
DSM-11

User’s Guide

Order Number AA-H799B-TC

March, 1984

This document describes the use of the DSM-11 system.

This is a revised manual.

Operating System: DSM-11 Version 3

Software: DSM-11 Version 3

Software and manuals should be ordered by title and order number. In the United States, send orders

to the nearest distribution center. Outside the United States, orders should be directed to the nearest

DIGITAL Field Sales Office or representative.

Northeast/Mid—Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation
PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center

Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Telephone :(603)884—6660 Schaumburg, Iilinois 60195 Sunnyvale, California 94086

Telephone:(312)640—5612 Telephone :(408)734—4915

digital equioment corporation e marlboro. ma

First Printing, October, 1980

Revised, March, 1984

The information in this document is subject to change without

notice and should not be construed as a commitment by Digital

Equipment Corporation. Digital Equipment Corporation assumes

no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a

license and may only be used or copied only in accordance with the

terms of such license.

No responsibility is assumed for the use or reliability of software

on equipment that is not supplied by DIGITAL or its affiliated

companies.

Copyright © 1980, 1983 Digital Equipment Corporation.

All Rights Reserved.

The following are trademarks of Digital Equipment Corporation

DEC DIBOL RSTS

DECmate DSM-11 RSX

d}i}o} ital! MASSBUS UNIBUS

DECsystem-10 PDP VAX

DECSYSTEM-20 P/OS VMS

DECUS Professional VT

DECwriter Rainbow Work Processor

CONTENTS

Part 1: Installing DSM-11

CHAPTER 1 INSTALLING DSM-11

1.8

1.9

1.10

1.11

1.12

THE DSM-11 DISTRIBUTION KIT..........0 0 cece eee eee ee 1-2

THE DSM-11 BASELINE SYSTEM........... ccc ccc n cece eee e cc eees 1-2

SYSTEM OPERATION INFORMATION SOURCES....................... 1-3

INSTALLATION PROCEDURE OVERVIEW.cccccceeeeeeees 1-4

PREINSTALLATION CHECKLIST 0. eee cece cece een neces 1-5

POWER ON FOR THE CONSOLE TERMINAL000...000.. 1-9

POWER ON FOR THE PDP-11 PROCESSOR00000..000. 00, 1-10

1.7.1. Power On For The PDP-11/23-PLUS ce. 1-11

1.7.2 Power On For The PDP-11/24 wo... cece ccc cece cece nee ees 1-12

1.7.3. Power On For The PDP-11/44 oo... ccc cece cece ee es 1-13

MOUNTING THE DISTRIBUTION MEDIUM.............0.00.0...0000000.. 1-14

MOUNTING THE SYSTEM OR BACKUP DISTRIBUTION DISK...1-14

START THE SYSTEM.......... 0 ccc cece cece ccc ece ence cc eeeeencnsecceeseesssseeess 1-14

1.10.1 Starting The PDP-11/23-PLUS........ ccc cccceeeeeee eee 1-16

1.10.2 Starting The PDP-11/24......0 0 ccc cece ccc ccceeeseceeeceeees 1-17

1.10.3 Starting The PDP-11/44.......0.0 cece cece cc ccc eenneneeneees 1-18

MICRO/PDP-11 INSTALLATION PROCEDURE....................0... 1-19

INSTALLATION DIALOGUE ccc cece eee ccceeeeeneees 1-2]

il]

Part 2: Introduction to DSM-11

CHAPTER 2 OVERVIEW OF DSM-11

2.1 SYSTEM OVERVIEW. ccc cece cccec cece ee ene ee eeeeeeeeeeesseeeeeeeeeeeeees 2-1

2.1.1 The Language............cccccccce eee eeeeeeeeeeeeeecceeeeeeeeeeeteeeeeeeneeeees 2-1

2.1.2 System Capacityccccccccccessssceeeeeeeeeeessceeeeeeeeeseenseeseeeeeees 2-2

2.1.3 Data ACCESS........ccccccccceeeee eee ee nen neeeneeeecceeeeeeeeseeteeeeeseeeeeeeees 2-2

2.1.4 System ACCESS.......ccccccceeeeeenseeeeeeeeeeeeeeeeeeceeeseeees see eeeeeeeeeeeee 2-3

2.2 SYSTEM SOFTWARE.cccccccc cece cece cece eeeeeeseeeeeeeeeeeeeeseseeeeees 2-3

2.2.1 Operating System cece cc ccc eee eee e eee eeeeeeeeeseeesesseeeeeseees 2-4

2.2.2 System Utility ROutINES ccc cece cece eeeeeeeeeeecssseeseees 2-5

2.2.3 Library Utility ROUtineS....... ccc cece ceeeeeteeeeeeeeeeeeeeees 2-5

2.2.4 Library Utility Globals 0c ccc cceceeeeeeeeeeeeeeeceeeees 2-6

2.2.5 System-Configuration Globalc ccc eseeceeceeeeeeeneeeeneneees 2-6

2.3 SYSTEM HARDWARE oo. cccccc cece cece enn cece eeeeeeeeeeensnsseeeeeeeeeseeees 2-6

CHAPTER 3 ACCESSING DSM-11

3.1 USING THE TERMINAL ccc cc cece ccc eeeeeenceeeeeeeeeeeeenes 3-]

3.1.1 Function KeyS............ccccccccc cece snceccevessevecvvussusvsssueusueeeaceees 3-3

3.1.2 Control Charactersccccccecececscccceccccceceeceeeeseeeeeeeseees 3-5

3.2 LOGGING IN DSM-11 20... ccc cece cccee cece eee eeeneaceeeeeeeeeesenens 3-7

3.2.1 The User Class Identifier Code ccc cc ceeeeeecceeeeeeceesens 3-8

3.2.2 The Programmer Access Codeccccccsecsccceeccececeeeeeeees 3-8

3.2.3 Partition Size In Bytes............c cece eee cece eeesnesccucecceeeeeeeeeenes 3-8

3.2.4 DSM-11 Modes ccc eee cece eeeescceeeeeeeeeessnceeseseeeeeeees 3-8

3.2.5 Logging In DSM-11 Application Modec ccc eeeeeeee eee es 3-9

3.2.6 Logging In DSM-11 In Programmer Mode..................ccceeeeees 3-9

3.2.7 Logging In At A Tied Terminal 0... cece cece eeseeeeeeeeees 3-10

3.2.8 Logging In Through A Modem With Autobauding 3-10

3.3 LOGGING OUT OF DSM-1I1.......... 0c cee cece cece eee eeeseeeeeeceseeeseeees 3-10

Part 3: Programming and Using the DSM-11 System

CHAPTER 4 USING DSM-11

4.1 ENTERING DSM-11 COMMANDS AND ROUTINES 4-1

4.1.1 Abbreviating DSM-11 Commands.................ccccccc cece sees eee e eens 4-2

4.1.2 Using Uppercase And Lowercase Characterscccceeeeeeee 4-2

4.1.3 DSM-11 Line Structure... ccc cece ee necceeeeecceeencnucees 4-3

1V

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

CREATING ROUTINES........ ec cee cece cece eee e eee eeeeeeneeeeeeeeeees 4-4

4.2.1 Direct MOde ccc cece cece cece cece cece eee eeeeeeeeeeneeneeeeeeeeeeeeeenes 4-5

4.2.2 Entering Lines In The Routine Buffer ccc cece cece c cece eee 4-5

4.2.3 Using The ZPRINT And ZREMOVE Commands 4-6

SAVING AND LOADING ROUTINES cece cceeee cece ee eees 4-6

4.3.1 Saving A Routine In A Routine Directory cece eee eee 4-7

4.3.2 Loading A Routine From The Routine Directory.................... 4-8

DELETING AND RENAMING ROUTINES cece cece ee ee ees 4-8

4.4.1 Deleting A Stored Routine cece cece cece cece eeeeeeenaeeeeees 4-8

4.4.2 Renaming ROutines............. ccc cece cece cece cccceseeeesnseesseevcuceeceeees 4-9

USING SEQUENTIAL FILES TO STORE ROUTINES.................... 4-9

4.5.1 Writing A Routine Onto A Sequential File06. 4-10

4.5.2 Loading A Routine From A Sequential File.......................... 4-10

USING EDITORS... ccc ccc cccc cece eeeeeeeeeeeeeeneesneseeeeeeesceeeeneugs 4-1]

4.6.1 Programmer Mode Editing.................ccccceeceesecececeeeeeeeueeeees 4-1]

4.6.2 DSM-11 Editor cece ccc c cence eeeeeeeeeeeeaeeeeeeeeesees 4-12

4.6.3 EDI Editor (YEDI) ccc ccc cece cece eeeneneeeseseseeees 4-12

4.6.4 Global Editor (YGEDIT) ccc cc cece cece neeeeeeseseeees 4-13

STARTING AND STOPPING ROUTINES 0... ccc cece eee ee ees 4-13

4.7.1. Executing The Routine In Your Routine Buffer..................... 4-14

4.7.2 Executing A Routine From The Routine Directory................. 4-14

4.7.3 Conditions For Execution To Stop........ ccc cece cece ceeeeceeeeeeeeeees 4-14

4.7.4 Programmer Mode Interrupt By cctrRtrc) And crTrri7y..... 4-15

4.7.5 Recognition Of The Application Interrupt

Key (COTRUTC)) ccc cece ccccccc cece ce ssenssasceceeecceesvesssuueeeeeues 4-16
4.7.6 Changing The Application Interrupt Key..................... 4-17

USING THE MUMPS DEBUGGER.............. ccc cece cece cece eee eeeeeees 4-17

4.8.1 Enabling And Disabling Debugging...........0.. cece ccc cece ee eee ees 4-18

4.8.2 Breakpointsc ccc cece cccccece ccs ececvseceeeeececeevsseeseceeeesees 4-19

4.8.2.1 Setting Breakpoints With $ZBREAK 4-19

4.8.2.2 Setting Breakpoints With The BREAK Command...... 4-20

4.8.2.3 Breakpoint ACctionscccccc ces ceeeeeeeeesevecsuuecees 4-20

4.8.2.4 Examining Breakpoints..........cccccc ccc ccc cc ceeeeseseeee 4-21

4.8.2.5 Clearing Breakpoints.............cccccccc ces eeeceeeeeseseeuceees 4-21

4.8.3. Continuing Execution After A Breakpoint.................cccc cece eee 4-2]

USING DSM-11 DIRECTORIES eee cece eee eeeencceeeees 4-22

4.9.1 DSM-11 Routine Directories ccc ccc cece eececeecececeeeeees 4-23

4.9.2 DSM-11 Global Directories.............c ccc cece cece eececeeeeeeeseeeues 4-23

4.9.3. Global File Protectioncc cece cece ceescccesseeevnsseeseeueees 4-24

ERROR PROCESSINGccccccc cece ncceeeeeeeeeeccseeeeecesecssuseeaeeees 4-25

4.10.1 Default DSM-11 Error Processingcccccceeeseeeeeeeees 4-25

4.10.2 Writing Error-Processing Routinescccceeeccceeeeeccees 4-25

4.10.3. DSM-11 Error-Trapping Routines0cc eee ecceee eee eeeeeees 4-27

4.10.4 Error Processing Within Nested Contexts

4.10.5 Exiting From An Error Handler ccc cece e cece ee eee e eens 4-28

4.10.6 BREAK 2 Control Of Error Processingccceeeeeeseceees 4-29

CHAPTER 5 USING SYSTEM DEVICES

5.1 INTRODUCTIONc cece cece cece cece cence eeneeeeeeeeeeeeeeeeesseeteeeeaes 5-]

5.2 I/O DEVICE SPECIFIERS cc ccc ccc ccc cee e cece eeeenseeeeeeesseeeeeeennes 5-2

5.3. ASSIGNING I/O DEVICEScc cc cccc ccc eeceeeeeeesceeeecenseeneeeeenees 5-3

5.4 1/0 COMMANDS 2... ccc cece cee n cece eeeeseeeeeeeneeeeeenseeeteeeensenetecenaes 5-4

5.5 OUTPUT FORMATTING..............cccccccceeccceeeneceeeeeececenenssseeeeeeeeees 5-5

5.5.1 Formatting Characterscccccccesssceeeeeeeeeessseeeeseeeeeeeeens 5-6

5.5.2 The $X And $Y Special Variablesccccceseeeeeeesseeeees 5-7

5.6 I/O ERROR PROCESSING. cc ccc ccc cccc eee neeeeeeeeseeeeecenseeeeeeeenuees 5-8

CHAPTER 6 I/O DEVICE CHARACTERISTICS

6.1 TERMINALS ccc cece cece cece cece eee seen tcceessceesnccceseecaccceeseteeeceees 6-1

6.1.1 Terminal Device Numbers ccc cccceescceecccceccccucsceauces 6-2

6.1.2 Terminal Commands. cc cece ccc cc ccecccecccecccecccucseneceuecs 6-2

6.1.3 Terminal Error Conditions ccc ccc ccc cecccecccecccecceccees 6-16

6.2 LINE PRINTER ccc cece ccc cee eneecccceescccceesccceesevesceseees 6-16

6.2.1 Line Printer Commands.............. cece cece cece enc ceenccecccecceeccees 6-16

6.2.2 Line Printer Functions And Characters...............ccccecceecceceees 6-17

6.2.3 Line Printer Error Conditions cece cceeeccceecccceccceucs 6-17

6.3 MAGNETIC TAPE cc cece ccc eee cece ccc cecnceeesscecescscececceseccenecs 6-17

6.3.1 Magnetic Tape Device Numbefs cc cece eee ceeeeeeeneeeeees 6-18

6.3.2 Magnetic Tape Commandscccccccccceeeeeceeeeseceeeeeesenes 6-18

6.3.3 Magnetic Tape Operations.cccccccccceeesscceeeceeccecnneeees 6-24

6.3.4 Tape Labels And Multiple File Structures................ccccceeeeeees 6-27

6.3.5 Data Formatsc ccc cece cee cee cee c ee cecceccecceseecenceucscceccecnecs 6-28

6.3.6 ContinuOus MOde............ccccc cece ccc ecc cece ccecccesccesssceccceseeeseece 6-30

6.3.7 Magnetic Tape Error Conditionscccescceeceeeeeessecceees 6-31

6.4 SEQUENTIAL DISK PROCESSORc cece cece cece eeeeeeeeeeees 6-33

6.4.1 SDP Device Numbers cece ccc cecccceescceeccccencccancceens 6-34

6.4.2 SDP Commands.......... ccc cece ccc ccc cen cece cceescescccssceesccuseces 6-34

6.4.3 SDP Special Characteristics And Functionsccc0ceeeee. 6-36

6.4.4 SDP Error Conditions ccc cece cece ccc ececcccceccccccsecececaees 6-36

6.4.5 Examples Of SDP OPEN And USE.............. cece eee eee ee ee 6-37

6.4.6 Using SDP To Read Disk Journaling Space.......................... 6-37

6.5 IN-MEMORY JOB COMMUNICATION ccc cccessccceccceeecs 6-38

V1

6.5.1 JOBCOM Device Numbers........... cc ccc ec cece cc ec ce ccc ceteecenceececs 6-38

6.5.2 JOBCOM Commandsc cece cece cence ec cecceccenccuceeeceeseeeees 6-38

6.6 DMCL11 oe... ccc cece ec cc enc cecccceccceeceuveceeteucceuccenstsucteneceaceeneseunes 6-40

6.6.1 DMC11 Device Numbe!rs......... cc ccc cece cc ces cee cecceeceesecscenceuces 6-40

6.6.2 DMC11 Commands ccc cece cece cece cnc ccececcecceucceccascenees 6-40

6.6.3 DMC11 Message Mode............ ccc cece cece cece ec eeeeeceeeenscceuneces 6-41

6.6.4 DMCI11 Block Mode ccc cc cece cecceccucevcuccnceecees 6-41

6.6.5 DMC11 Buffer Mode cece ccc ccc cencceccevceeceeces 6-43

6.6.6 Using DMC On A Switched Telephone Network.................... 6-44

6.6.7 DMCl11 Error Conditions............ ccc cece cee cc cecccecccecceeccuvcenecs 6-45

6.7 SPOOLING DEVICE cece cece cece ec cece ne caccecccuccuccentenecnccevess 6-46

6.7.1 Spooling Device Numbefs 0. ccc cece cee ce cece eee eeneeeeseeeees 6-47

6.7.2 Spooling Device Commandsccceceec cee eeeeeeeeeeeeeesesees 6-48

6.7.3 Transparent Spoolingcccccceeeeeeccccceeeeeeeeeseeeeneneseuss 6-50

6.7.4 Explicit Spoolingcc ccc cece cccee cece cece neces eeu eeeeseeteeeueueueeees 6-51

6.7.5 Spooling Device Error Conditions............c ccc ccc cceeee cece cece eenees 6-52

6.7.6 Spool File Structure ccc cece cece ee eeceee eee eee eee eeeeeeeseseenees 6-52

6.8 ROUTINE INTERLOCKG .Q..... wee ccc cece ceccuecceceecctecenecs 6-57

6.8.1 Routine Interlock Device Numbers....................ccecaeccecceeceecs 6-57

6.8.2 Routine Interlock Commands cc cece cece cceeccecceccecceacs 6-57

6.9 VIEW DEVICE 20.0... ccc ccc cece ec cece ccnccceccencccuccenseencseuceervceeceens 6-57

6.10 RX0O2 DISKETTE DRIVE........ oe ccc cece ccc cecceeccncceccencs 6-61

6.10.1 RXO2 Commands........ ccc ccc cece cece cc ceeceecceecccecseusecaveeaecs 6-61

6.10.2 Mixed Modec cee ccc cece cee ccencceccceccceucceescesceseeeencceaes 6-63

6.10.3 Read MOde.......... cece cece cece ccncccucceuscensceuctcecceuvtencesenceeecs 6-63

6.10.4 Write Mode cece ccc ccc c cca ccecccnccaccecceetensceccentenseeecenes 6-63

6.10.5 Control Mode 2.2... ccc cece ccc ccc ec cee cccccnccuccnccectseccevceneeneceecs 6-64

6.10.6 View Buffer Mode ccc cece cece ces ccnccccceucceucesecctvceens 6-64

6.10.7 Examples Of The OPEN And USE Command..................... 6-64

6.10.8 Error Codes cece cece cece ccc ccccceucceuccencceavecacecnveeneeeencenes 6-65

6.11 TUS8 MAGNETIC TAPE... oo. eccec ce ccc ec ceccceccceccsenccevceevceens 6-66

6.11.1 TUS8 Commands cc cece cece cc cnc cecceccceccucceccenccavceeceess 6-66

6.11.2 Mixed Mode cee e cca n ccc cccccecteccevceecceececcenccuccencenes 6-68

6.11.3 Read Mode........ ccc ccc cece cece enc ceccceccenccecteccecceveesneeens 6-68

6.11.4 Write Mode cece cece cc ccc ccc ncccecccucccenccenceeeceencceeneeees 6-69

6.11. Control Mode cece cece cece ccc ccecccuccceccenccenctenvcceceenceees 6-69

6.11.6 View Buffer Mode ccc cece ec ccc cc enc ccuccencceucceaveenceans 6-69

6.11.7 Examples Of The OPEN And USE Command..................... 6-69

6.11.8 TUSS8 Error Codes ccc ccc ccc ccc ccc cnc ccecccecceucceucccuvesecceens 6-70

CHAPTER 7 USING THE DSM-11 LIBRARY UTILITIES

7.1 INTRODUCTION TO THE LIBRARY UTILITIES 7-1

7.1.1 Running The Library Utilities 2.0.00... cece cceec eee e ee eeeeees 7-2

7.1.2 Library Utility Conventionsccccccccc cece ccc ceeeeseseeeeennees 7-3

Vill

Vill

7.2

7.3

7.4

7.5

GLOBAL UTILITIES... cece cece eee n ence eee ceeeeeeeesseeeeeeeees 7-3

7.2.1 Global Management (“%GLOMAN).......ccccccsseeeseeseseeeeeeeeeees 7-4
7.2.2 Global Copy (GC)cccsssseseseeeesesessesseesseetseseseeeeeeeeeeeees 7-4
7.2.3. Global Directory (“%GD).........ccccccseeeeeeeeceeeeeeeeeeeeeeeeeeeeeeees 7-4
7.2.4 Global Efficiency (SGE)ccccceseceeeeeceeeeeeeeeeeeeececeeeeeeee: 7-4
7.2.5 Global List (S%0G)ccccccseccccccccccccceececeseeeeeteetectteceeseseeeeees 7-5
7.2.6 Global Restore (“% GTI) Lecce eeeeeeeeeeeeeeeeeeeeeeeeeseeserenenessessenes 7-5

7.2.7 Global Save (“%GTO)cccccccccecccccccccecccccstteseseceseeeeseeececee 7-5
7.2.8 Global Selector (%GSEL) se bueeecceceeeceneeceeceeeeeeeeesceeseeeeenesees 7-5

7.2.9 Global Subscript Filter (“%FIND)ccceseeeeeeeeecceeeeeeeeees 7-5
7.2.10 Extended Global Directory (“%EGD):cscccccececeseeeeceees 7-6

ROUTINE UTILITIEScccccccccccssecccccccceccccccuccecccecaccscessuesceeeaas 7-6

7.3.1 Routine Compare (“% RCMP):c:cccccceseceeeecceecececsseceeeees 7-6
7.3.2 Routine Copy (S%RCOPY)ccccccccceccccccceeeeeeececceceeeeaaeaee: 7-7
7.3.3 Routine Directory (“YRD)ccccccceccecccccccasseeeececcececeeaeaaees 7-7
7.3.4 First Line List (“90FL)cccccccccssececccccccsceecceccecacesecceeeans 7-7
7.3.5 Routine Restore (%RR) bee ee cece cece eeeeeeeeeeeeeeeeeeeeeeeeeeeenseseeenes 7-7

7.3.6 Routine Save (YRS)ccccsssseeeecceccecccccccasseeeecececeeseuaaaaees 7-7
7.3.7 Routine Search (“YRSE)........csscccccccccccsccccsseeeeecececseeeeaaaenes 7-8
7.3.8 Routine Summaries (SUM):ccccccccccccseeeeccececsececcceeues 7-8
7.3.9 Routine Change Every (“%RCE)........ccccccccssccsseeeteeceeececeeees 7-8
7.3.10 Routine Selector (“%RSEL).......cccccccccccccsseeeecccsecseececeeseaes 7-8
7.3.11 Routine Cross Reference (% CRF) ben eeeeeeeneeceeensceeeecsceeeeeeces 7-8

7.3.12 Extended Routine Directory (“%ERD) Le neeccceeecencesceseeeecececess 7-8

MISCELLANEOUS UTILITIES......c.cccccccecccccccceccceccuceccsceueeececeens 7-9

7.4.1 Decimal/Octal Conversion (“%DOC).........cccsssssseeeeeeceececeeces 7-9
7.4.2 List “MENU Global (“%MENLIS)csssseeeeecececeeeeeeeees 7-10
7.4.3. Load DSM-11 Editor (LOAD ED)cccccccccccecseeeeceeess 7-10
7.4.4 Date (0D)cccccccccccccccccccssseeeeeccccccccsecsusarceeececcesueeaaaees 7-10
T.A.5 Time (S007)ccccccccccccccssceccccccccccusececccccscaseceeceseuteseceeees 7-10
7.4.6 Version 1 Global Restore (GR) ...ccccccccccccsseseececcececeecaeeees 7-11
7.4.7 Version 1 Global Save (“%GS) ..cccccccccccccccccssseeeceececceeeeeeaaes 7-11
7.4.8 I/O Device Selector (“% 10S) bebe e eee e cece cece eeeeeeeseeeeeeeeeeeeeeneees 7-11

7.4.9 Header Formatter (“YHDR)....ccccccccccccccccccsseeeescccccceseceaeees 7-11
7.4.10 Menu Manager (“%MENU)......cccccccceccccccccececccssseseeeeeeeees 7-12
7.4.11 Modem Autodialer (“Y DIAL)ccccccccccceecececcececaseeeceeess 7-12

OTHER MISCELLANEOUS UTILITIESccccccccceeeccecceeeseceeees 7-12

7.5.1 Date And Time (“%H).....cccccccccccccsseeeeccceccussececccssasuseceecess 7-12
7.5.2 In-line Decimal To Octal Conversion (% DO) seeeeeeeencececeeevees 7-13

7.5.3 In-Line Octal To Decimal Conversion (%OD) seeensevevccccceeeees 7-13

7.5.4 Cursor Control (“%CURSOR)...ccccccccccccccccecsseseeseccceseceeeees 7-14
7.5.5 Get UCI (“9 GUCI)ccccccccsssseceececcecccccccuacesesececccesceuaunes 7-14
7.5.6 Magnetic Tape Status Check (“%MTCHK)ccccececececeeeees 7-14

CHAPTER 8 GLOBALS

8.1 GLOBAL CONCEPTS ccc c ccc ccc cc cece ce cccceccccencccecseceucccececesunes 8-1

8.1.1 Global Variables ccc ccc cece cence ence enc eeecceeceescevcseecees 8-2

8.1.2 Sparse ALrayScccccccccc cece cee eeeeeeeeeeeeeeneeeseeeeeeeseseeseeeesseees 8-3

8.1.3 Global Data Structures ccc ccc cece ec ec ce ccc cesceeceuceens 8-4

8.1.4 Programming Strategycccccccee see ccccceesececeetecenseeceseeenees 8-5

8.2 ACCESSING GLOBALS OUTSIDE YOUR UCI WITH EXTENDED

GLOBAL REFERENCES cc ccc cece cece eect nec ceeneccenncceeseeusceeess 8-6

8.2.1 UCI-to-UCI Global Access Within The Same Volume Set 8-7

8.2.2 UCI-to-UCI Global Access Across Volume Sets...................0.. 8-8

8.2.3 Distributed Data PIrocessing.............ccccccccccccccceeeeeeeecnneveveeees 8-8

8.2.4 Accessing A Global In Another UCI Through The UCI

Translation Table ccc cece cece ccc ces ceccceeccecccceccssccsescuceces 8-9

CHAPTER 9 OPTIMIZING DSM-11 APPLICATIONS

9.1 OPTIMIZING ROUTINE INTERPRETATION cc cece eee 9-]

9.1.1 Using A Direct, Top-Down Routine Execution Path................ 9-2

9.1.2 Optimizing Routines That Call Subroutines With Line Labels ... 9-5

9.1.3. Using Short Line Labels And Variable Names........................ 9-6

9.1.4 Abbreviating DSM-11 Commands................. ccc cece cccecceeeeeeeees 9-6

9.1.5 Optimizing Pattern Matchingccccceecceccesesseeeeeeeeeenes 9-7

9.1.6 Optimizing Xecute And Indirection Usage.................ccceceeeees 9-8

9.2 STANDARDIZING APPLICATION STRUCTURE...............00..0000... 9-9

9.2.1 Using Programming Conventions..............ccccceececseeeeescsuecesess 9-9

9.2.2 Programming COnventionscccccceccceececeeccucceceeseseecees 9-10

9.2.3 Variable Naming Conventions.............cccccccccccccccesevssceeeeeeees 9-1]

9.2.4 Terminal Conventionsccccccccceccccccececceccessvsuceeesesees 9-11]

Part 4: Managing the DSM-11 System

CHAPTER 10 GENERATING DSM-11

10.1 THE SYSGEN CONCEPTccc cc cccc ccc scceeeeecucsceecessceeeesecnaes 10-1

10.2 SYSTEM DEFINITION UTILITIES0 cece eecee eee eeees 10-2

10.3 THE SYSGEN PROCEDURE ccc ccc cccc cee sceceecencsceeeeeces 10-3

10.4 THE SYSGEN SESSION occ cece veces eeccceeececesssssuseseneecs 10-3

10.4.1 SYSGEN Configurationccccccccccccssccccceccnceccseeeuncs 10-4

10.4.2 Disk Informationc cc ccccesccceccecccvscccccscccsessceeescecs 10-4

1X

CHAPTER 11

10.4.3 System DeVICES cece cece eescceeeeeeeeeenesseeeeeeeeeceeeeeuvauues 10-5

10.4.4 DMCII1s Configurationcccccccceeesscceeeeeeeeeeeevensueees 10-5

10.4.5 Software Configurationcccccccceccececeeseccceeeeececueuuseees 10-6

10.4.6 Assign Device NUMbE?s..............cceecceeeeecceeseeeeeesseeeeeseeseees 10-7

10.4.7 Software Optionsc cece cee enee cee eeeneeeeeeeesaeeeeeeeenseeeees 10-7

10.4.8 Memory Buffer Allocation.................cccccceeeesseeeeeeeeeeseees 10-10

10.4.9 System Data Structurescccccc cece esse eeeeeeeeeeseeeenseeegs 10-11

10.4.10 Job Partition Definition........... ccc cece cece eee cceeeeeecs 10-12

10.4.11 Data Base Parameters (MBP) beeen eeeeeceeeeaeeeeeceeeeeseeeceeeees 10-12

10.4.12 Basic System Parameters (MBP) bene eeeceeeeeeeeeceeeeeneneseeeees 10-13

10.5 EXAMPLE SYSGEN ccc cee cee ccc ecceeecenccenecevceenceees 10-16

10.6 EXAMPLE AUTOCONFIGURATION eee eee ee 10-27

10.7 MODIFY SYSTEM PARAMETERS ccc cece cee eee eee eeen 10-29

10.7.1 Device Characteristics (“MUX).......ccccccceeeeeeeseeeeseeeeeeeeeees 10-29
10.7.2. Add UCIs (SUCIADD)cssssseeeesececececeeceeeececeeeeeecees 10-33
10.7.3. UCI Edit (SUCIEDIT)......cccccccccccccccccececceeeeeeeeeteceetttsrens 10-34
10.7.4 UCI List (UCILD beens cee eeeesecceeceecteceeesseseeveevseveteseuseecees 10-34

10.7.5 Magnetic Tape Default Mode (“MMD)sse0000eeeeeeees 10-34
10.7.6 Routine Mapping (“RMAP)...........ccccccceeeeeeesseseccceeeseeees 10-35

10.7.6.1 Disable/Enable Routine Mapping Utility

(SRMDIS) ...ccccccccccsssssececcececcscceuseeceecceceeeseauanes 10-37
10.7.6.2. Display Loaded Routine Sets Utility (“RMSHO).... 10-37
10.7.6.3. Routine Set Loading Utility ((RMLOAD) 10-38
10.7.6.4 Routine Set Management Utility (“RMBLD)......... 10-38

10.7.7. Tied Terminal Table Generation Questions (“TTTG) be eeeeeees 10-39

10.7.8 UCI Translation Table (“TRANTAB)........cccccceeeeeeeeeeeeeees 10-41

OPERATING AND MAINTAINING DSM-11

11.1 SYSTEM START-UP (“STU AND “STUBLD).........c.cccceeeeeecceeeess 11-1
11.2 PRESERVING SYSTEM INTEGRITYccccccccccccecccsccccscecteceececs 11-3

11.2.1 Concept Of Physical Backup (“BACKUP And *REST)......... 11-4
11.2.2 Concept Of Logical Backup.............. cece cece eeeeeeceeeeeees 11-4

11.2.3 Concept Of Journaling............. ccc ccc cece cece cece eeeveessseceesesees 11-4

11.3 APPLYING PATCHES TO DSMGC11 ...cccccccccecccccccccecccecsecccusccensee 11-4

11.3.1 Utility Patchingc ccc ccc cec cee eecceeseeeeseeeeceveseeeeeeeees 11-5

11.3.2 System Patching (SAUPAT) ..cccccccccccccccesececccccesececcuueesees 11-5

11.4 SYSTEM SHUTDOWN (“SSD)ccccccccccccccessececcesccceeseceueeesseees 11-7

CHAPTER 12 USING THE DSM-11 SYSTEM UTILITIES

12.1

12.2

12.3

12.4

12.5

12.6

INTRODUCTION TO THE SYSTEM UTILITIEScccccccce0eeeeeee 12-1

12.1.1 Running The System Utilities cece cc cece cece eeeeeeeeen 12-2

12.1.2 Stopping The System Utilities ccc cc cccccc cece eeeeeeeeeeeees 12-3

CARETAKER UTILITIES (SCARE) oc cccccccccccccceccsssstssesseeeeeeceecees 12-3

12.2.1 Start System Caretaker................ ccc cece cece cece ceceeeeeeseeensesess 12-4

12.2.2 Stop System Caretaker ccc. cc cece cece ceeeneeecceeereneesceeeeees 12-4

12.2.3. Print Hardware Error Log (“KTR).......sssecececcccecseecsseeeeceees 12-4
12.2.4 Erase Hardware Error LOg ccc cece cece eee e cc eeeeeeeeeceeueees 12-4

12.2.5 Change Error Printer...............cc cece ee eeececceeeeceeeeeeesesneneneees 12-5

12.2.6 Print Disk Error SUMMAL).............. ccc cece cece cece ce eeeeeeceeeeeees 12-5

12.2.7 Software Error Log (Y%ER).......... ccc ccc cece eee cece ee eeeeeeeecsenees 12-5

DISK MAINTENANCE UTILITIESccceccccccceeeececesecsaeeseees 12-5

12.3.1 Disk Backup (“BACKUP) ...cc.ccccccssececcccccesseececeesecsueceeceens 12-6
12.3.2 Disk Bad Blocks (“BBTAB)......ccccccccccccccccseseeeeccceseseuaanees 12-6
12.3.3. Disk Dismount (“DISMOUNT)ccccccseeecccecceeseeeceeeeuees 12-6
12.3.4 Disk Format/Initialize (“DISKPREP)0ccccccccceceeeeeeceess 12-7
12.3.5 Disk Label ((LABEL)cccccccccccesecececececsseccccccseurteeececeeas 12-7
12.3.6 Disk Mount (MOUNT)ccccccccccccccccccssesececceceesceeseeeee, 12-7
12.3.7. Disk Restore (“REST)cccceccccccsseccccceuueccceseusececeeaueceees 12-7

SEQUENTIAL DISK PROCESSOR UTILITY (“SDP).....cccccc0cece00e 12-7
SPOOL UTILITIESsscccccccccecseccececeeceaseecccecseususesescseseuaeeeees 12-8

12.5.1 Allocate Spool Space (“SPLALL)cccccssseeeccceceeceeeeeeeees 12-8
12.5.2 Deallocate Spool Space (“SPLREM) Lee eenneeeneeececeeeeeeeeeeeeeenes 12-8

12.5.3. Display Spool File Structure (‘SPLSTR) bee eeeeeenseaaeeeeeeeeenes 12-9

12.5.4 Initialize Spool Space (“SPLINI)ccccccsesseeeeeseeeeceeeeees 12-9
12.5.5 Start Despooler Lister (DSON’SPL)............::ssseseeeeeeeceeeesee 12-9
12.5.6 Start Spooler (SPONSPL).........ccssececcececcseececceceusecesecenes 12-9
12.5.7 Stop Despooler (DSOF’SPL)ccccccccccccccsseeceeeecccceeesseeees 12-9
12.5.8 Stop Spooler (SPOF’SPL).....cccccccccccccccccsssssesseseeeceeeeeeeeees 12-9

SYSTEM REPORTSccccccccccssssececccccceaeecccecesscaeeececsessuaesess 12-10

12.6.1 DiISk RePoOrtscccccc cece cece eeeeenenessnesseseeeeeeeeeeeeeueseeees 12-10

12.6.1.1 Block Dump (“BLDMP)ccccccccccccecesseseeeecees 12-10
12.6.1.2 Disk Block Tally (“DBT)ccccccccssessssseeeeeeees 12-10
12.6.1.3. Fast Disk Block Tally (“FASTDBT)0ccccc000- 12-10
12.6.1.4 Integrity Check (IC) .eccccccccccccccccccececeeeessseseeeees 12-10

12.6.2 Performance Statistics (“RTHIST)ccccccccccceeeccceceeeseeeseee 12-11
12.6.3 System Status... ccc cece cececeeeeeeceveccececeeeeeeuaees 12-11

12.6.3.1 Job Monitor (“%JOB).........ccccccccccccccecesseeececeees 12-11
12.6.3.2 Switch Register (“SWREG)......ccccccccccecceeseeececeees 12-11
12.6.3.3 System Status (‘STA) dete neeneneeeeeeeececeeeeeeeeneeeeeenes 12-11

12.6.3.4 Terminal DDB (“DDR).......ccccccccecceceessesseseeeeeee. 12-11
12.6.3.5 Line Map Report (“LMAP).........:ccccccecscseeececeess 12-11

Xl

12.6.3.6 Active Job Report (SACTJOB)cccccccccccccceeeeees 12-11

12.6.4 Table Utilities ccc cece cece cece ees ceecceesccecceseceeccesces 12-12

12.6.4.1 Device Table (SDEVTAB)cccseeeecececceeeeeeees 12-12
12.6.4.2 Job Table (SJOBTAB)......cccccccccccecccccccececeeeceeees 12-12
12.6.4.3. Locked Variables (SLOCKTAB)000ceccceeeeees 12-12
12.6.4.4 Partition Table ((PARTAB)0ceeeeeeeeeeeeess 12-12
12.6.4.5 System Table (“SYSTAB)............::csseeeeeeeeeeeeeeees 12-12
12.6.4.6 UCI Table (SUCITAB)......ccccccccccccecccseeeeeeeceeees 12-13
12.6.4.7. Partition Vector (SPARVEC)....cccccccccccseeececeeeeees 12-13
12.6.4.8 Volume Set Table (“%STRTAB)cccceecceeees 12-13

12.7. MISCELLANEOUS ROUTINES........ccccccccsssececcccccssececccsssaaeeess 12-13

12.7.1 Autopatch (“AUPAT) vcccececeeceasacaasssssteeseeesececeececeeeeeeuaas 12-14
12.7.2 Broadcast (BCS)cccccccccccccccceeeseeeessseeeeseececeeens 12-14

12.7.3. Data Base Repair (“FIX)......cccccccccccccceeeceececccesseaaaeeeecess 12-14
12.7.4 Peek (“PEEK)....c.cccccccsssseeececcccccecccaceceeecceceeceusaatneeeecees 12-14
12.7.5 Restore Jobs/Devices (“RID)ccccccccccccssececccceusseeccesenees 12-14
12.7.6 Set Date (“DAT)ccccsseeeeecececececccceeteecececceseeaaateesees 12-14
12.7.7 Set Time (“TIM)cccsseeeeeccececcccccccucecececcceseeeaaaeetees 12-15
12.7.8 System Shutdown (“SSD) Le ceeeeeeeeeeeeeeeeeecceeeeeeeeeeeeeseeeeesees 12-15

12.7.9 Distributed Data Base Processor (‘DDP) beceeeeeceecceccceeeseuees 12-15

12.7.10 Background Job Attacher (ATTACH)cccccccceeeeeeeeeees 12-15
12.7.11 Background Job Detacher (“DETACH).......cccccccceceeeeeeees 12-15
12.7.12 Help Text Driver (“HELP)............::cssseeeeeccceecceeeeeseacaaes 12-15
12.7.13 Magnetic Tape Copy (‘TAPECOPY)csssseeeeeeeeeeeeees 12-16

12.8 OTHER MISCELLANEOUS SYSTEM ROUTINEScccccceeeeeee 12-16

12.8.1 Load A Driver (SLOAD).........ccccccccccccssececceccecuececcceeeaees 12-16
12.8.2 Unload A Driver (SUNLOAD)ccccccceececccccccsececcceeeenes 12-16

CHAPTER 13 GLOBAL STRUCTURE AND OPTIMIZATION

13.1 OVERVIEW OF GLOBAL MEMORY-RESIDENT TABLES AND

DISK BLOCKS 20... ccc cece ccc cee ccc en cc cencccecntccesceensctecsceenceeauves 13-1

13.2 DISK VOLUMES AND VOLUME SETS. ccc cece eee ceeees 13-2

13.3. IN-MEMORY SUPPORT FOR DISK VOLUME SETS 13-3

13.4 GENERAL DISK LAYOUT AND TERMINOLOGY 13-4

13.4.1 DSM-11 Block Layout 0... ccc ccc ccc eeeesececeecenees 13-5

13.4.2 Map BIOCKS 22... ccc ccc cece eeeeeeeececcececeveececnvevecessecues 13-8

13.4.3 Global Directory Blockcccc cece cece eeeeeeeceeeeeseeeeees 13-10

13.4.4 Global Pointer Block cece cece cece cee cceecccenccceuecs 13-13

13.4.5 Global Data Block cece eee eee cce cc ceencceecccenccceaecs 13-15

13.5 GLOBAL GROWTH AND DEVELOPMENT0000: 13-17

13.5.1 Global Initialization And Structure...................cceecccceeeeees 13-17

13.5.2 Global Levels And Disk AcceSS ccc cece cc ceeccceecceees 13-19

13.5.3 Reserved Disk Space............cccccescccceeeucucccecececceeeccsuseceees 13-19

Xl

13.5.4 Overflow From One Disk To Another Disk....................... 13-20

13.6 GLOBAL OPTIMIZATION TECHNIQUEScccccceeeeeeeees 13-20

13.6.1 Optimizing Disk-Cache Usage................cccceeeeeeeeeneeeeeeeees 13-21

13.6.2 Placing UCIs On The Data Base.............cc cc cccce eee eseee eee eens 13-22

13.6.3 Global Disk Block Allocation (“DGAM And
ATG) KO) 0. UN) 13-26

13.6.3.1 Global Placement............... ccc ccc cee e eee ccceeeeeeeeceees 13-27

13.6.3.2 Controlling Global Growthcccccc cece eee eens 13-27

CHAPTER 14 DSM-11 TABLES AND MEMORY:-RESIDENT DATA

STRUCTURES

14.1 INTRODUCTION ccc ccc cece cece cece cece cece etneeneeeeneseceeeeeseneeues 14-1

14.2 SYSTEM TABLE (SYSTAB)ccccc ccc cece eee eeeeeeeeceeeeesneeseeeees 14-4

14.3 JOB TABLE... cece cece cece cece cence ec ceeeeeeeeeceeeeeesessresseeseeeeeeeens 14-5

14.4 LOCK TABLE 2... cece cece cece cece ese eeeceeseeeeeeueueseenecsceeeseenes 14-6

14.5 DEVICE TABLE... cece cc ccc cece cee eecceeeneeesenecsseeeeeseteeeeenes 14-7

14.6 PARTITION TABLE uu... cece ccc cece cece eeeecesseeeeeenceecceeeeseus 14-8

14.7 VOLUME SET TABLE 0... cece ccc ccc eeeteeenecseeeescecccesecuees 14-9

14.8 THE UCI TABLE ou... ccc cece ccc eececeeeeececccsucnsucceeceeueuaeeees 14-10

14.9 STORAGE ALLOCATION TABLE (SAT) cece cece eeeeeeeee 14-12

14.10 DISK TABLE... oo c ccc cece ee ee eneeseeceeeueeccuccuucsususeuaeueuuss 14-13

14.11 BAD BLOCK TABLE (BBTAB)..................cccccceeeenseeeeeeeeeeeees 14-13

14.12 DEVICE DESCRIPTOR BLOCK (DDB)......................0 cece eee 14-14

14.13 PARTITIONS 2.0.0... cece cece cece cece cceceeeeeeeecsnesseesseseeeveceeees 14-17

14.13.1 Partition Sectionscccccee eee ceeccccceceeeeeeceessseeeseesess 14-17

14.13.2 Partition Vectorc ccc cece cece cece eeenececccceeseeucesceseeus 14-18

CHAPTER 15 OPTIMIZING DSM-11

15.1 MAPPED ROUTINESccccccccecesseceeeeeeecececesseeeseeeeereunens 15-1

15.2 VARYING BUFFER SIZES 0... cece cece eececececeeceeeeeceeaeees 15-2

15.3. LIMITING CRITICAL DATA AREAS TO MINIMIZE

SEARCHING cece ccc cceccccccccsnncseeeeeeececeeeseseeesestcceecusugeauesneees 15-3

15.3.1 Limiting The Size Of The Global Directory....................0..8. 15-3

15.3.2 Limiting The Size Of The UCI Translation Table................. 15-4

15.4 PERFORMANCE STATISTICSc ccc cc ccccc eens enesceesececeevevens 15-4

15.4.1 Using The Performance Statistics Utility (*RTHIST) Le eeeeeeeees 15-4

15.4.2 Performance Data.............ccccccececcccecccccccuccccsccucucucceueeeeacs 15-4

15.4.2.1 Queue Data ccc ccc cee esceececeeneeeeeceneenees 15-5

Xi

15.4.3

15.4.2.2 Data Base Event Counts.............. ccc cece cece ccec cess cece 15-6

15.4.2.3 Derivative RatiOS ccc cece cece ccc eceeeeeseeeeeeeseceees 15-7

15.4.2.4 Disk Usage Histogramccccccccceeeseneeeeeeeeees 15-7

15.4.2.5 Routine Name Histogram................cccccccceeceeeeeeees 15-8

15.4.2.6 Global Name Histogramccccceeesceeeeeeeeees 15-8

Optimization Based On Performance Statistics.................008. 15-8

CHAPTER 16 THE DSM-11 JOURNAL PROCEDURE

CHAPTER 17

X1V

16.1 INTRODUCTION oo. ccccccccccccccsccccucececucecccuececucecsscescsstesesuuecerunces 16-1
16.2 SELECTION OF GLOBALS oo. cccccccccccccscccccccecucccceuecscusecectescenses 16-2
16.3. THE JOURNAL UTILITIES... .0...cccccccccccccccecccusccccuececsucceutescenece 16-2

16.3.1 Start Journal (SJRNSTART).....cccccccccccccseececccccesscessseseeees 16-3
16.3.2 Stop Journal (“JRNSTOP)cccccsesseeeesececeeeeceeeeeceeeeeeees 16-3
16.3.3 Show Journal Spaces (“JRNLSHOW)........cccccccccccceeeseeeeeeee 16-3
16.3.4 Allocate New Journal Space (“JRNALL)....ccccccccccceesseeeeeeees 16-4
16.3.5 Initialize Journal Space (“J RNINIT)............ cc ccc cece cee eeeeeeeees 16-4

16.3.6 Deallocate Journal Space(“JRNDEALL)cccccccccccececeeeeuee 16-4
16.3.7 Journal Recover (“JRNRECOV).........ccsssseecccccesceeceuseeeeees 16-4
16.3.8 Dejournal (“DEJRNL).......:cccccccccccccecscsesececccecceccessaeeeesees 16-5

16.4 JOURNALING GLOBALSccccccccssccccccccccsccccsceceuscecseccccteccenses 16-5

16.4.1 Journaling To Disk cece eee eseeeeeeecceeeececsseeeeeecesess 16-5

16.4.2 Journaling To Magnetic Tape................. ccc cceeccesseessseseseeees 16-6

16.5 THE DEJOURNAL PROCEDURE .oecccccccccccccecccccccccccstceccuscccneee 16-6

VOLUME SETS AND CLUSTERED SYSTEMS

17.1

17.2

VOLUME SETS... ccc ccc cece cece ccecccececcnsnnccceaueeuecuseeueeceeeeseuees 17-2

17.1.1 Analogy To A Set Of BOOKS ccc cece cece eee enceeceeeeeees 17-3

17.1.2 DSM-11 Conventions For Volume Sets.....................seeeeeeees 17-3

17.1.3 Practical Uses Of Volume Sets ccc cece ceeeeeeeeneeees 17-4

17.1.4 Logging In A Volume Set..................ccccccceccseccsucccssesseueees 17-5

CLUSTERED SYSTEMS cece ccc cecnsccccecccevecessssececeeseseeees 17-5

17.2.1 System Generation For Clustered Systems (‘SYSGEN) veeeeeeees 17-5

17.2.2 The DDP Utility ((DDPUTL) .0.........cccccccccccceeeetsecceeeeeeenss 17-9
17.2.3 Explicit Symtaxc ccc ccccccesecceeeeecceeeeceesseesensnseseseeees 17-11

17.2.4 Using The UCI Translation Table (SUCITRAN)............00+. 17-11
17.2.5 Journaling And Backupcccccceeeceeccceeneececeeceeeeeees 17-14

17.2.6 Setting Access Codes And Categories

For Globals (“%%0GCH)ceesseeeeecccccecceeceeseesnntnaceceees 17-14
17.2.7 Dual Porting............... ccc cc ecceecc cee eeccncceececcecescsscsseseecesess 17-15

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

17.2.8 Library UCL 2... ccc cee e cece cee eeeeeeceeeeseeeseesseenerers

17.2.9 Using $ZR To Verify DDP ccc c cece cece eeeeeeeeeeeees

DETECTING AND RECOVERING FROM ERRORS

A.l TYPES OF ERRORS......... cece eee e ene e een ne eee eeeeeneeneeee eens

A.2> MUMPS PROGRAMMING ERRORS 0... cece cece eect eee eee

A.3 MASS STORAGE HARDWARE ERRORG................ eee eee eee eee

A.4_ ERRORS THAT CAUSE SYSTEM FAILURE0.00 ee.

A.4.1 DSM-11 System Soft Crash ccc c cece cece cc eceeeecceeeeeenees

A.4.2 Soft Crash RecOveryccc cece cece ccc eeeneeeceteeeeeeecceteeeunees

A.4.3 DSM-11 Hard Crash 2.0... ccc ccc cece cee ec ceeennceeeeuscceees

A.S DSM-11 ERROR MESSAGES 0... eee ence eee e cere ee naeeenes

ROUTINE FILE STRUCTURE

DSM-11 EDITORS

C.1 THE DSM-11 EDITOR cece cece eeeeeeeeeceveveseeeseees

C.2. THE %EDI EDITOR cece cc cceceeeeeeeueeeeeeeneeees

C.2.1 Using The %EDI Editor cece cece cece eee eeeeeeee

C.2.2 EDI Commandscccccc cece ec ecececeeeeeceeecssncsuceeennees

USING THE $ZCALL FUNCTION

E.1 CREATING THE $ZCALL NAME TABLE...................cecceeaeeeees

E.2. USING DSM-11 GENERAL PURPOSE REGISTERG....................

E.3) ERROR CONDITIONS 1.0... cc cece nce e nce e eee eeneeeteeeseenssenaes

USING THE OPERATIONS CONTROL REGISTER

F.1 OPERATIONS CONTROL REGISTER USE

XV

F.2 OPERATIONS CONTROL SWITCHESccc cece cece ee eee eee e ences F-1

APPENDIX G_ USING BIT-MASKING TECHNIQUES

APPENDIX H

GLOSSARY

INDEX

FIGURES

XV1

INTERNAL SUBSCRIPT FORMAT FOR A DSM-11 GLOBAL

1-1 Power On for the VT100 Terminal ccc cccccccccceeeceeeeneeeeees 1-9

1-2 Power On for the LA120 Terminalcccecccccccceceeeeessseeeeees 1-9

1-3. Power On for the PDP-11/23-PLUS........... occ cece cece ccc cece ececeeeeeeeeees 1-11

1-4 Power On for the PDP-11/24........ ccc cc ccc ccc nee eccceeeneesscceeeeeees 1-12

1-5 Power On for the PDP-11/44..... 0... cece ence cece ccc ecceeeeeeeecseneeees 1-13

1-6 Starting the PDP-11/23-PLUS. cece eee eee eee eeeeeeeseeeeees 1-16

1-7 Starting the PDP-11/24 occ ccc ccc cece ee ennneeeeeeeeeeesscnseseeeenees 1-17

1-8 Starting the PDP-11/44cc ccc ccc eee nneceeeeeeeeeeeeeesseeeeneeeees 1-18

3-1 Common DSM-11 Terminals 0... ccc cece cece cee eeeeeeeeeeseeeeeees 3-2

3-2 The VT100 and VTS2 Keyboards............... ccc cece ec ccccecccceeeecceeesneeeeess 3-3

6-1 IBM Standard EBCDIC Label ccc ccc cece nsec eeeeeeeeeeeneeeees 6-28

6-2 Variable-Length Record Formatccceeeeeeeeeeeeeeeeeeeeseeseeenenes 6-29

6-3 Spool File Structure............ cc cece cee ceesseeeeeeeececeeesseeeeseeeceeseeesneeees 6-53

6-4 Structure of Spool Directory BIOCK ccc cece cece eee eeee eee eee eeeeeeeeees 6-54

6-5 Header of Spool Data BIOcK cece cece cece cence eccseeeeeeesctenveees 6-55

6-6 Open File Table Entry Formatccccccceeecncccceeeceeceeecnusceeees 6-56

8-1 Typical Balanced Tree....... ccc cece cece cece cece ee eeeeeeeeeeeeeeeecseesseeseeesneees 8-4

9-1 Routine Execution Path Using Nested DO Command,........................ 9-3

9-2 Routine Execution Path Using Top-Down Structure................cccceeeees 9-4

9-3 Optimum Code Structure of a Routine and Its Components............... 9-5

13-1 General Disk Layout ccc ccc cc cece ccc cece cece eeeeeeseeeeeeeeeeeeseesesens 13-5

13-2 DSM-11 BLOCK 0... ccc ccc cece cece eee eeeeeeeeeeeeeeceeceeesetesesenseees 13-6

13-3 Physical Structure of a Global............ ccc ccc cee ccc ceeeeeeesncceeeneeeees 13-8

13-4 Map BIOcK 2... .. cece cece cece cece eee eeeeeeeeeeeeeeeeeeeseeseeseseseseeenseneeeees 13-9

13-5 Global Directory BIOcK ccc ce ccccc cece eeececeeeeeseeesuccessssseeeens 13-11

13-6 Protection Byte Bit Assignments................ccccccccceesecseseeveseveeseees 13-12

13-7 A Global Key ccc cece cece eee ee ccc ecceceeeeeeeeeeeseeereseseeceeeeeeeeeuaes 13-13

13-8 Global Pointer BIOCK............. ccc ccc cceeeeeeeeeneenencescecceceseeeeees 13-14

13-9 Global Data BLOCK 2.2.0... 0. c cece eee e cece eceeeeeeeeeeeeseeeeeseseceses 13-16

13-10 Global Imitialization..............cc ccc cc ccc cece ee eeseceeeeeceseecnccsccceneeees 13-18

13-11 Typical Global Layout 0 cece ccc eeeeneeeeeeesceccccecceseeeues 13-24

13-12 Disk Allocation for TWo UCIS.............ccccc cece cesses seccssceseeseeeesees 13-25

TABLES

13-13. Global Data Growth Area Allocation for Three Globals.............. 13-26

14-1

14-2

14-3

14-4

14-5

14-6

14-7

14-8

15-1

15-2

15-3

15-4

15-5

15-6

B-1]

B-2

E-]

System Linkage ccc cece cece cece ee eeeeeeeeeeeneeeeeeeeceeeeeeeeeeeeseneneees 14-3

JOb Table... ccc ccce cence cc cceeeeeeeececeeeeeeeeeceeeteeeneesseeteenneecvess 14-6

Device Table....... ccc cece cece ccc ceeeeneeecccceeeeenescceeteeueeeseeseseneeseeess 14-8

Partition Table............. ccc cece cece cece cc cecceeeeeeeeeeeeeseeneseeseeeeseseteeeaaes 14-9

Volume Set Table ccc cece cece cece cece eee eesecneeeeenevececcceseneueuanens 14-10

UCI Table... cccccceeeeceeeeeeeeeecssnnsccssssecuuceeeueeueeeeuuegs 14-11

Device Descriptor Block for devices 1-19 and 63-191.......0..0...0..0... 14-16

Partition LAyOut....... ccc cece cece cc ceeee ences ceeeeeensesccceeessssceeeseusncececs 14-17

RTHIST: Average Counts Of JODS cc ccc cece ccc ccc cece eee eeeeeeseceeesees 15-9

RTHIST: Averages of Data Base Events Per Second 15-10

RTHIST: Derivative Ratioscc cece cccceeeneeeeeevesvecceceseseseuees 15-11

RTHIST: Disk Access as Percentage of Total Time..................... 15-12

RTHIST: Routine Execution as Percentage of Total Time............. 15-13

RTHIST: Global References Per Second ccc cece eee eee ee 15-14

Routine File Structure ccc cece cece ccc ccceeeeescnnvuceeccccecceccseseeesueuees B-2

Routine Data BIOcK 20.0... . cece cece ec ccece cece eee eeeeeeetessseceeeseeceeeeeenes B-3

Memory Area for User-Written Subfunctions ccc cece cesses eee e eee ees E-2

FUMCtION KeySccecccee ccc ceeenseeeceeeeseseeuceeesesssccesesesseeeteceseeeeens 3-4

Control Characterscccccccccccccceceevcucevvvcvevevuuvvusssscscsscsseuuauaees 3-6

DSM-11 I/O Device Table 0... cece cc ccccece cee eeeeceeeseeeeeeeeeseeees 5-2

Device Status Word Bit Assignments..............ccccccccccceececceeeseceeeeeeees 6-4

DH11 Line Parameter Register Bit Assignmentscccccccccccceeeees 6-8

DZ11 Line Parameter Register Bit Assignments.................ccceceeeeeeeees 6-9

Magnetic Tape OPEN Switchesccccc ce ececc se eeeececesevuececeenuaas 6-19

Legal OPEN Switch Combinations 0... cc cccccecccceccceceeceeeeeeeecs 6-21

Magnetic Tape Control Codes Used with WRITE........................005- 6-23

Magnetic Tape Device $ZA Status Bit Assignments..................0..eeeee 6-25

DMC11 Control Codes Used with WRITE * for Block Mode............ 6-42

DMC11 Control Codes Used with WRITE for Buffer Mode.............. 6-44

DMC11 Device $ZA Status Bit Assignmentsccceccceceeeees 6-45

VIEW SWItchess cece cece eccccceesccccessnsseceeececeseseveccuseeeseseesenns 6-59

RX02 OPEN Block Format Switches ccc cece cece cee ceeeeececces 6-62

RX02 OPEN I/O Mode Switches......... 00... ccc ccccc ccc enccccccccceceececnuns 6-62

RXO2Z Error COdeS cc cece ec ecscceecccsecvvccscccecceceesccnucuseeseesecesenes 6-65

TU58 OPEN Block Format Switches ccc ccc cece eceeeeececceeeeees 6-67

TU58 OPEN I/O Mode Switchesc ccc ccc cceccccceeeeeencececeeess 6-67

TUS8 Error Codesccccccc cece seecscesccvssvuscccccecucccaaeneeeueeneeeees 6-70

Disk Types and Disk Codesccccccccccccccessccecscecnacececseeennees 13-5

DSM-11 Tables and Memory-Resident Data Structures.................... 14-2

Job Status Word Bit Assignmentcccccceeseccessccceececeeescues 14-19

DSM-11 Disk Capacities ccc ececccceeceeeeeees pete een ee eee eseeseeeeens D-1
Values for Operations Control Register Switchesccccceescceeeees F-3

XVll

XVIll

Acknowledgement

Digital Standard MUMPS (DSM) is an extension of the ANSI Standard
Specification (X11.l-proposed for final approval in 1984) for the
Massachusetts General Hospital Utility Multi-Programming System
(MUMPS). MUMPS was originally developed at the Laboratory of Computer
Science at Massachusetts General Hospital, and was supported by the grant
HS00240 from the National Center for Health Services Research and
Development.

Preface

DSM-1I1 stands for Digital Standard MUMPS for the PDP-1I1.

MANUAL OBJECTIVES

This manual provides information for application programmers on how to use
DSM-11 to develop application routines and data base application systems. In
addition, it provides information for System Managers and operations
personnel on how to perform system-generation and maintenance operations.

INTENDED AUDIENCE

This manual is intended as a reference for novice computer users, DSM-11
application programmers, System Managers, and all others who operate a
DSM-11 system.

MANUAL STRUCTURE

This manual is structured as follows:

Part 1: Installing DSM-11

Chapter 1 describes the installation of the DSM-11 system.

Part 2: Introduction to DSM-11

Chapter 2 provides an overview of the DSM-11 system.

Chapter 3 describes how to use DSM-11 terminals and provides the
information necessary to log in the system.

Part 3: Programming and Using the DSM-11 System

X1X

XX

Chapter 4 discusses how to use DSM-11 to develop and maintain application
routines. It also describes some useful programming techniques and DSM-11
directories.

Chapter 5 describes how to use system devices.

Chapter 6 describes I/O device characteristics.

Chapter 7 discusses the DSM-11 library utilities.

Chapter 8 describes globals.

Chapter 9 discusses how to optimize DSM-11 applications.

Part 4: Managing the DSM-11 System

Chapter 10 describes the DSM-11 system-generation procedure.

Chapter 11 discusses operating procedures for starting, loading, and backing
up the DSM-11 system following system generation.

Chapter 12 describes the system utilities.

Chapter 13 describes global structure and data base optimization.

Chapter 14 describes the tables and other memory-resident data structures of
the DSM-11 operating system.

Chapter 15 describes how to optimize the DSM-11 system.

Chapter 16 describes the use of the journaling facility and the journal utilities.

Chapter 17 describes volume sets and clustered systems.

The appendices include: Detecting and Recovering from DSM-11 Errors;
Routine File Structure; The DSM-11 Editor; DSM-11 Disk Capacities and
Calculations; Using the ZCALL Function; Using the Operations Control
Register; Using Bit-Masking Techniques; Internal Subscript Format for a
DSM-11 Global; and a glossary.

DSM-11 DOCUMENTATION

A complete set of DSM-11 documentation includes:

Manual Order Number

The DSM-11 BISYNC AA-V602A-TC
Programmer’s Guide
The DSM-11 Language Reference AA-H797B-TC
Manual

The DSM-11 Summary AV-H798B-TC

The DSM-1]1 User’s Guide

The DSM-11 XDT Reference
Manual

The Introduction to DSM

RELATED DOCUMENTATION

AA-H799B-TC
AA-J701A-TC

AA-K676A-TK

The following documents provide additional information on PDP-11
processors:

Manual

PDP-11 Processor Handbook

Peripherals Handbook
Terminals and Communications

Handbook

PDP-11/24 System Technical

Manual
PDP-11/44 System User’s Guide
PDP-11/23-PLUS System Manual

MICRO/PDP-11 Handbook

MICRO/PDP-I1 Unpacking and
Installation Guide

MICRO/PDP-11 Owner’s Manual

MICRO/PDP-II1 Technical Manual

Order Number

EB-19402-20

EB-20443-20

EB-20752-20

EK-11024-TM

EK-11044-UG
EK-1T23B-OP

EB-24944-18
EK-OLCP5-IN

EK-OLCP5S-OM
EK-OLCP5-TM

XX1

XXll

DOCUMENTATION CONVENTIONS

This manual uses the following documentation conventions and symbols:

Convention

<CTRL>x

<ERROR>

ESC

(PERTOD)

Meaning

A key (represented here by x) typed while the CTRL
key is pressed.

DSM-11 error message format.

The escape key.

The period key.

The carriage return key.

The space bar.

The TAB key (raten on some terminals).

An optional item.

A convention to represent a break in a series.

The DSM-11 (Programmer Mode) prompt.

A symbol to represent a break between two illustrated
lines in a routine example.

Contrasting Colors in Examples:

Black - indicates system-generated output

Red - indicates user input

Part 1: Installing DSM-11

Chapter 1

Installing DSM-11

This chapter describes the DSM-11 distribution kit and the DSM-11 installa-
tion procedure for both magnetic tape, disk cartridge, and diskettes. This
chapter also describes the DSM-11 Baseline System.

This chapter provides information for installing a DSM-11 Version 3 software
on a PDP-11 computer system that does not have an earlier version of the
DSM-11 software previously installed. Installation means that you put the
software into the hardware and make the software operate properly.

If you already have an earlier version of the DSM-11 software operating on
your PDP-11 computer system, you are then upgrading your software (by
replacing the earlier version DSM-11 software with Version 3 DSM-11
software). Refer to the DSM-I] Release Notes for a discussion of how to
upgrade your DSM-11 software to Version 3.

This chapter does not describe how to customize your system using the system
generation procedure. Customization is described in Chapter 10.

The discussion in this installation chapter is oriented around installing DSM-
11 on one of the following systems:

e PDP-11/23-PLUS

e PDP-11/24

e PDP-11/44

¢ MICRO/PDP-11

Installing DSM-11 1-1

The additional chapters in this manual provide information on using, operat-
ing, and managing DSM-11, as well as programming in MUMPS using DSM-
11. A basic introduction to DSM-11 and MUMPS is provided in Chapter 2.

1.1 The DSM-11 Distribution Kit

The DSM-11 distribution kit contains both software and documentation.

Digital distributes the DSM-11 software on all of the following:

e A single 9-track magnetic tape (800 or 1600 bits per inch)

e A single disk cartridge

e A set of diskettes

A distribution kit for the magnetic tape and the diskettes contains backup
copies of distribution software. For a distribution on disk cartridge, you must
provide your own blank backup distribution disk, and make your own backup

copy of the distribution software at installation. The software consists of the
following:

e The DSM-11 System Image

e The DSM-11 installation routines

e The DSM-1I1 system and library utility routines

e¢ The DSM-11 system and library globals

The documentation consists of the following:

e The DSM-11 manuals (as listed in the preface of this manual)

e The DSM-11 Release Notes

1.2 The DSM-11 Baseline System

1-2

When you first install DSM-11, you have a DSM-11 Baseline System. You can
proceed to the additional system generation questions and set up a full system.

The DSM-11 Baseline System supports:

e One terminal (the console terminal)

e One partition of 8K bytes

e One User Class Identifier (UCI) called MGR

Installing DSM-11

e A Programmer Access Code (PAC of <cTRETX) (CTREDO “CTRTTX)

e Disk buffers

e One magnetic tape drive (if present)

e One line printer (if present)

The primary purpose of the DSM-11 Baseline System is to allow operation of
the DSM-11 system installation, system generation, and start-up procedures.

With the Baseline System, only the console terminal user can be logged into

the system. The Baseline System can be useful for experimenting with the

language or for performing system and data base maintenance functions. All

of the features of the DSM-11 language and the DSM-11 utilities are available.

1.3 System Operation Information Sources

Chapter 11 contains system operation information, which includes starting,

backing up, and shutting down DSM-11.

You can load DSM-11 directly from the distribution magnetic tape, disk
cartridge, or diskettes by employing bootstrap procedures. Bootstrap

procedures for the PDP-11/23-PLUS, the PDP-11/24, and the PDP-11/44 are

described in Section 1.10. Additional information on these systems can be
found in:

e¢ PDP-11/23-PLUS System Manual

¢ PDP-11/24 System Technical Manual

e PDP-11/44 System User’s Guide

Bootstrap information for the MICRO/PDP-11 can be found in Section 1.11.
Additional information for the MICRO/PDP-11 is found in the following
manuals:

¢ MICRO/PDP-1I1 Unpacking and Installation Guide

¢ MICRO/PDP-1II Owner’s Manual

© MICRO/PDP-II1 Technical Manual

Ordering numbers for these manuals and guides can be found in the preface.

Installing DSM-11 1-3

1.4 Installation Procedure Overview

1-4

The installation procedures described in this chapter cover three major steps:

1. Installing a DSM-11 Baseline System, which gives you an operating DSM-
11 system with limited capabilities

2. Using the system generation process (using autoconfiguration) to generate a
software system with full capabilities (a configuration)

3. Using the start-up procedure to get your configuration started and
operating

A more detailed list of the steps involved in the procedure is given later in this
section.

A configuration is a software construct that allows you access to certain

hardware devices (that must be physically connected to your system) and to

certain software options that you have chosen during the system generation
process. The system generation process is the means of making up a configura-
tion. The Baseline System is an example of a simple and limited configuration.

The installation dialogue follows the autoconfiguration process after the
Baseline System is installed. The autoconfiguration process is a system genera-
tion process that makes up a configuration that includes all of your hardware
devices and most software options. The autoconfiguration process minimizes
the number of questions you must answer and quickly provides you with a
configuration with wide capabilities.

Before beginning the actual procedure, you should complete the installation
checklist given in Section 1.5. You should also review the sample dialogue
which is given later in this chapter in Section 1.12. Then you should begin the
installation procedure described in Sections 1.6 through 1.10 for the PDP-
11/23-PLUS, PDP-11/24, and PDP-11/44 processors. For the MICRO/PDP-

11, follow the procedure described in Section 1.11.

The installation procedure for the PDP-11/23-PLUS, PDP-11/24, and PDP-
11/44 contains the following steps:

1. Complete the preinstallation checklist. See Section 1.5.

2. Switch on the power for your console terminal. See Section 1.6.

3. Switch on the power for your PDP-11 processor. See Section 1.7.

4. Mount the distribution medium in one of the appropriate tape, disk, or
diskette drives on your system. See Section 1.8.

Installing DSM-11

5. Mount a disk, which is to be your backup distribution disk or your system
disk, into a disk drive. See Section 1.9.

6. Start the system from the drive containing the distribution medium. This is
sometimes referred to as "bootstrapping”the system. See Section 1.10 for
more information.

7. Answer the questions contained in the installation dialogue which appears
on your console terminal. An example dialogue appears in Section 1.12.
These questions cover several steps:

a. Making a backup copy of the distribution disk, unloading the backup
disk, and loading a disk which is to be your system disk (if your
distribution is on disk cartridge).

b. Installation of a DSM-11 Baseline System.

c. System generation of a system configuration (by the autoconfiguration
process) that allows you access to all the hardware devices and software

options.

d. System start-up of the initial configuration. The configuration that you
construct during system generation does not actually come into effect

on your system until you start it up. You must complete the start-up

procedure, which starts the configuration, and then log in to the
configuration.

1.5 Preinstallation Checklist

Before you run the DSM-11 installation procedure, read the following
checklist. Completing this checklist insures that you are ready to begin instal-
lation and helps prepare you to answer questions asked during the procedure.
You should not actually mount the distribution medium, start the system, or

begin the installation until after you have completed this checklist.

1. You must have your hardware installed and ready to go. You must identify
which of your terminals is the console terminal. The installation must be
done from this terminal.

2. DSM-11 is distributed on three types of media:

e 9-track magnetic tape, at a density of either 800 or 1600 bits per inch

e Disk cartridge - RLO1, RLO2, RK06, or RKO7

e RX50 diskettes

For magnetic tape installation, you must have a tape drive connected to
your system. For disk cartridge installation, you must have an RLO1,

Installing DSM-11 1-5

1-6

RLO2, RK06, or RKO7 disk drive with your system, and the disk cartridge
must match the type of disk drive that you have. RXS5O diskette installation
requires that your machine have the RX50O diskette drive.

. You must know how to mount your distribution tape, disk cartridge, or
diskette, and how to boot the system from the tape or disk. Refer to
Sections 1.8 and 1.10 for information on how to mount your magnetic tape

or disk cartridge, and how to boot from that tape or cartridge. For the
RX50 installation, refer to Section 1.11 for mounting and booting informa-
tion. For the RXS50O, you receive several diskettes. You must mount the first

of the diskettes.

. You must know the device bootstrap identifier for the disk or magnetic
tape drive that is to contain your distribution medium if your system is a

PDP-11/23-PLUS or PDP-11/44. This identifier is a code that informs the
system where your distribution medium is, and you should start (bootstrap)
the system from this medium.

Device Identifier Codes

Code Device

DL RLO1 or RLO2 Disk Drive

DM RK06 or RKO7 Disk Drive

DU RDS51, RX50, RA80, RA81, or RA60 Disk Drive

MM TU16, TE16, TU77, or TU45 Tape Drive
MS TSV05, TU80, or TS11 Tape Drive

MT TU10, TE10, or TSO3 Tape Drive

If there is more than one drive of the same type, then each separate drive is

referred to as a unit. You can mount your distribution medium in any unit
of the appropriate drive. You then refer to the drive with a 3-character

code, including the unit number; for example, RLOI disk drive, unit 0 is

DLO. If you do not load the distribution medium in unit 0, you must
specify the unit number when you boot the system (except for the

MICRO/PDP-11 which determines automatically which drive has the

distribution diskette).

Device bootstrap identifier for the distribution medium

. You must choose a disk drive to use to back up your distribution disk. You
do not need to do this if your distribution medium is magnetic tape or
diskettes; the distribution kit contains an extra copy of the distribution

medium. If the distribution medium is disk cartridge, then you must
provide your own disk for a backup distribution disk. You should use a
new disk or a used disk in good condition. If the disk is previously used,
any information currently stored on it will be lost.

The backup distribution disk is a copy of the distribution disk and should
be saved in case the original distribution disk is lost or damaged. The

Installing DSM-11

system disk is not the same as a distribution disk; you cannot install a new

system from the system disk.

The disk drive for the backup distribution disk can be the same as the one
you use for your system disk. If you do this, you must unload the distribu-

tion backup disk after it is created, and load another disk that 1s to become
the system disk into that drive.

Distribution backup disk type

Unit number of disk drive

. You must choose a disk drive for your system drive (except for the
MICRO/PDP-11 which uses the RDS51 Winchester fixed disk drive for the
system disk). This disk drive must have a disk mounted in it before you

start your installation. This disk becomes your system disk. You should use
a new disk or a used disk in good condition. If the disk 1s previously used,
any information currently stored on it will be lost. You should also know
the unit number of the drive that this disk is installed in.

System disk type

Unit number of system disk drive

. You should let the system check for bad disk blocks. The installation
procedure also asks you a series of questions about "bad blocks.” A block
is a space on the disk that contains a fixed amount of information (1024

bytes). A bad block is one that has a physical defect and should not be
used. The system can check for bad blocks and avoid using them.

If you have previously used DSM-11 and are using a disk that has bad
blocks for the system, then you should write down the numbers of these
bad blocks Gf you know them). You will be given an opportunity to give
the system the numbers of these bad blocks. If this does not apply to you,
then answer NO to the question about additional bad blocks.

Additional bad blocks

. You should decide what the system disk label should be. The label you

choose is written to the disk during installation. It should be a brief phrase
that makes some kind of sense, such as "TEST SYSTEM” or "SYSTEM

DISK 1”. It can be any string of up to 22 characters. This label is used for
identification purposes only.

System Disk Label

. You must choose a volume set name. This name is a 3-character name for

the system disk volume. A volume set is a data base contained on a disk or
set of disks.

Volume Set Label

Installing DSM-11 1-7

1-8

10.

11.

12.

You must choose a name for your initial configuration. At this point, you
are setting up a configuration. A configuration is a set of hardware
devices (from those connected to your system) and a set of software

options. You can set up different choices of devices and options in each of
several configurations. When you start up your system, you can choose
among the different configurations you have set up.

You do not need to concern yourself at this time with these choices. You
can take the autoconfiguration option as indicated in the installation
procedure to set up an initial configuration. See Part 4 of this manual for
more information on the operating system, and Chapter 10 specifically for
more information on system generation and setting up additional
configurations.

The configuration you select should be a short string of characters such as
"TEST", “FIRST”, your initials, or a number.

Configuration name

You must indicate what your power line frequency is. In the United
States, it 1s 60 hertz. In many other countries, it is 5O hertz. You must

specify the frequency correctly, or your time-of-day clock will give
incorrect values. —

Power line frequency

You must determine what you want the 3-character programmer access
code (PAC) to be . This code is a password which is requested when you
log in to DSM-11. Do not choose a code that is obvious or easy to guess,
such as your own initials.

Programmer Access Code

Installing DSM-11

1.6 Power On For The Console Terminal

Your console terminal can be either a VT100 video terminal or an LA120
hard-copy terminal. The console terminal is the main or primary terminal for
the system.

If you have a VT100 video terminal, refer to Figure 1-1. Lift the power switch
to the (1) position.

Figure 1-1: Power On for the VT100 Terminal

Finn

“ : O—%—_
e

[| oI
MR-S-3475-83

If you have an LA120 hard-copy terminal, refer to Figure 1-2. Press the power

switch to the ON position.

Figure 1-2: Power On for the LA120 Terminal

On :
]

Le)

MR-S-3476-83

Proceed to the next section about switching on power for your PDP-11
processor.

Installing DSM-11 1-9

1.7 Power On For The PDP-11 Processor

This section describes how to switch on the power for three processors:

e PDP-11/23-PLUS

e PDP-11/24

e PDP-11/44

If you are installing DSM-11 on a different PDP-11 processor, refer to your
PDP-11 user’s, system installation, or system operating guide for information

on how to switch on power for the processor. If you are installing DSM-11 on

a MICRO/PDP-11, refer to the MICRO/PDP-1I1I Owner’s Manual for

information on how to switch on power for the processor.

Once you have switched on the processor, see Section 1.8 for information on
mounting the distribution medium.

1-10 Installing DSM-11

1.7.1 Power On For The PDP-11/23-PLUS

Refer to Figure 1-3.

1. Lift the AUX toggle switch to the ON (up) position. The red PWR OK
indicator light on the front panel lights up.

2. Lift the HALT toggle switch to the

Figure 1-3: Power on for the PDP-11/

up position.

23-PLUS

/— S
a ~

(@ @ Yensanea —
\ y,

Que OK RUN
ON) RESTART HALT AUX ore

4

egraved PDP1/22PLLS

MR-S-3478-83

Installing DSM-11 1-11

1.7.2 Power On For The PDP-11/24

Refer to Figure 1-4.

Turn the status selector key to the LOCAL position. The red DC ON indicator
on the front panel lights up.

Figure 1-4: Power On for the PDP-11/24

/f-- a .
BOSHOZD PDPN/24 | RUN DCON BATT PROC |

® ® © @

HALT CONT BOOT

\ 7 [S

MR-S-3477-83

1-12 Installing DSM-11

1.7.3 Power On For The PDP-11/44

Refer to Figure 1-5.

Turn the status selector key to the LOCAL position. The red DC ON indicator
on the front panel lights up.

Figure 1-5: Power On for the PDP-11/44

(~ >) Ne _ ZA

LOCAL ° LOC DSBL RUN DCON BATT PROC HALT CONT BOOT >

° (o —\ ~~ (on

0 (ey pppiaa'* “& @ & [hr |
\Y/ / - \

ar mA SS

4

MR-S-3479-83

Installing DSM-11 1-13

1.8 Mounting The Distribution Medium

When there is more than one drive of a given type, each drive is referred to as

a unit. For instance, if there are two disk drives, they can be referred to as unit

O and unit 1 of that type of drive. In general, the distribution medium should

be mounted in unit 0. If the distribution medium Is tape, it must be mounted
in unit 0. If you mounted a disk in a unit other than 0, you must inform the
system which unit the disk 1s in when you boot the system.

e Magnetic Tape - Different models of tape drives have different mounting
procedures. Instructions for mounting the tape are contained on the inside
of the door to the tape-reading mechanism. Open the door and read the
instructions. Mount the tape following the instructions.

e Disk Cartridge - Refer to your disk drive user’s guide for information on
how to mount the disk cartridge for your particular drive.

e Diskettes - Refer to Section 1.11.

1.9 Mounting The System Or Backup Distribution Disk

Refer to the disk drive user’s guide for information on how to mount the disk
into the disk drive. You must provide your own blank disk to be used as the
system disk. It is not provided with the distribution kit.

For distribution on diskettes or magnetic tape, backup copies of the distribu-
tion medium come with the distribution kit. If your distribution medium is on
disk cartridge, then you should provide a disk of your own to back up the
distribution disk. If this is the case, you should mount the backup distribution
disk in the disk drive. At the beginning of the installation dialogue, you can
copy the distribution disk onto a backup disk. You must then unload the
backup disk and load a another blank disk, which becomes your system disk,
into the drive.

1.10 Start The System

1-14

You must now start (or boot) the system. You boot the system from the disk
or tape drive that contains the distribution medium. If your system is a PDP-
11/23-PLUS or PDP-11/44, you need to know how to identify the drive that
contains the distribution medium by a code. This code is described in item
number 4 of the preinstallation checklist in Section 1.5.

Installing DSM-11

The following sections describe the bootstrap procedure for these systems:

e PDP-11/23-PLUS

e PDP-11/24

e PDP-11/44

If you are installing DSM-11 on a different PDP-11 processor, refer to your
PDP-11 user’s, system installation, or system operating guide for information
on how to bootstrap the processor. If you are installing DSM-11 on the
MICRO/PDP-11, refer to Section 1.11.

Do not actually bootstrap your system until you are ready to go through the
DSM-11 installation dialogue, for this dialogue begins automatically once the
system has been booted.

Installing DSM-11 1-15

1.10.1 Starting The PDP-11/23-PLUS

Refer to Figure 1-6.

1. Lift the RESTART toggle switch. The switch springs back to the center
position, and the read RUN indicator lights up. The following messages
appear on your terminal:

TESTING MEMORY

xxxxX. KW

START?

2. Type on your terminal the device bootstrap identifier for the drive that
contains your distribution medium, for example:

DL1 RET

3. Press the carriage return key on your terminal. Wait for instructions to be
typed out on the terminal.

4. The DSM-11 installation dialogue now begins. See Section 1.12.

Figure 1-6: Starting the PDP-11/23-PLUS

MR-S-3480-83

1-16 Installing DSM-11

1.10.2 Starting The PDP-11/24

Refer to Figure 1-7.

1. Slide the HALT/CONT/BOOT toggle switch to the BOOT position. The
switch springs back to the center position, and the red RUN indicator lights
up. Numbers indicating the amount of memory appear on your terminal.
DSM-11 is automatically bootstrapped.

2. The DSM-11 installation dialogue now begins. See Section 1.12.

Figure 1-7: Starting the PDP-11/24

MR-S-3481-83

Installing DSM-11 1-17

1.10.3 Starting The PDP-11/44

Refer to Figure 1-8.

1. Slide the HALT/CONT/BOOT toggle switch to the BOOT position. The
switch springs back to the center position, and the red RUN indicator lights
up. The prompt >>> appears on the terminal.

2. Type on your terminal the bootstrap command and the device bootstrap
identifier, for example:

KR DL1 RET

3. Press the carriage return key on your terminal. Wait for instructions to
appear on your terminal.

4. The DSM-11 installation dialogue now begins. See Section 1.12.

Figure 1-8: Starting the PDP-11/44

MR-S-3482-83

1-18 Installing DSM-11

1.11 MICRO/PDP-11 Installation Procedure

The procedure for installing DSM-11 on the MICRO/PDP-I1 1s as follows:

1. Unpack and install the MICRO/PDP-11 hardware. Follow the instructions
indicated in your MICRO/PDP-1I1 Unpacking and Installation Guide.
Your MICRO/PDP-11 model must include the RD51 Winchester fixed disk
drive.

Do not switch on power for your MICRO/PDP-11 system unless you want

to check out the system by running the MICRO/PDP-11 user test diskettes.
See the MICRO/PDP-11 Unpacking and Installation Guide for informa-
tion on the test diskettes.

CAUTION

Make sure that any cardboard shipping inserts have removed
from the disk drives before switching on your MICRO/PDP-11.
NEVER switch on the system while these cardboard inserts are

in the disk drives.

2. Complete the preinstallation checklist given 1.5.

3. Switch on the power for your console terminal, if you have not
already done so during the unpacking and installation procedure
described in your MICRO/PDP-11 Unpacking and Installation

Guide. Section 1.6 also gives information about switching on your
console terminal.

4. Set the power switch on your MICRO/PDP-11 to on (1). See your
MICRO/PDP-II Unpacking and Installation Guide or
MICRO/PDP-II Owner’s Manual for more information. The
following message is displayed on the terminal:

KDF11B-BE ROM V1.8

128K MEMORY

9 STEP MEMORY TEST

STEF 123456789

TOTAL MEMORY ERRORS = @

CLOCK ENABLED

The first line of this text may be different for different models of the
MICRO/PDP-11. If the terminal is not an ANSI terminal, it displays
"6n" twice. If it is an ANSI terminal, there are two carriage returns.

Installing DSM-11 1-19

1-20

The system automatically tries to find bootable media on the system.
The following messages are printed (since the system cannot find any
bootable media):

ERROR UNIT DU2

ERR 16 NOT BOOTABLE

ERROR WNIT DU

ERR 16 NOT BOOTABLE

ERROR UNIT DUG

ERR 16 NUT BOOTABLE

WISH TO REBOOT C{Y.¢N)]?

. Insert the first DSM-11 RX5O diskette into one of the RX50 diskette

drives. If you are unfamiliar with how to insert an RXS50 diskette into
a drive, refer to the MICRO/PDP-11 Owner’s Guide.

Type:

TRET)

The following message appears:

BOOTING FROM DU1

Boating DSM-11...

The message can refer to DU1 or DU2, depending on which drive you
put the diskette in. It does not matter which drive you use.

6. The DSM-11 installation dialogue now begins. See Section 1.12.

Installing DSM-11

1.12 Installation Dialogue

Before beginning the dialogue, you should have completed the preinstallation
checklist, and loaded a disk that is to be your system disk (except for the
MICRO/PDP-11 which has a fixed Winchester disk, which becomes the

system disk).

You now begin the installation dialogue. This is a series of questions that you
must answer. After each question there is a short comment in this manual.
You can also obtain helpful information by typing a question mark (?) as your
answer to the question. The computer types out a short message about the
question on the console or terminal, and then restates the question.

Each question ends with the prompt (>). When the prompt appears, type
your answer to the question, and then press the carriage return. If you type

only a carriage return, you get the default answer, which follows the question
and is contained within angle brackets, < >.

The computer may type out messages for your information which you do not
need to answer. These messages do not end in a prompt.

If a question demands a YES or NO, answer with a lowercase or uppercase Y
or N, followed by a carriage return. If you type an inappropriate answer or a
?, then you get a help message.

SAMPLE INSTALLATION:

ee

Start?

DLW RET

Rooting DSM-11...

It takes approximately 15 seconds to boot the system. If you loaded the

distribution medium into a unit number different from unit 0, be sure to

indicate this when booting, for example, DL1 for unit 1 of an RLO2 drive.

DSM-11 Versian 3

Naw running the Baseline System.

This is a DSM-11 Version 3 Distribution Disk.

You can use this specialized DSM-11 system either ta create your awn DSM-11

system, or ta copy this disk onto another disk Cas a backup).

You should make a copy of the distribution disk to serve as a backup. Later in
this dialogue you can install the system on your system disk. You need

Installing DSM-11 1-21

1-22

separate disks for the backup distribution disk and the system disk. If your
distribution medium is diskettes or tape, you do not need to back them up
because you receive a backup copy of the diskettes or tape with the distribu-
tion kit.

Do you wish to make a copy [CY or NJ (ND) YES

Answer YES if you want to make a copy of the distribution disk.

Make copy aon which disk unit ? > DL1

Indicate the disk unit number that contains the disk that can be overwritten
with a copy of the distribution disk. Overwriting means that any data on the
disk is destroyed and replaced with data provided from the distribution disk.
If you answer ? to this question, you get a list of the disk drives that are
available. After you indicate which disk unit to use, it takes about five minutes

to make the copy.

Begin copy...

End capy...

Now you must remove the backup copy of the distribution disk and load a
disk that you wish to become your system disk.

Begin DSM-11 Versian 3 System Installatian

Answer with a question mark €?) any time you wish more information.

Please enter today’s date [dd-mmm-yy] ? >3-JUL-83

and time [hh:mm:ss] ? 11:45

Fassible disk units are: DUM CRDS1 unit @)

DL1 CRL@? unit 1)

Install DSM-11 an which disk ?)DL1

This question is asked only if there is more than one disk drive of more than 2
megabytes capacity connected to the system. Each separate disk drive is
referred to as a unit. For the MICRO/PDP-11 system, DSM-11 is installed on

DUO, the RDS1 Winchester fixed disk drive.

De you wish to format this disk)"

This question only appears for RKOS, RP04, RPO5, or RP06 disks. In general,
you should answer YES to this question (if it appears), unless you know for
certain that this disk was already formatted.

Do you wish to run a comprehensive test for bad blacks an this disk ? [Y/N])¥

Installing DSM-11

You should answer yes to this question to uncover any bad blocks. Bad blocks
have some physical defect that prevents them from being used. A block can be
thought of as a unit of data. In DSM-11, a block is equal to 1024 bytes. Each
byte is equal to 8 bits. A bit is a binary piece of data represented by either a
"0" or a "1".

The DSM-11 system lists these blocks in an internal Bad Block Table, and
avoids using them. Finding bad blocks (unless there are a very large number of
them) does not prevent the system from continuing with the installation. If the

system finds a large number of bad blocks and fills the Bad Block Table, the
system halts the installation. You then have a problem with either the disk or
the disk drive.

The testing for bad blocks does not actually occur until the next four questions
are answered.

Test pattern 177777 octal ? [Y/N] > N

Test pattern 125125 octal ? [Y/N] > N

Test pattern 329925 actal ? [Y/N] > N

Test pattern QO8088 octal ? [Y/N] > a
T

These questions on test patterns are asked only if you answered YES to the
previous question about having a bad block check done. The numbers
represent patterns of data that will be written to every block on the disk. The
”000000” pattern is one commonly used to check DSM-11 disks. The system
requires some time to complete this test (for example, about two minutes for
an RLO2 disk). This time varies depending on the size of the disk involved.

CYou can hit the "ESC" key at any time to determine the number of blacks processed

so far.)

1:20:45 Begin test pattern Qv0008

1:23:07 Testing complete

RL@2 Unit 1 Bad Black Table

The Bad Block Table is empty

Do you know of any other bad blocks on this disk?) 1

If you know of any bad blocks on this disk (from using it before on a DSM-11
system), then answer Y to this question. If you do not know of any bad
blocks, answer N for NO. For a new installation with new disks, you answer
N.

What is the block number of the bad block) 3432

Now adding block 5432 to DL1 Bad Block Table.

Installing DSM-11 1-23

1-24

What do you want the label of this disk to be ?

Cup to 22 characters; enclosed in quotes) ? >) "TEST SYSTEM"

Each disk has a label or name for the disk. This name is written to a block on

the disk.

What 3-character uppercase name do you wish to give this volume set ? $S''5

Naw initializing DL1 for use as a DSM-11 volume...

The system has now collected the appropriate information from you about the
disk, and must initialize the disk as a DSM-11 disk. This must be done because

DSM-11 has its own format for a disk. When the system begins copying
information onto the disk, it expects the disk to be in DSM-11 format.

Loading the DSM-11 Version 3 system utilities anto the system disk:

ZBN /CRF ZCRF1

The system then begins to copy information from the distribution media to the
disk. The distribution media is the disk, magnetic tape, or diskette that

contains the DSM-11 software. The disk that is receiving information is
referred to as the system disk. It takes about three minutes to copy all of the
system utilities onto the disk.

The next question is asked only if your distribution media is RX50 diskettes. If

this is the case, you have additional diskettes that must be mounted in diskette

drive 2 in the correct sequence. If you booted from drive 1, DSM-11 asks you

to mount additional diskettes in drive 2 (DU2). Note that the point at which
this question is asked (just before the routine MBPH) can vary from what is
shown here.

Flease mount the second installation diskette in diskette drive Diz.

MBPH MDAT MND...

. UNLOAD UTL V3TAPEGL V3UTILS VALID

The codes such as "MBPH” or "MMD” are the names of utilities that are
being transferred to the disk. You do not need to respond to them in any way.
Note that the actual list of routines that you see is longer than the list given
here.

Please mount the third installation diskette in diskette drive DU2.

Transferring the system globals:

A AEDI ZEDIHELP ZMENU 7Q ...

Installing DSM-11

A global in DSM-11 is equivalent to a data file. The system is now copying
basic files that the DSM-11 system uses when it is running. It takes about one

minute to transfer these globals.

Now copying the system image onto your new disk, making it a bootable DSM-11

Versian 3 system disk...

Now the operating system is copied onto the disk. When this is completed, the

system disk is complete; and the following message is given:

DL1 is now a bantable DSM-11 Version 3 system.

You can dismount the distribution disk or diskettes now.

You should remove your distribution tape, diskette, or disk and store it in a
safe place. In case of some accident or (unusual) disk problem, you may need
to install the system again at some point in the future.

You have na defined configuration.

Do you wish ta proceed directly to SYSGEN ? <'D

You can answer N to this question to have the Baseline System, which is a
limited running system - but you should proceed and answer the SYSGEN

questions.

System generation for DIGITAL Standard MIUMPS

Type ? for HELP at any time.

SYSGEN means “system generation,” the next step after system installation,
which you have just completed. You can establish different configurations of
SYSGEN that have different characteristics (such as different software

options), but use the same system disk. You can produce a well optimized
system that includes all your hardware devices by simply taking the default
values for all of the SYSGEN questions. This approach results in an autocon-
figuration that minimizes the number of questions that you are asked.

PART 1: SYSGEN

1.1 Would you like extended help ([Y or NJ] ? (Nd

If you answer YES to this question you will get a paragraph (or more) of help
text with each question.

1.2 Enter the configuration identifier (1) TEST

You must give this configuration a unique name. At a later time, you may
want to set up a different configuration.

1.3 Do you wish to autocanfigure the current system [Y or N) ? (¥) 1

Installing DSM-11 1-25

By answering Y to this question, you call the autoconfiguration procedure. On
some of the older PDP-11s, the autoconfiguration procedure can fail. The
procedure can hang indefinitely. If your procedure does not complete the next
step in two minutes, it is probably hanging. If this happens, you must reboot,
and then do a system generation without autoconfiguration. In this case, you
need to know the CSR and Vector addresses for the hardware devices
connected to your system.

Canfiguring Hast System...

This process takes about 30 to 60 seconds.

Fracessar Type: PDF-11723

Memory Size: 128 KB

FracessaorsMemary Options:

Extended Instructian Set

Name Vector CSR Unit Type Description

DLA 168 174480 RL11 Disk Controller

Q

1

MSA 224 172520 TSVQ5 Tare Controller

"LA Suk 176500 DLii Asynch Single Line Cantroller

"LE 3148 176518 DL1i1 Asynch Single Line Controller

WLC 328 176528 DL11 Asynch Single Line Controller

1.4 Do you wish to modify this configuration information [4 or NJ? (N) N

You should answer N to this question to include all of these devices in your
configuration. If you answer Y to this question, then you will be asked

individual questions on all hardware devices.

FART 2: DISK INFORMATION

Disk information supplied by AUTOCONFIGURE

PART 3: SYSTEM DEVICES

System Device information supplied by AUTOCONFIGURE

PART 4: CONFIGURE DMC-11s

1-26 Installing DSM-11

PART 3: SOFTWARE CONFIGURATION

2.1 Do you wish to use the STANDARD SOFTWARE OFTIONS [CY ar NJ ? ¢<¥)

Answer YES to this question to make the software options available. The
standard options that you receive are given in Part 7. If you answer YES to

this question, SYSGEN proceeds automatically through Part 12.

PART 6: ASSIGN DEVICE NUMBERS

The following single-line device assignments have been made:

Device Number Contraller-Number

3 DL1i1-1

4 DL11-2

> DL11-3

PART 7: SOFTWARE OPTIONS

SEMUENTIAL DISK FROCESSOR suppart: Included

JOURNAL Support: Included

“ buffers

INTERJOB COMMUNICATIONS support: Included

With 16 communication channels

and a 64-byte default ring buffer size

EBCDIC-ASCII TRANSLATION TABLES support: Nat Included

LOADABLE or USER DRIVER SFACE support: Nat Included

AECUTIVE DEBUGGING TOOL support: Not Included

SPONLING SUPPORT : Not Included

MAFFED ROUTINES support: Nat Included

UCI TRANSLATION TABLES support: Included

MOUNTABLE DATA BASE VOLUME SETS support: Included

Total System Exec size: 29.48 K Bytes

Installing DSM-11 1-27

FART 8&8: MEMORY BUFFER ALLOCATION

Default terminal RING BUFFER size: 64 KBytes Tatal

Total space allocated to RING BUFFERS: 1536 Bytes

Tatal number of 1K byte DISK-TAFE cache

buffers: 33

FART 9: SYSTEM DATA STRUCTURES

Space allocated far DISK-MAF and BAD BLOCK 448 Bytes

TABLE:

Space allocated ta UCIT TRANSLATION TABLE: 1824 Bytes

Space allacated ta LOCK TABLE: d12 Bytes

Number af mauntable DATA BASE VOLUME SETS 3

FART 18: JOB FARTITION DEFINITION

FARTITIONS are allacated in 1@24-byte

increments.

The following FARTITIONS have been defined:

JOURNAL system job 1K bytes

GARBAGE COLLECTOR JUB system jab 1K bytes

Job 1 ¢to guarantee one 8K byte PARTITION) BK bytes

Default partition size: BK bytes

Space remaining for FARTITION allocation: 18.18K bytes

The remainder of nemary is assigned ta the DYNAMIC FARTITION FOOL

PART 11: DATA BASE PARAMETERS

WRITE CHECK after WRITE on disks: Not Included

1-28 Installing DSM-11

System default glabal characteristics are:

#-Bit Subscripts: Yes

Journaling: Yes

Callating sequence: Numeric

PART 12: BASIC SYSTEM PARAMETERS

View buffer device protection: Included

ZUSE command protectian: Included

LOG-IN SEQUENCE CHARACTERS: Echoed

Default AFFLICATION INTERRUPT key: 3 C(CTRL/C))

Default FROGRAMMER ABORT key: 20 ((CTRLSY))

Time delay for POWER FAIL RESTART: 40 seconds

Time delay for TELEPHONE DISCONNECT : 13 seconds

Number of signifigant DIGITS for DIVISION: ra

12.39 Is the LINE FREQUENCY 68 H2 [CY or N] ? <4)

By pressing the carriage return key, the default value of 60 hertz is selected.
This is the correct value for the United States and Canada. You should enter N
if you are connected to an electrical system in a country with a S0-hertz
frequency.

12.108 Enter the 3-character Programmer Access Cade (PAC) >) 227

This code is a password. You must give this code each time that you log in to
DSM-11. Choose a code that is not obvious.

Flease enter your initials) J55

The system keeps a record of who generated this SYSGEN by storing your
initials.

Enter comment (max. 208 chars.) > Test Autocanfiguration

Here you can enter a brief comment about this particular SYSGEN session.

The system global “SYS has been built by SYSGEN.

“S¥S is a reserved global and should not be altered.

Installing DSM-11 1-29

1-30

If you wish to customize your new configuration by madifying:

e Terminal speed settings or other parameters

e Magnetic tape default format

WCIs or data base VOLUME SETS

TIED TERMINAL table

LCI Translation Table

Default GLOBAL CHARACTERISTICS/FLACEMENT

e Routine maps

then log in to the INanager s UCI and type "D*SYSDEF" .

Through “SYSDEF you can have access to utilities that can do the modifica-
tions just described. You cannot log in at this time. You can log in once you
build a start-up command file and start the configuration running. You are
currently still running the Baseline System. Chapter 10 contains detailed
information on the “SYSDEF utilities.

You donot have a start-up command file,

Do you wish to remain in the Baseline System: <(N)>

DSM-11 uses the start-up command file, in addition to the system configura-
tion, when starting up the system. You can change (at a later date) this
command file by using the utilities Define System Parameters, “STUBLD, or

when using the System Start-up utility, “STU. Both of these utilities are
described in Chapter 11. To establish a start-up command file for this config-
uration, answer NO to this question.

You can remain in the Baseline System by answering Y to this question. If you
do so, remember that the UCI is MGR, and the PAC is

(CTRLTX) (CTRLLX) CoTRtTxX). The new PAC that you entered in question 12.10
applies only to the new configuration that you just created.

Begin defining a new start-up cammand file.

The following questions are the same as those asked by the system utility
“STUBLD.

Configuration ? «TEST?

Apply patches ta memory [C''/N] ? <N)

Start up the Journal [iN] ? (ND

Enable the Spacl device (device 2) [Y/N] ? (N)

Start the caretaker background job [Y/N] ? (4)

Enter printer number far system error messages (1)

Autematic legging of DSM errars [Y/N] ? (ND

Installing DSM-11

Maunt additional disk valumes ['Y or N] ? (ND

Make this the new start-up command file for configuration TEST [Y/N] ? ¢")

By pressing the carriage return, you take the default values for each of these
questions. In this way, you quickly build a start-up command file.

Reconfiguring memory...

Memory reconfigured

The system takes about 20 seconds to reconfigure memory.

Now mounting volume set SYS in table slot SQ

Valume 1 on DL1 has 10808 blacks #IS1 available

Tatal in volume set 18888 blacks #951 available

Building terminal control blacks...

Caretaker is now running as job number 2.

The caretaker job is a “background” job that is transparent to the user and
does basic housekeeping functions for the system.

DSM-11 Version 3 TEST is naw up and running!

Exit

The autoconfiguration is now complete, and you have a running system with

the default values that have been indicated. By pressing mE, you get the
DSM-11 log-in prompt. You can now log in and use the system. You can log in
to the System Manager’s UCI by typing MGR: and then ZZZ for the PAC
(which is the password as indicated in the answer to the earlier question about
the PAC). Now is the time to run “SYSDEF to further define and modify your
configuration.

RET

DSM-11 Version 3 Device 1 WCI: MGR: 222 Ret

)

Installing DSM-11 1-31

Part 2: Introduction to DSM-11

Chapter 2

Overview of DSM-11

This chapter introduces the basic building blocks of DSM-11: the language,
the data base, the operating system modules, the system and library utilities,
and the hardware.

2.1 System Overview

DSM-11 is a multiuser, time-sharing system that runs on the PDP-11
computer. Basic system features include:

e Use of Digital’s version of the ANSI standard MUMPS language

e Variable-length data elements and variable-length logical records

¢ Random access of data through variables

Utilities for system management and application program development

Support for a variety of terminal and peripheral devices

2.1.1 The Language

The DSM-11 language is a high-level, interpretive language.

Overview of DSM-11 2-1

2-2

The language has many capabilities. Its basic orientation is procedural Its
capabilities are primarily directed to the processing of variable-length string
data. It also provides standard algebraic and Boolean operations.

DSM-11 allows you to write a routine as well as to debug, edit, run, and
modify it in one interactive session at the terminal. This single-session capabil-
ity reduces problem-solving time, the computer time to check the routine, and,
most importantly, the time required to obtain a final running application.

The language interpreter has two main user modes: Programmer Mode and
Application Mode. In Programmer Mode, you can execute commands and
create, modify, debug, and store routines. In Application Mode, you can

execute routines (which are applications).

2.1.2 System Capacity

The DSM-11 system software requires between 48K and 72K bytes of memory.

The exact requirement depends on the hardware and software configuration at
a particular site. During system generation, DSM-11 subdivides the remaining
memory into user partitions and input/output buffers.

A partition holds users’ routines, as well as local data and partition overhead
information. DSM-11 systems can have as many as 63 partitions depending on
partition size and available memory. The System Manager can determine
partition sizes either at system-generation time or at log-in time. The
recommended (and default) size for a partition is 8K bytes (to run system

utilities), but it is not necessary for all partitions to be the same size. When you
access the system and do not specify the partition size, DSM-11 assigns the
default size.

2.1.3 Data Access

The data access capabilities of DSM-11 allow you to reference data symboli-
cally through variables. A variable represents a variable-length character string
that is either a numeric value or an alphanumeric string.

DSM-11 allows two types of data: local data and disk data; and thus two types
of variables: local variables and global variables.

Local data is defined solely for the routine or routines residing in the partition.
This type of data is not intended for permanent storage, but only for
temporary use. DSM-11 allocates storage space for this data only as needed.

Overview of DSM-11

All data stored on disk are referenced symbolically; their names are similar to

those of local variable names in a routine. Data stored on disk comprise an
external structure of arrays. This structure provides a common data base

available to all routines within a user class or group of user classes. The arrays

that make up this external structure are called global arrays. Each global array
is identified by a unique name. Elements of an array are comprised of records

stored on disk. All elements are referenced by subscripts.

2.1.4 System Access

The DSM-11 protection scheme controls the availability of routines and global
data to users. This protection scheme divides users into user classes. There can
be as many as thirty classes of users for each volume set defined within the
system. Each user class has access only to those routines residing within that

class, and to the library utility routines. All user classes can have access to
global arrays.

To access a user class, you must have a password. The password is called a

User Class Identifier (UCI). If you know a UCI, you can enter DSM-1!11 in

Application Mode. Application Mode allows you to run routines that read or
write global data but cannot write new routines or modify existing ones. If you
have an additional password called the Programmer Access Code (PAC), you

can enter DSM-11 in Programmer Mode. Programmer Mode allows you to

run and modify existing routines or write new routines. The System Manager
assigns the PAC and UCI codes at system generation time or with the Modify
Basic Parameters (“MBP) Utility.

Some applications do not require users to have programming access to the
system. In such cases, DSM-11 allows you to “tie” a terminal to a particular

routine. DSM-11 invokes this routine whenever you access that terminal. In

this “tied” mode, you bypass the DSM-11 login procedure and immediately

begin executing an application routine.

2.2 System Software

The DSM-11 system software consists of:

e The DSM-11 operating system

e The system utility routines and global arrays

e The library routines and global arrays

The following sections describe each element of the DSM-11 system software.

Overview of DSM-11 2-3

2-4

2.2.1 Operating System

The operating system contains all the software necessary to operate DSM-11
on the PDP-11. The software is completely memory-resident, and consists of

four operating system functions. All four functions constantly interact with
each other. For purposes of a general overview, however, each one is
described as a separate function.

Executive

The executive is a system supervisor that controls the time-sharing operations
of the DSM-11 system by assigning each new user the next available partition.
The executive passes control from one user to another optimizing the use of

the central processor.

I/O Monitor

The I/O monitor supervises peripheral devices such as magnetic tape, line
printer(s), and terminals. It initiates and processes input/output activity
through its interrupt handlers. The I/O monitor also handles terminal I/O by
communicating with the interpreter through buffers. By supervising the filling
and emptying of these buffers, the monitor can overlap output with the

processing of the routine that requested I/O.

Language Interpreter

The language interpreter implements and controls routines written in the
DSM-11 language. Specifically, 1t examines and analyzes each language
statement and executes the specified operation. The interpreter also files and
loads routines to and from the disk. The interpreter is particularly useful in

three respects:

e You do not need to compile or assemble routines.

e The interpreter performs error checking during program execution, and

reports all language errors at the terminal.

e You can perform debugging at the terminal.

Data Base Supervisor

The data base supervisor controls the logical and physical allocation of disk

structures that form the DSM-11 data base. The disk structures that store the
data base are called blocks. Blocks store data records that you reference

symbolically through global variables. Subscripted global variables form

arrays whose data records are stored in blocks in a tree-like configuration.

Overview of DSM-11

The data base supervisor allots only the space necessary to store the elements
of the global array that are defined. When a global array no longer requires
the space (or part of the space) allocated to it, the data base supervisor
recovers the space and returns it to the system’s pool of available disk space.
(Refer to Chapter 13 for detailed information about the data base supervisor.)

2.2.2 System Utility Routines

The DSM-11 system utility routines are a part of the DSM-11 software
package. The utility routines are written in the DSM-11 language. They are
provided to help the application programmer and the System Manager develop

and maintain the software and data for their application.

You use the DSM-11 utility routines to maintain and service the system. These
routines are stored on the disk under control of the manager’s UCI (UCI 1),
and are accessible only to individuals who know the manager’s UCI code.
Their functions fall into the following categories:

e System backup and global journaling

e System parameter modification

e Miscellaneous utility operations

System backup utilities allow you to create physical backup of globals from

disk on any mass storage media supported by DSM-11. These utilities also
format and initialize disk packs as DSM-11 volumes.

The journaling utilities provide additional backup by allowing you to save and
restore all SET and KILL operations you perform on specified globals. System
parameter change utilities allow you to modify the system configuration. The
miscellaneous utilities provide services for system management functions that
are frequently performed.

2.2.3 Library Utility Routines

The library utility routines are part of the DSM-11 software package, and
provide general services for all users regardless of UCI. These services include
utilities that allow you to save and restore individual routines and globals.
These routines also reside under the manager’s UCI, but use a naming conven-
tion that distinguishes them from system utilities. Names of library utility
routines begin with the percent (%0) character. Their functions fall into the
following categories:

Overview of DSM-11 2-5

e Routine related

e Global related

e Miscellaneous

2.2.4 Library Utility Globals

Some of these routines hold data, and others hold MUMPS command lines

that perform routine editing functions.

2.2.5 System-Configuration Global

The System-Configuration global (SYS) contains the necessary information

to describe the hardware and software environment for the DSM-11 system.
Using the system generation utility package, you can construct the configura-
tion to suit your application in terms of software options, hardware
components, program partitions, and user classes. You can also generate
alternate configurations that enable your system to run with different
hardware and software features. Each time you start your system, you can
choose the configuration under which you want to run.

2.3 System Hardware

2-6

The hardware for DSM-11 is based on the PDP-11 central processing unit and
its associated peripheral devices. The total hardware configuration for a DSM-
11 system can vary. Important factors to consider when configuring the
hardware for a system are:

e Memory size requirements

e Types and numbers of terminals

e Capacity and number of disk and tape drives

The system is distributed on 9-track magnetic tape, 5 1/4-inch floppy disket-
tes, and disk cartridges. One of the supported disk types must be available for
use as a system disk. The system disk is the disk where the DSM-11 operating

system is stored.

Overview of DSM-11

Part 3: Programming and Using the DSM-11

System

Chapter 3

Accessing DSM-11

This chapter provides information about operating terminals and accessing the
DSM-11 system.

3.1 Using the Terminal

You use a terminal to communicate with the PDP-11 computer and the DSM-
11 operating system. A terminal is a device that looks, and sometimes behaves,

like a typewriter.

You type commands on the terminal keyboard to tell the computer what you
want it to do. The computer either responds as instructed or displays a
message telling you that it does not understand your request.

DSM-11 supports several different terminals. These fall into two general
categories:

e Hard-copy Terminals

e Video Display Terminals

Hard-copy terminals print on continuous forms of paper. This type of
terminal is particularly useful when you want a permanent record of your
terminal session. The LA120 is an example of a hard-copy terminal.

Video display terminals print on a television-like screen called a Cathode Ray
Tube (CRT). Generally, you cannot get a permanent record of your terminal

Accessing DSM-11 3-1

session from a video display terminal. However, in many cases you will find
that a video display terminal offers a faster and more effective work environ-
ment than a hard-copy device. The VT100 and the VTS2 are common video
display terminals used with DSM-11.

Figure 3-1 illustrates both hard-copy and video display terminals.

Figure 3-1: Common DSM-11 Terminals

|=

_

MR-S-3483-83

3-2 Accessing DSM-1]

A terminal has a keyboard that resembles a conventional typewriter. The
keyboard contains alphabetic and numeric characters. Information that you
type on the terminal keyboard is sent to the computer for processing.

3.1.1 Function Keys

Most terminals have keys that allow you to send special signals to the
computer. These keys are called function keys.

Figure 3-2 shows the keyboards of two different terminals: the VT100 and the
VT52. Arrows point to the most commonly used function keys. The symbols
used in these diagrams are used throughout this text as a shorthand notation to
indicate that you should press these keys.

Note that function keys are not always in the same position on different types
of terminals, so check the keyboard layout each time you use a terminal for
the first time.

Figure 3-2: The VT100 and VT52 keyboards

t

a1 CURSOR

a
. aan
-QODO
“lela |

ENTER!

Bou nun Men A? mane
— SEER bs
~~ SERER La

3 esi Se ETE w TEE
"

MODEL

@—- : - F = | : “i a An - ar we 4 sa | me

SNS as ey Ran ed Py we = US
TAB

ACEI SA ia a oe
‘

MR-S-930-80

Accessing DSM-11 3-3

‘RET (DEL MR-S-926-80

RT yl or for rp (ee ile 2 Pua 0
Mw rae “Wo WN

AR reine va \ Ll) Ve ye

3-4

Table 3-1 describes the important function keys that appear on your terminal.

Table 3-1: Function Keys

Function Key Description

(DEL)

TESC)

(RET) (carriage

return)

Is part of many 2-key combinations that perform a variety of

defined functions.

The control characters used most often are described in Table

3-2.

Deletes the last character entered on a video terminal and

backspace over it. On a hard-copy terminal, DELETE instructs

the system to ignore the last character typed, and prints a

backslash (\).

Terminates input lines from the terminal if escape sequence

processing is not enabled. For more information about escape

sequence processing, refer to Table 6-1.

Transmits the current line to the system for processing and

advances the cursor to the leftmost position of the next line.

Moves the printing position on the terminal to the next tab

stop. Each tab position represents eight spaces.

Terminal keyboards do not always represent function characters in the same
way. The following are some common variations:

e The ESCAPE key can be labeled ALT MODE or ESC (SEL)

The circumflex (*) can be represented as an uparrow

The underscore (__) can be represented as a backarrow

The DELETE key can be labeled RUBOUT, or DEL

The RETURN key can be labeled CR for carriage return

If you do not have a Digital terminal, consult your terminal user’s guide for
information about the representation of function characters.

Accessing DSM-11

3.1.2 Control Characters

A control character is a character sequence entered by pressing a letter key and
the <CTRL> key, simultaneously. Control characters are sometimes
displayed on the terminal by a circumflex (*) followed by the selected letter.
Other control characters such, as c¢taczn, are not displayed. When you enter
a control character, the system performs one of several tasks. Table 3-2

summarizes the functions of the most commonly used control characters.

Accessing DSM-11 3-5

Table 3-2: Control Characters

Control Character Function

(CTRLUTB) When in Programmer Mode, turns on the MUMPS debugger. If a

routine is running at the time (CTRL 7B) is struck, the routine will

be interrupted by a break. Equivalent to ZBREAK ON followed

by BREAK. See Section 4.8 for more information on the

debugger.

(CTRL/C) When enabled, causes DSM-11 to generate an <INRPT >error;

depending on how error handling is set up, execution of a

routine may continue. See Section 4.10 for a discussion of error

handling. See the discussion of <ctrt7y) that follows for

unconditional command execution interruption. Refer to

Section 4.7 for a complete description of DSM-11 responses to

.CTRE/CO..

Initiates the log-in sequence, if a terminal is not set up for baud

rate detection (autobaud).

CTRL D) When you type (CTATTD) at the console terminal, the entire

system’s operation is interrupted, and the system debugger,

DSM-11 XDT, is started (assuming XDT 1s included in the

system’s configuration.) Type G to exit from the system

debugger. Refer to the DSM-1]1 XDT Reference Manual for

additional information.

(€¢ TREY Duplicates the function of the TAB key.

(CTRL L) Causes a form feed.

C6ETRUTM Duplicates the function of the RETURN key.

(CTRL TO) Suppresses display of terminal output the first time you press it,

and resumes output to the terminal (at a further point in the

display) the second time you press it.

(CTRLTP) When you type it at the console terminal of a processor

equipped with a remote diagnostic console, enters console

Programmer Mode. To exit from console Programmer Mode,
type "7".

CETRLTQ) Restarts terminal output that was stopped by <cTRI7s).

(CTRL #) Retypes the current line and leaves the cursor positioned at the

end of the line. This is particularly useful on a hard-copy

terminal.

(CTRLTS Stops terminal output until you press ccTRt 7a). No data is lost.

C€TRL/U) Discards the current input line.

(CTRL TY) In Programmer Mode causes an <ABORT> error, and

interrupts command execution. Ignored in Run Mode. See Section

4.7 for more discussion of (CTALTC) and <CTALZLY) interruption.

3-6 Accessing DSM-11

3.2 Logging in DSM-11

The procedure you use to access DSM-11 from the terminal is called /ogin. The

log-in procedure identifies you to the DSM-11 operating system. You let the
system know you want to log in by pressing a carriage return or cracze, if

the terminal is not autobauded. For an autobauded terminal, see Section

3.2.8. The system responds by asking you to identify yourself:

DSM-11 Version n.n Device nnn UCI:

If you do not respond to the log-in prompt within 30 seconds, DSM-11

displays:

TIME-CLT

and prints the log-out message. You must then reinitiate the log-in sequence.

In general, login involves entering two or three access parameters:

e The User Class Identifier Code (UCI)

e The Programmer Access Code (PAC) or routine name

e The partition size (in bytes)

3.2.1 The User Class Identifier Code

DSM-11 allows 30 classes of system users in each volume set to be defined.
The password necessary to access one of these user classes is called the User
Class Identifier (UCI). The UCI can be any combination of three alphabetic
characters.

NOTE

You must have a UCI before you can log into the system. UCIs are
set up by the System Manager or whoever authorizes the use of your
system.

Accessing DSM-11 3-7

3-8

3.2.2 The Programmer Access Code

A privileged DSM-11 user is given the system Programmer Access Code in
addition to a UCI. There is only one PAC for a DSM-11 system. The PAC can

be a combination of any three characters (including control characters).

3.2.3 Partition Size In Bytes

Partition size in bytes is an optional parameter. If you do not specify partition
size, DSM-11 assigns a partition of the default size specified during SYSGEN.
(See Chapter 10 for more information on SYSGEN.) The SYSGEN default
partition size is 8K bytes.

3.2.4 DSM-11 Modes

DSM-11 has several modes:

e Application Mode - gives you access to a specific routine (an application).

e Programmer Mode - allows you to write routines; includes two other modes
described in Section 4.2:

e Direct Mode.

e Indirect Mode.

e Break Mode - is used for debugging purposes. See Section 4.8.

e I/O Modes - accessed by the OPEN or USE command, refers to input and
output modes through a specific device. See Chapter 6.

The two user modes that you can access when logging in are:

e Application Mode

e Programmer Mode

By itself, the UCI lets you operate in Application Mode.

In Programmer Mode, you can execute commands, and create, modify,
debug, and store routines. See Sections 4.2 for more discussion of Direct,

Indirect, and Programmer Modes. In combination with a UCI, the PAC
allows you to operate DSM-11 in Programmer Mode.

Accessing DSM-11

Sections 3.2.5 through 3.2.8 describe the log-in procedure for each of these
user modes and for tied terminals.

3.2.5 Logging In DSM-11 Application Mode

After DSM-11 displays the log-in prompt, select DSM-11 Application Mode

by typing your UCI, followed by a colon (:), a routine name, and an optional
colon followed by a partition size in bytes. This type of login permits access to
the routines and globals listed in the routine and global directories assigned to
your UCI. If you are limited to running selected routines, you will only be
permitted to know a specific UCI and the names of the routines that you can
run.

To let the system know you want to log in, press the carriage return. (If your
line is not an autobaud line, then press a carriage return or cCTRIC).)

Then respond to UCI: by typing your UCI followed by a colon (:) and a

routine name. Terminate the line with a carriage return. For example:

DSM-11 Versian n.n Device #64 ICI: MGR: DATA: 8192 ret

This login sequence gives you access to DSM-11, and executes the routine
DATA. Note that there are no spaces between the UCI and the DSM-11
routine name.

3.2.6 Logging In DSM-11 In Programmer Mode

After DSM-11 displays the log-in prompt, select DSM-11 Programmer Mode
by typing your UCI followed by a colon (:) and the Programmer Access Code
(PAC). For example, the following log-in sequence grants you access to the

UCI “DEM” in Programmer Mode:

RET

DSM-11 Version n.n Device #64 UCI: DEM: RAK Ret

)

(if your line is not an autobaud line, then press a carriage return or (CTRL7©).)
The system responds by displaying the DSM-11 Programmer Mode prompting
symbol, the right angle bracket (>). This prompt indicates that the system is
ready to accept commands to create, edit, delete, or run DSM-11 routines.

Accessing DSM-11 3-9

3.2.7 Logging In At A Tied Terminal

Tied terminals force the automatic and protected start-up of a DSM-11
application. Tied terminals restrict user access to preselected routines and
globals. To log in at a tied terminal, type:

RET:

(if your line is not an autobaud line, then press a carriage return or (CTRL7©).)

3.2.8 Logging In Through A Modem With Autobauding

DSM-11 has an option for automatically detecting the baud rate of your
terminal when you log in. Baud rate refers to the speed at which information is
transmitted over the line between your terminal and the computer. Different
terminals can have different baud rates, or the same terminal can be set up for

different baud rates.

Autobauding is especially useful for terminals connected with modems. If
your system is using autobauding, you must log in with a carriage return. You
may need to press the carriage return more than once. Allow a brief pause
(one or two seconds) between each time you press the key, for example:

RET

RET

The system responds with:

DSM-11 Version n.n Device #64 UCI:

You should respond appropriately depending on whether you are logging in in
Programmer Mode or Application Mode.

3.3 Logging out of DSM-11

3-10

The log-out procedure ends a terminal session. DSM-11 provides three ways to
log out. Each procedure is associated with one of the log-in procedures
described in Sections 3.2.4 through 3.2.8.

1. If you are in Programmer Mode, that is, if you have logged in with a PAC,
type HALT in response to the Programmer Mode prompt:

Accessing DSM-11

> HALT RET

The system displays an EXIT message, and logs out the terminal.

NOTE

If a routine executes a HALT command, DSM-11 also logs out the

terminal.

. If you are in Application Mode, that is, if you have with a routine name or
through a tied terminal, logout is accomplished in either of the following
ways:

e If the application has enabled cratre recognition with a BREAK 1
command, type ccrRt 7c, which generates an <INRPT> error. If this
error iS not trapped by the error-handling routines of the application,
you will be logged out. Refer to Section 4.8 and the DSM-11 Language
Reference Manual for more information about the BREAK command.

e If the application has not enabled cctrtzec recognition, the routine is
unbreakable; and you must wait for the program to terminate normally
when it encounters a QUIT or HALT command. After normal termina-
tion, the system displays the EXIT message, and logs out the terminal.

NOTE

If you shut off your terminal while you are logged in, the system
does not log you out.

Accessing DSM-11 3-11

Chapter 4

Using DSM-11

This chapter describes how to use DSM-11 to develop your application
routines. It also provides information about DSM-11 directories, and
describes useful programming techniques to process errors. It describes:

e Entering DSM-1!1 commands

e Creating routines

e Saving and loading routines

e Deleting and renaming routines

e Storing routines on sequential files

e Editing routines

e Starting and stopping routines

e Debugging routines

e Using directories

e Error processing

To use this chapter effectively, you should be familiar with the syntax of the
DSM-11 language as described in the DSM-11 Language Reference Manual.

Using DSM-11 4-1

4.1 Entering DSM-11 Commands and Routines

4-2

After you have logged in to DSM-11 in Programmer Mode, the DSM-11
interpreter is ready to accept commands from the terminal keyboard. You
must adhere to strict DSM-11 syntax when you enter commands in Program-
mer Mode.

The following sections describe the aspects of DSM-11 syntax that you need to
know to enter commands and create routines. The DSM-11 Language
Reference Manual describes all DSM-11 commands in detail.

4.1.1 Abbreviating DSM-11 Commands

When you use a DSM-11 command, you can either enter its full spelling or an
abbreviation of the command word. Commands that begin with any character
except ”Z” can be abbreviated to their first character. Commands that begin
with "Z" can be abbreviated to their first two characters. You cannot use any
intermediate abbreviations. For example, the following two DSM-11

statements are valid:

>GOTO PARA

>G PARA

However, the following statement is not:

}GOT PARA

4.1.2 Using Uppercase And Lowercase Characters

You can use uppercase or lowercase characters in DSM-11 language elements,
variable names, routine names, and line labels. DSM-11 considers commands,

functions, and special variables written in uppercase or lowercase letters as

equivalent. For example, DSM-11 considers the following three commands
identical:

WRITE "HELLO"

write "HELLO"

WeITe "HELLO"

Using DSM-11

However, DSM-11 does not consider uppercase and lowercase variable names,
routine names, and line labels as equivalent. For example, the following
statements are not equivalent.

SET KA="HELLO"

SET &Ax="HELLO"

SET xx="HELLO"

For more information on using uppercase and lowercase letters in language
elements, variable names, routine names, and line labels, refer to the DSM-J1

Language Reference Manual.

You can use mixed lowercase and uppercase characters in the following:

String Literals

String literals are strings of characters enclosed in quotation marks, embedded
in DSM-11 code.

String Data

String data is a contiguous series of characters that 1s considered a single data
entry. String data can consist of both uppercase and lowercase characters. The
response to an interactive READ command is an example of string data. For
instance, if an application prompts for a name, it can be entered with mixed
characters:

LAST NAME>) Webster

Comments

Comments are brief explanations of programming action included in routine
code. A comment is preceded by a semicolon (;). Unlike string literals,
comments are not enclosed in quotation marks.

4.1.3 DSM-11 Line Structure

DSM-11 code is organized into lines. Each line contains one or more
statements and/or a comment, and ends with a carriage return.

The DSM-11 interpreter recognizes two types of lines:

e The command line

e The routine line

Using DSM-11 4-3

A command line consists of one or more DSM-11 statements. The DSM-11
interpreter translates and executes a command line as soon as you terminate
the line with a carriage return.

The DSM-11 interpreter recognizes a command line by its format. The follow-
ing are examples of DSM-11 command lines:

DO STAT

>ZINSERT "TITLE i DEMOGRAPHIC DATA SORT ROUTINE": +8

YRECUTE: $DCACTI9=1 ACT)

A routine line consists of one or more statements preceded by a tab, or a line
label and a tab, and entered for later execution. After you press the carriage
return at the end of the line, the DSM-11 interpreter stores the line and waits
for your next command. The following are examples of routine lines:

QUTPUTCFABDF 1=1:1:6 W ?20,"1",225,B(0),!!

CFAB)S AC1)="W $C027,89,35,42),S,EL R BCT)"

B7CTAB)S Z="Zip Code" WZ icorrect zip is vital

. Acollection of routine lines that you enter and run as a unit is called a routine.
When you run a routine (by typing the DO command, for example), the DSM-
11 interpreter executes the routine lines in the order in which they are stored
(unless you use statements such as GOTO that alter the flow of control).

DSM-11 allows more than one space to be inserted between commands in a
line. For example, the following statement is an acceptable command line for
DSM-11:

ISP 3GHGHGHPHUGCH3ISGHSPSPIZPSPIGPISPICGP)3

You still must have one space between the command and its argument, or two
spaces following commands with no arguments. See the DSM-11 Language
Reference Guide for a more detailed discussion.

4.2 Creating Routines

4-4

The DSM-11 language can be used in two ways:

1. In Direct Mode, in which all commands entered at the terminal are
executed (interpreted) immediately. Programmer Mode includes the Direct
Mode; references to Programmer Mode usually mean the Direct Mode of
Programmer Mode.

Using DSM-11

2. Through routines made up of multiple lines of DSM-11 code. Routines can
be stored and used in future DSM sessions. When you are typing in the
routine lines, they are not executed immediately. You are in Indirect Mode.
Programmer Mode also includes Indirect Mode.

Introduction to DSM, included in your documentation set, provides a tutorial
in developing routines. The following sections summarize these subjects for
the purpose of reference.

4.2.1 Direct Mode

When you enter DSM-11 in Programmer Mode, you may want to use the
language in Direct Mode. Direct Mode ts useful for learning how the language
works, and for getting quick answers to computational problems. It is also
useful for testing out command lines before putting them into a routine.

In Direct Mode, you enter commands after the Programmer Mode prompt
(>). DSM-11 executes the command immediately. The following example
shows your input to DSM-11 in Direct Mode and the interpreter’s response:

>WRITE "Hello"

Hella

4.2.2 Entering Lines In The Routine Buffer

Direct Mode is limited because you must wait for DSM-11’s response after
each line of code. For more sophisticated programming tasks, use routines
instead of individual lines of code. You signal to DSM-11 that a line of code
belongs to a routine by starting the line with a or a label followed by a
tas). When you are entering routine lines in this manner, you are in Indirect
Mode. The routine lines are not executed when you enter them.

The following are examples of routine lines:

>STARTGABOWRITE "Powers of 2",!

)TABSET A=1

\CTAB)FUR I=1:1:18 SET K=X*2 WRITE X," "

The routine lines shown above make up a routine that calculates and displays
on the terminal the first 10 powers of 2. You execute these lines by entering the
DO command, using the first label in the routine as the point at which
execution begins:

Using DSM-11 4-5

DO START

DSM-11 responds by displaying the output of the routine:

Fowers of 2

24816 32 64 128 256 512 1024

Because they start with a or a label and a cram, the lines stay in your

routine buffer. You can execute them again by repeating the DO command.

4.2.3 Using The ZPRINT And ZREMOVE Commands

You can display the lines in your routine buffer by issuing the ZPRINT
command. The ZPRINT command leaves the pointer (showing your location
in the buffer) at the end of the routine.

If you specify a line label with ZPRINT, DSM-11 displays the line specified
and positions the pointer after that line.

The ZREMOVE command deletes the contents of the routine buffer. If you
specify a line label with ZREMOVE, that line is deleted.

After you delete a line with ZREMOVE, you can replace the line by entering a
new line starting with cram or with a label and cram. The following lines show
how ZREMOVE is used in deleting and replacing a routine line:

YZREMNVE START

YSTART taB WRITE "Fowers of two"

To insert a line without removing one, you first move the pointer to the
position after a line by using ZPRINT. Then, you enter the new line, as shown
in the following example:

YEPRINT START

START WRITE “Powers of two"

> TABWRITE !,. "from 1 to 1a", !

~ To insert a line at the beginning of the routine buffer (the area in which your
routine lines are kept), type ZPRINT +0 to position the pointer before the

_first line in the buffer. Then enter the new line.

4.3 Saving and Loading Routines

If you want to save a DSM-11 routine for later use, you can store it in the
routine directory.

4-6 Using DSM-11

You must restore the routine to your routine buffer if you want to add more
lines, remove lines, or edit the routine with the DSM-11 editor (described in

Section 4.6.2).

To display a list of the routines in your routine directory, invoke the ‘MRD
(Routine Directory) utility, as follows:

yDO “RD

Reutine Directory 19-Jan-83

af JSS 3:06

ABC DEF KKK

3 routines

4.3.1 Saving A Routine In A Routine Directory

The ZSAVE command places the routine currently in your routine buffer into
your DSM-11 routine directory.

The argument of the ZSAVE command is the name under which you want to
save the routine. For example, the following command stores the contents of
the routine buffer in the routine directory under the name ABC:

PESAVE ARC

You use the same name when you load the routine back into your routine
buffer, as described in the next section. You also use the routine name when

you execute the routine from the routine directory. To execute a routine that is
in your routine directory, you issue the DO command with the name of the
routine, preceded by a circumflex (), as shown in the following example:

DO “ABC

Powers of twa

from ita 18

“£48 16 32 64 128 256 512 1024

If you try to ZSAVE an unnamed routine (that is, if you enter ZSAVE without
an argument while code is in your routine buffer), DSM-11 gives you a
<NOPGM> error message.

A routine in your routine buffer may already have a name because it was

already stored and then loaded back into the routine buffer. You determine

Using DSM-11 4-7

the name (if any) of the current routine by issuing the following WRITE
command:

dW $TEAT CHO)

The function $TEXT(+ 0) always contains the string DSM-11 uses to name the
current routine.

4.3.2 Loading A Routine From The Routine Directory

To restore a routine to the routine buffer, enter the ZLOAD command with

the name of the routine as the argument:

»ZLUAD ABC

ZLOAD loads the routine from the routine directory which is stored on the
disk. You can then execute the routine using a DO statement. The routine can
be recovered from the disk and executed in one statement by typing:

Da “ARC

Notice that, if routine ‘ABC is in the ma ped routine area, ZLOAD recovers

the routine from the disk; while the DO “ABC statement recovers the routine

from the mapped routine area in memory. The mapped routine area is
described in more detail in Section 15.1.

4.4 Deleting and Renaming Routines

4-8

As described in Section 4.2.3, the ZREMOVE command deletes lines from

your routine buffer. In conjunction with other commands, the ZREMOVE
command can be used to delete routines stored in your routine directory, and
to rename routines. The following sections describe these uses of ZREMOVE.

4.4.1 Deleting A Stored Routine

To delete a routine stored in your routine directory, first enter the ZREMOVE
command to clear your routine buffer. Then, enter the ZSAVE command with

the name of the routine that you want to delete as its argument. This sequence
Saves an empty routine buffer under the same name as the routine that you
want to delete. After you delete a routine from the routine directory, DSM-11
also removes that routine’s name from the list displayed by *%RD.

Using DSM-11

The following command sequence deletes from disk a routine called
BOOKSTAT that you once saved:

>ZREMOVE

»2SAVE BOOKSTAT

4.4.2 Renaming Routines

The procedure for renaming a routine stored on disk is similar to the
procedure for deleting a routine stored on disk. First, use the ZLOAD
command to load the routine into your routine buffer. Then, refile the routine

using the ZSAVE command with the new name as its argument. This
procedure produces two copies of the same routine in the routine directory.

, To keep only a single copy of the routine under the new name, you must delete
‘the routine under its original name. You do this by saving an empty routine
buffer using the old routine name. The following example shows how to
change the name of the routine BOOKSTAT to BKCHK, and then delete the
Original version of the routine:

>2L BOOKSTAT

»2S BKCHK

»2R

25 BUOKSTAT

4.5 Using Sequential Files to Store Routines

In addition to storing routines in a routine directory for execution, you can
write routines to a sequential file for later printing or backup, as described in
the following sections. However, the DSM-11 utilities “%RS (Routine Save)
and “%RR (Routine Restore) move routines to and from a sequential storage
medium, so you need not execute the steps in Sections 4.5.1 or 4.5.2 manually.

NOTE

Remember that you cannot call (use the DO command on) a routine
from a sequential file.

Files stored on a magnetic tape, a DECtape II, a disk cart accessed by the SDP
(Sequential Disk Processor), or an RXO1/RX0O2 diskette are sequential files.

Using DSM-11 4-9

4.5.1 Writing A Routine Onto A Sequential File

To write a routine to a sequential file, follow these steps:

1. Issue the OPEN command to gain ownership of the device.

2. Issue the USE command to make the device current.

3. Issue the ZPRINT command followed by two spaces to write the routine.

The following command sequence writes the routine currently in your routine
buffer to an SDP file.

2059:¢0:1608:"DL1") U59 2P W!IECS9

Note the two blanks after the ZP command in this command sequence. Two
blanks are required because the ZP command has no argument.

The command sequence refers to byte 0 in block 1600 on disk DLI as the
starting point for the file. The SDP unit number is 59. Refer to Section 6.4 for
more discussion about determining the correct format and block locations
when using the SDP.

‘You can also invoke the DSM routine “%RS to save a routine in a sequential
file.

4.5.2 Loading A Routine From A Sequential File

To load a routine from a sequential file manually, use the following

procedure:

1. Issue the OPEN command to gain ownership of the device.

2. Issue the USE command to make the device current.

3. Enter an argumentless ZLOAD command to load the first routine in the
file into your routine buffer. ZLOAD reads lines into your buffer until it
encounters a null line or an end-of-file.

For example:

20 59: €8:1680:"DL1") U 59 2L

If the routine you want to load is not the first record of the file, (that is, in the

first physical position), use multiple ZLOAD commands separated by two
spaces to load the desired routine. The number of ZLOAD commands you use
should match the position of the routine in the file. For example, two

4-10 Using DSM-11

ZLOADs loads the second routine in the file; three ZLOADs loads the third,

and so forth.

The DSM-11 utility ‘RR (RESTORE) loads a routine from a sequential file.

4.6 Using Editors

DSM-11 has several methods of editing routines and data.

1. Programmer Mode Editing

2. DSM-11 Editor

3. EDI Editor

4. Global Editor

Programmer Mode editing, the DSM-11 editor, and the EDI editor are useful

for editing text and routines. The global editor is useful for editing global
variables.

4.6.1 Programmer Mode Editing

The DSM-11 language has two commands that allow you to edit routines
directly:

¢ ZINSERT

e ZREMOVE

ZINSERT and ZREMOVE allow you to manipulate DSM-11 routines in your

partition by directly invoking system commands.

ZINSERT inserts new lines into a routine at the point you specify in the
argument of the ZINSERT command.

ZREMOVE without an argument deletes the current routine in your partition.
ZREMOVE with an argument deletes the specified line or lines from the
current routine. Section 4.2.3 describes how to use ZREMOVE. The DSM-1/1/
Language Reference Manual describes ZINSERT and ZREMOVE in detail,
and provides examples of their editing capabilities. Introduction to DSM also
provides step-by-step examples of editing with the ZREMOVE command.

Using DSM-11 4-11

4-12

4.6.2 DSM-11 Editor

DSM-11 has an interactive text editor that help you to edit the code in your
routine buffer. The DSM-11 Editor can change text on one line or in a range
of lines.

This editor has a very terse syntax, which makes it ideal for low baud rate
terminals. The editor displays a sequence of question-like prompts. At each
prompt, you enter the information required to do your editing task. If you
enter a question mark (?) at an editor prompt, the editor displays a list of your
options.

Before using the DSM-11 Editor, bring the routine that you want to edit into
the routine buffer (if it is not already there). The following command invokes
the routine editor:

>XECUTE “7

The abbreviated form is:

A

KF

The editor’s initial response to this command is:

LINE>

This response indicates that you have entered the DSM-11 editor and that the
editor is waiting for you to respond to its first query. To exit the editor, simply
type a period (.).

The DSM-11 Editor displays seven prompts. Appendix C describes each
prompt in detail. See Introduction to DSM for tutorial information on using
the DSM-11 Editor.

4.6.3 EDI Editor (“%EDI)

The EDI Editor is a line editor that can be used to edit a routine that is
currently in the routine buffer. To use the editor, type:

»X “JEDI

Using DSM-11

This editor is based on a series of commands such as ADD, BEGIN,

CHANGE, FIND, and SAVE. While you are using the EDI editor, you can

obtain information on a specific command, such as ADD, by typing:

* HELP ADD

Appendix C provides additional information on this editor.

4.6.4 Global Editor (“%GEDIT)

The Global Editor can be used to edit data in global variables. It allows you to
perform node-by-node edits on one or more globals or parts of globals. The
editor only allows you to alter the data associated with a global node, not the
node reference itself.

The Global Editor can be accessed through the utilities menu or directly by

typing:

> DO “ZGEDIT

You then receive a prompt for the global that you want to edit:

Global °

Help information can be obtained by typing a question mark (?) after
accessing the editor. To exit %GEDIT, type a carriage return.

4.7 Starting and stopping Routines

In Programmer Mode, you can execute the routine that is currently in your
routine buffer or a routine that is stored on disk, as described in Sections 4.2.2

and 4.3.1. In Application Mode, a routine is executed immediately after DSM-
11 image start-up.

Section 4.7.1 summarizes the rules for executing the routine that is currently in
your routine buffer. Section 4.7.2 describes how you execute a routine stored
in your routine directory.

Section 4.7.3 lists the conditions under which a routine stops executing.

Using DSM-11 4-13

4.7.1 Executing The Routine In Your Routine Buffer

To execute a routine that is currently in your routine buffer, you use the DO
or GOTO command.

yD FARAt3

YGLUTO FARAt3

PARA + 3 is a routine line specified by a label plus an offset.

DSM-11 executes the routine starting with line PARA +3.

4.7.2 Executing A Routine From The Routine Directory

To load and execute a routine stored in your routine directory, you issue the
DO command with an argument. The argument is the name of the routine in
your routine directory that you wish to execute. The argument is always
preceded by a circumflex (*).

For example, the following command line loads the routine TRACE into your
routine buffer, and executes it:

yDO “TRACE

You can also specify a routine line in the following syntax:

» DO GG+1° TRACE

This command loads the routine TRACE into your routine buffer and
executes it starting from line GG+ 1.

4.7.3 Conditions For Execution To Stop

Several conditions or situations can cause execution of a routine to stop. These
conditions can differ between Application Mode and Programmer Mode.

In Application Mode, the following conditions cause the results indicated:

¢ HALT command - causes a logoff.

e QUIT or ZQUIT command - causes a logoff when DSM-11 executes the
QUIT or ZQUIT command at the lowest or first nesting level.

4-14 Using DSM-11

e BREAK command - has no effect.

® TRL7Y) - has no effect.

© cTAL/s) - has no effect.

e Error - passes control to the most recently declared error handler within the
application or routine; if no error handler is found, causes a logoff.

® ccTALroe - if crrmt7e recognition is enabled, generates an <INRPT>
error, with the same effect as an error. (See Section 4.10 for a discussion of
error handling.)

In Programmer Mode, the following conditions cause the results indicated:

¢ HALT command - causes a logoff.

¢ QUIT or ZQUIT command - when DSM-11 executes a QUIT or ZQUIT
command at the lowest or first nesting level, returns control to Programmer
Mode.

e BREAK command - if the debugger is off, has no effect. If the debugger is
on, generates a break, indicated by <BREAK>. (See Section 4.8 in this
manual or the DSM-1] Language Reference Manual for more discussion of
the BREAK command).

® (CTRL ZY) - passes control to Programmer Mode with all stacked contexts
discarded. (An <ABORT> message appears.)

® (CTRL7B) - at the initiation of the next command, generates a break.

e Error - passes control to the most recently declared error handler. If no
error handler is found, discards current contexts and passes control into
Programmer Mode with an error message displayed. (See Section 4.10 for a
discussion of error handling.)

® (CTRL) - generates an error, <INRPT>, with the same effect as an error.

(See Section 4.7.4 for more discussion of ce@rrAt7e and ccTREZY.)

4.7.4 Programmer Mode Interrupt By cratzm And cratzy

In Programmer Mode, routine execution can be interrupted by either @tatzo
or cTrAtzy). The two keys function differently.

You can enable and disable crAt7eq recognition in Programmer Mode by
using the BREAK command.

Using DSM-11 4-15

4-16

You can return unconditionally to the Programmer Mode prompt (>) with
CCTRLTY). The message, <ABORT >, is given when you use CTRITY>.

Using crRt7o generates an error. It gives the message <INRPT>. The use

of cratre may not halt the execution of the routine; crratre will be
handled by any error-handling routines that you have established by setting
$ZTRAP within the routine. If the error generated by crrAt7e can be handled
by your error-trap routine, execution may continue at another level.

4.7.5 Recognition Of The Application Interrupt Key (ctatzc)

The BREAK command with an argument allows you to enable or disable
(CTRLT7C) recognition. The BREAK command with an argument has the forms:

B 1 Enable ccratz® application interrupt recognition

BO Disable cratzre application interrupt recognition

In Application Mode, DSM-11 disables crratre recognition by default.

Therefore, the executing DSM-11 routine must contain the BREAK 1
command if you want <cTALTo recognition to be enabled in Application Mode
for that job.

DSM-11 brings up tied terminals in Application Mode. Thus, crate is
always disabled on tied terminals.

In general, disabling <cTRL7o@ Is useful when you do not wish to have a routine
interrupted by the operator. For example, in some applications, an interrupt
can cause the data base to become inconsistent. In these instances, inserting a
BREAK 0 at the appropriate place in your routine allows the routine to
execute a series of SET commands without the possibility of interruption.

A DSM-11 application can poll terminal devices to determine if a user has
entered a ccrrtyc). The application should issue a USE command for the
device to be tested and examine the status of bit 15 in the $ZA special variable.

DSM-11 does not automatically clear a c@ratro. If the application detects
(CTRL TC), the application should clear ccraAt7e, using BREAK 0, so that it can

poll the device again at a later point in processing. (See Section 6.1.2 for more
information.)

Using DSM-11

4.7.6 Changing The Application Interrupt Key

During the SYSGEN procedure, you can define the systemwide default
interrupt key (see Section 10.4.12). You can select a different default key from
COTRL Cc). This keys is in effect whenever you log in. A program can change the
interrupt keys for a specific device (such as a terminal) by a USE parameter.
When that device is closed, then the default interrupt key 1s reset.

The default value of the application interrupt key is set to ASCII control value
3 (cctTRLzc)). You can set the default application interrupt key to any ASCII
control value (0 to 37 octal). For example, if you set the interrupt key to
ASCII control value 32 (octal), you enable only ccrrtzz recognition.

Some terminals have a key labeled BREAK. To enable interrupt recognition of
the BREAK key, set the default application interrupt key to ASCII control

value zero (0).

The default interrupt key can also be used to log in from a terminal without
autobauding in place of ccrrRtrc.

You cannot use any of the control characters reserved for the DSM-11 system
for the alternate application interrupt key. You also cannot use some
nonreserved combinations, such as ccTrRtzm, that generate the same code as

the RETURN key for the alternate application interrupt key. (See Section
3.1.2 for more information on control keys.)

4.8 Using the Mumps Debugger

The MUMPS debugger is a facility you use in Programmer Mode to monitor
the execution of routines. It is a separate debugger from the system debugger,
XDT; for more information on XDT, see the DSM-11 XDT Reference
Manual.

The debugger allows you to stop the execution of your routine at any point
you desire and enter Break Mode. Break Mode 1s like Programmer Mode
except that the state of the interrupted routine is preserved so that you can
start execution of your routine again. You can interrupt execution as often as

you like.

You can enter Break Mode in one of four ways:

1. Press the cctRt7s key while your routine is running. You then enter Break

Mode after the execution of the next command even if the debugger is off.

2. Insert BREAK commands in your routine. When DSM-11 encounters the

BREAK command while the routine is running, DSM-11 enters Break

Mode. The debugger must be on for this to occur.

3. Set up breakpoints (up to 9) using the $ZBREAK special variable. The
debugger must be on for this to occur.

Using DSM-11 4-17

4-18

4. Start execution of a routine with the ZGO command and an entry
reference.

Once you have entered Break Mode, you can also execute your routine in
single-step mode in which execution is interrupted after every command in the
routine.

The debugger is controlled by a set of DSM-11 commands and a special
variable. The commands, described in full in the DSM-11 Language Reference
Manual, are:

e BREAK

e ZBREAK

e ZGO

Using these commands is described later in this chapter.

The special variable $ZBREAK, described in detail in the DSM-1] Language
Reference Manual, is used to contain a reference to the location where you set
a breakpoint. Section 4.8.2.1 below describes how to use $ZBREAK.

4.8.1 Enabling And Disabling Debugging

The ZBREAK command sets an internal flag that turns the debugger on or
off. When this flag is ON, DSM-11 recognizes breakpoints set by means of the
$ZBREAK special variable, and the BREAK command.

The flag is set to OFF until you set it to ON by entering the following
command:

>ZBREAK UN

D>

This command is abbreviated ZB ON. The prompt (D>) indicates that the
debugger is on.

To disable recognition of the BREAK command and breakpoints set with
$ZBREAK, you set the flag to OFF with the following command:

»ZBREAK OFF

)

The prompt (>) indicates that the debugger is off, and that you have returned
to Programmer Mode. When the debugger is off, DSM-11 still recognizes the
CCTRLTH key.

Using DSM-11

Both ZBREAK ON and ZBREAK OFF can be specified with a postcondi-
tional argument. Using a postconditional argument allows you to turn
debugging off or on depending on conditions that exist at run time.

4.8.2 Breakpoints

DSM-11 allows you to set nine breakpoints. (These nine breakpoints do not
include the breakpoints set with the BREAK command, described in Section
4.8.2.2.)

The nine breakpoints are defined as the values of $ZBREAK(1) through
$ZBREAK(9).

You set these breakpoints, examine their contents, and clear them, as

described in the following sections.

When DSM-11 encounters a breakpoint in a routine, and the ZBREAK flag
(described in Section 4.8.1) is ON, DSM-11 displays the following message:

< BREAK > entry-ref:command number routine-line
DB>

The arguments entry-ref and routine-line identify the location in the routine
where the breakpoint was encountered. The DB> prompt indicates that you
are in Break Mode (B), and that the debugger is on (D).

The argument, command number, is the number of the command on the

routine line before which the breakpoint took place. The argument, routine-
line, is the remainder of the interrupted routine line.

4.8.2.1 Setting Breakpoints With SZBREAK — You set a breakpoint at a partic-
ular location in your routine by issuing the DSM-11 SET command with the
breakpoint variable $ZBREAK as its argument. (You can set, modify, or kill

elements in $ZBREAK regardless of the value of the ZBREAK flag.) With the
$ZBREAK variable, you specify the entry reference and command number of
the desired location in the following format:

SET $ZBREAK = "entry reference:command number”

entry reference Must be a complete routine reference in the form:

label + offset “routine

The label must be the closest preceding label to the line you
are specifying. If the line you are specifying has its own
label, you must specify that label, not an offset from an
earlier label.

Using DSM-11 4-19

4-20

command Must be included; there is no default command number.
number DSM-11 does not recognize breakpoints on lines with no

commands (comment lines, for example).

DSM-11 assigns this location to the first unused breakpoint, beginning with
breakpoint 1. If all nine breakpoints are in use, DSM-11 clears breakpoint 9
and assigns the value you specify to breakpoint 9.

You set a particular breakpoint by specifying a breakpoint number with the
$ZBREAK variable, as follows:

SET $ZBREAK(n) = "entry reference:command number”

You can specify for n any number from 1 to 9 for normal execution.

4.8.2.2 Setting Breakpoints With The BREAK Command — You can also set a
breakpoint in a routine by including the BREAK command in the routine, as
follows:

BREAK

The BREAK command also takes a postconditional expression. For example,
the following command string suspends execution only if the value of M is less
than 30:

BREAK: (32

Execution of the BREAK command is dependent on the status of the
ZBREAK flag, set with the ZBREAK command.

See the DSM-11 Language Reference Manual for more information on the
BREAK command.

4.8.2.3 Breakpoint Actions — A breakpoint action string is a command or set
of commands that is executed whenever a particular breakpoint is encoun-
tered. You can specify an action string as part of the $ZBREAK value for the
breakpoint you specify, in the following format:

SET $ZBREAK(n) = “entry reference:command number > action”

The action string can contain any legal DSM-11 commands. The commands
are executed when the breakpoint is reached, before the BREAK message is

printed.

You can use an action string to perform tasks that you would otherwise have
to type every time a breakpoint is reached. For example, you could use an
action string to examine the contents of a variable. Note that any DSM-11
command is legal, including DO, GOTO, ZBREAK, and ZGO.

Using DSM-11

You can set the special variable, $ZBREAK(0), as an action string that
executes each time you single step in Break Mode. The special variable,
$ZBREAK(0), is not a breakpoint but only an action string.

This causes the breakpoint action to be performed after each step in your
program. Note that you do not specify an entry reference or command
number in this command.

4.8.2.4 Examining Breakpoints — To examine the contents of all existing
breakpoints, enter the following command:

éWRITE $2BREAK

To examine the contents of any particular breakpoint, enter the WRITE
command, specifying which breakpoint you want to look at:

WRITE $2BREAKCn)

In response, DSM-11 displays the contents of the breakpoint as in the follow-
ing example:

$ZBC4)="START+H1° TEST: 3)H A"

4.8.2.5 Clearing Breakpoints — You can clear a particular breakpoint by
setting the breakpoint to the null string, as follows:

SET #2BREAKCn)=""

To clear all existing breakpoints, enter the following command:

KILL $2BREAK

Note that breakpoints do take space from your partition (128 bytes each), and
the space is not reclaimed until you issue a KILL $ZBREAK.

4.8.3 Continuing Execution After A Breakpoint

The two DSM-11 commands for continuing execution after a breakpoint are
ZGO and ZBREAK.

You use the ZGO command (abbreviated as ZG) to continue execution from
Break Mode. Execution is resumed and continues until another breakpoint is
reached.

You use the various forms of the ZBREAK command to continue execution in

single-step mode. These forms are:

Using DSM-11 4-21

ZBREAK OVER

This form of ZBREAK treats any DO or XECUTE command and the
subroutine associated with the DO or XECUTE command as one
unit. Execution is not halted at any of the lines in the subroutine.
Execution is halted when another line is reached in the “top” routine.

ZBREAK IN

Or:

RET

This form of ZBREAK steps to the next command and issues a
< BREAK > message.

ZBREAK OUT

This form of ZBREAK steps to the first command following the
QUIT from the current routine. You usually use ZBREAK OUT
when you step into a routine with ZBREAK IN, execute a number of
steps, and then decide that you do not need to monitor the remainder
of the subroutine.

You can also step through a routine from the beginning without setting a
breakpoint. The ZGO command allows you to do this. You call the routine
using the ZGO command, which brings you to the beginning of the routine. A
breakpoint 1s issued at the first command, for example:

> 260 “TEST
(BREAK) TEST+1 TEST:1 SET %=1,4=52

DR)

You can now use one of the forms of the ZBREAK command to step through
the routine. Note that you cannot use the ZGO command to call up another
routine once you are already in the debugger. See the DSM-J] Language
Reference Manual for more information on the ZGO command.

4.9 Using DSM-11 Directories

4-22

DSM-11 provides two directories for each user class (UCI):

e A routine directory

e A global directory

DSM-11 catalogues all application routines and globals for each UCI in these
directories. Privileged applications, such as system and library utilities and
globals, are catalogued in the directories of the manager’s UCI.

Using DSM-11

The following sections describe the use of DSM-11 directories. For a detailed
description of DSM-11 directory structure, refer to Section 13.4 and Appendix
B.

4.9.1 DSM-11 Routine Directories

The system places routines in the routine directory of the current UCI
whenever you ZSAVE the contents of a partition by name. For example,
typing the following places the routine XTR in the routine directory of the
current UCI:

)25 XTR

In general, each user class has access only to those routines in the routine
directory of its UCI. Library utilities, however, which reside in the routine

directory of the manager’s UCI, are accessible “run only” from all user
classes; users with access to the manager’s UCI can also modify the library
utilities. Accessing the library utilities across UCIs is transparent to the user.

To examine the contents of a routine directory, run the Routine Directory
utility, “%RD. This routine prints a complete list of all routines in the UCI
under which you logged in.

4.9.2 DSM-11 Global Directories

DSM-11 provides a separate directory for the globals created in each UCI.
Globals comprise the DSM-11 data base (refer to Chapters 8 and 13 for a
detailed description of globals). They are sparse arrays, stored on disk. A
sparse array contains only nodes that have been explicitly defined.

The system enters globals in the global directory of the current UCI whenever

you execute a routine or command line that defines a global variable with the
SET command. After the system places an entry in a global directory, you can
only delete it by issuing the KILL command. For a complete description of the
KILL command and the global KILL procedure, refer to the DSM-11
Language Reference Manual.

A user in a user class can access any global (regardless of its directory) if the
user class has access privileges. Section 4.9.3 describes global access privileges
in detail. Globals that the library utilities use are accessible, read only, from all
user classes. You can also write to globals within the context of the routine.

Access to library globals across UCIs is transparent to the user.

Using DSM-11 4-23

4-24

To examine the contents of a global directory, run the Global Directory
routine, “%GD. This routine prints a complete list of the names of all globals
in the UCI under which you logged in.

4.9.3 Global File Protection

DSM-11 provides controlled access to the globals in the global directory of
each UCI. This allows you to specify privileges for the following user
categories:

SYSTEM Users logged into the manager’s UCI (UCI #1).

USER Users logged into the same UCI in which the global resides.

GROUP Users logged into any UCI on the volume set on which the
global resides.

WORLD Dep logged into any UCI on any volume set, and across

Each user category can be permitted or denied the following types of access:

READ The right to examine a global

WRITE The right to modify a global

DELETE The right to KILL a global

Access default for newly created globals is READ/WRITE/DELETE for User
and System categories; NO ACCESS for Group and World categories.

You can override the default protection for globals through the Global
Management utility, “%“%GLOMAN. This routine uses four access codes to
specify a range of access privileges for each global. The access codes are:

1. No Access

2. Read Access

3. Read/Write Access

4. Read/Write/Delete Access

If you have access to the manager’s UCI, you can override any global access

restrictions specified by users in nonprivileged user classes.

Using DSM-11

4.10 Error Processing

While your routines are running, conditions can arise that are either erroneous
Or so unusual that the DSM-11 interpreter cannot continue. These conditions
cause interpretation to stop, and the $ZERROR special variable to be set to a
5-character error message surrounded by angle brackets. The 5-character
message identifies the type of the error. In addition, the exact location (routine
name, line reference, and command number) where the error occurred is

included with the $ZERROR message. (Appendix A gives a listing of DSM-11
error messages.)

What happens next depends on the state of another special variable, $ZTRAP.
(See Section 4.10.2)

4.10.1 Default DSM-11 Error Processing

If $ZTRAP is set to the null string, default DSM-11 error processing is in
effect. The default procedure considers all language syntax, routine, or system
operation errors fatal. DSM-11 normally reports errors by:

e Setting the $10 special variable to the principal I/O device number. (When
you log in, the principal device is your terminal.)

e Printing an error message on the principal I/O device. This error message is
the current value of the $ZERROR special variable, followed by the remain-
der of the routine line where the error occurred. (Appendix A lists error
messages, and describes their meaning in detail.)

NOTE

When there is not enough partition space to process the error, DSM-
11 deletes the routine from the routine buffer to allow room for the

error message.

e Returning you to the Programmer Mode, if you in Programmer Mode. If
you logged in in Application Mode, DSM-11 automatically logs you out.

4.10.2 Writing Error-Processing Routines

You can write a routine that interprets errors and continues execution, using

the $ZTRAP special variable. An error-processing routine prevents DSM-11
from aborting a job when an error occurs.

Using DSM-11 4-25

4-26

You set the $ZTRAP special variable (using the SET command) to an error-
handling routine for your DSM-11 application. The value of $ZT, as described
in the DSM-11 Language Reference Manual, is a reference to the line and/or
routine to which control passes when an error occurs in your application.

If you set $ZTRAP to "LABEL* ROU” and an error occurs, the system:

e Sets the $ZERROR special variable to a string that consists of the error
message plus routine name, label, and command number to indicate where

the error occurred.

e Transfers control to the routine called "ROU"at the entry point "LABEL"
as specified by $ZTRAP.

e Preserves the current Call Stack of nested DO or XECUTE contexts.

Note that control is returned to the same context level as the routine where

$ZTRAP was set; control does not automatically return to the lowest level

context. See Section 4.10.4 for more discussion of error processing in a
situation of several nested contexts.

Your routine can examine $ZERROR to determine which error occurred and
where it occurred. The following example shows an error-processing routine in
a simple situation, one that does not involve nested DO or XECUTE
commands. The routines print explicit error messages for an application
routine. The application routine ”"PRG” calls the part of routine “ERR” that
corresponds to the error index in $ZERROR.

Routine PRG:

A S $ZTRAP="“ERR"

. Ccontains error)

Routine ERR:

ERR iError Processor

U@W!,"SORRY BUT LINE ", PCP($ZERROR,")",29,"°",1)

W" IN ROUTINE ", PCPC$ZERROR,"*",2)," ",1)

W" GENERATED AN '", ECPC$ZERROR,")",1),2,99)," ERROR"

Using DSM-11

4.10.3 DSM-11 Error-Trapping Routines

If you do not wish to allow your application routines to continue after an
error occurs, but you would like to record the fact that an error has occurred,

use the following DSM-11 routines:

1. %ET - this routine can log each error as it occurs. Set your error trap to
routine %ET:

5 $2T=" "ET"

Each time an error occurs in your application, the location of the error and
the local symbol table are stored in global %ER.

2. %ER - use this routine to investigate errors. The routine %ER reports
which errors have occurred, and can reload the routine and its saved

symbol table, so that you can debug the error. You can run this routine
directly, or you can access it through the CARETAKER option of the
SYSTEMS UTILITIES menu (“SYS). Section 12.2 contains more discus-
sion of the “%ET and “%ER routines.

4.10.4 Error Processing Within Nested Contexts

A context is created by a DO or an XECUTE statement. Many levels of
contexts can be established, each of which requires a Call Stack "frame” of
approximately 50 bytes. Programmer Mode is level 1. Successive nested DO
and XECUTE commands create higher numbered contexts (up to 255) while
stacking a call frame. The QUIT command (explicit or implicit) removes a call
frame and reduces the context level by one. The level that is currently execut-
ing is called the current context.

The $ZTRAP special variable can be set at the lowest context level, as well as
at higher levels (within successive DOs). Thus, each routine in an application
can establish its own error-handling routine by setting $ZTRAP to the name

of an error handler to which DSM-11 passes control in the event of an error.

If an error occurs at a higher context level during the execution of a routine,
the procedure is as follows:

e The system error processor first stores the error code, the routine reference,
and the command count in $ZERROR.

e The system error processor then examines the current $ZT. If the current

$ZT is null, then the current context is discarded; and the next higher

context becomes the current context. Any variables saved by the NEW

command are restored.

Using DSM-11 4-27

4-28

e This procedure is repeated until a context containing a nonnull $ZT is
found. A GOTO the routine indicated in this $ZT is performed, and $ZT is
set to null.

e If the system processor reaches the end of the Call Stack without finding a
nonnull $ZT, then the default DSM-11 error processing goes into effect.
(See Section 4.10.1.)

The following example explains how a sequence of $ZTRAP settings works:

¢ Routine D (which does not set $ZTRAP)

e Routine C (which contains the DO command to execute routine D) sets

$ZTRAP to "*CERR"

e Routine B sets $ZTRAP to "“BERR” (and contains the DO command to
execute routine C)

e¢ Routine A sets $ZTRAP to "“AERR"” (and contains the DO command to

execute routine B)

If an error occurs in routine D (the context of which contains no handler),
DSM-11 transfers control to CERR to process the error condition, and
discards the DO context for routine D from the Call Stack. If an error occurs
in routine C, DSM-11 transfers control to “CERR to process the error
condition. But DSM-11 does not discard any context, since the error occurred

in the same context in which $ZT was set to “CERR.

4.10.5 Exiting From An Error Handler

If an error handler can correct an error condition, it can exit using any of the
following commands:

¢ QUIT

° GOTO

¢ ZQUIT

From an error handler, QUIT transfers control to the context prior to the one
in which the error handler was declared. Thus, if routine D, called from

routine C, contains an error that transfers control to ACERR, the QUIT
command in “CERR transfers control to the statement in routine B that
follows the DO “C command.

Using DSM-11

You can use the ZQUIT command in your error-processing routines to
transfer control to the previously declared error handler, that is, to the error

handler of the last subroutine to set $ZTRAP.

When used together, $ZTRAP and ZQUIT provide a mechanism for linking
all the error handlers in an application into a hierarchy of handlers, systemati-
cally passing an error from one handler to another until the error condition is
resolved.

Usually, you terminate an error-processing routine that can correct an error

condition with GOTO. In this way, the application can proceed to the next
routine (or to any appropriate destination).

If your error handler cannot correct an error condition, you can terminate that
error-processing routine with ZQUIT. Control is then transferred to the error
handler of the last subroutine to set $ZTRAP. For example, if an error occurs

in routine D (in the application described in Section 4.10.4) and the error
handler “CERR cannot correct the error condition, ZQUIT transfers control
to “BERR and discards routine C from the Call Stack. If “BERR cannot
correct the error condition, ZQUIT transfers control to “AERR and discards
the call to routine B from the Call Stack. If the last declared error handler
issues a ZQUIT, the DSM-11 error is handled as if no handler were present.

4.10.6 BREAK 2 Control Of Error Processing

Applications written under Version 2 of DSM-11 may not handle errors
properly under later versions of DSM-11. In Version 2 mode, the DSM-11
error processor discards the entire Call Stack of nested DOs and XECUTEs
whenever an error occurs. As a result, nested error processing is not possible in
Version 2 mode. The BREAK command can be used to make DSM-11
simulate the simpler error processing available prior to Version 3.0.

The BREAK command can be used as follows:

B -2 Disables Version 2 compatible DSM-11 error processing

B 2 Enables Version 2 compatible DSM-11 error processing

The default value is for disabling Version 2 error processing (B -2).

Version 2 compatibility has been included so that existing DSM-11 applica-
tions that have been upgraded to later versions can handle errors as they had
been doing with Version 2. The error-processing parts of these applications do
not need to be rewritten; however, the applications must be changed to include
"B 2” as the first command.

Using DSM-11 4-29

Chapter 5

Using System Devices

This chapter describes input/output (I/O) under DSM-11 using the system
devices.

5.1 Introduction

The DSM-11 system includes multiple I/O devices. Some are physical devices
such as terminals, disks, and line printers. Others are logical devices, such as

in-memory job communication and routine interlocks.

Because of DSM-11’s timesharing environment, many routines can compete
for the use of a device. Thus, before you attempt read or write operations to a
device other than the terminal with which your routine is associated, you must
issue the OPEN command with a specifier of that device as an argument. This
establishes exclusive ownership of the device for your routine.

A routine can own more than one device at a time; however, it can access only

one of the devices that it owns to perform input and output operations at any
particular instant. To gain access to a device, issue the USE command with a
specifier of that device as an argument.

After you establish access to a device, you can issue DSM-11 commands to

write to or read from the device. Because DSM-11 data transfers consist of

ASCII strings of up to 255 characters, you normally do not need to be
concerned with specific device characteristics.

Using System Devices 5-1

When you finish I/O operations with a device, you must issue the CLOSE
command with a specifier of that device as an argument. CLOSE ends your
ownership and use of the specified device.

5.2 I/O Device Specifiers

5-2

Each physical and logical I/O device has a unique device specifier. That
specifier is an identification number. Table 5-1 lists the DSM-11 I/O device
assignments.

Table 5-1: DSM-11 I/O Device Table

Number | Device

] Console Terminal

2 Spooling Device

3 Start of Single Line Terminals

19 End of Single Line Terminals

20 Routine Interlock 1

45 Routine Interlock 26

46 Routine Interlock 27

47 Magnetic tape Drive 0

48 Magnetic tape Drive 1

49 Magnetic tape Drive 2

50 Magnetic tape Drive 3

51 Reserved for loadable drivers

58 Reserved for loadable drivers

59 Sequential Disk Processor 0

60 Sequential Disk Processor 1

61 Sequential Disk Processor 2

62 Sequential Disk Processor 3

63 VIEW Command Device (disk and memory)

64 Start of Multiplexer Terminals

(all DH11 terminals followed by

all DZ11 terminals)

191 End of Multiplexer Terminals

Using System Devices

Table 5-1: DSM-11 I/O Device Table (Cont.)

Number | Device

192 Reserved for Digital

199 Reserved for Digital

200 Routine Interlock 28

223 Routine Interlock 51

224 In-memory job communication, receiver for Unit 0,

225 In-memory job communication, transmitter for Unit 0

254 In-memory job communication, receiver for Unit 15

255 In-memory job communication, transmitter for Unit 15

5.3 Assigning I/O Devices

The $IO special variable contains the device number of the current device.
DSM-11 directs each read and write operation to this device. When you log in
to the system, DSM-11 grants you ownership of and sets $1O to the device
number of your terminal. DSM-11 designates that terminal as the principal
device for your job. (By convention, DSM-11 interprets device 0 to mean the
principal device of the current job.) You can then reference $1O in any
expression, but you can only change its value with a USE command.

You must use the OPEN command to establish ownership of each device that
a routine uses other than the principal device. This command can reserve any
number of I/O devices for a routine.

The OPEN command obtains ownership of the device specified in its

argument. When you issue an OPEN command, it removes the specified
device from the system’s pool of available devices and assigns it to your job’s
pool of devices.

The USE command assigns a previously opened device as your current device,
called $10. DSM-11 directs all I/O requests to the device whose number is in
$10. This device does not change until you issue another USE command, or

until you close the $IO device.

Using System Devices 5-3

The following example obtains ownership of devices 3,4, and 5 and directs any
subsequent I/O operations to device 5. Device 5 is the current device.

»03,4,9 05

NOTE

The OPEN and USE commands can accept arguments that allow
you to set device characteristics. Any unusual use of these
commands is included in the description of each device beginning in
Chapter 6.

When you no longer require a device, issue the CLOSE command release it for
ownership by other users. The following example opens device 3, directs 1/O
to it, and then closes it. The example sends the string HI to device 3, not to
your terminal.

yOSUSW "HI" C3

For output devices, DSM-11 does not execute I/O commands until the current
output operation terminates. Also, when you HALT a routine, or when you
end a terminal session, DSM-11 closes all currently owned devices unless it is
processing output. In this case, the I/O completes before DSM-11 closes the
device and halts the job.

5.4 1/0 Commands

5-4

The commands for input and output operations are:

e READ

WRITE

ZLOAD

ZPRINT

ZWRITE

You can use these commands with any applicable device. You cannot,
however, perform operations inappropriate to a device; for example, reading
from a line printer.

The READ command accepts data from the current device and stores it in
local variables. The READ command can also include a prompt in the form of

Using System Devices

text literals and formatting characters. You can have a timed READ for most
devices.

The WRITE command writes variables and string literals to the current device.
You can also use the WRITE command for special features of certain I/O
devices, which are specified by nonprinting ASCII codes. The WRITE
command accepts numeric arguments prefixed by an asterisk (*). The low-
order eight bits of these arguments are taken as the decimal representation of

an ASCII code. WRITE transmits the code without conversion to the
currently assigned I/O device.

Examples:

1. To ring the bell on a terminal, type:

> WRITE *7

2. To WRITE a Line Feed without a carriage return, type:

WRITE *12

3. To rewind magnetic tape unit 0, type:

>O 47 0 47 W #5

The ZLOAD command loads a routine into your partition. If you specify a

routine name, ZLOAD transfers the routine from your routine directory on
disk. If you omit a routine name, ZLOAD transfers the routine from the
current device.

The ZPRINT command writes the contents of the routine buffer to the current

device.

The ZWRITE command writes the contents of the local symbol table to the

current device.

5.5 Output Formatting

DSM-11 has three facilities that allow you to format the data you write:

1. The formatting characters

2. The OPEN and USE commands

3. $X and $Y special variables

Using System Devices 5-5

5.5.1 Formatting Characters

You can use any of the following formatting characters as arguments to the
READ and WRITE commands:

Page Feed (Form Feed) - Recognized on hard-copy
devices and Spooling devices.

! Carriage-return/line-feed sequence.

?n Horizontal tabulation - positions the next output charac-
ter n spaces from the left margin (where n Is an integer
argument of the tabulation character), but cannot go to
the left of the current position on the line.

When these characters immediately follow one another in an argument list, no
intervening commas are necessary (that is, #!?3!!! is legal).

Examples:

The following example writes two Form Feeds followed by: 65 spaces, the
string PAGE, the value of the variable PAG, and a carriage-return/line-feed
sequence.

) WRITE ##765, "PAGE ",PAG, !

When writing to a terminal, the following example writes two carriage
return/line feed sequences, followed by two rings of the bell, and the letter A.

PWRITE §1,%7,%*7,"A"

The horizontal tabulation character (?) is especially useful to format columns
of data. Tabulation is relative to the left margin, so that each successive
tabulation on a line must indicate the number of spaces from the left margin,
not from the last character. For example:

YWRITE 210,"A", 218, "H"

results in

(10 spaces)AH

not

(10 spaces)A(10 spaces)H

5-6 Using System Devices

However,

> WRITE ?18,"A",?21,"H"

produces the second result.

In any line of text, if one string overlaps the starting position for a ?n
formatted string, the ?n string starts at the next available character position.
The following example illustrates this:

> SET A=17

> WRITE A, ?6,"METERS"

17 METERS

and:

) SET A="SEVENTEEN "

) WRITE A,?6, "METERS"

produces:

SEVENTEEN METERS

To write a line with quotation marks in it, such as:

WHEN A "?" IS READ, THE ROUTINE PRINTS A "HELE" MESSAGE

you must use a double set of quotation marks, because the system drops one

set when it writes the text. Therefore, the input line should look like this:

>WUWHEN A '"?"" TS READ, THE ROUTINE FRINTS A “"HELF"" MESSAGE"

5.5.2 The $X And $Y Special Variables

The $X and $Y special variables provide the following information to help you
format output lines:

$X Contains the total number of characters you have written

since a carriage return or form feed on the current I/O
device. $X processes only printable (graphic) characters (a
W *7 is not a printable character). DSM-11 resets $X to 0
when its value exceeds 255.

Using System Devices 5-7

SY Contains the total number of line feeds you have issued

since the last page or form feed on the current output
device. DSM-11 resets $Y to 0 when its value exceeds 255.

Refer to the DSM-11 Language Reference Manual for a complete description
of the $X and the $Y special variables.

5.6 I/O Error Processing

5-8

The following categories of errors can occur for I/O:

e Errors that always trap. See Section 4.10 for what happens on an error trap.

e Errors that only trap if you have set $ZTRAP to a routine reference. If you
set $ZTRAP to a null string, you can only detect these errors by examining
the $ZA special variable.

e Errors that never trap. The routine must detect these errors by examining
the $ZA special variable.

I/O device errors can fall into any category. To determine how to handle a
particular error, you must know the specific device characteristics. Chapter 6
describes the device characteristics for each device.

Using System Devices

Chapter 6

/O Device Characteristics

The following sections describe the programming characteristics of DSM-11
I/O devices. For specific hardware characteristics, refer to the PDP-11]
Peripherals Handbook and the Terminals and Communications Handbook.

6.1 Terminals

Terminals in DSM-11 systems include, but are not limited to, VTS2, VTSS,

VT100 video terminals, and DECwriters. The system can have up to 17 remote
or local single-line terminals, and up to 128 local or remote terminals on any
combination of DH11 multiplexers and DZ11 multiplexers. Any of the single-
line devices 3 to 19 can be terminal devices.

I/O Device Characteristics 6-1

6.1.1 Terminal Device Numbers

The terminal device numbers are as follows:

Number Device

1 Console Terminal
2 Spooling Device*
3 Start of Single Line Devices**

19 End of Single Line Devices**
64 Start of Multiplexer Devices

(all DH-11 devices followed by
all DZ-11 devices)

191 End of Multiplexer Devices

* Note that the spooling device is a terminal type device but is described separately, under
Section 6.7.

** DMC11 device numbers are in the range of 3 through 19 but are described separately, under
Section 6.6.

6.1.2 Terminal Commands

The commands used for terminal I/O are:

Assignment Output Input

OPEN WRITE READ
CLOSE ZPRINT
USE ZWRITE
ZUSE

6-2 I/O Device Characteristics

OPEN Command

The format of the OPEN command for terminals is:

OPEN{:postcond} DEV:{(paramI1:param2:...parm10)}{:timeout}

When you issue the OPEN command to establish ownership of a terminal
device, you can enter any of the 10 optional parameters to override the default
terminal characteristics. If you specify parameters, they remain in effect until

you issue a USE, CLOSE, or another OPEN command. (In some cases, you

change the parameter when you access the device.) To skip the specification of
parameters, use a colon for each position, for example:

DEY: C:::param4)

Output Margin - (param!)

The Output Margin parameter allows you to change the setting of the right
margin. Whenever the value of $X (the horizontal carriage or cursor position
on the current line) for the device exceeds the value of the right margin, DSM-

11 issues a carriage return/line feed. The default is either the setting you
specified at SYSGEN or the value you specified with the last OPEN or USE
command. A value of zero disables the automatic carriage return/line feed
feature.

Output Ring Buffer - (param2)

The Output Ring Buffer parameter specifies the size, in bytes, of the output
ring buffer. If the terminal is READ/WRITE, this parameter also specifies the
size of the input ring buffer unless you also set parameter 4. The value you
specify for param2 must be in the range of 2 to 255 bytes.

Input Field Length - (param3)

The Input-Field-Length parameter allows you to enable automatic field
termination (without using carriage return) for input strings from 1 to 255
characters. This parameter remains in effect for a single READ only. DSM-11
then resets the Input-Field-Length value to 255 characters. Notice that this
parameter duplicates the field length specification now allowed on READ
commands. When it is used, the READ command takes precedence over the

OPEN command. This parameter (param3) is included here only for
backward compatibility of existing routines written before Version 3 of DSM-
11; the READ command is now the preferred method of specifying field
length.

Input Ring Buffer - (param4)

The Input-Ring-Buffer parameter allows you to set the size of the Input Ring
Buffer. The value you specify in the Input Ring Buffer parameter must be in

the range of 2 to 255 bytes.

I/O Device Characteristics 6-3

Table 6-1: Device Status Word Bit Assignments (Cont.)

Bit
Area

of Effect Meaning

10

1]

12

13

Escape-enabled

Cursor Control

Login-control

Connect

Line Printer

Carrier

TAB

DMC11

0= Escape processing is disabled.
1= Escape processing is enabled. When you
strike an escape key during a READ, DSM-11
waits for the next character that 1s anything
other than ESC "?", or "[". DSM-11 places

that character+ 16 modulo 64 into the high
byte of $ZB and terminates the READ.

0= DSM-11 does not transmit cursor control
sequence when param7 is specified.
l11= DSM-11 transmits cursor control
sequence when param7 is specified.

0= Login enabled.
1= Login disabled.

You can use bit 8 to prevent login on a
terminal. If bit 8 is set, DSM-11 ignores the
(CTRL7C) character from that terminal. If the
terminal is modem controlled, DSM-11 ignores
a ring signal unless the terminal is owned.

QO= Either the terminal line is not modem-

controlled, or the line is modem-controlled

but there is no terminal connected.

1= There is a modem-controlled connection

to a terminal.

O= Device is not a line printer (LP11).
1= Device is a line printer (LP11).

O= Either the terminal line is not modem-
controlled, or the line is modem-controlled,
but carrier is not present.
|= Carrier is present.

QO= The terminal does not recognize the 8-
space tab character. DSM-11 prints spaces
instead to bring the value of $X to the next
higher multiple of 8.
1= The terminal recognizes the tab character
and DSM-11 writes it to the terminal.

QO= Device is not a DMC11.

1= Device is a DMC11.

I/O Device Characteristics 6-5

Table 6-1: Device Status Word Bit Assignments (Cont.)

Bit

Area

of Effect Meaning

14

15

16

17

18

19

20

21

22

Lowercase

Characters

Interrupt

Received

Terminal Type

Autobaud

Data Length

Empty String
Delete

Nonprogrammed
Control Keys

(CTRL /O)

Buffer Control

0= DSM-I11 accepts alphabetic lowercase
characters on input.
1= DSM-11 converts alphabetic lowercase
characters to uppercase on input.

O= CCTRI/© or alternate application
interrupt key has been received.
1= No C€TRLZO or alternate application
interrupt key has been received since last clear
status command cleared bit 15.

0O= VTS2 cursor control sequences used if
cursor control is in effect (bit 7 = 1) and
param7 is specified.
1= VT100 cursor control sequences used if
cursor control is in effect (bit 7 = 1) and
param7 is specified.

O= Terminal is not autobauded.

1= Terminal is autobauded.

= 7-bit data is passed (bit 8 is stripped).
= 8-bit data is passed.

0= Empty string delete is ignored.
1= When the delete key is struck, and there
are no characters to be deleted, the READ
command is terminated.
$ZB low-byte = 127.

0= All nonprogrammed control keys are
accepted as normal characters.
1= All nonprogrammed control keys are
ignored on input. They are not echoed, and
they are not placed in the input buffer.

O= COTRL/O) is enabled.

l= CGTRLZO) is disabled.

0= XOFF is transmitted by DSM-11 if the
input buffer is full. XON is transmitted when
the input buffer has been emptied.
1= XOFF and XON are not automatically
LiQALLOLLILILU Uy bLavoivin

6-6 I/O Device Characteristics

Table 6-1: Device Status Word Bit Assignments (Cont.)

Area
Bit of Effect Meaning

23 Pass All 0O= Received control characters are filtered
and interpreted.
1= All control character codes are passed to
the program without filtering.

24 ZUSE 0= A ZUSE of this terminal is allowed.
1= A ZUSE of this terminal is ignored.

25 Type Ahead 0= Type ahead enabled.
1= Type ahead disabled.

If you attempt to set the following bits in the Set-Status parameter, DSM-11
reports a syntax error:

e Bit 1 (output only)

Bit 3 (modem control)

Bit 8 (login control)

Bit 10 (line printer)

Bit 11 (carrier)

° Bit 13 (DMC11)

You can set bits 1, 3, 8, 10, and 13 only by using the Device Characteristics

utility, “MUX, see Section 10.7.1. Only the DSM-11 system can set bit 11.

You can set bit 9 (connect), on no-login terminals only, for equipment that
requires a Data Terminal Ready (DTR) signal to be asserted prior to connec-
tion. You can set bit 4 (erRL7o) to stop terminal output and purge the output
buffer.

Clear Status - (param6)

The Clear-Status parameter, like the Set-Status parameter, allows you to
change device characteristics. The constraints on clearing status bits are the
same as On setting them. When you clear bit 9, DSM-11 disconnects a modem-
controlled terminal.

I/O Device Characteristics 6-7

6-8

Set $X and $Y - (param7)

The Set X-Y parameter allows you to change the $X and $Y settings for the
terminal. The values you should enter for the Set X-Y parameters should
equal:

(Y coordinate *256)+ X coordinate

If you have set bit 7 (cursor control) in param 5, you can then use the Set X-Y
parameter for direct cursor control. DSM-11 then moves the cursor to the
coordinates you specify in the Set X-Y parameter with the USE or ZUSE
commands.

Line Parameter Register - (param8)

The values for the Line Parameter Register depend on whether you have a
DH11 or a DZI11 controller. Tables 6-2 and 6-3 show the Line Parameter
Register bit assignments for both DH11 and DZ11 multiplexers. This parame-
ter is inapplicable for single-line terminals.

Table 6-2: DH11 Line Parameter Register Bit Assignments

Bit(s) Function Assignments

0,1 Character Length Bit Bit
1 O

0 O= 5 Bits
0 1 = 6Bits
1 0O=7 Bits
1 1 = 8 Bits

2 Number of Stop Bits 1 Stop Bit
= 2 Stop Bits for 6 to 8 bit characters;

.5 Stop Bits for 5 bit characters

3 Not Used __

4 Parity 0 = Disable
1 = Enable

5 Type Parity 0 = Even
(ignored if bit 4 = 0) 1 = Odd

6, 7, 8, 9 Receiver Speed (same as transmitter assignments)

I/O Device Characteristics

Table 6-2: DH11 Line Parameter Register Bit Assignments (Cont.)

Bit(s) Function Assignments

10,11,12,13 | Transmitter Speed Bit Bit Bit Bit

13 12 11 10

0 0O OO O= Zero Baud
0 0 O 1+ 50
0 O 1 0275
0 O 1 1=£110
0 1 0 O= 134.5
0 1 0 1+ 150
0 1 1 O= 200
0 1 1 = 1 = 300
1 O OO O= 600
1 O O 1 = 1200
1 O 1 0O= 1800
1 O 1. 1 = 2400
1 1 0 O = 4800
1 1 0 - 1 = 9600
1 1 1 O= External Input A*
1 1 1 1 = External Input B*

14 Duplex 0 = Full Duplex
1 = Half Duplex

15 Auto-Echo 0 = Disable
1 = Enable

*Special Order Hardware

Table 6-3: DZ11 Line Parameter Register Bit Assignments

Bit(s) Function Assignments

0,1,2 Line Number _

3,4 Character Bit Bit

Length 4 3

0 O= 5S Bits

I/O Device Characteristics 6-9

Table 6-3: DZ11 Line Parameter Register Bit Assignments (Cont.)

Bit(s) Function Assignments

0 1 = 6 Bits
1 0O=7 Bits
1 1 = 8 Bits

5 Number of Stop Bits 0 = 1 Stop Bit
1 = 2 Stop Bits
1.5 Stop Bits for 5 bit characters

6 Parity 0 = Disable
1 = Enable

7 Type Parity 0 = Even
(ignored if bit 6 = 0) 1 = Odd

8,9,10,11 Speed Select Bit Bit Bit Bit
(Transmitter/Receiver) 11 10 9 8

0 OO O 0O= 50 Baud
0 0 0 12=75
0 0 1 0O=110
0 O 1 1= 134.5
0 1 0 0O= 150
0 1 0 1 = 300
0 1 #1 0O= 600
0 1 #1 1 = 1200
1 0 OO O= 1800
1 0O 0O- 1 = 2000
1 0O 1 £O= 2400
1 0O 1. 1 = 3600
1 1 0 £O = 4800
1 1 0 1 = 7200
1 1 #1 O= 9600
1 1 #1 1 = Reserved

12 Receiver On 0 = Disable
1 = Enable

13,14,15 Not Used __

6-10 I/O Device Characteristics

Set Line Terminator - (param)

This parameter establishes a set of line terminators for a device. A string can
be specified to include any control characters from decimal ASCII 0 to 31. A
read is terminated when the application user presses any one of the specified
line terminators. The low byte of $ZB returns the ASCII decimal value of the
terminator. When the device is opened, cet) and césc) are set as the default
terminators

This example specifies ccTRL7A) and RET: as line terminators.

Set Application Interrupt Key - (param]10)

This parameter establishes a set of application interrupt keys for the device.
You can specify a string and include any control characters from 0 to 31. If an
application user enters any of characters specified, an <INRPT> error is
generated (but only if the characters are enabled by the BREAK 1 command).
The low byte of $ZB contains the interrupt character. The default character is
CTRL 7c) or the character specified at system generation. See Section 4.7.5 for
more discussion of the application interrupt key.

(DEV: C:sssres2 $CC19)

This example sets ccrRL7A) as the interrupt key.

Timeout

The timeout allows you to specify the length of time DSM-11 suspends

execution if the requested device is not free. If DSM-11 cannot open the device
during the specified period of time, it sets the special variable $TEST to 0 and
resumes execution. If DSM-11 can open the device during the specified period
of time, it sets $TEST to 1 and resumes execution.

The following example illustrates the OPEN command format for terminals.

M3: CRO: 96:10:32:5::3*256+18)

In the example above, device 5 is assigned the following characteristics:

e DSM-11 automatically writes a carriage-return/line-feed immediately after
the 80th character on each line

e Output Ring Buffer size is 96 bytes

e Input Field Length terminates the next read after 10 characters

e Input Ring Buffer size is 32 bytes

I/O Device Characteristics 6-11

6-12

Set Status sets the device as a CRT, and disables echo of characters that are

typed on the terminal keyboard

Clear Status does nothing

$x and $Y are changed to the third line in the tenth column

e Line Parameter Register remains unaltered

USE Command

The format of the USE command for terminals is identical to that of OPEN.
The USE command allows you to change terminal characteristics from the
default values exactly as described with the OPEN command. In addition,
USE makes the device the current device ($10) and sets the $ZA special
variable to the Device Status Word as described with OPEN.

READ Command

The READ command receives input data from the current device. For
terminals, you can use the READ command as described in the DSM-]I1
Language Reference Manual with the following additions:

1. Field Length Specification

DSM-11 terminates a READ when one of the following conditions is true:

e A carriage return, key, or line terminator specified in param9 is
typed

e A timeout on the read occurs

e The input data string exceeds the default maximum string size for the
READ command (255 characters)

You can alter the maximum string size for the READ command by issuing
a USE command with param3 set; however, the new value remains in effect

for one read only. You must respecify the USE command if you want it to

be effective for a subsequent read. You can also use the READ command
with a field length to do the same thing. See the DSM-11 Language
Reference Manual . In either case, the low byte of $ZB is returned with the
decimal ASCII value of the terminator equal to 0 to indicate that the field
length was exceeded.

2. Escape Processing

VT52 and VT100 terminals have, in addition to the key, several other

keys that generate an escape sequence. Each escape sequence consists of an

escape character followed by an additional character.

I/O Device Characteristics

When you set bit 6 of the Device Status Word to 0, escape processing 1s
disabled. DSM-11 terminates the READ command as soon as you strike the

Cesc) key or any other key that generates an escape sequence.

When you set bit 6 of the Device Status Word to 1, escape processing is
enabled. DSM-11 performs the following actions when you strike any key
that generates escape sequences.

Waits for the character following c&sq@ (ignoring a ?, which is used as
padding in some sequences). The character following csc is called the
escape argument.

Inserts the escape argument into the high byte of the $ZB special
variable, +16 modulo 64.

Terminates the read.

In the case of a READ * command, returns the value of the variable as 0.

Your routine can then examine $ZB to determine which escape sequence
you typed. If DSM-11 terminated the read because of some input other
than an escape sequence, it sets the value of the high byte of $ZB to 0.

NOTE

You can expand the number of escape sequences on the VT52

terminal by using the terminal in alternate keypad mode. To do
this, transmit, using WRITE *, the decimal code 27 followed by

code 61 (W *27,*61).

The following is a list of the escape keys on the keypad of a terminal:

Key Value of $ZB High Byte

Normal Mode

Left blank 32

Center blank 33

Right blank 34
Up arrow 16

Down arrow 18

Right arrow 19
Left arrow 20

I/O Device Characteristics 6-13

The following is a list of the escape keys on the keypad of a VT100 terminal:

Key Value of $ZB High Byte

Normal Mode

Up arrow 17
Down arrow 18

Right arrow 19
Left arrow 20

PFI 32
PF2 33
PF3 34
PF4 35

The following list of escape keys applies to both the VT52 and the VT100.

Alternate Keypad Mode

All of the above (either VTS2 or VT100) plus:

0 0
1 |
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
ENTER 29

62

e The ASCII value of the key that terminated the read is returned in the low
byte of $ZB. If the READ command terminated because the field length
was reached, the low byte of $ZB is 0. When escape processing is enabled,
the high byte of $ZB contains the escape argument, if one is present.

WRITE Command

WRITE sends data and/or control information to the current device. For
details, refer to the DSM-11 Language Reference Manual.

Using the WRITE command, you can send special instructions terminal. The

following is a list of some of the special functions for the VT52 or VT100. (For
other terminals, consult the applicable user’s manual.) Note that several
functions require sending more than one code to the terminal.

6-14 I/O Device Characteristics

Code Sequence VT52 or VT100 Action

10 Line feed
27,66 Cursor down

27,73 Reverse line feed

27,63 Cursor up

27,67 Cursor right
8 Backspace (cursor left)

13 Carriage return
27,72 Cursor home

27,89, Direct cursor addressing

(Desired X-coordinate + 32),
(Desired Y-coordinate + 32)
27,75 Erase to end-of-line

27,74 Erase to end-of-screen

7 Bell

27,88 Identify terminal type

27,61 Enter alternate keypad mode
27,62 Exit alternate keypad mode

ZUSE Command

The format and function of the ZUSE command are identical to those of the
USE command, except that ownership of the device is not required. (That is,
you do not have to issue an OPEN command before you use a device with
ZUSE.) The device to which the ZUSE command Is issued remains as the

current device until another ZUSE or USE command is issued.

6.1.3 Terminal Error Conditions

The following is a listing of error conditions for terminals.

If you attempt to issue an invalid parameter with either the OPEN, USE, or
ZUSE commands, DSM-11 generates a <SYNTX>, <MXNUMD>D,

<MINIM>, or <PARn> error.

If required ring buffer space is unavailable, DSM-11 can generate a
<NOBUF> error when you issue READ and WRITE commands.

Although DSM-11 allows you to specify ring buffer sizes during the
SYSGEN procedure and as device assignment parameters, DSM-11 does not
actually assign the ring buffer to a device until it is required. All ring buffers
are returned to the system pool when a terminal is neither being used nor
owned.

When you have logged in or opened a remote terminal, DSM-11 monitors
the telephone line to assure that a connection is present. If the connection is
lost, DSM-11 generates a <DSCON> error. If you are in Programmer

I/O Device Characteristics 6-15

Mode and the principal device disconnects, DSM-11 automatically logs you
out, and any local data or routine information is lost. If you are running a
routine and have $ZTRAP set, DSM-11 executes the error routine.

e If you attempt to read from a terminal that your job does not own but is the
current device, DSM-11 generates a <NODEV> error. This condition
could occur as the result of a ZUSE command or as the result of a
background job, initiated by the JOB command, attempting to read from its
principal device (which it does not own).

6.2 Line Printer

The DSM-11 system supports any line printer that connects to the LPI1
interface. This includes uppercase/lowercase line printers and line printers
with 80 and 132 character-per-line capacity.

6.2.1 Line Printer Commands

The commands used for line printer I/O are:

Assignment Output

OPEN WRITE
CLOSE ZPRINT
USE ZWRITE
ZUSE

6.2.2 Line Printer Functions And Characters

You can write the following decimal ASCII codes to a line printer with the
WRITE * command to effect format control:

Code Description

10 Line Feed
12 Form Feed (Top of Form)
13 Carriage return

The following example starts a new page on the line printer (device 3) and lists
the current routine.

> UZSUSW*12 2P C3

6-16 I/O Device Characteristics

In most cases, for formatting text within a DSM-11 WRITE statement, you

should use the appropriate formatting characters, such as # (form feed) and !

(carriage return), for example:

>LBL3 WH" TEAT"S 1. "MORE TEAT"

See the DSM-I1 Language Reference Manual for more information on
formatting characters.

6.2.3 Line Printer Error Conditions

When a line printer is the current device, $ZA contains the line printer’s
Device Status Word. When an error occurs, DSM-11 sets bit 5 in $ZA, if one

or more of the following line printer conditions 1s true:

OFF LINE
OUT OF PAPER
YOKE OPEN
POWER OFF

A line printer error causes the job sending the output to the printer to hang.
For this reason, it is better to use the spooler for printing rather than print
directly from an application. When the DSM-11 Caretaker background job is
active, it prints line printer error messages on the Caretaker printer.

6.3 Magnetic Tape

You can use aS many as four magnetic tape drives on a DSM-11 system;
however, all drives except the TS11, TSV05, TU80, and the TU58 must attach

to the same controller. With a TS11, TSV05, or TU80 you have one controller

for each drive. You can have TS11 drives mixed with other drives. The TUS8
cassette tape drive is handled by a separate device driver. (See Section 6.1] for
a discussion of this device.)

Tape-labeling conventions, character sets (ASCII or EBCDIC), data formats,
and physical block size are routine selectable. You can modify default values
for these parameters with the “MMD (Modify Magnetic Tape Default) system
utility, see Section 10.7.5.

I/O Device Characteristics 6-17

6.3.1 Magnetic Tape Device Numbers

The magnetic tape device numbers are as follows:

Number Device

47 Magnetic tape Unit 0
48 Magnetic tape Unit 1
49 Magnetic tape Unit 2
50 Magnetic tape Unit 3

6.3.2 Magnetic Tape Commands

The magnetic tape commands are as follows:

Assignment Input Output

OPEN ZLOAD ZPRINT
CLOSE READ WRITE
USE ZWRITE

OPEN Command

The format of the OPEN command for magnetic tape 1s:

OPEN{:postcond} DEV{:(param1:param2:param3)} {:timeout}

Format Switch - (param!])

When you use the OPEN command to establish device ownership, you can

enter the optional parameters to override the default tape format characteris-
tics established through the system utilities. If you specify parameters, they
remain in effect until you close the unit. If you wish to change the parameters,
you must first close the unit and then specify them the next time you open the
unit. Each character of the optional string param! represents a format switch.
The effect of each of these switches is described in Table 6-4.

6-18 I/O Device Characteristics

Table 6-4: Magnetic Tape OPEN Switches

Switch

Character Meaning Effect

A

B

ASCII

Shared Buffer

Continuous

DOS-11 Compatible

EBCDIC

Fixed-Length Records
Data Format

Selects ASCII character set.

Allows the tape unit to share the transfer
buffer with VIEW (device 63). In this
mode, no other OPEN parameters except

C (continuous), T (tape mark), or digit
(density) are allowed, and only WRITE
commands are allowed.

Allows your routine to continue process-
ing while magnetic tape block transfer is
in process. When you issue the next block
transfer command, implicit or explicit,

your routine may hang until the previous
command completes. A side effect of this
switch is that two buffers are required. If
switch B is not specified, the OPEN
command allocates two buffers automati-
cally. If you use switch B to share the
VIEW buffer, your routine must manage
the transfer buffer by means of "U 63...”.
See Section 6.9. In Nonbuffer Mode, if

you specify this switch, switches D and S
are also in effect. See Section 6.3.6 for
more information on the Continuous
Mode.

Uses DOS-11 labeling, the ASCII charac-
ter set, and the stream data format.

Translates ASCII characters to EBCDIC
when written, and EBCDIC characters to

ASCII when read. You can use this switch
only if you selected the EBCDIC module
during the SYSGEN procedure.

Assumes fixed-length logical records for
input, and uses the stream data format for
output. Thus, there is no automatic
padding of record length on output. This
Switch requires the presence of an
additional parameter on the OPEN
command to specify record length.

I/O Device Characteristics 6-19

6-20

Table 6-4: Magnetic Tape OPEN Switches (Cont.)

Switch

Character Meaning Effect

L Standard Labeling

Stream Data Format

Tape Mark
Trap Inhibit

Unlabeled

Variable-Length
Records Data Format

Density

Density

Uses ANSI standard labels with the ASCII
character set. Uses IBM standard
EBCDIC labels with the EBCDIC charac-

ter Set.

During output operations, packs charac-
ters sequentially into the buffer. This
format does not split strings across block
boundaries; instead, it pads the buffer
with null bytes. During input operations,
this format treats LFs, VTs, and FFs as
string delimiters, and ignores GET. See
Section 6.3.5 for more information on
stream data format.

Inhibits trapping on tape mark
condition. You are expected to check
$ZA for the tape mark condition.

Does not provide labels. For files that
require a tape mark at the end of the
file, you must issue a WRITE *3 after
you write the file.

This data format corresponds to the
ANSI standard D format or the
EBCDIC V format, depending upon
whether you selected the ASCII or the
EBCDIC character set. Each
argument of a WRITE command
corresponds to a logical record, which
can be read as a single argument of a
READ command.

Specifies 800 bits/n (32 bits/mm)
density. (Not available for TS11,
TU80, or TSVOS.)

Specifies 1600 bits/n (64 bits/mm)
density. (Not available for TS03 or
TE10.)

DSM-11 does not allow all switch combinations. If you specify conflicting
switches such as VF, DSM-11 recognizes only the acceptable switch or switches
that you specified last in the combination. DSM-11 processes switches from
left to right. Table 6-5 indicates which combinations you can use.

I/O Device Characteristics

Table 6-5: Legal OPEN Switch Combinations

Switch combinations denoted by an ”X” are permissible.

SWITCH | A B C D_ E F L S T U_ V_ digit

A 4 xX xX xX X X KX XK XK X

B x XX x x

C Xx wW® KX KX K BK WK WR WR WR WR X

D x x XX x xX x

E > xXx X xX X XK K XK X

F > Xx xX NX X x XxX x

L x D4 xX X X XK XX x X

S 4 xX xX XxX xX xX xX X 4

T Xx RM X KX K K XK KX KX KX XK X

U 4 x x XX xX X xX XK X

Vv x x x 4 xX XxX xX X

digit Xx RM KX K K KX KX KX KX XK XK X

Logical Record Size - (param2)

The Logical Record Size parameter allows you to specify a fixed-length record
size in bytes. If you are not using a fixed-length record format, you must use a
value of O (zero) in this parameter. If you are using a fixed-length record
format, you must use a value in the range of | to 255.

Physical Block Size - (param3)

The Physical Block Size parameter allows you to specify a physical block size
in bytes. Its value can range from 14 to 8192 if not in Buffer Mode, or 14 to
32766 if in Buffer Mode. The value must be an even value; an odd value

produces a magnetic tape error. In Buffer Mode, you cannot have read or
write access to the tape; this mode is for block copying to and from the tape.

Timeout

The timeout allows you to specify the length of time DSM-11 suspends
execution until a requested device is free. If DSM-11 cannot open the device
during the specified period of time, it sets the special variable $TEST to 0 and
resumes execution. If DSM-11 can open the device during the specified time, it
sets $TEST to 1 and resumes execution.

The following example reserves magnetic tape unit 0 with the default format.

> 0 47

I/O Device Characteristics 6-21

6-22

The following example reserves magnetic tape unit 0 and specifies the ANSI

standard D format (labeled).

> 47: C" AVL")

The following example reserves unit 0 and specifies unlabeled EBCDIC with
80-character, fixed-length records and 240-byte blocks (3 records per block). If
unit O is not available in 3 seconds, DSM-11 continues executing the routine.

>0 47: C"EUF": BO: 248) :3

USE Command

Makes the magnetic tape the current device if you previously opened it. If you
try to use a magnetic tape device without opening it, the system returns a

<NOPEN> error.

CLOSE Command

Performs an implicit WRITE *9 (write an End-Of-File Label) if you are
performing an output operation. That is, when you issue a CLOSE command,
DSM-11 writes the contents of the buffer (if any). Also, if the magnetic tape
unit is not on either the beginning or end of tape indicator, DSM-11 writes the
appropriate label and two tape marks. DSM-11 then backspaces over the last
tape mark. If the device is again opened, a new file may then be appended. If
the device is not opened again, the file is properly terminated.

WRITE and ZPRINT Commands

The ZPRINT command writes the routine buffer to the magnetic tape that is
the current device and the WRITE command writes a single logical record to
the magnetic tape that is the current device.

WRITE * Command

You can use the control codes shown in Table 6-6 as arguments to the WRITE
command to effect special tape functions. These control codes are used with
the WRITE * syntax of the WRITE command.

I/O Device Characteristics

Table 6-6: Magnetic Tape Control Codes Used with WRITE

Code Meaning Effect

| Backspace Backspaces one block.*

2 Forward Space Spaces forward one block or magnetic
tape mark. If the magnetic tape is at
BOT (beginning of tape) skips the label
before it performs the forward space.*

3 Write Tape Mark Writes a magnetic tape mark on the
tape.**

4 Write Block Writes the current buffer. If the
magnetic tape is at BOT, writes a volume
label before writing the buffer.

5 Rewind If the last operation was a_ write,
performs an implicit "WRITE*9” and
rewinds the magnetic tape.

6 Read Block Either reads the next block into the
buffer, or reads a magnetic tape mark. If
the tape is at BOT, skips the volume
label (appropriate for the media) and
reads the next block.

7 Read Label Either reads the next block into the
buffer, or reads a magnetic tape mark. If
the magnetic tape is at BOT, reads the
first block, which may be the label.

8 Write Header Label If you select the DOS-11 format, writes a
DOS-11 label. If you select any other
labeled format, writes the sequence
"HDR1, HDR2, tape mark”, preceded
by a volume label if the tape is at the
BOT. DSM-11 ignores this code for
unlabeled formats.

9 Write EOF Label If you select the DOS-11 or an unlabeled
format, this code writes a tape mark.
Otherwise, it writes the sequence “tape
mark, EOF1, EOF2, tape mark, tape

mark” .**

10 Write $ZA This code updates $ZA with the actual
current tape status.

* The execution of this code clears the READ ONLY/WRITE ONLY switch. Subsequent magnetic tape

I/O establishes the new mode for that switch.

** If the last operation was an output operation and data remains in the buffer, this code writes the contents

of the buffer before making any other decisions or taking any other action.

I/O Device Characteristics 6-23

6-24

ZLOAD and READ Commands

ZLOAD loads a routine from the magnetic tape that is the current device into
your partition. A READ command reads the next logical record from your
magnetic tape. If the tape is at BOT, and if there is a label, READ skips the
label.

6.3.3 Magnetic Tape Operations

To write a single file to magnetic tape, a routine should:

e Issue an OPEN and USE for the unit

e Issue a WRITE *5 to rewind the magnetic tape (if it is not already at the
beginning of the tape)

e Write the data

e Issue either a CLOSE for the unit or issue a WRITE *5 to rewind the tape

DSM-11 then writes a partially filled output buffer and performs the appropri-
ate labeling. If the tape is at the BOT position, and if a tape-mark condition
indicates the end of a file’s data, DSM-11 skips the volume and header labels.

DSM-11 uses the $ZA special variable to store status information for each I/O
Operation with various devices including magnetic tape. $ZA represents the
status of the unit at the completion of the last I/O operation, except when you
use an OPEN command that establishes ownership of the unit. Table 6-7 lists
the $ZA bit assignments for magnetic tape.

I/O Device Characteristics

Table 6-7: Magnetic Tape Device $ZA Status Bit Assignments

Bit Condition

0 Logical Error

| Positioning in progress

2 Tape is write protected

3 Not used

4 Not used

5 Beginning of tape (BOT)

6 0 when tape unit does not exist, off line or powered down

7 Nonexistent memory*

8 Bad tape error*

9 Block length error

10 End of tape (EOT)

11 Bus grant late*

12 Parity error*

13 Cyclical redundancy*

14 Tape mark*

15 Error condition*

* If error trapping is set and these conditions are present when the operation completes, DSM-
11 produces a <MTERR> trap.

DSM-11 allocates a buffer for the magnetic tape unit on the first OPEN
command; param3 of the OPEN command specifies the physical block size,
which can range from 20 to 8192 bytes. (The default is 1024 bytes.) If you use
the C switch, two identical buffers of the specified size are acquired.

DSM-11 uses the $ZB special variable to store the actual number of bytes
transferred during the last physical block read. Normally this is the same as
the block size specified in param3. You can use the value stored in $ZB to
check for any blocks that are shorter than the expected size. DSM-11 reads
short blocks successfully without issuing an error. In most operations, you do
not need to check $ZB; DSM-11 always processes short blocks successfully.

You deallocate the buffer with a CLOSE command. Part of the deallocation
process is the writing of a partially filled buffer if the last I/O request was a
WRITE or ZPRINT. Because DSM-11 automatically writes only full buffers

on the magnetic tape, the last request in an output sequence must be a CLOSE
or one of the special output operations. The special operations are WRITE *9
(write an EOF), WRITE *5 (rewind) or, in the case of a DOS-11 label format,

I/O Device Characteristics 6-25

6-26

WRITE #*3 (write a tape mark). Otherwise, the contents of the last buffer
might be lost. This same sequence is automatically performed on a HALT.

You can also use the VIEW buffer for I/O transfers to magnetic tape. First
you must open VIEW device 63. Then use the B switch as a modifying
parameter when you open the magnetic tape device.

By using the read block or the write block operations (W *6, W *4), you can
perform operations directly between magnetic tape and disk or between
multiple tape units. DSM-11 does not process the internal data structure of the
data blocks. You cannot perform logical record operations in this mode.

When you are using the B switch, you are allowed to use two parameters with
the USE command. (This is the only case where you can have USE parameters
with the magnetic tape device.) The format of the USE command when the
tape has been opened with the B switch is:

USE DEV{:(param1:param2)}

where:

param! is the physical block size of the transferred magnetic tape
blocks. This number must be in the range of 14 to 32768
(default block size is 1024 bytes).

param2 is the transfer buffer offset location. This number must be a
multiple of 64 and within the VIEW buffer (default buffer
offset is 0).

Both of these parameters can be further restricted by the size of the VIEW
buffer. It is not possible, for example, to write blocks larger than the buffer
open for VIEW device 63. Also the transfer offset location must be within the
current VIEW buffer segment. VIEW buffers are allocated in 1024 byte
increments.

When you use the B switch, DSM-11 assigns you the same buffer as currently
defined for the VIEW device. Unless the C switch is on, subsequent parameter
modifications of the VIEW device with a USE command do not alter the base
address of the buffer for magnetic tape operations. If you do use the C switch,
the buffer address changes for each block transfer. Also, when you issue a
USE command to a magnetic tape device in the B switch mode, you must

specify any offsets with respect to the base address as defined when you issued
the OPEN command.

I/O Device Characteristics

6.3.4 Tape Labels And Multiple File Structures

There are four labeling options:

1. DOS-11 compatible label

A DOS label appears at the beginning of the magnetic tape (compressed
label format) and a tape mark appears at the end of the file. The DOS file
name is:

[1,1JMUMPS.001 < 233>

2. ANSI standard label

The ANSI label used in DSM-11 1s:

VOLIMUMPS!1

The owner identification field contains:

D%B4444001001

Single File

VOL,HDR1,HDR2*...data...*EOF1,EOF2**

Multiple Files

VOL,HDR1,HDR2*...data...*EOF1,EOF2*HDR1,HDR2*...data...
*ROF1,EOF2*HDRI...EOF2**

The HDRI1 and HDR2 labels are:

HDRIMUMPS.SRC and HDR2D0051200136

* Each asterisk represents a tape mark. VOL, HDR1, HDR2, EOFI1, and EOF2 are each ANSI-

specified 80-character blocks.

3. IBM standard EBCDIC label

With the exception of minor internal field differences and the EBCDIC
character set, this labeling convention is the same as the ANSI standard.

Figure 6-1 illustrates this labeling convention.

I/O Device Characteristics 6-27

6-28

Figure 6-1: IBM Standard EBCDIC Label

BL RL, String, RL, String, wee e| AL string,
x

<— RL, —_+ —=— RL, —_+e =— RL, —_+

<i. ii
— —_

4

one physical block MR-S-840-80

4. Unlabeled

DSM-11 generates ANSI standard labels if the OPEN switches L and A are
present (or are default switches). DSM-11 generates IBM standard labels if
the L and E switches are present (or are default switches). The volume
identifier is "MUMPS1,” and the file identifier for every file on the tape is
“"MUMPS.SRC”. The file sequence number of the first file is 1. DSM-11

increments the sequence number by one for each subsequent file on the
tape.

DOS-11 compatible labels use the file name "MUMPS 001”.

To write multiple labeled ANSI standard or IBM standard files, use the
following sequence:

.. write file(x-1) WRITE *9,*1,*8 write file(x) ...

Note that if nothing is written for file(x), a subsequent CLOSE or rewind does
not properly close that file. A WRITE *9, however, properly closes that null
file.

To read multiple labeled ANSI standard or IBM standard files, you should use
the following sequence:

.. read file(x-1), read the tape mark, WRITE *7,*7, read file(x) ...

6.3.5 Data Formats

You can select any of three data formats:

1. Stream

Stream data format refers to the data format and not to continuous
operation of the tape drive (streaming). See Section 6.3.6 for more
information on Continuous Mode. DSM-11 stores characters sequentially
in blocks. During output operations, DSM-11 translates a carriage-

I/O Device Characteristics

return/line-feed sequence to a line feed. If a line cannot fit into the remain-
der of a block, DSM-11 pads that block with NUL characters and writes

the line as the first line of the following block.

During input operations, DSM-11 converts line feeds, form feeds, and
vertical tabs to NUL characters, and discards carriage returns. DSM-11
also interprets a NUL character as the end of a block; input for that READ

continues with the first character of the following block.

. Variable Length

You can select the variable-length record format by using the OPEN switch
V. Figure 6-2 illustrates this format.

Figure 6-2: Variable-Length Record Format

RL, string, RL, String, |---- RL string,

—— RL, —_—_. + RL,——> <-—_ RL. ——+

one physical block MR-S 8-11-80

DSM-11 precedes each string by a 4-byte numeric character offset whose
value is the byte length of the data string plus 4 for the offset length. If the
next string plus offset cannot fit into the same block, DSM-11 places a
circumflex (‘) in the first character position of what would have been the
next offset, and then places the string and its offset in the following block.

The OPEN switches E and V select the EBCDIC version of the variable-
length record format. The EBCDIC version is the same as the variable-
length format, except that every data block begins with a 4-byte block
offset (two bytes for the offset, two bytes of O value). This block offset
equals the length of all of the strings that are in the block and their offsets,
plus 4 for the block offset length.

During output operations, DSM-11 treats each argument of the WRITE
command as a separate record, and does not write the EOM character

automatically.

. Fixed Length

The fixed-length data format requires that you specify the record length
(from 1 to 255 characters) in the OPEN command. DSM-11 continues
reading characters until it reads the specified number, or until it encounters
a NUL character. DSM-11 then skips the remaining characters in that block

and reads the beginning of the next block.

I/O Device Characteristics 6-29

6-30

During output operations, DSM-11 uses the same format as the stream
format, but does not pad the record length. Thus, routines can write
individual fields of a logical record at different points in a routine. The
specification of block size should be an integer multiple of the record size.

6.3.6 Continuous Mode

Continuous Mode is chosen by the C switch on the OPEN command. This
mode provides for continuous movement of the tape drive, which is sometimes
referred to as streaming. This is different from the S switch on the OPEN
command, which refers to a stream data format.

Continuous Mode avoids the usual stop and start operation of the magnetic
tape drive. With Continuous Mode the tape drive can operate at speeds
between 25 IPS (inches per second) and 100 IPS.

For streaming to occur, data must flow to the tape drive at a fast enough rate
to keep the drive moving.

In Continuous Mode, DSM-11 allows a job to queue blocks to be written to a
tape drive, and then allows the job to continue processing. This is asynchro-
nous I/O, unlike synchronous J/O in which the job is suspended until the
write process is complete.

DSM-11 accomplishes the Continuous Mode by using a double buffering
technique. A data block can be read from the disk, and stored in a buffer for
output to the tape. Another data block can be read from the disk to another
buffer, while the first data block is being written out to tape. Continuous
Mode is ideal for copying a disk to tape with continuous movement of the tape
drive.

Using Continuous Mode requires that the VIEW buffer be owned by the job
before opening the magnetic tape drive. Since double buffering is needed, the
VIEW buffer must be opened with twice the size of a single magnetic tape
block. For instance, when writing 1024 byte blocks, the VIEW buffer must be
opened with a block size of 2048 (or 2).

Continuous Mode does not support any READ or WRITE data commands.

The following is an example of how the VIEW buffer can be used to write
4048-byte blocks to tape from disk. The VIEW buffer and magnetic tape
pointers are managed by the output routine so that disk and tape operations
alternate which segment of the VIEW buffer is being used for each.

I/O Device Characteristics

In writing the output routine, you must minimize interpreter and CPU
overhead between disk and tape operations since the CPU can potentially
provide a bottleneck to getting tape operations started smoothly. In addition,
other system activity can limit the throughput to the tape.

START 0 63:8 iGet VIEW device with 8 1K byte

iblacks (8096 blacks).

0 47: "CB" ;0OPEN magnetic tape in Continuous Mode.

S BLK=@,MAK=188 i5et black number and maximum for loop.

LOOP ll 63:¢1:4) V BLK: "DLQ" iRead 4K bytes of disk ints the first

ihalf of the VIEW buffer.

) 47:(4048:0) W *4 iWrite a 4K byte tape block starting

jat byte @af the buffer.

S BLK=BLK+4 iIncrement black number.

LW 63:¢9:4) V BLK: "DLO" iRead another 4K bytes of disk ints

ithe secand half of the VIEW buffer.

Il 47:€4048: 4048) W #4 iWrite a 4K byte tape block starting

iat byte 4048 of the VIEW buffer.

I BLK=MAK iWuit if last block is read.

S BLK=BLK+4 G LOOP iFigure next block number toa read

ifrom disk and loop

6.3.7 Magnetic Tape Error Conditions

DSM-11 reports the status of magnetic tape in the $ZA special variable. That
is, after any magnetic tape command but CLOSE, the bit pattern in $ZA
reflects the status of the magnetic tape. As shown in Table 6-7, $ZA can
reflect several possible conditions.

e The logical error bit (LER) is set in $ZA only if a logical error is discovered
when attempting to unpack (read) from a magnetic tape block.

A Positioning-in-Progress Condition

e A Tape-is-Write-Protected Condition

e A Beginning-of-Tape Condition

e A tape-not-ready condition is caused by one of the following:

e You have not loaded the tape properly.

e You have not selected the unit properly.

e You have not turned the power on.

e You are in the process of positioning the tape.

I/O Device Characteristics 6-31

6-32

e You have attempted to write to a WRITE-protected tape.

You can check item 5 before issuing the I/O request by examining $ZA as
shown in the examples at the end of this section.

e A Nonexistent-Memory Condition

e Bad magnetic tape and parity errors are probably caused by a physically bad
magnetic tape

e A Record-Length error is a magnetic tape READ error. It occurs when you
try to READ a block that is larger than you specified in the OPEN
command.

e An EOF error terminates an input operation.

You should examine $ZA after every tape operation for expected conditions
(such as tape marks). The Magnetic Tape Status Check Utility (“%MTCHK)
allows you to examine $ZA. (See Section 7.5.6 for more information on
‘oo MTCHK.)

When you set the $ZTRAP special variable at the same context level as the
tape I/O, DSM-11 transfers control to the line and/or routine referenced in
$ZTRAP if bits 7, 8, 9, 11, 12, 13, or 15 are set in $ZA. (See Table 6-7 for
more information on $ZA.) If Version 2 error processing is enabled, then
transfer to the $ZTRAP reference occurs regardless of which context level
SZTRAP is set in. See Section 4.10 for more information on error processing.

DSM-11 also transfers control to the entry reference specified in $ZTRAP if
the tape is positioned on a tape mark when you are not writing to the tape. To
avoid causing this trap; set the T switch (Tape Mark Trap Inhibit) in the
optional OPEN parameters when you open the tape. (See Table 6-4 for more
information.)

Any attempt to mix reading or writing operations produces a
<MODER > error. This error is produced regardless of whether $ZTRAP has
been set or not.

An end-of-tape (EOT) condition is handled as follows: when reading from

tape and an EOT is discovered an error is not returned to the routine. The
EOT $ZA bit is set, until a rewind command is given. when writing to tape,
and an EOT is detected, the EOT $ZA bit is set. If $ZTRAP is set, then an
<MTERR>® error is returned to the routine. A rewind command resets the
EOT bit in $ZA. Your routine should terminate the file and write an EOF
following the detection of an EOT.

The following example checks the magnetic tape for an error condition (bit
15). If it finds an error, it goes to the line labeled ERROR to process the error.

047 1 47 G:$2A \ 32768 ERROR

I/O Device Characteristics

The following example checks bit 10 for an end-of-tape condition. If it finds
such a condition, it goes to the line labeled ERROR to process the condition.

Ll 47 G:$2A \ 1024#2 ERROR

6.4 Sequential Disk Processor

The Sequential Disk Processor (SDP) allows you to access the disk as a
sequential-access or random-access I/O device.

SDP accesses both the space that is set aside for its use as well as space set
aside for disk journaling; it cannot access any other disk space, such as the
global data base. The SDP option, ‘SDP, of the system utility package
allocates disk space for SDP use, see Section 12.4. The journal allocate utility,
SJIRNALL, allocates space for journaling. Section 16.3.4 describes this utility.

SDP transfers disk data in 1024 byte blocks, which is the standard DSM-11

block size. When you use SDP, you specify a DSM-11 block number and,

optionally, a byte offset. After DSM-11 grants you use of a disk block, no

other SDP user is permitted access to the block until the block is released. A
block can become free if you access another block, or if you issue a CLOSE

command.

The Sequential Disk Processor allows you to reference SDP disk space either
sequentially, or in a random-access manner. When you use SDP to access SDP
space, you can mix input and output commands. When you access a new block
or close the SDP device, DSM-11 automatically rewrites modified buffers.

To read or write sequentially, you should specify parameters just once, in the
OPEN or USE you issue to an SDP device. Each subsequent I/O command
automatically begins at the byte following the previous I/O operation. To use
the SDP area of your disk(s) as random-access space, issue a USE with new
parameters each time you wish to direct your input or output to a new location
in the SDP space.

When you use SDP to access journal space, you automatically start at the
beginning (byte offset =0) of a block. Moreover, you can only issue READ
commands. Only one SDP device at a time can access journal space. If you
attempt to open a second SDP device for journal reads, you will receive a
<PROT> error. Note that although map 0 of disks, excluding the system
disk, can be allocated to SDP space or journal space, only blocks 1 to 399 can
be accessed because block 0 is used for the disk label.

I/O Device Characteristics 6-33

6.4.1 SDP Device Numbers

DSM-11 reserves Device numbers 59 to 62 for use by the Sequential Disk
Processor.

6.4.2 SDP Commands

The commands applicable to SDP operations are:

Assignment Output Input

OPEN WRITE READ
CLOSE ZWRITE ZLOAD
USE ZPRINT

OPEN and USE Commands

The format of the OPEN and USE commands for I/O operations on SDP
space Is:

OPEN/USE{:postcond} DEV{:(param1:param2:param3)} {:timeout}

where:

DEV is an SDP unit number from 59 to 62

param! is the byte within the block (0 to 1023)

param2 is the block number relative to the disk

param3 is the disk drive type and unit number

timeout is the amount of time allotted for a successful OPEN

Refer to Section 6.4.5 for examples of OPEN and USE command usage in
SDP I/O operations.

NOTE

You must know the maps allocated for SDP space to calculate
param? correctly. Refer to Appendix D for more information about
calculating the disk block number.

6-34 I/O Device Characteristics

The format of the OPEN command for SDP operations on journal is:

OPEN{:postcond} DEV{:(param1:param2:param3)} {:timeout}

where:

DEV is an SDP unit number from 59 to 62.

param! is the negative (signaling a READ ONLY journal area) of
the number of map blocks in the journaling area.

param2 is the DSM-11 block number relative to the disk to begin
reading from. (This allows you to begin reading from the
middle of the journaling area.) The byte offset is automati-
cally set to 0.

param3 is the disk drive type and unit number

timeout is the amount of time allotted for a successful OPEN.

CLOSE Command

When you close SDP and have modified the current block, DSM-11 automati-

cally writes the block to the disk.

READ and ZLOAD Commands

When you issue a READ or ZLOAD command, SDP reads from the block
beginning at the current byte position within the SDP block. SDP transfers
data to the current user’s partition line buffer until a logical EOM, or until the
line buffer is full. If SDP does not detect an EOM or the line buffer is not full
and the SDP buffer boundary is reached, SDP reads the next contiguous disk

block and continues transfer from byte 0 of the new block until the following
occurs:

e SDP detects a null byte in the first position of a block

e SDP reaches the end of a contiguous SDP space

WRITE, ZWRITE and ZPRINT Commands

You perform output to SDP using the DSM-11 syntax described in the DSM-
1] Language Reference Manual .

When you issue an output command, transfer to disk might not take place
immediately (because SDP operations are buffered). DSM-11 writes the
contents of the buffer to the disk when:

I/O Device Characteristics 6-35

6-36

e The buffer becomes full

e The device is closed

e A subsequent I/O command to this device references a different disk block

After SDP writes a block (when the output exceeds the size of its buffer), SDP
reads the next contiguous disk block and continues transfer into the buffer at
byte 0.

6.4.3 SDP Special Characteristics And Functions

SDP reports the disk block number of the block currently in the SDP buffer in
the $ZA special variable. SDP reports the byte offset into the current block in
the $ZB special variable.

During sequential I/O operations, SDP skips the DSM-11 map blocks (every
400th block beginning at block 399). An attempt to directly access a map block
during an OPEN or USE command generates an error condition. SDP
interprets null bytes as the end of a block and automatically skips to the next
block. If SDP encounters a null byte in the initial position of a block, it
reports “end of file” ($ZA=-1).

6.4.4 SDP Error Conditions

When you OPEN or USE an SDP device, DSM-11 generates a <MXNUM>
error if param! (byte within the block) is greater than 1023. If you open SDP
with a negative block number to read journal space, and you attempt an
output operation to the SDP device, you receive a <PROT> error.

Specifying a positive disk block number (param2) that is not part of SDP
space or 1s a map block causes DSM-11 to set the $ZA variable to -1. This
error can occur on an OPEN or USE command or when a sequential operation

overflows SDP or journal space. Note that sequential operations automati-
cally skip map blocks. You should examine $ZA after each OPEN, USE or
I/O operation to determine the result of the last requested access. When you

Open or use an SDP device to access journal space (by specifying a negative
block number), all subsequent commands you issue before the next OPEN,
USE or CLOSE must be READ commands. Attempts to issue any output
commands result in <SYNTX> errors.

Using an inappropriate parameter in the OPEN statement can result in a

<PARn> error.

I/O Device Characteristics

6.4.5 Examples Of SDP OPEN And USE

The following example shows how to place several records in SDP space in
sequential order, and retrieve them:

>5 A=123,B=97897,C="Edit"

>O 99: ¢0: 1688: "DLI"9) ibyte BW, in black 168

par RL@S unit 1

>5 A=123,B=57897,C="Edit"

> 2W iwrite the local symbol table

A=123

B=97897

C="Edit"

YU SOW ALI,BLI,LC,! i! delimits each record in SDF space

> KILL ideletes contents of symbol table

YU S39: CW 160M: "DL" Ra tid iplaces &, YY, é@ in symbol table

> ZW

K=123

Y=37897

2="Edit"

The following example shows how to use SDP to transfer a routine from the
routine directory of one UCI, to the routine directory of another UCI:

> 59:°¢5:1621:"DL1") U 59 ZF

ZL CRautine Name)

>O59=°¢5:1621:"DL1") U 59 ZF ibyte 5, in block 1621 on

iRLBS unit 1

»>¢ 59 HALT

After logging in under a different UCI:

.059:¢5:1621:"DL1") U 59 2P

>O59°¢5:1621:"DLi") U 59 2b iplaces routine in rautine buffer

2S (Routine Name) iputs routine in routine directory

6.4.6 Using SDP To Read Disk Journaling Space

When you want to access disk journaling space using SDP, open and use the
SDP device with param! set to minus the number of maps in the journal space
that you want to access. Because the disk journaling feature of DSM-11 writes
records sequentially, DSM-11 must also read journal space sequentially to
ensure that the records are recovered in correct sequence. Refer to Chapter 16
for a description of disk journaling.

I/O Device Characteristics 6-37

6.5 In-Memory Job Communication

In-memory job communication (JOBCOM) permits jobs to send information
to other jobs without using the disk. Communication occurs through a series
of pseudodevices that are used in pairs; even-numbered devices are “receivers”
and odd-numbered devices are “transmitters”.

To send information, a job opens and uses a transmitter, and then writes a

message. Another job opens and uses the corresponding receiver and reads the
message. Transmission 1s fully buffered; that is, a job can write messages even
if the receiving job has not opened and Is not using the corresponding receiver.
Likewise, a job can read messages after they have been written even if the
transmitter 1s no longer open. Furthermore, several jobs can OPEN a particu-

lar transmitter, print a message, and CLOSE the transmitter before earlier
messages are read through the receiver. However, several jobs cannot OPEN a
particular transmitter simultaneously.

An attempt to write characters when the buffer is full suspends the transmit-
ting job until the receiver removes one or more characters. Similarly, an
attempt to read characters when the buffer is empty temporarily suspends the
input job.

The transmitter is write only, and the receiver is read only. An attempt to
access a device improperly (WRITE to a receiver, for example) causes a
<NODEV> error.

6.5.1 JOBCOM Device Numbers

The JOBCOM device numbers are:

Number Device

224 Receiver for Unit 0

225 Transmitter for Unit 0

254 Receiver for Unit 15

255 Transmitter for Unit 15

6-38 I/O Device Characteristics

6.5.2 JOBCOM Commands

The commands you can use for interjob communication are:

Assignment Output Input

OPEN WRITE READ
CLOSE ZWRITE ZLOAD
USE ZPRINT

WRITE and READ

Every argument of the WRITE command by the output job corresponds to an
argument of the READ command by the input job. The data that is received is
an image copy of the transmitted data. For example, execution of the follow-
ing code results in A=”HELLO”, B="AGAIN”, C=carriage-return/line-
feed characters.

)O 225 U 225 W "HELLO", "AGAIN", ! 0 224 224 R ALBLC

> é2W

A="HELLO"

B="AGAIN"
c="

When using the JOBCOM device, you should always use a timed READ.
Because it is difficult to synchronize the READ and WRITE activity between
jobs, a timed READ command prevents your job from hanging indefinitely
when there was no message sent to you.

ZPRINT and ZLOAD Commands

With these commands, it is possible for you to transfer routines between users.
To send a routine and receive it elsewhere, execute the following:

>2L ROU O 225 Wl 225 2F

And then in the receiving job execute:

.0 224 0 224 2b

I/O Device Characteristics 6-39

6.6 DMC11

The DMCII1 microprocessor provides high-speed communications between
computers over a serial synchronous link. DDCMP communications protocol
is implemented by firmware for reliable data transmission, high throughput
and low processor overhead. (For further details on these concepts, refer to
the Terminals and Communications Handbook.)

6.6.1 DMC11 Device Numbers

DMC11 device numbers in the range of 3 to 19 are assigned during SYSGEN.

6.6.2 DMC11 Commands

The DMC11 commands are as follows:

Assignment Output Input

OPEN WRITE READ
CLOSE ZWRITE ZLOAD
USE ZPRINT

You can perform data communication through the DMC11 in the following
three modes:

e Message Mode - a message can be any DSM-11 expression. This mode is
useful when there is a high degree of interaction between the sender and
receiver.

e Block Mode - in this mode, the DMCI11 transmits entire 1024 byte disk
blocks. This mode is useful when you are transmitting a large volume of
data.

e Buffer Mode - in this mode, DMC11 transmits the contents of the VIEW

buffer to the receiving system’s VIEW buffer.

6-40 I/O Device Characteristics

.6.3 DMC11 Message Mode

You transmit DMC11 data using an output command. Input commands allow
you to receive messages. A message can be the value of any DSM-11 expres-
sion with a maximum message length of 255 characters. The DMC11 device
and its system handler automatically perform all necessary hand-shaking as
part of each message transmission. The following example illustrates
communication between processors using a DMC11 device:

System A:

>O 40 4 W "HELLO"

System B:

YOSUSRA:15

The READ command receives the message on System B. The timeout variable
of 15 seconds prevents the job from hanging if nothing was transmitted, or the
transmission is unsuccessful.

NOTE

You should always have both ends of the DMC11 link opened before
attempting any data exchange.

6.6.4 DMC11 Block Mode

In Block Mode you send disk data from one system to another. To do this you
must first open or use the DMC11 device on both systems using a Block
Number parameter. The format of the command is:

OPEN or USE{:postcond} DEV{:(param1:param2)}

where:

DEV is a DMC11 device number in the range of 3 to 19.

param! is the DSM-11 disk block number.

param2 is the disk type and unit number

I/O Device Characteristics 6-41

6-42

The number you submit from the transmitting system is the first disk block

DMCI11 sends to the receiver. After each successful transmission of a block,

DMC11 increases the DSM-11 disk-block number. The receiving system uses
the number that is specified in the OPEN command as the initial disk block
number. This disk block is used to store the data received. To perform
DMC11 Block Mode operations, you need control codes as shown in Table 6-
8.

Table 6-8: DMC11 Control codes Used with WRITE * for Block Mode

Code Meaning Effect

l Block Mode On |Turn on Block Mode transmission

2 Block Mode Off |Turn off Block Mode transmission

4 Transmit Block |Send block and increment the DMC11 disk
block number

5 Receive Block Store the received block of data on disk and

increment the disk block number

After you open or use the DMC with a block number parameter you can
continue to use the Message Mode I/O commands. But, if you issue a W *1
command, the following rules apply:

e The system that first issues the W *1 command becomes the transmitter and
is allowed to send disk blocks. The DMC driver sends a code of 1 to the
other system. The code of 1 causes this system to enter Block Mode as the
receiver. The receiver is only allowed to receive blocks, and store them on

disk.

e When in Block Mode, the transmitter can issue W *4 commands to send a

block starting with the DSM-11 disk block number given in the last OPEN

or USE command.

e The receiver can only issue W *5 commands to receive blocks and store

them on disk starting at the disk block number indicated in its last OPEN or

USE command.

e The transmitter can stop Block Mode transmissions by issuing W *2
command. This causes the transmitter to return to Message Mode. The
DMC driver also sends a 2 to the receiving system to indicate that it should
return to Message Mode.

¢ When both systems have returned to Message Mode, normal
READ/WRITE operations are again permitted until Block Mode is reacti-
vated. In this case, the next sequential block is sent unless you specified a
new block number with a USE command.

I/O Device Characteristics

6.6.5 DMC11 Buffer Mode

In Buffer Mode, you transmit the contents of the VIEW buffer. First, you
must open the VIEW device (device 63). You must also open or use the
DMC11 device with a Buffer Mode parameter before you can perform Buffer
Mode I/O operations. You must open both these devices on both systems
connected to the DMC11. The format of the command is:

OPEN or USE DEV{:param1}

where:

DEV is a DMC11 device number in the range of 3 to 19.

param! must evaluate to the character "B”.

For example:

USE 4:"B"

The transmitting system transmits the entire contents of the VIEW buffer. The
VIEW buffer must be only one block in length. The receiving system stores
this block of data in its VIEW buffer. The VIEW buffer must be the same size
(one block) on both systems. When using Buffer Mode, you must be careful
not to modify the VIEW buffer until $ZA bit 5 is reset to 0. When $ZA bit 5 is
1, a transmission is still pending. (See Section 6.6.7.) This also means that you
must not issue W * commands until the $ZA bit 5 is 0, since the VIEW buffer
is also used to send these commands.

To effect Buffer Mode I/O operations, use the control codes listed in

Table 6-9.

I/O Device Characteristics 6-43

6-44

Table 6-9: DMC11 Control Codes Used with WRITE for Buffer Mode

Code Meaning Effect

] Buffer Mode On |Turn on Buffer Mode

2 Buffer Mode Off |Turn off Buffer Mode

4 Transmit Buffer |Send VIEW buffer to receiving system

5 Receive Buffer [Receive into VIEW buffer

In Buffer Mode, the W * control codes operate in a way that is similar to
Block Mode. The difference is that the sender must overtly fill the VIEW
buffer, and the receiver must overtly empty it.

Note that the VIEW buffer can also be simultaneously shared with a magnetic
tape device or another DMC device. This allows you to transfer magnetic tape
data directly between DSM-11 systems through the DMC11 device.

NOTE

You must close the DMC11 device that 1s sharing the VIEW buffer
before you can close the VIEW device.

6.6.6 Using DMC On A Switched Telephone Network

The following applies when using DMC on a switched telephone network:

e When you select DMC devices at SYSGEN, you can specify whether a given
device is to operate half-duplex. If you select half-duplex operation, you
must also specify whether the device is to be the primary or secondary
station. When two DMC devices are connected in half-duplex mode, one
must be the primary station, and the other, the secondary station.

e When you issue the CLOSE command on a DMC device, the DMC driver
drops the Data Terminal Ready signal (DTR) for one second to initiate
telephone disconnection.

I/O Device Characteristics

6.6.7 DMC11 Error Conditions

The system variable $ZA reports error conditions. Table 6-10 lists the $ZA bit
assignments for DMC11.

Table 6-10: DMC 11 Device $ZA Status Bit Assignments

Bit Condition Description

0 {Data Check Failure after seven retries. An indication that
either the communication channel is defective, or
the other end of the channel failed to open. This
condition is nonfatal.

l Time Out No response within 21 seconds. An indication that
the communication channel is defective or there is
a power failure at the other end. This condition is
nonfatal.

2 {Overrun DMC11 received a message from the remote end
but no buffer was assigned. This condition is
nonfatal.

3 Maintenance DMC11 has entered the maintenance state. This
condition is nonfatal.

4 |Lost Data DMC11 received a message that was longer than
the supplied buffer. This condition is fatal.

5 |Transmit DMCI11 has not yet completed transmission.
Pending

6 Disconnect An on/off transition of the modem ready lead
(remote operation only). This condition is
nonfatal.

7 DDCMP Start Remote DMC11 has initialized its end. This
condition is fatal.

8 Nonexistent An invalid buffer address has been given to the
Memory DMC11 or memory Is defective. This condition is

fatal.

9 {Procedure Error’ |{An illegal DMC11 operation was attempted. This
condition is fatal.

I/O Device Characteristics 6-45

Table 6-10: DMC 11 Device $ZA Status Bit Assignments (Cont.)

Bit Condition Description

10 {Not Used

11 |Block or DMC is being used in Block or Buffer Mode
Buffer Mode On

12 {Transmission Last message could not be transmitted. This
Error condition is nonfatal.

13) J|DMC11 Flag Indicates that this is a DMC11 device. Always set
for DMC11 devices.

14. |Abort System aborts DMC11 operations. This condition
is fatal.

1S |Fatal A fatal condition has occurred (bits 4, 7, 8, 9, or
14).

The bit values in $ZA are preserved until another READ or WRITE command
is issued to the DMC11 device. If you attempt an illegal I/O operation while
using a DMC11 device, you receive the <DMCER> error code. The follow-
ing are examples of illegal I/O operations that produce this error:

e Using illegal parameters with OPEN or USE.

e Trying to issue a W *4 from the receiving system.

e Receiving a data block of a different size from the opened VIEW device.

You can try the last I/O operation again if the condition is not fatal. A fatal
condition may require that you open the device again. Continuing error
conditions may indicate a failure in the DMC11 hardware. Refer to the
Terminals and Communications Handbook for additional detail on Status

Register 6 (SELG) after a Control Out transfer is received.

6.7 Spooling Device

6-46

The Spooling Device is a file-structured mechanism used for temporary
storage of information on a disk. Typically, spooling is used to store files
temporarily before they are printed on a printer. This output process is
referred to as despooling.

The advantage of spooling for a multiuser system is that users can print
information (globals, routines, routine output) by means of the spooler
without having to own the print device (with an OPEN command) each time
they wish to print something. Several users can simultaneously access the
Spooling Device, while only one user at a time can own a printer.

I/O Device Characteristics

DSM-11 has the capability for two types of spooling:

e Transparent spooling - despooling is handled by the DSM-11 “DESPOOL

routine. All files handled by this routine are sent to one default output
spooling device, such as device number 3, a printer. The files are not sent
directly to the device, but are stored temporarily on disk as spooled files.
This is all transparent to the user because he does not deal with spooling,
despooling, or destination codes.

e Explicit spooling - you can write your own despooling routine to take

advantage of the DSM-11 capability of providing destination codes for
despooling. Despooling can be done to several destinations. To take
advantage of this capability, you should examine the “DESPOOL routine
and use it as a model to customize the spooling facilities at your particular
installation.

With explicit spooling you can specify:

e The lowest numbered spool file (the default value)

e A destination code (such as a printer other than the default output
spooling device)

e A spooling file number

Spooling creates numbered sequential files within a preallocated area of disk
space. There can be up to 253 separate files within spool space at any one time,
numbered | through 253. You first use the “SPL utility to allocate a contigu-
ous space of 400-block maps to spool space, then at start-up (or later with the

spooling utilities, see Section 12.5) you enable the spool facility. Your applica-

tion routines can then create spool files as necessary. The resulting spool files
can later be read by a despooling routine and output to a line printer, magnetic
tape, or other device.

Although there can be up to 253 spool files existing, there is room in the
system tables for only 16 files to be actually opened at any particular time.

6.7.1 Spooling Device Numbers

The spooling device uses device number 2 exclusively.

I/O Device Characteristics 6-47

6.7.2 Spooling Device Commands

The spooling device commands are:

Assignment Input Output

OPEN ZLOAD ZPRINT
CLOSE READ WRITE
USE ZWRITE

OPEN Command

The forms of the OPEN command are as follows:

TRANSPARENT SPOOLING:

OPEN DEV

EXPLICIT SPOOLING:

OPEN 2:

OPEN 2:dest code

DESPOOLING:

OPEN 2:512

6-48 I/O Device Characteristics

This form creates a spool file whenever the

DEV matches the device number you
specified as the default output spool device.

This form creates a spool file with the
default spool device as the destination. If no
default spool device has been declared, a
<NODEV> error results. Use this form
only if you specify a default output spool
device.

Creates a new spool file and opens file for
reading. You should include the optional
destination code (a number from | to 25S) if
your system has more than one possible

destination for spool files.

This form opens the lowest numbered
already-existing spool file, regardless of its
destination code. (This is the form used by
‘“DESPOOL.)

OPEN 2:512+ dest code

OPEN 2:256 + file no.

Opens the lowest numbered spool with the

specified destination code. This form allows
you to write a more sophisticated despooler
that prints only those files destined for a
particular device.

This is a specialized form that specific files
to be opened.

The code, dest code, is an identifying code used to classify the file. The
despooling routine uses this code to identify the intended output device. This
code can also be used to indicate a despooling routine number or a device class
where this file is to be sent. There is no inherent restriction on the use of this
code. Note that the dest code parameter is for file retrieval purposes only.

The DSM-11 special variable $ZA holds the file number in the low byte, and
the destination code in the high byte.

USE Command

The forms of the USE command are as follows:

USE 2

USE 2:/file no.

CLOSE Command

You should select this form only if the
current job does not open more than one
spool file at a time, or if the most recently
used or opened file is used. If more than one
file is opened, the system will USE the lowest
numbered spool file that is open. You
should use the next form of the USE
command when more than one spool file is
open.

Makes the specified file the current device. If
you are writing to two more spool files
concurrently, you must supply the file
number when you issue the USE command.
The special variable $ZA equals -1 if the tape
has been read beyond the end-of-file.

The forms of the CLOSE command are as follows:

CLOSE 2 Close the currently opened file

I/O Device Characteristics 6-49

6-50

CLOSE 2:256 Close and erase the currently used file

CLOSE 2:/file no. Close the file indicated by file no. You must
close the file to properly terminate the file.
You must include the file number if you

have more than one spool file open.

CLOSE 2:/file no. + 256 Closes the file indicated by file file no. If
+ 256 is included with the command, it will

delete the file and return its disk blocks to
the free-space list. If no file number is
specified, the lowest numbered file opened
by the job is closed (and deleted if "C
2:256").

The spool file supports the $X and $Y variables so that horizontal tabulation
(?n) support is possible. In addition, the byte output (the WRITE * format of
the WRITE command) is supported. This allows special control codes to be
passed to the despooling routine to do special forms requests, error process-
ing, and so forth.

The range of these ASCII codes is from 0 to 127. A code of 0 writes a null
string that causes the system variable $ZA to return a -1.

The following example shows how to process a file if more than one file is
currently opened.

) OPEN 2:3 SET FILE=$ZA#256

> USE 2: FILE

(do output)

» CLOSE 2:FILE

6.7.3 Transparent Spooling

Transparent spooling is a special feature that allows a designated device, called
the default spool device, to be opened concurrently by many jobs. Whenever
an OPEN command is issued for this device, a spool file is created, transpar-
ently to the user of the device. This feature allows many users access to a single
line printer concurrently, while a despooler job actually performs the printing
in the background. You can mix use of a transparent spooler and explicit
spooling on the same system with complete freedom. Transparent spooling
uses the same spool space as, and shares the file numbers with, explicit
spooling.

I/O Device Characteristics

You can use a set of DSM-11 system utilities for spooling to allocate spool
space and to perform other spooling functions. You can access these utilities
through the SYSTEM UTILITIES menu (‘SYS), or by typing:

DO “SFL

These utilities are discussed in Section 12.5.

You can enable transparent spooling by the following steps (using ‘SPL):

1. Allocate spool space

2. Designate a default spool device

3. Enable spooling

4. Start the despooling job

If you have already performed steps 1 and 2, you can specify in the System
Start-up routine (STU), described in Section 11.1, that steps 3 and 4 be
performed automatically each time the system is started up. (Steps 1,3, and 4
are also required for explicit spooling.)

With transparent spooling enabled, each sequence of opening, using, writing,
and closing the default spool device creates a numbered spool file with its
destination code set to zero. These files, once created, are indistinguishable

from those spool files that are created explicitly (but with no destination
code).

6.7.4 Explicit Spooling

Despooling (by “DESPOOL) is not actually a system feature, but is performed
by a normal DSM-11 job.

A special flag set in the job status word of the despooler ((DESPOOL) allows
‘DESPOOL to open devices other than the default output spool device. The
no-default-spooling flag is bit 11 of the job status word, which is word 2 of
each job.

If your system requires more sophisticated despooling, with more than one
destination code, for instance, you must modify “DESPOOL to fit your
needs.

You can explicitly create a numbered spool file through device 2, (a
pseudodevice for spooling). Unlike other devices, device 2 can be concurrently
opened by more than one job (and thus by more than one user).

I/O Device Characteristics 6-51

6-52

Each concurrent opening device 2 must access a different numbered file within
spool space. The file number of the newly created spool file 1s assigned to the
DSM-11 system, and you can find it in the low byte of $ZA after you "USE
2”. However, you usually do not need this number unless you plan to create
two or more spool files concurrently from the same job.

If you wish to use numbered files, the routine you use to write the file can
create global nodes named logically, with the spool file number (from the low
byte of $ZA) as the data value. Another specialized despooler routine could
then discover the spool file number by accessing the global node.

You can use several methods of opening a spooling file using explicit spooling.
(See Section 6.7.2 for the syntax of the different forms of the OPEN
command.)

Regardless of the method of opening the file, your despooling routine should
issue a USE 2:file no. command (including a file number only if more than
one file is open). READ commands can then read successive strings starting at
the beginning of the spool file. Your despooling routine should examine $ZA
after each READ command; $ZA is negative when the end of this file has been

passed. The spool file can be deleted by appending the code number 256 to the
CLOSE command.

6.7.5 Spooling Device Error Conditions

When you open a file, $ZA returns the following values:

If successful: dest#*256 + file#

If unsuccessful: negative error code
-1 EOF on READ
-2 No file exists
-3 Open File Table is full, try again later
-4 File structure is corrupted (reinitialize)
-5 Spool space is full.

6.7.6 Spool File Structure

Each spool file is a linked list of disk blocks. The available (unused) space is
also a linked list of disk blocks. Together, these blocks comprise all of the
blocks set aside as “spool space” in your system. The first block in your spool

space holds the "Spool Directory Block.”

Figure 6-3 shows the general layout of the spool file structure, and Figure 6-4
shows the layout of the Spool Directory Block.

I/O Device Characteristics

Figure 6-3: Spool File Structure

DDB #2 (SPOOLING DEVICE) DISK SPACE

DIRECTORY
BLOCK

HEADER }

DATA BLOCK

FREE
DIRECTORY

PTR

DEFAULT DEV

FREE

MAP #1

FREE

$ OFT $

OFT
HEADER
ENTRIES

ENTRY FREE
#1

ENTRY
#2

ENTRY MAP #2
#3

MR-S-3484-83

I/O Device Characteristics 6-53

Figure 6-4: Structure of Spool Directory Block

0

0

2

0 0
4

0

6

0

8
Pointer to First

(m) (1)
10

0 Free Block

(h)
12

Pointer to Data Block 1

14

Destination Code for File no. 1

16

MR-S-3485-83

The directory block cannot be continued. You can use a maximum of 253
files.

The directory block contains pointers to the first free block as well as the first
data block for each file (as shown in Figure 6-4). Each spool data block begins
with a header as shown in Figure 6-5.

6-54 I/O Device Characteristics

Figure 6-5: Header of Spool Data Block

0

NEXT BLOCK

(m) (1)

2

REVERSE POINTER

(h) (h)
4

BLOCK POINTER

(m) (1)
6

OFFSET TO FIRST FREE BYTE

8

DATA

MR-S-3486-83

The in-memory structures that support spooling are:

¢ SYSTAB + 230 holds the device number of the default spool device.

e A DDB for device number 2 holds information such as the Spool Directory
Block number.

e The OPEN file table (OFT) describes up to 16 concurrently open spool files.

I/O Device Characteristics 6-55

6-56

Figure 6-6: Open File Table Entry Format

0
NUMBER OF ENTRIES IN OFT

2
JOB INDEX FILE #

4

$ZA
(ERROR REGISTER)

6
CURRENT BLOCK

8
(m) (I)

DESTINATION NUMBER
DEVICE (h)
CODE

10
CURRENT BUFFER

ADDRESS
12

OFFSET INTO
CURRENT BLOCK

14
$Y $X

MR-S-3487-83

NOTE

The designations m, I, and h indicate medium, low, and high bytes in
the entry.

The OFT entry is the basic information block used by the DSM-11 system to
keep track of all opened files in the system. A file is open if it appears in this
memory-resident table. Thus, if the system requires rebooting, no files are
open because the table is initialized when the system is booted.

All READ and WRITE commands use this table entry. The OPEN command
sets up the table entry. The USE command points to it.

If the value of the first two bytes of the OFT entry is -1, then the entry is free.
There must be one OFT entry for each active spool file.

A file called the free-pool file holds all unused spool. This file is actually file
number 0, but its use is restricted to the system.

I/O Device Characteristics

6.8 Routine Interlocks

Device numbers 20 to 46 and 200 to 223 are Routine Interlocks. These are
logical devices used for communication between routines. Through the OPEN
and CLOSE commands, DSM-11 routines can signal one another. The signifi-
cance of any interlock being owned by a routine is established by a user’s
conventions. The assignment of these dummy devices has no significance to
the DSM-11 operating system. In an application, a Routine Interlock is
generally assigned to a function that must not be interrupted by other users
when it is operating.

6.8.1 Routine Interlock Device Numbers

The Routine Interlock device numbers are as follows:

Number Device

20 Routine Interlock #1

46 Routine Interlock #27

200 Routine Interlock #28

223 Routine Interlock #51

6.8.2 Routine Interlock Commands

The commands applicable to Routine Interlock operations are:

Assignment

OPEN
CLOSE

6.9 VIEW Device

The VIEW device, number 63, allows you to modify and examine disk data.

You can achieve this by using the VIEW command.

I/O Device Characteristics 6-57

6-58

NOTE

During system generation, the System Manager can choose to restrict
ownership of the VIEW device to the manager’s UCI and the library
utilities.

When you own device 63, you own a buffer into which you can read write disk
data. You can also modify this buffer using VIEW mode 0 (refer to the DSM-
11 Language Reference Manual.) You can also share this buffer with magnetic
tape devices and a DMCI11 device.

The commands applicable to the disk and memory VIEW device are:

Assignment Input/Output

OPEN VIEW
CLOSE $ VIEW
USE

OPEN Command

The format of the OPEN command for the disk and memory VIEW device is:

OPEN{:postcond} 63{(:param1:param2:param3:param4)}{:timeout}

Buffer Size - (param!)

You must specify the Buffer Size in blocks (multiples of 1024 bytes). The
default is one block. The size of the VIEW buffer is limited only by the total
number of blocks in the disk-tape buffer pool, minus 4.

Access Start - (param2)

You can specify the start and extent of the current area of the VIEW buffer in
blocks (multiples of 1024 bytes.) The current access area applies to both disk
transfers and logical addresses for VIEW and $VIEW mode 0 references. If
you specify an Access Start of null, you receive a default of 1. This indicates
that you will start with the first VIEW buffer.

Access Extent - (param3)

You can specify the Access Extent in blocks (multiples of 1024 bytes). The
Access Extent parameter defaults to paramI-param2 + 1.

View Switches - (param4)

The possible VIEW switches are described in Table 6-11.

I/O Device Characteristics

Table 6-11: VIEW Switches

Switch Character Effect

Z Enable block 0 WRITE | Allows VIEW to write block 0 of any disk. To
protect the DSM-11 label and the bad-block list,
writing block 0 of any disk is normally illegal.

NOTE

There is a particular problem in writing
block 0 of each disk, because the DSM-11

language converts -0 to 0. As a special
convention, therefore, DSM-11 recognizes

V -16777216 as a command to write block 0.

F Format Causes the disk driver to change all WRITE
commands through VIEW to “format” commands.
Subsequent VIEW commands will reformat disk
blocks and destroy any data stored on those blocks.

T Test Causes disk errors generated by VIEW commands
not to be retried and not to cause a <DKHER>.

You can examine the $ZA special variable to
determine whether the disk transfer was successful.

When device 63 is the current device, bit 6 of $ZA is

1 if there was an error, or 0 if there was not.

P Protection Prevents global access to the block that is currently
in the VIEW buffer. Routines that require global
access to the protected block are placed in a “hung”
state until either a different block is read into the
VIEW buffer, or the protection switch is turned off.
If the owner of device 63 attempts a global access to
a protected block, DSM-11 generates a <BLPRT>
error. Note that protection generates a <SYNTX>
error for a VIEW buffer size other than 1. This
switch works only with the “volume set” syntax of
the VIEW command, such as the following:

VIEW 2145:”S0”

For more information on this syntax, see the discus-
sion of the VIEW command in the DSM-I1I
Language Reference Manual.

I/O Device Characteristics 6-59

6-60

Table 6-11: VIEW Switches (Cont.)

Switch Character Meaning Effect

C Clear Switches Clears any other VIEW switches. VIEW processes
switches from left to right so that U 63:(:::"CP”)
clears all switches and then sets the protection
switch. The C switch does not clear the $ZA error
flag, bit 6. The $ZA error flag is only cleared by a
successful VIEW disk transfer.

V Verify Causes the disk driver to change all READ
commands to "write check” commands. This has
the effect of comparing the VIEW buffer with the
specified disk blocks. If you set both the T and V
switches, DSM-11 reports errors in the $ZA special

variable. If you do not set the T switch, DSM-11
generates a <DKHER> on encountering an error.

Timeout

The timeout specifies the amount of time allotted for a successful OPEN. For
example:

063: (10:5: 6: "CPN :2

This command OPENS the VIEW device with 10 buffers. This command also

enables access to buffers 5 to 10, clears all switches, and sets protection. If

DSM-11 cannot open device 63 within 2 seconds, it terminates the command,

sets the $TEST special variable, and resumes execution.

USE Command

The format of the USE command for the VIEW device is:

USE{:postcond} 63{:(param2:param3:param4)}\

You cannot change param! (buffer size) with USE 63. (param2, param3, and
param4 are as described with the OPEN command.)

VIEW Command and $VIEW Function

When you access the VIEW buffer with VIEW or $VIEW, the addresses you

specify are relative to the access area enabled by the most recent OPEN or
USE command. For example, if you issue the OPEN command that is shown
above, the command V 4:0:$V(4,0)+ 1 will increase by 1 the 3rd word of the
Sth block (address 4100) of the VIEW buffer. You would not be able to access
addresses in blocks 1-4 because they are not in the current access area.

I/O Device Characteristics

Refer to the DSM-11 Language Reference Manual for the specific forms of the
VIEW command. Note that disk transfers are limited to 127 consecutive
buffers. Also VIEW and $VIEW (mode 0) allow access to all possible
addresses within the VIEW buffer.

6.10 RX02 Diskette Drive

The RX02 diskette device is handled in DSM-11 by a separate loadable driver.
The driver can be loaded at system start-up, or loaded and unloaded while the

system is operating by using the ‘LOAD and ‘UNLOAD utilities. See Chapter
10 for information on how this driver is configured during system generation.
See Section 12.8 for a description of the “LOAD and “UNLOAD utilities.

The RX02 driver is functionally like an SDP device. See Section 6.4 for a
discussion of the SDP device.

Block numbers are addressable, and each physical unit is treated as a single
logical unit. The RX drive can be used in single- or double-density mode. The
disk capacity/drive is 500 1024-byte blocks for double density and 250 for
single density. The variables, $X and $Y, are reset on any new block read or
write by means of the USE command.

6.10.1 RXO02 Commands

The commands applicable to the RX02 operation are:

Assignment Output Input

OPEN WRITE READ
CLOSE ZWRITE ZLOAD
USE ZPRINT

OPEN and USE Commands

The format of the OPEN command for using a RX02 is:

OPEN DEV{:(param1:param2:param3:param4)\ {:timeout}

The format for the USE command is:

USE: {(param1:param2)}

I/O Device Characteristics 6-61

Device Numbers - (DEV)

The device number can be between 51 and 58. These numbers are assigned at
system generation.

Byte Offset - (param!)

Indicates the byte position within the block.

Block Number - (param2)

Indicates the block number in the diskette.

Switches - (param3)

These switches include block format switches and I/O mode switches as

indicated:

Table 6-12: RX02 OPEN Block Format Switches

Switch Meaning Effect

A ASCII Selects ASCII character set

E EBCDIC Selects EBCDIC character set

Vv Variable Variable-length records

S Stream Stream format

F Fixed Fixed-length record format

Table 6-13: RX02 OPEN I/O Mode Switches

Switch Meaning Effect

1 Single-Density |RX0O1 compatible
Mode

2 Double-Density |RX02 compatible
Mode

B Buffer Mode Shared view buffer

C Control Mode j|Only block READ or WRITE commands

R Read Mode WRITE protected

M Mixed Mode Both READs and WRITEs can be
executed

W Write Only No implicit READs after block WRITE

When you use the OPEN command, the specified block is read and positioned
at the specified byte. If you do not specify a block, nothing is read. If you
specify Buffer Mode, a block is not read; but the buffer is positioned. The
shared buffer can not exceed one block in size.

6-62 I/O Device Characteristics

Record Size - (param4)

The record size parameter is required only for fixed-length records.

6.10.2 Mixed Mode

If you select Byte Position and Block Number parameters, then the specified
block number is read; and the buffer pointer is positioned as specified by the
Byte parameter.

In Mixed or Write Modes, the following WRITE * command applies:

W *9 = write a logical end-of-file at current position

Mixed Mode is the default I/O mode. It allows you to read and write to the
diskette in exactly the same manner that you use with SDP. Before you issue
the READ command, you must first specify the block and byte to start
reading by means of the OPEN/USE command. When all records are read
from the current block, the next sequential block is automatically read by the
driver. On writing, your routine selects the byte and block to begin writing (by
means of OPEN and USE commands), then your routine issues DSM-11
WRITE commands.

NOTE

Just like SDP, when a block 1s filled, it is written. Then, the next

sequential block is read, and the byte pointer is set to 0. If writes are
continued, the data in the current block is overwritten.

This allows true random access and update, in the same manner SDP.

6.10.3 Read Mode

Read Mode logically protects a diskette from being written on. Any attempt to

write to a diskette which is opened with the Read Mode switch produces a
<MODER> (mode) error.

6.10.4 Write Mode

Write Mode provides greater efficiency when writing to a diskette. When you
select this mode, the driver does not read the next sequential block after
writing. Consequently, Write Mode should not be used in situations where you
require random access for mixed reading and writing. It does allow explicit
reading.

I/O Device Characteristics 6-63

6-64

6.10.5 Control Mode

If you specify the Byte Offset (param/) and Block Number (param2) parame-
ters, then the parameters are stored as the current pointers. Subsequent
WRITE * commands use these stored pointers as parameters.

When you are in Control Mode, you can use any of the following WRITE *
commands:

W *4 = write buffer to the block number specified in USE
W *6 = read block into buffer from the block number specified in USE
W *7 = initialize diskette to current density setting

Control Mode allows Block Mode I/O with any of the special WRITE *
commands above. Note: Any attempt to use the WRITE * while in Read or
Write Mode causes a <MODER> error.

New diskettes must be initialized before using them. The following example
shows how to initialize a diskette:

>O 52:¢::"C2")

>U 52 W ¥7

6.10.6 View Buffer Mode

View Buffer Mode allows sharing of the device 63 view buffer. This is
especially useful for copying block-by-block from one unit to another unit or
device which has been opened to share the view buffer.

6.10.7 Examples Of The OPEN And USE Commands

The following examples show how to use the OPEN command:

M54:(0:@) Upens unit dnuble-density, stream, ASCII, reads

block @ and points block pointer to byte Q

~
w
e

w
e

0 94:02: "EVRLI")

i Upens unit single-density, variable-length records,

i EBCDIC character set, read anly - a black is not

i read, any attempt ta read data by means of a READ

I/O Device Characteristics

i; Command returns a -1 in $2A until a block is selected

ij using the WSE command. USE 54: ¢€8:8) reads

i; a block.

m54:¢::"C1") ; Opens unit single-density in Control Made.

The following example shows how to copy a double-density diskette.

63 i; Opens the VIEW buffer and acquires and allocates

ij a buffer for sharing between devices Canly

; a buffer sizeof 1).

Mm 55:C::"BCAR") ;open unit 99 cantral, Buffer Made,

i dnuble density, read anly

M56: 0::"BC2") i open unit 96 control, Buffer Mode,

i; dnuble density

At this point, devices 55 and 56 are both using the same buffer (view buffer)
for reading and writing.

F T=1:1:5808 U55:¢:1) W*6 WU 56:¢:1) W #4

i copy all 5@@ blocks from unit 55 to 56

6.10.8 Error Codes

Table 6-14: RX02 Error Codes

Code $ZA Explanation

INVBLK -] Attempt to access invalid block number

TIMERR -5 Timeout during I/O operation

NOBUF -6 Unable to allocate transfer buffer

CRC -7 Cyclic redundancy check error

DENSER -8 Diskette is wrong density

HRDERR -9 Unknown hardware error

GENERR -10 Hardware error - no volume mounted or other
error

ABORT -11 I/O aborted by MUMPS error

SOFERR -12 Software error (word count overflow)

ACLO -13 RX power supply failure

NEWDEN -14 Disk initialized to new density and current block is
invalid

EOF -26 Logical end-of-file

ENDVOL -56 Physical end-of-volume

I/O Device Characteristics 6-65

The $ZB variable returns the current byte pointer in the block.

A <VWERR> 1s issued when:

The RX02 is opened in Buffer Mode, and the view buffer was opened with
more than one 1024-byte cache block for sharing.

e An attempt is made to open the RX02 in Buffer Mode before opening device
63.

The view buffer transfer address is not pointing to the start of the block.

e Device 63 is closed before the devices sharing the view buffer are closed.

A <NOEBC> is issued when attempting to open the RX02 for EBCDIC
character set, but EBCDIC support is not configured into the running system.
This support must be configured during system generation, see Section 10.4.7.

A <MODER> error is issued when attempting to execute a command that is
not allowed in the current mode.

6.11 TU58 Magnetic Tape

The TU58 magnetic tape device is handled in DSM-11 by a loadable driver.
The driver can be loaded at system start-up, or unloaded and loaded while the
system is operating by the “LOAD and “UNLOAD utilities. See Chapter 10

for information on how this driver is configured during system generation. See
Section 12.8 for a description of the “LOAD and ‘UNLOAD utilities.

To the user, the TU58 driver is functionally like an SDP device. See Section
6.4 for a discussion of the SDP device. TUS8 block numbers are addressable,

and each of the two units are treated as separate devices with 256(10), 1024(10)
byte blocks.

6.11.1 TU58 Commands

The commands applicable to the TUS58 operation are:

Assignment Output Input

OPEN WRITE READ
CLOSE ZWRITE ZLOAD
USE PRINT

6-66 I/O Device Characteristics

OPEN and USE Commands

The format of the OPEN command for using a TUS58 1s:

OPEN DEV: {(param1:param2:param3:param4)} {:timeout}

The format for the USE command is:

USE: {(param1:param2)}

Device Numbers - (DEV)

The device number can be between 51 and 58. These numbers are assigned at
system generation.

Byte Offset - (param!)

Indicates the offset position of the byte in the block.

Block Number - (param2)

Indicates the block number to be used.

Switches - (param3)

These switches include block format switches and I/O mode switches as

indicated:

Table 6-15: TU58 OPEN Block Format Switches

Switch |Meaning Effect

A ASCII Selects ASCII character set

E EBCDIC Selects EBCDIC character set

V Variable Variable-length records

S Stream Stream format

F Fixed Fixed-length record format

Table 6-16: TU58 OPEN I/O Mode Switches

Switch |Meaning Effect

B Buffer Mode Shared view buffer

C Control Mode |Only block READ or WRITE commands

R Read Mode WRITE protected

M Mixed Mode Both READs and WRITEs can be
executed

WwW Write Mode No implicit READs after block WRITE

I/O Device Characteristics 6-67

6-68

When you give the OPEN command, the specified block is read and
positioned at the specified byte. If a block is not specified, nothing is read. If
Buffer Mode is specified, a block is not read, but the buffer is positioned. The

shared buffer must not exceed one block in size.

Record Size - (param4)

The record size parameter is required only for fixed-length records.

6.11.2 Mixed Mode

If you select the Byte Position and Block Number parameters, then the
specified block number is read, and the buffer pointer is positioned as
specified by the Byte parameter.

In Mixed or Write Modes, the following WRITE * command applies:

W *9 = write a logical end-of-file at current position

The Mixed Mode is the default I/O mode. It allows you to read and write to
the tape in exactly the same manner that you use SDP. Before you issue the
READ command, you must first specify the block and byte to start reading by
means of the OPEN/USE command. When all records are read from the
current block, the next sequential block is automatically read by the driver. On
writing, your routine selects the byte and block to begin writing (by means of
the OPEN or USE command), then your routine issues DSM-11 WRITE
commands.

NOTE

Just like SDP, when a block is filled, it is written. Then, the next

sequential block is read, and the byte pointer is set to 0. If writes are
continued, the data in the current block is overwritten.

This allows true random access and update, in the same manner SDP.

6.11.3 Read Mode

Read Mode logically protects a cassette from being written on. Any attempt to
write to a diskette which is opened with the Read Mode switch produces a
<MODER> (mode) error.

I/O Device Characteristics

6.11.4 Write Mode

Write Mode provides greater efficiency for writing to a cassette. When you
select this mode, the driver will not read the next sequential block after

writing. Consequently, you should not use Write Mode in situations where you
require random access for mixed reading and writing. Write Mode does allow
explicit reading.

6.11.5 Control Mode

If you select the Byte Offset (param/) and Block Number (param2) parame-
ters, then those parameters are stored as the current pointers. Subsequent

WRITE * commands use these stored pointers as parameters.

When you are in Control Mode, you can use any of the following WRITE *
commands:

W *4
W *6

write buffer to the block number specified in USE
read buffer from block number specified in USE

Control Mode allows block mode I/O with any of the special WRITE *
commands above. Note: Any attempt to use the WRITE * while in Read or

Write Mode, causes a <MODER> error.

6.11.6 View Buffer Mode

View Buffer Mode allows sharing of the device 63 view buffer. This is
especially useful for copying block-by-block from one unit to another unit or

device which has been opened to share the view buffer.

6.11.7 Examples Of The OPEN And USE Commands

The following examples show how to use the OPEN command:

O32: C0: BW) i Upens unit duuble-density, stream, ASCII, reads

i black @ and faints block pointer ta byte Q

Oo Se:0::"EVRI")

i; Upens unit single-density, variable-length recards,

i ERCDIC character set, read only - a block is not

i; read, any attempt to read data by means of a READ

i; cummand returns a -1 in $2A until a block is selected

i using the USE command. USE 52: (08:8) reads

i a block.

I/O Device Characteristics 6-69

Moe Ce "Cio i; Upens unit single-density in Control Mode.

The following examples show how to copy a cassette.

0 63

053202: "BCR"

54:02: "BO")

At this point, devices 53 and 54 are both using the same buffer (view buffer)
for reading and writing.

F T=1:1:256 U53:¢:1)

}

}

;

;

}

j

Mpens the view buffer and acquires a buffer

for sharing between devices

Conly a buffer size af 1)

Meens unit 33 control, Buffer Made,

read only

Open unit 54 control, Buffer Mode

WG 54:20:10 W F4

i copy all 256 blacks from unit 53 ta 54

6.11.8 TU58 Error Codes

The following error codes are returned in $ZA. An asterisk (*) indicate errors
returned from the TUS8.

Table 6-17: TU58 Error Codes

6-70 I/O Device Characteristics

Code $ZA Explanation

INVBLK -] Attempt to access invalid block number

BDTEST -3 Failed self-test*

PARTOP -4 Partial operation (end of medium)*

TIMERR -5 Timeout during I/O operation

NOUNIT -9 Bad unit number*

NOTAPE -10 Cartridge not loaded*

ABORT -11 I/O aborted by MUMPS error

PROTECT -12 Write protected*

INIERR -13 Unable to initialize device

DATERR -18 Data error*

EOF -26 Logical end-of-file

SEEKER -33 Block error (block not found)*

STOPMO -34 Motor stopped*

BADCOD -49 | Bad opcode*

Table 6-17: TU58 Error Codes (Cont.)

Code $SZA Explanation

ENDVOL -56 Physical end of volume’; all recoverable errors
must start here

HARDER -60 Framing or data overrun error

LGERR -61 Logical or protocol error

CHKSMR -62 Checksum error

The $ZB variable returns the current byte pointer within the block.

A <VWERR> is issued when:

size greater than one 1024-byte block.
The TUS8 is opened in Buffer Mode and device 63 was opened with a buffer

An attempt was made to open the TUS58 in Buffer Mode before opening
device 63.

The view buffer transfer address is not pointing to the start of the block.

Device 63 is closed before the devices sharing the view buffer are closed.

A <NOEBC> is issued when attempting to open the TUS8 for the EBCDIC
character set, but EBCDIC support is not configured into the running system.
This support must be included during system generation, see Section 10.4.7.

A <MODER > error is issued when attempting to execute a command that is
not allowed in the designated mode.

I/O Device Characteristics 6-71

Chapter 7

Using The DSM-11 Library Utilities

This chapter describes the DSM-11 library utilities.

7.1 Introduction to the Library Utilities

The DSM-11 library utility routines perform a variety of services.
These include:

Editors

Global related

Routine related

Miscellaneous

Chapter 12 describes utilities that aid in the operation and maintenance of the
system. Section 4.6 gives an overview of the editor utilities, and Appendix C
describes two of the editors in more detail. The later parts of this chapter
Summarize the other categories of library utilities. You can use the utility
routines directly in Programmer Mode, or in your user-written routines.

The library utilities include an interactive library utility package that provides
on-line help information and access to the utilities through a series of menus.
A listing of these menus along with help information can be printed by using
the utility ‘0 MENLIS. (See Section 7.4.2.) When you invoke the package, it

Using the DSM-11 Library Utilities 7-1

7-2

displays utility options on your terminal; and you select those options required
to do a given task.

All library utility routines are stored in the manager’s UCI (UCI 1), and are
listed in the routine directory of the manager’s UCI. These routines are
accessible to all DSM-11 users on a run-only basis. Privileged users, (that is,
users with access to the manager’s UCI and the system PAC), can modify
library utilities.

7.1.1 Running The Library Utilities

You have three ways in which you can initiate utility routines:

1. In Programmer Mode, type:

>D *ZUTL

This command invokes the utility package menu-driver that allows you to
select from the displayed options. To access the library utilities menu
directly, type:

»D “ZLIB

2. Type:

>D “/Name

where *%Name is the name of a library utility. The routine name for each
utility in the package is displayed following its entry in the menu.

3. Log in DSM-11 in Run Mode, using the routine name of a utility or the
library package menu-driver (Y%UTL), for example:

DSM-11 Version n.n Device #64 UCI: MGR: ZUITL

This log-in procedure loads and starts the utility package menu-driver in
the System Manager’s UCI, MGR.

To load a library utility without executing it, type:

>ZLOUAD ZName

Only users in the manager’s UCI can ZSAVE a library utility routine.

Using the DSM-11 Library Utilities

7.1.2 Library Utility Conventions

The following conventions apply to the library utility package:

1. If you are unsure of the proper response to a question, type a question
mark (?). This gives you a list of valid responses to a question.

2. The menu-driver displays a number followed by an option. You can enter
either the number of the option you want to run, or enough characters of
the option name to distinguish it from other options.

3. Unless otherwise specified, terminate all input with a carriage return.

4. Default conditions are displayed between left and right angle brackets
(< >) as part of the question. A carriage return in answer to a prompt
with a default means that the default will be used as the input for that
prompt.

5. To exit or quit a routine instead of answering a prompt, uSe a carriage
return if the prompt has no default value. You can also exit and return to
the previous question or menu by typing an up arrow, (*).

6. Unless otherwise specified, any number you enter is considered to be
decimal; numeric values returned by routines are decimal, unless they are
preceded by a #, which means the number is octal.

7. You can respond to all prompts for an input or output device with either a
device mnemonic or a number (if 1t represents a valid device in the system).
Device 0 is always the terminal on which you logged in.

7.2 Global Utilities

The following utilities can be accessed from the LIBRARY UTILITIES
(“% LIB) menu.

Utility Routine Name

Management \%)GLOMAN

Copy ‘GC

Directory \%GD

Efficiency 0 GE

List 0G

Using the DSM-11 Library Utilities 7-3

Restore GTI

Save %GTO

Selector 0% GSEL

Subscript Filter 0 FIND

Extended Global Directory ‘%EGD

Two other utilities for saving and restoring globals, ‘GS and “%GR, are
described in Sections 7.4.6 and 7.4.7.

The Global Editor (“%GEDIT) is described with the other DSM-11 editors
under Section 4.6.4.

7.2.1 Global Management (“%GLOMAN)

Lists the journaling, collating, and protection information for a specified
global. You can also change these characteristics, and change the data growth
area.

7.2.2 Global Copy (“GC)

Transfers globals or parts of globals from one UCI to another.

7.2.3 Global Directory (“%GD)

Lists the names of all globals in your current global directory.

7.2.4 Global Efficiency (“%GE)

Shows how much of each block (as a percentage) is being filled with data for a
given global; actually reflects the efficiency of the DSM-11 operating system in
using disk block space.

71-4 Using the DSM-11 Library Utilities

7.2.5 Global List (“%G)

Displays both the contents and logical structure of a global or set of globals.

7.2.6 Global Restore (“%GTI)

Reads globals that were stored with global save (“%GTO) from a sequential
storage medium such as the Sequential Disk Processor (SDP) or magnetic
tape. The global can be renamed before being restored.

7.2.7 Global Save (“%GTO)

Outputs the specified globals onto a sequential medium such as the SDP,
magnetic tape, a printer, or a terminal. Globals saved with “%GTO can be
restored with “%GTI.

NOTE

You should use “%GTO and “%GTI for global save and restore
rather than the earlier version of these routines, ‘mGS and “%GR.

The earlier versions do not handle all formats correctly. Note also
that “%GS should always be used with ‘ooGR, and “%GTO with

‘GTI.

7.2.8 Global Selector (“%GSEL)

Selects a list of global names.

7.2.9 Global Subscript Filter (°% FIND)

Finds all global subscripts which contain specified characters.

Using the DSM-11 Library Utilities 7-5

7.2.10 Extended Global Directory (“%EGD)

Produces a list of all globals in the current UCI including information about
collating, journaling, protection, and disk growth areas.

7.3 Routine Utilities

These routines are useful for manipulating or reporting on routines. They can
be accessed from the LIBRARY UTILITIES (“%LIB) menu.

Utility Routine Name

Compare ‘RCMP

Copy ‘%RCOPY

Directory ‘ORD

List First Line FL

Restore ‘RR

Save ‘ORS

Search OoRSE

Summaries toSUM

Change Every ‘RCE

Selector RSEL

Cross Reference ‘CRE

Extended Routine Directory ‘ERD

These utilities are described in the following sections.

7.3.1 Routine Compare (“% RCMP)

Compares two DSM-11 routines and prints out any lines with any differences.

7-6 Using the DSM-11 Library Utilities

7.3.2 Routine Copy (“%RCOPY)

Copies segments of DSM-11 code from one routine to another. This routine
can also append several routines into one routine. To copy one line of code
only, enter the same line reference (line label or line label plus offset) for both
the From Line and the Through Line prompts.

7.3.3 Routine Directory (“%RD)

Displays the names of all DSM-11 routines stored in the current UCI.

7.3.4 First Line List (“%FL)

Displays the first lines of a selected list of routines. This is most useful if you
make the first line of each routine the name of the routine followed by a

comment describing the routine.

7.3.5 Routine Restore (“%RR)

Restores routines that were saved to a file on a sequential medium using
Routine Save (“%RS). A routine can be renamed as it is restored.

7.3.6 Routine Save (“%RS)

Saves selected DSM-11 routines onto a sequential medium or lists them on a
terminal or line printer.

Using the DSM-11 Library Utilities 7-7

7.3.7 Routine Search (“%RSE)

Searches a DSM routine or set of routines for the occurrence of a string. This
utility prints any line that contains the string, as well as a reference to the
routine in which the line occurred. If Routine Search is unable to find a
routine that you have properly saved (through ZSAVE), then answer YES to
the prompt about refreshing the directory in “UTILITY.

7.3.8 Routine Summaries (“%SUM)

Compiles and prints documentation for program packages.

7.3.9 Routine Change Every (“%RCE)

Searches a selected group of routines for a specified string and replaces the
string with a specified replacement string.

7.3.10 Routine Selector (“%RSEL)

Selects a list of routine names.

7.3.11 Routine Cross Reference (““%CRF)

Provides a cross reference of all routine calls within a specified set of routines.

7.3.12 Extended Routine Directory (*“%ERD)

Produces a list of routines in the current directory, including time and date of
the last ZSAVE, size in bytes, and starting block number of each routine.

7-8 Using the DSM-11 Library Utilities

7.4 Miscellaneous Utilities

These utility routines perform tasks in a variety of areas. They generally do
not produce interactive dialog. The following utility routines can be accessed
from the LIBRARY UTILITIES menu (“%LIB) and are described later in this
section.

Utility

Decimal/Octal Conversion

List ‘MENU Global

Load DSM-11 Editor

Show Current Date

Show Current Time

Version 1 Global Restore

Version 1 Global Save

I/O Device Selector

Header Formatter

Menu Manager

Modem Autodialer

Routine Name

DOC

‘oo MENLIS

LOAD’ %ED

‘aD

NOT

\aGR

\70GS

NaIOS

‘oo HDR

‘Oo MENU

SO DIAL

7.4.1 Decimal/Octal Conversion (“%DOC)

Is an interactive utility that converts a number from octal to decimal or
decimal to octal. The utility prompts for a number as input. If the number has
a # preceding it, then the utility assumes that the number is octal.

Using the DSM-11 Library Utilities 7-9

7.4.2 List “MENU Global (“%MENLIS)

Lists the contents of the MENU global. This 1s a summary listing of the menus
used in the utility package, along with help information on each utility. This
utility prompts for a device number (such as for a printer) to use in listing the
information. The default device is the terminal that you are logged in on.

7.4.3 Load DSM-11 Editor (LOAD‘%ED)

Loads the *% editor (the DSM-11 editor). You do not normally need to use
this utility unless the “% editor was killed accidentally.

7.4.4 Date (“%D)

Prints the current date in the form:

Day-Month- Year

For example:

17-JAN-81

7.4.5 Time (“%T)

Prints out the current time in the format:

HH:MM:SS

where:

AA is a two-digit representation of the hour

MM is a two-digit representation of the minute

SS is a two-digit representation of the second

7-10 Using the DSM-11 Library Utilities

For example:

10:35:02

7.4.6 Version 1 Global Restore (“%GR)

Restores a global from a sequential medium such as SDP or magnetic tape. It
is intended for use with globals stored with ‘GS. You can restore some, all,

or none of the globals in the specified file; the global can also be renamed
before being restored.

7.4.7 Version 1 Global Save (“%GS)

Saves the specified global or global nodes onto a sequential medium such as
the SDP, a printer, a terminal, or magnetic tape. This utility is intended for

use with “%GR.

NOTE

These two global routines, ‘GS and ‘GR, are the earlier

versions of the global save and restore routines, and do not handle
all formats properly. It is recommended that “%GTO and *%GTI
be used. Note also that “%GS should always be used with “%GR,
and “%GTO with “%GTI.

7.4.8 I/O Device Selector (“%1IOS)

Obtains an I/O device number or name.

7.4.9 Header Formatter (“%HDR)

Produces a formatted header for printer output.

Using the DSM-11 Library Utilities 7-11

7.4.10 Menu Manager (“%MENU)

Provides for simple menu creation using a global data dictionary. Includes
facilities for recursive menu calls and help text.

7.4.11 Modem Autodialer (“% DIAL)

Controls and dials an autodialing modem.

7.5 Other Miscellaneous Utilities

The following utilities are not interactive. You can call these utilities from
other routines to produce the result described.

Utility Routine Name

Date and Time ‘oH

Decimal to Octal Conversion t%DO

Octal to Decimal Conversion ‘OD

Cursor Control ‘07 CURSOR

Get UCI ‘%GUCI

Magnetic Tape Status Check 0 MTCHK

7.5.1 Date And Time (“%H)

Sets the date and time in $HOROLOG. “%H does not produce an interactive
session. This subroutine also has some additional entry points to provide for
date and time text formatting.

7-12 Using the DSM-11 Library Utilities

7.5.2 In-line Decimal To Octal Conversion (“%DO)

‘DO converts any positive decimal integer to its octal equivalent. This
utility is not designed for interactive use; it is meant to be used in DSM-11
application routines.

To use “%DO, first set the variable %DO to a decimal value. Next, call the

utility “%DO, which converts the decimal value to octal. Finally, write the
new value of the variable %DO. For any input that is not a valid decimal
number, “%DO returns "B” (for bad entry). If the input was valid, %DO
contains the converted number. Consider the following example using ‘DO.

GETNUM R!," DEC NUMBER: "./DQ0

D “DO I ZDO="B" G GETNUM

W 7DO

This routine requests that you enter a decimal number. If the number entered
is not decimal, GETNUM prints an error message, and prompts for another

number. If the number is valid, GETNUM writes it in octal to the current I/O

Device.

7.5.3 In-Line Octal To Decimal Conversion (“%OD)

‘OD converts any positive octal integer to its decimal equivalent. The first
step is to set the variable %OD to an octal value. Next, call the ‘MOD utility,
which makes the conversion to decimal. Then write the new value of the %OD
variable. For any nonpositive octal integer that you enter, ‘OD returns a
"B” (for bad entry). If the input was good, %OD contains the converted
number.

This utility is not designed for interactive use. It is designed for use in DSM-11
application routines.

Using the DSM-11 Library Utilities 7-13

7-14

7.5.4 Cursor Control (“% CURSOR)

Returns a set of variables that you can use for cursor control. First,

‘oo CURSOR interrogates the terminal to determine its type. Then,
‘CURSOR gives the set of variables the values of character strings
appropriate to that type of terminal. To activate a particular cursor-control
function, use the “%CURSOR-created variable that represents that function
as an argument of the WRITE command.

7.5.5 Get UCI (“%GUCI)

Returns your UCI name and number. “%GUCI is not an interactive subrou-
tine. When you call ‘a GUCI, it returns values in two % variables: in %UCI,

it returns the name of your UCI, and in %UCN, the number of your UCI (the
manager’s account being number 1)

7.5.6 Magnetic Tape Status Check (“%MTCHK)

‘MTCHK assists you in determining the status of a magnetic tape device.
You can use “%MTCHK in two ways.

1. Make the magnetic tape the current device and execute %MTCHK:

yl dev D “ZMTCHK

where:

dev is the magnetic tape device

‘aMTCHK examines the $ZA special variable and writes a one-line
interpretation of each bit that is set in $ZA.

The following example gains ownership of magnetic tape unit 47 and makes
it the current device. Then, it uses “%MTCHK to write the status of

magnetic tape unit 47.

»0 47 U 47 D “ZMTCHK

WRITE LOCKED

Using the DSM-11 Library Utilities

2. Execute %MTCHK starting at the line labeled %SET:

»D ZSET" ZMTCHK

%MTCHK sets a series of variables to strings that you can evaluate at any
time after a magnetic tape operation for a Boolean true/false condition.
The following is a list of the variables that “%MTCHK sets and their
meaning if evaluated as true (1).

%MTBOT Magnetic tape is positioned at beginning of tape

%MTEOT Magnetic tape is positioned at end of tape

%MTERR One or more significant error bits are set in $ZA

%MTLER Logical error. Illegal interrupt, illegal command, or unrecover-
able tape error occurred

%MTON Magnetic tape unit is ready

%MTPIP Magnetic tape is rewinding

%MTTMK Magnetic tape is positioned on tape mark

%MTTYP Specifies magnetic tape type:

10 = TU10, or TSO3
11 = TS11, TSV05, TU80
16 = TE16, TU16, TU45, or TU77

%MTWLK Magnetic tape is write-protected

The following example shows how ‘MTCHK sets the magnetic tape

variables.

YD “SET” “MT CHK

yFW
AMTBOT="$ZA\32#2"
AMTEQT="ZA\1024#2"
ZMTERR="$ZA\32768#82"
AMTLER="$ZA#HZ"
ZMTON="$ZA\64#2"
AMTPIP="$ZA\282"
AMT TMK="$ZA\16384#2"
“AMT TYP="16"
AMTWLK="$ZA\4#2"

You can then use the IF command to check the status of these variables. The
magnetic tape device must be the current device when you make the check. For
example, the following line checks for an end-of-tape condition.

lh 471 @7MTEQT G EQT

Using the DSM-11 Library Utilities 7-15

Chapter 8

Globals

This chapter describes the implementation of global arrays under DSM-11. It
provides an overview of global concepts, and describes the logical structure of
globals. This chapter also describes global access across UCIs and volume sets,
and Distributed Data Processing (DDP), which permits access to globals on
other systems.

8.1 Global Concepts

DSM-11 incorporates a hierarchical approach to data base organization. This
is done through the use of global arrays. A global array, or simply global, is a
tree-structured system of nodes stored on disk. Thus, a global can be thought
of as a file.

The DSM-11 data base supervisor handles the physical and logical allocation
of disk storage for globals. The data base supervisor is called the global
module. Unlike data base systems that treat disk space like a sequential I/O
device, DSM-11 treats disk space as an extension of memory. The system maps

the structure and content of globals created in your partition into the physical
storage medium of the system in 1024-byte blocks. Because space is not
preallocated for globals, the need for dimensioning is eliminated.

The system handles disk allocations for globals transparently. Thus, you do
not have to concern yourself with the physical structure of your files when

designing a data base application. You need only concern yourself with the
data relationships that comprise the logical design of your files.

Globals 8-1

8-2

8.1.1 Global Variables

To create a global, you define a global variable in a routine or command line.
You define a global variable by setting it equal to a data value. The naming
conventions for global variables are the same as for local variables, except that
a circumflex (’) or up arrow precedes the name. The following are examples of
global variables:

AN Z
‘NAME("LAST”,” FIRST”)
‘IDNUM(I,3,4)

The DSM-1] Language Reference Manual describes the SET command and its
use with global variables in more detail. Section 8.2 describes a special
extended global reference syntax used for inter-and intra-processor
communication.

Global variables can be either simple or subscripted. If a global variable is
subscripted, it can have up to 63 characters per subscript. Subscripts can be
either of the following:

e Numeric

e String

The system places global variables in the global hierarchy according to their
collating sequence. A global can be collated in either of two collating
sequences:

e Numeric collating sequence

e ASCII collating sequence

In numeric sequence, first numeric subscripts are collated in numeric order.
(The numbers in numeric subscripts must be canonic: numbers with no leading
or trailing zeros.) Second, nonnumeric subscripts are collated in the order of
their ASCII characters. In a numeric collating sequence, you can mix strings
and integers. The following is an example of a global array with mixed
subscripts:

BETA, 1)
BETA(,1,1)
BETA(,2,2)
BETA(,3.14159)
BETA("FIRST”’,”SECOND" ,"“THIRD")

Globals

In ASCII sequence, all subscripts (numeric and nonnumeric) are collated in
order of their ASCII characters. The example below shows the array A
collated in ASCII order:

A("01 ")

AQ)
A(10)
A(2)
A(2.5)
A(20)
A(3)
A("B")

Global variables collate in numeric order by default. The collating order for a
global can be changed if:

$DATA(Global Ref) =

The Global Management library utility (“%GLOMAN) allows you to change

collating sequence for a global.

8.1.2 Sparse Arrays

When global variables are subscripted, the resulting arrays are called sparse
arrays. In a sparse array, elements only exist for those nodes that actually
contain data or have descendants. Descendants are elements of an array that

exist in a logical path down the array. For example, array element ‘B(1) can
have descendants “B(1, 5) and “BUI, 7). However, the element ‘B(2,4) belongs
to a line of descent coming from “B(2).

One advantage of sparse arrays 1s that they permit you to assign a value to a
node even if no other nodes exist in a logical path to the node you want to
define. The system automatically creates a path to a node. For instance, if you
want to define “A and “A(1,2,3,4), you need not define SA(1), “ACL, 2); and
‘A(1,2,3) first. The system creates a logical path directly between ‘A and
‘A(1,2,3,4).

An additional advantage of sparse arrays is that they conserve storage space.
Unlike data base systems that require a declaration of the maximum size of an
array to preallocate space for it, DSM-11 allocates storage space dynamically.
The system also recovers disk space dynamically when data is no longer

needed.

Globals 8-3

8-4

8.1.3 Global Data Structures

Global arrays can be represented logically as upside-down trees. DSM-11 uses
a tree structure known as a balanced, multiway tree, often referred to simply
as a balanced tree. The balanced tree provides an efficient way to access the
individual pieces of information associated with a global. Figure 8-1 illustrates
the structure of a typical balanced tree.

Figure 8-1: Typical Balanced Tree

T@ @ (2

nC nal @ (2,1

nan v2 \ (ae

(1,2,3,1) @ @ (1,2,3,4)

(0,0)

(3,2,7)

MR-S-852-80

Globals

The individual pieces of information associated with a global are called data
records. DSM-11 treats all data records as ASCII strings - how you interpret a

string depends on how it is used.

A data record can be of variable length. The maximum length of a data record
is 255 characters. However, it is not necessary to predefine the maximum

length of a data record. Each node of a global array can contain data that is
different in size and content from other nodes in the array. Thus, one node

can contain a short record while another node of the same global contains a
concatenated string of information. For example:

‘X (156342, 1) = Name

“X(156342,2) = Street Number__Street Name__Town Name__Zip Code

Where 156342 represents an identifying number. The following example shows
an alternate way to store the same information:

\X("Last Name”,”First Name”,”Initial”,1)=Street Number__Street

Name__Town Name__Zip Code

‘X("Last Name” ,”First Name”,” Initial” ,2)= Data

8.1.4 Programming Strategy

Global key and data record structure are linked directly to your application
design. While it is not the purpose of this document to recommend techniques
for designing a data base, the following programming considerations should
be noted:

The subscripts you choose have a significant effect on the rate at which your
globals grow, affecting both total storage required and data access efficiency.

For example, if you put data in your subscripts, such as a name or ID number,
it conserves overall storage space because of key compression.

If practiced consistently, this could also improve data access time. Suppose,
for example, you were writing a routine to store and retrieve demographic
data. You could create a number of globals to store the data you required,
such as:

SDDN -- Name

SDDA --_ Address

‘DDT -- Telephone number

Or, you could create one global, and assign meaningful subscripts to indicate
the type of data each node contains, as in the following examples:

Globals 8-5

“DD(NAM) -- Name

‘SDD(ADR) -- Address

‘DD(TN) -- Telephone number

The latter approach places only one entry in your global directory; this reduces
the time it takes to sequentially search the directory each time you want to
access a given record.

Thus, the use of few, large globals is typically more efficient than the use of
many smaller globals. You save storage space because of key compression and
decrease the time it takes the system to scan the global directory for the
required entry. Also, if you have fewer globals in your data base there is a
better chance of having a needed block in cache.

8.2 Accessing Globals Outside Your UCI With Extended Global

8-6

References

You can access globals external to the UCI you are currently working in.
These include globals from:

e Another UCI within the same volume set

e Another system through Distributed Data Processing

e Another data base volume set within the same system

You can access external globals with the extended global reference syntax
described in the following sections. You can also use the UCI Translation
Table, described in Section 8.2.4.

In the discussions of the extended syntax in Sections 8.2.1, 8.2.2, and 8.2.3:

UCI is the name of the UCI that contains the global you want to
access.

GLOBAL is the name of the global that you access. The reference can
REFERENCE _ be:

e To a simple global variable

e To a subscripted global variable

A naked reference

e An indirect reference

Globals

If the UCI that you refer to is undefined you get a <NOUCI> error. If the

remote system or volume set that you refer to is undefined, you get a
<NOSYS> error.

8.2.1 UCI-to-UCI Global Access Within The Same Volume Set

The simplest form of the extended global reference syntax allows you to access

globals in other UCIs which are part of the same volume set as your own UCI.
To access a global in another UCI, you reference it in a command or routine
line using the following syntax:

\l"UCI"|GLOBAL REFERENCE

The cross-UCI syntax allows you to reference any global to which you have
access privileges. If you try to access a protected global, the system returns a

<PROT> error.

DSM-11 returns all related programming and operating system error messages
when errors occur as a result of a global access across UCIs. You can use the
entire DSM-11 command set when using the extended global syntax to access
globals across UCIs.

Examples:

The following example writes the value of ‘RRR(1) in the UCI JPB to the

current device.

YW “LU IPRYIRRR C13

In the following example, the system returns a <PROT> error because the
user tried to access a global to which he did not have WRITE privilege.

>S “LUMGR"IACEZ23=211996

{PROT >

In the following example, the user is allowed to READ from a library global,

but not WRITE to it.

)5 A=" /DATECT)

>5 “ZJDATECTI=A

(PROT)

Globals 8-7

8.2.2 UCI-to-UCI Global Access Across Volume Sets

DSM-11 refers to mounted volume sets as “volume sets.” Each mounted

volume set has both a 3-character name and a position number in the volume
set table. The system disk is volume one of the default volume set (Volume Set
0), whose name was assigned when DSM-11 was installed on the disk. You can

access a global from other volume sets in addition to the one you are currently
working on. These volume sets must be on the same system that you are
logged in on. To access globals in other volume sets, you use the following
extended global syntax in a routine or command line:

\t" UCI" ," VOL"|GLOBAL REFERENCE

where:

VOL is the name of the volume set (on the same system) where

the global resides. The name "VOL" is established when the
structure 1s mounted, and is a 3-character uppercase

alphabetic. Generally, the volume set name is read from the

label block of the first volume of the set. When the volume

set 1s mounted (by using the System Start-up utility, STU,

or the Disk Mount utility, MOUNT), however, its name

may be temporarily changed if it matches the name of
another already mounted volume set.

8.2.3 Distributed Data Processing

Distributed Data Processing (DDP) is a feature of DSM-11 that permits access
to globals on DSM-11 systems other than the one on which you logged in.
DDP limits access to systems that are directly interconnected. This means that

communication using DDP is point-to-point exclusively. In order to use the

DDP facility, you have to include it in the system configuration during
SYSGEN.

DDP communication is performed through the DMC11 synchronous

communications controller. The DMC11 controller can also be used for data
transfer with MUMPS READ and WRITE commands as described in Section

6.6. However, it cannot serve both purposes concurrently. A DMC11 in a
particular configuration must be devoted exclusively to one function or the
other.

To access globals on other systems, use the following extended global syntax
in a routine or command line:

“" UCI" ,"SYS"|GLOBAL REFERENCE

8-8 Globals

where:

SYS is the name of the system where the global is stored. (This is
actually a logical label associated with a particular DMC11
line). SYS is established at SYSGEN, and is a 3-character

uppercase alphabetic. Each DMC11 line can be assigned up
to four different names, each name corresponding to one of
the four possible mounted structures on the remote system.

Examples:

This example sets the variable B equal to the value of X(1,2) in the UCI

MGR, on the system COS.

) SBE" C"NGR", "COS"IRC1,2)

Assuming the previous example was the last global reference (in a routine or
command line), the following example is a naked reference that sets B(1) equal
to the value of “X(1,3) in UCI MGR, on the system COS.

y SBe13=° C3)

8.2.4 Accessing A Global In Another UCI Through The UCI

Translation Table

You can use a global outside of your current UCI by using the UCI Transla-
tion Table. When a global has been entered properly in this table, any
reference to it is a reference to that global in a remote UCI, volume set,
and/or system. To make an entry in the UCI Translation Table, you use
‘UCITRAN from the System Manager’s UCI, see Chapter 17.

Globals 8-9

Chapter 9

Optimizing DSM-11 Applications

This chapter describes procedures that decrease software overhead in DSM-11
code, and offers some guidelines for structuring DSM-11 applications.

9.1 Optimizing Routine Interpretation

There are several programming practices you can use to ensure that your
DSM-11 routines are interpreted as efficiently as possible:

Using a direct, top-down execution path (except for routines called very
frequently by line label). See Section 9.1.1 for more information.

Placing frequently called routines first, when using line labels to call
routines. See Section 9.1.2 for more information.

Using block-structured programming (the argumentless DO command),

which executes faster than calling routines with the DO command (DO with
an argument) because no label search is required. See the DSM-11 Language
Reference Manual for more information on block-structured programming.

Using the shortest interpretation path. Indirection is inefficient because it is
a hidden addition to the interpretation path, especially when it requires a
symbol look up. In general, indirection and XECUTEs should be used
sparingly. See Section 9.1.6 for more information.

Checking for the expected pattern first, when using pattern matching. See
Section 9.1.5 for more information.

Optimizing DSM-11 Applications 9-1

9-2

e Avoiding postconditionals on DO, GOTO, and XECUTE arguments,
because they require more processing than postconditionals on the

command itself. The interpreter must evaluate the argument even though it
can not be used if the postconditional is false.

e Using increments of 1 with FOR loops, because these loops are optimized
for this increment.

e Using short line labels and variable names. See Section 9.1.3 for more
information.

e Abbreviating DSM-11 commands. See Section 9.1.4 for more information.

¢ Grouping accesses to the same global to take advantage of caching.

These practices decrease software overhead by using DSM-11 searching,

storing and parsing mechanisms to the best advantage. Incorporating them in
a logical, consistent manner ensures that your routines execute with maximum
speed and efficiency.

9.1.1 Using A Direct, Top-Down Routine Execution Path

You should always try to write routines that have the shortest possible

execution path. This applies to single, closed routines that do not make
subroutine calls or to routines that make a number of subroutine calls. A short
direct execution path optimizes routine interpretation and therefore decreases
execution time.

One way to keep an execution path short, is to execute routine lines in a top-
down fashion, avoiding the excessive use of GOTO and DO commands.

One way to accomplish this is by using block-structured programming, which
promotes a clean top-down flow to the routine. Block-structured program-
ming is discussed in detail in the DSM-1] Language Reference Guide.

The DO command provides a general subroutine calling function. It should
only be used when you want to call a closed routine. A closed routine executes
to completion, then either HALTs or QUITs. If the routine is a subroutine, a
QUIT transfers control back to the calling routine.

Avoid nesting DO commands in subroutines; that is, calling subroutines from
other subroutines. Nesting DO commands can lead to an increase in software
overhead.

This increase in overhead arises because DO commands return control to the

calling routine, and not necessarily to the first routine in a routine hierarchy.

Optimizing DSM-11 Applications

Figure 9-1 shows the control path of a DSM-11 application where a routine
calls a series of subroutines using nested DO commands.

Figure 9-1: Routine Execution Path Using Nested Do Commands

MR-S-867-80

In Figure 9-1, program "D” encounters a QUIT at its highest nesting level,
and returns control to the command immediately following DO “D in
program "C”. Since this command is QUIT, it returns control to the
command immediately following DO “C in program "B”. This command is
also QUIT, so it returns control to the command immediately following DO
‘B in program "A".

Note that you must sequentially backtrack through each subroutine before

returning to the body of the first program in the series. This increases
execution time; it also makes routine logic hard to follow. When routine logic
is confusing, it is harder to maintain the application where the routine is used.

If you use a direct, top-down routine execution path, you can decrease the
sequential backtracking associated with nested DO commands. This practice
also makes routine maintenance easier and error recovery simpler. Suppose,
for example that you rewrite program "A” in Figure 9-1 to include all subrou-
tine calls. Program ”A” will include a code segment such as:

Optimizing DSM-11 Applications 9-3

9-4

LABLA D “B,C, “D

HALT

As a result, control only passes between one subroutine and the control
program "A”. Figure 9-2 illustrates the control path of a DSM-11 application
that uses top-down structure. In Figure 9-2, the subroutine call sequence is the

same as the one shown in Figure 9-1, that is,

A==>B==>C==>D==>A. However, there is no sequential

backtracking through routines.

Figure 9-2: Routine Execution Path Using Top-Down Structure

MR-S-868-80

If a routine calls a number of subroutines, it should include an error-process-
ing routine that prevents the program from aborting. This can be done by
setting $ZTRAP to an error-processing routine in the routine or in the subrou-
tines. If SZTRAP is set in a subroutine and handles the error, the subroutine

can continue to execute. Refer to Section 4.10 for a further discussion of error
processing routines and error processing in a situation of nested DO and
XECUTE commands.

Optimizing DSM-11 Applications

9.1.2 Optimizing Routines That Call Subroutines With Line

Labels

The following practices optimize routines that call subroutines by a line label
with GOTO and DO commands. If your routine uses the argumentless DO
command, do not follow these practices. See the DSM-1] Language Reference
Manual for more discussion of block-structured programming with the
argumentless DO command.

DSM-11 always searches for line labels from the top of a routine. Therefore,
when you write a routine that calls subroutines by line label, you should:

1. Place subroutines before and after the main body of the total routine
structure (see Figure 9-3).

2. Place the most frequently used subroutines at the top of the routine
structure.

3. Place infrequently used subroutines, error processing routines, and error
messages after the main body of the total routine structure.

Figure 9-3: Optimum Code Structure of a Routine and Its Components

SUBROUTINE 1

MOST FREQUENTLY
SUBROUTINE 2 USED SUBROUTINES

SUBROUTINE 3

@— ENTRY LABEL

(MANDATORY)

MAIN BODY

° LEAST FREQUENTLY

SUBROUTINE N USED SUBROUTINES

ERROR PROCESSING

ROUTINES

ERROR MESSAGES
MR-S-869-80

Optimizing DSM-11 Applications 9-5

9-6

9.1.3 Using Short Line Labels And Variable Names

You can improve interpreter efficiency by selecting line label and variable
names carefully. Try to choose a line label or variable name on the basis of a
compromise between its readability and its length.

Line labels should be long enough to have meaning relative to the code
segments they preface; variables should be long enough to have meaning
relative to the type of information they contain.

However, line labels and variables should be short enough to minimize search
time whenever the labels or variables are referenced. Suppose, for example,
the following line label prefaced code that XECUTEd an expression:

XECUTNOW

The label XECUTNOW is legal since it is less than nine characters long. It
might be just as meaningful, however, if it were truncated to:

ANU

Moreover, this truncated label would save partition space and decrease search
time when referenced in some other portion of the routine.

Section 9.1.5 describes some additional practices you can use to optimize local
variable names.

9.1.4 Abbreviating DSM-11 Commands

You can abbreviate any DSM-11 command to its shortest unique form.
Command abbreviations make DSM-11 code more efficient for the following
reasons:

1. DSM-11 interprets command abbreviations faster than their full spellings.

2. Command abbreviations save partition space.

Optimizing DSM-11 Applications

9.1.5 Optimizing Pattern Matching

The binary Pattern Match operator (?) checks that the pattern to its right 1s
correctly satisfied by the string to its left. Patterns are specified by a sequence
of special characters and/or string literals, each of which can be preceded by
an integer constant or the period character (.). (The DSM-11] Language
Reference Manual describes the pattern match codes in detail.)

The pattern match operator is generally used to verify the occurrence of a
particular kind of response after a READ command. For example:

R"INFUT) "LA

where:

», 4 is the input whose pattern needs to be determined.

Pattern matching is a slow operation for the DSM-11 interpreter. Pattern

matching invokes a series of tests to determine if a match has or has not
occurred. For instance, the interpreter may have to determine string length

and character type (of which there are many). Therefore, to improve

interpreter efficiency when using the pattern match operator, observe the

following rule:

e When pattern matching after a READ command, check for the expected
pattern before checking for other possible patterns.

In the following example, a routine expects a pattern consisting of 1 uppercase
alphabetic character followed by 1 numeric character. The IF statement checks
for this pattern using the pattern match operator. If a user enters the expected
pattern, the routine immediately processes the request. If the input does not

match the expected pattern, a number of tests are made to determine if the

input matches other acceptable responses. If the input does not match any
acceptable response, the routine prints an error message and returns to TAGI
to reinitiate the REQUEST sequence:

Optimizing DSM-11 Applications 9-7

9-8

TAGI R "REQUEST) ",I @:I=""

I 1’ ?4U1N G TAGQ: T="BACK",HELF:I="HELP" G IR

(Process request)

G TAG1 iGET NEAT RESPONSE

IR WoI,"INCORRECT RESPONSE - ENTER “HELE FOR MORE INFO" G TAG1

9.1.6 Optimizing Xecute And Indirection Usage

The XECUTE command and INDIRECTION (@) operator are powerful
coding tools. However, they should be used sparingly, and in a calculated
manner because their excessive use involves a trade-off between compactness
of expression and speed of execution.

XECUTE and INDIRECTION are reservoirs of computational power:

1. XECUTE allows you to execute an expression as a subroutine.

2. INDIRECTION allows you to execute data values as DSM-11 code.

Nonetheless, there are drawbacks to using XECUTE and INDIRECTION
indiscriminately. First, the DSM-11 interpreter requires a lot of time to resolve

statements that use these commands.

The excessive use of XECUTE statements also makes a DSM-11 routine hard
to maintain if it requires debugging, patching, or enhancing. XECUTE

statements generally transfer control to other segments of code. This impedes
top-down execution, confuses routine logic, and makes tracing a routine’s

execution path more difficult.

The indiscriminate use of INDIRECTION causes similar problems. First,
extensive use of INDIRECTION causes the interpreter to rapidly search for,
and insert indirect text. This can be time inefficient, particularly if you nest the

Optimizing DSM-11 Applications

INDIRECTION operator, that is, if you execute indirect expressions defined
in terms of other indirect expressions. For example:

TAG S COND="IF IND=$FC@NODE, QPS)"

T @COND WoUFOUND"

E W "NOT FOUND"

Nested INDIRECTION can also cause serious maintenance problems. The
extensive use of INDIRECTION and nested INDIRECTION makes it almost
impossible to trace a routine’s execution path. This makes it very difficult for
anyone other than the original programmer to update or enhance the routine,

should the need arise.

9.2 Standardizing Application Structure

DSM-11 applications are typically modular. That is, they are constructed in
segments. In a modular application, each module performs a separate, though
related, task.

A module generally consists of a group of related routines. A group of related
routines is called a program. A group of related programs is called a package;
packages make up an application system.

The following sections describe some measures that you can use to standardize
the structure of a modular application. Particular attention is given to interac-

tive applications.

9.2.1 Using Programming Conventions

Programming conventions are essential to the orderly definition of any
programming project. The use of programming conventions is especially

important when a project is broken into segments and assignments are given to
individuals within a project.

If a group of developers adhere to a well defined set of conventions during the
programming phase of a project, it ultimately:

e Makes maintenance of a group of related routines easier

e Enables the individual segments of a routine, program, or routine package
to come together in an orderly way for the final test phases of the project

e Makes future enhancements easier

e Makes a group of related routines perform as a unit in the eyes of the user

Optimizing DSM-11 Applications 9-9

9-10

The following sections describe some suggested programming conventions.
They can provide a starting point for the complete definition of conventions
for a modular programming project. No attempt has been made to cover all

possible conventions, since programming conventions inevitably vary from
application to application.

9.2.2 Programming Conventions

Each routine of a DSM-11 program or routine package should adhere to a set
of routine programming conventions in the following areas:

e The contents of the first routine line

e Comments

e Line labels

e The contents of the last routine line

For maintenance purposes, the first line of every routine in the system should
be a comment that includes:

e The name of the routine

e The name of the program, package, and system that uses the routine

e The date when work began on the routine

e A brief, but informative description of the contents of the routine

e The name of the programmer

The first line convention summarizes the lineage of a routine. There are two
additional routine coding conventions that you should use. Comments are the
last element in a routine line. Comments are prefixed by a semicolon (;). For
example:

labelcrascode ;display demographic data

You should avoid the excessive use of comments. Comments are not
interpreted, but they use as much partition space as their ASCII characters
require. So you should only use comments to highlight something that is not
obvious. When you must comment on your DSM-11 code, make it brief, yet

informative.

Optimizing DSM-11 Applications

9.2.3 Variable Naming Conventions

The first character of a DSM-11 variable must be an uppercase alphabetic
character or the percent character (%). You should restrict the use of global
”"%" variables to general library routines or utilities. Doing this allows these
variables to pass information between packages. Only the originating package
should have modify and KILL privileges.

Global variables should begin with the same letter as the routine names with
which they are associated. For example, the following globals are associated
with a billing program:

ABAC
‘BFI
‘BF2

You should reserve global names of one character for use as scratch; that 1s, to

store temporary information. One-character globals should also adhere to the
first letter assignment rule for each package. This makes it easy to identify the
programs with which the scratch globals are associated.

9.2.4 Terminal Conventions

Data base systems generally have routines that allow users to interact with the
computer. This type of routine is called an Interactive routine. The user
perceives an interactive routine as a series of operations involving a:

e Query

followed by a:

e Response

Typically, a user enters or edits data during an interactive session, or he can
use the computer to acquire information stored in the data base.

An efficient way to structure an interactive package is to provide access to its
components through menus. In a menu-driven package, the system displays a
group of options and the user selects those options that are appropriate to doa
given task. This kind of interface makes an application appear to function as a
unit in the eyes of its users.

Optimizing DSM-11 Applications 9-11

NOTE

For an example of a menu-driven routine, you can examine the
menu-driver of the DSM-11 utility package: “%UTL.

The following paragraphs describe additional screen forma techniques for the
query portion of an interactive package. Later paragraphs describe input
conventions for initiating common interactive routine procedures and conven-
tions for responding to invalid user input. The query conventions apply to
screen displays that roll. They do not apply to formatted block mode screen
displays.

e Begin all query text on the left side of the terminal screen, allowing response
text to expand toward the right. This provides a reading environment that
users find familiar and easy to follow.

Also, a standard character, such as the right angle bracket (>) should be
appended to the end of all query text. This character highlights the fact that
a response is required of the user.

Place this character immediately following the query if the response is

expected to fit on the same line. For example:

DATE) 7-JUL-88 RET

If the response is expected to exceed the screen width, place a line-feed
carriage return in your DSM-11 code prior to the highlighting character. For
example:

Wo"ENTER CUMMENT"

RE, >) "YT

This produces the following output:

ENTER COMMENT

Matient is responding ta treatment°RET)

that enables the user to enter substantially more text on the line.

e Interactive routines often require users to edit information in the data base.
Therefore, the current data associated with a query should be displayed.
You might place existing data between a set of right and left angle brackets
immediately following the query prompt. For instance:

TELEPHONE NUMBER (555-2948)

The user should be able to update the information by simply typing new
data after the trailing right angle bracket.

9-12 Optimizing DSM-11 Applications

Display default values for particular queries in the same manner. In the
following example, a display of the data includes a default fee.

FEE (12.88>

A successful interactive package addresses the needs of its users. This means
that it must:

1. Handle invalid responses to queries

2. Provide on-line documentation

3. Enable a user to negate a response already entered

4. Enable a user to scroll through contiguous queries

5. Enable a user to leave a routine at any time except at critical points, and
return to the menu of the program

The following paragraphs describe conventions that address each of these
areas.

e Handle all input errors by displaying a standard message. For instance:

INCORRECT RESFONSE ENTER "?" FOR HELP

e Since application users occasionally respond to routine queries incorrectly,
interactive packages should include a help facility. A HELP facility
provides users with information about a query or group of queries. Display
HELP text if a user responds to a query with a standard help convention,
such as a question mark (?), or HELP. This text should be brief and to the

point. The following is a good example of concise, yet meaningful HELP
text:

CLASSIFICATIUN > ?

ENTER UNE OF THE FOLLUWING NUMBERS,

ABBREVIATIONS, OR FULL NAMES:

Wai SM S'STEM MANAGER

W993 FR FROGRAMMER

301 CF CLERICAL FERSONNEL

108 FHY FHYSICIAN

HELP text can be embedded in DSM-11 code or placed in globals. A more
efficient alternative, however, 1s to create one or more subroutines contain-

ing HELP text that are called whenever a user requests information.

In addition to HELP text, provide an input convention that lists related
entries, if they exist. An appropriate symbol is:

Optimizing DSM-11 Applications 9-13

9-14

“L

or:

“LIST

Obviously, this response is only valid at particular queries.

HELP facilities reduce the number of times a user tries to enter invalid text.
However, they do not limit the number of times a user enters acceptable,
though unwanted text. Therefore, you should employ a terminal convention
that deletes unwanted text. The minus sign (-) is a useful symbol for this
procedure. In the following example, a user deletes a person’s age, then the
query is repeated:

AGE (32)-

AGE >

It is often necessary for a user to scroll through contiguous queries. The

circumflex, or "up arrow” (‘) is particularly appropriate for indicating that
you want to go to the previous query, because users can intuitively relate
this symbol to the task it performs.

However, you should not have an unconditional proceed-to-next-query
convention, because some queries may require a response from the user.
Nonetheless, a null string (””) response could provide this capability under
the right circumstances. You enter a null string by typing a carriage return
without entering text.

If a query has a default value, or if data has already been entered, a null
response could leave the current data unaltered; then the routine should
advance to the next query. If neither a default value nor previously entered
data exists, and if no response is required, a null response should return a
user to the previous query (just as an “would). The null response could also
be taken as an invalid entry if a query requires a response.

A menu-driven package must provide an input convention that returns a
user to the menu of the program. For example:

ng

or:

“QUIT

Treat READ commands that have timed out the same as the “QUIT
convention. This way, your application automatically backtracks toward
the outermost menu. At the outermost MENU, include an autologout

procedure to log the unused partition off the system.

Optimizing DSM-11 Applications

Part 4: Managing the DSM-11 System

Chapter 10

Generating DSM-11

This chapter describes the DSM-11 SYSGEN procedure.

10.1 The SYSGEN Concept

SYSGEN refers to system generation and is the procedure you use to create a

multiple-user DSM-11 system. SYSGEN is an interactive session during which
you define the customized hardware and software configuration for your
system.

SYSGEN provides you with two approaches for setting up a configuration:

e Autoconfiguration - you can follow this procedure during system installa-
tion; most options and choices are based on default parameters.

e Manual configuration - you can make choices about parameters and system

features.

The products of manual configuration SYSGEN sessions are DSM-11 systems
that you have selectively configured to meet your operating needs, and a
system global that contains your system’s configuration parameters. If you so
desire, you can perform multiple SYSGENs. You can even perform a

SYSGEN during DSM-11 system operation.

Before performing a SYSGEN for a manual configuration, you should have a
list of hardware interrupt Vector and Control Status Register (CSR) addresses
of all peripherals to be included in your configuration. This information can

Generating DSM-11 10-1

be obtained from your Digital field service representative or from your Site
Management Guide.

The Vector and CSR addresses are also provided when doing an autocon-
figuration (this is done at first installation) or running the ‘CONFIG utility.
See Section 10.6 for more information.

You can run an autoconfiguration for SYSGEN provided that:

e You are running the Baseline System.

e You wish to define a new configuration (rather than edit an existing
configuration).

Section 10.6 provides an example of an autoconfiguration run after the first
installation.

You should also have some knowledge of common Digital hardware and
software concepts. The PDP-I1 Processor Handbook, the Peripheral
Handbook, and the Terminals and Communications Handbook contain

descriptions of the hardware used with your DSM-11 system. Refer also to
your PDP-11 processor user’s, system installation, or system operating guide.

10.2 System Definition Utilities

10-2

The SYSGEN procedure automatically calls two utilities to complete the
SYSGEN session:

Utility Routine Name

System Generation “SYSGEN

Modify Basic System Parameters MBP

The Modify Basic System Parameters utility is called as Parts 11 and 12 of the
system generation process. Several additional utilities discussed in this chapter
add or modify system features or parameters.

Utility Routine Name

Terminal Device Characteristics “MUX

Add UCIs “UCIADD

UCI Name Change ‘SUCIEDIT

UCI List ‘UCILI

Magtape Default Mode SMMD

Generating DSM-11

Routine Mapping ‘RMAP

Tied Terminal Table ATTTG

UCI Translation Table SUCITRAN

Autoconfiguration ‘CONFIG

These utilities are discussed in Section 10.7, except for “CONFIG which is
discussed in Section 10.6.

The utilities discussed in this chapter can also be accessed through the
SYSTEM UTILITIES menu (“SYS), or by typing:

Do “SYSDEF

10.3 The SYSGEN Procedure

When you initiate SYSGEN, you automatically start an interactive dialogue
that covers all aspects of DSM-11 in a step-by-step manner. Some of the
questions that SYSGEN asks are interdependent; thus, SYSGEN might ask
additional questions as a result of the answer to a previous question.

If you are uncertain how to respond to a particular question, type a ?, and
SYSGEN will display the acceptable responses.

You can also that request SYSGEN provide help information throughout the
SYSGEN session without having to type a ? at each question. You can do this
by answering YES to a question on “extended help” which is one of the first
questions that you are asked.

10.4 The SYSGEN Session

The SYSGEN procedure is divided into sets of questions on a common
subject. Within each set of questions, there are individual SYSGEN prompts
and descriptions of their meaning and usage. All responses can be terminated
with a carriage return. Typing an up arrow (*) causes SYSGEN to return to
the preceding question. When you are ready to begin the SYSGEN procedure,
type the following command:

»D “SYSGEN

The twelve parts of the SYSGEN session are:

1. SYSGEN Configuration

2. Disk Information

Generating DSM-11 10-3

10-4

3. System Devices

4. DMCI11s Configuration

5. Software Configuration

6. Assign Device Numbers

7. Software Options

8. Memory Buffer Allocation

9. System Data Structures

10. Job Partition Definition

11. Data Base Parameters

12. Basic System Parameters

The following sections describe the DSM-11 SYSGEN options. The following
sections also describe some of the planning you must perform to determine an
optimum configuration for your installation. An actual example of a
SYSGEN session is provided in Section 10.5.

10.4.1 SYSGEN Configuration

A configuration 1s a data base file created by the system generation procedure.
The configuration completely describes the hardware devices present on your
computer system, and the software options that you request.

This part of SYSGEN is a short series of questions asking you such things as
whether you want to modify an existing configuration or start a new one.

You can create as many configurations as you like. When you boot the DSM-

11 system, you are asked which configuration you want to run.

10.4.2 Disk Information

These questions allow you to specify disk types and units for your system.
DSM-11 permits disk types to be mixed on the same system. You must list all
disk drives in this part of SYSGEN except for RX02 floppy diskette drives,
which are handled in the next part of SYSGEN.

Generating DSM-11

10.4.3 System Devices

This part asks you to specify the system devices that are attached to the
system. This includes such devices as magnetic tape drives, line printers, and
peripheral controllers to which terminal-type devices are connected. Disk
drives are not included in this section except for the RX0O2 floppy diskette
drive.

DSM-11 supports both single-line and multiplexer terminal device controllers.
DSM-11 can support a maximum of 17 single-line devices (3 to 19), in addition
to device 1, which is the console terminal. When specifying a single-line
device, you must specify in octal the Vector and the Control Status Register
(CSR) addresses for the device. You must also specify the CSR address and the
Vector address for each DMC11 device that is connected to your system.

DSM-11 can support any combination of DH11 or DZ11 multiplexers (devices
64 to 191) as long as the total number of lines does not exceed 128. If your
system has multiplexers, you must specify in octal the Vector and CSR address

for each multiplexer.

10.4.4 DMC11s Configuration

DMC11 controllers are used for communications with other systems, and thus
are involved in Distributed Data Processing (DDP). In this part you answer
questions about whether the DMC11 line is half or full duplex, and whether
you are using a DMC11 for DDP.

HALF OR FULL DUPLEX

Whether a DMCI1 1s half or full duplex is related to the data connection
between the DMC11 and its remote DMCI11. Generally, DMCs linked by
means of a coaxial cable will be running full duplex. DMCs linked by means
of a telephone line may be run either full or half duplex. If you do not know
how your DMC11 1s configured, contact your Digital field service
representative.

PRIMARY DMC

In half-duplex operation, one side of the DMC11-to-DMC11 connection must
be designated as the primary.

DISTRIBUTED DATA PROCESSING

Generating DSM-11 10-5

You must indicate whether you want one or more of your DMCs to be used
for Distributed Data Processing (DDP).

DDP is a facility that allows access to global arrays on a remote DSM-11
system by means of the DMC11 communications device. A routine can request
data from the remote system using an “extended” global reference syntax. See
Section 8.2.3 for information on this syntax for DDP.

DMCs can be used for DDP communications or as single-line CPU-to-CPU
communications devices.

Systems interconnected by means of DDP must have an identifying code
which is used in the extended global reference to access data. This code must
be a 3-character uppercase alphabetic code.

Any DMC controllers that you do not assign to DDP are assigned as single-
line communications devices.

10.4.5 Software Configuration

In this part, you indicate whether you want to have the standard software
options or choose your own software options. In part 7 of SYSGEN, Software
Options, you actually get to choose those options.

The standard system includes:

Journaling
Interjob communications
Sequential Disk Processor (SDP)
Mountable data base volume sets
UCI Translation Table
Default sizes for all system data

structures
Default values for basic system

software parameters

The standard system does not include:

Mapped routines
Executive Debugging Tool (XDT)
Spooling

The standard system may or may not include:

EBCDIC support

Loadable driver support

10-6 Generating DSM-11

The EBCDIC support is included if you have magnetic tape drives, RX02
drives, or Binary Synchronous Communications (BISYNC) included with your
system. The loadable driver support is provided if you have a RX02, TUS58,
DUV11, or DUP11 device connected to your system. The DUV11 and DUP11

devices are communications devices used by the BISYNC driver.

The amount of memory each of these options occupies is dependent on the size
of the option module and any selectable buffer sizes associated with the
module.

Some hardware configurations cannot handle all options because of memory
constraints on system executive size. In this case, you can select those options

that are most important to you. You can also design configurations with

different choices of options. For a particular purpose or situation, you can run
a specific DSM-11 configuration. You can also set up configurations to
maximize the amount of space in memory by minimizing the number of
options.

10.4.6 Assign Device Numbers

SYSGEN automatically assigns device numbers for single-line communica-
tions devices (DUV11 or DUP11) and the TUS8. The DUV11 and DUP!1 are
used by the BISYNC driver for communications with other computers. In this
part, you can change these device numbers (within certain limits). Refer to the
SYSGEN dialogue and Sections 5.2 and 5.3 for more information on DSM-11
device numbers.

10.4.7 Software Options

These questions allow you to determine which software modules are to be
included in your system. You should respond with either Y or N for each
option. If you type a carriage return, you receive the default value.

Remember that each software option takes up space in memory.

SEQUENTIAL DISK PROCESSOR

The Sequential Disk Processor (SDP) allows you to store and retrieve data
from sequential storage on disk. See Section 6.4 for more information on the
SDP.

JOURNALING

Generating DSM-11 10-7

10-8

Journaling provides a record of all data base writes. This record is useful in
case of a system failure. Journaling, described in Chapter 16, can be used with
backing up disks, described in Chapter 11, to provide for total data base
recovery after a failure.

The journal procedure requires 1K byte buffers in memory to hold records of
each data base WRITE transaction. When a buffer is full, the journal job
marks the buffer to be written to the selected output device. If more than one
buffer has been allocated to journaling, the journal procedure immediately
begins filling the next free allocated buffer with data base transactions. If no
allocated buffers are free, jobs attempting to journal transactions are put into
a wait queue until a buffer becomes free.

Allocating more than one buffer to journaling can increase journaling
efficiency by “streaming” blocks to the output device. However, the block
buffers are allocated directly from the system disk buffer cache, so that
memory space and disk efficiency must be traded against journaling require-
ments. Buffer allocation is also discussed in Section 15.2.

INTERJOB COMMUNICATIONS

Interjob communications (JOBCOM) allows two DSM-11 jobs to communi-
cate by means of assigned JOBCOM channels using MUMPS READ and
WRITE commands.

Each JOBCOM channel is a pair of pseudodevices that communicate by
means of a single ring buffer. There are 32 device numbers (224-255) reserved
for a total of 16 channels. Each pair consists of an even-numbered device (the
receiver), and the following odd-numbered device (the transmitter).

Each JOBCOM channel requires a ring buffer of 2 to 255 bytes. Ring buffers
are intermediate storage buffers for data being transferred from one job to
another. When the ring buffer is filled, the job transmitting the data must be
placed in a wait queue until the receiving job has removed some of the data.
While it may be desirable to increase communications speed by increasing ring
buffer size, this must be traded against memory space considerations.

EBCDIC TRANSLATION TABLE

The EBCDIC translation table provides translation of ASCII characters to
EBCDIC characters and ASCII to EBCDIC conversion. Magnetic tape,
RX02, and TUS58 can use the table. The Binary Synchronous Communications
(BISYNC) driver requires this table.

LOADABLE DRIVERS

Loadable drivers are device drivers that can be loaded or unloaded dynami-
cally while the system is running. You are asked whether or not to provide
space for loadable drivers in your system. You need this space if you are going
to use the DSM-11 loadable drivers, or if you have loadable device drivers that

you write yourself.

Generating DSM-11

The TU58 cassette tape, RX02 diskette, and BISYNC drivers are all provided
as loadable drivers. The BISYNC driver is used with either a DUPI1 or
DUV11 communications device. See the DSM-1] BISYNC Programmer’s
Guide for more information on the BISYNC driver. If you plan to use these
drivers, you must select this option.

The approximate space needed for each driver is 2K bytes for the TUS58 driver,
2K bytes for the RX02 driver, and 4K bytes for the BISYNC driver. This space
requirement can increase if the drivers are modified.

The space set aside for loadable drivers can be increased or decreased depend-
ing on the requirements of the particular installation. If system memory space
is limited, and several loadable drivers have been selected, this space can be
reduced to free up system memory. Reducing loadable driver space may limit
your ability to load all required loadable drivers in memory at the same time.
You will, however, be able to load a driver, use the device, unload the driver,

and load another driver.

You may want to increase loadable driver space if some special requirement
exists for memory space within the system image.

These drivers can be loaded or unloaded with the “LOAD or “UNLOAD
utilities (described in Section 12.8), or automatically installed at start-up. You
must, however, reserve space for these drivers during the SYSGEN session
(before loading them).

EXECUTIVE DEBUGGING TOOL

The Executive Debugging Tool (XDT) allows you to use the console terminal
to interrupt the system, directly access any location in memory, and set
breakpoints within the DSM-11 executive. XDT can also show machine
registers, stacks, and status locations. For more information on XDT, see the

DSM-1I1 XDT Reference Manual

MAPPED ROUTINES

Mapped routines allow you to lock a set of DSM-11 routines into memory
thereby reducing the system overhead required to load a routine into a user’s
partition when the routine is called. This can greatly increase system perform-
ance when application users are sharing the same routines. However, you must
reserve memory space in which to load these mapped routines. Each routine
must be no larger than 8K bytes. For more information on mapped routines,
see Section 15.1. See Section 10.7.6 for discussion of the Routine Mapping
utility, “RMAP.

UCI TRANSLATION TABLE

The UCI Translation Table provides a flexible way to logically change the UCI
and system names for one or more specific global arrays. You can make a
Translation Table entry that assigns a new UCI and system name to any

Generating DSM-11 10-9

10-10

global. I1he system makes each reterence to that global through the Transla-
tion Table using the new UCI and system name. The UCI Translation Table
utility, ‘UCITRAN is discussed in Chapter 17.

MOUNTABLE VOLUME SETS

DSM-11 allows up to four mountable data volume sets to be resident on the
system at any one time. These volume sets are complete and independent data
bases. A volume set can consist of one or more disk packs, and can have one

or more UCIs. At least one volume set, the system volume set, is mounted on a

DSM-11 system. See Sections 13.2, 13.3, and 14.7 for more information on
volume sets.

10.4.8 Memory Buffer Allocation

These questions allow you to allocate memory to ring buffers and to disk-tape
buffers. For additional information on buffer allocation, see Section 15.2.

RING BUFFERS

All terminal-type devices (1,3 to 19, 64 to 191) and job communication devices
require ring buffers. These buffers are taken from the ring buffer pool and are
allocated on a first come, first served basis. Most devices require two ring
buffers, one for input and one for output. Ring buffer size for DSM-11 cannot
be less than 32 bytes or no greater than 255 bytes.

When a ring buffer is filled, the job transmitting the data must be placed in a
wait queue until the terminal has received some of the data. While it may be
desirable to maximize a job’s I/O throughput by increasing ring buffer size,
this must be traded against memory space considerations.

The default ring buffer size is the size of the buffer acquired when a terminal is
first opened. A different buffer size can be selected at open time by means of
an optional OPEN parameter. Memory will be most efficiently used if the
buffer size is specified in multiples of 32 bytes.

The ring buffer pool is the memory space from which terminal and JOBCOM
ring buffers are allocated when a device is opened or logged in to. Space is
allocated in bytes, and the ring buffer pool must hold at least two default-sized
ring buffers. Your system requires a total of two ring buffers for each active
terminal and for each active JOBCOM channel. This is the default presented
by SYSGEN.

DISK-TAPE BUFFERS

The disk-tape cache blocks are 1K byte block buffers used for disk, tape,
journaling, VIEW, DMC block mode, TUS58, RX02, BISYNC, and all SDP

Generating DSM-11

disk operations. These buffers reside in a common buffer pool. The nonallo-
cated disk-tape buffers are used by the data base handler for storage of the
memory-resident portions of the data base.

You must allow for seven cache blocks plus the number of buffers selected for
journaling. You can have as many as 200 disk-tape buffers.

10.4.9 System Data Structures

This part includes questions on allocating space for the DSM-11 Lock Table,
mountable data base volume sets, and mapped routines.

|
LOCK TABLE

The DSM-11 Lock Table maintains a list of all local and global variables that
have been locked by the LOCK and ZALLOCATE commands. Refer to
Section 14.4 for additional information about the DSM-11 Lock Table.

The size of the DSM-11 Lock Table cannot be less than 64 bytes or greater
than 8192 bytes, and must “ multiple of 64.

A job requesting a LOCK must wait for space in the Lock Table if the Lock
Table is full. When you allocate memory to the Lock Table, you must make a
tradeoff between remaining memory space and the number of data elements
you expect to be concurrently locked.

MOUNTABLE VOLUME SETS

In DSM-11, a volume set is : single or multiple disk set that appears to the
system as a single logical data base.

Your system is allowed up to four concurrently mounted data base volume
sets. Each data base volume set contains disk volumes and has its own UCI
table. Volume Set 0, of which the system disk is the first volume, remains
mounted at all times. Up to three additional volumes or volume sets, however,

can be mounted and dismounted as volume sets 1 through 3. You can specify
that space be reserved for one, two or three additional UCI tables. The only

reason for not specifying the maximum is to save memory (1024 bytes/UCI
table), at the cost of limiting the number of concurrently mounted data base
volume sets.

Notice that this limitation does not apply to the mounting of disks for VIEW-
only purposes, which is required, for example, to prepare new volumes for
backup. Disks mounted for VIEW-only are not data base volume sets, and no
global or routine access is allowed to or from those disks.

Refer to Sections 13.2, 13.3, and 14.7 for more information on volume sets.

Generating DSM-11 10-11

10-12

MAPPED ROUTINES

The mapped routine option is a facility for providing a memory cache for
frequently used routines. These routines then reside in common system
memory rather than in each user’s partition.

This serves to reduce the system overhead because a mapped routine is not
loaded into a user’s partition when the routine is called. This can greatly
increase system performance in situations in which application users are
sharing the same routines. However, you must make a tradeoff between space
allocated to mapped routines and space required for job partitions. Mapped
routines are discussed in more detail in Section 15.1.

10.4.10 Job Partition Definition

These questions allow you to allocate memory for partitions. Chapter 14
contains additional information concerning DSM-11 partitions. In DSM-11,

partitions are allocated in increments of 1K bytes. Partition size can range
from a minimum of 1 increment to a maximum of 16 increments. During this
session, you must specify the default partition size that is to be used on log-in
and JOB commands. (Note that for the JOB command, the partition size for
jobs started with the JOB command is specified in one-half K byte
increments.) You must also specify the number and sizes (in bytes) of all fixed
partitions that are to be included in your system. The maximum number of
partitions you can specify is 63. When you log in, you can override the default
partition size.

If there is memory remaining at the end of this session, DSM-11 automatically
assigns it to the dynamic partition pool. From the dynamic partition pool, you
can create partitions of any allowable size when you log in the system. The
largest allowable partition size you can specify is 16384 bytes.

Generally, you should allocate as much space to the partition pool as possible.
Specific partitions can be useful in cases where a background or batch job
always requires a particular partition size different from the default.

10.4.11 Data Base Parameters (“MBP)

These questions and those in Part 12 of SYSGEN (Basic System Parameters)
cover subject areas that are also presented in the Modify Basic Parameters
utility (MBP). This part (Part 11) asks basic questions about data base
parameters (for disks) such as write-checking for disks, disk space reserve, and
default global characteristics.

Generating DSM-11

DISK WRITE CHECK

Enabling write check causes
immediately following the wr
correctly. The system attem,
informs the System Manager
you immediate information
increase disk I/O overhead.

DISK BLOCKS FOR DISK |]

Allocation of disk blocks to

command. If the disk is entir

SET operation will fail, and
degradation of the data base,

To avoid this problem, a cert
should be held in reserve. W
allocated, a block is allocé

completed; and <DKRES>
The System Manager must th

A maximum of 399 blocks

systemwide value is used only
A fixed value of 10 blocks is

DEFAULT GLOBAL CHAR

System default global charact

8-Bit Subscripts:
Journaling:
Collating Sequence:

Default global characteristic:
systemwide basis. While the

different characteristics can
utility, “%GLOMAN.

DSM-11 to read every block it writes to disk
ite. This is done to see if the block was written
pts to correct any errors detected. The system
if there is an error. Selecting this feature gives
on the status of disk writes; however, it does

RESERVE

global arrays can occur during any global SET
ely full, attempts to allocate a block during the
the SET may not complete, possibly causing a

ain number of disk blocks on the disk volume set
hen all disk blocks in the volume set have been
ited from the reserve; the SET operation 1s
error 1s given to the job which caused the SET.
len provide additional disk space.

; can be reserved per disk volume set. This
on disk volume sets greater than two megabytes.
assigned to smaller volume sets.

.ACTERISTICS

teristics are:

Yes

Yes

Numeric

; are applied to all newly created globals on a
se are the default characteristics, globals with
still be created using the Global Management

10.4.12 Basic System Parameters (“MBP)

These questions cover a variety of subject areas that are also presented in the
Modify Basic System Parameters utility (‘MBP). They are included as Part 11
and Part 12 of the system (gen ration process. After calling “SYSGEN, you do
not have to call

call

‘MBP; “SYSGEN automatically calls
‘MBP after you have established an initial configuration. You then use

‘MBP. You can also

Generating DSM-11 10-13

10-14

this utility to modify the basic system parameters independently of the system
generation process. Specifically, this section asks questions concerning:

e VIEW Mode restriction

e ZUSE restriction

e Log-in echo

e Default application interrupt key

e Default programmer abort key

e Power fail restart delay

e Disconnect delay

e Number of signifigant digits in division computations

e Power line frequency

e Programmer access code

VIEW PROTECTION

VIEW protection allows the use of the VIEW command only from the System
Manager account and LIBRARY utilities (routines with names that begin with
the % character). This is generally a good idea since the VIEW command
should be used carefully. You can use the VIEW command to modify disk
blocks or memory. See the DSM-11 Language Reference Manual for more
information on the VIEW command.

ZUSE PROTECTION

ZUSE protection allows the use of the ZUSE command only from the System
Manager account and LIBRARY utilities. The ZUSE command can be used to
write messages to terminals other than the one you are logged in on. This
command can be abused or can be a nuisance if there are a large number of
users on the system. See the DSM-11 Language Reference Manual for more
information on the ZUSE command.

LOG-IN SEQUENCE ECHO

The log-in sequence echo causes all characters typed during login to be echoed
on the terminal. You can improve the security of your system by specifying
that the echo be disabled during the log-in sequence. You must specify
disabling, because the default is to enable echoing during the log-in sequence.

Generating DSM-11

DEFAULT APPLICATION INTERRUPT KEY
|

The application interrupt key, when enabled, causes an <INRPT> error to
occur. The error can then be trapped with an error processor and handled as a
special event. See Section 4.7 for more discussion of the application interrupt
key.

|
When a terminal device is first opened, it is given the systemwide default

application interrupt key. An OPEN command parameter allows you to define
One or more interrupt keys for that specific terminal.

The application interrupt key can also be used to log in a nonautobauded
terminal. The return key can be used to log in any terminal.

The key must be a control character with a decimal value between 0 and 31.
The default value of 3 gives an application interrupt key of cTrrt7o.

DEFAULT PROGRAMMER ABORT KEY

The programmer abort key is available only to programmers logged in to
DSM-11 in Programmer Mode. When pressed, the key causes an
< ABORT >error to occur. Any error-processing routines are bypassed, and
the execution of all routines are terminated. See Section 4.7 for more informa-
tion on the programmer abort key.

The key must be a control character with a decimal value between 0 and 31.
The default value of 25 gives an abort key of crrat7vy.

SYSTEM RESTART AFTER A POWER FAILURE

DSM-11 restarts automatically when power is restored after a power failure, if
memory is still intact. But if the power failure is more than momentary, main
memory is erased unless it is “nonvolatile”’memory. Often machines without
nonvolatile memory can recover because the power failure did not destroy
memory. The time delay is necessary to allow disk drives to become ready. If
you wish to restart under operator control, set the time to 0. Otherwise, enter
a time interval up to 500 seconds. Note that, if power-fail restart occurs while
magnetic tape journaling is in progress, operator intervention is demanded.

TELEPHONE DISCONNECT DELAY

The telephone disconnect delay allows a time delay between logout and
telephone line disconnect. This is very useful in dial-up environments where it
is necessary to log out one UCI and log in another. If the delay is set to 0,
DSM-11 disconnects the telephone line immediately following logout.

SIGNIFIGANT DIGITS IN DIVISION COMPUTATIONS

The number of significant digits returned from a division operation affects
both accuracy and speed of computation. Increasing the number of significant
digits increases the degree of accuracy, but also requires more processor time.

Generating DSM-11 10-15

DSM-11 supports computations which yield between 15 and 31 significant
digits.

LINE FREQUENCY

The frequency of the computer’s power source is either 50 HZ or 60 HZ. The
power line frequency directly affects the timing interval (or time between ticks)
of the DSM-11 internal clock. At 60 HZ, one tick is equal to 16.6 milliseconds.

At 50 HZ, one tick is equal to 20 milliseconds.

Because DSM-11’s time-sharing interval (standard time slice) is based on ticks,

the power line frequency directly affects the amount of CPU time alloted to
each active job (terminal user or routine) in the system. To specify a 50 HZ
power line frequency, type N. To select a power line frequency of 60 HZ, type
Y. The default is 60 HZ.

PROGRAMMER ACCESS CODE (PAC)

Enter the 3-character password that lets users enter Programmer Mode. Use of
control characters (those that have an ASCII value less than 32), while allowa-

ble, could confuse the system or have an undesired result because of the

special functions these characters can have. See Section 3.1.2 for more
information on these special characters. See Section 3.2.2 for more informa-
tion on the PAC.

10.5 Example SYSGEN

10-16

Answers to each SYSGEN question must be followed with a carriage return.
In general the carriage returns are not indicated in this example. A carriage
return alone causes the default answer to be used.

On any question asked during SYSGEN, you can enter:

‘ to return to the previous question
? for additional help

If a value appears between angle brackets, < >, it is a default value. Typing a
causes the default value to be used as the answer to the question.

System generation for DIGITAL Standard MUMPS

Type ? for HELF at any time

PART 1: SYSGEN

See Section 10.4.1 for more information on this part of SYSGEN.

1.1 Would you like extended help [Y OR N] ? (N)N

Generating DSM-11

1.2 Enter the configuration identifier (11734) *

Type * to see a list of existing configurations.

Defined configurations are:

11734
AUTO

NEW

TEST

AAA

Type the name of the configuration that you wish to edit or create. When you
type in a name that is not already defined, you create a new configuration.
Your answers to the SYSGEN questions become the values of this
configuration.

To modify an existing configuration, simply enter the name of that configura-
tion. The default answers to the SYSGEN questions are the existing values for
that configuration. By typing in a different answer to the question, you
modify that value in the configuration.

The name must not exceed 12 characters and must not be the value 0. Note
that names that are the same except for differences in uppercase or lowercase
are treated as separate configurations. Use the configuration name whenever
you wish to refer to this configuration.

1.2 Enter the configuration identifier (11734) SST

1.5 Enter the processor type > 11/34

Type in the type of processor for this configuration. The answer should be in
the form:

11/XX if the processor 1s a PDP-11/XX
MICRO if the processor is a MICRO/PDP-11

Processors supported include all PDP-1l1s from the 11/23 to the 11/70, and
the MICRO/PDP-11.

This machine has 248K bytes of memory

1.6 How many K bytes do you wish this configuration to have ? (248)

Press to accept the default value for the amount of memory for this
configuration.

Type the value in K bytes, if you wish to specify a different value for the
memory size. The value must be at least 128K bytes, but not more than 4088K
bytes (4 megabytes), and must also be a multiple of 8. The value cannot be
larger than the amount of memory physically available on your system.

Generating DSM-11 10-17

10-18

PART 2: DISK INFORMATION

See Section 10.4.2 for more information on this part of SYSGEN.

Please enter all the disk drives in your system using the form:

DRIVETYPE=NUMBER

Press RETURN ta end the list.

2.1 DISK DRIVE >*

Type ”*” to get a list of supported drives.

The following disk drives are supported:

RA6Q RABQ RA81 RDS1

RKQS RKQ6 RKQ?7 RLO1

RLOe RM@2 RMQ3 RM@S

RM8Q RPQ4 RP@S RP86

Ragu

Po
 .1) DISK DRIVE >RL@1=1

.1) DISK DRIVE >RLOe=2 P3

wo
 .1 DISK DRIVE >

Type in all of the disk drives (in question 2.1) on the system you are configur-
ing. The answers shown in this example are for a system with one RLOI and
two RLO2s.

To delete a drive from the list type:

DRIVETYPE=0

Type "L” to get a list of devices already entered.

PART 3: SYSTEM DEVICES

See Section 10.4.3 for more information on this part of SYSGEN.

3.1 How many magnetic tape units are there (Max = 4) ?)1

Type the number of magnetic tape drives that you have on the system.

3.2 What type is magnetic tape unit @ ?)TS11

Generating DSM-11

Type the type of magnetic tape drive. The supported types are:

TU80 TS03 TS11 TSVO5 TUI10
TE10 TE16 TU16 TU45 TU77

The following rules apply when configuring tape drives:

e If unit 0 is TS11/TU80/TSV0S5, all units must be TS11/TU80/TSVOS.

e If unit 0 is TS03/TU10, other units can be TU10/TSO3, or

TS11/TU80/TSVOS.

e If unit O is TE16/TU16/TU45/TU77, other units can be

TE16/TU16/TU45/TU77 or TS11/TU80/TSV0S.

Enter the VECTOR address, in GCTAL, for Tape Unit 8 >2428

Enter the CSR address, in OCTAL, for Tape Unit 8 (1725280)

Type in the Vector address for the magnetic tape unit. The Vector address is
an octal number in the range 0 to 770 and 1s generally a multiple of 10.

Type in the CSR address for the magnetic tape unit. The Control and Status
Register (CSR) address is an octal number in the range of 160000 to 177540.

If you do not know the Vector or CSR address of this hardware device,
contact your DIGITAL field service representative or use the autoconfigura-
tion option of SYSGEN from the Baseline System. Do not use the numbers
given in this example; they may not be correct for your system. See Section
10.1 for more information on obtaining Vector and CSR addresses, and
Section 10.6 for an example that provides these addresses.

3.3 How many LP11s are there (max = &) ? (Q)1

Type in the number of LP11 line-printer controllers in this configuration.

Enter the VECTOR address, in OCTAL, for LP11 controller 1 >26a

Enter the CSR address, in UCTAL, for LP11 controller 1 161208

3.4 How many DL11s are there (max = 17) ? (@)1

Type the number of DL11 single-line asynchronous controllers in this config-
uration. Do not include the console DL.

Enter the VECTOR address, in QCTAL, for DL11 controller 1 >319

Enter the CSR address, in OCTAL, for DL11 controller 1 5176514

3.5 How many DMCi1s are there (max = 4) ? (@)2

Type the number of DMC11 synchronous controllers in this configuration. Be
sure to enter all DMCs regardless of their use in the system.

Generating DSM-11 10-19

10-20

Enter the VECTOR address, in OCTAL, for DMC11 cantroller 1) 342
Enter the CSR address, in OCTAL, for DMC11 controller 1) 169112

Enter the VECTOR address, in OCTAL, for DMC11 cantroller 2) 35a
Enter the CSR address, in OCTAL, for DMC11 controller 2) 160124

3.6 Haw many DH11s are there (max = 8) ? (@)

Type the number of DH11 16-line asynchronous multiplexers in thi:
configuration.

Note that not all questions are asked in this part of SYSGEN; for example,
question 3.7 is not asked. These questions are for devices that are not
physically present in this particular system.

3.4 Haw many DZ211s are there (max = 16) ? () 1

Type the number of DZ11 8-line asynchronous multiplexers in this
configuration.

Enter the VECTOR address, in OCTAL, for D211 cantroller 1) 362
Enter the CSR address, in OCTAL, for D211 controller 1) 160142

3.9 How many D2Vi1s are there (max = 32)? (@) a

3.18 How many RX@2s are there (max = 1)? (Q) 1

Type the number of RX02 dual-density diskette controllers in this configura-
tion. (Note that one controller supports two diskette drives.)

Enter the VECTOR address, in OCTAL, for RX@2 controller 1) 264
Enter the CSR address, in OCTAL, for RX@2 controller 1) 1771728

3.11 How many TUS8s are there (max = 1)? (@) 1

Enter the number of TUS8 cassette tape controllers in this configuration.
(Note that one controller supports two cassette drives.)

Enter the VECTOR address, in OCTAL, for TU58 controller 1 > 30a
Enter the CSR address, in OCTAL, for TUSS controller 1) 176580

3.13 How many DUP115 are there (max = 4)? (@) a

PART 4: CONFIGURE DMC11is

See Section 10.4.4 for more information on this part of SYSGEN.

4.1 Is DMC controller 1 HALF DUPLEX [Y GR NJ 2? <N) ¥

Indicate whether the DMC11 is to be half or full duplex.

Generating DSM-11

4.1 Is DMC controller 2 HALF-DUPLEX [' OR N] ? <N) ¥

4.3 How many of your DMC1i1s do you wish to use for DDP CY OR NI ? > 2

At this point you indicate the number of DMC11s you want to use for DDP. If
you have more than one DMC11, questions 4.4 through 4.6 are repeated for
each DMC11 line.

4.4 Which DNC-11 controller do you wish to use for DDF line 1 > 1

4.5 Enter the 3-letter code for DDF line 1 >) AAA. BRE, CCC, DDD

The code must be unique for each line since the code is used by DSM-1!11
routines to specify that line for extended global references. The codes can also
be used in the UCI Translation Table. The code must contain 3 uppercase
alphabetic characters. These codes should refer to volume sets that reside on
another PDP-11 system connected by DMC11s. There can be as many as 4
codes, referring to the 4 volume sets that can be mounted on a remote system.

4.6 Will DDF line 1 be cannected ta a Versian 2 system [Y OR NJ ? (Nd

If the line is to be connected to a Version 2 system, you should answer this
question Y to insure compatibility between the Version 3 and Version 2
systems.

4.4 Which DMC-11 controller do you wish to use for DDF line 2 > 2

4.5 Enter the 3-letter code for DDP line 2 >) EEE,FFF.GGG,HHH

4.6 Will DDF line 2 be connected ta a Version 2 system [1 GR N] ? (ND

PART 9: SOFTWARE CONFIGURATION

You can choose to take the standard software options which greatly reduce the
number of questions asked to configure this system. This “standard” system is
the one given during autoconfiguration. See Section 10.4.5 for more informa-
tion on this part of SYSGEN.

Answer Y if you wish to have the standard system.

If you answer N to this question you are asked specific questions for each
option in Part 7 of SYSGEN.

9.1 Do you wish to use the STANDARD SOFTWARE OPTIONS [CY GR NI] ? <¥) N

PART 6: ASSIGN DEVICE NUMBERS

Generating DSM-11 10-21

10-22

Single-line devices are numbered from 3 to 19 in DSM-11. The DL11, LP11,
and DMC11 (when used as a single-line device, not for DDP) are all consid-

ered single-line devices. See Section 10.4.6 for more information on this part.

The following single-line device assignments have been made:

Device Number Cantroller-Number

3 LF11-1

4 DL11-1

> DNC11-2

If you would like to make your own device assignments to these controllers,
answer Y in the next question. You are then asked questions giving you the
Opportunity to reassign the device number for each of these devices.
Otherwise, these default assignments remain.

6.1 Do you wish to edit these assignments [1 OR N] ? (ND N

The follawing LOADABLE DRIVER device assignments have been made:

Device Number Caontraller-Number Unit

o1 RKAS- 1 Q

a2 Rade-1 1

53 TUS8-1 ",

94 THUS8-1 1

The loadable drivers are the TUS8, RX02, and BISYNC drivers. The BISYNC

driver uses either the DUP11 or DUV11 communications device. DSM-11
device numbers for the related hardware devices (RX02, TUS58, DUV11, and

DUP11) can be assigned values between 51 and 58. SYSGEN automatically
makes these assignments; you can then edit them to change the numbers (as
long as they remain between 51 and 58). For more information on the
BISYNC driver, see the DSM-11 BISYNC Programmer’s Guide.

Do you wish to edit these assignments [VY or N] ? (NDN

PART 7: SOFTWARE OPTIONS

See Section 10.4.7 for more information.

7.1 Include support for SEQUENTIAL DISK PROCESSOR [Y OR N] ? <Y)¥

7.2 Include support for JOURNAL [Y OR N] ? <¥)>¥

The journal procedure requires 1K byte buffers in memory to hold records of
each data base WRITE transaction.

Enter the number of DISK-TAFE buffers ta allocate to JOURNAL? <2)

Generating DSM-11

7.3 Include support for SPOOLING [Y OR N] ? (YN

7.4 Include support for INTERJOB COMMUNICATIONS ([Y OR NI] ? <4

Interjob communications (JOBCOM) allows two DSM-11 jobs to communi-
cate by means of assigned JOBCOM channels using MUMPS READ and
WRITE commands.

How many communication channels do you want ? (16)

Each JOBCOM channel requires a ring buffer of 2 to 255 bytes.

Enter the default size you would like for JOBCOM ring buffers. Ring buffers
use memory most efficiently if specified in multiples of 64 bytes.

Enter the size, in bytes, for each RING BUFFER channel ? (64)

7.5 Include support for EBCDIC-ASCII TRANSLATION TABLES [Y OR NI] ? (41

7.6 Include suppart far LOADABLE or USER DRIVER SPACE ([' OR NJ] ? (N)T

Enter the number af BYTES to allocate for LOADABLE DRIVERS ? (@)oWua

A typical amount of space to allocate is 5000 bytes. This insures that there is
enough space for any one driver to be loaded at one time. If you choose the
standard software options (see Part 5), then the amount of space needed is
automatically calculated, assuming you have the correct hardware devices
connected to your system for the loadable drivers.

7.7 Include suppart for EXECUTIVE DEBUGGING TOOL [Y OR NJ] ? <N)N

7.8 Include support for MAPPED ROUTINES (Y OR NJ ? <N)1

7.39 Include support for UCI TRANSLATION TABLES [Y GR N] ? <Y)N

7.18 Include support for MOUNTABLE DATA BASE VOLUME SETS [Y OR NI] ? (¥)7

Tatal System Exec size: 67.45K Bytes

PART 8: MEMORY BUFFER ALLOCATION

Space remaining for Buffers and Partitions: 173.3@K Bytes

Maximum space that can used for Buffers: 169.38K bytes

See Section 10.4.8 for more information on this part of SYSGEN.

8.1 Enter the default terminal RING BUFFER size (64>

Ring buffer sizes can not be less than 32 bytes or more than 255 bytes.

Generating DSM-11 10-23

10-24

#.2 Enter the number of bytes to allocate to RING BUFFER space (128)

Your system requires a total of two ring buffers for each active terminal and
for each active JOBCOM channel.

Space remaining for Buffers and Fartitions: 177.99K Bytes

Maximum space that can be used for Buffers: 168.00K bytes

#.3 Enter the number of DISK-TAPE cache blocks ta allocate (89)

The disk-tape cache blocks are 1K byte block buffers. You must allow for
seven cache blocks plus the number of buffers selected for journaling. See
Section 10.4.7 or 15.2 for more information on allocating buffer space. There
is a theoretical maximum of 200K bytes for these buffers, but the actual
amount of space is limited by system constraints and cannot be larger than the
number immediately preceding this question (168K bytes in this example).

PART 3: SYSTEM DATA STRUCTURES

Space allocated for DISK-MAF and BAD BLOCK TABLE: 704 Bytes

Space remaining for data structures + partitions: 88.30K Bytes

See Section 10.4.9 for more information.

3.1 Enter the number of bytes to allocate to the LOCK TABLE (512)

3.2 Enter the number of ADDITIGNAL mountable DATA BASE VOLUME SETS <3) 1

Your system is allowed up to four concurrently mounted data base volume
sets. Volume Set 0, of which the system disk is the first volume, remains

mounted at all times. You can specify that space be reserved for one, two, or
three additional UCI tables.

9.4 Enter the number of bytes to allocate to MAPPED ROUTINES >) 4002

Space adjusted to 4032 Bytes

PART 18: JOB PARTITION DEFINITION

See Section 10.4.10 for more information.

PARTITIONS are allocated in 1824-byte increments.

The following PARTITIONS have been defined:

JOURNAL system job 1KB

GARBAGE COLLECTOR system job 1KB

Jab 1 (to guarantee one 8K byte PARTITION) SKB

space remaining for PARTITION allocation: 71.87K bytes

Generating DSM-11

Default-sized partitions will be used for logins and JOB commands that do not
specify partition size. The size of a partition is expressed in 1 K byte
increments.

18.1 Enter the default FARTITION SIZE in 1KB increments (#8)

Type in the numbers for partition size and number of fixed partitions in the
table printed out by SYSGEN.

18.2 Enter fixed PARTITION sizes Cin increments) and the number of each. A

Carriage return in the size field terminates the session.

PARTITION size number of each

16 1

14 1

RET

Space remaining for PARTITION allocation: 45.24K bytes

The remainder of memory is assigned to the DYNAMIC PARTITION POOL

PART 11: DATA BASE PARAMETERS

See Section 10.4.11 for more information.

11.1 Enable WRITE CHECK after every DISK WRITE [Y OR NJ ? (N)

System default global characteristics are:

H-Bit subscripts: Yes

Journaling: Yes

Callating sequence: Numeric

11.2 Change the DEFAULT GLOBAL CHARACTERISTICS [Y OR N] ? (ND

PART 12: BASIC SYSTEM PARAMETERS

The questions in this part are those asked by the Modify Basic System Parame-
ters utility, “MBP. More information on these questions is given in Section
10.4.12.

12.0 Enter the UDA disk units, separated by commas, that you wish to be DUAL-

PORTED <NONE>

Some disk units (such as the RA80) can be connected to two computers
through dual porting. Answer YES to this question only if you wish to enable
both computers to have simultaneous access to the disk (dynamic dual

Generating DSM-11 10-25

10-26

porting). Simultaneous access can cause data base problems and increase disk
access time.

These disk drives can be used to provide for a manual switchover of the disk
from one system to the other. This switchover is enabled by pressing buttons
on the disk drive and is referred to as "static dual porting.” In this case, take
the default answer to this question, which is NONE.

12.1 Restrict use of the VIEW BUFFER [Y OR NJ] ? ¢Y>%

12.2 Restrict the use of the ZUSE command [Y OR N] ? <¥>¥

12.3 Echo the LOG-IN SEQUENCE CY OR NJ] ? <>

12.4 Enter the ASCII DECIMAL value af the default AFFLICATIUN INTERRUPT KEY

(3)

The key must be a control character with a decimal value between 0 and 31.
The default value of 3 gives an application interrupt key of crRtro.

12.3 Enter the ASCIT DECIMAL value af the default FROGRAMMER ABURT KEY (25)

The key must be a control character with a decimal value between 0 and 31.
The default value of 25 gives an abort key of ccTRITZy).

12.6 Enter the number of secands to delay SYSTEM RESTART after a POWER FAILURE

(40)

12.7 Enter the number of seconds to delay TELEPHONE DISCONNECT after LOGGING

OUT of a MODEM CONTROLLED LINE ¢15)

12.8 Enter the number of SIGNIFICANT DIGITS to include in DIVISION computa-

tions (28)

DSM-11 supports computations which yield between 15 and 31 significant
digits.

12.9 Is the LINE FREQUENCY 6@H2 [YY OR N] ? <)>

The frequency of the computer’s power source is either 50 HZ or 60 HZ. In

the United States it is 60 HZ.

¢.1@ Enter the 3-character Frogrammer Access Code (PAC) DXKK

Flease enter your initials)J5$

Enter your initials. The response must be uppercase alphabetic characters, 2-
22 characters in length.

Enter comment Cmax. 288 chars.))EXAMPLE SYSGEN

Generating DSM-11

You can enter a comment that gives appropriate information about this
configuration. The comment is saved in the ASYS global (along with the other
information for the configuration).

The system glabal “S'S has been built by SYSGEN.

“SYS is a reserved global and should not be altered.

10.6 Example Autoconfiguration

DSM-11 can be installed as an autoconfiguration. This can be done when you
first install your system from the distribution disk to the system disk. An
example of autoconfiguration during installation 1s given in Chapter 1.

The example that follows shows how to produce an autoconfiguration after
installation has been completed. This can be useful, for example, to obtain the
CSR and Vector addresses of hardware devices. If you want the CSR and
Vector addresses, you can obtain them by calling the Autoconfiguration
utility, “CONFIG from the Baseline System. Note that ‘CONFIG provides
these addresses and does not complete the system generation process.

This example begins with booting the system from the system disk.

EXAMPLE:

Start ? DL1

Beating DSM-11...

Note that the booting procedure can be different for different PDP-11
processors.

DSM-11 Version 3

Now running the Baseline System.

Flease enter taday’s date (DD-MMM-Y") 3-Jun-83
Is today Friday ? <>

Flease enter time CHH:MM:SS]) 12:15:00

Is this 12:15 FM in the afternoon ? ¢¥)

Start up the default system (CTEST1@) [Y/N] ? (YN

Remain in Baseline System [Y/N] ? (ND ¥

yD “SYSGEN

If you want to obtain only the CSR and Vector addresses (without running
SYSGEN), type “CONFIG instead of ‘SYSGEN at this point.

System generation for DIGITAL Standard MUMFS

Generating DSM-11 10-27

Type ? for HELP at any time.

PART 1: SYSGEN

1.1 Would you like extended help (Y or N) ? (N)

1.2 Enter the configuration identifier (TEST1@> TEST12

1.3 Do you wish to autoconfigure the current system [VY or NJ ? <7)

SYSGEN continues and produces an autoconfigured system as in the example
during installation that is shown in Chapter 1. This autoconfigured system
includes the Vector and CSR addresses for hardware devices. At the end of
SYSGEN, you return to the Programmer Mode prompt (>); however, you are
still in the Baseline System. To leave the Baseline System, proceed as follows:

DO “STU

Please enter todays date (3-Jun-83)

Is today Friday ? <>

Please enter time [HH:MM:SS]) 12:38:08

Is this 12:38 PM in the Afternoon? <7)

Start up the default system (TEST10) [Y/N] ? ¢¥)

Reconfiguring memory...

Memory reconfigured

Now mounting volume set SYS in table slot S$

Volume 1 an DL1 has 18008 blocks 8937 available.

Total in volume set: 188008 blocks $937 available.

Reloading the UCI TRANSLATION TABLE

Building terminal control blocks...

Caretaker is now running as job number 2

DSM-11 Version 3 TEST18 is now up and running!

Exit

(RET)

DSM-11 Version 3 Device #1 UCI: MGR: XXX RET

)

10-28 Generating DSM-11

The system is now in Programmer Mode with the configuration, TEST10,
running.

10.7 Modify System Parameters

You can define basic system parameters by using the SYSTEM DEFINITION
(SYSDEF) option of the SYSTEM UTILITIES MENU (“SYS), or (after you
have logged in your configuration) by typing:

> DO “SYSDEF

10.7.1 Device Characteristics (“MUX)

These questions allow you to establish and modify parameters for terminal

devices (1,3 to 19, 64 to 191). The dialogue in this section 1s in tabular form.
All responses are entered in a left-to-right, column-by-column manner. An
example of “MUX is given at the end of this section.

The characteristics that are covered are:

DEVICE NUMBER

Enter the terminal number (nn) for the parameter you want to modify. The

number you enter must be 1, 3 to 19, or 64 to 191. You can also specify

identical characteristics for a group of terminals by specifying the starting and
ending device numbers separated by colons (:). To terminate this question,
simply type a carriage return in response to the device number prompt.

PARITY

This question is applicable to DZ11 and DH11 multiplexer devices only. This
question allows you to select I/O parity generation and checking. If you want
a multiplexer device to have even parity, type an E. If you want a multiplexer

device to have odd parity, type an O. If you do not want parity checking, type
N or a carriage return.

CRT

If the device is a video terminal, type Y; otherwise, type a carriage return.

AUTOBAUD

If you want autobauding for the terminal, type Y; if not, type N. If you select
autobauding, you do not need to select a receiver speed or transmitter speed.
The default speed is set to 4800 baud for the detecting speed. If you select
autobauding, you log in this terminal by typing two carriage returns (see

Generating DSM-11 10-29

10-30

Section 3.2.8). If you do not select autobauding, you log in by typing a
carriage return Or (CTRI/©).

RECEIVER SPEED

This question is applicable to DZ11 or DH11 multiplexer devices only. Enter a
number that represents the baud rate for input from the specified multiplexer.
A baud rate of 0 (DHIIs only) disconnects a terminal’s receiver from the
multiplexer, and is a method of disabling currently nonexistent or broken
terminals. For DZ11 multiplexers, receiver speed will be assigned to the
transmitter as well.

TRANSMITTER SPEED

This question is applicable to DH11 multiplexers only, and allows you to
specify an output baud rate that is different from the input baud rate.

MODEM CONTROL

If a terminal is to interface with DSM-11 through a modem, type Y; otherwise,

type a carriage return.

ZUSE

If you want messages sent by the ZUSE command to be received and displayed
by this terminal, type Y; otherwise, type N.

OUTPUT ONLY

If a terminal is to perform output operations only, type Y; otherwise, type two
carriage returns. Note that input is ignored from an output-only device, except
for XON and XOFF.

LOGIN

If you type N to this question, users will not be able to log in on the terminal.
A Y response to this question enables login either by typing a carriage return,
if autobauding is in effect, or by typing a carriage return or @TRI7Oo.

STALL COUNT

Some terminals, such as VT100, VT50, VTS2 and VT55 video display

terminals, have zero stall counts. In these cases, you should enter a carriage
return to advance to the next column.

When certain terminals operate at data rates of 300 baud or greater, a few of

their functions, such as carriage return, form feed, and line feed, cannot be

performed within the interval allotted to the other characters and functions.
This can cause character displacement or total loss for characters that immedi-
ately follow one of these functions. To prevent this from occurring, DSM-11

Generating DSM-11

can wait a specified number of character times after one of these functions
before sending out the next character.

Suggested stall counts for Digital terminals are:

Serial VTOS5 (300 baud) = |

VTO5 (600 baud) = 4

VTO5 (1200 baud) = 8

VTOS5 (2400 baud) = 20

LA36 (300 baud) = 10

NOTE:

Loss of characters at the beginning of a display line can be corrected

by an upward adjustment of the stall count for that terminal.

TAB CONTROL

DSM-11 assumes that a tab stop is equivalent to eight character spaces. If you
press the TAB key and the cursor does not move eight character spaces, you
should respond with N to this question. This causes DSM-11 to convert tab
characters to spaces during output operations. The default for this question is
Y, indicating that the terminal can properly handle tab characters.

LOWERCASE

If you want a terminal keyboard to have a lowercase character set as well as an
uppercase character set, type Y. If you type N, DSM-11 converts all lowercase
input characters to uppercase characters.

OUTPUT MARGIN

This question allows you to specify the right margin at which DSM-11 will
automatically generate a carriage-return/line-feed. If you do not want DSM-
11 to generate an automatic carriage-return/line-feed, you should type a zero
(0). If you do want DSM-11 to generate an automatic carriage-return/line-
feed, enter a number (such as 80) between 10 and 255 inclusive.

ROUTINE NUMBER

If you intend to tie a terminal, you must enter a response to this prompt. You
must specify a routine number to which a terminal is to be tied. The routine
number that you specify must be a decimal value from 1 to 7. If you do not
want to tie a terminal, enter zero (0) as the routine number. See Section 10.7.6
for information on a related routine, Tied Terminal Table Generation,

STTTG.

Generating DSM-11 10-31

10-32

EDIT COMMENT

If you respond with a Y to this question, DSM-11 allows you to enter a
comment that is stored with the terminal characteristics. The comment will be
printed as part of the System Status Report (“STA).

EXAMPLE:

The following is an example of MUX:

> DO “MU

Enter the name of the canfiguration you wish ta alter (TEST1@)

Configuration "TEST1@" is running now. If you continue,

bath memary and disk will be modified.

Are you sure you want to proceed? (NO> ¥

HEEXKHTorpminal Device Characteristics **###*

Enter device number, or range of device numbers CNN: NN). Enter carriage return

when done.

Parity Auto Madem Qutput Stall Lower

Baud Cntrl only Count Case

Device + CRT !' Reur Xmit | 2USE iLogin + Tab + Qutput Rtn Edit
Number +, , Spd Spd ! roy 14 1 Margin Num Comment

66 N Y 4808 4802 ’ Y N YY Q " " 8a a N

RET

After you type in the device number (in this case 66), the utility provides the
present values of the device characteristics. The utility repeats the device
number, and you can then provide new values at each column position. By
pressing a carriage return at a given column position, you take the current
value. By pressing a carriage return in the device number column, you
terminate the utility. After you provide a value for each column in the line,
and press a carriage return in the device number column, the utility continues
as follows:

Flease enter your initials) Jss

Enter comment (max. 208 chars.) > TEST FOR DOCUMENTATION JUNE 3

Generating DSM-11

10.7.2 Add UCls (“UCIADD)

These questions allow you to modify, add, or edit UCI codes. You can specify
a maximum of 30 UCIs. The dialogue in this section is in tabular form. You
enter your responses in a left-to-right, column-by-column manner. By pressing
a Carriage return after entering the new UCI, you receive the default values for
each column.

EXAMPLE:

Inspect/Add UCI data for which volume set? (Sd)

This question is asked only if there is more than one volume set mounted on
the system. Note that you cannot add a UCI to a volume set that is not
mounted on the system.

HHHKEHE Tn spectsAdd UCIs for Volume Set SO*KHHHEE

Enter disk data as DDIU:M:BL

Where DD = disk type

lo = unit no.

M = map no.

BL = block na. within map

or hit carriage return to accept default values.

For "UCI name" enter 3 alphabetic characters, or hit (CR) if done adding UCIs.

GLOBAL NEW GLOBALS ROUTINE NEW ROUTINE NEW GLOBALS

UCI# NAME DIRECTORY POINTER AREA DIRECTORY GROWTH AREA DATA AREA

1 MGR DLO: 95 DLO:2:2 DLO:8:96 DLO: 8:8 DLO: 8: a0

95°SQ B:S2 96:S8 @:S2 8:S8

2 AAA DLO:20:202 DLO:20:0 DLO:28:283 DLO:20:2 DLO: 20:2

Bebe: SB BORA: Sa B203:S8 BBOO: Sa 8O00: SB

RET

If you do not want to enter a new UCI name, type a carriage return to
terminate the question. If you type a carriage return anywhere other than
under the name column, you receive the default value. If you want to allocate
a directory on the system disk, type a carriage return. Type an up arrow after
the next question to exit from the utility.

InspectzAdd ICI data for which volume set? <SQ@) *

Generating DSM-11 10-33

10.7.3 UCI Edit (“UCIEDIT)

This utility has a simple dialogue that allows you to change the name of a
UCI. You can also change the default library UCI for a specified UCI. The
library UCI contains utilities that can be used by several UCIs; an example is
the library utilities contained in the manager’s UCI.

EXAMPLE

An example of “UCIEDIT follows:

D “UCIEDIT

Enter one of the following:

1. Edit UCI name

¢. Edit library UCIs

Enter option (1 or 2) >) 214

Enter LICI name > AAA

New name ? >) RRB

Enter one of the following:

1. Edit UCI name

<. Edit library UCIs

Enter option (1 ar 2) >)? 2

Enter UCI name > DDD

Library UCI ? <1) 2

This example changes the name of UCI AAA to BBB. The example also
changes the library UCI for UCI DDD from UCI 1 to UCI 2.

10.7.4 UCI List (“UCILI)

This routine produces a list of all loaded and accessible UCIs on the current
configuration.

10.7.5 Magnetic Tape Default Mode (“MMD)

These questions allow you to establish and modify the magnetic tape format
for your system. Section 6.3 contains additional information about magnetic
tape formats.

10-34 Generating DSM-11

You can specify one of two magnetic tape formats: DOS-11 compatible
(ASCII characters, DOS labeling, and stream data format), or any combina-
tion of the following:

e Character set ASCII or EBCDIC

e Labeling standard labeling or unlabeled

e Format stream data or variable-length records

The magnetic tape format mode can be temporarily modified by any user with
the OPEN command.

EXAMPLE:

> DO “MMD

Enter the name of the configuration that you want ta modify (TEST1@)

Configuration "TEST1&" is running now. If you continue,

both memory and disk will be modified.

Are you sure you want to proceed? «NO)> ¥

Current magtape default made is:

DUS compatible, 1608 BFI

Madify magtape default mode (N) |

DUS-11 compatible format CY or N) ¢(¥) N

If you choose DOS-11 compatible format then the other characteristics for
magnetic tape are automatically assigned.

ASCII or EBCDIC (type A or ED (AD E

Labeled ar Unlabeled (type L or U) (Ld) UJ

Stream, Fixed, aor Variable record format (type S,. F. or V) (S) ¢s

Flease enter your initials > JS35

Enter comment Cmax. 208 char.) >) TEST FOR poc

10.7.6 Routine Mapping (“RMAP)

Routine mapping is a way of placing specified routines in memory. System
overhead is reduced because the routines reside in memory and are not loaded
into the user’s partition when they are called. See Section 15.1 for more
information.

Generating DSM-11 10-35

10-36

Space for mapped routines must be reserved during Part 6 of SYSGEN.

When you call up the “RMAP option of the SSYSDEF menu, you get the
“SRMAP menu of routine-mapping routines:

1. DISABLE/ENABLE ROUTINE MAP (“RMDIS)
Disables or enables routine mapping.

. DISPLAY LOADED ROUTINE SETS (“RMSHO)
Displays information about loaded routine sets.

. LOAD A ROUTINE SET (“RMLOAD)
Loads a defined routine set into memory.

. ROUTINE SET MANAGEMENT (“RMBLD)
Allows you to create, edit, or delete a routine set.

You should use the following procedure to map a set of routines onto
memory:

l. Determine a set of routines to be grouped together into a routine set that is
to be mapped. Each set is associated with an individual UCI and volume
set. Determine the approximate total size of all the routine sets that you
want to map.

. Reserve space during SYSGEN for routine mapping based on the total
amount of space for all the routine sets that you want to map.

. Use the Routine Set Management utility (“RMBLD) to name and set up a

list of routines to be included in a routine set. Set up the routine set
carefully since you cannot unload the routine set with a utility once it is
loaded. You must reboot the system to unload a routine set. You can

disable access to an individual routine or to a routine set; however, you

cannot reenable access to an individual routine.

. Use the Routine Set Loading utility ((RMLOAD) to actually load your
routine set.

. Use the Display Loaded Routine Sets utility (“RMSHO) to see what routine
sets have been loaded.

Use the Disable/Enable Routine Mapping utility (“RMDIS) to disable
access to a routine or routine set. You can reenable access to a routine set,

but not to an individual routine.

You cannot unload a routine set with a utility (you must reboot the system)
because there is no complete way to judge whether an individual routine is
being used at a given time. If you unload a routine set while someone is using
the routine, you can cause a wide variety of problems.

Generating DSM-11

10.7.6.1 Disable/Enable Routine Mapping Utility (“RMDIS) — The following is
an example of the Disable/Enable Routine Mapping utility, option 1 of
A
RMAP.

EXAMPLE

EnablesDisable Mapped routines and sets

Enter the ROUTINE SET name > SSTEST

Routine set, SSTEST, exists for for JSS, SYS - currently enabled

DISABLE the entire ROWTINE SET (Yor N] 2?) 1

SSTEST disabled

The previous example disables the routine set SSTEST. If you want to disable
One routine only you would answer N to the question about disabling the
entire routine set. The utility then asks you for the name of the routine in the
routine set that you want disabled. Remember that if you disable a routine you
cannot reenable it; you can reenable a routine set after it has been enabled.

The following example shows how to reenable a routine set.

EXAMPLE

EnablesDisable Mapped routines and sets

Enter the ROUTINE SET name > SSTEST

Routine set, SSTEST, exists for far JSS, SYS - currently disabled

ENABLE Mapping of this ROUTINE SET [Yor N] ?)>*

Routine Set for J$S,$75 is enabled.

10.7.6.2 Display Loaded Routine Sets Utility (“RMSHO) — The following is an
example of the Display Loaded Routine Sets utility, option 2 of the ~“RMAP
menu:

EXAMPLE

The following routines are mapped into memory:

Routines Mapped for UCI and Volume Set: DEB,SYS

CONTROL CPUTIM DELTIM11 GSTATS JSTART LABELS

TEST TIMCPU = TIME4 ATEST

Rautines Mapped for UCI and Valume Set: BOB,SYS

TEST TESTS wkYZ KY22Y 222

Generating DSM-11 10-37

10-38

This routine lists all routine sets that are mapped onto memory. In this case
there 1s the one set that was loaded in the preceding example, and another set
that was loaded at an earlier time. Type a carriage return to exit from this
routine and return to the “RMAP menu.

10.7.6.3 Routine Set Loading Utility (4 RMLOAD) —The following is an

example of the Routine Set Loading utility, option 3 of the “RMAP menu:

EXAMPLE

Load a Rautine Set Into Memory

Enter the ROUTINE SET name > TEST

Laading Mapped Routine set: TEST

CUNTROL CPUTIM DELTIM11 GSTATS JSTART LABELS

TEST TIMCFU = TIME1 ATEST

Type a carriage return to exit from this routine and return to the “RMAP
menu.

10.7.6.4 Routine Set Management Utility (“RMBLD) —The following is an
example of the Routine Set Management utility, option 4 of ‘RMAP:

EXAMPLE

Enter the ROUTINE SET name) TEST

This name is used in all future references to specify this routine set. The name
can not exceed 10 characters.

Enter the UCI name in which the routines reside (MGR) DER

Enter the VOLUME SET name in which the routines reside (S'S)

Enter rautine names ta add or delete

Routine s) ?) *

By typing an asterisk (*) in this example, all routines in DEB have been
chosen. You can answer this question with:

e A routine name

e nam* for all routines beginning with the letters nam

¢ naml to nam2 for all routines in the range from nam1 to nam2 inclusive

Generating DSM-11

* to select all routines

- followed by any of the preceding to deselect routines which have been
selected

e “L to list the selected routines

e “D to list all routines in the reference UCI

e ’ to terminate without selection

e ’R to repeat the previous set of routines

A

Reutinets) ?> L

ALL CONTROL CPUTIM DELTIM11 GSTATS JSTART LABELS

TEST TIMCPU TIME1 TIME? ATEST

This is a list of all of the selected routines. In the next question, the user
deletes two of the routines.

Routinecs) ? > -ALL

Routine(s) ? >) -TIME2

Rautine(s) ? >) RET:

18 routines included in MAFFED ROWTINE SET: TEST

Enter the ROUTINE SET name)

You can create another routine set, or type a to return to the “RMAP

menu.

10.7.7 Tied Terminal Table Generation Questions (“TTTG)

In DSM-11, you can link or “tie” a terminal directly to a specified routine.
When you tie a terminal, you restrict that terminal to running routines that are
directly called by the original routine. Note that you can specify a routine for
multiple terminals, but you can only tie a terminal to a single routine. You can
specify a total of seven routines.

In order to set up a tied terminal, you must first establish a routine that runs
when a user logs in that terminal. The name of this routine must be two

Generating DSM-11 10-39

10-40

characters in length. You then establish a table of tied terminal routines by
using “TTTG.

You do not actually assign terminals to routines with “TTTG, you make this
assignment by using the Device Characteristics utility, “MUX. In the column
for routine numbers you can enter a routine number that corresponds to a
routine in the Tied Terminal Table established by “TTTG. For more informa-
tion on the Device Characteristics utility, MUX, see Section 10.7.1.

EXAMPLE:

>D “TITG

Enter the name of the configuration you wish to alter (11744) ?

Configuration "11744" is running now. If you continue,

both memory and disk will be modified.

Are you sure you want to proceed? (NO) ¥

HHEKKEXT Td Terminal Table Generation **#*##*##*

Tied terminal table for configuration "11744" :

ROUTINE # VOLUME SET UCI # PARTITION SIZE ROUTINE NAME

NUMBER C1 KB INCREMENTS)

1 SQ 1 8 TT

RET

If there are already tied terminal routines, the utility prints them out as a
table. Note that you must establish a partition size that will be assigned at log-
in time for the tied terminal routines. If you wish to see the table alone, run
the utility, ‘TTTSHO.

Terminate by responding with (CR) to routine number question

Create or edit a table entry:

Routine Number) 2

Volume Set Number) sa

UCI Number> 4

You can indicate a routine in a different volume set from the one that you are
currently in. For example, S1 indicates Volume Set 1. The default is for
Volume Set 0, which is listed as SO.

Partition Size)16

¢ character routine name) yy

Generating DSM-11

The partition size is in 1K-byte increments. The routine name must be a 2-
character routine name.

Routine Number) RET

Flease enter your initials >) BAS

Enter comment (max. 28@ chars.)) TEST RUN

10.7.8 UCI Translation Table (SUCITRAN)

The UCI Translation Table is a means of accessing a global in another volume
set or system. For more information on this table and using the ‘\UCITRAN
utility, see Chapter 17.

Generating DSM-11 10-41

Chapter 11

Operating and Maintaining DSM-11

This chapter describes the procedures for starting, restarting, backing up, and
shutting down a DSM-11 system. The system utilities discussed in this section
are:

Utility Routine Name

System Start-up ‘STU

Define Start-up Parameters “STUBLD

Disk Backup “BACKUP

Disk Restore ‘REST

Autopatch ‘SAUPAT

System Shutdown SSD

11.1 System Start-up (“STU and “STUBLD)

When you boot your DSM-11 system, the System Start-up routine, “STU,
automatically begins execution. The purpose of this routine is to:

e Establish the system date and time

e Enable the hardware and software features of a defined configuration

Operating and Maintaining DSM-11 11-1

11-2

e Mount all of the disks in your data base

e Enable the start-up of DSM-11 background jobs

Before starting your DSM-11 system, you must always enter the date and time.
The format for both the date and time is displayed on the console terminal.
After you have entered the date and time, DSM-11 asks you whether you want
to run the default system. Typically, you start up DSM-11 in default mode
using the start-up parameters that you have already defined.

If you choose not to run the default configuration, the System Start-up
routine asks you a series of questions that define the run-time environment of
the configuration. During the start-up session, you can choose to have your
responses become the new default start-up parameters. Note that you are
allowed to specify one set of start-up parameters for each DSM-11 SYSGEN
configuration.

You can establish or define a set of default start-up parameters (to be used
during the next system startup) once the system has been started. This can be
done by using the Define Start-up Parameters utility, “STUBLD.

An example of “STUBLD follows:

A

> Do STUBLD

Kegin defining a new startup command file.

Configuration ? <TEST>

Apply patches toa memory ['/N] ? (N)

Answer Y to apply patches on the system disk to memory. See Section 11.3 for
more information on patches.

Start up the Journal [''/N] ? (N)

Answer Y to start up journaling. See Chapter 16 for more information on
journaling.

Enable the Spaonl device (device 2) ['/N] ? (N)

The spooling device stores output temporarily before printing. See Section 6.7
for more information on spooling.

Start the Caretaker background job [Y/N] ? ¢Y)

See Section 12.2 for more information on the system caretaker and logging of
error messages.

Install LOADABLE DRIVERS on start-up [Y or NJ ? (ND

Operating and Maintaining DSM-11

If you have chosen loadable driver support (TUS8, RX02, or BISYNC) during
system generation, you are asked this question. If you answer yes, you are

then asked if you want to load a particular driver. See Section 10.4.7 for more
information on loadable drivers, and the DSM-11] BISYNC Programmer’s
Guide for more information on the BISYNC driver.

Enter printer number for system errar messages (1)

Automatic lagging of DSM errars [CY¥/N] ? <N>

Load Mapped Routine Sets on Startup [CY or NJ] (ND 4

Load Routine Set DEB (Y or NJ ? > ¥

Load Routine Set NEW CY or N] ? ON

If you answer Y to the preceding questions you load the indicated routine set
into memory. You must have previously chosen routine mapping support
during system generation, and must have previously created the routine sets
you want to map. See Sections 10.4.7, 10.7.6, and 15.1 for more information
on routine mapping.

Mount additional disk volumes [Y or NJ ? (D4

Enter the disk mounting information. Type ? for help

DISK DATA BASE LABEL/VOLUME

UNIT VOLUME SET SET NAME

DKa " JHM

Dra " JSs

This questions asks if you want to mount additional disk volume sets. See
Section 13.2, 13.3, or 14.7 for additional information on disk volume sets.

Make this the new start-up command file for configuration TEST [Y/N] ? (4)

This start-up command file now becomes the default start-up file for this
configuration. The start-up command file only affects the configuration it is
created for - in this case - the configuration TEST. When using “STUBLD, the
parameters and options that you chose in the start-up command file only come

into effect after you reboot the system and start up the configuration.

11.2 Preserving System Integrity

As System Manager of a DSM-11 installation, you should be concerned with
the possibility of data loss caused by power failures, by system crashes, or by
other unpredictable events. By devising backup strategies that use backup
disks and journaling, you can minimize data loss. DSM-11 allows you to
perform two kinds of backup: physical backup and logical backup. The
following sections describe each type of backup you can perform.

Operating and Maintaining DSM-11 11-3

11.2.1 Concept Of Physical Backup (“BACKUP And “REST)

Physical backup allows you, the System Manager, to save the contents of a

DSM-11 system. The system utilities that you can use to save and restore your

data base are Disk Backup, ‘BACKUP, and Disk Restore, ‘REST. You can

use the Disk Backup utility to do a scheduled, unattended backup, as well as
other kinds of backup. These utilities can be accessed directly or through the
SYSTEM UTILITIES menu (“SYS).

11.2.2 Concept Of Logical Backup

Logical backup allows you to save specified routines and globals that are listed
in the directory of a particular UCI. Any DSM-11 user can perform a logical
backup with the following library utilities: Routine Save (“%RS), Routine
Restore (Y% RR), Global Save (%GTO), and Global Restore (%GTI). These
routines are described in Chapter 7. You should be aware that the Routine
Save and the Global Save library utilities do not save the system image or the

physical disk data structure.

11.2.3 Concept Of Journaling

The journal procedure allows you to record each update you make to your
global data base. The journal procedure automatically records new global
update data, in the form of a transaction history, on disk or magnetic tape.
This occurs each time you issue a SET or KILL command to a global that you
previously selected to be journaled. Chapter 16 contains a description of the
journal procedure and its related utilities.

11.3 Applying Patches to DSM-11

11-4

Some DSM-11 Software Dispatch articles specify patches to the DSM-11
system. These are the only patches supported by Digital. Those patches
marked "“M” in the upper right hand corner are mandatory, and must be
applied to your system if you are to be supported properly. All other patches
are optional, and may be applied at your discretion. The two types of patches
that may be required are patches to DSM-11 utilities (UTILITY) and patches
to the DSM-11 operating system (SYSTEM). These two types of patches

require quite different patching techniques, detailed below.

Operating and Maintaining DSM-11

11.3.1 Utility Patching

Most patches involve changes to system and library utility routines. These

UTILITY patches are presented in Software Dispatch articles in a form

convenient for your application using the "<a" editor supplied with DSM-11
(also referred to as the DSM-11 editor).

The patching procedure assumes that you have loaded the routine, using
ZLOAD, into a partition of at least 8K bytes, the minimum size for running
all DSM-11 system utilities. Occasionally, you are asked to use a larger

partition; this is because the ‘ editor itself requires up to 1200 bytes of
memory for editing routine lines, and will overflow the partition when you are
editing a large routine. In those cases, a 9K byte partition is required.

When a UTILITY patch changes an existing routine line, the Software

Dispatch article shows the change exactly as you would type it using the \ 0%
editor. The characters you are to type are underlined.

When a patch requires that a new line or lines be inserted into a routine, you
have three possible means at your disposal. The simplest method is to use the
ZPRINT command in Programmer Mode to print the routine line that the new
line(s) are to follow. You can then simply type the new line(s) exactly as they
are to appear in the routine.

The second method is to use the ZINSERT command, again in Programmer
Mode.

The third method is to use the alternate “%EDI editor. In fact, you can use
the “%EDI editor for all your editing. Keep in mind that the “%EDI editor
requires up to 2K bytes of memory for working space. That means you might

need a 10K-byte partition to edit an 8K-byte routine.

Regardless of which editor you use, do not forget to save the routine when you
are done. An argumentless ZSAVE command saves the routine under the same
name you used to ZLOAD it, eliminating the possibility of typing the routine
name incorrectly and accidentally erasing some other routine with a similar
name.

11.3.2 System Patching (“AUPAT)

DSM-11 is supplied with a system utility routine for creating and applying
operating system patches. This routine can be invoked either through the

Operating and Maintaining DSM-11 11-5

11-6

SYSTEM ROUTINES (MISC) option of the SYSTEM UTILITIES menu
(SYS) or directly by typing:

»D “ALIFAT

SYSTEM patching should be done in three stages.

1. Type the patch into the system, using the CREATE option of ‘AUPAT.

When you create system patches, you should number the patch with the
Software Dispatch article number from the upper right-hand corner of the

article. Do not include the alphabetic flag, just the numbers N.N.N. Some
system patches in Dispatch articles may include comment fields to the right
of the patch data; these are for information only and are not part of the
patch.

2. Apply the patch to memory only. Then, run your system for a period of
time that assures you that the patch produces no undesirable side effects
peculiar to your system. The start-up routine has a built-in feature that

allows you to reapply patches each time the system is booted, so that you
can conveniently run with memory-only patches for as long as you wish.

3. Apply the patch to the disk image of the system. After you have applied a
patch to disk, all future bootstrap load operations will load the patched
system. In other words, the patch is permanent.

Some operating system patches may involve changes to parts of the code

required for actually performing the application of patches. This includes
changes to the job scheduler and parts of the interpreter. This small class of
patches must be patched to disk only, since a system crash might result from

patching to memory in a run time environment. When a patch of this nature
appears in the Software Dispatch, you are be instructed to apply the patch to
disk only. You must reboot your system in order to run with patches applied
to disk only.

The following is an example of “AUPAT. Note that, at the end of the routine,
you should use the up arrow (‘) in response to the routine questions. This
causes you to exit from the routine.

»D *ALIFAT

Specify one of the following:

1. Maintain patches

2. Apply to memary patches not already applied to disk

3. Apply ta memory and disk patches nat already applied to disk

4. Apply ta memory and disk all existing patches

Enter the number of your choice > 1

Maintain patches

1. CREATE

2. DELETE

Operating and Maintaining DSM-11

3. EDIT

4. LIST

Enter one of the above options) 1

Patch number ? > 1.9.1

Patch date [DD-MMM-YY] ? >) 10-AFR-81

Patch title ? >) SUPPRESS BREAKPOINT AT COLD START

Now you can start to enter your patch data

Module Name ? >) EDBTAR

Address Offset ? > 2232

Old contents ? > 3

New contents ?) 244

Address affset = 2232

Uld contents? > *

Address offset ?) 3836

Old contents ? >) 3015

Address offset = 3036

Old contents ?) ~

Address offset ?) °

Module name?) ~

Patch number ?) ~

11.4 System Shutdown (‘SSD)

You can use the System Shutdown utility routine (“SSD) to bring the system to
the point where the processor can be halted so that you can perform various
hardware and software maintenance tasks, or to bring up a different DSM-11
configuration. This routine checks to see that all outstanding data base writes
and the system Garbage Collector have finished. The utility can be accessed

Operating and Maintaining DSM-11 11-7

through the SYSTEMS ROUTINES (MISC) option of the SYSTEM
UTILITIES menu (SYS), or by typing:

» Do “SSD

All terminal users should log out before performing a system shutdown. You
can request a delayed shutdown so that system users are both notified of the
impending shutdown and given time to finish what they are doing.

CAUTION
Halting the system without performing the Shutdown routine results
in the loss of all partition resident data, and can leave the data base

in an inconsistent condition.

11-8 Operating and Maintaining DSM-11

Chapter 12

Using the DSM-11 System Utilities

This chapter describes the DSM-11 system utilities.

12.1 Introduction to the System Utilities

The DSM-11 system utilities are a group of privileged-access routines, availa-
ble only to the System Manager or other users who have access to the

manager’s UCI (UCI #1). These routines are used for day-to-day maintenance
and modification of the DSM-11 operating system.

The DSM-11 system utilities are divided into the following categories:

e Caretaker

e Disk maintenance

e Journal

e Sequential disk

e Spooling

e System definition

e System reports

e Miscellaneous system routines

Using the DSM-11 System Utilities 12-1

12-2

These categories are presented as options in the SYSTEM UTILITIES menu.
Section 12.1.1 explains how to access this menu.

The utilities listed under the JOURNAL menu are discussed in a separate
chapter on journaling, Chapter 16.

Utilities listed under the SYSTEM DEFINITION menu are discussed in
Chapter 10 and Chapter 11, except for two of the utilities. These two are

Global Growth Area (“DGAM) and Global Placement (“GLBPLACE), which
are described in Section 13.6.3.

All system utility routines are stored in the manager’s UCI (UCI #1), and are
listed in the routine directory of the manager’s UCI. Several undocumented
system and library utility routines are also listed in this directory. These
routines are subroutines used by other system and library utilities, or they are
utility routines that help tailor the DSM-11 operating system. Although
privileged users can modify all utilities, the utilities should not be modified
without a thorough understanding of the DSM-11 internal structures.

12.1.1 Running The System Utilities

System utility start-up procedures are the same as those used by the library
utilities (refer to Section 7.1.1). However, the initial response to:

YD “ZUTL

when issued from the manager’s account allows you to select both the system
and library utilities.

You can access the SYSTEM UTILITIES menu directly by typing:

D “Sis

The conventions used for the system utility package are the same as those used
for the library utility package. The most important convention to remember is
that typing a question mark (?) provides a list of valid responses to any
prompt. Typing only a carriage return or a “ backs up the menu one level
(unless the carriage return is recognized by that prompt as a default). This in
effect provides an exit from a utility if you do not choose to run the utility
after receiving the first prompt. This also provides an exit from some utilities
that are structured so that they return to the first prompt after you have run
the utility.

Using the DSM-11 System Utilities

12.1.2 Stopping The System Utilities

The best way to stop a system utility is by typing the application interrupt key

(ctRtvc)), if that key is enabled by the utility. If the utility does not allow

interruption by ccrrAt7vo, there is probably a good reason, such as the utility

using the VIEW buffer.

You can also stop a system utility by typing a cctatzy. However, if you stop a

routine with cctTRLt zy while processing data or while I/O is in progress, you
can lose data, corrupt data bases, and/or hang devices if output is pending. In
any case, the utility cannot be restarted from the point of termination. You
must reaccess the utility through the menu-driver.

Many of the system utilities use the VIEW buffer. If you stop a utility while it
is using the VIEW buffer, the VIEW buffer may remain OPEN, which
prevents other users from accessing the VIEW buffer. You should issue a
CLOSE 63 if you interrupt a utility with a cTROTY.

12.2 Caretaker Utilities (“(CARE)

The caretaker utilities are accessed through the SYSTEM UTILITIES menu
(“SYS). The CARETAKER menu can be accessed directly by typing:

YD “CARE

These utilities manage the system caretaker job and the system error log for
both hardware and software errors.

Most of the options in this menu must be accessed through the CARETAKER
menu. They cannot be accessed directly through the routine name.

Utility Routine Name

Start System Caretaker -

Stop System Caretaker -

Print Hardware Error Log ‘KTR

Erase Hardware Error Log -

Change Error Printer -

Print Disk Error Summary “SDSKTRACK

Software Error Log %ER

Using the DSM-11 System Utilities 12-3

12-4

12.2.1 Start System Caretaker

Starts the caretaker job. This job has three functions:

e It monitors the status of the output-only printers and the system disk. If a
printer or the system disk goes off line, a message is printed on the
designated error printer, usually the console terminal. A write-locked system
disk is also reported this way.

e The caretaker job records other types of disk errors, as well as magnetic
tape drive errors, in the “SYS global.

e The caretaker can optionally log software errors in routines that have $ZT
set to the “%ET routine. Section 4.10.3 provides more information on the
‘WET routine in the context of error processing and error trapping. This
optional software error-logging procedure requires the JOBCOM system
feature (selectable during system generation), and a designated JOBCOM

channel, which you specify at start-up when specifying the start-up parame-
ters, (“STU), or when building a default start-up parameter file
(“STUBLD). See Section 11.1 for more discussion of these utilities.

12.2.2 Stop System Caretaker

Stops the caretaker job. The system status will no longer be monitored; the
system operator will not be notified of any special conditions; and errors will

no longer be recorded.

12.2.3 Print Hardware Error Log (“KTR)

Prints a list of hardware errors.

12.2.4 Erase Hardware Error Log

Purges the “SYS global of obsolete hardware error information. The purging
is done by date.

Using the DSM-11 System Utilities

12.2.5 Change Error Printer

Changes the error printer. The printer is changed in memory only; it is not
changed on the system disk. If you shut down the system and Start it up again,
the error printer is the one indicated in the start-up command file, not the one
you indicated with the Change Error Printer utility. To change the start-up
specification for the error printer, use STU, the System Start-up utility, or
Define System Start-up Parameters, ‘STUBLD. See Section 11.1 for more
discussion of these utilities.

12.2.6 Print Disk Error Summary

Lists disk errors. This report collates logged disk errors by disk drive and
read/write head. In this way, problems with read/write heads can be detected

before the heads fail completely.

12.2.7 Software Error Log (%ER)

Use routine %ER to show software errors, or to reload the symbol table and

the routine where a particular error occurred.

12.3 Disk Maintenance Utilities

These utilities can be accessed through the SYSTEM UTILITIES menu

(‘SYS). The utilities listed on the menu are as follows:

Using the DSM-11 System Utilities 12-5

Utility Routine Name

Backup “BACKUP

Bad Blocks ‘BBTAB

Dismount ‘DISMOUNT

Format/Initialize, or
New Disk ‘DISKPREP

Label ‘LABEL

Mount “MOUNT

Restore ‘REST

These utilities are described in the following sections.

12.3.1 Disk Backup (“BACKUP)

Backs up an existing DSM-structured disk to another device to be restored
later with Disk Restore (REST). Use this utility to back up the system.
Section 11.2 on preserving system integrity discusses backing up the system.

12.3.2 Disk Bad Blocks (“BBTAB)

Displays the contents of a disk’s Bad Block Table. You can also use the utility
to add newly discovered bad blocks to the disk’s Bad Block Table.

12.3.3 Disk Dismount (“DISMOUNT)

Dismounts a disk volume or volume set.

12-6 Using the DSM-11 System Utilities

12.3.4 Disk Format/Initialize (“DISKPREP)

This utility initializes a new disk as a DSM-11 disk. This utility can also
"format” RKO5 and RP04/05/06 disks to establish sector header information
used by the disk hardware controller. The NEW DISK option of the DISK
MAINTENANCE menu also uses this utility.

12.3.5 Disk Label (“LABEL)

Labels a DSM-11 disk with a Master/Backup label.

12.3.6 Disk Mount (MOUNT)

Mounts a disk volume or volume set.

12.3.7 Disk Restore (“REST)

Restores a backed-up copy of a disk. Use this utility to restore the system disk
if it was backed up using Disk Backup (‘BACKUP).

12.4 Sequential Disk Processor Utility (“SDP)

The Sequential Disk Processor (SDP) is used to access reserved areas of the

disk for sequential-access or random-access storage of information. The SDP
utility can be accessed as an option through the SYSTEM UTILITIES menu
(SYS), or directly by typing:

»D “SDF

You can use this utility to allocate SDP space on a disk, to deallocate SDP

Space (return it to “free” space), or to display the currently mounted SDP
space.

More information on SDP and how to use it to read or write onto SDP space
on a disk 1s available in Section 6.4.

Using the DSM-11 System Utilities 12-7

12.5 Spool Utilities

The Spooling Device is a file-structured mechanism used for temporary
storage of information. The Spool utilities aid in the use of the Spooling
Device. These utilities can be accessed through the SYSTEM UTILITIES
(‘SYS) menu or by typing:

A

> DO SPL

Section 6.7 gives more information on the Spooling Device.

Utility Routine Name

Allocate Spool Space ASPLALL

Deallocate Spool Space ‘SPLREM

Display Spool File Structure ‘SPLSTR

Initialize Spool Space ‘SPLINI

Start Despooler Lister DSON“SPL

Start Spooler SPON“SPL

Stop Despooler DSOF“SPL

Stop Spooler SPOF“SPL

12.5.1 Allocate Spool Space (“SPLALL)

Reserves disk space for the Spooling Device to use.

12.5.2 Deallocate Spool Space (“SPLREM)

Returns disk space reserved for spooling to the system.

12-8 Using the DSM-11 System Utilities

12.5.3 Display Spool File Structure (“SPLSTR)

Displays the spool file structure.

12.5.4 Initialize Spool Space (“SPLINI)

Deletes all presently defined spool files from your allocated spool space on the
disk. The entire spool space that you have allocated for spooling is now

available for new spool files.

12.5.5 Start Despooler Lister (DSON“SPL)

Starts a job that lists the spooled output on the default output spool device.

12.5.6 Start Spooler (SPON“SPL)

Enables spooling. If you use device #2 or the default output spool device, the
output is sent to your allocated spool space on the disk.

12.5.7 Stop Despooler (DSOF“SPL)

Stops the despooler job.

12.5.8 Stop Spooler (SPOF’SPL)

Disables the spooling function.

Using the DSM-11 System Utilities 12-9

12.6 System Reports

12-10

These utilities can be accessed through the SYSTEM UTILITIES menu
(SYS). Four major categories of reports are:

e Disk Reports

e Performance Statistics

e Status

e Tables

These reports are described in the following sections.

12.6.1 Disk Reports

These utilities can be accessed through the SYSTEM UTILITIES menu
(‘SYS). These reports give information on the physical structure of the disk.
The report utilities are:

Utilities Routine Name

Block Dump “BLDMP

Disk Block Tally “DBT

Fast Disk Block Tally ‘FASTDBT

Integrity Check ‘IC

12.6.1.1 Block Dump (“BLDMP) — Provides a dump of a given disk block. You
can specify block numbers relative to a disk or a volume set, or DSM-11 block
numbers (sequential block numbers beginning with block 0 of Volume Set 0).

12.6.1.2 Disk Block Tally (“DBT) — Provides a summary of disk usage showing
allocated and free blocks. For allocated blocks, it reports the number allocated
to SDP, spooling, and each UCI.

12.6.1.3 Fast Disk Block Tally (“FASTDBT) —Produces a short DBT report
which includes how much space is left on a volume set.

12.6.1.4 Integrity Check (IC) — Checks the integrity of the logical and physical
structure of a data base, such as a disk. This utility is designed to be used with
the Data Base Repair utility, AFIX,

Using the DSM-11 System Utilities

12.6.2 Performance Statistics (“RTHIST)

With this utility, you can gather statistics on how system resources are being

used while users are on the system. This includes information on routine and
global utilization. This information can be used to identify performance
bottlenecks in the system and to indicate ways to improve overall system
performance. See Section 15.4 for more information on this utility.

12.6.3 System Status

These utilities can be accessed through the SYSTEM UTILITIES menu
(“SYS). They provide status information on specific elements of the system.

Utility Routine Name

Job Monitor ‘JOB

Switch Register “SWREG

System Status ‘STA

Terminal DDB ‘DDR

Line Map Report ‘LMAP

Active Job Report ‘ACTJOB

12.6.3.1 Job Monitor (“%JOB) — Monitors the output buffer of another job.

12.6.3.2 Switch Register (“SWREG) — Displays the contents of the software
switch registers. See Appendix F for more information on the switch registers.

12.6.3.3 System Status (STA) — Shows the status of the jobs currently
running on the system.

12.6.3.4 Terminal DDB (“DDR) — Displays the device descriptor information
for a terminal.

12.6.3.5 Line Map Report (“LMAP) — Produces a complete table of all terminal
ports on the configuration and their current characteristics.

12.6.3.6 Active Job Report (“ACTJOB) —Produces a list of active jobs on the
system.

Using the DSM-11 System Utilities 12-11

12-12

12.6.4 Table Utilities

These utilities can be accessed through the SYSTEM UTILITIES menu
(SYS). They provide a way of listing the tables.

Utility Routine Name

Device Table ‘DEVTAB

Job Table ‘JOBTAB

Locked Variables ‘LOCKTAB

Partition Table ‘PARTAB

System Table ‘SYSTAB

UCI Table ‘UCITAB

Partition Vector “PARVEC

Volume Set Table ‘oSTRTAB

12.6.4.1 Device Table (“DEVTAB) — Displays the Device Table. This table
specifies which devices are available and which devices are currently being
used. See Section 14.5 for more information.

12.6.4.2 Job Table (“JOBTAB) — Lists the Job Table. This table contains status
about each job currently running on the system. See Section 14.3 for more
information.

12.6.4.3 Locked Variables (“LOCKTAB) — Lists all currently locked variables.
These are local and global variables that have been locked by a particular job
with either the LOCK or ZALLOCATE commands. See Section 14.4 for more
information on the Lock Table. For more information on the LOCK and
ZALLOCATE commands, see the DSM-11 Language Reference Manual.

12.6.4.4 Partition Table (“PARTAB) — Lists the Partition Table. This table
specifies the size and location of each UCI in the system. See Section 14.6 for
more information.

12.6.4.5 System Table (“SYSTAB) — Lists the System Table. This table
specifies system constants and parameters. See Section 14.2 for more
information.

Using the DSM-11 System Utilities

12.6.4.6 UCI Table (‘UCITAB) — Shows the entries in the UCI Table. This table

lists all UCIs in the current volume set, and associated information for each

UCI on the disk location of the global directory, routine directory, and growth
areas. See Section 14.8 for more information.

12.6.4.7 Partition Vector (“PARVEC) — Displays the contents of a job’s
partition vector. The partition vector contains basic information about a
currently running job that is occupying a partition. See Section 14.13 for more
information.

12.6.4.8 Volume Set Table (“%STRTAB) — Shows the Volume Set Table,

which lists currently mounted volume sets, and the volumes within each

volume set. See Section 14.7 for more information.

12.7 Miscellaneous Routines

This group of routines can be accessed through the SYSTEM UTILITIES
menu (SYS).

Utility

Autopatch

Broadcast

Data Base Repair

Peek

Restore Jobs/Devices

Set Date

Set Time

System Shutdown

Distributed Data Base

Processor

Background Job Attacher

Background Job Detacher

Help Text Driver

Magnetic Tape Copy

Routine Name

‘AUPAT

“BCS

FIX

“PEEK

‘RID

‘DAT

“TIM

ASSD

“DDPUTL

SATTACH

“DETACH

‘HELP

STAPECOPY

These utilities are described in the following sections.

Using the DSM-11 System Utilities 12-13

12-14

12.7.1 Autopatch (“AUPAT)

Provides for creation, installation, and removal of system patches. See Section

11.3.2 for more information on system patching.

12.7.2 Broadcast (“BCS)

Sends messages to specified terminals on the system. This could be a planned
system shutdown announcement or some other message.

12.7.3 Data Base Repair (“FIX)

Edits the contents of blocks to repair data base degradation. The utility “FIX
is designed to be used with Integrity Check, AIC, listed in Section 12.6.1.4.

12.7.4 Peek (“PEEK)

Monitors the output buffer of a specified terminal.

12.7.5 Restore Jobs/Devices (“RJD)

Returns specified jobs or devices to the system.

12.7.6 Set Date (“DAT)

Sets the current date.

Using the DSM-11 System Utilities

12.7.7 Set Time (“TIM)

Sets the current time.

12.7.8 System Shutdown (“SSD)

Performs an orderly shutdown of DSM-11 with a specifiable time delay.
System shutdowns are discussed in more detail in Section 11.4.

12.7.9 Distributed Data Base Processor (“DDPUTL)

Allows the setup and control of DDP communications tables and the DDP
configuration.

12.7.10 Background Job Attacher (“ATTACH)

Allows you to attach to a running job.

12.7.11 Background Job Detacher (“DETACH)

Allows you to detach from a terminal a currently running job. The terminal is
freed. The job can be reattached using the ‘ATTACH utility.

12.7.12 Help Text Driver (“HELP)

Provides a complete menu driven help utility for commands, functions,
operators, and device parameters.

Using the DSM-11 System Utilities 12-15

12.7.13 Magnetic Tape Copy (“TAPECOPY)

Copies a tape to another tape drive.

12.8 Other Miscellaneous System Routines

12-16

The other miscellaneous utilities not listed on the menu that are described later

in this section are:

Utility Routine Name

Load a Driver ‘LOAD

Unload a Driver ‘UNLOAD

12.8.1 Load A Driver (“LOAD)

Loads a loadable device driver, such as a TUS8 tape drive, RX02 disk drive, or
Binary Synchronous Communications (BISYNC) driver. See Section 10.4.7
for more information on loadable drivers. You may wish to load a driver only
when the device is needed if you are short on system space. When the utility
prompts for the device, type ? to get a list of the appropriate device driver
codes to use.

12.8.2 Unload A Driver (“UNLOAD)

Unloads a loadable device driver.

Using the DSM-11 System Utilities

Chapter 13

Global Structure and Optimization

This chapter describes the logical and physical structure of globals in detail,
the growth and development of globals, the placement of globals on disks, and
the optimization of the global and data structure.

13.1 Overview of Global Memory-Resident Tables and Disk

Blocks

The global module uses the following to place and locate globals on disk and
to store data records:

Volume Set Table

UCI Table

Storage Allocation Table

Disk Table

Bad Block Table

Directory Blocks

Pointer Blocks

Data Blocks

Global Structure and Optimization 13-1

The tables are discussed in the following paragraphs and in more detail in
Chapter 14. The blocks are discussed later in this chapter.

The Volume Set Table is a memory-resident table that indicates which volume
sets have been defined and are present on the system, and the volumes and
disks contained in the volume set.

All block numbers used by UCIs, globals, and routines are stored as 3-byte
numbers relative to the volume set in the range of 0-16777215. Each disk that
makes up a volume set is assigned block numbers (relative to the volume set) in
volume number order. Block 0 of volume 1 is block 0 of the volume set. Each
volume of the set is made up of a series of 400-block units, called “maps.” If

volume | has 24 maps, the first block of volume 2 is block 9600 (relative to the
volume set).

The UCI Table (User Class Identification Table) is a disk-resident table that is
read into memory when the volume set 1s mounted. On the disk, the UCI table

occupies a full block. Three bytes at location 910, 911, and 912 of the label

block of volume 1 of the volume set point to this table. In memory, offset 2 of

the Volume Set Table entry points to the UCI table. There is one UCI Table
for each volume set. The UCI Table contains information that governs the
allocation of disk space for globals (and routines), on a UCI-by-UCI basis.

The Storage Allocation Table (SAT) is a table constructed in memory when
the volume set is mounted. The SAT shows, for each volume set, all the maps

in the volume set and the maps that have unused blocks. This table is used
during global growth to identify maps where the new growth can occur.

Directory, pointer, and data blocks reside on disk memory. Each block type
stores a different kind of information. The system stores all information
associated with a global on disk in one of these blocks.

The following sections describe disk volumes and DSM-11 volume sets, the

general disk layout of DSM-11, and disk blocks.

13.2 Disk Volumes and Volume Sets

13-2

A volume is usually one disk (containing data), referred to as a disk volume.
The disk volume can be compared to a printed book (that can be thought of as
one volume in a set of books). Thus you can have a set of disk volumes that
make up a volume set of disks.

In versions previous to Version 3 of DSM-11 several disks mounted on one
system can be thought of as one volume set of several disk volumes. With
Version 3 you can have more than one volume set if you so desire. Using
several volume sets can be a way of organizing a very large data base or
handling a large number of users. Each volume set, for instance, can have its
own set of 30 UCIs.

Global Structure and Optimization

A volume set is given a number from 0 to 3, and is referred to as Volume Set 0
(SO), Volume Set 1 (S1), Volume Set 2 (S2), or Volume Set 3 (S3). A volume
set also has a 3-character mnemonic, such as SYS. Volume Set 0 is always the

system volume set and has as its first volume the system disk.

Disk volumes can be accessible both as individual disks and as data base
volume sets. At the lowest level, DSM-11 allows disks to be accessed (using the
VIEW command) as series of 1024-byte blocks relative to the start of the
volume. Each disk drive has a "physical identity” that is described mnemoni-
cally as two letters and a number, for example, "DKO” for RKOS unit 0.

Information can be read off or written onto specific block locations on a disk
by using the VIEW buffer. RKOS, unit 0, block 5 can be read into the VIEW
buffer by the following command:

VIEW 5: "DKA"

The VIEW buffer can be written to RKOS, unit 0, block 5 by:

VIEW -3: "DK"

This technique is used by DSM-11 utilities for such tasks as installing the
DSM-11 system, formatting and initializing disks, and copying disks.

Part of the initialization procedure is a check for “bad” blocks on the disks. A
list of these bad blocks (up to 63 per volume are allowed) is recorded in block
0 of each DSM-11 volume.

A DSM-11 data base volume set is composed of one or more disk volumes
whose block numbers are concatenated into a single stream of up to
16,777,216 blocks. The first block number of the second volume is the highest
block number of the first volume plus one. Once a volume has become part of
a volume set, it must always be mounted when that volume set is mounted.
DSM-11 globals grow within a volume set without regard to disk volume
boundaries.

Each volume set has a single UCI table that can hold up to 30 user classes.

Each UCI is the "root” for both a set of globals and a set of routines. You can
access data in one volume set from a UCI in another volume set, see Section

8.2.2 for the syntax to use.

13.3 In-Memory Support for Disk Volume Sets

Each volume set can have a UCI table for that volume set holding up to 30

UCIs. You can also define single-volume volume sets that have no UCI table.
Such a volume set can be mounted and used for SDP, journaling, or spooling.

When a volume or volume set that has UCIs is mounted, it becomes one of the

four UCI volume sets numbered 0 - 3. The first volume of Volume Set 0 is

Global Structure and Optimization 13-3

always the system disk, from which the system was originally booted. When a
volume set is mounted, block 0 is read from volume 1 of the volume or volume

set; and information from the second half of that block (called the “label”) is
used to begin the procedure of establishing the volume set as a mounted

volume set. Notice that the first half of block 0 must be reserved for a possible
"boot" block.

The following shows the information from the label half of block 0 of volume
1 of each volume set.

Byte Contains

0 Count of bad blocks
1-191 Space for 63 bad blocks (this information on all volumes)
192-299 Not assigned
300,301 Number of maps (this information on all volumes)
392,393 Code Word (same for each volume in set)
394,395 ,396 3-character volume set name (same for each volume in

set)

397 Volume number (from | to 8, ASCII)

(The following information is on volume 1 of the set only.)

398,399,400 Block number of UCI table (low, middle, high)

401 Number of volumes in set (binary number 1-8)
402-443 4 bytes each for volumes]-8:

1 byte disk type code
1 binary controller type (0-7)
2 bytes number of maps on the volume

13.4 General Disk Layout and Terminology

13-4

DSM-11 supports several types of disk drives. Disk types are designated 0 to 7.
(See your Software Product Description for the exact disk types DSM-11
supports.) Each disk type represents a controller that can have multiple drives.

Each drive is called a unit. Units are designated 0 to 7. Each unit has a unique
3-character code. This code is a mnemonic of two letters and a number. For

example, “DKQO” is used for RKOS, unit 0.

This unit code is encoded within the operating system as a single byte, where
bits 5-7 indicate the disk "type.” Table 13-1 shows the current disk types
supported by DSM-11.

Global Structure and Optimization

Number Mnemonic Disk Code

0 DK RKOS

DM RK06,RKO7

2 DR RM02,RM03,RMO05

3 DB RP04,RP05,RP06

4 DL RLO1,RLO2

5 DU RA80,RA60,RA81,
RD51,RX50

6 Unassigned

7 Unassigned

Bits 2-4 indicate the unit number from 0 to 7. Bits 0 and 1 of this byte is
always zero. This byte is the numerical offset from the start of the Disk Table
to the beginning of the drive’s entry.

Disks are partitioned into storage units called maps. Maps, in turn, are
composed of subunits called blocks. Each block is 1024 bytes long. (A DSM-
11 block is composed of two physical disk sectors, each being 512 bytes long.)
A map consists of 400 blocks, numbered 0 to 399. The 400th block (block 399)

of every map is called the "map block”. The map block contains allocation
information about the previous 399 blocks. Figure 13-1 shows the general disk
layout.

Figure 13-1: General Disk Layout

BLOCK NO

0 399 799

GY A A

P p
“yy, 0 1

(UNITS 1-7) MR-S-853-80

13.4.1 DSM-11 Block Layout

Figure 13-2 shows the layout of a typical global DSM-11 block.

Global Structure and Optimization 13-5

Figure 13-2: DSM-11 Block

BYTE
r 0

POINTER/DATA ee
STORAGE AREA
(1014 BYTES) ne

(M) PNTR USED FOR GARBAGE (L) | +1014

COLLECTION (H) | +1016

SYSTEM AREA (M) RIGHT LINK PNTR TO (L) | +1018

BLOCK TYPE NEXT BLOCK (H) | +1020

(BLOCK OFFSET +1022

MR-S-854-80

The fields of a DSM-11 block are:

DATA STORAGE AREA

Bytes 0 through 1013 contain information particular to its block type.

POINTER USED FOR GARBAGE COLLECTION

Bytes 1014 to 1016 contain information used by a DSM-11 background job
called the Garbage Collector . The Garbage Collector returns blocks that have
been deleted from a global structure to the system’s pool of available blocks.
The Garbage Collector gathers deleted blocks in linked chains, called garbage
trees. Bytes 1014 to 1016 point to the next right-linked garbage subtree.

RIGHT-LINKED POINTER TO NEXT BLOCK

This 3-byte field points to the next block whose nodes collate immediately
following the nodes in the current block.

BLOCK TYPE

Byte 1021 indicates the block type. Block types can be one of six kinds. Block
types can also be in a 7-bit or an 8-bit data structure format.

13-6 Global Structure and Optimization

Block Type 7 Bit 8 Bit

Global Directory Block | N/A

Pointer Block 2 130

Bottom-level Pointer Block 4 132

Data Block 8 136

Routine Block 16 144

Block Passed to Garbage 32 160
Collector

BLOCK OFFSET

Bytes 1022 and 1023 indicate how much of the block is filled, and hence point
to the next free byte in the block.

Different block types store different kinds of information. The block types
listed previously contain global and routine file information. Directory blocks
contain the names of all global or routine files within a UCI.

Pointer blocks hold pointers to subtrees of a global.

Depending on the size of a global, there can be one or more levels of pointer
blocks. Bottom-level pointer blocks are the lowest level of pointers in a file.
Bottom-level pointers point to either data blocks, if a global, or routine
blocks, if a routine. Data blocks store all data records associated with a

global. Routine blocks store the lines that belong to a routine.

Appendix B describes the way DSM-11 stores and accesses routine files in
more detail. Figure 13-3 shows the relationship between the various block
types that form the physical layout of a global.

Global Structure and Optimization 13-7

Figure 13-3: Physical Structure of a Global

DIRECTORY f

PN
POI NT ER | ae

pe

DATA LEVEL
MR-S-855-80

13.4.2 Map Blocks

DSM-11 uses map blocks to keep track of which blocks are available for use
and which blocks are in use. A map block is located after every 399 blocks on
the disk. The map block contains allocation information about the previous
399 blocks and itself. Figure 13-4 shows the layout of a map block used by the
system to allocate blocks for globals.

13-8 Global Structure and Optimization

Figure 13-4: Map Block

BLOCK NO. 1

BLOCK NO. 2

DATA BLOCK

DEALLOCATION
rs

INFORMATION

(1 WORD/BLK)

BLOCK NO. 400

\SUNUSED \\

N
177777

PATTERN 052525

FOR DATA

MAP 125252

100001

x

LINGERS
NO. OF FREE BLOCKS

+798

+1006

+1008

+1010

+1012

+1022

MR-S-856-80

The map block defines the status of each block in the map in the following
way. Two bytes are assigned to each block in the map, and a 0, -1, -2, or -3 is
placed in the high and low bytes in one of the following combinations:

BYTE MEANING

HIGH LOW

0 0 The block is a free block (available for use).

-] -1 The block is a system block (a map block or operating
system. code).

-] -3 The Disk Block Tally utility changes every two bytes that
denote a free block 0,0 to this code if there is discrep-
ancy between the number of blocks allocated and the
number of blocks classified as free in bytes 1021 and
1022 of the map block. If this occurs, the system will
not allocate any more blocks in this map.

Global Structure and Optimization 13-9

13-10

>0 >0 This code is used when a block is in use for a global or
routine. The low byte is the UCI number to which the

global belongs. The high byte represents the UCI of the
job that caused the block to be allocated.

In addition to the allocation/deallocation information described above, the

map block contains the following information:

PATTERN FOR DATA MAP

Eight bytes, starting at byte 1006, contain a numerical pattern that defines the
block as a global map block.

NUMBER OF FREE BLOCKS

Two bytes, starting at byte 1022, indicate the number of blocks within the map

that are free blocks, (that is, the number of occurrences of a 0 entry in both

the high and low bytes).

13.4.3 Global Directory Block

Global directory blocks comprise the first level of the global structure that is
stored on disk. The global directory level is actually a sequential file that
consists of right-linked global directory blocks. Each entry in a block requires
8 bytes plus the global name; therefore, each directory block can point to 63
globals, if each name is the full eight characters long. A directory block can
point to as many as 104 names if each name is only one or two characters

each. The first block in the global directory file is pointed to by an entry in the
UCI table.

Figure 13-5 shows the layout of a global directory block.

Global Structure and Optimization

Figure 13-5:

GLOBAL DIR

NODE

STRUCTURE

<

-

Global Directory Block

PROTECTION COLLATING

CODE ORDER

(M) PNTRTONEWGLBL DATA — (L)

(L) PNTR TO GROWTH AREA (H)

(H) FIRST PNTR BLK FOR GLOBAL (M)

ee

a

(M) PNTR TO NXT RIGHT LINKED (L)

BLOCK (H)

BLOCK TYPE

BLOCK OFFSET

The directory block stores entries in the following format:

GLOBAL NAME

_

GLOBAL NAME

1-8 BYTES

SYSTEM

AREA

MR-S-858-80

The first field of a directory entry contains the global name. Each name can
use up to eight bytes of storage. Global names are stored in compacted form
by shifting all bits 1 bit to the left. If the low-order bit is 0, it indicates the end
of the global name.

GLOBAL TYPE

The first byte following the global name defines the global type. It contains:

Bit 0

Bit 1

0 if numeric collating
1 if string collating

0 if 7-bit coded

1 if 8-bit coded

Global Structure and Optimization 13-11

13-12

Bit 2 = 0 not to journal this global
1 to journal this global

PROTECTION CODE

Immediately following the global type is a field that specifies global access
restrictions for each of the fcllowing user classes:

e SYSTEM

e WORLD

¢ GROUP

e USER

Section 4.9.3 describes each user class in detail.

This field is 1 byte long. The system assigns two bits to each class within the
protection byte. Figure 13-6 shows the bit assignments within the protection
code byte.

Figure 13-6: Protection Byte Bit Assignments

7 6 5 4 3 2 1 0 BITS

SYSTEM WORLD GROUP USER CLASS

ee _
—Y

PROTECTION BYTE MR-S-859-80

The two bit combination within each class can be:

High/Low

00 if No Access Privileges

01 if READ Only Privilege

10 if READ/WRITE Only Privilege

11 if READ/WRITE/DELETE Privilege

POINTER TO NEW GLOBAL DATA GROWTH AREA

This 3-byte field stores the block address where the system begins to search for
additional data blocks for a defined global. You can change this address
through the Growth Area utility (“DGAM).

POINTER TO THE FIRST POINTER BLOCK FOR GLOBAL

Global Structure and Optimization

This 3-byte field is the block address of the first pointer block for the global.
This field specifies where the next level of the global structure begins.

The system area of a global directory block specifies, among other things, the
next right-linked block in the directory file. The system area also indicates the

block type. The block type for a global directory block is 1.

NOTE

There is no garbage collection on global directory blocks. After a
directory block has been created, it cannot be removed.

13.4.4 Global Pointer Block

Pointer blocks comprise the intermediate levels of a global tree. Pointer blocks
can be one of 2 types:

e Pointer Blocks

e Bottom-level Pointer Blocks

A global can have many pointer levels. Pointer blocks point to bottom-level
pointer blocks or to other pointer blocks. Bottom-level pointer blocks are
those pointer blocks whose pointers point to data blocks. When a global is
created (by the first SET command), one pointer block and one data block are
created. The pointer block is a bottom-level pointer block, and contains one
pointer (to the data block).

Pointer blocks reference data in related blocks through an identifier called a
global key. A global key is the compression of a global variable name and its
subscripts. (From here on, global keys are referred to simply as keys.) The
system retrieves data records by referencing the appropriate key. Like records,
keys can be variable length. Figure 13-7 illustrates the construction of a
variable length key from a global variable name.

Figure 13-7: A Global Key

*Z_S1_S82..._Sn
ae

NAME SUBSCRIPTS
| J

Vv

KEY MR-S-860-80

Pointer blocks (and data blocks) store keys in “compressed” form, by a
process called key compression . Key compression is accomplished by storing
only the characters necessary to uniquely identify a key. It is a feature of
DSM-11 that helps conserve storage space and increase performance.

Global Structure and Optimization 13-13

Suppose you defined:

“NAME(DATA)
SNAME(DATUM)

The system stores “NAME(DATA) as a full key. However, it compiles and

stores a compressed key out of “NAME(DATUM). The system compiles the
compressed key by omitting the characters it has in common with
SNAME(DATA), which leaves UM. UM is the key stored for
SNAME(DATUM) (along with the number of characters it has in common
with “NAME(DATA), which is called the common character count).

Figure 13-8 shows the layout of a global pointer block.

Figure 13-8: Global Pointer Block

NON COMMON COMMON
CHAR COUNT CHAR COUNT 0

an

NON-COMMON KEY 2

CHARACTERS NON—COMMON
BYTES

J

DATA LENGTH OF DATA

ee
ee

ee ee

a ee

(M) | PNTRUSED FOR GARBAGE (L) | +1014)

COLLECTION (H) +1016

(M) PNTR TO NEXT BLOCK-RIGHT (L) +1018 | SYSTEM
AREA

BLOCK TYPE LINKED (H) +1020

BLOCK OFFSET +1022
“ MR-S-3488-83

Pointer blocks store pointer entries in the following format:

COMMON KEY CHARACTER COUNT

This 1-byte field contains the number of key characters in common with the
key of the previous node.

NONCOMMON KEY CHARACTER COUNT

13-14 Global Structure and Optimization

The following field contains the number of key characters not in common with
the key of the previous node. This field is also 1 byte long.

KEY CHARACTERS

The next n bytes contain the noncommon characters of the global key. The
key is stored as the concatenation of the global name and its subscript. Key
compression occurs at all pointer levels.

POINTER TO NEXT LOWER LEVEL

The following three bytes specify the address of the next level of the global. If
the block is a pointer block, it points to another pointer block or to a data
block.

13.4.5 Global Data Block

Data blocks are the deepest level of the DSM-11 data base and the bottom of
the global tree. Data blocks store all data records associated with a global.
Each data block is pointed to by a bottom-level pointer block. Figure 13-9
illustrates the structure of a global data block.

Global Structure and Optimization 13-15

13-16

Figure 13-9: Global Data Block

i”

NON COMMON COMMON 0

CHAR COUNT CHAR COUNT

NON-COMMON KEY 2)

POINTER J CHARACTERS , NON COMMON

NODE BYTES

y,

(M) PNTR TO NEXT LOWER (L) N
NV

LEVEL (H) N+1

en ee

ee

(M) PNTR USED FOR GARBAGE (L) +1014)

COLLECTION (H) +1016

(M) PNTR TO NEXT BLOCK-RIGHT (L) +1018 SYSTEM
AREA

BLOCK TYPE LINKED (H) +1020

BLOCK OFFSET +1022
/ MR-S-3489-83

Records are stored in data blocks in the following format:

COMMON KEY CHARACTER COUNT

This 1-byte field contains the number of key characters in common with the
key of the previous node.

NONCOMMON KEY CHARACTER COUNT

The following field contains the number of key characters not in common with
the key of the previous node. This field is also 1 byte long.

KEY CHARACTERS

The next m bytes contain the noncommon characters of the global key. The
key is stored in compressed form, and is the same as the key in the block that
pointed to the data block.

LENGTH OF DATA

This 1-byte field indicates the number of characters in the data record that

follows. This number can be between 0 and 255.

Global Structure and Optimization

DATA

Data records are stored in this area. Storage ranges between 0 and 255 bytes.
Individual records are terminated by a -1.

13.5 Global Growth and Development

13.5.1 Global Initialization And Structure

Figure 13-10 shows how DSM-11 initializes a global when you define one
node.

Figure 13-10: Global Initialization

-

GLOBAL NAME
DIRECTORY BLOCK

SE KEY BOTTOM-LEVEL
LEFT-ED ; POINTER BLOCK

KEY = “DATA”
DATA BLOCK

L MR-S-863-80

The sequence of blocks shown in Figure 13-10 is referred to as the left edge of
the global. Globals grow from their left edge, starting at the data level. When
you assign a data value to a node of a global array, the system inserts the
record in a data block according to the collating sequence of its key. As more
nodes are defined, the data level expands horizontally, and is automatically
right linked. As data blocks fill and overflow into the next right-linked data
block, global trees expand vertically and to the right. Data level expansion
forces pointer blocks to adjust themselves so they continually point to the
proper pointer or data blocks. New pointer blocks are automatically right
linked in collating order.

The directory level is a sequential file. Thus, the system appends the directory
entry for a new global to the end of the directory file. (If you do not define the
directory-level node, the global module assigns that node a null value (””)). If
four global names exist in a directory block, the global module places the next

Global Structure and Optimization 13-17

entry in the fifth position and accesses it accordingly. The directory entry
always points to the first pointer block on the left edge of the global.

Figure 13-11 illustrates the relationship between the various block types, keys,
and data records that form a typical global.

Figure 13-11: Typical Global Layout

GLOBAL POINTER BOTTOM LEVEL DATA BLOCKS
DIRECTORY BLOCK POINTER BLOCKS

BLOCK x =DATA
X(1,1) =DATA
X (1,2) =DATA

@

{

X (2,4) =DATA
X (3) =DATA
X (3,1) =DATA

] x ¢/ X (3,8) =DATA
7 X (3,8,1) =DATA

X (2,4) X (4) =DATA
q q

/
X J X (3,8) é X (7,4,3) =DATA

= aa x (3,8) —~ X (7,4,3) >a X (8) =DATA

9 q

X (11) . Xx (11) =DATA
X (11,1) =DATA

X (13,2) 8 X (11,1,2) =DATA
X (17,8) a\ X (11,1,2,3) =DATA

q

1

X (13,2) =DATA
X (13,21) =DATA
X (14) =DATA

q

\

X (17,8) =DATA
X (17,91) =DATA
X (18) =DATA

MR-S-864-80

13-18 Global Structure and Optimization

13.5.2 Global Levels And Disk Access

The number of levels a global generates depends on two factors:

1. The amount of data the global stores

2. The degree to which the keys global stores are unique

The latter factor affects the depth of a global because it forces the system to
use more storage space for each key. If keys have mostly unique characters
(when compared to each other), the system gains very little through the use of
key compression.

Nonetheless, a global consisting of a million records typically generates only
three pointer levels: two levels of pointer blocks, and one level of bottom-level

pointer blocks. To generate a global with more than three pointer levels, the
data records have to be consistently large; and their keys must have many
unique values.

After a global generates a level, that level always exists, even if you KILL a
large section of the global. Thus, a global never shrinks vertically, only
horizontally. When you KILL a portion of a global, the system demarks the
region and sends it off to the Garbage Collector so the blocks can be returned
to the free block pool. The nodes that remain are linked together with right-
linked pointers. Yet the global retains its original depth, and the same number
of disk accesses is necessary to retrieve the remaining records at the data level.

To reduce the depth of a multilevel global, you must save it (using the Global
Save utility), KILL the directory entry, then restore the global to the disk. This

procedure reconstructs the global in its most efficient form.

13.5.3 Reserved Disk Space

You can avoid an unexpected data base overflow due to global growth by
reserving disk blocks from each volume set. You are given the opportunity to
do this when building a system (using “SYSGEN).

When you reserve disk blocks, you set aside blocks from the last map to be
used only when every map has no blocks remaining. Each time a reserved
block is used, the job that caused the reserved block to be used is given a
<DKRES> error at the completion of the command that caused the block
allocation. The System Manager must now make new space available (presum-
ably by killing unneeded globals).

Global Structure and Optimization 13-19

Finally, when all reserved blocks are consumed, SET or ZSAVE commands
receive <DBOVF> errors when they cause block allocation attempts. These
errors may indicate that your data base structure is corrupted.

13.5.4 Overflow From One Disk To Another Disk

You can have globals that are larger than one disk volume. Globals naturally
grow to higher numbered blocks within the volume set. You can control the
extent to which data and routines can grow by using the Global Growth Area
utility ((DGAM).

The System Manager’s UCI (UCI #1) can never overflow to another disk
volume. This is necessary to allow the baseline system to run; the baseline

system includes only the system disk. When you are creating additional UCIs,
be sure to leave space for “SYS in UCI 1 to add patches and Caretaker-logged
errors. If the system disk becomes full, and further SET commands are done
for any reason, a <DBOVF> error results.

13.6 Global Optimization Techniques

13-20

This section deals with the aspects of globals that can be controlled and that
can enhance the performance and the ability to maintain a data base applica-
tion if controlled properly.

As a DSM-11 programmer or system manager, you have direct control over
the following aspects of your global files:

e Placement of directory, pointer and data growth areas on disk, and
placement of the new data growth area for individual globals

e Global key structure

e Data record structure

You can also take advantage of the DSM-11 disk cache by clustering accesses
to your data base.

The following sections discuss each of these topics.

Global Structure and Optimization

13.6.1 Optimizing Disk-Cache Usage

The disk cache is a portion of main memory that stores exact copies of disk
blocks. DSM-11 uses the disk cache to minimize physical disk reads and
writes.

Segments of the disk cache are referred to as disk buffers. By using disk
buffers that are sharable among all users, the system need only keep one copy
of any disk block in memory.

DSM-11 allocates disk cache by a least-recently-used algorithm. When the

Global Module requires a disk block not already in memory, it overwrites the
oldest (least-recently-used) disk buffer. Because of this, blocks that are used
frequently (for example, global directory blocks) tend to stay in memory.

Periodically, the system writes all buffers that have been modified to the disk.
This ensures that frequently used data always have an up-to-date image on the
disk.

The use of a disk cache makes modifying data in certain sequences more
efficient. Consider the following example:

Suppose a data base consisted of 20 globals, named A through T. Suppose
further that each global had 1000 nodes whose subscripts were 1 to 1000; that
is, each global had nodes (1), (2), (3)...(1000).

If it were necessary to modify the first 500 nodes of each global in the data
base, the caching algorithm would cause DSM-11 to process the modifications
done in the order shown in Sequence | faster and more efficiently than the
same modifications done in the order shown in Sequence 2:

Sequence 1

Ist Pass 2nd Pass 3rd Pass... 20th Pass

XA(1) ‘B(1) *C(1) ‘T(1)

*A(2) ‘B(2) ‘C(2) \T (2)

*A(3) ‘B(3) *C(3) \T(3)

*A(4) ‘BY4) = *C(4) T(4)

'A(500) *B(500) “*C(500) “T(500)

Global Structure and Optimization 13-21

13-22

Sequence 2

Ist Pass 2nd Pass 3rd Pass... 500th Pass

NA(1) ‘A(2) *A(3) ‘'A(500)

‘B(1) ‘B(2) ‘B(3) ‘B(500)

*C(1) *C(2) *C(3) ‘C(500)

‘D(1) ‘D(2) ‘D(3) ‘D(500)

\T(1) \T (2) \T(3) ‘T (500)

The following improvements in system performance occur by modifying the
data base in the order shown in Sequence I:

1. The system transfers most of the pointer blocks for each global into cache
and keeps them there. This reduces search time and decreases the number
of disk accesses. In Sequence 2, it is likely that a block related to “A, for

example, would be overwritten by the time you wanted to modify it again.

2. The overall number of physical disk writes is reduced, because Sequence 1
concentrates the modification of data to fewer disk buffers over a fixed
period of time.

If you have the most frequently used data.in memory, it can improve
throughput significantly. Most data base applications require far more data
base reads than data base writes; applications of this kind should have as
much cache as possible.

13.6.2 Placing UCIs On The Data Base

When you first create a UCI (using the “UCIADD utility), you have the
opportunity to place the first global directory block anywhere on the disk
volume set. You can also specify the default block addresses for future pointer
and data block allocation. Consider the following aspects of the DSM-11
global structure before choosing values for these block numbers:

e Access to a particular global node usually requires several disk reads at the
directory and pointer levels, but only one read of a data block

Global Structure and Optimization

e Data blocks outnumber pointer blocks by a large factor, often 50 to 1 or
more

Because there are comparatively few pointer blocks, yet more frequent access
to them, you can improve data base efficiency by “bunching” the pointer
blocks together. You can do this most effectively if you can predict, at least
roughly, the total space required for pointer blocks. You can then specify the
pointer growth area separated by enough space from the data growth area so
that the two spaces do not overlap. The pointer area should precede the data
area.

Figure 13-12 shows the allocation of disk storage for two UCIs. It also shows
the UCI Table entries for both, and how they relate to the disk.

Global Structure and Optimization 13-23

Disk Allocation for Two UCIs Figure 13-12

0
8
-
S
9
8
-
S
-
H
W
 S
N
I
D
S
@

H
O
Y
V
S
S

=

(GSODNVHO
38

LONNVD)
ssay¥qaqv

3Ln10SsaVv
e
e
s

-
Q
N
3
9
9
1

a
e

i
S
C

V3HV
HLMOYD

WLVG
189

M3N
S
S

S
O

S
s

—|
Vay

HLMOHD
Y1Nd

189
M3N

[
AYOLO3YIG

1V8019
OL

¥LNd
e
e

—{
VW4HV

HLMOHD
3NILNOY

MAN
AYOLOSYIG

ANILNOY
OL

HLNd
|

|
C
O
N

19N

—_—-—
o
o

rrr
irl

iar
eer

ia e
e
e

7

S
V
S

H
L
M
O
Y
D

V
L
V
d

199
M
S
N

—
S
—
—

e
e

—
—

4

VWIYHV
H
L
M
O
Y
D

Y
L
N
d

199
M
A
N

|
[

A
Y
O
L
I
A
Y
I
C

1
V
E
0
1
9

OL
Y
L
N
d

|
|

A
Y
O
L
O
A
Y
I
G

A
N
I
L
N
O
Y

OL
Y
L
N
d

|
L'ON

ION

| | |
|

|
-——

—

—

—

J

V3YV
HLMOHD

3NILNOY
MAN

| |
daTaVvl

ton

i
y

'
y

VBYV{
sul)

ozon
|

v
a
y

onl.
V28¥]

vaev
con]

v
a
y

m
Y

M
o
s
e
 ye,

[HSLNIOd|
O4NIG

|HLMOYD]
93410)

ouoluainiog
|. 22uIG

[HIMowS|
9a¥ia

7
NaisKs

INILNOYIANI
4
v
a
0
1
9

1¥9019]
1
V
8
0
1
9

JANILNOYANILNOY]
V
G
 -

|
ayqgoqg|

1
¥
9
0
7
9

OYHIANILNOY
f
f

N
0
D
0
7
8

9
0
7
8

Global Structure and Optimization 13-24

Figure 13-13 shows the allocation of the Global Data Growth Area for individ-
ual globals.

Figure 13-13: Global Data Growth Area Allocation for Three Globals

UCI N
GLOBAL DATA GROWTH AREA

2 T

| |

| |
DIRECTORY FOR UCI |

y

N GBLI Topi2 * GBL3
GLOBAL 1 DATA GROWTH ,DATA GROWTH | DATA GROWTH

STARTS HERE {STARTS HERE ! STARTS HERE

PNTR TO NEW GLOBAL |

DATA GROWTHI-

AREA

GLOBAL 2

PNTR TO NEW GLOBAL _|

DATA GROWTH
AREA

GLOBAL 3

PNTR TO NEW GLOBAL

DATAGROWTH[— — — — — — — —
AREA LEGEND:

ee — — ——SEARCH BEGINS
FOR NEW BLOCKS
(CAN BE CHANGED)

MR-S-866-80

Global Structure and Optimization 13-25

13-26

13.6.3 Global Disk Block Allocation (“DGAM And “%GLOMAN)

You can also allocate disk blocks for globals on a disk-by-disk basis rather
than a UCI basis. You can use the following utilities to do this:

¢ Global Growth Area (“DGAM)

¢ Global Management (“%GLOMAN)

13.6.3.1 Global Placement — At the time a UCI is created, two default growth
areas are assigned. The first growth area is reserved for global directory
blocks, global pointer blocks, and routine directory blocks. The second
growth area is for both global and routine data blocks. When a specific global
is created, however, you can override the UCI default growth area for data

blocks using the “%GLOMAN routine. You can also use this routine to place
the first pointer and data blocks of the new global. When you place a global
using “%GLOMAN, the following regime for allocation of new pointer and
data blocks occurs:

¢ Global pointer blocks are assigned starting at the block at which the global
is placed, and continuing to the end of map. When the map has been
exhausted, blocks are assigned from the default area for the UCI.

e Global data blocks are assigned starting at the block at which the global is
placed, and continuing to the end of the map. When the map has been

exhausted, blocks are assigned from that global’s growth area, if you
assigned a growth area using ‘0 GLOMAN. If you did not assign a special

growth area for that global, blocks are assigned from the default data block
growth area for the UCI.

e Assignment of disk blocks for all block types proceeds from lower
numbered blocks to higher numbered blocks, except where noted. This
means that globals should be placed with enough separation to prevent
overlapping.

13.6.3. 2 Controlling Global Growth — You may wish to use Global Manage-
ment (’ %GLOMAN) and Global Growth Area (“ DGAM), together with the
system’s block allocation algorithm, to control as closely as possible the
bunching of disk blocks for a particular global. The following structures are
optimum for globals up to approximately 25 megabytes in size:

e The first pointer block of a global should be placed in the first block of a
map. The pointer area then grows to higher numbered blocks until that map
is filled. One entire map (399 usable blocks) should suffice for a global of at
least 25 megabytes.

Global Structure and Optimization

e The global’s first data block should be placed in the first block of the next
sequential map, and the growth area should also be assigned that same
block.

For globals larger than 25 megabytes, one map is probably not sufficient to

hold the entire pointer structure. In that case, you have no choice but to let the
pointer blocks fall into the UCI default area. You can still control the
placement of the data blocks, however.

Global Structure and Optimization 13-27

Chapter 14

DSM-11 Tables and Memory-Resident Data

Structures

This chapter provides information about the tables and memory-resident
structures of the DSM-11 operating system.

14.1 Introduction

The DSM-11 operating system maintains a number of tables and memory-
resident structures that contain system control and status information. Table
14-1 summarizes the function of the tables and data structures described in
this chapter. Figure 14-1 shows the linkage between the system tables and data
structures described in this chapter.

DSM-11 Tables and Memory-Resident Data Structures 14-1

14-2

Table 14-1: DSM-11 Tables and Memory-Resident Data Structures

Table/Data Structure Function

System Table

Device Table

Volume Set Table

UCI Table

Storage Allocation

Table

Disk Table

Partition Table

Job Table

Lock Table

Device Descriptor

Block

Partition

Specifies system constants and parameters. Holds

pointers to all other tables.

Specifies which devices are "OPENed” and by which job,

and which devices are not present.

Stores the addresses of the associated UCI Table and the

Storage Allocation Table, as well as the number and

type of volumes within the volume set.

Stores UCI codes for currently mounted disks and the

addresses of associated global and routine directories and

growth areas.

Lists all maps within a given volume set and indicates

which maps have unused blocks in them.

Lists all disk drives, indicates whether a disk is mounted

in the drive, and contains a pointer to the associated

Bad Block Table.

Specifies the size and location of each user partition in

the system.

Contains job status information.

Maintains a list of variables that have been locked by the

LOCK command.

Stores device-specific information. Each device in the

system has an associated DDB.

Stores all job-specific information.

DSM-11 Tables and Memory-Resident Data Structures

Figure 14-1: System Linkages

QUEUES

—e| JOB TABLE

re en ___

ABSOLUTE! system TABLE
ADDRESS | POINTER
44

SYSTAB

Ld PARTITION TABLE PARTITION NO.1]
<i

JOBTAB ADDR | SIZE |NO.1
PARTAB DeVyTaB | ADDR | SIZE | NO.2—*] PARTITION NO.2|

BUFTAB : : : :
VSTAB ADDR | SIZE NO.63—ePARTITION NO.63

_ LOCKTAB | E | J

VSTAB ——© DEVICE TABLE

1 JOB NO
UCITAB 0 :

255 JOB 4

UCITAB 1
DEVICE DESCRIPTOR BLOCKS

UCITAB 2 DEVICE |
DEVICE 2
ee

ITAB 3
UC —~» UCI TABLE FOR VOLUME SET 0, 1, 2, OR 3

NAME

. BLOCK NOS
UCI NO 1 :

Le Cd

>| LOCK TABLE |
MEMORY

—>| ROUTINE DIR

ROUTINE GROWTH

GLOBAL DIR

GLOBAL GROWTH

GLOBAL POINTER

PHYSICAL DISK

MR-S-3490-83

All table information is essential for system operation. The System Manager
or programmer can use the data stored in these tables to monitor the state of

DSM-11 Tables and Memory-Resident Data Structures 14-3

the operating system. The VIEW command and $VIEW function allow
privileged users to access and modify table data as required.

NOTE

Modify internal memory (or disk) with extreme caution. Careless
alterations can have unpredictable results on system operation.

Privileged users can use the SYSTEM UTILITIES menu (SYS) to display and
examine certain system tables. These utilities are also listed under Section
12.6.4, except for the Terminal Device Descriptor Block utility (“DDR), which
is described in Section 12.6.3.4. The tables you can examine with these utilities
are:

e System Table

e Job Table

¢ Lock Table

e Device Table

e Partition Table

e UCI Table

e Partition Vector Table

¢ Volume Set Table

System utilities are not available to access the Storage Allocation Table and
the Disk Table.

14.2 System Table (SYSTAB)

The System Table contains the following information:

e System constants

Indicators

Control data

Special buffer addresses

Address pointers to other tables in the system

Errors for magnetic tape or disk

14-4 DSM-11 Tables and Memory-Resident Data Structures

The specific addresses of the other tables in the system and the System Table
itself may change in succeeding versions of the operating system. Thus, access
to system tables should always be made initially through memory location 44
(54 octal). This address always contains the base address of the System Table.

The relative position of the System Table entries is also fixed so that you can
locate all other tables from the base address of SYSTAB. You can obtain the
offset into the System Table for all memory-resident tables with the ‘SYSTAB
dump routine.

Examples:

To obtain the address of the System Table, type:

PWRITE $¥0 44)

To obtain the address of the first entry in the Job Table, type:

SET A=$V044)

WRITE $V¥CA+4)

The "4" is the offset into SYSTAB for the Job Table.

To combine the previous two operations, type:

WRITE VCV0 44944)

14.3 Job Table

The Job Table uses two bytes to specify the status information about each
job running in the system. A “job” as defined by DSM-11 is any user activity
that requires the use of a partition. Thus, logging in to the system initiates a
job. A routine started in another partition with the JOB command is also
called a job.

Immediately preceding the Job Table are the headers for the various job
queues. Each queue contains the number of the next job waiting for a particu-
lar service from the CPU or the executive. Jobs in queues are connected in a
linked list where each entry points to the next entry in the same queue. The
first job number entered in the queue is the first job processed. If a job is not
in a queue, it is in a “hung” state. Hung jobs are waiting for an event to
complete, such as output to a printer.

The maximum number of user jobs that can be in the Job Table is 63. These
jobs are identified by positive integers (1 to 63, inclusive). Note that job
numbers 64 to 127 are reserved for system jobs only. The algorithm for
computing Job Table system addresses for jobs 1 to 63 is:

DSM-11 Tables and Memory-Resident Data Structures 14-5

$JOB = Job Table offset /2

The algorithm for computing the Job Table system addresses for jobs 64 to
127 1s:

$JOB = (Job Table offset + 256)/2

where:

$JOB is the $JOB special variable

Figure 14-2 shows the layout of the Job Table.

Figure 14-2: Job Table

[——S

TOTAL NO. OF NO.OF AVAILABLE

FIXED PARTITIONS | FIXED PARTITIONS

JOB STATUS

JOB STATUS

JOB STATUS

JOB STATUS

te

JOB STATUS

JOB STATUS

SYSTAB
eet et ae

PNTR TO JOBTAB

Po

> QUEUE HEADERS

J

-4 (JOB 126) JOURNAL JOB

-2 (JOB 127) GARBAGE

COLLECTOR JOB

O HEADER

+2 (JOB 1)

+4 (JOB 2)

+6 (JOB 3)

+126 (JOB 63)

MR-S-846-80

As shown, special system jobs are designated by negative offsets from the start
of the Job Table.

14.4 Lock Table

The Lock Table contains a list of all local and global variables that have been
locked with the LOCK or ZALLOCATE command. A variable entered in the
Lock Table by a job cannot be locked by any other job. Like other tables, the

14-6 DSM-11 Tables and Memory-Resident Data Structures

Lock Table has a pointer entry in SYSTAB. The pointer to the base memory
management block number of the Lock Table is in SYSTAB at offset + 64. (A
memory management block number is an absolute physical memory address
divided by 64.)

The pointer to the size entry of the Lock Table is in SYSTAB at offset + 66,

and specifies the number of bytes allocated to the Lock Table. The size of the
Lock Table can be specified at SYSGEN and must be in the range of 64 to
8192 bytes.

Use the utility routine, ‘LOCKTAB, to show the current contents and the

structure of the Lock Table, for example:

DO “LOCKTARB

Contents of Lock Table (1152 bytes allocated)

Mode Job UCI Volume Set Reference

2A 4 JsS $¥S “S

2A 4 Iss = $¥S “D

LOCK 5 JHR s¥s “Y

14.5 Device Table

The Device Table contains entries for each possible I/O device in the system.
The first byte in the table (DEVTAB +0) specifies the number of entries in the
table. The number of devices in the table is equal to the value at DEVTAB
+0. Each following byte specifies an I/O device.

The position of the byte in the Device Table is equivalent to the device
number. For instance, device 63 is at DEVTAB+63. The Device Table
specifies the status of a device in the following way: if the device does not
exist, the contents of the entry is 255; if the device 1s available, the contents of

the entry is 0; otherwise, the entry contains the number, times two, of the job

that owns the device. Figure 14-3 shows the layout of the Device Table.

DSM-11 Tables and Memory-Resident Data Structures 14-7

Figure 14-3: Device Table

SYSTAB
A

PNTR TO DEV TAB

SIZE OF 0

TABLE (BYTES)

ENTRY 1 +1 DEVICE 1

ENTRY 2 +2 DEVICE 2

+3

+4

+5

+6

Eat Ee

ny

ENTRY 255
MR-S-848-80

14.6 Partition Table

The Partition Table specifies the size and base address of each defined
partition in the system, including both fixed partitions and currently running
dynamic partitions. The entries in the Partition Table are set during SYSGEN.
The table consists of two-byte entries. The first entry contains the default
partition size in the low byte (expressed in 1024-byte blocks). This size is 8
(8192 bytes), unless modified at SYSGEN time. The high byte is not used. The
remaining entries in the table specify partition information.

Bits 0 to 3 of a partition entry specify the size of the partition as the number of
1024-byte increments minus 1. Bits 4 to 15 of the partition entry contain the
base address of the partition in 1024-byte multiples. Figure 14-4 shows the
layout of the Partition Table.

14-8 DSM-11 Tables and Memory-Resident Data Structures

Figure 14-4: Partition Table

PARTAB
T

[
|

|
' DEFAULT
| SIZE

15 4 '3 O
BASE ADDR] SIZE

—
—

a
f

«
h
o

p
a

e
e
e

e
t
e

e
e
e

+
.

a

ee

e
e

O
e

e
e

14.7 Volume Set Table

+12

+14

+16

+18

+20

+22

+24

PARTITION

FOR JOB 126

PARTITION FOR JOB 127

HEADER WORD

PARTITION

PARTITION

PARTITION

PARTITION

PARTITION

PARTITION

PARTITION

PARTITION

PARTITION

PARTITION

PARTITION

SYSTAB

PNTR TO PARTAB

PARTITION FOR JOB 1

FOR JOB 2

FOR JOB 3

FOR JOB 4

FOR JOB 5

FOR JOB 6

FOR JOB 7

FOR JOB 8

FOR JOB 9

FOR JOB 10

FOR JOB 11

FOR JOB 12

+126 PARTITION FOR JOB 63

MR-S-3491-83

The Volume Set Table lists the volume sets that are available on the system. A
volume set contains one or more volumes, and is a data base mounted on one

or more disk drives.

DSM-11 Tables and Memory-Resident Data Structures 14-9

SYSTAB + 12 points to the Volume Set Table. SYSTAB + 34 contains the size
(in bytes) of the Volume Set Table entries. The table is limited to four volume
sets.

The Volume Set Table contains:

e The name of the volume set.

The address of the UCI table for each volume set.

The address of the Storage Allocation Table for each volume set.

e The type and unit of each volume within the volume set.

At system start-up, UCI tables are set up for the number of volume sets

specified by the configuration. To print out the Volume Set Table, run

‘OoSTRTAB.

Figure 14-5 shows the Volume Set Table.

Figure 14-5: Volume Set Table

VOLUME SET TABLE 0

UCI TABLE ADDRESS 2

SAT TABLE ADDRESS 4

EITHER: NO. OF VOLUMES + 49152 ;
OR: STARTING MAP IF ONLY ONE VOLUME

SIZE (IN MAPS) OF VOLUME 1 8

SIZE OF VOL. 2(LO BYTE) TYPE/UNIT VOL. 1 10

TYPE/UNIT VOL. 2 SIZE OF VOL. 2(HIBYTE) | 12

MR-S-3492-83

14.8 The UCI Table

Each volume set has an associated UCI (User Class Identification) Table. The
UCI Table specifies all UCIs in the volume set, the disk location of the
associated global and routine directories, and growth area pointers. These
UCIs have contiguous entries in the UCI Table, one for each user class defined
during the SYSGEN procedure. There can be as many as 30 UCIs in each
volume set. The first entry in the table is defined as the system UCI (UCI #1).

14-10 DSM-11 Tables and Memory-Resident Data Structures

The UCI Table is mapped by the address of the second word of the volume set
entry. Each entry in the UCI Table is 20 bytes long and is divided into 8 fields,

as shown in Figure 14-6. These fields define the area of the disk that each user
class uses for the storage of routines and globals.

Figure 14-6 shows the layout of the UCI table. (—~“systan_ |

Figure 14-6: UCI Table | PNTR TO UCITAB

BITS 15 1110 65

| A B C |0] 0 UCINAME

(M) PNTR TO GLOBAL (L)]+2

(H) PNTR (H) DIRECTORY]+4

(M) TO ROUTINE DIRECTORY (L) }+®

NEW GLOBAL DATA GROWTH AREA j{+ 8

GLOBAL POINTER GROWTH AREaj+ 19

NEW ROUTINE GROWTH AREA +12

LAST MAP NUMBER q414

Zz#7 ‘
LIBRARY UCI LLL * MB-S-3493.83

Each entry in the UCI table is 20 bytes long and contains the following
information:

UCI NAME

The UCI name occupies the first two bytes in each table entry. The UCI name
is stored in compacted form (15 bits) as three uppercase ASCII characters.

POINTER TO THE GLOBAL DIRECTORY

The next three bytes contain the block address of the first global directory
block.

POINTER TO THE ROUTINE DIRECTORY

The following three bytes contain the block address of the UCI routine
directory block.

NEW GLOBAL DATA GROWTH AREA

The following two bytes store the map number where the system begins to
search for new global data blocks. You can override this address for a particu-
lar global by using the Growth Area utility ((DGAM).

DSM-11 Tables and Memory-Resident Data Structures 14-11

NEW GLOBAL POINTER GROWTH AREA

The following two bytes in each table entry store the map number where the
system begins to search for new global pointer blocks.

NEW ROUTINE GROWTH AREA

The following two bytes store the map number of the location where the
system begins to search for new blocks to store routine lines.

LAST MAP NUMBER ALLOWED FOR THIS UCI

The following two bytes store the highest map number that this UCI can use.
The next three bytes are unused.

LIBRARY UCI

One byte stores the library UCI for this UCI. If this number is 0, then UCI 1
of Volume Set 0 is the library. The library UCI contains all %oroutines and
%globals that can be accessed by this UCI.

14.9 Storage Allocation Table (SAT)

Each volume set has an in-memory Storage Allocation Table (SAT) to speed
up the search for unused blocks when new data space is required. This table is
a series of bits, each of which represent the status of a map. Each map is a
400-block disk segment. Bits are set for maps that have blocks available. A bit
is set to 0 if the map has no blocks available. Each volume set’s SAT starts
with a one-word count of the total number of maps in the volume set. The
SAT for each mounted volume set is pointed to by the third word of its
Volume Set Table entry.

Storage Allocation Table

Byte Contains

0,1 (word 0) Number of maps in the volume set
2, bit O Set if map 0 has blocks available
2, bit 1 Set if map 1 has blocks available

3, bit 0 Set if map 8 has blocks available

SYSTAB + 394 holds the total number of bytes reserved for SAT space in the
system. Volume Set 0 (the system volume set) SAT space always starts at the
beginning of the reserved space.

14-12 DSM-11 Tables and Memory-Resident Data Structures

Whenever a volume set is dismounted and a gap is created in the SAT space,
the SAT spaces for higher numbered volume sets are moved downward to
leave the largest possible continuous open space.

14.10 Disk Table

The Disk Table describes the size, “mount” status, and Bad Block Table

(BBT) location for each of as many as 64 total disk drives. There are eight
drives for each of the eight possible disk controller types. To print out the
Disk Table, run “DISKMAP

Each drive has two words in the Disk Table in unit number order within its
controller types. The two words are used as follows:

Word Bit Description

0 15 Set to 1 if the drive has a disk mounted for "VIEW only”.

14 Set to 1 if a disk is mounted within a volume set

13-8 Offset, in 64-byte blocks of this disk’s 192-byte Bad Block
Table. The base address, in 64-byte blocks, of the entire bad

block area is at SYSTAB + 86.

7-0 This byte holds a code that identifies the drive code. If no
drive exists, value is 0. If the drive is an RKOS, value is 1. If

the drive is an RKO6, value is 2, and so on.

| Holds the number of maps on the volume. This word is set
whenever the disk is either mounted within a volume set, or

mounted for VIEW only but with a Bad Block Table.

14.11 Bad Block Table (BBTAB)

Each DSM-11 disk volume is allowed up to 63 “bad” blocks that cannot be
accessed because of some physical defect on the disk. These bad blocks are
recorded in a table in block 0 of the volume. This means that block 0 must be

accessible on all DSM-11 disks.

When a DSM-11 system is started up, the disk drives that are part of the
system are each assigned 192 bytes of memory for holding the Bad Block
Table of the disk volume mounted in that drive. An area in memory is
reserved for Bad Block Tables; SYSTAB + 86 is the address of this reserved
area. The Disk Table contains an entry for each drive pointing to the address
of the Bad Block Table (in the reserved Bad Block Table part of memory).

When a disk READ or WRITE request reaches the disk handler, a check is

made to determine whether the requested block number is in the Bad Block

DSM-11 Tables and Memory-Resident Data Structures 14-13

Table for that drive. If it is, a replacement block number is computed as
follows:

map count*400 + BBTAB position

The map count is the number of maps on the volume (also listed in the Disk
Table). Since that block can also be bad, it may be necessary to calculate an
additional replacement block number. This is done by using the same
algorithm, recursively, until a good replacement block is found. The BBTAB
position starts with zero.

14.12 Device Descriptor Block (DDB)

Each device on the system has a Device Description Block (DDB) associated
with it. Each DDB contains information about the device with which it is
associated.

The DDBs for all devices reside in Kernel space in the following order:

1. Single-line terminal-type devices (DL11, DMC11, LP11)

2. Multiplexer terminal-type devices (DH11, DZ11)

3. Magnetic Tape devices

4. In-memory job communication (JOBCOM) devices

5. Journal buffers

6. SDP devices

7. DDP lines

The following lists the offset location in the System Table of the pointers to
the start of the various classes of DDB:

14-14 DSM-11 Tables and Memory-Resident Data Structures

Device Pointer Location

Single-line devices SYSTAB + 10

Multiplexer devices SYSTAB + 20

Magnetic Tape devices SYSTAB+ 22

JOBCOM devices SYSTAB + 358

Journal buffers SYSTAB + 402

SDP devices SYSTAB + 408

DDP lines SYSTAB + 422

The DDBs are contiguous. The end of one class of DDBs is also the start of
the next class of DDBs. For example, SYSTAB + 10 (the pointer to the start of
the single-line devices) actually points to the DDB for device 1, the console
terminal. SYSTAB + 20 (the end of the single-line DDBs) is the pointer to the
first multiplexer (DH11 and DZ11) DDB for device 64.

Figure 14-7 shows the Device Descriptor Block for the terminal-type devices.

DSM-11 Tables and Memory-Resident Data Structures 14-15

14-16

Figure 14-7: Device Descriptor Block for devices 1-19 and 63-191

JSR RO,a(PC)+ (4037) 0

ADDRESS OF INTERRUPT HANDLER 2

DEVICE CSR ADDRESS 4

TERMINAL TYPE CODE INTERFACE TYPE CODE 6

RING BUFFER ADDRESS 8

TIED PROGRAM NUMBER MARGIN VALUE 10

$Y $X 12

DEVICE STATUS LOW WORD ($ZA) 14

CHARACTER IN POINTER INPUT BUFFER SIZE 16

NO OF CHARACTERS IN BUFFER| CHARACTER OUT POINTER 18

CHARACTER IN POINTER OUTPUT BUFFER SIZE 20

NO OF CHARACTERS IN BUFFER] CHARACTER OUT POINTER 22

JOB WAITING FOR OUTPUT JOB WAITING FOR INPUT 24

MODEM CSR ADDRESS 6

LINE PARAMETER REGISTER 28

FIELD LENGTH DEVICE NUMBER 30

UNUSED AUTOBAUD SPEED CODE 32

DEVICE STATUS HIGH WORD ($ZA) 34

$ZB 36

LINE TERMINATOR 38

BIT MASKS 40

APPLICATION TRAP 42

BIT MASKS MR-S-3494-83

The DDBs Device Status Indicator (offset + 14) describes a number of device-
specific parameters described in detail in Table 4-2.

You can examine the DDBs for all single-line and multiplexer devices by
running “DDR, which can be run directly or accessed through the SYSTEM
STATUS option of the SYSTEM REPORTS option of the SYSTEM
UTILITIES menu (“SYS).

DSM-11 Tables and Memory-Resident Data Structures

14.13 Partitions

A partition is an area of memory where all elements of a job reside. The
components of this area expand and contract dynamically depending on the
requirements (such as adding or deleting data) of the job. Figure 14-8 shows
the general layout of a partition.

Figure 14-8: Partition Layout

LOW MEMORY

PARTITION VECTOR

ROUTINE BUFFER

—_

INTERPRETER STACK
OR

STRING STACK

SAVE AREA

-— —— TS OT

FREE MEMORY

ne Se

SYMBOL TABLE

BREAKPOINTS HIGH MEMORY

LEGEND:

FIXED BOUNDARY

— — — DYNAMIC BOUNDARY

MR-S-3495-83

As each job enters the system, it is assigned a memory partition where it
resides until the job is terminated.

14.13.1 Partition Sections

A partition is divided into five major sections:

DSM-11 Tables and Memory-Resident Data Structures 14-17

14-18

Partition Vector

Routine Buffer

Interpreter Stack

(String Stack)

Save Area

Symbol Table

Breakpoints

Describes the status of the job in the partition (refer to
Section 14.13.2 for further detail).

Contains the lines of a DSM-11 routine. The contents of
the routine buffer can be modified in Programmer Mode
by adding, changing or deleting routine lines. Commands
that load routines, such as ZLOAD and JOB, also change
the contents of the Routine Buffer.

Stores routine information temporarily while the
interpreter processes the routine. The Interpreter Stack 1s
also used to transfer messages during I/O operations. Also

the Call Stack for DO and XECUTE commands Is stored
here.

Stores Kernel and User stacks when the system swaps the
job out. An area of free memory between the Save Area
and the Symbol Table allows for the dynamic expansion of
the components of a partition.

Contains all defined local variables, subscripted or
unsubscripted. The size of the Symbol Table varies as
variables are defined (with SET) and deleted (with KILL)
by the job running in the partition.

When you set breakpoints for debugging MUMPS
routines, up to 10 128-byte spaces are used for the
breakpoints.

14.13.2 Partition Vector

As mentioned, the Partition Vector describes the status of the job in a
partition. It occupies the first 332 bytes of storage in a partition’s memory
space.

Within the Partition Vector, there are fields located at offsets relative to $J.

These fields contain such information as:

e Contents of $TEXT (the name of the routine currently running)

e Contents of $10 (the current I/O device)

¢ Contents of $ZE (the most recent error message)

For information on how to use the special variables $TEXT, $10, and $ZE,
see the DSM-11 Language Reference Manual. Another field, the Job Status
Word (JSW) at $J+2, describes various software and hardware conditions

DSM-11 Tables and Memory-Resident Data Structures

about the job currently residing in the partition. The individual application
can change some of the bits in this field. Table 14-2 shows each JSW bit
assignment, and indicates which bits you can set.

Table 14-2: Job Status Word Bit Assignment

Bit Assignment

0 Programmer (Direct) Mode, when set*

l Unconditional VIEW or ZUSE privileges

2 BREAK (application interrupt key or DSM-11 BREAK command) is enabled,

when set*

3 Application interrupt key has been received on the terminal**

4 Timed READ overrun (time is up), used by drivers

5 DSM-11 Version 2 compatible error processing when set***

6 Set if this job is a DDP server

7 Set if this job is a DDP server for a Version 2 system

8 Specifies the job is using the global module (Data Base Handler)

9, 10 Determines job’s priority, 0-3*

11 Set to override default spooling (used by spooler and caretaker)

12 to 14 When bits 12 to 14 are nonzero, the job is flagged for an error on its next

swap-in. The value of bits 12 to 14 determine which error is to be issued as

shown below.

Value Error issued on next swap-in

l DKHER

2 DKSER

3 STORE

4 KILLR

5 INRPT

6 ABORT

7 CRASH

15 Set if job has used reserved disk space.

DSM-11 Tables and Memory-Resident Data Structures 14-19

* Application can set this bit.

** When a routine has cleared bit 2 (using the B 0 command) to inhibit the
application interrupt key, the routine can check this bit and, if desired,
perform a controlled interrupt. You can set this bit with the BREAK
command (B 1).

**k* Set by the BREAK command, (B 2), cleared by B -2.

The partition vector can be displayed by accessing the Partition Vector utility,

“PARVEC.

14-20 DSM-11 Tables and Memory-Resident Data Structures

Chapter 15

Optimizing DSM-11

This chapter contains information on optimizing the DSM-11 system,
exclusive of global and data base optimization which is discussed in Chapter
13. Optimizing DSM-11 programs and applications is discussed in Chapter 9.
This chapter contains information on mapped routines, and on obtaining
performance statistics on the system through the system utility, ‘RTHIST.

15.1 Mapped Routines

Normally, when a routine is used in DSM-11, it is read from disk into a

buffer, and then copied byte-by-byte to the job’s partition. You can specify
that certain routines be placed in the mapped routine area of memory. You
thus avoid both using up space in the partition and using CPU time to retrieve
the routines from the disk. This is useful when those routines are going to be
used frequently.

The mapped routine area is a separate area in memory that contains the
specified routines. When a routine is called for, the system checks the

directory of the mapped routine area using a binary search before going to the
disk to retrieve the routine. Each UCI can have its own routines in the mapped
routine area.

You indicate which routines are to be placed in the mapped routine area. The
“SYSGEN routine asks whether you want the mapped routine option included
or not. You indicate which routine sets you want to place in the mapped area
when you define the System Start-up parameters. You define these parameters
either by using the System Start-up routine, ASTU, or by using Define Start-up

Optimizing DSM-11 15-1

Parameters, “STUBLD, You can also use the utility routine ‘RMAP to select

routines for installation in mapped memory space. The process involves
building a routine set using the Routine Set Management utility, ‘RMBLD,
and then loading the routine set into memory using the Routine Set Loading
utility, “SRMLOAD. See Sections 10.4.7, 10.7.5, and 11.1 for more informa-

tion on these utilities.

The ZLOAD command and the DO command no longer retrieve the same
routine when that routine is mapped. If routine ABC is a mapped routine,
typing the following means that the routine ABC in the mapped routine area
will be accessed:

>DO “ARC

Typing the following means that the version of the routine that is resident on
the disk will be accessed.

»2LOAD ABC

You should be aware of the following limitations on mapped routines:

e The total space taken up by each mapped routine cannot exceed 8K bytes.

e The system accesses the mapped copy of a routine only if the job’s partition
is 8K bytes or smaller. Notice, however, that the entire 8K bytes is available

for the symbol table when using mapped routines.

15.2 Varying Buffer Sizes

15-2

You can vary the size of three types of buffers:

e Ring buffers

e Cache buffers

e Journal buffers

You can vary the size or number of these buffers (by using the SYSGEN
procedure) in different configurations in an attempt to find the best balance
between size of the buffers and overall efficiency. In general, allocating more
space to these buffers increases efficiency, but takes up more memory space.
The ring and journal buffers are much smaller than the cache buffer; the
greatest benefit arises from varying the number of cache buffers.

You should allocate as much space as possible for cache buffers, since disk
operations where data is shared for global access are especially optimized by
large disk caches. Memory space considerations must be weighed against the
number of cache blocks. Room for three partitions plus space for journal
overhead (if you select journaling) must be available. Also, system constraints

Optimizing DSM-11

require that total buffer allocation space does not exceed the value shown
during SYSGEN for the maximum space that can be used for buffers.

You may also have additional constraints based on needing more than three
partitions, or other memory requirements.

The journal buffers are referred to in Part 7 of SYSGEN and are also
discussed in Section 10.4.7. The ring and cache buffers are referred to in Part
8 of SYSGEN and are discussed in Section 10.4.8.

15.3 Limiting Critical Data Areas to Minimize Searching

You can increase efficiency by limiting the size of certain data areas that are
frequently searched:

e Global Directory Entries

e UCI Translation Table

15.3.1 Limiting The Size Of The Global Directory

The global directory must be searched each time that a global is referenced.
This directory is contained on the disk in one or more blocks. Keeping the size
of a directory small decreases the amount of search time.

The directory is arranged according to when each global is first defined. You
can establish a global (such as “A) that is used frequently as the first global in
the global directory. Do this by making the very first reference to any global
for that data base to “A. This can be done by a "dummy” set, for example:

SET “As""

Use short names (one or two letters) for globals to help prevent the global
directory from growing beyond one block. If the global directory grows
beyond one block, the search time 1s significantly greater than for one block (if
the same total number of globals is involved). See Section 13.4.3 for more
information on the global directory block.

Optimizing DSM-11 15-3

15.3.2 Limiting The Size Of The UCI Translation Table

The UCI Translation Table provides a means for providing access to globals
across UCIs in a way that is transparent to the user. See Section 10.7.8 for
more information on this table.

You should use this table sparingly and keep the number of entries (globals) to
a low number; because, for every global reference, this table is first searched

to ensure that the reference does not involve a global in the table.

15.4 Performance Statistics

15-4

DSM-11 provides a utility (“RTHIST) that can be used to gather various
performance statistics for the system as a whole. This utility can also obtain
breakdowns for system global and routine calls by individual UCIs. You can
then use these statistics for performance evaluation of the system.

15.4.1 Using The Performance Statistics Utility (“RTHIST)

The performance statistics on the DSM-11 system can be obtained by using the
Performance Statistics utility, “RTHIST. This utility can be accessed directly
by typing:

»DO “RTHIST

It can also be accessed through the SYSTEM UTILITIES menu (SYS).

The utility allows you to log performance data for a certain period of time (a
session), print out a report of data that has been previously logged, or show
the on-line help text for the utility. If you select one of the first two options,
you are asked additional questions.

15.4.2 Performance Data

Data is gathered on many statistics which are then output as reports or
histograms. The types of data are:

e Counts of jobs in queues

e Data base event counts

e Derivative ratios

Optimizing DSM-11

e Disk usage

e Routine usage

e Global reference counts

15.4.2.1 Queue Data — Jobs occupy various queues in the system when they
are not actually running. Abbreviations, such as SHORTQ, are used in the

histograms produced by ‘RTHIST.

A job is either waiting for an external event or else ready to run. Jobs that are
ready to run are placed in one of several queues, depending upon their
priority. Jobs may also be waiting for data base resources to become available.

Data provided in each of these categories are statistical averages of job counts
in various queues.

SHORTQ Short Run-Time Queue - is for jobs that are waiting for disk
service or access privileges. These jobs have the highest
priority for execution, but only for a short time slice.

IORQ Input/Output Ready Queue - is for jobs that have just
finished waiting for I/O, especially terminal or printer I/O.

WAIT1Q Time Slice Expired Queue - is for jobs when their time slice
has expired while executing code. There are 4 queues
(WAIT1Q -WAIT4Q) for 4 priorities of jobs.

GLOBQ Waiting for Global Queue - 1s for jobs waiting for the
global handler because another job has locked the handler
for its private use.

GLOLKQ Global Lock Queue - is for jobs waiting for private use of
the global handler. Private use is required whenever a SET
adds a block to the data base, or a KILL subtracts a block
from the data base.

%GLOCK Time that Global Handler Is Locked - is the percentage of
time that the global handler is locked by some job for its
private use.

%GLOCKWAIT Time in Global Lock Queue - is the percentage of time that
the Global Lock Queue has at least one job in it.

DKRBQ Disk. Wait Queue - is for jobs waiting to use the disk
handler.

JRNQ Journal Wait Queue - is for jobs waiting for journal buffers
to be written to the journaling tape or disk.

Optimizing DSM-11 15-5

15-6

GLOBAL In Global - is not actually a queue, but an average count of

the jobs concurrently using the global handler to access the

data base.

15.4.2.2 Data Base Event Counts — The data base access handlers automati-
cally accumulate counts of various events. The data represent averages of
events per second.

ROUREF Routine References - is the combined count of all DO,
GOTO, ZLOAD, and ZSAVE commands that include

routine names.

MAPROU Mapped Routine Access - is the count of accesses to
routines mapped into memory.

GLOREF Global References - is the combined count of all references

to global variables, including SETs and KILLs.

GLOSET Global SETs - 1s the combined count of both SET and
KILL commands to global variables.

GLOKIL Global KILLs - is the count of KILL commands to global
variables.

LOGRD Logical Block Reads - is the count of all requests to search
the disk cache for a block.

READS Disk Block Reads - 1s the count of disk block reads to the

disk cache only.

TOTRD Total Disk Reads - is the count of all disk reads, including
SDP, VIEW, and DMC-11 Block Mode.

LOGWT Logical Block Writes - is the count of requests by the global
handler to write disk cache buffers.

WRITES Total Disk Writes - is the count of all transfers from

memory to disk.

WTSYNC Synchronous Disk Writes - is the count of disk writes for
SDP, VIEW, and DMC-11 Block Mode (but not from the
disk cache).

TRYLAST Try Last Block - is the count of attempts to find needed

data in the last referenced block for a particular job, thus
bypassing searches at the directory and pointer levels.

GOTLAST Got Last Block - is the count of successful attempts to find
needed data in the last referenced block.

Optimizing DSM-11

ALLOC New Blocks Allocated - is the number of new blocks

allocated for global use in 1024-byte blocks per second.

DEALL Blocks Deallocated - is the number of blocks deallocated

from global use in 1024-byte blocks per second. By com-
paring ALLOC with DEALL you can determine whether
your data base is growing or shrinking.

TTYOUT Character Output - is the count of characters output to
terminals and line printers.

TTYIN Character Input - is the count of characters input from
terminal lines.

DDPINI1 DDP Requests Received - is the number of requests to use a
DDP line from remote systems.

DDPOUTI1 DDP Requests Sent - is the number of requests to use a

DDP line sent to other systems. Activity on additional DDP
lines are indicated by the counts in DDPIN2, DDPOUT2,

DDPIN3, DDPOUT3, and so on.

15.4.2.3 Derivative Ratios — These ratios show the effectiveness of the

optimization algorithms of both the disk cache and the global handler. These
ratios are derived from the data base event count statistics.

Block Requests Per Global Reference - shows the effectiveness of the global
handler. In general, global and routine references require more than one
block request to get at data. The global handler employs optimization
algorithms to minimize the number of these block requests. When successive
references (within a job) are to the same global, the second and following

references may require fewer block requests. If global references within a

job are grouped by global name, the ratio declines to approach the value of
1.

Actual Block Reads Per Read Request - shows the effectiveness of the disk
cache in minimizing disk reads.

Block Write Requests Per SET command - must be at least 1. This ratio can
be expected to increase as the rate of growth of the data base increases.
When a global block overflows, a split occurs, causing at least four block
writes to: the two resulting blocks, the ancestor pointer block, and the
“map” block.

Actual Block Writes Per Write Request - shows the effectiveness of the disk
cache and the Write Demon in minimizing disk writing.

15.4.2.4 Disk Usage Histogram — This data shows the percentage of elapsed
time used by each disk drive. The data is further broken down into disk reads
and disk writes. Currently, DSM-11 allows only a single disk transfer to be
performed at any point in time, regardless of the number of physically

Optimizing DSM-11 15-7

15-8

connected disk drives. As the total percentage of elapsed time used by all
drives increases, a system can be said to be more “disk bound.”

15.4.2.5 Routine Name Histogram — This data shows how much CPU time is
spent (on the average) by various routines and, conversely, how much of the
CPU time is idle. For DSM-11, you begin to perceive the system response time
slowing down when CPU idle time declines to 25% or less.

15.4.2.6 Global Name Histogram — This data is an analysis by UCI and global
name of the combined count of all references to global variables. This is
actually a global-by-global breakdown of the count recorded above as
GLOREF.

15.4.3 Optimization Based On Performance Statistics

An advantage of the “RTHIST utility is that it gathers statistics while an
application is running in a normal day-to-day environment, rather than in a
test situation. Thus, the statistics can be used to accurately gauge where
bottlenecks or performance problems are occurring in the system.

When a system reaches a saturation point, the first question that is usually
asked is whether the system is disk bound or CPU bound. The answer can be
inferred by examining the “RTHIST results.

If the system is CPU bound, you may wish to optimize the DSM-11 coding to
improve performance. You can also refer to the “RTHIST statistics to see
which routines are consuming the most CPU time, and thus determine where

your effort will gain the best results.

If the system is disk bound, you can use these statistics to show how much
load is on each disk drive, how the load is split between reading and writing,
and how often each global is being referenced.

Optimizing DSM-11

Average Counts of Jobs : RTHIST: Figure 15-1

S
o
°
T

n
0
°
O

S
T
°
O

07
AT

RT
LT

91
CT

vt
FT

ZT
TT

aT
6

R
l

Q
S

%
¢

Z
T

)

| | { | | | | | | ! { | | | * !

!

«
|

|

x
4
1

|

|
 !

*«!

«| |

-| |

+
x
!

\

I

07
461

RT
iT

oT
om

vt
FT

ZT
TT

OT
A

R
L

9
S

>
¢

7.
T

)

A
N
N
E

UT
AGHY¥d

UT

T
W
A
O
T
D

UT

a
T
a
e
T
T
e
a
e
u
n

%
TeEIOL

I
T
W
M
W
O
N
T
O
S

W
O
N
T
D
S

punog
T
e
a
G
o
T
M

TeIO!J
O
N
T
O
I
D

UT
e
a
n
i
y

ut

p
u
n
o
a

N
d
d

T
e
I
O
L

A
b
L
I
w
é

UI
A
¢
y
I
y
u
e

ut

A
7
L
1
u
6
"

uy
O
T
L
I
V
a
A

UT

Q
H
Y
N
T

ult

A
L
U
Y
N
K
S

UT

MR-S-3496-83

15-9 DSM-11 imizing Opt

Averages of Data Base Events Per Second : RTHIST: Figure 15-2

N02
O
T

ORT
O
l
t

N9T
a
c
t

CHT
OeT

97t
OTT

o
a
t

06
ne

OL
09

OS
oO

oF
NZ

nt
8)

£
2
°
O

|
L
9
°
z
t

so

0S°?tsS
4

!
\

]
{

|
J

|
1

I
|

|

|
|

|
(

|
|

!
|

{
k
e
t
a
l

(
!

|
!

{
S
K
R
A
K
A
E
K
A
K
E
R
K
A
E
A
R
E
K
E
R
E

H
E
E

K
E
E
S

|

QS
HAG

L
A
E
R

H E
E
R

ERE
H
E
R
R
E
R
A

A
R
E
E
R

ERE
EERE

R
R
A

ER
ERE

E
E
R
E

E
E
R
E

ERE
R
E
E

E
TEER

ERE
EEE

T
E
E
D

E
E
R

E
E
S

|

£
0
°
O

|
b
e
e
n

I

N
e
°
S
T

!
b
7
°
S
C
E

I

T
°

O
|

FE
eO

|
90a°P

|
P
R
A

l

N
L
°
6

|
TE°

RO?
Ie

G
Z
°
r

|
TL°L

|

Z7Z°9R
I

RE
PZ.

|

Leet
|

| ! | | t ! | |

!
|

!
{

|
|

{
'

|
!

!

\
I

|
|

|

|
'

J
e
t
e
e
a
e
e
!

!
S
K
E
K
E
E
K
A
K
E
R
E
S
D
E

K
E

|

|
{

|
I

|

I
!

|
1

a
x
e
!

\
b
e
a
e
n
'
|

I
t
e
e
n
 l

#
e
e
%
%
/

e
e
e

e
e
e

e
e
e

e
e

e
e
r

r
e

T
e
e

r
e

T
e
e

T
e

T
S

C
S
E
T

e
T

E
T
E

C
T

T
T

e
T

CS
T
S

S
O
T
O

T
E
L
S

S
C
L
E
S

E
S

S
S

C
E
C

T
A
S
E
S

T
S
T

S
S
S
S

CE
T
S
S

F
o

|
!

1
|

I
|

|
|

|
1

«el

|
|

'
|

I
|

j
{

|
l
a
x
s
e
l

|
1

R
E
E

E
R
E
R
E
E
E
E
A

E
E
R
E

E
S
T
E
E
R
E
R

ED
|

|
{

j
|

1
|

!
!

!
i

*
|

|
|

|
'

|
|

(
{

I
t

+1

N
0
2

OAT
NET

OLT
0
9
T

nst
C
o
l

N
E
I

O2T
UTtt

OOoT
6

nk
OL

ca
OS

Ab
OF

OZ
GT

a

MR-S-3497-83

T
L
n
o
n
d
a
a

T
H
T
A
A
N

M
I
A
I
L

L
A
C
A
L
I

W
M
V

AC

D
O
V
T
Y

T
S
v
i
r
r
a
s

I
S
W
T
A
M
L

O
N
A
S
I
M

S
A
L
T
U
M

L
¥
9
0
7
T

C
L
O

S
A
V

44

a
X
n
N
n
y

V
I
V
O
T

L
I
S
N
T
S

I
I
Y
O
T
S

N
C
H
A

3
s
a
u
n
d
s

ing DSM-11 ImM1Z Opt 15-10

10S Rati ive t Iva RTHIST: Deri Figure 15-3

L
L
°
O

S0°T
S
0
°
0

B
E
T
?

SC
L
M
D
O
I
/
C
O
N
A
S
L
M
©
S
G
L
I
Y
U
M
)
)

Y
S
e
N
n
b
a
y

9
I
F
I
m

HYOOTG
Jad

saqyftim
H
O
T
A

TeNqIdy
>
C
C
T
I
W
O
T
D
S
+
L
A
S
O
I
D
)
/
1
M
9
0
1
)

P
U
e
W
W
O
D

T
I
I
N
/
L
A
S

Jad
s
q
y
s
a
n
b
a
y

a
y
f
i
m

yxd0TYG
*
(
Q
Y
D
O
T
/
S
A
V
A
d
)

Y
S
e
n
b
e
a
y

p
e
a
y

A
S
o
T
g

Jad
S
p
e
a
y

HNSOTG
Ten

dy
°
(
4
9
d
0
1
5
+
4
d
3
9
N
N
O
N
)
/
G
H
D
O
T
)

S
S
U
a
T
a
z
Z
a
y

T
e
q
o
T
S

Jad
s
y
s
a
n
b
a
y

p
e
a
y

y
o
o
T
E

MR-S-3498-83

S
S
O
T
I
E
I

V
A
T
I
C
A
T
I
A
a
G

15-11 Optimizing DSM-11

ime Disk Access as Percentage of Total Ti : RTHIST: Figure 15-4

6
6
°
0
S

T
L
°
O

T
e
°
O

Z
T
°
O

€
S
°
Z

T
S
°
T

L
o
o
L

oT’?et
€
S
°
S
T

0
9
°
O
T

02
61

et
LT

oT
St

vt
eT

ZT
TT

OT
6

8
L

9
S

¥
€

z
T

0

!
!

lanxaxl

|
|

1
«xl

|
|

|
*

|

|
e
e
e
e
k
e
c
k
e
e
e
e
c
a
r

|
|

x
e
x
a
e
a
n
s
l

A
E
K
K
K
K
K
K
R
R
H
R
A
K
R
E
R
E
K
R
E
K
E
E
E
K
E
K
E
E
E
E

K
E
K
E

|

E
E
R
E

R
A
R
E
R

E
A
E
R
E
R

E
K
E
R

K
A
R
E

K
E
E
K
E
E
E
S

|

R
A
R
E
R

E
E
R
E

E
E
E

E
E
R
E

A
E
E

E
R
A
R
E
R

E
E
R
E

E
T
R
E

R
E
E

K
A
R
E

E
E
E
R
E

E
E
E

EES
|

K
E
K
E

E
E
R
E

R
E
A
R

E
R
E
R
E

RE
E
E
A
E
E
R
A
E
E
E
E
A
E
T

E
K
E
R

ER
EES

|

N
e
e

e
e

eed
eed

eed
eed

eed
eee

eed
eee

ee
e
e

e
e

e
e

r
e
)

02
61

8t
Lt

gt
St

a

eT
zt

TT
oT

6
8

t
9

S
v

€
4

T
0

a
a
t
i

3
7
a

peay
O
V
F
I
M

peay
22TIs
peay

9
Q
T
I
M

peay

COO A ANNO &

MR-S-3499-83

T
e
I
O
L

aatia
xSTG

ing DSM-11 Im1Z Opt 15-12

ime Execution as Percentage of Total T ine Routi : RTHIST: Figure 15-5

€
Z
°
8
2

L
L
°
O

€
e
°
c
t

€
T
°
o
t

$
9
°
0
S

€
9
°
T

OF
°0Z

9
€
°
8
T

€
9
°
Z

€
9
°
E

€zZ°T
6
2
°
C

L
S
°
O

ZT°
US

02
61

BT
Lt

oT
ct

vt
€T

ZT
TT

OT
6

8
Ll

9
S

v
€

Z
T

0
f
e
o
s

l
e
m
m
e

|
omen

|
cone

|
come

|
moon

|
cece

|
eens

|
cece

|
cnee

|
ee

ee
|
ceen

|
meee

|
meee

|
enon

|
conn

|
omen

|
concen

|
cone

|
o
o
n

|
|
p
e
e
w
e
e

m
e
m

m
e
w
w
w

e
e
e

we
e
e
e

e
w
e

w
w
e

ee
e
e
e

e
e
w
e

ee
t
e
e

ce
e
e
e

e
e
w
e

s
e
e

m
e
e

s
e
e
m

ee
w
e
e

e
s
e

m
e
e
e

e
w
e
c
e

e
a
m

m
e
s
s
e
s

ec
w
e
e
w
e
c
o
e
s
e

|

|
|

|
|

1
|

|
|

!
|

|
|

|
|

|
!

|
|

|
l
e
x
a
n
!

|
|

PE
S
P
S
S

S
C
C
S
S
S
S
S
£

COSC
E
S
E
S
S

ES
SS

SES
SEC

S
T
A
L
E

S
S
C
S

OSS

SS
ELSES

SS
CESSES

SSS
LISS

SSC
C
S
C
S
S
S
S
C
S
C
L
C
S
I
C
C

SLE
TS

So
|

!
|

!
|

|
|

!
|

!
PES

SSS
S
S
S

SS
SSS

SSE
SCS

SSS
CS

S
C
S
S
S
A
S
L

SS
SSC

S
S
C
S

Te
See

es
so

|
|

|
|

|
|

|
|

|
|

|
!

|
|

|
|

|
|

|
!

|
|

em
mcm

m
e
m
e

mmm

eww
mmc

mew
m
e
e
e

ewe

ee
mew

ewe
we

em
me

tee
eww

eee
cee

teem
ew

see
t
w
e
e

e
wwe

eww
m
e
m
e

ee
w
ecw

eee
e
c
c
e
n
e
c
e
e
e
e

|
|

|
I

|
|

|
|

|
|

|
|

|
|

{
|

|
|

|
P
e
r
e
c

erte
so

P
E
S
T
S

SSE
SESS

S
S
C
S

S
S
C
S

LIS

SS
SS

CSTE
SSS

CSC
S
S
C
L

CLE
LS

SCE
SSS

SSS
S
C
S
S
C
S
C
C
S
S
S
C
S
C
S
C
T
O
L
I
L
I
L

S
L
O
S
S

C
C
T
C
S
O
C
C
C
C
C
T

TCT
ATT

TTT
a

1
PTT

T
S
S
C
S

OSS
S
S
C
S

TCT
SSeS

T
T
C

TSC
SESS

S
S
S
C
S
S
S
S
T
C
C
T
C

SSC
CTCLTET

TCT
SCT

TT
TCT

T
T
T

T
T
T

T
T
T

TTT
T
T
T

T
C
T

TTT
T
T
T
.

|
|

|
|

|
|

|
!

|
!

|
|

|
\

|
|

|
|

|
\

|
|

|
t

|
|

|
|

!
|

|
|

|
|

|
|

|
eStore

r
c
e
r
e
r
s
r

e
r
e
s
.

a
|

|
|

|
|

|
|

!
|

|
!

t
|

|
|

{
|

|
!

e
e
e
2
4
%
 |

|
|

!
!

|
|

|
!

'
|

|
!

|
|

!
t

|
|

e
k
e
e
e
e
n
e
e
a
s
 |

!
|

|
|

!
|

|
1

|
!

|
|

|
{

|
|

|
|

t
|

wan]
|

|
{

!
|

|
1

|
|

|
t

!
!

{
|

|
!

|
|

|
!

!
|

|
|

|
|

!
|

|
{

|
|

|
'

|
|

|
|

|
{

|
C
e
e

SSE
S
S
C
S

ee
C
e
C
e

T
E
E
S

ES
SSSI

STE
S
TPCT

S
E
S
S

CSIC

EST
S
C
I
S
C
S
O
S
S
S
S
S

STC

S
C
C
S
I
C
T
O
S

TIT

C
S
T
T
T
T
T
T

T
T
T

TTT

T
T
T

TT
TTT

T
T
T

J
o
n
n
a

|
meee

|
meee

|
ccee

|
meen

|
eone

|
ceee

|
come

|
mm

ne
|
em

wn
|
cone

|
cnee

|
en

ee
f
e
c
e
n

|
cece

|
cone

|
cone

|
coon

|
cone

| o
o
n
e
|

02
6T

BT
LT

9T
ct

oT
eT

ZT
TT

OT
6

8
Ll

9
S

v
€

Z
T

0

T
e
I
O
L

2
3
4
3
0

SIs
Sst

T
e
I
O
L

1
9
U
I
0

JINX
kSu
sua
Sau
ITV
H%

S3%

a
u
T
a
n
o
y

MR-S-3612-84

VId

Xa»

@
T
P
I

TON

15-13 DSM-11 imizing Opt

Global References Per Second : RTHIST: Figure 15-6

0Z
6T

BT
Lt

9T
ct

tT
eT

ZT
TT

ot
6

8
L

9
S

1
€

Zz
T

0

[eon
e

|
mn

we
|
meme

|
mown

|
meee

|
e
o
n

|
ce

en
|
eens

|
omen

|
come

|
cone

|
em

en
|
mene

|
moc]

|
come

|
coon

|
e
e
n

|
ence

|
onne

[oon
-|

|
|

)
|

{
|

|
|

|
|

(
|

|
|

!
|

|
|

|
s
e
e
c
c
e
n
e
 |

|
I

|
|

1
|

|
|

]
{

|
|

!
j

'
|

|
{

|
e
r
e
s
 a

1
|

1
|

\
|

|
|

|
|

|
1

|
|

\
I

{
|

|
l
a
x
e
x
!

!
I

|
I

!
|

!
|

|
|

!
|

|
|

l
|

|
!

|
l

|

|
em

mmm
wm

mmm
www

ewe
e
w
w
w

w
e
e

m
e
e
e

ee
eee

ete
en

cet
ewe

em
m
e
e
e

eee

c
e
c
e

ee
ewe

ee
ee

me
c
o
m
e

eee

wee
ee

e
c
o
n
o

ene

e
e
n
s

eco

c
o
c
e
=

|

|
\

|
|

|
|

1
{

|
I

|
|

|
t

|
{

|
1

e
e
e
t
e
k
a
c
e
n
e
 |

|
!

|
1

|
|

'
|

|
|

|
{

|
|

{
|

|
1

t
|

s
o
x
!

|
|

{
1

|
|

t
|

|
t

|
\

|
{

t
|

|
|

|
{

x
x
x
]

{
|

!
|

{
|

|
|

i
Y

!
1

'
|

|
|

{
l
e
x
e
e
a
k
e
e
e
e
c
e
e
r
 |

{
|

|
J

|
|

'
|

'
|

|
1

|
|

'
!

|
E
K
E
R
E
K
E
R
E
E
E
E
E
E
E
S
!

I
|

|
|

|
|

|
|

'
|

|
|

{
{

{
|

\
|

e
e
e
e
e
e
a
a
e
e
n
 |

|
|

|
i

|
|

|
|

i
|

|
|

t
|

t
|

I
1

|
l
e
x
e
s
l

|
\

|
|

|
|

|
|

|
|

{
|

|
|

\
|

|
!

e
r
r

err
rs

g|

1
!

|
{

|
!

1
|

|
|

|
|

|
1

|
!

|
|

|
|

x
x
«
l

|
|

|
I

|
|

!
!

|
|

!
|

|
|

!
1

!
|

1
e
a
x
!

{
|

|
|

!
|

|
|

CSCO
C
C
S
C
C
S
S
S
S
C
L
C
C
E
S

TCC
S
S
S
C
S

OCC

S
O
C
S

IS
SSS

CSC
CSI

SSS
TSS

S
S
e
S

SS
a

P
E
R
R
E
R
E
K
E
R
E
E
R
R
E
R
E
R
E
R
R
E
R

R
A
R
E
R

E
E
R
E

EEA
E
E
R
E

KARE
EERE

E
E
R
E

R
A
R
E
R

RAR
K
E
E

E
E
R
E

ES
|

|
|

|
|

|
|

|
|

|
|

1
|

|
|

\
|

|
1

|
|

«
e
a
l

|
{

|
|

i
|

|
|

|
|

|
I

|
|

\
{

|
l

|
|

eae]

l
\

|
|

|
|

|
|

|
|

|
|

|
|

{
'

|
|

|
l
e
x
e
x
!

{
!

'
|

|
|

|
|

|
!

!
|

|
{

!
I

|
|

|
1

«al

(
|

|
{

!
|

|
|

|
\

t
|

|
|

1
|

|
|

|
x
&
e
e
n
e
a
e
e
 |

|
|

|
|

\
|

!
|

1
|

|
{

!
|

|
1

k
e
e
a
k
a
e
e
e
e
e
a
e
c
e
t
e
a
e
e
c
e
e
e
s
d
 |

|
|

|
!

!
|

I
!

|
{

l
|

|
(

!
t

|
{

|
*
e
a
6
%

1
\

{
1

'
|

'
{

|
f

!
|

|
'

{
{

(
|

|
l
e
a
s
e
s

|
|

|
t

!
|

|
|

|
|

|
(

|
{

\
|

|
|

|
|

|

J
omwe

|
mewn

|
enews

|
em

en
|
enw

|
cone

|
cnen

|
oem]

|
omen

|
conn

|
cone

|
cone

|
meee

|
omen]

|
e
n
n
e

|
cmon

|
meee

|
enee

|
coe]

|
ooo

|

02
61

8T
LT

qT
com f

tT
€T

7T
TTI

OT
6

8
L

9
S

p
€

rd
T

0

Te
qoL

1
3
U
2
0

SXkS

T
e
I
O
L

13uU20

NdS
Nas

7Su
Ou

Ndd
d
u

sau
3
L
O
W
S
Y

INd
Nd

S
u
w

9017
N
V

g
o
r

N
V
Y
I
N
I

ZzuJ4
93a
ONG
NIG

T
e
q
o
T
t
s

MR-S-3613-84

WId

A
a
y

Ton

ing DSM-11 1mM1Z Opt 15-14

Chapter 16

The DSM-11 Journal Procedure

This chapter describes the journal procedure for DSM-11 as well as the
individual utilities required to perform the journal procedure.

16.1 Introduction

The DSM-11 journal procedure is a means of keeping a record on a secondary
storage device (disk or magnetic tape) of the SET and KILL operations that
users perform on the global data base. If the system malfunctions, the journal
procedure provides additional backup so you do not have to repeat all SET
and KILL operations after you have restored the data base.

As System Manager, you must specify which globals are to be journaled. After
you mark globals for journaling, the following information is recorded with
each SET and KILL of those globals:

e Date and time of the transaction as recorded in $HOROLOG (5 bytes
binary)

e The UCI and volume set number of the global that is affected by the SET or
KILL operation (1 byte binary)

e The job number of the user who issued the SET or KILL (1 byte binary)

e A letter to identify the transaction: S for SET, K for KILL (1 ASCII byte)

The DSM-11 Journal Procedure 16-1

e The full global reference name and its subscripts, if any, separated by
commas (a variable-length ASCII string)

e The data value of the global if a SET (a variable-length ASCII string)

During the journal procedure, DSM-11 records operations in the order in
which they are performed. Therefore, when you run the dejournal utility,

DSM-11 restores each operation in its original sequence.

You can enable or disable the journal capability on a systemwide basis. In
addition, each application can select specific globals that should be
journaled. Section 16.2 describes the DSM-11 utilities you must run to
identify the globals to be journaled.

The journal utilities perform such functions as starting and stopping the
journal procedure, allocating and deallocating journal space, initializing the
journal space, and restoring journaled information from disk or magnetic
tape.

16.2 Selection of Globals

To select globals for the journal procedure, you must run the Global Manage-
ment utility (“%GLOMAN). Among several options, these utilities allow you
to modify the journal capability of any global in the system. Selectively
journal only data that is necessary to recover the system. It is inefficient to
journal all computer transactions. Backing up scratch globals or other
noncrucial data may serve no real purpose. Moreover, it uses system resources
wastefully. You may find that the total amount of journal data affects your
hardware configuration and your system maintenance strategy.

16.3 The Journal Utilities

You can run each journal utility individually. Except for “JRNRECOV, you
can also access each journal utility through the SYSTEM UTILITIES (“SYS)
menu.

The journal utilities are:

Utility Routine Name

Start Journal ‘TRNSTART

Stop Journal SJIRNSTOP

Show Journal Spaces AJIRNLSHOW

Allocate New Journal Space SJIRNALL

The DSM-11 Journal Procedure

Initialize Journal Space SJRNINIT

Deallocate Journal Space SJIRNDEALL

Journal Recover SJRNRECOV

Dejournal ‘DEJRNL

A useful nonjournal utility is the fast option of Disk Block Tally, “DBT,
which shows free blocks on a disk. This information can be used in allocating
journal space. The Allocate New Journal Space utility, SIRNALL, also
provides the same information about block allocations.

The following is a brief description of each journal utility.

16.3.1 Start Journal (“JRNSTART)

Invokes the journal procedure if it is not already running as a result of a
system start-up. Requests the disk space or magnetic-tape unit number you
want to use for the journal procedure. Displays a message informing you that
the journal procedure has begun.

16.3.2 Stop Journal (“JURNSTOP)

Allows the current journal operation to finish, then terminates the journal
procedure.

16.3.3 Show Journal Spaces (“JRNLSHOW)

Lists all currently allocated journal spaces. Displays the starting, ending, and
next available block numbers for all journal space. You must know this
information when you run the start Journal utility.

The DSM-11 Journal Procedure 16-3

16-4

16.3.4 Allocate New Journal Space (“JRNALL)

Allocates new journal space on disk. Verifies that all maps within that area are
not in use for any other purpose. Calls the Initialize Journal Space utility to
initialize the blocks in that area to all zeros. Updates the ‘SYS global to
indicate that the new journal space exists. Note that the space you designate as
new journal space cannot overlap existing journal space.

16.3.5 Initialize Journal Space (“JRNINIT)

Initializes the specified journal space by setting the blocks to zeros. This
updates the “SYS global to indicate that the space does not contain any
journaled data.

16.3.6 Deallocate Journal Space(“JRNDEALL)

Clears the space that you specify. This space must be space that you previously
specified for the journal procedure. Deletes from the SYS global all entries for
this space and changes the related map blocks to indicate that they are not
journal maps.

16.3.7 Journal Recover (“JRNRECOV)

Closes journaling on one space and continues journaling on another space. No
data is lost, but the job can hang until the alternate space is available.
Provides several options when an error or an out-of-space condition occurs on
disk or magnetic tape.

Switch to another magnetic-tape reel

Switch to alternate journal space on the same disk

Allocate new journal space

Mount a different disk and allocate space on it if space is not already there

e Stop journal

The DSM-11 Journal Procedure

If there is no more space, the caretaker utility is responsible for detecting the
condition. The caretaker utility then notifies the operator to invoke
‘JRNRECOV. See Section 12.2 for more information on the caretaker utility.

16.3.8 Dejournal (“DEJRNL)

Restores to disk all SET and KILL information that you stored on disk or

magnetic tape. Provides the option to restore the information on all or
selected journaled globals.

16.4 Journaling Globals

To enable the journal procedure, you must include it during SYSGEN and
specify it as part of your startup parameter specifications. Next, you must

enable the journal capability for each existing global that you want to journal.
To do this, run the DSM-11 Global Management utility (“%GLOMAN).
These utilities asks you to name each global, one at a time, that you want to

journal. When you have listed all selected globals, you can exit from the utility
by typing a carriage return.

At any time after you have enabled journaling for specific globals, you can
run the journal utilities in one of two ways:

1. Run the SYSTEM UTILITIES menu (SYS) to select a journal utility from
the menu.

2. Run any of the journaling utilities individually.

While journaling is running, you cannot do the following:

e Dismount the disk or magnetic tape on which journaling is running

e Initialize or remove the currently used journal space

16.4.1 Journaling To Disk

When you request journaling space on disk, DSM-11 allocates the space in
increments of 400-block map areas. You can allocate journal spaces on any of
the disks mounted in the running configuration. DSM-11 keeps track of each
area designated for journaling on any currently mounted disk: whether the
area is empty, full, or partially full. Normally you allocate contiguous map

areas on the same disk as the primary journaling space. You can also designate

The DSM-11 Journal Procedure 16-5

other map areas as alternate journal space in case the initial space becomes
full.

16.4.2 Journaling To Magnetic Tape

When you specify journaling to magnetic tape, the magnetic tape drive that
you specify is reserved for the journal procedure exclusively. Journal informa-
tion is stored in sequential blocks on a single unlabeled magnetic tape file.
Each block is 1024 bytes long. The end of each section of journal information
is indicated by two magnetic tape marks.

NOTE

You cannot perform journaling to magnetic tape and disk
simultaneously.

16.5 The Dejournal Procedure

16-6

The dejournal procedure is a means of restoring to disk the SET and KILL
information from either disk or magnetic tape. The example dejournal utility,
“DEJRNL, which is included with your DSM-11 system, is designed to recover
as much of the data base as possible following an event that causes corruption
of the data base. You should devote a single-user system configuration to the
dejournal procedure. Also, you can create your own utility that more specifi-
cally suits your needs.

The example utility allows you to specify:

e The media from which you want to dejournal.

e The individual variables (or ALL) you want to dejournal. You can specify
the variables by UCI, variable name, or a wildcard.

e The UCI of the job that journaled the globals.

The DSM-11 Journal Procedure

Chapter 17

Volume Sets and Clustered Systems

This chapter discusses volume sets within a single DSM-11 system and within a
cluster of DSM-11 systems. A cluster is a set of DSM-11 systems connected by
communications. Communication across systems is referred to as Distributed
Data Processing (DDP). DDP allows a job running on a system within the
cluster to access and lock globals residing on a volume set mounted on another
system. The two systems must have a direct connection.

This access can be through two different approaches:

e Using an explicit syntax, the extended global reference.

e Using the UCI Translation Table to provide transparent communication
across systems.

Volume sets provide a way of organizing data on disks. Having separate
volume sets is a way of having independent data bases on separate disks. By
referring to the volume set, you can access data in the volume set, regardless

of where the volume set resides.

This chapter discusses how to set up a clustered system in general, and how to
access volume sets across systems. The utilities and mechanisms involved
include:

e SYSGEN - establishes DDP (Distributed Data Base Processing) arrange-
ments during system generation procedure.

e ‘DDPUTL - modifies DDP arrangements by using the “DDPUTL system
utility.

Volume Sets and Clustered Systems 17-1

e Explicit syntax - allows access to data across volume sets and across
systems.

e ‘UCITRAN - sets up user-transparent access to data in another volume set
by using the ‘SUCITRAN system utility to modify the UCI Translation

Table.

e Journating and backup - allows journaling and backup of a data base in a
clustered system.

e ‘%GLOMAN - controls access to globals across systems by means of
protection codes assigned to globals by \0GLOMAN.

e Dual porting - allows the same disk drive to be switched between two
systems easily.

e Library UCI - changes the library UCI by using the SUCIEDIT utility.

e $ZR - checks on whether a global access across systems actually connects to
the other system by using the $ZREFERENCE special variable.

17.1 Volume Sets

17-2

Volume sets are a basic way of organizing distinct data bases on one PDP-11
system, and among clustered PDP-11 systems. This section summarizes
information on volume sets. Additional information is provided in:

e Section 10.4.7 - providing support for volume sets during SYSGEN.

e Section 11.1 - mounting volume sets during system start-up.

e Section 12.3.6 - mounting volume sets while the system is running using
‘MOUNT.

e Section 12.6.4.8 - printing out the Volume Set Table using “%STRTAB.

e Section 13.2 and 13.3 - volumes and volume sets.

e Section 14.7 - structure of the internal Volume Set Table.

Volume Sets and Clustered Systems

17.1.1 Analogy To A Set Of Books

A volume set can be compared to a set of books. The set of books forms a
whole representing one author’s works: for example, the books of Mark
Twain. However, you can easily have several sets of books sitting in your
library: such as the books of Thomas Jefferson, the books of Charles Dickens,
and the books of Edgar Allen Poe. Each set of books is logically separate
from the other books, but can easily be included in one library. The books

within one set of books are logically related since they were written by the
Same author.

By analogy, data on a computer can be contained on disks; each disk can be
thought of as one volume (compared to a book in a set). A set of disks with

related data make up a volume set (compared to a set of books). In actuality a
volume set can be included in totality on one disk (in the way that the works of
a poet can be included all in one book), or on several disks.

17.1.2 DSM-11 Conventions For Volume Sets

DSM-11 has several conventions for how data in volume sets are treated. The

two general classes of volume sets are:

e System - contains a bootable system image with a manager’s UCI and all
system utilities. If it is booted as the first volume set, it is the system disk for

that CPU and cannot be dismounted.

e Nonsystem - contains no system image, and can only be mounted by a
running system.

Both classes can contain data.

New data growth proceeds sequentially within a volume set, that is, a global
can grow from one disk to another disk, if both disks are in the same volume
set.

There can be a maximum of four volume sets, and there must always be at
least one volume set. Each volume set represents a separate class of 30 UCIs.

All UCIs in a volume set can access globals within that volume set. Thus, any
UCI in the volume set A can access the global, ‘XXX. But a global, AYYY,

that exists in another volume set, volume set B, cannot normally be accessed

from a UCI in volume set A (unless an explicit syntax or the UCI Translation
Table is used).

Volume Sets and Clustered Systems 17-3

17-4

In versions of DSM-11 previous to Version 3, the single DSM-11 system can be

thought of as a system that has only one volume set. Additional disk drives
can be added to the system and it can be upgraded to Version 3. Then the data
base could be organized into different data base groupings (volume sets)
established on different disks.

17.1.3 Practical Uses Of Volume Sets

Within a single DSM-11 system, volume sets can provide a practical way to
logically divide up a data base and restrict user access to different parts of the
data base.

In a multiple CPU environment (not a clustered system) each CPU can have a

designated backup CPU which can take over its data base in the event of a
CPU failure. In the event of a failure, a volume set can be moved from the

failed CPU to the backup CPU.

In a clustered system, you can also move volume sets around if one processor
is down. Thus the cluster can function without one CPU, and the same data

base can be accessed.

You can move volume sets from one system in a cluster to another without

rebooting the running system (if planning is done properly for this situation):

e The backup system must be running a configuration that provides support
for multiple volume sets.

e There must be disk drives available on the system.

e There must be space in the Volume Set Table to mount another volume. The

maximum number of mounted volume sets is four per system.

e You may have to change references in the UCI Translation Tables (using
‘SUCITRAN).

e You may have to change DDP line labels (using ‘SDDPUTL).

e You may have to change library UCI references (using “UCIEDIT).

You can use the “MOUNT system utility to mount a nonsystem volume set
while the system is running.

Volume sets can be useful in a software development situation. Each applica-
tion development team can have its own volume set that can be moved from
One system to another. Thus each separate application can be developed and
debugged without conflicting with other applications.

Volume Sets and Clustered Systems

17.1.4 Logging In A Volume Set

When you have more than one volume set on a system, you can log into a
specific volume set on that system. By default you log in the system volume set

(Volume Set 0), if you do not specify a volume set.

To indicate a specific volume set log in as shown in this example:

DSM-11 Version 3 Device #64 ICI: JHM. WWW: kKAx

In this case, JHM indicates a UCI in volume set WWW. The PAC password is
XXX.

17.2 Clustered Systems

A DSM-11 clustered system is created when individual DSM-11 systems are
connected by DDP. Typically, a master data base would reside on a volume set

on disks connected to a central PDP-11 CPU. Users logged in on other CPUs
would access the master data base without logging into the central CPU. All
journaling and backup should be handled from the central CPU.

Any actual planning for a clustered system must take into account any special
requirements on your particular situation, and should involve a Digital
representative or support person.

This section discusses how to set up clustered systems with movable volume
sets.

17.2.1 System Generation For Clustered Systems (“SYSGEN)

This example shows the information needed by SYSGEN for a configuration
that supports several volume sets and clustered systems. This SYSGEN is for a
clustered system with DDP provided by by DMC11 or DMR11 communica-
tion devices. Cables must connect the DMC11s or DMRIIs, which are in turn
attached to the PDP-11 systems.

You can run either a manual SYSGEN or an autoconfiguration. If you run an
autoconfiguration, most questions will be answered automatically with the
default answers. You are asked the questions in Part 4 on configuring
DMClI11s or DMRI1Is, even if you run an autoconfiguration.

Volume Sets and Clustered Systems 17-5

17-6

If you run a manual SYSGEN, you need to know the CSR and Vector

addresses for devices connected to your system. You can obtain these

addresses by running the “CONFIG utility, (see Section 10.6 for more
information).

The example manual SYSGEN below skips over irrelevant parts of SYSGEN,
and focuses on the questions and parts of SYSGEN relevant to volume sets
and clustered systems. Chapter 10 provides a full discussion of the SYSGEN
procedure.

Answers to each SYSGEN question must be followed with a carriage return.
In general the carriage returns are not indicated in this example.

On any question asked during SYSGEN, you can enter:

‘ to return to the previous question
? for additional help

If a value appears between angle brackets, < >, it is a default value. Typing
a (RET) causes the default value to be used as the answer to the question.

Example:

> DO “SYSGEN

System generation for DIGITAL Standard MUMFS

Type ? for HELP at any time

PART 1: SYSGEN

PART 3: SYSTEM DEVICES

3.95 How many DMC1is are there (max = 4) ? (Q) 2

Type the number of DMC11 or DMRI1 synchronous controllers in this
configuration. Be sure to enter all DMC11s or DMRIIs regardless of their use
in the system. Note that when SYSGEN refers to DMCI1Is it is referring to
both DMClI11s and DMRIIs.

Enter the VECTOR address, in OCTAL, for DMC11 controller 1) 349

Enter the CSR address, in UCTAL, for DMC11 controller 1 > 469119

Enter the VECTOR address, in OCTAL, for DMC11 controller 2) 369

Enter the CSR address, in OCTAL, for DMC11 controller 2 > 1691229

Volume Sets and Clustered Systems

Do not use the Vector and CSR addresses shown here when running SYSGEN.
You must use the addresses that are appropriate for your system.

PART 4: CONFIGURE DNCils

4.115 DMC cantroller 1 HALF DUPLEX [Y OR NJ] ? (N) N

4.1 Is DMC controller 2 HALF DUPLEX [GR NJ ? <N)> N

Indicate whether the DMC11 or DMR11 is to be half or full duplex. Typically,
for DMC11s or DMRIIs used in a DDP configuration (clustered system), the
DMC11 or DMRI11 is used in full duplex mode.

4.3 How many of your DMC11s do you wish to use for DDF (Y OR NJ ? >2

At this point you indicate the number of DMC11s or DMRIIs you want to use
for DDP. If you have more than one DMC11 or DMRII1, questions 4.4
through 4.6 are repeated for each DMC11 or DMRI1.

4.4 Which DMC11 controller do you wish to use for DDF line i > 1

4.5 Enter the 3-letter codes for DDF line 1 > AAA. BBB, CCC, DDD

The code must be unique for each line since the code 1s used by DSM-11
routines to specify that line for extended global references. The codes can also
be used in the UCI Translation Table. The code must contain three uppercase
alphabetic characters. These codes should refer to volume sets that reside on
another PDP-11 system connected by DDP lines. There can be as many as
four codes, referring to the four volume sets that can be mounted on a remote
system.

Labeling the DDP line with the volume set codes provides for automatic and
smooth access to the volume sets in a remote system. By referring to this code

from the other system (connected by DDP) you automatically connect to a
DDP line, and then connect into the designated volume set.

4.6 Will DDP line 1 be connected toa a Version 2 system [Y or NJ]? (ND

If the line is to be connected to a Version 2 system, you should answer this

question Y to insure compatibility between the Version 3 and Version 2
systems.

4.4 Which DNC11 controller do you wish to use for DDP line 2 }1

4.3 Enter the 3-letter codes for DDPF line 2) EEE, FFF.GGG,HHH

4.6 Will DDP line 2 be connected to a Version 2 system [Y or N] ? (N)

Volume Sets and Clustered Systems 17-7

17-8

PART 7: SOFTWARE OPTIONS

7.8 Include support for UCI TRANSLATION TABLES [Y OR N] ? ¢¥) ¥

At this point you must indicate that you want support for UCI Translation
Tables if you wish to use these tables to provide transparent access to globals
residing in a volume set on another system (through) DDP.

7.9 Include support for MOUNTABLE DATA BASE VOLUME SETS [Y ORNI? (¥) ¥

Here you must indicate support for more than one volume set on this system
that you are now configuring. In Part 9 of SYSGEN you are asked for the
exact number of volume sets.

PART 9: SYSTEM DATA STRUCTURES

9.2 Enter the number of ADDITIUNAL mountable DATA BASE VOLUME SETS <3) 3

Your system is allowed up to four concurrently mounted data base volume

sets. Volume Set 0, of which the system disk is the first volume, remains

mounted at all times. You can specify that space be reserved for one, two, or

three additional UCI tables (one for each volume set).

Enter comment (max. 288 chars.) > EXAMPLE S'YSGEN

The system global “SYS has been built by SYSGEN.

“S¥S is a reserved global and should not be altered.

Volume Sets and Clustered Systems

17.2.2 The DDP Utility (“DDPUTL)

You can use this utility to modify the DDP arrangements on a running
configuration.

EXAMPLE:

DO “DDFUTL

Distributed Data Processing Control and Status Utility

[Sltatus [El]nable [Dlisable [Vlerify [Clhange

Option ¢ type ? for help) >S

DDP Status

System Codes Line State Jab Activity Errors

AAA, WWW Lip 3 " a

SYB, BBB Up 4 a a

The status option shows the current status of the DDP system. System codes in
this case refer to the codes given to the DDP lines, which should also represent

volume set codes. In this case AAA and WWW represent volume sets on one
system, and SYB and BBB represent volume sets on another system.

[S]ltatus [E]nable [Dlisable [Vlerify [Clhange

Option (type ? for help) > p

System Name) AAA

The disable option is used to disable access across one of the DDP lines.
Access to volume set AAA is disabled, but this also affects access to WWW

since both AAA and WWW are both on the same DDP line. Running the
status option would indicate that the DDP line indicated by code AAA and
WWW is down.

[Sltatus [E]nable [Dlisable [Vlerify [Clhange

Option ¢ type ? for help) DE

Volume Sets and Clustered Systems 17-9

17-10

System Name > AAA

DDF line AAA is now running through job number 3.

System AAA is up and running configuration SYS-2A.

Access to volume set AAA is reestablished. The utility reports what configura-
tion is running on the CPU that is attached to volume set AAA.

[Sltatus [E]nable [Dlisable [Vlerify [Clhange

Option ¢ type ? for help) > V

System Name > 31

System SYB is up and running configuration SYS$-2B

You can use this option to verify that a remote system is up and running and Is
connected by DDP.

System Name > BBE

System BBB is up and running configuration VOLUME SET BBE.

In this case the utility verifies the connection to volume set BBB (connected to

system SYS-2B). If you try to verify a connection to a volume set that has no

manager’s account, you can get an error.

[S]ltatus [E]nable [Dlisable [Vlerify [Clhange

Option ¢ type ? for help) > ¢

System Name > AAA

You can use this option to change the names of the volume set being accessed
across DDP lines. The volume set code must match the name of a volume
actually mounted on the remote system. This is the kind of change you may
desire to make in case of a failure in a clustered system. The specific change
must conform to the requirements of your cluster of systems.

Enter the 3 letter codes for DDP line 1 (AAA, WWW) ? CCC, RY

DDP line 1 SYSTEM CODES modified

Volume Sets and Clustered Systems

17.2.3 Explicit Syntax

Once you have established a running configuration using SSYSGEN or
“SDDPUTL, and mounted the volume sets; you can use an explicit syntax to
access a volume set on a remote system connected to your system by DDP

lines.

This syntax is the extended global reference and is also described in Section
8.2.3. The syntax is summarized here as follows:

Al" UCI" ,"SYS"|GLOBAL REFERENCE

UCT refers to a UCI in the remote volume set. SYS refers to the volume set on
the remote system. If the remote system has only one volume set then SYS is,

in effect, the name of the remote system. The UCI must exist in the remote
volume set, the volume set must be properly mounted on the remote system,
and a DDP line must be labeled with the same volume set name as in SYS.
You will get a <NOUCI> or <NOSYS> error if the UCI, system, or

volume set does not exist.

GLOBAL REFERENCE refers to a standard MUMPS global reference, for
example:

>S Ye E"SCT", "BBB"1KC1,2)

DSM-11 uses a search algorithm to locate the volume set to which you are
referring. First, DSM-11 searches through the list of volume sets that are
currently mounted on the local system. When the name, such as BBB, Is not
found, DSM-11 automatically searches through the labels attached to any
DDP lines. When BBB is found as one of the names of a DDP line, DSM-11

seeks to access the global in the designated UCI in the BBB volume set on the
remote system.

17.2.4 Using The UCI Translation Table (‘UCITRAN)

The UCI Translation Table provides a way of accessing a global in a volume
set on a remote system. This access is transparent to the user or the application
involved.

Once the global (such as “X) is entered in the UCI Translation Table, when
you access “X in your UCI, you automatically access the global, “X, in the
UCI and volume set indicated in the UCI Translation Table. If the volume set
is on another system, and DDP lines have been properly set up, then the access
is to the other system.

Volume Sets and Clustered Systems 17-11

You can use the UCI Translation Table if your application routines have
already been written without using extended global references (see Section
8.2). Rather than changing your application routines, you can create an entry
in the UCI Translation Table. This can be particularly useful if you must move
a volume set to another system. By changing the references in the UCI
Translation Table you can access the same volume set even though it has been
moved.

The UCI Translation Table is maintained as part of your system configuration
global (“SYS) and is loaded into memory when you start up your system. You
must also set aside memory space for this table during system generation.

Using the UCI Translation Table can affect performance on the system where
the table is set up. The UCI Translation Table must be searched each time any
global reference (including LOCK and ZA) is made. When used in the context
of DDP, this disadvantage must be weighed against the advantages of the
clustered system. See Section 15.3.

EXAMPLE:

> DO *UCITRAN

UCI Translation:

DISABLE UCI TRANSLATICN (DISAB TRANTAB)
EDIT TRANSLATION TABLES CEDIT“TRANTAB)
ENABLE UCI TRANSLATION CENAB’ TRANTAB)

SHOW UCI TRANSLATION TABLE (SHOW* TRANTAB) &

©
hh

Type of operation) 1. DISABLE UCI TRANSLATION

If you choose this option, all references in the UCI Translation Table are

disabled. You can choose this, if you wish to access globals in a local volume
set that have the same name as globals in a remote volume set.

Type of operation >) 3. ENABLE UCI TRANSLATION

This option reenables the UCI Translation Table.

Type of operation >) 2. EDIT TRANSLATION TABLES

Enter the name of the configuration you wish to alter (TEST1@)

Configuration "TEST10" is running now. If you continue,

both memary and disk will be modified.

Are you sure you want to proceed? (NO) |}

Terminate by responding with carriage return to table entry # question:

Table entry #?)> 1

17-12 Volume Sets and Clustered Systems

UCI name ? > JSS

System/Volume Set name ? > FFF

Global name ?) &

New UCI name ? >) YY"

New System/Volume Set name ? >) HHH

These entries allow you to access the global, AX, in the UCI, YYY, in volume

set HHH, from the UCI, JSS, in volume set FFF. Both UCIs (and any volume
sets you refer to) must be previously defined. If the volume set HHH indicates
a DDP line (labeled HHH), that connects to a system with a volume set HHH
mounted on it, then the access is to volume set HHH on the remote system.

Table entry # ? >) (RET)

Reloading the UCI TRANSLATION TABLE

Please enter your initials) JSS

Enter comment (max. 208 chars.) >) TEST FUR DOCUMENTATION

Type of operation) 4. SHOW UCI TRANSLATION TABLE

UCI Translation Table for configuration "TEST10":

Table entry # UCI Volume Global New UCI New volume

name set name name set

1 JSs FFF 8 wy HHH

17.2.5 Journaling And Backup

General information on journaling is provided in Chapter 16, and information
on backup in Chapter 11.

In a clustered system your master data base resides on one central system and
the data is accessed by DDP lines from other systems. The basic principle for
journaling is to establish journaling at the central system. This covers all
accesses to the master data base from other systems. There is no need to
provide journaling at the peripheral systems, unless critical data base updates
are also occurring on the peripheral system’s local data base.

The same principle applies to backup. You must backup the master data base
on the central system. You should not try to backup the master data base from

Volume Sets and Clustered Systems 17-13

17-14

one of the peripheral systems. If a peripheral system’s data base contains its
own local critical data, then the peripheral system’s data base should be
backed up on its own. The backup of the peripheral system’s local data base

should be done at the peripheral system.

17.2.6 Setting Access Codes And Categories For Globals
(“% GLOMAN)

In order to access a global from a remote system, the global must have the
appropriate codes. For globals to be accessed in clustered systems, the global
must be placed in the WORLD category. This code allows access across

volume sets. Note that the GROUP category is not adequate since it allows
access only from users who are in the local volume set.

Use the Global Management utility (%GLOMAN) to change the codes for a

given global. You can set READ, WRITE, or DELETE access codes depend-
ing on what you want users to be able to do to the global. See Section 4.9.3 for
more information on access codes.

17.2.7 Dual Porting

Dual porting is a feature than can be used with certain disk drives. These

drives have two ports and can be connected to two CPUs at the same time.
Dual porting can be used in two ways:

e Static dual porting - only one CPU at a time has access to the disk drive.
The drive can be manually switched from one CPU to another by pressing
the appropriate button on the disk drive. This approach is most useful in

clustered systems, or in other situations to guard against a CPU failure.

e Dynamic dual porting - both CPUs can access the disk drive at the same
time. This approach can cause data base problems, and can greatly increase

disk access times. It should be used cautiously.

In a clustered system a disk drive can be connected to two CPUs with static

dual porting. The primary CPU is actively connected to the dual-ported disk,
and second backup CPU does not nave access to the disk drive (though it is
connected physically to the dual port). In the clustered system, the backup
CPU has access to the data on the disk through the primary CPU using
normal DDP arrangements.

If the primary CPU fails, then the System Manager can activate the connec-

tion to the backup CPU from the disk drive. He does this by pressing buttons

Volume Sets and Clustered Systems

on the disk drive (see the appropriate disk drive user’s guide for more informa-
tion). He does mot need to physically transfer the disk, but he must run the
mount utility ((MOUNT) for that disk from the backup CPU.

The System Manager may then need to perform other tasks to insure that
other systems can access the volume set in the dual ported disk drive, such as
changing entries in the UCI Translation Table on other systems.

17.2.8 Library UCI

The library UCI is the one that contains all %oroutines and all %oglobals. By
default this UCI 1s UCI1 of Volume Set 0. Each UCI has a reference to the
library UCI it is supposed to use for Yoroutines and %globals. You can use
‘UCIEDIT to change the library UCI for each UCI.

In clustered systems, the library UCI should be the first UCI of the volume set
for all UCIs in that volume set. In this way you can avoid problems if you
must move the volume set from one system to another.

17.2.9 Using $ZR To Verify DDP

You can use the $ZREFERENCE special variable to verify, whether DDP is
actually working, instead of using the verify option of “DDPUTL. This
variable always contains the last completely resolved global reference. If the
reference was to another volume set, this information is contained in $ZR.

Assume that the UCI Translation Table is set up so that a reference to global
“XXX is made to “XXX in the UCI, JHM, in volume set WWW on a remote

system.

First, access global “XXX; then WRITE the value of $ZR.

)S B="XXKC2, 2)
YW $2R

“C'JHM" "WWW" IKRKC2,2)

Thus, you can verify that the DDP access was actually made.

Volume Sets and Clustered Systems 17-15

Appendix A

Detecting and Recovering from Errors

This Appendix describes DSM-11 error detection and recovery.

A.1 Types of Errors

The four major types of errors that can occur in a DSM-11 system are:

¢ MUMPS Programming Errors

e Mass storage hardware errors

e System crash errors

e Other system failures

A.2 Mumps Programming Errors

DSM-11 reports these errors either as typed messages to the relevant job’s
terminal, or as traps through the $ZTRAP special variable for the job.
General programming errors normally occur during routine development, and
result from faulty routines. For example, insufficient partition space for a

routine or its variables, or incorrect syntax. Other errors, such as accidental

disconnection of a remote terminal or data base overflow, are aut of the

control of the programmer, but still must be anticipated when designing and
managing an application system. See Section 4.10 for a discussion of MUMPS
error handling, and Section A.5 for a list of possible errors.

A.3 Mass Storage Hardware Errors

DSM-11 maintains a log of the hardware errors that are described in this
appendix. Two examples of mass storage hardware errors that DSM-11
records are disk read errors and magnetic-tape read errors. DSM-11 stores the

device controller status information for these errors in the system table for

subsequent logging on disk.

The occurrence of mass storage errors is usually transparent to the user

because DSM-11 always makes a number of attempts to successfully perform

the operation that caused the error. DSM-11 logs each unsuccessful attempt.

DSM-11 has a fixed number of retries for any particular device. After this
fixed number is exceeded, DSM-11 displays the appropriate error message.

Hardware error logging is performed by a system utility routine, the caretaker
utility, that runs as a background job in its own partition. This system utility
routine monitors the system for error conditions, and logs them chronologi-

cally in a special system global. DSM-11 also has a utility routine (“KTR) that
displays the information that is recorded in the error log. See Section 12.2 for
more information on the caretaker utility.

A.4 Errors That Cause System Failure

The two types of system failures are: soft crashes and hard crashes. A soft
crash results in an orderly shutdown of the DSM-11 operating configuration;
however, the processor and the Executive Debugging Technique, XDT, (if

included in the configuration) remain operable. See the DSM-11 XDT
Reference Manual for more information on XDT.

You can restart the system if a soft crash resulted from certain hardware or

operating system errors that are detected by the PDP-11 processor. These soft
crash errors can include:

e Bus timeout error

e Illegal instruction error

e Memory parity error

e Segmentation error

e System power failure

When a soft crash occurs, DSM-11 logs the error information in the System
Table and on the console terminal. See Section A.4.1 for more information on
soft crashes. See Section A.4.2 for information on restarting the system.

A hard crash is caused by unpredictable events. Occurrence of either type of
crash indicates an abnormal hardware or software condition that may require
the assistance of Digital service personnel.

A.4.1 DSM-11 System Soft Crash

The DSM-11 operating system can detect certain system failures by trapping
through hardware error vectors. All of these vectors transfer control to a
single memory-resident trap handler. The trap handler can tell which vector
caused the trap, because each error vector in DSM-11 has a unique processor
status word (PSW) value. The trap handler stores a number of important CPU

registers into a reserved crash block in the System Table (SYSTAB).

The trap handler prints (on the console terminal) the crash block, followed by
the Kernel Stack, the User Stack, and the System Map. This entire printout is

called a "crash report.” If DSM-11 XDT is included in the crashed system, the
trap handler gives control to XDT just as if the trap were an XDT breakpoint.

If the trap is a power failure, however, the crash report is not printed until the

trap occurs a second time, indicating that power has been restored. Also, a
power fail trap does not give control to XDT, but allows the system to
continue.

A Digital service representative can use a crash report to determine the

probable cause of the system failure. You should save any crash reports that
occur, and write down as much information about the state of the crashed

system (which terminals were active, names of running routines, and so on) as
you can.

After the crash report has printed (if it is not a power failure), you may wish

to attempt restart of the system to minimize data loss. See Section A.4.2 for a
discussion of restarting the system.

The error vectors that cause crash reports are:

4 CPU Error This is the most common symptom of a system

failure, either hardware or software. The CPU error

register at crash block location 2104 shows which of

several possible errors has occurred.

10 Reserved This trap is caused by either an accidental modifica-
Instruction tion of memory, or by an erroneous attempt to

execute a data value as an instruction.

24 Power Fail This trap is neither a software nor computer error,
and the system can be restarted without data loss.

114 Memory System This is most likely a hardware error. See the
Error

250 Memory

For more information about error vectors and error registers, see your PDP-

Memory System Error Register (MEMSYS) at crash

block location 1706. If bit 1 1s set in MEMSYS, then

a parity error has been detected in a memory
location. The address of the faulty memory location
is indicated by LOWADD and HIADD at crash

block locations 1710 and 1712 respectively.

Because of the structure of DSM-11, this trap occurs

only if a Page Description Register is accidentally
modified, which is a highly unlikely event.

ll Processor Handbook. Here’s a detailed description of the Crash Block:

SYSTAB | Hardware
Address Register Description

1644 PSW of error vector (flag for trap handler)

1646 - General Register 0
1650 - l
1652 - 2
1654 - 3
1656 - 4
1660 - 5
1662 - 6 (Kernel Stack Pointer)
1664 - User-mode Stack Pointer
1666 177776 {Processor Status Word (PSW)
1670 - General Register 7 (Program Counter (PC))
1672 172352 {Kernel Page Address Register 5 (PARSK)
1674 172354 {Kernel Page Address Register 6 (PAR6K)
1676 177652 User Page Address Register 5 (PARSU)
1700 177654 User Page Address Register 6 (PAR6U)
1702 177656 [User Page Address Register 7 (PAR7U)
1704 177766 (CPU Error Register Bit 7 = illegal halt

6 = odd address error
5 = nonexistent memory (cache)
4 = Unibus timeout
3 = ellow-zone stack limit
2 = red-zone stack limit

1706 177744 (Memory System Error Bit 0 = Main memory timeout
1 = Main memory address parity

error

1710 177740 [Low 16 bits of address’ of memory error (LOWADD)

A.4.2 Soft Crash Recovery

The safest way to restart is at memory location 40 (octal). This restart location

is provided for just this purpose. When a 40 restart is done, the CPU registers
and all terminals are reinitialized. To restart from DSMXDT, simply type
40G. To find out how to restart from your CPU console, consult your PDP-J]
Processor Handbook, or PDP-11 processors user’s, system installation, or

system operating guide.

Restarting the system allows all jobs to resume operation without data loss.
The job that is running at the time of the failure is given a <CRASH> error.
After restarting the system, you should run the System Status utility routine

(‘STA) to obtain the current system status information. The Restore
Jobs/Devices utility routine (“RJD) can be used to restore resources belonging
to lost jobs and locked-out devices.

As a general rule, you should permit those jobs that were running at the time
of a system failure to terminate before performing a system shutdown.
However, soon you should shut down the system using the System Shutdown

utility, “SSD, and reboot. Continued running with a damaged system could
cause problems.

A.4.3 DSM-11 Hard Crash

A hard crash is the unconditional termination of all processor operations. This
error condition occurs when the system accidentally causes the processor to
execute a HALT instruction (machine code 000000). This condition is caused
by a hardware or software malfunction that results in the modification of the
contents of one or more memory locations that contain the operating system.
This error condition is identified by the abrupt termination of all system
operations and the extinguishing of the processor’s RUN light. Possible causes
of this error condition include:

e Improper use of VIEW command

Hardware failure

Operating System failure

HALT console switch being pressed

When a hard crash occurs, you should obtain the following information for
diagnosing the cause of the error:

e The address displayed in the processor’s ADDRESS REGISTER

e Contents of registers RO through R6

e Contents of User Mode stack pointer

e Contents of the first five memory word locations (ascending order)
beginning with the address contained in R6 Stack Pointer

After recording this information, you must reboot the system to continue
operation.

A.5 DSM-11 Error Messages

The following is a list of the DSM-11 error messages.

MESSAGE

< ABORT >

<BREAK>

<BLPRT>

<CLOBR>

<CMMND>

<CRASH >

<DBDGD>

< DBOVF>

MEANING

Indicates that you pressed the programmer abort key while in
Programmer Mode during the execution of a routine. This is
an unconditional interrupt of the routine.

Indicates a BREAK command was encountered while execut-
ing. The BREAK command 1s used for diagnostic purposes.
This message can be generated by a BREAK command in a
routine, by setting a breakpoint (through $ZBREAK), or by
pressing ccTAL78) during Programmer Mode.

Indicates an attempt to access a global while using the VIEW
device in protected mode, and at the same time owning the
VIEW device.

This error results from trying to modify the current routine by
using the ZLOAD commands within the routine.

Indicates illegal use of a command or a command that is
undefined in the DSM-11 language.

Error to the job in the RUN queue at the time of a restart
following a system crash.

Indicates the contents of a block in the global does not
conform to the defined structures given to directory, pointer,
or data nodes.

Indicates that a global SET or ZSAVE has been aborted
because of insufficient room on disk to allocate new space.
The integrity of the data base may be degraded as a result of

this condition.

<DIVER>

<DKHER>

<DKRES>

<DKSER>

<DMCER>

<DSCON>

<DSTDB>

<FORMT>

<FUNCT>

<INDER>

<INRPT>

<ISYNT>

<KILLR>

<LINER>

Indicates an attempt to perform division by zero.

Indicates disk hardware error.

Indicates that a global SET or a ZSAVE has resulted in the
allocation of disk blocks from reserved disk space. Although

the routine aborts because of this condition, the SET or

ZSAVE 1s allowed to complete.

Indicates a reference to a disk block number that is not in the
range of blocks accessible by the DSM system. This error can
also be generated by a degraded global or routine pointer,

SDP, SPOOLING, or VIEW.

Indicates (if not a system software error) an attempt to use the
VIEW command to access a block number larger than the size

of the referenced disk, or on a nonexistent disk.

Indicates that either an illegal DMC11 I/O operation has been
attempted, or a data transfer error has occurred in the
DMC11 link.

Indicates a telephone line has disconnected.

Indicates a DMCII line has failed during a DDP data
transfer.

Indicates incorrect data format encountered while reading
data from magtape, the TUS8, or the RX02.

Indicates an undefined function or faulty use of a defined

function.

Indicates that an indirection argument has incorrect syntax.

Indicates that you pressed the cetrtycé) key (or another
designated application interrupt key) and that this key was
enabled. See Section 4.7 for more discussion of interrupting
routines and the application interrupt key.

Indicates a line of DSM code cannot be inserted into the
routine buffer. The line label may not be legal, the line may
contain illegal control characters, or the line may be too long.

Indicates an internal error was generated by the routines
‘RJD and “SSD to terminate a job.

Indicates a reference has been made to a line that does not

exISt.

<LPERR>

<LVLER>

<MINIM>

<MODER>

<MTERR>

<MXNUM >

<MXSTR>

<NAKED>

<NOBUF >

<NODEV>

<NOEBC>

<NOPEN >

Indicates a line-printer error. This error message is displayed
only if $ZTRAP is enabled, and the device is not using the

Caretaker utility to monitor and report errors.

Indicates an illegal attempt to transfer control to another level
from a higher level execution block when using block-
structured programming. See the DSM-1]1 Language
Reference Manual for more discussion of block-structured
programming.

Indicates the value of a number is below the valid lower limits

for numerics.

Indicates an attempt to execute a command that is not allowed
in the designated mode while using a TU58 or RX02 device.

Indicates magnetic-tape hardware or operator error as
determined by the current contents of the $ZA special
variable. The system generates this error only if you SET the

$ZT special variable.

Indicates that the value of a number is outside the range
expected at that point.

Indicates that the string exceeds the maximum length allowed
(255 characters).

Indicates an attempt to reference a global variable using
naked syntax:

e Before any full syntax reference

e After another user killed the global variable using the KILL
command

Indicates that a ring buffer is not available for the current
terminal I/O operation. Repeated occurrence of this error
indicates insufficient ring buffer space has been allocated for
the system.

Indicates an attempt to open a device that is not included in
the system, or an attempt to open a device with an illegal
device number.

Indicates an attempt to open a device for use with the
EBCDIC character set, but EDCDIC support is not
configured into the running system.

Indicates an attempt to USE a device that has not been
opened.

<NOPGM >

<NOSYS>

<NOTSY >

<NOUCI>

<PARn>

<PGMOV >

<PLDER>

<PROT>

<SBSCR>

<STKOV>

<STORE>

<SYNTX>

Indicates that a reference is made to a routine name that does
not exist in the routine directory for this UCI, and is not in the

directory of library (%0) routines.

Indicates a reference to a system (through Distributed Data

Processing) or to a volume set (through an extended reference)
that is undefined.

Indicates an attempt to branch to location 0. This error may
indicate corruption of the system image in memory.

Indicates a reference to a UCI (in an extended reference) that
is undefined.

Indicates that there was an error during an OPEN or USE
command on the parameter indicated by the number n. For

example, <PARI> refers to an error in parameter | of the
OPEN or USE command.

Indicates that there is insufficient space available in the
routine buffer, when loading a routine via ZLOAD, DO,

GOTO, or QUIT.

Indicates that the system cannot retrieve the routine being
loaded, called, or started. The routine is corrupted on disk.

Indicates that an attempt was made to use the view command

from a nonlibrary (%) routine, or when the System Manager

has restricted the use of VIEW. This error also indicates an
attempt to access a protected global. This error is also given to
the owner of a VIEW job when it attempts to access global or
routine data that it has protected by using the P switch.

Indicates illegal subscript usage:

e A null string for a subscript

e¢ Too many characters in a subscript

e Illegal characters in a subscript

Indicates an overflow in machine stack space. This condition
could arise from deeply nested indirection, endless program
loops, or some other unusual condition.

Indicates there is insufficient space in the partition.

Indicates that the current command being executed has an
error in syntax. Syntax errors include illegal punctuation,

illegal use of operators, and illegal use of parentheses.

<UNDEF>

<$SERR>

<VWERR>

Indicates a reference to an undefined local or global variable.

Indicates the $SELECT command did not find a truth valued

expression.

Indicates an attempt to access a device in shared VIEW
buffer mode without ownership of the VIEW device (device
#63). This error may also result from an attempt to close
the VIEW device before closing any devices still open in
Shared VIEW buffer mode.

Appendix B

Routine File Structure

Routine files consist of routine lines that are stored on disk. Routine names

are stored in routine directory blocks. Routine lines are stored in routine data

blocks.

Disk allocation for routine files is handled by the global module. The global
module treats the routines in each UCI as if they constituted a single global.
Routine names are inserted in routine directory blocks as if they were the first
subscript of a global whose name was the space character (40 octal). The
routine names are a single logical level of subscripts in that global. You can
access this global using the $DATA and $ORDER functions.

Routine directories and data growth areas are set up at SYSGEN during the
Modify UCI Data session. Therefore, the first routine directory block is
pointed to by an entry in the UCI Table. The global module initializes each
routine directory by placing one dummy entry in it. The identification field for
the dummy routine is the space character without a first subscript (routine
name).

Routine files only use the pointer structure and data level of the global hierar-
chy. In all respects, routine directory blocks are identical to global pointer
blocks. They also behave the same. As the number of routine files increase,

bottom-level pointer blocks split. The split creates two pointer levels. The
Original bottom-level pointer block becomes a pointer block and the new
pointer block becomes the bottom-level pointer.

B-2

Each node of a pointer block points to one routine data block. That data
block is fully dedicated to the routine, and may point to continuation blocks
(using the “garbage” pointer) if the routine is larger than one block. Routine
data blocks are not right-linked.

Figure B-1 shows the physical structure of a routine file that has continuation
blocks.

Figure B-1: Routine File Structure

ROUTINE

NO 1

ROUTINE

NO 2

]
/

ROUTINE DIRECTORY

(BOTTOM-LEVEL POINTER BLOCK)

S X=1 S Y ="HELLO ROUTINE

DATA BLOCK

LEVEL

MR-S-872-80

Figure B-2 shows the structure of the routine data block.

Figure B-2: Routine Data Block

LENGTH OF 0 0

ROUTINE NAME

ROUTINE NAME

ROUTINE NAME

et 1-8 BYTES

WORD BOUNDARY

ROUTINE LENGTH

+ ROUTINE BODY

A

PNTR TO ROUTINE CONTINUATION +1014
M) (L)

BLOCK (H) +1016

(M) PNTR TO NEXT RIGHT LINKED (L) +1018

ALWAYS 0
BLOCK TYPE BLOCK (H) +1020

BLOCK OFFSET +1022
MR-S-873-80

Routine data blocks store routine lines in the following format:

LENGTH OF ROUTINE NAME

This 1-byte field stores the number of characters (bytes) in the routine name.

ROUTINE NAME

The following field stores the name of the routine. Routine names can use as
many as 8 bytes.

ROUTINE LENGTH

This 1-word field stores the number of characters (bytes) in the entire routine.

ROUTINE BODY

B-3

This field stores the routine lines of a DSM routine. The maximum size of this
field depends on the length of the routine name (since a routine name can use

between one and eight bytes).

POINTER TO ROUTINE CONTINUATION BLOCK

Bytes 1014 to 1016 store the block address of the next continuation block in
the routine file. This entry is zero if the file has no continuation blocks or if it

is the last continuation block in the file. The address stored in this field is also
used by the Garbage Collector. When you KILL a routine, the Garbage
Collector is not used. The global handler follows the continuation pointers
and collects the blocks immediately.

POINTER TO THE NEXT RIGHT-LINKED POINTER BLOCK

This 3-byte field always contains zeros.

BLOCK TYPE

This field stores the block type of the routine block:

e Type 10 (octal) if a routine data block

e Type 20 (octal) if a routine directory block

This field is 1 byte long.

BLOCK OFFSET

One word starting byte 1022 indicates how much of the block is filled, by
pointing to the next free byte in the block.

Appendix C

DSM-11 Editors

This appendix discusses two DSM-11 editors used for editing routines. The
first is the basic DSM-11 editor. The second editor is referred to as the EDI
editor. Additional information on DSM-11 editors is given in Section 4.6.

C.1 The DSM-11 Editor

The DSM-11 editor consists of seven prompts that are displayed sequentially.
After the editor displays a prompt, you simply enter the requested data, and
the editor performs the specified operation. Section 4.6.2 contains informa-
tion on how to access the editor; and the J/ntroduction to DSM contains

additional examples and a tutorial on how to use the editor. The following
chart describes each editor prompt in detail. It lists the valid responses to each
vrompt and the results of their entry.

PROMPT 1: LINE

Response Result

Carriage RETURN The editor interprets a carriage return to mean
that you wish to edit the last line edited. If this
is the first line request, or the line does not exist

for the label reference, the editor writes "LINE

NOT FOUND “and returns to the LINE prompt.
Otherwise, it proceeds to the prompt 2.

C-2

* followed by any DSM
code

Label or label & offset

+ or +N, where N is a

positive integer

PROMPT 2: REPLACE

Response

Carriage RETURN

END

A string containing
either code, a comment,
or string literal

SUBSTRING...

Ends the edit session.

Proceeds to the fourth edit prompt, CHANGE
EVERY.

Temporarily leaves edit mode and executes the
DSM code, then reenters the editor at the LINE

prompt.

Attempts to obtain the $TEXT of the label
reference and, if unsuccessful, writes “LINE

NOT FOUND” and returns to the LINE

prompt. Otherwise, it proceeds to the prompt 2.

Interprets this entry as a positive offset from the
last line label entered. Treatment is as described
in response 1: Carriage RETURN. Note that a
+0 works exactly like a carriage return.

Result

Writes the line being edited and returns to
prompt 1.

This entry has two meanings. If the line you are
editing contains the string "END”, the editor
proceeds to prompt 3 to replace the occurrence
of "END” with the response to prompt 3.
Otherwise, the editor proceeds to prompt 3 to
add something to the end of the line.

If the line contains the specified string, the
editor proceeds to prompt 3 to replace it with
the response to prompt 3.

This entry has two meanings. If the line contains
the string literal "SUBSTRING...,” the editor
proceeds to prompt 3 to replace that string with
the response to prompt 3. If it does not contain
this string literal, the editor proceeds to prompt
3 to replace all text from the occurrence of
SUBSTRING to the end of the line with the
response to prompt 3.

SUBSTRING 1 Two meanings exist for this response. If the line
. SUBSTRING 2 contains the string literal "SUBSTRING

1... SUBSTRING 2,” the editor proceeds to
prompt 3 to replace the occurrence of the string
with the response to prompt 3. If it does not
contain this string literal, the editor proceeds to
prompt 3 to replace all text between the
occurrences of SUBSTRING 1 and SUBSTRING
2 inclusive, with the response to prompt 3.

PROMPT 3: WITH

Response Result

Carriage RETURN Replaces the string specified in prompt 2 with
nothing; that is, it removes it from the line and

returns to prompt 2.

A string containing Replaces the previously specified string from
either code, acomment, prompt 2 with this response, and returns to

or string literal prompt 2.

PROMPT 4: CHANGE EVERY

Response Result

Carriage RETURN Returns to prompt 1.

A string you wish to Accepts whatever is typed, (including a ?) as the
search for string to be searched for, and proceeds to

prompt 5.

PROMPT 5: FROM LINE

Response Result

Carriage RETURN Assumes that you want to start searching from
the first line in the routine; the editor writes

"FIRST," and then proceeds to prompt 6.

A line label and If the line does not exist, the editor writes

optional offset "LINE NOT FOUND,” and repeats the prompt.
Otherwise, the editor proceeds to prompt 6.

PROMPT 6: TO LINE

Response Result

Carriage RETURN Assumes that you want to search to the last line
in the routine buffer, writes "LAST,” and

proceeds to prompt 7.

A line label and

optional offset
If the line does not exist, the editor writes

"LINE NOT FOUND,” and repeats the prompt.

Otherwise, the editor proceeds to prompt 7.

PROMPT 7: CHANGE TO

Response

Carriage RETURN

” (single quote)

The string you want to

insert

C.2 The *%EDI Editor

Result

Every occurrence of the "CHANGE EVERY”

string is removed from the routine buffer.
Answering this question begins the search. Each

time the editor finds a line with the "CHANGE
EVERY” string in it, it removes the string and
prints out the line in its edited form. When all
lines specified have been searched, the editor
returns to prompt 1.

Leaves all occurrences of the "CHANGE
EVERY” string as they are; that is, the editor

just performs a search. Each line that contains
the "CHANGE EVERY” string 1s written out
unchanged. When the editor is finished, it
returns to prompt 1.

Proceeds with the search. Each time the editor
finds an occurrence of the "CHANGE EVERY”
string, it is changed to the "CHANGE TO”
string and the edited line is written out. Note
that the line 1s written out only once. Multiple
occurrences of the "CHANGE EVERY” string
are all edited before the line is written out.
Editor returns to prompt 1.

The “%EDI editor is a line editor that operates on the routine that is
currently in your routine buffer. The editor maintains a pointer that points at
the current line of the routine buffer. The “%EDI editor uses commands that
you must enter after the EDI prompt, which is an asterisk (*). Most of these
commands operate on the current line.

C.2.1 Using The *%EDI Editor

The routine you wish to edit must be in the routine buffer. If the routine is on
the disk, you must load it into the buffer by using the ZLOAD command
before entering the EDI editor. To create a new routine, type:

> ZR

> x “ZEDI

To edit an existing routine, type:

> ZL Routine Name

H “YEDI

The editor responds with:

*#** Editing (Routine Name) ***

%

Help information can be obtained by typing HELP or H. To get general
information, type HELP. To get information on a particular EDI command,
type H and the command name. The following example gives you information
on the EDI ADD command.

*H ADD

To get a listing of all the EDI help information type:

* HELP ALL

You are then prompted for a device to list the information on. The default
device is your terminal.

To exit from the EDI editor type:

¥EAITT

C.2.2 EDI Commands

This section summarizes the EDI commands. Commands are indicated with

uppercase and lowercase letters, such as “BOttom”. The uppercase parts
represent the abbreviated version of the command, in this case, BO.

Note that DSM-11 accepts the EDI commands in either uppercase or lowercase
letters. For instance, you could type bo for the BOTTOM command.

C-5

C-6

In many cases the argument, such as string, is optional. If you do not use the
argument, the editor usually prompts for a string. Many commands operate
over more than one line of text. These commands have the letter n in their
format. Substitute for n the number of lines of text (starting with the current
line) that you want the command to cover.

Some commands use delimiters (such as /) to separate strings:

C/string1/string2/

Other delimiters can be used in addition to the slash (/), as long as that
delimiter does not appear in the strings themselves. For example, a period can

also be used as a delimiter:

C.string|.string2.

The final delimiter (after string2) is optional.

The EDI commands are as follows:

Add {string}

The indicated string is appended to the current line.

AP {string}

Same as the ADD command, except that the new line is printed.

BOttom or End

Moves the pointer to the beginning of the last line of the program.

Begin or Top

Moves the pointer to the dummy line preceding the top line of the routine.

{n}Change/string1/string2{/}}

Changes string] to string2 in the current line. String] and string2 cannot
contain a / character.

CCcharacter

Refers to the concatenation character, which allows you to give multiple
commands on one line.

Delete {n}

Causes a line of text to be deleted.

DP {n}

Same as the DELETE command, except that the new current line is printed.

EXit

Terminates the current editing session.

{n}Find {string}

Searches the routine for the specified string, beginning at the line following the
current line.

Insert {string}

Inserts the specified string immediately following the current line.

KILL

Deletes all lines in the routine.

{n}Locate {string}

Causes a search for the indicated string beginning on the line following the
current line.

{n}LC{/string1/string2/{/}}

Changes all occurrences of string] in the current line to string2. String] and
string2 cannot contain a / character.

LI

Causes all remaining lines in the routine to be typed to the terminal.

MACRO number definition

This command is used to define a macro, which (in this situation) is a series of
EDI commands.

MCall {global node}

This command allows you to retrieve up to three macro definitions previously
stored in a global.

MSave {global node}

Saves the current macro in a global for future use.

{n}Mx {a}

This command executes the macro specified (by number) n times. The optional
argument a is used by the macro as its argument.

Next {n}

This command moves the current pointer backwards or forwards in the file.

Overlay {n}

This command deletes n lines and replaces them with any number of lines that
you type.

Print {n}

This command prints out the current line and the next n-1 lines on the
terminal.

PAste{/string1/string2{/}}

This command is identical to the LC command except that all remaining lines
in the program are searched and all occurrences of string! are replaced with
string2. Stringl and string2 cannot contain a / character.

Retype {string}

This command replaces the current line with a string.

SC {/string1/string2{/}}

This search and change command searches for string] in the routine and
replaces it with string2. The located line becomes the current line. String] and
string2 cannot contain a / character.

SAve {n} {global node}

This command causes the current line plus n-1 lines to be saved.

TYpe {n}

This command is similar to the PRINT command except that TYPE does not
move the line pointer after displaying the requested text.

UNsave {global node}

This command retrieves all the lines in a specified global and copies them after
the current line.

Verify {ON}
Verify OFF

This command controls the display of lines specified by the LOCATE and
CHANGE commands.

X string

This command allows the user to execute a sequence of DSM-11 commands
before returning to EDI command level again.

ESC

This command prints the previous line in the program.

RET

This command prints the next line of the program.

n< definition >

This command defines and executes a macro in one step. The macro is
executed n times.

Appendix D

DSM-11 Disk Capacities and Calculations

This appendix describes disk capacities and how to calculate a DSM-11 block
address.

D.1 DSM-11 Disk Capacities

Table D-1 lists DSM-11 disk capacities.

Table D-1: DSM-11 Disk Capacities

Disk Type Type Maps per Maximum Usable

Mnemonic Designation Disk Block Numbers
on Disk

(Approximate)

DK RKOS 0 6 2399
DM RK06 | 33 13199
DM RKO7 1 66 26399
DR RMO02 2 164 65599
DR RM03 2 164 65599
DR RMOS5 2 625 249999
DB RP0O4 3 212 84799
DB RPOS5 3 212 84799
DB RP06 3 424 169599
DL RLO1 4 12 4799
DL RLO2 4 25 9999
DU RA80 5 296 118399

DU RA60 5 500 199999
DU RA81 5 1100 439999
DU RDS51 5 24 9599
DU RX50 5 l 399

D.2 Computing Block Numbers

DSM-11 and the system backup utilities store information on disks in disk
blocks. A physical disk block holds 512 (decimal) bytes of information; while
a logical DSM-11 block holds 1024 bytes. There are several ways to specify a
particular disk block; the way that you specify a block number must be
appropriate for the particular DSM-11 command, function, or utility that
you are using. You can specify a block:

1. By its cylinder, track and sector numbers

2. By its absolute block number: the block at cylinder 0, track 0, sector 0 is
absolute block 0; the block at cylinder 0, track 1, sector 0 is absolute

block m, if m is the number of blocks per track on the disk; the block at
cylinder 1, track 0, sector 0 is absolute block #m*n, if there are n tracks

per cylinder on the disk.

If m is the number of disk blocks per track for a given disk type, and n is
the number of tracks per cylinder, then the block at cylinder, c, track t,

sector s, has the block number A as in:

A = ((c*n) + t)*m+4+s

If you already know the DSM-11 block number, M, you can calculate the
absolute block number, A, using the following formula:

A =2*M(M-K-(u * 262144))

where the constant K depends on the disk type, and u is the unit number
(0 to 7) by which you refer to the disk in your system.

3. By its DSM-11 block number (not a preferred syntax). If you know the
absolute block number, you can use the following formula to calculate the
DSM-11 block number:

TY PE*2097152 + (UNIT*262144) + ABSOLUTE BLOCK NUMBER

If you know the block number within the map, add

+ (MAP * 400)

to the formula shown above.

The DSM-11 block number is always equal to half the absolute block
number, plus a fixed constant, which depends on the DSM-11 disk type
and unit number.

Note that this syntax becomes ambiguous at block 262144. The preferred
syntax is the one described in the following paragraphs.

. By its block number relative to a disk; for example, the following is block
number 1278 of DMI:

1278:"DM1"

. By its block number relative to a volume set; for example, the following is

block number 1278 of Volume Set 1:

1278:"S1"

Appendix E

Using the $ZCALL Function

You can use $ZCALL to add your own functions to those already written in
the DSM-11 language. The system has an area in memory reserved for user-
written MACRO-I11 subfunctions used by the $ZCALL function.

NOTE

You can use the Autopatch utility to install your subfunctions in the
system. To use $ZCALL, you must have a working knowledge of the
PDP-11 instruction set, and a thorough understanding of the
internal conventions of the DSM-11 operating system, particularly as
they apply to the interpreter and routine buffer structure. It is the
user’s responsibility to decode and manage any optional arguments
that follow the subfunction name referenced by $ZCALL.

The system table, SYSTAB, contains a pointer to the area reserved subfunc-

tions, and defines the size of this area.

Several conditions must be met before you can use the $ZCALL function:

e You must create a table that defines each of your subfunctions. Conversely,
you must ensure that there is a subfunction for every entry in the table.

e You must maintain certain DSM-11 general purpose register conventions.

The following sections describe each of these conditions in further detail.

E.1 Creating the $ZCALL Name Table

The beginning of the area reserved for subfunctions must be a table. This table
contains the names and locations of each subfunction you create to be called
by $ZCALL.

Each entry in the table must be 10 bytes long. The first 8 bytes must contain

the name of the subfunction as it is referenced by $ZCALL. If the name is less

than 8 characters, the remaining bytes must be filled with zeroes. The last 2

bytes of the table entry must contain the location of the subfunction relative to
the beginning of the user-written subfunction area. Figure E-1 shows the table
entry of a $ZCALL subfunction called PACK. Note that ZCALL names that
are preceded by a "%” are reserved for use by Digital.

Figure E-1: Memory Area for User-Written Subfunctions

S X=$ZCALL (PACK, Y)

All bytes, of both the name and locations fields, of the last entry in the table
must contain zeroes.

>

| ° LOCATION

0 4 | (BYTE 2) (BYTE 1)
A p

| (BYTE 4) (BYTE 3)
K Cc

| (BYTE 6) (BYTE 5) | TABLE
0 0 ENTRY

| (BYTE 8) (BYTE 7)
0 0

| (BYTE 10) (BYTE 9)
1 J

| 1300

: SUB-
| . FUNCTION

— —RTSPC

MR-S-877-80

E.2 Using DSM-11 General Purpose Registers

E-2

General purpose registers RO, R1, R4, and R5 must be properly managed as
$ZCALL enters and exits the subfunction. On entry into the subfunction:

e RO contains the byte address of the character that terminates the subfunc-
tion name. For example:

S K=$ZCALLCPACK, 1)

4
RO

This character can be a comma. If, however, there are no arguments follow-
ing the subfunction name, the character is the close parenthesis,).

e R1 and RS both point to the next available byte in the Interpreter Stack
(String Stack) in your partition.

NOTE

The Interpreter Stack temporarily stores information while the
interpreter processes the subfunction. (For more information, refer
to Section 14.13.)

If necessary, you can use this area to pass back any values that subfunction
produces.

e R4 points to the beginning of the current job’s partition.

Upon completion of the subfunction:

e RO must point to the close parenthesis character that terminates the
argument string.

e R1 points to the first character your subfunction has stored in the
Interpreter Stack (that is, it has the same position as on entry into the
subfunction).

e R2 and R3 can be changed by your subfunction.

e R4 must point to the the beginning of the current job’s partition.

e R5 points to the next available byte in the Interpreter Stack.

E-3

S Y="ABC... DEF"

S K=$2CALLCPACK, 1)

RO

ABCDEF
f f RI R5

Interpreter Stack

As shown in Figure E-1, your subfunction must end with the MACRO-1]1
instruction, RTS PC. This transfers program operation from the subfunction
back to the location recorded by the Program Counter (PC) in the processor
stack.

E.3 Error Conditions

There are several conditions that cause an error message when you use the
$ZCALL function:

e If you reference a subfunction that has not been defined in the table, DSM-
11 issues a <FUNCT> error.

e When the subfunction finishes, if RO does not point to the terminator of the
$ZCALL function string, DSM-11 issues a <FUNCT> error.

e If your subfunction tries to store more characters in the Interpreter Stack
than the stack has space for, DSM-11 issues a <STORE> error.

Appendix F

Using the Operations Control Register

This appendix contains reference information for using the operations control
register.

F.1 Operations Control Register Use

The operations control register is a concept, rather than a single hardware or
software feature. The operations control register determines both the function
of the console terminal and the general operational status of the system.

You can set or clear switches by using a system utility, “SWREG, that allows
you to examine and alter the software switch register. Setting the hardware
control switches does not affect the software switches, which ignore the
hardware settings.

F.2 Operations Control Switches

The following paragraphs describe the function and use of each operations
control register switch. Table F-1 contains the octal and decimal values for the
switch functions.

Switch 4

When this switch 1s ON, it disables error logging to disk.

F-2

Switch 5

When this switch is ON, all system errors that are normally logged through the
system caretaker utility are printed on the system console terminal. You
should use this switch if you want to diagnose errors as they occur.

Svitch 6

When this switch is ON, it prevents all users, except the console terminal user,
from logging in. When you set this switch, all users attempting to log in will
receive the following message:

SURRY, LUGIN DISABLED

Switch 10

When this switch is ON, it indicates that a warm system restart is desired. This

function cannot be controlled through the hardware switch register.

Switch 13

When this switch is ON, it prevents the writing of any data to the disk except

by VIEW. This is a lockout on data base modification operations. This
function cannot be controlled through the hardware switch register.

Switch 14

When this switch is ON, it prevents the reading or writing of any disk data
except by VIEW. This switch performs a total lockout on all data base
operations. This function cannot be controlled through the hardware switch
register.

Table F-1 lists the octal and decimal values for each DSM operation control
register switch.

Table F-1: Values for Operations Control Register Switches Function
Assignments

Function Switch Octal Value Decimal Value

Disables Error

Logging 4 20 16

Prints System
Errors 5 40 32

Disables Log In 6 100 64

Enables Warm 4

Restart 10 2000 1024

Disables Data

Base Writes 13 20000 8192

Disables Data

Base Reads

And Writes 14 40000 16384

Appendix G

Using Bit-Masking Techniques

To examine the condition of one or more bits within two bytes, you must use a
technique called bit masking. Bit masking involves shifting the bit(s) you want
to examine to the right into a “viewing” position.

NOTE

Remember that two bytes consist of 16 bits numbered 0 to 15 from
right to left.

To mask a bit in DSM-11, use the following procedure:

If the bit to be examined is in a two-byte segment that is interpreted as a DSM-
11 number, integer divide the segment by the appropriate power of 2. For
example, to test if bit 12 is set in XYZ, do the following:

TAYZ\4096#2

This shifts bits 0 to 11 to the right in XYZ, leaving bit 12 in bit Os position,
then tests whether the right-most bit is equal to 0.

The following chart gives a general guide to the use of bit masking, where X is
the value to be tested.

To Examine Bit n Use

0 X#2
] X \ 2#2
2 X \ 4#2
3 X \ 8#2

To acquire certain information about the operating system, you may need to
shift one or more bits in a memory location in order to examine other bits. In

the following examples, LOC represents a memory address in the system table.

LUC \256 ishift right 8 bits Chigh byte into low byte)

LUC#256 ishift left 8 bits Clow byte inta high byte)

Combining operations:

LUC\256#2 ishift high byte to law byte and check

ifor bit 8 set.

To mask for more than | bit at a time, use the following procedure. First,

integer divide by the power of 2 corresponding to the starting bit (counting
from right to left) of the group that you want to shift; that is, if you want to
shift out bits 0-8, integer divide the two-byte segment by 512. Next, check the
bits by means of a modulo 2 of the appropriate power. The following
examples illustrate specific cases:

LUC\912#8 icheck if any of bits 39 to 11 are set

LOC#H256 icheck for any bit set in low byte

To shift left (zero fill), multiply by corresponding powers of 2.

The following routine checks the status of all bits in the $ZA (magnetic tape
Status) special variable by shifting the contents of the word to the right
(dividing by 2) for successive bit positions. If this routine finds an error, it
executes the routine ERR and then returns to check the next bit.

A S A=$ZA F T=8:1:15 D ERR: A#2 S A=A2

Appendix H

Internal Subscript Format for a DSM-11 Global

DSM-11 uses a method of global encoding referred to as 8-bit encoding. This
approach allows subscripts to be composed of all possible 8-bit byte values
except 0 (ASCII null). Negative subscripts collate in the proper numeric
sequence. A flag is present is global directory entries to indicate whether a
particular global is encoded as 8-bit or 7-bit. (Versions of DSM-11 previous to
Version 3 use 7-bit encoding.)

This description applies to 8-bit globals. Each subscript in the node reference
for a DSM-11 global is constructed of a variable-length string of bytes, as
follows:

coll. desc. | Ist byte | 2nd byte | vee | last byte | null byte

Each key is a concatenation of subscripts, each with a trailing zero byte, as
follows:

ic |B/B|B...B/0/C|B|B/B..B/0/...C|B/B...B] 0|

The collation descriptor byte, the first byte in the subscript, has a value that

depends upon the type of subscript. These values are:

0 reserved

1 null subscript
2-127 negative canonic number having 125-0 integer digits
128 canonic zero
129-253 positive canonic number having 0-124 integer digits
254 ASCII string
255 reserved

When the subscript is an ASCII string, the bytes of the subscript following the
collation descriptor byte are the bytes of the string.

When the subscript is a positive canonic number, the bytes after the collation
descriptor byte are the ASCII values of the digits (including decimal point, if
any) of the number.

When the number is a negative canonic number, the bytes following the
collation descriptor byte are the nine’s complement of the digits. In this case,
the minus character is not included, but a byte of value 254 is appended to the
end of the subscript.

All types of subscripts have a trailing null byte, which acts as a separator
between subscripts.

The following examples show how particular global nodes are represented:

("ABCD") 254 "A" "B"” "Cc" "T)” @)

*(12.5) 131 my" nan nn non 0

\(-2.5) 126 ‘2’ nt '§' 9540

A number written without quotes is the actual decimal value of the byte.
Double quotes indicate that the value of the byte is the ASCII value of the
quoted character. Single quotes indicate that the value of the byte is the nine’s
complement of the ASCII value of the quoted character.

Glossary

Address

A label, name, or number that designates a location where data is stored.

Argument

An expression that controls the action, location, direction, or range of the

command or function with which it is used.

Array

An ordered set of local or global elements or nodes referenced by subscripts
and a common variable name.

ASCII

The American Standard Code for Information Interchange. A series of 128
characters defined in ANSI (the American National Standards Institute)
Standard X3.4-1968.

Auxiliary Storage

This term refers to any device that stores data, except core memory.

Background Job

A job that:

1. Is started by the JOB command

Glossary~1

Glossary-2

2. Does not own any devices

3. Has a principal device (the device that started its execution)

Also see Job.

Balanced Tree

A graph that represents the structure of DSM-11 arrays. Balanced trees are
drawn like a family tree with the root (name) at the top and the nodes

arranged below by their depth of subscripting. All nodes with one subscript
are on the first level, all nodes with two subscripts are on the second level, and
so forth.

This tree structure is only a logical picture of an array; it does not reflect how
DSM-11 physically stores the array. For example, the tree structure shows all
nodes that point to defined data nodes. DSM-11 does not store such pointer
nodes, but does recognize their logical existence.

Baud

A term used to describe data transmission rates, equivalent to one bit per

second. For example a 1200 baud rate equals 1200 bits per second.

Bootstrap

A technique or device designed to bring itself into a desired state by means of
its own action. For example, a “bootstrap” routine 1s one whose first few
instructions are sufficient to bring the rest of itself into the computer from an
input device.

Breakpoint

A location at which routine operation is suspended in order to examine partial
results.

Collating Sequence

An ordering assigned to a set of items. For storage of array nodes or elements
DSM-11 collates in a numeric collating sequence. It first stores all nodes with

subscripts that are canonic numbers (subscripts that contain a string of valid,
numeric characters) in the ascending numeric order of their subscripts. It then
stores all nodes with subscripts that are strings or noncanonic numbers (such
as 01) in the ascending order of their ASCII-character codes.

Command

A name or mnemonic, that, by virtue of its syntax and position on an input

line, causes a computer to perform a predefined action.

Command Line

One or more statements input to DSM-11 for immediate execution. DSM-11
distinguishes a command line from a routine line (entered for later execution)
by the absence of a line label and TAB character.

Command Mode

One of two modes of system operation. This mode allows you to:

1. Enter commands for immediate execution

2. Create or modify routines

3. Execute routines

Comment

A brief, nonexecuted explanation of the purpose of a routine or of a routine
line. You must precede all comments with a semicolon (;). You can use any

valid DSM-11 graphic character in a comment.

Concatenation

The process of evaluating two or more string expressions to produce a single
string that is a joining of the values of the expressions. Concatenation is
designated by the underline character.

Configuration

A particular selection of hardware and software resources that are tailored to
provide a system environment.

Constant

A constant is a value or string that does not change its value from one
execution of a routine to the next.

Control Characters

The result of pressing the CTRL key and a letter key simultaneously.

Data

The data (facts, numbers, and symbols) entered into the system for processing
and/or storage. DSM-11 has only one data type: the variable length string.
(DSM-11 regards numbers as a special interpretation of a string.)

Data Base

The body of disk-stored data that resides in global arrays.

Data Record

Glossary=3

Glossary-4

The individual pieces of data associated with the nodes of a global array. Data
records can be variable length, up to 255 characters.

Default

The value of an argument, operand, or field assumed by a routine if a specific
assignment is not supplied by the user.

Descendant

For any array node (element), any other array node on a lower (deeper)
subscripting level that can be reached from that node and that shares the first
n subscripts in common with that node. For example, the nodes A(1,2,2) and
A(1,2) are descendants of A(1).

Device

Any part of the computer system other than the central processing unit,
memory, or their associated structures. A device can be a physical piece of
equipment, such as a terminal or a line printer, or a logical piece of
equipment.

Device Controller

A hardware unit that electronically supervises one or more of the same type of
devices. The device controller acts as a link between the CPU and the I/O
devices.

Duplex

A communications line that can send data in both directions simultaneously is

called a full-duplex line. A line that can send data in both directions but not
simultaneously is called a half-duplex line. Duplex can also refer to a
computer system that contains two interconnected CPUs.

Expression

A string of characters that yields a value when executed. An expression is
composed of expression atoms (variables, functions, and literals), binary
operators, unary operators, formatting characters, parentheses, and indirec-

tion operators.

Fatal Error

An error from which a process cannot recover. For example, errors that cause
the CPU to stop, or disk write errors that are not caused by the disk drive
being powered down or write-locked. Errors that a process can recover from
are not fatal. For example, errors that are reported in $ZA or trapped by error
processing routines.

Function

A name preceded by a dollar sign ($) and followed by an argument or
argument list enclosed in parentheses. The function and its argument list
defines and performs a procedure.

Global

A simple global variable or global array stored on disk.

Global Variable

A named reference to data in a global on disk can be either simple (a variable

name that references a single datum). Global variables are not unique to a
user. They can be examined and/or changed by any authorized user.

Indirection

A means of using the value of an expression instead of the expression itself.
Indirection is denoted by the at (@) sign followed by an element that evaluates

to an expression atom.

Whenever DSM-11 finds an occurrence of indirection, it substitutes the value

previously given the expression atom for the occurrence of indirection. This
allows DSM-I1 to execute the same segment of code repeatedly for different

values of the expression atom.

Interpreter

A part of the DSM-11 operating system that translates DSM-11 commands

and statements into machine instructions and executes the specified
operations. The interpreter translates a DSM-11 routine each time it is run.

Interrupt

A signal which, when activated, causes a transfer of control to a specified

location in memory, thereby breaking the normal flow of control of the
routine being executed.

Job

Any system activity that requires the use of a partition. For example, logging
into the system, or JOBing a routine.

Kernel Mode

The hardware mode in which the operating system normally executes. In this
mode, all machine instructions can be executed.

Line

A string of characters terminated with a carriage-return/line-feed
combination.

Glossary=5

Glossary~6

Line Label

An optional name at the beginning of a routine line that identifies the line
within that routine. A line label should have no more than eight alphanumeric
characters. DSM-11 evaluates only the first eight characters. If the first
character of the line label is an uppercase alphabetic character or a percent
(%) character, the remaining characters in the label can be any combination of
uppercase alphabetics or digits. If the first character of the line label 1s a digit,
the remaining characters in the label must be digit characters and must be
unique within a particular routine.

Literal

A string of characters delimited by double quotation marks that occurs within
the context of a routine and that never changes value from one execution of

the routine to another. DSM-11 recognizes two types of literals:

e Numeric literals

e String literals

Local Variable

A variable that exists only in memory. Local variables are unique to a user and
can usually be inspected and/or changed only by that user.

Map

A disk storage unit. A map consists of 400 DSM-11 blocks (which are 1024-
bytes long). The 400th block of every map is a map block which contains
allocation data about previous 399 blocks in the map, and itself.

Modem

Acronym for MOdulator DEModulator. A modem is a device that converts
data generated by data processing equipment to a form that can be transmitted
over telephone lines, and reconverts data transmitted over telephone lines to a
form that is compatible with data processing equipment.

Naked Reference

A shorthand method of referring to a node in a global array. Naked references
permit you to refer to the sibling or descendant of a previously referenced
node by using only the circumflex (“) character and the unique portion of the
sibling’s or descendant’s subscript.

Nesting

A relationship between two DSM-11 language statements. When two
statements are nested, the second (or inner) statement is wholly contained

within the range of the first (or outer) statement. Generally, the inner

statement completes its execution cycle, then returns to the outer statement so

it can complete its execution cycle.

Node

A global or local array element addressed by the name (common to all
members of the array) and a unique subscript.

Operator

A symbolic character that indicates the action to be performed on operands.

Partition

The area of memory that contains all elements of a job. Partitions contain
routine and local variable storage areas, and status data about routines that is
used by the executive’s time-sharing algorithm.

Principal Device

The terminal at which you log in. Although each terminal has a unique device
number associated with it, DSM-11 always interprets Device 0 to mean the
principal device.

Prompt

A word or message printed by the system that requests some action on your

part.

Queue

A queue is an ordered list in which the first item entered is the first item
removed.

Right-Linked Pointer

A pointer stored in a blocks used by globals and routine files that specifies the
address of a related block. If the block is a global pointer or bottom-level
pointer block, or a routine directory block, the right-linked pointer points to
the block whose nodes collate immediately following the nodes in the current
block. If the block is a global directory block or global data block, the right-
linked pointer specifies the address of the next block in the file (since these
blocks form sequential files). If the block is a routine data block, right-linked
pointers are not specified.

Routine

A collection of DSM-11 lines, saved, loaded, called (using DO), or overlaid

(using GOTO) as a single unit. A set of computer instructions or symbolic
statements combined to perform a task.

Glossary=-7

Glossary-8

Routine Buffer

One of five major sections of a partition. The routine buffer stores the lines of
a DSM-11 routine. As the routine buffer fills, it grows toward the high end of
the partition’s memory. As the routine buffer empties, it shrinks toward the
low end of the partition’s memory.

Routine Line

One or more statements input to DSM-11 for later execution as part of a
routine. You must precede the statements in a routine line with a TAB charac-
ter. You can precede the TAB with an optional line label.

Run Queue

The run queue is a system queue that contains the number of the job currently
executing in its time slice. This queue is effectively a one-entry queue.

Sparse Array

An array that need not be predefined to its maximum size. A sparse entry
contains only those nodes that have been explicitly defined.

The sparse array is a dynamic structure. As more nodes are defined, DSM-11
allocates space for them.

Special Variable

A variable that is permanently defined within DSM-11. These variables
provide system and control data. The first character of a special variable is
always a dollar sign ($).

Stand-alone

This term refers to a system or piece of equipment that is capable of doing its
job without being connected to anything else.

Storage Reference

A name symbolic representation of a storage location that has the value of the
contents of that location. DSM-11 recognizes three types of storage reference:

e Local Variables

e Global Variables

e Special Variables

String Data

Any set of between 0 and 255 characters taken as a string data entry and
referenced by a local or global variable.

String Literal

A string of characters enclosed in double quotation marks within the context

of a line. The value of a string literal is a function of its spelling.

Statement

A unit consists of a command (and, optionally, its modifying arguments) that
specify an operation to be performed.

String

A set of up to 255 ASCII characters. DSM-11 stores all data as variable-length
character strings.

Subroutine

A group of statements arranged so that control can pass to the subroutine and
back to the main routine again. Subroutines usually perform tasks required
more than once in a routine.

Subscript

A numeric or string-interpreted value appended to a local or global variable
name to identify specific elements or nodes in an array. Subscripts are

enclosed in parentheses. Multiple subscripts must be separated by commas.

Subscripted Variable

A local or global variable to which a subscript is affixed. An element or node
in a local or global array.

Substring

Any contiguous part of a specified string.

System Queue

This term refers to the set of queues used by the DSM-11 operating system to

control the allocation of system resources.

Tied Terminal

A terminal that can only run preselected routines and access preselected
globals. When you log in at a tied terminal, DSM-11 forces the automatic and
protected startup of the application to which the terminal is tied.

Timeout

Glossary=9

Glossary-10

An integer-valued expression preceded by a colon that can be appended to the
argument of an OPEN, LOCK, READ, or JOB command. The integer
specifies the number of seconds DSM-11 is to try to complete the operation the
command specifies.

Time Slice

This term refers to the period of time allocated by the operating system to
process a particular partition’s routine.

User Mode

In this hardware mode, certain instructions cannot be executed. This mode is
used to prevent one user in a multiuser system from altering data in other
partitions, or in the operating system itself.

Utility Routine

This term refers to any general-purpose routine that is included in an operat-
ing system to perform common functions.

Variable

A symbolic name for a location where a datum is stored. DSM-11 recognizes
three types of variables:

e Local Variables

e Global Variables

e Special Variables

Local variables are stored in memory. Global variables are stored in arrays on
disk. Special variables are maintained by DSM-11 for all users.

INDEX

Abort key

see control Y

Active Job Report utility
see ACTJOB

ACTJOB, 12-11
Add UCIs utility

see UCIADD

Application interrupt key, 10-15,
10-26, 12-3

see also control C

defining the key, 4-17

OPEN parameter, 6-11
recognition of, 4-16

Application Mode, 2-3
definition of, 2-2

login, 3-8, 3-9

logout, 3-11

routine execution, 4-13

stopping routine execution,

4-14
Applications

structure, 9-9

Arrays

see globals
ATTACH, 12-15
AUPAT, 11-1, 11-5 to 11-7, 12-14
Autobaud, 10-29

Autoconfiguration, 1-4, 1-5, 1-25,

10-1
completion, 1-31
definition of, 1-4

example, 10-27 to 10-29

installation, 1-4, 1-8, 1-26

requirements, 10-2

utility
see CONFIG

Autopatch utility
see AUPAT

Background Job Attacher utility
see ATTACH

Background Job Detacher utility
see DETACH

BACKUP, 11-1, 11-4, 12-6
clustered systems, 17-13

Bad Block Table, 1-23, 10-24,

14-13, 14-13 to 14-14
Bad blocks, 13-3

see also Bad Block Table
in installation, 1-7

installation, 1-23

test, 1-23

test patterns, 1-23

Baseline System, 1-1, 1-2 to 1-3,

1-4, 1-5, 1-21, 1-25, 1-30
PAC, 1-3, 1-30
UCI, 1-3, 1-30

BBTAB, 12-6
BCS, 12-14
BISYNC, 11-3
SYSGEN, 10-7, 10-9, 10-22

Bit-masking, G-1 to G-2
BLDMP, 12-10
Block numbers

computing, D-2

SDP, 6-35
Block structuring

optimizing routines, 9-1, 9-2
BREAK, 3-6, 4-15, 4-17, 4-20,

4-29, 6-11
arguments, 4-16

Break Mode, 3-8

description of, 4-17
entering, 4-17

Breakpoints, 4-19
actions, 4-20

Index-1

clearing, 4-21

continuing execution, 4-21

examining, 4-21

setting with $ZBREAK, 4-19
setting with BREAK, 4-20

Broadcast utility

see BCS
Buffers

sizes, 15-2 to 15-3

CARE, 12-3 to 12-5
Change Error Printer, 12-5
Erase Hardware Error Log, 12-4
Print Disk Error Summary, 12-5
Start System Caretaker, 12-4

Stop System Caretaker, 12-4
Caretaker job

installation, 1-31

line printer errors, 6-17
Start-up, 11-2

utilities
see CARE

Cassettes
see TUS8

Characters
Binary Pattern Match operator,

9-7
BREAK key, 4-17
carriage return with routines,

7-3
circumflex, 9-14

circumflex and globals, 8-2
control, 3-5 to 3-6

formatting, 5-6, 6-17

function keys, 3-4

indicating octal number, 7-3
indirection operator, 9-8
percent, 9-1]

question mark, 10-16

terminal escape keys, 6-12 to
6-15

up arrow, 9-14, 10-3, 10-16

up arrow and globals, 8-2
up arrow with routines, 7-3

use of uppercase and lowercase,
4-2

CLOSE, 5-4, 6-22, 6-35, 6-49
Command lines

definition of, 4-4

Commands

Index~2

abbreviations, 4-2, 9-6

debugger, 4-18
entering commands, 4-2 to 4-4

Comments, 4-3, 9-10

Communications
between computers

see DMC11

between jobs

see JOBCOM

between routines

see routine interlocks
CONFIG, 10-3, 10-27
Configuration

autoconfiguration, 1-4, 10-1,

10-2
definition of, 1-4, 10-4

installation, 1-25

manual, 10-1

name, 10-17

size, 10-17

Control B, 4-15, 4-17

Control C, 4-15, 4-16, 10-15,

10-26, 12-3
see also application interrupt

key

Programmer Mode interrupt, 4-15
Control characters, 3-5

Control Y, 4-15, 10-15, 10-26,

12-3

Programmer Mode interrupt, 4-15
%CRF, 7-8

% CURSOR, 7-14
Cursor Control utility

see % CURSOR

Customization

installation, 1-30

using system generation, 1-1

%D, 7-10

DAT, 12-14
Data Base Repair utility

see FIX

Data Base Supervisor

see operating system
Data records, 8-5

Date

Date and Time utility
see %H

Show Current Date utility

see %D

Date and Time utility
see %H

DBT, 12-10, 13-10, 16-3
DDCMP, 6-40
DDP

global access syntax, 8-8

SYSGEN, 8-8, 10-5, 10-6, 10-21,
17-7

volume sets, 17-1 to 17-15

DDPUTL, 12-15, 17-9 to 17-10
DDR, 12-11, 14-16
Debugger

MUMPS, 3-6, 4-17 to 4-22
breakpoint actions, 4-20
breakpoints, 4-19
clearing breakpoints, 4-21
continuing execution, 4-21

enabling and disabling, 4-18

examining breakpoints, 4-21
setting breakpoints, 4-19, 4-20

system, 3-6, 4-17

see also XDT
Decimal

as default base for numbers, 7-3

Decimal/Octal Conversion utility
see % DOC utility

to Octal Conversion utility

see %DO utility

Define Start-up parameters
see STUBLD

DEJRNL, 16-5, 16-6
DESPOOL, 6-47, 6-51
DETACH, 12-15
Device Descriptor Block, 14-14 to

14-16
Device Status Word, 6-4

Device Table, 5-2, 14-7 to 14-8

utility
see DEVTAB

DEVTAB, 12-12
DGAM, 13-12, 13-26, 14-11
DH11, 6-1, 6-8
SYSGEN, 10-5, 10-20

%DIAL, 7-12
Direct Mode, 3-8

see also Programmer Mode
definition of, 4-4

description of, 4-5
prompt, 4-5

Directories, 4-22 to 4-24

global, 4-23

routine, 4-23, 14-11

Disk Table, 14-13, 14-13
utility

see DISKMAP

Diskettes
see RX02

DISKMAP, 14-13
DISKPREP, 12-7
Disks

see also Disk Table
backup, 11-4

Backup utility
see BACKUP

Bad Blocks utility

see BBTAB

Block Dump report utility
see BLDMP

block layout, 13-5

blocks, 13-5
capacities, D-1

computing block numbers, D-2
Data Base Repair utility

see FIX

Disk Block Tally report utility

see DBT

Disk Table utility

see DISKMAP

disk-cache usage, 13-21

Dismount utility

see DISMOUNT
dual porting, 17-14
Fast Disk Block Tally report

utility
see FASTDBT

Format/Initialize utility
see DISKPREP

general layout, 13-5
global directory block, 13-10
Integrity Check report utility

see IC

journaling, 16-5
Label utility

see LABEL

layout, 13-4 to 13-17

maintenance utilities, 12-5 to

12-7
map blocks, 13-8
maps, 13-2, 13-5, 14-12

Mount utility

see MOUNT

mounting at start-up, 11-3

Index-3

overflow, 13-20

print error summary utility
see DSKTRACK

report utilities, 12-10
reserved space, 13-19

restore, 11-4

Restore utility
see RESTORE

SYSGEN
disk information, 10-4, 10-18

disk reserve, 10-13

disk-tape buffers, 10-10,
10-22, 10-24
write check, 10-13

types, D-1

units, 13-4

DISMOUNT, 12-6
Distributed Data Base Processor

see DDPUTL

Distributed Data Processing
see DDP

Distribution kit

backup, 1-21
distribution media, 1-2, 1-5

DSM-11, 1-1, 1-2
media backup, 1-6
mounting media, 1-14

Distribution media, 1-2, 1-5

backup, 1-21
mounting, 1-14

DL11
SYSGEN, 10-19, 10-22

DMC11, 6-40 to 6-46
Block Mode, 6-41

Buffer Mode, 6-43
commands, 6-40

DDCMP, 6-40
DDP, 8-8
device numbers, 6-40

error conditions, 6-45

Message Mode, 6-41

modes, 6-40

OPEN in Buffer Mode, 6-43

switched telephone network,
6-44

SYSGEN, 10-5, 10-19, 10-20,
10-22, 17-6, 17-7

USE in Buffer Mode, 6-43

VIEW buffer, 6-43

WRITE * with Block Mode, 6-42

WRITE * with Buffer Mode, 6-44

Index-4

$ZA, 6-43, 6-45, 6-46
$ZA Status Bit Assignments,
6-45

DO, 4-14, 9-1, 9-2, 9-5, 15-2
%DO utility, 7-13

%DOC utility, 7-9

DOS-11, 6-27, 10-35
DSM-11

data access, 2-2

I/O, 5-1
language description, 2-1
system access, 2-3
system capacity, 2-2
system hardware, 2-6
system overview, 2-1

system software, 2-3 to 2-6

DSM-11 editor
see editors

DSOFSPL, 12-9
DSONSPL, 12-9
Dual porting, 17-14
DUPI1
SYSGEN, 10-7, 10-9, 10-20,

10-22
DUV11
SYSGEN, 10-7, 10-9, 10-22

DZ11, 6-1, 6-8, 6-9
SYSGEN, 10-5, 10-20

DZV11
SYSGEN, 10-20

EBCDIC
translation, 10-6, 10-8, 10-35

MEDI, 4-12, C-4
see also editors

Editors, 4-11 to 4-13
DSM-11 Editor, 4-12, C-1 to C-4

% EDI, 4-12 to 4-13, C-4 to C-9

editing using ZPRINT and
ZREMOVE, 4-6

Global Editor (%GEDIT), 4-13
Load DSM-11 Editor utility

see LOADED

Programmer Mode, 4-11

types of editors, 4-11
%EGD, 7-6

MER, 4-27, 12-5
%ERD, 7-8
Error processing, 4-25 to 4-29
BREAK 2 control of, 4-29

crash

hard, A-5

recovery, A-5

report, A-3

soft, A-3

default error processing, 4-25
DMC11, 6-45
error messages, A-6 to A-10

error-processing routines, 4-25
to 4-26

error-trapping routines, 4-27
exiting from an error handler,

4-28 to 4-29
hardware errors, A-2

I/O, 5-8
iine printers, 6-17
magnetic tape, 6-31
MUMPS programming errors, A-1

nested contexts, 4-27 to 4-28

RX02, 6-65
SDP, 6-36
spooling, 6-52
system failure, A-2
terminals, 6-15

TUS58, 6-70
types of errors, A-1

MET, 4-27, 12-4
Executive

see operating system
Extended Global Directory utility

see %EGD

Extended global references, 8-6

to 8-9

Extended Routine Directory
utility

see % ERD

FASTDBT, 12-10

%FIND, 7-5

First Line utility

see %YFL

FIX, 12-10, 12-14

%FL, 7-7

Floppy disks
see RX02

FOR, 9-2

Formatting

disk during installation, 1-22,

1-24

Formatting Characters, 5-6, 6-17

Function keys, 3-4

%G, 7-5

Garbage Collector, 11-7, 13-6,

13-13, 13-19

GC, 7-4

%GD, 4-24, 7-4

%GE, 7-4

%GEDIT, 4-13
Get UCI utility

see %GUCI

Globals, 8-1 to 8-9

for system global see SYS
access to other UCIs, 8-6, 8-7,

8-9
access to other volume sets,

8-8
arrays, 8-1

ASCII sequence, 8-3

backup, 11-4
balanced tree, 8-4

7-bit, H-1
8-bit, H-1
characteristics, 13-11

characteristics in SYSGEN,

10-13, 10-25
circumflex, 8-2

collating sequences, 8-2
concepts, 8-1 to 8-6

Copy utility
see GC

data base supervisor, 8-1
data blocks, 13-15

data records, 8-5

data structures, 8-4 to 8-5

DDP, 8-8
directories, 4-23, 14-11, 15-3

directory block, 13-10
Directory utility

see %GD

extended directory
see %EGD

editor
see %GEDIT

Efficiency utility
see %GE

extended global references, 8-6

to 8-9, 17-11

global module, 8-1, 13-21

grouping accesses, 9-2

Index-5

growth and development, 13-17
to 13-20

initialization, 13-17

journaling, 16-5
keys, 13-13, 13-14

layout of directory block,
13-10

levels, 13-19

library utilities, 2-6, 7-3 to

7-6
List utility

see %G

Management utility
see YGLOMAN

numeric sequence, 8-2

optimization, 13-20
pointer blocks, 13-13
programming strategy, 8-5 to

8-6
protection categories, 4-24,

13-12, 17-14
Restore utility

see %GTI

Save utility

see %GTO

Selector utility

see %GSEL
Sparse arrays, 8-3

structure and optimization,

13-1 to 13-27
Subscript Filter utility

see %FIND

subscripts, 8-2
internal format, H-1

tree structure, 8-4

up arrow, 8-2

using UCI Translation Table,

8-9
variables, 2-2, 8-2 to 8-3

Version | Restore utility

see %GR
Version | Save utility

see %GS
%GLOMAN, 4-24, 7-4, 8-3, 10-13,

13-26, 16-2, 16-5, 17-14
GOTO, 4-14, 4-28, 9-2, 9-5
%GR, 7-11
%GS, 7-11
%GSEL, 7-5
GTI, 7-5, 11-4
%GTO, 7-5, 11-4

Index-6

%GUCI, 7-14

%H, 7-12

HALT, 3-10, 4-14, 4-15, 5-4, A-5
%HDR, 7-11
Header Formatter utility

see % HDR

HELP, 12-15
Help Text Driver utility

see HELP

S$HOROLOG, 16-1

I/O
assigning devices, 5-3
commands, 5-4

device characteristics, 6-1 to

6-71
Device Selector utility

see %IOS

device specifiers, 5-2
Device Table, 5-2

error processing, 5-8

introduction, 5-1

Modes, 3-8

I/O Monitor

see operating system

IC, 12-10, 12-14
In-memory Job Communications

see JOBCOM

Indirect Mode, 3-8

Indirection

optimizing, 9-8
Input

see I/O

Input/Output
see I/O

Installation

autoconfiguration, 1-4, 1-5,

1-8, 1-25, 1-26, 1-31
bad blocks, 1-7, 1-23

Baseline System, 1-21, 1-30
booting the system, 1-5, 1-14

to 1-18, 1-21

caretaker job, 1-31
checklist, 1-5 to 1-8

customization, 1-30

default answers, 1-21

define start-up command file,
1-30

dialogue, 1-21 to 1-31
formatting disks, 1-22, 1-24
help, 1-21, 1-25

MICRO/PDP-11, 1-19 to 1-20
mounting media, 1-14
of DSM-11, 1-1 to 1-31
overview, 1-4 to 1-5

PAC, 1-8, 1-29
PDP-11 hardware, 1-1

power line frequency, 1-8, 1-29
power on console, 1-9

power on PDP-11, 1-10 to 1-13
standard software options, 1-27
start-up command file, 1-30
starting the system, 1-5, 1-14

to 1-18, 1-21
STU, 1-30
STUBLD, 1-30
SYSGEN, 1-25
system generation, 1-25
system global, 1-29
upgrade of DSM-11, 1-1

Interactive routines, 9-11

Interpreter

see Operating system
$10, 5-3, 6-12
IOS, 7-11

JOB, 6-16, 14-5

Job Communications

see JOBCOM

Job Monitor utility
see %JOB utility

$JOB special variable, 14-6
Job Table, 14-5 to 14-6

utility
see JOBTAB

% JOB utility, 12-11

JOBCOM,, 6-38 to 6-39, 12-4

commands, 6-39

device numbers, 6-38

READ, 6-39

receivers, 6-38

SYSGEN, 10-6, 10-8, 10-10,

10-23, 10-24

transmitters, 6-38

WRITE, 6-39

ZLOAD, 6-39

ZPRINT, 6-39

Jobs

see also Job Table
definition of, 14-5

JOBTAB, 12-12
Journaling, 11-4, 13-3, 15-13 to

16-6
clustered systems, 17-13

DDP, 17-13
dejournal, 16-6
disks, 16-5

globals, 16-5

magnetic tape, 16-6
SDP access to journal space,

6-33, 6-35, 6-37
Start-up, 11-2

SYSGEN, 10-6, 10-7, 10-22
utilities, 16-2 to 16-5

JRNALL, 6-33, 16-4
JRNDEALL, 16-4
JRNINIT, 16-4
JRNLSHOW, 16-3
JRNRECOV, 16-2, 16-4
JRNSTART, 16-3
JRNSTOP, 16-3
KILL, 16-1
KTR, 12-4

LA120
power on, 1-9

LABEL, 12-7
Language Interpreter

see operating system

Library utilities, 7-1 to 7-15
conventions, 7-3

globals, 7-3 to 7-6
menu, 7-2

miscellaneous utilities, 7-9 to

7-12
other miscellaneous utilities,

7-12 to 7-15
routines, 7-6 to 7-8

running, 7-2

types of, 7-1
Library utility routines, 2-5
Line Map Report utility

see LMAP

Line printers, 6-16 to 6-17

queing, see spooling

commands, 6-16

error conditions, 6-17

format control, 6-16

Index=-7

formatting characters, 6-17

$ZA, 6-17

Lines

command lines, 4-4

entering routine lines, 4-5
line structure, 4-3 to 4-4

routine lines, 4-4

List First Line utility

see %YFL

List MENU Global utility

see %MENLIS

LMAP, 12-11

LOAD, 6-61, 6-66, 10-9, 12-16

Load a Driver utility
LOAD

Load DSM-11 Editor utility

see YPLOAD%ED

%LOADMED, 7-10

Loadable drivers

Start-up, 11-2

SYSGEN, 10-7, 10-8, 10-22,

10-23

Local variables, 2-2

LOCK, 10-11, 12-12, 14-6

Lock Table, 14-6 to 14-7

SYSGEN, 10-11, 10-24, 14-7

utility

see LOCKTAB

LOCKTAB, 12-12, 14-7

Login, 3-7 to 3-10

see also MUX

access parameters, 3-7

Application Mode, 3-9
autobauded, 3-10

echo, 10-14, 10-26

modem with autobauding, 3-10
modes, 3-8

PAC, 3-8

partition size, 3-8
Programmer Mode, 3-9

tied terminals, 3-10

UCI, 3-7

volume sets, 17-5

Logout, 3-10 to 3-11

Application Mode, 3-11
Programmer Mode, 3-10

Lowercase characters, 4-2, 10-31

LP11, 6-16

SYSGEN, 10-19, 10-22

Index-8

Magnetic tape, 6-17 to 6-33
CLOSE, 6-22
commands, 6-18

Continuous Mode, 6-30

Copy utility
see TAPECOPY

data formats, 6-28

device numbers, 6-18

DOS-11 label, 6-27
error conditions, 6-31

fixed-length data format, 6-29

journaling, 16-6
labeling, 6-27
Magtape Default Mode utility

see MMD

OPEN parameters, 6-18 to 6-22
operations, 6-24
READ, 6-24
standard EBCDIC label, 6-27

Status Check utility

see JMTCHK
stream data format, 6-28

streaming, 6-30

SYSGEN, 10-18
disk-tape buffers, 10-10,
10-24

unlabeled, 6-28

USE, 6-22
USE and B switch, 6-26

variable-length record format,
6-29

VIEW buffer, 6-26

VIEW buffer and streaming, 6-30
WRITE, 6-22
WRITE *, 6-22
$ZA, 6-24, 6-31, 6-32
$ZA status bit assignments,

6-24
$ZB, 6-25
ZLOAD, 6-24
ZPRINT, 6-22
$ZTRAP, 6-32

Magtape Default Mode utility
see MMD

Manuals

MICRO/PDP-11, 1-3
PDP-11, 1-3

MBP, 10-2, 10-12 to 10-16, 10-25
application interrupt key,

10-15, 10-26
assigning PAC and UCI, 2-3

line frequency, 10-16, 10-26

log-in sequence echo, 10-14,

10-26

PAC, 10-16, 10-26

programmer abort key, 10-15,

10-26

significant digits in division
computations, 10-15, 10-26

system restart after power

failure, 10-15, 10-26

telephone disconnect delay,
10-15, 10-26

VIEW protection, 10-14, 10-26
ZUSE, 10-14, 10-26

%MENLIS, 7-10

%MENU, 7-12

Menu Manager utility

see YMENU

MICRO/PDP-11

installation of DSM-11, 1-19 to

1-20

manuals, 1-3

Miscellaneous utilities, 7-9 to

7-12

Miscellaneous utilities (other),
7-12 to 7-15

MMOD, 6-17, 10-2, 10-34 to 10-35

Modem Autodialer utility

see %DIAL

Modems

see also MUX

Modes, 3-8 to 3-9

Modify Basic Parameters utility
see MBP

MOUNT, 8-8, 12-7

%MTCHK, 6-32, 7-14

Multiplexers
DHI1I, 6-1

DZI1, 6-1

line parameter register, 6-8

MUMPS

see also DSM-11

MUX, 10-2, 10-29 to 10-32

autobaud, 10-29

CRT, 10-29

device number, 10-29

edit comment, 10-32

example, 10-32

login, 10-30
lowercase, 10-31

modem control, 10-30

output margin, 10-31

output only, 10-30

parity, 10-29
receiver speed, 10-30

routine numbers, 10-31

stall count, 10-30

tab control, 10-31

transmitter speed, 10-30
ZUSE, 10-30

Octal

Decimal/Octal Conversion
utility
see % DOC utility

to Decimal Conversion utility
see %OD utility

using # with octal numbers, 7-3
%OD, 7-13
OPEN, 5-3, 5-4, 6-3, 6-15, 6-18,

6-34, 6-35, 6-37, 6-43, 6-48,
6-58, 6-61, 6-64, 6-67

Operating system, 2-4
data base supervisor, 2-4, 8-1

executive, 2-4

I/O monitor, 2-4

language interpreter, 2-4
system supervisor, 2-4

Operations Control Register, F-1
to F-3

Output

see [/O

PAC, 3-7, 3-8, 10-16, 10-26

Baseline System, 1-3, 1-30

description of, 2-3
installation, 1-8, 1-29

PARTAB, 12-12

Partition Table, 14-8 to 14-9

utility

see PARTAB

Partition Vector, 14-17 to 14-20

utility

see PARVEC

Partitions

see also Parition Vector

see also Partition Table

description of, 2-2
partition size at login, 3-8
SYSGEN, 10-12, 10-24

Index-9

PARVEC, 12-13, 14-20
Patches, 11-4 to 11-7

applied to memory, 11-2
system, 11-5

utility, 11-5
see AUPAT

Pattern matching
optimizing, 9-7

PDP-11, 2-6
manuals, 1-3

power on, 1-10 to 1-13

PEEK, 12-14
Peek utility

see PEEK

Percent character, 9-11

Percent editor

see DSM-11 editor under editors
Performance statistics, 15-4 to

15-13
utility
see RTHIST

Power failure
system restart, 10-15, 10-26

Print Disk Error Summary

see DSKTRACK
Printers

queing, see spooling
see line printers

Programmer abort key, 10-15,

10-26
Programmer Access Code

see PAC

Programmer Mode, 2-3, 4-2

definition of, 2-2

description of, 3-8
Direct Mode, 4-4, 4-5

login, 3-8, 3-9
logout, 3-10
prompt, 4-5

routine execution, 4-13

stopping routine execution,
4-15

Programming
bit-masking, G-1 to G-2
conventions, 9-9 to 9-14
globals, 8-5 to 8-6

interactive routines, 9-11

Protection categories

see Globals

protection categories

Index-10

QUIT, 4-14, 4-15, 4-28

%RCE, 7-8

%RCMP, 7-6
%RCOPY, 7-7
%RD, 4-7, 4-23, 7-7
READ, 5-4, 6-12, 6-24, 6-35, 6-39,

9-7
REST, 11-1, 11-4, 12-6, 12-7
Restore Jobs/Devices utility

see RJD

Ring buffers
input, 6-3
output, 6-3

space unavailable for terminals,
6-15

RJD, 12-14
RMAP, 10-3, 10-9, 10-35 to 10-39,

15-2
RMBLD, 10-36, 10-38, 15-2
RMDIS, 10-36, 10-37
RMLOAD, 10-36, 10-38, 15-2
RMSHO, 10-36, 10-37
Routine communications

see routine interlocks

Routine directories, 4-7, 4-23

Routine interlocks, 6-57

commands, 6-57

device numbers, 6-57

Routine lines

definition of, 4-4

Routine Mapping utility
see RMAP

Routines

see also system utilities
backup, 11-4
carriage return, 7-3, 12-2

Change Every utilty
see %RCE

communications
see routine interlocks

Compare utility
see % RCMP

Copy utility
see %RCOPY

Cross Reference utility
see %CRE

default answers, 7-3

definition of, 4-4
deleting and renaming, 4-8 to

4-9
directories, 4-23

Directory utility

see %RD
extended directory
see %ERD

entering routine lines, 4-5
entering routines, 4-2 to 4-4
exiting, 7-3
file structure, B-1 to B-4

help, 7-3

Indirect Mode, 4-5

interactive

conventions, 9-11

library utilities, 2-5, 7-6 to
7-8

List First Line utility

see %FL

loading, 4-6 to 4-8

loading from a sequential file,
4-10

mapped, 10-6, 10-9, 10-12,
10-23, 10-24, 15-1 to 15-2
Start-up, 11-3

number for tied terminals,

10-31
optimizing, 9-1 to 9-9

abbreviating commands, 9-6
calling by line labels, 9-5
direct, top-down execution
path, 9-2
DO, 9-2
GOTO, 9-2
indirection, 9-8

pattern matching, 9-7

short line labels, 9-6

short variable names, 9-6

XECUTE, 9-8
question mark, 12-2

Restore utility

see %RR

return to previous question,
7-3

routine directories, 4-7

routine line structure, 4-4

Routine Mapping utility
see RMAP

Save utility
see %RS

Saving, 4-6 to 4-8
Search utility

see %RSE
Selector utility

see YRSEL

starting and stopping, 4-13 to
4-17

storing in sequential files,
4-9

Summaries utility
see %SUM

system, 2-5

up arrow, 12-2

writing into a sequential file,
4-10

MRR, 4-9, 7-7, 11-4
%RS, 4-9, 7-7, 11-4
% RSE, 7-8

%RSEL, 7-8
RTHIST, 12-11, 15-1, 15-4 to

15-13
RX02, 6-61 to 6-66, 11-3

commands, 6-61

Control Mode, 6-64

error codes, 6-65

Mixed Mode, 6-63

OPEN and USE examples, 6-64

OPEN and USE parameters, 6-61
to 6-63

Read Mode, 6-63

SYSGEN, 10-4, 10-5, 10-7, 10-9,
10-20, 10-22

View Buffer Mode, 6-64

Write Mode, 6-63

$ZB, 6-66

SDP, 4-9, 4-10, 6-33 to 6-37,
13-3

access to journal space, 6-33,

6-37
OPEN, 6-35

CLOSE, 6-35
commands, 6-34

device numbers, 6-34

error conditions, 6-36

OPEN, 6-37
journal space, 6-35

OPEN and USE parameters, 6-34
to 6-35

READ, 6-35

Index-11

special characteristics, 6-36
SYSGEN, 10-6, 10-7, 10-22
USE, 6-37
WRITE, 6-35
$ZA, 6-36
$ZB, 6-36
ZLOAD, 6-35
ZPRINT, 6-35
ZWRITE, 6-35

SDP utility, 6-33, 12-7
Sequential Disk Processor

see SDP
SET, 8-2, 16-1
Set Date utility

see DAT

Set Time utility
see TIM

Show Current Date utility
see %D

Show Current Time utility
see YT

Shutdown utility
see SSD

Software Error Log utility
see %ER

Sparse arrays

see globals

SPL, 6-47, 6-51, 12-8
SPLALL, 12-8
SPLINI, 12-9
SPLREM, 12-8
SPLSTR, 12-9
SPOFSPL, 12-9
SPONSPL, 12-9
Spooling, 6-46 to 6-56, 10-23,

13-3
Allocate Spool Space utility

see SPLALL

CLOSE, 6-49
Deallocate Spool Space utility

see SPLREM

DESPOOL, 6-47
despooling, 6-46, 6-48
device commands, 6-48

device numbers, 6-47

Display Spool File Structure
utility
see SPLSTR

error conditions, 6-52

explicit, 6-47, 6-48, 6-51

Initialize Spool Space utility

Index-12

see SPLINI
OPEN, 6-48
spool file structure, 6-52 to

6-56
Start Despooler Lister utility

see DSONSPL
Start Spooler utility

see SPONSPL
Start-up, 11-2

Stop Despooler utility
see DSOFSPL

Stop Spooler utility

see SPOFSPL
transparent, 6-47, 6-48, 6-50

USE, 6-49
utilities, 12-8 to 12-9

see SPL
$ZA, 6-49, 6-52

SSD, 11-1, 11-7, 12-15
STA, 10-32, 12-11
Start-up command file, 1-30, 11-2

see also STU and STUBLD
define in installation, 1-30

Start-up utilities
see STU and STUBLD

Storage Allocation Table, 14-10,
14-12 to 14-13

description of, 13-2
Streaming

magnetic tape, 6-30
String data, 4-3
String literals, 4-3
%STRTAB, 12-13, 14-10
STU, 1-30, 6-51, 8-8, 11-1, 11-1

to 11-3, 12-4, 12-5, 15-1
STUBLD, 1-30, 11-1, 11-1 to 11-3,

12-4, 12-5, 15-2
Subscript Filter utility

see %FIND

%SUM, 7-8
Switch Register utility

see SWREG
SWREG, 12-11
SYS global, 10-27, 12-4

description of, 2-6
installation, 1-29

SYS utility, 12-2

SYSDEF, 10-29 to 10-41
customization, 1-30

in installation, 1-30, 1-31

list of utilities, 10-2

SYSGEN, 10-1 to 10-27
application interrupt key,

10-15, 10-26
assign device numbers, 10-7,

10-21
autoconfiguration, 10-1, 10-2

example, 10-27 to 10-29
basic system parameters

see MBP

carriage return, 10-16
clustered systems, 17-5 to 17-8

concept, 10-1

configuration, 10-4, 10-17
CSR addresses, 10-1

DDP, 17-5 to 17-8
default answers, 10-16

definition of, 1-25, 10-1

device characteristics
see MUX

disk information, 10-4, 10-18

disk-tape buffers, 10-10, 10-22,

10-24
example, 10-16 to 10-27
global characteristics, 10-25

help, 10-16
installation, 1-25

journaling, 10-22
magnetic tape, 10-18

manual configuration, 10-1
mapped routines

see routines
memory buffer allocation, 10-10

modify system parameters

see SYSDEF

partition size and login, 3-8
partitions, 10-12, 10-24
parts, 10-3

procedure, 10-3

programmer abort key, 10-15,
10-26

question mark, 10-16
ring buffers, 10-10, 10-23

routines

mapped
see routines

session, 10-3 to 10-16

software

configuration, 10-6, 10-21

options, 10-7, 10-22
standard options, 10-21
standard system, 10-6

SYSDEF utilities, 10-2

see also SYSDEF

system data structures, 10-11

to 10-12, 10-24, 17-8
system devices, 10-5, 10-18,

17-6
terminal device characteristics

see MUX

up arrow, 10-3, 10-16
Vector addresses, 10-1

volume sets, 10-10, 10-11,

10-23, 10-24, 17-8
SYSTAB, 12-12, 14-5
System Definition

see SYSDEF

System generation
see SYSGEN

System management
See also journaling
see also SYSDEF

see also SYSGEN

see also system utilities

buffer sizes, 15-2 to 15-3

data access, 2-2

global structure and

optimization, 13-1
limiting data areas, 15-3 to

15-4
operating and maintaining

DSM-11, 11-1
operations control register,

F-1 to F-3
optimizing DSM-11, 15-1 to

15-13
performance statistics, 15-4 to

15-13
preserving system integrity,

11-3 to 11-4
system access, 2-3

system capacity, 2-2

system hardware, 2-6

system linkages, 14-3

system operation, 1-3
system overview, 2-1
system reports, 12-10

system software, 2-3 to 2-6

system status, 12-11

table utilities, 12-12

tables, 14-1 to 14-20

System patches

see patches

Index-13

System Shutdown utility
see SSD

System Start-up utility
see STU

System Status utility
see STA

System Table, 14-4 to 14-5, 14-7,
14-10, 14-14

utility
see SYSTAB

System tables, 14-1 to 14-20

System utilities, 2-5, 12-1 to
12-16

running, 12-2
stopping, 12-3

System-Configuration global
see SYS

%T, 7-10
Tables

system
see system tables

Tape

see magnetic tape
TAPECOPY, 12-16
Terminal DDB utility

see DDR

Terminal Device Characteristics

utility
see MUX

Terminals, 6-1 to 6-16

autobauded login, 3-10
commands, 6-2

description of, 3-1
device characteristics, 10-29

to 10-32
see also MUX

device numbers, 6-2

Device Status Word, 6-4

error conditions, 6-15

escape processing, 6-12 to 6-15
JOB, 6-16
nonautobauded login, 3-7
OPEN, 6-3, 6-15
OPEN parameters, 6-3 to 6-12

READ, 6-12
tied

see tied terminals

see TTTG

tied terminal login, 3-10

Index=-14

types of, 3-1

USE, 6-8, 6-12, 6-15
$ZA, 6-12
$ZB, 6-11, 6-12, 6-13, 6-14
SZTRAP, 6-16
ZUSE, 6-8, 6-15, 6-16

$TEST, 6-11, 6-21
Tied terminals

disabling of control C, 4-16
login, 3-10
routine number in MUX, 10-31

show table utility
see TTTSHO

utility
see TTTG

Tied terminmals

description of, 2-3
TIM, 12-15
Time

Date and Time utility

see %oH

Show Current Time utility
see %oT

Translation Table utility

see UCITRAN

Tree structure

see globals
TTTG, 10-3, 10-32, 10-39 to 10-41
TTTSHO, 10-40
TU58, 6-66 to 6-71, 11-3

commands, 6-66

Control Mode, 6-69

error codes, 6-70

Mixed Mode, 6-68
OPEN and USE examples, 6-69
OPEN and USE parameters, 6-67

to 6-68

Read Mode, 6-68

SYSGEN, 10-7, 10-9, 10-20,
10-22

View Buffer Mode, 6-69

Write Mode, 6-69

$ZA, 6-70
$ZB, 6-71

UCI, 3-7, 3-7
see also UCI Table
Add UCIs utility

see UCIADD

description of, 2-3

Get UCI utility
see %GUCI

library, 10-34, 14-12, 17-15
List utility

see UCILI
Name Change utility

see UCIEDIT

placing on data base, 13-22
Translation Table, 10-6, 10-9,

10-23, 15-4, 17-8, 17-11 to
17-13
see also UCITRAN

Translation Table utility
see UCITRAN

UCI List utility

see UCILI

UCI Name Change utility

see UCIEDIT

UCI Table, 13-3, 14-10, 14-10 to
14-12

description of, 13-2
utility

see UCITAB

UCI Translation Table utility
see UCITRAN

UCIADD, 10-2, 10-33, 13-22
UCIEDIT, 10-2, 10-34, 17-15
UCILI, 10-2, 10-34
UCITAB, 12-13
UCITRAN, 10-3, 10-10, 10-41,

17-11 to 17-13
UNLOAD, 6-61, 6-66, 10-9, 12-16
Unload a Driver utility
UNLOAD

Upgrade
DSM-11, 1-1

Uppercase characters, 4-2
USE, 5-3, 5-4, 6-8, 6-12, 6-15,

6-22, 6-26, 6-34, 6-37, 6-43,
6-49, 6-60, 6-61, 6-64, 6-67

Utilities
global

see globals

library

see library utilities
miscellaneous library

see miscellaneous utilities
other miscellaneous library

see miscellaneous utilities
(other)

routine

see routines

system
see system utilities

Utility patches
see patches

UTL, 12-2

Variables
see also global variables
see also local variables
naming conventions, 9-11

Version 1 Global Restore utility
see %GR

Version 1 Global Save utility
see %GS

VIEW, 6-26, 6-30, 6-43, 6-60,
10-14, 10-26, 12-3, 13-3,
14-4, A-5

VIEW device, 6-57 to 6-61

OPEN parameters, 6-58 to 6-60

USE parameters, 6-60
$VIEW, 6-60
VIEW, 6-60

$VIEW function, 6-60, 14-4
Volume Set Table, 14-9 to 14-10,

14-12
description of, 13-2
utility

see %STRTAB

Volume sets, 13-2 to 13-4

see also Volume Set Table
access to globals in different,

8-8
clustered systems, 17-1 to

17-15
explanation of, 13-2
SYSGEN, 10-10, 10-11, 10-23,

10-24, 17-8
VT100, 3-2, 6-1

escape keys, 6-14
keyboard, 3-3

power on, 1-9

VTS2, 3-2, 6-1
escape keys, 6-13, 6-14

keyboard, 3-3

WRITE, 5-4, 5-5, 6-16, 6-22, 6-35,
6-39

WRITE *, 6-22, 6-42, 6-44

Index-15

$X, 5-7, 5-8, 6-3, 6-8, 6-50
XDT, 3-6, A-2, A-3
SYSGEN, 10-6, 10-9, 10-23

XECUTE, 9-2, 9-8

$Y, 5-7, 5-8, 6-8, 6-50

$ZA, 5-8, 6-12, 6-17, 6-24, 6-31,
6-32, 6-36, 6-43, 6-45, 6-46,
6-49, 6-52, 6-70

ZALLOCATE, 10-11, 12-12, 14-6
$ZB, 6-11, 6-12, 6-13, 6-14, 6-25,

6-36, 6-66, 6-71
$ZBREAK, 4-17, 4-18, 4-19, 4-20,

4-21

Index-16

ZBREAK, 3-6, 4-21
$ZCALL, E-1 to E-4
$ZERROR, 4-25, 4-26
ZGO, 4-18, 4-21
ZINSERT, 4-11
ZLOAD, 4-8, 5-4, 5-5, 6-24, 6-35,

6-39, 15-2
ZPRINT, 4-6, 5-4, 5-5, 6-22, 6-35,

6-39
ZQUIT, 4-14, 4-15, 4-28
$ZR, 17-15
ZREMOVE, 4-6, 4-8, 4-11
ZSAVE, 4-7
$ZTRAP, 4-25, 4-27, 4-29, 5-8,

6-16, 6-32, 9-4, 12-4, A-l
ZUSE, 6-8, 6-15, 6-16, 10-14,

10-26, 10-30
ZWRITE, 5-4, 5-5, 6-35

DSM-11 User’s Guide

AA-H799B-TC

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on

this form at the company’s discretion. If you require a written reply and are eligible to

receive one under Software Performance Report (SPR) service, submit your com-

ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges-
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer
_] Higher-level language programmer
|] Occasional programmer (experienced)

[| User with little programming experience

[] Student programmer
L] Other (please specify)

Name Date

Organization Telephone

Street

City State Zip Code
or Country

mmm ei i i eee i ee

| | No Postage

Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MRO1-2/L12

MARLBOROUGH, MA 01752

	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	00-10
	00-11
	00-12
	00-13
	00-14
	00-15
	00-16
	00-17
	00-18
	00-19
	00-20
	00-21
	00-22
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	H-01
	H-02
	Glos-01
	Glos-02
	Glos-03
	Glos-04
	Glos-05
	Glos-06
	Glos-07
	Glos-08
	Glos-09
	Glos-10
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	RM-01
	RM-02

