long. The most significant word of this pointer is

- db.30 -

DB Debugger DB

the segment component of the new data object address,
and the least significant word is its offset component.

For example, if the variable cp is a short pointer to a
character string (that is, its declaration is char *cp), then
the string pointed at by cp could be printed by the
command

p*s cp

Here we have made use of the s desc code, which
specifies that the data object is a character string, and
that the string’s characters are to be printed, with
possible modifications as noted below, up to a
terminating null character. After this command, the p
command’s current address is set to the byte
immediately following cp.

As another example, if a module uses the "large data’
memory model (that is, its pointers to data objects are
four bytes long), and if cpp is a pointer to an array of
pointers to character strings (that is, the declaration of
cpp 1s char **cpp), then the string pointed at by the first
element of the array could be displayed with the
command

p##s cpp

Following this command, the p command’s current
address is set to the byte following cpp.

The rpt parameter of a format item defines the number
of times that the item is to be processed. It allows a
sequence of rpt identical format items to be abbreviated
by just one such item with a leading rpt count.

For example, if a is an array of floats, then the first five
items in this array could be displayed with the command

p»f a

This command uses the fact that the desc_code to
convert a four-byte floating point value at the current
address to a displayable value is f. This command is
equivalent to the command pfffffa. At the end of this
command, the p command’s current address is set to the
address of the byte following the last displayed float.

The size parameter of a format item defines the number

of data items that are to be converted and printed.

When the format item doesn’t use indirection, size has
the same effect as rpt; for example, in the p5f a
command above, the 5 could be interpreted as being a

- db.31 -

DB Debugger DB

size parameter instead of a rpt parameter.

When the format item does use indirection, then the size
parameter defines the number of data items to be
converted and printed at the end of the indirection
chain. For example, if a module using the ’small data’
memory model defines /pp as a pointer to an array of
pointers to longs (that is, the declaration of Ipp is long
**ip), then the following command would display the
first four longs pointed at by the first element of the
pointer array:

p**4D Ipp

Here we have used the D desc_code, which specifies
that a four-byte signed binary value is to converted to
decimal and printed. The following command would
display the first three Jongs pointed at by the first three
elements of the pointer array:

p3*4D *lpp

To demonstrate further the difference between the rpt and size
fields in a format item, consider the format items 4*d and *4d.
The first causes the print command to take the item at the
current address as a short pointer, increment the current address
by two, convert to decimal and print the two-byte value
referenced by the pointer, and then repeat the process three
more times. At the end of the process, the current address has
been advanced by eight.

The second item causes the print command to again take the item
at the current address as a short pointer, increment the current
address by two, and then convert to decimal and print the four
successive two-byte values that begin at the address defined by
the pointer. At the end of the process, the current address has
been advanced by two.

As an example of the use of format strings containing several
format items, consider the following code in a program that uses
Short data pointers:

Struct {
int *ip;
float flt;
char *cp;

} var = {&i, 3.14159, "ralph";
int 1=2;

The command

p*d2-xf*s2-x var

- db.32 -

DB Debugger DB

will print

2 Xxxx 3.14159 ralph

where xxxx 1s the hexadecimal address of i and yyyy is the
hexadecimal address of the string.

A complete list of the desc__codes

We have introduced some of the desc_codes above. Here is a list of
the basic desc__codes:

Convert to hexadecimal and print a byte.
Convert to decimal and print a two-byte signed binary
value.

Convert to decimal and print a four-byte signed
binary value.
Convert and print a four-byte /loat.
Convert and print an eight-byte double.
Define the precision to be used in the display of
floating point values; that is the number of digits to be
displayed to the right of the decimal point. This
number precedes the period. For more information,
see below.
Convert to octal and print a two-byte field.
Convert to octal and print an eight-byte field.
Convert to hexadecimal and print a 2-byte field.
Convert to hexadecimal and print a 4-byte field.
Convert to decimal and print an unsigned, two-byte
value.

Convert to decimal and print an unsigned, four-byte
value.

Print a short, two-byte pointer in segmentioffset form.
Print a long, four-byte pointer in segment:offset form.
Print a character.
Print a character.
Print a string up to a terminating null byte.
Print a string up to a terminating null byte.

m
r

yp

a
c

Cc

c
-
x
K

O
O

N
Y

A
Q

V
T

Codes for printing floating point numbers

When a floating point number is displayed in response to an f or F
desc__code, the ’precision’ of the display (that i is, the number of digits
displayed to the right of the decimal point) is determined by the most
recently-entered period desc-code; if a period code hasn’t been entered,
the precision of the display defaults to 7 digits for floats and 16 for
doubles.

The period desc__code consists of a period preceded by the number of
digits of precision. For example, the following command contains two
desc__codes: the first sets the precision to 2 digits; the second then
displays a float, listing two digits to the right of the decimal point.

- db.33 -

DB Debugger DB

p2.F

Codes for printing characters

For the C and S desc__codes, each character is printed "as is", with no
translations.

For the c and s codes, printable ASCII characters (that is, whose hex
value is between 0x20 and 0x7f) are printed "as is". A character whose
hex value is less than 0x20 is printed as two characters: * followed by
the printable character whose hex value equals the original character’s
value plus 0x40. A character whose hex value is 0x80 or greater is
displayed as a ‘ character followed by the one or two characters that
would be printed for the character whose hex value equals that of the
original character less 0x80. For example, 0x41, 0x1, and 0x81 would
be printed as A, “A, and ’“A, respectively.

Special purpose codes

The following desc__codes can be used to assist in the formatting of the
p output:

character output
N orn Output a newline character
Rorr Output a blank character
Tort Output a tab character
"string" output "string"

These characters can be preceded by a count specifying the number of
characters or strings to be output.

Codes for setting the p command’s current address

The next group of desc_codes change the p command’s notion of the
current address. They don’t cause any printing.

Back up the current address by the size of the last data
item.

- or + Back up or advance, respectively, the current address
by size bytes, where size is a decimal value preceding
the - code. If size isn’t specified, it defaults to one
byte.

Aora Remember the long or short pointer, respectively, that
is contained in the current data object; If this pointer
is not null, set the p command’s current address to this
value after the entire format string has been
processed.

If the pointer is null, set the p command’s current
address to the value it had before the entire format

string was processed.

The A and a desc_codes are useful for printing the elements of a
linked list. For example, consider the following code, which defines

- db.34 -

DB Debugger DB

the structure for a symbol table item, and declares sym_ head to be a
pointer to this structure. The program that uses this structure and
field will chain symbol table items together, and set a pointer to the
head of the chain in sym_ head.

struct symbol {
struct symbol * sym_ next;
char *sym__name;
unsigned sym _ val;

} *sym_ head;

The following command would display the symbol table item pointed
at by sym_head and then set the p command’s current address to the
next symbol table item, which is pointed at by the sym_ next field in
the first item:

pA"symbol name="#snt"value="x sym __head

After. this command is entered, you can display successive symbol table
items by simply entering

p

The p command’s current address is correctly set to the next table
item, and since a format string isn’t specified, the p command will use
the one that it last used.

You can print out multiple symbol table items by entering a single p
command. To do this, place a comma and the maximum number of
items to be printed after the command’s starting address. The
command will follow the chain, printing symbol table items until it
either prints the specified number of items or it prints an item whose
sym_next pointer is null. In the latter case, it will terminate and leave
the p command’s current address set to the address of the last symbol
table item. For example, entering

pA"symbol name="#snt"value="x sym__head,100

will print symbol table items until it either prints 100 items or it prints
an item having a null sym_ next pointer.

2.3.11 The Quit command

q - Quit the debugger

Syntax:

q

Description:

q terminates the program being debugged, restores any modified

interrupt vectors, and returns control to the operating system.

- db.35 -

DB Debugger DB

2.3.12 The Register command

r - Register display

Syntax:
r
r <reg>=EXPR

Description:

r displays and modifies the registers, including the status
registers, of the program being debugged.

The parameter-less version displays the registers.

The parameterized version modifies the contents of a register,
with <reg> being the name of the register to be modified, and
EXPR an expression whose resulting value is to be set into the
register.

2.3.13 The Single Step commands

s - Single step with display
S - Single step without display

Syntax:
[#] s [;CMDLIST]
[#] S [;CMDLIST]

Description:

These commands ’single step’ the user’s program: that is, execute
its instructions one by one.

The optional ’#’ parameter specifies the number of instructions
to be executed; it defaults to one instruction.

The optional CMDLIST parameter is a list of debugger
commands to be executed after each single step.

The s and S commands differ in that s displays information after
each single step, whereas S only displays information after the
last single step.

The displayed information consists of the registers and a
disassembly of the next instruction to be executed.

When single-stepping, breakpoints aren’t enabled.

- db.36 -

DB Debugger DB

2.3.14 The Unassemble commands

u - Unassemble memory, with symbols
U - Unassemble memory, without symbols

Syntax:
u RANGE
U RANGE

Description:

These commands ’disassemble’ a range of memory; that is,
display the assembly language instructions in the range.

The u and U commands differ in that the wu command will make
use of the symbol table during disassembly and the U command
won’t. Also, the U command displays, for each instruction, the
hex value of each byte of the instruction, whereas the u
command won’t.

With the u command, the disassembly of an instruction which
references memory displays the location as the symbol nearest to
the location plus an offset, if possible. With the U command, the
location is displayed as a hexadecimal value.

The RANGE parameter specifies the area of memory to be
disassembled. It gives the starting address, and either the number
of instructions to be disassembled, or the ending address of the
area.

2.3.15 The Variable commands

vy - Create a new symbol
V - Modify the value of an existing symbol

Syntax:
v SYMBOL = ADDR
V SYMBOL = ADDR

Description:

The vy and V commands are used to create a new symbol or
modify the value for an existing symbol, respectively, in the
debugger’s memory resident symbol table.

SYMBOL is the name of the symbol being created or modified,
and ADDR is its address.

The symbol will be classified as a code symbol unless the ADDR
parameter specifies the data segment.

Symbols created using these commands remain in the memory-
resident symbol table, even when the symbol table is cleared.

- db.37 -

DB Debugger

2.3.16 The Macro command

DB

x - Macro command

Syntax:
xc
xc = CMDLIST
x?

Description:

The x command defines or executes a sequence of debugger
commands, called a ’macro’. It can also list the defined macros.

A macro is associated with a letter of the alphabet, so up to 26
macros can be known to the debugger at one time. Case is not
significant.

A macro is defined by typing the letter ’x’, followed by the letter
with which the macro is to be associated. Then follows an ’=’
character and the macro’s list of debugger commands, with the
commands separated by semicolons.

A macro is executed by typing ’x’, followed by the letter with
which the macro is associated, followed by a carriage return.

The macros which have been defined can be listed using the
command x?.

2.3.17 The ’Display expression’ Command

Display the value of an expression

Syntax:
= EXPR

Description:

This command displays the value of an expression.

The expression is displayed in several formats: hexadecimal,
signed decimal, unsigned decimal, octal, binary, and ASCIL If a
symbol table has been loaded, the closest symbol is displayed as
well.

Some expressions involve a segment as well as an address. In this
case, the segment is displayed at the beginning of the line,
followed by a’.

- db.38 -

DB Debugger DB

2.3.18 The ’Redirect command input’ Command

< - Redirect command input

Syntax:
< filename

Description:

This command causes the debugger to read and execute
commands from the specified file.

When the end of the file is reached, the debugger returns to the
console for commands.

This command provides a convenient means for defining macros
or variables.

2.3.19 The Help command

? - list commands

Syntax:
?

Description:

This command lists the debugger commands. For groups of
related commands, the listing usually lists the first letter of the
commands followed by a ?. You can get a listing of all the
commands in such a group by typing the the letter, the ?, and
return. For example, the listing for the ’display’ commands is @?;
thus you can type d? followed by return to get a listing of all the
*display’ commands.

- db.39 -

DB Debugger DB

3. Command Summary

breakpoint commands

bb/bw set byte/word memory-change breakpoint
be/bC clear one/all breakpoints
bd display the breakpoint table
br reset the breakpoint counters
bs set or modify a breakpoint
bt/bT enable/disable trace mode

clear commands

CS clear all symbols

display commands

db/dw/d display memory in bytes/words/last format
dc/dd display code/data symbols
df display source file lines
dg display global values
dm display memory map
dn display 8087 status
ds display stack backtrace

find source string

f find string in source file

go commands

g/G execute user’s program

port input commands

ib/iw input byte/word from port

load commands

If load a source file
Ip load program
ls load symbols

memory modification commands

mb/mw modify bytes/words of memory
mc compare areas of memory
mf fill memory
mm move memory
ms search memory

port output commands

ob/ow output byte/word to port

- db.40 -

DB Debugger DB

formatted print commands

p generate formatted print

quit command

q quit debugger

register command

r register display

single step commands

s/S single step with/without display

unassembly commands

u/U unassemble memory

variable command

v/V create/modify symbol

macro command

x define or modify a command macro

display expression |

= display value of an expression

redirect command input

< redirect command input.

help command

? list debugger commands

commands for screen saving and restoring

Ww display saved screen (debug or program)
W disable screen saving and restoring

commands for setting the default radix

nx hexadecimal is default radix
no octal is default radix
nd decimal is default radix

- db.41 -

DB Debugger

- db.42 -

DB

OVERVIEW OF LIBRARY FUNCTIONS

- liboy.1 -

Library Overview Aztec C

Chapter Contents

Overview of Library Functions oe. cceccsssccsscsscescsccscscoscscessecsceccecees libov
L. I/O OVELrVIEW oo. e.eccsscssessccsscssccescccecsecsccsecceccscessccssecessecsacesssesessessesecsessess 4

1.1 Pre-opened devices, command line args .0.0.........eeeeeee seneseenens 4
1.2 File 1/O wc essscsesscsscssssssscsscssssceccsssscscacescessssscecessssssesecceecsessenees 6

1.2.1 Sequential [/O oi cccscscscsccscssssssscssscsssscsssecsecceseeceseeees 6
1.2.2 Random I/O oui ccccsccsccccsssssscsccesscessscescssscsesssascsesceseescecsess 6
1.2.3 Opening Files wo... sssssscsscsccscssscsscsesscscesessseseesesscsaececceees 6

1.3) Device 1/O wie ccscssccssscsscscccsssssecescessscsascessessesuscascessecseecessessenece 7
1.3.1 Console I/O wiccceccscsscsseccccsccscsssccssessecssccseceacscecuseesceseees 7
1.3.2 I/O to Other Devices oo... eeessccsssceccesscessccsccssscccescesenses 7

1.4 Mixing unbuffered and standard I/O calls .o...ccecececccsceseeseees 7
2. Standard I/O Overview oo..icccececssscsccescscssscescssecseecsecesceesecsseseessesees 9

2.1 Opening files and GEVICES oii... eeccesscssscsscceccecscescecsssescessccececees 9
2.2 ClOSING StreaMSccccccsscsscsscccscecccceccesscessscescssscescecsscsccsscecesseace 9
2.3 Sequential I/O oo... cescsssssscsccsccsccescessecsccsecsscssccsscseecsscesscesseees 10
2.4 Random I/O uuu. cscssscsscsscssccccssscsscessessscssccscssescccescsscsscesscesonees 10
2.5 Buffering o..........ccssssscsscsscscccscessscccesecsscesscsscscssssescssscescecessesees 10
2.6 ELrorscscccsscsscsscssscsccccesccsccscsesscescssscessessesseessestsccurceccssscsscesscnseness 11
2.7 The standard I/O functions oo... ccscscccsccsssecscscscecsesccoeeeseeees 12

3. Unbuffered I/O Overview oocccccccccccscssscssecsssssecscssssessceseseeceeceses 14
3.1 File T/O wc ccsscscsscscsscccsssscesssccsscsesscssssesscsssscssesessecssscsassesecees 15
3.2 Device I/O wiececcsscssssccsssssssssscececcessessessssssesseseceecsesssssesesesenscnesee 15

3.2.1 Unbuffered I/O to the Consolecccccccccccsosccscesceccecceeee 15
3.2.2 Unbuffered I/O to Non-Console Devicescccccccccssecceee 16

4. Console I/O Overview ooiccccccscscsscsssscssescssssssssssessceaceesessececceceeces 17
4.1 Lime-oriented input o.oo. ccccssscssecsccsssscsssccecsescsesceecsescscesees 17
4.2 Character-oriented input 20... ccccessscsssssscesscsscescssceccseececeeees 18
4.3 USIng 10Ctl oo. eesscsscscscscssssscescscescsscsescccesesccssscsessescesesesecceses 19
4.4 The sgtty fields wo cccsscscscssssscssessesssssessessssssssscsseccesseeeees 19
AS Examples icc cccscssccssccssscesecsssccssessssessssssecssccsecsesececessesesees 20

S. Dynamic Buffer AlNOCation oo... .ccccsscssssssccsssssssssssssssecsessececeseeees 22
6. Error Processing OVerviewcccceesscscscceccscsscssceccsescecsssesecsscsecesseees 23

- liboy.2 -

Aztec C Library Overview

Overview of Library Functions

This chapter presents an overview of the functions that are
provided with Aztec C. It’s divided into the following sections:

I. I/O; Introduces the i/o system provided in the Aztec C
package.

2. Standard I/O: The i/o functions can be grouped into two
sets; this section describes one of them, the standard i/o
functions.

3. Unbuffered I/O: Describes the other set of i/o functions,
the unbuffered.

4. Console I/O: Describes special topics relating to console
i/O.

5. Dynamic Buffer Allocation: Discusses topics related to
dynamic memory allocation.

6. Errors: Presents an overview of error processing.

The overviews present information that is system independent.
Overview information that is specific to your system is in the form of
an appendix to this chapter; it accompanies the system dependent
section of your manual.

- libov.3 -

LIBRARY I/O Overview Aztec C

1. Overview of I/O

There are two sets of functions for accessing files and devices: the
unbuffered i/o functions and the standard i/o functions. These
functions are identical to their UNIX equivalents, and are described in
chapters 7 and 8 of The C Programming Language.

The unbuffered i/o functions are so called because, with few
exceptions, they transfer information directly between a program and a
file or device. By contrast, the standard i/o functions maintain buffers
through which data must pass on its journey between. a program and a
disk file.

The unbuffered i/o functions are used by programs which perform
their own blocking and deblocking of disk files. The standard i/o
functions are used by programs which need to access files but don’t
want to be bothered with the details of blocking and deblocking the
file records.

The unbuffered and standard i/o functions each have their own
overview section (UNBUFFERED I/O and STANDARD I/O). The
remainder of this section discusses features which the two sets of
functions have in common.

The basic procedure for accessing files and devices is the same for
both standard and unbuffered i/o: the device or file must first be
"opened", that is, prepared for processing; then i/o operations occur;
then the device or file is "closed".

There is a limit on the number of files and devices that can
simultaneously be open; the limit on your system is defined in this
chapter’s system dependent appendix.

Each set of functions has its own functions for performing these
operations. For example, each set has its own functions for opening a
file or device. Once a file or device has been opened, it can be
accessed only by functions in the same set as the function which
performed the open, and must be closed by the appropriate function in
the same set. There are exceptions to this non-intermingling which are
described below.

There are two ways a file or device can be opened: first, the
program can explicitly open it by issuing a function call. Second, it can
be associated with one of the logical devices standard input, standard
output, or standard error, and then opened when the program starts.

1.1 Pre-opened devices and command line arguments

There are three logical devices which are automatically opened
when a program is started: standard input, standard output, and
standard error. By default, these are associated with the console. The
operator, as part of the command line which starts the program, can
specify that these logical devices are to be "redirected" to another

- libov.4 -

Aztec C I/O Overview LIBRARY

device or file. Standard input is redirected by entering on the
command line, after the program name, the name of the file or device,
preceded by the character ’<’. Standard output is redirected by
entering the name of the file or device, preceded by ’>’.

For example, suppose the executable program cpy reads standard
input and writes it to standard output. Then the following command
will read lines from the keyboard and write them to the display:

cpy

The following will read from the keyboard and write it to the file
test file:

cpy >testfile

This will copy the file exmplfil to the console:

cpy <exmplfil

And this will copy exmplfil to test file:

cpy <exmplfil >testfile

Aztec C will pass command line arguments to the user’s program via
the user’s function main(argc, argv). argc is an integer containing the
number of arguments plus one; argv is a pointer to a an array of
character pointers, each of which, except the first, points to a
command line argument. On some systems, the first array element
points to the command name; on others, it is a null pointer.
Information on your system’s treatment of this pointer is presented in
this chapter’s system dependent appendix.

For example, if the following command is entered:

prog argl arg2 arg3

the program prog will be activated and execution begins at the user’s
function main. The first parameter to main is the integer 4. The second
parameter is a pointer to an array of four character pointers; on some
systems the first array element will point to the string "prog" and on
others it will be a null pointer. The second, third, and fourth array
elements will be pointers to the strings "argl", "arg2", and "arg3"
respectively.

The command line can contain both arguments to be passed to the
user’s program and i/o redirection specifications. The i/o redirection
strings won’t be passed to the user’s program, and can appear anywhere
on the command line after the command name. For example, the
standard output of the "prog" program can be redirected to the file
outfile by any of the following commands; in each case the argc and
argv parameters to the main function of ’prog’ are the same as if the
redirection specifier wasn’t present:

- libov.5 -

LIBRARY I/O Overview Aztec C

prog arg! arg2 arg3 >outfile
prog >outfile arg] arg2 arg3
prog arg! >outfile arg2 arg3

1.2 File I/O

A program can access files both sequentially and randomly, as
discussed in the following paragraphs.

1.2.1 Sequential I/O

For sequential access, a program simply issues any of the various
read or write calls. The transfer will begin at the file’s "current
position", and will leave the current position set to the byte following
the last byte transferred. A file can be opened for read or write access;
in this case, its current position is initially the first byte in the file. A
file can also be opened for append access; in this case its current
position is initially the end of the file.

On systems which don’t keep track of the last character written to a
file, it isn’t always possible to correctly position a file to which data is
to be appended. If this is a problem on your system, it’s discussed in
the system dependent appendix to this chapter, which accompanies the
system dependent section of your manual.

1.2.2 Random I/O

Two functions are provided which allow a program to set the
current position of an open file: fseek, for a file opened for standard
i/o; and Jseek, for a file opened for unbuffered i/o.

A program accesses a file randomly by first modifying the file’s
current position using one of the seek functions. Then the program
issues any of the various read and write calls, which sequentially access
the file.

A file can be positioned relative to its beginning, current position,
or end. Positioning relative to the beginning and current position is
always correctly done. For systems which don’t keep track of the last
character written to a file, positioning relative to the end of a file can’t
always be correctly done. For information on this, see this chapter’s
system dependent appendix.

1.2.3 Opening files

Opening files is somewhat system dependent: the parameters to the
open functions are the same on the Aztec C packages for all systems,
but some system dependencies exist, to conform with the system
conventions. For example, the syntax of file names and the areas
searched for files differ from system to system.

For information on the opening of files on your system, see this
chapter’s system dependent appendix.

- libov.6 -

Aztec C 1/O Overview LIBRARY

1.3 Device I/O

Aztec C allows programs to access devices as well as files. Each
system has its own names for devices: for the names of devices on
your system, see this chapter’s system dependent appendix.

1.3.1 Console I/O

Console I/O can be performed in a variety of ways. There’s a
default mode, and other modes can be selected by calling the function
ioctl. We'll briefly describe console I/O in this section; for more
details, see the Console I/O section of this chapter and the system
dependent appendix to this chapter.

When the console is in default mode, console input is buffered and
is read from the keyboard a line at a time. Typed characters are echoed
to the screen and the operator can use the standard operating system
line editing facilities. A program doesn’t have to read an entire line at
a time (although the system software does this when reading keyboard
input into it’s internal buffer), but at most one line will be returned to
the program for a single read request.

The other modes of console i/o allow a program to get characters
from. the keyboard as they are typed, with or without their being
echoed to the display; to disable normal system line editing facilities;
and to terminate a read request if a key isn’t depressed within a certain
interval.

Output to the console is always unbuffered: characters go directly
from a program to the display. The only choice concerns translation of
the newline character; by default, this is translated into a carriage
return, line feed sequence.

Optionally, this translation can be disabled.

1.3.2 I/O to Other Devices

On most systems, few options are available when writing to devices
other than the console. For a discussion of such options, if any, that
are available on your system, see this chapter’s system dependent
appendix.

1.4 Mixing unbuffered and standard i/o calls

As mentioned above, a program generally accesses a file or device |
using functions from one set of functions or the other, but not both.

However, there are functions which facilitate this dual access: if a
file or device is opened for standard i/o, the function fileno returns a
file descriptor which can be used for unbuffered access to the file or
device. If a file or device is open for unbuffered i/o, the function
fdopen will prepare it for standard i/o as well.

- libov.7 -

LIBRARY 1/O Overview Aztec C

Care is warranted when accessing devices and files with both
standard and unbuffered i/o functions.

- libov.8 -

Aztec C Standard I/O Overview LIBRARY

2. Overview of Standard I/O

The standard i/o functions are used by programs to access files and
devices. They are compatible with their UNIX counterparts, with few
exceptions, and are also described in chapter 8 of The C Programming
Language. The exceptions concern appending data to files and
positioning files relative to their end, and are discussed below.

These functions provide programs with convenient and efficient
access to files and devices. When accessing files, the functions buffer
the file data; that is, handle the blocking and deblocking of file data.
Thus the user’s program can concentrate on its own concerns.

Buffering of data to devices when using the standard i/o functions
is discussed below.

For programs which perform their own file buffering, another set
of functions are provided. These are described in the section
UNBUFFERED I/O.

2.1 Opening files and devices

Before a program can access a file or device, it must be "opened",
and when processing on it is done it must be "closed".

An open device or file is called a "stream" and has associated with it
a pointer, called a "file pointer", to a structure of type FILE. This
identifies the file or device when standard i/o functions are called to
access it.

There are two ways for a file or device to be opened for standard
i/o: first, the program can explicitly open it, by calling one of the
functions fopen, freopen, or fdopen. In this case, the open function
returns the file pointer associated with the file or device. fopen just
opens the file or device. freopen reopens an open stream to another
file or device; it’s mainly used to change the file or device associated
with one of the logical devices standard output, standard input, or
Standard error. fdopen opens for standard i/o a file or device already
opened for unbuffered i/o.

Alternatively, the file or device can be automatically opened as one
of the logical devices standard input, standard output, or standard
error. In this case, the file pointer is stdin, stdout, or stderr,
respectively. These symbols are defined in the header file stdio.h. See
the section entitled I/O for more information on logical devices.

2.2 Closing streams

A file or device opened for standard i/o can be closed in two ways:
first, the program can explicitly close it by calling the function fclose.

Alternatively, when the program terminates, either by falling off
the end of the function main, or by calling the function exit, the
System will automatically close all open streams.

- liboy.9 -

LIBRARY Standard I/O Overview Aztec C

Letting the system automatically close open streams is error-prone:
data written to files using the standard i/o functions is buffered in
memory, and a buffer isn’t written to the file until it’s full or the file
is closed. Most likely, when a program finishes writing to a file, the
file’s buffer will be partially full, with this information not having
been written to the file. If a program calls fclose, this function will
write the partially filled buffer to the file and return an error code if
this couldn’t be done. If the program lets the system automatically
close the file, the program won’t know if an error occurred on this last
write operation.

2.3 Sequential I/O

Files can be accessed sequentially and randomly. For sequential
access, simply issue repeated read or write calls; each call transfers data
beginning at the "current position" of the file, and updates the current
position to the byte following the last byte transferred. When a file is
opened, its current position is set to zero, if opened for read or write
access, and to its end if opened for append.

On systems which don’t keep track of the last character written to a
file, such as CP/M and Apple // DOS, not all files can be correctly
positioned for appending data. See the section entitled I/O for details.

2.4 Random I/O

The function fseek allows a file to be accessed randomly, by
changing its current position. Positioning can be relative to the
beginning, current position, or end of the file.

For systems which don’t keep track of the last character written to a
file, such as CP/M and Apple // DOS, positioning relative to the end
of a file cannot always be correctly done. See the I/O overview section
for details.

2.5 Buffering

When the standard i/o functions are used to access a file, the i/o is
buffered. Either a user-specified or dynamically- allocated buffer can
be used.

The user’s program specifies a buffer to be used for a file by calling
the function setbuf after the file has been opened but before the first
i/O request to it has been made.

If, when the first i/o request is made to a file, the user hasn’t
specified the buffer to be used for the file, the system will
automatically allocate, by calling malloc, a buffer for it. When the file
is Closed it’s buffer will be freed, by calling free.

Dynamically allocated buffers are obtained from the one region of
memory (the heap), whether requested by the standard i/o functions
or by the user’s program. For more information, see the overview

- libov.10 -

Aztec C Standard I/O Overview LIBRARY

section Dynamic Buffer Allocation.

The size of an i/o buffer differs from system to system. See this
chapter’s system-dependent appendix for the size of this buffer on
your system.

A program which both accesses files using standard i/o functions
and has overlays has to take special steps to insure that an overlay
won’t be loaded over a buffer dynamically allocated for file 1/0. For
more information, see the section on overlay support in the Technical
Information chapter.

By default, output to the console using standard i/o functions is
unbuffered; all other device i/o using the standard i/o functions is
buffered. Console input buffering can be disabled using the joct/
function; see the overview section Console I/O for details.

2.6 Errors

There are three fields which may be set when an exceptional
condition occurs during stream i/o. Two of the fields ‘are unique to
each stream (that is, each stream has its own pair). The other is a
global integer.

One of the fields associated with a stream is set if end of file is
detected on input from the stream; the other is set if an error occurs
during i/o to the stream. Once set for a stream, these flags remain set
until the stream is closed or the program calls the clearerr function for
the stream. The only exception to the last statement is that when
called, fseek will reset the end of file flag for a stream. A program can
check the status of the eof and error flags for a stream by calling the
functions feof and ferror, respectively.

The other field which may be set is the global integer errno. By
convention, a system function which returns an error status as its value
can also set a code in errno which more fully defines the error. The
Overview section Errors defines the values which may be set in errno.

If an error occurs when a stream is being accessed, a standard i/o
function returns EOF (-1) as its value, after setting a code in errno and
setting the stream’s error flag. |

If end of file is reached on an input stream, a standard i/o function
returns EOF after setting the stream’s eof flag.

There are two techniques a program can use for detecting errors
during stream i/o. First, the program can check the result of each 1/0
call. Second, the program can issue i/o calls and only periodically
check for errors (for example, check only after all 1/0 1s completed).

On input, a program will generally check the result of each
operation.

- libov.11 -

LIBRARY Standard I/O Overview Aztec C

On output to a file, a program can use either error checking
technique; however, periodic checking by calling /ferror is more
efficient. When characters are written to a file using the standard i/o
functions they are placed in a buffer, which is not written to disk until
it is full. If the buffer isn’t full, the function will return good status. It
will only return bad status if the buffer was full and an error occurred
while writing it to disk. Since the buffer size is 1024 bytes, most write
calls will return good status, and hence periodic checking for errors is
sufficient and most efficient.

Once a file opened for standard i/o is closed, ferror can’t be used to
determine if an error has occurred while writing to it. Hence ferror
Should be called after all writing to the file is completed but before the
file is closed. The file should be explicitly closed by fclose, and its
return value checked, rather than letting the system automatically close
it, to know positively whether an error has occurred while writing to
the file. The reason for this is that when the writing to the file is
completed, it’s standard i/o buffer will probably be partly full. This
buffer will be written to the file when the file is closed, and fclose will
return an error status if this final write operation fails.

2.7 The standard i/o functions

The standard i/o functions can be grouped into two sets: those that
can access only the logical devices standard input, standard output, and
standard error; and all the rest.

Here are the standard i/o functions that can only access stdin,
stdout, and stderr. These are all ASCII functions; that is, they expect to
deal with text characters only.

getchar Get an ASCII character from stdin
gets Get a line of ASCII characters from stdin
printf Format data and send it to stdout
puterr Send a character to stderr
putchar Senda character to stdout
puts Send a character string to stdout
scanf Get a line from stdin and convert it

Here are the rest of the standard i/o functions:

- libov.12 -

Aztec C

agetc
aputc
fopen
fdopen

freopen
fclose
feof
ferror
fileno
fflush
fgets
fprintf
fputs
fread
fscanf
fseek
ftell
fwrite
getc
getw

putc

putw

setbuf
ungetc

Standard I/O Overview LIBRARY

Get an ASCII character
Send an ASCII character
Open a file or device

Open as a stream a file or device already open
for unbuffered i/o
Open an open stream to another file or device
Close an open stream
Check for end of file on a stream
Check for error on a stream
Get file descriptor associated with stream
Write stream’s buffer

Get a line of ASCII characters
Format data and write it to a stream
Send a string of ASCII characters to a stream
Read binary data
Get data and convert it
Set current position within a file
Get current position
Write binary data
Get a binary character
Get two binary characters
Send a binary character
Send two binary characters
Specify buffer for stream
Push character back into stream

- liboy.13 -

LIBRARY Unbuffered I/O Overview Aztec C

3. Overview of Unbuffered 1/O

The unbuffered I/O functions are used to access files and devices.
They are compatible with their UNIX counterparts and are also
described in chapter 8 of The C Programming Language.

As their name implies, a program using these functions, with two
exceptions, communicates directly with files and devices; data doesn’t
pass through system buffers. Some unbuffered I/O, however, is
buffered: when data is transferred to or from a file in blocks smaller
than a certain value, it is buffered temporarily. This value differs from
System to system, but is always less than or equal to 512 bytes. Also,
console input can be buffered, and is, unless specific actions are taken
by the user’s program.

Programs which use the unbuffered i/o functions to access files
generally handle the blocking and deblocking of file data themselves.
Programs requiring file access but unwilling to perform the blocking
and deblocking can use the standard i/o functions; see the overview
section Standard I/O for more information.

Here are the unbuffered i/o functions:

open Prepares a file or device for unbuffered i/o
creat Creates a file and opens it
close Concludes the i/o on an open file or device
read Read data from an open file or device
write Write data to an open file or device
Iseek Change the current position of an open file
rename Renames a file
unlink Deletes a file
ioctl Change console i/o mode
isatty Is an open file or device the console?

Before a program can access a file or device, it must be "opened", and
when processing on it is done, it must be "closed".

An open file or device has an integer known as a "file descriptor"
associated with it; this identifies the file or device when it’s accessed.

There are two ways for a file or device to be opened for unbuffered
i/o. First, it can explicitly open it, by calling the function open. In this
case, open returns the file descriptor to be used when accessing the file
or device.

Alternatively, the file or device can be automatically opened as one
of the logical devices standard input, standard output, or standard
error. In this case, the file descriptor is the integer value 0, 1, or 2,
respectively. See the section entitled I/O for more information on this.

An open file or device is closed by calling the function close. When
a program ends, any devices or files still opened for unbuffered i/o
will be closed.

~- libov.14 -

Aztec C Unbuffered I/O Overview LIBRARY

If an error occurs during an unbuffered i/o operation, the function
returns -1 as its value and sets a code in the global integer errno. For
more information on error handling, see the section ERRORS.

The remainder of this section discusses unbuffered i/o to files and
devices.

3.1 File 1/O

Programs call the functions read and write to access a file; the
transfer begins at the "current position" of the file and proceeds until
the number of characters specified by the program have been
transferred.

The current position of a file can be manipulated in various ways
by a program, allowing both sequential and random acccess to the file.
For sequential access, a program simply issues consecutive i/o
requests. After each operation, the current position of the file is set to
the character following the last one accessed.

The function seek provides random access to a file by setting the
current position to a specified character location.

lseek allows the current position of a file to be set relative to the
end of a file. For systems which don’t keep track of the last character
written to a file, such positioning cannot always be correctly done. For
more information, see the section entitled I/O.

open provides a mode, O APPEND, which causes the file being
opened to be positioned at its end. This mode is supported on UNIX
Systems 3 and 5, but not UNIX version 7. As with lseek, the
positioning may not be correct for systems which don’t keep track of
the last character written to a file.

3.2 Device I/O

3.2.1 Unbuffered I/O to the Console

There are several options available when accessing the console,
which are discussed in detail in the Console I/O sections of this
chapter and of the system-dependent appendix to this chapter. Here
we just want to briefly discuss the line- or character-modes of console
I/O as they relate to the unbuffered i/o functions.

Console input can be either line- or character-oriented. With line-
oriented input, characters are read from the console into an internal
buffer a line at a time, and returned to the program from this buffer.
Line buffering of console input is available even when using the so-
called "unbuffered" i/o functions.

With character-oriented input, characters are read and returned to
the program when they are typed: no buffering of console input
occurs.

- libov.15 -

LIBRARY Unbuffered I/O Overview Aztec C

3.2.2 Unbuffered I/O to Non-Console Devices

Unbuffered I/O to devices other than the console is truly
unbuffered.

- libov.16 -

Aztec C Console I/O Overview LIBRARY

4. Overview of Console I/O

A program has control over several options relating to console 1/0.
The primary option allows console input to be either line- or
character-oriented, as described below.

On most systems, a program can selectively enable and disable the
echoing of typed characters to the screen; this is called the ECHO
option. A program can also enable and disable the conversion of
carriage return to newline on input and of newline to carriage return-
linefeed on output; this is called the CRMOD option.

On some systems, additional options are available. If your system
Supports additional options, they are discussed in the system dependent
appendix to this chapter.

All the console i/o options have default settings, which allow a
program to easily access the console without having to set the options
itself. In the default mode, console i/o is line-oriented, with ECHO
and CRMOD enabled.

A program can easily change the console i/o options, by calling the
function ioctl.

Console i/o behaves the same on all systems when the console
options have their default settings. However, the behavior of console
i/o differs from system to system when the options are changed from
their default values. Thus, a program requiring machine independence
should either use the console in its default mode or be careful how it
sets the console options. In the paragraphs below, we will try to point
out system dependencies.

4.1 Line-oriented input

With line-oriented input, a program issuing a read request to the
console will wait until an entire line has been typed. On some Systems
a non-UNIX option (NODELAY) is available that will prevent this
waiting. If this option is available on your system, it’s discussed in the
system-dependent appendix to this chapter.

The program need not read an entire line at once; the line will be
internally buffered, and characters returned to the program from the
buffer, as requested. When the program issues a read request to the
console and the buffer is empty, the program will wait until an entire
new line has been typed and stored in the internal buffer (again, on
some Systems programs can disable this wait by setting the non-UNIX
NODELAY option).

A single unbuffered read operation can return at most one line.

On most systems , selecting line-oriented console input forces the
ECHO option to be enabled. On such systems the program still has
control over the CRMOD option. To find out if, on your system,

- libov.17 -

LIBRARY Console I/O Overview Aztec C

line-oriented mode always has ECHO enabled, see the system-
dependent appendix to this chapter.

4.2 Character-oriented input

The basic idea of character-oriented console input is that a program
can read characters from the console without having to wait for an
entire line to be entered.

The behavior of character-oriented console input differs from
System to system, so programs requiring both machine independence
and character-oriented console input have to be careful in their use of
the console. However, it is possible to write such programs, although
they may not be able to take full advantage of the console i/o features
available for a particular system.

There are two varieties of character-oriented console input, named
CBREAK and RAW. Their primary difference is that with the console
in CBREAK mode, a program still has control over the other console
options, whereas with the console in RAW mode it doesn’t. In RAW
mode, all other console options are reset. ECHO and CRMOD are
disabled.

Thus, to some extent RAW mode is simply an abbreviation for
°CBREAK on, all other options off. However, there are some
differences on some systems, as noted below and in this chapter’s
system-dependent appendix.

The system-dependent appendix to this chapter, which accompanies
your manual, presents information about character-oriented console
that 1s specific to your system.

4.2.1 Writing system-independent programs

To write system-independent programs that access the console in
character-oriented input mode, the console should be set in RAW
mode, and the program should read only a single character at a time
from the console. All the non-UNIX options that are supported by
some systems should be reset.

The standard i/o functions all read just one character at a time
from the console, even when the calling program requests several
characters. Thus, programs requiring system independence and
character-oriented input can read the console using the standard i/o
functions.

Some systems require a program that wants to set console option to
first call ioctl to fetch the current console options, then modify them as
desired, and finally call ioctl to reset the new console options. The
systems that don’t require this don’t care if a program first fetches the
console options and then modifies them. Thus, a program requiring
system-independence and console i/o options other than the default
should fetch the current console options before modifying them.

- libov.18 -

Aztec C Console I/O Overview LIBRARY

4.3 Using ioctl

A program selects console I/O modes using the function ioctl. This
has the form:

#include <sgtty.h>

ioctl(fd, code, arg)
struct sgttyb *arg:

The header file sgttyh defines symbolic values for the code
parameter (which tells ioctl what to do) and the structure sgttyb.

The parameter fd is a file descriptor associated with the console. On
UNIX, this parameter defines the file descriptor associated with the
device to which the ioctl call applies. Here, ioctl always applies to the
console.

The parameter code defines the action to be performed by iocil. It
can have these values:

TIOCGETP Fetch the console parameters and store them in
the structure pointed at by arg.

TIOCSETP Set the console parameters according to the
structure pointed at by arg.

TIOCSETN Equivalent to TIOCSETP.

The argument arg points to a structure named sgttyb that contains
the following fields:

int sg__ flags;
char sg_ erase;
char sg _ kill;

The order of these fields is system-dependent.

The sg__ flags field is supported by all systems, while the other
fields are not supported by some systems. If these fields are supported
on your system, the system-dependent appendix to this chapter that
accompanies your manual says so, and describes them.

To set console options, a program should fetch the current state of
the sgtty fields, using ioctl’s TIOCGETP option. Then it should
modify the fields to the appropriate values and call ioctl again, using
ioctl’s TIOCSETP option.

4.4 The sgtty fields

4.4.1 The sg_ flags field

sg__ flags contains the following UNIX-compatible flags:

RAW Set RAW mode (turns off other options). By

default, RAW is disabled.
CBREAK Return each character as soon as typed. By

default, CBREAK is disabled.

- liboy.19 -

LIBRARY Console I/O Overview Aztec C

ECHO Echo input characters to the display. By default,
ECHO 1s enabled.

CRMOD Map CR to LF on input; convert LF to CR-LF
on output. By default, CRMOD is enabled.

On some systems, other flags are contained in sg flags. If your
system supports other flags, they’re described in the system-dependent
appendix to this chapter that accompanies your manual.

More than one flag can be specified in a single call to ioctl; the
values are simply ’or’ed together. If the RAW option is selected, none
of the other options have any effect.

When the console i/o options are set and RAW and CBREAK are
reset, the console is set in line-oriented input mode.

4.5 Examples

4.5.1 Console input using default mode

The following program copies characters from stdin to stdout. The
console is in default mode, and assuming these streams haven’t been
redirected by the operator, the program will read from the keyboard
and write to the display. In this mode, the operator can use the
operating system’s line editing facilities, such as backspace, and
characters entered on the keyboard will be echoed to the display. The
characters entered won’t be returned to the program until the operator
depresses carriage return.

#include <stdio.h>

main()

int c;
while ((c = getchar()) != EOF)

putchar(c);

4.5.2 Console input - RAW mode

In this example, a program opens the console for standard i/o, sets
the console in RAW mode, and goes into a loop, waiting for characters
to be read from the console and then processing them. The characters
typed by the operator aren’t displayed unless the program itself
displays them. The input request won’t terminate until a character is
received. This example assumes that the console is named ’con:’; on
systems for which this is not the case, just substitute the appropriate
name.

- libov.20 -

Aztec C Console I/O Overview LIBRARY

#include <stdio.h>
#include <sgtty.h>
main()

{
int C;

FILE *fp;
Struct sgttyb stty;

if ((fp = fopen("con:", "r") == NULL){
printf("can’t open the console\n"):
exit();

10ctl(fileno(fp), TIOCGETP, &stty):

Sstty.sg flags E RAW;
ioctl(fileno(fp), TIOCSETP, &stty):

for G3)
c = getc(fp);

}
}

4.5.3 Console input - console in CBREAK + ECHO mode

This example modifies the previous program so that characters read
from the console are automatically echoed to the display. The program
accesses the console via the standard input device. It uses the function
isatty to verify that stdin is associated with the console; if it isn’t, the
Program reopens stdin to the console using the function freopen.
Again, the console is assumed to be named con..

#include <stdio.h>
#include <sgtty.h>
main()

{
int Cc;

Struct sgttyb stty;

if (!isatty(stdin))

freopen("con:", "r", stdin);
1octl(0, TIOCGETP, &stty);
stty.sg flags HE CBREAK | ECHO;
ioctl(0, TIOCSETP, &stty);

for (;3){
c = getchar();

- libov.21 -

LIBRARY Dynamic Buffer Alloc Aztec C

5. Overview of Dynamic Buffer Allocation

Several functions are provided for the dynamic allocation and
deallocation of buffers from a section of memory called the ’heap’.
They are:

malloc Allocates a buffer
calloc Allocates a buffer and initializes it to zeroes
realloc Allocates more space to a previously allocated buffer
free Releases an allocated buffer for reuse

These standard UNIX functions are described in the System
Independent Functions section of this chapter.

In addition, on some systems the UNIX-compatible functions sbrk
and brk are provided that provide a more elementary means to allocate
heap space. The malloc-type functions call sbrk to get heap space,
which they then manage.

On some systems, non-UNIX memory allocation functions are also
supported. If such functions are supported on your system, they are
described in the system-dependent appendix to this chapter that
accompanies your manual.

Dynamic allocation of standard i/o buffers

Buffers used for standard i/o are dynamically allocated from the
heap unless specific actions are taken by the user’s program. Standard
i/o calls to dynamically allocate and deallocate buffers can be
interspersed with those of the user’s program.

Programs which perform standard i/o and which must have
absolute control of the heap can explicitly define the buffers to be used
by a standard i/o stream.

Where to go from here

For descriptions of the sbrk and brk functions and, when applicable,
non-UNIX memory allocation functions see the System Dependent
Functions chapter.

For a discussion of i/o buffer allocation, see the Standard I/O
section of the Library Functions Overviews chapter.

For more information on the heap, see the Program Organization
section of the Technical Information chapter.

- libov.22 -

Aztec C Errors Overview LIBRARY

6. Overview of Error Processing

This section discusses error processing which relates to the global
integer errno. This variable is modified by the standard i/o, unbuffered
i/o, and scientific (eg, sin, sgri) functions as part of their error
processing.

The handling of floating point exceptions (overflow, underflow, and
division by zero) is discussed in the Tech Info chapter.

When a standard i/o, unbuffered i/o, or scientific function detects
an error, it sets a code in errno which describes the error. If no error
occurs, the scientific functions don’t modify errno. If no error occurs,
the 1/o functions may or may not modify errno.

Also, when an error occurs,

* A standard i/o function returns -1 and sets an error flag for
the stream on which the error occurred;

* An unbuffered i/o function returns -1;

* A scientific function returns an arbitrary value.

When performing scientific calculations, a program can check errno
for errors as each function is called. Alternatively, since errno is
modified only when an error occurs, errno can be checked only after a
sequence of operations; if it’s non-zero, then an error has occurred at
some point in the sequence. This latter technique can only be used
when no i/o operations occur during the sequence of scientific
function calls.

Since errno may be modified by an i/o function even if an error
didn’t occur, a program can’t perform a sequence of i/O operations and
then check errno afterwards to detect an error. Programs performing
unbuffered i/o must check the result of each i/o call for an error.

Programs performing standard i/o operations cannot, following a
sequence of standard i/o calls, check errno to see if an error occurred.
However, associated with each open stream is an error flag. This flag is
set when an error occurs on the stream and remains set until the
Stream is closed or the flag is explicitly reset. Thus a program can
perform a sequence of standard i/o operations on a stream and then
check the stream’s error flag. For more details, see the standard 1/0
overview section.

The following table lists the system-independent values which may
be placed in errno. These symbolic values are defined in the file
errno.h. Other, system-dependent, values may also be set in errno
following an i/o operation; these are error codes returned by the
operating system. System dependent error codes are described in the
operating system manual for a particular system.

- libov.23 -

LIBRARY Errors Overview Aztec C

The system-independent error codes and their meanings are:

error code
ENOENT
E2BIG
EBADF

ENOMEM
EEXIST
EINVAL
ENFILE
EMFILE
ENOTTY
EACCES
ERANGE
EDOM

meaning
File does not exist
Not used
Bad file descriptor - file is not open
Or improper operation requested
Insufficient memory for requested operation
File already exists on creat request
Invalid argument

Exceeded maximum number of open files
Exceeded maximum number of file descriptors
Ioctl attempted on non-console
Invalid access request
Math function value can’t be computed
Invalid argument to math function

- libov.24 -

SYSTEM-INDEPENDENT FUNCTIONS

- lib.1 -

FUNCTIONS Aztec C

Chapter Contents

System Independent FUNCTIONS oo... esccessssccsssssscecsssecscecsssscesssessesssseees lib
| 006 (o>, ae 5
The functioncccescsscscsssscceecsscscsecesscorsecssccsssessscessecssascessscessceasecesesces 8

- lib.2 -

Aztec C FUNCTIONS

System Independent Functions

This chapter describes in detail the functions which are UNIX-
compatible and which are common to all Aztec C packages.

The chapter is divided into sections, each of which describes a group
of related functions. Each section has a name, and the sections are
ordered alphabetically by name. Following this introduction is a cross
reference which lists each function and the name of the section in
which it is described.

A section is organized into the following subsections:

TITLE
Lists the name of the section, a phrase which is intended to
catagorize the functions described in the section, and one or
more letters in parentheses which specify the libraries
containing the section’s functions.

The letters which may appear in parentheses and _ their
corresponding libraries are:

Cc c.lib
M m.lib

On some systems, the actual library name may be a variant on
the name given above. For example, on TRSDOS, the libraries
are named c/lib and m/ lib.

With Apprentice C, the functions are all in the run-time system,
and not libraries.

SYNOPSIS
Indicates the types of arguments that the functions described in
the section require, and the values they return. For example, the
function atof converts character strings into double precision
numbers. It is listed in the synopsis as

double atof(s)
char *s;

This means that atof() returns a value of type double and
requires as an argument a pointer to a character string. Since
atof returns a non-integer value, prior to use of the function it
must be declared:

double atof(Q);

The notation

~ lib.3 -

FUNCTIONS Aztec C

#include "header.h"

at the beginning of a synopsis indicates that such a statement
should appear at the beginning of any program calling one of
the functions described in the section.

On Radio Shack systems, a header file can use either a period or
a slash to separate the filename from the extent. That is, the
include statement can be as listed above, or

#include "header /h"

DESCRIPTION
Describes the section’s functions.

SEE ALSO
Lists relevant sections. A letter in parentheses may follow a
section name. This specifies where the section is located: no
letter means that the section is in the current chapter; ’O’ means
that it’s in the Functions Overview chapter; ’S’ means that it’s in
the System Dependent Functions chapter. |

DIAGNOSTICS
Describes the error codes that the section’s functions may
return. The section ERRORS in the Functions Overview chapter
presents an overview of error processing.

_ EXAMPLES
Gives examples on use of the section’s functions.

- lib.4 -

Index to System Independent Functions

function page description

ACOS ...cccccececseseseee SIN uuvcccsssccsssescssssecssscsccescnsccessseessceees compute arccosine
AGCIC weccccecessseees GET TC wie ceccccccsssscesseceseeee get ASCII char from a stream
P10) 01 | re PUTT wii cccescssscssssseeees put ASCII char to a stream
ASIN ou. .eeccesseceeees SIN ou... .cscsssssssscsssesvsssescsssecsssecscssccsscssccessees compute arcsine
ALAN 0... eeeeceeeeeeeee Sy 0 compute arctangent
atan2 woe NS) 0 another arctangent function
AtOf oe ATOP uu. .ccccecccssscccssseeeees convert char string to a double
ATOLeeccccceceeeee ATOP uu. cccccsccscsscecessseceseees convert char string to an int
Atoll we ATOF uuu. ..ccscccsscscsssecsesesssecees convert char string to a long
ot: (0 or MALLOC oo eecccsecessccecesecessccecesseeees allocate a buffer
ot) | re FLOOR 0.0.0... cece get smallest integer not less than x
clearerr FERROR oc cccsseeceseeeees clear error flags on a stream
(o) (0). CLOSE woe cccceeeceeeeee close of unbuffered file/device
(0 0) NS) OS compute cosine
COSH. vacccccccccesceceee SINE uuu... ccccccesscsssseeccscesesees compute hyperbolic cosine
COTAN woe SY 0 compute cotangent
CTEAt oo eee CREAT create a file & open for unbuffered i/o
EXD ccecscccccsssccccees | SD compute exponential
|<. 0 FLOOR. ounce cccccccceccsecesssssscscececees compute absolute value
£ClOSE00 FCLOSE wueicicccccsccscssssssssssssesssccessescecesenes close i/o stream
fdopen FOPEN open file descriptor as an i/o stream
feof wee FERROR o.oo check for eof on an i/o stream
FerrOr ou... FERROR000- check for error on an i/o stream
fflush00...... FCLOSE uuu... ececscessssscccecesssssssceces flush an i/o stream
FRets voces °C) 8 get a line from an i/o stream
fileno oo... FERRORseeeeee get file descriptor for i/o stream
10 (0X0) ae FLOORcccccsscceseseees get largest int not greater than x
FOPEN ou. ceeeeeeee | LO) od) open 1/o stream
format0... PRINTF ...00......cccsccssssssccesseees formatting utility for printf
fprintf PRINTF format string & send to i/o stream
fputs oo. PUTS cocci cccccceccsccesenees put char string to i/o stream
fread wee. FREAD occ read binary data from i/o stream
FLEE wouceeeecseeseseees MALLOC uuu iccccsscsccssccsssscessccessssesssseessees release buffer
freopen FOPENccccsssssccscscsssscccecescssencesneees reopen i/o stream
FFEXP voices FREXP. ooo... cccsssscssecesseceeee get components of a double
fscanf oo... SCAMNF input string from i/o stream & convert
fseek oes |S) 3 2) Gr position i/o stream

i) | ee FSEEKR woo cccccccccsssseeee determine position in i/o stream
|i (oy: ATOF wee cesseeeees convert float/double to char string

- lib.5 -

fwrite wo. FREAD uc ccceceeoees write binary data to i/o stream
BOTCccesescssseseees GETC woe cccccccsssceees get binary char from i/o stream
getchar0.... GETTC cece sesecesssssececes get ASCII char from stdin
BES oo cecccceceeses GETS ses ssceeessseseeees get ASCII line from stdin
BOTWcccscceseees GETW06 . .. get ASCII word from stdin
10 0\6 (<>. STRING ... sesesceoees seosceseeeeeeeee LIN Char in string
LOCH veecceeeeeeseeee TOCT L wun. cccsscsssccssscessscecsccessscessesees set mode of device
isalpha, etc. CTYPE seacesees char classification functions
ISATTY .eeeeeceeeeeee IOCTL sevees sacccecsscecccecessessesceece is this a console?
Idexp0000 FREXP sescescsseccsesscscess , build double
LOGssscscecceseeees EXP .. seeseseccesessccnecececescees compute natural logarithm
loglO uu... | SD 4 compute base-10 log
longjmp SETJMP sesesssscececesseccescecescacesecssssececees non-local goto
Iseek wee cece LSEEK ou. cccccessssecessees position unbuffered i/o file
malloc0. MALLOC ececessccescsssssseccessesscees allocate buffer
movmem MOVMEDNM esos copy a block of memory
modf00... FREXP. oui ccccessssssssoceeees get components of double
OPEN. oo... eeeeseeese OPENeceeeee open file/device for unbuffered i/o
DOW on. .ecececceeeeeee EXP. wii ieccssccsssccsssssssscssccecceccccesscscccsssssssccsees compute x**y
printf00...... PRINTF ou. format data and print on stdout
PUTC oo. eee PUTT wii cccsccccsesesceesees put binary char to i/o stream
putchar PUTC seseecescscescececcsenes put ASCII char to stdout
puterr ow. PUTT woeiicccccccccccccscscssecscsssseceees put ASCII char to stderr
0) 0 PUTS occ cceccccssssccescecessceeesees put ASCII string to stdout
PUTW ooncccecccceceeeee PUTT woe ceccscsssssssssssscceees put ASCII word to stdout
QSOTtceceeeeeee O51 ©) 05 Quick sort
i: | ee RAN seceecsesees compute random number
TEA... READ. oo. ecccsscceseeseeceee read unbuffered file/device
realloc ou... MALLOC Loci ccccccccccsessssccsscssccessceees reallocate buffer
rename RENAME. sececssssereseees seceseessscececevseee rename file
TINdEX ou... STRING sssssscecesssccsecosscesssscsees find char in string
SCaNE woes SCAMF uu... ceecssseeee input string from stdin & convert
setbuf SETBUF seseeesssccecscescsccess set buffer for i/o stream
Setjmp SETIMP.ccccccsscssssssssssscsscssscersccccssecees long jmp partner
setmem MOVMEM we. SEt Memory to specified byte
SS 0 0 SIN uu....esccsscssscescecssssccseecssecsccsssscsessescssssssessesens compute sine
100) ee SINH uuu cceeccccscsscsssccssccseeserees compute hyperbolic sine
sprintf... PRINTF v format string into buffer
16) EXP oi cccsccssscccscssscccessssscscccssscenes compute square root
SSCanf eee SCANF seeesereesesseeseseee convert string from buffer
Streat . see DURING oc cccccccsccscecssccssssseeees concatenate two strings
Strcmp STRING.cccccccscccsscssesescecsssesnecseees compare two strings
Strcpy seeeeee STRING.ccccscsssscssssssssscscscsssscscascsaceenes copy char string
Strlen 0.0... STRING.ccccssccsscesccscscscsecseees get length of char string
Strncat0.. STRING. .u....cccssssssssscssscescscsssscnsessesees concatenate strings
strncmp STRING.ecccccsccssssscsssssscsecessceccessesscesces compare strings
StINCPYes STRING. o....cccccssssssscscssccecsecescscssesescscsseseessees copy string
swapmem MOVMEMcccccssssssseeee swap two blocks of memory

1) SY 8 compute tangent
tanh co... eeeeees SYN) S Se compute hyperbolic tangent
tolower TOUPPER0008 convert upper case char to lower
toupper TOUPPER convert lower case char to upper
UNGEtC ou... cceeeee UNGE TC ooiieeeecccccssneeessensneeees return char to 1/o stream
unlink 0.0.0.0... UNLINK. woe ececcccrececessssssscceececececesesssnees delete file
| WRITE ou... eeeeeceeeeees unbuffered write of binary data

- lib.7 -

ATOF (C, M) ATOF

NAME
atof, atoi, atol - convert ASCII to numbers
ftoa - convert floating point to ASCII

SYNOPSIS
double atof(cp)
char *cp;

atoi(cp)
char *cp;

long atol(cp)
char *cp;

ftoa(val, buf, precision, type)
double val;
char *buf;
int precision, type;

DESCRIPTION
atof, atoi, and atol convert a string of text characters pointed at
by the argument cp to double, integer, and long representations,
respectively.

atof recognizes a string containing leading blanks and _ tabs,
which it skips, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional ’e’ or ’E’
followed by an optionally signed integer.

atoi and atol recognize a string containing leading blanks and
tabs, which are ignored, then an optional sign, then a string of
digits.

ftoa converts a double precision floating point number to ASCII.
val is the number to be converted and buf points to the buffer
where the ASCII string will be placed. precision specifies the
number of digits to the right of the decimal point. type specifies
the format 0 for "E" format, 1 for "F" format, 2 for "G" format.

atof and ftoa are in the library mJlib; the other functions are in
c.lib.

- lib.8 -

CLOSE (C) CLOSE

NAME

close - close a device or file

SYNOPSIS
close(fd)
int fd;

DESCRIPTION

close closes a device or disk file which is opened for unbuffered
1/0.

The parameter fd is the file descriptor associated with the file
or device. If the device or file was explicitly opened by the
program by calling open or creat, fd is the file descriptor
returned by open or creat.

close returns O as its value if successful.

SEE ALSO
Unbuffered I/O (O), Errors (O)

DIAGNOSTICS
If close fails, it returns -1 and sets an error code in the global
integer errno.

- lib.9 -

CREA

NAME

T (C) CREAT

creat - create a new file

SYNOPSIS
creat(name, pmode)
char *name;
int pmode;

DESCRIPTION
creat creates a file and opens it for unbuffered, write-only
access. If the file already exists, it is truncated so that nothing is
in it (this is done by erasing and then creating the file).

creat returns as its value an integer called a "file descriptor".
Whenever a call is made to one of the unbuffered i/o functions
to access the file, its file descriptor must be included in the
function’s parameters.

name is a pointer to a character string which is the name of the
device or file to be opened. See the I/O overview section for
details.

For most systems, pmode is optional: if specified, it’s ignored. It
Should be included, however, for programs for which UNIX-
compatibility is required, since the UNIX creat function
requires it. In this case, pode should have the octal value 0666.

For some systems, pmode is required and has a special meaning.
If it is required for your system, the System Dependent
Functions chapter will contain a description of the creat
function, which will define the meaning.

SEE ALSO
Unbuffered I/O (O), Errors (O)

DIAGNOSTICS
If creat fails, it returns -1 as its value and sets a code in the
global integer errno.

- lib.10 -

CTYPE (C)

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace,
ispunct, isprint, iscntrl, isascil
- character classification functions

SYNOPSIS
#include "ctype.h"

isalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table
lookup, returning nonzero if the integer is in the catagory, zero
otherwise. isascii is defined for all integer values. The others are
defined only when isascii is true and on the single non-ASCII
value EOF (-1).

isalpha c is a letter
isupper cis an upper case letter
islower c is a lower case letter
isdigit cis a digit
isalnum _c 1s an alphanumeric character

CTYPE

iss pace c iS a Space, tab, carriage return, newline, or
formfeed

is punct c iS a punctuation character
is print c iS a printing character, valued 0x20 (space)

through 0x7e (tilde)
iscntrl c is a delete character (Oxff) or ordinary control

character (value less than 0x20)
isascii c is an ASCII character, code less than 0x100

- lib.11 -

EXP (M) EXP

NAME
exponential, logarithm, power, square root functions:
exp, log, logl0, pow, sart

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double log10(x)
double x;

double pow(x, y)
double x,y;

double sqrt(x)
double x;

DESCRIPTION
exp returns the exponential function of x.

log returns the natural logarithm of x; Jog/0 returns the base 10
logarithm.

pow returns x ** y (x to the y-th power).

sqrt returns the square root of x.

SEE ALSO
Errors (O)

DIAGNOSTICS
If a function can’t perform the computation, it sets an error
code in the global integer errno and returns an arbitrary value;
Otherwise it returns the computed value without modifying
errno. The symbolic values which a function can place in errno
are EDOM, signifying that the argument was invalid, and
ERANGE, meaning that the value of the function couldn’t be
computed. These codes are defined in the file errno.h.

The following table lists, for each function, the error codes that
can be returned, the function value for that error, and the
meaning of the error. The symbolic values are defined in the
file math.h.

- lib.12 -

EXP (M) EXP

function error f(x) Meaning

exp ERANGE ! HUGE xX > LOGHUGE

" ERANGE ! 0.0 x < LOGTINY
log EDOM -HUGE ; x <=0
log10 EDOM -HUGE ; x <=0
pow EDOM -HUGE | x < 0, x=y=0

" ERANGE ; HUGE | y*log(x)>LOGHUGE
" ERANGE | 0.0 y*log(x)<LOGTINY
sart EDOM 0.0 x < 0.0

- lib.13 -

FCLOSE (C) FCLOSE

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include "stdio.h"

fclose(stream)
FILE ‘stream;

fflush(stream)
FILE *stream;

DESCRIPTION
fclose informs the system that the user’s program has completed
its buffered i/o operations on a device or file which it had
previously opened (by calling fopen). fclose releases the control
blocks and buffers which it had allocated to the device or file.
Also, when a file is being closed, fclose writes any internally
buffered information to the file.

fclose is called automatically by exit.

fflush causes any buffered information for the named output
stream to be written to that file. The stream remains open.

If fclose or f flush is successful, it returns 0 as its value.

SEE ALSO
Standard I/O (O)

DIAGNOSTICS
If the operation fails, -1 is returned, and an error code is set in
the global integer errno.

- lib.14 -

FERROR (C) FERROR

NAME |
feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS
#include "stdio.h"

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream;

clearerr(stream)
FILE *stream;

fileno(stream)
FILE *stream;

DESCRIPTION
feof returns non-zero when end-of-file is reached on the
specified input stream, and zero otherwise.

ferror returns non-zero when an error has occurred on the
specified stream, and zero otherwise. Unless cleared by clearerr,
the error indication remains set until the stream is closed.

clearerr resets an error indication on the specified stream.

fileno returns the integer file descriptor associated with the
stream.

These functions are defined as macros in the file stdio.h.

SEE ALSO
Standard I/O (O)

~ lib.15 -

FLOOR (M) FLOOR

NAME

fabs, floor, ceil - absolute value, floor, ceiling routines

SYNOPSIS
#include <math.h>

double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double x;

DESCRIPTION
fabs returns the absolute value of x.

floor returns the largest integer not greater than x.

ceil returns the smallest integer not less than x.

- 1ib.16 -

FOPEN (C) FOPEN

NAME

fopen, freopen, fdopen - open a stream

SYNOPSIS
#include "stdio.h"

FILE *fopen(filename, mode)
char *filename, *mode;

FILE *freopen(filename, mode, stream)
char *filename, *mode;
FILE *stream;

FILE *fdopen(fd, mode)
char *mode;

DESCRIPTION
These functions prepare a device or disk file for access by the
standard 1/o functions; this is called "opening" the device or file.
A file or device which has been opened by one of these
functions is called a "stream".

If the device or file is successfully opened, these functions
return a pointer, called a "file pointer" to a structure of type
FILE. This pointer is included in the list of parameters to
buffered i/o functions, such as getc or putc, which the user’s
program calls to access the stream.

fopen is the most basic of these functions: it simply opens the
device or file specified by the filename parameter for access
specified by the mode parameter. These parameters are
described below.

freopen substitutes the named device or file for the device or
file which was previously associated with the specified stream. It
Closes the device or file which was originally associated with the
Stream and returns stream as its value. It is typically used to
associate devices and files with the preopened streams stdin,
stdout, and stderr.

fdopen opens a device or file for buffered i/o which has been
previously opened by one of the unbuffered open functions
open and creat. It returns as it’s value a FILE pointer.

fdopen is passed the file descriptor which was returned when the
device or file was opened by open or creat. It’s also passed the
mode parameter specifying the type of access desired. mode must
agree with the mode of the open file.

The parameter filename is a pointer to a character string which
is the name of the device or file to be opened. For details, see
the I/O overview section.

~ lib.17 -

FOPEN (C) FOPEN

mode points to a character string which specifies how the user’s
program intends to access the stream. The choices are as follows:

mode

r

r+

at

X+

meaning

Open for reading only. If a file is opened, it is
positioned at the first character in it. If the file
or device does not exist, NULL is returned.
Open for writing only. If a file is opened
which already exists, it is truncated to zero
length. If the file does not exist, it is created.
Open for appending. The calling program is
granted write-only access to the stream. The
current file position is the character after the
last character in the file. If the file does not
exist, it is created.
Open for writing. The file must not previously
exist. This option is not supported by Unix.
Open for reading and writing. Same as "r", but
the stream may also be written to.
Open for writing and reading. Same as "w', but
the stream may also be read; different from "r+"
in the creation of a new file and loss of any
previous one.

Open for appending and reading. Same as "a",
but the stream may also be read; different from
"r+" in file positioning and file creation.
Open for writing and reading. Same as "x" but
the file can also be read.

On systems which don’t keep track of the last character in a file
(for example CP/M and Apple DOS), not all files can be
correctly positioned when opened in append mode. See the I/O
Overview section for details.

SEE ALSO
I/O (QO), Standard I/O (O)

DIAGNOSTICS
If the file or device cannot be opened, NULL is returned and an
error code is set in the global integer. errno.

EXAMPLES
The following example demonstrates how fopen can be used in a
program.

~ 1ib.18 -

FOPEN (C) FOPEN

#include "stdio.h"

main(argc,argv)
char **argv;

FILE *fopen(), *fp;

if ((fp = fopen(argv{ 1], argv[2])) == NULL) {
printf("You asked me to open %s" argv 1]);
printf("in the %s mode", argv[2]);
printf("but I can’t!\n");

} else
printf("%s is open\n", argv[1]);

Here is a program which uses freopen:

#include "stdio.h"
main()

FILE *fp;
fp = freopen("dskfile", "w+", stdout);
printf("This message is going to dskfile\n");

}
Here is a program which uses fdopen:

include "stdio.h"

dopen _ it(fd)
int fd; /* value returned by previous call to open */

FILE *fp;

if ((fp = fdopen(fd, "r+")) == NULL)
printf("can’t open file for r+\n");

else
return(fp);

- lib.19 -

FREAD (C) FREAD

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include "stdio.h"

int fread(buffer, size, count, stream)
char *buffer;
int size, count;
FILE *stream;

int fwrite(buffer, size, count, stream)
char *buffer;
int size, count;
FILE ‘stream;

DESCRIPTION

fread performs a buffered input operation and fwrite a buffered
write operation to the open stream specified by the parameter
stream.

buffer is the address of the user’s buffer which will be used for
the operation.

The function reads or writes count items, each containing size
bytes, from or to the stream.

fread and fwrite perform i/o using the functions getc and putc;
thus, no translations occur on the data being transferred.

The function returns as its value the number of items actually
read or written.

SEE ALSO
Standard I/O (O), Errors (O), fopen, ferror

DIAGNOSTICS
fread and fwrite return 0 upon end of file or error. The
functions feof and ferror can be used to distinguish between the
two. In case of an error, the global integer errno contains a code
defining the error.

EXAMPLE
This is the code for reading ten integers from file 1 and writing
them again to file 2. It includes a simple check that there are
enough two-byte items in the first file:

- lib.20 -

FREAD (C) FREAD

#include "stdio.h"

main()

{
FILE *fpl, *fp2, *fopen();
char *buf;
int size = 2, count = 10;

fpl = fopen("file1","r");
fp2 = fopen("file2","w');
if (fread(buf, size, count, fpl) != count)

printf("Not enough integers in file1\n");
fwrite(buf, size, count, fp2);

- lib.21 -

FREXP (M) FREXP

NAME
frexp, ldexp, modf - build and unbuild real numbers

SYNOPSIS
#include <math.h>

double frexp(value, eptr)
double value;
int *eptr;

double Idexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
Given value, frexp computes integers x and n_ such that
value=x*2**n, x is returned as the value of frexp, and n is
Stored in the int field pointed at by eptr.

Idexp returns the double quantity value*2**exp.

modf returns as its value the positive fractional part of value and
Stores the integer part in the double field pointed at by iptr.

- lib.22 -

FSEEK (C) FSEEK

NAME
fseek, ftell - reposition a stream

SYNOPSIS
#include "stdio.h"

int fseek(stream, offset, origin)
FILE *stream;
long offset;
int origin;

long ftell(stream)
FILE ‘stream;

DESCRIPTION
fseek sets the "current position" of a file which has been opened
for buffered i/o. The current position is the byte location at
which the next input or output operation will begin.

stream is the stream identifier associated with the file, and was
returned by fopen when the file was opened.

offset and origin together specify the current position: the new
position is at the signed distance offset bytes from the
beginning, current position, or end of the file, depending on
whether origin is 0, 1, or 2, respectively.

offset can be positive or negative, to position after or before
the specified origin, respectively, with the limitation that you
can’t seek before the beginning of the file.

For some operating systems (for example, CP/M and Apple
DOS) a file may not be able to be correctly positioned relative
to its end. See the overview sections I/O and STANDARD I/O
for details.

If fseek is successful, it will return zero.

ftell returns the number of bytes from the beginning to the
current position of the file associated with stream.

SEE ALSO
Standard I/O (O), I/O (O), Iseek

DIAGNOSTICS
fseek will return -1 for improper seeks. In this case, an error
code is set in the global integer errno.

EXAMPLE
The following routine is equivalent to opening a file in "a+"

-mode:

- lib.23 -

FSEEK (C) FSEEK

a__plus(filename)
char *filename;
a

FILE *fp, *fopen();

if ((fp = fopen(filename, r+)) == NULL)
fp = fopen(filename, w+);
fseek(fp, OL, 2); /* position 1 byte past

last character */

To set the current position back 5 characters before the present
current position, the following call can be used:

fseek(fp, -5L, 1)

- lib.24 -

GETC

NAME

(C) GETC

getc, agetc, getchar, getw

SYNOPSIS
#include "stdio.h"

int getc(stream)
FILE *stream;

int agetc(stream) /* non-Unix function */
FILE *stream;

int getchar()

int getw(stream)
FILE *stream;

DESCRIPTION
getc returns the next character from the specified input stream.

agetc 1s used to access files of text. It generally behaves like getc
and returns the next character from the named input stream. It
differs from getc in the following ways:

* It translates end-of-line sequences (eg, carriage return
on Apple DOS; carriage return-line feed on CP/M) to a
single newline (’\\n’) character.

* It translates an end-of-file sequence (eg, a null
character on Apple DOS; a control-z character on
CP/M) to EOF;

* It ignores null characters (’ ’) on all systems except
Apple DOS;

* On some systems, the most significant bit of each
character returned is set to zero.

agetc 1s not a UNIX function. It is, however, provided with all
Aztec C packages, and provides a convenient, system-
independent way for programs to read text.

getchar returns text characters from the standard input stream
(stdin). It is implemented as the call agetc(stdin).

getw returns the next word from the specified input stream. It
returns EOF (-1) upon end-of-file or error, but since that is a
good integer value, feof and ferror should be used to check the
success of getw. It assumes no special alignment in the file.

SEE ALSO
I/O (O), Standard I/O (O), fopen, fclose

DIAGNOSTICS
These functions return EOF (-1) at end of file or if an error
occurs. The functions feof and ferror can be used to distinguish
the two. In the latter case, an error code is set in the global

- lib.25 -

-GETC (C) GETC

integer errno.

- lib.26 -

GETS (C) GETS

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include "stdio.h"

char *gets(s)
char ‘*s;

char *fgets(s, n, stream)
char *s;
FILE ‘stream;

DESCRIPTION
gets reads a string of characters from the standard input stream,
stdin, into the buffer pointed by s. The input operation
terminates when either a newline character (\\n) or end of file
is encountered.

fgets reads characters from the specified input stream into the
buffer pointer at by s until either (1) n-1 characters have been
read, (2) a newline character (\\n) is read, or (3) end of file or
an error is detected on the stream.

Both functions return s, except as noted below.

gets and fgets differ in their handling of the newline character:
gets doesn’t put it in the caller’s buffer, while fgets does. This is
the behavior of these functions under UNIX.

These functions get characters using agetc; thus they can only be
-used to get characters from devices and files which contain text
characters.

SEE ALSO
I/O (O), Standard I/O (O), ferror

DIAGNOSTICS
gets and fgets return the pointer NULL (0) upon reaching end
of file or detecting an error. The functions feof and ferror can
be used to distinguish the two. In the latter case, an error code
is placed in the global integer errno.

- lib.27 -

IOCTL (C) IOCTL

NAME
ioctl, isatty - device i/o utilities

SYNOPSIS
#include "sgtty.h"

ioctl(fd, cmd, stty)
struct sgttyb *stty;

isatty(fd)

DESCRIPTION
ioctl sets and determines the mode of the console.

For more details on ioctl, see the overview section on console
I/O.

isatty returns non-zero if the file descriptor fd is associated with
the console, and zero otherwise.

SEE ALSO
Console I/O (O)

- 1ib.28 -

LSEEK (C) LSEEK

NAME
Iseek - change current position within file

SYNOPSIS
long int Iseek(fd, offset, origin)
int fd, origin;
long offset;

DESCRIPTION
lseek sets the current position of a file which has been opened
for unbuffered i/o. This position determines where the next
character will be read or written.

fd is the file descriptor associated with the file.

The current position is set to the location specified by the offset
and origin parameters, as follows:

* If origin is 0, the current position is set to offset bytes
from the beginning of the file.

« If origin is 1, the current position is set to the current
position plus offset.

* If origin is 2, the current position is set to the end of the
file plus offset.

The offset can be positive or negative, to position after or
before the specified origin, respectively.

Positioning of a file relative to its end (that is, calling lseek with
origin set to 2) cannot always be correctly done on all systems
(for example, CP/M and Apple DOS). See the section entitled
I/O for details.

If seek is successful, it will return the new position in the file
(in bytes from the beginning of the file).

SEE ALSO
Unbuffered I/O (O), I/O (O)

DIAGNOSTICS
If lseek fails, it will return -1 as its value and set an error code
in the global integer errno. errno is set to EBADF if the file
descriptor is invalid. It will be set to EINVAL if the offset
parameter is invalid or if the requested position is before the
beginning of the file.

EXAMPLES

1. To seek to the beginning of a file:

lseck(fd, OL, 0);

lseek will return the value zero (0) since the current position in
the file is character (or byte) number zero.

- lib.29 -

LSEEK (C) LSEEK

2. To seek to the character following the last character in the
file:

pos = lseek(fd, OL, 2);

The variable pos will contain the current position of the end of
file, plus one.

3. To seek backward five bytes:

- Iseek(fd, -5L, 1);

The third parameter, 1, sets the origin at the current position in
the file. The offset is -5. The new position will be the origin
plus the offset. So the effect of this call is to move backward a
total of five characters.

4. To skip five characters when reading in a file:

read(fd, buf, count);
lseek(fd, 5L, 1);
read(fd, buf, count);

- lib.30 -

MALLOC (C) MALLOC

NAME

malloc, calloc, realloc, free - memory allocation

SYNOPSIS
char *malloc(size)
unsigned size;

char *calloc(nelem, elemsize)
unsigned nelem, elemsize;

char ‘realloc(ptr, size)
char *ptr;
unsigned size;

free(ptr)
char *ptr;

DESCRIPTION

These functions are used to allocate memory from the "heap",
that is, the section of memory available for dynamic storage
allocation.

malloc allocates a block of size bytes, and returns a pointer to it.

calloc allocates a single block of memory which can contain
nelem elements, each elemsize bytes big, and returns a pointer to
the beginning of the block. Thus, the allocated block will contain
(nelem * elemsize) bytes. The block is initialized to zeroes.

realloc changes the size of the block pointed at by ptr to size
bytes, returning a pointer to the block. If necessary, a new block
will be allocated of the requested size, and the data from the
original block moved into it. The block passed to realloc can
have been freed, provided that no intervening calls to calloc,
malloc, or realloc have been made.

free deallocates a block of memory which was previously
allocated by malloc, calloc, or realloc, this space is then available
for reallocation. The argument pir to free is a pointer to the
block.

malloc and free maintain a circular list of free blocks. When
called, malloc searches this list beginning with the last block
freed or allocated coalescing adjacent free blocks as it searches.
It allocates a buffer from the first large enough free block that it
encounters. If this search fails, it calls sbrk to get more memory
for use by these functions.

SEE ALSO
Memory Usage (O), break (S)

DIAGNOSTICS

malloc, calloc and realloc return a null pointer (0) if there is no
available block of memory.

- lib.31 -

MALLOC (C) MALLOC

free returns -1 if it’s passed an invalid pointer.

- lib.32 -

MOVMEM (C) MOVMEM

NAME

movmem, setmem, swapmem

SYNOPSIS
movmem(sre, dest, length) /* non-Unix function */
char “src, *dest;
int length;

setmem(area,length,value) /* non-Unix function */
char *area; |

swapmem(slI, s2, len) /* non-Unix function */
char *s1, *s2;

DESCRIPTION
movmem copies length characters from the block of memory
pointed at by src to that pointed at by dest.

movmem copies in such a way that the resulting block of
characters at dest equals the original block at src.

setmem sets the character value in each byte of the block of
memory which begins at area and continues for length bytes.

swapmem swaps the blocks of memory pointed at by s/ and s2.
The blocks are len bytes long.

~- lib.33 -

OPEN (C) OPEN

NAME
open

SYNOPSIS
#include "fcntl.h"

open(name, mode) /* calling sequence on most systems */
char *name;

/* calling sequence on some systems (see below): */
open(name, mode, param3)
char *name;

DESCRIPTION
open opens a device or file for unbuffered i/o. It returns an
integer value called a file descriptor which is used to identify
the file or device in subsequent calls to unbuffered i/o
functions.

name iS a pointer to a character string which is the name of the
device or file to be opened. For details, see the overview section
I/O.

mode specifies how the user’s program intends to access the file.
The choices are as follows:

mode meaning
O_RDONLY read only
O_WRONLY write only
O_RDWR read and write
O_ CREAT Create file, then open it
O_TRUNC Truncate file, then open it
O EXCL Cause open to fail if file already exists;

used with O CREAT
O APPEND Position file for appending data

These open modes are integer constants defined in the files
fentlh. Although the true values of these constants can be used
in a given call to open, use of the symbolic names ensures
compatibility with UNIX and other systems.

The calling program must specify the type of access desired by
including exactly one of O_RDONLY, O_WRONLY, and
O_RDWR in the mode parameter. The three remaining values
are optional. They may be included by adding them to the mode
parameter, as in the examples below.

By default, the open will fail if the file to be opened does not
exist. To cause the file to be created when it does not already
exist, specify the O CREAT option. If O EXCL is given in
addition to O CREAT, the open will fail if the file already
exists; otherwise, the file j is created.

- lib.34 -

OPEN (C) OPEN

If the O_TRUNC option is specified, the file will be truncated
so that nothing is in it. The truncation is performed by simply
erasing the file, if it exists, and then creating it. So it is not an
error to use this option when the file does not exist.

Note that when O_TRUNC is used, O_ CREAT is not needed.

If O APPEND is specified, the current position for the file
(that is, the position at which the next data transfer will begin)
is set to the end of the file. For systems which don’t keep track
of the last character written to a file (for example, CP/M and
Apple DOS), this positioning cannot always be correctly done.
See the I/O overview section for details. Also, this option is not
supported by UNIX.

param3 is not needed or used on many systems. If it is needed
for your system, the System Dependent Library Functions
chapter will contain a description of the open function, which
will define this parameter.

If open does not detect an error, it returns an integer called a
"file descriptor." This value is used to identify the open file
during unbuffered i/o operations. The file descriptor is very
different from the file pointer which is returned by fopen for
use with buffered i/o functions.

SEE ALSO
I/O (O), Unbuffered I/O (O), Errors (O)

DIAGNOSTICS
If open encounters an error, it returns -1 and sets the global
integer errno to a symbolic value which identifies the error.

EXAMPLES
1. To open the file, testfile, for read-only access:

fd = open("testfile", O_|_RDONLY);

If testfile does not exist open will just return -1 and set errno to
ENOENT.

2. To open the file, subl, for read-write access:

fd = open("sub1", OQ RDWR+O_ CREAT);

If the file does not exist, it will be created and then opened.

3. The following program opens a file whose name is given on
the command line. The file must not already exist.

- lib.35 -

OPEN (C) OPEN

main(argce, argv)
char **argv;

{
int fd;

fd = open(*++argv, O_WRONLY+O_CREAT+O_EXCI
if (fd =-1) {
if (errno == EEXIST)
printf("file already exists\n");
else if (errno == ENOENT)

printf("unable to open file\n");
else

printf("open error\n");

- lib.36 -

PRINTF (C, M) PRINTF

NAME
printf, fprintf, sprintf, format
- formatted output conversion functions

SYNOPSIS
#include "stdio.h"

printf(fmt [,arg] ...)
char *fmt;

fprintf(stream, fmt [,arg] ...)
FILE *stream;
char *fmt;

sprintf(buffer, fmt [,arg] ...)
char *buffer, *fmt;

format(func, fmt, argptr)
int (*func)();
char *fmt;
unsigned *argptr;

DESCRIPTION
These functions convert and format their arguments (arg or
argptr) according to the format specification fmt. They differ in
what they do with the formatted result:

printf outputs the result to the standard output stream,
stdout;

fprintf outputs the result to the stream specified in its first
argument, stream,

sprintf places the result in the buffer pointed at by its first
argument, buffer, and terminates the result with the null
character,’ ’.

format calls the function func with each character of the result.
In fact, printf, fprintf, and sprintf call format with each character
that they generate.

These functions are in both c.lib and mlib, the difference being
that the c.lib versions don’t support floating point conversions.
Hence, if floating point conversion is required, the mlib
versions must be used. If floating point conversion isn’t
required, either version can be used. To use m.lib’s version, m.lib
must be specified before c.lib at the time the program is linked.

The character string pointed at by the fmt parameter, which
directs the print functions, contains two types of items: ordinary
characters, which are simply output, and conversion

Specifications, each of which causes the conversion and output
of the next successive arg.

- lib.37 -

PRINTF (C, M) PRINTF

A conversion specification begins with the character % and
continues with:

* An optional minus sign (-) which specifies left adjustment
of the converted value in the output field;
An optional digit string specifying the ’field width’ for the
conversion. If the converted value has fewer characters
than this, enough blank characters will be output to make
the total number of characters output equals the field
width. If the converted value has more characters than the
field width, it will be truncated. The blanks are output
before or after the value, depending on the presence or
absence of the left- adjustment indicator. If the field width
digits have a leading 0, 0 is used as a pad character rather
than blank.

An optional period, ’.’, which separates the field width
from the following field;

An optional digit string specifying a precision; for floating
point conversions, this specifies the number of digits to
appear after the decimal point; for character string
conversions, this specifies the maximum number of
characters to be printed from a string:
Optionally, the character J, which specifies that a
conversion which normally is performed on an int is to be
performed on a long. This applies to the d, 0, and x
conversions.
A character which specifies the type of conversion to be
performed. |

A field width or precision may be * instead of a number,
specifying that the next available arg, which must be an int,
supplies the field width or precision.

The conversion characters are:

d, 0, or x The int in the corresponding arg is converted to
decimal, octal, or hexadecimal notation,
respectively, and output;

u The unsigned integer arg is converted to
decimal notation;

Cc The character arg is output. Null characters are
ignored;

S The characters in the string pointed at by arg
are Output until a null character or the number
of characters indicated by the precision is
reached. If the precision is zero or missing, all
characters in the string, up to the terminating
null, are output:

f The float or double arg is converted to decimal
notation in the style '[-]ddd.ddd’. The number

- 1ib.38 -

PRINTF (C, M) PRINTF

SEE ALSO

of d’s after the decimal point is equal to the
precision given in the conversion specification.
If the precision is missing, it defaults to six
digits. If the precision is explicitly 0, the
decimal point is also not printed.

e The float or double arg is converted to the style
*[-]d.ddde[-]dd’, where there is one digit before
the decimal point and the number after is equal
to the precision given. If the precision is
missing, it defaults to six digits. _

g The float or double arg is printed in style d, f,
or e, whichever gives full precision in
minimum space.

% Output a %. No argument is converted.

Standard I/O (O)

EXAMPLES

1. The following program fragment:

char *name; float amt;
printf("your total, %s, is $%f\n", name, amt);

will print a message of the form

your total, Alfred, is $3.120000

Since the precision of the %f conversion wasn’t specified,
it defaulted to six digits to the right of the decimal point.

This example modifies example | so that the field width
for the %s conversion is three characters, and the field
width and precision of the %f conversion are 10 and 2,
respectively. The %f conversion will also use 0 as a pad
character, rather than blank.

char *name; float amt;
printf("your total, %3s, is $%10.2f\n", name, amt);

This example modifies example 2 so that the field width of
the %s conversion and the precision of the %f conversion
are taken from the variables nw and ap:

char *name; float amt; int nw, ap;
printf("your total %*s,is $%10.*f\n",nw,name,ap,amt);

This example demonstrates how to use the format function
by listing printf, which calls format with each character
that it generates.

- lib.39 -

PRINTF (C, M) PRINTF

printf(fmt,args)
char *fmt; unsigned args;
{

extern int putchar();
format(putchar,fmt,&args):

}

- lib.40 -

PUTC (C)

NAME
putc, aputc, putchar, putw, puterr
- put character or word to a stream

SYNOPSIS

PUTC

#include "stdio.h"

putc(c, stream)
char ¢;
FILE ‘stream;

aputc(c, stream) /* non-Unix function */

char ¢c;
FILE *stream;

putchar(c)
char c;

putw(w,stream)
FILE *stream;

puterr(c) /* non-Unix function */

char ¢c

DESCRIPTION
putc writes the character c to the named output stream. It
returns c as its value.

aputc is used to write text characters to files and devices. It
generally behaves like putc, and writes a single character to a
stream. It differs from putc as follows:

*

SEE ALSO

When a newline character is passed to aputc, an end- of-
line sequence (eg, carriage return followed by line feed on
CP/M, and carriage return only on Apple DOS) is written
to the stream;
The most significant bit of a character is set to zero before

being written to the stream.
aputc is not a UNIX function. It is, however, supported on
all Aztec C systems, and provides a convenient, system-
independent way for a program to write text.
putchar writes the character c to the standard output
stream, stdout. It’s identical to aputc(c, stdout).
putw writes the word w to the specified stream. It returns
w as its value. putw neither requires nor causes special
alignment in the file.
puterr writes the character c to the standard error stream,
stderr. It’s identical to aputc(c, stderr). It 1s not a UNIX
function.

Standard I/O

~ lib.41 -

PUTC (C) PUTC

DIAGNOSTICS
These functions return EOF (-1) upon error. In this case, an
error code is set in the global integer errno.

- lib.42 -

PUTS (C) PUTS

NAME
puts, fputs - put a character string on a stream

SYNOPSIS
#include "stdio.h"

puts(s)
char *s;

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION
puts writes the null-terminated string s to the standard output
stream, stdout, and then an end-of-line sequence. It returns a
non-negative value if no errors occur.

fputs copies the null-terminated string s to the specified output
stream. It returns 0 if no errors occur.

Both functions write to the stream using aputc. Thus, they can
only be used to write text. See the PUTC section for more
details on apute.

Note that puts and fputs differ in this way: On encountering a
newline character, puts writes an end-of-line sequence and /fputs
doesn’t.

SEE ALSO
Standard I/O (QO), putc

DIAGNOSTICS
If an error occurs, these functions return EOF (-1) and set an
error code in the global integer errno.

- lib.43 -

QSORT (C) QSORT

NAME
qsort - sort an array of records in memory

SYNOPSIS
qsort(array, number, width, func)
char *array;
unsigned number;
unsigned width;
int (*func)Q;

DESCRIPTION
qgsort sorts an array of elements using Hoare’s Quicksort
algorithm. array is a pointer to the array to be sorted; number is
the number of record to be sorted; width is the size in bytes of
each array element; func is a pointer to a function which is
called for a comparison of two array elements.

func 1s passed pointers to the two elements being compared. It
must return an integer less than, equal to, or greater than zero,
depending on whether the first argument is to be considered less
than, equal to, or greater than the second.

EXAMPLE

The Aztec linker, LN, can generate a file of text containing a
symbol table for a program. Each line of the file contains an
address at which a symbol is located, followed by a space,
followed by the symbol name. The following program reads such
a symbol table from the standard input, sorts it by address, and
writes it to standard output.

- lib.44 -

QSORT (C) QSORT

#include "stdio.h"
#define MAXLINES 2000
#define LINESIZE 16
char *lines[MA XLINES], *malloc();

main()

int isnumlines, cmp();
char buf[LINESIZE];

for (numlines=0; numlines<MAXLINES; ++numlines){
if (gets(buf) == NULL)

break;
lines[numlines] = malloc(LINESIZE);
strcpy(lines[numlines], buf);

qsort(lines, numlines, 2, cmp);
for (i = 0; i <numlines; ++1)

printf("%s\n", lines[i]);

}

cmp(a,b)
char **a, **b;

return stremp(*a, *b);
}

- lib.45 -

RAN (M) RAN

NAME
ran - random number generator

SYNOPSIS
double ran()

DESCRIPTION
ran returns as its value a random number between 0.0 and 1.0.

- lib.46 -

READ (C) READ

NAME
read - read from device or file without buffering

SYNOPSIS
read (fd, buf,bufsize)
int fd, bufsize; char *buf;

DESCRIPTION
read reads characters from a device or disk file which has been
previously opened by a call to open or creat. In most cases, the
information is read directly into the caller’s buffer.

fd is the file descriptor which was returned to the caller when
the device or file was opened.

buf is a pointer to the buffer into which the information is to be
placed.

bufsize is the number of characters to be transferred.

If read is successful, it returns as its value the number of
characters transferred.

If the returned value is zero, then end-of-file has been reached,
immediately, with no bytes read.

SEE ALSO

Unbuffered I/O (O), open, close

DIAGNOSTICS

If the operation isn’t successful, read returns -1 and places a
code in the global integer errno.

- lib.47 -

RENAME (C) RENAME

NAME
rename - rename a disk file

SYNOPSIS
rename(oldname, newname) /* non-Unix function */
char *oldname,*newname;

DESCRIPTION
rename changes the name of a file.

oldname is a pointer to a character array containing the old file
name, and newname is a pointer to a character array containing
the new name of the file.

If successful, rename returns 0 as its value; if unsuccessful, it
returns -1.

If a file with the new name already exists, rename sets
FE _EXIST in the global integer errno and returns -1 as its value
without renaming the file.

- lib.48 -

SCANF (C) SCANF

NAME

scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include "stdio.h"

scanf(format [,pointer] ...)
char *format;

fscanf(stream, format [,pointer] ...)
FILE *stream;
char *format;

sscanf(buffer, format [,pointer] ...)
char *buffer, *format;

DESCRIPTION
These functions convert a string or stream of text characters, as
directed by the control string pointed at by the format
parameter, and place the results in the fields pointed at by the
pointer parameters.

The functions get the text from different places:

scanf gets text from the standard input stream, stdin;

fscanf gets text from the stream specified in its first
parameter, stream;

sscanf gets text from the buffer pointed at by its first
parameter, buffer.

The scan functions are in both c.lib and mlib, the difference
being that the clib versions don’t support floating point
conversions. Hence, if floating point conversion is required, the
m.lib versions must be used. If floating point conversions aren’t
required, either version can be used. To use mlib’s version, mlib
must be specified before c.lib when the program is linked.

The control string pointed at by format contains the following
*control items’:

* Conversion specifications;
* *White space’ characters (space, tab newline);
* Ordinary characters; that is, characters which aren’t

part of a conversion specification and which aren’t
white space.

A scan function works its way through a control string, trying to
match each control item to a portion of the input stream or
buffer. During the matching process, it fetches characters one at

a time from the input. When a character is fetched which isn’t
appropriate for the control item being matched, the scan
function pushes it back into the input stream or buffer and

- lib.49 -

SCANF (C) SCANF

finishes processing the current control item. This pushing back
frequently gives unexpected results when a stream is being
accessed by other i/o functions, such as gefc, as well as the scan
function. The examples below demonstrate some of the
problems that can occur.

The scan function terminates when it first fails to match a
control item or when the end of the input stream or buffer is
reached. It returns as its value the number of matched
conversion specifications, or EOF if the end of the input stream
or buffer was reached.

Matching ’white space’ characters

When a white space character is encountered in the control
String, the scan function fetches input characters until the first
non-white-space character is read. The non-white-space
character is pushed back into the input and the scan function
proceeds to the next item in the control string.

Matching ordinary characters

If an ordinary character is encountered in the control string, the
scan function fetches the next input character. If it matches the
ordinary character, the scan function simply proceeds to the
next control string item. If it doesn’t match, the scan function
terminates.

Matching conversion specifications

When a conversion specification is encountered in the control
string, the scan function first skips leading white space on the
input stream or buffer. It then fetches characters from the
stream or buffer until encountering one that is inappropriate for
the conversion specification. This character is pushed back into
the input.

If the conversion specification didn’t request assignment
suppression (discussed below), the character string which was
read is converted to the format specified by the conversion
specification, the result is placed in the location pointed at by
the current pointer argument, and the next pointer argument
becomes current. The scan function then proceeds to the next
control string item.

If assignment suppression was requested by the conversion
specification, the scan function simply ignores the fetched input
characters and proceeds to the next control item.

Details of input conversion

A conversion specification consists of:

* The character ?%’, which tells the scan function that it

- lib.50 -

SCANF (C) SCANF

has encountered a conversion specification;
* Optionally, the assignment suppression character ’*’;
* Optionally, a ’field width’; that is, a number specifying

the maximum number of characters to be fetched for
the conversion;

* A conversion character, specifying the type of
conversion to be performed.

If the assignment suppression character is present ina conversion
specification, the scan function will fetch characters as if it was
going to perform the conversion, ignore them, and proceed to
the next control string item.

The following conversion characters are supported:

%

d

A single ’°%’ is expected in the input; no assignment
is done.

A decimal integer is expected; the input digit string
is converted to binary and the result placed in the int
field pointed at by the current pointer argument;

An octal integer is expected; the corresponding
pointer should point to an int field in which the
converted result will be placed;

A hexadecimal integer is expected; the converted
value will be placed in the int field pointed at by the
current pointer argument;

A sequence of characters delimited by white space
characters is expected; they, plus a terminating null
character, are placed in the character array pointed
at by the current pointer argument.

A character is expected. It is placed in the char field
pointed at by the current pointer. The normal skip
over leading white space is not done; to read a single
char after skipping leading white space, use ’%ls’.
The field width parameter is ignored, so this
conversion can be used only to read a single
character.

A sequence of characters, optionally preceded by
white space but not terminated by white space is
expected. The input characters, plus a terminating
null character, are placed in the character array
pointed at by the current pointer argument. The left
bracket is followed by:

* Optionally, a’”’ or ’~’ character;
* A set of characters;
* A right bracket, ’]’.

- lib.51 -

SCANF (C) SCANF

If the first character in the set isn’t “~ or ~, the set
specifies characters which are allowed; characters are
fetched from the input until one is read which isn’t
in the set.

If the first character in the set is *~ or ~, the set
specifies characters which aren’t allowed; characters
are fetched from the input until one is read which is
in the set.

e A floating point number is expected. The input string
is converted to floating point format and stored in
the float field pointed at by the current pointer
argument. The input format for floating point
numbers consists of an optionally signed string of
digits, possibly containing a decimal point, optionally
followed by an exponent field consisting of an E or e
followed by an optionally signed digit.

The conversion characters d, 0, and x can be capitalized or
prece ded by / to indicate that the corresponding pointer 1s to a
long rather than an int. Similarly, the conversion characters e
and f can be capitalized or preceded by 7 to indicate that the
corresponding pointer is to a double rather than a float.

The conversion characters 0, x, and d can be optionally preceded
by h/ to indicate that the corresponding pointer is to a short rather
than an int. Since short and int fields are the same in Aztec C,
this option has no effect.

SEE ALSO
Standard I/O (O)

EXAMPLES

1. In this program fragment, scanf is used to read values for
the int x, the float y, and a character string into the char
array Z:

int x; float y; char z[50];
scanf("%d%f%s", &x, &y, Z);

The input line

32 75.36e-1 rufus

will assign 32 to x, 7.536 to y, and "rufus " to z. scanf will
return 3 as its value, signifying that three conversion
specifications were matched.

The three input strings must be delimited by ’white space’
characters; that is, by blank, tab, and newline characters.
Thus, the three values could also be entered on separate

- lib.52 -

SCANF (C) SCANF

lines, with the white space character newline used to
separate the values.

2. This example discusses the problems which may arise
when mixing scanf and other input operations on the same
stream.

In the previous example, the character string entered for

the third variable, z, must also be delimited by white space
characters. In particular, it must be terminated by a space,
tab, or newline character. The first such character read by
scanf while getting characters for z will be ’pushed back’
into the standard input stream. When another read of stdin
is made later, the first character returned will be the white
space character which was pushed back.

This ’pushing back’ can lead to unexpected results for
programs that read stdin with functions in addition to
scanf. Suppose that the program in the first example wants
to issue a gets call to read a line from stdin, following the
scanf to stdin. scanf will have left on the input stream the
white space character which terminated the third value
read by scanf. If this character is a newline, then gets will
return a null string, because the first character it reads is
the pushed back newline, the character which terminates
gets. This is most likely not what the program had in mind
when it called gets.

It is usually unadvisable to mix scanf and other input
operations on a single stream.

3. This example discusses the behavior of scanf when there
are white space characters in the control string.

The control string in the first example was "%d%f%s". It
doesn’t contain or need any white space, since scanf, when
attempting to match a conversion specification, will skip
leading white space. There’s no harm in having white
space before the %d, between the %d and %f, or between
the %f and %s. However, placing a white space character
after the %s can have unexpected results. In this case,
scanf will, after having read a character string for z, keep
reading characters until a non-white-space character is
read. This forces the operator to enter, after the three
values for x, y, and z, a non-white space character; until
this is done, scanf will not terminate.

The programmer might place a newline character at the
end of a control string, mistakenly thinking that this will
circumvent the problem discussed in example 2. One
might think that scanf will treat the newline as it would an

- lib.53 -

SCANF (C) SCANF

ordinary character in the control string; that is, that scanf
will search for, and remove, the terminating newline
character from the input stream after it has matched the z
variable. However, this is incorrect, and should be
remembered as a common misinterpretation.

4. scanf only reads input it can match. If, for the first
example, the input line had been

32 rufus 75.36e-1

scanf would have returned with value 1, signifying that
only one conversion specification had been matched. x
would have the value 32, y and z would be unchanged. All
characters in the input stream following the 32 would still
be in the input stream, waiting to be read.

>. One common problem in_ using scanf involves
mismatching conversion specifications and _ their
corresponding arguments. If the first example had declared
y to be a double, then one of the following statements
would have been required:

scanf("%d%lf%s", &x, &y, Zz);

or

scanf("%d%F%s", &x, S&y, z);

to tell scan f that the floating point variable was a double
rather than a float.

6. Another common problem in using scanf involves passing
scanf the value of a variable rather than its address. The
following call to scanf is incorrrect:

int x; float y; char z[50];
scanf("%d%f%s", x, y, z);

scanf has been passed the value contained in x and y, and
the address of z, but it requires the address of all three
variables. The "address of" operator, &, is required as a
prefix to x and y. Since z is an array, its address is
automatically passed to scanf, so z doesn’t need the &
prefix, although it won’t hurt if it is given.

7. Consider the following program fragment:

int x; float y; char z[50];
scanf("%2d%f%*Fd%[1234567890]", &x, &y, z);

When given the following input:

12345 678 90a65

scanf will assign 12 to x, 345.0 to y, skip ’678’, and place

- lib.54 -

SCANF (C) SCANF

the string 90 ” in z. The next call to getchar will return ’a’.

- 1ib.55 -

SETBUF (C) SETBUF

NAME
setbuf - assign buffer to a stream

SYNOPSIS
#include "stdio.h"

setbuf(stream, buf)
FILE *stream;

char *buf;

DESCRIPTION
setbuf defines the buffer that’s to be used for the i/o stream
stream. If buf is nota NULL pointer, the buffer that it points at
will be used for the stream instead of an automatically allocated
buffer. If buf is a NULL pointer, the stream will be completely
unbuffered.

When buf is not NULL, the buffer it points at must contain
BUFSIZ bytes, where BUFSIZ 1s defined in sidio.h.

setbuf must be called after the stream has been opened, but
before any read or write operations to it are made.

If the user’s program doesn’t specify the buffer to be used for a
stream, the standard i/o functions will dynamically allocate a
buffer for the stream, by calling the function malloc, when the
first read or write operation is made on the stream. Then, when
the stream is closed, the dynamically allocated buffer is freed by
calling free.

SEE ALSO
Standard I/O (O), malloc

- 1ib.56 -

SETJMP (C) SETJMP

NAME
setjmp, longymp - non-local goto

SYNOPSIS
#include "setjmp.h"

setjmp(env)
jmp _ buf env;

longjmp(eny, val)
jmp _ buf envy;

DESCRIPTION
These functions are useful for dealing with errors encountered
by the low-level functions of a program.

setjmp saves its stack environment in the memory block pointed
at by env and returns 0 as its value.

long jmp causes execution to continue as if the last. call to setjmp
was just terminating with value val. val cannot be zero.

The parameter env is a pointer to a block of memory which can
be used by setjmp and long jmp. The block must be defined using
the typedef jmp__ buf.

WARNING
long jmp must not be called without env having been initialized
by acall to setjmp. It also must not be called if the function that
called set jmp has since returned.

EXAMPLE
In the following example, the function getall builds a record
pertaining to a customer and returns the pointer to the record if
no errors were encountered and 0 otherwise.

getall calls other functions which actually build the record.
These functions in turn call other functions, which in turn ...

getall defines, by calling setjmp, a point to which these functions
can branch if an unrecoverable error occurs. The low level
functions abort by calling long jmp with a non-zero value.

If a low level function aborts, execution continues in getall as if
its call to setjmp had just terminated with a non-zero value.
Thus by testing the value returned by setjmp getall can
determine whether setjmp is terminating because a low level
function aborted.

- lib.57 -

SETJMP (C) SETJMP

#include "setjmp.h"

jmp__ buf envbuf; /* environment saved here by setjmp */

getall(ptr)
char *ptr; /* ptr to record to be built */

if (setymp(envbuf))
/* a low level function has aborted */
return 0;

getfield1(ptr);
getfield2(ptr);
getfield3(ptr);
return ptr;

Here’s one of the low level functions:

getsubfld2 1(ptr)
char *ptr;

{

if (error)
longjmp(envbuf, -1);

- lib.58 -

SIN (M) SIN

NAME
trigonometric functions:
sin, cos, tan, cotan, asin, acos, atan, atan2

SYNOPSIS
#include <math.h>

double sin(x)
double x;

double cos(x)
double x;

double tan(x)
double x;

double cotan(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x,y)
double x;

DESCRIPTION
sin, cos, tan, and cotan return trigonometric functions of radian
arguments.

asin returns the arc sin in the range -pi/2 to pi/2.

acos returns the arc cosine in the range 0 to pi.

atan returns the arc tangent of x in the range -pi/2 to pi/2.

atan2 returns the arc tangent of x/y in the range -pi to pi.

SEE ALSO
Errors (O)

DIAGNOSTICS
If a trig function can’t perform the computation, it returns an
arbitrary value and sets a code in the global integer errno;
otherwise, it returns the computed number, without modifying
errno.

A function will return the symbolic value EDOM if the

argument is invalid, and the value ERANGE if the function
value can’t be computed. EDOM and ERANGE are defined in
the file errno.h.

- 1ib.59 -

SIN (M) SIN

The values returned by the trig functions when the computation
can’t be performed are listed below. The symbolic values are
defined in math.h.

function | error f(x) meaning
sin ERANGE ! 0.0 abs(x) > XMAX
cos ERANGE ; 0.0 abs(x) > XMAX
tan ERANGE /, 0.0 abs(x) > XMAX
cotan ERANGE ; HUGE 0<x< XMIN
cotan ERANGE | -HUGEi | -XMIN <x <0
cotan ERANGE | 0.0 abs(x) >= XMAX
asin EDOM 0.0 abs(x) > 1.0
acos EDOM 0.0 abs(x) > 1.0
atan2 EDOM 0.0 x=y=0

- 1ib.60 -

SINH (M) SINH

NAME
sinh, cosh, tanh

SYNOPSIS
#include <math.h>

double sinh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the hyperbolic functions of their
arguments.

SEE ALSO
Errors (O)

DIAGNOSTICS
If the absolute value of the argument to sinh or cosh is greater
than 348.6, the function sets the symbolic value ERANGE in
the global integer errno and returns a huge value. This code is
defined in the file errno.h.

If no error occurs, the function returns the computed value
without modifying errno.

- lib.61 -

STRING (C) STRING

NAME

strcat, strncat, strcmp, strncmp, strcpy, strncpy,
strlen, index, rindex - string operations

SYNOPSIS
char *strcat(s1, s2)
char *s1, *s2;

char *strncat(sl, s2, n)
char *s1, *s2;

stremp(s1, s2)
char *s1, *s2;

strncmp(sI, s2, n)
char *s1, s2;

char *strcpy(sl, s2)
char *s1, *s2;

char *strncpy(sl, s2, n)
char *s1, *s2;

strlen(s)
char *s;

char *index(s, c)
char ‘*s;

char *rindex(s, c)
char *s;

DESCRIPTION

These functions operate on null-terminated strings, as follows:

strcat appends a copy of string s2 to string s/J. strncat copies at
most n characters. Both terminate the resulting string with the
null character (\Q) and return a pointer to the first character of
the resulting string,

strcmp compares its two arguments and returns an integer
greater than, equal, or less than zero, according as sJ is
lexicographically greater than, equal to, or less than s2. strncmp
makes the same comparison but looks at n characters at most.

strepy copies string s2 to sJ stopping after the null character has
been moved. strncpy copies exactly n characters: if s2 contains
less than n characters, null characters will be appended to the
resulting string until n characters have been moved; if 52

contains m or more characters, only the first n will be moved,
and the resulting string will not be null terminated.

strlen returns the number of characters which occur in s up to
the first null character.

- lib.62 -

STRING (C) STRING

index returns a pointer to the first occurrance of the character c
in string s, or zero if c isn’t in the string.

rindex returns a pointer to the last occurrance of the character c
in string s, or zero if c isn’t in the string.

- lib.63 -

TOUPPER (C) TOUPPER

NAME
toupper, tolower

SYNOPSIS |
toupper(c)

tolower(c)

#include "ctype.h"

__ toupper(c)

__ tolower(c)

DESCRIPTION
toupper converts a lower case character to upper case: if c is a
lower case character, toupper returns its upper case equivalent as
its value, otherwise c is returned.

tolower converts an upper case character to lowr case: if c is an
upper case character tolower returns its lower case equivalent,
otherwise c is returned.

toupper and tolower do not require the header file ctype.h.

__toupper and _tolower are macro versions of toupper and
tolower, respectively. They are defined in ctype.h. The difference
between the two sets of functions is that the macro versions will
sometimes translate non-alphabetic characters, whereas the
function versions don’t.

- lib.64 -

UNGETC (C) UNGETC

NAME
ungetc - push a character back into input stream

SYNOPSIS
#include "stdio.h"

ungetc(c, stream)
FILE ‘stream;

DESCRIPTION
ungetc pushes the character c back on an input stream. That

character will be returned by the next getc call on that stream.

ungetc returns c as its value.

Only one character of pushback is guaranteed. EOF cannot be

pushed back.

SEE ALSO
Standard I/O (O)

DIAGNOSTICS
ungetc returns EOF (-1) if the character can’t be pushed back.

- lib.65 -

UNLINK (C) UNLINK

NAME
unlink

SYNOPSIS
unlink(name)
char *name;

DESCRIPTION

unlink erases a file.

name is a pointer to a character array containing the name of
the file to be erased.

unlink returns 0 1f successful.

DIAGNOSTICS
unlink returns -1 if it couldn’t erase the file and places a code in
the global integer errno describing the error.

- 1ib.66 -

WRITE (C) WRITE

NAME

write

SYNOPSIS
write(fd, buf, bufsize)
int fd, bufsize; char *buf;

DESCRIPTION
write writes characters to a device or disk which has been
previously opened by a call to open or creat. The characters are
written to the device or file directly from the caller’s buffer.

fd is the file descriptor which was returned to the caller when
the device or file was opened.

buf is a pointer to the buffer containing the characters to be
written.

bu fsize is the number of characters to be written.

If the operation is successful, write returns as its value the
number of characters written.

SEE ALSO
Unbuffered I/O (O) , open, close, read

DIAGNOSTICS
If the operation is unsuccessful, write returns -1 and places a
code in the global integer errno.

- lib.67 -

WRITE (C) WRITE

- 1ib.68 -

STYLE

- style.1 -

STYLE Aztec C

Chapter Contents

ssceeacseeceeceeseesesssessessssane seseseescceneessesscescecessseecessscesececcceeseessececescesesessecenes Style
IN troductioncccesscsssessssscscssvscssscsssssessscccesssscssssesscascecensesscesesscsacens 3
Structured PrograMMing ou... ssscssssscsscssscsscssssccssssseccescsecceccessesnees 7
Top-down Programming ou... ceesccsccsscsscsssssccsscssscssssssceccsescesseesecnees 8
Defensive Programming and Debugging .0.0.......cceeccecceccesesseseees 10
Things to watch Out fOr wviccecccsccscsscsscssssecccsscescessecsecsseccecsecesseses 15

- style.2 -

Aztec C STYLE

Style

This section was written for the programmer who is new to the C
language, to communicate the special character of C and the
programming practices for which it is best suited. This material will
ease the new user’s entry into C. It gives meaning to the peculiarities
of C syntax, in order to avoid the errors which will otherwise
disappear only with experience.

1. Introduction

what’s in it for me?

These are the benefits to be reaped by following the methods
presented here:

* Reduced debugging times;

* Increased program efficiency;

* Reduced software maintenance burden.

The aim of the responsible programmer is to write straightforward
code, which makes his programs more accessible to others. This section
on style. is meant to point out which programming habits are
conducive to successful C programs and which are especially prone to
cause trouble.

The many advantages of C can be abused. Since C is a terse, subtle
language, it 1s easy to write code which is unclear. This is contrary to
the "philosophy" of C and other structured programming languages,
according to which the structure of a program should be clearly
defined and easily recognizable.

keep it simple

There are several elements of programming style which make C
easier to use. One of these is simplicity. Simplicity means keep it simple.
You should be able to see exactly what your code will do, so that when
it doesn’t you can figure out why.

A little suspicion can also be useful. The particular "problem areas"
which are discussed later in this section are points to check when code
"looks right" but does not work. A small omission can cause many
errors.

learn the C idioms

C becomes more valuable and more flexible with time. Obviously,
elementary problems with syntax will disappear. But more importantly,

- style.3 -

STYLE Aztec C

C can be described as "idiomatic." This means that certain expressions
become part of a standard vocabulary used over and over.

For example,

while ((c = getchar()) != EOF)

is readily recognized and written by any C programmer. This is often
used as the beginning of a loop which gets a character at a time from a
source of input. Moreover, the inside set of parentheses, often omitted
by a new C programmer, is rarely forgotten after this construct has
been used a few times.

be flexible in using the library

The standard library contains a choice of functions for performing
the same task. Certain combinations offer advantages, so that they are
used routinely. For instance, the standard library contains a function,
scanf, which can be used to input data of a given format. In this
example, the function "scans" input for a floating point number:

scanf("%f", &flt__ num);

There are several disadvantages to this function. An important debit
is that it requires a lot of code. Also, it is not always clear how this
function handles certain strings of input. Much time could be spent
researching the behavior of this function. However, the equivalent to
the above is done by the following:

fit_ num = atof(gets(inp__buf));

This requires considerably less code, and is somewhat more
Straightforward. gets puts a line of input into the buffer, "inp _ buf,"
and atof converts it to a floating point value. There is no question
about what the input function is "looking for" and what it should find.

Furthermore, there is greater flexibility in the second method of
getting input. For instance, if the user of the program could enter
either a special command ("e" for exit) or a floating point value, the
following is possible:

gets(inp _ buf);
if (inp__buf[0] == ’e’)

exit(0);
flt_ num = atof(inp__ buf);

Here, the first character of input is checked for an "e", before the
input is converted to a float.

The relative length of the library description of the scanf function
is an indication of the problems that can arise with that and related
functions.

- style.4 -

Aztec C STYLE

write readable code

Readability can be greatly enhanced by adhering to what common
sense dictates. For instance, most lines can easily accommodate more
than one statement. Although the compiler will accept statements
which are packed together indiscriminately, the logic behind the code
will be lost. Therefore, it makes sense to write no more than one
statement per line.

In a similar vein, it is desirable to be generous with whitespace. A
blank space should separate the arithmetic and assignment operators
from other symbols, such as variable names. And when parentheses are
nested, dividing them with spaces is not being too prudent. For
example,

if((fp=fopen("filename","r")==NULL))

is not the same as

Q if ((fp = fopen("filename", "r")) == NULL)

The first line contains a misplaced parenthesis which changes the
meaning of the statement entirely. (A file is opened but the file
pointer will be null.) If the statement was expanded, as in the second
line, the problem could be easily spotted, if not avoided altogther.

use straightforward logical expressions

Conditionals are apt to grow into long expressions. They should be
kept short. Conditionals which extend into the next line should be
divided so that the logic of the statement can be visualized at a glance.
Another solution might be to reconsider the logic of the code itself.

learn the rules for expression evaluation

Keep in mind that the evaluation of an expression depends upon
the order in which the operators are evaluated. This is determined
from their relative precedence.

Item 7 in the list of "things to watch out for", below, gives an
example of what may happen when the evaluation of a boolean
expression stops "in the middle". The rule in C is that a boolean will be
evaluated only until the value of the expression can be determined.

Item 8 gives a well known example of an "undefined" expression,
one whose value is not strictly determined.

In general, if an expression depends upon the order in which it is
evaluated, the results may be dubious. Though the result may be
Strictly defined, you must be certain you know what that definition is.

a matter of taste

There are several popular styles of indentation and placement of

the braces enclosing compound statements. Whichever format you

- style.5 -

STYLE Aztec C

adopt, it is important to be consistent. Indentation is the accepted way
of conveying the intended nesting of program statements to other
programmers. However, the compiler understands only braces. Making
them as visible as possible will help in tracking down nesting errors
later.

However much time is devoted to writing readible code, C is low-
level enough to permit some very peculiar expressions.

/* It is important to insert comments on a regular basis! */

Comments are especially useful as brief introductions to function
definitions.

In general, moderate observance of these suggestions will lessen the
number of "tricks" C will play on you-- even after you have mastered
its syntax.

- style.6 -

Aztec C STYLE

2. Structured Programming

"Structured programming" is an attempt to encourage programming
characterized by method and clarity. It stems from the theory that any
programming task can be broken into simpler components. The three
basic parts are statements, loops, and conditionals. In C, these parts are,
respectively, anything enclosed by braces or ending with a semicolon;
for, while and do-while; if-else.

modularity and block structure

Central to structured programming is the concept of modularity. In
one sense, any source file compiled by itself is a module. However, the
term is used here with a more specific meaning. In this context,
modularity refers to the independence or isolation of one routine from
another. For example, a routine such as main() can call a function to
do a given task even though it does not know how the task is
accomplished or what intermediate values are used to reach the final
result.

Sections of a program set aside by braces are called "blocks". The
"privacy" of C’s block structure ensures that the variables of each block
are not inadvertently shared by other blocks. Any left brace ({) signals
the beginning of a block, such as the body of a function or a for loop.
Since each block can have its own set of variables, a left brace marks
an opportunity to declare a temporary variable.

A function in C is a special block because it is called and is passed
control of execution. A function is called, executes and returns.
Essentially, a C program is just such a routine, namely, main.

A function call represents a task to be accomplished. Program
statements which might otherwise appear as several obscure lines can
be set aside in a function which satisfies a desired purpose. For
instance, getchar is used to get a single character from standard input.

When a section of code must be modified, it is simpler to replace a
single modular block than it is to delete a section of an unstructured
program whose boundaries may be unclear at best. In general, the
more precisely a block of program is defined, the more easily it can be
changed.

- style.7 -

STYLE Aztec C

3. Top-down Programming

"Top-down" programming is one method that takes advantage of
Structured programming features like those discussed above. It is a
method of designing, writing, and testing a program from the most
general function (i.e., (main()) to the most specific functions (such as
getchar()).

All C programs begin with a function called main(). main() can be
thought of as a supervisor or manager which calls upon other functions
to perform specific tasks, doing little of the work itself. If the overall
goal of the program can be considered in four parts (for instance,
input, processing, error checking and output), then main() should call
at least four other functions.

step one

The first step in the design of a program is to identify what is to be
done and how it can be accomplished in a "programmable" way. The
main routine should be greatly simplified. It needs to call a function to
perform the crucial steps in the program. For example, it may call a
function, init(), which takes care of all necessary startup initializations.
At this point, the programmer does not even need to be certain of all
the initializations that will take place in init().

All functions consist of three parts: a parameter list, body, and
return value. The design of a function must focus on each of these
three elements.

During this first stage of design, each function can be considered a
black box. We are concerned only with what goes in and what comes
out, not with what goes on inside.

Do not allow yourself to be distracted by the details of the
implementation at this point. Flowcharts, pseudocode, decision tables
and the like are useful at this stage of the implementation.

A detailed list of the data which is passed back and forth between
functions is important and should not be neglected. The interface
between functions is crucial.

Although all functions are written with a purpose in mind, it is
easy to unwittingly merge two tasks into one. Sometimes, this may be
done in the interests of producing a compact and efficient program
function. However, the usual result is a bulky, unmanageable function.
If a function grows very large or if its logic becomes difficult to
comprehend, it should be reduced by introducing additional function
calls.

step two

There comes a time when a program must pass from the design
stage into the coding stage. You may find the top-down approach to

- style.8 -

Aztec C STYLE

coding too restrictive. According to this scheme, the smallest and most
specific functions would be coded last. It is our nature to tackle the
most daunting problems first, which usually means coding the low-
level functions.

Whereas the top-down approach is the preferred method for
designing software, the bottom-up approach is often the most practical
method for writing software. Given a good design, either method of
implementation should produce equally good results.

One asset of top-down writing is the ability to provide immediate
tests on upper level routines. Unresolved function calls can be satisfied
by "dummy" functions which return a range of test values. When new
functions are added, they can operate in an environment that has
already been tested.

C functions are most effective when they are as mutually
independent as is possible. This independence is encouraged by the
fact that there is normally only one way into and one way out of a
function: by calling it with specific arguments and returning a
meaningful value. Any function can be modified or replaced so long as
its entry and exit points are consistent with the calling function.

- style.9 -

STYLE Aztec C

4. Defensive Programming and Debugging

"Defensive programming" obeys the same edict as defensive
driving: trust no one to do what you expect. There are two sides to
this rule of thumb. Defend against both the possibility of bad data or
misuse of the program by the user, and the possibility of bad data
generated by bad code.

Pointers, for example, are a prime source of variables gone astray.
Even though the "theory" of pointers may be well understood, using
them in new ways (or for the first time) requires careful consideration
at each step. Pointers present the fewest problems when they appear in
familiar settings.

faced with the unknown

When trying something new, first write a few test programs to
make sure the syntax you are using is correct. For example, consider a
buffer, str__buf, filled with null-terminated strings. Suppose we want to
print the string which begins at offset begin in the buffer. Is this the
way to do it?

printf("%s", str__ buf[begin]);

A little investigation shows that str__buf[begin] is a character, not a
pointer to a string, which is what is called for. The correct statement is

printf("%s", str__ buf + begin);

This kind of error may not be obvious when you first see it. There
are other topics which can be troublesome at first exposure. The
promotion of data types within expressions is an example. Even if you
are sure how a new construct behaves, it never hurts to doublecheck
with a test program.

Certain programming habits will ease the bite of syntax. Foremost
among these is simplicity of style. Top-down programming is aimed at
producing brief and consequently simple functions. This simplicity
should not disappear when the design is coded.

Code should appear as "idiomatic" as possible. Pointers can again
provide an example: it is a fact of C syntax that arrays and pointers
are one and the same. That is,

array[offset]

is the same as

*(array + offset)

The only difference is that an array name is not an lvalue; it is
fixed. But mixing the two ways of referencing an object can cause
confusion, such as in the last example. Choosing a certain: idiom,
which is known to behave a certain way, can help avoid many errors in
usage.

- Style.10 -

Aztec C STYLE

when bugs strike

The assumption must be that you will have to return to the source
code to make changes, probably due to what is called a bug. Bugs are
characterized by their persistence and their tendency to multiply
rapidly.

Errors can occur at either compile-time or run-time. Compile-time
errors are somewhat easier to resolve since they are usually errors in
syntax which the compiler will point out.

from the compiler

If the compiler does pick up an error in the source code, it will
send an error code to the screen and try to specify where the error
occurred. There are several peculiarities about error reporting which
should be brought up right away.

The most noticeable of these peculiarities is the number of spurious
errors which the compiler may report. This interval of inconsistency is
referred to as the compiler’s recovery. The safest way to deal with an
unusually long list of errors is to correct the first error and then
recompile before proceeding.

The compiler will specify where it "noticed" something was wrong.
This does not necessarily indicate where you must make a change in
the code. The error number is a more accurate clue, since it shows
what the compiler was looking for when the error occurred.

if this ever happens to you

A common example of this is error 69: "missing semicolon." This
error code will be put out if the compiler is expecting a semicolon
when it finds some other character. Since this error most often occurs
at the end of a line, it may not be reported until the first character of
the following line-- recall that whitespace, such as a newline character,
is ignored.

Such an error can be especially treacherous in certain situations.
For example, a missing semicolon at the end of a #include’d file may
be reported when the compiler returns to read input in the original
file.

In general, it is helpful to look at a syntax error from the
compiler’s point of view.

Consider this error:

- style.11 -

STYLE Aztec C

struct structag {
char c;
int 1;

}

int 5

This should generate an error 16: "data type conflict". The arrow in the
error message should show that the error was detected right after the
"int" in the declaration of 7, This means that the error has to do with
something before that line, since there is nothing illegal about the int
keyword.

By inspection, we may see that the semicolon is missing from the
preceding line. If this fact escapes our notice, we still know that error
16 means this: the compiler found a declaration of the form

[data type] [data type] [symbol name]

where the two data types were incompatible. So while shortint is a
good data type, double int is not. A small intuitive leap leads us to
assume that the compiler has read our source as a kind of "struct int"
declaration; struct is the only keyword preceding the int which could
have caused this error. Since the compiler is reading the two
declarations as a single statement, we must be missing a delimiter.

run-time errors

It takes a bit more ingenuity to locate errors which occur at run-
time. In numerical calculations, only the most anomalous results will
draw attention to themselves. Other bugs will generate output which
will appear to have come from an entirely different program.

A bug is most useful when it is repeatable. Bugs which show up
only "sometimes" are merely vexing. They can be caused by a
corrupted disk file or a bad command from the user.

When an error can be consistently produced, its source can be more
easily located. The nature of an error is a good clue as to its source.
Much of your time and sanity will be preserved by setting aside a few
minutes to reflect upon the problem.

Which modules are involved in the computation or process? Many
possibilities can be eliminated from the start, such as pieces. of code
which are unrelated to the error.

The first goal is to determine, from a number of possibilities,
which module might be the source of the bug.

checking input data

Input to the program can be checked at a low cost. Error checking
of this sort should be included on a "routine" basis. For instance, "if
((fp=fopen("file","r"))==NULL)" should be reflex when a file is

- style.12 -

Aztec C STYLE

opened. Any useful error handling can follow in the body of the if.

It is easy to check your data when you first get your hands on it. If
an error occurs after that, you have a bug in your program.

printf it

It is useful to know where the data goes awry. One brute force way
of tracking down the bug is to insert printf statements wherever the
data is referenced. When an unexpected value comes up, a single
module can be chosen for further investigation.

The printf search will be most effective when done with more
refinement. Choose a suspect module. There are only two keys points
to check: the entry and return of the function. printf the data in
question just as soon as the function is entered. If the values are
already incorrect, then you will want to make sure the correct data was
passed in the function call.

If an incorrect value is returned, then the search is confined to the
guilty function. Even if the function returns a good value, you may
want to make sure it is handled correctly by the calling function.

If everything seems to be working, jump to the next tricky module
and perform another check. When you find a bad result, you will still
have to backtrack to discover precisely where the data was spoiled.

function calls

Be aware that data can be garbled in a funtion call. Function
parameters must be declared when they are not two byte integers. For
instance, if a function is called:

fseek(fp, 0, 0);

in order to "seek" to the beginning of a file, but the function is defined
this way:

fseek(fp, offset, origin)
FILE *fp;
long offset;
int origin;

there will be unfortunate consequences.

The second parameter is expected to be a Jong integer (four bytes),
but what is being passed is a short integer (two bytes). In a function
call, the arguments are just being pushed onto the stack: when the
function is entered, they are pulled off again. In the example, two
bytes are being pushed on, but four bytes (whatever four bytes are
there) are being pulled off.

The solution is just to make the second parameter a long, with a
suffix (OL) or by the cast operator (as in (long)i).

- style.13 -

STYLE Aztec C

A similar problem occurs when a non-integer return value is not

declared in the calling function. For example, if sgrt is being called, it

must be declared as returning a double:

double sart();

This method of debugging demonstrates the usefulness of having a

solid design before a function is coded. If you know what should be

going into a function and what should be coming out, the process of

checking that data is made much simpler.

found it

When the guilty function is isolated, the difficulty of finding the

bug is proportional to the simplicity of the code. However, the search

can continue in a similar way. You should have a good notion of the

purpose of each block, such as a loop. By inserting a printf in a loop,

you can observe the effect of each pass on the data.

printf’s can also point out which blocks are actually being executed.

‘Falling through" a test, such as an if or a switch, can be a subtle source

of problems. Conditionals should not leave cases untested. An else, or a

de fault in a switch, can rescue the code from unexpected input.

And if you are uncertain how a piece of code will work, it is

usually worthwhile to set up small test programs and observe what

happens. This is instructional and may reveal a bug or two.

- style.14 -

Aztec C STYLE

5. Things to Watch Out for

Some errors arise again and again. Not all of them go away with
experience. The following list will give you an idea of the kinds of
things that can go wrong.

* missing semicolon or brace

The compiler will tell you when a missing semicolon or brace has
introduced bad syntax into the code. However, often such an error will
affect only the logical structure of the program; the code may compile
and even execute. When this error is not revealed by inspection, it is
usually brought out by a test printf which is executed too often or not
enough. See compiler error 69.

* assignment (=) vs comparison (==

Since variables are assigned values more often than they are tested
for equality, the former operator was given the single keystroke: =.
Notice that all the comparison tests with equality are two characters:
<=, >= and ==.

* misplaced semicolon

When typing in a program, keep in mind that all source lines do not
automatically end with a semicolon. Control lines are especially
susceptible to an unwanted semicolon:

for (i=0; i<100; i++);
printf("%d",i):

This example prints the single number 100.

* division (/) vs escape sequence (\)

C definitely distinguishes between these characters. The division
sign resides below the question mark on a standard console; the
backslash is generally harder to find.

* character constant vs character string

Character constants are actually integers equal to the ASCII values
of the respective character. A character string is a series of characters
terminated by a null character (\0). The appropriate delimiter is the
single quote and double quote, respectively.

* uninitialized variable

At some point, all variables must be given values before they are
used. The compiler will set global and static variables to zero, but
automatic variables are guaranteed to contain garbage every time they
are created.

- style.15 -

STYLE Aztec C

* evaluation of expressions

For most operations in C, the order of evaluation is rigidly defined;
thus, many expressions can be written without lots of parentheses.

However, the order in which unparenthesized expressions are
evaluated are not always what you would expect; therefore, it’s usually
a good idea to use parentheses liberally in expressions where there may
be doubt about the order of evaluation (in your mind or in the mind
of someone who may later read your program).

For example, the result of the following example is 6:

inta=2,b=3,c=4,d¢
d=atb/atc

The above expression is equivalent to the parenthesized expression d =
a+((b / a) * c);. You should probably use some parentheses in this
expression, to make its effect clear to yourself and to others.

Consider this example:

if ((c=0)I(c=1))
printf("%d", c);

"1" will be printed; since the first half of the conditional evaluates
to zero, the second half must be also evaluated. But in this example:

if ((c = 0) && (c= 1))

printf("%d", c);

a "0" is printed. Since the first half evaluates to zero, the value of the
conditional must be zero, or false, and evaluation stops. This is a
property of the logical operators.

* undefined order of evaluation

Unfortunately, not all operators were given a complete set of
instructions as to how they should be evaluated. A good example is the
increment (or decrement) operator. For instance, the following is
undefined:

1= ++1 + --1/++1 - i++;

How such an expression is evaluated by a particular implementation is
called a "side effect." In general, side effects are to be avoided.

* evaluation of boolean expressions

Ands, ors and nots invite the programmer to write long
conditionals whose very purpose is lost in the code. Booleans should be
brief and to the point. Also, the bitwise logical operators must be fully

parenthesized. The table in sections 2.12 and 18.1 of The C
Programming Language, by Kernighan and Ritchie, shows their
precedence in relation to other operators.

- style.16 -

Aztec C STYLE

Here is an extreme example of how a lengthy boolean can be
reduced:

if ((c = getchar()) != EOF && c >= ’a’ && c <=’2? &&
(c = getchar()) >=’1’ && c <= ’9’)

printf("good input\n");

if ((c = getchar()) != EOF)
if (c >=’a && C <= 2)

if ((c = getchar()) >= ’0’ && c <= ’9’)
printf("good input\n");

* badly formed comments

The theory of comment syntax is simply that everything occurring
between a left /* and a right */ is ignored by the compiler.
Nonetheless, a missing */ should not be overlooked as a possible error.

Note that comments cannot be nested, that is

/* /* this will cause an error */ */

And this could happen to you too:

/* the rest of this file is ignored until another comment /*

* nesting error

Remember that nesting is determined by braces and not by
indentations in the text of the source. Nested if statements merit
particular care since they are often paired with an else.

* usage of else

Every else must pair up with an if. When an else has inexplicably
remained unpaired, the cause is often related to the first error in this
list.

* falling through the cases in a switch

To maintain the most control over the cases in a switch Statement, it
is advisable to end each case with a break, including the last case in the
switch.

* strange loops

The behavior of loops can be explored by inserting printf
Statements in the body of the loop. Obviously, this will indicate if the
loop has even been entered at all in course of a run. A counter will
show just how many times the loop was executed; a small slip-up will
cause a loop to be run through once too often or seldom. The
condition for leaving the loop should be doublechecked for accuracy.

- style.17 -

STYLE Aztec C

* use of strings

All strings must be terminated by a null character in memory.
Thus, the string, "hello", will occupy a six-element array; the sixth
element is’ ’. This convention is essential when passing a string to a
standard library function. The compiler will append the null character
to string constants automatically.

* pointer vs object of a pointer

The greatest difficulty in using pointers is being sure of what is
needed and what is being used. Functions which take a pointer
argument require an address in memory. The best way to ensure that
the correct value is being passed is to keep track of what is being
pointed to by which pointer.

* array subscripting

The first element in a C array has a subscript of zero. The array
name without a subscript is actually a pointer to this element.
Obviously, many problems can develop from an incorrect subscript.
The most damaging can be subscripting out of bounds, since this will
access memory above the array and overwrite any data there. If array
elements or data stored with arrays are being lost, this error is a good
candidate.

* function interface

During the design stage, the components of a program should be
associated with functions. It is important that the data which is passed
among or shared by these functions be explicitly defined in the
preliminary design of the program. This will greatly facilitate the
coding of the program since the interface between functions must be
precise in several respects.

First of all, if the parameters of a function are established, a call
can be made without the reservation that it will be changed later.
There is less chance that the arguments will be of the wrong type or
specified in the wrong order.

A function is given only a private copy of the variables it is passed.
This is a good reason to decide while designing the program how
functions should access the data they require. You will be able to detail
the arguments to be passed in a function call, the global data which the
function will alter, the value which the function will return and what
declarations will be appropriate-- all without concern for how the
function will be coded.

Argument declarations should be a fairly simple matter once these
things are known. Note that this declaration list must stand before the
left brace of the function body.

- style.18 -

Aztec C STYLE

The type of the function is the same as the type of the value it
returns. Functions must be declared just like any variable. And just
like variables, functions will default to type int, that is, the compiler
will assume that a function returns an integer if you do not tell it
otherwise with a declaration. Thus if function f calls function g which
returns a variable of type double, the following declaration is needed:

function f()

double g(), bigfloat;

g(bigfloat);

double g(arg)
double arg;

return(arg);

}
* be sure of what a function returns

You will probably know very well what is returned by a function
you have written yourself. But care should be taken when using
functions coded by someone else. This is especially true of the standard
library functions. Most of the supplied library functions will return an
int or a char pointer where you might expect a char. For instance,
getchar() returns an int, not a char. The functions supplied by Manx
adhere to the UNIX model in all but a few cases.

Of course, the above applies to a function’s arguments as well.

* shared data

Variables that are declared globally can be accessed by all functions
in the file. This is not a very safe way to pass data to functions since
once a global variable is altered, there is no returning it to its former
state without an elaborate method of saving data. Moreover, global data
must be carefully managed; a function may process the wrong variable
and consequently inhibit any other function which depends on that
data.

Since C provides for and even encourages private data, this
definitely should not be a common bug,

- style.19 -

STYLE Aztec C

- style.20 -

COMPILER ERROR MESSAGES

- err.1 -

Compiler Error Messages Aztec C

Chapter Contents

Compiler Error Codes .u.....ccccsccsssesssscesssoccscssccscsscccescssccoscescecsecesccssssescesenes err
JL. SUMMALY 2.0... eesscecceesscssecesscssssscscssccescescesccseccssscnsecascessececcessessecsees 4
2. Explanationscccsscsscsssssssscssssscsccssscecescesscescsecsersesessestscasecsesucsaceess 7
3. Fatal Error Messagescccccsscsscssssssssceccceccsscessscceccsecsessessccssseseees 35

- err.2 -

Aztec C Compiler Error Messages

Compiler Error Messages

This chapter discusses error messages that can be generated by the
compiler. It is divided into three sections: the first summarizes the
messages, the second explains them, and the third discusses fatal
compiler error messsages.

- err.3 -

Compiler Error Messages

1. Summary of error codes

No. Interpretation

O
R

A
I
A
M
A
R
W
N
 bad digit in octal constant

string space exhausted
unterminated string
internal error
illegal type for function
inappropriate arguments
bad declaration syntax
syntax error in typecast
array dimension must be constant
array size must be positive integer
data type too complex
illegal pointer reference
unimplemented type
internal
internal
data type conflict
unsupported data type
data type conflict
obsolete
structure redeclaration

: missing }
: syntax error in structure declaration
: incorrect type for library function (Apprentice C only)
obsolete (other Aztec C compilers)

: need right parenthesis or comma in arg list
: Structure member name expected here

must be structure/union member
: illegal typecast
: incompatible structures

illegal use of structure
missing : in ? conditional expression

: call of non-function
illegal pointer calculation
illegal type
undefined symbol

: typedef not allowed here
no more expression space

: invalid expression for unary operator
no auto. aggregate initialization allowed
obsolete
internal

: initializer not a constant
: too many initializers

= err.4 -

Aztec C

Aztec C Compiler Error Messages

43: initialization of undefined structure
44: obsolete
45: bad declaration syntax
46: missing closing brace
47: open failure on include file
48: illegal symbol name
49: multiply defined symbol
50: missing bracket
51: Ivalue required
52: obsolete
53: multiply defined label
54: too many labels
55: missing quote
56: missing apostrophe
57: line too long
58: illegal # encountered
59: macro too long
60: obsolete
61: reference of member of undefined structure
62: function body must be compound statement
63: undefined label
64: inappropriate arguments
65: illegal argument name
66: expected comma
67: invalid else
68: syntax error
69: missing semicolon
70: goto needs a label
71: statement syntax error in do-while
72: for’ syntax error: missing first semicolon
73: *for’ syntax error: missing second semicolon
74: case value must be an integer constant
75: missing colon on case
76: too many cases in switch
77: case outside of switch
78: missing colon on default
79: duplicate default
80: default outside of switch
81: break/continue error
82: illegal character
83: too many nested includes
84: too many array dimensions
85: not an argument
86: null dimension in array
87: invalid character constant
88: not a structure

89: invalid use of register storage class
90: symbol redeclared

- err.5 -

Compiler Error Messages Aztec C

: illegal use of floating point type
: illegal type conversion

: illegal expression type for switch
: invalid identifier in macro definition
: macro needs argument list

missing argument to macro
: obsolete
: not enough arguments in macro reference
> internal

> internal
: missing close parenthesis on macro reference
; macro arguments too long
: #else with no #if
: #endif with no #if
: #endasm with no #asm
: #asm within #asm block
: missing #endif
: miussing #endasm
: #1f value must be integer constant
: invalid use of : operator
: invalid use of void expression
: invalid use function pointer
: duplicate case in switch
: macro redefined
: keyword redefined
: field width must be > 0
: invalid 0 length field
: field is too wide
: field not allowed here
: invalid type for field
: ptr to int conversion
: ptr & int not same size
: function ptr & ptr not same size
: invalid ptr/ptr assignment
: too many subscripts or indirection on integer

Error codes between 116 and 125 will not occur on Aztec C
compilers whose version number is less than 3.

Error codes greater than 200 will occur only if there’s something
wrong with the compiler. If you get such an error, please send us the
program that generated the error.

- err.6 -

Aztec C Compiler Error Messages

2. Explanations

1: bad digit in octal constant

The only numerals permitted in the base 8 (octal) counting system
are zero through seven. In order to distinguish between octal,
hexadecimal, and decimal constants, octal constants are preceded by a
zero. Any number beginning with a zero must not contain a digit
greater than seven. Octal constants look like this: 01, 027, 003.
Hexadecimal constants begin with 0x (e.g, 0x1, OxAAO, OxFFF).

2: string space exhausted

The compiler maintains an internal table of the strings appearing in
the source code. Since this table has a finite size, it may overflow
during compilation and cause this error code. The table default size is
about one or two thousand characters depending on the operating
system. The size can be changed using the compiler option -2Z.
Through simple guesswork, it is possible to arrive at a table size
sufficient for compiling your program.

3: unterminated string

All strings must begin and end with double quotes ("). This message
indicates that a double quote has remained unpaired.

4: internal error

This error message should not occur. It is a check on the internal
workings of the compiler and is not known to be caused by any
particular piece of code. However, if this error code appears, please
bring it to the attention of MANX. It could be a bug in the compiler.
The release documentation enclosed with the product contains further
information.

5: illegal type for function

The type of a function refers to the type of the value which it
returns. Functions return an int by default unless they are declared
otherwise. However, functions are not allowed to return ageregates
(arrays or structures). An attempt to write a function such as struct sam
func() will generate this error code. The legal function types are char,
int, float, double, unsigned, long, void and a pointer to any type
(including structures).

6: error in argument declaration

The declaration list for the formal parameters of a function stands
immediately before the left brace of the function body, as shown
below. Undeclared arguments default to int, though it is usually better
practice to declare everything. Naturally, this declaration list may be
empty, whether or not the function takes any arguments at all.

- err.7 -

Compiler Error Messages Aztec C

No other inappropriate symbols should appear before the left
(open) brace.

badfunction(argl, arg2)
shrt arg 1; /* misspelled or invalid keyword */
double arg 2;
{ /* function body */

}
goodfunction(arg1,arg2)
float arg];
int arg2; /* this line is not required */
{ /* function body */

}

7: bad declaration syntax

A common cause of this error is the absence of a semicolon at the
end of a declaration. The compiler expects a semicolon to follow a
variable declaration unless commas appear between variable names
in multiple declarations.

int i, j; /* correct */
char c d; /* error 7 */
char *s1, *s2 |
float k: /* error 7 detected here */

Sometimes the compiler may not detect the error until the next
program line. A missing semicolon at the end of a #include’d file will
be detected back in the file being compiled or in another #include file.
This is a good example of why it is important to examine the context
of the error rather than to rely solely on the information provided by
the compiler error message(s).

8: syntax error in type cast

The syntax of the cast operator must be carefully observed. A
common error is to omit a parenthesis:

i= 3 * (int number); /* incorrect usage */
i= 3 * ((int)number); /* correct usage */

9; array dimension must be constant

The dimension given an array must be a constant of type char, int,
or unsigned. This value is specified in the declaration of the array. See
error 10.

10: array size must be positive integer

The dimension of an array is required to be greater than zero. A
dimension less than or equal to zero becomes | by default. As can be
seen from the following example, specifying a dimension of zero is not
the same as leaving the brackets empty.

- err.8 -

Aztec C Compiler Error Messages

char badarray[0]; /* meaningless */
extern char goodarray{]; /* good */

Empty brackets are used when declaring an array that has been
defined (given a size and storage in memory) somewhere else (that is,
outside the current function or file). In the above example, goodarray
is external. Function arguments should be declared with a null
dimension:

func(s1,s2)
char sI[], s2[];

{

}

11: data type too complex

This message is best explained by example:

char FEKEELE CH Oy:

The form of this declaration implies six pointers-to-pointers. The
seventh asterisk indicates a pointer to a char. The compiler is unable to
keep track of so many "levels". Removing just one of the asterisks will
cure the error; all that is being declared in any case is a single two-byte
pointer. However it is to be hoped that such a construct will never be
needed.

12: illegal pointer reference

The type of a pointer must be either int or unsigned. This is why
you might get away with not declaring pointer arguments in functions
like fopen which return a pointer; they default to int. When this error
is generated, an expression used as a pointer is of an invalid type:

char c;

int var; /* any variable */
int varaddress;
varaddress = &var; /* valid since addresses */
(varaddress) = ’c’; / can fit in an int */
(expression) = 10; / in general, expression

must be an int or unsigned */
o=’C’: / error 12 */

13: internal [see error 4]

14: internal [see error 4]

15: storage class conflict

Only automatic variables and function parameters can be specified
as register.

This error can be caused by declaring a static register variable. While
structure members cannot be given a storage class at all, function

-err.9 -

Compiler Error Messages Aztec C

arguments can be specified only as register.

A register int i declaration is not allowed outside a function--it will
generate error 89 (see below).

16: data type conflict

The basic data types are not numerous, and there are not many
ways to use them in declarations. The possibilities are listed below.

This error code indicates that two incompatible data types were
used in conjunction with one another. For example, while it is valid to
say long int i, and unsigned int j, it is meaningless to use double int k or
float char c. In this respect, the compiler checks to make sure that int,
char, float and double are used correctly.

| data type interpretation size(bytes)
char character]
int integer 2
unsigned/unsigned int | unsigned integer 2
short integer 2
long/long integer long integer 4
float floating point number 4
long float/double double precision float 8

17: Unsupported data type

This message occurs only when data types are used which are
supported by the extended C language, such as the enum data type.

18: data type conflict

This message indicates an error in the use of the long or unsigned
data type. Jong can be applied as a qualifier to int and float. unsigned
can be used with char, int and long.

long i; /* a long int */
long float d; /* a double */
unsigned u; /* an unsigned int */
unsigned char c;
unsigned long 1;
unsigned float f: /* error 18 */

19: obsolete

Error codes interpreted as obsolete do not occur in the current
version of the compiler. Some simply no longer apply due to the
increased adaptability of the compiler. Other error codes have been
translated into full messages sent directly to the screen. If you are
using an older version of the product and have need of these codes,
please contact Manx for information.

- err.10 -

Aztec C Compiler Error Messages

20: structure redeclaration

The compiler is able to tell you if a structure has already been
defined. This message informs you that you have tried to redefine a
Structure.

21: missing }

The compiler expects to find a comma after each member in the
list of fields for a structure initialization. After the last field, it expects
a right (close) brace.

For example, the following program fragment will generate error
21, since the initialization of the structure named ’harry’ doesn’t have
a closing brace:

struct sam {
int bone;
char license[10];

} harry = {
]
"23-4-1984":

22: syntax error in structure declaration

The compiler was unable to find the left (open) brace which follows
the tag in a structure declaration. In the example for error 21, "sam" is
the structure tag. A left brace must follow the keyword struct if no
structure tag is specified.

23: incorrect type for library function (Apprentice C only)

For Apprentice C, this error means that your program has either
explicitly or implicitly incorrectly declared the type of a function
that’s in the run-time system. For example, you will get this error if
you call the run-time system function sgrt without declaring that it
returns a double.

23: obsolete (Other Aztec C Compilers)

For Compilers other than Apprentice C, this error should not
occur.

24: need right parenthesis or comma

The right parenthesis is missing from a function call. Every
function call must have an argument list enclosed by parentheses even
if the list is empty. A right parenthesis is required to terminate the
argument list.

In the following example, the parentheses indicate that getchar is a
function rather than a variable.

getchar();

- err. 11 -

Compiler Error Messages Aztec C

This is the equivalent of

CALL getchar

which might be found in a more explicit programming language. In
general, a function is recognized as a name followed by a left
parenthesis.

With the exception of reserved words, any name can be made a
function by the addition of parentheses. However, if a previously
defined variable is used as a function name, a compilation error will
result.

Moreover, a comma must separate each argument in the list. For
example, error 24 will also result from this statement:

funccall(argl, arg2 arg3);

25: structure member name expected here

The symbol name following the dot operator or the arrow must be
valid. A valid name is a string of alphanumerics and underscores. It
must begin with an alphabetic (a letter of the alphabet or an
underscore). In the last line of the following example, "(salary)" is not
valid because ’(’ is not an alphanumeric.

empptr = &anderson;
empptr->salary = 12000; /* these three lines */
(*empptr).salary = 12000; /* are */
anderson.salary = 12000; /* equivalent */
empptr = &anderson.; /* error 25 */
empptr-> = 12000; /* error 25 */
anderson.(salary) = 12000; /* error 25 */

26: must be structure/union member

The defined structure or union has no member with the name
specified. If the -S option was specified, no previously defined
Structure or union has such a member either.

Structure members cannot be created at will during a program. Like
other variables, they must be fully defined in the appropriate
declaration list. Unions provide for variably typed fields, but the full
range of desired types must be anticipated in the union declaration.

27: illegal type cast

It is not possible to cast an expression to a function, a structure, or
an array. This message may also appear if a syntax error occurs in the
expression to be cast.

structure sam { ... } thom;
thom = (struct sam)(expression); /* error 27 */

- err. 12 -

Aztec C Compiler Error Messages

28: incompatible structures

C permits the assignment of one structure to another. The compiler
will ensure that the two structures are identical. Both structures must
have the same structure tag. For example:

struct sam harry;
struct sam thom;

harry = thom;

29: illegal use of structure

Not all operators can accept a structure as an operand. Also,
Structures cannot be passed as arguments. However, it is possible to
take the address of a structure using the ampersand (&), to assign
structures, and to reference a member of a structure using the dot
operator.

30: missing : in ? conditional expression

The standard syntax for this operator 1s:

expression ? statement! : statement2

It is not desirable to use ?: for extremely complicated expressions; its
purpose lies in brevity and clarity.

31: call of non-function

The following represents a function call:

symbol(argl, arg2, ..., argn);

where "symbol" is not a reserved word and the expression stands in the
body of a function. Error 31, in reference to the expression above,
indicates that "symbol" has been previously declared as something
other than a function.

A missing operator may also cause this error:

a(b + c); /* error 31 */
a* (b+); /* intended */

The missing ’** makes the compiler view "a()" as a function call.

32: illegal pointer calculation

Pointers may be involved in three calculations. An integral value
can be added to or subtracted from a pointer. Pointers to objects of the
same type can be subtracted from one another and compared to one
another. (For a formal definition, see Kernighan and Ritchie pp. 188-
189.) Since the comparison and subtraction of two pointers is
dependent upon pointer size, both operands must be the same size.

- err. 13 -

Compiler Error Messages Aztec C

33: illegal type

The unary minus (-) and bit complement (~) operators cannot be
applied to structures, pointers, arrays and functions. There is no
reasonable interpretation for the following:

int function();
char array[12];
struct sam { ... } harry;
a= -array; /* 2 */
b = -harry;

= ~function & WRONG;

34: undefined symbol

The compiler will recognize only reserved words and names which
have been previously defined. This error is often the result of a
typographical error or due to an omitted declaration.

35: typedef not allowed here

Symbols which have been defined as types are not allowed within
expressions. The exception to this rule is the use of sizeo f(ex pression)
and the cast operator. Compare the accompanying examples:

Struct sam {
int 1;

} harry;
typedef double bigfloat;
typedef struct sam foo;

j= 4 * bigfloat f: /* error 35 */
k = &foo; /* error 35 */
x = sizeof(bigfloat);
y = sizeof(foo); /* good */

The compiler will detect two errors in this code. In the first
assignment, a typecast was probably intended; compare error 8. The
second assignment makes reference to the address of a structure type.
However, the structure type is just a template for instances of the
Structure (such as “harry"). It is no more meaningful to take the
address of a structure type than any other data type, as in &int.

36: no more expression space

This message indicates that the expression table is not large enough
for the compiler to process the source code. It is necessary to
recompile the file using the -E option to increase the number of
available entries in the expression table. See the description of the
compiler in the manual.

- err.14 -

Aztec C Compiler Error Messages

37: invalid expression

This error occurs in the evaluation of an expression containing a
unary operator. The operand either is not given or is itself an invalid
expression.

Unary operators take just one operand; they work on just one
variable or expression. If the operand is not simply missing, as in the
example below, it fails to evaluate to anything its operator can accept.
The unary operators are logical not (!), bit complement (~), increment
(++), decrement (--), unary minus (-), typecast, pointer-to (*),
address-of (&), and sizeof.

if (!) ;
38: no auto. aggregate initialization

It is not permitted to initialize automatic arrays and structures.
Static and external aggregates may be initialized, but by default their
members are set to zero.

char array[5] = { ’a’, ’b’, ’c’, ’d’ };
function()

static struct sam {
int bone;
char licensef[10];

} harry = (
]
"123-4-1984"

};
char autoarray[2] = {’f,’g’}; /* no good */
extern char array[];

}
There are three variables in the above example, only two of which

are correctly initialized. The variable "array" may be _ initialized
because it is external. Its first four members will be given the
characters as shown. The fifth member will be set to zero.

The structure "harry" is static and may be initialized. Notice that
"license" cannot be initialized without first giving a value to "bone".
There are no provisions in C for setting a value in the middle of an
ageregate.

The variable "autoarray" is an automatic array. That is, it is local to
a function and it is not declared to be static. Automatic variables
reappear automatically every time a function is called, and they are
guaranteed to contain garbage. Automatic aggregates cannot be
initialized.

- err. 15 -

Compiler Error Messages Aztec C

39: obsolete [see error 19]

40: internal [see error 4]

41: initializer not a constant

In certain initializations, the expression to the right of the equals
sign (=) must be a constant. Indeed, only automatic and register
variables may be initialized to an expression. Such initializations are
meant as a convenient shorthand to eliminate assignment statements.
The initialization of statics and globals actually occurs at link-time, and
not at run-time.

{
int i = 3:
Static int j = (2 + i); /* illegal */

42: too many initializers

There were more values found in an initialization than array or
Structure members exist to hold them. Either too many values were
specified or there should have been more members declared in the
aggregate definition.

In the initialization of a complex data Structure, it is possible to
enclose the initializer in a single set of braces and simply list the
members, separated by commas. If more than one set of braces is used,
as in the case of a structure within a Structure, the initializer must be
entirely braced.

Struct {
Struct {

char array[];
} substruct;

} superstruct =

version |:

"abcdefghij"

version 2:

{ ’a’,’b’,’c’....,' 1,7}

}
}

In version 1, the initializers are copied byte-for-byte onto the
Structure, superstruct.

- err. 16 -

Aztec C Compiler Error Messages

Another likely source of this error is in the initialization of arrays
with strings, as in:

char array[10] = "abcdefghij";

This will generate error 42 because the string constant on the right
is null-terminated. The null terminator (’ ’ or 0x00) brings the size of
the initializer to 11 bytes, which overflows the ten-byte array.

43: undefined structure initialization

An attempt has been made to assign values to a structure which has
not yet been defined.

Struct sam {...};
struct dog sam = { 1, 2, 3}; /* error 43 */

44: obsolete [see error 19]

45: bad declaration syntax

This error code is an all purpose means for catching errors in
declaration statements. It indicates that the compiler is unable to
interpret a word in an external declaration list.

46: missing closing brace

All the braces did not pair up at the end of compilation. If all the
preceding code is correct, this message indicates that the final closing
brace to a function is missing. However, it can also result from a brace
missing from an inner block.

Keep in mind that the compiler accepts or rejects code on the basis
of syntax, so that an error is detected only when the rules of grammar
are violated. This can be misleading. For example, the program below
will generate error 46 at the end even though the human error
probably occurred in the while loop several lines earlier.

As the code appears here, every statement after the left brace in
line 6 belongs to the body of the while loop. The compilation error
vanishes when a right brace is appended to the end of the program, but
the results during run time will be indecipherable because the brace
should be placed at the end of the loop.

It is usually best to match braces visually before running the
compiler. A C-oriented text editor makes this task easier.

- err.17 -

Compiler Error Messages Aztec C

main()

int i, j;
char array[80];

gets(array);
i= 0;
while (array[i]) {

putchar(array[i]);
i++;

for (i=0; array[i];i++) {
for (j=1 + 1; array[j]; j++) {

printf("elements %d and %d are ", i, j):
if (array[i] == arrayfj])

printf("the same\n");
else

printf("different\n");

putchar(’\n’);

}
47: open failure on include file

When a file is #included, the compiler will look for it in a default
area (see the manual description of the compiler). This message will be
generated if the file could not be opened. An open failure usually
occurs when the included file does not exist where the compiler is
searching for it. Note that a drive specification is allowed in an
include statement, but this diminishes flexibility somewhat.

48: illegal symbol name

This message is produced by the preprocessor, which is that part of
the compiler which handles lines which begin with a pound sign (#).
The source for the error is on such a line. A legal name is a string
whose first character is an alphabetic (a letter of the alphabet or an
underscore). The succeeding characters may be any combination of
alphanumerics (alphabetics and numerals). The following symbols will
produce this error code:

2nd_ time,
dont_do_ this!

49: multiply defined symbol

This message warns that a symbol has already been declared and
that it is illegal to redeclare it. The following is a representative
example:

int i, j, k, i; /* illegal */

- err. 18 -

Aztec C Compiler Error Messages

50: missing bracket

This error code is used to indicate the need for a parenthesis,
bracket or brace in a variety of circumstances.

51: lvalue required

Only values are are allowed to stand on the left-hand side of an
assignment. For example:

int num;
num = 7;

They are distinguished from rvalues, which can never stand on the
left of an assignment, by the fact that they refer to a unique location
in memory where a value can be stored. An Jvalue may be thought of
as a bucket into which an rvalue can be dropped. Just as the contents
of one bucket can be passed to another, so can an Ivalue y be assigned
to another lIvalue, x:

#define NUMBER 512

X= yy;
1024 = z; /* wrong; l/rvalues are reversed */
NUMBER = x; /* wrong; NUMBER is still an rvalue */

Some operators which require lvalues as operands are increment
(++), decrement (--), and address-of (&). It is not possible to take the
address of a register variable as was attempted in the following
example:

register int 1, J;
i= 3;

j= &i;
52: obsolete [see error 19]

53: multiply defined label

On occasions when the goto statement is used, it is important that
the specified label be unique. There is no criterion by which the
computer can choose between identical labels. If you have trouble
finding the duplicate label, use your text editor to search for all
occurrences of the string.

54: too many labels

The compiler maintains an internal table of labels which will
Support up to several dozen labels. Although this table is fixed in size,
it should satisfy the requirements of any reasonable C program. C was
Structured to discourage extravagance in the use of goto’s. Strictly
speaking, goto statements are not required by any procedure in C; they
are primarily recommended as a quick and simple means of exiting

from a nested structure.

- err.19 -

Compiler Error Messages Aztec C

This error indicates that you should significantly reduce the
number of goto’s in your program.

55: missing quote

The compiler found a mismatched double quote (") in a #define
preprocessor command. Unlike brackets, quotes are not paired
innermost to outermost, but sequentially. So the first quote 1s
associated with the second, the third with the fourth, and so on. Single
quotes (’) and double quotes (") are entirely different characters and
should not be confused. The latter are used to delimit string constants.
A double quote can be included in a string by use of a backslash, as in
this example:

"this is a string"
"this is a string with an embedded quote: \". "

56: missing apostrophe

The compiler found a mismatched single quote or apostrophe (’) in
a #de fine preprocessor command. Single quotes are paired sequentially
(see error 55). Although quotes can not be nested, a quote can be
represented in a character constant with a backslash: -

char c = ’\”’: /* c is initialized to
single quote */

57: line too long

Lines are restricted in length by the size of the buffer used to hold
them. This restriction varies from system to system. However, logical
lines can be infinitely long by continuing a line with a backslash-
newline sequence. These characters will be ignored.

58: illegal # encountered

The pound sign (#) begins each command for the preprocessor:
#include, #define, #if, #ifdef, #ifndef, #else, #endif, #asm, #endasm,
#line and #undef. These symbols are strictly defined. The pound sign
(#) must be in column one and lower case letters are required.

59; macro too long

Macros can be defined with a preprocessor command of the
following form:

#define [identifier] [substitution text]

The compiler then proceeds to replace all instances of "identifier"
with the substitution text that was specified by the #de fine.

This error code refers to the substitution text of a macro. Whereas
ideally a macro definition may be extended for an arbitrary number of
lines by ending each line with a backslash (), for practical purposes the
size of a macro has been limited to 255 characters.

- err.20 -

Aztec C Compiler Error Messages

60: obsolete [see error 19]

61: reference of member of undefined structure

Occurs only under compilation without the -S option. Consider the
following example:

int bone;
Struct cat {

int toy;
} manx;
struct dog *samptr;
manx.toy = 1;

bone = samptr->toy; /* error 61 */

This error code appears most often in conjunction with this kind of
mistake. It is possible to define a pointer to a structure without having
already defined the structure itself. In the example, samptr is a
structure pointer, but what form that structure ("dog") may take is still
unknown. So when reference is made to a member of the structure to
which samptr points, the compiler replies that it does not even known
what the structure looks like.

The -S compiler option is provided to duplicate the manner in
which earlier versions of UNIX treated structures. Given the example
above, it would make the compiler search all previously defined
structures for the member in question. In particular, the value of the
member "toy" found in the structure "manx" would be assigned to the
variable "bone". The -S option is not recommended as a short cut for
defining structures.

62: function body must be compound statement

The body of a function must be enclosed by braces, even though it
may consist of only one statement:

function()

return |;

}
This error can also be caused by an error inside a function

declaration list, as in:

func(a, b)
int a; chr b;

{

63: undefined label

A goto statement is meaningless if the corresponding label does
not appear somewhere in the code. The compiler disallows this since it
must be able to specify a destination to the computer.

- err.21 -

Compiler Error Messages Aztec C

It is not possible to goto a label outside the present function (labels
are local to the function in which they appear). Thus, if a label does
not exist in the same procedure as its corresponding goto, this message
will be generated.

64: inappropriate arguments

When a function is declared (as opposed to defined), it is poor
syntax to specify an argument list:

function(string)
char *string:

char *funcl(); /* correct */
double func2(x,y); /* wrong */

}
In this example, function() is being defined, but funcl() and

func2() are being declared.

6S: illegal or missing argument name

The compiler has found an illegal name in a function argument list.
An argument name must conform to the same rules as variable names,
beginning with an alphabetic (letter or underscore) and continuing
with any sequence of alphanumerics and underscores. Names must not
coincide with reserved words.

66: expected comma

In an argument list, arguments must be separated by commas.

67: invalid else

An else was found which is not associated with an if statement. else
is bound to the nearest if at its own level of nesting. So if-else pairings
are determined by their relative placement in the code and their
grouping by braces.

iff...) {

if (...) {

} else if (...)

} else {

The indentation of the source text should indicate the intended
Structure of the code. Note that the indentation of the if and else-if
means only that the programmer wanted both conditionals to be nested
at the same level, in particular one step down from the presiding if

- err.22 -

Aztec C Compiler Error Messages

Statement. But it is the placement of braces that determines this for the
compiler. The example above is correct, but probably does not
conform to the expectations revealed by the indentation of the else
Statement As shown here, the else is paired with the first if, not the
second.

68: syntax error

The keywords used in declaring a variable, which specify storage
class and data type, must not appear in an executable statement. In
particular, all local declarations must appear at the beginning of a
block, that is, directly following the left brace which delimits the body
of a loop, conditional or function. Once the compiler has reached a
non-declaration, a keyword such as char or int must not lead a
Statement; compare the use of the casting operator:

func()

C
int 1

char array{ 12];
float k = 2.03;

int m; /* error 68 */

= (int) k; /* correct */

j= 1;
printf("%d",i);

printf("%d%d\n".i, j):

This trivial function prints the values 3, 2 and 3. The variable i
which is declared in the body of the conditional (if) lives only until
the next right brace; then it dies, and the original i regains its identity.

69: missing semicolon

A semicolon is missing from the end of an executable statement.
This error code is subject to the same vagaries as its cousin, error 7. It
will remain undetected until the following line and is often spuriously
caused by a previous error.

70: bad goto syntax

Compare your use of goto with an example. This message says that
you did not specify where you wanted to goto with a label:

- err.23 -

Compiler Error Messages Aztec C

goto label;

label:

It is not possible to goto just any identifier in the source code;
labels are special because they are followed by a colon.

71: statement syntax error in do-while

The body of a do-while may consist of one statement or several
statements enclosed in braces. A while conditional is required after the
body of the loop. This is true even if the loop is infinite, as it is
required by the rules of syntax. After typing in a long body, don’t
forget the while conditional.

72: “for syntax error: missing first semicolon

This error focuses on another control flow statement, the for. The
keyword, for, must be followed by parentheses. In the parentheses
belong three expressions, any or all of which may be null. For the sake
of clarity, C requires that the two semicolons which separate the
expressions be retained, even if all three expressions are empty.

for (; /* an infinite loop which does */
; /* absolutely nothing */

Error 72 signifies that the compiler didn’t find the first semicolon
within the parentheses.

73: *for’ syntax error: missing second semicolon

This error is similar to error 72; it means that the compiler didn’t
find the second semicolon within the parenthesized expression
following the ’for’.

74: case value must be integer constant

Strictly speaking, each value in a case statement must be a constant
of one of three types: char, int or unsigned. This is similar to the rule
for a switched variable. In the following example, a float must be cast
to an int in order to be switched; however, notice that the programmer
did not check his case statements. The second case value is invalid, and
the code will not compile.

- err.24 -

Aztec C Compiler Error Messages

float k = 5.0;
switch((int)k) {
case 4:

printf("good case value\n");
break;

case 5.0:
printf("bad case value\n");
break;

}
The programmer must replace "case 5.0:" with "case 5".

75: missing colon on case

This should be straightforward. If the compiler accepts a case value,
a colon should follow it. A semi-colon must not be accidently entered
in its place.

76: too many cases in switch

The compiler reserves a limited number of spaces in an internal
table for case statements. If a program requires more cases than the
table initially allows, it becomes necessary to tell the compiler what the
table value should be changed to. It is not necessary to know exactly
how many are needed; an approximation is sufficient, depending on
the requirements of the situation.

TT: case outside of switch

The keyword, case, belongs to just one syntactic structure, the
switch. If "case" appears outside the braces which contain a switch
Statement, this error is generated. Remember that all keywords are
reserved, so that they cannot be used as variable names.

78: missing colon

This message indicates that a colon is missing after the keyword,
de fault. Compare error 75.

79; duplicate default

The compiler has found more than one default in a switch. Switch
will compare a variable to a given list of values. But it is not always
possible to anticipate the full range of values which the variable may
take. Nor is it feasible to specify a large number of cases in which the
program is not particularly interested.

So C provides for a default case. The default will handle all those
values not specified by a case statement. It is analogous to the else
companion to the conditional, if. Just as there is one else for every if,
only one default case is allowed in a switch statement. However, unlike
the else statement, the position of a default is not crucial; a default can
appear anywhere in a list of cases.

- err.25 -

Compiler Error Messages Aztec C

80: default outside of switch

The keyword, default, is used just like case. It must appear within
the brackets which delimit the switch statement.

81: break/continue error

Break and continue are used to skip the remainder of a loop in
order to exit or repeat the loop. Break will also end a switch statement.
But when the keywords, break or continue, are used outside of these
contexts, this message results.

82: illegal character

Some characters simply do not make sense in a C program, such as
*$’ and ’@’. Others, for instance the pound sign (#), may be valid only
in particular contexts.

83: too many nested includes

#includes can be nested, but this capacity is limited. The compiler
will balk if required to descend more than three levels into a nest. In
the example given, file D is not allowed to have a #include in the
compilation of file A.

file A file B file C file D
#include "B" #include"C" #include "D"

84: too many array dimensions

An array is declared with too many dimensions. This error should
appear in conjunction with error 11.

85: not an argument

The compiler has found a name in the declaration list that was not
in the argument list. Only the converse case is valid, Le., an argument
can be passed and not subsequently declared.

86: null dimension in array

In certain cases, the compiler knows how to treat multidimensional
arrays whose left-most dimensions are not given in its declaration.
Specifically, this is true for an extern declaration and an array
initialization. The value of any dimension which is not the left-most
must be given.

extern char array[][12]; /* correct */
extern char badarray[5][]; /* wrong */

87: invalid character constant

Character constants may consist of one or two characters enclosed
in single quotes, as ’a’ or ’ab’. There is no analog to a null String, so ”’
(two single quotes with no intervening white space) is not allowed.
Recall that the special backslash characters (\b, \n, \t etc.) are singular,

- err.26 -

Aztec C Compiler Error Messages

so that the following are valid: ’\n’, ’\na’, ’a\n’; ’aaa’ is invalid.

88: not a structure

Occurs only under compilation without the -S option. A name used
as a structure does not refer to a structure, but to some other data type.

int 1;
ismember = 3; /* error 88 */

89: invalid storage class

A globally defined variable cannot be specified as register. Register
variables are required to be local.

90: symbol redeclared

A function argument has been declared more than once.

91: illegal use of floating point type

Floating point numbers can be negated (unary minus), added,
subtracted, multiplied, divided and compared; any other operator will
produce this error message.

92: illegal type conversion

This error code indicates that a data type conversion, implicit in
the code, is not allowed, as in the following piece of code:

int 1;
float j;
char *ptr;

1= j+ ptr;

The diagram shows how variables are converted to different types
in the evaluation of expressions. Initially, variables of type char and
short become int, and float becomes double. Then all variables are
promoted to the highest type present in the expression. The result of
the expression will have this type also. Thus, an expression containing
a float will evaluate to a double.

hierarchy of types:

double <-- float
long

unsigned
int <-- short, char

This error can also be caused by an attempt to return a structure,
since the structure is being cast to the type of the function, as in:

- err.27 -

Compiler Error Messages Aztec C

int func()

Struct tag sam;

return sam;

}

93: illegal expression type for switch

Only a char, int or unsigned variable can be switched. See the
example for error 74.

94; bad argument to define

An illegal name was used for an argument in the definition of a
macro. For a description of legal names, see error 65.

95: no argument list

When a macro is defined with arguments, any invocation of that
macro 1S expected to have arguments of corresponding form. This
error code is generated when no parenthesized argument list was found
in a macro reference.

#define getchar() getc(stdin)

c = getchar; /* error 95 */

96: missing argument to macro

Not enough arguments were found in an invocation of a macro.
Specifically, a "double comma" will produce this error:

#define reverse(x,y,z) (Z,y,X)

func(reverse(i,,k));

97: obsolete [see error 19]

98: not enough args in macro reference

The incorrect number of arguments was found in an invocation of
a previously defined macro. As the examples Show, this error is not
identical to error 96.

#define exchange(x,y) (y,x)

func(exchange(i)): /* error 98 */

99: internal [see error 4]

100: internal [see error 4]

101: missing close parenthesis on macro reference

A right (closing) parenthesis is expected in a macro reference with
arguments. In a sense, this is the complement of error 95; a macro
argument list is checked for both a beginning and an ending.

- err.28 -

Aztec C Compiler Error Messages

102: macro arguments too long

The combined length of a macro’s arguments is limited. This error
can be resolved by simply shortening the arguments with which the
macro is invoked.

103: #else with no #if

Correspondence between #if and #else is analogous to that which
exists between the control flow statements, if and else. Obviously,
much depends upon the relative placement of the statements in the
code. However, #if blocks must always be terminated by #endif, and
the #else statement must be included in the block of the #if with
which it is associated. For example:

#i1f ERROR > 0
printf("there was an error\n");

#else
printf("no error this time\n");

#endif

#if statements can be nested, as below. The range of each #if is
determined by a #endif. This also excludes #else from #if blocks to
which it does not belong:

#ifdef JANI
printf("happy new year!\n"):

#if sick
printf("1 think i’ll go home now\n");

Helse

printf("1 think i’ll have another\n");
#endif
#else

printf("1 wonder what day it is\n");
#endif

If the first #endif was missing, error 103 would result. And without
the second #endif, the compiler would generate error 107.

104: #endif with no #if

#endif is paired with the nearest #if, #ifdef or #ifndef which
precedes it. (See error 103.)

105: #endasm with no #asm

#endasm must appear after an associated #asm. These compiler-
control lines are used to begin and end embedded assembly code. This
error code indicates that the compiler has reached a #endasm without
having found a previous #asm. If the #asm was simply missing, the
error list should begin with the assembly code (which are undefined
symbols to the compiler).

- err.29 -

Compiler Error Messages Aztec C

106: #asm within #asm block

There is no meaningful sense in which in-line assembly code can be
nested, so the #asm keyword must not appear between a paired
#asm/#endasm. When a piece of in-line assembly is augmented for
temporary purposes, the old #asm and #endasm can be enclosed in
comments as place-holders.

#asm
/* temporary asm code */

/* #asm old beginning */
/* more asm code */

#endasm

107: missing # endif

A #endif is required for every #if, #ifdef and #ifndef, even if the
entire source file is subject to a single conditional compilation. Try to
assign pairs beginning with the first #endif. Backtrack to the previous
#i1f and form the pair. Assign the next #endif with the nearest
unpaired #if. When this process becomes greatly complicated, you
might consider rethinking the logic of your program.

108: missing #endasm

In-line assembly code must be terminated by a #endasm in all
cases. #asm must always be paired with a #endasm.

109: #if value must be integer constant

#if requires an integral constant expression. This allows both
integer and character constants, the arithmetic operators, bitwise
operators, the unary minus (-) and bit complement, and comparison
tests.

Assuming all the macro constants (in capitals) are integers,

#1f DIFF >= ’A’-’9’.
#if (WORD &= ~MASK) >> 8
#if MAR | APR |MAY

are all legal expressions for use with #if.

110: invalid use of colon operator

The colon operator occurs in two places: 1. following a question
mark as part of a conditional, as in (flag ?: 1 : 0); 2. following a label
inserted by the programmer or following one of the reserved labels,
case and de fault.

111: illegal use of a void expression

This error can be caused by assigning a void expression to a
variable, as in this example:

- err.30 -

Aztec C Compiler Error Messages

void func();
int h;

h = func(arg);

112: illegal use of function pointer

For example,

int (*funcptr) ();

funcptr++;

funcptr is a pointer to a function which returns an integer.
Although it is like other pointers in that it contains the address of its
object, it is not suject to the rules of pointer arithmetic. Otherwise,
the offending statement in the example would be interpreted as adding
to the pointer the size of the function, which is not a defined value.

113: duplicate case in switch

This simply means that, in a switch statement, there are two case
values which are the same. Either the two cases must be combined into
one, or one of them must be discarded. For instance:

Switch (c) {
case NOOP:

return (0);
case MULT:

return (x * y);
case DIV:

return (x / y);
case ADD:

return (x + y);
case NOOP:
default:

return;

}

The case of NOOP is duplicated, and will generate an error.

114: macro redefined

For example,

#define islow(n) (n>=0&&n<5)

#define islow(n) (n>=0&&n<=5)
The macro, islow, is being used to classify a numerical value. When

a second definition of it is found, the compiler will compare the new
substitution string with the previous one. If they are found to be
different, the second definition will become current, and this error
code will be produced.

- err.31 -

Compiler Error Messages Aztec C

In the example, the second definition differs from the first in a
single character, ’=’. The second definition is also different from this
one:

#define islow(n) n>=0&&n<=5

since the parentheses are missing.

The following lines will not generate this error:

#define NULL O

#define NULLO
But these are different from:

#define NULL’ ’

In practice, this error message does not affect the compilation of
the source code. The most recent "revision" of the substitution string is
used for the macro. But relying upon this fact may not be a wise habit.

115: keyword redefined

Keywords cannot be defined as macros, as in:

#define int foo

If you have a variable which may be either, for instance, a short or
a long integer, there are alternative methods for switching between the
two. If you want to compile the variable as either type of integer,
consider the following:

#ifdef LONGINT
long 1;

#else
short 1;

#endif

Another possibility is through a typedef:

#ifdef LONGINT
typedef long VARTYPE;

#else

typedef short VARTYPE;
#endif

VARTYPE i;

116: field width must be > 0

A field in a bit field structure can’t have a negative number of bits.

117: invalid 0 length field

A field in a bit field structure can’t have zero bits.

- err.32 -

Aztec C Compiler Error Messages

118; field is too wide

A field in a bit field structure can’t have more than 16 bits.

119: field not allowed here

A bit field definition can only be contained in a structure.

120: invalid type for field

The type of a bit field can only be of type int of unsigned int.

121: ptr/int conversion

The compiler issues this warning message if it must implicitly
convert the type of an expression from pointer to int or long, or vice
versa.

If the program explicitly casts a pointer to an int this message won’t
be issued. However, in this case, error 122 may occur.

For example, the following will generate warning 121:

char *cp;
int 1;

i= cp; /* implicit conversion of char * to int */

When the compiler issues warning 121, it will generate correct code
if the sizes of the two items are the same.

122: ptr & int not same size

If a program explicitly casts a pointer to an int, and the sizes of the
two items differ, the compiler will issue this warning message. The
code that’s generated when the converted pointer is used in an
expression will use only as much of the least significant part of the
pointer as will fit in an int.

123: function ptr & ptr not same size

If a program explicitly casts a pointer to a data item to be a pointer
to a function, or vice versa, and the sizes of the two pointers differ,
the compiler issues this warning message.

If the program doesn’t explicitly request the conversion, warning
124 will be issued instead of warning 123.

124; invalid ptr/ptr assignment

If a program attempts to assign one pointer to another without
explicitly casting the two pointers to be of the same type, and the types
of the two pointers are in fact different, the compiler will issue this
warning message.

The compiler will generate code for the assignment, and if the sizes
of the two pointers are the same, the code will be correct. But if the

- err.33 -

Compiler Error Messages Aztec C

sizes differ, the code may not be correct.

125: too many subscripts or indirection on integer

This warning message is issued if a program attempts to use an
integer as a pointer; that is, as the operand of a star operator.

If the sizes of a pointer and an int are the same, the generated code
will access the correct memory location, but if they don’t, it won’t.

For example,

char c;
long g;

0x5c=0; / warning 125, because 0x5c is an int */
c{iJ=0; /* warning 125, because c+i is an int */
g[iJ=0; /* error 12, because g+i is a long */

- err.34 -

Aztec C Compiler Error Messages

3. Fatal Compiler Error Messages

If the compiler encouters a "fatal" error, one which makes further
operation impossible, it will send a message to the screen and end the
compilation immediately.

Out of disk space!

There is no room on the disk for the output file of the compiler.
Previous disk files will not be overwritten by the compiler’s assembly
language output. To make room on the disk, it is usually sufficient to
remove unneeded files from the disk.

unknown option:

The compiler has been invoked with an option letter which it does
not recognize. The manual explicitly states which options the compiler
will accept. The compiler will specify the invalid option letter.

duplicate output file

If an output file name has been specified with the -o option and
that file already exists on the disk, the compiler will not overwrite it.
-O must specify a new file.

too few arguments for -o option

The compiler expected to find the output filename following the "-
o", but didn’t find it. The output file name must follow the option
letter and the name of the file to be compiled must occur last in the
command line.

Open failure on input

The input file specified in the command line does not exist on the
disk or cannot be opened. A path or drive specification can be
included with a filename according to the operating system in use.

No input! |

While the compiler was able to open the input file given in the
command line, that file was found to be empty.

Open failure on output

The compiler was unable to create an output file. On some
systems, this error could occur if a disk’s directory is full.

Local table full! (use -L)

The compiler maintains an internal table of the local variables in
the source code. If the number of local symbols in use exceeds the
available entries in the table at any time during compilation, the
compiler will print this message and quit. The default size of the local
symbol table (40 entries) can be changed with the -L option for the

- err.35 -

Compiler Error Messages Aztec C

compiler. Local variables are those defined within braces, ie., in a
function body or in a compound statement. The scope of a local
variable is the body in which it is defined, that is, it is defined until
the next right brace at its own nesting level.

Out of memory!

Since the compiler must maintain various tables in memory as well
as manipulate source code, it may run out of memory during
operation. The more immediate solution is to vary the sizes of the
internal tables using the appropriate compiler options. Often, a
compilation will require fewer than the default number of entries in a
particular table. By reducing the size of that table, memory space is
freed up during compile time. The amount of memory used while
compiling does not affect the size or content of the assembly or object
file output. If this stategy fails to squeeze the compilation into the
available memory, the only solution is to divide the source file into
modules which can be compiled separately. These modules can then
be linked together to produce a single executable file.

- err.36 -

Aztec C86 Index

INDEX

Order of chapters in manual

System Dependent Chapters

title code

OVELVICWcscscssccssssscscsscecsssstecessscecssseeecesseeecescnssecseseecesenaeaecessuaeecesnsneeesesseeeees OV

Tutorial Introductionccccsssscsssecsssecessssecssscessscecesnscecescecessscecessseeeeseees tut

The Compiler oo... ccccseccscsssssssscccccecececoesesesessncstecccscceessececeecececesceceeseeseeseeess cc

The ASSEMm berccccccsssecessscecessececensceccessccceceseseecesesaeeeseseceessesseseesosseeeeses as

The Linker wii cccccsscccessssecescecessseeseessscececsenececesaceecescnececscacecesssensecseseeaesesees In

Utility Programs oo... cccscscecssescecessecessssneeecsesnaececsaccessnscacecsssseeeesesanees util

Library Functions Overview: 8086 Informationccsceeeeees libov86

BO86 FUNCTIONS 2.0... ccesessssecsssecseccessecensececnecsecesenstescceesssaecesacceseccesesaecsees lib86

Techical Informationcccssscccssscssseccesscccecsscceecccscsecsesesseeeesnseeeeeees tech

OS 000 (ele) (eee eee unitools

Source Level Debugger o...ccicceeeeccscssssesccessscccsecssscscesececssecseecececesseseseeess sdb

Assembly Language Debugger ou... ccsssccecssscecessseesecessececesseeeeseesnees db

System Independent Chapters

Overview Of Library FUNCTIONS 0.0... ecsees ccececesessescececesensnecececesens libov

System-Independent FUNCTIONSccccsseee ccosseccecssscceeesenseecsssesseecesseaes lib

Style voice esssccssces ccscsecesssssscsssseesesseccsesseececeseesecessnaeeceessnecsceseeecesenseeeeeeeees Style

Compiler Error MEeSSAZESccccsccsccee coccessvsseseseeecececesesssseaneeeseceeeeeeees err

Index

INCEOX wceccsccssscssesscseesossesssscsscescesecesscesesscsecesesessecessssscsaussssassansaseusneceessasees index

- index.1 -

Index Aztec C86

- index.2 -

Aztec C86

__ptradd cc.48
__ptrdiff cc.48

A
absolute value 1ib.16
abstoptr cc.48; 1ib86.33
access 11b86.6-7
accessing data in memory

asm.20
accessing devices libov.8
accessing files

unitools.73-78
acos. 1ib.59-60
adding modules after existing

modules ina library util 16
adding modules at beginning

or end ofa library util.16-17
adding modules to a library

util. 15
addr db.13-15; sdb.12
addresses in ex commands

unitools.67-68
adjusting the screen

unitools.55
agetc lib.25-26
aputc 1lib.41-42
arcv. util.4
arithmetic operators asm.23
array subscripting style.18
asctime 11b86.55-56
asin 1lib.59-60
assembler operating

instructions asm.5
assembler options asm.5,9

-186 asm.9
-c asm.9
-ca asm.9
-cS asm.9
-dsym[=const] asm.9
-i asm.6-9
-1 asm.6,9
-la asm.9
-ls_ asm.9
-Oo asm.6,9
-sn asm.9
-xX asm.9
-zap asm.2,5,6,9

Index

assembly-language functions
tech.30-40

assembly-language macros
tech.33-38
entrdef tech.36
finish tech.38
internal tech.36
intrdef tech.36
Idptr tech.36
pend tech.35
pret tech.36
procdef tech.34-36
retnull tech.38
retptrm tech.37
retptrr tech.37

assert 1ib86.8
assign buffer to a stream

1ib.56
atan 11b.59-60
atan2 11b.59-60
atof 1lib.8
atoi 1lib.8&
atol lib.8
autoindent unitools.61
aztec to microsoft format

util.26

B
backtracing db.9; sdb.9
bdos 11b86.9,19
bdosx lib86.10
boolean expressions

Style. 16-17
breakpoints

db. 7-8, 16-18,40
sdb. 7-8, 13-15,38

brk 1ib86.11-12
buffer size libov86.6
buffered binary input

lib.20-21
buffered output 1ib.20-21
buffering libov.10-11
build and unbuild real

numbers 1ib.22

C

- index.3 -

Index

c idioms § style.3
c source file cc.6
c86 libraries tech.25
calloc 1lib.31-32
case table cc.24
cbreak libov.21
ceil 1lib.16
ceiling lib.16
change current position

within a file 1lib.29-30
char cc.4l
character classification

funtions lib.11

character-oriented input
libov.18; libov86.6-7

chdir 11b86.18
chmod 1ib86.13
circle 1ib86.14
clear db.19
clearerr lib.15
clock lib86.15
close lib.9,14
close a device or a file

lib.9
close astream 1ib.14_
closing streams libov.9
cmdlist db.16; sdb.13
cnm util.5-8
code area_ tech.5
codemacros asm.30,60-71
colon commands _unitools.89
color 1ib86.16
command line arguments

libov.4-6
command line arguments

libov86.3
command summary

unitools.85-89
comments style.17
common problems style.15-19
compatablity of Aztec

products cc.42
compiler error checking

cc.50
compiler operating

instructions cc.5

compiler options
ec. 7-10,19,22-23,50

Aztec C86

-a_ cc.8-9,19
-d_ cc.19,22
-i cc.19,22
-o cc.7,19
-s cc.19,23
-t cc.9,19
-b cc.19,50

-table manipulation options
cc. 19,23-25

-e cc.19,24
“1 cc.19,23-24
-y cc.19,24-25
-z c¢.20,25

-options for the optimizing
compilers cc.20,26-29

+f cc.20,26
+c cc.20,26
+n cc.20,26
+d cc.20,26
+df cc.20,26
+0 cc.20,27
+1 c¢.20,27
+2 cc¢.20,27
+r cc.20,27
tu cc.20,27-28
+a cc.20,28-29
+m cc.20,29

-options for the
non-optimizing compilers

cc.21,29-30
+f cc.21,29
+ucce.21,30
+j cc.21,30

concatenating parameters to
parameters asm.48

conditional compilation
statements cc.34-37

console i/o libov.17-21;
libov86.6-7

convert ascii to numbers
lib.8

convert floating point to
ascii lib.8

cos. lib.59-60
cosh 1ib.61

cotan 1ib.59-60
cre utilL9
crclist util.9

- index.4 -

Aztec C86

creat 1lib.10
create a new file lib.10
creating a library util.13
creating a root and overlays

tech.20
creating an assembly language

file cc.8
creating an object code file

cc.7
cross development tech.26
csread 1ib86.17
ctags utility

unitools.77-78
ctime 11b86.55-56

D
data formats cc.41-43
default mode libov.7,17,20
default segment attribute-
overriding operators asm.25

default segment asm.15
defensive programming

style. 10
deleting line unitools.57
deleting modules form a

library util 18
deleting text

unitools.42-43,56-57
desc codes db.33-35;

sdb.27-30
determine accessiblity of a

file 11b86.6-7
device i/o libov.7

libov86.6
device i/o utilities 1lib.28
diff unitools.6-9
directives asm.15-19,31-60

assume asm.15-16,31
bss asm.31-32
codemacro asm.64
else asm.60
end asm.34-35
endif asm.60
endm asm.56

equ asm.35-36
equal sign asm.36
exitm asm.56

Index

extrn asm.17-18,37
global asm.17,18,37
group asm.37
if asm.58
ifl asm.59
if2 asm.59
ifb asm.59
ifdef asm.59
ifdif asm.60
ife asm.59
ifidn asm.60
ifnb asm.59
ifndef asm.59
include asm.37-38
irp asm.54-55,56
irpc asm.55,56
label asm.38
largecode asm.38-39
local asm.56
macro asm.44-46,56-57
modrm_ asm.65
name asm.39
nosegfix asm.65
org asm.39
public asm.16-17,18-19,42
purge asm.57
record asm.42-44,67
relb asm.66
relw asm.66
rept asm.53-54,57
segment and ends
asm. 13-14,44

user-defined record
asm.67

disabling options
unitools.80

display commands db.19-23,40;
sdb. 16-20,38

display object file info
util.5

displaying source files
db.9,40; sdb.9,17,38

displaying unprintable
characters unitools.46

dos 11b86.19
dostime 11b86.55-56
dosx lib86.10
dot operator to shift

- index.S -

Index

parameters asm.67
double cc.42
dup 11b86.20
duplicating blocks of text

unitools.58-59
dynamic buffer allocation

libov. 11,22

E

echo mode _libov.21; libov86.6
editing an existing file

unitools.40-45
editing another file

unitools. 74-76
embedded assembler source

tech.39
enabling options

unitools.80
end ofafile libov86.4
entrdef macro tech.36
errno 11b86.44
error messages form linker

In. 17-22

error messages from ovloader
tech.23

error processing
libov.23-24 |

evaluation of expressions
Style. 16

ex-like commands
unitools.67-69

examine memory 1ib86.43
execl 11b86.21-23
execlp 11b86.21-23
executable program tech.4
executing system commands

unitools.79
execv 11b86.21-23
execvp 11b86.21-23
exit 11b86.24
exiting z unitools.39
exp lib.12-13
exponetial functions

lib. 12-13
expr db.11-12; sdb.11-12
expression evaluation

Style.5

Aztec C86

expression table cc.24
extended pattern matching
unitools.50-5 1,80

extracting modules from a
library util.19-20

F
fabs lib.16
far call asm.13
farcall 11b86.25
fcbint 1ib86.26
fclose lib.14
fdopen 1ib.17-19
fdup 1lib86.20
feof lib.15
ferror lib.15
fexecl lib86.27-28
fexecv 11b86.27-28
fflush lib.14
fgets lib.27
file comparison utility

unitools.6-9
file i/o libov.6,9-13,15;

libov86.4-6
file lists unitools.70,76
filenames unitools.73
fileno 1lib.15
find source string

db.23,40; sdb.20,38
finish macro tech.38
float cc.42
floating point exceptions

cc.42
floor lib.16
flterr cc.42

flush astream 1ib.15
fopen 1lib.17-19
format 1ib.37-40
formatted input conversio

11b.49-55 :
formatted output conversion

functions 1lib,37-40
fprintf 1lib.37-40
fputs 1lib.43
fread 1lib.20-21
free 1lib.31-32,56
freopen 1lib.17-19

- index.6 -

Aztec C86

frexp lib.22
fscanf 1ib.49-55
fseek 1lib.23-24
ftell 1ib.23-24
ftime lib86.29-30
ftoa 1lib.8
function calls and returns

tech.32
function key macros

unitools.83-84
functions calls style.13-14
fwrite lib.20-21

G
generating romable code

tech.41-46
get a string from a stream

lib.27
get time 11b86.15
getc 1lib.25-26
getchar 1lib.25-26
getenv 11b86.31
gets lib.27
getusr 11b86.59
getw 1ib.25-26
getwd 11b86.18
global variables cc.39-41;

tech.28-29,30-31
globally-accessible symbols

asm.16
gemtime 11b86.55-56
go db.24-25,40;

sdb.23-24,40;
unitools.4 1,83

grep unitools. 10-15
grep options unitools.10
matching character strings
unitools. 12
matching repeating
characters unitools.12
matching single characters
unitools. 11
pattern matching program
unitools.10-15
patterns unitools, 11

ground 1ib86.16

Index

H
help in lb util21
hex86_ _tech.41-46

-j tech.45
-z tech.45
-e_ tech.45
-O tech.45
-s_ tech.45
-p tech.46
-b_ tech.46

hex86 util.10
high operand asm.23
huge arrays 48-49
hyperbolic functions 1lib.61

I
immediate macro definition

unitools.63-64
immediate operands asm.19
include environment variable

cc.10
index 1lib.62-63
indirect macro definition

unitools.64-65
inportb lib86.46
inportw 11b86.46
insert commands

unitools.38,43-44,61
insert mode _ unitools.38,61
inserting text

unitools.44,61
int,short cc.4]
int sp 11b86.39-41
intel hex generator util.10
internal macro. tech.36
intrdef macro. tech.36
ioctl 1lib.28; libov.19
isalnum lib.11
isalpha_ lib.11
isasci1 lib.11
isatty lib.28
iscntrl lib.11
isdigit lib.11
islower lib.11

isprint lib.11
ispunct lib.11
isspace lib.11

- index.7 -

Index

isupper lib.11

L
labels asm.12-13
large code_ cc.16
large data cc.17;

tech.6-7,8
Ib util 11-21
Ib arguments util.14
Ib options util.11
Idexp 1ib.22
Idptr macro tech.36
learning c idioms _ style.3
libraries cc.14-15
library module names

util. 13
library order util14
library table of contents

util. 13
line 1ib86.32
line-oriented input

libov. 17-18
lines longer than screen size

unitools.46
lineto lib86.32
linker error messages

In. 17-22
linker options 1n.9-10

-O <file> 1n.9,11
-l<name> 1n.9,11
-f <file> 1n.9,12,19
-t 1In.9,12
-m = 1n.9,12-13
-n 1n.9,13
-§ <size> 1n.9,13
-x <size> 1n.9,13-14
-v 1n.9,14

-options for segment address
specification 1n.9,14-16

-b <address> 1n.9,14-16
-c <address> 1n.9,14-16
-d <address> 1n.9,14-16
-u <address> 1n.9,14-16

-options for overlay usage
In.10,16

-r 1n.10,16
+c <size> 1n.10,16

Aztec C86

+d <address> 1n.10,16
linking process I1n.4
list directory util.22-24
list object code util.25
loading programs

db.6-7,25-27,40
sdb.6-7,23,38

local moves unitools.52-55
local symbol table cc.23
local symbols asm.46-47
localtime 1i1b86.55-56 |
log lib.12-13
logarithm 1lib.12-13
logical operators asm.24
long cc.41-42
long pointer cc.44-48
long pointer conversion

functions lib86.33
longjymp 1lib.57-58
low operand asm.23
Is = util.22-24
Iseek 11b.29-30

M

macros. cc.31-37
unitools.63-66,88

make unitools. 16-33
aborting unitools.26
built-in rules unitools.25
logging commands
unitools.26

macro capability
unitools.22-24

makefile unitools.17-19
Standard output unitools.29
starting make unitools.28

malloc 1lib.31-32,56
marking unitools.54,86
memccpy 11b86.34-35
memchr 1ib&6.34-35
memcmp 1ib86.34-35
memory allocation lib.31-32
memory models. cc.11-14
memory modification commands

db.27-28,40; sdb.24-25,38
memory operands asm.20
memory operations 1ib&86.34-35

- index.8 -

Aztec C86

memory-change breakpoints
db.8; sdb.8,38

memset 1ib86.34-35
missing semicolon style.15
mkdir 11b86.18
mktemp 11b86.36-37
mode 11b86.38
modes of z_ unitools.37-38
modf 1lib.22
modifiers asm.63,69-70
modify memory 11b86.43
modularity style.7
monitor 11b86.39-41
movblock 11b86.42
moves within c programs

unitools.53
moving around on the screen

unitools.52
moving blocks unitools.57
moving modules to the

beginning or end
of alibrary util.18

moving modules within a
library util.17

moving text between files
unitools.60

moving within a line
unitools.52-53

movmem 1lib.33
ms-dos linker tech.27-29
msdos source files cc.6
multi-module programs

cc. 13-14

N
named buffers unitools.59
names db.5-6; sdb.8
near call asm.12
nested segments asm.14
nesting errors style.17
nodelay libov.17
non-local gotto 1lib.57-58

O
obd util.25
obj tech.27-29

Index

obj util26
object file librarian

util. 11-21
offset attribute asm.12
offset operator asm.28
open 1lib.34-36
open astream 1ib.17-19
opening files libov86.5
opening files and devices

libov.6,9
operand expressions asm.23
operands and expressions

asm. 19
operands to jump and call

asm.21
operator precedence asm.30
option codes unitools.80
ord util.27
order of evaluation

style.16
order of library modules

In.5-6
outport lib86.46
outportb 11b86.46
overlay code area_tech.5
overlay data area tech.5
overlay usage options

In. 10,16
overlays tech.4-5,11-24
ovloader_ tech.15-16,19-23

+c and +d options tech.19

P
paging unitools.48
palette 11b86.16
passing comma-containing

arguments to macros asm.50
passing data to functions

style. 18
passing pointers between

functions style.18
pez unitools.82
peekb 11b86.43
peekw 1ib86.43
pend macro. tech.35
perform bdos call with a far

pointer 1ib86.10

- index.9 -

Index

perror lib86.44
point 1lib86.45
pointer cc.41
pointers cc.41,44-48
pokeb 1ib86.43
pokew 1ib86.43
port 11b86.46
pow 1ib.12-13
power 1ib.12-13
pre-opened devices

libov.4; libov86.3
preprocessor statements

cc.31-37

pret macro. tech.36
printf 1ib.37-40

procdef macro tech.34-36
proclen symbol asm.68
prof util.28

profiler report program
util.28

profiling functions
11ib86.39-41

program areas tech.5
program maintenance utility

unitools. 16-33
program organization

tech.4-14

ptr operator asm.25-26
ptrtoabs cc.48
ptrtoabs 11b86.33
push a character back into

input stream 1ib.65
put a character string to a

Stream 1lib.43
putc 1ib.41-42
putchar lib.41-42
puterr lib.41-42
puts 1ib.43
putw 1lib.41-42

Q
qsort 1lib.44-45
quit db.35,41; sdb.32,39

R
ran 11b.46

Aztec C86

random i/o

libov.6,10; libov86.4
random number generator

11b.46
range db.15-16; sdb.12
range specifiers asm.63,70
raw mode _libov.20-21
re-executing macros
‘unitools.65

read 1ib.47
readable code _ style.5
reading files unitools.74
realloc 1lib.31-32
rebuilding a library

util 20
register commands

db.36; sdb.33,39
register usage tech. 27, 33
registers asm.19
relational operators asm.24
relocatable object files

In.3
rename a disk file 1lib.48
repalcing library modules

util 19
repeat last substitution(&)

unitools.69
reposition a stream

lib.23-24
retnull macro tech.38
retptrm macro tech.37
rindex 1ib.62-63
rmdir 11b86.18
romable code _tech.41-46
root tech.20
rstusr 11b86.59
rsvstk lib86.11-12

run-time errors style.12

S

Sbrk ib86.11-12
scanf 1ib.49-55
screen functions

11b86.47-50
scrolling

unitools.40-41,44,48
search order of #include

- index.10 -

Aztec C86

files cc.10
seg operator asm.28
segment address specification

options 1n.9,14-16
segment override operator

asm.25
segment register asm.22
segmentation asm.13
segread 1i1b86.51
sequential i/o

libov.6,10; libov86.4
set asp ib86.14
setbuf 1ib.56
setjmp 1lib.57-58
setmem 1ib.33
setting options for a file

unitools.7 1
setusr 1i1b86.59
sgtty fields

libov.19; libov86.7
shared data style.19
shift operators asm.24
shifting text unitools.60
Short operator asm.27
signal 11b86.52-53
silence library option

util.20
sin 1ib.59-60
single step

db.36,41; sdb.33,39
sinh 1ib.61
size operator asm.29
small code _ cc.16
small data_cc.17;

tech. 6-7,9-13
sort an array 1ib.44-45
sort object module list

util.27
source dearchiver util.4
special keys unitools.47
specifiers asm.62-62,69
sprintf 1ib.37-40
sqrt lib.12-13
square root lib.12-13
squeeze an object library

util.29
sqz_ util.29
sscanf 1ib.49-55

Index

stack above heap
tech.6,10,11

stack and heap areas. tech.6
stack below heap

tech.6,9, 10
standard i/o libov.9-13
standard i/o functions

libov. 12-13
starting and stopping z

unitools.37,70-72
starting db db.11
starting sdb sdb.11
startup routine termination

codes. tech.14
stat 1ib86.13
strcat 1ib.62-63
strcmp 1ib.62-63
strcpy 1ib.62-63
stream status inquiries

lib.15
string merging cc.39
string operations 1ib.62-63
string searching

unitools.41-42,49
string table cc.25
Strlen 1ib.62-63
strncat 1i1b.62-63
strncmp 1ib.62-63
strncpy 1ib.62-63
structure assign cc.37
structured programming

Style.7
substitute command

unitools.68-69
supported language features

cc.31
swapmem 1ib.33
symbol names asm.11
symbols asm.11-12
symbols related to program

organization tech.13-14
syntax asm.10-11
sys_errlist 11b86.44
sys _nerr 1i1b86.44
sysint lib86.25
system 11b86.54

system error messages
11b86.44

- index.11 -

Index

system-dependent features
unitools.82

system-independent programs
libov.18

T

tags unitools.76-77
tan 11b.59-60
tanh 1lib.61
term db.12-13;

util.29

terminal emulation util.29
termination codes tech.14
text editor unitools.34-89
this operator asm.27
time 11b86.55-56
tmpfile 11b86.57
tmpnam 1ib86.58
tolower 1ib.64
top-down programming

Style.8-9
toupper 11b.64
trace mode db.9,19,40
trace mode _ sdb.9,15,38
trigonometric functions:

lib.59-60
type operator asm.29

U
unassemble db.37,41;

sdb.34,39
unbuffered and standard i/o

calls libov.7
unbuffered i/o libov.14-16
undoing changes _ unitools.60
ungetc 11b.65
uninitialized data area

tech.5
uninitialized variables

Style.15
unlink 1ib.66
using the linker In.7
utime 11b86.29-30

Vv

Aztec C86

verbose library option
util. 20

verify program assertion
11b86.8

void data type cc.38

W

word movements unitools.53
write 1lib.67
writing files

unitools. 73-74
writing machine independent

code cc.42

Y

yank unitools.58-59,88

Z

Z unitools.34-89
accessing files

unitools. 73-78
adjusting the screen

unitools.55
autoindent unitools.61
colon commands

unitools.89
command summary

unitools.85-89
ctags utility

unitools.77-78
deleting line

unitools.57
deleting text

unitools.42-43,56-57
disabling options

unitools.80
displaying unprintable

characters unitools.46
duplicating blocks of text

unitools. 58-59
editing an existing file

unitools.40-45
editing another file

unitools.74-76
enabling options

- index.12 -

Aztec C86

unitools.80
ex-like commands

unitools.67-69
addresses in ex commands

unitools.67-68
substitute command

unitools.68-69
repeat last substi-

tution(&) unitools.69
executing system commands

unitools.79
exiting z unitools.39
extended pattern matching

unitools.50-51,80
file lists

unitools.70,76
filenames unitools.73
function key macros

unitools.83-84
go unitools.41,83
insert commands

unitools.38,43-44,61
insert mode

unitools.38,61
inserting text

unitools.44,61
lines longer than screen

size unitools.46
local moves

unitools.52-55
macros unitools.63-66,88
immediate macro definition

unitools.63-64
indirect macro definition

unitools.64-65
re-executing macros

unitools.65
marking unitools.54,86
modes of z

unitools.37-38
moves within c programs

unitools.53
moving around on the

screen unitools.52
moving blocks

unitools.57
moving text between files

unitools.60

Index

moving within a line
unitools.52-53

named buffers
unitools.59

option codes unitools.80
paging unitools.48
pez unitools.82
reading files

unitools.74
scrolling

unitools.40-41,44,48
setting options for a file

unitools.7 1
shifting text

unitools.60
special keys unitools.47
starting and stopping z

unitools.37,70-72
string searching

unitools.41-42,49
system-dependent features

unitools.82
tags unitools.76-77
undoing changes

unitools.60
word movements

unitools.53
writing files

unitools. 73-74
yank unitools.58-59,88
Zvs vi unitools.81

- index.13 -

Index Aztec C86

- index.14 -

	00_001
	00_002
	00_003
	00_004
	00_005
	00_006
	00_007
	00_008
	00_009
	00_010
	00_011
	00_012
	00toc_001
	00toc_002
	00toc_003
	00toc_004
	00toc_005
	00toc_006
	00toc_007
	00toc_008
	00toc_009
	00toc_010
	00toc_011
	00toc_012
	00toc_013
	00toc_014
	00toc_015
	00toc_016
	00toc_017
	00toc_018
	01_ov.01
	01_ov.02
	01_ov.03
	01_ov.04
	01_ov.05
	01_ov.06
	02_tut.01
	02_tut.02
	02_tut.03
	02_tut.04
	02_tut.05
	02_tut.06
	02_tut.07
	02_tut.08
	02_tut.09
	02_tut.10
	03_cc.01
	03_cc.02
	03_cc.03
	03_cc.04
	03_cc.05
	03_cc.06
	03_cc.07
	03_cc.08
	03_cc.09
	03_cc.10
	03_cc.11
	03_cc.12
	03_cc.13
	03_cc.14
	03_cc.15
	03_cc.16
	03_cc.17
	03_cc.18
	03_cc.19
	03_cc.20
	03_cc.21
	03_cc.22
	03_cc.23
	03_cc.24
	03_cc.25
	03_cc.26
	03_cc.27
	03_cc.28
	03_cc.29
	03_cc.30
	03_cc.31
	03_cc.32
	03_cc.33
	03_cc.34
	03_cc.35
	03_cc.36
	03_cc.37
	03_cc.38
	03_cc.39
	03_cc.40
	03_cc.41
	03_cc.42
	03_cc.43
	03_cc.44
	03_cc.45
	03_cc.46
	03_cc.47
	03_cc.48
	03_cc.49
	03_cc.50
	03_cc.51
	03_cc.52
	03_cc.53
	03_cc.54
	03_cc.55
	03_cc.56
	03_cc.57
	03_cc.58
	04_as.01
	04_as.02
	04_as.03
	04_as.04
	04_as.05
	04_as.06
	04_as.07
	04_as.08
	04_as.09
	04_as.10
	04_as.11
	04_as.12
	04_as.13
	04_as.14
	04_as.15
	04_as.16
	04_as.17
	04_as.18
	04_as.19
	04_as.20
	04_as.21
	04_as.22
	04_as.23
	04_as.24
	04_as.25
	04_as.26
	04_as.27
	04_as.28
	04_as.29
	04_as.30
	04_as.31
	04_as.32
	04_as.33
	04_as.34
	04_as.35
	04_as.36
	04_as.37
	04_as.38
	04_as.39
	04_as.40
	04_as.41
	04_as.42
	04_as.43
	04_as.44
	04_as.45
	04_as.46
	04_as.47
	04_as.48
	04_as.49
	04_as.50
	04_as.51
	04_as.52
	04_as.53
	04_as.54
	04_as.55
	04_as.56
	04_as.57
	04_as.58
	04_as.59
	04_as.60
	04_as.61
	04_as.62
	04_as.63
	04_as.64
	04_as.65
	04_as.66
	04_as.67
	04_as.68
	04_as.69
	04_as.70
	04_as.71
	04_as.72
	05_ln.01
	05_ln.02
	05_ln.03
	05_ln.04
	05_ln.05
	05_ln.06
	05_ln.07
	05_ln.08
	05_ln.09
	05_ln.10
	05_ln.11
	05_ln.12
	05_ln.13
	05_ln.14
	05_ln.15
	05_ln.16
	05_ln.17
	05_ln.18
	05_ln.19
	05_ln.20
	05_ln.21
	05_ln.22
	05_ln.23
	05_ln.24
	06_util.01
	06_util.02
	06_util.03
	06_util.04
	06_util.05
	06_util.06
	06_util.07
	06_util.08
	06_util.09
	06_util.10
	06_util.11
	06_util.12
	06_util.13
	06_util.14
	06_util.15
	06_util.16
	06_util.17
	06_util.18
	06_util.19
	06_util.20
	06_util.21
	06_util.22
	06_util.23
	06_util.24
	06_util.25
	06_util.26
	06_util.27
	06_util.28
	06_util.29
	06_util.30
	07_libov86.01
	07_libov86.02
	07_libov86.03
	07_libov86.04
	07_libov86.05
	07_libov86.06
	07_libov86.07
	07_libov86.08
	08_lib86.01
	08_lib86.02
	08_lib86.03
	08_lib86.04
	08_lib86.05
	08_lib86.06
	08_lib86.07
	08_lib86.08
	08_lib86.09
	08_lib86.10
	08_lib86.11
	08_lib86.12
	08_lib86.13
	08_lib86.14
	08_lib86.15
	08_lib86.16
	08_lib86.17
	08_lib86.18
	08_lib86.19
	08_lib86.20
	08_lib86.21
	08_lib86.22
	08_lib86.23
	08_lib86.24
	08_lib86.25
	08_lib86.26
	08_lib86.27
	08_lib86.28
	08_lib86.29
	08_lib86.30
	08_lib86.31
	08_lib86.32
	08_lib86.33
	08_lib86.34
	08_lib86.35
	08_lib86.36
	08_lib86.37
	08_lib86.38
	08_lib86.39
	08_lib86.40
	08_lib86.41
	08_lib86.42
	08_lib86.43
	08_lib86.44
	08_lib86.45
	08_lib86.46
	08_lib86.47
	08_lib86.48
	08_lib86.49
	08_lib86.50
	08_lib86.51
	08_lib86.52
	08_lib86.53
	08_lib86.54
	08_lib86.55
	08_lib86.56
	08_lib86.57
	08_lib86.58
	08_lib86.59
	08_lib86.60
	08_lib86.61
	08_lib86.62
	08_lib86.63
	08_lib86.64
	08_lib86.65
	08_lib86.66
	08_lib86.69
	08_lib86.70
	09_tech.01
	09_tech.02
	09_tech.03
	09_tech.04
	09_tech.05
	09_tech.06
	09_tech.07
	09_tech.08
	09_tech.09
	09_tech.10
	09_tech.11
	09_tech.12
	09_tech.13
	09_tech.14
	09_tech.15
	09_tech.16
	09_tech.17
	09_tech.18
	09_tech.19
	09_tech.20
	09_tech.21
	09_tech.22
	09_tech.23
	09_tech.24
	09_tech.25
	09_tech.26
	09_tech.27
	09_tech.28
	09_tech.29
	09_tech.31
	09_tech.32
	09_tech.33
	09_tech.34
	09_tech.35
	09_tech.36
	09_tech.37
	09_tech.38
	09_tech.39
	09_tech.40
	09_tech.41
	09_tech.42
	09_tech.43
	09_tech.44
	09_tech.45
	09_tech.46
	10_unitools.01
	10_unitools.02
	10_unitools.03
	10_unitools.04
	10_unitools.05
	10_unitools.06
	10_unitools.07
	10_unitools.08
	10_unitools.09
	10_unitools.10
	10_unitools.11
	10_unitools.12
	10_unitools.13
	10_unitools.14
	10_unitools.15
	10_unitools.16
	10_unitools.17
	10_unitools.18
	10_unitools.19
	10_unitools.20
	10_unitools.21
	10_unitools.22
	10_unitools.23
	10_unitools.24
	10_unitools.25
	10_unitools.26
	10_unitools.27
	10_unitools.28
	10_unitools.29
	10_unitools.30
	10_unitools.31
	10_unitools.32
	10_unitools.33
	10_unitools.34
	10_unitools.35
	10_unitools.36
	10_unitools.37
	10_unitools.38
	10_unitools.39
	10_unitools.40
	10_unitools.41
	10_unitools.42
	10_unitools.43
	10_unitools.44
	10_unitools.45
	10_unitools.46
	10_unitools.47
	10_unitools.48
	10_unitools.49
	10_unitools.50
	10_unitools.51
	10_unitools.52
	10_unitools.53
	10_unitools.54
	10_unitools.55
	10_unitools.56
	10_unitools.57
	10_unitools.58
	10_unitools.59
	10_unitools.60
	10_unitools.61
	10_unitools.62
	10_unitools.63
	10_unitools.64
	10_unitools.65
	10_unitools.66
	10_unitools.67
	10_unitools.68
	10_unitools.69
	10_unitools.70
	10_unitools.71
	10_unitools.72
	10_unitools.73
	10_unitools.74
	10_unitools.75
	10_unitools.76
	10_unitools.77
	10_unitools.78
	10_unitools.79
	10_unitools.80
	10_unitools.81
	10_unitools.82
	10_unitools.83
	10_unitools.84
	10_unitools.85
	10_unitools.86
	10_unitools.87
	10_unitools.88
	10_unitools.89
	10_unitools.90
	10_unitools.91
	10_unitools.92
	10_unitools.93
	10_unitools.94
	11_sdb.01
	11_sdb.02
	11_sdb.03
	11_sdb.04
	11_sdb.05
	11_sdb.06
	11_sdb.07
	11_sdb.08
	11_sdb.09
	11_sdb.10
	11_sdb.11
	11_sdb.12
	11_sdb.13
	11_sdb.14
	11_sdb.15
	11_sdb.16
	11_sdb.17
	11_sdb.18
	11_sdb.19
	11_sdb.20
	11_sdb.21
	11_sdb.22
	11_sdb.23
	11_sdb.24
	11_sdb.25
	11_sdb.26
	11_sdb.27
	11_sdb.28
	11_sdb.29
	11_sdb.30
	11_sdb.31
	11_sdb.32
	11_sdb.33
	11_sdb.34
	11_sdb.35
	11_sdb.36
	11_sdb.37
	11_sdb.38
	11_sdb.39
	11_sdb.40
	11_sdb.41
	11_sdb.42
	11_sdb.43
	11_sdb.44
	11_sdb.45
	11_sdb.46
	12_db.01
	12_db.02
	12_db.03
	12_db.04
	12_db.05
	12_db.06
	12_db.07
	12_db.08
	12_db.09
	12_db.10
	12_db.11
	12_db.12
	12_db.13
	12_db.14
	12_db.15
	12_db.16
	12_db.17
	12_db.18
	12_db.19
	12_db.20
	12_db.21
	12_db.22
	12_db.23
	12_db.24
	12_db.25
	12_db.26
	12_db.27
	12_db.28
	12_db.29
	12_db.30
	12_db.31
	12_db.32
	12_db.33
	12_db.34
	12_db.35
	12_db.36
	12_db.37
	12_db.38
	12_db.39
	12_db.40
	12_db.41
	12_db.42
	13_libov.01
	13_libov.02
	13_libov.03
	13_libov.04
	13_libov.05
	13_libov.06
	13_libov.07
	13_libov.08
	13_libov.09
	13_libov.10
	13_libov.11
	13_libov.12
	13_libov.13
	13_libov.14
	13_libov.15
	13_libov.16
	13_libov.17
	13_libov.18
	13_libov.19
	13_libov.20
	13_libov.21
	13_libov.22
	13_libov.23
	13_libov.24
	14_lib.01
	14_lib.02
	14_lib.03
	14_lib.04
	14_lib.05
	14_lib.06
	14_lib.07
	14_lib.08
	14_lib.09
	14_lib.10
	14_lib.11
	14_lib.12
	14_lib.13
	14_lib.14
	14_lib.15
	14_lib.16
	14_lib.17
	14_lib.18
	14_lib.19
	14_lib.20
	14_lib.21
	14_lib.22
	14_lib.23
	14_lib.24
	14_lib.25
	14_lib.26
	14_lib.27
	14_lib.28
	14_lib.29
	14_lib.30
	14_lib.31
	14_lib.32
	14_lib.33
	14_lib.34
	14_lib.35
	14_lib.36
	14_lib.37
	14_lib.38
	14_lib.39
	14_lib.40
	14_lib.41
	14_lib.42
	14_lib.43
	14_lib.44
	14_lib.45
	14_lib.46
	14_lib.47
	14_lib.48
	14_lib.49
	14_lib.50
	14_lib.51
	14_lib.52
	14_lib.53
	14_lib.54
	14_lib.55
	14_lib.56
	14_lib.57
	14_lib.58
	14_lib.59
	14_lib.60
	14_lib.61
	14_lib.62
	14_lib.63
	14_lib.64
	14_lib.65
	14_lib.66
	14_lib.67
	14_lib.68
	15_style.01
	15_style.02
	15_style.03
	15_style.04
	15_style.05
	15_style.06
	15_style.07
	15_style.08
	15_style.09
	15_style.10
	15_style.11
	15_style.12
	15_style.13
	15_style.14
	15_style.15
	15_style.16
	15_style.17
	15_style.18
	15_style.19
	15_style.20
	16_err.01
	16_err.02
	16_err.03
	16_err.04
	16_err.05
	16_err.06
	16_err.07
	16_err.08
	16_err.09
	16_err.10
	16_err.11
	16_err.12
	16_err.13
	16_err.14
	16_err.15
	16_err.16
	16_err.17
	16_err.18
	16_err.19
	16_err.20
	16_err.21
	16_err.22
	16_err.23
	16_err.24
	16_err.25
	16_err.26
	16_err.27
	16_err.28
	16_err.29
	16_err.30
	16_err.31
	16_err.32
	16_err.33
	16_err.34
	16_err.35
	16_err.36
	17_index.01
	17_index.02
	17_index.03
	17_index.04
	17_index.05
	17_index.06
	17_index.07
	17_index.08
	17_index.09
	17_index.10
	17_index.11
	17_index.12
	17_index.13
	17_index.14

