
_ Aztec C68k/ROM

68000 Family

ROM Development Software

for Macintosh Host System

Version 5.2
September 1992

Copyright © 1989, 1990, 1991, 1992 by Manx Software Systems, Inc.
All Rights Reserved

Worldwide

DISTRIBUTED BY:

Manx Software Systems
P.O. Box 55

Shrewsbury, NJ 07702
(908) 542-2121

USE RESTRICTIONS

You are permitted to install and use this product on a single computer. Multiple CPU systems re-

quire supplementary licenses.

Before using any Aztec C products, the License Registration included with this product must be

signed and mailed to:

Manx Software Systems
P.O. Box 55
Shrewsbury, NJ 07702

COPYRIGHT
This software package and document are copyrighted ©1989, 1990, 1991, 1992 by Manx Soft-

ware Systems. All rights reserved worldwide.

No part of this publication may be reproduced, transmitted, transcribed, stored in any retrieval

system, or translated into any language without prior written permission of Manx Software Sys-

tems.

DISCLAIMER
Manx Software Systems makes no representations or warranties with respect to this product

and specifically disclaims any implied warranties of merchantability or fitness for any particular

purpose. Manx Software Systems reserves the right to modify the programs and revise the con-

tents of the manual without obligation to notify any person of such revision or changes.

TRADEMARKS

Aztec C, Manx AS, Manx LN, Manx Host, Z, and SDB are trademarks of Manx Software Sys-

tems. CP/M-86 and CP/M-80 are trademarks of Digital Research. MS-DOS is a trademark of
Microsoft. PC-DOS is a trademark of IBM. UNIX is a trademark of AT&T Bell Laboratories.
Macintosh, Apple, and Apple II are trademarks of Apple Computer. Atari is a trademark of

Atari Computers. Amiga is a trademark of Commodore-Amiga.

Manual Revision History
September 1992 Third Edition
November 1987 Second Edition
January 1987 First Edition

Table of Contents

Chapter 1 - Overview

Components 0... cece cece cece ccc e ec ee een ceeeteeeeueeenceccccccce 1-3
Documentation 0. ccc cece cee cece cc ee eee e tenet en ceeeccce cel. 1-4
Wide Range of Choices 0. ccc ccecccceee scenes seuueceeecccccccc. 1-5
How to Proceed cece cece cc ccee cc ceeececenetseneteeeccccc 1-6 About This User Guide........ 0... cc ee c cece ccc nec c ence cee cececcce ce. 1-7

Chapter 2 - MPW Shell

MPW Overview... 2... 6. cece cece cece cece cece ee ence teeeeunseeeeeeecc cece. 2-2
Additional MPW Books............ 0. 0c ccc e cee cceeeeceucenceccccccc. 2-2
Where To Go From Here0.ccecceecceeceecceucceccccc cc, 2-2 Installing Aztec C68k ROM...... 00... cece ceeeeeeeeccceeee 2-4
Files Supplied... 2.0... .. 0. cece cece ccc c cece cane seen teen seenccccccc, 2-4
Verification 6.0... .. 6. eee cece cece cence anes eee teen cece ccc ll 2-6
If You Have a Problem............ 0... cece cece ec ceeecceecccecccccc iu, 2-6 The Manx Project Manager 0.00... ccc ce cece cece cece eeeeee ee 2-8 Two Managers in One cece cece cece scenes eneceeeccec cc .. 2-8
What the Project Manager Manages ccc cece cece cee cceeccees 2-8
About the Program Manager 0. .cceeccceecccceccccc ecco. 2-9
Using the Manx Project Managercceccceeccceecc een... 2-10 Program Types and Options00.. 0. ccc cee cceccec cece... 2-11 The MPW Worksheet............. 0... cccccec cece ceeeeeeeceeeeecccc cc 2-13 Executing Worksheet Commandscceeeeeececeece eee 2-14
Simple Commands cc eeeecccccceneeecceeeeecccc cco. 2-14

The Files Command 0.2.0... 00.0 c eee ce cece ccecce cece. 2-14
The Directory Command...0.. 00. ce cece cee cece eee. 2-15
The Volumes Command..........00. 000 e cece cee cceec cee. 2-16
The NewFolder Command00..ccccceccee eee. 2-16
The Delete Command.00 0. cece cee cece cece eee, 2-16
The Rename Command 0... cece cceeccee cece... 2-17
The Move Command0. 0 0c eee ceeececee cece ccc, 2-17
The Duplicate Command.........0... 0 0c c cece cece cece, 2-17
The Cancel Command 0.0000. ceeeeecccceeee ccc. 2-17 Of Names, Spaces and Command Argumentscccccecceeee 2-18 MPW Path Names cc ccececccceeeeneeeeeccc cl 2-18 Redirecting Output0.. cece cceceeeeeeceeeeee ceo 2-19 Special MPW Charactersccceccceecseeeecececcc J. 2-19 MPW Help Facilities 00... cceccecceseeceeeeee eee e cece 2 - 20 Compiling from the Command Line00000-0.......... 2-21 Customization - Ours and Yours00..0ccecceeeeeee sol 2-22 MPW Tools 2.0.0... e cece eee cece ees eee eee eeat ee tnne cee 2-24

OPtiONS 0... e ee een e eee es 2 - 27
Tags In Detail 0.0... 0... ccc cee eee eee 2-29
Examples... 0.0.00 c eee eee ees 2-29
Limitations 0... ccc ee eee teen en eee eee nen nees 2 - 30

Find tag 20... . ccc ccc ccc cece cece cece e eee e eee eee e nese eee eeeeeeeeneeaes 2-31

The Tags Stack 0... ccc eee eee ees 2-31
The Tags Database. ... 2.0... cece ect ee eens 2-31
OPtiOns . 0... ee neers 2-32
Examples... 00.00. ccc eee eee eee tenn n ene eees 2-33

Make.......... eect weet eee tee eee eee eee eee etter eee eee reas enees 2 - 34

109, 0 "<a 2-35

POPTAag.... ccc cece ccc e cece eee e ence ener eee e eee e ener ees eeee eres seeenaes 2 - 36

Search 2.0... ccc ccc cece ee ee ee eee eee eee ee ee ee ee ee eee ee ee eee senses 2 - 37

Chapter 3 - ROM Tutorial

Customizing the Libraries 0... cee cee cece cece rece ence ee eeereceees 3-2

Creating a Program........ ccc ce cece cee eect een ee eee renee serene eres eeseres 3-3
Step 0: Create the Source Program ccs cece eee cece eee eee enee 3-3
Steps 1 and 2: Compile and Assemble............ se eee eeeee sec eeeeees 3-3
Step 3:Link 10... ccc cc cc cece eee ee ener eee e eee eee cece eeneees 3-3

Positioning Code, Data, and Stack........ 6... cece eee eee eee eee ee 3-4

The +d, +u, +c, +8, & +j Options ... 0.0... eee eee 3-4
Naming the Output File: the -o Option-..- esse eee 3-4
The Input Object Module Files... 0... 6... eee eee cece eee 3-4
Libraries and the -] Option cece eee c cece cece cence 3-4
Putting startup Code First. 0... cece cee eens 3-5

Step 4: Format Conversion cc cece cece cece rere eee e eee eeeaees 3-5
Special Features of Aztec C68k/ROM ccc cece cece eee eee een e eee 3-7

Memory Models............ cee cece cree cece cee eeeeen seer eeseesesens 3-7
0 ib) V1 <p 3-7
LiDrarieS..... eee ee cee ee eee eee e ee eee tent ee eee eee ee renee 3-7
Register Usage ccc cece cece cee cece recente enter eee eeeeeeees 3-8

Where To Go From Here... ccc cece ce cre cece rece e tence eee eeenees 3-9

Chapter 4 - Compiler

Operating Instructions. cece cece cece cece cece ee ee cess eeeeeeeesees 4-2
The Input File... ... ccc ccc ce ccc ee ce reece ener ete e ee ee eee eeees 4-2
Source Filename Extensions 0. cece cece cece cere ee ececeeecees 4-2
The Output Files ccc ccc cece eee eee eee e center e ee eeeeeeees 4-3

Creating An Object Code File..... 2.0... cece cc ee cece eee eens 4-3
Creating Just An Assembly Language File...................0005. 4-4

#include Files ccc cece cece cece ee eee e eee e eee e eee eeeeeeee 4-4
Searching For #include Files 0... cece cee ce eee 4-4

The -i Option... 6... cece eee teen eet e ee ees 4-4

The INCL68 Environment Variable 4-5
The Search Order For Include Files0. 000005. 4-5

Precompiled header Files.......... 0.0.0.0 0c ccc ce cece eee c cece. 4-5
Memory Models.............. cc cece c ccc cnccnceecnnceceuccvcecccccce. 4-6

Large Data Versus Small Data.......... 000.0 c ccc eceeeececeeees 4-6
Large Code Versus Small Code 0... c cece ce cece ecececee. 4-7
Selecting A Module’s Memory Model.............0cccecececceeee 4-§
Multi-Module Programs. 0.0. ccc cece cece ceceevueue. 4-8

Compiler Options 0... cece cece cece cece nc nceceecutveeueeceececece, 4-9
Option Format 0... cece cece cece ce ceeceecestesevececceccecs 4-9
CCOPTS Environment Variable.............. ccc ccc cccceccccccccecuce. 4-9
Option Summiary.......... ccc cc cece cence eeceescvuceucccccens 4-10
Option Descriptions 0... cece cece ec cecccecccuccccccecce 4-13

Option -3.. 1. ccc ccc cece eee eee e tent eeeneneg 4-3
Option 5. ccc cece cece eet ene nent been eee, 4-13
OPHION -A. 6 cence cece een e renee ne een eee 4-14
Option -bd.... 0... ccc eee eee eee ne be eee een. 4-14
Option -c2.... 0... cece cece cece tence eee b cece eee, 4-15
Option -d.... cece cece eee cee eee ence ce, 4-15
Option -fM .. 0... cece cece eect ene e teen eben nee, 4-15
Option -f8 0.0... ccc cece cece cnet ener eb tn eens, 4-16
Option -K.. ccc ccc cece nent beeen eben eee ce, 4-16
Option -MD... 0... cece cence cnet tn te even eee 4-16
Option -mMM ... 6. cece cece ene ene b eee en eee, 4-16
Option -Mr .. 6. ccc cece cnet e nee eee en eee e eee. 4-17
Option -pa..... cece cence en ene ete e nee e eee, 4-17
Option -pb. 0... cece cece eee ene b renee cece. 4-17
Option -pd 0... cece cece cece ence eben eee cece. 4-17
Option -pe. 0... eee eect e eee c een e nee e eee. 4-17
Options -pl and -ps long0 00.0 ccc cece e cece cece cee. 4-18
Option -pt.. 0... cece cece e reece beeen ence ce. 4-18
Option -pU 0... cece cece cece teen tneeeeeecee, 4-18
Option -qa.... 6. cece cece cence eee ce eee eee coe. 4-19
Option -qq.. 6 eee cece eee cence nent eet b beeen eee ce. 4-19
Option -qv.. 6... ec cence cnet e tebe ence eee ce, 4-19
Option -Sf 6... cece ccc cnet eee c bene eee ce. 4-19
Option SN... ccc e eee e ence tesa veneneee cee. 4-20
Option “SP... . ec ecee cee cece cence tes ebeneen eee. 4 - 20
Option -Sr oo... cece cece cence etree cence ee ee eee. 4-20
Option -SS 6... cece cece cece eee e tebe beeen cee. 4-20
Option -sU.... cece cece cece cent ete seen cn eeec cee, 4 - 20
Option -wWa . 1... cece cece cece eet cence cece ecu. 4-21
Option -wd.... occ cece cece eee eben cence cece. 4-21
Option -wf... 0... cece cece cee n eee c eben cece eel oe. 4-21
Option -wl... 0... eee cece cece cence ee ee en cenceceee. 4-21
Option -Wn ... 6. ce cece cece teen eben eee eeee cece. 4-21
Option -W0 0... cece ccc cece cet n ence e cece. 4-22
Option -WP oo... eee cece cece eee tence eee ree 4-22

Option -WU ee ene teen nents 4-22
Option -WW 2... cc ce eee ene tenes 4-23
Option -yd. ww. ee ne eee eens 4-23
Option -yfo oo eee eee teen eeeeeee 4-23
OPtion -yrow oc ce cee eee eee een e es 4-23
OPHiONn -YS. 0... ce eee tee teen eens 4-23
Option -yt ..cc eee ee tenet eens 4-24
OPHION -YU cece eee eee ete e eee ees 4-24

Programming Considerations 0c cee cece cece eee e eee e eee ee eee eeces 4-25
Supported Language Features cece cece cece cece ere cee eeees 4-25
Data Formats. 0. ccc cece ccc ec cee cece cece eer e reece eee eeeeneeees 4-25

Char. cc cece eee ee eee eee eee eee eee e een eees 4-25
POUNET eee eee eee ene n eee tenes 4-25
SY a 0S 4 - 26
Co) 6 2 4-26
0 4-26
float, double, and long double 0... 0. cee cece eee eee 4-26

Structures 2... cece eee eee eee teen eens 4-26
Bitfields . 0... cece eee eee eee nee eee ees 4-27
Enum Constants... 0.0.0... ccc eee eee eee eee eee encase 4-27
Multibyte Characters and Wide Characters..................000. 4-27
2) 4 4-25

ptrdiff_t. cc. ee ee eee eee eens 4-28
Symbol Names... ccc cece cee cee cee ee eee eee ee eee eee eset eens 4-28
Predefined Symbols ccc cece ec cece cece ee ee cece eee ee eecees 4 - 28

Register Variables 0... ccc ccc ec ee cee ee ee eens 4-28
Register Function Calls... 0... 0... cee cece ce eee eens 4-29
Direct Functions 0.0.0.0... cece cee ee cece eee eee e eee nes 4-29
In-line Assembly Code 0. c cece cece eee eee teens 4 - 30

Pascal FUNnctions........ 0... cee cee cee eee eee eee eee teen eee eee e eens 4-31
Pascal Character Strings. 0... 0c ccc eee eens 4-31

Writing Machine-independent Code cece cee c esc cess eees 4-31
Compatibility Between Aztec Products.................... eeeee 4 - 32
Sign Extensions For Character Variables 2-00 eee 4-32
The MPU... Symbols 00. ee ccc eee eens 4 - 32

Error Handling. 0.0.0... ccc cece ccc cee cee eee ee eee e eee eee eee eeeeeeeecs 4 - 34

Chapter 5 - Assembler

Operating Imstructions. ccc ccc cece ccc e cece cece ee eee eeeeceeeeeses 5-2
Input File... 0... ccc cece eee terete eee e eee e ee eeeeeeeeeees 5-2
Object Code File ccc ccc ccc cece cece cece ence cece eeeeeeeeeees 5-2
Listing File. 0... ccc ccc ccc cc cece cece reat eee ee eee eeseteeeeees 5-2
Optimizations... cc cece cece cece cece ence eee eee tees eeeeeeeceeecs 5-3
Searching For Include Files.............. cc cece cece cece cece cc eeeeeeees 5-3

0 8 C0) oN 5-3
INCL68 Environment Variable

Include Search Order ccc cece cece cece cece ueeeeeeuuas 5-4

Programmer Information cc cece cece cece cecncecetucueuceeeccce. 5-6
COMMENES 6.0... cece eee cece cece cen eeneteneeeneenccecce. 5 - 6
Executable Instructions 00. ccc cece cece cece cecceccccccc ee. 5-6

Labels... 0... ccc cece cece ene eee e beeen e cece. 5-6
Temporary Labels............0.00.0.0 0c cece cece cece ee eee. 5-6

Operations. 0... ccc ccc cence ene e ne be en eneeees 5-6
Operands. ... 0... ccc cece n ence ene n tbe b eben eee, 5-7

Symbols 6. cece cece een cent eee enee ees 5-7
Constants ccc cece eee c cece ee ec eee cece. 5-7
Registers... . 0... cece cece ence cee eeeeeneneeeey 5-7
Operand Expressions.0. ccc ec eceeeeeeeecees 5-8

Instruction Comments 00 cece cee ccc eeceeeececee cece. 5-8
Directives... 0... cece cece cece eet e cece ene nentnseeveeeenccccceee, 5-9

0) EN 0) <a 5-9
clist and noclist 0.0.0... ccc cece cece cece ne cee ec oo, 5-9
NO) SA 5-9
cc 5- 10
CS 5- 10
dc - Define Constant........00 0000 c cece ccc cece cece ce cece coe. 5-10
dcb - Define Constant Block 20.00.0000. ccc cece ec cccce cece. 5-10
ds - Define Storage... 0... cece cece cece cece cece cee, 5-11
OS 5-11
Soe

5-11
A 5-11
A 5-11
A

5-11
fail... ccc cece cece ence beet nee ce eee ecco. 5-12
far COde 2... ccc ccc cence cece eee e nen ee eee ecco. 5-12
CU ale)

5-12
Peg cece cece crete bbb cece e ee, 5-12
Ifc and UNC 6. eee cece eee eben cece cece. 5-12
ifd and ifnd.... 6c ccc e cece cece ec, 5-12
if, else, and endc 0... cece e cece c cece cece. 5-13
Near COde... 1. cece cece cba cece le. 5-13
Near data... ccc eee n ence eee ee 5-13
Other ifs 0... cece eee cece eben ence cece cle. 5-13
Include... 6... cece cece eect e nee e eee e ee 5-14
global and bss 0. cece cece cece cece cece ecco. 5-14
list and nolist 0... cece cece cece cece eee e cc, 5-14
miist and nomlist......... 0.0... cece cece cece ec ececce cee c oe. 5-14
MACHINE... 6... cee cence eee cece cece. 5-14
macro and endm 0... cece cece eee cece ee ce ee cece cl. 5-15
MCO8851. cece cece cece eee eben cece e ee 5-15
MNCO8881. 1. cece eee ene e nee e nee c eee e 5-15
MEXIt 6 ccc cece ee tebe eee cree. 5-15
Public... cece cence cence cere. 5- 16
oS

5 - 16
tol C0)

5-16

oo 5-16

xdef and xref... ce ce ee ec eee ee eee tenet eee e nee 5-17

Macro Calls... . ccc cc ccc ccc cc ce ec cere eee eee etter ee een ee eees 5-17

Chapter 6 - Linker

Introduction to Linking........... ccc cece eee cece eee e teen reece reece eens 6-2

Creating the ‘hello, world’ Program eee eee ee eee eee 6-2
Another Example. 0... c cece cece e eee e renee ne ees 6-3
Symbol Reference and Definition.-. 6 sees eee eee eens 6-3

Searching Libraries ccc cece eee eee tenes 6-4
The Ordering of Module and Library Names.................-+.-. 6-4
The Order of Library Modules....... 0... .. ce cece eee eee eee. 6-5
The ord68 Library Utility........ 0... ccc eee ee eee ee 6-6

Using the Linker 0. ccc ccc cece ce ener eee e eee e eee e seen ceenceees 6-7
The Executable File... 2... ee cece eee enenes 6-7
LibrarieS. 0.0... ee eee eee een n teen en nes 6-7

Linker Options Cece eee eee eee rete tence eens eee e eters sree eaee 6-9
Summary Of Options cece cece eee eee eres cece eee eee eeeeees 6-9
Detailed Description of the Options cece eee e eee e eee eeceee 6-10

The -0 Option..... 0... eee eee eee eee ennee 6-10
The -] Option 2.6.6... eee ete eee e een ees 6-10
The -f Option 0.0.0... eee een e tenets 6- 10
The -g and the -q Option... 0... ccc ec eeee ee eeeeenes 6-11
The -m Option... 0... eee eee e nnn ees 6-11
The -t Option 00... 0. cece eee e eee enas 6-11
The -xr Option . 0... ce eee teen een e ne eees 6-12
Options for Positioning a Program's Sections...............000. 6-12
Stack OPtions... 0... 6c ee eee eens 6-12

Programmer Informationc cece ec ec ec ec ee cece cece seen ee eeeeseeees 6-14

Program Format cece cece cece cere cece eee ee seen eeseeeees 6-14

Special Linker-created Symbols.............. cece cece cree eee eecnccees 6-14
Entry Points. 0. ccc ccc eee cere cere te ee eee eee eee eeenes 6-14

Chapter 7 - Utilities

rN 0 iii i i i a a 7-2

CTIMOB. 60. cece cc cc weer cree weer eee reece eee e eens ee esse seer e eee eeees 7-3
0) 01 6 00) 0 pa 7-3
Symbol Format.......... cece cece cece ccc eee e rere rere ee eee e ee eeeeeee 7-4
SYMDOL-TypeS ccc cc cece cc cece cece ee cece ee ee ee eee e cece seen eeeee 7-4

00 6 fs 7-6
es 9 7-7
69 7-8

The Conversion List 2... 0.0... cece ccc cee cee ee cece ee ee eter e eee enees 7-8

The Affected Lines 0.0... cece cece cece eee eecenccec cece co. 7-9
The -b Option......... cece cece eee ee ce ee ee ee tent eee cee ce ccc, 7-10
Differences Between the UNIX and Manx Versions of diff............. 7-10

A SR 7-11
OPHIONS... 6. ccc cece cece ect e ee ee tee t ens enececcec lo, 7-11
Input Files... 0.0... ccc cece eee ec ence ee seuceeeceeccce sc, 7-11
US

7-12
Examples 0.0.0... cece eee ccc ccc eee e cc ee cee ceeteeteneenceccccccce. 7-12
Differences Between the Manx and UNIX Versions.................... 7-14

Option Differences 2.10.0... 0... coco eee c cece cece cece. 7-14
Pattern Differences 2.00... 0c cece cece ec eceecece cee coe. 7-15
cc 7-16

Examples cece eee cece cee cee cece ee sene tees entenccecs cc. 7-16 NEX68 1... eee eee eee cece eee c eee c cece ttetenenteseeeeecc ew! 7-17
The Output Files 0... c cece ccee cece ee tt eeeeceen cece ecco. 7-17

Even- and Odd-addressed Bytes in the Same Chips 7-17
Even- and Odd-addressed Bytes in Separate Chips............... 7-17 The Options 0.0... cece cece ee ccc eee estes ceenecccc cc 7-18

ID68. oe cece cece cece cece eee e eee e cece eset tite beeen eee! 7-19 Arguments and Options. 0. cc cc cceeccceeeceuecccccccccc 7-19
The library Argument00. 00.0 e cece cece cece cee. 7-19
The options Argument..........00 00. cee cee ceccecece ccc e ee. 7-19

Function Code Options.00. 0.00. 0c cece cece. 7-19
Qualifier Options... 00.0... eee eee eee e eee. 7-19

The mod Argument....... 2.00.00 0.cce cece cc cece cece cc 7 - 20
Reading Arguments from Another File................... 7 - 20 Basic Features 0.0... ccc cc cece cece ce cccceeeeveenerecccccc cco. 7 - 20 How to Create a Library0 000000 e cece cce cece eee 7 - 20

How to List Names of Modules in a Library.............0000.005, 7-21
How Modules Get Their Names0..000--0......... 7-21
Order of Modules in a Library......... 00... 0cccccece eee, 7-21
Getting Arguments From a File00.0000000...,.... 7 - 22 Advanced Features 0... c cc eccccscceceeeceeeeeeeeccc cc 7-22 Adding Modules to a Library...........0....0...0000.......... 7-22
Adding Modules Before an Existing Module 7-23 Adding Modules After an Existing Module...................0.. 7-24 Adding Modules at the Beginning or End of a Library............ 7 - 24 Moving Modules in a Library..................00.0-........... 7-25 Deleting Modules 00.0.0... cee ee eeeececccceee eco 7-25 Replacing Modules 0.00. cece cece cece eeeeee cee ll 7-25 Uniqueness 000. e cece cece ee ee cece ee cceece 7 - 26 Extracting Modules........... 0.0000 c ce eeeeeeececcecee eo 7 - 26 The Verbose Option 00.0.0. ccc ceceeeeceeeeeee cc 7 - 27 Silence Option 0.0... cece eee ee cece cece cece cece el 7 - 27 Rebuilding a Library...........00000.0ccccc cee 7 - 27 Defining the Default Module Extension........................ 7 - 27 Help... cece cece cece cece 7 - 27 a

7 - 28

The Basics Lecce cece eee eee ee ee eee ee eee eee eee e eee ee essen eens 7 - 28

What make DoeS......... 0c cee ee eee teen e eee n eens 7 - 29

The Makefile. 0... ccc eee een e nent es 7 - 29

Advanced Features ccc cece cece cence tence rene ee ee recseeeceees 7-31

Dependent Files 0c. eee eee eee cece eee een tenes 7 - 31

WY, Ves «0 |= 7-31

Using Macros 0. cece ener eee een ete teens 7-31

Defining Macros in a makefile.0: sees eens 7 - 32

Defining Macros in a Command Line04-. 7-32

Macros Used by Built-In Rules 0. cee eee eee 7 - 32

Special Macros 00. cece eee eee eee teens 7 - 33

Rules... 0. cc cece eee ee eee t nent nen een ee eens 7 - 33

make’s Use of Rules........ 0. ccc cee cee eee eee eens 7 - 33

Rule Definition 00. c eee ce eet e een ees 7 - 34

|Ss<-V 90) ©) (<a 7-34

Interaction of Rules and Dependency Entries 7-35

Built-in Rules... 0.0.0... cc eee eee eee eee een ences 7-35

Commands 0... cece ee nent nen eee eens 7-35

Allowed Commands 0.0 c cece eee ene eee ene 7-35

Long Command LineS........ 6. cece ee eee eee eee eens 7 - 36

Makefile Syntax... 0... ccc cece eee ete eens 7 - 36

CommentS 0.0: ccc eee ee een teen eens 7 - 36

Line Continuation 0.06 cece cece eee eee eens 7 - 36

Starting make 6... cece cece cee eee eee tenet tenes 7-37

The Command Line.......... 2... e eee een eens 7 - 37

Calling make Recursively.......... 00. e eee eee eee ees 7 - 38

Differences Between Aztec make and MPW make.............. 7 - 38

Differences In Syntax......... cece eee cece cere sence sere cece eseeceeces 7-39

Aztec Style makefile 0.0.0.0... cece eens 7 - 40

MPW Style makefile 0.0.0.0... cece cece ce ee ee eee eee eens 7 - 40

Differences between the Manx and UNIX make Programs 7 - 40

Examplesc cee cece cece cece eee rere eee ee ee eeee recess eeeeeenees 7-41

Example 1.0... 0... cc cece eee eee eee eee teens 7-4)
| Sore 000) 0) (a) AE 7 - 41

The makefile in the ‘libe’ Directory 0.0.0 e eee. 7 - 42
The makefile for the ‘sys’ Directory..............-2-+ eee 7-42
The makefile for the ’misc’ Directory--02 eee. 7-43

710 ce 6 0 7-44

0] 0 6 (6. Sa 7-45

0) © («) - 7 - 46
o-oo) i i i ic co 7 - 47

The Output Files ccc ccc cee cee cece tence ener ene eeneeenes 7-47

Even- and Odd-addressed Bytes in the Same Chips 7-47
Even- and Odd-addressed Bytes in Separate Chips. 7-47

The Options ccc cece cece cece cere eee e eee e reece eee eeeeeneses 7-48

8d 0 =. < tJ 7-49
The Output Files ccc cece ee eee cree rene etna eee ee ee eneees 7-49

Even- and Odd-addressed Bytes in the Same Chips 7 - 49

Even- and Odd-addressed Bytes in Separate Chips...........000. 7 - 50
Generating an Extended tekhex Symbol Table 7-50
The Options 0.0... cece cece cence ccc eececeeeeeececeeeecec cee. 7-50

Chapter 8 - Z Editor

Requirements 0. cece cece cece cee e nee eeceeeeeecees 8-2
Components . 0.0.0.0... cece cece cece een e teen bien een eeeee, 8-2

Getting Started 00.0... . oe ccc ccc ccc eee cece ceeenseececencecccccue. 8 - 3
Creating a New Program 0. ccc ccc cececececevecececcecccee, 8-3

The Screen... 0.0... cece ccc cece eee e eect eben ce cece, 8-3
Modes of Z.... 6. cece cece eet n cece cece cece. 8-4

Insert Mode... 0.0.0... ccc cece cece cece ee eeneee cece. 8-4
Exiting Z 1... ccc cece cece cnet nent ence cece. 8-4

Editing an Existing File 0.0... ccc ec ceccuccuceecencecccccc. 8-5
Starting and Stopping Z..... 0... c cece cece eee, 8-5
The Cursor 00... cece cece cece eee n eee ee en ence ec 6-5
Moving Around in the Text: Scrolling 8 - 6
Moving Around in the Text: the Go Command 8-6
Moving Around in the Text: String Searching.................000. 8-6
Finely Tuned Moves 0.00.00 ccc cec cee eec ce ceccec cece. 8-7
Deleting Text... 2.0.00... ccc cece cece eee e cee ce cece. 8-7
More Insert Commands... 1.2.0.0... 00. c eee ce ccc cccccece ccc. &- 8
SUMIMALY. 0. eee eee cece eee eee eben cece 8-8 More Commands............. 000s eee c cece cess cece ee eeueeetecceeecc ecco 8-9

RL
8-9

Displaying Unprintable Characters................0.0--0........ 8-9
Displaying Lines That Do Not Fit on the Screen................... 8-9
Commands 0... eee cece cece cence ee ee cece cee 8-9
special Keys... 2... cece ccc cece cece nce ce 8- 10 Paging and Scrolling............ 0.0... cece cceeccceuccceeccecccc cco. 8 - 10 Searching for Strings ccc ccc ceeeccccenecceuncceccc ccc, 8 - 10
Additional String-Searching Commands 8 - 10
Regular Expressions 000.0000 c cece cee cec cece ccc, 8-1]
Enabling Extended Pattern Matching 8-12

Local Moves cece ccce cece cccceeeseceeeeteeeeccc ccc. 8-12
Moving Around on the Screen:.............00..000000-00....... 8 - 13
Moving within a Line......... 0.00.00 c eee cece cece cece ce oo, 8-13
Word Movements 000 cece cee ceeceeecceccce coo, 8-14
Moves within C Programs.00. ce cceecceeceecce coo. 8-14
Marking and Returning0.00. 0c cece ce cceecee ecco, 8-15
Adjusting the Screen... 0.2.0... c eee cece cece cece eee. 8-15 Making Changesccceeeececccccceeeeeneecccccccc 8-16
Small Changes 0.0. cc cece ccee ce ee ce eeec cece ccc. 8 - 16
Operators for Deleting and Changing Text0...0...00., 8-17
Deleting and Changing Lines..............0..0.000000.0....... 8-17
Moving Blocks of Text 000. cece cece cece cece cc 8-17

Named Buffers...........cccc cc eee eee cence eee e ee eeeeeeneeas 8-19

Moving Text between Files 0... cece cece cette eee ees 8-19
Shifting Text 0.0... ccc ee eee een n eens 8 - 20
Undoing and Redoing Changes 6... cece eee c eee eees 8 - 20

Inserting Text 2... cc cece cece cece cece cence eee eee ener seer ee eeenes 8 - 20
Additional Insert Commands... 0.0.00 cece cee eee eee 8 - 21
Insert Mode Commands. 0... cece cee ee eee eee eens 8 - 21
Autoindent eee cece cen een tenets 8 - 2]

10) Vu 00 \- 8 - 22
Immediate Macro Definition. 0... 0c cece cece eee eee 8 - 22
Examples... 0... ccc cece ee eee nee eee een n eee een ens 8 - 22
Indirect Macro Definition. 00.6 cece cece tenes 8 - 23
Reexecuting Macros 0... c ccc cece eee eee nen e eens 8 - 24
Wrapping Around During Macro Execution..............-++--- 8 - 24

Ex-like Commands cece cece cece cree cece eee e ee ee eset eseees 8 - 24
Addresses in Ex Commands......... 0.6 cece eee cee eee nes 8 - 25
The Substitute Command 0... ccc ce eee eens 8 - 26
The c Option... 0... eee cee e een eens 8 - 26
The g Option 2.0... 6c eee eee eens 8 - 26
Examples... 0... ccc cece cee eee een e eee nee teen eens 8 - 26
The "&" (Repeat Last Substitute) Command0. 00 ee 8 - 27

Starting and Stopping Z oo... cece cece ee eee cere eee e eee eees 8 - 27
Starting Zoo... ee teen eee e nen eee 8 - 27
Starting Z without a Filename 0... 0. ccc eee eee 8 - 27
The Option File 0... ce cece eee eens 8 - 28
Setting Options fora File...... 0... cece eee 8 - 28
Starting Z with a List of Files.......... 00.0... 0. eee eee 8 - 28
ro) 0) ©) 0) 00 =) Zam 8 - 29

Accessing Files... ccc ccc ccc cc cc cece cee ee eee eee e ee eee eee eees 8 - 29

Filenames . 2... 6. eee eee eee eee eee eee eee eens 8 - 29
Writing Files... 0... ce cece eect eee eens 8 - 30
Reading Files 2.0.0... cece cee ccc eee cece ee ee ee ees 8 - 30
Editing Another File 0... cece ccc ee eee eee eee eee 8 - 30
File Lists 00... 0. eee eee ee eee erect eee een eens 8 - 32
Tags 2... ccc ccc cece ee eee eee eee e eee eee n tenn eens 8 - 32
The ctags Utility... 0... ee cee cence eee eee 8 - 33

Executing System Commandscccc cece ec ce cess cee escescesees 8 - 33
OPTIONS. 2... ccc ce ce cece cee eee eee eee eee sees es eecens 8 - 34
Differences Between Z and Vi... cece cece cece cee e cece eeeeees 8 - 34

Command Summary. cece ec cece eee eee e etree nese eee ee eens 8 - 36
Starting Zo. cc eee eee eee eee eee e ee ee eens 8 - 36
The Display... 0... ccc cece cece eee ee eee eee 8 - 36
OPHIONS ©... cee reece tenet e tee e nee enes 8 - 36
Adjusting the Screen... 0.0... ccc ccc eect e eee eee eae 8 - 36
Positioning within File....... 0.0... ccc eee cece eee ee ee eee e ee ee 8 - 37
Marking and Returning 0.0... cece cece ee eee eee eee 8 - 37
Line Positioning.......... 0... cece eee ce eee ee eee e eens 8 - 37
Character Positioning 00... eee ee cee teens 8 - 38
Words and Paragraphs......... 2... eee eee e een eees 8 - 38

Insert and Replace... 0.0.0... ccc cece cence cece cence tence ene, § - 39
Corrections During Insert 0.0.0 c ccc cece cece neces eens 8 - 39
Operators 2.0... cece cece cece nee n tent tn eee. 8 - 39
Miscellaneous Operations0 00 ccc cece cece eee eeeeeee, 8 - 40
Yank and Put 0... cece cece cence seen neeb eevee ee. 8 - 40
Undo and Redo 0. ccc cece cece nee e cence, 8 - 40
Macros 0... ccc cc ec cece nee cent ee te be tbee nee, 8 - 40
Colon Commands 0... ccc ccc cece cee ccc en ee eeeeeneeey 8 - 4]

Modifying the Functions. 0... cc cccecccccacecceccecccccecceccccce 9-2
Modifying the Startup Routine 0... cece cece cece ccecccecce, 9-2

ROM-based, Interrupt-driven Systems.........00 0.0. ccc cece cee. 9-2
ROM-based, Non-startup Programs0.0. 0 0c cece cece ceece. 9-3
Systems Whose Interrupt Table Is In RAM0.0 ec ee. 9-3

Why the Interrupt Table Is Normally in ROM.............. 9-4
Solution 1: Move the Startup Vectors...............0.0005, 9-4
Solution 2: Move the Interrupt Table...................... 9-4

Heap Set-up Code.... 0.0... ccc ccc ccc cece ene n en teeeeeeeee. 9-5
Rom-based Initialized Data.........00 00.00 c ccc cece cece eee cee. 9-5
Ram-based Programs 0.00 cece eee ee cece eeu cueeevecee. 9-5

Modifying the Unbuffered I/O Functions...............0cccccccecee 5, 9-6
File Descriptors 0.0.00. ccc c ccc ccc ccc cece e ne eneeee ee 9-6

When there’s lots of files and devices..............0.000004. 9-6
When only devices are supported..............00.0c0 cece. 9-7
Pre-assigned file descriptors0.0 0... ccc cccceeceee. 9-7
Interaction of the standard I/O and unbuffered I/O functions9 - 7
Supporting the standard I/O fopenQ and fclose() functions 9 - 8
Supporting the standard I/O input and output functions ... 9-8
Supporting the standard I/O fseek() function............. 9-8
Standard I/O and the isatty() function............. bee eeee 9-8

Unbuffered I/O Names0..00 00 cece ccc c cece cece eee c cece. 9-9
Unbuffered I/O Return Codes 00.0. ccc ccc cece cece cece. 9-9

Modifying the sbrk() and brk() Functions-...... 9-10
Modifying the exit() and _exit() Functions000---...., 9-10
Modifying the time() and clock() Functions........................... 9-11

Building the libraries........ 00.0... cece cc ceccceecceeescunceencceccccccce. 9-12
Library Directories cece cece ccc cec nsec cccncecccccc cl. 9-14

Chapter 10 - Library Overview

Overview Of 1/0... cece cece cece nec c cence cceeeceeennseeencccececccece. 10-2
Pre-opened Devices and Command Line Arguments................... 10-2

Redirecting stdin and stdout0..0 0.00.00 ccc cece eee, 10-3
Command Line Arguments..........00 00.00 ccc cesececcceec eee. 10-3

File VO 1... eee cece ccc cece cece ceee cent seeteusenceecceccccc co. 10-4

Sequential 1/O........... 000s eee cues eevee eeneeeenneee nee, 10-4
Random I/O... 0... ccc en nnn teen e eens 10-4
Opening Files... 0... ce eee eee tenets 10 - 4

Device V/O oo. cc ccc ccc cc ccc cere ee cece eee eee e terre tence ee eeenes 10-5
Console I/O 2.1... ccc ccc ce eee ee ee ene teen eee ee eens 10-5
I/O to Other Devices ccc ce cee cee teens 10-5

Mixing Unbuffered and Standard I/O Calls......... cece cee eee e eee ees 10-5
Overview of Standard VO... . ccc ccc ccc ccc ce eee ee cee ence eee e eee eeee 10 - 6

Opening Files and Devices ccc cece esc eee eect ee eeeeeeaees 10 - 6
Closing Streams ccc ccc ccc cece reece cece eee e een ne ee eeeees 10 - 6
Sequential JO 2... . ccc ccc ccc cece reece eee e tenes tense esse eecs 10 - 7
Random T/O0..... cc ccc ccc cc cece cc cece wee e eee cece eee e ee ee eee eeeees 10-7
Buffering 0... ccc ec ccc ce ce ce cece eee eee eee eee eee eeenes 10 - 7
|S <0) ¢- ae a a 10-8
The Standard I/O Functions ccc cece cece cece eee ec ee eeeece 10-8

Overview of Unbuffered /O ccc ccc cece ee eee cere rete reece eeene 10 - 10
|S 0 Cae @ parr 10-11
Device /O ccc ccc ccc cc cece eee eee cece cece rere rece ee ee ee eeees 10-11

Unbuffered I/O to the Console 0... ccc eee ee eee 10 - 11
Unbuffered I/O to Non-Console Devices...................000. 10 - 12

Overview of Console TO ccc ccc ccc ccc ccc cece ee ence cece cree ee reeee 10 - 13
Line-Oriented Input 2.0... .. ccc ccc ce ce ee ee cere e crete rere sence 10 - 13
Character-oriented input 0. ccc cece eee reece cere reece eeeees 10 - 13

Writing System-Independent Programs ce eee eens 10 - 14
Using 10ctlQ.. ccc ccc cc cc cece ee rece ee cere eee eee eee ee ee ee ences 10 - 14
The sgtty Fields 00.0... ccc ccc ce ccc ce ce cece ee cece cece eee eens 10-15

The sg _ flags Field 0... cece cc ce cee eee eens 10-15
Examples cc cece cece cree reece reer e eee e eee e ee ee eee ee esses 10 - 15

Console Input Using Default Mode.................. 0000. 10-15
Console Input - RAW Mode............. 00. eee ee eens 10 - 16
Console Input - Console In CBREAK + ECHO Mode............ 10 - 16

Overview of Dynamic Buffer Allocationccccccccc cece cece er rese seer esseces 10 - 18

Dynamic Allocation of Standard I/O Buffers.............. 0... cee eee 10 - 18
Overview of Error Processingc cece cece cece eee c cece sce c esse eees 10 - 19
ANSI Header Files 2... .. ccc ccc cece cee cece ce eee eee neat eee eee eeees 10 - 21

assert.h. 2. cee eee eee e teen e eee eeee 10 - 21
ag OL 8 10 - 21
Cb 0d 000 10 - 21
C0) 0 10 - 21
limits. cc eee eee eee ee tenet e ene nee 10 - 21
C0 k= C= 0 10 - 21
math... ee eee ee teen cece teen tenn ee ees 10 - 21
<2 9) 00 © 0 Sp 10 - 21
Sigal. 1... cee ee cee ee eee ee eee eee eee ees 10 - 22
C0 F240 10 - 22
I 0 Ce <3 0) 0 10 - 22
Stdin.h 2. cece eee nee e eee nent eee nnees 10 - 22
J C0 U0 0 10 - 22
string hh... 0. cece cece ceceee cece ee ceeeeeuneneeeeeeeeannnee, 10 - 22

Description Format........ 0... cc cece cece cece ce eens ce ececceeeeeceecteeanees 11-2
Introductory Information. 0. cece cece cece ce cececccceeeees 11-2
Other Information 0c cc ccc cc cece ccc ccc ceceeececcceccccen 11-3

Function List... 0... 0... ccc cece cc cece cence cence cece eeecceuvecceccccecccece, 11-4
EY oo) a | (a 11-8
ADS) 0. cece cece ccc eee c eee cece eeeeceeeeeteececeecvecceevccececce 11-8
= al 1 ¢ ccc 11-9
aSCtime() .. 0... cece cee cee cece eee e ect eeceeeceecceveecevacececcccccs 11-9
A300 0 11 - 10
ASSET 2. ccc cece cee ee cee cece cece eee ceeeeeeveceeecevceccccecy 11 - 10
FC: | 0 11-11
ALANZ() occ ccc cee cece cece eee eee ee eens eeeeeeececveevccecccccy 11-11
ALEXIED ©. cc cece cece ec cece eet e ee eeeeeeeeceeceeeeenccececcee 11 - 12
10) 6 0 11 - 12
rN C0) Cc 11 - 13
FC 0) (0 ccc 11-14
0 de 0 11-14
bsearch() cece ccc ccc ccc cc cece cee eeeeeeencvevevcececnncccccceeccn 11-15
01 OK al 0 cc 11 - 16
COND ccc cece ccc cence cece ee eeecccecccecececccuececcccccccee 11 - 16
Clearerr() 0... 0... ccc cece cece cece cece eee e eee cece ececccccccccee, 11 - 17
CLOCK) 2... ccc ccc cece cece ee cece ee eeceececccececceeeccuccceccceey 11 - 17
CLOSE)... cece cece ee ence etre cee eeeeeeeteetceecececvccunccccecce, 11 - 18
COS() occ cece cee cece eee eens cece ee eeeeeceetevecceeeeececccccce, 11 - 18
0) 0 0 cc 11 - 19
COAN() 2... cece ccc eee cece eee ccceeeeeeceeeceeeeeccceceeu 11 - 19
CTCAL) cece ccc cece cece cece eee e eee eeecceeeeecueceeecccecccce, 11 - 20
CHIME() 0. cece ccc cece c cece cece eens eeeteeeeeecvnccceeccce, 11 - 21
0) 0 0 cc 11 - 21
Cifftime()... 0... ccc cece cece eee ce eee eeeeevuceceenceeccecce. 11 - 22
AE 11 - 22
HOXIEQ occ ccc cece cece ence eee e esc eeeeceeeceeeceeecceencccecce, 11 - 23
6 0 cc 11 - 23
9 oO cc 11 - 24
ot 0 cc 11 - 25
FCLOSEQ) «0... cece cece e cect cece cece ceececceeseveencceucecccecc, 11 - 25
6 C0) oS 0 cr 11 - 26
FEOF() 0. cece cece ence eee e cence nee eeeteeenseeeeecccccceee. 11 - 28
FEITOT() 066. eee e cece ete cence een cee eeeeeteueeeeenceucecceccee, 11 - 29
FElUSH(). 6... ccc c ccc ec cece cece cee ee cee ceeseeeecceuceccecceecce, 11 - 29
FEET). eee cece cence cece eee eee eeceeeesneeceucececuceececces 11 - 30
FgetpOsO 2... ccc e cece eee eee eect ete eeeeneececececceccee. 11 - 31
9 0 cc 11 - 31

fileno(). . occ c ccc ccc ce cc ce ec cee ce ete eet eee ee eee eee eee eee e tenes 11 - 32

_fileopenQ) er re ea 11 - 33
Cece cence cece eee ees 11 - 33 FIOOL(). 0 ec ec ccc cee cc cc ce ete e eee eee eeees

fIsbuf() .. 0. cc cc cc wee cc cc ee ee eee ee eee eee eee eee rete ee eee eees 11 - 34 _fisbufQ) ... 0. ccc cc cc cece ee tee eee ene e ees
cece cece cece cece eees 11 - 35 Fr Od() 2... cc ec ccc cw cc cw ccc ccc cece cece eee eens

rn 11 - 35 0) 0) 2 0 0
cece cece ccc cece eees 11 - 37 format(). 0... cc cc ccc cc ctw ce ccc cece cece eeerees

cece cece cece eens 11 - 37 _format() cc cece cece cece cece cere eee eeeeeeees

5G a Oe 11 - 38 9 00 00 sd 0 noes
9 oO 0 itoae

Fputs() ccc eee c cence cree cece eee eee e ee ee eee eee eee e renee esse eeeens toa
Te are | 0 eae

Free(). wc ccc ccc ccc cc cw ce eee ccc cee ee eee e ee ee ee ee ee eee eee eee eee ee eens Hoa

2-10) 0) | 0 ea
2 > 4 0) 0 ido
fscanf(). oc. cc cc cc cc cw wee ec ee cee eee ee ee ee ee eee eee ee ee eee eee ee eens Hoa

fseek() oo ccc ccc cc cc ccc ec ce eee ee eect eee ee eee eee eee ee eee eee teens Nea
| 19 0) 0 cc ca as
ad 0 Nae
a OY: | 0 lode

EWrite().. cc cece ccc ce cece ee eee ee ee ee eect eee eee ee tee eee eee eees oa

getbuf() ccc ccc cece cece eee teen eee eee teen eset eee eeeeeees Hae
kot Cel ode

okoa Cel 08-1 6 0 Hae

kok od O04 0 Hose

_getiob() Ce ee reece eee ee ee ee mre ee ee ee eee reer eer ee eres eeereserereseeeesers 1 ; 20

ot 6 0 le

getw() Cece e eee ce eee ee eee ee ee eee eee ee ee eee eee eee eee eect eet eens led

roa 010 66 0d 0 a Mle
Fae >< 0 cc - - a

Cole 0 - 8

is O vossenseeneressrsssecaeeeaeeseess sess sess sess es rereseessseess Hoe

Isatty) cc cece cece eee we eee e reece re eees Hoes

|) oy 0 Hoe

Ce 59 0 0 apn - - -

Co Fd 0 i - e

localeconv() ccc ccc ccc ccc ccc ccc ccc cece cece e eee cece ce eeeescceeees ; - =

Jocaltime(). ccc ccc ccc cc ccc wc cc eee cect cee cece reece cece eens i - 5?

Co 2 le
Coy 0) 0 pn les

Co) 0-4 5 60) ©) 0 lee

|<<) <9 bles

MAllOC() 2... ccc cece ce cc cc cc cece eee eee ee eee e eee e cece eee ete eens - - or

Mblen() ... cw ccc cc cece cee cc eee ee eee cece e cece eee eee cece eee e ee eeeee 11 - e

MDStOWCS() ccc cc cc ccc ccc cece eee e eee cece cece cece cece e eee eseeceees 11 -

MDCOWC(). 0. ccc ccc cc cc cece cece ec eee cece eee cee e eee eee e ence ee eeeeeeees 11 - 6°

MEMCCPY() 2... cece ccc cece eee eee eee ee ee eee cence eee renee io - e
MemMmchr().. 0... ccc cc ccc cc cece cece eee eect eee e eee ee ee ee eee eens 11 -

MEMCPY() 2. cece cece cece ee eee eee ee ee eee tees teen eee e tenet eeteeeeees 11 - 65
MEMMOVE() 2... cece cece ce cece ee eee ee eee ee eee e eects eee ee eeeeees 11 - 65
MEMSECE() 0... eee cece eee eee ee ee eee eee eee e ee eee eee eee eeeeens 11 - 66
mktime()........... eee eee eee cere ener nero reece eee ee eesereeecees 11 - 66
0 C06 66 0 a 11 - 67
MOVMEM() 2.0... ccc cece cece eee eee e eee e eet e eee teeeeesseeeeens 11 - 67
0) 923 0 PD 11 - 68
3 9 0) 0 PP 11 - 70
peek...) poke...0 . 0... cece cece cece cece cece cece cece cece ee eeeeseeeeeenees 11 - 72
POW() 00. c ccc cece cece cece e cere eee e eee eee e ee eeeeceeeeeseeeeeees 11 - 72
PIINE() 0 ccc cee cece eee eect e eee e nett esses eeseeeeeeeceeeee 11 - 73

The Format String 0... cece cece eee ee eee neeneey 11 - 73
Conversion Specifiers... 0... cece cece cece eee teeeen ens 11 - 73
Flags Field... 0... cece cece cence teen ee eeees 11 - 74
Width Field... 0. ccc cece ene e neces eeneenes 11 - 74
Precision Field... 0... cece cece cece eee eee eee eennas 11-75
Size-mod Field... 1... ec ccc eee e cence ene eee ans 11-75
type Field... 0... ccc cece cece eee e ence eeees 11-75

9 oO 11 - 76
el 0 11 - 77

putchar() 0... ccc cece cece ence eee e eee eeeeeeceeceseess 11 - 77
PUESD Lee cece cece ec eee cee e eee e eee eee eee e cece esses eeceuners 11 - 78
PUEW() occ e cece cece eee e eee renee eee cesses ee ee esse eeeeeeeeees 11 - 79
ro FT 0) ¢ 11 - 79
TAISE() . 6c cece cece eee e cece eee e eee e eee eeeeeeeeeeeeeeeeeeues 11 - 80
0 6 cc 11 - 81
ae 0 ccs 11 - 81
TANAIO 2.0... ccc cece eect ccc e eee e eee e ees cceeeeeeeevsseeeeeecs 11 - 82
=: Co | 0 ccc 11 - 82
TEALOC() 6... ccc cece cece eect teen eens cece eeeeeeesseeeeeees 11 - 83
0 0 11 - 84
TENAME() 0... cece cece cece cece cece nent teen cece eeeceeeeeeeeenveees 11 - 84
TEWINA() 2... cece cece eee e tee tence eee eeeeesecceeeeeeeeecsvcees 11 - 85
TINGEX() 00. cece eee cece ccc e eee e cece ec eceeeceeereseeeeees 11 - 85
SDIK() . 0. ccc cee ccc nce nent eee eee eeeeeeeceeeteeeteeveeeees 11 - 86
SCAN() 2. ccc cece ccc ec cee cece eee tcc eeeeseeeceeveceeeuccecccecees 11 - 87
SCANE() 0... eee cece ccc cece eee eee e ent eeeeeceeeccceeeescececees 11 - 87

The Format String 0... cece cece cece cence eeneeeeees 11 - 88
Matching White Space Characters............ 0.0000 c cece cece. 11 - 88
Matching Ordinary Characters...........0. 00 ccc ccc ceeceeueees 11 - 88
Matching Conversion Specifications0. ccc ceeeees 11 - 88
Details of Input Conversion 00.0 cece cece cece ee eees 11 - 89

Setbuf() . 0.0... ccc cece ccc ccc cece ecccceeveccas ee cece ee neces 11 - 91
SEE MPO)... eee cece cece ete e eee e eee eeeeeceeenseseeneeeeeens 11 - 91
Setlocale() cece cece e nee e cece cece ceececeececeeseceeeeucs 11 - 92
S€tMeM() .. 6... eee cee cece cece cece tees cence eeeceetseesceeecees 11 - 93
S€tvbuf() 0... ccc cece cece e eee e nsec eeenceeccenceeseeveeeuas 11 - 93
SIQMAl(). 0... cece cece cece cece eee e cece cee cacncecveeceeceeeecccuceeees 11 - 94

Signal Processing and the func Parameter.............-...0005 11 - 95
Return Values from Signal. 6... ce cece cece eee enna 11-95

> 6 0 @ 11 - 96

sinh() pee eee ee eee ee eee ee eee eee eee ee eee eee eee e eee ees 11 - 96

=) 0 0 0 4 a 11 - 97
Te 59 © Pa 11 - 97
CS 1 0 0 11 - 98
3 1 06 6 0 11 - 98
SSCANE() occ ccc ce eee eee ee weer eee ee eee eee ee ener eee eee e ee eeee 11 - 99
BS 8 <0) 0 0 << § 11 - 99

SI) 9 |< 0 11 - 100
9 ed 00 @ a 11 - 100
6 aot 10 0) 11 - 101
9 el 0) 0 @ a a ga 11 - 102
1 6 6 oj 0) 12 0 11 - 102
ST 6 el) 0) 0 | 0 11 - 103
3 6 6 00 0} 0 np 11 - 103
CT 6 2p 6) 6 0 a 11 - 104
Strftime() 0... ccc ee ec eee eee eee eee ee eee eee eee eee eee ee enee 11 - 104

3 9 C=) 0 | 0 a a 11 - 105

3 9 0 0 Fd 11 - 106

RT 6 ed 005 0. 0 a 11 - 106
CT 6 0 of 094 0 11 - 107
I 6 9 0) 0 0 <0 Pa ma 11 - 107
SS 6 ed 08 6 0 11 - 108
ST 6 a) 0 0 0 a 11 - 108
>) 6 0 11 - 109

06 | © a 11 - 109

SO C0) 24 0 11 - 110

First Invocation 0... ccc cece cee tee een e enn enee 11 - 110
Subsequent Invocation 0... ccc eee eee ee eee ee ees 11 - 111

CS 6 0) a 11 - 111
6 a0) Ce | 0 ama 11-112

a C000 | 0 11 - 113
rT 6 06 6 90 0 11 - 114
SWAPMEM() 22... ccc eee eee ee ce eee eee eee ee etree eee ee ee eeeees 11-115
SYSteEM(). 0... cece cece cece eee ee ee eee ee eee eee tees eee estes eeees 11 - 115
1 0 11 - 116
0) 0 0 11 - 116
00 0 11 - 117
tmpfileDc ccc ccc ec c eee cece cee een ee eee en ee essen es eeeecenees 11 - 117
00) ©) 00 0 11 - 118
Co) C022) 0 11 - 119
0.59 0) 0 <1 0 oa 11 - 119
UNCC) 2... rece cece sees ccc e cee n asec esse esse eee esses ssceeeseeneces 11 - 120
100 00 <0 11 - 120
40 11 - 121
VEPTINtf() 0. ec ce cece eee eee eee eee e eee e ee ee eee eeeeenes 11 - 122
VPTINtf). 2. c cee ce ce ee eee eee tee ee ee te eee ee ee ceeeeeees 11 - 122

VSPTINtfl).... eee cece eee cece eaee bene c cece een eet ee eecens 11 - 123
WCSLOMDS() 2... c cece cece cece eneeeevevevcevcucececccce, 11 - 123
WCLOMD().. 0. ccc cece cence cece cece eeeeereeteeevecvenennccccees 11 - 124
WIIEEL) oo cece ce ccc ccc cece cece cee e cece eeeeeseseeeeeteeeeeeuencnccce. 11 - 124

Assembler Functions 0... cc cc cece cecccecteeccevuceecccceccccccce. 12-2
C-callable, Assembly-language Functions.cccccccevcceeccs 12-2

Names of Global Variables and Functions....................... 12-2
Global Variables...........0 0.0 cc ccc cece ee eee cece. 12-2
Names of External Functions and Variables 12-3
C Function Calls and Returns.............. 0.00 cece ccce cece eee. 12-4
Register Usage 0.0... e ccc ccc cece eee e eee neeeeneenees 12-4
Pascal Function Calls and Returns................---0-----. 2.22. 12-4

Embedded Assembler Source............cccccecccecceccccccccccccce, 12-5
Interrupt Handlers 0... cece cece ccc c ccc c cece cece cenceaceevececccu, 12 - 6

The Assembly Language Routine 0. ccc cccccccceccccccccu, 12 - 6
Use of Library Functions By Interrupt Routines....................... 12 - 6

Compiler Error Messages 00. c cece cece cece cececeecuceccccccccce. 13 - 2
Fatal Compiler Error Messages 0... ccececececceccccccccce, 13 - 6
Compiler Internal Errors 0... ccc ccccecececcucuccccccccccee 13-7

Explanations of Compiler Error Messages cc see cece cece cece ceeecece 13 - 8
Fatal Compiler Error Messages 0... ccececccceccccccccccc, 13 - 41
Internal Compiler Error Messages..............0 ccc ceccccccccec cn. 13 - 45

Assembler Error Messages 0. cc ccccececceceecuceuceccucecccccc. 13 - 46
Opcode Error Messages ccc ccccccececcccecececccccc eu. 13 - 46
Directive Error Messages.............ccccccccececececececccccccc ce. 13 - 47
Fatal Assembler Error Messages.............0.ecccececccccccccccn., 13 - 48
Syntax Error Messages 0. cc ccccccccececcccecuccccccecue. 13 - 48

Explanation of Assembler Error Messages............0..0ccecceeceeeece. 13 - 50
Opcode Error Messagesccccecececcececucecccecccece, 13 - 50
Directive Error Messages.............c.cccecccceccucecccccccccccee. 13 - 55
Fatal Assembler Error Messages0cccceccececccccccce.., 13 - 59
Syntax Error Messages 0c ccececcccccececececececcceccce. 13 - 61

Linker Error Messages...............cecccesccccecccnecceucceuccecccccce, 13 - 62
Command Line Error Messages:0ccccecececcccecccccc cn. 13 - 62
W/O Error Messages 0... ec cecceccecceecenceuceucenccccecce. 13 - 62
Memory Use Error Messagescececceccececcecceccccen, 13 - 63
Source Code Error MessageS.............cccecceccececceccccecceccu, 13 - 63
Internal Linker Error Messages 00. ccceccececceccccceue., 13 - 63

Explanation of Linker Error Messages.000.cceeccceeccceccc cc... 13 - 64
Command Line Errors 0. ccc ccc ceceececceccccecccccccc. 13 - 64
VO EYrors.... 6... cece ccc c cece cence eesti teeeneeececcecce cece. 13 - 64

Errors in Use of Memory......... cece c cece ee ee eee eee e eee eee eeene 13 - 67
Errors Arising From Source Code cece cece cece cere cree eeeeens 13 - 67
Internal Errors 2.0... ccc cece rere ee ce te ee ee eee eter eee e ee eeaes 13 - 69

Chapter 14 - Technical Support

Have Everything With You 0... cece cece eee eee ees 14-1
Know What Question You Wish To Ask........... 02.0 e eee eee eee 14-2

Isolate The Code That Caused The Problem.................--4. 14-2
Use Your C Language Book And Technical Manuals First......... 14-2
When To Expect An Answer... 0.2.6... e cece eee eee eee eens 14-2

Use Our Mail-in Service. 2... 0. ccc ee eee nennes 14-2
Updates, Availability, Prices 6... cece eee ee eee teens 14-3
Bulletin Board System ccc eee cece eee eee eee e en nee 14-3
Phone Support... 0... cc cee eee teen e nee nee 14-3

Manx Problem Report ccc cece cece eee e eee tees eee esse ereeee 14-5
Description of problem. 6.06. c eee e cece e eee eee eee ees 14-5

Overview

Chapter 1- Overview

Aztec C68k/ROM is a set of programs for developing programs in the C programming lan-
guage, the resulting programs run on ROM- and/or RAM-based systems that use a Motorola
68000-family microprocessor.

The Aztec C68k/ROM is a comprehensive ROM development system including the following
features:

e The full C language, as defined by the American National Standards Institute (ANS)
is supported.

e An extensive set of user-callable functions is provided, in both source and object form.
You will probably need to modify some of the system dependent functions. For exam-
ple, you will probably need to customize the startup routine; and if you want to use
either the standard I/O or unbuffered I/O functions, you will need to write the unbuf-
fered I/O functions.

e As of version 5, the MPW shell is now supported. The Aztec UniShell has been in-
cluded with this release to facilitate old users. New users should use the MPW Shell.
Future releases will not include the Aztec UniShell.

¢ Modular programming is supported, allowing the components of a program to be
compiled separately, and then linked together.

e Assembly language code can either be combined in-line with C source code, or
placed in separate modules which are then linked with C modules.

—41-2— Aztec C68k ROM Reference Manual

e Programs can be generated in several formats, including Motorola S-records, Intel Hex
records, and Tektronix TekHex records. ROM chips generated from these records will

contain the program’s code and a copy of its initialized data.

e A ROM program can contain both initialized and uninitialized global and static vari-
ables. When the program starts, its initialized variables in RAM will be automatically
set from the copy in ROM, and its uninitialized variables will be cleared.

The functions provided with this package are ANSI compatible and are compatible with Aztec
C packages provided for other systems. Thus, once you have customized the functions, you can
create programs that will run on ANSI-based systems or on other systems supported by Aztec C
with little or no change.

Overview 4 -3

Components
Aztec C68k/ROM contains the following components:

¢ MPW, shell produced and supported by Apple

e c68, the Aztec compiler;

e as68, the Aztec assembler;

e 1n68, the Aztec linker;

e 1b68, the object module librarian;

¢ z,a text editor that is compatible with the UNIX vi editor;

e Source and object code for the library functions;

e make, grep, and diff, utilities that are compatible with the UNIX programs of the
‘Same name.

e Several utility programs

1-4 Aztec C68k ROM Reference Manual

Documentation
The Aztec C68k/ROM chapters included in this manual are:

e MPW Shell, describes how to install and use the MPW shell;

¢ ROM Tutorial describes how to get started with Aztec C68k/ROM: it gives an over-
view of the process for turning a C source program into Motorola S-records and Intel
hex records;

'e Compiler, Assembler, and Linker present detailed information on using the compiler,
assembler, and linker;

e Utilities describes the utility programs that are provided with Aztec C68k/ROM;

e Z Editor describes the Z text editor and all of its features;

e Library Customization describes (1) modifications you can make to the provided li-
brary source; and (2) the creation of object module libraries from the provided source;

e Library Overview presents an overview of the functions provided with Aztec C;

e Library Functions describes the system-independent functions provided with Aztec
C68k/ROM;

e Technical Information discusses miscellaneous topics, including C-callable assembly
language functions, and C language interrupt handlers;

e Error Messages lists and describes the error messages that are generated;

e Technical Support details the guidelines to be followed when in need of technical as-
sistance.

Overview

Wide Range of Choices
Aztec C host and target packages are available for the following combinations:

Host

PC-DOS/ MS-DOS

PC-DOS/MS-DOS

PC-DOS/MS-DOS

PC-DOS/MS-DOS

Macintosh

CP/M-80

Target

8086/80186/80286/8087 / 80287

6502/65C02

68000 /68010/68020/68881 /68851

8080/8085/Z80/64180/Z180

68000/68010/68020/68881 /68851

8080/Z80

For information on these Aztec C Cross Development Systems, as well as the numerous Aztec C
Native Development Systems that are available, contact the Manx Software Systems Sales De-
partment at 1-800-221-0440 (International call 908-542-2121.)

1-6 | Aztec C68k ROM Reference Manual

How to Proceed
Now that you have Aztec C, the first thing you are going to do is...

...read the manual?

If you are like most users, probably not. The Manx manuals are a very thorough and very im-
portant part of your Aztec C package, but we recognize that you may be anxious to put Aztec C
to work as soon as you can. To some users, that means “skimming” the important parts and get-
ting to the rest later.

In light of this, we would like to offer a bit of advice. The list below, for both new and experi-
enced users, shows how we suggest you proceed. This may help you off to a quicker start.

Step 1: Read the README file (on disk).

Step 2: Install your Aztec C disks. Installation instructions have been included in the
README file and MPW Shell chapter.

Step 3: Read the remainder of the MPW Shell chapter to familiarize yourself with the
MPW Shell and the new Project Manager.

Step 3: Read the Tutorial chapter which will take you through a step by step process
of how to produce a ROMable application.

Step 4: Read through the Library Customization Chapter which discusses how to im-
plement the low-level functions necessary in order to use any additional func-
tions documented in Library Functions chapter

Step 5: Refer to Compiler and Linker chapters for correct option usage.

Step 6: Refer to the Utilities chapter for information on the format conversion utili-
ties: Motorola S-rec format (srec68), Intel Hex format (hex68), and Extended
Tek-hex format (tekhex68)

Once you have followed the above steps, you should have a better understanding of your Aztec
C Cross Development System and its capabilities. You should look through the rest of the docu-
mentation, paying particular attention to the Compiler, Assembler, and Linker chapters.

Other chapters that have been affected by the ANSI standard and should be reviewed are Utili-
ties, Technical Information, and Error Messages.

This manual is straightforward and very thorough, and is designed to be a helpful aid to your
programming efforts.

Overview 1 -7

About This User Guide
Throughout this manual, we use the following conventions:

prototype is used in "prototype statements” to indicate how data should be en-
tered by the user

input to indicate data entered by the user (e.g., commands, options, and
functions)

DEFINITION small uppercase bold is used on terms that may be new to the user;
most will probably include explanation or definition of term

{choice1 | choice2} braces and a vertical bar mean that you have a choice between two
or more items

placeholders information that must be supplied by the user; for example, file-
name, range, identifier, etc.

output to show text that is generated by the computer

<key> is used in examples to indicate the actual key to press, i.e. <En-
ter>, <ESC>, etc.

Ax is used to indicate that you should hold down the control key while
typing the specified letter

[optional] to show optional information

MPW Suet

Chapter 2 - MPW Shell

Aztec C and MPW truly provide “the best of both worlds”: the sophisticated MPW Shell, the
new Manx Project Manager, combined with the superior Aztec compiler, assembler, and linker.

Please read this entire chapter before proceeding with Aztec C68k ROM. This chapter will dis-
cuss the following topics:

e Introduction to MPW

e Installation procedure

¢ Overview of the new project manager, Manx Project Manager
e MPW WorkSheet
e Executing commands from the WorkSheet
e MPW Help facilities

e MPW Tools

2-2 Aztec C68k ROM Reference Manual

MPW Overview
The MPW Shell was developed by Apple Computer to handle the largest and most complex of
programming projects. Note that Aztec C68k + MPW does not include a native Macintosh com-
piler, assembler, or linker. Instead, the MPW Shell works with the Aztec C68k compiler, assem-

bler, and linker to provide a sophisticated development environment for ROM-based systems.

The MPW Shell includes a Macintosh-style text editor and a UNIX-style line-oriented command
interpreter. Used with Aztec C, the MPW Shell supports external Aztec and MPW tools and ap-
plications from within the Shell, including the Aztec C68k compiler and other utilities.

Manx provides you with two different routes into Apple’s MPW. First, there is the Manx Project
Manager. This is an additional menu item in MPW installed by Manx which allows you to edit,
compile, link and run programs entirely by menu. It does away with the initial need of learning
about MPW commands and compiler/linker options so you can begin working immediately
and productively with Aztec C.

Second, if you are used to developing with a command-line based operating system or a
“make” utility, you can also do that from within the MPW Shell. The compiler and assembler
can be invoked directly via the C68 script. There are two versions of make: the Aztec version,
which is patterned after Unix, and the Apple MPW version. The Aztec version should be used
to build the libraries, since their makefiles have been written for it.

Additional MPW Books

Where To Go From Here

If you want to acquire a complete understanding of the MPW Shell and its use, you may pur-

chase Apple’s MPW: Macintosh Programmer's Workshop Manual or Mark Andrews’s Programmer’s
Guide to MPW (Addison-Wesley, Reading, MA). For ordering information, call the Manx Sales
Department at 1-800-221-0440. (International call 908-542-2121.) For a listing of other useful
books you should consider, see the Bibliography.

To get started quickly, follow these procedures in order.

1. Follow the installation procedure outlined in the next section.

2. Following the installation, you should read the remainder of this chapter to become fa-
miliar with the Project Manager and the MPW Shell. This is especially important if you
have never used the MPW Shell before.

3. After finishing this chapter, you will be ready to begin using Aztec C68k to build
your Own program.

4. If you decide to do your development outside the Project Manager, using either a
makefile or the command line directly, you’ll need to refer to the Compiler and Linker
chapters for correct option usage.

MPW Shell 2-30

5. See the ROM Tutorial chapter for information on transferring your program to a
ROM system.

| 2 ~4 Aztec C68k ROM Reference Manual

Installing Aztec C68k ROM
Installation is relatively straightforward with the new Aztec Install program. It copies over the
necessary files for the Aztec package and the MPW Shell on to your hard disk. Before you begin
using it though, be sure to read the README file on the first disk. Any final notes about instal-
lation or the Aztec package in general will be found there.

It is impossible to skip the Aztec Install program and selectively copy over files. The files are
stored on the disk in compressed form, and the Aztec Install program is used to uncompress
them as they are copied over. There is an Aztec LZH program which can be used in an emer-
gency to decompress individual files on the disks.

The Aztec Install program is found on the first disk of your package. Be sure to copy the pro-
gram to your hard disk and launch it from there. When requested, insert your distribution
disks. A folder called MPW will be created on your hard disk if there is not one there already.
By default, this will be in the root directory of the specified hard disk, unless the hard disk
name is followed by a directory name. The program will proceed to copy all the files from your
floppy disks and place them in the appropriate folders on your hard disk.

Note to owners of Manx’s Aztec C Macintosh compiler: the Macintosh native compiler is in-
stalled in a folder called “Aztec,” which is within the “MPW” folder. The Aztec C68k ROM com-

piler is installed in a folder called “C68K ROM” within the “MPW” folder.

Files Supplied

Apple’s basic MPW package is included on the diskettes shipped to you. Only the files neces-
sary to use Aztec C68K under MPW are installed. Tools for native Mac development are not.

The following is a brief description of the principal Aztec files included in your package:

The Tools folder

The main programs:

cc68 Aztec C compiler
as68 Aztec assembler
1n68 Aztec linker

Additional tools:

obd68 object code dumper
hex68 Intel hex code generator
srec68 Motorola S-record generator
tekhex Tektronix extended tekhex generator
1b68 object file librarian
ord68 orders object modules for a library
cnm68 examines object files

Cincludes folder

Header files in the CIncludes folder contain prototype definitions, and declarations to
support the C language as defined by the ANSI standard. The only ones you have to in-

MPW Shell 2-5

clude in your program are the ones required by the library functions you use, specified
by the documentation.

A set of libraries has been built with the default register options for testing, however,
you will probably want to generate your own, using register options that fit your appli-
cations.

c.lib main C library
m.lib IEEE floating point library
m§8.lib 68881 math coprocessor library

The CObiects folder:

Default startup code. You will probably want to modify the startup code to fit your ap-
plication.

After the Manx Install program has been run, you should find the MPW folder with the
following folder structure inside it:

LA
| CIncludes | | Projects | | CLibraries

Figure 2 - 1 -~- MPW Folder Structure

2-6 Aztec C68k ROM Reference Manual

Verification

To verify that your Aztec C68k MPW package is properly installed, enter the MPW shell by dou-
ble clicking on its icon in the MPW folder. From in the MPW shell enter the following:

C68 <Enter>

Be sure to press the <enter> key on the keypad, NOT the <return> key. An alternative is to hold
down the <CMD> key and press <return>. A banner similar to this should appear in the Work-

sheet window:

Aztec C68k/ROM 5.2

Copyright 1992 by Manx Software Systems, Inc.

No input file was specified!

If You Have a Problem

If you have followed the above instructions and are still having difficulty, then you should:

1. Reinstall Your Program

Try the Install program again. Was there a fail message you missed? Be sure there is enough
space on your hard disk.

2. Check Your Disks

Aztec C includes a CHECK program and Checklist to help you determine whether your disk
contents are complete and accurate, or if your disks have been corrupted.

Aztec C uses the CHECK program to identify each file by assigning a unique number to it. You
use the Checklist file to compare the files and make sure that we sent you all the files to which

you are entitled. After you have run the CHECK program, report any discrepancies to Technical
Support.

You can make this comparison in either of two ways.

A. Turn on your machine and enter the Finder. To verify that all files have been in-
cluded:

1. Insert the first disk into your disk drive. Click once on the Checklist icon and se-
lect Print from the Finder File menu. This will give you the Checklist file in hard-
copy format.

2. Display the contents of the first disk on the screen. To do this, double click on
each folder, then select By Name from the Finder View menu.

3. Compare the list on the screen with your hardcopy list.

B. Turn on your machine and enter the Finder. To verify that all files have been included
AND that nothing has been corrupted:

MPW Shell 2 - 7 :

1. Insert the first disk into your disk drive. Click once on the Checklist icon and se-
lect Print from the Finder File menu. This will give you the Checklist file in hard-
copy format.

2. Run the CHECK program for each file on the disk, as follows:

a. Copy the Check program to your hard disk (found on the first disk which
came with your original Aztec C package).Double click on the Check icon to
run it. A dialogue window will appear on your screen; this window is similar
to the standard Macintosh File Requester.

b. Insert your first MPW disk into the disk drive.

c. Click on Do All. A CRC for each of the files will be displayed.

d. Use your hardcopy to compare the checksum numbers.

e. Click Ok to display the next file. (Do not be alarmed if some files take
longer than others to display.) Continue until all files have been checked. You
can stop at any point by clicking on CANCEL. To check an individual file,
double click on the file to be checked. Repeat this procedure for each of your
MPW disks.

f. Click on Quit to exit.

3. Call Technical Support

If your Aztec C system is still not functioning, contact Technical Support using the
guidelines found in the Technical Support chapter of your Aztec C documentation.

Aztec C68k ROM Reference Manual

The Manx Project Manager

Two Managers in One

The Manx Project Manager allows you to work on a project level or a program level. The project
level can handle different types of programs made up of one or more source files. The program
level deals with compiling and linking a single-file program.

What the Project Manager Manages

Besides acting as an interface to MPW, the project manager takes care of organizing your directo-
ries and files. It does this by opening a new folder for each project and placing all related pro-
grams into it. The folder in which all these project folders are opened is called Projects and is
found in the C68k ROM folder. The following is a map of this organization:

r :
é% File Edit View Special Color 7:15 El

hd EPREIEE

37 items 39 397K indisk 17,463K available hy

Hilts: —

MPYW System Folder Applelink HyperCard

MPL

15 items 59,397K indisk 17,463K available

ey: Sgtets:

ba [_]
MERLE

C6SKROM MP? Shell Scripts Tools

C68kKROM

7 items 59 397K in disk 17,463K available

HHH
Projects Cincludes COb jects CLibraries

= projects OE
1 item 59,397K indisk 17,463K available

fy

ot ll
] ee Trash

Figure 2 - 2 -- ROMProject Menu Selections

The project manager also keeps track of when you last ‘built’ the current project. If you altered
any of the source files since then, it will be sure to recompile those files before linking the pro-
gram.

Finally, the project manager asks for and remembers the type of program you are building. It
uses this information to select the proper compiler, linker, and hexer options for the specified
program type. For the options used, refer to the section “Program Types” later in this chapter.

MPW Shell 2-9 |

When you click on ROMProject it offers the menu selections shown below in figure 2-3.

r

« File Edit Find Mark Window Directory Rite

hd:MPW:Worksheet = New Project
Open Project ,

Modifa Proiech

* Welcome to the wonderful world of Aztec C and MPW. Bulld Project
No Project

MPW Shell

For a quick start try using the <ROMProject> menu |
* build a sample program or create your own.

Compile
* For help with any command or tool, type Help fol lor
* by the tool name. For example to get help with thx
* 68K C compiler select Help C68 and hit the enter key.

Help C68

* For a graphical interface to any command or tool, use
* the Commando interface by entering the name of the
* tool and holding down the option key when hitting
the enter key. An alternate method is to follow the
* command name with the ellipsis character Coption-; key>.
* For example to access the compiler select C68... and hit
*# the enter key.

C
o
v
e
r
t

e
e
r
m
o
n
e
n
a

e
m
e
n
e
c
e
n
n
r
e
e
e
s

P
r
e
e

e
a
e

e
n
n
e
s
e
r

W
e
n
n
e
n
n
s
e
n
e
r
c
s

a
b
e

r
s
c
s
r
e
e
n
e
e
e

Figure 2 - 3 --- ROMProgram Choices

After you choose to either start a New Project or Open a previous one, the Manx Project Man-
ager changes its name to that of the chosen project and then enables the Build and Modify
menu items. Clicking on Build will compile and link all the necessary files to produce a RO-
Mable program. If you need to add or delete files to the project, or change its type or name, use
Modify Project. The Drop Source and Add Source items in Modify Project work together in al-
lowing you to remove and add files from the project without actually deleting the files from the
disk.

When a project is opened the Manx Project Manager also adds to the project menu the names of
the .c and .a68 files in that project. Clicking on the name of a file in the menu will open that file
if it is still closed, or simply bring its window to the front if it is already opened. The No Project
item switches to the program manager. Finally, Compile lets you compile just the front most
window apart from the rest of the project.

NOTE: Source file names must have either a .c or .a68 extension to be recognized by the Manx
Project Manager. It will not accept any others.

About the Program Manager 0

The Manx Project Manager is completely contained in the last menu item of MPW. As pre-
viously mentioned it is first entitled ROMProject. Figure 2-3 above shows the screen after click-
ing on it. To change to the program manager, choose No Project. The Manx Project Manager
will now be entitled <ROMProgram>.

2-10 Aztec C68k ROM Reference Manual

When you click on the ROMProgram item you will see the choices as illustrated in Figure 2-4
below:

°
—_ " @ File Edit Find Mark Window Directory Rate ie

hd:MPW:Worksheet S=jaeai ge luo =
MPw Shell] Open Program

Risiii

@ Welcome to the wonderful world of Aztec C and MPH. Project

@# For a quick start try using the «ROMProject> menu to
® build a sample program or create your own.

® For help with any command or tool, type Help followed
® by the tool name. For example to get help with the Hl
® 68K C compiler select Help C66 and hit the enter key. bie

Help C68

For a graphical interface to any command or tool, use EEE
the Commando interface by entering the name of the He
tool and holding down the option key when hitting yd

command nawe with the ellipsis character Coption-; key).

For example to access the compiler select C66... and hit

®
CJ

s 2

® the enter key. An alternate method is to follow the ee
a

s
the enter key.

Figure 2 - 4 --- ROM Program Choices

As with the project manager, the Manx Project Manager changes its name to that of the chosen
program. It then opens a window for you to begin programming. The Build item, which both

compiles and links your program, would also be enabled at this point. Clicking on the last
choice, Project, restores the former project menu.

Using the Manx Project Manager

When you click on the MPW icon and first enter MPW you are presented with a window called
the WorkSheet. For working in MPW directly this is an important window. For using the Manx
Project Manager it is not. The WorkSheet is an integral part of the MPW environment and is al-
ways present, but not used by the Manx Project Manager in any way. You can go right to the
Project menu item and click on it to begin working.

Starting a New Project involves specifying 3 things: its name, the files that are to be part of it,
and the build options. The Manx Project Manager uses the Macintosh Commando interface to
gather this information from you. With this interface you can hold down the mouse button
while pointing at an option on the screen and get information about it in the Help box. After set-
ting up your project, the Manx Project Manager opens windows for you to begin working.

At this point you will find useful the other MPW menu items besides ROM Project. Edit and
Find access some key editing and searching functions that like most Macintosh facilities are self-
explanatory and easily used. The Window menu item offers another means to pull a window to
the front and also provides a list of the currently opened windows. The left most menu item is
File. But before mentioning its use, a discussion on files in general is necessary.

MPW Shell 2-11,

Files and Windows

Although the relationship between files and windows in MPW is fundamentally simple, it
could cause some confusion if not fully understood. A file exists on your disk. When it is
opened it is assigned a window of its own in MPW. When a window is closed that you worked
in, MPW will give you an opportunity to save it back to the file on disk. If you choose not to,
understand, you will lose all the work you have done. Also, if no work was actually done in the
window, MPW assumes there is no need to even ask you if you want to save it.

A special case of this relationship is when a new file is created. MPW opens a window for the
file but does not create the file on disk until it is first saved. This can cause some confusion
when you use New Project. The project manager will open as many windows as there were
source files specified when you first start a project with New Project. If however you work in
only one of them in that MPW session, MPW will not create the others on disk and the project
manager will forget about them. You can always use Modify Project to create new source files
later during a project so there really is no problem here. But be aware when first specifying files
in New Project that those files will be lost to the project manager that do not have anything
typed into their associated windows.

The File menu item of MPW is typically used to open and save files. With the Manx Project
Manager, file opening is completely taken care of for all .c, -h, and .a68 files. You might want to
use the File menu to save your files periodically during your work session. If you have not
saved your work by the time you exit MPW, you will be given a chance to do so as MPW closes
the windows for exiting. Because the Manx Project Manager does not handle closing and saving
files, this is something you must pay particular attention to.

Output from the Manx Project Manager
When building your project, the Manx Project Manager opens a special window called
AztecC.err. This will be updated with information as to what files are being compiled, etc. If
any errors occur, these will also be placed in this window. Compiler and Assembler errors are
written in such a way that selecting a line and hitting <enter> will result in the file being
opened and the line containing the error being highlighted. By default, the first error will be se-
lected,and executed to position you in the source at the location of the error. The AztecC.err
window is for diagnostic output and therefore would not typically need to be saved.

Program Types and Options

When the Manx Project Manager builds a program, it sets various options depending on the
type of program specified. One of three types of programs can be built, based on the hexer
used. It can be the Intel hex which uses the hex68 utility. A second choice is Motorola SRec,
which uses srec68. The third type is Tektronix Tekhex, which uses the tekhex utility. In addition
to the type of program, you must specify several other options including the registers to be
used, the location of code and data, and the size of the ROM chip. These are the basic options
necessary in order to build a ROM program. If you have requirements beyond this, you will
probably have to use a makefile to build your program.

Files in the project manager are listed in alphabetical order. The primary reason this is of impor-
tant is for ordering object files for linking. In order to have your startup code linked in first, it
has to have a name that comes alphabetically before any other source file. An easy way to ac-
complish this is to start it with an underscore.

2-12 : Aztec C68k ROM Reference Manual

Customization

The Project Manager attempts to give a graphical interface for the most commonly used features

in the compiler, assembler, linker, and hexers. With this being the case, you may find a need to

use a feature not directly supported. If this is the case, you can customize your project build.

When you open a new project, the Project Manager creates a makefile using the options you

specified. The makefile created has the same name as the project with a make extension. This

file can easily be edited to conform to your specific needs. Compiler, assembler, linker, and

hexer options can easily be modified by changing the values for CFLAGS, AFLAGS, LFLAGS,

and HFLAGS.

After customizing the makefile, remember not to select the Modify option in the Project Man-

ager. If you modify the project, the makefile will be overwritten and your customizations will

be lost.

MPW Shell 2- 13.

The MPW Worksheet
MPW comes up in a window called the WorkSheet. This window is the focal point, or home
base of the environment. You would not edit any of your programs in this window. Instead,
you would use it to issue commands and keep a storehouse of frequently used commands. Be-
cause the WorkSheet is saved automatically, you carry its contents from session to session.

From the WorkSheet you could use the mouse and menu bar to create a new file for your pro-
gram. Upon doing so you would be in another window opened for that file. The number of win-
dows you open is limited only by the amount of RAM you have. To go from one window to the
other you need to only click on a visible portion of a window, or use the Window menu item.

You execute a command in MPW by typing it in and then pressing the <enter> key - NOT the
<return> key. The <enter> key turns any line in any window into a command line. You can eas-
ily reissue a command by selecting it with the mouse and pressing <enter>.

To compile a program, type C68 and the program name. MPW will compile the file of that
name including any changes made to it but not yet saved. You invoke the linker by typing 1n68
and the object file name, which is the program name with a .r extension.

As far as discovering more about the commands and options while using MPW, the HELP com-
mand and the Commando interface will prove invaluable. You can type “HELP commands’ to
see a complete list of commands. You can also type ‘HELP <command name>’ to find out about
the options offered for that command. And by just typing HELP’ alone you will see all the
other categories of information you can get help on.

You invoke the interactive Commando interface by either following the command name with an
elipsis (OPT-;), or by holding down the <option> key while pressing the <enter> key. The op-
tions for a command are displayed in a dialog box which allows you to find out more about
each one before selecting it.

Aztec C68k ROM Reference Manual

Executing Worksheet Commands

Simple Commands

NOTE: In the following examples, <enter> designates the enter key on the numeric keypad,
which is used to signal MPW commands.

If you are not in the MPW Shell at this time, double-click on the MPW Shell icon in the MPW
folder on your hard disk to enter it.

The Files Command

One of the most common MPW commands is the Files command. From the worksheet, type:

Files <enter>

This will list all the files contained in the current directory. For more detailed information on the
files in the current directory, you can type:

Files -l <enter>

This will display complete information about each file, including the flag attributes, file size, file
creator, creation date, file type, etc. A header at the top of the file list will describe each field.
Note that many files may have any one of a variety of extensions. These extensions are there for
your convenience, to indicate file types by name. See Figure 2-5 for a complete listing of the file
extensions that are common in the Aztec C system under the MPW Shell.

Extension File Contents

c c source file
.O object or relative file
+h include or header file
.a68 68000 assembly language source file
lib library
sym symbol table for an executable file
lst assembler listing
dbg symbolic debugger
no extension linker generated command file

Figure 2 - § -—File Extensions under MPW Shell

| MPW Shell

You can also pass arguments to the Files commands. For example, you can tell Files the name of
a folder whose contents you wish to examine. To see the contents of the tools folder under the
MPW folder, type:

Files tools <enter>

The contents of any directory can be listed at any time by using the files command with the ap-
propriate path.

Wild cards can also be used with almost every command that allows a file specification. (One
notable exception to this is the Rename command.)

A wild card is a pattern that can match a group of files. For example, if you use the Files com-
mand and type:

Files ?*.c <enter>

all the files that end with a .c extension will be listed. For a complete list of filename generation
wild cards, use the Help selections command.

The Directory Command

The MPW Shell uses the concept of a current directory, which is analogous to the active win-
dow under the Finder. To see the name of your current directory in the MPW Shell, type the
command:

Directory <enter>

The full path name of your current directory, including volume name, will be displayed. You
can also change the MPW Shell’s notion of the current directory. If you type:

Directory "hd:" (substitute your hard disk name for hd)

the current directory will become the root directory of your hard disk.

Type:

Directory <enter>

to confirm this.

Note that you need not always use a full pathname to move within the file system. To reach a
folder beneath your current directory, the command:

Directory FolderName <enter>

will place you there.

The MPW Shell also supports the concept of parent directories. If your current directory was
hd: MPW: Tools, and you wished to reach the parent of this, which is hd :MPW, you would type:

Directory :: <enter>

As a general rule, if a colon is the first character encountered in a pathname, the colon is consid-
ered to be the current directory. If any colons immediately follow the first colon, then each colon
will move you up one level in your file system (toward the root directory). Since the previous

[| 2-16 Aztec C68k ROM Reference Manual

command had two semicolons, you moved up just to the parent directory. To move two levels
up from hd:MPW:Tools to the root directory of hd:, or to the grand-parent directory, type:

Directory ::: <enter>

Try combining the Files and Directory commands now to practice moving around through your

file system.

The Volumes Command

A command related to Directory is Volumes. The Volumes command displays a list of all of the
volumes currently mounted in your system. Therefore, typing:

Volumes <enter>

would result in an output similar to this:

hd:

sys:

The exact names that will be displayed will depend on your system.

The NewFolder Command

The NewFolder command is used for making a new folder, or directory, exactly as the New-
Folder Menu item under the Finder does. To create a new directory under your current direc-
tory, simply enter NewFolder followed by the name for the new directory. For example, to
create a directory named Src under the current directory, you can type:

NewFolder Sre <enter>

The Delete Command

Files can be easily moved around or deleted under MPW using the built in command Delete.

Warning: You can potentially delete your ENTIRE hard disk with a single Delete command, so
use it with CAUTION!

The command

Delete hello.c <enter>

will delete the file named hello .c in the current directory. Remember that most MPW com-
mands can use wild card file parameters, so you could also type

Delete =.c <enter>

to delete all the .c files in the current directory.

Delete can also delete entire directories, including their contents, simply by typing

Delete directoryname <enter>

MPW Shell 2-17—

The Rename Command

The Rename command allows you to rename directories and files to new names. To change the
name of hello.c to myprog.c, type

Rename hello.c myprog.c

Rename is actually a limited form of the Move command.

The Move Command

The Move command allows you to move files around and rename them at will. Depending on
the types of objects you will be moving, Move will act in slightly different ways. The general
form of the command is as follows:

Move object1,{object2,...] target_name

Then,

¢ if target_name is a folder, the specified files (object1, etc.) are moved into that folder.

¢ if target_name is a an existing file, that file will be overwritten by object], which then
becomes the “new” file called target_name.

e if target_name does not exist as either a folder or a file, then the file object1 will be re-
named target_name and nothing will be deleted.

Move can also move entire folders, including their contents, to another folder name. In this
case, however, Move always deletes the Original files.

The Duplicate Command

If you wish to move items around, but not destroy the original copy, then the Duplicate com-
mand should be used. Duplicate is in all other ways identical to the Move command. To copy
Folder hd: MPW: source to Sys: source, type the following:

Duplicate hd:MPW:source Sys:source

The Cancel Command

An important general command you should know about is the Cancel command. It could be is-
sued while any other command is in progress. To execute it press the <CMD-.> keys simultane-
ously.

There are more than 100 commands in MPW. You can get a list of them when you type ‘Help
commands’. Many of them you might never use, but you might want to survey them for possi-
ble use later on.

PW Shell

| 2-18 Aztec _C68k ROM Reference Manual

Of Names, Spaces and Command Arguments

The names of directories and of your hard disk are often used as arguments to commands such
as Directory and Files. If you have any spaces or special characters in these names, it’s best to
remove them. MPW uses the space character as a delimiter and requires you to enclose names
that have spaces in quotation marks.

MPW Path Names

A PATH is simply a specification of exactly where a file is within the file structure. Paths can be
either full or partial.

FULL PATHS give all the information about where a file resides, with nothing implied. A full path
consists of a volume name followed by a colon, then each individual folder, also followed by a
colon, and finally the filename (with no colon).

For example, if you wish to refer to the file Compare, which resides in the Tools folder under
the MPW folder on the volume HD:, then the full path would be

HD :MPW: Tools : Compare

PARTIAL PATHS use the current volume and directory as implied within the path.

For example, if you were already on volume HD: and MPW was your current directory, you
could reference Compare this way

: Tools : Compare

The leading colon explicitly states “this is a partial path, so add this to the current directory for
the full path name.”

You could also specify a partial path that goes up to the parent directory by using two colons.
For example, if your current directory was hd:MPW: Tools, and you wished to get a directory
of the parent, which is hd:MPW, you would type

Directory :: <enter>

As a general rule, if a colon is the first character encountered in a pathname, the colon is consid-
ered to be the current directory. If any colons immediately follow the first colon, then each colon
will move you up one level in your file system (toward the root directory). Since the previous
command had two semicolons, you moved up just to the parent directory. To move two levels
up from hd:MPW:Tools to the root directory of hd:, or to the grand-parent directory, type

Directory ::: <enter>

-4
4

ny

s MP eg
wg
eG

MPW Shell 2-19.

Redirecting Output

Ouput from MPW is usually directed to the top most window. When you type Files, the list of
files would appear in the same window you typed the command in. You could redirect com-
mand output to another window or a disk file with the > character as in the following:

Files > tempdir

You could append to a file by using the >> characters:

Files >>bigdir

If you are not interested at all in the output of a particular command or program, you can direct
it to MPW’s reserved pathname for the null device:

Files > Dev:Null

Special MPW Characters

By holding down the option key and pressing other keys on the keyboard you will see an entire
different set of characters. MPW uses a number of these special characters mainly in selection ex-
pressions for the Find command. The ones presented here apply more to file related commands.
One special character, the elipsis (OPT- ;), has been introduced to you already in conjunction
with the Commando interface. Two more characters that you will find helpful are the following:

¢ Option x is the MPW wildcard character. For example, to see all .c files in a directory
type

Files =.c

NOTE: ? is also a wildcard character, but it matches only a single charcter

e Option d is the MPW ‘escape’ character. For example to treat a space as an actual
space and not as a delimiter in a file name type

Files 5 name

Remember, you could find out about the rest of MPW’s special characters by using the help
command with the characters parameter, as in:

Help characters

2 2-20 Aztec C68k ROM Reference Manual

MPW Help Facilities
The MPW Shell has fairly extensive help facilities which can allow the experienced user to jump
right into using the shell, and is also useful for the novice to explore the environment on his

own. MPW help is based on two commands: Help and Commando.

The Help command essentially displays short textual information about how the MPW Shell

and its built-in commands work. Help can be invoked in several ways:

Help

Display general help

Help commands

Display all MPW Shell commands

Help characters

Display special shell characters

Help patterns

Explain shell regular expressions

Help command

Display info about command

Help shortcuts

Explain shortcuts for commands

Help selections

Explain selection expressions

Commando is a much more elaborate and interactive form of assistance. Commando is typically
invoked by typing any shell command followed immediately by the ellipse character (...). This
character is generated by holding down the option key and pressing the semicolon (;), and not
by typing three periods in a row. For example, to use commando with the find command, type:

find .<enter>

A dialog box similar to that in Figure 2-6 should appear.

From here, you can use commando to dynamically build an MPW Shell command using all of
the command’s various options. The commando dialog box will always consist of three parts:
options, the command line that is being built, and the help box. The options area is where all

the options available for the particular command are displayed and changed. The command
line area simply displays the current command line that is being built, and the help box con-
tains help information for the currently selected item. To get context-sensitive help on any part
of the dialog box, put your mouse there and hold down the mouse button. The help box should
now contain help for the area the mouse is on. As you can see, commando is a highly useful util-
ity for learning command parameters, as well as for executing complex, infrequently used com-
mands.

MPW Shell (2-21 |

w Fe Edit Find Mark Hinda Birectary < RBMPrograr >

hd:MPLW:Worksheet
Commando |

find ..

—Find Options

Selection | | Count | |

Window | } (CO)Count of infinity

Error

—-Command Line
find

~Help [Cancel | Finds a selection of text in a window. The target window is the default
window.

| fix

$.2.2

Figure 2 - 6 -- Commando Dialog

Commando is useful while learning about a command’s options, but can become cumbersome
with frequent use. If you plan to reuse a command with particular options, you can use Com-
mando to help select them, and then store the created command line in the Worksheet for reuse.
This is easily done by pressing both the the option and command keys while clicking on the fi-
nal Commando button. The command will appear in the Worksheet (assuming that is where
you issued it from) and will not be executed. To have it copied to the Worksheet and execute it
at the same time press only the option key.

Compiling from the Command Line ———S———————
An alternative to using the Project Manager is to compile and link your program from the com-
mand line. If you are just getting started, you will probably want to create a working directory
to hold your source. From within the MPW Shell, execute the following three lines to create a
work directory and make it the current directory.

Directory "{C68KROM}"
NewFolder work
Directory work

The MPW editor is a standard text editor similar to other Macintosh editors and word proces-
sors. To create a new file, select New from the File menu or use the CMD-N keyboard equiva-
lent. A standard file dialog box will appear, requesting a file name. Enter the name sample .c
and press return.

2-22 : Aztec C68k ROM Reference Manual

You should now be in a separate window entitled sample .c, with your cursor in the upper left
hand corner of the window. Type in the following C source. It obviously serves no purpose
other than to create an object file.

main() <return>

{ <return>

} <return>

Now click on the Worksheet or use the Window menu to make the Worksheet the active win-

dow. You are now ready to compile the program. To start the compiler from the command
line, type:

C68 sample.c <enter>

The Aztec C compiler should display its banner, with the source file being compiled and assem-
bled. By default, the compiler uses the registers d2-d7/a3-a4 for register variables; d0-d1/a0-a2
for temporary registers, a5 for the global data pointer, and a6 for the local frame pointer. If you
want to change the default usage, you must use the -yr, -yt, -yd, and -yf options respectively on
the compile line. Following the compilation, you should have an object module name sam-
ple.r, ready to be linked. You can type:

Files sample.r <enter>

to confirm that sample .r was indeed created.

By default, the linker places the start of the code at address zero, followed by the initialized

data and unititialized data. In our example, we will link sample to have the code start at
0x1000 with the data starting at 0x5000 and the unititialized data next. To do this use the fol-
lowing link line:

1n68 -xc 1000 -xd 5000 sample.r -lc

The linker will display its banner, followed by information about the size of the code, data and
uninitialized data.

The final step is to convert the memory image generated by the linker into a format that can be
loaded into a ROM or ICE. Three tools exists to do this, srec68 generates Motorola S-records,
hex68 generates Intel Hex records, and tekhex68 generates Tektronix Extended Tek Hex code.
In this example, we will use hex68 to generate Intel Hex records for 4k ROMs. The command
line to do this is:

hex68 -p4 sample

This will generate files with the name sample and extension .h00, .h01, etc. for each 4k
ROM chip.

Customization - Ours and Yours

Manx has modified the basic Apple MPW environment by adding its menu item, the Manx Pro-
ject Manager (listed as <ROMProject>), and eliminating two other menu items; Project and
Build. This was done by changing the command files automatically ran by MPW.

MPW Shell 2-23 7

There are four points at which MPW automatically runs command files: at startup, before
launching an application that runs under the finder, when returning from such an application
and upon quitting MPW. The most important of these files are the ones run at startup.

When MPW starts up it runs a command file called Startup found in the main MPW directory.
Although it is the only mandatory file run at startup time Apple reccommends that you do not
touch it. This is because future updates of MPW might include a modified version of this file. In-
stead, they suggest that you modify the file run by Startup called UserStartup. Manx has put
most of its modifications in a file even further down the chain called UserStartupe C68kROM.
This file and any others starting with UserStartupe are called from Startup.

The following is a list of all the MPW command files and when they are automatically run:

StartUp upon entering MPW from the Finder
UserStartUp called by Startup
Suspend before launching a program that runs under the Finder
Resume when returning back to MPW after completing a program
Quit upon exiting MPW

A lot of what is modified in the startup files are the shell variables. These variables are used to
store the pathnames of certain files and folders along with other aspects of the environment,
such as the current font, the current tab size, etc. You can change them with the Set and Unset
commands.

For example, the path searched for include files is contained in the variable called appropiately
enough, INCL68. To see its value, that is the name of the path currently searched, type:

Set INCL68

You can set a variable by typing set followed by the variable’s name and the new value, as in:

Set INCL68 HD:MPW:C68kROM:CIncludes

To see all the variables recognized by MPW, simply type Set.

| | 2-24 Aztec C68k ROM Reference Manual

-~MPW Tools
This section discusses the following MPW tools:

= Compare |

m@ Ctags

@ FindTag

m@ Make

@ MarkC

m PopTags

m Search

| MPW Shell

MPW Shell 22-25

Compare

SYNTAX

Compare [option...] file1 [file2]

DESCRIPTION

Compare’s purpose is to compare two text files line by line and display any differences found.
If fle2 is omitted, file] is compared to standard input. Mismatched lines, descriptive messages,
and editor commands to edit the mismatches are written to standard output. Any comparison
criteria that affects individual lines [i.e. -b, -c, -1] will also be seen when they are displayed.
This tool is similar to the Aztec diff utility.

The available options are as follows:

-b Treat multiple spaces and/or tabs as a single space, and ignore trailing blanks.

-c coll-col2[L,col1-col2]

Compare only between the specified columns in each file. If the second range is
omitted, the first applies to both files.

-d depth

Set the maximum number of lines that will be compared in attempting to resyn-
chronize mismatches. The depth may be from 1 to 1000. The default value for dy-
namic grouping is 1000, while for static grouping it is 25.

-e context

Up to the specified number of context lines will be displayed both before and after
any mismatches or extra lines. Values between 1 and 100 are allowed.

-B groupingFactor

Specify the grouping factor. For dynamic grouping, this option specifies the mini-
mum number of lines that must match for two files to be considered resynchron-
ized. The default is 2, with a range of 2 to 1000 being allowed. For static grouping
[i.e., see -s option], this option specifies a fixed grouping factor. The default is 3,
with a range of 1 to 1000 allowed.

-h width

Display the mismatches in a horizontal format. The width specifies the total hori-
zontal width in characters. Acceptable widths are from 70 to 255.

-|_ Ignore any case differences. The default is case sensitive.

-m Suppress the display of mismatched and extra lines. Only the mismatch messages and
editor commands are displayed.

-n__ Prevent the writing out of any messages if both files match.

MPW Shell

i 2-26 Aztec C68k ROM Reference Manual

-p Write Compare’s version information to diagnostic output.

-s_ Usea static (fixed) grouping factor set with the -g option.

-t Ignore trailing spaces or tabs.

-v_ Display differences in a format that allows the output to be cut and pasted into a source
file.

-x Suppress tab expansion. Default is to use the tab setting kept in the file or a value of 4 if
one is not found.

| MPW Shell

MPW Shell 2-27 -

CTags

SYNTAX

CTIags [option] file

DESCRIPTION

CTags creates a file named "tags" in your working directory for use with the MPW tool Find-
Tag. CTags reads the C files given on the command line and extracts relevant tags from them.
Relevant tags are such things as all subroutine names, global variables, typedef statements,
structure and union names and fields, and enumerated type constant names and elements -
loosely speaking, nearly everything of global scope. CTags also will recognize most C preproc-
essor constructs: all #define statements are tagged, #include files are read and their contents
tagged, #ifdef and #ifndef conditional compile flags are respected, and #line statements are
obeyed to set a different filename and line number.

CTags will also recognize C++ source if given the -cplusplus command line option. For C++,
CTags will tag all classes, class members, methods, constructors and destructors, and user-de-
fined operators, in addition to the standard C tags mentioned above.

Options

-c Ignore conditional compile instructions (#if, #ifdef, # ifndef, #else, #endif). Default is
to honor conditional compile instructions.

-cplusplus

Parse and tag C++ source. (This option automatically #defines cplusplus.)

-d A flag argument of the form -d name or -d name=string causes name to be defined for
purposes of conditional compilation. The value , if given, is ignored; the form is in-
cluded for compatibility with the C compiler . If no name is supplied, the argument is
ignored; this can be useful in makefiles.

-decl

Also tag subroutine declarations. A subroutine declaration, as opposed to its defini-
tion, is any reference such as

int foo ();

This includes function prototypes. Declarations are normally ignored in order to
avoid duplicate tags, under the assumption that the subroutine definition will be
found and tagged elsewhere.

Note: This flag has effect only for declarations not marked extern or static; see also the options -
extern and -static.

-e Also tag objects declared extern . (Such objects are normally ignored in order to avoid
duplicate tags.)

2-28. Aztec C68k ROM Reference Manual

-f |Onsystems where the word FILE is a #define constant in the stdio include file, CTags
considers FILE to be a data type. The
-f flag tells CTags not to consider FILE to be a type. See -t below. In Aztec C68k ROM,
where FILE is a typedef, special treatment is unnecessary and the -f flag is ignored.

-h_ This flag turns off the automatic tagging of all #include files ("header files") mentioned
in the C source. Default is to tag all #include files. See also -local.

-i_ Specify an additional directory pathname to be used for #include statements. This op-
tion may be used more than once to specify an ordered list of pathnames.

-k_ Keep all tags from the existing tags file which have filenames given on the command
line; remove all others. This is the inverse of the -r flag. Note that tags from include files
will be removed unless those filenames are given on the command line also. May not be
combined with -r or -update flags.

-1 Ignore #line instructions.

-local

Read and tag "local" include files: those specified by full pathname, or found with-
out recourse to the search path. "System" include files are not tagged. Default is to
tag all #include files. See also -h.

-noduptypedefs

Suppresses tagging of typedefs of these forms:

typedef struct foo foo;

typedef struct foo {...} foo;

typedef union foo foo;

typedef union foo {...} foo;

typedef enum foo foo;

typedef enum foo {...} foo;

The intent is to avoid duplicate tags, e.g. one for the struct foo and one for the
typedef foo.

-0 Specify a filename for the output. This overrides the default filename "tags".

-p Write progress information to diagnostic output.

-r Remove all tags from the existing tags file which have filenames given on the command
line. Do not read any of the named files, or add any new tags. May not be combined
with -k or -update flags.

-s_ Also tag objects declared static . (Such objects are normally ignored in order to avoid
duplicate tags.)

-t Anargument of the form -t name causes name to be recognized as a data type. This is
useful when non-standard datatypes in the source code are #define’d rather than
typedef'd. (Note that the datatype FILE, which on some systems occurs as a #define in
-h, is already known to CTags. It is unnecessary but harmless to specify -t FILE on the
command line. See -f above.)

MPW Shell 2-29 |
-u Tag all #undef lines. By default these are ignored as they tend to produce duplicate tags.

-update

Update the existing tags file with tags from the files named on the command line,
or create a new tags file if none exists. (Default is to delete the existing tags file if
any, losing all tags from files not on the command line.) May not be combined with
-k or -r flags.

-w_ Enable warnings, including warnings of duplicate tags. Warnings are normally sup-
pressed because duplicate tags are common, and are adequately handled by the Find-
Tag tool.

Tags In Detail

A "tags" file must be a text file containing one entry per line, sorted alphabetically but case-in-
sensitive, with no blank lines. Each entry has three fields: left to right, they are the tag field, the
filename field, and the command field. They must be separated by single tabs, and the tag and file-
name fields may not contain tabs (although the command field may; it is terminated by the end
of the line). The tag field is an arbitrary string (for user convenience, of course, it should be a
mnemonic). The filename field should contain the name of an existing file (absolute or relative
pathname). The command field should contain a regular expression. The effect of a FindTag com-
mand is that an entry in the tags file having the given tagname in its tag field is found; a win-
dow is then opened (if necessary) to the file named in the second field; that window is made
active; finally, a search is done in that window using the search expression given in the third
field. (In fact, FindTag’s output is simply the commands to open the window and perform the
search. FindTag should be invoked from an MPW Shell script or menu to do the full job.)

Since FindTag’s is an MPW tool, for header files it uses the MPW Clncludes environment vari-
able instead of the Aztec INCL68. Therefore in order to use it with Aztec C you need to set the
CiIncludes to the same as INCL68 using:

Set CIncludes {INCL68}

Diagnostics

CTags will complain to the diagnostic output about anything it perceives as a syntax error, as
well as problems in opening or writing files.

Examples

The FindTag command can follow a search path to find the entry it wants. Typically you should
have it look first in your local tags file, then in a comprehensive tags file in (CIncludes}. This fea-
ture allows you to keep your local tags files small, yet still access any tag from the system in-
clude files. The include directories can be tagged in its entirety (if you have sufficient memory)
with this command:

CTags -decl -extern -h -noduptypedefs -o atags =.h

Aztec C68k ROM Reference Manual

Such a file for MPW 3.0 is a little under 500Kbytes in size, and contains over 6000 tags. (Be pa-
tient; it takes a while to complete.)

With a full tags files for the include directories in place, a folder of your own source code can be
tageed:

CTags -local -o atags =.c

The -local flag suppresses tagging the files in {CIncludes} and thus keeps the size of the local

tags file down.

In a makefile, you can easily do incremental updates:

tags f =.c
CTags -local -update -o atags {NewerDeps}

Now the command Make tags will produce a CTags command to update the tags file with
fresh tags from only those source files more recently modified than the tags file.

The file atags is used instead of the default tags in order to distinguish between the tags file
used with the MPW Shell editor and the tags file used by the z editor. If you’re not using the z
editor, you can use the default name tags instead.

Limitations

Since CTags must read un-preprocessed C source, it is necessarily naive about C syntax. For this
reason, complex constructs can fool it into tagging, ignoring, or complaining about inappropri-
ate items. All C source should be syntactically correct before being given to CTags.

CTags treats most #if statements as if they were #ifdef statements. There is no general expres-
sion evaluator. CTags does not recognize #elif. (Version 1.5.4 and later can handle the simplest
case:

#if£ FOO

where FOO is defined as 0 or 1.

See Also

FindTag - MPW tool to access the files created by CTags.

MPW Shell

Findtag

SYNTAX

Findtag [option] # Use dialog to get tag.

Findtag [option] tag # Find the specified tag.

FindTag [option] -f window # The tag is the selected text in # the given window.

Findtag [option] -a # The tag is the selected text in # the active window.

DESCRIPTION

A TAG is a word associated with a location in a text file. (For example, the name of a subroutine
is associated with the source code for the subroutine.) Given a tag, Findtag writes MPW com-
mands to standard output which will open an MPW window onto the associated file and select
and display the associated location. If the given tag occurs more than once in the tags database,
Findtag will prompt the user to select one of the alternatives in a dialog window.

There are four methods of specifying the tag:

e The tag may be given on the command line.

e -f window specifies the name of a window. FindTag uses that window’s selection for
the tag. If the selection is empty, Findtag will prompt for the tag in a dialog window.

e -a specifies the active window. FindTag uses the active window’s selection for the tag.
If the selection is empty, Findtag will prompt for the tag in a dialog window.

e If neither a tag nor a window is given, Findtag will prompt for a tag in a dialog win-
dow.

The Tags Stack

FindTag can be used in conjunction with the tool PopTag. Each time you use FindTag, the cur-
rent selection and window (the place you're tagging from) are saved on a stack. PopTag pops the last item off of that stack and returns you to that window and selection. This means you can use FindTag to trace down a chain of subroutine calls in source code, then use PopTag to "re- turn" from the routines. See the manual page for PopTag.

The stack is limited to 25 entries but always accepts a new entry by removing the oldest entry
to make space.

The Tags Database

The association between the tag, the filename, and the location in the file is kept in databases specified by the shell variable "TAGSPATH". "TAGSPATH" is a comma-separated list of file-

Aztec C68k ROM Reference Manual

names of tags databases that you wish to search. If TAGSPATH is not exported, the default is to
only search the file tags in the working directory.

The database format is simple: each entry is on a single line, and must contain three fields sepa-
rated by single tab characters. The first field is the tag, the second the filename (relative or abso-
lute pathname). These fields may not contain tabs; the filename should not be quoted. The third
field extends to the end of the line and may contain tabs. It should be a regular expression
which will find the associated line of text within the file. Characters special to the MPW Shell
must be trebly escaped (e.g. ddd*)to prevent their interpretation by the Shell. As an example:

main findtag.c /emain ddd(argcddd, argvddd) ~/

will find the source for main by opening the file findtag.c and looking for the string main
(arge, argv). Tab characters separate the three fields.

The MPW tool CTags will create a tags database for C source files.

Input

If the -f option is used, the selection in the named window is used as input.

If the -a option is used, the selection in the active window is used as input.

If neither a tag nor a window is specified, the user is prompted for input in a dialog window.

If multiple matching entries are found in the tags file(s), the user is allowed to choose among
them in a dialog window.

Output

MPW commands are written to standard output.

Diagnostics

Errors and warnings are written to diagnostic output.

Status
Always returns 0.

Options

ea Use the active window’s selection as a tag.

-f window

Name of a window containing a selection to use as a tag.

-n Suppresses use of the TagStack feature.

| MPW Shell

MPW Shell 2-33
-p Suppresses the search for a tag, but pushes the current location onto the TagStack. (This

allows you to go elsewhere by any means you like, then return by using PopTag.)

-q__- By default, filenames in the output are quoted, and the quotes themselves escaped, to in-
sulate them from the Shell. This is appropriate for use in the menu items given below in
Examples. The -q flag suppresses the escapes (but not the quotes): this form of the out-
put is suitable for direct execution.

-s__ By default, searching for tags stops at the first file in (TagsPath} containin g matching en-
tries. The -s flag causes search to continue until all files in {TagsPath} have been
searched. This option is recommended for users of object-oriented languages.

Examples

Add the following to your UserStartupe Aztec script to add the FindTag and PopTag items to
your Find menu:

Set TagsPath “atags, {C68kROM}Cincludes:atags"
Export TagsPath
Unset TagStack
Export TagStack

AddMenu Find "Find Tag/E"d
‘alias doFindTag "‘Findtag -a 2>>{WorkSheet}‘'";9
(doFindTag) 2>Dev:Null;’

AddMenu Find "Pop Tag/P"d
‘alias doPopTag "'‘PopTag‘";90
(doPopTag) 2Dev:Null;’

AddMenu Find "Push Position/nx"d
‘alias doPushPos "'Findtag -a -p 2>>{WorkSheet}‘";9
(doPushPos) 2>Dev:Null;’

The file atags is used instead of the default tags in order to distinguish between the tags file
used with the MPW Shell editor and the tags file used by the z editor. If you’re not using the z
editor, you can use the default name tags instead.

Now to find a tag, simply double-click on a word (a subroutine name, say) in your source file,
and choose FindTag from the menu or type CMD-E. MPW will open the window and select the
text associated with the word you double-clicked.

Or you can single-click, so that nothing is selected , and choose FindTag: you'll be prompted to
type in the tag you want.

see Also
CTags, PopTag.

| 2-34 Aztec C68k ROM Reference Manual

Make

SYNTAX
Make [option...] [targetFile...]

DESCRIPTION
The purpose of Make is to generate commands that can be executed to build up-to-date ver-
sions of the specified target files. If no target files are specified, the first target on the left side of
a dependency rule in the makefile will be built. The power of Make is that it builds only those
parts of a program that need rebuilding based on the dependencies given in the makefile. Input
comes from a file called makefile unless the -f option is used. The commands necessary to re-
build the targets are written to standard output. This tool is similar to the Aztec make utility,

but expects a slightly different syntax.

The available options are as follows:

-d name[=value]

Define a variable with the given value. Command line definitions take precedence
over definitions found in the actual makefile.

-e Cause everything to be rebuilt that is part of the specified or default target, whether it is
out of date or not.

-f makefile

Read dependency information from the file makefile. If this option is repeated, the
specified files are treated as a single file.

-p Write progress information to diagnostic output.

-r [target]

Find the root (or roots) for which the target is a dependency. If no target is given, all
the roots (i.e., top level targets) are found.

-s Write out a dependency graph using indentation to show the structure of target depend-
encies.

-t Update the dates of those files that would require rebuilding, without rebuilding them.
May be used if the files were just changed to add or adjust comments.

-u_ Write a list of targets mentioned in the makefile that are not in any way prerequisites.

-v_ Write verbose output to diagnostic output.

-w Suppress warning messages such as date in the future or circular dependencies.

Note: Refer to the Utilities chapter in this manual for details on the difference in syntax be-
tween the Aztec version of make and the MPW version of Make documented here.

MPW Shell 2-35

MarkC

SYNTAX

MarkC file...

DESCRIPTION

MarkC marks function definitions in C source files. The name of the function is used as the
mark which may then be accessed from the Mark menu. This provides a quick way of jumping
to a particular function defintion in a large file. Marking all the C source files in a directory is es-
pecially useful with the new Browse... facility, included in MPW 3.2, that has been added to the
Mark menu.

Parsing is limited to function definitions that begin on the left margin. This is normal in C and
therefore shouldn’t prove to be a limitation.

Type

MPW Script.

Input

C source files ending with .c or .h.

Output

Warning if no source file is written to standard output.

Diagnostics

None.

Status

Returns 0 when successful. Returns 1 when no file name parameters are given. Returns 2 when
a file not having a .c or .h suffix is encountered without the user confirming.

See Also

FindTags, CTags

2 ~36 - Aztec C68k ROM Reference Manual

SYNTAX

PopTag

DESCRIPTION

PopTag works in conjunction with the tool FindTag, which must be described first: FindTag
helps you navigate source code by automatically opening a window and setting the selection to
a point of interest within that window (see FindTag , Ctags, PTags, ATags). FindTag pushes your
current window and selection onto a stack before moving to your new window and selection.
PopTag removes the latest item from the stack and returns you to that window and selection.

Using FindTag, you can trace down a chain of subroutine calls in your source code; using Pop-
Tag, you can "return" from the calls, re-tracing your steps.

Type

MPW Tool.

Input

None.

Output

MPW commands are written to standard output.

Diagnostics

None.

Status
Always returns 0.

Examples

See the FindTag examples for adding the "Pop Tag" item to your Find menu by altering your
UserStartupe Aztec script.

See Also

FindTag, CTags.

MPW Shell 2-37 —-

Search

SYNTAX

Search [-s | -i] [-r] [-q] [-f file] /pattern/ [file...

DESCRIPTION

Search is a tool that searches the input files, or standard input if no files are given, for lines that
contain the pattern given by the regular expression /pattern/. The lines with matches are writ-
ten to standard output along with their filename and line number. This tool is similar to the Az-
tec grep utility.

The available options are as follows:

-r_ Write the lines not matching the pattern.

-q Donot prepend lines with their filename and linenumber.

-s Do a case-sensitive search overriding {CaseSensitive} variable.

-i Doacase-insensitive search overriding {CaseSensitive} variable.

-f file

Write all lines not going to standard output into this file.

| W Shel

ROM Tourortat

Chapter 3 - ROM Tutorial

This chapter describes how to quickly start using your Aztec C68k/ROM cross development software. This chapter assumes that you have already followed the installation procedure pro- vided in Chapter 2, MPW Shell. It discusses the following topics:

e Customizing the library functions

¢ Creating a ROM program

¢ How to proceed from this point.

Ideally, this chapter should consist of a cookbook set of steps that you can follow to get started using Aztec C68k/ROM. However, since one of those Steps, customizing the library, is system dependent, we recommend that you read the rest of this chapter to get an idea of how pro- grams are developed using Aztec C68k/ROM. Then you can read the Library Customization chapter, make any needed revisions to the library function source, and generate your libraries. Finally, you can translate a C program into a ROM-burnable format, by following the "Creating a Program” steps in this chapter.

3-2 - Aztec C68k ROM Reference Manual

Customizing the Libraries
Aztec C68k/ROM provides many library functions. Many of the functions are system inde-
pendent and some are system dependent.

Before you can use Aztec C68k/ROM, you will probably have to customize some of the system
dependent library functions. The Library Customization chapter discusses some of the changes
that you might want to make to the library; it also describes how to regenerate the libraries after

you have customized the library source.

ROM Tutorial 3-3

Creating a Program
In this section we will lead you through the steps necessary to translate a C source program
named exmp1 .c into hex code that can be burned into ROM. Fora diagram of this procedure,
see Figure 2-1. The code for this program will reside in ROM, beginning at memory location 0.
Its data will reside in RAM, beginning at location 08000.

Step 0: Create the Source Program >

The first step to creating a C program is, of course, to create a disk file containing its source. For
this, you can use any text editor. We'll assume the source exists, in the file exmpl.c.

Steps 1 and 2: Compile and Assemble SS ee ee
To compile and assemble exmp1 .c enter the following command:

c68 exmpl.c

This first starts the c68 compiler, which translates the C source that is in exmpl.c into assem-
bly language source. When done, c68 starts the as68 assembler. as68 assembles the assem-
bly language source for the sample program, translating it into object code and writing the
object code to the file exmpl.xr in the current directory. When done, as68 deletes the file that
contains the assembly language source, since it is no longer needed.

There are several compiler options that define a module’s characteristics. For this example, we
have let these options assume their default values. Later in this chapter we introduce some of
these characteristics.

Step 3:Link RN
The object code version of the exmp1 program must next be linked to needed functions that
are in the c.lib library of object modules and converted into a loadable format.

Before linking, make sure that the CLIB68 environment variable is set to the name of the direc- tory that contains the Aztec C68k/ROM object module library. Normally this is taken care of in the UserStartupe C68kROM Script.

The command to link the sample program is:

1n68 +d 8000 -o exmpl exmpl.r -le

There’s several parameters to this command, so let’s go through them, one at a time.

[8-4. Aztec C68k ROM Reference Manual

Positioning Code, Data, and Stack

The +d, +u, +c, +S, & +) Options

The linker organizes a program into three sections:

Code Contains the program’s executable code.
Initialized data Contains those of the program’s global and static variables that are

assigned an initial value (e.g. static int var=1);
Uninitialized data Contains the program’s other global and static variables.

The linker supports options that allow you to position these segments in memory. The +d
8000 option used in the above command sets the starting address of the program’s initialized

data to 0x8000.

The linker’s +u option sets the starting address of the program’s uninitialized data. This option
wasn’t used in the above command, so the uninitialized data begins at its default address; i.e.
immediately above the initialized data.

The linker’s +c option sets the starting address of the program’s code segment. This option
wasn’t used in the above command, so the code area begins at its default starting address; i.e. lo-

cation 0.

The linker’s +s and +j options set the starting address of the program’s stack pointer and the
size of the stack area. These options weren’t used in the above command, so they assume their
default values: the stack area begins immediately after the uninitialized data area, the area is 2k
bytes long, and the stack pointer initially points at the top of this area.

Naming the Output File: the -o Option

The -o exmp1 option tells the linker to place the linked program in the file named exmp1. If
this option wasn’t used, the linker would have derived the name of the output file from that of
the first object module, by deleting its extension.

The Input Object Module Files

exmpl .r is the name of the file whose object module is to be included in the program.

Libraries and the -I Option

The -l1e option tells the linker to search the c.1ib library that’s in the directory defined by
the CLIB68 environment variable for needed functions.

As you can see, the -1 option doesn’t completely define the name of a library file; the linker gen-
erates the complete name by taking the letters that follow the -l, prepending them with the
value of the CLIB68 environment variable, and appending the letters .lib. Thus, when CLIB68
has the value hd: MPW:c68kROM:Clibraries:,the -1lc option specifies the library whose
complete filename is hd:MPW:c68kROM:Clibraries:c.lib.

1 ROM Tutorial

ROM Tutorial 3-5

During the link step, the linker will search the libraries specified to it for modules containin g
needed functions; when such a module is found, the linker will include the module in the ex-
ecutable file it is building.

All C programs need to be linked with c.1ib (or an equivalent, as described below). This li-
brary contains the non-floating point functions that are defined in the Library Functions chap-
ter. It also contains "internal" functions that are called by compiler-generated code.

If a program performs floating point operations, it must also be linked with the m. 1ib math li-
brary (or an equivalent, as described below).

When a program is linked with a math library, that library must be specified before c.1ib. For
example, if exmp1.c performed floating point, the following would link it:

in68 +d8000 -o exmpl exmpl.r -1m -le

Putting startup Code First

The startup code for a program sets up the program’s environment and then calls the program's
main function. This code is system dependent, but usually does operations such as the follow-
ing:

¢ initialize the program’s data segments
e set up the stack

e initialize the heap

e initialize the interrupt vector table.

c.lib contains a generic startup routine. The command that was used above to link the sample
program caused the linker to place the startup module in the middle of the program and to cre-
ate an instruction at the beginning of the program’s code segment that jumps to the startup
code.

It is often necessary to put a program’s startup code at the beginning of the program. For exam-
ple, the startup code might contain a table of interrupt vectors that is to be located at the begin-
ning of memory. This can be done by linking in the startup module first. The following
command demonstrates how a startup module that is in the file startup.r can be placed at
the beginning of the exmp1 program’s code segment:

in6é8 +d 8000 -o exmpl startup.r exmpl.r -lc

When using the Project manager menu in the MPW Shell, the object files are linked in alphabeti-
cal order. In this case make sure the name of the file containing the startup code begins with a
leading underscore (_) which will force it to be linked in first

step 4: Format Conversion ———
The next step is to convert the memory image generated by the linker into a format that can be loaded into ROM or an ICE. Aztec C68k/ROM has utilities for converting the program gener-
ated by the linker into several formats, including Motorola S-records, Intel hex records, Tek-
tronix Extended Tek Hex Code, and UNIX System 5 COFF format. In the following discussion,
we'll generate S-records using srecé68.

3-6. Aztec C68k ROM Reference Manual

To generate Motorola S-records for the program, enter the following command:

srec68 exmpl

When the records generated by this command are fed into a ROM programmer, the resulting
ROM code will contain the program’s code segment followed by a copy of its initialized data
segment.

Note: when the system is started, its RAM contains random values; the Aztec startup routine
sets up the RAM-resident initialized data segment from the ROM-resident copy.

These commands generate one or more files, each of which contains S-records for one 2kb, suc-

cessively-higher addressed section of the program’s code and initialized data. The files are
exmp1 .m00 (containing first ROM chip’s S-records), exmp1.m01 (containing the secona ROM
chip’s S-records), and so on.

srecé68 has several additional features. For example, you can explicitly define the size of each
ROM chip, using the -p option; and you can have it place a program’s even-addressed and odd-
addressed bytes in separate ROM chips, using the -e and -o options.

For complete descriptions of srec68 and the other conversion utilities, see the Utilities chapter.

ROM Tutorial 3-7

Special Features of Aztec C68k/ROM
That concludes our step-by-step, cookbook introduction to Aztec C68k/ROM. In the following
paragraphs, we want to introduce several special features of Aztec C68k/ROM.

Memory Models

Aztec C68k/ROM allows you to define, when you compile and assemble a module, the "mem-
ory model" that the module will use. A module’s memory model affects the module’s speed,
size, and the amount of data it can access. By default, a module will use the small code, small

data memory model, which makes it small and fast, but you can override this using compiler
and assembler options.

Here’s where to go for more information.

e For a complete description of memory models, see the Compiler chapter.

e The compiler options for selecting a module’s memory model are -mc and -md; they
are discussed in the "Options" section of the Compiler chapter;

e The assembler options for selecting the default memory model are -c and -d; they are
discussed in the "Options" section of the Assembler chapter;

e The assembler directives near and far also define memory models; they are discussed
in the "Programmer Information” section of the Assembler chapter;

e The creation of libraries is discussed in the Library Customization chapter.

Int Size

Aztec C68k/ROM allows you to define, when you compile a module, the size of the int data
type. By default, an int is 32 bits long, but the compiler’s -ps option can be used to make ints 16

bits long.

Libraries

Several libraries are provided with Aztec C68k/ROM, each of which provides different combina-

tions of the following attributes:

1.) Type of Functions:

functions that perform non-floating point operations (c)

functions that use a 68881 to perform floating point (m8)

ROM Tutorial

3-8 Aztec C68k ROM Reference Manual

functions that use software to perform floating point operations (m)

2.) Memory Module Used: either small code/ small data, or large code/ large data

3.) int Size: either 16 bits or 32 bits

The name of the library is derived from the particular combination of these three attributes that
it uses by concatenating the following codes:

e c, m8, or m depending on the types of functions that are in the library;

e 1 If the library’s modules use the large code/ large data memory model;

¢ 16 if the library’s modules use 16 bit ints.

Thus, c.lib contains non-floating point functions that use 32 bit ints and the small code/ small
data memory model. And m8116.lib contains 68881 functions that use 16 bit ints and the large

code/ large data model.

Register Usage

By default, a program’s register usage is as follows:

e Temporary results: data registers d0-d1; address registers a0-a2.

e Register variables: data registers d2-d7; address registers a3 and a4.

e Small model support register: a5.
e Frame pointer: a6.

e Stack pointer: a7.

Using the compiler’s -y options, you can define the registers used for temporary results, register
variables, and the frame pointer.

Using the linker’s +r option, you can define the register used to support modules that use a
small memory model.

The makefiles that are provided with Aztec C68k/ROM generate libraries whose modules use
the default registers.

ROM Tutorial 23 7 - 9 .

Where To Go From Here
In this chapter, we’ve just begun to describe the features of Aztec C68k/ROM.

One chapter that you must read is the Library Customization chapter, which discusses how to
customize the Aztec C68k/ROM library functions for your system.

For more information on the sections of a program, see the Linker chapter.

The srec68 and hex68 programs support several options that haven't been discussed in this in-
troduction. For a complete description of these programs, see the Utilities chapter.

The Technical Information chapter contains miscellaneous information on topics, including the
writing of assembly language functions and interrupt handlers.

Refer to the Compiler, Assembler, and Linker chapters, to become familiar with all the options
that these programs provide.

ROM Tutorial

Comper

Chapter 4- Compiler

This chapter describes how to use the Aztec C68k/ROM Cross Compiler to produce code for
68000-based target systems. It supports the full C language as defined by the American National
Standards Institute (ANSI).

This chapter is organized into the following sections:

e Operating Instructions

¢ Compiler Options

e Programming Considerations

e Error Handling

4-2 | Aztec C68k ROM Reference Manual

Operating Instructions
Use the following command to invoke the Aztec C compiler:

c68 [options] input file

where [options] specifies optional parameters, and input file is the name of the file containing the
C source program. Options can appear either before or after the name of the C source file.

The compiler reads C source statements from input file, translates it to assembly language, and
writes the results to an output file.

When the compiler is finished, it activates the Manx assembler, unless option -a is used which
tells the compiler not to start the assembler. The assembler translates the assembly language
source into relocatable object code, writes the result to another file, and deletes the assembly lan-
guage source file.

The Input File

When you invoke the compiler, the C source input file can be specified as a simple filename or
as a complete path specification. The default assumes that the input file is in the current direc-
tory. For example, if the file prog1 .c contains C source and is in the directory
dsk2:db:source, you can compile it by using the following command:

c68 dsk2:db:source:progl.c

If the directory containing this file is also the current directory, you could compile the file with
the command

c68 progl.c

And if the current directory is db, on the dsk2: drive, you could compile the file with the com-
mand

c68 :source:progl.c

Source Filename Extensions

If the command that starts the compiler does not specify the extension of the file containing the
C source, the compiler assumes that the extension is .c. For example, the command

c68 prog

compiles a file named prog.c in the current directory.

Although .c is the recommended file extension name, it is not mandatory. The specification

c68 prog.prg

Compiler 4- 3 -

reads the file prog.prg from the current directory as the input to the compiler. To specify a pro-
gram with no file extension at all, you must follow the name with a dot, as in

c68 noext.

The Output Files

Creating An Object Code File

Normally, when you compile a C program you are interested in the relocatable object code for
the program, and not in its assembly language source. Because of this, the compiler by default
writes the assembly language source for a C program to an intermediate file and then automat-
ically starts the assembler. The assembler then translates the assembly language source to relo-
catable object code, writes this code to a file, and erases the intermediate file.

By default, the object code generated by a c68 started assembly is sent to a file whose name is
derived from that of the file containing the C source by changing its extension to .r. This file is
placed in the directory that contains the C source file. For example, if the compiler is started
with the command

c68 prog.c

the file prog. x will be created, containing the relocatable object code for the program.

The name of the file containing the object code created by a compiler-started assembler can also
be explicitly specified when the compiler is started, using the compiler’s -o option. For example,
the command

c68 -o myobj.rel prog.c

compiles and assembles the C source that’s in the file prog .c, writing the object code to the file
myobj.rel.

When the compiler is going to automatically start the assembler, the compiler by default writes
the assembly language source to a temporary file named ctmpxxx.xxx, where the x’s are replaced
by digits in such a way that the name becomes unique. This temporary file is placed in the direc-
tory specified by the environment variable CCTEMP. The default directory for CCTEMP is
"{boot }", the root directory of your boot drive.

When CCTEMP exists, the complete name of the temporary file is generated by simply prefix-
ing its value to the ctmpxxx.xxx name. For example, if CCTEMP has the value

ram:

then temporary files are placed on the ram: volume.

An environment variable is created using the set command. For example, the following com- mands create CCTEMP and assigns it the value ram: .

set CCTEMP ram:

Export CCTEMP

| 4-4 Aztec C68k ROM Reference Manual

Creating Just An Assembly Language File

There are some programs for which you don’t want the compiler to automatically start the as-
sembler. For example, you may want to modify the assembly language generated by the com-
piler for a particular program. In such cases, you can use the compiler’s -a option to prevent the
compiler from starting the assembler.

When you compile a program using the -a option, you can tell the compiler the name and loca-
tion of the file to which it should write the assembly language source, using the -o option.

If you don’t use the -o option but do use the -a option, the compiler will send the assembly lan-
guage source to a file whose name is derived from that of the C source file by changing the ex-
tension to .a and placing this file in the same directory as the one that contains the C source file.

For example, the command

c68 -a prog.c

compiles, without assembling, the C source that is in prog.c, sending the assembly language
source tO prog.a.

As another example, the command

c68 -a -o temp.asm prog.c

compiles, without assembling, the C source that isin prog.c, sending the assembly language
source to the file temp.asm.

When the -a option is used, the option -t causes the compiler to include the C source statements
as comments in the assembly language source.

#include Files

Searching For #include Files

You can make the compiler search for #include files in a sequence of directories, thus allowing
source files and #include files to be contained in different directories.

Directories can be specified with the -i compiler option, and with the INCL68 environment vari-
able. The maximum number of searched areas is eight.

If the file name in the #include statement specifies a directory, just that directory is searched.

The -i option.

A -i option defines a single directory to be searched. The area descriptor follows the -i, with no
intervening blanks.

For example, the following -i option tells the compiler to search the voll:az68:include di-
rectory:

-1 voll:az68:include

Compiler 45
The INCL68 Environment Variable

The INCL68 environment variable also defines directories to be searched for #include files. The
string associated with this variable consists of the names of the directories to be searched, with
each pair separated by a semicolon. For example, the following command sets INCL68 so that
the compiler will search for include files in directories voll: include and voll:az68 :in-
clude:

set INCL68=voll: include; voll:az68:include

The Search Order For Include Files

Directories are searched in the following order:

e If the #include statement delimited the filename with the double quote character, ",
the current directory on the default drive is searched. If delimited by angle brackets,
< and >, this area is not automatically searched.

¢ The directories defined in -i options are searched, in the order listed on the command
line.

e The directories defined in the INCL68 environment variable are searched, in the order
listed.

Precompiled header Files

To shorten compilation time, the compiler supports precompiled #include files.

To use this feature, you first compile frequently-used header files, specifying the -ho option; this
causes the compiler to write its symbol table, which contains information about the contents of
the header files, to a disk file. Then, when you compile a module that #includes some of these
header files, you specify the -hi option; this causes the compiler to load into its symbol table the
pre-compiled symbol table information about the header files. When the compiler encounters a
#include statement of a header file for which it has already loaded pre-compiled symbol table
information, it ignores the include statement. This ignoring occurs even if the #include file was nested within another #include file in the C source from which the pre-compiled symbol table
was generated.

The compiler does much less work when it loads pre-compiled information into its symbol ta- ble than when it generates the same information from C source, and hence using pre-compiled #include files can considerably shorten the time required to compile a module.

The -ho option tells the compiler to write its symbol table to a file. The name of the file follows the -ho; spaces can optionally separate the -ho and the filename. For example, you might create a file named x.c that consists just of #include statements for all the header files that you want pre-compiled. You could then generate a filenamed include -pre that contains the sym- bol table information for these header files by entering the following command:

c68 -ho include.pre x.c

The -hi option tells the compiler to read pre-compiled symbol table information from a file. The name of the file follows the -hi; spaces can optionally separate the -hi and the filename. For ex- ample, to compile the file prog.c that accesses the header files that were defined in x.c, and

| Ae 6 Aztec C68k ROM Reference Manual

to have the compiler preload the symbol table information for these files from include.pre,
enter the following command:

c68 -hi include.pre prog.c

When reading a pre-compiled header file during compilation of a file, you must take care that
the compiler options used for generating the pre-compiled header file are compatible with those
used for the current compilation.

Only one pre-compiled header file can be read during compilation of a file.

Memory Models

The memory model used by a program determines how the program’s executable code makes
references to code and data. This in turn indirectly determines the amount of code and data that
the program can have, the size of the executable code, and the program’s execution speed.

Before getting into the details of memory models, we want to describe the sections into which a
program is organized. The sections of a program are these:

¢ CODE, containing the program’s executable code;

¢ DATA, containing its global and static data;

¢ STACK, containing its automatic variables, control information, and temporary vari-
ables;

e HEAP, an area from which buffers are dynamically allocated.

There are two attributes to a program’s memory model: one attribute specifies whether the pro-
gram uses the large data or the small data memory model; the other attribute specifies whether
the program uses the large code or small code memory model.

Large Data Versus Small Data

Compiler

The fundamental difference between a large data and a small data program concerns the way
that instructions access data segment data: a large data program accesses the data using posi-
tion-dependent instructions; a small data program accesses the data using position-independent
instructions. An instruction makes position-dependent reference to data in the data segment by
specifying the absolute address of the data; it makes a position-independent reference to data in
the data segment by specifying the location as an offset from a reserved address register. Other
differences in large data and small data programs result from this fundamental difference; these
other differences are:

There is no limit to the amount of global and static data that a large data program can have. A
small data program, on the other hand, can have at most 64k bytes of global and static data.

For a small data program, an address register (which we call the SMALL MODEL SUPPORT REGIS-
TER) must be reserved to point into the middle of the data segment. For a large data program,

an instruction that wants to access data in the data segment contains the absolute address of the
data, and hence doesn’t need this address register.

A code segment is larger when its program uses large data than when it uses small data, be-
cause a reference to data in a data segment occupies a 32-bit field in a large data instruction,
and occupies a 16-bit field in a small data instruction.

A program is slower when it uses large data than when it uses small data, because it takes more
time for an instruction to access data when it specifies the absolute address of the data than
when it specifies the data’s offset from an address register.

Large Code Versus Small Code

The fundamental difference between a large code and a small code program concerns the way
that instructions in the program refer to locations that are located in the code sepment: for a
large code program the reference is made using position-dependent instructions; for a small
code program, the reference is made using position-independent instructions. An instruction
makes position-dependent reference to a code segment location by specifying the absolute ad-
dress of the location; it makes a position-independent reference to a code segment location by
specifying the location as an offset from the current program counter. Other differences in large
data and small data programs result from this fundamental difference; these other differences
are:

The size of a code segment is unlimited for both large code and small code programs. An in-
struction in a large code program can directly call or jump to the location, regardless of its loca-
tion in the code segment.

An instruction in a small code program can only directly call or jump to locations that are
within 32k bytes of the instruction. To allow instructions in small code programs to transfer con-
trol to any location, regardless of its location in the code segment, a ‘jump table", which is lo-
cated in the program’s data segment, is used. If a location to which an instruction wants to
transfer control is more than 32k bytes from the instruction, the transfer is made indirectly, via
the jump table: the instruction calls or jumps to an entry in the jump table, which in turn jumps
to the desired location. A jump instruction in a jump table entry refers to a code segment loca-
tion using an absolute, 32-bit address, and hence can directly access any location in the pro-
gram’s code segment.

When a small code program is linked, the linker automatically builds the jump table: if the loca-
tion to which an instruction wants to transfer control is outside the instruction’s range, the
linker creates a jump table entry that jumps to the location and transforms the pc-relative in-
struction into a position-independent call or jump to the jump table entry.

A code segment can contain data as well as executable code. An instruction ina large code pro-
gram can access data located anywhere in the code segment, because it accesses code segment
data using position-dependent instructions, in which the location is referred to using a 32-bit, ab-
solute address. An instruction in a small code program can only access code segment data that
is located within 32k bytes of the instruction.

For a small code program to access the jump table, an address register needs to be reserved and
set up to point into the middle of the program’s data segment; if the program also uses small
data, the same address register (that is, the SMALL MODEL SUPPORT REGISTER) is used for both
jump table accesses and normal accesses of data segment data. For a large code program, this
address register is not needed for the referencing of locations in the code segment.

| | 4-8 Aztec C68k ROM Reference Manual

A code segment is larger when its program uses large code than when it uses small code, be-
cause instructions that reference code segment locations by specifying an absolute address use a
32-bit field to define the location, whereas instructions that reference data by specifying a pc-
relative address or an offset from an index register use a 16-bit field to define the location.

A program is usually slower when it uses large code than when it uses small code, because it
takes more time for an instruction to reference a code segment location when it specifies the ab-
solute address of the data than when it specifies the location in a pc-relative form.

A large small code program that has lots of indirect transfers of control via the jump table may
not differ much in execution time from a large code version of the same program, since the
small code indirect transfer via the jump table will take more time than the large code direct
transfer.

selecting A Module’s Memory Model

You define the memory model to be used by a module when you compile the module, by speci-
fying or not specifying the following options:

-mc Module uses large code. If this option isn’t specified, the module will use small code.

-md Module uses large data. If this option isn’t specified, the module will use small data.

For example, the following commands compile prog.c to use different memory models:

c68 prog small code, small data

c68 -mc prog large code, small data
c68 -md prog small code, large data
c68 -mc -md large code, large data

Multi-Module Programs

The modules that you link together to form an executable program can use different memory
models, with the following caveat. :

When large data and small data modules are linked together, the linker will create an arbitrarily
large data segment, without attempting to sort the data into those that are accessed by large
data modules and those that are accessed by small data modules. When the program is running,
an address register that you specify at link time will point into the middle of this data segment.
This register is used by the small data modules to access data.

Here's the caveat: data that the small data modules attempt to access must be within 32k bytes
of the location pointed at by this address register. The linker will detect data accesses by small
data modules for which this condition isn’t satisfied, and issue a message. If you get this mes-
Sage, try reordering the order in which the linker encounters them; if that doesn’t solve the prob-
lem, you'll have to recompile the small data modules, using large data.

Compiler 4 -9 . - |

Compiler Options

Option Format

Most of the compiler options are set up as toggles, which means that they can be either on or
off. Most options default to off. The defaults can be changed by creating an environment vari-
able, CCOPTS. Options specified directly with the compile command will override options
specified through the CCOPTS environment variable.

With a few exceptions, options are grouped around a common function. The first letter of an Op-
tion identifies the group. The group letters are:

Assembly language outnut control
Debugging control
Target chip (processor) control
Floating point control
Precompiled header file control
Memory model control
Parser control
Prototype generatio
Optimization control
Warning control
Register control <“

<e

"
O
U
R

S
O

o
D

After the group letter, one or more individual options may be specified. If an individual option
letter occurs and is NOT preceded by a 0 (zero), the associated option is turned on. Multiple in-
dividual options can be specified.

To turn an option off, the character 0 (zero) must appear after the group letter and before the op-
tions to be turned off. For example, -p0t turns trigraphs off and -pt turns trigraphs on.
The 0 remains in effect for the remainder of the options specified after the group letter, or until
a 1 isencountered. Thus -pOtd turns off both the -pt and -~pd options, and -p0td1b

_ turns off the -pt and -pd options and turns on the -pb option.

Combinations of options can be used to produce very specific results. To enable full ANSI syn-
tax checking with the singular exception of trigraphs, for example, you would use the option -
pa0t. The a option of the p group specifies full ANSI which includes trigraphs. The Ot option
turns trigraphs off. Since options are scanned left to right the combination -pa0t would pro-
duce the desired result. -pO0ta would not produce the intended result; since the a option is
scanned after the Ot option, the Ot option would be cancelled. |

CCOPTS Environment Variable

You can specify options to the compiler by using the environment variable CCOPTS. The com-
piler looks at the CCOPTS variable first for its options, then looks at which options were passed
directly to it when it was called. Options passed directly to the compiler override the CCOPTS
environment variable. For example, if the CCOPTS environment variable was set to -ws and
you specified -w0Os asa direct option to the compiler, then the CCOPTS -ws option would
be overridden.

a

4 -10. Aztec C68k ROM Reference Manual

WARNING: Options that require additional arguments must not be specified using the CCOPT
environment variable. These include the -o, -d, -i, and -h options.

The following list describes all the available options. Unless specified, the options default to off.
Options whose descriptions end in an * are described in more detail in the following section.

Option Summary

“3 Options fillowing on command line are interpreted according to the 3.6
compiler option naming convention.

“5 Options following on command line are interpreted as 5.2 compiler op-
tions. Defaults to on. Use to turn off the affects of -3.

-a Do not start the assembler after compilation is done. Just generate an as-
sembler source file. *

-at Same as -a, but also imbed C source statements into the assembly code.

-bd Generate stack depth-checking code on function entry.*

-bs Generate source debugging information.

-c2 Generate 68020 code.*

-d symbol [=value] Define a symbol for the preprocessor.*

-fm Generate code for Manx IFEE floating point. Defaults to on.*

-£8 Generate code for 68881 Floating Point format. *

-hi file Read precompiled symbol table from file. For more information on -hi,
see "Precompiled #include Files" discussed earlier in this chapter.

-ho file Write symbol table to file. For more information on -ho, see the section
“Precompiled #include Files" discussed earlier in this chapter.

-i dir search directory, dir for #include files. For more information, see the sec-
tion "Precompiled #include Files" discussed earlier in this chapter.

-k Enable support for the K&R(Unix V7) specific features of C, and disable
support for the ANSI specific features. See also -pa option.”

-mb Generate the public .begin statement. Defaults to on. *

-mc Generate code that uses the large code memory model. For more infor-
mation see the discussion of memory models in the section "Operating
Instructions”.

-md Generate code that uses the large data memory model.

-me Align strings on word boundaries. This forces all strings to start on an
even address.

Compiler 4- 11.

Put initialized data in the code segment instead of the data segment.*

Align structure elements on word boundary. Defaults to on.

Add more temporary registers to handle a complex expression.*

Put string constants in data segment.

Write output to file. For details, see the section "Operating Instructions”.

Enable support for the ANSI specific features of C, and disable support
for the K&R specific features. Turns off c,d,e,k,o,u suboptions for -p. See
also -k option.*

Make bitfields unsigned by default.*

Allow extra characters after a #endif or #else. Defaults to on.

Allow use of direct functions. For details, see the section “Programming
Considerations". Defaults to on.*

Cause enums to occupy only the amount of space needed. Defaults to
on.*

Enable the use of functions that use Pascal calling conventions. For de-
tails, see the section "Programming Considerations”. Defaults to on.

Make ints 32 bits. Defaults to on. See also -ps option.”

Use old K&R (3.6) preprocessor.

Make characters unsigned by default instead of signed.

Make ints 16 bits long. See also -pl option.

Enable trigraph support.*

Use unsigned preserving rules instead of value preserving."

Cause generated prototypes to use _ PARMS(()) syntax.*

Generate prototypes for all non-static functions defined within the cur-
rent file.

Be quiet.*

Generate prototypes for all static functions defined within the current file.

Be verbose.*

Enable two pass assembly for branch squeezing and other optimizations.

Generate in-line code for the functions strepy(), strcemp(), and strlen().

Compiler
4 ‘ 13 8 7

-ys reglist’ On function entry, always save registers defined by reglist. Default: none.*

-yt’reglist’ For temporary results, use the registers defined by reglist. Default: d0-
d1/a0-a2.*

-yux Define method for translating C symbols to assembler:*

Option Descriptions

Option -3

The option(s) following this option will be interpreted according to version 3.6 syntax. The com-
piler option specification scheme for version 5.2 was reorganized to make it more coherent and
to allow for future requirements. The -3 option is previded to reduce the impact of conversion
on version 3.6 users. The following is a simple example of the use of this option,

cc -3 +x3 +c +d prog.c

There are several fine points to using the -3 option.

The default integer size in version 5 is 32 bits. The default in the version 3 compiler and earlier
versions was 16 bits. The -3 option sets the default integer size to 16 bits to maintain compatibil-
ity. If 32 bit integers are required, then specify the +1 options following the -3 option.

If the -3 option is used, options using version 5 syntax can be specified before the -3 option or
following the -5 option.

The -k option is a special case and can be used anywhere in the option specification list.

The version 3.6 option +x1 is no longer supported.

The version 3.6 table size options, (-e, -z, and the like) are accepted but have no effect. The ver-

sion 5 compiler allocates its internal memory space dynamically.

Setting the CCOPTS environment variable to -3k is a simple effective way to delay changeing
makefiles or other command files that invoke the Aztec C compiler using the old style option
syntax. The command line looks as follows,

set CCOPTS -3k

The -3 option is not a global version 3.6 compatibility switch. Library routines and names have
been changed in some cases to match the ANSI C syntax.

Option -5

The option(s) following this option will be interpreted according to version 5.2 syntax. This op-
tion is used with the -3 option to allow the specification of options using version 5.2 syntax af-
ter the specification of options using version 3.6 syntax. For example:

cc -3 +1 -D GRAPHICS -e1000 -5 -sn prog.c

Aztec C68k ROM Reference Manual

“ws

-wu

“WwW

-ydax

-yfax

-yr'reglist’

Generate an optimized for(;;) loop that places the test at the bottom of
the loop.*

Define the _ C MACROS __ macro to replace some functions with in-
line macro expansions defined in the header files.

If no local variables are created on the stack for a function, do not gener-
ate the link and unlk instructions.*

Perform full optimization. -so is equivalent to -sabfmnprs.

_ Delay the popping of arguments until necessary.*

Automatically allocate registers based on weighted usage counts.*

Find duplicate string literals and replace them with a pointer to the first
occurrence.* |

Automatically allocate registers based on weighted usage counts, but al-
locate to user specified variables first.*

Complain on arguments which do not match the prototype specifica-
tion.*

Generate warnings for old style K&R function definitions.*

Treat warnings as errors.

Do not generate warning for static functions declared but not defined .*

Perform maximum type checking. Equivalent to -waruf.*

Do not generate warnings on direct pointer to pointer conversions.*

Cause pointer/integer conflicts to generate warnings rather than errors.*

Generate a warning if a function is called when a prototype for a func-
tion is not visible.*

Print warnings to the file aztecC.err instead of to the screen.

Warn if function return type does not match declared type.*

Ignore all warnings.

Warn about unused local variables.*

Print all error messages without pausing.

Use address register ax as the data pointer. Default: a5.*

Use address register ax as the frame pointer. Default: a6.*

For register variables, use the registers defined by reglist. Default: d2-
d7/a3-a4.*

| 4-14 Aztec C68k ROM Reference Manual

Option -a

In some programs, you may not want the compiler to start the assembler automatically. For ex-
ample, you may want to modify the assembly language generated by the compiler for a particu-
lar program. In such cases, use compiler option -a, which prevents the compiler from starting
the assembler.

When you specify option -a, by default the compiler sends the assembly language source to a
file whose name is derived from that of the C source file, by changing the extension to .a. This
file is placed in the same directory as the one that contains the C source file. For example, the

command

c68 -a prog.c

compiles, without assembling, the C source that is in prog.c, sending the assembly language
source tO prog.a.

When using option -a, the -o option specifies the name of the file to which the assembly lan-
guage source is sent. For example, the command

c68 -a -o ram:temp.a prog.c

compiles, without assembling, the C source in prog.c, sending the assembly language source
to the file temp .a on the e: drive. When option -a is used, sub-option t causes the com-
piler to include the C source statements as comments in the assembly language source. In other
words, you would use -at to request the compiler to insert the original C source as comment
code when it generates the assembly file.

In other words, if you are interested in the assembler source you would specify option -at
when you start the compiler. This causes the compiler to send the assembly language source to
a file whose name is derived from the file containing the C source, and whose extension is set

to .a. The C source statements are included as comments in the assembly language source. For
example, the command

c68 -at prog.c

compiles prog.c, creating the file prog.a with the C source inserted as comments.

Option -bd

{| Compiler

The -bd option causes the compiler to generate code that performs stack depth-checking on
function entry. To do this the compiler generates a call to the assembly language function
_stkchk(). If _stkchk() detects that the stack has grown too large, it calls the C-language routine

_stkover().

You will need to modify _stkover(), since the supplied version simply returns. For example,

_Stkover() could print an error message and then exit.

Since compiling with -bd causes the code to be bigger and execute slower, the final version of
your program should be compiled without this option.

Compiler
4- | 15 : ; :

Option -c2

The -c2 option causes the compiler to generate 68020 instructions that take advantage of the
68020 and 68030 chips. These instructions will not run on a 68000 or 68010.

Option -d

Option -d defines a symbol in the same way as the preprocessor directive, #define. Its usage is
as follows: |

c68 -dmacro[=text] filename

For example,

c68 -dMAXLEN=1000 prog.c

is equivalent to inserting the following line at the beginning of the program:

#define MAXLEN 1000

The separating space following the -d is optional. The following formats are equivalent:

-d MAXLEN=1000

-dMAXLEN=1000

Since option -d causes a symbol to be defined for the preprocessor, it can be used in conjunction
with the preprocessor directive, #ifdef, to selectively include code in a compilation. A common
example is code such as the following:

#ifdef DEBUG
printf ("value: %d\n", i);

#endif

This debugging code would be included in the compiled source by the following command:

c68 -dDEBUG program.c

When no substitution text is specified, the symbol is defined as the numerical value one.

This capability is useful when small pieces of code must be altered for different operating envi-
ronments. Rather than maintaining two copies of such a program, this compile time switch can
be used to generate the code needed for a specific environment.

Option -fm

The -fm option causes the compiler to generate code that performs floating point operations by
calling internal routines that are in m.lib. Floating point numbers are represented in 68881 for-
mat.

NOTES

¢ When a program’s modules are compiled with -fm, the program must be linked with
the appropriate version of m.lib.

~ 4-16 - Aztec C68k ROM Reference Manual

e All of a program’s modules must use the same -f option.

Option -f8

The -f8 option causes the compiler to generate code that uses the 68881 math co-processor. The
generated code is in-line when possible; otherwise it is in internal routines within versions of
m8.lib and the compiler generates an in-line call to the internal routines.

NOTES

e When a program’s modules are compiled with -fm8, the program must be linked with
the appropriate version of m8.lib.

e All of a program’s modules must use the same -f option.

Option -k

The -k option causes the compiler to adhere to K&R (UNIX version 7) C syntax, rather than
ANSI. This option is useful in compiling code written in Aztec C version 3.6 or some other K&R
conforming compiler. The -k option is equivalent to compiling with the options -pou0a -wo.

Option -mb

The standard startup code for a program is in the versions of c.lib in the rom68 module. .begin
is the name of the entry point in this startup code. By default, to force the linker to include in a
program startup code that is in the rom68 module, the compiler generates a reference to .begin.

The -mb option controls whether or not the compiler generates a reference to .begin:

e -mb causes the compiler to generate a reference to .begin, and

e -m0b prevents the compiler from generating a reference to .begin.

NOTES

The libraries have been compiled with -m0Ob.

Option -mm

The -mm option causes the compiler to put initialized data in the program’s code segment in-
stead of the initialized data segment.

NOTES

This option does not have any effect on the placement of unititialized variables.

one 4-17
Option -mr

This option should only be used when the compiler issues an error messa ge that an expression
is too complex. It increases the number of scratch or temporary registers that are available. On
the down side, it reduces the number of register variables that can be allocated to registers. For
ROM based applications that explicitly specify register usage, the -yt option should be used in
conjunction with the -yr option instead of the -mr option to increase the number of temporary
registers available.

Option -pa

This switch is used to turn on all the ANSI checking and turn off any special extensions. A pro-
gram which compiles with the -pa flag without errors or warning should compile cleanly with
any other ANSI standard C compiler.

Option -pb

This option causes bit fields to be treated as unsigned. The version 5 default is signed. For exam-
ple

int pFlags :3;

by default defines a bit field whose value ranges from -4 to +3. If the -pb option is specified,
the range is from 0 to +7.

Option -pd

The -pd option enables support for direct functions. For more information, see the discussion of
direct functions that appears later in this chapter.

Option -pe

The -pe option places enums in the smallest space that will contain them. For example, the defi-
nition:

enum colors {blue, red, yellow, white};

would use a single byte to represent enums of this type if the -pe option was used. The defini-
tion:

enum countries {USA, England, France=500, Germany}

would use a two byte word to represent enums of this type when using the -pe option. This op-
tion defaults to on.

Compile

4-18— Aztec C68k ROM Reference Manual

Options -pl and -ps long

The -pl and -ps options determine the size of an int

Option int size

-pl 32 bits.
-ps 16 bits

By default, ints are 32 bits long. A program’s modules must all use the same size for ints. This
includes library modules; for more information on the libraries that are provided with Aztec
C68k/ROM, see the ROM Tutorial chapter.

Option -pt

Trigraphs are used to support foreign keyboards and printers. Certain characters are repre-
sented as two question marks followed by another character which indicates the true character
intended. For example, ??= is equivalent to # and ??(is equivalent to [. In most instances, this
simply slows down the compiler, but it must be supported for ANSI compliance.

The -pt option determines whether or not trigraphs are supported: -pt enables trigraphs and
-pOt disables trigraphs. By default, trigraphs are disabled.

Option -pu

Aztec C68k/ROM can evaluate expressions using either value-preserving or unsigned-preserv-
ing rules:

e With value-preserving rules, all data types are assigned a rank. When two operands
are used in an expression, the operand having lesser rank is promoted to the type of
the other operand. The ranking of data types, ordered from lowest to highest is as fol-
lows: char, unsigned char, short, unsigned short, int, unsigned int, long, unsigned
long, float, double, long double. Value-preserving rules are ANSI compatible.

e With unsigned-preserving rules, all signed data types are assigned a rank. When two
operands are used in an expression, the expression is first evaluated as if both oper-
ands are signed, after promoting the lesser-ranked operand to the type of the other op-
erand. Then, if either operand is unsigned, the type of the expression is set to
unsigned. Unsigned preserving rules are K & R compatible.

Value-preserving rules, which the compiler uses by default can be explicitly enabled using the
-p0u option or the -pa option. Unsigned-preserving rules can be enabled using the -pu option
or the -k option.

As an example of the difference in these rules, consider the addition of an unsigned char to a

signed int: for value-preserving rules, the type of the sum is signed int, while for unsigned-pre-
serving rules, it is unsigned int.

| Compiler 4 -19 oo

Option -qa

The -qa argument controls how the prototypes are generated. If -qa is specified, then a proto-
type is generated as:

int func _PARMS((int x, int y));

instead of the default:

int func(int x, int y);

The first form is used for maximum portability to pre-ANSI compilers. The following sequence
is usually placed at the beginning of a header file containing these style prototypes:

#if STDC_

#define PARMS(x) x

#else

#define PARMS(x) ()
#endif

Then, if _STDC__ is defined, the macro will change the above prototype to:

int func (int x, int y);

Otherwise if _STDC__ is not defined, the prototype becomes:

int func ();

which is the standard declaration of an external function defining the type returned by the func-
tion.

Option -qq

The -qq option prevents the compiler from generating the signon message that is normally dis-
played when the compiler starts and the count of the total number of errors that is normally dis-
played before the compiler stops.

Option -qv

The -qv option causes the compiler to be verbose; during compilation it displays information
about what it is doing and before stopping it displays information about memory usage.

Option -sf

Versions prior to 5.0 of the Aztec C compiler always generated for(;;) loops with the tests and in-
crement at the bottom of the loop since this is smaller and faster than having the test and incre-
ment at the top. However, if you had a statement of the type:

for (i=0;i<n;i+t+)

do something;

Aztec C68k ROM Reference Manual

then sdb would treat the increment and the test as part of the statement since there is no “}”. As
a result, if you tried to step through the loop, the first s or t command would cause the entire
loop to be executed.

Now, the compiler defaults to using the previous style for(;;) loop generation where the test and
increment are at the top of the loop and are thus associated with the for(;;) statement, which is
better for sdb. The -sf option, however, generates faster smaller code.

Option -sn

A function’s arguments and auto variables are stored in an area that is reserved for the function,
called the FRAME. Normally, a function accesses the information that is stored in its frame using
a register that is reserved for this purpose, called the FRAME POINTER REGISTER. However, since
there are usually several functions active at any time, and there is only one frame pointer regis-
ter, the frame pointer register must usually be preserved on entry to a function and restored on
exit.

The -sn option causes the compiler to generate code for a function that accesses the function’s
frame using the stack pointer register instead of the frame pointer register. This makes the pro-
gram run faster, since the frame pointer register need not be presented.

Option -sp

The -sp option delays stack cleanup until it is absolutely necessary. This speeds up the program
and makes it smaller, by combining several cleanup operations into one.

Option -sr

Option -sr causes the compiler to automatically assign local variables to machine registers, even
if they were not declared with the register keyword. If there are more local variables than there
are available registers, the compiler will pick the most heavily used variables to place in regis-
ters. This option can produce significant savings in code size and execution speed. This option
works in conjunction with the -sn option since no local storage is required if all variables end
up in registers.

Option -ss

This option finds duplicate string literals and replaces them with a pointer to the first occur-
rence. This also works for common tail subsets of strings. For example, if the two strings high-
way and way are used ina function, the code generated will use a pointer to the fifth letter of
highway for the way string. If the string high also occurred, it would be stored separately,
since it would not match.

Option -su

This is the same as the -sr option, except that -sr ignores any register statements when picking
registers, while -su uses these first and then allocates any remaining registers.

Compiler 4 -21 : 7

Option -wa

Normally, if you call a function in the presence of a prototype, and the type of a function pa-
rameter does not match the type specified in the prototype, the type is coerced as if by assign-
ment. Thus if you pass an int to a function expecting a long, the int is quietly cast to a long.
This option causes the compiler to generate a warning if a quiet cast is generated. This is useful,
since it allows you to change the code to an explicit cast which is portable to pre-ANSI compil-
ers.

Option -wd

This option generates a warning if a function is defined using the old pre-ANSI style definition
of the form:

int function (a, b)
int a, b;

{}

instead of:

int function (int a, int b)
0

This a useful tool for converting your programs to the ANSI standard.

Option -wf

By default, the compiler generates a warning if a static function is declared but not defined. The
-wf option suppresses this warning. The option is used when compiling the output of some
C++ translators, which generate such code.

Option -wl

The -wl option is a short-hand way of specifying the -wa, -wr, and -wu options. It is used to
force the compiler to do maximum type checking.

Option -wn

The -wn option suppresses warning messages for direct pointer to pointer conversions which
do not contain an explicit cast, such as the following code fragment:

int *iptr;
char *eptr;
cptr = iptr;

| 4-22, Aztec C68k ROMRefere. __.asiual

Because the ANSI Standard defines that such direct conversions are illegal, the -pa (full ANSD

option will always generate an error for the above code. To eliminate the error when -pa is speci-
fied, the above could be changed to:

int *iptr;
char *cptr;
eptr = (char*)iptr;

Option -wo

Under ANSI C, pointer-integer conversions are illegal, and are usually a problem when 16 bit
ints are used. The -wo option changes pointer-integer conversion errors into warnings, and has
been included for compatibility with version 3.6.

Option -wp

The -wp option causes the compiler to issue a warning message if a function is called which
does not have a function prototype. This option is useful for determining if a header file is not
being included. For example, if you use strlen() without including string.h, then -wp will gener-
ate a warning since the prototype for strlen() is contained in the string.h header file.

Option -wr

If the -wr option is specified, the compiler will generate a warning message for any functions de-
clared as returning a value but which do not actually return an explicit value. This includes
functions which have an implied int return value. Thus, the function:

£oo ()

{

}
printf ("hello\n") ;

would generate a warning since it should have been declared:

void foo()

since there is no value returned. The warning would be on the }, which is an implicit return

statement.

Option -wu

This option directs the compiler to check for unused local variables within functions and gener-
ates a warning for each that is not used. For example, the function:

void f00()

{
int j;

printf ("hello\n") ;

}

Compiler 4- 23

would generate a warning that j is not used in the function.

Option -ww

Normally the compiler will pause after encountering five errors and ask if compilation should
continue. The -ww option indicates that the compiler should not pause and should continue to
the end of compilation.

Option -yd

Defines small data support register. Defaults to a5.

Option -yf

During execution of a function, a "frame" of information about the function is on the stack. An
address register points to the "frame" of the currently-active function, and is used by compiler-
generated code to access information in this function’s frame.

You can define, using the compiler’s -yf option, the address register that will contain the frame
pointer. The name of this address register follows the -yf, with optional intervening spaces. For
example, the following option tells the compiler to use address register a5 as the frame pointer:

-~yfa5

Note, the register list must be quoted when using the compiler with the MPW Shell, otherwise
the slash (/) will be treated as delimiting a regular expression. If this option isn’t specified, ad-
dress register a6 is used as the frame pointer.

Option -yr

The -yr option defines the registers that can be used for a C function’s register variables. These
registers are specified by the register list that immediately follows the -yt. This list is in stand-
ard 68000 assembly language format.

For example, the following option defines registers d4-d7/a3-a5 as register variables:

-y’ rd4-d7/a3-a5’

Note, the register list must be quoted when using the compiler with the MPW Shell, otherwise
the slash (/) will be treated as delimiting a regular expression. If you don’t specify the -yr Op-
tion, the compiler uses registers d2-d7/a3-a4 for register variables.

Option -ys

On entry to a function, the contents of the registers that hold the function’s register variables are
pushed on the stack. Normally, just those registers that contain the function’s register variables
are saved; for example, if d4-d7/a3-a4 are available for use as register variables but the function
only declares one register variable, then just one register is saved on entry to the function.

4-24 Aztec C68k ROM Reference Manual

The -ys option tells the compiler to generate code that will automatically save specified regis-
ters, whether or not they are used for the function’s register variables. These registers are speci-
fied in a register list that follows the -ys.

For example, the following option tells the compiler to generate code that will automatically
save a5 on entry to a function:

~ysa5

If this option isn’t specified, no extra registers will be saved on entry to a function.

Option -yt

During the execution of compiler-generated code, registers are used to hold temporary values.
This option defines those registers, in a register list that immediately follows the -yt.

For example, if d0-d2/a0 are available for temporaries, the following -yt option would be used:

~yt’d0-d2/a0’

Note, the register list must be quoted when using the compiler with the MPW Shell, otherwise
the slash (/) will be treated as delimiting a regular expression. If this option isn’t specified, regis-
ters d0-d1/a0-a2 will be used for temporaries.

Option -yu

When the compiler translates the name of a function or global variable into assembler, it does so
by pre-pending an underscore to the C name, post-pending an underscore, or by using the C
name as is. The -yux option defines which of these choices the compiler should use, as follows:

Translate C to Assembler by ...

prepending underscore
appending underscore
no underscore S

M

dy

If this option is not used, the compiler will prepend an underscore.

The assembly routines in the library have been written using labels that prepend an underscore.
If either the -ya or -yn options are used, the labels in these routines will have to be modified ac-
cordingly. The library itself must be built using the same underscore option for all modules.

| Compiler

Compiler 4-25

Programming Considerations
The previous sections of this chapter discussed operational features of the compiler, that is, in-
formation that an operator would use to compile a program. In this section, information is pre-
sented which is of use to those who are actually writing the programs.

Supported Language Features

Aztec C68k/ROM is entirely compatible with the ANSI standard for C.

Aztec C68k/ROM also has a number of compiler options and library functions that provide a
fair level of compatibility with UNIX v7, UNIX System 3, UNIX System V, and Xenix.

Data Formats a
The following paragraphs describe the data formats used by Aztec C68k/ROM.

char

Variables of type char are one byte long, and can be signed or unsigned. The default SIGNED-
NESS for char is signed, but can be made unsigned using the -pp option.

When a signed char variable is used in an expression, it is converted to a 16-bit integer by
propagating the most significant bit. Thus, a char variable whose value is between 128 and 255
will appear to be a negative number if used in an expression.

When an unsigned char variable is used in an expression, it is converted to a 16-bit integer in
the range 0 to 255.

A character in a char is in ASCII format.

Aztec C68k/ROM supports character constants that contain more than one character. For exam-
ple, the character constant 1234 is equivalent to the hex value 0x31323334.

NOTE:

A character constant that contains multiple characters is not a string!

pointer

pointer variables are four bytes long.

= Aztec C68k ROM Reference Manual

short

Variables of type short are two bytes long. They can be signed or unsigned, and by default are
signed.

A negative value is stored in two’s complement format. A short is stored in memory with its
least significant byte at the highest numbered address. A -2 stored at location 100 would look
like:

location contents in hex

100 FF
101 | FE

long

Variables of type long occupy four bytes, and can be signed or unsigned.

Negative values are stored in two’s complement format. Longs are stored sequentially with the
most significant byte stored at the lowest memory address and the least significant byte at the
highest memory address.

int

int variables can be either 16 or 32 bits long, as determined by the -ps and -pl options. By de-
fault, ints are 32 bits long.

. float, double, and long double

float, double, and long double numbers are represented using 68881 format occupying respec-
tively 4, 8, and 12 bytes of storage .

Structures

By default, all structure elements are aligned on word boundaries. This can result in the pres-
ence of padding bytes, also known as HOLES, within a structure. For example, consider the fol-
lowing structure:

struct a_struct {
char a char;
ant an int;

};

In this structure, a padding byte will exist between the a_char and an_int elements to in-
sure that an_int falls on an even address boundary. By default, structures are always made to
contain an even number of bytes; this is done, when necessary, by adding padding bytes at the
end of the structure. For structures that contain just characters, this padding at the end of the
Structure can be disabled using the -m0p option.

: Compiler

Compiler 4-27 —

Because of the existence of holes within structures, the sizeof operator will not always return
what you expect. In the above example,

sizeof (a_struct)

would return (assuming 32 bit ints) a 6, not a 5. This may cause problems in porting code from
environments such as the 8086 and 8-bit micros.

Bitfields

Bitfields are fully supported by Aztec C. Bitfields are numbered as per normal 68000 conven-
tion. For example:

struct {

aint bfl :1;

int bf2 :1;

int bf3 :4;

} bf;

Here bf1 will correspond to bit 0 in the first word in the structure bf, bf2 will correspond
to bit 1, and b£3 will correspond to bits 2-5. As many bit fields as possible are put into a sin-
gle word location. If a bitfield entry has a length and position such that it would straddle two
words, it will be moved entirely into the second word, and the remaining bits in the first word
are considered to be undefined.

The default signedness for bitfields can be either signed or unsigned, as determined by the -pe
option. If this option is not used, bitfields are signed by default.

Enum Constants

By default an enum is the size of the smallest possible type (char, short, int, or long) that will
contain all of the enum constants. However, the -p0e compiler option may be used to cause all
enum constants to be represented as ints.

Multibyte Characters and Wide Characters

In order to support character sets that contain more characters that can be represented in an 8-
bit char, ANSI C introduced wide characters and multibyte characters:

e A wide character is the internal representation of an element of such a character set. It
has the type wchar_t which is defined in stddef.h

Internally, Aztec C68k/ROM represents wide characters using ASCII encodings.
wchar_t is typedef’ed to be of type char.

e A multibyte character is the external representation of a wide character. It has the for-
mat of a normal C character string. Aztec C68k/ROM supports the standard American
character set, thus multibyte characters are at most one character long.

| 4-28. Aztec C68k ROM Reference Manual
Be aa ate

size t

The ANSI standard defines a type known as size_t, which is used by a number of library func-
tions, and is also the return type of the sizeof operator. In the include files provided with Aztec
C68k/ROM, size_t is typedef’ed to be of type unsigned long.

ptrdiff_t

The ANSI standard defines a type called ptrdiff_t, which is the type that results from subtract-
ing two pointers. In the stddef.h include file provided with Aztec C68k/ROM, ptrdiff_t is de-
fined to be a long.

symbol Names

Symbol names are significant to 31 characters. This includes external symbols, which are signifi-
cant to 31 characters throughout assembly and linkage.

A C name is converted to assembly language in one of several ways, as defined by the -yu op-
tion:

e An underscore can be prepended to the C name. (This is done by default).
e An underscore can be appended to the C name.

e The assembler name can be the same as the C name.

Predefined Symbols
et

Aztec C68k/ROM pre-defines the following special symbols:

Symbol! Meaning

__FUNC__ Name of function being compiled
_INT32 Defined if ints are 32 bits long
_LARGE_CODE _ Defined if module is compiled with -mc
_LARGE DATA Defined if module is compiled with -md
__ VERSION Set to the compiler version number
AZTEC _C Defined to indicate that the compiler is Aztec
MCH_ROM Defined to indicate that the C68k/ROM version of the Aztec compiler is
ing used

Register Variables

Aztec C68k/ROM lets you define the usage of registers for your programs. By default, registers
are used as follows:

d2-d7/a3-a4 register variables
d0-d1/a0-a2 temporaries

: Compiler

Compiler 4-29 -

a5 smal] model support registers
a6 frame pointer
a7 stack pointer

Register usage can be redefined using the -y options. Your program can explicitly allocate vari-
ables to registers, using the register keyword. You can also let the compiler assign variables to
registers, using the -sr option.

The following types may be declared as register variables: char, unsigned char, short, unsigned
short, int, unsigned int, long, unsigned long, pointer, float, and double.

Register Function Calls

It is possible to use registers to pass arguments to regular functions. To do this use the regcall
pragma:

#pragma regcall([retreg] funcname [(regarg1, regarg2,...,regargn)])

where

retreg is the name of the register in which the function returns its value. If retarg is not
specified, it defaults to dO.

regargl, regarg2, ...,regargn are the names of the registers in which arguments are passed
to the function.

funcname is the name of the function.

The following restrictions apply:

¢ 65881 registers can not be used for function arguments or return value.

¢ arguments and return values can not be of type double, long double, or struct.

Direct Functions

A DIRECT FUNCTION is a function that is assigned a sequence of numbers. When the compiler en-
counters a call to the function, it outputs the numbers instead of outputting code for a normal
function call.

A direct function is defined as follows:

int func0 = vall;

or

int funcO = {vall, vail, ...};

where func is the name of the direct function and val1, val2,... are the numbers that are to be as-
sociated with func.

Each val is output in a two byte field.

4-30 Aztec C68k ROM Reference Manual

Direct functions may be called like any other functions. The only difference is that the address
of a direct function cannot be obtained.

The -pd option determines whether direct functions are supported or not; by default, they are
supported.

In-line Assembly Code

Assembly language code can be interspersed within C source code by surrounding the assem-
bly code with the statements #asm and #endasm. For example,

main ()

{
/* C code */
#asm
; assembly language code
#endasm
/* C code */

}

Since #asm and #endasm are handled by the preprocessor, the compiler does not actually sec
the assembly code. Therefore, to assure that the correct code will be generated, it is a good idea
to precede the #asm with a null statement (i.e., semicolon).

Variable names used within the C source may be referenced by name as follows:

e To access a global or static C variable or function from assembly language, you must
use the same assembly language name that is used by the compiler generated code.
The compiler translates a C name to assembler by either prepending an underscore to
the C name, appending an underscore, or using the C name. By default, the compiler
prepends underscores, but you can override this using the -yu option. For example, to
access a global variable whose C name is count, assembly code would use the name
_count by default.

e To access a C function’s argument and auto variables from assembly language, use the
variables name with prepended %%. The following example illustrates this:

long total;

long sum (short, short);
void add five (short a)

{
long result;

short b;

b=5:

#asm

move .w %%b, - (sp)

move .w %%a,-(sp)

move .1 do, total
#endasm

Compiler 4-31

For a discussion of register usage by assembly language programs, see the Technical Informa-
tion chapter.

Pascal Functions ti I A ah
Using the pascal keyword for a function definition causes the following differences in the code
generated when compared with a normal C function.

e When calling a pascal function, arguments are pushed on the stack in the order in
which they are declared. This means the first argument is pushed on first rather than
last as it is in C.

e The return value, if any, is returned on the stack rather than in a register. This requires
that the caller allocate the appropriate amount of space on the stack for the return
value which will be popped off when the function returns.

e The called pascal function cleans up the stack, removing any arguments that may
have been passed on the stack by the caller. This differs from a C function where it’s
the responsibility of the calling function to clean up the stack.

For those writing code in C, these changes should be transparent. For those writing assembly
code, it is essential to take these things into consideration when using the pascal specifier.

Pascal Character Strings

The format of a character string differs in C and Pascal. In C, the string consists of the charac-
ters with a terminating null character. In Pascal, the first byte of the string contains the number
of characters in the string.

To have the compiler generate a Pascal format character string, begin the string with the se-
quence \P or \p. For example,

“\PThis is a Pascal string”

The string still will be null-terminated, so it can be passed to functions like strepy() and
stremp().

There are two functions that can be used to convert strings from one format to the other: ctop()
converts a string from C to Pascal format, and ptoc() converts a string from Pascal to C format.

For more details on these functions, see their description in the Library Functions chapter of
this manual.

Writing Machine-independent Code | ———— eee
The Aztec family of C compilers are almost entirely compatible. The degree of compatibility
with v7 C, system 3 C, system 5 C, and Xenix C is also extrememly high. There are, however,

. 4 -32 Aztec C68k ROM Reference Manual

some differences. The following paragraphs discuss things you should be aware of when writ-
ing C programs that will run in a variety of environments.

If you want to write C programs that will run on different machines, do not use bit fields or
enumerated data types, and do not pass structures between functions. Some compilers support
these features and some do not.

Compatibility Between Aztec Products

Within releases, code can be easily moved from one implementation of Aztec C to another.

Where release numbers differ code is upward compatible, but some changes may be needed to
move code down to a lower numbered release. The downward compatibility problems can be
eliminated by not using new features of the higher numbered releases.

Sign Extensions For Character Variables

If the declaration of a char variable does not specify whether the variable is signed or unsigned,
the code generated for some machines assumes that the variable is signed and others that it is
unsigned. For example, none of the 8-bit implementations of Aztec C sign extend characters
used in arithmetic computations, whereas all 16- and 32-bit implementations do. This incompati-
bility can be corrected by declaring characters used in arithmetic computations as unsigned, or
by AND’ing characters used in arithmetic expressions with 255(0x££). For instance:

char a=129

int b;

b= (a & Oxff) * 21;

The MPU... Symbols

To simplify the task of writing programs that must have some system dependent code, each of
the Aztec C compilers defines a symbol which identifies the processor on which the compiler-
generated code will run. These symbols, and their corresponding processors are:

Symbol Processor

MPU68000 68000/68008 /68010/68020/68030
MPU8086 8086/8088
MPU80186 80186 /80286
MPU6502 6502/65C02
MPU8080 8080/8085
MPUZ80 Z80/HD64180
MCH_AMIGA Amiga
MCH_MACINTOSH Macintosh

MCH_ATARI_ ST Atari ST
MCH_ROM 68000 ROM system

Only one of these symbols will be defined for a particular compiler.

Compiler

Compiler 4-33

For example, the following program fragment contains several machine-dependent blocks of
code. When the program is compiled for execution on a particular processor, just one of these
blocks will be compiled: the one containing code for that processor.

#if MCH MACINTOSH
/*Macintosh code*/

#elif MPU8086
| /*8086 codex/
 #elif MPU8080

/*8080 code*/
#endif

L 4-340 Aztec C68k ROM Reference Manual

Error Handling
There are two types of compiler errors—fatal and nonfatal. Fatal errors cause the compiler to
make a final statement and stop. Running out of memory and finding no input are examples of
fatal errors. The Error Messages chapter describes all these errors in detail. In addition, the non-
fatal errors are also discussed there.

The compiler reports any errors it finds in the source file, displaying the source line in which
the error was detected, with the underlined text highlighting the approximate point where the

error occurred.

The compiler then displays a line containing the following information:

e name of the source file containing the line

e number of the line within the file

e an error code

e a message describing the error

e symbol that caused the error, when appropriate.

The compiler sends error messages to its standard output device. This can be redirected to a file
in the normal way. Without the redirection of its standard output, the compiler sends error mes-
sages to the console. For example, to compile prog.c and send error messages to the file
prog.err, use the following command:

c68 prog > prog.err

The compiler is not always able to give a precise description of an error. Usually, it must pro-
ceed to the next item in the file to ascertain that an error was encountered. Once an error is
found, it is not obvious how to interpret the subsequent code, since the compiler cannot second-
guess the programmer’s intentions. This may cause it to flag perfectly good syntax as an error.
If errors arise at compile time, you should first correct the first error, since this may clear up
some of the errors that follow.

The best way to attack an error is first to look up the meaning of the error code in the Error
Messages chapter. You will find hints there as to what the problem might be. And you will find
it easier to understand the error and the message if you know why the compiler produced that
particular code. The error codes indicate what the compiler was doing when the error was
found.

ASSEMBLER

Chapter 5- Assembler

The Manx Aztec C Assembler, as68, translates assembly language source statements into relocat- able object code. The assembler supports the instruction sets and addressing modes for the 68000, 68010, 68020, 68030, 68881, and 68851 chips. By default, the assembler supports the 68000; support for other chips is enabled using the machine, mc68881, and/or mc68851 directives.
Assembler source statements are read from an input text file and the object code is written to an output file. A listing file is written if requested. The relocatable object code must be linked by the Aztec C Linker, 1n68, before it can be executed. At linkage time it may be combined with other object files and runtime library routines from system or private libraries. Object modules produced from C source text and assembler source text can be combined at linkage time into a composite module.

Assembly language routines are generally not required when programming in C. Assembly lan- guage routines should only be necessary where critical execution time or critical size require- ments exist. Some system interfacing or low level routines may also require assembler code. Even when assembler use is indicated, it may not be necessary to write separate assembler files, since the compiler supports in-line assembler code.

Information on the MC68000 and MC68020 architecture and instructions can be found in the Motorola MC68000 16/32-bit Microprocessor Programmer's Reference Manual and the Motorola MC68020 32-bit Microprocessor User's Manual, respectively.

This chapter is organized into the following sections:

e Operating Instructions
e Assembler Options
¢ Programmer Information

5-2 ; | Aztec C68k ROM Reference Manual

Operating Instructions
The assembler is started by entering the command line:

as68 [-options] filename

where [-options] specify optional parameters and filename is the name of the file to be assembled.
(The compiler options -a or -at must be used when compiling to prevent the compiler from auto-
matically invoking the assembler.)

The assembler reads assembly source statements from the input file, writes the translated relo-
catable object code to an output file, and if requested writes a listing to an output file. The as-
sembler also merges assembly code from other files upon encountering an include directive.

Input File
a

The input file is a text file that is usually created by a text editor or the Manx Aztec C compiler.
The input file resides in the current directory. If it does not, a fully qualified or partially quali-
fied path name can be prefixed to the filename to designate the source directory. Although .a is
the recommended filename extension, any extension is acceptable.

The specification:

as68 x

assembles the file x.a if it exists. If the file x.a does not exist then the file x is assembled. If
the file x does not exist or if file 2 cannot be assembled, then error messages will be returned.

Object Code File

The assembler writes the object code it produces to a file. By default this file is placed in the di-
rectory that contains the source file, and its name is derived from that of the input file by chang-
ing the extension to .r.

To write the object code to a file in another directory, and/or to a file having another name, use
option -o.

For example, the following command assembles the source in prog. asm, sendin g the object
code to the file new. obj. The latter file is placed in the current directory, because option -o
does not specify otherwise.

as68 -o new.obj prog.asm

Listing File
assess

assis sss ii is isissiinise esas iesmnannnsunanseamansenmnmennamemnomnonnmmnas

If you specify option -1, the assembler produces a listing file with the same root as the input file
and a filename extension of .Ist. The listing file displays the source statements and their ma-

Assembler 3 -3 - .

chine language equivalent. The listing also indicates the relative displacement of each machine
instruction.

Optimizations —————
By default, the assembler performs some optimizations on an assembly language source file, by making two passes through the assembly source file.

Option -n disables some optimization, thereby allowing the assembler to run faster because it makes only a single pass through the source and because it does not optimize the code. How-
ever, usage of the -n option makes the resultant code larger and slower.

Optimizations affect the following instructions:

branches converts long branches to short if possible and deletes branches to the follow-
ing location

movem If there are no registers, deletes the instruction. If there is only one register,
substitutes the shorter move instruction. Note that the move instruction alters
condition codes, while movem does not.

jsr substitutes bsr, if possible.

jmp substitutes bra if possible.

searching For Include Files A A
By default the assembler searches only the current directory for files specified in include state- ments. Using the -i option and the INCL68 environment variable, you can make the assembler also search other directories, thus allowing source files and include files to be contained in differ- ent directories.

If the filename on the include directive specifies a directory or a drive, the assembler will search just the specified area for the file.

Option -i

Option -i defines a single directory to be searched for a file specified in an include statement. The path descriptor follows -i with no intervening blanks. For example, the specification
as68 -ihd:db:include prog

directs the assembler to search the hd:db: include prog area when looking for an include file. If desired, more than one -i may be used, thus defining multiple directories to be searched. °

| 6-4 — Aztec _C68k ROM Reference Manual

INCL68 Environment Variable ©

The INCL68 environment variable, if it exists, also defines directories to be searched for include

files.

The INCL68 variable consists of the names of the directories to be searched, separated by com-

mas. For example, the following command creates the INCL68 environment variable, defining

three directories to be searched:

set INCL68 work: include, work:,sys:include

These directories are (1) the include directory on the work: volume, (2) the root directory on
the work: volume, and (3) the include directory on the sys: volume.

Include Search Order

When the assembler encounters an include statement, it searches directories for the file speci-
fied in the statement in the following order:

(1) current directory;

(2) directories specified in option -i in the order listed on the line that started the
assembler; and

(3) directories specified in the INCL68 environment variable in the order listed

Assembler Bad

Assembler Options
Following is a list of assembler options. Detailed descriptions of these options are provided later
in this chapter.

-a Force total size of code and data to be aligned toa 4-byte boundary
instead of the default 2-byte boundary.

-C Make large code the default code memory model. May be overrid-
den by the near code and/or far code directives. For details on
memory models, see the Compiler chapter.

-d Make large data the default data memory model. May be overrid-
den by the near data and/or far data directives. For details on mem-
ory models, see the Compiler chapter.

-ename[=val] Create an entry in the symbol table for name and assign it the con-
stant value val. If val is not specified, name is assigned the value 1.

-iarea Define an area to be searched for files specified in an include state-
ment.

-] Generate an assembly listing file with a Ist extension.

-n Do not optimize object code.

-o filename Specify name of output object module.

“Vv Verbose option. Generate memory usage Statistics.

-ZAP Used primarily by the Aztec C compiler to direct the assembler to
delete the input file after processing.

L 5-6 | Aztec C68k ROM Reference Manual

Programmer Information
There are four types of Assembler statements, all of which are discussed in the following sec-
tions:

(1) Comments
(2) Executable Instructions

(3) Directives
(4) Macro Calls

Comments

A comment can appear after a semicolon or after the operand field. For example:

; this is a comment

link a6,#.2 ;this is also a comment

A line whose first non-blank character is an asterisk or a semicolon is assumed to be a comment

and is ignored by the assembler.

Executable Instructions

Executable instructions have the general format:

label operation operand comment

Labels

Assembler labels can be any length. External labels are only significant for the first 31 charac-
ters. Any additional characters are ignored. Valid label characters include letters, numbers, or
the special characters “ .” and “_”. A label cannot begin with a digit unless it is a temporary la-
bel. Labels that do not start in the first column require a colon suffix.

Temporary Labels

Temporary labels of the form n$, where n consists of decimal digits, are supported. These labels
are in effect until the the next nontemporary label is encountered. For example:

1$ move.1 (a0)+, (al)+
dbra 40,18

Operations

The assembler recognizes all of the mnemonics found in Motorola’s reference manuals for the
68000, 68020 processors and the 68881, 68851 coprocessors

To specify a length for instructions that support multiple lengths, suffix the instruction mne-
monic with:

B 8-bit operands
.W 16-bit operands
L 32-bit operands

Operands

The operand field consists of one expression, or two expressions separated by a comma with no
embedded spaces. An expression is comprised of register mnemonics, symbols, constants, or
arithmetic combinations of symbols or constants. In addition certain 68020 instructions require
special operand syntax.

Symbols

Symbols or labels represent relocatable or absolute values. An absolute value is one whose
value is known at assembly time. A relocatable value is one whose value is not known until the
program is actually loaded into memory for execution.

Relocatable expressions can only be expressed arithmetically as sums or differences. The differ-
ence between two relocatable expressions is absolute. The result of summing two relocatable ex-
pressions is undefined.

Constants

There are five types of constants: octal, binary, decimal, hexadecimal and String. An octal con- stant is expressed as an @@ followed by a string of digits from the set 0 through 7 such as @@777.

A binary constant is expressed as a % followed by a string of ones and zeroes, such as

$10101 or $11001100

A decimal constant is a string of numbers. A hexadecimal constant is a $ followed by a string of characters made up of numbers or letters from a through f such as

Sffff or $la2e

A string constant is any string of characters enclosed in single quotes such as

"abdc’

Registers

Register mnemonics are:

Name Register

dO, ..., d7 Data registers
a0, ..., a7 Address registers
Sp or a7 Stack pointer

5-8 Aztec C68k ROM Reference Manual

pc Program counter
st Status register
ccr Condition code register
usp User stack pointer

Operand Expressions

The assembler supports operand expressions that use the following operators:

Operator Meaning

+ Addition

- Subtraction & unary minus
* Multiplication
/ Division
>> Shift right
<< Shift left

& And
| Or

! Inclusive or
A Exclusive or
~ Bitwise not

I Modulo

The order of precedence is innermost parenthesis, unary minus, shift, and/or, multiplication /di-
vision, addition/subtraction, bitwise, and logicals.

instruction Comments

A line that contains an instruction or directive can also contain comments; in this case, the com-
ments are placed after the operands of the instruction or directive.The assembler can be in
either of two modes for determining where a comment begins on a line that also contains an in-
struction or a directive. The mode is selected using the blanks directive.

e The first blank character encountered in the operand field signifies the end of the oper-
ands and the beginning of the comments. Thus, in this mode, the operand field cannot
contain embedded blanks. This mode, which is compatible with the Motorola assem-
bler, is the default mode.

e A semicolon signifies the beginning of the comments.

Assembler 5-9 |

Directives ah

The following paragraphs describe the directives that are supported by the assembler.

blanks

blanks {on | off}

blanks {yes | no}
blanks {y I n}

This directive controls whether the assembler accepts blanks or tabs in the operand field of the
instruction.

Setting blanks off treats a blank as the end of the operand field. This is the default setting.

blanks on allows blanks to be placed between any two complete items. With this setting all comments must be preceded by a ;.

clist and noclist

These directives specify whether or not statements should be included in the listing file, when the statements were not assembled as a result of assembler conditional statements. By default, such statements are not listed.

cnop

label cnop n1,n2

This directive is used to force alignment on any boundary at a particular offset.

The first value, n1, is an offset while the second value, n2, specifies the alignment to be used as the base of the offset. For example, to align to an even word boundary:

cnop 0,2

while to align to a long word boundary:

cnop 0,4

and finally to align to a word beyond a long word boundary:

cnop 2,4

Note that this will only take effect relative to the beginning of the current module’s code or data. Normally, the linker will not align individual modules to long word boundaries. So, for this directive to work, it must be the first module linked into the program, or the linker’s -a op- ° tion must be used to force long word alignment of modules.

ssemble

5-10. Aztec C68k ROM Reference Manual

cseg

The code following this directive is placed in the program’s code segment.

dseg

The code following this directive is placed in the program’s initialized data segment.

dc - Define Constant

[label] dcb valuel,value, value ...

[label] dc valuelL,value, value ..

[label] dew valuel[,value, value ..

[label] dc.l valueLvalue, value ...

[label] dc.b "string”
e

eo

t
e
e
d

t
e
n
e
s

le
on
e

b
e
d

The dc directive causes one or more fields of memory to be allocated and initialized. Each value
operand causes one field to be allocated and then to be initialized with the specified valuc. A
value can be an expression. An expression may contain forward references.

Each field for a particular dc directive is the same length. A period followed by b, w, or 1 can be
appended to a directive, defining the field length to be one, two, or four bytes, respectively.

If the field length is not specified in this way, it defaults to two bytes.

Fields that are two or four bytes long are aligned on word boundaries.

The last form listed for de allocates a field having exactly the number of characters in the string,
and places the string in it. Note: Trailing null characters must be explicitly requested, for exam-
ple

dc.b “Hello”,0O.

dcb - Define Constant Block

[label] dcb.b sizelL,value]

[label] dcb sizeL,value]

[label] dcb.w_ size[,value]

[label] dcb.1 size[,value]

The dcb directive allocates a block of storage containing size fields, and initializes each field
with value. If value is not specified, it is assumed to be 0.

Each field for a particular dcb directive is the same length. A period followed by b, w, or 1 can
be appended to a directive, defining the field length to be one, two, or four bytes, respectively.
If the field length is not specified in this way, it defaults to 2 bytes (.w).

Fields that are two or four bytes long are aligned on word boundaries.

i Assembler 5- 11 |

ds - Define Storage

[label] ds.b size
[label] ds size
[label] ds.w _ size

[label] ds.l size

This directive allocates a block of storage containing size fields, and sets each field to 0.

Each field for a particular ds directive is the same length. A period followed by b, w, or I can be appended to a directive, defining the field length to be one, two, or four bytes, respectively.
If the field length is not specified in this way, it defaults to 2 bytes(.w).

Fields that are two or four bytes long are aligned on word boundaries.

entry

[label] entry symbol

This directive defines the entry point of the program. Only one entry can be declared per pro- gram. If no entry point is defined, the first instruction of the first module becomes the default entry point.

end

This directive defines the end of the source statements. Al] files are closed and the assembler ter- minates.

equ

label equ expression

This directive assigns the value of the expression on the right to the label on the left.

equr

label equr register

This directive allows a register to be referenced by an alternate name. Reference to the new name is made without regard to case.

even

[label] even

This directive forces alignment to a word (16 bit) boundary.

[6-12. Aztec C68k ROM Reference Manual

fail

fail

This directive causes the assembler to generate an error for this line. This can be used in macros

which detect an incorrect number of arguments and wish to prevent assembly.

far code

[label] far code

This directive causes the assembler to generate code for the large code memory model. Absolute
addressing will be used. If this directive is not specified, the memory model used will be deter-
mined by the presence or absence of the -c assembler option.

far data

[label] far data

This directive causes the assembler to generate code for the large data memory model. Absolute
addressing will be used. If this directive is not specified, the memory model used will be deter-
mined by the presence or absences of -d assembler option.

freg

label freg register list

This directive is like the reg directive, except that it is used to specify the floating point registers
of the MC68881. The list is either composed of the floating point registers fp0 through fp7 or of
the floating point control registers fper, fpsr, and fpiar, but not both.

ifc and ifnc

ife ‘string1’,’string2’
ifnc ‘string1’,’string2’

These conditionals check to see if the two strings are equal. If they are, ifc will assemble the fol-
lowing code, while ifnc will skip it.

ifd and ifnd

ifd symbol
ifnd symbol

These conditionals check to see if the specified symbol has been defined or not. If symbol has
been defined, then ifd will assemble the following code, while ifnd will not.

| Assembler 5-13 - .

if, else, and endc

if test

[else]

endc

These directives are used to allow conditional assembly of parts of the input file. The general
form of the if test is:

exp
exp== exp || exp=exp
exp '= exp || exp <> exp
’strl’ == ‘str2’ || ‘str1’ ='str2’
‘stri’\= ‘str2’ || ‘str1’ ‘str2’

If the test result is true, then the lines up to an else or endc are assembled. If there is an else,
then lines up to the endc are skipped. The skipped lines are not displayed in the listing file un-
less the clist directive has been used. If the test is false, then lines are skipped until an else or
endc is encountered. If it is an else then the following lines up to an endc are assembled. An un-
defined symbol is treated as having the value 0.

near code

{(label] near code

This directive causes the assembler to generate code for the small code memory model. It is the
default unless the -c option, or far code directive, is used.

near data

(label] near data

This directive causes the assembler to generate code for the small data memory model. It is the
default unless the -d option, or far data directive, is used.

other ifs

ifeq absolute_expression
ifgt absolute_expression
ifge absolute_expression
ifle absolute_expression
iflt | absolute_expression
ifne absolute_expression

These conditionals perform a comparison of the value of the absolute expression to zero. If the
specified condition is true, then the following assembly language is processed, otherwise it is
skipped.

| 6-14 Aztec C68k ROM Reference Manual

include

include = ‘filename’
include “filename”
include <filename>

This directive causes the contents of the file specified to be processed by the assembler as if they
had appeared at the same relative location as the include statement.

global and bss

[label] global symbol, size
[label] bss symbol, size

These directives reserve storage for uninitialized data items. The area is reserved in the uninitial-
ized data area. If global is used then the data item is known to other modules that are external
to the routine. If bss is used then the data item is local to the routine in which it is defined.

If a global is defined in more than one module, the linker will generate the error message:

each external name must have exactly one definition

A symbol that appears in both a global and a public directive is located in the initialized data
area and the global statements size parameters are ignored.

list and nolist

The directives list and nolist turn on and off, respectively, the listing of assembly language state-
ments to the listing file.

mlist and nomlist

The directives mlist and nomlist specify whether or not the assembly language statements gen-
erated by a macro expansion should be written to the listing file.

machine

machine mc68000

machine mc68010

machine mc68020

This directive enables or disables the additional instructions and addressing modes associated
with different processors in the MC68000 family.

Assembler 5- 15 : -

macro and endm

macro symbol

text

endm
or

symbol macro

text

endm
symbol is entered in the assembler opcodes table. The text between the macro and endm is
saved in memory. When symbol is encountered as an opcode the text is placed in line.

Up to nine arguments can be specified in one of two ways. There is also an argument 0 which
refers to the extension on the macro directive when it was invoked. The arguments are refer-
enced in the macro text as either %0 through %9 or \O through \9. In expanding a macro sym-
bolic argument, references are replaced by their actual value.

The assembler also has facilities for generating unique labels within a macro. When the \@ is specified within a macro, the assembler will generate labels of the form .nnn where nnn will have a unique value for each invocation of the macro.

The symbol narg is a special assembler symbol that indicates the number of arguments specified when the macro is invoked. Outside of macro definitions, the value of narg is 0.

Macro arguments that contain a space or comma can be enclosed in bracketing “<” and “>”
characters.

mc68851

This directive enables the mc68851 memory management instructions to be recognized and as- sembled by the assembler.

mc68881

This directive enables the mc68881 floating point instructions to be recognized and assembled by the assembler.

mexit

Upon encountering this directive, expansion of the current macro stops and the assembler scans for the statement following the endm directive.

5-16 Aztec C68k ROM Reference Manual

public

[label] public symboliLsymbol2..]

This directive identifies the specified symbols as having external scope. These symbols are vis-
ible to the linker and are used to resolve references between modules. The type of the symbol is
CODE if it appears within the code segment and DATA if it appears within the data segment,
and ABS if it was defined to have an absolute value in an equ directive.

reg

label reg register list

This directive assigns the value of the register list to the label. Forward references are not al-
lowed. register list consists of a list of register names separated by the / character. The - character
may be used to identify an inclusive set of registers. This directive is generally used with the
movem instruction.

The following are valid register lists:

a0-a3/d0-d2/d4

al1/a2/a4/a6/a0-a2

section

[label] section name, code

[label] section name, data

[label] section name, bss

This directive performs the same functions as the cseg and dseg directives. The name parameter,
if present, is ignored at the current time. The type parameter is used to switch from code and
back again. If only a name parameter is specified, the type defaults to code.

set

ttl

label set expression

This directive assigns the value of the absolute expression to the symbol specified by label. This
definition is similar to the equ directive, with the exception that this symbol’s value can be
changed with another set directive. This includes expressions referencing the current value of
the symbol itself. For example:

sym set symtl

takes the current value of sym and adds 1 to it, which then becomes the new value of sym.

ttl title_string

Assembler

Assembler 5 -1 7

This directive sets the title of the current module being assembled. This directive is imple-
mented for compatibility with other assemblers and has no effect at the current time.

xdef and xref

xdef symbol
. xref symbol

These directives are used to specify the definition and reference of global symbols.

Macro Calls
$< eee

Macro calls consist of a macro name with an optional label, extension, and arguments, in this
form:

[label] macroname[.ext] [argl, arg2...]

The optional extension consists of a “.” followed by any valid 680X0 extension, such as w, I, etc.

Up to nine arguments may be passed to the macro.

See the “macro and endm” section of this chapter for more information regarding macros.

Lin KER

Chapter 6 - Linker

This chapter describes the 1n68 linker. It is divided into the following four main sections.

¢ Introduction to Linking

e Using the Linker

e Linker Options

e Programmer Information

6 -2 Aztec C68k ROM Reference Manual

Introduction to Linking
C encourages modular programming; that is, the partitioning of a program into source modules
that are separately compiled and assembled. The compilation and assembly of a source module
generates an “object module". The linker links together all of a program’s object modules, creat-
ing an executable program.

Programs typically consist of many object modules. Since it would be inconvenient to explicitly
specify each module whenever you link a program, Aztec C68k/ROM supports object module li-
braries. When you pass a library’s name to the linker, it examines the library’s modules, and
links into the program just those that are needed.

Aztec C68k/ROM provides source for several frequently-used functions, and for support rou-
tines that are called by compiler-generated code to perform operations such as arithmetic com-
putation, etc. These are in source form, and part of the process of installing Aztec C68k/ROM is
to compile and assemble them and then create object module libraries of them. In the following
discussion, we refer to one of these libraries, c.lib , which contains non-floating point functions,
and whose modules have been compiled to use the small code, small data memory model.

Some of the provided functions, called "standard I/O" functions, perform high-level I/O by call-
ing functions that you must write, as described in the Library Customization chapter. In the fol-
lowing discussion, we assume that you have implemented these functions, and thus that your
c.lib library supports the standard I/O function printf().

Creating the ‘hello, world’ Program

Let’s consider the creation of the hello, world program, whose main module, in the file
hello.c, looks like this:

main ()

{

}
printf£("hello, world\n") ;

The object modules that must be linked together include hello.zr, the printf() module from
¢.1ib, and other "support" modules from c.1ib. You don’t explicitly generate calls to these
support modules; they’re automatically generated by the compiler. The command to link the
program is:

in68 hello.r -le

The hello.r operand causes the linker to include hello.r in the program. The -1lc oper-
and causes the linker to search for needed modules in the c.1ib library that’s located in the di-
rectory specified by the INCL68 environment variable and to include them in the program.

Linker «6 -3 :

Another Example

As another example, consider a program consisting of two of your own modules, plus whatever
modules are needed from c.1ib. The source for the first of these modules, filel.c, looks
like this:

main ()

{
printf ("second example") ;
funcil ();

func2 ();

}
funcl ()

{
return;

}

The source for the second module, file2.c_, looks like this:

func2 ()

{
return;

}

The command to link this program is:

1n68 filel.r file2.r -le

This causes the linker to include object modules filel.r and file2.r in the program, and
to search for other needed modules in ¢.1ib.

Symbol Reference and Definition

As the linker proceeds, it keeps track of the global symbols that each module references and de-
fines. For the linkage to succeed, each symbol that’s referenced must also be defined; there can
be multiple references to the same symbol.

Here are some examples of symbol reference and definition:

e A call to a function is a reference to that function’s name;

e The actual definition of a function is a definition of the function’s name;

e extern keyword is a definition of the variable.

e A variable declaration that includes the extern keyword is a reference to the variable.

¢ A global declaration of a variable that doesn’t include the extern keyword is a defini-
tion of the variable.

For example, in the above sample program, filel contains references to printf (), funcl ,
and func2, and to support routines; it contains definitions of main and funcl. file2 con-

| | 6-4 — Aztec C68k ROM Reference Manual

tains a definition of func2 , and references to support routines. Within c.1ib are modules that
define print £() and the support routines.

When the linker has examined all the modules that are going to be linked into a program, it
checks its lists of defined and referenced symbols. If there are symbols that are referenced but
not defined, the linker issues messages saying that those symbols are undefined and then halts
without completing the linkage. For example, if the link command for the above program speci-
fied just filel.r, the linker would issue a message saying that printf (), func2 , and the

support routines were undefined, since the references to those symbols were not matched by
definitions. It doesn’t say that funcl is undefined, because the reference to it is matched by its

definition in the same file.

Searching Libraries

When the linker is searching a library, it checks each module’s defined code symbols (i.e., sym-
bols that are defined in the module’s code segment), looking for symbols that have been refer-
enced but not defined in the modules that have already been included in the program. If it finds
such a symbol, it includes the module that contains it in the program. For example, in the above
linkage the symbol printf () is referenced but not defined when the linker begins searching
¢.1ib. When the linker looks at the library’s module that contains the definition of the
printf () code symbol, the linker includes that module in the program it’s building.

It’s important to note that only the definition of a code segment symbol in a library module can
cause the linker to include the module in a program. For example, in the above linkage the defi-
nition of a print£() data symbol (1.e., a symbol located in the data segment) in a library mod-
ule would not cause the linker to include that module in the program.

The Ordering of Module and Library Names

The order in which modules and libraries are specified on the command line is important, since
the linker processes files in this order.

For example, an attempt to link the hello, world program with the following command will
fail:

1n68 -lc hello.r

For this command, the linker first scans c.1ib and then hello.r . When it scans ¢.1ib there

aren't yet any referenced but undefined symbols, so the linker won’t include any of the library’s
modules in the program. When it includes hello.r in the program, printf () and the refer-
enced support routines become referenced but undefined. But since hello.r is the last mod-
ule specified on the command line, the linker won’t go back and rescan c¢.1ib; so the

undefined symbols remain undefined, and the linkage fails.

The moral of this is that it’s good practice to leave all libraries at the end of the command line,
with c.1ib at the very end.

| Linker 6-5

The Order of Library Modules

For the same reason, the order of the modules within a library is significant, because the specifi-
cation of a library on the command line causes the linker to search that library just once, from
beginning to end. If a module is pulled in at any point, and that module introduces a new unde-
fined symbol, then that symbol is added to the running list of undefined’s. The linker will not
search the library twice to find definitions for unmatched references.

For example, suppose you have a program that contains the modules main.r, input.r,
calc.r, output .r, and any needed library modules, and that your modules have the follow-
ing references:

Module Definitions References

main.r main in, calc
input.r in gets
calc.r calc out

output.r out printf

The command to link the program would look like this:

in68 main.r input.r calc.r output.r -le

Suppose we build a library, sub. 14b , to hold the last three modules of this program. Then our
link step will look like this:

1n68 main.r -lsub -lc

The order of the modules in sub. 1b is important. For example, suppose sub.1ib ’s modules
are in the following order:

ainput.r

output.r

calc.r

With the library in this order, here’s how the above linkage would proceed:

e The linker includes main.r in the program. After this step, in and calc are refer-
enced but undefined (as are some other symbols that are in ¢. 1ib , but we're not con-
cerned about them right now).

¢ The linker begins searching sub.1ib, and looks first at its input module. Since
that module defines in which is one of the linker’s referenced but undefined symbols,
it includes the input module in the program, takes in off its list of referenced but
undefined symbols, and adds gets to it.

e The linker looks at output, the next module in sub .1ib. At this point, The sym-
bols cale and gets are referenced but undefined. Since neither of these symbols
are defined in output , the linker ignores it.

6-6 Aztec C68k ROM Reference Manual

e The linker looks at calc, the next and last module in sub.1lib. Since this module

contains a definition of calc, one of the linker’s referenced but undefined symbols,
the linker includes calc in the program, removes calc from its list of referenced but
undefined symbols, and adds out to the list.

e The linker next scans c.1ib, and includes the modules within it that define gets
and the support routines.

After scanning all of these modules and libraries, the out symbol is still referenced but unde-

fined, so the linker will abort after logging the following message:

Undefined symbol: _out

This means that the module defining out was not pulled into the linkage. The reason, as we
saw, was that out was not a referenced symbol when the linker scanned the output module,

so the linker ignored it.

This problem would not occur if sub.lib ’s modules were in the following order:

input.r

calc.r

output .r

The ord68 Library Utility

Linker

The ord68 utility simplifies the task of creating a library, by sorting a list of names of files that
contain object modules. A library of these object modules that is created using the sorted list
will be in the correct order.

There are some sets of object modules whose modules can’t be put in a "correct" order; that is,
for which it is impossible for the linker to decide which of the library’s modules are needed by
making just a single scan through the library. For such libraries, you can explicitly tell the linker
to search the library multiple times. |

For example, if sub.1ib required two passes to find all needed modules, you could link the
above program using the command.

1n68 main.r -lsub -lsub -lec

Linker —6-7—

Using the Linker
The command to link a program looks like this:

In68 [-options] file1.r [file2.r ...] [lib1,lib2 ...]

where -options are special options, file1.r, file2.r are names of the object modules that are to be
included in the program, and /ib1.lib2 , ... are names of the libraries that are to be searched for
needed modules. The object modules must have been created using as68 and the libraries by
1b68.

The Executable File

You can specify the name of the file to which the executable program is written with the -o
linker option. Otherwise, the linker will derive the name of the output file from that of the first
object module file listed on the command line, by deleting its extension. In the default case, the
executable file will be located in the directory in which the first object file is located. For exam-
ple,

in68 prog.r -le

will produce the file prog, by linking the object module prog.r together with needed mod-
ules from the library ¢.1ib . (The -1 option provides a convenient means of specifying libraries,
as discussed below).

A different output file can be specified with the -o option, as in the following command:

in68 -o prog modl.r mod2.r -le

Libraries

The following libraries are provided with Aztec C68k/ROM:

e c.lib and variants, each of which contain functions that perform non-floating and inter-
nal functions that are called by compiler generated code.

e m.lib and variants, each of which contain functions that perform floating point opera-
tions using software.

e m8.lib and variants, each of which contain functions that perform floating point func-
tions using the 68881.

Each of the versions of a given library has been compiled using a different combination of inte-
ger size and memory model.

All programs must be linked with the version of c.lib that matches the int size and memory
model used by your modules.

Programs that perform floating point must be linked with the appropriate version of m.lib or
m8.lib. The floating point library must be specified on the command line before c.lib.

6-8 Aztec C68k ROM Reference Manual

Libraries of your own modules can also be searched by the linker. These are created with the
Manx 1b68 program, and must be listed on the linker command line before the Aztec libraries.

For example, the following links the module prog.r, searching the libraries mylib.1ib,
new.1lib, m.1lib, and c.1ib for needed modules:

1n68 program.r mylib.lib new.lib -lm -lc

Each of the libraries will be searched once in the order in which they appear on the command
line.

| Linker . : 6 -9 :

Linker Options

Summary of Options ———————
-0 file Write executable code to the file named file.

-lname Search the library name.lib for needed modules.

-f file _ Read command arguments from file .

“2 Start collecting source level debugging information. (See also -q)

-m Inhibit warnings of user symbols overriding library symbols.

-q Stop collecting source level debugging information. (See also -g)

-t Generate an ASCII symbol table file.

-V Be verbose (i.e. list detailed information about each segment).

-xIn Use address register n for small model operations. n is a decimal value,
and defaults to 5 (ie, address register a5).

“XC XXXX Set origin of code section to the hex value xxxx (default: 0).

“xd xxxx Set origin of initialized data section to the hex value xxxx (default: imme-
diately after the code section).

“XU XXXX Set origin of the uninitialized data section to the hex value xxxx (default:
immediately after the initialized data section).

“XS XXXX Set the size of the stack area to the hex value xxxx (default: 8k).

“xj XXxX Set the programs initial stack pointer to the hex value xxxx. (default:
stack area immediately follows uninitialized data section, with size speci-
fied by -xs option; stack pointer points to the top of this area).

xa Toggle “long align" mode. When this mode is enabled, each module’s
code begins on a longword boundary; i.e. on a byte whose address is a
multiple of 4. By default, this mode is disabled.

-xq Be quiet; i.e. don’t list, on the console, each module that is included in a
program. By default, the linker issues this list.

[_ 6-10 | Aztec C68k ROM Reference Manual

Detailed Description of the Options

The -o Option

The -o option can be used to specify the name of the file to which the linker is to write the ex-
ecutable program. The name of this file is in the parameter that follows the -o . For example, the
following command writes the executable program to the file progout :

1n68 -o progout prog.r -lc

If this option isn’t used, the linker derives the name of the executable file from that of the first
input file, by deleting its extension.

The -I Option

The -l option provides a convenient means of specifying to the linker a library that it should
search, when the library is in a directory identified by the CLIB68 environment variable, and
when the extension of the library is .lib .

The name of the library is derived by concatenating the value of the environment variable
CLIB68, the letters that immediately follow the -l option, and the string .lib . For example, with
the libraries subs.lib, io.lib, m.1ib,andc.1ib ina directory specified by CLIB68 ,

you can link the module prog.r, and have the linker search the libraries for needed modules

by entering

1n68 prog.r -lsubs -lio -lm -lc

The -f Option

-f file causes the linker to read command line arguments from file. When done, it continues read-

ing arguments from the command line. For example, the following command causes the linker
to create an executable program in the file myprog. The linker includes the modules
myprog.r,mod1.r, and mod2.r in the program, and searches the libraries my.1ib and

c.lib for needed modules.

1n68 myprog.r -f£ myprog.ink -lc

where the file myprog.1nk contains the following:

modl.r mod2.r

mylib

The linker arguments in a -f file can be separated by tabs, spaces, or newlines.

There are several uses for the -f option. The most obvious is to supply the names of modules
that are frequently linked together. Since all the modules named are automatically pulled into
the linkage, the linker does not spend any time in searching, as with a library. Furthermore,
any linker option except -f can be given in a -f file. -f can appear on the command line more
than once, and in any order. The arguments are processed in the order in which they are read,
as always.

Linker 6 | -11 :

The -g and the -q Option

The -g option causes the linker to start or resume the collection of source-level debugging infor-
mation for the program that is being linked.

The -q option causes the linker to stop the collection of source-level debugging information.

These two options can be used to selectively collect source-level debugginf information about
specific modules. For example, the following command tells the linker to only collect debugging
information for the prog and sub2 modules:

1n68 -g main -q subl -g sub2 -q -le

Inorder for the linker to collect debugging information about a module, the module must have
been compiled with the -bs option.

The linker writes the source-level debugging information that it collects to a file. The name of
this file is derived from the name of the file to which the linker writes the executable program,
by changing the extension to .dbg.

The -m Option

Normally, when you create a variable in your program that has the same name as a library rou- tine, the linker issues a warning that your symbol will override the library symbol. If the -m Op- tion is specified, this warning is suppressed.

The -t Option

The -t option causes the linker to write the program's symbol table to a file. This file lists each of the program’s symbols and its address. The file is organized into four sections:

¢ Symbols in the code section (preceded by the line "Segment: 00 Hunk: 00);

¢ Symbols in the initialized data section (preceded by the line "Segment: 00 Hunk: 01):

¢ Symbols in the uninitialized data section, (preceded by the line "Segment: 00 Hunk: 02);

¢ Values of the program’s constant symbols (STKSIZ is the size of the program’s stack area, and _stkorg is the initial stack pointer).

The symbol table file will have the same name as that of the file containing the executable pro- gram, with extension changed to .sym.

There are several special symbols which will appear in the table. They are defined later in this chapter, in the "Programmer Information" section.

| 6-12 Aztec _C68k ROM Reference Manual

The -xr Option

The -xr option defines the address register that will be used in support of modules that use the
small code and/or small data memory model. It has the format -xr n , where n is the number of

the address register.

For example, the following command tells the program to use address register a4 as the small

model support register:

1n68 -xr 4 main.r -lec

If this option isn’t specified, address register a5 is used.

If any of a program’s modules use small code and/or small data, the small model support regis-
ter points into the program’s data sections. When a small data module attempts to access a vari-
able that’s in a data section, the variable’s address is specified as a displacement from the small
model support register. When a small code module calls a function that is more than 32k away
from the call instruction, the linker will generate a jump instruction to the target function, place
the instruction in the program’s data area, and change the PC-relative call to a call of the gener-
ated jump instruction; the converted call will specify the address of the jump instruction as a
displacement from the small model support register.

For more information about memory models, see the "Programmer Information" section of the
Compiler chapter.

Options for Positioning a Program’s Sections

The linker organizes a program into three sections: code, initialized data, and uninitialized data.
You can define the starting addresses of these sections using the -xc, -xd, and -xu options; an op-
tion is followed by the hex value of the desired starting address.

By default, the code section begins at address 0, the initialized data section immediately after
the code section, and the uninitialized data section immediately after the initialized.

For example, the following command creates the program prog whose code section begins at
address 0, initialized data at 0x8000, and uninitialized data at 0x10000:

1n68 -xd 8000 -xu 10000 prog.o -lc

Stack Options

| Linker

Two options affect a program’s stack -xj and -xs. The -xj option defines the location at which
the program’s stack register initially points. The address in hex of this location follows the -xj.
For example, the following command creates a program whose stack register initially points at
0x20000:

1in68 -xj 20000 prog.r -lc

If the -xj option isn’t specified, the stack register will initially point to a location that follows the
program's uninitialized data section. You can specify the distance between this location and the
end of the uninitialized data section with the -xs option. The hex value of the distance follows

Linker (6-13,
the -xs. For example, the following command creates a program whose stack register initially
points to a location that is 0x1000 bytes above the end of its uninitialized data section:

in68 -xs 1000 prog.r -le

The default value of the -xs option is 8k; this means that when you specify neither the -xs nor -
xj options, the program’s stack register will point to a location that is 8k bytes beyond the end
of its uninitialized data section.

The linker creates two stack-related symbols: _Storg_ , whose value is the address initially
pointed at by the linked program’s stack register; and STKSIZ , whose value is the explicitly- or
implicitly-defined value of the -xs option. The standard startup routine uses _Storg_ to set up
the stack register; it doesn’t use STKSIZ .

6-14 Aztec C68k ROM Reference Manual

Programmer Information
This section contains bits of information about the linker that you may find useful.

Program Format

The linker creates a program that’s in CP/M-68k format, with no relocation records.

>pecial Linker-created Symbols

When the linker creates a program, it defines several global symbols. These are:

_HO0_org and _HO_end Beginning and ending addresses of program’s code section.

_H1_org and _H1_end Beginning and ending addresses of program’s initialized data
section.

_H2_org and _H2_end Beginning and ending addresses of program’s uninitialized
data section.

Storg Initial contents of program’s stack pointer.
STKSIZ Size of program’s stack area (used when -xj option isn’t used).

Entry Points

The ENTRY POINT for a program is the location at which execution of the program is to begin.
The entry point is defined using the assembly language entry directive.

To allow a program’s entry point to be located somewhere in the middle of the program, the
linker supports the following feature; if the program has an entry point that is not at the begin-
ning of the program’s code segment, the linker will create a jump to the entry point at the begin-
ning of the code segment.

For example, consider what happens when you create the hello world program using the fol-
lowing commands:

c68 hello.c

in68 hello.r -lc

This program’s startup code is in the module rom68 . x within c.1ib, and its entry point is the
symbol .begin within this module. This module is located in the middle of the program since
hello.r is the first module of the code segment. Thus, the linker automatically creates an in-
struction at the beginning of the program’s code segment that jumps to .begin.

You can prevent the linker from automatically creating this jump instruction to the program’s
entry point by doing one of the following.

e Remove the entry directive from the program’s modules; or

Linker | 6 -15

e Link the program so that its entry point is at the beginning of the code segment.

For example, if you have a startup module named startup .r that you want linked into the
hello world program instead of c.1ib’s rom68 module, you could link the program using
the following command:

in68 startup.r hello.r -lc

If startup.+r has an entry point that is not at the beginning of the module’s code, the linker
will create a jump instruction to the entry point and put it at the beginning of the program’s
code segment. If startup. r either does not have an entry point, or the entry point is at the be-
ginning of the module’s code segment, the linker will not create a Jump instruction.

The entry point in ¢.1ib’s rom68 startup module is named - begin. The entry point is not re-
quired to have this name, but it usually is given this name. Here’s why:

e When a module is compiled, the compiler by default generates a reference to .begin,
even though the module being compiled does not reference this symbol (the -m0b op-
tion prevents the compiler from generating the reference to -begin)

¢ When the program is linked, the compiler generated references to .begin force the
linker to include c.lib’s rom68 startup module, unless you have linked in a module
that defines .begin.

The presence of an entry directive in a library module does not cause the linker to include the
module in a program; it just identifies the symbol as being the entry point, in case the linker
needs to create a jump instruction at the beginning of the program’s code segment to the entry
point.

Unuirs

Chapter 7 - Utilities

This chapter describes the Aztec C utility programs, in alphabetical order. Here is a list of those
utilities along with brief descriptions:

arcv dearchive mkarcv created archive
cnm68 display object file info
crc compute file checksums
coff6s convert program to coff format
diff compare source files
grep search source files
hd generate hex dump for files
hex68 convert programs to Intel Hex
1b68 create and maintain object libraries
make automatically keep program’s libraries, etc. up-to-date
mkarcv create source archive
obd68 list object code
ord68 sort object module list
srec68 convert program to Motorola S-record
tekhex68 convert program to Tektronix extended Tek Hex code

r
7-20 Aztec C68k ROM Reference Manual

arcv source dearchiver

SYNOPSIS

arcv arcvfile [dest_ dir]

DESCRIPTION

arcv extracts the source from the archive file named arcvfile and places the result in separate files.
arcvfile must have been created with mkarcv. The original archived file is left intact. arcv gener-
ates the name of the file it wants to create by prepending dest_dir to the file name as recorded in
the archive. If a generated name contains path information (that is the directories that must be
passed through to get to the file), arcv will create the directories that are in that path before creat-
ing the file.

EXAMPLE

For example, suppose you have an archived file named example .arc which contains two files,
explore.c and makefile, then the command

arcv example .arc

will place the files explore.cand makefile in the current directory.

For example, suppose you have created, using mkarcv, a source archive named test .arc that
contains the files test .c and makefile in the current directory, enter:

arcv test.arc

To createtest.cand makefile ina different directory or volume, enter:

arcv test.arc vol2:src:

cnm68s display object file info

SYNOPSIS

cnm68 [-options] file 1 [file 2...]

DESCRIPTION

cnm68 displays the size and symbols of its object file arguments. The files can be object modules
created by the Manx assembler or libraries of object modules created by the 1b68 librarian. How-
ever, cnm68 does not support MPW object module format.

For example, the following displays the size and symbols for the object module sub1. xr and the
library c.1ib:

enm68 subl.rc.lib

By default, the information is sent to the console. It can be redirected to a file or device in the nor-
mal way. For example, the following commands send information about sub1 .r to the display
and to the file dispfile:

cnm68 subl.r

cnm68 subl.r > dispfile

The first line listed by cnm68 for an object module has the following format:

file (module): code: cc data: dd udata: uu total > tt (Qxhh)

where

e file is the name of the file containing the module;

e module is the name of the module. If the module is unnamed, this field and its surrounding
parentheses are not printed;

© cc is the number of bytes in the module code segment, in decimal;

e dd is the number of bytes in the modules’ initialized data segment, in decimal;

e uu is the number of bytes in the module’s uninitialized data segment, in decimal;

¢ tt is the total number of bytes in the module’s three segments, in decimal;

¢ hh is the total number of bytes in the module’s three segments, in hexadecimal.

If cnm68 displays information about more than one module, it displays four totals just before it
finishes, listing the sum of the sizes of the module code segments, initialized data segments, and uninitialized data segments, and the sum of the sizes of all segments of all modules. Each sum is in decimal; the total of all segments is also given in hexadecimal.

Options
cnm68 supports the following options:

| oe ae Aztec C68k ROM Reference Manual

-S display size only
-] display each symbol on a separate line
-0 prefix symbols with filename

Option -s tells cnm68 to display only the sizes of the object modules. If this option is not speci-
fied, cnm68 also displays information about each named symbol in the object modules.

Option -l tells cnm68 to display the information in long form, by displaying each symbol’s infor-
mation on a separate line and by displaying a symbol’s entire name. If this option is not used,
cnm68 displays the information about several symbols on a line and only displays the first eight
characters of a symbol name.

Option -o tells cnm68 to prefix each line generated for an object module with the name of the file
containing the module and the module name in parentheses (if the module is named). If this op-
tion is not specified, this information is listed just once for each module, prefixed to the first line
generated for the module.

Option -o is useful when using cnm68 in combination with grep. For example, the following com-
mands display all information about the module perror in the library c.1ib:

cnm68 -o c.lib > tmp
grep perror tmp

Symbol Format
cnm68 displays information about a module’s “named” symbols, e.g., about the symbols that be-
gin with something other than a period followed by a digit. For example, the symbol quad is
named, so information about it would be displayed; the symbol . 0123 is unnamed, so informa-
tion about it would not be displayed.

For each named symbol in a module, cnm68 displays its name, a two-character code specifying
its type, and an associated value. The value displayed depends on the type of the symbol.

symbol Types
If the first character of a symbol type code is lowercase, the symbol can only be accessed by the
module; in other words, the symbol is local to the module. If this character is uppercase, the sym-
bol is global to the module: Either the module has defined the symbol and is allowing other mod-
ules to access it, or the module needs to access the symbol that must be defined as a global or
public symbol in another module. The type codes are:

ab The symbol was defined using the assembler’s equ directive. The value listed is the
equated value of its symbol.

The compiler does not generate symbols of this type.

bs The symbol is in the uninitalized data segment. The value is the space reserved for
the symbol.

The compiler generates bs symbols for static, uninitialized variables that are de-
clared outside all functions and that are not dimensionless arrays.

The assembler generates bs symbols for symbols defined using the bss assembler di-
rective.

Utilities 7 -5

dt

Gl

P&

The symbol is in the initialized data segment. The value is the offset of the symbol
from the start of the data segment.

The compiler generates symbols of this type for initialized variables that are de-
clared outside any function. Static variables are local to the program and so have
type dt; all other variables are GLOBAL, i.e., accessible from other programs, and
hence have type Dt.

The symbol is in the uninitialized data segment. The value is the space reserved for
the symbol.

The compiler generates Gl symbols for nonstatic, uninitialized variables that are de-
clared outside all functions and that are not dimensionless arrays.

The assembler generates G1 symbols for variables declared using the global direc-
tive that have a nonzero size.

The symbol is in the code segment. The value is the offset of the symbol within the
code segment.

The compiler generates this type symbol for function names. Static functions are lo-
cal to the function, and so have type pg; all other functions are global and hence
have type Pg.

The symbol is used but not defined within the program. The value has no meaning.

In assembly language terms, a type of Un (the U is capitalized) indicates that the
symbol is the operand of a public directive and that it is perhaps referenced in the
operand field of some statements, but that the program did not create the symbol in
a statement label field.

| | 7-6 Aztec C68k ROM Reference Manual

coff68s convert program to COFF format

SYNOPSIS

coff68 infile [options] .

DESCRIPTION

coff68 converts the output of the 1n68 linker (both the executable program and source debugging
information) to UNIX System 5 COFF format.

infile is the name of the file that contains the In68 generated executable program.

coff68 writes the COFF format information to a file whose name is derived by changing the exten-
sion of infile to .cof.

coff68 supports the following options:

-1 Generate a listing file. The name of this file is created from infile by changing the exten-
sion to .dls.

-v Beverbose.

For example, the following commands convert the C source code in exmp1 .c into COFF code in
exmpl1.cof:

c68 -n exmpl.c

in68 -g exmpl.r -lc

coff6és exmpl

coff68s

| Utilities 7-7

cre utility for generating the CRC for files

SYNOPSIS

crc files

DESCRIPTION

crc computes a number, called the CRC, for specified files. By using the standard “wild-card”
characters, files can specify multiple files.

The CRC for a file is entirely dependent on the file’s contents, and it is very unlikely that two files
whose contents are different will have the same CRCs. Thus, erc can be used to determine
whether a file has the expected contents.

The file crclist that is on the Aztec C disk lists the CRC values for each of the files on the disks. By
comparing these values with those computed by your own running of cre, you can easily deter-
mine whether you have received all of the files to which you are entitled.

As an example of the usage of crc, the following command computes the crc of all files whose ex-
tension is .c:

erc ?* .¢

| 7 8 a Aztec C68k ROM Reference Manual

d iff compare source files

SYNOPSIS

diff [-b] file1 file2

DESCRIPTION

The diff utility is designed to display differences between two text files. diff will show all differ-
ences between filel and file2, along with information on how to make them similar. diff will dis-
play the exact lines that are different between the two files, including the relative line numbers in

the files.

The Conversion List
diff writes a conversion list to its standard output that describes the changes that need to be
made to file] to convert it into file2. The list is organized into a sequence of items, each of which
describes one operation that must be performed on file1.

nversion ltems
There are three types of operations that can be specified in a conversion list item:

e adding lines to filel from file2

e deleting lines from filel

e replacing (changing) filel lines with file2 lines.

A conversion list item consists of a command line, followed by the lines in the two files that are af-
fected by the item’s operation.

The Command Line
An item’s command line contains a letter describing the operation to be performed: a for adding
lines, d for deleting lines, and c for changing lines.

Preceding and following the letter are the numbers of the lines in filel and file2, respectively, that
are affected by the command. If a range of lines in a file is affected, only the beginning and end-
ing line numbers are listed, separated by a comma.

For example, the command line

5a3

says toadd line 3 of £ile2 after line 5 of £ile1. The command line

16a8,10

says toadd lines 8,9, and10 of file2afterline 16 of £file1. The command line

100,150da75

Utilities yg -9 |

says to delete lines 100 through 150 from filel,and that the last line in £ile2 that matched
afilel line was number 75.

The command

32¢33

says to replace (change) line 32 in f£ile1 with line 33 in £ile2. The command

453,500c490, 499

Says to replace lines 453 through500 in file1 withlines 490 through 499 in file2.

The Affected Lines
As mentioned above, the lines affected by a conversion item’s operation are listed after the item’s
command line. The affected lines from file are listed first, flagged with a preceding < . Then
come the affected lines from £ile2, flagged with a preceding >. The £ile1 and file? lines are
separated by the line

For example, the following conversion item says to add line 6 of £ile2 after line 4 of filet.
Line 6 of file2 is for (i=1; i<10;++:i):

4a6

> for (i=1; i<10;++4i)

Since no lines from £ilel are affected by an “add” conversion item, only the £ile2 lines that
will be added to £i1e1 are listed, and the separator line “—” is omitted.

The following conversion item says to delete lines 100 and 101 from file 1, and that the last
file2 line that matched a £ile1 line was numbered 110. The deleted lines were int a; and double b;. Only the deleted lines are listed, and the separator line “—” is omitted:

100,101d110

< int a;

< double b;

The following conversion item says to replace lines 53 through 56 in filel with lines 60
and 61 in file2. Lines 53 through 56 in filel areif (a=b){, d= a;, a++;, and}.
Lines 60 and 61 of file2 areif (a==b) andd = a++;

53,58c60, 61

< if (a=b) {

<d=a;_

> if (a==b)

> d= at+;

| | 7-10 Aztec C68k ROM Reference Manual

The -b Option
Option -b causes diff to ignore trailing blanks (spaces and tabs) and to consider strings of blanks
to be identical. If this option is not specified, diff considers two lines to be the same only if they
match exactly. For example, if £i1le1 contains the line

“abc$

(* and § stand for “the beginning of the line” and “the end of the line,” respectively, and are
not actually in the file) and if £ile2 contains the line

“abc §$

then diff would consider the two lines to be the same or different, depending on whether or not it
was Started with option -b.

And diff would consider the lines

“a b c$

and

“a b c$

to be the same or different, depending on whether or not it was started with option -b.

diff will never consider blanks to match a null string, regardless of whether -b was used or not.
So diff will never consider the lines

“abc$

and

“a bcS

to be the same.

Differences Between the UNIX and Manx Versions of diff
The Manx and UNIX versions of diff are actually most similar when the latter program is in-
voked with option -H. As with the UNIX diff when used with option -H, the Manx diff works
best when changed stretches are short and well separated, and works with files of unlimited
length.

Unlike the UNIX diff, the Manx diff does not support option -E, -F, or -H. Unlike the UNIX diff,
the Manx version requires that both operands be actual files. Because of this, the Manx version of
diff does not support the features of the UNIX version that allow one operand to be a directory
name, (to specify a file in that directory having the same name as the other operand), and that al-
low one operand to be ’-’ (to specify the diff standard input instead of a file).

Utilities 9- | 11 -

grep pattern matching program

SYNOPSIS

grep [options] pattern [file1 file2...]

DESCRIPTION

grep is a program, similar to the UNIX grep, that searches a specified group of files for lines con-
taining a specified pattern and writes the lines to its standard output.

For example, the following command examines all files in the current directory that have exten-
sion .cand prints those lines that contain the word hello.

grep hello ?*.c¢

Options
The following options are supported by grep:

-c Print just the name of each file and the number of matching lines that it contained.

-f Acharacter in the pattern will match both its upper- and lowercase equivalent.

-1 Print only the names of the files that contain matching lines.

-n_Precede each matching line that is printed by its relative line number within the file that
contains it.

-v__ Print all lines that do not match the pattern.

Input Files
file1, file2,... specify the files that grep is to search. If no files are specified, grep searches its stand-
ard input. Each filename can specify a single file to be searched. A name can also specify a class of
files to be searched, using the special characters * and ?. The character * matches any string of
characters in a filename, and ? matches any single character. For example,

grep int main.c subl.c sub2.c

searchesmain.c, subl.c, and sub2.c¢ forthe string int. The command

grep int ?%*.c

searches all files whose extension is ¢ for the string int. The command

grep int a?*.txt b?*.doc

searches for the string int in each file (1) whose extension is .txt and first characterisa and
(2) whose extension is doc and first character is b. The command

grep int sub?.c

7-12 - Aztec C68k ROM Reference Manual

searches for the string int in each file whose filename contains four characters, the first three be-
ing sub, and whose extension is .c.

Patterns
A pattern consists of a limited form of regular expression. It describes a set of character strings,
any of whose members are said to be matched by the regular expression. Under MPW, pattern
strings are normally interpreted by the MPW Shell and expanded to match Filenames. To avoid
this and pass the string to grep, be sure to surround the pattern string with quotes.

The patterns recognized by grep are:

x an ordinary character (i.e. one other than the following special characters) matches itself.

matches anything except carriage return or new line

[chars] character matches any one of the characters that are between the brackets. For
example, [ad9@] matches any of the charactersa, d, 9,or@.

[chars] matches any one character except those ones within the brackets. For example,
[“ad9@] matches any character excepta, d, 9,or @.

A matches the beginning of the line. For example, *main matches a line that begins with the
word main, but not one that begins with the main.

$ matches the end of the line.

x* matches 0 or more occurrences of the character x

A backslash, \, followed by any of the above characters matches the specified character.

Examples

Example: Matching Any Character

Suppose you want to find all lines in the file prog. that contain a four-character string whose
first and last characters arem andn, respectively, and whose other characters you do not care
about. The command

grep "m..n" prog.c

will do the trick, since the special character “.” matches any single character.

Example: Matching Any of a Set of Characters

Suppose that you want to find all lines in the file £ile.doc that begin witha digit. The com-
mand

grep "*[0123456789]" file.doc

Utilities 7 -13—

will do just that. This command can be abbreviated as

grep "“[0-9]" file.doc

And if you wanted to print all lines that do not begin with a digit, you could enter

grep "*[*0-9]" file.doc

Example: Matching Line Beginning and End

Suppose you want to find the number of the line on which the definition of the function add oc-
curs in the file arith.c. Entering

grep -n add arith.c

is not good, because it will print lines in which add is called, in addition to the line you are inter-
ested in. Assuming that you begin all function definitions at the beginning of a line, you could en-
ter

grep -n "“add" arith.c

to accomplish your purpose.

The character $ is a companion to “, and stands for “the end of the line.” So if you want to find all
lines in file .doc that end in the string time,you could enter

grep "time$" file.doc

And the following will find all lines that contain just .PP:

grep "*.PP$" file.doc

Example: Matching Repeated Characters
Suppose you want to find all lines in the file prog.c that contain strings whose first character is
e and whose last characteris z. The command

grep "e.*z" prog.c

will do that. The e matches an e, the * matches zero or more occurrences of the character that
precedes it (in this case a “.” which matches anything) and the z matchesa z.

Example: Matching a Special Character

There are occasions when you want to find the character “.” in a file, and do not want grep to con-
sider it to be special. In this case, you can use the backslash character, \, to turn off the special
meaning of the next character.

For example, suppose you want to find all lines containing

.PP

Entering

grep ".PP" prog.doc

Aztec C68k ROM Reference Manual

is not adequate, because it will find lines such as

THE APPLICATION OF

since the “.” matches the letter A. But if you enter

grep "\.PP" prog.doc

grep will print only what you want.

The backslash character can be used to turn off the special meaning of any special character. For
example,

grep "\\n" prog.c

finds all linesin prog.c containing the string \n.

Example; Simple String Matching

The following command will search the files £ilel.txt and file2.txt and print the lines
containing the word heretofore:

grep heretofore filel.txt file2.txt

If you are not interested in the specific lines of these files, but just want to know the names of the
files containing the word heretofore, you could enter

grep -l heretofore filel.txt file2.txt

The above two examples ignore lines in which heretofore contains capital letters, such as
when it begins a sentence. The following command will cover this situation:

grep -lf heretofore filel.txt file2.txt

grep processes all options at once, so multiple options must be specified in one dash parameter.
For example, the command

grep -l -f heretofore filel.txt file2.txt

will not work.

Differences Between the Manx and UNIX Versions
The Manx and UNIX versions of grep differ in the options they accept and the patterns they
match.

Option Differences

e Option -f is supported only by the Manx grep.

e Options -b and -s are supported only by the UNIX grep.

Utilities 7-15 —

Pattern Differences

Basically, the patterns accepted by the Manx grep are a subset of those accepted by the UNIX
grep.

e The Manx grep does not allow a regular expression to be surrounded by \(and \).

e The Manx grep does not accept the construct \{m\}.

e The Manx grep does not allow a right bracket,], to be specified within brackets.

| 7-16. Aztec C68k ROM Reference Manual

| hd hex dump utility

SYNOPSIS
hd[-xn[.]] file7 [-xn[_]] file 2 ...

DESCRIPTION

hd displays the contents of one or more files in hex and ASCII to its standard output.

filel, file2, ... are the names of the files to be displayed.

-xn specifies the offset into the files where the display is to start and defaults to the beginning of
the file. If -xn is followed by a period, n is assumed to be a decimal number; otherwise, it is as-
sumed to be hexadecimal. Each file will be displayed beginning at the last specified offset.

Examples
To display the data forks of the files oldtest and newtest, beginning at offset 0x16b and of
the file named junk beginning at its first byte, you would use the command:

hd -xl6éb oldtest newtest +0 junk

To display the contents of tst £i1, beginning at byte 1000, you would use the command:

hd -x1000. tstfil

Utilities 7-47

hex68 Convert Program to Intel Hex-Code

SYNOPSIS

hex68 [-options] prog

DESCRIPTION

hex68 translates the program that is in the file named prog, and that was generated by the Aztec
C68k/ROM linker, into Intel hex code. The program can then be burned into ROM by feeding the
hex code into a ROM programmer. The hex code is written to one or more files, each of which con-
tains the hex code for one ROM chip.

The ROM chips that are generated from the hex68 output files will contain the program’s code,
followed by a copy of its initialized data.

Note: when a ROM system is started, its RAM contains random values; the Aztec C68k/ROM
startup routine sets up its initialized data area, using the copy that is in ROM.

hex68 assumes that the size of each ROM chip is 2kb. You can explicitly define the size of each
ROM using hex68’s -p option.

The Output Files

Even- and Odd-addressed Bytes in the Same Chips
hex68 can optionally generate hex code so that the program’s even-addressed bytes are in one set
of ROM chips, and its odd-addressed bytes are in another. We will discuss this option below. In
this section we discuss the output files that are created when this option is not used; i.e. when a
program's even- and odd-addressed bytes are in the same set of ROM chips.

When neither -e nor -o is specified, hex68 derives the name of each output file from that of the in-
put file, by appending an extension of the form .hnn, where nn is a number. For example, if the
name of the linker-generated file is prog, then the names of the output files generated by hex68
are prog.h00, prog.h01, and soon, where the .h00 file contains the hex code for the lowest-
addressed ROM, .h01 the hex code for the next ROM, etc.

For example, suppose that hex68 is creating Intel hex code for a program whose code and copy of
initialized data will reside in three 2kb ROMs that begin at location 0. Then hex68 will create the
following files:

prog.h0o Contains the Intel hex code for the ROM chip that occupies addresses 0-
Ox7ff; |

prog.h01 Contains the hex code for the ROM that occupies 0x800-0xf££;

prog.h02 Contains the hex code for the ROM that occupies 0x1000-0x17££.

Even- and Odd-addressed Bytes in Separate Chips
To place a program’s even-addressed bytes in one set of ROM chips and its odd-addressed bytes
in another, you must run hex68 twice: once using the -e option to generate the hex code for the
chips that contain the even-addressed bytes, and once usin g the -o option to generate hex code
for the chips that contain the odd-addressed bytes.

[7-18 Aztec C68k ROM Reference Manual

When either -e or -o is specified, hex68 generates one or more files, each of which contains the In-
tel hex code for one ROM chip. By default, the size of each chip is 2kb, but you can use the
-p option to explicitly define the chip size.

When the -e option is specified, the extension of the files are of the form .enn, where nn is a deci-
mal number. The .e00 file contains the hex code for the first of the ROM chips that contain
even-addressed bytes, the .e01 file contains the hex code for the second ROM chip, and so on.

When the -o option is specified, the extension of the files are of the form .onn, where nn is a deci-
mal number. The .000 file contains the Intel hex code for the first of the ROM chips that contain
odd-addressed bytes, the .o01 file contains the hex code bytes for the second ROM chip, and so
on.

The Options
hex68 supports the following options:

-bx The program begins x bytes into the first ROM chip, where x is a hexadecimal
number. If this option isn’t specified, the program begins at the beginning of the
first ROM chip.

-e Output hex code for the program’s even-addressed bytes.

-0 Output hex code for the program’s odd-addressed bytes.

“pn The size of each ROM is n kilobytes, where n is a decimal number. If this option
isn’t specified, the size defaults to 2kb. For example, the following command
specifies that each ROM chip is 64kb long:

hex68 -p64 exmpl

-QXx

Output hex code for every fourth byte starting with offset x=0, 1, 2, or 3. This option is similar to
the even and odd addressed bytes. The file extensions are .ann, .bnn, .cnn, and .dnn.

Utilities 7-19 —

Ib68 object file librarian

SYNOPSIS

1b68 library [options][mod1 moa? ...]

DESCRIPTION

Ib68 is a program that creates and manipulates libraries of object modules. The modules must be
created by the Manx assembler.

Arguments and Options

The library Argument
Ib68 acts upon a single library file. The first argument to 1b68 (library, in the synopsis) is the name
of this file. The filename extension for library is optional; if not specified, it is assumed to be . lib.

The options Argument
There are function code options and qualifier options. These options are summarized and then de-
scribed in detail.

Function Code Options

1b68 performs one function at a time on the specified library. The functions that 1b68 can perform,
and the corresponding option codes, are:

Function Code

create a library (no code)
add modules to a library -a,-i, -b
list library modules -t
move modules in a library -m
replace modules -r
delete modules -d
extract modules “x
ensure module uniqueness -u
define module extension -e
read function from file -f
help -h

In the synopsis, the options argument is surrounded by square brackets. This indicates that the ar- gument is optional; if a code is not specified, 1b68 assumes that a library is to be created.

Qualifier Options

In addition to a function code, the options argument can optionally specify a qualifier that modi- fies 1b68 behavior as it is performing the requested function. The qualifiers and their codes are:

verbose “Vv
silent -S

i 7 -20— Aztec C68k ROM Reference Manual

The qualifier can be included in the same argument as the function code, or as a separate argu-
ment. For example, to cause 1b68 to append modules to a library, and be silent when doing so,
any of the following option arguments could be specified:

The mod Argument

The arguments mod1, mod2, etc. are the names of the object modules, or the files containing these
modules, that 1b68 is to use. For some functions, 1b68 requires an object module name, and for

others it requires the name of a file containing an object module. In the latter case, the file’s exten-
sion is optional; if not specified, 1b68 will assume that it is .o. You can explicitly define the de-
fault module extension using option -e, described further in the section “Defining the Default
Module Extension” at the end of 1b68.

Reading Arguments from Another File

1b68 has a special argument, -f filename, that causes it to read command line arguments from the
specified file. When done, it continues reading arguments from the command line. Arguments
can be read from more than one file, but the file specified in a -f filename argument cannot itself
contain a -f filename argument.

Basic Features
This section describes the basic features of 1b68. The basic points you need to know about 1b68
are:

e How to create a library
e How to list the names of modules in a library
e How modules get their names

e Order of modules in a library
e Getting 1b68 arguments from a file.

How to Create a Library
A library is created by starting 1b68 with a command line that specifies the name of the library file
to be created and the names of the files whose object modules are to be copied into the library. It
does not contain a function code, and it is this absence of a function code that tells 1b68 that itis
to create a library.

For example, the following command creates the library exmp1 . 1ib, copying into it the object
modules that are in the files obj1.o and obj2.0:

ib68 exmpl.lib objl.o obj2.0

Making use of the 1b68 assumptions about filenames for which no extension is specified, the fol-
lowing command is equivalent to the above command:

1b68 exmpl objl1 obj2

Utilities 7- 21 -

An object module file from which modules are read into a new library can itself be a library cre-
ated by 1b68. In this case, all the modules in the input library are copied into the new library.

When 1b68 creates a library or modifies an existing library, it first creates a new library with a tem-
porary name. If the function was successfully performed, 1b68 erases the file having the same
name as the specified library, and then renames the new library, giving it the name of the speci-
fied library. Thus, 1b68 makes sure it can create a library before erasing an existing one.

Note that there must be room on the disk for both the old library and the new.

How to List Names of Modules in a Library
To list the names of the modules in a library, use the 1b68 option -t. For example, the following
command lists the modules that arein exmpl.1lib:

1b68 exmpl.lib -t

The list includes some **DIR™ entries. These identify blocks within the library that contain con-
trol information. They are created and deleted automatically as needed, and cannot be changed
by you.

How Modules Get Their Names
When a module is copied into a library from a file containing a single object module (that is, from
an object module generated by the Manx assembler), the name of the module within the library is
derived from the name of the input file by deleting the input file’s volume, path, and extension
components.

For example, in the example given above, the names of the object modules in exmp1.1ib are
obj1l and obj2.

An input file can itself be a library. In this case, a module’s name in the new library is the same as
its name in the input library.

Order of Modules in a Library
The order of modules in a library is important, since the linker makes only a single pass through a
library when it is searching for modules. For a discussion of this, see the “Introduction to Link-
ing” section of the Linker chapter.

When 1b68 creates a library, it places modules in the library in the order in which it reads them.
Thus, in the example given above, the modules will be in the library in the following order:

obj1 obj2

As another example, suppose that the library 01d1ib.14ib contains the following modules, in
the order specified:

subl sub2 sub3

If the library newlib . 1ib is created with the command

1b68 newlib modl oldlib.lib mod2 moda3

7-22 7 Aztec C68k ROM Reference Manual

the contents of the newly-created newlib.1ib will be:

modl subl sub2 sub3 mod2 mod3

The ord68 utility program can be used to create a library whose modules are optimally sorted.
For information, see the ord68 description later in this chapter.

Getting Arguments From a File
For libraries containing many modules, it is frequently inconvenient, if not impossible, to enter all
the arguments to Ib68 ona single command line. In this case, the 1b68 -f filename feature can be
of use: when 1b68 finds this option, it opens the specified file and starts reading command argu-
ments from it. After finishing the file, it continues to scan the command line.

For example, suppose the file build contains the line

exmpl obj1 obj2

Then entering the command

ib68 -f build

causes 1b68 to get its arguments from the file build, which causes 1b68 to create the library
exmpl].1libcontaining obj1 and obj2.

Arguments in a -f filename can be separated by any sequence of whitespace characters
(whitespace’ being blanks, tabs, and newlines). Thus, arguments in a -f filename can be on sepa-
rate lines, if desired.

The 1b68 command line can contain multiple -f arguments, allowing 1b68 arguments to be read
from several files. For example, if some of the object modules that are to be placed in exmp1 .1ib
are definedin arith.inc, input.inc, and output.inc, then the following command
could be used to create exmpl.lib:

1b68 exmpl -f arith.inc -f input.inc -f output inc

A -f filename can contain any valid 1b68 argument, except for another -f . That is, -f files cannot be
nested.

Advanced Features
In this section we describe the rest of the functions that 1b68 can perform. These primarily involve
manipulating selected modules within a library.

Adding Modules to a Library
Ib68 allows you to add modules to an existing library. The modules can be added before or after a
specified module in the library or can be added to the beginning or end of the library.

Utilities 7-23 :

The options that select the add operator are:

Option Function

-b target add modules before the module target
-i target same as -b target
-a target add modules after the module target
-b+ add modules to the beginning of the library
-i same as -b+
-at add modules to the end of the library

In an 1b68 command that selects the add operator, the names of the files containing modules to be
added follows the add option code (and the target module name, when appropriate). A file can
contain a single module or a library of modules.

Modules are added in the order that they are specified. If a library is to be added, its modules are
added in the order they occur in the input library.

Adding Modules Before an Existing Module
As an example of the addition of modules before a selected module, suppose that the library
exmp1 .1ib contains the modules

objl obj2 ob53

The command

1b68 exmpl -i obj2 modl mod2

adds the modules in the files modl.r and mod2.rto exmpl1.1lib, placing them before the
module ob3j2. The resultant exmp1 . 1ib looks like this:

obj1 modl mod2 obj2 obj3

As an example of the addition of one library to another, suppose that the library mylib .1ib con-
tains the modules

modl mod2 mod3

and that the library exmp1.1ib contains

obj1 obj2 ob33

Then the command

1b68 -b obj mylib.1lib

adds the modules inmylib.1ibto exmpl.lib, resulting in exmp1 . 1ib containing

obj1l modl mod2 mod3 obj2 ob3j3

Note that in this example, we had to specify the extension of the input file mylib.1ib. If we had
not included it, Ib would have assumed that the file was named mylib.o.

L 7-24 : Aztec C68k ROM Reference Manual

Adding Modules After an Existing Module
As an example of adding modules after a specified module, the command

1b68 exmpl -a objl obj2 ob3j3

will insert mod1 and mod2 after obj1 inthe library exmpl.lib.If exmpl.1lib Originally
contained

objl obj2 ob33

then after the addition, it contains

obj1 modl mod2 obj2 ob33

Adding Modules at the Beginning or End of a Library
Options -b+ and -a+ tell Ib68 to add the modules whose names follow the option to the begin-
ning or end of a library, respectively. Unlike options -i and -a, these options are not followed by
the name of an existing module in the library.

NOTE: The MPW Shell interprets a + on the command line as a special character; therefore in or-
der to avoid this, options that include the + character must be quoted.

For example, given the library exmp1.1ib containing

obj1 obj2

the following command will add the modules mod1 and mod2 to the beginning of exmpl.lib:

1b68 exmpl "-it+" modl mod2

resulting in exmp1 . 1ib containing

modl mod2 obj1 obj2

The following command will add the same modules to the end of the library:

1b68 exmpl "-a+" modl mod2

resulting in exmpl .1ib containing

obj1 obj2 modl mod2

Utilities 7 -25—

Moving Modules in a Library

Modules which already exist in a library can be easily moved about, using the move option, -m.

As with the options for adding modules to an existing library, there are several forms of move
functions:

Option Meaning

-mb target move modules before the module target
-ma target ~Move modules after the module target
-mb+ move modules to the beginning of the library
-ma+ move modules to the end of the library

In the 1b68 command, the names of the modules to be moved follow the move option code.

The modules are moved in the order in which they are found in the original library, not in the or-
der in which they are listed in the 1b68 command.

Deleting Modules
Modules can be deleted from a library using option -d. The command for deletion has the form

1b68 libname -d mod1 mod2...

where mod1, mod2, ... are the names of the modules to be deleted.

For example, suppose that exmp1.1ib contains

obj1l obj2 obj3 obj4 obj5 ob3j6£P

The following command deletes obj3 and ob35 from this library:

1b68 exmpl -d obj3 ob35

Replacing Modules

The replace option is used to replace one module in a library with one or more other modules.

The replace option has the form -r target, where target is the name of the module being replaced.
In a command that uses the replace option, the names of the files whose modules are to replace
the target module follow the replace option and its associated target module. Such a file can con-
tain a single module or a library of modules.

Thus, an 1b68 command to replace a module has the form:

Ib68 library -r target mod1 mod2 ...

For example, suppose that the library exmp1 .14b looks like this:

objl obj2 obj3 obj4

Then to replace obj3 with the modules in the files modl.o and mod2.0, the following com-
mand could be used:

1b68 exmpl -r obj3 modl mod2

| 7-26 Aztec C68k ROM Reference Manual

resulting inexmp1.1ib containing

obj1l obj2 modi mod2 obj4

Uniqueness

1b68 allows libraries to be created containing duplicate modules, where one module is a duplicate
of another if it has the same name.

Option -u causes 1b68 to delete duplicate modules in a library, resulting in a library in which each
module name is unique. In particular, option -u causes 1b68 to scan through a library, looking at
module names. Any modules found that are duplicates of previous modules are deleted.

For example, if the library exmp1 .1ib contains the following:

obj1l obj2 obj3 obj1 ob33

The command

1b68 exmpl -u

will delete the second copies of the modules obj1 and obj2, leaving the library looking like
this:

objl obj2 obj3

Extracting Modules
Extracting modules from a library option -x extracts modules from a library and puts them in
separate files, without modifying the library.

The names of the modules to be extracted follow the -x option. If no modules are specified, all
modules in the library are extracted.

When a module is extracted, it is written to a new file; the file has the same name as the module
and extension .o.

For example, given the library exmp1 .1ib containing the modules

0bj1 obj2 ob3j3

the command

1b68 exmpl -x

extracts all modules from the library, writing obj1 to obj1l.0, obj2 to obj2.0,and ob3j3
to ob33.0.

And the command

1b68 exmpl -x obj2

extracts just obj2 from the library.

Utilities 7-270

The Verbose Option

The verbose option, -v, causes 1b68 to be verbose; that is, to tell you what it is doing.

Silence Option
The silence option, -s, tells 1b68 not to display its sign-on message.This option is especially useful
when redirecting the output of a list command to a disk file.

Rebuilding a Library
The following commands provide a convenient way to rebuild a library:

1b68 exmpl -st > tfil

1b68 exmpl -f tfil

The first command writes the names of the modules in exmpl.1lib tothe file t£i1. The second
command then rebuilds the library, using as arguments the listing generated by the first com-
mand.

The -s option to the first command prevents 1b68 from sending information to t£il that would
foul up the second command. The names sent to t £il include entries for the directory blocks,
*“DIR**, but these are ignored by 1b68.

Defining the Default Module Extension
Specification of the extension of an object module file is optional; lb68 assumes that the extension
is .o. You can explicitly define the default extension using option -e. This option has the form:

-e .ext

For example, the following command creates a library; the extension of the input object module
filesis .i.

1b68 my.lib -e .i modl mod2 m

Help

Option -h will generate a summary of 1b68 functions and options.

| 27 -28 : Aztec C68k ROM Reference Manual

make program maintenance utility

SYNOPSIS

make [options] [namel1 name2 ...]

DESCRIPTION

make is a program, similar to the UNIX program of the same name, whose primary function is to
create, and keep up-to-date, files that are created from other files, such as programs, libraries, and
archives.

When told to make a file, make first ensures that the files from which the target file is created are
up-to-date or current, recreating only the ones that are not. Then, if the target file is not current,
make creates it.

Interfile dependencies and the commands which must be executed to create files are specified ina
file called the MAKEFILE, which you must write.

make has a rule-processing capability, which allows it to infer, without being explicitly told, the
files on which a file depends and the commands which must be executed to create a file. Some
rules are built into make; you can define others within the makefile.

A rule tells make something like this:

“a target file having extension .x depends on the file having the same basic name and exten-
sion .y. To create such a target file, apply the commands”

Rules simplify the task of writing a makefile: A file’s dependency information and command se-
quences need to be explicitly specified in a makefile only if this information cannot be inferred by
the application of a rule.

make has a macro capability. A character string can be associated with a macro name; when the
macro name is invoked in the makefile, it is replaced by its string.

Preview

The rest of this description of make is divided into the following sections:

1. The basics

2. Advanced features

3. Examples

The Basics
This section presents the basic features of make, with which you will be able to start using make.
The second part of this chapter describes advanced features of make.

Before you can begin using make, you must know what it does, how to create a simple makefile
that contains dependency entries, how to take advantage of make’s rule-processing capability,
and, finally, how to tell make to create a file. Each of these topics is discussed in the following
paragraphs.

Utilities "7-29

What make Does

The main function of make is to make a target file “current,” where a file is considered “current”
if the files on which it depends are current and if it was modified more recently than its prereg-
uisite files. To make a file current, make makes the prerequisite files current; then, if the target file
is not current, make executes the commands associated with the file, which usually recreates the
file.

As you can see, make is inherently recursive: Making a file current involves making each of its
prerequisite files current, making these files current involves making each of their prerequisite
files current, and so on.

make is very efficient: it only creates or recreates files that are not current. If a file on which a tar-
get file depends is current, make leaves it alone. If the target file itself is current, make will an-
nounce the fact and halt without modifying the target.

It is important to have the time and date set for make to behave properly, since it uses the last
modified times that are recorded in the files directory entries to decide if a target file is not current.

The Makefile

When make starts, it first reads a file, which you must create, called the MAKEFILE. By default,
make assumes this file is named makefile, but this can be overridden using make’s -f option.
This file contains dependency entries defining interfile dependencies and the commands that
must be executed to make a file current. It also contains rule definitions and macro definitions.

In the following paragraphs, we describe only dependency entries. In the “Advanced Features”
section of this chapter we discuss the somewhat more advanced topics of rule and macro defini-
tion.

A dependency entry in a makefile defines one or more target files, the files on which the targets
depend, and the operating system commands that are to be executed when any of the targets is
not current. The first line of the entry specifies the target files and the files on which they depend;
the line begins with the target filenames, followed by a colon, followed by one or more spaces or
tabs, followed by the names of the prerequisite files.

Please Note:. It is important to place spaces or tabs after the colon that separates target and de-
pendent files; on systems that allow colons in filenames, this allows make to distinguish between
the two uses of the colon character.

The commands are on the following lines of the dependency information entry. The first charac-
ter of a command line must be a tab or a Space; make assumes that the command lines end with
the last line not beginning with a tab or space.

For example, consider the following dependency entry:

prog: prog.r subl.r sub2.r
1n68 -o prog prog.r subl.r sub2.r -lc

This entry says that the file prog depends on the files prog.r, subl.r, and sub2.r. It
also says thatif progis not current, make should execute the In68 command. make considers prog to be current if it exists and if it has been modified more recently than prog.r,
subl.r, and sub2.r.

The above entry describes only the dependence of prog on prog.r, subl.r, and sub2.r. It does not define the files on which the. xr files depend. For that, we need either additional de pendency entries in the makefile or a rule that can be applied tocreate .r files from .c files.

7-30 Aztec C68k ROM Reference Manual

For now, we will add dependency entries in the makefile for prog.r, subl.r,and sub2.r,

which will define the files on which the object modules depend and the commands to be exe-
cuted when an object module is not current. Later we will add a rule to the makefile that will tell
make how tocreatea .r filefroma .c file.

Suppose that the .x files are created from the C source files prog.c, subl.c,and sub2.c;
that subl.c and sub2.c contain a statement to include the filedefs.h; and that prog.c
does not contain any #include statements. Then the following makefile could be used to explic-
itly define all the information needed to create prog

prog: prog.r subl.r sub2.r

1n68 -o prog prog.r subl.r sub2.r -lc

prog.r: prog.c

c68 prog.c

subl.r: subl.c defs.h

c68 subl.c
sub2.r: sub2.c defs.h

c68 sub2.c

This makefile contains four dependency entries: for prog, prog.zr, subl.r,and sub2.r.
Each entry defines the files on which its target file depends and the commands to be executed
when its target is not current. The order of the dependency entries in the makefile is not impor-
tant.

We can use this makefile to make any of the four target files defined in it. If none of the target
files exists, and if the name of the makefile is makefile, then entering

make prog

causes make to compile and assemble all three object modules from their C source files, and then
create prog by linking the object modules together.

Suppose that you create prog and then modify sub1.c. Then telling make to make prog
causes make to compile and assemble sub1.¢ only, and then recreate prog.

If you then modify defs.h, and tellmake tocreateprog, make will compile and assemble
subl.c and sub2.c, and thenrecreate prog.

You can tell make to make any file defined as a target in a dependency entry. Thus, if you want to
make sub2.r current, you could enter

make sub2.r

A makefile can contain dependency entries for unrelated files. For example, the following depend-
ency entries can be added to the above makefile:

hello: hello.r

1n68 hello.r -le

hello.r: hello.c

c68 hello.c

With these dependency entries, you can tellmake tomake hello and hello.r,inaddition —
to prog and its object files.

Utilities 7-31 {[

Advanced Features
The last section presented the basic features of make to help you begin using make. This section
presents the rest of make’s features.

Dependent Files

The target and source files that are in a dependent entry can be in different drives or directories
with the following caveats:

e If the filename contains a colon (for example, because the filename defines the volume on
which the file is located), the colon must be followed by characters other than spaces or tabs,
so that make can distinguish between this use of the colon character and its use as a separa-
tor between the target and dependent files in a dependency line. This should not be a prob-
lem, since most systems do not allow filenames to contain spaces or tabs.

e All references to a file must use the same name. For example, if a file is referred to in one
place using the name

hd: root:src:foo.c

then all references to the file must use this exact same name. The name

::sxrc:f00.c

would not match.

Macros

make has a simple macro capability that allows character Strings to be associated with a macro
name and to be represented in the makefile by the name. The following paragraphs describe how
to use macros within a makefile, then how they are defined, and finally some special features of
macros.

Using Macros

Within a makefile, a macro is invoked by preceding its name with a dollar sign; macro names
longer than one character must be parenthesized. For example, the following are valid macro in-
vocations:

$ (CFLAGS)
$2

The last two invocations are identical.

When make encounters a macro invocation in a dependency line or command line of a makefile, it replaces it with the character string associated with the macro. For example, suppose that the

7-32. Aztec C68k ROM Reference Manual

macro OBJECTS is associated with the string a.xr b.r ¢.r d.x. Then the dependency en-
tries:

prog: prog.ra.r b.rc.rd.r

1n68 prog.r a.r b.rc.rd.r

a.r b.r c.r d.r: defs.h

within a makefile could be abbreviated as:

prog: prog.r $ (OBJECTS)

1n68 prog.r $ (OBJECTS)

$ (OBJECTS): defs.h

Defining Macros in a makefile

A macro is defined in a makefile by a line consisting of the macro name, followed by the charac-
ter =, followed by the character string to be associated with the macro.

For example, the macro OBJECTS, used above, could be defined in the makefile by the line

OBJECTS = a.r b.rc.rd.r

A makefile can contain any number of macro definition entries. A macro definition must appear
in the makefile before the lines in which it is used.

Defining Macros in a Command Line

A macro can be defined in the command line that starts make. The syntax for a command line
definition has the following form:

make MACRO=text

For example, the following command assigns the value -DFLOAT to the macro CFLAGS:

make CFLAGS=-DFLOAT

Another example would be as follows:

make MACRO=text

Note that the equal sign (=) is the key to having it be a macro definition. If the macro is to be
empty, enter:

make MACRO=

Command line macro definition always overrides makefile macro definition. If a macro has any
whitespace, the macro name must be enclosed in quotes.

Macros Used by Built-In Rules

make has two macros, CFLAGS and AFLAGS, that are used by the built-in rules. These macros
by default are assigned the null string. This can be overridden by a macro definition entry in the
makefile.

For example, the following would cause CFLAGS to be assigned the string -T:

Utilities “7. 33 4

These macros are discussed below in the description of built-in rules.

Special Macros

There are three special macros: $$, $*, and $@. $$ represents the dollar sign. The other two are dis-
cussed below.

Before issuing any command, two special macros are set: $@ is assigned the full name of the tar-
get file to be made, and $* is the name of the target file, without its extension. Unlike other mac-
ros, these can only be used in command lines, not in dependency lines.

For example, suppose that the filesx.c, y.c, and z.eneed tobe compiled using the option
-DFLOAT. The following dependency entry could be used:

x.r y.r z.rx:

c68 -DFLOAT $*.c

When make decides that x.x needs to be recreated from x.c, it will assign $* to the strin g
x, and the command

c68 -DFLOAT x.c

will be executed. Similarly, when y.xr or z.ris made, the command

c68 -DFLOAT y.c

or

c68 -DFLOAT z.c

will be executed.

The special macros can also be used in command lines associated with rules. In fact, the $@ macro
is primarily used by rules. We will discuss this more in the “Rules” section that follows.

Rules

The makefile describing a program built from many .r files would be huge if it had to explicitly
State that each .r file depends on its .c source file and is made current by compiling its source file.

This is where rules are useful. When a rule can be applied to a file that make has been told to
make or that is a direct or indirect prerequisite of it, the rule allows make to infer, without being
explicitly told, the name of a file on which the target file depends and/or the commands that
must be executed to make it current. This in turn allows makefiles to be very compact, only speci-
fying information that make cannot infer by the application of a rule.

Some rules are built into make; you can define others in a makefile. In the rest of this section, we
describe the properties of rules and make’s built-in rule for creating a .o file from a.c file.

make’s Use of Rules

A rule specifies a target extension, source extension, and sequence of commands. Given a file that
make wants to make, it searches the rules known to it for one that meets the following conditions:

e The rule’s target extension is the same as the file’s extension;

7-34 : Aztec C68k ROM Reference Manual

e A file exists that has the same basic name as the file make is working on and that has the
rule’s source extension.

If a rule is found that meets these conditions, make applies the first such rule to the file it is work-
ing on, as follows:

¢ The file having the source extension is defined to be a prerequisite of the file with the target
extension;

e If the file having the target extension does not have a command sequence associated with it,
the rule’s commands are defined to be the ones that will make the file current.

Rule Definition

A rule consists of a source extension, target extension, and command list. In a makefile, an entry
defining a rule consists of a line defining the two extensions, followed by lines containing the
commands.

The line defining the extensions consists of the source extension, immediately followed by the tar-
get extension, followed by a colon.

All command lines associated with a rule must begin with a tab or space character. The first line
following the extension line that does not begin with a tab or space terminates the commands for
the rule.

For example, the following rule defines how to create a file having extension . rel from one hav-
ing extension .c:

.c.rel:

c68 -o S@ $x.c

The first line declares that the rule’s source and target extensions are .cand .rel, respectively.

The second line, which must begin with a tab, is the command to be executed whena .rel file
is to be created using the rule.

Note the existence of the special macros $@ and $* in the command line. Before the command
is executed to create a . rel target file using the rule, the macro $@ is replaced by the full name
of the target file, and the macro $* by the name of the target, less its extension.

Thus, if make decides that the file x. rel needs to be created using this rule, it will issue the com-
mand

c68 -o x.rel x.c

If a rule defined in a makefile has the same source and target extensions as a built-in rule, the
commands associated with the makefile version of the rule replace those of the built-in version.

Example

As an example of rules, we can simplify the sample makefile that is in "The Basics" section by add-
ing a .c to .r rule. The makefile then becomes

Cc .2r:

c68 -o $@ $*.c
prog: prog.r subl.r sub2.r

in68 -o prog prog.r subl.r sub2.r

Utilities 7-35

interaction of Rules and Dependency Entries

As we showed in the above example, a rule allows you to leave some dependency information
unspecified in a makefile. The prog.x entry in the long-winded makefile shown earlier in this
section was not needed, because its information could be inferred by the .c to .r rule. And the de-
pendence of subl.r and sub2.r on their respective C source files, and the commands needed
to create the object files were also not needed, since the information could be inferred from the .c
to .r rule.

There are occasions when you do not want a rule to be applied; in this case, information specified
in 2 dependency entry will override that which would be inferred from a rule. For example, the
following dependency entry in a makefile

add.r:

c68 -DFLOAT add.c

causes add.r to be compiled using the specified command rather than the command specified
by the .c to .rrule. make still infers the dependence of add. r on add.c, using the .c to .rrule,
however.

Built-in Rules

The following rules are built into make. The order of the rules is important, since make searches
the list beginning with the first one, and applies the first applicable rule that it finds.

.c.0:

cc $(CFLAGS) -o $@ $*.c
.asm.o:

as $(AFLAGS) -o $@ $*.asm.

Thus, if both a .asm anda .c file exist with the same basic name, the .c file would be used
and not the .asm file.

The two macros CFLAGS and AFLAGS that are used in the built-in rules are built into make, hav-
ing the null character string as their values. To have make use other options when applying one
of the built-in rules, you can define the macro in the makefile.

For example, if you want the options -t and -DDEBUG to be used when make applies the .o to .r
rule, you can include the line

CFLAGS = -T -DDEBUG

in the makefile. Another way to accomplish the same result is to redefine the .c to .o rule in the
makefile; this, however, would use more lines in the makefile than the macro redefinition.

For doing cross development with Aztec C68k/ROM, you will not be able to use make’s built-in
rules, since these rules invoke the cc and as instead of c68 and as68.

Commands

In this section we want to discuss the execution of operating system commands by make.

Allowed Commands

A command line in a dependency entry or rule within a makefile can specify any command that
you can enter at the keyboard.

| 7-36 | Aztec C68k ROM Reference Manual

This includes batch commands, commands built into the operating system, and commands that
cause a program to be loaded and executed from a disk file.

Long Command Lines

Makefile commands that start a Manx program, such as c68, as68, or In68, can specify a com-
mand line containing up to 2048 characters.

For example, if a program depends on fifty modules, you could associate them with the macro
OBJECTS in the makefile, and also include the dependency entry

prog: $ (OBJECTS)
1n68 -o prog $(OBJECTS) -lc

This will result in a very long command line being passed to 1n68.

Makefile Syntax

This section has already presented most of the syntax of a makefile; that is, how to define rules,
macros, and dependencies. However, we must discuss two features of a makefile syntax not pre-
sented elsewhere: comments and line continuation.

Comments

make assumes that any line in a makefile whose first character is # is a comment, and ignores it.
For example:

the following rule generates

68k object module
from a C source file:

.C.2r:

c68 -pa $*.c

Line Continuation

Many of the items in a makefile must be on a single line: A macro definition, the file dependency
information in a dependency entry, and a command that make is to execute must each be on a sin-
gle line.

You can tell make that several makefile lines should be considered to be a single line by terminat-
ing each of the lines, except the last, with the backslash character, ’\’. When make sees this, it re-
places the current line’s backslash and newline, and the next line’s leading blanks and tabs by a
single blank, thus effectively joining the lines together.

The maximum length of a makefile line after joining continued lines is 2048 characters.

For example, the following macro definition equates OBJ toa string consisting of all the speci-
fied object module names.

OBJ = printf.r fprintf.r format.r\
scanf.r fscanf.r scan.r\
getchar.r getc.r

|) Utilities 7-37 -

As another example, the following dependency entry defines the dependence of driver .1libon
several object modules, and specifies the command for making driver. lib:

driver.lib: driver.r printer.r \

in.r \

out .r

1b68 -o driver.lib driver.r\

printer.r \
in.r out.r

This second example could have been more cleanly expressed using a macro:

DRIVOBJ= driver.r printer.r\

in.r out.r

driver.lib: $(DRIVOBJ)

lib -o driver.lib $(DRIVOBJ)

This was done to show that dependency lines and command lines can be continued, too.

Starting make

We have already discussed how make is told to make a single file. Enterin g

make filename

makes the file named filename, which must be described by a dependency entry in the makefile.
And entering

make

makes the first file listed as a target file in the first dependency entry in the makefile.

In both of these cases, make assumes the makefile is named makefile and that it is in the current
directory on the default drive.

In this section we want to describe the other features available when starting make.

The Command Line

The complete syntax of the command line that starts make is:

make [-n] [-£ makefile] [-a] [MACRO=st] [file1] [file2] ...

Square brackets indicate that the enclosed parameter is optional.

The parameters file1, file2 ... are the names of the files to be made. Each file must be described ina
dependency entry in the makefile. They are made in the order listed on the command line.

The other command line parameters are options and can be entered in upper- or lowercase. Their
meanings are:

-n Suppresses command execution. make logs the commands it would execute
to its standard output device, but does not execute them. Under the MPW
Shell this option is always enabled, requiring the user to select the output of |
make and hit the <Enter> key to actually execute it.

-£ makefile | The name of the makefile is makefile .

7-38. Aztec C68k ROM Reference Manual

-a Forces make to make all files upon which the specified target files directly or
indirectly depend, and to make the target files, even those that it considers
current. |

MACROs=sstr Creates a macro named MACRO, and assigns str as its value.

Calling make Recursively

Under Unix, make actually invokes the commands that are required to bring a program up to
date. Under the MPW Shell, a script is built and sent to standard output which the user must then
execute. This works fine in most cases, but fails if you try to have a makefile invoke make on a
second makefile. This problem occurs when building the libraries and requires the use of a special
script which is used to invoke make indirectly.

The script depends on mkfile having been defined in UserStartupe C68KROM as make and
having been exported. Since the script itself will be called make, it also requires that the make
tool be renamed to mk. The script itself reads as follows:

set mkfile {mkfile} 0

export mkfile

mk {"Parameters"} "CC=C" > {mkfile}.sh

{mkfile}.sh

Gelete {mkfile}.sh

A copy of this script is included as MakeScript in the Scripts folder. To use it, it should be re-
named to make, and the make tool found in the Tools folder should be renamed to mk.

Normally an MPW script will abort if a command returns with a nonzero value. This is desirable
in most cases, but may not be in some. To override this feature, set the environment variable Exit
to 0. Exit can be set back to a nonzero value to once again abort if a command fails.

Differences Between Aztec make and MPW make

If you have the MPW Shell, you will have an MPW tool named make; the Aztec version of this
utility is also called make. Though these utilities have the same name, there are several differ-
ences between the two that should be understood.

The MPW version of make only runs under the MPW Shell and expects a different makefile syn-
tax than the Manx version of make. The Manx version runs under both the Aztec Shell and the
MPW Shell. The library source and example source supplied by Manx come with makefiles that
are designed for the Manx version of make. To use the MPW make tool you need to construct
makefiles using the syntax described in Chapter 10 of Apple’s MPW: Macintosh Programmer's
Workshop Version 2.0.

Since the Manx make and the MPW make both have the same name, a naming conflict will exist
under the MPW Shell if you have installed both. The one invoked under the MPW Shell will be
the first one found when searching the paths defined by the (Commands} environment variable:
by default, the Aztec version of make will be invoked since it comes first in the {Commands}
search path. If you only use one make, the easiest procedure is to delete the one not used. But, if
you use both, you can avoid confusion by giving one a different name than make. For example,
you might change the Manx version of make to azmake since it runs under the Aztec Shell as
well. If you use the Project Manager, do NOT rename the MPW version of make; it is used by the
Project Manager scripts. If you do not rename one, the only way to access the alternate version is
to invoke it by giving its full pathname. The MPW version can be invoked by explicitly giving its
path as

Utilities 7 - 39 :

{MPW}tools :make

The Aztec version of make behaves much the same under the MPW Shell as under the Aztec
Shell. Although the syntax of the makefile is identical, the way that make works to generate com-
mands differs depending on which shell it is being invoked from. Under the Aztec Shell, the Az-
tec make places the commands needed to build its target(s) in a file called make.sh. This text file
containing commands is then automatically executed by the Aztec Shell. Under the MPW Shell,
make dumps the commands needed to build its target(s) to standard output. You must then select
the commands and press <Enter> to execute them. A quick way to select all the commands gener-
ated by make under the MPW Shell is to press CMD-Z or undo twice (The first "undo" removes
the commands, and the second "undo" replaces them while also highlighting them).

Differences In Syntax
If you are familiar with the syntax of the Aztec version of make, the following information is pro-
vided as a means of pointing out the differences between it and the MPW version of make. By
knowing the differences in syntax, you can convert a makefile desi gned for one version of make
to one useable by the other version of make. In the case of example and library source, the make-
files supplied by Manx are designed for the Aztec version of make. Therefore if you want to use
the MPW version of make you would have to convert the makefiles from the Aztec syntax to the
MPW syntax.

e In makefiles to be used under the MPW Shell, all plus (+) options should either be quoted or
changed to double minus (--) options.

e Line continuation under the Aztec Shell is accomplished by using the backslash (\) character
as the escape character. Under MPW, the escape character is the option-d (0) character.

e Variable assignment is the same, but the way these variables are subsequently used is differ-
ent. Under the Aztec version of make, a variable is referenced by enclosing it in parentheses
preceded by a dollar sign. Under the MPW version of make, the variable is instead enclosed
in curly braces and is not preceded by a dollar sign.

e The pound sign (#) is used to specify a comment line under both versions of make.

e Dependencies are separated by a colon (:) under the Aztec Shell while the MPW version of
make uses an option -f (f).

e Default rules are also specified differently. Under the Aztec make the source suffix is fol-
lowed by the destination suffix which is followed by a colon (:). Ina MPW makefile the desti-
nation suffix is given first with an option-f (f) between it and the source suffix.

e In the Aztec version of make, the macro $@ is assigned the full name of the target file, while
the macro $* is assigned the name of the target file without its extension. Ina MPW makefile, the variable (Default) specifies the name of the target without its extension. Two other vari- ables are also available, namely {DepDir} to specify the directory component of the source name and (TargDir} to specify the directory component of the target name.

In order to see the differences in practice, two copies of a sample makefile are given which illus-
trate these differences.

| 7 -~40— Aztec C68k ROM Reference Manual

Aztec Style makefile

CFLAGS = -n +x3

.C.0:

cc $(CFLAGS) -o $@ $*.c

FILES=main.o subl.o \

sub2.0 7
test: $(FILES)

ln -g -o test $(FILES) -lc
main.o: stdio.h

MPW Style makefile

CFLAGS = -n '+x3’

.o f .¢

C {CFLAGS} -o {Default}.o {Default}.c

FILES=main.o subl.o a
sub2.0

test f {FILES}

in -g -o test {FILES} -lc

main.o f stdio.h

Differences between the Manx and UNIX make Programs
The Manx make supports a subset of the features of the UNIX make. The following comments
present features of the UNIX make that are not supported by the Manx make.

e The UNIX make will let you make a file that is not defined as a target in a makefile depend-
ency entry, so long as a rule can be applied to create it. The Manx make does not allow this.
For example, if you want to create the file hello.o from the file hello .c you could say,
on UNIX

make hello.o

even if hello.o was not defined to be a target in a makefile dependency entry. With the
Manx make, you would have to have a dependency entry in a makefile that defines
hello.oasa target.

e The UNIX make supports the following options, which are not supported by the Manx
make:

p, i, k,s,r, b,e, m, t,d,q

e The Manx make supports the option -a, which is not supported by the UNIX make.

e The special names .DEFAULT, .PRECIOUS, .SILENT, and IGNORE are supported only by
the UNIX make.

e Only the UNIX make allows the makefile to be read from make’s standard input.

¢ Only the UNIX make supports the special macros $? and $% and allows an uppercase D or F
to be appended to the special macros, which thus modifies the meaning of the macro.

Utilities -7- aL ‘

e Only the UNIX make requires that the suffixes for additional rules be defined in a SUF-
FIXES statement. 7

e Only the UNIX make allows a target to depend on a member of a library or archive.

Examples

Example 1

This example shows a makefile for making several programs. Note the entry for all. This does
not result in the generation of a file called all; it is only used so that progl and prog2 canbe
generated by typing make or make all.

rules:

.C.2r:

c68 -o $@ $*.c
all: progl prog2

macros:

OBJ=make.r parse.r scandir.r \
dumptree.r rules.r command.r

dependency entry for making progl1:
progl: $(0OBJ)

1n68 -o progl $(OBJ) -l1c

$(OBJ): parse.h lex.h

#dependency entry for making prog2
#prog2: prog2.r

1n68 -o prog2

prog2.r -lc

Example 2
The next example uses make to make a library, my.1ib. Three directories are involved: the di-
rectory libe and two of its subdirectories, sys and misc. The Cand assembly language
source files are in the two subdirectories. There are makefiles named makefile in each of the
three directories, and this example makes use of all of them. With the current directory being
1Libc, you enter

make my.1lib

This startsmake, which reads the makefile in the libe directory. make will change the cur-
rent directory to sys and then start another make program.

This second make compiles and assembles all the source files in the sys directory, using the
makefile that isin the sys directory.

When the sys make finishes, the libc make regains control, and then starts yet another
make, which compiles and assembles all the source files in the misc subdirectory, using the
makefile that isin the misc directory.

7 -42 Aztec C68k ROM Reference Manual

When the misc make isdone, the libc make regains control and builds my.1ib. You can
then remove the object files in the subdirectories by entering

make clean

The following files contain the makefiles for this example:

The makefile in the ‘libc’ Directory

my.lib: sys.mk misc.mk

my .1lib

1b68 -o my.lib -f my.bld

sys .mk:

cd sys

make

cd ::

misc .mk:

cd misc

make

cd ::

clean:

cd sys
make clean

cd ::

cd misc

make clean

cd ::

The makefile for the ’sys’ Directory

REL=asctime.r bdos.r begin.r chmod.r \

croot.r csread.r ctime.r

COPT=

HEADER=: :header

.c.3r:

c68 $(COPT) -IS(HEADER) $*.c -o §8
.asm.r:

as68 $*.asm -oS$@
all: §$ (REL)

clean:

Utilities 7 -43 :

The makefile for the ’misc’ Directory

REL= atoi.r atol.r calloc.r ctype.r format.r \
malloc.r \

qsort.r sprintf.r sscanf.r fformat.r fscan.r
COPT=

HEADER=: :header

-C.2r:

c68 $(COPT) -IS(HEADER) $*.c -o $@
-asm.2r:

as68 $*.asm -o $@
all: $ (REL)

£format.r: format.c

c68 -I$(HEADER) -DFLOAT format.c -o fformat.r
fscn.o: scan.c

c68 -I$(HEADER) -DFLOAT scan.c -o fscan.r
clean:

7.44 Aztec C68k ROM Reference Manual

mkarcv create source archive

SYNOPSIS

mkarcv arcfile

DESCRIPTION

mkarcv combines several individual text files into one “archive” file, where the parameter arcfile

is the name of the archive file. mkarcv reads the names of the files to be archived from its stand-

ard input device. Each filename is on a separate line.

Usually, a separate file containing the names of the files to be archived is created first and
mkarcv’s standard input is redirected to this file in the standard manner. Alternatively, you can
type in each file’s name from the console, separating each name with a carriage return and ending
the list with a period as the first character on a line by itself.

Files archived with mkarcv may be dearchived with the arcv utility described at the beginning of
this chapter. Please note that files archived with mkarcv are not in any way altered or
“squeezed,” and the archive can be edited with a standard text editor.

EXAMPLE

To archive the filesexplore.cand makefile into the fileexample.arc, you would create a
file named input .txt containing these two filenames with a carriage return after each name:

explore.c <Enter>

makefile <Enter>

and then redirect the standard input of mkarcv to this file:

mkarcv <input .txt example .arc

You can also interactively enter the filenames when you run the mkarcv command:

mkarcv example.arc <Enter>

explore.c <Enter>
makefile <Enter>

. <Enter>

| Unilties 7-45

obd68 list object code

SYNOPSIS

obd68 objfile1 L, objfile2,...]

DESCRIPTION

obdé8 lists the loader items that are in the Aztec object modules objfile1, objfile2,

7 46 Aztec C68k ROM Reference Manual

ord68 sort object module list

SYNOPSIS

ord68 [-v] [infile [outfile]]

DESCRIPTION

ord68 sorts a list of object filenames for use by the 1b68 utility. A library that is generated from
this sorted list will contain a limited number of backward references, i.e., global symbols that are
defined in one module and referenced in a later module.

Since the specification of a library to the linker causes it to search the library only once, a library
having no backward references must be specified only once when linking a program, and a li-
brary having backward references may need to be specified multiple times.

infile is the name of a file containing an unordered list of filenames. These files contain the object
modules that are to be put into a library. If infile is not specified, this list is read from the ord68
standard input. The filenames can be separated by space, tab, or newline characters.

outfile is the name of the file to which the sorted list is written. If it is not specified, the list is writ-

ten to the ord68 standard output. outfile can only be specified if infile is also specified.

Option -v causes ord68 to be verbose, sending messages to its standard error device as it proceeds.

Utilities 7- 47

srec68 Convert program to Motorola S-records

SYNOPSIS

srec68 [-options] prog |

DESCRIPTION

srec68 translates the program that’s in the file named prog, and that was generated by the Aztec
C68k/ROM linker, into Motorola S-records. The program can then be burned into ROM by feed-
ing the S-records into a ROM programmer. The S-records are written to one or more files, each of
which contains the hex code for one ROM chip. The ROM chips that are generated from the
srec68 output files will contain the program’s code, followed by a copy of its initialized data.

Note: when a ROM system is started, its RAM contains random values; the Aztec C68k/ROM
Startup routine sets up its initialized data area, using the copy that is in ROM.

srec68 assumes that the size of each ROM chip is 2kb. You can explicitly define the size of each
ROM using srec68’s -p option.

The Output Files

Even- and Odd-addressed Bytes in the Same Chips
srec68 can optionally generate S-records so that the program’s even-addressed bytes are in one
set of ROM chips, and its odd-addressed bytes are in another. This option is discussed below. In
this section we discuss the output files that are created when this option isn’t used; i.e. whena
program's even- and odd-addressed bytes are in the same set of ROM chips.

When neither -e nor -o is specified, srec68 derives the name of each output file from that of the in-
put file, by appending an extension of the form .mnn, where nn is a number. For example, if the
name of the linker-generated file is prog, then the names of the output files generated by srec68
are prog.m00, prog.m01, and soon, where the .m00 file contains the S-records for the lowest-
addressed ROM, .m01 the S-records for the next ROM, etc.

For example, suppose that srec68 is creating S-records for a program whose code and copy of in-
itialized data will reside in three 2kb ROMs that begin at location 0. Then srec68 will create the
following files:

prog.m00 Contains the S-records for the ROM chip that occupies addresses 0-0x7££;

prog.m01 Contains the S-records for the ROM that occupies 0x800-Ox££¢£;

prog.m02 Contains the S-records for the ROM that occupies 0x1000-0x17£f.

Even- and Odd-addressed Bytes in Separate Chips.
To place a program’s even-addressed bytes in one set of ROM chips and its odd-addressed bytes
in another, you must run srec68 twice: once using the -e option to generate the S-records for the —
chips that contain the even-addressed bytes, and once using the -o option to generate S-records
for the chips that contain the odd-addressed bytes.

| 7-48 Aztec C68k ROM Reference Manual

When either -e or -o is specified, srec68 generates one or more files, each of which contains the S-
records for one ROM chip. By default, the size of each chip is 2kb, but you can use the -p option
to explicitly define the chip size.

When the -e option is specified, the extension of the files are of the form .enn, where nn is a deci-
mal number. The .e00 file contains the S-records for the first of the ROM chips that contain even-
addressed bytes, the .e01 file contains the S-records for the second ROM chip, and so on.

When the -o option is specified,the extension of the files are of the form .onn, where nn is a deci-
mal number. The .000 file contains the S-records for the first of the ROM chips that contain odd-
addressed bytes, the .o01 file contains the S-records for the second ROM chip, and so on.

Th ion
srec68 supports the following options:

-an

-pn

The size of an S-record’s address field is n bytes, where (following Motorola
specifications)n can be 2, 3, or 4. If this option isn’t specified, the field size de-
faults to 2 bytes.

The program begins x bytes into the first ROM chip, where x is a hexadecimal
number. If this option isn’t specified, the program begins at the beginning of the
first ROM chip.

Output S-records for the program’s even-addressed bytes.

Output S-records for the program’s odd-addressed bytes.

The size of each ROM is n kilobytes, where n is a decimal number. If this option

isn’t specified, the size defaults to 2kb. For example, the following command
specifies that each ROM chip is 64kb long:

srec68 -p64 exmpl

Output hex code for every fourth byte starting with offset x=0, 1, 2, or 3. This op-
tion is similar to the even and odd addressed bytes. The file extensions are .ann,
.bnn, .cnn, and .dnn.

-
Utilities 7 - 49 |

tekhex68 — convert Program to Tektronix Tek Hex Format

SYNOPSIS

tekhex68 [-options] prog

DESCRIPTION

tekhex68 translates the program that is in the file named prog, and that was generated by the Az-
tec C68k/ROM linker into Tektronix Extended tekhex records. The program’s extended tekhex re-
cords are written to one or more files, each of which contains the hex code for one ROM chip.

The ROM chips that are generated from the tekhex68 output files will contain the program’s
code, followed by a copy of its initialized data.

Note: When a ROM system is started, its RAM contains random values; the Aztec C68k/ROM
startup routine sets up its initialized data area, using the copy that is in ROM.

tekhex68 assumes that the size of each ROM chip is 2kb. You can explicitly define the size of each
ROM using tekhex68’s -p option.

tekhex68 can also generate a symbol table file, in extended tekhex format, for a program. This is
discussed below.

The Output Files

Even- and Odd-addressed Bytes in the Same Chips
tekhex68 can optionally generate extended tekhex records so that the program’s even-addressed
bytes are in one set of ROM chips, and its odd-addressed bytes are in another. This option is dis-
cussed below. In this section we discuss the output files that are created when this option is not
used; i.e. when a program’s even- and odd-addressed bytes are in the same set of ROM chips.

When neither -e nor -o is specified, tekhex68 derives the name of each output file from that of the
input file, by appending an extension of the form .tnn, where nn is a number. For example, if the
name of the linker-generated file is prog, then the names of the output files generated by tek-
hex68 are prog.t00, prog.t01 and soon, where the .t00 file contains the extended tekhex re-
cords for the lowest-addressed ROM, .t01 the extended tekhex records for the next ROM, etc.

tekhex68

7 -50_ Aztec C68k ROM Reference Manual

For example, suppose that tekhex68 is creating extended tekhex records for a program whose
code and copy of initialized data will reside in three 2kb ROMs that begin at location 0. Then tek-
hex68 will create the following files:

prog .t00 Contains the extended tekhex records for the ROM chip that occupies addresses
O-Ox7£f£;

prog .t01 Contains the extended tekhex records for the ROM that occupies 0x800-0xfff£;

prog .t02 Contains the extended tekhex records for the ROM that occupies 0x1000-
Ox17f£f.

Even- and Odd-addressed Bytes in Separate Chips
To place a program’s even-addressed bytes in one set of ROM chips and its odd-addressed bytes
in another, you must run tekhex68 twice: once using the -e option to generate the extended tek-
hex records for the chips that contain the even-addressed bytes, and once using the -o option to
generate extended tekhex records for the chips that contain the odd-addressed bytes.

When either -e or -o is specified, tekhex68 generates one or more files, each of which contains the
extended tekhex records for one ROM chip. By default, the size of each chip is 2kb, but you can
use the -p option to explicitly define the chip size.

When the -e option is specified, the extension of the files are of the form .enn, where nn is a deci-
mal number. The .e00 file contains the extended tekhex records for the first of the ROM chips that
contain even-addressed bytes, the .e01 file contains the extended tekhex records for the second
ROM chip, and so on.

When the -o option is specified, the extension of the files are of the form .onn, where nn is a deci-
mal number. The .000 file contains the extended tekhex records for the first of the ROM chips that
contain odd-addressed bytes, the .001 file contains the extended tekhex records for the second
ROM chip, and so on.

nerating an Exten ekhex Svmbol Table
To have tekhex68 generate an extended tekhex symbol table file for a program, link. the program
with the -g option. This causes the linker to generate a file of debugging information for the pro-
gram; this file’s name is the same as that of the program file, with extension .dbg. If tekhex68
finds a .dbg file for a program, it will automatically generate an extended tekhex file containing
symbolic information. The extension of this extended tekhex file is .tnm.

The Options
tekhex68 supports the following options:

-bx The program begins x bytes into the first ROM chip, where x is a hexadecimal
number. If this option is not specified, the program begins at the beginning of the
first ROM chip.

-e Output extended tekhex records for the program’s even-addressed bytes.

-0 Output extended tekhex records for the program’s odd-addressed bytes.

Utilities —7-51—

-d

The size of each ROM is n kilobytes, where n is a decimal number. If this option
is not specified, the size defaults to 2kb. For example, the following command
specifies that each ROM chip is 64kb long:

tekhex68 -p6é4 exmpl

Output a carriage return after each extended tekhex record.

Output hex code for every fourth byte starting with offset x=0, 1, 2, or 3. This op-
tion is similar to the even and odd addressed bytes. The file extensions are .ann,
.bnn, .cnn, and .dnn.

Z Eprror

Chapter 8- Z Editor

Z is a text editor for creating source programs, usually in the C programming language. Z has
the following features:

e Similarity to the UNIX editor Vi: If you know Vi, you know Z.

e Full-screen editor: The screen acts as a window into the file being edited.

e A wealth of commands, specified with only a few keystrokes, that allow you to edit
quickly and efficiently. The simple and natural way of entering commands and the
mnemonic assignment of commands to keys make the commands easy to remember
and use.

¢ Commands for the following:

Bringing different sections of a file into view

Inserting text

Making changes to text

Rearranging text by moving blocks of text around and by inserting text from other files

Accessing files

Searching for character strings and "regular expressions"

e Several commands that are useful for editing C programs, including commands for
finding matching parentheses, square brackets, and curly braces; for finding the begin-

8-2 | Aztec C68k ROM Reference Manual

ning of the next or preceding function; and for finding the next or preceding blank
line.

e Most commands can be easily executed repeatedly.

e Sequences of commands, called macros, can be defined and executed one or more

times. |

e Changes are made to an in-memory copy of a file; the file itself is not changed until a
command is explicitly given.

' e Editing feature that allows the operator to request that a file containing a certain func-
tion be edited—Z finds the file and prepares it for editing.

Requirements

The maximum file size that you may edit using Z must not exceed your system’s total memory
size, minus 64K. In other words, to use Z editor, you must have at least 64K of available mem-

ory above and beyond the file you want to edit.

As you begin editing, Z will initially allocate a 16K edit buffer; Z will allocate additional 16K
buffers when necessary.

Components

The Z package contains two programs:

e Z - the text editor

° ctags, - a utility for creating a file that relates tags to copies of C source files

Z Editor 8. 3

Getting Started
Z is a very powerful tool for creating and editing C source programs, but its wealth of com-
mands and options can be overwhelming to someone not familiar with it. This chapter gets you
using Z as quickly as possible by presenting a small subset of the Z commands with which you
can create and edit programs. Then, with the ability to create and edit programs, you can con-
tinue reading the rest of this chapter at your leisure to learn about the other features and com-
mands of Z.

The first part of this chapter describes how to create a new C program, and the second part,
how to edit an existing program.

Creating a New Program eee ee
You start Z by entering:

z hello.c

where hello .c represents the file to be edited. Since we are creating a new program, the file
does not yet exist, therefore, Z displays a message on its status line (which may be either the
first or last line of the display, depending on the system on which Z is running). On systems
that use the first display line for status information, the screen looks like this:

"hello.c" No such file or directory

with the cursor on the left-hand column of the second line. On systems that use the last display
line for status information, the screen looks like this:

"hello.c" No such file or directory

with the cursor on the left-hand column of the first line.

Z is now waiting for you to enter a command.

The Screen

As mentioned above, Z uses the one line of the display for displaying information and for echo-
ing the characters of some commands that are entered.

The rest of the lines on the screen display the text of the file being edited.

The tilde characters on the screen lines tell you that Z has reached the end-of-file. These charac-
ters are not actually in the file.

[| 8-4 Aztec C68k ROM Reference Manual

Modes of Z

Z has two modes: command and insert, that allow you to enter commands and to insert text, re-

spectively.

Insert Mode

With Z in insert mode, characters that you type are entered into a memory-resident buffer; the

characters do not appear in the file until you exit insert mode and explicitly issue a command

that causes Z to write the buffer to the file.

Z has several commands for entering insert mode; the one we want to use, i, allows text to be

entered before the cursor. Type i. Notice that Z does not echo this command on the screen, it

only does that for a few commands. Notice also that you are in insert mode, as evidenced by

the message

<INSERT>

on the right-hand side of the status line.

You may now enter a program, just as you would on a typewriter. Notice that the cursor is posi-

tioned where the next character will be entered. Enter the hello world program:

main ()

{
printf£("hello, world\n") ;

}

When you press the <CR> key after entering the printf line, the cursor was left positioned

on the next line of the screen underneath the first nonwhite space character of the preceding

line. This feature, "autoindent,” is useful when creating C programs, encouraging statements
within a compound statement to be indented and lined up. Autoindent can be disabled and en-

abled, and we will show you how later.

We want the closing curly brace of the main function to be on the first column of the line, not in-
dented. So after you type the semicolon and then return at the end of the printf line, type
the backspace key to get back to the first column, and then type the "}" key.

The backspace key can also be used to backspace over characters that you incorrectly type.

During insert mode, if you hold down the control key and type a W, the previous word typed
is deleted.

When you have finished inserting the program, hit the escape key to exit insert mode and re-
turn to command mode. The key used as the escape key varies from system to system.

Exiting Z

To write the program you have just entered from the text buffer to the disk file hello.c and
then exit Z, type ZZ. (Note that the "ZZ" must be typed as uppercase; the entry "zz" will not
work.)

| z Editor

Z Editor 8-5

Occasionally you may want to exit Z without writing the text you have entered to a file; in this
case, you would type

:q!

followed by a carriage return <CR>.

Editing an Existing File

The following describes the commands you need to make changes to an existing file.

Starting and Stopping Z

You get in and out of Z when editing an existing file just as you do when creating a new file. To
start Z, enter

z hello.c

where hello.c is the name of the file to be edited.

Z reads the specified file into the text buffer, displays the first screen of file text, displays the
file’s statistics (name, number of lines, number of characters) on the status line, positions the cur-
sor at the first character of the first line, and enters command mode, waiting for you to enter a
command.

To stop Z and save the changes you have made, put Z in command mode and enter:

ZZ

(Again, note that the "ZZ" must be typed as uppercase; the entry °zz" will not work.) Z knows if
you made changes to the original text or not; if you did, Z saves the original file by changing
the extension of its name to .bak and then writes the modified text to a new file having the
specified name. If a .bak file with that name already exists it will be deleted before the rename
occurs.

If you did not make any changes, the ZZ command causes Z to halt without changing any disk
files.

The command :q! quits Z without writing anything to the file being edited.

The Cursor

Before describing the commands for viewing and changing the text in Z’s memory-resident buff-
er, we need to discuss the cursor.

In Z, the character position in the text that is pointed to by the cursor acts as a reference point:
Most commands perform an action relative to that position. For example, the i command, de-
scribed in the last section, allows you to enter text before the cursor. And the x command, to be
discussed, deletes the character at which the cursor is located.

SC NII I oe er a ee

8-6 Aztec C68k ROM Reference Manual

Therefore, we describe two types of commands in this chapter: those that move the cursor
around in the text, thus bringing different sections of text into view, and those that modify text
in the vicinity of the cursor.

Moving Around in the Text: Scrolling

The text you created for the hello, world program easily fit on a single screen. But most
text files are too large to be viewed all at once, so we need commands to bring different sections
into view.

Two such commands are the “scroll” commands: "scroll down,” represented by the character
Control-D, and "scroll up," represented by Control-U. That is, to execute the "scroll down" com-
mand, you hold down the control key and then press the D key. The rest of this manual refers
to control characters using notation of the form “D rather than Control-D, for brevity. Thus, the
scroll up and scroll down commands are represented as “U and “D, respectively.

A scroll command moves the screen up or down in the file, bringing another half-screen of text
into view. It is as if the text were on a reel of tape and the screen is a viewer: Scrolling down
moves the viewer down the reel, and scrolling up moves the viewer up the reel.

When scrolling, the cursor will be left on the same position within the text after the scroll as be-
fore, if that position is still within view. Otherwise, the cursor is moved to a line in the text

which was newly brought into view.

Moving Around in the Text: the Go Command

Scrolling is one way to move around in the text, but it is slow. If we have a large text file to
which we want to append text, it would take a long time and many scroll commands to reach
the end.

The go command, g, is one way to move rapidly to the point of interest in the text: Entering g
by itself will move the cursor to the end of the text and, if necessary, redraw the screen with the |
text which precedes it.

The g command can also be preceded by the number of the line of interest; the cursor will move
to the beginning of that line. So to move back to the first line of text, enter:

lg

The g command can be used to move to any line within the text, but since you usually do not
know the numbers of the lines, the g command is mainly used to move to the beginning and
end of the text.

Moving Around in the Text: String Searching

So, scrolling allows us to take a casual stroll through text, and the g command to move rapidly
to the beginning and end of the file. What we need is a command to rapidly move to a specific
point in the middle of the text.

The string search command, /, is such a command. When you enter /, followed by the string of
interest, followed by a carriage return, Z searches forward in the text from the cursor position,

Z Editor 8-7
looking for the string. If Z reaches the end of the text without finding the string, it will wrap
around and continue searching from the beginning of the text.

If the string is found, the cursor is positioned at its first character and, if necessary, the screen is
redrawn with its surrounding text.

If the string is not found, a message saying so is displayed on the status line of the screen and
the cursor is not moved.

While the string search command and its string are being entered, the characters are displayed
on the status line, and normal editing operations can be used, such as backspacing over
mistyped characters.

Z remembers the last string searched for. To repeat the search, enter the find next string com-
mand, n.

Finely Tuned Moves

With the commands presented up to now, you can move to the area of interest in the text. The
next few paragraphs present commands that move the cursor from somewhere within the area
of interest to a specific character position from which changes will be made.

Some commands for this, from the many available in Z, are:

- Moves the cursor up one line, to the first nonwhitespace
character on the line.

CR (carriage return) Moves the cursor down one line, to the first non-
whitespace character on the line.

space Moves the cursor right on the line on which the cursor is
located.

backspace Moves the cursor left on the line on which the cursor is lo-
cated.

These commands can be preceded by a number, which cause the command to be performed the
specified number of times. For example,

3- Moves the cursor up three lines.

5<space> Moves the cursor right five characters. Note that <space> represents
the space bar.

Deleting Text

You now have a repertoire of commands that allows you to move the cursor fairly quickly to
any location in a text file. We are ready to move on to a few commands for modifying the text.

Two such commands for deleting text are DELETE CHARACTER, x, and DELETE LINE, dd:

x Deletes the character under the cursor.

dd _ Deletes the entire line on which the cursor is located.

Z Editor

8-8. Aztec C68k ROM Reference Manual

Each of these commands can be preceded by a number, causing the command to be repeated
the specified number of times. For example,

2x Deletes two characters.

3dd Deletes three lines.

More Insert Commands

You already know one command for inserting text: i, which allows text to be inserted before the
cursor. We need a few more insert commands:

a _ Enters insert mode such that text is inserted following the cursor.

o (Lowercase 0) Creates a blank line below the current line (i.e., the line on which the cur-
sor is located), moves the cursor to the new line, and enters insert mode.

© (Uppercase 0) Same as o, but the new line is above the current line.

Summary

With the set of commands presented in this chapter, you can edit any text file. You should con-
tinue reading this chapter to learn more about Z, while you use the basic command set for per-
forming your editing chores.

You will find that Z has many more capabilities that allow you to perform functions more
quickly and with fewer keystrokes than with the basic command set, and that allow you to per-
form functions that you cannot perform with the basic command set.

Z Editor 8-9

More Commands
This section describes the rest of the features and commands of Z, building and expanding on
the information presented in the previous section.

The Screen

We have already discussed the basic details on Z’s use of the screen. Some of the more complex
details concerning Z’s use of the screen are addressed below.

Displaying Unprintable Characters

A file edited by Z can contain any character whose ASCII value in decimal is less than 128, in-
cluding unprintable characters, such as SOH (start of heading), LF (line feed), and ESC (escape).
Z displays unprintable characters as two characters; the first is *, and the second is the charac-
ter whose ASCII value equals that of the character itself plus 0x40. For example, the unprintable
character SOH is displayed as the pair of characters “A, since the ASCII value of SOH is 1, and
1 plus 0x40 is 0x41, which is the ASCII value for the character "A".

Displaying Lines That Do Not Fit on the Screen

We have already stated that lines beyond the end of the file are displayed with the character ~
in the first column of the line on the screen. When you see the ~ character in the leftmost col-
umn of a line on the screen, this usually signifies that this line of the display does not contain a
line of text. But lines that do not fit on the screen are displayed by Z in a similar manner.

Z allows lines to be entered that are longer than a screen line. Normally, Z simply displays such
lines on several screen lines. In some cases, however, the entire line will not fit on the screen.
For example, if the cursor is positioned at the beginning of the file, it may not be possible to dis-
play the text of an overly-large line at the bottom of the screen. In this case, Z displays an @
character in the first column of the screen lines on which the text would be displayed.

Thus, when you see the @ character in the leftmost column of a line on the screen, this signifies
that the text that would have appeared on this line of the screen was too big, and not that the @
character is in the text.

Commands

When most commands are entered, Z does not echo the characters on the screen. However, two
commands for which Z does display the characters on the screen are (1) those commands
whose first character begins with ":" and (2) the string search commands.

For these commands, the characters are displayed on the screen status line, and can be back-
spaced over and reentered, if necessary. Also, Z does not act on such commands until you type
the carriage return key, CR.

Z Edito

Aztec C68k ROM Reference Manual

Special Keys

There are two keys that have special meaning for Z: the escape key, which is used to exit insert
mode, and the control key, which is used in conjunction with another key to generate control
characters. The actual keys used for these functions vary from system to system.

Paging and Scrolling

Previously, we described commands for scrolling through text, *U and “D. Another pair of com-
mands allow you to page, instead of scroll, through text. The commands are “B and “F, which

page backwards and forwards, respectively.

A page command brings the previous or next screen of text into view by redrawing the screen
with the new text. Whereas scrolling was described as a viewer moving over a reel of tape, pag-
ing can be described as _ turning the pages of a book.

Paging moves you through text more quickly than scrolling does. However, since paging re-
draws the screen all at once, while scrolling changes it gradually, it is often more difficult to
keep a sense of continuity when paging than when scrolling. As an aid to continuity when pag-
ing, two lines of text which were previously in view are still in view after paging.

Scroll commands can be preceded by a value specifying the number of lines to be scrolled up or
down. If a number is not specified, the last scroll value entered is used; if a scroll value was

never entered, it defaults to half a screen’s worth of lines. Separate values are maintained for
scrolling up and for scrolling down.

The scrolling and paging commands necessarily move the cursor within the text, but they can-
not be used to home the cursor to an exact position at which changes are to be made. For this,
you will have to use commands described in subsequent sections.

Searching for Strings

As stated, Z uses the / string search command to scan forward looking for a string. This section
discusses additional searching capabilities that Z provides, the capability of Z to match patterns
called REGULAR EXPRESSIONS, and special characters that are used to match a class of characters.

Additional String-Searching Commands

The other string-searching commands are:

? Similar to /, but Z searches backwards, rather than forward, to find the

previous occurrence of the string.

n Repeats the last string-search command.

N Repeats the last string-search command, but in the opposite direction.

se ws=0 Turns the wrap scan option off.

Z Editor

Z Editor 8-11
se wWS=1 Turns the wrap scan option on.

When Z reaches the end or beginning of text without finding the string of interest, it normally
wraps around to the opposite end of the text and continues the search. It does this because by
default the wrap scan option is on. This option can be disabled by entering the set option com-
mand:

:se ws=0

thus causing the search to end when it reaches the end of text. The option can be reenabled by
entering:

se ws=1

Note that for this colon command, as for all colon commands, carriage return must be typed be-
fore the command is executed.

Regular Expressions

The strings you tell Z to search for are actually regular expressions, similar to the expressions or
“patterns” that are used by the grep utility when matching strings. A regular expression is a pat-
tern that is matched to character strings. The pattern can define a specific sequence of characters
that make up the string; in this case, only that specific string matches the pattern. The pattern
can also contain special characters that match a class of characters; in this case, the pattern can
match any of a number of character strings.

For example, one such special construct is square brackets surrounding a character string; this
matches any character in the enclosed string. So the regular expression

ab [xyz]ed

matches the strings

abxcd
abycd
abzcd

Another special character is *, which matches any number of occurrences of the preceding pat-
tern. For example, the regular expression

ab*c

matches many strings, including

abc

abbc

abxyzc

and so on. And the pattern

ab [xyz] *cd

Aztec C68k ROM Reference Manual

matches many strings, including:

abcd

abxcd

abxycd
abzzxcd

and so on.

The complete list of special characters and constructs that can be included in regular expres-

sions 1s:

. Matches the beginning of the line when it is the first character of a pattern.

$ Matches the end of the line when it is the last character of a pattern.

Matches any single character. _

< Matches the beginning of a word.

> Matches the end of a word.

[str] Matches any single character in the enclosed string.

[Astr] Matches any single character not in the enclosed string.

[x-y] Matches any character between x and y.

* Matches any number of occurrences of the preceding pattern.

Enabling Extended Pattern Matching

With Z, you can toggle the extent of pattern matching which will be done by Z. To have full pat-
tern matching, type

se ma=1

If you do not want full pattern matching, type

sse ma=0

which will only allow you to use “ and $ in regular expressions.

By default, extended pattern matching is disabled.

Local Moves

This section presents more commands for moving the cursor fairly short distances: up or down
a few lines, along the line on which it is located, and so on. Some commands to accomplish this
that we have already discussed are the CR (carriage return), space, and backspace. The com-
mands introduced here reflect the importance of finely tuned, quickly executed movements.

Z Editor 8 - 13 :

Moving Around on the Screen:

Here are some commands for moving the cursor short distances:

h Moves to the left one character.

j Moves down one line, leaving the cursor in the same column.

k Moves up one line, leaving the cursor in the same column.

1 Moves right one character.

The keys “H, “J, “K, and “L are synonyms for h, j, k, and 1, respectively.

These commands can be preceded by a number that specifies the number of times the com-
mand is to be repeated.

Z has commands for moving the cursor to the top, middle, and bottom of the screen: they are
H, M, and L, respectively. The cursor is positioned at the beginning of the line to which it is
moved.

Remember the - command, which moved the cursor up a line, to the first nonwhitespace charac-
ter? As you might expect, + moves the cursor down a line, to the first nonwhitespace character.
+ is thus equivalent to CR.

Moving within a Line

The following commands have been discussed previously:

h, “H, backspace Left one character.

1, “L, space Right one character.

The following are a few more commands that allow you to move around on the current line:

A Moves the cursor to the first nonwhitespace character on the line.

0 Moves the cursor to the first character on the line.

$ Moves the cursor to the last character on the line.

A few commands fetch another character from the keyboard, search for that character, begin-
ning at the current cursor location, and leave the cursor near the character:

f scan forward, looking for the character, and leave the cursor on it.

t Same as f, but leave the cursor on the character preceding the found charac-
ter.

F Same as f, but scan backwards.

T same as t, but scan backwards.

; Repeat the last f, t, F, or T command.

| | | 8-140 Aztec C68k ROM Reference Manual

, Repeat the last f, t, F, or T command in the opposite direction.

Finally, the command | moves the cursor to the column whose number precedes the command.
For example, the following command moves the cursor to column 56 on the current line:

56 |

Word Movements

Z has several commands for moving the cursor to the beginning or end of a word that is near
the cursor:

w Moves to the beginning of the next word (alphanumeric only).

b Moves to the beginning of the previous word (alphanumeric only).

e Moves to the end of the current word (alphanumeric only).

For the preceding commands, a word is defined in the normal way: a string of alphabetical and
numerical characters surrounded by whitespace or punctuation. There is a variant of each of
these commands, differing only in the definition of a word: A word is any string of non-
whitespace characters surrounded by whitespace. The variant of each of these commands is
identified by the same letter, but in uppercase instead of lowercase:

Ww Moves to the beginning of the next word (any characters surrounded by
whitespace).

B Moves to the beginning of the previous word (any characters surrounded by
whitespace).

E To the end of the current word (any characters surrounded by whitespace).

Each of these commands can be preceded by a number, specifying the number of times the com-
mand is to be repeated. For example,

5w Moves forward five words.

The word movement commands cross line boundaries, if necessary, to find the word they are
looking for.

Moves within C Programs

Z has several commands for moving the cursor within C programs:

]] and [[Moves to the opening curly brace, {, of the next or previous function, re-
spectively. ;

Jo Moves to the parenthesis, square bracket, or curly bracket that matches
the one on which the cursor is currently located.

{ and } Moves to the preceding or next blank line.

| Z Editor 8-15

The [[and]] commands assume that the opening and closing curly braces for a function are in
the first column of a line, and that all other curly braces are indented.

As an example of the % command, given the statement:

while (((a = getchar()) != EOF) && (c != ’a’))

with the cursor on the parenthesis immediately following the while, the % command will move
the cursor to the last closing parenthesis on the line.

Marking and Returning

Z has commands that allow you to set markers in the text and later return to a marker. Twenty-
six markers are available, identified by the alphabetical letters.

Unlike the other commands described in this section, these commands are not limited to moves
within the current area of the cursor—they can move the cursor anywhere within the text.

A marker is set at the current cursor location using the command

mx

where x is the letter with which you want to mark the location.

There are two commands for returning to a marked position:

‘x Moves the cursor to the location marked with the letter x

a x Moves the cursor to the first nonwhitespace character on the line contain-
ing the x marker.

Occasionally, you may accidently move the cursor far from the desired position. There are two
single quote commands for returning you to the area from which you moved:

a“ Returns the cursor to its exact starting point.

“1 Returns the cursor to the first nonwhitespace character on the line from
which the cursor was moved.

For example, if the cursor is on the line:

af (a >= 'm’ && a <= '2z')

at the character <, then following a command which moves the cursor far away, the command
‘* will return the cursor to the < character, and the command ’’ will return it to the begin-
ning of the word if.

Adjusting the Screen

The Z command is used to redraw the screen, with a certain line at the top, middle, or bottom
of the screen.

8-16, Aztec C68k ROM Reference Manual

To use it, place the cursor on the desired line, then enter the Z command, followed by one of

these characters:

CR To place the line at the top of the screen.

To place it at the bottom.

To place it in the middle of the screen.

The Z command is not a true cursor motion command, because the cursor is in the same posi-

tion in the text after the command as before.

Control- L repaints the screen.

Making Changes

The previous section described the cursor movement commands. The next several sections de-
scribe commands for making changes to the text.

Small Changes

This section describes several more small commands. The first two commands listed below

were already discussed in a previous section.

x

dd

Which deletes the character at which the cursor is located.

Which deletes the line at which the cursor is located.

Delete the character which precedes the cursor. Can be preceded by a count
of the number of characters to be deleted.

Delete the rest of the line, starting at the cursor position.

Replace the character at the cursor with x.

Start overlaying characters, beginning at the cursor. Type the escape key to
terminate the command.

Delete the character at the cursor and enter insert mode. When preceded by
a number, that number of characters is deleted before entering insert mode.

Delete the line at the cursor and enter insert mode; when preceded by a
count, that number of lines is deleted before entering insert mode.

Delete the rest of the line, beginning at the cursor, and enter insert mode.

Join the line on which the cursor is positioned with the following line.

Z Editor 8-17

Operators for Deleting and Changing Text

Z has a small number of commands for modifying text. They all have the same form, consisting
of a single letter command, optionally preceded by a count and always followed by a cursor mo-
tion command. The count specifies the number of times the command is to be executed. The
command affects the text from the current cursor position to the destination of the cursor mo-
tion command, if the starting and ending position of the cursor are on the same line. If these po-
sitions are on different lines, the command affects all lines between and including the lines

which contain the starting position and ending positions.

In this section, we are going to describe the operators for deleting and changing text, d and c:

d Deletes text as defined by the cursor motion command.

C same as d, but Z enters insert mode following the deletion.

For example,

dw Deletes text from the current cursor location to the beginning of the next
word.

3dw Deletes text from the cursor to the beginning of the third word.

d3w Same as 3dw.

db Deletes text from the current to the beginning of the previous word.

d'‘a Deletes text from the cursor to the marker a , if the marker and the start-
ing cursor position are on the same line. Otherwise, deletes lines from that
on which the cursor is located through that on which the marker is located.

d/var Deletes text either from the cursor to the string vaz or between the lines at
which the cursor is currently located and that on which the string is located.

as Deletes the rest of the characters on the line, and hence is equivalent to D.

Deleting and Changing Lines

Previously, we presented a command for deleting lines: dd. As you can see now, this is a spe-
cial form of the d command, because the character following the first d is not a cursor motion
command.

For all the operator commands, typing the command character twice will affect whole lines.
Thus, typing cc will clear the line on which the cursor is located and enter insert mode. Preced-
ing cc with a number will compress the specified number of lines to a single blank line and en-
ter insert mode on that line.

Moving Blocks of Text

When text is deleted using the d or c command, it is moved to a buffer called the unnamed buff-
er. (There are other buffers available, which have names. More about them later).

| 8-18 Aztec C68k ROM Reference Manual

Data in the unnamed buffer can be copied into the main text buffer using one of the put com-
mands: |

p Copies the unnamed buffer into the main text buffer, after the cursor.

P came as p, but the text is placed before the cursor.

Thus, the delete and put commands together provide a convenient way to move blocks of text
within a file.

The contents of the unnamed buffer is very volatile: When any command is issued that modifies
the text, the text which was modified is placed in the unnamed buffer. This is done so that the
modification can be undone, if necessary, using one of the undo commands. For example, if you
delete a character using the x command, the deleted character is placed in the unnamed buff-
er, replacing whatever was in there. The unnamed buffer only holds the contents of the last com-
mand executed. So you have to be careful when moving text via the unnamed buffer. If you
delete text into the unnamed buffer, expecting to place it elsewhere, then issue another com-
mand which modifies the unnamed buffer before issuing the put command. The deleted text is
no longer in the unnamed buffer.

As you will see, the named buffers can also be used to move blocks of text, and their contents

are not as volatile.

Duplicating Blocks of Text: the Yank Operator

The yank operator, y, copies text into the unnamed buffer without first deleting it from the
main text buffer. When used with the put command, it provides a convenient way for duplicat-
ing a block of text.

The y operator has the same form as the other operators: an optional count, followed by the y
command, followed by a cursor motion command. The command yanks the text from the cur-
sor position to the destination of the cursor motion command, if the starting and ending posi-
tions are on the same line. If they are on separate lines, a whole number of lines are yanked,
from the cursor position through the point the cursor would be moved to by the cursor mo-
tion command. The text is yanked into the unnamed buffer.

For example,

yw Copies text from the cursor to the next word into the unnamed buffer.

y3w Copies text from the cursor to the beginning of the third word.

3yw Same as y3w.

y‘a Copies text from the cursor location to the marker a into the unnamed
buffer, if the two positions are on the same line. Otherwise, copies entire
lines between and including those containing the two positions.

As a special case, the command yy will yank a specified number of whole lines. The command
Y is a synonym for yy. For example,

YY Yanks the line at the current cursor location.

Le Ator 8-19

y3w Yanks three lines, beginning with the one at the cursor location.

Named Buffers

In addition to the unnamed buffers, Z has 26 named buffers, each identified by a letter of the al-
phabet, which can be used for rearranging text. Text can be deleted or yanked into a named
buffer and put from it back into the main text buffer.

The advantage of these buffers over the unnamed buffer in rearranging text is that their con-
tents are not volatile: When you put something in a named buffer, it stays there and will not be
overwritten unexpectedly. Also, as you will see, the named buffers can be used to move text
from one file to another.

To yank text into a named buffer, use the yank operator, preceded by a double quote and the
buffer name, and followed by a cursor motion command. For example, the following will yank
three words into the a buffer:

"ay3w

and the following yanks four lines into the b_ buffer, beginning with the line on which the cur-
sor is located:

“bayy

Text is deleted into a named buffer in the same way: The delete command is used, preceded by
a double quote and the buffer name. For example, to delete characters from the cursor to the a
marker into the h buffer:

"hd ‘a

The preceding command, when the source and destination cursor positions are on separate
lines, will delete a number of whole lines into the h buffer, from that on which the cursor is in-
itially located through that containing the destination position.

To delete ten lines into the c buffer:

"cl0ddd

Text in a named buffer is put back into the main text using the put commands p and P, pre-
ceded by a double quote and the buffer name. For example:

"ap puts text fromthe a buffer, after the cursor.

"2P puts text fromthe z buffer, before the cursor.

Moving Text between Files

The named buffers are conveniently used to move text from one file to another. First yank or de-
lete text from one file into a named buffer; then switch and begin editing the target file, using
the :e command:

:e filename

| ~ 8-20 ; Aztec C68k ROM Reference Manual

(More on this later). Then move the cursor to the desired position and put text from the named
buffer. :

Shifting Text

The shift operators, < and > , which are used to shift text left and right a tab stop, respectively.

For example,

>/stxr

shifts right one tab stop the lines from that on which the cursor is located through that contain-
ing the string str.

Following the standard operator syntax, repeating the shift operator twice affects a number of
whole lines:

5<< Shifts five lines left.

>> Shifts one line right.

Undoing and Redoing Changes

Z remembers the last change you made, and has a command, u, which undoes it, restoring the

text to its original state.

Z also remembers all the changes which were made to the last line which was modified. An-
other UNDO command, U, undoes all changes made to that line.

Finally, the period command, ".", reexecutes the last command that modified text.

Inserting Text

The following commands have been discussed:

a Append after cursor.

i Insert before cursor.

oO Open new line below cursor.

O Open new line above cursor.

Cc Delete to end of line, then enter insert mode.

S Delete characters, then enter insert mode.

S Delete lines, then enter insert mode.

Z Editor 8-21-

This section discusses the remaining commands for entering insert mode and describes some
other features of insert mode.

Additional Insert Commands

The other commands for entering insert mode are:

A Append characters at the end of the line on which the cursor is located.
This is equivalent to $a.

I Insert before the first nonwhitespace character on the current line. This is
equivalent to “i.

Insert Mode Commands

Some editing can be done on text entered during insert mode, using the following control char-
acters:

backspace ___ Delete the last character entered.

AH Same as "backspace" character.

AD Same as "backspace" character.

AX Erase to beginning of insert on current line.

AV Enter next character into text without attempting to interpret it.

“V is used to enter nonprinting characters into the text. For example, to enter the character
Control-A into the text, type

AV“A

That is, hold down the control key, then type the V key, then the A key, then release the control
key. As mentioned earlier, nonprinting characters are displayed as two characters:"4" followed
by a character whose ASCII code equals that of the nonprinting character plus 0x40.

Autoindent

The Z autoindent option is useful when entering C programs. When you are in insert mode and
type the carriage return key with the autoindent option enabled, the cursor automatically in-
dents on the new line to the same column on which the first nonwhitespace character appeared
on the previous line. This feature is useful for editing C programs because it encourages state-
ments that are part of the same compound statement to be indented the same amount, thus
making the program more readable.

Z autoindents a line by inserting tab and space characters at the beginning of a new line. If you
do not want the lines indented that much, backspace over these automatically inserted tabs and
Spaces until you reach the desired degree of indentation.

8-22. Aztec C68k ROM Reference Manual

The autoindent option can be selectively enabled and disabled using the set options command:

sse ai=0 Disables autoindent.

se ai=1 Enables autoindent.

When Z is activated, autoindent is enabled.

Macros

Z allows you to define a sequence of commands, called a MACRO, and then execute the macro

one or more times.

When a macro is defined to Z, it is placed in a special buffer, called the macro buffer, and then

executed once. There are two ways to define a macro to Z: immediately and indirectly.

Immediate Macro Definition

An immediate macro definition is initiated by typing the characters

:>

Z responds by clearing the status line, displaying these characters on the line, and waiting for
you to enter the sequence of commands.

As you enter the commands, Z displays them on the status line and enters them immediately
into the macro buffer, hence the term IMMEDIATE MACRO DEFINITION.

If you make a mistake while entering commands, you can simply backspace and enter the cor-
rect characters.

To terminate the definition, type the carriage return key. Z then executes the sequence of com-
mands in the macro buffer. The contents of this buffer are not altered by executing the macro, so
you can reexecute the macro without reentering it, as described below.

Examples

The following macro advances the cursor one line and deletes the first word on the new line:

:>+dw

This macro contains two commands: +, which advances the cursor, and dw, which deletes the

word beneath the cursor.

The next macro moves the cursor to the previous line and deletes the last character on the line:

> >-$x

It contains three commands: -, which moves the cursor to the previous line; $, which moves the
cursor to the last character on that line; and x, which deletes the character beneath the cursor.

Z Editor 8-23 7 |

You can also insert text using a macro. You enter insert mode using one of the normal insert
commands. The characters that follow the insert command on the macro line, up to a terminat-
ing escape character, are then inserted into the text. The escape character causes Z to return to
command mode and continue executing commands in the macro that follow the insert com-
mand.

For example, the following macro advances the cursor to the next line, deletes the second word
on the line, inserts the character string "and furthermore", and deletes the last word on the line:

i:>+twdwiand furthermore <ESC>Sbdw

The last macro contains the following commands:

+ Advances the cursor to the next line.
w Moves the cursor to the second word on the line
iand futhermore<ESC> Inserts the text and futhermore. <ESC> stands for the escape key.
$ Moves the cursor to the last character on the line.
b Moves the cursor to the beginning of the last word on the line.
dw Deletes the word beneath the cursor.

Z also allows you to search for a string from within a macro. Enter the string search command
in the macro (for example, /), followed by the string, followed by the ESC character. For exam-
ple, the following macro moves the cursor to the word Melinda and deletes it:

:>/Melinda<ESC>dw

It contains the commands

/Melinda<ESC> Moves the cursor to Melinda . <ESC> stands for the escape key.

dw Deletes Melinda.

The following macro finds Melinda and replacesit with John:

:>/Melinda<ESC>cwJohn<ESC>

It contains the commands:

/Melinda <ESC> Moves the cursor to Melinda

cwJohn <ESC> Changes Melinda to John.

Indirect Macro Definition

The other way of defining a macro is to yank a line containing a sequence of commands from
the main text buffer into a named buffer.

Commands for indirect macro definition are:

@x Causes Z to move the contents of the x buffer to the macro buffer and then
execute it once.

"xv Asynonym for @x.

| 8-24 Aztec C68k ROM Reference Manual

Indirect macro definition of macros has several advantages over immediate definition: For one,
if a macro defined immediately is incorrect, you have to reenter the entire macro. With an indi-
rectly defined macro, you can edit the macro definition in the main text buffer and then move it
back to the macro buffer.

Another advantage is that you can store several macros in the named buffers and easily reex-
ecute a macro, without having to reenter it. With immediate definition, when a new macro is de-
fined, the previously defined macro is lost and must be reentered to be reexecuted.

One difference between entering macros immediately and via the named buffer concerns the
method for specifying the end of a search string and for exiting insert mode. With immediate
definition, you do this by typing the ESC key directly. For indirect definition, in which the

macro is first entered into the main text buffer, typing the ESC key would cause Z to exit insert

mode, not to enter the ESC key into the text of the macro. In this case, you enter the ESC key by
first typing Control-V, then ESC. This causes Z to enter the ESC character into the text of the

macro and remain in insert mode.

Reexecuting Macros

Once a macro is defined and is in the macro buffer, it can be reexecuted by typing one of the

commands:

@
Vv

Preceding the command with a count causes the macro to be executed the specified number of

times.

Wrapping Around During Macro Execution

While executing a macro, Z may reach the beginning or end of the text, and want to continue be-
yond that point. This is especially true when reexecuting macros. The macro wrap option, wm,
specifies whether Z should terminate the macro execution at that point, or continue at the oppo-
site end of the text.

This option is enabled and disabled using the set options command:

sse wm=0 Disables macro wrapping.

se wm=1 Enables macro wrapping.

When Z starts, this option is enabled.

Ex-like Commands

The SUBSTITUTE and REPEAT LAST SUBSTITUTE commands are a set of commands in the Z editor
that are similar to commands in the UNIX Ex editor. This section describes the syntax for these
commands, and then gives details about the substitute and repeat last substitute commands.

Z Editor 8 25°

The ex-like commands consist of a leading colon, followed by zero, one, or two addresses identi-
fying the lines to be affected by the command, followed by a single-letter command, followed
by command parameters, and terminated by a carriage return. Most commands have a default
set of lines that they affect, thus frequently allowing you to enter commands without explicitly
specifying a range.

These commands support regular expressions, as defined in the Z documentation, for identify-
ing addresses and strings to be searched for.

Addresses in Ex Commands

An address can be one of the following:

e A period, ., addresses the current line; that is, the line on which the cursor is located.

e The character $ addresses the last line in the edit buffer.

e A decimal number n addresses the n-th line in the edit buffer.

e ‘x addresses the line marked with the mark name x. Lines are marked with the m com-
mand.

e A regular expression surrounded by slashes (/) addresses the first line containing a
string that matches the regular expression. The search begins with the line following
the current line and continues toward the end of the edit buffer. If a line is not found
when the end of the buffer is reached, and if the Z option ws is set to 1 (i.e., by the :se
ws=1 command), the search continues at the beginning of the buffer, stopping when
the current line is reached.

e A regular expression surrounded by question marks (?) also addresses the first line
containing a string that matches the regular expression. But in this case, the search be-
gins with the line preceding the current line in the edit buffer and continues towards
the beginning of the buffer. If a line is not found when the beginning of the buffer is
reached, and if the Z option ws is set to 1 (i.e., by the :se ws=1 command), the search
continues at the end of the buffer, stopping when the current line is reached.

e An address followed by a plus or a minus sign, which in turn is followed by a deci-
mal number n addresses the n-th line following or preceding the line identified by the
address.

When two addresses are entered to define the range of lines affected by a command, the ad-
dresses are usually separated by a comma. They can also be separated by a semicolon; in this
latter case, the current line is set to the line defined by the first address, and then the line corre-
sponding to the second address is located.

When no value is specified for the first address in an address range, it is assumed to be the cur-
rent line or the first line in the buffer, depending on whether the second address was preceded
with a comma or a semicolon. When no value is specified for the second address in an address
range, it is assumed to be the last line in the buffer. Thus, if neither the beginning nor the end-
ing address of a range is specified, the range consists of either all the lines in the buffer or the

8-26. Aztec C68k ROM Reference Manual

lines from the current through the last line in the buffer, depending on whether comma or semi-
colon is used to separate the unspecified addresses.

The Substitute Command

The substitute command has the following form:

s[range]s /pat /rep / loptions]

where square brackets surround a parameter to indicate that the parameter is optional.

Z searches the lines specified by range for strings that match the regular expression pat, replac-
ing them with the rep string. If range is not specified, only the current line is searched. When the
command is completed, the cursor is left on the character following the last replaced string.

The c Option

Normally, Z automatically replaces a string that matches pat. Specifying c as an option causes Z
instead to pause when it finds a matching string, ask if you want the string to be replaced, and
make the replacement only if you give your permission.

The g Option

Z replaces only the first pat-matching string on a line. Specifying g as an option causes Z in-
stead to replace all matching strings on a line. In this case, after Z replaces a string on a line, it
continues searching for more strings on the line at the character following the replaced string.

An ampersand (&) in the replacement string rep is replaced by the string that matched pat. The
special meaning of & can be suppressed by preceding it with a backslash, \.

A replacement string consisting of just the percent character (%) is replaced in the current substi-
tution by the replacement string that was used in the last substitution. The special meaning of
% can be suppressed by preceding it with a backslash, \.

Examples

:3/aBD/def/

Search the line on which the cursor is located for the string aBD; if found, replace it
with the string def.

:1,$s/ab*c/xyz/

Search all lines in the edit buffer for strings that begin with a,end in c, and have
zero or more b’s in between; replace such strings with xyz. On any given line,
only the first occurrence of a string that matches the pattern is replaced.

>/{/:/)}/s/for/while/c

Z Editor 8-27

Find the first line following the current line that contains a {; then find the first
line following this line that contains a } . In the lines between and including these
lines, search for the string for . For each such string, ask if it should be replaced;
if yes, replace it with while . |

The "&" (Repeat Last Substitute) Command

The & command has the form

slrange]&

where brackets indicate that the parameters are optional.

The & command causes the last substitute command to be executed again, using the same
search pattern, replacement string, and options as were used in the previous command. The
command searches the lines that are specified in the & command range; if range is not speci-
fied, the substitution is performed on only the current line.

For example, the following command says that the options are in the file zopt . cmd:

set ZOPT=zopt .cmd

starting and Stopping Z
eeneeemmenanae yeas

You already know how to start and stop Z. This section presents more information related to
Starting and stopping Z.

Starting Z

Previously, we said that Z was started by specifying the name of the file to be edited on the com-
mand line:

Z filename

You may also start Z without specifying a filename or by specifying a list of files to be edited.

Starting Z without a Filename

Z can be started without specifying a filename, by entering the command:

Z

When you start Z without specifying filename, once it is active you normally tell Z the name of the file to be edited using the :e command:

:e filename

However, it is not necessary for Z to know the name of the file you are editing immediately upon opening: Z allows you to create and modify text in the text buffer without knowing the name of the file to which you intend to write the text. But you must explicitly tell Z to write the

{ Z Editor

8-28 Aztec C68k ROM Reference Manual

text to filename when you want to save the text that you worked on. You would use the com-
mand

:w filename

Z cannot automatically write the text, because it does not know which file you are editing.

The Option File

Z contains several options for controlling its operation in different situations, including the
autoindent and macro wrap. (This manual contains a complete list of these commands at the
end of this chapter.) This section presents another feature of Z related to options; i.e., the ability
to set options automatically, when Z is started.

When Z starts, it reads options from the file specified by the ZOPT environment variable, if it ex-
ists.

The environment variable ZOPT defines the name of the options file.

Each line in the options file defines the value of one option, with a statement of the form

opt = val

where opt is the name of the option, and val is its value. For example, the following sets the tab-
width option to eight characters:

ts=8

setting Options for a File

When Z makes a file the edit file by reading it into the edit buffer, the file itself specifies the op-
tions to be in effect during its edit session. This feature is most useful in editing files that have
different tab settings.

A file specifies option values by including strings of the form

sopt=val

in the first ten lines of the file. For example, the following line could be used near the front of a
C program, causing a tab width of eight characters to be used:

/* :ts=8 *x/

When Z starts editing a file, the tab width is set back to the default value, four characters, be-
fore the file is scanned for option settings.

Starting Z with a List of Files

You may start Z and pass it a list of names of files to be edited, as follows:

Z file! file2 ...

Z remembers the list, and makes the first file in the list the edit file; that is, reads the file into
the main text buffer and allows it to be edited.

| Z Editor 8 29°

Z contains a command, :n, that makes the next file in the list the edit file, after writing the con-
tents of the text buffer back to the current edit file. File lists are discussed in more detail below.

Stopping Z

Previously, we presented the following commands for stopping Z:

ZZ If the file text in the edit buffer is modified, Z writes the text to the file, after
changing the extension of the original file to .bak.

:q! stops Z without writing the text to the file.

Two other commands for exiting Z are:

:wq Writes the text to the buffer, similar to, except that the text in the main text
buffer is always written to the file, even if no changes have been made.

:q Conditionally stops Z. If no changes were made to the file text, Z stops; oth-
erwise, it displays a message and remains active.

Accessing Files

This section discusses some additional commands for accessing files. For example, Z usually
knows the name of the file you are editing, and in the sections that follow we will call this the
edit file. Z makes use of this knowledge, allowing you to write to the edit file without specify-
ing it by name. For example, the ZZ command writes text to the edit file without requiring you
to enter the name of the file.

Some commands allow you to access files without redefining Z’s idea of the edit file. The com-
mands described in the next two subsections fall into this category.

Other commands cause Z to terminate editing of one file and begin editing another; this new
file becomes the edit file. The commands described in the other subsections of this section are of
this type.

Filenames

In the Z commands that require a filename, you enter the name using the standard system con-
ventions. However, some characters are special to Z:

Refers to the last edit file.

To Refers to the current edit file.

\ Causes the next character to be used in the filename and not be interpreted.

To enter a filename that contains these characters, precede the special character with the charac-
ter "\".

Z Editor |

| 8-30. Aztec C68k ROM Reference Manual

Writing Files

The command :w writes the contents of the main text buffer to a file, without redefining the
identity of the current edit file. It has the following forms:

2wW Write to the current edit file.

:w filename Write to the specified file

:w filename Same as :w filename, but the file is overwritten if it exists.

As with all colon commands, carriage return must be typed to cause Z to execute the command.

When entered without a filename, :w creates a new file having the name of the current edit file
and writes the contents of the edit buffer to it. This form of the sw command is commonly used
to periodically save text during a long edit session, as protection against possible system failures.

The option bk tells Z whether it should save the original edit file before creating a new one. If
bk is 1, the original is saved, and if 0, it is not. Z saves the original file by changing its name to
-bak. An existing .bak file is erased before the rename occurs.

When a filename is entered with the :w command, the text is written to that file if it does not al-
ready exist. If it does, nothing is written and Z displays a message on the status line; in this case
you must use the :w! form of the command to overwrite the file.

The :w! command unconditionally writes the text to the specified file after truncating the file, if
it exists, so that nothing is in it. Unlike the :;w command that does not specify a filename, the
sw! command does not save the original file as a .bak file.

Reading Files

The command

t filename

merges one file with a file being edited, without redefining the identity of the edit file. It reads
the contents of the specified file into the main text buffer, inserting the new text following the
line on which the cursor is located. It does not alter text that is already in the edit buffer.

Editing Another File

The following commands cause Z to stop editing one file and begin editing another, which then
becomes the edit file:

se filename Edit the specified file.

:e! filename Edit the file, discarding changes to the current edit file.

se Reload the current edit file.

se! Reload the current edit file, discarding changes.

se # Edit the previous edit file.

Z Editor : 8-31

AA Synonym for :e #. (the command is control-’).

Z begins editing another file by erasing the contents of the main text buffer, resetting the tab
width to four characters, redrawing the display with the first screenful of lines from the file, and
setting the cursor at the first character in the text.

When switching to a new edit file, Z does not change the contents of the named and unnamed
buffers. Thus, these buffers can be used to hold text that is to be moved from one file to another
and to contain commonly used macros.

The command

:e filename

causes the specified file to conditionally become the edit file. The condition is that changes must
not have been made to the text of the current edit file since it was last written to disk. If this con-
dition is met, then the switch is made; otherwise, Z displays a message on the status line and
nothing is changed: The identity of the edit file is the same, the contents of the edit buffer are
not modified, and the options are not changed.

If Z does not let you switch edit files when you enter

:e filename

and you want to save the changes to the current edit file, enter the sequence:

“Ww
:e filename

You can unconditionally cause Z to begin editing a new file by entering:

:e! filename

In this case, Z does not care whether or not you made changes to the current edit file since it
was last written to disk; it begins editing the new file without changing the previous edit file.

Sometimes the text in the edit file may get hopelessly scrambled, and you want to get a fresh
copy of the edit file contents. The command

se!

specified without a filename does just that.

Z not only remembers the name of the current edit file you are editing; it remembers the name
of the last file you edited as well. Z allows you to refer to this name using the character # in :e
commands, thus providing a quick means to reedit the previous edit file:

:e #

causes the previous edit file to conditionally become the current edit file, and

se! #

causes it to unconditionally become the edit file.

The command “4 (that is, Control-A) is a synonym for :e #.

Z also remembers the position at which the cursor was located in the previous edit file, and when you begin reediting this file it sets the cursor back to this position.

8 ~32 Aztec C68k ROM Reference Manual

File Lists

Z's file list feature is convenient to use when you have several files to edit. You pass Z a list of
the files and begin editing the first one. When you are finished with one file, a command
switches to the next file in the list, after you have explicitly saved the changes to the current
edit file. An option to the command prevents Z from saving changes, and another command re-
winds the file list so that you are back editing the first file in the list again.

There are two ways to pass the list of files to be edited to Z: as parameters to the command that
starts Z, and as parameters to the :n command. In each case, Z remembers the list and makes

the first file in the list the edit file. For example,

Z filel file2 file3

starts Z and defines the list of files—filel, file2, and file3. Z makes filel the edit

file; that is, prepares it for editing by reading it into the edit buffer and displaying its first lines.

When Z is active, the command

:n file4 file5 £file6

defines a new list of files—file4, file5 and file6é.Z makes filed the edit file.

When used without a files list, the :n command switches from one file in the list to the next:

:n! Switches without writing anything to the current edit file.

The :rew command rewinds the file list, i.e., makes the first file in the list the edit file. This com-

mand behaves like the :n command, in that any change to the current edit file must be rewritten
before rewinding; and when an exclamation mark is appended to the command, the rewind oc-
curs, regardless of the state of the current edit file.

Tags

Z has a feature useful for editing large C programs that contain many functions distributed over
several files. With the aid of a cross-reference file relating tags, (i.e., function names), to the files

containing them, you simply tell Z the name of the function that you want to edit and Z makes
the file containing it the edit file by reading it into the edit buffer and positioning the cursor to
the function.

The following commands specify the tag of the function to be edited:

sta tag Position to the function named tag in the appropriate file, if the current edit
file is up to date

sta! tag Same as :ta tag, but the switch to the new file occurs even if the current edit
file is not up to date.

When using the :ta command, the current edit file is considered up to date if the text in the edit
buffer has not been modified since it was last written to the file. When used without the trailing
!, the :ta command does not switch edit files if the current edit file is not up to date; it only dis-
plays a message on the status line. You can then either write the text in the edit buffer to the file
and reenter the :ta command, or immediately enter the :ta! command, to switch edit files any-
way.

| z Editor

fide 8-33
If tag ends up in the current file, it works regardless of the current file’s modification status.

The command

“]

Control-], is convenient when, while editing or viewing one function, you want to edit or exam-
ine a function that it calls. You just set the cursor to the name of the called function and enter
“]; Z makes the file containing the called function the edit file, and positions the cursor to this
function.

For example, while examining the file ertdvr.c, you may come across a call to the function
pedvr, and may want to take a look at it. By positioning the cursor at the beginning of the
word pedvr and typing “], Z makes the file containing pedvr the edit file and Jeaves the cur-
sor positioned at this function.

The ctags Utility

The utility program ctags creates the cross reference file, tags, that relates function names to the
file containing them. ctags is activated by a command of the form

ctags file] filed ...

where file], ..., are names of files whose functions are to be placed in the cross reference file. A
filename can specify a group of files using the character *. For example:

*.c

specifies all files whose extension is .e¢, and

£*.c

specifies all files whose first character is £ and whose extension is .c.

ctags creates the cross reference file, tags, in the current directory on the default drive.

When a tags command is given, Z searches for this file in the current directory.

Executing System Commands
— aa a eo SSNS

Z has two commands that allow you to execute system commands while Z is active and then re-
turn to Z:

s!cmd Execute the system command cmd

2! Re-execute system command

For example,

>! dir *.¢

executes the command dir *.c and then returns to Z.

Z Edito

8 -34 | Aztec C68k ROM Reference Manual
e
s
,

Options |

Z provides several options under user control that define how Z behaves in certain situations.
Most of these options have been discussed peripherally in previous sections, when appropriate.
This section focuses on the options.

Each option is identified by a code. The options and their codes are:

ai Auto-indent option. When this option is enabled and you begin inserting
text on a new line, Z automatically indents the line by inserting tabs and
spaces so that the text you type is correctly aligned with the text in the line
above it. By default, this option is enabled.

eb Error Bells option. When this option is enabled, Z beeps when you make a
mistake. By default, this option is enabled.

ma Magic option. When this option is enabled, regular expressions used in
string searches can include extended pattern matching characters. Other-
wise, only the characters “ and $ are special and the extended pattern
matching constructs are gotten by preceding them with \. By default, this
option is disabled.

ts Tab Set option. Specifies the number of characters between tab settings. By
default, the tab width is four characters.

wm Wrap On Macro option. When this option is enabled, and a macro being
executed reaches the end of the buffer, the macro wraps around to the be-
ginning of the buffer and continues. By default, this option is enabled.

ws Wrap On Search option. When this option is enabled and a search fora
string reaches the end of the buffer without finding the string, the search
continues at the opposite end of the buffer. By default, this option is en-
abled.

bk Defines whether Z, when a :w command is entered to write the edit buffer

to the current edit file, should save the original edit file before creating a
new one.

sm Silent Macro Option. When this option is enabled, macros operate silently.
If it is disabled, macros display their commands as they execute. The main
advantage to silent operation is that it is faster.

An option is enabled by setting it to 1, and disabled by setting it to 0.

Differences Between Z and Vi

Z is very similar to the UNIX editor Vi, in the following ways:

e Both are full-screen editors, display text in the same way, and reserve one line of the
display for messages;

Z Editor 8 -35.

e They have the same two modes: command and insert;

e Z supports most of the Vi commands. The Z commands are activated by the same key-
strokes and perform the same functions as their Vi counterparts.

Z and Vi differ in the following ways:

e In Z, the buffer in which text is edited is entirely within RAM memory; in Vi, the buff-
er is both in memory and on disk. Because of this, Z is restricted in the size of pro-
gram that can be edited, but Vi is not;

e A single copy of Vi can be configured to use any type terminal. A single copy of Z is
pre-configured to use just one terminal;

e Vi has an underlying editor, ex, whose commands can be executed while Vi is active.
Z does not have an underlying editor. However, Z does support some ex commands
directly; these are the commands whose first character is ":". (Vi interprets the ":" as a
request to execute the ex command which is entered after the ":");

e Vi has commands and options useful for editing documents and for editing LISP pro-
grams, but Z does not;

¢ With Vi, you can create a shell and suspend Vi while executing commands from
within the new shell. With some Vis, you can also suspend Vi while executing com-
mands from the shell that activated Vi. Z does not support either of these features;

e Vi saves the last nine deleted blocks of text and has commands with which it can re-
cover them, if necessary. Z lets you recover the last deleted block;

e With Vi, operator commands can affect exactly the characters between the starting and
ending cursor positions, even when the positions are on different lines. Z has vari-
ations of these commands which allow whole lines to be affected, between and includ-
ing the lines containing the two positions.

In Z, operator commands in which the starting and ending cursor positions are on dif-
ferent lines always affect whole lines, between and includin g the lines containing the
two positions.

8 - 36 : Aztec C68k ROM Reference Manual

Command Summary

Starting Z

zZ name edit file name

znamel namez2

edit file namel, rest via :n

The Display

~lines lines past end of file

@lines lines that do not fit on screen

Ax control characters

tabs expand to spaces, cursor on last

Options

ak allows you to move the cursor via the keyboard arrow keys

ai={1 10} auto-indent {on | off}

eb=({1 10} error bells {on | off}

ma={011} magic {off | on}

ts=val tab width (default is 4)

wm=({1!0} = wrap on search when executing macro {on | off}

ws=({1 | 0} wrap on search scan {on | off}

bk=({11 0} save Original file as .bak {on | off}

sm=({1! 0} silent macro execution {on | off)

Adjusting the Screen

AF forward screenful

AB backward screenful

AD scroll down half screen

AU scroll up half screen

Z Editor 8-37

zCR redraw, current line at top

redraw, current line at bottom

redraw, current line at center

Positioning within File

go to line (default is end of file)

go to line (default is beginning of file)

move cursor to pat searching forwards

move cursor to pat searching backwards

repeat last / or ?

repeat last / or ? in reverse direction

next "A{"

previous "A{"

find matching (), 0, or [].

Marking and Returning

LA

wt

Line Positioning

H

M

previous context

first nonwhite at previous context

mark position with letter x

to mark x

first nonwhite at mark x

top of screen

middle of screen

bottom of screen

next line, first nonwhite

next line, first nonwhite

previous line, first non-white

[8-38. Aztec C68k ROM Reference Manual

LF next line, same column

j next line, same column

AK previous line, same column

k previous line, same column

Character Positioning

0 beginning of line

A first nonwhite at beginning of line

$ end of line

space forward a character

AL forward a character

] forward a character

AH backwards a character

h backwards a character

fx find character x forward

Fx find character x backwards

tx position before character x forward

Tx position before character x backwards

; repeat last f, F, tor T

, repeat last f, F, t or T in reverse direction

| move to specified column number

Words and Paragraphs

w word forward

Ww blank delimited word forward

b back word

B back blank delimited word

e end of word

Z Editor 8-3 9 |

end of blank delimited word

to next blank line

to previous blank line

Insert and Replace

a

A

i

m™

append after cursor

append at end of line

insert before cursor

insert before first non-blank in line

open line below current line

open line above current line

replace single character with x

replace characters

Corrections During Insert

AH

AD

AX

AV

AW

Operators

d

Cc

<<

>>

erase last character

erase last character

erase to beginning of insert on current line

insert following character directly

delete previous word typed

delete

delete and insert

left shift

right shift

yank

[| 8-40 Aztec C68k ROM Reference Manual

Miscellaneous Operations

D

C

S

Yank and Put

Undo and Redo

u

U

Macros

@X

delete rest of line

change rest of line

substitute characters

substitute lines

join lines

delete characters starting at cursor

delete characters before cursor

yank lines

put after current

put before current

put from buffer x

yank to buffer x

delete to buffer x

undo last change

restore current line

repeat last change command

execute macro in buffer x

execute macro in buffer x

repeat last macro

repeat last macro

Z Editor 8 . 41 -

Colon Commands

© name

a

se! name

sn!

mn arg] arg2....

Tew

crew!

sta tag

edit file name

re-edit last file

edit file name, discarding changes

re-edit last file, discarding changes

edit alternate file

edit alternate file

edit alternate file, discarding changes

searches the file funclist or the environment variable FUNCLIST for a
specified string; also invoked by typing “_.

read file name into current file

write back to file being edited

write back to file and quit

write to file name if does not exist

write to file name, delete if exists

quit

quit, discarding changes

quit, saving file if modified

quit, saving file if modified

show current file and line

change name of current file

show current file and line

edit next file in list

edit next file in list, discarding change

specify new list

point back to beginning of list

point back to beginning, discarding changes

position to fag in appropriate file, searches file pointed to by environ-
ment variable TAGS if tags does not exist or tag is not found in it.

L — (8- 42, Aztec C68k ROM Reference Manual

A] same as :ta using word at cursor

sta! tag position to tag, discarding changes

:>macro specify and execute immediate macro

set optl=val set editor options
opt2=val ...

se optl=val set editor options
opt2=val ...

set all display current option settings

s[range]s/pat/rep/[options]

substitute rep format in range

s[range]& repeat last substitute command

a 9-2 Aztec C68k ROM Reference Manual

Modifying the Functions
Many of the functions provided with this package will run, without modification, on any 68000-

based system. Some, however, are system dependent and must be specially implemented for

your system.

The functions that may need to be rewritten are:

e The startup function;

e The unbuffered I/O functions;

e The low-level heap allocation functions brk() and sbrk();

e The exit functions exit() and _exit().

e The time functions time() and clock().

Modifying the Startup Routine

A programs startup routine is executed when the program is started. It performs program in-
itialization and then calls the program’s main function.

The source for the startup routine that is provided with Aztec C68k/ROM is in the file
rom68.a68, in the MPW:C68KROM:libsource:rom68.arc archive. The supplied version of this
routine makes the following assumptions about a program that contains it, and about a system

that contains the program:

e The system’s startup/reset vectors and interrupt vector table are in ROM.

e The program is the "startup program” of the system containing it. That is, the program
will gain control on system startup or reset.

e The program’s code and a copy of its initialized data are in ROM. It is the startup rou-
tine’s duty to set up the program’s initialized data area in RAM from the ROM copy.

e The startup routine is at the beginning of the program’s code segment.

e The system does not support interrupts.

If these assumptions aren’t satisfied by your system, you will have to modify the startup rou-
tine. The following paragraphs discuss changes that can be made for several types of programs
and systems.

ROM-based, Interrupt-driven Systems

Since a system’s memory must begin with startup vectors and be followed by the table of inter-
rupt vectors, the above assumptions mean that the startup module must contain assembly lan-

{Library Customization

Liprary CusTOMIZATION

Chapter 9 - Library Customization

This chapter discusses the customization of the library functions that are provided with Aztec
C68k/ROM. It is organized into two sections: the first discusses changes that you might make
to the libraries. The second discusses the actual generation of the libraries.

It is assumed that you have installed the source for the Aztec C68k/ROM functions in the lib-
source directory using the Aztec Install program. It is also assumed that you are using the make
program that is provided with Aztec C68k/ROM. To unarchive and place the library routines
into their respective subdirectories, change to the libsource directory and execute the following
line:

make unarc

For more information about the functions described in this chapter, see the Library Overview
and Library Functions chapters.

9-4 Aztec C68k ROM Reference Manual

Why the Interrupt Table Is Normally in ROM

On a 68k system, the startup vectors occupy the first eight bytes of memory and the interrupt ta-

ble follows. If the system uses a standard configuration (i.e. a typical microcomputer system con-
figuration that doesn’t use special hardware),then the startup vectors must be in ROM, so that
they will be already initialized when the system is turned on or reset. Since the smallest ROM

chip is about 2K bytes, this in turn means that the interrupt table of a standard 68k system must

also be in ROM.

Solution 1: Move the Startup Vectors

One way to allow the interrupt table to reside in RAM is to move the startup vectors away from

the interrupt table:

e Put RAM in the lowest-addressed section of memory, so that it extends at least from

location 0 through the end of the interrupt table;

e Include the startup vectors in the code section of the system’s startup program, at a
fixed offset from the beginning of the program’s ROM;

e Insert special hardware on the address bus between the processor and memory. On
powerup or system reset, this hardware intercepts the processor’s first two accesses of
memory, which are requests by the processor for the startup vectors, and translates
the accompanying addresses (i.e. locations 0 and 4) to those of the fields within ROM

that actually contain the startup vectors.

To support this hardware configuration, you should remove the statement in the startup mod-
ule that reserves space for the interrupt table and add executable code that initializes the table.
To put the startup vectors at a fixed place in ROM memory, to which the special hardware can
redirect attempts by the processor to access them, you could leave the statements that define the
startup vectors in the startup routine and then link the startup routine as the program’s first
module. The startup vectors will then be in ROM, in the first eight bytes of the startup pro-
gram’s code section.

Solution 2: Move the Interrupt Table

Another way to put the interrupt table in RAM is to move the interrupt table away from the
startup vectors:

e Put the RAM for the interrupt table in an unused section of the system’s memory
space, a section that is not near the low end of memory.

e Put the ROM that contains the code for the system’s startup program in memory, be-
ginning at location 0. The startup routine should be at the beginning of the program’s
code section; the only changes that it needs are executable statements that initialize
the interrupt table.

e Put a programmable logic array on the address bus, between memory and the proces-
sor. This will intercept requests to access an interrupt vector (i.e. accesses of memory
between locations 8 and 0x400) and translate the accompanying address to the ad-
dress in RAM at which the vector is actually located.

{Library Customizat

Library Customization 9- 3

guage statements that pre-initialize these vectors. In fact, the supplied startup routine does con-
tain statements that pre-initialize the startup vectors: the stack vector points to the top of the
area that’s reserved for the stack, and the code vector points to the .begin label in the startup
module.

However, the supplied startup routine can’t pre-initialize the interrupt vector table, since that’s
system dependent. The supplied startup routine simply reserves space for the table.

Thus, if a program that satisfies all the above assumptions is to be placed on a system that sup-
ports interrupts, you must modify the startup routine, replacing the statement that reserves
space for the interrupt table with statements that pre-initialize the vectors for supported inter-
rupts.

ROM-based, Non-startup Programs

If the startup routine will be included in programs that will be burned into ROM but that won’t
be a system’s startup program, you can remove the statements in the startup routine that pre-in-
itialize the system startup vectors and that reserve space for the interrupt table.

Most of the code in a program’s startup routine needs to be executed just once. For example, its
initialized data area in RAM needs to be set up from the copy in ROM just once; and its unin-
itialized data area needs to be cleared just once. So if a program will be called more than once,
you could design your startup routine so that this special startup code is executed just once.

The advantages to this are:

e It speeds up interprogram calls

e Variables are preserved between interprogram calls.

To do this, you could have a second entry point into a program, in addition to the standard en-
try point. The first call is made to the standard entry point, and all subsequent calls are made to
the secondary entry point.

The secondary entry point performs just those operations that need to be done on each entry to
the program. For example, if the program uses the small code or small data memory model, the
secondary entry point would save the contents of the small model support register and set it up
for the called program.

To implement the two entry points, you could add two jump instructions to the beginning of
the program’s startup routine: the first jumps to the Startup routine’s .begin label; the second
jumps to the secondary entry point code.

Systems Whose Interrupt Table Is In RAM

The interrupt vector table of some 68k systems must reside in RAM, to enable the program to
dynamically set up and change the vectors. Since this table is normally in ROM, this requires
special hardware and corresponding changes to the startup routine.

In this section first we describe why the interrupt table normally resides in ROM. We then pre-
sent two hardware techniques used to place the table in RAM and the corresponding changes
that must be made to the startup routine.

| 9-6 Aztec_C68k ROM Reference Manual

Modifying the Unbuffered I/O Functions

Two classes of I/O functions are provided with Aztec C68k/ROM. The unbuffered I/O func-
tions are system dependent, and the standard I/O functions call the unbuffered.

e The unbuffered I/O routines are system dependent, and must be specially written for
your system,

e The standard I/O routines are system independent, but call the unbuffered I/O rou-

tines. |

Thus, before your programs can access either the standard or unbuffered I/O routines, you
must implement the unbuffered I/O routines.

The unbuffered I/O functions are:

close() creat() ioctl() isatty() Iseek()
open() read() remove() rename() unlink()
write()

Descriptions of the unbuffered I/O functions are in the Library Functions and Library Over-
view chapters. The following paragraphs present additional information that may be of use
when writing your own versions of these functions.

File Descriptors

Associated with each file or device that is open for unbuffered I/O is a positive integer called a
“file descriptor". A file descriptor is one of the parameters that is passed to an unbuffered I/O
function; it defines the file or device on which the I/O is to be performed. There’s usually a lim-
ited number of file descriptors, which of course limits the number of files and/or devices that
can be simultaneously open for I/O.

When there’s lots of files and devices...

If a system supports disk files and/or supports more devices than file descriptors, the file de-
scriptors must be dynamically allocated. That is, before I/O with a file or device can begin, a
function must be called that assigns a file descriptor to it; and when the I/O is done another
function must be called to de-assign the file descriptor. In this case, a table is usually provided
that has entries defining the status of each file descriptor and that is accessible to all the unbuf-
fered I/O functions. Here’s how the unbuffered I/O functions make use of the table:

¢ open() and creat() prepare a file or device for unbuffered I/O. They scan the table for
an unused entry, and initialize the entry with information about the file or device. For
example, the entry for an open device might contain the device’s address; that for an
open file might contain the file’s current position and access mode. As the file descrip-
tor for the opened file or device, open() and creat() return the entry’s index into the ta-
ble. |

open() and create() must allow a file or device to be opened in one of two modes: text
or binary, as defined by the presence of O_TEXT or O_BINARY flag in the call to open()
or creat(). For a file or device opened in text mode, read() and write() must perform end-

Library Customization 209 5

Heap Set-up Code

The startup routine initializes variables that define the boundaries of a program’s heap so that
the heap occupies the area above the stack, that you defined using the -xj and -xs linker Op-
tions. By default, this area begins at the end of the program’s unititialized data segment and is
2kb long. If this does not meet your needs, you can change these initializations.

These variables, which are used by the sbrk() and brk() functions, are:

_mbot Points at the bottom of the heap.
_mtop Points at the top of the heap.
_mceur Points at the top of allocated heap space.

These are the names that a C-language module uses to access the variables; an assembly lan-
guage module uses these names, with an additional prepended underscore (e.g. __mbot).

Rom-based Initialized Data

The startup routine contains statements that set up a program’s initialized data segment in
RAM from its copy in ROM. Remove these statements if the programs initialized data is to re-
main in ROM; ie. if you linked the program without using the linker’s -xd option.

Ram-based Programs

If you are creating programs that won’t be put into ROM (for example, programs that will run
on a system that uses an operating system), here are some changes you may want to make to
the startup routine:

¢ Remove the code that initializes the startup vectors and that reserves space for the in-
terrupt table.

e Change the code that sets up the stack register. The operating system probably defines
the area reserved for a program’s stack (for example, on entry the stack register may
already be initialized). If it doesn’t, you could, for example, define space for the stack
in the uninitialized data area, and point the stack register at the top of this area.

¢ Remove the code that moves the copy of initialized data from ROM to RAM.

¢ Change the code that initializes the pointers to heap space.

¢ The startup routine jumps directly to the main function. If you want your system to
support the passing of arguments to the main function, you may want to have the
startup routine call a C-language function, which gets the arguments (for example, get-
ting them from the console) and then calls main .

A program created by Aztec C68k/ROM must always be loaded at an address that is defined
when the program is linked. If you need to create programs whose load address is not known
until the program is loaded, please contact Manx Software Systems Technical Support group.

: 9 -8 a Aztec C68k ROM Reference Manual

Before standard I/O can be performed on a file or device, an unbuffered I/O file descriptor

must be assigned to it, and a standard I/O "file pointer" must be assigned to the file descriptor.
The assignment of a file pointer and file descriptor can be done dynamically, by calling the
standard I/O fopen() function. Three file pointers, named stdin, stdout, and stderr, are pre-as-
signed to file descriptors 0, 1, and 2; these file descriptors in turn are pre-assigned to the console.

When a program calls a standard I/O function, it often must pass a file pointer, which identifies
the file or device on which I/O is to be performed. There are a special set of standard I/O func-
tions for accessing stdin, stdout, and stderr: for these, the file pointer isn’t passed, since the
functions know what file pointer is being accessed.

Supporting the standard I/O fopen() and fclose() functions

The dynamic assignment of a file pointer and file descriptor to a file or device is done by the
fopen() function. This function selects a file pointer for the file or device and then calls the un-
buffered I/O open() function, which selects a file descriptor.

If programs call fopen(), you must implement the unbuffered 1/O open() function, and open()
must return the file descriptor that’s associated with the file or device. This requirement (for a
functional open() when fopen() is called) must be met even if file descriptors are pre-assigned
to devices; open() in this case could be very simple, just searching a table for a device name
and returning the associated file descriptor.

Conversely, the use of the standard I/O functions to access those devices that don’t first have to
be fopen()ed (i.e. stdin, stdout, and stderr) places no requirements on open(). In particular, if
file descriptors are pre-assigned to devices and open() simply returns when called, programs
can still call the standard I/O functions to access the devices associated with the stdin, stdout,

and stderr file pointers.

The standard I/O function fclose() calls the unbuffered I/O function close(). Thus, if programs
call fclose(), you must implement a close() function. If assignments of devices to file descriptors
is hard-coded, close() can usually just return the value 0, since nothing special (such as calling
the operating system to close an open file or deallocating a file descriptor) needs to be done.

Supporting the standard I/O input and output functions

If programs call any of the standard I/O input functions, you must implement the unbuffered
I/O read() function. And if they call any of the standard I/O output functions, you must imple-
ment the write() function.

Supporting the standard I/O fseek() function

If programs will call the standard I/O fseek() function, you must implement the unbuffered
I/O Iseek() function, since fseek() calls lseek().

Standard I/O and the isatty() function

If programs call any standard I/O functions, you must implement the unbuffered I/O function
isatty(). The standard I/O functions call this function to decide whether their I/O to a file or de-
vice should be buffered or unbuffered.

Library Customization

Library Customization 9- 7

of-line conversions. For example, write() might translate \n to \rand read might
translate \r to \n.

For a file or device opened in binary mode, these translations do not occur.

e read(), write(), lseek(), ioctl(), and isatty() perform operations on, and determine the
status of, an open file or device. The file descriptor of the file or device is one of the
parameters passed to them. They examine the file descriptor’s table entry for informa-
tion about the file or device.

e close() completes I/O to the open file or device having a specified file descriptor.
Most of the operations that close() performs depend on the particular file or device;
but it always marks the descriptor’s table entry as being unused.

e unlink(), remove(), and rename() don’t use the file descriptor table at all.

When only devices are supported...

If programs access just devices (i.e. not files), if there are fewer devices than file descriptors, and
if your programs make limited use of the standard I/O functions (as defined below), you can
simplify the unbuffered I/O functions by doing away with the file descriptor table, hard-coding
the assignment of devices and file descriptors into the unbuffered I/O functions, and leaving
open(), creat(), and close() as mere stubs that simply return when called.

For example, you could code into the write() function the fact that file descriptor 5 is associated
with a printer at a certain address. Then to write to the printer, a program could simply issue a
call to write(), telling it to write to file descriptor 5. It wouldn’t have to first call open() or sub-
sequently call close().

Pre-assigned file descriptors

By convention, file descriptors 0, 1, and 2 are pre-assigned to the system console, even when all
other file descriptors are dynamically assigned. To perform an unbuffered I/O operation on the
console, a program simply calls the appropriate function, specifying one of these file descrip-
tors; it need not first call open() or subsequently call close().

Some systems allow the operator to redirect file descriptors 0 and 1 to other files and/or de-
vices, by specifying special operands on the command line that starts a program. This is done
by inserting a special function between the Startup routine and the user’s main() function. If
any redirection operands are found in the command line, this special function closes the speci-
fied file descriptor by calling close() and reopens it to the new file or device by calling open().
By convention, the command line operand to redirect file descriptor 0 consists of "<" followed
by the file or device name. The command line operand to redirect file descriptor 1 consists of ">" or ">>" followed by the file or device name. ">" causes a new file to be created. ">>" causes a file to be appended to, if it already exists, or to be created, if it doesn’t exist.

Interaction of the standard I/O and unbuffered V/O functions

The standard I/O functions call the unbuffered I/O functions. Because of this, the standard I /O
operations that a program will perform places implementation requirements on the unbuffered I/O functions. This section discusses those requirements, after first presenting general informa- tion on standard I/O file pointers and their relationship to unbuffered I/O file descriptors.

Library Customizat

a 9-10) Aztec C68k ROM Reference Manual

close() error codes:

EBADF Bad file descriptor passed to close().

creat() error codes:

EMFILE All file descriptors are in use.

Iseek() error codes:

EBADF Invalid file descriptor
EINVAL Offset parameter is invalid, or the requested position is before the begin-

ning of the file.

read() error codes:

EBADF Invalid file descriptor

write() error codes:

EBADF Invalid file descriptor
EINVAL Invalid operation; i.e. writing not allowed.

Modifying the sbrk() and brk() Functions

sbrk() and brk() provide an elementary means of allocating and deallocating space from a pro-
gram’s heap. sbrk() is called by the more sophisticated heap-allocation functions (malloc(), etc),
and malloc() is called by the standard I/O functions; thus, if your programs call malloc() or the
other high-level heap management functions, or if they call the standard I/O functions, you will
need to write an sbrk() function.

You probably won’t have to modify sbrk() or brkQ), since the most system-dependent code
(which defines the boundaries of the heap) is in the startup routine. But if you do, here are
some things you should consider:

e A buffer allocated by sbrk() should be on a quad-byte boundary (i.e. the address of its
first byte should be divisible by four), since words on a 68000 or 68010 must be on an
even-byte boundary and since long words on a 68020 can be most efficiently accessed
if they’re on a quad-byte boundary.

e malloc() assumes that the heap is a single, contiguous section of memory: when told
to allocate a large block of memory, malloc() makes repeated calls to sbrk() for small
blocks of memory, and then attempts to coalesce the small blocks into one large block.

Modifying the exit() and _exit() Functions

exit() and _exit() are called to terminate the execution of a program. They are not usually called
by ROM-based programs, since such programs usually do not terminate.

Library Customization 9-9 |

This use of the word "unbuffered" in describing standard I/O might be a little confusing, since
the use of the expression "unbuffered I/O functions" to describe one set of I/O functions im-
plies that the other set, the "standard I/O functions", are buffered. Nevertheless, a standard I/O
stream can be either buffered or unbuffered: if buffered, data that’s exchanged between user-
written functions and the unbuffered I/O functions passes through a buffer; if unbuffered, data
doesn’t pass through a buffer.

For a given file descriptor, isatty() should return non-zero if standard I/O to the device associ-
ated with the file descriptor is to be buffered, and zero if it is to be unbuffered.

For example, isatty() should probably return non-zero for a file descriptor that’s associated with
the system console and zero for file descriptors associated with files; it could return either zero
or non-zero for other devices, such as printers, depending on your system’s requirements.

Unbuffered I/O Names

There are two entry points to an unbuffered I/O function. These entry points are named as fol-
lows:

¢ One entry point has the name that has been used in the above paragraphs.
(open(), close(), read(), write())

¢ The other entry point has the same name as the first, but with a prepended under-
score. (_open(), _close(), _read(), _write())

The functions that do the read work (that is, the ones you must implement) are the ones with
the prepended underscore. The code that is at a name that does not have a prepended under-
Score is a one line assembly instruction that simply jumps to the corresponding name that has
the prepended underscore. For example, the code at open() is jmp _open .

The standard I/O routines call the unbuffered I/O routines at the entry point whose name has
the prepended underscore. For example, fopen() calls _open (). Thus, you should follow
this naming convention when you implement the unbuffered I/O functions.

The unbuffered I/O routines are named in this fashion to avoid what is called NAME SPACE POL-
LUTION. That is, the only names that are allowed in an ANSI compatible library, when the li-
brary is used by an ANSI conforming program, are those that have a leading underscore.

Unbuffered I/O Return Codes

We've presented most of the factors you should consider when writing your unbuffered I/O functions. In this section we want to list error codes that the functions could return in the global
short errno.

open() error codes:

ENOENT File does not exist and O_CREAT wasn’t specified.
EEXIST File exists, and O_CREAT+O_EXCL was specified.
EMFILE Invalid file descriptor passed to open().

9-120 Aztec C68k ROM Reference Manual

Building the libraries
Once you’ve made modifications to the supplied library functions, you can build your libraries.
We've provided makefiles (which give directions to the make program) and 1b68 command files
that will make this task easier; they can make the following libraries:

c.lib General purpose functions;
m.lib Floating point functions ;
m8.lib 68881 functions;

The modules in these three libraries are compiled to use 32-bit ints and the small code, small

data memory model.

The makefiles can also generate three other variants of each of the above libraries, variants that
use different combinations of int size (16 or 32 bits) and memory model (small code, small data
or large code, large data). The name of one of these variant libraries is derived from the 32-bit
int, small memory model library by adding 16 to the name if the library uses 16-bit ints, and/or

lif the library uses large memory model

If you followed our recommendations for installing Aztec C68k/ROM, each of the libsource di-

rectory’s subdirectories contains a makefile that causes make to compile and assemble the subdi-
rectory’s source files. There is a makefile in the libsource directory that will have make first
generate each subdirectory’s object modules and then make a library.

Before you can generate the libraries, you must do several things:

e In the primary makefile, modify the rules that define how to convert a C source file to
an object module, so that the command that starts the compiler uses the options that
correctly define register usage on your system,

e If you’ve written your own unbuffered I/O modules, you will probably need to mod-
ify the makefile that’s in the ROM68 directory;

e In the :libsource:inp directory are several files whose extension is .inp. Each of these
files tells 1b68 how to create a library. For example, c.inp is used to create c.lib; and
cl16.inp is used to create cl16.lib.

e The environment variable INCL68 must be set to the name of the ‘include’ directory;
that is, to the name of the directory that contains the include files. This is done using
the set command.

e If you have a RAM disk, you can speed up the library-generation process by defining
it using the CCTEMP environment variable. For more information, see the description
of CCTEMP in the Compiler chapter.

e In order to call make recursively, the make script must be renamed to make and the
make tool renamed to mk. See the section describing this in the "make" section of the
Utilities chapter.

You are now ready to create the libraries. Set the default or current directory to the libsource di-
rectory and start make, passing to it a code that defines the libraries to make. If you do not spec-
ify a code, make will create all versions of all libraries.

Library Customization

They are called, however, by RAM-based programs that are running in an operating system en-
vironment, since these programs usually do terminate.

When these functions are needed, you will have to modify _exit() , since it must return to the
operating system. But you can probably use exit() as is, since it closes open files and devices in
a system-independent way and then calls _exit() .

Modifying the time() and clock() Functions

Some of the functions provided with Aztec C68k/ROM are system independent. However, the
time() and clock() functions are system dependent, and must be specially implemented for your
system.

¢ time() is called by the other time functions. They assume that time() returns the num-
ber of seconds that have elapsed since Jan1, 1970.

¢ clock() is used to determine the amount of time elapsed between two events. clock() is
not called by any Aztec functions, so you are free to implement any way you want.

Aztec C68k ROM Reference Manual [| 9-44

Library Directories

The LIB directory contains the following subdirectories:

Directory Contents
INP Files that describe the contents of each library, and that are used by 1b68

when building the libraries;
LIBS Object module libraries;
MX_IEEE Manx IEEE math library source and object modules;

M881 68881 math library modules;
MISC Miscellaneous modules;
STDIO Standard I/O modules (those that are prototyped in stdio.h);
STDLIB Standard library modules (those that are prototyped in stdlib.h);

STRING String modules;
ROM68 ROM specific routines;
ROM-AMI Routines for testing C68k/ROM-generated programs on an Amiga;
ROM-MAC Routines for testing C68k/ROM-generated programs on an Macintosh;
TIME Time library modules (for routines prototyped in time.h).

Library Customization 9-13 :

Some of the codes that can be passed to make are:

Cc Make all versions of c.lib
m Make all versions of m.lib

ms Make all versions of m8.lib

To make a specific library, you pass make a 3 or 4 letter code:

e The first letter is c, m, or m8, which identifies the library;

e The next letter identifies the int size: s for 16 bit ints, 1 for 32;

e The last letter identifies the memory model: s for small code/small data, 1 for large
code, large data

For example, typing

make cls

will make ¢.1ib, whose modules use 32-bit ints and the small code/small data memory
modcl, and typing

make m8sl

will make m8116 .1ib, whose modules use 16-bit ints and the large code/large data memory
model.

Once started, make will activate several other copies of make, each of which will compile and
assemble the files in one of libsource’s subdirectories; it will then start 1b68, which will make
the specified library from the object modules that are in the subdirectories, as directed by the ap-
propriate .inp file.

Liprary Overview

Chapter 10 - Library Overview

This chapter presents an overview of the functions that are provided with Aztec C. It is divided
into the following sections:

VO Introduces the I/O system provided in the Aztec C package.

Standard /O The I/O functions can be grouped into two sets; this section describes
one of them, the standard I/O functions.

Unbuffered I/O Describes the other set of I/O functions, the unbuffered.

Console /O Describes special topics relating to console I/O.

Dynamic Buffer Allocation Discusses topics related to dynamic memory allocation.

Errors Presents an overview of error processing.

Header Files Describes the header files provided with Aztec C.

The unbuffered I/O and console I/O functions are system dependent; the standard I/O func-
tions are system independent, but they call the unbuffered I/O functions. Thus, before you can
call any of the I/O functions, the unbuffered I/O functions must be implemented for your sys-
tem.

For information on implementing the unbuffered I/O functions, see the Library Customization
chapter.

| 10-2. Aztec C68k ROM Reference Manual

Overview of I/O
There are two sets of functions for accessing files and devices: the unbuffered I/O functions and
the standard I/O functions. The Aztec C standard I/O functions conform to the ANSI standard,
while the unbuffered I/O functions behave like those described in chapters 7 and 8 of The C Pro-
gramming Language. The unbuffered I/O functions are so called because, with few exceptions,
they transfer information directly between a program and a file or device. By contrast, the stand-
ard I/O functions maintain buffers through which data must pass on its journey between a pro-
gram and a disk file.

The unbuffered I/O functions are used by programs which perform their own blocking and de-
blocking of disk files. The standard I/O functions are used by programs which need to access __
files but do not want to be bothered with the details of blocking and deblocking the file records.

The unbuffered and standard I/O functions each have their own overview sections, "Unbuf-

fered I/O" and "Standard I/O". The remainder of this section discusses features which the two

sets of functions have in common.

The basic procedure for accessing files and devices is the same for both standard and unbuf-
fered I/O: the device or file must first be “opened”, that is, prepared for processing; then I/O
operations occur; then the device or file is “closed”.

There is a limit on the number of files and devices that can simultaneously be open; the limit on
your system is FOPEN_MAX. This macro is defined in stdio.h as 20.

Each set of functions has its own functions for performing these operations. For example, each
set has its own functions for opening a file or device. Once a file or device has been opened, it
can be accessed only by functions in the same set as the function which performed the open,

and must be closed by the appropriate function in the same set. There are exceptions to this non-
intermingling which are described below.

There are two ways a file or device can be opened: first, the program can explicitly open it by is-
suing a function call. Second, it can be associated with one of the logical devices standard input,
standard output, or standard error, and then opened when the program starts.

Pre-opened Devices and Command Line Arguments

Many versions of Aztec C generate programs that run on systems that have an operating sys-
tem, such as the IBM PC, Macintosh, and Amiga. The Aztec provided startup code for these sys-
tems provide programs with several useful features:

e Three logical devices are pre-opened for the program. They are called standard input
(stdin), standard output (stdout), and standard error (stderr); by default, they are asso-
ciated with the system console.

e stdin, stdout, and stderr can be redirected by the operator to another device or file.

e The operator can pass information to the program on the line that invokes the pro-
gram. This information is called COMMAND LINE ARGUMENTS.

Library Overview 10-3 -

For ROM based systems, we do not know the environment in which a program will run, and
hence can not provide startup code that provides these features. However, we will describe
these features in this section, just in case they are implemented on your system. To find out if
they are implemented, contact your system implementor.

Redirecting stdin and stdout

e To redirect stdin enter <file on the command line that starts the program, where file is
the name of the device or file to which stdin is to be redirected.

To redirect stdout, enter >file on the command line, where file is the name of the file
or device to which stdout is to be redirected.

For example, suppose the executable program cpy reads standard input and writes it to stand-
ard output. Then the following command will read lines from the keyboard and write them to
the display

CPpy

The following will read from the keyboard and write it to the file test file

cpy > testfile

This will copy the file exmp1£il1 to the console:

cpy < exmplfil

And this will copy exmplfil to testfile:

cpy < exmplfil > testfile

Command Line Arguments

Command line arguments can be passed to the user’s program via the user’s function
main(argc, argu). argc is an integer containing the number of arguments plus one; argv is a
pointer to an array of character pointers, each of which, except the first, points to a command
line argument. On some systems, the first array element points to the command name; on oth-
ers, it is a null pointer.

For example, if the following command is entered:

prog argl arg2 arg3

the program prog will be activated and execution begins at the user’s function main. The first
parameter to main is the integer 4. The second parameter is a pointer to an array of four charac-
ter pointers; on some systems the first array element will point to the string prog and on others
it will be a null pointer. The second, third, and fourth array elements will be pointers to the
strings argl, arg2, and arg3 respectively.

The command line can contain both arguments to be passed to the user’s program and I/O redi-
rection specifications. The I/O redirection strings won’t be passed to the user’s program, and
can appear anywhere on the command line after the command name. For example, the stand-

10-4 — Aztec C68k ROM Reference Manual

ard output of the prog program can be redirected to the file out file by any of the following
commands; in each case the arge and argv parameters to the main function of prog are the
same as if the redirection specifier was not present:

prog argl arg2 arg3 > outfile
prog > outfile argl arg2 arg3

prog argl > outfile arg2 arg3

File 1/O

A program can access files both sequentially and randomly, as discussed in the following para-
graphs.

Sequential I/O

For sequential access, a program issues any of the various read or write calls. The transfer will
begin at the file’s current position, and will leave the current position set to the byte following
the last byte transferred. A file can be opened for read or write access; in this case, its current po-

sition is initially the first byte in the file. A file can also be opened for append access; in this case
its current position is initially the end of the file.

On systems which do not keep track of the last character written to a file, it is not always possi-
ble to correctly position a file to which data is to be appended. To see if this is a problem on
your system, contact your system implementor.

Random I/O

Two functions are provided which allow a program to set the current position of an open file:
fseek(), for a file opened for standard I/O; and Iseek(), for a file opened for unbuffered I/O.

A program accesses a file randomly by first modifying the file’s current position using one of
the seek functions. Then the program issues any of the various read and write calls, which se-
quentially access the file.

A file can be positioned relative to its beginning, current position, or end. Positioning relative to
the beginning and current position is always correctly done. For systems which do not keep
track of the last character written to a file, positioning relative to the end of a file cannot always
be correctly done.

Opening Files

Opening files is somewhat system dependent: the parameters to the open functions are the
same on the Aztec C packages for all systems, but some system dependencies exist, to conform
with the system conventions. For example, the syntax of file names and the areas searched for
files differ from system to system. |

For information on opening files on your system, contact your system implementor.

Library Overview 10-5

Device I/O

Aztec C allows programs to access devices as well as files. Each system has its own names for
devices. For the names of devices on your system, contact your system implementor.

Console I/O

Console I/O can be performed in a variety of ways. There’s a default mode, and other modes
can be selected by calling the function ioctl(). We will briefly describe console I/O in this sec-
tion; for more details, see the Console I/O section of this chapter.

When the console is in default mode, console input is buffered and is read from the keyboard a
line at a time. Typed characters are echoed to the screen and the operator can use the standard
operating system line editing facilities. A program does not have to read an entire line at a time
(although the system software does this when reading keyboard input into it’s internal buffer),
but at most one line will be returned to the program for a single read request.

The other modes of console I/O allow a program to get characters from the keyboard as they
are typed, with or without their being echoed to the display; to disable normal system line edit-
ing facilities; and to terminate a read request if a key is not depressed within a certain interval.

Output to the console is always unbuffered: characters go directly from a program to the dis-
play. The only choice concerns translation of the newline character; by default, this is translated
into a system dependent sequence of characters. This translation can be disabled.

(/O to Other Devices

On most systems, few options are available when writing to devices other than the console. For
a discussion of such options, if any, that are available on your system, contact your system im-
plementor.

Mixing Unbuffered and Standard I/O Calls ———S er
As mentioned above, a program generally accesses a file or device using functions from one set
of functions or the other, but not both.

However, there are functions which facilitate this dual access: if a file or device is opened for
standard I/O, the function fileno() returns a file descriptor which can be used for unbuffered ac-
cess to the file or device. If a file or device is open for unbuffered I/O, the function fdopen()
will prepare it for standard I/O as well.

Care is warranted when accessing devices and files with both standard and unbuffered I/O
functions.

| 10 -6 Aztec C68k ROM Reference Manual

Overview of Standard I/O
The standard I/O functions are used by programs to access files and devices. Aztec C functions
are totally ANSI compatble.

These functions provide programs with convenient and efficient access to files and devices.
When accessing files, the functions buffer the file data; that is, handle the blocking and deblock-
ing of file data. Thus the user’s program can concentrate on its own concerns.

Buffering of data to devices when using the standard I/O functions is discussed below.

For programs which perform their own file buffering, another set of functions are provided.
These are described in the section "Unbuffered I/O" of this chapter.

Before you can call the standard I/O functions, the unbuffered I/O functions must be imple-
mented for your system.

Opening Files and Devices

Before a program can access a file or device, it must be “opened”, and when processing on it is
done it must be “closed”.

An open device or file is called a STREAM and has associated with it a pointer, called a FILE
POINTER, to a structure of type FILE. This identifies the file or device when standard I/O func-
tions are called to access it.

There are two ways for a file or device to be opened for standard I/O: first, the program can ex-
plicitly open it, by calling one of the functions fopen(), freopen(Q), or fdopen(). In this case, the
open() function returns the file pointer associated with the file or device. fopen() just opens the
file or device. freopen() reopens an open stream to another file or device; it is mainly used to
change the file or device associated with one of the logical devices standard output, standard in-
put, or standard error. fdopen() opens for standard I/O a file or device already opened for un-
buffered I/O.

Alternatively, the file or device can be automatically opened as one of the logical devices stand-
ard input, standard output, or standard error. In this case, the file pointer is stdin, stdout, or
stderr, respectively. These symbols are defined in the header file stdio.h.

Closing Streams

A file or device opened for standard I/O can be closed in two ways:

e first, the program can explicitly close it by calling the function fclose().

e when the program terminates, either by falling off the end of the function main(), or
by calling the function exit(), the system will automatically close all open streams.

Letting the system automatically close open streams is error-prone: data written to files using
the standard I/O functions is buffered in memory, and a buffer is not written to the file until it

Library Overview 10-7
is full or the file is closed. Most likely, when a program finishes writing to a file, the file’s buffer
will be partially full, with this information not having been written to the file. If a program calls
fclose(), this function will write the partially filled buffer to the file and return an error code if
this couldn't be done. If the program lets the system automatically close the file, the program
won't know if an error occurred on this last write operation.

Sequential I/O

Files can be accessed sequentially and randomly. For sequential access, simply issue repeated
read or write calls; each call transfers data beginning at the current position of the file, and up-
dates the current position to the byte following the last byte transferred. When a file is opened,
its current position is set to Zero if opened for read or write access, and to its end if opened for
append.

On systems which do not keep track of the last character written to a file, not all files can be cor-
rectly positioned for appending data. See the section entitled I/O for details.

Random I/O

The function fseek() allows a file to be accessed randomly, by changing its current position. Posi-
tioning can be relative to the beginning, current position, or end of the file.

eaemennnanemeamen manana

For systems which do not keep track of the last character written to a file, positioning relative to
the end of a file cannot always be correctly done. See the "Overview of I/O" section for details.

Buffering ee
When the standard I/O functions are used to access a file, the I/O is buffered. Either a user-
specified or dynamically- allocated buffer can be used.

The user’s program specifies a buffer to be used for a file by calling the function setbuf() or
setvbuf() after the file has been opened but before the first I/O request to it has been made.

If, when the first I/O request is made to a file, the user hasn’t specified the buffer to be used for
the file, the system will automatically allocate, by calling malloc(), a buffer for it. When the file
is closed it’s buffer will be freed, by calling free().

Dynamically allocated buffers are obtained from the one region of memory (the heap), whether
requested by the standard I/O functions or by the user’s program. For more information, see
the overview section “Dynamic Buffer Allocation.”

The default size of an I/O buffer is given by the manifest constant BUFSIZE in stdio.h. Use
setvbuf() to set a different buffer size.

By default, output to the console using standard I/O functions is unbuffered; all other device
I/O using the standard I/O functions is buffered. Console input buffering can be disabled using
the setvbuf() function; see the overview section "Console I/O" for details.

Library Overview

| 10-8 Aztec C68k ROM Reference Manual

Errors

There are three fields which may be set when an exceptional condition occurs during stream
I/O. Two of the fields are unique to each stream (that is, each stream has its own pair). The
other is a global integer.

One of the fields associated with a stream is set if end of file is detected on input from the
stream; the other is set if an error occurs during I/O to the stream. Once set for a stream, these

flags remain set until the stream is closed or the program calls the clearerr() function for the
stream. The only exception to the last statement is that when called, fseek() will reset the end of
file flag for a stream. A program can check the status of the eof and error flags for a stream by
calling the functions feof() and ferror(), respectively.

The other field which may be set is the global integer errno. By convention, a system function
which returns an error status as its value can also set a code in errno which more fully defines
the error.

If an error occurs when a stream is being accessed, a standard I/O function returns EOF (-1) as
its value, after setting a code in errno and setting the stream’s error flag.

If end of file is reached on an input stream, a standard I/O function returns EOF after setting
the stream’s end of file flag.

There are two techniques a program can use for detecting errors during stream I/O. First, the
program can check the result of each I/O call. Second, the program can issue I/O calls and only
periodically check for errors (for example, check only after all I/O is completed).

On input, a program will generally check the result of each operation.

On output to a file, a program can use either error checking technique; however, periodic check-

ing by calling ferror() is more efficient. When characters are written to a file using the standard
I/O functions they are placed in a buffer, which is not written to disk until it is full. If the buff-
er is not full, the function will return good status. It will only return bad status if the buffer was
full and an error occurred while writing it to disk. Since the buffer size is 1024 bytes, most write
calls will return good status, and hence periodic checking for errors is sufficient and most effi-
cient.

Once a file opened for standard I/O is closed, ferror() cannot be used to determine if an error

has occurred while writing to it. Hence ferror() should be called after all writing to the file is
completed but before the file is closed. The file should be explicitly closed by fclose(), and its re-
turn value checked, rather than letting the system automatically close it, to know positively
whether an error has occurred while writing to the file. The reason for this is that when the writ-
ing to the file is completed, it is standard I/O buffer will probably be partly full. This buffer will
be written to the file when the file is closed, and fclose() will return an error status if this final
write operation fails.

The Standard I/O Functions

The standard I/O functions can be grouped into two sets: those that can access only the logical
devices standard input, standard output, and standard error; and all the rest.

Library Overview 10-9

Here are the standard I/O functions that can only access stdin, stdout, and stderr. These are all
ASCII functions; that is, they expect to deal with text characters only. Those preceded with an as-
terisk (*) are non-ANSI functions.

getchar() Get an ASCII character from stdin
gets() Get a line of ASCII characters from stdin
printf() Format data and send it to stdout
*puterr() Send a character to stderr (obsolete)

_ putchar() Send a character to stdout
puts() send a character string to stdout
scanf() Get a line from stdin and convert it
vprintf() Format data using a variable argument list and send it to stdout

Here are the rest of the standard I/O functions:

clearerr() Clear EOF and error flag for stream
fclose() Close an open stream
*fdopen() Open as a stream a file or device already opened for unbuffered I/O
fclose() Close an open stream
feof() Check for end of file on a stream
ferror() Check for error on a stream
fflush() Write stream’s buffer
fgetc() Get the character from the input stream
fgetpos() Get information on file position
fgets() Get a line of ASCII characters
*fileno() Get file descriptor associated with stream
fopen() Open a file or device
fprintf() Format data and write it to a stream
fputc() Write a character to an output stream
fputs() Send a string of ASCII characters to a stream
fread() Read binary data
freopen() Open an open stream to another file or device
fscanf() Get data and convert it
fseek() Set current position within a file
fsetpos() Set file position
ftell() Get current position
fwrite() Write binary data
getc() Get a binary character
*petw() Get two binary characters
perror() Map errno to a descriptive string
putc() Send a binary character
*putw() Send two binary characters
setbuf() Specify buffer for stream
setvbuf() Specify buffer, buffer size, and buffering method
tmpnam() Generates a unique name for a file
ungetc() Push character back into stream
vfprintf() Format data using a variable argument list and write to a stream

10 -10 Aztec C68k ROM Reference Manual

Overview of Unbuffered I/O
The unbuffered I/O functions are used to access files and devices. They are compatible with
their UNIX counterparts with the addition that a file may be opened as either text or binary.

As their name implies, a program using these functions, with two exceptions, communicates di-
rectly with files and devices; data does not pass through system buffers. Some unbuffered I/O,
however, is buffered. When data is transferred to or from a file in blocks smaller than a certain
value, it is buffered temporarily. This value differs from system to system, but is always less
than or equal to 512 bytes. Also, console input can be buffered, and is, unless specific actions are
taken by the user’s program.

Programs which use the unbuffered I/O functions to access files generally handle the blocking
and deblocking of file data themselves. Programs requiring file access but unwilling to perform
the blocking and deblocking can use the standard I/O functions; see the "Overview of Standard
I/O" section for more information.

Here are the unbuffered I/O functions:

close() Conclude the I/O on an open file or device
creat() Create a file and open it
ioctl() Change console I/O mode
isatty () Is an open file or device the console?
Iseek() Change the current position of an open file
open() Prepare a file or device for unbuffered I/O
read() Read data from an open file or device
remove() Delete a file
rename() Rename a file
unlink() Delete a file
write() Write data to an open file or device

Before a program can access a file or device, it must be “opened”, and when processing on it is
done, it must be “closed”.

An open file or device has an integer known as a FILE DESCRIPTOR associated with it; this identi-
fies the file or device when it is accessed.

There are two ways for a file or device to be opened for unbuffered I/O. First, it can explicitly
open it, by calling the function open(). In this case, open() returns the file descriptor to be used
when accessing the file or device.

Alternatively, the file or device can be automatically opened as one of the logical devices stand-
ard input, standard output, or standard error. In this case, the file descriptor is the integer value
0, 1, or 2, respectively. See the section entitled I/O for more information on this.

An open file or device is closed by calling the function close(). When a program ends, any de-
vices or files still opened for unbuffered I/O will be closed.

If an error occurs during an unbuffered I/O operation, the function returns -1 as its value and
sets a code in the global integer errno. For more information on error handling, see the section
“Errors”. |

The unbuffered I/O routines are system dependent and must be specially written for your sys-
tem.

Library Overview 10-11 :

The remainder of this section discusses unbuffered I/O to files and devices.

File I/O

Programs call the functions read() and write() to access a file; the transfer begins at the current
position of the file and proceeds until the number of characters specified by the program have
been transferred.

The current position of a file can be manipulated in various ways by a program, allowing both
Sequential and random acccess to the file. For sequential access, a program simply issues con-
secutive I/O requests. After each operation, the current position of the file is set to the character
following the last one accessed.

The function Iseek() provides random access to a file by setting the current position to a speci-
fied character location.

Iseek() allows the current position of a file to be set relative to the end of a file. For systems
which do not keep track of the last character written to a file, such positioning cannot always be
correctly done. For more information, see the section entitled I/O.

open() provides a mode, O_APPEND, which causes the file being opened to be positioned at its
end. This mode is supported on UNIX Systems 3 and 5, but not UNIX version 7. As with
Iseek(), the positioning may not be correct for systems which do not keep track of the last char-
acter written to a file.

open() also provides for opening files as text by using the O_TEXT mode. The default mode is
binary. The unbuffered I/O routines can access files in text or binary mode.

e When accessing a file in text mode, the unbuffered I/O routines perform system de-
pendent end-of-line translations. For example, write() might translate ’\n’ to ‘\r’ and
read() might translate ’\r’ to ’\n’.

e When accessing a file in binary mode, no translations are done. The mode in which a
file is to be accessed is specified when the file is opened; by including one of the fol-
lowing in the open() functions’ mode parameter:

O_TEXT access file in text mode
O_BINARY access file in binary mode

Device I/O
———————————————————————————— ————eE——eeEE——————EeeE

Unbuffered I/O to the Console

There are several options available when accessing the console, which are discussed in detail in
the Console I/O sections of this chapter. Here we just want to briefly discuss the line or charac-
ter modes of console I/O as they relate to the unbuffered I/O functions.

Console input can be either line or character oriented. With line-oriented input, characters are
read from the console into an internal buffer a line at a time, and returned to the program from

| “10 -12 7 Aztec C68k ROM Reference Manual

this buffer. Line buffering of console input is available even when using the so-called “unbuf-
fered” I/O functions.

With character oriented input, characters are read and returned to the program when they are
typed: no buffering of console input occurs.

Unbuffered I/O to Non-Console Devices

Unbuffered I/O to devices other than the console is truly unbuffered.

Library Overview 10- 13,

Overview of Console I/O
The system dependent function ioctl() gives a program control over several options relating to
console I/O. However, since ioctl() is system dependent, it must be implemented for your sys-
tem before you can use it.

Some of the choices for console I/O that ioctl() gives you are these:

e Console I/O can be either line or character oriented.

e The echoing of typed characters can be enabled or disabled, using the ECHO option.

e End-of-line translation can be enabled and disabled, using the CRMOD option.

e Other choices may be available. For details contact your system implementor.

All the console I/O options have default settings, which allow a program to easily access the
console without having to set the options itself. In the default mode, console I/O is line-ori-
ented, with ECHO and CRMOD enabled.

Console I/O behaves the same on all systems when the console options have their default set-
tings. However, the behavior of console I/O differs from system to system when the options are
changed from their default values. Thus, a program requiring machine independence should
either use the console in its default mode or be careful how it sets the console options. In the
paragraphs below, we will try to point out system dependencies.

Line-Oriented Input eA AAI 2
With line-oriented input, a program issuing a read request to the console will wait until an en-
tire line has been typed. On some systems a non-UNIX option (NODELAY) is available that will
prevent this waiting.

The program need not read an entire line at once; the line will be internally buffered, and char-
acters returned to the program from the buffer, as requested. When the program issues a read re-
quest to the console and the buffer is empty, the program will wait until an entire new line has
been typed and stored in the internal buffer. Again, on some Systems programs can disable this
wait by setting the NODELAY option.

A single unbuffered read operation can return at most one line.

On most systems, selecting line-oriented console input forces the ECHO option to be enabled.
On such systems the program still has control over the CRMOD option. To find out if, on your
system, line-oriented mode always has ECHO enabled, consult with your system implementor.

Character-oriented input

The basic idea of character-oriented console input is that a program can read characters from
the console without having to wait for an entire line to be entered.

| Library Overview

| 10-14 Aztec C68k ROM Reference Manual

The behavior of character-oriented console input differs from system to system, So programs re-
quiring both machine independence and character-oriented console input have to be careful in
their use of the console. However, it is possible to write such programs, although they may not
be able to take full advantage of the console I/O features available for a particular system.

There are two varieties of character-oriented console input, named CBREAK and RAW. Their
primary difference is that with the console in CBREAK mode, a program still has control over
the other console options, whereas with the console in RAW mode it does not. In RAW mode,

all other console options are reset: ECHO and CRMOD are disabled.

Thus, to some extent RAW mode is simply an abbreviation for CBREAK on, all other options

off.

Writing System-Independent Programs

To write system-independent programs that access the console in character-oriented input
mode, the console should be set in RAW mode, and the program should read only a single char-
acter at a time from the console. All the non-UNIX options that are supported by some systems
should be reset.

The standard I/O functions all read just one character at a time from the console, even when
the calling program requests several characters. Thus, programs requiring system independence
and character-oriented input can read the console using the standard I/O functions.

Some systems require a program that wants to set console option to first call ioctl() to fetch the
current console options, then modify them as desired, and finally call ioctl() to reset the new

console options. The systems that do not require this do not care if a program first fetches the
console options and then modifies them. Thus, a program requiring system-independence and
console I/O options other than the default should fetch the current console options before modi-
fying them.

Using ioctl()

A program that calls ioctl() should include the files fentl.h and sgtty.h. fentl.h contains a proto-
type for ioctl(), and sgtty.h defines symbolic constants and structures that are used when calling
ioctl(). A call to ioctl() has the following form:

ioctl (fd, code, arg)

where the arguments are as follows:

e fd is a file descriptor associated with the console. On UNIX, this parameter defines the
file descriptor associated with the device to which the ioctl() call applies.

e code defines the action to be performed by ioctl(). It can have the following values:

TIOCGETP Fetch the console parameters and store them in the structure
pointed at by arg.

TIOCSETP Set the console parameters according to the structure pointed at by arg.
TIOCSETN Equivalent to TIOCSETP.
TIOCNTLC Aborts program if system dependent abort keys have been entered.

| Library Overview

Library Overview 10-15

° arg points to a structure named sgttyb that contains the following fields:

int sg flags;

char sg erase;

char sg kill;

The order of these fields is system-dependent.

_ The sg_flags field is supported by all systems, while the other fields are not supported
by some systems.

To set console options, a program should fetch the current state of the sgtty fields, using ioctl’s
TIOCGETP option. Then it should modify the fields to the appropriate values and call ioctl()
again, using ioctl’s TIOCSETP option.

The sgtty Fields a a ee

The sg_flags Field

sg_flags contains the following UNIX-compatible flags:

RAW Set RAW mode (turns off other options). By default, RAW is disabled.
CBREAK Return each character as soon as typed. By default, CBREAK is disabled.
ECHO Echo input characters to the display. By default, ECHO is enabled.
CRMOD Perform end-of-line translations. By default, CRMOD is enabled.

On some systems, other flags are contained in sg_flags. To find out if your system supports
other flags, consult your system implementor.

More than one flag can be specified in a single call to ioctl(); the values are simply ‘or’ed to-
gether. If the RAW option is selected, none of the other options have any effect.

When the console I/O options are set and RAW and CBREAK are reset, the console is set in line-
oriented input mode.

Examples a

Console Input Using Default Mode

The following program copies characters from stdin to stdout. The console is in default mode,
and assuming these streams haven’t been redirected by the operator, the program will read
from the keyboard and write to the display. In this mode, the operator can use the operating sys-
tem’s line editing facilities, such as backspace, and characters entered on the keyboard will be

10-16. Aztec C68k ROM Reference Manual

echoed to the display. The characters entered won’t be returned to the program until the opera-
tor depresses carriage return. |

#include <stdio.h>
main ()

{
int c;

while ((c = getchar()) != EOF)

putchar(c) ;

}

Console Input - RAW Mode

In this example, a program opens the console for standard I/O, sets the console in RAW mode,
and goes into a loop, waiting for characters to be read from the console and then processing
them. The characters typed by the operator are not displayed unless the program itself displays
them. The input request won’t terminate until a character is received. This example assumes
that the console is named con:; on systems for which this is not the case, just substitute the ap-
propriate name.

#include <stdio.h>
#include <sgtty.h>
main ()

{
int c;

FILE *fp;

struct sgttyb stty;
if ((fp = fopen("con:", "xr") == NULL) {

printf ("cannot open the console\n") ;

exit ();

}
ioctl (fileno(fp),TIOCGETP, &stty) ;
stty.sg flags |= RAW;

ioctl(fileno(fp), TIOCSETP, &stty);
for (;;){

c = getc(fp) ;

Console Input - Console In CBREAK + ECHO Mode

This example modifies the previous program so that characters read from the console are auto-
matically echoed to the display. The program accesses the console via the standard input device.
It uses the function isatty() to verify that stdin is associated with the console; if it is not, the pro-

Library Overview

Library Overview “10-17

gram reopens stdin to the console using the function freopen(). Again, the console is assumed
to be named con:.

#include <stdio.h>
#include <sgtty.h>
main ()

{
int c;

struct sgttyb stty;
if ('tisatty (stdin))

freopen("con:", "xr", stdin);
ioctl(0, TIOCGETP, &stty) ;
stty.sg flags |= CBREAK | ECHO;
ioctl(0, TIOCSETP, &stty) ;

for (;;){
c¢ = getchar();

| 10-18. Aztec C68k ROM Reference Manual

Overview of Dynamic Buffer Allocation

Several functions are provided for the dynamic allocation and deallocation of buffers from a sec-
tion of memory called the HEAP. They are:

malloc() Allocates a buffer

calloc() Allocates a buffer and initializes it to zeroes
realloc() Allocates more space to a previously allocated buffer
free() Releases an allocated buffer for reuse

In addition the UNIX-compatible functions sbrk() and brk() are provided that provide a more
elementary means to allocate heap space. The malloc()-type functions call sbrk() to get heap
space, which they then manage.

Dynamic Allocation of Standard I/O Buffers

Buffers used for standard I/O are dynamically allocated from the heap unless specific actions
are taken by the user’s program. Standard I/O calls to dynamically allocate and deallocate buff-
ers can be interspersed with those of the user’s program.

Programs which perform standard I/O and which must have absolute control of the heap can
explicitly define the buffers to be used by a standard I/O stream.

Library Overview 10-19

Overview of Error Processing
This section discusses error processing which relates to the global integer errno. This variable is
modified by the standard I/O, unbuffered I/O, and scientific (eg, sin(), sqrt()) functions as part
of their error processing.

When a standard I/O, unbuffered I/O, or scientific function detects an error, it sets a code in er-
rno which describes the error. If no error occurs, the scientific functions do not modify errno. If
no error occurs, the I/O functions may or may not modify errno.

Also, when an error occurs,

e A standard I/O function returns -1 and sets an error flag for the stream on which the
error occurred;

e An unbuffered I/O function returns -1;

e A math function returns a value that depends on the type of error that occurred. For
example, when overflow occurs a huge numebr is returned. This number is given the
name HUGE _VAL in math.h.

When performing scientific calculations, a program can check erro for errors as each function
is called. Alternatively, since errno is modified only when an error occurs, errno can be checked
only after a sequence of operations; if it is non-zero, then an error has occurred at some point in
the sequence. This latter technique can only be used when no I/O operations occur during the
sequence of scientific function calls.

Since errno may be modified by an I/O function even if an error didn’t occur, a program cannot
perform a sequence of I/O operations and then check errno afterwards to detect an error. Pro-
grams performing unbuffered I/O must check the result of each I/O call for an error.

Programs performing standard I/O operations cannot, following a sequence of standard I/O
calls, check errno to see if an error occurred. However, associated with each open stream is an
error flag. This flag is set when an error occurs on the stream and remains set until the stream js
closed or the flag is explicitly reset. Thus a program can perform a sequence of standard I/O op-
erations on a stream and then check the stream’s error flag. For more details, see the "Overview
of Standard I/O".

The following table lists the system-independent values which may be placed in errno. These
symbolic values are defined in the file errno.h. Other, system-dependent, values may also be set
in errno following an I/O operation; these are error codes returned by the operating system.
System dependent error codes are described in the operating system manual for a particular sys-
tem.

The system-independent error codes and their meanings are:

Error Code Meaning

ENOENT File does not exist
E2BIG Not used
EBADF Bad file descriptor - file is not open or improper operation requested

10-20 Aztec C68k ROM Reference Manual

ENOMEM Insufficient memory for requested operation
EEXIST File already exists on creat request
EINVAL Invalid argument
ENFILE Exceeded maximum number of open files
EMFILE Exceeded maximum number of file descriptors
ENOTTY ioctl() attempted on non-console
EACCES Invalid access request
ERANGE Math function value cannot be computed
EDOM Invalid argument to math function
EIO I/O error (usually physical)
ENOSPC ~ No space left on device
EROFS Read-only file system
EXDEV Cross-device rename
EAGAIN | Nothing to read

Library Overview 10 -21

ANSI Header Files
Header files may be included in any order. They may be included more than once in a given
scope, without any adverse effects. The header files include:

assert.h

Includes the assert() macro which is used for program debugging.

ctype.h

Contains several function declarations and macros useful for testing and mapping characters.

fcntl.h

Contains prototypes for the system dependent functions. Also #defines the symbolic values that
can be passed to open().

float.h

Contains macros that define various floating point sizes and limits.

limits.h

Contains macros that define the numerical limits for various types.

locale.h

Contains macros and function prototypes supporting the "C" locale necessary for C translation.

math.h

Contains prototypes for the floating point functions.

setjmp.h

Contains prototypes, typedefs, and #defines that are used when calling the setjmp() and
longjmp() functions. |

Library Overview

| 10-22. Aztec _C68k ROM Reference Manual

signal.h

Contains prototypes for the signal() and raise() functions.

stdarg.h

Contains macros for advancing through a variable length argument list.

stddef.h

Contains miscellaneous typedefs and #defines.

stdio.h

Contains prototypes, typedefs, and #defines that are used when calling the standard I/O func-

tions.

stdlib.h

Contains prototypes, typedefs, and #defines that are used when calling the string conversion,
memory management, and other functions.

string.h

Contains prototypes, typedefs, and #defines that are used when calling the str... and mem...
functions.

time.h

Contains prototypes, typedefs, and #defines that are used when calling the time related func-
tions.

Liprary F UNCTIONS

Chapter 11 - Library Functions

This chapter describes the functions that are provided with Aztec C68k/ROM. These functions
fall into the following three categories:

° SYSTEM DEPENDENT FUNCTIONS: Before you can use any of these low-level functions
you will have to write them! The Library Customization chapter discusses these func-
tions.

© SYSTEM INDEPENDENT FUNCTIONS WITH UNDERLYING DEPENDENCIES: These functions di-
rectly or indirectly call a system dependent function. For example, the system-inde-
pendent function printf() indirectly calls the system dependent function _write().
Before you use these system independent functions you will of course have to write the
system dependent functions that they use.

° SYSTEM INDEPENDENT FUNCTIONS: This class of functions are system independent and
do not directly or indirectly call any system dependent functions. You can freely call
any of these functions.

If a function is directly or indirectly system dependent, the NOTES section in the description of
the function will say so.

| n-2- Aztec C68k ROM Reference Manual

Description Format

Introductory Information

To help you access the information more easily and efficiently:

e Each function description begins on a new page.

e The function descriptions are listed alphabetically.

e If a function contains any direct or indirect system dependencies, it will be documented
in the "Notes" section of that specific function description, otherwise, you may assume
that the function is totally system independent.

For simplicity, those functions that begin with a leading underscore (such as _abort()) are placed
alphabetically as if the underscore is not present.

Each library function description begins with the name and a brief definition of the function, fol-
lowed by:

ea list of FUNCTIONS

e the TYPE of function

e the function’s COMPATIBILITY

e the LIBRARY in which the function is contained.

Declaration

The DECLARATION of the function follows. This is expressed as a “prototype” statement, with
all variable information denoted by italics. The declaration indicates the type of arguments that
the function requires, and the values it returns. Unless otherwise noted, the function’s declaration
is contained in the header file specified for that function.

For example, the function atof() converts ASCII strings into double precision numbers. It is listed
in the declaration as

#include <stdlib.h>
double atof(const char *cp);

This means that atof() returns a value of type double and requires as an argument a pointer toa
character string. Since atof() returns a noninteger value, it must be declared prior to the use of the
function.

The notation #include <stdlib.h> at the beginning of the declaration indicates that such a state
ment should appear at the beginning of any program calling atof().

Library Functions

Library Functions 11-3.

Other Information

A DESCRIPTION of the library function follows. Other information may include:

e A DIAGNOSTICS section that describes the error codes that the function may return.

e EXAMPLES on use of the function.

‘e ASEE ALSO section that lists other relevant functions.

e ANOTES section which will give any special system dependency information as well
as any other pertinent information that might be helpful in using this function in pro-
ducing embedded code.

You should also refer to the Library Overview chapter for further information about many of the
functions discussed in this chapter.

Aztec C68k ROM Reference Manual

Function List

The library functions described in this chapter include:

abort()

abs()
acos()

asctime()
asin()

assert()
atan()
atan2()

atexit()

atof()
atoi()

atolQ

brk()

bsearch()

calloc()

ceil()
clearerr()
clock()

close()
cos()
cosh()

cotan()
creat()

ctime()
ctop()

difftime()

div()

_exit()
exit()
exp()

fabs()
fclose()
fdopen()
feof()

ferror()

fflush()
fgetc()
fgetpos()
fgets()
_filbuf()
fileno()
_fileopen()
floor()

_fisbuf()
fmod()

terminate program abnormally
return the absolute value of an integer
return the arc cosine of a double value
translate a time value into an ASCII string

_ return the arc sine of a double value

verify program assertion
return the arc tangent of a double value
return the arc tangent of a double value y/x
function to be called at program termination
convert ASCII string to a double number
convert an ASCII string to a signed integer
convert an ASCII string to a signed long value

allocates and deallocates space from the heap
search array for matching object

allocate space for an array of objects
compute smallest integer not less than x
clear end of file and error conditions in a stream
determine time intervals
close a device or file
return the cosine of a double value
return the hyperbolic cosine of a double value
return the cotangent of a double value
create a new file
convert a time value to an ASCII string
convert string from C to Pascal format

compute the difference between two times
compute quotient and remainder

terminate calling program
terminate calling program
compute the exponential function ex

return the absolute value of a given number
close a buffered I/O stream
open a file or device previously opened
test for end-of-file in a standard I/O stream
test for an error in a standard I/O stream
flush an I/O stream
return the next available character
save the current file position for a stream
get a string of characters from a stream
get and return next character
return file descriptor associated with a stream
open file and associate specified stream with it
return largest value not greater than input
flush specified open stream
return the remainder of the double value x/y

Library Functions

Library Functions 1-5
fopen()
format()
_format()

fprintf()
fputc()
fputs()
fread()

free()
freopen()
frexp()
fscanf()
fseek()

fsetpos()
ftell()
ftoa()
fwrite()

_getbuf()
getc()
getchar()
getenv()

_getiob()
gets()
getw()
gmtime()

index()

ioctl()

is...()
isatty()

labs()
Idexp()
Idiv()
localeconv()

localtime()

logQ
log10{)
longjmp()
Iseek()

malloc()
mblen()

mbstowcs()
mbtowc()
memccpy()
memchr()
memcmp()
memcpy()
memmove()

memset()
mktime()

modf()

movmem()

open()

open a file or device for standard I/O access
write formatted data
write formatted ASCII data to specified stream
write formatted data to an I/O stream
write a character to an I/O stream
write a string to an I/O stream
read from a specified standard I/O stream
deallocate a memory block
reopen a stream with a new device
decompose a floating point number
perform formatted input conversion
reposition current location within a stream
set the correct file position for a stream
return the current file position within a stream
convert floating point number to an ASCII string
write to a specified standard I/O stream

associate a buffer with a stream
return next available character from a stream
return the next available character from stdin
get value of environment variable
return next available stdio stream

get a string of characters from stdin
read a word from input stream
convert date and time

find the first occurrence of a character in a string
determine and set console mode
character classification functions
determine if device is interactive

return the absolute value of a signed long
multiply a float by an integral power of 2
compute quotient and remainder of two longs
set components of object for formatting
convert a time value relative to local time
compute the natural logarithm of a number
compute the logarithm of a number to base 10
execute a non-local goto
change current position within file

allocate a block of system memory
determine size of multibyte character
convert sequence of multibyte characters
determine size of multibyte character
copy characters from source to destination
find a character within an object
compare two blocks of memory n bytes long
copy a block of bytes from one object to another
copy a block of memory
set a block of memory to a specified value
convert a time value between formats
break a floating point value into parts
copy a memory block 3

open device or file for unbuffered I/O

11-6 Aztec C68k ROM Reference Manual

perror() print a system error message
peek..(),poke..() get and set bytes in memory
pow() compute x to the yth power
printf() formatted output function
ptoc() convert string from Pascal to C format
putc() write a character to an I/O stream
putchar() write a character to the stdout stream
puts() write a string to stdout
putw() calls putc() to output word to the stream

qsort() sort an array of records in memory

raise() send signal to executing program
ran() generate floating point random numbers
rand() return a pseudo-random integer
randl() return a random number
read() read from a device or file using unbuffered I/O
realloc() re-allocate memory block to a different size
remove() delete a file
rename() rename a disk file
rewind() reposition a stream’s position indicator
rindex() find last occurrence of a character in a string

sbrk() increment a pointer by size bytes
_scan() convert text characters from input stream
scanf() formatted input conversion on stdin stream
setbuf() associate an I/O stream with a specific buffer
setjmp() set up for a non-local goto
setlocale() select appropriate portion of program’s locale
setmem() copy value of char into object
setvbuf() associate an I/O stream with a specific buffer
signal() define how to handle a signal
sin() return the sine of a double value
sinh() return the hyperbolic sine of a double value
sprintf() write formatted data to a buffer
sqrt() compute non-negative square root of a value
sran() set the random number seed for ran
srand() initialize the seed value used by rand
sscanf() perform formatted input conversion on buffer
_stkchk performs stack depth checking
streat() concatenate two strings together
strchr() search for first occurrence of string character
strcemp() compare two strings
strcoll() compare two strings using the current locale
strepy() copy one string to another
strcespn() return the index of specified string
strdup() copy the string pointed to
strerror() map error number to error message
strftime() place characters into array pointed to
strlen() return the length of a string
strncat() concatenate two strings together
strncmp() compare two strings, up to max characters.
strncpy() copy characters from one string to another
strpbrk() return pointer to first character in a string
strrchr() search for occurrence of character in string
strspn() return index of the first character in a string

Library Functions

strstr()
strtod()

strtok()
strtol()

strtold()

strtoul()

strxfrm()
swapmem()
system()

tan()
tanh()
time()
tmpfile()
tmpnam()
tolower()

toupper()

ungetc()
unlink()

va....()
vfprintf()
vprintf()
vsprintf()

wcstombs()
wctomb()

write()

return a pointer of first occurrence of a string
convert a string to a double
tokenize a string
convert a string to a long
convert a string to a long double
convert a string to unsigned long integer

_ transform a string to match the current locale
swap characters between specified objects
make a call to underlying operating system

return the tangent of a double value
return the hyperbolic tangent of a double value
return the time of day
create a temporary file
create a name for a temporary file
convert a character to lowercase
convert a character to uppercase

push a character back into input stream
erase file

variable argument access
write formatted ASCII data to a stream

write formatted ASCII data to stdout

write formatted ASCII data to a buffer

convert a sequence of multibyte characters
determine the number of bytes in a multibyte character
write to a file or device using unbuffered I/O

11-8 : ; Aztec C68k ROM Reference Manual

abort() terminate program abnormally

TYPE Miscellaneous

~ COMPATIBILITY ANSI

LIBRARY c.lib

DECLARATION

#include <stdlib.h>

void abort(void);

DESCRIPTION

abort() causes abnormal program termination to occur, unless the signal SIGABRT is caught and
the signal handler does not return. abort() calls raise() using SIGABRT and, by default, this in

turn calls _exit().

NOTES

abort() indirectly calls the system dependent function _exit(). Thus, before using abort() you must
implement _exit().

SEE ALSO

_abort(), exit(), _exit(), raise()

abs() return the absolute value of an integer

TYPE Integer Math
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
int abs (int x);

DESCRIPTION

abs() computes and returns the absolute value of the signed integer x. The largest possible nega-
tive integer is returned as itself, since the largest negative integer cannot be represented positively
in the size of an integer.

SEE ALSO

labs(), fabs()

Library Functions ee “9

acos() return the arc cosine of a double value

TYPE Float Math
COMPATIBILITY ANSI -
LIBRARY m.lib

DECLARATION

#include <math.h>

double acos (double x);

DESCRIPTION

acos() returns the arc cosine of x. x should be specified in radians. If x is outside of the range -1 to
1, then acos() will return 0 and set errno equal to EDOM.

SEE ALSO

asin(), cos(), sin()

asctime() translate a time value into an ASCII string

TYPE Time

COMPATIBILITY ANSI

LIBRARY c.lib

DECLARATION

#include <time.h>
char *asctime (const struct tm *timeptr);

DESCRIPTION

asctime() creates an ASCII text string corresponding to the time contained in timeptr. The general
format of the resulting string is

Mon Apr 9 08:29:00 1968\n\o

A pointer to the text string is returned by asctime().

SEE ALSO

clock(), ctime(), difftime(), localtime(), time()

| }11-10° Aztec C68k ROM Reference Manual

asin() return the arc sine of a double value

TYPE Float Math
- COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>

double asin(double x);

DESCRIPTION

asin() returns the arc sine of x. x should be specified in radians. If x is outside of the range -1 to 1,
then asin() will return 0 and set errno equal to EDOM.

SEE ALSO

acos(), cos(), sin()

assert() verify program assertion

TYPE Program Diagnostics Macro
COMPATIBILITY ANSI
LIBRARY assert.h

DECLARATION

#include <assert.h>

void assert (int expression);

DESCRIPTION

The assert() macro is useful for putting diagnostic messages in a program. assert() determines
whether expression is true or false. If expression evaluates to false, the message

Assertion failed: expr, file ffff, line nnnn

is printed to stderr, where ffff is the name of the source file and nnnn is the line number where the
assertion failed. Then abort() is called to terminate the program.

To prevent assertion statements from being compiled in a program, compile the program with the
option -dNDEBUG, or place the statement #define NDEBUG ahead of the statement #include
assert.h.

Library Functions “11-11

NOTES

assert{) indirectly call _write() and _exit(), which are system dependent. Thus before you call as-
sert, you must implement _write() and _exit().

SEE ALSO

abort()

atan() return the arc tangent of a double value

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>

double atan (double x);

DESCRIPTION

atan() returns the arc tangent of x. x should be specified in radians.

SEE ALSO

atan2(), tan()

atan2() return the arc tangent of a double value y/x

TYPE Float Math
COMPATIBILITY ANSI

LIBRARY m.lib

DECLARATION

#include <math.h>
double atan2 (double y, double x);

DESCRIPTION

atan2() returns the arc tangent of the ratio of the input values (y/x) in the range of -pi to pi. atan2()
will use the signs of the input values to determine the correct quadrant of the return value. If both
x and y are 0, atan2() returns 0 and sets errno equal to EDOM.

SEE ALSO

atan(), tan()

| 41-12 Aztec C68k ROM Reference Manual

atexit() function to be called at program termination

TYPE Miscellaneous
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
int atexit (void (*func) (void));

DESCRIPTION

atexit() is used to indicate that the function func should be called at normal program termination.
When a program returns from main(), or the exit() function is called, atexit() insures that func is
called.

Up to 32 functions may be indicated as exit() functions with atexit(). atexit() will return a non-
zero value if the function cannot be registered as an exit() function; otherwise, it returns 0.

SEE ALSO

exit()

atof() convert ASCII string to a double number

TYPE Conversion
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <stdlib.h>
double atof(const char *cp);

DESCRIPTION

atof() converts a string of text characters pointed at by the argument cp to a double. The string
may contain leading blanks and tabs, which it skips, followed by an optional sign (+ or -), then a
number containing an optional decimal point (.), then an optional “E” or “e”, followed by an op-
tionally signed integer to denote scientific notation. Any characters beyond this are ignored.

Library Functions | 11 -13,

EXAMPLE

#include <stdlib.h>

main ()

{
double val;

char *cp;

cp = "10.6789";

val = atof (cp);

printf (" val = %e\n",val);

}

SEE ALSO

atoi(), atol(), ftoa(),strtod()

atol() convert an ASCII string to a signed integer

TYPE Conversion
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
int atoi (const char *cp);

DESCRIPTION

atoi() converts a string of text characters pointed to by the argument cp into a signed integer
value, which it returns. The format of the string pointed at by cp should contain three compo-
nents: optional leading blanks or tabs, followed by an optional “+” or “-”, followed by an integer.
Any numbers following the integer will be ignored, although the string should be null-delimited.

EXAMPLE

#include <stdlib.h>

main ()

{
int i;

char *cp = " 567";

i = atoi (cp);

printf ("I = %d\n",i);

}

SEE ALSO

atof(), atol(), ftoa(),strtol()

11-14 Aztec C68k ROM Reference Manual

atol() convert an ASCII string to a signed long value

TYPE Conversion

COMPATIBILITY ANSI

LIBRARY c.lib

DECLARATION

#include <stdlib.h>

long int atol (const char *cp);

DESCRIPTION

atol() converts the string of characters pointed to by the argument cp to a signed long, which is
then returned by atol(). The string may contain optional leading blanks, followed by an optional

+” or"-", followed by a string of digits. Anything beyond the string of digits is ignored. The
string should also be null delimited.

EXAMPLE

#include <stdio.h>

#include <stdlib.h>

main ()

{
long val;

char *cp = " 79832";

val = atol (cp);

printf ("val = %ld\n",val);

}

SEE ALSO

atof(), atoi(), ftoa(),strtol()

brk() set heap space ’high water’ mark

TYPE Memory Allocation
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

void *brk (void * ptr)

DESCRIPTION

brk() provides an elementary means of deallocating space from the heap. More sophisticated buff-
er management schemes can be built using this function; for example, the standard functions mal-

Library Functions 11-15 |

loc(), free(), etc. call sbrk() to get heap space, which they then manage for the calling functions.;
sbrk() in turn calls brk().

brk() sets its internal variable that points at the current top of allocated heap space to ptr.

If successful, brk() returns 0.

If unsuccessful, brk() sets ENOMEM in the global integer errno and returns -1.

SEE ALSO

The standard I/O functions usually call malloc() and free() to allocate and release buffers for use
by I/O streams. This is discussed in the "Standard I/O" section of the Library Overview chapter.

Your program can safely mix calls to the malloc functions, standard I/O calls, and calls to sbrk()
and brk(), as long as your calls to sbrk() and brk() don’t decrement the heap pointer. Mixing
sbrk() and brk() calls that decrement the heap pointer with calls to the malloc functions and /or
the standard I/O functions is dangerous and probably shouldn’t be done by normal programs.

bsear ch(} search array for matching object

TYPE Miscellaneous

COMPATIBILITY ANSI

LIBRARY c.lib

DECLARATION

#include <stdlib.h>
void *bsearch(const void *key, const void *base, size_t nmemb, size_t size, int (*com-
par)(const void *, const void *));

DESCRIPTION

bsearch() searches an array of nmemb objects, the initial member of which is pointed to by base,
for a member that matches the object pointed to by key. The size of each member of the array is
specified by size.

The contents of the array shall be in ascending sorted order according to a comparison function
pointed to by compar, which is called with two arguments that point to the key object and to an ar-
ray member, in that order. The function shall return an integer less than, equal to, or greater than
zero if the key object is considered, respectively, to be less than, to match, or to be greater than the
array member.

bsearch() returns a pointer to a matching member of the array, or a NULL pointer if no match is
found. If two members compare as equal, the member that is matched is unspecified.

SEE ALSO

qsort()

| 11-16, Aztec C68k ROM Reference Manual

Cal loc() allocate space for an array of objects

TYPE Memory Allocation
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
void *calloc (size_t nmemb, size_t size);

DESCRIPTION

calloc() allocates system memory for an array of nmemb objects, each size bytes long from the
heap, in a manner similar to the malloc() function. The total size of the block will be size * nmemb
bytes long, and each byte within the block is initialized to 0. If calloc() is successful, it returns a
pointer to the allocated block.

DIAGNOSTICS

If calloc() cannot allocate a block large enough to hold nmemb elements each size bytes long, it will
return a NULL pointer. Otherwise, a pointer to the requested block is returned.

SEE ALSO

malloc(), realloc(), free()

ceil() compute smallest integer not less than x

TYPE Float Math

COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>

double ceil (double x);

DESCRIPTION

ceil() returns the smallest integral number not less than its input, x. The return value is expressed
as a double. For example, ceil() returns 6.0 for an input of 5.3, and -5.0 for an input of -5.3.

SEE ALSO

fabs(), floor(), fmod()

Library Functions : 1-17 |

Clearerr() clear end of file and error conditions in a stream

TYPE Standard I/O
- COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

void clearerr (FILE *stream);

DESCRIPTION

clearerr() clears both the end-of-file and error condition codes associated with the specified
stream. If an error or end-of-file condition occurs on a stream and clearerr() is not called, the error
condition will remain set until the stream is closed.

SEE ALSO

feof(), ferror(), perror()

Clock() determine time intervals

TYPE Time
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <time.h>

clock_t clock (void);

DESCRIPTION

clock() is used to determine the time interval between two events. The value returned by clock() should be divided by the macro CLF_TCK to determine the time in seconds.

If the processor time used is not available or its value cannot be represented, clock() returns the
value (clock_t) -1.

NOTES

clock() is system dependent, and must be specially written for your system.

SEE ALSO

difftime(), mktime(), time()

|)11-18 Aztec C68k ROM Reference Manual

close() close a device or file

TYPE UNIX I/O
COMPATIBILITY Aztec/UNIX
LIBRARY c.lib

DECLARATION

#include <fcntl.h>

int close (int fd);
int _close (int fd);

DESCRIPTION

close() closes a device or disk file which has been opened for unbuffered I/O.

The parameter fd is the file descriptor associated with the file or device. If the device or file was
explicitly opened by the program by calling open() or creat(), fd is the file descriptor returned by
open() or creat().

close() returns 0 as its value if successful.

_close() performs the same as close() and is provided for internal library use in case the user de-
fines a version of close() that overrides the library version.

DIAGNOSTICS

If close() fails, it returns -1 and sets an error code in the global integer errno.

NOTES

_close() and close() are system dependent, and must be specially written for your system.

cos() return the cosine of a double value

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>

double cos (double x);

DESCRIPTION

cos() returns the cosine of x. x should be specified in radians.

Library Functions ‘11-19 7

If the absolute value of x is too large, cos() will set the symbolic value ERANGE in the global int
errno and return 0.

SEE ALSO

acos(), asin(), sin()

cosh() return the hyperbolic cosine of a double value

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>

double cosh (double x);

DESCRIPTION

cosh() returns the hyperbolic cosine of x.

cosh() will return HUGE_VAL and set errno equal to ERANGE if x is greater than LOGHUGE.

DIAGNOSTICS

The symbolic values are defined in math.h.

SEE ALSO

sinh()

cotan() return the cotangent of a double value

TYPE Float Math
COMPATIBILITY Aztec
LIBRARY m.lib

DECLARATION

#include <math.h>
double cotan (double x);

DESCRIPTION

cotan() returns the cotangent of x. x should be specified in radians. cotan() is not specified by ANSI and may not be portable to other compilers /architectures.

Aztec C68k ROM Reference Manual

DIAGNOSTICS

Error Codes:

condition return value errno

Ix |<TINY_VAL HUGE_VAL (if x<0) ERANGE

HUGE_VAL (if x>0) ERANGE

1x 1>6.74652e” 0.0 ERANGE

creat() create a new file

TYPE UNIX I/O

COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <fcntl.h>

int creat (const char *name, int pmode);

DESCRIPTION

creat() creates a file and opens it for unbuffered, write-only access. If the file already exists, it is

truncated to 0 length (this is done by erasing and then creating the file).

creat() returns as its value an integer called a file descriptor. Whenever a call is made to one of the

unbuffered I/O functions to access the file, its file descriptor must be included in the function’s
parameters.

If file 1/O support is desired, creat() must set a device table entry for the relevant file descriptor to
indicate that the file descriptor is associated with an opened file. It must also enter the new file

into the file system.

If file 1/O support is not intended, and file descriptors will always have a fixed interpretation (i.e.
‘1’ will refer to port 1), creat() can always return -1 and indicate an appropriate error code in errno.

See open(C) for more information on: file descriptors, file systems, and device table. creat() is not
necessary to support Standard I/O.

name is a pointer to a character string which is the name of the device or file to be opened.

For most systems, pmode is optional; if specified, it is ignored. It should be included, however, for
programs for which UNIX-compatibility is required, since the UNIX creat() function requires it.
In this case, pmode should have the octal value 0666.

DIAGNOSTICS

If creat() fails, it returns -1 as its value and sets a code in the global integer errno. errno is set to
EMFILE if all file descriptors in the device table are associated with open files.

creat()

Library Functions 11-21 :

NOTES

creat() is system dependent, and must be specially written for your system.

ctime() convert a time value to an ASCIl string

TYPE Time
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <time.h>

char *ctime (const time_t *timer);

DESCRIPTION

ctime() is equivalent to the asctime() function, except that the time value should be in time_t for-
mat rather than tm format. As with asctime(), a pointer to the ASCII time string is returned.

ctime() converts the time value that is pointed to by timer to local time. ctime() returns as its value a pointer to the resulting time; this is in the form of a character strin g. The string is contained in a Static buffer that is in the asctime() function. ctime(timer) is equivalent to asctime (local-
time(timer))

NOTES

The time value that is passed to ctime() is usually obtained from the system independent function mktime() or from the system dependent function time(). Thus, before you can use ctime(), you may have to implement time().

SEE ALSO

asctime(), time(), localtime(), strftime(), gmtime()

ctop() convert string from C to Pascal format

TYPE String
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

char *ctop (char*str)

DESCRIPTION

Character strings are represented differently in C and Pascal: InCa string consists of the charac- ters followed by a null character. In Pascal, a string consists of a byte containing the number of characters in the string, followed by the string.

11-22 : Aztec C68k ROM Reference Manual

ctop() converts a string from C to Pascal format. The converted string overlays the original string
and ctop() returns a pointer to the converted string.

SEE ALSO

ptoc()

difftime() compute the difference between two times

TYPE Time
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <time.h>

double difftime (time_t time1, time_t time 0);

DESCRIPTION

difftime() returns the difference of the two time values: time! - time0. The difference is expressed
in seconds and is returned as a double.

NOTES

The time value that is passed to difftime() is usually obtained from the system independent func-
tion mktime() or from the system dependent function time(). Thus, before you can use difftime(),
you may have to implement time().

SEE ALSO

ctime(), clock(), mktime(), time()

div() compute quotient and remainder

TYPE Integer Math
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
div_t div (int numerator, int denominator)

DESCRIPTION

div() divides two signed integers and returns both the quotient and remainder as a type div_t.
The div_t type is defined in the stdlib.h header file as being

Library Functions 11-23
typedef struct {

aint quot;

int rem;

} div t;

SEE ALSO

Idiv()

_exit() terminate calling program

TYPE Miscellaneous
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <fcntl.h>

void _ exit (int code);

DESCRIPTION

_exit() terminates the calling program.

Unlike exit(), _exit() does not first close files open for standard I/O or call functions registered
with atexit().

NOTES

exit() is system dependent, and must be specially written for your system.

SEE ALSO

exit(), abort(), _abort(), atexit()

exit() terminate calling program

TYPE Miscellaneous
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>

void exit (int code);

DESCRIPTION

~exit() terminates the calling program. Before terminating the program, exit() calls all functions —
registered with atexit().

| 1-24. Aztec C68k ROM Reference Manual

exit() also closes and flushes all files opened for standard I/O and deletes all files created by
tmpfile().

NOTES

exit() calls _exit(), which is system dependent. Thus, before you can use exit(), _exit() must be spe-
cially written for your system.

SEE ALSO

_exit(), abort(), _abort(), atexit()

exp() compute the exponential function e”

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>
double exp (double x);

DESCRIPTION

exp() computes the exponential function of the input parameter x and returns it.

DIAGNOSTICS

Values of x which cause exp() to compute an extremely large value, i.e., greater than LOG_HUGE,
will cause exp() to return the value HUGE_VAL and set the error code ERANGE in the globally
defined integer errno.

Error codes:

condition return value erro

x>LOGHUGE HUGE _VAL ERANGE

x<LOGTINY 0.0 ERANGE

SEE ALSO

log(), log100), frexp(), Idexp(), modf()

Library Functions 11-25—

fabs() return the absolute value of a given number

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>

double fabs (double x);

DESCRIPTION

fabs() returns the absolute (or positive) value of the parameter x. Therefore, fabs() will return 5.3
for an input of either 5.3 or -5.3.

SEE ALSO

floor(), ceil), fmod()

fclose() close a buffered I/O stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

int fclose (FILE *stream);

DESCRIPTION

fclose() causes the specified stream to be flushed and the device or file associated with the stream
to be closed. Any data that was written to the stream’s output buffer but not yet written to the file
or device will be written by fclose() before closing the file, and the input and output buffers used
by the stream will be deallocated. fclose() is automatically called by exit() before exiting the pro-
gram so that no devices or files are left open after the program terminates.

DIAGNOSTICS

fclose() returns 0 if it is successful. If stream is not a valid, open stream, EOF is returned.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

Aztec C68k ROM Reference Manual
—ie

SEE ALSO

fopen()

fdopen() open a file or device previously opened

TYPE UNIX I/O
COMPATIBILITY Aztec/UNIX
LIBRARY c.lib

DECLARATION

#include <stdio.h>
FILE *fdopen (int fd, char *mode);

DESCRIPTION

fdopen() is used to associate a standard I/O stream with a file or device previously opened for
unbuffered I/O (with open() or another unbuffered I/O function.) The mode parameter should
match the mode with which the file or device was originally opened.

The various modes and their meanings are:

Mode

a

ab

at

a+b or ab+

r

rb

r+

t+b or rb+

w

wb

wt

Meaning

Open text stream for appending. If the file exists, it is positioned one character
past the last character in the file. If the file does not exist, it is created. In both
cases, the file is opened as write-only.

Same as a, except the stream is opened as binary.

Same as a, except the stream may also be read from.

Same as a+, except the stream is opened as binary.

Open text stream for reading only. If a file is opened, it is positioned at the
first character in it. If the file or device does not exist, NULL is returned.

Same as r, except the stream is opened as binary.

Same as r, but the stream may also be written to.

Same as r+, except the stream is opened as binary.

Open a text stream for writing only. If a file is opened which already exists, it
is truncated to zero length. If the file does not exist, it is created with a length

Same as w, except the stream is opened as binary.

Same as w, except the stream may also be read from.

Library Functions 11-27
w+b or wb+ Same as w+, except the stream is opened as binary.

EXAMPLES

#include <stdio.h>

#include <stdio.h>

#include <fentl.h>
#include <errno.h>

main(arge, argv)

char **argv;

int argc;

{
FILE *fp;

aint fd;

fd = open (argv[l1], O _WRONLY+0_CREAT+O_ EXCL) ;

af (fd == -1)

{
1£ (errno ==

printf ("file already exists\n") ;
EEXIST)

else if (errno == ENOENT)

printf ("unable to open file \n");
else

printf ("open error \n");

} else

printf ("the file %s was opened\n", argv[1]);
if ((fp = fdopen(fd,

else

printf ("fdopen worked\n") ;
close (fd);

fclose (fp);

"r+")) == NULL)
printf ("can’t open file for r+ \n");

#include <fcntl.h>

#include <errno.h>

main(arge, argv) |
char **argv;

int argc;

{
FILE *fp;

ant fd;

fd = open (argv[l],

O_WRONLY+0 CREAT+O EXCL) ;

if (fd == -1)

{
if (errno == EEXIST)

printf ("file already exists\n") ;

else if (errno == ENOENT)

printf ("unable to open file \n");

else

printf ("open error \n");

} else

printf ("the file %s was opened\n", argv[1]);

if ((fp = fdopen(fd, “r+”)) == NULL)

printf ("can’t open file for r+ \n");

else

printf ("fdopen worked\n") ;

close (fd);

fclose (fp);

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fopen(), freopen()

feof() test for end-of-file in a standard I/O stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

int feof (FILE *stream);

DESCRIPTION

feof() is used to test for an end-of-file condition within a specified stream. feof() will return a non-
zero value if a stream has reached an end of file; otherwise, it will return a zero. This function is

Library Functions 11-29 |

necessary because the standard I/O functions return EOF not only for end-of-file conditions, but
also if a read error occurs.

SEE ALSO

ferror(), clearerr(), perror()

ferro rQ test for an error in a standard I/O stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

int ferror (FILE *stream);

DESCRIPTION

ferror() is used to determine if an I/O error has occurred in the specified stream. ferror() will re- turn a non-zero value if an error has occurred in the stream; otherwise, it will return a 0. This func- tion should be used in conjunction with the feof() function to distinguish between end-of-file and true error conditions. An error condition will persist until clearerr() is called or the stream is closed.

SEE ALSO

feof(), clearerr(), perror()

ffl ush() flush an I/O stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

int fflush (FILE *stream);

DESCRIPTION

fflush() is used to explicitly flush an I/O stream of any data in its buffers which has not yet been wnitten to the file or device associated with the stream. fflush() is automatically called by fclose() and also any write operation which outputs an end-of-line sequence or causes the stream’s buffer _ to overflow.

| 11-30 Aztec C68k ROM Reference Manual

DIAGNOSTICS

If fflush() is successful, it returns 0. If a write error occurs, it returns EOF. If stream is NULL, all

streams are flushed.

NOTES

Before this system independent function can be used, the system dependent, unbuffered I/O

functions (_open(), _close(), _read(), _write(), and lseek()) must be specially written for your sys-
tem.

SEE ALSO

fclose(), fopen(), freopen(), ungetc()

fgetc() return the next available character

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
int fgetc (FILE *stream);

DESCRIPTION

fgetc() returns the next character available from stream and advances the stream’s file position by
1. The character is returned as an unsigned char promoted to an int. This function is identical to
getc(), except that it is implemented as a true function rather than a macro.

DIAGNOSTICS

If an error occurs during the read operation, or if the end-of-file is reached, fgetc() will return
EOF. The functions feof() and ferror() may be used to distinguish between a true error and end-of-
file.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fopen(), fclose(), agetc(), getc(), getchar()

Library Functions i -31 :

fgetpos() save the current file position for a stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
int fgetpos (FILE *stream, fpos_t *pos);

DESCRIPTION

fgetpos() saves the current file position indicator for the specified stream into the object pointed
to by pos. The value stored in pos is suitable for use by the fgetpos() function to reposition the
stream.

fgetpos() returns 0 if successful. If it is not successful, it returns a non-zero value or sets an error
code in the global integer errno.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

ftell(), fseek(), fsetpos()

fgets() get a string of characters from a stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

char “fgets (char *s, int n, FILE *stream);

DESCRIPTION

fgets() reads in a string of characters from the specified stream. fgets() will place characters from stream into the array pointed to by s until n-1 characters are read, a newline-sequence is reached, or the end-of-file is encountered. If a newline is reached, it is included in the string. fgets() will ter- minate the string with a null. The pointer s is returned by fgets() if no errors occur.

| 11-32. Aztec C68k ROM Reference Manual

DIAGNOSTICS

If end-of-file is encountered before any characters are read, the array pointed to by s is left un-
changed, and a NULL pointer is returned. If a read error occurs, the array’s contents should not
be considered valid, and a NULL pointer is also returned. The ferror() and feof() functions may
be used to distinguish between an error and end-of-file.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbut-
fered I/O functions must be specially written for your system.

SEE ALSO

ferror(), fgetc(), getc(), getchar(), gets()

_filbuf() get and return next character

TYPE Standard I/O
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <stdio.h>
int _filbuf(FILE *stream);

DESCRIPTION

The _filbuf() function obtains and returns the next character from the specified stream. If the end-
of-file is reached, it returns EOF. Any open streams with pending output are flushed. This routine
is primarily for internal library use by stdio routines.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

fileno() return file descriptor associated with a stream

TYPE UNIX I/O
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <stdio.h>
int fileno (FILE *stream);

Library Functions hl - 33

DESCRIPTION

fileno() returns the low-level file descriptor associated with the specified stream. The file descrip-
tor can then be used with the unbuffered I/O functions (open(), read(), etc.)

SEE ALSO

feof(), ferror(), clearerr(), perror()

fileopen() open file and associate specified stream with it
‘an

TYPE Standard I/O
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <stdio.h>

FILE *_fileopen(const char *name, const char *mode, FILE *stream, int fd);

DESCRIPTION

_fileopen() opens the named file and associates the specified stream with it. If name is a NULL
pointer, then the stream is associated with the file descriptor fd. The mode argument is used as the
mode argument to fopen(). The _fileopen() function returns a pointer to the object controlling the
stream. If the open operation fails, _fileopen() returns a NULL pointer. This routine is primarily
for internal library use by stdio routines.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fopen()

floor() return largest value not greater than input

TYPE Float Math
COMPATIBILITY ANSI

LIBRARY m.lib

DECLARATION

#include <math.h>

double floor (double x);

| 11-34 Aztec C68k ROM Reference Manual

DESCRIPTION

floor() returns the largest integral value not greater than the input parameter x. This return value
is expressed as a double. For example, floor() would return 5.0 if passed 5.3, and -6.0 if passed -
5.3.

SEE ALSO |

fabs(), ceilQ), fmod()

_fisbuf() flush specified open stream

TYPE Standard I/O
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <stdio.h>

int _flsbuf(FILE *stream, int data);

DESCRIPTION

The _flsbuf() function flushes specified stream if it has been opened for writing or updating and
has unwritten buffers. If data is not a -1, then data is placed in the newly flushed buffer and the
buffer marked as unwritten. Otherwise, the stream is placed in the neutral state awaiting either
reads or writes. The _flsbuf() function returns the value of the data passed in. If an error occurs

writing the stream, the error flag is set in the stream and EOF is returned. If the data value is -1, a
zero is returned if no errors occur. This routine is primarily for internal library use in stdio rou-
tines.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

| | Library Functions 11-35

fmod() return the remainder of the double value x/y

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>

double fmod (double x, double y);

DESCRIPTION

fmod() calculates the double value x modulo y. The exact remainder, called f, is calculated so that
x = iy + f for an integer i, and 0<f<y.

SEE ALSO

ceil(), floorQ, modf()

fopen() open a file or device for standard I/O access

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
FILE *fopen (const char *filename, const char *mode);

DESCRIPTION

fopen() is used to prepare, or “open”, the device or file pointed to by filename for access by the
standard I/O functions. Once opened by fopen(), a file or device is referred to as a STREAM.

If the device or file is successfully opened, fopen() returns a pointer, called a file pointer, toa
structure of type FILE. This file pointer is then taken as a parameter by functions such as getc() or
putc() to read from, write to, and generally access the stream.

The first parameter to fopen() is a pointer to the name of the device or file you want to open.

The other parameter passed to fopen(), mode, specifies how the file or device is to be accessed.
The mode parameter defines two important variables concerning stream accessibility: read / write
access and text/binary access.

| | 11-36, Aztec C68k ROM Reference Manual

e Read /write accessibility determines whether the file may be read from, written to, or

both. Also, the initial position within the file upon opening, and course of action if the
file does not exist, may be defined.

e Text/binary access determines whether the stream should be interpreted as a series of
“lines” (text mode), or as raw data (binary mode). In text mode, there is no guarantee of
a correspondence between the number of characters written or read and the actual posi-
tion within the file, due to possible end-of-line sequence translation and other possible

alterations. In binary mode, however, there is a 1:1 correspondence between characters
read and the position in a file.

As their names suggest, text mode is appropriate for handling straight text input in a portable
manner, whereas binary mode deals with an unaltered data stream.

mode points to a character string terminated by a null that specifies the stream’s accessibility. The
various modes and their meanings are:

Mode Meaning

a Open text stream for appending. If the file exists, it is positioned one character
past the last character in the file. If the file does not exist, it is created. In both
cases, the file is opened as write-only.

ab Same as a, except the stream is opened as binary.

at Same as a, except the stream may also be read from.

a+b or ab+ Same as a+, except the stream is opened as binary.

r Open text stream for reading only. If a file is opened, it is positioned at the
first character in it. If the file or device does not exist, NULL is returned.

rb Same as r, except the stream is opened as binary.

r+ Same as r, but the stream may also be written to.

r+b or rb+ Same as r+, except the stream is opened as binary.

Ww Open a text stream for writing only. If a file is opened which already exists, it
is truncated to zero length. If the file does not exist, it is created with a length
of 0.

wb Same as w, except the stream is opened as binary.

w+ Same as w, except the stream may also be read from.

w+b or wb+ Same as w+, except the stream is opened as binary.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fgetpos(), fseek(), fsetpos(), ftell(), rewind(), freopen()

Library Functions Bel - 37

fo rmat() write formatted data

TYPE Conversion

COMPATIBILITY Aztec

LIBRARY c.lib

DECLARATION

#include <stdio.h>
int format (int (*func) (), const char *fmt, ...);

DESCRIPTION

format() is used to write formatted ASCII data by calling the function func repeatedly with charac-
ters. func should take as an argument a single character, which is a character to be output.

The fmt string should have the same format as the function printf(). In fact, printf() could be im-
plemented as 3

return (format (putchar, fmt, &args) ;

See the printf() function for a full description of format()’s conversion process.

SEE ALSO

va_start(), printf()

_fo rmat() write formatted ASCII data to specified stream

TYPE Standard I/O
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <stdio.h>

int __format(FILE *stream, const char *format, va_list varg);

DESCRIPTION

_format() writes formatted ASCII data to the specified stream according to the format string
given. format() is composed of zero or more directives: ordinary multibyte characters (not %),
which are copied unchanged to the output stream; and conversion specifications, each of which
results in fetching zero or more subsequent arguments. Each conversion specification is intro-
duced by the character %.

i 11-38 : Aztec C68k ROM Reference Manual

See the description of printf() for details on the conversion specifications. The _format() function
returns the number of characters transmitted, or a negative value if an output error occurred. This
routine is primarily for internal library use by stdio routines.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

format(), printf(), fprintf(), sprintf(), va_start()

fprintf() write formatted data to an I/O stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib, m.lib

DECLARATION

#include <stdio.h>
int fprintf (FILE *stream, const char “fmt, ...);

DESCRIPTION

fprintf() is used to write formatted ASCII data to the specified stream. The fmt string specifies the
exact output to stream and also determines the number of additional arguments that are required.
See the printf() function for complete details on the fmt string.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

printf(), format(), sprintf()

fp utc() write a character to an I/O stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
int fputc (int c, FILE *stream);

fprintf()

Library Functions l- 39

DESCRIPTION

fputc() takes the character c and writes it to the specified I/O stream. Unless an I/O error occurs,
fputc() returns c. If an error does occur, fputc() returns EOF. fputc() is identical to the putc() func-
tion.

DIAGNOSTICS

fputc() returns EOF if an error occurs. The actual error code is placed in errno.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

putchar(), putc()

fputs() write a string to an I/O stream

TYPE Standard I/O
COMPATIBILITY ANSI

LIBRARY c.lib

DECLARATION

#include <stdio.h>

int fputs (const char *str, FILE *stream);

DESCRIPTION

fputs() writes the null-terminated character string pointed to by str to the specified stream. The
terminating null in str is not written. Unlike puts(), fputs() does not write a “\n” at the end of the
string. If fputs() is successful, it returns a positive value. If an error does occur, fputs() returns
EOF

DIAGNOSTICS

EOF is returned by fputs() if an error occurs, with the error code set in errno.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

puts(), fputc(), pute()

-11-40_ Aztec C68k ROM Reference Manual

fread() read from a specified standard I/O stream

TYPE Standard I/O
COMPATIBILITY ANSI.
LIBRARY c.lib

DECLARATION

#include <stdio.h>

size_t fread (void *buffer,size_t size,size_t count, FILE “stream);

DESCRIPTION

fread() is used to read one or more characters from stream. fread() will place into the buffer
pointed to by buffer up to count items, with each item of size size. The position indicator for stream
is advanced by the number of characters that were successfully read. fread() returns as its value
the number of items (count if no errors occurred) successfully read from stream, not the number of

characters.

See the fwrite() function for an example that uses fread().

DIAGNOSTICS

fread() returns 0 or a number less than count upon end-of-file or error. The functions feof() and
ferror() can be used to distinguish between the two.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fwrite()

free() deallocate a memory block

TYPE Memory Allocation
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
void free (void *ptr);

Library Functions u ~41 |

DESCRIPTION

free() deallocates a block of memory which was previously reserved with the malloc(), Imalloc(),
calloc(), or realloc() functions. This allows the space pointed at by ptr to be used in later attempts
to allocate memory. If ptr is a NULL pointer, free() does nothing. If ptr does not point to a block
previously allocated by malloc(), calloc(), or realloc(), or has already been de-allocated by a call
to free(), the results are unpredictable.

SEE ALSO

malloc(), calloc(), realloc()

fr eopen() __ reopen a stream with a new device

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
FILE *freopen (const char *filename,const char*mode, FILE *stream);

DESCRIPTION

freopen() is used to substitute the name or device originally associated with stream with the new file or device filename. freopen() closes the original file or device and returns stream as its value.
freopen() is most often used to associate new devices or files to the pre-opened streams stdin,
stdout, and stderr. In all other respects freopen() is the same as fopen().

EXAMPLE

#include <stdio.h>
main ()

{

FILE *fp;
fp = freopen ("dskfile", “wt”, stdout) ;
printf ("This message is going to dskfile\n") ;

}

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf- fered I/O functions must be specially written for your system.

SEE ALSO

fopen()

| | }41-42 Aztec C68k ROM Reference Manual

frexp() decompose a floating point number

TYPE Float Math
COMPATIBILITY ANSI

LIBRARY m.lib

DECLARATION

#include <math.h>
double frexp (double value, int *exp);

DESCRIPTION

frexp() breaks a floating point number into its component mantissa and exponent. Given value,
frexp() places the exponent-portion of value into the buffer pointed to by exp, and returns the
mantissa component.

SEE ALSO

Idexp(), modf(), expQ)

fscanf() perform formatted input conversion

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib, m.lib

DECLARATION

#include <stdio.h>
int fscanf (FILE *stream, const char “fmt, ...);

DESCRIPTION

fscanf() is equivalent to the scanf() function, with the exception that input is read from the speci-
fied stream rather than from stdin. See scanf() for details on format string input conversion

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

scanf(), sscanf(), strtod(), strtol(), strtoul()

| Library Functions 11-43 :

fseek() reposition current location within a stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION
#include <stdio.h>
int fseek (FILE *stream, long int offset, int origin);

DESCRIPTION

fseek() sets the current position within a file opened for standard I/O. stream is the stream which
is to be repositioned. The exact operation of fseek() differs depending on whether the file was
opened in binary or text mode.

If the file was opened in binary mode, the new position, measured in characters from the begin-
ning of the file, is obtained by adding the requested offset to the position specified by origin. origin
may have the following values:

SEEK_SET offset from the beginning of the file.
SEEK_ CUR offset from the current position in the file.
SEEK _ END offset from the end of the file.

Offset may be positive or negative.

If the file was opened for text mode, the use of fseek() is restricted. Either offset must equal 0, or
offset must be a value previously returned by ftell(), with origin set to SEEK_SET.

fseek() will clear the end-of-file indicator for the stream and undo the effects of ungetc() calls if
successful.

DIAGNOSTICS

fseek() returns 0 if it is successful. If an error occurs, it returns a nonzero value and sets the appro-
priate code in errno.

[| 41-44 Aztec C68k ROM Reference Manual

EXAMPLE

The following routine is equivalent to opening a file in a+ mode:

#include <stdio.h>

main ()

{
FILE *fopen(), *fp;

if ((fp = fopen("filel", “xr+")) == NULL)

fp = fopen ("filel", "wt");

fseek (fp, OL, 2);

/* position 1 byte past last character */

fwrite ("did the seek",13,1,fp);

fclose (fp);

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

lseek(), ftellQ)

fsetpoOs() set the correct file position for a stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
int fsetpos (FILE *stream, const fpos_t *pos);

DESCRIPTION

fsetpos() sets the file position indicator for the specified stream according to the value contained
in the object pointed to by pos. pos should be the value obtained by a previous fgetpos() call.

A successful call to fsetpos() will clear the end-of-file indicator for the stream as well as the effects
of the ungetc() function on the stream. On success, fsetpos() returns zero. If an error occurs, it re-
turns a non-zero value and sets an error code in the global integer errno.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

ftell(), fseek(), fgetpos()

fsetpos()

Library Functions 11-45"

ftell() return the current file position within a stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

long int ftell (FILE *stream);

DESCRIPTION

ftell() returns the current position within the specified stream. For binary streams, this represents
the number of characters from the beginning of the file. For text streams, the number returned by
ftell() may only be meaningfully used by the fseek() function. ftell() calls on a text stream do not
necessarily reflect a measure of characters read or written to the stream.

DIAGNOSTICS

ftell() returns -1L if an error occurs and places the error code in errno. If ftell() is successful, it re-
turns the current file position.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fseek(), lseek(), fgetpos()

ftoa() convert floating point number to an ASCIl string

TYPE Conversion
COMPATIBILITY Aztec
LIBRARY m.lib

DECLARATION

#include <stdlib.h>
void ftoa (double val, char “buf, int precision, int type);

DESCRIPTION

ftoa() converts a double-precision floating point number into an ASCII string. The parameter val
is the number to be converted, and buf is the buffer where the String is to be placed. It is your re-

Aztec C68k ROM Reference Manual

sponsibility to ensure that the area pointed to by buf is sufficiently large to handle the ASCII repre-
sentation of val. |

The precision and type parameters control the format used to convert the number. precision is used
to specify the number of digits to be shown to the right of the decimal point. type specifies the
printf-like format used: 0 for “E” format, 1 for “F” format, and 2 for “G” format. See the descrip-
tion of the printf() function for the details of these format specifiers.

EXAMPLE

#include <stdio.h>

#include <stdlib.h>

main ()

{
double val;

val = 5.75;

ftoa (val, buf, 2, 0);

printf ("buf = %s\n", buf);

}

SEE ALSO

atof(), atoi(), atol()

fwrite() write to a specified standard I/O stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
size_t fwrite (const void *buf, size_t size, size_t count, FILE *stream);

DESCRIPTION

fwrite() is used to write one or more characters to stream. fwrite() takes up to count items, each of

size size, from the buffer pointed to by buf. The file position indicator for stream is advanced by
the number of characters that were successfully written.

DIAGNOSTICS

If a write error occurs, fwrite() will return a number less than count and set an error code in errno.

Library Functions 11-47

EXAMPLE

This is the code for reading ten integers from file 1 (see fread() for more information) and writing
them again to file 2. It includes a simple check that there are enough two-byte items in the first
file: |

#include <stdio.h>

main ()

{
FILE, *fpl, *fp2;

char buf[50];

int size, count, i;

Size = 2;

count = 10;

for (i = 0; i < 50; i++)
buf[i] = ’\0’;

if ((fpl = fopen("filel","r")) == NULL)
{

printf ("You asked me to open filel");
printf ("but I can’t\n");

}
if ((fp2 = fopen("file2","w")) == NULL)

{
printf ("You asked me to open file2") ;
printf ("but I can’t\n");

}
if (fread(buf, size, count, fpl) != count)

printf ("Not enough integers in filel\n");
fwrite (buf, size, count, fp2) ;

fclose (fpl);

fclose (fp2) ;

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fread()

_getbuf() associate a buffer with a stream

TYPE Standard I/O
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <stdio.h>
void _getbuf(FILE *stream);

| 11-48 . Aztec C68k ROM Reference Manual

DESCRIPTION

The _getbuf() function is an internal function that associates a buffer with a stream. stderr is al-
ways unbuffered and interactive files are always line buffered. The __getbuf() function returns no
value. If it is not possible to allocate a buffer of the required size, the stream is marked as unbuf-
ferd.

getc() return next available character from a stream

TYPE. Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
int getc (FILE *stream);

DESCRIPTION

getc() returns the next character available from stream and advances the stream’s file position by
1. The character is returned as an unsigned char promoted to an int. The getc() function is identi-
cal to fgetc(), except getc() is defined as a macro.

DIAGNOSTICS

If an error occurs during the read operation, or if the end-of-file is reached, getc() returns EOF.
The functions feof() and ferror() may be used to distinguish between a true error and end-of-file.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fopen(), fclose(), agetc(), fgetc(), getchar()

g etchar() __ return the next available character from stdin

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

int getchar (void);

Library Functions 11 ~49 | . |

DESCRIPTION

getchar() returns the next character from the standard input stream, stdin. It is equivalent to the
call getc(stdin).

DIAGNOSTICS

If an error occurs during the read operation, or if the end-of-file is reached, getchar() returns EOF.
The functions feof() and ferror() may be used to distinguish between the two cases.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

getc(), fgetc(), fopen(), fclose(), agetc(), putc()

g etenv() get value of environment variable

TYPE Miscellaneous
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
char *getenv (const char *name);

DESCRIPTION

getenv() returns a pointer to the character string associated with the environment variable name, or a NULL pointer if the variable is not in the environment. If the name cannot be found, a NULL
pointer is returned.

DIAGNOSTICS

If the specified name cannot be found within the environment, a NULL pointer is returned.

NOTES

getenv() is system dependent, and must be specially written for your system.

SEE ALSO

system()

| /11-50° Aztec C68k ROM Reference Manual

_getiob() return next available stdio stream

TYPE Standard I/O
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <stdio.h>
FILE *_getiob(void);

DESCRIPTION

_getiob() returns the next available stdio stream. If there are none available, a NULL pointer is re-

turned. This routine is primarily for internal library use by stdio routines.

gets() get a string of characters from stdin

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
char *gets (char *buf);

DESCRIPTION

gets() reads a string of characters from the standard input stream, stdin, into the array pointed to
by buf. gets() reads in characters from stdin until either a newline sequence or the end-of-file is en-
countered. The newline sequence, if encountered, is discarded, and a NULL is written immedi-

ately after the last character. This differs from the operation of the fgets() function, which
preserves the new line. gets() returns buf if no errors occur.

DIAGNOSTICS

If end-of-file is encountered before any characters are read, the array pointed to by buf is left un-
changed, and a NULL pointer is returned. If an error occurs, the array’s contents should be
treated as invalid, and a NULL pointer is returned. The ferror() and feof() functions may be used
to distinguish between an error and the end-of-file.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

L _getiob()

Library Functions 11-51 .

SEE ALSO

ferror(), fgets(), feof()

g etw() read a word from input stream

TYPE Standard I/O
COMPATIBILITY Aztec
LIBRARY Glib —

DECLARATION

#include <stdio.h>
int getw(FILE *stream);

DESCRIPTION

getw() uses getc() to read a word from the input stream pointed to by stream. It returns an int that
is the word received. If an error or end-of-file occurs, EOF is returned. Since EOF is a valid return
value, the ferror() and the feof() functions must be used to determine if an error really occurred
when EOF is returned.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

getc()

gmtime() convert date and time

TYPE Time
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <time.h>
Struct tm “gmtime (const time_t *timer);

DESCRIPTION

gmtime() converts a time value that is pointed at by timer to Greenwich Mean Time. gmtime() breaks down the resultant time into a static struct tm structure and returns as its value a pointer
to this structure.

To relate local time to Greenwich Mean Time, gmtime() calls getenv() to get the value of the TZ environment variable. The value of TZ must be a three letter time zone name, followed by a num-

11-52 Aztec C68k ROM Reference Manual

ber representing the difference between local time and Greenwich Mean Time in hours, followed
by an optional three letter name for daylight time zone. For example, the setting for New Jersey is
ESTSEDT.

DIAGNOSTICS

gmtime() returns a null pointer if getenv() can not find the TZ environment variable.

NOTES

gimtime() calls the system dependent function getenv(). Thus, before you can call gmtime(Q), you
must implement getenv() at least to the point where getenv() can return a value for the TZ envi-
ronment variable.

The time that is input to gmtime() is usually obtained either from the system independent func-
tion mktime() or from the system dependent function time(). Thus, before you can use gmtime()
you may have to implement time()

SEE ALSO

localtime(), ctime(), asctime(), time()

index() find the first occurrence of a character in a string

TYPE String Handling
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <string.h>
char *index (char *str,int c);

DESCRIPTION

The index() function returns a pointer to the first occurrence of c within the string pointed to by
str. If the character is not found, then NULL is returned.

index() is not supported by ANSI and generally is not a portable function. For this reason the
equivalent ANSI function strchr() should be used whenever possible.

SEE ALSO

strchr(), strrchr(), rindex()

Library Functions ‘11-53°

loctl() determine and set console mode

TYPE Standard I/O
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <fcntl.h>
int ioctl(int fd, int code, struct sgttyb *arg);

DESCRIPTION

ioctl() sets and determines the mode of the console. _ioctl() performs the same as ioctl() and is
provided for internal library use in case you define a version of ioctl() that overrides the library
version. For more details see the “Console I/O” section of the Library Overview chapter.

NOTES

This system dependent function must be specially written for your system.

SEE ALSO

isatty()

Is...() character classification functions

FUNCTIONS isalpha(), isupper(), islower(), isdigit(), isalnum(), isspace(), ispunct(), is-
print(), iscntrl(), isgraph(), isxdigit()

TYPE Character Type
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <ctype.h>
int isalpha (int c);

DESCRIPTION

These functions test a character value to check if it is of a certain type. If isascii() is true for c,
then non-zero (true) will be returned under the following conditions:

isalpha() cis a letter

isupper() c is an uppercase letter

| . 11-54. Aztec C68k ROM Reference Manual

islower() c is a lowercase letter

isdigit() cis a digit

isalnum() cis an alphanumeric character

isspace() c is a space, tab, carriage return, newline, form feed or vertical tab

ispunct() c is a punctuation character

isprint() cis a printing character, valued 0x20 (space) through 0x7e (tilde)

iscntrl() c is a delete character (Ox££) or ordinary control character (value less than
0x20)

isascii() cis an ASCII character, code less than 0x100

isgraph() tests for any printing character except a space

isxdigit() tests for any hexadecimal digit character 0-9, a-f, A-F

Otherwise, a zero (false) is returned. These functions are implemented as both true functions and

as macros. By default, functions are used. If you want to use the macro versions to improve per-
formance you should either

e #define _C MACROS _ before including ctype.h

or

¢ compile with the -sm or -so options.

SEE ALSO

toupper(), tolower()

Iisatty () determine if device is interactive

TYPE Standard I/O
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <fentl.h>
int isatty(int fd);
int _isatty(int fd)

DESCRIPTION

isatty() returns nonzero if the file descriptor fd is associated with the console, and zero otherwise.
_isatty() performs the same as isatty() and is provided for internal library use in case you define a

| Library Functions 11-55.
~

version of isatty() that overrides the library version. For more details see the “Console I/O” sec-
tion of the Library Overview chapter.

SEE ALSO

ioctl()

labs() return the absolute value of a signed long

TYPE Integer Math
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>

long int labs (long int x);

DESCRIPTION

labs() returns the absolute value of the signed long x.

SEE ALSO

abs()

Idexp() multiply a float by an integral power of 2

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>
double Idexp(double x, int exp)

DESCRIPTION

The ldexp() function returns the value of x times 2 raised to the power exp.

[11-56 Aztec C68k ROM Reference Manual

Idiv() compute quotient and remainder of two longs

TYPE Integer Math
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
Idiv_t Idiv (long int numerator, long int denominator);

DESCRIPTION

The Idiv() function divides two signed long integers and retains both the quotient and remainder
as a type Idiv_t. The Idiv_t type is defined in the stdlib-h header file as being

typedef struct {

long int quot;

long int rem;

};

SEE ALSO

div()

localeconv() set components of object for formatting

TYPE Conversion

COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <locale.h>

struct lconv *localeconv(void);

DESCRIPTION

The localeconv() function sets the components of an object with type struct Iconv with values ap-
propriate for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the current locale. The members of the structure with type char * are pointers to strings,
any of which (except decimal_point) can point to “”, to indicate that the value is not available in
the current locale or is of zero length. The members with type char are nonnegative numbers, any
of which can be CHAR_MAxX to indicate that the value is not available in the current locale.

The localeconv() function returns a pointer to the filled-in object. The structure pointed to by the
return value shall not be modified by the program, but may be overwritten by a subsequent call

Library Functions 11 -57

to the localeconv() function. In addition, calls to the setlocale() function with categories LC_ALL,
LC_MONETARY, or LC_NUMERIC may overwrite the contents of the structure.

SEE ALSO

setlocale()

localtime() convert a time value relative to local time

TYPE Time
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <time.h>

struct tm *localtime (const time_t *timer);

DESCRIPTION

localtime() converts the timepointed at by timer to local time.

localtime() breaks down the resulting time into a static struct tm structure, and returns as its value
a pointer to this structure.

NOTES

The time value that is input to localtime() is usually obtained either from the system independent
function mktime() or from the system dependent function time(). Thus, before you can use local-
time() you may have to implement time().

SEE ALSO

gmtime(), ctime(), asctime(), time()

log(} compute the natural logarithm of a number

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>
double log(double x);

DESCRIPTION

log() returns as its value the natural logarithm of the input number x.

}11-58— Aztec C68k ROM Reference Manual

DIAGNOSTICS

If the input parameter x is negative, log() returns -HUGE_VAL and sets errno to EDOM. If the in-

put value is 0, -HUGE_VAL is returned and errno is set to ERANGE.

Error codes:

condition return value ermo

x==0 -HUGE_VAL ERANGE

x<0 ~-HUGE_VAL EDOM

SEE ALSO

exp(), log10(), pow(), sqrt)

logt 0() compute the logarithm of a number to base 10

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>
double log10 (double x);

DESCRIPTION

log10() returns the logarithm to base 10 of the input parameter ~x.

DIAGNOSTICS

If the input parameter x is negative, log10() will return -HUGE_VAL and set errno equal to
ENOM. If the input value x is 0, -HUGE_VAL is returned, and errno is set to ERANGE.

Error codes:

condition return value ermo

x== -HUGE_VAL ERANGE
x<0 ~-HUGE_VAL EDOM

SEE ALSO

exp(), logQ), pow(), sqrt()

Library Functions 11-59 |

longjmp() execute a non-local goto

TYPE Miscellaneous
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <setjmp.h>
void longjmp (jmp_buf env, int retval);

DESCRIPTION

A call to the longjmp() function restores the stack and register state saved in the last call to
setjmp() with the argument env, and then executes a return which makes it appear that setjmp()
returned the value retval.

It is crucial that setjmp() be called with env before any longjmp() calls occur. If setjmp() is not
called with env before the first longjmp(), then the results are completely unpredictable and could
cause serious problems.

After completion of the longjmp() call, program execution will continue as if the corresponding
setjmp() call had returned retval. If retval is set to 0, then it will be forced to zero so as not to con-
flict with the 0 returned by the initial call to setjmp().

SEE ALSO

setjmp()

Iseek() change current position within file

TYPE UNIX I/O
COMPATIBILITY Aztec /UNIX
LIBRARY c.lib

DECLARATION

long Iseek (int fd, long offset, int origin);
long _Iseek (int fd, long offset, int origin);

DESCRIPTION

Iseek() sets the current position of a file that opened for unbuffered I/O. This position determines where the next character will be read or written.

fd is the file descriptor associated with the file. The current position is set to the location specified
by the offset and origin parameters, as follows:

n- 60 | Aztec C68k ROM Reference Manual

e If origin is 0, the current position is set to offset bytes from the beginning of the file.

e If origin is 1, the current position is set to the current position plus offset.

e If origin is 2, the current position is set to the end of the file plus offset.

The offset can be positive or negative, to position after or before the specified origin, respectively.
If lseek() is used on a file opened as text, only an offset of 0 may be used.

If lseek() is successful, it returns the new position in the file (in bytes from the beginning of the
file).

_lseek() performs the same as Iseek() and is provided for internal library use in case you define a
version of Iseek() that overrides the library version.

DIAGNOSTICS

If lseek() fails, it returns -1 as its value and sets an error code in the global integer errno. errno is
set to EBADF if the file descriptor is invalid. It will be set to EINVAL if the offset parameter is inva-
lid or if the requested position is before the beginning of the file.

EXAMPLES

1. To seek to the beginning of a file:

lseek(fd, OL, 0);

Iseek() returns the value zero (0) since the current position in the file is character (or byte) num-
ber zero.

2. To seek to the character following the last character in the file:

pos = lseek(fd, OL, 2);

The variable pos contains the current position of the end-of-file, plus one.

3. To seek backward five bytes:

lseek(fd, -5L, 1);

The third parameter, 1, sets the origin at the current position in the file. The offset is -5. The new
position is the origin plus the offset. So the effect of this call is to move backward a total of five
characters.

4. To skip five characters when reading in a file:

read(fd, buf, count);

lseek(fd, 5L, 1);

read (fd, buf, count);

NOTES

Iseek() and _Iseek() are system dependent, and must be specially written for your system.

malloc() allocate a block of system memory

TYPE Memory Allocation
COMPATIBILITY ANSI

LIBRARY clib |

DECLARATION

#include <stdlib.h>

void *malloc (size_t size);

DESCRIPTION

malloc() allocates a block of memory size bytes long. The block is allocated from an area in system
memory called the HEAP. See the Library Overview chapter for a description of how the heap is
used.

The memory allocation done by malloc() is called DYNAMIC ALLOCATION, because the amount of
memory to be reserved for storage is determined dynamically at runtime, rather than being fixed
at compile time. The storage returned from malloc() should not be assumed to have been initial-
ized to any particular value, 0 or otherwise.

If the allocation is successful, malloc() returns a pointer to the requested block.

DIAGNOSTICS

If malloc() cannot allocate the requested size block, it returns a NULL pointer. Otherwise, a
pointer to the requested block is returned.

SEE ALSO

calloc(), realloc(), free()

m blen() determine size of multibyte character

TYPE Miscellaneous
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
int mblen(const char *s, size_t n);

| 11-62. Aztec C68k ROM Reference Manual

DESCRIPTION

If sis not a NULL pointer, mblen() determines the number of bytes comprising the multibyte
character pointed to by s. mblen() is equivalent to

mbtowc((wchar t *)0, s, n);

except that it does not affect the shift state.

If sis a NULL pointer, mblen() returns a nonzero or zero value, if multibyte character encodings,
respectively, do or do not have state-dependent encodings. If s is not a NULL pointer, the mblen()
function either returns zero (if s points to the null character), returns the number of bytes that
comprise the multibyte character (if the next n or fewer bytes form a valid multibyte character), or
returns -1 (if they do not form a valid multibyte character).

SEE ALSO

mbtowc(), wctomb(), mbstowcs(), westombs()

mbstowcs() convert sequence of multibyte characters

TYPE Miscellaneous
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
size_t mbstowcs(wchar_t *pwes, const char *s, size_t n);

DESCRIPTION

mbstowcs() converts a sequence of multibyte characters that begins in the initial shift state from
the array pointed to by s into a sequence of corresponding codes, and stores not more than n
codes into the array pointed to by pwcs. No multibyte characters that follow a null character
(which is converted into a code with value zero) will be examined or converted. Each multibyte
character is converted as if by a call to mbtowc(), except that the shift state of the mbtowc() func-
tion is not affected.

No more than n elements will be modified in the array pointed to by pwcs. If copying takes place
between objects that overlap, the behavior is undefined.

If an invalid multibyte character is encountered, mbstowcs() returns (size_t)-1. Otherwise,
mbstowcs() returns the number of array elements modified, not including a terminating zero
code, if any.

SEE ALSO

mblen(), mbtowc(), wctomb(), wcstombs()

Library Functions 11-63 :

m btowc() determine size of multibyte character

TYPE Miscellaneous
COMPATIBILITY ANSI

LIBRARY c.lib

DECLARATION

#include <stdlib.h>
int mbtowc(wchar_t *pwe, const char *s, size_t n);

DESCRIPTION

If s is not a NULL pointer, mbtowc() determines the number of bytes that comprise the multibyte
character pointed to by s. It then determines the code for value of type wchar_t that corresponds
to that multibyte character. (The value of the code corresponding to the null character is zero.) If
the multibyte character is valid and pwc is not a NULL pointer, the mbtowc() function stores the
code in the object pointed to by pwc. At most n bytes of the array pointed to by s will be examined.

If s is a NULL pointer, mbtowc() returns a nonzero or a zero value. If the multibyte character en-
coding has state-dependent encodings, a zero value is returned; otherwise nonzero is returned. If
sis not a NULL pointer, the mbtowc() function either returns zero (if s points to the null charac-
ter), or returns the number of bytes that comprises the converted multibyte character (if the next n
or fewer bytes form a valid multibyte character), or returns minus one (if they do not form a valid
multibyte character).

In no case will the value returned be greater than n or the value of the MB_CUR_MAX macro.

SEE ALSO

mblen(), mbstowcs(), wctomb(), wcstombs()

mem ccpy() copy characters from source to destination

TYPE Block Operations
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <string.h>
void *memccpy (void “dest, const void “src, int c, size_t n);

DESCRIPTION

memcecpy() copies characters from src to dest, stopping after the first occurrence of character c has
been copied or after n characters have been copied, whichever comes first. It returns a pointer to

[i- 64 | Aztec C68k ROM Reference Manual

the character after the copy of c in dest, or a NULL pointer if c was not found in the first n charac-
ters of src. Overlapping moves are unpredictable.

SEE ALSO

memcpy()

memchr() | finda character within an object

TYPE Block Operation
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION ©

#include <string.h>
void *memchr (const void *obj, int c, size_t n);

DESCRIPTION

memchr() searches the first n bytes in the object pointed to by obj for the character c. If c is found,
memchr() returns a pointer to it. Otherwise, a NULL pointer is returned.

SEE ALSO

strrchr(), strchr()

mem cmp() compare two blocks of memory n bytes long

TYPE Block Operation
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
int memcmp (const void *b/k1, const void *blk2, size_t n);

DESCRIPTION

The memcmp() function compares the first n characters in the object pointed to by b/k1 with the
first n characters in the object pointed to by b/k2. memcmp() returns a positive number, negative
number, or zero, depending on whether b/k1 is greater than, less than, or equal to b/k2.

SEE ALSO

stremp(), strncmp(), strcoll()

Library Functions 11-65

memcpy() copy block of bytes from one object to another

TYPE Block Operation
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
void *memepy (void *dest, const void *src, size_t n);

DESCRIPTION

memcpy() copies the first n bytes from the object pointed to by src into the object pointed to by
dest. The two objects should not overlap. memepy() returns dest.

SEE ALSO

memmove(), strcopy(), strncpy(),memccpy

memmove() copy a block of memory

TYPE Block Operation
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
void *memmove (void *dest, const void *source, size_t n);

DESCRIPTION

memmove() copies a block of data from one location in memory to another location. memmove()
will copy n characters from the object pointed to by source to the object pointed to by dest. mem-
move() acts as if the data pointed to by source is first copied into a temporary buffer before mov-
ing it into dest. Therefore, overlapping blocks may be used with this function. memmove() returns
the value of dest.

SEE ALSO

memcpy()

| ‘11-66 Aztec C68k ROM Reference Manual

memset() set a block of memory to a specified value

TYPE Block Operation
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
void memset (void *obj, int c, size_t n);

DESCRIPTION

memset() copies the value of c into the first n bytes of the object pointed to by obj.

SEE ALSO

memcpy(), memcmp()

mktime() convert a time value between formats

TYPE Time
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#includes <time.h>

time_t mktime (struct tm *timeptr);

DESCRIPTION

mktime() translates a time value represented in struct tm format into time_t format. timeptr

should be a pointer to the tm format time value, and the corresponding time_t value is returned
by mktime(). If timeptr is unconvertible, mktime() returns (time_t) -1.

SEE ALSO

asctime(), ctime(), localtime(), time()

Library Functions 11 -67 |

mod f() break a floating point value into parts

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>
double modf (double val, double *iptr);

DESCRIPTION

modf() breaks the floating point number val into its integral (to the left of the decimal point) and
fractional (to the right of the decimal point) components. The integral portion is stored in the buff-
er pointed to by iptr, and the fractional portion is returned as the return value of modf().

SEE ALSO

frexp(), ldexp()

movmem() copy a memory block

TYPE Block Operation
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

void movmem(const void *source, void *dest, size_t length)

DESCRIPTION

movmem() copies length characters from the block of memory pointed to by source to the block of
memory pointed to by dest. The effect of movmem() is as if length bytes of source were copied to a
distinct temporary area and then the temporary area copied to dest. movmem() can thus be used
to copy blocks of memory that overlap.

APPLICATION NOTE

movmem() is provided for compatibility with other Manx C compiler products. It should not be
used in new programs. The memmove() function should be used instead.

SEE ALSO

memcpy(), memmove()

11-68 . Aztec C68k ROM Reference Manual
Be eT

open() open device or file for unbuffered 1/0

TYPE UNIX I/O
COMPATIBILITY Aztec /UNIX
LIBRARY c.lib

DECLARATION

#include <fcntl.h>
open (char *name, int mode);
_open (char *name, int mode);

DESCRIPTION

open() opens a device or file for unbuffered I/O. It returns an integer value called a file descriptor

which is used to identify the file or device in subsequent calls to unbuffered I/O functions.

name is a pointer to a character string which is the name of the device or file to be opened.

mode specifies how your program intends to access the file. The choices are as follows:

Mode Meaning

O_RDONLY read only
O_WRONLY write only
O_RDWR read and write
O_CREAT create file, then open it
O_TRUNC truncate file, then open it
O_EXCL cause open() to fail if file already exists; used with O_CREAT
O_APPEND position file for appending data
O_BINARY don’t translate characters during I/O
O_TEXT perform system dependent end of line translations during I/O

(e.g.’\n’ to ‘\r\n’ onoutput ’\r\n’ to ’\n’ on input)

These open() modes are integer constants defined in the file fentl.h. Although the true values of
these constants can be used in a given call to open(), use of the symbolic names ensures compati-
bility with UNIX and other systems.

The calling program must specify the type of access desired by including exactly one of
O_RDONLY, O_WRONLY, or O_RDWR in the mode parameter. The three remaining values are op-
tional. They may be included by adding them to the mode parameter, as in the examples below.

By default, the open fails if the file to be opened does not exist. To cause the file to be created
when it does not already exist, specify the O_CREAT option. If O_EXCL is given in addition to
O_CREAT, the open will fail if the file already exists; otherwise, the file is created.

If the O_TRUNC option is specified, the file will be truncated so that nothing is in it. The trunca-
tion is performed by simply erasing the file, if it exists, and then creating it. So it is not an error to
use this option when the file does not exist. |

Library Functions . 11 - 69 .

Note that when O_TRUNC is used, O_CREAT is not needed. If O_APPEND is specified, the cur-
rent position for the file (that is, the position at which the next data transfer will begin) is set to
EOF. This option is not supported by UNIX.

If file 1/O support is desired, open() must set a device table entry for the relevant file descriptor
to indicate that the file descriptor is associated with an opened file. If the O_CREAT or O TRUNC
option is specified, it must also enter the new file into the file system. File position information
must also be recorded in the device table.

If file 1/O support is not intended, and file descriptors will always have a fixed interpretation (i.e.
‘1’ will refer to port 1), open() can be a dummy function.

If open() does not detect an error, it returns an integer called a file descriptor. This value is used to
identify the open file during unbuffered I/O operations. The file descriptor is very different from
the file pointer which is returned by fopen() for use with buffered I/O functions.

open() performs the same as open() and is provided for internal library use in case the user de-
fines a version of open() that overrides the library version.

DIAGNOSTICS

If open() encounters an error, it returns -1 and places a code in the global integer errno. errno is
set to ENOENT if the file does not exist and O_CREAT was not specified. It is set to EEXIST if the
file exists and (O_CREAT+O_EXCL) was specified. If an invalid file descriptor is passed, errno is
set to EMFILE.

EXAMPLES

1. To open the file test £ile for read-only access:

fd = open("testfile", O RDONLY) ;

If test file does not exist open returns -1 and sets errno to ENOENT.

2. To open the file test file for read-write access:

fd = open("subl", O RDWR+O CREAT) ;

If the file does not exist, it will be created and then opened.

| 11-70 Aztec C68k ROM Reference Manual

3. The following program opens a file whose name is given on the command line. The file must
not already exist.

#include <stdio.h>

#include <fcntl.h>

#include <errno.h>

main(argc, argv)

char **argv;
int argc; /* should add this declaration */

{
int fd;
fd = open (argv[1],0O WRONLY+O_CREAT+0O_ EXCL) ;

if (fd == -1){

if (errno == EEXIST)

printf ("file already exists\n") ;

else if (errno == ENOENT)

printf ("unable to open file \n");

else

printf ("open error \n");

}
else

printf ("the file %s was opened\n", argv[1]);

close (fd);

NOTES

_open() and open() are system dependent, and must be written specially for your system.

SEE ALSO

clearerr(), ferror(), feof(), strerror()

perror() print a system error message

TYPE Standard I/O

COMPATIBILITY ANSI

LIBRARY c.lib

DECLARATION

#include <stdio.h>

void perror (const char *str);

DESCRIPTION

When an error occurs in one of the standard math or I/O library functions, an error number indi-
cating which error occurred is written to the global integer errno. The perror() function is used to
print an error message to the stderr stream which corresponds to the error indicated by errno.
The exact format of the message written to stderr is:

perror()

Library Functions

¢ The string pointed at by str (only if str and the first character it points to are not null) fol-
lowed by a colon and a space.

e The system error message string followed by a new-line.

The possible values of errno and their corresponding error messages are:

NOTES

Errno Value

0
ENOENT
E2BIG
EBADF
ENOMEM
EEXIST
EINVAL
ENFILE
EMFILE
ENOTTY
EACCESS
EIO
ENOSPC
ERANGE
EDOM
ENOEXEC
EROFS
EXDEV
EAGAIN

Message

Error 0
No such file or directory
Arg list too long
Bad file descriptor
Not enough memory
File exists
Invalid argument
File table overflow
Too many open files
Not a console
Permission denied
I/O error
No space left on device
Result too large
Argument out of domain
exec() format error
Read-only file system
Cross-device rename
Nothing to read

Before this system independent standard I/O function can be used, the system depend-
ent unbuffered I/O functions must be specially written for your system.

L ‘11-72 ; Aztec C68k ROM Reference Manual

| peek...(),poke...() get and set bytes in memory

FUNCTIONS peekb(), peekl(), peekw(), pokeb(), pokel(), pokew()
TYPE Memory Allocation
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <fcntl.h>
void pokeb (unsigned long addr, int val);
int peekb (unsigned long addr);
void pokew (unsigned long addr, int val);

int peekw (unsigned long addr);
void pokel (unsigned long addr, long val);
long peek] (unsigned long addr);

DESCRIPTION

These functions get and set one, two, or four bytes located anywhere in memory.

addr is a pointer to the field to be modified.

peekb() returns as its value the byte at the target location.

peekl() returns as its value the contents of the four-byte field pointed at by addr.

peekw/() returns as its value the word (that is, two bytes) at the target location.

pokeb() sets the byte at the target location to val.

pokel() sets the 4-byte field pointed at by addr to val.

pokew/() sets the word at the target location to val.

pow(} compute x to the yth power

TYPE Float Math
COMPATIBILITY ANSI

LIBRARY m.lib

DECLARATION

#include <math.h>
double pow (double x, double y);

Library Functions 1-73.

DESCRIPTION

Given two double precision numbers x and y, pow() returns the value of x to the yth power (xy).

DIAGNOSTICS

Ifx = Oandy < 0,ENOM is set for errno and 0.0 is returned. If x < Oand y is not an integral
value, EDOM is set for errno and 0.0 is returned.

SEE ALSO |

exp(), log(), log10(), sqrt()

printf() formatted output function

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib, m.lib

DECLARATION

#include <stdio.h>

int printf (const char *fmt....);

DESCRIPTION

printf() is the C language’s primary formatted-output function. printf() takes a series of argu-
ments, converts them to ASCII strings, and writes the formatted information to the stdout stream.

The Format String

The format string fmt must be present in every call to printf(). This string determines exactly
what gets written to stdout and may contain two types of items, ordinary characters and conver-
sion specifiers:

e Ordinary characters are always copied verbatim to the output stream.

e Conversion specifiers direct printf() to take arguments from printf()’s argument list and
format them. Conversion specifiers always begin with a % character.

Conversion Specifiers

Conversion specifiers always take the form

% [flags] [width] [precision] [size-mod] type

where

¢ The optional flags field controls output justification, sign characters on numerical val-
ues, prefixes on hex and octal numbers, decimal points, and trailing blanks.

[1-74 Aztec C68k ROM Reference Manual

e The optional width field specifies the minimum number of characters to print (the field
width), with padding done with blanks or zeros.

e The optional precision field specifies either the minimum number of digits to be printed
for integral types, or the number of characters after the decimal point to be printed for
floating-point types.

_¢ The optional size-mod field specifies that the argument may be long, short, or unsigned.

e The type field specifies the actual type of the argument that printf() will be converting,
such as string, integer, double, etc.

Note that all of the above fields are optional except for type. The following tables list the valid op-
tions for these fields. In the table, integral types are considered to be char, int, long int, short int,
and unsigned versions of these types. Floating-point types are float, double, and long double.

Flags Field

Character —_ Effect on Conversion

- The result is left justified, with padding on the right with blanks. By default, when
“-”’ is not specified, the result is right-justified with padding on the left with 0’s or
blanks.

+ The result will always have a “-” or “+” prepended to it if it is a numeric conver-
sion.

space Positive numbers begin with a space instead of a “+” character, but negative values
still have a prepended “-”.

The argument is formatted using an alternate form from the usual conversion. For
x or X types, a Ox or OX is used as a prefix to the argument. For 0 types, a 0 is al-
ways prepended to non-zero results. For e, E, and F types, the result will always
contain a decimal point, even when the number has no numbers following the
decimal point. G and g types are also converted this way, with the addition that
trailing zeros are not removed. :

Width Field

Character —_ Effect on Conversion

n A minimum of n characters are output. If the conversion has less than n characters,
the field is padded with blanks.

The width specifier is supplied in the argument list before the actual conversion ar-
gument.

Levine

Library Functions hn- 75

Precision Field

Character Effect on Conversion

n A minimum of n characters will be provided in the field for integral conversions
(d, i, o, u, x, X). For floating-point conversions (e, E, f, g, G) n specifies the number

of digits after the decimal point. For string conversions (s), n is the number of char-
acters printed from the string.

This is the same as .n where n is 0. No decimal point is printed.

* The precision is supplied in the argument list before the actual conversion argu-
ment.

Size-mod Field

Character Effect on Conversion

h The argument should be taken as a short integer. Valid only for integral conversion
(d, i, 0, u, x, X).

] The argument should be taken as a long int for integral conversions (d, i, 0, u, x, X)
and as a double for floating-point conversions (e, E, f, g, G).

L The argument should be taken as a long double for floating-point conversions (e,
E, f, g, G).

type Field

Character Argument TypeConversion

d integral type signed decimal integer (base 10)

i integral type signed decimal integer

Oo integral type unsigned octal (base 8) integer

u integral type unsigned decimal integer (base 16)

x integral type unsigned hexadecimal integer with lower case letters, i.e.
a, b,c, d, e, f

X integral type unsigned hexadecimal integer with uppercase letters, i.e.,
A, B, C, D, E, F

f floating point signed real number with the form [-]ddd.ddd. The number
of digits after the decimal point is determined by the preci-
sion field, or is 6 if precision is not specified. The “.” will
not appear if precision is 0.

e floating point Signed real number with the form [-]d.ddd e+dd. There is
always exactly one digit before the decimal point, fol-

a 11-76 Aztec C68k ROM Reference Manual

lowed by an e, followed by an exponent at least two char-
acters long. Precision considerations are the same as f.

E floating point Same as e, but with a capital E for the exponent.

g floating point Signed real number in either f ore form. e-format is
used if the exponent is less than -4 or greater than or equal
to the precision (6 by default). Otherwise, f format is used.

G floating point Same as g, but use E or f formats.

c integral type The integer argument is converted to an unsigned char,
and the ASCII character corresponding to the number is
output.

S pointer The string pointed to is written out until either a NULL is
reached, or the number of characters written equals the
precision field.

p pointer The contents of the pointer is written to the output.

n pointer The number of characters written so far is written to the
argument, which should be a pointer to an int. No output
conversion is done.

% A % is written, and no argument is converted. The full

syntax of this is %%.

There are two versions of printf() in the libraries: a non-floating point version in c.lib and a float-
ing point version in m.lib. If a %f or %g conversion prints out as f or g, then you are either not
linking in a math library or are linking libraries in the wrong order. To fix this problem, you
should link in the math library before the C library on your link line, as shown:

1n68 ... -lm -lIc

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fprintf(), sprintf(), vfprintf(), vsprintf()

ptoc() convert string from Pascal to C format

TYPE String
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

char* ptoc (char*)

Library Functions . 1-77 :

DESCRIPTION

ptoc() converts a string from Pascal to C format. The converted string overlays the Original string,
and ptoc() returns a pointer to the converted string. |

SEE ALSO

ctop()

putc() write a character to an I/O stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
int putc (int c, FILE *stream);

DESCRIPTION

putc() takes the character c and writes it to the specified I/O stream. Unless an I/O error occurs,
putc() returns c. If an error does occur, putc() returns EOF. This function is identical to fputc().

DIAGNOSTICS

putc() returns EOF if an error occurs. The actual error code is placed in errno.

NOTES

Betore this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

putchar(), fputc(), puts(), putw()

putchar() write a character to the stdout stream

’ TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

int putchar (int c);

[| u-78 Aztec C68k ROM Reference Manual

DESCRIPTION

putchar() is identical to the function putc(), except that it always writes to stdout, i.e., it Is the

same as

putc (stdout)

DIAGNOSTICS

putchar() returns EOF if an I/O occurred during the write. The error code is set in the global inte-

ger erro.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-

fered I/O functions must be specially written for your system.

SEE ALSO

putc(), fputc(), puts), putwQ)

puts() write a string to stdout

TYPE Standard I/O

COMPATIBILITY ANSI

LIBRARY c.lib

DECLARATION

#include <stdio.h>
int puts (const char *str);

DESCRIPTION

puts() writes the null-terminated character string pointed to by str to the stdout stream, followed
by a \n. The null at the end of the string is not written to stdout. If puts() is successful, it returns a

positive value. If an error occurs, EOF is returned.

DIAGNOSTICS

EOF is returned by puts() if an error occurs, with the error number contained in errno.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

putc(), putchar(), putw(), fputs()

Library Functions 11-79

putw() calls putc() to output word to the stream

TYPE Standard I/O
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <stdio.h>

int putw(int w, FILE *stream);

DESCRIPTION

putw() calls putc() to output the word w to the stream pointed to by stream. The putw() function
returns the argument w as its value or EOF if an error occurs while writing to the output stream.
Since EOF is a valid argument to the putw() function, the caller must use the ferror() or the feof()
function to determine if an error has really occurred when EOF is returned.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

putc(), putchar(), puts()

qsort() sort an array of records in memory

TYPE Miscellaneous
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
void qsort (void “array, size_t num,size_t width, int (*compar)
(const void *, const void *));

DESCRIPTION

The qsort() function sorts an array of nmemb objects, the initial element of which is pointed to by
base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison function
pointed to by compar, which is called with two arguments that point to the objects being com-
pared. The function shall return an integer less than, equal to, or greater than zero if the first argu-
ment is considered to be respectively less than, equal to, or greater than the second.

| 11-80 ; Aztec C68k ROM Reference Manual

If two elements compare as equal, their order in the sorted array is unspecified

EXAMPLE

The Aztec linker, 1n68, can generate a file of text containing a symbol table for a program. Each
line of the file contains an address at which a symbol is located, followed by a space, followed by
the symbol name. The following program reads such a symbol table from the standard input,
sorts it by address, and writes it to standard output.

#include <stdio.>

Gefine MAXLINES 2000

Gefine LINESIZE 16

char *lines [MAXLINES] ;

main ()

{
int i, numlines, omp();
char buf[LINESIZE],

* malloc(), *gets();

for (numlines = 0; numlines < MAXLINES; ++numlines)

{
if (gets(buf) == (char *)NULL)

break;

lines [numlines] = malloc(LINESIZE) ;

strcepy (lines [numlines], buf);

}
qsort (lines, numlines,sizeof(char *), cmp);
for (i = 0; i < numlines; ++1:)

printf ("%s \n", lines[i));

}
emp (a, b)
char **a, **b;

{
return stremp(*a, *b);

}

raise() send signal to executing program

TYPE Miscellaneous

COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <signal.h>
int raise(int sig);

DESCRIPTION

raise() sends the signal sig to the executing program. It returns zero if successful, and nonzero if
not. |

Library Functions 11-81 ;

NOTES

raise() calls the system dependent function _exit(). Thus, before you can use raise() you must
write _exit().

SEE ALSO

signal()

r an(} generate floating point random numbers

TYPE Float Math
COMPATIBILITY Aztec
LIBRARY m.lib

DECLARATION

#include <math.h>

double ran (void);

DESCRIPTION

ran() returns as its value a random floating point number between 0.0 and 1.0. The seed value for
ran() can be set with the function sran().

ran() is not defined by ANSI.

SEE ALSO

sran(), rand(), srand()

rand() return a pseudo-random integer

TYPE Integer Math
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
int rand (void);

DESCRIPTION

rand() returns a pseudo-random integer in the range 0 to RAND_MAX. The seed value used by
rand() may be set with the srand() function.

SEE ALSO

srand(), ran(), sran()

| (11-82. Aztec C68k ROM Reference Manual

randl() return a random number

TYPE Float Math
COMPATIBILITY Aztec
LIBRARY m.lib

DECLARATION

#include <locale.h>

double randl(double x);

DESCRIPTION

randl() returns a random number between 0.0 and 1.0. It is an alternate to ran() in that it uses the

x arg in generating the next random number.

SEE ALSO

ran(), sran()

read() read from a device or file using unbuffered I/O

TYPE UNIX I/O
COMPATIBILITY Aztec /UNIX
LIBRARY c.lib

DECLARATION

#include <fcntl.h>
int read (int fd, void *buf, size_t bufsize);

int _read (int fd, void *buf, size_t bufsize);

DESCRIPTION

read() reads characters from a device or disk file which has been previously opened by a call to
open() or creat(). In most cases, the information is read directly into the caller’s buffer.

fd is the file descriptor which was returned to the caller when the device or file was opened.

buf is a pointer to the buffer into which the information is to be placed.

bufsize is the number of characters to be transferred.

If read() is successful, it returns as its value the number of characters transferred.

If the returned value is zero, then end-of-file has been reached, immediately, with no bytes read.

Library Functions hi-83 :

If the device or file was explicitly opened with a call to open(), fd is the file descriptor which was
returned by open(). creat() cannot be used to open a file for reading.

If the returned value is greater than zero but less than bufsize, end-of-file has been reached after
reading the returned number of bytes.

_read() performs the same as read() and is provided for internal library use in case you define a
version of read() that overrides the library version.

DIAGNOSTICS

If the operation is not successful, read() returns -1 and places a code in the global integer errno. er-
rno is set to EBADF if the file descriptor is invalid. It is set to EINVAL if the file or device associ-
ated with the file descriptor is only permitted write access.

NOTES

read() and _read() are system dependent and must be specially written for your system.

SEE ALSO

open(C), close(C),write(C), Unbuffered I/O (O), Errors(O)

realloc() re-allocate memory block to a different size

TYPE Memory Allocation
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
void *realloc (void “ptr, size_t size);

DESCRIPTION

realloc() changes the size of a memory block, ptr, that was originally allocated with the calloc(),
realloc(), or malloc() functions. The data contained in the original block is guaranteed to be pre-
served by realloc(), even if the block has to be moved to accommodate a larger size.

If size is larger than the original block size, the area beyond the original block size should not be
assumed to contain any initial value. If the new size is smaller, the data will be truncated at the ap-
propriate point. If size is 0, realloc() deallocates the block in a manner similar to the free() func-
tion. If ptr is 0, realloc() behaves like the malloc() function and allocates a new block of length size.

If ptr does not point to a block previously allocated by malloc(), calloc(), or realloc(), or if ptr was
deallocated by the free() function, the behavior of realloc() is unpredictable.

DIAGNOSTICS

If realloc() cannot find a block at least size bytes in length available, it returns a NULL pointer.
Otherwise, a pointer to the requested block is returned.

i 11-84— Aztec C68k ROM Reference Manual

SEE ALSO

malloc(), calloc(), free()

remove() delete a file

TYPE | Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
int remove (const char “filename);

DESCRIPTION

remove() deletes the disk file named filename from the disk. remove() returns 0 if it is successful,

and non-zero if it is not.

DIAGNOSTICS

If an error occurs, remove() sets errno with the error code and returns a non-zero value.

SEE ALSO

unlink()

rename() __ rename adisk file

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

int rename (const char “old, const char *new);
#include <fcntl.h>

int _rename (const char *old, const char *new);

DESCRIPTION

rename() changes the name of a file. old is a pointer to a null-terminated string containing the old
file name, and new is a pointer to a null-terminated string containing the new name of the file.

If successful, rename() returns 0 as its value; if unsuccessful, it returns EOF.

If a file with the new name already exists, rename() sets E EXIST in the global integer errno and

returns EOF as its value without renaming the file.

| remove()

Library Functions 11 7 85 :

_rename() performs the same as rename() and is provided for internal library use in case you de-
fine a rename() that overrides the library version.

NOTES

rename() and _rename() are system dependent, and must be specifically written for your system.

rewind () reposition a stream’s position indicator

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

void rewind (FILE *stream);

DESCRIPTION

rewind() sets the indicated stream’s file position indicator to the beginning of the file. rewind() is
equivalent to the call

(void) fseek (stream, OL, SEEK SET) ;

with the exception that rewind() also clears the error indicator for the stream.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fseek()

rindex() find last occurrence of a character in a string

TYPE String Handling
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <string.h>
char *rindex (char *str, int c);

| | 11-86. Aztec C68k ROM Reference Manual

DESCRIPTION

rindex() returns a pointer to the last occurrence of c within the string pointed to by str. If the char-
acter is not found in str, then NULL is returned.

rindex() is not supported by ANSI and generally is not a portable function. For this reason, the
equivalent ANSI function strrchr() should be used whenever possible.

SEE ALSO |

strchr(), strrchr(), index()

sbr k() increment a pointer by size bytes

TYPE Memory Allocation
COMPATIBILITY Aztec/UNIX
LIBRARY c.lib

DECLARATION

#include <fcntl.h>

void *sbrk(size_t size)

DESCRIPTION

sbrk() provides an elementary means of allocating space from the heap. More sophisticated buff-
er management schemes can be built using this function; for example, the standard functions mal-
loc(), free(), etc. call sbrk() to get heap space, which they then manage for the calling functions.
Because the buffered I/O functions in stdio are in turn built using malloc() and free(), sbrk()
must be implemented in order for these routines to be used in an application.

sbrk() increments or decrements a pointer, called the ‘heap pointer’, by size bytes, and, if success-
ful, returns the value that the pointer had on entry. The heap pointer initially points at the base of
the heap.

SEE ALSO

The functions malloc(), free(), etc, implement a dynamic buffer-allocation scheme using the
sbrk() function. See the "Dynamic Buffer Allocation" section of the Library Overview chapter for
more information. |

The standard I/O functions usually call malloc() and free() to allocate and release buffers for use
by I/O streams. This is discussed in the "Standard I/O" section of the Library Overview chapter.

sbrk() calls brk() to set the heap’s HIGH WATER mark; that is the pointer to the top of allocated
heap space.

Your program can safely mix calls to the malloc functions, standard I/O calls, and calls to sbrk()
and brk(), as long as the your calls to sbrk() and brk() don’t decrement the heap pointer. Mixing
sbrk() and brk() calls that decrement the heap pointer with calls to the malloc() functions and/or
the standard I/O functions is dangerous and probably shouldn’t be done by normal programs.

Library Functions i -87 |

ERRORS

sbrk() returns -1 if an error occurs, and set the global integer erro to ENOMEM.

scan() convert text characters from input stream
7.

TYPE Standard I/O
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <stdio.h>
int _scan(FILE *stream, const char *format, va_list varg);

DESCRIPTION

-Sscan() converts text characters from the specified input stream as directed by the format string
and places the results in pointer parameters that follow. The format is composed of zero or more
directives; one or more white-space characters; an ordinary multibyte character (not %); or a con-
version specification. Each conversion specification is introduced by the character %.

For a detailed description of the format string see scanf(). _scan() returns the value of the macro
EOF if an input failure occurs before any conversion. Otherwise, the _scan() function returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of an early matching failure. This routine is primarily for internal library use by stdio routines.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf- fered I/O functions must be specially written for your system.

SEE ALSO

scanf(), fscanf(), sscanf(), va_start()

scanf() formatted input conversion on stdin stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib, m.lib

DECLARATION

#include <stdio.h>
int scanf (const char *fmit, ...);

[| - 88 Aztec C68k ROM Reference Manual

DESCRIPTION

scanf() converts a stream of text characters from the stream as directed by the control string
pointed to by the fmt parameter and places the results in the additional pointer parameters. There
must be the same number of format specifiers in the fmt string as there are pointer arguments.

The Format String

The fmt string controls exactly how scanf() will scan, convert, and store each of the input fields.
The conversion string is made up of the following items:

¢ conversion specifiers
e white space (spaces, tabs, newlines)
e ordinary characters

The scanf() function works through the fmt string, attempting to match each control item with a
portion of the input stream. During the matching process, scanf() fetches characters one at a time
from the input.

When a character is fetched which is not appropriate for the item being matched, scanf() pushes
the character back into the stream using ungetc().

scanf() terminates when it first fails to match an item in the fmt string or when the end of the in-
put stream is reached. It returns the number of matched conversion specifiers or EOF if the end of
the input stream was reached.

Matching White Space Characters

When a white space character is encountered in the control string, the scanf() function fetches in-
put characters until the first non-white-space character is read. The non-white-space character is
pushed back into the input and the scanf() function proceeds to the next item in the control string.

Matching Ordinary Characters

If an ordinary character is encountered in the control string, the scanf() function fetches the next
input character. If it matches the ordinary character, the scanf() function simply proceeds to the
next control string item. If it does not match, the scanf() function terminates.

Matching Conversion Specifications

When a conversion specification is encountered in the control string, the scanf() function first
skips leading white space on the input stream or buffer. It then fetches characters from the stream
or buffer until encountering one that is inappropriate for the conversion specification. This charac-
ter is pushed back into the input.

If the conversion specification did not request assignment suppression (discussed below), the
_ character string which was read is converted to the format specified by the conversion specifica-_

Library Functions ‘11-89

tion, the result is placed in the location pointed at by the current pointer argument, and the next pointer argument becomes current. The scanf() function then proceeds to the next control string
item.

If assignment suppression was requested by the conversion specification, the scanf() function sim- ply ignores the fetched input characters and proceeds to the next control item.

Details of Input Conversion

A conversion specification consists of:

e The character %, which tells the scanf() function that it has encountered a conversion
specification

¢ Optionally, the assignment suppression character *

e Optionally a field width, that is, a number specifying the maximum number of charac-
ters to be fetched for the conversion

e A conversion character, specifying the type of conversion to be performed.

If the assignment suppression character is present in a conversion specification, the scanf() func-
tion will fetch characters as if it were going to perform the conversion, ignore them, and proceed
to the next control string item.

The following conversion characters are supported:

Te A single % is expected in the input. No assignment is done.

d A decimal integer is expected, the input digit string is converted to binary and
the result placed in the int field pointed at by the current pointer argument.
The corresponding argument is pointer to int.

) An octal integer is expected; the corresponding pointer should point to an int
field in which the converted result will be placed. The corresponding argu-
ment is pointer to unsigned int. |

x A hexadecimal integer is expected; the converted value will be placed in the
int field pointed at by the current pointer argument. The corresponding argu-
ment is pointer to unsigned int.

S A sequence of characters delimited by white space characters is expected;
they, plus a terminating null character, are placed in the character array
pointed to by the current pointer argument.

c A character is expected. It is placed in the char field pointed at by the current pointer to character array. The normal skip over leading white space is not
done; to read a single char after skipping leading white space, use %1s. The field width parameter is ignored, so this conversion can be used only to read
a single character. It matches a sequence of characters of the number specified
by field width.

[A sequence of characters, optionally preceded by white space but not termi- -
nated by white space, is expected. The input characters, plus a terminating

| 11-90 Aztec C68k ROM Reference Manual

N

null character, are placed in the character array pointed at by the current
pointer argument. The left bracket is followed by:

optionally, a “ or ~ character
a set of characters
a right bracket,].

If the first character in the set is not “ or ~, the set specifies characters which
are allowed; characters are fetched from the input until one is read which is
not in the set.

If the first character in the set is “ or ~, the set specifies characters which are
not allowed; characters are fetched from the input until one is read which is in
the set.

i a signed integer, value of 0 for base argument. Corresponding argument
should be ptr to int.

u unassigned decimal integer. The argument corresponding to this item should
be ptr to unsigned int.

p reads in a hexadecimal long value which represents a pointer. The correspond-
ing argument should be a void pointer.

n Argument should be a ptr to an int. The number of characters read in so far
from stdin is written to this pointer. Execution of %n does not increment the
assignment count returned at completion of execution of the fscanf()/scanf()
function.

e, f, g A floating point number is expected. The input string is converted to floating
point format and stored in the float field pointed at by the current pointer ar-
gument. The input format for floating point numbers consists of an optionally
signed string of digits, possibly containing a decimal point, optionally fol-
lowed by an exponent field consisting of an E or e followed by an optionally
signed digit.

The conversion characters d, 0, and x can be capitalized or preceded by 1 to indicate that the corre-
sponding pointer is to a long rather than an int. Similarly, the conversion characters e and f can
be capitalized or preceded by | to indicate that the corresponding pointer is to a double rather
than a float.

The conversion characters 0, x, and d can be optionally preceded by h to indicate that the corre-
sponding pointer is to a short rather than an int.

OTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fscanf(), sscanf()

Library Functions “11-91

setbuf() associate an I/O stream with a specific buffer

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

void setbuf (FILE *stream, char *buf);

DESCRIPTION

setbuf() is equivalent to the setvbuf() function called in the following manner:

e If buf is not null, then setbuf() is the same as setvbuf() called with IOFBF (fully buff-
ered) for mode and BUFSIZE (defined in stdio.h) for size. Note that this means that your
buffer MUST be at least BUFSIZE in length.

e If buf is null, then setbuf() is the same as setvbuf() called with IONBF (no buffering)
for mode.

SEE ALSO

setvbuf()

setjmp() set up for a non-local goto

TYPE Save Calling Environment Macro
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <setjmp.h>
int setjmp (jmp_buf env);

DESCRIPTION

setjmp() is used in conjunction with longjmp() to allow gotos between functions. This is useful
for error recovery from low-level routines as well as quick returns from deeply-nested functions.

The argument env should be declared as an instance of the type jmp_buf. setjmp() saves the cur-
rent stack and register variable information in env so that this information may be restored upon
invocation of a longjmp(), and returns a 0.

SEE ALSO

longjmp()

[1-92. Aztec C68k ROM Reference Manual

setiocale() select appropriate portion of program’s locale

TYPE Miscellaneous
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION |

#include <locale.h>
char *setlocale(int category, const char *locale);

DESCRIPTION

The setlocale() function selects the appropriate portion of the program’s locale as specified by the
category and locale arguments. The setlocale() function may be used to change or query the pro-
gram’s entire current locale or portions thereof.

The value LC_ALL for category names the programs entire locale; the other values for category
name only a portion of the program’s locale.

LC_COLLATE affects the behavior of the strcollQ) and strxfrm() functions.

LC_CTYPE affects the behavior of the character handling functions and the multibyte functions.

LC_MONETARY affects the monetary formatting information returned by the localeconv() func-
tion.

LC_NUMERIC affects the decimal-point character for the formatted input/output functions and
the string conversion functions, as well as the non-monetary formatting information returned by
the localeconv() function.

LC_TIME affects the behavior of the strftime() function.

A value of “C” for locale specifies the minimal environment for C translation; a value of “” for lo-
cale specifies the implementation-defined native environment.

At program startup, the equivalent of

setlocale(LC ALL, “C”);

is executed.

If a pointer to a string is given for locale and the selection can be honored, the setlocale() function
returns the string associated with the specified category for the new locale. If the selection cannot
be honored, the setlocale() function returns a NULL pointer and the program’s locale is not
changed.

A NULL pointer for locale causes the setlocale() function to return the string associated with the
category for the program’s current locale; the program’s locale is not changed.

| setiocale()

Library Functions ‘11-93 ;

The string returned by the setlocale() functions is such that a subsequent call with that string and
its associated category will restore that part of the program’s locale. The string returned shall not
be modified by the program, but may be overwritten by a subsequent call to the setlocale() func-
tion. Currently the only locale supported is “C” for C program translation.

SEE ALSO

localeconv()

setmem() copy value of char into object

TYPE Block operations
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <string.h>
void setmem(void *s, size_t n, int c);

DESCRIPTION

setmem() copies the value of c (converted to an unsigned char) into each of the first n characters
of the object pointed to by s.

APPLICATION NOTE

setmem() is provided for compatibility with other Manx C compilers. It should not be used in
new programs; use memset() instead.

setvbuf() associate an I/O stream with a specific buffer

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

int setvbuf (FILE *stream, char *buf, int mode, size_t size);

DESCRIPTION

setvbuf() is used when you want to explicitly assign a buffer to an I/O stream, rather than let the standard I/O system do it automatically. setvbuf() should be called after the stream has been
opened, but before any I/O functions (i.e., reading and writing) have been performed on the
stream. |

The type of buffering to be performed on the stream is determined by the mode argument:

11-94. Aztec C68k ROM Reference Manual

_IOFBF The stream is FULLY BUFFERED. On reads from the stream, the I/O system will
attempt to fill the entire buffer if the buffer is empty before returning the re-
quested byte(s). On writes, the buffer is written to the file only if the buffer is
full.

_IOLBF The stream is LINE BUFFERED. As with _IOFBF, reads from the stream will fill

the entire buffer. Writes, however, will flush the buffer if a newline is encoun-
tered as well as if the buffer is full.

_IONBF The stream is UNBUFFERED, and the buf and size arguments are ignored. This
means that each read operation will read directly from the file, and each writ-
ten operation will write directly to the file, with no intermediate buffering
done.

You must insure that buf stays in existence throughout the time the stream is open. This means
that if buf is a local array, the stream must be closed before the function returns. Also, you are re-
sponsible for deallocating buf if it was dynamically allocated; it is not done automatically by
fclose(). If you do deallocate buf, it must be deallocated after fclose().

SEE ALSO

setbuf()

signal() define how to handle a signal

TYPE Signal
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <signal.h>
void (*signal (int sig, void (*func) (int))) (int);

DESCRIPTION

signal() specifies that the signal whose number is sig is to be handled as defined by func. A SIG-
NAL is a special asynchronous event such as an operator-initiated interrupt or an arithmetic fault.

Signals and the sig Parameter

The following list defines the symbolic values that sig can have and the signal associated with
each value. These values are defined in signal.h. The signals that are currently supported are:

SIGFPE traps divide by 0 and overflow

SIGILL traps on illegal instruction

SIGSEGV _ traps illegal address or bus error

Library Functions li -95 ;

Signal Processing and the func Parameter |

func defines the action to be performed on receipt of the specified signal. It can be one of three val-
ues: SIGN_DFL, SIG_IGN, or a function address.

If the func for a signal is SIG_DFL, the program will be terminated by the operating system, with-
out execution of the normal Aztec C exit code. This could result in a loss of information in files
opened for standard output.

If the func for a signal is SIG_IGN, the signal will be ignored.

Any other value for func is assumed to be the address of a function. In this case, when the speci-
fied signal occurs, the function will be called, passing the signal’s number as the function’s only
argument. Before the function is called, the value of func for the received signal will be set to
SIG_DFL.

The function associated with a signal can terminate its program, if desired, by calling exit() or
longjmp(). It can also return to the program at the point of interruption by issuing a return state-
ment.

Return Values from Signal

If a requested change is accepted, signal() returns the value that the specified signal’s func had on
entry to signal(). If the change is rejected, signal() returns the value SIG_ERR and the global inte-
ger errno is set to indicate the error. Currently, the only cause for rejection is an invalid signal
number, causing errno to be set to EINVAL.

If the request cannot be honored, a value of SIG_ERR is returned and a positive value is stored in
ermo.

EXAMPLES

The following program calls signal(), so that upon receipt of a bus error the program can shut it-
self down in an orderly fashion, closing opened files, deleting temporary files, and so on.

#include <signal.h>
main ()

{
Signal (SIGSEGV, shutdown)

. /* normal program execution */
}
shutdown (sign)

int sig;

{
printf

.../* termination */
exit ()

}

SEE ALSO

raise(), abort(), exit()

| 11-96, Aztec _C68k ROM Reference Manual

sin() return the sine of a double value

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>
double sin (double x);

DESCRIPTION

sin() returns the sine of x. x should be specified in radians.

Error Codes:

condition return value errno

lx! > 6.7465e° 0.0 ERANGE

SEE ALSO

acos(), asin(), cos()

sinh() return the hyperbolic sine of a double value

TYPE Float Math

COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>

double sinh (double x);

DESCRIPTION

sinh() returns the hyperbolic sine of x. sinh() will return HUGE_VAL and set errno equal to
ERANGE if x is greater than 348.6.

Error codes:

condition return value ermo

lxl > LOGHUGE+ ~0.6932 HUGE_VAL ERANGE

Library Functions 11-97 |

SEE ALSO

cosh()

spr intf() write formatted data to a buffer

TYPE Conversion
COMPATIBILITY ANSI

LIBRARY c.lib, m.lib

DECLARATION

#include <stdio.h>
int sprintf (char *buf, const char *fmt, ...);

DESCRIPTION

sprintf() is used to write formatted ASCII data to the specified buffer buf. The fmt string specifies the exact contents of buf and also determines the number of additional required arguments. See the printf() function for complete details on the fmt string.

SEE ALSO

printf(), fprintf(), format()

sart() compute non-negative square root of a value

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>
double sqrt (double x);

DESCRIPTION

sqrt() returns the nonnegative square root of the input parameter x.

DIAGNOSTICS

If x is negative, errno is set to EDOM and sqrt() returns 0.0 as its value.

SEE ALSO

exp(), log(), log10(), pow()

a i -~ 98 é Aztec C68k ROM Reference Manual

sran() set the random number seed for ran

TYPE Float Math
COMPATIBILITY Aztec —
LIBRARY m.lib

DECLARATION

#include <math.h>

void sran (long seed);

DESCRIPTION

sran() is used to set the seed value for the function ran().

sran() is not defined by ANSI.

SEE ALSO

ran(), rand(), srand()

srand() initialize the seed value used by rand

TYPE Integer Math
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
void srand (unsigned int seed);

DESCRIPTION

The value seed passed to srand() is used to determine the pseudo-random sequence returned by
future calls to rand(). If srand() is called more than once with the same value for seed, then the
Same sequence will be repeated. If rand() is called before srand(), then rand() will behave as if
srand() had been called with a seed of 1.

SEE ALSO

rand(), ran(), sran()

Library Functions 11 +99

sscanf() perform formatted input conversion on buffer

TYPE Conversion
COMPATIBILITY ANSI

LIBRARY c.lib, m.lib

DECLARATION

#include <stdio.h>
int sscanf (const char *str, const char *fmt, ...);

DESCRIPTION

sscanf() is identical to the scanf() function, except that sscanf() reads from the buffer pointed to by str rather than from stdin. See scanf() for details on fmt string

SEE ALSO

scanf(), fscanf()

_stkchk() performs stack depth checking

TYPE Miscellaneous
COMPATIBILITY Aztec
LIBRARY stkchk.c

DECLARATION

DESCRIPTION

The _stkchk() function performs stack-depth checking. It is called automatically on entry to func- tions that have been compiled with c68’s -bd option. Source for _stkchk() is in stkchk.c, in direc- tory : libsource: rom68. Before using it , you must customize it.

“11-100 Aztec C68k ROM Reference Manual

strcat() concatenate two strings together

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
char *strcat(char *dest, const char *src);

DESCRIPTION

strcat() appends a copy of the string pointed to by src to the string pointed to by dest, so that the
resulting length of dest is strlen (dest) + strlen (src). The first character in src will overwrite the
ending null in dest. strcat() will then return a pointer to dest.

It is important to note that the area pointed to by dest must be large enough to hold both the
strings in dest and src (strlen (dest) + strlen (src) +1) and it is your responsibility to ensure this.

SEE ALSO

strncat(), strcpy(), strncpy()

strchr() search for first occurrence of string character

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
char *strchr (const char *str, int c);

DESCRIPTION

strchr() returns a pointer to the first occurrence of the character c in string str. If c is not contained
in str, then strchr() returns a NULL str.

The strchr() function is equivalent to the Aztec function index(), with the exception that strchr()
can match a null character, whereas index() cannot.

SEE ALSO

strrchr(), index(), and rindex()

streat()

Library Functions

strc mp() compare two strings

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
int strcmp (const char *str1, const char *str2);

DESCRIPTION

strcmp() compares the strings pointed to by str1 and str2, and determines whether str7 is greater
than, less than, or equal to str2. Equality is determined in the following manner:

¢ strcmp() will perform an unsigned comparison on each character in str1 and str2, start-
ing with the first character in each and advancing by one character at a time. stremp()
will stop when it finds two differing characters or it reaches the end of one of the strings.

e If the end of str is reached but not the end of str2, then str1 is less than str2.

e If the end of str2 is reached before str1, then str1 is greater than sir2.

e If the end of both strings is reached simultaneously with no differing characters, then
the two strings are equal.

e If the two characters differ, then str] is greater than str2 if str1’s character is greater than
str2. Otherwise, str1 is less than str2.

It should be remembered that stremp() does numerical comparisons, not character comparisons,
so that the character “a” (ASCII 97) is considered greater than the character “Z” (ASCII 90).

The value returned by stremp() is:

e less than 0 (negative) if str1 is less than str2.

e equal to 0 if str1 is equal to str2.

e greater than 0 (positive) if str1 is greater than str2.

SEE ALSO

strncmp()

11-102 Aztec C68k ROM Reference Manual

strcoll() compare two strings using the current locale

TYPE String Handling
COMPATIBILITY ANSI

LIBRARY c.lib

DECLARATION

#include <string.h>
int strcoll (const char *str1, const char *str2)

DESCRIPTION

The streoll() function is equivalent to the stremp() function, with the exception that strcoll() will
use the current locale for character translation. (strcoll() is truly equivalent to stremp(), as Aztec C
currently supports only the C locale.)

SEE ALSO

stremp()

strcpy() copy one string to another

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
char “strepy (char *dest, const char *src);

DESCRIPTION

strepy() copies the characters in the string pointed to by src to the area pointed to by dest, includ-
ing the terminating null character. The area pointed to by dest must be at least (strlen(src) + 1)
characters long. strepy() always returns dest.

SEE ALSO

strncpy(), memcpy(), memmove(), strlen()

Library Functions 11 - 103 |

strcspn() return the index of specified string

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
size_t strcspn (const char *str1, const char *str2);

DESCRIPTION

The strespn() function returns the index of the first character in the string pointed to by str1
which matches a character in the string pointed to by str2. This index is equal] to the number of in-
itial characters in str] which do not match a character in str2.

SEE ALSO

strspn(), strpbrk(), strstr(), strtok()

strd up() copy the string pointed to

TYPE String Handling
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <string.h>
char *strdup(char *_s);

DESCRIPTION

strdup() makes a copy of the string pointed to by s. The space for the copy is allocated using the
malloc() function. strdup() returns a pointer to the array allocated. If the array could not be allo-
cated, a NULL pointer is returned.

SEE ALSO

malloc()

| ‘11-104 Aztec C68k ROM Reference Manual

strerror() maps error number to error message

TYPE Miscellaneous

COMPATIBILITY ANSI ©
LIBRARY c.lib

DECLARATION

#include <string.h>
char *strerror(int errnum);

DESCRIPTION

strerror() maps the error number in errnum to an error message string. strerror() returns a pointer
to the string, the contents of which correspond to a description for the errnum passed in. The ar-
ray pointed to shall not be modified by the program, but may be overwritten by a subsequent call
to the strerror() function.

stritime() place characters into array pointed to

TYPE String Handling

COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
size_t strftime(char *s, size_t maxsize, const char *format, const struct tm *timeptr);

DESCRIPTION

strftime() places characters into the array pointed to by s as controlled by the string pointed to by
format. The format string consists of zero or more conversion specifications and ordinary mul-
tibyte characters. A conversion specification consists of a % character followed by a character that
determines the conversion specification’s behavior. All ordinary multibyte characters (including
the terminating null character) are copied unchanged into the array. No more than maxsize charac-
ters are placed into the array. Each conversion specification is replaced by appropriate characters
as described in the following list. The appropriate characters are determined by the program’s lo-
cale and by the values contained in the structure pointed to by timeptr.

Joa the locale’s abbreviated weekday name.
ToA the locale’s full weekday name.
Zeb the locale’s abbreviated month name.
%B the locale’s full month name.
Joc the locale’s appropriate date and time representation.
Jd the day of the month as a decimal number (01-31).
%H the hour (24-hour clock) as a decimal number (00-23).
%I the hour (12-hour clock) as a decimal number (01-12).

Library Functions 11-105

Tj the day of the year as a decimal number (001-366).
Jom the month as a decimal number (01-12).
%oM the minute as a decimal number (00-59).
7p the locale’s equivalent of either AM or PM.
%S the second as a decimal number (00-59).
%U the week number of the year (Sunday as the first day of

the week) as a decimal number (00-53).
Tow the weekday as a decimal number [0 (Sunday)-6].
ToW the week number of the year (Monday as the first day of

the week) as a decimal number (00-53).
Tex the locale’s appropriate date representation.
ToX the locale’s appropriate time representation.
Ty the year without century as a decimal number (00-99).
%Y the year with century as a decimal number.
TZ the time zone name, or by no characters if no time zone is determinable.
To Te the % character.

If a conversion specification is not one of the above, the behavior is undefined.

strftime() returns the number of characters placed into the array pointed to by s not including the
terminating null character if the total number of resulting characters including the terminating
null character is not more than maxsize. Otherwise, zero is returned and the contents of the array
are indeterminate.

NOTES

For the %Z conversion strftime() calls the system dependent function getenv() to get the value of
the TZ environment variable, see the description of the gmtime() function. Thus, before you can
have strftime() do a %Z conversion, you must implement getenv() at least to the point where it
can return the value of the TZ environment variable.

strien() return the length of a string

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
size_t strlen (const char *str);

DESCRIPTION

Strlen() returns the number of characters in the string pointed to by str, not including the termi- nating null character.

You should be careful in allocating space for strings based on strlen(). A common mistake is to code the following:

ptr = malloc (strlen ("STRING") ;
strcpy (ptr, “STRING”);

Aztec C68k ROM Reference Manual

This will only set aside six characters for STRING, when seven are actually needed (the six charac-
ters in the word plus the ending null), and the strepy() that follows the malloc() call will write too
many characters.

The correct way to use strlen() is

ptr = malloc (strlen ("STRING") +1);

strcpy (ptr, “STRING”) ;

SEE ALSO

strcpy(), strncpy()

strncat() concatenate two strings together

TYPE String Handling

COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
char *strncat (char *dest, const char *src, size_t max);

DESCRIPTION

strncat() appends a copy of the string pointed to by src to the string pointed to by dest until either
max characters have been appended or a null is reached in src, whichever comes first. The maxi-
mum resulting length of the string pointed to by dest will be strlen (dest) and max. The first charac-
ter in src overwrites the ending null in dest. strncat() always returns a pointer to dest.

It is your responsibility to ensure that the area pointed to by dest is at least (strlen(dest) + max + 1)
characters long.

SEE ALSO

streat(), strcpy(), strncpy()

strncmp() compare two strings, up to max characters

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>

int strncmp (const char *str1, const char *str2, size_t max);

| strneatd

Library Functions 11 - 107.

DESCRIPTION

strncmp() is equivalent to the stremp() function, with the exception that strncmp() will only com- pare a maximum of max characters. strncmp() returns a positive number, negative number, or
zero, depending on whether str] is greater than, less than, or equal to str2. See the stremp() func-
tion for more details.

SEE ALSO

stremp(), memcmp(), strcoll(), strxfrm()

strn cpy() copy characters from one string to another

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
char *strncpy (char *dest, const char *src, size_t max);

DESCRIPTION

strncpy() copies a maximum of max characters from the string pointed to by src to the area pointed to by dest. If src is less than max characters long, then dest is padded with null characters until max total characters have been written. The area pointed to by dest must be at least max char- acters in length.

SEE ALSO

strcpy(), memcpy(), memove(), strlen()

str pbr k() return pointer to first character in a string

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
char *strpbrk (const char *str1, const char *str2);

DESCRIPTION

The strpbrk() function returns a pointer to the first character in the string pointed to by str1 which is contained in the string pointed to by str2. Null is returned if no characters within st77 match those in str2.

| “11-108 Aztec C68k ROM Reference Manual

SEE ALSO

strspn(), strespn(), strstr(), strtok()

strrchr() search for occurrence of character in string

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
char *strrchr (const char “str, int c);

DESCRIPTION

strrchr() returns the last occurrence of the character c in string str. If c is not contained in sér, then
strrchr() returns a NULL.

The strrchr() function is equivalent to the Aztec function rindex(), with the exception that
strrchr() can match a null character, whereas rindex() cannot.

SEE ALSO

strchr(), index(), rindex()

strspn() return index of the first character in a string

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
size strspn (const char *str1, const char *str2);

DESCRIPTION

The strspn() function returns the index of the first character in str1 which is not contained in the
string pointed to by str2. This index is equal to the number of initial characters in str] which
match characters in str2.

SEE ALSO

strespn(), strpbrk(), strstr(), strtok()

strrehr()

Library Functions 11-109 |

strstr() return a pointer to first occurrence of a string

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
char *strstr(const char *str1, const char *str2);

DESCRIPTION

strstr() returns the first occurrence of the substring str2 contained within the string str1. If str2 is
not contained within str1, then NULL is returned.

SEE ALSO

stcspn(), strspn(), strpbrk(), strtok()

strtod() convert a string to a double

TYPE Conversion
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
double strtod (cont char *nptr, char **endptr);

DESCRIPTION

strtod() converts the initial portion of the string pointed to by nptr into a double value, which is
returned by strtod(). The string must be in the form

[ws] [+1-] ddd [.] [ddd] [exp]

where

° ws is whitespace (newline, space, tab)

e +/|- means + or -

e ddd are digits 0-9

© exp Is an optional exponent of the form

11-110 Aztec_C68k ROM Reference Manual

[elE+1- ddd]

where the vertical lines, |, indicate “or”.

strtod() stops reading characters when it encounters a character in nptr which cannot be inter-
preted as part of a double value. It sets *endptr equal to a pointer to this character (as long as
endptr is not NULL).

DIAGNOSTICS

strtod() will return HUGE_VAL if the string causes overflow.

SEE ALSO

atof(), stroul(), strtol(), atol(), atoi()

strtok() tokenize a string

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
char *strtok (char *str, const char *del_list);

DESCRIPTION

strtok() is designed to be called multiple times to break str into a series of tokens, each of which is
delimited by a character contained in del_list. The operation of strtok() is detailed below.

First Invocation

On the first invocation of strtok() with str, strtok() will search for the first character in str which is
not contained in del_list (that is, it scans past delimiters.)

e If a character is found which is not in del_list, it is considered to be the start of the first
token.

e If such a character is not found, there are no tokens in sfr and a NULL pointer is void.

strtok() then searches from the token’s start for a character that IS contained in del_list (it scans to
the next delimiter.) |

e If a character is found in str which is contained in del_list, strtok() overwrites it with a

null character which terminates the token. strtok() will then internally save a pointer to
the following character, from which the next token search will start. A pointer to the to-
ken is then returned by strtok(). |

Library Functions 11-111.

e If no characters in str] are found to be in del_list, then the current token is considered to
extend to the end of str. strtok() will return a pointer to the token, and subsequent calls
to strtok() will return a NULL pointer.

Subsequent Invocation

All calls of strtok() following the initial call should pass a NULL pointer for the first argument.
This instructs strtok() to use its internal pointer in order to locate the next token. strtok() will then
behave as described above. Subsequent calls may, if you wish, have different delimiters specified
by del_list.

SEE ALSO

strchr(), strrchr(), strspn(), strcespn()

Strtol() convert a string to a long

TYPE Conversion
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
long int strtol(const char *nptr, char **endptr, int base);

DESCRIPTION

strtol() converts the initial portion of the string pointed to by nptr to long int representation. First
it decomposes the input string into three parts:

¢ an initial, possibly empty, sequence of white-space characters (as specified by the is-
space() function) :

¢ a subject sequence resembling an integer represented in some radix determined by the
value of base

¢ a final string of one or more unrecognized characters, including the terminating null
character of the input string.

Then it attempts to convert the subject sequence to an integer and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer constant
using normal C syntax to specify the base, optionally preceded by a plus or minus sign, but not in-
cluding an integer suffix. If the value of base is between 2 and 36, the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign, but not including an integer suffix. The letters
from a (or A) through z (or Z) are ascribed the values 10 to 35; only letters whose ascribed values
are less than that of base are permitted. If the value of base is 16, the characters Ox or 0X may op-
tionally precede the sequence of letters and digits, following the sign if present.

‘11-112 Aztec C68k ROM Reference Manual

The subject sequence is defined as the longest subsequence of the input string, starting with the
first non-white-space character, that is an initial subsequence of a sequence of the expected form.
The subject sequence contains no characters if the input string is empty or consists entirely of
white space, or if the first non-white-space character is other than a sign or a permissible letter or
digit. If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant according to normal C
syntax rules.

If the subject sequence has the expected form and the value of base is between 2 and 36, it is used
as the base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus sign, the value resulting from the conversion is negated. A pointer to the fi-
nal string is stored in the object pointed to by endptr, provided that endptr is not a NULL pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a NULL
pointer.

strtol() returns the converted value, if any. If no conversion could be performed, zero is returned.
If the correct value would cause overflow, LONG_MAX or LONG_MIN is returned (according to

the sign of the value), and the value of the macro ERANGE is stored in errno.

strtold() convert a string to a long double

TYPE Conversion

COMPATIBILITY Aztec

LIBRARY c.lib

DECLARATION

#include <stdlib.h>

long double strtold(const char *nptr, char **endptr);

DESCRIPTION

strtold() converts the intitial portion of the string pointed to by nptr to long double repre-
sentation. First it decomposes the input string into three parts:

¢ an initial, possibly empty, sequence of white-space characters (as specified by the is-
space() function)

e a subject sequence resembling a floating-point constant

¢ a final string of one or more unrecognized characters, including the terminating null
character of the input string.

Then it attempts to convert the subject sequence to a floating-point number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then a nonempty se-
quence of digits optionally containing a decimal-point character, then an optional exponent part,
but no floating suffix. The subject sequence is defined as the longest subsequence of the input
string, starting with the first non-white space character, that is an initial subsequence of a se-
quence of the expected form. The subject sequence contains no characters if the input string is

| strtotd

Library Functions 11 - 113

empty or consists entirely of white space, or if the first non-white-space character is other than a
sign, a digit, or a decimal-point character.

If the subject sequence has the expected form, the sequence of characters starting with the first
digit or the decimal-point character (whichever occurs first) is interpreted as a floating constant,
except that the decimal-point character is used in place of a period, and that if neither an expo-
nent part nor a decimal-point character appears, a decimal point is assumed to follow the last
digit in the string. If the subject sequence begins with a minus sign, the value resulting from the
conversion is negated. A pointer to the final string is stored in the object pointed to by endptr, pro-
vided that endptr is not a NULL pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a NULL
pointer.

strtold() returns the converted value, if any. If no conversion is performed, zero is returned. If the
correct value would cause overflow, plus or minus HUGE_VAL is returned (according to the sign
of the value), and the value of the macro ERANGE is stored in errno. If the correct value would
cause underflow, zero is returned and the value of the macro ERANGE is stored in errno.

strtoul() convert a string to unsigned long integer

TYPE Conversion
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>

unsigned long int strtoul(const char *nptr, char **endptr, int base);

DESCRIPTION

Strtoul() converts the initial portion of the string pointed to by npir to unsigned long int repre-
sentation. First it decomposes the input string into three parts

¢ an initial, possibly empty, sequence of white-space characters (as specified by the is-
space() function)

¢ a subject sequence resembling an unsigned integer represented in some radix deter-
mined by the value of base

¢ a final string of one or more unrecognized characters, including the terminating null
character of the input string.

Then it attempts to convert the subject sequence to an integer and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer constant using normal C syntax to specify the base, optionally preceded by a plus or minus sign, but not in-
cluding an integer suffix. If the value of base is between 2 and 36, the expected form of the subject Sequence is a sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign, but not including an integer suffix. The letters _

| strtoul()

i 11-1144 Aztec C68k ROM Reference Manual

from a (or A) through z (or Z) are ascribed the values 10 to 35; only letters whose ascribed values

are less than that of base are permitted. If the value of base is 16, the characters Ox or 0X may op-

tionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest subsequence of the input string, starting with the

first non-white-space character, that is an initial subsequence of a sequence of the expected form.

The subject sequence contains no characters if the input string is empty or consists entirely of

white space, or if the first non-white-space character is other than a sign or a permissible letter or

digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of charac-

ters starting with the first digit is interpreted as an integer constant according to normal C syntax

rules. If the subject sequence has the expected form and the value of base is between 2 and 36, it is

used as the base for conversion, ascribing to each letter its value as given above. If the subject se-

quence begins with a minus sign, the value resulting from the conversion is negated. A pointer to

the final string is stored in the object pointed to by endptr, provided that endptr is not a NULL

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed;

the value of nptr is stored in the object pointed to by endptr, provided that endptr is nota NULL

pointer.

strtoul() returns the converted value, if any. If no conversion could be performed, Zero is re-

turned. If the correct value would cause overflow, ULONG_MAxX is returned, and the value of

the macro ERANGE is stored in errno.

strxfrm() _ transform a string to match the current locale

TYPE String Handling
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <string.h>
size_t strxfrm (char *dest, const char *src, size_t n);

DESCRIPTION

strxfrm() transforms the string pointed at by src to match the current locale. The transformed
string is then copied to dest, and the length of dest is returned.

Because only the C locale is currently supported, strxfrm() actually does no transformations, but
simply performs a strepy() followed by a strlen().

SEE ALSO

strcpy(), strcoll(), stremp(), strlen()

Library Functions 11 - 115 :

swapmem() swap characters between specified objects

TYPE Block Operations
COMPATIBILITY Aztec
LIBRARY c.lib

DECLARATION

#include <string.h>
void swapmem(void *s1, void *s2, size_t n);

DESCRIPTION

Swapmemi() swaps n characters between the object pointed to by s1 and the object pointed to by s2. If swapping takes place between objects that overlap, the behavior is undefined.

Sy stem() make call to underlying operating system

TYPE Miscellaneous
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
int system (const char *string);

DESCRIPTION

system() passes the string pointed to by string to the host environment to be executed by a "com- mand processor" in an implementation defined manner. In the current implementation no com- mand processor support is provided, and the routine simply returns 0.

NOTES

System() is system dependent and must be specially written for your system.

SEE ALSO

abort(), atexit(), exit(), getenv()

11-116 Aztec C68k ROM Reference Manual

tan() return the tangent of a double value

TYPE Float Math
COMPATIBILITY ANSI
LIBRARY m.lib

DECLARATION

#include <math.h>
double tan(double x);

DESCRIPTION

tan() returns the tangent of x. x should be specified in radians.

Error codes:

condition return value ermo

Ix! ..6.74652e° 0.0 ERANGE

SEE ALSO

atan(), atan2()

tanh() return the hyperbolic tangent of a double value

TYPE Float Math

COMPATIBILITY ANSI

LIBRARY m.lib

DECLARATION

#include <math.h>

double tanh (double x);

DESCRIPTION

tanh() returns the hyperbolic tangent of x.

Library Functions 11 -117

time() return the time of day

TYPE Time
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <time.h>
time_t time(time_t *timeptr);

DESCRIPTION

The time() function returns as its value the current time. If timeptr is not null, this value is also as-
signed to the location pointed at by timeptr.

If the current time is not available, time() returns -1.

NOTES

time() is system dependent, and must be specially written for your system.

SEE ALSO

ctime(), gmtime(), localtime()

tmpfi le() create a temporary file

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>

FILE *tmpfile(void);

DESCRIPTION

tmpfile() creates a temporary binary file and opens it for standard I/O in update wb+ mode.
tmpfile() returns as its value the file’s FILE pointer. |

When the temporary file is closed, either because the program explicitly closes it or because the
program terminates, the temporary file is automatically deleted.

If the file cannot be created, the function returns a NULL pointer.

Aztec C68k ROM Reference Manual

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

tmpnam(), mktemp(), fopen()

tmpnam() create a name for a temporary file

TYPE Standard I/O
COMPATIBILITY ANSI

LIBRARY c.lib

DECLARATION

#include <stdio.h>

char *tmpnam (char *s);

DESCRIPTION

tmpnam() creates a character string that can be used as the name of a temporary file and returns
as its value a pointer to the string. The generated string is not the name of an existing file.

s optionally points to an area into which the name will be generated. This must contain at least
L_tmpnam bytes, where L_tmpnam is a constant defined in stdio.h.

s can also be a NULL pointer. In this case, the name will be generated in an internal array. The con-
tents of this array are destroyed each time tmpnam() is called with a null argument.

tmpnam() can be called a maximum of TMP_MAX times.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

tmpfile(), mktemp()

tmpnam()

Library Functions 11 -119

tolower() convert a character to lowercase

TYPE Conversion
COMPATIBILITY ANSI

LIBRARY c.lib

DECLARATION

#include <ctype.h>
int tolower (int c);

DESCRIPTION

tolower() converts an uppercase character to lowercase. If the value of c is an uppercase character,
tolower() returns its lowercase equivalent, otherwise c is returned unchanged.

SEE ALSO

toupper()

toupper() — convert a character to uppercase

TYPE Conversion
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <ctype.h>
int toupper(int c);

DESCRIPTION

toupper() converts a lowercase character to uppercase. If the value of the argument c is a lower-
case character, toupper() returns its uppercase equivalent as its value, otherwise c is returned un- changed.

SEE ALSO

tolower()

| 11-120 Aztec C68k ROM Reference Manual

ungetc(} push a character back into input stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdio.h>
int ungetc(int c, FILE *stream);

DESCRIPTION

ungetc() pushes the character value of the argument c back onto an input stream. That character
will be returned by the next getc() call on that stream. ungetc() returns c as its value.

Only one character of pushback is guaranteed. EOF cannot be pushed back.

DIAGNOSTICS

ungetc() returns EOF (-1) if the character cannot be pushed back.

NOTES

Before this system independent standard I/O function can be used, the system dependent unbuf-
fered I/O functions must be specially written for your system.

SEE ALSO

fgetpos(), fseek(), fsetpos(), ftell()

unlink() erase file

TYPE UNIX 1/O
COMPATIBILITY Aztec/UNIX
LIBRARY c.lib

DECLARATION

int unlink (const char *name);

int _unlink (const char *name);

DESCRIPTION

unlink() erases a file, where name is a pointer to a character array containing the name of the file
to be erased.

unlink() returns a 0 value if successful.

Library Functions 11-121 7

Since unlink() is not defined by ANSI, it is strongly recommended that the equivalent ANSI func-
tion remove() be used in its place.

_unlink() performs the same as unlink() and is provided for internal library use in case you de-
fine a version of unlink() that overrides the library version.

DIAGNOSTICS

unlink() returns -1 if it could not erase the file and places a code in the global integer errno de-
scribing the error.

NOTES

unlink() and _unlink() are system dependent, and must be specially written for your system.

SEE ALSO

creat()

Va .. .() variable argument access
seein

FUNCTIONS va_arg(), va_end(), va_start()
TYPE Variable Arguments
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdarg.h>
type va_arg (va_list argptr, type);
void va_end (va_list argptr);

void va_start (va_list argptr, parmN);

DESCRIPTION

These three macros are used as a mechanism to access individual arguments from within a func-
tion that accepts a variable number of arguments.

A function which receives a variable argument count should declare a variable, argptr, of type
va_list. This variable will be used as a pointer to the current argument bein g processed.

The va_start() macro should be called first to initialize argptr to point to the first argument in the
list. the parmN parameter should be the last fixed argument passed to the function.

Once va_start() has been called, va_arg() may be called repeatedly to fetch arguments sequen-
tially from the argument list. The type parameter to va_arg() should be the C-data type of the next
argument (i.e., int, lens, char x, etc.). va_arg() returns the value of the argument.

When variable-argument processing is completed, the va_end() macro should be called.

-Al-122 Aztec C68k ROM Reference Manual

vfprintf() write formatted ASCII data to a stream

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdarg.h>
#include <stdio.h>

int vfprintf (FILE *stream, const char "fmt, va_list args);

DESCRIPTION

vfprintf() is equivalent to the fprintf() function, except that the variable argument list is replaced
by args. args should be initialized by the va_start() macro before the call to vfprintf() is made.

The return value of vfprintf() is equal to the number of characters written or is a negative value if
a write error occurs.

SEE ALSO

vprintf(), vsprintf(), printf(), va_start()

vprintf() _ write formatted ASCII data to stdout

TYPE Standard I/O
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdarg.h>
#include <stdio.h>
int vprintf (const char *fmt, va_list args)

DESCRIPTION

vprintf() is equivalent to the printf() function, except that the variable argument list is replaced
by args. args should be initialized by the va_start() macro before the call to vprintf() is made.

The return value of vprintf() is equal to the number of characters written or is a negative value if
an error occurred in output.

SEE ALSO

vfpr intQ), vsprintf(), pr intf(), va_start()

| viprintt()

Library Functions 11-1233; +]

vsprintf() write formatted ASCII data to a buffer

TYPE Conversion
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdarg.h>
#include <stdio.h>
int vsprintf (char *buf, const char “fit, va_list args);

DESCRIPTION

vsprintf() is equivalent to the sprintf() function, except that the variable argument list is replaced
by args. args should be initialized by the va_start() macro before the call to vsprintf() is made.

The return value of vsprintf() is the number of characters written, not including the terminating
null characters.

SEE ALSO

vfprintf(), vprintf(), printf(), va_start()

wcstombs() convert a sequence of multibyte characters

TYPE Miscellaneous
COMPATIBILITY ANSI
LIBRARY c.lib

DECLARATION

#include <stdlib.h>
size_t wcstombs(char *s, const wchar_t *pwes, size_t n);

DESCRIPTION

westombs() converts a sequence of codes that correspond to multibyte characters from the array pointed to by pwcs into a sequence of multibyte characters that begins in the initial shift state and stores these multibyte characters into the array pointed to by s, stopping if a multibyte character would exceed the limit of n total bytes or if a null character is stored. Each code is converted as if by a call to wctomb(), except that the shift state of the wctomb() function is not affected.

No more than n bytes will be modified in the array pointed to by s. If copying takes place be- tween objects that overlap, the behavior is undefined.

Aztec C68k ROM Reference Manual

If a code is encountered that does not correspond to a valid multibyte character, wcstombs() re-
turns (size_t)-1. Otherwise, it returns the number of bytes modified, not including a terminating

null character, if any.

wctom b() determine # of bytes in multibyte character

TYPE — Miscellaneous
COMPATIBILITY ANSI.

LIBRARY c.lib

DECLARATION

#include <stdlib.h>

int wctomb(char *s, wchar_t wehar);

DESCRIPTION

wctomb() determines the number of bytes needed to represent the multibyte character corre-
sponding to the code whose value is wehar (including any change in shift state). It stores the mul-
tibyte character representation in the array object pointed to by s (if s is not a NULL pointer). At
most MB_CUR_MAX characters are stored. If the value of wchar is zero, the wctomb() function is
left in the initial shift state.

If s is a NULL pointer, wctomb() returns a nonzero or zero value, if multibyte character encod-
ings, respectively, do or do not have state-dependent encodings. If s is nota NULL pointer, the
wctomb() function returns -1 if the value of wchar does not correspond to a valid multibyte char-
acter, or returns the number of bytes that comprise the multibyte character corresponding to the
value of wehar.

In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

write() write to a file or device using unbuffered I/O

TYPE UNIX I/O
COMPATIBILITY Aztec /UNIX
LIBRARY c.lib

DECLARATION

size_t write (int fd, void *buf, size_t bufsize);

size_t write (int fd, woid *buf, size_t bufsize);

DESCRIPTION

write() writes characters to a device or disk which has been previously opened by a call to open()
or creat(). The characters are written to the device or file directly from the caller’s buffer.

fd is the file descriptor which was returned to the caller when the device or file was opened.

wctomb()

Library Functions 11-125

buf is a pointer to the buffer containing the characters to be written.

bufsize is the number of characters to be written.

If the operation is successful, write() returns as its value the number of characters written.

write() must be implemented to support output to any files or devices. If file 1/O support is de-
sired, write() must update the file position entry in the device table associated with the relevant
file descriptor. It should indicate the byte immediately following the last byte transferred. The file
size entry in the device table and file system should also be updated.

If file 1/O support is not desired, and file descriptors will always have a fixed interpretation (i.e.
‘Y’ will refer to port 1 and ’2’ will refer to port 2, etc.), positioning and file size information may
not have to be maintained

See open(C) for more information on: file descriptors, device table, and write()’s functionality in
Standard I/O.

_write() performs the same as write() and is provided for internal library use in case you define a
version of write() that overrides the library version.

DIAGNOSTICS

If the operation is unsuccessful, write() returns -1 and places a code in the global integer errno. er-
mo is set to EBADF if the file descriptor is invalid. It is set to EINVAL if the file or device associ-
ated with the file descriptor is only permitted read access.

NOTES

write() and _write() are system dependent, and must be specially written for your system.

SEE ALSO

open(), close(), creat(), read()

| ‘TECHNICAL INFORMATION

Chapter 12 - Technical Information

This chapter discusses topics that could not be conveniently discussed elsewhere.

It is divided into the following sections:

e Assembly-language functions;

e C-language interrupt routines.

12-2 Aztec_C68k ROM Reference Manual

Assembler Functions
This section discusses assembly-language functions that can be called by, and themselves call, C-
language functions.

It first discusses the conventions that such functions must follow, and then discusses the in-line

placement of assembler statements within C functions.

C-callable, Assembly-language Functions

A C-callable, assembly-language function must obey the conventions that are described in the

following paragraphs.

Names of Global Variables and Functions

By default, the names by which assembly-language modules and C-language modules refer to
global variables and functions differ slightly: the assembler name is generated from the C name
by prepending an underscore character.

Consider, for example, the following C module:

int var;

main ()

{

}
func (var) ;

The names by which an assembler module would by default refer to these global variables and
functions are_var, main, and_ func.

You can define an alternate naming convention using the compiler’s -yu option, as follows:

-yup Assembly names are derived by prepending an underscore to C names;
-yun Assembler names are the same as C names;
-yua Assembler names are derived by appending an underscore to C names.

In the following paragraphs, we assume that assembler names are derived from C names by pre-
pending an underscore.

Global Variables

A C module’s global variables are in either the uninitialized data segment or the initialized data
sepment.

An assembler module can create an uninitialized variable that can be accessed by a C function,
using the global directive.For example, the following code creates the global variable _ var,
which can be accessed as an array by a C function, and reserves 8 bytes of storage for it.

global var,8

Technical Information 42 -3 _

A C function that wants to access _var could have the following declaration:

extern short var[];

To create an initialized variable that can be accessed by a C function, an assembler module can
use the public and de directives. For example, the following code creates the public variable
_ptr that initially contains a pointer to the symbol str, and that can be accessed as achar
pointer by a C function:

dseg

public _ptr
_ptr dc.l str

To access _ptr,aC function could use the following declaration:

extern char *ptr;

An assembler module can access global initialized or uninitialized variables that are created in C modules by defining the variables with a public directive within the dseg segment. For exam- ple, suppose a C module creates a global, uninitialized short named count and a global, in- itialized short named total using the statement:

short count, total=1;

An assembler module can access these variables by using the following directives:

dseg
public _count, total

Names of External Functions and Variables

The compiler translates the name of a function or variable to assembly language by truncating the name to 31 characters and optionally adding an underscore to the name (as defined by the - yu option). Thus, to be accessible from C modules or to access C modules, assembler modules must obey this convention.

For example, the following C module calls the function bmp, which simply adds 10 to the global short count. A C module refers to this function as bmp, and an assembler module refers toitas bmp.

int count;

main ()

{

}
bmp () ;

An assembler version of _bmp could be:

dseg
public _ count
cseg

public _bmp

add .w #10, count
rts

end

| | 12-4— Aztec C68k ROM Reference Manual

C Function Calls and Returns

The assembler code generated by the compiler for a C call to another function pushes the argu-

ments onto the stack, in the reverse order in which they were specified in the call’s argument

list, and then calls the function.

An assembler function returns to a C function caller by issuing a rts instruction, and leaving

the caller’s arguments on the stack. The caller then removes the arguments from the stack.

The registers in which a function returns its value depends on the type of the value:

- e Non-floating point values are always returned to dO.

e When floating point operations are performed by software, floats are returned in dO,
doubles in dO and d1, and long doubles in the pseudo register .p0.

e When floating point operations are performed by a 68881, floating point values are re-

turned in fp0.

For example, consider the following assembler function, _ sub, that takes two short arguments

that are passed to it on the stack, subtracts them, and returns the difference as the function

value. A C function will refer to this function using the name sub.

cseg
public _ sub

_sub:
mov 4(sp),d0 ;get first argument
sub 6(sp) ,d0 ;subtract second from first

rts

The following C function calls sub to subtract b from a, and stores the difference in c:

main ()

{
short a,b,c;

c = sub(a,b);

}

Register Usage

An assembler function that is called by a C function must preserve all registers it uses, except
for those that the calling function uses for temporary values.

The registers that a module uses for temporary values are defined when the module is com-
piled, with the -yt option; by default, these are data registers d0-d1 and address registers a0-a2.

Pascal Function Calls and Returns

On entry to a pascal function, the stack contains the following:

e space for the function’s return value (only if the function has a return value);

} Technical Information

| Technical Information : 12 -5 |

¢ arguments, which are pushed onto the stack in the order that they appear in the
source argument list (i.e. just the reverse of the order for a C function);

e the return address.

If the value that a pascal function is to return is four bytes or less, the value is returned in the
space that is reserved for it on the stack. If the return value contains more than four bytes, the
function should place a pointer to it in the reserved stack area. Unlike a C function, a pascal
function must remove the caller’s argument from the stack before returning.

Embedded Assembler Source

Assembler statements can be embedded in a C module by surrounding them with #asm and
#endasm statements. The pound sign (#) must be the first character on the line, and the letters
must be lower case.

Embedded assembler code must preserve the contents of all registers it uses, except for those
used for temporary values.

It should make no assumptions about the contents of the registers, since the code that the com-
piler currently generates for C statements may change in the future.

To be safe, a #asm statement should be preceded by a semicolon. This avoids problems in
which the compiler mistakenly puts a label that is the target of a jump statement after, rather
than before, in-line assembly code.

In general, it is safest to contain assembly code in a separate assembler module rather than em-
bedding it in C source.

[12-6 Aztec C68k ROM Reference Manual

Interrupt Handlers
An interrupt handler can be written in C, with the following provisos: it must have a small as-
sembly language routine that performs the initial and final processing of an interrupt; and it
must restrict its use of the library functions. These provisos are discussed in the following para-
graphs.

The Assembly Language Routine

When the assembly language front-end to a C interrupt handler is activated by an interrupt, it
must do the following:

e Save on the stack the registers that the C routine uses for holding temporary values;

e If the C routine uses a small memory model, the assembly language routine must save
the small memory model support register and set in it the value __ H1_ org+32766.
__H1_org is a linker-created symbol whose value is the starting address of the inter-
rupt handler’s initialized data segment. In case you can’t tell, _ H1_org begins with
two underscores, and has one in the middle;

e jsr to the C routine.

It’s not necessary for the assembly language routine to save other registers (i.e. registers used
for holding the C routine’s register variables or the frame pointer register); this will automat-
ically be done by the C routine.

The C routine should return in the usual way; i.e. by executing a return instruction or by execut-
ing its last instruction. The assembly language routine should then restore all registers that it
saved and issue an rte instruction.

Here is a sample assembly language routine named _intbegin. It saves the default temporary
registers d0-d3 and a0-a2; saves and initializes the default small model support register a5; and
calls the C language routine whose C name is int func:

public _intbegin, intfunc, Hl org
_intbegin

movem.1 d0-d3/a0-a2/a5, -(sp)
move .1 # Hl org+32766,a5
jsxr _antfunc
movem.1 (sp) +,d0-d3/a0-a2/a5
rte

Use of Library Functions By Interrupt Routines

A C interrupt routine can call the reentrant library functions that are provided with Aztec
C68k/ROM; it usually shouldn’t call the non-reentrant library functions. A function is reentrant
if it doesn’t access global or static variables, and is non-reentrant if it does.

Technical Information

The non-reentrant library functions are these:

e The high-level buffer-allocation functions malloc(), free(), etc.

¢ sprintf();

e sscanf();

¢ The standard I/O functions, usually;

¢ The unbuffered I/O functions, usually.

The standard I/O functions are not reentrant, because they have global control blocks and be-
cause they call the non-reentrant malloc() and free() functions. An interrupt routine can call the
standard I/O functions if those calls meet certain requirements: the calls can’t modify control
block fields that may be accessed by the standard I/O calls of an interrupted process, and they
can’t call malloc() or free(). For example, an interrupt routine can issue standard I/O calls to
pre-opened streams whose standard I/O operations are unbuffered. It can also issue standard
I/O calls to pre-opened buffered streams, if the buffer has been
cesses those streams.

preallocated, and if it only ac-

The unbuffered I/O functions (which you must write) are usually not reentrant, because they
usually have a global table. But an interrupt routine can call the unbuffered I/O functions if
those calls don’t modify fields that may be accessed by the calls of an interrupted process.

Error Messaces

Chapter 13 - Error Messages

This chapter discusses error messages that can be generated by the Aztec compiler, assembler,
and linker. It is divided into three sections.

Each section offers a summarized list of error messages followed by the detailed explanations
of each error message

i “: 13-2 Aztec C68k ROM Reference Manual

Compiler Error Messages
Compiler error messages are broken down into three groups. If the error message displayed

does not give you a number before the message, refer to the sections “Fatal Compiler Error Mes-

sages” and “Compiler Internal Errors” which follow the numbered messages.

Note:

e Error codes greater than 200 will occur only if there is something wrong with the com-

piler. If you get such an error, please send us the program that generated the error.

bad digit in octal constant

string space exhausted

unterminated string

argument type mismatch

invalid type for function

inappropriate arguments

bad declaration syntax

O
o
O
n
7
A
n

oO

fF

W

DN

syntax error in typecast

9: invalid operand of & (address of)

10: array size must be positive integer

11: data type too complex

12: invalid pointer reference

13: unimplemented type

14: long switches not supported

15: storage class conflict

16: data type conflict

17: internal

18: data type conflict

19: bad syntax

20: structure redeclaration

21: missing }

22: syntax error in structure declaration

23: syntax error in enum declaration

24: need right parenthesis or comma in arg list

25: structure member name expected here

26: must be structure/union member

27: invalid typecast

28: incompatible structures

29: invalid use of structure

30: missing : in ? conditional expression

31: call of non-function

32: invalid pointer calculation

33: invalid type

Error Messages

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

57:

58:

59:

60:

61:

62:

63:

64;

65:

66:

67:

68:

69:

70:

71:

72:

73:

74:

75:

76:

undefined symbol

typedef not allowed here

no more expression space

invalid or missing expression

no auto. aggregate initialization allowed

enum redeclaration

internal [see error 17]

initializer not a constant

too many initializers

initialization of undefined structure

missing right paren in declaration

bad declaration syntax

missing closing brace

open failure on include file

invalid symbol name

multiply defined symbol

missing bracket

lvalue required

too many right paren’s

multiply defined label

too many labels

missing quote

missing apostrophe

line too long

invalid # encountered

macro too long

loss of const/volatile info

reference to undefined structure

function body must be compound statement

undefined label

inappropriate arguments

invalid function argument

expected comma

invalid else

bad statement syntax

missing semicolon

goto needs a label

statement syntax error in do-while

statement syntax error in for

Statement syntax error in for body

expression must be integer constant

missing colon on case

too many cases in switch

| | 13-4) Aztec C68k ROM Reference Manual

77: case outside of switch

78: missing colon on default

79: duplicate default

80: default outside of switch

81: break/continue error

82: invalid character

83: too many nested includes

84: constant expression expected

85: not an argument

86: null dimension in array

87: invalid character constant

88: not a structure

89: invalid use of register storage class

90: symbol redeclared

91: invalid use of floating point type

92: invalid type conversion

93: invalid expression type for switch

94: invalid identifier in macro definition

95: obsolete

96: missing argument to macro

97: too many arguments in macro definition

98: not enough arguments in macro reference

99: internal [see error 17]

100: internal [see error 17]

101: missing close parenthesis on macro reference

102: macro arguments too long

103: #else with no #if

104: #endif with no #if

105: #endasm with no #asm

106: #asm within #asm block

107: missing #endif

108: missing #endasm

109: #if value must be integer constant

110: invalid use of : operator

111: invalid use of a void expression

112: invalid use of function pointer

113: duplicate case in switch

114: macro redefined

115: keyword redefined

116: field width must be > 0

117: invalid 0 length field

118: field is too wide

119: field not allowed here

Error Messages

120:

121:

122:

123:

124:

125:

126:

127:

128:

129;

130:

131:

132:

133:

134:

135:

136:

137:

138:

139:

140:

141:

142:

143:

144:

145:

146:

147:

148:

149:

150:

151:

152:

153:

154:

155:

156:

157:

158:

159:

160:

161:

162:

invalid type for field

ptr/int conversion

ptr & int not same size

far/huge ptr & ptr not same size

invalid ptr/ptr expression

too many subscripts or indirection on integer

too many arguments

too few arguments

#error |

#elif with no #if

obsolete

at the beginning/end of macro body

obsolete

not followed by a parameter

name of macro parameter was not unique

attempt to undefine a predefined macro

invalid #include directive

macro buffer overflowed

missing right paren

missing identifier

obsolete

invalid character

range-modifier ignored

range-modifier syntax error

invalid operand for sizeof

function called without prototype

constant value too large

invalid hexadecimal constant

invalid floating constant

invalid character on control line

unterminated comment

no block level extern initialization

missing identifier in parameter list
missing static function definition

function definition can’t be via typedef

file must contain external definition

wide string literal not allowed here

incompatible function declarations

called function may not return incomplete type
Syntax error in #pragma

auto variable not used in function

function defined without prototype

can’t take address of register class.

Error Message

13. - 6 Aztec C68k ROM Reference Manual

163: upper bits of hex character constant ignored

164: non-void type function must have return value

165: struct/union must be declared outside of

prototype

166: enum must be declared outside prototype

167: expression too complex - use -MR option

168: invalid type for arg of regcall-type function

169: function declaration incompatible with prior use

170: invalid register for registerized argument

171: %%arg not found

172: invalid return type for regcall-type function

Fatal Compiler Error Messages

In the following “%%” is used to indicate a variable number of items can appear at that place.

Can’t open file '’%%’ for input!

Cannot create output file '%%!!

Dump file not found!

Error creating dump!!

Error reading dump file!

Illegal '-%%' option: %%

Illegal '-h’ option: '’%%'

Illegal 3.6 '+x’ option: '%%!'

Illegal 3.6 option: '%%’

Illegal option: '%$%'

Invalid register in -YF option

Invalid register in -YD option

More than one output filename specified

Multiple ‘’-h’ options specified

Multiple input files specified!

Need valid register here

No input file was specified!

Out of disk space

Out of memory!

Outbyte of 0x%%

Pre-compiled header not in proper format!

Pre-compiled header uses wrong size int!

Premature end of file in macro definition

Redefining label type

Symbol required

Too few arguments for '%c’ option!

Error Messages 13 -7

Too many -i options

Unable to execute as68

Compiler Internal Errors |

i

Attempt to use expression tree entry twice

Attempt to release item already free

Bad arginfo

Bad cast - ’cast’

Bad op in cgen: ‘op’

Bad operator in donode!

Bad value in outarg: opr

Bf shift didn’t work

Optim failure

Out of registers!

i 13-8) Aztec C68k ROM Reference Manual

Explanations of Compiler Error Messages

Note:

e Error codes greater than 200 will occur only if there is something wrong with the com-
piler. If you get such an error, please send us the program that generated the error.

: bad digit in octal constant

The only numerals permitted in the base 8 (octal) counting system are zero through seven. In or-
der to distinguish between octal, hexadecimal, and decimal constants, octal constants are pre-
ceded by a zero. Any number beginning with a zero must not contain a digit greater than seven.
Octal constants look like this: 01, 027, 003. Hexadecimal constants begin with Ox (e.g., 0x1,
OxAAO, OxFFF).

string space exhausted

This error should not occur.

>: unterminated string

All strings must begin and end with double quotes ("). This message indicates that a double
quote has remained unpaired.

argument type mismatch

This warning is given if the argument specified in a function call does not match that of the
function’s prototype. Although the warning is given, the argument will be converted to the ap-
propriate type before being passed. To avoid the warning, the argument can be preceded by a
type cast to the appropriate type.

invalid type for function

Functions may be declared to return any scalar type as well as certain aggregate types such as
structures. Functions are not allowed to return arrays. All definitions or declarations of a func-
tion or a function pointer that return an array will generate this error message. For example:

char(* £)() [1];

inappropriate arguments

The declaration list for the formal parameters of a function stands immediately before the left
brace of the function body, as shown below. Undeclared arguments default to int, though it is

usually better practice to declare everything. Naturally, this declaration list may be empty,
whether or not the function takes any arguments at all.

Error Messages 3 -9 |

No other inappropriate symbols should appear before the left (open) brace.

badfunction(argl, arg2)

shrt arg 1; /* mispelled or invalid keyword */
double arg 2; | |
{ /* function body */
}

goodfunction (argl, arg2)
float argl;
int arg2; /* this line is not required */
{ /* function body */
}

7: bad declaration syntax

A common cause of this error is the absence of a semicolon at the end of a declaration. The com-
piler expects a semicolon to follow a variable declaration unless commas appear between vari-
able names in multiple declarations.

int i, j; /* correct */
char c d; /* error 7 *x/
char *sl, *s2 /* error 7 detected here */
float k;

Sometimes the compiler may not detect the error until the next program line. A missing semico-
lon at the end of a #include’d file will be detected back in the file being compiled or in another
#include file. This is a good example of why it is important to examine the context of the error
rather than to rely solely on the information provided by the compiler error message(s).

8: syntax error in typecast

The syntax of the cast operator must be carefully observed. A common error is to omit a paren-
thesis:

1 = 3 * (int number) ; /*® incorrect usage */
1 = 3 * ((int) number) ; /* correct usage *

9: invalid operand of & (address of)

This error is given if the program attempts to take the address of something that does not have
an address associated with it.

#define FOUR 4
char *addr;

addr = &FOUR; /* error 9, can’t take the address of a constant */

13-10 Aztec C68k ROM Reference Manual

10:

11:

12:

13:

14:

array size must be positive integer

The dimension of an array must be greater than zero. A dimension less than or equal to zero be-
comes 1 by default. As can be seen from the following example, a dimension of zero is not the

same as leaving the brackets empty.

char badarray[0]; /* meaningless */

extern char goodarray[]; /* good */

Empty brackets are used when declaring an array that has been defined (given a size and stor-
age in memory) somewhere else (that is, outside the current function or file). In the above exam-
ple, goodarray is external. Function arguments should be declared with a null dimension:

func (sl, s2)

char sl[{]J, s2[];

data type too complex

This message is best explained by example:

char ***k**kkf£00;

The form of this declaration implies six pointers-to-pointers. The seventh asterisk indicates a
pointer to a char. The compiler is unable to keep track of so many “levels”. Removing just one
of the asterisks will cure the error. However it is to be hoped that such a construct will never be
needed.

invalid pointer reference

This error message will occur if pointer indirection is attempted on a type which cannot physi-
cally represent a printer value. The only types, other than printers themselves, which can hold
printer values, are int, short, and long (as well as their unsigned counterparts). All other C

types will generate this error. For example,

char c;

ko = 5;

will generate this error.

unimplemented type

This error should not occur with the current compiler since all the ANSI specified data types are
supported. In previous versions of the compiler, the enum keyword was allowed but the type
was not supported.

long switches not supported

This error should not occur with versions 5.0 and higher, since long switches are supported.

Error Messages

Error Messages | 13 -11 |

15:

16:

17:

18:

storage class conflict

Only automatic variables and function parameters can be specified as register.

This error can be caused by declaring a static register variable. While structure members cannot
be given a storage class at all, function arguments can be specified only as register.

A register int 7 declaration is not allowed outside a function—it will generate error 89 (see be-
low).

data type conflict

The basic data types are not numerous, and there are not many ways to use them in declara-
tions. The possibilities are listed below.

This error code indicates that two incompatible data types were used in conjunction with one
another. For example, while it is valid to say long int i, and unsigned int j, itis
meaningless to use double int k or float char c. In this respect, the compiler checks
to make sure that int, char, float and double are used correctly.

Data Type Interpretation

char character 1
int integer 2
unsigned/
unsigned int unsigned integer 2
short integer 2
long/
long integer _long integer 4
float floating pointnumber 4
long float/
double double precision float 8

internal

This error message should not occur. It is a check on the internal workings of the compiler and
is not known to be caused by any particular piece of code. However, if this error code appears,
please bring it to the attention of Manx, as it could be a bug in the compiler.

data type conflict

This message indicates an error in the use of the long or unsigned data type. long can be ap-
plied as a qualifier to int and float. unsigned can be used with char, int and long.

long i; /* a long int */
long float d; /* a double */
unsigned u; /* an unsigned int */
unsigned char c;
unsigned long 1;
unsigned float f; /* error 18 */

| 13-12, Aztec C68k ROM Reference Manual

19: bad syntax

This error occurs if the #line preprocessor directive is followed by something other than a nu-

meric constant or macro that expands to one.

#line 100 “filename” /* correct */
#line “filename” /* error 19 */

20: structure redeclaration

This message informs you that you have tried to redefine a structure.

21: missing }

The compiler requires a comma after each member in the list of fields for a structure initializa-
tion. After the last field, it expects a right (close) brace.

For example, this program fragment will generate error 21, since the initialization of the struc-
ture named emily does not have a closing brace:

struct john {

int bone;

char license[10];

} emily = {

1,
"23-4-1984";

22: syntax error in structure declaration

This error occurs in a structure declaration that is missing the opening curly brace or when the
left curly brace is followed by a right curly brace with nothing but white space.

struct /* error 22, missing left curly brace */
int a;

long b;

}

23: syntax error in enum declaration

This error occurs in an enum specification that is missing the opening curly brace or when the
left curly brace is followed by a right curly brace with nothing but white space.

enum colors {

} /* error 23, nothing in enumerator list */

24; need right parenthesis or comma in arg list

The right parenthesis is missing from a function call. Every function call must have an argu-
ment list enclosed by parentheses even if the list is empty. A right parenthesis is required to ter-
minate the argument list.

Error Messages Bk) a 13 :

25:

26:

27:

In the following example, the parentheses indicate that getchar is a function rather than a vari-
able.

getchar() ;

This is the equivalent of

CALL getchar

which might be found in a more explicit programming language. In general, a function is recog-
nized as a name followed by a left parenthesis.

With the exception of reserved words, any name can be made a function by the addition of pa-
rentheses. However, if a previously defined variable is used as a function name, a compilation
error will result.

Moreover, a comma must separate each argument in the list. For example, error 24 will also re-
sult from this statement:

funccall(argl, arg2, arg3);

structure member name expected here

The symbol name following the dot operator or the arrow must be valid. A valid name is a
string of alphanumerics and underscores. It must begin with an alphabetic (a letter of the alpha-
bet or an underscore). In the last line of the following example, (salary) is not valid because
’(’ is not an alphanumeric.

empptr = &anderson;
empptr->salary = 12000; /* these three lines */
(*empptr) .salary = 12000; /* are */
anderson.salary = 12000; /* equivalent */
empptr = Sanderson. ; /* error 25 */
empptr- = 12000; /* error 25 */
anderson. (salary) = 12000; /* error 25 */

must be structure/union member

The defined structure or union has no member with the name specified. If the -s option was
specified, no previously defined structure or union has such a member either.

Structure members cannot be created at will during a program. Like other variables, they must
be fully defined in the appropriate declaration list. Unions provide for variably typed fields, but
the full range of desired types must be anticipated in the union declaration.

invalid typecast

It is not possible to cast an expression to a function, a structure, or an array. This message may
also appear if a syntax error occurs in the expression to be cast.

structure david { ... } amy;
amy = (struct david) (expression) ; | /*error 27*/

13-14 Aztec C68k ROM Reference Manual

28:

29:

30:

31:

32:

incompatible structures

C permits the assignment of one structure to another. The compiler will ensure that the two
structures are identical. Both structures must have the same structure tag. For example:

struct david emily;

struct david amy;

emily = amy;

invalid use of structure

Not all operators can accept a structure as an operand.Also, structures cannot be passed as argu-
ments.However, it is possible to take the address of a structure using the ampersand (&), to as-
sign structures, and to reference a member of a structure using the dot operator.

missing : in ? conditional expression

The standard syntax for this operator is:

expression ? statement] : statement2

It is not desirable to use ?: for extremely complicated expressions; its purpose lies in brevity and
clarity.

call of non-function

Error 31 is generated by an expression that attempts to call a data item. The following code will
generate an error 31:

int a;

a();

Error 31 is often caused by an expression that is missing an operator. For example, Error 31 will
be generated if the expressiona * (b + c) iscodeda (b +c).

invalid pointer calculation

Pointers may be involved in three calculations. An integral value can be added to or subtracted
from a pointer. Pointers to objects of the same type can be subtracted from one another and com-
pared to one another. Since the comparison and subtraction of two pointers is dependent upon
pointer size, both operands must be the same size.

Error Messages

Error Messages 13-15 |

33:

34:

35:

36:

37:

invalid type

The unary minus (-) and bit complement (~) operators cannot be applied to structures, pointers,
arrays and functions. There is no reasonable interpretation for the following:

int function ();

char array[12];

struct joey , alice;
a = -array;

b = -alice;

c = ~function & WRONG;

undefined symbol

The compiler will recognize only reserved words and names which have been previously de-
fined. This error is often the result of a typographical error or due to an omitted declaration.

typedef not allowed here

Symbols which have been defined as types are not allowed within expressions. The exception to
this rule is the use of sizeof(expression) and the cast operator. Compare the accompanying exam-
ples:

struct lucille {

int i;
}andrew;

typedef double bigfloat;
typedef struct lucille foo;
j =4 * bigfloat £; /* error 35 */
k = &foo; /* error 35 */
x= sizeof (bigfloat) ;
Y= sizeof (foo) ; /* good */

The compiler will detect two errors in this code. In the first assignment, a typecast was probably
intended; compare error 8. The second assignment makes reference to the address of a structure
type. However, the structure type is just a template for instances of the structure (such as an-
drew). It is no more meaningful to take the address of a structure type than any other data
type, as in &int.

no more expression space

This message indicates that the expression table is not large enough for the compiler to process
the source code. It is necessary to recompile the file using the -e option to increase the number
of available entries in the expression table. For more information, see the Compiler chapter.

invalid or missing expression

This error occurs in the evaluation of an expression containing a unary operator. The operand
either is not given or is itself an invalid expression.

Unary operators take just one operand; they work on just one variable or expression. If the oper-
and is not simply missing, as in the example below, it fails to evaluate to anything its operator

| 13-16. Aztec C68k ROM Reference Manual

can accept. The unary operators are logical not (!), bit complement (~), increment (++), decre-

ment (—), unary minus (-), typecast, pointer-to (*), address-of (&), and sizeof.

38: enum redeclaration

This error occurs when an enum identifier is used more than once in defining the value of enu-

meration constants.

enum states { NY, CA, PA }

enum states { IL, FL, NJ } /* error 39, states has already been

used */

39: internal [see error 17]

40: initializer not a constant

In certain initializations, the expression to the right of the equal sign (=) must be a constant. In-

deed, only automatic and register variables may be initialized to an expression. Such initializa-

tions are meant as a convenient shorthand to eliminate assignment statements. The initialization

of statics and globals actually occurs at link-time, and not at run-time.

{
int i= 3;

static int j = (2 + i); /* illegal */

41: too many initializers

There were more values found in an initialization than array or structure members exist to hold

them. Either too many values were specified or there should have been more members declared

in the aggregate definition.

In the initialization of a complex data structure, it is possible to enclose the initializer in a single

set of braces and simply list the members, separated by commas. If more than one-set of braces

is used, as in the case of a structure within a structure, the initializer must be entirely braced.

struct {

struct {

char array[];
} substruct;

} superstruct =

version 1:

{
"abcdefghij"

};
version 2:

{
{

{ Tal, '"b!’,'o",...,74",'3'}

}
};

| Error Messages

Error Messages 13-17 |

42:

43:

44;

45;

In version 1, the initializers are copied byte-for-byte onto the structure, superstruct.

Another likely source of this error is in the initialization of arrays with strings, as in:

char array[10] = “abcdefghij”;

This will generate error 42 because the string constant on the right is null-terminated. The null
terminator (’\0’ or 0x00) brings the size of the initializer to 11 bytes, which overflows the ten-
byte array.

initialization of undefined structure

An attempt has been made to assign values to a structure which has not yet been defined.

struct david {...};
struct dog david = { 1, 2, 3}; /* error 43 */

missing right paren in declaration

This error occurs in the declaration of a function pointer when the right parenthesis is left out.

int (* fp) (); /* error 44 */

int (* fp(); /* error 44 */

bad declaration syntax

This error code is an all purpose means for catching errors in declaration statements. It indicates
that the compiler is unable to interpret a word in an external declaration list.

missing closing brace

All the braces did not pair up at the end of compilation. If all the preceding code is correct, this
message indicates that the final closing brace to a function is missing. However, it can also re-
sult from a brace missing from an inner block.

Keep in mind that the compiler accepts or rejects code on the basis of syntax, so that an error is
detected only when the rules of grammar are violated. This can be misleading. For example, the
program below will generate error 46 at the end even though the human error probably oc-
curred in the while loop several lines earlier.

As the code appears here, every statement after the left brace in line 6 belongs to the body of
the while loop. The compilation error vanishes when a right brace is appended to the end of
the program, but the results during run time will be indecipherable because the brace should be
placed at the end of the loop.

| | 13-18 Aztec C68k ROM Reference Manual

It is usually best to match braces visually before running the compiler. A C-oriented text editor
makes this task easier.

main ()

{
int i, j;

char array[80];

gets (array) ;
i = 0;
while (array[i]) {

putchar(array[i]);
it+;

for (i=0; array[i});i++) {
for (j=i + 1; array[j]; j++) {

printf ("elements %d and %d are “,i, j);
if (array[i] == array[j))

printf ("the same\n") ;
else

printf ("different\n") ;
}
putchar(’\n’);

46: open failure on include file

47]:

48:

When a file is #included, the compiler will look for it in a default area (see the Compiler chap-
ter). This message will be generated if the file could not be opened. An open failure usually oc-
curs when the included file does not exist where the compiler is searching for it. Note that a
drive specification is allowed in an include statement, but this diminishes flexibility somewhat.

invalid symbol name

This message is produced by the preprocessor, which is that part of the compiler which handles
lines which begin with a pound sign (#). The source for the error is on such a line. A legal name
is a string whose first character is an alphabetic (a letter of the alphabet or an underscore). The
succeeding characters may be any combination of alphanumerics (alphabetics and numerals).
The following symbols will produce this error code:

2nd time,

dont _do this!

multiply defined symbol

This message warns that a symbol has already been declared and that it is illegal to redeclare it.
The following is a representative example:

int i, j, k, i; /* illegal */

Error Messages 2B -19 :

49

50:

51:

52

53:

> missing bracket

This error code is used to indicate the need for a parenthesis, bracket or brace in a variety of cir-
cumstances.

lvalue required

Only Ivalues are allowed to stand on the left-hand side of an assignment. For example:

int num;

num = 7;

They are distinguished from rvalues, which can never stand on the left of an assignment, by the
fact that they refer to a unique location in memory where a value can be stored. An lvalue may
be thought of as a bucket into which an rvalue can be dropped. Just as the contents of one
bucket can be passed to another, so can an Ivalue, y, be assigned to another Ivalue, x:

#define NUMBER 512
x= y;
1024 = gz; /* wrong; /rvalues are reversed */
NUMBER = x; /* wrong; NUMBER is an rvalue */

Some operators which require Ivalues as operands are increment (++), decrement (—), and ad-
dress-of (&). It is not possible to take the address of a register variable as was attempted in the
following example:

register int i, j;

too many right paren’s

This error should never be returned from this compiler.

:smultiply defined label

On occasions when the goto statement is used, it is important that the specified label be unique.
There is no criterion by which the computer can choose between identical labels. If you have
trouble finding the duplicate label, use your text editor to search for all occurences of the string.

too many labels

The compiler maintains an internal table of labels which will support up to several dozen la-
bels. although this table is fixed in size, it should satisfy the requirements os any reasonable C
program. C was structured to discourage extravagance in the use of gotos. Strictly speaking,
goto statements are not required by any procedure in C; they are primarily recommended as a
quick and simple means of exiting from a nested structure.

This error indicates that you should significantly reduce the number of gotos in your program.

13-20 Aztec _C68k ROM Reference Manual

54:

55:

56:

57;

58:

59

missing quote

The compiler found a mismatched double quote (") in a #define preprocessor command. Unlike
brackets, quotes are not paired innermost to outermost, but sequentially. So the first quote is as-
sociated with the second, the third with the fourth, and so on. Single quotes (’) and double
quotes (") are entirely different characters and should not be confused. The latter are used to de-
limit string constants. A double quote can be included in a string by use of a backslash, as in
this example:

“this is a string”

“this is a string with an embedded quote: \”. ™

missing apostrophe

The compiler found a mismatched single quote or apostrophe (’) in a #define preprocessor com-
mand. Single quotes are paired sequentially (see error 55). Although quotes can not be nested, a
quote can be represented in a character constant with a backslash:

char c = /\''; /* c is initialized to single quote */

line too long

Lines are restricted in length by the size of the buffer used to hold them. This restriction varies
from system to system. However, logical lines can be infinitely long by continuing a line with a
backslash-newline sequence. These characters will be ignored.

invalid # encountered

The pound sign (#) begins each command for the preprocessor: #include, #define, #if, #ifdef,
#ifndef, #else, #endif, #asm, #endasm, #line and #undef. These symbols are strictly defined.
The pound sign (#) must be in column one and lower case letters are required.

macro too long

Macros can be defined with a preprocessor command of the following form:

#define [identifier] [substitution text]

The compiler then proceeds to replace all instances of identifier with the substitution text that was
specified by the #define.

This error code refers to the substitution text of a macro. Whereas ideally a macro definition may
be extended for an arbitrary number of lines by ending each line with a backslash (\), for practi-
cal purposes the size of a macro has been limited to 255 characters.

: loss of const/volatile info

This error occurs when passing the address of a variable that is declared as const and/or vola-
tile.

extern const volatile int clock time;
set_time (&clock time) ; /* error 60 */

Error Messages 13 - 21 |

60:

61:

62:

63:

reference to undefined structure

This message comes in two forms: |

1) As a warning, due to referencing an undefined structure member.

2) As an error, when trying to obtain the size of an undefined structure.

a = sizeof(struct nodef) ; /* error 61 unless nodef
has been defined */

function body must be compound statement

The body of a function must be enclosed by braces, even though it may consist of only one state-
ment:

function ()

{
return 1;

}

This error can also be caused by an error inside a function declaration list, as in:

func(a, b)

int a; chr b;

{

}

undefined label

A goto statement is meaningless if the corresponding label does not appear somewhere in the
code. The compiler disallows this since it must be able to specify a destination to the computer.

It is not possible to go to a label outside the present function (labels are local to the function in
which they appear). Thus, if a label does not exist in the same procedure as its corresponding
goto, this message will be generated.

inappropriate arguments

When a function is declared (as opposed to defined), it is poor syntax to specify an argument
list:

function (string)
char *string;

{
char *funcl (); /* correct. */
double func2 (x,y) ; /* wrong */

}

In this example, function () is being defined, but func] () and func2() are being de-
clared.

-
13-22 Aztec C68k ROM Reference Manual

64:

65:

66:

67:

invalid function argument

This error occurs in a function definition that contains an argument that is not a valid identifier.

sub(a, 2b) { /* error 65 because identifiers can’t begin

with a numeric character */

expected comma

In an argument list, arguments must be separated by commas.

invalid else

An else was found which is not associated with an if statement. else is bound to the nearest if

at its own level of nesting. So if-else pairings are determined by their relative placement in the

code and their grouping by braces.

i£(...) {

if (...) {

} else if (...)

}else {
|

The indentation of the source text should indicate the intended structure of the code. Note that

the indentation of the if and else-if means only that the programmer wanted both condi-

tionals to be nested at the same level, in particular one step down from the presiding i€ state-

ment. But it is the placement of braces that determines this for the compiler. The example above

is correct, but probably does not conform to the expectations revealed by the indentation of the

else statement. As shown here, the else is paired with the first if, not the second.

bad statement syntax

The keywords used in declaring a variable, which specify storage class and data type, must not

appear in an executable statement. In particular, all local declarations must appear at the begin-

ning of a block, that is, directly following the left brace which delimits the body of a loop, condi-

Error Messages (13-23 |

68:

69:

70:

tional or function. Once the compiler has reached a non-declaration, a keyword such as char or
int must not lead a statement; compare the use of the casting operator:

func ()

{
int i;

char array[12];
float k = 2.03;
i = 0;

int m; /* error 68 */
jJ=zit 5; .
i = (int) k; /* correct */
i4£ (1) {

int i = 3;

J = i;
printf ("%d",4);

}
print£ ("Sd%d\n",i,3);

This trivial function prints the values 3,2 and 3. The variable i which is declared in the

body of the conditional if lives only until the next right brace; then it dies, and the original i
regains its identity.

missing semicolon

A semicolon is missing from the end of an executable statement. This error code is similar to er-
ror code 7. It will remain undetected until the following line and is often spuriously caused by a
previous error.

goto needs a label

Compare your use of goto with this example. This message says that you did not specify where
you wanted to goto with label:

goto label;

label:

It is not possible to goto just any identifier in the source code; labels are special because they
are followed by a colon.

Statement syntax error in do-while

The body of a do-while may consist of one statement or several statements enclosed in braces.
A while conditional is required after the body of the loop. This is true even if the loop is infi-
nite, as it is required by the rules of syntax. After typing in a long body, do.not forget the while
conditional.

| 13 - 24° Aztec C68k ROM Reference Manual

71i: statement syntax error in for

This error occurs when the first of the two semicolons that separate the three expressions found
in a for loop condition are missing.

for (1=0 i; itt+) { /* error 72 due to missing semicolon */

72: statement syntax error in for body

This error occurs when the second of the two semicolons that separate the three expressions
found in a for loop condition is missing.

for (i=0; i it+) { /* error 73 due to missing semicolon */

73: expression must be integer constant

This error occurs when a variable occurs instead of an integer constant in declaring the size of
an array, initializing an element in an enum list, or specifying a case constant for a switch.

74: missing colon on case

This should be straightforward. If the compiler accepts a case value, a colon should follow it. A
semi-colon must not be accidently entered in its place.

75: too many cases in switch

The compiler reserves a limited number of spaces in an internal table for case statements. If a
program requires more cases than the table initially allows, it becomes necessary to tell the com-
piler what the table value should be changed to. It is not necessary to know exactly how many
are needed; an approximation is sufficient, depending on the requirements of the situation.

76: case outside of switch

The keyword, case, belongs to just one syntactic structure, the switch. If case appears outside
the braces which contain a switch statement, this error is generated. Remember that all key-
words are reserved, so that they cannot be used as variable names.

77: missing colon on default

This message indicates that a colon is missing after the keyword, default. Compare error 75.

78: duplicate default

The compiler has found more than one default in a switch. switch will compare a variable to a
given list of values. But it is not always possible to anticipate the full range of values which the
variable may take. Nor is it feasible to specify a large number of cases in which the program is
not particularly interested.

Error Messages 13 - 25 |

719:

80:

81:

82:

83:

84:

So C provides for a default case. The default will handle all those values not specified by a case
statement. It is analogous to the else companion to the conditional, if. Just as there is one else
for every if, only one default case is allowed in a switch statement. However, unlike the else
statement, the position of a default is not crucial; a default can appear anywhere in a list of
cases.

default outside of switch

The keyword, default, is used just like case. It must appear within the brackets which delimit
the switch statement.

break/continue error

break and continue are used to skip the remainder of a loop in order to exit or repeat the loop.
Break will also end a switch statement. But when the keywords, break or continue, are used
outside of these contexts, this message results.

invalid character

Some characters simply do not make sense in a C program, such as $ and @. Others, for in-
stance the pound sign (#), may be valid only in particular contexts.

too many nested includes

#includes can be nested, but this capacity is limited. The compiler will balk if required to de-
scend more than three levels into a nest. In the example given, file D is not allowed to have a
#include in the compilation of file A.

file A file B file C file D
#include “B” #include “C” #include “D”

constant expression expected

This error occurs when an integer constant is missing, such as in initializing an element in an
enum list, specifying a case constant for a switch, or for a #if preprocessor directive.

not an argument

The compiler has found a name in the declaration list that was not in the argument list. Only
the converse case is valid, i.e., an argument can be passed and not subsequently declared.

| 13-26. Aztec C68k ROM Reference Manual

85:

86:

87]:

88:

89:

90:

91:

null dimension in array

In certain cases, the compiler knows how to treat multidimensional arrays whose left-most di-

mensions are not given in its declaration. Specifically, this is true for an extern declaration and

an array initialization. The value of any dimension which is not the left-most must be given.

extern char array[] [12]; /* correct */

extern char badarray[5] []; /* wrong */

invalid character constant

Character constants may consist of one or two characters enclosed in single quotes, as ‘a’ or

'ab’. There is no analog to a null string, so” (two single quotes with no intervening white

space) is not allowed. Recall that the special backslash characters (\b, \n, \t etc.) are singu-

lar, so that the following are valid: ‘\n’, ‘\na’, ‘a\n’.’aaa’ is invalid.

not a structure

Occurs only under compilation without the -s option. A name used as a structure does not refer

to a structure, but to some other data type.

int i;

i.member = 3; /* error 88 */

invalid use of register storage class

A globally defined variable cannot be specified as a register. Register variables are required to
be local.

symbol redeclared

A function argument has been declared more than once.

invalid use of floating point type

Floating point numbers can be negated (unary minus), added, subtracted, multiplied, divided
and compared; any other operator will produce this error message.

invalid type conversion

This error code indicates that a data type conversion, implicit in the code, is not allowed, as in
the following piece of code:

int i;

float j;
char *ptr;
i= j + ptr;

The diagram shows how variables are converted to different types in the evaluation of expres-
sions. Initially, variables of type char and short become int,and float becomes dou-

Error Messages 13 ~27-

92:

93:

94;

95;

96

ble. Then all variables are promoted to the highest type present in the expression. The result of
the expression will have this type also. Thus, an expression containing a float will evaluate
toa double.

Types have the following hierarchy:

double float

long
unsigned
int short, char

This error can also be caused by an attempt to return a structure, since the structure is being
cast to the type of the function, as in:

int func ()

{
struct tag sam;

return sam;

}

invalid expression type for switch

Only a char, int or unsigned variable can be switched. See the example for error 74.

invalid identifier in macro definition

This error occurs in a macro definition that contains one or more arguments that are not valid
identifiers.

#define add(a,2b) (a+2b) /* error 94 because identifiers can’t begin
with a numeric character */

obsolete

Error codes interpreted as obsolete do not occur in the current version of the compiler. Some
simply no longer apply due to the increased adaptability of the compiler. Other error codes
have been translated into full messages sent directly to the screen. If you are using an older ver-
sion of the product and have need of these codes, please contact Manx for information.

missing argument to macro

Not enough arguments were found in an invocation of a macro. Specifically, a “double comma”
will produce this error:

#define reverse (x,y,z) (z,y,x)
func (reverse (i,,k));

> too many arguments in macro definition

This error occurs in a macro definition that contains more than 32 arguments in its definition.

13-28 Aztec C68k ROM Reference Manual

97: not enough args in macro reference

The incorrect number of arguments was found in an invocation of a previously defined macro.
As the examples show, this error is not identical to error 96.

#define exchange(x,y) (y,x)
func (exchange (1)) ; /* error 98 */

98: internal [see error 17]

99: internal [see error 17]

100: missing close parenthesis on macro reference

A right (closing) parenthesis is expected in a macro reference with arguments. In a sense, this is

the complement of error 95; a macro argument list is checked for both a beginning and an end-
ing.

101: macro arguments too long

The combined length of a macro’s arguments is limited. This error can be resolved by simply
shortening the arguments with which the macro is invoked.

102: #else with no #if

Correspondence between #if and #else is analogous to that which exists between the control
flow statements, if and else. Obviously, much depends upon the relative placement of the state-
ments in the code. However, #if blocks must always be terminated by #endif, and the #else

statement must be included in the block of the #if with which it is associated. For example:

#if£ ERROR 0
printf ("there was an error\n") ;

#else
printf£("no error this time\n");

#endif

#i£ statements can be nested, as below. The range of each #if is determined by a #endif.
This also excludes #else from #if blocks to which it does not belong:

#ifdef JAN1
printf ("happy new year! \n") ;

#if sick
printf("i think i’11 go home now\n") ;

#else
prantf£("i think i’11 have another\n") ;

#endif
#else

printf("i wonder what day it is\n");
#endif

Error Messages 13 -29

If the first #endif was missing, error 103 would result. And without the second #endif, the
compiler would generate error 107.

103: #endif with no #if

#endif is paired with the nearest #if, #ifdef or #ifndef which precedes it. (See error 103.)

104: #endasm with no #asm

#endasm must appear after an associated #asm. These compiler-control lines are used to begin
and end embedded assembly code. This error code indicates that the compiler has reached a
#endasm without having found a previous #asm. If the #asm was simply missing, the error list
should begin with the assembly code (which are undefined symbols to the compiler).

105: #asm within #asm block

There is no meaningful sense in which in-line assembly code can be nested, so the #asm key-
word must not appear between a paired #asm/#endasm. When a piece of in-line assembly is
augmented for temporary purposes, the old #asm and #endasm can be enclosed in comments
as place-holders.

#asm

/* temporary asm code */
/* #asm old beginning */
/* more asm code */

#endasm

106: missing #endif

A #endif is required for every #if, #ifdef and #ifndef, even if the entire source file is subject to
a single conditional compilation. Try to assign pairs beginning with the first #endif. Backtrack
to the previous #if and form the pair. Assign the next #endif with the nearest unpaired #if.
When this process becomes greatly complicated, you might consider rethinking the logic of
your program.

107: missing #endasm

In-line assembly code must be terminated by a #endasm in all cases. #asm must always be
paired with a #endasm.

108: #if value must be integer constant

#if requires an integral constant expression. This allows both integer and character constants,
the arithmetic operators, bitwise operators, the unary minus (-) and bit complement, and com-
parison tests.

Tl rror Messages

| 13 -30_ Aztec C68k ROM Reference Manual

Assuming all the macro constants (in capitals) are integers, then

#if DIFF = ‘A’-’a’

#i£ (WORD &= ~MASK) > 8

#i£ MAR | APR | MAY

are all legal expressions for use with #if.

109: invalid use of : operator

The colon operator occurs in two places:

e Following a question mark as part of a conditional, as in

(flag ? 1: 0);

e Following a label inserted by the programmer or following one of the reserved labels,
case and default.

110: invalid use of a void expression

This error can be caused by assigning a void expression to a variable, as in this example:

void func();

int h;

h = func(arg) ;

111: invalid use of function pointer

For example,

ant (*funcptr) ();

funcptr++;

funcptr is a pointer to a function which returns an integer. Although it is like other pointers in
that it contains the address of its object, it is not subject to the rules of pointer arithmetic. Other-

wise, the offending statement in the example would be interpreted as adding to the pointer the
size of the function, which is not a defined value.

Error Messages Bk | -31 :

112: duplicate case in switch

A switch statement has two case values which are the same. Either the two cases must be com-
bined into one, or one must be discarded. For instance:

switch (c) {

case NOOP:

return (0);
case MULT:

return (x * y);
case DIV:

return (x / y);
case NOOP:

default:

return;
}

The case of NOOP is duplicated, and will generate an error.

113: macro redefined

For example,

#define islow(n) (n>=0&&n<5)

#define islow(n) (n>=0&&n<=5)

The macro, islow, is being used to classify a numerical value. When a second definition of it is
found, the compiler will compare the new substitution string with the previous one. If they are
found to be different, the second definition will become current, and this error code will be pro-
duced.

In the example, the second definition differs from the first in a single character, ’=’. The second
definition is also different from this one:

#define islow(n) n>0&&n>=<5

since the parentheses are missing.

The following lines will not generate this error:

#define NULL 0

ide fine NULL 0

But these are different from:

#define NULL ’\0’

In practice, this error message does not affect the compilation of the source code. The most re-
cent “revision” of the substitution string is used for the macro. But relying upon this fact may
not be a wise habit.

(13-3 ? : Aztec C68k ROM Reference Manual

114: keyword redefined

Keywords cannot be defined as macros, as in:

#define int foo

If you have a variable which may be either, for instance, a short or a long integer, there are alter-
native methods for switching between the two. If you want to compile the variable as either
type of integer, consider the following:

#ifdef LONGINT
long i;

#else
short i;

endif

Another possibility is through a typedef:

#ifdef LONGINT
typedef long VARTYPE;

#else
typedef short VARTYPE ;

#endif
VARTYPE i;

115: field width must be > 0

A field in a bit field structure can not have a negative number of bits.

116: invalid 0 length field

A field in a bit field structure can not have zero bits.

117: field is too wide

A field in a bit field structure can not have more than 16 bits.

118: field not allowed here

A bit field definition can only be contained in a structure.

119: invalid type for field

The type of a bit field can only be of type int or unsigned int.

120: ptr/int conversion

The compiler issues this warning message if it must implicitly convert the type of an expression
from pointer to int or long, or vice versa.

Error Messages _

Error Messages 13 = 33.

If the program explicitly casts a pointer to an int this message will not be issued. However, in
this case, error 122 may occur.

For example, the following will generate warning 121:

char *cep;
int i;

i=cp; /* implicit conversion of char to int */

When the compiler issues warning 121, it will generate correct code if the sizes of the two items
are the same.

121: ptr & int not same size

If a program explicitly casts a pointer to an int, and the sizes of the two items differ, the com-
piler will issue this warning message. The code that is generated when the converted pointer is
used in an expression will use only as much of the least significant part of the pointer as will fit
in an int.

122: far/huge ptr & ptr not same size

This error occurs when trying to assign a near pointer to a far or huge pointer. A warning is
generated when casting a far or huge pointer to a near pointer.

123: invalid ptr/ptr expression

If a program attempts to assign one pointer to another without explicitly casting the two point-
ers to be of the same type, and the types of the two pointers are in fact different, the compiler
will issue this warning message.

The compiler will generate code for the assignment, and if the sizes of the two pointers are the
same, the code will be correct. But if the sizes differ, the code may not be correct.

124: too many subscripts or indirection on integer

This warning message is issued if a program attempts to use an integer as a pointer; that is, as the operand of a star operator.

If the sizes of a pointer and an int are the same, the generated code will access the correct mem-
ory location, but if they are not, it will not.

For example,

char c;
long g;
0x5c=0; / warning 125, because Ox5c is an int */
ec[{i}=0; /* warning 125, because cti is an int */ g[{i]=0; /* error 12, because gti is along */

Error Messages

| 13-34_ Aztec C68k ROM Reference Manual

125: too many arguments

This error occurs when a function is invoked with more arguments than is specified in its proto-

type or definition. The only exception allowed is when a variable number of arguments is speci-

fied in the prototype.

126: too few arguments

This error occurs when a function is invoked with less arguments than is specified in its proto-

type or definition.

127: #error

This error is generated by the #error directive and is followed by the optional sequence of pre-

processing tokens found in the source code.

128: #elif with no #if

This error occurs when the #elif preprocessor directive is used without a preceding #if directive.

129: obsolete [see error 95]

130: ## at the beginning/end of macro body

This error occurs when a ## is found as the first or last end of a macro definition body.

¥#define TWOSHARP 2## /* error 131 */

131: obsolete[see error 95]

132: # not followed by a parameter

This error may occur in a #define macro in which the # operator is applied to a parameter in
the replacement list. If the # token is not followed by a parameter, this error message will be
generated.

133: name of macro parameter was not unique

This error should never be returned from this compiler.

134: attempt to undefine a predefined macro

This error occurs when attempting to use a #undef on those macros that are predefined by the
compiler, such as__ STDC__,_ TIME_, _ DATE_,__FILE_, ___ LINE__, and _ FUNC_..

#undef TIME _ /* error 135 */

Error Messages

Error Messages 13 -3 5

135: invalid #include directive

This error occurs when the #include directive is not followed by a string literal or a filename en-
closed in < > signs.

#include filename /* error 136 */

136: macro buffer overflowed

This error should never be returned from this compiler.

137: missing right paren

This error occurs when attempting to use the defined directive with a left parenthesis and no
matching right parenthesis.

#if defined (MACINTOSH /* error 138 */

138: missing identifier

This error occurs when attempting to use the defined directive with no identifier following the
defined keyword.

#if defined /* error 139 */

139: obsolete

[see error 95]

140: invalid character

This error should never be returned from this compiler.

141: range-modifier ignored

Using a range modifier (near, far, etc.) on a structure or union member is allowed by the parser
but has no effect and is ignored.

Note: This error should never be returned from this compiler.

142: range-modifier syntax error

A range-modifier is illegal as part of a function declaration. You cannot say that a function is
near, far, huge, etc.

Note: This error should never be returned from this compiler.

| 2B 36 Aztec C68k ROM Reference Manual

143: invalid operand for sizeof

This error occurs when attempting to obtain the sizeof of something other than a previously de-
fined data structure.

sub ()
{

}
int i = sizeof (sub); /* error 144 */

144: function called without prototype

This warning is generated for functions that are called without having been prototyped. It only
occurs when compiling with the -wp option.

145: constant value too large

This error occurs when attempting to use a constant larger than the unsigned long Oxffffffff in
an expression.

146: invalid hexadecimal constant

This error occurs when the character following a Ox or 0X is not a valid hexadecimal constant.

int i = 0Oxg2; /* error 147, 'g’ is not a valid hex constant */

147: invalid floating constant

This error occurs if the first letter excluding the optional sign following the e or E ina floating
point number is something other than a digit.

double d = 123e+f; /* error 148, ‘'f' is not a digit */

148: invalid character on control line

This error occurs on conditional preprocessor lines that expect a single constant expression but
get extra information.

#i£ CONST invalid /* error 149 due to extra characters “invalid” */

149: unterminated comment

This error occurs if the start of a comment (/*) is not terminated with (*/) before the end of the
file.

150: no block level extern initialization

This error occurs when initialization of an extern variable is attempted inside a function. Initiali-
zation of externs is permissible outside of functions, or the function can declare the variable as
extern and then initialize it further down in the code using an assignment statement.

Error Messages 2B- 37 ; ~]

151: missing identifier in parameter list

This error occurs when the type of an argument is specified in a function definition without be-
ing followed by the argument itself.

sub(int) { | /* error 152, missing the name of the int argument */

152: missing static function definition

This error occurs if a function has been declared as static in a file and has not been followed by
its actual definition further down in the file.

153: function definition can’t be via typedef

This error occurs when incorrectly defining a function using a typedef. It is possible to define a
typedef that is a function such as:

typedef int F(void) ;

which sets the type F to be a function with no arguments returning int. Then, a function can
be declared such as:

F £;

which IS legal. However, the function definition:

Ff {}

is illegal.

154: fiie must contain external definition

This error occurs in a file with no external data or function definitions when compiling with the
-pa option to use the ANSI preprocessor.

155: wide string literal not allowed here

This error occurs when attempting to use a wide String literal with the #include or #line direc-
tives.

#include L"filename" /*®* error 156 */

156: incompatible function declarations

This error occurs if a function declaration does not match a previous definition or declaration
for the same function.

157: called function may not return incomplete type

This error occurs when a function attempts to return a structure which has not been defined. If
a function is called that returns a structure, but the size of the structure is unknown, then it is

| (13-38. Aztec C68k ROM Reference Manual

not possible for the compiler to know how much data is being returned by the function and
how much space to reserve for the return value.

For example:

struct foo x();

main ()

{

}
x();

158: syntax error in #pragma

This error occurs if the #pragma is used for a function call and does not match the following

syntax.

#pragma regcall([return=]
func(argl,arg2,...,argn))

#pragma amicall (base,

offset, func(argl,arg2,...,argn))

#pragma libcall func base offset regmask

#pragma syscall func offset regmask

159: auto variable not used in function

This warning occurs when compiling with the -wu option and a function containing a local vari-

able has not been used.

160: function defined without prototype

This warning occurs:

e when compiling with the -wp option and a function does not have its arguments pro-
totyped

or

e if there are no arguments but you have not specified void.

161: can’t take address of register class

This error occurs when attempting to take the address of a variable that has been declared as a
register class variable.

register int a;
int *ip;

cp = &@a; /* error 162 */

Error Messages 13 - 39 .

162: upper bits of hex character constant ignored

This warning occurs if the compiler encounters a hexadecimal character constant (specified by
\x) whose value cannot fit within a single byte. For example:

char *eptr = “\x9b7";

will generate a warning because “\x9b7" cannot be stored within one byte. The compiler will
ignore the most significant bits, and use the least significant bits. In the example the compiler
will treat “\x9b7" as “\xb7". This warning will occur if you accidentally place a digit from 0
through 9 ora letter from a through £ immediately after a \x escape sequence. In the example
if you intended to have 0x9b followed by the ASCII digit 7, you could use string concatena-
tion to produce the desired result:

char *eptr = “\x98" “wy:

163: non-void type function must have return value

This error message can occur only if the -wr compiler option is used. If the compiler encounters
a function which is defined as returning a value (int, char, or the like) but which does not have
an explicit return. For example:

int func()

{

}
printf("hello \n");

would generate this message. Replacing int func() with func () will not correct the error. The specification void func () will correct the problem. The specification of an explicit return
will also.

164: struct/union must be declared outside of prototype

This warning message will be generated if a union or struct appears as an argument in a func- tion prototype and there is no previous declaration for the union or struct. This warning will be generated it there is no union or struct declaration or if the union or struct declaration occurs after the prototype statement. The Sequence struct declaration, prototype statement, function definition will correct the problem as in this example:

struct astruct {

inta;

char c;

}

void func(struct astruct arg);

void func(struct astruct arg);
{

}

This problem presents special difficulties when it arises because the intended union or struct declaration occurs after the prototype definition. A strict interpretation of ANSI rules, in this case, produces results that may seem arbitrary and illogical. Positioning the union or struct dec-

Error Messages

[| 13-40 Aztec C68k ROM Reference Manual

laration so that it occurs before the prototype definition corrects the problem. If the problem is
not corrected, it is unlikely that the program will run correctly.

165: enum must be declared outside prototype

This warning message is generated if an enum argument appears in a function prototype before
the enum is defined. To correct the problem, first define the enum, next include the function

prototype, and then the function definition.

166: expression too complex - use -MR option

This error indicates that the temporary registers were exhausted in attempting to generate code
for a particular expression. To resolve the problem, either reduce the complexity of the expres-

sion by splitting it into two or more statements, or compile with the -mr option which increases

the number of temporary registers by decreasing the number of register variables allowed.

167: invalid type for arg of regcall-type function

This error indicates that the prototype for a ‘regcall’-type function (i.e. a function that is speci-
fied in a regcall or related pragma and that is passed arguments in register instead of on the
stack) defines arguments to be one of the following disallowed types:

e A structure;

e A floating point argument that won't fit in a 32-bit register.

168: function declaration incompatible with prior use

This error indicates that the declaration for a function specifies a return type that is compatible
with a previous definition (explicit or implicit) of the same function. For example, the compiler
will report error 169 for the following:

int £(void);
long £(void) {}

169: invalid register for registerized argument

This error indicates that a ‘regcall’-type function specifies that an argument is to be passed in
one of the following disallowed registers:

e The frame pointer register. This is the register that is used to access a function’s local
variable.

e The data pointer register. This is the register that is used by small-code or small-data
modules to access data.

| Error Messages

Error Messages 13-41

170: S%arg not found

Within a C module’s #asm code, C function arguments and local variables can be referred to by
preceding the C name with %%. For example:

void f(long var)

{
#asm

mov.1 Stvar,d0

#endasm

}

This error indicates that the name difined with %% is not an argument or local variable of the C
function.

171: invalid return type for regcall-type function

This error indicates that the prototype for a ‘regcall’-type function defines the function to return
one of the following disallowed types:

® a Structure;

¢ A floating point argument that won't fit in a 32-bit register.

Fatal Compiler Error Messages SR at —
If the compiler encounters a “fatal” error, one which makes further operation impossible, it will
send a message to the screen and end the compilation immediately.

Can’t open file '%%'’ for input

The input file specified in the command line does not exist on the disk or cannot be opened. A
path or drive specification can be included with a filename according to the operating system in
use.

Cannot create output file '%3"'!

The compiler was unable to create an output file. On some systems, this error could occur if a
disk’s directory is full. It may also occur if the disk is locked.

Dump file not found!

This error indicates a failure on attempting to open the specified dump file used with the -h Op- tion. Check to make sure the correct name was used on the command line following the -h op-
tion.

Error Messages
pea a RP mR DE SEE OE A BE EE

[13-42. Aztec C68k ROM Reference Manual

Error creating dump

This indicates that an error occurred in trying to open the dump file specified following the -ho
option. Check to make sure the disk is not locked or full.

Error reading dump file!

This error indicates that a precompiled dump file that was opened for reading specified a length
field that was longer than that actual dump file. The dump file has been corrupted and should
be rebuilt.

Illegal '-%%’ option:

The compiler has been invoked with an option letter which it does not recognize. The manual
explicitly states which options the compiler will accept. The compiler will specify the invalid op-
tion letter.

Illegal ‘’-h’ option: '%%’

The -h compiler option must be followed by the letter ’o’ or ’i’, to specify that the compiler is to
output or input a precompiled header file, respectively. This error indicates that some other let-
ter followed the -h.

Illegal 3.6 ’+x’ option: '%%’

All the +x options in the v3.6 compiler have been replaced by new options. Thus, this error mes-
sage is displayed whenever a module is compiled with a +x option.

Illegal 3.6 option: '’%%’

The version 5.0 compiler will accept 3.6a options if the -3 option was specified. Consult a 3.6
manual for specific option details. also see discussion of -3 and -5 options.

Illegal “%%” option: “%%”

A secondary option was specified that is not recognized in conjunction with the first letter
given. The error message gives the primary and illegal secondary option used. See the Com-
piler chapter of the manual, which explicitly states the options that the compiler will accept.

Invalid register in -YF option

The -yf option is used to define the address register that’s to be used as the frame pointer. For
example, -yfa4 specifies that a4 is to be used. This error message indicates that an invalid regis-
ter was specified.

Error Messages B- 430
4

Invalid register in -YD option

The -yd option is used to define the address register that’s to be used as the data pointer. For ex-
ample, -yda4 specifies that a4 is to be used. This error message indicates that an invalid register
was specified. |

More than one output filename was specified

Output from the compiler can only be directed to one file. More than one -o option was found.

Multiple ’-h’ options specified

Only one -hi or -ho option can be specified. Indicates that the -h option has already been used
with a dump file name. The compiler only accepts one dump file as input and cannot generate
an output dump file if one has already been specified for input. Use the #include directive mul- tiple times in a single file to include all the source files that are to be precompiled, and then pre-
compile that single file.

Multiple input files specified

More than one input file was specified.

Need valid register here

The register specified in the equr directive must be a valid mc68000 register name.

No input file was specified!

While the compiler was able to open the input file given in the command line, that file was found to be empty.

Out of disk space!

An error occurred in closing the assembly output file being written by the compiler. The com- pile therefore failed and the assembly file was deleted. Make additional room on the current disk or the one to which the CCTEMP environment variable is pointing.

Out of memory!

Since the compiler must maintain various tables in memory as well as manipulate source code, it may run out of memory during operation. The only solutions are to add more memory to your computer or to divide the source file into modules which can be compiled separately. These modules can then be linked together to produce a single executable file.

Aztec C68k ROM Reference Manual

Outbyte of 0x%%!

A non-ASCII character with a value greater than 0x7f was encountered in the source file. An ex-
ample would be characters obtained with the option key depressed.

Pre-compiled header not in proper format!

This error indicates that a precompiled dump file opened for reading did not contain the correct
information to indicate that it is a valid dump file. The file is either not a dump file or the
dump file has become corrupted and should be rebuilt.

Pre-compiled header uses the wrong size int

The compiler will treat ints as 16 bits or 32 bits according to option settings. When a pre-com-
piled header file is used, it is mandatory that equivalent data size options be in effect.

Premature end of file in macro definition

A macro definition must be terminated with the endm directive.

Redefining label type

An equ or set cannot be used to assign a value to a label if that label has already been used in
some other capacity.

Symbol required

Following the bss, global, or public directives a symbol is required. In the case of bss and
global it labels the reserved storage area. For public, it indicates the symbol is visible to other
modules.

Too few arguments for ‘’c’ option

The listed option requires one or more additional arguments. For example, the compiler ex-
pected to find the output file name following the -o, but did not find it. The output file name
must follow the option letter, and the name of the file to be compiled must occur last in the com-
mand line.

Too many -i options

The number of include file paths has exceeded the maximum of 16 allowed. Try rearranging the
include files into fewer directories to avoid the need to specify so many include file paths.

Unable to execute as

An attempt to launch the assembler failed. Check to make sure the assembler has not been re-
named and that it can be located in your current execution path.

Error Messages 13-4 a

Internal Compiler Error Messaaes ee Opie ror Messages
The following fatal compiler error messages are internal. None of these errors should normally
occur. If you get one, it may point to an internal compiler problem. Please contact Technical Su p-
port to report the problem; include some sample code to demonstrate it.

Attempt to use expression tree entry twice
Attempt to release item already free
Bad arginfo

Bad cast - ’cast’

Bad op in cgen: ‘op’

Bad operator in donode!
Bad value in outarg: opr

Bf shift didn’t work
Optim failure.

Out of registers!

| 13-4 y Aztec C68k ROM Reference Manual

Assembler Error Messages
Assembler error messages are broken down into the following four categories:

Opcode Error Messages
Directive Error Messages
Fatal Assembler Error Messages
Syntax Error Messages

Error messages are listed in alphabetical order under each of these sections. Detailed explana-
tions of each error message follow after the summary lists.

Opcode Error Messages

68020 addressing mode not valid

Additional argument expected

An, Dn, modes not supported

Bad argument

Bad size for expression

Closing register must be greater

Data register missing from register pair

Field width must be in range (0-31)

Field width must be in range (1-32)

Fourth argument must be An

FP register missing from register pair

Illegal addressing format

Illegal argument expression

Illegal extension on opcode

Illegal function code (mc68851)

Illegal immediate used with 68881 opcode

Invalid argument

Missing ':’ in bit field syntax

Missing ’}’ in bit field syntax

Missing argument

Must be 16 bit

Must be 8 bit

Need address register here

Need closing register

Need data or address register as index

Need data register here

Need FP control register here

Need FP register list as one of the operands (mc68881)

Need opcode, directive or macro name here

Need register

Error Messages “13 - 47

Need register here

Need register list as one of the operands

Offset can’t be data reference

Only .S and .D immediate operands currently supported

Only W and L are valid modifiers

Opcode illegal for this processor

Opcode operands did not match

Opcode extension size did not match

Pc relative out of byte range, %ld

Pe relative out of word range, %ld

Pmove PSR, (ea) not allowed (mc68851)

Post incrementing illegal in this mode

Scale must be 1, 2, 4, or 8

Second argument must be immediate

Size extension not allowed on this opcode

Syntax error on last arg of CAS2

Third argument must be immediate

Unimplemented opcode

Wrong register type in list

Directive Error Messaaes eS
Conditional else directive out of place

Conditional end directive out of place

Equate directive requires a label

Expression must be absolute

Illegal character in directive arguments

Illegal character in conditional

Invalid expression for defined storage

Invalid expression for equate directive

Invalid expression for set directive

invalid operator in evaluate - %d

Label mismatch

Macro end out of place

Macro name collision with previously defined name
Multiply defined symbol

Name already defined

Need ‘code’ or ‘data’ here

Need absolute value here

Need file name here

Need name for macro

Need register list here

13-48 | Aztec C68k ROM Reference Manual

Need second argument as well

Need symbol for definition check

Need valid register here

Non-subtraction expression with multiple symbols

Premature end of line in conditional string

Premature end of file in macro definition

Redefining label type

REG directive must contain register list

Register list directive requires a label

Requires two strings

Right side of test must match left side

Set directive requires a label

Symbol required

Syntax error on symbolic Debugger line

Unable to open include file

Unimplemented assembler directive

Fatal Assembler Error Messages

Can’t nest macro definition

Can’t open input file

Can’t open output file

Ending PC’s differ

Error writing to listing file

Error writing to object file

Includes nested too deep

Internal error in squeeze algorithm - %d

No input file specified

Out of memory

Too many -1i options

Unable to create listing file

Unable to create output file

Syntax Error Messages

For consistency, the syntax errors listed below are also listed again in the explanation section,
but since these messages are self explanatory, no further explanation is provided.

otusmnmens sane

Please check your typing.

Bad / (/

Bad character in line

Error Messages ; 13 -

Bad syntax

Extra characters on line!

Illegal ’ [’

Illegal character in string

Missing ')’; Where’s the ’)’

Missing trailing parenthesis;

Missing ']’; illegal ']’;

Unknown opcode or directive

Unknown token in expression

49

Error Messages

| 13-50 Aztec C68k ROM Reference Manual

Explanation of Assembler Error Messages

This section further explains the error messages generated by the Assembler.

Opcode Error Messages

68020 addressing mode not valid

To enable assembly of 68020 addressing modes insert the directive:

machine mc68020

Additional argument requested

The instruction requires two or more arguments, each being separated by a comma.

An, Dn, modes not supported

Certain 68851 opcodes will not accept an or dn. (See your 68851 reference manual).

Bad argument

Legal directive argument is expected.

Bad size for expression

Occurs when you try to use an illegal size extension.

Closing register must be greater

The order in a register list must be from d0 to d7 followed by a0 to a7.

Data register missing from register pair

Data register required after colon (:) in 64 bit multiply or divide, or to specify the width in bit
field instructions.

Field width must be in range (0-31)

Field width must be in range (1-32)

Bit fields are used in the following 68020 instructions:

bfchg, bfclr, bfexts, bfextu, bfffo, bfins, bfset, bftst

These instructions operate on a string of consecutive bits in a bit array.

Error Messages 13 -51

The syntax for a bit field is:

{offset-width}

The braces and colon must be included as shown. offset and width parameters must either be
data registers or absolute expressions. offset must be in range (0-31). width must be in range (1-
32).

Fourth argument must be An

If an optional fourth argument is specified for the instructions ptestr or ptestw, the argument
must be an address register to hold the address of the last descriptor successfully fetched.

FP register missing from register pair

Second fp register required after colon for 68881 instructions like fsincos .x which returns
two results.

Illegal addressing format

Illegal argument expression

The address mode you are trying to use is not supported by the opcode.

Illegal extension on opcode

The instruction being used does not support the extension specified. Check your 680x0 reference
manual to determine which extensions are allowed. The extensions include (1, s, x, p, w, d, b),
but not all extensions are available for each instruction.

Illegal function code (mc68851)

Function codes must be expressed in any of the following registers:

dn, sfc, dfc, or as an immediate four bit number.

Examples:

ploadr d4, (a5)
ploadr sfc, (a5)

Illegal immediate used with 68881 opcode

Use extensions .b, .w, and .] for immediate values.

Invalid argument

Legal directive argument is expected.

Aztec C68k ROM Reference Manual

Missing ’:’ in bit field syntax

Missing ’}’ in bit field syntax

Bit fields are used in the following 68020 instructions:

bfchg, bfclr, bfexts, bfextu, bfffo, bfins, bfset, bftst

These instructions operate on a string of consecutive bits in a bit array.

The syntax for a bit field is:

{offset-width}

The braces and colon must be included as shown. offset and width parameters must either be
data registers or absolute expressions. offset must be in range (0-31). width must be in range (1-

32).

Missing argument

Directive argument is expected.

Must be 16 bit

Data must be 16 bit ($0000 - S$£fff£)

Must be 8 bit

Data must be 8 bit ($00 - S$££)

Need address register here

Address register (a0, al, ... a7) required in the operand field. This is often the case for indirect
addressing modes.

Need closing register

A dash (-) in a register list must be followed with a ending register.

Need data or address register as index

The format of the index operand for 68020 register indirect with index modes is xn.size*scale.

(See your 68020 reference manual.)

Need data register here

If error pertains to bit fields refer to error message:

field width must be in range (0-31)

| Error Messages

Error Messages 13 - 53

If not, many opcodes need a data register (d0,d1,d2...d7) in the operand field. You can usually
substitute adda for add, suba for sub and cmpa for cmp. (Consult your 680X0 reference man-
ual.)

Need FP control register here

fp control registers fper, fpsr, and fpiar cannot be combined with other registers in a register list.

Need FP register list as one of the operands (mc68881)

fp register lists are used with fmovem. The syntax for a fp register list is any combination of
fpcr, fpsr, and fpiar, with individual register names separated by a slash “/”.

Examples:

fpcr/fpsr

fpcr/fpiar/fpsr

Need opcode, directive or macro name here

Label names must be defined starting in the first column of the line.

Need register

A register list requires that one or more registers be specified.

Need register here

Address or data register required in the operand field. Check your 680x0 reference manual to de-
termine which registers are allowed.

Need register list as one of the operands

A register list is used with movem.

Examples:

Register List Meaning

d3-d7 d3, d4,d5, d6é,and d7
d5/a5 d5 and a5
d2-d4/a0-a3 d2, d3, d4, a0, al, a2, and a3

Offset can’t be data reference

Must use an address register (a0, a1, ... a7) for indirect addressing.

| 13-54 Aztec C68k ROM Reference Manual

Only .S and .D immediate operands currently supported

For an extended .X operand, use a hex value starting with a §$.

Only W and L are valid modifiers

The format of the index operand for 68020 register indirect with index modes is xn.size*scale.

(See your 68020 reference manual.)

Opcode illegal for this processor

The instruction is not valid for the MC68000 or the processor specified. Use the machine
mc68010, machine mc68020, mc68881, or mc68851 directives.

Opcode operands did not match

The address mode you are trying to use is not supported by the opcode.

Opcode extension size did not match

Occurs when you try to use an illegal size extension.

Pe relative out of byte range, tld

A byte relative instruction is attempting to reference a point greater than 128 bytes away from
the current location.

Pc relative out of word range

A word relative instruction is attempting to reference a point greater than 32K bytes away from
the current location.

pmove PSR, (ea) not allowed (mc68851)

(consult your 68851 reference manual)

Post incrementing illegal in this mode

Post incrementing (am)+ is only legal with certain opcodes.

Example:

add ali+,d0 ; ERROR

add (al)+,d0 ; OK

Error Messages

Error Messages 13 - 55 |

Scale must be 1, 2, 4, or 8

The format of the index operand for 68020 register indirect with index modes is xn.size*scale.
(See your 68020 reference manual.)

second argument must be immediate

Should only occur when using pflush (mc68851). The mask must be immediate.

Size extension not allowed on this opcode

Many 680x0 opcodes have only one size or are specified ’unsized’.

Example:

pea.w (a0) ; ERROR
pea (a0) ; OK

Syntax error on last arg of CAS2

Check the syntax for an indirect multiple argument destination.

Third argument must be immediate

The mc68851 instructions ptestr and ptestw require a third argument indicating the depth to
which the translation table is to be searched. This must be an immediate.

Unimplemented opcode

Assembler does not understand opcode. Check your syntax.

(Note: The mnemonic trapcc has been changed to tcc in the parameterless form, and tpcc is used
when immediate data is specified. Similar changes have been made for ftrapcc (mc68881) and
ptrapcc (mc68851).)

Wrong register type in list

Some instructions only allow the use of certain registers. Check your 680x0 reference manual to
determine which registers are allowed. For example, control registers generally are not allowed
in a register list.

Directive Error Messaaes ES

Conditional else directive out of place

else directive must have a matching if directive.

13-56. Aztec C68k ROM Reference Manual

Conditional end directive out of place

endc must be used in conjunction with an if directive.

Equate directive requires a label

A label must precede all equate directives.

Example:

$4000 equ tempvar ; ERROR

tempvar equ $4000 7; OK

Expression must be absolute

Certain size and value parameters for directives must be absolute and not relative.

Illegal character in directive arguments

Directives must be carefully described. (See the Assembler chapter.)

Illegal character in conditional

These errors pertain to conditional directives.

Invalid expression for defined storage

The value of the size field in the ds directive must be an absolute expression.

Invalid expression for equate directive

An absolute value is a constant expression.
An absolute value must follow a set directive.

Examples:

rex equ il 7; OK

spot equ 2 ; OK
fido equ) rex+spot 7 OK
rover equ) rex+(a4) ERROR

Invalid expression for set directive

(see: Invalid expression for equate directive)

Invalid operator in evaluate - %d

Valid operators in expressions include:

+,-,*,/, >, <, &, 1,14, ~,l/

Error Messages

Error Messages

Label mismatch

13-57

The position of the label in pass2 does not match its location calculated in passl.
Try assembling the module using a -n to turn off optimizations.

Macro end out of place

The endm directive must be used in conjunction with the macro directive. All directives and op-
codes must be preceded by at least one space or tab.

Macro name collision with previously defined name

Each macro definition must use a unique name to identfy it.

Multiply defined symbol

Every label must have a unique name.

Name already defined

Every label must have a unique name.

Need ’code’ or ’data’ here

The near and far directives must specify ‘code’ or data’

Examples:

near code
far data

Need absolute value here

An absolute value is a constant expression.
An absolute value must follow a set directive.

Examples:

rex equ 1 ; OK
spot equ 2 7 OK
fido equ rex+spot 7 OK
rover equ rex+(a4) ERROR

Need file name here

include directives must be specified as:

include <filename>
include “filename”

: 13-58 Aztec C68k ROM Reference Manual

Need name for macro

A macro directive must be followed by a symbol which is used to name the macro.

Need register list here

Register list directives must be specified as follows:

label reg register_list

Macros must be defined as:

[label] macro symbol

The macro name is the label preceding the macro directive or the symbol following it. Every
macro name must be unique.

Need second argument as well

The cnop directive requires two arguments.

Need symbol for definition check

These errors pertain to conditional directives.

Non-subtraction expression with multiple symbols!

The only valid computation using two symbols is the calculation of their difference.

Premature end of file in macro definition

A macro definition must be terminated with a endm directive.

Premature end of line in conditional string

These errors pertain to conditional directives.

Redefining label type

The label in question has already been defined as being used for some other type of operation.

REG directive must contain register list

These errors pertain to conditional directives.

Register list directive requires a label

These errors pertain to conditional directives.

; Error Messages

Error Messages 2B -59

Requires two strings

These errors pertain to conditional directives.

Right side of test must match left side

These errors pertain to conditional directives.

Set directive requires a label

See:

Equate directive requires a label

Syntax error on symbolic Debugger line

The compiler generated information for sdb isn’t rcognized by the assembler. Make sure the ver-
sion of the assembler being used matches that of the compiler.

Unable to open include file

Include directives must be specified as:

include <filename>
include “filename”

Unimplemented assembler directive

The assembler does not understand. Check your syntax.

Fatal Assembler Error Messaaes | ages

Can’t nest macro definitions

The current macro definition must be terminated with an endm before beginning a second one.

Can’t open input file

The source file could not be opened. Check to make sure the spelling is correct and that the file
actually exists.

Can’t open output file

The output file specified with the -o option or the default could not be created by the operating
system. Possible reasons include a locked or full disk.

13-60 7 Aztec C68k ROM Reference Manual

Ending Pce’s differ

The size of the module in pass2 doesn’t match the value calculated in pass1. Try assembling the
module using a -n to turn off optimizations.

Error writing to listing file

Some kind of an operating system error occured while attempting to write out the listing file.
One possible cause would be if disk is full.

Error writing to object file

Some kind of an operating system error occured while attempting to write out the object file.
One possible cause would be if the disk is full.

Includes nested too deep

Include files may not be nested deeper than 7 levels.

Internal error in squeeze algorithm - %d

Internal assembler error. Call tech support with a small sample of the code that generated this
error. A temporary work around for this error is to use the -n option which turns off optimiza-
tions.

No input file specified

The assembler was invoked without giving a assembly source file to be assembled.

Out of memory!

The assembler ran out of memory while assembling a file. To resolve the problem either split
the source file into two or more files to reduce the number of symbols for which space is re-
quired or use a computer that has more available memory.

Too many -i options

The total number of directory paths that may be searched cannot exceed 16.

Unable to create listing file

The listing file generated with the -1 option could not be created by the operating system. Possi-
ble reasons include a locked or full disk.

| Error Messages

Error Messages 13 -61 |

Unable to create output file

The output file specified with the -o option or the default could not be created by the operating
systems. Possible reasons include a locked or full disk.

Syntax Error Messages ae ee ee
Please check your typing.

bad ’ (’

Bad character in line

bad syntax

extra characters on line!

illegal ‘° [’

Illegal character in string

Missing ’)’; Where’s the ’)’

Missing ']’; illegal ']’;
Missing trailing parenthesis;

Unknown opcode or directive

Unknown token in expression

ror Messages

13-62. Aztec C68k ROM Reference Manual

Linker Error Messages
This section lists the error messages that the linker may display as it creates an executable pro-
gram. The messages are grouped according to the source of the errors that cause them. Elements
that are variable are enclosed by angled brackets. A more detailed explanation of each message
follows after the summary list.

When started, the linker first displays a message on the screen that indicates that the linker is
loaded and running. If everything goes well, the linker prints several messages on the screen
listing the sizes of the program segments; then the linker finishes. The linker may encounter an
error while it is running, in which case it sends a message to the screen.

Errors are reported at a variety of points during the linking process. In generates an executable
program in two stages, known as pass] and pass2. The size messages are printed at the end of
pass1, so any errors occurring after that are detected during pass2 of the linker.

Following is a list of the messages that the linker generates in response to an error.

Note: Only one file type option is permitted.

Command Line Error Messages:

Cannot have nested -f options.

Invalid overlay number

No input given!

Too few arguments in -f file: filename

Too few arguments in command line

Unknown option 'c!

I/O Error Messages

Bad symbol typing information

Can’t create .dbg symbol file filename

Can’t open filename, err = errno

Cannot create output file: filename

Cannot create symbol table output

Cannot open -f file: filename

Cannot write output file

Couldn’t open %s in pass2!

Couldn’t read object file %s!

Corrupted object files

Error creating symbol listing file

Error reading module on pass2!

Error while lseeking output file!

Error reading/writing output file!

Invalid operator in evaluate hex value

| Error Messages 2B -~ 63

Library format is invalid!

ov
e Line displacement too large at line = %d

Not an object file

Object file is bad!

Symbol name too long

Memory Use Error Messages

Out of memory

Too many symbols!

Source Code Error Messages _

Absolute reference from segment to segment

Attempt to perform relocation in overlay code

Attempt to use SMALL reference to S$%1x

Attempted to write outside of file bounds

Bad struct index!

Branch out of range @pc=addr

Can’t do PC rel as dest @pc=%lx

Can’t do relocation from data to nonroot code

Can’t find STKSIZ

Can’t find Storg !

Data ref to overlay code not in jump table

Data reference out of range

passl(hex value) and pass2(hex value)values differ:

Premature EOF in object module at offset 0Ox%1x!

Program is too large to link

Short branch to next location @pc=addr

symbol name multiply defined

symbol type differs on pass two: symbol name

Total data size >64K! Too large for small data model!

Undefined symbol: symbol name

Unknown loader item (%02x)!

Internal Linker Error Messaqaes aoe OF MESS AG CS
Error setting relocatable references

| 13-64. Aztec C68k ROM Reference Manual

Explanation of Linker Error Messages

Command Line Errors —

Cannot have nested -f options.

At the command line level any number of command files can be specified by using the -f op-
tion. However, none of these files can contain the -f option. A command file cannot invoke an-

other command file

Invalid overlay number

Overlays must be positive integers.

No input given!

The linker quits immediately if it is not given any input to process.

Too few arguments in -f file: filename

An option letter specified in the file, filename, requires a value or name to follow it. If an option
appears at the end of the file, its associated value may not appear back on the command line.

Too few arguments in command line

Several of the linker options have an associated value or name, such as -b 2000. If a needed
value is missing, the linker displays this message and dies.

Unknown option ‘'c’

You have used an option letter(c) that the linker does not recognize. The linker ignores only the
letter; it preserves everything else on the command line and the linker tries to execute what it
can interpret. See the Linker chapter for a list of options that are supported.

I/O Errors

Cannot create output file: filename

This message usually indicates that all available directory space on the disk has been exhausted.

{ Error Messages

| Error Messages 13 -65 '

Cannot create symbol table output

Option -t is given in the command line, but the file containing the linkage symbol table cannot
be written to disk. It is possible that there is no more space on the disk.

Cannot open -f file: filename

A file given with option -f cannot be opened.

Cannot write output file

This message usually indicates that all available directory space on the disk has been exhausted.

Can’t create .dbg symbol file filename

Option -t is given in the command line, but the file containing the linkage symbol table cannot
be written to disk. It is possible that there is no more space on the disk.

Can’t open filename, err = errno

If any file in the command line cannot be opened, this message is sent to the screen, specifying
the filename and the current value of errno.

Couldn’t open %s in pass2!

Object module file that was read during pass1 couldn’t be opened for pass2. On a multiuser sys-
tem the file may have been deleted by another process.

Couldn’t read object file $s!

Attempt to read an object file failed. This could be due to a corrupt file or a hardware error.

Corrupted object files

This is the most explicit indication that an object file in the linkage is corrupted. Recompile and
assemble the source file. A bad object file will not be discovered until the second pass of the
linker.

Error creating symbol listing file

Option -t is given in the command line, but the file containing the linkage symbol table cannot
be written to disk. It is possible that there is no more space on the disk.

13 - 66 Aztec C68k ROM Reference Manual

Error reading module on pass2!

Message indicates that a module is corrupted between pass] and pass2. On a multiuser system,
it is possible that another user changed the file while the linker was running. Otherwise, the er-
ror is probably due to hardware failure.

Error while lseeking output file!

Invalid attempt to position beyond the end of th program file being generated.

Error errno reading/writing output file

An error reading or writing the output file probably means there is no more disk space avail-
able. In particular, a block of the output file was written to disk and then could not be read
back. The current value of errno is given in these messages.

Invalid operator in evaluate hex value

Unless you changed the object code by hand, the file is corrupted.

Library format is invalid!

A library in the linkage has been corrupted.

Line displacement too large at line = td

Source-level debugging information is in error. Make sure you have a current version of the
linker and the compiler.

Not an object file

A file given to the linker does not contain relocatable object code that In can process. For in-
stance, a source file may have been included in the link.

Object file is bad!

This is the most explicit indication that an object file in the linkage is corrupted. Recompile and
assemble the source file. A bad object file will not be discovered until the second pass of the
linker.

Symbol name too long

Source-level debugging information is in error. Make sure you have a current version of the
linker and the compiler.

Error Messages 13 - 67 |

Errors in Use of Memor a A

Out of memory!

The linkage process needs memory space for In and global and local symbol tables, and approxi-
mately 5K for buffers. Just as with compilation, most memory use is devoted to the program
software and symbol tables. Since In is not especially large, only an extremely complicated link-
age might run out of memory.

Too many symbols!

This is another way of saying that not enough memory is available for the symbol tables
needed for the linkage.

Errors Arising From Source Code ———— Ss ee

Absolute reference from segment to segment

Segments may only reference other segments via the jump table. Check your assembler code,
the compiler will never generate these.

Attempt to perform relocation in overlay code

The only segments of a program that can contain addresses that must be relocated when the pro-
gram is loaded are the program root code segment and its initialized data segment. The reloca-
tion of these two segments is performed when the program is first loaded, by the
Manx-supplied startup code.

Attempt to store out of bounds

This error should not occur. It indicates a linker bug.

Attempt to use SMALL reference to $%1x

A segment relative reference greater than 32K was attempted.

Bad struct index!

Exceeded the 512 maximum number of structure templates allowed in a module.

Branch out of range @pc=addr

A branch or jump instruction has a target address that is beyond its range. This error should
not be generated from C programs.

13 - 68 : Aztec C68k ROM Reference Manual

Can’t do Pc rel as dest @pc=%1x

Attempt to use a PC relative reference as the destination for a 68000 memory altering instruc-
tion. No such addressing mode is available for these instructions.

Can’t do relocation from data to nonroot code

The only permissible data references are via the jump table. Therefore data can only be assigned
the address of a function’s entry point.

Can’t find STKSIZ

Can’t find Storg_!

These errors should not occur. If they do, please report them.

Data ref to overlay code not in jump table

This error is caused by C programs that attempt to initialize a global pointer to a static function,
where the function is contained in an overlay. Such initialization is permitted when the function
is located in the root segment, but not when it is in another segment.

Data reference out of range—-remake with large data model

Initialized data plus uninitialized data exceeds 32K. Recompile all C source modules with -md,
reassemble assembly modules with -d, and relink with cld.lib (large data). An alternative ap-
proach would be to dynamically allocate some of your data at run time.

Passl (hex value) and pass2 (hex value)values differ:

Either of these errors may be generated during pass2 when error 24 appeared in pass1. They
may be considered a confirmation of what was discovered in pass! of the linker.

Premature EOF in object module at offset 0x%1x!

Caused by a corrupt or truncated object. It may also occur if the size of the object file during
pass2 differs from the value calculated during pass].

Program is too large to link

This error should not occur. It indicates a linker bug.

Short branch to next location @pc=addr

The 68k processor does not accept instructions of this type. This error should not occur, since
the Manx assembler detects such instructions and removes them from the object code.

| Error Message

Error Messages 13 - 69

symbol name multiply defined

A global symbol is defined more than once. For instance, if two functions are accidentally given
the same name, this message is generated.

Symbol type differs on pass two: symbol name

Either of these errors may be generated during pass 2 when error 24 appeared in pass 1. They
may be considered a confirmation of what was discovered in pass 1 of the linker.

Total data size >64k! Too large for small data model!

When any of a program’s modules is compiled to use the small data memory model, that mod-
ule’s data is accessed using an offset from the program’s data pointer register. The area accessi-
ble in this way is at most 64kb. Thus, this error message indicates that at least one of a
program's modules uses the small data memory model and that the program has more than
64kb of data.

Undefined symbol: symbol name

A global symbol name remained undefined. This is commonly a function that has been refer-
enced in the source code but not included anywhere in the link.

Unknown loader item (%02x)!

Object code contains an instruction which the linker does not understand. May be due to using
an unsupported feature in the assembler or an object module that is not at the same version as
the linker.

Internal Errors a

Error setting relocatable references!

Internal error locating a relocatable reference. Call tech support with a sample of the object code
that caused the problem.

TECHN ICAL Support

Chapter 14 - Technical Support

We have put together a set of guidelines to help you take the most advantage of the technical
support service offered by Manx. We ask that you read and follow these guidelines to enable us
to continue to give you quality technical support.

Have Everything With You

Try to be organized. When using our phone support, have everything you need with you at the
time you call. Our goal is to give you the help you need without keeping you on the phone too
long. This can save you a lot of time, and if we can keep the calls as short as possible, we can
take more calls each day. This can be to your advantage on days when we are busy and it is
hard to get through. Also, have the following information ready when you call technical sup-
port. We will ask you for this information first.

e Your name. This is necessary in case we need to get back to you with additional infor-
mation.

e Phone number. In case we have additional information we will be able to contact
you. This will never be given to anyone, so you need not WOITy.

e Name of the product you are using, and its SERIAL NUMBER. If you have a cross
compiler, please tell us both host and target, even if the problem is with only one side
of the system.

14-2, Aztec C68k ROM Reference Manual

e The revision number of the product you are using. This should include a letter after
the number: i.e., 3.20d or 1.06d. THIS IS VERY IMPORTANT. The full version num-

ber may be found on your distribution disks or when you run the Compiler.

e The operating system you are using, and also the version.

e The type of machine you are using.

e Anything interesting about your machine configuration. i.e., ram disk, hard disk,
disk cache software, etc.

Know What Question You Wish To Ask

If you call with a usage question, please try to have your questions narrowed down as much as
possible. It is easier and quicker for all to answer a specific question rather than a general one.

Isolate The Code That Caused The Problem

If you think you have found a bug in our software, try to create a small program that repro-
duces the problem. If this program is small enough, we will take it over the phone; otherwise
we would prefer that you mail it to us, using the supplied problem report, or leave it on one of
our bbs systems. Once we receive a “bug report,” we will attempt to reproduce the problem
and, if successful, we will try to have it fixed in the next release. If we cannot reproduce the

problem, we will contact you for more information.

Use Your C Language Book And Technical Manuals First

Manx Technical Support is happy to help you with problems or questions relative to the opera-
tion of our products. If you are having difficulty with the C language syntax or a C program-
ming problem in general, please check with a C language programming book, or contact a local
university or user group. If you have questions about machine specific code, i.e., interrupts or
DOS calls, check with the technical reference manual for that machine and/or its operating sys-
tem manual.

When To Expect An Answer

A normal turn around time for a question is anywhere from two minutes to 24 hours, depend-
ing on the nature of the question. A few questions, like tracing compiler bugs, may take a little
longer. If you can call us back the next day, or when the person you speak with in technical sup-
port recommends, we will have an in-depth answer for you. But normally we can answer your
questions immediately.

Use Our Mail-in Service

It is always easier for us to answer your question if you mail us a letter. (We have included cop-
ies of our problem report form for your use.) This is especially true if you have found a bug

with our compiler or other software in our package. If you do mail your question in, try to in-
clude all of the above information, and/or a disk with the problem. Again, please write small
test programs to reproduce possible bugs. See page 4-5 for the Manx mailing address.

Updates, Availability, Prices

If you have questions about updates, availability of software, or prices, please contact the appro-
priate department. See page 4-5 for a complete listing of the Manx addresses and telephone
numbers.

Bulletin Board System

For users of Aztec C, we have a bulletin board system available. See page 4-5 for the different
bulletin board numbers.

Follow the questions that will be asked after you are connected. When this is done, you will be
on the system with limited access. To gain a higher access level, send mail to SYSOP. Include in
this information your serial number and what product you have. Within approximately 24
hours you should have a higher access level, provided the serial number is valid. This will al-
low you to look at the various information files and upload/download files.

To use the bulletin board best, please do not put large (>8 lines) source files onto the news sys-
tem, which we use for an open forum question/answer area. Instead, upload the files to the ap-
propriate area, and post a news item explaining the problem you are having. Also, the smaller
the test program, the quicker and easier it is for us to look into the problem, not to mention the
savings of phone time. When you do post a news item, please date it and sign it. This will be
very helpful in keeping track of questions. Try to do the same with uploaded source files.

Phone Support

And finally, telephone technical support is provided with the purchase of your Aztec C for 90
days from date of purchase. It is available 2:30-5 p.m. eastern standard time Monday through
Friday. (Times subject to change without notice; for the correct telephone number, see page 4-5.)
Phone support is available to registered users of Aztec C.

These guidelines will aid us in helping you quickly through any roadblocks you may find in
your development.

| 14-4 : Aztec C68k ROM Reference Manual

Manx Software Systems

Address:

Manx Software Systems
P.O.Box 55

Shrewsbury, NJ 07702

Phones:

Technical Support (908) 542-1795

Sales (Domestic) (800) 221-0440

Sales (International) (908) 542-2121
& Updates

FAX: (908) 542-8386

Bulletin Board: (908) 542-2793
300/1200 bps
(all products)

Note: The above information is subject to change without notice.

On January 1, 1991: Our area code was changed to 908.

Technical Support M5

Manx Problem Report a

Date: / / Name:

Phone: 1-() -

Company:

Address:

Product: Aztec C86: § LJFor DOS Applications

LFor Embedded Systems Applications

Version #: Serial #:

Target’s Operating System:

Machine Configuration:

Description of problem

Include description of problem and efforts to fix it.

#asm/ #endasm
_ See embedded assembly

$* macro, 7-39

$@ macro, 7-39
“grep, 7-11
+ option, 7-39
+r linker option, 3-8
— option, 7-39
-a compiler option, 4-4, 4-14
-a option, FindTag, 2-32
-b option, Compare, 2-25
-c option, Compare, 2-25

-c option, CTags, 2-27
-cplusplus option, CTags, 2-27
-d option, Compare, 2-25
-d option, CTags, 2-27
-d option, make, 2-34
-decl option, CTags, 2-27
-€ option, Compare, 2-25
-e option, CTags, 2-27
-e option, make, 2-34

-f option, 7-39
-f option, CTags, 2-28
-f option, make, 2-34

-f option, Search, 2-37
-f window option, FindTag, 2-32
-g option, Compare, 2-25
-h option, Compare, 2-25
-h option, CTags, 2-28
-hi compiler option, 4-5
-ho compiler option, 4-5
-1 compiler option, 4-4
-1 option, CTags, 2-28

-1 option, Search, 2-37
-k option, CTags, 2-28
-] linker option, 3-5
-1 option, Compare, 2-25
-1 option, CTags, 2-28
-l option, MPW

use with the Files command, 2-14
-local option, CTags, 2-28
-m option, Compare, 2-25

Index

-mc compiler option, 4-8
-md compiler option, 4-8
-n option, Compare, 2-25
-n option, FindTag, 2-32
-noduptypedefs option, CTags, 2-28
-o compiler option, 4-3 - 4-4
-o linker option, 3-4
-O option, CTags, 2-28
-p option, Compare, 2-26
-p option, CTags, 2-28
-p option, FindTag, 2-32
-p option, make, 2-34
-ps compiler option, 3-7
-pu option

unsigned-preserving rules, 4-18
value-preserving rules, 4-18

-q option, FindTag, 2-33
-q option, Search, 2-37

-r option, CTags, 2-28

-r option, make, 2-34

-r option, Search, 2-37
-S option, Compare, 2-26

-s option, CTags, 2-28
-S option, FindTag, 2-33
-S option, make, 2-34
-S option, Search, 2-37
-t option, Compare, 2-26
-t option, CTags, 2-28
-t option, make, 2-34
-u option, CTags, 2-29
-u option, make, 2-34
-update option, CTags, 2-29
-v option, Compare, 2-26
-V option, make, 2-34
-w option, CTags, 2-29
-wW option, make, 2-34
-wl compiler option

type checking, 4-21
-x option, Compare, 2-26
-y compiler option, 3-8
?,grep, 7-11

\ character, 7-39

_exit, 11-23

_filbuf, 11-32

_fileopen, 11-33

_filsbuf, 11-34

_format, 11-37

_getbuf, 11-48

_scan, 11-87

_stkchk, 4-14, 11-99

A

abort, 11-8

abs, 11-8

accessing files, Z editor, 8-29, 8-34

acos, 11-9

adding lines, diff, 7-8
AFLAGS macro, make, 7-32, 7-35

value, 7-35

allocate a block of system memory,
11-61

allocate space for an array of objects,
11-16

ANSI functions

abort, 11-8

abs, 11-8

acos, 11-9

asctime, 11-9

asin, 11-10

assert, 11-10

atan, 11-11

atan2, 11-11

atexit, 11-12

atof, 11-12

atoi, 11-13

atol, 11-14

brk, 11-14

bsearch, 11-15

calloc, 11-16

ceil, 11-16

clearerr, 11-17

clock, 11-17

cos, 11-18

cosh, 11-19

ctime, 11-21

difftime, 11-22

div, 11-22

exit, 11-23

exp, 11-24
fabs, 11-25

il

fclose, 11-25

feof, 11-28

ferror, 11-29

fflush, 11-29

fgetc, 11-30

fgetpos, 11-31
fgets, 11-31

floor, 11-33

fmod, 11-35

fopen, 11-35

fprintf, 11-38

fputc, 11-38

fputs, 11-39
fread, 11-40

free, 11-40

freopen, 11-41

frexp, 11-42

fscanf, 11-42

fseek, 11-43

fsetpos, 11-44

ftell, 11-45

fwrite, 11-46

getc, 11-48
getchar, 11-48

getenv, 11-49

gets, 11-50

gmtime, 11-51

isalnum, 11-54

isalpha, 11-53

isascii, 11-54

iscntrl, 11-54

isdigit, 11-54

isgraph, 11-54
islower, 11-54

isprint, 11-54

ispunct, 11-54
isspace, 11-54

isupper, 11-53
isxdigit, 11-54

labs, 11-55

Idexp, 11-55

Idiv, 11-56

localeconv, 11-56

localtime, 11-57

log, 11-57

log10, 11-58

longjmp, 11-59

malloc, 11-61

mblen, 11-61

mbstowcs, 11-62

mbtowc, 11-63

memchr, 11-64

memcmp, 11-64

memcpy, 11-65
memmove, 11-65

memset, 11-66

mktime, 11-66

modf, 11-67

perror, 11-70
pow, 11-72
printf, 11-73

putc, 11-77

putchar, 11-77

puts, 11-78
qsort, 11-79

raise, 11-80

rand, 11-81

realloc, 11-83

remove, 11-84

rename, 11-84

rewind, 11-85

scanf, 11-87

setbuf, 11-91

setjmp, 11-91
setlocale, 11-92

setvbuf, 11-93

signal, 11-94
sin, 11-96

sinh, 11-96

sprintf, 11-97
sqrt, 11-97
srand, 11-98

sscanf, 11-99

strcat, 11-100

strchr, 11-100

strcmp, 11-101

strcoll, 11-102

strcpy, 11-102
strcspn, 11-103
Strerror, 11-104

strftime, 11-104

strlen, 11-105

strncat, 11-106

strncmp, 11-106

strncpy, 11-107
strpbrk, 11-107
strrchr, 11-108

strspn, 11-108

strstr, 11-109

strtod, 11-109

strtok, 11-110

strtol, 11-111

strtoul, 11-113

strxfrm, 11-114

system, 11-115

tan, 11-116

tanh, 11-116

time, 11-117

tmpfile, 11-117
tmpnam, 11-118

tolower, 11-119

toupper, 11-119
ungetc, 11-120

va_arg, 11-121
va_end, 11-121

va_start, 11-121

vfprintf, 11-122
vprintf, 11-122
vsprintf, 11-123

wcstombs, 11-123

wctomb, 11-124

ANSI header files, 10-21

assert.h, 10-21

ctype.h, 10-21
fentl.h, 10-14, 10-21

float.h, 10-21

limits.h, 10-21

locale.h, 10-21

math.h, 10-19, 10-21

setymp.h, 10-21
signal.h, 10-22

stdarg.h, 10-22

stddef.h, 10-22

stdio.h, 10-2, 10-6, 10-22

stdlib.h, 10-22

string.h, 10-22

time.h, 10-22

arcv utility, 7-2
arcv, make, 7-41

arguments

passing to the Files command, 2-15

asctime, 11-9 equ, 5-11
asin, 11-10 os, equr, 5-11
assembler even, 5-11

definition, 5-1 fail, 5-12

See also embedded assembly far code, 5-12
syntax, 5-2 far data, 5-12

constants, 5-7 freg, 5-12
embedded with C, 4:30 global, 5-14, 12-2

executable instructions, 5-6 if, 5-13

file creation, 4-14 if..., 5-13

global symbols, 5-17 ifc, 5-12
include files, 5-3 - 5-4 ifd, 5-12
include search order, 5-4 ifnc, 5-12
input file, 5-2 ifnd, 5-12

instruction comments, 5-8 include, 5-14

labels, 5-6 list, 5-14

listing file, 5-2 machine, 5-14
macro calls, 5-17 macro, 5-15

mnemonic support, 5-6 mc68851, 5-15
object code file, 5-2 mc68881, 5-15
operand expressions, 5-8 mexit, 5-15
operand field, 5-7 miist, 5-14

operating instructions, 5-2 near code, 5-13
optimizations, 5-3 near data, 5-13

output control, 4-9 noclist, 5-9
registers, 5-7 nolist, 5-14

searching for include files, 5-3 nomiist, 5-14

source program structure, 5-6 - 5-17 public, 5-16, 12-3
source statements, 5-1 reg, 5-16
symbols, 5-7 section, 5-16
temporary labels, 5-6 set, 5-16
using with C source code, 4-30 ttl, 5-17

assembler directives, 5-9 - 5-17 xdef, 5-17

blanks, 5-9 xref, 5-17

bss, 5-14 assembler error messages
clist, 5-9 opcode summary list, 13-46 - 13-48
cnop, 5-9 directive summary list, 13-47

cseg, 5-10 explanations, directive errors, 13-55 - 13-59
dc, 5-10, 12-3 explanations, fatal errors, 13-59 - 13-60
dcb, 5-10 explanations, opcode errors, 13-50 - 13-55
ds - define storage, 5-11 explanations, syntax errors, 13-61
dseg, 5-10 fatal error summary list, 13-48
else, 5-13 opcode summary list, 13-46
end, 5-11 assembler functions
endc, 5-13 C-callable, 12-2

endm, 5-15 assembler options
entry, 5-11 summary list, 5-5

iv

-c option, 5-12 - 5-13
-d option, 5-12 - 5-13
-1 option, 5-4

-] option, 5-2
-n option, 5-3
-O option, 5-2

assembly language source file, make,
7-41

assert, 11-10

assert.h, 10-21

associate buffer with stream, 11-47
associate I/O stream with buffer, 11-

91, 11-93

atan, 11-11

atan2, 11-11

atexit, 11-12

atof, 11-2, 11-12

example, 11-12
atoi, 11-13

example, 11-13
atol, 11-14

example, 11-14
autoindent, Z editor, 8-4, 8-21 - 8-22
Aztec C files, 2-4

Aztec functions

_filbuf, 11-32

_fileopen, 11-33

_flsbuf, 11-34

_format, 11-37

_getbuf, 11-47
_getiob, 11-50
_scan, 11-87

_stkchk, 11-99

close, 11-18

cotan, 11-19

creat, 11-20

ctop, 11-21

exit, 11-23

fdopen, 11-26
fileno, 11-32

format, 11-37

ftoa, 11-45

getw, 11-51
index, 11-52

ioctl, 11-53

isatty, 11-54

Iseek, 11-59

memccpy, 11-63
movmem, 11-67

open, 11-68
peekb, 11-72
peekl, 11-72
peekw, 11-72
pokeb, 11-72
pokel, 11-72

pokew, 11-72

ptoc, 11-76
putw, 11-79
ran, 11-81

randl, 11-82

read, 11-82

rindex, 11-85

sbrk, 11-86

setmem, 11-93

sran, 11-98

strdup, 11-103
strold, 11-112

swapmem, 11-115

unlink, 11-120

write, 11-124

B

backslash, make, 7-36, 7-39
backspace key, Z editor, 8-4
backup files, Z editor, 8-5
batch commands, make, 7-36
blanks, diff, 7-10
block operation functions

memccpy, 11-63
memchr, 11-64

memcmp, 11-64
memcpy, 11-65
memmove, 11-65

memset, 11-66

movmem, 11-67

setmem, 11-93

swapmem, 11-115
branches

optimizations, 5-3
break float value into parts, 11-67
brk, 11-14

bsearch, 11-15

buffer, Z editor, 8-5, 8-18

built-in rules, make, 7-35

C

C++, 2-27

call underlying operating system,
11-115

calloc, 11-16

CANCEL command, 2-7, 2-17

CCOPTS environment variable

See environment variables

CCTEMP environment variable

See environment variable

ceil, 11-16

CFLAGS macro, make, 7-32, 7-35

value, 7-35

change current position within file,
11-59

changing lines, diff, 7-8
character classification functions,

11-53

compiler option usage, 11-54
character positioning commands, Z
editor, 8-38

character strings
make, 7-28, 7-31

Z editor, 8-11

character type functions
isalnum, 11-54

isalpha, 11-53
isascii, 11-54

iscntrl, 11-54

isdigit, 11-54

isgraph, 11-54

islower, 11-54

isprint, 11-54

ispunct, 11-54
isspace, 11-54

isupper, 11-53

isxdigit, 11-54

check disk, 2-7

CHECK program, 2-6
Checklist, 2-6

checksum, 2-7

chip or processor control, 4-9
CIncludes folder, 2-4

clear EOF and error conditions, 11-17

clearerr, 10-8, 11-17

CLIB68 environment variable

See environment variables

clock, 11-17

close, 11-18

close a buffered I/O stream, 11-25
close a device or file, 11-18

cnm utility, 7-3 - 7-5
options, 7-3
symbol format, 7-4
symbol types, 7-4
type codes, 7-4 - 7-5

code segmentation, 4-9
colon

use of, 2-15, 2-18, 7-39

colon commands, Z editor, 8-41

command line arguments, 10-2
command line errors

See linker error messages
command line, diff, 7-8

command line, make, 7-36 - 7-37

makefile, 7-31

maximum length, 7-36
optional parameters, 7-37

command mode, Z editor, 8-5
command sequence, make, 7-28
Commando, 2-20 - 2-21

Compare, 2-25

compare between specified columns, 2-25
display mismatches in horizontal format,

2-25
display output to be cut & pasted, 2-26
display specified number of lines, 2-25
ignore case differences, 2-25
ignore trailing blanks, 2-25
ignore trailing spaces, 2-26

ignore trailing tabs, 2-26
set maximum number of lines, 2-25

specify grouping factor, 2-25
supress display, 2-25
supress tab expansion, 2-26
treat multiple spaces as single space, 2-25
treat tabs as a single space, 2-25
use fixed grouping factor, 2-26
write information to diagnostic output, 2-26

compare 2 blocks of memory n bytes long,

vi

11-64

compare two strings, 11-101
up to max characters, 11-106
using the current locale, 11-102

Compare, options

-b, 2-25

-c, 2-25

-d, 2-25

-e, 2-25

-g, 2-25
-h, 2-25

-], 2-25

-m, 2-25

-n, 2-25

-p, 2-26
-S, 2-26

-t, 2-26

-v, 2-26

-x, 2-26

compiler
displaying error messages, 4-34
embedded assembly, 4-30
example, 4-30
error handling, 4-34
fatal errors, 4-34
for loops, 4-19
frame pointer register, 4-20
handling errors, 4-34

input files, 4-2

invoking, 4-2

memory models, 4-6, 4-9
nonfatal errors, 4-34
operating instructions, 4-2
output assembly language files, 4-14
precompiled header files, 4-5
prototypes, 4-19
trigraphs, 4-18
utility options - description, 4-15

compiler error messages
summary list, 13-2 - 13-6
fatal error summary list, 13-6 - 13-7
explanations, 13-8 - 13-39
explanations, fatal, 13-41 - 13-44
explanations, internal, 13-45

compiler options, 4-9
summary list, 4-10 - 4-12
-a option, 4-2, 4-4, 4-14

Vil

-a examples, 4-14
-at option, 4-10, 4-14
-bd option, 4-10, 4-14
-bs option, 4-10
-c2 option, 4-10, 4-15
-d option, 4-10, 4-15
-f8 option, 4-10
-fm option, 4-10

-hi option, 4-5, 4-10
-ho option, 4-5, 4-10
-1 option, 4-4, 4-10
-k option, 4-10, 4-16

-mb option, 4-10, 4-16
-mc option, 4-8, 4-10

-md option, 4-8, 4-10

-me option, 4-10

-mm option, 4-11, 4-16

-mp option, 4-11
-mr option, 4-11, 4-17

-ms option, 4-11

-O option, 4-3 - 4-4, 4-11
-pa option, 4-11, 4-17

-pa examples, 4-9
-pb option, 4-11, 4-17
-pc option, 411

-pd option, 4-11, 4-17
-pe option, 4-11, 4-17

-pk option, 4-11

-p! option, 4-11, 4-18

-po option, 4-11

-pp option, 4-11 -

-ps option, 3-7, 4-11, 4-18
-pt option, 4-11, 4-18

-pu option, 4-11, 4-18
-ga option, 4-11, 4-19
-qp option, 4-11

-qq option, 4-11, 4-19
-qs option, 4-11
-qv option, 4-11
-Sa option, 4-11
-sb option, 4-11
-sf option, 4-12, 4-19
-sm option, 4-12

-sn option, 4-12, 4-20

-SO option, 4-12

-sp option, 4-12, 4-20

-Sr option, 4-12, 4-20

-ss option, 4-12, 4-20

-su option, 4-12, 4-20

-wa option, 4-12, 4-21

-wd option, 4-12, 4-21

-we option, 4-12
-wl option, 4-21

-wn option, 4-12, 4-21

-wo option, 4-12, 4-22

-wp option, 4-12, 4-22
-wg option, 4-12
-wr option, 4-12, 4-22
-ws option, 4-12
-wu option, 4-12, 4-22

-ww option, 4-23
-y option, 3-8
-yd option, 4-12

-yf option, 4-12, 4-23

-yr option, 4-12, 4-23
-ys option, 4-13, 4-23
-yt option, 4-13, 4-24, 12-4
-yu option, 4-13, 4-24, 12-2 - 12-3

compiler options, turning off, 4-9

components, Z editor, 8-2
compute exponential function, 11-24

compute non-negative square root of

a value, 11-97

compute quotient and remainder,
11-22

compute quotient and remainder of
two longs, 11-56

compute smallest integer not less
than x, 11-16

compute the difference between two
times, 11-22

compute the logarithm of a # to base
10, 11-58

compute the natural logarithm of a
number, 11-57

compute x to the yth power, 11-72
concatenate two strings, 11-100,

11-106
console I/O, 10-5

character-oriented input, 10-13
examples, 10-15 - 10-16

line-oriented input, 10-13

sgtty fields, 10-15
using ioctl, 10-14

control keys, Z editor, 8-10
conversion functions

atof, 11-12

atoi, 11-13

atol, 11-14

format, 11-37

ftoa, 11-45

localeconv, 11-56

sprintf, 11-97
sscanf, 11-99

strold, 11-112

strtod, 11-109

strtol, 11-111

strtoul, 11-113

tolower, 11-119

toupper, 11-119

vsprintf, 11-123
conversion lists, diff, 7-8

types of operations, 7-8
convert a character to lowercase, 11-119

convert a character to uppercase, 11-119
convert a sequence of multibyte characters,

11-123

convert a string
from C to Pascal format, 11-21

from Pascal to C format, 11-76

convert a string to
a double, 11-109

a long, 11-111

a long double, 11-112
unsigned long integer, 11-113

convert a time value

between formats, 11-66

relative to local time, 11-57

to an ASCII string, 11-21
convert an ASCII string to a

double number, 11-12

signed integer, 11-13
signed long val, 11-14

convert date and time, 11-51

convert floating point # to an ASCII string,
11-45

convert multibyte characters, 11-62
convert text characters from input stream,

11-87

copy a block of memory, 11-65

copy a memory block, 11-67

Vili

copy block of bytes from 1 object to
another, 11-65

copy characters from one string to an
other, 11-107

copy characters from source to desti
nation, 11-63

copy one string to another, 11-102
copy the string pointed to , 11-103
copy value of char into object, 11-93
correction insert commands, Z editor,

8-39
cos, 11-18

cosh, 11-19
cotan, 11-19

error codes, 11-19
CRC, 2-7
crc utility, 7-7
crclist, 7-7
creat, 11-20
create a name fora temporary file,

11-118
create a new file, 11-20
create a temporary file, 11-117
creating a program, 3-3
creating new program, Z editor, 8-3
CTags, 2-27 - 2-30

#define use, 2-27 - 2-28
#ifdef use, 2-27
#ifndef use, 2-27

#include use, 2-27

#line use, 2-27

#undef use, 2-29
command field, 2-29
diagnostics, 2-29
examples, 2-29
filename field, 2-29
limitations, 2-30
tag field, 2-29
tags in detail, 2-29

Clags options, 2-27 - 2-28
-C, 2-27

-cplusplus, 2-27
-d, 2-27
-decl, 2-27
-e, 2-27
-f, 2-28
-h, 2-28

-i, 2-28

-k, 2-28

-], 2-28

-local, 2-28

-noduptypedefs, 2-28

-0, 2-28

-p, 2-28

-r, 2-28

-S, 2-28

-t, 2-28

-u, 2-29

-update, 2-29
-w, 2-29

ctags utility, Z editor, 8-2, 8-33
ctime, 11-21

ctop, 11-21

ctype.h, 10-21
current directory, make, 7-37
cursor motion commands, Z editor, 8-13

examples, 8-7
cursor positioning, Z editor, 8-5
customization, 2-22

D

data formats

bitfields, 4-27

enum constants, 4-27
multibyte characters, 4-27
ptrdiff_t, 4-28
size_t, 4-28
structures, 4-26

wide characters, 4-27
database format, 2-32
dbg2coff utility, 7-6
dc, 12-3
deallocate a memory block, 11-40
debugging control, 4-9
decompose a floating point number, 11-42
default drive, make, 7-37
default settings, 4-9
define how to handle a signal, 11-94
definition

makefile, 7-29

named buffers, Z editor, 8-19
regular expression, Z editor, 8-11
Z editor, 8-1

1X

delete a file, 11-84
Delete command, 2-16

deleting directories, 2-16
deleting lines, diff, 7-8

deleting text, Z editor, 8-17 - 8-18

DepDir, 7-39

dependency entries, make
definition, 7-29
makefile, 7-29, 7-31, 7-37

dependency lines, make

maximum length, 7-37
dependent files, make, 7-31

determine # of bytes in multibyte
character, 11-124

determine and set console mode,
11-53

determine if device is interactive,
11-54

determine size of multibyte character,

11-61, 11-63
determine time intervals, 11-17
dialogue window, 2-7

diff utility, 7-8 - 7-10
examples, 7-8 - 7-10

-b option, 7-10
adding lines, 7-8
blanks, 7-10
changing lines, 7-8
command line, 7-8

conversion items, 7-8 - 7-9
conversion list, 7-8

deleting lines, 7-8

directory names, 7-10
file length, 7-10
range of lines, 7-8
replacing lines, 7-8
UNIX options not supported, 7-10

difftime, 11-22
direct functions, 4-29
directive error messages

See assembler error messages
directives, assembler

See assembler directives
director, 2-16

directory
creating new, 2-16
duplicating, 2-17

moving, 2-17
rename, 2-17

Directory command, 2-15, 2-18
directory names, diff, 7-10

directory, make
recording time and date, 7-29

directory,locating current, 2-15

display commands, Z editor, 8-36
div, 11-22

documentation
reading order, 1-6

dseg, 5-10
Duplicate command, 2-17
duplicating text, Z editor, 8-18 - 8-19
dynamic buffer allocation, 10-18

E

editing, Z editor, 8-5, 8-30 - 8-31
examples, 8-31
another file, 8-30
syntax, 8-30

embedded assembler
examples, 4-30

embedded assembly, 12-5
entry directive, 6-14
environment variables

CCOPTS, 4-9
CCTEMP, 4-3
CLIB68, 3-4
INCL68, 4-5, 5-3 - 5-4, 6-2
INCLUDE, 5-4
ZOPT, 8-28

erase file, 11-120

error handling, compiler, 4-34
error messages, assembler

See assembler error messages
error messages, linker

See linker error messages
error processing, 10-19

error codes, 10-19
escape character, 7-39
escape key, Z editor, 8-10
Ex-like commands, Z editor

"&" command, 8-27

addresses, 8-25
arguments, 8-24

c option, 8-26
g option, 8-26

repeat last substitute, 8-24
substitute, 8-24, 8-26

executable instructions

assembler, 5-6 - 5-8

labels, 5-6

operands, 5-7 - 5-8
operations, 5-6 - 5-7

execute a non-local goto, 11-59
exit, 10-6, 11-23

exp, 11-24

error codes, 11-24
Extended tekhex Generator, 7-49
extensions, 2-14

F

fabs, 11-25

fclose, 10-6 - 10-8, 11-25

fentl.h, 10-21

fdopen, 11-26 - 11-28

example, 11-27
modes, 11-26

feof, 10-8, 11-28

ferror, 10-8, 11-29

fflush, 11-29

fgetc, 11-30

fgetpos, 11-31
fgets, 11-31
file descriptor, 10-10
file extension, make, 7-33
file extensions, 2-14

file length, diff, 7-10
file list feature, Z editor, 8-32
file parameter, grep, 7-11
file pointer, 10-6
fileno, 11-33

files

deleting, 2-16

duplicating, 2-17

moving, 2-17
renaming, 2-17

verifying, 7-7
Files command, 2-14, 2-18 - 2-19
files, listing, 2-14

find 1st occurence of a character ina

string, 11-52
find a character within an object, 11-64
find last occurence of a character in string ,

11-85

Finder, 2-6, 2-16

FindTag, 2-31 - 2-33

examples, 2-33
database format, 2-32

diagnostics, 2-32
input, 2-32
output, 2-32

status, 2-32

tags database, 2-31

tags stack, 2-31
FindTag options, 2-32 - 2-33

-a, 2-32

-f window, 2-32

-n, 2-32

-p, 2-32

-q, 2-33
-S, 2-33

float math functions

acos, 11-9

asin, 11-10

atan, 11-11

atan2, 11-11

ceil, 11-16

cos, 11-18

cosh, 11-19

cotan, 11-19

exp, 11-24
fabs, 11-25

floor, 11-33

fmod, 11-35

frexp, 11-42
Idexp, 11-55
log, 11-57
log10, 11-58

modf, 11-67

pow, 11-72
ran, 11-81

randl, 11-82

sin, 11-96

sinh, 11-96

sqrt, 11-97
sran, 11-98

tan, 11-116

xl

tanh, 11-116 | getenv, 11-49
float.h, 10-21 getiob, 11-50
floating point control, 4-9 gets, 11-50
floor, 11-34 - getw, 11-51

flush an I/O stream, 11-29 global, 12-2
flush specified open stream, 11-34 gmtime, 11-51
fmod, 11-35 go command, Z editor, 8-6
fopen, 11-35 - 11-36 grep, 8-11

format, 11-37 examples, 7-11
formatted input conversion on stdin $, 7-13

stream, 11-87 -c option, 7-11
formatted output function, 11-73 -f option, 7-11
fprintf, 11-38 -] option, 7-11
fputc, 11-39 -n option, 7-11
fputs, 11-39 -v option, 7-11
fread, 11-40 [[*}], 7-12
free, 10-7, 11-41, 12-7 [], 7-12
freopen, 10-17, 11-41 \, 7-13

frexp, 11-42 A, 7-13

fscanf, 11-42 file parameter, 7-11

fseek, 10-4, 10-7 - 10-8, 11-43 - 11-44 input files, 7-11
example, 11-44 multiple options, 7-14

fsetpos, 11-44 patterns, 7-12
ftell, 11-45 simple string matching, 7-14
ftoa, 11-45 special patterns examples, 7-13

example, 11-46 standard input, 7-11
full path, 2-18 UNIX similarities and differences, 7-11, 7-14

function called at program wildcard characters, 7-11
termination, 11-12 x*, 7-13

function prototypes grep utility, 7-11 - 7-14
See prototypes

fwrite, 11-46 - 11-47 H
example, 11-47

hd utility, 7-16
G header files

errno.h, 10-19

generate floating point random setty.h, 10-14
numbers, 11-81 help, 2-20

get a string of characters from stdin, display general help, 2-20
11-50 display info about command, 2-20

get and return next character, 11-32 display MPW Shell commands, 2-20

get and set bytes in memory, 11-72 display special shell characters, 2-20
get character string from stream, 11-31 selection expressions, 2-20

get value of environment variable, shell regular expressions, 2-20
11-49 shortcuts for commands, 2-20

getc, 11-48 HELP command, 2-13, 2-20
getchar, 11-49 hex68 utility, 7-17

xii

I

I/O

testing for errors, 11-29
I/O errors

See linker error messages
in-line assembly code, 4-30
INCL68 environment variables

See environment variables
include files

| -1 option, 5-3
environment variable, 5-4
search order, 5-4

searching for, 5-3
increment a pointer by size bytes,

11-86

index, 11-52

indirect macro definition, 8-23
initialize seed value used by rand,

11-98

input files, 4-2, 7-11

assembler, 5-2

source filename extensions, 4-2 - 4-3
insert mode, Z editor, 8-8

AW command, 8-4

command list, 8-20
commands, 8-21, 8-39
exiting, 8-4, 8-10
i, 8-4
memory-resident buffer, 8-4

installation, 1-6, 2-4

problems with, 2-6 - 2-7
integer math functions

abs, 11-8
div, 11-22

labs, 11-55
Idiv, 11-56
rand, 11-81

srand, 11-98
interfile dependencies

makefile, 7-28
interrupt handlers

assembly language routine, 12-6
C-language interrupt routines, 12-6

ioctl, 10-5, 10-13, 11-53
isalnum, 11-53 - 11-54

isalpha, 11-53
isascii, 11-53 - 11-54
isatty, 10-16, 11-54
iscntrl, 11-53 - 11-54
isdigit, 11-53 - 11-54
isgraph, 11-53 - 11-54
islower, 11-53 - 11-54
isprint, 11-53 - 11-54
ispunct, 11-53 - 11-54
isspace, 11-53 - 11-54
isupper, 11-53

isxdigit, 11-53 - 11-54

J

jmp optimizations, 5-3
Jsr optimizations, 5-3

L

labs, 11-55
lb utility

moving modules, 7-25
ord, 7-46

Ib68 utility, 7-19 - 7-27
adding modules, 7-23 - 7-24
advanced features, 7-22
basic features, 7-20

creating a library, 7-20
default extension, defining, 7-27
deleting modules, 7-25
extracting modules, 7-26
function code options, 7-19
getting arguments from a file, 7-22
library argument, 7-19
mod arguments, 7-20
naming modules, 7-21
options argument, 7-19
qualifier options, 7-19
reading arguments from a file, 7-20
rebuilding a library, 7-27
replacing modules, 7-25

Idexp, 11-55
Idiv, 11-56
libraries

adding modules, 7-23 - 7-24
creating, 7-20

xiii

deleting modules, 7-25
extracting modules, 7-26
included in package, 3-7
1b68 utility, 7-22 - 7-27
moving modules, 7-25

order of modules, 7-21
rebuilding, 7-27
replacing modules, 7-25

library functions
description of return values, 11-2

library generation
building libraries, 9-12

modifying functions, 9-2
limits.h, 10-21

line movement commands, Z editor,

linker

8-12 - 8-14

-O option, 3-4
creating the sample program, 6-2

entry points, 6-14

global symbols, 6-14
introduction to linking, 6-2
linker options, 6-9
module and library names , 6-4
ord68 library utility, 6-6

order of library modules, 6-5

position code, data, stack, 3-4

programmer information, 6-14

searching libraries, 6-4
stack options, 6-12
symbol definition, 6-3
symbol reference, 6-3
using the linker, 6-7

linker error messages
command line summary list, 13-62 -

13-63
explanations, command line, 13-64
explanations, I/O, 13-64 - 13-66
explanations, memory, 13-67
explanations, source code, 13-67 -

13-68

memory summary list, 13-63
linker options

summary of options, 6-9
+c option, 3-4, 6-12

+d option, 3-4, 6-12

+] option, 3-4, 6-12

+r option, 3-8, 6-12
+s option, 3-4, 6-12
+u option, 3-4, 6-12

-a option, 5-9
-f option, 6-10
-g option, 6-11
-] option, 3-5, 6-7, 6-10
-m option, 6-11
-o option, 6-7, 6-10

-q option, 6-11
-t option, 6-11
options for positioning a program's

sections, 6-12

stack options, 6-12

linking
input object module files, 3-4
libraries and the -l option, 3-4

listing file, assembler, 5-2

local moves, Z editor, 8-13

locale.h, 10-21

localeconv, 11-56

localtime, 11-57

log, 11-57 |

log10, 11-58

error codes, 11-58

longjmp, 11-59
Iseek, 10-4, 10-11, 11-59 - 11-60

examples, 11-60

M

macro buffer, Z editor, 8-22

macro calls

definition, 5-17

macros, make, 7-31

examples, 7-31 - 7-33

$$, 7-33

$*, 7-33

$@, 7-33

AFLAGS, 7-32, 7-35

built-in rules, 7-32

capabilities, 7-28

CFLAGS, 7-32, 7-35

command line, 7-33

defining in command line, 7-32
invoking, 7-31
names, 7-28

XIV

naming, 7-31
option -DFLOAT, 7-33

used by built-in rules, 7-32
macros, Z editor, 8-2, 8-22 - 8-24, 8-40

immediate macro definition, 8-22 -
8-23

indirect macro definition, 8-23 - 8-24
reexecuting, 8-24

make built-in rules

.c to .o rule, 7-33, 7-35
make, macros, 7-31

examples, 7-34

AFLAGS, 7-32, 7-35

CFLAGS, 7-32, 7-35

command line, 7-33
make, MANX version, 7-28 - 7-43

examples, 7-41 - 7-43
advanced features, 7-31

arcv, 7-41

assembly language source file, 7-41
Aztec vs. MPW, 7-39

backslash, 7-36

batch commands, 7-36

built-in rules, 7-32, 7-35
C source file, 7-41

character strings, 7-28, 7-31
colon, 7-34

command line, 7-34 - 7-37

command line length, 7-36
command line parameters, 7-37
command sequence, 7-28
comments, 7-36

creating a makefile, 7-28
current directory, 7-37
default drive, 7-37

dependency lines, length, 7-37
dependent files, 7-31
disk file, 7-36

file extension, 7-33

filenames, 7-31

interfile dependencies, 7-28
line continuation, 7-36
macro definition example, 7-36
macros, 7-31

makefile, 7-28

mkarcv, 7-41

null character string, 7-32, 7-35

object files, removing, 7-42
operating system commands, 7-35
Overriding rules, 7-35
parameters, 7-37

prerequisite files, 7-29
recording time and date, 7-29
rule definition, 7-34
rule-processing capability, 7-28
rules, 7-28, 7-33
rules built-in, 7-33
rules, target extension, 7-33
sequence of commands, rules, 7-33
source extension, rules, 7-33 - 7-34
Starting, 7-37, 7-41
syntax, 7-37

tab character, 7-34
target extension, 7-34
target file creation, 7-37
target files, 7-29, 7-31

UNIX options not supported, 7-40
UNIX similarities and differences, 7-40
volume, 7-31

make, MANX version options
-b option, 7-40
-d option, 7-40
-DDEBUG option, 7-35
-e option, 7-40
-1 option, 7-40

-k option, 7-40

-m option, 7-40
-n option, 7-40
-q option, 7-40
-r option, 7-40

-S option, 7-40

-t option, 7-35, 7-40
make, MPW, 2-34

XV

define variable, 2-34

find root(s), 2-34
list targets, 2-34
read dependency information, 2-34
rebuild, 2-34

Supress warning message, 2-34
update files w/o rebuilding, 2-34
write dependency graph, 2-34
write progress information, 2-34
write verbose output to diagnostic output,

2-34

make, MPW options

-d, 2-34
-e, 2-34

-f, 2-34
-p, 2-34

-r, 2-34

-S, 2-34

-t, 2-34
-u, 2-34

-v, 2-34

-w, 2-34

makefile
examples, 7-29 - 7-30, 7-41

-f option, 7-29
command line, 7-31
convert different versions, 7-39

definition, 7-29
dependency, 7-31
dependency entries, 7-29 - 7-30, 7-37
executed commands, 7-29
libc directory, 7-42

misc directory, 7-43
operating system commands, 7-29
syntax, 7-36
sys directory, 7-42

malloc, 10-7, 11-61, 12-7

Manx Project Manager, 2-8 - 2-11, 2-22

Commando interface, 2-10, 2-13
New Project, 2-9
Worksheet, 2-13

maps error number to error message,
11-104

MarkC, 2-35
See also FindTags
Browse... facility, 2-35
diagnostics, 2-35
input, 2-35
output, 2-35
status, 2-35
type, 2-35

marking and returning, Z editor,

8-15, 8-37
matching a special character, 7-13
matching any of a set of characters,

7-12
matching line beginning and end,

7-13

matching patterns, Z editor, 8-11
matching repeated characters, 7-13
math.h, 10-21
mblen, 11-62

mbstowcs, 11-62

mbtowc, 11-63

memccpy, 11-63
memchr, 11-64

memcmp, 11-64
memcpy, 11-65
memmove, 11-65
memory allocation functions

brk, 11-14
calloc, 11-16
free, 11-40

malloc, 11-61
peekb, 11-72
peekl, 11-72

peekw, 11-72
pokeb, 11-72

pokel, 11-72

pokew, 11-72
realloc, 11-83

sbrk, 11-86
memory errors

See linker error messages
memory models, 4-9

code segmentation, 4-9
control of, 4-9

memset, 11-66
menu items

Build, 2-10
Build Project, 2-9
Compile, 2-9

Modify Project, 2-9
No Project, 2-9
Open Project, 2-9

miscellaneous functions
_stkchk, 11-99

abort, 11-8

atexit, 11-12
bsearch, 11-15

exit, 11-23
getenv, 11-49
longjmp, 11-59
mblen, 11-61

mbstowcs, 11-62

XVi

mbtowc, 11-63

qsort, 11-79
raise, 11-80

setlocale, 11-92

strerror, 11-104

system, 11-115
wcstombs, 11-123

wctomb, 11-124

mkarcv utility, 7-44
mkarcv, make, 7-41

mktime, 11-66

modf, 11-67

modifying functions

exit() and _ exit(), 9-10
sbrkQ and brk(), 9-10

startup function, 9-2

unbuffered I/O functions, 9-6

modifying text, Z editor, 8-17
Move command, 2-17

movem

optimizations, 5-3
reg directive, 5-16

movement, Z editor

moving text, 8-17 - 8-19
within C programs, 8-14
within text, 8-6

word movement, 8-14
movmem, 11-67

MPU symbols, 4-32
MPW

Apple Computer, 2-2

command interpreter, 2-2
Commando interface, 2-19

editor, 2-2

help facility, 2-20
installation, 2-4

manual availability, 2-2
MPW characters

?, 2-19

elipsis(option ;), 2-19
option d, 2-19
option x, 2-19

MPW commands

Delete, 2-16

Directory, 2-15
Duplicate, 2-17
Files, 2-14

Move, 2-17

NewFolder, 2-16

Rename, 2-15, 2-17

Volumes, 2-16

MPW menu items

Edit, 2-10

Find, 2-10

Window, 2-10, 2-13

WorkSheet, 2-13

multiple options, grep, 7-14
multiply a float by an integral power of 2,

11-55

N

named buffers, Z editor

advantage of, 8-19
definition, 8-19

moving text, 8-18
yanking text, 8-19

new directory, creating, 2-16
new folder, creating, 2-16

New Project, 2-9
NewFolder command, 2-16

notation conventions, 1-7

null character string, make, 7-32, 7-35

O

obd68 utility, 7-45
object code file

assembler, 5-2
creation, 4-14

object files, make

removing, 7-42
opcode error messages

See assembler error messages
open, 10-4, 10-11, 11-68 - 11-69

examples, 11-69 - 11-70
modes, 11-36, 11-68

open a file or device, 10-4
for standard I/O access, 11-35
for unbuffered I/O, 11-68
previously opened, 11-26

open file & associate specified stream, 11-33
operating instructions

assembler, 5-2

XVil

operating system commands
make, 7-35

makefile, 7-29

operator commands, Z editor, 8-39
optimizations

assembler, 5-3

branches, 5-3
control, 4-9
jmp, 5-3
jsr, 5-3
movem, 5-3

ord68 utility, 6-6, 7-46
output files, 4-14
output word to stream, 11-79

P

&

package components, 2-4
paging commands, Z editor, 8-10

paragraph commands, Z editor, 8-38
parent directory, 2-15
parser control, 4-9
partial path, 2-18
pascal functions, 4-31

path names, 2-18
full path, 2-18
partial path, 2-18

pattern searching, Z editor, 8-11 - 8-12
patterns, grep, 7-11 - 7-12
peekb, 11-72
peekl, 11-72
peekw, 11-72

perform formatted input conversion,
11-42
on buffer, 11-99

performs stack depth checking, 11-99
perror, 11-70

error messages, 11-71
place characters into array, 11-104
pokeb, 11-72
pokew, 11-72
Poplag, 2-36

diagnostics, 2-36
input, 2-36

output, 2-36
Status, 2-36
type, 2-36

positioning code, data, and stack
linker options, 3-4

positioning, Z editor
line, 8-37
within files, 8-37

pound sign, 7-39

pow, 11-72 - 11-73
pragmas

register function calls, 4-29
precompiled header file control, 4-9
predefined symbols, 4-28
prerequisite files, make, 7-29
print a system error message, 11-70
printf, 11-73 - 11-76

conversion specifiers, 11-73
flags field, 11-74
format string, 11-73
linker options, 11-76
precision field, 11-75
size-mod field, 11-75
type field, 11-75 - 11-76
width field, 11-74

problem
with installation, 2-6

Program Diagnostics Macro, 11-10
programmer information

program format, 6-14
special linker-created symbols, 6-14

programming considerations
data formats, 4-25 - 4-27

symbol names, 4-28
project manager

See Manx Project Manager
prototype generation, 49
prototypes, 4-19
ptoc, 11-77
public, 12-3
push a character back into input stream,

11-120
put commands, Z editor, 8-40
putc, 11-77
putchar, 11-78

puts, 11-78

putw, 11-79

XxVili

Q

qsort, 11-79 - 11-80

example, 11-80

R

raise, 11-80

ran, 11-81

rand, 11-81
randl, 11-82
random I/O, 10-4
range of lines, diff, 7-8

re-allocate memory block, 11-83
read, 10-11, 11-82 - 11-83

read a word from input stream, 11-51
read from a specified standard I/O

stream, 11-40

read from device or file using unbuf
fered I/O, 11-82

reading files command, Z editor, 8-30
reading order, 1-6
README file, 1-6
realloc, 11-83 - 11-84
redirecting output, 2-19
redo commands, Z editor, 8-40

register

control, 4-9
register function calls, 4-29
register variables, 4-29
registers

floating point, 5-12
reg directive, 5-16

regular expression, Z editor, 8-11
definition, 8-11

special characters, 8-11
special characters list, 8-12

remove, 11-84
rename, 11-84
rename a disk file, 11-84

Rename command, 2-15, 2-17

reopen a stream with a new device,
11-41

replace commands, Z editor, 8-39

replacing lines, diff, 7-8 - 7-9
reposition a stream’s position indica

tor, 11-85

reposition current location within a stream,

11-43

requirements, Z editor, 8-2
return a pseudo-random integer, 11-81
return a random number, 11-82

return current file position within stream,
11-45

return file descriptor assoc. with a stream,
11-32

return hyperbolic tangent of a double
value, 11-116

return index of the first character in string,
11-108

return largest value not greater than input,
11-33

return next available

character from a stream, 11-48

character from stdin, 11-48

stdio stream, 11-50
return pointer to first

character in a string, 11-107

occurence of a string, 11-109
return remainder of double value, 11-35
return the absolute value

of a given number, 11-25

of a signed long, 11-55
of an integer, 11-8

return the arc

cosine of a double value, 11-9
sine of a double value, 11-10
tangent of a double value, 11-11

return the cosine of a double value, 11-18
return the cotangent of a double value,

11-19
return the hyperbolic cos of a double

value, 11-19
return the hyperbolic sine of a double

value, 11-96
return the index of specified string, 11-103
return the length of a string, 11-105
return the next available character, 11-30
return the sine of a double value, 11-96
return the tangent of a double value, 11-116
return the time of day, 11-117
rewind, 11-85
rindex, 11-86
root directory, 2-15

xix

rules, make, 7-28

built-in, 7-32 - 7-33, 7-35

definition, 7-34

makefile, 7-33

overriding, 7-35
sequence of commands, 7-33
source extension, 7-33

tab character, 7-34

S

save calling environment macro
setjmp, 11-91

save the current file position for a
stream, 11-31

sbrk, 11-86

scanf, 11-88 - 11-90

conversion characters, 11-89 - 11-90
conversion specification, 11-89
format string, 11-88
matching conversion specifiers, 11-88
matching ordinary characters, 11-88
matching white space characters,

11-88
screen, Z editor, 8-9

adjusting, 8-36
display, 8-3
scrolling, 8-6

Search, 2-37

do not prepend lines with filename,
2-37

do not prepend lines with line
number, 2-37

override case insensitivity, 2-37

override case sensitivity, 2-37

+8, 2-37
select appropriate portion of programs

locale, 11-92
send signal to executing program, 11-80
sequential I/O, 10-4

set a block of memory to a specified value,
11-66

set components of objects for formatting,
11-56

set heap space ‘high water’ mark, 11-14
set the correct file position for a stream,

11-44
set the random number seed for ran, 11-98
set up for a non-local goto, 11-91
setbuf, 10-7, 11-91
setjmp, 11-91
setymp.h, 10-21

setlocale, 11-92

setmem, 11-93

setvbuf, 10-7, 11-93 - 11-94
mode arguments, 11-93 - 11-94

shift operators, Z editor, 8-20
shifting text, Z editor, 8-20

sign extensions, 4-32
signal function, 11-94 - 11-95

example, 11-95

func parameter, 11-95
return values, 11-95
sig parameter, 11-94

simple string matching, grep, 7-14
sin, 11-96

sinh, 11-96

error codes, 11-96
small model support register, 4-6 - 4-7
sort an array of records in memory, 11-79

write lines not matching pattern, 2-37 source code errors
search array for matching object,

11-15

search for 1st occurence of string
character, 11-100

search for occurence of character in
string , 11-108

Search, options
-f, 2-37
-1, 2-37
-q, 2-37
-y, 2-37

See linker error messages
source extension, make, 7-34

source filename extensions, 4-2 - 4-3

source program structure

comments, 5-6
directives, 5-9 - 5-17
executable instructions, 5-6
Macro calls, 5-17

special features of Aztec C68k/ROM
memory models, 3-7

register usage, 3-8

XxX

sprintf, 11-97, 12-7 perror, 11-70

sqrt, 11-97 printf, 11-73
sran, 11-98 putc, 11-77

srand, 11-98 putchar, 11-77
srec68 utility, 7-47 puts, 11-78
sscanf, 11-99, 12-7 putw, 11-79
standard error, 10-2 remove, 11-84

standard I/O, 10-5 rename, 11-84

buffering, 10-7 rewind, 11-85
closing streams, 10-6 scanf, 11-87
errors, 10-8 setbuf, 11-91

opening file and devices, 10-6 setvbuf, 11-93
random I/O, 10-7 tmpfile, 11-117

sequential I/O, 10-7 tmpnam, 11-118
standard I/O functions, 12-7 ungetc, 11-120

_filbuf, 11-32 vfprintf, 11-122

_fileopen, 11-33 vprintf, 11-122

_flsbuf, 11-34 standard input, 10-2

_format, 11-37 standard input, grep, 7-11
_getbuf, 11-47 standard output, 10-2
_getiob, 11-50 starting, make, 7-41

_scan, 11-87 starting, Z editor, 8-28

clearerr, 11-17 startup function

fclose, 11-25 defining the heap, 9-5
feof, 11-28 RAM-based programs, 9-5
ferror, 11-29 RAM-based, interrupt table, 9-3 - 9-4
fflush, 11-29 ROM-based initialized data, 9-5
fgetc, 11-30 ROM-based systems, 9-3
fgetpos, 11-31 ROM-based, interrupt-driven, 9-2
fgets, 11-31 ROM-based, non-startup program, 9-3
fopen, 11-35 static, 2-28
fprintf, 11-38 status information line, Z editor, 8-3
fputc, 11-38 stdarg.h, 10-22
fputs, 11-39 stddef.h, 10-22
fread, 11-40 stdio.h, 10-6, 10-22
freopen, 11-41 stdlib.h, 10-22
fscanf, 11-42 stopping, Z editor, 8-29
fseek, 11-43 strcat, 11-100

fsetpos, 11-44 strchr, 11-100
ftell, 11-45 strcmp, 11-101 Mae
fwrite, 11-46 strcoll, 11-102

getc, 11-48 strcpy, 11-102
getchar, 11-48 strcspn, 11-103
gets, 11-50 strdup, 11-103
getw, 11-51 strerror, 11-104
ioctl, 11-53 strftime, 11-104 - 11-105
isatty, 11-54 string handling functions

Xxi

ctop, 11-21
index, 11-52

ptoc, 11-76
rindex, 11-85

strcat, 11-100

strchr, 11-100

strcmp, 11-101
strcoll, 11-102

strcpy, 11-102
strcspn, 11-103
strdup, 11-103
strftime, 11-104

strlen, 11-105

strncat, 11-106

strncmp, 11-106

strncpy, 11-107

strpbrk, 11-107

strrchr, 11-108

strspn, 11-108

strstr, 11-109

strtok, 11-110

strxfrm, 11-114

string search commands, Z editor,

8-7 - 8-11

string.h, 10-22

strlen, 11-105

strncat, 11-106

strncmp, 11-107
strncpy, 11-107

strold, 11-112 - 11-113

strpbrk, 11-107

strrchr, 11-108

strspn, 11-108

strstr, 11-109

strtoc, 11-109 - 11-110

strtok, 11-110 - 11-111

strtol, 11-111

strtoul, 11-113 - 11-114

strxfrm, 11-114

substitute command, Z editor

examples, 8-26
options, 8-26
syntax, 8-26

swap characters between specified
objects, 11-115

swapmem, 11-115
symbol names, 4-28

syntax error messages

See assembler error messages
system, 11-115

T

tab character, make, 7-34

tags

methods of specifying, 2-31
tags, Z editor, 8-32 - 8-33
tan, 11-116

tanh, 11-116
TargDir, 7-39
target extension, make, 7-34

rules, 7-33
target file, 7-39
target file, Z editor, 8-19
target files, make, 7-29, 7-31

creation, 7-37

target systems

64180, 1-5
6502, 1-5
65C02, 1-5
68000, 1-5
68010, 1-5
68020, 1-5
68881, 1-5
80186, 1-5
80286, 1-5
80287, 1-5
8080, 1-5
8085, 1-5
8086, 1-5
8087, 1-5
2180, 1-5

Z80, 1-5
technical information

assembler functions, 12-2

embedded assembler source, 12-5
external functions and variables, 12-3

function calls and returns, 12-4

global variables, 12-2 - 12-3
global variables and functions, 12-2
interrupt handlers, 12-6
introduction, 12-1

register usage, 12-4

technical support, 13-1 - 13-2, 13-4

bulletin board system, 13-3
guidelines, 13-1 - 13-4
mail-in service, 13-2
phone hours, 13-3
phone number, 13-4

phone support, 13-3
procedures, 13-2
required info, 13-1 - 13-2
updates, 13-3

tekhex68 utility, 7-49 - 7-50
terminate calling program, 11-23
terminate program abnormally, 11-8
test for an error in a standard I/O

stream, 11-29
test for EOF in a standard I/O

stream, 11-28
text, Z editor

line length, 8-9
rearranging, 8-19

time, 11-117

time functions

asctime, 11-9
clock, 11-17
ctime, 11-2]

difftime, 11-22
gmtime, 11-51
localtime, 11-57

mktime, 11-66
time, 11-117

time.h, 10-22
tmpfile, 11-117

tmpnam, 11-118

toggle, 4-9
tokenize a string, 11-110
tolower, 11-119

tools

Compare, 2-25
CTags, 2-27 - 2-30
FindTag, 2-31 - 2-33
make, 2-34

MarkC, 2-35
PopTag, 2-36
Search, 2-37

Tools folder, 2-4

toupper, 11-119
transform a string to match current

locale, 11-114

translates a time value into an ASCII

string, 11-9
translating a program into hex code

compiling and assembling, 3-3
convert to hex records, 3-5 - 3-6
creating the source program, 3-3
linking, 3-3

trigraphs, 4-18

turning off compiler options, 4-9
tutorial introduction

creating object module libraries, 3-2
introduction, 3-1

special features of Aztec C68k/ROM, 3-7
where to go from here, 3-9

typedefs, 2-28

U

unbuffered I/O, 10-5

device I/O, 10-11

file I/O, 10-11
unbuffered I/O functions, 12-7

error codes, 9-9

file descriptors, 9-6 - 9-8
undo command, Z editor, 8-20, 8-40
ungetc, 11-120
UNIX I/O functions

close, 11-18

creat, 11-20

fdopen, 11-26

fileno, 11-32

Iseek, 11-59

open, 11-68

read, 11-82

unlink, 11-120

write, 11-124

UNIX utilities

diff, 7-10

Ex-editor, 8-24

grep, 7-14

make, 7-28, 7-40

Vi editor, 8-1

unlink, 11-120

unnamed buffer, Z editor, 8-18

deleting text, 8-18
moving text, 8-17

unprintable characters, Z editor, 8-9

XXili

ed

.

w
o

Ft

UserStartup script, 2-33
using the linker

executable file, 6-7

libraries, 6-8 |

options, detailed description, 6-10
utilities, MANX:

arcv, /-2

cnm, 7-3 - 7-5

crc, 7-7

Ciff, 7-& - 7-10

grep, 7-11 - 7-14

hd, 7-16 |

hex5@, 7-17

1b68, 7-19 - 7-27

make, 7-28 - 7-39, 7-41 - 7-42

ohd6&, 7-45

ord68, 7-46

srec68, 7-47

V

va_arg, 11-121

va_end, 11-121

va_start, 11-121

variable argument access, 11-121
variable arguments functions

va_arg, 11-121

va_end, 11-121

va_start, 11-121

verify program assertion, 11-10
vfprintf, 11-122

Vi editor, 8-35

volume name, 2-15

volume, make, 7-31

Volumes command, 2-16

volumes, listing, 2-16

vprintf, 11-122

vsprintf, 11-123

WwW

warning control, 4-9

wcstombs, 11-123

wctomb, 11-124

wild card, 2-16

wild cards, 2-15

wildcard characters, grep, 7-11

word movement cornmands, Z editor,

8-14, 8-38

wrap scan option, Z editor, 8-11

write, 10-11, 11-124 - 11-125

write a character

to an I/O stream, 11-38, 11-77
to the stdout stream, 11-77

write a string to
an I/O stream, 11-39

stdout, 11-78

write formatted ASCII data

to a buffer, 11-123

to a stream, 11-122

to specified stream, 11-37
to stdout, 11-122

write formatted data, 11-37

to a buffer, 11-97

to an I/O stream, 11-38

write to a file/device using unbuffered
I/O, 11-124

write to a specified standard I/O stream,
11-46

writing files commands, Z editor, 8-30

Y

yank operator command, Z editor,
8-18, 8-40

Z

Z editor _
See also Z editor comrnands
-bak files, 8-5

accessing files, 8-29, 8-34

adjusting the screen, 8-15, 8-36 - 8-37
appending numbers to commands, 8-7
autoindent, 8-4, 8-21 - 8-22, 8-28

character positioning, 8-38
character strings, 8-11
colon commands, 8-11, 8-41

command mode, 8-5
components, 8-2

control keys, 8-10

corrections during insert, 8-39
creating new program, 8-3
ctags, 8-2, 8-33

XXIV

cursor motion commands, 8-7, 8-14
cursor positioning, 8-5
definition, 8-1

deleting lines, 8-7, 8-17

deleting text, 8-7, 8-17
differences between Z and Vi,

8-34 - 8-35 -
displaying unprintable characters, 8-9
duplicating text blocks, 8-18 - 8-19
echo commands, 8-9
editing another file, 8-30 - 8-31
escape key, 8-4, 8-10
Ex-like commands, 8-24 - 8-27
exiting, 8-4

exiting insert mode, 8-4
file lists, 8-32

filenames, 8-29
indirect macro definition, 8-23
insert and replace, 8-39
insert command list, 8-20
insert commands, 8-8, 8-20 - 8-21
insert mode, 8-4, 8-21

insert mode, exiting, 8-10
line movement, 8-12 - 8-14
line positioning, 8-37
macro buffer, 8-22
macro wrap options, 8-24, 8-28
macros, 8-2, 8-22 - 8-24, 8-40
main text buffer, 8-18 - 8-19
making changes, 8-16
marking and returning, 8-15, 8-37
matching patterns, 8-11 - 8-12
miscellaneous operations, 8-40
modifying text, 8-17
movement within C programs, 8-14
moving text between files, 8-19
moving text blocks, 8-18
moving within text, 8-6
named buffers, 8-18 - 8-19
operators, 8-39
option file, 8-28

options, 8-34, 8-36
paging, 8-10
positioning within files, 8-37
reading files, 8-30
rearranging text, 8-19
reexecuting macros, 8-24

XXV

regular expressions, 8-11 ©
requirements, 8-2

screen display, 8-3
scrolling, 8-6
shift operators, 8-20
shifting text, 8-20 :
Starting, 8-5, 8-27 - 8-28, 8-36
Status information line, 8-3
stopping, 8-5, 8-29
string search, 8-6 - 8-7, 8-9 - 8-10, 8-23
substitute command, 8-26 |
tags, 8-32 - 8-33 . 3
text lines longer than screen, 8-9
undo and redo, 8-40 |
undo command, 8-20
UNIX vi similarities and differences,

8-34 - 8-35
unnamed buffer, 8-17 - 8-18
unprintable characters, 8-9
word movement, 8-14
words and paragraphs, 8-38
wrap scan option, 8-11
writing files, 8-30
yank and put, 8-40
yank operator, 8-18 - 8-19
yanking text, 8-19

Z editor command options
See also Z editor commands
ai=1/0, 8-36

ak, 8-36

bk=1/0, 8-36

eb=1/0, 8-36
ma=0/1, 8-36

sm=1/0, 8-36
ts=val, 8-36

wm, 8-24

wm=1/0, 8-36

ws=1/0, 8-36
Z editor commands

See also Z editor, special character
commands

:se, 8-11

a/A, 8-8, 8-20 - 8-21, 8-39
b/B, 8-14, 8-38
backspace, 8-7, 8-21

c/C, 8-16 - 8-17, 8-20, 8-39 - 8-40
carriage return, 8-7, 8-37

cc, 8-17

Control L, 8-16

Control-B, 8-10

Control-D, 8-6, 8-21

Control-F, 8-10

Control-H, 8-13

Control-J, 8-13
Control-K, 8-13
Control-L, 8-13

Control-U, 8-6

Control-V, 8-21

Control-X, 8-21

d/D, 8-16 - 8-17, 8-39 - 8-40
dd, 8-7, 8-16
dw, 8-17

examples deleting, 8-17

e/E, 8-14, 8-38
f/F, 8-13
fx/Fx, 8-38

¢/G, 8-6, 8-37
H, 8-37
h/4H, 8-13, 8-38
i/I, 8-5, 8-20 - 8-21, 8-39
J, 8-40
j/4J, 8-13, 8-16, 8-38
k/4*K, 8-13, 8-38
L, 8-37
1/AL, 8-13, 8-38
LF, 8-38
M, 8-37
mx, 8-15, 8-37
n/N, 8-7, 8-10, 8-37
o/O, 8-8, 8-13, 8-20, 8-39
p/P, 8-18 - 8-19, 8-40

examples,put, 8-19
_R, 8-16, 8-39
rx, 8-16, 8-39
s/S, 8-16, 8-20, 8-40
space, 8-7, 8-38
t/T, 8-13

. tabs, 8-36

‘tx/Tx, 8-38
u/U, 8-20, 8-40
vy 8-24;'8-40
-w/W, 8-14, 8-38
x/X, 8-5, 8-7, 8-16, 8-40
y, 8-18 - 8-19, 8-39 - 8-40

examples,yank operator, 8-18
z/Z, 8-15 - 8-16, 8-36 - 8-37

ZZ, 8-4 - 8-5, 8-29

Z editor memory-resident buffer, 8-5

Z editor, special character commands

See also Z editor commands

#, 8-29

$, 8-12 - 8-13

%, 8-14, 8-29

* 8-12

/, 8-6
<, 8-12

<<, 8-39

>, 8-12

>>, 8-39

?, 8-10

@, 8-9, 8-24

[L 8-14
[], 8-11

[Astr], 8-12

[str], 8-12

[x-y], 8-12

\, 8-29

]], 8-14

A, 8-12 - 8-13

{}, 8-14

|, 8-14

~, 8-9

comma, 8-14

double quote, 8-15, 8-19

period, 8-12

semicolon, 8-13

single quote, 8-15

ZOPT environment variable, Z editor, 8-28

XXVi

	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	00-10
	00-11
	00-12
	00-13
	00-14
	00-15
	00-16
	00-17
	00-18
	00-19
	00-20
	00-21
	00-22
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02_01
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	02_09
	02_10
	02_11
	02_12
	02_13
	02_14
	02_15
	02_16
	02_17
	02_18
	02_19
	02_20
	02_21
	02_22
	02_23
	02_24
	02_25
	02_26
	02_27
	02_28
	02_29
	02_30
	02_31
	02_32
	02_33
	02_34
	02_35
	02_36
	02_37
	02_38
	03_01
	03_02
	03_03
	03_04
	03_05
	03_06
	03_07
	03_08
	03_09
	03_10
	04_01
	04_02
	04_03
	04_04
	04_05
	04_06
	04_07
	04_08
	04_09
	04_10
	04_11
	04_12
	04_13
	04_14
	04_15
	04_16
	04_17
	04_18
	04_19
	04_20
	04_21
	04_22
	04_23
	04_24
	04_25
	04_26
	04_27
	04_28
	04_29
	04_30
	04_31
	04_32
	04_33
	04_34
	05_01
	05_02
	05_03
	05_04
	05_05
	05_06
	05_07
	05_08
	05_09
	05_10
	05_11
	05_12
	05_13
	05_14
	05_15
	05_16
	05_17
	05_18
	06_01
	06_02
	06_03
	06_04
	06_05
	06_06
	06_07
	06_08
	06_09
	06_10
	06_11
	06_12
	06_13
	06_14
	06_15
	06_16
	07_01
	07_02
	07_03
	07_04
	07_05
	07_06
	07_07
	07_08
	07_09
	07_10
	07_11
	07_12
	07_13
	07_14
	07_15
	07_16
	07_17
	07_18
	07_19
	07_20
	07_21
	07_22
	07_23
	07_24
	07_25
	07_26
	07_27
	07_28
	07_29
	07_30
	07_31
	07_32
	07_33
	07_34
	07_35
	07_36
	07_37
	07_38
	07_39
	07_40
	07_41
	07_42
	07_43
	07_44
	07_45
	07_46
	07_47
	07_48
	07_49
	07_50
	07_51
	07_52
	08_01
	08_02
	08_03
	08_04
	08_05
	08_06
	08_07
	08_08
	08_09
	08_10
	08_11
	08_12
	08_13
	08_14
	08_15
	08_16
	08_17
	08_18
	08_19
	08_20
	08_21
	08_22
	08_23
	08_24
	08_25
	08_26
	08_27
	08_28
	08_29
	08_30
	08_31
	08_32
	08_33
	08_34
	08_35
	08_36
	08_37
	08_38
	08_39
	08_40
	08_41
	08_42
	09_00
	09_01
	09_02
	09_03
	09_04
	09_05
	09_06
	09_07
	09_08
	09_09
	09_10
	09_11
	09_12
	09_13
	10_01
	10_02
	10_03
	10_04
	10_05
	10_06
	10_07
	10_08
	10_09
	10_10
	10_11
	10_12
	10_13
	10_14
	10_15
	10_16
	10_17
	10_18
	10_19
	10_20
	10_21
	10_22
	11_001
	11_002
	11_003
	11_004
	11_005
	11_006
	11_007
	11_008
	11_009
	11_010
	11_011
	11_012
	11_013
	11_014
	11_015
	11_016
	11_017
	11_018
	11_019
	11_020
	11_021
	11_022
	11_023
	11_024
	11_025
	11_026
	11_027
	11_028
	11_029
	11_030
	11_031
	11_032
	11_033
	11_034
	11_035
	11_036
	11_037
	11_038
	11_039
	11_040
	11_041
	11_042
	11_043
	11_044
	11_045
	11_046
	11_047
	11_048
	11_049
	11_050
	11_051
	11_052
	11_053
	11_054
	11_055
	11_056
	11_057
	11_058
	11_059
	11_060
	11_061
	11_062
	11_063
	11_064
	11_065
	11_066
	11_067
	11_068
	11_069
	11_070
	11_071
	11_072
	11_073
	11_074
	11_075
	11_076
	11_077
	11_078
	11_079
	11_080
	11_081
	11_082
	11_083
	11_084
	11_085
	11_086
	11_087
	11_088
	11_089
	11_090
	11_091
	11_092
	11_093
	11_094
	11_095
	11_096
	11_097
	11_098
	11_099
	11_100
	11_101
	11_102
	11_103
	11_104
	11_105
	11_106
	11_107
	11_108
	11_109
	11_110
	11_111
	11_112
	11_113
	11_114
	11_115
	11_116
	11_117
	11_118
	11_119
	11_120
	11_121
	11_122
	11_123
	11_124
	11_125
	11_126
	12_01
	12_02
	12_03
	12_04
	12_05
	12_06
	12_07
	12_08
	13_01
	13_02
	13_03
	13_04
	13_05
	13_06
	13_07
	13_08
	13_09
	13_10
	13_11
	13_12
	13_13
	13_14
	13_15
	13_16
	13_17
	13_18
	13_19
	13_20
	13_21
	13_22
	13_23
	13_24
	13_25
	13_26
	13_27
	13_28
	13_29
	13_30
	13_31
	13_32
	13_33
	13_34
	13_35
	13_36
	13_37
	13_38
	13_39
	13_40
	13_41
	13_42
	13_43
	13_44
	13_45
	13_46
	13_47
	13_48
	13_49
	13_50
	13_51
	13_52
	13_53
	13_54
	13_55
	13_56
	13_57
	13_58
	13_59
	13_60
	13_61
	13_62
	13_63
	13_64
	13_65
	13_66
	13_67
	13_68
	13_69
	13_70
	14_01
	14_02
	14_03
	14_04
	14_05
	14_06
	Index_01
	Index_02
	Index_03
	Index_04
	Index_05
	Index_06
	Index_07
	Index_08
	Index_09
	Index_10
	Index_11
	Index_12
	Index_13
	Index_14
	Index_15
	Index_16
	Index_17
	Index_18
	Index_19
	Index_20
	Index_21
	Index_22
	Index_23
	Index_24
	Index_25
	Index_26

