
Aztec C68K Release Doc

Aztec C68K, Version 3.4 for the Macintosh

Release Document
May 1987

This release document introduces the features of Aztec C68K,

version 3.4, for the Macintosh and is divided into the following

sections:

1. Product Description

2. New Users

3. Features

4. Changes (All Releases)

5. Packaging

6. Additional Documentation

1. Product Description

Aztec C68K, version 3.4, consists of software and a manual for

developing programs in the C language that will run on the Macintosh.

To acquaint yourself with Aztec C68K, we recommend that you

finish reading this release document and then read the Overview and

Tutorial chapters of the Aztec C68K manual.

There are three Aztec C68K systems for the Macintosh:

Comnercial, Developer, and Professional. Each system’s features are a

subset of the next higher system’s features.

The manual and documentation that is appended to this release

document describes the Commercial system’s features. If you have the

Professional or Developer system and decide later to upgrade to the

Commercial system, we'll just send you disks and you'll be ready to go!

Aztec C68K Release Doc

1.1.1 THREE SYSTEMS

1.1.1 The Professional System

The Professional system contains the basics needed to develop C
and/or assembly language programs for the Macintosh. It consists of
the compiler, assembler, linker, libraries, and header files. In addition,
there are a number of example programs.

1.1.2 The Developer System

The Developer system contains everything found in the Professional
system with the following additions:

* Utility programs make, grep, diff, obd, and ord

* Special math support libraries for the 68881, the Manx IEEE
emulation, and Standard Apple Numeric Environment (SANE)

* powerful and symbolic debugger, DB

* Z program editor and ctags

1.1.3 The Commercial System

The Commercial system contains everything found in the Developer
system with the following additions:

* sourcc to all library functions provided with the Aztec C68K

* one year of free updates.

Aztec C68K Release Doc

1.2 README

Please check the disks to see if there is a README on them. This
file (if there is one) contains important information that was added
after the manual was printed.

2. New Users

The best way to acquaint yourself with our package is to go through
the tutorial on the SHELL by walking through some of the commands.
The next sections you should read in the manual are the ones on the
SHELL, compiler, assembler, and the linker that describe in more
detail what these programs do and what options are available. You
should also read the section on style to help you with C programming,

This release document serves several purposes. The Features
section describes the latest C68K system features and the Changes
section describes the enhancements made to the system since the last
releasc, including bug fixes. The Packaging section lists the contents
of the disks that are included with this release. Finally, the Additional
Documentation section contains the new or changed documents
included with the release, briefly describes their contents, and suggests
where you should file them in your manual.

3. Features

The following is a brief summary of the new features and changes
found in the 3.4 version. Full details are contained in an appendix to
the appropriate section of the manual in the "Additional
Documentation" section of this release document.

3.1 NEW COMPILER FEATURES

The following enhancements and changes are made to the compiler:

* The compiler implements and supports the 32 bit int option.
Code gencrated using 32 bit ints is now much smaller.

* The compiler supports three different floating point formats:
Standard Apple Numeric Environment (SANE), IEEE double
precision emulation, and Motorola 68881 coprocessor support.
Use of floating point numbers requires linking in one of the
math librarics, therefore, this release adds new options to
accomplish this.

* There are some new preprocessor manifests. In particular, the
compiler always defines AZTEC_C while it defines the names
LARGE CODE and _ LARGE DATA when the appropriate

-3-

Aztec C68K Release Doc

option is given. (This release includes a detailed description of
mcmory modules, the differences between large and small data
and code, and how to generate libraries using the make file in the
"Additional Documentation" section. This description is in an
appendix to the Technical Information section and should be
filed at the end of that section in your manual.)

The compiler correctly handles structure arguments and return
valucs.

The compiler supports enumerated data types (enum).

The compiler supports bit fields.

The INCLUDE environment variable now supports multiple
directories by separating names with ’;’.

The compiler attaches leading underscores to filenames, rather
than appending underscores.

The compiler adds a Void data type.

Variable name length increases from 8 to 31 significant
characters.

3.2 NEW ASSEMBLER FEATURES
The following enhancements and changes are made to the assembler.

*x

*

After partial redesign, the assembler also provides full support for
the 68010, 68020, and 68881.

The assembler squceze algorithm is rewritten and is now much
faster on large files. The new algorithm is not recursive, so less
Stack 1s required.

The 3.4 version adds several new directives. These reflect the
assembler redesign and the change in the way that floating point
numbers are returned.

3.3 NEW LINKER FEATURES

The following enhancements and changes are made to the linker:

* System Dependent and System Independent options require
prefixes of "+" and "-", respectively.

* The object format change necessitates recompiling and
reassembling ALL object modules that are used with the version
3.4 linker and the version 3.4 libraries.

* The linker automatically adds an ".o" extension to files that have
no extension. It also checks the current directory and all

~4-

Aztec C68K Release Doc

directorics defined in the CLIB’ environment variable.
Therefore, if you wish to link with mixcroot.o, give the name,
and the linker checks the current directory and all the CLIB
directories.

* The CLIB environment variable supports multiple entries
Scparated by ’:’.

* A new linking process decreases link time significantly.

3.4 NEW Z FEATURES

The following cnhancements and changes are made to the Z text
editor.

* When Z 1s started, users may give a tag name or line number as
an argument.

* A new command, -/n, searches a funclist file and displays the line
containing the keyword.

* A new flag, ak, allows users to move the cursor via the keyboard
arrow keys.

* A new flag, sm, indicates whether or not macros should perform
their operation silently. If nonzero, a macro performs all
iterations and redisplays the scrcen.

* During insert, “W deletes the previous word.

* When activating files from the shell, users may specify up to 30
files instead of 10.

3.5 NEW UTILITY PROGRAMS

This section describes additions, enhancements, replacements to, and
removals from, the Utilities supplied with Aztec C68K. See
"Additional Documentation" in this release for details.

The following utility functions are new.

prof The new profiler report program (prof) is an

optimizing tool that determines the percentage of
program run time spent in a function. prof is
described in detail in the appendix contained in the
“Additional Documentation" section of this release.

mon Because it plays a significant role in successfully
running the prof program, the monitor function is
also described in detail in the appropriate appendix
contained in the "Additional Documentation" of this
release.

Aztec C68K

obd

Release Doc

This new function lists the loader items in an object
file. See "Additional Documentation" in this release
letter for a copy of the obd command page.

The following utility replaces an existing one:

lb The object module librarian /b replaces the Jlibutil
utility. Manual pages describing /b are included in
the appropriate appendix contained in_ the
"Additional Documentation" section of this release.

The following utilitics are changed:

diff

Step

ord

CHIN

hd

diff now handles boundary conditions correctly.
Therefore, the message that diff cannot synchronize
the change record should not occur as often.

The -f options work correctly.

Problem no longer exists when ord is given object
code that does not have global referenccs.

Because of the new object format, cum now displays
the size and symbols of its object file arguments.
See "Additional Documentation" in this release
letter for a copy of the cnm command page.

hd and cmp each check the alternate of the data and
resource forks if the first fork checked is empty.

The following utilities are removed:

hfs convert

FixAttr

SetStartup

fldr

MountRam

Disks shipped are now double sided HFS format.

Use ResEdit if you wish to set the console driver
and Monaco 9- and 12-point fonts so they would be
loaded into the system heap at boot time.

To make the shell the startup application instead of
the finder, click on the shell from the finder and
select the SetStartup item from the special menu.

Under /fs real folders exist and can be created from
within the shell by using mkdir.

The optional argument (size) of the MountRam
command represents the size in kilobytes of the
desired RamDisk. If no argument is given, the
default size is all the available RAM minus 128K.
However, be sure to allow 150K for db plus the size

of the program to be free when setting up the
Ram Disk. Also, modifications require that
MountRam be mounted as drive number 21 instead

-6-

Aztec C68K Release Doc

of 5. If you do not wish 21 as the drive number for
the RamDisk, modify the variable DRVNUM in
ramdisk.asm and use make to recompile it.

3.6 NEW LIBRARY FEATURES

This release contains two sets of libraries--one, the new MPW
compatible libraries; and the other, the existing Aztec C compatible
librarics. The "Additional Documentation" section of this release
contains two appendices to the "Technical Information" section: One
appendix discusses the differences that now exist and how to work
with the libraries. The second describes the memory modules and
their organization in detail and also describes how to generate libraries
using the make file.

Note: Because of object format changes since the 106i release, you
must recompile all your source to link with the current libraries and
compiler gencrated code.

In the Apple-compatible MPW libraries, Macintosh Toolbox routines
are converted to Pascal strings for you, thus eliminating the dilemma
of deciding when to pass Pascal or C strings to Toolbox calls.

The following items distinguish these libraries from previous
releases:

* Object module format changed.
* Variable name length increased.
* Underscores appended at beginning of identifiers instead of at

end.

Differences also cxist between the Aztec compatible header files
and the MPW compatible header files. Therefore, the libraries and
their respective header files are on separate disks. As stated, this
release contains appendices that describe how to work with the
libraries.

In this rclease, example programs show both old and new formats.
However, we are considering supporting one or the other of the
formats in future releases. Please let us know whether you have a
preference and what it would be!

3.6.1 Using the MPW Compatible Libraries.

To use old source with the new libraries, users should:

* Include the relevant .h files for the initialization calls (i.e.,
#include <Quickdraw.h> when using InitGraf, InitFont, or
InitCursor)

* Change calling conventions to several routines, as follows:

Aztec C68K Release Doc

Old New

InitGraf(&thePort); InitGraf(&qd.thePort);
SetArrow(&arrow); SetArrow(&qd.arrow);
SetCursor(&arrow); SetCursor(&ad.arrow);

* Use the address of type Point variables to pass them, rather than
pass(). For example, in the new libraries the call would be:

FindWindow(&mvEvent.where, &whichWindow);

instead of:

FindWindow(pass(mvEvent.where), &whichWindow);

Note: If you are using pass() for other than Toolbox calls, using
the & operator will give the address, NOT the value as pass() did.

* In the SFReply structure .f{Name is no longer declared char *, but
is a structure. Therefore, prefix it with &, such as
&variable.fName.

* Most new glue routines expect C strings of type char *, while the
old routincs expect Pascal strings of type Str255. Therefore,
remove unnecessary ctop() and/or ptoc() calls and remove the
leading \P from string constants.

* Several header files are renamed, as follows:

Old New

control.h Controls.h
dialog.h Dialogs.h
disk.h Disks.h
event.h Events.h
font.h Fonts.h

inits.h appropriate .h for init routines
list.h Lists.h
menu.h Menus.h
osutil.h OSUtils. h
pb.h Files.h, Devices.h, and OsEvents.h
print.h Printing.h
resource.h Resources.h
segment.h SegLoad.h
syserr.h Errors.h
toolutil.h ToolUtils.h and FixMath.h
window.h Windows.h

* Structure definitions in pb.h in many cases don’t match the new
Structure definitions given in Files.h.

Aztec C68K Release Doc

* The header file Graf3D.h is supplied without Graf3D routines in
the library. Users who have a Graf3D library in the MDS object
format may access the routines from within a C program.

3.6.2 Compiling Using the New Libraries.

In MPW C source, ints are 32 bits; in Aztec C they are 16 bits.
Users may compile with the +L option to generate code for 32-bit ints,
but no librarics currently support Macintosh Toolbox calls with 32-bit
integers. The 32-bit libraries are only useable for standard I/O calls
but not for Toolbox calls.

3.6.3 Source Recompilation Required.

Note: Because of object format changes since the 106i release, you
must recompile all your source to link with current libraries and
compiler generated code.

3.6.4 SANE Library Support

Support for SANE is provided with ms.lib and is available in both
library formats.

The Manx-supplied IEEE library in m.lib is faster than the SANE
equivalents, but makes your program slightly larger because Manx uses
RAM while SANE is in ROM.

With this release, type extended is not supported directly by the
compiler but is defined in Sane.h to be type double, which is 64 bits
long. This means that the SANE routines, although using the 80-bit
extended type, convert the results back to type double and, therefore,
arc no more accurate than the Manx-supplicd IEEE implementation.
Direct compiler support for the 80-bit extended type won’t be added
until the next release.

3.7 BUGS

Several bugs were fixed in the libraries.

3.8 DEBUGGER

This release contains full documentation on db. The following
features are included in the 3.4 release of db (Note: At the present
time dh does not work on the Mac II):

* Leading underscores and 31 character flexnames supported.

* Breakpoints corrected on trapname for g and bs.

* Problem corrected that prevented screen output when loading with
/p after running the first program loaded to completion.

* OpenResFile correctly executed for a filename on the current
directory without requiring the full pathname.

-9-

Aztec C68K Release Doc

* vc and va SYMBOL = ADDR works. Users must specify type of
symbol (e.g. c = code or d data).

Note: Two problems still exist--at present, users may not use db on
the new Mac IJ, and may not single step through ROM traps.

3.9 MACSBUG OR TMON

If you use MacsBug or TMON to debug your code, you may enter
the debugger in two ways. As mentioned in the MacsBug command
page in your manual, a call to TickCount has been placed at the
beginning of the various Croot() routines to start an application. To
gain access immediately upon entering the application, enter the
debugger from the shell and set a breakpoint for calls to the trap for
TickCount as follows:

In MacsBug, to set a breakpoint call to the trap for TickCount, type:

AB 175

In TMON, enter the user area and set the following trap intercept:

Trap intercept (tO [tl [PCO Pcl]]):__ TickCount

To enter either debugger from within program, use the following
example to execute the Debugger trap:

pascal void dbg() = Oxa9ff;

main()

dbg();

You may wish to use the Compiler option +N to embed MacsBug-
readable function names in your code, or the Linker option +T option
to create a TMON-rcadable .map file.

3.10 TOOLBOX CALLS

We are unable at this time to include documentation on complete
Toolbox calls and their calling conventions. We plan to include up-to-
date Toolbox calls in the next release. However, in the meantime
check your disk for most current titles. For the most part, the calls
that are currently listed in the Toolbox section of the manual may still
be used.

-10-

Aztec C68K Release Doc

4. Changes from Previous Releases

4.1 CHANGES SINCE RELEASE 1.06i

Both bug fixes and enhancements will be listed by program file.

4.1.1. SHELL.

a) Supports the new MPW compatible libraries, in addition to
supporting the the existing Aztec C compatible libraries.

Note: Because of object format changes since the 106i
rclease, you must recompile all your source to link with the
current libraries and compiler generated code.

4.1.2 CC.

a) Supports three different floating point formats: Standard
Apple Numeric Environment (SANE), IEEE double
precision emulation, and Motorola 68881 coprocessor support.

4.1.3. AS.

a) Changes squceze algorithm to be nonrecursive and to
dynamically allocate the squeeze table. Change also makes
algorithm much faster on large files.

4.1.4. LN.

a) The CLIB environment variable supports multiple entries
Separated by ’:’.

b) The +7 option generates a .map file that may be read and
uscd by TMON to view symbols as code resource relative.

4.1.5. Z.

a) Added «fn which searches a funclist file and displays the line
containing the keyword.

b) Added a new flag, sm, which enables users to disable Display
during macro execution.

c) Added a new flag, ak, which allows users to move the cursor
via the keyboard arrow keys.

4.1.6. C.LIB.

a) Added the following new glue routines to c.lib:

pascal void PStr2Dec(s,index,d, validPre fix)
Str255 *s; int *index; decimal *d; Boolean *validPrefix;

pascal void CStr2Dec(s,index,d,validPrefix)
char *s; int *index; decimal *d; Boolean *validPrefix;

-|l-

Aztec C68K Release Doc

pascal void Dec2Str(f,d,s)
decform *f; decimal *d; Str255*s; /* char *s in MPW

compatible version */

pascal void Draw1Control (theControl)
ControlHandle theControl:;

pascal void ScreenRes (scrnHRes, scrnVRes)
short *screnHRes, *scrnVRes;

extended Fix2X (x)
Fixed X:

extended Frac2X (x)

Fract X; OSErr GetVRcefNum (pathRefNum, vRefNum)
Short pathRefNum; short *vRefNum:

OSErr OpenRF (fileName, vRefNum, refNum)
OSStrPtr fileName; short vRef{Num; short *ref{Num;

OSErr PBSetVInfo (hparamBlock,async)
HPrmBlkPtr hparamBlock; Boolean async;

Fixed X2Fix (X)
extendcd x;

Fract X2Frac (X)
extended x;

b) CLIB environment variable supports multiple entries of
specifying where librarics may be found using ’;? as a
delimiter.

4.1.7 M.LIB.

a) Added the following routine to mlib:
abs(1)
int 1;

b) Added m8.lib for the 68881 coprocessor.

4.1.8 INCLUDE.

a) Added GetNodeAddress(), ATPRequest(), _ATPResponse(),
ATPReqCancel(), ATPRspCancel(); MPPClose(), IsMf PPO pen(),
and /sATPOpen() to appletalk.h.

b) Added GetApplLimit() to memory.h.

c) Added new header--sane.h.

d) Changed ioFIS(tBlk and ioFIRStBlk from short to unsigned
Short in pb.A.

-12-

Aztec C68K Release Doc

e) Corrected names in lines 208 through 216 to include the

prefix "extern" in guickdraw.h.

f) Added #dcfines (-128) to (-145) to syserr.A.

4.1.9 Grep.

a) Corrected -F option.

4.1.10 Diff.

a) Handies boundary conditions correctly now. The message that
diff cannot synchronize the change record should not occur as

often.

-13-

Aztec C68K Release Doc

4.2 CHANGES SINCE VERSION 1.06h

Both bug fixes and enhancements will be listed by program/file.

4.2.1 SHELL.

a) Added Quit command to file menu in SHELL.

4.2.2 CC.

a) Fixed a bug where register arguments to a pascal type C
function gencrated bad assembly language.

b) Fixed a bug where ? : with no assignments did not work.

c) Options ’b’, ’u’, and ’q’ must now be specified with a ’+’
instead of a’-’,

d) Compiler now has the error messages built in so there is no
need for the file cc.msg anymore.

e¢) New options are +I and +H for pre-compiled header files.

4.2.3 LN.

a) New option ’-w’ creates code resource ’SYMS’ nceded for the
symbolic debugger.

4.2.4 Z.

a) Added tilde () command that toggles the case of a character.

4.2.5 C.LIB.

a)

b)

C)

Updated fclose() to clear several additional fields before
returning.

Updated scan ff).

Added functions strchr(), — strrchr(), — asctime(), —_ctime(),
localtime(), time(), mktemp(), and tmpnam() to c.lib.

Added Environs() and Restart() to c.lib.

MoveHHi() is a trap call if using a 128K ROM and is in cid.

Added __newrony) call to c.lib.

Added List manager calls to c.lib.

Added the following HFS calls to c.lib: PBHGetV Info(),
PBHSetV Info(), PBHGetVol(), PBHSetVol(), PBHOpen(),
PBHOpenRF(), PBLockRange{), PBUnlockRange{),
PBCloseWD(), PBOpenWD(), PBCatMove(), PBDirCreate(),
PBGetWDIn fol), PBGetFCBIn fo(), PBGetCatIn fol),
PBSetCatInfo(), PBSetFMSP(), PBHCreate(), PBHDelcte(),
PBHRename(), PBHRstF Lock(), PBHGetF In fo(),
PBHSetF In fo(), PBHSetF Lock(), PBSetEOF(),
PBHAllocContig().

-14-

Aztec C68K Release Doc

Changed the name of VCB structure in close.c to be C_VCB
so not to conflict with VCB structure in pb.h.

Added stai() and access() functions to c.lib.

Added new mialloc(), calloc(), lmalloc(), free(), realloc() to c.lib.

Removed INIT’d bit from creat() and open() in c.lib.

Corrected names RAMSDOpen() and RAMSDClose() in c.lib.

4.2.6 S.LIB.

a)

b)

Cc)

Corrected scr__home() so that it does home the cursor.

Fixed scr_insert().

Added ser__echo() and scr__getc().

4.2.7 SCSI.LIB

a) Created new library scsi.lib that contains the following calls:
SCSICmd(), SCSIComplete(), SCSIGet(), SCS TInstall(),
SCSTRBlind(), SCSTRead(), SCSIReset(), SCSISelect(),
SCSIStat(), SCSIWBlind(), and SCS/Write().

4.2.8 A.LIB.

a) Created new library a.lib that contains the appletalk calls.

4.2.9 RGen.

a)

b)

Fixed it to allow INCLUDE files to be greater than 64K. .

Fixed optional name.

4.2.10 INCLUDE.

a)

b)

C)

d)

C)

f)

g)

h)

Added new HES structures and calls to pb.h.

Added #defines P_ tmpdir and L_ tmpname to sidio.h for the
tmpnam() function.

Added new headers time.h, stat.h, and scsi.h.

Added #defines bDevClItoh, bDevLaser, 1PrLFSizth,
IPrPageOpen, IPrPageClose, IPrLFStd, \IPrDocOpen, and
IPrDocClose to print.h.

Added #defines iPrSavPFil, controlErr, and abortErr to
syserr.h,

Added GetEvQHai() to pb.h.

Added CopyMask(), GetMaskTable(), MeasureText(),
CalcMask(), and SeedFill() to quickdraw.h.

Made MaxA pplZone() a trap call if using a 128K ROM.

-15-

Aztec C68K Release Doc

1) Added HSetRBit(). HCIrRBit(), HGetState(), HSetState(),
MaxBlock(), PurgeSpace(), MoveHHi(), StackSpace(), and
NewEmptyHandle() to memory.h.

j) Added Count! Resource(), GetlIndResource(), Count! Ty pest),
GetlIndType(), UniquelID(), GetlResource(), MaxSizeRsre(),
Get NamedResource(), RsrcMapEntry(), and OpenRF Perm) to
memory.h,

k) Added SetF'ScaleDisable() and FontMetrics() to font.h.

l) Added TrackBox() and ZoomWindow() to window.h.

m) Added UpdtControls() to controlh.

n) Added InsMenulten() and DelMenulteny) to menu.h.

0) Added TESelView(), TEPinScroll() and TEAutoView() to
textedit.h.

p) Added HideDItem(), ShowDItem(), UpdtDialog(), and
FindDItem() to dialog.h.

q) Added Long2Fix(), Fix2Long(), Fix2Frac(), Frac2Fix{),
FracCos(), FracSin(), —FracSqrt(), FracMul(),— FracDiv(),
FixAtan2(), and FixDiv() to toolutilh

tr) Added Pack8(), Pack9(), Pack10(), Pack11(), Pack12(),
Pack13(), Pack14(), Pack15() to packages.h.

S) Added RelString() to osutilh.

t) Added type Fract and Fixed to types.h.

u) Added Environs() and Restart() to osutilh.

v) Changed prInfoPt to be prInfoPT in print.h.

w) Corrected return of PostEvent() to be OSErr in event.h.

x) Added #define TIOCNTLC to sgtty.h to check for Clover ".".

y) Corrected names RAMSDOpen() and RAMSDClose() in
serial.h.

z) Removed cc.msg as it is included in the new compiler (cc).

4.2.11 Make.a

a) Supports file dependencies in other directorics.

4.2.12 Diff.

a) Corrected it so that it would find all the differences.

4.2.13 Ctags.

a) Updated it to handle comments better.

-16-

Aztec C68K Release Doc

4.2.14 EDIT.

a) New EDIT version 2.0D1 that runs with HFS. This is
licensed from Apple.

4.2.15 RMaker.

a) = New RMaker that runs with HES.

4.2.16 Mixcroot.o.

a) New mixcroot.o eliminates necd to run InstallConsole.

4.2.17 Ramdisk.

a) In ramdisk.asm, added 16K for larger compiler.

-l7-

Aztec C68K Release Doc

4.3 CHANGES SINCE VERSION 1.06g

Both bug fixes and enhancements will be listed by program/ file.

4.3.1 SHELL.

a) Fixed mkdir so that it gives an error message when attempting
to create a directory on an MEFS volume.

b) When the menu bar is turned off and a blank disk is inserted,
the mouse cursor will now appear.

c) Fixed the /s command so that the correct contents of a disk
will be listed after a disk has been ejected and another has
becn inserted.

d) Set AppParmHanadle location to zero after the DisposeHdl() call
on that location has been made.

c) Made a fix to not eject the external disk upon startup.

f) Fixed the cd command to create a directory only on an MFS
volume if the directory does not already exist.

4.3.2 CC.

a) Fixed an initializing problem in "for" loops.

4.3.3 LN.

a) Fixed a bug to recognize mixmode MDS function names
when linking in MDS -rel files.

b) Corrected segment numbers in the .sym file.

4.3.4 C.LIB.

a) Updated muilloc() to return an error when allocation request
for memory fails.

b) Added ScreenRes(), SetUpA5(), and RestoreA5() functions.

4.3.5 M.LIB.

a) Updated atan(), tan(), exp(), and pow() functions.

4.3.6 A.LIB.

a) Updated the AppleTalk interface routines.

4.3.7 ABPackage.

a) Added the AppleTalk resource (ABPackage) to be included in
AppleTalk programs.

4.3.8 RGen.

a) Corrected the PROC resource to strip off the first 4 bytes
from CODE | resource before copying.

- 18 -

Aztec C68K Release Doc

4.3.9 INCLUDE.

a) Added ScreenRes() declaration to toolutil h.

b) Added SetUpA5() and RestoreAS() declarations to osutil.h.

c) Added #defines inZoomln and inZoomOut to window.h.

d) Added #define —_MEMORY to memory.h.

e) Added #dcfines (-120) to (-127) to syserr.h.

4.3.10 Make.

a) Corrected case sensitivity. Before it did not recognize that
FOO.c needed to be compiled if its date was later than that of
fo0.0.

4.3.11 Grep.

a) Fixed -f option to work when pattern has upper case in it.

4.3.12 DB.

a) Fixed the x? command.

b) Fixed the skip count command to default to 1 when
breakpoints are set for traps.

c) Fixed the dot (.) command.

d) Fixed the characters going out the serial port to be no parity
so that commands like d? would work.

-19-

Aztec C68K Release Doc

5. Packaging
This section describes the files that are provided with each version

of the Aztec C68K for the Macintosh. The files for the Professional

version are contained on three disks named sys., sys2:, and sys3:. The
files for the Developer version are contained on a different set of three

disks named sys:, sys2:, and sys3:. The Commercial version has the

Developer three disks plus an additional disk named sys4..

Pro fessional Version

5.1 Contents of sys:

The root directory of sys: contains the following files and

directories:

profile the startup file of SHELL commands
hello.c example program
SHELL SHELL command parser
System System file minus some fonts and desk accessories

5.1.1 Contents of sys-bin

as assembler
cc compiler
Edit text editor
In linker

5.1.2 Contents of sys2-:lib/

a.lib Library of appletalk routines
c.lib Portable C and Macintosh Toolbox
m.lib Library of Manx Aztec C (IEEE Double

Precision Floating point emulation) functions
m8.lib Library of 68881 floating point functions
mixcroot.o Croot() for stand-alone programs that

want UNIX-style console I/O
ms.lib Standard Apple Numeric Environment functions

Portable C and Macintosh Toolbox
prscreen.o printer glue for printing to screen
s.lib Libary of screen functions
sacroot.o Croot() for stand-alone programs
scsi.lib Library of SCSI functions

5.1.3 Contents of sys2-include

appletalk.h Appletalk Manager declarations
controLh Control Manager declarations
ctype.h macro definitions for the ’is...” functions
desk.h Desk Manager declarations

dialog.h Dialog Manager declarations
disk.h Disk Manager declarations
errno.h system independent error codes

- 20 -

Aztec C68K

event.h
fentLh
font.h
inits.h
list.h
math.h
memory.h
menu.h
monitor.h
obj68k.h
osutil.h
packages.h
pb.h
pb.inc
print.h
quickdraw.h
resource.h
retrace.h
sane.h
scrap.h
scsi.h
segment.h
serial.h
setjmp.h
Setty.h
sound.h
Stat.h
Stdio.h
syserr.h
textedit.h
time.h
toolutil.h
types.h
window.h

arcv

cmp

cnm

cprsrc

hd
lb

mkarcv
prsetup

RGen

term

Release Doc

Event Manager declarations
unbuffered I/O symbol definitions
Font Manager declarations
initialization functions
List Manager declarations
Math Manager declarations
Memory Manager declarations
Menu Manager declarations
profiler declarations
Aztec object file format
OS utility declarations
Package declarations
File and Device Manager declarations
File and Device Manager declarations
Print Manager declarations
Quickdraw declarations
Resource Manager declarations
Vertical Retrace Manager declarations
SANE Manager functions
Scrap Manager declarations
SCSI Manager declarations
Segment Loader declarations
Serial Manager declarations
Set Jump declarations
console I/O declarations
Sound Manager declarations
stat function declarations
buffered I/O declarations
Macintosh system error codes
Textedit Manager declarations
time function declarations
Toolbox utilities
common declarations
Window Manager declarations

5.1.4 Contents of sys2:bin

source dearchiver
binary file compare
object file utility
resource copy utility
hex dump utility
object file librarian
source archiver
printer setup utility
resource gencrator
terminal communications utility

5.2 Contents of sys3:

-21-

Aztec C68K Release Doc

InstallConsole stand-alone program for installing the console driver

5.2.1 Contents of sys3:Apple/

freeterm
RMaker

terminal emulation program
resource compiler

RMaker 2.0 doc--TEXT
SERD RAM serial driver resources

5.2.2 Contents of sys3:debug/

db
MacsBug

debugger
full-screen debugger licensed from Apple

5.2.3 Contents of sys3example/

explor.c
STOW.C
grow.r
makefile
medit.c
medit.res
modal.c
modal.r
print.c
print.res
procptr.c
pset.c
pset.res
qdsample.c
qdsample.r
retrace.c
textbox.c

C desk accessory |
C version of Pascal Grow example
RGen input file for Grow example
for building examples
"mini-edit" source
RGen source input for mini-edit
modal dialog example
RGen input file for modal dialog example
print
print demonstration
RGen output for print demo
PRSetup source
RGen setup for PRSetup
a quickdraw example
RGen input for quickdraw example
example of vertical retrace manager
drawing a box and text

5.2.4 Contents of sys3:macintalk/

file
macintalk.h
macintfo.o
macintalk.h

sample input for speak example
header file for MacinTalk
interface object module
header file for MacinTalk

macintalk.info desc. of files in directory
mkall
speak.c

input to make program to example speak
example program of Macintalk

§.2.5 Contents of sys3:mdef/

edit.c

grow.c
mkall
mymenu.c

modified EDIT program with MDEF procedure
as part of program
resource compiler input for MDEF as a resource

input to make program to example speak
MDEF procedure to be made into a resource

5.2.6 Contents of sys3-term/

-22-

Aztec C68K

makefile
menu.c

screen.c

term.c

Release Doc

input to make program to produce term
menu handler for term
screen functions for term
main module for term

5.2.7 Contents of sys3-util/

cmp.c
cnm.c
con
cprsrc.c
hd.c
install.c
makefile
obj68k.h
prsetup.c

Developer Version

source to cmp utility
source to cnm utility
compiled console driver
source to cprsrc utility
source to hd utility
InstallConsole source
program maintenance utility
object file utility
source to presetup utility

5.3 Contents of sys.

The root directory of sys: contains the following files and
directories:

System
SHELL
README
profile

System file minus some fonts and desk accessories
SHELL command parser
changes made since manual was printed
the startup file of SHELL commands

InstallConsole stand-alone program for installing the console driver

5.3.1 Contents of sys-:bin/

arcv
as
cc
cmp
cnm
cprsrc

source dearchiver
assembler
Aztec C68K compiler
binary file compare
object file utility
resource copy utility
program used to create Z tags file
debugger
text file difference reporter
regular expression search program
hex dump utility
object file librarian
overlay linker

-23-

Aztec C68K

make
mkarcv

obd
ord

presetup
RGen
Su
term

Z

Release Doc

automatic program generation utility
source archiver
list object code
sort object module list
printer setup utility
resource generator

trailing-to-leading underscores utility
terminal communications utility
text editor

5.4 Contents of sys2:

hello.c sample program

5.4.1 Contents of sys2:/util

cmp.c
cnm.c
con
cprsre.c
hd.c
install.c
makefile
prsetup.c

source to cmp utility
source to cnm utility
compiled console driver
source to cprsrc utility
source to hd utility
InstallConsole source
program maintenance utility
source to prsetup utility

5.4.2 Contents of sys2-term/

makefile
menu.c
screen.c
term.c

input to make program to produce term
menu handler for term
screen functions for term
main module for term

5.4.3 Contents of sys2:ram/

mkram

mountram.c

ramdisk.asm

SHELL exec file to make the parts of the Ram Disk
C program to start the Ram Disk
assembly language source to .Ram driver

5.4.4 Contents of sys2:mdef/

edit.c

gSrow.c
mkall
mymenu.c

modified EDIT program with MDEF procedure
as part of program
resource compiler input for MDEF as a resource
input to make program to example speak
MDEF procedure to be made into a resource

5.4.5 Contents of sys2:macintalk/

file
macintalk.h
macintf.o
macintalk.info

mkall
speak.c

sample input for speak example
header file for MacinTalk
interface object module
files in directory
input to make program to example speak
example program of MacinTalk

24 -

Aztec C68K Release Doc

3.4.6 Contents of sys2-lib/

a.lib
c.lib
c32.lib
m.lib

m8. lib

mixcroot.o

ms. lib
prscreen.o
s.lib
sacroot.o
scsi.lib

appletalk routines
MPW functions
MPW function integers (32 bit)
Manx Aztec C (IEEE Double
Precision Floating point emulation) functions
Library of 68881 floating point functions
Croot() for stand-alone programs that want
ONIX-style console I/O
Standard Apple Numeric Environment functions
printer glue for printing to screen
Library of screen functions
Croot() for stand-alone programs
Library of SCSI functions

5.4.7 Contents of sys2sinclude/

Appletalk.h
Controls.h
CTypce.h

Appletalk Manager declarations
Control Manager declarations
macro definitions for the ’is...’ functions

DeclROMDefs.h ROM definition interfaces
Desk.h
Devices.h
Dialogs.h
Diskinit.h
Disks.h
ErrNo.h
Errors.h
Events.h
FCntl.h
Files.h
FixMath.h
Fonts.h
Graf3D.h
IndVideolIntf.h
IOCtL.h
Lists.h
Math.h
Memory.h
Menus.h
monitor.h
ncOSIntfih
obj68k.h
OSEvents.h
OS Utils. h
Packages.h
pb.inc
Printing.h
PrintTraps.h

Desk Manager declarations
Devices Manager declarations
Dialog/Alert Manager declarations
Disk Initialization declarations
Disk Driver declarations
system independent error codes
System Error Handler declarations
Event Manager declarations
unbuffered I/O symbol definitions
File Manager declarations
Fixed-Point Math declarations
Font Manager declarations
3-D Graphics routines
video interface
device control values
List Manager declarations
transcendental functions declarations
Memory Manager declarations
Menu Manager declarations
profiler declarations
new (SE and II) OS interfaces
Aztec object file format
OS events declarations
OS utility declarations
Package declarations
File and Device Manager declarations |
Print Manager declarations
new Printing Manager interface

-25-

Aztec C68K

Quickdraw.h
Resources.h
Retrace.h
SANE.h
Scrap.h
SCSIIntf.h
SegLoad.h
Serial.h
SetJmp.h
setty.h
Signal.h
Sound.h
Stat.h
StdIO.h
Strings. h
TxtEdit.h
Time.h
utime.h
ToolUtils.h
Types.h
Values.h
Windows.h

explor.c
grow.c
grow.r
makefile
medit.c
medit.res
modal.c
modalr
print.c
print.res
procptr.c

pset.c
pset.res
qdsample.c
qdsample.r
retrace.c

textbox.c

MacsBug
ResEdit

RMaker
SERD

Release Doc

Quickdraw declarations
Resource Manager declarations
Vertical Retrace Manager declarations
SANE Manager functions
Scrap Manager declarations
SCSI Manager declarations
Segment Loader declarations
Serial Manager declarations
Set Jump declarations
console I/O declarations
Signal Manager declarations
Sound Manager declarations
stat function declarations
buffered I/O declarations
String Conversions declarations
Textedit Manager declarations
Time Manager Interface
time function declarations
Toolbox utilities
common declarations
values declarations
Window Manager declarations

5.4.8 Contents of sys2:example/

C desk accessory
C version of Pascal Grow example
RGen input file for Grow example
for building examples
"mini-edit" source
RGen source input for mini-edit
model dialog example
RGen input for modal
print
print demonstration
RGen output for print demo
PRSetup source
RGen setup for PRSetup
a quickdraw example
RGen input for quickdraw example
example of vertical retrace manager
drawing a box and text

5.4.9 Contents of sys2-apple/

full-screen debugger licensed from Apple

a resource editor

a resource compiler
RAM serial driver resources

- 26 -

Aztec C68K Release Doc

5.5 Contents of sys3:

freeterm terminal emulation program
mdef/
lib/
include /
example/
profiler/

5.5.1 Contents of sys3:mdef/

edit.c
grow.c
mkall
mymenu.c

5.5.2 Contents of sys3.:lib/

a.lib mixcroot.o
c.lib ms.lib
c32.lib prescreen.o
m.lib Ss. lib
m8. lib sacroot.o

scsi.lib

5.5.3 Contents of sys3-include/

appletalk.h print.h
control.h quickdraw.h
ctype.h resource.h
desk.h retrace.h
dialog.h sane.h
disk.h scrap.h
errno.h scsi.h
event.h segment.h
fentLh serial.h
font.h setymp.h
inits.h sgtty.h
list.h sound.h
math.h Stat.h
memory.h Stdio.h
menu.h syserr.h
monitor.h textedit.h
obj68k.h time.h
osutil.h toolutil.h
packages.h types.h
pb.h window.h
pb.inc

5.5.4 Contents of sys3:example/

explor.c print.c
grow.c print.res
grow.r procptr.c

_27 -

Aztec C68K

makefile
medit.c
medit.res
modal.c
modal.r

Release Doc

pset.c
pset.res
qdsample.c
qdsample.r
retrace.c

textbox.c

5.5.5 Contents of sys-profiler/

monitor.c
monitor.o
prof
test.c

performs runtime analysis
compiled monitor.c
reports on the execution of monitor program

demonstration of prof use

Commercial Version

5.6 Contents of sys4:

The root directory of sys-4 contains the following files and

directories:

Sys2__arc
Sys3__arc

source for MPW-compatible libraries
source for Aztec libraries

5.6.1 Contents of sys4:sys2__arc/

inp.arc
atalk.arc
cntrl.arc

con.arc
csu.arc
dialog.arc
disk.arc
fs.arc
m88 l.arc
math.arc
mch68.arc
mem.arc
menu.arc
misc.arc
newglue.arc
osmisc.arc
osutil.arc
pack.arc
pb.arc
print.arc
qd.arc
rsc.arc
sane.arc

screen.arc
SCSi.are
scrial.arc

master build archive (Open Me First!)
appletalk routines
control manager routines
console driver
ert0, Croots and exit functions
dialog routines
disk routines
fs routines
68881 interface
floating point and transcendental functions

some low-level 68K functions
memory manager assembly language routines
menu manager toolbox interface
miscellaneous system-independent functions

MPW-compatible glue
miscellaneous operating system interface routines

operating system utility routines
packages assembly language routines
low-level file and device manager routines

print routines
quickdraw interface routines
resource manager
SANE routines

screen routines
scsi routines
serial interface routines

- 28 -

Aztec C68K

sound.arc
Stdio.arc
Sysi0.arc
tool.arc

sound interface routines
Standard I/O routines
system I/O
miscellaneous toolbox interface routines

5.6.2 Contents of sys4:sys3__arc/

atalk.arc
con.arc
csu.arc
disk.arc
fs.arc
inp.arc
math.arc
m88l.arc
mch68.arc
mem.arc
misc.arc
osmisc.arc

osutilarc
pack.arc
pb.arc
print.arc
sane.arc
screen.arc
SCSLarc
serial.arc
sound.arc
Stdio.arc
Sysi0.arc
tool.arc

- 29 -

Release Doc

Aztec C68K Release Doc

6. Additional Documentation

This part of the release document contains two sections of information:

1. Common Problems
2. Documentation Updates

Start with the common problems chapter when you are first having
a problem. File the updates and additions where suggested so you may
reference them easily.

6.1 COMMON PROBLEMS

—~6.1.1 Can’t Find Finder.

Symptom:

A disk being booted displays the bomb box and the message "Can’t
find Finder". If the disk is the distribution disk, then it must have been
"fixed" by an older version of the Finder. If the disk is a copy of the
distribution disk, then it must have been copied with the Finder, and
not the cp command or the Single Disk Copy program.

Solution:

Get a new version of the Finder from your Apple dealer. This version
has 4 selections under the Special menu while the older Finder had
only 3 sclections. Select the SHELL by clicking it once with the
mouse. Go to the Special menu and pick the last option which should
be "Set Startup". Now you can boot the disk.

This is a Macintosh application which comes up with a window
displaying instructions and will set the startup program on any disk
that you wish.

6.1.2. SHELL bombs with ID = 99.

Symptom:

After the SHELL has read the key disk, it bombs with an ID = 99.
This will most likely happen when the SHELL is clicked from the
Finder. This usually means that the SHELL cannot find the console

driver.

Solution:

One solution is to boot the distribution disk directly. This will cause
the System file on the distribution disk to be used, which contains the
console driver. The second solution is to use the /nstallConsole program
to install the console driver into the System file currently being used.
Then clicking the SHELL should work correctly.

6.1.3 Printer Doesn’t Flow Control.

Symptom:
When printing a long file by redirecting output from the SHELL, after
a page or so, large sections of text are simply lost and the output

- 30 -

Aztec C68K Release Doc

appears garbled. This usually means that the printer is not set up to do
flow control correctly.

Solution:

The serial ports default to doing hardware handshake with the output
device. The Apple imagewriter printer must have Switch 2-3 set to
OPEN to enable hardware handshake.

6.1.4 Can I Use MacWrite?

Symptom:

The programmer misses using the mouse.

Solution:

Yes, you can use MacWrite from the SHELL. The only thing that is
important, is that when the document is saved, that it be saved as
TEXT-only. You can also use the mouse-based EDIT from Apple
which is supplied with this release.

6.1.5 Printing With %f Doesn’t Work.

Symptom:

Using printf() to print floating point numbers with the %f, %e, or %e¢
formats just prints the letter after the %.

Solution:
This means that the program was incorrectly linked. There are two
versions of printf() and scanf() in the libraries. One version knows
about floating point numbers, while the other does not. This is done
since most programs don’t use floating point. It seemed wasteful to
force them all to carry the extra overhead of the atof() and ftoa()
routines. These routines would have been included every time the
functions printf() or scanf() were called.

So, the floating point versions of these two routines are kept in the
m.lib library. When you link, you should type:

In file.o -lm -lIc

so that the mJib library is searched before the c.lib and the correct
routine is loaded.

6.1.6 Pointers Don’t Print Correctly.

Symptom:

A printf() statement that works correctly on other machines doesn’t
work right on the Macintosh.
Solution:

On most machines, printing an address or the value of a pointer can be
done using a "%d" or a "%x". However, on the Macintosh, a pointer is
a long valuc and must be displayed using the "%ld" or "%lx" format.

-3]-

Aztec C68K Release Doc

6.2 DOCUMENTATION UPDATES

6.2.1 Compiler, Assembler, Linker, and Z.

Several pages describe the options and changes in release 3.4. File
these pages at the end of the appropriate sections in the Aztec C68K
manual.

6.2.2 Debugger.

The db document with this release replaces the section previously sent
to you. Add the new section at the back of your Aztec C68K manual.

6.2.3 Profiler Report.

The prof command page describes the profiler report function that is
in c.lib. Add it to the util section of your Aztec C68K manual.

6.2.4 Monitor Function.

The monitor command page describes the function that is used in
conjunction with the profiler utility. Add this page to the bmac
section of your Aztec C68K manual.

6.2.5 Ib Utility.

The /b command page describes the library utility function that creates
and maintains user libraries. /b replaces Jibutil in the util section of
your Aztec C68K manual.

6.2.6 obd Utility.

The obd command page describes the list loader file function. Add this
page to the wt section in your Aztec C68K manual.

6.2.6 Miscellaneous Command Pages.

The make, mktemp, newrom, time, screen, and tmpnam command pages
describe enhancements and changes from release 1.06h. The h fsconvert
command page describes changes from release 1.061. Copies of these
documents are included again here so that version 3.4 is a complete
package containing all files and all documentation to keep you
completely up to date.

6.2.7 Modified Include Files.

The documents in this section describe the additional functions and
calling sequences added with this, and previous, releases. These
documents should be added to the back of the Toolbox section of your
manual. The Sanc Manager description is new; the Memory Manager
included here is changed and, therefore, replaces the one in your
manual; and the Apple Talk Manager, List Manager, and SCSI Manager
functions are duplicates of copies issued with release 1.06h.

- 32-

Aztec C

for the Macintosh

version 1.06

March 1986

Copyright (c) 1984 by Manx Software Systems, Inc.

All Rights Reserved

Worldwide

Distributed by:
Manx Software Systems, Inc.

P.O. Box 55
Shrewsbury, N.J. 07701

201-542-2121

ll

USE RESTRICTIONS

The components of the Aztec C68K software development system are
licensed software products. Manx Software Systems reserves all
distribution rights to these products. Use of these products is
prohibited without a valid license agreement. The license agreement is
provided with each package. Before using any of these products the
license agreement must be signed and mailed to:

Manx Software Systems
P. O. Box 55

Shrewsbury, N. J 07701

The license agreement limits use of these products to one machine.
Any uses of these products that might lead to the creation of or
distribution of unauthorized copies of these products will be a breach
of the licensing agreement and Manx Software Systems will excercise
its right to reclaim the original and any and all copies derived in whole
or in part from first or later generations and to pursue any appropriate
legal actions.

Software that is developed with Aztec C68K software development
system can be run on machines that are not licensed for these
products as long as no part of the Aztec C software, libraries,
supporting files, or documentation is distributed with or required by
the software. In the latter case a licensed copy of the appropriate Aztec
C software is required for each machine utilizing the software. There
is no licensing required for executable modules that include runtime
library routines.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision (b)(3)(11) of the Rights in
Technical Data and Computer Software clause at 52.227-7013. DAC
#84-1, 1 March 1984. DOD Far Supplement.

COPYRIGHT

Copyright (C) 1981, 1982, 1984 by Manx Software Systems. All rights
reserved. No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or

otherwise, without prior written permission of Manx Software
Systems, Box 55, Shrewsbury, N. J. 07701.

111

DISCLAIMER

Manx Software Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose.
Manx Software Systems reserves the right to revise this publication
and to make changes from time to time in the content hereof without
obligation of Manx Software Systems to notify any person of such
revision or changes.

TRADEMARKS

Aztec C68K, Manx AS, Manx LN, Aztec SHELL, and Z are trademarks
of Manx Software Systems. CP/M-86 is a tradmark of Digital
Research. MSDOS is a trademark of Microsoft. PCDOS is a trademark
of IBM. UNIX is a trademark of Bell Laboratories. Macintosh is a
trademark of Apple Computer.

1V

Manual Revision History

March 1986 wei cesssscsssssscccscsccceccccscccecsctesessescecsesecsecceceesens Third Edition
March 1985 viicccieccccccccccsssssscescecccccsecscececccensessececcuccecssscescnens Second Edition
Oct 1984 ii esesssssscccccccccccecesssescessnssncrsrcscecscessccesseseveseeeee First Edition

V1

Summary of Contents

Macintosh Chapters

title code

OVELVICW ou ..cccccccccecsssescsscsssscecesssscececeesseesesesesseeseceeeaceeececessceseeececesensuauecesenseanens OV

Tutorial Introduction oo... eceeccessceesssecsssscecssaccsseseecesencecesncessecceseneeesees tut

The SHELL oo... ccccesssscccececesessnseesecescesssssacececececessessseasaucececeeseseersees Shell

AZtec C COMPILE r vovceccececcccscccccccecccsscececcececcecccesccsccesccecsssecsssssssesssscseseesceseeees cc

Manx AS ASSEMDIETr ou... ececssssscceeesssccececessnacecesesecunsceceseseaaaceeceessesaeceeceeesees as

Manx LN LAnke rr ooo... cee ecessseceessneceesneeceesseeceesssneeessesseececesueaeecsenacececeesesees In

A 6:1 0 >.) Au re Z

Utility Programs wo... ccc cccccccccsscecscsscsccsssssssscsssssscecssseccsssenesecsseessesesseeees util

Library Functions Overview: Macintosh Information libovmac

Macintosh Functions ou... ccccccsssessssesssecsscecescecessecesseeeesssecsnecssesessnes libmac

Macintosh Toolbox and OS Functions ou... ecceccssssececesssececssssnecessenees tool

Techriical Information oc... eesccsssecsssecsssecsssecssssescesssceeseseeeessecessaceoees tech

|S. €2 000) 9) oh ee examples

System Independent Chapters

Overview Of Library Functions wc eecssccssccceccscessssssrsssccesessecesees libov

System-Independent FuNctiOns..........c cs sscesessssseceseccessecsssscececeeeseecesessssseees lib

Style oi csssssssssssssssssssssscsesssessssscsssessssssscsssceceseeceeeececesceseeseeesuceuceeceeeeses Style

Compiler Error MESSAEScccssssssssccsscecsseecssseceseecesceeceseeeeseeessecesseaeeses err

Index

INO X oo. esessccesssseecsssscecssesecessececeseeseceeseseecsesseeceeseeececesueseecesaeececeaeeaeeenes index

Vil

Contents

OVELVIEW oo. .ceccsescsecseessssscsssssssssscssscsescesessesescescecacecssensescenseeseseausesacsesceesecsaces OV

Tutorial Introduction occu sesssscssscssssscsccssesccsscessecesecsscsecesscessecssesesens tutor
1. Getting Started oo... cccsssssccsccssscssssssscscssssscssssesescsesscsescerscessceees 3

1.1 Copying disks on a two-drive Macintoshccccsccccssecseseoes 3
1.2 Copying disks on a one-drive Macintoshcc.cccccsssscesesseees 4
1.3 Disk usage during development oo... ccssssscessscsscsscceecessceeeeees 4

2. Using the SHELL wo icescscccscccscesccsesssssssssessssssscsscssesseceseseeens 5
2.1 LOOKING Around ool cccccscseececccsccsscccessesesecceesecssesecsscsscenecees 5
2.2 Working with files viele cccecsccecsscecsscsssecccsscccrsecessecessceeees 6
2.3 Builtin commands, command programs, and exec files 8

3. Compiling , Assembling, and Linking wee cesseceeccccceeeees 10
3.1 Using the Source and Compiler MENUSc:.cccccecccsecceescesecees 10
3.2 Using the keyboard wii ccccsscssscescccsscessscssecesccceresssccsscees 10
3.3, Cleaning Up ou... ccsccssccsscccsssscssscssccccececeseccescssccensecseceaceucass 1]

A, MOre MENUS oo... eee ccssessssseccssccssccssssssccescecscssccecsscescecsuccessecsecsessenseens 12
4.1 The Apple and File Menus oo... cee eccecsscssssccsssccssscecessccsenece 12
4.2 The Programs Menucccccccccccsscccssscscssceccecccescececoscscssscecesaccensce 12

DS. Where to go from here oui ceeccccsccsscessscsssccssscessccecsscecssccesecconecs 14

The SHELL ooo. cccceccsessccsscecsssccsssecsssesssscccecseeecscececasecenscecseeececnecsenes shell
1. The file SyStem oii iceccscsscsscsscccssesvesssccsccsscesascescesssecesesscsesssceceses 4

LL File names oo... cccsssccscsscssscsscccsscsssecsesssscecssceseccsssceesesecsensensnees 7
1.2 The current directOry wove cccscssccsscecccsscssccctsecescessecscssesseees 9
1.3 Directory-related builtin commandscccccccccssccsseccesseeeens 11
1.4 Accessing files on several VOIUMES 00........ccccccscscscecssccsseseeceeee 12
1.5 Miscellaneous file-related commandscccccccscesccsesceseees 14
1.6 Implementation of the SHELL’s file system o.oo 14

2. Using the SHELL oo ccccccccccccscscseccsecescssecsesascsecsseceecsees 16
2.1 Sample commands wo.e....e ee cccccssssssecsssecsesccecsssecsscececsccececsccecees 17
2.2 Pre-opening I/O channels oc cecccccecessccccessccceesscccecsscccecessececee 18
2.3 Expansion of file name templates .0..........c.ccccsssscessssscecscseceees 21
2.4 QUOTING woe cccccsessssscsscssesssssssscssscsccsssscssscesscseseessesesesseascnceneeees 23
2.5 PLOMPESccccssscscessccessccscssescessecsssececsssecssccesercecseceecensceceeseeeenscs 26

2.6 Selecting screen fonts occ eecscccssssssccescsssssssssessseeseeaes 28
2.7 The program’s view of command line arguments 30
2.8 DEVICES woicccccccccsscsscscsscsssccssssssccccecsseccseecescesscessecescecsseceuesesseceeesens 32

2.9 Trapping SYStEM ELLOS vie. .eeesscsssscessssscccscsscccccessccecesseesescesees 34
Z.1O Exec files wee eccssccsssccsscccsssscessscesssssccsssscesssssscssesescssessscesesees 35
2.11 Environment variables oo... ceccssccsssccssssccssssescssececesseecessseeees 4]
2.12 Searching for COMMANAS oes eeccesececessccccessccesseeceseeceeeees 44
2.13 Starting and stopping the SHELL woe cecessceeceeeees 46
2.14 MENUS uuu... cece cessssscecsssscecscecscsssscsscsssscscesssecescesecceecesaecessseracescenees 49

The COMPAL cocci cee ececcesscccesssscccececsssaccescesscecccceesesscaceecesssscsacenceeensuece cc
1. Operating IMStructions oo. escsseccsecessscsscececsececsssscsscecsecceseeeeesees 3

1.1 Compilation envirOnMent 0.0... cccccccccececccccsssssccececsscccesensscessees 3
1.2 The input file voces cescsccssscessscecessscesscccecesccscsssecsessceeeeeeeees 4
1.3 The output files coc ccccecesssssssrecccccscecesescscsserececececeseeceanes 5
1.4 Searching for #include files i.e ceececsessecccccessecccescsscccecesssccceesees 6

2. Compiler Options w..ccceeccecessccsssccccsecsccesessccecessscececsssccesesssececeesenecs 8
2.1 Utility Options ooo le cccssssccccccsssstscececesssenecececeesescerececeesnes 9
2.2 Table Manipulation Options ooo lc eeccesssccccecssesceceeseeeeeeees 12

3. Error Checking ooo. cccccccssccscscsscocssescsssescsssscscessessesessecessecessnaeesees 15
4. Programmer Information wo ceescsccccssssscssscecescsessececessnecncers 17

4.1 Register Variables oo... cccsscsscssccssecessssecsesssscsssssscssesseessesees 17
4.2 Writing machine-independent COdE ooo. eceseececeesecccesesees 17
4.3 Writing programs for the Macintosh oo... eessececssseseeseees 18
4.4 Additional features Vesesssuseceenececucescecessscscescesesssscsesensescecscesns 23

4.4.1 Lime COntinuation wi ccesccceccsssscesssscceecssseeeessceees 23
4.4.2 Special SyMbOIS oie escscsscsssscscssscesscsecssesessssesessssesees 23
4.4.3 The #]ine statement oo... ce esccscccssssccesssssescesseeeeseeeees 23
4.4.4 In-line assembly language cOde wu ee eessssecssesceeeeeees 23

The ASSEMDI]er oo... sececcesecesssssssssssccsscecsssescsscesssseceecsscccesesceceneacecenseceeseccens as
1. Operating INStructions oo lees ceccsseccsccecsscecececcecececcececsccecsseccessees 3

L.1 Execution CnvirOnme nt oo. eccccscesccecesccessccecessesessseccesescecees 3
1.2 The Input File ce cccssssscscccccecccsssecstsscccececesesesesnsnececece 4
1.3 The Object Code File won ciccccscccsssceccsscsecesessccececsreceesnes 4
1.4 Listing File oo. cccsccssccscccesscsssscssscsseessscecsseecssesesseeeesececees 4
1.5 Optimizations oo cece cceccccccssecseccccccccececessssetcecseccecessssseesensuececs 4
1.6 Searching for include Files wo... cece scesssececcccessccecesscecesscceeessceeees 5

2. AsSembler Options wc. ceeecssccecesssscccccsssssecccecescecccccecesseceecccecesceenececs 7
3. Programmer infOrmatiOn oo... ceessccecescccecesssccececsseccecesseteceeens 10

3.1 Source Program Structure woe ceseeccecccccecesssssceccecessseeeeens 10
3.2 Interfacing With Coie cecccecsssccecsscccessscecsscccecseecesseeccenses 15
3.3 Interfacing with Pascal woe. ecessscesccccssecessccecssceceecececacees 17

The Linker... ccc ccccscccssssccsssscsscsescsevcsssceecssesscenceecsseececscececaceseeaeesessaeees In
1. Introduction to Linking wc cccscscscssssssssescsssscssesessesssessssseeecs 4
2. Using the Linker wii iccccccccsccsssscccccsssscscecsscsssccececescncseeceseescseseeees 8

2.1 Starting the Linker occ ccsscsssecesecessecesceceseeceseeessecsseecsesens 8

2.2 Input files oc ecccssseccsssscccscescecececeececessseneecceeeeesenseneneeeenes 8
2.3 The exccutable file oo ieesscccsessscccesesseesecsssececscesseeesenes 9
2.4 LiDraricS voces ccessceccssssccessssecesssscecscessececesssecescessececessseaeeenes 9

1X

2.5 The -L option accesesessnnecececeesessacsescececaeuctececscescsusccacecoscssceseacesseses 10
2.6 The -F Option ow... ieceeccecsscsscssccssssccccessccecessccessccesescsssecscessuecces 10
2.7 Where to £0 from here wii cceceseceseccessccscsssccssecesserscecnecs 1]

3. Summary of Linker Options wove leecscsscscessscccssssscesssececceeees 12
4. Linker Error Messagescccccccscssccesscscsssccecceecceccsscecsccescsscecsaccenceees 13

Z- the text CAMO oc cesscessecsssccsseccssccscsecescecseccessscnssccessecsseeeeceeaeenees Z
1. Getting Started occ ccssscssescssscssecsscsccscssescesessscssesessesestscesesees 7

1.1 Creating a new file wo cccccscccssssessceccseccsscsceseseecssessecssecers 8
1.2 Editing an existing file wc esccsecsssccsssscsssccssscsseccecsseeees 11

2. MOre COMMAMNASccececssssessssscessssscecsstscessssscsssssccsscsseccecessececseeeees 16
2.1 Introduction wii iceeccsssscccsssscecsssscescssscscessccesessecescesesscecseeeoes 17
2.2. Paging and Scrolling woos cesecceccsssseccsscsscssreesesssscscecssesens 19
2.3. Searching fOr Strings cic cccssssssscccssscsssssscsssscsssssscsssscssessssees 20

2.3.1 The other string search commands 20.00... eeeeeceeeeeeceeeeeee 20
2.3.2 Regular EXpreSSiOnsccccececcsccccesssescsccccececcssceccccececscenseees 20
2.3.3 Disabling extended pattern matching oo. lees 21

2.4, Local MOVES ooo... eeecccscssssscescssscececssssesscssssscessessscesscecssccescesceses 23
2.4.1 Moving around 01 the SCreen wocicceeccccsscccecsssscescsseseseees 23
2.4.2 Moving within @ Lime vnc ccccsssccecssscsrecccsessseccceees 23
2.4.3 Word MOVEMENES oe ccecssscessscscesssevsessscecessscscssseeesessuaes 24
2.4.4 Moves within C programs oi.ccccccccccssccsssssssscssecsecscsseseeees 24
2.4.5 Marking and returning oo. cccssccccsssececscsscesessereeeecees 25
2.4.6 Adjusting the SCreen wie ccssesccsssccsscccsssessssscsssseeceseees 26

2.5. Making changesccccccccscsssccssssssssssccssscssssssscssccesesececssseesenecs 27
2.5.1 Small Changes ooo... cssssscsssssccssssscsssscecvscscesevsecssessecesseeaes 27
2.5.2 Operators for deleting and changing text ww 27
2.5.3 Deleting and changing limes wo. ccecceceececeeesseeeec ees 28
2.5.4 Moving blocks of text uci iieeesececesssccececscstccceeceeseccceces 28
2.5.5 Duplicating blocks Of text coc eeecseecessssscccceesssscceeees 29
2.9.6 Named buffers seeteceeeecesesceseeseceseccnsesescescececeuceess 30
2.5.7 Moving text between files vce cecccecescsssssccssceeseees 31
2.5.8 Shifting text ooo iccccssssccssscecsscscecssseesssssececseseeerees 31
2.5.9 Undoing and redoing Changes woe cescsseecesesseseeeeeee 31

2.6. IMSErting teXt oo. cccsssssscssssccssssccscsscceessssecessssecssssecsesceseeees 32
2.6.1 Additional commands uous ccssseceseesccecesscccecsecceesees 32
2.6.2 Insert MOde COMMANAS oui eeesseeccceeesssssssscecececesseees 32

2.7, MACIOScccccssccsesssccccssessccsssssscsssscocsseccecsssssecseccessssccescsssececeseaceces 34
2.7.1 Immediate macro definition oc cece ceceseseecssesseeesseens 34
2.7.2 Examples wicciecccccccssscccccsccssscsscesceccsssessccascsesscecssccaceesecssenecs 34
2.7.3 Indirect macro Cefinition woe cecsecececesscececseeeeceees 35
2.7.4 Re-CXCCULING MACKFOS .iceeessccsssccecsssececessscecessccecesssceceees 36

2.8 The Ex-like command wou. icecsceeccsssscecescsssseccescsssceeeceees 38
2.8.1 Addresses in Ex COMMANAS oo... ceeecsecessesccnecccececeeeeees 38
2.8.2 The ’substitutute’ COMMANA oe ec eesseeeseeceesseeceoee 39

2.8.3 The ’&’ (repeat last substitution) command 40
2.9. Starting and Stopping Z wie cccsccssscssccssssssscsssssssssessesens 4)
2.10. ACCESSING FICS Lec eeescsessecsssssecccsscscecssscessssseeescssecececseerens 44

2.10.1 File mames cic cecssescsssscccsscessscccessscesceccsesscsssecssrseees 44
2.10.2 Writing files oc ccccsccscccccsscscssscssscsscescesscecesssssessneees 44
2.10.3 Reading files oo. sccsccsscecescccsccscecsscscsesscssesessrsesecs 45
2.10.4 Editing another file ool eecccecccssccseccescesssseescesees 45
2.10.5 File Lists cece cecccccssscssccsscccceccccsscccesescesessecessessseeserseeees 47
2.10.6 Tagsc.ccccccssscssssscsssssseccsssccssscscsssscsssscssscessscesessssecseseneeserers 47
2.10.7 The CTAGS utility ccc ccesccscssssccsseccssesscecsecseees 48

2.11. Executing system COMMANAS oo... lec cccsceccsecsssecesseceseeees 50
Pe ams ©) 0) 6 (0) 0 \ ee 51
2.13. ZeVS. VA cucciccsccsccccscessscsssccccecesssssscsccsececcsessecsnscscccescececesessnscceecesces 52
2.14. System dependent features oo... ecesecccsssecccsssececeseeesees 53

2.14.1 Macintosh features occ ccescccscessccessscccsscecsssscsssecssrsceees 53
3. Command SuMM ary oiv..ccccecceccccscsccecsssceccssccccesscesecesecsncccessnsneccens 54

Utility Programsccccccccscsses cssssecsscssscsescccessecescesccesccesseceacsescessecnecsesees util
ACVccscsssscceccssesee ssceeceessceceeusecsccssscecessuesccsecesceccscnsesceausesseauaescecenescecenseesses 4
CAE oo... eeesescsccecccccccescescsceeseecesssscosceeeausessescecessccssssceccecceseessseceeseecececenseseesecanes 5
CO eee sccesesssccssecsseecsssecssscssccsscesssesesscecesssssessessacesecsecensecescceseusecenseeseuecesaecens 6
CIP0. cssscsceececeececeeseceecsecsucssensecsessceeseesseeeccceescsscececesceansecessesecesacecausessescess 8
CIM ccsceccssecosssceceesecsssecesesevsescscssesevscscescesseesecescoccssecssaccncescccecscersssecensenes 9
CIcseccesssceccccsenssseeceeceseeceesesussecsecsesseesecsscesssessscecccecssssecssececsescccscssssesceanaens 12
0) 0) ES) Cre 14
CAE ose, ceccscccsssecessscsssseccsssecsscccscsssscsseescsseecesseesensrecseneuecesesecceseacecenacsecenecs 15
GED i. ee ccsecssssssssccsssccscccssceseseecssccessscesssaseeseecerseceesscesecescnscsesececesscesees 16
OCHO woiciicee cecsssssssscssssscccesesssseccscscsscecesssecceececesscseceeseseeaeccesersesacecsessnceaceaeceeees 20
CCIt o...ece ccecscescsssscsssscsssscsseccscecsscecssescesscessscesecesceaceceseecessesecsecectaceesesecssnaceues 21
FixAttr oo... cccsscssssccsssccssscccsssccscseceessccesssssesessesenecsesenscecsssecccsseeceestaceecscees 23
PLAT occ. eecccccccscssssssccsssccssccsscscccessssessssecesecessnaecesccesssecseserasecsseacecsesecesaccens 24
FLOCK vies ecsscccssscssssssssecsssecsscssscecesccecacecessecessecseceessaecessucsesacsersccensceeseneeceuees 33
FUMNIOCK oie, icles ccsssccessssccessssccccessccescseccescsecececssececesscecsesescsececseeraccesensnaceees 33
QTD o...cccee ccssssssssscccecessnsnseecesenssscueeesceecsssscseeeescseccesssseasscssescesssesscssseeacececeseeses 25
FA woe, cccceccsssscecceecesesscseccssssssscsssscecscsssssssacscecaseseseesececesccecesseseensesscsecsecesens 31
InstallComsole oi... csscecccccsssscccssssccscsscccecsssececesscccsecssaceccesececsesenenecees 32
TDUtIi] oo... eceeesesscssecsesecsscecsscccssccccuecescecesceesscecesscsseesscsssecsescerencesensecenees 33
LOCK woes. cccccesssssccecsssscccessssccsccssssccesesesssccecesessccccescesssaceccesceseeaacceseecsacaceesens 38
IS .oeesesee sesssscsssscssseeecccsecsscussscessccssessacessssecescacessacecensecesesaccesssusecsessesenececseneneees 39
MACSDUGcsecsscsssscessssccocssssccessccssssecesssssscsesssececesecsecesssesecessseseecessceceesens 4]
MAKE oui. cesesssseecscsscccecesssccesecscsececescsssceececesecceseeseceeceseceecsssscaesessscesenaccesens 50
IMNKALCV oo... ecseecsssecessscecsssscssscessssesssceccssccesescecesseceesseceesacecessucecesuececeaceceesscees 4
MOUNL oi. ci teessesssecececeseressesceseecescsesceseceescsscssescsscscsceccsacessescecsenssescesseneees 67
MOuntRam 0000.0... ccc csccccsccsssssccssscsscsscceccesccesescececesceceesessececessaccesensnaceses 73
100 re 69
PISCCUD 2.0... ceecsccccsescecesscescssecesesssscccsecccecscecscesecesscecececescecoessesensssecessecens 71
DW .o.ccs. cccccsssscsssscesssssceccesssesssseececeecsssescecesssensececeneacceceesesesecensuseseescececeeens 72
TEEN .oiseee cecccserenecccccceccccesecesseseceseesesceseceeseessscsseecsceeescesseseseusesecessssessessseesesens 75

TIN. oi eeccsessssssssecssssecsscscecsscccecsauccecencecsscacecessacececeenacesensuaeceessuececeesucecesersnaceees 90
TMAKE! occ ce ccecsecssssscscccecesssssssecesesescsssccccescecscsssencacceceececeeseececsacaccesceceeces 91
SOU ..ccccccs scccceccccscssseecesseccesscucesccesceceuusessececcecscussecesesausesssseecsecsescecceaseceseccecsees 99

X1

SUYP cccssscscecssssssssscrsescessessesvsesssencessesesescseseseaeesseureceeseressesseceececcceeeces 102
1 0 103
1000 ole) 38
UMOUNL 1.0.0... cccssseecesesssccecessssreeessscecscsccsecsessscecaceeceseseresseseescseseeseeseeereeses 67

Library Functions Overview: Macintosh Information libovmac

INeX ou... eeescssssssssessssscsssssccsscscecsssssccescssesseseeseessessesssssesecesessecssecceccececcescesese, 4
The functions oo... cccssssscscssssscsscssssesescsssssscssscsscsssssssesevsesctasessesessesececcesee. 5

Toolbox and OS Functions wocccscsscscescsssesessssecscssssesscsessecsesecesessesee tool
Control Manager fumctions occ cccscsescsssssscsssscsesscsssscsssssaresecesseseeees 10
Desk Manager Functions o0.....cccccsecscssssescssssssesscsscssssssssececsececsecceeseeee 14
Dialog Manager Functions ou... eccsessscsecessscssessssscssscscscsessseccceceeseees 15
Disk Manager Functions wo. ceesccssssscessssscsccssccssscsosesececsececeeeececeeees 19
Event Manager Functions oo. ccccccsscssescescsscsssesssssecsssseserseccecsececes 20
File Manager Functionsscsssssssssssssscsssssssscsesscsssesecsorecseseceeseseecee 23
Font Manager Functions ooo... eesccccsccsscoccssscscsssssscesscecesesececescececeeees 31
Memory Manager Functions ooi.ciccccccccscsscsscscescssesssesescsscssccesessecsecseceees 34
Menu Manager Functions wo ccccssccssscsecssssccssccscseccecceccceecsecceceecces 38
OS Utilities oe cssscscsscsccecsscccssessesssssssssssesssssssssescsssscsesessccersessesseceecs 41
Package Manager Functionscccscsssssscescssccsssssssscsecesesescseececesececes 44
Print Manager Functions oo. sccescccesssssssscsssscscssssssssscserscesseeeeseseesee 50
Quickdraw FUNCtions ou... csssssssscscecssssececesessscsssssseccssscscsscesssscesecesceses 55
Resource Manager Functions .0......cccccccsccssescessscsssssecsscsecsececessececcccceeee 69
Vertical Retrace Manager Functionsc.cccccccssessscessscescecsecececscececeeces 72
Scrap Manager Functions oc. ccssssesssscoscoscscssecscssceesecsssseceeseccececeses 73
Segment Loader FUNCtiONS oi ecsesceccscescsscscsscsesscsessececscceseeseceeesees 74
Serial Driver FUNCTIONS woe cssseccssesescsesessssescsssecccseseveceeserccecseesceees 75
SouN Driver FUNCtiONS occ ccccssssssssscsscsssssssesscsecsesecsessecsesecceceeeeeee 78
SyStem Error COdeS ou. cccsscsscssccceccsscsssescessssssesesssssccsscsessessecereececeeeeees 80
TeXtEdit FUNCtiONS occ cscccsccssscsssssssscsesscsecscssessssssscsssevecesceeseeseeece. 82
Toolbox Utility FUNctions cic ccsssccssssssccssscssssscsssesseessecsesceesceccsecs 86
TYPEScesscssscssscsssscsscssececcsessccssceessessecsssceseesssssseccueeseseecesssecessecseceseeeceseees 89
Window Manager Functionscccsssssscsssesssssssssssssesecsececeeceseececeseeces 90

Technical Information wou csssscscssssscosssscsssesscssccscssseceecasececesseseeseess tech
I. Memory Organization woe ccecccsssssccesceescssccssecesscsscssscsecscesenceseeees 4
2. COMMANA PrO¥SraMs o.o.ccccccccesccceccescecescssssssccseccssssccessessosscsesecserceceeee: 7

2.1 Creating COMMANA PrograMSccsesccssescesssescessssssscsscscceesceececes 7
2.2 CusStOMIZING StartUP OUTLINESccccccccccsccscsceccececcccesececeeeeces 16
2.3. Passing open files to CM PrOgSceecccccsscssecsecsscscescsecceceees 21

3. Drivers and desktop acceSsOrieScccccccsscsessssssecsssccessscesceesceeceseees 23
3.1 Writing drivers & desktop ACCESSOLFIESceccccccccccecsssseccescoeeeees 24

3.2 Compiling, assembling, & Linking ooo. cccsesccscescscsccsceeseceees 24
3.3 Examples oo... cescscecccccsssssccsccsssscssecsessesssssessessecssccesseseeeseseeees 26

Xil

4, The Console (river woiciicciccccccccccccsssssssssscssccesscsssscescscsecessssseesesaseecesees 2/7
5. Using Aztec C68K on a 128K-byte Macintosh oc ecceceeees 31
6. Using Aztec C68K on a 512K-byte Macintosh woes eeeeeees 32

G.1 Large programs wou... icccccscsssssssssccescsscsssscccecesessssssesesaseeencesees 32
6.2 Putting resources in the system heap ou... eececeeeseeseeees 32
6.3 Creating a RAM disk ou. ccssssececsseccecsceeseesssneeeesessaeseeeeees 33

7. Using Aztec C68K with a hard disk wo... scsssssessscesstssecesseeens 34
8. Using Aztec C68K on single-drive SYStEMScecceesesreeeeeeeees 35
9. Data formatscccccsccccscsscsccscesecssssssscsccscsssssssesssscsccsececnseeeeeeceeseesens 37

SAMple PrOSraMsSccccccsscssscsscccesssessscssssssssscscsccscecsscecsssscesesseessesees examples
oh. ¢ 0) (0) os ee 4
MENU CefINitlON ooo ccecscsscctecscsssesssssscecesescsssesssecessesesscscseeeseecsceceeees 15

Overview Of Library FUNCtions wi... cccsecccsssscccceescsscecscssssseeseseceeees libov
1. T/O OVErVIEW wie cccccsccccsscssssssssccecscscesessesscsssecsscssscssececsceseeseesanenesecs 4

1.1 Pre-opened devices, command line args oo... eceesseeeeceeeesseeees 4
1.2 File [/O ccc csccsssssssscccsscecsesssssssececscscssssseesssscsceseseseseansceeees 6

1.2.1 Sequential 1/O oc cececcscssscsssssscecsscscscesesseeesscesenes 6
1.2.2 Random [/O wc iccccscccssscscscsccscccssscssscesescssecssesesssesrsceeees 6
1.2.3 Opening Files wc. ee eessscesssscessecessscesssesesseeessseesesseeeess 6

1.3 Device T/O ciciicccscssscsscccssssccccscsssscccesssscecsscsssssesscescsecsaeseseseeseseecs 7
1.3.1 Console 1/0 cic csccssessccesesscscccscesssceececeesssnaseceeeesenseeeess 7
1.3.2 I/O to Other Devices wo... eesscecessecsecssecesssssecesessesseeecees 7

14 Mixing unbuffered and standard I/O calls wo. eeeeees 7
2. Standard 1/O Overview oii.iiccccccccccsssscscsccessscccecessssscescecssscereescessssnaeecees 9

2.1 Opening files and GeVICES wie ccccssccsssscscesssseceecssceeececeseeseesens 9
2.2 ClOSING StrEAMS .u...cceceeessecssssssssssssescssscessssecceseeeecsseeceesseeeessneees 9
2.3 Sequential 1/O oiccicccccccccccccccsssscscssssssssssssssenccscccecesceeescsceceeees 10
2.4 Random [/O coiccccccccccccccscccssccsscssccscesssecssascessssssssssssessesseseseseesees 10
2.5 Buffering oo... cesesssscccscsssccesesssssseccscssesssscesssessesesessnseececessssaneees 10
2.6 Errors .i..ccccccsscsccccccssccsscesescecsccucssessescecesccsscsscessesescesceccecseeceseeecseeees 11
2.7 The standard I/O functions occ iccecsecscssessssseescseeeseseeesessees 12

3. Unbuffered I/O Overview oii cccccccssssscscscecescecesssccneeeeseeeececesens 14
3.1 File 1/O wiccee cc cccsscccsccsscssccecesssecsecsecseceeseeesseeeececeseneuseececesssneesees 15
3.2 Device T/O wiciiccccccccccsccccsssscscesssssscecscscecsescececesesceseseesesseesseseseseees 15

3.2.1 Unbuffered I/O to the Console woo ccccceeceeeeeeees 15
3.2.2 Unbuffcred I/O to Non-Console Devices::0008 16

4. Console I/O OVErvidW wiciccccccccccccecesssssssssssssscscsnscsceceecececeeceseeeseeeesess 17
A.l Line-oriented input ooo. cccccccceccccecccersssssssessssccsescesceseceeees 17
4.2 Character-oricnted input oo... eessssssseesssscceccececescesesceesceeees 18
4.3 USING 1OCtl oi cecssssececessrecececsssaecesesenseeseceseseeeeeceseeeaaeees 19
4.4 The sgtty fields occ cccsscecssseecssscecesseeesessseneeeessnceeseeseees 19
4.5 Examples ou... .cccessssssccccccccsesecsscscssscscssecscecceseseececesesesesesesesesssseenes 20

5. Dynamic Buffer AMOCation oe eeeeeeeceeeeceessesssssesecessesseeeees 22
6. Error Processing OVErViCW .u......cccccsecsecccssseceessecesseeecssccestseeesseeeeees 23

System Independent FUNCTIONS o....... ee cseecssseceeeeceseeeeceeceeneeensscessneseneees lib

X11

INeOX ieee cccccsssescccsececscecscccecsccsscscccccesssscecccscsccnensnscececescesssseecsesescsccesesenenecs 5
The fUNCtIONS ooo. ecseccessesseeessssesscsscesssssssecssccsssscsssesssssasescvsasesescesenees 8

Style wo... .eecssscsssescessssceeee sessscssscsscessscesecsscsssscssccessssescecscesessssseseeceeserseaceceees Style
TL. IMtrOduction oo... ec ssscesssessceccscsssssssecsscsssscssesessscsscscsscssscsecsesssscseeseeees 3
2. Structured PrograMMing ou... cessssccsccscsssssscsssscsssescsssssssssesscscsrseses 7
3. Top-down Programming uuu... ccecssscscssccccssssccesssssccssssscssscssecesssseess 8
4. Defensive Programming and Debugging oo... cesccsssecsssseeseeee 10
5. Things to watch out fOr wicecieeccssccsesssscsssccsssessessesessesesessccessnees 15

Compiler Error Code wc... ecescccceccesscsscssccssceccccscececessssescsessenscsesecececees err
LD. SUMMALY oo... eeecccsssscceeessscesscsscccecssssssscscessssecsscssscsecccesescsersceeeecees 4
2. Explamatioms ou... ccc ecesscececsssccccsccccecesccessscececsssaccssnecccsceacceseecsacecesns 7
3. Fatal Error Messagesccccccscsscssssssssesssscssssescssescsssesscssesescsseeseees 35

X1V

OVERVIEW

- ov.l -

Overview Aztec C68K

- ov.2 -

Aztec C68K Overview

Overview

The Aztec C68K Software Development Package is a set of
programs for developing programs in the C programming language; the
resulting programs run on a Macintosh. The development can be done
on a Macintosh; it can also be done on several other type systems, as
described below, and the executable code downloaded to the
Macintosh.

Some of the features of Aztec C68K are:

* The full C language, as defined in the book The C
Programming Language, by Brian Kernighan and Dennis
Ritchie, is supported, with the exception of the bit- field data

type;

* On the Macintosh, development is done using a program
called the SHELL, which replaces the Macintosh Finder
program and provides a UNIX-like environment;

* With some versions of Aztec C68K, several utility programs
are provided that are similar to UNIX programs: Z, a text
editor, which is like the UNIX wi editor; make, which
automates some of the steps in program development and
maintainance; grep, a pattern-matcher; diff, a program that
determines the difference in source files;

* An extensive set of user-callable functions is provided;

* Features and functions are provided that allow programs to
call the Macintosh Toolbox and OS routines;

* Code can be segmented, allowing programs to be created and
executed that are larger than available memory;

* Modular programming is supported, allowing the components
of a program to be compiled separately, and then linked
together;

* Programs can be developed that can only be activated from
within the SHELL environment. Such programs have many
UNIX features.

* Programs can also be developed that can be activated from
within the SHELL or Finder environments. Such programs
have fewer UNIX features but can be created to support
UNIX-style console i/o, if desired. When development is done
on the Macintosh, these type programs can only be created if
you have the commercial version of the Development

- ov.3 -

Overview Aztec C68K

Package.

* Assembly language code can either be combined in-line with
C source code, or placed in separate modules which are then
linked with C modules. This feature is not available with the
Personal version of the Aztec Development Software Package
that runs on the Macintosh.

There are two classes of user-callable functions: system independent
and system dependent. The system-independent functions are
compatible with their UNIX counterparts and with the system-
independent functions provided with Aztec C packages for other
systems. Use of these functions allows programs to be recompiled for
use on UNIX-based systems or on other systems supported by Aztec C
with little or no change.

The system-dependent functions allow programs to take advantage
of special features of the Macintosh. Some of these system dependent
functions act as an interface to the Macintosh toolbox and OS routines.

Several extensions to the C language are supported by the Aztec C
compiler that allow C programs to directly call Toolbox and OS
routines, thus making programs smaller and more efficient.

Several header files are included with the Development Package
that facilitate the accessing of toolbox and OS routines by C programs.
Using the constants, data structures, and routines defined in these files,
a C program can access Toolbox and OS routines in a manner similar
to a Pascal program. Thus, a programmer can decide how a Pascal
program would call toolbox or OS routines and then easily translate
this to C.

Versions

Several versions of the Aztec C68K Software Development System
are available, for use in different environments. Some, called "native
development systems", allow development to be done on the
Macintosh; the others, called "cross development systems", allow
development to be done on other machines, with the resulting
programs downloaded to the Macintosh.

For a description of the native development systems, and for the
names of systems on which cross development can be done, see the
Aztec C68K product bulletins.

Cross development, with the Macintosh as host

Manx has compilers for developing C programs in which the
resulting programs run on systems other than the Macintosh. Cross-
development versions of many of these other compilers are available
which use the Macintosh as the host system. For more information
about cross development, with the Macintosh as the host, see the Aztec
Cé68K product bulletins.

- ov.4 -

Aztec C68K | Overview

Components

Aztec C68K contains the following components:

*

*

*

Preview

The compiler, assembler, linker, and object file librarian;

The SHELL, for native-Macintosh versions;

Object libraries containing user-callable functions and support
functions;

Several utility programs, including, with some versions of
Aztec C68K, programs similar in function to the UNIX
utilities make, grep, diff, and vi.

The Macintosh manual is divided into two sections, each of which
is in turn divided into chapters. The first section presents Macintosh-
specific information; the second describes features that are common to
all Aztec C packages. Each chapter is identified by a symbol.

The Macintosh-specific chapters and their identifying codes are:

tut describes how to get started with Aztec C68K: it discusses
the installation of Aztec C68K, presents an introduction to the
SHELL, and gives an overview of the process for turning a C
source program into an executable form;

cc, as, and in present detailed information on the compiler,
assembler, and linker;

z describes the text editor Z;

utility describes the utility programs that are provided with
Aztec C68K;

libovmac presents Macintosh-specific information about the
library functions;

libmac describes the special, Macintosh-specific functions
provided with Aztec C68K;

tools describes how C programs can access toolbox and OS
routines;

tech discusses several miscellaneous topics, including memory
organization, creation of command programs, drivers, and
desktop accessories, and the representation of data;

examples discusses sample programs;

debug describes the debugging utilities that are provided with

Aztec C68k.

The System-independent chapters and their codes are:

- ov.5 -

Overview Aztec C68K

libov presents an overview of the functions provided with
Aztec C68K;

lib describes the system-independent functions provided with
Aztec C68K;

style discusses several topics related to the development of C
programs;

err lists and describes the error messages which are generated
by the compiler and linker.

— ov.6 ”

TUTORIAL INTRODUCTION

- tutor.1 -

TUTORIAL Aztec C68K

Chapter Contents

Tutorial Introductionccccccsccsssssececeecccccenssssscececccesscscececccecsssescececees tutor
1. Getting Started vo escsssseccesssscescsssscececssessecesessscarerseseseseenees 3

1.1 Copying disks on a two-drive Macintoshcccccessseeseeeeees 3
1.2 Copying disks on a one-drive Macintoshccsscscecesseeeees 4
1.3 Disk usage during developMent ce essceeeessseecesssescecesenees 4

2. Using the SHEL wo. cccccssneccescsssccccecssseeecesscsneesesessesceecessees 5
2.1 LOOKING ArOundd wo ce ceecccececcsssscscececsssssceneesescessssssseeceseeceens 5
2.2 Working With files oo... ccceccsssssecsssecsscececssrecessceessersceeseeecesseeees 6
2.3 Builtin commands, command programs, and exec files 8

3. Compiling , Assembling, and Linking ooo ceeseeeeseeceeenees 10
3.1 Using the Source and Compiler MENUSc.ccccecesercecessnneees 10
3.2 Using the keyboard wou ccccccssccceecessssnerssececssessessseesceeececesesees 10
3.3 Cleaning Up oie cccscccscccssscsesessssseccesesseceececesseeeseseeesseneeseseeses 1]

A, MOre MENUS oo... eeeeeeesenertcrcnceeeaeesececeeceesessesceecseeecsacceseeensessesnssees 12
4.1 The Apple and File MeNusSccecccccsssssssterecececeseesessacacaeeeeees 12
4.2 The Programs Menucccccccccesssssssesecescsessncceecececssensnsnceeeeeesceces 12

5. Where to 20 from here oui. ccscssccecsrsecenseecesseesecsssseeceseeceecseseaes 14

- tutor.2 -

Aztec C68K TUTORIAL

Tutorial Introduction

This chapter describes how to quickly start using Aztec C68K.

We first describe how to make backup copies of the distribution
disks. Then we introduce the SHELL, the command processor
program to which you’ll enter commands while developing programs.
Finally, we go through the steps you can follow to create and execute
the a program.

1. Getting Started

The first thing you should do with your Aztec C68K software is to
make a copy of the distribution disks. Use the copies for doing
development, not the distribution disks.

1.1 Copying disks on a Macintosh having two drives

If your Macintosh has two drives, the disks are most easily copied
using the cp copy command that is built into the SHELL. So the first
thing to do is get the SHELL started. To do this, put the first
distribution disk in the Macintosh’s "internal" drive and turn on the
Macintosh. The SHELL will automatically be loaded and started; it will
display a title message and then wait. Type any key to get it going.
The SHELL will erase the screen, issue its prompt, ’-? ’, and wait for
you to enter a command.

Next, put a blank disk in the "external" drive. If the disk is
uninitialized, the Macintosh will say so and ask if you want to
initialize it. Click ’yes’, using the mouse. When it asks for a name,
leave it untitled. When the initialization is done, the SHELL will still
be waiting for you to enter a command.

Now, you can enter the cp command to backup the distribution
disk. Enter:

cp l: 2:

cp will ask

Are you sure?

If you are, type y followed by a carriage return. cp will procede to
copy the contents of the disk in drive 1: to the disk in 2:. When cp is
done, it will eject the newly created disk, and return to the SHELL.
The SHELL will display its ’-?? prompt, and wait for another command
to be entered.

If there’s more than one distribution disk, eject the disk in the
internal drive by holding down the key with the cloverleaf symbol and

- tutor.3 -

TUTORIAL Aztec C68K

then pressing the ’1’ key, and then copy another disk, using the cp
command again.

Continuing the discussion of ejecting disks, you tell the SHELL to
eject a disk by holding down the cloverleaf key and then typing the
number of the drive whose disk is to be ejected. Thus, holding down
the control key and typing the ’1’ key ejects the disk in the internal
drive, and holding down the cloverleaf key and typing the ’2’ key
ejects the disk in the external drive.

1.2 Copying disks on a Macintosh having just one drive

If your Macintosh has only one disk drive, you can copy the
distribution disks by activating the Macintosh Finder program and
then copying the disks using the standard single-disk copy utility.

1.3 Disk usage during development

While developing programs, you will normally use two disks: one of
the disks, a system disk, contains the SHELL, the system file, and
frequently used programs, libraries, and header files. Initially, you can
probably just use a copy of the first distribution disk as your system
disk.

The other disk, the working disk, contains your own files: C source,
object modules, executable programs, and so on.

A working disk is prepared by simply initializing it. When an
uninitialized disk is inserted in a drive, a message will be displayed
saying so, and you will be asked whether you want to initialize it. You
should click ’yes’; when the initialization is done, you should then give
the volume a name.

If you have a Macintosh with a single drive, you can still develop
programs using two disks. When an attempt is made to access the disk
which isn’t in the drive, the disk in the drive will be ejected and a
message displayed prompting you to insert it. When this is done,
execution automatically continues.

The use of Aztec C68K on a single-drive Macintosh is discussed in
more detail in the Technical Information chapter.

- tutor.4 -

Aztec C68K TUTORIAL

2. Using the SHELL

In this section, we want to introduce you to some of the features of
the SHELL and to some frequently used commands.

The first thing you need to do is to start the SHELL, if it’s not still
running from the disk copying that you did. To boot the SHELL from
the copy of the first distribution disk, put the disk in the internal drive
and then turn on the Macintosh or press the reset button. When you
do this, the SHELL will clear the screen, display its ’-?? prompt, and
wait for you to enter a command.

2.1 Looking around

The function of the SHELL is to execute commands that you enter.
There are two ways of entering commands: by typing them on the
keyboard and by selecting them, using the mouse, from one of the
SHELL’s menus.

Select the Commands menu and look at the items that appear.
These are the names of all the SHELL’s ’builtin’ commands; that is,
commands whose code is contained in the SHELL itself. The
commands whose names are in the top part of the menu require no
arguments and can be executed by selecting them with the mouse. The
commands whose names are in the bottom part of the menu can’t be
executed via the mouse; they’re listed in the menu as a handy
reference, allowing you to see at a glance the names of all the SHELL’s
builtin commands. The two groups of names are separated by a
horizontal line.

So now, let’s try some commands. Execute the mount builtin
command by either typing its name, followed by typing the return key,
or by selecting it from the Commands menu.

The SHELL will display the names of all mounted volumes along
with information about them. You should see a volume called sys:. The
information displayed before the name and after is discussed in more
detail in the SHELL reference section. In general, the information
discussed in this tutorial will use commands without any detailed
discussion. More information can be found in other sections of this
manual.

Next, execute the /s builtin command by either typing its name
followed by hitting the return key or by selecting it from the
Commands menu. This command displays the names of all files in the
current directory’. The current directory is analogous to the top level
window of the Finder.

To see more detailed information about the files, type or select
from the Commands menu:

Is -]

- tutor.5 -

TUTORIAL Aztec C68K

Notice that certain names end with a’/’ character. This means that
this is not a file. Instead, it is a subdirectory similar to a folder under
the Finder. The detailed listing also identifies it by the <DIR>
associated with these names.

You can pass arguments to commands. For example, you can tell Js
the name of a directory whose contents you want to examine. To see
the contents of the bin/ directory, type:

ls bin/

You can’t execute the above command by selecting it from the
Commands menu: it requires an argument (/bin), and commands
activated from the Commands menu cannot be passed arguments.

Just as the Finder has the concept of a front or current window, the
SHELL has the current directory. If you select:

pwd

the SHELL will display what it is using as the current directory. The
SHELL remembers a volume name as part of the current directory. To
change the current directory, type

cd include

This moves us from the top level directory to the include directory.
(Note that you can’t execute this command by selecting it from the
Commands menu, since it needs an argument.) Try the pwd command
again now. To get back to the top level, simply type:

cd /

Once you are in the include directory, use the /s command to see
what files are in the directory. There are a lot of files there, so to see
detailed information on a few of the files, try typing:

ls -1 s*

to get information on all files beginning with ’s’.

To look at the contents of a file, use the cat command. Try typing:

cat errno.h

This will display the information on the Macintosh screen.

The cad, pwd, mount, cat, and ls commands can be used to move
around on the disk and look at volume and file information. Try
looking in other directories as well.

2.2 Working with Files

Now let’s try and do something useful. First, create a new directory
by using the cd command as follows:

- tutor.6 -

Aztec C68K
TUTORIAL

cd /test

Since the test directory does not yet exist, the SHELL displays the "Empty directory" message. Now let’s try something. Type the car

defaults to the Macintosh screen. Thus, the previous use of cat displayed the contents of the file on the screen,

Cloverleaf key and ’d? key Simultaneously. The Cloverleaf key is used as a CONTROL key by the SHELL, s0 the end of file is more traditionally known as “D.

cat < errno.h

which would have Changed the standard input from the keyboard to the file errno.h. We could also use the cat command to copy a file by typing something like:

cat < inputfile > outputtfile
We’ll see an easier way of doing this later.

We can use this to create a file by typing:

Cat > greet

The disk will whir and the cursor will wait for input. Anything that you type will be placed in the file greet. Try typing:
main()

printf("greetings!\ n"):

AD

To make sure the file is correct, use the cat command again to display the file to the screen. If you now do a directory listing you will see the file greet. Since most C programs usually are distinguished bya file name extension of "c", use the following command to rename the

~ tutor.7 -

TUTORIAL Aztec C68K

file:

mv greet greet.c

This renames the first file name to the second.

A better way to create and modify files is to use a text editor. The
Aztec C68K Commercial package contains two editors you can use for
entering programs. One of them, named ’z’, is similar to the UNIX
editor vi. The other, named edit, is mouse-based. z is described in its
own chapter of this manual, and edit is described in the Utility
Programs chapter. The Personal and Developer versions contain only

edit.

You can also use MacWrite for entering programs, if you want.

2.3 Builtin commands, command programs, and exec files

A builtin command is a command whose code is contained in the
SHELL. All the commands used up to this point have been builtin

commands.

The SHELL can also execute two other types of commands:

command programs and exec files.

A command program is another type of command that the SHELL
can execute; its code is in a disk file. The compiler, assembler, linker,
and the programs that you create are all command programs.

An exec file is the last type of command that the SHELL can
execute. It is a file containing a list of commands. We’re not going to
discuss exec files any further in this section. For more information on
them, see the chapter on the SHELL.

When a command is given to the SHELL it checks its built-in list
first. If it’s not found there, the SHELL then looks for a file that has
the same name. This file can contain either a command program, or a
sequence of commands that the SHELL is to execute.

When looking for a file containing a command program or exec
file, the SHELL will look in a definable set of directories. For
example, the compiler, cc, is in the directory /bin. Thus, to run the
compiler, we could say:

/bin/cc

This directory is by default automatically searched by the SHELL
when it is looking for a file to execute. Thus, we could also say:

ce

This is explained more in the SHELL section, but for a peek, select
from the Commands menu:

set

- tutor.8 -

Aztec C68K TUTORIAL

which will display a list of names followed by strings. The name PATH
specifies the search path for program loading.

- tutor.9 -

TUTORIAL Aztec C68K

3. Compiling, Assembling and Linking

Now that you’re somewhat familar with the SHELL, let’s create an
executable version of your ’greetings’ program. You can do this by
either selecting items from the Source and Compile menus, or by
typing commands. We’ll present both techniques below.

First, be sure that you are in the fest directory by typing:

cd /test

3.1 Using the Source and Compile menus

The menus Source and Compile appear on the menu bar when the
directory you are currently in contains .asm and .c files. The Source
menu contains the names of all the .asm and .c files in the current
directory; the Compile menu defines operations that can be performed
on files listed in the Source menu, and options that will be used when
performing the operations.

One of the files in the Source menu is defined to be the ’current’
file; it is on this file that Compile menu operations are performed.
You want to perform the operations on the greet.c file, so activate the
Source menu and then select greet.c using the mouse. A selected file in
the Source menu remains current until you explicitly select another
one. The current file has a check mark beside it, as you can see by
selecting the Source menu again.

Now select the Compile menu. Notice that the options Auto
Assemble, Auto Link, and Auto Run are checked, indicating that after a
program is compiled it will be automatically assembled, linked, and
executed. Select the Compile item in this menu. It will be compiled,
assembled, linked, and started, resulting in the message

greetings!

appearing on the screen.

To illustrate the use of the options in the Compile menu, deselect
the Auto Link and Auto Run options. Now when you select the Compile
item in the Compile menu, greet.c will be just be compiled and
assembled. To link the object module version of the current file,
select the Link item in the Compile menu. Then to run the executable
version of the current file, select the Run item.

3.2 Using the keyboard

You can also compile, assemble, link, and execute programs by
typing commands. To compile and assemble greet.c, type

ce greet.c

This invokes the compile, and then the assembler. If you type the Js
command, you will see that a new file, greet.o has been created. This
is the object file created by the assembler.

- tutor.10 -

Aztec C68K TUTORIAL

To create an executable program, type:

In greet.o -lc

This invokes the linker to link the greet.o module with the standard C
library, and places the executable program in the file greet.

To execute the program, type:

greet

3.3 Cleaning up

To get rid of the files greet.o and greet, which you no longer need,
type

rm greet.o greet

- tutor.11 -

TUTORIAL Aztec C68K

4. More menus

4.1 The Apple and File menus

The Apple menu lets you activate desk accessories such as the alarm
clock and the puzzle. The menu has one special item, About the
SHELL. Clicking it causes information about the SHELL to be
displayed, such as its version number. To resume, once this
information has been displayed, click the mouse.

When you select items from the Apple menu that generate their
own window, their window appears in the foreground and the SHELL
window is in the background. For example, select the Alarm Clock
item. Notice that you now can’t enter commands to the SHELL: the
Commands menu is dimmed; you can look at items in the menu, but
you can’t select any of them. To bring the SHELL window into the
foreground, click the mouse anywhere in the screen OUTSIDE the
alarm clock box. The alarm clock program is still active, but its
window has moved to the background and is invisible, since it is
covered by the SHELL’s window.

To bring windows in the background to the foreground, select the
File menu and click the See Windows item.

To halt a program that was activated from the Apple menu and
whose window is in the foreground, select the File menu and click the
Close item.

4.2 The Programs menu

The Commands menu allows you to activate builtin commands
whose names are listed in the menu, and the Compile command allows
you to perform operations on the current file. The SHELL supports
another menu, whose items you define, each of which is a command
that will be executed when its item is clicked.

For example, suppose you frequently want to execute the command

Is -It

which lists more information about the files in that directory in order
of the time that they were last modified. To enter this command into
the Programs menu, type:

set PRG__LIST='ls -lt’
Notice that the Programs menu has appeared. Select the Programs
menu: it has a single item, the /s -/t command. If you click this item,
the command will be executed.

You can enter multiple items in the Programs menu by typing the
set PRG_LIST command, with the items’ commands separated by
semicolons. For example, typing:

- tutor.12 -

Aztec C68K

set PRG__LIST='ls -lt;cd /”

will create a Programs menu containing the items

ls -It
cd /

- tutor.13 -

TUTORIAL

TUTORIAL | Aztec C68K

5. Where to go from here

In this chapter, we’ve just begun to describe the features of Aztec
C68K. You should know enough now to create some simple programs,
which you can do while continuing to read the rest of this manual.

In your reading, be sure to read the sections on the SHELL,
compiler and linker. You should scan through the Utility Programs
chapter, which describes in detail each of the builtin commands and
command programs that are provided with Aztec C68K.

The Technical Information chapter also discusses several topics
which might be of interest to you. For example, it talks about using
Aztec C68K on systems that have a hard disk, on systems having a
single drive, and on systems having 128K and 512K bytes of RAM.

Once you’re accustomed to writing C programs with Aztec C68K,
you can start writing C programs that access the special features of the
Macintosh. For this, read the Toolbox chapter of this manual. This
chapter is designed to accompany Inside Macintosh, and shows how
your C programs can call the Macintosh toolbox and OSG functions.
Also, you can look at the source for the sample programs provided
with Aztec C68K, which use the special features of the Macintosh.

- tutor.14 -

THE SHELL

- sh.1 -

SHELL Aztec C68K

Chapter Contents

The SHELL cocci cccsccccesscssccsssssssccessssseecssscsseesessescscuccscsssseeeesesesseeeess Shell
1. The file SyStem oc ccccssstscecessncscessscsscececesscceececsssceeesesssseeeecesesses 4

L.1 File mames oo... cccssccecsssnscesessscececesessrccecsssceeesesesseececesesseeeeceees 7
1.2 The current GirectOry wows cccsssssececsssccesssccscssseeecssseecesseeecesesees 9
1.3 Directory-related builtin COMMANASc ce cesestecesseeeceeseees 11
1.4 Accessing files on Several VOIUMES ooo... essscecseseceeeseeceees 12
1.5 Miscellaneous file-related commandsccsseceescesssseceees 14
1.6 Implementation of the SHELL’s file system eee 14

2. Using the SHEL oii cccsccsececsecncecesecssenecesessneeseecesseeececesesaes 16
2.1 Simple Commands ou... ccsssseccececessecescsssesssessceececs caseesesceess 17
2.2 Pre-opening I/O channels 2.0... ccc ceescccesessseseceseesneeceeesenseeeeees 18
2.3 Expansion of file name templates oo... ececeesses ceenceeeeees 21
2.4 QUOTING oo... cccecscesscessscessccescecessecsersesscussceeecenseceneecesceceneecesscesenees 23
2.5 POMS oo... ececcsscesetessssssscsssesscsssssssrssessstecescesesessenessesensesseees 26
2.6 Selecting Screen fONts oe ecssssscccccscececsssnseecececsssssereeceeeeceees 28
2.7 The program’s view of command line arguments 30
2.8 DEVICES iccecccccccsscscccscsssssesessccescecscatceceecsecseecscessneeeceesesseesesseeneateeees 32
2.9 TrappiNG SYSTEM ELLOTS .o...cceccccccecssesscecececssscceeceseesneecessesceneeeces 34
2.10 Exec files woes sccsssscesssccesseececesescesesseeesessnesecsssesecesansecesenes 35
2.11 Environment variables ..0.....cccccccccccccssssccesscccecseseteceseceeesseesees 41
2.12 Searching for COMMAMNAS ou... le essseecececsseneeeceessscecesenseeeeeens 44
2.13 Starting and stopping the SHELL ou... ceecesereeceseners 46
2.14 MENUS oie cccccesssstsccsssssssssessecssssccscecseescscesseeeeeesececesessceeeeeseseeens 49

- sh.2 -

Aztec C68K SHELL

The SHELL

The SHELL is a program which provides an efficient and
convenient environment in which to develop programs.

The basic function of the SHELL is to execute commands. You
can enter commands by typing on the keyboard, or by selecting items
from one of the SHELL’s menus. When it finishes executing a
command, the SHELL writes a prompt to the screen and waits for
another command to be entered.

There are three types of commands: builtins, programs, and exec
files. The operator doesn’t have to specify the type of an entered
command, just its name. When a command is entered, the SHELL first
searches for a builtin command, and then for a program or exec file.

Builtins are commands whose code is built into the SHELL. To
execute a builtin command, the SHELL simply transfers control of the
processor to the command’s code. When done, the command’s code
returns control of the processor to the main body of the SHELL.

Programs are commands whose code resides in a disk file. The
name of a command is the name of the file containing its code. The
SHELL executes a program by loading its code into memory,
overlaying the SHELL, and then transfering control of the processor to
the loaded code. When the program is done, the SHELL is
automatically reloaded into memory and regains control of the
processor.

Exec files are disk files containing text for a sequence of
commands. The SHELL executes an exec file by executing each of the
file’s commands

This chapter is divided into two sections: the first discusses the file
system that 1s implemented by the SHELL. The second discusses the
features of the SHELL and shows you how to use the SHELL.

The utilities chapter describes the SHELL’s builtin commands and
the prograrn commands that are provided with the Aztec C package.

- sh.3 -

SHELL The file system Aztec C68K

1. The file system

Programs can access information contained on one or more disks,
or ’volumes’, as they’re called in the rest of this manual. The
information is contained in logical entities called ’files’, each of which
has a name. A single file is contained within one volume; that is, a file
can’t span several volumes.

The SHELL creates the illusion that the file system is a UNIX-type
file system, in which each volume contains a hierarchy of directories: a
root directory and, optionally, subdirectories, each of which has a
name. A directory contains a number of entries, each of which
describes a file or points to another directory. Files having entries in a
particular directory are said to be contained in the directory, and the
directories pointed at by entries within a directory are said i’ be
subdirectories of that directory. A file is contained in exactly one
directory, and a directory other than the root directory is a
subdirectory of exactly one directory.

The name of a file or directory must be unique within the
directory that contains it, but two files or directories that are in
different directories can have the same name.

An example

For example, figure 1 depicts tne organization of the volume
named sys.. This volume contains the following directories:

the root, which doesn’t have a name;
include, a subdirectory of the root;
subs, a subdirectory of the include directory;
work, a Subdirectory of the root;
subs, a subdirectory of the work directory. x

&£
+

%&
+

HF

Notice that there are two directories named subs. We'll describe
below the naming convention for directories, which will make clear
how a directory is uniquely identified.

The root directory contains the files SHELL and finder, that is,
contains entries describing these two files. It also contains pointers to
the include and work subdirectories.

The include directory contains the files stdio.h and ctype.h and a
pointer to one of the szbs directories.

The subs directory which is a subdirectory of the include directory
contains just the file inc.

The work directory contains the files hello.c and hello.o and a
pointer to the other sus directory.

The subs directory which is a subdirectory of the work directory
contains two files: i.< and out.c. The inc file in this directory is
different from the i.¢ which is in the other subs directory.

- sh.4 -

Aztec C68K The file system SHELL

Advantages

The advantages of a hierarchical file structure such as the one
simulated by the SHELL are:

* It allows the files on a volume to be partitioned into related
groups, thus making it possible for a volume to contain many
files without becoming chaotic;

* Related files can be easily examined and worked on together,
thus allowing the operator to more efficiently and effectively
manipulate and manage the information on a volume.

- sh.5 -

SHELL The file system Aztec C68K

: | The root directory

| |
| |

| | |
| SHELL finder |

! include | | work |

| | | | [| |
| {| | bot Le

| | ctype.h hello.c | |
| Stdio.h hello.o |

| subs | | subs |

| | |
in.c in.c out.c

Figure 1: a sample volume, named sys:

- sh.6 -

Aztec C68K The file system SHELL

1.1 File names

There are three parts to a file name which is accessed by the
SHELL or a SHELL-activated program:

* The name of the volume on which it’s contained;
* The path to the directory containing it;
*« The file name itself.

For example, the complete file name of the file in.c in figure 1,
which is in the subs directory, which is a subdirectory of the work
directory, which is a subdirectory of the root directory, 1s:

sys:/work/subs/in.c

sys: is the volume name, /work/subs/ is the path identifier, and in.c 1s
the file name.

The following paragraphs describe the naming convention in detail.

Volume names

The name of a volume is assigned by the operator, using the
Macintosh Finder program.

A volume which is in a drive can also be referred to using the
number of the drive instead of the volume name. The internal drive is
1 and the external 2. For example, if the sys: volume is in the internal
drive, the file used in the above example could also be referred to as

1:/work/subs/in.c

Path identifiers

The path component of a file name specifies the directories which
must be passed through to get to the directory containing the file. It is
a list of the directory names, with each pair separated by a forward
Slash character, /. The root directory doesn’t have a name, and is
represented by a null string.

For example, the paths to the directories used in figure | are:

(null) path to the root directory;

/include path to the include subdirectory of the root
directory;

/include/subs path to one of the subs directory, which 1s a
subdirectory of the include directory;

/ work path to the work directory, which is a
subdirectory of the root directory;

/work/subs path to the other subs directory, which is a

subdirectory of the ’work’ directory.

- sh.7 -

SHELL The file system Aztec C68K

Each directory can be reached from the root directory by passing
through a unique path of directories. This is why two directories
which are subdirectories of two different directories can have the same
name and still be uniquely identified: the path to each one is different.

Filenames

A filename can contain any printable ASCII characters. By
convention, the Manx programs assume that a file name contains a
main part, usually called the "filename", optionally followed by a
period and an extension. With this convention, related files can have
the same basic filename, and different extensions. Extensions used by
the Manx software are:

extension file contents

Cc C source
asm. assembler source
.O relocatable object code
sym symbol table for an executable file
Ist assembler listing

By default, the file created by the linker which contains executable
code has no extension.

For example, the C source code for the "hello, world" program
might be put in a file named hello.c. The file containing the relocatable
object code for this program would by default be named hello.o, and
the file containing the executable code for the program would be
named hello.

Complete Filenames

A complete file name has the form

volume:path/filename

That is, the volume name comes first, followed by a colon; then
comes the path, followed by a slash; then comes the file name.

Thus, the complete names of some of the files in figure | are:

sys: /Finder
sys: /include/stdio.h
sys: /include/subs/1in.c
sys: /work/hello.c
sys: /work/subs/in.c

The SHELL and SHELL-activated programs don’t distinguish
between upper and lower case letters in volume, directory, and file
names. When a volume, directory, or file is created, the name is
recorded exactly as entered, but to refer to it, the operator or program

doesn’t have to worry about the case of its letters. For example, if the
complete name of a file is

- sh.8 -

Aztec C68K The file system SHELL

Sys: /Progs/ Finder

then it could be referenced by names such as

sys:/progs/finder
SYS:/PROGS/FINDER

Volume, directory, and file names can contain any printable ascii
characters, including spaces. If a name contains spaces, references to it
must surround the name of which it is a part with either single or
double quotes. For example, if a volume is named data disk: then the
file hello.c in the directory /source would be referenced by the quoted
string

"data disk:/source/hello.c"

Using the number of the drive containing a volume instead of its
name can be convenient in cases where the volume name has spaces.
For example, if "data disk:" is in the external drive, then the file
referred to above could also be referred to as

2:/source/hello.c

The length of a file name plus the path to it must be less than 64
characters.

Frequently, the complete file name needn’t be given to identify a
file. The file can be located relative to a directory called the ’current
directory’, thus allowing the volume and/or the path to be omitted
from the file name. This is discussed below.

1.2 The current directory

Having to specify the complete name of each file you want to
access would be very cumbersome. Also, when developing programs, at
any time, you are generally interested in the files on a single directory.
For these reasons, the SHELL allows one directory, called the ’current
directory’, to be singled out.

When the SHELL 1s first started, the root directory on the volume
containing the SHELL is the current directory; there is also a
command, cd, which allows the operator to make another directory the
current directory.

A file on or near the current directory can be specified by the
operator or program without having to list the complete name of the
file:

* If the name doesn’t specify the volume or the path, the file is
assumed to be in the current directory.

* If the name specifies a path, but not a volume, the file is

assumed to be in the specified directory on the current
directory’s volume.

- sh.9 -

SHELL The file system Aztec C68K

* If the name doesn’t specify a volume, and doesn’t specify a
path which begins at the root, the path is assumed to begin
with the current directory.

For example, suppose that the current directory on the volume
depicted in figure | is work. The complete name of the file hello.c in
this directory is

sys: /work/hello.c

Since this file is in the current directory, the operator or a program
can refer to it without the volume or path; that is, simply as

hello.c

Since the directory /inclide/subs is on the same volume as the
current directory, the file i.c within this directory can be identified
without a volume name; that is, as

/include/subs/in.c

Since the directory /work/subs is a subdirectory of we current
directory, the file out.c within this directory can be identified without
a volume name, and with only a partial path name; that is, as

Subs/out.c

As a further abbreviation, if a file name specifies a volume and a
path, the path is assumed to begin with the root directory on the
specified drive. Thus, the leading ’/’ in the path, which normally
separates the null root directory name from the next directory name or
filename, is optional. For example, the following two file names both
identify the Finder file on the root directory of the volume sys-.

sys: /Finder
sys: Finder

And the following two names both identify the file stdio.h in the
include directory:

sys:/include/stdio.h
sys:include/stdio.h

1.2.1 The ’.’ directory

The current directory can be referred to using the character ’.’. For
example, the following command will copy the file hello.c in the
directory sys:/source to the current directory:

cp sys:/source/hello.c .

1.2.2 The’..’ directory

The parent directory of the current directory can be specified using

two periods as the path name. For example, in figure 1, with the work
directory as the current directory, the file Finder could be referred to

- sh.10 -

Aztec C68K The file system SHELL

as

../Finder

and the file ctype.h in the directory include could be identified as:

../include/ctype.h

1.3 Directory-related builtin commands

The SHELL has several builtin commands for examining and
manipulating directories: pwd, cd, and Is. We want to introduce these
commands in this section; complete descriptions are presented in
another section of the manual.

pwd

This command, whose name is a mnemonic for ’print working
directory’, displays the name of the current directory.

cd

This command makes another directory the current directory. If
the new directory doesn’t exist, it is created; in this case, cd prints the
message "Empty Directory’.

The command has one argument, which specifies the volume on
which the directory is located and the path to it.

The volume name is optional; if not specified, the directory is
assumed to be on the current directory’s volume.

The path has the same format as the path component of a file
name.

For example, considering the volume sys: in figure 1, with work
being the current directory, the following cd commands change the
current directory as indicated:

command new current directory

cd /include /include
cd subs /work/subs
cd. / (the root directory)
cd objects /work/objects (created by cd)

A directory exists only when files are created in it. Hence, if you
’create’ the objects subdirectory of the work directory, as shown in the
last example above, and then move to another directory without
creating any files in objects, the objects directory would cease to exist.

Is

ls displays the names of files and the contents of the directories
whose names are passed to it.

- sh.l1l -

SHELL The file system Aztec C68K

The format is:

Is [-1] [name] [name] ...

where square brackets indicate that the enclosed field is optional.

-! causes Is to display information about the files or directories in
addition to their names.

The name arguments are the names of the files and directories of
interest. If no ’name’ arguments are specified, the command displays
information about the current directory.

To specify a directory, include a slash character at the end of its
name.

For example, the following displays the names of the files and
directories in the current directory:

Is

The following displays information about the files and directories
in the current directory:

Is -l

The following displays the names of the files and directories
contained in the /include directory:

Is /include/

The following displays information about the file inc in the
directory vol:/ john/ progs:

ls -1] vol:john/progs/in.c

For more information about the /s command, particularly about the
information displayed when the ’-I’ option is used, see the description
of is in the utilities chapter.

1.4 Accessing files on several volumes

The SHELL allows multiple volumes and disk drives to be accessed
in the development and execution of programs.

It’s even possible to develop and run programs when more volumes
are required than the number of available disk drives. When a request
is made to access a file contained on a volume which isn’t in a disk
drive, the disk in the internal drive is ejected and a message is
displayed on the screen, prompting the operator to insert the required
disk in the drive. When this is done, the program continues
automatically.

For example, if you have a single drive on the Macintosh, you will
probably develop programs using at least two volumes: the first could

contain the development software, such as the SHELL, the compiler,
assembler, linker, libraries, and text editor. The second could contain

- sh.12 -

Aztec C68K The file system SHELL

your own files: source files, executable files, data files, and so on.

Continuing with this example, suppose you want to create a source
program on the data volume, and that this volume is in the internal
drive. Type ’z’ to activate the text editor of that name. Since the file
containing the editor is on the system volume, the data volume is
ejected from the internal drive, and you will be prompted to insert the
system volume. When this is done, Z is loaded into memory and
activated. When Z attempts to access the data volume, the system
volume will be ejected and you'll be prompted to insert the data
volume. When this is done, Z let’s you create and edit the source
program and access the data volume. When you exit Z, the SHELL
needs to be reloaded into memory from the system volume, so the data
volume is ejected and you are prompted to insert the system volume.
When this is done, the SHELL is loaded and activated, and prompts
you for another command.

1.4.1 Mounted volumes

The only volumes that can be accessed by the SHELL or other
programs are those that are ’mounted’; that is, those that have an entry
in the Macintosh’s mounted volume table.

A volume doesn’t have to be in a drive to have an entry in this
table: once in the table, an entry remains there, independent of the
presence or absence of the volume in a drive.

An entry in the table is made for a volume when the volume is
inserted for the first time in a drive. An entry is removed from the
table using the SHELL command umount.

1.4.2 Volumes having the same name

It’s possible to have several volumes having the same name
contained in drives. In this case, each volume would be identified
using the number of the drive containing the volume rather than its
name.

For example, if two volumes are in the internal and external drives,
and both have the name sys-, the file /work/hello.c in the volume
contained in the internal drive would be referred to as

1:/work/hello.c

and the same file in the external drive would be referred to as

2:/work/hello.c

1.4.3 Commands for multi-volume use

The SHELL has several commands useful for multi-volume
development: mount, umount, and ’eject’. See the descriptions of these
functions in the Utility programs chapter for complete information.

- sh.13 -

SHELL The file system Aztec C68K

mount

This command displays information about the volumes in the
mounted volume table.

umount

This command removes an entry from the mounted volume table.
It has the format:

umount vol:

where vol: is either the name of the volume to be ejected or the
number of the drive. The internal drive is 1 and the external 2.

eject’

This command ejects the disk that’s in a specified drive. The
command is activated by pressing the key with the clover symbol and
then the number of the drive.

This command doesn’t affect the mounted volume table.

1.5 Miscellaneous file-related commands

In this section we want to list the rest of the file-related commands
that are built into the SHELL. For complete descriptions, see the
utilities chapter.

rm - Remove files
cp - Copy files
mv - Move files. This will either rename the

files or copy them and erase the originals,
depending on whether the old and new files
are on the same volume.

cat - Display text files.
lock/ unlock Lock/unlock files.
flock/funlock Lock/unlock files for the Finder.

1.6 Implementaion of the SHELL’s file system

The SHELL presents the illusion that the file system is hierarchical:
that 1s, that the file system has one or more directories having the
following properties:

* One directory 1s the root directory;
* Each of the others is pointed at by an entry in one other

directory;

* A path exists from the root to any directory.

In a true hierarchical file system, each directory would be
physically separate on the disk. There is actually only one directory on
a disk which is accessed by the SHELL: the standard Macintosh
directory.

- sh.14 -

Aztec C68K The file system SHELL

For disks accessed by the SHELL, the true name of a file, as
recorded in the real directory on the disk, consists of the complete file
name, in the standard SHELL format, less the volume name and the
path’s leading slash.

For example, the name recorded in the Macintosh directory for the
file hello.c in directory work in the volume depicted in figure 1 would
be

work/hello.c

And the name recorded for the file /include/subs/in.c would be

include/subs/in.c

Folders

The Macintosh Finder program also presents the illusion of a
hierarchical file system, using folders) The Finder implements this
illusory file system differently than the SHELL, using the real
directory on the disk to store information about files and using a
section of the ’desktop’ file to store information about folders and
their interrelationships.

The name of a file, as recorded in the file’s entry in the directory,
is the same as the name by which the operator or program references
it. The entry also contains a field specifying the folder, if any,
containing the file.

A disadvantage of the Finder’s scheme for simulating a hierarchical
file system is that files cannot have the same name, even if they are in
different folders. The SHELL’s scheme doesn’t have this limitation,
since the path to a file is part of a file’s name, as recorded in the real
directory. Files in different directories are reached by different paths,
and hence have different filenames recorded in the real directory,
even if they appear to have the same name when viewed from the
SHELL.

- sh.15 -

SHELL Using the SHELL Aztec C68K

2. Using the SHELL

The previous section presented information on the SHELL’s file
system, which you need to know before you can use the SHELL. With
that information in hand, you can continue on with this section, which
Shows you how to use the SHELL.

- sh.16 -

Aztec C68K Simple commands SHELL

2.1 Simple Commands

You can enter commands to the SHELL in two ways: by typing on
the keyboard, and by selecting items from one of the SHELL’s menus.
In this section we describe keyboard entry of simple commands.
Menus are described in another section of this chapter.

Simple commands consist of one or more words separated by
blanks. The first word is the name of the command to be executed; the
other words are arguments to be passed to the command. The name of
the command is always passed to a command as an argument. For
example,

Is

lists the names of the files and directories that are in the current
directory. The first word on the command line, Js, is the name of the
command. No other words are specified, so the only argument passed
to the ’Is’ command is the name of the command.

The /s command can also be passed arguments; the command

ls sys:/bin/

displays the names of the files and directories in the directory named
/ bin on the volume sys.. The first word on this command line, Js is the
name of the command to be executed. Two words are passed to the Js
command as arguments: /s and _ sys: /bin/.

The command

rm hello.bak sys:temp /include/head.o

removes the files hello.bak, sys:temp, and /include /head.o. The name of
this command is rm. Four words are passed to it as arguments: rv,
hello.bak, sys:temp, and include /head.o.

The command

Is -1 /include/

displays the names of the files and directories in the directory
/include on the current volume. The ’-I’ causes the Js command to
display other information about the files and directories in addition to
their names. For this command, three words are passed to the Js
command: /s, -4, and /include/.

The meaning of the arguments following the command name on a
command line is particular to each command. Usually, either they are
switches’, indicating a particular command option, as in the Js -/
/include/ command above, or they are file names. By convention,
switches usually precede file names in a command line, although there
are exceptions to this,

- sh.17 -

- SHELL Pre-opened I/O channels Aztec C68K

2.2 Pre-opened I/O channels

When a builtin command or command program is started by the
SHELL, three I/O channels are automatically pre-opened for it by the
SHELL: standard input, standard output, and standard error. By
default, these channels are connected to the console, and most
programs use these devices when communicating with the operator.
For example, the /s command displays information about files and
devices on the standard output channel and writes error messages to
the standard error channel.

2.2.1 Standard output

The operator can request that the standard output channel be pre-
opened to another file or device other than the console by including a
phrase of the form ’> name’ on the command line . For example, the
following command causes /s to write information about the files and
directories in the current directory to the file files.out, instead of the
console:

Is > files.out

If the specified file doesn’t exist, it is created; otherwise, it is
truncated to zero length.

The standard output channel can also be redirected so that output to
a file via the standard output is appended to the file. This is done by
including a phrase of the form ’>> file’ on the command line. For
example, the following command causes /s to append information
about the files and directories in the current directory to files.out:

Is >> files.out

If the specified file doesn’t exist, it is created; otherwise it is
opened and positioned at its end.

2.2.2 Standard input \

The operator can request that the standard input device be pre-
opened to a file or device other than the console by including a phrase
of the form ’< name’ on the command line. For example, if the
program prog reads from the standard input channel, then the
command

prog

causes prog to read from the console, and the command

prog <names.in

causes it to read from the file names.in.

2.2.3 Standard error

A program’s standard error channel can also be redirected to
another file or device other than the console, by including a phrase of

- sh.18 -

Aztec C68K Pre-opened I/O channels SHELL

the form:

2> name

where name is the name of the device or file to which standard
output is to be connected.

For example, the following causes /s to display the names of all files
in the directory sys:/work having extension .c. The names are sent to
the file /s.out in the current directory and any error messages are sent
to the printer, .bout:

Is sys:/work/*.c >ls.out 2>.bout

2.2.4 Other I/O channels

Channels other than standard input, standard output, and standard
error can be pre-opened for a program. The channel having file
descriptor / is pre-opened for output to a device or file named name by
including the phrase

i> name

on the command line. And it’s pre-opened for input by including

1< name

on the command line.

For example, the following command pre-opens the channel having
file descriptor 3 for output to the file in/fo.out:

prog 3>info.out

2.2.5 Creating empty files

The SHELL allows you to enter a command line containing only
I/O redirection components. In this case, the SHELL processes the
I/O redirection clauses and then reads another command line.

Such a command line can be used for recording the time at which
events occur. For example, the command

> mytime

creates an empty file named mytime. The last-modified field for this file
is set to the time at which it was created.

make is a program in which a command line that simply creates an
empty file can be useful. For example, you could create a makefile to
backup all files that have been modified since the last time a backup
was done. This makefile could create an empty file that records the
time of the last backup. Like this:

- sh.19 -

SHELL Pre-opened I/O channels

CFILES=main.c in.c out.c sub.c add.c
backtime: $(CFILES)

> backtime

$(CFILES):
cp $@ backup:

- sh.20 -

Aztec C68K

Aztec C68K File name expansion SHELL

2.3 Expansion of file name templates

When the characters ’?? and/or ’* appear in a command line
argument, the SHELL interprets the argument as a template to be
matched to file names. Each matching name is passed to the program
as a separate argument, and the template isn’t passed. If the template
doesn’t match any file names, it 1s passed to the program, unaltered.

These characters can only be used within the filename component
of a file name, and not the volume or path components.

2.3.1 The ’?’ character

The character ’?? in a template matches any single character. For
example, the command

rm ab?d

would remove files in the current directory whose names are four
characters long, the first two being ’ab’ and the last being ’d’. Thus, it
would remove files with names such as

abcd abxd abd

from the current directory.

Continuing with this example, if the three files listed above were
the only ones in the current directory that matched the template
"ab?d", then pointers to those three names are passed to the rm
command in place of a pointer to the template. So the rm command
would behave as if the operator had entered

rm abcd abxd ab.d

If no files matched the template, a pointer to the template itself
would have been passed to rm.

Notice that the template "ab?d" matches "ab.d". This emphasises the
fact that extensions in file names, and their preceding period, are
simply conventions and are not afforded special treatment by the
SHELL, as they are in some other systems.

2.3.2 The **’ character

The character ’* matches any number of characters, even none. For
example,

rm /work/ab*d

removes all files in the /work directory whose names begin with the
characters ’ab’ and end with ’d’. Thus, it would match files in the
/work/ directory having names such as

abd abcd ab123d ab.exd

As with templates containing ’?’, the names of files which match a
template containing ’*’ are passed to the program, each as a separate

- sh.21 -

SHELL File name expansion Aztec C68K

argument, and the template isn’t passed. The template is passed only if
no files match it. Thus, if the files listed above were the only ones that
matched the template, then the following would have been equivalent

to ’rm /work/ab*d’:

rm /work/abd /work/abcd /work/ab123d /work/ab.exd

The use of ’*’ templates can be dangerous. For example, if you
wanted to type

rm abc*

but mistyped it as

rm abc *

then rm will remove "abc", if it exists, and then remove all other files
in the current directory.

- sh.22 -

Aztec C68K Quoting strings SHELL

2.4 Quoting

Characters such as *, <, and > are special, because they cause the
SHELL to perform some action and are not normally passed to a
program. There are occasions when you want such characters to be
passed to a program without having the SHELL interpret them. This
can be done by preceding the character with a backslash character, ’\’.
Any character can be preceded by a backslash; when the SHELL
encounters ’\’ in a command line it removes the backslash from the
line and treats the following character as a normal character, without
attempting to interpret it.

For example, the command

echo *

displays the names of all files and directories in the current directory
on the console. The command

echo *

displays the character ’*’ on the console.

The backslash character and multi-line commands

The backslash character can also be used to enter long command
lines on several physical lines. Normally, a newline character causes
the SHELL to terminate the reading of a command line and to begin
execution of the command. When the newline character is preceded by
a backslash, the SHELL removes both characters from the command
line and continues reading characters for the command line. For
example,

echo abc\
def

displays ’abcdef? on the console.

When the SHELL needs additional input from the console before it
can execute a command, it will prompt you with its secondary prompt.
By default, this is the character ’>’. The primary prompt, which is
displayed when the SHELL is ready for a new command, is by default
’-?’, Prompting is discussed in more detail below.

Quoted strings

A string in the command can be surrounded by single quotes. In
this case, the SHELL considers the entire string within the quotes to
be a single argument. The SHELL doesn’t try to interpret any special
characters contained in a string that is surrounded by single quotes.

For example, given a volume named "ralphs disk", the following

command will make its root directory the current directory:

- sh.23 -

SHELL Quoting strings Aztec C68K

cd ’ralphs disk:’

As another example, consider a program, args, which prints the
arguments passed to it, each on a separate line. The command

args 123 234 345

would print

args
123
234
345

(the command name is passed to the program as an argument), while
the command

args °123 234 345’

would print

args
123 234 345

The command

args *

would print the names of each of the files on the current directory,
each on a separate line, while

args ’*

would print the character ’*’.

A quoted string can contain newline characters. That is, if the
SHELL sees a quote character and then reads a newline character
before finding another quote, it will keep prompting for additional
input until it finds another quote. The argument corresponding to the
quoted string then consists of the string with the newline characters
still imbedded in it.

For example, if you enter

echo ’ab

the SHELL will prompt you for additional input, using its
secondary prompt. If you then enter

l
2
3’

the echo command will be activated with arguments

echo

ab\n1\n2\n3

- sh.24 -

Aztec C68K Quoting strings SHELL

(where ’\n’ stands for the newline character) and will print

ab
]
2
3

Double-quoted strings

A string on the command line can also be surrounded by double
quotes. The only difference in the treatment of singly- and doubly-
quoted strings by the SHELL 1s that variable substitution is done for
double-quoted strings but not for single-quoted strings. This is
discussed in detail in the section on environment variables.

- sh.25 -

SHELL Prompts Aztec C68K

2.5 Prompts

The SHELL prompts you when it wants you to enter information,
by writing a character string, called a ’prompt’ to the console. There
are two types of prompts: one when the SHELL is waiting for a new
command to be entered, and the other when it needs additional input
before it can process a partially-entered command.

2.5.1 The primary prompt

The first type of prompt is called the ’primary’ prompt. By default,
it is the string ’-?’. This can be changed by entering the command of
the form

set PSl=prompt

where ’prompt’ is the desired prompt string. For example,

set PSl=’>>’

sets the primary prompt to ’>>’. Note the single quotes surrounding
>>. These are necessary to prevent the SHELL from trying to interpret

these special characters.

set PS1=’hi there, fred. please enter a command: ’

sets the primary prompt to the specified, space-containing string.

2.5.2 The secondary prompt

The second type of prompt is called the ’secondary’ prompt. By
default, it is the string ’>’. This can be changed by entering a command
of the form

set PS2=prompt

2.5.3 The command logging prefix

When command logging is enabled, the SHELL logs each command
to the console, and precedes it with a character string called the
command logging prefix’. By default, this prefix is the character ’+’,
and can be set by entering a command of the form

set PS3=prefix

2.5.4 Special substitutions

The prompts and prefix described above can contain codes that
cause variable information to be included in a prompt. The codes
consist of a lower case letter preceded by the character *%’. For
example, to set the primary prompt to the time, followed by ’ :’ enter

sect PS1="%t °’

The list of Ictters and their substituted values are:

- sh.26 -

Aztec C68K

letter

g
m
o
<

t
o

Prompts SHELL

substituted value
Date
Time
Current volume
Current directory
Amount of free space available in the system areca
Amount of available program memory

- sh.27 -

SHELL Selecting Screen Fonts Aztec C68K

2.6 Selecting screen fonts

The Macintosh allows you to control the appearance of characters
that programs write to the screen. The Aztec C software distinguishes
between the appearance of SHELL output to the screen and that of
other programs. This section first discusses SHELL output, and then
that of other programs.

2.6.1 SHELL output to the screen

The SHELL has commands that allow you to select the font, size,
and face of characters that the SHELL writes to the screen. By default,
characters that the SHELL writes to the screen are displayed in the
System Font.

2.6.1.1 Selecting fonts

The font used for SHELL output to the screen is selected with the
command

set FONT=code

where code is the code of the font. The available fonts and their
associated codes are:

code name
0 System Font (Chicago)
] Application font (Geneva)
2 New York
3 Geneva
4 Monaco (fixed pitch)
5 Venice
6 London
7 Athens
8 San Francisco
9 Toronto

2.6.1.2 Selecting character size

The size of characters that the SHELL writes to the screen is
selected with the command

set SIZE=val

where val is the size of the characters, in points.

2.6.1.3 Selecting faces

The face of characters that the SHELL writes to the screen is
selected with the command

set FACE=code

where face can have the following values:

- sh.28 -

Aztec C68K Selecting Screen Fonts SHELL

code face
l Bold
y) Italics
4 Underline
8 Outline
16 Shadow
32 condensed
64 Extended

Several faces can be selected at one time by adding their codes
together. For example, to select Bold and Underline faces, the
following command would be used:

set FACE=5

2.6.2 Program output to the screen

The font, size, and face of characters that programs write to the
screen is independent of that used for the SHELL. By default, a
program’s output to the screen appears in the System Font.

2.6.2.1 Selecting the style of a program’s screen output

If a program wants its screen output to appear in a style other than
the default, it must issue the appropriate Macintosh function calls.

The font, size, and face used for SHELL output to the screen are
stored in the environment variables FONT, SIZE, and FACE,
respectively. Thus, if a program wants its screen output to use the
same style as the SHELL’s, it can fetch these environment variables,
using the getenv function, and then issue the appropriate Macintosh
function calls. If these variables don’t exist, then the SHELL is using
the System Font.

2.6.2.2 Screen output style for standard Manx programs

The Js and mount commands always display in Monaco font so that
things line up. They will use the size and face specified by the SIZE
and FACE environment variables.

The cc, as, and /m programs display in 10 point Monaco so that the
tables needed for other styles do not take up memory space.

Z only supports the Monaco font. It does support different sizes
using the ZSIZE environment variable. This can be either 9 or 12.
With a setting of 9, the screen will have 30 lines, each containing 85
characters. With a setting of 12, it will have 20 lines, each containing
63 characters.

- sh.29 -

SHELL Programs & arguments Aztec C68K

2.7 The program’s view of command line arguments

In this section we want to describe the passing of arguments to
command programs, first for programs that can be activated by the
SHELL but not by the Finder and then for programs that can be
started by either the Finder or the SHELL.

Programs of the first type have been linked with the startup routine
shcroot, which is in the standard library c./ib, and not with a special
Startup routine such as sacroot or mixcroot. Programs of the second
type have been linked with one of the special startup routines.

For more information on the different types of Aztec-generated
programs, see the Command Programs section of the Technical
Information chapter.

2.7.1 Passing arguments to programs that can’t be activated by the Finder

The main function of a program is the first user-written function to
be executed when the program is started. The main function of a
program that has been linked with shcroot is passed two arguments, as
follows:

main(arge, argv)
int argc; char *argv[];

argc contains the number of command line arguments passed to the
program. The command itself is included in the count.

argv is an array of character pointers, each of which points to a
command line argument.

For example, if the operator enters the command

prog abc def ghi

then the argc parameter to main will be set to 4, and the argv array is
set as follows:

argy element points to
0 "prog”
l "abc"

2 "def"
3 "hi"

As another example, for the command

prog "abc def ghi"

argc is set to 2, and the argv array as follows:

argy element points to
0 “prog”

1 "abe def ghi"

- sh.30 -

Aztec C68K Programs & arguments SHELL

With the command

prog *.c

and the current directory containing the files

acaoab.c

argc will be set to 5, and the argv array as follows:

argy element points to
0 "prog"

l "ac"

2 "a0"

3 "No"

4 "b.c"
2.7.2 Passing arguments to programs that can be activated by the Finder

A program that can be activated by the Finder can also be activated
by the SHELL. When the SHELL starts such a program, the program
is started as though a document has been double-clicked, thus allowing
arguments to be passed to it.

Arguments that are specified in the command line are passed to the
program using the standard Macintosh convention, rather than using C
conventions; that is, the names of the file or files that the program is
to use are placed after the name of the program. See your Macintosh
documentation for more details.

For example, typing

MacWrite include/quickdraw.h myprog.c

invokes the MacWrite program with the two files quickdraw.h and
myprog.c. If the files do not exist, an error is generated.

- sh.31 -

SHELL Devices Aztec C68K

2.8 Devices

Programs can access the following devices:

* The console, named .con
* The input channel of the A serial port,.ain
* The output channel of the A serial port, .aout
* The input channel of the B serial port,.bin
* The output channel of the B serial port, .bout

For example, the following command copies the output of the Js
command to the printer, which 1s attached to the B serial port:

Is > .bout

2.8.1 The keyboard

When a program is reading from the keyboard, some translations
are performed:

* * is translated to the escape character, ESC;
* The key next to the Option’ key is interpreted as the control

key; thus, holding down this key and typing another key
generates the appropriate control character.

* The only exception to the interpretation of the control key
concerns the * key: when the control key and the ‘ key are
depressed, ° 1s returned.

When I/O 1s being performed to the console, the following checks
are made:

* If the control key and a number key are depressed, the disk is
ejected from the corresponding drive (1 is the internal drive,
2 the external);

* If the control key and the ’S’ key are depressed, the console
driver waits until control and ’Q’ are depressed before
continuing;

* If the control key and the ’D’ key are depressed, the program
is returned EOF;

* If the control key and the ’X’ key are depressed, the SHELL
deletes the current line and waits for another line to be
entered. The character that causes this action can be changed
by a program, using the ioctl function;

* If the control and ’.” keys are depressed together, the program
is halted, and the SHELL reloaded.

* If the backspace key has been depressed, the previously-typed
character is erased from the screen. The character that causes
this action can be changed by a program, using the ioctl
function.

- sh.32 -

Aztec C68K Devices SHELL

2.8.2 The printer

Before a program can write to the printer, the printer must be

initialized to generate a line feed automatically, following a carriage

return, and to correctly respond to tab characters.

The program prsetup will perform this function. The program iS

started with:

prsetup [tabwidth]

where [tabwidth] is an optional number specifying the spacing between

tab stops. If tabwidth isn’t entered, it defaults to 4.

- sh.33 -

SHELL Error trapping Aztec C68K

2.9 Error trapping

The SHELL can trap the following Macintosh system errors:

bus error
address error
illegal instruction
divide by zero
line 1111 (unimplemented op code)

By default, the SHELL won’t trap these errors. In this case, one of
these errors will cause the Macintosh to bomb, and the system will
have to be reloaded (thus requiring the SHELL to search for the key
disk again). In addition, the SHELL will also trap the programmer’s
Switch if installed on the Macintosh.

To have the SHELL trap these errors, enter:

set -a

Once the SHELL is trapping these errors, it won’t stop trapping
them. You can enter

Set +a

but it won’t have any effect.

When an error is trapped, the SHELL displays on the screen the
contents of the registers and the error type.

Don’t use set -a if you are using any of the Apple Debuggers.

- sh.34 -

Aztec C68K Exec Files SHELL

2.10 Exec files

An "exec file" is a file containing a sequence of commands. The
Operator causes the SHELL to execute the commands in an exec file
by simply typing its name.

For example, if the file named dir in the current directory contains
the commands

pwd
Is -1

then when the operator types

dir

the SHELL will execute the commands pwd and Is -L.

An exec file can contain any command that can be entered from
the console. In particular, an exec file can execute another exec file;
that 1s, exec files can be nested.

2.10.1 Exec file arguments

The command line that activates an exec file looks just like a
command line that activates a builtin or program command. Exec files
can be passed arguments in the same way that builtin and program
commands are passed arguments:

* a space-delimited string is normally passed to the exec file as a
single argument;

* A quoted string is passed as a single argument;
* Filename-matching templates, containing ’?’ and ’*’, are

replaced, when a match is made, by the matching file names;
* ‘* causes the next character to be passed to the exec file

without interpretation, and the ’\’ isn’t passed. ’\\’ 1s replaced
by a single backslash character.

The method by which an exec file accesses command line
arguments is necessarily different from that used by builtin and
program commands, since the exec file is not a program. The exec file
can be passed any number of arguments, and it refers to them as $1,
$2, ..., where $1 represents the first argument, $2 the second, and so
on. $0 refers to the name of the exec file.

Before executing a command in an exec file, the SHELL replaces
the $x variables with the corresponding command line arguments. $x
variables which don’t have a corresponding argument are replaced by

the null string.

For example, the following exec file displays the value of the first,
fourth, and ninth arguments, and the name of the command itself,

each on a separate line:

- sh.35 -

SHELL Exec Files Aztec C68K

echo the first argument is $1
echo the fourth argument is $4
echo the ninth argument is $9
echo and me, I’m $0

If the exec file is named names then

namesabcdefghij

would print

the first argument is a
the fourth argument is d
the ninth argument is i
and me, I’m names

and the command

names *

would display the names of the first, fourth, and ninth files in the
current directory, and the name of the command.

The command

names "this is one argument"

would print

the first argument is this is one argument

The $# variable

Several other variables are set when an exec file is activated. $# is
set to the number of arguments that were passed to the exec file. For
example, an exec file named hello might contain

echo My name is $0
echo I was run with $# arguments

Typing

hello one two three

would print

My name is hello
I was run with 3 arguments

The $* and $@ variables

$* and $@ are two other variables that are set when an exec file 1S
activated. Both of these are set to a character string consisting of all the
exec file’s arguments, less $0. For example, consider an exec file
allargs, which contains

args $*

where args is a command program that prints its arguments, each on a

- sh.36 -

Aztec C68K Exec Files SHELL

Separate line. Typing

allargs one two three

would give

args
one
two

three

Exec file variables and quoted strings

When an exec file variable is contained within a character string
surrounded by single quotes, the SHELL does not replace the variables
with their values. Thus, given the exec file info, which contains

echo ’number of args = $0’
echo ’args = $0 $1 $2’
echo ’all args = $* and $@”

then typing

info one two three

gives

number of args = $0
args = $0 $1 $2
all args = $* and $@

As mentioned in section 2, the SHELL does substitute variables
that are contained within character strings that are surrounded by
double quotes. Thus, the exec file

args "geen

will pass the exec file arguments to echo as a single argument and 1s
equivalent to

args "$1 $2 $3..."

$* and $@ are the same, except when surrounded by double quotes.

The exec file

args "$@"

is equivalent to

args "$1" "$2" ...

2.10.2 Exec file options

There are three options related to exec files: logging of exec file
commands to the screen, continuation of an exec file following

execution of a command which terminates with a non-zero exit code,
and execution of commands.

- sh.37 -

SHELL Exec Files Aztec C68K

Each option has an identifying character. An option’s value is set
by issuing a se¢ command, giving the option’s character preceded by a
minus or plus sign. Minus enables an option and plus disables it.

The options, their identifying characters, and their default values

are listed below.

character option de fault
X log commands ~ disabled
e abort on non-zero enabled
n don’t execute cmds disabled

Several options can be enabled or disabled in a single set command,
and an exec file can contain several option-setting commands.

The same set command is used to set exec file options and to set
environment variable values. set commands which set environment
variables can also be contained in an exec file. However, a single set
command cannot set both environment variables and exec file options.

When the SHELL logs exec file commands to the console, it
precedes each command line with the character ’+’. This prefix can be
changed by entering a command of the form

set PS3=’string’

where ’string’ is the desired prefix.

The following are valid set commands for manipulating exec file
options:

set -x enable logging
set +X disable logging
set -x -n enable logging and non-execution of cmds
set -x +e enable logging, disable return code chk

Exec file options are inherited by a called exec file. That is, if you
type

set -x

docmds

where docmds is an exec file, the ’x’ option is enabled in docmds.

An exec file can change the setting of the exec file options, but
these changes don’t affect the settings of the options in the caller.
Thus, if docmd's includes the command

set +X

then the ’x’ option will be disabled during the execution of docmds,
but when control returns to the operator, the ’x’ option is reenabled.

- sh.38 -

Aztec C68K Exec Files SHELL

2.10.3 Comments

In an exec file, any line beginning with the character ’#’ is
considered to be a comment, and is not executed. Argument
substitution is performed on it, though, allowing exec files like:

Set -xX

the first arg is $1
the second is $2

2.10.4 Loops

Exec files can contain ’loops’; that is, sequences of commands that
are executed repeatedly, each time with an environment variable
assigned a different value.

A loop has the format

loop var in varlist
cmalist
eloop

where

var is the name of the environment variable;
varlist is the list of values for var;
cmadlist is the sequence of commands.

Within the sequence of commands, the term Svar is replaced by the
current value of var.

For example, the following exec file compiles the C source files
whose names are passed to it (without the ’.c’ extension):

loop prog in $*
echo compiling $prog
cc $prog
eloop

The list of variables is not restricted to exec file variables. For
example, the following exec file, named getname, executes the program
prog for each name passed to the exec file, and to the names ’Fred’,
*Joseph’, and ’R. W. Jones’:

loop name in Fred Joseph ’R. W. Jones’ $*
prog $name
eloop

This example also demonstrates that quoted strings can be assigned
to the SHELL variable.

2.10.5 The shift command

The command

- sh.39 -

SHELL Exec Files Aztec C68K

shift

causes the exec file variable $1 to be assigned the value of $2, $2 to be
assigned the value of $3, and so on. The original value assigned to $1 is
lost. When all arguments to the exec file have been shifted out, $1 is
assigned the null string.

For example, the following exec file, del, is passed a directory as its
first argument and the names of files within the directory that are to
be removed:

setj= $1
shift
loop i in $*
rm $j/$i
eloop

In this example, ’j is an environment variable. Environment
variables are described in the section on environment variables, so you
may want to reread this section after reading that section.

The first two statements in the exec file save the name of the
directory and then shift the directory name out of the exec file
variables.

The loop then repeatedly calls rm to remove one of the specified
files from the directory.

Entering

del sys:/work *. bak

will remove all files having extension .bak from the directory
sys. / work.

- sh.40 -

Aztec C68K Environment variables SHELL

2.11 Environment variables

An environment variable is a variable having a name and having a
character string as its value. Environment variables have two functions:

* They can be used to pass information to a program;
* They can be used to represent character strings within

command lines.

Information can also be passed to programs as command line
arguments, as described in a previous section.

2.11.1 Defining environment variables

Environment variables can be created by the operator, using the set
command, and retain their value until changed by another set
command. In particular, environment variables retain their existence
and values even when programs are executed.

Environment variables are case-sensitive, so the variable named
VAR is different from one named Var.

The format of the set command which sets the value of an
environment variable is:

set VAR=string

where VAR is the name of the variable, and string is the character
string to be assigned to it. string can be null, in which case the
specified variable is deleted. The variable will be created, if it didn’t
previously exist.

For example, to set the environment named PATH to the string
":sys; /bin;data:/progs" the following command would be used:

set PATH=;sys: /bin; data: /progs

To delete the PATH variable, the following command would be
used:

set PATH=

Environment variables can be assigned quoted strings:

set NAMES=’Penelope Matilda Esmarelda’

The set command, when issued without any arguments, will display
the names and values of the environment variables.

The set command can also be used within exec files to set exec file
options. This use of the set command is discussed in the exec file
section of this chapter.

2.11.2 Passing environment variables to programs

A program can fetch the value of an environment variable using
the getenv function, passing to it the name of the variable. Programs

- sh.41 -

SHELL Environment variables Aztec C68K

cannot change the value of an environment variable.

2.11.3 Use of environment variables in command lines

When the SHELL finds an environment variable name in a
command line, preceded by the character ’$’, it replaces the name and

the ’$’ with the value of the variable.

For example, if the environment variable color has the value violet,
then entering

echo $color

is equivalent to entering

echo violet

and results in the displaying of

violet

on the screen.

As another example, given the environment variable b, having
value ’freds disk: /usr/bin/’, the following command will move the file
pgm from the current directory to the directory /usr/bin on the
volume ’freds disk.”:

mv pgm $b

The use of environment variables isn’t restricted to command line
arguments. For example, given the environment variable cmd, having
value "Js -l ralphs disk:/usr/math/lib/’, the following command will
list the contents of /usr/math/lib on ralphs disk:

$cmd

Environment variables names that are used in command lines can
be surrounded by { and } to prevent ambiguity in cases where the
variable is immediately followed by a character string. For example, if
the following environment variables are defined

user=fred
userdy=john

then

echo ${user}

iS equivalent to

echo $user

and displays

fred

Entcring

- sh.42 -

Aztec C68K Environment variables SHELL

echo $userdy

will display

john

since the SHELL interprets the entire string following $ to be the
name of the variable. And entering

${user}dy

will display

freddy

since the SHELL assumes that the environment variable name 1s

contained in the braces.

2.11.4 Standard environment variables

A few environment variables are created and assigned initial values
by the SHELL when it is first activated. These are described in the
section on Starting the SHELL.

- sh.43 -

SHELL Command searches Aztec C68K

2.12 Searching for commands

When the operator enters a command, the SHELL first checks to
see whether it is a builtin command. If so, the SHELL executes it.
Otherwise, the command must be the name of a file to be executed, so
the SHELL attempts to find the file.

2.12.1 Searching for command files

The SHELL looks for a command file in a sequence of directories.
By default, it looks in the current directory and then in the directory
/bin on the volume containing the SHELL.

The directories to be searched for a command file can be specified
using the command

set PATH=dir1;dir2; ... ;dirn

where dirl, dir2, ..., dirn are the directories to be searched. These
directories are searched in the order specified.

That is, the directories to be searched are specified on the
command line, separated by semicolons. If an entry doesn’t specify a
volume, but does specify a directory, the directory is assumed to be on
the current volume; that is, the volume that contains the current
directory. If it specifies a volume and not a directory, it’s assumed to
be the root directory of the volume. And if neither volume nor
directory is specified (that is, the entry is null), the directory is
assumed to be the current directory.

For example, the following command will cause the SHELL to
search the current directory, then the directory /bin on the current
volume, and finally the directory /progs on the volume sys-.

set PATH=;/bin;sys:/progs

In the next example, the set command causes the SHELL to search
the directory /bin on the sys: volume, then the /bin directory on the
current volume, and finally the current directory:

set PATH=sys:/bin;/bin;;

The set PATH command causes the environment variable named
PATH to be set to the indicated character string. To display the value
of all the environment variables, including PATH, enter the set
command by itself; eg,

set

2.12.2 Program or exec file?

When the SHELL finds a file that matches the name that the
opcrator entered, it has to decide whether it contains a program or is

an exec file. It bases its decision on the type of the file’s "fork": if it
has a resource fork, as are linker-created files and standard Macintosh

- sh.44 -

Aztec C68K Command searches SHELL

applications, then it’s assumed to contain a program. If it only has a
data fork, and its type is TEXT, then it’s assumed to be an exec file.

- sh.45 -

SHELL Starting and stopping the SHELL Aztec C68K

2.13 Starting and stopping the SHELL

2.13.1 Starting the SHELL

The SHELL can be started when the Finder is active. It can also be
made to start automatically when the Macintosh is turned on or reset

2.13.1.1 Starting the SHELL from the Finder

To start the SHELL when the Macintosh Finder program is active,
simply open the SHELL as you would any application. That is, open
the volume containing the SHELL and then open the SHELL by either
double-clicking its icon or clicking the ’open’ item in the file’ menu.

2.13.1.2 Automatic activation of the SHELL

When the Macintosh is turned on or when the reset button is
depressed, the Macintosh automatically scans the drives, beginning
with the internal drive, and activates the ’startup program’ from the
first disk it finds. Thus, if the SHELL is the startup program on the
disk containing it, the SHELL can be automatically started without
having to first start the Finder.

Each disk can have one file designated as the disk’s startup
program. This is done while the Finder is active by clicking the file,
and then clicking the ’startup program’ item in the ’special’ menu.

You can see that there are several ways to automatically activate the

SHELL:

* Put the SHELL’s disk in the Mac’s internal drive and turn the
power on or hit reset;

« With the internal drive empty, put the SHELL’s disk in the
external drive and turn on the power or hit reset.

Given the Macintosh’s startup algorithm, there is one situation to
avoid when attempting to automatically activate the SHELL: don’t try
to boot the SHELL with the external drive containing the SHELL disk
and the internal drive containing a non-bootable disk or disk which
contains a startup program other than the SHELL. In the first case, the
Macintosh won’t load anything; itll just stop. In the second case, the
Macintosh will activate the other startup program, and not the SHELL.
The SHELL can be set so that it is automatically started when the
Macintosh is turned on or when the reset button is depressed.

2.13.1.3 Executing the .profile

If you have a sequence of commands that you want to always
execute as soon as the SHELL starts, you can put them in a file named
.profile on the root directory of the volume containing the SHELL.
When the SHELL starts, it will automatically execute the commands in
this file. For example, the .profile could create environment variables

or change the default values assigned to the SHELL-created variables.

- sh.46 -

Aztec C68K Starting and stopping the SHELL SHELL

2.13.2 Initial environment variables

A few environment variables are created and assigned initial values
by the SHELL when it is first activated. These are:

PATH - Defines the directories to be searched for a
command line. Initially set to ;sys:/bin,
where sys: is the name of the volume
containing the SHELL.

PS1 - Primary prompt. Initially set to ’-? ’.
PS2 - Secondary prompt. Initially set to ’>’
PS3 - Cmd logging string. Initially set to ’+’.
INCLUDE - Defines the directory to be searched by the

compiler for files specified in “include’
statements. Initially set to sys-/include,
where sys: iS the name of the volume
containing the SHELL.

CLIB - Defines the directory to be searched by the
linker for a libraries. Initially set to
sys:/lib/, where sys: 18 the name of the
volume containing the SHELL.

The values of these variables can be modified by the operator,
when desired.

2.13.3 Stopping the SHELL

The SHELL is stopped by starting the Finder. There are two ways
to do this: reboot the system, or start the Finder from the SHELL.

Rebooting

The Finder can be started by rebooting the system, Ietting the
Macintosh automatically activate the Finder.

SHELL activation of the Finder

With the SHELL active, the Finder can also be started as is any
program. That is, with the Finder in a directory specified in the PATH
command, simply enter the name of the file containing the Finder.

You probably won’t want to start the Finder in this way, however;
if you do, the first time that a Finder-activated program exits, the
SHELL will be reactivated, and not the Finder.

The reason for this is that in low memory is a field containing the
name of the command processor program. When the SHELL starts, it
puts its name in this field so that when any program finishes the
SHELL will be reloaded. If you simply start the Finder from the
SHELL, this field isn’t changed, so when the first Finder-activated

program finishes, the opcrating system will reload the SHELL.

A better way to start the Finder from the SHELL is to run the
following program:

- sh.47 -

SHELL Starting and stopping the SHELL Aztec C68K

/* bye - exit to Finder */
main()

*(short *)0x210 = 1;
strcpy(Ox2e0L, "\PFinder");

}

This program’s first assignment statement sets the field that defines the
’boot drive’; that is, the drive that contains the command processor
program. This field is set to 1 or 2, depending on whether the internal
or external drive is the boot drive. Here, we have assumed that the
internal drive is the boot drive.

The second assignment statement sets the command processor
definition field, making the Finder the command processor.

When this program exits, the Finder will be loaded, and will remain
the command processor until you explicitly restart the SHELL.

- sh.48 -

Aztec C68K Menus SHELL

2.14 Menus

The SHELL can optionally display several menus from which you
can select SHELL commands to be executed and display information.
By default, menus are enabled. Menus are disabled with the command

set +m

and enabled with the command

set -m

The following paragraphs discuss menus.

2.14.1 The Apple Menu

The Apple menu is the standard Apple menu, which displays the
desk accessories that are in the System file.

The Apple menu has one special item, About the SHELL; clicking
this item causes the SHELL to display information about itself, such as
its version number. When this item has been selected, clicking the
mouse will return to the SHELL.

When you select a desk accessory, its window moves to the
foreground, the SHELL’s moves to the background, and the SHELL
won’t accept commands. In this situation, clicking the mouse outside
accessorys window will cause the SHELL to begin accepting
commands again, moving its window to the foreground, and the desk
accessory’s window to the background; the desk accessory program is
still running but you can’t talk to it or see its window.

2.14.2 The File Menu

The File menu allows you to perform operations related to desk
accessories: clicking its See Windows item, which can only be done
when the SHELL its active and its window is in the foreground, moves
background windows to the foreground and the SHELL window to the
background. Clicking the File menu’s Close item, which can only be
done when desk accessory windows are in front of the SHELL’s
window, deactivates the frontmost window and its related desk

accessory.

2.14.3 The Edit Menu

The Edit menu allows you to perform editing operations, such as
cutting and pasting, on appropriate desk accessory windows. Items in
the Edit menu can be clicked only when the window of a desk
accessory is in the foreground.

2.14.4 The Commands Menu

The Commands menu lists all of the SHELL’s builtin commands.

The commands are separated into two groups: those that don’t require
any arguments, and those that do. The groups are separated by a

- sh.49 -

SHELL Menus Aztec C68K

horizontal line, with the former group above the line and the latter
below it. You can activate a command that doesn’t require arguments
by clicking its item. If you click the item of a command that requires
arguments, a message defining its arguments will be displayed.

2.14.5 The Programs Menu

The Programs menu contains items, which you define, each of
which is a SHELL command. When one of these items is clicked, the
corresponding command is executed.

For example, you might have the following items in the Programs
menu:

cd /
Is -lt
myprog argl arg2 arg3

Clicking one of these items causes that command to be executed.

The environment variable PRG_ LIST defines the Programs items:
this variable consists of the items, with the items separated by
semicolons. For example, for the above Programs menu, the following
command would be used to initialize PRG__LIST:

set PRG_LIST=’cd /;ls -lttmyprog arg] arg2 arg3’

2.14.6 The Source Menu

The Source menu lists the names of .c and .asm files, if any, that are
in the current directory. The names are listed in alphabetical order,
beginning with the .c files. A maximum of 20 names can be displayed.
If the current directory doesn’t contain any .c or .asm files, the Source
menu isn’t displayed in the menu bar.

One source file in the current directory can be distinguished for
use by the Compile menu, as discussed below. This file, called the
current file’, is marked by clicking its name while the Source menu is
selected. Once a file is made current, it stays current until you
explicitly mark another. The SHELL remembers the name of the
current file by creating an environment variable, SRC FILE, and
associating the name of the current file with this variable.

If you have more than 20 source files in a directory and want to
make current one that’s not displayed in the Source menu, you can set
the SRC_ FILE environment variable to the file name by typing a set
command. For example, to make the file x.c current when it’s not
displayed in the Source menu, you could enter the command

setSRC_ FILE=x.c

2.14.7 The Compile Menu

The Compile menu has items that allow you to conveniently
perform program development operations (editing, compiling,

- sh.50 -

Aztec C68K Menus SHELL

assembling, linking, executing) on the current file.

In addition to items which, when clicked, initiate an operation on
the current file or on one of the files generated from it, there are
other items that, when clicked, enable and disable options:

* If the Auto Assemble item is enabled when a compilation
initiated by clicking the Compile item is done, the assembler
will automatically assemble the assembly language source that
was generated by the compiler.

* If the Auto Link item is enabled when an assembly that was
initiated by clicking the Compile or Assemble item is done, the
linker will automatically link the object module that was
generated by the assembler.

* If the Math Lib item is enabled when the linker is started in
response to a clicking of the Compile, Assemble, or Link item,
the linker will search the math library, m.lib for needed
modules in addition to the standard libreary, c.lib.

* If the Auto Run item is enabled when a linkage that was
initiated by clicking the Compile, Assemble, or Link items is
done, the resulting program will be run.

If an options item is enabled, a check mark appears beside it. To
change the state of an option, click it.

The Compile menu, like the Source menu, appears in the menu bar,
and can hence only be selected, when the current directory contains .c
or .asm files.

The following paragraphs discuss in detail the operations initiated
by clicking one of the operational items.

The Edit Item

Clicking the Compile menu’s Edit item causes an editor to prepare
the current source file for editing. The environment variable EDIT
contains the name of the editor that is activated by the Edit item. If
this environment variable doesn’t exist, the edit editor is used. The
EDIT variable is initialized using the set command. For example, the
command to make the Z editor the Edit items’ editor is

set EDIT=z

A convenient place to put the command that initializes the ED/T
variable is the .pro/file file, since the SHELL automatically looks for a
file having this name when it starts and, if found, executes the file’s
commands. In fact, the .profile that is on your distribution disks
contains this set command.

The Compile item

The Compile item compiles the current source file, generating an
assembly language source file. For example, if the current file is

- sh.51 -

SHELL Menus Aztec C68K

hello.c, clicking Compile will compile hello.c, generating the file
hello.asm.

By default, when the Compile item is clicked a command line of the
following form is generated and executed:

cc hello.c

where hello.c is the name of the current file.

The environment variable CFLAGS allows you to define options
that will be included in the command line that is generated in response
to clicking the Compile item, and hence that will be passed to the
compiler. The string associated with CFLAGS is simply included in
the generated command line. For example, if you want the variables
FLOAT and M6S8K to be defined when the current file is compiled,
initialize CFLAGS using the command

set CFLAGS=’-DFLOAT -DM68K°

Then, supposing that the current file is named xxx.c, clicking the
Compile item in the Compile menu will cause the compiler to be started
with the line

cc -DFLOAT -DM68K xxx.c

As mentioned above, when a compilation initiated by clicking Compile
is completed with no errors having been detected, the assembler will
automatically assemble the compiler output as if the Assemble item was
clicked, if the Auto Assemble item in the Compile menu is enabled.

The Assemble Item

Clicking the assemble item in the Compile menu (or successful
completion of a compilation that was initiated by clicking the Compile
item with the Auto Assemble option enabled) causes the assembly
language source file that’s associated with the current file to be
assembled.

If the current file is a .asm file, then the current file is the file
that’s assembled. If the current file is a .c file, then the assembly
language file generated by the compiler is the file that’s assembled.
For example, if the current file is hello.c, then clicking Assemble causes
hello.asm to be assembled.

The assembler generates an object module, placing it in a file whose
name is derived from that of the assembly language source file by
changing its extension to .o. For example, when hello.asm 1s
assembled, the file hello.o is generated.

If, when an assembly started by clicking Assemble or Compile is
completed, the Auto Link item in the Compile menu is enabled, (as

shown by a mark beside it) the linker will automatically link the
generated object module into an executable program, just as if the Link

- sh.82 -

Aztec C68K Menus SHELL

item was clicked.

The Link Item

Clicking the Link item in the Compile menu (or successful
completion of an assembly that was initiated by clicking the Compile or
Assemble item when the Auto Link item is enabled) causes the object
module that’s associated with the current source file to be linked.

The name of the file containing the object module is derived from
that of the current source file, by changing its extension to .o. For
example, if the current file is hello.c, then clicking Link causes the
object module hello.o to be linked.

To start the linker, a command line is generated and then executed.
The default command line has the following form:

In file.o -Ic

where file.o is the current source file’s object module. -/c, of course,
causes the linker to search the standard library c.lib for needed
modules; as usual, the environment variable CL/JB defines the
directory that contains the library.

You have some control over the command line that’s generated in
response to clicking the Compile, Assemble, or Link item. If the Math
Lib item on the Compile menu is enabled (which it is when a check
mark is beside it), the generated command line tells the linker to
search the math library, mJib, for object modules. That is, the
command line has the form:

In file.o -lm -lc

The environment variable LFLAGS gives you additional control
over the command line generated by the Link item: the string
associated with this variable is included in the command line. For
example, if LFLAGS is initialized with the command

set LFLAGS=’-M -T a.0 b.o c.0’

then when Link is clicked the command line looks like this:

In file.o -M -T a.0 b.o c.0 -Ic

And if Math Lib is also enabled, the command line looks like this:

In file.o -M -T a.0 b.o c.o -Im -Ic

When a linkage that was initiated by the clicking of a Compile menu
item is completed, the generated program will automatically started if
the menu’s Auto Run item is enabled (which it is when a check mark is
beside it). This item is enabled and disabled by clicking it.

- sh.53 -

SHELL Menus Aztec C68K

- sh.54 -

THE COMPILER

-cc.l -

COMPILER Aztec C68K

Chapter Contents

The COMPILE Lr oo... ec ecesssssssssssssscsssssccccccsceceseccesescesescecsscssscescssescscssssescescees cc
1. Operating InStructionsccccsssssscsssscessscecssesceseecscceceseceecsenccssnseeees 3

1.1 Compilation ENvViIrONMENt 2.0... elt ec csscetsccsecssccecesssscsessseseeees 3
1.2 The input file ccc ecccsscececssscccsssssssccsssssscccsssssssescesssenees 4
1.3 The output files oo... ccccsssssscccecssssssscccscsscssssscescessesssceecees 5
1.4 Searching for #include files wo... cccsscssseccscscsssscececesesceeeseseeees 6

2. Comp tler Options ou... ecscsssscsccscssscssscesssssssecccsssscsscseesesccsssssesseccsees 8
2.1 Utility Options 00... ecceecssccessceecesscsesececceseneecsseccesessseesesessseceees 9
2.2 Table Manipulation Options ett ceecsssseeeeees ww. 12

3. Error Checking ou... cccccescsccesscsscsecssssscsescescsscscesscescssessccccesesesssenees 15
4. Programmer Information.0000 , secesscesesceececeses 17

4.1 Register Variables oo... ccsceccccsssrsecscsssessscscrsencscsssssscssesceesees 17
4.2 Writing machine-independent COdE ou... ecsseeseseseeceesseeeeres 17
4.3 Writing programs for the Macintosh oui... eessseceseceeeeees 18
4.4 Additional features oo... ec tesecccccccccsscsccssccscccccscesscssscsscssseeees 23

4.4.1 Lime Comtimuation o.......cccecccccccccesccscscccccscssssccsscsscsssscsenees 23
4.4.2 Special SYMDOIS cc eeececccesescessccessssscnscececssscesecesceneeees 23
4.4.3 The #line statement oe cccccscccceeeeceeee . 23
4.4.4 In-line assembly language COde uuu... ecsstcesctesseeseeeens 23

- cc.2 -

Aztec C68K COMPILER

The Compiler

This chapter describes how to use the Aztec C68K C compiler. The
Aztec C68K compiler is implemented according to the language
definition found in the text The C Programming Language, by Brian W.
Kernighan and Dennis M. Ritchie. For information on the C language
and its use the above reference is recommended. For the C student,
there are several tutorial texts listed in the Bibliography.

This chapter has four major sections: the first describes how to use
the compiler, the second describes the compiler options, the third
describes error handling, and the fourth discusses topics of interest to
programmers, such as the use of register variables and the writing of

machine-independent code.

1. Operating Instructions

The Aztec C68K compiler is invoked by a command of the format:

cc [-options] filename.c

where [-options] specify optional parameters, and filename.c is the
name of the file containing the C source program. The option
specification should appear before the filename.

The compiler reads C source statements from the input file,

translates them to assembly language, and writes the result to another

file.

When the compiler is done, it activates the Manx assembler, unless
it’s told not to. The assembler translates the assembly language source
into relocatable object code, writes the result to another file, and
deletes the assembly language source file. The option -A tells the
compiler not to start the assembler.

A compilation can be aborted by holding down the key that has the

cloverleaf symbol and then typing the period key.

1.1 Compilation Environment

The cc compiler executes in the Aztec SHELL environment. For
information on using the SHELL facilities, refer to the SHELL

reference section of this document.

If the cc file is in the current directory, the compiler can be

invoked as described above. Often this will not be the case. When the
Aztec C68K compiler, cc, is in a directory other than the current one,

the path to that directory can be defined through the set PATH

- cc.3 -

COMPILER Aztec C68K

command. If the concept of current directory or path is unfamiliar,
read the SHELL reference section. By way of example, if the cc
compiler is in the directory sys-bin and the current directory is some
other directory, the path could be set as,

set PATH=sys:bin

Now when the cc command is referenced, the system will search for
sys-bin/ cc.

The compiler can also be invoked by prefixing the path name to cc
in the command line. For instance,

/bin/cc myprog

Or,

dsk2:sys/bin/cc myprog

If the volume specification is omitted, then the current directory
path is prefixed to the cc command. Thus if the current directory was
dsk2:sys/space and the compiler, cc, was in the directory
dsk2-sys/ space /csys, then the following would run the compiler,

csys/cc myprog

It is generally easiest to use set PATH to specify the pathname
qualification for the cc command.

1.2 The Input File

When the compiler is started, the name of the file containing the C
source can optionally specify the volume and directory that contains
the file. By default, the input file is assumed to be in the current
directory. For example, if the file prog/.c contains C source, and is in
the directory db/source on the volume dsk2., it could be compiled with
the command

cc dsk2:db/source/progl.c

If the directory containing this file is also the current directory,
then the file could also be compiled with the command

cc progl.c

And if the current directory is db, on the dsk2; volume, the file
could also be compiled with the command

cc source/progl.c

Source filename extensions

If the command that starts the compiler doesn’t specify the
extension of the file containing the C source, the compiler assumes
that the extension 1s .c. For example, the command

- cc.4 -

Aztec C68K COMPILER

cc prog

will compile a file named prog.c in the current directory.

Although .c is the recommended file extension name, it is not
mandatory. The specification

Cc prog.see

will read the file prog.see from the current directory as the input to the

compiler.

1.3 The output files

1.3.1 Creating an object code file

Normally, when you compile a C program you are interested in the
relocatable object code for the program, and not in its assembly
language source. Because of this, the compiler by default writes the
assembly language source for a C program to an intermediate file and
then automatically starts the assembler. The assembler then translates
the assembly language source to relocatable object code, writes this
code to a file, and erases the intermediate file.

By default, the object code generated by a compiler-started
assembler is sent to a file whose name is derived from that of the file
containing the C source by changing its extension to .o. This file is
placed in the directory that contains the C source file. For example, if

the compiler is started with the command

cc prog.c

the file prog.o will be created, containing the relocatable object code
for the program.

The name of the file containing the object code created by a
compiler-started assembler can also be explicitly specified when the
compiler is started, using the compiler’s -O option. For example, the

command

cc -O myobyj.rel prog.c

compiles and assembles the C source that’s in the file prog.c, writing

the object code to the file myobj.rel.

When the compiler is going to automatically start the assembler, it
by default writes the assembly language source to the file cc.tmp in the
current directory. If you are interested in this source, but still want
the compiler to start the assembler, specify the option -T when you
start the compiler. This will cause the compiler to send the assembly
language source to a file whose name is derived from that of the file
containing the C source by changing its extension to .asm The C

source statements will be included as comments in the assembly
language source. For example, the command

- cc.5 -

COMPILER Aztec C68K

cc -T prog.c

compiles and assembles prog.c, creating the files prog.asm and prog.o.

1.3.2 Creating just an assembly language file

There are some programs for which you don’t want the compiler to
automatically start the assembler. For example, you may want to
modify the assembly language generated by the compiler for a
particular program. Or you may want the assembly language source
sent to a location, such as a RAM disk, where it wouldn’t normally be
sent when the compiler activates the assembler.

In such cases, you can use the compiler’s -A option, which prevents
the compiler from starting the assembler.

When this option is specified, the compiler by default sends the
assembly language source to a file whose name is derived from that of
the C source file, by changing the extension to .asm. This file is
placed in the same directory as the one that contains the C source file.
For example, the command

cc -A prog.c

compiles, without assembling, the C source that’s in prog.c, sending the
assembly language source to prog.asm.

When using the -A option, you can specify the name of the file to
which the assembly language source is sent, using the -O option. For
example, the command

cc -A -O ram:temp.asm prog.c

compiles, without assembling, the C source that’s in prog.c, sending the
assembly language source to the file temp.asm on the volume named
ram...

When the -A option is used, the option -T causes the compiler to
include the C source statements as comments in the assembly language
source.

1.4 Searching for #include Files

By default the Aztec C68K compiler searches the current directory
to locate files specified in #include statements. It can also search a
user-specified sequence of directories for such files, thus allowing
program source files and header files to be contained in different
directories.

The compiler option -/ and the environment variable INCLUDE
define the directories in which the compiler will search for #include
files.

The compiler will automatically search just the current directory
for a #include file if the following conditions are met: (1) the compiler

- c¢.6 -

Aztec C68K COMPILER

was started without a -I option having been specified, (2) INCLUDE 1s
not an environment variable, and (3) the #include statement doesn’t
specify the drive and/or directory containing the file.

If a #include statement specifies either the drive or directory, just
that location is searched for the file.

1.4.1 The -I option

The compiler -/ option defines a single directory to be searched for
a file specified in a #include statement. The path descriptor follows the
-J, with no intervening blanks. For example, the specification

cc -isys:db/include prog]

directs the compiler to search the sys:db/include area when looking for
a #include file.

Multiple -7 options can be specified when the compiler is started, if
desired, thus defining multiple directories to be searched.

1.4.2 The INCLUDE environment variable

The JNCLUDE environment variable, if it exists, also defines
directories to be searched for #include files. This variable has the
same format as the PATH environment variable; that is, it consists of
the names of the directories to be searched, separated by semicolons.
For example, the following command creates the JNCLUDE
environment variable, defining three directories to be searched:

set INCLUDE=work:/include;work:;sys:include

These directories are (1) the include directory on the work: volume; (2)
the root directory on the work: volume; (3) the include directory on the
sys. volume.

1.4.3 #include Search Order

When the compiler encounters a #include statement, it searches
directories for the file specified in the statement in the following
order:

1. If the file name was delimited by double quotes, "filename"
the current directory is searched. If the name was delimited
by angle brackets, <filename>, the current directory is
searched only if no -I options were specified and if the
INCLUDE environment variable doesn’t exist.

2. The directories specified in the -J options are searched, in the
order listed on the line that started the compiler;

3. The directories specified in the INCLUDE environment
variable are searched, in the order listed.

- cc.7 -

COMPILER Aztec C68K

2. Compiler Options

Utility Options

-D Defines a symbol for the preprocessor.

-J Defines an area to be searched for files specified in a
include statement.

-O Used to specify an alternate name for the output file.

-S Causes search for undefined structure members as
described below.

-T This option will insert the C source statements as
comments in the assembly code output. Each source
Statement appears before the assembly code it
generates.

-A Causes the compiler to not start the assembler after it
has compiled a program.

-B Causes the compiler to not generate the statement
public .begin when it compiles a program.

-U Causes the compiler to generate code that uses register
A4 instead of A5 to reference data and to not generate
code that uses A4 for holding register variables and
temporary values.

-Q Causes the compiler to put character string constants
in a program’s data segment rather than in its code
segment.

Table Manipulation Options

-E Specifies the size of the expression table.

-L Specifies the size of the local symbol table.

-Y Specifies the maximum number of outstanding cases
aliowed in a switch.

-Z, Specifies the size of the table for literal strings.

- cc.8 -

Aztec C68K COMPILER

2.1 Utility Options

-D Option

The -D option defines a symbol in the same way as the
preprocessor directive, #de fine. Its usage is as follows:

cc -Dmacro[=text] prog.c

For example,

cc -DMAXLEN=1000 prog.c

is equivalent to inserting the following line at the beginning of the

program:

#define MAXLEN — 1000

Since the -D option causes a symbol to be defined for the
preprocessor, this can be used in conjunction with the preprocessor
directive, #ifdef, to selectively include code in a compilation. A
common example is code such as the following:

#ifdef DEBUG
printf("value: %d\n", 1);

#endif

This debugging code would be included in the compiled source by

the following command:

cc -dDEBUG program.c

When no substitution text is specified, the symbol is defined as the
numerical value, one.

This capability is useful when small pieces of code must be altered
for different operating environments. Rather than maintaining two
copies of such a program, this compile time switch can be used to
generate the code needed for a specific environment. For example,

#ifdef APPLE
appleinit();

#else
ibminit();

#endif

-I Option

The -/ option causes the compiler to search in a specified area for

files included in the source code.

The name of the area immediately follows the -I, with no
intervening spaces. For example, the following defines directory

/source/inc on volume sys: search area:

-Isys:/source/inc

- cc.9 -

COMPILER Aztec C68K

For more details, see the Compiler Operating Instructions, above.

-S Option

The -S option is best illustrated by an example:

Struct atype {
char al, a2;

} a;

Struct btype {
char bl, b2;

} b;
a.bl = 4;
b.c2 = 6;

Normally, both of the assignments will cause a compiler error, since
"bl" is not a member of "a", and "c2" is not a member of "a". However,
under the -S option, the first assignment will be legal and the second
will be illegal.

Under -S, the compiler will not generate an error when it notices
that "bl" is not a member of "a". Instead, it will proceed to search
through all the previously defined structures until it finds the member
"bl". The member of structure "b", namely "51", is taken to be
referenced by "abl".

The second assignment will generate an error with or without the
-S option, since "c2" is not a member of a previously defined structure.

The -S option refers only to previously defined structures.

-B option

The -B option prevents the compiler from generating the statement

public .begin

which it otherwise does generate.

.begin is the startup routine used by most command programs, and
is contained in the module crt0 in the library c.iib.

The presence of the public .begin statement in a compiled program
causes the linker to include crt0 in the executable version of the
program.

Drivers and desktop accessories generally perform their own startup
procedures, and don’t need .begin.

Thus, command programs are usually compiled without the -B
option while drivers and desktop accessories are compiled with it.

- cc.10 -

Aztec C68K COMPILER

-U option

If a program is compiled without this option, the code generated
for it uses register A5 to access global and static data, and uses register
A4 for holding register variables and temporary values.

Register A5 can’t be used by drivers and desktop accessories, since
it’s already being used by command programs, and by QuickDraw.
The -U option causes the compiler to generate code that uses register
A4 as a base register, and that doesn’t use A4 for holding a register
variable or a temporary value.

Thus, command programs should normally be compiled without the
-U option, while drivers and desktop accessories should be compiled
with it.

-~ cell -

COMPILER Aztec C68K

2.2 Table Manipulation Options

The compiler has several memory-resident tables in which to store
information about a program it is compiling. Some of these tables are
used to keep track of the symbols defined within the program, and
some as a "Scratch pad" for temporarily storing information.

The compiler uses the following tables: macro/global symbol table,
local symbol table, label table, string table, expression work table, and

case statement work table.

The sizes of these tables are determined when the compiler starts.
For all tables except the macro/global symbol table and the label table,
the size can be specified by the user with a command line option; if
the user doesn’t specify the size of one of these tables, the compiler

sets it to a default value.

The macro/global symbol table is located in the application heap
above all the other tables. Its size is set after all the other table sizes
have been set, so that it uses all the rest of available memory. Hence,

the user can’t set the size of this table.

If, during a compilation, the macro/global symbol table that is in
the application heap is filled and if no errors have been detected, the
compiler will automatically use approximately 10K of the Macintosh
screen memory to hold more macro and global symbols. When it does
this, the compiler clears the screen and changes the size of the screen
window to be about half of its previous size. It then displays any error
messages in the contracted window and, when done, resets the screen
window to its original size and clears to the end of the screen.

The size of the label table is built into the compiler; if this table
overflows, you must reduce the number of labels in your program.

If a table overflows, the compiler will print an error message and
stop. If any table except the macro/global symbol table overflowed, the
compilation can be restarted, using a different size for the table which
overflowed. If the macro/global symbol table overflowed, the
compilation can be restarted, using smaller sizes for one or more of the

other tables.

The Macro/Global Symbol table

This table is where macros defined with the #define statement are
remembered. It also contains information about all global symbols.

If this table overflows, the message Out of Memory! will be

printed.

The Local Symbol Table:

New symbols can be declared after any open brace. Most
commonly, a declaration list appears at the beginning of a function
body. The symbols declared here are added to the local symbol table. If

- cc.12 -

Aztec C68K COMPILER

a variable is declared in the body of, say, a for loop, it is added to the
table. When the compiler has finished compiling the loop, that entry in
the table is freed up. And when it has finished the function, the table
will be empty.

The default size of the table is 30 entries. Since each entry
consumes 26 bytes, the table begins at 520 bytes. If the table overflows,
the compiler will send a message to the screen and Stop.

The number of entries in the table can be adjusted with the -L
option. The following compilation will use a table of 75 entries, or
almost 2000 bytes:

cc -L75 program.c

The Label Table

This table contains information on all the labels in a program,
where a label is the destination of a goto statement.

If it overflows, error 54 will be displayed. Since the size of this
table is fixed, if it overflows you must decrease the number of labels
in your program.

The Expression Table:

This is the area where the "current" expression is handled. It is the
compiler’s work space as it interprets a line of C code. The various
parts of the line are stored here while the statement is being compiled.
When the compiler moves on to the next expression, this space is again
freed for use.

The default value for -E is 60 entries. Each "entry" in the table
consumes 14 bytes in memory. So the expression table starts at 840
bytes. Each operand and operator in an expression is one entry in the
symbol table-- another fourteen bytes. The term, "operator", includes
each function and each comma in an argument list, as well as the
symbols you would normally expect (+, &, ~, etc.). There are some
other rules for determining the number of entries an expression will
require. Since they are not straightforward and are subject to change,
they will not be discussed here.

The following expression uses 15 entries in the table:

a= b+ function(a + 7, b, d) * x

Everything is an entry except for the ")", including the commas
which separate the function arguments.

If the expression table overflows, the compiler will generate error
number 36, "no more expression space."

This command will reserve space for 100 entries (1800 bytes) in the
expression table:

- cc.13 -

COMPILER Aztec C68K

cc -E100 filename

The option must be given before the filename. There can be no
space between the option letter and the value.

The Case Table

When the compiler looks at a switch statement, it builds a table of
the cases in it. When it "leaves" the switch statement, it frees up the
entries for that switch. For example, the following will use a maximum
of four entries in the case table:

Switch (a) {
case 0: /* one */

at+= 1;
break;

case |: /* two */
switch (x) {
case ’a’: /* three */

funcl (a);
break;

case ’b’: /* four */
func2 (b);
break;

} /* release the last two */
a= 5;

case 3: /* total ends at three */
func2 (a);
break;

}

The table defaults to 40 entries, each using up four bytes. If the
compiler returns with an error 76 ("case table exhausted"), you will
have to recompile with a new size, as in:

cc -Y100 file

The String Table

This is where the compiler saves "literals", or strings. The size of
this area defaults to 1000 bytes. Each string occupies a number of bytes
equal to the size of the string. The size of a string is just the number
of characters in it plus one (for the null terminator).

If the string table overflows, the compiler will generate error 2,
"string space exhausted".

The following command will reserve 2000 bytes for the string table:

ce -Z2000 file

- cc.l4 -

Aztec C68K COMPILER

3. Error checking

Compiler errors come in two varieties-- fatal and not fatal. Fatal
errors cause the compiler to make a final statement and stop. Running
out of memory and finding no input are examples of fatal errors. Both
kinds of errors are described in the errors chapter. The non-fatal sort

are introduced below.

The compiler will report any errors it finds in the source file,
displaying first the source line in which the error was detected. If the
error messages are sent to the screen (as discussed below) the line is
underlined up to the approximate point at which the error was
detected. If the messages are sent elsewhere, the source line, instead
of being underlined, is followed by a line containing the "*" character
at the approximate point of error.

The compiler will then display a line containing the following
information:

the name of the source file containing the line,
the number of the line within the file.
an error code,
optionally, a message describing the error,
the symbol which caused the error, when appropriate . M

R
W
N
P
>

The error codes are defined and described in the errors chapter.

The message describing an error will only be displayed if the
compiler can find the file cc.msg, which contains the message, when it
starts. The compiler searches for this file in the directories specified
in the INCLUDE environment variable.

The compiler sends error messages to its standard output device.
This can be redirected to a file in the normal way. Without the
redirection of its standard output, the compiler sends error messages to
the console. For example, to compile prog.c and send error messages
to the file prog.err, the following command could be used:

cc prog >prog.err

When the compiler sends crror messages to the screen, it will pause
after several error messages have been displayed, and ask if you want it
to continue. If you type Y, followed by a return, the compiler will
continue. If you type anything else, followed by a return, the compiler
will halt.

When the compiler sends error messages to a device or file other
than the screen, it will process the entire file without giving the
operator the opportunity to abort the compilation, even if errors are

detected.

The compiler is not always able to give a precise description of an
error. Usually, it must proceed to the next item in the file to ascertain

-cc.15 -

COMPILER Aztec C68K

that an error was encountered. Once an error is found, it is not
obvious how to interpret the subsequent code, since the compiler
cannot second-guess the programmer’s intentions. This may cause it to
flag perfectly good syntax as an error.

If errors arise at compile time, you should first correct the first
error, since this may clear up some of the errors which follow.

The best way to attack an error is first to look up the meaning of

the error code in the errors chapter. Some hints are given there as to
what the problem might be. And you will find it easier to understand
the error and the message if you know why the compiler produced that
particular code. The error codes indicate what the compiler was doing
when the error was found.

- cc. 16 -

Aztec C68K COMPILER

4. Programmer Information

4.1 Register Variables

The Aztec C68K C compiler supports up to six register variables.
There are 4 data registers and 2 address registers reserved for user
variables. char register variables will only be placed in data registers. If
6 data type variables are defined before a pointer register variable is
encountered, the data type variables will be assigned to the 4 data and
2 address registers and the pointer register variables will not be
assigned to registers.

Register variables may be of type char, unsigned char, short, unsigned
short, int, unsigned int, long, unsigned long and pointer.

4.2 Writing machine-independent code

The Aztec family of C compilers are almost entirely compatible.
The degree of compatibility of the Aztec C compilers with v7 C,
system 3 C, system 5 C, and XENIX C is also extremely high. There
are, however, some differences. The following discussion should assist
developers looking to import C code to the Macintosh or to export
Macintosh C programs to other environments.

4.2.1 Bit Fields

The major incompatibility of Aztec C with the various versions of
UNIX C is the absence of bit fields. Bit field support tends in general
to be incompatible from one C compiler to another and developers
concerned with portability should avoid using them. Existing code
using bit fields is fairly easily converted to use character or integer
constructs. Bit field support will be implemented in the Aztec C
compilers some time in the near future.

4.2.2 Enumerated Data Types And Structures

C programs using enumerated data types or structure passing must
be modified to work with the Aztec C68K compiler. Structure passing
can be implemented by passing pointers to structures instead of the
Structures themselves. This approach is generally more efficient in that
it eliminates copying the structure onto the run time stack.

4.2.3 Compatibility Between Aztec Products

Within releases, code can be easily moved from_ one
implementation of Aztec C to another. Where release numbers differ
(1.¢. 1.06 and 2.0) code is upward compatible, but some changes may
be needed to move code down to a lower numbered release. The
downward compatibility problems can be eliminated by not using new
features of the higher numbered releases.

- cc.17 -

COMPILER Aztec C68K

4.2.4 Sign Extension For Character Variables

None of the 8 bit implementations of Aztec C sign extend
characters used in arithmetic computations, whereas all 16 bit
implementations do sign extend characters. This incompatibility can be
corrected by declaring characters used in arithmetic computations as
unsigned, or by AND’ing characters used in arithmetic expressions
with 255 (Oxff). For instance:

char a=129;
int b;
b = (a & Oxff) * 21;

4.2.5 The MPU... symbols

To simplify the task of writing programs that must have some
system dependent code, each of the Aztec C compilers defines a
symbol which identifies the machine on which the compiler-generated
code will run. These symbols, and their corresponding processors, are:

symbol processor
MPU68000 68000
MPU8086 8086/8088
MPU80186 80186/80286
MPU6502 6502
MPU8080 8080
MPUZ80 Z80

Only one of these symbols will be defined for a particular compiler.

For example, the following program fragment contains several
machine-dependent blocks of code. When the program is compiled for
execution on a particular processor, just one of these blocks will be
compiled: the one containing code for that processor.

#ifdef MPU6800
/* 68000 code */

#else
#ifdef MPU8086

/* 8086 code */
#else
#ifdef MPU8080

/* 8080 code */
#endif
#endif
#endif

4.3 Writing programs for the Macintosh

4.3.1 Pointer Considerations.

Pointers are 32 bits wide in Aztec C68-compiled programs, whereas
ints are 16 bits wide. Because of this difference, a program will not

-ce.18 -

Aztec C68K COMPILER

work if it assumes that pointers and ints are the same size, and that
they are treated the same.

It’s easy for a C program to accidentally or purposely make these
assumptions, since in C the type of an undeclared function or function
argument is assumed to be int. A program making these assumptions
will run on machines for which the assumptions are true, of course.
But when the program is recompiled with Aztec C68, it will
malfunction.

To avoid problems, a program that uses pointers should obey the
following rules:

* If a function returns a pointer, explicitly declare it, both in
the function itself and in any module that calls the function.

* If a function argument is a pointer, explicitly declare it in the
function itself, and be careful not to accidentally pass an int as
the argument.

* Beware when subtracting pointers, when the difference may
be greater than 64K.

The following paragraphs discuss these rules.

Declare Functions That Return A Pointer

The following code demonstrates the importance of declaring a
function that returns a pointer, both in the function itself and in a
function that calls it. For this example, assume that the function g
must be passed a pointer.

char *f();

8(£());
The compiled code will pass the 32-bit pointer returned by the
function f to the function g. If f hadn’t been declared as returning a
pointer, the compiled code would assume that a 16-bit int was returned
by f, and hence pass just part of the pointer returned by ff to g.

Declare Function Arguments That Are Pointers

The following code demonstrates the importance of declaring that a
function argument is a pointer, in the function itself. For this
example, assume again that the function g must be passed a pointer.

{(y)
char *y;

{

- g(y);

- cc.19 -

COMPILER Aztec C68K

The compiled code will take the 32-bit pointer y, which is passed to
the function f, and pass it to the function g. If the declaration char *y
was omitted, the compiler would assume that y was a 16-bit int, and
hence generate code that would pass just part of the pointer to g.

Pointer Variables And Constants As Arguments On Calls

Code that passes integer constants or variables as function
arguments where pointers are expected, will not work with Aztec
Cé68K.

One common problem is attempting to pass the constant int 0 as a
null pointer. For example, if g is again a function that is passed a
pointer, the following code demonstrates one way to correctly pass a
null pointer to g:

g((void *) 0);

(The code didn’t have to cast 0 to be a pointer to a void; casting it to be
a pointer to any other type of object would also have worked.) If
instead the code had said

g(0);

Then a 16-bit null value would have been passed, which would be
wrong.

Subtracting Pointers

The difference between two pointers is an int. This fact allows a
program to easily pass to a function a pointer to a buffer and an int
defining the size of the buffer. For example, the function write is
passed three arguments: an int defining the file to be written to, a
pointer to the beginning of the data that’s to be written, and an int
defining the number of bytes to be written. If buf is the name of an
i/o buffer and cp is a pointer to the last byte of valid data in buf, then
the following statement tells the function write to write all valid bytes
in buf to the device having file descriptor fd:

write(fd, buf, cp-buf);

However, you can create buffers that contain more than 64K bytes,
for example, by calling the /malloc function. To determine the number
of bytes between two arbitrary locations in such a buffer, simply
subtract pointers that reference the locations and either assign the
result to a long or cast it to a long. The reason that this works is that
the difference between two pointers is always computed using a full
32-bit subtraction. When only 16 bits of the difference is needed (the
default case) the high-order component of the difference is discarded;
when all 32 bits is needed, they are available for use.

- cc.20 -

Aztec C68K COMPILER

4.3.2 Internal Storage Of Numeric Data

Programs written for processors that store data items in least
significant to most significant order may need to be changed. The
MC68000 processor stores data in most significant to least significant

order. This is true of both non-floating point and floating point data.

The following short program illustrates a program that will run

differently depending on the manner in which int data items are

stored.

cput(c)
int C;

write (1, &c, 1);

}
Problems can also occur reading data created in another

environment where the data was stored in the reverse order.

The MC68000 requires that any memory access must be aligned on

an even address unless it is a single byte access. The Aztec CO8K

compiler aligns non-byte data items on even boundaries to avoid
memory faults. Code that accesses non-byte data through pointers that

specify an odd memory address will cause a system crash.

Converting Data

Programs reading data written in another C environment that does
not force alignment will probably not produce correct results.
Programs writing data that will be accessed in an environment that

does not force alignment will likewise probably fail. Some conversion

will probably be needed to insert slack bytes to assure even alignment
when importing data created for an unaligned environment, and to
remove slack bytes when exporting data for an unaligned environment.

Most of the common 8-bit microprocessors store numeric data in
an order that is the reverse of the MC68000. The 808x 16-bit
processors and the PDP-11 also store numeric items this way.

4.3.3 Long Character Items

Aztec C68K recognizes long character constants. The following code

will work:

long |;

l=’abed’

Not all compilers will recognize this construct. Many are limited to two

character character constants.

- cc.21 -

COMPILER Aztec C68K

4.3.4 Extensions to the C language for the Macintosh

Aztec C68K has a few extensions to the C language to support the
special features of the Macintosh.

Calling Pascal functions from C

First, a C program can call a Pascal function that is in ROM, by
declaring the Pascal function with a statement of the form

pascal type func ()=0x1234:

where

ty pe is the type of value returned by the function,
func is the name of the function,
0x1234 (or whatever) is its trap value;

A program can also define a global pointer to a Pascal function,
with a statement of the form

pascal type (*fp)();

where fp is a variable that points to a pascal function and type is the
type of value returned by the function.

Calling C functions from Pascal

There are several toolbox routines that call a function whose
address is passed to them. Such functions can be written in C by
preceding the C function with the keyword pascal. The function can
return a value, if required; if not, the function should be declared to
be of type pascal void.

The code generated for such a function differs from that generated
for a normal C function in the following ways:

* It will preserve registers D3 and A2, which are sacred to
Pascal.

* It will access arguments on the stack using the Pascal
conventions, rather than the C conventions.
At the return of the function, all arguments will be popped
of the stack and, the return value of the function, if any, will
be pushed onto the stack.

Character sfrings

The format of a character string differs in C and Pascal: in C, the
string consists of the characters, with 2 terminating null character. In
Pascal, the first byte of the string contains the number of characters in
the string.

To have the compiler generate a Pascal format character string,
begin the string with the sequence "\P". For example,

- cc.22 -

Aztec C68K COMPILER

"\PThis is a Pascal string"

The string will still be null-terminated, so it can be passed to functions
like strcpy and strcmp.

There are two functions which can be used to convert strings from
one format to the other: ctop converts a string from C to Pascal format,
and ptoc converts a string from Pascal to C format. For more details
on these functions, see their description in the section of the Library
Functions chapter that describes Macintosh functions.

4.4 Additional features

4.4.1 Line continuation

If the compiler finds a source line whose last character is the
backslash character \, it will consider the following line to be part of
the current line, without the backslash. For example, the following
Statements define a character array containing the string "abcdef":

char arr[]="ab\
cd\
ef";

4.4.2 Special symbols

The following symbols are defined by the compiler:

___FILE “Name of the file being compiled) This is a
character string.

___ LINE _ Number of the line currently being compiled. This
iS an integer.

___FUNC____ Name of the function currently being compiled.
This is a character string.

For example,

print{("file= %s", FILE); 3
print{("line= %d, LINE ___); were 9

print{("func= %s", = =FUNC___);

4.4.3. The #line statement

The statement

#line number "file"

causes the compiler to think that file is the name of the file being
compiled, and that number is the number of the line currently being
compiled. The file name is optional; if not specified, the compiler
assumes that it’s still compiling the same file.

4.4.4 In-line assembly code

Assembly language code can be interspersed within C source code
by surrounding the assembly code with the statements #asm and

- cc.23 -

COMPILER | Aztec C68K

#endasm.

For example,

main()

/* C code */
#asm
- assembly language code
#endasm

/* C code */
}

For a discussion of register usage by assembly language programs,
see the Programmer’s Information section of the Assembler chapter.

- cc.24 -

Aztec C68K COMPILER

New Options for Compiler (CC)

These pages describe compiler changes for this release and should

be placed at the end of the Compiler section in your manual.

The following options are new to the compiler, cc.

+F]

+FS8

-N

Generates code used for the IEEE Double Precision

Floating Point Emulation. Users may choose between

linking with the Manx Aztec C library (m.lib) or the SANE

library (ms.lib). Compiling defaults to the SANE format.

Generates code uscd for the 68881 Floating Point format.

Users link in with the math library ™&./ib.

Suppresses the insertion of source debug information in the

output module.

The following options are added in the compiler:

+L Defines an integer (int) to be 32 bits instead of 16 bits.
When linking, you must use C32.lib and M32.lib if this flag

iS Sct.

Note: This option cannot be used in conjunction with
Macintosh Toolbox calls, where integers are expected to be

16-bits.

Imbeds function names into the executable code that
MacsBug or TMON debuggers can read as symbols.

Switches off the compiler pause after encountering five

errors.

Generates verbose compiler messages.

Generates code that uses the large code memory modcl.

Generates code that uses the large data memory model.

Note: Flags C and D require the use of large data libraries.

The following options are changes to the compiler,

cc

+B

+U

Causes the compiler not to generate the public.begin

Statement.

Causes the compiler to generate code that uses the register

A4 instead of A5 to reference data and to not generate code

that uscs A4 for holding register variables and temporary

valucs.

cce-app.1 ; v3.4

COMPILER Aztec C68K

Other New Features

* Compiler supports enumerated data types as 8, 16, or 32 bits,
depending on the range of the enumerated literal.

* Compiler supports bit fields, structure assignment, and structure
passing. Prior to this release, only an address of a structure could
be passed.

* Compiler expands variable name length from 8 to a maximum of
31 characters. External symbols are also significant up to 31
characters throughout assembly and linkage.

* Compiler reserves words "const," "signed," and "volatile"; these must
not be used as symbol names.

* Compiler attaches a leading underscore to the filename to ensure
compatibility with MPW. (In previous releases the compiler
appended a trailing underscore.) This change, together with the
object module format change to the linker, prohibits linking old
libraries or object files. This release includes a utility su that you
may use to switch trailing underscores in assembly source to
leading underscores. Type the command line as follows:

su filel.asm filel.asm file3.asm...

su switches the trailing underscores for all files passed to it whether
identifiers are declared public, global, or bss. The identifiers
without trailing underscores are not modified, but a warning listing
these cases is displayed. sw depends on the public, global, or bss
declarations occurring before the identifiers are actually used.

* The compiler defines the names | LARGE CODE and
LARGE DATA when the +C and +D options are given. These
memory modules are used in some of the header files to switch
between an external definition of some hardware addresses and a
macro definition with the address hard-coded in. See the
appendices to the "Technical Information" section of your manual
included with this release for a discussion of memory modules and
how to generate libraries using the make function.

* The Void data type is added to provide a safety check on the use of
void functions--those functions that do not return a value.

If a void function attempts to return a value, or if a function tries to
use the value returned by a void function, the compiler generates an
error message.

Variables can be declared to point to a void, and functions can be
declared as returning a pointer to a void.

v3.4 cc-app.2 cc

Aztec C68K COMPILER

*

*

ce

Unlike other pointers, a pointer to a void can be assigned to a
pointer to any type of object, and vice versa. For other types of
pointers, the compiler generates a warning message if an attempt is
made to assign one pointer to another, when the types of objects
pointed at by the two pointers differ.

For example, the compiler generates a warning message for the
assignment statement in the following program:

main()

char *cp;
int *ip:

ip = cp; }

But the compiler won’t complain about the following program:

main()

{ |
char *cp;
void *getbuf();
cp = getbul();

}

The INCLUDE environment variable accepts the ";" character as a
scparator between multiple directory names. For example, to
specify the C and assembler header files, use:

set INCLUDE=sys2:include;sys2:asm

To shorten compilation time, the compiler supports precompiled
#include files.

This option only applies to a block of #inciuide files that are
located in the beginning of a file. For example, if an #undef 1s
placed between two #include file statements, it will not have the

desired effect.

To use this feature, you first compile frequently-used header
files, specifying the +H option; this causes the compilcr to write its
symbol table, which contains information about the contents of the
header files, to a disk file. Then, when you compile a module that
#includes some of these header files, you specify the +/ option; this

causcs the compilcr to load into its symbol table the pre-compiled
symbol table information about the header files. When the

cc-app.3 v3.4

COMPILER Aztec C68K

compiler encounters a #include statement of a header file for which
it has already loaded pre-compiled symbol table information, it
ignores the #incluide statement. This ignoring occurs even if the
include file was nested within another #include file in the C source
from which the pre-compiled symbol table was generated.

The +A option tells the compiler to write its symbol table to a
file. The name of the file immediately follows the +H, with no
intervening spaces. For cxample, you might create a file named x.c
that consists just of #incluide statements for all the header files that
you want pre-compiled. You could then generate a file named
x.dmp that contains the symbol table information for these header
files by entering the following command:

cc +Hx.dmp x.c

The +/ option tells the compiler to read pre-compiled symbol
table information from a file and uses the normal include search
path. The name of the file immediately follows the +/, with no
intervening spaces. For example, to compile the file prog.c that
accesses the header files that were defined in x.c, and to have the
compiler preload the symbol table information for these files from
x.dmp, enter the following command:

cc +Ix.dmp prog.c

v3.4 cc-app.4 cc

THE ASSEMBLER

- as.l -

ASSEMBLER Aztec C68K

Chapter Contents

The ASSEMbI]erccccccceccccccccccccccccsssssesscecscesceccecccnseceasessssssescscesaseessseseeseeseceess as

1. Operating Instructiomsccceeeescssessesssesssssssseeseeeseseecsnsesesenaeeseaees 3

L.1 Execution EnvirOnMe nt ooo ec eccccssssessssscsrecececeecesssescssseseseeseees 3

1.2 The Input File wo. ccccsssececesseceessssessnssneesenecceecsesseesessaaeees 4

1.3 The Object Code File oo... ce esscsecescsseeeneeseesneessseeeeesseeeseees 4

1.4 Listing File wo... eeesceecseeceecesessesssssessessensenseesesesceseesnesnsceseeesoes 4

1.5 Optimizations .o....ccccecscecscessecsecceeeeseeessessssssesssesseseseesersessecssneenees 4

1.6 Searching for include Files oo... cessesssscsssssesseeeeesesenseseecesneerees 5

2. Assembler Optionsccsssscsssseecessscecessseeccessseeescssseesssssesecsenseeseseeees 7

3. Programmer information cc sscssecseeneeeseensseseneesnseneesresssesesonees 10

3.1 Source Program Structure oe cccsscsscsressssreecesesereesersneeeees 10

3.2 Interfacing With Cov ecssecseecececsssssescsscseseessseeseeessseseesenees 15

3.3 Interfacing with Pascal 0... eecsessecsssecssscesssseneeseseeceseeeeees 17

~ as.2 -

Aztec C68K ASSEMBLER

The Assembler

The as assembler translates assembly language source statements
into relocatable object code. Assembler source statements are read
from an input text file and the object code is written to an output file.
A listing file is written if requested. The relocatable object code must
be linked by /m, the Manx Linker, before it can be executed. At linkage
time it may be combined with other object files and run time library
routines from system or private libraries. Object modules produced
from C source text and Assembler source text can be combined at
linkage time into a composite module.

Assembly language routines are generally not required when
programming in C. Assembly language routines should only be
necessary where critical execution time or critical size requirements
exist. Some system interfacing or low level routines may also require
assembler code.

Information on the MC68000 architecture and instructions can be
found in the Motorola MC68000 16-bit Microprocessor User's Manual
(Prentice-Hall, Inc., Englewood Cliffs, N. J. 07632)

1. Operating Instructions

The assembler is started by entering the command line:

as [-options] filename

where /-options] specify optional parameters and filename is the name
of the file to be assembled.

The assembler is also invoked by the C68K-C compiler to assemble
its output file.

The assembler reads assembly source statements from the input file,
writes the translated relocatable object code to an output file, and if
requested writes a listing to an output file. The Assembler also will
merge assembly code from other files on encountering an include
directive.

1.1 Execution Environment

The Manx Assembler executes in the Aztec SHELL environment.
For information on the using the SHELL refer to the SHELL
reference section of this document.

The SHELL will search for the assembler in the directories
specified in the PATH environment variable. See the SHELL chapter

- as.3-

ASSEMBLER Aztec C68K

for more information about this.

1.2 The Input File

The input file is a text file that will usually be created by a text
editor or the Aztec C68K compiler. The input file is assumed to reside
in the current directory. If it does not, a fully qualified or partially
qualified path name can be prefixed to the file name to designate the
source directory. Although .asm is the recommended file name
extension any extension is acceptable. Do not use filenames without
extensions as input to the assembler. The specification:

aS X

will assemble the file x.asm if there is no file named x in the same
directory. If there is a file named x in the same directory as the input
file the results are unpredictable.

1.3 The Object Code File

The object code produced by the assembler is written to a file. By
default, this file is placed in the directory that contains the source file,
and its name is derived from that of the input file by changing the
extension to .o.

To write the object code to a file in another directory, and/or to a
file having another name, use the -o option. For example, the
following command assembles the source that’s in prog.asm, sending
the object code to the file new.obj. This latter file is placed in the
current directory, since the -o option didn’t specify otherwise.

as -O new.obj prog.asm

1.4 Listing File

If the -Z option is specified, the assembler will produce a listing file
with the same root as the input file and a filename extension of ./st.
The listing file displays the source statements and their machine
language equivalent. The listing also indicates the relative displacement
of each machine instruction.

1.5 Optimizations

The assembler by default performs some optimizations on an
assembly language source file, making just two passes through the
assembly source file. Optimization can be disabled using the -N
option; this causes the asssembler to run faster, since it makes just a
single pass through the source and since it needn’t optimize the code,
but it makes the resultant code larger and slower.

The instructions affected by these optimizations are:

branches Long branches are converted to short if possible, and
branches to the following location will be deleted.

- as.4 -

Aztec C68K ASSEMBLER

movem If there are no registers, the instruction is deleted. If
there is only one register, the shorter move instruction
is substituted.

Jsr bsr 1s substituted if possible.

To make these optimizations, the assembler uses a dynamically-
allocated table. If this table is filled, the assembler will continue, will
generate correct, but not completely optimized, object code, and will
tell you the number of additional entries that it could have used. You
can then recompile the module using the -S option to define a
different table size.

1.6 Searching for include Files

By default the assembler searches just the current directory for files
specified in include statements. It can also search a user-specified
sequence of directories for such files, thus allowing program source
files and header files to be contained in different directories.

The -J option and the INCLUDE environment variable define the
directories in which the assembler will search for include files.

The assembler will automatically search just the current directory
for a include file if the following conditions are met: (1) the assembler
was Started without a -I option having been specified, (2) INCLUDE is
not an environment variable, and (3) the include statement doesn’t
specify the drive and/or directory containing the file.

If a include statement specifies either the drive or directory, just
that location is searched for the file.

1.6.1 The -I option

The -J option defines a single directory to be searched for a file
specified in a include statement. The path descriptor follows the -I,
with no intervening blanks. For example, the specification

as -1Sys:db/include prog]

directs the assembler to search the sys-db/include area when looking
for an include file.

Multiple -7 options can be specified when the assembler is Started,
if desired, thus defining multiple directories to be searched.

1.6.2 The INCLUDE environment variable

The INCLUDE environment variable, if it exists, also defines
directories to be searched for include files. This variable has the same
format as the PATH environment variable; that is, it consists of the
names of the directories to be searched, separated by semicolons. For
example, the following command creates the INCLUDE environment
variable, defining three directories to be searched:

- as.5 -

ASSEMBLER Aztec C68K

set INCLUDE=work:/include;work:;sys:include

These directories are (1) the include directory on the work: volume; (2)
the root directory on the work: volume; (3) the include directory on the
sys. volume.

1.6.3 Include Search Order

When the assembler encounters a include statement, it searches
directories for the file specified in the statement in the following
order:

The current directory is searched.

2. The directories specified in the -J options are searched, in the
order listed on the line that started the assembler;

3. The directories specified in the INCLUDE environment
variable are searched, in the order listed.

- as.6 -

Aztee C68K ASSEMBLER

2. Assembler Options

2.1 Summary of options

-O filename Send object code to filename.

-larea Defines an area to be searched for files specified
in an include statement.

-L Generate listing.

-N Don’t optimize object code.

-S# Create squeeze table having # entries.

-P Generate position-dependent code.

-U# Use address register # as the data segment/jump
table base register.

-V Verbose option. Generate memory _ usage
Statistics.

-ZAP This option is used primarily by the Aztec C68K
C compiler and directs the assembler to delete
the input file after processing.

2.2 Description of options

Multiple options to the assembler should be separated. The
following will produce the desired results:

as -1 -S x.asm

But this will not:

as -Is x.asm

If more than one option follows the - it sometimes happens that
only the first option takes effect. To avoid the problem, specify the
options scparatcly.

The ’-O /filenare’ option

This option causes as to send the object code to filename. If this
option isn’t specified, as sends the object code to a file whose name is
derived from that of the assembler source file by changing the
extension to .o; in this case, the file is placed in the directory
containing the source file.

-I Option

The -/ option causes the assembler to search in a specified area for
files included in the source code.

The name of the area immediately follows the -I, with no

intervening spaces. For example, the following defines directory
/sourcc/inc on volume sys: search arca:

-~as.7 -

ASSEMBLER Aztec C68K

-Isys:/source/inc

For more details, see the Assembler Operating Instructions, above.

The -L option

Causes as to generate a listing. The name of the file to which the
listing is sent is derived from that of the source file by changing the

extension to ./st. The listing file is placed in the directory containing
the source file.

The -S option

The -S option defines the number of entries in the squeeze table.
If this option isn’t specified, the table contains 1000 entries.

The number of entries immediately follows the -S, with no

intervening spaces. For example, the following option tells the

assembler to use a squeeze table containing 1050 entries:

-S1050

The -P option

This option causes the assembler and linker to generate position

dependent code.

If this option isn’t specified, the assembler and linker produce
position independent code. They do this by generating code that makes

memory references as follows:

* Instructions access data in the initialized and uninitialized

data segments via an index register, which is assumed to point

to the first byte beyond the end of the two data segments.
The index register can be specified with the assembler’s -U

option or with the USEA pseudo-op, and defaults to register

AS.

« Instructions that call or jump to locations that are in the code

segment are made PC-relative, if the referenced location is

within 32K bytes of the instruction making the reference.

Otherwise, the call instruction is made to call an item in the

jump table, which in turn jumps to the location in the code

segment. The jump table is pointed at by A5, so the call or

jump instruction in the code segment uses A5 as an index

register.

A program that is assembled without the -P option (ie, that is to be

position independent) doesn’t have to explicitly specify PC-relative

and/or A5-relative addressing in its instructions. The assembler and

linker will automatically generate the correct addressing mode for each

instruction.

- as.8 -

Aztec C68K ASSEMBLER

The -U# option

This option causes the assembler and linker to generate code that
uses address register # to access the program’s data segment and jump
table. If this option isn’t specified, and if the assembler pseudo-op
USEA isn’t specified, address register A5 is used.

- as.9 -

ASSEMBLER Aztec C68K

3. Programmer Information

3.1 Source Program Structure

There are four types of Assembler statements:

1. Comments
2. Instructions
3. Directives
4. Macro Calls

3.1.1 Comments

A comment can appear after a semicolon or after the operand field.
For example:

> this is a comment

link a6,#.2 this is also a comment

3.1.2 Executable Instructions

Executable instructions have the general format:

label operation operand

Labels

Assembler labels can be any length. External labels are only
significant for the first 8 characters. Any additional characters will be
ignored. Valid label characters include letters, numbers, or the special
characters. and _. A label cannot begin with a digit.

Labels that do not start in the first column require a colon suffixed.

Operations

The assembler recognizes all of the mnemonics found in Motorola’s
16-bit MICROPROCESSOR USER’S MANUAL.

To specify a length for instructions which support multiple lengths,
it is sufficient to suffix the instruction mnemonic with:

.B Specifies a length of one byte

.W Specifies a length of 16-bits

.L_ specifies a length of 32-bits

Operands

The operand field consists of one expression, or two expressions
separated by a comma with no imbedded spaces. An expression is
comprised of register mnemonics, symbols, constants, or arithmetic
combinations of symbols or constants.

Symbols or labels represent relocatable or absolute values. An

absolute value is one whose value is known at assembly time. A
relocatable value is one whose value is not known until the program is
actually loaded into memory for execution.

- as.10 -

Aztec C68K ASSEMBLER

Relocatable expressions can only be expressed arithmetically as
sums or differences. The difference between two relocatable
expressions is absolute. The result of summing two _ relocatable
expressions is undefined.

There are five type of constants: octal, binary, decimal,
hexadecimal and string. An octal constant is expressed as an @
followed by a string of digits from the set 0 through 7 such as @123 or
@777. A binary constant is expressed as a % followed by a string of
ones and zeroes such as %10101 or %11001100. A decimal constant is a
string of numbers. A hexadecimal constant is a $ followed by a string
of characters made up of numbers or alphabetics from a through f
such as $ffff or la2e. A string constant is any string of characters
enclosed in single quotes such as ’abdc’.

Register mnemonics include the data register mnemonics DO
through D7, the address registers AO through A7, SP or A7 the stack
pointer, PC the program counter (forces PC relative mode), SR the
Status register, the condition code register CCR. And the user stack
pointer USP.

The assembler supports addition (+), subtraction § (-),
multiplication(*), division (/), shift right (>>), shift left (<<), unary
minus, and (&), or (|). The order of precedence is innermost
parenthesis, unary minus, shift, and/or, multiplication/division, and
addition/subtraction.

3.1.3 Directives

The following paragraphs describe the directives that are supported
by the assembler.

EQU

label equ <expression>

This directive assigns the value of the expression on the right to
the label on the left.

REG

label reg <register list>

This directive assigns the value of the register list to the label.
Forward references are not allowed. A register list consists of a
list of register mames separated by the / character. The -
character may be used to identify an inclusive set of registers.
The following are valid register lists:

aQ-a3/d0-d2/d4
al /a2/a4/a6/d0-d2

- as.1l -

ASSEMBLER Aztec C68K

PUBLIC

[label] public <symbol>[,<symbol>...]

This directive identifies the specified symbols as having external
Scope. These symbols are visable to the linker and are used to
resolve references between modules. The type of the symbol is
CODE if it appears within the code segment and DATA if it
appears within the data segment.

GLOBAL and BSS

[label] global <symbol>,<size>
[label] bss <symbol>,<size>

These directives restore storage for uninitialized data items. The
area is reserved in the uninitialized data area. If global is used
then the data item is known to other modules that are external to
the routine. If bss is used then the data item is local to the
routine in which it is defined.

If a global is defined in more than one module then the linkage
editor will reserve the maximum value of those assigned.

A symbol that appears in both a global and a public directive 1s
located in the initialized data area and the global statements size
parameters are ignored.

ENTRY

[label] entry <symbol>

This directive defines the entry point of the program. Only one
entry can be declared per program. If no entry point is defined,
the first instruction of the first module becomes the default entry
point. The entry point must be in the first 32K of the root
segment.

END

This directive defines the end of the source statements. All files
are closed and the assembler terminates.

CSEG

Assembled output following this directive is output into the code
segment of the program output file.

DSEG

Assembled output following this directive is placed in the
initialized data segment of the program file.

DC - Define Constant

- as.12 -

Aztec C68K ASSEMBLER

[label] dc.b <value>[,<value>, <value> ...]
[label] dc <value>[,<value>, <value> ...]
[label] dc.w <value>[,<value>, <value> ...]
[label] dc.l <value>[,<value>, <value> ...]
[label] dc.b “string”

The dc directive causes one or more fields of memory to be
allocated and initialized.

Each <value> operand causes one field to be allocated and then to
be initialized with the specified value. A <value> can be an
expression. An expression may contain forward references.

For command programs, a value can contain a reference to a
memory location whose address won’t be known until the
program is loaded into memory. In this case, an item for this
value will be added to the program’s relocation table; when the
program is loaded, the field containing this value will be set to

_ the correct value.

Each field for a particular de directive is the same length. A
period followed by b, w, or 1 can be appended to a directive,
defining the field length to be one, two, or four bytes,
respectively. If the field length isn’t specified in this way, it
defaults to 2 bytes.

Fields that are two or four bytes long are aligned on word
boundaries.

The last form listed above for dc allocates a field having exactly
the number of characters in the string, and places the string in it.

DCB - Define Constant Block

[label] dcb.b <size>[,<value>]
[label] dcb <size>[,<value>]
[label] dcb.w <size>[,<value>]
[label] dcb.l <size>[,<value>]

The dcb directive allocates a block of storage containing <size>
fields, and initializes each field with <value>. If <value> isn’t
specified, it’s assumed to be 0.

Each field for a particular dcb directive is the same length. A
period followed by b, w, or 1 can be appended to a directive,
defining the field length to be one, two, or four bytes,
respectively. If the field length isn’t specified in this way, it
defaults to 2 bytes.

Fields that are two or four bytes long are aligned on word
boundaries.

- as.13 -

ASSEMBLER Aztec C68K

DS - Define Storage

[label] ds.b <size>
[label] ds <size>
[label] ds.w <size>
[label] ds.l <size>

This directive allocates a block of storage containing <size>
fields, and sets each field to 0.

Each field for a particular ds directive is the same length. A
period followed by b, w, or 1 can be appended to a directive,
defining the field length to be one, two, or four bytes,
respectively. If the field length isn’t specified in this way, it
defaults to 2 bytes.

Fields that are two or four bytes long are aligned on word
boundaries.

PIND and NOPIND

The pseudo-ops pind and nopind cause the assembler to generate
position-independent and position-dependent code, respectively.

LIST and NOLIST

The directives list and nolist turn on and off, respectively, the
listing of assembly language statements to the listing file.

MLIST and NOMLIST

The directives milist and nomlist specify whether or not the
assembly language statements generated by a macro expansion
should be written to the listing file.

CLIST and NOCLIST

The directives clist and noclist specify whether or not statements
Should be included in the listing file, when the statements were
not assembled as a result of assembler conditional statements. By
default, such statements are not listed.

INCLUDE

include <filename>

This directive causes the contents of the file specified to be
processed by the assembler as if they had appeared at the same
relative location as the include statement.

MACRO and ENDM

- as.14 -

Aztec C68K ASSEMBLER

[label] macro <symbol>

text

endm

The specified symbol is entered in the assembler opcodes table.
The text between the macro and endm is saved in memory. When
the macro symbol is encountered as an opcode the text is placed
in line. Up to nine arguments can be specified. They are
referenced in the macro text as %1 through %9. In expanding a
macro symbolic argument references are replaced by their actual
value.

MEXIT

Upon encountering this directive expansion of the current macro
stops and the assembler scans for the statement following the
ENDM directive.

IF, ELSE, and ENDC

if <test>

[else]

ende
These directives are used to allow conditional assembly of parts
of the input file. The general form of the IF test is:

<exp>
<exp> == <exp> || <exp>= <exp>
<exp> != <exp> | <exp> <> <exp>
strl == ’str2’ || strl’ = ’str2’
strD’ != ’str2’ || str]? <>’ str2’

If the test result is true, then the lines up to an ELSE or ENDC
are assembled. If there is an ELSE, then lines up to the ENDC
are skipped. The skipped lines are not displayed in the listing file
unless the CLIST directive has been used. If the test is false, then
lines are skipped until an ELSE or ENDC is encountered. If it is
an ELSE, then the following lines up to an ENDC are assembled.

USEA

The directive usea n causes the assembler to generate code that
uses address register n to access the program’s jump table or data
segments. By default, A5 is used.

3.2 Interfacing With C

Interfacing 68000 assembly language routines with C is relatively
easy. The linkage conventions are straight forward and simple.

- as.15 -

ASSEMBLER Aztec C68K

Register Conventions

It is the responsibility of an assembly language subroutine to
preserve the values in registers A3 through A7 and D4 through D7.
Register DO through D3 and AO through A2 are available as work
registers. There is no need to preserve the values of work registers for
other routines.

Register DO contains the return value of the subroutine if the
return type is non floating point. If the return value is floating point,
then the return value is in a pseudo register with a global label of f0.
The floating point pseudo register is 10 bytes long. The first bit is the
sign bit. The next 15 bits are the exponent, and the last 8 bytes are the
binary value.

Arguments to Subroutines

Upon entry register A7 points to the stack. The first item on the
stack is a 32 bit absolute return address. The second item on the stack
is the first argument to the subroutine, followed by the second, and so
on. Arguments to C subroutines are passed by value. Therefore
character, integer, long, and floating point arguments are copied onto
the stack by value. Character items are promoted to type int before
being pushed on the stack.

The C Run Time Environment

For an overview of the memory structure of the C run time
environment, refer to the Technical Information chapter. The
following discusses some points of interest to assembly language
programmers in regards to the run time environment.

Programs are loaded into memory starting at the lowest available
memory address. Above the program area is the system heap. Above
the heap, is a free storage area. The free storage area is shared by the
heap and the stack. The stack builds from high memory down while
the heap builds from low memory up. Register A7 always points to the
current top of stack. Above the stack is the initialized data area.
Register A5 points to the top of this data area. Register A5 serves a
dual purpose, it also points to the bottom of the run time jump
transfer table. The use of the jump transfer table is described in the
technical notes section.

Returning From a C Function

To return from a C function it is necessary to restore the values of
registers D4 through D7 and A3 through A7 to the values they had at
entry to the routine, to place the return value, if any, in register DO or
pseudo register f0 if floating point, and to execute an RTS instruction.
It is not necessary to restore values to registers that have not been
changed.

- as.16 -

Aztec C68K ASSEMBLER

Upon return to the calling routine, the stack still contains the
arguments that were passed to the subroutine. The first argument is on
the top of the stack.

3.3 Interfacing With Pascal

Assembly language routines can be written to interface with both C
and Pascal.

The Pascal register usage conventions are the same as those for C
with the exception of register DO. Pascal does not use DO to return
values from functions. Pascal returns from a function with a pointer to
the returned value on the top of the stack or, if the value is four bytes
or less in size, with the returned value itself on the top of the stack.

Pascal expects that upon entry to a subroutine that the top item on
the stack is the return address, that the next entry is the last argument
to the routine, followed by the next to the last argument, and so on.
After the subroutine arguments is a 32-bit field for the return value or
its address. Pascal passes pointers to arguments that are longer than
four bytes. Otherwise the items themselves are placed on the stack.
Character variables are promoted to 16-bit integers and are therefore
right justified. Booleans have a one byte slack byte appended to insure
alignment of other arguments. Booleans are, therefore, left aligned in a
two byte field.

Register preservation rules for Pascal are the same as for C.

Pascal routines when they return do not leave the arguments to the
Subroutine on the stack. The stack instead is positioned to the 32-bit
return value field that followed the arguments. The basic return
sequence for a Pascal routine is, therefore:

* restore registers to initial values if necessary

* place the absolute return address into a register

* position the stack to the return value field

* place the return value or its pointer into the field

* jump to the return address.

- as.17 -

ASSEMBLER Aztec C68K

- as.18 -

Aztec C68K ASSEMBLER

New Options for Assembler (AS)

This appendix describes assembler changes for this release and
should be placed at the end of the Assembler section in your manual.

New Processor Support

The assembler is partly redesigned and supports the MC68010,
MC68020, and the MC68881 instruction sets and addressing modes in
addition to those of the MC68000. The assembler defaults to assuming
that only the MC68000 instructions are valid. The MACHINE and
MC688&8&1 directives enable and/or disable the additional instructions
and addressing modes.

There are a number of new options, replacements, and directives in
this version of the assembler (as). Each will be described in detail.

The following options are new to the assembler

-C Makes large code the default code memory
model. May be overridden by the near code
and/or far code directives.

-D Makes large data the default data memory model.
May be overridden by the near code and/or far
code directives.

-ename[=val] Creates an entry in the symbol table for name
and assigns it the constant value val. If val is not
specified, name is assigned the value 1.

The following options are replaced:

-U# Linker automatically specifies A4 in place of A5
when linking drivers and desk accessories.

-P User specifies compiler +C or assembler -C to
generate large code memory model.

-Snum Newly-designed algorithm generates squeeze
tables. The algorithm is nonrecursive and
therefore no longer requires more than a 4K
stack. Space for the table is now dynamically
allocated, so all instructions should be considered
for squeezing. The new algorithm is orders of
magnitude faster on large files.

as as-app.1 v3.4

ASSEMBLER Aztec C68K

The following new operators are supported:

! - inclusive or
“ - exclusive or
~ - bitwise not
// - modulo

The following new directives are supported:

BLANKS

blanks on/off
blanks yes/no
blanks y/n

This directive controls where the assembler will accept blanks or
tabs in the operand field of the instruction.

The default setting of on allows blanks to be placed between any
two complete items. With this setting all comments must be
preceded by a ”:’.

The blanks off setting treats a blank as the end of the operand
field.

CNOP

v3.4

label cnop niln2

This directive is used to force alignment on any boundary at a
particular offset. The first value, nJ, is an offset while the
second value, n2, specifies the alignment to be used as the base of
the offset. For example, to align to an even word boundary:

cnop 0,2

while to align to a long word boundary:

cnop 0,4

and finally to align to a word beyond a long word boundary:

cnop 2,4

Note that this will only take effect relative to the beginning of
the current module’s code or data. Normally, the linker will not
align individual modules to long word boundaries. So, for this
directive to work, it must either be the first module linked into
the program, or else the +A option of the linker must be used to
force long word alignment of modules.

as-app.2 as

Aztec C68K ASSEMBLER

EQUR

label equr _ register

This directive allows a register to be referenced by an alternate
name. Reference to the new name is made without regard to
case.

EVEN

label even

This directive forces alignment to a word (16 bit) boundary.

FAIL

fail

This directive causes the assembler to generate an error for this
line. This can be used in macros which detect the incorrect
number of arguments and wish to prevent assembly.

FREG

label freg — <tregister list>

This directive is like the REG directive, except that it is used to
specify the floating point registers of the MC68881. The list is
either composed of the floating point registers FPO through FP7
or of the floating point control registers FPIAR/FPCR/FPSR,
but not both.

IFC and IFNC

ifc string 1’,’string 2’
ifnec string 1’, ’string2’

These conditionals check to see if the two strings are equal. If
they are, the ifc will assemble the following code, while ifnc will
skip it.

IFD and IFND

ifd symbol
ifnd symbol

These conditionals check to see if the specified symbol has been
defined or not. If the symbol has been defined, then ifd will
assemble the following code, while ifnd will not.

as as-app.3 v3.4

ASSEMBLER Aztec C68K

OTHER IFS

ifeg absolute _expression
ifgt absolute expression
ifge absolute expression
ifle absolute expression
iflt absolute _expression
ifne absolute expression

These conditionals perform a comparison of the value of the
absolute expression to zero. If the specified condition is true,
then the following assembly language is processed, otherwise it is
skipped.

MACHINE

machine MC6&000
machine MC68&010
machine MC68&020

This directive enables or disables the additional instructions and
addressing modes associated with different processors in the
MC68000 family.

MC68881

mc688s8s1

This directive enables the MC68881 floating point instructions to
be recognized and assembled by the assembler.

SECTION

label — section name,CODE

label section name,DATA

label section name,BSS

This directive performs the same functions as the cseg and dseg
directives. The name parameter, if present, is ignored at the
current time. The type parameter is used to switch from CODE
and back again. If only a name parameter is specified, the type
defaults to CODE.

SET

label — set expression

This directive assigns the value of the absolute expression to the
symbol specified by label. This definition is similar to the EQU
directive, with the exception that this symbol’s value can be
changed with another SET directive.

v3.4 as-app.4 as

Aztec C68K ASSEMBLER

TIL

ttl litle string

This directive sets the title of the current module being
assembled. This directive is implemented for compatibility with
other assemblers and has no effect at the current time.

XDEF and XREF

xdef symbol
xref symbol

These directives are used to specify the definition and reference
of global symbols. Currently these are both mapped onto the
PUBLIC directive.

as as-app.5 v3.4

THE LINKER

- In.1 -

LINKER Aztec C68K

Chapter Contents

The Linke rue... ccsescsscssscsssscsscscsssscsscscssscecessssscessecsececssccesecsesacceceucesencsessaes In
1. Introduction to LInking wii cccssccssscssscsscecsscesscesecesesecsassssescnees 4
2. Using the Linker cic csccsccsssccssccsscccsscscsssessssscseeccssscesseseceececesceees 8

2.1 Starting the Linker wwii cccsscscessccccesssscccsssssecessceeecesenees 8
2.2 Input files vic csessscccssssscccsccccessccecesssecessserscssssesecesssseceessnees 8
2.3 The executable file ooo cccscccssscccesescsccscssscssscescecesenes 9
2.4 LADrArieS wu. secscsssccssssccssssssscsssssssecessscecescessscesssecssscescccecscceeceses 9
2.5 The -L Option co.cc ciccccscecsssccsssscecessccccessssccesssceccessseececsneccecessnecs 10
2.6 The -F Option wiccciiiccccccsssccccsssscsccsscssssececssssssccscesssececscsessseacecs 10
2.7 Where to 0 from here wii ccscsccccsssecccccsccecsssscececsssccecesseecs 11

3. Summary of Linker Options woe llee cceccccsssccscsccceccsecesseecssnacs 12
4. Linker Error Messages .u.......cccccsscsscesscceseccssccecssccesscecsscscessecscccevenees 13

- In.2 -

Aztec C68K LINKER

The Linker

The Manx linker creates executable programs by linking together
the pieces of the program, which, having been compiled and
assembled, are in relocatable object format.

It can create three types of executable programs:

* Command programs, which can be activated by the operator
from the SHELL or the Finder, or by another command
program;

* Drivers, which other programs can call to access devices;

* Desktop accessories, which the operator can activate just like
the standard Macintosh desktop accessories.

A command program can be made larger than available memory by
dividing its code into several segments. Only a program’s segments
containing currently-executing functions need be in memory; when a
memory-resident segment is no longer needed it can be ’unloaded’ and
its memory reused.

- In.3 -

LINKER Intro to linking Aztec C68K

1. Introduction to linking

This section is a brief introduction to linking in general and the
Manx linker in particular. It’s intended for those with limited exposure
to linkers, so if you have such exposure, you may want to skip this
section and continue with the next.

Linking hello.o

It is very unusual for a C program to consist of a single, self-
contained module. Let’s consider a simple program which prints "hello,
world" using the function, printf. The terminology here is precise;
printf is a function and not an intrinsic feature of the language. It is a
function which you might have written, but it already happens to be
provided in the file, c.lib. This file is a library of all the standard 1/o
functions. It also contains many support routines which are called in
the code generated by the compiler. These routines aid in integer
arithmetic, operating system support, etc.

When the linker sees that a call to printf was made, it pulls the
function from the library and combines it with the "hello, world"
program. The link command would look like this:

In hello.o c.lib

When hello.c was compiled, calls were made to some invisible
Support functions in the library. So linking without the standard
library will cause some unfamiliar symbols to be undefined. All
programs will need to be linked with c.lib.

The Linking Process

Since the standard library contains only a limited number of
general purpose functions, all but the most trivial programs are certain
to call user-defined functions. It is up to the linker to connect a
function call with the definition of the function somewhere in the
code.

In the example given below, the linker will find two function calls
in file 1. The reference to funcl is "resolved" when the definition of
funcl is found in the same file. The following command

In filel.o c.lib

will cause an error indicating that func2 is an undefined symbol. The
reason is that the definition of func2 is in another file, namely /file2.0.
The linkage has to include this file in order to be successful:

In filel.o file2.0 c.lib

- In.4 -

Aztec C68K Intro to linking LINKER

file 1 file 2

main() func2()

{
funcl(); return;
func2(); }

}

funcl()

{
return;

}

Libraries

A library is a collection of object files put together by a librarian.
Libraries intended for use with /m must be built with the Manx
librarian, Jibutil This utility is described in the Utility Program
chapter.

All the object files specified to the linker will be "pulled into" the
linkage; they are automatically included in the final executable file.
However, when a library is encountered, it is searched. Only those
modules in the library which satisfy a previous function call are pulled

in.

For Example

Consider the "hello, world" example. Having looked at the module,
hello.o, the linker has built a list of undefined symbols. This list
includes all the global symbols that have been referenced but not
defined. Global variables and all function names are considered to be
global symbols.

The list of undefined’s for hello.o includes the symbol, printf. When
the linker reaches the standard library, this is one of the symbols it
will be looking for. It will discover that printf is defined in a library
module whose name also happens to be printf. (There is not any
necessary relation between the name of a library module and the
functions defined within it.)

The linker pulls in the printf module in order to resolve the
reference to the printf function.

Files are examined in the order in which they are specified on the
command line. So the following linkages are equivalent:

In hello.o

In c.lib hello.o

Since no symbols are undefined when the linker searches c.lib in
the second line, no modules are pulled in. It is good practice to leave
all libraries at the end of the command line, with the standard library

-In.5 -

LINKER Intro to linking Aztec C68K

last of all.

The Order of Library Modules

For the same reason, the order of the modules within a library is
significant. The linker searches a library once, from beginning to end.
If a module is pulled in at any point, and that module introduces a new
undefined symbol, then that symbol is added to the running list of
undefined’s. The linker will not search the library twice to resolve any
references which remain unresolved. A common error lies in the
following situation:

module of program re ferences (function calls)

main.o getinput, do__calc

input.o gets

calc.o put__value

output.o printf

Suppose we build a library to hold the last three modules of this
program. Then our link step will look like this:

In main.o proglib.lib c.lib

But it 1s important that proglib.lib is built in the right order. Let’s
assume that main() calls two functions, getinput() and do_calc().
getinput() is defined in the module, input.o. It in turn calls the standard
library function, gets(). do_calc() is in calc.o and calls put_value().
put__value() is in output.o and calls printf().

What happens at link time if proglib.lib is built as follows?

proglib.lib: input.o
output.o

calc.o

After main.o, the linker has getinput and do_ calc undefined (as well
as some other obscure functions in c./ib). Then it begins the search of
proglib.lib. It looks at the library module, input, first. Since that module
defines getinput, that symbol is taken off the list of undefineds. But
gets 1s added to it.

The symbols do calc and gets are undefined when the linker
examines the module, output. Since neither of these symbols are
defined there, that module is ignored. In the next module, calc, the
reference to do_calc is resolved but put value is a new undefined
symbol.

The linker still has gets and put value undefined. It then moves on
to clib, where gets is resolved. But the call to put value is never

satisfied. The error from the linker will look like this:

- In.6 -

Aztec C68K Intro to linking LINKER

Undefined symbol: put__value__

This means that the module defining put value was not pulled into
the linkage. The reason, as we saw, was that put value was not an
undefined symbol when the output module was passed over. This
problem would not occur with the library built this way:

proglib.lib: input.o
calc.o
output.o

The standard libraries were put together with much care so that this
kind of problem would not arise.

Occasionally it becomes difficult or impossible to build a library so
that all references are resolved. In the example, the problem could be
solved with the following command:

In main.o proglib.lib proglib.lib c.lib

The second time through proglib.lib, the linker will pull in the
module output. The reason this is not the most satisfactory solution is
that the linker has to search the library twice; this will lengthen the
time needed to link.

- In.7 -

LINKER Using the Linker Aztec C68K

2. Using the Linker

As mentioned in the introduction to this chapter, the linker can
create several types of executable programs. Much of the actual use of
the linker is the same, regardless of the type of program generated.

This section describes how the linker is used to create a program,
without getting into information which applies to a particular type of
executable program.

For information specifically related to the creation of commands,
programs, drivers, or desktop accessories, see the appropriate section
of the Technical Information chapter. This section is divided into the
following paragraphs:

2.1 Starting the linker
2.2 Input files
2.3 Output files
2.4 Libraries
2.5 The -L option
2.6 The -F option
2.7 Where to go from here

2.1 Starting the linker

The linker is started with a command of the form:

In [-options] file1 file2 ...

where

[-options]

are linker options and

filel, file2, ...

are the names of files containing object modules and libraries of object
modules.

For example, the very simplest linker command, which will create
an executable "hello, world" program, linking object code in hello.o,
with modules in c.lib, is

In hello.o c.lib

This creates a command program in the file hello, which can be started
by the SHELL.

2.2 Input files

The linker scans the input files in the order in which they are
specified on the command line. If a file contains a single object
module, the module is automatically included in the program being
built.

- In.8 -

Aztec C68K Using the Linker LINKER

If an input file contains a library of object modules, the linker will
make one pass through the library, looking for modules containing a
function which has been called by an already-included module and
which is not in any already-included module. When such a module is
found, it is included in the program being built.

In other words, when scanning a library of object modules, the
linker only includes needed modules in the program it’s building.

A file name passed to the linker has the standard SHELL format.
That is, it consists of an optional volume name, optional path to the
directory containing the file, and the filename itself. The volume
defaults to the current volume and the directory to the current
directory.

2.3 The exeautable file

The name of the file to which the linker writes the executable
program can be specified using the linker’s ’-O’ option. If this option
isn’t used, the linker derives the name of the executable file from that
of the first object module listed on the command line, by deleting the
extension. In the default case, the executable file is placed in the same
directory in which the first object module is located.

For example, the following will link main.o, menu.o and add.o with
the Manx library c.lib, all of which are in the current directory, and
send the executable program to the file named main in the current
directory:

In main.o menu.o add.o c.lib

and the following will link the same modules, placing the output in
sys: / bin/ my prog

In -o sys:/bin/myprog main.o menu.o add.o c.lib

The maximum size of an executable file is 1024K bytes.

2.4 Libraries

Two libraries are provided with Aztec C: clib and mlib. All
programs must be linked with c.lib; in addition to all the non-floating
point functions described in the library chapter, it contains internal
functions which are called by compiled-generated code, such as
functions to process switch statements.

m.lib contains the transcendental floating point functions described
in the library chapter, such as sin, and versions of the functions printf,
fprintf, sprintf, scanf, fscanf, and sscanf. A program which calls any of
these functions must be linked with mJib in addition to clib.
Otherwise, a program needn’t be linked with m2iib. In particular, if it

performs floating point operations without calling any of these
functions, it doesn’t need to be linked with m./id.

- In.9 -

LINKER Using the Linker Aztec C68K

When a program calls a printf- or scanf-type function to perform a

floating point conversion, mJib must be searched by the linker before

clib. The reason for this is that there are two versions of these

functions: the ones that support floating point are in mlib; the others,

which don’t, are in c.lib. If c.lib is searched before mlib when a

program which requires the floating point versions is linked, the non-

floating point version of a function will be used, and the program will

misbehave.

Libraries of user-written object modules can also be searched by

the linker. These are created by the Manx program Jibutil, and must be

searched by the linker before the Manx libraries.

For example,

In prog.o mylib.lib m.lib c.lib

creates an executable program, prog from the object module prog.o,

pulling needed object modules from the libraries mylib.lib, m.lib, and

c. lib.

2.5 The -L option

The -L option provides a convenient way to link programs located
in one directory with libraries located in another.

The -L option is immediately followed by the partial name of a
library file. The linker builds the complete name by prefixing it with
the string associated with the environment variable CLIB and

appending to it the string ".lib".

For example, if the libraries are located in the directory sys./lib,

then CLIB would be set to

sys: /lib/

and the object modules prog.o could be linked with the libraries
mylib.lib, m.lib, and c.lib using the command

In prog.o -Imylib -lm -lc

2.6 The -F option

This option causes the linker to continue reading options file name

from a file; when done, it then continues reading arguments from the

command line. The name of the file follows the -F option.

For example, the following command links prog.o with subl.o,

sub2.0, ..., mlib and c.lib; it reads some file names from the file
prog.tnk:

In -f prog.Ink -Im -lc

where prog.ink contains

- In.10 -

Aztec C68K Using the Linker LINKER

-O prog.out

subl.o sub2.0
sub3.0
sub4.o

2.7 Where to go from here

We have now presented all the information that is independent of
the type of program being generated. For program-specific
information, see the appropriate section of the Technical Information
chapter.

-In.11 -

LINKER Summary of linker options Aztec C68K

3. Summary of Linker options

This section summarizes the linker options. The options are:

-O <file>

-F <file>

-T

-B val

+Of[1]

-N name

-I id

-R attr

Specifies the name of the file to which the
executable program will be sent. If not given, the
name of the file is the same as that of the first
input file, with the extension deleted.

Read linker arguments from the file file.

Produce a symbol table. The table is written to a
file whose name is the same as that of the file
containing the executable code, with extension
sym. Each symbol has an entry in the table
containing the name of the symbol, the number
of the segment containing it, and its offset from
the beginning of the segment. See the -B option
for more information about offsets.

Add the hexadecimal value val to the offset of
segment 0 symbols when producing a symbol
table. This option is used to display the absolute
load addresses of segment 0 symbols.

Produce a Finder-executable command program.

Create a driver.

Create a desktop accessory.

Use the hexadecimal value val as the size of the
stack area for the program. If this option isn’t
specified, a program is given an 8K byte stack
area.

Place the following object modules in code
segment i. If no number is specified, use the first
empty segment. If the segment already exists, the
modules are added to its end.

When creating a driver or desktop accessory,
name 1s used as the name of the created resource.
The name is prepended with a’.’ for drivers and
a ’\0’ for desktop accessories.

When creating a driver or desktop accessory, its
ID number is set to the decimal value id. If this
option isn’t used, the ID number is set to 31

When creating a driver or desktop accessory, its
attributes are set to the hexadecimal value attr.

If this option isn’t used, the attributes are set to
0x30.

- In.12 -

Aztec C68K Summary of linker options LINKER

\
4. Linker Error Messages

This section discusses the error messages that the linker In may
display as it creates an executable program. It’s divided into two
subsections; the first summarizes the messages that Jn can display, and
the second explains the messages.

4.1 Summary of linker error messages

Command line errors:

unknown option ’<bad option letter>’
too few arguments in command line.
No input given!

Cannot have nested -f options.
too few arguments in -f file: <filename>

. Multiple entry points defined N
A
N

B
W
N
>

I/O errors:

7. file <filename>: can’t open
8. Cannot open -f file: <filename>
9. I/Ocrror (<crror number>) reading/ writing output file
10. Cannot write output file
11. Cannot create output file: <filename>
12. Cannot create symbol table output

Corrupted object files:

13. object file is bad!
14. invalid operator in evaluate <hex value>
15. library format is invalid!
16. Cannot read module from <input> on pass2

can’t find symbol, <symbol name>, on pass two
17. Not an object file

Errors in use of Memory:

18. Insufficicnt memory!
19. Too many symbols!

Errors arising from source code:

20. Undcfined symbol: <symbol name>
21. <symbol name> multiply defined
22. passl(<hex valuc>) and pass2(<hex value>) values differ:

symbol type differs on pass two: <symbol name>
23. Branch out of range @pc=<addr>
24. Short branch to next location @pc=<addr>
25. Entry point must be in root segment
26. Entry point must be in first 64K of program

27. Attcmpt to store out of bounds
28. Program is too large to link
29. Attempt to perform rclocation in overlay code

- In.13 -

LINKER Linker Error Messages Aztec C68K

30. data ref to overlay code not in jump table

- In.14 -

Aztec C68K Linker Error Messages LINKER

4.2 Explanation of linker error messages

When started, /m first displays a message on the screen which
indicates that the linker has been loaded and is running. If everything
goes well, the linker will print on the screen several messages listing
the sizes of the programs segments; then the linker will finish. The
linker may encounter an error while it is running, in which case it will
send a message to the screen.

Errors may be reported at a variety of points during the linking
process. /n generates an executable program in two stages, known as
pass | and pass 2. The size messages are printed at the end of pass 1, so
any errors occurring after that have been detected during pass 2 of the
linker.

Following is a list of the messages which the linker will generate in
response to an error. The messages are grouped according to the source
of the errors which cause them. Elements which are variable are
enclosed by angled brackets: <>.

Command line errors:

1. unknown option ’<bad option letter>’

An option letter has been specified which the linker does not
recognize. Only the letter will be ignored; everything else on the
command line has been preserved, and the linker will try to execute
what it has interpreted. See the linker chapter for a list of options
which are supported.

2. too few arguments in command line.

Several of the linker options have an associated value or name, such
as -B 2000. If a needed value is missing, the linker will give this
message and die.

3. No input given!

The linker will quit immediately if not given any input to process.

4. Cannot have nested -f options.

A file which is given as a -f argument can contain any option letter
except -f itself. However, more than one -f is allowed on a command
line.

5. too few arguments in -f file: <filename>

An option letter specified in the file, "filename," requires a value or
name to follow it. If an option appears at the end of the file, its
associated value may not appear back on the command line.

6. Multiple entry points defined

Multiple global symbols have been found that have the same name.

- In.15 -

LINKER Linker Error Messages Aztec C68K

I/O errors:

7, can’t open <filename>, err=<errno>

If any file in the command line cannot be opened, this message
will be sent to the screen, specifying the filename and the current

value of errno.

8. Cannot open -f file: <filename>

A file given with the -f option cannot be opened.

9, I/Oerror (<errno>) reading/writing output file

An error reading or writing the output file probably means there is
no more disk space available. In particular, a block of the output file
was written to disk and then could not be read back. The current value

of errno is given in these messages.

10. Cannot write output file

See error 9.

11. Cannot create output file: <filename>

This message usually indicates that all available directory space on

the disk has been exhausted.

12. Cannot create symbol table output

The -T option was given in the command line, but the file
containing the linkage symbol table cannot be written to disk. It is
possible that there is no more space on the disk.

Corrupted object files

13. object file is bad!

This is the most explicit indication that an object file in the linkage
has been corrupted. The solution is simply to recompile and assemble

the source file. A bad object file will not be discovered until the

second pass of the linker.

14. invalid operator in evaluate <hex value>

This is really the same as error 14. Unless you have changed the

object code by hand, the file has been corrupted.

15. library format is invalid!

A library in the linkage has been corrupted.

16. Cannot read module from <input> on pass2

or
can’t find symbol, <symbol name>, on pass two

Either message indicates that a module has been corrupted between

- In.16 -

Aztec C68K Linker Error Messages LINKER

pass 1 and pass 2. On a multiuser system, it is possible that another
user changed the file while the linker was running. Otherwise, the
error was probably due to a hardware failure.

17. Not an object file

A file given to the linker does not contain relocatable object code
which LN can process. For instance, a source file may have been
included in the link.

Errors in use of memory:

18. Insufficient memory!

The linkage process needs memory space for LN, global and local
symbol tables, and approximately 5K for buffers. Just as with
compilation, most memory use is devoted to the program software and
symbol tables. Since LN is not especially large, only an extremely
complicated linkage might run out of memory.

19. Too many symbols!

This is another way of saying that not enough memory was
available for the symbol tables needed for the linkage.

Errors arising from source code:

20. Undefined symbol: <symbol name>

A global symbol name has remained undefined. This is commonly a
function which has been referenced in the source code but not
included anywhere in the link.

21. <symbol name> multiply defined

A global symbol has been defined more than once. For instance, if
two functions are accidentally given the same name, this message will
be generated.

22. passl(<hex value>) and pass2(<hex value>) values differ:

or
symbol type differs on pass two: <symbol name>

Either of these errors may be generated during pass 2 when error 24
appeared in pass 1. They may be considered a confirmation of what
was discovered in pass | of the linker.

23. Branch out of range @pc=<addr>

A branch or jump instruction was encountered that attempted to
branch farther than it should. This error shouldn’t be generated from C
programs.

-In.17 -

LINKER Linker Error Messages Aztec C68K

24. Short branch to next location @pc=<addi>

The 68K processor doesn’t accept instructions of this type. This
error shouldn’t occur, since the Manx assembler will detect such
instructions and remove them from the object code.

25. Entry point must be in root segment

The entry point for a program must be in the program’s root
segment. For example, this error would be generated if you tried to
link the "hello, world" program with the command:

In hello.o +O -lc

26. Entry point must be in first 64K of program

Not only must a program’s entry point be in the root segment, it
must also be in the first 64K bytes of this segment. The reason for this
is that a 16-bit field in the jump table points to the entry point.

27. Attempt to store out of bounds

This error shouldn’t occur. It indicates a linker bug.

| 28. Program is too large to link

This error shouldn’t occur. It indicates a linker bug.

29. Attempt to perform relocation in overlay code

The only segments of a program which can contain addresses which
must be relocated when the program is loaded are the program’s root
code segment and it’s initialized data segment. The relocation of these
two segments 1s performed when the program is first loaded, by the
Manx-supplied startup code.

30. data ref to overlay code not in jump table

This error is caused by C programs that attempt to initialize a
global pointer to a static function, where the function is contained in
an overlay. Such initialization is permitted when the function is
located in the root segment, but not when it is in another segment.

- In.18 -

Aztec C68K LINKER

New Options for Linker (LN)

These pages describe linker changes for this release and should be
placed at the end of the Linker section of your manual.

The following options are changed in the linker:

System Dependent options are prefixed with a "+", instead of a "-” as
follows:

+A

+D

+I id

+\M

+N name

+R attr

+S val

+7

Creates a desk accessory.

Creates a driver.

Specifies a decimal ID number for driver or desk
accessory.

Produces a finder-executable application.

Gives name to created driver or desk accessory.

Defines hex resource attribute value for driver

or desk accessory.

Defines hex value for size of stack area.

Generates a .map file that may be read and used
by TMON to view symbols as code resource
relative.

System Independent options are prefixed with a "-” as follows:

-F <file> Reads linker arguments from file.

Collects source level debug information and
places it into a .dbg extension file. (To be used
by sdb when it is available.)

Turns off warnings.

Turns off source level debugging file generation.

Specifics verbose link.

Creates code resource SYMS used with db or the
profiler that contains the required symbol table
information.

The following options are removed:

-B Values for all symbols listed in the .sym symbol table file
are now given with a zero offset rather than the Oxcc48
offset previously used.

In In-app.1 v3.4

LINKER Aztec C68K

+R The linker automatically detects MDS rel files and therefore
no longer uses this option. The linker supports both MDS
1.0 and 2.0 object files, including 2.0 libraries.

Other Features

v3.4

* The object module format is changed.

Note: This change, and flexname changes in the compiler,
prohibit linking of old libraries or object files. Use the su
utility included with this release to switch trailing underscores
in assembly source to leading underscores

A new process substantially decreases link time.

The linker automatically adds a ".o" extension to files that
have no extension. It checks the current directory and all
directories defined in the CLIB environment variable. This
means that if you want to link with "segload.o", give the name
and the linker will check the current directory and all the
CLIB directories.

The CLIB environment variable, used to specify where
libraries may be found, supports multiple entries when they
are separated by a’;’. For example, if libraries are in both the
"sys2:lib" and "ram:" directories, then CLIB would be defined
like this:

set CLIB=sys2:lib;ram:lib/

The null entry at the end means to check the current
directory as well.

In-app.2 In

Z- The Text Editor

-z.1l-

Z Aztec C68K

Chapter Contents

Z- the text editor wow eeeeees Z
l. Getting Started0000.0.... 7

1.1 Creating a new file wow ee eeeeee 8
1.2 Editing an existing file 11

2. More commands ..u.......sccssseeseees 16
2.1 IMmtroductioncccsscccscscssesssessees 17
2.2. Paging and scrolling .. 19
2.3. Searching for strings .. seeee 20

2.3.1 The other string search commands 20
2.3.2 Regular expressions 20
2.3.3 Disabling extended pattern matching 21

2.4. Local MOVESccccscecssecsceseeees 23
2.4.1 Moving around on the screen 23
2.4.2 Moving within a line 23
2.4.3 Word movements 24
2.4.4 Moves within C programs 24
2.4.5 Marking and returning 25
2.4.6 Adjusting the screen 26

2.5. Making changesesscsceees . 27
2.5.1 Small changes 27
2.5.2 Operators for deleting and changing text 27
2.5.3 Deleting and changing lines 28
2.5.4 Moving blocks of text .. 28
2.5.5 Duplicating blocks of text 29
2.5.6 Named buffers00000.... 30
2.5.7 Moving text between files 31
2.5.8 Shifting text wc ecescsseees 31
2.5.9 Undoing and redoing changes 31

2.6. Inserting text wciccecesccessseees 32
2.6.1 Additional commands ; 32
2.6.2 Insert mode commands 32

2.7. Macroccccccsccsssececcssssseeeeeees 34
2.7.1 Immediate macro definition 34
2.7.2 Examplescccccccccecesssseceseesnees seccnssccsscccccccscceccees 34
2.7.3, Indirect macro definition. 35
2.7.4 Re-executing MACFOS oo... ese eee seccecessesssescseces 36

2.8 The Ex-like commands _ sessesseeee JO
2.8.1 Addresses in Ex COMMAMNAS uuu. eecescsceesscscsssesesseeeees 38
2.8.2 The ’substitutute’ commana00.... 39
2.8.3 The ’&’ (repeat last substitution) command 40

2.9. Starting and StOpping Z iicceccccscsssssssssssecsssscssssessscecssceenees 4]

-72.2-

Aztec C68K Z

2.10. Accessing files wo. sccssssssseceseccesesescscscscssssssssssssssssessececceseseees 44
2.10.1 File names wwe sccssscsssccssssssescscsssscscsscsssesscesssesescesesces 44
2.10.2 Writing files ooo ccsssesssssscssessscscsscecsesscseeseeceeeesecss 44
2.10.3 Reading files occ ccsccssssscssescsscsesssssssesssececceescceceeees 45
2.10.4 Editing another file wo ccccccscsscccccsscsscecsessesescessceeces 45
ZAO.D File lists 0... ssssscssssesscscsccscescsssssssecsesecsesssssessssesessesseses 47
2.10.6 Tagsccccccsccscssssssscscsscsscsscsscccesescssessssccsesecessssssssssssasseseeses 47
2.10.7 The CTAGS utility occ ccccccscsccccscsscssscescseseeccececes 48

2.11. Executing system commandsc.ccccccscsssessccescecseceecececccecees 50
2.12. Options uc cccccssscsscsccssscsecceccsssssesscsessssscsesssssecsestesseesecsececesecees 51
QL3B. LVS. Vi vecccccssscsssssssscscsssscscsscccscescscssescsceesscsssesessesscsssesecarsecceseees 52
2.14. System dependent featurescccccccccscssccssscescocseccececcececeees 53

2.14.1 Macintosh features oo. ccssssssscssssssssssessoseseecessesececceces 53
3. Command SuMMAry ou... cscscsssscescsesscsesecssssesssscsessesceeesceeesesee. 54

- 2.3 -

- 2.4 -

Aztec C68K

Aztec C68K Z

Z -the text editor

Z is a text editor which is especially useful for creating source
programs in the C programming language. It has the following features:

* It’s very similar to the Unix editor vi if you know vi, you
know Z.

It’s a full-screen editor: the screen acts as a window into the
file being edited.

Z has a wealth of commands, and commands are specified
with just a few keystrokes, allowing editing to be performed
quickly and efficiently. The simple and natural way of
entering commands and the mnemonic assignment of
commands to keys makes the commands easy to remember
and use.

Z has commands for the following:

+ Bringing different sections of a file into view,
+ Inserting text;
+ Making changes to text;
+ Rearranging text by moving blocks of text around and

by inserting text from other files; »
+ Accessing files;
+ Searching for character strings and "regular expressions".

Z has several commands which are useful for editing C
programs: there are commands for finding matching
parentheses, square brackets, and curly braces; for finding the
beginning of the next or preceding function; and for finding
the next or preceding blank line.

Most commands can be easily executed repeatedly.

Sequences of commands, called macros, can be defined and
executed one or more times.

Changes are made to an in-memory copy of a file; the file
itself isn’t changed until a command is explicitly given;

Z has a feature which is useful when editing a large number
of related files: the operator can request that a file containing
a certain function be edited; Z will automatically find the file
and prepare it for editing.

Requirements

Zruns on several systems, including

~ 7.5 -

7, Aztec C68K

* IBM PC, running PCDOS version 2.0 or later
* 8086-based systems running CP/M-86 and using an ADM-3A

or LSI terminal;
* The Macintosh
* The Amiga
* TRS-80, model 4, using TRSDOS

For 8086-based systems, Z requires at least 128KB of memory and
allows you to edit programs containing up to 58 K bytes of text.

For 8080- and Z80-based systems, Z requires 64 KB of memory and
allows you edit programs containing up to 11 K bytes of text.

Components

The Z package contains two programs:

Z, the text editor;

ctags, a utility for creating a file which relates tags to C source
files.

Preview

The remainder of this description of Z is divided into the following

sections:

getting started , which describes how to quickly start using Z;

commands and features , which presents an overview of the
features and commands of Z;

summary , which summarizes the Z commands.

- 2.6 -

Z Getting Started

1. GETTING STARTED

Z is a very powerful tool for creating and editing C source
programs, but its wealth of commands and options can _ be
overwhelming to someone not familiar with it. The purpose of this
chapter is to get you using Z as quickly as possible, by presenting a
small subset of the Z commands, with which programs can be created
and edited. Then, with the ability to create and edit programs, you can
continue reading the rest of this manual at your leisure to learn about
the other features and commands of Z.

This section is divided into two subsections: the first describes how
to create a new C program, and the second how to edit an existing

program.

-Z./ -

Getting Started Creating a new program Z

1.1 Creating a new program

Z is activated by entering a command of the form:

Z hello.c

where heillo.c is the name of the file to be edited. Since we’re creating a
new program, the file doesn’t exist yet, so Z says so by displaying a

message on its status line (which may be either the first or last line of

the display, depending on the system on which Z is running). On

systems that use the first display line for status information, the screen

then looks like this:

"hello.c" no such file or directory
Sia

~~

~~

Cel

with the cursor on the left-hand column of the second line. On systems
that use the last display line for status information, the screen looks

like this:

=

hello.c doesn’t exist

with the cursor on the left-hand column of the first line.

Z is now waiting for you to enter a command.

The screen

As mentioned above, Z uses the one line of the display for

displaying information and for echoing the characters of some

commands which are entered. On the Macintosh, the last line is the

status line; on other systems, the first line is the status line.

The rest of the lines on the screen are used to display text of the

file being edited.

The tilde characters on the screen lines are Zs way of saying that

the end of the file has been reached: these characters are not actually

in the file.

Modes of Z

Z has two modes: command and insert, which allow you to enter

commands and to insert text, respectively.

- 2.8 -

Z, Creating a new program Getting Started

In this section, we'll spend most of our time in insert mode, using
commands only to enter insert mode and to exit Z. When we get to the
next section, in which we edit a file, we’ll discuss more commands.

Insert mode

With Z in insert mode, characters that you type are entered into a
memory-resident buffer; the characters don’t appear in the file until
you exit insert mode and explicitly issue a command which causes Z to
write the buffer to the file.

Z has several commands for entering insert mode; the one we want
to use is 7, which allows text to be entered before the cursor. So type i.
Notice that Z doesn’t echo this command on the screen; it only does
that for a few commands. Notice also that we are in command mode,
as evidenced by the message

<insert mode>

on the right-hand side of the status line.

Now you can enter a program, just as you would on a typewriter.
Notice that the cursor is positioned where the next character will be
entered. Try entering the "hello world" program:

main()

printf("hello, world\n");

When you hit the <return> key after entering the printf line, the
cursor was left positioned on the next line of the screen underneath
the first non-white space character of the preceding line. This feature,
which is known as "autoindent", is useful when creating C programs,
encouraging statements within a compound statement to be indented
and lined up. Autoindent can be disabled and enabled, and we’ll show
you how later.

We want the closing curly brace of the main function to be on the
first column of the line, not indented. So type the backspace key to get
back to the first column, and then type the ’}’ key.

The backspace key can also be used to backspace over characters
that you incorrectly type.

When you’re done inserting the program, hit the escape key to exit
insert mode and return to command mode. The key used as the escape
key varies from system to system. On the IBM PC, the key labeled
ESC is the escape key. On the TRS-80, models III and 4, the key
labeled BREAK is the escape key. And on the Macintosh, the
backquote key, ‘, is the escape key.

- 2.9 -

Getting Started Creating a new program Z

Exiting Z

To write the program you’ve just entered from the text buffer to
the disk file hello.c and then exit Z, type ZZ.

Occasionally you may want to exit Z without writing the text
you’ve entered to a file; in this case, type

:q!

followed by a carriage return, CR.

- 2.10 -

Z, Editing an existing file Getting Started

1.2 Editing an Existing File

In this section we’re going to present a few commands which will

allow you to make changes to an existing file.

Starting and stopping Z

You get in and out of Z when editing an existing file just as you do
when creating a new file. To start Z, enter

z hello.c

where hello.c is the name of the file to be edited. And to stop Z and
save the changes you’ve made, put Z in command mode and enter:

LZ,

Z knows if you made changes to the original text or not; if you did, it
saves the original file by changing the extension of its name to .bak
and then writes the modified text to a new file having the specified
name. If a .bak file with that name already exists, it will be deleted

before the rename occurs.

If you didn’t make any changes, the ZZ command causes Z to halt
without changing any disk files.

The command -g/ will cause Z to halt without writing anything to
the file being edited.

Going back to the startup of Z, Z reads the specified file into the
text buffer, displays the first screenful of the file’s text, displays the
file’s statistics (name, number of lines, number of characters) on the
status line, positions the cursor at the first character of the first line,
and enters command mode, waiting for you to enter a command.

The cursor

Before describing the commands for viewing and changing the text
in Zs memory-resident buffer, we need to discuss the cursor.

In Z, the character position in the text which is pointed at by the
cursor acts as a reference point: most commands perform an action
relative to that position. For example, the i command, described in the
last section, allows you to enter text before the cursor. And the x
command, to be discussed, deletes the character at which the cursor is
located.

So we will be describing two types of commands in this section:
those that move the cursor around in the text, thus bringing different
sections of text into view, and those that modify text in the vicinity of

the cursor.

Moving around in the text: scrolling

The text you created in section 1, for the "hello, world" program,
easily fit on a single screen. But most text files are too large to be

-z.1l1 -

Getting Started Editing an existing file Z

viewed all at once, so we need commands to bring different sections
into view.

Two such commands are the "scroll" commands: "scroll down",
represented by the character control-D, and "scroll up", represented by
control-U. That 1s, to execute the "scroll down" command, you hold
down the control key and then depress the ’D’ key.

The key used as the control key differs from system to system. On
the IBM PC, it’s the key labeled ’Ctrl’. On the Macintosh, it’s the
Cloverleaf key (the key next to the ’Option’ key that has the unusual
symbol).

In the rest of this manual, we will refer to control characters using
notation of the form “D rather than control-D, for brevity. Thus, the
"scroll up" and "scroll down" commands are represented as *U and “D,
respectively.

A scroll command moves the screen up or down in the file,
bringing another half-screen’s worth of text into view. It’s as if the text
was on a reel of tape and the screen is a viewer: scrolling down moves
the viewer down the reel, and scrolling up moves the viewer up the
reel.

When scrolling, the cursor will be left on the same position within
the text after the scroll as before, if that position is still within view.
Otherwise, the cursor is moved to a line in the text which was newly
brought into view.

Moving around in the text: the ’Go’ command

Scrolling is one way to move around in the text, but it’s slow. If we
have a large text file, to which we want to append text, it would take a
long time and many scroll commands to reach the end.

The go command, g, is one way to move rapidly to the point of
interest in the text: entering g by itself will move the cursor to the end
of the text and, if necessary, redraw the screen with the text which
precedes it.

The g command can also be preceded by the number of the line of
interest; in this case, the cursor is moved to the beginning of that line.
So to move back to the first line of text, enter:

Ig
The g command can be used to move to any line within the text,

but since you usually don’t know the numbers of the lines, the g
command is mainly used to move to the beginning and end of the text.

Moving around in the text: string searching

So, scrolling allows us to take a casual stroll through text, and the g
command to move rapidly to the beginning and end of the file. What

- 2.12 -

Z Editing an existing file Getting Started

we need is a command to rapidly move to a specific point in the
middle of the text.

The "string search" command, /, is such a command. When you
enter /, followed by the string of interest, followed by a carriage
return, Z searches forward in the text from the cursor position,
looking for the string If Z reaches the end of the text without finding
the string, it will "Wrap around", and continue searching from the
beginning of the text.

If the string is found, the cursor is positioned at its first character
and, if necessary, the screen is redrawn with its surrounding text.

If the string isn’t found, a message saying so is displayed on the
Status line of the screen and the cursor isn’t moved.

While the "string search" command and its string are being entered,
the characters are displayed on the status line, and normal editing
operations can be used, such as backspacing over mistyped characters.

Z remembers the last string searched for. To repeat the search,
enter the "find next string" command, zn.

Finely tuned moves

With the commands presented up to now, you can move to the area
of interest in the text. The next few paragraphs present commands
which move the cursor from somewhere within the area of interest to
a specific character position, from which changes will be made.

Some commands for this, from the many available in Z, are:

- and CR (carriage return)
Move the cursor up and down one line, respectively,
to the first non-whitespace character on the line;

Space and backspace
Move the cursor right and left, respectively, on the
line on which the cursor is located.

These commands can be preceded by a number, which cause the
command to be performed the specified number of times. For
example,

3-

moves the cursor up three lines, and

5<space>

moves the cursor right five characters. Note that <space> represents
the space bar.

Deleting text

You now have a repetoire of commands which allow you to move
the cursor fairly quickly to any location in a text file. We’re ready to

- 2.13 -

Getting Started Editing an existing file Z

move on to a few commands for modifying the text.

Two such commands, for deleting text, are "delete character", x
and "delete line", dd:

x Deletes the character under the cursor;

>)

dd Deletes the entire line on which the cursor is located.

Each of these commands can be preceded by a number, causing the
command to be repeated the specified number of times. For example,

2x

deletes two characters, and

3dd

deletes three lines.

More insert commands

You already know one command for inserting text: 7, which allows
text to be inserted before the cursor. We need a few more insert
commands:

a Enters insert mode such that text is inserted following
the cursor;

O Creates a blank line below the current line (ie, the
line on which the cursor is located), moves the cursor
to the new line, and enters insert mode;

oO | Same as 0, but the new line is above the current line.

Summary

With the set of commands presented in this chapter, you can edit
any text file. You should continue reading this manual, to learn more
about Z, while you use the basic command set for performing your
editing chores.

You'll find that Z has many more capabilities, which allow you to
perform functions more quickly, with fewer keystrokes, than with the
basic command set, and which allow you to perform functions which
you can’t perform with the basic command set.

The commands in the basic set are listed on the next page.

- 2.14 -

Z Editing an existing file Getting Started

Starting and stopping Z

Z filenameStart Z, and prepare ’filename’ for editing
ZZ. Stop Z, and write modified text to the edit file
:q! Stop Z, without writing anything to the edit file

scrolling

AD Move down half a screenful
AU Move up half a screenful

Moving the cursor

g Move the cursor to the end of the text, or to a specific
line

/str Search for the character string "str" and move the
cursor to it

n Search again, using the same string
- Move cursor up a line
CR Move cursor down a line
space Move cursor right one character
backspace Move cursor left one character

Inserting text

i Insert before cursor
a Insert after cursor
6) Insert new line below current line
O Insert new line above current line

Deleting text

x Delete character under cursor

dd Delete line on which cursor is located

- 7.15 -

COMMANDS Z

2. More commands

In this section we’re going to describe the rest of the features and
commands of Z, building and expanding on the information presented
in the previous chapter. The section is organized into subsections;
some describe a group of related commands, some a particular feature,
and some how to perform a specific function with Z.

- 2.16 -

Z Introduction COMMANDS

2.1 Introduction

Before getting into the Z commands, we want to discuss in more
detail the way that Z displays information on the screen and the way
that commands are entered.

2.1.1 The screen

We’ve already discussed the basic details on Z's use of the screen.
There’s just a few more things to discuss: the display of unprintable
characters and the display of lines which don’t fit on the screen.

2.1.1.1 Displaying unprintable characters

A file edited by Z can contain any character whose ASCII value in
decimal is less than 128, including unprintable characters, such as SOH,
LF, and ESC. Z displays unprintable characters as two characters; the
first is “, and the second is the character whose ASCII value equals
that of the character itself plus 0x40. For example, the unprintable
character SOH is displayed as the pair of characters “A, since the
ASCII value of SOH is 1, and | plus 0x40 is 0x41, which is the ASCII
value for the character ’A’.

2.1.1.2 Displaying lines that don’t fit on the screen

In the previous chapter we said that lines beyond the end of the file
are displayed with the character ~ in the first column of the line on
the screen. When you see the ~ character in the leftmost column of a
line on the screen, this usually signifies that this line of the display
doesn’t contain a line of text. Lines which don’t fit on the screen are
displayed by Z in a similar manner, as you'll soon see.

Z allows lines to be entered which are longer than a screen line.
Normally, Z simply displays such lines on several screen lines. In some
cases, however, the entire line won’t fit on the screen. For example, if
the cursor is positioned at the beginning of the file, it may not be
possible to display the text of an entire big line at the bottom of the
screen. In this case, Z displays an @ character in the first column of
the screen lines on which the text would be displayed.

Thus, when you see the @ character in the leftmost column of a
line on the screen, this usually signifies that the text which would have
appeared on this line of the screen was too big, and not that the @
character is in the text.

2.1.2 Commands

When most commands are entered, Z doesn’t echo the characters
on the screen. For some commands, however, it does. In this latter
category are the commands whose first character begins with - and
with the string scarch commands.

For these commands, the characters are displayed on the screen’s
Status line, and can be backspaced over and reecntered, if necessary.

- z.17 -

COMMANDS Introduction Z

Also, Z doesn’t act on such commands until you type the carriage
return key, CR.

2.1.3 Special Keys

There are two keys that have special meaning for Z: the escape key,
which is used to exit insert mode, and the control key, which is used
in conjunction with another key to generate control characters. The
actual keys used for these functions varies from system to system, as
mentioned in the previous chapter.

The escape key is ESC on the IBM PC. On the TRS-80, models III
and 4, it’s the BREAK key. And on the Macintosh, it’s the backquote
key, °.

The control key is ’Ctr? on the IBM PC. On theMacintosh it’s the
key next to the ’Option’ key that has the cloverleaf symbol.

On the Macintosh, there are times when you want to generate a
backquote, and not escape. For example, backquote is a cursor motion
command to Z. To generate backquote, hold down the control key (the
key next to the option key), and then type backquote.

- 7.18 -

Z Paging and Scrolling COMMANDS

2.2 Paging and Scrolling

In the last chapter we described commands for scrolling through
text, “U and “D. Another pair of commands allow you to page, instead
of scroll, through text. They are *B and “F, which page backwards and
forwards, respectively.

A page command brings the previous or next screenful of text into
view by redrawing the screen with the new text. Whereas scrolling was
described as a viewer moving over a reel of tape, paging can be
described as the turning of pages of a book.

Paging moves you through text more quickly than scrolling does.
However, since paging redraws the screen all at once, while scrolling
changes it gradually, it’s often more difficult to keep a sense of
continuity when paging than when scrolling. As an aid to continuity
when paging, two lines of text which were previously in view are still
in view after paging.

In the discussion of scrolling in the last chapter, we neglected to
mention that the scroll commands can be preceded by a value
specifying the number of lines to be scrolled up or down. If a number
isn’t specified, the last scroll value entered is used; if a scroll value was
never entered, it defaults to half a screen’s worth of lines. Separate
values are maintained for scrolling up and for scrolling down.

The scrolling and paging commands necessarily move the cursor
within the text, but they can’t be used to home the cursor to an exact
position at which changes are to be made. For this, you’ll have to use
commands described in subsequent sections.

- 7.19 -

COMMANDS Searching for Strings Z

2.3 Searching for strings

In the previous chapter, we described the string search command,
/, Which causes Z to scan forward, looking for the string. In this
section, we describe the rest of the searching capabilities of Z. First,
the rest of the string searching commands are described; then, the
capability of Z to match patterns called "regular expressions", of which
specific character strings are a special case, is described.

2.3.1 The other string-searching commands

The other string-searching commands are:

? Behaves like /, but Z finds the previous occurence of
the string rather than the next;

n Repeats the last string-search command;

N Repeats the last string-search command, but in the
opposite direction;

“se WS=0 and :se ws=1
Turns the wrap scan option off or on, respectively.

When Z reaches the end or beginning of text without finding the
string of interest, it normally "wraps around" to the opposite end of the
text and continues the search. It does this because by default the "wrap
scan" option is on. This option can be disabled by entering the "set
option” command:

‘se ws=0

thus causing the search to end when it reaches the end of text. The
option can be reenabled by entering:

‘se ws=1

Note that for this colon command, as for all colon commands,
carriage return must be typed before the command is executed.

2.3.2 Regular expressions

The string you tell Z to search for is actually a "regular expression".
A regular expression is a pattern which is matched to character strings.
The pattern can define a specific sequence of characters which
comprise the string: in this case, only that specific string matches the
pattern. The pattern can also contain special characters which match a
class of characters; in this case, the pattern can match any of a number

of character strings.

For example, one such special construct is square brackets
surrounding a character string; this matches any character in the
enclosed string. So the regular expression

ab[xyz]cd

- 2.20 -

Z, Searching for Strings COMMANDS

matches the strings

abxcd
abycd
abzcd

Another special character is *, which matches any number of
occurences of the preceding pattern. For example, the regular
expression

ab*c

matches many strings, including

ac
abc
abbe

and so on. And the pattern

ab[xyz]*cd

matches many strings, including:

abcd
abxcd
abxycd
abzzxcd

and so on.

The complete list of special characters and constructs that can be
included in regular expressions is:

A

When the first character of a pattern, it matches the
beginning of the line

$ When the last character of a pattern, it matches the
end of the line;
Matches any single character;

< Matches the beginning of a word:
> Matches the end of a word;
[str] Matches any single character in the enclosed string:
[“str] Matches any single character not in the enclosed

String:
[x-y] Matches any character between x and y;
* Matches any number of occurences of the preceding

pattern.

2.3.3 Disabling extended pattern matching

The "magic" option enables and disables the extended pattern
matching capability. To turn off this option, enter:

‘Se ma=0

And to turn it on, enter:

- 2.21 -

COMMANDS Searching for Strings Z

‘se ma=1

By default, extended pattern matching is disabled.

With the magic option off, only the characters * and $ are special
in patterns.

- 7,22 -

Z Local Moves COMMANDS

2.4 Local Moves

In this section we’re going to present more commands for moving
the cursor fairly short distances; up or down a few lines, along the line
on which it’s located, and so on. We’ve already presented several,
namely CR (carriage return), space, and backspace; but there are many
more, reflecting the importance of finely-tuned, quickly-executed
movements to the user.

2.4.1 Moving around on the screen:

Here are some commands for moving the cursor short distances:

h Moves to the left one character;
j Moves down one line, leaving the cursor in the same

column;
k Moves up one line, leaving the cursor in the same

column;
l Moves right one cursor;

The keys “*“H, LF, *K, and “*L are synonyms for h,j,k, and 1,
respectively.

These commands can be preceded by a number, which specifies the
number of times the command is to be repeated.

Z has commands for moving the cursor to the top, middle, and
bottom of the screen; they are H, M, and L, respectively. The cursor is
positioned at the beginning of the line to which it’s moved.

Remember the - command, which moved the cursor up a line, to
the first non-whitespace character? As you might expect, + will move
the cursor down a line, to the first non-whitespace character. + is thus
equivalent to CR, the command presented in the last chapter.

2.4.2 Moving within a line

We’ve alreacy presented several commands for moving the cursor
around within the line on which it’s located:

h, “H, backspace Left one character;
1, “L, space Right one character;

Here are a few more:

A Moves the cursor to the first non-whitespace character
on the line;

0 Moves to the first character on the line;
$ Moves to the last character on the line;

A few commands fetch another character from the keyboard, search
for that character, beginning at the current cursor location, and Icave

the cursor near the character:

f Scan forward, looking for the character, and leave the

~ 2.23 -

COMMANDS Local Moves Z,

cursor on it;
t Same as f, but leave the cursor on the character

preceding the found character;
F Same as f, but scan backwards;
T Same as t, but scan backwards.

Repeat the last f, t, F, or T command;
Repeat the last f, t, F, or T command in the opposite
direction.

w
e

w

Finally, the command | moves the cursor to the column whose
number precedes the command. For example, the following command
moves the cursor to column 56 on the current line:

56|

2.4.3 Word movements

Z has several commands for moving the cursor to the beginning or
end of a word which is near the cursor:

Ww Moves to the beginning of the next word;
b Moves to the beginning of the previous word;
e Moves to the end of the current word.

For the preceding commands, a "word" is defined in the normal
way: a string of alphabetical and numerical characters surrounded by
whitespace or punctuation. There is a variant of each of these
commands, differing only in the definition of a "word": they think that
a word is any string of non-whitespace characters surrounded by
whitespace. The variant of each of these commands is identified by the
same letter, but in upper case instead of lower:

W Moves to the beginning of the next big word;
B Moves to the beginning of the previous big word;
E To the end of the current big word.

Each of these commands can be preceded by a number, specifying
the number of times the command is to be repeated. For example,

Sw

moves forward five words.

The word movement commands will cross line boundaries, if
necessary, to find the word they’re looking for.

2.4.4 Moves within C programs

Z has several commands for moving the cursor within C programs:

]] and [[Move to the opening curly brace, {, of the next or
previous function, respectively;

% Move to the parenthesis, square bracket, or curly
bracket which matches the one on which the cursor is
currently located;

- 2.24 -

Z Local Moves COMMANDS

{ and } Move to the preceding or next blank line.

The [[and]] commands assume that the opening and closing curly
braces for a function are in the first column of a line, and that all
other curly braces are indented.

As an example of the ’*%’ command, given the statement

while (((a = getchar()) != EOF) && (c != ’a’))

with the cursor on the parenthesis immediately following the ’while’,
the % command will move the cursor to the last closing parenthesis on
the line.

2.4.5 Marking and returning

Z has commands which allow you to set markers in the text and
later return to a marker. Twenty six markers are available, identified
by the alphabetical letters.

Unlike the other commands described in this section, these
commands are not limited to moves within the current area of the
cursor - they can move the cursor anywhere within the text.

A marker is set at the current cursor location using the command

mX

where x is the letter with which you want to mark the location.

There are two commands for returning to a marked position:

*x Moves the cursor to the location marked with the
letter ’x’;

x Moves the cursor to the first non-whitespace character
on the line containing the ’x’ marker.

Remember, to generate backquote on the Macintosh, hold down the
control key and then type backquote.

Occasionally, you may accidently move the cursor far from the
desired position. There are two single quote commands for returning
you to the arca from which you moved:

66

Returns the cursor to its exact starting point:
Returns the cursor to the first non-whitespace
Character on the line from which the cursor was
moved.

99

For example, if the cursor is on the line:

if (a>=’m’ && a <= ’72’)

at the character ’<’, then following a command which moves the cursor
far away, the command “ will return the cursor to the ’<’ character,
and the command ” will return it to the beginning of the word ’if.

- 2.25 -

COMMANDS Local Moves Z

2.4.6 Adjusting the screen

The z command is used to redraw the screen, with a certain line at
the top, middle, or bottom of the screen.

To use it, place the cursor on the desired line, then enter the Z
command, followed by one of these characters:

CR To place the line at the top of the screen;
To place it in the middle of the screen;

- To place it at the bottom.

The z command isn’t a true cursor motion command, because the
cursor is in the same position in the text after the command as before.

On the Macintosh, control L repaints the screen.

- 2.26 -

Z Making Changes COMMANDS

2.5 Making changes

That concludes the presentation of cursor movement commands.
The next several sections describe commands for making changes to
the text.

2.5.1 Small changes

In this section we present commands for making small changes.
We’ve already presented two such commands in the previous chapter:

x Which deletes the character at which the cursor is
located;

dd Which deletes the line at which the cursor is located.

The other commands are:

X Delete the character which precedes the cursor; can be
preceded by a count of the number of characters to be
deleted;

D Delete the rest of the line, starting at the cursor
position;

rx Replace the character at the cursor with ’x’;
R Start overlaying characters, beginning at the cursor.

Type the escape key to terminate the command.
(Remember, this key differs from system to system):

S Delete the character at the cursor and enter insert
mode; when preceded by a number, that number of
characters are deleted before entering insert mode;

S Delete the line at the cursor and enter insert mode;
when preceded by a count, that number of lines are
deleted before entering insert mode;

C Delete the rest of the line, beginning at the cursor,
and enter insert mode;

J Join the line on which the cursor is positioned with
the following line; when preceded by a count, that
many lines are joined.

2.5.2 Operators for deleting and changing text

Z has a small number of commands, called operators’, for
modifying text. They all have the same form, consisting of a single
letter command, optionally preceded by a count and always followed
by a cursor motion command. The count specifies the number of times
the command is to be executed. The command affects the text from
the current cursor position to the destination of the cursor motion
command, if the starting and ending position of the cursor are on the
same line. If these positions are on different lines, the command
affects all lines between and including the lines which contain the
starting position and ending positions. |

-Z.27 -

COMMANDS Making Changes Z

In this section, we’re going to describe the operators for deleting

and changing text, d and c:

d Deletes text as defined by the cursor motion
command;

Cc Same as d, but Z enters insert mode following the
deletion.

For example,

dw Deletes text from the current cursor location to the
beginning of the next word;

3dw Deletes text from the cursor to the beginning of the
third word;

d3w Same as *3dw’;;
db Deletes text from the current to the beginning of the

previous word;
d‘a Deletes text from the cursor to the marker ’a’, if the

marker and the starting cursor position are on the
same line. Otherwise, deletes lines from that on which
the cursor is located through that on which the marker
is located; On the Macintosh, generate backquote by
holding down the control key and then typing the
backquote key.

d/var Deletes text either from the cursor to the string "var"
or between the lines at which the cursor is currently
located and that on which the string is located.

d$ Deletes the rest of the characters on the line, and
hence is equivalent to D.

2.5.3 Deleting and changing lines

In the last chapter, we presented a command for deleting lines: dd.
As you can see now, this is a special form of the d command, because
the character following the first d is not a cursor motion command.

For all the operator commands, typing the command character
twice will affect whole lines. Thus, typing cc will clear the line on
which the cursor is located and enter insert mode. Preceding cc with a
number will compress the specified number of lines to a single blank
line and enter insert mode on that line.

2.5.4 Moving blocks of text

When text is deleted using the d or c command, it’s moved to a
buffer called the "unnamed buffer". (There are other buffers available,
which have names. More about them later).

Data in the unnamed buffer can be copied into the main text
buffer using one of the "put" commands:

p Copies the unnamed buffer into the main text buffer,
after the cursor;

- 2.28 -

Z Making Changes COMMANDS

P Same as p, but the text is placed before the cursor.

Thus, the delete and put commands together provide a convenient
way to move blocks of text within a file.

The contents of the unnamed buffer is very volatile: when any
command 1s issued that modifies the text, the text which was modified
is placed in the unnamed buffer. This is done so that the modification
can be ’undone’, if necessary, using one of the ’undo’ commands. For
cxample, if you delete a character using the x command, the deleted
character is placed in the unnamed buffer, replacing whatever was in
there. So you have to be careful when moving text via the unnamed
buffer: if you delete text into the unnamed buffer, expecting to put it
back somewhere, then issue another command which modifies the text
before issuing the put command, the deleted text is no longer in the
unnamed buffer.

As you'll see, the named buffers can also be used to move blocks of
text, and their contents are not volatile.

2.5.5 Duplicating blocks of text: the ’yank’ operator

The ’yank’ operator, y, copies text into the unnamed buffer without
first deleting it from the main text buffer. When used with the ’put’
command, it thus provides a convenient way for duplicating a block of
tcxt.

Since y 18 an opcrator, it has the same form as the other operators:
an optional count, followed by the y command, followed by a cursor
motion command. The command yanks the text from the cursor
position to the destination of the cursor motion command, if the
Starting and cnding positions are on the same line. If they are on
scparate lines, a whole number of lines are yanked, from that on which
the cursor is currently located through that to which the cursor would
be moved by the cursor motion command. The text is yanked into the
unnamed buffer.

For cxamplc,

yw Copics text from the cursor to the next word into the
unnamed buffer;

y3w Copies text from the cursor to the beginning of the
third word;

3yw same as ’y3w?
ya Copies text from the cursor location to the marker ’a’

into the unnamed buffer, if the two positions are on
the same linc. Otherwise, copics entire lines betwecn
and including those containing the two positions.

As a special case, the command yy will yank a specified number of

whole lines. The command Y is a synonym for yy. For example,

yy Yanks the line at which the cursor 1s located;

-~ 7.29 -

COMMANDS Making Changes Z

3Y Yanks three lines, beginning with the one on which
the cursor is located.

2.5.6 Named buffers

In addition to the unnamed buffers, Z has twenty six named
buffers, each identified by a letter of the alphabet, which can used for
rearranging text. Text can be deleted or yanked into a named buffer
and put from it back into the main text buffer.

The advantage of these buffers over the unnamed buffer in
rearranging text is that their contents are not volatile: when you put
something in a named buffer, it stays there, and won’t be overwritten
unexpectedly. Also, as you'll see, the named buffers can be used to
move text from one file to another.

To yank text into a named buffer, use the yank operator, preceded
by a double quote and the buffer name, and followed by a cursor
motion command. For example, the following will yank three words
into the ’a’ buffer:

"ay3w

and the following yanks four lines into the ’b’ buffer, beginning with
the line on which the cursor is located:

"b4yy

Text is deleted into a named buffer in the same way: the delete
command is used, preceded by a double quote and the buffer name.
For example, to delete characters from the cursor to the ’a’ marker
into the ’h’ buffer:

"hd‘a

The preceding command, when the source and destination cursor
positions are on separate lines, will delete a number of whole lines into
the ’h’ buffer, from that on which the cursor is initially located
through that containing the destination position.

As you remember, on the Macintosh, the backquote key is
interpreted as the escape key. To generate a real backquote for use in
the preceding example, you must hold down the control key (the key
with the strange symbol next to the option key) and then type
backquote.

To delete ten lines into the ’c’ buffer:

"clOdd

Text in a named buffer is put back into the main text using the
’put’ commands p and P, preceded by a double quote and the buffer
name. For example:

- 2.30 -

Z Making Changes COMMANDS

ap Puts text from the ’a’ buffer, after the cursor;
zP Puts text from the ’z’ buffer, before the cursor.

2.5.7 Moving text between files

The named buffers are conveniently used to move text from one
file to another. First yank or delete text from one file into a named
buffer; then switch and begin editing the target file, using the -e
command: |

‘e filename

(More on this later). Then move the cursor to the desired position;
then put text from the named buffer.

This technique only works when using named buffers, not with the
unnamed buffer. When switching to a new file, the unnamed buffer is
cleared, but the named buffers are not.

2.5.8 Shifting text

The last two operator commands to introduce are the ’shift’
operators, < and >, which are used to shift text left and right a
tabwidth, respectively.

For example,

>/str

shifts right one tab width the lines from that on which the cursor is
located through that containing the string "str".

Following the standard operator syntax, repeating the shift operator
twice affects a number of whole lines:

5<< Shifts five lines left;
>> Shifts one line right.

2.5.9 Undoing and redoing changes

Z remembers the last change you made, and has a command, i,
which undoes it, restoring the text to its original state.

Z also remembers all the changes which were made to the last line
which was modified. Another ’undo’ command, U, undoes all changes
made to that line.

Finally, the period command, ’.’, reexccutes the last command that
modified text.

-~2z.31 -

COMMANDS Inserting Text Z

2.6 Inserting text

We’ve already presented most of the commands for entering insert

mode:

Append after cursor;
Insert before cursor;
Open new line below cursor;
Open new line above cursor;
Delete to end of line, then enter insert mode;
Delete characters, then enter insert mode;
Delete lines, then enter insert mode; M

m
Y
*
A
O
Q
2
O
"
®

In this section we want to present the remaining few commands for

entering insert mode, and present some other features of insert mode.

2.6.1 Additional insert commands

The other commands for entering insert mode are:

A Append characters at the end of the line on which the
cursor is located. This is equivalent to $a;

I Insert before the first non-whitespace character on the
current line. This is equivalent to “7.

2.6.2 Insert mode commands

Some editing can be done on text entered during insert mode,

using the following control characters:

backspace Delete the last character entered;
“H Same as ’backspace’ character;
“D Same as "backspace’;
aX Erase to beginning of insert on current line;
A r Enter next character into text without attempting to

interpret it

AV is used to enter non-printing characters into the text. For

example, to enter the character ’control-A’ into the text, type

AVAA

That is, hold down the control key, then type the ’V’ key, then the ’A’

key, then release the control key. As mentioned earlicr, non-printing

characters are displayed as two characters: ’*’ followed by a character

whose ASCII code equals that of the non- printing character plus 0x40.

2.6.3 Autoindent

The Z ’autoindent’ option is uscful when entering C programs.

When you are in insert mode and type the ’carriage return’ key, with

the autoindent option enabled, the cursor will be automatically

indented on the new line to the same column on which the first non-
whitespace character appeared on the previous line. This feature 1s

useful for editing C programs because it encourages statements which

- 2.32 -

Z, Inserting Text COMMANDS

are part of the same compound statement to be indented the same
amount, thus making the program more readable.

Z autoindents a line by inserting tab and space characters at the
beginning of a new line. If you don’t want to be indented that much,
you can backspace over these automatically inserted tabs and spaces
until you reach the desired degree of indentation.

The autoindent option can be selectively enabled and disabled using
the ’set options’ command:

‘se ai=0 _ to disable autoindent
‘se ai=l to enable autoindent

When Z is activated, autoindent is enabled.

- 2.33 -

COMMANDS Macros Z

2.7 Macros

Z allows you to define a sequence of commands, called a ’macro’,
and then execute the macro one or more times.

When a macro is defined to Z, it’s placed in a special buffer, called
the macro buffer, and then executed once. There are two ways to
define a macro to Z: immediately and indirectly.

2.7.1 Immediate macro definition

An ’immediate’ macro definition is initiated by typing the
characters

>

Z responds by clearing the status line, displaying these characters on
the line, and waiting for you to enter the sequence of commands.

As you enter the commands, Z displays them on the status line and
enters them immediately into the macro buffer; that’s why it’s called
"immediate macro definition’.

If you make a mistake while entering commands, you can simply
backspace and enter the correct characters.

To terminate the definition, type the carriage return key. Z will
then execute the sequence of commands in the macro buffer. The
contents of this buffer are not altered by executing the macro, so you
can reexecute the macro without reentering it, as described below.

2.7.2 Some examples

The following macro advances the cursor one line, and deletes the
first word on the new line:

+dw

contains two commands: +, which advances the cursor, and dw, which
deletes the word beneath the cursor.

The next macro moves the cursor to the previous line and deletes
the last character on the line:

~5X

It contains three commands: -, which moves the cursor to the previous
line; $, which moves the cursor to the last character on that line; and
x, which deletes the character beneath the cursor.

You can also insert text using a macro. You enter insert mode using
one of the normal insert commands. The characters which follow the
insert command on the macro line, up to a terminating escape
character, are then inserted into the text. The escape character causes

Z to return to command mode and continue executing commands in
the macro which follow the insert command.

- 2.34 -

Z Macros COMMANDS

Remember, the key used as the escape character differs from
system to system. See section | of this chapter for details.

For example, the following macro advances the cursor to the next
line, deletes the second word on the line, inserts the character string
"and furthermore", and deletes the last word on the line:

+wdwiand furthermore<ESC>$bdw

The last macro contains the following commands:

+ Advances the cursor to the next line;
Ww Moves the cursor to the second word on the line;
dw Deletes the word beneath the cursor;
iand furthermore<ESC>

Inserts the text "and furthermore". <ESC> stands for
the escape key;

> Moves the cursor to the last character on the line;
b Moves the cursor to the beginning of the last word on

the line;
dw Deletes that word.

Z also allows you to search for a string from within a macro. Enter
in the macro the ’string search’ command (for example, /), followed
by the string, followed by the ESC character. For example, the
following macro moves the cursor to the word "Ralph" and deletes it:

/Ralph<ESC>dw

It contains the commands

/Ralph<ESC>
Moves the cursor to "Ralph". <ESC> stands for the
escape key;

dw Deletes "Ralph".

The following macro finds "Ralph" and replaces it with "Sarah":

/Ralph<ESC>cwSarah<ESC>

It contains the commands:

/Ralph<ESC>
Moves the cursor to "Ralph";

cwsarah<ESC>
| Changes "Ralph" to "Sarah".

2.7.3 Indirect macro definition

The other way of defining a macro is to yank a line containing a
sequence of commands from the main text buffer into a named buffer
and then have Z move the contents of the named buffer to the macro

buffer.

- 7.35 -

COMMANDS Macros Z

Commands for indirect macro definition are:

(@x Causes Z to move the contents of the ’x’ buffer to the
macro buffer and then execute it once;

XV A synonym for ’@x’.

Indirect macro definition of macros has several advantages over
immediate definition: for one, if a macro defined immediately is
incorrect, you have to reenter the entire macro. With an indirectly
defined macro, you can edit the macro definition in the main text
buffer and then move it back to the macro buffer.

Another advantage is that you can store several macros in the
named buffers and easily reexecute a macro, without having to reenter
it. With immediate definition, when a new macro 1s defined, the
previously defined macro is lost, and must be reentered to be
reexecuted.

One difference between entering macros immediately and via the
text buffer and named buffer concerns the method for specifying the
end of a search string and for exiting insert mode. With immediate
definition, you do this by typing the ESC key directly. For indirect
definition, in which the macro is first entered into the main text
buffer, typing the ESC key would cause Z to exit insert mode, not to
enter the ESC key into to text of the macro. In this case, you enter the
ESC key by first typing control-V, then ESC. This causes Z to enter
the ESC character into the text of the macro and remain in insert
mode.

2.7.4 Re-executing macros

Once a macro is defined and is in the macro buffer, it can be re-
executed by typing one of the commands:

@@
Vv

Preceding the command with a count will cause the macro to be
executed the specified number of times.

2.7.5 Wrapping around during macro execution

Whiie executing a macro, Z may reach the beginning or end of the
text, and want to continue beyond that point. This is especially true
when reexecuting macros. The ’macro wrap” option, wm, specifies
whether Z should terminate the macro execution at that point, or
continue at the opposite end of the text.

This option is enabled and disabled using the ’set options’
command:

‘se wm=0 To disable macro wrapping;
‘se wm=1 To enable it.

- 2.36 -

Macros _ COMMANDS

When Z starts, this option is enabled.

- 2.37 -

COMMANDS Ex Commands Z

2.8 The Ex-like commands

The ’substitute’ and ’repeat last substitution’ commands are part of
a set of commands that are being added to the Z editor and that are
Similar to commands in the UNIX Ex editor. In this section we will
first generally describe the syntax of these commands, then the
substitute’ command, and finally the ’repeat last substitution’
command.

The Ex-like commands consist of a leading colon, followed by zero,
one, or two addresses identifying the lines to be affected by the
command, followed by a single-letter command, followed by command
parameters, and terminated by a carriage return. Most commands have
a default set of lines that they affect, thus frequently allowing you to
enter commands without explicitly specifying a range.

These commands support regular expressions, as defined in the Z
documentation, for identifying addresses and strings to be searched for.

2.8.1 Addresses in Ex commands

An address can be one of the following:

* A period, ., addresses the current line; that is, the line on
which the cursor is located.

* The character $ addresses the last line in the edit buffer.

* A decimal number n addresses the n-th line in the edit buffer.

* °’x addreses the line marked with the mark name x. Lines are

marked with the nz: command.

* A regular expression surrounded by slashes (/) addresses the
first line containing a string that matches the regular
expression. The search begins with the line following the
current line and continues towards the end of the edit buffer.
If a line isn’t found when the end of the buffer is reached,
and if Zs ws option is set to | (ie, by the -se ws=] command)
the search continues at the beginning of the buffer, stopping
when the current line is reached.

* A regular expression surrounded by question marks (?) also
addresses the first line containing a string that matches the
regular expression. But in this case, the search begins with
the line preceding the current line in the edit buffer and
continues towards the beginning of the buffer. If a line isn’t
found when the beginning of the buffer is reached, and if Z’s
ws option is set to 1 (ie, by the «se ws=7 command) the search
continues at the end of the buffer, stopping when the current
line 1s reached.

* An address followed by a plus or a minus sign, which in turn
is followed by a decimal number » addresses the n-th line

- 2.38 -

Z Ex Commands COMMANDS

following or preceding the line identified by the address.

When two addresses are entered to define the range of lines
affected by a command, the addresses are usually scparated by a
comma. They can also be separated by a semicolon; in this latter case,
the current line is set to the line defined by the first address, and then
the line corresponding to the second address is located.

When no value is specified for the first address in an address range,
its assumed to be the current line or the first line in the buffer,
depending on whether the second address was preceded with a comma
or a semicolon. When no value is specified for the second address in
an address range, it’s assumed to be the last line in the buffer. Thus, if
neither the beginning nor the ending address of a range is specified,
the range consists of either all the lines in the buffer or the lines from
the current through the last line in the buffer, depending on whether
comma or semicolon is used to separate the unspecified addresses.

2.8.2 The ’substitute’ command

The substitute’ command has the following form:

-[range]s/pat/rep/[options]

where square brackets surround a parameter to indicate that the
parameter 1s optional.

Z searches the lines specified by range for strings that match the
regular expression pat, replacing them with the rep string. If range
isn’t specified, just the current line is searched. When the command 3s
completed, the cursor is Ieft on the character following the last
replaced string.

Normally, Z automatically replaces a string that matches pat.
Specifying c as an option causes Z instead to pause when it finds a
matching string, ask if you want the string to be rcplaced, and make
the replacement only if you give your permission.

Normally, Z will replace only the first pat-matching string on a line.
Specifying g as an option causes Z instead to replace all matching
Strings on a line; in this case, after Z replaces a string on a linc, it
continues scarching for more strings on the line at the character
following the replaced string.

An ampersand (&) in the replacement string rep is replaced by the
String that matched pat. The special mcaning of & can be suppressed
by preceding it with a backslash, \.

A replacement string consisting of just the percent character (%) is
replaced in the current substitution by the rcplacemcnt string that was
uscd in the last substitution. The special meaning of % can be

suppressed by preceding it with a backslash, \.

~ 7.39 -

COMMANDS Ex Commands Z

2.8.2.1 Examples

:s/abc/def/
Search the line on which the cursor is located for the
string abc; if found, replace it with the string def.

1,$s/ab*c/xyz/
Search all lines in the edit buffer for strings that begin
with a, end in c, and have zero or more b’s in
between; replace such strings with xyz. On any given
line, only the first occurrence of a string that matches
the pattern 1s replaced.

/(/3/}/s/for/while/c
Find the first line following the current line that
contains a {; then find the first line following this line
that contains a }. In the lines between and including
these lines, search for the string for, for each such
string, ask if it should be replaced; if yes, replace it
with while.

2.8.3 The ’& (repeat last substitution) command

The & command has the form

‘[range]&

where brackets indicate that the parameters are optional.

The & command causes the last ’substitute’ command to be
executed again, using the same search pattern, replacement string, and
options as were used in the previous command. The command
searches the lines that are specified in the & command’s range; if range
isn’t specified, the substitution is performed on just the current line.

- 2.40 -

Z Starting and Stopping Z COMMANDS

2.9 Starting and stopping Z

You already know how to start and stop Z, from the previous
chapter. In this section we present more information related to the
Starting and stopping of Z.

2.9.1 Starting Z

In the previous chapter, we said that Z was started by specifying
the name of the file to be edited on the command line:

Z filename

Z can also be started without specifying a file name or by
specifying a list of files to be edited.

2.9.1.1 Starting Z without a filename

When Z is started without a filename being specified, you will
normally tell Z the name of the file to be edited, once it’s active, using
the -e command:

‘e filename

It isn’t absolutely necessary for Z to know the name of the file
you're editing: Z will allow you to create and modify text in the text
buffer without knowing the name of the file to which you intend to
write the text. But then you’ll have to explicitly tell Z to write the text,
using the command

‘w filename

2 can’t automatically write the text, since it doesn’t know which file
you’re editing.

2.9.1.2 Starting Z with a list of files

Z can be started and passed a list of names of files to be edited, as
follows:

Z filel file? ...

Z will remember the list, and make the first file in the list the ’edit
file’; that is, read the file into the main text buffer and allow it to be
edited.

Z has a command, -n, which will make the next file in the list the
edit file, after writing the contents of the text buffer back to the
current edit file.

File lists are discussed in more detail bclow.

2.9.1.3. The options file

Z has several options for controlling its operation in different

Situations. You’ve already met most of them, including the
"autoindent’, ’macro wrap’, and other options. The complete list of

- z.4l -

COMMANDS Starting and Stopping Z Z

options will be presented later. In this section, we want to present
another feature of Z related to options; the ability to set options
automatically, when Z is started.

When Z starts, it will read options from the file named ’z.opt’, if it
exists. Z looks for the file in different places on different systems.

On PCDOS and on the Macintosh, the environment variable ZOPT
defines the name of the options file. If this variable doesn’t exist, or if
the file isn’t found there, Z then looks for the file z.opt on the current
directory on the default drive.

Each line in the options file defines the value of one option, with a
Statement of the form

opt=val

where ’opt’ is the name of the option, and ’val’ is its value. For
example, the following sets the ’tab width’ option to 8 characters:

ts=8

2.9.1.4 Setting options for a file

When Z makes a file the ’edit file’ by reading it into the edit
buffer, the file itself can specify the options to be in effect during its
edit session. This feature is most useful in editing files which have
different tab settings.

A file specifies option values by including strings of the form

‘opt=val

in the first ten lines of the file. For example, the following line could
be used near the front of a C program, causing a tab width of 8
characters to be used:

/* :ts=8 = */

When Z starts editing a file, the tab width is set back to the default

-~ 2.42 -

Z Starting and Stopping Z COMMANDS

value, 4 characters, before the file is scanned for option settings.

2.9.2 Stopping Z

In the preceding chapter we presented the following commands for

Stopping Z.:

ZZ If the file’s text in the edit buffer has been modified,
the text is written to the file, after changing the
extension of the original file to ".bak".

:q! Stops Z without writing the text to the file.

Two other commands for exiting Z are:

“wd Which is the name as ZZ, except that the text in the
main text buffer is always written to the file, even if
no changes have been made;

xe] Which conditionally stops Z. If no changes were made
to the file’s text, Z stops; otherwise, it displays a
message and remains active.

- 2.43 -

COMMANDS Accessing Files Z

2.10 Accessing files

Z has other commands for accessing files besides ZZ and :wq, and
we’re going to discuss them in this chapter.

Z usually knows the name of the file you are editing, and in the
sections that follow we will call this the ’edit file’. Z makes use of this
knowledge, allowing you to write to the edit file without specifying it
by name. For example, the ZZ command writes text to the edit file
without requiring you to enter the name of the file.

Some commands allow you to access files without redefining Z's
idea of the edit file. The commands described in the next two
subsections fall into this category.

Other commands cause Z to terminate editing of one file and begin
editing another; this new file becomes the edit file. The commands
described in the other sections of this section are of this type.

2.10.1 File names

In the Z commands that require a file name, the name is usually
entered using the standard system conventions. However, some
characters are special to Z.:

Refers to the last edit file;
% Refers to the current edit file;
\ Causes the next character to be used in the filename

and not be interpreted.

To enter a file name which contains these characters, precede the
special character with the character ’\’. For example, on PCDOS, to
edit the file

a:\subs\ hello.c

use the command

‘e \\subs\\hello.c

On PCDOS, the ’/’ character can also be used as a separator
between directories and between a directory and file name. Thus, the
above command could also be entered as:

‘¢ /subs/hello.c

2.10.2 Writing files

The command .w writes the contents of the main text buffer to a
file, without redefining the identity of the current edit file. It has the
following forms:

“Ww Write to the current edit file;

[Ww Write to the specified file;
wi Same as ’:w filename’, but the file is overwritten if it

exists.

- 2.44 -

Z Accessing Files COMMANDS

As with all colon commands, carriage return must be typed to cause
Z to execute the command.

When entered without a filename, -w creates a new file having the
name of the current edit file and writes the contents of the edit buffer
to it. This form of the :w command is commonly used to periodically
save text during a long edit session, to guard against system failures.

The option bk tells Z whether it should save the original edit file
before creating a new one. If bk is 1 the original will be saved, and if
QO it won’t. Z saves the original file by changing its name to .bak. An
existing .bak file will be erased before the rename occurs. For details
on setting options, see the Options section.

When a filename is entered with the :w command, the text is
written to that file, if it doesn’t already exist. If it does, nothing is
written, and Z displays a message on the status line: in this case you
must use the .w/ form of the command to overwrite the file.

The -w/ command unconditionally writes the text to the specified
file, after truncating the file, if it exists, so that nothing is in it. Unlike
the ..w command which doesn’t specify a file name, the :w! command
doesn’t save the original file as a ".bak" file.

2.10.3 Reading files

The command

‘ry filename

merges one file with a file being edited, without redefining the
identity of the edit file.

It reads the contents of the specified file into the main text buffer,
inserting the new text following the line on which the cursor is
located. It doesn’t alter text which is already in the edit buffer.

2.10.4 Editing another file

The following commands cause Z to stop editing one file and begin
editing another, which thus becomes the ’edit file”:

"e Edit the specified file:
‘ec! Edit the file, discarding changes to the current edit

file;
:e Reload the current edit file;
:e! Reload the current edit file, discarding changes;
"e Re-edit the previous edit file:

Synonym for ’:e #’. (the command is ’control-*’).

Z begins editing another file by erasing the contents of the main
text buffer and the unnamed buffer, resetting the tab width to four
characters, redrawing the display with the first screenful of lines from
the file, and setting the cursor at the first character in the text.

- 2.45 -

COMMANDS Accessing Files | Z

When switching to a new edit file, Z doesn’t change the contents of
the named buffers. Thus, these buffers can be used to hold text which
is to be moved from one file to another and to contain commonly used
macros.

The command

-e filename

causes the specified file to conditionally become the edit file. The
condition is that changes must not have been made to the text of the
current edit file since it was last written to disk If this condition is
met, then the switch is made; otherwise, Z displays a message on the
status line and nothing is changed: the identity of the edit file is the
same, the contents of the edit buffer are not modified, and the options
are not changed.

If Z doesn’t let you switch edit files when you enter

-e¢ filename

and you want to save the changes to the current edit file, enter the
sequence:

[Ww
‘e filename

You can unconditionally cause Z to begin editing a new file by
entering:

‘ec! filename

In this case, Z doesn’t care whether or not you made changes to the
current edit file since it was last written to disk; it begins editing the
new file without changing the previous edit file.

Sometimes the text in the edit file may get hopelessly scrambled,
and you want to get a fresh copy of the edit file contents. The
command

‘e!

specified without a file name will do just that.

Z not only remembers the name of the current edit file you’re
editing; it remembers the name of the last file you edited as well. Z
allows you to refer to this name using the character ’#’ in :e
commands, thus providing a quick means to re-edit the previous edit
file:

c #

causes the previous edit file to conditionally become the current edit
file, and

- 2.46 -

Z Accessing Files COMMANDS

ie! #

Causes it to unconditionally become the edit file.

The command “% (that is, control-*) is a synonym for ’:e #’.

Z also remembers the position at which the cursor was located in
the previous edit file, and when you begin re-editing this file it sets
the cursor back to this position.

2.10.5 File lists

Z’s ’file list? feature is convenient to use when you have several
files to edit: you pass Z a list of the files and begin editing the first
one. When you're finished with one file, a command switches to the
next file in the list, after automatically saving the changes to the
current edit file. An option to the command prevents Z from saving
changes, and another command "rewinds" the file list so that you’re
back editing the first file in the list again.

There’s two ways to pass the list of files to be edited to Z as
parameters to the command that starts Z, and as parameters to the ’:n’
command. In each case, Z remembers the list and makes the first file
in the list the ’edit file’. For example,

Z filel file2 file3

starts Z and defines the list of files file!, file2, and file3. Z makes file
the edit file; that is, prepares it for editing by reading it into the edit
buffer and displaying its first lines.

When Z is active, the command

in file4 fileS file 6

defines a new list of files: file4 fileS and file6. Z makes file4 the edit
file.

When used without a files list, the ’:n’ command switches from one
file in the list to the next:

n Writes the text in the edit buffer to the current edit
file before switching:

mn! Switches without writing anything to the current cdit
file.

The *:rew command "rewinds" the file list; that is, makes the first
file in the list the edit file. This command behaves like the ’n’
command, in that it by default writes changes to the current edit file
before rewinding; and when an exclamation mark is appended to the
comand, the rewind occurs without writing to the current edit file.

2.10.6 Tags

Z has a feature useful for editing large C programs which contain
many functions distributed over several files. With the aid of a cross-

- 2.47 -

COMMANDS Accessing Files Z

reference file relating ’tags’, that is, function names, to the files
containing them, you simply tell Z the name of the function that you
want to edit and Z makes the file containing it the edit file by reading
it into the edit buffer and positioning the cursor to the function.

The following commands specify the tag of the function to be
edited:

‘ta tag Position to the function named ’tag’ in the appropriate
file, if the current edit file is up to date;

‘tal tag Same as ’:ta tag’, but the switch to the new file occurs
even if the current edit file isn’t up to date.

When using the *:ta’? command, the current edit file is considered
"up to date’ if the text in the edit buffer hasn’t been modified since it
was last written to the file. When used without the trailing ’!, the ’:ta’
command won’t switch edit files if the current edit file isn’t up to date;
itll just display a message on the status line. You can then either write
the text in the edit buffer to the file and re-enter the ’:ta’ command, or
immediately enter the ’:ta!’ command, to switch edit files any vay.

The command

“]

that is, control-], is convenient when, while editing or viewing one
function, you want to edit or examine a function which it calls. You
just set the cursor to the name of the called function and enter ’“]’; Z
will make the file containing the called function the edit file, and
position the cursor to this function.

For example, while examining the file cridyr.c, you may come
across a call to the function pcdvr, and want to take a look at it. By
positioning the cursor at the beginning of the word ’pcdvr’ and typing
A)’, Z will make the file containing pcdvr the edit file and leave the
cursor positioned at this function.

2.10.7 The CTAGS utility

The utility program ctags creates the cross reference file, tags,
which relates function names to the file containing them.

clags 18 activated by a command of the form

ctags file! file2 ...

where filel, ..., are names of files whose functions are to be placed in
the cross reference file. A file name can specify a group of files using
the character ’*’. For example:

*¢

specifics all files whose extension is ".c", and

~ 2.48 -

N Accessing Files COMMANDS

f*c

specifies all files whose first character is ’P and whose extension is ".c".

ctags considers a character string in a file it is scanning to be a
function name, for inclusion in the cross reference file if it’s a valid C
name which begins on the first column of a line and which is
terminated by an open parenthesis character. Thus, the function which
begins

FILE *
fopen(...

would be included in the cross reference, but the function which
begins

FILE * fopen(...

wouldn’t.

ctags creates the cross reference filc, tags, in the current directory
on the default drive.

When a tags command is given, Z searches for this file in locations
which differ from system to system. On PCDOS, it searches for the
file in the current directory on the default drive.

- 2.49 -

COMMANDS Executing System Commands Z

2.11 Executing system commands

On PCDOS, Z has two commands which allow you to execute
system commands while Z is active and then return to Z:

‘!cmd Executes the system command ’cmd’;
of! Re-executes the last command.

For example,

‘!dir *.c

executes the system command ’dir *.c’ and returns to Z.

- 2.50 -

Z

2.12 Options

Options COMMANDS

Z has has several options under user control which define how Z
behaves in certain situations. Most of these options have been
discussed peripherally in previous sections, when appropriate. In this
section we want to focus on the options.

Each option is identified by a code. The options and their codes

are:

al

eb

ma

wm

WS

bk

The ’auto-indent’ option. When this option is enabled
and you begin inserting text on a new line, Z
automatically indents the line by inserting tabs and
spaces so that the first character you type will be
located in the same column as the first non-whitespace
character on the previous line. By default, this option
is enabled.

The ’error bells’ option. When this option is enabled,
Z will beep when you make a mistake. By default, this
option is enabled.

The ’magic’ option. When this option 1s enabled,
regular expessions used in string searches can include
extended pattern matching characters. Otherwise, only
the characters ’*’ and ’$’ are special and the extended
pattern matching constructs are gotten by preceding
them with ”. By default, this option is disabled.

The ’tab set’? option. Specifies the number of
characters between tab settings. By default, the tab
width is four characters.

The ’wrap on macro’ option. When this option 1s
enabled, and a macro being executed reaches the end
of the buffer, the macro will wrap around to the
beginning of the buffer and continue. By default, this
option is enabled.

The ’wrap on search’ option. When this option is
enabled, and a search for a string reaches the end of
the buffer without finding the string, the search
continues at the opposite end of the buffer. By
default, this option is enabled.

This option defines whether Z, when a -w command is
entered to write the edit buffer to the current edit
file, should save the original edit file before creating a

new one.

An option is enabled by setting it to 1, and disabled by setting it to
0.

- 7.51 -

COMMANDS Z vs. Vi Z

2.13 Z vs. Vi

Z is very similar to the UNIX editor VI:

* Both are full-screen editors, display text in the same way, and
reserve one line of the display for messages;

* They have the same two modes: command and insert;

* Z supports most of the Vi commands. The Z commands are
activated by the same keystrokes and perform the same
functions as their Vi counterparts.

Zand Vi differ in the following ways:

x In Z, the buffer in which text is edited is entirely within RAM
memory; in Vi, the buffer is both in memory and on disk. Because
of this, Z is restricted in the size of program that can be edited, but
Vi is not;

A single copy of Vi can be configured to use any type terminal. A
single copy of Z is pre-configured to use just one termin<';

Vi has an underlying editor, ex, whose commands can be executed
while Vi is active. Z doesn’t have an underlying editor. However, Z
does support some ex commands directly; these are the commands
whose first character is *:’. (Vi interprets the *:’ as a request to
execute the ex command which is entered after the ’:’);

Vi has commands and options useful for editing documents and for
editing LISP programs, but Z doesn’t;

With Vi, you can create a shell and suspend Vi while executing
commands from within the new shell. With some Vis, you can also
suspend Vi while executing commands from the shell that activated
Vi. Z doesn’t support either of these features, although it will allow

you to suspend Z while executing a single system command;

Vi saves the last nine deleted blocks of text, and has commands
with which it can recover them, if necessary. Z lets you recover the
last deleted block;

With Vi, operator commands can affect exactly the characters
between the starting and ending cursor positions, even when the
positions are on different lines. It has variations of these commands
which allow whole lines to be affected, between and including the
lines containing the two positions.

In Z, operator commands in which the starting and ending
cursor positions are on different lines always affect whole lines,
between and including the lines containing the two positions.

- 2.52 -

Z System-dependent features COMMANDS

2.14 System-dependent features

2.14.1 Macintosh features

On the Macintosh, Z supports only the Monaco font. It allows
characters to be displayed using either 9- or 12-point size. When 9-
point is used, the screen has 30 lines, each containing 85 characters.
when 12-point is used, the screen has 20 lines, each containing 63
characters.

The environment variable ZS7ZE defines the point size that Z is to
use. The command

set ZSIZE=9

causes Z to use 9-point characters, and

set ZSIZE=12

causes it to use 12-point

- 2.53 -

Command Summary

3. Command Summary

Starting Z

z name

z namel name?

The Display

~ lines
(@ lines
AX

tabs

Options

ai=1/0
eb=1/0
ma=0/1
ts=val
wm=1/0
ws=1/0
bk=1/0

Adjusting the Screen

AF
AB
AD
AU
ZCR
Z

Z.

Positioning within File

edit file name
edit file namel, rest via :n

lines past end of file
lines that don’t fit on screen

control characters
expand to spaces, cursor on last

auto-indent on/off
error bells on/off
magic off/on
tab width (4)
wrap on search when executing macro
wrap on search scan
save original file as .bak

forward screenful
backward screenful
scroll down half screen
scroll up half screen
redraw, current line at top
redraw, current line at bottom
redraw, current line at center

go to line (default is end of file)
go to line (default is end of file)
move cursor to pat searching forwards
move cursor to pat searching backwards
repeat last / or ?
repeat last / or ? in reverse direction
next nae

previous "*{"
find matching (), {}, or [].

- 7.54 -

Z Command Summary

Marking and Returning

previous context
first non-white at previous context

mx mark position with letter ’x’
*x to mark ’x’

> 4 first non-white at mark ’x’

H top of screen
M | middle of screen
L bottom of screen
+ next line, first non-white
CR next line, first non-white
- previous line, first non-white
LF next line, same column
j next line, same column
AK previous line, same column
k previous line, same column

Character Positioning

0 beginning of line
“A first non-white at beginning of line
$ end of line
Space forward a character
AL forward a character
l forward a character
AH backwards a character
h backwards a character
fx find character ’x’ forward
Fx find character ’x’ backwards
tx position before character ’x’ forward
Tx position before character ’x’ backwards
: repeat last f, F, t or T
; repeat last f, F, t or T in reverse

direction
| move to specified column number

- 2.55 -

Command Summary

Words and Paragraphs

Insert and Replace

A
R
o
O
°
o
m
™
p
®

word forward
blank delimited word forward
back word
back blank delimited word
end of word
end of blank delimited word
to next blank line
to previous blank line

append after cursor
append at end of line
insert before cursor
insert before first non-blank in line
open line below current line
open line above current line
replace single character with ’x’
replace characters

Corrections During Insert

erase last character
erase last character
erase to beginning of insert on current line
insert following character directly

delete
delete and insert
left shift
right shift
yank

- 2.56 -

ZL Command Summary

Miscellaneous Operations

D delete rest of line
C change rest of line
S substitute characters
S Substitute lines
J join lines
x delete characters starting at cursor
xX delete characters before cursor
Y yank lines

Yank and Put

p put after current
P put before current
"xp put from buffer ’x’
"xy yank to buffer ’x’
"xd delete to buffer ’x’

Undo and Redo

u undo last change
U restore current line

repeat last change command

Macros

(OX execute macro in buffer ’x’
"XV execute macro in buffer ’x’
@@ repeat last macro
V repeat last macro

- 7.57 -

Command Summary

Colon Commands

‘e name
"€
‘el name

if
AG
in
in!
:n argl arg?
‘rew
‘rewl
:ta tag

‘ta! tag
!omd
“ft

-> Macro

:set optl=val opt2=val ...
‘se optl=val opt2=val ...
‘set all

:[range]s/pat/rep/[options]
[range] &

edit file name
reedit last file
edit file name, discarding changes
reedit last file, discarding changes
edit alternate file
edit alternate file
edit alternate file, discarding changes
read file "name" into current file
write back to file being edited
write back to file and quit
write to file "name" if does not exist
write to file "name", delete if exists
quit

quit, discarding changes
quit, saving file if modified
quit, saving file if modified
Show current file and line
show current file and line
edit next file in list
edit next file in list, discarding changes
specify new list
point back to beginning of list
point back to beginning, discarding changes
position to tag in appropriate file
same as :ta using word at cursor
position to tag, discarding changes
execute cmd, then return (PCDOS only)
re-execute last cmd (PCDOS only)
specify and execute immediate macro

set editor options
set editor options

display current option settings
Substitute rep for pat in range

repeat last substitute command

- 2.58 -

Aztec C68K Z

New Options for Z - Text Editor

These pages describe new features in the Z program editor and
should be placed at the end of the "Z - Text Editor" section in your

manual.

Z now accepts options as part of the command line.

-thame Invokes Z and automatically searches the tags file for
the specified name. If found, the file is opened and
the cursor placed on the appropriate line.

-n# Invokes Z on the first file specified and places the
cursor on the requested line number.

New Features

* The tags command, -ta, searches the file pointed to by the
environment variable TAGS if the tags file does not exist or the

tag is not found in it.

* A new command, -fn, is added. This command takes a string as
an argument and searches the file fiunclist for the specified string.
If the file does not exist, or the string is not found, a check is
made to sec if the environment variable FUNCLIST exists. If so,
the file indicated by the environment variable is searched as well.

If the string is found in one of the files, the entire line (up to
the width of the screen) is displayed that contained the string.
This is most useful for displaying the calling sequence of a
particular function. For example, if FUNCLIST=xxx/manx.c,
where xxx is the path to the file, then typing:

‘fn AllocMem

would display in the command line area a line like:

void *AllocMem/(size,requirements) long size,requirements;{}

This command may also be invoked by placing the cursor on the
name to be searched for and typing the “__ character.

« A new flag setting is available, sm, which is used to indicate
whether or not macros should perform their operation silently.
If non-zero, a macro will perform all iterations and redisplay the

screen when finished.

* The new flag, ak, allows the user to move the cursor via the
keyboard arrow keys when ak is set to a nonzero value. When ak
is not set, the user may use the arrow keys as shortcuts for the

following:

Z, Z-app.1 v3.4

Z Aztec C68K

up arrow - performs :c # to cdit the alternate file
down arrow - performs :fn, using the word the

cursor is positioned on
right arrow - performs “] to scarch the tag file

for the word positioned on

* During insert mode, if a“W is typed, the previous word typed is deleted.

* When activated from the shell, the number of files that can be
specified is limited to 30 instcad of 10,

v3.4 Z-app.2 Z,

yTILITY P
ROGRAMS

_ wtil.t -

UTILITIES Aztec C68K

Chapter Contents

Utility Programs woo... ccccsceces cscssscssesssscssccesseccscscsssseccescececsscesssccescessezes util
AICVcsscccceeccecscceee seceescesescccessccsscceesesseuscsssceesccsscecccssccecssccsesesssscesscesescesecess 4

CAL ceessssceccecceessncescccseusesssccecescecscvscecescccescsescescescuccescssceccascesssecscescsacsssseees 5
6 6
CID cesescescccesccssssvccccecccssesceccececssccesssscececccccssscesecsecuscsescecesacecsesescesenseneeess 8
0) 00 00 9
CIcoseecccccsscccscsccccesscecsssscecsscsecesscececesceccsesccecsesceccesesccesececsecsceeaseccesssssccessenees 12
CDTSIC cssseccecccccscsscescecceccensescsccesceesnseccesseseceeaccescesscesscsescecccsscsssececesseceens 14
CALS ou... ccecesscssssssscceccevcscsssccecsscsscsscccesscssesssececssssesessssesceceseececsarscsesceeesnens 15
GEE oi. ec cccceeesccssccesssssssssecescccssscecceeccessceeceeccssecsccensesessreccesccesseacseneeees 16
OCHO oii... ceccsssssssssscsscvsssccccsssssceesscsssncecesssseascsseseccesescessscecescsssecececessecceeeeees 20
0 ee 21
FAXAttr oo... cccsccscssssccsssccscssccssscccssscececcecsseccecssecsessccecssseceneccecsuceceraseessees ces 23
FLY wooeice, cecsccsssssssccsssssscvcsessececssssccesecescscsscecsssenscessscseccensecessessascessceacestecsees 24
FLOCK voices cccsssssssssscssscecsscccsscccscessccessscessscsssecsccecscesessssccsacecesacesenecesceceesseeuers 33
FUNIOCK wie. ee ceecssesssccesscccsscccesccesescccsssacecersecessececescecssescessssccsesscecsuacensusceees 33
BI CDc05 cccscesscessesscsnscuccecescececcscssssssccesesesscecscevessesccsssssscssecenceesesesevescenenees 25
DA ou... cccsecccsscssscccsessssscccccsssceccscsscecececesescessseacececesesacsecescseccesessuacseseeceaeeccs 31
InstallConsolle oc... ..cccssssssccccsssssccesessccescsssssscecesssssccccessnseccesessscecescssenecs 32
WIDUtIL oo... ccsssscessssocsscccessccessccecesscessesceceseccessscesessecsesececcecsesscecesesescesasoees 33
LOCKcc. cecsscscecesssccecssccescsscccssscccceseccecessscecessneccessnecessesuscessueccscscccesscescenscess 38
IS ...csssee ccsessscscccscesscescccssssccsessssecsesesessccseesesacecsescecaececesenacecesssstecsescessuescesecsuens 39
MACSDUQsccsssssssssccescscesscccescesescssccsssecsseesscsesceseesecscesescesecacecenaececssceees 4]
MAKE 0. csccesssscceececssscceccssssccesascececesesenseesessscaccensnanaceeecesecsecesesseusccesseuecs 50
IMNKALCVccecccccesscsscccssssccscesessrecscscsscccesssssecccsssceseccecescracecscessrecsecesessusessesuens 4
100X0) 00 te 67
MOuntRam woe. ccc ccccescssccssssscecessccccessssecccceseseececceesecsccsescscascesesacecencessns 73
INV .u.ccsee cossccsssssesestscesccscscecasceeesssesscssecscsececesecceecsacsasessssessecescecseescucesecessesceces 69
PISCUUDcsssscccccsssscccccessesceccscscecceccesscececensscesccecscececueesccecseseececececceceueccss 71
DW0. ccsssccessseccssssssccsssscscosssesssssasecscaaceceneceesesssacecserececeseceseecsteccsecueccensnees 72
TEM .o...ce. ccssecsssscsccccccceceececsssscssssesecseecessscecsscecscescssssscssscsecseececesesesseeesessusenens 75
TIM) ou. ..esescecccscececessesescncscssccceccescacsccssscsescsssecescecececccsscanensesescessecesecensusececeesesses 90
TMAKEL ooo... cecseesesecscssccscessssacessscescececesecacecessesuacsesesccenececessseacseesessseesecesens 91
SCEcecccccccecsssssescescecesescsseceeesscsasccccsssssscecescecccesecsscecesssseceescecesecenenserscssnesces 99
SHALE cee esessssssssescsesesssscsscececececescseceesececssseacesuecesaceesnscesseceseecssacesseses 101
SUYDcsee ceccsccccececesescesesessseoeeeecececsessssscsescecusesesessescesessesscesecsssscarsesecececececs 102
COTINc, ececcscecsccescccecccsssscecescecssessscessesesescscesessesesceseesceccceseceeccaceecesesce cece 103
1000) (0\6) Ce 38
UMOUNLscssssssesseseseesecesescssessesssececuenscsceeceesstssssssssssessrsstssensssessseesssseseces 67

- util.2 -

Aztec C68K
UTILITIES

Utility Programs

whose code is built into the

commands
with this package.

This chapter describes
that are provided

SHELL and utility programs

~ util.3 -

ARCV Program commands ARCV

NAME

arcv & mkarcv - source dearchiver & archiver

SYNOPSIS

arcy arcfile

mkarcv arcfile

DESCRIPTION

arcy extracts the source from the archive arcfile, which has been
previously created by mkarcv, placing the results in separate files in the
current directory.

mkarcy creates the archive file arcfile, placing in it the files whose
names it reads from its standard input. Only one file name is read
from a standard input line.

EXAMPLES

For example, the file header.arc contains the source for all the
header files. To create these header files, enter:

arcv header.arc

The files will be created in the current directory.

The following command creates the archive myarc.arc containing
the files in.c, out.c, and hello.c.

mkarcv myarc.arec <myarc.bld

The names of the three files are contained in the file myarc.bld:

in.c
out.c

hello.c

- util.4 -

CAT
Builtin comm and

CAT

NAME

cat - catenate and print

SYNOPSIS

cat [file] [file] ...

DESCRIPTION

cat reads each file in sequence and writes it to its standard output

device. If no files are specified, cal reads from its standard input

device.

cat will only read a file’s data fork. Hence, it can be used to copy

files such as those containing C source and object code, but not files

containing a resource fork, such as the linker- created files which

contain executable code and standard Macintosh application files.

Each argument can specify a complete or partial file name, in the

normal manner.

By default, cat’s standard input and output devices are assigned to

the console. Either or both can also be redirected to another device or

file, if desired, in the normal fashion. |

The code for cat is built into the SHELL.

EXAMPLES

cat hello.c

Writes hello.c to the screen.

cat data:/hello.c input.c >. bout

Writes data:/hello.c and input.c, in that order, to the .bout

device.

cat

Copies typed characters to the screen.

cat >../newfile

Copies typed characters to .. /new file.

cat <sys:/stdio/ printf.c
>tmp.c

Equivalent to cat sys:/ stdio/ printf.c >tmp.c.

SEE ALSO

cp

-~ util.5 -

CD

NAME

Builtin command CD

cd - change current directory

SYNOPSIS

cd directory

DESCRIPTION

cd makes the specified directory the current directory. If the
directory doesn’t exist, it is created.

If cd creates a directory, and then another cd command is issued
before any files are created in the new current directory, the new
directory will disappear.

The directory argument has the format:

[vol:][path]

where:

vol:

path

Defines the volume containing the new current
directory. vol can be the name of the volume. If the
volume is in a drive, it can also be the number of the
drive. If not specified, it?s assumed to be the volume
containing the directory which was current before the
cd command was issued.

Defines the path of directories which must be passed
through to reach the new current directory. The path
can define a complete path from the root directory on
the specified volume, or it can define a partial path,
which is assumed to begin at the current directory. If
the path isn’t defined, the root directory on the
specified volume is made the current directory; in this
case, the volume component must be specified.

The code for cd is contained in the SHELL.

EXAMPLES

cd data: /work

The /work directory on the volume data: is made the
current directory.

cd /subs/10

The directory /subs/io, on the volume which contained the
current directory before the issuance of this command, is
made the current directory.

- util.6 -

CD
Builtin command

CD

cd subs/10

The directory
i0, which iS reached from the current

directory
by passing, through the subdirector

y subs of the

current directory
and then into 10, ig made the current

directory.
For example,

‘¢ data:/ work
 Was the current

directory; then after this command,
data: / work

 / subs /io %s

the new current directory.

cd ..

The current directory
is set tO the parent directory

of the

directory
which was current before the issuance of this

command.

cd ../ include

The current directory is set tO the directory which 1S

reached by passing, through the parent directory
of the

directory
which was current before the issuance of this

command
and then to its include subdirector

y:

cd ../.

The current directory
is set to the directory

which 1s

reached by passing, through the parent directory of the

directory which was current before the issuance of this

command
and then to its parent directory.

- util.7 -

CMP Utility program CMP

NAME

cmp - File comparison utility

SYNOPSIS

cmp [-I] [-r] filel file2

DESCRIPTION

cmp compares two files on a character-by-character basis. When it
finds a difference, it displays a message, giving the offset from the
beginning of the file.

The files’ resource forks will be compared if the -r option is
specified; otherwise, their data forks are compared.

If the -/ option isn’t specified, the program will stop after the first
difference, displaying a message in the format:

Files differ: character 10

If the -2 option is specified, cmp will list all differences, in the
format

decimal-offset hex-offset filel-valuefile2-value

EXAMPLES

cmp ofst ntst

Files differ: character 10

and

cmp -1 otst ntst

10 a 0045
100 64: la 23

- util.8 -

CNM
Aztec Utility Program

CNM

NAME

cnm - display object

SYNOPSIS

cnm [-s} file [file |

DESCRIPTIO
N

cnm displays the

files can be object m

object modules cr

file info

of its object file arguments. The

the Manx assembler,
libraries of

nker, and ‘rom’ files created by

erlay root.

formation for the

size and symbols

odules created by

by the Manx li
d

linker during the linking of an OV

the Manx

The -s option telis cnm to just display the size in

files. ys the size and symbols for the

For example, the following displa

ule subl.0, the library c.lib, and the rsm file root.rsnt

object mod

enm subl.o c.lib root.rsm

the snformation
is sent to the

e normal way. For example, the

redirected
to a file or device in th

following commands
send information

 about subl.o to the display, and

the file disp file, respectively:

By default,

cnm subl.o

cnm subl.o 7 dispfile

cnm >.bout subl.o

A. filename can optionally
specify multiple files, using the

* These have their standard meanings: ?

ore characters.
For

"wildcard"
characters

? and *.

matches 4 single character,
* matches Zero or m

example
li files with extent axe

has three characters

Specifies 4

Specifies all files whose filename

and whose extent 1S li

the first of which 1s a’,
ed’ symbols, th:

bout an program’s
*nam

her than a doll

cnm displays information
4

is, about the sy™ ols whose first two characters are ot

sign followed by 4 igit. For example, the symbol quad 1s name

snformation
 @ out it would be displayed,

the symbo $0123

unnamed, SO snformation
 about it would not be displayed.

For each named symbol in a program,
cnm displays its name, a CC

specifying
its type, an an associated

value. e value displa’

f the symbol. or lo

depends on the type 0

A type code is aS
can be either upper

case, specifying that the sym
r local to the progt

respectively.
 The types codes are:

ingle character, and

bol 1s global 0

- util.9 -

SET Builtin command SET

bus error
address error
illegal instruction
divide by zero

line 1111 (unimplemented op code)

By default, the SHELL won’t trap these errors; in this case, one of
these errors will cause the Macintosh to bomb, and the system will
have to be rebooted.

When an error is trapped, the SHELL displays on the screen the
contents of the registers and the error type.

- util.100 -

SHIFT Builtin command SHIFT

NAME

shift - shift exec file variables

SYNOPSIS

shift [n]

DESCRIPTION

shift causes the values assigned to an exec file variable to be
reassigned to the next lower-numbered exec file variable. n is the
number of the lowest-numbered variable whose value is to be
reassigned, and defaults to 1.

Thus,

shift

causes the exec file variable $1 to be assigned the value of $2, $2 to be
assigned the value of $3, and so on. The original value assigned to $1 is
lost. When all arguments to the exec file have been shifted out, $1 is
assigned the null string.

EXAMPLES

The following exec file, del, is passed a directory as its first
argument and the names of files within the directory that are to be
removed:

setj=$1
shift
loop i in $*
rm $j/$1
eloop

In this example, 7 is an environment variable. The first two statements
in the exec file save the name of the directory and then shift the
directory name out of the exec file variables.

The loop then repeatedly calls rm to remove one of the specified
files from the directory.

Entering

del sys:/ work *. bak

will remove all files having extension .bak from the directory
sys:/ work.

- util.101 -

STYP Builtin command STYP

NAME

styp - set file type

SYNOPSIS

styp type creator filel file2 ..

DESCRIPTION

styp sets the type and the creator fields of the specified files.

- util.102 -

TERM Program command TERM

NAME

term - terminal emulation program

SYNOPSIS

term

DESCRIPTION

term is a terminal emulation program that allows source files to be
transferred from another computer to the Macintosh.

To transfer a file, select "FILE XFER" from the FILE menu
displayed by the term program. term will then prompt for the name of a
file. Type the name of the file, followed by carriage return.

Now tell the host computer to start sending the source file: if the
Macintosh is acting as the console of the host computer, enter, on the
Macintosh keyboard, the command necessary to start displaying on the
screen the file to be transferred. Otherwise, enter, on the host
computer’s console, whatever command is necessary to start the other
computer sending the text down the serial communications line.

The term program will display a ’.’ for each line that is transferred.
When the file is transferred (and the dots stop being printed), select
"FILE XFER" from the FILE menu again to close the file and return
to normal terminal mode.

- util.103 -

TERM Program command TERM

- util.104 -

LB Object file librarian LB

NAME

Ib - object file librarian

SYNOPSIS

Ib library [options] [mod1 mod? ...]

DESCRIPTION

lb is a program that creates and manipulates libraries of object

modules. The modules must be created by the Manx assembler.

This description of /b is divided into three sections: the first describes

briefly /b’s arguments and options, the second /b’s basic features, and

the third the rest of /b’s features.

1. The arguments to /b

1.1 The library argument

When started, /b acts upon a single library file. The first argument to

lb (library, in the synopsis) is the name of this file. The filename

extension for /ibrary is optional; if not specified, it’s assumed to be ./ib.

1.2 The options argument

There are two types of options argument: function code options, and

qualifier options. These options will be summarized in the following

paragraphs, and then described in detail below.

1.2.1 Function code options When lb is started, it performs one

function on the specified library, as defined by the options argument.

The functions that /b can perform, and their corresponding option

codes, are:

Util-app.1 V3.4

LB Object file librarian LB

function code

create a library (no code)
add modules to a library -a, -1, -b
list library modules -t
move modules within a library -m

replace modules -r

delete modules -d

extract modules -X

ensure module uniqueness -u

define module extension -e

help -h

In the synopsis, the options argument is surrounded by square brackets.
This indicates that the argument is optional: if a code isn’t specified, /b
assumes that a library is to be created.

1.2.2 Qualifier options In addition to a function code, the options
argument can optionally specify a qualifier, that modifies /b’s behavior
as it is performing the requested function. The qualifiers and their
codes are:

verbose -V

Silent -S

The qualifier can be included in the same argument as the function
code, or as a separate argument. For example, to cause Jb to append
modules to a library, and be silent when doing it, any of the following
option arguments could be specified:

“aS

-Sa

-a -S

-S -a

1.3 The od arguments

The arguments mod1, mod2, etc. are the names of the object modules,
or the files containing these modules, that /b is to use. For some
functions, /b requires an object module name, and for others it
requires the name of a file containing an object module. In the latter
case, the file’s extension is optional; if not specified, the Jb that’s
supplied with native Aztec C systems assumes that it is .o, and the Jb

V3.4 Util-app.2

LB Object file librarian LB

that’s supplied with cross development versions of Aztec C assumes

that the extension is .r. You can explicitly define the default module
extension using the -e option.

1.4 Reading arguments from another file

lb has a special argument, -f filename, that causes it to read command

line arguments from the specified file. When done, it continues

reading arguments from the command line. Arguments can be read

from more than one file, but the file specified in a -f filename

argument can’t itself contain a -f filename argument.

2. Basic features of /b

In this section we want to describe the basic features of /b. With this

knowledge in hand, you can start using /b, and then read about the rest

of the features of /b at your leisure.

The basic things you need to know about /b, and which thus are

described in this section, are:

* How to create a library

* How to list the names of modules in a library

* How modules get their names

* Order of modules in a library

* Getting /b arguments from a file

Thus, with the information presented in this section you can create

libraries and get a list of the modules in libraries. The third section of

this description shows you how to modify selected modules within a
library.

2.1 Creating a Library

A library is created by starting Jb with a command line that specifies

the name of the library file to be created and the names of the files

whose object modules are to be copied into the library. It doesn’t

contain a function code, and it’s this absence of a function code that

tells /b that it is to create a library.

For example, the following command creates the library exmpl.lib,

copying into it the object modules that are in the files obj/.o and

0b j2.0:

Util-app.3 V3.4

LB Object file librarian LB

lb exmpl.lib objl.o obj2.0

Making use of /b’s assumptions about file names for which no
extension is specified, the following command is equivalent to the
above command:

Ib exmpl objl obj2

An object module file from which modules are read into a new library
can itself be a library created by /b. In this case, all the modules in the
input library are copied into the new library.

2.1.1 The temporary library When Ib creates a library or modifies an
existing library, it first creates a new library with a temporary name.
If the function was successfully performed, /b erases the file having the
same name as the specified library, and then renames the new library,
giving it the name of the specified library. Thus, /b makes sure it can
create a library before erasing an existing one.

Note that there must be room on the disk for both the old library and
the new.

2.2 Getting the table of contents for a library

To list the names of the modules in a library, use /b’s -t option. For
example, the following command lists the modules that are in exmplL lib:

Ib exmpl -t

The list will include some **D/R** entries. These identify blocks
within the library that contain control information. They are created
and deleted automatically as needed, and cannot be changed by you.

2.3 How modules get their names

When a module is copied into a library from a file containing a single
object module (that is, from an object module generated by the Manx
assembler), the name of the module within the library is derived from
the name of the input file by deleting the input file’s volume, path,
and extension components.

For example, in the example given above, the names of the object
modules in exmpl.lib are objl and obj2.

An input file can itself be a library. In this case, a module’s name in
the new library is the same as its name in the input library.

V3.4 Util-app.4

LB Object file librarian LB

2.4 Order in a library

The order of modules in a library is important, since the linker makes

only a single pass through a library when it is searching for modules.

For a discussion of this, see the tutorial section of the Linker chapter.

When /b creates a library, it places modules in the library in the order

in which it reads them. Thus, in the example given above, the

modules will be in the library in the following order:

objl obj2

As another example, suppose that the library oldlib.lib contains the

following modules, in the order specified:

subl sub2 = sub3

If the library newlib.lib is created with the command

Ib newlib mod! oldlib.lib mod2 mod3

the contents of the newly-created newlib.lib will be:

modi subl sub2 sub3 mod2 mod3

The ord utility program can be used to create a library whose modules

are optimally sorted. For information, see its description later in this

chapter.

2.5 Getting /b arguments from a file

For libraries containing many modules, it is frequently inconvenient,

if not impossible, to enter all the arguments to /b on a single command

line. In this case, /b’s -f filename feature can be of use: when /b finds

this option, it opens the specified file and starts reading command

arguments from it. After finishing the file, it continues to scan the
command line.

For example, suppose the file build contains the line

exmpl objl obj2

Then entering the command

lb -f build

causes /b to get its arguments from the file build, which causes /b to

create the library exmpl.lib containing obj] and obj2.

Util-app.5 V3.4

CNM Aztec Utility Program CNM

The symbol was defined using the assembler’s
EQUATE directive. The value listed is the equated
value of its symbol

The compiler doesn’t generate symbols of this type.

The symbol is in the code segment. The value is the
offset of the symbol within the code segment.

The compiler generates this type symbol for function
names; static functions are local to the function, and
so have type & all other functions are global, that is,
callable from other programs, and hence have type T.

The symbol is in the data segment. The value is the
offset of the symbol from the start of the data
segment.

The compiler generates symbols of this type for
initialized variables which are declared outside any
function. Static variables are local to the program and
so have type d; all other variables are global, that is,
accessable from other programs, and hence have type
D.

The symbol is the name of a common block. The
value is the size of the common block, in bytes. C is
in upper case because common block names are always
global.

The compiler doesn’t generate this type symbol.

The symbol is defined within a common block. The
value is the offset of the symbol from the beginning
of the common block.

The compiler doesn’t generate this type symbol

The symbol is used but not defined within the
program. The value has no meaning.

The compiler generates U symbols for functions that
are called but not defined within the program, for
variables that are declared to be extern and which are
actually used within the program, and for
uninitialized, global dimensionless arrays. Variables
which are declared to be extern but which are not used
within the program do not make it to the object file.

The compiler generates u symbols for variables which
are used but not defined within the program.

- util.10 -

LB Object file librarian LB

Arguments in a -f file can be separated by any sequence of whitespace
characters (’whitespace’ being blanks, tabs, and newlines). Thus,
arguments in a -f file can be on separate lines, if desired.

The /b command line can contain multiple -f arguments, allowing /b
arguments to be read from several files. For example, if some of the
object modules that are to be placed in exmpllib are defined in
arith.inc, input.inc, and output.inc, then the following command could be
used to create exmpl lib:

Ib exmpl -f arith.inc -f input.inc -f outputinc

A -f file can contain any valid /b argument, except for another -f. That
is, -f files can’t be nested.

3. Advanced /+ features

In this section we describe the rest of the functions that /b can
perform. These primarily involve manipulating selected modules
within a library.

3.1 Adding modules to a library

lb allows you to add modules to an existing library. The modules can
be added before or after a specified module in the library or can be
added to the beginning or end of the library.

The options that select /b’s add function are:

option function
-b target add modules before the module target
-1 target same as -b target
-a target add modules after the module target
-b+ add modules to the beginning of the library
-i+ same as -b+
-at add modules to the end of the library

In an /b command that selects the add function, the names of the files
containing modules to be added follows the add option code (and the
target module name, when appropriate). A file can contain a single
module or a library of modules.

Modules are added in the order that they are specified. If a library is
to be added, its modules are added in the order they occur in the input
library.

V3.4 Util-app.6

LB Object file librarian LB

3.1.1 Adding modules be fore an existing module As an example of the
addition of modules before a selected module, suppose that the library

exmpl.lib contains the modules

obj] obj2 obj3

The command

Ib exmpl -1 obj2 mod! mod2

adds the modules in the files modJ.o and mod2.0 to exmpl.lib, placing

them before the module 0bj2. The resultant exmpl.lib looking like this:

obj! modl mod2 obj2 obj3

Note that in the / command we didn’t need to specify the extension

of either the file containing the library to which modules were to be

added or the extension of the files containing the modules to be added.

/b assumed that the extension of the file containing the target library

was ./ib, and that the extension of the other files was .o.

As an example of the addition of one library to another, suppose that

the library mylib.lib contains the modules

mod! mod2 mod3

and that the library exmpl.lib contains

objl obj2 obj3

Then the command

Ib -b obj2 mylib.lib

adds the modules in mylib.lib to exmpl.lib, resulting in exmpl.lib
containing

objl modl mod2 mod3 obj2_ o0bj3

Note that in this example, we had to specify the extension of the input

file mylib.lib. If we hadn’t included it, Jb would have assumed that the
file was named nzyilib.o.

3.1.2 Adding modules after an existing module As an example of

adding modules after a specified module, the command

Ib exmpl -a obj] mod1l mod2

will insert modi and mod2 after obj] in the library exmpllib. If

exmpllib originally contained

Util-app.7 V3.4

LB Object file librarian LB

objl obj2 obj

then after the addition, it contains

objl modl mod2 obj2 obj3

3.1.3 Adding modules at the beginning or end of a library The options
-b+ and -a+ tell /b to add the modules whose names follow the option
to the beginning or end of a library, respectively. Unlike the -i and -a
options, these options aren’t followed by the name of an existing
module in the library.

For example, given the library exmpl.lib containing

objl obj2

the following command will add the modules modI and mod? to the
beginning of exmpl.lib:

Ib exmpl -i+ mod1 mod2

resulting in exmpllib containing

mod1l mod2 obj! obj2

The following command will add the same modules to the end of the
library:

lb exmpl -a+ modl mod2

resulting in exmpllib containing

obj! obj2 mod! mod2

3.2 Moving modules within a library

Modules which already exist in a library can be easily moved about,
using the move option, -m.

As with the options for adding modules to an existing library, there
are several forms of move functions:

option meaning
-mb target move modules before the module target
-ma target move modules after the module target
-mb+ move modules to the beginning of the library
-mat move modules to the end of the library

In the 46 command, the names of the modules to be moved follows the
"move’ option code.

V3.4 Util-app.8

LB Object file librarian LB

The modules are moved in the order in which they are found in the

original library, not in the order in which they are listed in the /b

command.

3.2.1 Moving modules before an existing module As an example of the

movement of modules to a position before an existing module in a

library, suppose that the library exmpl.lib contains

objl obj2 obj3 obj4 obj5 obj6

The following command moves ob/3 before ob/j2:

lb exmpl -mb obj2 obj3

putting the modules in the order:

objl obj3 obj2 obj4 obj5 = obj6

And, given the library in the original order again, the following

command moves ob/j6, obj2, and objl before obj3:

Ib exmpl -mb obj3 0bj6 obj2 objl

putting the library in the order:

objl obj2 obj6 obj3 3 obj4 = objd

As an example of the movement of modules to a position after an

existing module, suppose that the library exmpl.lib is back in its

original order. Then the command

Ib exmpl -ma obj4 obj3 obj2

moves obj3 and obj2 after obj4, resulting in the library

objl obj4 obj2 obj3 obj5 obj6

3.2.2 Moving modules to the beginning or end of a library The options

for moving modules to the beginning or end of a library are -7b+ and

-mat+, respectively.

For example, given the library exmpllib with contents

Oobjl obj2 obj3 obj4 obj5 obj6

the following command will move obj3 and obj5 to the beginning of

the library:

Ib exmpl -mb+ obj5 obj3

resulting in exmpl.lib having the order

Util-app.9 V3.4

LB Object file librarian LB

obj3 obj5 obj] ~— ob j2 obj4 = obj6

And the following command will move ob j2 to the end of the library:

lb exmpl -ma+ obj2

3.3 Deleting Modules

Modules can be deleted from a library using /b’s -d option. The
command for deletion has the form

Ib libname -d mod! mod? ...

where mod1, mod2, ... are the names of the modules to be deleted.

For example, suppose that exmpl.lib contains

obj] obj2 obj3 obj obj5 = ob j6

The following command deletes ob J3 and obj5 from this library:

Ib exmpl -d obj3 obj5

3.4 Replacing Modules

The /b option ’replace’ is used to replace one module in a library with
one or more other modules.

The ’replace’ option has the form -r target, where target is the name of
the module being replaced. In a command that uses the ’replace’
option, the names of the files whose modules are to replace the target
module follow the ’replace’ option and its associated target module.
Such a file can contain a single module or a library of modules.

Thus, an /b command to replace a module has the form:

lb library -r target mod! mod? ...

For example, suppose that the library exmpllib looks like this:

Objl obj2 obj3 obj4

Then to replace obj3 with the modules in the files mod1.o and mod2.0,
the following command could be used:

Ib exmpl -r obj3 mod! mod2

resulting in exmplLlib containing

objl obj2 mod! mod2 obj4

V3.4 Util-app.10

LB Object file librarian LB

3.5 Uniqueness

lb allows libraries to be created containing duplicate modules, where

one module is a duplicate of another if it has the same name.

The option -u causes /b to delete duplicate modules in a library,

resulting in a library in which each module name is unique. In

particular, the -w option causes /b to scan through a library, looking at

module names. Any modules found that are duplicates of previous

modules are deleted.

For example, suppose that the library exmpllib contains the following:

objl obj2 obj3 8 objl obj3

The command

lb exmpl -u

will delete the second copies of the modules obj/ and obj2, leaving the

library looking like this:

objl obj2 obj3

3.6 Extracting modules from a Library

The /b option -x extracts modules from a library and puts them in

separate files, without modifying the library.

The names of the modules to be extracted follows the -x option. If no

modules are specified, all modules in the library are extracted.

When a module is extracted, it’s written to a new file; the file has same

name as the module and extension .o.

For example, given the library exmpl.lib containing the modules

objl obj2 obj3

The command

lb exmpl -x

extracts all modules from the library, writing obj/l to objl.o, obj2 to

obj2.o, and obj3 to obj3.o.

And the command

lb exmpl -x obj2

extracts just obj2 from the library.

Util-app.11 V3.4

LB Object file librarian LB

3.7 The ’verbose’ option

The ’verbose’ option, -v, causes Jb to be verbose; that is, to tell you
what it’s doing,

This option can be specified as part of another option, or all by itself.
For example, the following command creates a library in a chatty
manner:

Ib exmpl -v mod! mod2 mod3

And the following equivalent commands cause Jb to remove some
modules and to be verbose:

Ib exmpl -dv mod! mod2
Ib exmpl -d -v mod1 mod2

3.8 The ’silence’ option

The ’silence’ option, -s, tells Jb not to display its signon message.

This option is especially useful when redirecting the output of a list
command to a disk file, as described below.

3.9 Rebuilding a library

The following commands provide a convenient way to rebuild a
library:

Ib exmpl -st > tfil

lb exmpl -f tfil

The first command writes the names of the modules in exmpl lib to the
file ¢fil The second command then rebuilds the library, using as
arguments the listing generated by the first command.

The -s option to the first command prevents /b from sending
information to ¢fil that would foul up the second command The
names sent to ¢fi/ include entries for the directory blocks, **D/R**, but
these are ignorcd by Jb.

3.10 Defining the default module extension.

Specification of the extension of an object module file is optional; the
/6 that comes with native development versions of Aztec C assumes
that the extension is .o, and the /b that comes with cross development
versions of Aztec C assumes that it’s .. You can explicitly define the
default extension using the -e option. This option has the form

V3.4 Util-app.12

LB Object file librarian LB

-e .ext

For example, the following command creates a library; the extension

of the input object module files is .7

Ib my.lib -e .1 mod] mod2 mod3

3.11 Help

The -h option is provided for brief lapses of memory, and will

generate a summary of /b functions and options.

Util-app.13 V3.4

OBD Utility Program OBD

NAME

obd - list object code

SYNOPSIS

obd <objfile>

DESCRIPTION

obd lists the loader items in an object file. It has a single parameter,
which is the name of the object file.

Util-app.1 V3.4

CNM
Aztec Utility Program

CNM

The symbol is in the uninitalized data segment. The

value is the space reserved for the symbol.

The compiler generates b symbols for static,

uninitialized variables which are declared outside all

functions and which aren't dimensionless
arrays.

The assembler generates b symbols for symbols

defined using the bss assembler directive. If the

symbol also appears in the public directive, it’s type 1S

B instead of b.

The symbol is in the uninitialized data segment The

value is the space reserved for the symbol.

The compiler generates G symbols for non-static,

uninitialized
variables which are declared outside all

functions and which aren't dimensionless
arrays.

The assembler generates G symbols for variables

declared using the global directive which have a non

zero SiZe.

- util. 11 -

PROF

NAME

Profiler report program PROF

prof - execution profiler report program

SYNOPSIS
prof -S symfile [-m monfile] [-[ant]] [-[xo]] [-[zh]]
prof -R progfile [-m monfile] [-[ant}] [-[xo]] [-[zh]]

DESCRIPTION
prof processes a monitor file produced by the monitor function,
and produces a report on the execution of the monitored
program. For each function in the range specified in monitor,
prof counts the number of ticks encountered in that function
and determines the percentage of program run time spent in the
function.

Options available for prof

-S the -s argument is the name of the symbol table file
for the program generated by the linker -T option.
This argument or -R must be present.

the -R argument is the name of the program
containing the SYMS resource generated by the
linker -W option.

The -M option allows the user to specify the monitor
output file to be processed. If this option is not
present, prof assumes the file is named mon.out (the
name always used by monitor) and is on the current
directory.

The -T, -A, and -N options determine the sorting of lines in the report.

-T

-A

-N

Sort by percentage of time spent in function, greatest
to least (This option is the default).

Sort by address of function.

Sort alphabetically by function name.

The -O and -X options cause prof to display the addresses of the
functions in the report along with their names.

Specifies function addresses in octal.

Specifies function addresses in hexadecimal.

The -Z option causes all symbols in the range specified
in the call to monitor to be displayed, regardless of
whether any ticks were encountered in_ these
functions. The default is to supress listing any
unencountered functions.

Util-app.1 V3.4

PROF Profiler report program PROF

-H The -H option causes prof to suppress printing its
normal header in the report. This is useful if the
information is to undergo further processing.

The profiler currently works with code only in segment | and does not
report on tick counts occuring in ROM.

SEE ALSO
monitor (C)

V3.4 Util-app.2

CNM Aztec Utility Program CNM

NAME

cnm - display object file info

SYNOPSIS

cnm [-sol] file [file ...]

DESCRIPTION

cnm displays the size and symbols of its object file arguments. The files
can be object modules created by the Manx assembler, libraries of
object modules created by the /b librarian, and, when applicable, ’rsm’
files created by the Manx linker during the linking of an overlay root.

For example, the following displays the size and symbols for the object
module swbJ/.o and the library c.lib:

cnm subl.o c.lib

By default, the information is sent to the console. It can be redirected
to a file or device in the normal way. For example, the following
commands send information about subJ.o to the display and to the file
disp file:

cnm subl.o

cnm subl.o > dispfile

The first line listed by cnm for an object module has the following
format:

file (module): code: cc data: dd udata: uu total: tt (Oxhh)

where

* file is the name of the file containing the module,
* module is the name of the module; if the module is unnamed,

this field and its surrounding parentheses aren’t printed:
* cc is the number of bytes in the module’s code segment, in

decimal;
* dd is the number of bytes in the module’s initialized data

segment, in decimal;
* uu is the number of bytes in the module’s uninitialized data

segment, in decimal;
* tt is the total number of bytes in the module’s three segments,

in decimal:

util-app.1 V3.4

CNM Aztec Utility Program CNM

* hh is the total number of bytes in the module’s three
segments, in hexadecimal.

If cnm displays information about more than one module, it displays
four totals just before it finishes, listing the sum of the sizes of the
modules’ code segments, initialized data segments, and uninitialized
data segments, and the sum of the sizes of all segments of all modules.
Each sum is in decimal; the total of all segments is also given in
hexadecimal.

The -S option tells cum to display just the sizes of the object modules.
If this option isn’t specified, cnm also displays information about each
named symbol in the object modules.

When cum displays information about the modules’ named symbols,
the -Z option tells cnm to display each symbol’s information on a
separate line and to display all of the characters in a symbol’s name; if
this option isn’t used, cnm displays the information about several
symbols on a line and only displays the first eight characters of a
Symbol’s name.

The -O option tells cum to prefix each line generated for an object
module with the name of the file containing the module and the
module name in parentheses (if the module is named). If this option
isn’t specified, this information is listed just once for each module:
prefixed to the first line generated for the module.

The -O option is useful when using cnm in combination with grep. For
example, the following commands will display all information about
the module perror in the library c.lib: :

cnm -o c.lib >tmp

grep perror tmp

cnm displays information about an module’s ’named’ symbols; that is,
about the symbols that begin with something other than a period
followed by a digit. For example, the symbol quad is named, so
information about it would be displayed; the symbol .0/23 is unnamed,
so information about it would not be displayed.

For each named symbol in a module, cnm displays its name, a two-
character code specifying its type, and an associated value. The value
displayed depends on the type of the symbol.

V3.4 util-app.2

CNM Aztec Utility Program CNM

If the first character of a symbol’s type code is lower case, the symbol
can only be accessed by the module; that is, it’s local to the module. If
this character is upper case, the symbol is global to the module: either
the module has defined the symbol and is allowing other modules to
access it or the module needs to access the symbol, which must be
defined as a global or public symbol in another module. The type
codes are:

ab

at

OV

un

The symbol was defined using the assembler’s EQU
directive. The value listed is the equated value of its
symbol.

The compiler doesn’t generate symbols of this type.

The symbol is in the code segment. The value is the
offset of the symbol within the code segment.

The compiler generates this type symbol for function
names. Static functions are local to the function, and
so have type pg; all other functions are global, that is,
callable from other programs, and hence have type Pg.

The symbol is in the initialized data segment. The
value is the offset of the symbol from the start of the
data segment.

The compiler generates symbols of this type for
initialized variables which are declared outside any
function. Static variables are local to the program and
so have type dz; all other variables are global, that is,
accessable from other programs, and hence have type
Dt.

When an overlay is being linked and that overlay itself
calls another overlay, this type of symbol can appear
in the rsm file for the overlay that is being linked. It
indicates that the symbol is defined in the program
that is going to call the overlay that is being linked.

The value is the offset of the symbol from the
beginning of the physical segment that contains it.

The symbol is used but not defined within the
program. The value has no meaning.

util-app.3 V3.4

CNM

V3.4

bs

Gl

Aztec Utility Program CNM

In assembly language terms, a type of Un (the U is
capitalized) indicates that the symbol is the operand of
a public directive and that it is perhaps referenced in
the operand field of some statements, but that the
program didn’t create the symbol in a statement’s label
field.

The compiler generates Un symbols for functions that
are called but not defined within the program, for
variables that are declared to be extern and that are
actually used within the program, and for
uninitialized, global dimensionless arrays. Variables
which are declared to be extern but which are not used
within the program aren’t mentioned in the assembly
language source file generated by the compiler and
hence don’t appear in the object file.

The symbol is in the uninitalized data segment. The
value is the space reserved for the symbol.

The compiler generates bs symbols for static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

The assembler generates bs symbols for symbols
defined using the bss assembler directive.

The symbol is in the uninitialized data segment. The
value is the space reserved for the symbol.

The compiler generates Gl symbols for non-static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

The assembler generates G/ symbols for variables
declared using the global directive which have a non-
Zero SIZe.

util-app.4

MAKE Program Maintaince Utility MAKE

Enhanced MAKE
(Duplicate Page - First issued with release 1.06h)

Make has been enhanced to support dependencies on files in
directories other than the current directory. This is best illustrated by
an example.

Suppose the current directory is /srcl and that the program is being
built from source there and in the /src2 directory. The makefile line
would look like this:

program : /srcl/main.o /src2/sub.o |
In -o program /srcl/main.o /src2/sub.o -lc

This will build main.o and sub.o from their sources, putting the object
files (the .o’s) in the SAME directory as the sources, The .o file will
always be placed in the same directory as the source file.

Note : Unfortunately there isn’t a way to say "all my .o’s are in one
directory, and all my .c’s are in another",

Any futher references to these files should be with the same path or
else make will be confused.

For object files to be dependent on files in another directory, the full
pathname must be used as in:

/Src2/sub.o : /header/defs.h

Make also supports command line macro definition such as:

make MACRO=text

the equal sign (=) is the key to having it be a macro definition. If the
macro is to be empty, enter:

make MACRO=

make-app. 1 v1.06h

MAKE Program Maintaince Utility MAKE

Command line macro definition always overrides makefile macro

definition. Be careful about your macro definitions. Some operating

systems do not support quotes around text, so any white space in the

macro text will cause the macro definition to terminate prematurely.
This 1s not a problem under our SHELL on the Macintosh.

v1.06h make-app.2

CP Builtin command CP

NAME

cp - copy

SYNOPSIS

cp [-f] infile outfile

cp [-f] filel file2 ... directory

cp indrive outdrive

DESCRIPTION

cp copies things: it can copy one or more selected files, and can
copy entire disks.

1. Copying selected files

cp can copy any type file, and will copy all of the file’s forks’. The
"last modified’ time of each copied file is set to that of the original file.

The first two forms of cp shown above are used to copy selected
files. The first one copies a single file, in file, to out file.

The second form copies all the specified files into the specified
directory, with their original names. In this form, the name of the
target directory must contain a terminating ’/’, unless the directory
name is’.’,”..’, or Xi.

The -f option forces cp to copy, even if the target file already
exists. If this option isn’t used, and if a target file already exists, cp will
ask if you want to overwrite it.

2. Copying disks

The third form shown above for cp copies one entire disk onto
another. cp verifies that the copy was correctly done. For example,
the following command will copy the disk in drive 1: onto the disk in
drive 2:

cp 1: 2:

cp will respond by asking

Are you sure?

Type y followed by return if you really want the copy to be made.
Typing anything else will cause cp to halt without copying.

When cp is done, it will eject the newly created disk and return
control to the SHELL.

EXAMPLES

- util.12 -

Builtin command
CP

CP

cp hello.c data: /source/hithere.¢

Makes a copy of the file hello.c which is in the current

directory. The copy, which is named hithere.c, iS 10 the

/ source directory on the data: volume.

cp sys:/bin/* sys2:/ work/

Copies all files in the directory sys:/bin tO the directory

sys2./ work, Note the terminating ’/” in the name of the

target directory.

cp /bin/*.c .

Copies all files having extension .c in the directory / bin on

the current volume to the current directory.

SEE ALSO

cat, MV

- util.13 -

CPRSRC Resource Copy Utility CPRSRC

NAME

‘oprsrc - Resource copy utility

SYNOPSIS

cprsrc [-f] type id filel file2

DESCRIPTION

cprsrc 1S a utility program which copies a resource from filel to
file2. type is the type of the resource, and id is its resource number.

If the -f option isn’t specified and if a resource of the specified
TYPE and ID exists in the destination file, cprsrc will display the
following message before copying the resource:

Resource already exists, replace?

If you then type ’y’, followed by return, cprsrc will remove the old
resource and add the new resource. If you type anything else, cprsrc
will halt without copying the resource.

If the -f option is specified, cprsrc will automatically remove a pre-
existing resource of the specified TYPE and ID from the destination
file, without asking for your permission. This should be used if you
know a resource already exists and are sure that it should be
overwritten.

EXAMPLES

The following examples demonstrate the cprsrc program.

cprsrc DRVR 31 con System
cprsrc -f DRVR 13 System clock
cprsrc FONT 512 System fontfile
cprsrc FONT 521 System fontfile

The first example copies the console driver from the file, con to the
System file. The second example copies the clock desk accessory from
the System file to a file called clock. If the resource already exists in
clock, it will be deleted automatically. The last two examples copy the
Monaco font type and the 9 point version from the System file to the
fontfile file.

- util.14 -

Builtin command
DATE

DATE

NAME

date - display date and time

SYNOPSIS

date

DESCRIPTION

Displays the date and time.

_ util.15 -

DIFF File Comparator DIFF

NAME

diff - Source file comparison utility

SYNOPSIS |
diff [-b] filel file2

DESCRIPTION

diff is a program, similar to the UNIX program of the same name,
that determines the differences between two files containing text. /file/
and file2 are the names of the files to be compared.

1. The -b option

The -b option causes diff to ignore trailing blanks (spaces and tabs)
and to consider strings of blanks to be identical. If this option isn’t
specified, diff considers two lines to be the same only if they match
exactly.

For example, if filel contains the the line

Aabc$

(“ and $ stand for "the beginning of the line" and "the end of the line",
respectively, and aren’t actually in the file) and if file2 contains the
line

Aabc $

then diff would consider the two lines to be the same or different,
depending on whether or not it was started with the -b option.

And diff would consider the lines

Aa b c$

and

Aa b c$

to be the same or different, depending on whether or not it was started
with the -b option.

diff will never consider blanks to match a null string, regardless of
whether -b was used or not. So diff will never consider the lines

Aabc$

and

A~a bc$

to be the same.

- util.16 -

DIFF File Comparator
DIFF

2. The conversion list

diff writes, to its standard output, a "conversion list" that describes

the changes that need to be made to file] to convert it into file2, The

list is organized into a sequence of items, each of which describes one

operation that must be performed on file/.

7.1 Conversion items

There are three types of operations that can be specified in a

conversion list item:

* adding lines to file] from file 2;

* deleting lines from file];

* replacing (changing) file] lines with file2 lines.

A conversion list item consists of a command line, followed by the

lines in the two files that are affected by the item’s operation.

71.1 The command line

An item’s command line contains a letter describing the operation

to be performed: ’a’ for adding lines, ’d’ for deleting lines, and ’c’ for

changing lines.

Preceding and following the letter are the numbers of the lines in

filel and file2, respectively, that are affected by the command. If a

range of lines in a file are affected, just the beginning and ending line

numbers are listed, separated by a comma.

For example, the following command line says to add line 3 of file2

after line 5 of file/:

5a3

and the next command line says to add lines 8,9, and 10 of file2 after

line 16 of filel:

16a8,10

The next command line says to delete lines 100 through 150 from

filel, and that the last line in file2 that matched a file] line was number

79:

100, 150d75

The following command says to replace (change) line 32 in file]

with line 33 in file2:

32c33

and the next command says to replace lines 453 through 500 in filel

with lines 490 through 499 in file2:

453,500c490,499

- util.17 -

DIFF File Comparator DIFF

2.1.2 The affected lines

As mentioned above, the lines affected by a conversion item’s
operation are listed after the item’s command line. The affected lines
from file] are listed first, flagged with a preceding ’<’. Then come the
affected lines from file2, flagged with a preceding ’>’. The file] and
file2 lines are separated by the line

For example, the following conversion item says to add line 6 of file2
after line 4 of file]. Line 6 of file2 is "for (i=1; i<10;++i)":

4a6
> for G=1; 1<10;++i)

Since no lines from file] are affected by an ’add’ conversion item, only
the file2 lines that will be added to file] are listed, and the separator
line "---" is omitted.

The following conversion item says to delete lines 100 and 101
from file], and that the last file2 line that matched a file] line was
numbered 110. The deleted lines were "int a;" and "double b;". Only
the deleted lines are listed, and the separator line "---" is omitted:

100,101d110
< int a;
< double b;

The following conversion item says to replace lines 53 through 56
in file] with lines 60 and 61 in file2. Lines 53 through 56 in file] are
"if (a=b){"," d= a;"," at+;", and '"}". Lines 60 and 61 of file2 are
"if (a==b)" and "d = at++:",

33,55c60,61
< if (a=b){
< d=a3;
< att;

<3

> if (a==b)
> d=att;

3. Differences between the UNIX and Manx versions of diff

The Manx and UNIX versions of diff are actually most similar
when the latter program is invoked with the -h option. As with the
UNIX diff when used with the -h option, the Manx diff works best
when changed stretches are short and well separated, and works with
files of unlimited length.

Unlike the UNIX diff, the Manx diff doesn’t support the options e,
f, or h.

- util.18 -

DIFF File Comparator DIFF

Unlike the UNIX diff, the Manx version requires that both

operands to diff be actual files. Because of this, the Manx version of

diff doesn’t support the features of the UNIX version which allows

one operand to be 2 directory name, (tc specify a file in that directory

having the same name as the other operand), and which allows one

operand to be ’-’ (to specify di ffs standard input instead of a file).

- util.19 -

ECHO Builtin command ECHO

NAME

echo - echo arguments

SYNOPSIS

echo [arg] [arg] ...

DESCRIPTION

echo writes its arguments, separated by blanks and terminated by a
newline, to its standard output device.

The output thus goes, by default, to the screen. It can also be
redirected to another device or file in the normal manner.

Before echo is called, substitutions of the appropriate command line
arguments are made:

* File name templates are replaced with matching file names.
* If the echo command is in an exec file, any exec file variables

(such as $1 and $@) are replaced by their corresponding
values.

The code for echo is contained in the SHELL.

EXAMPLES

The command

echo *

prints the names of the files in the current directory to the screen.

The following illustrates use of echo in an exec file:

loop i in $*
echo compiling $i
ce $1
eloop

- util.20 -

EDIT
Mouse-based Editor

EDIT

NAME

Edit - Mouse-based editor

SYNOPSIS

Edit

DESCRIPTION

This section describes the Edit mouse-based editor supplied as part

of the Apple supplement to the Aztec C system. Edit is a stand-alone

program which can be run from the Finder or from the SHELL.

When run from the Finder, it is possible to double click the Edit icon

itself, or a text file created with the Edit program. From the SHELL,

just typing edit followed by a carriage return will invoke the editor.

1. About Edit

Edit is a mouse and window based editor. Unlike Z, it can edit a

file bigger than the available memory. It does this by only keeping the

displayed part of the file in memory. The rest remains on disk. This

also allows the editor to have up to four files open in different

windows at one time.

Files are created by selecting New from the File menu. There are

several ways to edit an existing file. The first way is to select the first

Open from the File menu. This will give the standard file selection

dialog box which can be used to select the file desired. A file can also

be opened by selecting the name of the file in an open file using the

mouse and then choosing the second Open from the File menu.

The last way is to type Clover-K followed by the volume name, 4

colon and the file name of the file to be opened followed by a Return.

There will be nothing displayed while this is being typed. The volume

name and colon are optional.

When the editor is exited, it will automatically check whether an

open document has been modified and will ask whether the

modifications will be saved.

2. Editing

Files created and edited by the editor consist of lines of normal

ASCII characters separated by Returns. There is no formatting

information stored in the file, so only one font is permitted per file.

Text editing is performed as one would expect with the standard Edit

menu. Operations may be performed between file windows.

Search and replace operations are performed using the Find and

Change options of the Search menu. The search starts at the current

insertion point. Subsequent searches and replaces use the last string

typed.

- util.21 -

EDIT Mouse-based Editor EDIT

The Format menu allows the alignment of text to be adjusted. The
Set Tabs option allows the width of the tab to be adjusted. When a line
is ended, normally the next one is started at the left margin. If the
Auto Indent option is selected, the new line is started at the same
indent level as the previous line.

The Align, Move Left, and Move Right options of the Edit menu
work with a block of text that has been selected. The Align option

aligns the left margins of all the lines. The Move options shift the
whole block left or right a space.

- util.22 -

FixAttr FixAttr

NAME

FixAttr

SYNOPSIS

FixAttr

DESCRIPTION

FixAttr changes the attributes of the resources within the current

System file that contain the console driver and the Monaco 9- and 12-

point fonts.

The new attributes cause these resources to be loaded into the

system heap and made non-purgable when the Macintosh is rebooted.

Since, unlike the application heap, the system heap is not cleared

when an application program terminates, making the frequently-used

resources resident and non-purgable in the system heap means that

they will be in memory when needed by an application program, and

won’t have to be loaded from disk.

If you don’t use FixAttr, these resources will automatically be

loaded into the application heap when needed by an application

program. However, the application heap is cleared when each

application program terminates, so if these resources aren’t in the

system heap they must be loaded into the application heap for each

application program that needs them.

Thus, if you use FixAttr, your system will run faster, since these

resources don’t have to be loaded for each application that needs them.

FixAttr should only be used on Macintoshes having 512K bytes of

RAM memory, since only it has a system heap big enough to hold

these resources.

SEE ALSO

The Technical Information chapter has a section that discusses the

use of Aztec C68K on Macintoshes having 512K bytes of RAM.

- util.23 -

FLDR Program command FLDR

NAME

fldr - folder utility

SYNOPSIS

fldr -d

fldr -f filel file2 ...

fldr id filel file2 ...

DESCRIPTION

The first form of the command displays the names of the folders
known to the Finder and their associated ids.

~The second form of the fldr command displays the number of the
folders containing the specified files.

The third form moves the specified files into the folder whose
number 1s id, and sets the fdFlags field of each file to 0x100.

This form of the command is useful when a disk is being used with
both the Finder and the SHELL: it provides a fast way of moving a set
of files to a particular folder. Also, it initializes fields that otherwise
will be initialized by the Finder. The Finder’s algorithm for doing this
is very slow, so it’s better to initialize them using fldr.

- util.24 -

GREP Pattern-matching utility GREP

NAME

grcp - pattern-matching program

SYNOPSIS

grep [-cflnv] pattern [files]

DESCRIPTION

grep is a program, similar to the UNIX program of the same

name, that searches files for lines containing a pattern. By

default, such lines are written to grep’s standard output.

1. Input files

The files parameter is a list of files to be searched. If no files are

specified, grep searches its standard input. Each file name can specify

a single file to be searched. A name can also specify a class of files

to be searched, using the special characters ’* and ’?’. The

character °*’ matches any string of characters in a file name, and ’?’

matches any single character. For example,

grep int main.c subl.c sub2.c

searches main.c, subl.c, and sub2.c for the string int. The command

grep int *.c

searches all files whose extension is .c for the string int. The command

grep int a*.txt b*.doc

searches for the string int in each file whose (1) extension is .txt and

first character is a and whose (2) extension is .doc and first character

is b. The command

grep int sub?.c

searches for the string it in each file whose filename contains four

characters, the first three being sub, and whose extension is .c.

2. Options

The following options are supported:

V Print all lines that don’t match the pattern.

Cc Print just the name of each file and the number of

matching lines that it contained.

l Print the names of just the files that contain matching

lines.

n Precede each matching line that’s printed by its

relative line number within the file that contains it.

f A character in the pattern will match both its upper

and lower case equivalent.

- util.25 -

GREP Pattern-matching utility GREP

3. Patterns

A pattern consists of a limited form of regular expression. It
describes a set of character strings, any of whose members are said to
be matched by the regular expression.

Some patterns match just a single character; others, which match
Strings, can be constructed from those that match single characters. In
the following paragraphs, we'll first describe the patterns that match
a single character, and then describe patterns that match strings of
characters.

3.1 Matching single characters

The patterns that match a single character are these:

* An ordinary character (that is, one other than the special
characters described below) matches itself.

* A period (.) is a pattern that matches any character except
newline.

* A non-empty string of characters enclosed in square
brackets, [], matches any one character in that string. For
example, the pattern

[ad9@]
matches any one of the characters a, d, 9, or @.

If, however, the string begins with the caret character
(*), the regular expression matches any character except
the other enclosed characters and newline. The ’*’ has this
special meaning only if it is the first character of the string.
For example, the pattern

[Aad9@]

matches any single character except a, d, 9, or @.

The minus character ,-, can be used to indicate a range of
consecutive ASCII characters. For example, [0-9] is equivalent
to [0123456789].

* A backslash (\) followed by a special character matches the
special character itself. The special characters are:

.. *, [, and \, which are always special, except when
they appear in square brackets, [].

“ (caret), which is special when it is at the
beginning of an entire regular expression (as

discussed in 3.4) and when it immediately follows
the left of a pair of square brackets.

$, which is special at the end of an entire regular

- util.26 -

GREP Pattern-matching utility GREP

expression (discussed in 3.4).

3.2 Matching character strings

Patterns can be concatenated. In this case, the resulting pattern

matches strings whose substrings match each of the concatenated

patterns. For example, the pattern

abc

matches the string abc. This pattern is built from the patterns a, 6, and

c. The pattern

a.C

matches strings containing three characters, whose first and last

characters are a and, respectively, such as

abc
a(@c
aXxc

3.3 Matching repeating characters

A pattern can be built by appending an asterick (*) to a pattern

that matches a single character. The resulting pattern matches zero or

more occurrences of the single-character pattern For example, the

pattern

q*

matches any line containing zero or more a characters. And the pattern

sub[1-4]*end

matches lines containing strings such as

subend

sub132132end

3.4 Matching strings that begin or end lines

An entire pattern may be constrained to match only character

strings that occur at the beginning or the end of a line, by

beginning or ending the pattern with the character °~? or 9S’,

respectively. For example, the pattern

“main

matches the line that begins

main

but not one that begins

the main ...

The pattern

- util.27 -

GREP Pattern-matching utility GREP

line$

matches the line ending in

... the end of the line

but not the line ending in

a hard-hit line drive.

4, Examples

4.1 Simple string matching

The following command will search the files filel.txt and file2.txt
and print the lines containing the word hereto fore:

grep heretofore file1.txt file2.txt

If you aren’t interested in the specific lines of these files, but
just want to know the names of the files containing the word
hereto fore, you could enter

grep -l heretofore file1.txt file2.txt

The above two examples ignore lines in which heretofore contains
capital letters, such as when it begins a sentence. The following
command will cover this situation:

grep -lf heretofore file1.txt file2.txt

grep processes all options at once, so multiple options must be
specified in one dash parameter. For example, the command

grep -l -f heretofore file1.txt file2.txt

won’t work.

4,2 The special character ’.’

Suppose you want to find all lines in the file progc that contain a
four-character string whose first and last characters are ’m’ and ’n’,
respectively, and whose other characters you don’t care about. The
command

grep m..n prog.c

will do the trick, since the special character ’.’ matches any single
character.

4.3 The backslash character

There are occasions when you want to find the character ’.” in a
file, and don’t want grep to consider it to be special. In this case, you

can use the backslash character, ’\’, to turn off the special meaning of
the next character.

- util.28 -

GREP Pattern-matching utility GREP

For example, suppose you want to find all lines containing

.PP

Entering

grep .PP prog.doc

isn’t adequate, because it will find lines such as

THE APPLICATION OF

since the ’.’ matches the letter ’A’. But if you enter

grep \.PP prog.doc

grep will print just what you want.

The backslash character can be used to turn off the special

meaning of any special character. For example,

grep \\n prog.c

finds all lines in prog.c containing the string ’\n’.

4.4 The dollar sign and the caret ($ and “%)

Suppose you want to find the number of the line on which the

definition of the function add occurs in the file arith.c. Entering

grep -n add arith.c

isn’t good, because it will print lines in which add is called in addition

to the line you’re interested in. Assuming that you begin all function

definitions at the beginning of a line, you could enter

grep “add arith.c

to accomplish your purpose.

The character ’$’ is a companion to ’*’, and stands for ’the end of

the line’. So if you want to find all lines in file.doc that end in the

String dime, you could enter

grep time$ file.doc

And the following will find all lines that contain just .PP-

erep *\.PP$

4.5 Using brackets

Suppose that you want to find all lines in the file file.doc that begin

with a digit. The command

grep *[0123456789] file.doc

will do just that. This command can be abbreviated as

grep *[0-9] file.doc

- uil.29 -

GREP Pattern-matching utility GREP

And if you wanted to print all lines that don’t begin with a digit,
you could enter

grep “[*0-9] file.doc

4.6 Repeated characters

Suppose you want to find all lines in the file prog.c that contain
Strings whose first character is ’e’ and whose last character is ’z’.
The command

grep e.*z prog.c

will do that. The ’e’ matches an ’e’, the ’.*” matches zero or more
arbitrary characters, and the ’z’ matches a’z’.

5. Differences between the Manx and UNIX versions of grep

The Manx and UNIX versions of grep differ in the options they
accept and the patterns they match.

5.1 Option differences

* The option -f is supported only by the Manx grep.

* The options -b and -s are supported only by the UNIX grep.

5.2 Pattern differences

Basically, the patterns accepted by the Manx grep are a subset of
those accepted by the UNIX grep.

* The Manx grep doesn’t allow a regular expression to be surrounded

by *\(and ’\)’.

* The Manx grep doesn’t accept the construct ’\{m\)’.

* The Manx grep doesn’t allow a right bracket, ’]’, to be specified
within brackets.

- util.30 -

HD Program command HD

NAME

hd - hex dump utility

SYNOPSIS

hd [-r] [+n[.]] filel [4+n][.]] file 2 ...

DESCRIPTION

hd displays the contents of one or more files in hex and ascii to its
standard output.

filel, file2, ... are the names of the files to be displayed.

-r causes the file’s resource forks to be displayed. This option can
occur between any two files. Before it is encountered, the file’s data
forks are displayed.

+n specifies the offset into the file where the display is to start, and
defaults to the beginning of the file. If +n is followed by a period, n is
assumed to be a decimal number; otherwise, it’s assumed to be
hexadecimal. Each file will be displayed beginning at the last specified
offset.

EXAMPLES

hd +16b oldtest newtest +0 junk

Displays the data forks of the files oldtest and newtest,
beginning at offset Oxl6b, and of the file named junk
beginning at its first byte.

hd -r +1000. tstfil

Displays the contents of the resource fork of tstfil,
beginning at byte 1000.

- util.31 -

InstallConsole InstallConsole

NAME

InstallConsole - Console Driver Installation Utility

SYNOPSIS

InstallConsole

DESCRIPTION

InstallConsole places a copy of the Aztec console driver in a
specified file. InstallConsole is a command program, and can be
activated by either the SHELL or the Finder.

When invoked, JnstallConsole displays the standard Mini-Finder
display, listing all files that have a resource fork. When you select a
file and click "Open", InstallConsole will read the console driver from
the file that contains /nstallConsole and copy it into the resource fork
of the specified file. If a resource of the same name already exists,
InstallConsole will ask if it should be replaced.

After the driver has been installed, ImstallConsole displays a message
and restores the Mini-Finder display. You can then Click the "Cancel"
button, to terminate JnstallConsole, or install the console driver in
another file.

SEE ALSO

For more information on command programs that call the console
driver, and on the console driver itself, see the Command Programs
and Console Driver sections of the Technical Information chapter.

- util.32 -

LIBUTIL Object module librarian LIBUTIL

NAME

libutil - object module librarian

SYNOPSIS

libutil [-o library] [-atxrv] modules

DESCRIPTION

libutil is a program that is used to create and manipulate libraries of

object modules.

This description of /ibutil contains two major sections: the first
Summarizes the use of libutil; the second describes libutil in more

detail.

1. Summary

libutil manipulates object file libraries, in the following ways (the
command line option which initiates the action is in parentheses):

a. create a library
b. append to a library (-a)
c. list library modules (-t)
d. extract library modules (-x)
e. replace library modules (-r)
f. take file names from stdin (.)
g. be verbose (-v)

The following paragraphs give examples of libutil usage:

a. Creating a library

The following creates a library, example.lib, containing the modules
subl.o and sub2.0:

libutil -o example.lib subl.o sub2.0

b. Appending modules to a library

This example appends exmpl.o to the library example.lib:

libutil -oa example.lib exmpl.o

c. Listing library modules

The following lists the modules in progs.lib:

libutil -ot prog. lib

d. Extracting modules from a library

This option allows either selected modules or all modules to be
extracted from a library and placed in separate files. The library itself
is not modified. The following copies the module exmpl from the
library mylib.lib into the file exmpl.o:

~ util.33 -

LIBUTIL Object module librarian LIBUTIL

libutil -ox mylib.lib exmpl

e. Replacing library modules

This example replaces the module sub/ in library example.lib with
the contents of the object file sub/.o-

libutil -or example.lib sub1

f. Taking commands from stdin

The following creates a library, subs.lib, and appends to it sub/.o,
sub2.0, sub3.0, and sub4.o. File names are taken from command. fil:

libutil -o subs.lib . <command.fil

where command. fil contains:

subl.o sub2.0
sub3.0 sub4.o

2. In More Detail...

2.1 Creating a Library

The command for creating a new library has this format:

libutil [-o <library name>] <input file list>

The -O option specifies the name of the library being created. If
the option is not given, then the library name is assumed to be Jibc.lib.
It is not recommended that Jibutil be used without naming a library
with this option.

2.2 How it Works

First, /ibutil creates the library in a new file with a temporary name.
If this file was successfully written, Jibutil erases the file with the same
name as the library, if one exists. In effect, it makes sure that the new
library can be created before destroying the old. Then the temporary
file is renamed to the library name.

Note that there must be room on the disk for both the old library
and the new.

The <input file list> is a list of the object files which are to be
included in the library. These are usually files generated by the Manx
assembler.

2.3 Naming Conventions

An input filename has the standard format. The drive or volume
component defaults to the current drive or volume, and the directory
to the current directory. The extension for the filename is optional; if
not specified, it’s assumed to be .o.

- util.34 -

LIBUTIL Object module librarian LIBUTIL

When an input file contains a single relocatable object module, the

name of the module in the library will be the filename, less its other

components. For example, if the input file is besubl.o, then the

module name inside the new library will be subJ.

An input file can be a library itself. In this case, the module names

in the new library are the same as those in the input library. For

example, if the input file is a library containing modules subl, sub2

and sub3, then the names of these modules in the created library will

also be subl, sub2 and sub3.

Since the list of input files for a library often will not fit on a

single line, there is a convenient way to extend the command line. A

period on the command line directs the linker to start reading

filenames from standard input. When EOF is detected on standard

input, the linker returns to the command line to read in the remaining

filenames.

2.4 Order in a Library

The order in which a library is built is often crucial for easy

linking. Modules go into a new library in the order in which they are

read by /ibutil. Consider the following example:

Let’s assume there is currently a library, oldlib.lib, which contains

three modules:

sub] sub2 sub3

The following command might be given:

libutil -o newlib.lib oldlib.lib sub4 . sub5 <cmd. fil

where cmd. fil contains the following:

sub6.0 sub7.0
sub8.o

This will create a library called newlib.lib. The first three modules

copied into it come from oldlib.lib. Then the contents of sub4.o

becomes the module, sub4, in the library.

When Jibutil finds a period, it continues reading the filenames from

standard input. So the next three files copied into newlib.lib are sub6.o,

sub7.0 and sub8.o. Notice that .o after a filename in the command is

assumed. The last module read in the example is in sub5.o. So the

final makeup of newlib.lib is:

subl sub2 sub3 sub4 sub6 sub7

sub8 sub5

2.5 Listing the Modules in a Library

A listing such as this can be obtained with the -T option. This

option simply produces a listing of the modules in the order in which

- ulil.35 -

LIBUTIL Object module librarian LIBUTIL

they appear in a library. The -O option is used in this case to specify
which library is to be listed. For example, the listing above would be

produced by entering:

libutil -o newlib.lib -t

If the -O option is missing, the library, lbc.lib, is assumed.

libutil will not perform multiple functions during a single
invocation. For example, you cannot make it create a library and then
list its contents with a single command; you would need to run Ubutil

for each task.

There are just a few ways to use the -T option, such as:

libutil -t
libutil -ot example.lib
libutil -t -o example.lib

Note that the listing the modules of a library does not give a true
representation of what functions are defined within the library. For
instance, a module named prog inp might contain the functions,
get record, get name and get__num.

2.6 Adding and Replacing Modules

The -A and -R options are used to add or replace modules in a
library. These options actually refer to the same process. The method
used by Jibutil is fairly simple.

The -O option is used to specify the library that going to be
modified; as always, this defaults to libc.lib.

libutil creates a temporary file, just as it did when making a new
library. Each module of the old library is then copied, in order, to the
new file. Whenever a module name matches a name given on the
command line, the old library module is ignored, and the contents of
the file given in the command are copied to that module in the new
file.

When the last module in the old library has either been copied or
skipped over, dibutil returns to the command line. The files which have
already been copied to the new library are checked off. libutil then
copies to the new library all the remaining files on the command line,
which have not been copied to the new library.

For example, given an obsolete library, obslib.lib:

mod1 mod2 mod3

and the following command:

libutil -oa obslib.lib mod2 . sub2 <cmd.fil

where cmd. fil contains:

~ util.36 -

LIBUTIL Object module librarian LIBUTIL

subl

libutil first copies modI from obslib to the temporary file. Since

mod2 is specified on the command line, it copies the contents of

mod2.o to the temporary file and ignores the mod2 in obslib. It

continues to copy mod3from obslib, sub] and sub2 to the temporary

file, in that order. Then the temporary file is renamed to obslib.lib and

the old library is erased.

Just as in library creation, the old and the new libraries exist on

disk at the same time, before the old is erased. There has to be enough

room for both.

Consider the following command:

libutil -oa obslib.lib obslib.lib

libutil will copy obslib to the temporary file, since none of the

module names appear on the command line. Then the remaining files

from the input list are copied to the temporary file. So that a listing of

the resulting obslib.lib would be:

modl mod2 mod3 modl mod2 mod3

This curious naming of modules does not affect the way their

contents are treated by the linker. For example, the first modl might

contain a single function, get value, while the second contains a

function, get num. If get value is an undefined symbol when the
linker searches the library, just the first mod1 will be pulled into the

link, and similarly the second will be pulled in for an undefined

get num.

- util.37 -

LOCK Builtin command LOCK

NAME

lock, unlock, flock, funlock

SYNOPSIS

lock file

unlock file

flock file

funlock file

DESCRIPTION

These commands are used to lock and unlock files. They are
grouped into two pairs: lock/unlock and flock/funlock.

The lock/unlock commands set/reset the operating system’s ’lock
flag’ for a file, and the flock/funlock commands set/reset the Finder’s
"lock flag’ for a file.

With the operating system’s lock flag set for a file, the file can’t be
removed or opened for writing by the SHELL, by programs activated
by the SHELL, or by the Finder.

With the Finder’s lock flag set for a file, the Finder will not allow
the file to be deleted; however, the file can still be deleted or modified
by the SHELL or by SHELL-activated programs.

Thus, lock/unlock are more useful than flock/funlock.

The code for these commands is contained in the SHELL.

- util.38 -

LS Builtin command LS

NAME

Is - list files and directories

SYNOPSIS

Is [-It] [name] [name] ...

DESCRIPTION

ls lists the names of the files and the contents of the directories
whose names are passed to it as arguments. If no names are specified,
the contents of the current directory are listed.

To specify a directory other than ’.” or ’..’, the name must contain a
terminating ’/’ character.

The information is written to ds’s standard output device, and hence
goes, by default, to the screen. The information can be sent to another
device or file by redirecting Js’ standard output device in the normal
manner.

By default, the output is sorted alphabetically. The -¢ option causes
the output to be sorted according to the "last modified’ times, with the
most recently modified file listed first and directories listed last.

When the -/ option isn’t specified and a directory’s contents are
listed, the names of subdirectories within the directory are terminated
by a slash character, allowing subdirectories to be distinguished from
files.

The -/ option causes the listing to be made in “long format’, in
which additional information is displayed for each file. In this case, the
listing for a file has the following format:

Finder Info Directory Info

Type Creator Flags Flags Data-len Rsrc-len Mod Name

where the items correspond to fields within the directory entry for the
file, as follows:

Type - The type of the file, as recorded in the
directory.

Creator - The creator of the file, as recorded in the
directory.

Flags - The first ’flags’ field contains flags used by
the Finder.

Flags - The second ’flags’ field contains flags used
by the opcrating system. It’s also one byte

wide, and it’s bits have the following
meanings:

- util.39 -

LS Builtin command LS

bit O - lock flag.
bit 7 - ’in use’ flag. Set when file

iS Open.

Data-len - The length, in bytes, of the file’s data fork.

Rsrc-len - The length, in bytes, of the file’s resource
fork.

Mod - The date and time that the file was last
modified.

Name - The file’s name.

The code for the /s command is contained in the SHELL.

EXAMPLES

ls >catalog

Writes the names of the files in the current directory to the
file catalog in the current directory.

ls -1 data:/source/*.c

Displays information about the files having extension .c
which are are contained in the /source directory on the

data: volume.

Is -It sys:/bin/

Displays information about the files in the directory
sys:/bin. The listing is sorted by last modified times, with
directories listed last. Note the terminating ’/’ to the

directory name.

Is ..

Displays the names of the files and directories in the parent
directory to the current directory.

- util.40 -

MACSBUG Macintosh Debuggers MACSBUG

NAME

MacsBug - Macintosh Assembly Language Debugger

SYNOPSIS

MacsBug

DESCRIPTION

This section describes the MacsBug family of debuggers supplied as
part of the Apple supplement to the Aztec C system. MacsBug 1s a
line-oriented assembly language debugger which runs on a single
Macintosh.

1. Setting Up MacsBug

MacsBug is not started like a normal Macintosh or SHELL
application. Instead, it must be installed as part of the system during
the bootup of the machine. The boot code looks for a file with the
name MacsBug and if found installs it. Since there are several
different versions of MacsBug supplied, the one that matches the

spelling will be installed.

The five versions are:

version size description
MacsBug 18K 8 lines, Macintosh screen
MaxBug 40K 40 lines, Macintosh screen
TermBugA 12K — serial port A terminal
TermBugB 12K _ serial port B terminal
LisaBug 40K 40 lines, Lisa screen, MacWorks

2. Starting MacsBug

The simplest way to start the debugger and get to command mode,
is to press the interrupt part of the programmer’s switch on the
Macintosh. For the Lisa, press the ’-’ key on the numeric pad.

To get control of programs developed using Aztec C68K, get into
the debugger while the SHELL is running, and type the following:

AB 175

which sets a breakpoint to occur when a toolbox call to the TickCount()
routine is made. Just such a call has been placed at the beginning of
the various Croot() routines used with the Aztec C68K system. Then
type G to get the SHELL going again and run the program to be
debugged. After the program is loaded, the trap will return control to
the debugger which can then be used to set breakpoints at specific

routine addresses,

When a break is encountered, MacsBug disassembles the instruction
at the current program location, and displays the contents of all the

- util.41 -

MACSBUG Macintosh Debuggers MACSBUG

registers. Then it displays the ’>’ symbol which is its command input
prompt. The debuggers which talk to the screen directly, save the old
screen image in a buffer. To see the old screen, hit the (~) key. Any
Other key will return to the debugger screen.

3. Command Syntax

Commands are typed as one or two characters followed by some
number of arguments. Arguments are expressions ranging from a
simple number to more complex combinations.

3.1 Numbers

The default format for numbers is hexadecimal. Decimal numbers
may also be entered if preceded by an ampersand (&). Hexadecimals
may optionally be preceded by a dollar sign ($). Signed numbers
should have the sign before the & or $. For example:

Number Unsigned Hex Signed Hex Decimal
SFF $SOOQ0000FF SO00000FF &255
-$FF $FFFFFFO1 -$000000FF -&255
&100 $00000064 $00000064 &100
+10 $00000010 $00000010 &16

3.2 Text Literals

Text literals are similar to character literals as specified in C. The
can be from one to four characters long, but if less than four, are
stored right justified. For example:

String Stored As
"A? $00000041
Fred’ $46726564
1234’ $3 1323334

3.3. Symbols and Register Names

The symbol and register names recognized by MacsBug are:

RAO thru RA7 Address registers AO thru A7
RDO thru RD7 Data registers DO thru D7
PC Program counter

. Last address referenced
TP Current QuickDraw port

3.4 Expressions

Expressions are formed by using the preceding numbers, literals
and symbols in conjunction with operators. The operators supported
by the debugger are:

- util.42 -

MACSBUG Macintosh Debuggers MACSBUG

+ addition (infix), assertion (prefix)
- subtraction (infix), negation (prefix)
@ indirection (prefix)

The @ operator uses the long value at the location specified by the
operand. Some examples of valid expressions are:

RA7+4
1A700-@10C
TP+&24
-RA0+RA1-"FRED’+@@4C50

4. Memory Commands

4.1 DM Display Memory

DM ADDR NUM

Displays NUM bytes of memory in hex and ASCII starting at
ADDR. NUM is rounded up to the nearest multiple of 16 bytes. If
omitted, it defaults to 16. If both are omitted, the next 16 bytes are

displayed.

Pressing Return displays the next set of NUM bytes. After the
command, the ’.’ is set to ADDR.

If NUM is set to certain four character strings, memory is displayed
in a special format depending on the particular string. The strings and

the formats are:

"IOPB’ Input/Output Parameter Block
"WIND’ Window Record
*TERC’ TextEdit Record

4.2 SM Set Memory

SM ADDR EXPRI EXPR2... EXPRN

Modifies memory starting at ADDR using the values represented
by EXPRn. Each expression has a width associated with it that
determines how many bytes are affected by each expression.

The width of text literals corresponds to the number of characters,
up to 4. Values from indirection are always four bytes. Decimal and
hexadecimal values are as wide as the smallest number of bytes that
will hold the value. An expression is as wide as the widest of its

elements.

5. Register Commands

5.1 D Data Register

Dn EXPR

- util.43 -

MACSBUG Macintosh Debuggers MACSBUG

This command displays the appropriate register if no expression is
specified. If one is specified, the register is set to the value of the
expression.

5.2 A Address Register

An EXPR

This command displays the appropriate register if no expression is
specified. If one is specified, the register is set to the value of the
expression.

5.3 PC Program Counter

PC EXPR

This command displays the appropriate register if no expression is
specified. If one is specified, the register is set to the value of the
expression.

5.4 SR Status Register

SR EXPR

This command displays the appropriate register if no expression is
specified. If one is specified, the register is set to the value of the
expression.

5.5 TD Total Display

TD

This command displays all registers, including the disassembled
instruction at the current program counter location.

6. Control Commands

6.1 BR Set Breakpoint

BR ADDR CNT

This command sets a breakpoint at ADDR that will cause the
debugger to stop after it has been encountered CNT times. If the CNT
is Omitted, it defaults to one. If the ADDR is omitted, all the
breakpoints currently set are displayed. Up to 8 breakpoints can be set.

6.2 CL Clear Breakpoint

CL ADDR

Removes the breakpoint at ADDR. If omitted, all breakpoints are
removed.

6.3 G Go

G ADDR

- util.44 -

MACSBUG Macintosh Debuggers MACSBUG

Resumes execution after setting the PC to the address specified. If
the address is omitted, execution is resumed at the current value of the
PC.

6.4 GT Go Till

GT ADDR

Sets a temporary breakpoint at ADDR and begins executing
instructions at the current value of the program counter. When
control is returned to the deugger, the breakpoint is cleared and
forgotten.

6.5 T Trace

T

Single steps through one instruction at a time. Traps to the
Toolbox and Operating System are treated as a single instruction.

6.6 S Step

S NUM

Single steps through NUM instructions or just one if omitted.
Traps are not treated as a single instruction.

6.7 SS Step Spy

SS ADDRI ADDR2

This command is used to determine when a particular range of
memory gets modified. When executed, a checksum is performed on
the memory range specified. Then, the debugger single steps through
the program checking the checksum before each instruction and
returns control to the user when the checksum changes.

6.8 ST Step Till

ST ADDR

Single steps through all instructions until an instruction at the
address, ADDR, is about to be executed. This is primarily used to set
breakpoints in the ROM.

6.9 MR Magic Return

MR NUM

This command is used to set a temporary breakpoint at the return
address of a function. More specifically, it uses the address which is
located NUM bytes off of the stack pointer as the breakpoint address.
If the offset is omitted, it is assumed to be the top of the stack.

6.10 RB Reboot

RB

- util.45 -

MACSBUG Macintosh Debuggers MACSBUG

Reboots the system.

6.11 ES Exit to Shell

ES

This launches the current startup application, aborting the program
being debugged.

7, A-Trap Commands

The A-Trap commands are used to set breakpoints based on access
to the Macintosh Toolbox or Operating System routines. Traps may be
selected based on the trap number, the memory location where the
trap was executed, and the contents of the DO register.

When selecting the trap number, values from 0 through 511 may be
used. If one trap number is specified, then that is the only value
trapped. If two trap numbers are specified, then any trap in the range
will be trapped.

If an address is specified, a second address marking the end of the
memory range must be specified as well. Only traps that are in the
specified range and that occur in the memory range will be trapped.

Finally, if a range for the DO register is specified, trapping will
only occur if the trap is in the specified trap range, occurs in the
designated memory range and the DO register contains a value in the
proper range. Only one A-Trap command may be active at a time.

7.1 AB A-Trap Break

AB TRAP! TRAP2 ADDR! ADDR2 D1 D2

Breaks to the debugger when the appropriate conditions have been
met.

7.2 AT A-Trap Trace

AT TRAP! TRAP2 ADDRI ADDR2 D1 D2

Displays the A-Trap paramaters for each trap which meets the
specified conditions. Unlike the AB command it does not Stop.

7.3 AH A-Trap Heap Zone Check

AH TRAP! TRAP2 ADDRI ADDR? D1 D2

Performs a Heap Check before each trap specified is executed. If
an error is discovered, the address of the block in question is
displayed, and control returned to the debugger.

7.4 HS Heap Scramble

HS TRAP! TRAP2

- util.46 -

MACSBUG Macintosh Debuggers MACSBUG

Scrambles the heap zone when certain traps in the specified range

are encountered. It always scrambles the heap zone as a result of

NewPtr(), NewHandle(), and ReallocHandle() calls. It scrambles the

heap zone as a result of SetHandleSize() and SetPtrSize() if the new

length is greater than the current length.

This command is fastest if you set TRAP1 to $18 and TRAP2 to

$2D. The heap zone is not scrambled as a result of traps other than

those named above.

7.55 AS A-Trap Spy

AS TRAP! TRAP2 ADDRI ADDR2

This command calculates a checksum for the specified range of

memory and then checks it before each trap in the range is executed.

If the checksum changes, control is returned to the debugger.

7.6 AX A-Trap Clear

AX

Removes all A-Trap breakpoints.

8. Heap Zone Commands

8.1 HX Heap Exchange

HX

Switches the heap zone being examined between the application

and the system heap zones. The default is the application heap zone.

8.2 HC Heap Check

HC

Checks the current heap zone for internal consistency. If an error

is found, the address of the faulty block is displayed.

8.3 HD Heap Dump

HD MASK

This command displays each block in the current heap zone in the

following format

BlkAddr Type Size [MstrPtr] [*] [RefNum ID Type]

BlkAddr is the block address, which points to the beginning of the

memory block. The type is 0 for a free block, 4 for a pointer, and 8

for a relocatable block. The size is the physical size of the block,

including the contents, header, and any unused bytes at the end of the

block.

MstrPtr is the master pointer; it’s given for relocatable blocks. The

high order byte contains the lock, purge, and resource bits. The

- util.47 -

MACSBUG Macintosh Debuggers MACSBUG

asterisk marks any immobile objects.

For resource file blocks, three additional fields are displayed. They
are the resource’s reference number, the ID number, and the type.

If mask is omitted, the dump is followed by a summary of the heap
zone’s blocks. It begins with the six characters "HLP PF’ which serve
as reminders for the six values that follow them. The six values are:

H Number of relocatable blocks (handles)
L Number of relocatable blocks that are locked
P Number of purgable blocks space, in bytes,

occupied by purgeable blocks
P Number of nonrelocatable blocks (pointers)
F Total amount of free space

If mask is present, the heap summary takes the form:

CNT ### NumBlks NumBytes

where NumBlks is the number of blocks of MASK type, and
NumBytes is the number of bytes in those blocks.

8.4 HP Heap Print

HP

If you are using one of the terminal based versions of MacsBug,
this command will do the dump to the other serial port.

8.5 HT Heap Total

HT MASK

Displays just the summary line from a heap zone dump. MASK is
defined to function the same as in the HD command.

9, Disassembler Commands

9.1 ID Instruction Disassemble

ID ADDR

Disassembles one line at the address specified. If the address is
omitted, the next logical address is used.

9.2 IL Instruction List

IL ADDR NUM

Disassembles NUM lines starting at ADDR. If the number is
omitted, it defaults to a full screen. If the address is omitted, it uses
the next logical address.

- util.48 -

MACSBUG Macintosh Debuggers MACSBUG

10. Miscellaneous Commands

10.1 F Find

F ADDR CNT DATA MASK

This command searches CNT bytes from ADDR, looking for
DATA after masking the target with MASK. As soon as a match is
found, the address and value are displayed. To search through the next
CNT bytes, just press Return.

10.2 WH Where

WH EXPR

If EXPR is less than 512, this displays the address corresponding to
the trap with that number. If EXPR is greater than or equal to 512,
the trap whose code 1s closest to that address is displayed.

10.3 CS Checksum

CS ADDRI ADDR2

Calculates the checksum for the bytes in the range specified. If the
second address is not specified, sixteen bytes are summed. If neither
address is specified, it computes the checksum for the last range
summed and compares it to the previous value. If the checksum
matches, the message:

CHKSUM T

is displayed. Otherwise, the message displayed is:

CHKSUM F

10.4 CV Convert

CV EXPR

Displays the expression as unsigned hexadecimal, signed
hexadecimal, signed decimal, and ASCII.

10.5 RX Register Exchange

RX

Toggles whether or not the registers are dumped during a trace
command. The disassembly of the current instruction is still
performed.

- util.49 -

MAKE Program maintenance utility MAKE

NAME

make - Program maintenance utility

SYNOPSIS

make [-n] [-f makefile] [-a] [namel name? ...]

DESCRIPTION

make 1s a program, similar to the UNIX program of the same name,
whose primary function is to create, and keep up-to-date, files that are
created from other files, such as programs, libraries, and archives.

When told to make a file, make first ensures that the files from
which the target file is created are up-to-date or current, recreating
just the ones that aren’t. Then, if the target file is not current, make
creates it.

Inter-file dependencies and the commands which must be executed
to create files are specified in a file called the ’makefile’, which you
must write.

make has a rule-processing capability, which allows it to infer,
without being explicitly told, the files on which a file depends and the
commands which must be executed to create a file. Some rules are
built into make; you can define others within the makefile.

A rule tells make something like this:

"a target file having extension ’.x’ depends on the file
having the same basic name and extension ’.y’. To
create such a target file, apply the commands ...".

Rules simplify the task of writing a makefile: a file’s dependency
information and command sequences need be explicitly specified in a
makefile only if this information can’t be inferred by the application
of a rule.

make has a macro capability. A character string can be associated
with a macro name; when the macro name is invoked in the makefile,
it’s replaced by its string.

Preview

The rest of this description of make is divided into the following
sections:

1. The basics
2. Advanced features
3. Examples

1. The basics

In this section we want to present the basic features of make, with
which you'll be able to start using make. Section 2 describes the other

- util.50 -

MAKE Program maintenance utility MAKE

features of make.

Before you can begin using make, you must know what make does,
how to create a simple makefile that contains dependency entries, how
to take advantage of make’s rule-processing capability, and, finally,
how to tell make to make a file. Each of these topics is discussed in the
following paragraphs.

1.1 What make does

The main function of make is to make a target file "current", where
a file is considered "current" if the files on which it depends are
current and if it was modified more recently than its prerequisite files.
To make a file current, make makes the prerequisite files current;
then, if the target file is not current, make executes the commands
associated with the file, which usually recreates the file.

As you can see, make is inherently recursive: making a file current
involves making each of its prerequisite files current; making these
files current involves making each of their prerequisite files current;
and so on.

make is very efficient: it only creates or recreates files that aren’t
current. If a file on which a target file depends is current, make leaves
it alone. If the target file itself is current, make will announce the fact
and halt without modifying the target.

It is important to have the time and date set for make to
behave properly, since make uses the ‘last modified’ times
that are recorded in files’ directory entries to decide if a
target file is not current.

1.2 The makefile

When make starts, one of the first things it does is to read a file,
which you must write, called the ’makefile’. This file contains
dependency entries defining inter-file dependencies and the commands
that must be executed to make a file current. It also contains rule
definitions and macro definitions.

In the following paragraphs, we want to just describe dependency
entries. In section 2 we discuss the somewhat more advanced topics of
rule and macro definition.

A dependency entry in a makefile defines one or more target files,
the files on which the targets depend, and the operating system
commands that are to be executed when any of the targets is not
current. The first line of the entry specifies the target files and the
files on which they depend; the line begins with the target file names,
followed by a colon, followed by one or more spaces or tabs, followed
by the names of the prerequisite files. It’s important to place spaces or
tabs after the colon that separates target and dependent files; on
systems that allow colons in file names, this allows make to distinguish

- util.51 -

MAKE Program maintenance utility MAKE

between the two uses of the colon character.

The commands are on the following lines of the dependency
information entry. The first character of a command line must be a
tab; make assumes that the command lines end with the last line not
beginning with a tab.

For example,consider the following dependency entry:

prog: prog.o subl.o sub2.0
In -o prog prog.o subl.o sub2.0 -Ic

This entry says that the file prog depends on the files prog.o, subl.o,
and sub2.o0. It also says that if prog is not current, make should execute
the /n command. make considers prog to be current if it exists and if it
has been modified more recently than prog.o, subl.o, and sub2.0.

The above entry describes only the dependence of prog on prog.o,
subl.o, and sub2.0. It doesn’t define the files on which the ’.o’ files
depend. For that, we need either additional dependency entrivs in the
makefile or a rule that can be applied to create ’.o’ files from ’.c’ files.

For now, we’ll add dependency entries in the makefile for prog.o,
subl.o, and sub2.0, which will define the files on which the object
modules depend and the commands to be executed when an object
module is not current. In section 1.3 we’ll then modify the makefile to
make use of make’s built-in rule for creating a’.o’ file from a ’.c’ file.

Suppose that the ’.0’ files are created from the C source files prog.c,
subl.c, and sub2.c; that subl.c and sub2.c contain a statement to include
the file defs.h and that prog.c doesn’t contain any #include statements.
Then the following long-winded makefile could be used to explicitly
define all the information needed to make prog

prog: prog.o subl.o sub2.0

In -o prog prog.o subl.o sub2.0 -Ic

prog.o: prog.c
cc prog.c

subl.o: subl.c defs.h
ce subl.c

sub2.0: sub2.c defs.h
cc sub2.c

This makefile contains four dependency entries: for prog, prog.o,
subl.o, and sub2.0. Each entry defines the files on which its target file
depends and the commands to be executed when its target isn’t
current. The order of the dependency entries in the makefile is not
important.

We can use this makefile to make any of the four target files
defined in it. If none of the target files exists, then entering

- util.52 -

MAKE Program maintenance utility MAKE

make prog

will cause make to compile and assemble all three object modules from

their C source files, and then create prog by linking the object modules
together.

Suppose that you create prog and then modify subl.c. Then telling

make to make prog will cause make to compile and assemble just

subl.c, and then recreate prog.

If you then modify defs.h, and then tell make to make prog, make
will compile and assemble subl.c and sub2.c, and then recreate prog.

You can tell make to make any file defined as a target in a
dependency entry. Thus, if you want to make sub2.0 current, you could

enter

make sub2.0

A makefile can contain dependency entries for unrelated files. For

example, the following dependency entries can be added to the above

makefile:

hello: hello.o

In hello.o -lc

hello.o: hello.c
cc hello.c

With these dependency entries, you can tell make to make hello and

hello.o, in addition to prog and its object files.

1.3 Rules

You can see that the makefile describing a program built from
many .o files would be huge if it had to explicitly state that each .o file
depends on its .c source file and is made current by compiling its

source file.

This is where rules are useful. When a rule can be applied to a file
that make has been told to make or that is a direct or indirect

prerequisite of it, the rule allows make to infer, without being

explicitly told, the name of a file on which the target file depends

and/ or the commands that must be executed to make it current. This

in turn allows makefiles to be very compact, just specifying
information that make can’t infer by the application of a rule.

Some rules are built into make; you can define others in a makefile.
In the rest of this section, we’re going to describe the properties of
rules and how you write makefiles that make use of make’s built-in
rule for creating a.o file from a.c file. For more information on rules,

including a complete list of built-in rules and how to define rules in a

makefile, see section 2.2.

- uil.53 -

MAKE Program maintenance utility MAKE

1.3.1 make’s use of rules

A rule specifies a target extension, source extension, and sequence
of commands. Given a file that make wants to make, it searches the
rules known to it for one that meets the following conditions:

* The rule’s target extension is the same as the file’s extension;

* A file exists that has the same basic name as the file make is
working on and that has the rule’s source extension.

If a rule is found that meets these conditions, make applies the first
such rule to the file it’s working on, as follows:

* The file having the source extension is defined to be a
prerequisite of the file with the target extension;

* If the file having the target extension doesn’t have a
command sequence associated with it, the rule’s commands
are defined to be the ones that will make the file current.

One rule built into make, for converting .c files into .o files, says

"a file having extension ’.o’ depends on the file
having the same basic name, with extension ’.c’. To
make current such a.o file, execute the command

cc X.c

where ’x’ is the name of the file"

Another built-in rule exists for converting .asm files into .o files,
using the Manx assembler.

1.3.2 An example

The .c to .o rule allows us to abbreviate the long-winded makefile
given in section 1.2 as follows:

prog: prog.o subl.o sub2.0
In -o prog prog.o subl.o sub2.0 -Ic

subl.o sub2.0: defs.h

In this abbreviated makefile, a dependency entry for prog.o isn’t
needed; using the built-in ’.c to .o’ rule, make infers that the prog.o
depends on prog.c and that the command cc prog.c will make prog.o
current.

The abbreviated makefile says that both suwbl.o and sub2.0 dcpend
on defs.h. It doesn’t say that they also depend on subl.c and sub2.c,
respectively, or that the compiler must be run to make them current:
make infers this information from the .c to .o rule. The only
information given in the dependency entry is that which make couldn’t
infer by itself: that the two object files depend on defs.h.

- util.S54 -

MAKE Program maintenance utility MAKE

1.3.3 Interaction of rules and dependency entries

As we showed in the above example, a rule allows you to leave
some dependency information unspecified in a makefile. The prog.o
entry in the long-winded makefile of section 1.2 was not needed, since
its information could be inferred by the .c to .o rule. And the
dependence of subl.o and sub2.0 on their respective C source files, and
the commands needed to create the object files was also not needed,
since the information could be inferred from the .c to .o rule.

There are occasions when you don’t want a rule to be applied; in
this case, information specified in a dependency entry will override
that which would be inferred from a rule. For example, the following
dependency entry in a makefile

add.o:
cc -DFLOAT add.c

will cause add.o to be compiled using the specified command rather
than the command specified by the .c to .o rule. make still infers the
dependence of add.o on add.c, using the .c to .o rule, however.

2. Advanced features

In the last section we presented the basic features of make, with
which you can start using make. In this section, we present the rest of
make’s features.

2.1 Dependent Files

A dependent file can be in a different volume or directory than its
target file, with the following provisos.

If the file name contains a colon (for example, because the file
name defines the volume on which the file is located), the colon must
be followed by characters other than spaces or tabs, so that make can
distinguish between this use of the colon character and its use as a
separator between the target and dependent files in a dependency line.
This shouldn’t be a problem, since most systems don’t allow file names
to contain spaces or tabs.

All references to a file must use the same name. For example, if a
file is referred to in one place using the name

/root/src/foo.c

then all references to the file must use this exact same name.

2.2 Macros

make has a simple macro capability that allows character strings to
be associated with a macro name and to be represented in the makefile
by the name. In the following paragraphs, we’re first going to describe
how to use macros within a makefile, then how they are defined, and

- util.55 -

MAKE Program maintenance utility MAKE

finally some special features of macros.

2.2.1 Using macros

Within a makefile, a macro is invoked by preceding its name with a
dollar sign; macro names longer than one character must be
parenthesized. For example, the following are valid macro invocations:

$(CFLAGS)

The last two invocations are identical.

When make encounters a macro invocation in a dependency line or
command line of a makefile, it replaces it with the character string
associated with the macro. For example, suppose that the macro
OBJECTS is associated with the string ao b.o co d.o. Then the
dependency entries:

prog: prog.o a.o b.o c.o d.o
In prog.o 2.0 b.o c.o d.o

ao b.o c.o d.o: defs.h

within a makefile could be abbreviated as:

prog: prog.o $(OBJECTS)
In prog.o $(OBJECTS)

$(OBJECTS): defs.h

There are three special macros: $$, $*, and $@. $$ represents the
dollar sign. The other two are discussed below.

2.2.2 Defining macros in a makefile

A macro is defined in a makefile by a line consisting of the macro
name, followed by the character ’=’, followed by the character string to
be associated with the macro.

For example, the macro OBJECTS, used above, could be defined in
the makefile by the line

OBJECTS = 20 b.o c.o do

A makefile can contain any number of macro definition entries. A
macro definition must appear in the makefile before the lines in which
it is used.

2.2.3 Defining macros in a command line

A macro can be defined in the command line that starts make. The
syntax for a command line definition has the following form:

- util.56 -

MAKE Program maintenance utility MAKE

mac=str

where mac is the name of the macro, and szér is its value.

If str contains spaces or tabs, the entire argument must be
surrounded by quotes.

For example, the following command assigns the value -DFLOAT to
the macro CFLAGS:

make CFLAGS=-DNOFLOAT

The assignment of a value to a macro in a command line overrides
an assignment in a makefile statement.

2.2.4 Macros used by built-in rules

make has two macros, CFLAGS and AFLAGS, that are used by the
built-in rules. These macros by default are assigned the null string.
This can be overriden by a macro definition entry in the makefile.

- For example, the following would cause CFLAGS to be assigned
the string "-T":

CFLAGS = -T

These macros are discussed below in the description of builtin
rules.

2.2.5 Special macros

Before issuing any command, two special macros are set: $@ is
assigned the full name of the target file to be made, and $* is the name
of the target file, without its extension. Unlike other macros, these can
only be used in command lines, not in dependency lines.

For example, suppose that the files x.c, y.c, and z.c need to be
compiled using the option "-DFLOAT". The following dependency
entry could be used:

X.0 y.O Z.O:
cc -DFLOAT $¥%.c

When make decides that x.o needs to be recreated from x.c, it will

assign $* the string "x", and the command

cc -DFLOAT x.c

will be executed. Similarly, when y.o or z.o is made, the command cc
-DFLOAT y.c or cc -DFLOAT z.c will be executed.

The special macros can also be used in command lines associated
with rules. In fact, the $@ macro is primarily used by rules. We’ll
discuss this more in the description of rules, below.

- util.57 -

MAKE Program maintenance utility MAKE

2.3 Rules

In section 1, we presented the basic features of rules: what they are
and how they are used. We also noted that rules could be defined in
the makefile and that some rules are built into make. In the following
paragraphs, we describe how rules are defined in a makefile and list
the built-in rules.

2.3.1 Rule definition

A rule consists of a source extension, target extension, and
command list. In a makefile, an entry defining a rule consists of a line
defining the two extensions, followed by lines containing the
commands.

The line defining the extensions consists of the source extension,
immediately followed by the target extension, followed by a colon.

All command lines associated with a rule must begin with a tab
character. The first line following the extension line that doesn’t begin
with a tab terminates the commands for the rule.

For example, the following rule defines how to create a file having
extension .rel from one having extension .c:

.c.rel:

cc -0 $@ $*.c

The first line declares that the rule’s source and target extension are .c
and .rel, respectively.

The second line, which must begin with a tab, is the command to
be executed when a .rel file is to be created using the rule.

Note the existence of the special macros $@ and $* in the
command line. Before the command is executed to create a .rel target
file using the rule, the macro $@ is replaced by the full name of the
target file, and the macro $* by the name of the target, less its
extension.

Thus, if make decides that the file x.rel needs to be created using
this rule, it will issue the command

cc -O x.rel x.c

If a rule defined in a makefile has the same source and target
extensions as a built-in rule, the commands associated with the
makefile version of the rule replace those of the built- in version. For
example, the built-in rule for creating a .o file from a .c file looks like
this:

C.0:
cc $(CFLAGS) $%.c

- util.58 -

MAKE Program maintenance utility MAKE

If you want the rule to generate an assembly language listing,
include the following rule in your makefile:

.C.0:
cc $(CFLAGS) -a $*.c
as -ZAP -1 $*.asm

2.3.2 Built-in rules

The following rules are built into make. The order of the rules is
important, since make searches the list beginning with the first one,
and applies the first applicable rule that it finds.

.C.0:
cc $(CFLAGS) -o $@ $*.c

.asm.o:
as $(AFLAGS) -o $@ $*.asm

The two macros CFLAGS and AFLAGS that are used in the built-
in rules are built into make, having the null character string as their
values. To have make use other options when applying one of the
built-in rules, you can define the macro in the makefile.

For example, if you want the options -T and -DDEBUG to be used
when make applies the .c.o rule, you can include the line

CFLAGS = -T -DDEBUG

in the makefile. Another way to accomplish the same result is to
redefine the .c.o rule in the makefile; this, however, would use more
lines in the makefile than the macro redefinition.

2.4 Commands

In this section we want to discuss the execution of operating system
commands by make.

2.4.1 Allowed commands

A command line in a dependency entry or rule within a makefile
can specify any command that you can enter at the keyboard. This
includes batch commands, commands built into the operating system,
and commands that cause a program to be loaded and executed from a
disk file.

2.4.2 Logging commands and aborting make

Normally, before make executes a command, it writes the command
to its standard output device; and when the command terminates, make
halts if the command’s return code was non-zero. Either or both of
these actions can be suppressed for a command, by preceding the

command in the makefile with a special character:

@ Tells make not to log the command:

- util.59 -

MAKE Program maintenance utility MAKE

- Tells make to ignore the command’s return code.

For example, consider the following dependency entry in a
makefile:

prog: ao b.o c.o d.o
In -0 prog 2.0 b.o c.0 d.o -lc
@echo all done

When the echo command is executed, the command itself won’t be
logged to the console.

2.4.3 Long command lines

Makefile commands that start a Manx program, such as cc, as, or Jn,
or that start a program created with cc, as, In, and c.lib, can specify a
command line containing up to 2048 characters.

For example, if a program depends on fifty modules, you could
associate them with the macro OBJECTS in the makefile, and also
include the dependency entry

prog: $(OBJECTS)
In -o prog $(OBJECTS) -lc

This will result in a very long command line being passed to Jn.

In the next section we will describe how OBJECTS could be
defined.

2.5 Makefile syntax

We’ve already presented most of the syntax of a makefile; that is,
how to define rules, macros, and dependencies. In this section we want
to present two features of the makefile syntax not presented elsewhere:
comments and line continuation.

2.5.1 Comments

make assumes that any line in a makefile whose first character is
’>#’ 18 a comment, and ignores it. For example:

t+

the following rule generates an 8080 object module
from aC source file:
4:

.c.080:
cc80 -o cc.tmp $*.c
as80 -ZAP -o $*.080 cc.tmp

2.5.2 Line continuation

Many of the items in a makefile must be on a single line: a macro
definition, the file dependency information in a dependency entry,
and a command that make is to execute each must be on a single line.

- util.60 -

MAKE Program maintenance utility MAKE

You can tell make that several makefile lines should be considered
to be a single line by terminating each of the lines, except the last,
with the backslash character, ’\’. When make sees this, it replaces the
current line’s backslash and newline, and the next line’s leading blanks
and tabs by a single blank, thus effectively joining the lines together.

The maximum length of a makefile line after joining continued
lines is 2048 characters.

For example, the following macro definition equates OBJ to a string
consisting of all the specified object module names.

OBJ = printf.o fprintf.o formato\
scanf.o fscanf.o scan.o\
getchar.o getc.o

As another example, the following dependency entry defines the
dependence of driver.lib on several object modules, and specifies the
command for making driver lib:

driver.lib: driver.o printer.o \
in.o \
out.o

libutil-o driver.lib driver.o\
printer.o \
in.O outo

This second example could have been more cleanly expressed using
a macro:

DRIVOBJ= driver.o printer.o\
in.o out.o

driver.lib: $/:DRIVOBJ)
libutil -o driver.lib $(DRIVOBJ)

We did it as we did to show that dependency lines and command lines
can be continued, too.

2.6 Starting make

You’ve already seen how make is told to make a single file.
Entering

make filename

makes the file named filename, which must be described by a
dependency entry in the makefile. And entering

make

makes the first file listed as a target file in the first dependency entry
in the makefile.

In both of these cases, make assumes the makefile is named
*makefile’ and that it’s in the current directory on the default drive.

- util.61 -

MAKE Program maintenance utility MAKE

In this section we want to describe the other features available
when starting make.

2.6.1 The command line

The complete syntax of the command line that starts make is:

make [-n] [-f makefile] [-a] [-dmacro=str] [file1] [file2] ...

Square brackets indicate that the enclosed parameter is optional.

The parameters filel, file2 ... are the names of the files to be made.
Each file must be described in a dependency entry in the makefile.
They are made in the order listed on the command line.

The other command line parameters are options, and can be
entered in upper or lower case. Their meanings are:

-n Suppresses command execution. make logs the
commands it would execute to its standard output
device, but doesn’t execute them.

-f makefileSpecifies the name of the makefile
-a Forces make to make all files upon which the specified

target files directly or indirectly depend, and to make
the target files, even those that it considers current.

-dMACROsstr Creates a macro named MACRO, and assigns str
as its value.

2.6.2 make’s standard output

make only uses its standard output device for printing error
messages and, when make is started with the -N option, for logging
commands. You can redirect make’s standard output device in the
normal way.

When make is started without the -N option (that is, when you
really want make to make something), commands are always logged to
the console; you can’t redirect them to another file or device.

The standard input and output devices of a program started by
make are associated with the console, unless the command that started
the program explicitly redirected one or both of them.

2.7 Executing commands

Throughout this document, we’ve implied that when make decides
that a command needs to be executed, it executes it itself. Actually,
make just builds an exec file of all the commands and transfers control
to it. make itself doesn’t execute any commands. When make decides
that a command needs to be executed, it executes it immediately, and
waits for the command to finish. It activates a command whose code

is contained in a disk file by issuing an fexec function call. It activates
DOS built-in commands and batch commands by calling the system
function, which causes a new copy of the command processor to be

- util.62 -

MAKE Program maintenance utility MAKE

loaded. Thus, to use make, your system must have enough memory
for DOS, make, and whatever programs are loaded by make to be in
memory simultaneously.

2.8 Differences between the Manx and UNIX ’make’ programs

The Manx make supports a subset of the features of the UNIX
make. The following comments present features of the UNIX make
that aren’t supported by the Manx make.

* The UNIX make will let you make a file that isn’t defined as a
target in a makefile dependency entry, so long as a rule can be
applied to create it. The Manx make doesn’t allow this. For
example, if you want to create the file hello.o from the file hello.c
you could say, on UNIX

make hello.o

even if hello.o wasn’t defined to be a target in a makefile
dependency entry. With the Manx make, you would have to have a
dependency entry in a makefile that defines hello.o as a target.

* The UNIX make supports the following options, which aren’t
supported by the Manx make:

p, 1, k, s, r, b, e, m, t, d, q

The Manx make supports the option ’-a’, which isn’t supported by
the UNIX make.

* The special names .DEFAULT, .PRECIOUS, .SILENT, and
-IGNORE are supported only by the UNIX make.

* Only the UNIX make allows the makefile to be read from make’s
standard input.

* Only the UNIX make supports the special macros $<, $?, and $%,
and allows an upper case D or F to be appended to the special
macros, (which thus modifies the meaning of the macro).

* Only the UNIX make requires that the suffixes for additional rules
be defined in a SUFFIXES statement.

* Only the UNIX make allows macros to be defined on the command
line that activates make.

* Only the UNIX make allows a target to depend on a member of a
library or archive.

3. Examples

3.1 First example

This example shows a makefile for making several programs. Note
the entry for arc. This doesn’t result in the generation of a file called
arc, it’s just used so that we can generate arcvy and mkarcy by entering

- util.63 -

MAKE Program maintenance utility

make are.

rules:
+

.c.080:
cc80 -DTINY -o $@ $*.c

+t

macros:
+

OBJ=make.o parse.o scandir.o dumptree.o rules.o command.o
tH

dependency entry for making make:
t+

make: $(OBJ) cntlc.o envcopy.o
In -o make $(OBJ) envcopy.o cntlc.o -lc

dependency entries for making arcv & mkarcv:
+

arc: mkarcv arcv

@echo done

mkarcv: mkarcv.o
In -o mkarcv mkarcv.o -lc

arcv : arcv.o
In -o arcv arcv.o -lc

tH

MAKE

dependency entries for making CP/M-80 versions of arcv & mkarcv:
+H

mkarcv80.com: mkarcv.o80
In80 -o mkarcv80.com mkarcv.o80 -It -Ic

arcv80.com: arcv.o80
In80 -o arcv80.com arcv.o80 -It -Ic

$(OBJ): libe.h make.h

3.2 Second example

This example uses make to make a library, my.lib. Three directories
arc involved: the directory /libc and two of its subdirectories, sys and
nusc. The C and assembly language source files are in the two
subdirectorics. There are makefiles in each of the three directories,
and this example makes use of all of them. With the current directory
being libc, you enter

make my.lib

This starts make, which reads the makefile in the libe directory. make
will change the current directory to sys and then start another make
program.

- util.64 -

MAKE Program maintenance utility MAKE

This second make compiles and assembles all the source files in the

sys directory, using the makefile that’s in the sys directory.

When the ’sys’ make finishes, the ’libc’? make regains control, and

then starts yet another make, which compiles and assembles all the

source files in the misc subdirectory, using the makefile that’s in the

misc directory.

When the ’misc’ make is done, the ’libc’ make regains control and

builds my.lib, You can then remove the object files in the

subdirectories by entering

make clean

3.2.1 The makefile in the ’libe’ directory

my.lib: sys.mk misc.mk
rm my.lib
libutil -o my.lib -f my.bld
(echo my.lib done

sys.mk:
cd sys
make
cd ..

misc.mk:
cd misc
make
cd ..

clean:
cd sys
make clean
cd.
cd misc
make clean
cd ..

- util.65 -

MAKE Program maintenance utility MAKE

3.2.2 Makefile for the ’sys’ directory

REL=asctime.o bdos.o begin.o chmod.o croot.o csread.o ctime.c \

dostime.o dup.o exec.o execl.o execlp.o execv.o execvp.o \
fexec.o fexecl.o fexecv.o ftime.o getcwd.o getenv.o \
isatty.o localtim.o mkdir.o open.o stato system.o time.o\
utime.o wait.o dioctl.o ttyio.o access.o syserr.o

COPT=
HEADER-j}../header

.C.0!
cc $(COPT) -IS(HEADER) $*.c -o $@
sqz $@

.aSm.0:
as $*.asm -0 $@
sqz $@

all: $CREL)
(@echo sys done

clean:

rm *.o

3.2.3. Makefile for the ’mis¢ directory

REL=ato1o atol.o calloc.o ctype.o format.o malloc.o qsort.o \
sprintf.o sscanf.o fformato fscan.o

COPT=
HEADER=../header

.C.0!
cc $(COPT) -IS(HEADER) $*.c -o $@
sqz $@

.asm.o:
as $*.asm -o $@
sqz $@

all: $CREL)
(@ccho misc done

fformat.o: format.c

cc -I$(HEADER) -DFLOAT formatc -o fformat.o

fscan.o: scan.c

cc -IS(HEADER) -DFLOAT scan.c -o fscan.o

clean:

rm *.o

- util.66 -

MOUNT Builtin commands MOUNT

NAME

mount, umount

SYNOPSIS

mount

umount volume

DESCRIPTION

mount displays information about the volumes having entries in the
mounted volume table. umount removes an entry from this table.

This section contains detailed information about these two
commands. For an overview of multivolume development, thc
mounted volume table, and so on, see the SHELL reference chapter.

The information displayed by mount for an entry in the mounted
volume table has the form:

*q (-v) name x K used y K free # files

where: |

* Indicates that the volume contains the current
directory. For other volumes, a space appears instead
of ’*:

d The number of the drive containing the volume:

l is the internal drive
2 is the external drive
- means the volume isn’t in a drive

Vv The number of the volume’s entry in the mounted
volume table.

x The amount of space, in kilobytes, occupied on the
disk by files;

y The amount of free space, in kilobytes, on the
volume.

Is the number of files on the volume.

The volume argument to the mount command identifies the volume
to be removed from the mounted volume table. It can be either the
name of the volume, or the number of the drive containing it.

The code for these commands is contained in the SHELL.

EXAMPLES

umount data:

Remove the data; volume from the mounted volume table.

- util.67 -

MOUNT Builtin commands MOUNT

umount 2:

Remove the volume in the external drive from _ the
mounted volume table.

umount ’another disk:’

Remove the volume named "another disk" from the

mounted volume table.

- util.68 -

MV Builtin command MV

NAME

mv - move files

SYNOPSIS

mv [-f] infile outfile

my [-f] filel file2 ... directory

mv voll: vol2:

DESCRIPTION

The first two forms of mv moves one or more files, and the original
files then cease to exist. It moves any type file, and will move both the
file’s resource and data forks.

The first form of my moves a single file, infile, to out file.

The second format of mv copies filel, file2, ... to directory. The
names of the files in the new directory have the same names as the
original files. In this case, the name of the directory must be
terminated with the character ’/’, unless the name is ’.’ or ’..’.

With both forms, if an original and target file are on the same
volume, mv simply changes the name of the original file to that of the
target file.

If the two files are on different volumes, mv actually copies each
original file to the target file and then removes the original file.

If the ’-f option is used, a pre-existing target file will be removed
before the move occurs. If -f isn’t specified and if a destination file
already exists, mv will ask if you want to overwrite it

The third form of mw changes the name of a volume. For this, a
drive identifier (eg, 1:) can’t be used.

The code for this command is contained in the SHELL.

EXAMPLES

mv hello.c test.c

Renames hello.c in the current directory to fest.c.

mv hello.c ../test.c

Renames hello.c in the current directory to the name fest.c.
The new file is located in the parent directory of the
current directory.

mv 1|:/source/hello.c 2:/work/test.c.

Copies hello.c from the directory /source on drive 1: to the
file fest.c in the directory /work on drive 2: and then
removes the original file.

~ util.69 -

MV Builtin command MV

mv * /newdir/

Renames all files in the current directory so that they are in
the directory /newdir on the current volume. Note the
terminating ’/’ on the name of the target directory.

mv sys:/work/*.c .

Assuming that the sys: and current volumes are different,
this command copies all files in the /work directory on the
sys: volume having extension ’.c’ to the current directory. If
the two volumes are the same, the original files are just
renamed.

mv sys: newname:

This command changes the name of the mounted volume
Sys- to Newname..

- util.70 -

PRSETUP Command program PRSETUP

NAME

prsetup - initialize printer

SYNOPSIS

prsetup [tabwidth]

DESCRIPTION

Initializes the printer so that output redirected from the SHELL

will print correctly.

It sets tabs at the specified stops and tells the printer to output a

line feed after a carriage return.

If tabwidth isn’t specified, tab stops are set every four characters.

- util.71 -

PWD Builtin command PWD

NAME

pwd - "print working directory"

SYNOPSIS

pwd

DESCRIPTION

pwd prints the name of the current directory.

The name is written to pwd’s standard output device. Hence, the
name is printed on the screen, by default, and can be redirected to
another device or file, if desired.

The code for pwd is contained in the SHELL.

SEE ALSO

cd

- util.72 -

RAMDISK RAMDISK

NAME

MountRam - Ram Disk Utility

SYNOPSIS

MountRam

DESCRIPTION

MountRam causes some of the RAM memory on a 512K Macintosh
to be reserved for use as a Ram Disk. Once MountRam has been run,
it appears that there is a new drive on your Macintosh, whose number
is 5 and whose name is Ram-:. This drive behaves like a normal drive,
except that (1) data transfer to it is faster than to a regular drive, and
(2) the contents of the drive are destroyed when the Macintosh is
turned off or rebooted.

Mountram leaves 128K bytes of RAM available for use as an
application heap, and uses the rest of RAM for the RAM disk.

The file containing the Mountram program also contains a driver
resource. This resource is called when a program attempts to access the
ram disk. It is loaded into the system heap by MountRam and made
non-purgable.

When a program terminates, the Macintosh normally searches the
boot drive for the Finder or SHELL. Executing the SHELL from the
RAM disk automatically makes the RAM disk the boot drive.

EXAMPLES

After the ram disk is created, you can copy files onto it. It’s best to
use it for holding programs, libraries, header files, and temporary files.
This way, if the system crashes, you won’t lose any files that aren’t
contained on regular disks.

The following exec file illustrates how a ram disk might be set up
for development:

MountRam

cp /shell ram:
cp /bin/cc ram:bin/
cp /bin/as ram:bin/
cp /bin/In ram:bin/
cp /bin/z ram:bin/
cp /include/* ram:include/
cp /lib/c.lib ram:lib/
set CLIB=ram:lib/
set INCLUDE=ram: include
set PATH=ram:bin;;sys: bin
ram:shell

- util.73 -

RAMDISK RAMDISK

This file first creates the ram disk. Then, it copies the SHELL,
compiler, assembler, linker, z, all files in the include directory, and c.lib
onto the ram disk. The next three lines set the environment variables
to use the ram disk. Finally, the SHELL on the ram disk is executed,
which changes the boot drive to the new ram disk.

The following exec file compiles, assembles, and links a program,
using the ram disk to hold the assembly language source and the object
module:

cc -o ram:temp.o $l.c
In -o $1 ram:$1.o -Ic
rm ram:$l.o

If you have a hard disk which already uses drive 5 as its number, edit
the assembly language source and change the line "DRVNUM equ 5" to
an appropriate number.

SEE ALSO

The Technical Information chapter has a section that discusses
using Aztec C68K on a 512K Macintosh.

- util.74 -

RGEN Resource Generator RGEN

NAME

RGen - Resource generator

SYNOPSIS

RGen -f infile

DESCRIPTION

RGen is a resource compilcr. It reads a text file that describes
resources, generates the resources, and writes them to a file. If an
error occurs, RGen will halt after first displaying an error message and
the input line on which the crror occurred.

RGen is very similar to the resource compiler in the Lisa Workshop
described in /nside Macintosh. There are some differences in syntax,
so care should be taken if converting files from the Lisa.

RGen doesn’t support the following resource types:

CODE FWID
DRVR INIT
DSAT INTL
FRSV PREC
FONT

1. The input and output files

The infile parameter on the line that starts RGen is the name of the
text file that defines the resources. The extension of this file is usually
SW

The first line of infile contains the name of the file to which RGen
is to write resources. Normally, RGen creates a new output file, after
first erasing an existing file of the same name, if necessary. However,
if the first character of this line is an exclamation point (!), RGen will
append resources to an existing file, and will create a new file only if
the specified file doesn’t already exist.

When RGen is being run on a Macintosh, the second line of in file
defines the type and creator of the output file. The type is listed first
on the line, followed by the creator. The type and creator names cach
have a maximum of four characters. If the type has less than four
characters, a space must scparate it and the creator names. If the type
has exactly four characters, the creator name immediately follows the
type name, with no intervening spaces. If the line is blank, both ficlds
will be set to zcro.

When Regen is being run on a system other than a Macintosh (ic, it
was supplicd with a cross development version of C68), the second line

of infile can be anything, because these versions of RGen simply read
the line and ignore it. It must, howcver, be present, since RGen
assumes that resource definitions begin on the third line.

- ufil.75 -

RGEN Resource Generator RGEN

Normally, when RGen encounters the definition of a resource that
already exists in the output file, it will ask if you want to overwrite the
existing resource. Alternatively, you can specify the -f option in the
command that starts RGen, causing RGen to automatically overwrite
existing resources without asking for your permission.

For example, if the following lines are the first two lines of the
RGen input file, RGen will create a new file named appres.rsc in the
current directory, with type RSRC and creator TEMP.

appres.rsc
RSRCTEMP

And if an exclamation mark began the first of the above lines (that is,
the line was /appres.rsc), RGen would append resources to appres.rsc,
without first deleting the file.

When RGen is executed on a Macintosh, it writes the resources to
the resource fork of the output file.

When RGen is executed on another system (that is, it was provided
as part of a cross development package, with the other system acting as
the host and the Macintosh as the target), it writes the resources to a
normal file; also, in this case the second line of the input file to RGEN
has no effect, although it must be present. When the resulting file is
transferred to the Macintosh using the xfer program, the -p option
must be specified, causing the data to be written to the resource fork
of a file on the Macintosh. xfer sets the type and creator of this file to
AZTC and Manx, respectively. You can change the type and creator
using the SHELL’s styp command, if necessary.

2. Input File Syntax

In this section we want to describe the format of the input file lines
that define resources. For a discussion of the first two lines of the
input file, which define the output file, see above.

2.1 General Description of the Input File

Most blank lines and all comment lines are ignored. Some blank
lines are required as separators. Comment lines are lines that begin
with an asterisk. Comments at the ends of regular input lines are
initiated by two consecutive semicolons (;;).

Blanks are generally ignored, except when used as a separator for
different values on a line, or in strings. When a resource definition
calls for several values on a line, they must all be on the same line.
Numbers are interpreted as decimal, unless a particular instance is
noted as otherwise.

Two special symbols may be used in the resource definitions. The
continuation symbol, (++), is placed at the end of a line that is
continued on the next line. This is usually used with long strings. The

- util.76 -

RGEN Resource Generator RGEN

second symbol, (\), specifies that the following two hexadecimal digits
be interpreted as an ASCII character.

2.2 Resource Definitions

The general form of a resource definition is as follows:

TYPE type [= other type]
[name],ID [(attribute)]
type-specific data

The items in square brackets are optional. Note that both the resource
name and resource attributes are optional, but the comma and resource
ID are not. ID numbers should be unique within a resource type. The
type field must be one of the predefined resource types that the
compiler knows about. A list of those types is given below. New types
can be defined from existing types by using the alternate form of the
TYPE statement. The type-specific data which follows the TYPE and
ID statements 1s described for each of the predefined types below.

RGen has 26 predefined resource types that it knows about. They
are:

ALRT ICON PAT#
BNDL ICN# PICT
CDEF KEYC PROC
CNTL GNRL TEXT
CURS MBAR STR
DITL MDEF STR#
DLOG MENU WDEF
FKEY PACK WIND
FREF PAT

The type-specific data for each type is described below by example.
For further information, refer to the appropriate section in the Inside
Macintosh manual. Note that FKEY, KEYC, MDEF, PACK, and WDEF
all have the same format as CDEF.

NOTE: Hex bytes are taken 2 at a time, hex words are taken 4 ata
time. If there is an odd number, the number is scanned from right to
left and a 0 is inserted in the beginning. Hex values may be in either
upper or lower case.

Examples:

- util.77 -

RGEN Resource Generator RGEN

1. The values adAD, ADad, aDaD, ... are all the same.

2. Examples of various hex values:

Hex word: fOfl is taken as FOF1
123 is taken as 0123

Hex byte: aD is taken as AD
1 is taken as 01

When keywords are required (i.e. Visible, Invisible, GoAway,
NoGoAway) only enough characters are required to distinguish
between the choices. These characters may be in either upper or lower
case.

Examples:

1. For Visible or invisible, only a ’v’ or an ’i’ must be typed,
the rest of the word is optional.

2. To specify a checkBox, the letters ’ch’ are required, the rest
of the word is optional in order to distinguish checkBox from ctrlItem
(ct’).

3. Examples of Resource Definition

3.1 ALRT- Alert Template

TYPE ALRT
,128 3; resource ID

50 50 250 250 3; top left bottom right
] 3; resource ID of item list
7FFF *: stages word in hexadecimal

3.2 BNDL - Application Bundle

TYPE BNDL
,128 *-s resource ID

MPNT 0 ;; bundle owner
ICN# *s resource type
0 128 1 129 ;; local ID, 0 maps to 128, 1 to 129
FREF 3; resource type
0 128 1 129 ;; local ID, 0 maps to 128, 1 to 129

Note: the number of mappings from local ID to resource ID is
variable. Simply include multiple mappings on a single line.

- util.78 -

RGEN Resource Generator RGEN

3.3 CDEF - Control definition function

TYPE CDEF
Myfile, 156 >; filename, resource ID

Note: This reads in the resource and id from the specified file. The
specified file may only contain | resource. It is placed in the output
file with the specified type and ID.

3.4 CURS - Cursor

TYPE CURS
,300 *- resource ID
TFFC ...287F ‘- the data: 64 hex digits on one line.
OFCO... 1FF8 *- the mask: 64 hex digits on one line.
0008 0008 ‘> the hotSpot in hexadecimal (v h)

3.5 CNIL - Control Template

TYPE CNTL
, 130 *> resource ID

Stop *- title
244 40 260 80 *- top left bottom right
Invisible *- Visible or Invisible
0 ‘*- ProcID (control definition ID)
0 >> RefCon (reference value)
010 ** min, max, value

- util.79 -

RGEN Resource Generator

3.6 DITL - Dialog or Alert Item List

TYPE DITL

,129 ;; resource ID
9 ;; number of items in list

StaticText 3; Static text dialog item
20 20 32 100 3; top left bottom right
Name: >; Message

editText 3; editable text dialog item
20 120 32 200
your name here

3; top left bottom right
3; text itself

radioButton 3; radio button dialog item
40 40 60 150 3; top left bottom right
Choice ;; button label

checkBox Disabled ;; disabled checkbox dialog item
75 40 95 150 ;; top left bottom right
Filter ;; Checkbox label

button ;; button dialog item
75 160 95 200 3; top left bottom right
Cancel *; button label

iconItem 3; 1con dialog item
40 40 60 150 3; top left bottom right
128 3; resource ID

picltem Disabled
75 75 160 160

3; disabled picture dialog item
3; top left bottom right

130 *; resource ID

userltem 3; user dialog item
20 20 60 60 3; top left bottom right

ctrlltem >> control item
20 20 40 40 ;; top left bottom right

RGEN

16 3; resource ID of control definition

Note: The item is assumed to be enabled unless followed by the
keyword, Disabled.

- util.80 -

RGEN Resource Generator RGEN

3.7 DLOG - Dialog Template

TYPE DLOG

3 3; resource ID
This 1s a dialog box >: title
100 100 190 250 ;; top left bottom right
Visible GoAway ;; box status

0 3; procID (dialog definition ID)
0 ;; refCon (reference value)
129 3; ID of item list (DITL above)

Note: The box status can be Visible or Invisible. The status also
indicates whether a the box has a close control by specifying either
GoAway or NoGoAway.

3.8 FREF - File Reference

TYPE FREF
,128 >; resource ID

APPL 0 filename 3; file type, local ID of icon, filename

Note: The filename can be omitted if there is none.

3.9 ICON - Icon

TYPE ICON
,128 >; resource id

0380 0000 ;; The icon in hexadecimal - 64 hex values

1ECO 3180

3.10 ICN# - Icon list

TYPE ICN#
,128 *; resource id

2 ;; Number of icons
0001 0000 3; The icons in hexadecimal - 64 hex values
ves ;; for each icon
0002 8000

3.11 MBAR - Menu bar

TYPE MBAR
128 3; resource ID

3 >; Number of menus
128 130 156 ;; resource ID of the menus

- util.81 -

RGEN

3.12 MENU - Menu

TYPE MENU
3

Edit
Undo
(-

Copy
Cut
Paste

Clear

TYPE MENU
44
201
Patterns

3.13 PAT - Pattern

TYPE PAT
200
SSDD5566AA1 1AA66

3.14 PAT# - Pattern list

TYPE PAT#
,136

y)

5522552255225522
55DD5566AA11AA66

3.15 PICT - Picture

TYPE PICT
,130

2
50 50 300 300
4142434445

3.16 PROC - Procedure

TYPE PROC
,128

MyProcedure

Resource Generator RGEN

;; Standard type
;; resource ID
*; menu title
*; item |
3; item 2
3; item 3
*; item 4
>; item 5
>; item 6

3; MUST be followed by a blank line!

3; nonstandard type
3; resource ID

3; resource ID of menu definition procedure
;; Menu title (may be followed by items)

5; resource ID

;; The pattern in 4 words of hexadecimal

3; resource ID
;; Number of patterns
;; Lhe patterns in 4 words of hexadecimal, o1
+; per line

;; resource ID

;; Picture size (number of bytes) in decimal
3; top left bottom right
3; The picture in hexadecimal

3; resource [ID
:; file name

Note: This type is used to create resources that contain code. It does
so by reading the resource of type CODE and ID=! from the specified
file. It then strips the first four bytes off of it and saves it as a

- util.82 -

RGEN Resource Generator RGEN

resource of type PROC. This is useful for creating resource types such
as WDEF, PACK and INIT.

3.17 STR - String
TYPE STR | 3; STR’ (space required)
| 3; resource ID

This is a string ++ ;; the string itself, saved in Pascal string format
continued on a new line.

3.18 STR# - A Number of Strings

TYPE STR#
| 3; resource ID

4 3; number of strings
This is string one 3; and the strings themselves ...
And string two
Third string
Bench warmer

3.19 TEXT - Text

TYPE TEXT

,128 3; resource ID
16 ;; Number of bytes in the text
This is the text ;; The text

3.20 WIND - Window Template

TYPE WIND
,128 ;; resource ID

Wonder Window 3; window title
40 80 120 300 3; top left bottom right
Invisible NoGoAway _ ;; window status
0 ;; procID (window definiton ID)
0 :- refCon (reference value)

Note: The box status can be Visible or Invisible. The status also
indicates whether a the box has a close control by specifying either
GoAway or NoGoAway.

4. Creating New Types

Creating types other than the predefined types can be accomplished
in one of two ways. First, a new type can be based on an existing type,
having the same structure, but a different type value. This is done by
equating the new type to the existing type in the TYPE statement part
of the definition. For example, to create a resource of type INIT, the
following definition would be used.

- util.83 -

RGEN Resource Generator RGEN

TYPE INIT = PROC © ;; type INIT is just like PROC
3 3; resource ID

progfile :; file containing CODE resource

The file, progfile, should be a file created by the linker with no
overlays, no initialized data, and no relocatable references.

The second way of creating a new type allows the structure to be
completely defined in the definition. For this purpose, equate using
the GNRL resource type, which recognizes a set of element
designators which can be used to define the structure. The element
descriptors are defined as follows:

Pascal string
String without length byte
Decimal integer
Decimal long integer
Hexadecimal value
Load a resource from a file
(filename type ID)

n
H
 in

ty

The following is a list of examples of new resource types created from
the GNRL type.

TYPE CHRG = GNRL ;; define type CHRG
,200 *; resource ID

I 3; a decimal integer
57
P ;; a Pascal string

Finance charges
*- Must end with a blank line

TYPE ICN# = GNRL ;; icon list for an application
,128 3; resource ID
H 3; enter 2 icons in hexadecimal
0001 0002 0003 0004 _ ;; each is 32 bits by 32 bits

007d 007e 007f 0080 =: for 128 words total
>; Must end with a blank line

TYPE FONT = GNRL ;; define a new type
,200 *s resource ID
.R ;; read from the System file the
System FONT 268 > type FONT with ID = 268

;; Must end with a blank line

5. Including Resources

Just as resources may be appended to existing files, resources may
be read from existing files and included as part of the new resource
file. This process is not selective, and uses the entire resource file.
This is done using a statement of the form:

- util.84 -

RGEN Resource Generator RGEN

INCLUDE filename

Later it will be shown how this statement is used to combine the

output of the Aztec linker with resources produced by the resource

compiler.

NOTE: Unlike RMaker, a given file name with no preceeding

pathname is taken to be in the current directory. To get or puta file

in another directory, the full pathname must preceed the file name.

6. Using RGen with Aztec C

During program development, it is possible to avoid using the

resource compiler each time the program is changed. This is done by

placing the resources produced by the resource compiler in a file with

a fixed name. Then, in the main() routine of the program itself, the

OpenResFile() routine should be used to open the resource file. This

will make the resources available as though they were part of the

program file itself.

When the program has been completed, the resource file can be

combined with the program file for final use, and the OpenResFile()

statement can be removed. To combine the output from the RGen

with the output of LN, edit the RGen input file and add a statement:

INCLUDE linker.out

where linker.out is the name of the linker output file. The resulting

file is the final form of the application being developed.

~ util.85 -

RGEN Resource Generator RGEN

7. Explanation of RGen error messages

When started, RGen first displays a message on the screen which
indicates that RGen is running. If everything goes well, RGen will
print on the screen several messages listing the output file name, the
data, map and total size. RGen may encounter an error while it is
running, in which case it will send a message to the screen.

Following is a list of the messages which RGen will generate in
response to an error.

1. Cannot open file: *filename’.

The file does not exist. Make sure that the file name is entered
correctly and that the file exists in the directory specified.

2. Cannot read from the input file: ’filename’.

2. Cannot read from the file.

For some reason, the file cannot be read. Check the file to make
sure that the name and directory are correct.

3. Cannot create output file.

4. Cannot write the output file.

4. Cannot write to the output file: filename’.

Check there is enough room on the disk and that a correct path
name and file name are given.

5. Not enough memory to create resource map.

Either the input file’s resource map is too big to be read into
memory or the output file’s resource map is too big to be kept in
memory.

6.. Invalid dialog item type.

The type is not one of the given dialog item types, such as BtnItem,
crtlItem, StatText,

7, Missing ’File name!”.

The type FONT requires a file name from which the resource is
read in.

8. Missing font size.

The type FONT requires that a font resource has a size.

9. Missing ’(’? before resource attribute.

A resource attribute must be surrounded by parentheses.

- util.86 -

RGEN Resource Generator RGEN

10. Missing ID.

11. Missing comma before ID.

A resource ID must be preceeded by a comma.

12. Unexpectedly reached the end of the file.

The end of the input file occurred when there should have been
more data. Check the input file with the RGen manual.

13. Looking for a number.

Something besides the expected number was found.

14. Incorrect keyword.

RGen was looking for the first character of a keyword (i.e. ’v’ for
visible or °1’ for invisible) and found a character that didn’t match.

15. Missing an interpreting code.

The type GNRL requires an interpreting code (1.e. .P .'S .I.H .B.R)
so that it knows how to interpret the following data.

16. Missing definition data.

For the type GNRL, a .S, .I, .L, .H, or .B was found but no data
was found after it.

17. Missing the input file name.

18. Missing the resource name.

19. Missing the ID.

For the type GNRL, a .R was found but either the input file name,
resource name, or the ID was missing from the line following it.

20. ’Filename’ is not a valid input text file.

The given file is not a valid one. RGen requires a text file.

21. Incorrect resource Type.

RGen requires one of the 26 resource types as listed in the RGen
manual.

22. Invalid name.

Expecting the word "Type" or "INCLUDE" but found something
else instead.

23. Output file name may not be the input file name.

Specify a different output file name as it may not be the same as

the input file name.

- util.87 -

RGEN Resource Generator RGEN

24. Only allowed to have 1 resource in input file.

The specified file may only contain 1 resource that has 1 ID.

25. Special character style not found.

A character representing a character style in the menu manager was
either not found or incorrect.

26. Illegal character found.

An incorrect meta-character was found in the MENU template.

27. *Filename’ is not of the correct format.

The specified input file is not of correct Macintosh format.

28. String is greater than 255 characters.

A string cannot be greater than 255 characters.

29. Illegal hex character.

Expecting a value between 0 and 9 or A and F but found something
else.

30. Resource ’name’ id ’number’ already exists.

The resource and ID already exist. Check the input (.r) file to make
sure that types and ID’s are not duplicated. Also check any files that
are being INCLUDED’ ed.

31. Should be at the end of the line.

32. Should not be another number on this line.

33. Should be the last word on this line.

Another character was found when there should have been nothing
else on the line. Check the RGen documentation for the correct
template.

34. User terminated.

RGen was aborted by the user.

35. usage: rgen (-f) filename

To run the resource generator, type "rgen filename". The -f option
will automatically remove a pre-existing resource of the specified
TYPE and ID from the destination file, without asking your
permission. This should be used if you know a resource already exists
and are sure that it should be overwritten.

36. Invalid option specified.

An option other than -f was found. See message 35.

- util.88 -

RGEN Resource Generator RGEN

37. Missing an output file name.

A file name is needed to write the output to. This should be the

first line in the .r file.

- util.89 -

RM Builtin command RM

NAME

rm - remove files

SYNOPSIS

rm [-i] file [file] ...

DESCRIPTION

rm removes the specified files.

rm will not remove files that have been locked with the lock
command. It will, however, remove files that have been locked by the
Finder or by the SHELL’s flock command. Also, rm will not remove
directories.

If the ’-1” (interactive) option is used, rm will ask the operator
whether or not to remove each file. If ’y’ is typed, the file will be
removed. If anything else is typed, it won’t be removed. Without this
option, rm automatically removes the files, without questioning the
operator.

The code for this command is contained within the SHELL.

EXAMPLES

rm *,bak

Remove all files having extension .bak from the current
directory. The files are removed automatically, without
querying the operator, except for files which were locked
by the Jock command.

rm -i data:/temp/*

Remove all files in the /temp directory on the data:
volume. For each file, rm asks the operator whether the file
should be removed.

- util.90 -

RMAKER Resource Compiler RMAKER

NAME

RMaker - Resource compiler

SYNOPSIS

RMaker

DESCRIPTION

RMaker is the resource compiler supplied with the Macintosh
68000 Development System(MDS) from Apple Computer. It is very
Similar to the resource compiler in the Lisa Workshop described in
Inside Macintosh. There are some differences in syntax, so care should
be taken if converting files from the Lisa. The resource compiler
takes a text file which describes the individual resources as input and
produces the appropriate resource file as output.

1. Input Format

RMaker input is in the form of a text file usually with an extension
of ".r". The format of the text is fairly simple. Most blank lines and
all comment lines are ignored. Some blank lines are required as
Separators. Comment lines are lines that begin with an asterisk.
Comments at the ends of regular input lines are initiated by two
consecutive semicolons (;;).

Blanks are generally ignored, except when used as a separator for
different values on a line, or in strings. When a resource definition
calls for several values on a line, they must all be on the same line.
Numbers are interpreted as decimal, unless a particular instance is
noted as otherwise.

Two special symbols may be used in the resource definitions. The
continuation symbol, (++), is placed at the end of a line that is
continued on the next line. This is usually used with long strings. The
second symbol, (\), specifies that the following two hexadecimal digits
be interpreted as an ASCII character.

2. File Information

The first true input line of the file is used to specify the name of
the resource file to be created. Any name can be specified. The only
restriction is that the file should not have an extension of ".rel", since
that will cause the resource compiler to generate a file in a special
format for the MDS system.

The line following the resource name should be used to specify the
type and creator. The type is listed first on the line, followed by the
creator. The type and creator names cach have a maximum of four
characters. If the type has less than four characters, a space must
Separate it and the creator names. If the type has exactly four
characters, the creator name immediately follows the type name, with

- util.91 -

RMAKER Resource Compiler RMAKER

no intervening spaces. If the line is blank, both fields will be set to
zero.

For example, the following lines

appres.rsrc
RSRCTEMP

will create a resource file named appres.rsrc with type RSRC and
creator TEMP.

The preceding example will create a new resource file. To append
the resources to an existing resource file, simply precede the file name
with an exclamation point. For example:

loldres.rsrc |

will append the resources to the file oldres.rsre.

Just as resources may be appended to existing files, resources may
be read from existing files and included as part of the new resource
file. This process is not selective, and uses the entire resource file.
This is done using a statement of the form:

INCLUDE filename

Later it will be shown how this statement is used to combine the
output of the Aztec linker with resources produced by the resource
compiler.

3. Resource Definitions

The remaining lines of the input file are the resource definition
lines themselves. The general form of a resource definition is as
follows:

TYPE type [= other type]
[name],ID [(attribute)]
type-specific data

The items in square brackets are optional. Note that both the resource
name and resource attributes are optional, but the comma and resource
ID arc not. ID numbers should be unique within a resource type. The
type ficld must be one of the predefined resource types that the
compiler knows about. A list of those types is given below. New types
can be defined from existing types by using the alternate form of the
TYPE statement. The type-specific data which follows the TYPE and
ID statements is described for each of the predefined types below.

RMaker has 12 predefined resource types that it knows about.
They are:

- util.92 -

RMAKER Resource Compiler RMAKER

ALRT DLOG PROC
BNDL FREF STR
CNTL GNRL STR#
DITL MENU WIND

The type-specific data for each type is described below by example.
For further information, refer to the appropriate section in the Jnside
Macintosh manual.

4. Resource Examples

4.1 ALRT - Alert Template

TYPE ALRT
128 *> resource ID

50 50 250 250 ;; top left bottom right
l ;; resource ID of item list
7FFF 3; stages word in hexadecimal

4.2 BNDL - Application Bundle

TYPE BNDL
,128 *- resource ID

MPNT 0 >; bundle owner
ICN# *> resource type
0 128 1 129 *; local ID, 0 maps to 128, 1 to 129
FREF 3; resource type
0128 1 129 >; local ID, 0 maps to 128, 1 to 129

Note: the number of mappings from local ID to resource ID is
variable. Simply include multiple mappings on a single line.

4.3 CNIL - Control Template

TYPE CNTL
,130 3; resource ID

Stop *: title
244 40 260 80 3 top left bottom right
Invisible ;; Visible or Invisible
0 ;; ProcID (control definition ID)
0 *> RefCon (reference value)
010 >> min, max, value

- util.93 -

RMAKER Resource Compiler RMAKER

4.4 DITL - Dialog or Alert Item List

TYPE DITL
,129

5

StaticText
20 20 32 100
Name:

editText
20 120 32 200
your name here

radioButton
40 40 60 150
Choice

checkBox Disabled
75 40 95 150
Filter

button
75 160 95 200
Cancel

>; resource ID

>> number of items in list

3; Static text dialog item
3; top left bottom right
3; Message

;; editable text dialog item
3; top left bottom right
3; text itself

;; radio button dialog item
3; top left bottom right
;; button label

3; disabled checkbox dialog item
3; top left bottom right
3; Checkbox label

3; button dialog item
3; top left bottom right
;; button label

Note: The five item types listed above are the only ones recognized.
The item is assumed to be enabled unless followed by the keyword,
Disabled.

4.5 DLOG - Dialog Template

TYPE DLOG
53

This is a dialog box
100 100 190 250
Visible GoAway
0
0

129

Note: The box status can be

3; resource ID
;; title
3; top left bottom right
;; box status
3; ProcID (dialog definition ID)
3; refCon (reference value)
;3; ID of item list (DITL above)

Visible or Invisible. The status also
indicates whether a the box has a close control by specifying either
GoAway or NoGoAway.

- util.94 -

RMAKER Resource Compiler RMAKER

4.6 FREF - File Reference

TYPE FREF
,128 3; resource ID

APPL 0 filename 3; file type, local ID of icon, filename

Note: The filename can be omitted if there is none.

4.7 MENU - Menu

TYPE MENU
3 3; resource ID

Edit >; menu title
Undo >; item |
(- 3; item 2
Copy *- item 3
Cut *- item 4
Paste >> item 5
Clear 3; item 6

;; MUST be followed by a blank line!!

4.8 PROC - Procedure

TYPE PROC
,128 3; resource ID

MyProcedure ;; file name

Note: This type is used to create resources that contain code. It does
so by reading the resource of type CODE and ID=1 from the specified
file. It then strips the first four bytes off of it and saves it as a
resource of type PROC. This is useful for creating resource types such
as WDEF, PACK and INIT.

4.9 STR - String

TYPE STR 3; STR’ (space required)
wl 3; resource ID

This is a string ++ ;; the string itself
continued on a new line.

4.10 STR# - A Number of Strings

TYPE STR#
| 3; resource ID

4 ;; number of strings
This is string one ;; and the strings themselves ...
And string two

Third string
Bench warmer

- util.95 -

RMAKER Resource Compiler RMAKER

4.11 WIND - Window Template

TYPE WIND
5128 >; resource ID

Wonder Window 3; window title
40 80 120 300 3; top left bottom right
Invisible NoGoAway _ ;; window status
0 3; procID (window definiton ID)
0 ;; refCon (reference value)

Note: The box status can be Visible or Invisible. The status also
indicates whether a the box has a close control by specifying either
GoAway or NoGoAway.

5. Creating New Types

Creating types other than the predefined types can be accomplished
in one of two ways. First, a new type can be based on an existing type,
having the same structure, but a different type value. This is done by
equating the new type to the existing type in the TYPE statement part
of the definition. For example, to create a resource of type INIT, the
following definition would be used.

TYPE INIT = PROC __ ;; type INIT is just like PROC
3 3; resource ID

progfile 3; file containing CODE resource

The file, progfile, should be a file created by the linker with no
overlays, no initialized data, and no relocatable references.

The second way of creating a new type allows the structure to be
completely defined in the definition. For this purpose, equate using
the GNRL resource type, which recognizes a set of element
designators which can be used to define the structure. The element
descriptors are defined as follows:

Pascal string
String without length byte
Decimal integer
Decimal long integer
Hexadecimal value
Load a resource from a file
(filename type ID)

mi
nt

hi

nt

The following is a list of examples of new resource types created from
the GNRL type.

- util.96 -

RMAKER Resource Compiler RMAKER

TYPE CHRG = GNRL ;; define type CHRG
,200 3; resource ID

1 3; a decimal integer
57

P ;; a Pascal string
Finance charges

TYPE ICN# = GNRL ;; icon list for an application
,128 *; resource ID
.H *; enter 2 icons in hexadecimal
0001 0002 0003 0004 _ ;; each is 32 bits by 32 bits

007d 007e 007f 0080 =: for 128 words total

TYPE FONT = GNRL ;; define a new type
,268 ;; resource ID
.R ;; read from the System file
System FONT 268 *> type FONT with ID = 268

To actually run the resource compiler, simply type its name to the
SHELL. The program will load and display the standard file selection
window. The window will show all text files with an extension of ".r".
To see all text files, cancel the file selection window and select the .R
Filter option in the File menu. Then select Compile from the same
menu which will bring the file selection window back again.

To actually compile, select the file to be used for input and click
Open. As each line is compiled, it is displayed in the left-hand
window. The size of the resource file is displayed in the right hand
window. If no errors occur, the program can be exited by clicking the
window’s close box or the Quit button. If an error occurs, the line
containing the error is the last line on the screen. The program
displays a box with an error message in it.

6. Using RMaker with Aztec C

During program development, it is possible to avoid using the
resource compiler each time the program is changed. This is done by
placing the resources produced by the resource compiler in a file with
a fixed name. Then, in the main() routine of the program itself, the
OpenResFile() routine should be used to open the resource file. This
will make the resources available as though they were part of the
program file itself.

When the program has been completed, the resource file can be
combined with the program file for final use, and the OpenResFile()
statement can be removed. To combine the output from the RMaker
with the output of LN, edit the RMaker input file and add a statement

INCLUDE linker.out

where Jinker.out is the name of the linker output file. The resulting

- util.97 -

RMAKER Resource Compiler RMAKER

file is the final form of the application being developed.

- util.98 -

SET Builtin command SET

NAME

set - environment variable and exec file utility

SYNOPSIS

set

set VAR=string

set [-+x] [-+e] [-+n]

set [-a]

DESCRIPTION

set is used to examine and set environment variables, to set exec
file options, and to enable the trapping of errors by the SHELL.

set 18 a builtin command; that is, its code is contained in the
SHELL.

Displaying and setting environment variables

The first form listed for set causes set to display the name and value
of each environment variable.

The second form assigns string to the environment variable VAR.

Setting Exec file options

The third form, which can only be used within an exec file, sets
options for the exec file. The options are associated with a character, as
follows:

X Command line logging. With this option enabled,
before a command line in an exec file is executed, it’s
logged to the screen. By default, this option is
disabled.

e Exit prematurely. With this option enabled, a
command which terminates with a non-zero return
code causes the exec file to be aborted. By default, this
option is enabled.

n Non-execution. With this option enabled, commands
in the exec file aren’t executed. By default, this option
is disabled.

Preceding an option’s character with a minus sign enables the
option, and preceding it with a plus sign disables it.

Enabling error trapping

The fourth form of the set command enables the trapping of the
following Macintosh system errors:

- util.99 -

LIBRARY FUNCTIONS OVERVIEW:

MACINTOSH INFORMATION

- libovmac.1 -

LIBRARY Aztec C68

- libovmac.2 -

Aztec C68 LIBRARY

Library Functions Overview:
Macintosh Information

The Library Functions Overview chapter presented overview
information that is independent of the system on which your programs
run. This chapter presents overview information about the library
functions that is specific to programs that run on a Macintosh.

The sections of this chapter are numbered; the information
discussed in a section is related to the section in the Library Functions
Overview chapter that has the same number.

1. Overview of I/O: Macintosh Information

For the Macintosh, a maximum of eleven files and devices,
including the standard i/o devices, can be open at once for both
standard and unbuffered i/o. When this limit is reached, an open file
or device must be closed before another can be opened.

1.1 Pre-opened devices and command line arguments

For programs running on a Macintosh, the program’s name is
pointed at by the first item in the array that is pointed at by the
second argument of the of the program’s main function. That is, if the
main function begins

main(argc, argv)
int argc; char *argv[];

then argv/0/] 1S a pointer to the program’s name.

For programs that are activated by the SHELL, a command line
argument can be a quoted string or a file name template. For details,
see the SHELL reference chapter.

Programs that can be activated by the Finder can be passed
command line arguments, but they must receive them using the
Macintosh conventions, rather than the UNIX conventions. That 1s,
they access them via a handle in the system area, rather than as
arguments to the program’s main function.

1.2 File I/O

1.2.3 Opening Files

When a SHELL-activated program wants to open a file, the file
name has the standard SHELL format. That is, it consists of an
optional volume name, an optional directory, and a filename. The

- libovmac.3 -

LIBRARY Aztec C68

volume defaults to the volume containing the current directory, and
the directory to the current directory.

For examples of file names, see the SHELL reference chapter.

A Macintosh file can have a data fork and/or a resource fork. The
standard, UNIX-compatible functions for opening files open a file’s
data fork. Two special functions, openrf and creatrf, open a file’s
resource fork.

The functions that create files on the Macintosh (open, fopen,
creatrf, etc) set the type and creator of the file to TEXT and ???/,
respectively. These attributes can be changed, using the function
settyp. This function is described in the Macintosh Functions chapter.

1.3 Device I/O

On the Macintosh, devices are accessed using the following names:

device name
keyboard con
display con
printer .bout
RS232 in ain
RS232 out aout

2. Overview of Standard I/O: Macintosh Information

2.1 Opening files on the Macintosh.

As mentioned in the I/O overview section, the standard, UNIX
compatible functions for opening files on a Macintosh open a file’s
data fork.

Two special functions, openrf and creatrf, are provided for opening
a file’s resource fork for unbuffered i/o. To open a file’s resource fork
for standard i/o, first open it for unbuffered i/o, by calling openrf or
creatrf. Then open it for standard i/o, by calling fdopen.

2.5 Buffering

On the Macintosh, the size of a buffer used for standard I/O is 512
bytes.

3. Overview of Unbuffered I/O: Macintosh Information

For the Macintosh, the open and creat functions open a file’s data
fork. Two special functions are provided which open a file’s resource
fork: openrf and creatrf.

4. Overview of Console I/O: Macintosh Information

On the Macintosh, the UNIX console i/o options are available. In
addition, other options are available that aren’t UNIX-compatible,

- libovmac.4 -

Aztec C68 LIBRARY

including the automatic expansion of tabs to spaces on output (the
XTAB option) and whether or not the program will wait if it issues a
read to the console when a key hasn’t yet been depressed (the
NODELAY option).

A program’s default console mode on a Macintosh is line-oriented,
with ECHO and CRMOD enabled, just as it would be on another
system. In addition, a Macintosh program’s default mode has the
special options XTAB and ECHOE (defined below) enabled,
NODELAY disabled, and tab stops set every four characters.

4.1 Line-oriented Input

On the Macintosh, all console options are program- selectable, even
in line-oriented input mode.

Thus, line-oriented input doesn’t automatically enable ECHO for a
Macintosh program.

On the Macintosh, a non-UNIX option, NODELAY is available,
which defines whether a program wants to wait if its read request can’t
be immediately satisfied. With NODELAY reset and with the console
in line-oriented mode, a read request to the console will wait if an
entire line hasn’t been typed. With NODELAY set and with the
console in line-oriented mode, a read request will always return
immediately: if an entire line hasn’t been typed, no characters will be
returned to the program (even if some characters have been typed): if
an entire line has been typed, the requested characters will be
returned.

4.2 Character-oriented Input on the Macintosh

On the Macintosh, there is one exception to the rule that RAW
mode resets all other options: with the console in RAW mode, a
program still has control over the NODELAY option.

On the Macintosh, the console driver buffers typed characters, even
when the console is in a character-oriented input mode. The console
driver will scan the keyboard for input when ever an i/o operation is
performed on the console. Thus, it is possible for the operator to enter
characters while the program is sending information to the screen. The
characters aren’t returned to the program until it asks for them.

With the console in character-oriented input mode, the driver’s
treatment of a read request to the console depends on the console’s
NODELAY option: if this option is reset, the program will be
suspended until at least one character has been received: then, the
requested number of characters, up to the number in the internal
buffer, are returned to the program. Thus, suppose a program issues
the input call

read (0, buf, 80)

- libovmac.5 -

LIBRARY Aztec C68

to the console, which is in a character-oriented mode with NODELAY
reset. If there are characters in the driver’s internal buffer, it will
return the requested number of characters from this buffer, up to the
number in the buffer; if 80 characters aren’t already in the buffer, it
won’t wait for the operator to enter the remaining characters. If there
are no characters in the driver’s buffer, the driver will suspend the
program until the operator types a character, and then return that
character to the program.

If the console is in character-oriented mode with NODELAY set, a
read request to the console will always return immediately: if no
characters are in the driver’s buffer, no characters are returned to the
program; otherwise, the characters in the buffer are returned, up to
the number requested.

4.4 The sgity fields

4.4.1 The sg _flags field

On the Macintosh, the following non-UNIX flags for sg__flags are
supported in addition to the UNI X-compatible flags:

XTAB Convert tabs to spaces on output, with tab stops
set as specified by TABSIZ. By default, XTAB is
enabled.

TABSIZ A mask for a four-bit field that defines the
tabwidth to be used when XTAB is set. By
default, TABSIZ is set to four.

ECHOE When ECHO is set, and the ’erase’ character is
entered, output the ’erase’ character, then a
Space, and then another ’erase’ character (thus
erasing the character from the screen); By
default, ECHOE is enabled.

NODELAY When a read is issued to the console and no keys
have been typed, return immediately. By
default, NODELAY is disabled.

CHKKEY Defines whether the console driver is to check
for output flow control. When this option is
enabled, the operator can type *S to suspend
console output, and then type any character to
allow it to continue. By default, CHKKEY is
enabled.

ERASE Defines whether the console driver should erase
the character under the cursor before displaying
the next output character. If this option is
disabled, the new character’s pattern is combined
with that of the existing character. Not erasing
speeds screen output considerably. By default,
ERASE is disabled.

~- libovmac.6 -

Aztec C68 LIBRARY

4.5 The sg_ erase field

This field is supported on the Macintosh. It defines the character
that, on console input, causes the previously-entered characters to not
be returned to a program.

4.6 The sg _ kill field

sg__kill is supported on the Macintosh. It defines the character
that, on console input, causes the console driver to delete all the
characters that are in its internal buffer and that haven’t been returned
to the program.

By default, this character is “XX, that is, control-X.

5. Overview of Dynamic Buffer Allocation: Mac Info

On the Macintosh, the non-UNIX memory allocation function
[malloc is provided. See the Macintosh Functions chapter for details.

6. Overview of Error Processing

On the Macintosh, the special values that toolbox and OS routines
may return are defined in the file syserr.h.

- libovmac.7 -

LIBRARY Aztec C68

- libovmac.8 -

MACINTOSH FUNCTIONS

- libmac.1 -

Aztec C68K Mac Functions

Macintosh Functions

This chapter describes functions which are available only to
programs which are running on a Macintosh.

As with the chapter describing system independent functions, this
chapter is divided into sections, each of which describes a group of
related functions.

The header to a section contains a letter in parentheses describing
the library containing the section’s functions. The codes and their
related libraries are:

C c.lib
S s.lib

Following this introduction is an index to the functions, and then
the functions themselves.

- libmac.3 -

CREATRF (C) Unbuffered I/O Function CREATRF

NAME

creatrf - create a new resource file

SYNOPSIS
creatrf(name, pmode)
char *name;
int pmode;

DESCRIPTION

creatrf creates a file and opens its resource fork for unbuffered,
write-only access. If the file already exists, it is truncated so that
nothing is in it (this is done by erasing and then creating the
file).

creatrf is just like the UNIX function creat except that it opens a
file’s resource fork rather than its data fork.

creatrf returns as its value an integer called a "file descriptor".
Whenever a call is made to one of the unbuffered i/o functions
to access the file, its file descriptor must be included in the
function’s parameters.

The parameter name is a pointer to a character string which is
the name of the device or file to be opened. See the I/O
overview section for details.

The parameter pmode is optional. If specified, it is ignored. The
pmode parameter should be included, however, for programs for
which UNIX-compatibility is required, since the UNIX creat
function requires it. In this case, pmode should have an octal
value of 0666.

SEE ALSO

Unbuffered I/O (O), Errors (O), creat

DIAGNOSTICS
If creatrf fails, it returns -1 as its value and sets a code in the
global integer errno.

- libmac.5 -

EXEC

NAME

(C) EXEC

execl, execv, execlp, execvp

SYNOPSIS
execl(name, arg0, argl, arg2, ..., argn, (char *) 0)
char *name, *arg0, *argl, *arg2, ...;

execv(name, argy)
char *name, *argy[];

execIp(name, arg0, arg], arg2, ..., argn, (char *) 0)
char *name, *arg0, *argl, *arg?, ...;

execvp(name, argv)
char *name, *argyv{];

DESCRIPTION
These functions cause another program or an exec file to be
executed, If a program is called, the called program is loaded on
top of the calling program. If an exec file is called, the SHELL
is loaded and told to execute it. Thus, in either case, if the exec
function succeeds, it doesn’t return to the caller.

These functions can be used within the SHELL or the Finder
environment; that is, when either the SHELL or the Finder is
being used as the command processor. The functions can
activate programs of type "AZTC’ or APPL’.

When a program of type ’AZTC’ is started, the exec function
can specify parameters that are to be passed. The called
program receives these parameters in the standard UNIX way;
that is, as arguments to its main function.

When a program of type ’APPL’ is started, the calling program
can pass parameters to it; however, this is done using the
standard Macintosh convention rather than as arguments to the
exec function. That is, the caller must set up the argument list
in the system heap, set the appropriate handle to it in the system
area, and then issue the exec call. The called program then
receives the arguments by fetching them from the system heap,
rather than as arguments to its main function.

The following paragraphs first describe the parameters to the
exec functions, then describe the differences between the
functions, and finally discuss other features of the functions.

Parameters

name is the name of the file containing the program or exec file.
name has the standard SHELL format for a file name; that is, it
consists of an optional volume name, an optional directory (and
the path to it), and the name of a file within the directory. The
volume defaults to the volume containing the current directory,

- libmac.7 -

EXIT (C) Macintosh Functions EXIT

NAME
exit, exit

SYNOPSIS

exit(code)

__ exit(code)

DESCRIPTION
These functions cause a program to terminate and control to
return to the SHELL or to the Finder.

For an exec file-activated program, code is passed back to the
excc file. If it is non-zero and if the exec file has set its ’abort’
option, the exec file will be terminated.

exit and _ exit differ in that exit closes all files opened for
standard 1/0, while __ exit doesn’t.

- libmac.9 -

GETENV (C) Macintosh Function GETENV

NAME
gctenv

SYNOPSIS
char *getenv(name)
char *name;

DESCRIPTION

geteny returns a pointer to the character string associated with
the environment variable name, or 0 if the variable isn’t in the
environment.

The character string is in a static buffer and will be overwritten
when the next call is made to getenv.

- libmac.11 -

OPENRF (C) Unbuffered I/O Functions OPENRF

NAME

Openrf - open resource file

SYNOPSIS
include "fcntl.h"

openrf(name, mode)
char *name;

DESCRIPTION
This function will open the resource fork of a file for
unbuffered i/o. It returns an integer value called a file
descriptor which is used to identify the file in subsequent calls
to unbuffered i/o functions.

openrf is just like the UNIX function open except that it opens a
file’s resource fork instead of its data fork.

The parameter name is a pointer to a character String which is
the name of the file to be opened. For details, see the overview
section I/O.

The parameter mode specifies how the user’s program intends to
access the file. The choices are as follows:

mode meaning
OQ RDONLY read only
O _WRONLY write only
O RDWR read and write
O CREAT Create file, then open it
O TRUNC Truncate file, then open it
O EXCL Cause open to fail if file already

exists; used with O| CREAT
O APPEND Position file for appending data

These open modes are integer constants defined in the files
fentlh. Although the true values of these constants can be used
in a given call to open, use of the symbolic names ensures
compatibility with UNIX and other systems.

The calling program must specify the type of access desired by
including exactly one of O RDONLY, O_WRON LY, and
O_RDWR in the mode parameter. The three remaining values
are optional. They may be included by adding them to the mode
parameter, as in the examples below.

By default, the open will fail if the file to be opened does not
exist. To cause the file to be created when it does not already
exist, specify the O CREAT option. If O EXCL is given in
addition to O CREAT, the open will fail if the file already
exists; otherwise, the file is created.

If the O_ TRUNC option is specified, the file will be truncated
so that nothing is in it. The truncation is performed by simply

- libmac.13 -

OPENRF (C) Unbuffered I/O Functions OPENRF

main(arge, argv)
char **argv;

{
int fd;

fd = openrf(*++arev,
O_WRONLY+0O_CREAT+O_ EXCL);

if (fd = -1)
if (errno == EEXIST)

printf("file already exists\n"):
else if (errno == ENOENT)

printf("unable to open file\n");
else

print{("open error\n");

- libmac.15 -

SCREEN (S) Screen Functions SCREEN

NAME
screen manipulation functions:

scr__beep, scr__bs, scr__tab, scr_If,
scr_ cursup, scr__cursrt, scr__cr,
scr_ clear, scr_ home, scr__curs, scr__eol
scr__linsert, scr__Idelete,
scr__cinsert, scr__cdelete

SYNOPSIS
scr beep()
scr bs()
scr tab()
scr_ If)
Scr cursup()
Scr cursrt()
scr cr()
scr clear()
scr home()
scr_ eol()
scr linsert()
scr__Idelete()
scr cinsert()
scr cdelete()
scr curs(lin, col)
int lin, col;

DESCRIPTION

These functions can be called by command programs to
manipulate screens of text. For example, there are functions to
clear the screen, position the cursor, and insert and delete
characters and lines.

9

These fvactions can be used in conjunction with the normal
standard i/o and unbuffered i/o functions to display characters
on the console.

A program that calls these functions must access the console
using the Aztec console driver; that is, it must have been linked
with shcroot or mixcroot.

scr__beep rings the keyboard bell.

scr__bs moves the cursor back one character space, without
modifying the character that was backspaced over.

scr__tab moves the cursor right one tab stop.

scr_lf moves the cursor down one line, scrolling if at the
bottom of the screen.

scr__cursup moves the cursor up without changing its column
location.

- libmac.17 -

SETTYP (C) Macintosh Function SETTYP

NAME
Settyp - set file fields

SYNOPSIS
settyp(filename, type, creator)
char *filename;
long type, creator;

DESCRIPTION

settyp sets the type and creator fields of the file named filename.

filename is a C format character string, and type and creator are
longs.

For example,

settyp("myappl", APPL’, HACK’):

sets the file myappl to have type APPL and creator HACK.

- libmac.19 -

MONTITOR(C) Macintosh Function MONITOR

NAME
monitor, intr sp - profiling functions

SYNOPSIS
int monitor(lowpc, highpe, buffer, size, numcalls)
int (*lowpc)(); /* start of area to be profiled, normally __ Corg */
int (*highpc)(); /* end of area to be profiled, normally __Cend */
Short *buffer; /* address of buffer to hold hits */
int size; /* size of buffer */
int numcalls; /* dummy argument as yet unimplemented */

DESCRIPTION
monitor is a function which sets up the Macintosh to perform a
runtime analysis of where the user program is spending its
execution time. This is accomplished by installing a task via the
Vertical Retrace Manager to be executed every vertical retrace
interrupt unless a speed other than default setting is used. This
routine then records a tick if the current execution address at
the time of the interrupt is in the address range being analyzed.

Once the analysis is complete, the tick summary is written to a
file called mon.out which can be used as input to the prof utility
to produce a report of runtime activity. monitor is called once
with non-zero arguments to initiate analysis and once with all
zero arguments to terminate analysis. A simple example of this
is included in the file test.c which starts and Stops the monitor
in main() by using the macros MON_ON and MON _ OFF set
up in monitor.h. The test can be set up and run as follows:

ce test.c
In -t test.o monitor.o -Ic
test

prof -s test.sym

Any add-on boards or external monitors may cause problems.

Users may change the monitoring clock speed by using the
intr__sp(speed) option. The default for speed is 60 which allows
60 interrupts per second. Speed may be slowed to one interrupt
per second by passing a value of | to it.

EXAMPLE
The simplest way to describe the use of monitor is through an
example.

Suppose there is a program foo.c for which analysis is desired.
At the start of the main routine of foo.c, place the following
code:

libmac-app.1 V3.4

MONITOR(C) Macintosh Function MONITOR

Linking a program with monitor calls
When linking a program containing monitor calls, the user should be
careful to use the -T or -W option, which produces a symbol table for
the program, as this is needed for running the prof utility which
produces the report.

Notes:

The monitor() function currently will not profile a segment other than
CODE 1. It will also not tell you any information about any calls you
make to the Macintosh ROM.

SEE ALSO
prof

libmac-app.3 V3.4

MKTEMP (C) MKTEMP

(Duplicate Page - First issued with release 1.06h)

NAME

mktemp - make a unique file name

SYNOPSIS

char *
mktemp (template)
char *template;

DESCRIPTION

mktemp replaces the character string pointed at by template
with the name of a non-existent file, and returns as its value a
pointer to the string.

The string pointed at by template should look like a file
name whose last few characters are Xs with an optional
imbedded period.

mktemp replaces the Xs with a letter followed by the least
significant digits of the starting address of its program’s data
segment. The letter will be between ’A’ and ’Z’, and will be
chosen such that the resulting character string isn’t the name
of an existing file.

DIAGNOSTICS

For a given character string, mktemp will try to convert the
string into one of 26 file names. If all of these files exist,
mktemp will replace the first character pointed at by template
with a null character.

SEE ALSO

tmpfile, tmpnam

EXAMPLES

The following program calls mktemp to get a character string
that it can use as a file name. If the program’s data segment
begins at the decimal address 123456, then the generated
name will be one of the strings abcA23.456, abcB23.456, ...,
abceZ23.456. If all these strings are the names of existing files,
mktemp will replace the first character of the String passed to
it, a in this case, with 0.

libmac-app.1 v1.06h

NEWROM (C) NEWROM

(Duplicate page - First issued with release 1.06h)

NAME

__newrom

SYNOPSIS

__newrom()

DESCRIPTION

__newron1 returns a 0 if the machine has the old 64K ROM in
it, a 1 if it has the Mac Plus Rom, or a 2 if the machine is a
Mac II.

libmac libmac-app.1 v1.06h

STAT (C) STAT

(Duplicate page - First issued with release 1.06h)

NAME

Stat

SYNOPSIS

stat(name, buf)
char *name, *buf:

DESCRIPTION

stat returns the attribute byte, date and time, and size of the
file name. This information is returned in buf, which has the
following format:

Struct stat {
char st_attr;
long st__ mtime;
long st__size;

long st__rsize;

}

This structure, and the meaning of the bits in the attribute
and time fields are defined in the header file stat.h, and in the
TIME section.

name can optionally specify the full pathname where the
file is located.

ERRORS

stat returns -1 if it fails, after setting a code in the global
integer errno. The Errors section of the Library Overview
chapter describes these codes.

libmac-app.1 v1.06h

SCREEN (S) Screen Functions SCREEN

(Duplicate page - First issued with release 1.06h)

NAME

screen manipulation functions:
scr__beep, scr__bs, scr__tab, scr__ If,
scr__cursup, scr__cursrt, scr__cr,
scr__clear, scr_ home, scr_curs, scr__eol,
scr__linsert, scr__Idelete,
scr__cinsert, scr__cdelete, scr_echo, scr__getc

SYNOPSIS

scr beep()

scr bs()

scr tab()

scr_ IfQ

scr cursup()

scr__cursrt()

scr_cr()

scr_ clear()

scr home()

scr eol()

scr__linsert()

scr_Idelete()

scr__cinsert()

scr cdelete()

scr__ curs(lin, col)
int lin, col

scr echo(flg)
int flg;

scr getc();

DESCRIPTION

These functions can be called by command programs to
manipulate screens of text. For example, there are functions
to clear the screen, position the cursor, insert and delete
characters and lines, enable and disable echo mode, and get
characters.

libmac-app.1 v1.06h

SCREEN (S) Screen Functions SCREEN

key hasn’t been depressed, and echoes it to the screen if the
global integer _ echo is non-zero. scr__getc returns one of the
following values:

scr__getc reads a character from the keyboard, waiting if a

* For normal characters, its ASCII value (a number
between decimal 0 and 127).

“ For special characters, a number between 128 and
255.

* For control-break, -2.

libmac-app.3 v1.06h

TIME (C) TIME

(Duplicate page - First issued with release 1.06h)

NAME

time, ctime, localtime, gmtime, asctime

SYNOPSIS

long time(tloc)
long *tloc;

char *ctime(clock)
long *clock;

#include "time.h"

Struct tm “localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

DESCRIPTION

time returns the date and time, which it gets from the
Operating system. The other functions convert the date and
time, which are passed as arguments, to another format.

time returns the current date and time packed into a long
int. If its argument ¢loc is non-null, the return value is also
stored in the field pointed at by the argument. The format of
the value returned by time is described below.

ctime, localtime, and gmtime convert a date and time
pointed at by their argument, which is in a format such as
returned by fime, to another format:

ctime converts the time to a 26-character ASCII string
of the form

Mon Apr 30 10:04:52 1984\n\0

localtime and gmtime unpack the date and time into a
structure and return a pointer to it. The structure,
named tm, is described below and defined in the header
file time.h.

asciime converts a date and time pointed at by its
argument, which is in a structure such as returned by
localtime and gmtime, to a 26-character ASCII string in
the same form as returned by ctime.

The long int returned by time and passed to ctime, localtime,
and gmtime has the following form (bit 0 is the least

libmac-app.1 v1.06h

TMPNAM (C) TMPNAM

(Duplicate page - First issued with release 1.06h)

NAME

tmpnam - create a name for a temporary file

SYNOPSIS

char *tmpnam (s)
char *s;

DESCRIPTION

tmpnam creates a character string that can be used as the name
of a temporary file and returns as its value a pointer to the
String. The generated string is not the name of an existing
file.

s optionally points to an area into which the name will be
generated. This must contain at least L__tmpnam bytes, where
L__tmpnam is a constant defined in stdio.h.

s can also be a NULL pointer. In this case, the name will
be generated in an internal array. The contents of this array
are destroyed each time tmpnam is called with a NULL
argument.

The generated name is prefixed with the string that is
associated with the symbol P_tmpdir, this symbol is defined
in stdio.h. In the distribution version of stdio.h, P__tmpdir is a
null string; this results in the generated name specifying a file
that will be located in the ’current area’. The location of this
area 1s system dependent: on PC-DOS/MS-DOS 2.x and the
Macintosh, it’s the current directory on the default drive; on
CP/M-86, it’s the current user area on the default drive.

SEE ALSO

libmac

tmpfile, mktemp

libmac-app.1 v1.06h

TOOLBOX and OS FUNCTIONS

- tool. 1 -

Toolbox Functions Aztec C68K

Chapter Contents

Toolbox and OS Functions wo. ccscsccssscssscccscscsseesssseeecsssssscsseecsseeesees tool
Control Manager functions wc... scsscsscsscecssccssseecscsecesscsssecsssecseseeeees 10
Desk Manager Functions oov..iccccccccccccccssccecsscecsccscsssecessracsecsesecenscesessceees 14
Dialog Manager Functionsccccccssscsscccsccssscssccsescssscesescscsecsssscsecesesenss 15
Disk Manager Functions wiccccccscscsscccsscssscesccssscssecsscecsscsessesceceseccesssences 19
Event Manager FUnctioms ce cicccccccssccssscccsscccscecsscccecsscececssssescesesecceees 20
File Manager Functions wie cccccssccssscsscsssecsscecsesscesescesssessssesseseseeees 23
Font Manager Functions ...ccccsscsssscsssscsssscsessssessessscssscsssessscsscssssseesees 31
Memory Manager Functions oo... cccsccssscsssecsssscssscessscsssecsccsercessecssesevees 34
Menu Manager Functions .icicsccssscssscssscccssscssscessccsssscsssessesseeceseeceees 38
OS Utilities occ ccccccsccsssscsssscssesssessssescssecessesssceseeeecescscscsesecsecsessasenens 41
Package Manager Functions w.....ccccccscssssssccssscssessecescsssececscscccevssseeseenens 44
Print Manager Functions oc... ccccccscccscssssssccesscsecsssccecscscccecsseccesessecesenees 50
QUICKCraw FUNCTIONS vicciceccsccccsscccsscsssscescsccessececseecesscceesssscersseeceeseees 55
Resource Manager Functions wii. cccscesssscsccsssscessecsssssecesssssccascesesees 69
Vertical Retrace Manager Functions oo... cic ccssscessscsscssserscsssssscsessceseees 72
Scrap Manager FuNctions ...c.cciccccscsssssecsssssecssscccesssccecsssscecsscsseeescsseaeeees 73
ScEeMent Loader FUNCTIONS wove ccsssssscscesssecessssssccccssessssssessesesseaseeees 74
Serial Driver FUNCTIONS wc cccsescsssscesseessccsscecscesessesssessescssescesacseaeens 75
Sound Driver Functions wowccsescsscscscsssscssssescseseceessssseeeeees seseeeseeseves 78
SysteM Error Code wicceeeccsscsscsssscesssssscscsceecsscececececeecessaseceessteeeeseeseceees 80
TextEdit Functions wii... iccsscscsccsssscssssecssccsssscessscsseseeecssssecessscessssacesenacs 82
Toolbox Utility FUNCtionss wc sccsssccseccssscssessssecsssecsssecssesssssesens 86
TYPCS wicccccccccsccsccssssccceccececeecccecesesssesececessssevevesseseesesssessecestescesscesceccececcaceceeas 89
Window Manager Functionscciccccsscsssccssscsscessscssesesssescssesssesseseceeeces 90

- tool.2 -

Aztec C68K Toolbox Functions

Toolbox Functions

This chapter describes how programs access the Macintosh toolbox
and operating system routines. The information in this chapter
supplements that presented in the Apple manual /nside Macintosh; to
write C programs that access Macintosh routines, you will use
information from the Apple manual and from this chapter.

The Macintosh routines that provide related functions are grouped
together and called a "manager". In Jnside Macintosh, a chapter is
devoted to each of the Macintosh managers, with each chapter
containing an overview section and a summary section. The overview
section of an inside Macintosh chapter presents an overview of its
manager, of course, and discusses the data structures passed to and
returned from it, the values that may be set in the structures, and the
manager’s routines that can be called by user-written programs. The
Summary section of an Inside Macintosh chapter summarizes the
information presented in the overview section, simply listing the
constants, data structures, and routines related to it, without defining
their meanings.

This chapter, then, is divided into sections, with each section
summarizing the information needed for a program to access a
particular Macintosh manager. The sections are titled, and a section’s
title identifies its corresponding Macintosh manager. The sections are
sorted alphabetically, according to their titles.

As mentioned above, each section of this chapter summarizes the
information that a programmer will need to write C programs that
access a Macintosh manager. The information in each section is at the
same level of cetail as that contained in the summary section of its
corresponding Inside Macintosh chapter. A section has the following
organization:

1. Constants |

Lists symbols that have been declared within Manx-
supplied header files that relate to the manager.

2. Data structures

Lists the data structures that have been declared
within Manx-supplied header files that relate to the
manager.

3. Functions
Describes the C functions that can be called to access
the manager’s routines. The description of each
function includes the type of value, if any, that the
function returns, the parameters that are passed to it,

- tool.3 -

Toolbox Functions Aztec C68K

and their types.

For each Macintosh manager, a header file is provided on the
distribution disk, and should be included within a C program that
accesses that manager’s routines. The header file for a manager
declares the constants and data structures related to the manager; it also
declares the functions that C programs call to access the manager’s
routines, and the type of values they return.

Writing programs that call Macintosh routines

To write a C program that calls Macintosh routines, you should
decide what toolbox routines and what Pascal variables a Pascal version
of your program would call and declare, by reading the Jnside
Macintosh manual. Then you’ should translate these variable
declarations and function calls to C, using the information in this
chapter.

The names of the constants, data structures, and functions that a C
program uses to access the Macintosh routines correspond very closely
to those that a Pascal program uses to access the same routines. In most
cases, they are identical. Thus, the variable declarations and function
calls that a C program uses to access the Macintosh routines are
frequently very similar to those used in a Pascal program. For
example, the Pascal statements to call the QuickDraw routine OpenPort
look like this:

VAR gp: GrafPtr;
OpenPort(gp);

The corresponding C statements would look like this:

#include <quickdraw.h>

GrafPtr gp;
OpenPort(gp);

The header file quickdraw.h declares the structure GrafPir and the
function OpenPort.

The following paragraphs discuss the translation of variable
declarations and of function calls from Pascal to C.

Translating variable declarations

In most cases, the type name of a variable is the same in C as it is
in Pascal. In the above example the type of the variable named gp was
GrafPtr in both Pascai and C programs. The only differences are in the
built-in Pascal types INTEGER and LonglInt. These are translated to
short and long, respeciively.

- tool.4 -

Aztec C68K Toolbox Functions

Translating function calls

In many cases, the C form of a function call is identical to its Pascal
equivalent, since the names of the functions are the same in both
Pascal and C and since most types of variables are passed to a C
routine just as they are to a Pascal routine. We presented an example
of this above.

The main difference is in the passing of structures. In Pascal, a call
that passes a structured variable to a routine passes the address of the
variable, if the number of bytes in the variable is greater than four,
and passes the contents of the variable, otherwise.

Thus, in Pascal, if func is a function and ¢mp a structured variable,
the statement

func(tmp)

will pass the address of tmp to the function if tmp contains more than
four bytes, and will pass the contents of tmp, otherwise.

In Aztec C, structured variables can’t be passed to functions. Thus,
if you attempted to compile the above statement, the compiler would
generate an error message.

In Aztec C, instead of passing a structure to a function, you have to
pass its address. This can be done using the ’address-of operator, &.
For example, the address of the structured variable tmp could be passed
to func in aC program using the statement:

func(&tmp)

Thus, if Inside Macintosh says that a structure must be passed to a
function, you must be careful in the translation of the Pascal to its C
equivalent. Given the call to func shown above in a Pascal program,
you would translate the call differently, depending on the size of the
structured variable tmp.

If tmp contains more than four bytes, the call statement could be
translated to

func(&tmp);

But if tmp contains four or fewer bytes, you must somehow
generate code that passes the contents of tmp, and not its address.

Fortunately, of all the structures passed to the Macintosh routines,
only one, Point, contains four or fewer bytes. Point contains exactly
four bytes. Thus, translating Pascal statements that pass other types of
Structured variables to Macintosh routines is done as shown above:
change func(tmp) to func(&tmp).

The Manx-supplied header files declare a macro function, pass, that
can be used to pass variables of type Point to Macintosh routines. If
the variable tmp shown above is of type Point, the call to func can be

- tool.5 -

Toolbox Functions Aztec C68K

translated as

func(pass(tmp));

pass makes use of the facts that both the Point structure and a long
variable contain four bytes, and that the contents of a long variable can
be passed to a function. pass generates a value of type long; the value is
the contents of the Point structure.

In summary, if tmp is a structure, the statement

func(tmp)

can be translated to

func(&tmp)

if tmp contains more than four bytes, and to

func(pass(tmp))

if tmp is of type Point.

Using Booleans

The typedef Boolean is defined in the file guickdraw.h. To simply
and safely use Booleans in a program, follow these rules:

* Use the definitions TRUE and FALSE, which are defined in
quickdraw.h, to assign a value to a Boolean variable or to pass a
Boolean constant to a function.

* To test the value returned by a Boolean function or the value
of a Boolean variable, use the fact that the value will be zero
for false and non-zero for true.

* Don’t directly assign the value of a Boolean function to a
Boolean variable. Instead, test the value of the function, and
set the variable to either TRUE or FALSE. For example, if
f() and var are a Boolean function and variable, respectively,
then assign the value of /() to var using a statement such as

var= {()? TRUE : FALSE;

* Don’t immediately pass the value of a Boolean function to
another function. Instead, test the value of the function, and
pass either TRUE or FALSE. For example, if f() is a Boolean
function and g() is another function, then pass the value of
f() to g() using a statement such as

e(f{(Q? TRUE: FALSE);

And that’s all you need to know in order to successfully use
Booleans. The following paragraphs discuss the implementation of
Booleans in a C program in detail.

A Boolean is a Pascal data type. The size of a Boolean is
implementation dependent; on the Macintosh, it’s a single byte. We

- tool.6 -

Aztec C68K Toolbox Functions

have chosen to define a Boolean to be a signed char, using the typedef
Statement.

By definition, the least significant bit of a Boolean defines its value:
QO for false, 1 for true. In theory, the settings of the other bits of a
Boolean are undefined. In practice, the other bits are O if the least
significant bit is O and undefined if it’s 1; it’s this practical fact about
the implementation of Booleans that allows you to test a Boolean using
O for false and non-zero for true.

In C, a char is passed to a function in two bytes. The least
significant byte will contain the value. The most significant byte will
contain either zero or a value generated by propagating the char’s sign
bit, depending on whether the char is unsigned or signed.

In Macintosh Pascal, a Boolean is also passed to a function in two
bytes; unlike C, however, the actual Boolean value is passed in the
most significant byte, while the value in the least significant byte is
undefined.

Because of this difference in the ways that a char is passed to a C
function and that a Boolean is passed to a Pascal function, you could
have problems in passing a value from a C program to a Pascal
function that’s expecting a Boolean. If you follow the rules defined
above, however, you won’t have problems: TRUE is defined to be -1
and FALSE to be 0, so if you directly pass one of these values to a
Pascal function, the least significant bit of the most significant byte of
the two-byte value that is passed will be set correctly. And if you pass
the value of a Boolean variable to a Pascal function, where the variable
was assigned the value TRUE or FALSE, the sign bit of the Boolean
(ie, signed char) variable will define the value of the Boolean variable,
and when it is propagated, the lIcast significant bit of the most
significant byte of the two-byte value that is passed will have the
correct value.

In C, a function that is defined to return a char actually returns a
two-byte value, with the value’s least significant byte containing the
char and its most significant byte containing a value generated by
propagating the char’s sign bit.

In Macintosh Pascal, on the other hand, a function that is defined
to return a Boolean also returns a two-byte value, with the Boolean in
the valuc’s most significant byte, and an undefined value in its least
significant byte.

The compiler itself resolves this difference in the ways that a char
value is returned by a C function and that a Boolean value is returned
by a Pascal function: when the compiler encounters a statement that
uses the value returned by a function that’s defined to be of type

pascal Boolean (or equivalently pascal char), it generates code that
gcnerates a two-byte value whose Icast significant byte is the Boolean

- tool.7 -

Toolbox F unctions Aztec C68K

value returned by the function and whose most significant byte is
generated by propagating the Boolean value’s sign bit.

When a value is assigned to a Boolean variable, the sign bit must
define the value, if the variable is to be correctly passed to a Boolean
function. Since the sign bit that’s returned by a Pascal Boolean
function doesn’t define the function’s value, you can’t directly assign
the function’s value to a Boolean variable. You must do it indirectly,
as specified in the above rules.

Similar reasoning explains why you can’t directly pass the value of
a Boolean function to a Pascal function.

Pascal also has a char data type. On the Macintosh, a char is the
same size as a Boolean, that is, one byte. Like Booleans, Pascal char
data items are passed between functions in a two-byte field. However,
a char value is in the field’s least significant byte whereas a Boolean
value is in the field’s most significant byte. If you use the rules
presented above for passing Booleans to Pascal functions, this
difference is not a problem when a Boolean or char is passe¢c to a Pascal
function. But because the compiler doesn’t know the difference
between a Pascal function that returns a Boolean and one that returns a
char, and since the compiler generates code that assumes that a Pascal
Boolean or char function returns a Boolean value in the most
significant byte, there is a potential problem in C programs calling a
Pascal function that returns a char value. In practice, however, the
problem never occurs, because there are no toolbox routines that
return a char.

C in a Pascal world

Aztec C has made several extensions to the C language that
facilitate the development of C programs on the Macintosh. These
allow C programs to directly call Pascal programs, and vice versa, and
allow a C program to define a character string constant that uses the
Pascal format. For details, see the Programming Information section
of the Compiler chapter.

The toolbox and the 128K Macintosh

The header files that are included in programs that call toolbox
functions define a lot of constants and structures. These definitions
use a lot of memory space, decreasing the size of the program that can
be compiled.

With the limited amount of memory on a 128K Macintosh, this can
be a problem. To help, the header files have surrounded
infrequently-used definitions with statements of the form

- tool.8 -

Aztec C68K Toolbox Functions

#ifndef SMALL MEM

#endif

Thus, if the compiler runs out of space when compiling a program,
you can try recompiling with the symbol SMALL MEM defined.
This symbol can be defined using either the compiler’s -D option or
by explicitly #defining the symbol in the program.

Feel free to change the sections of the header files that are
excluded from compilation on a 128K Macintosh. The choices we
made are only a guideline.

For more discussion of software development on a 128K
Macintosh, see the Technical Information chapter.

Calling Quickdraw from Drivers

A driver that calls a Quickdraw function should define the symbol
__DRIVER. This can be done using either the compiler’s -D option,
or by explicitly defining the symbol in the program. This definition
prevents the quickdraw.h header, when included in the driver program,
from defining several fields that are defined in the programs that call
the driver.

~ tool.9 -

Toolbox Functions Control Manager Aztec C68K

Control Manager Functions

The functions summarized in this section allow C programs to
access routines that are part of the Macintosh Control Manager.

The constants, structures, and functions described in this section
are defined in the header file control.h.

1. Constants

#define pushButProc 0
#define checkBoxProc l
#define radioButProc 2
#define useWFont 8
#define scrollBarProc 16

#define inButton 10
#define inCheckBox 1]

#define inUpButton 20
#define inDownButton 21
#define inPageUp 22
#define inPageDown 23
#define inThumb 129

#define drawCntl 0

#define testCntl j
#define calcCRegns 2
#define initCntl 3
#define dispCntl 4
#define posCntl 5
#define thumbCntl 6
#define dragCntl 7
#define autoTrack 8

2. Data structures

struct ControlRecord ** ControlHandle;

- tool.10 -

Aztec C68K Control Manager Toolbox Functions

Struct ControlRecord {
ControlHandle nextControl;
WindowPtr contrlOwner;
Rect contrlRect;
char contrl Vis;
char contrlHilite;
Short contrl Value;
Short contrIMin;
Short contrIMax;
Handle contrlProc;
Handle contrlData;
ProcPtr contrlAction;
long contrIRfCon;

Str255 contrITitle;

}

typedef struct ControlRecord ControlRecord;
typedef struct ControlRecord * ControlPtr;

3. Functions

3.1 Initialization and Allocation

pascal ControlHandle NewControl (theWindow, boundsRectPtr,
title, visible, value,
min, max, procID, refCon)

WindowPtr the Window; Rect * boundsRectPtr;
Str255 title; Boolean visible;
Short value, min, max, procID;
long refCon;

pascal ControlHandle GetNewControl (controllD, theWindow)
short cortrolID; WindowPtr theWindow;

pascal void DisposeControl (theControl)
ControlHandle theControl;

pascal void KillControls (theWindow)
ControlHandle theWindow;

3.2 Control Display

pascal void SetCTitle (theControl, theTitle)
ControlHandle theControl; Str255 theTitle;

pascal void GetCTitle (theControl, theTitle)
ControlHandle theControl:;
Str255 theTitle;

- tool.11 -

Toolbox Functions Control Manager Aztec C68K

pascal void HideControl (theControl)
ControlHandle theControl;

pascal void ShowControl (theControl)
ControlHandle theControl;

pascal void DrawControls (theWindow)
WindowPtr theWindow,

pascal void HiliteControl (theControl, hiliteState)
ControlHandle theControl;
short hiliteState;

pascal void UpdtControls (theWindow, update)
windowPtr the Window;
RgnHandle update;

3.3 Mouse Location

pascal short TestControl (theControl, pass(thePoint))
ControlHandle theControl;
Point thePoint; /*** This Point must be cast to a long ***/

pascal short FindControl (pass(thePoint), the Window, theControlPtr)
Point thePoint; /*** This Point must be cast to a long ***/
WindowPtr theWindow,;
ControlHandle *theControlPtr;

pascal short TrackControl (theControl, pass(startPt), actionProc)
ControlHandle theControl;
Point startPt; /*** This Point must be cast to a long ***/
ProcPtr actionProc;

3.4 Control Movement and Sizing

pascal void MoveControl (theControl, h, v)
ControlHandle theControl; short h, v;

pascal void DragControl (theControl, pass(startPt),
limitRect, slopeRect, axis)

ControlHandle theControl;
Point startPt; /*** This point must be cast to a long ***/
Rect * limitRect, slopRect; short axis;

pascal void SizeControl (theControl, w, h)
ControlHandle theControl; short w, h;

3.5 Setting and Range of a Control

pascal void SeiCill’alue (theControl, theValue)

ControlHandle theControl; short the Value;

- tool.12 -

Aztec C68K Control Manager Toolbox Functions

pascal short GetCtlValue (theControl)
ControlHandle theControl;

pascal void SetCtlMin (theControl, minValue)
ControlHandle theControl; short minValue;

pascal short GetCilMin (theControl)
ControlHandle theControl;

pascal void SetCtlMax (theControl, maxValue)
ControlHandle theControl; short max Value;

pascal short GetCilMax (theControl)
ControlHandle theControl;

3.6 Miscellaneous Utilities

pascal void SetCRefCon (theControl, refVal)
ControlHandle theControl; long refVal;

pascal long GetCRefCon (theControl)
ControlHandle theControl;

pascal void SetCtlAction (theControl, actionProc)
ControlHandle theControl; ProcPtr actionProc;

pascal ProcPtr GetCitlAction (theControl)
ControlHandle theControl;

- tool.13 -

Toolbox Functions Desk Manager Aztec C68K

Desk Manager Functions

This section describes functions that allow C programs to =ccess
Macintosh Desk Manager routines.

The constants, structures, and functions described in this section
are defined in the header file desk.h.

1. Constants

define undoCmd
#define cutCmd
#define copyCmd
#define pasteCmd
#define clearCmd m

B

W
N

©

2. Functions

2.1 Opening and Closing Desk Accessories

pascal short OpenDeskAcc (theAcc)
Str255 theAcc;

pascal void CloseDeskAcc (refNum)
Short refNum;

2.2 Handling Events in Desk Accessories

pascal void SystemClick (theEventPtr, the Window)
EventRecord * theEventPtr; WindowPtr the Window;

pascal Boolean SystemEdit (editCmd)
short editCmd;

2.3 Performing Periodic Actions

pascal void SystemTask ()

2.4 Advanced Routines

pascal Boolean SystemEvent (theEventPtr)
EventRecord * theEventPtr;

pascal void SystemMenu (menuResult)
long menuResult;

- tool.14 -

Aztec C68K

Dialog Manager Functions

This section describes functions which allow C programs to access
functions that are part of the Macintosh Dialog Manager.

The constants, structures,

Dialog Manager

and functions described in this section

are defined in the header file dialog.h.

1, Constants

2.

define crtlItem
#dcfine btnCtrl
#define chkCtrl
#define radCtrl
#dcfine resCtrl
#define statText
#dcfine editTecxt
#<dcfine iconItem
#dcfine picltcm
#dcfine userItem
#dcfine itemDisable

#dcfine OK
#decfine Cancel

#dcfine stopIcon
#<dcfine noteIcon

#dcfine ctnIcon

Data Structures

struct DialogRecord {
WindowRecord
Handle

TEHandle

short
short
short

}

0x04
0x00
0x01
0x02
0x03
0x08
Ox10
0x20
0x40
0x00
0x80

N
=

CO

N
e

window;
items;
textH;
editFicld;
editOpen;
aDefItcm;

typedef struct DialogRecord DialogRecord;
typedef struct DialogRecord * DialogPcck:
typedef WindowPtr DialogPtr;

~ tool.15 -

Toolbox Functions

Toolbox Functions Dialog Manager

Struct DialogTemplate {
Rect boundsRect;
Short procID;
char visible;
char filler 1;
char goAwayFlag;
char filler2;
long refCon;
short itemsID;
Str255 title;

};

typedef struct DialogTemplate
typedef struct DialogTemplate *
typedef struct DialogTemplate **

Struct StageList {
char boldItem;
char boxDrawn;
char sound:

}; |
typedef struct StageList Stage List[4];

struct AlertTemplate {
Rect boundsRect;
short itemsID;
StageList Stages;

};

#define volBits 0x3
#define alBit Ox4
#define OKDismissal 0x8

3. Functions

3.1 Initialization

pascal void IJnitDialogs (restartProc)
ProcPtr restartProc;

pascal void ErrorSound (soundProc)
ProcPtr soundProc;

pascal void SetDAFont (fontNum)
short fontNum;

- tool.16 -

Aztec C68K

DialogTemplate;
DialogTPtr;
DialogTHandle;

Aztec C68K Dialog Manager Toolbox Functions

3.2 Creating and Disposing of Dialogs

pascal DialogPtr NewDialog (dStorage, boundsRectPtr, title,
visible, procID, behind,
goAwayFlag, refCon, items)

Ptr dStorage; Rect * boundsRectPtr; Str255 title;
Boolean visible, gaAwayFlag; short procID; WindowPtr behind;
long refCon; Handle items;

pascal DialogPtr GetNewDialog (dialogID, dStorage, behind)
Short dialogID; Ptr dStorage; WindowPtr behind:

pascal void CloseDialog (theDialog)
DialogPtr theDialog:

pascal void DisposDialog (theDialog)
DialogPtr theDialog:

pascal void CouldDialog (dialogID)
short dialogID;

pascal void FreeDialog (dialogID)
short dialogID;

3.3 Handling Dialog Events

pascal Boolean /sDialogEvent (theEventPtr)
EventRecord * theEventPtr;

pascalBoolean DialogSelect (theEventPtr, theDialogPtr,
itemHitPtr)

EventRecord * theEventPtr; DialogPtr * theDialogPtr;
short * itemHitPtr;

pascal void ModalDialog (filterProc, itemHitPtr)
ProcPtr filterProc; short * itemHitPtr;

pascal void DigCut (theDialog)
DialogPtr thedialog:

pascal void DigCopy (theDialog)
DialogPtr thedialog:

pascal void DigPaste (theDialog)
DialogPtr thedialog:

pascal void DigDelete (theDialog)
DialogPtr thedialog:

pascal void DrawDialog (theDialog)
DialogPtr theDialog:

- tool.17 -

Toolbox Functions Dialog Manager Aztec C68K

3.4 Invoking Alerts

pascal short Alert (alertID, filterProc)
Short alertID; ProcPtr filterProc;

pascal short StopAlert (alertID, filterProc)
Short alertID; ProcPtr filterProc;

pascal short NoteAlert (alertID, filterProc)
Short alertID; ProcPtr filterProc;

pascal short CautionAlert (alertID, filterProc)
Short alertID; ProcPtr filterProc;

pascal void CouldAlert (alertID)
Short alertID;

pascal void FreeAlert (alertID)
short alertID;

3.5 Manipulating Items in Dialogs and Alerts

pascal void ParamText (param0, param1, param2, param3)
Str255 param0, paraml, param2, param3;

pascal void GetDltem (theDialog, itemNo, typePtr,
itemPtr, boxPtr) |

DialogPtr theDialog; short itemNo, * typePtr; Handle * itemPtr;
Rect * boxPtr;

pascal void SetDitem (theDialog, itemNo, type, item, boxPtr)
DialogPtr theDialog; short itemNo, type; Handle item;
Rect * boxPtr;

pascal void HideDItem (dialog, itemNo)
DialogPtr dialog; short itemNo;

pascal void ShowDItem (dialog, itemNo)
DialogPtr dialog; short itemNo;

pascal short FindDItem (dialog, pass(thePoint))
DialogPtr dialog; Point thePoint;

pascal void UpdtDialog (dialog, updateRgn)
DialogPtr dialog; rgnHandle updateRgn;

pascal void GetIText (item, text)
Handle item; Str255 text;

pascal void Set/Text (item, text)
Handle item; Str255 text;

pascal void SellText (theDialog, itemNo, strtSel, endSel)
DialogPtr theDialog: short itemNo, strtSel, endSel:

- tool.18 -

Aztec C68K Dialog Manager Toolbox Functions

Short GetAlrtStage ()

void ResetAlrtStage ()

- tool.19 -

Toolbox Functions Disk Manager Aztec C68K

Disk Manager Functions

This section describes functions that allow C programs to access
Macintosh Disk Manager routines.

The constants, structures, and functions described in this section
are defined in the header file disk.h.

1. Constants

define currPos 0x00
#define absPos 0x01
#define relPos 0x03
#define rdVerify 0x40

2. Data Structures

Struct DrvSts {
short track;
SignedByte writeProt;
SignedByte diskInPlace;
SignedByte installed;
SignedByte sides;
QElemPtr qLink;
short qT ype;
short dQDrive;
short dQRefNum;
short dQFSID;
SignedByte twoSideFmt;
SignedByte needsFlush;
short diskErrs;

}

3. Functions

3.1 Disk Driver Routines

pascal short DiskE ject (drvNum)
Short drvNum;

pascal short SetTagBuffer (buffPtr)
Ptr buffPtr;

pascal short DriveStatus (drvNum, status)

Short drvNum;
DrvSts *status;

- tool.20 -

Aztec C68K Disk Manager Toolbox Functions

Event Manager Functions

The functions described in this section allow C programs to call
the Macintosh Event Manager routines.

The constants, data structures, and functions described in This
section are defined in the header file event.h.

1. Constants

#define nullEvent ¢
#define mouseDown]
#define mouseUp 2
#define keyDown 3
#define keyUp 4
#define autoKey 5
#define updateEvt 6
#define diskEvt 7
#define activateEvt 8
#define abortEvt 9
#define networkEvt 10
#define driverEvt 1]
#define appl Evt 12
#define app2Evt 13
#define app3Evt 14
#define app4Evt 15

#define nullMask 0x0001
#define mDownMask 0x0002
#define mUpMask 0x0004
#define keyDownMask 0x0008
#define keyUpMask 0x0010
#define autoKeyMask 0x0020
#define updateMask 0x0040
#define diskMask 0x0080
#define activMask 0x0100
#define abortMask 0x0200
#define networkMask 0x0400
#define driverMask 0x0800
#define app! Mask 0x1000
#define app2Mask 0x2000
#define app3Mask 0x4000
#define app4Mask 0x8000

#define charCodeMask Ox000000ff
#define keyCodeMask OxQ000ff00

- tool.21 -

Toolbox Functions Event Manager

#define optionKey 0x0800
#define alphaLock 0x0400
#define shiftKey 0x0200
#define cmdKey 0x0100
#define btnState 0x0080
#define everyEvent Oxffff

2. Data Structures

struct EventRecord {
Short what
long message;
long when;
Point where;
Short modifiers;

};
typedef struct EventRecord EventRecord;

typedef long KeyMap 4];

3. Functions

3.1 Accessing Events

Aztec C68K

pascal Boolean GetNextEvent (eventMask, theEventPtr)
short eventMask; EventRecord * theEventPtr;

pascal Boolean EventAvail (eventMask, theEventPtr)
short eventMask; EventRecord * theEventPtr;

Boolean OSEventAvail (eventPtr, eventMask)
EventRecord * eventPtr; short eventMask:

Boolean GetOSEvent (eventPtr, eventMask)
EventRecord * eventPtr; short eventMask;

3.2 Posting and Removing Events

void PostEvent (eventCode, eventMsg)
short eventCode; long eventMsg;

void FlushEvents (eventMask, stopMask)
short eventMask, stopMask;

3.3 Reading the Mouse

pascal void GetMouse (mouseLocPtr)
Point * mouscLocPtr;

pascal Boolean Button ()

- tool.22 -

Aztec C68K Event Manager

pascal Boolean StillDown ()

pascal Boolean WaitMouseUp ()

3.4 Reading the Keyboard and Keypad

pascal voia GetKeys (theKeys)
KeyMap theKeys;

3.5 Miscellaneous Utilities

pascal void SetEventMask (theMask)
short theMask;

pascal QHdrPtr GetEvQOHar ()

pascal long TickCount ()

long GetDbleTime ()

long GetCaretTime ()

- tool.23 -

Toolbox Functions

Toolbox Functions File Manager Aztec C68K

File Manager Functions

This section summarizes the information needed for C
programs that want to access the Macintosh File Manager routines.

The constants, data structures, and functions are defined in the
header file pb.h. This file makes references to information defined in
the header file types.h. pb.h will automatically include types.h in a

program if it hasn’t yet been included.

1. Constants

define fHasBundle 0x20
#define fInvisible 0x40

#define fTrash -3
#define fDeskt 99 -2
#define {Disk 0

#define fsAtMark 0
#define fsFromStart l
#define fsFromLEOF 2
#define fsFromMark 3
#define rdVerify 0

#define fsCurPerm
#define fsRdPerm
#define fsWrPerm
#define fsRdWrPerm
#define fsRdWrShPerm 4

x0040

W
N

©

2. Data structures

struct Finfo {
OSType fdType;
OSType fdCreator;
Short fdFlags;
Point fdLocation;
short fdFldr;

};

typedef struct Finfo _‘Finfo;

- tool.24 -

Aztec C68K

Struct i0oParam {

}

Short
SignedByte
SignedByte
Ptr
Ptr
long
long
Short
long

struct fileParam {
Short
SignedByte
SignedByte
short
SignedByte
SignedByte
Finfo
long
unsigned short
long
long
unsigned short
long
long
long
long

File Manager

1i0RefNum;
i0 VersNum;
ioPermssn;
ioMisc;
ioBuffer;
1i0ReqCount;
i0oActCount;
10PosMode;
i0PosOffset;

ioFRefNum;
1i0FVersNum;
filler1;
10FDirIndex;
i0FlAttrib;
1i0FlVersNum;
ioFlFndrInfo;
10FINum;
10 FIStBlk;
i0FlLgLen;
ioFlPyLen;
i0 FIRStBIk;
i0FIRLgLen;
i0oFIRPyLen;
10FlCrDat;
10 FIMdDat;

- tool.25 -

Toolbox Functions

Toolbox Functions

Struct hfileParare {

};
struct volumeParam {

long
Short
long
long
short
unsigned short
short
Short
unsigned short
long
long
Short
long
unsigned short

File Manager

short
SignedByte
SignedByte
short
SignedByte
SignedByte
Finfo
long
unsigned short
long
long
unsigned short
long
long
long
long

filler2;
io Volindex;
i0 VCrDate;
10 VLsBkUp;
ioVAtrb;
io VNmFIs;
io VDirSt;
i0 VBILn;
10 VNmAIBIks;
10 VAIBIkSiz;
10 VCIpSiz;
i0AIBISt;
i0 VNextFNum;
10 VFrBlk;

- tool.26 -

Aztec C68K

ioFRefNum;
i0oF VersNum;
filler];
10FDirIndex;
10F1Attrib;
i0FlVersNum;
i0FlFndrInfo;
i0DirID;
10F1StBlk;
ioFlLgLen;
ioFlPyLen;
i0FIRStBlk;
i0FIRLgLen;
i0FIRPyLen;
10FlCrDat;
i0FIMdDat;

Aztec C68K

Struct hvolumeParam {

};

struct hFileInfo {

File Manager

long
Short
long
long
Short
unsigned short
Short
short
unsigned short
long
long
Short
long
unsigned short
Short
short
Short
Short
long
unsigned short
long
long
long
long

FInfo
long
unsigned short
long
long
unsigned short
long
long
long
long
long
FInfo
long
long

- tool.27 -

Toolbox Functions

filler4;
10 VolIndex;
10 VCrDate;
10 VLsMod;
io VAtrb;
ido VNmFIs;
i0 VBitMap;
10 VAHlocPtr;
10 VNmA IBlks;
id VAIBIkSiz;
i0 VClpSiz;
ioAIBISt;
10 VNxtCNID;
i0 VFrBlk;
i0 VSigWord;
ioVDrvInfo;
io VDRefNum;
i0 VFSID;
i0 VBkUp;
10 VSeqNunm;;
10 VWrCnt;
io VFilCnt;
io VDirCnt;
io VFndrInfo[8];

ioFlFndrInfo;
ioDirID;
i0FIStBlk;
ioFlLgLen;
ioFlPyLen;
i0FIRStBik;
i0FIRLgLen;
ioFIRPyLen;
i0FlCrDat;
10 FIMdDat;
i0F1BkDat;
ioFlXFndrInfo;
ioF1ParID;
id FICIpSiz;

Toolbox Functions

struct DInfo {

};
typedef struct DInfo

struct DXInfo {

};
typedef struct DXInfo

Struct dirInfo {

}

struct drvQEIRec {
struct drvQEIRec *
short
short
short
short

File Manager

Rect
short
Point
short

DInfo;

Point
long
Short
Short
long

DInfo
long
unsigned short
Short
long
long
long
DXInfo
long

drvLink;
drvFlags;
drvRefNum;
drvFSID;
drvBlkSize;

- tool.28 -

Aztec C68K

FRect;
FRFlags;
FRLocation;
FRView;

FRScroll;
FROpenChain;
FRUnused;
FRComment;
FRPutAway;

DXInfo;

1i0DrUsrWds;
10DrDirID;
10 DrNmFIs;
filler3[9];
10DrCrDat;
i0 DrMdDat;
i0DrBkDat;
ioDrFndrInfo;
ioDrParID;

Aztec C68K File Manager

union OpParamType {
Struct {

Short
char
char

} conCth
Short
Short
Struct {

Ptr
Short

} asyncInBuff:
Struct {

unsigned char
unsigned char
char
char
unsigned char
unsigned char
unsigned char
unsigned char

} asyncShk;
Struct {

long
long
long

} printer;
Struct {

Ptr
Short

} fontMegr;
Ptr
long
Struct {

Short
short
short

} asyncStatus;
Struct {

Short
long

Struct drvQEIRec
Short
Short

} diskStat;

};
typedef union OpParamType

sg__ flags;
Sg__ erase;
sg kall;

sndVal;
asncConfig;

asncBPtr;
asncBLen;

fXOn;
{CTS;
xon;
xoff;
errs;
evts;

fInX;
null;

param];
param2?;
param3;

fontRecPtr;
fontCurDev;

diskBuff;
asyncNBytes;

asncs 1;
asncs2;
asncs3;

dskTrackLock;
dskInfoBits;
dskQElem;
dskPrime;
dskErrCnt;

OpParam Type;
typedef union OpParamType * OpParamPtr:

- tool.29 -

Toolbox Functions

Toolbox Functions

Struct cntrlParam {
short

short

OpParamType

}

struct ParamBlkRec {
struct ParamBlkRec *
short

short

Ptr

ProcPtr

short

char *
short
union {

Struct ioParam
struct fileParam
Struct volumeParamvp;
Struct cntrl|Param

}u;
}
typedef struct ParamBlkRec —

File Manager

csRefNum;
csCode;
csParam;

10Link;
i0Type;
10 Trap;
10CmdAddr;
ioCompletion;
i0Result;
ioNamePtr;
10 VRefNum;

10);
fp;

Cp,

ParamBlkRec;
typedef struct ParamBlkRec * ParmBlkPtr;

- tool.30 -

Aztec C68K

Aztec C68K

Struct HPrmBilkRec {

};
typedef struct HPrmBlkRec
typedef struct HPrmBlkRec *

struct CInfoPBRec {

File Manager Toolbox Functions

struct HPrmBlkRec *qLink:
short
short
Ptr
ProcPtr
Short
char *
short
union {

} u;

qT ype;
io Trap;
10CmdAddr;
ioCompletion;
i0Result;
ioNamePtr;
i0 VRefNum;

Struct 10Param iop;
struct hfileParam hfp;
Struct hvolumeParam hvp;
Struct cntrlParam cp;

HPrmblkRec;
HPrmbBlkPtr;

struct CInfoPBRec *qLink;
Short qType;
Short 10 Trap;
Ptr ioCmdAddr;
ProcPtr ioCompletion;
short 10Result;
char * ioNamePtr;
short 10 VRefNum;
Short i0FRefNum;
Short filler 1;
Short 10FDirIndex;
SignedByte i0FlAttrib;
SignedByte filler2;
union {

Struct hFileInfo hfi;
Struct dirInfo di;

}u;
};
typedef struct CInfoPBRec CInfoPBRec;
typedef struct CInfoPBRec * CInfoPBPtr;

- tool.31 -

Toolbox Functions File Manager Aztec C68K
Struct CMovePBRec {

Struct CMovePBRec *qLink:
short qType;
Short ioTrap:
Ptr ioCmdAdar:
ProcPtr ioCompletion;
Short i0Result;
char * ioNamePtr;
Short ioVRefNum:
long filler1;
char * ioNewName:
long filler2:
long ioNewDirlD:
long filler3| 2];
long 10DirID; };

typedef struct CMovePBRec CMovePBRec;
typedef struct CMovePBRec * CMovePBPtr;
struct WDPBRec {

Struct WDPBRec *qLink;
Short aT ype;
Short ioTrap;
Ptr ioCmdAdar:
ProcPtr ioCompletion;
short ioResult;
char * ioNamePtr;
Short ioVRefNum:
Short filler;
Short ioWDIndex:
long ioWDProclID:
Short ioWDVRefNum:
Short filler2[7];
long ioWDDirID; };

typedef struct WDPBRec WDPBRec; typedef struct WDPBRec * WDPBEPtr;

- tool.32 -

Aztec C68K File Manager Toolbox Functions

struct FCBPBRec {
struct FCBPBRec *qLink;
Short qT ype;
short io Trap;
Ptr ioCmdAddr; |
ProcPtr ioCompletion;
short ioResult;
char * ioNamePtr;
short io VRefNum;
short ioRefNum;
short filler;
long ioFCBIndx;
long io FCBFINm;
short io FCBFlags;
unsigned short 10FCBStBlk;
long i0 FCBEOF;
long ioFCBPLen;
long i0FCBCrPs;
short ioFCBVRefNum;
long ioFCBCIpSiz;
long i0FCBParID;

};
typedef struct FCBPBRec FCBPBRec;
typedef struct FCBPBRec * FCBPBPtr;

- tool.33 -

Toolbox Functions

Struct VCB {

File Manager

struct VCB *
Short
Short
short
long
long
short
unsigned short
short
Short
unsigned short
long
long
short
long
unsigned short
char
short
Short
Short
short
char *
char *
short
Short
Short
long
unsigned short
long
long
long
unsigned short
long
long
long
Short
Short
short
unsigned short
unsigned short
short
short
long
long

short

- tool.34 -

Aztec C68K

qLink;

qType;
vcbF lags;
vcbSigWord;
vcbCrDate;
vcbLsMod;
vebAtrb;
vcbNm FIs;
vcbVBMSt;
vebAllocPtr;
vcbNmAIBlks;
vcbAIBIkSiz;
vebClpSiz;
vcbAIBISt;
vcbNxtCNID;
vcbFreeBks;
vcbVN[27];
vebDrvNum;
vcbDRefNum;
vcbFSID;
vcbVRefNum;
vcbMAdr;
vcbBufAdr;
vcbMLen;
vcbDirIndex;
vebDirBlk;
vcbVolBkUp;
vcbVSeqNum;
vebWrCnt;
vcbXTClpSiz;
vcbCTClpS iz;
vcbNmRtDirs;
vebFilCnt;
vebDirCnt;
vebFndrIn fof 8];
vcbVCSize;
vcbVBMCSiz;
vebCtlCSiz;
vcbXTAIBIks;
vcbCTAIBIks;
vcbXTRef;
vcbCTRef;
vebCr Buf;
vcbDirIDM;

vcbOffsM;

Aztec C68K File Manager Toolbox Functions

Struct DrvQEl {

struct DrvQE] *qLink:
short qT ype;
short dQDrive;
short dQRefNum;
short dQFSID;
short dQDrvSize;

};

3. Functions

3.1 High-Level Functions

3.1.1 Accessing Volumes

OSErr GetVInfo (drvNum, volName, vRefNumPtr, freeBytesPtr)
short drvNum; OSStrPtr volName; short * vRefNumPtr;
long * freeBytesPtr;

OSErr GetVol (volName, vRefNumPtr)
OSStrPtr volName; short * vRefNumPtr;

OSErr SetVol (volName, vRefNum)
OSStrPtr volName; short vRefNum;

OSErr FlushVol (volName, vRefNum)
OSStrPtr volName; short vRefNum;

OSErr UnmountVol (volName, vRefNum)
OSStrPtr volName; short vRefNum;

OSErr Eject (volName, vRefNum)
OSStrPtr volName; short vRefNum;

3.1.2 Changing file contents

OSErr Create (fileName, vRefNum, creator, fileType)
OSStrPtr fileName;
short vRefNum; OSType creator, fileType;

OSErr FSOpen (fileName, vRef{Num, ref{NumPtr)
OSStrPtr fileName;
short vRefNum, * refNumPtr;

OSErr FSClose (refNum)
Short ref{Num;

OSErr OpenDriver (name, refNum)
Str255 name; short ref{Num;

- tool.35 -

Toolbox Functions File Manager Aztec C68K

OSErr CloseDriver (ref{Num)
short ref{Num;

OSErr FSRead (refNum, countPtr, buffPtr)
Short refNum; long * countPtr; Ptr buffPtr;

OSErr FSWrite (refNum, countPtr, buffPtr)
short refNum; long * countPtr; Ptr buffPtr;

OSErr GetFPos (refNum, filePosPtr)
short refNum; long *filePosPtr;

OSErr SetFPos (refNum, posMode, posOff)
short refNum, posMode; long posOff;

OSErr GetEOF (refNum, logEOF)
short ref{Num; long *logEOF:

OSErr SetEOF (refNum, logEOF)
Short ref{Num; long logEOF;

OSErr Allocate (refNum, countPtr)
short ref{Num; long * countFtr;

OSErr Control (refNum, opCode, opParams)
Short ref{Num, opCode; OpParamPtr opParams;

OSErr Status (ref{Num, opCode, opParamsptr)
short refNum, opCode; OpParamPtr * opParamsptr;

OSERR KilIO (refNum)
Short refNum;

3.1.3 Changing Information about Files

OSErr GetFInfo (fileName, vRefNum, fndrInfoPtr)
OSStrPtr fileName; short vVRefNum; FInfo * fndrInfoPtr;

OSErr SetFInfo (fileName, vRefNum, fndrInfo)
OSStrPtr fileName; short vVRefNum; FInfo fndrInfo;

OSErr SetFLock (fileName, vRefNum)
OSStrPtr fileName; short vRefNum;

OSErr RstFLock (fileName, vRefNum)
OSStrPtr fileName; short vRefNum;

OSErr Rename (oldName, vRefNum, newName)
OSStrPtr oldName, newName; short vRefNum;

OSErr FSDelete (fileName, vRefNum)
OSStrPtr fileName; short vRefNum;

3.2 Low-level functions

- tool.36 -

Aztec C68K File Manager Toolbox Functions

3.2.1 Initialization

pascal void JnitQueue ()

3.2.2 Accessing Volumes

pascal OSErr PBMountVol (paramBlock)
ParmBlkPtr paramBlock;

pascal OSErr PBGetV Info (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHGetVInfo (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBGetVol (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHGetVol (hparamBlock, async)
HPrmBikPtr hparamBlock; Boolean async;

pascal OSErr PBSetVol (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHSetVol (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBFlushVol (paramBlock, async)
ParmBikPtr paramBlock; Boolean async;

pascal OSErr PBUnmountVol (paramblock)
ParmBlkPtr paramBlock;

pascal OSErr PBOffLine (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBE ject (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

3.2.3 Changing File Contents

pascal OSErr PBCreate (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHCreate (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBDirCreate (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBOpen (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHOpen (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

- tool.37 -

Toolbox Functions File Manager Aztec C68K

pascal OSErr PBOpenRF (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHOpenRF (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBLockRange (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBUnlockRange (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBRead (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBWrite (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBGetF Pos (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBSetFPos (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBGetEOF (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBSetEOF (paramBlock, async)
ParmBlikPtr paramBlock; Boolean async;

pascal OSErr PBAllocate (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBAllocContig (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBFlushFile (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBClose (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

3.2.4 Changing Information about Files

pascal OSErr PBGetF Info (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHGetFInfo (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBSetFInfo (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHSetF Info (hparamBlock, async)

HPrmBlkPtr hparamBlock; Boolean async;

- tool.38 -

Aztec C68K File Manager Toolbox Functions

pascal OSErr PBSetFLock (paramBlock, async)
ParmBlikPtr paramBlock; Boolean async;

pascal OSErr PBHSetFLock (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBRstFLock (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHRstFLock (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBSetFType (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBSetFVers (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBRename (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHRename (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBDelete (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHDelete (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBControl (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBStatus (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBKillIO (paramBlock, async)
ParmBlikPtr paramBlock; Boolean async;

3.2.5 Accessing Queues

pascal QHdrPtr GetFSQHdr ()

pascal QHdrPtr GetVCBQHar ()

pascal QHdrPtr GetDrvQHar ()

3.2.6 Hierarchial-Only Routines

pascal OSErr PBGetCatInfo (paramBlock, async)
CInfoPBPtr paramBlock; Boolean async;

pascal OSErr PBSetCatInfo (paramBlock, async)
CInfoPBPtr paramBlock; Boolean async;

- tool.39 -

Toolbox Functions File Manager Aztec C68kK

pascal OSErr PBCatMove (paramBlock, async)
CMovePBPtr paramBlock; Boolean async;

pascal OSErr PBOpenWD (paramBlock, async)
WDPBPtr paramBlock; Boolean async;

pascal OSErr PBCloseWD (paramBlock, async)
WDPBPtr paramBlock; Boolean async;

pascal OSErr PBGetWDInfo (paramBlock, async)
WDPBPtr paramBlock; Boolean async;

- tool.40 -

Aztec C68K

Font Manager Functions

The functions described in this section allow a C program to access

Font Manager

Macintosh Font Manager routines.

The constants, data structures,
section are defined in the header file font.h.

1.

2.

Constants

/* Font Numbers */

#define systemFont
#define applFont
#define newYork
#define geneva
#define monaco
#define venice
#define london
#define athens
#define sanFran
#define toronto

/* Font Types

#define propFont
#define fixedFont
#define fontWid

Data Structures

Struct FMInput {
short
short
char
char
Short
Point
Point

}

typedef struct FMInput

WO

C
O
n
N
N
B
W
N
—

©

*/
0x9000
0xB000
OxACBO

family;
SiZe;
face;
needBits;
device;
numer;
denom;

FMInput;

- tool.41 -

Toolbox Functions

and functions described in this

Toolbox Functions

Struct FMOutput {
short
Handle
Byte
Byte
Byte
Byte
Byte
Byte
SignedByte
Byte
Byte
Byte
SignedByte
Byte
Point
Point

}

typedef struct FMOutput
typedef struct FMOutput *

Struct FontRec {
short
short
short
short
short
Short
Short
short
short
short
Short
short
short

};

typedef struct FontRec

struct FontMetricRec {

}

typedef struct FontMetricRec

Font Manager Aztec C68K

errNum;
fontHandle;
bold;
italic;
ulOffset;
ulShadow;
ulThick;
shadow;
extra;
ascent:
descent;
widMax;
leading;
unused;
numer;
denom;

FMOutput;
FMOutPtr;

fontType;
firstChar;
lastChar;
widMax;
kernMax;
nDescent;
fRectMax;
chHeight;
owl Loc;
ascent;
descent;
leading;
rowWords;

FontRec;

Fixed
Fixed
Fixed
Fixed
Handle

ascent;
descent;
leading;
widMax;
W TabHandle;

FontMetricRec:

- tool.42 -

Aztec C68K Font Manager Toolbox Functions

3. Functions

3.1 Initializing the Font Manager

pascal void JnitFonts ()

3.2 Getting Font Information

pascal void GetFontName (fontNum, theName)
Short fontNum; Str255 theName;

pascal void GetF Num (fontName, theNumPtr)
Str255 fontName; short * theNumPtr;

pascal Boolean RealFont (fontNum, size)
short fontNum, size;

pascal void FontMetrics (theMetrics)
FontMetricRec * theMetrics;

3.3 Keeping Fonts in Memory

pascal void SetFontLock (lockFlag)
Boolean lockFlag;

3.4 Advanced Routine

pascal FMOutPtr SwapFont (inRecPtr)
FMInput * inRecPtr;

pascal void SetFScaleDisable (scale Dis)
Boolean scaleDis;

- tool.43 -

Toolbox Functions Memory Manager Aztec C68K

Memory Manager Functions

This section describes functions that allow C programs to access
the Macintosh Memory Manager routines.

The constants, data structures, and functions described in this
section are defined in the header file memory.h.

1. Constants

define maxSize

2. Data structures

typedef long
typedef int
typedef struct Zone *

Struct Zone {
Ptr

Ptr

Ptr

long
ProcPtr

short
short
short
short
Short
Short
short
Short
long
ProcPtr

Ptr

Ptr
Short

};

typedef struct Zone

3. Functions

3.1 Initialization and Allocation

void IJnitAppleZone ()

0x800000

Size;
MemeErr;
THz;

bkLim;
purge Ptr;
hFstFree;
zcbFree;
gzProc;
moreMast;
flags;
cntRel;
maxRel;
cntNRel;
maxNRel;
cntEmpty;
cntHandles;
minCBFree;
purgeProc;
spare Ptr;
allocPtr;
heapData;

Zone;

~ tool.44 -

Aztec C68K Memory Manager Toolbox Functions

void SetApplBase (startPtr)
Ptr startPtr;

pascal void JnitZone (growProc, masterCount,
limitPtr, startPtr)

ProcPtr growProc; short masterCount;
Ptr limitPtr, startPtr;

void SetAppiLimit (zoneLimit)
Ptr zoneLimit;

Short MaxApplZone ()

long MaxBlock ()

void MoreMasters ()

long StackSpace ()

3.2 Heap Zone Access

THz GetZone ()

void SetZone (hz)
THz hz;

THz SystemZone ()

THz ApplicZone ()

void PurgeSpace (total, contig)

long *total, *contig:

3.3 Allocating and Releasing Relocatable Blocks

Handle NewHanadle (logicalSize)
Size logicalSize;

void DisposHandle (h)
Handle h;

Size GetHandleSize (h)
Handle h;

void SetHandleSize (h, newSize)
Handle h; Size newSize;

THz HandleZone (h)
Handle h;

Handle RecoverHandle (p)
Ptr p;

void ReallocHandle (h, logicalSize)

Handle h; Size logicalSize;

- tool.45 -

Toolbox Functions Memory Manager Aztec C68K

Short MoveHHi (h)
Handle h;

3.4 Allocating and Releasing Nonrelocatable Blocks

Ptr NewPtr (logicalSize)
long logicalSize;

void DisposPtr (p)
Ptr p;

Size GetPtrSize (p)
Ptr p;

void SetPtrSize (p, newSize)
Ptr p; Size newSize;

THz PtrZone (p)
Ptr p;

3.5 Freeing space on the Heap

long FreeMem ()

Size MaxMem (growPtr)
Size * growPtr;

Size CompactMem (cbNeeded)
Size cbNeeded;

void ResrvMem (cbNeeded)
Size cbNeeded;

void PurgeMem (cbNeeded)
Size cbNeeded;

void EmptyHandle (h)
Handle h;

Handle NewEmptyHandle ()

3.6 Properties of Relocatable Blocks

void HLock (h)
Handle h;

void AHUnlock (h)
Handle h;

void HPurge (h)
Handle h;

void HNoPurge (h)
Handle h;

- tool.46 -

Aztec C68K Memory Manager

Short HSetRBit (h)
Handle h;

Short HCirRBit (h)
Handle h;

Short HGetState (h)
Handle h;

pascal short HSetState (h, flg)
Handle h; short flg;

3.7 Grow Zone Functions

void SetGrowZone (growZone)
ProcPtr growZone;

Boolean GZCritical ()

Handle GZSaveHnd ()

3.8 Utility Routines

Toolbox Functions

void BlockMove (sourcePtr, destPtr, byteCount)
Ptr sourcePtr, destPtr; Size byteCount;

Ptr TopMem ()

MemErr MemError ()

- tool.47 -

Toolbox Functions Menu Manager Aztec C68K

Menu Manager Functions

This section describes functions that allow C programs to call
routines contained in the Macintosh Menu Manager.

The constants, data structures, and functions described in this section
are defined in the header file menu.h.

1. Constants

define noMark
#define commandMark
#define checkMark
#define diamondMark
#define appleMark

#define mDrawMsg
#define mChooseMsg
#define mSizeMsg

#define textMenuProc

2. Data Structures

struct Menulnfo {
Short
short
Short
Handle
unsigned long
Str255

typedef struct MenulInfo
typedef struct MenulInfo *
typedef struct MenulInfo **

3. Functions

3.1 Initialization and Allocation

pascal void JnitMenus ()

menulD;
menuWidth;
menuHeight;
menuProc;
enableFlags;
menu Data;

Menulnfo;
MenuPtr;
MenuHandle; b

pascal MenuHandle NewMenu (menulID, menuTitle)

short menuID; Str255 menuTitle;

- tool.48 -

Aztec C68K Menu Manager Toolbox Functions

pascal MenuHandle GetMenu (menulD)
short menulD;

pascal void DisposeMenu (menulD)
MenuHandle menulD;

pascal void AppendMenu (menu, data)
MenuHandle menu; Str255 data;

pascal void AddResMenu (menu, theType)
MenuHandle menu; ResType theType;

pascal void InsertResMenu (menu, theType, afterltem)
MenuHandle menu; ResType theType; short afterItem;

3.2 Forming the Menu Bar

pascal void InsertMenu (menu, beforeID)
MenuHandle menu; short beforeID;

pascal void DrawMenuBar ()

pascal void DeleteMenu (menulD)
Short menulD;

pascal void ClearMenuBar ()

pascal Handle GetNewMBar (menuBarID)
short menuBarID;

pascal Handle GetMenuBar ()

pascal void SetMenuBar (menuBar)
Handle menuBar;

3.3 Choosing from a Menu

pascal long MenuSelect (pass(startPt))
Point startPt; /*** This Point must be cast to a long ***/

pascal long MenuKey (ch)
char ch;

pascal void HiliteMenu (menulID)
short menulD;

3.4 Controlling Items’ Appearance

pascal void Set/tem (menu, item, itemString)
MenuHandle menu; short item; Str255 itemString;

pascal void Getltem (menu, item, itemString)
MenuHandle menu; short item; Str255 itemString;

- tool.49 -

Toolbox Functions Menu Manager Aztec C68K

pascal void DisableItem (menu, item)
MenuHandle menu; short item;

pascal void EnableItem (menu, item)
MenuHandle menu; short item;

pascal void CheckItem (menu, item, checked)
MenuHandle menu; short item; Boolean checked;

pascal void SetItemIcon (menu, item, icon)
MenuHandle menu; short item; Byte icon;

pascal void Getltemlcon (menu, item, iconPtr)
MenuHandle menu; short item; Byte *iconPtr;

pascal void SetItemStyle (menu, item, chStyle)
MenuHandle menu; short item; Style chStyle;

pascal void GetltemStyle (menu, item, chStylePtr)
MenuHandle menu; short item; Style * chStylePtr;

pascal void SetItemMark (menu, item, markChar)
MenuHandle menu; short item; char markChar;

pascal void GetItemMark (menu, item, markCharPtr)
MenuHandle menu; short item; char * markCharPtr;

pascal void InsMenultem (MenuHandle, itemstring, itemNum)
Handle MenuHandle; Str255 itemstring; short itemNum;

pascal void DelMenultem (MenuHandle, itemNum)
Handle MenuHandle; short itemNum;

3.5 Miscellaneous Utilities

pascal void SetMenuFlash (count)
Short count;

pascal void CalcMenuSize (menu)
MenuHandle menu;

pascal short CountMItems (menu)
MenuHandle menu;

pascal MenuHandle GetMHandle (menulID)
short menulD;

pascal void FlashMenuBar (menulID)
short menulD;

- tool.50 -

Aztec C68K Operating System Utilities Toolbox Functions

Operating System Utilities

This section describes functions that allow C programs to access
Macintosh Operating System Utility functions, the sound functions,
and the system error function.

The constants, structures, and functions described in this section
are defined in the header file osutil.h.

1. Constants

define vType
#define i0QType
#define drvQType
#define evType
#define fsQType

Data Structures

struct SysParamType {
long
Short
short
long
short
short
short
Short

}

typedef struct SysParamType
typedef struct SysParamType *

struct DateTimeRec {
short
short
short
short
short
short
Short

};

typedef struct DateTimeRec

Functions

Mm

&
W
N

valid;
portA;
portB;
alarm;
font;
kbdPrint;
volClick;
mM1SC;

SysParamType;
SysPtr;

year;
month;

day;
hour;
minute;
second:
dayOfWeek;

DateTimeRec;

- tool.51 -

Toolbox Functions Operating System Utilities

3.1 Pointer and Handle Manipulation

OSErr HandToHand (theHandl)
Handle * theHandl;

OSErr PirToHand (srcPtr, dstHandl, size)
Ptr srcPtr; Handle * dstHandk long size;

OSErr PtrToXHand (srcPtr, dstHandl, size)
Ptr srcPtr; Handle * dstHandk; long size;

OSErr HandAndHand (aHandl, bHandl)
Handle aHandl, bHandl;

OSErr PtrAndHand (pntr, handl, size)
Ptr pntr; Handle handl; long size;

3.2 String Comparison

Boolean EqualString (aStr, bStr, case, marks)
Str255 aStr, bStr; Boolean case, marks;

void UprString (theString, marks)
Str255 theString; Boolean marks;

Short RelString (strl, str2, caseSens, diacSens)
Str255 strl, str2; Boolean caseSens, diacSens;

3.3. Date and Time Operations

OSErr ReadDateTime (secsPtr)
long * secs;

void GetDateTime (secsPtr)
long * secs;

OSErr SetDateTime (secs)
long secs;

void Date2Secs (datePtr, secsPtr)
DateTimeRec * datePtr; long * secsPtr;

void Secs2Date (secs, datePtr)
long secs; DateTimeRec * datePtr;

void GetTime (datePtr)
DateTimePtr * datePtr;

void SetTime (datePtr)
DateTimePtr * datePtr;

3.4 Parameter RAM Operations

OSErr JnitUtil OC

- tool.52 -

Aztec C68K

Aztec C68K Operating System Utilities

SysPtr GetSysPPtr ()

OSErr WriteParam ()

3.5 Queue Manipulations

void Engueue (qElement, theQucue)
QElemPtr qElement; QHdrPtr theQueue;

OSErr Degueue (qElement, theQueue)
QElemPtr qElement; QHdrPtr theQueue;

3.6 Dispatch Table Utilities

void SetTrapAddress (trapAddr, trapNum)

long trapAddr; short trapNum;

long GetTrapAddress (trapNum)

short trapNum;

3.7 Miscellaneous Utilities

void Delay (numTicks, finalTicks)
long numTicks, * finalTicks;

pascal void SysBeep (duration)
short duration;

pascal void Restart ()

pascal void Environs (rom, machine)
short *rom, *machine;

3.8 The System Error Function

pascal void SysError (errorCode)
short errorCodc;

- tool.53 -

Toolbox Functions

Toolbox Functions

Package Manager Functions

Package Manager Aztec C68K

This section describes functions that allow C programs to access
Macintosh Package Manager routines.

The constants, structures, and functions described in this section
are defined in the header file package.h.

1. Constants

#define dskInit
#define stdFile
#define flPoint
#define trFunc
#define intUtil
#define bdConv

/* Constants for the Standard File Package */

#define putDlgID

#define putSave
#define putCancel
#define putEject
#define putDrive
#define putName

#define getDlgID

#define getOpen
#define getCancel
#define getEject
#define getDrive
#define getNmList
#define getScroll

2. Data Structures

Struct SFReply {
char
char
OSType
short
short
char

I
A
M

W
N

good;
copy;
fType;
vRefNum;
version;
fName[64];

- tool.54 -

Aztec C68K

3.

typedef struct SFReply
typedef OSType
typedef SFTypeList *

Functions

Package Manager

SFReply;
SFTypeList{ 4];
SFListPtr;

pascal void JnitPack (packNumber)
Short packNumber;

pascal void InitAllPacks ()

Toolbox Functions

/* Each of the following functions calls a package */
/* They require arguments - see Inside Mac for details */

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

pascal void

Pack0 ()

Packl ()

Pack2 ()

Pack3 ()

Pack4 ()

FP68K ()

Pack5 ()

Pack6 ()

Pack7 ()

Pack8& ()

Pack9 Q

Pack10 ()

Pack11 ()

Packl2 ()

Pack13 ()

Packl4 ()

Pack15 ()

3.1 Standard File Package Functions

pascal void SF PutFile (pass(where), prompt, origName,
digHook, replyPtr)

Point where; /* This point must be cast to a long */
Str255 prompt, origName; ProcPtr dlgHook; SFReply * replyPtr

- tool.55 -

3

Toolbox Functions Package Manager Aztec C68K

pascal void SFPPutFile (pass(where), prompt, origName,
digHook, replyPtr, digID, filterProc)

Point where; /* This point must be cast to a long */
Str255 prompt, origName; ProcPtr dlgHook; SFReply * replyPtr;
short digID; ProcPtr filterProc;

pascal void SFGetFile (pass(where), prompt, fileFilter
numTypes, typeList, dlgHook, replyPtr)

Point where; /* This point must be cast to a long */
Str255 prompt; ProcPtr fileFilter, dlgHook;
short numTypes; SFListPtr typeList;
SFReply * replyPtr;

pascal void SFPGetFile (pass(where), prompt, fileFilter
numTypes, typeList, dlgHook, replyPtr
digID, filterProc)

Point where; /* This point must be cast to a long */
Str255 prompt; ProcPtr fileFilter, dlgHook, filterProc;
short numTypes, digID; SFListPtr typeList;
SFReply * replyPtr;

3.2 Functions for the Disk Initialization Package

pascal void DILoad ()

pascal void DJUnload ()

pascal short D/JBadMount (pass(where), evtMessage)
Point where; /* This point must be cast to a long */
long evtMessage;

pascal short DJFormat (drvNum)
Short drvNum;

pascal short Di/Verify (drvNum)
Short drvNum;

pascal short DI/Zero (drvNum)
Short drvNum;

3.3 International Utility Constants

define shortDate 0x000
#define longDate 0x100
#define abbrevDate 0x200

#define currSymLead 0x10
#define currNegSym 0x20
#define currTrailingZ 0x40
#define currLeadingZ 0x80

~ tool.56 -

Aztec C68K Package Manager Toolbox Functions

#define mdy 0
#define dmy 1
#define ymd 2

#define dayLdingZ 0x20
#define mntLdingZ 0x40
#define century 0x80

#define secLeadingZ 0x20
#define minLeadingZ 0x40
#define hrLeadingZ 0x80

#define verUS 0
#define verFrance l
#define verBritain 2
#define verGermany 3
#define verlItaly 4

typedef struct {
char decimalPt;
char thousSep;
char listSep;
char currsym 1];
char currSym2;
char currsym3;
Byte currFmt;
Byte date Order;
Byte shrtDateFmt;
char dateSep;
Byte timeCycle;
Byte timeFmt;
char | mornStr[4];
char eveStr[4];
char timeSep;
char time | Suff;
char time2Suff;
char time3Suff;
char time4Suff;
char time5Suff;
char time6Suff;
char time 7Suff;
char time8Suff;
Byte metricSys;
Short intlO Vers;

} IntlORec, *IntlOPtr, **IntlOHnd!l;

- tool.57 -

Toolbox Functions Package Manager Aztec C68K

typedef struct {
char days[7][16];
char monthg 12][16];
Byte suppressDay;
Byte IngDateFmt;
Byte dayLeading0;
Byte abbrLen;
char st0[4];
char stl[4];
char st2[4];
char st3[4];
char st4[4];
short intll vers;
Short localRtn;

} Intl1 Rec, *Intl] Ptr, **Intl1Hndl;

3.4 International Utility Functions

pascal Handle /UGetIntl (theID)
Short theID;

pascal void JUSetIntl (refNum, theID, intlParam)
short refNum, theID; Handle intlParam;

pascal void /UDateString (dateTime, longFlag, result)
long dateTime; DateForm longFlag; Str255 result:

pascal void [UDatePString (dateTime, longFlag, result)
long dateTime; DateForm longFlag; Str255 result;

pascal void JUTimeString (dateTime, wantSeconds, result)
long dateTime; Boolean wantSeconds; Str255 result:

pascal void /JUTimePString (dateTime, wantSeconds,
result, intlParam)

long dateTime; Boolean wantSeconds;
Str255 result; Handle intriParam;

pascal Boolean /UMetric ()

pascal short JUMagString (aPtr, bPtr, aLen, bLen)
Ptr aPtr, bPtr; short aLen, bLen;

pascal short JUMagIDString (aPtr, bPtr, aLen, bLen)
Ptr aPtr, bPtr; short aLen, bLen;

pascal short /UCompString (aStr, bStr)
Str255 aStr, bStr;

pascal short /UEqualString (aStr, bStr)
Str255 aStr, bStr;

- tool.58 -

Aztec C68K Package Manager Toolbox Functions

pascal void StringToNum (theString, the NumPtr)
Str255 theString; long * theNumPtr;

pascal void NumToString (theNum, theString)
long theNum; Str255 theString;

- tool.59 -

Toolbox Functions Print Manager Aztec C68K

Print Manager Functions

The functions described in this section allow C programs to call
Macintosh routines that are part of the Macintosh Print Manager.

The constants, structures, and functions described in this section
are defined in the header file print.h.

The print manager functions can send information to either the
printer or to the screen, depending on the version of the print
manager functions with which a program is linked:

* prlink, in c.lib, sends output to the printer.
* prscreen.o sends output to the screen.

For the output of the print manager functions to be sent to the
screen, a program must be linked with the prscreen.o file, with this file
being specified before c.lib. Otherwise, the program will be linked
with the prlink module, and hence send the output of the print
manager functions to the printer.

1. Constants

#define bDraftLoop 0
#dcfine bSpoolLoop]
#define bUserl Loop 2
#define bUser2Loop 3

#define iPrBitsCtl 4
#define IScreenBits 0
#define 1PaintBits l
#define iprIOCtl 5
#define iPrEvtCtl 6
#define iPrEvtAll 0x0002fffd
#dcfine iPrEvtTop 0x0001fffd
#define iPrDevCtl 7
#define IPrReset 0x00010000
#dcfine IPrPageEnd 0x00020000
#define IPrLineFeed 0x00030000
#dcfine iFMerCtl 8

#dcfine iPFMaxPgs 128
#dcfine iPrPgFract 120
#dcfine iPrAbort 128
#dcfine iPrRelease 2
#dcfine IPfType *PFIL’
#dcfine IPfSig "PS YS’

- tool.60 -

Aztec C68K

2.

#define sPrDrvr
#define iPrDrvrRef
#define IPrintType
#define iPrintDef
#define iPrintLst
#define iPrintDrvr
#define iMyPrDrvr
#define iPStrRFil
#define iPStrPFil
#define iPrStlDlg
#define iPrJobDlg

Data Structures

typedef char
typedef TStr80 *
typedef Rect *

struct TPrPort {
GrafPort
QDProcs

};
typedef struct TPrPort
typedef struct TPrPort *

union TPPort {
GrafPtr
TPPrPort

}
typedef union TPPort

struct TPrinfo {
short
short
short
Rect

};
typedef struct TPrInfo

typedef unsigned char

#define feedCut
#define feedFanfold
#define feedMechCut
#define feedOther

typedef short

Print Manager

"\ P.Print"
-3
"PREC’
0
l
2
Oxe000
0xe000
Oxe001
Oxe000
Oxe001

TStr80[81];
TPStr80;
TPRect;

Port;
gProcs;

TPrPort;
TPPrPort;

pGPort;
pPrPort;

TPPort;

iDev;
1VRes;
iHRes;
rPage;

TPrinfo;

TFeed;

- tool.61 -

Toolbox Functions

Toolbox Functions

Struct TPrStl {
TWord
short
short
SignedByte
TFeed

};

typedef struct TPrStl

struct TPrJob {
short
short
short
SignedByte
char
ProcPtr
TPStr80
short
SignedByte
SignedByte

};

typedef struct TPrJob
typedef unsigned char

#define scanTB
#define scanBT
#define scanLR
#define scanRL

struct TPrXInfo {
short
short
short
short
Short
SignedByte
SignedByte
SignedByte
SignedByte
TScan
SignedByte

};
typedef struct TPrXInfo

Print Manager

wDev;
iPageV;
iPageH;
bPort;
feed;

TPrStl;

iFstPage;
iLstPage;
iCopies;
bJDocLoop;
fFromUsr;
pIdleProc;
pFileName;
iFileName;
bFile Vers;
bJobX;

TPrJob;
TScan;

0
]
2
3

iRowBytes;
iBandV;
iBandH;
iDevBytes;
iBands;
bPatScale;
bUIThick;
bUIOffset;
bUI]Shadow;
scan;
bXInfox;

TPrXInfo;

- tool.62 -

Aztec C68K

Aztec C68K

Struct TPrint {
Short
TPrinfo
Rect
TPrStl
TPrinfo
TPrXInfo
TPrJob
Short

};
typedef struct TPrint
typedef struct TPrint *
typedef struct TPrint **

struct TPrStatus {
short
short
short
Short
short
short
char
char
THPrint
TPPrPort
PicHandle

};
typedef struct TPrStatus

3. Functions

Print Manager

iPrVersion;
prinfo;
rPaper;
prstl;
priInfoPT;
prXInfo;
prJob;
printX[19];

TPrint;
TPPrint;
THPrint;

iTotPages;
iCurPage:
1TotCopies;
iCurCopy;
iTotBands;
iCurBand;
fPgDirty;
fImaging;
hPrint;
pPrPort;
hPic;

TPrsStatus;

3.1 Initialization and Termination

void PrOpen ();

void PrClose ();

3.2 Print records and dialogs

void PrintDe fault (hPrint)
THPrint hPrint;

Boolean PrValidate (hPrint)
THPrint hPrint;

Boolean PrStlDialog (hPrint)
THPrint hPrint;:

- tool.63 -

Toolbox Functions

Toolbox Functions Print Manager

Boolean PrJobDialog (hPrint)
THPrint hPrint;

void PrJobMerge (hPrintSrc, hPrintDst)
THPrint hPrintSrc, hPrintDst;

3.3. Document Printing

TPPrPort PrOpenDoc (hPrint, pPrPort, plOBuf)
THPrint hPrint; TPPrPort pPrPort; Ptr plOBul,

void PrCloseDoc (pPrPort)
TPPrPort pPrPort;

void PrOpenPage (pPrPort, pPageFrame)
TPPrPort pPrPort; TPRect pPageFrame;

void PrClosePage (pPrPort)
TPPrPort pPrPort;

3.4 Spool Printing

void PrPicFile (hPrint, pPrPort, plOBuf,
pDevBuf, prStatusPtr)

THPrint hPrint; TPPrPort pPrPort; Ptr plOBuf;
Ptr pDevBuf; TPrStatus * prStatusPtr:

3.5 Handling Errors

Short PrError ()

void PrSetError (iErr)
Short iErr;

3.6 Low-Level Driver Access

void PrDrvrOpen ()

void PrDrvrClose ()

Aztec C68K

void PrCtiCall (iWhichCtl, [Param1, |Param2, l|Param3)
short iWhichCtl; long |Param], |Param2, |Param3;

Handle PrDrvrDCE ()

Short PrDrvrVers ()

void PrNoPurge ()

void PrPurge ()

- tool.64 -

Aztec C68K Quickdraw Functions Toolbox Functions

Quickdraw Functions

The functions described in this section allow a C program to call

the Macintosh Quickdraw routines.

The constants, data structures, and functions described in this are

defined in the header file guickdraw.h. The constants and data

structures are also defined in the header file gd.h.

1. Constants

define srcCopy
#define srcOr
#define srcXor
#define srcBic
#dcfine notSrcCopy
#define notSrcOr
#define notSrcXor

#define notSrcBic
#define patCopy
#define patOr
#define patXor 10
#define patBic 11
#define notPatCopy 12
#define notPatOr 13
#define notPatXor 14
#define notPatBic 15

#dcfine normalBit 0
#dcfine inverseBit]
#define redBit 4
#define greenBit 3
#define blueBit 2

8
7

6
5

O
e
A
I
N
N
B
W
N

—
©

#dcfine cyanBit
#define magentabit
#define yellowBit
#<define blackBit

#dcfine blackColor 33
#define whiteColor 30
#dcfine redColor 205
#define greenColor 341
#dcfine blueColor 409
#define cyanColor 273
#dcfine magentaColor 137

#define yellowColor 69

- tool.65 -

Toolbox Functions Quickdraw Functions Aztec C68K

#define picLParen 0
#define picRParen]

2. Data Structures

typedef char QDByte;
typedef QDByte * QDPtr;
typedef QDPtr * QDHandle;
typedef unsigned char Pattern{ 8];
typedef int Bits 16[16];

#define frameMode 0
#define paintMode]
#define eraseMode 2
#define invertMode 3
#define fillMode 4

typedef unsigned short Style;
#define boldStyle 0x01
#define italicStyle 0x02
#define underlineStyle 0x04
#define outlineStyle 0x08
#define shadowStyle 0x10
#define condenseStyle 0x20
#define extendStyle 0x40

Struct FontInfo {
Short ascent;
Short descent;
Short widMax;
Short leading;

};

typedef struct FontInfo FontInfo;

Struct Point {
short V;
Short h;

};
typedef struct Point Point;

#define vh(x) ((int *)(&(x).v))

- tool.66 -

Aztec C68K

struct Rect {
short
short
short
short

};
typedef struct Rect

#define topLeft(x)
#define botRight(x)

struct BitMap {

Quickdraw Functions Toolbox Functions

top;
left;
bottom;
right;

Rect;

(*(struct Point *)(&(x).top))
(*(struct Point *)(&(x).bottom))

QDPtr base Addr;
short rowBytes;
Rect bounds;

};
typedef struct BitMap BitMap;

struct Cursor {
Bits16 data;
Bits16 mask;
Point hotSpot;

};
typedef struct Cursor Cursor;

struct PenState {
Point pnLoc;
Point pnSize;
Short pnMode;
Pattern pnPat;

};
typedef struct PenState PenState;

Struct Region {
short rgnSize;
Rect renBBox;

};
typedef struct Region Region;
typedef struct Region * RegenPtr;
typedef struct Region ** RenHandle;

Struct Picture {
short picSize;
Rect picFrame;

};
typedef struct Picture Picture;
typedef struct Picture * PicPtr;
typedef struct Picture ** PicHandle:

- tool.67 -

Toolbox Functions

Struct Polygon {
short
Rect
Point

};

typedef struct Polygon
typedef struct Polygon *
typedef struct Polygon **

Struct QDProcs {
QD Ptr
QD Ptr
QD Ptr
QD Ptr
QDPtr
QDPtr
QD Ptr
QD Ptr
QDPtr
QDPtr
QD Ptr
QD Ptr
QD Ptr

};
typedef struct QDProcs
typedef struct QDProcs *

Quickdraw Functions Aztec C68K

polySize;
polyBBox;
polyPointsf 1];

Polygon;
PolyPtr;
PolyHandle;

textProc;
lineProc;
rectProc;
rRectProc;
ovalProc;
arcProc;
polyProc;
rgnProc;
bitsProc;
commentProc;
txMeasProc;
getPicProc;
putPicProc;

QD Pro¢s;
QDProcsPtr;

- tool.68 -

Aztec C68K

struct GrafPort {

}

typedef struct GrafPort
typedef struct GrafPort *

#ifndef DRIVER

short
BitMap
Rect
RgnHandle
RenHandle
Pattern
Pattern
Point
Point
short
Pattern
Short
Short
Style
short
Short
long
long
long
Short
Short
QD Handle
QD Handle
QD Handle
QDProcsPtr

GralPtr
Pattern

Pattern

Pattern

Pattern

Pattern

Cursor
BitMap
long
#endif

3. Functions

Quickdraw Functions

device;
portBits;
portRect;
visRgen;
clipRgn;
bkPat;
fillPat;
pnLoc;
pnSize;
pnMode;
pnPat;
pn Vis;
txFont;
tx Face;
txMode;
txSize;
spExtra;
fgColor;
bkColor;
colorBit;
patStretch;
picSave;
renSave;
polySave;
grafProcs;

GrafPort;
GrafPtr;

thePort:
white;
black;

Bray,
itGray;
dkGray;
arrow;

screen Bits;
randSeed:

- tool.69 -

Toolbox Functions

Toolbox Functions Quickdraw Functions Aztec C68K

3.1 GrafPort Routines

pascal void InitGraf (globalPtr)
QD Ptr globalPtr;

pascal void OpenPort (gp)
GrafPtr gp;

pascal void InitPort (gp)
GrafPtr gp:

pascal void ClosePort (gp)
GrafPtr gp;

pascal void SetPort (gp)
GrafPtr gp;

pascal void GetPort (gp)
GrafPtr *gp;

pascal void GrafDevice (device)
Short device;

pascal void SetPortBits (bmPtr)
BitMap * bmPtr;

pascal void PortSize (width, height)
Short width, height;

pascal void MovePortTo (leftGlobal, topGlobal)
Short leftGlobal, topGlobal:;

pascal void SetOrigin (h, v)
short h, v;

pascal void SetClip (rgn)
RgnHandle rgn;

pascal void GetClip (rgn)
RgnHandle rgn:

pascal void ClipRect (rPtr)
Rect * rPtr;

pascal void BackPat (pat)
Pattern pat;

3.1.1 Cursor Handling

pascal void InitCursor ()

pascal void SetCursor (crsrPtr)
Cursor * crsrPtr;

pascal void HideCursor ()

- tool.70 -

Aztec C68K Quickdraw Functions

pascal void ShowCursor ()

pascal void ObscureCursor ()

3.1.2 Pen and Line Drawing

pascal void HidePen ()

pascal void ShowPen ()

pascal void GetPen (pt)
Point * pt;

pascal void GetPenState (pnStatePtr)
PenState * pnStatePtr;

pascal void SetPenState (pnStatePtr)
PenState * pnStatePtr;

pascal void PenSize (width, height)
Short width, height;

pascal void PenMode (modc)
Short mode;

pascal void PenPat (pat)
Pattern pat;

pascal void PenNormal ()

pascal void MoveTo (h, v)
short h, v;

pascal void Move (dh, dv)
short dh, dv;

pascal void LineTo (h, v)
Short h, v;

pascal void Line (dh, dv)
Short dh, dv;

3.2 Text Drawing

pascal void TextFont (font)
Short font;

pascal void TextFace (face)
Style face;

pascal void TextMode (modc)
Short mode;

pascal void TextSize (sizc)

Short size;

- tool.71 -

Toolbox Functions

Toolbox Functions Quickdraw Functions Aztec C68K

pascal void SpaceExtra (extra)
short extra;

pascal void DrawChar (ch)
char ch;

pascal void DrawString (s)
Str255 s;

pascal void DrawText (textBuf, firstByte, byteCount)
QDPtr textBuf; short firstByte, byteCount;

pascal short CharWidth (ch)
char ch;

pascal short StringWidth (s)
Str255 s;

pascal short TextWidth (textBuf, firstByte, byteCount)
QDPtr textBuf; short firstByte, byteCount;

pascal void GetFontInfo (infoPtr)
FontInfo * infoPtr;

pascal void MeasureText (count, textAddr, charLocs)
short count; Ptr textAddr, charLocs;

3.3 Drawing in Color

pascal void ForeColor (color)
long color;

pascal void BackColor (color)
long color;

pascal void ColorBit (whichBit)
Short whichBit;

3.4 Calculations with Rectangles

pascal void SetRect (rPtr, left, top, right, bottom)
Rect * rPtr; short left, top, right, bottom;

pascal void OffsetRect (rPtr, dh, dv)
Rect * rPtr; short dh, dv;

pascal void InsetRect (rPtr, dh, dv)
Rect * rPtr; short dh, dv:

pascal Boolean SectRect (srcRectAptr, srcRectBptr, dstRectPtr)
Rect * srcRectAptr, * srcRectBptr, * dstRectPtr;

pascal void UnionRect (srcRectAptr, srcRectBptr, dstRectPtr)
Rect * srcRectAptr, * srcRectBptr, *dstRectPtr:

- tool.72 -

Aztec C68K Quickdraw Functions Toolbox Functions

pascal Boolean PtInRect (pass(pt), rPtr)
Point pt; /*** This Point must be cast to a long ***/
Rect * rPtr;

pascal void Pt2Rect (pass(ptA), pass(ptB), dstRectPtr)
Point ptA, ptB; /*** This Point must be cast to a long ***/
Rect * dstRectPtr;

pascal void PtToAngle (rPtr, pass(pt), angle)
Rect * rPtr; short * angle;
Point pt; /*** This Point must be cast to a long ***/

pascal Boolean EqualRect (rectAptr, rectBptr)
Rect * rectAptr, * rectBptr;

pascal Boolean EmptyRect (rPtr)
Rect * rPtr;

3.5 Graphic Operations on Rectangles

pascal void FrameRect (rPtr)
Rect * rPtr;

pascal void PaintRect (rPtr)
Rect * rPtr;

pascal void EraseRect (rPtr)
Rect * rPtr;

pascal void J/nvertRect (rPtr)
Rect * rPtr;

pascal void FillRect (rPtr, pat)
Rect * rPtr; Pattern pat;

3.6 Graphic Operations on Ovals

pascal void FrameOval (rPtr)
Rect * rPtr;

pascal void PaintOval (rPtr)
Rect * rPtr;

pascal void EraseOval (rPtr)
Rect * rPtr;

pascal void JnvertOval (rPtr)
Rect * rPtr;

pascal void FillOval (rPtr, pat)
Rect * rPtr; Pattern pat;

- tool.73 -

Toolbox Functions Quickdraw Functions Aztec C68k

3.7 Graphic Operations on Round-Corner Rectangles

pascal void FrameRoundRect (rPtr, ovalWidth, ovalHeight)
Rect * rPtr; short ovalWidth, ovalHeight;

pascal void PaintRoundRect (rPtr, ovalWidth, ovalHeight)
Rect * rPtr; short ovalWidth, ovalHeight;

pascal void EraseRoundRect (rPtr, ovalWidth, ovalHeight)
Rect * rPtr; short ovalWidth, ovalHeight:

pascal void InvertRoundRect (rPtr, ovalWidth, ovalHeight)
Rect * rPtr; short ovalWidth, ovalHeight;

pascal void FillRoundRect (rPtr, ovalWidth, ovalHeight, pat)
Rect * rPtr; short ovalWidth, ovalHeight; Pattern pat:

3.8 Graphic Operations on Arcs and Wedges

pascal void FrameArc (rPtr, startAngle, arcAngle)
Rect * rPtr; short startAngle, arcAngle;

pascal void PaintArc (rPtr, startAngle, arcAngle)
Rect * rPtr; short startAngle, arcAngle;

pascal void EraseArc (Ptr, startAngle, arcAngle)
Rect * rPtr; short startAngle, arcAngle;

pascal void InvertArc (rPtr, startAngle, arcAngle)
Rect * rPtr; short startAngle, arcAngle;

pascal void FillArc (rPtr, startAngle, arcAngle, pat)
Rect * rPtr; short startAngle, arcAngle; Pattern pat:

3.9 Calculations with Regions

pascal RgnHandle NewRegn ()

pascal void DisposeRgn (ren)
RgnHandle rgn;

pascal void CopyRgn (srcRgn, dstRgn)
RgnHandle srcRgn, dstRgn;

pascal void SetEmptyRgn (ren)
RgnHandle rgn;

pascal void SetRectRgn (rgn, left, top, right, bottom)
RgnHandle rgn; short left, top, right, bottom:

pascal void RectRgn (rgn, rPtr)
RgnHandle rgn; Rect * rPtr;

pascal void OpenRen ()

- tool.74 -

Aztec C68K Quickdraw Functions Toolbox Functions

pascal void CloseRgn (dstRgn)
RgnHandle dstRgn;

pascal void OffsetRgn (rgn, dh, dv)
RgnHandle rgn; short dh, dv;

pascal void JnsetRgn (rgn, dh, dv)
RgnHandle rgn;

pascal void SectRgn (srcRgnA, srcRgnB, dstRgn)
RenHandle srcRgnA, srcRgnB, dstRgn;

pascal void UnionRgn (srcRgenA, srcRgnB, dstRgn _)
RgnHandle srcRgnA, srcRgnB, dstRgn;

pascal void DiffRgen (srcRgnA, srcRgnB, dstRgn)
RgnHandle srcRgnA, srcRgnB, dstRgn;

pascal void XorRgn (srcRgnA, srcRgnB, dstRgn)
RgnHandle srcRgnA, srcRgnB, dstRgn;

pascal Boolean PtInRgn (pass(pt), rgn)
Point pt; /*** This Point must be cast to a long ***/
RgnHandle rgn;

pascal Boolean RectinRgn (rPtr, rgn)
Rect * rPtr; RgnHandle rgn;

pascal Boolean EqualRgn (rgnA, rgnB)
RgnHandle rgnA, rgnB;

pascal Boolean EmptyRgn (ren)
RgnHandle rgn;

3.10 Graphic Operations on Regions

pascal void FrameRgn (rgn)
RgnHandle rgn;

pascal void PaintRgn (rgn)
RgnHandle rgn;

pascal void EraseRgn (rgn)
RgnHandle rgn;

pascal void JnvertRgn (rgn)
RegenHandle rgn;

pascal void FillRgn (rgn, pat)
RgenHandle rgn; Pattern pat;

3.11 Bit Transfer Operations

pascal void ScroliRect (rPtr, dh, dv, updatcRgn)
Rect * rPtr; short dh, dv; RgnHandle updateRgn;

- tool.75 -

Toolbox Functions Quickdraw Functions Aztec C68K

pascal void CopyBits (srcBitsPtr, dstBitsPtr,
srcRectPtr, dstRectPtr,
mode, maskRgn)

BitMap * srcBitsPtr, * dstBitsPtr;
Rect * srcRectPtr, * dstRectPtr;
short mode; RgnHandle maskRgn;

pascal void CopyMask (srcBits, maskBits, dstBits,

srcRect, maskRect, dstRect)
BitMap * srcBits, * maskBits, * dstBits;
Rect *srcRect, * maskRect, * dstRect;

3.12 Pictures

pascal PicHandle OpenPicture (picFramePtr)
Rect * picFramePtr;

pascal void PicComment (kind, datasize, dataHandle)
short kind, datasize; QDHandle dataHandle;

pascal void ClosePicture ()

pascal void DrawPicture (myPicture, dstRectPtr)
PicHandle myPicture; Rect * dstRectPtr;

pascal void KillPicture (myPicture)
PicHandle myPicture;

3.13 Calculations with Polygons

pascal PolyHandle OpenPoly ()

pascal void ClosePoly ()

pascal void KillPoly (poly)
PolyHandle poly;

pascal void OffsetPoly (poly, dh, dv)
PolyHandle poly; short dh, dv;

3.14 Graphic Operations on Polygons

pascal void FramePoly (poly)
PolyHandle poly;

pascal void PaintPoly (poly)
PolyHandle poly;

pascal void ErasePoly (poly)
PolyHandle poly;

pascal void IJnvertPoly (poly)
PolyHandle poly ;

- tool.76 -

Aztec C68K Quickdraw Functions Toolbox Functions

pascal void FillPoly (poly, pat)
PolyHandle poly; Pattern pat;

3.15 Calculations with Points

pascal void AddPt (pass(srcPt), dstPtPtr)
Point srcPt; /*** This Point must be cast to a long ***/
Point * dstPtPtr;

pascal void SubPt (pass(srcPt), dstPtPtr)
Point srcPt; /*** This Point must be cast to a long ***/
Point * dstPtPtr;

pascal void SetPt (ptPtr, h, v)
Point * ptPtr; short h, v;

pascal Boolean EgqualPt (pass(ptA), pass(ptB))
Point ptA, ptB; /*** These Points must be cast to longs ***/

pascal void LocalToGlobal (ptPtr)
Point * ptPtr;

pascal void GlobalToLocal (ptPtr)
Point * ptPtr;

3.16 Miscellaneous Utilities

pascal short Random ()

pascal Boolean GetPixel (h, v)
short h, v;

pascal void StuffHex (thingPtr, s)
QDPtr thingPtr; Str255 s;

pascal void ScalePt (ptPtr, srcRectPtr, dstRectPtr)
Point *ptPtr; Rect * srcRectPtr, * dstRectPtr;

pascal void MapPt (ptPtr, srcRectPtr, dstRectPtr)
Point *ptPtr; Rect * srcRectPtr, * dstRectPtr;

pascal void MapRect (rPtr, srcRectPtr, dstRectPtr)
Rect * rPtr, * srcRectPtr, * dstRectPtr;

pascal void MapRgn (rgn, srcRectPtr, dstRectPtr)
RgnHandle rgn, Rect * srcRectPtr, * dstRectPtr;

pascal void MapPoly (poly, srcRectPtr, dstRectPtr)
PolyHandle poly; Rect * srcRectPtr, * dstRectPtr;

3.17 Customizing QuickDraw Operations

pascal void SetStdProcs (procsPtr)
QDProcs *procsPtr;

- tool.77 -

Toolbox Functions Quickdraw Functions Aztec C68K

pascal void StdText (byteCount, textPtr, pass(numer), pass(denom))
Short byteCount; QDPtr textPtr;
Point numer, denom; /*** These Points must be cast to longs ***/

pascal void StdLine (pass(newPt))
Point newPt; /*** This Point must be cast to a long ***/

pascal void StdRect (verb, rPtr)
GrafVerb verb; Rect * rPtr;

pascal void StdRRect (verb, rPtr, ovalwidth, ovalHeight)
GrafVerb verb; Rect * rPtr; short ovalWidth, ovalHeight:

pascal void StdOval (verb, rPtr)
GrafVerb verb; Rect * rPtr;

pascal void StdArc (verb, rPtr, startAngle, arcAngle)
GrafVerb verb; Rect * rPtr; short startAngle, arcAngle;:

pascal void StdPoly (verb, poly)
GrafVerb verb; PolyHandle poly;

pascal void StdRgn (verb, rgn)
GrafVerb verb; RgnHandle rgn;

pascal void StdBits (srcBitsPtr, srcRectPtr, dstRectPtr,
mode, maskRgn)

BitMap * srcBitsPtr; Rect *srcRectPtr, * dstRectPtr:
short mode; RgnHandle maskRgn;

pascal void StdComment (kind, dataSize, dataHandle)
short kind, dataSize; QDHandle dataHandle;

pascal short StdTxMeasure (byteCount, textPtr
numer, denom, infoPtr)

short byteCount; QDPtr textPtr;
Point numer, denom; /*** These Points must be cast to longs ***/
FontInfo * infoPtr;

pascal void StdGetPic (dataPtr, byteCount)
QD Ptr dataPtr; short bytecount;

pascal void StdPutPic (dataPtr, byteCount)
QDPtr dataPtr; short bytecount;:

pascal void SeedFill (srcPtr, dstPtr, srcRow, dstRow, height, words,
seedH, seed V)

Ptr srcPtr, dstPtr; short srcRow, dstRow, height, words, seed

pascal void CalcMask (srcPtr, dstPtr, srcRow, dstRow, height, words)
Ptr srcPtr, dstPtr; short srcRow, dstRow, height, words;

pascal void GetMaskTable ()

- tool.78 -

Aztec C68K Resource Manager Toolbox Functions

Resource Manager Functions

This section describes functions that allow C programs to call the

Macintosh Resource Manager Routines.

The constants, data structures, and functions described in this

section are defined in the header file resource.h.

1. Constants

define resSysRef 0x80
#define resSysHeap 0x40
#define resPurgeable Ox20
#define resLocked 0x10
#define resProtected 0x08
#define resPreload 0x04
#define resChanged 0x02
#define resUser 0x01

#define mapReadOnly 0x80
#define mapCompact 0x40
#define mapChanged 0x20

typedef long ResType;

2. Functions

2.1 Initializing the Resource Manager

pascal short J/nitResources ()

pascal void RsrcZonelnit ()

2.2 Opening and Closing Resource Files

pascal void CreateResFile (filename)
Str255 filename;

pascal short OpenResFile (filename)
Str255 filename;

pascal short OpenRFPerm (filename, VRefNum, permission)

Str255 filename; short VRefNum; Byte permission;

pascal void CloseResFile (refNum)
short ref{Num;

- tool.79 -

Toolbox Functions Resource Manager Aztec C68K

2.3 Checking for errors

pascal short ResError ()

2.4 Setting the Current Resource File

pascal short CurResFile ()

pascal short HomeResFile (theResource)
Handle theResource;

pascal void UseResFile (refNum)
Short refNum;

pascal short CountTypes ()

pascal short CountlTypes ()

pascal void GetIndType (theType, index)
ResType * theType; short index;

pascal void GetlIndType (theType, index)
ResType * theType; short index;

2.5 Getting and Disposing of Resources

pascal void SetResLoad (load)
Boolean load;

pascal short CountResources (theType)
ResType theType;

pascal short Count] Resources (theType)
ResType theType;

pascal Handle GetIndResource (theType, index)
ResType theType; short index;

pascal Handle GetlIndResource (theType, index)
ResType theType; short index;

pascal Handle GetResource (theType, theID)
ResType theType; short theID;

pascal Handle Get] Resource (theType, theID)
ResType theType; short theID;

pascal Handle GetNamedResource (theType, name)
ResType theType; Str255 name;

pascal Handle GetlNamedResource (theType, name)
ResType theType; Str255 name;

- tool.80 -

Aztec C68K Resource Manager Toolbox Functions

pascal void LoadResource (theResource)
Handle theResource;

pascal void ReleaseResource (theResource)
Handle theResource;

pascal void DetachResource (theResource)
Handle theResource;

2.6 Getting Resource Information

pascal short UnigueID (theType)
ResType theType;

pascal short UniquelID (theType)
ResType theType;

pascal void GetResInfo (theResource, theID, theType, name)
Handle theResource; short *theID;
ResType *theType; Str255 name;

pascal short GetResAttrs (theResource)
Handle theResource;

pascal long SizeResource (theResource)
Handle theResource;

pascal long MaxSizeRsrc (theResource)
Handle theResource;

pascal long RsrcMapEntry (theResource)
Handle theResource;

2.7 Modifying Resources

pascal void SetResInfo (theResource, theID, name)
Handle theResource; short theID; Str255 name;

pascal void SetResAttrs (theResource, attrs)
Handle theResource; short attrs;

pascal void ChangedResource (theResource)
Handle theResource;

pascal void AddResource (theData, theType, theID, name)
Handle theData; ResType theType; short theID; Str255 name;

pascal void RmwveResource (theResource)
Handle theResource;

pascal void UpdateResFile (refNum)
short refNum;

pascal void WriteResource (theResource)
Handle theResource;

- tool.81 -

Toolbox Functions Resource Manager Aztec C68K

pascal void SetResPurge (install)
Boolean install;

2.8 Advanced Routines

pascal short GetResFileAttrs (refNum)
Short refNum:

pascal void SetResFileAttrs (refNum, attrs)
short refNum, attrs;

2.9 Modifying System References

pascal void AddReference (theResource, theID, name)
Handle theResource; short theID; Str255 name;

pascal void RmveRe ference (theResource)
Handle theResource;:

- tool.82 -

Aztec C68K Vertical Retrace Manager Toolbox Functions

Vertical Retrace Manager Functions

This section describes functions that allow C programs to access
Macintosh Vertical Retrace Manager routines.

The constants, structures, and functions described in this section
are defined in the header file retrace.h.

1. Data Structures

typedef struct {
QElemPtr “alink
short qi ype,
ProcPtr vblAddr;
short vblCount;
short vbIPhase;

} VBLTask;

2. Functions

2.1 Vertical Retrace Routines

pascal short VJnstall (vblTaskPtr)
QElemPtr vblTaskPtr;

pascal short V. Remove (vblTaskPtr)
QElemPtr vblTaskPtr;

pascal QHdrPtr GetVBLOHdr ()

- tool.83 -

Toolbox Functions Scrap Manager Aztec C68K

Scrap Manager Functions

The functions described in this section allow C programs to call
routines that are part of the Macintosh Scrap Manager.

The constants, structures, and functions described in this section
are defined in the header file scrap.h.

1. Data Structures

struct ScrapStuff {

long scrapSize;
Handle scrapHandle;
Short scrapCount;
short scraps tate;
StringPtr scrapName;

};

typedef struct ScrapStuff ScrapStuff:
typedef struct ScrapStuff * PScrapStuff;

2. Functions

2.1 Getting Scrap Information

pascal PScrapStuff Jn foScrap ()

2.2 Keeping the Scrap on the Disk

pascal long UnloadScrap ()

pascal long LoadScrap ()

2.3 Reading from the Scrap

pascal long GetScrap (hDest, theType, offset)
Handle hDest; ResType theType; long *offset;

2.4 Writing to the Scrap

pascal long ZeroScrap ()

pascal long PutScrap (length, theType, source)
long length; ResType theType; Ptr source:

- tool.84 -

Aztec C68K Segment Loader Functions Toolbox Functions

Segment Loader Functions

This section describes functions that allow C programs to call
Macintosh Segment Loader routines.

The functions described in this section are defined in the header
file segment.h,

1.

2.

Constants

#define appOpen 0
#define appPrint 1

Functions

pascal void LoadSeg (segID)
short segID;

pascal void UnloadSeg (routineAddr)
Ptr routineAddr;

void CountAppFiles (messagePtr, countPtr)
short * messagePtr, *countPtr;

void GetAppFiles (index, theFilePtr)
short index; AppFile *theFilePtr;

void ClrAppFiles (index)
short index;

pascal void GetAppParms (apName, apRefNumPtr, apParamPtr)
Str255 apName; short * apRefNumPtr; Handle * apParamPtr;

pascal void ExitToShell ()

void Launch € name, sound }
char *name; short sound;

void Chain (name, sound)
char *name; short sound;

- tool.85 -

Toolbox Functions Serial Driver Aztec C68K

Serial Driver Functions

This section describes functions that allow C programs to access
Macintosh Serial Driver routines.

The RAM serial driver is loaded into memory and installed from a
resource on disk by the function RamSDOPen, if the system driver is
version 0; it is deleted from memory by RamSDClose. Before running
a program that calls RamSDOpen, you must move the resources that
contain the serial driver from the distribution disk to your own disk,
using either RGen or cprsrc. The resource with type=SERD and ID=1
contains the driver for the Mac; that with type=SERD and ID=2
contains the driver for the MacXL. The file on the distribution disks
that contain these resources is serial/SERD.

The constants, structures, and functions described in this section
are defined in the header file serialh.

1. Constants

define baud300 380
#define baud600 189
#define baud1200 94
#define baud!18&00 62
#define baud2400 46
#define baud3600 30
#define baud48&00 22
#define baud7200 14
#define baud9600 10
#define baud19200 4
#define baud57600 0

#define stopl0 0x4000
#define stop15 0x8000
#define stop20 0xc000

#define noParity 0x2000
#define oddParity 0x 1000
#define evenParity 0x3000

#define data5 0x0000
#define data6 0x0800
#define data7 0x0400
#define data8 0x0c00

- tool.86 -

Aztec C68K Serial Driver _ Toolbox Functions

#define swOverrunErr 0x01
#define parityErr 0x10
#define hwOverrunErr 0x20
#define framingErr 0x40

#define ctsEvent 0x20
#define breakEvent 0x80

#define xOffWasSent 0x80

#define sPortA 0x000
#define sPortB 0x100

2. Data Structures

typedef struct {
char fXOn;
char {CTS;
unsigned char xOn;
unsigned char xOff;
char errs;
char evts;
char fInX;
char null;

} SerShk;

typedef struct {
char cumErrs;
char xOffSent;
char rdPend;
char wrPend;
char ctsHold;
char xOffHold;

} SerStaRec;

3. Functions

3.1 Opening and Closing the RAM Serial Driver

pascal short RamSDOpen (whichPort)
short whichPort; /* either SPortA or SPortB */

pascal void RamSDClose (whichPort)
short whichPort; /* either SPortA or SPortB */

- tool.87 -

Toolbox Functions Serial Driver Aztec C68K

3.2 Changing Serial Driver Information

pascal short SerReset (refNum, serConfig)
Short ref{Num;
short serConfig:

pascal short SerSetBuf (refNum, serBPtr, serBLen)
short refNum;
Ptr serBPtr;
short serBLen:

pascal short SerHShake (refNum, figs)
Short refNum;
SerShk * flgs;

pascal short SerSetBrk (refNum)
short refNum;

pascal short SerCirBrk (refNum)
Short refNum;

3.3 Getting Serial Driver Information

pascal short SerGetBuf (refNum, count)
Short refNum;
long * count;

pascal short SerErrFlg (refNum, serSta)
Short refNum;
SerStaRec * serSta;

- tool.88 -

Aztec C68K Sound Driver Toolbox Functions

Sound Driver Functions

This section describes functions that allow C programs to access
Macintosh Sound Driver routines.

The constants, structures, and functions described in this section
are defined in the header file sound.h.

1. Constants

define swMode -|
#define ftMode l
#define ffMode 0

2. Data Structures

typedef char Free Wave[30001];

typedef struct {
Short mode;
Fixed count;
FreeWave waveBytes;

} FFSynthRec, *FFSynthPtr;

typedef struct {
Short count;
short amplitude;
short duration;

} Tone, Tones[5001];

typedef struct {
short mode;
Tones triplets;

} SWSynth, SWSynthPtr;

typedef char Wave[256];
typedef Wave *WavePtr;

- tool.89 -

Toolbox Functions

typedef struct {
short
Fixed
long
Fixed
long
Fixed
long
Fixed
long
WavePtr
WavePtr
WavePtr
WavePtr

Sound Driver

duration;
sound] Rate;
sound 1 Phase;
sound2Rate;
sound2Phase;
sound3Rate;
sound3Phase;
sound4Rate;
sound4Phase;
sound! Wave;
sound2Wave;
sound3 Wave;
sound4Wave;

} FTSoundRec, *FTSndRecPtr;

typedef struct {
short
FTSndRecPtr

mode;
sndRec;

} FISynthRec, *FTSynthPtr;

3. Functions

3.1 Sound Functions

pascal void SetSoundVol (level)
Short level;

pascal void GetSoundVol (&levelPtr)
Short levelPtr;

pascal Boolean SoundDone ()

pascal void StopSound ()

Aztec C68K

pascal void StartSound (synthRec, numbytes, doneRtn)
Ptr synthRec; long numBytes; ProcPtr doneRtn;

- tool.90 -

Aztec C68K System Error Codes Toolbox Functions

System Error Codes

The constants described in this section are defined in the header
file syserr.h.

1. Constants

/* Macintosh OS system errors: */

#define noErr 0 /* All is well */

/* File system error codes: */

#define qErr (-1)
#define vTypErr (-2)

#define dirFulErr (-33) /* Directory full */
#define dskFulErr (-34) /* disk full */
#define nsvErr (-35) /* no such volume */
#define ioErr (-36) /*1/Oerror */
#define bdNamErr (-37) /* bad name */
#define fnOpnErr (-38) /* File not open */
#define eofErr (-39) /* End of file */

#define posErr (-40) /* tried to position before
file origin */

#define mFulErr (-41) /* memory full (open)
or file won’t fit (load) */

#define tmfoErr (-42) /* too many files open */
#define {nfErr (-43) /* File not found */

#define wPrErr (-44) /* diskette is write protected */
#define fLckdErr (-45) /* file is locked */
#define vLckdErr (-46) /* volume is locked */
#define fBsyErr (-47) /* File is busy (delete) */
#define dupFNErr (-48) /* duplicate filename (rename) */
#define opWrErr (-49) /* file already open with

with write permission */

- tool.91 -

Toolbox Functions

#define paramErr (-50)
#define rfNumErr (-51)
#define gfpErr (-52)
#define volOffLinErr (-53)

#define permErr (-54)

#define volOnLinErr (-55)

#define nsDrvErr (-56)

#define noMacDskErr (-57)

#define extFSErr (-58)

#define fsRnErr (-59)

#detine badMDBErr (-60)
#define wrPermErr (-61)

#define clkRdErr (-85)
#define clkWrErr (-86)
#define prWrErr (-87)
#define prInitErr (-88)

#define PortInUse (-97)

#define PortNotCf (-98)

#define noScrapErr (-100)
#define noTypeErr (-102)

#define memFullErr (-108)
#define nilHandleErr (-109)

#define memWZErr (-111)

#define memPurErr (-112)

#define resNotFound (-192)
#dcfine resFNotFound (-193)
#define addResFailed (-194)
#dcfine addRefFailed (-195)
#define rmvResFailed (-196)
#define rmvRefFailed (-197)

System Error Codes Aztec C68K

/* error in user parameter list */
/* refnum error */
/* get file position error */
/* volume not on line error

(was Ejected) */
/* permissions error

(on file open) */
/* drive volume already on-line

at MountVol */
/* no such drive

(tried to mount a bad drive #) */
/* not a mac diskette

(sig bytes are wrong) */
/* volume in question belongs

to an external fs */
/* Problem during rename */

/* bad master directory block */
/* write permissions error */

/* some other driver
is currently using this port */

/* parameter ram is set
for some other type use */

/* Not enough room in heap zone */
/* Master Pointer was

NIL in HandleZone */
/* WhichZone failed

(applied to free block) */
/* trying to purge a locked or

non-purgeable block */

- tool.92 -

Aztec C68K TextEdit Functions Toolbox Functions

TextEdit Functions

This section describes functions that allow a program to access
routines in the the Macintosh TextEdit package.

The constants, data structures, and functions described in this
section are defined in the header file textedit.h.

1. Constants

#define teJustLeft 0
#define teJustCenter l
#define teJustRight -]

2. Data Structures

typedef char Chars[32001];
typedef Chars * CharsPtr;
typedef Chars ** CharsHandle;

- tool.93 -

Toolbox Functions

Struct TERec {
Rect

Rect
Rect

short
short
Point
short
short
short
long
long
long
short
long
short
short
short
Handle
short
short
short
short
short
short
short
short

GrafPtr
Ptr
Ptr
Short
Short

}

typedef struct TERec
typedef struct TERec *
typedef struct TERec **

3. Functions

3.1 Initialization

pascal void TEInit ()

TextEdit Functions Aztec C68K

destRect;
viewRect;
selRect;
lineHeight;
fontAscent;
selPoint;
selStart;
selEnd;
active;
wordBreak;
clikLoop;
clickTime;
clickLoc;
caretTime;
caretState;
just;
length;
htext;
recalBack;
recalLines;
clikStuff;
crOnly;
txFont;
txFace;
txMode;
txSize;
inPort;
highHook;
caretHook;
nLines;
lineStarts[32001];

TERec;
TEPtr;
TEHandle;

pascal TEHandle TENew (destRectPtr, viewRectPtr)
Rect * destRectPtr, * viewRectPtr;

- tool.94 -

Aztec C68K TextEdit Functions Toolbox Functions

pascal void TEDispose (hTE)
TEHandle hTE;

3.2 Manipulating Edit Records

pascal void TESetText (text, length, hTE)
Ptr text; long length; TEHandle hTE;

pascal CharsHandle TEGetText (hTE)
TEHandle hTE;

3.3 Editing

pascal void TEKey (key, hTE)
char key; TEHandle hTE;

pascal void TECut (hTE)
TEHandle hTE;

pascal void TECopy (hTE)
TEHandle hTE;

pascal void TEPaste (hTE)
TEHandle hTE;

pascal void TEDelete (hTE)
TEHandle hTE;

pascal void 7E/nsert (text, length, hTE)
Ptr text; long length; TEHandle hTE;

3.4 Selection Range and Justification

pascal void TESetSelect (selStart, selEnd, hTE)
long selStart, selEnd; TEHandle hTE;

pascal void TESetJust (j, hTE)
Short j; TEHandle hTE;

pascal void TESelWView (hTE)
TEHandle hTE;

pascal void TEAutoView (auto, hTE)
Boolean auto; TEHandle hTE;

3.5 Mice and Carets

pascal void TEClick (pass(pt), extend, hTE)
Point pt; /*** This Point must be cast to a long ***/
Boolean extend; hTE TEHandle;

pascal void TEIdle (hTE)

TEHandle hTE;

- tool.95 -

Toolbox Functions TextEdit Functions

pascal void TEActivate (hTE)
TEHandle hTE;

pascal void TEDeactivate (hTE)
TEHandle hTE;

3.6 Text Display

pascal void TEUpdate (rUpdatePtr, hTE)
Rect * rUpdatePtr; TEHandle hTE;

pascal void TextBox (text, length, boxPtr, j)
Ptr text, long length; Rect * boxPtr; short j:

3.7 Advanced Routines

pascal void TEScroll (dh, dv, hTE)
short dh, dv; TEHandle hTE;

pascal void TEPinScroll (dh, dv, hTE)
short dh, dv; TEHandle hTE;

pascal void TECalText (hTE)
TEHardle hTE;

3.8 Scrap-related Functions

pascal short TEFromScrap ()

pascal short TEToScrap ()

Handle TEScrapHnal ()

long TEGetScrpLen ()

pascal void TESetScrpLen (len)
long len;

- tool.96 -

Aztec C68K

Aztec C68K Toolbox Utility Functions Toolbox Functions

Toolbox Utility Functions

The functions described in this section allow a C program to access
Macintosh Toolbox utility routines.

The constants, structures, and functions described inthis section
are defined in the header file toolutil.h.

1. Constants

define sysPatListID 0

2. Data structures

typedef long Fixed;

Struct Int64Bit {
long hiLong;
long loLong;

};

typedef struct Int64Bit Int64Bit;

typedef struct Cursor * CursPtr;
typedef struct Cursor ** CursHandle;

typedef struct Pattern * PatPtr;
typedef struct Pattern ** PatHandle;

3. Functions

3.1 Fixed-Point Arithmetic

pascal Fixed FixRatio (numerator, denominator)
short numerator, denominator;

pascal Fixed FixMul (a,b)
Fixed a, b;

pascal short FixRound (x)
Fixed x;

pascal Fixed Long2Fix (x)
long x;

pascal long Fix2Long (x)
Fixed x;

pascal Fract Fix2Fract (x)
Fixed x;

- tool.97 -

Toolbox Functions Toolbox Utility Functions Aztec C68K

pascal Fixed Fract2Fix (x)
Fract x;

pascal Fract FracCos (x)
Fixed x;

pascal Fract FracSin (x)
Fixed x:

pascal Fract FracSqrt (x)
Fract x;

pascal Fract FracMul (x, y)
Fract x, y;

pascal Fixed FracDiv (x, y)
Fract x, y;

pascal Fixed FixAtan2 (x, y)
long x, y:

pascal Fixed FixDiv (x, y)
Fixed x, y;

3.2 String Manipulation

pascal StringHandle NewString (s)
Str255 s;

pascal void SetString (h,s)
StringHandle h; Str255 s;

pascal StringHandle GetString (SstringID)
short stringID;

pascal void GetIndString (theString strListID, index)
Str255 theString: short strListID, index;

3.3 Byte Manipulation

pascal long Munger (h, offset, ptrl, lenl, ptr2, len2)
Handle h; Ptr ptrl, ptr2;
long offset, lenl, len2;

pascal Boolean BitTst (bytePtr, bitNum)
Ptr bytePtr; long bitNum;

pascal void BitSet (bytePtr, bitNum)
Ptr bytePtr; long bitNum;

pascal void BitCir (bytePtr, bitNum)
Ptr bytePtr; long bitNum:

- tool.98 -

Aztec C68K Toolbox Utility Functions Toolbox Functions

3.4 Logical Functions

pascal long BitAnd (long], long2)
long long], long2;

pascal long BitOr (longl, long2)
long longl, long2;

pascal long BitXor (long], long2)
long longl, long2;

pascal long BitNot (long], long2)
long long], long2;

pascal long BitShift (longl, count)
long longl; short count;

pascal void PackBits (srcPtr, dstPtr, srcBytes)
Ptr * srcPtr, * dstPtr; short srcBytes;

pascal void UnPackBits (srcPtr, dstPtr, dstBytes)
Ptr * srcPtr, * dstPtr; short srcBytes;

3.5 Other Operations on Long Integers

pascal short HiWord (x)
long x;

pascal short LoWord (x)
long x;

pascal void LongMul (a, b, destPtr)
long a, b; Int64Bit * destPtr;

3.6 Graphics Utilities

pascal Handle GetIcon (iconID)
short iconID;

pascal void Ploticon (theRectPtr, theIcon)
Rect * theRectPtr; Handle thelIcon;

pascal PatHandle GetPattern (patID)
Short patID;

pascal void GetI/ndPattern (thePattern, patID, index)
Pattern thePattern;
short patID, index;

pascal CursHandle GetCursor (cursorID)
Short cursorID;

pascal void ShieldCursor (left, top, right, bottom)

short left, top, right, bottom;

- tool.99 -

Toolbox Functions Toolbox Utility Functions

pascal PicHandle GetPicture (pictureID)
short pictureID;

3.7 Miscellaneous Utilities

pascal long DeltaPoint (pass(ptA), pass(ptB))
Point ptA, ptB;

pascal Fixed SlopeFromAngle (angle)
short angle;

pascal short AngleFromSlope (slope)
Fixed slope;

- tool.100 -

Aztec C68K

Aztec C68K Common Types Toolbox Functions

Types

This section describes definitions that are common to most C

programs.

The constants, structures, and functions described in this section
are defined in the header file types.h.

1. Constants

define TRUE (-1)
#define FALSE 0

typedef unsigned charByte;
typedef char SignedByte;
typedef char Ptr;
typedef Ptr * Handle;
typedef short (*ProcPtr)();
typedef char Boolean;

typedef unsigned char Str255[256];
typedef Str255 * StringPtr;
typedef Str255 ** StringHandle;

typedef short OSErr;
typedef long OSType;

- tool.101 -

Toolbox Functions Window Manager Aztec C68K

Window Manager Functions

This section describes functions that allow C programs to call the
Macintosh Window Manager routines.

The constants, data structures, and functions described in this
section are defined in the header file window.h.

1. Constants

define documentProc
#(decfine dBoxProc
#define plainDBox
#define altDBoxProc
#define noGrowDocProc
#define rDocProc

#define dialogKind
#define userKind

#define inDesk
#define inMenuBar
#define inSysWindow
#define inContent
#define inDrag
#define inGrow

#define inGoAway

#ifndef hAxisOnly
#define noConstraint
#define hAxisOnly
#dcfine vAxisOnly

#define wDraw
#define wHit
#define wCalcRgns
#define wNew
#define wDispose
#define wGrow
#define wDrawGlIcon

#define wNoHit
#dcfine wInContent
#define wInDrag
#define wInGrow
#dcfine wInGoAway

ON

N
M

A
W
N
K

©
C
O
N

—

R
W
N
—

©

m
W
N
F

CO

A
D
A
M
N
B
R
W
N
K
 OO

N
K

©

- tool.102 -

Aztec C68K Window Manager Toolbox Functions

2. Data structures

typedef struct WindowRecord * WindowPeek:

struct WindowReccord {
GrafPort port;
Short windowKind;
char visible;
char hilited;
char goAwayFlag;
char spare Flag;
RenHandle StrucRgn;
RgenHandle contRgn;
RenHandle updatcRegn;
Handle windowDefProc;
Handle dataHandle;
StringHandle title Handle;
short title Width;
Handle controlList;
WindowPeck nextWindow;
PicHandle windowPic;
long re{Con;

};

typedef struct WindowRecord WindowRecord;
typedef GrafPtr WindowPtr;

3. Functions

3.1 Initialization and Allocation

pascal void /nitWindows ()

pascal void GetWMegrPort (wPortPtr)
GrafPtr * wPortPtr;

pascal WindowPtr NewWindow (wStorage, boundsRectPtr, title
visible, procID, behind,
goAwayFlag, refCon)

Ptr wStorage; Rect *boundsRectPtr; Str255 title;
Boolean visible, gaAwayFlag; short procID; WindowPtr behind;
long refCon;

pascal WindowPtr GetNewWindow (windowID, wStorage, behind)
short windowID; Ptr wStorage; WindowPtr behind;

pascal void CloseWindow (theWindow)

WindowPtr the Window;

- tool.103 -

Toolbox Functions Window Manager Aztec C68K

pascal void DisposeWindow (theWindow)
WindowPtr the Window;

3.2 Window Display

pascal void SetWTitle (theWindow, title)
WindowPtr theWindow; Str255 title:

pascal void GetWTitle (theWindow, title)
WindowPtr theWindow; Str255 title:

pascal void SelectWindow (theWindow)
WindowPtr theWindow;

pascal void HideWindow (theWindow)
WindowPtr theWindow;

pascal void ShowWindow (theWindow)
WindowPtr the Window;

pascal void ShowHide (theWindow, showFlag)
WindowPtr theWindow; Boolean showFlag;

pascal void HiliteWindow (theWindow, fHiLite)
WindowPtr theWindow; Boolean fHiLite;

pascal void BringToFront (theWindow)
WindowPtr the Window;

pascal void SendBehind (theWindow, behindWindow)
WindowPtr theWindow, behindWindow;

pascal WindowPtr FrontWindow ()

pascal void DrawGrowlcon (the Window)
WindowPtr theWindow;

3.3. Mouse Location

pascal short FindWindow (pass(thePt), whichWindowPtr)
Point thePt; /*** This Point must be cast to a long ***/
WindowPtr * whichWindowPtr;

pascal Boolean TrackGoAway (theWindow, pass(thePt))
WindowPtr the Window;
Point thePt; /*** This Point must be cast to a long ***/

3.4 Window Movement and Sizing

pascal void MoveWindow (theWindow, hGlobal, vGlobal, front)
WindowPtr theWindow,; short hGlobal, vGlobal; Boolean front;

- tool.104 -

TECHNICAL INFORMATION

- tech.1 -

TECH INFO Aztec C68K

Chapter Contents

Technical Information wo..ciccccsccsssccssscsscccseccessssccssescsssesocsscessssscssaseseees tech
1. Memory Organization uu.....cccccccccsscssscescessscecssseescsscssssscencesseseeesceseneeees 4
2. COMMANA, ProPSraMsScecsssssscscessssssscsccnsesscscececsscsccssecesescsesseseeecneeees 7

2.1 Creating COMMANA ProOgraMS o......esessssssssssssesseceseseecsssseeeseees 7
2.2 CUuStOMIZING StATtUP TOUTINES ou... ccsessssstcesssessesssessesececeens 16
2.3 Passing Open files to CA POPS ou... ..eesessscessssscccvscsssceseceseeees 21

3. Drivers and desktop ACCESSOFIES ou... .cccessscsecessssececessescccscscesssscesessees 23
3.1 Writing drivers & CesktOp ACCESSOLIES occ ecceecsssstssseesssesceees 24
3.2 Compiling, assembling, & Linking wove cecssssteesesesseeeees 24
a Ta ©. 4:0 000 0) (cre 26

4, The console river ou... ceccccccscsssccccsscsssssscsssssscesssssesscsssessessscsssssesees 2/7
5. Using Aztec C68K on a 128K-byte Macintosh oo. eeceesseeees 31
6. Using Aztec C68K on a 512K-byte Macintosh oo... cesesseeeee 32

6.1 Large Programs o........ccccsecsccccccecssssesssscnsssecsscescescscsssesssnsssssesceesees 32
6.2 Putting resources in the System heap ou... eesscesteeececseeeeee 32
6.3 Creating @ RAM dilSK wi ecccssssscesssscsescsssssscsssesscssssersecesseens 33

7. Using Aztec C68K with a hard disk oc. cccsssssteeccsessececeesees 34
8. Using Aztec C68K on single-drive SySteMS ooo... ceeeetsecssseeeeeees 35
9. Data formatcecsssssccsssscessseecessscecessscecsssscesssessessseccssssssscssesseeoses 37

- tech.2 -

Aztec C68K TECH INFO

Technical Information

This chapter discusses topics of a more technical nature, and topics
that couldn’t be conveniently discussed elsewhere.

It’s divided into the following sections:

I. Memory Organization. Describes how RAM memory is
used on the Macintosh, and the organization of a command
program that has been created by the Aztec linker.

2. Command Programs. Describes the different types of
command programs that can be created using Aztec C68K:
their features, how they are created, and how they are used.

3. Drivers and Desk Accessories. Describes how to create and
use drivers and desktop accessories.

4. The Console Driver. Describes the Aztec console driver:
what it is, and how the operator and programs use it.

5. Using Aztec C68K with a 128K Macintosh.

6. Using Aztec C68K with a 512K Macintosh.

7. Using Aztec C68K with a hard disk.

8. Using Aztec C68K on a single-drive Macintosh.

9 Data formats. Describes the format of the data items
Supported by Aztec C68K.

- tech.3 -

TECH INFO Memory Organization Aztec C68K

1. Memory organization

In the Macintosh’s address space, RAM memory is organized as
follows:

high memory
screen memory

application heap

system heap

system area

low memory

The system area contains interrupt vectors and data used by the
operating system, Finder, and SHELL.

The system heap contains the operating system; drivers and desktop
accessories which you create can also be loaded here, if you want them
to be permanently resident.

The application heap is the area designated for use by application
programs. Drivers and desktop accessories can also be loaded into it.
The area is described in detail below.

The Macintosh’s screen is accessed by setting and resetting bits in
the screen memory area.

The application heap

The SHELL, Finder, and all programs activated by them reside in
the application heap area, as do their stack, global and static data, and
dynamically allocated buffers. The SHELL and Finder also store data
in the system area and system heap.

When a program running in this area terminates, the area is
reinitialized; hence it’s not possible for programs to store data in this
area for later use by other programs.

Drivers and desktop accessories can be loaded into the application
heap or the system heap. They can only be permanently located in the
system heap, since each time an application program terminates, the
application heap is deallocated.

The application heap is organized as follows:

- tech.4 -

Aztec C68K Memory Organization TECH INFO

Jump table

<--- reg A5
Global and static data

Stack

Heap

Jump table

The jump table provides the mechanism which allows a code
segment to be automatically loaded when one of its functions is called,
and which allows a single code segment to be any size.

A program’s jump table is located at the high end of the application
heap. Register A5 points to its first entry, plus 32.

Automatic loading of segments

The jump table contains a set of entries. Each function which is
called from another segment has an entry in the table.

When a call is made to a function located in another segment, the
call is actually made to the function’s jump table entry. The entry
causes the function’s segment to be loaded, if it’s not already loaded,
and then jumps to it.

To start a program, the SHELL opens the resource file containing
it, loads its jump table from the resource of type "CODE’ and id 0, and
jumps to its first entry. Since no code segments have been loaded, this
forces the segment containing the function corresponding to the table’s
first entry to be loaded. This function is then called.

The function corresponding to the jump table’s first entry thus
performs the program’s initialization activities; when done, it then
calls the program’s main function.

The next section of this chapter describes the Manx-supplied
startup functions.

Large sized code segments

When a call is made to a function located in the same segment as
the caller, and the addresses of the caller and the function are within
32K bytes of cach other, the function is called directly.

If the two addresses are more than 32K bytes apart, the caller will
call a jump table entry created especially for this call, which will call

- tech.5 -

TECH INFO Memory Organization Aztec C68K

the function.

Global and static data area

This area contains a program’s initialized and uninitialized global
and static data. |

When a program starts, the Manx-supplied startup code for the
program clears its uninitialized data area and loads the program’s
initialized data from the resource having type CODE and id 256. This
resource resides in the resource file containing the program’s code.

The size of this area is set to the sum of the sizes of a program’s
initialized and uninitialized data, and can be up to 32K bytes long.

The area begins just below the program’s jump table. Entries in it
are accessed using a negative offset from register AS.

The stack area

A program’s stack resides in the application heap’s stack area. By
default, the stack area is 8K bytes. This can be overridden for a
particular program by using the -S option when linking the program.

The size of one program’s stack area has no relationship to that of
another. Thus, if a program is executed which has a stack area other
than 8k bytes, and if the next program executed doesn’t specify its
stack size, the stack area for the second program will be the default
size, 8K bytes.

The stack arca begins at the base of a program’s global andé static
data area.

The heap

The heap is the area into which code segments are loaded and from
which buffers are dynamically allocated. Drivers and desktop
accessories are also loaded into this area.

The heap occupies the area between the beginning of the
application heap and the base of the stack area.

- tech.6 -

Aztec C68K Command programs TECH INFO

2. Command programs

This section discusses command programs. It’s divided into three
Subsections: the first describes the different types of command
programs, and how they are created. The second describes how you
can substitute your own startup routines for ours in a command
program. The third describes how open files and devices are passed
between programs.

2.1 Creating command programs

2.1.1 Introduction

Three types of command programs can be created with the standard
Aztec software. The type of a particular commmand program is
determined by the version of the function Croot that it contains. This
function performs initialization activities that selects the program’s
characteristics, and then calls the program’s main function.

The versions of the Croot functions, and the principal
characteristics that they give to a command program are:

shcroot Program can be activated by the SHELL, but not by
the Finder. The program can use many features that
are available to programs on a UNIX system. The
name shcroot is an acronym for "root function for
SHELL-activated C program",

sacroot Program can be activated by the Finder as well as the
SHELL. It can’t perform UNIX-style I/O to the
console. The name sacroot is an acronym for "root
function for stand-alone C program".

nmuxcroot Program can be activated by the Finder as well as the
SHELL. It can perform UNIX-style I/O to the
console. The name mixcroot is an acronym for "root
function for mixed-mode C programs".

To write command programs containing shcroot, you don’t need any
special knowledge about the Macintosh. Thus, when you are first
learning C or getting familiar with the Aztec C68K package, you'll
probably want to create programs that contain this version of Croot.

Programs containing sacroot or mixcroot are expected to be
Macintosh-specific. These versions of Croot give fewer UNIX features
to a program, which makes it easier for a program to get at the special
features of the Macintosh. 7

The different versions of Croot are provided in both source and
object form. The object code for shcroot is contained in c.lib; the object
code for sacroot and mixcroot are in sacrooto and mixcrooto,
respectively. If you don’t explicitly request the linker to include a
module containing Croot, it will include shcroot from c.lib. That is, by

- tech.7 -

TECH INFO Command programs Aztec C68K

default, a program will have the characteristics determined by shcroot.

You can also include your own version of Croot instead of ours, if
desired, to give your program characteristics not provided by our Croot
functions.

2.1.1.1 Special linker options for command programs

The following special linker options can be used when linking
command programs:

-M Causes the file containing the program to be of type
"APPL’, thus allowing it to be started by either the
Finder or the SHELL. If -M isn’t specified (and if the
-D and -A options, which are used when creating
drivers and desktop accessories, are also not specified)
the type of the file containing the program is ’AZTC’:
programs of this type can be started by the SHELL but
not by the Finder.

+O Used to segment a command program’s code. Without
this option, a command program’s code is
unsegmented. Creation of segmented command
programs is discussed below.

2.1.1.2 Global and static data

A command program can contain up to 32 Kbytes of global and
static data. The data can be uninitialized or initialized. For example,
the following is an uninitialized global variable:

int a;

The following is an initialized global variable:

int a=1;

Uninitialized global and static variables are automatically cleared.
Initialized variables can be initialized to constants or to the addresses
of memory locations whose addresses depend on the address at which a
program is loaded.

Each of a command program’s code segments can be any size.
Segment 0 can contain references to memory locations whose addresses
aren’t known until the program is loaded.

Memory references in a program’s initialized data or its first code
segment are automatically adjusted when the program is started.

2.1.1.3 The console driver

As mentioned above, a command program that has been linked
with shcroot or mixcroot can talk to the screen or keyboard using UNIX
I/O functions. When such a command program issues a UNIX I/O call

- -to the screen or keyboard, the Aztec console driver performs the I/O

- tech.8 -

Aztec C68K Command programs TECH INFO

for the program. The console driver is a Macintosh resource, and is
independent of the command programs that call it. That is, the console
driver is not linked into the command programs that call it.

For more information, see the section on the console driver in the
Technical Information chapter and the overview of console I/O in the
Library Functions chapter.

2.1.2 Features of the different types of command programs

2.1.2.1 Command programs containing s/icroot

A command program containing shcroot has the following features:

* It can be activated by the SHELL, but not by the Finder. It
can also be activated by another command program; in this
case, the SHELL must have been the last command-
processor-type program to have been executed.

* It can be passed arguments when started by either the SHELL
or by another program’s exec call. It receives the arguments
in the standard UNIX way; that is, as arguments to its main
function.

* It can access the standard i/o devices standard in, standard
out, and standard error. By default, these are connected to the
console, and can be redirected to another device or file, if
desired;

* The screen is automatically initialized for the program:
InitGraf is called, and the entire screen is made the current
window. The screen isn’t cleared:

* Console i/o is handled by the Manx-supplied driver, .con. This
driver is automatically loaded into memory when needed:

* It supports the SHELL’s hierarchical file system. For example,
it can access files in the current directory without having to
specify the path to the directory; if a file is located on the
current volume, the program needn’t specify the volume; and
SO on.

To create a command program that contains shcroot, just link the
program (1) without specifying the -M, -D, or -A options, (2) with
c.lib, and (3) without specifying a module containing another Croot. If,
in addition, you link the program without specifying any ’+O’ options,
the program will contain a single code segment.

For example, the following command links the "hello, world"
program, whose object module is in the file hello.o that is in the
current directory, writing the executable code to the file hello that is
also in the current directory:

- tech.9 -

TECH INFO Command programs Aztec C68K

In hello.o -Ic

This command has a single code segment and can be activated by the
SHELL, but not by the Finder.

2.1.2.2 Command programs containing sacroot

A command program containing sacroot is generally linked with
the ’-M’ option, which allows it to be activated by the Finder. Such a
program has the following features:

* It can be activated by the Finder, SHELL, or any command
program;

* It can be passed arguments. It receives them using the
standard Macintosh conventions, and not as arguments to its
main function.

* No unexpected screen initialization is automatically done for
it neither /nitGraf nor InitWindow is called, and the contents
of the screen are not modified.

* The program can’t access the console using UNIX i/o
functions;

* The standard i/o devices aren’t supported;

* It can access files using UNIX i/o functions, but the SHELL’s
hierarchical file system isn’t supported. Thus, it must specify
the complete, Macintosh, name for a file in order to access it.

2.1.2.3 Command programs containing nzxcroot

Command programs that contain mixcroot are generally linked with
the ’-M’ option, thus allowing them to be activated by the Finder.

The features that mixcroot and sacroot give to a program differ only
in the area of console i/o. A program linked with miixcroot has the
following special features:

* It can access the console using UNIX 1/o functions;

* It can access the standard 1/o devices, which are automatically
connected to the console.

* The screen is automatically initialized for it by calling
InitGraf, by making the entire screen the current window, and
by clearing the screen;

* The Manx-supplied console driver .con is used to access the
console. This driver is automatically loaded into memory
when needed.

A program linked with sacroot, on the other hand, must access the

console using Macintosh functions; it can’t access it using UNIX i/o
functions; it docsn’t support the standard i/o devices; and it itself must

- tech.10 -

Aztec C68K Command programs TECH INFO

initialize the screen;

The features that both mixcroot and sacroot give to a command
program are:

* The program can be activated by the SHELL, Finder, or any
command program;

* The program can be passed arguments. It receives them using
the standard Macintosh conventions, and not as arguments to
its main function.

* The program can access files using UNIX i/o functions, but
the SHELL’s hierarchical structure isn’t supported.

For example, the following will create a "hello, world" program
which can be activated by the SHELL or the Finder:

In -M hello.o mixcroot.o -Ic

This program contains a single code segment. It differs visibly from
the program linked with shcroot, in that it automatically clears the
screen and its standard output device can’t be redirected. Also, it must
receive any arguments passed to it using the standard Macintosh
conventions. (though this program doesn’t use them anyway).

If this program is going to be activated by the Finder, it needs to be
able to access the console driver. This can be done by placing the
resource containing the driver in the file that contains the executable
*hello’ program. There are two commands that will do this:
InstallConsole and cprsrc. The first command was designed to just copy
the console driver into another file, while the second command is
more general, being able to copy any resource from one file to
another. Using cprsrc, the console driver could be copied into the hello
file with the command:

cprsrc DRVR 30 sys:system hello

The console driver has type DRVR and ID 30; it’s in the sys:system
file.

2.1.3 Command programs having multiple code segments

This section discusses command programs having segmented code.
It’s divided into the following paragraphs:

Writing segmented programs: describes how a program loads
and unloads its code segments and how it accesses global data;

Linking segmented programs: describes how a program creates
command programs having segmented code.

As mentioned above, the code for any command program can be
scementcd.

- tech. 11 -

TECH INFO Command programs Aztec C68K

The technique by which a command program loads and unloads its
code segments 1s the same for both types of command programs; hence
the programmer information section doesn’t differentiate between the
two types of command programs.

The procedure for linking a command program having segmented
code is the same as for linking a command program whose code is
unsegmented, with additional options interspersed showing where the
segmentation is to occur. Thus, the operator information section
doesn’t make a big deal about the creating of SHELL-activated
command programs having segmented code versus the creation of
Finder-activated command programs having segmented code.

2.1.3.1 Writing segmented programs

There are two areas of concern for programs whose code is
segmented: how segments are loaded and unloaded, and how programs
access global data.

Loading and unloading code segments

A function in a command program whose code is segmented can
call any other function in the program just as if the program’s code
was unsegmented. If the called function is in a loaded segment, control
of the processor is simply passed to it; otherwise, the segment
containing it is loaded into the application heap area of memory and
then control is passed to it.

Within the application heap is an area from which buffers are
dynamically allocated. It is in this area that code segments are loaded.
Code segments and dynamically allocated buffers can be, and
frequently are, interspersed in this area.

A code segment can be loaded anywhere within this area. The
program has no control over where a segment is loaded, but an attempt
is made to load code segments together in the low end of the area, to
avoid memory fragmentation problems.

When a segment is loaded, it is locked’ in memory; this means that
it can’t be moved around when the system wants to collect all free
space togethcr in the area, and that its section of memory can’t be
reallocated or used for other purposes.

Thus, once a program no longer needs a loaded code segment, it
Should ’unload’ the segment, to allow the memory which it occupied to
be reused for cither the loading of other code segments or for use as a
dynamically allocated buffer.

A program must explicitly request that a loaded segment be
unloaded, by calling the function UnloadSeg, passing to it the address
of any function in the segment.

- tech.12 -

Aztec C68K Command programs TECH INFO

UnloadSeg informs the system that the memory occupied by the
segment is available for reallocation. If a function in a segment is
called and the segment’s code is in memory in an unloaded state, the
memory will be simply reallocated to the segment, and the function
called, without reloading the segment from disk.

Global and static data

There is only one global and static data segment for a program,
regardicss of the number of code segments it has. This segment is in a
scparate area of the application heap from that in which code segments
are loaded.

The initialized global and static data for a program is initially, and
automatically, loaded when the program is started, and remains loaded
during the entire execution of the program, independent of the state of
the program’s code segments.

A program can contain up to 32K bytes of global and static data,
and can contain both uninitialized and _ initialized variables.
Uninitialized variables are automatically set to 0 when the program is
started. Initialized variables can contain addresses or constants; in the
former case the addresses will be adjusted automatically when the
program is Started.

The name of cach global variable is unique: if several segments
declare a global variable having the same name, they will both access
the same variable.

2.1.3.2 Linking segmented programs

All the code segments of a command program are created during a
single activation of the linker.

The code for a command program can be divided into a maximum
of 256 scgments, each of which has an identifying number between 0
and 255. All command programs must have a code segment 0, which is
the first segment loaded for the program.

The linker command which creates a command program whose
code is scgmented looks like the command which links an
unscgmcntcd program, exccpt that the list of files are interspersed with
°+O’ options. This option causes the object modules which follow it to
be placed in a selected code segment.

A scgment number can optionally be appended to a ’+O” option, to
explicitly sclect the segment into which the following modules will be
placed. If a segment number isn’t specificd for a ’+O’ option, the
modulcs will be placed in the next available segment. 7

An example

For cxample, the following command creates the SHELL- activated
command program prog, which has three code scgments. Segment 0

- tech.13 -

TECH INFO Command programs Aztec C68K

contains the code for the modules menu.o, subs.o, and any needed
modules from clib. Segment 1 contains the code for the modules
modl.o and mod2.o. Segment 2 contains the code for mod3.o and
mod4.o, and any c.lib modules referenced by segments 1 and 2 which
aren’t in segment 0:

In -f prog.Ink

where prog./nk contains:

menu.o subs.o -lc

+O

modl.o mod?2.o

All the files for this example could have been specified on the
command line which activated the linker. We didn’t do this for two
reasons: first, the entire command wouldn’t have fit on one line of this
page. Second, you'll also use -F files to link command programs having
segmented code, since such programs tend to have many modules,
making it impractical to specify all the file and segmentation
information on one line.

Including modules from Libraries

This example illustrates a point about library searches during the
linking of command programs having segmented code. As the linker
includes object modules in segments, it builds a list of global symbols
which are called or referenced but haven’t been found yet . When a
library is searched during the linking of a segment, and a module is
found that contains a needed global symbol, the module is included in
the segment, regardless of the segment which referenced it.

Thus, in the above example, when c.lib is searched during the
linking of segment 0, the only modules in it that are included in
segment O are those referenced by segment 0. When clib is searched
during the linking of segment 2, modules from it are included that
contain global symbols referenced by both segment | and 2 but that
aren’t in segment 0.

Segment 0 must contain the startup code for a program. This code
is in c.lib; hence c.lib must always be first searched while segment 0 is
selected. It would not be correct, for example, to modify the above
example so that c./ib was searched only during the linking of segment
2, since this would force the startup code to be placed in segment 2.

Reselecting segments

The linker allows segments to be sclected once, and later be
resclected. In this case, the modules specified following the reselection

- tech.14 -

Aztec C68K Command programs TECH INFO

are appended to the code that’s already in the segment. A segment can
be reselected any number of times.

For example, the above example can be modified so that all clib
modules referenced by all segments are included in segment 0, by
modifying prog.ink as follows:

menu.o subs.o
+O
modl.o mod2.0
+O
mod3.0 mod4.o
+O0
-Ic

The ’+O0’ reselects segment 0, so that the modules pulled from c.lib
are included in segment 0.

Linking Finder-activated command programs

Finder-activated command programs containing segmented code are
created in the same way that an unsegmented version is created, with
°+O°’ options interspersed in the list of file names to specify the
segmentation.

For example, we can modify the above example so that the
resulting command program can be executed by the Finder and
supports UNIX i/o calls to the console by simply changing the
command line:

In -M mixcroot.o -f prog.Ink

In this case, prog.iInk doesn’t need to be modified.

2.1.4 Technical information about command programs

This section presents information about command programs which
is not discussed above.

2.1.4.1 Command file types

The file created by the linker for a command program is a
’resource file’; that is, a file all of whose data is in its resource fork.
The type of the file is either "AZTC’ or APPL’, depending on whether
the program was linked without or with the ’-M’ option, respectively.

In fact, the only function of the -M option is to set the type of the
file containing the command program to ’APPL’.

The SHELL will activate command programs contained in resource
files whose type is either ’AZTC’ or ’APPL’; the Finder will only
activate resource files whose type is "APPL’.

When the SHELL activates a command program, it looks at the type
of the program’s resource file: if the type is "AZTC’ it will place

- tech.15 -

TECH INFO Command programs Aztec C68K

command line arguments for it in the system area and redirect the
program’s standard i/o devices, if requested. When the program is
Started, the startup code in the Manx-supplied module shcroot will get
the arguments from the system area and pass them to the program as
parameters to the program’s main function.

If the type of the program’s resource file is APPL’ the SHELL will
place the command line arguments for it in the system area and then
activate the program, without redirecting the program’s standard i/o
devices.

2.1.4.2 Resources for command programs

The resource fork of a file contains items called ’resources’, each of
which has a type and an identifying number associated with it

For a command program, the linker creates several resources, each
having the type °>CODE’. The resources and their ids are:

id contents
0 jump table
] code segment 0
2 code segment 1

256 initialized data
257 relocation info

& optional alternate jump table

2.1.4.3 Segment information

Only the initialized data segment and code segment 0 can contain
pointer fields whose values must be adjusted when the program is
started. This requirement is always satisfied by programs created from
C source.

Code segments can be any size; however, functions within a
segment that are called from other segments must be within the first
64 Kbytes of the start of the segment. The startup routine for a
program must be in the first 64 Kb of segment 0.

2.2 Customizing startup routines for command programs

In this section we want to describe how you can substitute your
Own startup routines for ours in your command programs. We first
describe the way that the linker decides what the startup routines are
and describe the startup routines provided with this package. Next, we
describe what the Aztec startup routines do. Finally, we discuss
different ways that you can modify the standard startup procedure.

2.2.1 How the linker finds the startup routines

If, among the modules that the linker includes in a command
program, a module is found whose assembly language source contains a
statement of the form

- tech.16 -

Aztec C68K Command programs TECH INFO

entry name

where name is a label within the module, then the linker makes name
the entry point of the program. If no such module is found, the entry
point is set to the first statement of the program’s first code segment.

Execution of a commana program normally begins at the label
.begin in the module cri0, which is in c.lib. The following facts account
for this:

* criO contains the statement “entry .begin". No other Manx-
Supplied module contains an entry statement, and compiler-
generated code doesn’t contain an entry statement.

* When compiling a C source program, the compiler normally
writes the statement "public .begin" to the assembly language
source file. 7

* When the linker includes the object version of a C program
containing "public .begin" in the program it’s building, the
statement causes the linker to look for a module containing
the label .begin, and, when found, to include the module in
the program that it’s creating.

crtO performs activities that are described below, and then calls the
function Croot.

As you already know, three modules are supplied that contain a
Croot function: shcroot, sacroot, and mixcroot. A Croot function
performs additional initialization activities as described below and then
calls the program’s function main.

2.2.2 What cri0 and the Croot routines do

This section describes, in detail, what happens when the operator
tells the SHELL or Finder to activate a command program.

The SHELL will only activate command programs contained in files
whose type is AZTC or APPL; the Finder will only activate programs
in files of type APPL. Both the SHELL and the Finder activate a
command program by calling the operating system function launch.

Before calling Jaunch to activate a program, the SHELL will move
the command arguments for it into the system area, where they can be
fetched by the program.

launch initializes the application heap, thus essentially removing the
SHELL or Finder from memory, opens the resource file containing
the program, loads its jump table from the resource having type CODE
and id 0 into the top of the application heap, sets register A5 to the
base of the jump table, and jumps to the first entry in the jump table.
Since no code segments have yet been loaded for the program, the
segment containing the function corresponding to the first jump table
entry isn’t loaded either, so this jump forces the function’s segment to

- tech.17 -

TECH INFO Command programs Aztec C68K

be loaded into the application heap. Once the segment is loaded, a
jump is made to the function.

2.2.2.1 The startup function

Thus, the function corresponding to the first entry in a program’s
jump table is the startup function for the program, and is the first
function to be executed when the program is started. This function
must be located in the program’s code segment 0.

The way that the linker selects the entry point for a program was
described above. In the remainder of this section, we want to describe
the Manx-supplied startup routines: the routine that contains the entry
point .begin, crt0, and the three versions of the Croot function, shcroot,
sacroot, and mixcroot.

2.2.2.2 The crt0 module

The .begin code within crt0 performs the following actions:

* It loads the program’s initialized global and static data from
the resource having type CODE and id 256. This data is
loaded just below the program’s jump table in the application
heap.

* It allocates space for the program’s uninitialized global and
static data and clears it. This space is located just below the
program’s initialized data.

* It relocates fields within the initialized data area and code
segment Q which contain addresses. For this, it uses
information in the program’s resource whose type is CODE
and id 1s 257.
If an alternate jump table is contained in the program’s
resource whose type is CODE and id is 257, the startup code
adjusts the jump table which is already loaded using this
information.

* It allocates space for the program’s stack. This area is Ildcated
just below the program’s uninitialized data area. By default,
this area is 8k bytes, and can set to other values using the
linker’s -S option when linking a program.

The .begin routine then calls the function Croot.

2.2.2.3 The Croot functions

Three Croot modules are provided with the Aztec C package:

* shcroot

* muxcroot

* sacroot

One of these modules must be included in a program which also
includes the crt0 module. If desired, you can also include your own
version of Croot instead of ours in your programs.

- tech.18 -

Aztec C68K Command programs TECH INFO

These functions perform additional initialization actions and then
call the program’s main function.

shcroot

This version of Croot performs the following activities:

* Verifies that the SHELL was the last command-processor-
type program to be executed;

* Sets a pointer which causes the program to use the unbuffered
i/o table that is located in the system area:

* Sets a pointer which causes calls to the function fixname to be
processed by the function sh fixname;

* Calls the SHELL’s version of InitWindow, which calls InitGraf,
sets the current window to be the entire screen. This version
of JnitWindow doesn’t do anything physical to the screen (like
clear it);

* Copies arguments from the system area to the application
heap;

* Calls the program’s main function, passing it the arguments
which were moved from the system area, in the standard
UNIX manner.

A program which includes shcroot uses a standard i/o table located
in its own space and the unbuffered i/o table which is located in the
System area. Because of this, files which are open for unbuffered i/o in
the calling program are also open for unbuffered i/o in the called
program, and are accessed using the same file descriptors. The only
streams open for standard i/o in the called program are the standard
1/0 devices stdin, stdout, and stderr.

The function fixname translates a file name to Macintosh format, if
necessary. There are two functions which may be called to process calls
to fixname. sh fixname, the one called for programs linked with shcroot,
translates names from the SHELL format to Macintosh format. For
example, if passed a file name which doesn’t contain a volume or path
to a directory, fixname prepends the name of the current volume and
the path to the current directory to the name.

safixname, the other function called to process calls to fixname
doesn’t do anything. safixname is called for programs linked with
sacroot and mixcroot, and hence requires programs linked with these
two modules to specify complete Macintosh file names before
accessing a file.

sacroot.o

This version of Croot performs the following activities:

* It sets a global pointer that causes the program to use an

unbuffered 1/o table which is contained in its own space,
rather than the table in the system area; The table is cleared:

- tech.19 -

TECH INFO Command programs Aztec C68K

* It sets a global pointer that causes a call to fixname to be
processed by safixname;

* It calls the program’s main function with argc=0 and *argv=0;
thus, if the program is passed arguments, it must receive them
using the standard Macintosh conventions, and not the UNIX
conventions.

Unlike shcroot, sacroot doesn’t care what command processor type
program was last executed. |

sacroot doesn’t initialize the screen at all. The program itself will
have to call InitGraf, InitWindow, and so on.

A program which includes sacroot uses a standard i/o table and an
unbuffered i/o table which are located in its own space. Because of
this, a program which contains this Croot and which is activated by
another program doesn’t inherit’? the files and devices which the
calling program left open. Initially, no devices are open for the
program.

mixcroot.o

This version of Croot performs the following activities:

* Tt sets a global pointer which causes the program to use the
unbuffered i/o table that is located in the program’s space.

* It clears the unbuffered 1/o table and attempts to open file
descriptors 0, 1, and 2 to the device .con; if this fails, Croot
exits;

* It calls the SHELL’s version of InitWindow (described above
for shcroot);

* It calls the program’s main function with argc=0 and *argv=0;
thus, if the program is passed arguments, it must receive them
using the standard Macintosh conventions, and not the UNIX
conventions.

\

Unlike shcroot, mixcroot doesn’t care what command-processor-type
program was last executed.

A program which includes mixcroot uses a standard i/o table and an
unbuffered i/o table which are located in its own space. Because of
this, a program which contains this Croot and which is activated by
another program doesn’t “inherit’ the files and devices which the
calling program left open. Initially, only the console and keyboard are
open for the program, as the standard i/o devices.

2.2.3 Customizing

Given this information, it should be clear how you can modify the
startup procedure for a program. For example, a program could use
our cri0 and your own Croot.

- tech.20 -

Aztec C68K Command programs TECH INFO

Another possibility is to modify or replace our cri0. The new
version could call Croot, call main directly, and so on.

Another possibility is to remove crt0 from c.lib, so that execution
begins with the first statement of a command program.

2.3 Passing open files and devices to command programs

When a program which has been linked with the module shcroot is
started, either by the SHELL or by another program which has also
been linked with shcroot, the program ’inherits’ the files and devices
which were left open for unbuffered i/o by the caller. That is, these
files and devices are open for the called program, and it can access
them using the same file descriptors as did the caller.

In this section we’re going to describe how this is done.

The unbuffered i/o table

Associated with a program is an unbuffered i/o table, which
contains an entry for each device or file opened for unbuffered i/o by
the program. In programs linked with shcroot this table is located in the
system area; for other programs it’s in the program’s own space.

The unbuffered i/o table that is located in the system area changes
only when a program that uses this table opens or closes a file. Thus, if
a program which uses this table leaves some open entries in it and calls
another program which uses it, the same files and devices will be pre-
opened for the called program, and can be accessed by it using the
same file descriptors that the calling program used.

The SHELL opens the standard i/o devices for a program before
activating it: it simply closes its own standard i/o devices, opens them
to the desired files or devices, and launches’ the program. Since the
SHELL uses the unbuffered i/o table that is in the system area, as does
the called program, the program’s standard i/o devices will be open
when it starts.

The SHELL can only preopen the standard i/o devices for
programs linked with shcroot, since this is the only type program that
uses the unbuffered i/o table that is in the system area.

Programs linked with mixcroot also have the standard i/o devices
preopened to the console when they start, but in this case, the opening
of these devices is done by mixcroot and not by the SHELL, Finder, or
whatever program activated it.

The standard i/o table

Contained within the program space of each program is a standard
1/0 table. This table contains an entry for each file or device opened

by the program for standard i/o.

- tech.21 -

TECH INFO Command programs Aztec C68K

When a file or device is open for standard 1/0, it’s also open for
unbuffered i/o, since the standard i/o functions use the unbuffered
i/o functions to access a file or device.

Only the standard i/o devices are preopened for a program, and this
pre-opening isn’t done by the SHELL or by a startup routine. The
entries in the standard i/o table for these devices are preinitialized by
source code to be associated with the first three entries in the
unbuffered i/o table.

Thus, redirection of the standard i/o devices can be done by simply
redirecting the first three entries in the unbuffered i/o table.

Since the standard i/o table is located in a program’s own space,
files opened for standard i/o in one program aren’t open for standard
1/0 in the called program.

- fech.22 -

Aztec C68K Drivers and desktop accessories TECH INFO

3. Drivers and desktop accesories

With the Aztec development software, you can create drivers and
desktop accessories, as well as command programs. A driver is a
program which command programs call to access a device; a desktop
accessory iS a program that the operator can activate via the Finder’s
apple menu.

Characteristics of drivers and desktop accessories

While in memory, a driver or desktop accessory occupies a single,
contiguous block of memory. It is organized into three segments, as
Shown below.

<-- A4
| Uninitialized |
| Data |
| |
i i

| Initialized |
| Data |
| |
1 {

| Code |
| | <-- PC

The code segment contains all the executable code for the program.
The initialized and uninitialized data segments contain the program’s
static and global variables.

The program is position independent, and hence can be loaded
anywhere in memory. To accomplish position independence,
instructions access information contained in the code segment using an
offset from the current program counter. And to access information
contained in a data segment, instructions use an offset from register
A4, which must point to the first byte beyond the uninitialized data
segment.

A driver or desktop accessory has the following restrictions:

* It can’t contain any absolute memory references, since, unlike
command programs, it doesn’t have a startup routine to adjust
such references;

* Its code segment must be less than 32K bytes long;

* The sum of the sizes of its two data segments must be less
than 32K bytes.

On disk, a driver or desktop accessory occupies a single resource of
a file’s resource fork. This resource contains the code, global data, and
Static data for the driver or desktop accessory. The resource has type

DRVR; its ID number and name are specified when it is linked.

- tech.23 -

TECH INFO Drivers and desktop accessories Aztec C68K

3.1 Writing drivers and desktop accessories

3.1.1 Initializing register Ad

A driver or desktop accessory must explicitly initialize register A4
before it can access any global or static data.) This can be done with
assembly language statements of the form:

public _Cend_, Uend_, Dorg _
lea clab+(__Cend__-clab)+(__Uend_- Dorg_),A4

where clab is a label located in the code segment. The symbols
declared to be public in the first statement are created by the linker,
and have the following values:

Cend Offset of the first byte following the code segment
Uend Offset of the first byte after the uninitialized data

segment.
_Dorg Offset of the first byte of the initialized data segment

All offsets are relative to the first byte of the code segment.

The first operand of the /ea instruction adds, to the address of the
code segment label clab , the distance from that label to the end of the
uninitialized data segment. Since this operand uses a code segment
label, the assembler and linker turn the instruction into a PC-relative
reference, which will be valid wherever the program is loaded in
memory.

3.1.2 Calling Quickdraw from a driver or desktop accessory

Driver or desktop accessory modules that call Quickdraw should be
compiled with the symbol _ DRIVER defined. Variables definitions in
the file quickdraw.h that aren’t needed by drivers and desktop
accessories are surrounded by "#ifndef | DRIVER ... #endif"
Statements. So defining _ DRIVER will prevent these variables from
being defined, which would cause them to take up space in the
program’s data segment.

3.2 Compiling, assembling and linking

Once you have written the code for a driver or desktop accessory,
you must compile, assemble, and link it.

3.2.1 Compiling

When compiling, you must specify the -B and -U options.

The -B option .

The -B option prevents the compiler from writing the statement
"public .begin" to the assembly language file. This statement is needed
when a command program is linked, because it causes the linker to
include the standard startup routine, cri0, and indirectly causes
execution of the command program to begin at .begin.

- tech.24 -

Aztec C68K Drivers and desktop accessories TECH INFO

This statement is not needed when a driver or desktop accessory is
linked, because it begins execution at the beginning of the code
segment, and performs its own startup activities.

The -U option

This option causes the compiler to generate code that uses register
A4 as a base register when accessing global or static data, and prevents
the compiler from generating code that uses A4 for holding register
variables or temporary values.

If this option isn’t specified, the compiler generates code that is
appropriate for a command program.

3.2.2 Assembling

To assemble the output of the compiler, when a driver or desktop
accessory is being created, nothing special needs to be done: the
compiler has taken care of everything.

If you’ve written an assembly language module for the driver or
desktop accessory, you must either include the statment

USEA 4

in the source code, or specify the option ’-U4’ when you start the
assembler. For example,

as -U4 subs.asm

The assembler by default generates position independent code.
When it finds a reference to a symbol in a data segment, it translates
the instruction to a base-register relative form. The base register it uses
by default is A5, which is appropriate when generating a command
program, but not when generating a driver or desktop accessory.

3.2.3 Linking

The command to have the linker create a driver or desktop
accessory has the same format as that to create a command program:

In [-options] filel.o file2.0 ...

The options which can be used when linking a command program
can also be used when linking a driver or desktop accessory, with the
exception of the -M and +O options. Two options cause the linker to
create drivers and desktop accessories:

-D create a driver;
-A create a desktop accessory

The -N option

The option

-N name

- tech.25 -

TECH INFO Drivers and desktop accessories Aztec C68K

defines the name of the resource containing the program and the name
by which programs will access a driver or by which the operator will
access a desktop accessory. The actual name is created from the
specified name by prefixing it with the character ’.’ or ’\0’, depending
on whether a driver or desktop accessory is being created.

If this option isn’t specified, the program name defaults to Test.

The -I option

The option

-I id

causes the ID of the resource containing the driver or desktop
accessory to be set to the decimal value id. If this option isn’t used,
the ID is set to 31.

The -R option

The option

-R attr

causes the attributes of the resource containing the driver or desktop
accessory to be set to the hexadecimal value attr. If this option isn’t
used, the attributes are set to 0x30.

More on linking

The linker places the driver or desktop accessory that it creates in
the resource fork of the output file.

The resource file contains a single resource, which contains the
code, global data, and static data for the driver or desktop accessory.
The resource has type DRVR, ID number as specified by the -I option,
and name as defined by the -N option.

3.3 Examples

The C source for a desktop accessory, explorer, is provided with
Aztec C68K. This program is described in the Examples chapter.

The source for the Aztec console driver, .con, is provided with
Aztec C68K.

See the release document to find out the names of the files
containing these programs.

- tech.26 -

Aztec C68K The Console Driver TECH INFO

4. The console driver

The console driver is a program that makes the Macintosh screen
and keyboard look like a CRT connected to a UNIX system to
command programs and to the operator. It’s a Macintosh resource,
having type=DRVR and ID=30.

Program’s interface to the console driver

With the assistance of the console driver, a command program can
access the screen or keyboard as if it was a file named .con, and access
it using the standard UNIX I/O functions. For example, it can prepare
the console for I/O by calling fopen, read and write characters from
and to it by calling getchar and putchar, and terminate console I/O by
calling fclose.

The console driver allows the console to set in several different
modes. For example, the echoing of characters that the operator types
can be enabled or disabled, and keyboard input can be either line- or
character-oriented. A command program selects the mode for console
I/O by calling the function ioctl This function is described in the
overview section of the Library Functions chapter.

| The console driver displays characters in the current window, using
that window's current text attributes, and displaying the characters in
the current window’s font, size and face.

The console driver singles out one character position, which we’ll
call the current character position, in the current window. This is the
location at which it will display the next character that a program sends
to it. This is also the position at which it will display the next
character that the operator enters, if echoing is enabled. When it
receives the character from the program, the driver then draws the
character at this location, and decides where the next character will be
displayed. Normally, this new location is the next character position to
the right of the newly-written character. If that position falls over the
right-hand edge of the current window, the next character position is
set to the beginning of the next line. If that position falls over the
bottom edge of the current window, the screen is scrolled up one line
(that is, all lines are moved up one line and the bottom line is made
blank), and sets the next character position to the beginning of the
newly cleared bottom line.

When the command program has issued an input request to the
console, the console driver will display a solid block, called the cursor,
at the current character position. |

Most characters that a command program sends to the console
driver are simply written to the screen. Some, however, are control
codes that cause the console driver to perform special functions. The

- tech.27 -

TECH INFO The Console Driver Aztec C68K

control codes (in hex) and their functions are:

code function
07 beep
08 non-destructive backspace
09 tab character
Oa cursor down/linefeed (scroll if at bottom)
Ob cursor up
Oc non-destructive cursor right
Od return to beginning of line
la home and clear screen
le home the cursor
lb 45 insert blank line at cursor
lb 51 insert blank character at cursor
lb 52 delete line at cursor
lb 54 clear to end of line from cursor
lb 57 delete character at cursor
lb 59 clear to end of screen
Ib 3d y+20 x+20 move cursor to x,y position

The control codes for moving the cursor are useful only with fonts
having a fixed pitch; that 1s, with fonts whose characters all have the
same width. If a program tries to backspace with a non-proportional
font, the cursor may be left positioned incorrectly, since the console
driver normally moves the cursor in units corresponding to the width
of an ’n’.

Operator’s interface to the console driver

When a command program has issued an input request to the
keyboard, the console driver normally just returns to the program the
characters that the operator enters. Some characters that the operator
enters, however, have special meaning { to the console driver:

key Meaning
backspace Delete the last character entered by the operator,

if it hasn’t yet been returned to the program;
“D Return EOF to the program.
AX Delete all characters that haven’t yet been

returned to the program.
AS Suspend screen output until a character 1s

depressed.
A] Eject the disk in drive 1: (The internal drive).
A2 Eject the disk in drive 2: (The external drive).

In the above list, the character * stands for the clover key; for
example, to enter ~*X you hold down the clover key and then type X.

The console driver allows programs to redefine the keys that are
used for backspace and line-delete, to enable and disable the erasing of
the previously entered character on the screen in response to the
’backspace’ key, and to enable and disable the support of flow control.

- tech.28 -

Aztec C68K The Console Driver TECH INFO

Type-ahead

The console driver buffers keyboard input, and looks for a typed
key whenever it’s called - even if it was called to send characters to the
screen. Thus, the console driver supports ’type-ahead’ in a limited
way, allowing the operator to enter characters before the command
program has issued a read request, so long as the command program
periodically writes to the console when it isn’t reading from it.

If the operator does enter characters when the program is writing to
the screen, the console driver won’t echo the typed characters until the
program issues a read request to the console. This feature prevents
echoed characters from being mixed up with program output.

Creating programs that use the console driver

The console driver is a Macintosh resource, and isn’t linked into
the command programs that call it. The version of the Aztec startup
routine Croot with which a command program is linked determines
whether or not the program will use the console driver. Three
versions of Croot are available:

shcroot Program will use the console driver. Program can be
Started by the SHELL, but not by the Finder.

sacroot Program won’t use the console driver. Program can
be started by either the SHELL or the Finder.

muxcroot Program will use the console driver. Program can be
started by either the SHELL or the Finder.

shcroot 18 included in the library clib, while the other two are
supplied in separate object modules. Thus, by default a command
program will use the console driver and can only be started by the
SHELL. These versions of Croot give other characteristics to
command programs in addition to the type of console I/O it supports;
see the Commard Program description in the Technical Information
chapter for more details.

Loading the console driver into the application heap

The console driver can be loaded into either the application heap or
the system heap. If it’s loaded into the application heap, it’s loaded
automatically when the command program issues its first call to the
console driver. However, since the application heap is cleared
whenever a command program terminates, the console driver must be
reloaded into the application heap for each command program that
calls it.

When a command program issues an I/O request to the console
driver and the driver isn’t in memory, the Macintosh operating system
will look for it in the file from which the command program was

loaded and then in the system file which was on the disk from which
the system was initially loaded. When found, the driver is loaded into

- tech.29 -

TECH INFO The Console Driver Aztec C68K

the application heap.

Loading the console driver into the system heap

The system heap is not cleared when a program running in the
application heap terminates. Thus, it’s possible to load the console
driver into the system heap and make it resident, so that it doesn’t
have to be reloaded for each application program. The Aztec
command program FixAttr can be used for this purpose: it sets the
attributes of the console driver resource (along with those of some
commonly used font tables) in the disk file containing this resource so
that whenever power is turned on or the reset button is hit, the
console driver is loaded into the system heap and made resident.

Loading the console driver into the system heap can be done only
for Macintosh systems that have 512K bytes of memory, since the
system heap on other systems isn’t large enough to hold the console
driver.

See the section entitled FixAtir in the Utility Programs chapter for
more details.

Moving the console driver into files

Programs that are intended to be started by the SHELL, and the
SHELL itself, usually don’t contain the console driver resource: when
linking a command program, the linker doesn’t put a copy of the
console driver resource in the file to which the program is written.
Thus, when the SHELL is active, the console driver must be contained
in the System file. The System file that is provided with the Aztec
software contains the console driver, but standard Macintosh System
files don’t. Thus, if you must use the SHELL with a System file other
than the one provided with the Aztec software, you must first install
the console driver in the System file.

Programs that are to be started by the Finder and that are to use
the console driver (that is, that have been linked with miixcroot) are
frequently expected to be run with a standard Macintosh System file:
that is, with a System file that doesn’t contain the console driver
resource, In this case, the console driver resource must be explicitly
copied into the file containing the command program before the
program can be run.

The Aztec utility program JnstallConsole can be used to copy the
console driver resource into another file. See its description in the
Utility Program chapter.

Source for the console driver

The source for the console driver is provided with commercial

versions of the Aztec software. See the release document for the name
of the files containing it.

- tech.30 -

Aztec C68K 128K Macintoshes TECH INFO

5. Using Aztec C68K with 128K Macintoshes

Normal operation of the Aztec C68K system should be unaffected
when running on at least a 128K Macintosh. However, there are
Circumstances where the memory size constitutes a problem. In
particular, compiling stand-alone Macintosh applications where many
of the Macintosh header files are included can overflow the symbol
table of the compiler. Two steps have been taken to lessen the
likelihood of this occurring. First, the header files have been split into
distinct groupings of functions. This allows some header files to be
excluded from a particular compilation.

Secondly, the header files have been edited to include a number of
statements of the form:

#ifndef SMALL MEM

#endif

Under normal compilation, these statements will be ignored. However,
if the macro variable, SMALL MEM, is defined, these statements will
prevent sections of the header files from being compiled. The sections
were selected by choosing data structures and definitions whose exact
nature is not necessarily significant. For example, there are a number
of structures which are always referred to by handles which are
returned from routines that create them and passed to routines that
manipulate them. The choices made will certainly not meet the needs
of every programmer. Feel free to add sections that aren’t being used
to the blocked off areas and to remove sections that are necessary. The
choices made are only a guideline.

Another technique that can be used to free up memory for more
symbols, is to adjust the size of the compiler’s tables below the default
values. In particular, the static string area defaults to being 2000 bytes
in length. If only a few or no strings are used in a particular module,
compiling it with a -z100 option will free up a lot of space.

The second area of memory limitation is in the editor. Since Z is a
memory based editor, it can only edit what it can hold in memory at
one time. Currently on a 128K Macintosh, this is about 41K.

For 512K Macintosh’s, the compiler memory limitations and the
editor limitations become much less severe, since both programs take
full advantage of the extra memory available.

- tech.31 -

TECH INFO 512K Macintoshes Aztec C68K

6. Using Aztec C68K on 512K Macintoshes

There are several things you can do with the 512K bytes of
memory that is in a fat Mac, and we’re going to discuss them in this
section:

* You can create large programs;

* Commonly-used resources can be loaded into the system heap;

* Part of RAM can be turned into a RAM disk.

6.1 Large programs

The primary size-related features of a command program created
by Aztec C68K are independent of the amount of memory available on
the Macintosh on which the program is to run. That is,

* A command program created by Aztec C68K is organized into
one or more segments containing executable code, and one
segment containing global and static data.

* Each code segment can be any size; the data segment can
contain up to 32K bytes of global and static data.

* Only code segments containing functions being executed need
be in memory; the others can be loaded and unloaded as
necessary.

* The segments for a program can occupy as much of the Mac’s
application heap as desired.

Thus, for example, if you have a command program with 320K bytes
of code, you could create a program having a single, 320K-byte code
segment. Or you could partition the code into segments so that not all
the 320K bytes of code need be occupying the application heap at one
time.

6.2 Putting resources in the system heap

On a 128K-byte Macintosh, the system heap doesn’t have much
free space. Thus, resources that are needed by application programs
must be loaded into the application heap. Since this space is cleared
whenever an application program terminates, the resources used by a
program must be loaded for that program. This constant reloading of
resources slows down the system.

The 512K-byte Macintosh has a large system heap, with lots of free
space. The Aztec program FixAttr can be used to make some
frequently-used resources resident in the system heap, so that they
don’t have to be reloaded for each program. These resources are the
console driver, and the Monaco 9- and 12-point fonts. See the
description of FixAttr in the Utility Programs chapter for more details.

- tech.32 -

Aztec C68K 512K Macintoshes TECH INFO

6.3 Creating a RAM disk

Aztec C68K includes software that turns part of the RAM on a
512K Macintosh into a RAM disk. This emulated disk is just like a
normal disk drive, except that data transfer is much faster, and the
contents of the drive are destroyed when the Macintosh is turned off
or is rebooted. For details, see the section RAMDISK in the Utility
Programs chapter.

- tech.33 -

TECH INFO Hard Disk Usage Aztec C68K

7, Using Aztec C68K with a hard disk

The Aztec C68K development software will work on a Macintosh
that has a hard disk. First, though, you must install the Aztec console
driver in the System file on the hard disk. The following steps
describe how this is done.

1)

2)

3)

4)

5)

6)

7)

8)

Boot the hard disk as you normally would.

Insert the distribution disk (or copy) marked 2 of 3.

Double click the application program named JnstallConsole.

When the Mini-finder window comes up, click the "Drive"
button till the hard disk volume name is displayed.

Select the file System in the window, and click "Open".

When the completion message appears, click "Ok".

When the Mini-finder window comes back, click "Cancel".

Now copy the files from both distribution disks and double-
click the SHELL application.

See the Console Driver section in the Technical Information
chapter for more information on the console driver. The /nstallConsole
program is also described in the Utility Programs chapter.

- tech.34 -

Aztec C68K Single-Drive Macintoshes TECH INFO

8. Using Aztec C68K on Single-drive Macintoshes

It should be noted that this system has not been designed with a
single drive in mind. For those who, for whatever reason, like to
juggle disks, the following comments have been included to provide
some assistance.

There are two approaches to using a single drive. The first approach
is to trim as much as possible and get everything possible onto one
disk. The second approach is to swap disks, but to minimize the
swapping of disks as much as possible. In both approaches, a copy is
made of a bootable disk which contains data files. More than likely, a
different boot disk should be used for each project being worked on to
maximize available space.

If one is adopting the first approach, the following is a list of ways
in which to free up space on the disk.

1) If no floating point is being done:

a) Remove the lib/milib file

b) Using the Apple Resource Mover program or by
modifying cprsrc.c, remove the floating point and
transcendental math packages from the System
resource file. These are packages 4 and 5.

2) Remove header files from the include/ directory that are not
used in the current program being developed.

3) Using the /ibutil program, remove unused functions from the
library.

4) Remove the compiler error message file in include /cc.msg.

5) Combine header files that are always included in the current
program into a single file.

6) Remove other packages from the System file, like the Disk
Initialization package, the International Utilities package and
the Standard File package.

After removing the appropriate elements, use this disk as the base
disk. Copy it and create source files on the copy. For cach additional
project, copy the original base disk and use the copy.

If the second approach is being used, then the best way to use the
System is to reorganize the disks. The basic idea here is to minimize
disk swapping. The best way to do that is to only swap disks for files
that are used once. In particular, program loads cause the data disk to
be ejected, the disk containing the program is inserted, the program is
loaded, and the data disk reinserted. If the data and header files are on

different disks, the disks must be swapped once (at least) for each
header file. By having the System, SHELL, library and header files on

- tech.35 -

TECH INFO Single-Drive Macintoshes Aztec C68K

the data disk, the only swapping necessary is to load the compiler,
assembler, linker or editor. This can free up to 250K of disk space if
some of the items from the previous approach are adopted as well.

Make two copies of the sys: disk. Label one bin: and the second sys:.
Boot the bin: disk and use the mv command to rename the disk to bin:

mv sys: bin:

Now boot the sys. disk. Using Z edit the .pro file file and include the
following line:

set PATH=$PATH: bin: bin

Now, the SHELL will check the current disk, and then ask for the
bin: disk to check for the file there. To free up the space, remove the
files in the bin/ directory by typing:

rm bin/*

In addition, if the System file and SHELL are removed from the
bin: disk, the utility programs in the sys2:bin/ directory on the second
distribution disk may be copied to the bin-bin/ directory.

Using this approach, there are a number of different ways that
combinations of files can be split between disks to meet the needs of
the individual. For example, the editor could be kept on the data disk,
or the library could be placed on the bin: disk. Remember, that the
PATH and INCLUDE variables can be used to indicate the path to be
searched and allow sets of files to be split up. Experiment, and if you
find a combination that you find particularly useful, write us a Ictter.

- tech.36 -

Aztec C68K Data Formats TECH INFO

9. Data Formats

char variables

Variables of type char can be either signed or unsigned, and default
to signed. When a signed char variable is used in an expression, it’s
converted to a 16-bit integer by propagating the most significant bit.
Thus, a char variable whose value is between 128 and 255 will appear
to be a negative number if used in an expression.

When an unsigned char variable is used in an expression, it’s
converted to a 16-bit integer in the range 0 to 255.

char variables on Aztec C for other systems can also be signed or
unsigned, but the default type (signed or unsigned) differs from system
to system. On 8086- and 8088-based systems, chars are signed by
default. On other systems, chars are unsigned by default. Thus, the char
variables in programs requiring system independence should be
unsigned, if those variables are used in expressions.

int and short variables

int and short int variables are two bytes long, and can be either
signed or unsigned. By default, variables of these types are signed. A
negative value is stored in two’s complement format. An int or short
int is stored in memory with its least significant byte at the highest
numbered address. A -2 stored at location 100 would thus look like:

location contents in hex

100 FF
101] FE

long variables

Variables of type Jong occupy four bytes, and can be either signed
Or unsigned. Negative values are stored in two’s complement
representation. Variables of type Jong are stored sequentially in
memory, with the least significant byte stored at the highest memory
address and the most significant byte at the lowest memory address.

float and double variables

Variables of type float are represented in 32 bits, and those of type
double are represented in 64 bits. They are in standard IEEE format.

Such variables are stored with the byte containing the sign and
exponent at the lowest address, and the mantissa bytes at the highest-
addressed bytes.

pointer variables

Pointers are four bytes (32 bits) long. Pointers are stored in

memory with the least significant byte at the highest numbered
address. The internal representation of the address 0x12345678 stored

- tech.37 -

TECH INFO Data Formats Aztec C68K

in location 0x100 would thus be:

location contents in hex

100 12
101 34
102 56
103 78

- tech.38 -

Aztec C68K TECH INFO

LIBRARIES SUMMARY - AZTEC/MPW

1. INTRODUCTION

As stated, Aztec C68K Release 3.4 includes two complete sets of

header (include) files and two different c.lib library files. The first set

is simply an updated version of the headers and the library we have

supplied in the past (information from the new Inside Macintosh

volume V is added to support the Macintosh II and Macintosh SE).

The second set provides a closer match to the C compiler distributed

by Apple Computer for use with the Macintosh Programmer’s

Workshop (MPW).

This appendix describes the differences included with this release

and also discusses our plans for the future. We need your feedback to

supply the programming development that you want to use!

After you read the section and send us your feedback, file this

section at the end of the "Technical Information" documentation in

your manual.

2. DIFFERENCES

The distributed headers and libraries reflect the following:

2.1. 31-Character Names

Global names in Aztec C have 31 significant characters (formerly

eight) and have a leading underscore (formerly a trailing underscore).

2.2 Naming Conventions

In the past, there was no "standard" way to organize the information

in Inside Macintosh into header files and libraries suitable for use with

C. Inside Macintosh uses Pascal calling conventions, so C compiler

vendors had to translate as best they could. Obviously, significant

differences occurred in the choices made.

With the MPW C release, Apple Computer provides a de facto

standard for organizing this information and our new set of headers

follows that scheme. Manx did this for two important reasons:

1. It allows our present customers to get more closely in step with

new Apple developments, for example, the rising importance of

C language.

2. It permits users of competing products to gracefully upgrade to

Aztec C68K.

Additionally, Manx upgraded our existing headers to support our

customers. However, to maintain two sets of headers could cause

tech-app.1 v3.4

LIBRARY
Aztec C68K

2.3 Glue Routines

MPW C introduces a somewhat different convention for passing arguments to the Macintosh ROM: character Strings are assumed to be C-style (null- terminated), but "glue routines" translate such strings to pascal STR255 strings (leading length byte) before passing them to the Toolbox. STR255s returned by the Toolbox are converted by the glue routines into C strings,

The second sct of headers declares the glue routines for the MPW convention, and the second clib contains all the necessary glue routines,

CAUTION: Strings passed or received as part of structures are not converted. For example, if you use SFGctFile to get a file name from the user in an SFReply struct, use ptoc to convert the file name to a C String before you call the FSOpen File Manager so that the FSOpen "glue" can turn the name back into a STR255 before passing it to the ROM.

2.4 Integer Sizes

MPW C also differs from Aztec C68K in the choice of the size of an integer (int)--MPW uses 32 bits, Aztec uses 16 bits. The new headers and libraries, like the old ones, continue to assume 16-bit ints. This becomes a problem only if the program you are trying to port from MPW C to Aztec C makes unwarranted assumptions about how much data an int can hold. A common pitfall is to assume that an int can hold a pointer value, which is not true in the 16-bit int model. And you cannot simply turn all the int variables to "long int." Doing SO destroys calls that the library and Toolbox routines expect to be in 16-bit quantitics. The next section describes some solutions to this problem.

3. HOW TO USE THIS RELEASE
3.1 Pick a Naming Convention

In your SHELL -profile, sclect one set of headers as the default by setting your INCLUDE variable:

set INCLUDE=sys?:include /
or

set INCLUDE=sys3:include /
Ona Program-by-program basis, override your default choice by using the -/ option for cc:

ce -Isys2:include/ ...
cc -Isys3:include/ ...

3.2. Pick a Library

v3.4 tech-app.2 -

Aztec C68K TECH INFO

3.2 Pick a Library

If you use the revised Aztec (sys3:include/) headers, you must link

with sys3:lib/ libraries. To choose this as your default, set the CLIB

SHELL variable to:

sect CLIB=sys3:lib/

or to the place on your hard disk where you installed the files from

sys3:lib/.

If you use the new MPW-compatible (sys2:include/) headers, you

have a choice, depending upon whether you want the MPW-style glue

or not.

To use the MPW-style glue,

set CLIB=sys2:lib/;sys3:lib/

in your .profile.

If you want the new headers but do not want to use MPW-style

glue, set your CLIB environment variable to pick up the Aztcc

librarics as usual:

sect CLIB=sys3:lib/

You also nced to use an extra option in your cc commands:

cc... -D__INLINE...

You do not need to use sys2:lib/ at all. The -D_ INLINE causes
the compiler to generate ROM traps as inline code, bypassing the glue

routines. This option gives you the best of both words--Apple naming

compatibility with the specd and compactness of direct ROM traps.

One possible problem exists: if /n complains that it cannot resolve

references to certain Toolbox routines, recheck your make files to
make sure that you used -D__INLINE in all cc commands, or that you
have chosen the c.lib that includes the MPW-style glue.

3.3 Using 32-Bit Integers

A new cc option, +L, makes int equivalent to long. For example, a

long int always has 32 bits, a short int always has 16 bits, but a variable

declared int has 32 bits when +Z is used, and 16 bits when +Z is not

used. :

This option solves some of the problems of porting programs that

assume that long is the same as int (ic, from VAX or MPW).

However, the Aztec runtime libraries and the Macintosh ROM

continue to use 16-bit ints, and there are NO libraries or glue routines

in the C68K package that assume 32-bit ints.

Manx does not plan to make 32-bit libraries available but we will,

as usual, respond to market demand. Commercial users may, at their

discretion, use +Z to recompile selected library routines to use 32-bit

ints.

tech-app.3 v3.4

TECH INFO Aztec C68K

Version 4.1 of C68K--planned for late 1987--will address _ this
difficulty.

4. A LOOK AHEAD

4.1 MPW Shell Support

CO68K, Version 3.5, which will be available later this summer, will
provide full compatibility with the MPW shell--the compiler, linker,
etc. and all utilities will be available as MPW "tools," and Aztec
customers will be able to construct MPW tools of their own. Most
programs that run under the Aztec SHELL may be turned into MPW
tools with just a relink. Please let us know if this new capability is
something you are interested in.

Manx continues to support the Aztec SHELL and 7 editor, which
are somewhat more "Iean and mean" than the MPW facilities.

4.2 Aztec Headers

Manx will support the MPW-style headers from now on. If you
have a problem with the conversion, let us know. Manx will continue
to support the older header scheme as long as our customers have a
need for it, but we would like to hear from you.

4.3 MPW Glue

The MPW-style glue routines are somewhat at variance with the
usual "just do what I ASK for" style of C programming. Manx will
continue to support the routines if our customers find them uscful,
otherwise Manx will drop them in future releases. Please let us know
what you want!

v3.4 tech-app.4

TECH INFO Aztec C68K

Memory Models

The memory model used by a program determines how the

program’s executable code makes references to code and data. This in

turn indirectly determines the amount of code and data that the

program can have, the size of the executable code, and the program’s

execution speed.

Before getting into the details of memory models, we want to

describe the sections into which a C68k-generated program is

organized. The sections of a program are these:

* code, containing the program’s executable code;

* data, containing its global and static data;

* stack, containing its automatic variables, control information,

and temporary variables;

* heap, an area from which buffers are dynamically allocated.

There are two attributes to a program’s memory model: one

attribute specifies whether the program uses the /arge data or the small

data memory model; the other attribute specifies whether the program

uses the large code or small code memory model.

1. Large Data Versus Small Data

The fundamental difference between a large data and a small data

program concerns the way that instructions access data segment data: a

large data program accesses the data using position-dependent

instructions; a small data program accesses the data using position-

independent instructions. An instruction makes position-dependent

reference to data in the data segment by specifying the absolute

address of the data; it makes a position-independent reference to data

in the data segment by specifying the location as an offset from a

reserved address register. On the Macintosh, the small data area

comprises the 32k of memory at negative offsets from the A5 register.

Other differences in large data and small data programs result from

this fundamental difference; these other differences are:

* There is no limit to the amount of global and static data that a

large data program can have. A small data program, on the

other hand, can have at most 64k bytes of global and static

data.

v3.4 tech-app. |

Aztec C68K. TECH INFO

* For a small data program, an address register must be reserved
to point into the middle of the data segment. For a large data
program, an instruction that wants to access data in the data
segment contains the absolute address of the data, and hence
doesn’t need this address register.

* It takes more time to load a code segment for a large data
program than for a small data program. The reason for this is
that the absolute address of data segment data isn’t known
until a program is loaded. Thus, instructions that access data
segment data using absolute addresses must be adjusted when
the code segment containing the instructions is loaded,
whereas instructions that access data segment data in a
position-independent way don’t need to be adjusted.

* A code segment is larger when its program uses large data
than when it uses small data, because a reference to data in a
data segment occupies a 32-bit field in a large data
instruction, and occupies a 16-bit field in a small datg
instruction.

* A program is slower when it uses large data than when it uses
small data, because it takes more time for an instruction to
access data when it specifies the absolute address of the data
than when it specifies the data’s offset from an address
register.

2. Large Code Versus Small Code
The fundamental difference between a large code and a small code
program concerns the way that instructions in the program refer to
locations that are located in the code segment: for a large code program
the reference is made using position-dependent instructions; for a
small code program, the reference is made using position-independent
instructions. An instruction makes position-dependent reference to a
code segment location by specifying the absolute address of the
location; it makes a position-independent reference to a code segment
location by specifying the location as an offset from the current
program counter. Other differences in large data and small data
programs result from this fundamental difference: these other
differences are:

tech-app.2 v3.4

TECH INFO Aztec C68K.

v3.4

* The size of a code segment is unlimited for both large code

and small code programs. An instruction in a large code
program can directly call or jump to the location, regardless of

its location in the code segment.

An instruction in a small code program can only directly

call or jump to locations that are within 32k bytes of the

instruction. To allow instructions in small code programs to

transfer control to any location, regardless of its location in

the code segment, a "jump table", which is located in the

program’s data segment, is used. If a location to which an

instruction wants to transfer control is more than 32k bytes

from the instruction, the transfer is made indirectly, via the

jump table: the instruction calls or jumps to an entry in the

jump table, which in turn jumps to the desired location. A
jump instruction in a jump table entry refers to a code
segment location using an absolute, 32-bit address, and hence

can directly access any location in the program’s code

segment.

When a small code program is linked, the linker
automatically builds the jump table: if the location to which
an instruction wants to transfer control is outside the
instruction’s range, the linker creates a jump table entry that

jumps to the location and transforms the pc-relative

instruction into a position-independent call or jump to the

jump table entry.

A code segment can contain data as well as executable code.

An instruction in a large code program can access data located

anywhere in the code segment, because it accesses code

segment data using position-dependent instructions, in which

the location is referred to using a 32-bit, absolute address. An
instruction in a small code program can only access code

segment data that is located within 32k bytes of the

instruction.

For a small code program to access the jump table, an address

register needs to be reserved and set up to point into the

middle of the program’s data segment; if the program also
uses small data, the same address register is used for both

jump table accesses and normal accesses of data segment data.

On the Macintosh, the jump table is at positive offsets from

tech-app.3

Aztec C68K TECH INFO

the A5 register. For a large code program, this address
register is not needed for the referencing of locations in the
code segment.

* A program takes longer to load if it uses large code than if it
uses small code. Instructions in a large code program that
reference a code segment location must be adjusted when the
program is loaded, since such instructions must contain the
absolute address of the location and since this isn’t known
until the program is loaded. Instructions in a small code
program that reference code segment locations need not be
adjusted, since they are always independent of the location at
which the code segment is loaded: if the location is within 32k
of the referencing instruction, the instruction is pc-relative;
and if it’s outside this range, the instruction is a position-
independent jump to a jump table entry.

When a small code program that contains a jump table is
loaded, its jump table entries must be adjusted, since these are
jump instructions to code segment locations, where each
instruction must contain the absolute address of the
destination address. However, it should take less time to
adjust the jump table for a small code program than to adjust
the code segment of a large code version of the same program,
since for any destination of a jump or call instruction a small
code version of a program will have at most one jump table
entry needing adjustment, whereas a large code version of the
program may have many jump or call instructions to the same
location that need to be adjusted.

* A code segment is larger when its program uses large code
than when it uses small code, because instructions that
reference code segment locations by specifying an absolute
address use a 32-bit field to define the location, whereas
instructions that reference data by specifying a pc-relative
address or an offset from an index register use a 16-bit field
to define the location.

* A program is usually slower when it uses large code than when
it uses small code, because it takes more time for an
instruction to reference a code segment location when it
specifies the absolute address of the data than when it
specifies the location in a pc-relative form.

tech-app.4 v3.4

TECH INFO Aztec C68K

A large small code program that has lots of indirect

transfers of control via the jump table may not differ much in

execution time from a large code version of the same
program, since the small code indirect transfer via the jump

table will take more time than the large code direct transfer.

3. Selecting A Module’s Memory Model

You define the memory model to be used by a module when you

compile the module, by specifying or not specifying the following

options:

+C Module uses large code. If this option isn’t specified,

the module will use small code.

+D Module uses large data. If this option isn’t specified,

the module will use small data.

For example, the following commands compile prog.c to use

different memory modcls:

cc prog small code, small data

cc +C prog large code, small data

cc +D prog small code, large data

cc +C +D large code, large data

v3.4 tech-app.5

TECH INFO Aztec C68K

Generating Libraries
This section describes the procedures for constructing versions of

the libraries for special needs. Source for the libraries is distributed
only with the Commercial version of Aztec C68K.

1. Object Libraries

The libraries distributed in object form with Aztec C68K are
compiled and assembled assuming that an int is 16 bits in size and
using the small code and small data models (see the appendix included
with this release entitled "Memory Models," which contains a tutorial
description of small versus large models).

There are two sets of libraries distributed in object form and these
are also discussed in an appendix to this rclease entitled "Libraries
Summary - Aztec/MPW." The libraries are:

* The set in sys2:lib/ that uses MPW-compatible headers (in
sys2:include/) and contains MPW-style gluc

* The set in sys3:lib/ that uses the Aztec headers (in sys3:include/).

2. Which Libraries?

The sys4: disk contains two sets of archives--sys4:sys2__arc/ and
Sys4isys3__arc/--corresponding to the sys2: and sys3: libraries,
respectively. The following discussion applics to cither library set.

Each set of archives is set up to gencrate four sects of libraries,
identified by keywords, as follows:

S Small code,small data, 16-bit int. Used to build the
libraries distributed in object form with Aztec C68K.

$32 Small code, small data, 32-bit int.

ld Small code, large data, 16-bit int.

1d32 Small code, large data, 32-bit int.

Note that all sets use the small code modcl. There is no real need to
resort to the large code model: The Aztec C68K linker can build code
segments far in excess of 32Kb without using the /arge model.

tech-app. | v3.4

Aztec C68K TECH INFO

Warning: At present, there is NO set of libraries that includes glue
for the Macintosh Toolbox and presumes 32-bit ints. s32 and 1d32 are
provided to assist in porting applications from 32-bit machines that
expect portable C library support.

3. Source Code

In cach of sys4:sys2__arc/ and sys4:sys3__arc/ you will find the
archive files for the libraries. The archives were built with mkarcv
and may be unpacked with arcv (see the "Utilities section of the
manual for details).

4. Setting up to Build Libraries

Create a new directory in which to build the libraries, change
directory to it (we call the new directory libgen), and unpack the
master makefile:

mkdir libgen

cd libgen

arcy sys4:sys2__arc/inp.are

(you could use sys4:sys3_arc/ instead to work with the Aztec
libraries). Use the editor of your choice to familiarize yourself with
the makefile if you wish. The next step is to construct the
subdirectories and unpack the archives by entering:

make ARC= sys4:sys2__ arc unpack

This creates the directories and unpacks the archives into them. Use:

make ARC= sys4:sys3__ arc unpack

if you wish to work with the Aztec libraries. You can also create
directories and unpack archives selectively to build only one or two
librarics--the unpack target tells make to unpack them all,

Before proceeding further, make sure that the SHELL variable
INCLUDE names the appropriate directory:

set INCLUDES sys2:include/

for the MPW-compatible headers, or

set INCLUDE= sys3:include/

for the Aztec headers.

3.4 tech-app.2

TECH INFO Aztec C68K

To rebuild all libraries for every combination of small/large data
and 16/32-bit ints, simply enter:

make LIBTYPE<= all new

A more selective approach is to construct just the libraries you want,
just for the small/large 16/32 model that you want.

make LIBTYPE= libtype remake target...

where libtype is one of s, $32, Id, or 1d32. For example, if you want
c.lib and m.lib using small data and 32-bits ints, use the command:

make LIBTYPE= s32 remake c32lib m32lib

Note that the targets named do NOT have an embedded period, but
the libraries that actually result will be named c32.lib and m32.lib.
Refer to the makefile itself if you are unsure of the exact target name
to uSe.

5. Updating Existing Libraries

Somctimes you may want to modify just one routine and replace it
in an existing library. It is not necessary to remake the entire library
to do this. The following example shows a Step-by-step replacement of
the getc routine.

First, go back to your build directory, ¢.8.,

cd libgen

and, if necessary, create the directory and unpack the appropriate
archive, as follows:

mkdir stdio

cd stdio

arcv Sys4:sys2__arc/stdio.arc

Now edit getc.c as desired, and type

make getc.o

Note that, if you want large data, 32-bit ints, Or both, make getc.do,
getc.320, or getc.d320 instead.

To install the new version, use the lb command:

Ib $CLIB)/c.lib -r gete getc

tech-app.3 v3.4

Aztec C68K. TECH INFO

(you may want to apply the lb command to a copy of c.lib rather than

your production version for testing).

Finally, you may want to put the new source code back in the

archive, as follows:

cd libgen/stdio

mkarcv sys4:sys2__arc/stdio.arc < arc.inp

3.4 tech-app.4

AppleTalk AppleTalk Information AppleTalk

(Duplicate page - First issued with release 1.061)

This is a description of how to include the AppleTalk resource in your

program. First, make sure that the AppleTalk library - a.lib - is linked

in with your application. Next, the AppleTalk file - ABPackage -

must be included as a resource in your program. The following is an

example of a file that when input to RGen, includes ABPackage as a

resource of type ’atpl’ in your program:

!program

TYPE atpl—-GNRL

0

.R

ABPackage atpl 0

AppleTalk Tech-app.1 v1.06

Toolbox Functions AppleTalk Manager Aztec C68K

(Duplicate pages - First issued with release 1.06h)

AppleTalk Manager Functions

The functions described in this section allow a C program to access
Macintosh AppleTalk Manager routines.

The constants, data structures, and functions described in this
section are defined in the header file appletalk.h.

1. Constants

define lapSize 20
#define ddpSize 26
#define nbpSize 26
#define atpSize 56

#define ttAPRead 0
#define tLAPWrite]
#define tDDPRead 2
#define tDDPWrite 3
#define tNBPLookup 4
#define tNBPConfirm 5
#define tNBPRegister 6
#define tAaTPSndRequest 7
#define tATPGetRequest 8
#define tATPSdRsp 9
#define tAaTPAddRsp 10

#define lapProto 0
#define ddpProto l
#define nbpProto 2
#define atpProto 3

typedef short ABCallType;
typedef short ABProtoType;
typedef unsigned char ABByte;
typedef String(32) Str32;

Aztec C68K

2. Data Structures

typedef struct {
Byte
Byte
Byte

} LAPAdrBlock;

typedef struct {
short
Byte
Byte

} AddrBlock;

typedef struct {
Str32
Str32
Str32

} EntityName, *EntityPtr;

typedef struct {
Byte
Byte

} RetransType;

typedef struct {
Short
Ptr
Short
long

} BDSElement;
typedef BDSElement
typedef BDSType *

typedef struct {
ABCallType
short

long
LAPAdrBlock
short
Short
Ptr

AppleTalk Manager

dstNodeld;
srcNodeld;
LAPProtType;

9

aNet;
aNode;
aSocket;

objStr;
typeStr;
zoneStr;

retransInterval;
retransCount;

buffSize;
buffPtr;
dataSize;
userBytes;

BDSType[8];
BDSPtr;

abOpcode;
abResult;
abUserReference:
lapAddress;
lapReqCount;
lapActCount;
lapDataPtr;

} LAPRecord, *LAPRecPtr, **LAPRecHdl:

Toolbox Functions

Toolbox Functions AppleTalk Manager Aztec C68K

typedef struct {
ABCallType abOpcode;
short abResult;
long abUserReference;
short ddpType;
Short ddpSocket;
AddrBlock ddpAddress;
short ddpReqCount;
short ddpActCount;
Ptr ddpDataPtr;
short ddpNodelID;

} DDPRecord, *DDPRecPtr, **DDPRecHdl;

typedef struct {
ABCallType abOpcode;
short abResult;
long abUserReference;
EntityPtr nbpEntityPtr;
Ptr nbpBufPtr;
short nbpBufSize;
short nbpDataField;
AddrBlock nbpAddress;
RetransType nbpRetransmitInfo;

} NBPRecord, *NBPRecPtr, **NBPRecHdl;

Aztec C68K

typedef struct {

AppleTalk Manager Toolbox Functions

ABCallType abOpcode;
short abResult;
long abUserReference;
Short atpSocket;
AddrBlock atpAddress;
Short atpReqCount;
Ptr atpDataPtr;
BDSPtr atpRspBDSPtr;
unsigned char atpBitMap;
Short atpTranslId;
Short atpActCount;
long atpUserData;
Boolean atpXO;
Boolean atpEOM;
Short atpTimeOut;
Short atpRetries;
Short atpNumBufs;
Short atpNumRsp;
Short atpBDSSize;
long atpRspUData;
Ptr atpRspBuf;
short atpRspSize;

} ATPRecord, *ATPRecPtr, **ATPRecHdI:

3. Functions

3.1 Opening and Closing AppleTalk

pascal short MPPOpen ():

pascal short MPPClose ();

3.2 AppleTalk Link Access Protocol

pascal short LAPOpenProtocol (theLAPType, protoPtr)
ABByte theLAPType; Ptr protoPtr;

pascal short LAPCloseProtocol (theLAPType)
ABByte theLAPType;:

pascal short LAPWrite (abRecord, async)
LAPRecHdl abRecord; Boolean async;

pascal short LAPRead (abRecord, async)
LAPRecHdl abRecord; Boolean async;

pascal short LAPRdCancel (abRecord)
LAPRecHdl abRecord;

Toolbox Functions AppleTalk Manager Aztec C68K

3.3 Datagram Delivery Protocol

pascal short DDPOpenSocket (theSocket, sktListener)
Byte *theSocket; Ptr sktListener;

pascal short DDPCloseSocket (theSocket)
Byte theSocket;

pascal short DDPWrite (abRecord, doChecksum, async)
DDPRecHdl abRecord; Boolean doChecksum, async;

pascal short DDPRead (abRecord, retCksumErrs, async)
DDPRecHdl abRecord; Boolean retCksumErrs, async;

pascal short DDPRdCancel (abRecord)
DDPRecHdl abRecord;

3.4 AppleTalk Transaction Protocol

pascal short ATPLoad ()

pascal short ATPUnload ()

pascal short ATPOpenSocket (addrRcvd, atpSocket)
AddrBlock abRecord; Byte *atpSocket;

pascal short ATPCloseSocket (atpSocket)
Byte atpSocket;

pascal short ATPSndRequest (abRecord, async)
ATPRecHdl abRecord; Boolean async;

pascal short ATPRequest (abRecord, async)
ATPRecHdl abRecord; Boolean async;

pascal short ATPRegCancel (abRecord, async)
ATPRecHdl abRecord; Boolean async;

pascal short ATPGetRequest (abRecord, async)
ATPRecHdl abRecord; Boolean async;

pascal short ATPSndRsp (abRecord, async)
ATPRecHdl abRecord; Boolean async;

pascal short ATPAddRsp (abRecord)
ATPRecHdl abRecord;

pascal short ATPResponse (abRecord, async)
ATPRecHdl abRecord; Boolean async;

pascal short ATPRspCancel (abRecord, async)
ATPRecHdl abRecord; Boolean async;

Aztec C68K AppleTalk Manager Toolbox Functions

3.5 Name-Binding Protocol

pascal short NBPRegister (abRecord, async)
NBPRecHdl abRecord; Boolean async;

pascal short NBPLookup (abRecord, async)
NBPRecHdl abRecord; Boolean async;

pascal short NBPExtract (theBuffer, numInBuf, whichOne,
abEntity, address)

Ptr theBuffer; short numInBuf, whichOne:
EntityName *abEntity; AddrBlock address;

pascal short NBPConfirm (abRecord, async)
NBPRecHdl abRecord; Boolean async;

pascal short NBPRemove (abEntity)
EntityPtr abEntity;

pascal short NBPLoad ()

pascal short NBPUnload ()

3.6 Miscellaneous Routines

pascal short GetNodeAddress (myNode, myNet)
short *myNode, *myNet:

pascal short IsMPPOpen ()

pascal short IsATPOpen ()

Toolbox Functions File Manager Aztec C68K

(Duplicate page - First issued with release 1.06h)

File Manager Functions

This section summarizes the information needed for C
programs that want to access the Macintosh File Manager routines.
The constants, data structures, and functions are defined in the header
file pb.h. This file makes references to information defined in the
header file types.h. pb.h will automatically include types.A in a program
if it hasn’t yet been included.

1. Constants

define fHasBundle 0x20
#dcfine fInvisible 0x40

#define {Trash -3
#define {Desktop -2
#define fDisk 0

#define fsAtMark 0
#dcfine fsFromStart]
#dcefine fsFromLEOF 2
#define fsFromMark 3
#define rdVecrify 0x0040

#dcfine fsCurPerm 0
#define fsRdPerm |
#define fsWrPerm 2
#define fsRdWrPerm 3
#define fsRdWrShPerm 4

2. Data structures

Struct Finfo {
OSType {dType;
OSType fdCreator;
short fdFlags;
Point fdLocation;
short fdFidr;

};
typedef struct Finfo —_ Finfo;

Aztec C68K

struct 1i0Param {

}

Short
SignedByte
SignedByte
Ptr
Ptr
long
long
Short
long

Struct fileParam {
short
SignedByte
SignedByte
Short
SignedByte
SignedByte
Finfo
long
unsigned short
long
long
unsigned short
long
long
long
long

File Manager

i0oRefNum;
10 VersNum:;
i0oPermssn;
10Misc;
10Buffer;
i0ReqCount;
ioActCount;
10 PosMode;
10 PosOffset;

10FRefNum;
10FVersNum;
filler1;
10FDirIndex;
10FlAttrib;
10FlVersNum;
1i0FlFndrInfo;
i0FINum;
10FIStBik;
10FlLgLen;
10FIPyLen;
1i0FIRStBIk;
i0FIRLgLen;
i0FIRPyLen;
i0F1Cr Dat;
10FIMdDat;

Toolbox Functions

Toolbox Functions

Struct hfileParam {

};

short
SignedByte
SignedByte
short
SignedByte
SignedByte
FInfo
long
unsigned short
long
long
unsigned short
long
long
long
long

struct volumeParam {
long
Short
long
long
short
unsigned short
short
short
unsigned short
long
long
short
long
unsigned short

File Manager

10FRefNum;
ioFVersNum;
fillerl;
i0FDirIndex;
i0FlAttrib;
i0FlVersNum;
i0FlFndrInfo;
ioDirID;
10F1StBlk;
10FlLgLen;
i0FlPyLen;
i0FIRStBik;
i0FIRLgLen;
i0FIRPyLen;
i0FlCrDat;
10FIMdDat;

filler2;
io VolIndex;
io VCrDate;
10 VLsBkUp;
10 VAtrb;
i0 VNmFIs;
io VDirSt;
io VBILn;
10 VNmA IBIks;
10 VAIBIkSiz;
10 VCIpSiz;
idAIBISt;
10 VNextFNum;
10 VFrBik;

Aztec C68K

Aztec C68K

struct hvolumeParam {

};

long
short
long
long
short
unsigned short
short
short
unsigned short
long
long
Short
long

unsigned short
Short
Short
Short
Short
long

unsigned short
long
long
long
long

struct hFileInfo {
FInfo
long
unsigned short
long
long

unsigned short
long
long
long
long
long
FInfo
long
long

File Manager

filler4;
10 VolIndex;
10 VCrDate;
1i0 VLsMod;
10 VAtrb;
10 VNmFis;
10 VBitMap;
i0 VAllocPtr;
10 VNmAIBIks;
10 VAIBIkSiz;
10 VClpSiz;
i0AIBISt;
10 VNxtCNID;
10 VFrBIk;
10 VSigWord;
10 VDrvInfo;:
10 VDRefNum:
10 VFSID;
10 VBkUp;
10 VSeqNum:
10 VWrCnt;
10 VFilCnt;
10 VDirCnt;
10 VFndrInfof 8];

10FlFndrInfo;:
ioDirID;
10FIStBlk;
i0FlLgLen:
10F1PyLen;
10FIRStBlk;
10FIRLgLen;
10FIRPyLen;
10FlCrDat;
10FIMdDat:
10F1BkDat;
i0F1XFndrInfo:
10F1ParID;
10F1ICIpSiz;

Toolbox Functions

Toolbox Functions

Struct DInfo {
Rect
short
Point
Short

};
typedef struct DInfo

struct DXInfo {
Point
long
short
short
long

};
typedef struct DXInfo

struct dirInfo {
DInfo
long
unsigned short
short
long
long
long
DXInfo
long

};
Struct drvQEIRec {

struct drvQEIRec *
short
short
Short
short

File Manager Aztec C68K

FRect;
FRFlags;
FRLocation;
FRView;

DInfo;

FRScroll;
FROpenChain;
FRUnused;
FRComment;
FRPutAway;

DXInfo;

10DrUsrWds;
ioDrDirID;
ioDrNmFIs;
filler3[9];
i0DrCrDat;
10 DrMdDat;
ioDrBkDat;
i0DrFndrInfo;
i0DrParID;

drvLink;
drvFlags;
drvRefNum;
drvFSID;
drvBlkSize;

Aztec C68K

union OpParamType {
Struct {

Short
char
char

} conctl;
Short
Short
Struct {

Ptr
Short

} asyncInBuff;
Struct {

unsigned char
unsigned char
char
char
unsigned char
unsigned char
unsigned char
unsigned char

} asyncShk;
Struct {

long
long
long

} printer;
Struct {

Ptr
Short

} fontMegr;
Ptr
long
Struct {

short
short
Short

} asyncStatus;
Struct {

Short
long
Struct drvQEIRec
short
Short

} diskStat;

};
typedef union OpParamType

File Manager Toolbox Functions

sg __ flags;
sg erase;
sg kill;

sndVal;
asncConfig;

asncBPtr;
asncBLen;

fontRecPtr;
fontCurDev;

diskBuff;
asyncNBytes;

asncs 1;
asncS2;
asncs3;

dskTrackLock;
dskInfoBits;
dskQElem;
dskPrime;
dskErrCnt;

OpParam Type;
typedef union OpParamType * OpParamPtr;

-6-

Toolbox Functions

Struct cntrlParam {
Short
short
OpParamType

};

Struct ParamBlkRec {
struct ParamBlkRec *
Short
short
Ptr
ProcPtr

short
char *
short

union {
Struct 1i0oParam
struct fileParam

File Manager Aztec C68K

csRefNum;
csCode;
csParam;

ioLink;
i0 Type;
10 Trap;
ioCmdAddr;
ioCompletion;
10Result;
ioNamePtr;
io VRefNum;

10D;

{p;
struct volumeParamvp;

Struct cntrlParam

}u;
}
typedef struct ParamBlkRec

Cp,

ParamBlkRec;
typedef struct ParamBlkRec * ParmBikPtr;

Aztec C68K

struct HPrmBlkRec {

}

Struct HPrmBlkRec *
short
short
Ptr

ProcPtr
Short
char *
Short
union {

}u;

typedef struct HPrmBlkRec
typedef struct HPrmBlkRec *

struct CInfoPBRec {

}

struct CInfoPBRec *
Short
Short
Ptr

ProcPtr

short
char *
Short
Short
Short
Short
SignedByte
SignedByte
union {

}u;

typedef struct CInfoPBRec
typedef struct CInfoPBRec *

File Manager

qLink;

qType;
10 Trap;
10CmdAddr;
10Completion;
10Result;
ioNamePtr;
1i0 VRefNum;

struct ioParam iop;
struct hfileParam hfp;
struct hvolumeParam hvp;
Struct cntrlParam cp;

HPrmBlkRec;
HPrmBikPtr;

qLink;

qType;
10 Trap;
10CmdAddr;
10Completion:
i0Result;
10NamePtr;
10 VRef{Num;
1i0FRefNum;
filler];
i0FDirIndex;
i0FlAttrib;
filler2;

struct hFileInfo hfi;
Struct dirInfo di;

CInfoPBRec;
CInfoPBPtr;

Toolbox Functions

Toolbox Functions

Struct CMovePBRec {
struct CMovePBRec *
Short

short
Ptr
ProcPtr

short
char *
Short
long
char *
long
long
long
long

};
typedef struct CMovePBRec
typedef struct CMovePBRec *

struct WDPBRcc {
struct WDPBRec *
Short
short

Ptr

ProcPtr

Short
char *
Short
short
short
long
short
short
long

};
typedef struct WDPBRec
typedef struct WDPBRec *

File Manager Aztec C68K

qLink;

qType;
10 Trap;
ioCmdAdadr;
ioCompletion;
ioResult;
i0oNamePtr;
10 VRefNum;
filler];
10 NewName;
filler2;
1i0NewDirID;
filler3[2];
ioDirID;

CMovePBRec;
CMovePBPtr;

qLink;

qType;
i0 Trap;
ioCmdAddr;
ioCompletion;
i0Result;
ioNamePtr;
10 VRefNum;
filler;
i0W DIndex;
ioWDProcID;
ioWDVRefNum;
filler2[7};
ioWDDirID;

WDPBRec;
WDPBEPtr;

Aztec C68K

struct FCBPBRcc {
struct FCBPBRec *
short
Short
Ptr
ProcPtr

Short
char *
short
short
short
long
long
Short
unsigned short
long
long
long
short
long
long

};
typedef struct FCBPBRec
typedef struct FCBPBRec *

File Manager Toolbox Functions

qLink;

qType;
10 Trap;
ioCmdAdadr;
i0oCompletion;
i0Result;
ioNamePtr;
10 VRefNum;
i0oRefNum;:
filler;
i0oFCBIndx;
10 FCBFINm;
10 FCBFlags;
10 FCBStBIk;
10 FCBEOF;
i0 FCBPLen;
i0FCBCrPs;
i0FCBVRefNum;:
10 FCBCIpSiz;
10 FCBParID;

FCBPBRcc;
FCBPBPtr;

-10-

Toolbox Functions

Struct VCB {
struct VCB *
Short
short
short
long
long
Short
unsigned short
short
Short
unsigned short
long
long
Short
long
unsigned short
char
Short
Short
short
Short
char *
char *
Short
short
Short
long
unsigned short
long
long
long
unsigned short
long
long
long
Short
Short
short
unsigned short
unsigned short
short
short
long
long
Short

File Manager Aztec C68K

qLink;

qType;
vcbF lags;
vebSigWord;
vcbCrDate;
vcbLsMod;
vcbAtrb;
vcbNmFIs;
vcbVBMSt;
vebAllocPtr;
vcbNmA IBlks;
vcbAIBIkSiz;
vcbClpSiz;
vebAIBISt;
vcbNxtCNID;
vcbFreeBks;
vcbVN[27];
vebDrvNum;
vcbDRefNum;
vcbFSID;
vcbVRefNum;
vcbM Adr;
vebBufAdr;
vcbMLen;
vebDirIndex;
vebDirBlk;
vcbVolBkUp;
vcbVSeqNum;
vcbWrCnt;
vcbXTClpSiz;
vebCTClpSiz;
vcbNmRtDirs;
vebFilCnt;
vebDirCnt;
vcbFndrInfof 8];
vebVCSize;
vcb VBMCSiz;
vebCtICSiz;
vcbXTAIBIks;
vcbCTAIBIks;
vcbXTRef;
vcbCTRef;
vebCtBuf;
vcbDirIDM;
vebOlfsM:

-l11-

Aztec C68K File Manager Toolbox Functions

struct DrvQEI {
struct DrvQEI * qLink;
short qType;
short dQDrive;
short dQRefNum;
Short dQFSID;
Short dQDrvSize;

};

3. Functions

3.1 High-Level Functions

3.1.1 Accessing Volumes

OSErr GetVInfo (drvNum, volName, vRefNumPtr, freeBytesPtr)
Short drvNum; OSStrPtr volName; short * vRefNumPtr;
long * frecBytesPtr;

OSErr GetVol (volName, vRefNumPtr)
OSStrPtr volName; short * vRefNumPtr:

OSErr SetVol (volName, vRefNum)
OSStrPtr volName; short vRefNum:

OSErr FlushVol (volName, vRefNum)
OSStrPtr voIName; short vVRefNum;

OSErr UnmountVol (volName, vRefNum)
OSStrPtr volName; short vRefNum;

OSErr Eject (volName, vRefNum)
OSStrPtr volName; short vRefNum;

3.1.2 Changing file contents

OSErr Create (fileName, vRefNum, creator, fileType)
OSStrPtr fileName;
Short vVRefNum; OSType creator, fileType;

OSErr FSOpen (fileName, vRefNum, ref(NumPtr)
OSStrPtr fileName;
Short vRefNum, * refNumPtr;

OSErr FSClose (refNum)
short refNum;

OSErr OpenDriver (name, refNum)
Str255 name; short refNum;

-12-

Toolbox Functions File Manager Aztec C68K

OSErr CloseDriver (refNum)
short refNum;

OSErr FSRead (ref{Num, countPtr, buffPtr)
short refNum; long * countPtr; Ptr buffPtr;

OSErr FSWrite (refNum, countPtr, buffPtr)
short refNum; long * countPtr; Ptr buffPtr;

OSErr GetF Pos (ref{Num, filePosPtr)
short refNum; long *filePosPtr:

OSErr SetFPos (refNum, posMode, posOff)
short refNum, posMode; long posOff;

OSErr GetEOF (refNum, logEOF)
short ref[Num; long *logEOF;

OSErr SetEOF (refNum, logEOF)
Short ref[Num; long logEOF;

OSErr Allocate (refNum, countPtr)
short refNum; long * countPtr;

OSErr Control (refNum, opCode, opParams)
short refNum, opCode; OpParamPtr opParams;

OSErr Status (refNum, opCode, opParamsptr)
short ref[Num, opCode; OpParamPtr * opParamsptr;

OSERR KillIO (refNum)
Short refNum;

3.1.3, Changing Information about Files

OSErr GetFInfo (fileName, vRefNum, fndrInfoPtr)
OSStrPtr fileName; short vRefNum; FlInfo * fndrInfoPtr;

OSErr SetFInfo (fileName, vRefNum, fndrInfo)
OSStrPtr fileName; short vRefNum; FInfo fndrInfo;

OSErr SetFLock (fileName, vRefNum)
OSStrPtr fileName; short vVRef{Num;

OSErr RstFLock (fileName, vRefNum)
OSStrPtr fileName; short vRefNum;

OSErr Rename (oldName, vRefNum, newName)
OSStrPtr oldName, newName; short vRefNum;

OSErr FSDelete (fileName, vRefNum)
OSStrPtr fileName; short vRefNum;

3.2 Low-level functions

-13-

Aztec C68K File Manager Toolbox Functions

3.2.1 Initialization

pascal void JnitQueue ()

3.2.2 Accessing Volumes

pascal OSErr PBMountVol (paramBlock)
ParmBlkPtr paramBlock;

pascal OSErr PBGetV Info (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHGetV Info (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBGetVol (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHGetVol (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBSetVol (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHSetVol (hparamBlock, async)
HPrmBlkPtr hparamBlock: Boolean async;

pascal OSErr PBFlushVol (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBUnmountVol (paramblock)
ParmBlkPtr paramBlock:

pascal OSErr PBOffLine (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBE ject (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

3.2.3 Changing File Contents

pascal OSErr PBCreate (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHCreate (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBDirCreate (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBOpen (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHOpen (hparamBlock, async)
HPrmBikPtr hparamBlock; Boolean async;

-14-

Toolbox Functions File Manager Aztec C68K

pascal OSErr PBOpenRF (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHOpenRF (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBLockRange (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBUnlockRange (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBRead (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBWrite (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBGetFPos (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBSetF Pos (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBGetEOF (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBSetEOF (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBAllocate (paramBlock, async)
ParmBikPtr paramBlock; Boolean async;

pascal OSErr PBAllocContig (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBFlushFile (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBClose (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

3.2.4 Changing Information about Files

pascal OSErr PBGetFInfo (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHGetF Info (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBSetFInfo (paramBlock, async)
ParmBikPtr paramBlock; Boolean async;

pascal OSErr PBHSetF Info (hparamBlock, async)
HPrmBikPtr hparamBlock; Boolean async;

-15-

Aztec C68K File Manager Toolbox Functions

pascal OSErr PBSetFLock (paramBlock, async)
ParmBlkPtr paramBlock: Boolean async;

pascal OSErr PBHSetF Lock (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBRstFLock (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHRstF Lock (hparamBlock, async)
HPrmBlkPtr hparamBlock: Boolean async;

pascal OSErr PBSetFType (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBSetFVers (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBRename (paramBlock, async)
ParmBlkPtr paramBlock: Boolean async;

pascal OSErr PBHRename (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBDelete (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBHDelete (hparamBlock, async)
HPrmBlkPtr hparamBlock; Boolean async;

pascal OSErr PBControl (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

pascal OSErr PBStatus (paramBlock, async)
ParmBlkPtr paramBlock:; Boolean async;

pascal OSErr PBKillIO (paramBlock, async)
ParmBlkPtr paramBlock; Boolean async;

3.2.5 Accessing Queues

pascal QHdrPtr GetFSQHar ()

pascal QHdrPtr GetVCBOHdr ()

pascal QHdrPtr GetDrvQHadr ()

3.2.6 Hierarchial-Only Routines

pascal OSErr PBGetCatInfo (paramBlock, async)
CInfoPBPtr paramBlock; Boolean async;

pascal OSErr PBSetCatInfo (paramBlock, async)
CInfoPBPtr paramBlock; Boolean async;

- 16 -

Toolbox Functions File Manager Aztec C68K

pascal OSErr PBCatMove (paramBlock, async)
CMovePBPtr paramBlock; Boolean async;

pascal OSErr PBOpenlWD (paramBlock, async)
WDPBPtr paramBlock; Boolean async;

pascal OSErr PBCloseWD (paramBlock, async)
WDPBPtr paramBlock; Boolean async;

pascal OSErr PBGeitWDInfo (paramBlock, async)
WDPBPtr paramBlock; Boolean async;

-17-

Toolbox Functions List Manager Aztec C68K

(Duplicate pages - First issued with 1.06h)

List Manager Functions

The functions described in this section allow a C program to access
Macintosh List Manager routines.

The constants, data structures, and functions described in this
section are defined in the header file Jist.h.

1. Constants

/* Automatic scrolling */

#define IDoVAutoscroll 2
#define IDoHAutoscroll 1

#define lOnlyOne 0x0080
#define lIExtendDrag 0x0040
#define INoDisjoint 0x0020
#define INoExtend 0x0010
#define INoRect 0x0008
#define 1UseSense 0x0004
#define INoNilHilite 0x0002
#define IInitMsg 0
#define 1DrawMsg]
#define lHiliteMsg 2
#define ICloseMsg 3

typedef struct Point Cell;
typedef char DataArray[32001];
typedef char * DataPtr;
typedef char ** DataHandle;

Aztec C68K

2. Data Structures

Struct ListRec {

}

Rect
GrafPtr
Point
Point
Rect

ControlHandle
ControlHandle
Byte
Boolean
Byte
Byte
long
Point
Point
Ptr

Cell
long
Handle
Handle
Rect

DataHandle
Short
Short

typedef struct ListRec
typedef struct ListRec *
typedef struct ListRec **

3. Functions

3.1 Creating and Disposing of Lists

List Manager

rView;
port;

indent;
cellSize;
visible;
vscroll;
hScroll;
selFlags;
lActive;
IReserved;
listFlags;
clikTime;
clikLoce;
mouseLoc;
IClikLoop;
lastClick;
refCon;
listDefProc;
userHandle;
dataBounds;
cells;
maxIndex;
cellArrayf 1];

ListRec;
ListPtr;
ListHandle:

Toolbox Functions

pascal ListHandle LNew (rView, dataBounds, pass(cSize), Point,
theWindow, drawlt, hasGrow,
scrollHoriz, scrollVert);

Rect *rView, *dataBounds; Point cSize:
short theProc; WindowPtr theWindow:;
Boolean drawlIt, hasGrow, scrollHoriz, scrollVert:

pascal void LDispose (\Handle)
ListHandle Handle:

Toolbox Functions List Manager Aztec C68K

3.2 Adding and Deleting Rows and Columns

pascal short LAddColumn (count, colNum, IlHandle)
short count, colINum; ListHandle lHandle;

pascal short LAddRow (count, rowNum, |Handle)
short count, rowNum; ListHandle I|Handle;

pascal void LDelColumn (count, colNum, |Handle)
short count, colINum; ListHandle |Handle;

pascal void LDelRow (count, rowNum, |Handle)
short count, rowNum; ListHandle |Handle;

3.3 Operations on Cells

pascal void LAddToCell (dataPtr, dataLen, pass(theCell), [Handle)
Ptr dataPtr; short dataLen; Cell theCell; ListHandle lHandle;

pascal void LClrCell (pass(theCell), [Handle)
Cell theCell; ListHandle IHandle;

pascal void LGetCell (dataPtr, dataLen, pass(theCell), [Handle)
Ptr dataPtr; short *dataLen; Cell theCell; ListHandle I[Handle;

pascal void LSeiCell (dataPtr, dataLen, pass(theCell), [Handle)
Ptr dataPtr; short dataLen; Cell theCell; ListHandle lHandle;

pascal void LCellSize (pass(cSize), IHandle)
Point cSize; ListHandle lHandle;

pascal short LGetSelect (next, theCell, lHandle)
Boolean next; Cell *theCell; ListHandle |Handle;

pascal void LSetSelect (setIt, pass(theCell), [Handle)
Boolean setIt; Cell theCell; ListHandle |Handle;

3.4 Mouse Location

pascal short LClick (pass(pt), modifiers, |Handle)
Point pt; short modifiers; ListHandle [Handle;

pascal long LLastClick (Handle)
ListHandle l!Handle;

3.5 Accessing Cells

pascal void LFind (offset, len, pass(theCell), [Handle)
short *offset, *len; Cell theCell; ListHandle [Handle;

pascal short LNextCell (hNext, vNext, theCell, [Handle)
Boolean hNext, vNext; Cell *theCell; ListHandle lHandle;

Aztec C68K List Manager Toolbox Functions

pascal void LRect (cellRect, pass(theCell), [Handle)
Rect *cellRect; Cell theCell; ListHandle IHandle;

pascal short LSearch (dataPtr, dataLen, searchProc,
pass(theCell), lHandle)

Ptr dataPtr; short dataLen; Cell theCell; ListHandle IHandle;

pascal void LSize (listWidth, listHeight, [Handle)
Short listWidth, listHeight; ListHandle [Handle;

3.6 List Display

pascal void LDraw (pass(theCell), [Handle)
Cell theCell; ListHandle !Handle:

pascal void LDoDraw (drawlt, [Handle)
Boolean drawlIt; ListHandle !Handle;

pascal void LScroll (dCols, dRows, IHandle)
Short dCols, dRows; ListHandle IHandle;

pascal void LAutoScroll (lHandle)
ListHandle IHandle;

pascal void LUpdate (theRgn, !Handle)
RgnHandle theRgn; ListHandle lHandle:

pascal void LActivate (act, |Handle)
Boolean act; ListHandle IHandle;

3.7 List Definition Procedure

pascal void MyListDef (IMessage Select, IRect, pass(ICell),
IDataOffset, IDataLen, [Handle)

Short IMessage; Boolean JSelect;
Rect IRect; Cell 1Cell;
short IDataOffset, IDataLen; ListHandle IHandle;

Toolbox Functions Aztec C68K

Memory Manager Functions

This section describes functions that allow C programs to access
the Macintosh Memory Manager routines.

The constants, data structures, and functions described in this
section are defined in the header file memory.h.

1. Constants

define maxSize 0x800000

2. Data structures

typedef long Size;
typedef int MemeErr;
typedef struct Zone * THz;

Struct Zone {
Ptr bkLim;
Ptr purgePtr;
Ptr hFstFree;
long zcbFree;
ProcPtr ezProc;
short moreMast;
short flags;
short cntRel;
short maxRel;
short cntNRel;
short maxNRel;
short cntEmpty;
short cntHandles;
long minCBFree;
ProcPtr purgeProc;
Ptr spare Ptr;
Ptr allocPtr;
short heapData;

};
typedef struct Zone Zone;

3. Functions

Aztec C68K Memory Manager Toolbox Functions

3.1 Initialization and Allocation

void InitAppleZone ()

void SetApplBase (startPtr)
Ptr startPtr:

pascal void /nitZone (growProc, masterCount,
limitPtr, startPtr)

ProcPtr growProc: short masterCount;
Ptr limitPtr, startPtr;

Ptr GetA pplLimit ();

void SetApplLimit (zoneLimit)
Ptr zoneLimit;

Short MaxApplZone ()

long MaxBlock ()

void MoreMasters ()

long StackSpace ()

3.2 Heap Zone Access

THz GetZone ()

void SetZone (hz)
THz hz;

THz SystemZone ()

THz ApplicZone ()

void PurgeSpace (total, contig)
long *total, *contig;

3.3 Allocating and Releasing Relocatable Blocks

Handle NewHandle (logicalSize)
Size logicalSize;

void DisposHandle (h)
Handle h;

Size GetHandleSize (h)
Handle h;

void SetHandleSize (h, newSize)
Handle h; Size newSize;

THz HandleZone (h)
Handle h;

Toolbox Functions Memory Manager Aztec C68K

Handle RecoverHandle (p)
Ptr p;

void ReallocHandle (h, logicalSize)
Handle h; Size logicalSize;

Short MoveHHi (h)
Handle h;

3.4 Allocating and Releasing Nonrelocatable Blocks

Ptr NewPtr (logicalSize)
long logicalSize;

void DisposPtr (p)
Ptr p;

Size GetPtrSize (p)
Ptr p;

void SetPtrSize (p, newsize)
Ptr p; Size newSize;

THz PirZone (p)
Ptr p;

3.5 Freeing space on the Heap

long FreeAfem ()

Size MaxMem (growPtr)
Size * growPtr;

Size CompactMem (cbNeeded)
Size cbNeeded;

void ResrvMem (cbNeeded)
Size cbNeeded;

void PurgeMfem (cbNeeded)
Size cbNeedcd;

void EmptyHandle (h)
Handle h;

Handle NewEmptyHandle ()

3.6 Properties of Relocatable Blocks

void HLock (h)
Handle h;

void HUnlock (h)

Handle h;

Aztec C68K Memory Manager Toolbox Functions

void HPurge (h)
Handle h;

void HNoPurge (h)
Handle h;

Short HSetRBit (h)
Handle h;

short HC/rRBit (h)
Handle h;

Short HGetState (h)
Handle h;

pascal short HSetState (h, fig)
Handle h; Short flg;

3.7 Grow Zone Functions

void SetGrowZone (growZone)
ProcPtr growZone;

Boolean GZCritical ()

Handle GZSaveHnd ()

3.8 Utility Routines

void BlockMove (sourcePtr, destPtr, byteCount)
Ptr sourcePtr, destPtr; Size byteCount:

Ptr TopMem ()

MemErr MemError ()

Toolbox Functions Aztec C68K

Sane Manager Functions

The functions described in this section allow a C program to access
the Standard Apple Numeric Environment (SANE) Manager.

Note: SANE is documented in the Apple Numerics Manual.

The constants, data structures, and functions described in this
section are defined in the header file sane.h.

1. Constants

define SIGDIGLEN 20 /* significant decimal digits */
#define DECSTROUTLEN 80 /* max length for decimal string */

/* Decimal Formatting Styles */

#define FLOATDECIMAL 0
#define FIXEDDECIMAL]

/* Exceptions */

#define INVALID l
#dcfine UNDERFLOW 2
#define OVERFLOW 4
#define DIVBYZERO 8
#define INEXACT 16

/* Ordering Relations */

#define GREATERTHAN 0
#define LESSTHAN 1
#define EQUALTO 2
#define UNORDERED 3

/* Inquiring Classes */

#dcfine SNAN 0
#define QNAN]
#dcfine INFINITE 2
#define ZERONUM 3
#define NORMALNUM 4
#define DENORMALNUM 5

/* Rounding Directions */

#define TONEAREST 0
#dcefine UPWARD |

#dcfine DOWNWARD 2
#define TOWARDZERO 3

Toolbox Functions Sane Manager Aztec C68K

/* Rounding Precisions */

#dcfine EXTPRECISION 0)
#dcfine DBLPRECISION l
#dcfine FLOATPRECISION 2

/* Type Definitions */

typedcf short exception; /* sum of INVALID...INEXACT */
typedef short relop; /* relational operator */
typedef short numelass; /* inquiry class */
typedef short rounddir; /* rounding direction */
typedef short roundpre; /* rounding precision */
typedef short environment;

2. Data Structures

typedef struct decimal {
char sgn, unused; /* sign 0 for +, 1 for - * /
short exp; /* decimal exponent */
Struct {unsigned char length, text[SIGDIGLEN], unused} sig:

/*significant digits */
} decimal;

typedef struct decform {
char sgn, unused; /* FLOATDECIMAL or FIXEDDECIMAL * /
Short digits;

} decform;

typedef void (*haltvector) ();

3. Functions

3.1 Conversions Between Binary and Decimal Records

void num2dec (£, x, d)
decform *f; extended x; decimal *d;

extended dec2num (d)
decimal *d:

3.2 Conversions Between Decimal Records and ASCII Strings

void decdstr (f, d, s)

decform *f; decimal *d; char *s;

void str2dec (s, ix, d, vp)
char *s; short *ix, *vp; decimal *d;

-_2.

Toolbox Functions Sane Manager Aztec C68K

3.3 Arithmetic, Auxiliary, and Elementary Functions

extended remainder (x, y, quo)
extended x,y; short *quo;

extended rint (x)
extended x;

extended scalb (n, x)
short n; extended x;

extended /ogb (x)
extended x;

extended copysign (x, y)

extended x,y;

extended next float (x, y)
extended x,y;

extended nextdouble (x, y)
extended x,y;

extended nextextended (x, y)
extended x,y;

extended log2 (x)
extended x;

extended log! (x)
extendcd x;

extended exp2 (x)
extended x;

extended exp! (x)
extended x;

extended power (x, y)
extended x,y;

extended ipower (x, 1)
extended x; short 1;

extended compound (r, n)
extended r, n;

extended annuity (r, n)
extended r, n;

extended randomx (x)
extended *x;

Aztec C68K _ Sane Manager Toolbox Functions

3.4 Inquiry Routines

numclass class float (x)
extended x;

numclass classdouble (x)
extended x;

numclass classcomp (x)
extended x;

numclass classextended (x)
extendcd x;

long signnum (x)
extended x;

3.5 Environment Access Routines

An exception variable encodes the exceptions whose
Sum is its value.

void setexception (e, s)
exception c; long s;

long lestexception (e)
exception e;

void sethalt) (e, s)
exception e; long s;

long festhalt (ce)
exception e;

void setround (r)
rounddir r; rounddir getround();

void setprecision (p)
roundpre p; roundpre gctprecision();

void setenvironment (€)
environment (ec)

void gelenvironment (c)
environment *e;

void procentry (¢)
environment *e;

void procexit (c)
environment ec; haltvector gethaltvector();

void sethaltvector (v)
haltvector v:

Toolbox Functions Sane Manager

3.6 Comparison Routine

relop relation (x y)
extended x,y

3.7 NaNs and Special Constants

extended nan (c)
unsigned char c;

extended inf ();

extended /fIpi ();

extended fabs (x)
extended x;

extended sqrt (x)
extended x;

extended exp (x)
extended x;

extended log (x)
extended x;

extended tan (x)
extended x;

extended sin (x)
extended x;

extended cos (x)
extended x;

extended atan (x)
extended x;

Aztec C68K

Toolbox Functions SCSI Manager Aztec C68K

(Duplicate pages - First issued with release 1.06h)

SCSI Manager Functions

The functions described in this section allow a C program to access
Macintosh SCSI Manager routines.

The constants, data structures, and functions described in this
section are defined in the header file scsi.h.

1. Constants

#define scInc
#define scNoInc
#define scAdd
#define scMove
#dcfine scLoop
#define scNOp
#define scStop
#define scComp

#define badParmsErr
#define CommErr
#define compareErr
#define phaseErr M

O
A
N

&

C
O
O
n
N
N
N
N
B
R
W
N
 =

2. Data Structures

Struct SCSIInstr {

short opcode;
long param];
long param 2;

};

typedef struct SCSIInstr SCSInstr;

3. Functions

pascal OSErr SCSIReset ()

pascal OSErr SCSIGet ()

pascal OSErr SCSISelect (target)
short target;

Aztec C68K SCSI Manager Toolbox Functions

pascal OSErr SCSICmd (buffer, count)
Ptr buffer; short count;

pascal OSErr SCSIRead (tibPtr)
Ptr tibPtr;

pascal OSErr SCSIRBlind (tibPtr)
Ptr tibPtr;

pascal OSErr SCSIWrite (tibPtr)
Ptr tibPtr;

pascal OSErr SCSIComplete (stat, message, wait)
short *stat, *message; long wait;

pascal OSErr SCSIStat ()

EXAMPLES

-examples.1 -

EXAMPLES Aztec C68K

Chapter Contents

Sample Programscccssccsscsccssscsscssccsccscccseccessesssessecsscesssescecseceesens examples
C4 9) (0) co) cr 4
MENU CCLIMITIONcccsssscsssssscsesececcssececseccsssccnecesccsscessecsecceucecsscsescesesces 15

- examples.2 -

Aztec C68K EXAMPLES

Examples

This chapter describes some sample programs, which illustrate how
C programs can access the special features of the Macintosh.

- examples.3 -

EXPLORER A Desk Accessory EXPLORER

The Explorer Desk Accessory

This is a description of the Explorer desk accessory written with the
Aztec C68K compiler system. The information provided is accurate to
the best of our knowledge. The best way to read this description is
with a printed copy of the source to the program which is located in
sys2-example /ex plor.c.

The Explorer desk accessory is a program which creates a window
that displays, in either hexadecimal or ASCII, the contents of ram
memory. The window comes complete with a scrollbar on the right
side of the window which allows the user to scroll through memory.
In addition, a small box is displayed in the window where the user can
type a new start address. When Return or Enter is pressed, the display
is changed to start with the address in the box.

The first part of the program is almost the only assembly language
part. It is placed at the beginning of the program so that it ends up
being the first thing in the resource. The first four words define
information used by the Desk Manager when the desk accessory is
installed.

The first word signifies that the accessory will respond to control
calls and needs to be updated once in a while. The second word tells
how often to update the accessory. The number specified is in
sixticths of a second, so an update every five seconds is being asked
for. The third word signifies which types of events the desk accessory
is intending to handle. This mask is generated using the same bit
masks used for the event manager in general. Refer to the Event
Manager section of Inside Macintosh for more information. Finally,
the ID number of the menu used by the desk accessory is specified.
Desk accessory menu ID’s must be negative numbers.

The next five words are used by the Desk Manager to access the
different functions of the desk accessory. For this accessory, only the
open(), control() and close() functions actually do anything. The prime
and status entry points are directed to a routine which performs No
OPeration. Each word is an offset from the beginning of the driver to
the function itself. This is specified by subtracting the main label
which was placed at the beginning of the table entries from each of the
function names. Note that function names in Aztec C are denoted by
appending an underscore to the name.

Finally, the title of the desk accessory is defined as a Pascal string.
All of the components thus far are considered standard parts of any
desk accessory and any device driver as well Refer to the Sections
Desk Manager and °}<vice Manager in the Inside Macintosh manual for
more details of the. <omponents,

The next part «° ‘ne assembly language is part of the magic that
allows a desk ac. ary to access its own global data without

~ examples.4 -

EXPLORER A Desk Accessory EXPLORER

overwriting the global data of the current application program.
Normally, the compiler, assembler and linker use register A5 to
reference global data. However, as shall be seen later, this program
was compiled to use register A4 instead. The line of code after the
save__ label sets up register A4 to point to the end of the code and data
for the desk accessory. It does so by adding the size of the code and
the size of the data to the main label and placing the resulting address
into the A4 register. Now any references to global data will occur as
desired. The symbols _ Uend, _ Dorg, and _Cend are automatically
generated by the linker.

The first use of this is in the next two lines. When the desk
accessory is called by the Desk Manager, the registers AO and Al
contain pointers to a ParamBlkRec and a Device Control Entry. These
Structures contain information indicating what function the accessory
is to perform. To access them from C, they are stored in two global
pointers, Php and Dp. Then control is returned to the calling routine.
This routine is called save().

The restore() routine restores the AO register which is not saved by
the Desk Manager when calling the accessory. The Desk Manager
Saves registers Al-A6 and D3-D7 whenever it calls an accessory.

That’s it for assembly language till a bit later. The rest is almost
entirely C code. It begins by including a whole set of header files.
This program uses quite a few different functions from the Macintosh
toolbox and requires all those listed. Preceding the includes are two
#define’s, The first, DRIVER is used in the guickdraw.h file to keep
from defining a set of global variables which are normally used by an
application. It wouldn’t hurt to have them defined, but it would make
the accessory bigger than it needs to be.

The second #dcfine, SMALL_ MEM, is used to keep the amount
of symbol space used by the compiler down. On a 128K Macintosh
this is necessary because of the huge number of symbols which are a
part of the toolbox. The #undef is used later because those files
following it need to be used in their entirety. Since almost all other
header files include quickdraw.h, it should be defined before the others.
If the last four files had been specified first, then guickdraw.h would
have been processed with SMALL MEM undefined and used up
more symbol table space than necessary.

The next set of lines are a set of macro definitions for use later in
the program. The first two define the Boolean results TRUE and
FALSE. TRUE is defined as 0x100, because of the way Pascal defines
the Boolean when passed to or returned from a function. NLINES is
the number of lines we will be displaying in the window. MENUID is
our familiar ID we saw in the assembly language part. It must be the
same.

- examples.5 -

EXPLORER A Desk Accessory EXPLORER

MEMTOP is an example of how one easily refers to some absolute
memory location using Aztec C. In this case, location 0x108 is treated
as having a long value stored in it. When defined this way, MEMTOP
can be used as a regular global variable, and may be read or written.

The last #define is a short-hand we will use later on. Dp is the
pointer to the Device Control Entry that is passed by the Desk
Manager. It points to a structure which contains a field, dCtlStorage,
which will hold a handle to some data used by the accessory. The
macro is casting the general handle, dCtlStorage, to a handle to a
structure of type storage. Then, it dereferences the handle once to get
a pointer to a structure of that type. We’ll see this used later as,

SP->xxxx

to reference a member of the structure. Otherwise we would have to
always write:

(*(struct storage **)Dp->dCtlStorage)->xxxx

Next, we have the global data definitions. First, the two pointers,
Dp and Pbp, are defined. The DCE structure is defined in the header
file desk.h. The ParamBlkRec structure is, of course, in pb.h. These
are followed by a set of rectangle definitions. Wind_ rect is the initial
window position and size in global coordinates. Scrl_ rect is the
rectangle defining the right-hand scroll bar of the window. Cont_ rect
defines the content region of the window. Full_ rect is the sum of the
content region and the scroll bar region. Finally, Edit rect defines
the rectangle used for editing the starting address and changing the
cursor.

The Ibeam Cursor structure defines the basic cursor shape used
when editing Whenever the cursor enters the Edit_ rect, the cursor
will be changed to the I-beam shape defined here.

The storage structure holds information used by the desk accessory.
It will be discussed more when talking about the open() routine. The
first entry is a handle to the menu item which will be created by the
accessory. The second item is a handle to the scroll bar control. where
is the pointer into memory that will be used to display its contents.
Next is a flag used to indicate that automatic updating has been
enabled. size indicates the number of elements displayed on a single
line. It has a value of 8 when displaying in hexadecimal and 16 when
displaying in ASCII It is also used as a flag when displaying the
Startup message. incr 1s used to scale the motion of the thumb in the
scroll bar. Finally, Ate is a handle to the TextEdit record that will be
used.

So much for the preliminaries. The first four routines correspond
to the four entries in the offset table at the beginning of the file. The
opern() and close() routines are normally called once each when the
desk accessory is initialized and when it is closed. open() may be

~ examples.6 -

EXPLORER A Desk Accessory EXPLORER

called even while the desk accessory is active. In that case it performs
no function. The Desk Manager will simply make its window the
active window. The control() routine does the bulk of the work
responding to events and actions of the user.

The open() routine’s primary function is to get things set up. The
first thing it does is to call the save() routine, which is the assembly
language routine which sets up register A4, and the pointers, Dp and
Pbp. Then, it copies the Dp pointer into a register version. While not
necessary, since we will be accessing the pointer a lot, it will generate
smaller faster code. Next, we check if this is the first time the driver
has been opened. If the window field of the DCE structure is empty,
it is the first time, else we drop to the bottom, restore register AO, and
return. If it is not the first time, we get to work.

First, we allocate some storage. You might well ask, why not just
make it a global structure?? Well, the way desk accessories work, is
that they share the application heap space with the application
currently running. While the accessory’s window is active, the
accessory 1S locked in memory. However, when the accessory’s
window is not active, the memory occupied by the accessory’s code
and data may be needed by the active process. In that case, the code
and data will be purged from memory. Anything stored there will be
lost. Now, a desk accessory could be set up to be non-purgeable, and
in that case, the data would not be lost. However, that might cut down
on the usefulness of the program and is not a good general practice.

Instead, we will allocate our data as a relocatable chunk of memory
which constitutes our minimum needs. In this case, about 22 bytes.
We will keep the handle in the DCE structure which will not be
purged even if the code is. At the same time, we temporarily lock the
structure so that anything we do here won’t move it. This is necessary
because of the next line, where we set a structure pointer to point to
the structure itself. If we didn’t do this, one of the later calls might
cause the structure to move, in which case the sp pointer would be
pointing to the wrong location.

Now we set up the window. First we call NewWindow() with the
predefined Wind_ rect rectangle and the appropriate arguments. The
window will be visible with a goaway box and will be the frontmost
window. The type of window is a regular document window without a
grow zone. The title of the window will be Explorer, using the name
defined earlier. After saving the window pointer, we change the
windowKind field to be the RefNum of the desk accessory. This is
necessary so that the application program will be able to determine that
the window is a desk accessory. Then, we create the scroll bar control
as part of the window.

After initializing our storage variables to zero, we set the increment
of the scroll bar. Since the scroll bar can have values from 0 to Ox7fff,

- examples.7 -

EXPLORER A Desk Accessory EXPLORER

we divide the size of ram memory which is always located in location
0x108 of low memory by 0x8000. This gives us the amount of each
click of the scroll bar. We will be using this value later.

Lastly, we set up the menu. First, we get a new menu item with id
MENUID and title Explorer. Then, we place the menu items in the
menu. There are five items, four are real, and one is a separator. The
fourth item is initialized with a check mark in front of it. This is
indicated by the !\x12 following the item. The menu will appear and
disappear from the menu bar as the accessory’s window becomes active
and inactive. Finally, we unlock the handle, restore register AO, and
return.

The close() routine must release all the storage used by the
accessory. It disposes of the TextEdit record, the window, the menu,
and the storage used by the accessory. It sets the dCtlWindow field to
zero, sO the next open() will work correctly. After restoring register
AO, the routine returns.

The remaining routines are all involved in handling events
generated by the user and by the Desk Manager. The information is
passed to the accessory through the ParamBlkRec structure pointer.
The csCode element of the structure contains the type of action to be
performed. Refer to Inside Macintosh for details of the different
actions. The control() routine handles all the different actions directly,
with the exception of event type actions. They are handled by a
separate function.

First, the routine sets up a pointer to the storage information.
Then, it makes the accessory’s window the active port using the
SetPort() call. Then it determines what kind of action to perform. If
the action is an event action, the function, doevent(), is called with a
pointer to the storage, and a pointer to the event record. The different
actions interpret the csParam field of the ParamBlkRec individually.
For events, it is a pointer to the event record. However, since
csParam is defined as a union, to get a pointer to an event record, the
address of csParam is cast as a handle to an event record, and the
handle dereferenced once to get a pointer.

The accRun action is specified whenever the specified 300 clock
ticks have expired. In this case, we check to see if the automatic
update flag is set. If so, we redraw the window.

The accCursor action is similar to the accRun action, but is called
almost continuously when the accessory’s window is active. It is used
to give the accessory the ability to change the cursor’s shape based on
its position. In this case, if the TextEdit record is active, we call
TEIdle(), which will display the blinking line used when editing text.
Then, the current position of the mouse is placed in the pt variable.
Next, we check to sce if the point specified is in the rectangle we are
using for editing. Notice that we check the Boolean result from the

- examples.8 -

EXPLORER A Desk Accessory EXPLORER

Pascal function by bitwise anding it with 0x100. This is necessary
because of the way Pascal defines the Boolean type as being the low
order bit of the high order byte. The contents of the low order byte
are not defined, so a simple test against zero may not always work.

If the cursor is in the rectangle, the cursor is changed to the I-beam
shape defined before. Otherwise, InitCursor() will restore it to the
normal arrow shape.

The next case deals with menu actions. For menu items, csParam
is treated as an array of two integers, the first containing the menu
number, and the second the item number. Since we only have one
menu, we can assume that that is the one selected. So, we will just
switch on the item number by casting the csParam address to be a
pointer to an int and then indexing to the second element.

The first item is the automatic update item. First we toggle the
Storage value, and then set the check mark according to the new value
of the storage value. The second item is manual refresh and we just
draw the window for that one. The third item was the line of dashes
and we should never see that one. The fourth and fifth items act like
radio buttons. If one is selected, the other is deselected. In this case,
the size element of the storage structure is used to track which item is
currently active. Size is set to 8 or 16 depending on which item has
been selected. Then the check mark is removed or added accordingly
to both menu items. Finally, the window content area is erased and
then redrawn in the new format.

The last five actions support the standard TextEdit menu selections
of the Edit menu. All use the corresponding TextEdit function with
the exception of Undo, which is not supported by this accessory.

After the appropriate action is performed, the storage is unlocked,
the register AO is restored, and control is returned to the Desk
Manager.

The next routine to look at is the event handler, doevent(). The
first type of event handled are keyboard events. The keyboard is used
to type in a new start address for the window display. The first thing
that is checked is whether there were any modifier keys being held
down at the same time as the key. If so, the key is ignored, and a beep
is sounded.

Otherwise, the character is checked to see if it falls in the range of
valid hexadecimal values. If so, the TEKey() procedure is used to act
upon the key press. If not, the character is checked to see if it is
either the return or the enter key. The enter key returns a value of 3.
If it is one of the two, then the routine, xtol(), 1s called to evaluate the
value in the current TextEdit record. We'll check that routine out
later.

- examples.9 -

EXPLORER A Desk Accessory EXPLORER

If the value is a valid one, then the where field of the storage
Structure is set to the new value. Then, the TextEdit record is set so
that all the text is selected. This is done so that a new number can be
typed without deleting the old one. The first character typed will
delete the whole record unless the mouse is used to change the
selection range first. Finally, the window is redrawn at the new
position. It has been assumed here, that the draw_wind() routine will
fix the position of the scroll bar thumb.

The next event that is handled is the mouse down event. There are
two places where a mouse down is important. First, if it is in the
TextEdit area, the TEClick() routine takes the appropriate action for
setting the selection range. There are actually two checks, first for the
content area, and then for the TextEdit record area. This allows for
future expansion of doing something with mouse events in the rest of
the content area.

If the mouse button is pressed in the scroll bar area, the function,
FindControl(), is used to determine which part of the contol is being
accessed. There are five parts to a scroll bar. The first two are the
line at a time buttons at the top and the bottom of the bar. For each
of these, the routine, TrackControl(), is called with the appropriate
parameters. The last parameter passed is the address of a routine to
call for each press of the mouse button or for continued pressing of
the button. Notice that the two routines which are passed have been
declared as being of type pascal void. This declaration indicates that it
is a function which follows the Pascal calling conventions and does not
return a value. Each routine will scroll the window one line in the
proper direction each time it is called. We’ll look at these routines
later.

The next two routines deal with scrolling the window a page ata
time. In this case, a common subroutine is called with the control
handle, the part code and the number of lines to scroll. The sign of
the line number will indicate the direction. The last part is the thumb
itself. This part is accessed when the mouse is clicked in the box itself
and is dragged to a new absolute location. This is also handled by
TrackControl(), but this time no action is taken and no function address
is passed.

TrackControl() will drag an outline of the box around and return
when the mouse button is released. At that point, the thumb will have
a new value. This value is retrieved using the GetCtWValue() function
and is multiplied by the scaling increment to calculate a new address in
memory to display. Thus, when the thumb is dragged to the top, the
value of the thumb is 0 and the address displayed is zero. When the
thumb is dragged to the middle, its value is half of its maximum value
or 0x4000. On a 128K Macintosh, the increment is 4, so the new
address will be 4 * 0x4000 or 0x10000, which is 64K, halfway to 128K.
On a 512K Macintosh, the increment is 16, so the new address will be

- examples.10 -

EXPLORER A Desk Accessory EXPLORER

16 * 0x4000 or 0x40000, which is 256K, halfway to 512K.

The other two events handled by the accessory are the activation
event and the update event. The activation event occurs when the
accessory’s window changes from active to inactive or from inactive to
active. The direction is determined by the low order bit of the
modifiers element of the event record. Shortly after opening the desk
accessory, an activate event will occur. This is used to display the
Startup message by calling the signature() function. This is signalled by
the size field of the storage structure being zero. It is then initialized
to 8 which is the hexadecimal display format.

There are three other actions performed by the activate event.
First, the menu for the desk accessory is added to or removed from the
menu bar as appropriate. Next, the scroll bar control is displayed or
hidden. And finally, the TextEdit activation or deactivation routine ‘is
called, Then, in either case, the menu bar is redrawn.

An update event occurs when a part of the window must be
redrawn, usually because another window was obscuring a part of it
and was then moved or deleted. In this case, the standard
BeginU pdate() routine is called, then the window is redrawn, the scroll
bar is redrawn, and finally EndU pdate() is called.

And that’s all the events handled by the accessory. Now we will
look at the subroutines which perform some of the actions previously
described.

The first function is a relatively unimaginative routine to display
the title, author, and company for a few seconds. It mostly consists of
a set of calls to move to a position and draw the appropriate string
there. Then, it waits 100 clock ticks before erasing the window.
Finally, the font and size are set to Monaco 9 and the TextEdit record
handle in the storage structure is initialized. The rectangle passed to
TENew() is inset because it is going to be framed later, and this way
when the text is highlighted, there is a gap between the frame and the
inverted text.

Now, for the real workhorse routine, draw __wind(). This routine
draws all the contents of the window each time it is called, as well as
setting the value of the thumb based on the start address. The first
thing it does is to set a register pointer to the storage structure. Next,
it copies the start address into an unsigned long for some work. First
it performs some bounds checks to make sure that the start address is
not less than 0. If so, it is set to 0. The next check is to make sure
that the start address does not display any data beyond the end of ram
memory. It does this by calculating the number of items that could be
displayed at one time in the window. This is simply the number of
items on one line, sp->size, times the number of lines, NLINES. It
then subtracts this number from the maximum address to achieve the
maximum start address. If the start address is beyond this, it is set to

- examples.11 -

EXPLORER A Desk Accessory EXPLORER

it. Then, the storage value is reset. Next, the thumb is set using the
SetCilValue() routine with the current start address scaled by the
increment field of the storage structure.

The display area is then set to be only the content rectangle by
using the RectRgn() routine to set the clipRgn of the current window
to that rectangle. The clipRgn is used to limit where things are
displayed. This prevents the display of the characters from
overwriting the scroll bar control The title to the TextEdit record is
displayed, and the TextEdit record itself is displayed. Finally, the
TextEdit record is framed with a box.

Each line is then drawn one at a time by working through the loop.
First, the variable, k, is set to the offset from the start address for this
line. Then, the pen is moved to the appropriate position for this line.
The character array, buf, is used to temporarily hold the line while it is
being formatted. The character pointer, cp, 18 used to add characters to
the buffer. First, the address is put in the beginning of the buffer.
Only the last six digits of the address are displayed. Each digit is
calculated by taking the remainder after division by 16 and using it as
an index into an array of characters representing the 16 hexadecimal
digits. This is done for either display format.

If the format is hexadecimal, the next eight values in memory are
displayed using a similar technique for each digit. The hex values are
separated by a blank. The string is terminated by a null, and then
drawn after being converted to Pascal format. If the format is ASCII,
only the address is displayed. Then, the buffer is filled with the actual
values from memory, with the exception that any value that falls
outside of the ASCII range is replaced by a ’.’. That buffer is then
drawn.

After all NLINES lines have been drawn, the clipRgn is set back to
the full content region so that the scroll bars can be painted as well.

The next three routines handle the line by line scrolling when the
mouse is in the arrow box of the scroll bar with the mouse down.
Both scrlup() and scridn() are declared as being of type pascal void. As
mentioned before, this means that the arguments passed to each is the
reverse of the order normally used for C. It also causes the compiler
to generate code that saves the extra registers D3 and A2 which are not
normally saved by a C function. Finally it generates code at the return
from the routine which pops all the arguments off the stack. Both
routines call the common handler scroll() with the control handle, the
code passed to the routine and a flag indicating which routine is calling
the common routine.

The common routine begins and ends with a small amount of
assembly language code. This is necessary since it is possible that the
Pascal routine, TrackControl(), may have changed the value in the A4
register. So, we save the register value on the stack and reload the A4

- examples.12 -

EXPLORER A Desk Accessory EXPLORER

register using the same statement as before. Next, we check to see if
the mouse is still in the control that it started in. If so, we adjust the
Start address by the size of one line in the appropriate direction and
then redraw the window. Note that this means that we aren’t doing
any fancy scrolling. The time to redraw the window is so short, that it
is not worth the extra code to get fancy. Finally, the register is popped
back off the stack and control is returned to the calling routine.

The semi-colon before the #asm was placed there because of a bug
in the compiler. When the compiler reaches the right curly bracket at
the end of the if statement, it checks for an else statement. Part of the
check involves processing lines for macros and pre-processor
directives. As a result, the #asm is parsed and sent to the output file
before the terminating label is sent. This bug was found while writing
this program. Without the semi-colon, the register was only popped
back off the stack if the if statement evaluated as true. This means
that if you put the mouse in the scroll arrow and held down the
button, it worked just fine. However, if while holding the button
down, the mouse was moved outside the arrow, then the condition was
false, and the program blew up spewing garbage all over the screen,
ejecting disks and doing other vile, nasty things. Remove the semi-
colon and recompile it to see what we mean.

The next routine sort of does what the TrackControl() routine does
for the up and down line arrows for the up and down page controls. It
sits in a loop, while the mouse button is still down, and checks to see
where the mouse is positioned. If the mouse is in the control’s area,
then the start address is adjusted by one full page size, which is the
size of one line times the number of lines. Then the draw_wind()
routine is called to update the display and the thumb.

The last routine is the routine called by doevent() to evaluate the
TextEdit record as a new start address. First it picks up the length
from the TextEdit record. Notice, that to use a handle to a structure
to reference an element of the structure, the handle must be
dereferenced once, in parentheses, to get a pointer which can then be
used. Next it picks up a pointer to the text. Since hText is a handle as
well, it is dereferenced once to get a pointer to the text. Then, each
character of the text is looked at. If it is in the hexadecimal range, the
value is added to the running total kept in the long variable, 1 If it is
not a hexadecimal digit, then the selection range is set to that character
and a minus one returned. After all the characters have been
processed, the calculated value is returned.

That’s it for the code itself, just a few words about compiling and
linking. To compile the program use the command:

cc -abu -2200 explor.c
as -S -ZAP explor.asm

The -a option prevents the automatic start of the assembler. The -b

- examples.13 -

EXPLORER A Desk Accessory EXPLORER

option inhibits the generation of the

public .begin

Statement which is used by general application programs. The -u option causes the compiler to generate code which leaves the A4
register free. The -z200 reduces the size of the compiler’s string
buffer, which allows the program to be compiled on a 128K Macintosh.
The -s option to the assembler, tells it to do multiple passes which
allows it to generate short branches and eliminate some instructions
where possible. The -ZAP tells it to remove the input file when
finished.

To link the program type:

In -an Explorer explor.o -Ic
which links it as a desk accessory whose name is Explorer, whose resource type is DRVR and whose ID is 31. To actually use the program install it in the System file with a command of the form:

sys2:bin/cprsrc DRVR 31 explor sys:System

which will copy the resource from the file explor into the System file.

- examples.14 -

MENU MENU

Menu Definition Example

The files in the mdef/ directory demonstrate two methods of
creating and using a menu definition procedure (proc). A menu
definition proc is used if one wants to change the way a standard menu
appears. One of the fields of the MenuRecord structure is a handle to a
procedure which defines draws and responds to mouse activity.

There are two ways to have the menu definition proc take effect.
The first way is to actually have the procedure as part of the main
program. In this case, just change the appropriate field of the structure
to point to the new proc. The second way is to have the procedure be a
resource and define a menu resource that refers to it. The first way is
advantageous if the menu proc needs to access data that is part of the
application. The second way is useful for creating a general purpose
menu definition proc which may be placed in the system file and used
by different programs.

In the examples presented here, there is a single routine which
performs the menu definition. It is in the file mymenu.c. To illustrate
the first method, it is linked with a slightly modified version of the
edit.c program. A fourth menu is added called Test that uses the menu
definition proc. See the file mkall for the compiling and linking
procedure. See the setup() function in edit.c for the calling sequence.

The second method is demonstrated by using the grow.c program.
In this case, the file mymenu.o is linked separately, and the output is
used with the resource compiler to create a resource of type MDEF.
The changes to grow.c are also in the setup() function. The changes to
grow.r define the MDEF resource and also the MENU resource which
uses the MDEF resource had to be specified in detail and could not use
the predefined type.

The menu definition procedure itself just sets the size of the menu,
highlights or dehighlights the entire menu if the mouse is moved into
the rectangle, and initializes it to light gray if the menu is not enabled

- examples.15 -

MENU MENU

- ssampiest -

DB Debugger DB

db - symbolic debugger

SYNOPSIS

db [options] [progfile] [arg] arg2 ...]

DESCRIPTION

db is used to debug programs which have been created using the
Aztec C compiler, assembler, and linker.

db has all the standard features of an assembly language debugger. It
also has features not found in all debuggers, such as the ability to
reference memory locations by name as well as by address, the ability
to define sequences of commands to be macros, which can then be
activated by entering a single letter, and a flexible mechanism for
handling breakpoints.

In addition, db has features specifically tailored to its use with
Aztec C, such as the ability to list the name and parameters of the
currently executing function, and the function that called it, and so on,
back to the initial function. Another special feature is the ability to
display, on entry and exit from each function, the function’s
parameters and return value.

Requirements

A Macintosh with at least 512K of memory is recommended for
use with db. The debugger itself uses about 96K.

Preview

The remainder of this description of db is in three sections:
overview, which describes db features in more detail and introduces the
commands; wsage, which describes in full detail how to use db; and a
command summary.

- debug.4 -

DEBUGGING UTILITIES

- debug.1 -

DB Debugger DB

The operator can also define names to db using the vy command, and
the ’clear symbols’ command, cs, will remove symbols from the
memory-resident symbol table.

1.2.1 Code and Data symbols.

db classifies symbols as being either code or data symbols. All
symbols in the program’s symbol table resource which occur between
the special linker symbols _Corg and _Cend__are considered to be
code symbols, and all others are data symbols.

There are two commands for viewing the symbols which are known
to db. dc and dd, which display code and data symbols, respectively.

1.3 Loading programs and symbols

A program and its symbols can be loaded into memory when db is
started; in this case, the command line defines the program to be
loaded. The db ’load program’ command, /p, can also be used. When
told to load a program, db automatically tries to load the program’s
symbol table, too.

The ’load symbols’ command, Js, can be used when db did not start
the current program.

When the /p command finds a symbol table resource, it clears the
symbol table of all symbols before loading the new symbols.

Only one user program can be in memory at once. If an Ip
command is entered before a currently loaded program has exited, the
current program is terminated by the debugger before the new
program is loaded.

When a program exits, it must be reloaded with the Jp command
before execution can begin again.

1.4 Breakpoints

Before transferring control of the processor to a user’s program in
response to a g command, db can set "breakpoints" at specified
locations in the code. When the user’s program reaches a breakpoint,

db regains control.

A breakpoint has a ’skip count’ associated with it, which allows a
breakpoint to be passed several times before actually taking the
breakpoint and returning control to db and the user. When a
breakpoint is reached, db is always activated; it increments a counter
associated with the breakpoint. When the counter’s value is greater
than the breakpoint’s skip count, the breakpoint is taken; that is, db
retains control of the processor. Otherwise, db returns control of the
processor to the user’s program after the breakpoint. By default, a
breakpoint’s skip count is 0; thus, each time the breakpoint is reached,
it’s taken.

- debug.6 -

DEBUG

Debugging Utilities

This chapter describes the debugger utility db that is provided with
some versions of Aztec C68K.

- debug.3 -

DB Debugger DB

meets the specified condition.

When an s command is used to single-step a program and a
memory-change breakpoint is set, db will examine the specified
memory location after each instruction is executed, and take a
breakpoint when appropriate.

The 6b and bw commands are used to set and remove memory-
change breakpoints.

1.6 Trace mode

db supports a "trace mode’, which displays information whenever a
function or Macintosh system trap is entered or exited.

With this mode enabled, on entry to a function or Macintosh
system trap, the function or trap name and its arguments are displayed,
and, optionally, on exit from a function, its return value is displayed.
The return value is not displayed if a Macintosh system trap was
entered.

The commands bt and bT affect trace mode: bt enables and disables
trace mode, and b7 enables and disables the display of function exit
information.

1.7 Backtracing

When db regains control from an executing program (for example,
because a breakpoint was taken), it has the ability to display
information on how the program got to its current location: the ds
command will display information about the currently executing
function, and the function which called it, and so on, back to the Manx
function Croot, which called the user’s function main.

ds displays, for each function, its name, arguments which were
passed to it, and the address to which it will return.

1.8 Macros

db allows the user to define and execute ’macros’; that is, a
Sequence of db commands.

A macro 1s associated with a single alphabetical character, so up to
26 macros can be known to db at any time.

The db command x is used both to define and execute a macro.

1.9 Displaying source files

db allows the user to display source files, thus providing a
convenicnt means to examine the source of a program being debugged.

Only a single source file can be examined at a time, The ’load
source file’ command, //, defines the source file to be displayed, and
the ’display source lines’ command, df, displays its lines.

- debug.8 -

DB Debugger DB

1. Overview

db commands consist of one or two characters, the first of which
identifies the command category. If there’s only one command in the
category, then the command has just this one letter; otherwise, the
command has a second letter which identifies the specific operation to
be performed.

1.1 Basic commands

db has two types of commands for examining memory: display and
print, whose first characters are d and p, respectively. The display’
commands db and dw simply display hexadecimal bytes and words.

The ’print’ command, p, is more powerful, being able to convert a
sequence of one or more possibly different types of data items to
ASCII For example, you can tell it that beginning at the location var
is a sequence of the following items: an int, a float, and a pointer to a
char string. The p command will convert the two binary items to
ASCII and print them, and display the referenced character string.

The ’register? command, r, displays and modifies the 68000
registers.

The ’memory modify’ commands, m, modify memory.

The « commands ’unassemble’ code; that is, display it symbolically,
in a form similar to its appearance in an assembly language source file.

The s and g commands cause the user’s program to be executed. s
commands "single step" the user’s program; that is, execute a specified
number of instructions in the user’s program and then return control
to db. g commands transfer control of the processor unconditionally to
the user’s program. In this case, db regains control when the user’s
program terminates, when an error occurs (such as division by zero),
or when a "breakpoint" is taken. Breakpoints are discussed below.

? is the help command: it causes db to display a summary of all db
commands. For some command categories, you can get information
about the commands in a category by typing the first letter of the
category’s commands followed by a ?. For example, typing m? gets
you information about the memory modification commands (all of
whose first letter is 77).

1.2 Names

db allows memory locations to be referenced by name as well as by
location. It learns a program’s global names by reading the resource
SYMS from the program’s resource file. and placing them in a
memory-resident symbol table. The linker generates a symbol table

resource for a program in response to the -w option.

db only allows global symbols to be accessed by name; automatic
variables and static variables can’t be accessed by name.

- debug.5 -

DB Debugger DB

2. Using DB
2.1 Starting DB

db is started with a command of the form:

db [options] [progfile] [arg] arg? ...]

where the options are:

-S# Set the symbol table up to hold # symbols (default 1s
300). The linker reports the number of symbols put
in the "SYMS’ resource when the program has been
linked with the -w option.

-a Use the ’printer’ port (port A) for input/output.

-b Use the ’modem’ port (port B) for input/output.

-r# Set the baud rate for input/output to #. The default
baud rate is 9600 baud.

Note that the options -a, -b, and -r only apply when using an attached
external terminal for input and output.

The optional parameter /progfile] is the name of a file containg a
program to be debugged, and the optional parameters argl, argd2,
are character strings to be passed to the program.

eeeg

If the program file name specifies a drive or directory, db searches
for the program file in just that particular area. Otherwise, it searches
the current directory.

The "arg" parameters are passed to the program using the argv
parameter of the program’s main function: arg] is pointed at by
argv[1], arg2 by argv[2], and so on. argv[0] always contains zero.

db must be invoked under the SHELL.

2.2 Using DB with an external terminal

db can be used with an external terminal for input and output.
Debugging messages can be viewed on the external terminal’s screen
while the program’s output appears on the Macintosh screen. A cable
is needed to connect the port on the terminal with either port A or
port B on the back of the Macintosh and requires the following pin
setting. The pin setting on the external terminal side assumes a 25 pin
RS232 port.

Note: On some external terminals, the settings for pins 2 and 3 may
need to be switched.

- debug.10 -

DB Debugger DB

A breakpoint can also have a sequence of db commands associated
with it. When a breakpoint is taken, these commands will be executed
before db allows the operator to enter commands. For example, if you
just want to examine a variable each time a certain location in the
code is reached and then have the program continue execution, you
could define a breakpoint at the location, and specify a list of
commands to do just that: the first command in the sequence would be
a ad command to display memory, and the second would be a g
command to continue execution of the program.

There are two ways to define breakpoints: with the g command,
and with special breakpoint commands, whose first letter is b.

The breakpoint commands manipulate a table of breakpoints: there
are commands for entering breakpoints into the table, displaying the
entries, reseting their counters, and removing them from the table.

There’s a difference between a breakpoint defined in a g command
and those in the breakpoint table: the g¢ command breakpoint is
temporary, while a breakpoint table is more permanent (it exists until
removed from the table). Before transferring control to the user’s
program in response to a g command, db sets all breakpoints that are in
the breakpoint table and that are specified in the g command itself.
When a breakpoint is taken, db removes all breakpoints from the code
and forgets all about the g command breakpoint. The breakpoint table
breakpoints, however, are still in the table and will be set back in
memory when control is again returned to the user’s program.

db remembers the skip counter associated with a breakpoint which
is in the breakpoint table: when it sets breakpoints in memory, the
count for such a breakpoint is set to its remembered value (that is, its
value in the table); and when a breakpoint is taken, the accumulated
count for the breakpoints in memory are saved in the breakpoint table.

1.5 Memory-change breakpoints

The breakpoints described above are taken when a program reaches
a specified point in the code. A second type of breakpoint, called a
memory-change breakpoint, is taken when a specified memory
location is changed from or set to a particular value.

With a memory-change breakpoint set, db will detect either the
function or the instruction which modifies the specified memory
location, depending on whether the user’s program was activated using
a g command or is being single-stepped using an s command,
respectively.

When the user’s program is activated with a g command and a
memory-change breakpoint is set, db will examine the specified

memory location on entry to, and exit from, each function. It will take
a breakpoint, that is, interrupt execution of the program and return
control to the operator, when the contents of the memory location

- debug.7 -

DB Debugger DB

An EXPR has a 16-bit value. The operators that are applied to the
TERMS out of which the EXPR is built affect just this 16-bit value.

When an EXPR refers to a memory location (that is, it is built up
from an ADDR), the 16-bit value is the offset of the location from the
beginning of the segment containing it. In this case, the EXPR can
also specify the beginning paragraph number of the segment
containing the location. For more discussion about this, see the
description of ADDR below.

2.3.1.2 The Definition of TERM

A TERM always resolves to a numeric value, and can be one of the
following:

REGISTER
CONSTANT
-TERM
ADDR
*ADDR
#ADDR

@ [function]
(EXPR)

These names are defined in the following paragraphs.

REGISTER

Registers are specified by their standard names; that is, AO, DO, PC
and so on. The value of the TERM is the contents of the register.

CONSTANT

A CONSTANT can be a decimal, hexadecimal, or octal number, or
a character.

A sequence of digits preceded by ’0x’ is taken to be a hexadecimal
number and those preceded by ’0L’ are binary numbers. A sequence of
digits with a leading 0 is taken to be an octal value. Digit strings
ending in. are taken to be decimal values. If none of these prefixes or
suffixes are present, the radix of the value is taken from the current
radix. The default radix 1s hexadecimal. Note that if the current radix
is set to hexadecimal, numbers must start with a digit to distinguish
them from symbols (1.e. fabc will be taken to be a symbol where 0 fabc
will be taken to be a hexadecimal number.

A character is represented by the character, surrounded by single
quotes, as in ’x’. The value of a character constant is its ASCII value.

Certain characters, the single quote ’, and the \ may also be defined
within the single quotes. These are identified by a leading backslash

character, and are:

~ debug.12 -

DB Debugger DB

The ’find string’ command, f, will find a character string in the
source file.

1.10 Other features

Some other features of db which haven’t yet been discussed are:

*

*

*

The ’evaluate expression’ command, =, does just that.

The *help’ command, ?, lists commands.

The ’exit? command allows the user to exit to the SHELL
without removing db from the system.

The ’input radix’ command changes the default radix for
input and display.

- debug.9 -

DB Debugger DB

command never modifies its associated ’.’.

@ [function]

The @ symbol has as its value the return address of the specified
function. The function name is optional, and defaults to the current
function. The main use for @ is in the g command.

For example,

& @

transfers control to the user’s program, and sets a breakpoint at the
return address of the current function.

As another example,

& @pute

transfers control to the user’s program. When the function piutc 1S
reached, a breakpoint will be set at the address to which it will return.

2.3.1.3 The Definition of ADDR

An ADDR defines the address of a location in memory, and has the
form:

EXPR

Here are some examples of ADDR:

pe
main+10
.-40

*sp+8 Reference to location on the stack.
data+*(a6+6)

2.3.1.4 The Definition of RANGE

A RANGE defines a block of memory. It has one of the following
forms:

ADDR,CNT
ADDR>ADDR
ADDR
s>CNT

The form ADDR,CNT specifies the starting address, ADDR, and a
number, CNT. CNT is interpreted differently by different commands.
For example, the disassemble code’ command, u, will display CNT
lines, while the ’display bytes’ command, db, will display CNT bytes.

The form ADDR>ADDR specifies the starting and ending
addresses of the range.

A full range need not be explicitly specified, because db remembers
the last-used range and will set unspecified RANGE parameters from

- debug.14 -

DB Debugger DB

external terminal MacPort A (or B)
2 5
3 9
7 3

20 6

To start, on the Macintosh, type db followed by any options. Option -a
or -b must be selected. Option -r must be selected if the baud rate is
other than 9600 baud, the default baud rate.

For example, if the cable is connected to port A on the Macintosh
and the external terminal port is set up for 4800 baud, start db to run
the program hello by specifying on the Macintosh:

db -a -r4800 hello

From here, all input is supplied from the external terminal’s keyboard
and all output is sent to the external terminal’s screen.

2.3 Commands

This section describes in detail the db commands. It first defines
some terms that are used in the command descriptions. These terms
are expr, term, addr, range, and cmdlist.

2.3.1 Definitions

2.3.1.1 The Definition of EXPR

An EXPR has the following form:

TERM [binop TERM ...]

That is, an EXPR can be a single TERM or a series of TERMS
Separated by binary operators. The binary operators are:

+ - addition

- subtraction
* . multiplication
/ - division
% - modulus
& - bitwise and
| - bitwise inclusive or
“= bitwise exclusive or

All operators have the same precedence, and an unparenthesized
EXPR is evaluated left to right. If you want to override the default

order of evaluation of an expression, you can parenthesize the relevant

parts of the expression.

- debug.11 -

DB Debugger DB

In the parameterized form of the commands, ADDR specifies the
field to be monitored.

With the ’==’ form, the breakpoint will be triggered when the
debugger detects that the field is equal to the specified value,
VAL.

With the !=’ form, the breakpoint will be triggered when the
debugger detects that the field is different from the specified
value.

The VAL parameter is optional. If not specified, it defaults to the
current value at the ADDR.

be - Clear a single breakpoint
bC - Clear all breakpoints

Syntax:
bc ADDR
bC

Description:

These commands delete breakpoints from the breakpoint table.

bc deletes the single breakpoint specified by the address ADDR,
and bC deletes all breakpoints from the table. If ADDR is a trap
name preceded by an ’!’, the breakpoint for this trap is cleared.

bd - Display breakpoints

Syntax:
bd

Description:

bd displays all entries in the breakpoint table.

For each breakpoint, the following information is displayed:

* Its address, using a symbolic name, if possible; the name
will start with an ’! if it is a trap breakpoint.

* The number of times it’s been ’hit? without a
breakpoint being taken.

* The skip count for it:

* The command list for it, if any.

For example, a bd display might be:

- debug. 16 -

DB Debugger DB

char hex value db notation
newline Oa \n
horizontal tab 09 \t
backspace 08 \b
carriage return Od \r
form feed Oc \f
backslash 5c \\
single quote 27 \’
bit pattern ddd \ ddd

ADDR

A TERM can be an ADDR; that is, a reference to a location in
memory. See the definition of ADDR, below, for more details.

*ADDR

When a TERM consists of a * followed by an ADDR, the value of
the TERM 1s the contents of the 32-bit field referred to by the ADDR.
For example,

*VAR The contents of the VAR field;
*A7 The contents of the 32-bit field in the data segment

pointed at by A7;
*SP The contents of the 32-bit field on the top of the

stack;
*(LBL+2) The contents of the 32-bit field referred to by LBL+42;

Because an ADDR can itself be an EXPR, the *ADDR term may
require extra parentheses. For example,

*spn+2

is equivalent to *(sp+2) and not (*sp)+2. The value of the first
interpretation is the contents of the second word on the stack, while
the value of the second is two plus the contents of the first word on
the stack.

period(.)

The value of a TERM consisting of a period, ’.’, is the starting

address ADDR of the last similar command. For example, if ten bytes
of memory were displayed using the db command, as in

db 0x100,10

then ’.” would be set to 0x100 for the next db or dw command. If the
next db or dw command is

dw.

the same 10 bytes would be displayed as words.

The ’.’ has a separate value for the u command, for the db, dw, and
m commands, for the p command, and for the df command. An m

- debug.13 -

DB Debugger DB

bt - Toggle the trace mode flag |
bT - Toggle the return trace mode flag

Syntax:
bt
bT

Description:

bt and bT toggle the trace mode and return trace mode flags,
respectively.

The state of the trace mode flag determines whether trace mode
is enabled or disabled.

The state of the return trace mode flag determines whether the
tracing of a function’s return is enabled or disabled. If trace mode
is disabled, the return trace mode flag has no effect.

2.4.2 The Clear Commands

cs - Clear symbol table

Syntax:
CS

Description:

cs removes all symbols from the debugger’s memory-resident
symbol table.

When a program is loaded using the Jp command, the cs
command is automatically called.

2.4.3 The Display Commands

db - Display memory in bytes
dw - Display memory in words
di - Display memory as longs
d - Display memory in last format

Syntax:

db [RANGE]
dw [RANGE]
dl [RANGE]
d [RANGE]

Description:

The db, dw and dl commands display successive bytes, words and
double words of memory, respectively. d displays memory using
the last format specified; for example, if d is entered, and db was
the last "display memory’ command, then d will display bytes,

- debug.18 -

DB Debugger DB

the remembered values:

ok When a RANGE is specified which consists of a single
ADDR, the last used CNT is used.

When a RANGE is specified which consists of ’,;CNT’, the
next consecutive address is used, and the remembered count
is changed to the new value.

When nothing is specified as the RANGE, the next
consecutive address is used as the starting ADDR, and the
CNT is set to the remembered value.

2.3.1.5 The Definition of CMDLIST

A CMDLIST is a list of commands. It consists of a sequence of
commands or macros separated by semicolons:

COMMAND [;COMMAND ...]

If a macro is in a CMDLIST, it must be the last command in the list.

2.4 Command descriptions

The following descriptions of debugger commands uses terms and
concepts which were presented in the preceding sections.

The commands are listed alphabetically. For an index, see the
command summary which follows the descriptions.

2.4.1 The Breakpoint Commands

bb - Set Byte Memory-Change Breakpoint
bw - Set Word Memory-Change Breakpoint
bl - Set Long Memory-Change Breakpoint

Syntax:
bb
bw
bl
bb ADDR == [VAL]
bb ADDR != [VAL]
bw ADDR == [VAL]
bw ADDR != [VAL]
bl ADDR == [VAL]
bl ADDR != [VAL]

Description:

These commands are used to set and clear a memory-change
breakpoint, with the parameterized versions used to set

breakpoints and the parameter-less version to clear them. The 60
command is used to monitor a one-byte field, the bw command
to monitor a two-byte (word) field and the b/ command 1s used to
monitor a four-byte field.

- debug.15 -

DB Debugger DB

The starting line number is optional; if not specified, the display
starts with the "current" line.

The current line in a source file is set by the source file
commands /f, df, and f, as follows:

* When the file is first loaded with the /f command, the
first line in the file is the current line;

* When the last source file command was ’display source’,
df, the current line is the line following the last one
displayed;

* When the last source file command was ’find string’, f,
the current line is the line in which the string was
found.

df also sets the "F-dot" for the source file to the number of the
first line displayed. The F-dot is the line referred to when the
Starting line number of the range in a df command specifies a
period (.). Also, source string searches begin at the line following
the F-dot line.

Each displayed line is preceded with a line number in decimal, a
colon, and the line itself.

dg - Display global values

Syntax:

ag
Description:

For each data symbol in the debugger’s symbol table, dg displays
the contents of the 16-bit field referenced by that symbol.

dha - Display application heap structure

Syntax:
dha

Description:

This command displays the application heap structure. The
address and size of each block is shown as well as any attributes
associated with it such as relocatable, locked, purgable or free.

~- debug.20 -

DB Debugger DB

address hits skip command
printf _ | 2
putc__ 0 0 db Cbuffs

In this example, two breakpoints are in the table. The first is at
the beginning of the function printf; a breakpoint will be taken
for it every third time it is reached, and no command will be
executed. Given its current hit count, a breakpoint will be taken
the second time printf __ is reached.

The second breakpoint is at the function putc_; a breakpoint will
be taken each time the function is reached, and will display
memory, in bytes, starting at _ Cbuffs.

br - Reset breakpoint counters

Syntax:
br [ADDR]

Description:

br resets the *hit’ counter for the specified breakpoint which is at
the address, ADDR. If ADDR isn’t given, the "hit? counters for
all breakpoints in the breakpoint table are reset. If ADDR is
followed by a trap name, the trap counter is reset.

bs - Set or modify a breakpoint

Syntax:
[#] bs ADDR [;CMDLIST]

Description:

bs enters a breakpoint into the breakpoint table, or modifies an
existing entry.

The optional parameter # is the skip count for the breakpoint. If
not specified, the skip count is set to 0, meaning that each time
the breakpoint is reached it will be taken.

The optional parameter CMDLIST is a list of debugger
commands to be executed when the breakpoint is taken. If
ADDR is’! followed by a trap name, this trap is breakpointed.

- debug.17 -

DB Debugger DB

2.4.5 The ’Find Source String’ Command

f - find string in source file

Syntax:
fSTRING

Description:

This command searches the current source file (that is, the one
specified by the last /f command) for a specified string.

The search begins at the line following the current line.

If the string is found, the current line and the F-dot line of the
source file is set to the line containing the string: otherwise,
these values are unchanged.

STRING is the character string to be located, and consists of all
characters following the f and preceeding the carriage return.

If the first character of the string is ’*’, the search will begin with
the first character on a line. In this case, ’*’ isn’t part of the
search string.

The ’current line‘ and F-dot line for a source file are defined in
the description of the df command.

2.4.6 The Go commands

g - Execute the program
G -_ Execute the program, without setting table breakpoints

Syntax:
[#]g [@ <function>] [ADDR] [;CMDLIST]
[#]G [@ <function>] [ADDR] [;CMDLIST]

Description:

The g commands transfer control of the processor to the user’s
program, at the address specified by PC. The user’s program then
executes until it terminates, an error such as division by zero
occurs, Or a breakpoint is taken; control then returns to the
debugger program.

The parameters to the ’g’ commands allow one or two temporary
breakpoints to be set in memory before the user’s program is
executed.

The difference between the ’g’ and the ’G’ command is that the
’G’ command sets in memory just the breakpoints specified in
the command itself, while the ’g’ command also sets the
breakpoints specified in the breakpoint table.

- debug.22 -

DB Debugger DB

too.

The starting address of the RANGE parameter is optional; if not
specified, it defaults to the ending address of the last display’s
RANGE, plus one.

Each line of the display begins with the address, followed by a
hexadecimal display of 16 bytes, 8 words or 4 double words,
followed by an ASCII display, by bytes, of the same data. For the
ASCII display, values falling outside the range 0x20 to Ox7f are
displayed as a period.

If the ending address does not fall on a multiple of 16 bytes, only
the number of bytes or words specified in the last line will be
displayed.

dc - Display all code symbols

Syntax:
dc

Description:

dc lists all the code symbols in the memory-resident symbol table
and all user-defined symbols.

For each symbol, its name and address are displayed.

dd - Display all data symbols

Syntax:
dd

Description:

dd lists all the data symbols in the memory-resident symbol table.

For each symbol, its name and address are displayed.

df - Display source file lines

Syntax:
df [RANGE]

Description:

df displays lines from the source file which was specified in the

last Jf command.

The RANGE parameter specifies the numbers of the lines to be
displayed.

- debug.19 -

DB Debugger DB

Ip - Load program

Syntax:

lp
lp progfile [arg] arg2 ...]

Description:

[p loads a program into memory. If a symbol table file can be
found for the program, it will be loaded, too.

If the /p command is given without parameters, the last lp
command is re-executed. The following comments describe the
parameterized version of Ip.

Loading the program

The parameter prog file specifies the file containing the program.

If the program file name specifies a drive or path, the file is
searched for in just that location; otherwise, it’s searched for on
the current directory.

If an attempt is made to load a program before a currently loaded
program has terminated, the current program will be terminated
by the debugger before the new program is loaded.

Loading the symbol table

After the program is loaded, the memory-resident symbol table is
cleared of all symbols except for those defined with the y
command, and an attempt is made to locate and load the
program’s symbol table from the resource ’SYMS’ in the current
resource file.

The U-dot (that is, the value of the period parameter associated
with the u commands) is set to the PC. The D-dot (the value of
the period parameter for the d and m commands) is set to 0.

Once a program exits, it must be reloaded with an lp command
before it can begin again.

Is - load symbols

Syntax:
ls

Description:

ls loads symbols from the specified resource ’"SYMS’ in the
current resource file into the debugger’s memory-resident symbol
table, after first clearing the memory-resident table of all but

- debug.24 -

DB Debugger DB

dhs - Display system heap structure

Syntax:
dhs

Description:

This command displays the system heap structure. The address
and size of each block is shown as well as any attributes
associated with it such as relocatable, locked, purgable or free.

ds - Display Stack Backtrace

Syntax:
ds

Description:

ds displays information about the current function or trap, the
function which called it, and so on, back to Croot, the Manx
function which called the user’s function main.

For each function, the information consists of the function’s
name, the parameters passed to it, and the address to which it will

return.

The arguments are displayed as a series of 16-bit hex values. If an
argument is actually of type long or double, it will be displayed as

separate words.

ds determines the number of parameters by looking at the
instructions which follow the address to which the function will

return.

ds assumes that the A6 register points to the C stack frame for
the current function, unless the current instruction is within 4
bytes of the start of the function.

2.4.4 The Exit Command

e -. exit

Syntax:
e

Description:

This command permits the user to exit from the debugger

without removing it from memory. The user can then re-enter
the debugger at any later time simply by pressing the Interrupt
button on the left-hand side of the Macintosh.

- debug.21 -

DB

mm

Debugger DB

- Move memory

Syntax:
mm RANGE = ADDR

Description:

ms

mm copies one block of memory to another.

The RANGE parameter specifies the source block and
ADDR the starting address of the block to be modified.

- Search memory

Syntax:

ms RANGE = EXPR1 [EXPR2 ...]

Description:

ms searches a block of memory for a sequence of bytes having
specified values. For cach match, the corresponding address of
the start of the string is displayed.

RANGE specifies the block of memory. The EXPR parameters
are expressions, each of whose resulting values is one byte of the
search sequence.

2.4.9 The Radix Command

h - Change radix

Syntax:
nX

Description:

This command changes the default radix (hexadecimal) for user
input or debugger display. X is a single character ’b’, ’d’, ’o’, or
x’ which changes the default radix to binary, decimal, octal, or
hexadccimal respectively.

The radix can be forced to a given value by specifying one of the
following prefixes before the desired number:

Ox hex

Oo octal
Ob binary

To display a number in decimal, the number must have a.
(period) appended to it.

- debug.26 -

DB Debugger DB

The ’#’ and ’ADDR’ parameters define one of the temporary

breakpoints that a G or g command can set:

* ¢# is the skip count for the breakpoint; it defaults to

zero, meaning that the breakpoint is taken every time

it’s reached;

* ADDR is the address for the breakpoint;

If ADDR is ’” followed by a trapname, the debugger will set a

temporary breakpoint on this trap.

The ’@ <function>’ parameter specifies that a temporary

breakpoint is to be set at the return address of the specified

function. If the function isn’t specified, it defaults to the current

function. If a function is specified, the breakpoint is set to the

address to which the function will return. In this case, the

breakpoint isn’t set until the function is entered; thus, in

programs which call the function from several different places,

the breakpoint will be set at the actual address to which the

function will return.

The ’;CMDLIST parameter defines a sequence of debugger
commands, separated by semicolons, that the debugger is to
execute once a breakpoint which is specified in the ’go’

command is taken. If this parameter isn’t specified, it defaults to

the command list used for the last temporary breakpoint.

Before setting breakpoints and transferring control to the user’s

program, the debugger single-steps the user’s program, (that is,

causes it to execute one instruction). This allows the operator to

transfer control to a location in the program at which there is a

breakpoint, without immediately triggering a breakpoint and re-

entry to the debugger.

2.4.7 The Load Commands

If Load a source file

Syntax:
lf filename

Description:

if opens the specified source file for subsequent examination by

the df command.

If a file has already been opened by a previous Jf, it’s closed

before the new file is opened.

- debug.23 -

DB Debugger DB

pd var

The code x says "take the two-byte binary value at the
current address, convert it to hexadecimal, and print the
result". So the hexadecimal value of var could be
printed with the command:

px var

indir iS a string of zero or more * characters, which are
indirection indicators specifying that the value at the
current data item is a pointer to a chain of zero or more
pointers, the last of which points to an object whose type
and requested conversion are defined by desc_code.

To find the data object corresponding to a format item
that has indirection indicators, p begins by setting its
idea of the address of the data object to the current
address. It then works its way from left to right through
the indirection indicators; for each indicator it replaces
its current idea of the data object address with the
pointer that is in the field at this address. The data
object address is distinct from the current address: at the
end of this process, the p command’s current address is
simply incremented past the first pointer.

A * specifies that the pointer within the field referenced
by the current data object address is four bytes long.
This pointer is the offset component of the new data
object address from the last segment referenced.

For example, if the variable cp is a pointer to a character
string (that is, its declaration is char *cp), then the string
pointed at by cp could be printed by the command

p*s cp

Here we have made use of the s desc code, which
specifies that the data object is a character string, and
that the string’s characters are to be printed, with
possible modifications as noted below, up to a
terminating null character. After this command, the p
command’s current address is set to the byte
immediately following cp.

As another example, if cpp is a pointer to an array of
pointers to character strings (that is, the declaration of
cpp 1s char **cpp), then the string pointed at by the first
element of the array could be displayed with the
command

p**s cpp

- debug. 28 -

DB Debugger DB

those symbols defined with the vy command.

2.4.8 The Memory Modification Commands

mb - Modify bytes of memory
mw - Modify words of memory
ml - Modify double words of memory

Syntax:
mb ADDR EXPRI [EXPR2...]
mw ADDR EXPRI [EXPR2...]
ml ADDR EXPRI [EXPR2...]

Description:

mb, mw and ni modify bytes and words of memory, respectively.

The parameter ADDR specifics the address of the first byte or
word to be modificd.

The EXPR parameters arc cxpressions, whosc resulting valucs arc
sct in mcmory, with EXPRI sct in the first byte or word
specificd, EXPR2 sct in the next higher byte or word, and so on.

The EXPR paramctcrs can be scparatcd by spaces or commas.

mc - Compare memory

Syntax:
mc RANGE = ADDR

Description:

mc compares two blocks of memory and, for cach comparison
which fails, displays the corresponding address, and valuc.

RANGE spccifics one of the blocks of memory. The sccond
begins at ADDR and has the samc Icngth as the first block.

mf - Fill memory

Syntax:
mf RANGE = EXPR

Description:

nif scts cach byte in a block of memory to a specified valuc.

The RANGE parameter specifics the memory block, and EXPR

an expression whosc resulting valuc is the valuc to be sct in the
range.

- debug.25 -

DB | Debugger DB

sixteen.

The second item causes the print command to again take the item
at the current address as a pointer, increment the current address
by four, and then convert to decimal and print the four
successive two-byte values that begin at the address defined by
the pointer. At the end of the process, the current address has
been advanced by four.

As an example of the use of format strings containing several
format items, consider the following code:

Struct {
int *ip;
float fit;
char *cp;

} var = {&1, 3.14159, "ralph"};
int i=2;

The command

p*d4-xf*s4-x var

will print

2 XXxXxxxxx 3.14159 ralph yyyyyyyy

where xxxxxxxx 18 the hexadecimal address of i and yyyyyyyy is
the hexadecimal address of the string.

A complete list of the desc codes

We have introduced some of the desc_codes above. Here is a list of
the basic desc__codes:

Convert to hexadecimal and print a byte.
Convert to decimal and print a two-byte signed binary
value.
Convert to decimal and print a four-byte signed
binary value.
Convert and print a four-byte float.
Convert and print an eight-byte double.
Convert to octal and print a two-byte field.
Convert to octal and print a four-byte field.
Convert to hexadecimal and print a 2-byte field.
Convert to hexadecimal and print a 4-byte field.
Convert to decimal and print an unsigned, two-byte
value.
Convert to decimal and print an unsigned, four-byte
value.

Print a pointer in address form with translation.
Print a pointer in address form without translation.
Print a character with translation.

gy

a
s

c
M
’
«
x
O
O
M
N
™

C
Q
T
D

- debug.30 -

DB Debugger DB

2.4.10 The ’Print? Command

p - formatted print

Format:

pf format] [ADDR][,COUNT]

Description:

p generates a formatted display of memory of a section of
memory, by converting data items in memory to a displayable
form as directed by the format conversion string format.

format is a list of format specifications, each of which defines the
type of a data item and the conversion to be performed on it.

p works its way through the format string, converting and
displaying data items in memory as requested by the format
String items. When p reaches an item in the format string, it
converts the data item at its current address’ as directed by the
format item. When it finishes processing a format string item, it
increments its current address by the size of the data item that it
just processed, so as to be ready to process the next data item as
directed by the next format string item.

The format string is optional; if not specified, the format string
used by the previous p command is used.

ADDR specifies the address of the first data item that p is to
convert and display. If ADDR is not entered, the starting address
is assumed to be the print command’s ’current address’.
Normally, this is the address of the first byte beyond the last data
item converted by the last p command. However, there is a
format item that causes p to remember the address contained in
the current data item, and then make that the current address
after it finishes processing the entire format string.

COUNT specifies the number of times that p is to work its way
through the format string. Each time through, p begins at the
current address that was left by the last time through. If COUNT
isn’t specified, it defaults to one time.

The format items have the form

[rpt][indir_flgs][size]desc code

where

* desc__code is a single-letter code that defines the type of
the data item and the conversion to be performed upon

it. For example, the code d says ’take the two-byte
binary value at the current address, convert it to
decimal, and print it’. So if var is an int, the following
command could be used to print its value in decimal:

- debug.27 -

DB Debugger DB

pointer to this structure. The program that uses this structure and
field will chain symbol table items together, and set a pointer to the
head of the chain in sym_ head.

Struct symbol {
struct symbol * sym__ next;
char *sym__ name;
unsigned sym __ val;

} *sym__head;

The following command would display the symbol table item pointed
at by sym_head and then set the p command’s current address to the
next symbol table item, which is pointed at by the sym_ next field in
the first item:

pA"symbol name="*snt"valuc="x sym__ head

After this command is entered, you can display successive symbol table
items by simply entering

p

The p command’s current address is correctly set to the next table
item, and since a format string isn’t specified, the p command will use
the one that it last used.

You can print out multiple symbol table items by entering a single p
command. To do this, place a comma and the maximum number of
items to be printed after the command’s starting address. The
command will follow the chain, printing symbol table items until it
either prints the specified number of items or it prints an item whose
sym__next pointer is null. In the latter case, it will terminate and leave
the p command’s current address set to the address of the last symbol
table item. For example, entering

pA"symbol name="*snt"value="x sym__head,100

will print symbol table items until it either prints 100 items or it prints
an item having a null sym__next pointer.

2.4.11 The Quit command

q - Quit the debugger

Syntax:

q

Description:

q terminates the program being debugged, restores any modified
interrupt vectors, and returns control to the operating system.

- debug.32 -

DB Debugger DB

Following this command, the p command’s current
address is set to the byte following cpp.

The rpt parameter of a format item defines the number
of times that the item is to be processed. It allows a
sequence of rpt identical format items to be abbreviated
by just one such item with a leading rpt count.

For example, if a is an array of floats, then the first five
items in this array could be displayed with the command

psfa

This command uses the fact that the desc code to
convert a four-byte floating point value at the current
address to a displayable value is f. This command is
equivalent to the command pfffff a. At the end of this
command, the p command’s current address is set to the
address of the byte following the last displayed float.

The size parameter of a format item defines the number
of data items that are to be converted and printed.
When the format item doesn’t use indirection, size has
the same effect as rpt; for example, in the p5f a
command above, the 5 could be interpreted as being a
size parameter instead of a rpt parameter.

When the format item does use indirection, then the size
parameter defines the number of data items to be
converted and printed at the end of the indirection
chain. For example, if a module defines /pp as a pointer
to an array of pointers to array of Jongs (that is, the
declaration of Jpp is long **ip), then the following
command would display the first four longs pointed at
by the first element of the pointer array:

p**4D Ipp

Here we have used the D desc_ code, which specifies
that a four-byte signed binary value is to converted to
decimal and printed. The following command would
display the first three Jongs pointed at by the first three
elements of the pointer array:

p3*4D *lpp

To demonstrate further the difference between the rpt and size
fields in a format item, consider the format items ¢*d and *4d.
The first causes the print command to take the item at the

current address as 4 pointer, increment the current address by
four, convert to decimal and print the two-byte value referenced
by the pointer, and then repeat the process three more times. At
the end of the process, the current address has been advanced by

- debug. 29 -

DEBUG

Chapter Contents

Debugging Utilities oo. ccssssscssscssecsscssscssssccessescessssecsecsesseesssessseess debug
Ub (program debugger) wc esscssssccsssssccssescescssecsscssessessssssccesessesceasees 4

L. OVELVICW wooeccccccssssssssssscsscsscsecceccssscsscssssssssessecatcssecsesssesaseesusessesaees 5
LL Basic Commands ou... cccecsscscsssscscecceccoscessesscecccescescsssesseeeeuees 5
1.2 N€@M€ .u.....ceccessccsssesssesssssssscscccsscccscessccessecsacessscsesceeasecenscesseenecs 5

1.2.1 Code and Data Symbols wie leesccesssceesecesscesecssceess 6
1.2.2 Operator Usage of Names oii ccssssscstscessscessseeseees 6

1.3 Loading programs and Symbols oo... cecscccsccsesccceseccesseees 6
1.4 Breakpoints oo... ccssscessscsscccsscecssccesscccessscssscessscesssescssescssesses 7
1.5 Memory-change breakpoints oo... ceeccsscccsssscssscccessecesesees 8
1.6 Trace MOde wou... cecsssssssscsecssceccesssccessscsscessessessecescecsecensecsacs 8
1.7) Backtracing u........ccccccsssccssscsscccsscececcessssecessecsessesssccssseccsseeceeeeses 8
1.8 Macros ...cccccsccsssccsssssscssccsscsssesssccecsscessceacecsscssccessessecsassssaccasonscs 9
1.9 Displaying source files wus ceeecsscesccsscessceccsscsescescessecsees 9
1.10 Other features oc ssccccsscccsscscsccccssccecsscersssessssecsssecesssces 9

2. USING DB oon ce csssssssscesscesccsscsescssssscececscssensssencectscscseneesaeceaes 10
2.1 Starting DB oi ecsscccssscscccssscsssessscssscesscccssecessecseecenscces 10
2.2 Using DB with an external terminalcccececesscsseeees 10
2.3 COMMANASccscscsscssssscsscsscsssccecssescecsssescssecssesaccaeessecesenees 1]

2.3.1 Defimitions oii cessccesccscecsscssssesccssscsscsescceescssseseees 1]
2.4 Command AeSCriptioNns oou...e.ccccescccscsessscsscceccccssscccsscsececeeceeee 15

2.4.1 The BREAKPOINT (b) commandscccceceecceseee. 15
2.4.2 The CLEAR (c) commands ou... cccssccscsssesscesseceees 18
2.4.3 The DISPLAY (d) commandsccccesssssscecscecseeeees 18
2.4.4 The Exit (€) commando... ceccccssscsssccessecsecesscesseees 21
2.4.5 The ’Find source string’ (f) commandccceees 22
2.4.6 The GO (g) COmMANAS ooo eeccccessecsssecessscessecserees 22
2.4.7 The LOAD (1) command wow eecccessecsssscesscesseees 23
2.4.8 The MODIFY MEMORY (m) commands 25
2.4.9 The Radix (n) COMMANA wove cessetsccesccescceesceseeens 26
2.4.10 The PRINT (p) command oo. cccccccsccsscessecesseceseees 27
2.4.11 The QUIT (q) command wee. cceeccecsssccsssesecesccscesees 32
2.4.12 The REGISTER (1) commando... ccccecesccceeeeeees 33
2.4.13 The SINGLE STEP (s/t) commandsccceeeee. 33
2.4.14 The UNASSEMBLE (u) commandscce:cceeee: 34
2.4.15 The VARIABLE (v) commands 2.00... ceeccccessceeseeeee: 34
2.4.16 The MACRO (x) Command. woe. ecccceccesecececessscessees 35
2.4.17 The Swap Screen (5) command.c...ccccccsscecescceseeee 35
2.4.18 The "Display Expression’ commandcccccccsseee. 35

2.4.19 The HELP (7) COMMANG woe. cecsesscssesceecsceacseeess 36
3. Command Summary *A 37

- debug.2 -

DB Debugger DB

2.4.14 The Unassemble commands

u - Unassemble memory, with symbols
U - Unassemble memory, without symbols

Syntax:
u RANGE
U RANGE

Description:

These commands ‘disassemble’ a range of memory; that is,
display the assembly language instructions in the range.

The uw and U commands differ in that the « command will make
use of the symbol table during disassembly and the U command
won’t. Also, the U command displays, for each instruction, the
hex value of each byte of the instruction, whereas the w
command won’t.

With the u command, the disassembly of an instruction which
references memory displays the location as the symbol nearest to
the location plus an offset, if possible. With the U command, the
location is displayed as a hexadecimal value.

The RANGE parameter specifics the area of memory to be
disassembled. It gives the starting address, and either the number
of instructions to be disassembled, or the ending address of the
area.

2.4.15 The Variable commands

v - Create a new symbol
V - Modify the value of an existing symbol

Syntax:
vy SYMBOL = ADDR
V SYMBOL = ADDR

Description:

The v and V commands are used to create a new symbol or
modify the value for an existing symbol, respectively, in the
debugger’s memory resident symbol table.

SYMBOL is the name of the symbol being created or modified,
and ADDR 1s its address.

The symbol will be classified as a code symbol.

- debug.34 -

DB Debugger DB

C Print a character without translation.
S Print a string up to a terminating null byte with

translation.
S Print a string up to a terminating null byte without

translation.

For the C and S desc__codes, each character is printed "as 1s", with no
translations.

For the c and s codes, printable ASCII characters (that is, whose hex
value is between 0x20 and 0x7f) are printed "as is". A character whose
hex value is less than 0x20 is printed as two characters: * followed by
the printable character whose hex value equals the original character’s
value plus 0x40. A character whose hex value is 0x80 or greater is
displayed as a ° character followed by the one or two characters that
would be printed for the character whose hex value equals that of the
original character less 0x80. For example, 0x41, 0x1, and 0x81 would
be printed as A, *A, and ’*A, respectively.

The following desc__codes can be used to assist in the formatting of the
p output:

character output
N orn Output a newline character
Rorr Output a blank character
Tort Output a tab character
"string" output "string"

These characters can be preceded by a count specifying the number of

characters or strings to be output.

The next group of desc_codes change the p command’s notion of the
current address. They don’t cause any printing.

Back up the current address by the size of the last data
item.

- or + Back up or advance, respectively, the current address
by size bytes, where size is a decimal value preceding
the - code. If size isn’t specified, it defaults to one

byte.
Aora Remember the pointer that is contained in the current

data object; If this pointer is not null, set the p
command’s current address to this value after the
entire format string has been processed.

If the pointer is null, set the p command’s current
address to the value it had before the entire format
string was processed.

The A and a desc_ codes are useful for printing the elements of a
linked list. For example, consider the following code, which defines
the structure for a symbol table item, and declares sym_ head to be a

- debug.31 -

DB Debugger DB

symbol table has been loaded, the closest symbol is displayed as
well.

2.4.19 The Help command

2 - list commands

Syntax:
?

Description:

This command lists the debugger commands. For groups of
related commands, the listing usually lists the first letter of the
commands followed by a ?. You can get a listing of all the
commands in such a group by typing the the letter, the ?, and
return. For example, the listing for the ’display’ commands is d?;
thus you can type d? followed by return to get a listing of all the
display’ commands.

- debug.36 -

DB Debugger DB

2.4.12 The Register command

r - Register display

Syntax:
r
r <reg>=EXPR

Description:

r displays and modifies the registers, including the status
registers, of the program being debugged.

The parameter-less version displays the registers.

The parameterized version modifies the contents of a register,
with <reg> being the name of the register to be modified, and
EXPR an expression whose resulting value is to be set into the

register.

2.4.13 The Single Step commands

s - Single step with display
S - Single step without display
t - Single step with display through traps
T - Single step without display through traps

Syntax:
[#] s [;CMDLIST]
[#] S [;CMDLIST]
[#] t [;CMDLIST]
[#] T [;CMDLIST]

Description:

These commands ’single step’ the user’s program; that is, execute
its instructions one by one. The ’s’ versions of the command
treat the Macintosh system calls as a single function. The ’t’
versions allow the user to single step through such traps.

The optional ’#’ parameter specifies the number of instructions
to be executed; it defaults to one instruction.

The optional CMDLIST parameter is a list of debugger

commands to be executed after each single step.

The commands differ in that s and ¢ display information after
each single step, whereas S and T only display information after

the last single step.

The displayed information consists of the registers and a

disassembly of the next instruction to be executed.

When single-stepping, breakpoints aren’t enabled.

- debug.33 -

DB

formatted print commands

Dp

quit command

q

register command

r

single step commands

s/S
t/T

unassembly commands

u/U

variable command

v/V

macro command

X

swap screen command

6

display expression

help command

?

Debugger DB

gencrate formatted print

quit debugger

register display

single step with/without display
single step with/without display through traps

unasscmble memory

crcate/modify symbol

define or modify a command macro

display the other screen

display valuc of an expression

list dcbugger commands

- debug.38 -

DB Debugger DB

2.4.16 The Macro command

x - Macro command

Syntax:
xc
xc = CMDLIST
x?

Description:

The x command defines or executes a sequence of debugger
commands, called a ’macro’. It can also list the defined macros.

A macro is associated with a letter of the alphabet, so up to 26
macros can be known to the debugger at one time. Case is not
significant.

A macro is defined by typing the letter ’x’, followed by the letter
with which the macro is to be associated. Then follows an ’=’
character and the macro’s list of debugger commands, with the
commands separated by semicolons.

A macro is executed by typing ’x’, followed by the letter with
which the macro is associated, followed by a carriage return.

The macros which have been defined can be listed using the
command x?.

2.4.17 The Swap Screen command

‘ - swap screens

Syntax:
é

Description:

The back quote (‘) command allows either the debugger’s output
screen or the user’s screen to be on display at any given time. It
toggles between the screens and allows the user to examine either
one.

2.4.18 The ’Display expression’ Command

= - Display the value of an expression

Syntax:
= EXPR

Description:

This command displays the value of an expression.

The expression is displayed in several formats: hexadecimal,
signed decimal, unsigned decimal, octal, binary, and ASCII. If a

- debug.35 -

DB Debugger DB

3. Command Summary

break point commands

bb/bw/bl
be/bC

clear commands

CS

display commands

db/dw/dl/d
dc/dd
df

dg
dha
dhs
ds

exit command

Cc

find source string

f

go commands

g/G

load commands

memory modification commands

mb/mw/ ml
mc
mf
mm
ms

radix command

n

sct byte/word/long memory-change breakpoint

clear onc/all breakpoints
display the breakpoint table
resect the breakpoint countcrs
sct or modify a breakpoint
enable/disable trace mode

clear all symbols

display memory in bytcs/words/longs/last format

display codc/data symbols
display source file lines
display global valucs
display application heap structure
display system hcap structure
display stack backtrace

cxit to shell without removing debugger

find string in source filc

exccute user’s program

load a source file
load program
load symbols

modify bytcs/words/longs of memory

compare arcas of memory
fill memory
move memory
scarch memory

change the default radix for input and display

- debug.37 -

OVERVIEW OF LIBRARY FUNCTIONS

- liboy.1 -

Library Overview Aztec C

Chapter Contents

Overview of Library FUnctions ...c.....cccsscsssesssssssssssssssseccesescosseseeccccccc. libov
V. T/O OVErVIEW oes ceesseeccssssecssseesssssssssseesssesssisestssssstisseteeeeeeesosececccc 4

1.1 Pre-opened devices, command line ATES ...cecccscssessccececs sevsescens 4
V2 File 1/O wecseccssssssssssccsnssssssesssssssssssssessesssussssssssstsssssseostecceesecccc. 6

1.2.1 Sequential 1/0 oo. cecsssssssessssssessssecsssssssosteeceesecesccc 6
1.2.2 Random 1/0 oe ecccsssssssssssssessrscsssscssssssssscoteseesecceececcs 6
1.2.3 Opening Filesccssssssssssssssssessecssssssssescoseeeeseeeeesecccc 6

V3 Device 1/O wesc ceecssssessssesssssssssssssessssssstsssssesessesesseeeeeseeesecc 7
V3.1 Console 1/O ou... sesessssssssssssssseessssesssecssssostssssseeceeeeceeecse 7
1.3.2 I/O to Other Devices w..cc.sccccscssssssssssssssosseeceececeeeeccc 7

1.4 Mixing unbuffered and standard T/O Calls vu..cesuceccccssscssssseees 7 2. Standard 1/O Overview ...cccccsssssssssssssrssesssssssssessessseeeccccc 9
2.1 Opening files and devicescccccsssssesssssssssssescocseeeecc 9 2.2 Closing Streams ..00.......sessssssssssssssceseesesssssseessstseeeeccsec 9 2.3 Sequential 1/0 oe eccessssssssesssssssssnessssutssssessssssssessecccseesc 10
24 Random 1/0 wicca ceccseessssssssessssssssersesesssssecssssisssssseeseseeccc 10 2.5 Buffering oosssscscssssscssssssssssssssssssssesssssssssssseccc ce 10 2.6 EQQOTS cessssssssssssssssssssseeesssssssssessssssusessssstsssesststsissssssieeeccccc 1] 2.7 The standard I/O functionscccssssssessssssseecccecc 12 3. Unbuffered I/O Overview wees 14 Be FiO 1/O ee sceseesssssscsscccesnssssnsesssssssssssestsuesessssstssssteeeccccccc 15
3.2 Device 1/O weecesccssssscesesssssssssesssisssssssssssssstssstisieeeeccccccc 15

3.2.1 Unbuffered I/O to the Console veces, 15
3.2.2 Unbuffered I/O to Non-Console DEVICES woccececcscceeees 16 4. Console 1/0 Overview o..ecccsssssssssssssscssssessessseseseec 17 4.1 Line-oriented inputeccccssssssssesssssssssssessssesseseecc 17 4.2 Character-oriented inputccscssscccssssssssseeccc 18 4.3 USING i0Ctsessssssssccsssssssseessssssssssssesssssstsstssssessscssenccc 19 4.4 The sgtty fields oo cccssssssssssseeessssssssscc 19 A 2211) 2 (ee 20 S. Dynamic Buffer Allocation ...ecccccscsssseeeesssssssssseecc 22 6. Error Processing Overview woucecccccsscsscssssssssssssssssec 23

- liboy.2 -

Aztec C Library Overview

Overview of Library Functions

This chapter presents an overview of the functions that are
provided with Aztec C. It’s divided into the following sections:

I. I/O; Introduces the i/o system provided in the Aztec C
package.

2. Standard I/O: The i/o functions can be grouped into two
sets; this section describes one of them, the standard i/o
functions.

3. Unbuffered I/O: Describes the other set of i/o functions,
the unbuffered.

4. Console I/O: Describes special topics relating to console
1/0.

5. Dynamic Buffer Allocation: Discusses topics related to
dynamic memory allocation.

6. Errors: Presents an overview of error processing.

The overviews present information that is system independent.
Overview information that is specific to your system is in the form of
an appendix to this chapter; it accompanies the system dependent
section of your manual.

- libov.3 -

LIBRARY I/O Overview Aztec C

1. Overview of I/O

There are two sets of functions for accessing files and devices: the unbuffered i/o functions and the Standard i/o functions. These functions are identical to their UNIX equivalents, and are described in chapters 7 and 8 of The C Programming Language.
The unbuffered i/o functions are so called because, with few exceptions, they transfer information directly between a program and a file or device. By contrast, the standard i/o functions maintain buffers through which data must pass on its journey between. a program and a disk file.

The unbuffered i/o functions are used by programs which perform their own blocking and deblocking of disk files. The standard 1/0 functions are used by programs which need to access files but don’t want to be bothered with the details of blocking and deblocking the file records.

The unbuffered and standard i/o functions each have their own Overview section (UNBUFFERED I/O and STANDARD I/O). The remainder of this section discusses features which the two sets of functions have in common.

The basic procedure for accessing files and devices is the same for both standard and unbuffered 1/0: the device or file must first be "opened", that is, prepared for processing: then 1/0 Operations occur; then the device or file is "closed".

There is a limit on the number of files and devices that can simultaneously be open; the limit on your system is defined in this Chapter’s system dependent appendix.

Each set of functions has its own functions for performing these operations. For example, each set has its own functions for opening a file or device. Once a file Or device has been Opened, it can be accessed only by functions in the same set as the function which performed the open, and must be closed by the appropriate function in the same set. There are exceptions to this non-intermingling which are described below.

There are two ways a file or device can be opened: first, the Program can explicitly open it by issuing a function call. Second, it can be associated with one of the logical devices standard input, standard Output, or standard error, and then opened when the program starts.
1.1 Pre-opened devices and command line arguments

There are three logical devices which are automatically opened when a program is started: Standard input, standard Output, and Standard error. By default, these are associated with the console. The Operator, as part of the command line which Starts the program, can Specify that these logical devices are to be "redirected" to another

- libov.4 -

Aztec C I/O Overview LIBRARY

device or file. Standard input is redirected by entering on the
command line, after the program name, the name of the file or device,
preceded by the character ’<’. Standard output is redirected by
entering the name of the file or device, preceded by ’>’.

For example, suppose the executable program cpy reads standard
input and writes it to standard output. Then the following command
will read lines from the keyboard and write them to the display:

cpy

The following will read from the keyboard and write it to the file
test file:

cpy >testfile

This will copy the file exmplfil to the console:

cpy <exmplfil

And this will copy exmplfil to test file:

cpy <exmplfil >testfile

Aztec C will pass command line arguments to the user’s program via
the user’s function main(argc, argv). argc is an integer containing the
number of arguments plus one; argv is a pointer to a an array of
character pointers, each of which, except the first, points to a
command line argument. On some systems, the first array element
points to the command name; on others, it is a null pointer.
Information on your system’s treatment of this pointer is presented in
this chapter’s system dependent appendix.

For example, if the following command is entered:

prog argl arg2 arg3

the program prog will be activated and execution begins at the user’s
function main. The first parameter to main is the integer 4. The second
parameter is a pointer to an array of four character pointers; on some
systems the first array element will point to the string "prog" and on
others it will be a null pointer. The second, third, and fourth array
elements will be pointers to the strings “argi", "arg2", and "arg3"
respectively.

The command line can contain both arguments to be passed to the
user’s program and i/o redirection specifications. The i/o redirection
Strings won’t be passed to the user’s program, and can appear anywhere
on the command line after the command name. For example, the
Standard output of the "prog" program can be redirected to the file
outfile by any of the following commands; in each case the argc and
argv parameters to the main function of ’prog’ are the same as if the
redirection specifier wasn’t present:

- liboy.5 -

LIBRARY I/O Overview Aztec C

prog argl arg2 arg3 >outfile
prog >outfile arg arg2 arg3
prog arg! >outfile arg2 arg3

1.2 File 1/O
A program can access files both sequentially and randomly, as discussed in the following paragraphs.

1.2.1 Sequential I/O

For sequential access, a program simply issues any of the various read or write calls. The transfer will begin at the file’s "current position", and will leave the current position set to the byte following the last byte transferred. A file can be opened for read or write access; in this case, its current position is initially the first byte in the file. A file can also be opened for append access; in this case its current position is initially the end of the file.

On systems which don’t keep track of the last character written toa file, it isn’t always possible to correctly position a file to which data is to be appended. If this is a problem on your system, it’s discussed in the system dependent appendix to this chapter, which accompanies the system dependent section of your manual.

1.2.2 Random I/O

Two functions are provided which allow a program to set the Current position of an open file: fseek, for a file opened for standard 1/0; and Iseek, for a file opened for unbuffered i/o.

A program accesses a file randomly by first modifying the file’s Current position using one of the seek functions. Then the program issues any of the various read and write calls, which sequentially access the file.

A file can be positioned relative to its beginning, current position, or end. Positioning relative to the beginning and current position is always correctly done. For systems which don’t keep track of the last character written to a file, positioning relative to the end of a file can’t always be correctly done. For information on this, see this chapter’s system dependent appendix.

1.2.3 Opening files

Opening files is somewhat System dependent: the parameters to the open functions are the same on the Aztec C packages for all systems, but some system dependencies exist, to conform with the system conventions. For example, the Syntax of file names and the areas searched for files differ from system to system.
For information on the opening of files on your System, see this chapter’s system dependent appendix.

- libov.6 -

Aztec C I/O Overview LIBRARY

1.3 Device I/O

Aztec C allows programs to access devices as well as files. Each
system has its own names for devices: for the names of devices on
your system, see this chapter’s system dependent appendix.

1.3.1 Console I/O

Console I/O can be performed in a variety of ways. There’s a
default mode, and other modes can be selected by calling the function
ioctl. We'll briefly describe console I/O in this section; for more
details, see the Console I/O section of this chapter and the system
dependent appendix to this chapter.

When the console is in default mode, console input is buffered and
is read from the keyboard a line at a time. Typed characters are echoed
to the screen and the operator can use the standard operating system
line editing facilities. A program doesn’t have to read an entire line at
a time (although the system software does this when reading keyboard
input into it’s internal buffer), but at most one line will be returned to
the program for a single read request.

The other modes of console i/o allow a program to get characters
from .the keyboard as they are typed, with or without their being
echoed to the display; to disable normal system line editing facilities;
and to terminate a read request if a key isn’t depressed within a certain
interval.

Output to the console is always unbuffered: characters go directly
from a program to the display. The only choice concerns translation of
the newline character; by default, this is translated into a carriage
return, line feed sequence.

Optionally, this translation can be disabled.

1.3.2 I/O to Other Devices

On most systems, few options are available when writing to devices
other than the console. For a discussion of such options, if any, that
are available on your system, see this chapter’s system dependent
appendix.

1.4 Mixing unbuffered and standard i/o calls

As mentioned above, a program generally accesses a file or device |
using functions from one set of functions or the other, but not both.

However, there are functions which facilitate this dual access: if a
file or device is opened for standard i/o, the function fileno returns a
file descriptor which can be used for unbuffered access to the file or
device. If a file or device is open for unbuffered i/o, the function
fdopen will prepare it for standard i/o as well.

- liboy.7 -

LIBRARY I/O Overview Aztec C

Care is warranted when accessing devices and files with both standard and unbuffered i/o functions.

- libov.8 -

Aztec C Standard I/O Overview LIBRARY

2. Overview of Standard I/O

The standard 1/o functions are used by programs to access files and
devices. They are compatible with their UNIX counterparts, with few
exceptions, and are also described in chapter 8 of The C Programming
Language. The exceptions concern appending data to files and
positioning files relative to their end, and are discussed below.

These functions provide programs with convenient and efficient
access to files and devices. When accessing files, the functions buffer
the file data; that is, handle the blocking and deblocking of file data.
Thus the user’s program can concentrate on its own concerns.

Buffering of data to devices when using the standard i/o functions
is discussed below.

For programs which perform their own file buffering, another set
of functions are provided. These are described in the section
UNBUFFERED I/O.

2.1 Opening files and devices

Before a program can access a file or device, it must be "opened",
and when processing on it is done it must be "closed".

An open device or file is called a "stream" and has associated with it
a pointer, called a "file pointer", to a structure of type FILE. This
identifies the file or device when standard i/o functions are called to
access it.

There are two ways for a file or device to be opened for standard
i/o: first, the program can explicitly open it, by calling one of the
functions fopen, freopen, or fdopen. In this case, the open function
returns the file pointer associated with the file or device. fopen just
opens the file or device. freopen reopens an open stream to another
file or device; it’s mainly used to change the file or device associated
with one of the logical devices standard output, standard input, or
standard error. fdopen opens for standard i/o a file or device already
opened for unbuffered i/o.

Alternatively, the file or device can be automatically opened as one
of the logical devices standard input, standard output, or standard
error. In this case, the file pointer is stdin, stdout, or stderr,
respectively. These symbols are defined in the header file stdio.h. See
the section entitled I/O for more information on logical devices.

2.2 Closing streams

A file or device opened for standard i/o can be closed in two ways:
first, the program can explicitly close it by calling the function fclose.

Alternatively, when the program terminates, either by falling off
the end of the function main, or by calling the function exit, the
System will automatically close all open streams.

- libov.9 -

LIBRARY Standard I/O Overview Aztec C

Letting the system automatically close open streams is error-prone:
data written to files using the standard i/o functions is buffered in
memory, and a buffer isn’t written to the file until it’s full or the file
is Closed. Most likely, when a program finishes writing to a file, the
file’s buffer will be partially full, with this information not having
been written to the file. If a program calls fclose, this function will
write the partially filled buffer to the file and return an error code if
this couldn’t be done. If the program lets the System automatically
close the file, the program won’t know if an error occurred on this last
write operation.

2.3 Sequential I/O

Files can be accessed sequentially and randomly. For sequential
access, simply issue repeated read or write calls; each call transfers data
beginning at the "current position" of the file, and updates the current
position to the byte following the last byte transferred. When a file is
opened, its current position is set to zero, if opened for read or write
access, and to its end if opened for append.

On systems which don’t keep track of the last character written to a
file, such as CP/M and Apple / / DOS, not all files can be correctly
positioned for appending data. See the section entitled I/O for details.
2.4 Random I/O

The function fseek allows a file to be accessed randomly, by
changing its current position. Positioning can be relative to the beginning, current position, or end of the file.

For systems which don’t keep track of the last character written to a
file, such as CP/M and Apple // DOS, positioning relative to the end
of a file cannot always be correctly done. See the I/O overview section
for details.

2.5 Buffering

When the standard i/o functions are used to access a file, the i/o is
buffered. Either a user-specified or dynamically- allocated buffer can
be used.

The user’s program specifies a buffer to be used for a file by calling
the function setbuf after the file has been opened but before the first
1/0 request to it has been made.

If, when the first i/o request is made to a file, the user hasn’t
specified the buffer to be used for the file, the system will
automatically allocate, by calling malloc, a buffer for it. When the file
is closed it’s buffer will be freed, by calling free.

Dynamically allocated buffers are obtained from the one region of
memory (the heap), whether requested by the standard i/o functions
or by the user’s program. For more information, see the overview

- libov.10 -

Aztec C Standard I/O Overview LIBRARY

section Dynamic Buffer Allocation.

The size of an i/o buffer differs from system to system. See this
chapter’s system-dependent appendix for the size of this buffer on
your system.

A program which both accesses files using standard i/o functions
and has overlays has to take special steps to insure that an overlay
won't be loaded over a buffer dynamically allocated for file i/o. For
more information, see the section on overlay support in the Technical
Information chapter.

By default, output to the console using standard i/o functions is
unbuffered; all other device i/o using the standard i/o functions is
buffered. Console input buffering can be disabled using the jocti/
function; see the overview section Console I/O for details.

2.6 Errors

There are three fields which may be set when an exceptional
condition occurs during stream i/o. Two of the fields ‘are unique to
each stream (that is, each stream has its own pair). The other is a
global integer.

One of the fields associated with a stream is set if end of file is
detected on input from the stream; the other is set if an error occurs
during i/o to the stream. Once set for a Stream, these flags remain set
until the stream is closed or the program calls the clearerr function for
the stream. The only exception to the last statement is that when
called, fseek will reset the end of file flag for a stream. A program can
check the status of the eof and error flags for a stream by calling the
functions feof and ferror, respectively.

The other field which may be set is the global integer errno. By
convention, a system function which returns an error status as its value
can also set a code in errno which more fully defines the error. The
Overview section Errors defines the values which may be set in errno.
If an error occurs when a stream is being accessed, a standard i/o

function returns EOF (-1) as its value, after setting a code in errno and
setting the stream’s error flag.

If end of file is reached on an input stream, a standard i/o function
returns EOF after setting the stream’s eof flag.

There are two techniques a program can use for detecting errors
during stream i/o. First, the program can check the result of each 1/0
call. Second, the program can issue i/o calls and only periodically
check for errors (for example, check only after all 1/0 is completed).

On input, a program will generally check the result of each
operation.

- liboy.11 -

LIBRARY Standard I/O Overview Aztec C

On output to a file, a program can use either error checking technique; however, periodic checking by calling ferror is more efficient. When characters are written to a file using the standard i/o functions they are placed ina buffer, which is not written to disk until it is full. If the buffer isn’t full, the function will return good status. It will only return bad status if the buffer was full and an error occurred while writing it to disk. Since the buffer size is 1024 bytes, most write calls will return good status, and hence periodic checking for errors is sufficient and most efficient.

Once a file opened for standard 1/0 is closed, ferror can’t be used to determine if an error has occurred while writing to it. Hence ferror should be called after all writing to the file is completed but before the file is closed. The file should be explicitly closed by fclose, and its return value checked, rather than letting the system automatically close it, to know positively whether an error has occurred while writing to the file. The reason for this is that when the writing to the file is completed, it’s standard i/o buffer will probably be partly full. This buffer will be written to the file when the file is closed, and fclose will return an error status if this final write operation fails.
2.7 The standard i/o functions

The standard i/o functions can be grouped into two sets: those that can access only the logical devices standard input, standard output, and standard error; and all the rest.

Here are the standard i/o functions that can only access stdin, stdout, and stderr. These are all ASCII functions; that is, they expect to deal with text characters only.

getchar Get an ASCII character from Stdin
gets Get a line of ASCII characters from stdin
printf Format data and send it to stdout
puterr Send a character to stderr
putchar Senda character to stdout
puts Send a character string to stdout
scanf Get a line from stdin and convert it

Here are the rest of the standard 1/o functions:

- libov.12 -

Aztec C

agetc
aputc
fopen
fdopen

freopen
fclose
feof
ferror
fileno
fflush
fgets
fprintf
fputs
fread
fscanf
fseek
ftell
fwrite
getc
getw

putc

putw

setbuf
ungetc

Standard I/O Overview LIBRARY

Get an ASCII character
Send an ASCII character
Open a file or device
Open as a stream a file or device already open
for unbuffered i/o
Open an open stream to another file or device
Close an open stream
Check for end of file on a stream
Check for error on a stream
Get file descriptor associated with stream
Write stream’s buffer
Get a line of ASCII characters
Format data and write it to a stream
Send a string of ASCII characters to a stream
Read binary data
Get data and convert it
Set current position within a file
Get current position
Write binary data
Get a binary character
Get two binary characters
Send a binary character
Send two binary characters
Specify buffer for stream
Push character back into stream

~ liboy.13 -

LIBRARY Unbuffered I/O Overview Aztec C

3. Overview of Unbuffered I/O

The unbuffered I/O functions are used to access files and devices. They are compatible with their UNIX counterparts and are also described in chapter 8 of The C Programming Language.
As their name implies, a program using these functions, with two exceptions, communicates directly with files and devices; data doesn’t pass through system buffers. Some unbuffered I/O, however, is buffered: when data is transferred to or from a file in blocks smaller than a certain value, it is buffered temporarily. This value differs from System to system, but is always less than or equal to 512 bytes. Also, console input can be buffered, and is, unless specific actions are taken by the user’s program.

Programs which use the unbuffered i/o functions to access files generally handle the blocking and deblocking of file data themselves. Programs requiring file access but unwilling to perform the blocking and deblocking can use the standard 1/o functions; see the overview section Standard I/O for more information.

Here are the unbuffered i/o functions:

open Prepares a file or device for unbuffered i/o
creat Creates a file and opens it
close Concludes the i/o on an open file or device
read Read data from an open file or device
write Write data to an open file or device
Iseek Change the current position of an open file rename Renames a file
unlink Deletes a file
ioctl Change console i/o mode
isatty Is an open file or device the console?

Before a program can access a file or device, it must be "opened", and when processing on it is done, it must be "closed".
An open file or device has an integer known as a "file descriptor" associated with it; this identifies the file or device when it’s accessed.
There are two ways for a file or device to be opened for unbuffered i/o. First, it can explicitly open it, by calling the function open. In this case, open returns the file descriptor to be used when accessing the file or device.

Alternatively, the file or device can be automatically opened as one of the logical devices standard input, standard Output, or standard error. In this case, the file descriptor is the integer value 0, 1, or 2, respectively. See the section entitled I/O for more information on this.
An open file or device is closed by calling the function close. When a program ends, any devices or files still opened for unbuffered i/o will be closed.

- libov.14 -

Aztec C Unbuffered I/O Overview LIBRARY

If an error occurs during an unbuffered i/o operation, the function
returns -1 as its value and sets a code in the global integer errno. For
more information on error handling, see the section ERRORS.

The remainder of this section discusses unbuffered i/o to files and
devices.

3.1 File I/O

Programs call the functions read and write to access a file; the
transfer begins at the "current position" of the file and proceeds until
the number of characters specified by the program have been
transferred.

The current position of a file can be manipulated in various ways
by a program, allowing both sequential and random acccess to the file.
For sequential access, a program simply issues consecutive i/o
requests. After each operation, the current position of the file is set to
the character following the last one accessed.

The function Jseek provides random access to a file by setting the
current position to a specified character location.

lseek allows the current position of a file to be set relative to the
end of a file. For systems which don’t keep track of the last character
written to a file, such positioning cannot always be correctly done. For
more information, see the section entitled I/O.

open provides a mode, O_APPEND, which causes the file being
opened to be positioned at its end. This mode is supported on UNIX
Systems 3 and 5, but not UNIX version 7. As with lseek, the
positioning may not be correct for systems which don’t keep track of
the last character written to a file.

3.2 Device I/O

3.2.1 Unbuffered I/O to the Console

There are several options available when accessing the console,
which are discussed in detail in the Console I/O sections of this
chapter and of the system-dependent appendix to this chapter. Here
we just want to briefly discuss the line- or character-modes of console
I/O as they relate to the unbuffered i/o functions.

Console input can be either line- or character-oriented. With line-
oriented input, characters are read from the console into an internal
buffer a line at a time, and returned to the program from this buffer.
Line buffering of console input is available even when using the so-
called "unbuffered" i/o functions.

With character-oriented input, characters are read and returned to
the program when they are typed: no buffering of console input
occurs.

- libov.15 -

LIBRARY Unbuffered I/O Overview Aztec C

3.2.2 Unbuffered I/O to Non-Console Devices

Unbuffered I/O to devices other than the console is truly
unbuffered.

- libov.16 -

Aztec C Console I/O Overview LIBRARY

4. Overview of Console 1/O

A program has control over several options relating to console i/o.
The primary option allows console input to be either line- or
character-oriented, as described below.

On most systems, a program can selectively enable and disable the
echoing of typed characters to the screen; this is called the ECHO
option. A program can also enable and disable the conversion of
carriage return to newline on input and of newline to carriage return-
linefeed on output; this is called the CRMOD option.

On some systems, additional options are available. If your system
supports additional options, they are discussed in the system dependent
appendix to this chapter.

All the console i/o options have default settings, which allow a
program to easily access the console without having to set the options
itself. In the default mode, console i/o is line-oriented, with ECHO
and CRMOD enabled.

A program can easily change the console 1/0 options, by calling the
function ioctl.

Console i/o behaves the same on all systems when the console
options have their default settings. However, the behavior of console
i/o differs from system to system when the options are changed from
their default values. Thus, a program requiring machine independence
Should either use the console in its default mode or be careful how it
sets the console options. In the paragraphs below, we will try to point
out system dependencies.

4.1 Line-oriented input

With line-oriented input, a program issuing a read request to the
console will wait until an entire line has been typed. On some systems
a non-UNIX option (NODELAY) is available that will prevent this
waiting. If this option is available on your system, it’s discussed in the
System-dependent appendix to this chapter.

The program need not read an entire line at once; the line will be
internally buffered, and characters returned to the program from the
buffer, as requested. When the program issues a read request to the
console and the buffer is empty, the program will wait until an entire
new line has been typed and stored in the internal buffer (again, on
some systems programs can disable this wait by setting the non-UNIX
NODELAY option).

A single unbuffered read operation can return at most One line.

On most systems , selecting line-oriented console input forces the
ECHO option to be enabled. On such systems the program still has
control over the CRMOD option. To find out if, on your system,

- libov.17 -

LIBRARY Console I/O Overview Aztec C

line-oriented mode always has ECHO enabled, see the system- dependent appendix to this chapter.

4.2 Character-oriented input

The basic idea of character-oriented console input is that a program
can read characters from the console without having to wait for an entire line to be entered.

The behavior of character-oriented console input differs from System to system, so programs requiring both machine independence and character-oriented console input have to be careful in their use of the console. However, it is possible to write such programs, although they may not be able to take full advantage of the console i/o features
available for a particular system.

There are two varieties of character-oriented console input, named CBREAK and RAW. Their primary difference is that with the console in CBREAK mode, a program still has control over the other console options, whereas with the console in RAW mode it doesn’t. In RAW mode, all other console options are reset. ECHO and CRMOD are disabled.

Thus, to some extent RAW mode is simply an abbreviation for °CBREAK on, all other options off. However, there are some differences on some systems, as noted below and in this chapter’s System-dependent appendix.

The system-dependent appendix to this chapter, which accompanies your manual, presents information about character-oriented console that is specific to your system.

4.2.1 Writing system-independent programs

To write system-independent programs that access the console in character-oriented input mode, the console should be set in RAW mode, and the program should read only a single character at a time from the console. All the non-UNIX options that are supported by some systems should be reset.

The standard i/o functions all read just one character at a time from the console, even when the calling program requests several Characters. Thus, programs requiring system independence and character-oriented input can read the console using the standard i/o
functions.

Some systems require a program that wants to set console option to first call ioctl to fetch the current console options, then modify them as desired, and finally call ioctl to reset the new console options. The Systems that don’t require this don’t care if a program first fetches the console options and then modifies them. Thus, a program requiring System-independence and console i/o options other than the default should fetch the current console options before modifying them.

- libov.18 -

Aztec C Console I/O Overview LIBRARY

4.3 Using ioctl

A program selects console I/O modes using the function ioctl. This
has the form:

#include <sgtty.h>

ioctl(fd, code, arg)
struct sgttyb *arg:

The header file sgttyh defines symbolic values for the code
parameter (which tells ioctl what to do) and the structure sgttyb.

The parameter fd is a file descriptor associated with the console. On
UNIX, this parameter defines the file descriptor associated with the
device to which the ioctl call applies. Here, ioctl always applies to the
console.

The parameter code defines the action to be performed by iocil. It
can have these values:

TIOCGETP Fetch the console parameters and store them in
the structure pointed at by arg.

TIOCSETP Set the console parameters according to the
structure pointed at by arg.

TIOCSETN Equivalent to TIOCSETP.

The argument arg points to a structure named segttyb that contains
the following fields:

int sg__ flags;
char sg__erase;
char sg__ kill;

The order of these fields is system-dependent.

The sg__flags field is supported by all systems, while the other
fields are not supported by some systems. If these fields are supported
on your system, the system-dependent appendix to this chapter that
accompanies your manual says so, and describes them.

To set console options, a program should fetch the current state of
the sgtty fields, using ioctl’s TIOCGETP option. Then it should
modify the fields to the appropriate values and call ioctl again, using
ioctl’s TIOCSETP option.

4.4 The sgtty fields

4.4.1 The sg _ flags field

sg__flags contains the following UNIX-compatible flags:

RAW Set RAW mode (turns off other options). By

default, RAW is disabled.
CBREAK Return each character as soon as typed. By

default, CBREAK is disabled.

- libov.19 -

LIBRARY Console I/O Overview Aztec C

ECHO Echo input characters to the display. By default,
ECHO is enabled.

CRMOD Map CR to LF on input; convert LF to CR-LF
on output. By default, CRMOD is enabled.

On some systems, other flags are contained in sg__flags. If your
System supports other flags, they’re described in the system-dependent
appendix to this chapter that accompanies your manual.

More than one flag can be specified in a single call to ioctl: the
values are simply ’or’ed together. If the RAW option is selected, none
of the other options have any effect.

When the console i/o options are set and RAW and CBREAK are
reset, the console is set in line-oriented input mode.

4.5 Examples

4.5.1 Console input using default mode

The following program copies characters from stdin to stdout. The
console is in default mode, and assuming these streams haven’t been
redirected by the operator, the program will read from the keyboard
and write to the display. In this mode, the operator can use the
operating system’s line editing facilities, such as backspace, and
characters entered on the keyboard will be echoed to the display. The
characters entered won’t be returned to the program until the operator
depresses carriage return. ,

#include <stdio.h>

main()

int c;
while ((c = getchar()) != EOF)

putchar(c);

4.5.2 Console input - RAW mode

In this example, a program opens the console for standard i/o, sets the console in RAW mode, and goes into a loop, waiting for characters to be read from the console and then processing them. The characters typed by the operator aren’t displayed unless the program itself
displays them. The input request won’t terminate until a character is received. This example assumes that the console is named ’con:’: on
systems for which this is not the case, just substitute the appropriate
name.

- libov.20 -

Aztec C Console I/O Overview LIBRARY

#include <stdio.h>
#include <sgtty.h>
main()

int Cc;

FILE *fp;
struct sgttyb stty;

if ((fp = fopen("con:", "r") == NULL){
printf("can’t open the console\n");
exit();

ioctl(fileno(fp), TIOCGETP, &stty);

stty.sg_ flags FE RAW;
ioctl(fileno(fp), TIOCSETP, &stty);

for (33){
c = getc(fp);

}
}

4.5.3 Console input - console in CBREAK + ECHO mode

This example modifies the previous program so that characters read
from the console are automatically echoed to the display. The program
accesses the console via the standard input device. It uses the function
isatty to verify that stdin is associated with the console; if it isn’t, the
program reopens stdin to the console using the function freopen.
Again, the console is assumed to be named con-.

#include <stdio.h>
#include <sgtty.h>
main()

int C;
struct sgttyb stty;

if (!isatty(stdin))
freopen("con:", "r", stdin);

ioctl(O, TIOCGETP, &stty);
stty.sg flags FE CBREAK | ECHO;
ioctl(0, TIOCSETP, &stty);

for (3){
c = getchar();

- libov.21 -

LIBRARY Dynamic Buffer Alloc Aztec C

S. Overview of Dynamic Buffer Allocation

Several functions are provided for the dynamic allocation and deallocation of buffers from a section of memory called the *heap’. They are:

malloc Allocates a buffer
calloc Allocates a buffer and initializes it to zeroes
realloc Allocates more space to a previously allocated buffer free Releases an allocated buffer for reuse

These standard UNIX functions are described in the System Independent Functions section of this chapter.

In addition, on some systems the UNIX-compatible functions shrk and brk are provided that provide a more elementary means to allocate heap space. The malloc-type functions call sbrk to get heap space, which they then manage.

On some systems, non-UNIX memory allocation functions are also supported. If such functions are supported on your system, they are described in the SyStem-dependent appendix to this chapter that accompanies your manual.

Dynamic allocation of standard i/o buffers

Buffers used for standard 1/0 are dynamically allocated from the heap unless specific actions are taken by the user’s program. Standard i/o calls to dynamically allocate and deallocate buffers can be interspersed with those of the user’s program.
Programs which perform standard i/o and which must have absolute control of the heap can explicitly define the buffers to be used by a standard i/o stream.

Where to go from here

For descriptions of the sbrk and érk functions and, when applicable, non-UNIX memory allocation functions see the System Dependent Functions chapter.

For a discussion of i/o buffer allocation, see the Standard I/O section of the Library Functions Overviews chapter.
For more information on the heap, see the Program Organization section of the Technical Information chapter.

- libov.22 -

Aztec C Errors Overview LIBRARY

6. Overview of Error Processing

This section discusses error processing which relates to the global
integer errno. This variable is modified by the standard i/o, unbuffered
i/o, and scientific (eg, sin, sqrt) functions as part of their error
processing.

The handling of floating point exceptions (overflow, underflow, and
division by zero) is discussed in the Tech Info chapter.

When a standard i/o, unbuffered i/o, or scientific function detects
an error, it sets a code in errno which describes the error. If no error
occurs, the scientific functions don’t modify errno. If no error occurs,
the 1/o functions may or may not modify errno.

Also, when an error occurs,

* A standard i/o function returns -1 and sets an error flag for
the stream on which the error occurred;

* An unbuffered i/o function returns -1;

* A scientific function returns an arbitrary value.

When performing scientific calculations, a program can check errno
for errors as each function is called. Alternatively, since errno is
modified only when an error occurs, errno can be checked only after a
sequence of operations; if it’s non-zero, then an error has occurred at
some point in the sequence. This latter technique can only be used
when no i/o operations occur during the sequence of scientific
function calls.

Since errno may be modified by an i/o function even if an error
didn’t occur, a program can’t perform a sequence of i/O Operations and
then check errno afterwards to detect an error. Programs performing
unbuffered i/o must check the result of each i/o call for an error.

Programs performing standard i/o operations cannot, following a
sequence of standard i/o calls, check errno to see if an error occurred.
However, associated with each open stream is an error flag. This flag is
set when an error occurs on the stream and remains set until the
Stream is closed or the flag is explicitly reset. Thus a program can
perform a sequence of standard i/o operations on a stream and then
check the stream’s error flag. For more details, see the standard 1/0
Overview section.

The following table lists the system-independent values which may
be placed in errno. These symbolic values are defined in the file
errno.h. Other, system-dependent, values may also be set in errno
following an i/o operation; these are error codes returned by the
operating system. System dependent error codes are described in the
operating system manual for a particular system.

- liboy.23 -

LIBRARY Errors Overview Aztec C

The system-independent error codes and their meanings are:
error code
ENOENT
E2BIG
EBADF

ENOMEM
EEXIST
EINVAL
ENFILE
EMFILE
ENOTTY
EACCES
ERANGE
EDOM

meaning
File does not exist
Not used
Bad file descriptor - file is not open
or improper operation requested
Insufficient memory for requested operation
File already exists on creat request
Invalid argument
Exceeded maximum number of open files
Exceeded maximum number of file descriptors
Ioctl attempted on non-console
Invalid access request
Math function value can’t be computed
Invalid argument to math function

- libovy.24 -

SYSTEM-INDEPENDENT FUNCTIONS

- lib.1 -

FUNCTIONS Aztec C

Chapter Contents

System Independent Functions oo... ccssccsssccsccssscccssscecsecessscecsceceeecs lib
INCEXcssscessscsssecsssccsssssccessceecessecssesccsescececsscesesssessscesscscssacessscesessecesseceseeens 5
The fUNCtioMs oo... escsessscssessssscescsssssccsscessssscsescsscsscsacessesscceacecceneeecesnees 8

- lib.2 -

Aztec C FUNCTIONS

System Independent Functions

This chapter describes in detail the functions which are UNIX-

compatible and which are common to all Aztec C packages.

The chapter is divided into sections, each of which describes a group

of related functions. Each section has a name, and the sections are

ordered alphabetically by name. Following this introduction 1s a cross

reference which lists each function and the name of the section 1n

which it is described.

A section is organized into the following subsections:

TITLE
Lists the name of the section, a phrase which is intended to

catagorize the functions described in the section, and one or

more letters in parentheses which specify the libraries

containing the section’s functions.

The letters which may appear in parentheses and their

corresponding libraries are:

C c.lib
M m.lib

On some systems, the actual library name may be a variant on

the name given above. For example, on TRSDOS, the libraries

are named c/lib and m/ lib.

With Apprentice C, the functions are all in the run-time system,

and not libraries.

SYNOPSIS
Indicates the types of arguments that the functions described in

the section require, and the values they return. For example, the

function atof converts character strings into double precision

numbers. It is listed in the synopsis as

double atof(s)
char *s;

This means that atof() returns a value of type double and

requires aS an argument a pointer to a character string. Since

atof returns a non-integer value, prior to use of the function it

must be declared:

double atof();

The notation

- lib.3 -

FUNCTIONS Aztec C

#include “header.h"

at the beginning of a synopsis indicates that such a statement
should appear at the beginning of any program calling one of
the functions described in the section.

On Radio Shack systems, a header file can use either a period or
a Slash to separate the filename from the extent. That is, the
include statement can be as listed above, or

#include "header /h"

DESCRIPTION
Describes the section’s functions.

SEE ALSO
Lists relevant sections. A letter in parentheses may follow a
section name. This specifies where the section is located: no
letter means that the section is in the current chapter; ’O” means
that it’s in the Functions Overview chapter; ’S’ means that it’s in
the System Dependent Functions chapter. |

DIAGNOSTICS
Describes the error codes that the section’s functions may
return. The section ERRORS in the Functions Overview chapter
presents an overview of error processing.

EXAMPLES

Gives examples on use of the section’s functions.

- lib.4 -

Index to System Independent Functions

function

CLOSE0000000

eeeeseseoeeeeessesees

SOOSSEHSEROHOSCHEEOSHHE

fflush066

page description

SIN ...cccccccssscccsssccsccccccsssercessseceesereceeeesees compute arccosine

GET TC oiieecccccccccsssscscsscceeeees get ASCII char from a stream

PUTIC oiccecccccccccccccceccsssssssesssees put ASCII char to a stream

SIN ..occcccssscscssssscssscscssssscsssccssssssssccsscssseseeees compute arcsine

SIN .u.cccccccssccccssssssccecsssnsccessssscseseceseenees compute arctangent

AS) | another arctangent function

ATOFPscccssseee .. convert char string to a double

ATOPF .uweecceeccsccecsssreecessssceeoes convert char string to an int

ATOP ouuiu.cccccccssssssessecsesosesees convert char string to a long

MALLOC oui cesescccssecseeecesseeecseeeeneeneees allocate a buffer

FLOORsccceeeees get smallest integer not less than x

FERROR ouui...ccecccessseeeeseneees clear error flags on a stream

CLOSE ou....ceescesseeseeeeee close of unbuffered file/device

SIN coccccccsccccsccsssssccccccssssscccccccessscsscseaeeseceeees compute cosine

SINHAcccescsceccecssscsrscesessesees compute hyperbolic cosine

SIN occ. ccccssscsccsssssscecscsssccescsscccescesesseneeers compute cotangent

CREAT create a file & open for unbuffered 1/o

EXP. uuu... ccccsssssssssscsccccsceccecsscessssesesenes compute exponential

FLOOR.ccssccssssssssscsrscccccesceceeves compute absolute value

FCLOSE uucceccccesccssccesccccsssseccscessecescecesensnes close i/o stream

FOPEN000008 open file descriptor as an i/o stream

FERROR o.......sscccceseseeees check for eof on an i/o stream

FERRORsccccseeeeees check for error on an 1/o stream

FCLOSEccccsscssrscsrsceceeescscees .. flush an i/o stream

GETS sesssscecssseseecessees get a line from an i/o stream

FERROR. .u.....ccssscesseees get file descriptor for i/o stream

FLOOR:scccssssssoeeeees get largest int not greater than x

FOPENccssssscsccssssssescsccccsssssccccceseeeecees open i/o stream

PRINTF .0.......cccsssscsssseesseeseees formatting utility for printf

PRINTF .u.......:cce0e00 format string & send to i/o stream

PUTS. ciececcccccscccessecsscesessooee put char string to i/o stream

FREAD uuu... ceeeeeeeeeee read binary data from 1/o stream

MALLOC uiia...ecccessccccessecessccesscsssesecceeees release buffer

FOPEN ; sessccsesssscessceeeeseneess reopen i/o stream

FREXP.ceccsscssecceesssssseees get components of a double

SCAMF input string from i/o stream & convert

FSEEK. ui.scccccccsscccssssceseeeseneeees position 1/o stream

FSEEK . .0........sscesecesseeee determine position in 1/o stream

ATOF u.....cccesssceseeeees convert float/double to char string

fwrite wu. FREAD occ cccscsecees write binary data to i/o stream
o) GET TC woccccccsccccsccesees get binary char from i/o stream
getchar GETC woeccccccccccssecsccsssssssssnees get ASCII char from stdin
BETS ...ccscesccvsesseees GETS we ceccccesccsscssscssececssescess get ASCII line from stdin
BELW oo. cccecccesseceees GETW uo. ceccccccssccssssscssssseeeess get ASCII word from stdin
10016 (=), Ge STRING ooo. ccccccccscccscsssceccessssssscsccesees find char in string
LOCH] wove TOCT L ou... cesscsscssccsscsesssssscsssssssssesscens set mode of device
isalpha, etc. CTYPE oun cccccccccccecsssccccees char classification functions
WSAtty cece TOCT L uu. ecesscscsccsssscsssssesccsecseccescasenssenes is this a console?
IdEXPseseeeeee FREXP.cccccsccsssscsssccsssccssscsccssssscsseesesseoees build double
LOGessseccessecenses EXPccsssssscessscessscsssesceecees compute natural logarithm
loglO uo. EXPssccsscosscescssscssccsssssscsescesseccssees compute base-10 log
longjmp SETIMP.cccsssossssccsscsssscssscsscesssescesscsssees non-local goto
Iseek woo. ceceeseeee] ES) ©) 5) Ga position unbuffered i/o file
malloc MALLOC woe cccccscssccescesessccssesssscsescees allocate buffer
movmenm MOVMEM uo... eeesscseceececees copy a block of memory
modf FREXP. 0.0... .cccsccsccccessscecerceseees get components of double
OPENcccseseseeee OPENscceeeee open file/device for unbuffered i/o
DOW ...eeccccccscececeee EXP. oo eecscscsscssccacssscsecsecsescsscssceecencesessess compute x**y
printf oo... PRINTF oes format data and print on stdout
0) 6 | (oe PUTT wii cccccsseeeees put binary char to i/o stream
putchar PUT TC won ccccccccccccsssececesesseeess put ASCII char to stdout
puterr PUTT woiccccccsccscccsssccsreccessccesees put ASCII char to stderr
puts oe. PUTS woe cccccccccesssesesssreeseee put ASCII string to stdout
putWw ou... PUTT vice cccccscscscccscsssccrceees put ASCII word to stdout
QSOFtceeseeeee OS) ©) 6 ne Quick sort
|?) | Oa compute random number
| <r: (6 READ. occ iccccccecsscssseceseeeecs read unbuffered file/device
realloc MALLOC Loic csccsssssccssssscssccsescesscsesecees reallocate buffer
rename RENAMEccsssssssssssecsssssccscssscccssccscssssseees rename file
rindex0.. STRING. wuucecccccccccsssscsccsseccsssssssssecesees find char in string
scanf oo. ee SCAMNF uu... cccceeeeeeee input string from stdin & convert
setbuf0.0....... SETBUFcccccccsccssessessscoeees set buffer for i/o stream
SetjJMp ue SETIMPcsccsssssscsssssecsecsesecssscessscessessees long jmp partner
setmem MOVMEM 6... ececeseseeee set memory to specified byte
SIN. ...ccscssecssssseeees SIN uu. eesscscssesssssscsscccsscscescscssccsssccesesscecsssesseses compute sine
SIMN ou... sceeeeeeeee SINHA uuu... cccccccssssssscssscssccescsceeees compute hyperbolic sine
Sprintf o.... PRINTF . sessncesscesccssseesseeees format string into buffer
SITccccsceeeeeee | OD 4 compute square root
sscanf wwe SCANPccccscssssssscssesssccesees convert string from buffer
Strcat oe. STRING oc ceccccccesssscesseccescocees concatenate two strings
Strcmp STRING. wiuwwcccccccsscescesssccsscesssssseees compare two strings
Strcpy seeeees STRING.cccscccsssscsccsscsecescscsscececesesseesees copy char string
Strlen STRING. ou. .ceccccsccccsssssssssscccscees get length of char string
Strncat STRING eee seoreeeeeee CONCAtENAte Strings
strncmp STRING ooo. cccesscsssssscssssscsssececeeceensens compare strings
strncpy STRING. o.....cccccsscscssececsssssscececcesscssssessssececceees copy string
swapmem MOVMEcccccsccsceeesooes swap two blocks of memory

tamh Lau. cececeeees SINHA. uuu... ceesecececeesssseeeceecnsnees compute hyperbolic tangent

tolowerY006 TOUPPER0008 convert upper case char to lower

tOUPPEF04 TOUPPER0000 convert lower case char to upper

UNGCHC oc ceveeeee UNGET IC onic cecsssecesseceseeeesees return char to 1/o stream

unlink4 UNLINEK. ou... ccescccccescccecccsscccessssseesessncssesnsreeessoes delete file

WIE .o....ecsseeeeees WRITE ou... ceceneeeveseees unbuffered write of binary data

~ lib.7 -

ATOF (C, M) ATOF

NAME
atof, atoi, atol - convert ASCII to numbers
ftoa - convert floating point to ASCII

SYNOPSIS
double atof(cp)
char *cp;

atoi(cp)
char *cp;

long atol(cp)
char *cp;

ftoa(val, buf, precision, type)
double val;
char *buf;
int precision, type;

DESCRIPTION
atof, atoi, and atol convert a string of text characters pointed at
by the argument cp to double, integer, and long representations,
respectively.

atof recognizes a string containing leading blanks and _ tabs,
which it. skips, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional ’e’ or ’E’
followed by an optionally signed integer.

atoi and atol recognize a string containing leading blanks and
tabs, which are ignored, then an optional sign, then a string of
digits.

ftoa converts a double precision floating point number to ASCIL
val is the number to be converted and buf points to the buffer
where the ASCII string will be placed. precision specifies the
number of digits to the right of the decimal point. type specifies
the format 0 for "E" format, 1 for "F' format, 2 for "G" format.

atof and ftoa are in the library m.lib; the other functions are in
c.lib,

- lib.8 -

CLOSE (C) CLOSE

NAME |

close - close a device or file

SYNOPSIS
close(fd)
int fd;

DESCRIPTION
close closes a device or disk file which is opened for unbuffered

1/0.

The parameter fd is the file descriptor associated with the file

or device. If the device or file was explicitly opened by the

program by calling open or creat, fd is the file descriptor

returned by open or creat.

close returns 0 as its value if successful.

SEE ALSO
Unbuffered I/O (O), Errors (O)

DIAGNOSTICS
If close fails, it returns -1 and sets an error code. in the global

integer errno.

- lib.9 -

CREA

NAME

T (C) CREAT

creat - create a new file

SYNOPSIS
creat(name, pmode)
char *name;
int pmode;

DESCRIPTION
creat creates a file and opens it for unbuffered, write-only
access. If the file already exists, it is truncated so that nothing is
in it (this is done by erasing and then creating the file).

creat returns as its value an integer called a "file descriptor".
Whenever a call is made to one of the unbuffered i/o functions
to access the file, its file descriptor must be included in the
function’s parameters.

name is a pointer to a character string which is the name of the
device or file to be opened. See the I/O overview section for
details.

For most systems, pmode is optional: if specified, it’s ignored. It
Should be included, however, for programs for which UNIX-
compatibility is required, since the UNIX creat function
requires it. In this case, pmode should have the octal value 0666.

For some systems, pmode is required and has a special meaning.
If it is required for your System, the System Dependent
Functions chapter will contain a description of the creat
function, which will define the meaning.

SEE ALSO
Unbuffered I/O (O), Errors (O)

DIAGNOSTICS
If creat fails, it returns -1 as its value and sets a code in the
global integer errno.

- 1ib.10 -

CTYPE (C) CTYPE

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace,

ispunct, isprint, iscntrl, iSasCil

- character classification functions

SYNOPSIS
#include "ctype.h"

isalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table

lookup, returning nonzero if the integer is in the catagory, zero

otherwise. isascii is defined for all integer values. The others are

defined only when isascii is true and on the single non-ASCII

value EOF (-1).

isalpha c is a letter

isupper c 1S an upper case letter

islower c is a lower case letter

isdigit c is a digit

isalinum __c is an alphanumeric character

iss pace c is a space, tab, carriage return, newline, or

formfeed

ispunct c is a punctuation character

is print c is a printing character, valued 0x20 (space)

through 0x7e (tilde)

iscntrl c is a delete character (Oxff) or ordinary control

character (value less than 0x20)

isasci c is an ASCII character, code less than 0x100

- lib.11 -

EXP (M) EXP

NAME

exponential, logarithm, power, square root functions:
exp, log, logl10, pow, sart

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double log10(x)
double x;

double pow(x, y)
double x,y;

double sqrt(x)
double x;

DESCRIPTION
exp returns the exponential function of x.

log returns the natural logarithm of x; Jog/0 returns the base 10
logarithm.

pow returns x ** y (x to the y-th power).

sqrt returns the square root of x.

SEE ALSO
Errors (O)

DIAGNOSTICS
If a function can’t perform the computation, it sets an error
code in the global integer errno and returns an arbitrary value;
Otherwise it returns the computed value without modifying
errno. The symbolic values which a function can place in errno
are EDOM, signifying that the argument was invalid, and
ERANGE, meaning that the value of the function couldn’t be
computed. These codes are defined in the file errno.h.

The following table lists, for each function, the error codes that
can be returned, the function value for that error, and the
meaning of the error. The symbolic values are defined in the
file math.h.

- lib.12 -

EXP (M)
EXP

ee
e

eT
 anino.

function error _ f(x) Meaning

exp ERANGE [HUGE ! x> LOGHUGE

" ERANGE |! 0.0 x < LOGTINY

log EDOM -HUGE ; x <= 0

logl0O EDOM -HUGE ; x <=0

pow EDOM -HUGE | x < 0, x=y=0

" ERANGE | HUGE y*log(x)> LOGHUGE

" ERANGE | 0.0 y*log(x)<LOGTINY

sqrt EDOM 0.0 x < 0.0

- lib.13 -

FCLOSE (C) FCLOSE

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include "stdio.h"

fclose(stream)
FILE ‘stream;

fflush(stream)
FILE ‘stream;

DESCRIPTION
{close informs the system that the user’s program has completed
its buffered i/o operations on a device or file which it had
previously opened (by calling fopen). fclose releases the control
blocks and buffers which it had allocated to the device or file.
Also, when a file is being closed, fclose writes any internally
buffered information to the file.

fclose is called automatically by exit.

fflush causes any buffered information for the named output
stream to be written to that file. The stream remains open.

If fclose or fflush is successful, it returns 0 as its value.

SEE ALSO
Standard I/O (O)

DIAGNOSTICS
If the operation fails, -1 is returned, and an error code is set in
the global integer errno.

- lib.14 -

FERROR (C) FERROR

NAME
feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS
#include "stdio.h"

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream;

clearerr(stream)
FILE *stream;

fileno(stream)
FILE *stream;

DESCRIPTION
feof returns non-zero when end-of-file is reached on the

specified input stream, and zero otherwise.

ferror returns non-zero when an error has occurred on the

specified stream, and zero otherwise. Unless cleared by clearerr,

the error indication remains set until the stream is closed.

clearerr resets an error indication on the specified stream.

fileno returns the integer file descriptor associated with the

stream.

These functions are defined as macros in the file stdio.h.

SEE ALSO
Standard I/O (QO)

- lib.15 -

FLOOR (M) FLOOR

NAME
fabs, floor, ceil - absolute value, floor, ceiling routines

SYNOPSIS
#include <math.h>

double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double x;

DESCRIPTION
fabs returns the absolute value of x.

floor returns the largest integer not greater than x.

ceil returns the smallest integer not less than x.

- 1ib.16 -

FOPEN (C) FOPEN

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include "stdio.h"

FILE *fopen(filename, mode)
char *filename, *mode;

FILE *freopen(filename, mode, stream)

char *filename, *mode;

FILE ‘stream;

FILE *fdopen(fd, mode)

char *mode;

DESCRIPTION
These functions prepare a device or disk file for access by the

standard i/o functions; this is called "opening" the device or file.

A file or device which has been opened by one of these

functions is called a "stream".

If the device or file is successfully opened, these functions

return a pointer, called a "file pointer" to a structure of type

FILE. This pointer is included in the list of parameters to

buffered i/o functions, such as geic or putc, which the user’s

program calls to access the stream.

fopen is the most basic of these functions: it simply opens the

device or file specified by the filename parameter for access

specified by the mode parameter. These parameters are

described below.

freopen substitutes the named device or file for the device or

file which was previously associated with the specified stream. It

closes the device or file which was originally associated with the

stream and returns stream as its value. It is typically used to

associate devices and files with the preopened streams stdin,

stdout, and stderr.

fdopen opens a device or file for buffered i/o which has been

previously opened by one of the unbuffered open functions

open and creat. It returns as it’s value a FILE pointer.

fdopen is passed the file descriptor which was returned when the

device or file was opened by open or creat. It’s also passed the

mode parameter specifying the type of access desired. mode must

agree with the mode of the open file.

The parameter filename is a pointer to a character string which

is the name of the device or file to be opened. For details, see

the I/O overview section.

- lib.17 -

FOPEN (C) FOPEN

mode points to a character string which specifies how the user’s
program intends to access the stream. The choices are as follows:

mode

r

r+

at

X+

meaning

Open for reading only. If a file is opened, it is
positioned at the first character in it. If the file
or device does not exist, NULL is returned.
Open for writing only. If a file is opened
which already exists, it is truncated to zero
length. If the file does not exist, it is created.
Open for appending. The calling program is
granted write-only access to the stream. The
current file position is the character after the
last character in the file. If the file does not
exist, it is created.
Open for writing. The file must not previously
exist. This option is not supported by Unix.
Open for reading and writing. Same as "r", but
the stream may also be written to.
Open for writing and reading. Same as "w", but
the stream may also be read: different from "r+"
in the creation of a new file and loss of any
previous one.
Open for appending and reading. Same as "a",
but the stream may also be read; different from
"r+" in file positioning and file creation.
Open for writing and reading. Same as "x" but
the file can also be read.

On systems which don’t keep track of the last character in a file
(for example CP/M and Apple DOS), not all files can be
correctly positioned when opened in append mode. See the 1/O
overview section for details.

SEE ALSO
I/O (O), Standard I/O (0)

DIAGNOSTICS
If the file or device cannot be opened, NULL is returned and an
error code is set in the global integer. errno.

EXAMPLES
The following example demonstrates how fopen can be used in a
program.

- 1ib.18 -

FOPEN (C) FOPEN

#include "stdio.h"

main(argc,argv)
char **argv;

FILE *fopen(), *fp;

if ((fp = fopen(argv{ 1], argv[2])) == NULL) {

printf("You asked me to open %s" argv[1]);

printf("in the %s mode", argy[2]);
printf("but I can’t!\n");

} else
printf("%s is open\n", argv[1]);

Here is a program which uses freopen:.

#include "stdio.h"

main()

FILE *fp;
fp = freopen("dskfile", "w+", stdout);

printf("This message 1s going to dskfile\n");

}

Here is a program which uses fdopen:

#include "stdio.h"

dopen_ it(fd)
int fd; /* value returned by previous call to open */

FILE *fp;

if ((fp = fdopen(fd, "r+")) == NULL)

printf("can’t open file for r+\n");

else
return(fp);

~ lib.19 -

FREAD (C) FREAD

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include "stdio.h"

int fread(buffer, size, count, stream)
char *buffer;
int size, count;
FILE *stream;

int fwrite(buffer, size, count, stream)
char *buffer;
int size, count;
FILE ‘stream;

DESCRIPTION
fread performs a buffered input operation and fwrite a buffered
write operation to the open stream specified by the parameter
stream.

buffer is the address of the user’s buffer which will be used for
the operation.

The function reads or writes count items, each containing size
bytes, from or to the stream.

fread and fwrite perform i/o using the functions geic and putc;
thus, no translations occur on the data being transferred.

The function returns as its value the number of items actually
read or written.

SEE ALSO
Standard I/O (O), Errors (O), fopen, ferror

DIAGNOSTICS
fread and fwrite return 0 upon end of file or error. The
functions feof and ferror can be used to distinguish between the
two. In case of an error, the global integer errno contains a code
defining the error.

EXAMPLE
This is the code for reading ten integers from file 1 and writing
them again to file 2. It includes a simple check that there are
enough two-byte items in the first file:

- lib.20 -

FREAD (C) FREAD

#include "stdio.h"

main()

{
FILE *fpl, *fp2, *fopen();
char *buf;
int size = 2, count = 10;

fpl = fopen("file1","r");

fp2 = fopen("file2","w");

if (fread(buf, size, count, fpl) != count)

printf("Not enough integers in filel\n");

fwrite(buf, size, count, fp2);

- lib.21 -

FREXP (M) FREXP

NAME
frexp, Idexp, modf - build and unbuild real numbers

SYNOPSIS
#include <math.h>

double frexp(value, eptr)
double value;
int *eptr;

double Idexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
Given value, frexp computes integers x and n such that
value=x*2**n. x is returned as the value of frexp, and n is
stored in the int field pointed at by eptr.

Idexp returns the double quantity value*2**exp.

modf returns as its value the positive fractional part of value and
Stores the integer part in the double field pointed at by iper.

- lib.22 -

FSEEK (C) FSEEK

NAME
fseek, ftell - reposition a stream

SYNOPSIS
#include "stdio.h"

int fseek(stream, offset, origin)

FILE *stream;

long offset;

int origin;

long ftell(stream)
FILE *stream;

DESCRIPTION
fseek sets the "current position" of a file which has been opened

for buffered i/o. The current position is the byte location at

which the next input or output operation will begin.

stream is the stream identifier associated with the file, and was

returned by fopen when the file was opened.

offset and origin together specify the current position: the new

position is at the signed distance o ffset bytes from the

beginning, current position, or end of the file, depending on

whether origin is 0, 1, or 2, respectively.

offset can be positive or negative, to position after or before

the specified origin, respectively, with the limitation that you

can’t seek before the beginning of the file.

For some operating systems (for example, CP/M and Apple

DOS) a file may not be able to be correctly positioned relative

to its end. See the overview sections I/O and STANDARD 1/O

for details.

If fseek is successful, it will return zero.

ftell returns the number of bytes from the beginning to the

current position of the file associated with stream.

SEE ALSO
Standard I/O (O), I/O (O), Iseek

DIAGNOSTICS
fseek will return -1 for improper seeks. In this case, an error

code is set in the global integer errno.

EXAMPLE
The following routine is equivalent to opening a file in "at"

-mode:

- lib.23 -

FSEEK (C) FSEEK

a__plus(filename)
char *filename;

FILE *fp, *fopen();

if ((fp = fopen(filename, r+)) == NULL)
fp = fopen(filename, w+);
fseek(fp, OL, 2); /* position 1 byte past

last character */

To set the current position back 5 characters before the present
current position, the following call can be used:

fseek(fp, -SL, 1)

- lib.24 -

GETC

NAME

(C) GETC

getc, agetc, getchar, getw

SYNOPSIS
#include "stdio.h"

int getc(stream)
FILE *stream;

int agetc(stream) /* non-Unix function */

FILE *stream;

int getchar()

int getw(stream)
FILE *stream;

DESCRIPTION
getc returns the next character from the specified input stream.

agetc is used to access files of text. It generally behaves like geic

and returns the next character from the named input stream. It

differs from getc in the following ways:

« It translates end-of-line sequences (eg, carriage return

on Apple DOS; carriage return-line feed on CP/M) to a

single newline (’\\n’) character.
* It translates an end-of-file sequence (eg, a null

character on Apple DOS; a control-z character on

CP/M) to EOF;
* It ignores null characters (’) on all systems except

Apple DOS;
* On some systems, the most significant bit of each

character returned is set to zero.

agetc is not a UNIX function. It is, however, provided with all

Aztec C_ packages, and provides a convenient, system-

independent way for programs to read text.

getchar returns text characters from the standard input stream

(stdin). It is implemented as the call agetc(stdin).

getw returns the next word from the specified input stream. It

returns EOF (-1) upon end-of-file or error, but since that is a

good integer value, feof and ferror should be used to check the

success of getw. It assumes no special alignment in the file.

SEE ALSO
I/O (O), Standard I/O (O), fopen, fclose

DIAGNOSTICS
These functions return EOF (-1) at end of file or if an error

occurs. The functions feof and ferror can be used to distinguish

the two. In the latter case, an error code is set in the global

- lib.25 -

-GETC (C) GETC

integer errno.

- 1ib.26 -

GETS (C) | GETS

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include "stdio.h"

char *gets(s)
char *s;

char *fgets(s, n, stream)

char *s;
FILE ‘stream;

DESCRIPTION
gets reads a string of characters from the standard input stream,

stdin, into the buffer pointed by s. The input operation

terminates when either a newline character (\\n) or end of file

is encountered.

fgets reads characters from the specified input stream into the

buffer pointer at by s until either (1) n-1 characters have been

read, (2) a newline character (\\n) is read, or (3) end of file or

an error is detected on the stream.

Both functions return s, except as noted below.

gets and fgets differ in their handling of the newline character:

gets doesn’t put it in the caller’s buffer, while fgets does. This 1s

the behavior of these functions under UNIX.

These functions get characters using agetc; thus they can only be

used to get characters from devices and files which contain text

characters.

SEE ALSO
I/O (O), Standard I/O (O), ferror

DIAGNOSTICS
gets and fgets return the pointer NULL (0) upon reaching end

of file or detecting an error. The functions feof and ferror can

be used to distinguish the two. In the latter case, an error code

is placed in the global integer errno.

- lib.27 -

IOCTL (C) IOCTL

NAME
ioctl, isatty - device i/o utilities

SYNOPSIS
#include "sgtty.h"

ioctl(fd, cmd, stty)
struct sgttyb *stty;

isatty(fd)

DESCRIPTION

ioctl sets and determines the mode of the console.

For more details on ioctl, see the overview section on console
1/O.

isatty returns non-zero if the file descriptor fd is associated with
the console, and zero otherwise.

SEE ALSO
Console I/O (O)

- lib.28 -

LSEEK (C) LSEEK

NAME
Iseek - change current position within file

SYNOPSIS
long int Iseek(fd, offset, origin)

int fd, origin;
long offset;

DESCRIPTION
Iseek sets the current position of a file which has been opened

for unbuffered i/o. This position determines where the next

character will be read or written.

fd is the file descriptor associated with the file.

The current position is set to the location specified by the offset

and origin parameters, as follows:

* If origin is 0, the current position is set to offset bytes

from the beginning of the file.

« If origin is 1, the current position is set to the current

position plus offset.

« If origin is 2, the current position is set to the end of the

file plus offset.

The offset can be positive or negative, to position after or

before the specified origin, respectively.

Positioning of a file relative to its end (that is, calling /seek with

origin set to 2) cannot always be correctly done on all systems

(for example, CP/M and Apple DOS). See the section entitled

I/O for details.

If Iseek is successful, it will return the new position in the file

(in bytes from the beginning of the file).

SEE ALSO
Unbuffered I/O (0), I/O (O)

DIAGNOSTICS
If seek fails, it will return -1 as its value and set an error code

in the global integer errno. errno is set to EBADF if the file

descriptor is invalid. It will be set to EINVAL if the offset

parameter is invalid or if the requested position is before the

beginning of the file.

EXAMPLES
1. To seek to the beginning of a file:

lseek(fd, OL, 0);

Iseek will return the value zero (0) since the current position in

the file is character (or byte) number zero.

- lib.29 -

LSEEK (C) LSEEK

2. To seek to the character following the last character in the
file:

pos = lseek(fd, OL, 2);

The variable pos will contain the current position of the end of
file, plus one.

3. To seek backward five bytes:

- Iseek(fd, -5L, 1);

The third parameter, 1, sets the origin at the current position in
the file. The offset is -5. The new position will be the origin
plus the offset. So the effect of this call is to move backward a
total of five characters.

4. To skip five characters when reading in a file:

read(fd, buf, count);
Iseek(fd, 5L, 1);
read(fd, buf, count);

- 1ib.30 -

MALLOC (C) MALLOC

NAME
malloc, calloc, realloc, free - memory allocation

SYNOPSIS
char *malloc(size)
unsigned size;

char *calloc(nelem, elemsize)
unsigned nelem, elemsize;

char *realloc(ptr, size)
char *ptr;
unsigned size;

free(ptr)
char *ptr;

DESCRIPTION
These functions are used to allocate memory from the "heap",

that is, the section of memory available for dynamic storage

allocation.

malloc allocates a block of size bytes, and returns a pointer to it.

calloc allocates a single block of memory which can contain

nelem elements, each elemsize bytes big, and returns a pointer to

the beginning of the block. Thus, the allocated block will contain

(nelem * elemsize) bytes. The block is initialized to zeroes.

realloc changes the size of the block pointed at by pir to size

bytes, returning a pointer to the block. If necessary, a new block

will be allocated of the requested size, and the data from the

original block moved into it. The block passed to realloc can

have been freed, provided that no intervening calls to calloc,

malloc, or realloc have been made.

free deallocates a block of memory which was previously

allocated by malloc, calloc, or realloc, this space is then available

for reallocation. The argument pir to free is a pointer to the

block.

malloc and free maintain a circular list of free blocks. When

called, malloc searches this list beginning with the last block

freed or allocated coalescing adjacent free blocks as it searches.

It allocates a buffer from the first large enough free block that it

encounters. If this search fails, it calls sbrk to get more memory

for use by these functions.

SEE ALSO
Memory Usage (O), break (S)

DIAGNOSTICS
malloc, calloc and realloc return a null pointer (0) if there is no

available block of memory.

- lib.31 -

MALLOC (C) MALLOC

free returns -1 if it’s passed an invalid pointer.

- lib.32 -

MOVMEM (C) MOVMEM

NAME
movmem, setmem, swapmem

SYNOPSIS
movmem(src, dest, length) /* non-Unix function */

char ‘src, *dest;
int length;

setmem(area,length,value) /* non-Unix function */

char *area; |

swapmem(s1, s2, len) /* non-Unix function */

char *s1, *s2;

DESCRIPTION

movmem copies length characters from the block of memory

pointed at by src to that pointed at by dest.

movmem copies in such a way that the resulting block of

characters at dest equals the original block at src.

setmem sets the character value in each byte of the block of

memory which begins at area and continues for length bytes.

swapmem swaps the blocks of memory pointed at by s/ and s2.

The blocks are Jen bytes long.

- lib.33 -

OPEN

NAME

(C) OPEN

open

SYNOPSIS
#include "fcntl.h"

open(name, mode) /* calling sequence on most systems */
char *name;

/* calling sequence on some systems (see below): */
open(name, mode, param3)
char *name;

DESCRIPTION
open opens a device or file for unbuffered i/o. It returns an
integer value called a file descriptor which is used to identify
the file or device in subsequent calls to unbuffered i/o
functions.

name is a pointer to a character string which is the name of the
device or file to be opened. For details, see the overview section
I/O.

mode specifies how the user’s program intends to access the file.
The choices are as follows:

mode meaning
O_RDONLY read only
O_WRONLY sw rite only
O_RDWR read and write
O_CREAT Create file, then open it
O _TRUNC Truncate file, then open it
O_ EXCL Cause open to fail if file already exists;

used with O CREAT
O APPEND Position file for appending data

These open modes are integer constants defined in the files
fentlh. Although the true values of these constants can be used
in a given call to open, use of the symbolic names ensures
compatibility with UNIX and other systems.

The calling program must specify the type of access desired by
including exactly one of O RDONLY, O WRONLY, and
O_RDWR in the mode parameter. The three r remaining values
are optional. They may be included by adding them to the mode
parameter, as in the examples below.

By default, the open will fail if the file to be opened does not
exist. To cause the file to be created when it does not already
exist, specify the O CREAT option. If O EXCL is given in
addition to O CREAT, the open will fail if the file already
exists; otherwise, the file j is created.

- lib.34 -

OPEN (C) OPEN

If the O_TRUNC option is specified, the file will be truncated

so that nothing is in it. The truncation is performed by simply

erasing the file, if it exists, and then creating it. So it is not an

error to use this option when the file does not exist.

Note that when O_ TRUNC is used, O_ CREAT is not needed.

If O APPEND is specified, the current position for the file

(that is, the position at which the next data transfer will begin)

is set to the end of the file. For systems which don’t keep track

of the last character written to a file (for example, CP/M and

Apple DOS), this positioning cannot always be correctly done.

See the I/O overview section for details. Also, this option is not

supported by UNIX.

param3 is not needed or used on many systems. If it is needed

for your system, the System Dependent Library Functions

chapter will contain a description of the open function, which

will define this parameter.

If open does not detect an error, it returns an integer called a

"file descriptor." This value is used to identify the open file

during unbuffered i/o operations. The file descriptor iS very

different from the file pointer which is returned by fopen for

use with buffered i/o functions.

SEE ALSO
I/O (0), Unbuffered I/O (O), Errors (O)

DIAGNOSTICS
If open encounters an error, it returns -1 and sets the global

integer errno to a symbolic value which identifies the error.

EXAMPLES
1. To open the file, testfile, for read-only access:

fd = open("testfile", O_ RDONLY);

If testfile does not exist open will just return -1 and set errno to

ENOENT.

2. To open the file, sub], for read-write access:

fd = open("sub1", O_RDWR+O_ CREAT);

If the file does not exist, it will be created and then opened.

3. The following program opens a file whose name is given on

the command line. The file must not already exist.

- lib.35 -

OPEN (C) OPEN

main(argc, argv)
char **argv;

int fd;

fd = open(*++argv, O_ WRONLY+O_CREAT+O_ EXC
if (fd =-1) {
if (errno == EEXIST)
printf("file already exists\n");
else if (errno == ENOENT)

printf("unable to open file\n");
else

printf("open error\n");

- lib.36 -

PRINTF (C, M) PRINTF

NAME
printf, fprintf, sprintf, format

- formatted output conversion functions

SYNOPSIS
#include "stdio.h"

printf(fmt [,argl ...)
char *fmt;

fprintf(stream, fmt [,arg] ...)
FILE *stream;
char *fmt;

sprintf(buffer, fmt [,arg] ...)
char *buffer, *fmt;

format(func, fmt, argptr)
int (*func)();
char *fmt;
unsigned *argptr;

DESCRIPTION
These functions convert and format their arguments (arg or

argptr) according to the format specification fmt. They differ in

what they do with the formatted result:

printf outputs the result to the standard output stream,

stdout;

fprintf outputs the result to the stream specified in its first

argument, stream,

sprintf places the result in the buffer pointed at by its first

argument, buffer, and terminates the result with the null

character,’ ”

format calls the function func with each character of the result.

In fact, printf, fprintf, and sprintf call format with each character

that they generate.

These functions are in both c.ib and mlib, the difference being

that the clib versions don’t support floating point conversions.

Hence, if floating point conversion is required, the m.lib

versions must be used. If floating point conversion isn’t

required, either version can be used. To use mlib’s version, m.lib

must be specified before c.lib at the time the program is linked.

The character string pointed at by the fmt parameter, which

directs the print functions, contains two types of items: ordinary

characters, which are simply output, and conversion

specifications, each of which causes the conversion and output

of the next successive arg.

- lib.37 -

PRINTF (C, M) PRINTF

A conversion specification begins with the character % and
continues with:

* An optional minus sign (-) which specifies left adjustment
of the converted value in the output field;
An optional digit string specifying the ’field width’ for the
conversion. If the converted value has fewer characters
than this, enough blank characters will be output to make
the total number of characters output equals the field
width. If the converted value has more characters than the
field width, it will be truncated. The blanks are output
before or after the value, depending on the presence or
absence of the left- adjustment indicator. If the field width
digits have a leading 0, 0 is used as a pad character rather
than blank.
An optional period, ’.’, which separates the field width
from the following field:
An optional digit string specifying a precision; for floating
point conversions, this specifies the number of digits to
appear after the decimal point; for character string
conversions, this specifies the maximum number of
characters to be printed from a string;
Optionally, the character J, which specifies that a
conversion which normally is performed on an int is to be
performed on a long. This applies to the d, oO, and x
conversions.
A character which specifies the type of conversion to be
performed. |

A field width or precision may be * instead of a number,
specifying that the next available arg, which must be an int,
supplies the field width or precision.

The conversion characters are:

d,o, or x The int in the corresponding arg is converted to
decimal, octal, or hexadecimal notation,
respectively, and output;

u The unsigned integer arg is converted to
decimal notation;

Cc The character arg is output. Null characters are
ignored;

S The characters in the string pointed at by arg
are output until a null character or the number
of characters indicated by the precision is
reached. If the precision is zero or missing, all
characters in the string, up to the terminating
null, are output;

f The float or double arg is converted to decimal
notation in the style ’[-]ddd.ddd’. The number

- lib.38 -

PRINTF (C, M) PRINTF

of d’s after the decimal point is equal to the

precision given in the conversion specification.

If the precision is missing, it defaults to six

digits. If the precision is explicitly 0, the

decimal point is also not printed.

e The float or double arg is converted to the style

*[-]d.ddde[-]dd’, where there is one digit before

the decimal point and the number after is equal

to the precision given. If the precision 1S

missing, it defaults to six digits.

g The float or double arg is printed in style d, f,

or e, whichever gives full precision in

minimum space.

% Output a %. No argument is converted.

SEE ALSO
Standard I/O (O)

EXAMPLES

1. The following program fragment:

char *name; float amt;
printf("your total, %s, is $%f\n", name, amt);

will print a message of the form

your total, Alfred, is $3.120000

Since the precision of the %f conversion wasn’t specified,

it defaulted to six digits to the right of the decimal point.

2. This example modifies example | so that the field width

for the %s conversion is three characters, and the field

width and precision of the %f conversion are 10 and 2,

respectively. The %f conversion will also use 0 as a pad

character, rather than blank.

char *name; float amt;
printf("your total, %3s, is $%10.2f\n", name, amt);

3. This example modifies example 2 so that the field width of

the %s conversion and the precision of the %f conversion

are taken from the variables nw and ap:

char *name; float amt; int nw, ap;

printf("your total %*s, is $%10.*f\n",nw,name,ap,amt);

4. This example demonstrates how to use the format function

by listing printf, which calls format with each character

that it generates.

- 1ib.39 -

PRINTF (C, M) PRINTF

printf(fmt,args)
char *fmt; unsigned args;
{

extern int putchar();
format(putchar,fmt,&args);

- lib.40 -

PUTC (C)

NAME
putc, aputc, putchar, putw, puterr

- put character or word to a stream

SYNOPSIS

PUTC

#include "stdio.h"

putc(c, stream)
char c¢;
FILE ‘stream;

aputc(c, stream) /* non-Unix function */

char Cc;
FILE *stream;

putchar(c)
char ¢;

putw(w,stream)
FILE *stream;

puterr(c) /* non-Unix function */

char ¢c;

DESCRIPTION

putc writes the character c to the named output stream. It

returns c as its value.

aputc is used to write text characters to files and devices. It

generally behaves like putc, and writes a single character to a

stream. It differs from putc as follows:

*

SEE ALSO

When a newline character is passed to apuic, an end- of-

line sequence (eg, carriage return followed by line feed on

CP/M, and carriage return only on Apple DOS) is written

to the stream;

The most significant bit of a character is set to zero before

being written to the stream.

aputc is not a UNIX function. It is, however, supported on

all Aztec C systems, and provides a convenient, system-

independent way for a program to write text.

putchar writes the character c to the standard output

stream, stdout. It’s identical to aputc(c, stdout).

putw writes the word w to the specified stream. It returns

w as its value. putw neither requires nor causes special

alignment in the file.

puterr writes the character c to the standard error stream,

stderr. It’s identical to aputc(c, stderr). It is not a UNIX

function.

Standard I/O

- lib.41 -

PUTC (C) PUTC

DIAGNOSTICS
These functions return EOF (-1) upon error. In this case, an
error code is set in the global integer errno.

- lib.42 -

PUTS (C) PUTS

NAME

puts, fputs - put a character string on a stream

SYNOPSIS
#include "stdio.h"

puts(s)
char *s;

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION |

puts writes the null-terminated string s to the standard output

stream, stdout, and then an end-of-line sequence. It returns a

non-negative value if no errors occur.

fputs copies the null-terminated string s to the specified output

stream. It returns 0 if no errors occur.

Both functions write to the stream using apuic. Thus, they can

only be used to write text. See the PUTC section for more

details on aputc.

Note that puts and fputs differ in this way: On encountering a

newline character, puts writes an end-of-line sequence and fputs

doesn’t.

SEE ALSO
Standard I/O (QO), putc

DIAGNOSTICS
If an error occurs, these functions return EOF (-1) and set an

error code in the global integer errno.

- lib.43 -

QSORT (C) QSORT

NAME
qsort - sort an array of records in memory

SYNOPSIS
qsort(array, number, width, func)
char *array;
unsigned number;
unsigned width;
int (*func)();

DESCRIPTION
qsort sorts an array of elements using Hoare’s Quicksort
algorithm. array is a pointer to the array to be sorted: number is
the number of record to be sorted; width is the size in bytes of
each array element; func is a pointer to a function which is
called for a comparison of two array elements.

func is passed pointers to the two elements being compared. It
must return an integer less than, equal to, or greater than zero,
depending on whether the first argument is to be considered less
than, equal to, or greater than the second.

EXAMPLE
The Aztec linker, LN, can generate a file of text containing a
symbol table for a program. Each line of the file contains an
address at which a symbol is located, followed by a space,
followed by the symbol name. The following program reads such
a symbol table from the standard input, sorts it by address, and
writes it to standard output.

- lib.44 -

QSORT (C) QSORT

#include "stdio.h"

#define MAXLINES 2000

#define LINESIZE 16

char *lines[MAXLINES], *malloc();

main()

{
int isnumlines, cmp();
char buf] LINESIZE};

for (numlines=0; numlines<MAXLINES; ++numlines){

if (gets(buf) == NULL)
break;

lines[numlines] = malloc(LINESIZE);

strcpy(lines[numlines], buf);

qsort(lines, numlines, 2, cmp);

for (i = 0; i <numlines; ++1)

printf("%s\n", lines[1]);

}

cmp(a,b)
char **a, **b;

return stremp(*a, *b);

- lib.45 -

RAN (M) RAN

NAME

ran - random number generator

SYNOPSIS
double ran()

DESCRIPTION
ran returns as its value a random number between 0.0 and 1.0.

- lib. 46 -

READ (C) READ

NAME
read - read from device or file without buffering

SYNOPSIS
read (fd, buf,bufsize)

int fd, bufsize; char *buf;

DESCRIPTION
read reads characters from a device or disk file which has been

previously opened by a call to open or creat. In most cases, the

‘nformation is read directly into the caller’s buffer.

fd is the file descriptor which was returned to the caller when

the device or file was opened.

buf is a pointer to the buffer into which the information is to be

placed.

bufsize is the number of characters to be transferred.

If read is successful, it returns as its value the number of

characters transferred.

If the returned value is zero, then end-of-file has been reached,

immediately, with no bytes read.

SEE ALSO
Unbuffered I/O (O), open, close

DIAGNOSTICS
If the operation isn’t successful, read returns -1 and places a

code in the global integer errno.

- lib.47 -

RENAME (C) RENAME

NAME

rename - rename a disk file

SYNOPSIS
rename(oldname, newname) /* non-Unix function */
char *oldname,*newname;

DESCRIPTION

rename changes the name of a file.

oldname is a pointer to a character array containing the old file
name, and newname is a pointer to a character array containing
the new name of the file.

If successful, rename returns 0 as its value; if unsuccessful, it
returns -1.

If a file with the new name already exists, rename sets
E __EXIST in the global integer errno and returns -1 as its value
without renaming the file.

- lib.48 -

SCANF (C) SCANF

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include "stdio.h"

scanf(format [,pointer] ...)
char *format;

fscanf(stream, format [,pointer] ...)
FILE *stream;
char *formaty;

sscanf(buffer, format [,pointer] ...)
char *buffer, *format;

DESCRIPTION
These functions convert a string or stream of text characters, as
directed by the control string pointed at by the format
parameter, and place the results in the fields pointed at by the
pointer parameters.

The functions get the text from different places:

scanf gets text from the standard input stream, sidin;

fscanf gets text from the stream specified in its first
parameter, stream;

sscanf gets text from the buffer pointed at by its first
parameter, buffer.

The scan functions are in both c.lib and mlib, the difference
being that the c.dib versions don’t support floating point
conversions. Hence, if floating point conversion is required, the
m.lib versions must be used. If floating point conversions aren’t
required, either version can be used. To use m.lib’s version, m.lib
must be specified before c.lib when the program is linked.

The control string pointed at by format contains the following
control items’:

* Conversion specifications;
* ’White space’ characters (space, tab newline);
* Ordinary characters; that is, characters which aren’t

part of a conversion specification and which aren’t
white space.

A scan function works its way through a control string, trying to
match each control item to a portion of the input stream or
buffer. During the matching process, it fetches characters one at

a time from the input. When a character is fetched which isn’t
appropriate for the control item being matched, the scan
function pushes it back into the input stream or buffer and

- lib.49 -

SCANF (C) SCANF

finishes processing the current control item. This pushing back
frequently gives unexpected results when a stream is being
accessed by other 1/o functions, such as getc, as well as the scan
function. The examples below demonstrate some of the
problems that can occur.

The scan function terminates when it first fails to match a
control item or when the end of the input stream or buffer is
reached. It returns as its value the number of matched
conversion specifications, or EOF if the end of the input stream
or buffer was reached.

Matching ’white space’ characters

When a white space character is encountered in the control
string, the scan function fetches input characters until the first
non-white-space character is read. The non-white-space
character is pushed back into the input and the scan function
proceeds to the next item in the control string.

Matching ordinary characters

If an ordinary character is encountered in the control string, the
scan function fetches the next input character. If it matches the
ordinary character, the scan function simply proceeds to the
next control string item. If it doesn’t match, the scan function
terminates.

Matching conversion specifications

When a conversion specification is encountered in the control
String, the scan function first skips leading white space on the
input stream or buffer. It then fetches characters from the
stream or buffer until encountering one that is inappropriate for
the conversion specification. This character is pushed back into
the input.

If the conversion specification didn’t request assignment
suppression (discussed below), the character string which was
read is converted to the format specified by the conversion
specification, the result is placed in the location pointed at by
the current pointer argument, and the next pointer argument
becomes current. The scan function then proceeds to the next
control string item.

If assignment suppression was requested by the conversion
specification, the scan function simply ignores the fetched input
characters and proceeds to the next control item.

Details of input conversion

A conversion specification consists of:

* The character °%’, which tells the scan function that it

- 1ib.50 -

SCANF (C) SCANF

has encountered a conversion specification;
* Optionally, the assignment suppression character ’”;
* Optionally, a ’field width’; that is, a number specifying

the maximum number of characters to be fetched for
the conversion;

* A
conversion to be performed.

conversion character, specifying the type of

If the assignment suppression character is present ina conversion
specification, the scan function will fetch characters as if it was
going to perform the conversion, ignore them, and proceed to
the next control string item.

The following conversion characters are supported:

%

d

A single ’%’ is expected in the input; no assignment
is done.

A decimal integer is expected; the input digit string
is converted to binary and the result placed in the int
field pointed at by the current poinier argument;

An octal integer is expected; the corresponding
pointer should point to an int field in which the
converted result will be placed;

A hexadecimal integer is expected; the converted
value will be placed in the int field pointed at by the
current pointer argument;

A sequence of characters delimited by white space
characters is expected; they, plus a terminating null
character, are placed in the character array pointed
at by the current pointer argument.

A character is expected. It is placed in the char field
pointed at by the current pointer. The normal skip
over leading white space is not done; to read a single
char after skipping leading white space, use "%ls’.
The field width parameter is ignored, so this
conversion can be used only to read a single
character.

A sequence of characters, optionally preceded by
white space but not terminated by white space is
expected. The input characters, plus a terminating
null character, are placed in the character array
pointed at by the current pointer argument. The left

bracket is followed by:

* Optionally, a’*’ or ’~’ character;
* A set of characters;
* A right bracket, ’)’.

- lib.51 -

SCANF (C) SCANF

If the first character in the set isn’t * or ~, the set
specifies characters which are allowed; characters are
fetched from the input until one is read which isn’t
in the set.

If the first character in the set is * or ~, the set
specifies characters which aren’t allowed; characters
are fetched from the input until one is read which is
in the set.

e A floating point number is expected. The input string
is converted to floating point format and stored in
the float field pointed at by the current pointer
argument. The input format for floating point
numbers consists of an optionally signed string of
digits, possibly containing a decimal point, optionally
followed by an exponent field consisting of an E ore
followed by an optionally signed digit.

The conversion characters d, 0, and x can be capitalized or
prece ded by / to indicate that the corresponding pointer is to a
long rather than an int. Similarly, the conversion characters e
and f can be capitalized or preceded by / to indicate that the
corresponding pointer is to a double rather than a float.

The conversion characters o, x, and d can be optionally preceded
by h/ to indicate that the corresponding pointer is to a short rather
than an int. Since short and int fields are the same in Aztec C,
this option has no effect.

SEE ALSO
Standard I/O (O)

EXAMPLES

1, In this program fragment, scanf is used to read values for
the int x, the float y, and a character string into the char
array Z:

int x; float y; char z[50];
scanf("%d%f%s", &x, &y, z);

The input line

32 75.36e-1 rufus

will assign 32 to x, 7.536 to y, and "rufus " to z. scanf will
return 3 as its value, signifying that three conversion
Specifications were matched.

The three input strings must be delimited by ’white space’
characters; that is, by blank, tab, and newline characters.
Thus, the three values could also be entered on separate

- lib.52 -

SCANF (C) SCANF

lines, with the white space character newline used to

separate the values.

2. This example discusses the problems which may arise
when mixing scanf and other input operations on the same
stream.

In the previous example, the character string entered for

the third variable, z, must also be delimited by white space
characters. In particular, it must be terminated by a space,
tab, or newline character. The first such character read by
scanf while getting characters for z will be "pushed back’
into the standard input stream. When another read of stdin
is made later, the first character returned will be the white

space character which was pushed back.

This ’pushing back’ can lead to unexpected results for
programs that read stdin with functions in addition to
scanf. Suppose that the program in the first example wants
to issue a gets call to read a line from stdin, following the
scanf to stdin. scanf will have left on the input stream the
white space character which terminated the third value
read by scan/f. If this character is a newline, then gets will
return a null string, because the first character it reads is
the pushed back newline, the character which terminates
gets. This is most likely not what the program had in mind
when it called gets.

It is usually unadvisable to mix scanf and other input
operations on a single stream.

3. This example discusses the behavior of scanf when there
are white space characters in the control string.

The control string in the first example was "%d%f%s". It
doesn’t contain or need any white space, since scanf, when
attempting to match a conversion specification, will skip
leading white space. There’s no harm in having white
space before the %d, between the %d and %f, or between
the %f and %s. However, placing a white space character
after the %s can have unexpected results. In this case,
scanf will, after having read a character string for z, keep
reading characters until a non-white-space character 1s
read. This forces the operator to enter, after the three
values for x, y, and z, a non-white space character; until

this is done, scanf will not terminate.

The programmer might place a newline character at the

end of a control string, mistakenly thinking that this will
circumvent the problem discussed in example 2. One
might think that scanf will treat the newline as it would an

- lib.53 -

SCANF (C) SCANF

ordinary character in the control string; that is, that scanf
will search for, and remove, the terminating newline
character from the input stream after it has matched the z
variable. However, this is incorrect, and should be
remembered as a common misinterpretation.

4. scanf only reads input it can match. If, for the first
example, the input line had been

32 rufus 75.36e-1

scanf would have returned with value 1, signifying that
only one conversion specification had been matched. x
would have the value 32, y and z would be unchanged. All
characters in the input stream following the 32 would still
be 1n the input stream, waiting to be read.

>». One common problem in_ using’ scanf_ involves
mismatching conversion specifications and their
corresponding arguments. If the first example had declared
y to be a double, then one of the following statements
would have been required:

scanf("%d%lf%s", &x, &y, Z);

or

scanf("%d%F%s", &x, &y, z);

to tell scanf that the floating point variable was a double
rather than a float.

6. Another common problem in using scanf involves passing
scanf the value of a variable rather than its address. The
following call to seanf 1s incorrrect:

int x; float y; char z[50];
scanf("%d%f%s", x, y, Z);

scanf has been passed the value contained in x and y, and
the address of z, but it requires the address of all three
variables. The "address of" operator, &, is required as a
prefix to x and y. Since z is an array, its address is
automatically passed to scanf, so z doesn’t need the &
prefix, although it won’t hurt if it is given.

7. Consider the following program fragment:

int x; float y; char z[50];
scanf("%2d%f%*d%[1234567890]", &x, &y, z):

When given the following input:

12345 678 90a65

scanf will assign 12 to x, 345.0 to y, skip ’678’, and place

~ 1ib.54 -

SCANF (C) SCANF

the string ’90 ’ in z. The next call to getchar will return ’a’.

- lib.55 -

SETBUF (C) SETBUF

NAME
setbuf - assign buffer to a stream

SYNOPSIS
#include "stdio.h"

setbuf(stream, buf)
FILE ‘stream;
char *buf;

DESCRIPTION
setbuf defines the buffer that’s to be used for the i/o stream
stream. If buf is not a NULL pointer, the buffer that it points at
will be used for the stream instead of an automatically allocated
buffer. If buf is a NULL pointer, the stream will be completely
unbuffered.

When buf is not NULL, the buffer it points at must contain
BUFSIZ bytes, where BUFSIZ is defined in stdio.h.

setbuf must be called after the stream has been opened, but
before any read or write operations to it are made.

If the user’s program doesn’t specify the buffer to be used for a
stream, the standard i/o functions will dynamically allocate a
buffer for the stream, by calling the function malloc, when the
first read or write operation is made on the stream. Then, when
the stream is closed, the dynamically allocated buffer is freed by
calling free.

SEE ALSO
Standard I/O (O), malloc

- 1ib.56 -

SETJMP (C) SETJMP

NAME
setymp, longjmp - non-local goto

SYNOPSIS
#include "setjmp.h"

setjmp(env)
jmp __ buf env;

longjmp(eny, val)
jmp _ buf envy;

DESCRIPTION
These functions are useful for dealing with errors encountered
by the low-level functions of a program.

setjmp saves its stack environment in the memory block pointed
at by env and returns 0 as its value.

long jmp causes execution to continue as if the last. call to setjmp
was just terminating with value val. val cannot be zero.

The parameter env is a pointer to a block of memory which can
be used by set jmp and long jmp. The block must be defined using
the typedef jmp__ buf.

WARNING
longjmp must not be called without env having been initialized
by a call to setjmp. It also must not be called if the function that
called set jmp has since returned.

EXAMPLE
In the following example, the function getall builds a record
pertaining to a customer and returns the pointer to the record if
no errors were encountered and 0 otherwise.

getall calls other functions which actually build the record.
These functions in turn call other functions, which in turn ...

getall defines, by calling setjmp, a point to which these functions
can branch if an unrecoverable error occurs. The low level
functions abort by calling Jong jmp with a non-zero value.

If a low level function aborts, execution continues in getall as if
its call to setjmp had just terminated with a non-zero value.
Thus by testing the value returned by setjmp getall can
determine whether setjmp is terminating because a low level
function aborted.

- lib.57 -

SETJMP (C) SETJMP

#include "setymp.h"

jmp __ buf envbuf; /* environment saved here by setjmp */

getall(ptr)
char *ptr; /* ptr to record to be built */

if (setjmp(envbuf))
/* a low level function has aborted */
return 0;

getfield1(ptr);
getfield2(ptr);
getfield3(ptr);
return ptr;

Here’s one of the low level functions:

getsubfld2 1 (ptr)
char *ptr;

{

if (error)

longjmp(envbuf, -1);

- lib.58 -

SIN (M) SIN

NAME
trigonometric functions:
sin, cos, tan, cotan, asin, acos, atan, atan2

SYNOPSIS
#include <math.h>

double sin(x)
double x;

double cos(x)
double x;

double tan(x)
double x;

double cotan(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x,y)
double x;

DESCRIPTION
sin, cos, tan, and cotan return trigonometric functions of radian

arguments.

asin returns the arc sin in the range -pi/2 to pi/2.

acos returns the arc cosine in the range 0 to pt.

atan returns the arc tangent of x in the range -pi/2 to pi/2.

atan2 returns the arc tangent of x/y in the range -pi to pi.

SEE ALSO
Errors (QO)

DIAGNOSTICS
If a trig function can’t perform the computation, it returns an
arbitrary value and sets a code in the global integer errno;
otherwise, it returns the computed number, without modifying
errno.

A function will return the symbolic value EDOM if the

argument is invalid, and the value ERANGE if the function
value can’t be computed. EDOM and ERANGE are defined in

the file errno.h.

- lib.59 -

SIN (M) SIN

The values returned by the trig functions when the computation
can’t be performed are listed below. The symbolic values are
defined in math.h.

function | error =i meaning
sin ERANGE T 0. abs(x) > XMAX
cos ERANGE j; 0.0 abs(x) > XMAX
tan ERANGE , 0.0 abs(x) > XMAX
cotan ERANGE ; HUGE 0<x< XMIN
cotan ERANGE | -HUGE1 | -XMIN <x <0
cotan ERANGE | 0.0 abs(x) >= XMAX
asin EDOM 0.0 abs(x) > 1.0
acos EDOM 0.0 abs(x) > 1.0
atan2 EDOM 0.0 x=y=0

- 1ib.60 -

SINH (M) SINH

NAME :
sinh, cosh, tanh

SYNOPSIS
#include <math.h>

double sinh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the hyperbolic functions of their

arguments.

SEE ALSO
Errors (O)

DIAGNOSTICS
If the absolute value of the argument to sinh or cosh is greater
than 348.6, the function sets the symbolic value ERANGE in
the global integer errno and returns a huge value. This code is

defined in the file errno.h.

If no error occurs, the function returns the computed value

without modifying errno.

- lib.61 -

STRING (C) STRING

NAME

Strcat, strncat, strcmp, strncmp, strcpy, strncpy,

strlen, index, rindex - string operations

SYNOPSIS
char *strcat(s1, s2)
char *s1, *s2;

char *strncat(s1, s2, n)
char *s1, *s2;

stremp(s1, s2)
char *sl, *s2;

strncmp(sl, s2, n)
char *s1, s2;

char *strcpy(sl, s2)
char *s1, *s2;

char *strncpy(s1, s2, n)
char *s1, *s2;

strlen(s)
char *s;

char *index(s, c)
char *s;

char *rindex(s, c)
char *s;

DESCRIPTION
These functions operate on null-terminated strings, as follows:

strcat appends a copy of string s2 to string si. strncat copies at
most n characters. Both terminate the resulting string with the
null character (\O) and return a pointer to the first character of
the resulting string,

strcmp compares its two arguments and returns an integer
greater than, equal, or less than zero, according as s/ is
lexicographically greater than, equal to, or less than s2. strncmp
makes the same comparison but looks at n characters at most.

strcpy copies string s2 to s/ stopping after the null character has
been moved. strncpy copies exactly n characters: if s2 contains
less than n characters, null characters will be appended to the
resulting string until n characters have been moved; if s2
contains ” or more characters, only the first m will be moved,
and the resulting string will not be null terminated.

strlen returns the number of characters which occur in s up to
the first null character.

- lib.62 -

STRING (C) STRING

index returns a pointer to the first occurrance of the character c

in string s, or zero if c isn’t in the string.

rindex returns a pointer to the last occurrance of the character c

in string s, or zero if c isn’t in the string.

- lib.63 -

TOUPPER (C) TOUPPER

NAME
toupper, tolower

SYNOPSIS
toupper(c)

tolower(c)

#include "ctype.h"

__ toupper(c)

__ tolower(c)

DESCRIPTION
toupper converts a lower case character to upper case: if c is a
lower case character, toupper returns its upper case equivalent as

its value, otherwise c is returned.

tolower converts an upper case character to lowr case: if c is an
upper case character tolower returns its lower case equivalent,
otherwise c is returned.

toupper and tolower do not require the header file ctype.h.

__toupper and _tolower are macro versions of ftoupper and
tolower, respectively. They are defined in ctype.h. The difference
between the two sets of functions is that the macro versions will
sometimes translate non-alphabetic characters, whereas the
function versions don’t.

- lib.64 -

UNGETC (C) UNGETC

NAME
ungetc - push a character back into input stream

SYNOPSIS
#include "stdio.h"

ungetc(c, stream)
FILE *stream;

DESCRIPTION
ungetc pushes the character c back on an input stream. That

character will be returned by the next getc call on that stream.

ungetc returns c as its value.

Only one character of pushback is guaranteed. EOF cannot be

pushed back.

SEE ALSO
Standard I/O (O)

DIAGNOSTICS
ungetc returns EOF (-1) if the character can’t be pushed back.

- lib.65 -

UNLINK (C) UNLINK

NAME
unlink

SYNOPSIS
unlink(name)
char *name;

DESCRIPTION
unlink erases a file.

name iS a pointer to a character array containing the name of
the file to be erased.

unlink returns 0 if successful.

DIAGNOSTICS
unlink returns -1 if it couldn’t erase the file and places a code in
the global integer errno describing the error.

- lib.66 -

WRITE (C) WRITE

NAME
write

SYNOPSIS
write(fd,buf, bufsize)
int fd, bufsize; char *buf;

DESCRIPTION
write writes characters to a device or disk which has been
previously opened by a call to open or creat. The characters are
written to the device or file directly from the caller’s buffer.

fd is the file descriptor which was returned to the caller when

the device or file was opened.

buf is a pointer to the buffer containing the characters to be
written.

bu fsize is the number of characters to be written.

If the operation is successful, write returns as its value the
number of characters written.

SEE ALSO
Unbuffered I/O (O) , open, close, read

DIAGNOSTICS
If the operation is unsuccessful, write returns -1 and places a
code in the global integer errno.

- lib.67 -

WRITE (C) WRITE

- lib.68 -

STYLE

- style.1 -

STYLE Aztec C

Chapter Contents

bunecsnessecenseseeeecessccucesens ceceesecececcecescececescecescececeesecescececescecencescceccessecsoeeescs Style
INtrOductiOncccccsscsscsssecssssscscsscssesesssccsesseeescscsscsessssesssscssceessesnsesses 3
Structured PrograM MINGcccsssccsccescscescscecsecscssssesseseseesesseseenees 7
TOp-GOWN PrograM MING .u....ccccccccccsscccssssscsssssssssscsssssscsseccesseseceseeeees 8
Defensive Programming and Debugging ou... eececesssseceseeees 10
Things to watch Out fOr ou... scccccscsssscssssscsseessssecsssssscsesssssssesevees 15

- Style.2 -

Aztec C STYLE

Style

This section was written for the programmer who is new to the C

language, to communicate the special character of C and the

programming practices for which it is best suited. This material will

ease the new user’s entry into C. It gives meaning to the peculiarities

of C syntax, in order to avoid the errors which will otherwise

disappear only with experience.

1. Introduction

what’s in it for me?

These are the benefits to be reaped by following the methods

presented here:

* Reduced debugging times;

* Increased program efficiency;

* Reduced software maintenance burden.

The aim of the responsible programmer is to write straightforward

code, which makes his programs more accessible to others. This section

on style. is meant to point out which programming habits are

conducive to successful C programs and which are especially prone to

cause trouble.

The many advantages of C can be abused. Since C is a terse, subtle

language, it is easy to write code which is unclear. This is contrary to

the "philosophy" of C and other structured programming languages,

according to which the structure of a program should be clearly

defined and easily recognizable.

keep it simple

There are several elements of programming style which make C

easier to use. One of these is simplicity. Simplicity means keep it simple.

You should be able to see exactly what your code will do, so that when

it doesn’t you can figure out why.

A little suspicion can also be useful. The particular "problem areas"

which are discussed later in this section are points to check when code

"looks right" but does not work. A small omission can cause many

errors.

learn the C idioms

C becomes more valuable and more flexible with time. Obviously,

elementary problems with syntax will disappear. But more importantly,

- style.3 -

STYLE Aztec C

C can be described as "idiomatic." This means that certain expressions
become part of a standard vocabulary used over and over.

For example,

while ((c = getchar()) != EOF)

is readily recognized and written by any C programmer. This is often
used as the beginning of a loop which gets a character at a time from a
source of input. Moreover, the inside set of parentheses, often omitted
by a new C programmer, is rarely forgotten after this construct has
been used a few times.

be flexible in using the library

The standard library contains a choice of functions for performing
the same task. Certain combinations offer advantages, so that they are
used routinely. For instance, the standard library contains a function,
scanf, which can be used to input data of a given format. In this
example, the function "scans" input for a floating point number:

scanf("%f", &flt__ num);

There are several disadvantages to this function. An important debit
is that it requires a lot of code. Also, it is not always clear how this
function handles certain strings of input. Much time could be spent
researching the behavior of this function. However, the equivalent to
the above is done by the following:

flt_ num = atof(gets(inp__buf));

This requires considerably less code, and is somewhat more
straightforward. gets puts a line of input into the buffer, "inp __ buf,"
and atof converts it to a floating point value. There is no question
about what the input function is "looking for" and what it should find.

Furthermore, there is greater flexibility in the second method of
getting input. For instance, if the user of the program could enter
either a special command ("e" for exit) or a floating point value, the
following is possible:

gets(inp__ buf);
if (inp__buf[0] == ’e’)

exit(0);
flt_ num = atof(inp _ buf);

Here, the first character of input is checked for an "e", before the
input is converted to a float.

The relative length of the library description of the scanf function
is an indication of the problems that can arise with that and related
functions.

- style.4 -

Aztec C STYLE

write readable code

Readability can be greatly enhanced by adhering to what common

sense dictates. For instance, most lines can easily accommodate more

than one statement. Although the compiler will accept statements

which are packed together indiscriminately, the logic behind the code

will be lost. Therefore, it makes sense to write no more than one

statement per line.

In a similar vein, it is desirable to be generous with whitespace. A

blank space should separate the arithmetic and assignment operators

from other symbols, such as variable names. And when parentheses are

nested, dividing them with spaces is not being too prudent. For

example,

if((fp=fopen("filename","r")==NULL))

is not the same as

a if ((fp = fopen("filename", "r")) == NULL)

The first line contains a misplaced parenthesis which changes the

meaning of the statement entirely. (A file is opened but the file

pointer will be null.) If the statement was expanded, as in the second

line, the problem could be easily spotted, if not avoided altogther.

use straightforward logical expressions

Conditionals are apt to grow into long expressions. They should be

kept short. Conditionals which extend into the next line should be

divided so that the logic of the statement can be visualized at a glance.

Another solution might be to reconsider the logic of the code itself.

learn the rules for expression evaluation

Keep in mind that the evaluation of an expression depends upon

the order in which the operators are evaluated. This is determined

from their relative precedence.

Item 7 in the list of "things to watch out for", below, gives an

example of what may happen when the evaluation of a boolean

expression stops "in the middle". The rule in C is that a boolean will be

evaluated only until the value of the expression can be determined.

Item 8 gives a well known example of an "undefined" expression,

one whose value is not strictly determined.

In general, if an expression depends upon the order in which it 1S

evaluated, the results may be dubious. Though the result may be

strictly defined, you must be certain you know what that definition is.

a matter of taste

There are several popular styles of indentation and placement of

the braces enclosing compound statements. Whichever format you

- style.5 -

STYLE Aztec C

adopt, it is important to be consistent. Indentation is the accepted way
of conveying the intended nesting of program statements to other
programmers. However, the compiler understands only braces. Making
them as visible as possible will help in tracking down nesting errors
later.

However much time is devoted to writing readible code, C is low-
level enough to permit some very peculiar expressions.

/* It is important to insert comments on a regular basis! */

Comments are especially useful as brief introductions to function
definitions.

In general, moderate observance of these suggestions will lessen the
number of "tricks" C will play on you-- even after you have mastered
its syntax.

- style.6 -

Aztec C STYLE

2. Structured Programming

"Structured programming” is an attempt to encourage programming

characterized by method and clarity. It stems from the theory that any

programming task can be broken into simpler components. The three

basic parts are statements, loops, and conditionals. In C, these parts are,

respectively, anything enclosed by braces or ending with a semicolon;

for, while and do-while; if-else.

modularity and block structure

Central to structured programming is the concept of modularity. In

one sense, any source file compiled by itself is a module. However, the

term is used here with a more specific meaning. In this context,

modularity refers to the independence or isolation of one routine from

another. For example, a routine such as main() can call a function to

do a given task even though it does not know how the task is

accomplished or what intermediate values are used to reach the final

result.

Sections of a program set aside by braces are called "blocks". The

"privacy" of C’s block structure ensures that the variables of each block

are not inadvertently shared by other blocks. Any left brace ({) signals

the beginning of a block, such as the body of a function or a for loop.

Since each block can have its own set of variables, a left brace marks

an opportunity to declare a temporary variable.

A function in C is a special block because it is called and is passed

control of execution. A function is called, executes and returns.

Essentially, a C program is just such a routine, namely, main.

A function call represents a task to be accomplished. Program

statements which might otherwise appear as several obscure lines can

be set aside in a function which satisfies a desired purpose. For

instance, getchar is used to get a single character from standard input.

When a section of code must be modified, it is simpler to replace a

single modular block than it is to delete a section of an unstructured

program whose boundaries may be unclear at best. In general, the

more precisely a block of program is defined, the more easily it can be

changed.

- style.7 -

STYLE Aztec C

3. Top-down Programming

"Top-down" programming is one method that takes advantage of
structured programming features like those discussed above. It is a
method of designing, writing, and testing a program from the most
general function (i.e., (main()) to the most specific functions (such as
getchar()).

All C programs begin with a function called main(). main() can be
thought of as a supervisor or manager which calls upon other functions
to perform specific tasks, doing little of the work itself. If the overall
goal of the program can be considered in four parts (for instance,
input, processing, error checking and output), then main() should call
at least four other functions.

step one

The first step in the design of a program is to identify what is to be
done and how it can be accomplished in a "programmable" way. The
main routine should be greatly simplified. It needs to call a function to
perform the crucial steps in the program. For example, it may call a
function, init(), which takes care of all necessary startup initializations.
At this point, the programmer does not even need to be certain of all
the initializations that will take place in init().

All functions consist of three parts: a parameter list, body, and
return value. The design of a function must focus on each of these
three elements.

During this first stage of design, each function can be considered a
black box. We are concerned only with what goes in and what comes
out, not with what goes on inside.

Do not allow yourself to be distracted by the details of the
implementation at this point. Flowcharts, pseudocode, decision tables
and the like are useful at this stage of the implementation.

A detailed list of the data which is passed back and forth between
functions is important and should not be neglected. The interface
between functions is crucial.

Although all functions are written with a purpose in mind, it is
easy to unwittingly merge two tasks into one. Sometimes, this may be
done in the interests of producing a compact and efficient program
function. However, the usual result is a bulky, unmanageable function.
If a function grows very large or if its logic becomes difficult to
comprehend, it should be reduced by introducing additional function
calls.

step two

There comes a time when a program must pass from the design
Stage into the coding stage. You may find the top-down approach to

- style.8 -

Aztec C
STYLE

coding too restrictive. According to this scheme, the smallest and most

specific functions would be coded last. It is our nature to tackle the

most daunting problems first, which usually means coding the low-

level functions.

Whereas the top-down approach is the preferred method for

designing software, the bottom-up approach is often the most practical

method for writing software. Given a good design, either method of

implementation should produce equally good results.

One asset of top-down writing is the ability to provide immediate

tests on upper level routines. Unresolved function calls can be satisfied

by "dummy" functions which return a range of test values. When new

functions are added, they can operate in an environment that has

already been tested.

C functions are most effective when they are as mutually

independent as is possible. This independence is encouraged by the

fact that there is normally only one way into and one way out of a

function: by calling it with specific arguments and returning a

meaningful value. Any function can be modified or replaced so long as

its entry and exit points are consistent with the calling function.

- style.9 -

STYLE Aztec C

4. Defensive Programming and Debugging

"Defensive programming" obeys the same edict as defensive
driving: trust no one to do what you expect. There are two sides to
this rule of thumb. Defend against both the possibility of bad data or
misuse of the program by the user, and the possibility of bad data
generated by bad code.

Pointers, for example, are a prime source of variables gone astray.
Even though the "theory" of pointers may be well understood, using
them in new ways (or for the first time) requires careful consideration
at each step. Pointers present the fewest problems when they appear in
familiar settings.

faced with the unknown

When trying something new, first write a few test programs to
make sure the syntax you are using is correct. For example, consider a
buffer, str__buf, filled with null-terminated strings. Suppose we want to
print the string which begins at offset begin in the buffer. Is this the
way to do it?

printf("%s", str__buf[begin]);

A little investigation shows that str__buf[begin] is a character, not a
pointer to a string, which is what is called for. The correct statement is

printf("%s", str__buf + begin);

This kind of error may not be obvious when you first see it. There
are other topics which can be troublesome at first exposure. The
promotion of data types within expressions is an example. Even if you
are sure how a new construct behaves, it never hurts to doublecheck
with a test program.

Certain programming habits will ease the bite of syntax. Foremost
among these is simplicity of style. Top-down programming is aimed at
producing brief and consequently simple functions. This simplicity
Should not disappear when the design is coded.

Code should appear as "idiomatic" as possible. Pointers can again
provide an example: it is a fact of C Syntax that arrays and pointers
are one and the same. That is,

array[offset]

is the same as

*(array + offset)

The only difference is that an array name is not an Ivalue; it is
fixed. But mixing the two ways of referencing an object can cause
confusion, such as in the last example. Choosing a certain. idiom,
which is known to behave a certain way, can help avoid many errors in
usage.

- style.10 -

Aztec C STYLE

when bugs strike

The assumption must be that you will have to return to the source

code to make changes, probably due to what is called a bug. Bugs are

characterized by their persistence and their tendency to multiply

rapidly.

Errors can occur at either compile-time or run-time. Compile-time

errors are somewhat easier to resolve since they are usually errors in

syntax which the compiler will point out.

from the compiler

If the compiler does pick up an error in the source code, it will

send an error code to the screen and try to specify where the error

occurred. There are several peculiarities about error reporting which

should be brought up right away.

The most noticeable of these peculiarities is the number of spurious

errors which the compiler may report. This interval of inconsistency is

referred to as the compiler’s recovery. The safest way to deal with an

unusually long list of errors is to correct the first error and then

recompile before proceeding.

The compiler will specify where it "noticed" something was wrong.

This does not necessarily indicate where you must make a change in

the code. The error number is a more accurate clue, since it shows

what the compiler was looking for when the error occurred.

if this ever happens to you

A common example of this is error 69: "missing semicolon." This

error code will be put out if the compiler is expecting a semicolon

when it finds some other character. Since this error most often occurs

at the end of a line, it may not be reported until the first character of

the following line-- recall that whitespace, such as a newline character,

is ignored.

Such an error can be especially treacherous in certain situations.

For example, a missing semicolon at the end of a #include’d file may

be reported when the compiler returns to read input in the original

file.

In general, it is helpful to look at a syntax error from the

compiler’s point of view.

Consider this error:

- style.11 -

STYLE Aztec C

Struct structag {
char c;
int i;

}

int 5

This should generate an error 16: "data type conflict". The arrow in the
crror message should show that the error was detected right after the
"int" in the declaration of j. This means that the error has to do with
something before that line, since there is nothing illegal about the int
keyword.

By inspection, we may see that the semicolon is missing from the
preceding line. If this fact escapes our notice, we still know that error
16 means this: the compiler found a declaration of the form

[data type] [data type] [symbol name]

where the two data types were incompatible. So while shortint is a
good data type, double int is not. A small intuitive leap leads us to
assume that the compiler has read our source as a kind of "struct int"
declaration; struct is the only keyword preceding the int which could
have caused this error. Since the compiler is reading the two
declarations as a single statement, we must be missing a delimiter.

run-time errors

It takes a bit more ingenuity to locate errors which occur at run-
time. In numerical calculations, only the most anomalous results will
draw attention to themselves. Other bugs will generate output which
will appear to have come from an entirely different program.

A bug is most useful when it is repeatable. Bugs which show up
only "sometimes" are merely vexing. They can be caused by a
corrupted disk file or a bad command from the user.

When an error can be consistently produced, its source can be more
easily located. The nature of an error is a good clue as to its source.
Much of your time and sanity will be preserved by setting aside a few
minutes to reflect upon the problem.

Which modules are involved in the computation or process? Many
possibilities can be eliminated from the start, such as pieces, of code
which are unrelated to the error.

The first goal is to determine, from a number of possibilities,
which module might be the source of the bug.

checking input data

Input to the program can be checked at a low cost. Error checking
of this sort should be included on a "routine" basis. For instance, "if
((fp=fopen("file","r"))==NULL)" should be reflex when a file is

- Style.12 -

Aztec C STYLE

opened. Any useful error handling can follow in the body of the 7/.

It is easy to check your data when you first get your hands on it. If

an error occurs after that, you have a bug 1n your program.

printf it

It ig useful to know where the data goes awry. One brute force way

of tracking down the bug is to insert printf statements wherever the

data is referenced. When an unexpected value comes up, a single

module can be chosen for further investigation.

The printf search will be most effective when done with more

refinement. Choose a suspect module. There are only two keys points

to check: the entry and return of the function. printf the data in

question just as soon as the function is entered. If the values are

already incorrect, then you will want to make sure the correct data was

passed in the function call.

If an incorrect value is returned, then the search is confined to the

guilty function. Even if the function returns a good value, you may

want to make sure it is handled correctly by the calling function.

If everything seems to be working, jump to the next tricky module

and perform another check. When you find a bad result, you will still

have to backtrack to discover precisely where the data was spoiled.

function calls

Be aware that data can be garbled in a funtion call. Function

parameters must be declared when they are not two byte integers. For

instance, if a function is called:

fseek(fp, 0, 0);

in order to "seek" to the beginning of a file, but the function 1s defined

this way:

fseek(fp, offset, origin)

FILE *fp;
long offset;
int origin;

there will be unfortunate consequences.

The second parameter is expected to be a Jong integer (four bytes),

but what is being passed is a short integer (two bytes). In a function

call, the arguments are just being pushed onto the stack; when the

function is entered, they are pulled off again. In the example, two

bytes are being pushed on, but four bytes (whatever four bytes are

there) are being pulled off.

The solution is just to make the second parameter a long, with a

suffix (OL) or by the cast operator (as in (long)i).

- style.13 -

STYLE Aztec C

A similar problem occurs when a non-integer return value is not
declared in the calling function. For example, if sqrt is being called, it
must be declared as returning a double:

double saqrt();

This method of debugging demonstrates the usefulness of having a
solid design before a function is coded. If you know what should be
going into a function and what should be coming out, the process of
checking that data is made much simpler.

found it

When the guilty function is isolated, the difficulty of finding the
bug is proportional to the simplicity of the code. However, the search
can continue in a similar way. You should have a good notion of the
purpose of each block, such as a loop. By inserting a printf in a loop,
you can observe the effect of each pass on the data.

printf’s can also point out which blocks are actually being executed.
"Falling through" a test, such as an if or a switch, can be a subtle source
of problems. Conditionals should not leave cases untested. An else, or a
de fault in a switch, can rescue the code from unexpected input.

And if you are uncertain how a piece of code will work, it is
usually worthwhile to set up small test programs and observe what
happens. This is instructional and may reveal a bug or two.

- style.14 -

Aztec C STYLE

5, Things to Watch Out for

Some errors arise again and again. Not all of them go away with

experience. The following list will give you an idea of the kinds of

things that can go wrong.

* missing semicolon or brace

The compiler will tell you when a missing semicolon or brace has

introduced bad syntax into the code. However, often such an error will

affect only the logical structure of the program; the code may compile

and even execute. When this error is not revealed by inspection, it 1S

usually brought out by a test printf which is executed too often or not

enough. See compiler error 69.

* assignment (=) vs comparison (==

Since variables are assigned values more often than they are tested

for equality, the former operator was given the single keystroke: =.

Notice that all the comparison tests with equality are two characters:

<=, >= and ==.

* misplaced semicolon

When typing in a program, keep in mind that all source lines do not

automatically end with a semicolon. Control lines are especially

susceptible to an unwanted semicolon:

for (i=0; i<100; i++);
printf("%d",i);

This example prints the single number 100.

* division (/) vs escape sequence (\)

C definitely distinguishes between these characters. The division

sign resides below the question mark on a standard console; the

backslash is generally harder to find.

* character constant vs character string

Character constants are actually integers equal to the ASCII values

of the respective character. A character string is a series of characters

terminated by a null character (\0). The appropriate delimiter is the

single quote and double quote, respectively.

* uninitialized variable

At some point, all variables must be given values before they are

used. The compiler will set global and static variables to zero, but

automatic variables are guaranteed to contain garbage every time they

are created.

- style.15 -

STYLE Aztec C

* evaluation of expressions

For most operations in C, the order of evaluation is rigidly defined;
thus, many expressions can be written without lots of parentheses.

However, the order in which unparenthesized expressions are
evaluated are not always what you would expect; therefore, it’s usually
a good idea to use parentheses liberally in expressions where there may
be doubt about the order of evaluation (in your mind or in the mind
of someone who may later read your program).

For example, the result of the following example is 6:

inta=2,b=3,c=4,d;
d=at+b/a¥*tc,

The above expression is equivalent to the parenthesized expression d =
a+((b / a) *c);. You should probably use some parentheses in this
expression, to make its effect clear to yourself and to others.

Consider this example:

if ((c = 0) I (c= 1))
printf("%d", c);

"1" will be printed; since the first half of the conditional evaluates
to zero, the second half must be also evaluated. But in this example:

if ((c = 0) && (c= 1))

printf ("Yod", c);

a "0" is printed. Since the first half evaluates to zero, the value of the
conditional must be zero, or false, and evaluation Stops. This is a
property of the logical operators.

* undefined order of evaluation

Unfortunately, not all operators were given a complete set of
instructions as to how they should be evaluated. A good example is the
increment (or decrement) operator. For instance, the following is
undefined:

1= ++i + --i/++i - i++:

How such an expression is evaluated by a particular implementation is
called a "side effect." In general, side effects are to be avoided.

* evaluation of boolean expressions

Ands, ors and nots invite the programmer to write long
conditionals whose very purpose is lost in the code. Booleans should be
brief and to the point. Also, the bitwise logical operators must be fully
parenthesized. The table in sections 2,12 and 18.1 of The C
Programming Language, by Kernighan and Ritchie, shows their
precedence in relation to other operators.

- Style.16 -

Aztec C STYLE

Here is an extreme example of how a lengthy boolean can be

reduced:

if ((c = getchar()) != EOF && c >= ’a’ && o<= "2? &&

(c = getchar()) >= "1? && c <= 9’)

printf("good input\n");

if ((c = getchar()) != EOF)
if (c >=’a’ && c <= 2’)

if ((c = getchar()) >= 0” && c <= 9”)

printf("good input\n");

* badly formed comments

The theory of comment syntax is simply that everything occurring

between a left /* and a right */ is ignored by the compiler.

Nonetheless, a missing */ should not be overlooked as a possible error.

Note that comments cannot be nested, that is

/* /* this will cause an error */ * /

And this could happen to you too:

/* the rest of this file is ignored until another comment /*

* nesting error

Remember that nesting is determined by braces and not by

indentations in the text of the source. Nested if statements merit

particular care since they are often paired with an else.

* usage of else

Every else must pair up with an if. When an else has inexplicably

remained unpaired, the cause is often related to the first error in this

list.

* falling through the cases in a switch

To maintain the most control over the cases ina switch statement, it

is advisable to end each case with a break, including the last case in the

switch.

* strange loops

The behavior of loops can be explored by inserting printf

statements in the body of the loop. Obviously, this will indicate if the

loop has even been entered at all in course of a run. A counter will

show just how many times the loop was executed; a small slip-up will

cause a loop to be run through once too often or seldom. The

condition for leaving the loop should be doublechecked for accuracy.

- style.17 -

STYLE Aztec C

* use of strings

All strings must be terminated by a null character in memory.
Thus, the string, "hello", will occupy a six-element array: the sixth
clement is ’ ’. This convention is essential when passing a string to a
standard library function. The compiler will append the null character
to string constants automatically.

* pointer vs object of a pointer

The greatest difficulty in using pointers is being sure of what is
needed and what is being used. Functions which take a pointer
argument require an address in memory. The best way to ensure that
the correct value is being passed is to keep track of what is being
pointed to by which pointer.

* array subscripting

The first element in a C array has a subscript of zero. The array
name without a subscript is actually a pointer to this element.
Obviously, many problems can develop from an incorrect subscript.
The most damaging can be subscripting out of bounds, since this will
access memory above the array and overwrite any data there. If array
elements or data stored with arrays are being lost, this error is a good
candidate.

* function interface

During the design stage, the components of a program should be
associated with functions. It is important that the data which is passed
among or shared by these functions be explicitly defined in the
preliminary design of the program. This will greatly facilitate the
coding of the program since the interface between functions must be
precise in several respects.

First of all, if the parameters of a function are established, a call
can be made without the reservation that it will be changed later.
There is less chance that the arguments will be of the wrong type or
specified in the wrong order.

A function is given only a private copy of the variables it is passed.
This is a good reason to decide while designing the program how
functions should access the data they require. You will be able to detail
the arguments to be passed in a function call, the global data which the
function will alter, the value which the function will return and what
declarations will be appropriate-- all without concern for how the
function will be coded.

Argument declarations should be a fairly simple matter once these
things are known. Note that this declaration list must stand before the
left brace of the function body.

- style.18 -

Aztec C
STYLE

The type of the function is the same as the type of the value it

returns. Functions must be declared just like any variable. And just

like variables, functions will default to type int, that is, the compiler

will assume that a function returns an integer if you do not tell it

otherwise with a declaration. Thus if function f calls function g which

returns a variable of type double, the following declaration is needed:

function fQ

double g(), bigfloat;

g(bigfloat);

}
double g(arg)
double arg;

return(arg);

}

* be sure of what a function returns

You will probably know very well what is returned by a function

you have written yourself. But care should be taken when using

functions coded by someone else. This 1s especially true of the standard

library functions. Most of the supplied library functions will return an

int or a char pointer where you might expect a char. For instance,

getchar() returns an int, not a char. The functions supplied by Manx

adhere to the UNIX model in all but a few cases.

Of course, the above applies to a function’s arguments as well.

* shared data

Variables that are declared globally can be accessed by all functions

in the file. This is not a very safe way to pass data to functions since

once a global variable is altered, there is no returning it to its former

state without an elaborate method of saving data. Moreover, global data

must be carefully managed; a function may process the wrong variable

and consequently inhibit any other function which depends on that

data.

Since C provides for and even encourages private data, this

definitely should not be a common bug.

- style.19 -

STYLE Aztec C

- style.20 -

COMPILER ERROR MESSAGES

- err.1 -

Compiler Error Messages Aztec C

Chapter Contents

Compiler Error Codecccsscsssccsscssscesssssscssssssscccnscesscscsecesssecescecsscssncenes err
LD. SUMMALY 2.0... eecesesscnsessessscceseseccesessscsscssecessscesssssenscececesacesteceeseasens 4
2. Explamatiomsccccccsssccssssccsssccsscscscsssscsssecessscscsecscsstececsscccscsssececseseces 7
3. Fatal Error Messagescscsscsssssssssccssscessssscscsscccesscecsececseccesecees 35

- err.2 -

Aztec C Compiler Error Messages

Compiler Error Messages

This chapter discusses error messages that can be generated by the
compiler. It is divided into three sections: the first summarizes the
messages, the second explains them, and the third discusses fatal
compiler error messsages.

” err.3 -

Compiler Error Messages

1. Summary of error codes

No. Interpretation

O
P

A
W
A
D
M
N
H
R
W
N
 es

bad digit in octal constant
string space exhausted
unterminated string
internal error
illegal type for function
inappropriate arguments
bad declaration syntax
syntax error in typecast
array dimension must be constant
array size must be positive integer

: data type too complex
illegal pointer reference
unimplemented type
internal
internal
data type conflict
unsupported data type
data type conflict
obsolete
structure redeclaration

: missing }
syntax error in structure declaration

: incorrect type for library function (Apprentice C only)
obsolete (other Aztec C compilers)

: need right parenthesis or comma in arg list
: Structure member name expected here

must be structure/union member
: illegal typecast
> incompatible structures

illegal use of structure
missing : in ? conditional expression

: call of non-function
illegal pointer calculation
illegal type
undefined symbol
typedef not allowed here
no more expression space

: invalid expression for unary operator
; no auto. aggregate initialization allowed

obsolete
: internal

: initializer not a constant
too many initializers

- err.4 -

Aztec C

Aztec C > Compiler Error Messages

43: initialization of undefined structure
44: obsolete
45: bad declaration syntax
46: missing closing brace
47: open failure on include file
48: illegal symbol name
49: multiply defined symbol
50: missing bracket
51: Ivalue required ©
52: obsolete
53: multiply defined label
54: too many labels
55: missing quote
56: missing apostrophe
57: line too long
58: illegal # encountered
59: macro too long
60: obsolete
61: reference of member of undefined structure
62: function body must be compound statement
63: undefined label
64: inappropriate arguments
65: illegal argument name
66: expected comma
67: invalid else
68: syntax error
69: missing semicolon
70: goto needs a label
71: statement syntax error in do-while
72: ’for’ syntax error: missing first semicolon
73: °for’ syntax error: missing second semicolon
74: case value must be an integer constant
75: missing colon on case
76: too many cases in switch
77: case outside of switch
78: missing colon on default
79: duplicate default
80: default outside of switch
81: break/continue error
82: illegal character
83: too many nested includes
84: too many array dimensions
85: not an argument
86: null dimension in array
87: invalid character constant
88: nota structure
89: invalid use of register storage class
90: symbol redeclared

- err.§5 -

Compiler Error Messages Aztec C

: illegal use of floating point type
: illegal type conversion
: illegal expression type for switch
: invalid identifier in macro definition
: macro needs argument list
> missing argument to macro
: Obsolete

: not enough arguments in macro reference
: internal

: internal
: missing close parenthesis on macro reference
: macro arguments too long
: #else with no #if
: #endif with no #if
: #endasm with no #asm
: #asm within #asm block
> mussing #endif
> missing #endasm
: #if value must be integer constant
: invalid use of : operator
: invalid use of void expression
: invalid use function pointer
: duplicate case in switch
: macro redefined
: keyword redefined
: field width must be > 0
: invalid 0 length field
: field is too wide
: field not allowed here
: invalid type for field
: ptr to int conversion
: ptr & int not same size
: function ptr & ptr not same size
: invalid ptr/ptr assignment
; too many subscripts or indirection on integer

Error codes between 116 and 125 will not occur on Aztec C
compilers whose version number is less than 3.

Error codes greater than 200 will occur only if there’s something
wrong with the compiler. If you get such an error, please send us the
program that generated the error.

- err.6 -

Aztec C Compiler Error Messages

2. Explanations

1; bad digit in octal constant

The only numerals permitted in the base 8 (octal) counting system
are zero through seven. In order to distinguish between octal,
hexadecimal, and decimal constants, octal constants are preceded by a
zero. Any number beginning with a zero must not contain a digit
greater than seven. Octal constants look like this: 01, 027, 003.
Hexadecimal constants begin with Ox (e.g., 0x1, OxAAO, OxFFF).

2: string space exhausted

The compiler maintains an internal table of the strings appearing in
the source code. Since this table has a finite size, it may overflow
during compilation and cause this error code. The table default size is
about one or two thousand characters depending on the operating
system. The size can be changed using the compiler option -Z.
Through simple guesswork, it is possible to arrive at a table size
sufficient for compiling your program.

3: unterminated string

All strings must begin and end with double quotes ("). This message
indicates that a double quote has remained unpaired.

4: internal error

This error message should not occur. It is a check on the internal
workings of the compiler and is not known to be caused by any
particular piece of code. However, if this error code appears, please
bring it to the attention of MANX. It could be a bug in the compiler.
The release documentation enclosed with the product contains further
information.

5: illegal type for function

The type of a function refers to the type of the value which it
returns. Functions return an int by default unless they are declared
Otherwise. However, functions are not allowed to return aggregates
(arrays or structures). An attempt to write a function such as struct sam
func() will generate this error code. The legal function types are char,
int, float, double, unsigned, long, void and a pointer to any type
(including structures).

6: error in argument declaration

The declaration list for the formal parameters of a function stands
immediately before the left brace of the function body, as shown
below. Undeclared arguments default to int, though it is usually better
practice to declare everything. Naturally, this declaration list may be
empty, whether or not the function takes any arguments at all.

- err.7 -

Compiler Error Messages Aztec C

No other inappropriate symbols should appear before the left
(open) brace.

badfunction(arg1, arg2)
shrt arg 1; /* misspelled or invalid keyword */
double arg 2;
{ /* function body */
}
goodfunction(arg1,arg2)
float arg1;
int arg2; /* this line is not required */
{ /* function body */

}

7: bad declaration syntax

A common cause of this error is the absence of a semicolon at the
end of a declaration. The compiler expects a semicolon to follow a
variable declaration unless commas appear between variable names
in multiple declarations.

int i, j; /* correct */
char c d; /* error 7 */
char *s1, *s2 |
float k; /* error 7 detected here */

Sometimes the compiler may not detect the error until the next
program line. A missing semicolon at the end of a #include’d file will
be detected back in the file being compiled or in another #include file.
This is a good example of why it is important to examine the context
of the error rather than to rely solely on the information provided by
the compiler error message(s).

8: syntax error in type cast

The syntax of the cast operator must be carefully observed. A
common error is to omit a parenthesis:

i= 3 * (int number); /* incorrect usage */
i= 3 * ((int)number); /* correct usage */

9; array dimension must be constant

The dimension given an array must be a constant of type char, int,
or unsigned. This value is specified in the declaration of the array. See
error 10.

10: array size must be positive integer

The dimension of an array is required to be greater than zero. A
dimension less than or equal to zero becomes 1 by default. As can be
seen from the following example, specifying a dimension of zero is not
the same as leaving the brackets empty.

- err.8 -

Aztec C Compiler Error Messages

char badarray| 0]; /* meaningless */
extern char goodarray{]; /* good */

Empty brackets are used when declaring an array that has been
defined (given a size and storage in memory) somewhere else (that is,
outside the current function or file). In the above example, goodarray
is external. Function arguments should be declared with a null
dimension:

func(s1,s2)
char sl[], s2[];
{

}

11: data type too complex

This message is best explained by example:

char FEEEEEE LH Oy:

The form of this declaration implies six pointers-to-pointers. The
seventh asterisk indicates a pointer to a char. The compiler is unable to
keep track of so many "levels". Removing just one of the asterisks will
cure the error; all that is being declared in any case is a single two-byte
pointer. However it is to be hoped that such a construct will never be
needed.

12: illegal pointer reference

The type of a pointer must be either int or unsigned. This is why
you might get away with not declaring pointer arguments in functions
like fopen which return a pointer; they default to int. When this error
is generated, an expression used as a pointer is of an invalid type:

char c;
int var; /* any variable */
int varaddress;
varaddress = &var; /* valid since addresses */
(varaddress) = ’c’; / can fit in an int */
(expression) = 10; / in general, expression

must be an int or unsigned */
Fo =’C’; /* error 12 */

13: internal [see error 4]

14: internal [see error 4]

15: storage class conflict

Only automatic variables and function parameters can be specified
as register.

This error can be caused by declaring a static register variable. While
Structure members cannot be given a storage class at all, function

- err.9 -

Compiler Error Messages Aztec C

arguments can be specified only as register.

A register int i declaration is not allowed outside a function--it will
generate error 89 (see below).

16: data type conflict

The basic data types are not numerous, and there are not many
ways to use them in declarations. The possibilities are listed below.

This error code indicates that two incompatible data types were
used in conjunction with one another. For example, while it is valid to
say long int i, and unsigned int j, it is meaningless to use double int k or
float char c. In this respect, the compiler checks to make sure that int,
char, float and double are used correctly.

data type interpretation size(bytes)

char character |
int integer 2
unsigned/unsigned int | unsigned integer 2
short integer 2
long/long integer long integer 4
float floating point number 4
long float/double double precision float 8

17: Unsupported data type

This message occurs only when data types are used which are
supported by the extended C language, such as the enum data type.

18; data type conflict

This message indicates an error in the use of the long or unsigned
data type. long can be applied as a qualifier to int and float. unsigned
can be used with char, int and long.

long i; /* a long int */
long float d; /* a double */
unsigned u; /* an unsigned int */
unsigned char c;
unsigned long 1;

unsigned float f: /* error 18 */

19: obsolete

Error codes interpreted as obsolete do not occur in the current
version of the compiler. Some simply no longer apply due to the
increased adaptability of the compiler. Other error codes have been
translated into full messages sent directly to the screen. If you are
using an older version of the product and have need of these codes,
please contact Manx for information.

- err.10 -

Aztec C Compiler Error Messages

20: structure redeclaration

The compiler is able to tell you if a structure has already been
defined. This message informs you that you have tried to redefine a
structure.

21: missing }

The compiler expects to find a comma after each member in the
list of fields for a structure initialization. After the last field, it expects
a right (close) brace.

For example, the following program fragment will generate error
21, since the initialization of the structure named ’harry’ doesn’t have
a closing brace:

struct sam {
int bone;
char license[10];

} harry = {
]
"23-4- 1984";

22: syntax error in structure declaration

The compiler was unable to find the left (open) brace which follows
the tag in a structure declaration. In the example for error 21, "sam" is
the structure tag. A left brace must follow the keyword struct if no
structure tag is specified.

23: incorrect type for library function (Apprentice C only)

For Apprentice C, this error means that your program has either
explicitly or implicitly incorrectly declared the type of a function
that’s in the run-time system. For example, you will get this error if
you call the run-time system function sqrt without declaring that it
returns a double.

23: obsolete (Other Aztec C Compilers)

For Compilers other than Apprentice C, this error should not
occur.

24; need right parenthesis or comma

The right parenthesis is missing from a function call. Every
function call must have an argument list enclosed by parentheses even
if the list is empty. A right parenthesis is required to terminate the
argument list.

In the following example, the parentheses indicate that gefchar is a
function rather than a variable.

getchar();

- err. 11 -

Compiler Error Messages Aztec C

This is the equivalent of

CALL getchar

which might be found in a more explicit programming language. In
general, a function is recognized as a name followed by a left
parenthesis.

With the exception of reserved words, any name can be made a
function by the addition of parentheses. However, if a previously
defined variable is used as a function name, a compilation error will
result.

Moreover, a comma must separate each argument in the list. For
example, error 24 will also result from this statement:

funccall(argl, arg2 arg3);

25: structure member name expected here

The symbol name following the dot operator or the arrow must be
valid. A valid name is a string of alphanumerics and underscores. It
must begin with an alphabetic (a letter of the alphabet or an
underscore). In the last line of the following example, "(salary)" is not
valid because ’(’ is not an alphanumeric.

empptr = &anderson;
empptr->salary = 12000; /* these three lines */
(*empptr).salary = 12000; /* are */
anderson.salary = 12000; /* equivalent */
empptr = &anderson.; /* error 25 */
empptr-> = 12000; /* error 25 */
anderson.(salary) = 12000; /* error 25 */

26: must be structure/union member

The defined structure or union has no member with the name
specified. If the -S option was specified, no previously defined
Structure or union has such a member either.

Structure members cannot be created at will during a program. Like
other variables, they must be fully defined in the appropriate

' declaration list. Unions provide for variably typed fields, but the full
range of desired types must be anticipated in the union declaration.

27: illegal type cast

It is not possible to cast an expression to a function, a structure, or
an array. This message may also appear if a syntax error occurs in the
expression to be cast.

structure sam { ... } thom;
thom = (struct sam)(expression); /* error 27 */

- err.12 -

Aztec C Compiler Error Messages

28; incompatible structures

C permits the assignment of one structure to another. The compiler
will ensure that the two structures are identical. Both structures must

have the same structure tag. For example:

struct sam harry;
struct sam thom;

harry = thom;

29: illegal use of structure

Not all operators can accept a structure as an operand. Also,
structures cannot be passed as arguments. However, it.is possible to
take the address of a structure using the ampersand (&), to assign
structures, and to reference a member of a structure using the dot

operator.

30: missing: in ? conditional expression

The standard syntax for this operator 1s:

expression ? statement! : statement2

It is not desirable to use ?: for extremely complicated expressions; its
purpose lies in brevity and clarity.

31: call of non-function

The following represents a function call:

symbol(argl, arg2, ..., argn);

where "symbol" is not a reserved word and the expression stands in the
body of a function. Error 31, in reference to the expression above,
indicates that "symbol" has been previously declared as something

other than a function.

A missing operator may also cause this error:

a(b + c); /* error 31 */
a* (b+ Cc); /* intended */

The missing ’* makes the compiler view "a()" as a function call.

32: illegal pointer calculation

Pointers may be involved in three calculations. An integral value
can be added to or subtracted from a pointer. Pointers to objects of the
same type can be subtracted from one another and compared to one
another. (For a formal definition, see Kernighan and Ritchie pp. 188-
189.) Since the comparison and subtraction of two pointers is
dependent upon pointer size, both operands must be the same size.

- err. 13 -

Compiler Error Messages Aztec C

33: illegal type

The unary minus (-) and bit complement (~) operators cannot be
applied to structures, pointers, arrays and functions. There is no
reasonable interpretation for the following:

int function();
char array[12];
struct sam { ... } harry;
a = -array; / *? */
b = -harry;

= ~function & WRONG;

34; undefined symbol

The compiler will recognize only reserved words and names which
have been previously defined. This error is often the result of a
typographical error or due to an omitted declaration.

35: typedef not allowed here

Symbols which have been defined as types are not allowed within
expressions. The exception to this rule is the use of sizeo f(ex pression)
and the cast operator. Compare the accompanying examples:

Struct sam {
int 1;

} harry;
typedef double bigfloat;
typedef struct sam foo;

j= 4* bigfloat f; /* error 35 */
k = &foo; /* error 35 */
x = sizeof(bigfloat);
y = sizeof(foo); /* good */

The compiler will detect two errors in this code. In the first
assignment, a typecast was probably intended; compare error 8. The
second assignment makes reference to the address of a structure type.
However, the structure type is just a template for instances of the
Structure (such as "harry"). It is no more meaningful to take the
address of a structure type than any other data type, as in &int.

36: no more expression space

This message indicates that the expression table is not large enough
for the compiler to process the source code. It is necessary to
recompile the file using the -E option to increase the number of
available entries in the expression table. See the description of the
compiler in the manual.

- err. 14 -

Aztec C Compiler Error Messages

37; invalid expression

This error occurs in the evaluation of an expression containing a
unary operator. The operand either is not given or is itself an invalid

expression.

Unary operators take just one operand; they work on just one
variable or expression. If the operand is not simply missing, as in the
example below, it fails to evaluate to anything its operator can accept.
The unary operators are logical not (!), bit complement (~), increment
(++), decrement (--), unary minus (-), typecast, pointer-to (*),
address-of (&), and sizeof.

if (!) ;
38: no auto. aggregate initialization

It is not permitted to initialize automatic arrays and structures.
Static and external aggregates may be initialized, but by default their
members are set to zero.

char array[5] = { ’a’, ’b’, ’c’, ’d’ };
function()

{
static struct sam {

int bone;
char license[10];

} harry = {
1
"123-4-1984"

};
char autoarray[2] = {’f,’g’ }; /* no good */
extern char array];

}
There are three variables in the above example, only two of which

are correctly initialized. The variable "array" may be initialized
because it is external. Its first four members will be given the
characters as shown. The fifth member will be set to zero.

The structure "harry" is static and may be initialized. Notice that
"license" cannot be initialized without first giving a value to "bone".
There are no provisions in C for setting a value in the middle of an
ageregate.

The variable "autoarray" is an automatic array. That is, it is local to
a function and it is not declared to be static. Automatic variables
reappear automatically every time a function 1s called, and they are
guaranteed to contain garbage. Automatic aggregates cannot be
initialized.

- err. 15 -

Compiler Error Messages Aztec C

39: obsolete [see error 19]

40: internal [see error 4]

41: initializer not a constant

In certain initializations, the expression to the right of the equals
sign (=) must be a constant. Indeed, only automatic and register
variables may be initialized to an expression. Such initializations are
meant as a convenient shorthand to eliminate assignment statements.
The initialization of statics and globals actually occurs at link-time, and
not at run-time.

{
int i = 3;
static int j = (2 + i): /* illegal */

42: too many initializers

There were more values found in an initialization than array or
structure members exist to hold them. Either too many values were
specified or there should have been more members declared in the
aggregate definition.

In the initialization of a complex data Structure, it is possible to
enclose the initializer in a single set of braces and simply list the
members, separated by commas. If more than one set of braces is used,
as in the case of a structure within a Structure, the initializer must be
entirely braced.

Struct {
Struct {

char array[];
} substruct;

} superstruct =

version |:

"abcdefghij"

version 2:

{ ’a’,’b’,’c’,...,°1,’ 7}

};
In version 1, the initializers are copied byte-for-byte onto the

Structure, superstruct. | |

- err. 16 -

Aztec C Compiler Error Messages

Another likely source of this error is in the initialization of arrays
with strings, as in:

char array[10] = "abcdefghij";

This will generate error 42 because the string constant on the right
is null-terminated. The null terminator (’ ’ or 0x00) brings the size of
the initializer to 11 bytes, which overflows the ten-byte array.

43: undefined structure initialization

An attempt has been made to assign values to a structure which has
not yet been defined.

Struct sam {...};
struct dog sam = { 1, 2, 3}; /* error 43 */

44: obsolete [see error 19]

45: bad declaration syntax

This error code is an all purpose means for catching errors in
declaration statements. It indicates that the compiler is unable to
interpret a word in an external declaration list.

46: missing closing brace

All the braces did not pair up at the end of compilation. If all the
preceding code is correct, this message indicates that the final closing
brace to a function is missing. However, it can also result from a brace
missing from an inner block.

Keep in mind that the compiler accepts or rejects code on the basis
of syntax, so that an error is detected only when the rules of grammar
are violated. This can be misleading. For example, the program below
will generate error 46 at the end even though the human error
probably occurred in the while loop several lines earlier.

As the code appears here, every statement after the left brace in
line 6 belongs to the body of the while loop. The compilation error
vanishes when a right brace is appended to the end of the program, but
the results during run time will be indecipherable because the brace
should be placed at the end of the loop.

It is usually best to match braces visually before running the
compiler. A C-oriented text editor makes this task easier.

- err.17 -

Compiler Error Messages Aztec C

main()

int 1, j;
char array[80];

gets(array);
i= 0;
while (array[i]) {

putchar(array[1]);
i++;

for (i=0; array[i];i++) {
for (j=1 + 1; array[j]; j++) {

printf("elements %d and %d are ", i, j);
if (array[i] == array[j])

printf("the same\n");
else

printf("different\n"):

}
putchar(’\n’);

}

47: open failure on indude file

When a file is #included, the compiler will look for it in a default
area (see the manual description of the compiler). This message will be
generated if the file could not be opened. An open failure usually
occurs when the included file does not exist where the compiler is
searching for it. Note that a drive specification is allowed in an
include statement, but this diminishes flexibility somewhat.

48: illegal symbol name

This message is produced by the preprocessor, which is that part of
the compiler which handles lines which begin with a pound sign (#).
The source for the error is on such a line. A legal name is a string
whose first character is an alphabetic (a letter of the alphabet or an
underscore). The succeeding characters may be any combination of
alphanumerics (alphabetics and numerals). The following symbols will
produce this error code:

2nd_ time,
dont_do_ this!

49: multiply defined symbol

This message warns that a symbol has already been declared and
that it is illegal to redeclare it. The following is a representative
example:

int i, j, k, i: /* illegal */

- err.18 -

Aztec C Compiler Error Messages

50: missing bracket

This error code is used to indicate the need for a parenthesis,
bracket or brace in a variety of circumstances.

51: Ivalue required

Only Wvalues are are allowed to stand on the left-hand side of an
assignment. For example:

int num;
num = 7;

They are distinguished from rvalues, which can never stand on the
left of an assignment, by the fact that they refer to a unique location
in memory where a value can be stored. An value may be thought of
as a bucket into which an rvalue can be dropped. Just as the contents
of one bucket can be passed to another, so can an lvalue y be assigned
to another Ivalue, x:

#define NUMBER 512

X= YVy;
1024 = z; /* wrong; 1/rvalues are reversed */
NUMBER = x; /* wrong; NUMBER is still an rvalue */

Some operators which require lvalues as operands are increment
(++), decrement (--), and address-of (&). It is not possible to take the
address of a register variable as was attempted in the following
example:

register int 1, J;
1= 3;

j= &i;
52: obsolete [see error 19]

53: multiply defined label

On occasions when the goto statement is used, it is important that
the specified label be unique. There is no criterion by which the
computer can choose between identical labels. If you have trouble
finding the duplicate label, use your text editor to search for all
occurrences of the string.

54: too many labels

The compiler maintains an internal table of labels which will
Support up to several dozen labels. Although this table is fixed in size,
it should satisfy the requirements of any reasonable C program. C was
structured to discourage extravagance in the use of goto’s. Strictly
speaking, goto statements are not required by any procedure in C; they
are primarily recommended as a quick and simple means of exiting

from a nested structure.

- err.19 -

Compiler Error Messages Aztec C

This error indicates that you should significantly reduce the
number of goto’s in your program.

55: missing quote

The compiler found a mismatched double quote (") in a #define
preprocessor command. Unlike brackets, quotes are not paired
innermost to outermost, but sequentially. So the first quote is
associated with the second, the third with the fourth, and so on. Single
quotes (’) and double quotes (") are entirely different characters and
Should not be confused. The latter are used to delimit string constants.
A double quote can be included in a string by use of a backslash, as in
this example:

"this is a string"
"this is a string with an embedded quote: \". "

56: missing apostrophe

The compiler found a mismatched single quote or apostrophe (’) in
a #de fine preprocessor command. Single quotes are paired sequentially
(see error 55). Although quotes can not be nested, a quote can be
represented in a character constant with a backslash: -

char c = ’\”: /* c is initialized to
single quote */

57: line too long

Lines are restricted in length by the size of the buffer used to hold
them. This restriction varies from system to system. However, logical
lines can be infinitely long by continuing a line with a backslash-
newline sequence. These characters will be ignored.

58: illegal # encountered

The pound sign (#) begins each command for the preprocessor:
#include, #de fine, #if, #ifdef, #ifndef, #else, #endif, #asm, #endasm,
#line and #undef. These symbols are strictly defined. The pound sign
(#) must be in column one and lower case letters are required. |

59: macro too long

Macros can be defined with a preprocessor command of the
following form:

#define [identifier] [substitution text]

The compiler then proceeds to replace all instances of "identifier"
with the substitution text that was specified by the #de fine.

This error code refers to the substitution text of a macro. Whereas
ideally a macro definition may be extended for an arbitrary number of
lines by ending each line with a backslash (), for practical purposes the
size of a macro has been limited to 255 characters.

- err.20 -

Aztec C Compiler Error Messages

60: obsolete [see error 19]

61: reference of member of undefined structure

Occurs only under compilation without the -S option. Consider the
following example:

int bone;
Struct cat {

int toy;
} manx;
struct dog *samptr;
manx.toy = 1;
bone = samptr->toy; /* error 61 */

This error code appears most often in conjunction with this kind of
mistake. It is possible to define a pointer to a structure without having
already defined the structure itself. In the example, samptr is a
structure pointer, but what form that structure ("dog") may take is still
unknown. So when reference is made to a member of the structure to
which samptr points, the compiler replies that it does not even known
what the structure looks like.

The -S compiler option is provided to duplicate the manner in
which earlier versions of UNIX treated structures. Given the example
above, it would make the compiler search all previously defined
structures for the member in question. In particular, the value of the
member "toy" found in the structure "manx" would be assigned to the
variable "bone". The -S option is not recommended as a short cut for
defining structures.

62: function body must be compound statement

The body of a function must be enclosed by braces, even though it
may consist of only one statement:

function()

return |;

}
This error can also be caused by an error inside a function

declaration list, as in:

func(a, b)
int a; chr b;

{

63: undefined label

A goto statement is meaningless if the corresponding label does
not appear somewhere in the code. The compiler disallows this since it
must be able to specify a destination to the computer.

- err.21 -

Compiler Error Messages Aztec C

It is not possible to goto a label outside the present function (labels
are local to the function in which they appear). Thus, if a label does
not exist in the same procedure as its corresponding goto, this message
will be generated.

64: inappropriate arguments

When a function is declared (as opposed to defined), it is poor
Syntax to specify an argument list:

function(string)
char *string;

char *funcl(); /* correct */
double func2(x,y): /* wrong */

}
In this example, function() is being defined, but funcl() and

func2() are being declared.

6S: illegal or missing argument name

The compiler has found an illegal name in a function argument list.
An argument name must conform to the same rules as variable names,
beginning with an alphabetic (letter or underscore) and continuing
with any sequence of alphanumerics and underscores. Names must not
coincide with reserved words.

66: expected comma

In an argument list, arguments must be separated by commas.

67: invalid else

An else was found which is not associated with an if statement. else
is bound to the nearest if at its own level of nesting. So if-else pairings
are determined by their relative placement in the code and their
grouping by braces.

if...) {

if (...) {

} else if (...)

} else {

The indentation of the source text should indicate the intended
Structure of the code. Note that the indentation of the if and else-if
means only that the programmer wanted both conditionals to be nested
at the same level, in particular one step down from the presiding if

- err.22 -

Aztec C Compiler Error Messages

statement. But it is the placement of braces that determines this for the
compiler. The example above is correct, but probably does not
conform to the expectations revealed by the indentation of the else
statement. As shown here, the else is paired with the first if, not the
second.

68: syntax error

The keywords used in declaring a variable, which specify storage
class and data type, must not appear in an executable statement. In
particular, all local declarations must appear at the beginning of a
block, that is, directly following the left brace which delimits the body
of a loop, conditional or function. Once the compiler has reached a
non-declaration, a keyword such as char or int must not lead a
statement; compare the use of the casting operator:

func()

{
int 1;

char array[12];
float k = 2.03;

int m; /* error 68 */

i = (int) k; /* correct */

int 1 = 3;

j= i;
printf("%d",i);

printf("%d%d\n",i, j);

This trivial function prints the values 3, 2 and 3. The variable i
which is declared in the body of the conditional (if) lives only until
the next right brace; then it dies, and the original i regains its identity.

69: missing semicolon

A semicolon is missing from the end of an executable statement.
This error code is subject to the same vagaries as its cousin, error 7. It
will remain undetected until the following line and is often spuriously
caused by a previous error.

70: bad goto syntax

Compare your use of goto with an example. This message says that
you did not specify where you wanted to goto with a label:

- err.23 -

Compiler Error Messages Aztec C

goto label;

label:

It is not possible to goto just any identifier in the source code:
labels are special because they are followed by a colon.

71: statement syntax error in do-while

The body of a do-while may consist of one statement or several
statements enclosed in braces. A while conditional is required after the
body of the loop. This is true even if the loop is infinite, as it is
required by the rules of syntax. After typing in a long body, don’t
forget the while conditional.

72: *for’ syntax error: missing first semicolon

This error focuses on another control flow statement, the for. The
keyword, for, must be followed by parentheses. In the parentheses
belong three expressions, any or all of which may be null. For the sake
of clarity, C requires that the two semicolons which separate the
expressions be retained, even if all three expressions are empty.

for (; /* an infinite loop which does */
: /* absolutely nothing */

Error 72 signifies that the compiler didn’t find the first semicolon
within the parentheses.

73: *for’ syntax error: missing second semicolon

This error is similar to error 72; it means that the compiler didn’t
find the second semicolon within the parenthesized expression
following the ’for’.

74: case value must be integer constant

Strictly speaking, each value in a case statement must be a constant
of one of three types: char, int or unsigned. This is similar to the rule
for a switched variable. In the following example, a float must be cast
to an int in order to be switched; however, notice that the programmer
did not check his case statements. The second case value is invalid, and
the code will not compile.

- err.24 -

Aztec C Compiler Error Messages

float k = 5.0;
switch((int)k) {
case 4:

printf("good case value\n"):
break;

case 5.0:
printf("bad case value\n");
break;

}

The programmer must replace "case 5.0:" with "case 5".

75; missing colon on case

This should be straightforward. If the compiler accepts a case value,
a colon should follow it. A semi-colon must not be accidently entered
in its place.

76: too many cases in switch

The compiler reserves a limited number of spaces in an internal
table for case statements. If a program requires more cases than the
table initially allows, it becomes necessary to tell the compiler what the
table value should be changed to. It is not necessary to know exactly
how many are needed; an approximation is sufficient, depending on
the requirements of the situation.

TT: case outside of switch

The keyword, case, belongs to just one syntactic structure, the
switch. If "case" appears outside the braces which contain a switch
Statement, this error is generated. Remember that all keywords are
reserved, so that they cannot be used as variable names.

78: missing colon

This message indicates that a colon is missing after the keyword,
de fault. Compare error 75.

79; duplicate default

The compiler has found more than one default in a switch. Switch
will compare a variable to a given list of values. But it is not always
possible to anticipate the full range of values which the variable may
take. Nor is it feasible to specify a large number of cases in which the
program is not particularly interested.

So C provides for a default case. The default will handle all those
values not specified by a case statement. It is analogous to the else
companion to the conditional, if. Just as there is one else for every if,
only one default case is allowed in a switch statement. However, unlike
the else statement, the position of a default is not crucial; a default can
appear anywhere in a list of cases.

- err.25 -

Compiler Error Messages Aztec C

80: default outside of switch

The keyword, default, is used just like case. It must appear within
the brackets which delimit the switch statement.

81: break/continue error

Break and continue are used to skip the remainder of a loop in
order to exit or repeat the loop. Break will also end a switch statement.
But when the keywords, break or continue, are used outside of these
contexts, this message results.

82: illegal character

Some characters simply do not make sense in a C program, such as
*$’ and ’@”’. Others, for instance the pound sign (#), may be valid only
in particular contexts.

83: too many nested includes

#includes can be nested, but this capacity is limited. The compiler
will balk if required to descend more than three levels into a nest. In
the example given, file D is not allowed to have a #include in the
compilation of file A.

file A file B file C file D
#include "B" #include"C" #include "D"

84; too many array dimensions

An array is declared with too many dimensions. This error should
appear in conjunction with error 11.

85: not an argument

The compiler has found a name in the declaration list that was not
in the argument list. Only the converse case is valid, i.e., an argument
can be passed and not subsequently declared.

86: null dimension in array

In certain cases, the compiler knows how to treat multidimensional
arrays whose left-most dimensions are not given in its declaration.
Specifically, this is true for an extern declaration and an array
initialization. The value of any dimension which is not the left-most
must be given.

extern char array{][12]; /* correct */
extern char badarray[5][]; /* wrong */

87: invalid character constant

Character constants may consist of one or two characters enclosed
in single quotes, as ’a’ or ’ab’. There is no analog to a null string, so ”
(two single quotes with no intervening white space) is not allowed.
Recall that the special backslash characters (\b, \n, \t etc.) are singular,

- err.26 -

Aztec C Compiler Error Messages

so that the following are valid: ’\n’, ’\na’, ’a\n’; ’aaa’ is invalid.

88: not a structure

Occurs only under compilation without the -S option. A name used
as a Structure does not refer to a structure, but to some other data type.

int 1;

ismember = 3; /* error 88 */

89: invalid storage class

A globally defined variable cannot be specified as register. Register
variables are required to be local.

90: symbol redeclared

A function argument has been declared more than once.

91: illegal use of floating point type

Floating point numbers can be negated (unary minus), added,
subtracted, multiplied, divided and compared; any other operator will
produce this error message.

92: illegal type conversion

This error code indicates that a data type conversion, implicit in
the code, is not allowed, as in the following piece of code:

int 1;
float j;
char *ptr;

i = jt ptr;

The diagram shows how variables are converted to different types
in the evaluation of expressions. Initially, variables of type char and
short become int, and float becomes double. Then all variables are
promoted to the highest type present in the expression. The result of
the expression will have this type also. Thus, an expression containing
a float will evaluate to a double.

hierarchy of types:

double <-- float
long
unsigned
int <-- short, char

This error can also be caused by an attempt to return a structure,
since the structure is being cast to the type of the function, as in:

)

- err.27 -

Compiler Error Messages Aztec C

int func()

Struct tag sam;
return sam;

}

93: illegal expression type for switch

Only a char, int or unsigned variable can be switched. See the
example for error 74.

94; bad argument to define

An illegal name was used for an argument in the definition of a
macro. For a description of legal names, see error 65.

95: no argument list

When a macro is defined with arguments, any invocation of that
macro is expected to have arguments of corresponding form. This
error code is generated when no parenthesized argument list was found
in a macro reference.

#define getchar() getc(stdin)

c = getchar; /* error 95 */

96: missing argument to macro

Not enough arguments were found in an invocation of a macro.
Specifically, a "double comma" will produce this error:

#define reverse(x,y,z) (z,y,x)

_ func(reverse(i,,k));

97: obsolete [see error 19]

98: not enough args in macro reference

The incorrect number of arguments was found in an invocation of
a previously defined macro. As the examples show, this error is not
identical to error 96.

#define exchange(x,y) (y,x)

func(exchange(i)); /* error 98 */

99: internal [see error 4]

100: internal [see error 4]

101: missing close parenthesis on macro reference

A right (closing) parenthesis is expected in a macro reference with

arguments. In a sense, this is the complement of error 95: a macro
argument list is checked for both a beginning and an ending.

- err.28 -

Aztec C Compiler Error Messages

102: macro arguments too long

The combined length of a macro’s arguments is limited. This error
can be resolved by simply shortening the arguments with which the
macro is invoked.

103: #else with no #if

Correspondence between #if and #else is analogous to that which
exists between the control flow statements, if and else. Obviously,
much depends upon the relative placement of the statements in the
code. However, #if blocks must always be terminated by #endif, and
the #else statement must be included in the block of the #if with
which it is associated. For example:

#if ERROR > 0
printf("there was an error\n");

#else
printf("no error this time\n");

#endif

#if statements can be nested, as below. The range of each #if is
determined by a #endif. This also excludes #else from #if blocks to
which it does not belong:

#ifdef JANI
printf("happy new year!\n");

#if sick
printf("i think ill go home now\n"):

#else

printf("i think i’ll have another\n"):
#endif
#else

printf("i wonder what day it is\n");
#endif

If the first #endif was missing, error 103 would result. And without
the second #endif, the compiler would generate error 107.

104: #endif with no #if

#endif is paired with the nearest #if, #ifdef or #ifndef which
precedes it. (See error 103.)

105: #endasm with no #asm

#endasm must appear after an associated #asm. These compiler-
control lines are used to begin and end embedded assembly code. This
error code indicates that the compiler has reached a #endasm without
having found a previous #asm. If the #asm was simply missing, the
error list should begin with the assembly code (which are undefined
symbols to the compiler).

- err.29 -

Compiler Error Messages Aztec C

106: #asm within #asm block

There is no meaningful sense in which in-line assembly code can be
nested, so the #asm keyword must not appear between a paired
#asm/#endasm. When a piece of in-line assembly is augmented for
temporary purposes, the old #asm and #endasm can be enclosed in
comments as place-holders.

#asm
/* temporary asm code */

/* #asm old beginning */
/* more asm code */

#endasm

107: missing # endif

A #endif is required for every #if, #ifdef and #ifndef, even if the
entire source file is subject to a single conditional compilation. Try to
assign pairs beginning with the first #endif. Backtrack to the previous
#1f and form the pair. Assign the next #endif with the nearest
unpaired #if. When this process becomes greatly complicated, you
might consider rethinking the logic of your program.

108: missing #endasm

In-line assembly code must be terminated by a #endasm in all
cases. #asm must always be paired with a #endasm.

109: #if value must be integer constant

#if requires an integral constant expression. This allows both
integer and character constants, the arithmetic operators, bitwise
operators, the unary minus (-) and bit complement, and comparison
tests.

Assuming all the macro constants (in capitals) are integers,

#1f DIFF >= ’A’-’a’
#1f (WORD &= ~MASK) >> 8
#if MAR | APR | MAY

are all legal expressions for use with #if.

110: invalid use of colon operator

The colon operator occurs in two places: 1. following a question
mark as part of a conditional, as in (flag ?. 1 : 0); 2. following a label
inserted by the programmer or following one of the reserved labels,
case and de fault.

111: illegal use of a void expression

This error can be caused by assigning a void expression to a
variable, as in this example:

- err.30 -

Aztec C Compiler Error Messages

void func();
int h;

h = func(arg);

112: illegal use of function pointer

For example,

int (*funcptr) ();

funcptr++;

funcptr 1s a pointer to a function which returns an_ integer.
Although it is like other pointers in that it contains the address of its
object, it is not suject to the rules of pointer arithmetic. Otherwise,
the offending statement in the example would be interpreted as adding
to the pointer the size of the function, which is not a defined value.

113: duplicate case in switch

This simply means that, in a switch statement, there are two case
values which are the same. Either the two cases must be combined into
one, or one of them must be discarded. For instance:

switch (c) {
case NOOP:

return (0);
case MULT:

return (x * y);
case DIV:

return (x / y);
case ADD:

return (x + y);
case NOOP:
default:

return;

}

The case of NOOP is duplicated, and will generate an error.

114: macro redefined

For example,

#define islow(n) (n>=0&&n<5)

#define islow(n) (n>=0&&n<=5)
The macro, islow, is being used to classify a numerical value. When

a second definition of it is found, the compiler will compare the new
substitution string with the previous one. If they are found to be
different, the second definition will become current, and this error
code will be produced.

- err.31 -

Compiler Error Messages Aztec C

In the example, the second definition differs from the first in a
single character, =’. The second definition is also different from this
one:

#define islow(n) n>=0&&n<=5

since the parentheses are missing.

The following lines will not generate this error:

#define NULL O

#define NULL 0

But these are different from:

#define NULL’ ’

In practice, this error message does not affect the compilation of
the source code. The most recent "revision" of the substitution string is
used for the macro. But relying upon this fact may not be a wise habit.

115: keyword redefined

Keywords cannot be defined as macros, as in:

#define int foo

If you have a variable which may be either, for instance, a short or
a long integer, there are alternative methods for switching between the
two. If you want to compile the variable as either type of integer,
consider the following:

#ifdef LONGINT
long 1;

#else
short 4

#endif

Another possibility is through a typedef:

#ifdef LONGINT
typedef long VARTYPE;

#else

typedef short VARTYPE;
#endif

VARTYPE i:

116: field width must be > 0

A field in a bit field structure can’t have a negative number of bits.

117: invalid 0 length field

A field in a bit field structure can’t have zero bits.

- err.32 -

Aztec C Compiler Error Messages

118: field is too wide

A field in a bit field structure can’t have more than 16 bits.

119: field not allowed here

A bit field definition can only be contained in a structure.

120: invalid type for field

The type of a bit field can only be of type int of unsigned int.

121; ptr/int conversion

The compiler issues this warning message if it must implicitly
convert the type of an expression from pointer to int or long, or vice
versa.

If the program explicitly casts a pointer to an int this message won’t
be issued. However, in this case, error 122 may occur.

For example, the following will generate warning 121:

char *cp;
int 1;

i= cp; /* implicit conversion of char * to int */

When the compiler issues warning 121, it will generate correct code
if the sizes of the two items are the same.

122: ptr & int not same size

If a program explicitly casts a pointer to an int, and the sizes of the
two items differ, the compiler will issue this warning message. The
code that’s generated when the converted pointer is used in an
expression will use only as much of the least significant part of the
pointer as will fit in an int.

123: function ptr & ptr not same size

If a program explicitly casts a pointer to a data item to be a pointer
to a function, or vice versa, and the sizes of the two pointers differ,
the compiler issues this warning message.

If the program doesn’t explicitly request the conversion, warning
124 will be issued instead of warning 123.

124: invalid ptr/ptr assignment

If a program attempts to assign one pointer to another without
explicitly casting the two pointers to be of the same type, and the types
of the two pointers are in fact different, the compiler will issue this
warning message.

The compiler will generate code for the assignment, and if the sizes
of the two pointers are the same, the code will be correct. But if the

- err.33 -

Compiler Error Messages Aztec C

sizes differ, the code may not be correct.

125: too many subscripts or indirection on integer

This warning message is issued if a program attempts to use an
integer as a pointer; that is, as the operand of a star operator.

If the sizes of a pointer and an int are the same, the generated code
will access the correct memory location, but if they don’t, it won’t.

For example,

char c;
long g;
Qx5c=0; / warning 125, because 0x5c is an int */
c{iJ=0; /* warning 125, because c+i is an int */
g[ij=0; /* error 12, because gti is a long */

- err.34 -

Aztec C Compiler Error Messages

3. Fatal Compiler Error Messages

If the compiler encouters a "fatal" error, one which makes further
operation impossible, it will send a message to the screen and end the
compilation immediately.

Out of disk space!

There is no room on the disk for the output file of the compiler.
Previous disk files will not be overwritten by the compiler’s assembly
language output. To make room on the disk, it is usually sufficient to
remove unneeded files from the disk.

unknown option:

The compiler has been invoked with an option letter which it does
not recognize. The manual explicitly states which options the compiler
will accept. The compiler will specify the invalid option letter.

duplicate output file

If an output file name has been specified with the -o option and
that file already exists on the disk, the compiler will not overwrite it.
-O must specify a new file.

too few arguments for -o option

The compiler expected to find the output filename following the "-
o", but didn’t find it. The output file name must follow the option
letter and the name of the file to be compiled must occur last in the
command line.

Open failure on input

The input file specified in the command line does not exist on the
disk or cannot be opened. A path or drive specification can be
included with a filename according to the operating system in use.

No input!

While the compiler was able to open the input file given in the
command line, that file was found to be empty.

Open failure on output

The compiler was unable to create an output file. On some
systems, this error could occur if a disk’s directory is full.

Local table full! (use -L)

The compiler maintains an internal table of the local variables in
the source code. If the number of local symbols in use exceeds the
available entries in the table at any time during compilation, the
compiler will print this message and quit. The default size of the local
symbol table (40 entries) can be changed with the -L option for the

- err.35 -

Compiler Error Messages | Aztec C

compiler. Local variables are those defined within braces, i.e., in a
function body or in a compound statement. The scope of a local
variable is the body in which it is defined, that is, it is defined until
the next right brace at its own nesting level.

Out of memory!

Since the compiler must maintain various tables in memory as well
as manipulate source code, it may run out of memory during
Operation. The more immediate solution is to vary the sizes of the
internal tables using the appropriate compiler options. Often, a
compilation will require fewer than the default number of entries in a
particular table. By reducing the size of that table, memory space is
freed up during compile time. The amount of memory used while
compiling does not affect the size or content of the assembly or object
file output. If this stategy fails to squeeze the compilation into the
available memory, the only solution is to divide the source file into
modules which can be compiled separately. These modules can then
be linked together to produce a single executable file.

- err.36 -

as

y
t
;

Aztec C68K Index

INDEX

Order of chapters in manual

System Dependent Chapters

title code

OVE VIEW ooo... cccecceecssscecessscsecsseececsececscsseesessnsesenesseececsseececeeusecseensuecesesseeeceseseeens OV

Tutorial Introduction oo... ccsccssecsssecsseseseecessessssscesesevesesessescssseseceeseees tut

The Shell ci. ccc ccsssecessececsscecsssecssnececsscecesseecsseeeceeseeecesaesecsseesessseessees Shell

Aztec C Compiler ciccce. cccccccccccccccssssscccscsececesssesscececesccscccececeseraceesceseseseeceseees cc

Manx AS ASsembler wi... eee ceseeccececesessseesescescececescecceaecesseansacseecseeaaeeees as

Manx LN LInke rr oo... ccc ececessccsssceseecessececssesscscssseessnenscseesesesessensesssssceeuesees In

Manx Z Ctr oo... ccscccssccsseessceessecsssecsseecssececsescaesecscsesssssesssessesasecssceceasecees Z

Utality Programs oo... ciccceccccsccssccecsccsssscessssseesessesesscesessees deseacecescesesseceees util

Library Functions Overview: Macintosh Information libovmac

Macintosh Functions... ccc cccscssecsscsscecsssesseesecessscssescseesseescsssusseseees libmac

Macintosh Toolbox and OS Functions oo... cc cccscccscessssssesssssscssseseeseees tool

Technical Information oc... cccscccccesscesssessscseceessesescesseeecssseseeseseueseneees tech

|S. €. 000) 0) (ch examples

Debugging Utilities 00. i ccccccccccssssceessssssscecsscssseeusesesssseesessessaes debug

System Independent Chapters

Overview Of Library FUNCtions wo... cciecccccccsecccseecesssseceesecsssseesseseceeees libov

System-Independent FUNCTIONS wc icceccses cossescecesescesssssecssessescsessseseaes lib

Style voc ecccccccccsccce csveessesssscsscccecssssaceesesevssssesesessscesessseseseseeseseessesseseceacens Style

Compiler Error MEeSSAB€S ooo... ccccececssses cesececessceesseeecssseescssessscsssssessseeessass err

Index

TCX cece ccccsccccecsssee cessessceceesssaaeccsesesececeseaasececseseaeseseseseuecesesenseagececesenssaeees index

- index.1 -

Index Aztec C68K

- index.2 -

Aztec C68K

#include search order cc.7
#line statement cc.23
-A option cc.3,6,9
-Boption cc.8,10
-D option cc.8,9
-F option I1n.10-11
-I option as.5,7
-l option cc.6-9
-Loption as.4,8;

cc.8, 12-13;1n.10
-N option as.4,7
-O option as.7;cc.5,8
-P option as.8
-S option as.5,8

cc.8, 10
-U option cc.8,11
-U# option as.9
128k macintosh tool.8-9;

tech.31
512k macintoshes tech.32-33
exit libmac.9

A
absolute value 11b.16
accessing devices libov.8
accessing events tool.21
accessing files z.44-49
accessing queues tool.30
accessing volumes tool.26-29
acos 11b.59-60
activation of the finder

sh.47-48
addr debug.13-14
adjusting the screen z.26
advanced routines

tool. 14,33,71,85
agetc 1ib.25-26
allocating and releasing non-

relocatable blocks tool.35-36
allocating and releasing

rclocatable blocks tool.35
appending modules to a library

util. 33
apple menu sh.49

application heap tech.4
aputc lib.41-42
archiver util.4

Index

arcv. util.4
arguments to subroutines as.16
array subscripting style.18
asin 1ib.59-60
assemble item sh.52
assembler options as.7

-l as.4,7,8
-n as.4,7
-O as./
-p as.7,8
-S# as.7
-u# as.7,9
-V as.7
-zap_ as./7

assembly code (within ac prog.)
cc.23-24

assembly language debugger
util.41-49

assembly language file cc.6
assign buffer to a stream

lib.56
atan 1ib.59-60
atan2 1ib.59-60
atof lib.8
atoi lib.8
atol lib.8
autoindent z.32-33
automatic activation of the

Shell sh.46

B

backslash character sh.23
backtracing debug.8
bit fields cc.17
bit transfer operations

tool.65-66
boolean expressions

style. 16-17
booleans_ tool.6-8
breakpoints

debug.7-8,15-17,37
bss as.12
buffered binary input

lib.20-2 1

buffered output lib.20-2]
buffering libov.10-11;

libovmac.4

- index.3 -

Index

build and unbuild real numbers
lib.22

built-in commands sh.11-12
byte manipulation tool.87

C
c idioms style.3
c to pascal string functions

libmac.6
calculations with

points tool.67
polygons tool.66
rectangles tool.62-63
regions tool.64-65

calling c functions from pascal
cc.22

calling pascal functions from c
cc.22

calloc 1ib.31-32
case table cc.14
cat - catenate and print

util.5
cbreak libov.21
cd sh.9,11; util.6-7
ceil lib.16
change current directory

util.6
change current position within a

file 1ib.29-30
changing file contents

tool.27-29
changing information about files

tool.28-30
changing serial driver

information tool.77
character classification

functions lib.11
character size sh.28
character strings cc.22-23
character-oriented input

libov.18; libovmac.5
checking for errors tool.69
choosing the menu bar tool.39
clear debug.18

clearerr Itb.15
clist as.14
close 1lib.9,14

Aztec C68K

close a device ora file lib9
close a stream 1ib.14
closing streams libov.9
cmdlist debug.15
cmp util8
cnm util.9-11
colon commands z.58
comamnd logging prefix sh.26
command file types tech.15
command line arguments
libov.4-6;libovmac.3;sh.30,35
command programs tech.7-22
command searches sh.44-45
command summary z.54-58
commands menu sh.49-50
comments as.10; style.17
common problems | style.15-19
compatibility cc.17
compilation environment cc.3-4
compile item sh.51-52
compile menu sh.50-51
compiler error checking

cc. 15-16
compiler options cc.8

-a cc.3,6,8
—-b~ cc.8,10
-d cc.8,9
-1 cc.6-9
-Oo cc.5-6,8
-q cc.8
-s cc.8,10
-t cc.5-6,8
-u_cc.8,11

-table manipulation options
-e cc.8,13
-1 c¢.8,12-13
-y ccg
-Z cc.8

console driver tech.8-9,27-30
console driver installation

util. 32
console i/o libov.17-21

libovmac.4-5
control display tool.11-12
control manager tool.10-13

controlling the items’
appearance tool.39-40

convert ascii to numbers 11b.8

- index.4 -

Aztec C68K

convert file name to macintosh
format libmac.10

convert floating point to ascii
lib.8

converting data cc.2]
copying disks util.12-13
copying selected files

util. 12-13
cos. lib.59-60
cosh lib.61
cotan 11b.59-60
cp utilL12-13
cprsrc util.14
creat lib.10
create a new file 1lib.10
create a new resource file

libmac.5
creatf libmac.5
creating a library util.33-35
creating aram disk tech.33
creating and disposing of

dialogs tool.17
creating command programs

tech.7
croot tech.17-19,29
crt0 tech.17-18
cseg as.12
ctags utility z.48-49
ctop libmac.6
current directory sh.9-12,27
cursor handling tool.60
customizing quickdraw

tool.67-68

D

data formats tech.37-38
date util.15
date and time operations

tool.42
de as.12-13
deb as.13
dearchiver util.4
default mode libov.7,17,20
defensive programming style.10

define constant as.12-13
define constant block as.13
define storage as.14

Index

deleting lines z.28
deleting text z.13-15,27-28
desc_codes debug.30-32
desk manager tool.14
desktop accesories tech.23-26
device 1/0

libovmac.4; libov.7
device 1/o utilities 1lib.28
devices sh.18,32-33
dialog manager tool.15-18
diff util.16-19
directives as.11-15
disabling options z.51
disk driver routines toolL19
disk initialization package

tool. 46
disk manager tool.19
dispatch table utilities

tool. 43
display object file info

util.9-11
display commands

debug. 18-21,37
displaying unprintable

characters z.17
displaying source file lines

debug, 19-20
document printing tool.54
double-quoted strings sh.25
drawing in color tool.62
drivers tech.23-28
ds as.14
dseg as.12
duplicating blocks of text

Z.29-30
dynamic buffer allocation

libov.11,22; libovmac.7

E
echo arguments util.20
echo mode _ libov.21
edit util.21-22
edititem sh.51
edit menu sh.49

editing tool.&4
editing an existing file

z.11-15

- index.5 -

Index

editing another file z45-47
eject sh.l4
else as.15
enabling options z.51
end as.12
ende as.15
endm _as.14-15
entry as.12
enumerated data types and

Structures cc.17
environment sh.41-43
environment of the compiler

cc.3-4
equ. as.1l
error messages from linker

In.13-18
error processing libov.23-24
error trapping sh.34
evaluation of expressions

Style. 16
event manager tool.20-22
ex-like commands z.38-40
exec file arguments sh.35-37
exec file variables sh.37
exec files sh.35-40
execl libmac.7-8
execlp libmac.7-8
executable files 1n.9
executable instructions

as. 10-11
executing system commands
executing the .profile sh.46
execution environment as.3-4
execv libmac.7-8
execvp libmac.7-8
exit libmac.9; debug.21
expr debug.11-12
external terminal

debug.10-11
exiting z z.10,43
exp lib.12-13
exponential functions

lib. 12-13
expression evaluation style.5
expression table cc.8,13-14

extended pattern matching
Z.21-22,51

extracting modules from a

z. 90

Aztec C68K

library util.33-34

F
fabs 1lib.16
faces sh.28
fclose 1lib.14
fdopen 1lib.17-19
feof lib.15
ferror lib.15
fflush lib.14
fgets 1ib.27
file comparison utility util.8
file i/o libov.6,9-13,15

libovmac.3-4
file lists z.41,47
file manager tool.23-30
file menu sh.49
file name expansion sh.21-22
file system sh.3-15
file-related commands _sh.14
filename extensions’ cc.4-5
filenames sh.7-8,15; z.44
fileno 1ib.15
find source string

debug. 22,37
fixattr util.23
fixed-point arithmetic tool8&6
fixnam libmac.10
fldr util.24
flock util.38,90
floor lib.16
flush a stream 1lib.15
folder utility util.24
folders sh.15
font information tool33
font manager tool.31-33
fonts sh.28-29
fopen lib.17-19
format 1lib.37-40
formatted input conversion

11b.49-55
formatted output conversion

functions 1lib.37-40
forming the menu bar

fprintf lib.37-40
fputs 1ib.43
fread 1ib.20-21

tool. 39

- index.6 -

Aztec C68h

free lib.31-32,56
freeing space on the heap

tool.36
freopen 1ib.17-19
frexp 1lib.22
fscanf 1ib.49-55
fseek 1ib.23-24
ftell lib.23-24
ftoa 1ib.8
functions calls style.13-14
funlock util.38
fwrite 1lib.20-21

G
get a string from a stream

lib.27
getc 1lib.25-26
getchar 1b.25-26
getenv libmac.11
gets lib.27
getting and disposing of

resources tool.70
getting resource information

tool.70-71
getting scrap information

tool.73
getting serial driver

information tool.77
getw 1ib.25-26
global as.12
global and static data

tech.8, 13
global and static data area

tech.6
go z.12,54; debug.22-23,37
grafport routines tool.60
graphic operations on

arc and wedges tool.64
ovals tool.63
polygons tool.66
rectangles tool.63
regions tool.65

graphics utilities tool.88
grep util.25-30
grow zone functions tool.36

Index

H
handling dialog events tool17
handling errors tool.54
handling events tool.14
hard disk usage tech.34
hd util.31,47-48
heap tech.6,12-13,29-30,32
hex dump utility util.31
hierarchical file system sh.15
high level functions

tool. 26-28
hyperbolic functions 1ib.61

I
i/o libovmac.3-5
i/o channels sh.18-20
if as.15
in-line assembly code __cc.23-24
include as.14
include environment variable

as.5-6
include environment variable

cc.7
include search order as.6
including modules from libraries

tech.14
including resources util.84
index lib.62-63
initialize printer util.71
initializing the font manager

tool.32
initializing the resource

manager tool.69
input file as.4;cc.4;1n.8-9
insert commands z.9,14-15,32
insert mode _ z.9,32
inserting text z.15,32
installconsole util.32
interfacing with c as.15-17
interfacing with pascal as.17
internal storage of numeric data

cc.21
international utility constants

tool.46-48
international utility functions

tool.48-49
intro to linking 1In.4-7

= index.7 =

Index

invoking alerts tooL18
ioctl 1lib.28
ioctl libov.19
isalnum lib.11
isalpha_ lib.11
isascii lib.11
isatty 1lib.28
iscntrl lib.11
isdigit lib.11
islower lib.11
isprint lib.11
ispunct lib.11
isspace lib.11
isupper lib.11

J |

jump table tech.6,16-18

K
keeping fontin memory tool.33
keeping scrap on the disk

tool. 73
keyboard sh.32

L
label table cc.12-13
labels as.10
large sized code segments

tech.5
launch tech.17
Idexp 1lib.22
learning c idioms _ style.3
libraries 1n.5,9-10
library module order 1n.6-7
library order 1n.6-7;

util.35-36
libutil = util.33-37
line continuation cc.23
line-oriented input

libov.17-18; libovmac.5
lines longer than screen size

Z.17
link item sh.53

linker error messages I1n.13-18
linker options In.12

Aztec C68K

linker options for command
programs tech.8

linking finder-activated command
programs tech.15

linking process 1n.4-5
linking segmented programs

tech.13-15
list as.14
list files and directories

util 39-40
listing file as.4,8,14-15
listing library modules

util 33
Imalloc libmac.12
loading console driver into the

application heap tech.29
loading console driver into the

system heap tech.29
loading of segments tech.5
loading programs

debug.6,23-25,37
local moves z.23-26
local symbol table cc.8,12-13
lock util38,47,90
log lib.12-13
logarithm lib.12-13
logical functions tool.87
long character items cc.21
longjmp 1lib.57-58
loops sh.39
low-level driver access

tool.54
low-level functions tool.28-30
low-level routines tool.94
Is sh.11-12;util.39-40
Iseek 1lib.29-30

M
machine-independent code _ cc.17
macro as.14 15
macro/global symbol table

ce. 12
macros z.34-37,57
macsbug util.41-49
make util.50-66

malloc 1lib.31-32,56
manipulating edit records

= index.8 -

Aztec C68K

tool.84
manipulating items tool./8
manipulating the screen

libmac. 17-18
marking z.25,55
matching character strings

util.27
memory allocation 1ib.31-32
memory-change breakpoints

debug.8
memory manager tool.34-37
memory modification commands

debug.25-26,37
memory organization tech.4-6
memory usage statistics as.7
menu manager tool.38 39-40
menus sh.49-53
mexit as.15
mice and carets tool.84
missing semicolon _ style.15
mixcroot tech.7-8,10-11,17-

21,29
mixcroot.o tech.20
mkarcv util.4
modes of z z.8-9
modf 1lib.22
modifying resources tool.71
modifying system routines

tool.71
modularity style.7
mount sh.13-14;util.67-68
mounted volumes sh.13
mountram util. 73
mouse location tool.12,92
mouse-based editor util.21-22
move files util.69-70
movement and sizing tool.12
moves within c programs z.24
moving around on the screen

Z.23
moving blocks z.28

. moving text between files z.31
moving within a line z.23-24
movmem 1ib.33
mpu symbols’ cc.18

multi-line commands sh.23
multiple code segments
tech.11-12

Index

multiple volumes sh.12
mv util.69-70

N
named buffers z.29-31
names debug.5-6
nesting errors style.17
noclist as.14
nodelay libov.17
nolist as.14
non-local gotto 1lib.57-58
nopind as.14
numeric data cc.21

O
object code file as.4
object module librarian
util.33-37open 1ib.34-36
open astream lib.17-19
open resource file

libmac. 13-15
opening and closing desk acc.

tool. 14
Opening and closing resource

files tool69
opening and closing the ram

serial driver tool.76
opening files libovmac.3-4
opening files and devices

libov.2,6,9
openrf libmac.13-15
operands as.10-11
Operating instructions

as.3;cc.3
operating system utilities
tool.41-43

Operations as.10
optimizations as.4-5
options file z.41-42
order of evaluation style.16
order of library modules

In.6-7
other operations on long

pointers tool.87
Output files cc.5-6
output to the screen sh.28-29

- index.9 -

Index

P
package manager
paging z.19
parameter ram operations

tool.42
parent directory sh.10-11
pascal to c string functions

libmac.6
passing arguments to programs

sh.30-31
passing data to functions

style. 18
passing open files and devices

tech.21-22 |
path identifiers sh.7
pattern-matching utility

util.25-30
peekb libmac.16
peekl libmac.16
peekw__ libmac.16
pen and line drawing tool.61
performing periodic actions

tool. 14
pictures tool.66
pind as.14
pmode _ libmac.5
pointer and handle manipulation

tool.42
pointer variables cc.20
pointers cc.17-21
pokeb libmac.16
pokel libmac.16
pokew libmac.16
posting and removing events

tool.21
pow lib.12-13
power 1lib.12-13
pre-open 1/o channels sh.18-20
pre-opened devices libov.4

libov.4;libovmac.3
print manager tool.50-51
print records and dialogs

tool.53-54
print working directory

util.72

printer sh.32-33
printf 1ib.37-40
program maintenance util.50-66

tool.44-49

Aztec C68K

programs menu_ sh.50
programs that call macintosh

routines tool.4
prompts sh.26-27
properties of relocatable blocks

tool.36
prsetup util.71
ptoc libmac.6
public as.12
push a character back into input

Stream 1ib.65
put a character string to a

Stream 1ib.43
pute lib.41-42
putchar lib.41-42
puterr 1lib.41-42
puts 1lib.43
putw lib.41-42
pwd sh.11; util.72

Q
qsort 1ib.44-45
queue manipulations tool.43
quickdraw tool.4,6,9,55-68
quickdraw from a driver

tech.24
quit debug.32,38
quoting strings sh.23-25

R

ram disk tech.32-33
ram disk utility util.73-74
random i/o libov.6,10
random number generator 1ib.46
range debug.14-15
raw mode _ libov.20-21
read 1i1b.47
readable code _ style.5
reading files z.45
reading from scrap tool.73
reading the keyboard tool.22
reading the mouse tool.21-22
realloc 11b.31-32

reg as.ll
register a4 tech.23-25
register commands debug.33

- index.10 -

Aztec C68K

register conventions es.16
register variables cc.17
remove files util.90
rename a disk file 1ib.48
replacing library modules

util.34,36-37
reposition a stream
reselecting segments

tech.14-15
resource compiler util.91-98
resource copy utility util.14
resource definitions util.74-

84,92-96
resource file (creating)

libmac.5
resource manager tool.69-71
resources for command programs

tech. 16
resoure file opening

libmac. 13-15
returning from ac function

as. 16-17
rgen_ util.75-89
rgen error messages util.86-89
rindex 1l1b.62-63
rm util.90
rmaker util.91-98
run time environment as.16
run-time errors style.12

lib.23-24

S
sacroot tech.7,10-11,17-20,29
sacroot.o tech.19-20
scanf 1lib.49-55
Scrap manager tool.73
scrap-related functions

tool.85
screen fonts sh.28-29
screen functions libmac.17-18
scrolling z.11-12,15,19
searching for #include files

cc.6-7
searching for command files

sh.44-45

searching for commands sh.44
searching for include files

as.

Index

segment information tech.16
segment loader functions

tool.74
selecting faces sh.28
selecting screen fonts

sh.28-29
selection range and

justification tool.84
sequential i/o libov.6,10
serial driver tool.75-77
set exec file options

util.99- 100
set type fields libmac.19
setbuf lib.56
setjmp 1ib.57-58
setmem 1ib.33
setting and range tool.12-13
setting options for a file

Z.42
setting the current resource

file tool.70
settyp libmac.19
sg erase field libovmac.7
sg_flags field libovmac.6
sg__kill field libovmac.7
setty fields

libov. 19;libovmac.6-7
Shared data style.19
Shcroot tech.7-11,16-21,29
shift command sh.39
shift exec file variables

util. 101-102
shifting text z.31
sign extension cc.18
sin 1ib.59-60
single-drive macintoshes

tech.35-36
single step debug.33,38
sinh 1ib.61
sort an array

sound driver
sound functions tool.79
source dearchiver util.4
source file comparison utility

util. 16-19

source menu sh.50
source program structure as.10
special keys z.18

lib.44-45
tool.78-79

- index.11 -

Index

special substitutions sh.26-27
special symbols _cc.23
spool printing tool.54
sprintf 1ib.37-40
sqrt lib.12-13
square root. lib.12-13
sscanf 1lib.49-55
stack area_ tech.6
standarderror sh.18-19
standard file package functions

tool.45-46
Standard i/o _ libov.9-13
standard i/o libovmac.4
Standard i/o functions

libov.12-13
Standard 1/o table tech.21-22
Standard input sh.18
Standard output sh.18
starting and stopping the shell

sh.46-48
Starting and stopping z

z.11,15,41-43
Starting db debug.10
starting the linker In.8
Startup routines tech.16-17
Strcat 1lib.62-63
Stremp 1ib.62-63
Strepy 1ib.62-63
Stream status inquiries lib.15
string comparison tool.42
String manipulation tool.86-87
String matching util.28
String operations 1ib.62-63
String searching z.12-13,20
String table cc.12,14
Strlen 1ib.62-63
Strncat 11b.62-63
strncmp 1ib.62-63
Strncpy 11b.62-63
Structured programming style.7
subtracting pointers cc.20
Swap screen debug.35
swapmem 1ib.33
symbolic debugger debug.4
system error codes tool.80-81

system error functions tool.43
system-dependent features z.53
system-independent programs

Aztec C68K

libov.18

T
table manipulation options

cc.8, 12-14
-e cc.8,13
-1 cc.8,12-13
-y ccs
-Z cc.8

tags z.47-49
tan 11b.59-60
tanh 11b.61
term util.103-104

debug. 12-13
terminal emulation program

util 103
text display tool.85
text drawing tool.61-62
textedit tool.82-85
time util.15
tolower 1ib.64
toolbox and os functions
control manager tool.10-13

constants tool.10
data structures tool.10-11
initialization and allocation

tool.11
control display tool.11-12
mouse location tool.12
movement and sizing

tool.12
setting and range

tool.12-13
misc. utilities tool.13

desk manager tool.14
constants tool.14
opening and closing desk acc.

tool.14
handling events tool14
performing periodic actions

tool.14
advanced routines tool.14

dialog manager tool.15-18
creating and disposing of

dialogs tooL17
handling dialog events

tool.17

- index.12 -

Aztec C68K

invoking alerts tool.18
manipulating items tool.18

disk manager tool.19
constants tool.19
data structures tool.19
disk driver routines tool.19

event manager tool.20-22
constants tool.20-21
data structures tool.21
accessing events tool.21
posting and removing events

tool.21
reading the mouse tool.21-22
reading the keyboard tool.22
misc. utilities tool.22

file manager tool.23-30
constants tool.23
data structures tool.23-26
high level functions

tool.26-28
accessing volumes

tool.26-27
changing file contents

tool.27-28
changing information about

files tool.28
low-level functions tool.28-30
initialization tool.28
accessing volumes tool.28-29
changing file contents tool.29
changing information about files

tool.29-30
accessing queues tool.30

font manager tool.31-33
constants tool.31
data structures tool.31-32
initializing the font manager

tool.32
font information tool.33
keeping font in memory tool.33
advanced routine tool.33

memory manager tool.34-37
constants tool.34
data structures tool.34
initialization and allocation

tool.34-35
allocating and releasing

relocatable blocks tool.35

- index.13 -

menu manager

package manager

Index

allocating and releasing non-
relocatable blocks tool.35-36
freeing space on the heap

tool. 36
properties of relocatable

blocks tool.36
grow zone functions tool.36
utility routines tool.37

tool.38 39-40
constants tool.38
data structures tool.38
initialization and allocation

tool. 38-39
forming the menu bar

tool.39
choosing the menu bar

tool 39
controlling the items’

appearance _ too1.39-40
misc. utilities tool.40

operating system utilities
tool.41-43

constants tool.41
data structures tool.41
pointer and handle

manipulation tool.42
String comparison tool.42
date and time operations

tool 42
parameter ram operations

tool 42
queue manipulations tool.43
dispatch table utilities

tool 43
misc. utilities tool.43
system error functions

tool. 43
tool.44-49

constants tool.44
data structures tool.44-45
standard file package

functions tool.45-46
disk initialization package

tool.46
international utility

constants tool.46-48
international utility

functions tool.48-49

Index

print manager tool.50-51
constants tool.50-51
data structures tool.51-53
initialization and allocation

tool.53
print records and dialogs

tool. 53-54
document printing tool.54
spool printing tool.54
handling errors tool.54
low-level driver access

tool.54
quickdraw tool.4,6,9,55-68

constants tool.55-56
data structures tool.56-59
grafport routines tool.60
cursor handling tool.60
pen and line drawing tool.61
text drawing tool.61-62
drawing in color tool.62
calculations with rectangles

tool.62-63
graphic operations on rectangles

tool.63
graphic operations on ovals

tool.63
graphic operations on round-

corner rectangles tool.63-64
graphic operations on arc and

wedges tool.64
calculations with regions

tool.64-65
graphic operations on regions

tool.65
bit transfer operations

tool.65-66
pictures tool.66
calculations with polygons

tool.66
graphic operations on polygons

tool.66
calculations with points

tool.67
misc. utilities to0o0l.67
customizing quickdraw

tool.67-68
resource manager tool.69-71

constants tool.69

Aztec C68K

initializing the resource
manager tool.69

Opening and closing resource
file tool.69

checking for errors tool.69
setting the current resource

file tool.70
getting and disposing of

resources tool70
getting resource information

tool.70-71
modifying resources tool.71
advanced routines tool71
modifying system routines

tool.71
vertical retrace manager tool72

data structures tool.72
vertical retrace routines

tool.72
Scrap manager tool.73

data structures tool.73
getting scrap information

tool.73
keeping scrap on the disk

tool.73
reading form scrap tool.73
writing to the scrap tool.73

segment loader functions
tool.74
constants tool.74

serial driver tool.75-77
constants tool.75-76
data structures tool.76
opening and closing the
ram serial driver tool.76

changing serial driver
information § tool.77

getting serial driver
information tool77

sound driver tooL78-79
constants tool.78
data structures tool.78-79
sound functions tool.79

system error codes tool.80-81
constants tool.80-81

textedit tool.82-85
constants tool.82
data structures tool.82-83

- index.14 -

Aztec C68K

initialization tool83-84
manipulating edit records

tool.84
editing tool.84
selection range and

justification tool.84
mice and carets tool.84
text display tool.85
advanced routines tool85
scrap-related functions

tool.85
toolbox utility tool.86-88

constants tool.86
data structures tool.86
fixed-point arithmetic

tool.86
string manipulation

tool.86-87
byte manipulation tool.87
logical functions tool.87
other operations on

long pointers tool87
graphics utilities tool.88
misc. utilities tool.88

types tool.89
constants tool.89

window manager tool.90-94
constants tool.90
data structures tool.91
initialization and allocation

tool.91-92
window display tool.92
mouse location tool.92
window movement and sizing

tool.92-93
update region maintenance

tool.93
misc. utilities tool.93
low-level routines tool94

toolbox utility tool.86-88
top-down programming _style.8-9
toupper 11b.64
trace mode debug.8,18,37
translating functions calls

tool.5-6

translating variable
declarations tool.4

trigonometric functions

Index

1ib.59-60
types tool.89

U
unassemble debug.34,38
unbuffered and standard i/o

calls libov.7
unbuffered i/o

libov. 14-16; libovmac.4
unbuffered i/o functions

libmac.5,13-15,17
unbuffered i/o table tech.21
ungetc 11b.65
uninitialized variables

Style.15
unlink 11b.66
unlock utiL38
unmount sh.14;utiL67-68
update region maintenance
tool.93

usea as.15
using the linker 1n.8-11
utility options cc.9-11
utility routines tool37

Vv
vertical retrace manager

tool 72
vertical retrace routines

tooL72
volume names _sh.7

W
window display tool.92
window manager tool.90-94
window movement and sizing

tool 92-93
word movements z.24
write 1i1b.67
writing files z.44-45
writing segmented programs

tech. 13-16

writing to the scrap tool73

- index.15 -

Index

Y
yank z.29-31,56-57

Z
z text editor:
accessing files z.44-49
adjusting the screen z.26
autoindent z.32-33
colon commands z.58
command summary z.54-58
ctags utility z48-49
deleting lines z.28
deleting text z.13-15,27-28
disabling options z.51
displaying unprintable

characters z.17
duplicating blocks of text

Z.29-30
editing an existing file

z.11-15
editing another file 7z.45-47
enabling options z.51
ex-like commands z.38-40
executing system commands

Z.90
exiting z z.10,43
extended pattern matching

Z.21-22,51
file lists z.41,47
filenames z.44
go z.12,54
insert commands z.9,14-15,32
insert mode z.9,32
inserting text z.15,32
lines longer than screen size

z.17
local moves z.23-26
macros z.34-37,57
marking z.25,55
modes of z_ z.8-9
moves within c programs z.24
moving around on the screen

Z.23
moving blocks z.28

moving text between files
231
moving withinaline z.23-24

Aztec C68K

named buffers z.29-31
reading files z.45
scrolling z.11-12,15,19
setting options for a file

Z.42
shifting text z.31
special keys z.18
Starting and stopping z

z.11,15,41-43
string searching z.12-13,20
system-dependent features

Z.93
tags z.47-49
word movements z.24
writing files z.44-45
yank z.29-31,56-57
ZVS Vi z.52
z.opt z.41-42

- index.16 -

-l-

Technical Support Information

Dear Uscr of Aztec C,

We have put together a set of guidelines to help you take the most
advantage of the technical support service offered by MANX. We ask
that you read and follow these guidelines to enable us to continue to
give you quality technical support.

These are the guidelines...

Have everything with you.

Try to be organized. When using our phone support, have
everything you need with you at the time you call. Our goal is to get
you the help you need without keeping you on the phone too long.
This can save you a lot of time, and if we can keep the calls as short
as possible we can take more calls in the day. This can be to your
advantage on days when we are busy and it’s hard to get through.
Also, have the following information ready when you call technical
support. We will ask you for this information first.

* Your name. This is necessary in case we need to get back to you
with additional information.

Phone number. In case we have additional information we will be
able to contact you. This will never be given to anyone, so you
need not worry.

The product you are using, and the serial number. If you have a
cross compiler please tell us both host and target, even if the
problem 1s with just one side of the system.

The revision of the product you are using, This should include a
letter after the number: ie. 3.20d or 1.06d. THIS IS VERY
IMPORTANT. The full version number may be found on your
distribution disks or when you run the COMPILER.

The operating system you are using, and also the version.

The type of machine you are using.

Anything interesting about your machine configuration. ie. ram
disk, hard disk, disk cache software etc.

Know what questions you wish to ask.

If you call with a usage question please try to have your questions
narrowcd down as much as possible. It is easier and quicker for all to
answer a specific question than general ones.

Isolate the code that caused the problem.

~2-

If you think you have found a bug in our software, try and create
a small program that reproduces the problem. If this program is small
cnough we will take it over the phone, otherwise we would prefer
that you mail it to us, using the supplied problem report, or leave it
on onc of our bbs systems. Once we receive a "bug report" we will
attempt to reproduce the problem and if successful we will try to have
it fixed in the next release. If we can not reproduce the problem we
will contact you for more information.

Use your C language book and technical manuals first. . ¢ &

We have no qualms about helping you with your general C
programming questions, but please check with a C_ language
programming book first. This may answer your question quicker and
more thoroughly. Also, if you have questions about machine specific
code, ic. intcrrupts or dos calls, check with that machines technical
reference manual and/or operating system manual.

When to expect an answer.

A normal turn around time for a question is anywhere from the 2
minutes to 24 hours, depending on the nature of the question. A few
questions like tracing compiler bugs may take a little longer. If you
can call us back the next day, or when the person you talk to in
technical support recommends, we will have an indepth answer for
you. But normally we can answer your questions immediately.

Utilize our mail-in service.

It is always ecasicr for us to answer your question if you mail us a
letter. (We have included copies of our problem report form for your
use.) This is especially true if you’ve found a bug with our compiler
or other software in our package. If you do mail your question in, try
to include all of the above information, and/or a disk with the
problem. Again, please write small test programs to reproduce
possible bugs. The address for mail-in reports is P.O.Box 55,
Shrewsbury, N.J. 07701. If you have questions/problems concerning
C Prime or Apprentice C, mail them to P.O.Box 8, Shrewsbury, N.J.
07701.

Updates. Availability, Prices.

If you have any questions about updates, availability of software,
or prices, please call our order desk. They can help you better and
faster. You can reach them at...

-3-

Outside N.J. --> 1-800-221-0440
Inside N.J. --> 1-201-542-2121 (also for outside the U.S.A.)

Bulletin board system.

For users of Aztec C we have a bulletin board system available.
The number is ...

1-(201)-542-2793 This is at 300/1200 bps.(all products)
1-(415)-339-2427 also at 300/1200 bps (MAC & AMIGA only)

Follow the questions that will be asked after you are connected.
When this is done you will be on the system with limited access. To
gain a higher access level send mail to SYSOP. Include in this
information your serial number and what product you have. Within
approximatcly 24 hours you should have a higher access level,
provided the serial number is valid. This will allow you to look at the
various information files and upload/download files.

To usc the bulletin board best, please do not put large (> 8 lines)
source files onto the news system, which we use for an open forum
question/answer area. Instead, upload the files to the appropriate area,
and post a news itcm explaining the problem you are having. Also,
the smaller the test program, the quicker and easier it is for us to look
into the problem, not to mention the savings of phone time.

When you do post a news item, please date it and sign it. This will be
very helpful in keeping track of questions. Try to do the same with
uploaded source files.

Phone support, number and hours.

And finally, technical support for Aztec C is available between
9:00 am and 6:00 pm eastern standard time at 1-(201)-542-1795.
Phone support 1s available to registered users of Aztec C with the
exception of the Apprentice C and C Prime products. For those
products, please use the mail-in support service and_ send
qucstions/problems to P.O. Box 8, Shrewsbury, N.J. 07701.

These guidelines will aid us in helping you quickly through any
roadblocks you may find in your development. Thanks for your
coopcration.

Manx Software Systems

Technical Support Dept.

MANX PROBLEM REPORT

Date: / fo

Name:

Phone #:1-()- -

Company :

Address :

Product : c86-PC c86-CPM86 c6O8k
c68k-Am cll C8O_-
c65-ProDos c65-Dos3.3__
cross:

VERSION #: Serial #:

Op. - sys.: Machine Config:

Send this form to:

(C Prime/ Apprentice C only):

Manx Software Systems MANX Software Systems
P.O. Box 55 | P.O. Box 8
Shrewsbury, N.J. 07701 Shrewsbury, N.J. 07701

or call tech support at 1-201-542-1795 between 9am - 6pm EST,

(Sorry, phone support not available for the C Prime/Apprentice C

product.)

Description of problem --

(include what has already been attempted to fix it)

(use the reverse side of this sheet if needed.)

MANX PROBLEM REPORT

Date: / f/_

Name:

Phone #:1-()- -

Company :

Address :

Product : c86-PC c86-CPM86 cO8k
c68k-Am cl ———s C80 _-
c65-ProDos _ c65-Dos3.3__
cross:

VERSION #: Serial #:

Op. - sys.: Machine Config::

Send this form to:

(C Prime/Apprentice C only):

Manx Software Systems MANX Software Systems

P.O. Box 55 P.O. Box 8

Shrewsbury, N.J. 07701 Shrewsbury, N.J. 07701

or call tech support at 1-201-542-1795 between 9am - 6pm EST.

(Sorry, phone support not available for the C Prime/Apprentice C

product.)

Description of problem --

(include what has already been attempted to fix it)

(use the reverse side of this sheet if necded.)

	00_001
	00_002
	00_003
	00_004
	00_005
	00_006
	00_007
	00_008
	00_009
	00_010
	00_011
	00_012
	00_013
	00_014
	00_015
	00_016
	00_017
	00_018
	00_019
	00_020
	00_021
	00_022
	00_023
	00_024
	00_025
	00_026
	00_027
	00_028
	00_029
	00_030
	00_031
	00_032
	00_toc.01
	00_toc.02
	00_toc.03
	00_toc.04
	00_toc.05
	00_toc.06
	00_toc.07
	00_toc.08
	00_toc.09
	00_toc.10
	00_toc.11
	00_toc.12
	00_toc.13
	00_toc.14
	01_ov.01
	01_ov.02
	01_ov.03
	01_ov.04
	01_ov.05
	01_ov.06
	02_tutor.01
	02_tutor.02
	02_tutor.03
	02_tutor.04
	02_tutor.05
	02_tutor.06
	02_tutor.07
	02_tutor.08
	02_tutor.09
	02_tutor.10
	02_tutor.11
	02_tutor.12
	02_tutor.13
	02_tutor.14
	03_sh.01
	03_sh.02
	03_sh.03
	03_sh.04
	03_sh.05
	03_sh.06
	03_sh.07
	03_sh.08
	03_sh.09
	03_sh.10
	03_sh.11
	03_sh.12
	03_sh.13
	03_sh.14
	03_sh.15
	03_sh.16
	03_sh.17
	03_sh.18
	03_sh.19
	03_sh.20
	03_sh.21
	03_sh.22
	03_sh.23
	03_sh.24
	03_sh.25
	03_sh.26
	03_sh.27
	03_sh.28
	03_sh.29
	03_sh.30
	03_sh.31
	03_sh.32
	03_sh.33
	03_sh.34
	03_sh.35
	03_sh.36
	03_sh.37
	03_sh.38
	03_sh.39
	03_sh.40
	03_sh.41
	03_sh.42
	03_sh.43
	03_sh.44
	03_sh.45
	03_sh.46
	03_sh.47
	03_sh.48
	03_sh.49
	03_sh.50
	03_sh.51
	03_sh.52
	03_sh.53
	03_sh.54
	04_cc.01
	04_cc.02
	04_cc.03
	04_cc.04
	04_cc.05
	04_cc.06
	04_cc.07
	04_cc.08
	04_cc.09
	04_cc.10
	04_cc.11
	04_cc.12
	04_cc.13
	04_cc.14
	04_cc.15
	04_cc.16
	04_cc.17
	04_cc.18
	04_cc.19
	04_cc.20
	04_cc.21
	04_cc.22
	04_cc.23
	04_cc.24
	04_cc.25
	04_cc.26
	04_cc.27
	04_cc.28
	05_as.01
	05_as.02
	05_as.03
	05_as.04
	05_as.05
	05_as.06
	05_as.07
	05_as.08
	05_as.09
	05_as.10
	05_as.11
	05_as.12
	05_as.13
	05_as.14
	05_as.15
	05_as.16
	05_as.17
	05_as.18
	05_as.19
	05_as.20
	05_as.21
	05_as.22
	05_as.23
	05_as.24
	06_ln.01
	06_ln.02
	06_ln.03
	06_ln.04
	06_ln.05
	06_ln.06
	06_ln.07
	06_ln.08
	06_ln.09
	06_ln.10
	06_ln.11
	06_ln.12
	06_ln.13
	06_ln.14
	06_ln.15
	06_ln.16
	06_ln.17
	06_ln.18
	06_ln.19
	06_ln.20
	07_z.01
	07_z.02
	07_z.03
	07_z.04
	07_z.05
	07_z.06
	07_z.07
	07_z.08
	07_z.09
	07_z.10
	07_z.11
	07_z.12
	07_z.13
	07_z.14
	07_z.15
	07_z.16
	07_z.17
	07_z.18
	07_z.19
	07_z.20
	07_z.21
	07_z.22
	07_z.23
	07_z.24
	07_z.25
	07_z.26
	07_z.27
	07_z.28
	07_z.29
	07_z.30
	07_z.31
	07_z.32
	07_z.33
	07_z.34
	07_z.35
	07_z.36
	07_z.37
	07_z.38
	07_z.39
	07_z.40
	07_z.41
	07_z.42
	07_z.43
	07_z.44
	07_z.45
	07_z.46
	07_z.47
	07_z.48
	07_z.49
	07_z.50
	07_z.51
	07_z.52
	07_z.53
	07_z.54
	07_z.55
	07_z.56
	07_z.57
	07_z.58
	07_z.59
	07_z.60
	08_util.01
	08_util.02
	08_util.03
	08_util.04
	08_util.05
	08_util.06
	08_util.07
	08_util.08
	08_util.09
	08_util.10
	08_util.100
	08_util.101
	08_util.102
	08_util.103
	08_util.104
	08_util.105
	08_util.106
	08_util.107
	08_util.108
	08_util.109
	08_util.11
	08_util.110
	08_util.111
	08_util.112
	08_util.113
	08_util.114
	08_util.115
	08_util.116
	08_util.117
	08_util.118
	08_util.119
	08_util.12
	08_util.120
	08_util.121
	08_util.122
	08_util.123
	08_util.124
	08_util.125
	08_util.126
	08_util.127
	08_util.128
	08_util.13
	08_util.14
	08_util.15
	08_util.16
	08_util.17
	08_util.18
	08_util.19
	08_util.20
	08_util.21
	08_util.22
	08_util.23
	08_util.24
	08_util.25
	08_util.26
	08_util.27
	08_util.28
	08_util.29
	08_util.30
	08_util.31
	08_util.32
	08_util.33
	08_util.34
	08_util.35
	08_util.36
	08_util.37
	08_util.38
	08_util.39
	08_util.40
	08_util.41
	08_util.42
	08_util.43
	08_util.44
	08_util.45
	08_util.46
	08_util.47
	08_util.48
	08_util.49
	08_util.50
	08_util.51
	08_util.52
	08_util.53
	08_util.54
	08_util.55
	08_util.56
	08_util.57
	08_util.58
	08_util.59
	08_util.60
	08_util.61
	08_util.62
	08_util.63
	08_util.64
	08_util.65
	08_util.66
	08_util.67
	08_util.68
	08_util.69
	08_util.70
	08_util.71
	08_util.72
	08_util.73
	08_util.74
	08_util.75
	08_util.76
	08_util.77
	08_util.78
	08_util.79
	08_util.80
	08_util.81
	08_util.82
	08_util.83
	08_util.84
	08_util.85
	08_util.86
	08_util.87
	08_util.88
	08_util.89
	08_util.90
	08_util.91
	08_util.92
	08_util.93
	08_util.94
	08_util.95
	08_util.96
	08_util.97
	08_util.98
	08_util.99
	09_libovmac.01
	09_libovmac.02
	09_libovmac.03
	09_libovmac.04
	09_libovmac.05
	09_libovmac.06
	09_libovmac.07
	09_libovmac.08
	10_libmac.01
	10_libmac.03
	10_libmac.05
	10_libmac.07
	10_libmac.09
	10_libmac.11
	10_libmac.13
	10_libmac.15
	10_libmac.17
	10_libmac.19
	10_libmac.21
	10_libmac.23
	10_libmac.25
	10_libmac.27
	10_libmac.29
	10_libmac.31
	10_libmac.33
	10_libmac.35
	10_libmac.37
	11_tool.001
	11_tool.002
	11_tool.003
	11_tool.004
	11_tool.005
	11_tool.006
	11_tool.007
	11_tool.008
	11_tool.009
	11_tool.010
	11_tool.011
	11_tool.012
	11_tool.013
	11_tool.014
	11_tool.015
	11_tool.016
	11_tool.017
	11_tool.018
	11_tool.019
	11_tool.020
	11_tool.021
	11_tool.022
	11_tool.023
	11_tool.024
	11_tool.025
	11_tool.026
	11_tool.027
	11_tool.028
	11_tool.029
	11_tool.030
	11_tool.031
	11_tool.032
	11_tool.033
	11_tool.034
	11_tool.035
	11_tool.036
	11_tool.037
	11_tool.038
	11_tool.039
	11_tool.040
	11_tool.041
	11_tool.042
	11_tool.043
	11_tool.044
	11_tool.045
	11_tool.046
	11_tool.047
	11_tool.048
	11_tool.049
	11_tool.050
	11_tool.051
	11_tool.052
	11_tool.053
	11_tool.054
	11_tool.055
	11_tool.056
	11_tool.057
	11_tool.058
	11_tool.059
	11_tool.060
	11_tool.061
	11_tool.062
	11_tool.063
	11_tool.064
	11_tool.065
	11_tool.066
	11_tool.067
	11_tool.068
	11_tool.069
	11_tool.070
	11_tool.071
	11_tool.072
	11_tool.073
	11_tool.074
	11_tool.075
	11_tool.076
	11_tool.077
	11_tool.078
	11_tool.079
	11_tool.080
	11_tool.081
	11_tool.082
	11_tool.083
	11_tool.084
	11_tool.085
	11_tool.086
	11_tool.087
	11_tool.088
	11_tool.089
	11_tool.090
	11_tool.091
	11_tool.092
	11_tool.093
	11_tool.094
	11_tool.095
	11_tool.096
	11_tool.097
	11_tool.098
	11_tool.099
	11_tool.100
	11_tool.101
	11_tool.102
	11_tool.103
	11_tool.104
	12_tech.01
	12_tech.02
	12_tech.03
	12_tech.04
	12_tech.05
	12_tech.06
	12_tech.07
	12_tech.08
	12_tech.09
	12_tech.10
	12_tech.11
	12_tech.12
	12_tech.13
	12_tech.14
	12_tech.15
	12_tech.16
	12_tech.17
	12_tech.18
	12_tech.19
	12_tech.20
	12_tech.21
	12_tech.22
	12_tech.23
	12_tech.24
	12_tech.25
	12_tech.26
	12_tech.27
	12_tech.28
	12_tech.29
	12_tech.30
	12_tech.31
	12_tech.32
	12_tech.33
	12_tech.34
	12_tech.35
	12_tech.36
	12_tech.37
	12_tech.38
	12_tech.39
	12_tech.40
	12_tech.41
	12_tech.42
	12_tech.43
	12_tech.44
	12_tech.45
	12_tech.46
	12_tech.47
	12_tech.48
	12_tech.49
	12_tech.50
	12_tech.51
	12_tech.52
	12_tech.53
	12_tech.54
	12_tech.55
	12_tech.56
	12_tech.57
	12_tech.58
	12_tech.59
	12_tech.60
	12_tech.61
	12_tech.62
	12_tech.63
	12_tech.64
	12_tech.65
	12_tech.66
	12_tech.67
	12_tech.68
	12_tech.69
	12_tech.70
	12_tech.71
	12_tech.72
	12_tech.73
	12_tech.74
	12_tech.75
	12_tech.76
	12_tech.77
	12_tech.78
	12_tech.79
	12_tech.80
	12_tech.81
	12_tech.82
	12_tech.83
	12_tech.84
	12_tech.85
	12_tech.86
	12_tech.87
	12_tech.88
	12_tech.89
	12_tech.90
	12_tech.91
	12_tech.92
	12_tech.93
	12_tech.94
	13_examples.01
	13_examples.02
	13_examples.03
	13_examples.04
	13_examples.05
	13_examples.06
	13_examples.07
	13_examples.08
	13_examples.09
	13_examples.10
	13_examples.11
	13_examples.12
	13_examples.13
	13_examples.14
	13_examples.15
	13_examples.16
	14_debug.-2
	14_debug.00
	14_debug.01
	14_debug.02
	14_debug.03
	14_debug.04
	14_debug.05
	14_debug.06
	14_debug.07
	14_debug.08
	14_debug.09
	14_debug.10
	14_debug.11
	14_debug.12
	14_debug.13
	14_debug.14
	14_debug.15
	14_debug.16
	14_debug.17
	14_debug.18
	14_debug.19
	14_debug.20
	14_debug.21
	14_debug.22
	14_debug.23
	14_debug.24
	14_debug.25
	14_debug.26
	14_debug.27
	14_debug.28
	14_debug.29
	14_debug.30
	14_debug.31
	14_debug.32
	14_debug.33
	14_debug.34
	14_debug.35
	14_debug.37
	14_debug.81
	15_libov.01
	15_libov.02
	15_libov.03
	15_libov.04
	15_libov.05
	15_libov.06
	15_libov.07
	15_libov.08
	15_libov.09
	15_libov.10
	15_libov.11
	15_libov.12
	15_libov.13
	15_libov.14
	15_libov.15
	15_libov.16
	15_libov.17
	15_libov.18
	15_libov.19
	15_libov.20
	15_libov.21
	15_libov.22
	15_libov.23
	15_libov.24
	16_lib.01
	16_lib.02
	16_lib.03
	16_lib.04
	16_lib.05
	16_lib.06
	16_lib.07
	16_lib.08
	16_lib.09
	16_lib.10
	16_lib.11
	16_lib.12
	16_lib.13
	16_lib.14
	16_lib.15
	16_lib.16
	16_lib.17
	16_lib.18
	16_lib.19
	16_lib.20
	16_lib.21
	16_lib.22
	16_lib.23
	16_lib.24
	16_lib.25
	16_lib.26
	16_lib.27
	16_lib.28
	16_lib.29
	16_lib.30
	16_lib.31
	16_lib.32
	16_lib.33
	16_lib.34
	16_lib.35
	16_lib.36
	16_lib.37
	16_lib.38
	16_lib.39
	16_lib.40
	16_lib.41
	16_lib.42
	16_lib.43
	16_lib.44
	16_lib.45
	16_lib.46
	16_lib.47
	16_lib.48
	16_lib.49
	16_lib.50
	16_lib.51
	16_lib.52
	16_lib.53
	16_lib.54
	16_lib.55
	16_lib.56
	16_lib.57
	16_lib.58
	16_lib.59
	16_lib.60
	16_lib.61
	16_lib.62
	16_lib.63
	16_lib.64
	16_lib.65
	16_lib.66
	16_lib.67
	16_lib.68
	17_style.01
	17_style.02
	17_style.03
	17_style.04
	17_style.05
	17_style.06
	17_style.07
	17_style.08
	17_style.09
	17_style.10
	17_style.11
	17_style.12
	17_style.13
	17_style.14
	17_style.15
	17_style.16
	17_style.17
	17_style.18
	17_style.19
	17_style.20
	18_err.01
	18_err.02
	18_err.03
	18_err.04
	18_err.05
	18_err.06
	18_err.07
	18_err.08
	18_err.09
	18_err.10
	18_err.11
	18_err.12
	18_err.13
	18_err.14
	18_err.15
	18_err.16
	18_err.17
	18_err.18
	18_err.19
	18_err.20
	18_err.21
	18_err.22
	18_err.23
	18_err.24
	18_err.25
	18_err.26
	18_err.27
	18_err.28
	18_err.29
	18_err.30
	18_err.31
	18_err.32
	18_err.33
	18_err.34
	18_err.35
	18_err.36
	19_index.01
	19_index.02
	19_index.03
	19_index.04
	19_index.05
	19_index.06
	19_index.07
	19_index.08
	19_index.09
	19_index.10
	19_index.11
	19_index.12
	19_index.13
	19_index.14
	19_index.15
	19_index.16
	20_01
	20_02
	20_03
	20_04
	20_05
	20_06
	20_07
	20_08

