PDP-11 FORTRAN-77
User’s Guide
Order No. AA-V194A-TK

August 1983

This document contains the information necessary to create, link,
and execute PDP-11 FORTRAN-77 programs on a PDP-11 proces-
sor. Programming information is provided for the
RSX-11M/M-PLUS, RSTS/E, and VAX/VMS operating systems.

SUPERSESSION/UPDATE INFORMATION: This is a new document
for this release.

OPERATING SYSTEM AND VERSION: RSX-11M V4.1
RSX-11M-PLUS V2.1
RSTS/E V8.0
VAX/VMS V3.2

SOFTWARE VERSION: FORTRAN-77 V5.0

digital equipment corporation - maynard, massachusetts

First Printing, August 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be wused or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (:) 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT

DECUS RSTS Eﬂgﬂnan
DECwriter

ZK2389

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

PREFACE

SUMMARY

CHAPTER

CHAPTER

CONTENTS

OF TECHNICAL CHANGES

1 USING PDP-11 FORTRAN-77

OVERVIEW o e e o o e .
USING FORTRAN-77 ON RSX 11 SYSTEM o o .
RSX-11 File Specifications
Command Switches « . « .« .
Compiling a FORTRAN-77 Program with M

.
(=

Compiling with DCL
Compiler Switches
Task-Building a FORTRAN-77 Program .

Using the MCR Command TKB

Task Builder Options« .

Library Usage on RSX-11 Systems .

e

o o o o o o o o o o o
WWWWNNNDNODNDNDNDNDNDNDDNDDN -
e o o o o o o o o

N OV Uulbd WWN -

o o o
w N =

® o © o e o o o o o ° o
e o ® o © o o o ¢ o o o
® o ® o o o o o o o o o

Executing a FORTRAN-77 Program . .
Examples of FORTRAN-77 Command Sequence
USING FORTRAN-77 ON RSTS/E SYSTEMS
RSTS/E File Specifications « « . . .
Command Switches o o o o o« o e
Compiling a FORTRAN-77 Program on RSTS/E
Systems . . . e e e e s s e o . .
Task-Building a FORTRAN =77 Program on RSTS/E
Systems o o e o s .
Using the Task Bu11der on RSTS/E Systems
Task Builder Options ¢« ¢« o o .
Library Usage on RSTS/E Systems
Executing a FORTRAN-77 Program on RSTS/E
Systems . . o o e s e e e s e
Examples of FORTRAN -77 Job Command Sequences
Programming Considerations for RSTS/E Users
USING FORTRAN-77 ON VAX/VMS UNDER AME
VAX/VMS File Specifications
Command Switches ¢« . « . &
Compiling a FORTRAN-77 Program . . .
Task-Building a FORTRAN-77 Program .

[o e i el e el
L] . L] . . L]

« o
w N

—
.
w
.
[~

=
. L] L] .
WwWwww
e o o o
[S, 0 N
. . L]
w N -
. . .
. . . (]

~ O

Using the MCR Command TKB . . .
Task Builder Options
Library Usage on VAX/VMS Systems
Executing a FORTRAN-77 Program
Examples of FORTRAN-77 Command Sequence
OVERLAYS e o s e o o s e o o
Introduction to the Overlay Description
Language .« « ¢ ¢ ¢ o o o o o o o s o o o o o o
Building Overlaid FORTRAN-77 Programs
DEBUGGING A FORTRAN-77 PROGRAM .,« « « &

AU D DD WN
L] (] .
W N
. . Y L] 0 . . .

S

® o o o o o o & ° o
® o * o o o ¢ o o o o
® o o e 0 o o o o o o o o o

el e e e e

e o e o & o e o o ° o o o o

BSOSO DL DWW

.
-

-
L] .
.
)

[o) ¥}

FORTRAN-77 INPUT/OUTPUT

FORTRAN=-77 I/0 CONVENTIONS . &« & ¢ « « o o o o &
.1 Device and File Name Conventions
.2 Implied-Unit Number Conventions . . e o e
.1.3 Mapping FORTRAN Logical Unit 0 to a System Unit

¢ o o o o o o

Page

xi

Xv

Il PHP =
| [
HFONOWUMD WN -

-

CHAPTER

CONTENTS

FILES AND RECORDS . .« ¢ ¢ ¢ & o o o o o &

.2.1 File Structure . .« « « o o o o o o o o =
.2.1.1 Sequential Organization
.2.1.2 Relative Organization
.2.1.3 Indexed Organization « « .
e2.2 Access to Records . ¢ ¢ « o o o o o o o
.2.2.1 Sequential Access . . . ¢ ¢ ¢ o o o
e2.2.2 Direct ACCESS &+ & o o o o o o o o o o«
«2.2.3 Keyed ACCESS & v ¢ o o o o o o o .
«2.3 Record Formats . ¢« « ¢ ¢ ¢ o o o o o o o
.2.3.1 Fixed-Length Records « « « . &
3.2 Variable-Length Records . e o e e .
.3.3 Segmented Records . . « . .

OPEN STATEMENT KEYWORDS
BLANK . . « « ¢ « &
BLOCKSIZE
BUFFERCOUNT
DISPOSE . « ¢ ¢ o o o o &
INITIALSIZE and EXTENDSIZE
KEY . ¢ ¢ ¢ ¢ o o &
ORGANIZATION
READONLY &
RECL (RECORDSIZE) .
RECORDTYPE . ¢« « ¢ « ¢ « « & o
SHARED . ¢ ¢ ¢ ¢ o o ¢ o o o o o o = .
USEROPEN e o o

BACKSPACE AND ENDFILE IMPLICATIONS

FORTRAN-77 I/0 USING FILE CONTROL SERVICES

1 OTS/FCS Record Transactions

2 OTS/FCS File Open Conventions

3 FCS Implications of FIND and REWIND . .

4 FCS File Sharing o e e

e o o o o
* o o o o
* o ¢ o
.
.
* o o o
o o o o

e o o o o o e o o o o o
o o o o
e e o o * o
e o ® o ® o ¢ o o o o o
® o o o & o o

.

.

e o o o o o
® o o o ° o o o o

HHRFOONOANUDSd WND -

N O

* o o o
* o o o
. e & o
.
e o o o

NDNONNNNODNDNONNDNNODNDNONNONNNODNNNDNODNNNNNNNDNDNNNNDNNDNONDNODNDNNDN

(RMS) . . . 3
2.6.1 OTS/RMS Record Transactions
2.6.2 OTS/RMS File Open Conventions . . .

2.6.3 RMS Implications of FIND, REWIND, UNLOCK
2.6.4 RMS File Sharing . . e o e e o o o s
2.6.5 Task Building with RMS e e e e s e o o e

w

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

FORTRAN-77 OBJECT TIME SYSTEM ., . .
FORTRAN-77 CALLING SEQUENCE CONVENTION
The Call Site « ¢« .+ .
Return . « « o ¢ o o « o
Return Value Transmission
Register Usage Conventions
Nonreentrant Example . . .
Reentrant Example
Null Arguments
PROGRAM SECTIONS e o o o e o
Compiled-Code PSECT Usage c e e e e e
FORTRAN COMMON and RSX-11 System Common
OTS PSECT Usage . « ¢ ¢ ¢ o o o o .
OTS AND RESIDENT (SHAREABLE) LIBRARIES o .
OTS ERROR PROCESSING . . + ¢ ¢« + + o
Recovering From OTS-Detected Errors
.1 Using ERR= and END= Transfers .
.2 Using the ERRSNS Subroutine .
.3 Using the ERRSET Subroutine .,
FORTRAN-77 COMPILER LISTING FORMAT
.1 Source Listing « « ¢« . .
.2 Generated Code Listing
3 Storage Map Listing « « « . .

e o o o
o« o
Noavies wN -
.
® e 0 o ¢ o ¢ o o

® o o o o o o o

.
.
.
.
.
.
.

« o o o o
e o o o o

e o ¢ o o o
© o o o o o
e o ¢ o o o
® e * o * o

WWWWWWwWwWwWwWwWwwwwwwwuwwwwww
AR

e o o o o

e ¢ o * o o

e ° o o o o o

e * o o o & o

iv

. L . e o o * 0 . .

.

@ o © o o o 6 o o o o o

e o

FORTRAN-77 I/0 USING RECORD MANAGEMENT SERVICES

.

® e & o * o o o o

e * o o o

e & o o o o

.

. * o .

e ©® o 0 o o o ¢ o o+ o

e o O o * o o

|
HOWWOWWWOOIIOANU L DWW

FTRONNODNODNNODNNODNDNONNDNONNDN
[}

m)f:v
—

LU
COoOVWOUNUUNUBWWNNNKF -

WWWWwWwwuwwwwwww
|

CONTENTS

3.7 VIRTUAL ARRAY OPTIONS . . . ¢« « « « o« o« o o« o« « 3-19
3.7.1 Limits on VIRTUAL Elements . . . « « « « « « « 3-19
3.7.1.1 VIRTUAL and DIMENSION Statements 3-20
3.7.1.2 Memory Allocation for VIRTUAL Arrays 3-20
3.7.1.3 Execution Time of Virtual Arrays 3-20
3.7.2 Converting a Program to VIRTUAL Array Usage . 3-20
CHAPTER 4 PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

4.1 INTRINSIC FUNCTIONS . o & o o o o o o e e e e e 4-1
4.1.1 Using EXTERNAL and INTRINSIC Statements e o .o . 4-1
4.1.2 Generic Function References + + + « o« 4=2
4.2 INTEGER*2 AND INTEGER*4 ., . . e . . 4-7
4.2.1 Representation and Relatlonshlp of INTEGER*Z

and INTEGER*4 Values ¢ « ¢ « ¢ o « o o 4-7
4.2.2 Integer Constant Typing « « ¢« « « . . 4-8
4.2.3 Octal Constant Typing . . + « « ¢« ¢« &« « « « « . 4-8
4.2.4 Integer-valued Intrinsic Functions 4-9
4.2.5 Implementation-Dependent Integer Typing . . . 4-10
4.3 BYTE (LOGICAL*1) DATA TYPE + ¢« « « « « « 4-10
4.4 ITERATION COUNT MODEL FOR DO LOOPS « . . 4-11
4.4.1 Cautions Concerning Program Interchange e o o 4-11
4.4.2 Iteration Count Computation e . . . 4-11
4.5 USING EQUIVALENCE WITH MIXED DATA TYPES e o o o 4-12
4.6 EQUIVALENCE, BYTE DATA, AND STORAGE ALIGNMENT . 4-13
4.7 ENTRY STATEMENT ARGUMENTS e e o e o o o o o o o 4-13

CHAPTER

(5}

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

CREATING EFFICIENT SOURCE PROGRAMS
1 PARAMETER Statement ., . . .
2 INCLUDE Statement .,
3 OPEN and CLOSE Statements .
4 INTEGER*2 and INTEGER*4 . .
COMPILER OPTIMIZATIONS e e e e
Characteristics of Optimized Programs
Compile-time Operations on Constants .
Source Program Blocks
Eliminating Common Subexpressions
Removing Invariant Computations From
RUN-TIME PROGRAMMING CONSIDERATIONS . . . + « &
FORTRAN-77 OPTIONAL CAPABILITIES « « « « 5-
Non-FPP Operation (FAPEIS.OBJ) ¢ ¢« &« « « « « 5
RSX-11S Support (F4P11S.0BJ) . . « « « & &« « o 5-11
Optional OTS Error Reporting (F4PNER.OBJ) . . 5-11
Short Error Text (SHORT.OBJ) e o o o o e o o 5-11
Intrinsic Function Name Mapping (F4PMAP.OLB) 5-11
Floating-point Output Conversion (F4PCVF.OBJ) 5-12
OTS Resident Library (F4PRES.MAC) e o« o o o« o 5-12
OTS Overlay Files . . ¢« ¢« & ¢« o« « e ¢ o o 5-12
RMS-11 LINK AND RUN-TIME CONSIDERATIONS e o o o 5-13
FCS LINK AND RUN-TIME CONSIDERATIONS 5-14

e o o o o o
e o o o o
e o * o o
.
.
.

* o o o o o o
.

e o © o ® 4 o o o
e o o o o o o o o
.
.

QD WN -~

c
[e]
(¢]
el
2]
L]
L]

L[]
mwmmmtpwmmwmw
|
QOWVWUOWNdOUTUEBdWNNKF

e o e o o e e o e o o
* e o e & o o o
O WN -

.

cuouuoououuoouneunnoeoonoooooao,

YO DD DB DED B WNNNNNDNDFEF- -

CHAPTER USING CHARACTER DATA
CHARACTER SUBSTRINGS &« v ¢ « ¢ o o o o o o o &
CHARACTER CONSTANTS . ¢« ¢ o « o &
DECLARING CHARACTER DATA
INITIALIZING CHARACTER VARIABLES .
CHARACTER DATA EXAMPLES e o o o o
CHARACTER LIBRARY FUNCTIONS . . .

1 ICHAR Function . . . « ¢« « + o+ &

.2 INDEX Function « .+ . .

¢ o
| T T I
WWWwN —

e o e o
e ® o o o o
.
.
.
.

(=)}) le) o) We) We)Ne) We)) [«)}

.
.
AN

AN D WN -~

CONTENTS

LEN Function . o v ¢ ¢ ¢ o o o o o o o o o o o o
LGE, LGT, LLE, LLT Functions . « « ¢« ¢« o « o o &
CHARACTER I/0 v ¢ o o o o o o o o o o o o o o o o

A O O
|
o Oy O

7 USING INDEXED FILES
7.1 ACCESSING INDEXED FILES . « & ¢ « o o o o o o o o 1-1
7.2 CREATING AN INDEXED FILE . & &+ ¢ &+ ¢ o o o o o o o 1-1
7.3 CURRENT-RECORD AND NEXT-RECORD POINTERS 7-3
7.4 WRITING TO INDEXED FILES . . v ¢ &« o ¢ o o o o o o 71-3
7.4.1 Duplicate KeyS « o o o o o o o o o o o o o o o o 1-3
7.4.2 Omitting Alternate Keys .+ « « ¢ ¢ ¢ o o o o« « o 1-4
7.5 READING FROM INDEXED FILES . . ¢ ¢ « o & o o o « o 1-4
7.6 UPDATING RECORDS ¢« &« ¢ « o o o o o o o o o o o o o 1-5
7.7 DELETING RECORDS . ¢ ¢« ¢ o & o o o o o o o o o« o o 1-6
7.8 USING INTEGER KEYS . . ¢« ¢ ¢« « « & e e e .« o 7-6
7.9 ERROR CONDITIONS . ¢ v « o o o o o o o o o o o o o 1=7
APPENDIX A FORTRAN~-77 DATA REPRESENTATION

A INTEGER FORMATS . o « ¢ ¢ ¢ ¢ o o o o o o o o o o« A-1
A INTEGER*2 Format . . . ¢ « ¢ o o o o o o o o o« o« A-1
A INTEGER*4 Format . « « o« o o o o o o o o o o o o A-1
A FLOATING-POINT FORMATS . . ¢« ¢« « o o o o o« o « o« o« A-1
A REAL (REAL*4) Format (2-Word Floating Point) . . A-2
A DOUBLE-PRECISION (REAL*8) Format (4-Word

Floating Point) e e & e o o e e e e e e e s e o A-2
Aa2.3 COMPLEX Format A"'3
A.3 LOGICAL*1 (BYTE) FORMAT . . . « « « « o o o o« o« o A-3
A.4 LOGICAL FORMATS . . . e o o e o o s+ s e o o « o A-3
A.5 CHARACTER REPRESENTATION e o o o o o o o o o o o . A-4
A.6 HOLLERITH FORMAT . . . ¢ ¢ ¢ & o o« o o« o o o « « o« A-4
A.7 RADIX-50 FORMAT . . &« ¢ ¢ ¢ ¢ o o o o o o o« o« &« o« A=-5

APPENDIX B ALGORITHMS FOR APPROXIMATION PROCEDURES
REAL-VALUE PROCEDURES . . ¢« ¢ ¢ & « o ¢ o« o o o o B-1

ACOS -~ Real Floating-Point, Arc Cosine ., . . . B-1

DACOS -- Double-Precision Floating-Point Arc

Cosine . . + ¢ v o ¢ o o o & . e« o o o o o o B-1

ASIN -- Real Floating-Point Arc Slne e ¢ o o o o B=2

DASIN -~ Double-Precision Floating-Point Arc

Slne 3 . 3 B_2

ATAN -- Real Floatlng Point Arc Tangent B-2

ATAN2 -- Real Floating-Point Arc Tangent with

Two Parameters o o e e e o« + o B-3

DATAN -- Double- Prec1s1on Floatlng P01nt Arc

Tangent e o s e o o o o . « B-3

DATAN2 -- Double- Prec151on Floating-Point Arc

Tangent with Two Parameters . . . « « « o+ & . B-

ALOG10 -- Real Floating-Point Common Logarlthm B-

DLOG10 -- Double-Precision Floating-Point Common

Logarithm . . . e o o o o o o o s o o o s s B=-
B.1l.11 COS -- Real Floatlng Point Cosine
B.1.12 DCOS —-- Double-Precision Floating-Point Cosine .
B.1.13 EXP -- Real Floating-Point Exponential
B.1.14 DEXP -- Double-Precision Floating-Point

Exponential o« . e
B.1.15 COSH -- Real Floating-Point Hyperbol1c C051ne .
B.1.16 DCOSH -- Double Floating-Point Hyperbolic Cosine
B.1.17 SINH -- Real Floating-Point Hyperbolic Sine . .
B.1.18 DSINH -- Double-Precision Floating-Point

Hyperbolic Sine . . & ¢ ¢ v ¢« ¢ o o o o o « o &

vi

WWWNDNDNDNDNDDND

APPENDIX C

QOO0OO0O00000000n0
e o o e @
BB WWWNDNNDDNE

e o o o o o o

APPENDIX D

YOOI WU D WN -

o

—

vAviwlvivlvivlvivlvivivie)

-
[WEN)

D.1l4
D.15
D.16

APPENDIX E

mm
.
N -

CONTENTS

TANH -- Real Floating-Point Hyperbolic Tangent . B-6
DTANH -- Double-Precision Floating-Point
Hyperbolic Tangent B=-7
ALOG -- Real Floating-Point Natural Logarlthm . B=7
DLOG -- Double-Precision Floating-Point Natural
Logarithm « . « . & e e« o o s o o o o B=7
SIN -- Real Floating-Point Slne e e« « s+ o« o + o B-8
DSIN -- Double-Precision Floating-Point Sine . . B-9
SQRT -- Real Floating-Point Square Root B-9
DSQRT -- Double-Precision Floating-Point Square
ROOL & 4 « o o o o o o o o o o o o o o o« o« « « B-10
TAN -- Real Floating-Point Tangent B-1l1
DTAN -- Double-Precision Floating-Point Tangent B-11
COMPLEX-VALUED PROCEDURES ¢ « « « « o« « B-12
CSQRT -- Complex Square Root Function B-12
CSIN -- Complex Sine . « « « o ¢« o o« o o« « o o B-12
CCOS -- Complex Cosine . . + ¢« & « « ¢« « « « « B-12
CLOG -- Complex Logarithm « . « B-12
CEXP -- Complex Exponential B-13
RANDOM NUMBER GENERATORS . « « « ¢ + o & . B-13
RANDOM -- Uniform Pseudorandom Number Generator B-13

F4PRAN - Optional Uniform Pseudorandom Number
Generator . . 4 4+ 4 s s o o o o o o o o o o « B-14

DIAGNOSTIC MESSAGES

DIAGNOSTIC MESSAGE OVERVIEW . . . « « ¢« ¢« ¢ « +» o C-1
COMPILER DIAGNOSTIC MESSAGES « . « « « « « C-1
Source Program Diagnostic Messages C-1
Compiler-Fatal Diagnostic Messages C-14
Compiler Limits e« o« « o« . C-15
OBJECT TIME SYSTEM DIAGNOSTIC MESSAGES e + o+ « . C-16

Object Time System Diagnostic Message Format . C-16
Object Time System Error Codes C-18

OPERATING SYSTEM AND FILE SYSTEM ERROR CODES . . C-28
Operating System Error Codes C$6-28
Summary of FCS-11 Error Codes « . . C-29
Summary of RMS-11 Error Codes « « « o C=31

SYSTEM SUBROUTINES

SYSTEM SUBROUTINE SUMMARY . « « ¢« ¢« « « o o o« o« » D-1

ASSIGN . ¢ ¢ ¢ o ¢ o o o o o o o o o o o« o o o o o« D=2

CLOSE '« ¢ « ¢ & o o o o o o o o o o o o o« o« o o« o« D=3

DATE ¢ ¢ ¢ o o « o o o o o o o o o o o o o o o o« o« D=3

IDATE ¢« ¢ ¢ o o o o o o o o o o o o o o o o o o o« D=3

ERRSET . o ¢ ¢ ¢ ¢ o o o o o s o o o o o o« o o o« « D-4

ERRSNS &« &« ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o« o« » D-4

ERRTST .+ & 4 o « « o o o o o o o o o o o« o o o &« « D=5

EXIT ¢ ¢ ¢ ¢ o o ¢ o o o o o o o o o o o o o« o« « o« D-6

USEREX ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o« o« « D-6

FDBSET . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o o« D=7

IRADS0 . . « o o e o e o s o e e o s o o o o o o Db-8

RADS50 '« & ¢ ¢ ¢ o ¢ o o o o o o o o o o« s o o « o D=8

RS50ASC . & & ¢ ¢ ¢ & o o o o o o s o o o o o« o« « « D=9

SECNDS . ¢ & & ¢ o ¢ ¢ o o o« o o o o o s o « o« o« « D=9

TIME . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ e o o o o o o« o o« « « « o D=10

COMPATIBILITY: PDP-11 FORTRAN-77 AND PDP-11 FORTRAN
IV-PLUS

DO LOOP MINIMUM ITERATION COUNT . « « & « o « o o E-1
EXTERNAL STATEMENT . . & ¢ o ¢ ¢ ¢ o ¢ o o o o &

vii

APPENDIX F

mEmmmg e mmmm

NN N H e

.

APPENDIX G

G.1
G.2
G.2
G.2
G.2
G.2
G.2
G.3
G.3
G.3
G.3
G.3
G.3
G.4
APPENDIX H
INDEX
EXAMPLES
3-1
3-2
3-3
3-4
4-1
5-1
6-1
6-2
Cc-1
Cc-2
Cc-3

o o e o o o o
Noauvtbd WwN -

.
[N

« .
g Ww N+

CONTENTS

OPEN STATEMENT BLANK KEYWORD DEFAULT
OPEN STATEMENT STATUS KEYWORD DEFAULT
BLANK COMMON BLOCK PSECT (.$$$$.) e e e o e e .
X FORMAT EDIT DESCRIPTOR . « ¢ ¢ ¢ ¢ o o o o o &

COMPATIBILITY: PDP-11 FORTRAN-77, PDP-11 FORTRAN
VAX-11 FORTRAN

LANGUAGE DIFFERENCES . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o =«
Logical Tests . & v ¢ ¢ o o o o o o o o o o &«
Floating-Point Results « ¢ « ¢« « « o &
Logical Unit Numbers . . . « ¢ ¢ ¢ ¢ o« o o o =«
Assigned GO TO Label List . « « ¢ o o o « & &
DISPOSE = 'Print' Specification
Integer Computations
Default Record Buffer Size .

RUN-TIME SUPPORT DIFFERENCES . « « « ¢ ¢ ¢ o &
Unformatted Data Transfer .

Error Handling and Reporting« . .« .« « &

. e o

PDP-11 FORTRAN-77 EXTENSIONS TO ANSI STANDARD
(X3.9-1978) FORTRAN

STATEMENT EXTENSIONS . . o ¢ ¢ ¢ o o o o o o o &
STATEMENT SYNTAX EXTENSIONS . . « &« ¢ o« o o o &
Specification Statements . . « + + 4 ¢ ¢ ¢ o
Format Statements . . ¢ . ¢ & ¢ ¢ ¢ o o o o &
Control Statements
I/0 Statements . . + . .+ . o . . .
Miscellaneous Syntax Extensions .
KEYWORD AND KEYWORD VALUE EXTENSIONS
OPEN Statement Keyword Extensions
OPEN Statement Keyword Value Extensions . . .
CLOSE Statement Keyword Extensions
Close Statement Keyword Value Extensions .
READ Statement Keyword Extensions
LEXICAL EXTENSIONS . o ¢ ¢ o ¢ « o o o o & &

o o o o
.
.
.
.
.

SOFTWARE PERFORMANCE REPORTS

Call Sequence Conventions: Nonreentrant Example
Call Sequence Convention: Reentrant Example . .
Establishing a FORTRAN COMMON Area and Assembly
Language Subroutine ., . . . e e s e e e e e
Use of FORTRAN COMMON Area by Assembly Language
Subroutine L . L0 0 0 e 0 e e e e .
EQUIVALENCE Using Mixed Data TYypesS . « « + o + &
Effects of Optimization on Error Reporting . . .
Character Data Usage e e e e e e o e
Output Generated by Example Program e o o e o .
Sample Diagnostic Messages (Terminal Format) . .
Sample Diagnostic Messages (Listing Format) .
Sample of Object Time System Diagnostic Messages

viii

F-1
F-1
F-2
F-2
F-2
F-3
F-3
F-3
F-3
F-3
F-3

L

|

OC)OC)ODCl)C')OQOOOO
WWWWWNONNNNDN -

|

w w W
|
o] = w

=3
(o N KAk 2 X AN I
LI T T I
O WwN LBV

¢
[

CONTENTS

FIGURES

1-1 Preparing a FORTRAN-77 Program for Execution
1-2 Simple Overlay Structure « ¢« « . .
1-3 Overlay Structure . . ¢ ¢ ¢ o o o o o o o o
3-1 Storage Map Example . . ¢« ¢ ¢ ¢ ¢ o o o o &
Cc-1 Sample Diagnostic Messages (Terminal Format)
H-1 Software Performance Report (SPR) Form . . .

TABLES

RSX-11 File Specification Defaults
RSTS/E File Specification Defaults
VAX/VMS File Specification Defaults
FORTRAN Default Logical Device Assignments .

|

Implied Unit Numbers « « « « « .« .

Availability of File Organizations

Access Modes Per File Organization

RECL Value Limits ¢« ¢ « & ¢« + . .
Default RECL Values . . . « ¢ ¢ ¢ o ¢ o o« &
RMS File System Libraries « « « & &
Program Section Attributes . . . o e o e
Initial Error Control Bit Settlngs « o o o e
Generic and Intrinsic Functions
Compiler Limits . . ¢ ¢ & ¢ ¢« ¢« o« o o o o &
Default Logical Unit Numbers

|

LI T T T A |

mMAOBWWNNNNONNDNOND -
|
HHEHEENDEHEQOOUVMBWNRFE WD

ix

.
-
I~
|

Fwn

B WADWN N

e ¢ o o o
[

.
[

.

oo N

|
—

N NN

PREFACE

MANUAL OBJECTIVES

The purpose of this document is to help programmers create, link, and
execute PDP-11 FORTRAN-77 programs under the RSX-11M, RSX-11M-PLUS,
RSTS/E, and VAX/VMS (under AME) operating systems. These operating
systems must run on a machine with a Floating-Point Processor or a
floating-point microcode option.

The PDP-11 FORTRAN-77 language elements are described in the PDP-11
FORTRAN-77 Language Reference Manual.

INTENDED AUDIENCE

This manual is intended for programmers who have a working knowledge
of the fundamental elements and interrelationships of the FORTRAN
programming language; a detailed knowledge of the PDP-11 FORTRAN-77
version of FORTRAN is not essential. A detailed knowledge of the host
operating system also is not essential, but some familiarity with it
is recommended. Whenever a thorough understanding of a specific
aspect of an operating system is necessary, you are directed to the
appropriate manual for the required additional information.

STRUCTURE OF THIS DOCUMENT
This manual is organized as follows:

e Chapter 1 contains the information needed to compile, 1link,
and execute a PDP-11 FORTRAN-77 program on RSX-11M/M-PLUS,
RSTS/E, and VAX/VMS operating systems.

e Chapter 2 provides information about PDP-11 FORTRAN-77
input/output, including details on file characteristics,
record structure, and the wuse of certain OPEN statement
keywords.

e Chapter 3 describes the PDP-11 FORTRAN-77 run-time
environment, including the calling conventions, error
processing, and program section usage.

e Chapter 4 describes PDP-11 FORTRAN-77 implementation concepts,

with particular emphasis on data types, generic functions, DO
loops, and floating—-point data representation.

e Chapter 5 covers programming considerations relevant to
typical PDP-11 FORTRAN-77 applications.

Xi

PREFACE

Chapter 6 discusses the wuse of character data, including
character I/0 and the character library functions.

Chapter 7 discusses the use of indexed files and ISAM; an
extended example is included.

Appendixes A through G summarize internal data representation,
diagnostic messages, system-supplied functions, compatibility
between PDP-11 FORTRAN-77 and other DIGITAL FORTRAN
implementations, and language extensions incorporated in
PDP-11 FORTRAN-77. Appendix H covers the procedures for
reporting software problems.

ASSOCIATED DOCUMENTS

The following documents are relevant to FORTRAN-77 programming:

PDP-11 FORTRAN-77 Language Reference Manual

PDP-11 FORTRAN-77 Object Time System Reference Manual

PDP-11 FORTRAN-77 Installation Guide/Release Notes

RMS-11 User's Guide

RMS-11 MACRO Reference Manual

RSX-11M/M-PLUS Guide to Program Development

RSX-11M/M-PLUS Task Builder Manual

RSX-11M/M-PLUS Executive Reference Manual

RSTS/E System Manager's Guide

RSTS/E System User's Guide

RSTS/E Task Builder Reference Manual

RSTS/E Programmer's Utilities Manual

VAX-11/RSX-11M User's Guide

VAX-11/RSX-11 Programmer's Reference Manual

For a complete list of software documents, see the host operating
system documentation directory.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this manual:

Uppercase words and letters used in examples indicate that you
should type the word or letter exactly as shown.

Lowercase words and letters used in examples indicate that you
are to substitute a word or value of your choice.

Brackets ([]) indicate optional elements.

xii

PREFACE

Braces ({}) are used to enclose lists from which one element
is to be chosen.

Ellipses (...) indicate that the preceding item(s) can be
repeated one or more times.

RET represents a carriage return.

RSX-11 is wused as a generic term for the RSX-11M and
RSX-11M-PLUS operating systems.

xiii

SUMMARY OF TECHNICAL CHANGES

The PDP-11 FORTRAN-77 compiler has been modified to accommodate
Version 1.0 of the PDP-11 FORTRAN-77 Symbolic Debugger. You will
notice a new compile-time switch, /DB, that allows the compiler to
provide symbol table information to the debugger (if the debugger has
been installed).

Two other new compile-time switches, /EX and /OP, are documented here.
Unlike earlier versions, PDP-11 FORTRAN-77 V5.0 can run on VAX/VMS
under AME. Section 1.4 describes how to run FORTRAN-77 programs on
VAX/VMS.

All references to the IAS operating system have been deleted because
this system is no longer supported.

Xv

CHAPTER 1

USING PDP-11 FORTRAN-77

DIGITAL's PDP-11 FORTRAN-77 consists of two main parts:

e A FORTRAN-77 compiler, which translates a source program into
object code.

e A collection of routines (facilities and services) that a

program may need while it is executing. This collection of
routines is called the Object Time System (OTS).

PDP-11 FORTRAN-77 operates on the RS5X-11M, RSX-11M-PLUS, RSTS/E, and
VAX/VMS operating systems.

NOTE

Unless otherwise noted, the term
FORTRAN-77 is wused in this manual to
mean PDP-11 FORTRAN-77. Also, RSX-1l1 is

used as a generic term for the RSX-11M
and RSX-11M-PLUS operating systems.

1.1 OVERVIEW

To transform a PDP-11 FORTRAN-77 source program into an executing
task, you need to perform three steps:

1. Compile the program, to create a relocatable object module.

2. Task-build the program, to 1link the object module with
necessary external routines.

3. Execute the program (and debug it if necessary).

You compile a program by invoking the FORTRAN-77 compiler and
specifying the source files to be processed; then you task-build it
into an executable form called a task image by invoking your system's
Task Builder and specifying the object module to be processed.

Finally, you execute the task image by using the appropriate program
execution command for your system.

Figure 1-1 illustrates the process of transforming a FORTRAN-77 source
program into an executing task.

USING PDP-11 FORTRAN-77

LIBRARIES

SYSTEM
LIBRARIES

SOURCE
PROGRAM

OBJECT TASK TASK EXECUTING
COMPILER MODULE BUILDER IMAGE TASK

LISTING

ZK-241-81

Figure 1-1 Preparing a FORTRAN-77 Program for Execution

You invoke the compiler or the task builder by entering a command line
that specifies the desired function, the input files, the output
files, and any desired command options. Command lines are written in
one of the command languages (MCR, DCL, or CCL).

Input files and output files are specified in command lines by file
specifications. File specifications for RSX-11 and VAX/VMS system
programs differ from those for RSTS/E system programs.

Optional command inputs are specified with special command mnemonics
called switches. Switches are appended to command words and file
specifications.

To make entering a sequence of commands more efficient, especially
when a sequence 1is wused often, you can place the sequence in an

indirect command file and then simply type the file name of the
indirect command file, preceded by a@.

1.2 USING FORTRAN-77 ON RSX-11 SYSTEMS
This section contains information for the user who wants to compile,
task-build, and execute a PDP-11 FORTRAN-77 program on an RSX-11M or
RSX-11M-PLUS system. See Section 1.3 for information on using
FORTRAN-77 on RSTS/E systems.
Specifically, this section describes how to:

® Write RSX-11 file specifications

® Use command switches

® Use the FORTRAN-77 compiler to create an object module

® Use your system's Task Builder to create a task image

® Execute a task image

USING PDP-11 FORTRAN-77

1.2.1 RSX-11 File Specifications

For each RSX-11 system program you use, you must specify the input
files to be processed and (optionally for the FORTRAN-77 compiler and
your system's Task Builder) the output files to be produced.

The format of a file specification for an RSX-11l system program is as
follows:

device:[g,m] filename.filetype;version

device
The device on which a file is stored or is to be written.
[g,m]

The user identification code (UIC) associated with the user file
directory containing the desired file. This code consists of a
group number (g) and a member number (m). Both g and m are octal
numbers. The default value for the UIC is the identification

code under which you logged in or where you set your default
directory.

filename

The file by its name. A filename value can be up to nine
characters long.

filetype

The kind of data in the file. A filetype value can be up to
three characters long.

version

The version of the file that is desired. Versions are identified
by an octal number, which is incremented by 1 each time a new
version of a file is created.

You need not explicitly state all the elements of a file specification
each time you compile, task-build, or execute a program. The only
part of a file specification that is wusually required 1is the file
name. If you omit any other part of the file specification, a default
value is used. Table 1-1 summarizes the file specification default
values.

If you request compilation of a source program specified only by a

file name, the compiler searches for a file with the specified file
name that:

e Is stored on the default device
e Is cataloged under the current default UIC
e Has a file type of FTN

If more than one file meets these three conditions, the compiler
chooses the file with the highest version number.

For example, assume that your default device is DKO, that your default
UIC is [200,200], and that you supply the following input or output
file specification to the compiler:

CIRCLE

USING PDP-11 FORTRAN-77

For input, the compiler searches device DKO in directory [200,200] for
the highest version of CIRCLE.FTN. For output, the compiler generates
the file CIRCLE.OBJ, stores it on device DKO in directory [200,200],
and assigns it a version that is higher by 1 than any other version of
CIRCLE.OBJ currently cataloged in directory [200,200] on DKO.

Table 1-1
RSX-11 File Specification Defaults

Optional Default Value

Element

device User's current default device

[g,m] User's current default UIC

filetype Depends on usage:
Command file CMD
Input to compiler FTN
Output from compiler OBJ
Input to Task Builder OBJ
Output from Task Builder TSK
Input to RUN command TSK
Compiler source listing LST
Task Builder map listing MAP
Task Builder library input OLB
Task Builder overlay description ODL
Input to executing program DAT
Output from executing program DAT

version Input: highest existing version

Output: highest existing version
plus 1

l1.2.2 Command Switches

Command switches are devices you can use in command lines to specify
optional command instructions or inputs -- for example, to specify
that the compiler compile all lines with a D in column 1.

Command switches are appended to other entities in a command line and
have the form:

/switch[:val]
switch

A mnemonic that specifies a certain instruction to the compiler
or Task Builder.

val

A parameter consisting of an octal or decimal number, or a string
of characters.

Many switches have a negative form that negates the action specified
by the positive form. You can obtain the negative form generally by
following the required slash with a minus sign or the characters NO.
For example, /-SP or /NOSP prevents automatic spooling of a program
listing.

USING PDP-11 FORTRAN-77

1.2.3 Compiling a FORTRAN-77 Program with MCR

The PDP-11 FORTRAN-77 compiler is a system program that produces
relocatable object modules from FORTRAN-77 source code.

You invoke the FORTRAN-77 compiler with the MCR command F77 as
follows:

F77 [obj-file] [,list-file] = infiles-1list
obj-file

The file specification of the object-code output file. This file
specification may be omitted if no object file is desired. 1If it
is entered, only a file name value 1is required; a file type
value of OBJ is assumed by default if no file type is specified.
Therefore, the following commands are equivalent:

F77 FILE1=FILEl
F77 FILE1.OBJ=FILE1l
Note, however, that no listing file is created in either case.
list-file

The file specification of the listing output file. This file
specification may be omitted if no listing file is wanted. If it
is entered, only a file name value is required; a file type
value of LST is assumed by default if no file type is specified.
Under RSX-11M, the 1listing file is saved on disk and
automatically spooled to the line printer.

infiles-1list

The list of input files that contain the source programs. In
many cases, this 1list contains only one file specification;
however, when there is more than one, you must separate the
individual specifications with commas. Only a file name is
normally required; a file type value of FTN is assumed if no

file type is specified.
For example, to compile three source programs called WINKN,

BLINKN, and NOD into an object module called SINGLE, you would
enter:

F77 SINGLE, SINGLE = WINKN, BLINKN, NOD
or, if you wish:
F77 SINGLE.OBJ,SINGLE.LST=WINKN.FTN,BLINKN.FTN,NOD.FTN

In addition, an F77 command line can contain one or more of the
compiler switches listed and described in Section 1.2.4.

You can also use the F77 command in interactive mode, which permits
you to enter multiple compilation commands (lines). To invoke the
interactive mode (if you have installed the image of the FORTRAN-77
compiler as F77), you simply type:

F77 GED

Regardless of the name under which the PDP-11 FORTRAN-77 compiler is
installed, the compiler displays the following prompt:

F77>

USING PDP-11 FORTRAN-77

To enter a succession of compilation commands under interactive mode,
you type one command line after each prompt, followed by a carriage
return, until all commands are entered. Each command 1line must
specify the appropriate input and output files for the program module
to be compiled, and any optional switches desired. You then type
CTRL/Z. For example, if you want the FORTRAN programs WINKN, BLINKN,
and NOD compiled into separate object modules, you can enter a
succession of commands as follows:

F77 @eT (From this point on, the compiler 1issues the F77>
prompt.)

F77>WINKN, WINKN/SP=WINKN
F77>BLINKN,BLINKN/SP=BLINKN
F77>NOD,NOD/SP=NOD

F77>"2

Note that the compiler types the F77> prompt each time you enter a
command until you type CTRL/Z ("Z) to return system control to MCR.

You can also enter the name of an indirect command file in response to
the F77> prompt. For example, if the file COMPILE.CMD contains:

WINKN, WINKN/SP=WINKN
BLINKN, BLINKN/SP=BLINKN
NOD, NOD/SP=NOD

then the commands

F77>@COMPILE
F77>"2

are equivalent to the previous example.

1.2.3.1 Compiling with DCL - You invoke the FORTRAN-77 compiler with
the DCL command FORTRAN as follows:

FORTRAN [/qualifiers] infiles-=list

/qualifiers

Optionally included to control the output files and the compiler.
infiles-list

The list of input files that contain the source programs to be
concatenated and compiled.

The following DCL qualifiers have no MCR switch equivalents. The
remaining DCL qualifiers have effects that are equivalent to the
effects of the switches described in Section 1.2.4. Table 1-1A 1lists
the DCL qualifiers and their switch equivalents.

/F77

On systems supporting FORTRAN-77 and FORTRAN IV, the /F77
qualifier is used to specify FORTRAN-77.

/LIST[:filespec]

Produces a listing file using the file specification provided.

USING PDP-11 FORTRAN-77

Table 1-1A
DCL Qualifiers and Switch Equivalents

DCL Qualifier

Equivalent Switch

/ [NO]JCHECK
/CONTINUATIONS:n
/[NO]DEBUG
/[NO]DLINES
/[NOJEXTEND

/ [NO1F77
/IDENTIFICATION
/[NO]I4
/INO]JLIST:filespec
/ [NOJMACHINE CODE
/[NOJMAP

/[NO]JOBJECT:filespec

/[NO]JOPTIMIZE
/ [NO] SHAREABLE
/[NO]SOURCE
/ [NO]JSTANDARD [:arg]
ALL
NONE
SOURCE
SYNTAX
/ [NO]TRACEBACK: [arg]
ALL
BLOCKS
LINES
NAMES
NONE

/ [NO]WARNINGS

/WORK_FILES:n

/ [NO]CK

/CO:n

/[NO]DB

/ [NO]DE

/[NO]EX

/ [NO1F77

/1D

/[NO]I4

none

/LI:3

/LI:2

none

/ [NO]OP

/ [NOIRO

/LI:2

/[NO]ST:xxx
ALL
NONE
SOURCE
SYNTAX

/ [NO]TR:xxXx

ALL
BLOCKS
LINES
NAMES
NONE

/ [NO]WR

/WF:n

USING PDP-11 FORTRAN-77

/NOLIST
Does not produce a listing file.
/OBJECT[:filespec]

Produces an object file using the file specification provided.

/NOOBJECT

Does not produce an object file.

1.2.4 Compiler Switches

You use compiler switches to specify optional instructions to the
compiler or to specify special attributes for input or output files.
A compiler switch consists of a slash followed by a 2-character ASCII
name, and has two forms: a positive form and a negative form. If the
compiler switch designator is SW, for example, then:

/SW sets an action;
/NOSW or /-SW negates that action.

In addition, certain compiler switches may be followed by a value.
The permitted values are character strings, octal numbers, and decimal
numbers. The default radix for a numeric value is decimal. Decimal
values may end with a decimal point; octal values always begin with a
number sign (#). Some examples of valid compiler switches are:

/14

/TR :NAMES
/C0:25
/CO: 423

Some switches are appended to the F77 Command, others to the
specification for the input or output file to be affected by the
switch. Unless the /LA switch is set, all the switches 1listed below
are initialized to their default values before each compilation.

The compiler switches and their meanings are as follows:

Switch Description
/CK Specifies that array references are to be checked to
ensure that they are within the array address
boundaries specified. However, array upper bounds

checking 1is not performed for arrays that are dummy
arguments for which the 1last dimension bound is
specified as * or 1. For example:

DIMENSION B(0:10,0:%)
or
DIMENSION A(1)

The default setting is /NOCK.

/CO:n Specifies that the compiler accepts at least n
continuation 1lines. (You may have fewer than n
continuation lines.) The value of n may range from 0
to 99; the default value is 19. Note that each level
of nesting of an INCLUDE statement costs two
continuation lines.

1-7

Switch

/DB

/DE

/EX

/F77

/1D

/14

/LA

/LI:n

USING PDP-11 FORTRAN-77

Description

Specifies that the compiler is to provide symbol table
information for use by the PDP-11 FORTRAN-77 symbolic
debugger. When you use the /DB qualifier, you should
also use the /NOOP qualifier. The TKB switch /DA must
be specified when building a program task for
debugging.

The default setting is /NODB.

Requests compilation of lines with a D in column one.
These 1lines are treated as comment lines by the
default /NODE (see the PDP-11 FORTRAN-77 Language
Reference Manual for further information).

Specifies that the compiler compiles FORTRAN source
text that extends up to and includes column 132 of an
input record. If /EX 1is specified, then the ANSI
standard extension flagger invoked by the command
switch /ST:SOURCE issues an informational diagnostic

(one per record) for source lines extending beyond
column 72.

The default setting is INDEX.

Specifies an ANSI X3.9-1978 interpretation at compile
time of syntactic and semantic features that have a
different interpretation in PDP-11 FORTRAN IV-PLUS
V3.0. ©See Appendix E for a detailed discussion of the
incompatibilities between PDP-11 FORTRAN-77 and PDP-11
FORTRAN IV-PLUS. The default setting is /F77.

Types the FORTRAN-77 compiler identification and
version number on your terminal. /NOID is the default
setting.

Allocates two words for the default length of integer
and logical variables. Normally, single storage words
are the default allocation for all integer or 1logical
variables not given an explicit 1length definition
(such as INTEGER*2, LOGICAL*4). /NOI4 is the default
setting. See Section 4.2 for further information.

Causes the current switch settings to be retained
(latched) for subsequent compilations in MCR
interactive mode. Normally, switch settings are
restored to their default values before processing
each command line. This switch 1is convenient for
compiling a series of programs in MCR interactive mode
with the same switch settings. /NOLA is the default.

Specifies listing options. The value of n may range
from 0 to 3. The meaning of each value is as follows:

n=0 Minimal listing file: diagnostic messages
and program section summary only.

3
L}
[

Source listing and program section summary.

n=2 Source listing, program section summary, and
storage map (default).

n=3 Source listing, assembly code, program
section summary, and storage map.

Switch

/LI:n
(Cont.)

/0P

/RO

/SP

/ST:xXxx

USING PDP-11 FORTRAN-77

Description

The default setting is /LI:2. See Section 3.6 for a
detailed description of the 1listing format; also
refer to the PDP-11 FORTRAN-77 Object Time System
Reference Manual.

Directs the compiler to produce optimized code. The

negative form, /NOOP, 1is recommended when /DB is
specified.

The default setting is /OP.

Directs the compiler to specify pure code and pure
data sections as read-only in order to take advantage
of code sharing in multiuser tasks. See Section 3.3
for a description of program section attributes.
/NORO is the default.

Requests automatic spooling of the listing file. The
default is to spool (/SP).

Directs the compiler to look in your source code for
extensions to ANSI standard (X3.9-1978) FORTRAN at the

full-language level. If the compiler finds
extensions, it flags them and produces informational
diagnostics about them. (To receive informational

diagnostics, you must set the warning switch /WR.)

Although PDP-11 FORTRAN-77 conforms to the ANSI
FORTRAN standard at the subset level, the compiler
flags only those features that are extensions to the
full language. See Appendix G for a list of the
flagged extensions.

The /ST:xxx switch can take the following forms:

/ST Informational diagnostics for syntax
extensions

/ST:ALL Informational diagnostics for all
detected extensions

/ST :NONE No informational diagnostics

/ST:SOURCE Informational diagnostics for

lowercase letters and tab characters
in source code

/ST:SYNTAX Same as /ST
/NOST Same as /ST:NONE

The default value is /ST:NONE

See Section C.2 for a 1list of compiler diagnostic
messages.

USING PDP-11 FORTRAN-77

Switch Description

/TR:xxx Controls the amount of extra code 1included in the
compiled output for use by the OTS during error
traceback. This code is used in producing diagnostic
information and in identifying which statement in the
source program caused an error during execution.
/TR:xxx can have the following forms:

/TR Same as /TR:ALL.

/TR:ALL Error traceback information is
compiled for all source statements and
function and subroutine entries.

/TR:LINES Same as /TR:ALL.

/TR:BLOCKS Traceback information is compiled for
subroutine and function entries and
for selected source statements. The
source statements selected by the
compiler are 1initial statements in
sequences called blocks (see Section
5.2.3 for the definition of a block).

/TR:NAMES Traceback information is compiled only

for subroutine and function entries.
/TR:NONE No traceback information is produced.
/NOTR Same as /TR:NONE.

The default value is /TR:BLOCKS.

The setting /TR is generally advisable during program
development and testing. The default setting
/TR:BLOCKS is generally advisable for most programs in
regular use. The setting /NOTR may be used for
obtaining fast execution and minimal code, but it
provides no information to the OTS for diagnostic
message traceback.

/WF:n Determines the number of temporary disk work files
that should be used during compilation. From one to
three files can be used; the default value of n is 2.
Increasing the number of files increases the size of
the largest program that can be compiled, but may
decrease compilation speed.

/WR Enables compiler warning diagnostics (W-class
messages; see Section C.l1l.1). If /NOWR is set, no
warning messages are issued by the compiler. The

default is /WR.
The default settings of the compiler switches can be summarized as:

/NOCK/C0:19/NODB/NODE/NOEX/F77/NOID/NOI4/NOLA/LI: 2/0P/NORO/SP/NOST/TR:BLOCKS/WF:2/WR

1.2.5 Task-Building a FORTRAN-77 Program

The Task Builder is a system program that 1links relocatable object
modules to form an executable task image. You invoke the Task Builder
by entering the MCR command TKB. TKB is described in Section 1.2.5.1.

USING PDP-11 FORTRAN-77

The object modules to be linked can come from user-specified input
files, user libraries, or system libraries. The Task Builder resolves
references to symbols defined in one module and referred to in other
modules. Should any symbols remain undefined after all user-specified
input files are processed, the Task Builder automatically searches the
system object library LB:[1,1]SYSLIB.OLB to resolve them.

The default FORTRAN-77 object time system library normally either is
part of the system object 1library or is separate object library
LB:{1,1]F4POTS.OLB. Consult your system manager to determine whether
the FORTRAN-77 object time system (OTS) is part of SYSLIB.OLB or is a
separate library.

Two versions of the OTS I/0 support modules for FORTRAN-77 are
distributed. One version uses File Control Services (FCS-11), which
supports sequential and direct access to sequential files. The other
version of the OTS I/0 support library uses Record Management Services
(RMS-11), which supports sequential, direct, and keyed access to
sequential, relative, and indexed files. Consult your system manager
to determine which version of the I/0 support library is the default
on your system and where the other version of the I/O support library
is maintained, should you need it.

The FCS-11 file system is always contained in the system object
library (that 1is, in LB: [1,1]SYSLIB.OLB); the RMS-11 file system is
always contained in a separate object library (that is,
LB:[1,1]RMSLIB.OLB).

The Task Builder also resolves references to resident common blocks
and resident libraries; the task image produced, therefore, is ready
to be run under the operating system.

You can also use the Task Builder to build tasks with overlay
structures. For additional information about the Task Builder and

Task Builder options, refer to the Task Builder manual for your
operating system.

1.2.5.1 Using the MCR Command TKB - You use the MCR command TKB to
invoke the Task Builder.

The TKB command line has the format:
TKB [task-file]/FP[,map-file] = infiles-list
task-file

The file specification of the task-image output file. This file
specification may be omitted if no task-image file is desired.
If a specification is entered, only a file name is required; a
file type value of TSK is assumed if no file type is specified.

Therefore, the commands
TKB FILEl/FP=FILEl
and

TKB FILEl.TSK/FP=FILE1l

are equivalent. Note, however, that no map file 1is <created in
either case.

USING PDP-11 FORTRAN-77

The following switches may be applied to the task-image file:

/FP Specifies that the task use the Floating Point Processor
(FP11) or floating-point microcode option (KEF1l1lA).

NOTE

You must include the /FP switch when you
build a task; if you do not, the task
will exit with the FORTRAN run-time
message: "TASK INITIALIZATION FAILURE."
(Refer to Section 5.4.1 for the one
exception to this rule.)

/DA Specifies that the system debugging aid ODT 1is to be
included in the task.

/ID Specifies that the task use I- and D-space. You can
build an I- and D-space task on Versions 2.1 and later of
RSX-11M-PLUS; however, only FCS applications can be
built as I- and D-space tasks. If you use the /ID
switch, you cannot use PDP-11 FORTRAN-77 DEBUG to debug
your program.

The default FORTRAN-77 compiler does not support I- and
D-space. To turn on the I- and D-space support in the
FORTRAN-77 compiler, modify the following TKB option in
the Task-Build command file:

GBLPAT=FORTRN:DSPACE:0
to read:
GBLPAT=FORTRN:DSPACE:1

Then compile your program in the usual manner and use the
/ID switch when task building.

/MU Specifies that multiple versions of the task may be run

simultaneously. The read-only portions of the task are
shared.

map-file

The file specification of the map output file. This file
specification may be omitted if no task-image map file is
desired. If a specification is entered, only a file name Iis
required; a file type value of MAP is assumed if no file type is
specified. The map file is automatically spooled to the 1line
printer. On some operating systems, the map file is
automatically deleted after it is printed.

The following switches may be applied to the map file:

/CR Specifies that a global cross-reference listing is to be
appended to the map file.

/SP Specifies that the map file is to be spooled to the 1line
printer.

USING PDP-11 FORTRAN-77

infiles-1list

The list of input files that contain compiled FORTRAN-77 object
modules. (This 1list may also contain compiled or assembled
libraries and modules that were written in a language other than
FORTRAN, such as MACRO.) In many cases, this list contains only
one file specification; however, when there 1is more than one
specification, you must separate the individual specifications
with commas. Only a file name is normally required; a file type
value of OBJ is assumed.

The following switches may be applied to input files:

/LB Specifies that the input file is to be a 1library file.
See Section 1.2.5.3.

/MP Specifies that the input file is an overlay description
file. See Section 1.5.

For example, to build a task image for the object file SINGLE,
created in Section 1.2.3, when the FORTRAN-77 OTS is included in
the system object library (SYSLIB.OLB), you can enter:

TKB SINGLE/FP,SINGLE=SINGLE
or, if you wish:
TKB SINGLE.TSK/FP,SINGLE.MAP=SINGLE.OBJ

Note that under RSX-11 the map file created by these commands is
both saved on disk and spooled to the line printer.

If the FORTRAN-77 OTS routines are contained in a separate
library, this 1library must be explicitly specified in the Task
Builder command line. For example:

TKB SINGLE/FP,SINGLE=SINGLE,LB:[1,1]F4POTS/LB

NOTE

When using a separate FORTRAN-77
library, take particular care that
object modules from other PDP-11 FORTRAN
compilers and OTS routines are not
accidentally included in a task being
built from FORTRAN-77 object modules.
Object modules produced by different
PDP-11 FORTRAN compilers must not be
combined in a single task.

If the default I/O0 support library on your system is RMS-11, you
must explicitly reference RMSLIB in the task-build command line.
The previous example then becomes:

TKB SINGLE/FP,SINGLE=SINGLE,LB:[l,l]F4POTS/LB,LB:[l,l]RMSLIB/LB

You can also use the TKB command in interactive mode, which permits

you

to enter multiple-line commands. To enter interactive mode, you

simply type:

TKB [ED

USING PDP-11 FORTRAN-77

The Task Builder then displays the following prompt:
TKB>

You may now enter a single command line that indentifies all the input
files you want to use to begin the task build, followed by a carriage
return. Or you may enter additional input files on as many subsequent
lines as you need. When you have entered all your input files, you
must type a final 1line consisting of two slash characters (//),
followed by a carriage return (see Section 1.2.5.2 if you are entering
any Task Builder options). The double slash signals the Task Builder
to begin processing.

1.2.5.2 Task Builder Options - The Task Builder allows numerous
options to be specified. Several of these are of particular interest
to the FORTRAN-77 user.

To specify options in the MCR command TKB, you must use the Task
Builder in interactive mode, and you must terminate command input with
a line consisting of a single slash (/) (rather than the double slash
described in Section 1.2.5.1). The single slash signals the Task
Builder to prompt you, as follows, for option information:

ENTER OPTIONS:
TKB>

At this point, you can enter as many Task Builder options as you need,
one option per 1line. After you enter each option, the Task Builder
automatically prompts you for the next option until you enter a single
slash (/) to signal no more options. The Task Builder then proceeds
to build the task and to produce any requested output. To exit
interactive mode in TKB, enter two slashes (//).

The Task Builder options considered useful to you as a FORTRAN-77
programmer are described below.

ACTFIL -- You can declare the total number of input and output files
that a task can open simultaneously, and allocate the proper number of
buffers, by entering:

ACTFIL = n

The number, in decimal, of files that can be opened
simultaneously and the buffers needed to accommodate them. The
default value is 4.

Any attempt to open a file or use a logical unit when space 1is not
available for at least one buffer will cause an error at run time.

The value n includes both explicitly and implicitly opened files.

ASG -- You can assign logical unit numbers to physical devices by
entering:

ASG = devl:nl:n2:...,dev2:ml:m2:...

USING PDP-11 FORTRAN-77

dev

A physical device name.
n

A valid logical unit number.
m

A valid logical unit number.
The default device assignments are as follows:
ASG = SY0:1:2:3:4,T10:5,CL0O:6

You can build a cluster library for the FORTRAN-77 OTS on RSX-11M
v4.1l, RSX-11M-PLUS V2.1, and RSTS/E V8.0. Both the FCS and RMS
versions of the FORTRAN-77 OTS can be built as a cluster library. See
the Task Builder manual for your particular operating system for more
information on how to build a cluster library for the FORTRAN-77 OTS.

To use the FORTRAN-77 OTS cluster library, use the TKB option CLSTR as
shown in the following example:

TKB>PROG/FP=PROG,LB: [1,1]F4POTS/LB
TKB>/

ENTER OPTIONS:
TKB>CLSTR=F4PCLS,FCSCLS:RO (or RMSRE:RO
TKB>//

F4PCLS is the FORTRAN-77 OTS cluster library; FCSCLS 1is the FCS
cluster library.

To save space, you may link to several shared resident libraries by
sharing the same cluster, in the following way:

CLSTR=name,name,name:access[:apr]

name

The library's symbolic name.
access

Either RO for read-only or RW for read-write.
apr

An integer from 1 through 7 that specifies the first active page
register into which the resident library is to be linked.

The F77 resident library can now cluster with either the FCS or RMS
resident library, FCSCLS or RMSRES, respectively.

COMMON -- If a program is to reference a system global common block,
you must declare this intention by specifying:

COMMON = name:access[:apr]
name

The symbolic name associated with the system global common block.

USING PDP-11 FORTRAN-77

access

Either RO for read-only or RW for read/write.
apr

An integer from 1 to 7 that specifies the first Active Page
Register into which the resident library is to be linked. You
can specify apr only when the resident 1library consists of

position-independent code. (FAPRES does not consist of
position-independent code.)

The FORTRAN COMMON block with the same name is used to reference the
data in the system global common.

EXTTSK -- You can allocate additional buffer space for RMS-11
input/output by using the option

EXTTSK = n

The number, in decimal, of words to allocate. The value assigned
by this option may be overridden by the /INC option on the RUN
command (see Section 1.2.6.).

For information on how to determine the amount of buffer space a
program may need, refer to the RMS-11 MACRO Reference Manual.

On RSTS/E systems, you can use the EXTTSK option to allocate up to 31K

words of memory to a task image (if you have the RSX Emulator in the
monitor and your default run-time system is RSX).

The EXTTSK option is more efficient than the ACTFIL option because:
e The amount of space can be more accurately specified.

e The space allocated by EXTTSK does not require disk space in
the task-image file.

When you use an operating system that supports the Extend Task system
directive, the RMS-11 version of the OTS attempts to extend the buffer
space dynamically.

FMTBUF -- The default size of the buffer used to contain the
internally compiled form of a format specification stored in an array
is 64 bytes. You can increase the size of this buffer by entering:

FMTBUF = n

The decimal size, in bytes, of the run-time format compilation
buffer.

The total size needed for format compilation is equal to the largest
run-time format specification used by the program. For information on
how to determine the amount of space needed to store a given format,
refer to the PDP-11 FORTRAN-77 Object Time System Reference Manual.

USING PDP-11 FORTRAN-77
GBLPAT -- To patch FORTRAN logical unit 0 to a wvalid system logical
unit, use the option
GBLPAT= main-prog:$LUNO:n
main-prog

The name of your main program segment.

n
A system logical unit number in the range 1 to 99. (see Section
2.1.3).

LIBR -- If a program is to reference a system-shared library, you must

specify:
LIBR = name:access[:apr]

name
The library's symbolic name.

access
Either RO for read-only or RW for read/write.

apr
An integer from 1 to 7 that specifies the first Active Page
Register into which the resident library is to be linked. You
can specify apr only when the resident 1library consists of
position-independent code (PIC). (FAPRES does not consist of
position-independent code.) Libraries are discussed in more
detail in Section 1.2.5.3.
MAXBUF -- The default maximum record size for input/output is set
at 133 (decimal) bytes. You can increase this record size by
entering:

MAXBUF = n
n

The number of bytes (in decimal).

The default generally is adequate for sequential input/output. If
sequential, direct, or keyed access operations are performed with
records larger than 133 bytes, you must use this option, as follows,
to specify the size of the largest record you intend to process.
For formatted records:
MAXBUF = RECL
For unformatted records:

MAXBUF = 4*RECL

For segmented records (see Section 2.2.3.3 for a definition of
segmented records):

MAXBUF = (4*RECL)+2

The two extra bytes for segmented records are the segment control
bytes (see Section 2.2.3.3).

1-17

USING PDP-11 FORTRAN-77

RESLIB -- If a program references a user-shared library, you must
specify:
RESLIB= file-spec/access[:apr]

file-spec

The file specification of the shared-library task image and
symbol-table files.

access

Either RO for read-only or RW for read/write,

apr
An integer from 1 to 7 that specifies the first Active Page
Register 1into which the resident library is to be linked. You
can specify apr only when the resident 1library consists of
position-independent code (PIC). (FAPRES does not consist of
position-independent code.) Libraries are discussed in more
detail in Section 1.2.5.3.
UNITS -- The default number of logical wunits available to a
program is 6 (logical units 1 through 6, inclusive). You can set
this number smaller or larger at task-build time by entering:

UNITS = n
n

The number, in decimal, of logical units desired, from 0 to 99.

However, you should be aware that increasing the number of default
units available will increase task size. (On RSTS/E systems, you can
specify only up to 14 logical units: from 1 through 14.)

The default device and file name associated with a logical-unit number
are discussed in Section 2.1.1.

When you need to assign devices to the units you have specified with
the UNITS option, use the ASG option discussed earlier in this
section. If you need more units than the six provided as the default,
you must enter the UNITS option before you make any assignments with
ASG.

1.2.5.3 Library Usage on RSX-11 Systems - There are two types of
RSX-11 1libraries, each of which consists of a collection of object
modules: relocatable and resident. A relocatable library is one that
the Task Builder can make a physical part of a task image. A resident
library is one that the Task Builder can make a logical part of a task
image but not a physical part; that is, the Task Builder can link it
to a task image but cannot copy it to a task image.

Relocatable Libraries -- Relocatable libraries are stored in files on
disk. From these libraries, the Task Builder copies object modules
into the task image of each task that references those modules. You
must tell the Task Builder that an input file is contained in a
relocatable library by attaching the switch /LB to the input file
specification of the file. If you do not include an extension with
the file name of such a specification, the Task Builder assumes .OLB
as a default. When the Task Builder encounters a library

USING PDP-11 FORTRAN-77

specification, it includes in the task image being built those modules
in the specified 1library that contain definitions of any currently
undefined global symbols.

Resident Libraries -- Resident libraries are located in main memory
and are shareable: that is, a single copy of each library is used by
all tasks that refer to it. You gain access to a resident library by
using the LIBR or common option, as described in Section 1.2.5.2.

System Libraries -- Each RSX-1l1 system has a system relocatable
library and, in addition, has available to it four system resident
libraries.

The system relocatable library is as follows:
LB:[1,1]SYSLIB.OLB

The Task Builder automatically searches the system relocatable library
to see if any wundefined global references remain after all of the
input files have been processed. If the definition of one of these
undefined global symbols 1is found, the appropriate object module is
included in the task being built.

Four system resident libraries may be available for wuse with MCR.
Consult your system manager to determine which of the following system
resident libraries are available on your system.

e FCSRES -- A shared library of commonly used FCS-11
input/output routines.

® RMSRES -- A shared library of RMS-11 input/output routines.

e F4PRES -- A shared library of FORTRAN-77 OTS routines. This

library may reference FCSRES.

These system resident libraries are linked to a task by using the Task
Builder option, as follows:

LIBR = FCSRES:RO

or
LIBR = RMSRES:RO
or
LIBR = F4PRES:RO
User Libraries -- Using the Librarian Utility, you can construct your

own FORTRAN-77 (or assembly language) relocatable libraries. You then
access these libraries by using the appropriate 1library switch, as
described in preceding sections. Consult the IAS/RSX-11 Utilities
Procedures Manual for further information on the Librarian Utility.

For example, if MATRIXLIB.OLB is a relocatable 1library containing
matrix manipulation routines and PROG is the object file of a compiled
FORTRAN-77 program that calls the matrix routines, you could enter the
following command line for the Task Builder:

TKB PROG/FP=PROG,MATRIXLIB/LB

USING PDP-11 FORTRAN-77

1.2.6 Executing a FORTRAN-77 Program

To begin task execution once you have built a task image, you enter a
RUN command of the form:

RUN filespec[/INC=n]

filespec

The file specification of the file containing the task image.

The number, in decimal, of words of additional buffer space to
allocate for the OTS and file-system buffers. (For information

on how to determine the proper size of n, refer to the RMS-11
Macro Reference Manual.)

You can end a task before its normal completion by typing CTRL-C ("C),
followed by the ABORT command, or you can end execution with a STOP
statement. When the STOP statement is executed, the OTS will type a

line with the task name and the contents of the display text following
STOP.

A task that terminates as a result of a CALL EXIT statement or of

reaching the end of the main program does not produce any output to
indicate that it is terminating.

1.2.7 Examples of FORTRAN-77 Command Sequences
For a FORTRAN-77 task consisting of:
e The main program MAIN.FTN
e The subroutine SUBR1.FTN
e Several subprograms in the file UTILITY.FTN

you can use the following sequence of commands for compiling, linking,
and executing:

F77 JOB,JOB= MAIN,SUBR1,UTILITY @
TKB JOB/FP=JOB,LB:[1,1]F4POTS/LB RED
RUN JOB

For a more complex task that uses the same FORTRAN-77 source programs
but includes the following options:

e A system global common block named PARM

® An increase in the user record-buffer size

e Subroutines in the object module library MATLIB.OLB

e The FORTRAN-77 OTS in separate library LB:[1,1]F4POTS.OLB

® Array bounds checking in the compiled code

USING PDP-11 FORTRAN-77

you can use the following sequence of commands:

F77 JOB,JOB=MAIN,SUBR1,UTILITY/CK

TKB

TKB>JOB/FP=J0OB,MATLIB/LB,LB: [1,1]F4POTS/LB
TKB>/

ENTER OPTIONS:

TKB>COMMON=PARM: RW

TKB>MAXBUF=256

TKB>//

RUN JOB

You can also run this procedure by using indirect command files. For
example, suppose the file COMPILE.CMD contains:

JOB,JOB=MAIN,SUBR1,UTILITY/CK
and the file LINK.CMD contains:
JOB/FP=J0OB,MATLIB/LB,LB:[1,1]F4POTS/LB
/
COMMON=PARM: RW
MAXBUF=256
//
The following is now equivalent to the previous example:
F77 QCOMPILE

TKB @QLINK
RUN JOB

1.3 USING FORTRAN-77 ON RSTS/E SYSTEMS
This section contains information for the user who wants to compile,

task-build, and execute a FORTRAN-77 program on a RSTS/E system.
Specifically, it describes how to:

e Invoke the FORTRAN-77 compiler and the RSTS/E Task Builder
(with RUN commands or with Concise Command Language (CCL)
commands)

® Write RSTS/E file specifications

e Use command switches

e Use the FORTRAN-77 compiler

e Use the RSTS/E Task Builder

® Execute a task image

1.3.1 RSTS/E File Specifications

For each RSTS/E system program you use, you must specify the input
files to be processed and (optionally for the FORTRAN-77 compiler and
the Task Builder) the output files to be produced.

1. Refer to the PDP-11 FORTRAN-77 Installation Guide for information
on how to install FORTRAN-77 as a CCL command.

1-21

USING PDP-11 FORTRAN-77

The format of a file specification for a RSTS/E system program is as
follows:

dev:[p,pn] filename.typ

dev
The device on which the file is stored or is to be written. You
designate the device type by specifying a 2-character device code
and, optionally, a unit number. You may also wuse a logical
device name consisting of one to six alphanumeric characters.
The device element must be followed by a colon.

[(p,pn]
The user account containing the requested file. This account
number consists of a project number and a programmer number, each
in decimal.

filename
One to six alphanumeric characters. There is no default value
for filename.

typ

One to three alphanumeric characters describing the type of data
in the file.

You need not explicitly state all the elements of a file specification
each time you compile, 1link, or execute a program. In most cases,
when you omit any part of a file specification, a default value is
used. Table 1-2 summarizes the applicable default values.

Table 1-2
RSTS/E File Specification Defaults

Optional Default Value

Element .

dev: SY

[p,pn] User's current default PPN (project number,

programmer number)

typ Depends on usage:
Command file CMD
Input to the FORTRAN-77 compiler FTN
Output from FORTRAN-77 compiler OBJ
Source listing from FORTRAN-77 compiler LST
Input to Task Builder OBJ
Output from Task Builder TSK
Map listing from Task Builder MAP
Library input to Task Builder OLB
Overlay description input to Task Builder ODL
Input to executing program DAT
Output from executing program DAT

Refer to the RSTS/E System User's Guide for a complete discussion on
RSTS/E file specifications.

USING PDP-11 FORTRAN-77

1.3.2 Command Switches

See Section 1.2.2.

Note that the DCL qualifier /STANDARD=NONE does not work on RSTS/E
systems.

1.3.3 Compiling a FORTRAN-77 Program on RSTS/E Systems

The FORTRAN-77 compiler is a system program that produces relocatable
object modules from FORTRAN-77 source code.

To invoke the FORTRAN-77 compiler, you type the command line:
RUN S$F77

Or, if the system manager has installed F77 as a CCL command, you can
type:

F77 @D

In either case, after you press the RETURN key, the compiler issues
the prompt

F77>

You respond to the F77> prompt by entering input and output file
specifications (see Table 1-2) as follows:

[obj-file] [,list-file] = infiles-1list
obj-file

The file specification of the object code file to be <created by
the compiler. If you do not give a file type 1in this
specification, .0OBJ is supplied as a default. This 1is the
default file type expected by the Task Builder when you link the
compiled object modules to make an executable file. If you do
not want an object file, omit this file specification from the
command line.

list-file

The file specification of the 1listing file created by the
compiler. If you do not include a file type 1in this
specification, the compiler supplies .LST as the default. If you
do not want a listing file, omit this file specification from the
command line. When you include a listing file name, the compiler
saves the 1listing file on disk; you can then print the listing
file using the RSTS/E QUE program after the compilation is done.
Refer to the RSTS/E System User's Guide for a description of the
QUE program. The following example shows how to create an object
file (OBJECT.OBJ) and a listing file (LISTF1.LST) on disk from an
input source file (INPUTF.FTN):

F77 OBJECT,LISTF1=INPUTF

If you specify a listing file without an object file, you must

precede the listing file with a comma to indicate the absence of
the object file. For example:

F77 ,LISTF1=INPUTF

USING PDP-11 FORTRAN-77

infiles-1list

A list of the file specifications of the files that contain the
FORTRAN-77 source programs. You can specify more than one input
source file in a command line; however, you generally specify
only one. When you have multiple specifications, separate them
with commas. If you do not provide a file type with this
specification, the compiler assumes a default file type of .FTN.
For example, to compile three source programs called FILE],
FILE2, and FILE3 into an object module called SINGLE, you enter:

F77 SINGLE,SINGLE=FILEl,FILE2,FILE3
You can also include the file types, as follows:
F77 SINGLE.OBJ,SINGLE.LST=FILEl.FTN,FILE2.FTN,FILE3.FTN
You may append to these file specifications any of the compiler

command switches 1listed and described in Section 1.2.4, except
the ones noted.

When the compilation is done, the compiler prints another F77> prompt.
You can perform as many compilations as you wish before you return to

system command level. To exit to the keyboard monitor, type CTRL/Z or
CTRL/C.

If F77 has been installed as a CCL command, you can type the entire
specification on one line, as follows:

F77 [obj-file] [,list-file] = infiles-1list

Again, you may include any of the switches listed in Section 1.2.4,
except the ones noted.

1.3.4 Task-Building a FORTRAN-77 Program on RSTS/E Systems

The Task Builder is a system program that 1links relocatable object
modules to form an executable task image. The RSTS/E Task Builder
Reference Manual describes the Task Builder in detall.

1.3.4.1 Using the Task Builder on RSTS/E Systems - You can load the

Task Builder into memory by typing a RUN command in the following
format:

RUN $TKB

Or, if your system manager has installed TKB as a CCL command, you can
type:

TKB EED
In either case, after you press the RETURN key, the Task Builder
prints the TKB> prompt. You then enter a command line to identify the
files to be used, as follows:

TKB>[task-file][,map-file] = infiles-list

USING PDP-11 FORTRAN-77

After you press the RETURN key, the Task Builder prints another TKB>
prompt. You then:

e Enter additional input files, if any.

e Type a line containing only two slashes(//) to tell the Task
Builder to create a task 1image and to exit with no TKB>
prompt.

e Press the RETURN key. (See Section 1.2.5.2 if you are
entering any Task Builder options.)

If TKB has been installed as a CCL command, and you want to perform
one task-build operation, you can type the whole request on one line,
as follows:

TKB [task-file] [,map-file] = infiles-1list

After you press the RETURN key, the Task Builder processes the command
line. It then returns you to the keyboard monitor.

The parameters task-file, map-file, and infiles-list use the standard
RSTS/E file specification format described in Table 1-2.

The elements in the Task Builder command line are as follows:

task-file

The file specification of the task-image output file created by
the Task Builder. If you do not provide a file type in the
task-file name, the Task Builder supplies .TSK as a default.
Therefore, the following commands are equivalent:

TKB FILE1l/FP=FILEl
TKB FILE1l.TSK/FP=FILEl

The task-file specification may be omitted if no task-image file
is desired.

map-file

The file specification of the map output file. The map file
contains information about the size and location of routines and
global symbols within the task image. If you do not provide a
file type in the map-file name, the Task Builder supplies .MAP as
a default. When you specify a file name, the Task Builder saves
the map output on disk. 1If you do not specify a task-image file
specification in the command line, you must precede the map-file
name with a comma to indicate the intended absence of the
specification. The map-file specification may be omitted if no
task-image map file is desired.

infiles-1list

The list of input files that contain compiled FORTRAN-77 object
modules. You can specify as many input files as can fit in 80
columns in the command line; however, you can place additional
input files on additional lines, as long as each specification is
contained wholly on one line (not split between or among lines).
When you specify multiple object files or libraries, separate
them with commas. If you do not give a file type, .OBJ is
assumed as a default. For input library files, you must specify
the /LB switch following the input file name.

USING PDP-11 FORTRAN-77

For example, to build a task image for the object-file SINGLE
Created in Section 1.3.3, when the FORTRAN-77 OTS is included in
the system object library (LB:SYSLIB.OLB), you enter:

TKB SINGLE/FP,SINGLE=SINGLE
Or, if you prefer to include the file types, you enter:
TKB SINGLE.TSK/FP,SINGLE.MAP=SINGLE.OBJ

Both of these command 1lines save a copy of the map file
(SINGLE.MAP) on disk.

If a separate library contains the FORTRAN-77 OTS routines, you
must specify the library name in the Task Builder command line,
as shown in the following example:

TKB SINGLE/FP,SINGLE=SINGLE,LB:F4POTS/LB

If you are using RMS, you must explicitly include a reference to
the RMS 1library in the task-build command line. The previous
example would then become:

TKB SINGLE/FP,SINGLE=SINGLE,LB:F4POTS/LB,LB:RMSLIB/LB

When building a task image with object modules produced by
FORTRAN-77, you cannot 1include in the task object modules from
other PDP-11 compilers and OTS routines. Also, you must not
combine in a single task object modules created by different
PDP-11 compilers.

In addition, a Task Builder command 1line can contain switches
that specify optional file-controlling actions. For example,
when you attach the /DA (Debugging Aid) switch to the task image
file specification, the Task Builder automatically includes
system on-line debugging aid LB:ODT.OBJ in the task image. To
negate the /DA switch, you can type either /-DA or /NODA. See
Section 1.2.5.1 for the switches that apply to the RSTS/E Task
Builder; the RSTS/E Task Builder command switches are also
described in the RSTS/E Task Builder Manual.

NOTE

You must include the /FP switch when you
build a task. (Refer to Section 5.4.1
for the exception to this rule.) This
switch instructs the Task Builder to
reserve an area into which the
intermediate results of floating-point
computations can be placed when job

rescheduling occurs. If you omit the
/FP switch, you may receive unreliable
results.

1.3.4.2 Task Builder Options - See Section 1.2.5.2.

USING PDP-11 FORTRAN-77

1.3.4.3 Library Usage on RSTS/E Systems - A library can be
relocatable or resident. A relocatable library is one that the Task
Builder can make a physical part of a task image. A resident 1library
is one that the Task Builder can make a logical part -- but not a
physical part -- of a task image; that is, the Task Builder can link
it to the task image but cannot copy it into the task image.

Relocatable Libraries -- Relocatable 1libraries reside in files on
disk. From these 1libraries, the Task Builder copies object modules
into the task image of each task that references those modules. You
must tell the Task Builder that an input file is contained in a
relocatable library by appending the switch /LB to the input file
specification of that file. If you do not include a file type with
the file name of such a file specification, the Task Builder assumes
.OLB as a default. When the Task Builder encounters a library file
specification, it includes in the task image being built those modules
in the 1library that contain definitions of any currently undefined
global symbols. The system relocatable library and user relocatable
libraries are described below.

Resident Libraries -- Resident libraries reside in memory, where they
are accessed, but not copied, by the tasks that need them. A task may
reference one or more resident libraries. You tell the task program
to access a resident library by specifying the LIBR or RESLIB option.
Section 1.2.5.2 describes these two options.

System Libraries -- RSTS/E has a system relocatable library called
LB:SYSLIB.OLB and, in addition, has available to it three system
resident libraries pertinent to FORTRAN-77.

The Task Builder searches the system relocatable 1library if any
undefined global references are left after it has processed all the
input files. 1If the Task Builder finds the definition of one of these
global symbols in the system relocatable library, it includes the
appropriate object module in the task.

Two system resident libraries may be available for use with RSTS/E:
e RMSRES - A resident library of RMS-11 input/output routines.
e FA4PRES - A shared library of FORTRAN-77 OTS routines.

Ask your system manager if these libraries are available to you; your
system might not have enough memory to support them.

One or two of the following Task Builder options may link the system
libraries to your task:

LIBR = RMSRES:RO
or
LIBR = F4PRES:RO
User Libraries -- Using the Librarian Utility, you can create your own

FORTRAN-77 (or assembly language) relocatable libraries. You then
access these libraries by using the /LB switch after the appropriate
library name. Refer to the RSTS/E Programmer's Utilities Manual for
more information on the Librarian Utility.

USING PDP-11 FORTRAN-77

You can access a user library by entering the following command line:
TKB PROG/FP=PROG,MTXLIB/LB,LB:F4POTS/LB

MTXLIB.OLB is a relocatable library containing matrix-handling

routines; PROG 1is the object file of a compiled FORTRAN-77 program

that calls the matrix routines.

If you choose RMS as your file management system, enter the following
command lines:

TKB PROG/FP=PROG,MTXLIB/LB,LB:F4POTS/LB,LB:RMSLIB/LB

If your file management system is RMS-11, you cannot use a FORTRAN-77
resident library.

1.3.5 Executing a FORTRAN-77 Program on RSTS/E Systems
To execute a task, you use a RUN command as follows:

RUN filespec
filespec

A file specification of the form described in Section 1.3.1.
Generally, you do not need to include all the elements in a file
specification. For example, to execute a task file (TASKO1.TSK)

located in your account on the public disk structure, you type:

RUN TASKO1l.TSK

The system assumes SY: as the default device and your account as the
default project-programmer number.

1.3.6 Examples of FORTRAN-77 Job Command Sequences
For a FORTRAN-77 task image consisting of:

e The main program MAIN.FTN

e The subroutine SUBRTN.FTN

® Several subprograms in the file SUBPRG.FTN

you can use the following sequence of commands for compiling,
task-building, and executing the image:

F77 JOB,JOB = MAIN,SUBRTN,SUBPRG
TKB JOB/FP = JOB
RUN JOB

For a more complex task that uses the same FORTRAN-77 source programs
but includes the following options:

® A system global common block named PARAM
® An increase in the user record-buffer size

® Subroutines in the object-module library MATLIB.OLB

USING PDP-11 FORTRAN-77

The FORTRAN-77 OTS in separate library LB:F4POTS.OLB

Array bounds-checking in the compiled code

you use a sequence of commands as follows:

F77 J0OB,JOB=MAIN,SUBRTN,SUBPRG/CK

TKB
TKB>JOB/FP=JOB,MATLIB/LB,LB:F4POTS/LB @
TKB>/

ENTER OPTIONS:

TKB>COMMON=PARAM : RW

TKB>MAXBUF=256

TKB>//

RUN JOB

You can also run the above procedure using indirect command files.
For example, if the file COMPIL.CMD contains:

JOB,JOB=MAIN, SUBRTN, SUBPRG/CK

and the file LINK.CMD contains:

JOB/FP=J0OB,MATLIB/LB,LB:F4POTS/LB

/

COMMON=PARAM :RW
MAXBUF=256

//

then the following sequence is equivalent to the previous example:

F77 @COMPIL
TKB @QLINK
RUN JOB

1.3.7 Programming Considerations for RSTS/E Users

You should note the following programming considerations and
restrictions:

The RSX emulator restricts the use of the memory management
(PLAS) directives to resident libraries only; consequently,
the use of virtual arrays is not supported.

RSTS/E does not provide an interface for the set of FORTRAN-77
process-control routines or RSX system directives.

You cannot extend an existing contiguous file under RSTS/E;
you must instead allocate an adequate amount of space when you
create a contiguous file under RSTS/E.

A FORTRAN-77 program must load into no more than 28K words.
However, if the RSX emulator support has been added to the
system monitor, a program may extend to 31K words. In

addition, a program may use up to 32K words if resident
libraries are supported.

USING PDP-11 FORTRAN-77

e The UNITS option for TKB is restricted to the range 1-14 on
RSTS/E systems.

NOTE

You will not receive an error message
from the Task Builder if your program
exceeds 28K words. However, if your
program does surpass the prescribed
maximum size, you will receive the
run-time error message, "?Illegal byte
count for I/0."

e The OTS does not let you supersede an existing file. If you
do attempt to create a new file with the same name as that of
an existing file, you will receive error number 30: "Open
failure."

® A contiguous file cannot be extended on RSTS/E. The initial
size of a contiguous file is also the maximum size.

® You can read past EOF records on interactive devices.

e Refer to the RMS-11 User's Guide for a 1list of RSTS/E
restrictions on RMS-11.

1.4 USING FORTRAN-77 ON VAX/VMS UNDER AME

This section contains information for the user who wants to compile,

task-build, and execute a PDP-11 FORTRAN-77 program on a VAX/VMS
system.

Specifically, this section describes how to:
® Write VAX/VMS file specifications
® Use command switches
e Use the FORTRAN-77 compiler to create an object module
® Use your system's Task Builder to create a task image

® Execute a task image

For more information on using VAX/VMS AME, consult the VAX-11/RSX-11M
User's Guide and the VAX-11/RSX-11M Programmer's Reference Manual.

1.4.1 VAX/VMS File Specifications

For each VAX/VMS system program you use, you must specify the input
files to be processed and (optionally for the FORTRAN-77 compiler and
your system's Task Builder) the output files to be produced.

USING PDP-11 FORTRAN-77

The format of a file specification for a VAX/VMS system program is as
follows:

device:[directory] filename.filetype;version
device

The device on which a file is stored or is to be written.
[directory]

The named directory containing the desired file.

filename

The file by its name. A filename value can be up to nine
characters long.

filetype

The kind of data in the file. A filetype wvalue can be up to
three characters long.

version

The version of the file that is desired. Versions are identified
by a decimal number, which is incremented by 1 each time a new
version of a file is created.

You need not explicitly state all the elements of a file specification
each time you compile, task-build, or execute a program. The only
part of a file specification that is wusually required 1is the file
name. If you omit any other part of the file specification, a default

value is used. Table 1-3 summarizes the file specification default
values.

Table 1-3
VAX/VMS File Specification Defaults

Optional Default Value

Element

device User's current default device

[directory] User's current default directory

filetype Depends on usage:
Command file CMD
Input to compiler FTN
Output from compiler OBJ
Input to Task Builder OBJ
Output from Task Builder EXE
Input to RUN command EXE
Compiler source listing LST
Task Builder map listing MAP
Task Builder library input OLB
Task Builder overlay description ODL
Input to executing program DAT
Output from executing program DAT

version Input: highest existing version

Output: highest existing version
plus 1

1-31

USING PDP-11 FORTRAN-77

If you request compilation of a source program specified only by a
file name, the compiler searches for a file with the specified file
name that:

® Is stored on the default device
e Is cataloged under the current default directory
e Has a file type of FTN

If more than one file meets these three conditions, the compiler
chooses the file with the highest version number.

For example, assume that your default device is DKO, that your default
directory is [SMITH], and that vyou supply the following input or
output file specification to the compiler:

CIRCLE

For input, the compiler searches device DKO in directory [SMITH] for
the highest version of CIRCLE.FTN. For output, the compiler generates
the file CIRCLE.OBJ, stores it on device DKO in directory [SMITH], and
assigns it a version that is higher by 1 than any other version of
CIRCLE.OBJ currently cataloged in directory [SMITH] on DKO.

1.4.2 Command Switches

Command switches are devices you can use in command lines to specify
optional command instructions or inputs: for example, to specify that
the compiler compile all lines with a D in column 1.

Command switches are appended to other entities in a command line and
have the form:

/switch[:val]
switch

A mnemonic that specifies a certain instruction to the compiler
or Task Builder.

val

A parameter consisting of an octal or decimal number, or a string
of characters.

Many switches have a negative form that negates the action specified
by the positive form. You can obtain the negative form generally by
following the required slash with a minus sign or the characters NO.

For example, /-SP or /NOSP prevents automatic spooling of a program
listing.

1.4.3 Compiling a FORTRAN-77 Program

The PDP-11 FORTRAN-77 compiler 1is a system program that produces
relocatable object modules from FORTRAN-77 source code,

USING PDP-11 FORTRAN-77

You invoke the FORTRAN-77 compiler with the MCR command F77 as
follows:

MCR F77 [obj-file] [,list-file] = infiles-1list
obj-file

The file specification of the object code output file. This file
specification may be omitted if no object file is desired. If it
is entered, only a file name value 1is required; a file type
value of OBJ is assumed by default if no file type is specified.
Therefore, the following commands are equivalent:

MCR F77 FILE1l=FILEl
MCR F77 FILE1.OBJ=FILE1l
Note, however, that no listing file is created in either case.
list-file

The file specification of the listing output file. This file
specification may be omitted if no listing file is wanted. If it
is entered, only a file name value is required; a file type
value of LST is assumed by default if no file type is specified.
The listing file is saved on disk.

infiles-list

The list of input files that contain the source programs. In
many cases, this 1list contains only one file specification;
however, when there is more than one, you must separate the
individual specifications with commas. Only a file name is

normally required; a file type value of FTN 1is assumed if no
file type is specified.

For example, to compile three source programs called WINKN,

BLINKN, and NOD 1into an object module called SINGLE, you would
enter:

MCR F77 SINGLE, SINGLE = WINKN, BLINKN, NOD
or, if you wish:
MCR F77 SINGLE.OBJ,SINGLE.LST=WINKN.FTN,BLINKN.FTN,NOD.FTN

In addition, an F77 command line can contain one or more of the
compiler switches listed and described in Section 1.2.4.

You can also use the F77 command in interactive mode, which permits
you to enter multiple compilation commands (lines). To invoke the

interactive mode (if you have installed the image of the FORTRAN-77
compiler as F77), you simply type:

MCR F77

Regardless of the name under which the PDP-11 FORTRAN-77 compiler is
installed, the compiler displays the following prompt:

F77>

To enter a succession of compilation commands under interactive mode,
you type one command line after each prompt, followed by a carriage
return, until all commands are entered. Each command 1line must
specify the appropriate input and output files for the program module
to be compiled, and any optional switches desired. You then type

1-33

USING PDP-11 FORTRAN-77

CTRL/Z. For example, if you want the FORTRAN programs WINKN, BLINKN,
and NOD compiled into separate object modules, you can enter a
succession of commands as follows:

MCR F77 (From this point on, the compiler issues the F77>
prompt.)

F77>WINKN,WINKN/SP=WINKN
F77>BLINKN,BLINKN/SP=BLINKN
F77>NOD, NOD/SP=NOD

F77>"2

Note that the compiler types the F77> prompt each time you enter a
command, until you type CTRL/Z ("Z) to return system control to MCR.

You can also enter the name of an indirect command file in response to
the F77> prompt. For example, if the file COMPILE.CMD contains:

WINKN, WINKN/SP=WINKN
BLINKN, BLINKN/SP=BLINKN
NOD, NOD/SP=NOD

then the commands

F77>@COMPILE
F77>"2

are equivalent to the previous example.

1.4.4 Task-Building a FORTRAN-77 Program

The Task Builder is a system program that 1inks relocatable object
modules to form an executable task image. You invoke the Task Builder
by entering the MCR command TKB. TKB is described in Section 1.4.4.1.

The object modules to be linked can come from user-specified input
files, user libraries, or system libraries. The Task Builder resolves
references to symbols defined in one module and referred to in other
modules. Should any symbols remain undefined after all user-specified
input files are processed, the Task Builder automatically searches the
system object library LB:[1,1]SYSLIB.OLB to resolve them.

The default FORTRAN-77 object time system library normally either is
part of the system object 1library or is separate object library
LB: [1,1]F4POTS.OLB. Consult your system manager to determine whether
the FORTRAN-77 object time system (OTS) is part of SYSLIB.OLB or is a
separate library.

Two versions of the OTS I/0 support modules for FORTRAN-77 are
distributed. One version uses File Control Services (FCS-11), which
supports sequential and direct access to sequential files. The other
version of the OTS I/O support library uses Record Management Services
(RMS-11), which supports sequential, direct, and keyed access to
sequential, relative, and indexed files. Consult your system manager
to determine which version of the I/0 support library is the default

on your system and where the other version of the I/0 support library
is maintained, should you need it.

The FCS-11 file system is always contained in the system object
library (that is, in LB:[1,1]SYSLIB.OLB); the RMS-11 file system is
always contained in a separate object library (that is,
LB: [1,1]RMSLIB.OLB).

USING PDP-11 FORTRAN-77

The Task Builder also resolves references to resident common blocks
and resident libraries; the task image produced, therefore, is ready
to be run under the operating system.

You can also use the Task Builder to build tasks with overlay
structures.

1.4.4.1 Using the MCR Command TKB - You use the MCR command TKB to
invoke the Task Builder.

The TKB command line has the format:
MCR TKB [task-file]/FP[,map-file] = infiles-list

task-file

The file specification of the task-image output file. This file
specification may be omitted if no task-image file is desired.
If a specification is entered, only a file name is required; a

filetype wvalue of TSK 1is assumed if no filetype is specified.
Therefore, the commands:

MCR TKB FILE1/FP=FILEl

and
MCR TKB FILEl1.TSK/FP=FILE1l

are equivalent. Note, however, that no map file 1is created in
either case.

The following switches may be applied to the task-image file:

/FP Specifies that the task use the Floating Point Processor
(FP11) or floating-point microcode option (KEF1l1lA).

NOTE

You must include the /FP switch when you
build a task; 1if you do not, the task
will exit with the FORTRAN run-time
message: "TASK INITIALIZATION FAILURE."
(Refer to Section 5.4.1 for the one
exception to this rule.)

/DA Specifies that the system debugging aid ODT is to be
included in the task.

/MU Specifies that multiple versions of the task may be run

simultaneously. The read-only portions of the task are
shared.

map-file

The file specification of the map output file. This file
specification may be omitted if no task-image map file is
desired. 1If a specification is entered, only a file name |is
required; a file type value of MAP is assumed if no file type is
specified. The map file is automatically spooled to the 1line

printer. On some operating systems, the map file is
automatically deleted after it is printed.

USING PDP-11 FORTRAN-77

The following switches may be applied to the map file:

/CR Specifies that a global cross-reference listing is to be
appended to the map file.

/SP Specifies that the map file is to be spooled to the 1line
printer.

infiles-1list

The list of input files that contain compiled FORTRAN-77 object
modules. (This 1list may also contain compiled or assembled
libraries and modules that were written in a language other than
FORTRAN, such as MACRO.) In many cases, this list contains only
one file specification; however, when there is more than one
specification, you must separate the individual specifications
with commas. Only a file name is normally required; a file type
value of OBJ is assumed.

The following switches may be applied to input files:

/LB Specifies that the input file is to be a 1library file.
See Section 1.2.5.3.

/MP Specifies that the input file is an overlay description
file. See Section 1.4.

For example, to build a task image for the object £file SINGLE,
created in Section 1.4.3, when the FORTRAN-77 OTS is included in
the system object library (SYSLIB.OLB), you can enter:

MCR TKB SINGLE/FP,SINGLE=SINGLE
or, if you wish:
MCR TKB SINGLE.TSK/FP,SINGLE.MAP=SINGLE.OBJ

Note that under VAX/VMS AME the map file created by these
commands is both saved on disk and spooled to the line printer.

If the FORTRAN-77 OTS routines are contained in a separate
library, this 1library must be explicitly specified in the Task
Builder command line. For example:

MCR TKB SINGLE/FP,SINGLE=SINGLE,LB:[1,1]F4POTS/LB

NOTE

When using a separate FORTRAN-77
library, take particular care that
object modules from other PDP-11 FORTRAN
compilers and OTS routines are not
accidentally included in a task being
built from FORTRAN-77 object modules.
Object modules produced by different
PDP-11 FORTRAN compilers must not be
combined in a single task.

If the default I/0 support library on your system is RMS-11, you
must explicitly reference RMSLIB in the task-build command line.
The previous example then becomes:

MCR TKB SINGLE/FP,SINGLE=SINGLE,LB:[1,1]F4POTS/LB,LB:[1,1]1RMSLIB/LB

USING PDP-11 FORTRAN-77

You can also use the TKB command in interactive mode, which permits
you to enter multiple-line commands. To enter interactive mode, you
simply type:

MCR TKB
The Task Builder then displays the following prompt:
MCR TKB>

You may now enter a single command line that identifies all the input
files you want to use to begin the task build, followed by a carriage
return. Or you may enter additional input files on as many subsequent
lines as you need. When you have entered all your input files, you
must type a final 1line consisting of two slash characters (//),
followed by a carriage return (see Section 1.4.4.2 if you are entering
any Task Builder options). The double slash signals the Task Builder
to begin processing.

1.4.4.2 Task Builder Options - The Task Builder allows numerous
options to be specified. Several of these are of particular interest
to the FORTRAN-77 user.

To specify options in the MCR command TKB, you must use the Task
Builder in interactive mode, and you must terminate command input with
a line consisting of a single slash (/) (rather than the double slash
described 1in Section 1.4.4.1). The single slash signals the Task
Builder to prompt you, as follows, for option information:

ENTER OPTIONS:
TKB>

At this point, you can enter as many Task Builder options as you need,
one option per 1line. After you enter each option, the Task Builder
automatically prompts you for the next option until you enter a single
slash (/) to signal no more options. The Task Builder then proceeds
to build the task and to produce any requested output. To exit
interactive mode in TKB, enter two slashes (//).

The Task Builder options considered useful to you as a FORTRAN-77
programmer are described below.

ACTFIL -- You can declare the total number of input and output files

that a task can open simultaneously, and allocate the proper number of
buffers, by entering:

ACTFIL = n

The number, in decimal, of files that can be opened

simultaneously and the buffers needed to accommodate them. The
default value is 4.

Any attempt to open a file or use a logical unit when space 1is not
available for at least one buffer will cause an error at run time.

The value n includes both explicitly and implicitly opened files.

USING PDP-11 FORTRAN-77

ASG -- You can assign logical unit numbers to physical devices by
entering:

ASG = devl:nl:n2:...,dev2:ml:m2:...

dev

A physical device name.
n

A valid logical unit number.
m

A valid logical unit number.
The default device assignments are as follows:
ASG = SY0:1:2:3:4,TI0:5,CL0:6

EXTTSK -- You can allocate additional buffer space for RMS-11
input/output by using the option

EXTTSK = n

The number, in decimal, of words to allocate. The value assigned
by this option may be overridden by the /INC option on the RUN
command (see Section 1.4.5.).

For information on how to determine the amount of buffer space a
program may need, refer to the RMS-11 MACRO Reference Manual.

The EXTTSK option is more efficient than the ACTFIL option because:
e The amount of space can be more accurately specified.

® The space allocated by EXTTSK does not require disk space in
the task-image file.

When you use an operating system that supports the Extend Task system
directive, the RMS-11 version of the OTS attempts to extend the buffer
space dynamically.

FMTBUF -- The default size of the buffer used to contain the
internally compiled form of a format specification stored in an array
is 64 bytes. You can increase the size of this buffer by entering:

FMTBUF = n

The decimal size, in bytes, of the run-time format compilation
buffer.

The total size needed for format compilation is equal to the largest
run-time format specification used by the program. For information on
how to determine the amount of space needed to store a given format,
refer to the PDP-11 FORTRAN-77 Object Time System Reference Manual.

USING PDP-11 FORTRAN-77
GBLPAT -- To patch FORTRAN logical unit 0 to a valid system 1logical
unit, use the option
GBLPAT= main-prog:$LUNO:n
main-prog

The name of your main program segment.

n
A system logical unit number in the range 1 to 99 (see Section
2.1.3).

MAXBUF -- The default maximum record size for input/output is set at

133 (decimal) bytes. You can increase this record size by entering:

MAXBUF = n

The number of bytes (in decimal).

The default generally is adequate for sequential input/output. If
sequential, direct, or keyed access operations are performed with
records larger than 133 bytes, you must use this option, as follows,
to specify the size of the largest record you intend to process.

For formatted records:
MAXBUF = RECL

For unformatted reccords:
MAXBUF = 4*RECL

For segmented records (see Section 2.2.3.3 for a definition of
segmented records):

MAXBUF = (4*RECL)+2

The two extra bytes for segmented records are the segment control
bytes (see Section 2.2.3.3).

UNITS -- The default number of logical units available to a program is

6 (logical wunits 1 through 6, inclusive). You can set this number
smaller or larger at task-build time by entering:

UNITS = n

The number, in decimal, of logical units desired, from 0 to 99.

However, you should be aware that increasing the number of default
units available will increase task size.

The default device and file name associated with a logical-unit number
are discussed in Section 2.1.1.

When you need to assign devices to the units you have specified with
the UNITS option, use the ASG option discussed earlier in this
section. If you need more units than the six provided as the default,

you must enter the UNITS option before you make any assignments with
ASG.

USING PDP-11 FORTRAN-77

1.4.4.3 Library Usage on VAX/VMS Systems - There is only one type of
VAX/VMS 1library: relocatable. A relocatable library is a collection
of object modules that the Task Builder can make a physical part of a
task image.

Relocatable Libraries -- Relocatable libraries are stored in files on
disk. From these 1libraries, the Task Builder copies object modules
into the task image of each task that references those modules. You
must tell the Task Builder that an input file is contained in a
relocatable library by attaching the switch /LB to the input file
specification of the file. 1If you do not include an extension with
the file name of such a specification, the Task Builder assumes .OLB
as a default. When the Task Builder encounters a 1library
specification, it includes in the task image being built those modules
in the specified 1library that contain definitions of any currently
undefined global symbols.

System Libraries -- Each VAX/VMS system has a system relocatable
library, which follows:

LB:[1,1]SYSLIB.OLB

The Task Builder automatically searches the system relocatable library
to see if any undefined global references remain after all the input
files have been processed. If the definition of one of these
undefined global symbols is found, the appropriate object module is
included in the task being built.

User Libraries -- Using the Librarian Utility, you can construct vyour
own FORTRAN-77 (or assembly language) relocatable libraries. You then
access these libraries by using the appropriate library switch, as
described in preceding sections. Consult the VAX-11/RSX-11M User's
Guide for further information on the Librarian Utility.

For example, if MATRIXLIB.OLB is a relocatable library containing
matrix manipulation routines and PROG is the object file of a compiled
FORTRAN-77 program that calls the matrix routines, you could enter the
following command line for the Task Builder:

MCR TKB PROG/FP=PROG,MATRIXLIB/LB

1.4.5 Executing a FORTRAN-77 Program

To begin task execution once you have built a task image, you enter a
RUN command of the form:

RUN filespec
filespec

The file specification of the file containing the task image.
You can end a task before its normal completion by typing CTRL-C ("C).
You should not suspend task execution with a PAUSE statement under

VAX/VMS. There 1is no way to resume execution once the task has
paused.

In batch mode, the PAUSE statement types the display to the log file,
but the program does not pause.

A task that terminates as a result of a CALL EXIT statement or of
reaching the end of the main program does not produce any output to
indicate that it is terminating.

USING PDP-11 FORTRAN-77

1.4.6 Examples of FORTRAN-77 Command Sequences
For a FORTRAN-77 task consisting of:
e The main program MAIN.FTN
e The subroutine SUBR1.FTN
e Several subprograms in the file UTILITY.FTN

you can use the following sequence of commands for compiling, linking,
and executing:

MCR F77 JOB,JOB= MAIN,SUBR1,UTILITY
MCR TKB JOB/FP=JOB
RUN JOB

For a more complex task that uses the same FORTRAN-77 source programs
but includes the following options:

® An increase in the user record-buffer size
e Subroutines in the object module library MATLIB.OLB
e The FORTRAN-77 OTS in separate library LB:[1,1]F4POTS.OLB
e Array bounds checking in the compiled code
you can use the following sequence of commands:

MCR F77 JOB,JOB=MAIN,SUBR1,UTILITY/CK
MCR TKB
TKB>JOB/FP=JOB,MATLIB/LB,LB: [1,1]F4POTS/LB

TKB>/
ENTER OPTIONS:

TKB>MAXBUF=256

TKB>//
RUN JOB

You can also run this procedure by using indirect command files. For
example, suppose the file COMPILE.CMD contains:

JOB,JOB=MAIN,SUBR]1,UTILITY/CK
and the file LINK.CMD contains:

JOB/FP=JOB,MATLIB/LB,LB:[1,1]F4POTS/LB
/

COMMON=PARM : RW

MAXBUF=256

//
The following is now equivalent to the previous example:
MCR F77 @QCOMPILE

MCR TKB @LINK
RUN JOB

1.5 OVERLAYS

The overlay facility provided by the Task Builder allows large
programs to be executed in relatively small areas of main memory. An
overlaid program is essentially a program that has been broken down

USING PDP-11 FORTRAN-77

into parts, or overlays, that are 1loaded into memory automatically
during program execution.

You construct an overlaid program by providing a single file as input
to the Task Builder. This file describes the structure of the
overlaid program and the actual input files and 1libraries. You
indicate an overlay file in TKB commands with the /MP qualifier on a
single input file. For example:

TKB A/FP = A/MP

No other input files need be specified. The default file type for an
overlay description file is ODL.

To specify the structure of an overlay, vyou use the Overlay
Description Language (ODL).

The following sections provide an introduction to the Task Builder
Overlay Description Language (ODL) and information about building
simple overlaid FORTRAN-77 programs. Consult your operating system's
Task Builder manual for more detailed information about overlays and
building overlaid programs; also see Section 2.6.5 for information on
task-building programs with RMS-11 using overlays.

1.5.1 1Introduction to the Overlay Description Language
You can build overlay structures using three ODL statements:
.ROOT specifies the tree structure of an overlay

.FCTR specifies a single branch of an overlay tree, called a
factor or segment

.END indicates the end of an overlay description

For example, suppose a FORTRAN-77 program consists of a main program
(MAIN.OBJ) that performs input and output and calls three subroutines:
One subroutine does preprocessing of the data (PRE.OBJ); one
subroutine does the main processing function of the program
(PROC.OBJ); and one subroutine does postprocessing of the data
(POST.OBJ). The following ODL statements specify an overlay structure
having a resident portion that consists of the main program and three
overlays that share the same memory locations. Each overlay contains

a single subroutine. Figure 1-2 illustrates this overlay structure.
The ODL statements to create this structure are as follows:

.ROOT MAIN-*(A,B,C)

A: .FCTR PRE

B: .FCTR PROC

C: .FCTR POST
.END

In this example, the .ROOT statement declares the tree structure; the
.END statement indicates the end of the ODL statements; and the names
A, B, and C specify object modules, libraries, other overlay segment
factor names, or indirect ODL file names (if they are preceded by an
'at' (@) symbol). Commas separate descriptions of overlay segments

1-42

USING PDP-11 FORTRAN-77

that occupy the same memory location; parentheses serve to group
these descriptions. Dashes separate descriptions of modules that are
concatenated into a single segment. The asterisk indicates that the
overlay segments are to be loaded automatically whenever a call is
made to a subprogram in the overlay segment.

MAIN

PRE PROC POST

ZK-242-81

Figure 1-2 Simple Overlay Structure

A path in an overlay structure is any route from the root of the
Structure that follows a series of branches to an outermost segment of
the tree. Figure 1-2 shows only three short paths: MAIN-PRE,
MAIN-PROC, and MAIN-POST. A program in one overlay segment may call a
subprogram in another segment only when the two segments occur on a
common path. For example, MAIN may call PRE, PROC, or POST; however,
the three subroutines cannot call each other.

Figure 1-3 shows a more complex structure specified by the following
ODL statements:

.ROOT A-B-*(C,FCTR1)
FCTR1: .FCTR D-*(E,F,G)
.END

The paths in this structure are A-B-C, A-B-D-E, A-B-D-F, and A-B-D-G.

1.5.2 Building Overlaid FORTRAN-77 Programs

When building overlaid FORTRAN-77 programs, you should pay special
attention to the following:

® Specifying the FORTRAN-77 OTS library
e Declaring common blocks

® Declaring the associated variable in a DEFINEFILE or OPEN
statement

® Specifying the RMS-11 library (if used)

USING PDP-11 FORTRAN-77

ZK-172-81

Figure 1-3 Overlay Structure

If the FORTRAN-77 OTS is in the default system library, no additional
specification 1is necessary. If the FORTRAN-77 OTS is a separate
library, and FCS-11 is used, then each segment or branch of the
overlay structure must explicitly refer to the FORTRAN-77 OTS library
as the last file specified. On the other hand, if the FORTRAN-77 OTS
is a separate library, and RMS-11 is used, then each segment or branch
of the overlay structure must explicitly refer to the FORTRAN-77 OTS
library as the next-to-last file specified, with the RMS-11 library
specified as the last file. For example, the ODL file for the example
in Figure 1-3 must be written as follows:

FOR FCs-11
.ROOT A-B-L-*(C-L,FCTR1)
FCTR1: .FCTR D-L-*(E-L,F-L,G-L)
L: .FCTR LB:F4POTS/LB
.END
FOR RMS-11

.ROOT A-B-L-R-*(C-L-R,FCTR1)
FCTRl: .FCTR D-L-R-*(C-L-R,F-L-R,G-L-R)

L: .FCTR LB:F4POTS/LB
R: .FCTR LB:RMSLIB/LB
.END

If your program refers to user libraries, these 1libraries must be
explicitly referenced by each overlay segment that needs thenm.

USING PDP-11 FORTRAN-77

FORTRAN-77 common blocks are allocated on each overlay path in the
lowest overlay segment in which they are referenced. Therefore, when
a new overlay path is loaded, the data in the common blocks 1is 1lost.
If separate overlay paths are to share common data, the common blocks
containing this data must be either declared in the root segment of
the overlay or specified in a SAVE statement. If the data is declared
common only in the overlay segments, separate common areas for each
segment are established and the data is not shared.

For example, suppose the subroutines shown in Figure 1-2 (PRE, PROC,
POST) communicate using common blocks. If the same common blocks are
not declared common in MAIN, three independent common areas with the
same name will be established, one each for PRE, PROC, and POST. When
PROC overlays PRE, the data in the common block(s) of PRE will be
lost. In general, when one segment overlays another, data unique to
the overlaid segment is lost.

If you use the SAVE statement to protect common data items, you should
be aware that the SAVE statement causes the size of the root segment
of an overlay -- and therefore the task size -- to become 1larger.
This enlargement occurs because using the SAVE statement has the
effect of pulling into the root segment of an overlay the $SAVE PSECT
and the PSECTs of any named common blocks mentioned in the SAVE
statement. (The blank common block PSECT (.$$$3), if present, |is
pulled into the root segment whether or not a SAVE statement is used,
except when the /NOF77 switch is set; under /NOF77, .$$$$. 1is never
pulled into a root segment.) The $SAVE PSECT contains the variables
and array elements mentioned in a SAVE statement.

The SAVE statement requires Task Builder support to run an overlaid
FORTRAN-77 program in which subprograms that access saved variables
reside in different segments of the overlay. Task Builder support is
provided beginning with V4.0 of RSX-11M, V2.0 of RSX-11M-PLUS, and
V7.2 of RSTS/E. 1If you are not running a supported operating system
and are running an overlaid program, you can assure access to saved
variables as follows: Place variables or COMMON statements that

contain saved variables in the root segment of the overlay. The value
of saved variables is retained between subprogram calls.

The associated variable in any DEFINEFILE or OPEN statement must be
declared in a common block that is allocated in the root segment.

You can overlay a FORTRAN-77 program in one of three ways:
® You can overlay only the program.
® You can overlay only the FORTRAN-77 OTS (and RMS-11, if used).

e You can overlay both the program and the FORTRAN-77 OTS (and
RMS-11, if used).

Section 2.6.5 provides information about the RMS-11 overlays wused by
the RMS-11 version of the FORTRAN-77 OTS. Section 5.4.8 describes the
OTS overlay files that are available.

The FORTRAN-77 Object Time System Reference Manual describes
overlaying the FORTRAN-77 OTS modules in more detail.

USING PDP-11 FORTRAN-77

1.6 DEBUGGING A FORTRAN-77 PROGRAM

FORTRAN-77 provides several aids for finding and reporting errors:

DEBUG lines in source programs

FORTRAN-77 statements containing a "D" in column 1 <can be
added for debugging purposes. During program development, you
can use these statements and the /DE switch to type out
intermediate values and results. After the program runs
correctly, you can treat these statements as comments by
recompiling without the /DE switch.

Traceback facility

The compiled code and the OTS provide information on the
program unit and 1line number of a run-time error. A list,
following the error message, shows the sequence of calling
program units and line numbers. The amount of information
provided in the list is determined by the /TR switch during
compilation. See Section C.3.1 for the exact format and
content of the traceback.

The debugging program ODT, a user-interactive debugging aid

You include ODT in a task by specifying the /DA switch on the
task image file specification during task building. When
using ODT, you should have the machine language code 1listing
of the program (specify the /LI:3 compiler switch) and the
task-build map. See the IAS/RSX-11 ODT Reference Manual for
further information.

PDP-11 FORTRAN-77 Symbolic Debugger

If your site has 1installed the PDP-11 FORTRAN-77 symbolic
debugger, vyou <can wuse its facilities to ©provide a more
thorough debugging than any of the above. The symbolic
debugger 1is interactive and can refer to program locations
symbolically and give symbolic output. With the debugger, you
can control program execution in a variety of ways: You can
set breakpoints and tracepoints; step through your program by
line or instruction; and step into or over called routines.
You can examine or deposit data in a variety of formats. For
complete information, see the PDP-11 FORTRAN-77 Guide to
Program Debugging. T

CHAPTER 2

FORTRAN-77 INPUT/OUTPUT

This chapter describes input/output (I/0) as implemented 1in PDP-11
FORTRAN-77. In particular, it provides information about FORTRAN-77
I/0 in relation to the two supporting I/O subsystems: File Control
Services (FCS-11) and Record Management Services (RMS-11).

2.1 FORTRAN-77 I/O CONVENTIONS

Certain conventions for logical device and file name assignments, and
for implied 1logical units, are common to I/0 operations involving
either of the I/0O subsystems mentioned above.

2.1.1 Device and File Name Conventions

FORTRAN logical unit numbers correspond one-to-one with the operating
system's logical units (except FORTRAN logical unit 0, which must be
mapped to a system logical unit number other than 0; see Section
2.1.3). Default device assignments are made by the Task Builder for
each logical unit allocated for a task.

Listed in Table 2-1 are the default 1logical device and file name
assignments., You can change default device assignments at the
following times: (1) prior to execution, by using the appropriate
operating system command; (2) at task-build time, by using the Task
Builder ASG option (see Section 1.2.5.2); (3) at execution time, by
using the ASSIGN system subroutine (see Section D.2) or an OPEN
statement.

The default file name conventions hold for logical wunits not 1listed
below; for example, unit number 12 has a default file name of

FOR012.DAT. The default device assignment for 1logical wunits not
listed is the system disk, SY:.

You may use any combination of valid logical unit numbers; however,
there 1is an 1imposed maximum number of units that can be active
simultaneously. This number depends on the number of buffers

allocated and the number of buffers required for each logical unit
(usually 1).

Logical unit numbers are allocated consecutively. Therefore, for
example, even though only logical units 3 and 17 are being used, units
1 through 17 must be allocated.

When a logical unit is closed, the default file name assignment that
existed at the start of task execution is reestablished; the default
device assignment becomes undefined.

FORTRAN-77 INPUT/OUTPUT

Table 2-1
FORTRAN Default Logical Device Assignments

Logical Unit
Number Default Device Default File Name

o

(Mapped to a system
logical unit other than 0)

1 System disk, SY: FOR001.DAT
2 System disk, SY: FOR002.DAT
3 System disk, SY: FOR003.DAT
4 System disk, SY: FOR004.DAT
5 User's terminal, TI: or TT: FOR005.DAT
6 System listing unit, CL: FOR006.DAT
14 (RSTS/E limit) FOR014.DAT
99 System disk, SY: FOR099.DAT
NOTE

The device assignment to a logical unit
is not affected by a CLOSE operation.
However, this convention is subject to
change in future releases and should not
be relied on. 1If the device assignment
of a unit is changed by a CALL ASSIGN or
an OPEN statement, it 1is recommended
that all CALL ASSIGN or OPEN statements
referencing that unit explicitly specify
the device to be used.

2.1.2 Implied-Unit Number Conventions

Certain I/0O statements do not require explicit logical unit
specifications. These statements, and their equivalent forms, are
listed in Table 2-2.

From Table 2-2, you can see that a formatted READ statement of the
form:

READ f,list
is equivalent to:

READ(1,f) list
In a program, these two forms function identically. If 1logical wunit
number 1 is assigned to a terminal, input comes from this terminal no

matter which of the above READ formats you use.

The PRINT, ACCEPT, and TYPE statements implicitly refer to 1logical
units 6, 5, and 5, respectively.

FORTRAN-77 INPUT/OUTPUT

Table 2-2
Implied Unit Numbers

Statement Type Equivalent Form

READ £, list READ (1,f) list
PRINT £, list WRITE (6,f) list
ACCEPT £, list READ (5,f) list
TYPE f, list WRITE (5,f£) list

2.1.3 Mapping FORTRAN Logical Unit 0 to a System Unit

The default mapping of FORTRAN logical unit 0 is to system logical
unit 0; however, 0 is not a wvalid system logical unit number.
Therefore, to map FORTRAN logical unit 0 to a valid system logical
unit, use the GBLPAT option (Section 1.2.6.2) when task-building your
program, as follows:

>TKB

TKB> PROG = PROG,LB:[1,1]F4POTS/LB
TKB> /

TKB> ENTER OPTIONS:

TKB> GBLPAT = PROG:$LUNO:n

TKB> //

where n is a valid system logical unit number.

This command sequence patches global symbol $LUNO in program segment
PROG to system logical unit number n.

2.2 FILES AND RECORDS

This section discusses file structures, record access modes, and

record formats in the context of the capabilities of the FCS and RMS
I/0 subsystems.

2.2.1 File Structure

A clear distinction must be made between the way files are organized
and the way records are accessed.

The term "file organization" refers to the way records are arranged
within a file; the term "record access" refers to the method by which
records are read from a file or written to a file. A file's
organization 1is specified when the file is created, and cannot be
changed. Record access is specified each time a file is opened, and
can be different each time the same file is opened. This section
discusses file organization; Section 2.2.2 discusses record access.
Table 2-3 shows the wvalid record access modes for each file
organization.

Through its two I/0 subsystems, FORTRAN-77 supports three file
organizations: sequential, relative, and 1indexed. Table 2-3
summarizes which file organizations are available to the wvarious 1I/0
subsystems.

FORTRAN-77 INPUT/OUTPUT

Table 2-3
Availability of File Organizations

FCs-11 RMS-11 RMS-11K
Sequential X X X
Relative _ X X
Indexed X

The organization keyword in the OPEN statement specifies the
organization of a file, as described in Section 2.3.7.

2.2.1.1 sSequential Organization - A sequential organization file, or
sequential file, consists of records arranged in a physical sequence
that is typically identical to the order in which the records are
written to the file: the first record in the file is the first record
written, the second record in the file is the second record written,
and so forth.

Sequential file organization is permitted on all devices supported by

the FORTRAN-77 system, and is supported by the FCS-11 and RMS-11 I/0
subsystems.

The sequential files created under the FCs-11 subsystem are
compatible, both structurally and functionally, with sequential files
created under the RMS subsystem. Therefore, you can freely
interchange sequential files among all FORTRAN-77 programs.

2.2.1.2 Relative Organization - A relative organization file, or
relative file, consists of a series of numbered positions, called
cells, that can either contain a single record or remain empty. These
cells are of fixed, equal length and are numbered consecutively from 1
to n, where 1 is the first cell and n is the last cell.

Relative organization allows you to place a record in a file at any
position relative to the beginning of the file. As a result, you can
retrieve a record simply by specifying that record's relative record
number. Conceptually, then, a relative file 1is similar to a
sequential file processed under direct access (see Section 2.2.2.2).
The one important distinction is that you can delete a record from a

relative file (simply by specifying the appropriate relative record
number) .

Once a record has been deleted from a relative file, the cell
containing it is no longer a logical part of the file, and any attempt
to direct-access that cell produces error message #36: "ATTEMPT TO
ACCESS NON-EXISTENT RECORD."

Relative files can be stored only on disk and are supported only by
the RMS I/0 subsystems.

FORTRAN-77 INPUT/OUTPUT

2.2.1.3 1Indexed Organization - An indexed organization file, or
indexed file, <consists of records that are arranged 1logically
according to the value of an alphanumeric or integer field (called a
key field) contained 1in each record. Unlike the records 1in a
sequential or relative file, the records in an indexed file are not
necessarily stored contiqguously, but may be widely dispersed on disk.

When you create an indexed file, you must designate a specific field,
common to each record 1in the file, as a primary key. The value of
this field in any one record determines the position of this record in
a file.

You can designate additional fields in the records of an indexed file
as alternate keys. These fields do not affect the placement of
records in the file (unless the file was created to allow duplicate
primary keys, in which case the records actually having duplicate
primary keys are ordered by an alternate key). However, each
alternate key, like the primary key, provides a way to locate a record
within a file. You can specify up to 255 keys for an indexed file
using an appropriate RMS utility (see the RMS-11 User's Guide). You
can also specify keys with an OPEN statement; however, the maximum
number you can specify with an OPEN statement depends on the total
number of parameters you have specified in the OPEN statement.

Regardless of the means by which they are created, you can access,
with indexed READ statements, up to 255 keys from a FORTRAN-77
program.

An indexed file contains a tree-structured table, called an index, for
each designated key field. Each entry in an index is a pointer to a
set of records, called a bucket, located at the base of the tree. The
bucket contains the record with the designated key value and zero or
more records with lower key values (or the same key values if the key
is an alternate key). A bucket is a unit of I/O0 transfer consisting
of a fixed number of bytes specified by the BLOCKSIZE keyword (see
Section 2.3.2).

Both the number of key fields and the size of the bucket are
established when you create a file; you cannot change these
parameters with subsequent OPEN statements. When you add or modify
records, RMS automatically updates the indexes and creates additional
entries as needed.

Indexed files permit the most flexible record access. This
flexibility is facilitated by the fact that you can use any field in a
record as a key and can have multiple keys.

When a FORTRAN-77 program creates an indexed file, the primary key of
the records of that file are restricted in two respects: (1)
duplicate primary keys are not allowed because the value of each
primary key must be unique; and (2) when a record in the file is
rewritten, its primary key cannot be changed. These restrictions do
not apply to alternate keys. When an indexed file is created by a
means other than a FORTRAN-77 program, and in such a way as to support
changes to, and duplicates of, primary keys, that file may
subsequently be used by a FORTRAN-77 program even though there are
duplicate primary keys and the values of any of the primary keys can
be changed by the program.

Indexed files can be stored only on disk and are available only 1if
RMS-11K is available on your system.

FORTRAN-77 INPUT/OUTPUT

2.2.2 Access to Records

You can select records for processing by the following methods:
e Sequential (including append) access
e Direct access
e Keyed access

Table 2-4 summarizes the ways 1in which each of the three file
organizations can be accessed.

Table 2-4
Access Modes Per File Organization
Access
Organization Sequential Direct Keyed Append
Sequential X x1 X2
Relative X X
Indexed X X

1. Fixed-length records only.

2. Append access to a sequential file consists of opening
the file for sequential access and initially positioning
the current record printer at the end of the file.

The FCS-11 I/0 subsystem supports only sequential and direct access
(to sequential files); keyed access 1is supported only by RMS-11K
software. (RMS-11K is included in RSX-11M-PLUS and RSTS/E systems.)

2.2.2.1 Sequential Access - Sequential access means, as the term
implies, that records are processed in sequence. The exact nature of
this processing sequence depends on the organization of the file. For
sequential files, the processing sequence consists of the physical
progression of the records in the file, from first created to last
created. Processing a sequential file wunder sequential access
requires that a desired record be read only after all records
physically preceding it have been read, and that a new record be
written only to the current end of the file. For relative files, the
processing sequence consists of the numerical order of the record
cells (some of which may not have a record in them). Reading a
relative file wunder sequential access requires that a desired record
be read only after all existing records preceding it have been read
(empty <cells are passed over). Writing to a relative file under
sequential access allows a new record to be written at any point. For
example, if records 1 and 2 are read (in sequential access mode) in a
relative file consisting of 24 record cells, and then a record is
written, the new record is written into cell 3 of the file, replacing
any old record that may have been there. (The concept of writing a
record into a «cell already containing a record 1is a FORTRAN-77
concept.)

FORTRAN-77 INPUT/OUTPUT

The processing sequence for an indexed file consists of an index of
ascending key values; a corresponding physical sequence may or may
not exist. Reading an indexed file under sequential access requires
that only the desired record be read. New records may be added at any
point, with the key values within a record determining the record's
position.

2.2.2.2 Direct Access - Direct access means that records are selected
for processing on the basis of their position relative to the
beginning of a relative or sequential file. Only one record needs to
be read and a new record can be added at any point. Each READ or
WRITE statement must include a relative record number that specifies
the record to be read or written.

You can direct-access relative files and sequential files containing
fixed-length records that reside on disk, but you cannot direct-access
indexed files. Because direct access uses cell numbers to identify
and find records, you can issue successive READ or WRITE statements
requesting records that either precede or follow previously requested
records.

For example, the statements

READ (UNIT=12,REC=24)XARRAY
READ (UNIT=12,REC=20)ZARRAY

transfer the data in record 24 of the file connected to 1logical unit
12 to the variable XARRAY, and the data in record 20 of the same file
to the variable ZARRAY.

Using direct access to read records 1in an RMS-11 sequential or
relative file may result in FORTRAN run-time error 36 if the specified
record was never written. FORTRAN run-time error 36 may also occur if
the specified record of a relative file has been deleted.

2.2.2.3 Keyed Access - Keyed access means that records are selected
for processing on the basis of alphanumeric strings or integer values,
called keys, that identify the desired records. Each 1indexed READ
statement contains a key value that is used to locate the record to be
read. The key value is compared against index entries until the
bucket containing the record 1is 1located. The bucket is then read
until the exact record is located.

To insert a new record in an indexed file, you specify in the I/0 list
of an indexed WRITE statement an item that has previously been defined
as a key for the records in the relevant file; you do not specify a
KEY= wvalue in the WRITE statement. For example, 1if NAME has
previously been defined in an OPEN statement as a key for the records
of an indexed file, to insert a new record in that file you can use
the following statement:

WRITE (UNIT=10, ERR=9999)ORDER, NAME,
1 ADDRESS, CITY, STATE, ZIP, ITEM

Keyed access is valid only for indexed files.

See Chapter 7 for more inform<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>