DSM-11
Language Reference Manual

Order Number AA-H797B-TC

March, 1984

This document describes the syntax and elements of DSM-11
language.

This is a revised manual.

Operating System: DSM-11 Version 3
Software: DSM-11 Version 3

Software and manuals should be ordered by title and order number. In the United States, send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid—Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation

PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center

Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Telephone:(603)884—-6660 Schaumburg, lllinois 60195 Sunnyvale, California 94086
Telephone:(312)640-5612 Telephone:(408)734—-4915

digital equipment corporation e marlboro. massachusefts

First Printing, October, 1980
Revised, March, 1984

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may only be used or copied only in accordance with the
terms of such license.

No responsibility is assumed for the use or reliability of software

on equipment that is not supplied by DIGITAL or its affiliated
companies.

Copyright © 1980, 1984 Digital Equipment Corporation.
All Rights Reserved.

The following are trademarks of Digital Equipment Corporation

DEC DIBOL RSTS
DECmate DSM-11 RSX
DECsystem-10 MASSBUS UNIBUS
DECSYSTEM-20 PDP VAX
DECUS P/0OS VMS
DECwriter Professional VT

Rainbow Work Processor

CONTENTS

Part 1: Language Syntax

CHAPTER 1

DSM-11
1.1 INTRODUCTION TO DSM-11 ..ttt ieine e aees 1-1
1.2 THE DSM-11 CHARACTER SET ..ot 1-1
1.2.1 Uppercase And Lowercase Characters........ccocevvevviieiennennen. 1-2
1.2.2 Nonprinting Control Charactersc.ccveverieriiierneneineenennn. 1-3
1.3 STATEMENT STRUCTURE ..ottt 1-4
) S 0 B @003 011 15 F: 1+ '« LS PP PPN 1-4
1.3.2 Command Abbreviationsceeiieiiieiiireieeienrineeneenennennes 1-4
I O BN 44101 0 1<) 11 £ PPN 1-5
1.3.4 Argument SPaCiNgcceerinietiiiiiitiiiiiiieiteieeieereieeieneeaaanans 1-5
1.3.5 Argument Listso.oiiiiiiiiiiiiiiiiiiieii e 1-6
1.3.6 Statement SPACINGooeiiiiiiriiiiiiieeieie e ienereee e eeaaens 1-6
1.4 LINE STRUCTURE ..ottt e 1-7
1.4.1 Command LineS........ccceieiiiiiiniiiiiiiieieieiieieeieieeeeeeeenenens, 1-7
1.4.2 ROULINE LiNES ...oiniiniiiiiiiiiii i naes 1-8
1.4.2.1 Line Labelsccccovuiiiiiiiniiiiiiiiiiiiiieiii e 1-8
1.4.2.2 The TAB Characterccoceveiiiniiiiiiiiiiiiiiieinennannns 1-9
1.4.2.3 COMMENLS .uviuiiniiitiiteitiieeteeiieeteneeneeearensenaanannns 1-9
1.5 ROUTINE STRUCTURE ...ttt 1-10
1.6 REFERENCESot aas 1-11
1.6.1 Line References.......cccoovvvviuiiiiiiiniiiiiiiiiiiiiceeeeieceeeeeenes 1-11
1.6.2 Entry Referencescccoovvuiiiiiiiiiiiiiiiiiiciieieeeee 1-12
1.6.3 Line Specifications........ccvevuiriiiiiiiiiiiiieiiiieeeeeeeeaenenes 1-12
1.7 EXTENSIONS TO ROUTINE STRUCTURE........c.cccovvviiiienennnn, 1-13

iii

| R B 0 17 %4 T 1-13

1.7.2 Execution Levelsccoiiiiiiiiiiiiiiiiiiiiiiiiiiiii e e 1-14
1.7.3 Line Structure For Block Structuring.........c.ccoevevevuenenenennnne. 1-15
1.7.4 Routine Structure And Executionccccoiiiiiiiiiiiiiinennnnns 1-15

CHAPTER 2 DSM-11 EXPRESSION ELEMENTS

iv

2.1
2.2
2.3

2.4

2.5

2.7

OVERVIEW OF DSM-11 EXPRESSION ELEMENTScccciiii 2-1
FUNGCTIONS ..ttt ettt e e et e ettt e e e aeeneaans 2-2
| B N 2 2N O T PPN 2-3
2.3.1 Numeric Literalscooveiuiriiiiniieiiiiiiiirieeierere e eeneees 2-3

2.3.1.1 Integer Literalscccvevevririiniiiniiiiiiiiiiininienenenenes 2-4

2.3.1.2 Decimal Numeric Literals............ccceveiiiiiiininninnanen, 2-4

2.3.1.3 Exponential Notationccocvveveiininniienennnnenennns. 2-6
2.3.2 String Literals.....ocoviiuiiiiiiiiiiiiiiieieiiieie i 2-7
VARIABLES ..o et e 2-8
2.4.1 Local Variablescccoeiuiiiiiiiiiiiiiii e 2-9
2.4.2 Global Variablescccoiuiiiiiiiiiiiiieei e 2-11
2.4.3 Extended Global Referencesc.ccvvveiiiniieinerinnineriennennnnes 2-12
2.4.4 ATTAY StIUCIUTC coutinttinteiteineeteaneaneeateeneeaneeneenseeneenneannennens 2-13
2.4.5 Naked Referencesouiiiiiiiiiiiiiiieiieiiiieeeieieeeeeenenanes 2-17
2.4.6 Special Variablesccooviiiiiiiiiiii 2-19
UNARY OPERATORS.ot eas 2-20
2.6 BINARY OPERATORS.....ccciiiiiiiiiiiiiiiecee e eeee e 2-20
2.6.1 Arithmetic OPEratorsccvvvrvueerrnenerererrreeieneneneeneneserenns 2-21
2.6.2 Numeric Relational Operators.........ccoeevveiuiiiiineeriienenernenenns 2-22
2.6.3 String Relational OpPeratorsce.vvveveeeenererereresnenensnennnns 2-23
2.6.4 The String OpPerator.....c.ceeeveieieiiieieerineiieetereieneeeereneneneenes 2-24
2.6.5 LOGICAl OPEratOrS...cuvuereninieeirereniniiieeereniieeteneneneeeneesenenennns 2-24
2.6.6 Indirection OPEIatorc.oevvieiniiinieeirereniieeeereneieeeaeereneneens 2-25

2.6.6.1 Argument Indirection...........coeveveniiriiinenenininenennnn. 2-26

2.6.6.2 Name Indirectioncccceeiiiiiiiiiiiin, 2-26

2.6.6.3 Pattern Indirectioncceeeeeereveennnnvrnnnnnnnnn.. 2-27

2.6.6.4 Partial Indirectionccoeveeiviiiiiiiiiiienieanannns 2-28
2.6.7 Formatting CharaCters......ocvuvuvuiueninineneenrneneneenenenennenenenennns 2-29

2.6.7.1 The Form-Feed Charactercccevveveiniiinennnnn. 2-30

2.6.7.2 The Carriage-Return/Line-Feed Character................ 2-30

2.6.7.3 The Horizontal-Tabulation Character...................... 2-30
EXPRESSION EVALUATION. ..ottt 2-31
2.7.1 String EXPressionscoeeieueeieiiiineiieiieeeiiiereeneneenenenans 2-33
2.7.2 Numeric EXPressionsccoovviriviiiiiiiiiiiiiinieiiiineneneeieaens 2-34
2.7.3 Truth-Valued EXPressionsccocviveviiiiiniieninirenennenenenenanns 2-34

2.7.4 Postconditional EXpressions........cccevevevriiiienineineninenernenenenens 2-34

2.7.4.1 The Command Postconditional Expression............... 2-34

2.7.4.2 The Argument Postconditional Expression 2-35
2.7.4.3 Naked References And Postconditional

| 257400 g1 (o) 1 L OO 2-36

2.7.5 Timeout EXPressionso.o.euiiiiriieininiiintineiiinrineeneneeaiaenens 2-36

Part 2: Language Reference

CHAPTER 3 DSM-11 OPERATORS

3.1 INTRODUCTION TO DSM-11 OPERATORScccoevviiiiennannene. 3-1
3.2 OPERATOR DESCRIPTIONScctiiiiiiiiiiiiiie et na e 3-1
Binary ADD () tuoiriiiiiiiiiiii e e e e e e e e 3-2
Binary AND (&) «ouviniiiiiiiiiiiiii i naaan 34
Binary CONCATENATE (L) cteutiitiiiitiiiiiiiieieieeeeeerereneeneeneaes 3-6
Binary CONTAINS () cioriitiiiiniiiiieiiiiieieieere et ertenteenteneaanaan 3-7
Binary DIVIDE (/) vttt et et et ee et e ene e e eaens 3-9
Binary EQUALS (=) toriitiiiiiitiiiiiiie e ettt eea e e eas 3-11
Binary FOLLOWS (1) cuivititiiiiii i e et e et eee e e e e enas 3-14
Binary GREATER THAN (3) ittt eeas 3-17
Binary INCLUSIVE OR (1) .ueiiitiiiiiiiiiiiiiiie et e e e ae e ens 3-19
Binary INTEGER DIVIDE (). cucuiiiiiiiiiiiiiiiiiiiiii v 3-21
Binary LESS THAN () ittt sr e ereneee e ena e eeaens 3-23
Binary MODULO (B) ceuviniiiiiiiiie ettt et e eeeee e e e e ans 3-25
Binary MULTIPLY (*) oititiiiiiiiiiiiii i eeeea et e enennensneae e saanans 3-28
Binary PATTERN MATCH (7) couviiiiiiiii e eeeaes 3-30
Binary SUBTRACT (5) cuiitinitiiintitiniiineneeteieninaerenenteeraenenensesenennananns 3-34
INDIRECTION (@) +vveventntteeanenetneananeneaeaeneaneeaeaeaneneneeneneneaereenens 3-36
UNary MINUS (5) cneniniiiiiiiiiiieeie et e e e e eeeeeaeneeenees 3-40
UNAry NOT() cuinetiniiie ittt e e et e e e enaeaeeaaeenenes 3-42
UNAry PLUS (4) ottt r e e et e an e e e e e e e e 3-45

CHAPTER 4 DSM-11 ANSI STANDARD COMMANDS

4.1 INTRODUCTION TO DSM-11 ANSI STANDARD COMMANDS 4-1
4.2 COMMAND DESCRIPTION.....cciiviiiiiniiniiiiiiinc e, 4-2
BREAK ..o 4-3
CLOSE ..ot 4-6
DO o 4-8
ELSE ..o 4-12
FOR ..o 4-14
GOTO e et 4-19
HALT oo e e 4-22

LF e 4-25
JOB e 4-28
KILL oot e e 4-31
LOGCK et et 4-34
NEW et 4-39
OPEN .o 4-43
QUIT e et 4-46
READ oot 4-48
SET ettt 4-54
USE oo 4-61
VIEW <ot e 4-64
WRITE ..ot 4-71
XECUTE ..ot 4-74

CHAPTER 5 DSM-11 EXTENDED COMMANDS

5.1 INTRODUCTION TO DSM-11 EXTENDED COMMANDS.............. 5-1
5.2 EXTENDED COMMAND DESCRIPTIONccoovvuiiiiiiieeiiieeeenannn.. 5-2
ZALLOCATE ..coee et 5-3
ZBREAK ..o e 5-7
ZDEALLOCATE ..ottt et 5-9
ZGO oo 5-11
ZINSERT ...ttt 5-13
ZLOAD ..o 5-18
ZPRINT oot 5-20
ZQUIT ..ot 5-23
ZREMOVE .. .ot 5-26
ZSAVE ..o 5-29
ZTRAP .o 5-31
ZUSE oo 5-33
ZWRITE ..o e e 5-35

CHAPTER 6 DSM-11 FUNCTIONS

6.1 INTRODUCTION TO DSM-11 FUNCTIONSccovvumieeeeeiiieanaeeenns 6-1
6.2 FUNCTION DESCRIPTIONS ..ottt 6-2
BASCI ..t 6-3
SCHAR .ot 6-5
D AT A et 6-8
BEXTRACT ...t et 6-10
BEIND oottt 6-13
SIUSTIFY .ovtenieieeeeee ettt e e e e e e e e e 6-16
SLENGTH ..ottt 6-19
BN E X T ittt et a e 6-21

vi

SPIECE ..o 6-26
FRANDOM ..ot 6-30
FSELECT . et 6-31
FTEXT oo 6-33
BVIEW Lo 6-35
SZCALL .o 6-38
SZNEXT oo 6-39
SZORDER ..ottt 6-41
$ZSORT .o R 6-45
SZUCHT ... 6-47

INTRODUCTION TO DSM-11 SPECIAL VARIABLES................... 7-1
SPECIAL VARIABLE DESCRIPTIONS.......ccccovviiiiiiiiiiiin, 7-2
SHOROLOG ittt 7-3
B0 e 7-4
BT OB . 7-5
SSTORAGEottt 7-6
ST ST e 7-7
X 7-9
Y 7-10
S A e 7-11
BZB e 7-12
SZBREAK ...ttt 7-13
SZERROR ...ttt 7-17
SZORDER ..ottt 7-18
SZREFERENCEccciiiiiiiiiiii e 7-20
SZTRAP ..o 7-21
SZVERSION ..ottt e 7-23

APPENDIX A ASCIl CHARACTER LANGUAGE SET

APPENDIX B DSM-11 LANGUAGE SUMMARY

B.1
B.2
B.3
B.4
B.5
B.6
B.7

DSM-11 SYNTAX SUMMARY ..ottt B-1
DSM-11 ANSI STANDARD COMMANDSc.coiiiiiiiiiiiiin. B-3
EXTENDED DSM-11 COMMANDS......ccciiiiiiiiiiiiiiiiiiiieenee e, B-7
DSM-11 FUNCTIONS ...t B-10
DSM-11 SPECIAL VARIABLES........c.cccivviiiiiiiiiiiiieen, B-12
DSM-11 OPERATORS ..., B-13
DSM-11 SPECIAL SYMBOLS.......ccociiiiiiiiiiiniicecee, B-14

vii

FIGURES

TABLES

viii

2-1
2-2
2-3
2-4
2-5
2-6
2-7
4-1
6-1

Global ATTay StIUCLUTEiitiieiitiniitietiieee it eierteateneereeeeneeneaneaesnsnes 2-13
Global Array (Naked References)covevuirinenieeiiiinenenneneneeeenenenens 2-17
Locked GIobal......couiuiiniiiiiiiii i e eaens 4-36
Flow of Control with ZQUIToiiiiiiiiiiiiiierer e eeneae 5-24
A SORDER, $ZSORT, or SNEXT Array Scan.........c.ceeeveevveenenennnnn. 6-42
A $ZORDER or $ZNEXT Array SCancoceeveeiinininieneneeenenannns 6-43
DSM-11 UnNary OPErators ...c.eueeeeeeneeeeneeneeieneereneneesenenensaseneneaneens 2-20
DSM-11 Arithmetic OpPeratorscuvueuiiiiiiririeiiarineeeeeeeneieeeenenens 2-22
Numeric Relational Operators.......o.vevvriiriieiriiiiiiiiiiiiiieiiieneneenennes 2-22
String Relational Operatorsco.vuvieiieieiiiniiiiiiieieieeaeieeenanenns. 2-23
| Be7:4Tor: 1 M0 o 1<) -1 o] ¢TI 2-24
Truth Table ..o e e eans 2-25
Formatting Characters......c.vviiuiiiiiiiiiiiiie e eeenes 2-29
VIEW Argument Valuesccoeiiiiiiiiiiiiiiiiiieiiieiiiieiieeenenneneeneensn 4-68
SVIEW Argument Valuesccovuiiniiiiiiiniiiiniiiinieieiieieeeeieie e 6-36

Acknowledgement

DIGITAL Standard MUMPS is an extension of the ANSI Standard
Specification (X11.1-proposed for final approval in 1984) for the
Massachusetts General Hospital Utility Multi-Programming System
(MUMPS). MUMPS was originally developed at the Laboratory of Computer
Science at Massachusetts General Hospital and was supported by grant
HS00240 from the National Center for Health Services Research and
Development.

ix

Preface

MANUAL OBJECTIVES

This manual describes the language elements of Digital Standard MUMPS for
the PDP-11 (DSM-11). It does not discuss terminal usage or provide
information related to the DSM-11 operating system. You can find such
information in the DSM-11 User’s Guide.

INTENDED AUDIENCE

This manual is intended as a reference for DSM-11 users who are familiar with
higher level languages and programming techniques. Because this manual is
designed for experienced programmers, it does not present information
tutorially.

MANUAL STRUCTURE

The DSM-11 Language Reference Manual is divided into two parts:

1. Part 1: Language Syntax

Part One consists of Chapters 1 and 2. It describes DSM-11 language
elements and syntax.

2. Part 2: Language Reference

Part Two consists of Chapters 3 through 7. It contains descriptions of the
DSM-11 operators, commands, functions, and special variables.

The material in this part is arranged in alphabetical order by element type.
All descriptions use the following organizational structure:

xi

xii

PURPOSE:

FORM:

EXPLANATION:

COMMENTS:

RELATED:

EXAMPLES:

This section explains briefly what the
language element does.

This section shows the form of the
language element.

This section explains the forms of the
language element in more detail.

This section describes any special
considerations you should keep in mind
while using the language element. (Not all
language-element descriptions have a
comments section.)

This section lists all language elements or
concepts related to the language element
being described. (Not all language-element
descriptions have a related section.)

This section presents examples of the
language element. The examples range
from single lines to short routine
fragments.

The manual also contains two appendixes and a glossary. Appendix A lists the
ASCII character set; Appendix B presents a summary of DSM-11 language
elements. The glossary defines terms used in the manual.

RELATED DOCUMENTS

This manual is part of the DSM-11 documentation set. This set also includes:

The DSM-11 BISYNC Programmer’s Guide (AA-V602A-TC)

The DSM-11 Summary (AV-H798B-TC)

The DSM-11 User’s Guide (AA-H799B-TC)

The DSM-11 XDT Reference Manual (AA-J701A-TC)

The Introduction to DSM (AA-K676A-TK)

DOCUMENTATION CONVENTIONS

This manual uses the following documentation conventions and symbols:

Convention

CTRL /X

(ESC)
@®ED

TAB

lowercase

{}

Contrasting Colors in
Examples:

Meaning

A key (represented here by x) typed while
the CTRL key is pressed.

The escape key.

The period key.

The carriage return key.
The space bar.

The TAB key (ccTrRrzI) on some
terminals).

A language element or portion of a
language element in example syntax.

The enclosed element is optional.
A break in a series or elements in a series
not shown in the manual. For example,

this symbol is used to show how to
structure multiple command arguments.

A break between two illustrated lines of
code in a routine example.

Black - indicates a noninteractive example,
or system output in an interactive example

Red - indicates user input in an interactive
example

xiii

Part 1: Language Syntax

Chapter 1
DSM-11 Syntax

This chapter introduces the DSM-11 language and discusses its syntax and
structure. It discusses the DSM-11 character set and details the structure of
DSM-11 statements, lines, and routines.

1.1 Introduction to DSM-11

DSM stands for Digital Standard MUMPS. DSM-11 is Digital Equipment
Corporation’s implementation of Standard MUMPS (Massachusetts General
Hospital Utility Multi-Programming System) for the PDP-11.

DSM-11 encompasses the American National Standards Institute’s (ANSI)
Standard Specification for MUMPS X11.1-1977, but DSM-11 also provides
many extensions to that standard. Version 3 of DSM-11 also encompasses the
most recent additions and changes to the language reflected in the 1984 version
of the ANSI MUMPS standard.

1.2 The DSM-11 Character Set

DSM-11 stores data as strings of ASCII (American Standard Code for
Information Interchange) characters as defined in ANSI Standard X3.4-1968.
For command and control purposes, DSM-11 uses a 64-character subset of the
128-character ASCII set.

DSM-11 Syntax 1-1

1-2

This subset consists of ASCII decimal values 32 through 95. These values
include:

® The uppercase letters A through Z
® The numbers 0 through 9

¢ Symbolic characters

This subset and the lowercase alphabetic characters (ASCII values 32 through
126) are called the ASCII graphic character set. Graphic characters are those

that the system can reproduce on your terminal or line printer as the characters
they represent.

(See Appendix A for a list of the ASCII character set.)

1.2.1 Uppercase And Lowercase Characters

The ASCII characters with values of 97 through 122 are lowercase alphabetic
characters. You can use uppercase or lowercase characters in DSM-11
language elements, variable names, routine names, and line labels. However,
DSM-11 does not always recognize lowercase letters as the equivalent of
uppercase letters. The following rules govern the interpretation of lowercase
and uppercase letters in DSM-11.

1. Language Elements

DSM-11 treats lowercase, uppercase, and mixed case commands,
functions, special variables, and binary PATTERN MATCH characters
as equivalents. For example, DSM-11 considers the following three
commands identical:

WRITE HELLD

write HELLD

WrITe HELLD

2. Local Variables

DSM-11 considers lowercase, uppercase, and mixed case local variable
names unique. DSM-11 considers the local variables used in the follow-
ing examples as three separate variables:

SET XX="HELLO"

SET Kx="HELLD"

SET xx="HELLQO"

DSM-11 Syntax

3. Global Variables
DSM-11 treats lowercase, uppercase, and mixed case global variable
names as unique. (Global variables are variables whose names are
preceded by the circumflex character.) For example, DSM-11 treats the
global variables in the following as three different variables:
SET “®X="HELLO"
SET "Xx="HELLO"
SET “xx="HELLD"

4. Routine Names
DSM-11 considers lowercase, uppercase, and mixed case routine names
unique. Thus, the following three commands store three separate
routines on disk:
ZSAVE TEST
ZSAVE test
ZSAVE Test

5. Line Labels
DSM-11 considers lowercase, uppercase, and mixed case line labels
unique. Thus, the following three commands direct control to three
separate routine lines:
GOTO LABEL1
GOTO labell

GOTO Labell

In general, mixed uppercase and lowercase letters can be used in string literals,
input data, and comments.

1.2.2 Nonprinting Control Characters

The first 32 characters of the ASCII set (decimal values O through 31) and the
last character of the ASCII set (decimal value 127) are nonprinting characters.
They have system control and editing functions.

DSM-11 Syntax 1-3

1.3 Statement Structure

1-4

The basic element in DSM-11 is the statement . A statement specifies an
operation for DSM-11 to perform. Each statement is made up of a command
and, optionally, one or more arguments.

The general format for a statement is:

command seargument(s)

The following sections describe commands and arguments.

1.3.1 Commands

Commands are names composed of alphabetic characters. Each command
name is a mnemonic for the action the command performs.

DSM-11 has two types of commands:

e ANSI Standard commands

e Extended commands

ANSI Standard commands are specified in the ANSI MUMPS Language
Standard and follow Standard usage. The Standard reserves the letters A
through Y as initial letters in Standard command names.

As specified in the ANSI MUMPS Language Standard, extended commands

are implementation-specific commands. The ANSI MUMPS Language
Standard reserves the letter Z as the initial letter in extended-command names.

1.3.2 Command Abbreviations

When you use a command, you can enter either the full spelling or an abbrevi-
ation of the command name. For ANSI Standard commands, the abbreviation
consists of the first letter of the command name.

For example, you can write the ANSI Standard command GOTO in either of
the following ways:

GOTOs® argument list

G argument list

DSM-11 Syntax

For extended commands, the abbreviation consists of the first two letters of
the command name (the Z and the next sequential letter).

For example, you can write the extended command ZLOAD in either of the
following ways:

ZLOADs» argument
ZLcs® argument
If two commands can be abbreviated to the same letter (HALT and HANG),

DSM-11 distinguishes which command you mean by the presence or absence
of an argument.

1.3.3 Arguments

Arguments define and control the action of the command to which you
append them. The nature of an argument depends on the command with
which you use it. Consider the following statement:

GOTD A1

In this statement, the argument Al is a /line label. (See Section 1.4.2.1 for
more information on line labels.)

Consider also the following statement:

WRITE A+4

In this statement, the argument A +4 is an expression composed of a local
variable name (A), an operator (+), and a numeric literal (4). (See Chapter 2
for more information on expressions and expression elements.)

Some commands always take arguments. Others never take arguments. Some
commands take arguments under certain circumstances. Commands -- such as
KILL -- that take arguments only under certain circumstances have a different
meaning depending on whether they do or do not have an argument.

1.3.4 Argument Spacing

Spacing is significant in DSM-11. If you are entering a command that takes an
argument, you must separate that command from its argument with one
space. If you enter any other character in place of the space or enter more than
one space, DSM-11 reports an error.

DSM-11 Syntax 1-5

1-6

For example, the following statement is valid:
DocsP)B3

But the following statements are not:
DocspP)csP B3

DOB3

1.3.5 Argument Lists

Argument lists consist of more than one argument appended to a single
command. They are a shorthand method of performing the same action on a
number of elements.

For example, the following statements are equivalent:

SET I=6,B=10,C=11

SET I=6 SET B=11 SET C=11

You must separate multiple arguments for one command with commas and no
intervening spaces. For example, the following statement is valid:

WRITE ACI),BCID,CCID
However, the following statement is not:

WRITEGSPACD), EPB(I),EC(I)

1.3.6 Statement Spacing

You can enter more than one statement on a line. But to do so, you must use
spaces to separate the statements. If you enter a command that takes
arguments, you must separate its last argument from the command that
follows with one or more spaces, for example:

SETsPA=0 EPGOTOEPBL

If you enter a command that does not take arguments, you must separate it
from the command that follows it with two or more spaces. (DSM-11 consid-
ers the first space as part of the command and the following spaces as the
delimiter between the command and the next command.) For example:

ELSEGsP)sPGOTOSPORT

DSM-11 Syntax

If a command with arguments comes at the end of the line, do not enter any
spaces between the last argument and the carriage return, for example:

SETemI=0 RED

If a command without an argument immediately precedes the end of the line,
do not enter any spaces between the command and the carriage return, for
example:

IF ANS=EPRUITEED

1.4 Line Structure

All DSM-11 code is organized in lines. Each line contains one or more
statements and ends with a carriage return.

The DSM-11 line is not limited to one physical terminal line. A DSM-11 line
can contain as many as 255 characters, including the line label but excluding
the terminating carriage return.

DSM-11 recognizes two types of lines:
1. Command lines

2. Routine lines

1.4.1 Command Lines

A command line consists of one or more statements you enter for immediate
execution. After you type a carriage return, DSM-11 interprets the statements
and acts upon them.

DSM-11 recognizes that a line is a command line by its format. The general
format of a command line with a comment is:

{command}se{arg list}{...}{=m...cs};comment

If a command line has no comment at the end of it, there should be no spaces
at the end of the line:

{command} =®{arg list}{...}®meD

DSM-11 Syntax 1-7

1-8

where:

command is any valid command
arg list is an argument list
comment is a comment (See Section 1.4.2.3 for more information

on comments.)

You must enter the first command immediately after the DSM-11 pr Do not
enter a space character (or other character) between the prompt and the first
letter of the command name.

1.4.2 Routine Lines

A routine line consists of one or more statements entered for later execution.
After you type a carriage return at the end of the line, DSM-11 stores the line
and displays its prompt for more input.

DSM-11 recognizes a line as a routine line by its format. A routine line must
begin with a TAB character or a line label and a TAB character. The TAB
must be followed by a command or by one or more spaces followed by a
command. The general format for a routine line is:

{label}are{=®...@®}{command}sm{arg list}{...}{E=®>...c»};comment

where:

label is a line label
command is any valid command
arg list is an argument list
comment is a comment

If there is no comment at the end of the line, there should be trailing spaces at
the end of the line.

1.4.2.1 Line Labels—The line label is an optional name that identifies the line
to which it is prefixed. Each line label should contain no more than eight
characters. The characters can be alphabetic characters, the digits 0 through 9,
or the percent (%) character.

The format for a line label can be one of the following:
alpha alpha/digit ...

Yalpha/digit ...

digit digit ...

DSM-11 Syntax

where:

alpha is any alphabetic character
digit is any digit character
alpha/digit alpha is any alphabetic character or any digit character

If the first character in the line label is an alphabetic character a percent
character, the other characters can be any combination of alphabetic charac-
ters or digit characters. If the first character in the line label is a digit, the
other characters must be digits.

DSM-11 considers leading zeros significant in digit line labels. That is, the
following labels are different:

01
1

A particular line label should appear only once in a routine. Although the
identical line label may appear more than once in a routine, DO, GOTO, and
$TEXT always find the first appearance of that line label.

1.4.2.2 The TAB Character—The TAB character (ASCII decimal value 9) is one
of the nonprinting control characters. It causes a skip to the next TAB stop.
(cTat7D also performs the same function.)

In DSM-11, TAB (or ccTac7 D) indicates that a line is a routine line. If you
include a line label on the routine line, you must use the TAB character as the
first character following the line label.

If you do not include a line label on the routine line, you must use the TAB
character as the first character on the line.

1.4.2.3 Comments—The last element in a routine line is an optional comment
(identified by a preceding semicolon). The comment is usually a brief explana-
tion of the purpose of a routine or of a routine line.

You can use any ASCII graphic character in a comment. You cannot use any
of the nonprinting ASCII control characters, the escape character, the form-

feed character, the carriage return, or the CTRL character in combination
with any other character.

The format for a commented routine line is:

{label}aae{...}{c=m... sm}; commentmeT

DSM-11 Syntax 1-9

You can use an entire DSM-11 line for a comment. In this case, enter the
identifying semicolon and the comment directly after the TAB character. For
example:

BILL3 ;SMITH:11-JAN-8Q:BILLING ACCOLUNT INQUIRY
You can also append comments to routine lines in any of the following ways:
e Following directly after the last argument or command
e Separated from the argument list of the last command by one or more
spaces

e Separated from an argumentless command by two or more spaces

In the following example routine fragment, each addition of a comment to a
line is valid:

SET A=0,I=0,CNT=1; INITIALIZE COLINTERS
SET NAME=""; INITIALIZE NAME VARIABLE

END WRITE !, "FINISHED" QUIT EXIT ROUTINE

1.5 Routine Structure

1-10

Each routine is a sequence of lines that you save, load, and execute as a unit.
Each routine must have a name of from one to eight characters. DSM-11 uses
only the first eight characters assigned as the name of the routine.

The format for a routine name can be one of the following:

alpha alpha/digit ...

% alpha/digit ...

where:

alpha is any alphabetic character

alpha/digit is any alphabetic character or character
%o is the percent character

The first character in a routine name must be an alphabetic char or the percent
character. (By convention, only library routines use the percent character in
their names.) The remaining characters in the name can be either alphabetic or
digit characters.

DSM-11 Syntax

1.6 References

The term reference describes several methods of using line labels and routine
names to control the flow of processing or to manipulate routines. DSM-11
recognizes three types of references:

1. Line references
2. Entry references

3. Line specifications

1.6.1 Line References

The line reference is a means of specifying a line within the routine currently in
memory. You can use line references as arguments with commands such as
ZINSERT, ZPRINT, and ZREMOVE to edit or write the current routine.
The simplest form of line reference is a line label, for example:

GOTO PARTZ

You can also reference any line that does not have a label by using an offset
from a prior line that has a label. The format for such a line reference is:

label + offset

where:

label is the label of a prior line

offset is an integer value that specifies how many lines there are

from the labeled line to the line being referenced

For example, the following line reference refers to the fifth after the line
labeled A.

A+S

Offsets can be zero. Such references, however, are always equal to the labeled
line. For example the following line reference refers to the line labeled A.

A+0

Offset references are never negative. You cannot reference an unlabeled line
that precedes the labeled line.

DSM-11 Syntax 1-11

1-12

When you use a line reference as an argument with certain editing commands,
DSM-11 uses the line reference to position an implicit, internal line pointer
into the routine currently in memory. DSM-11 sets the line pointer at the point
following the end of the referenced line and before the beginning of the next
line.

1.6.2 Entry References

Entry references are a type of reference used with the control commands DO
and GOTO. They are a means of directing control to a line in the routine in
memory or to any other routine.

The format for such an entry reference is:
{label{ + offset} }{"routine name}

If the entry reference includes only a routine name, (preceded by a circum-
flex), DSM-11 loads the specified routine and begins execution at the first
executable line. If the entry reference also includes a line label or line label and
offset, DSM-11 loads the specified routine and begins execution at the
specified line.

If no line in the routine has a label that matches the spelling of the label in the
entry reference or if the integer offset is greater than the number of lines that
follow the labeled line in the routine, DSM-11 reports an error.

1.6.3 Line Specifications

With the commands ZINSERT, ZPRINT, and ZREMOVE and the function
$TEXT, you can also reference a line with a line specification. A line specifi-
cation is an integer value preceded by a plus sign that denotes the sequential
position of a line within the routine currently in memory.

For example, you can reference the first line in a routine n lines long with:
+1

You can reference the third line with:

+3

You can reference the last line with:

+n

DSM-11 Syntax

When you use a line specification as an argument, DSM-11 uses the line
specification to position an implicit, internal line pointer within the current
routine. DSM-11 sets the line pointer at the point following the end of the
referenced line and before the beginning of the next line in sequence.

1.7 Extensions to Routine Structure

This section describes a new feature of DSM-11 for Version 3: block structur-
ing. Block structuring is an extension of the language and represents a feature
not yet accepted in the ANSI MUMPS Standard.

1.7.1 Overview

Block structuring uses an argumentless DO command to transfer control to an
indented block of routine lines which are treated as a subroutine. The indented
block of lines must immediately follow the line with the argumentless DO in it.
After these lines are executed, control returns to the previous level of indenta-
tion. The indented block of lines is referred to as an execution block. Periods
are used to indicate the level of indentation.

For example, the following is a simple block-structured routine:

TEST MW !,"LEVEL A" F I=1:1:2D
WU MLEVEL B" F J=1:1:2D
..W1,"LEVEL C"

W !, "LEVEL A AGAIN"

This routine gives the result:

LEVEL A
LEVEL B
LEVEL C
LEVEL C
LEVEL B
LEVEL C
LEVEL C
LEVEL A AGAIN

The reason for using block structuring is to extend the scope of FOR, IF, and
ELSE statements without creating subroutines that are called only once. This
results in a large number of labels and a confusing visual flow. These subrou-
tines are often needed because of the single-line scope of the FOR, IF, and
ELSE commands. Using block structuring results in a more logical and
sequential flow to the program.

DSM-11 Syntax 1-13

The following is an example routine for student records:

TEST READ !,"Enter name: ",NAM
FOR I=1:1 D0 QUIT:SUB=""
.READ !,"Enter subject: ",SUB QUIT:SUB=""
.SET STR= ""
CFOR MON=1:1:9 DO . .WRITE !,"Enter grade for month:",MON,":" READ G
..HRITE !,"Enter days absent for manth: ",J,": READ A
..SET STR=STR_"G_":"_A_"i"
.SET "DATACNAM, SUB)=STR

When this routine is set up without structuring, it looks like this:

TEST READ !,"Enter name: ",NAM
FOR I=1:1 DO LABEL1 QUIT:SUB=""
QUIT ;End of routine
LABEL1 READ !,"Enter subject: ",SUB QUIT:SUR=""
SET STR=""
FOR MON=1:1:9 DO LABEL2
SET "DATACNAM, SUB)=STR
QUIT
LABEL2 WRITE !,"Enter grade for month: ",MON,":" READ G
WRITE !, "Enter days absent for month: ", J,":" READ A
SET STR=STR_G_":"_A_":;"
QUIT

1.7.2 Execution Levels

The first line of the routine is the first, or lowest, level of execution. More
deeply indented blocks represent higher levels of execution. Thus, the follow-
ing line in the first example is the third level of execution and is a higher
execution level than the other levels.

.. W, LEVEL C

Note that this line is indented with two periods after the tab stop. The level of
the execution block is defined as the number of periods after the tab and
before the command plus one. Thus, a tab followed by two periods indicates a
third-level execution block.

1-14 DSM-11 Syntax

1.7.3 Line Structure For Block Structuring

Execution blocks are initiated by an argumentless DO in the preceding (lower
level) line. The structure of this initiating line is as follows:

{label}xxm{command}sm{arg list}{...}DOsmEm
{command}se{arg list}{...}

where label , command , arg list, and comment are defined in Section 1.4.
Note that this line represents one continuous line even though it must be
broken into two lines in order to fit on this page.

A line in an indented block (subroutine) has the following structure:

TaBPeRTOD{ FERTOD).. FERTOD} {command}sm{arg list}{...}DOs®
sm{command}se{arg list}{...}

This line may itself contain an argumentless DO that initiates yet another
higher level execution block.

1.7.4 Routine Structure And Execution

All indented lines that are intended to be in the same execution block must be
indented with the same or greater number of periods. They cannot be
interrupted by lines of a lower level, for example:

Labell Line 1
.Line 2
.Line 3
..Line 4
..Line 5
.Line 6
..Line 7
..Line 8
Line 9

This routine does not perform as expected if lines 4,5,7, and 8 are intended to
be part of the same execution block. DSM-11 regards lines 4 and 5 as a
separate execution block initiated by an argumentless DO command in line 3;
and lines 7 and 8, as an execution block initiated by a argumentless DO in line
6.

Execution within a block proceeds sequentially from line to line within the
same level. Execution of the block terminates when a QUIT command is
reached or when a line of a lower level is reached. Control passes to the next
command in the initiating line following the argumentless DO command. If

DSM-11 Syntax 1-15

1-16

the DO command is at the end of the initiating line, control passes to the next

sequential line at the same or a lower level.

If lines of a higher level occur in a routine (but are not called by an argumen-
tless DO command), then they are skipped over.

Blocks can be no more than one level higher than the preceding level. A line
introduced by two additional periods (two higher levels) is ignored, even if the
argumentless DO command is used correctly in the initiating line, for example:

Labell Line 1
Line 2
..Line 3
..Line 4
Line §

In this routine, lines 3 and 4 are ignored.
The GOTO command cannot be used to transfer between different level

execution blocks within a routine. The GOTO command can be used to
transfer control within the same execution block.

DSM-11 Syntax

Chapter 2
DSM-11 Expression Elements

This chapter describes DSM-11 expression elements and expression evaluation.

2.1 Overview of DSM-11 Expression Elements

The basic unit in all DSM-11 arguments is the expression. Expressions are
character strings that, when executed, create a value.

All expressions must contain at least one element called an expression atom.
An expression atom can be:

¢ A function

* A literal

® A variable

* Another expression atom preceded by a unary operator

An expression can be composed of a single expression atom. For example,
consider the following statements:

WRITE $LCAD

WRITE "18Q@ HOURS"
WRITE X

WRITE "+18@@ HOURS"

DSM-11 Expression Elements 2-1

In these statements, the arguments $L(A) (a function), "1800 HOURS” (a
literal), X (a variable), and + ”1800 HOURS” (another expression atom
preceded by a unary operator) are expressions consisting of a single expression
atom.

An expression can also be composed of a series of expression atoms separated
by binary operators. Binary operators are special characters that indicate
operations to be performed between two expression atoms.

In producing a result, DSM-11 does not change the value(s) of the original
expression(s). It simply creates a new value based on the value(s) of the
expression(s) and the operation indicated by the binary operator.

The following sections discuss the four basic elements in expression atoms
(functions, literals, variables, and unary operators), and binary operators in
more detail.

2.2 Functions

2-2

A function is an operation that returns a single value. Each function
consists of a function name (an alphabetic word preceded by a dollar sign)
followed by one or more arguments enclosed in parentheses.

The syntax of the function and its argument is as follows:

$function (arg list)

where:

function is a DSM-11 function name

arg list is the accompanying argument or argument list

() are the parentheses in which you must enclose the argument

or argument list

The function name is a mnemonic for the operation the fun performs. DSM-
11 has two types of functions:

e ANSI Standard functions
e Extended functions

ANSI Standard functions are specified by the ANSI MUMPS Language
Standard and follow Standard usage. The Standard reserves the characters $A
through $Y as the initial characters in ANSI Standard function names.

e o c—emaAv e aaa vasv 4 s TasA ATANSLVAL M ASUMILEUUEC DLUMUUI U, CALCLIUCU 1ULICLIVILS ATC
implementation-specific additions to the language. Extended function names
start with the characters: $Z

DSM-11 Expression Elements

When you use an ANSI Standard function, you can enter the full spelling of
the function name or an abbreviation consisting of the first two characters (the
$ and the first letter of the function name). For example, you can write the
ANSI Standard function $DATA as either of the following:

$DATA (argument)

$D(argument)

When you use an extended function, you can enter the full spelling of the
function name or an abbreviation consisting of the first three characters (the
$, the Z, and the first letter of the function name). For example, you can write
the extended function $ZORDER in either of the following ways:
$ZORDER(argument)

$Z0(argument)

Function arguments are the values that DSM-11 uses to derive the value it
creates by the operation. You must enclose the function argument or argument
list in parentheses. You must not separate the function from the open
parenthesis by any spaces. If you use multiple arguments, separate adjacent
arguments by a comma and no spaces.

For example, you must write the function $JUSTIFY with the arguments X, 7,
and 4 in either of two ways:

$JUSTIFY(X,7,4)

$J(X,7,4)

2.3 LITERALS

Literals are series of characters placed in a routine or command line that never
change value. DSM-11 recognizes two types of literals:

e Numeric literals

e String literals

2.3.1 Numeric Literals

Numeric literals (also called constants) are strings that DSM-11 evaluates as
numbers. DSM-11 treats as a number any string that contains:

® The digits zero through nine

DSM-11 Expression Elements 2-3

2-4

e The Unary MINUS operator
e The Unary PLUS operator
e The period or decimal point character
® The letter E
DSM-11 recognizes both integer and decimal numeric literals.
2.3.1.1 Integer Literals—An integer literal is a series of one or more digits
optionally preceded by a Unary MINUS or Unary PLUS operator, for
example:
-18
235001
12367444

Each positive integer literal you use should contain only digits. It should not
contain a decimal point.

Positive integer literals do not need a preceding Unary PLUS operator or
leading zeros. DSM-11 discards Unary PLUS operators and leading zeros in
arithmetic operations, for example:

WRITE +QE5
25

Each negative integer literal you use should consist of digits preceded by a
Unary MINUS operator, for example:

-18

-235001

-12367444

2.3.1.2 Decimal Numeric Literals—A decimal numeric literal is a series of one
or more digits and a single decimal point character (.) optionally preceded by a

Unary MINUS character. The format for a decimal numeric literal is either of
the following:

{-}digit(s).{digit(s)}

or:

{-}.digit(s)

DSM-11 Expression Elements

Each positive decimal numeric literal greater than one should consist of a
series of digits that is the integer part of the number followed by a decimal
point and a series of digits that is the decimal fraction, for example:

4.332
6.819
18.05
Positive decimal numeric literals do not need a preceding Unary PLUS
operator. DSM-11 discards the Unary PLUS operator in arithmetic

operations, for example:

WRITE +63.6
63.6

The digits in the integer part of the number need not contain leading zeros.
The digits in the fractional part of the number need not contain any trailing
zeros. DSM-11 discards both leading and trailing zeros in arithmetic
operations, for example:

WRITE @77 .345@
T7.345

Each positive decimal numeric literal less than one should consist of a decimal
point followed by a series of one or more digits, for example:

.0915

.68

.321

Negative decimal numeric literals must contain a Unary MINUS operator (-)
followed by the positive number that is the absolute value of the negative
number, for example:

-4.332

-.0915

Negative decimal numeric literals also need not contain leading zeros in the
integer portion or trailing zeros in the decimal portion. DSM-11 discards both

leading and trailing zeros, for example:

WRITE -@. 25082

-.25

DSM-11 Expression Elements 2-5

2-6

2.3.1.3 Exponential Notation—DSM-11 recognizes both integer and decimal
numeric literals in a range of plus or minus 10 to the power of plus or minus
26. You can enter very large or very small decimal numeric literals within this
range by using exponential notation. The format for exponential notation is:

{-}mantissaE{-}exponent

where:

{-} is the optional Unary MINUS operator used with negative
numbers

mantissa is the decimal or integer number to be exponentiated

E represents times 10 to the power of

{-} is the optional Unary MINUS operator used with a negative
exponent

exponent is the integer exponent (the power of 10).

For example, to enter the number 10, type
1E1

To enter the number 280, type:

2.8E2

To enter the number -.0481, type:

4.81E-2

DSM-11 can interpret numeric literals in exponential notation; but it does not
use exponential notation in mathematical calculations. DSM-11 considers all
numbers to be variable-length strings. Whenever you display mathematical
calculations, DSM-11 displays the results as a string, for example:

WRITE 1QE2
1000

WRITE 1.2345678901234E15
1234567850123400

In all mathematical operations, DSM-11 returns at least 15 significant digits.
In additive operations (addition and multiplication), however, DSM-11 can
return a greater precision.

DSM-11 Expression Elements

2.3.2 String Literals

String literals are sets of zero or more of the 95 ASCII graphic characters
(ASCII values 32 through 126) enclosed in double quotation marks. The only
limitation on the length of a string literal is the maximum length of a DSM-11
line. That is, the string literal, its delimiting quotation marks, and all other
characters on the line (such as commands and spaces) must not exceed 255
characters.

In the following statement "PATIENT’S NAME ?” is a string literal:
READ !, "FATIENT'S NAME ?",NAM

The value of a string literal is a function of its spelling. Every character,
including the space character, counts. For example, the following strings are
not the same:

"DIGITAL”
" DIGITAL”

The absence of characters counts as well. The string literal denoting an empty,
or null, string is:

nn

The enclosing quotation marks are delimiters of string literals. You must use
them to specify a string literal but DSM-11 does not consider them part of the
value of the literal and does not display them when it executes the line on
which you entered them.

WRITE "THIS IS5 A STRING LITERAL"
THIS IS A STRING LITERAL

To include quotation marks in the string literal, type two additional pairs of
quotation marks within the string. Whenever DSM-11 finds a pair of
quotation marks inside the delimiting quotes, it interprets the pair as a single
set of quotation marks.

WRITE """THIS IS A STRING LITERAL"""
"THIS IS A STRING LITERAL"

WRITE "THIS IS A ""STRING"" LITERAL"
THIS IS A "STRING" LITERAL

DSM-11 counts such pairs of embedded quotation marks as one character, not

two, when it determines string length; but it does count both members of the
pair when it determines the length of the line of which the string is a part.

DSM-11 Expression Elements 2-7

2.4 Variables

2-8

A variable is a symbolic name that references a storage location. The variable
uses the value of that storage location as its own value. This value can change
during the execution of a routine. For example, as a result of the following
statement, the variable A has the value 142.432:

SET A=44 51%3.2

The value for the variable, NAM, in the following statement is determined in a
different way:

READ ', "FATIENT 5 NAME 2", NAN

The variable has a value that depends on user response to the string-literal
prompt:

FATIENT'S NAME ?

DSM-11 always uses the most recently assigned value of a variable when
performing calculations. That value remains the same until DSM-11
encounters a statement that assigns a new value to the variable.

If after entering the statement:
SET H=3%4

you enter the statement:

SET B=4*6

the variable B has the value 24.

The data that variables reference is all of one type. DSM-11 stores all data as
variable-length strings. (A string is a series of characters entered and stored as
a unit.) Each string can consist of between zero and 255 characters.

Nevertheless, depending on the operation it is performing, DSM-11 can
interpret a data string as either a numeric or an alphanumeric value. (See
Section 2.7 for more information on the interpretation of data strings.)

Data strings entered as numeric values are like numeric literals. DSM-11 places
the same restrictions on such data as it does on numeric literals. (See Section
2.3.1 for more information on numeric literals.)

Alphanumeric data are like string literals. They are data entered into the
system whose only value is a function of their spelling. Unlike string literals,
alphanumeric data can include any of the 128 characters from the ASCII
character set.

DSM-11 Expression Elements

DSM-11 has three types of variables:

¢ Local variables

¢ Global variables

¢ Special variables
Local and global variables can be defined and changed directly by application
routines. Special variables are defined by the DSM-11 system and, with certain

exceptions discussed in Chapter 7, cannot be changed directly by a user.

The following sections discuss the three types of variables in detail.

2.4.1 Local Variables

Local variables are names of storage for data values maintained in memory.
They are temporary (existing only until you delete them or log off DSM-11)
and accessible only from your partition.

You can define a local variable by referencing its name in a SET statement or a
READ statement. The first character in a local variable name must be an
alphabetic character or a percent (%) character. By convention, the percent
character is used only in library routines. (See the DSM-11 User’s Guide for
more information on library routines.)

The other characters in a local variable name can be any combination of
alphabetic or digit characters. For example, the following are valid local
variable names:

NAM

sum

A

MAA

C2345678

DSM-11 uses only the first eight characters you enter as the variable name. If
you enter as a variable name:

C23456789
DSM-11 assigns the variable the name:

C2345678

DSM-11 Expression Elements 2-9

2-10

Therefore, you should not use variable names longer than eight characters that
DSM-11 can shorten to the same spelling.

Local variables can be either simple or subscripted. A simple local variable
contains a single datum. You create and reference it only by the variable
name. Subscripted local variables have the value of data grouped into ordered
sets or arrays. You can create and reference one by using the variable name
and one or more subscripts.

The subscript is a string enclosed in parentheses immediately following the
local variable name. It uniquely identifies a specific element in a local array.

Each subscript is a string that can consist of up to 63 characters. The charac-
ters can be any of the characters in the ASCII set except the null character
(ASCII decimal value 0). Thus, subscripts can be:

® Integer Literals (positive or negative)

® Decimal Numeric Literals (positive or negative)

e String Literals
The following variables all have valid subscripts:
X(-1)
X(1.234)
TEST("FIRST”,”SECOND","THIRD")
Z(II#II)
A local array can be one dimensional or multidimensional. That is, an array
element can have one or more subscripts. If you use more than one subscript,
separate the subscripts by commas. Leave no spaces between the subscripts
and the delimiting commas.
DSM-11 has no limit on the depth of subscripting you use. However, the full
reference (variable name and all subscripts) cannot exceed 120 characters. For

example, the node TEST(X) is invalid if X is a 117 character string.

Both simple and subscripted local variables can share the same name. Thus,
the array ABC and the simple local variable ABC can exist at the same time.

DSM-11 Expression Elements

2.4.2 Global Variables

Global variables are names of storage locations for data maintained on disk.
Global variables are semipermanent, existing until they are specifically
deleted. Because they are stored on disk, global variables are accessible to any
authorized user.

You can define a global variable by referencing its name in a SET statement.
The first character in a global variable name must be a circumflex (™) charac-
ter. The second character must be either an alphabetic character or a percent
(%) character. By convention, the percent character is used for globals in the
library routines. (See the DSM-11 User’s Guide for more information on
library routines.)

The other characters can be any combination of alphabetic or digit characters.
Thus, the following names are legal global variable names:

"NAM
Asum

"A

" AA
NC2345678

DSM-11 uses only the first nine characters you enter as the variable name. For
example, if you enter as a variable name:

NC23456789
DSM-11 assigns the variable the name:
NC2345678

Thus, you should not use variable names longer than nine characters that
DSM-11 can shorten to the same spelling.

Global variables can be either simple or subscripted. A simple global variable
has the value of a single datum. You create and reference it only by the
variable name.

Subscripted global variables have the value of a node (element) in an array.
(Such arrays are called globals.) You can create and reference a subscripted
variable by using the variable name and a subscript.

DSM-11 Expression Elements 2-11

2-12

The subscript is a string enclosed in parentheses immediately after the global
variable name. It uniquely identifies a specific node or element in a global
array.

Each subscript is a string that can consist of up to 63 ASCII characters. The
characters can be any of the characters in the ASCII set except the null
character (decimal ASCII 0). Thus, subscripts can be:

e Integer Literals (positive or negative)
¢ Decimal Numeric Literals (positive or negative)
e String Literals
The following global variables all have valid subscripts:
"X(-1,-2)
"X@3,7)
NX(1.234)
AX("FIRST”,”SECOND”,"THIRD")

A global array can be one dimensional or multidimensional. That is, an array
node can have one or more subscripts. If you use more than one subscript,
separate the subscripts by commas. Leave no spaces between the subscripts
and the delimiting commas.

DSM-11 has no limit on the depth of subscripting you use. However, the full
reference (variable name and all subscripts) cannot exceed 120 characters. For
example, the node "TEST(X) is invalid if X is a 117 character string.

2.4.3 Extended Global References

DSM-11 also provides you with the ability to extend global references to
specify global variables in another UCI (User Class Identifier) or from another
volume set or system. The syntax for such a reference is:

N [UCI{,SYS}\name(subscripts)

where:
ucl is the UCI in which the global is referenced
SYS is the system or volume set on which the global resides

DSM-11 Expression Elements

A volume set is a data base residing on one or more disks. There be more than
one volume set on one system. If the UCI that you reference is undefined, you
get a NOUCI error. If the system or volume set is undefined, you get a
NOSYS error. See the DSM-11 User’s Guide for more information on
extended global references, volume sets, and intersystem communications.

2.4.4 Array Structure

All local and global arrays are sparse arrays. DSM-11 does not require that
you preallocate space for all possible nodes. Instead, it dynamically adds
nodes to the array as you define them and deletes nodes when you delete them.

Both local and global arrays have a similar logical structure. This section
describes global array structure.

Figure 2-1 shows the logical structure of a simple global array.

Figure 2-1: Global Array Structure

(1,2,3,4) MR-S-880-80

As Figure 2-1 shows, a global array is logically tree structured. The top,
unsubscripted level is called the root. The lower, subscripted levels are called
branches.

(By convention, global arrays are drawn as inverted trees with the root at the
top and the branches beneath.)

DSM-11 Expression Elements 2-13

2-14

All global-array nodes fall into levels depending on their depth of subscript-
ing. In the global array tree shown in Figure 2-1:

A is on the root level (name level)
AA(D
NAQ2) are on the first subscripting level
"A(1,1)
AA(I 2)

A(2 1) are on the second subscripting level
"A(1,2,1)
AA(I 2,3)

"A(1,2,4) are on the third subscripting level
’\A(l 2,3,1)

A(l 2,3,4) are on the fourth subscripting level

A global array is like a family tree. Consider again the global “A previously
shown in Figure 2-1. For any node, all nodes on the path between that node
and the root are called ancestors. The ancestor on the next higher subscrlptmg
level (towards the root) is called the parent Thus, in the global array "A, the
following nodes are the ancestors of "A(1,2,3,1):

A

"A1)
"A(1,2)
NA(1,2,3)

While the node “A(1,2,3) is the parent of “A(1,2,3,1).

All nodes on a glven level that have the same parent are called siblings. Thus,
in the global array "A, the following nodes are siblings:

AA(I 2,1)
NA(1,2,3)
NA(1,2,4)

They all have the same parent, “A(1,2).

All nodes on a lower level that you can reach from a given node are called
descendants of that node. In the global array ™A, the following nodes are the
descendants of "“A(1,2):

"A(1,2,3)
"A(l 2,3,1)
"A(1,2,3,4)

DSM-11 Expression Elements

Physically, DSM-11 stores only those global nodes that you explicitly define
and the root. If you do not assign a value to the root of a global, DSM-11
assigns the root a null value. If you do not assign a value to the root of a local
array, DSM-11 does not assign the root a value.

Logically, DSM-11 also defines any ancestor nodes it needs to provide a direct
path from the root to the defined node. For example, if you define a global
node "X(1,3,5) in a previously undefined global array:

SET "M(1,3,50=1

DSM-11 physically creates a directory and a pointer for AX and defines:

/\X —nn

/\X(l ’3’5) _n 1 "

DSM-11 also defines the following logical ancestors to maintain a direct path
from the root to the defined node:

"X@)

"X(1,3)

DSM-11 does not maintain such logical ancestors physically. However, you
can examine them with the $DATA, SORDER, and $ZSORT functions. For
example, SDATA shows "X(1) as having no value, but as having descendants.

Thus, all nodes in DSM-11 can have one of three states:

1. A node can have a value and no descendants. That is, the node is
explicitly defined and on the lowest level of the global array tree.

2. A node can have no value but have descendants. That is, the node is a
logical node that maintains a path between the root and the node’s
descendants.

3. A node can have a value and have descendants. That is, the node is a
physical node you have defined that also contains a pointer to maintain
a path between the root and the node’s descendants.

DSM-11 returns all nodes in the collating sequence of their subscripts. The
system supports two collating sequences:

e Numeric sequence

* ASCII sequence

DSM-11 Expression Elements 2-15

2-16

In numeric sequence, DSM-11 sorts nodes in the following order:

1. DSM-11 sorts all nodes with canonic numbers as subscripts in the
ascending numeric order of their subscripts. Negative canonic
subscripts sort first, then a subscript of zero, and finally positive
canonic subscripts.

NOTE

A canonic number is a number reduced to its simplest form.
Such a number contains only the valid numeric characters
and, optionally, a negative sign and/or single decimal point.
It has no leading zeros before the digits to the left of the
decimal point and no trailing zeros after the digits to the right
of the decimal point. An integer number followed by a
decimal point (and no other digits), is not a canonic number.

2. DSM-11 then sorts all nodes with subscripts co string literals and
noncanonic numbers (such as 01 or -0.5) in the ascending order of the
ASCII value of their subscript characters, evaluated from left to right.

For example, a local array containing the nodes (elements) A(-5), A(2) A(1),
A(2.5), A("01"), A(3), A(20), A("B") numerically collates in the following
order:

A(-5)
A1)
A(2)
A(2.5)
AQ3)
A(20)
A(IIOl l/)
A(n B I/)

In ASCII sequence, DSM-11 returns all nodes in the ascending order of the
ASCII values of their subscript characters. For example, ASCII collates the
previous local array A in the following order:

A(-5)
A(//Ol l/)
A(l)
AQ2)
A(2.5)
A(20)
AQ3)
A(II BII)

See the DSM-11 User’s Guide for more information on array structure and
usage.

DSM-11 Expression Elements

2.4.5 Naked References

Naked references allow you to refer to a sibling or descendant of a previously
referenced global node by using only that portion of the node’s subscript that
differs from the subscript of the node in the preceding reference. Naked
references consist of the circumflex (%) character immediately followed by the
unique portion of the subscript enclosed in parentheses.

Thus, if you make a full reference to the node AASG(1,2) and then want to
Xeference the defined node “"ASG(1,3), you can do so with a naked reference
3).

DSM-11 maintains a pointer in your job’s partition called the naked indicator.
The naked indicator records the last named global reference and its level.
Within a given global, the path of the naked indicator is always across a
subscripting level of siblings and away from the root.

Figure 2-2 shows a simple global array "A.

Figure 2-2: Global Array (Naked References)

MRS BT K

DSM-11 Expression Elements 2-17

2-18

If your last full reference was to “A(1), the naked indicator is set to the first
unsubscripted level (*A). You can now use naked references to:

1. “A(3), the sibling of "A(1) (as (3))

2. MAQG,, AA(3]\1,1), and "A(3,1,2), the descendants of “A(3) (as "\(3,1),
A3,1,1), and "(3,1,2))

3. “A(1,1), the descendant of “A(1) (as "(1,1))

After you use a naked reference to “A(1,1), DSM-11 sets the naked indicator
to the first subscripting level. You can only use a naked reference to:

1. "A(1,2), the sibling of “A(1,1) (as "(2))

2. /’:A(l,l,l) and “A(1,1,1,1), the descendants of "“A(1,1) (as "(1,1) and
(1,1,1))

To reference “"A(3) or any of its descendants, you must use a full global
reference.

After you use a naked reference to AA(I,l,l,l), the naked indicator is set to
the third subscripting level. You cannot use a naked reference to any existing
node; although you can use it to define any new nodes sibling or descendant to
’\A(l ,1,1,1). To "backtrack” in the array to a lower level node, you must use a
full global reference.

The two types of full global references that leave the naked indicator
undefined are:

1. A reference to the root of a global array

For example, if the previous full global reference is S X = $D("B), the
following statement is undefined:

SET “(1)="LIST"
DSM-11 returns a <NAKED > error.
2. A reference to a node of an undefined global array

See the description of $DATA, SNEXT, SORDER, $ZNEXT, $ZORDER,
and $ZSORT in Chapter 6 for more information.

DSM-11 Expression Elements

2.4.6 Special Variables

Special variables are system defined and maintained variables that can provide
you with information on your partition or on the system. During the course of
processing, DSM-11 updates the values in these special variables. If you need
to know the information they contain, you can access it by using the special
variable as an argument to a DSM-11 command.

Each special variable is an alphabetic name preceded by a dollar sign. The
name is a mnemonic for the information the special variable contains.

DSM-11 has two types of special variables:
* ANSI Standard special variables
e Extended special variables

ANSI Standard special variables are specified in the ANSI MUMPS Language
Standard and follow standard usage. The standard reserves the characters $A
through $Y as the first two characters of the standard special-variable names.

As specified in the ANSI MUMPS Language Standard, extended special
variables are implementation-specific additions to the language. Extended
special-variable names begin with the characters $Z.

When you use a special variable, you can enter either the full spelling or an
abbreviation. If you are using an ANSI Standard special variable, you can
abbreviate the spelling to the first two characters (the $ and the first letter of
the variable name). For example, you can write the ANSI Standard special
variable $TEST as one of the following:

$TEST

T

When you use an extended special variable, you can abbreviate it to its first
three characters (the $, the Z, and the first letter of the variable name). For
example, you can write the extended special variable $ZTRAP as in either of
the following ways:

$ZTRAP

$ZT

DSM-11 Expression Elements 2-19

2.5 Unary Operators

Unary operators give an arithmetic or logical meaning to and are considered
part of the expression atoms they precede. They include the unary arithmetic
operators (Unary PLUS and Unary MINUS) and the Unary NOT operator.

Unary arithmetic operators indicate that the expression atom that they precede
should be interpreted numerically. Whenever DSM-11 encounters a unary
arithmetic operator, it uses the leftmost valid numeric characters in the value
of the expression atom that follows as the numeric value of the expression
atom.

WRITE +"56 DOLLARS AND 32 CENTS"
56

You can use the Unary NOT operator with both expression atoms or binary
operators. If you use it with an expression atom, Unary NOT inverts the truth
value of the expression atom. If you use it with a binary operator, Unary NOT
inverts the meaning of the binary operator.

Because DSM-11 considers unary operators as part of their associated expres-
sion atom, it evaluates all unary operators in a right-to-left order before it
evaluates any binary operators. For example:

WRITE 6Q--6@
120

Table 2-1 lists the unary operators and their meanings.

Table 2-1: DSM-11 Unary Operators

Operator Symbol | Example Meaning

Unary NOT ’ 'B B is logically inverted.

Unary PLUS + +B B is interpreted as a numeric value.

Unary MINUS - -B B is interpreted as a numeric value of the
opposite sign.

2.6 Binary Operators

2-20

Binary operators indicate the type of value DSM-11 is to create from the
expression atoms (or expressions) that they separate. In this situation, the
expression atoms or expressions to the left and right of a binary operator are
called the operands of that operator.

DSM-11 Expression Elements

DSM-11 recognizes the following types of binary operators:
® Arithmetic operators
e Numeric relational operators
e String relational operators
e The string operator (Binary CONCATENATE)
® Logical operators

In addition, DSM-11 also recognizes certain other symbols, the indirection
operator and formatting characters, that have the effect of operators.

2.6.1 Arithmetic Operators

Arithmetic operators evaluate their operands numerically and create a numeric
(in one case, integer) result. Whenever DSM-11 encounters an arithmetic
operator, it evaluates the character strings that are the values of the associated
operands numerically.

DSM-11 uses the leftmost numeric characters in each string as the value of
each operand. It then creates a value based on the numeric values of the
operands and the operation indicated by the operator.

WRITE 25.5%4 .6
117.3

WRITE "4@ STARSHIFS"+"2@ STARSHIFS"
6@

SET A="22RAT",B="44CAT" WRITE A+R
66

If no numeric characters begin a string, DSM-11 gives the string a value of
Zero.

WRITE "4@ STARSHIFS"+"TWENTY STARSHIFS"
42

Some DSM-11 functions, however, require an integer value as an argument. In
these cases, DSM-11 first takes the numeric interpretation of the leftmost
portion of the string and removes any decimal fraction. If the result is empty
or contains only the Unary MINUS operator (indicating that the string has no
whole integer value), DSM-11 gives the string a value of zero.

DSM-11 Expression Elements 2-21

2-22

Table 2-2 lists the arithmetic operators and their meanings.

Table 2-2: DSM-11 Arithmetic Operators

Operator Symbol | Example Meaning
Binary ADD + A+B J|Add Bto A.

Binary SUBTRACT - A -B |Subtract B from A.
Binary MULTIPLY * A*B |Multiply A by B.
Binary DIVIDE / A/B |Divide A by B.
Binary INTEGER DIVIDE \ A\B |Integer divide A by B.
Binary MODULO # A#B |A modulo B.

2.6.2 Numeric Relational Operators

Numeric relational operators are called Boolean operators. They evaluate two
operands numerically and create a result that is a truth value of either one or

Z€ro.

If the numeric relationship between the operands is true, the result is a truth
value of true (one). If the numeric relationship between the operands is false,
the result is a value of false (zero).

You can also use the Unary NOT operator (’) with a numeric relational
operator to produce an inverted version of the operator. Table 2-3 lists the

positive and inverse numeric relational operators and their meanings.

Table 2-3: Numeric Relational Operators

Operator Symbol | Example Meaning
Binary LESS THAN < A<B |A is less than B.
< A’<B [A is not less than B.
(A is greater than or equal to
B.)
Binary GREATER THAN > A>B |A is not greater than B.
’> A’>B [(A is less than or equal to B.)

DSM-11 Expression Elements

2.6.3 String Relational Operators

String relational operators are also Boolean operators; they compare their
operands and create a truth value of either one or zero. They use the ASCII
values of their operands to produce a result.

If the relationship between the two operands is true, the result is a truth value
of true (one). If the relationship between the operands is false, the result is a
truth value of false (zero).

You can also use the Unary NOT operator (’) with the string relational
operators to create an inverted version of the operator. Table 2-4 lists both the
positive and inverted string relational operators and their meanings.

Table 2-4: String Relational Operators

Operator Symbol Example Meaning
Binary EQUALS = A=B String A and string B are equal.
b= A’=B |String A and string B are not
equal.
Binary CONTAINS [A[B String B is contained within string
A.
[A’[B String B is not contained within
string A.
Binary FOLLOWS] AlB String A follows string B in ASCII
collating sequence.
"] A’]B String A does not follow string B
in collating sequence.
Binary PATTERN
MATCH ? A?patn |String A is a string in the form
specified by patn.
’? A’?patn |String A is not a string in the form|
specified by patn.

With the SET command, the equals character (=) is used in a way that is
distinct from its use as a relational operator. With SET, the equals character is
an assignment operator that has the meaning give the operand on the left the
value of the operand on the right. (See the description of the SET command in
PART 2 for more information.)

DSM-11 Expression Elements 2-23

2-24

2.6.4 The String Operator

DSM-11 has one string operator, the Binary CONCATENATE operator (__).
Binary CONCATENATE gives no special interpretation of its arguments. It
creates a string that contains the characters of the right operand appended to
the characters of the left operand.

WRITE “ROUND"_"THELE"
ROUNDTABLE

WRITE 7RS4

7115680

2.6.5 Logical Operators

Logical operators produce a truth-valued result based on the truth values of
their operands. When DSM-11 encounters a logical operator, it first interprets
the operands numerically. If an operand evaluates to any value but zero,
DSM-11 gives it a value of true (one). If an operand evaluates to zero, DSM-
11 gives it a value of false (zero).

Then, DSM-11 evaluates the truth value of the expression by the truth values
of the operands and the relationship between them described by the operator.
If the relationship between the truth values of the operands is true, the result is
true. If the relationship between the truth values of the operands is false, the
result is false.

You can also use the Unary NOT operator (’) with a logical operator to invert
the meaning of the operator. Table 2-5 lists both the positive and inverted
logical operators and their meanings.

Table 2-5: Logical Operators

Operator Symbol | Example Meaning
Binary AND & A&B |Both A and B are true.
& A’&B |Either A or B or both are false.
’(A&B)
Binary OR ! A!B Either A or B or both A and B are true.
8! A’'B Both A and B are false.
’(A!B) :

DSM-11 Expression Elements

Table 2-6 is a truth table. It describes the results of the previous logical
operators on different combinations of truth-valued operands.

Table 2-6: Truth Table

A Value B Value A&B A’&B A!B A’'B
0 0 0 1 0 1
1 0 0 1 1 0
0 1 0 1 1 0
1 1 1 0 1 0

2.6.6 Indirection Operator

The indirection operator allows you to use the value of an expression (expres-
sion atom) as an element in DSM-11 statements. The occurrence of indirection
is represented by the indirection operator (@) followed by an expression atom.
Whenever DSM-11 encounters an occurrence of indirection, it replaces the
occurrence with the value of the expression atom and uses that value in the
statement. Thus, DSM-11 evaluates the statements:

SET X="A"
SET X=40

as equivalent to:

SET A=41

Indirection is not a simple substitution of the string value of the expression
atom for the occurrence of the expression atom. It is an evaluation and use of

that value as part of a DSM-11 statement.

For example, the following statements substitute the value of X for the
occurrence of X:

SET #="11,""THIS IS NOT INDIRECTION""" W &

11, "THIS IS NOT INDIRECTION"

DSM-11 Expression Elements 2-25

2-26

The following statements use indirection to evaluate X:

SET ®="11,""THIS IS INDIRECTIOGN""" W @¥

THIS IS INDIRECTION

In the previous examples, the value of indirection must include the two
additional sets of quotation marks. The exclamation points are formatting
characters. (See Section 2.6.7 for more information on formatting characters.)
All indirection must evaluate to:

1. One or more command arguments

2. A name

3. A pattern (used with the Binary PATTERN MATCH operator)

4. A subscripted local or global variable name (used in partial indirection)
The following sections describe each form of indirection.
2.6.6.1 Argument Indirection—In argument indirection, the value of the
indirection must be one or more command arguments. In the following
example, DSM-11 sets C to the value of five and sets NAM(5,B+ 1) to the

value of K.

§6 SET J="NAM(5,B+1)=K"
SET C=5,4J

In the following example, DSM-11 uses indirection to transfer control to line
Al in the routine UPDATE.

J1 SET GOARG="A1"UPDATE"
GO RGOARG

2.6.6.2 Name Indirection—In name indirection, the value of the indirection can
be any DSM-11 name. DSM-11 defines as a name any language element that
contains an uppercase alphabetic character or percent character followed by
up to seven alphanumeric characters. Thus, you can use name indirection for:
® Variable names
* Line labels

¢ Routine names

DSM-11 Expression Elements

When you use indirection to reference a named variable, the replacement value
of the indirection must evaluate to a complete variable name, including
subscripts. In the following example, DSM-11 sets the variable A to the value
of four.

L2 SET X="A",8K=4

When you use indirection to reference a line label, the replacement value of
the indirection must evaluate to any DSM-11 line label. In the following
example, DSM-11 sets SEC to the value of the line label PART2 if ANS has
the value of a null string. Later, DSM-11 passes control to the second line
following the line labeled PART2.

J1 IF ANS="" SET SEC="PART2"

GO @SEC+2

When you use indirection to reference a routine name, the replacement value
of the indirection must evaluate to a syntactically valid DSM-11 routine name.

In the following example DSM-11 uses the value of a local variable to
determine the routine to which it is to transfer control by indirection. DSM-11
uses the $SELECT function to determine the choice.

See the description of $SELECT in Chapter 6 for more information.

GET READ !,"FUNCTION ?",A
SET XK=$¢SELECT(A=1:"TEST",A=2:"UPDATE",1:"EDIT")
DO “eX

2.6.6.3 Pattern Indirection—In pattern indirection, the value of the indirection
must be a valid pattern. See the description of the binary PATTERN MATCH
operator in Chapter 3 for a discussion of valid patterns.

In the following example, DSM-11 sets X to the pattern for one or more digits
and A to the numeric literal 4. Then, it tests the truth value of A meeting the
specified pattern with the binary PATTERN MATCH operator. Because the
operand evaluates to one digit, the result is true (one).

SET X="1IN.N",A=4 WURITE A?4Y
1

You can nest indirection to give more flexibility to your routines, for example:
S1 SET VAR="A"

SET TEST="$D(QVAR)=0"
IF @TEST SET @VAR=""

DSM-11 Expression Elements 2-27

2-28

Nested indirection is not recommended. It adds to system overhead and makes
maintenance of application packages difficult.

2.6.6.4 Partial Indirection—The partial indirection of a subscripted variable
allows you to construct a local or global variable reference by combining an
indirect reference with a list of additional subscripts. The list of subscripts are
not part of the indirect reference.

The syntax for partial indirection is different from the syntax for the other
forms of indirection. Partial indirection requires a second indirection operator
(@) to separate the indirected portion of the reference from a list of subscripts
within parentheses. DSM-11 combines these two parts to form a single local or
global reference that you can use to reference array nodes.

The general form of partial indirection is:
@expr atom@ (subscriptl,... subscript n)

The first indirection operator precedes an expression that evaluates to a local
or global variable name, defined or undefined. (Thus, the first "part” of
subscript indirection is actually name indirection to a variable.)

The second indirection operator precedes a list of subscripts enclosed in
parentheses; it immediately follows the expression atom without any interven-
ing spaces.

To understand what partial indirection does, consider the following
statements:

SET X="AC1O"
SET @X@(2,3)="HELLO THERE"

In this example, DSM-11 creates the variable A(1,2,3), and assigns it the value
"HELLO THERE"”

To perform the partial indirection, DSM-11 does two things. First, DSM-11
performs name indirection to a variable. In the preceding example, this action
replaces the variable X with the string A(1), which is referred to as the indirect
variable.

Second, DSM-11 creates the new array reference. To do this, it performs the
following steps:

1. It deletes the right parenthesis from the subscript portion of the indirect
variable.

‘2. It places a comma after the last character of the subscript of the indirect
variable.

DSM-11 Expression Elements

3. It concatenates all characters within the parentheses following the
second subscript indirection operator to the indirect variable from step
2.

4. It puts a right parenthesis after the last character of the variable created
as a result of step 3.

If the evaluation of partial indirection returns an unsubscripted variable in the
name indirection phase, DSM-11 creates an array reference that consists of the
variable name and all characters to the right of the second indirection operator
(including parentheses), for example:

SET w="A"

SET @Y4(1,2)="FIRST NODE"
WRITE AC1,2)

FIRST NODE

2.6.7 Formatting Characters

The formatting characters allow you to format output with the READ and
WRITE commands. Table 2-7 lists the formatting characters and their
meanings.

Table 2-7: Formatting Characters

Formatting Character Meaning
Form feed
! Carriage return/line feed

(new-line operation)

n Horizontal tabulation --- positions the next character n
spaces from the left margin

Formatting characters are separate READ or WRITE arguments. You must
separate them from all preceding and following arguments by commas and no
intervening spaces.

For example, both of the following statements are valid:

READ !, "NAME?",NAM, !, "AGE?",AGE, !

WRITE ?1@,NAM, ?21,AGE, !

DSM-11 Expression Elements 2-29

2-30

You can use more than one format character or more than one type of
formatting character in an argument. DSM-11 evaluates and executes each
formatting character in left-to-right order. In the following statement, DSM-
11 performs three new-line operations, tabulates to the 35th column, and
prints the string "END OF REPORT".

WRITE !'11235,"END OF REPORT"

2.6.7.1 The Form-Feed Character—The form-feed character (#) causes a top-
of-form operation on your current device. DSM-11 recognizes the form-feed
character only on hard-copy devices and spooling devices.

When you enter a form-feed character in a statement, DSM-11 writes a form
feed and sets the $X and $Y special variables to zero before executing the
argument to the right of the form-feed character.

Thus, when DSM-11 encounters the statement:
WRITE #,"CUSTOMER BILLING REPORT",!

It first writes a form feed to the current device before printing the string
"CUSTOMER BILLING REPORT".

The special variable, $X, contains the current column position on your
input/output device. The special variable, $Y, contains the number of lines
used on the current input/output device since the last form feed. See the
descriptions of $X and $Y in Chapter 7 for more information.

2.6.7.2 The Carriage-Return/Line-Feed Character—The carriage-return/line-
feed character (!) causes a new line operation on the current device. When you
enter a carriage-return/line-feed sequence character, DSM-11 starts a new line,
sets $X to zero, adds one to $Y, and places any following text in the first
column (column 0) of the new line.

Thus, when DSM-11 encounters the statement:

WRITE !, CUST(M), !, USECH)

It ends the current line, sets $X to zero, adds one to $Y, and writes the data
contained in the local variable CUST(M) at the left margin of a new line.
Then, it ends that line, sets $X to zero, adds one to $Y, and writes the data
contained in USE(M) at the left margin on the next line.

2.6.7.3 The Horizontal-Tabulation Character—The horizontal-tabulation
character (), when followed by an integer-valued expression (represented in
Table 2-7 by n), creates an effect similar to tab to column n. That is, DSM-11
writes enough spaces to place any text that follows the horizontal-tabulation
character at the nth column on the current line.

DSM-11 Expression Elements

All horizontal tabulation is relative to the current value of $X. DSM-11
subtracts the current value of $X from the value specified in n and uses the
remainder (n-$X) as the number of spaces to enter.

For example, if the current value of $X is three, then the following statement
writes two spaces and the string HELLO.

WRITE ?5,"HELLO"

If the current value of $X is eight, the following statement writes two spaces
and the value of ADDR(N).

WRITE ?1@,ADDRCND

DSM-11 cannot perform a negative tabulation. The interger you specify with
the horizontal-tabulation character must be greater than or equal to the
current value of $X. That is, you cannot specify an integer value of six or less
if the current value of $X is seven.

Tabulation is relative to the absolute left margin. Each successive TAB
formatting character you use must indicate the number of columns from the
left margin, not from the last character formatted.

Thus, the following statement does not print ALPHA 10 columns from the
left margin and BETA 10 columns from ALPHA:

WRITE ?10,"ALFHA",?10,"BETA"
Instead, the statement prints:

ALPHABETA

(In any line of text, if one horizontal-tabulation formatted string overlaps the
starting column of another horizontal-tabulation formatted string, the second
string starts at the next available column.)

To create the desired result, use the following statement:

WRITE 1?1@"ALFPHA",?25,"BETA"

You can also create the same effect using $X. This allows you to leave a fixed
number of spaces between the various strings independent of the actual length

of the strings. Using $X, you can rewrite the previous statement as:

WRITE ?2$K+18, "ALPHA",?$K+1@, "BETA"

DSM-11 Expression Elements 2-31

2.7 Expression Evaluation
DSM-11 evaluates all expressions in the following order:

1. DSM-11 evaluates and replaces the occurrences of indirection with the
value of the indirection in left-to-right order.

2. DSM-11 evaluates all unary operators and applies them to the operand
on their right, for example:

WRITE 27--5

32

If you preceded an operand with multiple unary operators with an
operand, DSM-11 applies the unary operators one by one, in right-to-
left order, for example:

WRITE 27---5

22
or:

WRITE 27----5
32

3. DSM-11 evaluates all binary operators in left-to-right order. All binary
operators are on the same precedence level; that is, DSM-11 does not
have a special evaluation order for binary operators.

Consider the following statement:
WRITE 44/4%2+6-1
DSM-11 evaluates the argument in four steps:

e 44/4=11

e 11*2=22

® 22+6=28

® 28-1=27

You can change the left-to-right order of binary-operator evaluation by
enclosing expressions in parentheses. DSM-11 considers any expression in
parentheses to be a single expression atom (operand). It evaluates all expres-

sions in parentheses (in left-to-right order) before it evaluates the other binary
operators.

2-32 DSM-11 Expression Elements

Consider the following statement:
WRITE 44,C4%2)+(6-1)

DSM-11 evaluates this argument in four steps:

® 4¥2=8

® 6-1=5

® 44/8=5.5

® 5.5+5=10.5

Consider also the following statement:
WRITE ‘A&B
The result is true (one) only when A is false and B is true; but:
WRITE ‘(A&R)
creates a true result when:
* A and B are false.
* A is false and B is true.
® A is true and B is false.
You can nest parentheses to change the order of binary-operator evaluation.
DSM-11 evaluates the expressions in the innermost sets of parentheses and
creates a result. Then, it applies the results to the next outermost set of
parentheses and so forth until it evaluates the whole expression.
Consider the following statement:

WRITE 44/C((4%2)+6)-1)

DSM-11 also evaluates this statement in four steps:

® 4*2=8
* 8+6=14
* 14-1=13

® 44/13=13.38461538461

All expressions are variable-length character strings; but, depending on the
nature of the operands, the type of the operator, and the context of the

DSM-11 Expression Elements 2-33

2-34

expression, DSM-11 can interpret expressions in different ways and create
different results. For that reason, DSM-11 recognizes five types of
expressions:

¢ String expressions

e Numeric expressions

Truth-valued expressions

Postconditional expressions

e Timeout expressions

2.7.1 String Expressions

String expressions are those in which DSM-11 gives no special interpretation to
the operands. That is, DSM-11 treats the operands as variable-length character
strings.

String expressions contain the Binary CONCATENATE operator or the
binary string relational operators. When DSM-11 evaluates a string expres-
sion, it creates a value. For the string relational operators, the value is a truth
value of false (zero) or true (one). For the Binary CONCATENATE operator,
the value is a string containing the values of both operands concatenated.
WRITE !, "ROUND"_"TABLE"

ROUNDTABLE

WRITE ',123_678.56

123678.56

All operands you use in string expressions must have a defined value. If the

operands do not have a defined value, you receive an error message when you
execute the string expression.

2.7.2 Numeric Expressions

Numeric expressions are those that DSM-11 interprets numerically. Numeric
expressions contain binary arithmetic operators.

When DSM-11 encounters a binary arithmetic operator, it uses any leading
numeric characters (the digits, the decimal point, the unary operators, and the

DSM-11 Expression Elements

letter E) as the value of the operand. If no such characters are present, it gives
the operand a value of zero. Then DSM-11 creates a numeric value that is the
result of the indicated mathematical operation on the numeric values of the
operands.

2.7.3 Truth-Valued Expressions

Truth-valued expressions are those in which DSM-11 treats the operands as
Boolean values. Truth-valued expressions contain Binary Relational or Binary
Logical operators.

If the relationship between the operands shown in the expression is true, DSM-
11 creates a truth value of true (one) as a result. If the relationship between the
operands shown in the expression is false, DSM-11 creates a truth value of
false (zero) as a result.

2.7.4 Postconditional Expressions

A postconditional expression is a special use of a truth-valued expression. It is
a truth-valued expression appended to a command or an argument that makes
the execution of that command or argument dependent on its truth value.

2.7.4.1 The Command Postconditional Expression—The command postcondi-
tional expression is composed of a truth-valued expression immediately
following the command name and separated from the command name by a
colon (:). Because command postconditional expressions are considered to be
part of the command, they are separated from the command argument list (if
any) by a space.

The general format for a postconditional used with a command is as follows:

command.:postcondsmarg list

where:

command is any command except ELSE, FOR, or IF
postcond is a truth-valued expression

arg list is the argument list

You can use a postconditional expression with all DSM-11 com except ELSE,
FOR, and IF. If you do not use a postconditional expression after a
command, DSM-11 executes the command unconditionally, subject to
external restrictions such as a preceding ELSE or IF.

DSM-11 Expression Elements 2-35

2-36

If you do use a postconditional expression after a command, DSM-11
evaluates the postconditional before it executes the command or any of the
command arguments. If the postconditional expression has a truth value of
true (one) and if the arguments are true or have no postconditional expres-
sions, DSM-11 executes the command and its arguments. If the postcondi-
tional expression has a truth value of false (zero), DSM-11 ignores the
command and its arguments.

Because postconditional expressions do not affect the $TEST special variable,
they are not equivalent to the IF command. However, you can use postcondi-
tional expressions in many situations where you would use IF.

For example, the following statement was written with the IF command:

IF J=4 SET REG=6

You can also write it with a postconditional expression:

SET:J=4 REG=6

2.7.4.2 The Argument Postconditional Expression—The argument postcondi-
tional expression is composed of a truth-valued expression immediately
following an argument and separated from the argument by a colon. The

general format for a postconditional expression with an argument is:

...argument:.postcond...

where:

argument is the argument you want to make conditional on the truth
of the postconditional expression

postcond is a truth-valued expression

You can use argument postconditional expressions with arguments of DO,
GOTO, and XECUTE commands. If you do not use a postconditional expres-
sion, DSM-11 executes the argument unconditionally depending on external
restrictions (such as a postconditional expression with the command).

If you do use a postconditional expression, DSM-11 evaluates the postcondi-
tional expression before it evaluates and executes the argument. If the
postconditional expression is true, DSM-11 executes the argument. If the
postconditional expression is false, DSM-11 skips the argument and executes
any following arguments.

You can mix both command and argument postconditional expressions. For
example, in the statement:

GOT DO:$DATACADHIA GT:AXA,LT:ACB,EQ:A=D

DSM-11 Expression Elements

DSM-11 executes the DO command if A has a value. If the value is greater
than zero, DSM-11 executes the code beginning at label GT. If the value is less
than zero, DSM-11 executes the code beginning at label LT. If the value is
zero, DSM-11 executes the code beginning at label EQ.

2.7.4.3 Naked References And Postconditional Expressions—If you use a
postconditional with a statement containing a naked reference, the evaluation
of the postconditional can have side affects even when the postconditional has
a truth value of false. Consider the statement:

M1 SET:$DATAC"(1,2))=1 ¥=Y+1

Even when the postconditional is false, DSM-11 increases the depth of the
subscript level referenced in the naked indicator by one every time it evaluates
the statement.

2.7.5 Timeout Expressions

A timeout expression, or timeout, is an numeric expression, preceded by a
colon, that you can append to the argument of an OPEN, LOCK, READ, or
JOB command. The value of the timeout specifies the number of seconds
DSM-11 is to try to perform the operation specified by the command before it
evaluates the next command. Real numbers (with a fractional part) are
rounded to the nearest integer.

The timeout is an effective way of preventing an interruption of processing
when the system must wait to execute an 1/0 statement. For example, when
you issue an OPEN statement for an I/0 device:

OPEN device

DSM-11 tries as long as necessary until it can open the device. If another user
has opened and is using the device, the wait could be a long one.

If you use a timeout in the statement:
OPEN device::timeout

DSM-11 tries to open the device only for the number of seconds you specify in
the timeout. (The OPEN command requires two colons with a timeout.)

The value of the timeout should be a nonnegative integer. If the value of the
timeout is negative, DSM-11 gives the timeout a value of zero.

If the timeout is a zero, DSM-11 determines if it can perform the operation. If
it can, it executes the command and sets $TEST to one. If it cannot, it sets
$TEST to zero. In either case, execution proceeds without delay.

DSM-11 Expression Elements 2-37

If the timeout is a positive integer, DSM-11 suspends execution and tries once
each second to complete the specified operation. If DSM-11 cannot complete
the operation in the interval specified in the timeout, it sets the special variable
$TEST to zero and continues routine execution. If DSM-11 can complete the
operation in that interval, it sets $TEST to one and continues execution.

(If DSM-11 can complete the operation before the timeout occurs, it continues
execution and ignores any remaining time in the timeout.)

Thus, if you use a timeout in a routine, you should test to determine if the
operation is successful, for example:

OFEN 3::5 E WRITE "BUSY" G T1

2-38 DSM-11 Expression Elements

Part 2: Language Reference

Chapter 3
DSM-11 Operators

This chapter describes the DSM-11 operators and provides examples of their
use.

3.1 Introduction to DSM-11 Operators

DSM-11 operators are symbolic characters that specify the operation to be
performed and the type of value to be produced from their associated operand
or operands. See Sections 2.5 and 2.6 for a general introduction to operators.

3.2 Operator Descriptions

The following are reference descriptions of each DSM-11 operator. Binary
operators are described first, followed by unary operators.

Each description contains an explanation of the purpose, forms, and
operation of the operator and several examples of operator usage. All
command-line examples are shown as they would appear when entered from a
terminal. All routine-line examples are shown as they would appear when
listed on a line printer.

DSM-11 Operators 3-1

Binary ADD (+)

3-2

PURPOSE:

Binary ADD produces the sum of two numerically interpreted operands.
FORM:
operand + operand

EXPLANATION:

Binary ADD uses any leading, valid numeric characters (the digits 0 through 9,
the decimal point, the Unary MINUS operator, the Unary PLUS operator,
and the letter E) as the numeric values of the operands. Then, it produces a
value that is the sum of the value of the operands.

W "8 AFFLES"+"4 ORANGES"

12

If an operand has no leading numeric characters, Binary ADD gives it a value
of zero.

W "8 APFLES" +"FOUR ORANGES"
&

COMMENTS:

Binary ADD produces at least 15 significant digits of precision in its result.

RELATED:

Arithmetic Operators (Section 2.6.1)
Expression Evaluation (Section 2.7)
Numeric Expressions (Section 2.7.2)

EXAMPLES:

The following example performs string arithmetic on two operands that have
leading digits.

W "4 matorcycles"+"S unicycles"
3

The following example performs addition on two decimal, numeric literals.

W 2936.224301 .45
3237.67

DSM-11 Operators

Binary ADD (+) (Cont.)

The following example performs addition on two defined local variables.

S A=27.4,B=18.6 W A+R
46

The following example illustrates that leading zeros on a numerically
evaluated operand do not affect the results the operator produces.

Waa7t+1m
17

DSM-11 Operators 3-3

Binary AND (&)

3-4

PURPOSE:

Binary AND tests whether both of its operands have a value of true.
FORM:

operand&operand

EXPLANATION:

Binary AND produces a true (one) only if both operands are true (that is, have
nonzero values); otherwise, it produces a value of false (zero).

COMMENTS:

You can specify the Boolean operation of NOT AND (NAND) by using the
Unary NOT operator with Binary AND. You can use either of the following
forms;

operand' &operand
' (operand&operand)
Both forms are equivalent.

The negative AND reverses the truth value of Binary AND applied to both
operands. It produces a true result only when either, but not both, operands
are true or when both operands are false. It produces a false result only when
both operands are true.

RELATED:

Expression Evaluation (Section 2.7)
Logical Operators (Section 2.6.5)
Truth-Valued Expressions (Section 2.7.3)

EXAMPLES:

The following example evaluates two nonzero-valued operands and produces a
value of true (one).

5 A=-4,B=-1 W A%E
1

DSM-11 Operators

Binary AND (&) (Cont.)

The following example evaluates one true and one false operand and produces
a value of false (zero).

S5 A=1,B=0 W AR
2

The following example evaluates two false operands with a negative AND.
Thus, it produces a value of true (one).

S AR, B=0 WA LR
1

The following example evaluates one true and one false operand with a
negative AND. Thus, it produces a value of true (one).

S A=0.B=1 W ' (ARRD
1

DSM-11 Operators 3-5

Binary CONCATENATE ()

3-6

PURPOSE:

Binary CONCATENATE produces a result that is a string composed of the
right operand appended to the left operand.

FORM:
operand__operand
EXPLANATION:

Binary CONCATENATE gives the operands no special interpretation. It
treats them as string values. If the concatenated string is longer than 255
characters, DSM-11 returns an error.

RELATED:

String Expressions (Section 2.7.1)
The String Operator (Section 2.6.4)

EXAMPLES:

The following example concatenates two string literals.

W "ROUND" _“TARLE"
ROUNDTABLE

The following example concatenates two numeric literals and a string literal.

WeR3y_"-v_ 24
603-24

The following example concatenates two local variables, NAME and SUBS.
5 NAME=""AA",SUBS="(1,2,3)", GLOBAL=NAME_SLIRS

W GLIEAL
"AAC1,2,3)

The following example concatenates two string literals and a null string.

S ﬁ=“ﬁBC"_”“_“DEF” WA
ABCDEF

Thus, a null string has no effect on the length of a string. (You can concate-
nate an infinite number of null strings to a string.)

DSM-11 Operators

Binary CONTAINS (])
PURPOSE:

Binary CONTAINS tests whether the sequence of characters in the right
operand is contained in the sequence of characters in the left operand.

FORM:

operand Aloperand B

where:

operand A is the operand to be considered as containing operand B
operand B 1: the operand to be considered as being contained in operand
EXPLANATION:

Binary CONTAINS produces a result of true (one) if operand A contains the
character string represented by operand B . Binary CONTAINS produces a
result of false (zero) if operand A does not contain the character string
represented by operand A.

To produce a true result, the characters in operand B must be in the same
order as the characters in operand A. If operand B is a null string, the result is
always true.

COMMENTS:

You can produce a negative CONTAINS (DOES NOT CONTAIN) by using
the Unary NOT operator with Binary CONTAINS. You can write a DOES
NOT CONTAIN in two ways:

operand A'loperand B
"(operand Aloperand B)
Both forms are equivalent.

DOES NOT CONTAIN reverses the truth value of Binary CONTAINS
applied to both operands. DOES NOT CONTAIN produces a result of true if
operand A does not contain the character string represented by operand B. It
produces a result of false if operand A does contain the character string
represented by operand B.

DSM-11 Operators 3-7

Binary CONTAINS () (Cont.)

3-8

RELATED:

String Expressions (Section 2.7.1)
String Relational Operators (Section 2.6.3)

EXAMPLES:

The following example tests whether L contains S. Because L does contain
S, the result is true.

5 5="STEAM",L="STEAM LOCOMOTIVE"
WLLS
1

The following example tests whether the string represented by S is contained
in P. Because the character sequence in the strings is different (two spaces
in P and one space in S), the result is false.

5 5="STAND UP",F="STAND UF"
WFLS
[

The following example shows how you can use the DOES NOT CONTAIN
to determine if one string is not contained in another string.

W “ABCM[M123"
1

The following example shows that the two operands can be equal in value
and still produce a true result.

W12300v123"
1

DSM-11 Operators

Binary DIVIDE (/)
PURPOSE:

Binary DIVIDE produces a quotient that is the result of dividing two
numerically interpreted operands.

FORM:

operand A/operand B

where:

operand A is the dividend
operand B is the divisor
EXPLANATION:

Binary DIVIDE uses any leading, valid numeric characters (the digits 0
through 9, the decimal point, the Unary MINUS operator, the Unary PLUS
operator, and the letter E) as the numeric value of the operand. Then, it
produces a quotient that is the result of dividing operand A by operand B.

W "8 AFFLES" /"4 ORANGES"

<

If an operand has no leading numeric characters, Binary DIVIDE gives it a
value of zero.

W "8 AFFLES" ~"FOUR ORANGES™

The result of this operation is invalid. Dividing a number by zero causes an
error.

COMMENTS:

Binary DIVIDE produces at most 31 significant digits of precision in its
result. The number of signifigant digits is a parameter chosen during system
generation; see the DSM-11 User’s Guide for more information.

RELATED:

Arithmetic Operators (Section 2.6.1)
Expression Evaluation (Section 2.7)
Numeric Expressions (Section 2.7.2)

DSM-11 Operators 3-9

Binary DIVIDE (/) (Cont.)
EXAMPLES:

The following example divides two integer numeric literals.

W 355,113
3.1415923203539%

The following example performs division on operands with leading digits.

W "12 BATTLESHIFS" /"3 AIRCRAFT CARRIERS"
4

The following example performs division on two literals in E format. DSM-
11 displays the result in numeric format.

W 1QE4-5E2
200

3-10 DSM-11 Operators

Binary EQUALS (=)
PURPOSE:
Binary EQUALS compares two string-interpreted operands for equality.
FORM:
operand = operand
EXPLANATION:

Binary EQUALS normally tests for string equality. If the two operands
tested are identical strings, Binary EQUALS produces a result of true (one);
otherwise, it produces a result of false (zero).

To produce a true result, the character sequence in both operands must be
identical. There can be no intervening characters (including spaces).

Binary EQUALS does not imply any numeric interpretation of either
operand. Binary EQUALS tests string identity.

For example, the following statement produces a value of one:
W "SEVEN"="SEVEN"

But the next statement produces a value of zero:

W "aa7"="7"

The two operands in the second case are numerically identical, but their
string values are different.

You can use Binary EQUALS to test for numeric equality if both operands
have numeric values. Thus the following statement produces a value of one:

W 0a7=7

If the operands are not automatically converted to numeric values (as in the
process of evaluating numeric literals), you can force the conversion by
using the Unary PLUS operator. Thus, the following statement also
produces a value of one:

H *Ilﬁ“?ll:*ll?ll

DSM-11 Operators 3-11

Binary EQUALS (=) (Cont.)

3-12

COMMENTS:

Keep the following points in mind when you use the Binary EQUALS
operator.

1. You can specify a NOT EQUALS operation by using the Unary NOT
operator with Binary EQUALS. You can express the NOT EQUALS
operation in two ways:

operand' = operand
' (operand = operand)

NOT EQUALS reverses the truth value of the EQUALS operator
applied to both operands. If the two operands are not identical, NOT
EQUAL produces a result of true. If the two operands are identical, it
produces a result of false.

2. When used with the SET command, the equals character becomes an
assignment operator that assigns the value of the operand on the right
to the operand on the left, for example:

S A="JOHN JONES"

assigns the variable A the value "JOHN JONES”".
RELATED:
Expression Evaluation (Section 2.7)
String Expressions (Section 2.7.1)

String Relational Operators (Section 2.6.3)

EXAMPLES:

The following example prompts for operator input. If the operator types a
RETURN (equivalent to a null string), the routine terminates.

QU R !, "ANY CHANGES?",ANS
lJ:ﬁNS:IIlI

The following example illustrates two uses of the equals character. First, the
example uses the equals character as an assignment operator with the SET
command to give two local variables the value of two strings. Second, it tests
the identity of the strings with the Binary EQUALS operator. Because the
strings are not identical, the result is false.

5 A="ASERC",E="ARC" W A=R
e

DSM-11 Operators

Binary EQUALS (=) (Cont.)

The following example reads an answer, sets the variable TRUE to the value
of the expression ANS = YES, and writes the result. If the contents of ANS is
YES, then the expression to which TRUE is set is true (one). If the contents of
ANS is any other value, the expression to which TRUE is set is false (zero).

B1 R !,ANS S TRUE=ANS="YES"
W !, TRUE

The following statement does not set both A and B to 7:
S A=R=T7

This statement sets A equal to true (one) if the value of B is 7; A is set to false
(zero) if B has some other value.

DSM-11 Operators 3-13

Binary FOLLOWS ())

3-14

PURPOSE:

Binary FOLLOWS tests whether the characters in operand A come after the
characters in operand B in ASCII collating sequence.

FORM:

operand Aloperand B

where:

operand A is the operand that the test considers follows operand B
operand B is the operand that the test considers operand A follows
EXPLANATION:

Binary FOLLOWS compares the ASCII characters in both operands, starting
with the leftmost character. It stops the comparison if it finds a character in
operand A that is different from the corresponding character in operand B.

If Binary FOLLOWS finds that the first unique character in operand A has a
higher ASCII value than the corresponding character in operand B (that is, if
it comes after the corresponding character in operand B in ASCII collating
sequence), it produces a result of true (one). If Binary FOLLOWS finds all
characters in both operands are identical or if it finds that the first unique
character in operand A has a lower ASCII value than the corresponding
character in operand B, it produces a result of false (zero).

COMMENTS:

You can produce a NOT FOLLOWS operation by using the Unary NOT
operator with Binary FOLLOWS. The NOT FOLLOWS operation has two
forms:

operand A 'loperand B

'(operand Aloperand B)

Both forms are functionally identical.

NOT FOLLOWS reverses the truth value of Binary FOLLOWS applied to
both operands. NOT FOLLOWS compares the characters in both operands. It

stops the comparison if it finds a character in operand A that is different from
the corresponding character in operand B.

DSM-11 Operators

Binary FOLLOWS (]) (Cont.)

If all characters in the operands are identical, or if the first unique character in
operand A has a lower ASCII value than a corresponding character in operand
B, NOT FOLLOWS produces a result of true. If the first unique character in
operand A is a higher ASCII value than the corresponding character in
operand B (that is, if it follows the character in operand B), NOT FOLLOWS
produces a result of false.

RELATED:

ASCII Character Set (Appendix A)
Expression Evaluation (Section 2.7)

String Expressions (Section 2.7.1)

String Relational Operators (Section 2.6.3)

EXAMPLES:

The following example tests to determine if the string LAMPOON follows the
string LAMP in ASCII collating order. The result is true.

W "LAMPOON"T"LAMF"
1

The following example tests the collating order of numeric literals. Because 3
in 123 follows 2 in 122, the result is true.

W1231122
1

The following example also tests numeric literals. Because the numeric literal
123 collates before the numeric literal 2, the result is false.

W12312
0

The following example tests to determine if the string CDE follows string ABC
in ASCII collating order. Because C in CDE follows A in ABC, the result is
true.

W "CDE"I"ARC"
1

The following example tests to determine if string CDE does not follow string
ABC. Because C in CDE does follow A in ABC, the result is false.

W “CDE" / J"ARC"
'}

DSM-11 Operators 3-15

Binary FOLLOWS (]) (Cont.)

The following example tests if the string in B follows the string in A. Because
BO follows BL in ASCII collating sequence, the result is true.

S ﬁ= IIBLUEH s B: IIE“:'I‘III

W EIA
1

3-16 DSM-11 Operators

Binary GREATER THAN (>)
PURPOSE:

Binary GREATER THAN tests whether operand A is algebraically greater
than operand B.

FORM:

operand A> operand B

where:

operand A is the operand considered the larger
operand B is the operand considered the smaller
EXPLANATION:

Binary GREATER THAN evaluates the two operands numerically. If operand
A has a greater value than operand B, it produces a result of true (one). If

operand A has an equal or lesser value, Binary GREATER THAN produces a
result of false (zero).

COMMENTS:

You can produce a NOT GREATER THAN operation by using the Unary
NOT operator with Binary GREATER THAN. The NOT GREATER THAN
operation has two forms:

operand A' >operand B
"(operand A > operand B)

NOT GREATER THAN reverses the truth value of Binary GREATER
THAN applied to both operands. Thus, you can use it to specify less than or
equal to.

NOT GREATER THAN produces a true result when:
® operand A is less than operand B
e operand A is equal to operand B

NOT GREATER THAN produces a false result when operand A) is greater
than operand B.

DSM-11 Operators 3-17

Binary GREATER THAN (>) (Cont.)
RELATED:

Expression Evaluation (Section 2.7)
Numeric Relational Operators (Section 2.6.2)
Truth-Valued Expressions (Section 2.7.3)

EXAMPLES:

The following example tests two numeric literals.

W12)15
0

The following example tests two variables with the NOT GREATER THAN
operator. Because both variables have an identical numerical value, the result
is true.

5 A="55",B="55" W A')E

The following example tests two alphanumeric strings. Because neither string
has leading numeric digits, both evaluate to zero. Thus the two strings are
equal in numeric value and produce a true result only with the NOT
GREATER THAN operator.

5 A="ABC",B="RCD"
W AR

2

WE)A

2

NADE

1

WE A

1

3-18 DSM-11 Operators

Binary INCLUSIVE OR (!)
PURPOSE:

Binary INCLUSIVE OR tests whether one or both of its operands have a value
of true.

FORM:
operand!operand
EXPLANATION:

If either operand has the value of true or if both operands have the value of
true, Binary INCLUSIVE OR produces a result of true (one). If both
operands are false, it produces a result of false (zero).

COMMENTS:

You can produce a NOT OR (or NOR) operation by using Unary NOT with
INCLUSIVE OR. The NOT OR operation has two forms:

operand'\operand
'(operand!operand)
Both forms are functionally equivalent.

The NOT OR operation reverses the truth value of Binary OR applied to both
operands. If both operands are false, the NOT OR operation produces a result
of true. If either operand is true or if both operands are true, the NOT OR
operation produces a result of false.

RELATED:

Expression Evaluation (Section 2.7)
Logical Operators (Section 2.6.5)
Truth-Valued Expressions (Section 2.7.3)

EXAMPLES:

The following example evaluates two true operands, applies the OR to them,
and produces a true result.

5A=1,B=1 W AR
1

DSM-11 Operators 3-19

Binary INCLUSIVE OR (!) (Cont.)

3-20

The following example evaluates one true and one false operand and produces
a true result.

5A=1,B=0 WA'R
1

The following example evaluates two false operands and produces a false
result.

5 A=0,B=0 W AR
2

This NOT OR example evaluates two false operands and produces a true
result.

SA=0,B=0 WA IR
1

This NOT OR example evaluates one true and one false operand and produces
a false result.

SA=1,B=0 WA IE
?

DSM-11 Operators

Binary INTEGER DIVIDE(\)
PURPOSE:

Binary INTEGER DIVIDE produces the integer result of the division of
operand A by operand B .

FORM:

operand A operand B

where:

operand A is the dividend
operand B is the divisor
EXPLANATION:

Binary INTEGER DIVIDE uses any leading, valid numeric characters (the
digits O through 9, the Unary MINUS operator, the Unary PLUS operator, the
decimal point, and the letter E) as the numeric values of the operands. Then, it
returns a result that is the integer portion of the quotient produced by dividing
operand A by operand B. (It does not return a remainder.)

W "8 AFFLES"\"3 .8 ORANGES"
2

If an operand has no leading numeric characters, Binary INTEGER DIVIDE
gives it a value of zero. If you attempt integer division with a zero-valued
divisor, you receive an error.

COMMENTS:

Binary INTEGER DIVIDE produces at most 31 significant digits of precision
in its results. The number of significant digits is a parameter chosen during
system generation; see the DSM-11 User’s Guide for more information.

RELATED:

Arithmetic Operators (Section 2.6.1)
Expression Evaluation (Section 2.7)
Numeric Expressions (Section 2.7.2)

DSM-11 Operators 3-21

Binary INTEGER DIVIDE(\) (Cont.)

3-22

EXAMPLES:

The following example performs integer division on two integer-literal
operands.

W 355~113
3

The following example performs integer division on two real numeric
operands.

W 163.83-128.8
1

The following example uses integer division to extract the integer part of a
real number. The fractional part is truncated. DSM-11 performs no
rounding-up operation.

5 ®=163.83
WoH~1
163

The following example does perform the rounding-up operation.
5 H=163 .83

WK+ 51
164

DSM-11 Operators

Binary LESS THAN (<)
PURPOSE:

Binary LESS THAN tests whether operand A is algebraically less than
operand B.

FORM:

operand A <operand B

where:

operand A is the operand considered the smaller

operand B is the operand considered the larger

EXPLANATION:

If operand A has a lesser value than operand B, Binary LESS THAN produces
a result of true. If operand A has an equal or greater value than operand B,
Binary LESS THAN produces a result of false.

COMMENTS:

You can produce a NOT LESS THAN operation by using the Unary NOT
operator with Binary LESS THAN. You can express this operation in two
ways:

operand A' <operand B

"(operand A < operand B)

Both forms are functionally identical.

NOT LESS THAN reverses the truth value of Binary LESS THAN applied to
both operands. It produces a true result when operand A is greater than
operand B or when operand A is equal to operand B. It produces a false result

when operand A is less than operand B.

Thus, you can use the NOT LESS THAN operation to specify "greater than or
equal to.”

RELATED:
Expression Evaluation (Section 2.7)

Numeric Relational Operators (Section 2.6.2)
Truth-Valued Expressions (Section 2.7.3)

DSM-11 Operators 3-23

Binary LESS THAN (<) (Cont.)

3-24

EXAMPLES:

The following example evaluates two numeric literals. Because nine is greater
than six, the result is false.

Wade
(']

The following example evaluates a string literal and a numeric literal. Because
the numeric interpretation of the string is 22, the result is true.

W"22A4" (100
1

The following example evaluates two string literals. Because the strings have
no leading digits, they both evaluate to zero. Thus, the result is true.

’

W llﬁll (”B“
1

The following example shows the result of using relational operators in a
series. All DSM-11 expressions with binary operators are evaluated left to
right. The first operation is 2<X, the result of which is 0. The second
operation is 0< 10, the result of which is 1.

5 =0
Wz(R¢1D
1

DSM-11 Operators

Binary MODULO (#)
PURPOSE:
Binary MODULO produces a value that is operand A modulo operand B.
FORM:

operand A#operand B

where:

operand A is the value on which the modulo operation is to be
performed

operand B is the modulus

EXPLANATION:

Binary MODULO uses any leading, valid numeric characters (the digits 0
through 9, the decimal point, the Unary MINUS operator, the Unary PLUS
operator, and the letter E) as the numeric value of the operands. If an operand
has no leading numeric characters, Binary MODULO gives it a value of zero.

DSM-11 defines modulo operation only for nonzero values of operand B. It
defines operand A #operand B as:

operand A -(operand B *floor)(A/B)
where:

floor(A/B) is the largest integer less than or equal to operand
A/operand B

For negative numbers, that integer is the largest absolute integer, that is, -6.2
becomes -7, not -6.

For example:
floor (1.2) =1
floor (0) = 0

floor (-4.2) = -5

DSM-11 Operators 3-25

Binary MODULO (#) (Cont.)
COMMENTS:
When both operands are positive, the modulo operation produces the remain-
der of operand A /operand B. When one or both operands are not positive,
the results are more complex.
The expression "is identical modulo” can help in understanding the process.
Two numbers are identical modulo B if their difference is a multiple of B. In

general, there are an infinite series of numbers identical to a specific number
modulo B.

The formula that defines the modulo operation implies that:

e If B>0, then A#B produces the least positive number identical to A#B.

e If B<O, then A#B produces the greatest negative number identical to A#B.
e If B=0, then A#B is undefined and produces an error.

RELATED:

Arithmetic Operators (Section 2.6.1)

Expression Evaluation (Section 2.7)

Numeric Expressions (Section 2.7.2)

EXAMPLES:

The following examples illustrate the modulo operation with two positive

operands. In such cases, the modulo operation produces a value equivalent to
the remainder after division of operand A by operand B.

W37TH1Q
7

WZ4HA

0
W12.543.2
2.9

3-26 DSM-11 Operators

Binary MODULO (#) (Cont.)

The following examples illustrate the effect of the modulo operation on two
operands preceded with Unary MINUS operators. In such cases, the modulo
operation is equivalent to:

-(operand A#operand B).

H-37H-10
-7

Wo-24#-4
Q

The following example shows the effect of a Unary MINUS on operand A. In
these cases, DSM-11 gives the expression a value of:

1. O, if operand A#operand B has a value of 0.

2. operand B-(operand A#operand B), if operand A#operand B has a value
other than 0.

These examples show the effect of a Unary MINUS on operand B. In these
cases, the expression has the value -(-operand A#operand B).

W 3TH-19

-3

TR
Q

These examples show the effect of a zero-valued operand A. In such cases, the
result is zero regardless of the sign of operand B. When operand B evaluates to
zero, the operation is undefined and results in an error.

WUALFHA"RLA
[

Wodk-1a

DSM-11 Operators 3-27

Binary MULTIPLY (*)

3-28

PURPOSE:

Binary MULTIPLY produces the product of multiplying two numerically
interpreted operands.

FORM:
operand*operand
EXPLANATION:

Binary MULTIPLY uses any leading numeric characters (the digits O through
9, the Unary MINUS operator, the decimal point, and the letter E) as the
numeric value of the operand. Then, it produces a product that is the result of
multiplying the two operands.

W U8 AFFLES"*"4 ORANGES"
32

If an operand has no leading numeric characters, Binary MULTIPLY gives it
a value of zero.

W 'e APFLES"*"FOUR ORANGES"
0

COMMENTS:

Binary MULTIPLY produces at least 15 significant digits of precision in its
result.

RELATED:

Arithmetic Operators (Section 2.6.1)
Expression Evaluation (Section 2.7)
Numeric Expressions (Section 2.7.2)

EXAMPLES:

The following example multiplies two string operands with leading digits.

Wo"1E HORSES"*"4 COWS"
48

The following example multiplies one string literal and one numeric literal.

W "1z 50"* 33
4.125

DSM-11 Operators

Binary MULTIPLY (*) (Cont.)

The following example multiplies the values in two local variables.

S B=25,A=4 W A*E
1e0

DSM-11 Operators 3-29

Binary PATTERN MATCH (?)

3-30

PURPOSE:

Binary PATTERN MATCH tests whether the pattern of characters in its left
operand is correctly specified by the pattern that is its right operand.

FORM:

operand?pattern

where:

operand is the operand whose characters you want to test for a
pattern

pattern is the pattern for which you want to test

EXPLANATION:

Binary PATTERN MATCH produces a result of true (one) if the pattern
correctly specifies the pattern of characters in the operand. Binary PATTERN
MATCH produces a result of false (zero) if the pattern does not correctly
specify the pattern of characters in the operand.

The pattern characters you can use with PATTERN MATCH and their
meanings are:

Character Specifies

N One of the ten numeric characters from 0 through 9

U One of the 26 uppercase alphabetic characters from A through Z

L One of the 26 lowercase alphabetic characters from a through z

A One of the 26 uppercase or 26 lowercase alphabetic characters from A

or a through Z or z

P One of the 33 punctuation characters, including s
C One of the 33 control characters, including delete
E One of any of the characters in the (entire) ASCII set

DSM-11 Operators

Binary PATTERN MATCH (?) (Cont.)

You can also use the following characters in patterns:

1.

Integer literals

Precede pattern characters with an integer literal that specifies the number
of character matches necessary. For example, given the statement:

S A="ALPHA CENTALIRI"
the statements:
W A?SU1FRL

(five uppercase alphabetics, one punctuation character, and eight
alphabetics) or:

W A?14E

(fourteen of any of the characters in the ASCII set) both produce a true
result.

Place two or more code characters together to indicate that a match with
any one of them is satisfactory. For example, the statement:

W "CHARLESJONES"?12AN

produces a true result because all the characters in the string are
alphanumeric.)

The period character
You can use the period character (.) to do the following:

a. Indicate that any number of occurrences constitute a match (including
Z€ero).

To use the period this way, you include it in the pattern specification
in place of integer values. For example, given the following
statements, DSM-11 returns a true result because X does match a
specification of any number of alphabetic or numeric characters.

I onz"ASERIALY WK? AN
1

b. Set lower bounds or upper bounds to the number of occurrences that
constitute a match, or set a range of occurrences that constitute a
match.

DSM-11 Operators 3-31

Binary PATTERN MATCH (?) (Cont.)

3-32

To use the period to set a lower bound, specify an integer followed by
the period. For example, the following statement tests for an integer
that consists of three or more digits:

WY?3.N

To use the period to set an upper bound, specify the period followed
by an integer. For example, the following statement tests for an
uppercase alphabetic string that consists of zero to five characters.

WY?.5U

To use the period to set a range of occurrences that match, specify an
integer followed by a period followed by an integer. For example, the
following statement tests for a lowercase alphabetic string that
consists of two to seven characters.

String values

Use a string value in place of part of a pattern to indicate that an exact
character-for-character match is necessary. Thus, given the statement
from the earlier example:

S A="ALFHA CENTALIRI"
either of the statements below produces a true result:
WA?21"ALFHA"1F8I

(one string with the characters ALPHA, one punctuation character, and
eight uppercase alphabetic characters)

W A?1"ALFHA"SE

(one string with the characters ALPHA and nine of any characters in the
ASCII set)

You can precede any string with either an integer literal or the period
character; but you cannot directly precede a string with any of the pattern
characters. Thus, the following statement produces an error:

S A=",AB" W A?1F"AR"

DSM-11 Operators

Binary PATTERN MATCH (?) (Cont.)
COMMENTS:

When the period character precedes one or more pattern characters and the
period is not preceded or followed by an integer, it applies to all pattern
characters that follow through the occurrence of the next qualified period
character (if any).

RELATED:

ASCII Character Set (Appendix A)
Expression Evaluation (Section 2.7)
Indirection Operator (Section 2.6.6)
Pattern Indirection (Section 2.6.6.3)
String Relational Operators (Section 2.6.3)
Truth-Valued Expressions (Section 2.7.3)

EXAMPLES:

The following example produces a true result. The string tested includes one
numeric character, one punctuation character, and two numeric characters.

WM, 12" ?INTREN
1

The following example produces a true result. The string tested includes four
numeric characters, two uppercase alphabetics, one punctuation character,
and one additional numeric character.

W "4227L2-5"?3 N U 2FIN
1

The following example produces a false result. The first character in the tested
string is one of the 52 uppercase and lowercase alphabetics, but the test has no
provision for the second character.

T A="CC W ARLA

'}

The following example produces a false result. The first two characters are
alphanumeric, but the third character is punctuation.

N "BA-"73AN
0

The following example produces a true result. The string "FIL"” matches the
first three characters and the 1E matches the last character.

WUFTLL"?21"FIL"1E
1

DSM-11 Operators 3-33

Binary SUBTRACT (-)

3-34

PURPOSE:

Binary SUBTRACT produces the difference between two numerically
interpreted operands.

FORM:

operand A-operand B

where:

operand A is the minuend (the value from which operand B is to be
subtracted)

operand B is the subtrahend (the value to be subtracted from the
minuend)

EXPLANATION:

Binary SUBTRACT interprets any leading, valid numeric characters (the digits
0 through 9, the decimal point, the Unary MINUS operator, the Unary PLUS
operator, or the letter E) as the numeric value of the operand. Then, it
produces a value that is the remainder after subtraction.

W "B AFFLES"-"4 ORANGES®
4

If an operand has no leading numeric characters, Binary SUBTRACT gives it
a value of zero.

WUB AFFLES"-"FOUR URANGES"
B

COMMENTS:

Binary SUBTRACT produces at least 15 significant digits of precision in its
results.

RELATED:

Arithmetic Operators (Section 2.6.1)
Expression Evaluation (Section 2.7)
Numeric Expressions (Section 2.7.2)

DSM-11 Operators

Binary SUBTRACT (-) (Cont.)
EXAMPLES:

The following example subtracts a real numeric literal from an integer numeric
literal.

W1Iu-48 4
76.4

The following example performs subtraction on two literals with leading
digits.

WL AUTOCMORILES -4 TRUCKS"
g

DSM-11 Operators 3-35

INDIRECTION (@)

3-36

PURPOSE:

The indirection operator causes DSM-11 to use the value of its operand as an
element in DSM-11 statements. The indirection operator may also terminate
the indirection portion of an operand in partial indirection.

FORM:
@expr atom

@expr atom@ (subscript)

where:

expr atom is the expression atom whose value DSM-11 is to use

subscript is a string that DSM-11 is to use to name an array node that
descends from the variable referred by expr atom

EXPLANATION:

Whenever DSM-11 encounters an occurrence of indirection in a statement, it
replaces the occurrence with the value and uses the value in the statement. All
occurrences of indirection must evaluate to:

® One or more command arguments (argument indirection)

* A name (name indirection)

® A pattern (pattern indirection)

* A subscripted local or global variable name (partial indirection)

DSM-11 recognizes the type of indirection by its context or syntax, as follows:‘
1. Argument indirection

In argument indirection, the indirection evaluates to one or more
command arguments. In the following example, DSM-11 uses argument
indirection to SET A(4,4,1) to the value 10.

SF="AC4,4,1)=10"
S aF

DSM-11 Operators

INDIRECTION (@) (Cont.)

2.

Name indirection

In name indirection, the indirection evaluates to a DSM-11 name. DSM-
11 defines a name as any language element that contains an alphabetic
character or a percent character (%) followed by up to seven alphanu-
meric characters. Thus, you can use name indirection for:

e Variable names
e Line labels
e Routine names

When you use indirection to reference a named variable, the value of the
indirection must be a complete variable name, including any necessary
subscripts. In the following example, DSM-11 sets the variable B to the
value 6.

S |‘|=IIBII'@|‘|:6

When you use indirection to reference a line label, the value of the
indirection must be a syntactically valid DSM-11 line label.

In the following example, DSM-11 sets D to the value of the line label FIG
if the value of N is one, to the value of the line label GO if the value of N
is two, or to the value of STOP in all other cases. Later, DSM-11 passes
control to the line label whose value was given to D.

B 5 D=$S(N=1:"FIG",N=2:"G0", 1:"STOF™)

LV G 4D

When you use indirection to reference a routine name, the value of the
indirection must be a syntactically valid DSM-11 routine name. In the
following example, DSM-11 uses indirection to transfer control to the
routine TEST2.

H1 S R|:|UT:"TEST2||' -

G “erRauT

DSM-11 Operators 3-37

INDIRECTION (@) (Cont.)

3-38

3. Pattern indirection

In pattern indirection, the value of the indirection must be a valid pattern.
See the description of the Binary PATTERN MATCH operator in this
chapter for details about patterns.

4. Partial indirection

Partial indirection requires a second indirection indicator to separate the
indirected portion of the reference from a list of subscripts within
parentheses. DSM-11 combines these two parts to form a single local or
global reference.

Partial indirection is syntactically different from the other three forms of
indirection. Partial indirection uses two indirection operators in the form:

@expr atom@(subscript)
where:

expr atom evaluates to a local or global variable name, defined or
undefined

subscript is a string of one or more subscripts separated by commas
and enclosed in parentheses

In the following example, DSM-11 sets the variable X(1,1) to the square
of the value of X(1) if X(1) is greater than 100.

STRT S VAL="K(1)"
T VALY 100 S AVALAC(1)=AVAL*@VAL

COMMENTS:

In the evaluation of partial indirection, if expr atom refers to an unsubscripted
variable, the value of the indirection is the variable name and all characters to
the right of the second indirection operator (including the parentheses).

RELATED:

Indirection Operator (Section 2.6.6)
Array Structure (Section 2.4.4)

DSM-11 Operators

INDIRECTION (@) (Cont.)
EXAMPLES:

The following example uses argument indirection to transfer control to the
routine MSB:

H1 S GOAR=""MSR"
G AGOAR

The following example uses name indirection to transfer control to the routine
MSB:

HZ 5 GOAR="MSBE"
G “@GOAR

The following example sets X to the pattern for one or more digits and A to
the numeric literal 4. Then, it tests whether A meets the specified pattern.
Because the operand evaluates to one digit, the result is true (one).

SH="INON", A=4 W A78Y
1

The following example uses partial indirection to store a name and address in
a local array that uses the name as the first subscript and successive integers as
the second subscript. Each node of the array stores a different part of the
address. The FOR statement controls the value of the integer subscript.

ST § V="R(NAMO"
S P(1)="Address: ",F(2)="City: ",P(3)="5tate: ",F(4)="2ip Code:"
R "Enter Yaur Name: ",NAM
FI=1:1:4W!,PCI)RQVRCI)

DSM-11 Operators 3-39

Unary MINUS (-)

3-40

PURPOSE:

Unary MINUS gives its operand its opposite numeric interpretation.
FORM:
-operand

EXPLANATION:

Unary MINUS reverses the sign of a numerically interpreted operand.

W 60--60
120

Unary MINUS gives string-valued operands an opposite, numeric value. First,
DSM-11 evaluates the string. If the string has leading numeric characters,

DSM-11 uses the numerical value of these characters as the numerical value of
the string.

W -"32 DOLLARS AND 64 CENTES"
-32

If the string has no leading numeric characters, DSM-11 assigns the string a
numerical value of zero.

do-UTHIRTY-TWO DO AR AND 64 CENTS"
Q

Thus, you can use Unary MINUS with Binary EQUALS to test for the
numeric inverse of string operands.

GoraeT s
Q

Wo-teRT T
1

COMMENTS:

DSM-11 gives the Unary MINUS operator precedence over the binary
arithmetic operators. That is, DSM-11 first scans a numeric expression and
applies any Unary MINUS operator to the operand on its right. Then, DSM-
11 evaluates the expression, for example:

S naTEY RaTe

-2RATS

DSM-11 Operators

Unary MINUS (-) (Cont.)

If you use multiple Unary operators with an operand, DSM-11 applies them
one-by-one, in right-to-left order, for example:

W27---5

Parentheses take precedence over Unary operators, for example:

Wo-C"ZCATS" _"RATS")
-2

RELATED:

Expression Evaluation (Section 2.7)
Unary Operators (Section 2.5)

EXAMPLES:

The following example reverses the sign of a numeric literal.

W -+64
-64

The following example gives two strings a negative numeric value and
performs string arithmetic on the values.

W -"44 CARTONS"--"22 CARTONS"
-22

The following example also gives two strings a negative numeric value and
performs arithmetic on the values. Because the second contains no leading
digits, it evaluates to zero.

W o-"44 CARTONS"--"THENTY-TWO CARTONS™
-44

DSM-11 Operators 3-41

Unary NOT ()

3-42

PURPOSE:

Unary NOT inverts the truth value of the Boolean operand or operator it
modifies.

FORMS:
"operand

or:

'operator
EXPLANATION:

Unary NOT with an operand inverts the truth value of the operand. If the
operand was true, it now has a value of false. If the operand was false, it now
has a value of true.

For example, given the statement:
S K=12-3,Y=0

then:

W R&Y

produces a false result while:
WKy

produces a true result.

Unary NOT with a relational or logical operator reverses the truth value of
any expression. The following is a list of the negative relational and logical
operators and their meanings.

Operator Meaning
'& The expression is true when one or both operands are false
The expression is true only when both operands are false

= The expression is true only when both operands are not identical
strings

DSM-11 Operators

Unary NOT (') (Cont.)

"> The expression is true when the left operand is less than or equal to the
right operand

'< The expression is true when the left operand is greater than or equal to
the right operand

A The expression is true when the right operand is not contained in the
left operand

1 The expression is true when the left operand does not follow the right
operand in ASCII collating sequence

"? The expression is true when the left operand is not a string in the
pattern specified by the right operand

COMMENTS:

You can invert the meaning of any relational or logical operator in two ways:
1. operand 'operator operand

2. '(operand operator operand)

Both are functionally identical.

RELATED:

Expression Evaluation (Section 2.7)

Logical Operators (Section 2.6.5)

Truth-Valued Expressions (Section 2.7.3)

Unary Operators (Section 2.5)

EXAMPLES:

The following example tests the value of two local variables. If their values do
not equal 12 (true), control transfers to the line labeled ADDR.

LET § A=6,R=2

G:A+B =12 ADDR

The following example tests two variables with the Negative AND operator.
Because one variable is true and one is false, the result is true.

ZAz0,B=1 WASE
1

DSM-11 Operators 3-43

Unary NOT (') (Cont.)

The following example tests two variables with the Binary AND operator.
Because the example placed Unary NOT with the false operand, the truth
value was reversed and the result is true.

S A=1,E=0 WAL E
1

3-44 DSM-11 Operators

Unary PLUS (+)
PURPOSE:
The Unary PLUS operator gives its operand a numeric interpretation.
FORM:
+ operand
EXPLANATION:

DSM-11 interprets all operands preceded by a Unary PLUS as numeric values.
If the operand has leading numeric characters, DSM-11 assigns the numeric
value of the characters to the operand.

W +"32 DIOLLARS AND 64 CENTS"

32

If the string has no leading numeric characters, DSM-11 assigns the string a
value of zero.

W +"THIRTY-TWO DOLLARS AND 64 CENTS™
0

The Unary PLUS operator has no effect on numeric literals. Unary PLUS
does not alter the sign of either positive or negative numbers.

GHEe-I3 W4
-23
COMMENTS:

You can use Unary PLUS to specify that a given subscript is a numeric
subscript. For example, given the statement:

S A="g0Rs3"

DSM-11 Operators 3-45

Unary PLUS (+) (Cont.)

the statement:

§ “BCAI=K

defines a node with a noncanonic subscript, and the statement:
§ “BC+A)=H

defines a node with a canonic subscript.

RELATED:

Expression Evaluation (Section 2.7)
Unary Operators (Section 2.5)

EXAMPLES:

The following example evaluates a string value as a numeric value. Note that
DSM-11 uses all digits as the numeric value and drops the leading zeros as it
would with a numeric literal.

Wo+"aa3a"
30

The following example evaluates a string value as a numeric value. Because the
string literal does not contain any leading numeric characters, its numeric
value is zero.

W +"ARCDEFG"
(]

3-46 DSM-11 Operators

Chapter 4
DSM-11 ANSI Standard Commands

This chapter describes the DSM-11 ANSI Standard commands in alphabetical
order and provides examples of their use.

4.1 Introduction to DSM-11 ANSI Standard Commands

A DSM-11 command is a name for the action the command performs. DSM-
11 has two types of commands:

e ANSI Standard commands
e Extended commands

ANSI Standard commands are specified in the ANSI MUMPS Language
Standard and follow standard usage. The standard reserves the letters A
through Y as the first letters of standard command names.

Extended commands, as specified in the ANSI MUMPS Language Standard,
are implementation-specific additions to the language. Extended commands
always begin with the letter Z.

For ease of use, you can abbreviate any ANSI Standard command name to its
first letter.

Many DSM-11 commands can take one or more arguments. Arguments are
expressions or expression atoms (for example, a function and its arguments or
a variable name) that define and control the action of the command.

DSM-11 ANSI Standard Commands 4-1

Some DSM-11 commands never take arguments. Their action needs no further
definition than a specification of their name.

Still other DSM-11 commands take arguments only in certain circumstances.
Such commands changé their meaning depending on whether or not you
specify an argument or argument list with them.

4.2 Command Descriptions

4-2

The following pages contain reference descriptions of all ANSI Standard
DSM-11 commands. Each command description contains an explanation of
the purpose, forms, and operation of the command. The descriptions are in
alphabetical order for ease of referencing.

The descriptions also include one or more examples of command usage. All
command-line examples are presented as they would be on entry at a terminal.

All routine-line examples are presented as they would be when listed on a line
printer.

DSM-11 ANSI Standard Commands

BREAK

PURPOSE:

BREAK suspends execution of a routine or controls the suspension of
execution from the terminal.

FORMS:

B{REAK]}{:postcond}

B{REAK}{:postcond}smexpression

where:

postcond is a postconditional expression

expression is an expression that evaluates to a truth value or other
system-dependent value

EXPLANATION:

The action BREAK performs depends on the form you use.

1.

BREAK without arguments

BREAK without arguments suspends the execution of a routine (allowing
you to examine the effect of execution on routine variables). When you
issue a ZGO command, DSM-11 resumes routine execution from the
statement immediately following the BREAK. This form of BREAK is
ignored unless the debugger is on (as set by ZBREAK). See the DSM-11
User’s Guide for more discussion of the MUMPS debugger.

BREAK with a truth-valued expression as an argument

BREAK with this use of the argument disables or enables recognition of
ccTarzc: or another specified application interrupt key. If the truth-
valued expression in the argument evaluates to zero, DSM-11 disables
cTrr7o recognition. If the truth-valued expression evaluates to nonzero
(one), DSM-11 enables ctrt7©). See the DSM-11 User’s Guide for more
discussion of @trt7¢ and the programmer abort key, ctrr7v.

BREAK with a 2 or -2 as an argument

BREAK can also have an argument of 2 or -2. In this form BREAK
controls the error-processing mode. An argument of 2 enables the
"Version 2" (of DSM-11) mode of error processing; an argument of -2
disables Version 2 mode error processing. See the DSM-11 User’s Guide
for more discussion of error processing.

DSM-11 ANSI Standard Commands 4-3

BREAK (Cont.)

4-4

COMMENTS:

The effect of a BREAK with an argument depends on the mode in which you
enter DSM-11.

When you enter DSM-11 in Programmer Mode, the system is capable of
recognizing the receipt of a ccTri 7o or another specified application interrupt
key. This key causes an interrupt error, <INRPT>, to be generated. To
disable ccTrRTL 7o recognition, you can enter a command line of:

EQ

However, each time a Programmer Mode prompt (>) is displayed cvri7o
recognition is enabled, regardless of which BREAK command was given
previously.

When you enter DSM-11 in Application Mode, <ctrL7c) recognition is
disabled. Application interrupts will remain disabled at your terminal until a
routine executes the statement:

B1

As long as the application routine does not execute such a statement, the
system ignores any receipt of .cTrC/c), or an alternate application interrupt
key.

See the DSM-11 User’s Guide for more information on modes and on the use
of the BREAK command with arguments.

RELATED:

The ZBREAK Command

The ZGO Command

Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example suspends execution of the routine INTR2 only if V is
less than 20.

INTR2Z GROUTINE T CALCULATE PAYMENTS

COND B:V(Z0

The following example unconditionally suspends the execution of the routine
at the line labeled TAG3. The last statement on the line (W !,A(I)) is not

DSM-11 ANSI Standard Commands

BREAK (Cont.)

executed because it is after the BREAK. It is executed as soon as you issue a
ZGO.

TAG3 S ACID=L B W !,ACD

(Note the two spaces between the unconditional BREAK and the WRITE
statement.)

The following example disables recognition of «wTrr7c) or another application
interrupt key.

oo

The following example enables recognition of cTarzc.

The following example enables Version 2 of DSM-11 compatible error
processing.

T

The following example disables Version 2 compatible error processing.

DSM-11 ANSI Standard Commands 4-5

CLOSE

PURPOSE:

CLOSE releases ownership of one or more specified input/output devices
(and, optionally, performs device-dependent functions prior to that release).

FORM:

C{LOSE}{:postcond}smargument,...

In which argument can be one of the following:
device{:params}

@expr atom

where:

postcond is a postconditional expression

device. is a device specifier

params are one or more expressions that indicate any action to take
upon release of the device

@expr atom is an indirect reference that evaluates to one or more
CLOSE arguments

EXPLANATION:

CLOSE deallocates the device(s) specified in the argument(s) and makes them
available to another user. Each argument for the CLOSE command consists of
a valid DSM-11 device specifier and, optionally, its modifying parameters.

The device specifier you use can be any valid device. You can make the
specification by indirection.

The parameters you use with CLOSE consist of one or more expressions that
specify any special action to take on release of the device. The values you can
use for parameters depend on the device you are releasing. If you specify more
than one parameter, you must enclose the parameters in parentheses and
separate the parameters with colons.

See the discussion of I/0 devices in the DSM-11 User’s Guide for more
information on device specifier and device-specific parameters.

COMMENTS:

4-6 DSM-11 ANSI Standard Commands

CLOSE (Cont.)

You should keep the following points in mind when you use the CLOSE
command:

1.

DSM-11 always resets your principal device as your current device when
you close a device you have used for I/0O. Thus, after you execute a
CLOSE, the $10 special variable contains the device specifier for your
principal device.

The $IO special variable contains the specifier of the device you are
currently using for input and output. Thus, $IO has the value of either
your principal device or your current device.

Your principal device is the device the system opens when you log in and
uses for I/0 by default. You can refer to your principal device as device 0.
The current device is any device you open with an OPEN command and to
which you direct I/0O operations with a USE command. The system
ignores a CLOSE 0 command. If you CLOSE $I0 and $10O is set to your
principal device, the effect is the equivalent of a HALT command.

2. DSM-11 does not return control to your routine until the device is closed.
If the device you are closing is an output device, DSM-11 does not close
the device until all current output operations are complete.

3. When you execute a HALT command, DSM-11 closes (releases your
ownership of) all still opened devices.

RELATED:

The OPEN Command

The USE Command

The ZUSE Command

The $10 Special Variable

The Indirection Operator (Section 2.6.6)
Postconditional Expressions (Section 2.7.4)

EXAMPLE:

The following example reads the data from the first level of the global "NAM
and writes it on the specified device.

ST

Al

R !, "ENTER DEVICE SFEC",DEV

0 DEV S A="" LI DEV

S A=$0C"NAMCAD) T A="" C DEV

WA " W:$DC'NAMCAY I#1D “NAMCAD W ! G A1

DSM-11 ANSI Standard Commands 4-7

DO

4-8

PURPOSE:

DO directs control to a specified line in the current routine or to any specified
line and/or routine. Control returns to the point immediately following the
DO argument.

FORM:

D{O}{:postcond}

D{O}{:postcond}seargument,...}

In which argument can be one of the following:

entry ref{:postcond}

@expr atom

where:

postcond is an postconditional expression

entry ref entry is an entry reference specifying the line and/or routine

@expr atom is an indirect reference that evaluates to one or more DO
arguments

EXPLANATION:

DO is a control command that gives you a generalized capability of executing
DSM-11 routines. It allows you to execute the routine currently in memory or
any other routine.

To execute the current routine in memory, use as an argument an entry
reference to the first line you want DSM-11 to execute. DSM-11 begins execut-
ing the routine at the line you specify.

To execute a routine in your routine directory use as an argument an entry
reference that includes the routine name preceded by a circumflex. DSM-11
loads the routine and begins execution at the first executable line or (if you
included a line label on line label and offset) at the line you specify.

When DSM-11 reaches a QUIT statement or the end of the routine, it returns
control to the point immediately following the DO argument.

DO without an argument is used in block-structured programming. The DO
introduces an indented execution block that begins on the following line.

DSM-11 ANSI Standard Commands

DO (Cont.)

When the end of the execution block is reached, or a QUIT statement is
reached within the execution block, control returns to the next command or
line following the DO at the same level as the DO. An execution block ends
either at the end of the routine or at the next lower level routine line.

The value of the $TEST special variable is never altered by the execution of an
argumentless DO. This is different from DO with an argument, which does
not preserve $TEST.

See Section 1.7 for more discussion of block-structured programming.

COMMENTS:

Keep the following points in mind when using the DO command:

1. You can use indirection for any form of DO command arguments.
For a DO argument:

A S K¥=""A,"B"
D #%

For a line label (ADDR):

B2 S A="ADDR"
D 2A

For a line label and offset (ADDR + 1):

$1 S A="ADDR"
D 2A+1°ROUT

For a routine name (TEST):

Bl S:ANS="TEST" R="TEST"
D “#R

For both line labels and routine names (START, TEST):

NEW S X="START",Y="TEST"
D aX"ay

2. You can use postconditional expressions with both DO and its arguments.
If a command postconditional is false, DSM-11 ignores the DO statement.
If an argument postconditional is false, DSM-11 ignores the argument to
which it is appended.

DSM-11 ANSI Standard Commands 4-9

DO (Cont.)

3. When you are using DO without an argument, the structure of the routine
must follow that indicated in Section 1.7. Each line of a subroutine
introduced by a DO must be indented with one or more periods (after the
tab stop) than the previous line. Additional subroutines can be introduced
by argumentless DOs; each higher level subroutine must be indented an
additional period after the tab stop at the beginning of each line. A GOTO
must only be used to transfer control to the same level and within the
same block. In the following example, the transfers to LABEL1 are all
within the second level.

TEST 5 ¥=5Di
LAREL1 .5 ¥=7 R "INFUT: ",BVAL

.I NVAL=Q GOTO LABEL1
.bo
LABELZ ..SJ=11 M=

..GOTO LABELZ
.I NVAL=2 GOTO LAREL1

W !»"R‘ESL.llt is: ", LVAL
RELATED:

The GOTO Command

The HALT Command

The QUIT Command

The XECUTE Command

Entry References (Section 1.6.2)

Extensions to Routine Structure (Section 1.7)
The Indirection Operator (Section 2.6.6)
Line Labels (Section 1.4.2.1)

Postconditional Expressions (Section 2.7.4)

EXAMPLES:
The following example transfers control to a line labeled FIX if the

variable M is greater than 20. Note that periods in this case indicate
omitted lines of the routine, not block structuring.

4-10 DSM-11 ANSI Standard Commands

DO (Cont.)

ADD i ADD ROUTINE

D:M>2@d FIX

The following example loads and executes the routine TABUL from the
routine directory. Because the DO command was entered as a command
line, DSM-11 returns its prompt after execution of the routine. Note that
periods in this case indicate omitted lines of the routine, not block
structuring.

D "TABUL

)

The following example loads TABUL from the routine directory and
begins execution on the line labeled B2.

D B2"TABUL

The following example illustrates multiple DO arguments. The routine
line specifies that, if the first character in the string represented by ANS is
Y, DSM-11 is to execute the routines AD1 and AD2. If, in addition, X is
less than four, DSM-11 is to execute AD3.

BR1 D:$ECANS,1)="%" “AD1, “ADZ, “AD3:K(4

The following example shows a three-level block-structured routine:

ABRC W !',"Begin level 1" F I=1:1:3D
W 1, "Begin level 2" F J=1:1:3D
.. W1, "Level 3 line #",I,".",J
W!,"End of level 1" @}

DSM-11 ANSI Standard Commands 4-11

ELSE

4-12

PURPOSE:

ELSE conditionally executes the statements following it on the same line
depending on the truth value in the $TEST special variable.

FORM:
E{LSE}
EXPLANATION:

When DSM-11 encounters an ELSE command, it tests the value of the $TEST
special variable. If the value of $TEST is one, DSM-11 does not execute the
remainder of the line to the right of ELSE. If the value of $TEST is zero,
DSM-11 does execute the remainder of the line. $STEST contains the Boolean
result of the last IF command, timed READ, timed LOCK, timed OPEN, or
JOB command. For instance if a READ cannot be completed within the time
indicated in a conditional timeout, then $TEST is 0. If the argument evaluates
to 0 for an IF command then the commands following the IF are not executed;
and $TEST is set to 0. An ELSE on the following line would then be executed
(because $TEST is 0).

ELSE does not affect the value of $TEST.
COMMENTS:
Keep two points in mind when you use ELSE:

1. DSM-11 can never execute an ELSE on the same line as an IF statement
unless an intervening statement that does not contain an IF command
resets the value of $TEST. For example, in the routine fragment:

TES I AGECIO)19 W !,"GOOD" E W "BAD"
E W !,"NDGOOD"
W !, "DONE"

the ELSE statement on the second line is the only one that can execute.

When the IF statement is true, DSM-11 sets $STEST to one, executes the
first WRITE statement, and ignores the WRITE statement following the
ELSE. When the IF statement is false, DSM-11 ignores the statements
that follow it and executes the second line.

If there is an intervening statement that resets $TEST, DSM-11 can
execute an ELSE on the same line as an IF. Consider the following
example:

DSM-11 ANSI Standard Commands

ELSE (Cont.)

N ITARK:18E GRETRY
If A is true, DSM-11 sets $TEST to true (one) and executes the READ. If

the timeout occurs, DSM-11 executes the ELSE and the subsequent
GOTO statement.

2. In many situations, you can substitute postconditional expressions and the
$SELECT function for IF and ELSE statements. For example, the routine
lines:

Bl I AX14 W "YES"
E N lINL'lII

and:

Bl W:AY14 "YES"
W:A"Y14 "“NO"

and:
Bl W $SCAY14:"YES",1:"NQ")
produce the same output.
In this particular case, using the $SELECT function would be the best
choice. It executes faster because DSM-11 must make one relational test
instead of two.
(Neither postconditional expressions nor $SELECT affect $TEST.)
RELATED:
The IF Command
The $SELECT Function
The $TEST Special Variable
Postconditional Expressions (Section 2.7.4)
EXAMPLE:
The following example attempts to open a specified device. If the device is
busy (owned by another user), DSM-11 sets $TEST to 0 and executes the
statement to the right of the ELSE.

DEV R !',"USE DEVICE ?",DEV
0 DEV::@E W !,"DEVICE BUSY"

DSM-11 ANSI Standard Commands 4-13

FOR

4-14

PURPOSE:

FOR controls the repeated execution of all remaining statements following it
on a line for successive values of a local variable. (The remaining statements
are called the scope of the FOR statement.)

FORMS:

F{OR}=mlocal = parameter,...

In which parameter can be:

expression

start:step

start:step:stop

where:

local is a local variable name or an indirect reference that
evaluates to a local variable name

expression is an expression (not necessarily numeric)

start is a numeric-valued expression specifying the initial value
given to the local variable

step is a numeric-valued expression specifying the value added to
that of the local variable on each execution of the remaining
statements on the line

stop CFI is a numeric-valued expression specifying the upper
limit (largest if step is positive, smallest if step is negative)
of value to be added to the local variable

EXPLANATION:

The meaning of FOR depends on the form of the FOR parameter you use.
1. local =expression
DSM-11 gives local the value of expression. Then, if DSM-11 does not
encounter any control statements (such as QUIT or HALT), it executes all

other statements on the same line and evaluates the next line.

2. local =start:step

DSM-11 ANSI Standard Commands

FOR (Cont.)

DSM-11 performs the following actions:

a
b
c

d

. It gives local the value of start.
. It executes the remaining statements on the line.
. It adds the value of step to the value of /ocal.

. It returns to step b.

This form of the FOR parameter creates an endless loop. To stop
execution, use a GOTO or QUIT command in the scope of the FOR
statement (or crri7o if it is enabled) to transfer control elsewhere.

In the following example, DSM-11 gives I the values 1 to 100 and quits.

fA

1FI=1:1WIQ:I)100

3. local=start:step:stop

DSM-11 performs the following action if step is positive or zero:

a.

It gives local the value of start.

b. It determines if the value of /ocal is now greater than that of stop. If

so, DSM-11 goes to the next FOR parameter or to the next line if no
other FOR parameters are present. If not, DSM-11 goes to step c.

It executes the remaining statements on the line.

d. It determines if the value of /local incremented by the value of step is

c.

f.

greater than the value of stop. If so, DSM-11 goes to the next FOR
parameter or to the next line if no other FOR parameters are present.
If not, DSM-11 goes to step e.

It adds the value of step to the current value of local.

It returns to step c.

DSM-11 performs the following action if step is negative:

a.

It gives local the value of start.

b. It determines if the value of /ocal is less than stop. If so, DSM-11 goes

to the next FOR parameter or to the next line if no other FOR parame-
ters are present. If not, DSM-11 goes to step c.

. It executes the remaining statements on the line.

DSM-11 ANSI Standard Commands 4-15

FOR (Cont.)

4-16

d. It determines if the value of /ocal incremented by the value of step is
less than the value of stop. If so, DSM-11 goes to the next FOR
parameter or to the next line if no other FOR parameters are present.
If not, DSM-11 goes to step e.

e. It adds the value of step to the current value of /local.

f. It returns to step c.

This form of the FOR parameter terminates itself. When an increment to the
value of local would give it a value greater than stop when step is positive or a
value less than stop when step is negative, DSM-11 completes processing the
FOR parameter.

During the execution of the FOR command, start, step, and stop are evaluated
first. For example, the following statements give the result of 123 (as shown)
rather than simply a result of 1:

SET =3

FioR T=1:1:1 WRITE I

123

COMMENTS:

Keep in mind the following points when you use the FOR command:

1. The numeric expressions you use in a FOR parameter can be either integer
or decimal values.

2. You cannot use postconditional expressions with either the FOR
command or its parameters.

3. You can include more than one parameter in each FOR statement. For
example, the statement:

FI=1:1:3,7,20:10:1002

has three parameters (1:1:3, 7, and 20:10:100).

When DSM-11 executes this statement:

a. It sets I equal to 1, 2, and 3.

b. It executes the second parameter and sets I to the value of 7.

c. It executes the third parameter, sets I to the value of 20, and increments
the value of I by 10 until I reaches 100.

DSM-11 ANSI Standard Commands

FOR (Cont.)

4. You cannot include more than one complete argument with a FOR
command. That is, a FOR statement such as:
FI=1:1:30@,J=1:20:1000. ..
is invalid.

5. When you use the start:step form of the FOR parameter, DSM-11 can
never execute any additional parameters to the right. For example, in the
statement:

FI=1,2:2,100:1:200. ..

the parameter 100:1:200 is never executed because the QUIT needed to
terminate the parameter 2:2 (somewhere at a later point on the line) also
terminates the FOR.

6. If you use more than one FOR statement on a line, the rightmost FOR is
considered to be nested in the FOR to its left. One execution of the scope
of the left (outer) FOR includes one complete pass through the inner
FOR’s parameter list.

If the scope of the inner FOR includes a QUIT statement, DSM-11
immediately terminates the inner FOR. DSM-11, however, only
terminates that particular iteration of the outer FOR.

If the scope of the inner FOR includes a GOTO statement, DSM-11
terminates all FOR statements to the left of the GOTO. It then transfers
control to the specified point.

7. You cannot use argument indirection to an entire FOR argument. Such an
attempt results in an error. You can, however, use name indirection to
each element in the FOR parameter.

S ﬁ:llllllB:II3llIC:IIHII'D:HBII
FI=RC:@C: @D W 2$%+2, 1
1 2 3

RELATED:

The GOTO Command
The QUIT Command

EXAMPLES:

The following example uses nested FOR statements to display a local array.

FI=1:1:10F J=1:1:5WACI,])

DSM-11 ANSI Standard Commands 4-17

FOR (Cont.)

4-18

The following example uses negative integers in the FOR parameter.

Fi=4 -3:-3 WY
41-2

The following example shows that you can change the value of the local
variable you use as an index within the scope of the FOR.

Fl=1:2 105 J=J-1HW1I
0123456789

The following example displays the values of the special variables. It also
demonstrates that the /ocal=expression form of the FOR argument is not
evaluated numerically.

WR O T=I", S0, ke, 010 L R 0T, e gD

The following example prompts for interactive executions of the routine
ROUT. If X is zero, DSM-11 never executes ROUT.

TEST1 R !,"HOW MANY ITERATIONS?", % F I=1:1:X D “ROUT

DSM-11 ANSI Standard Commands

GOTO

PURPOSE:

GOTO transfers control to a specified line or routine. Control does not return
to the point immediately following the GOTO argument.

FORM:
G{OTO}{:postcond}smargument,...
In which argument can have the following forms:

entry ref{:postcond}

expr atom

where:

postcond is a postconditional expression

entry ref is an entry reference specifying the line and/or routine to
which control is to be transferred

@expr atom is an indirect reference that evaluates to one or more
GOTO arguments

EXPLANATION:

GOTO is a control command that gives you a generalized transferral ability.
You can use it to transfer control to another section of the routine currently in
memory or to any other routine.

To transfer control to a line in the current routine in memory, use an
argument consisting of an entry reference to the line you want DSM-11 to
execute. DSM-11 transfers control to the line you specify. The entry reference
can specify the same line that contains the GOTO.

To transfer control to a routine not currently in memory, use an argument
consisting of an entry reference that includes the name of that routine
preceded by a circumflex. DSM-11 loads the specified routine and begins
execution at the first executable line or (if you included a line label or a line
label and offset in the entry reference) at the line you specify.

After transfer when DSM-11 encounters a QUIT command or the end of the
routine, DSM-11 exits from the routine. It does not return control to the
argument or statement immediately to the right of the GOTO argument that
caused the transfer. If you want to return control to the original point, use the
DO command.

DSM-11 ANSI Standard Commands 4-19

GOTO (Cont.)

COMMENTS:

4-20

Keep the following points in mind when you use the GOTO command.

1. You can use postconditional expressions with both GOTO and its
arguments. If a GOTO postconditional is false, DSM-11 ignores the entire
statement. If an argument postconditional is false, DSM-11 ignores the
argument.

2. You can use multiple arguments with the GOTO command. However,
because DSM-11 does not return control to the point immediately follow-
ing the argument that caused the transfer, only the first argument that has
no postconditional or that has a true postconditional is ever executed.

3. You can use indirection for any form of GOTO command arguments.
For a GOTO argument:

Al S K=""A:"ANS,"B"

G 2y
For a line label (ADDR):
B2 S A="ADDR"

G 2A
For a line label and offset (ADDR + 1):
S1 S A="ADDR"

G @A+1"ROUT
For a routine name (TEST):
Bl S:ANS="TEST" R="TEST"

G "R
For both line labels and routine names (START, TEST):
NEW S K="START",Y¥="TEST"

G ax ey

4. If you use a GOTO in a block-structured routine, you can only transfer
control within the same execution block. See the DO command and
Section 1.7 for more discussion of block-structured programming.

RELATED:

The DO Command
The FOR Command

DSM-11 ANSI Standard Commands

GOTO (Cont.)

The QUIT Command

The XECUTE Command

Entry References (Section 1.6.2)
Extensions to Routine Structure (1.7)

The Indirection Operator (Section 2.6.6)
Line Labels (Section 1.4.2.1)
Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example transfers control to the fourth line following Al if L is
less than 10.

B6 G:L(12 A1+4

The following example transfers control to the first executable line in the
routine ROUT.

I G “ROUT

The following example transfers control to line A if X is less than 10, to line D
Af X is greater than 10, and to line H if X equals 10.

TX G A:X(12,D:K>18,H

DSM-11 ANSI Standard Commands 4-21

HALT

4-22

PURPOSE:

HALT ends your use of DSM-11.

FORM:

H{ALT}{:postcond}

where:

postcond is a postconditional expression
EXPLANATION:

When you enter an unconditional HALT, DSM-11 terminates your job. It also
unlocks all local and global nodes you locked and closes all devices you own.

If you use a postconditional expression with HALT, DSM-11 executes the
HALT only if the postconditional is true.

RELATED:

The CLOSE Command

The LOCK Command

The HANG Command

Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example executes an unconditional HALT.

H

The following example executes a conditional HALT. DSM-11 executes the
HALT only if A is greater than B. In any other case, it executes the WRITE

statement.

STOP H:AYB W "NO HALT"

DSM-11 ANSI Standard Commands

HANG

PURPOSE:

HANG suspends execution for a specified number of seconds.
FORM:

H{ANG}{:postcond}smargument,...

In which argument can have the following forms:

seconds

@expr atom

where:

postcond is a postconditional expression

seconds is a real- or integer-valued expression specifying the number
of seconds to suspend execution

@expr atom is an indirect reference that evaluates to one or more
HANG arguments

EXPLANATION:

HANG suspends execution of a routine for the number of seconds you specify
in the argument. DSM-11 resumes routine execution at the statement follow-
ing the HANG.

If the integer expression you specify is zero or negative, DSM-11 ignores the
HANG. If you use a decimal numeric expression, DSM-11 truncates it to an
integer.

COMMENTS:

Keep the following points in mind when you use the HANG command:

1. You cannot use a postconditional expression with a HANG argument.
2. You can use indirection with HANG. The form of indirection is:

@expr atom

The replacement after applying indirection must evaluate to one or more
HANG arguments. Thus the statements:

DSM-11 ANSI Standard Commands 4-23

HANG (Cont.)

S B:I|2Il B ﬁ:llBll
H @A

or:

S ﬁ:"2"
H 2A

are valid.
RELATED:
The HALT Command
The QUIT Command
Postconditional Expressions (Section 2.7.4)
EXAMPLES:

The following example unconditionally suspends the routine for two seconds.

B3 H2

The following example prompts for input and waits for an answer. If the
answer is not entered, DSM-11 sounds the bell on the terminal, hangs for one
second, and again waits for the answer.

W "TELL ME WHAT TO DO?",!
LOOP RANS:1QE W *7H1GLOOP

The following example issues a prompt for you to perform multiplication. If
the sum of the values to be multiplied is greater than 100, the example hangs
for ten seconds before prompting for an answer.

TEST W "MULTIPLY",A,"TIMES",B H:A+B)100 1@
R !, "WHAT IS YOUR ANSWER?",ANS

4-24 DSM-11 ANSI Standard Commands

IF

PURPOSE:

IF permits the conditional execution of the statement or statements that follow

1t.

FORMS:

I{F}

I{F}seargument,...

In which argument can be one of the following:

truth value

@expr atom

where:

truth value is a truth-valued expression

@expr atom is an indirect reference that evaluates to one or more IF
arguments

EXPLANATION:

IF makes the execution of all statements that follow it dependent on the value
of the $TEST special variable.

1.

IF without arguments

IF without arguments is the inverse of ELSE. Execution of the statements
following it depends on the existing value of $TEST set by a previous
statement.

If $TEST has the value of true (one), DSM-11 executes all statements to
the right of the IF. If $TEST has the value of false (zero), DSM-11 ignores
all statements to the right of the IF and executes the next line.

IF with arguments

Execution of the statements following an IF with arguments depends on
the value of $TEST set as a result of those arguments. When you enter an
IF command with one argument, DSM-11 evaluates the argument as a
Boolean expression and places the result in $TEST.

DSM-11 ANSI Standard Commands 4-25

IF (Cont.)

4-26

If the value of the argument is true (one), DSM-11 executes all statements
to the right of the IF. If the value of the argument is false (zero), DSM-11
ignores all statements to the right of the IF and executes the next line.
When you enter an IF command with multiple arguments, DSM-11
evaluates each argument left to right and performs a logical AND
operation on each value. If all the arguments are true, DSM-11 executes
the statements to the right of the IF. If any argument is false, DSM-11
ignores the statements to the right of the IF and executes the next line.

COMMENTS:

Keep the following points in mind when you use the IF command:

1. You cannot use postconditional expressions with either the IF command
or with any of its arguments.

2. You can use argument indirection with the IF command. For example, if a
routine contained the statements:

5 IYI= II3II
§R="1,2,8Y"
then the following statements write the string "TEST":

T @YX W "TEST"

3. Using commas to perform a logical AND operation on alternatives can
reduce the amount of computation since only the first alternative may be
evaluated. For example, of the following two statements, the first
statement is more efficient than the second:

I A=4,B=3. ..
I A=48(B=3). ..
(Note that the second example requires the parentheses.)

RELATED:

The ELSE Command
The $TEST Special Variable

EXAMPLES:

The following example requests terminal input. If the operator types a carriage
return (a null string), the routine stops running.

DSM-11 ANSI Standard Commands

IF (Cont.)

QUEST W !, "CONTINUE?" R !, ANS
I ANS="" W |, "EXIT" §

The following example executes the routine ROUT only if A equals 4 and B
equals 6.

FL I A=4,B=6D “ROUT. ..

The following example illustrates the use of an IF without arguments with a
timed READ.

IN R !)"ANSWER WITHIN 3@ SECONDS",ANS: 30
I W "ANSWER RECEIVED" G A1

The following example shows both the use of an IF without arguments and the
use of the ELSE command. If A is greater than five, DSM-11 prints BIGGER
THAN FIVE; otherwise, it prints SMALLER.

TEST ITAYS W !, "BIGGER"

E W!,"SMALLER"
I W!,"THAN FIVE"

DSM-11 ANSI Standard Commands 4-27

JOB
PURPOSE:
JOB starts a specified routine in a new partition.
FORM:
J{OB}{:postcond}s¥{argument}
In which argument can be one of the following:
entry ref{ UCI{,volume set}]}{:size}{:timeout}

@expr atom

where:

postcond is a postconditional expression

entry ref is an entry reference specifying the line and/or routine to
execute

uclt is a three-character string that designates a UCI

volume set is a three-character string that designates a volume set

size is a numeric expression that specifies the size of the
partition in 512-byte increments

timeout is a timeout

@expr atom is an indirect reference that evaluates to one or more JOB
arguments

EXPLANATION:

JOB can start another routine executing in another partition. In DSM-11, such
a detached routine is called a background job.

If you use only a routine name as an entry reference, DSM-11 begins the
routine from the first executable statement. If you also specify a line label or
line label and offset in the entry reference, DSM-11 begins execution at the line
indicated.

Normally, you can start only routines that are in your UCI (User Class
Identifier). However, if you are running under the System Manager’s account,
you can start a routine filed under any UCI and volume set by specifying the

4-28 DSM-11 ANSI Standard Commands

JOB (Cont.)

UCI and volume set. The UCI should be a string value that specifies the UCI
as it appears in the system UCI Table.

See the DSM User’s Guide for more information on the UCI and the UCI
Table.

If you need a particular size partition for the routine, indicate this with the
optional size argument. Give size an integer value that, multiplied by 512,
indicates the size of the needed partition in bytes. The DSM-11 system,
however, expects the partition size to be in increments of 1K bytes (1026
bytes). If you specify an odd number of 512-byte increments, such as 5, in the
JOB command, the system rounds up the number of increments to an even
number, resulting in a partition size that fits the 1K-byte expectation. For
example, the 5 (JOB command) increments would be rounded up to 6
increments, giving a partition size of 3K bytes.

If you do not indicate a size for the partition, DSM-11 attempts to open a
default-sized partition. (See the DSM User’s Guide for a specification of the
default size.)

If DSM-11 is not able to open a partition of the specified size (or of the default
size if you did not specify a size), it attempts to open a larger partition. If
DSM-11 is able to open a partition and start the routine, it sets $TEST to true
(one) and the $ZB special variable to the job number assigned to the started
routine. If DSM-11 is not able to open a partition and start the routine, it sets
$TEST to false (zero) and $ZB to zero.

COMMENTS:
DSM-11 imposes certain conditions on the partition opened by JOB:

1. The symbol table for the partition is empty. No variables defined in the
initiating job are carried over into the newly opened partition.

2. The partition does not own any devices. The partition has the same
principal device as the partition that initiated it. If the partition does not
OPEN and USE a device, output is defaulted to the principal device.

Thus, when the routine running in the new partition commits an error and the
value of $ZTRAP is null, DSM-11 displays the error message on your princi-
pal 170 device. The routine terminates without giving you a chance to examine
the partition.

RELATED:
The OPEN Command

The USE Command
The $TEST Special Variable

DSM-11 ANSI Standard Commands 4-29

JOB (Cont.)

4-30

Entry References (Section 1.6.2)
Indirection Operator (Section 2.6.6)
Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example attempts to open a default-sized partition to run the
routine "ROUT, and it displays the contents of $TEST to determine if the
attempt was successful.

J “ROUT
W $T
1

The following example attempts to start the routine ADD in an 8192-byte
partition. If DSM-11 is not able to start ADD because no 8192-byte or larger
partition is available, DSM-11 sets $TEST to zero and displays the message

ADD NOT STARTED.

J"ADD:16 E W !, "ADD NOT STARTED"

The following example attempts to start a routine called TEST at the line
labeled START in a 4096-byte partition. The string in square brackets is the
three-letter code for the UCI under which the routine is stored.

You can use this syntactical form only from the System Manager’s account.

J START TESTI"ASG"]:R

DSM-11 ANSI Standard Commands

KILL

PURPOSE:

KILL deletes the specified local or global variables.
FORMS:

K{ILL}{:postcond}
K{ILL}{:postcond}smargument,...

In which argument can be one of the following:
name

(local{,...})

@expr atom

where:

postcond is a postconditional expression

name is the name of a local or global variable with or without
subscripting

local is the name of a local variable or an indirect reference that
evaluates to a variable name or to another indirect reference

@expr atom is an indirect reference that evaluates to one or more KILL
arguments

EXPLANATION:

KILL without arguments removes all local variables from your partition. It
has no effect on global variables.

When you Kkill a variable, the value of that variable is undefined. An applica-
tion of the $SDATA ‘function to that variable produces a value of zero.

The effect of KILL with arguments depends on the argument form you use.
1. name

This form of the KILL argument is a selective kill. It deletes only the local
or global variable you specify.

DSM-11 ANSI Standard Commands 4-31

KILL (Cont.)

4-32

If the variable you specify does not exist, the kill has no effect. If the
variable you specify is unsubscripted, DSM-11 also deletes all nodes
(elements) of any subscripted variable with the same name.

If the variable you specify is subscripted, DSM-11 also kills its descendant
nodes. For example, if an array contains the nodes:

N(1,2,3)

N(1,2,3,4)

N(1,2,3,7)

N(1,3,1)

and you kill N(1,2,3), DSM-11 also kills N(1,2,3,4) and N(1,2,3,7).

After you kill a node that has no siblings, DSM-11 changes the descendant
attribute of the parent node. If the parent is a logical pointer node that
contains no data, DSM-11 deletes the parent.

For example, when you kill all descendants of N(1,2), DSM-11 clears
N(1,2) of its attribute of having descendants. Thus, when you apply
$DATA to “N(1,2), the result is one.

If *N(1,2) is a logical pointer node, “N(1,2) disappears. If you apply
$DATA to “N(1,2), the result is zero.

See the description of $DATA in Chapter 6 for more information.

2. (locald,...})
The second form of the KILL argument is an exclusive kill. It deletes all
local variables but those named in the argument and any descendants
those variables might have. The local variables you specify should be
unsubscripted.
This form of KILL does not affect global variables.

COMMENTS:

If you use a postconditional expression with the KILL command, DSM-11
executes the KILL only if the postconditional expression is true.

RELATED:
The SET Command
The $DATA Function

Postconditional Expressions (Section 2.7.4)

EXAMPLES:

DSM-11 ANSI Standard Commands

KILL (Cont.)

The following example deletes the local variable A and any descendants it may
have.

KA

The following example deletes the global node “A(3) and any descendants it
may have (for example "A(3,1), "A(3,1,3), “A(3,4,5,6)).

K “AC3)
The following example deletes all local variables.
K

The following example deletes all local variables except A, C, and ANS and
any descendants they may have.

K CA,C,ANSD

The following example uses a postconditional expression. If A equals 1, DSM-
11 kills ANS(A) and any descendants it may have.

K:A=1 ANSCA)D

The following example uses argument indirection to kill the local variables Y
and Z.

S x:llleIV:ll (X) ll'z:uzn
K ay

DSM-11 ANSI Standard Commands 4-33

LOCK
PURPOSE:

LOCK makes a specified variable or specified nodes of a variable unavailable
for locking by another user.

FORMS:

L{OCK}{:postcond}
L{OCK}{:postcond)}smargument{:timeout},...
In which argument can be one of the following:
name

(named,...})

@expr atom

where:

postcond is a postconditional expression

name is the name of a local or global variable with or without
subscripting

@expr atom is an indirect reference to one or more arguments

timeout is a timeout that specifies how many seconds DSM-11 is to
try to lock the variable

EXPLANATION:

The LOCK command locks and unlocks both global and local variables. When
you lock a variable, DSM enters its name into a table that prevents any other
user from entering a LOCK command for that variable.

If you lock a local variable, DSM-11 locks all local variables with that name
throughout the system. For example, the statement:

LA
executes a system-wide lock of all local variables named A.

If you lock a global variable, DSM-11 prevents any other user in your UCI
from locking that variable. For example, the statement:

4-34 DSM-11 ANSI Standard Commands

LOCK (Cont.)

L

performs a UCI-wide lock of the global NA.

When you unlock the variable, DSM-11 removes the variable name from the
table. The variable is free for locking by other users.

Used as a convention, LOCK can be a flag to other users that indicates that
you are modifying a variable or adding nodes to an array. If all users follow
the practice of locking a variable before working on it, you can avoid two or
more users making conflicting modifications to the same array.

LOCK, without arguments, unlocks all previously locked variables. It does
not lock any new variables.

The effect of LOCK with arguments depends on the argument form you use.

1.

name

LOCK prevents another user from locking a variable or specified portion

of an array until you unlock it. DSM-11 unlocks that local or global

variable when any of the following actions occur:

® You execute an argumentless LOCK.

® You issue a LOCK to lock a different portion of the variable array or a
different variable.

® You execute a HALT.

(name{,...})

LOCK locks all the variables you specify or waits until all the variables

you specify are free for locking. That is, if you issue the LOCK statement

(as in the following statement) when the variable "E is already locked,

LOCK waits until E is available before locking the variables.

LA "D, "ED

If you do not enclose multiple LOCK arguments in parentheses, DSM-11

interprets the statement as multiple LOCK directives rather than as one

LOCK directive with multiple arguments.

For example, the following statement:

L ¢"AC1,2,3),"B(4),7CC3,10)

is interpreted as locking "A(1,2,3), “B(4), and "C(3,1).

On the other hand, the following statement:

DSM-11 ANSI Standard Commands 4-35

LOCK (Cont.)

L *AC1,2,3),"B(4),*C(3, 1)
is interpreted as:

a. Locking "A(1,2,3).

b. Unlocking “A(1,2,3) and locking "B(4).

c. Unlocking “B(4) and locking “C(3,1).
Thus, the statement only locks “C(3,1).
You must always use full variable references, or indirection to full
references, for LOCK arguments. DSM-11 does not allow naked
references with LOCK.
If you use an unsubscripted name as the argument for either form of
LOCK, DSM-11 prevents any other user from locking any node of that
variable until you unlock it.
If you use a subscripted node as the argument for either form of LOCK,
DSM-11 locks the node and all descendants of that node. DSM-11 also
makes any ancestors of that node unavailable for locking.

Consider the global "A in Figure 4-1.

Figure 4-1: Locked Global

(1,2,3,1) (1,2,3,4) MR-s-882.80
4-36 DSM-11 ANSI Standard Commands

LOCK (Cont.)
If you lock the node "A(1,2,3), DSM-11 also locks the following nodes:

"A(1,2,3,4)
NA(1,2,3,1)

These nodes are the descendants of “A(1,2,3)

DSM-11 also makes the following nodes unavailable for locking:

NA(1,2)
"A(1)
A

These nodes are the ancestors of “A(1,2,3).
The following nodes, however, are available for locking:

"A(2)
"A(1,1)
"A(2,1)
"A1,2,1)
NA(1,2,4)

COMMENTS:
Keep the following points in mind when you use the LOCK command:

1. LOCK is a convention. It does not prevent multiple, simultaneous
accesses of a variable. Any user who does not follow the convention
of issuing LOCK commands and avoiding work on variables locked
by others can modify a variable for which you have issued a LOCK.

2. To avoid a potentially long suspension of execution if the variable you
are attempting to lock is already locked by another user, use a
timeout. If DSM-11 cannot lock the variable before the timeout, it
sets $STEST to false (zero) and resumes execution. If DSM-11 can lock
the variable before the timeout, it locks the variable, sets $TEST to
true (one), and resumes execution.

DSM-11 resumes execution as soon as it can lock the variable. It
ignores any time remaining in the timeout.

3. Even if a timed lock with arguments reaches a timeout before locking
the specified variable(s), it does unlock any previously locked
variables. For example, if you successfully lock “A and "B:

L ("A,"B):10

DSM-11 ANSI Standard Commands 4-37

LOCK (Cont.)

4-38

and then later try a timed lock on "C that cannot lock AC before the
timeout:

L C:1a
the second LOCK still unlocks “A and "B.
RELATED:

The ZALLOCATE Command

The ZDEALLOCATE Command

The $TEST Special Variable

Global Variables (Section 2.4.2)

The Indirection Operator (Section 2.6.6)
Local Variables (Section 2.4.1)
Postconditional Expressions (Section 2.7.4)
Timeout Expressions (Section 2.7.5)

EXAMPLES:

The following example locks the global “LIS. No other user can now lock
the.unsubscripted global name “LIS or any subscripted global node that is
part of “LIS. Any globals previously locked by this job are unlocked.

LCK L “LIS

The following example locks the nodes “AS(1,3) and "J(4,1) and all their
descendants. It also makes their ancestors in a direct line to the roots “AS
and "J unavailable for locking.

LCK2 L ("AS(1,3),"J(4,10)

The following example unlocks all locked variables.

L

The following example tries for four seconds to lock global "“A. If the
attempt is not successful, control passes to the line labeled B2. If the
attempt is successful, control passes to the next sequential line.

TES3 LA:4E GB2
The following example locks the nodes “A(1,1) and "A(1,2,3,4).
RT L *Ac1,2)

L ¢*AC2,1),"AC1, 1), "ACL, 2,40
L C*ACL, 1), %A01,2,3,40

DSM-11 ANSI Standard Commands

NEW

PURPOSE

NEW saves the values of the specified local variables. The values are restored
at the next QUIT statement.

FORMS:
N{EW}{:postcond}
N{EW}{:postcond}smargument

In which argument can be one of the following:

name

(local,...})

@expr atom

where:

postcond is a postconditional expression

name is the name of a local variable without subscripting

local is the name of a local variable or an indirect reference that
evaluates to a local variable name or to another indirect
reference

@expr atom is an indirect reference that evaluates to one or more NEW
arguments

EXPLANATION:

The NEW command allows you to save the values of variables temporarily.
Variables specified in the NEW command are saved by being placed in a stack;
the specified variables are then deleted (killed) from the local symbol table.
When a QUIT is reached, the stacked values for the variables are restored to
the symbol table. The QUIT can be either explicit or implicit (but not within
the scope of a FOR loop).

Using the NEW command is most useful when you have local variables in a
subroutine that may conflict with local variables in the routine that calls the
subroutine. Using NEW allows you to assign new values to these variables
while preserving the old values.

DSM-11 ANSI Standard Commands 4-39

NEW (Cont.)

4-40

When you use the NEW command, the value of the specified variables are
undefined until they are assigned new values. It is as though the variables had
been killed (except that the values are restored at a later time). If you apply
$DATA to the variable you get a value of zero (unless a new value has been
assigned to the variable).

When a QUIT is reached, the new values assigned to the specified variables are
deleted (the variables are killed); and the old (stacked) values are assigned to
the variables.

NEW without arguments stacks all of the variables in the local symbol table.
The local symbol table is then empty.

The effect of NEW with arguments depends on the argument form that you
use.

1. local

This form of the NEW command is selective. The only variable that is
stacked is the one that you specify.

If the variable you specify is subscripted, then the NEW command stacks
the variable and all of its descendant nodes. For example, you have an
array containing the nodes:

X(1,2)
X(1,2,1)
X(1,2,3)
X(2,2)

If you specify X(1,2) as the NEW argument, then X(1,2), X(1,2,1), and
X(1,2,3) are all stacked; but X(2,2) is not stacked.

2. (locald,...}

This is the exclusive form of NEW. All variables in the local symbol table
are stacked except those that are listed in the argument. The variables in
the argument are preserved in the symbol table. All other variables are
deleted from the symbol table.

COMMENTS:
Keep the following points in mind when you use the NEW command:

1. The NEW command works only on local variables, not global variables.

DSM-11 ANSI Standard Commands

NEW (Cont.)

2. Use of the NEW command causes partition space to be used for saving
variables in a push-pop stack. Excessive use of the NEW command can
exhaust all of the partition space, causing an error.

3. In Programmer Direct Mode, you can use NEW to stack variables, but the
effect is the same as a KILL. The variables can never be restored since no

QUIT can ever be done from this level to a lower level (you are at the
lowest level already).

4. Error processing restores variables stacked with NEW.

5. Using @rar7y; causes the stack of variables established with NEW to be
erased. These values are lost.

RELATED:

The QUIT Command
Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example saves (stacks) the variable X and any descendants it
may have.

NEW &
The following example stacks all variables in the local symbol table.
NEw

Consider a local symbol table with the following variables:

X Oy
N
AN —

The following example preserves A and B in the symbol table:

NEW (A, B
The new symbol table is:

A=1
B=2

The variables that are stacked are:

DSM-11 ANSI Standard Commands 4-41

NEW (Cont.)

C=4
X=6

The following example uses a postconditional expression. If X =1, then NEW
stacks the variable Y.

NEW:H=1Y

4-42 DSM-11 ANSI Standard Commands

OPEN

PURPOSE:

OPEN obtains ownership of one or more devices.
FORM:

O{PEN}{:postcond}srargument,...

In which argument can be one of the following:
device{:{params}:timeout}

@expr atom

where:

postcond is a postconditional expression

device is a device specifier

params are one or more expressions that evaluate to device opening
parameters

timeout is a timeout

@expr atom is an indirect reference that evaluates to one or more OPEN
arguments

EXPLANATION:

OPEN reserves the device(s) specified in the argument(s) for your use. For any
device except the principal device, you must issue an OPEN command to
reserve the device before you issue a USE command to direct all input and

output operations to it. (For an exception to this rule, see the ZUSE
command.)

The argument(s) for OPEN consists of one or more valid device specifier(s)

and their modifying parameters. The specifier(s) can be by argument or name
indirection.

If you do not include modifying parameters, DSM-11 uses default system
parameters. If you do include modifying parameters, DSM-11 uses the
parameters as specifications of action to take when it opens the device. The
effects of these parameters can last until you issue a CLOSE command to close
the device. If you do not relinquish device ownership with CLOSE, DSM-11
ends that ownership and the use of any modifying parameters you specify
when you execute a HALT.

DSM-11 ANSI Standard Commands 4-43

OPEN (Cont.)

4-44

See the DSM-11 User’s Guide for a description of device specifications and the
parameters you can use with them.

COMMENTS:
Keep the following points in mind when you use the OPEN command:

1. Two users cannot own the same device. If you attempt to open a device
already owned by another user, DSM-11 suspends execution of your job
until the device is free.

To avoid a potential suspension of execution, use a timeout. If DSM-11
cannot open the device during the timeout, it sets $TEST to zero and
resumes execution. If DSM-11 can open the device during the timeout, it
opens the device, sets $TEST to true (one), and resumes execution.

DSM-11 resumes execution as soon as it can open the device. It ignores
any time remaining on the timeout.

2. Opening a device does not make it your current input/output device; it
only gives you ownership of the device. You must execute a USE
statement to make the device your current input/output device.

3. If you specify more than one parameter with a device, you must enclose
the parameters in parentheses and separate the parameters with colons.

RELATED:

The CLOSE Command

The HALT Command

The USE Command

The ZUSE Command

The $10 Special Variable

The $TEST Special Variable
Postconditional Expressions (Section 2.7.4)
Timeout Expressions (Section 2.7.5)

EXAMPLES:

The following example obtains ownership of device 16. If another user already
owns device 16, execution hangs until the device is available.

016

The following example shows the format of the OPEN command with a
timeout if no parameters are present.

OPN 0 16::10

DSM-11 ANSI Standard Commands

OPEN (Cont.)

The following example prompts for a device; then, it tries to open the device
for up to three seconds. If it is successful, DSM-11 sets $TEST to 1.
Otherwise, DSM-11 sets $TEST to 0 and continues execution at the line
labeled REGO.

¢ W !,"ENTER DEVICE SPEC:" R !,DEV
0 DEV::3 G: '$T REGO

The following example writes the first subscript level from the global "NAM
into Sequential Disk Processor (SDP) space. The parameters with the OPEN
command are the starting byte and block address.

G 059:(Q:4492:"DLO") U S59 § E=""

$ E=$0C NAMCED) G:E="" STOP

WE," " W:$DC NAMCED D#1@ “NAMCED, ! G GO+l
STOP W "STOP",! S %:=$2ZA

C59U @MUK

DSM-11 ANSI Standard Commands 4-45

QUIT (Cont

)

4. The QUIT on line B returns control to the statement immediately follow-
ing "D B” on line A.
COMMENTS:

Keep the following points in mind when you use QUIT:

1.

If you use a postconditional expression with QUIT, DSM-11 executes the
QUIT only if the postconditional expression has a value of true.

2. If you do not include a QUIT in a routine, DSM-11 terminates the routine
after it executes the last sequential line unless it encounters a statement
redirecting control elsewhere. In block-structured programming, DSM-11
terminates an execution block when it reaches a routine line of a lower
level than that of the execution block. See Section 1.7 for more discussion
of block-structured programming.

3. When DSM-11 encounters a QUIT in an error handling routine (declared
as an error-handler in the $ZTRAP special variable), it returns control to
the point immediately following the DO argument in which the routine
that caused the error was called.

4. If any local variables have been saved with the NEW command, the next
QUIT that is not within the scope of a FOR loop restores these variables.

RELATED:

The DO Command

The FOR Command

The HALT Command

The NEW Command

The XECUTE Command

Extensions to Routine Structure (Section 1.7)
Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example executes a QUIT if XR equals zero.

COND §:'RR

The following example routine line keeps a total of numbers entered in

resp

Z

onse to the prompt. The routine line quits when the value of A is null.

SSUM=R F I=@:1 R !,"*",A:A="" 5 SUM=SLIN+A

DSM-11 ANSI Standard Commands 4-47

READ

PURPOSE:

READ receives data from the current device.
FORMS:

R{EAD}{postcond}smargument,...

In which argument can be one of the following:
format

string

local{:timeout}

local{#inp field}{:timeout}

*local{:timeout}

@expr atom

where:

postcond is a postconditional expression

format is one or more formatting characters

string is a string literal

local is the name of a local variable with or without subscripting

timeout is a timeout

inp field is an integer-valued expression preceded by the pound sign
(#) that specifies the number of characters to be read

@expr atom is an indirect reference that evaluates to one or more READ
arguments

EXPLANATION:

The action READ performs depends on the argument form you use, as

follows:

1. format

4-48 DSM-11 ANSI Standard Commands

READ (Cont.)

READ performs the operations specified by the formatting character(s) in
the argument. DSM-11 updates the special variables $X and $Y to reflect
the result of the operation.

If the device does not accept output, DSM-11 ignores the formatting
characters. If the device does not accept input, DSM-11 reports an error.

See the reference descriptions in Chapter 6 for more information on $X
and $Y.

2. string

READ writes the string specified on the current device. DSM-11 updates
the $X special variable to reflect the length of string.

If the device does not accept output, DSM-11 ignores the string but does
update $X to reflect the change. If the device does not accept input, DSM-
11 reports an error.

3. local{:timeout}

DSM-11 reads a string (of up to 255 characters) from the current device
and assigns the value of that string to the local variable. It also updates $X
to reflect the data received.

A read terminates when one of the following occurs:

e You type a line terminator (such as a re71)

® A timeout occurs

e The string of characters you are typing reaches the field length

If a terminal is the current device, you can use a timeout to limit the
amount of time DSM-11 waits for the string. (If you do not use a timeout,
DSM-11 suspends execution until it receives an input string followed by a
carriage return or other valid line terminator.)

If DSM-11 receives data followed by a line terminator before the timeout
occurs, it assigns the value of the data to the local variable, updates $X,
and assigns a value of true (one) to the $TEST special variable. DSM-11
then ignores any time remaining in the timeout and resumes execution.

When a timeout occurs while you are entering data, DSM-11 terminates
the data with a line terminator. The value of the data that DSM-11 has
received is assigned to the local variable. DSM-11 does not know that this
data is incomplete from your standpoint. DSM-11 also assigns a value of
false (zero) to $TEST and updates $X to reflect the input string.

DSM-11 ANSI Standard Commands 4-49

READ (Cont.)

4-50

If DSM-11 does not receive any data before the timeout occurs, it assigns
a null string (”") as the value of the local variable. It also assigns a value
of false (zero) to $TEST and updates $X to reflect the input string.

If you exceed the field length (default of 255) when typing in data, DSM-
11 reads the data through the full field length (255 characters) and then
terminates the read with a line terminator. The value of the data that
DSM-11 has received is assigned to the local variable.

local{#tinp field}{:timeout}

DSM-11 reads a string from the current device whose length is determined
by the value of inp field and assigns the string to a local variable. Inp field
must be an integer-valued expression from 1 to 255.

If you include a timeout after the input field specification, it affects the

READ operation the same as the local{:timeout} argument, described
above.

If you exceed the field length when typing in data, it affects the read in the
same way as described for the /ocal{:timeout} argument, except that the
field length is the one that you specify, not 255.

READ operations with an input field specifier also affect the $X and
$TEST special variables in the same way as the local{:timeout} argument.

*local{:timeout}

DSM-11 accepts as input the next character received. DSM-11 then assigns
the decimal equivalent of the ASCII code for the character as the value of
the local variable.

If a terminal is your current device, you can also use a timeout with this
form to limit the amount of time DSM-11 waits for data. (If you do not
use a timeout, DSM-11 waits until it receives a character. The character
does not have to be followed by a carriage return or other valid line
terminator.)

If DSM-11 does receive the single-character before the timeout occurs, it
assigns the decimal ASCII code of that character as the value of the local
variable and assigns a value of true (one) to $TEST. DSM-11 then ignores
any time remaining in the timeout and resumes execution.

If DSM-11 does not receive the single-character input before the timeout
occurs, it assigns a value of -1 to the local variable. It also assigns a value
of false (zero) to $TEST.

DSM-11 ANSI Standard Commands

READ (Cont.)

In neither case does DSM-11 update $X or $Y. The READ * form does
not affect $X or $Y.

COMMENTS:

Keep the following points in mind when you use the READ command:

1. With terminals, DSM-11 has a type-ahead feature that allows you to enter
data before DSM-11 executes the READ argument that assigns that data
as the value of a local variable. DSM-11 stores the type-ahead data in an
input buffer and retrieves the data when it executes the READ argument.
However, if you use a READ command in which you precede the local
variable with a format character or a READ command with a string-literal
output as a prompt for input, DSM-11 clears the input buffer, discarding
all previously typed data.

To keep the type-ahead feature and provide interactive queries and
responses in application programming, do all formatting and prompting
with WRITE statements. For example, you can rewrite the statement:

R VESUCUSTOMER NAME? ", 1, NAM

as:

W', "CUSTOMER NAME? ", ! R NAM

2. If inp field is zero, DSM-11 returns an error.

3. If the input field length has been specified with a previous USE command
input buffer parameter, the READ argument takes precedence, and DSM-
11 reads inp field characters.

4. If inp field has an integer and fractional component, DSM-11 discards the
fraction and reads the integer number of characters. Thus, the statements:

R ®#5.5
HELLOO

assign X the value:
HELLO
RELATED:
The WRITE Command

The $ASCII Function
The $CHAR Function

DSM-11 ANSI Standard Commands 4-51

READ (Cont.)

4-52

The $TEST Special Variable

The $X Special Variable

The $Y Special Variable

Formatting Characters (Section 2.6.7)

The Indirection Operator (Section 2.6.6)
Postconditional Expressions (Section 2.7.4)
Timeout Expressions (Section 2.7.5)

EXAMPLES:

The following example writes the string MESSAGE on the current 1/0 device.

kR "MESSAGE"
MESSAGE

The following example causes four new-line operations.

JMF R

The following example prompts for a number and waits ten seconds for a
response. If it receives no data, DSM-11 transfers control to the line labeled

A3,

2 R !, "NUMBER: “,N:1@
G:'$T A3

The following example waits ten seconds for a number. If it receives the
number, it assigns the variable N the value of the number and sets $TEST to
one. If it does not receive the number, it sets $TEST to zero.

A S B=1@,MESS="ENTER A NUMBER"

B W !, MESS R N:B

The following example reads the first four characters entered and writes them
to the principal device.

e

RRB4W 1R
TESTING
TEST

The following example sets the size of the READ input buffer depending on
the value of a variable.

DSM-11 ANSI Standard Commands

READ (Cont.)

STRT R "Enter Number: ",VAL
I VAL)939 S IBUF=3
E § IBUF=2
R !,"Enter Next Number: ",NVALHIBUF

The following example requests a single-character input within a 5-second
interval. If DSM-11 receives a character in that time, it sets A to the ASCII
decimal code for that character and sets $TEST to one.

RD R *A:5

DSM-11 ANSI Standard Commands 4-53

SET
PURPOSE:

The SET command assigns the value of an expression to a variable or to a
substring within a variable.

FORM:

S{ET}{:postcond}smargument,...

In which argument can be one of the following:
storage ref = expression

(storage ref{,...}) = expression

piece ref =expression

@expr atom

where: ,

postcond is a postconditional expression

storage ref is a local or global variable name (defined or undefined)
with or without subscripts

expression is an expression

piece ref is a reference to one or more substrings within a local or
global variable (defined or undefined) in the syntax of the
$PIECE function

@expr atom is an indirect reference that evaluates to one or more SET
arguments

EXPLANATION:

DSM-11 evaluates the arguments of the SET command in the following order:

1. Occurrences of indirection or subscripts to the left of the equal sign are
evaluated in left-to-right order to determine the storage or piece reference.

2. The expression to the right of the equal sign is evaluated.

3. The expression to the right of the equal sign is assigned to the storage
reference(s) or to the piece reference(s) to the left of the equal sign.

4-54 DSM-11 ANSI Standard Commands

SET (Cont.)

The specific action that SET performs depends on the argument form you use,
as follows:

1.

storage ref = expression

SET assigns the value of an expression to a storage reference.

(storage ref{,...}) = expression

SET assigns the value of an expression to all named storage references.
piece ref = expression

SET assigns the value of an expression to one or more substrings within
the named storage reference. DSM-11 can store data as a string composed
of a series of substrings separated by a delimiter. The delimiter can be any
character or sequence of characters that occur in the string. When a string
consists of substrings separated by a delimiter, all substrings within that
string have a position with respect to the delimiter. For example, consider
the following string:

"ABC;DEF;GHI"

If the semicolon (;) is the delimiter, the characters ABC form the first

substring; DEF form the second substring; and GHI form the third
substring.

The piece ref argument uses a syntax that resembles the DSM-11 $SPIECE
function to specify the substring(s) to be set within a variable. This syntax
is:

$P{IECE}(storage ref,delimiter){,start field}{,end field})

where:

SP{IECE} is the piece ref prefix

storage ref is a storage reference that contains the substring that you
want to assign a value to

delimiter is the character or characters used as a delimiter between
the substrings in storage ref

start field is an integer expression that specifies the substring (or first
of a series of substrings) that you want to assign a value to

end field is an integer expression that specifies the last in a series of
substrings that you want to assign values to

DSM-11 ANSI Standard Commands 4-55

SET (Cont.)

4-56

In the two-argument form of piece ref, SET assigns a value to the first
substring in storage ref. If the value of FST is:

"HELLO$WORLD”
the statement:
S$FCFST, "¢")="GOODRYE"

assigns the value of the first substring in FST equal to GOODBYE, as
shown below:

W FET
GOODBYE$WORLD

In the three-argument form of piece ref, SET assigns a value to the
substring specified by start field. If the value of X is:

129 GRASMERE STR;BRIGHTON;MASSACHUSETTS”
the statement:
SOEFCH, ", 2= NEWTONY

assigns the value of the second substring in X equal to NEWTON, as
shown below:

V]
(Al

129 GRASMERE STR;NEWTON; MASSACHUSETTS

In the four-argument form of piece ref, SET assigns values to the substr-
ings from start field to end field inclusive. If the value of ALPHA is:

" ABC;DEF;123;456;789;PQR"
the statement:
5 $FCALFHA, "™, 3,50 ="GHI; JKL; MNO"

assigns ALPHA substrings three, four, and five the values GHI, JKL, and
MNO respectively, as shown below:

W ALFHA
ABC; DEF; GHI; JKLiMNO; PR

COMMENTS:

Keep the following points in mind when you use the SET command.

DSM-11 ANSI Standard Commands

SET (Cont.)

For all forms:

1.

The evaluation order in the SET command can affect how DSM-11
determines naked references. Consider the following example:

§ "M(31=3,"%(2="2(5

First, DSM-11 sets “X(3) equal to three and sets the naked indicator
by the last full global reference, “X(3). (The naked indicator is at the
first level.)

However, when DSM-11 evaluates the expression to the right of the
equals sign in the second argument, it finds a new global, N7, to serve
as the value of the naked indicator. Therefore, it determines what the
storage reference on the left of the argument (*(2)) is by using "Z(5).

Thus, DSM-11 evaluates the second argument in this SET command
as:

§2(2="2(5

If you use a postconditional expression with the SET command,
DSM-11 executes the SET only if the postconditional has a value of
true.

You cannot use a postconditional with a SET argument. However you
can use the SSELECT function to conditionally assign a value to a

storage reference or a storage reference to a value. For example, the
statement:

S A=$5(J)100:M,1:N)

assigns A the value of M if J is greater than 100 and assigns A the
value of N in all other cases.

The statement:
S A$SCA:-"A",1:"B")=0

assigns A the value of zero if A is not already zero or assigns B the
value of zero if A is already zero.

You cannot use SET to assign a value to any DSM-11 special variables
except $ZBREAK, $ZERROR, and $ZTRAP. $ZBREAK is used to
debug routines. $ZBREAK is used to debug routines. $ZERROR and
$ZTRAP are used in error processing.

DSM-11 ANSI Standard Commands 4-57

SET (Cont.)

4-58

For

See the description of $ZBREAK, $ZERROR, and $ZTRAP in
Chapter 7 for details about these special variables.

the piece ref = expression form:

The two-argument form of piece ref is equivalent to the three-
argument form when start field is one, as shown in the following
example:

S (5TR1,5TRE)="NOBWAYHIACK"
S$FCSTRL, "H")="MAKE" 5 $P(STRZ, "#",1)="MAKE" W ! ,5TR1,!,5TRZ

MAKERWAYHIACK
MAKERWAYHIACK

If storage ref consists of fewer than the specified number of substr-
ings, DSM-11 assigns storage ref the current value of storage ref
concatenated with the number of delimiter characters needed to bring
the total number of delimiters to start field-1, concatenated with
expression.

Thus, if the value of MONTHS is:

"JAN;FEB;MAR;APR"

the statement:

SOFFCMONTHS, " ", 80 ="ALIG"

assigns MONTHS the value:

"JAN; FEB;MAR; AFR; i ;i AUG"

If storage ref is undefined, DSM-11 assigns storage ref the value of
expression preceded by start field-1 delimiter characters.

Thus, if the variable TST does not exist ($DATA(TST)=0), the
statement:

5 $PCTST, "%, 7)="123"

assigns TST the value:

If a four-argument piece ref specifies more substrings than contained
within the expression to the right of the equal sign, DSM-11 assigns

DSM-11 ANSI Standard Commands

SET (Cont.)

the specified range of substrings the value of expression. Thus, if the
value of VAR is:

"ABC;DEF;GHI;JKL;MNO"
the statement:
S $FCVAR, ™", 2, 4)="123; 456"

assigns VAR substrings two, three, and four the value 123;456
(effectively reducing the total number of substrings in VAR to four).
The resulting value for VAR is:

"ABC;123;456;MNO"
RELATED:

The Binary EQUALS Operator

The $SPIECE Function

The $SELECT Function

The $ZBREAK Special Variable

The $ZERROR Special Variable

The $ZTRAP Special Variable

Global Variables (Section 2.4.2)
Indirection Operator (Section 2.6.6)

Local Variables (Section 2.4.1)
Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example sets the variable XYZ to 42465.

S RYZ=42465

The following example sets several variables and writes the result.

51=3,D=145,C=I¥DUC
4

ry

The following example assigns the value of zero to the variables X,Y,and
Z.

o

" Y -
(hoY, 2=

The following example determines the naked reference by the previous
global reference AC(2) --- not “A(2) which DSM-11 evaluates later. Note
that the later assignment of an expression to a variable (“A(2)) cancels any
previous assignment to that variable.

DSM-11 ANSI Standard Commands 4-59

SET (Cont.)

"Acza=1,tcC=2, A=t e
“ac

2
o
. A
. A
..i.:!: C(.f;)

5
W
3
The following example uses a postconditional. If the variable LM has a
value of 4, the example gives it the value zero.

S:LM=4 LM=0

The following examples use name and argument indirection to assign the
local variable Al the value of one.

A="A1"
AA=1

iy

o

Az"AL=1"
2R

o3

[4x]

The following example stores data in a global that uses a person’s name as
an identifying subscript. The routine stores the data for each person as a
series of substrings separated by a semicolon (;), starting with the person’s
address. Note that the piece-by-piece construction of the global occurs
only after the name is stored as part of the full global reference.

STRT S FMTC1)="NAME: ",PFMTC2)="ADDRESS: ",PMT(3)="CITY: "
S FMTC4)="STATE: "“,PNT(S)="2IF CODE: "
S PMTCE)="FHONE: ",FMTC7)="SOCIAL SECURITY NO: "
FI=1:1:7WFMTCI) RINPCID S:I)1 $PCDEMOGCINPCLY), ", I-1)=INF(I)

The following example sets the naked indicator, then assigns a value to the
second piece of the next naked reference. The example assigns the value
by determining the value of the fourth piece of the following naked
reference (using the $PIECE function to determine that value). The
example assumes that “X(3) is undefined and “X(4) is defined to be the
string "THIS#IS#AH#TEST".

$ "Rez=1

SEPCT03), ", 20 $PCTC4), HY, 4)
W1, MRe3),1, K4

TEST

THISHISHARTEST

4-60 DSM-11 ANSI Standard Commands

USE

PURPOSE:

USE makes the device specified in its argument the current 1/0 device. Unless
the device is the principal device, you must have previously gained ownership
of it with an OPEN statement.

FORM:

U{SE}{:postcond}smargument

In which argument can be one of the following:

device{:params}

@expr atom

where:

postcond is a postconditional expression

‘device is a device specifier

params are one or more expressions that specify device parameters
@expr atom is an indirect reference that evaluates to a USE argument
EXPLANATION:

DSM-11 makes the device you specify the current device. It performs all
input/output operations with that device until one of the following situations
occurs:

1. You close the device with CLOSE --- your principal device then becomes
the current 1/0 device.

2. You execute another USE to select a new device.

3. An error occurs when you have not set $ZTRAP --- DSM-11 then resets
your principal device as your current device and sends the error message
to it.

4. You execute a HALT command.
The arguments for USE consist of a valid device specifier and its optional,
modifying parameters. If you enter more than one device specifier in the

argument list, DSM-11 uses the last (rightmost) device you specify as the
current I/0 device.

DSM-11 ANSI Standard Commands 4-61

USE (Cont.)

4-62

If you do not include modifying parameters, DSM-11 uses the system defaults.
If you include modifying parameters, DSM-11 uses the parameters as specifi-
cations of action to take when it directs 1/0O operations to the specified device.
The effect of these parameters can last until you direct I/0 to another device.

See the DSM-11 User’s Guide for a description of device specifications and the
parameters you can use with them.

COMMENTS:
Keep the following points in mind when you use the USE command:

1. You cannot issue a valid USE command for a device you do not own.
USE only directs I/0 to an already owned device. Thus, you must gain
ownership of any device (other than your principal device) with an OPEN
command before you can use it.

2. If you specify more than one parameter with a device, you must enclose
the parameters in parentheses and separate the parameters with colons.

3. The $10 special variable contains the specification of the device you are
using for input and output. Thus, $10 has the value of either the principal
or the current device.

The principal device is the device the system opens when you log into the
system and uses by default for input and output. You can refer to the
principal device as device 0.

The current device is any device you open with an OPEN command and
use for input and output with a USE command. Thus, the current device
is the device you are presently using for input and output operations.

4. The $X and $Y special variables always reflect the state of the device
you are currently using. When you are using a device, DSM-11 writes
any horizontal or vertical cursor or carriage specifications associated
with the device into the $X and $Y special variables.

DSM-11 retains the old values for any device you previously used. If
you use that device again, the values in $X and $Y are the values for
that device.

5. The $ZA and $ZB special variables can also reflect the state of the
device you are currently using. DSM-11 also retains the values of $ZA
and $ZB for any device you previously used. If you use that device
again, the values in $ZA and $ZB are the values for that device.

RELATED:

DSM-11 ANSI Standard Commands

USE (Cont.)

The CLOSE Command

The OPEN Command

The $10 Special Variable

The $X Special Variable

The $Y Special Variable

The Indirection Operator (Section 2.6.6)
Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example specifies device 3 as the current I/0 device.

13

The following example uses argument indirection to use the sequential
disk processor. (See the DSM-11 User’s Guide for more information on

the sequential disk processor.)

B S A="355:(0:23633000"
Ul 8A

DSM-11 ANSI Standard Commands 4-63

VIEW

4-64

PURPOSE:

VIEW allows you to read and write blocks to disk storage or to alter locations
in memory.

RESTRICTION:

You can only use the VIEW command if you are using the system UCI, are
running a library routine that contains VIEW statements, or are working on a
system that has been configured to allow unrestricted use of VIEW.

See your System Manager to determine whether VIEW is restricted.
FORMS:

V{IEW }smargument,...

In which argument can be one of the following:

{-}block addr:disk

{-}block addr:volume set

{-}block addr

destination:{state}:value

destination:{state}:source:{state} .extent

@expr atom

where:

block addr is an integer expression that specifies the address of a disk
block

disk is an alphanumeric expression that specifies a disk drive

volume set is an alphanumeric expression that specifies a mounted
volume set

destination is an integer expression that specifies a memory location

state is an integer expression that specifies a state (see Table 4-1)

value is an integer expression that specifies the value to write to

the location

DSM-11 ANSI Standard Commands

VIEW (Cont.)

source is an integer expression that specifies a memory location

extent is an integer expression that specifies the number of bytes to

be transferred

@expr atom is an indirect reference that evaluates to one or more VIEW

arguments

EXPLANATION:

The function VIEW performs depends on the argument form you use:

1.

{-}block addr:disk or {-}block addr:volume set or {-}block addr

VIEW allows you to examine the contents of a disk block. DSM-11 uses a
buffer in memory called the VIEW device for all VIEW transfers to and
from a disk block. Before you can use VIEW to access from disk, you
must gain ownership of the VIEW device (device 63) with an OPEN
statement.

(See the DSM-11 User’s Guide for a description of the OPEN and USE
parameters for the VIEW device.)

After you gain ownership of the VIEW device, enter a VIEW command
with an argument specifying the block to be read in either of the three
following forms:

V block addr:disk

V block addr:volume set

DSM-11 then reads the specified block into the VIEW device.
To access the block, use:

a. VIEW with a destination:0:value argument to write a new value into
the VIEW device

b. The $VIEW function to read the value in the VIEW device

Always use a state value of 0 when you access a value in the VIEW device.
After you finish with the block, write it back to disk with an argument
consisting of the block address preceded by a Unary MINUS, using either

of the two following forms:

V -block addr:disk

DSM-11 ANSI Standard Commands 4-65

VIEW (Cont.)

4-66

V -block addr:volume set

The disk that the block is on is specified by a three-letter mnemonic code
such as DMO, indicating drive 0 of an RK06 or RK07 drive. In this way
you can access the block address by the relative block number for that
disk.

The following is a list of disk mnemonics:

Mnemonic Type Type Designation
DK RKO05 0
DM RK06, RK07 1
DR RMO02, RM03, RMO05 2
DB RP04, RP0S, RP06 3
DL RLO1, RL0O2 4
DU RA80, RA60, RA81, RDS1, RX50 5

You can also specify the block address within a volume set by specifying
the block number relative to the beginning of the volume set. In this case
disk is replaced by a code such as SO or Sl, indicating, for example,
Volume Set 0 or Volume Set 1. Volume Set 0 is always the system volume
set, which contains the system disk.

In a volume set, block numbering proceeds sequentially from the
beginning of the volume set and may proceed sequentially from one disk
to another if there are several disks within the volume set.

You can use the Volume Set Table (described in the DSM-11 User’s Guide)
to determine where a block is within a given volume set.

If necessary (though not recommended), you can also specify a block
address by calculating the DSM-11 block number. In this case the syntax is
one of the following:

V block addr

V -block addr

You must not specify a disk or volume set. The DSM-11 block number or
block addr is calculated as follows:

disk type*2097152 + (disk unit number*262144) + absolute block number
This syntax is not recommended, however, because of a limit on the

absolute block number of 262,144. The syntax is included here for
compatibility with previous DSM-11 releases. See Appendix D of the

DSM-11 ANSI Standard Commands

VIEW (Cont.)

DSM-11 User’s Guide for information on how to calculate the absolute
block number.

2. destination{:state}:value

VIEW writes to either the VIEW device or to memory. To write to the
VIEW device, you must first open device 63.

The first argument element, destination, specifies a word location in
which you want to write. Because DSM-11 only writes full words to
memory, destination must be an even value.

The second argument element, state, indicates the meaning of destination
and the type of operation you want to perform. If you do not specify a
state value, VIEW considers that destination is a logical address within
Kernel-Mode mapping (state value of -1).

The third argument element, value, is new value you want to write to the
location indicated by destination.

Table 4-1 describes the state values, their meanings, and the appropriate
destination values to use with them.

DSM-11 ANSI Standard Commands 4-67

VIEW (Cont.)

4-68

Table 4-1:

VIEW Argument

Values

destination
or source
Value

state Value

Meaning

0-—-m

0 - x

0 --- 65534

0 --- 65534

0 --- 16382

l--n

+ 128 to + 32767

state specifies a job number. (n stands for the
maximum number of jobs on the system.)

destination or source specifies an offset from the
beginning of the partition. (m stands for the largest
offset value possible in the partition.)

To specify your own job, use the special variable
$JOB for state.

state specifies that destination or source is an offset
from the beginning of the VIEW Buffer. (x stands
for the largest offset value on the VIEW device.)

state specifies that destination or source is the
logical address used in Kernel-Mode mapping. (This
is the default state when you do not include a state
specifier.)

state specifies that destination or source is the
logical address used in User-Mode mapping.

state specifies a memory-management
block.destination or source is an offset starting at
the memory-management block specified by state.

When the state value is either -1 or -2, a destination or source of 40960
(words) through 56344 (words) represents the current partition. A destina-
tion or source value of 56344 (words) to 65535 (words) represents the I/0

page.

When you use a state value between + 128 and + 32767, you can view an
area in memory that would otherwise not be mapped by either Kernel
Mode (state=-1) or User Mode (state=-2) at the point in time when you
execute the VIEW. Thus, these state values allow you to view anywhere in
physical memory.

DSM-11 ANSI Standard Commands

VIEW (Cont.)

To obtain a more detailed explanation, see your PDP-11 Processor
Handbook for information on memory management.

3. destination:{state}:source:{state }:extent

The five-argument form of the view command is similar to the three-
argument form. The five-argument form allows you to move a number of
bytes from one memory area to another.

The values for the state argument are the same as those in Table 4-1. The
state is optional and defaults to a value of -1 if no value is present. If you
do use the default value, you must include the correct number of colons to
distinguish this form from the three-argument form:

destination::source::extent

The first two arguments, destination and state, are similar to the
arguments for the three-argument form. The destination value must be an
even number and is the address to which you are moving the bytes. The
state value indicates the meaning of destination and the type of operation.

The third argument, source, is the location from which you are moving
bytes; it must be an even number. The fourth argument, state, indicates
the meaning of source and the type of operation.

The fifth argument, extent, indicates the number of bytes that are to be
moved. It must be an even number.

RELATED:
The $VIEW Function
The Indirection Operator (Section 2.6.6)

Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example finds a particular device (DEV) in the device table
(DEVT), initializes the low byte of the entry, and adds the value of JOBE to
the entry.

V DEVT+DEV: : $V(DEVT+DEV)256*256+J0RE

The following example opens the VIEW Buffer and initializes a map block.
(See the DSM User’s Guide for more information on map blocks.)

DSM-11 ANSI Standard Commands 4-69

VIEW (Cont.)

STA 063V MBLK
FI=0:2:73V 1I:0:@
V 756:0:65535
V 1006:0:65535,1008:9:21845,1210:2:43690
V1212:2:32769
V1922:0:399
V -MBLK

The following shows how to read a disk-relative block into the VIEW buffer
from a disk:

V 2214:"DK1"

The following shows how to read a disk-relative block into the VIEW buffer
from a volume set:

V521350

4-70 DSM-11 ANSI Standard Commands

WRITE

PURPOSE:

WRITE sends data and/or control information to the current device.
FORM:

W{RITE}{:postcond}seargument,...

In which argument can be one of the following:

format

expression

*integer

@expr atom

where:

postcond is a postconditional expression

format is one (or more) formatting characters

expression is an expression

integer is an integer expression whose value is the decimal
equivalent of an ASCII character value

@expr atom is an indirect reference that evaluates to one or more
WRITE arguments

EXPLANATION:

The action WRITE performs depends on the argument form you use.

1. format

WRITE performs the formatting operation specified by the formatting
characters in the argument. DSM-11 updates the special variables $X and
$Y to reflect the thange.

2. expression

DSM-11 ANSI Standard Commands 4-71

WRITE (Cont.)

WRITE writes the specified expression on the current device. DSM-11
adds the length of the expression to $X.

If the current device does not accept output, DSM-11 performs no output
but does add the length of the string to $X.

3. *integer

This form is called the WRITE * (WRITE star) form. WRITE star writes
the ASCII character whose decimal code is equivalent to the integer
expression you use as an argument.

If the ASCII character is a graphic character, DSM-11 writes the character
on the current device. If the ASCII character is a control character, DSM-
11 performs the operation specified by the control character on the
current device.

In neither case does DSM-11 change the values in $X and $Y. The WRITE
* form does not affect $X and $Y.

COMMENTS:
Keep the following points in mind when using the WRITE command:

1. The WRITE * forms --- WRITE *12 (form feed) and WRITE *13 (new-
line operation) --- are not equivalent to WRITE # AND WRITE !. To
perform formatted writes, you should use the formatting characters #
(form feed) and ! (carriage return/line feed).

2. When you issue a WRITE statement to a terminal or line printer, start or
end each output line with a carriage return/line feed formatting character
(!) to prevent overprinting on the device.

When you use the line printer, enter a carriage return/line feed formatting
character after the last item you want to print and before you close the
device. Otherwise, you can lose the last line.

RELATED:

The READ Command

The SCHAR Function

The $X Special Variable

The $Y Special Variable

Formatting Characters (Section 2.6.7)

The Indirection Operator (Section 2.6.6)
Postconditional Expressions (Section 2.7.4)

EXAMPLES:

4-72 DSM-11 ANSI Standard Commands

WRITE (Cont.)

The following example writes the result of executing the $DATA function on
the local node L(1,3).

5Lc1,3)="123.77"

W $DCLC1,30)
1

The following example performs four new-line operations on the current
device.

Wrrnt
The following example prints a string literal in quotes on the current device.
(To print a string literal in quotation marks, you must include two additional

sets of double quotes within the mandatory pair.)

W"""THIS IS A QUOTED STRING"""
"THIS IS A QUOTED STRING"

The following example skips three lines and displays the expression
represented by M if V is greater than five.

B2 W:V)5 111, aM

The following examples ring the bell on a terminal (if a terminal is the current
device and if that terminal has a bell).

W *7

or:

W$CCT)

The following example uses argument indirection to perform one form feed

operation, two new-line operations and a horizontal tabulation of 20 spaces
from the left margin. Then it writes the string literal TEST.

J1 S A="#112z0"

W 2A,"TEST"

DSM-11 ANSI Standard Commands 4-73

XECUTE
PURPOSE:

XECUTE can execute DSM-11 statements that result from the process of
expression evaluation.

FORM:
X{ECUTE}{:postcond}seargument,...

In which argument can be one of the following:
expression:{postcond}

@expr atom

where:

postcond is a postconditional expression

expression is an expression that evaluates to one or more DSM-11
statements

@expr atom is an indirect reference that evaluates to one or more
XECUTE arguments

EXPLANATION:

Each XECUTE argument must evaluate to a string containing DSM-11
statements. The string should not contain a TAB character at the beginning or
a carriage return at the end.

In effect, each XECUTE argument is like a one-line subroutine called by a DO
command and terminated with a QUIT command. After DSM-11 executes the
argument, it returns control to the point immediately following the XECUTE
argument.

If an XECUTE argument contains a FOR command, the implicit QUIT is
beyond the scope of the FOR. That is, the XECUTE argument behaves as if it
were a two-line subroutine with the second line containing only a QUIT
statement.

If an XECUTE statement contains a DO command, DSM-11 executes the
routines specified in the DO argument(s). When it encounters a QUIT, it
returns control to the point immediately following the DO argument.

4-74 DSM-11 ANSI Standard Commands

XECUTE (Cont.)

For example, in the following statement, DSM-11 executes the routine ROUT
and returns to the point immediately following the DO argument to write the
string DONE.

X "D "ROUT W 1, ""DONE"""

If an XECUTE argument contains a GOTO command, DSM-11 transfers
control to the point specified in the GOTO argument. When it encounters a
QUIT, it returns control to the point immediately following the XECUTE
argument that contained the GOTO statement.

For example, in the following statement, DSM-11 transfers control to the
routine ROUT and returns to write the string FINISH. It never writes the
string DONE.

% UG “ROUT W 1, ""DONE""" W !, "FINISH"
COMMENTS:

You can use postconditional expressions with both the XECUTE command
and its argument. DSM-11 evaluates an XECUTE with a postconditional
expression only if that postconditional expression has a value of true. DSM-11
executes an XECUTE argument with a postconditional expression only if the
postconditional expression has a value of true.

RELATED:

The DO Command

The FOR Command

The GOTO Command

The QUIT Command

The Indirection Operator (Section 2.6.6)
Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example sets X to four if L equals two. Because of the IF
statement in the XECUTE argument, DSM-11 also sets the $TEST special
variable.

SM="IL=2 84" XN
The following example uses XECUTE to create an "if-then-else”construction.
®"S A=¢SCAY1QR:EB,1:D)"

The following example executes the subroutine that is the value of A.

DSM-11 ANSI Standard Commands 4-75

XECUTE (Cont.)

SA="W!FI=1:1:5W?5,I+1"
A

4-76 DSM-11 ANSI Standard Commands

Chapter 5
DSM-11 Extended Commands

This chapter describes the DSM-11 extended commands in alphabetical order
and provides examples of their use.

5.1 Introduction To DSM-11 Extended Commands

A DSM-11 command is a name for the action the command performs. DSM-
11 has two types of commands:

e ANSI Standard commands
e Extended commands

ANSI Standard commands are specified in the ANSI MUMPS Language
Standard and follow Standard usage. The Standard reserves the letters A
through Y as the first letters of Standard command names.

Extended commands, as specified in the ANSI MUMPS Language Standard,
are implementation-specific additions to the language. Extended commands
always begin with the letter Z. This chapter lists only the extended commands.

You can abbreviate any extended command name to its first two letters (the Z
and the second letter of the command name).

Many DSM-11 commands can take one or more arguments. Arguments are

expressions or expression atoms (for example, a function and its arguments or
a variable name) that define and control the action of the command.

DSM-11 Extended Commands 5-1

Some DSM-11 commands never take arguments. Their action needs no further
definition than a specification of their name.

Still other DSM-11 commands take arguments only in certain circumstances.
Such commands change their meaning depending on whether or not you
specify an argument or argument list.

5.2 Extended Command Descriptions

5-2

The following pages contain reference descriptions of all DSM-11 extended
commands. Each command description contains an explanation of the
purpose, forms, and operation of the command. The descriptions are in
alphabetical order for ease of referencing.

The descriptions also include one or more examples of command usage. All
command-line examples are presented as they would be on entry at a terminal.
All routine-line examples are presented as they would be when listed on a line
printer.

DSM-11 Extended Commands

ZALLOCATE
PURPOSE:

ZALLOCATE makes specified variables or specified nodes of variables
unavailable for allocation (locking) by other users.

FORM:
ZA{LLOCATE}{:postcond}srargument{:timeout},...
In which argument can be one of the following:

name

@expr atom

where:

postcond is a postconditional expression

name is the name of a local or global variable with or without
subscripting

@expr atom is an indirect reference that evaluates to one or more
ZALLOCATE arguments

timeout is a timeout that specifies how many seconds DSM-11 is to
try to lock the variable

EXPLANATION:

ZALLOCATE locks the variable(s) specified. If you use multiple arguments,
ZALLOCATE locks all variables specified. When you lock a variable using
ZALLOCATE, DSM-11 enters its name into a table that prevents any other
user from entering a LOCK or ZALLOCATE command for that variable. It
does not unlock any variable you previously locked with either LOCK or
ZALLOCATE.

Consider the following statements:

ZA "A, B, "C

ZA "D, “E

DSM-11 Extended Commands 5-3

ZALLOCATE (Cont.)

5-4

DSM-11 interprets these statements as:
e Allocate (lock) "A
e Allocate (lock) "B
e Allocate (lock) "C
* Allocate (lock) "D
e Allocate (lock) "E

DSM-11 locks all five global variables. Unlike the LOCK command,
ZALLOCATE does not implicitly unlock any previously locked variables.

If you lock a local variable, ZALLOCATE locks all local variables of that
name on the system. If you lock a global variable, ZALLOCATE locks that
global variable for your UCI.

If you lock an unsubscripted variable, DSM-11 prevents any other user from
locking a subscripted variable with the same name. If you lock a subscripted
variable, DSM-11 prevents any other user from locking any descendants or
direct ancestors of the node you specify.

You must always use full references or indirection to full references as
arguments for the ZALLOCATE command. DSM-11 does not allow naked
references with ZALLOCATE.

DSM-11 unlocks a variable locked with ZALLOCATE when any of the
following actions occur:

® You enter a ZDEALLOCATE command with that variable specified as an
argument.

® You enter an argumentless ZDEALLOCATE command.

® You enter a HALT command.

COMMENTS:

Keep the following points in mind when you use the ZALLOCATE command:

1. Like LOCK, ZALLOCATE is a convention. It does not prevent multiple
simultaneous accesses of a variable. Any user who does not follow the
convention of issuing ZALLOCATE commands and avoiding work on

locked variables can modify variables for which you have issued a
ZALLOCATE command.

DSM-11 Extended Commands

ZALLOCATE (Cont.)

2.

If you attempt to lock a variable or variables already locked by another
user, DSM-11 suspends execution of your routine until the variable or
variables are unlocked. To overcome such a potentially long suspension of
execution, use a timeout with ZALLOCATE.

If DSM-11 cannot lock the variable before the timeout occurs, it sets
$TEST to false (zero) and resumes execution. If DSM-11 can lock the
variable during the timeout, it locks the variable, sets $STEST to true
(one), and resumes execution. DSM-11 resumes execution as soon as it can
lock the variable. It ignores any time remaining on the timeout.

You cannot use one locking command to lock variables already locked by
the other. A ZALLOCATE command cannot lock variables previously
locked by another user with LOCK. A LOCK command cannot lock
variables previously locked by another user with ZALLOCATE.

gonsider the following situation. User A issues a LOCK command to lock
X:

Ay
A

User B then issues a ZALLOCATE for the same global:
ZA ¥

In this case, DSM-11 suspends execution of user B and tries to lock ¢
until user A unlocks "X. If user B used a timeout, DSM-11 suspends
execution until the timeout occurs.

You cannot use one locking command to unlock variables locked by the
other. A ZALLOCATE command does not unlock any variables
previously locked with LOCK. A LOCK command does not unlock any
variables previously locked with ZALLOCATE.

Consider the following statements:

ZA A, "R, "C
LD
These statements lock the globals “A, "B, “C, and “D. The LOCK

statement also unlocks any variables locked in a previous LOCK
statement.

Consider also these statements:
L"A

2A B, "C.°D
L

DSM-11 Extended Commands 5-5

ZALLOCATE (Cont.)

5-6

These statements lock the global A, and then lock the globals "B, "C,
and "D. The LOCK command with no argument then unlocks MA, but
does not affect '\B, ’\C, or AD, which remain locked.

RELATED:

The LOCK Command
The ZDEALLOCATE Command
The $TEST Special Variable

EXAMPLES:

The following example locks the global “A with the LOCK command and
locks the globals "B, “C, and "D with the ZALLOCATE command. Because
ZALLOCATE does not affect the status of any other locked references, the

globals “A, "B, "C, and "D are all locked at the end of this sequence of
commands.

LA

20 "B, CCLTD

The following example locks the globals B, “C, and "D with the
ZALLOCATE command and locks the global “A with the LOCK command.
Because the LOCK command does not unlock any variables previously locked
with ZALLOCATE, all specified globals are locked at the end of this series of
commands.

28 "B, °CTD

DSM-11 Extended Commands

ZBREAK
PURPOSE
ZBREAK turns on, turns off, and generally controls the DSM-11 debugger.
FORMS:
ZB{REAK}{:postcond}swicontrol element
where:
postcond is a postconditional expression
control element is ON, OFF, OVER, IN, or OUT
EXPLANATION:

The ZBREAK command controls the debugger and is used in conjunction with
the BREAK command, the ZGO command, and the $ZBREAK special
variable. The ZBREAK command is used in two ways:

e ZBREAK turns the debugger on or off, using the contro! element ON or
OFF. The default value is for the debugger to be OFF. When ZBREAK is
ON, the debugger recognizes the BREAK command and breakpoints set
with the $ZBREAK special variable.

e ZBREAK can be used to control execution during a breakpoint. The
ZBREAK command is used to continue execution in single-step mode. Enter
the ZBREAK command with a control element of OVER, IN, or OUT.
ZBREAK OVER treats any DO or XECUTE and any subroutine associated
with the DO or XECUTE command as one unit. Execution is not halted at

any of the commands in the subroutine. Execution is halted when another
command is reached in the "top” routine.

ZBREAK IN steps to the next command and issues a BREAK message.

ZBREAK OUT steps to the first command following the QUIT from the
current routine, subroutine, or XECUTE string.

COMMENTS:
Keep the following points in mind when using ZBREAK:

1. The control element is not a string literal. It must not have quotation
marks (") around it.

DSM-11 Extended Commands 5-7

ZBREAK (Cont.)

2. The control element is not an expression. You cannot set a variable equal
to one of the strings OVER, IN, or OUT and then use that expression as
an argument for ZBREAK.

3. You usually use ZBREAK OUT when you have stepped into a routine
with ZBREAK IN, executed a number of steps, and then decided that you
do not need to monitor the remainder of the subroutine.

4. You can use a carriage return in place of ZBREAK IN to advance to the
next command. This has exactly the same effect as ZBREAK IN.

5. A breakpoint can also be generated with the ctri s key. See the DSM-
11 User’s Guide for more discussion of this key.

RELATED:
The BREAK Command
The ZGO Command

$ZBREAK Special Variable
Postconditional Expressions (Section 2.7.4)

EXAMPLE:
The following use of ZBREAK turns on the debugger:

Y ZEREAK 0N
D)

The prompt (D>) indicates that the debugger is on and that all breakpoints
will be honored. For more information on the debugger, see the DSM-11
User’s Guide.

5-8 DSM-11 Extended Commands

ZDEALLOCATE
PURPOSE:
ZDEALLOCATE unlocks variables locked with the ZALLOCATE command.
FORMS:
ZD{EALLOCATE}{:postcond}
ZD{EALLOCATE}{:postcond} s¥argument,...
In which argument can be one of the following:
name

@expr atom

where:

postcond is a postconditional expression

name is the name of a local or global variable with or without
subscripting

@expr atom is an indirect reference that evaluates to one or more
ZDEALLOCATE arguments

EXPLANATION:

The ZDEALLOCATE command without arguments unlocks all variables
previously locked with ZALLOCATE. The ZDEALLOCATE command with
arguments unlocks the variable(s) specified by the argument(s). ZDEALLO-
CATE with arguments does not unlock any variable not specified.

Neither form of ZDEALLOCATE unlocks variables previously locked with
LOCK. That is, you can use ZDEALLOCATE only to unlock variables locked
with ZALLOCATE.

RELATED:

The LOCK Command
The ZALLOCATE Command

DSM-11 Extended Commands 5-9

ZDEALLOCATE (Cont.)
EXAMPLES:
The following example locks the globals “A, "B, and “C with the LOCK
command and locks the globals "D and "E with the ZALLOCATE command.
It then issues an argumentless ZDEALLOCATE that unlocks the globals "D
and “E. The globals “A "B, and "C remain locked.

L *a, "R, "C
ZA "D, 'E

2D

The following example locks the globals “A, "B, and "“C with the
ZALLOCATE command and then unlocks the global AC with ZDEALLO-
CATE. The globals “A and "B remain locked.

ZA "A, "B, "C

D ¢

5-10 DSM-11 Extended Commands

ZGO

PURPOSE:

ZGO resumes execution of a routine after the execution of a BREAK
command, or starts a debugging session at a specified entry reference.

FORM:
ZG{O}

ZG{O}{:postcond}se{entry ref}

where:

postcond is a postconditional expression

entry ref is an entry reference specifying a line and/or routine
EXPLANATION:

ZGO is a debugging command. When DSM-11 encounters a breakpoint, it
suspends execution and prints a message and a line reference showing where it
executed the breakpoint. The breakpoint occurs when you are using the DSM-
11 debugger, and can be caused by a BREAK command, a breakpoint set with
the $ZBREAK special variable, or use of the strtzs> key. See the DSM-11
User’s Guide for more information on breakpoints and on the DSM-11
debugger.

After you enter a ZGO in a command line, DSM-11 continues execution with
the statement after the breakpoint.

Using ZGO with a entry ref transfers control to that reference and causes a
BREAK command to be issued before the first command is executed. This
option allows you to start at the beginning of a routine (or at another point in
the routine), and then to step through the routine using the ZBREAK
command.

See the DSM User’s Guide for more information on errors.
COMMENTS:
Keep the following points in mind when you use the ZGO command:

1. If you issue an argumentless ZGO from any context other than Break
Mode (after a breakpoint), a <LVLER > error will result.

DSM-11 Extended Commands 5-11

ZGO (Cont.)

2. If you issue an argumentless ZGO from a subroutine within Break Mode,
the subroutine return is discarded, and execution resumes at the command
following the breakpoint.

3. ZGO with an entry reference can be issued only from Programmer Mode
but not from the Break Mode. If you issue a ZGO with an entry reference
from Break Mode, a <LVLER > error will result.

RELATED:

The BREAK Command
The ZBREAK Command

EXAMPLES:

The prompt (DB <) indicates that the debugger is on and that you are within
the debugger Break Mode.

The following example uses ZGO to resume execution after a BREAK.
D “TEST

(BREAK) A+2"TEST B:%=15

DBYZG

The following example shows how ZG is used to step through a routine from
the beginning:

YZG CETU

(BREAK)STU+1:1 I "$V($V(443435) W "Nat in correct mode™, ! Q)
DR}

5-12 DSM-11 Extended Commands

ZINSERT

PURPOSE:

ZINSERT inserts a line into the routine currently in memory.

FORM:

ZI{NSERT}{:postcond} se.argument,...

In which argument can be one of the following:

string{:line ref}
string{:line spec}
@expr atom
where:

postcond

string

line ref

line spec

@expr atom

EXPLANATION:

is a postconditional expression
is a string containing one or more DSM-11 statements

is a line reference to the line immediately preceding the
position where you want to insert the new line

line is a line specification of the line immediately preceding
the position where you want to insert the new line

is an indirect reference that evaluates to one or more
ZINSERT arguments

ZINSERT is an editing command. You can use it to insert a new line into the
routine currently in your partition.

The argument for ZINSERT contains two parts. The first part is an expression
that evaluates to a string containing the DSM-11 statements to insert. You
must format the string as follows:

1. Do not use the TAB character as you would when entering a routine line.
Use a single space character as either the first character of the string (if
you do not include a line label) or as the single character separating the
label from further text on the line (if you do include a line label).

DSM-11 Extended Commands 5-13

ZINSERT (Cont.)

5-14

2. Do not insert a carriage return as the last character in the string.
For example, to have DSM-11 store:

TABSEFIA=S

Jloe]

enter the ZINSERT statement:

(line refers to a line ref or line spec.) To have DSM-11 store:
RESET 148 S sp. A=5

enter the ZINSERT statement:

ZI'se"RESET sr S'spiA=5":line

3. Represent all quotes on the line to be inserted with two sets of quotation
marks. For example, to have DSM-11 store:

enter the ZINSERT statement:
ZIsp " s Wsei!!,”"BEGIN TEST""":line

The string expression you use in the ZINSERT argument thus has the same
form as a routine line returned by the $TEXT function.

The second part of the ZINSERT argument is a specification of the line
immediately preceding the position where you want to insert the new line. The
specification can be in the form of a line reference or a line specification.

The line reference must evaluate to the line label or the label and offset of the
line. The line specification must evaluate to an integer value (preceded by a
plus sign) that specifies the sequential position of the line in the routine.

After you enter the ZINSERT statement, DSM-11 moves an implicit line
pointer to the end of the line specified. It then inserts the new line immediately
after the line pointer. If you did not specify a line for the second part of the
ZINSERT argument, DSM-11 inserts the string at the current position of the
line pointer.

For example, to insert the line:

B raestatement seistatement

DSM-11 Extended Commands

ZINSERT (Cont.)

following line A in the routine:

ATas);comment
Coasstatementsreostatement

enter the ZINSERT statement:

Z1s7"Bsestatementspeistatement” t A

The routine now contains:

Acras;comment
Bras)statementseistatement
Carsstatementspistatement

COMMENTS:

Keep the following points in mind when using the ZINSERT command:

1.

You should use ZINSERT only in command lines or in XECUTE
arguments.

You can use ZINSERT in conjunction with the ZREMOVE command to
replace an existing line. For example, if you want to replace line C in the
routine:

Acam;comment
Basstatementspstatement
Cazasstatementspstatement
with the line:

Caamstatement

enter a ZINSERT command to place the new line C just after the existing
line C.

Zlsm"Csestatement”:C

ZINSERT inserts the line after the line referenced. (DSM-11 accepts the
line label C even though the line label is a duplicate.)

The routine now has two lines labeled C.

Coras)statementcspistatement
Caasstatement

DSM-11 Extended Commands 5-15

ZINSERT (Cont.)

Now, enter a ZREMOVE command to remove line C:

ZREMOVE begins its search from the top of the routine. ZREMOVE
encounters the first line C and removes it. The routine now contains only
the correct line C.

3. To insert a line at the beginning of a routine, use a line specification of
+0. For example:

ZI "INV ; INVENTORY UFDATE": +@

4. You can use both name and argument indirection in ZINSERT
arguments.

5. The commands ZREMOVE and ZPRINT also move the implicit line
pointer.

RELATED:

The XECUTE Command

The ZPRINT Command

The ZREMOVE Command

The $STEXT Special Variable

The Indirection Operation (Section 2.6.6)
Line References (Section 1.6.1)

Line Specifications (Section 1.6.3)
Postconditional Expressions (Section 2.7.4)

EXAMPLE:

The following example uses $STEXT and ZINSERT to merge two routines,
ROU1 and ROU2.

1. Load ROU2:
ZL ROUZ
2. Place ROU2 into a global array:
FL=1:1S T=¢TC+L) §:T="" § “TRT(L)=T
3. Remove ROU2 and load ROU1:

ZR
ZL ROU1

5-16 DSM-11 Extended Commands

ZINSERT (Cont.)

4. Print ROUI to determine the last line in the routine. (For the purposes of
this example, assume the last line has the label END.)

5. Append the text from ROU2 to ROUI1:
FI=1:1:L-121 "TRTCI3

6. Save the merged routine with ZSAVE.

DSM-11 Extended Commands 5-17

ZLOAD
PURPOSE:

ZLOAD writes a routine from your routine directory or from the current
device into memory.

FORMS:

ZL{OAD}{:postcond}

ZL{OAD}{:postcond} srmargument,...

In which argument can be one of the following:
routine

@expr atom

where:

postcond is a postconditional expression

routine is the name of the routine

@expr atom is an indirect reference that evaluates to one or more
ZLOAD arguments

EXPLANATION:

ZLOAD without arguments performs an opposite action from that of an
argumentless ZPRINT command. It writes a routine from a device to
memory.

To load a routine from a device, you must:
1. Execute an OPEN command to open the device
2. Execute a USE command to use the device

3. Execute one or more ZLOAD commands without arguments to load the
routine from the device into memory

See the DSM User’s Guide for more information on using devices.

5-18 DSM-11 Extended Commands

ZLOAD (Cont.)

ZLOAD with an argument performs an opposite action from that of a ZSAVE
command. It writes the specified routine from your routine directory into your
partition.

In both cases, DSM-11 leaves the implicit line pointer at the end of the last line
in the routine. (See the description of the ZINSERT command for more
information on the implicit line pointer.)

COMMENTS:
Keep the following points in mind when using the ZLOAD command:

1. If you use a postconditional expression with ZLOAD, DSM-11 executes
the ZLOAD only if the postconditional expression has a value of true.

2. You can use name or argument indirection with the ZLOAD argument.
(In the case of ZLOAD, name and argument indirection are one and the
same.)

3. When ZLOAD loads a routine, it deletes any routine currently in your
partition.

4. You should use ZLOAD only in command lines or in XECUTE
arguments. You should not use ZLOAD in routine lines.

RELATED:

The OPEN Command

The USE Command

The ZPRINT Command

The ZSAVE Command

Entry References (Section 1.6.2)

The Indirection Operator (Section 2.6.6)
Postconditional Expressions (Section 2.7.4)
EXAMPLE:

The following example loads the routine ROUT from the routine directory.
ZL ROUT

The following example loads the first routine from the device specified by the
variable DEV.

0 DEV LU DEV ZL

DSM-11 Extended Commands 5-19

ZPRINT
PURPOSE:

ZPRINT writes the current routine or routine lines on the current output
device.

FORMS:

ZP{RINT}{:postcond}
ZP{RINT}{:postcond}smargument,...

In which argument can be one of the following:
start ref{:end ref}

start spec{:end spec}

@expr atom

where:

postcond is a postconditional expression

start ref is a line reference that specifies the first line to write

end ref is a line reference that specifies the last line to write

start spec is a line specification of the first line to write

end spec is a line specification of the last line to write

@expr atom is an indirect reference that evaluates to one or more
ZPRINT arguments

EXPLANATION:

ZPRINT without arguments is the opposite of the argumentless ZLOAD
command. It writes the entire routine in your partition to the current output
device. DSM-11 leaves its implicit line pointer at the end of the last line in the
routine.

ZPRINT with a single line reference or line specification as an argument writes
the line specified on the current output device. DSM-11 leaves the implicit line
pointer at the end of the line printed and before the beginning of the first line
not written,

5-20 DSM-11 Extended Commands

ZPRINT (Cont.)

ZPRINT with two line references or line specifications separated by a colon as
an argument writes all lines from start ref or start spec through end ref or end
spec on the current output device. DSM-11 leaves its implicit line pointer after
the end of the last line written.

If end ref or end spec does not exist in the current routine, DSM-11 writes all
lines from start ref (or start spec) to the end of the routine.

COMMENTS:

If you use a postconditional expression with ZPRINT, DSM-11 executes the
ZPRINT only if the postconditional expression has a value of true.

RELATED:

The ZINSERT Command

The ZLOAD Command

The ZREMOVE Command

The Indirection Operator (Section 2.6.6)
Line References (Section 1.6.1)

Line Specifications (Section 1.6.3)
Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example writes the routine in memory on the current output
device.

ZF

The following example writes the first line of the routine in memory on the
current output device.

ZF +1

The following example writes the section of the current routine beginning with
the line labeled A1l and ending with the line labeled BI.

ZF A1:R1

The following example writes the first through tenth lines of the current
routine.

ZF +1:+10

DSM-11 Extended Commands 5-21

ZPRINT (Cont.)

The following example writes the line at offset +2 from the line labeled C.

15. ﬁ:“B“lB:“(:“
ZF BA+Z

The following example writes the second and fourth sequential lines. Then, it
writes all lines from the sixth sequential line to the line labeled END (in
theory, the last line in the routine). The routine does not need a line labeled
END for the command to write the last routine line. If the label specified does
not exist, DSM-11 assumes it to be a reference to text just past the last routine
line.

ZF 42,44, +6:END

The following example copies the routine ROUT from the routine directory to
magnetic tape.

ZL RUUT 0 47 10 47 W *S, "RouT", 1 2F Wt

5-22 DSM-11 Extended Commands

ZQUIT

PURPOSE:

ZQUIT directs control to the previously declared error-handling routine.
FORM:

ZQ{UIT}{:postcond}

where:

postcond is a postconditional expression

EXPLANATION:

ZQUIT is used to invoke a series of error-handling routines in a set of nested
DO or XECUTE statements. ZQUIT directs control to the previous error-
handling routine declared in a lower level DO or XECUTE statement.

To understand how ZQUIT operates, consider a series of four routines called
A, B, C, and D. Routine A contains a DO statement to call routine B; routine
B contains a DO statement to call routine C; routine C contains a DO
statement to call routine D.

Each of these routines can establish its own error-handling routine. In other
words, each can set the $ZTRAP special variable to the name of a different
error-handling routine to which DSM-11 passes control in the event of an
error.

For example, suppose routine A sets $ZTRAP to the value "ERRA"; routine
B sets $SZTRAP to the value "ERRB”; routine C does not set $ZTRAP; and
routine D sets $ZTRAP to the value "ERRD”.

By using the ZQUIT command in these error-handling routines, you can link
all the error handlers for the nested series of A, B, C, and D. Figure 5-1 shows
the flow of control in the event of an error.

DSM-11 Extended Commands 5-23

ZQUIT (Cont.)

Figure 5-1: Flow of Control with ZQUIT

S $ZT="ERRA”

DB..

Routine D 4 ERRD
S $2T="ERRD" Q
ERROR za
—= Routine C
DD..
= Routine B ERRB
S $2T="ERRB" Q
DC / za
Routine A

ERRA

MR-S-885-80

As Figure 5-1 shows, if DSM-11 detects an error in routine D, it transfers
control to ERRD, the error-handling routine designated by routine D in

$ZTRAP.

5-24 DSM-11 Extended Commands

ZQUIT (Cont.)

If ERRD can correct the error, it can exit normally with a QUIT statement or
transfer control with a GOTO statement. QUIT returns control to the point
following the DO argument that invoked the routine that caused the error.
(For ERRD, that point is immediately following the DO argument in C that
invoked routine D.) A GOTO statement redirects control to any specified
point.

If ERRD cannot correct the error, you can use a ZQUIT in ERRD to direct
control to the previously declared error-handling routine, ERRB for routine
B. The ZQUIT will remove the context of routines D and C from the call
stack. If ERRB cannot correct the error, a ZQUIT in ERRB directs control to
the previously declared error-handling routine ---ERRA for routine A --- and
removes the context of routine B from the call stack.

Thus, when used together, $ZTRAP and ZQUIT provide a mechanism that
allows you to link all the error handlers in an application to form a network
that cycles an error through each error handler until the error condition is
resolved.

See the DSM-11 User’s Guide for a complete description of error handling
with ZQUIT and other error-processing options.

COMMENTS:
ZQUIT can be used at any time, even when no error has occurred.
RELATED:

The DO Command

The GOTO Command

The QUIT Command

The ZTRAP Command

The $ZERROR Special Variable

The $ZTRAP Special Variable
Postconditional Expressions (Section 2.7.4)

EXAMPLE:

The following example is a portion of an error handler that writes specific
error messages. If the error handler encounters a NAKED error, it executes a
ZQUIT command that transfers control to the error handler for the previous
routine in the series. In all other cases, it prints a message, clears $ZERROR,
and returns control to the point immediately following the DO argument that
invoked the routine that caused the error.

L ZQ:FCZE, "), 1) ["NAKED"
WA Wb, "SORRY BUT LINE", FCFC$ZERROR, ™)™, 2),""", 1)
W " IN ROUTINE ", FCPCSZERROR, """, 20, ", 1)
W " GENERATED AN ", ECF($ZERROR, ">",1)2,99)," ERROR"

DSM-11 Extended Commands 5-25

ZREMOVE

5-26

PURPOSE:

ZREMOVE deletes the current routine or specified lines in the current routine.
FORMS:

ZR{EMOVE}{:postcond}

ZR{EMOVE}{:postcond}srargument,...

In which argument can be one of the following:

start ref{:.end ref}

start spec{:end spec}

@expr atom

where:

postcond is a postconditional expression

start ref is a line reference that specifies the first line to delete

end ref is a line reference that specifies the last line to delete

start spec is a line specification of the first line to delete

end spec is a line specification of the last line to delete

@expr atom is an indirect reference that evaluates to one or more
ZREMOVE arguments

EXPLANATION:

ZREMOVE without arguments deletes the entire routine from your partition.
It does not affect the value of any local variables the routine defined. That is,
those local variables are still listed in your local symbol table.

ZREMOVE with arguments deletes only the specified lines from the routine.
ZREMOVE with one line reference or line specification as an argument deletes
the routine line specified. ZREMOVE with two line references or line specifi-
cations separated by a colon deletes all lines from the first specified through
the second specified.

DSM-11 Extended Commands

ZREMOVE (Cont.)

In either case, DSM-11 sets its implicit line pointer at the line before the first
line you deleted in the last (or only) ZREMOVE argument. You can now enter
new lines just below the last line left undeleted.

If the first line reference or specification follows the second line reference or
specification in the routine, DSM-11 does not delete any lines. If the second
line reference or specification is not defined (does not exist), ZREMOVE
deletes all lines from the first line reference or specification to the end of the
routine.

COMMENTS:

You should keep the following points in mind while using ZREMOVE:

1.

You should use ZREMOVE only in command lines or in XECUTE
arguments. You should not use ZREMOVE in routine lines.

You create certain side effects if you use multiple ZREMOVE arguments
to remove a series of lines. For example, if you want to delete lines A + 1
and A +2 in a routine, you should not use the statement:

ZR A+1,A+2
This statement removes the lines A+1 and A+3. That is, the first
argument removes line A+ 1. Line A+2 now becomes line A+ 1. The

second argument to remove line A +2 thus actually removes the old line
A+3.

To remove lines A+ 1 and A + 2, issue the statement:
ZR A+1,A+1

or the statement:

ZR At1:A+2

You can use ZREMOVE in conjunction with the ZSAVE command to
delete a routine from your routine directory. To do so, take the following
steps:

a. To save the routine in your partition, execute a ZSAVE command.

b. Execute a ZREMOVE command without arguments to clear your
partition:

ZR

DSM-11 Extended Commands 5-27

ZREMOVE (Cont.)

5-28

¢. Execute a ZSAVE command with the name of the routine you want to
delete as an argument. For example, if you want to delete the routine
TEST, type:

23 TEST

DSM-11 deletes the routine and removes its name from your routine
directory.

RELATED:

The ZINSERT Command

The ZPRINT Command

The ZSAVE Command

The $TEXT Function

The Indirection Operator (Section 2.6.6)
Line References (Section 1.6.1)

Line Specifications (Section 1.6.3)
Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example deletes the routine currently in the partition.

R

The following example deletes the third line below the line labeled ADDR.
ZR ADDR+3

The following example deletes all lines from that labeled Al through that
labeled BI.

ZR A1 E1

DSM-11 Extended Commands

ZSAVE

PURPOSE:

ZSAVE writes the routine currently in memory into your routine directory.
FORMS:

ZS{AVE}{:postcond}

ZS{AVE}{:postcond} seargument,...

In which argument can be one of the following:

routine

@expr atom

where:

postcond is a postconditional expression

routine is the name of the routine to save

@expr atom is an indirect reference that evaluates to or more ZSAVE
arguments

EXPLANATION:

ZSAVE writes the routine in your partition into your routine directory. If you
have previously associated a name with the routine, you can enter ZSAVE
without an argument.

If you have not previously associated a name with the routine, or if you want
to save the routine under a new name, you must use a name under which you
want to store the routine as a ZSAVE argument. If you do not enter a name
for an unnamed routine, DSM-11 returns an error.

Examine $TEXT(+ 0) to determine what name (if any) is associated with the
routine in memory.

See the DSM User’s Guide for more information on errors.
COMMENTS:
Keep the following points in mind when you use the ZSAVE command:

1. ZSAVE does not affect the implicit DSM-11 line pointer.

DSM-11 Extended Commands 5-29

ZSAVE (Cont.)

5-30

2. You can use ZSAVE in conjunction with the ZREMOVE command to
delete a routine from your routine directory. To do so, take the following
steps:

a. Execute a ZSAVE command if you want to save the routine currently
in memory.

b. Execute a ZREMOVE command without arguments to clear your work
area:

o

ST

c. Execute a ZSAVE command with the name of the routine you want to
delete as an argument. For example, if you want to delete the routine
TEST, type:

2% TEST

DSM-11 deletes the routine and removes its name from your routine
directory.

RELATED:

The ZLOAD Command

The ZREMOVE Command

The $STEXT Function

The Indirection Operator (Section 2.6.6)
References (Section 1.6)

Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example saves a routine in memory that already has a name
associated with it.

)

The following example saves a routine in memory that does not have a name
associated with it. (The following example could also be saving a previously
named routine under a new name.)

25 FROG

The following example uses indirection to save the current routine under the
names AA and AAA.

Z A="AA",B="AAAR" . H="6€A, AR"

e la-1Y]
IR

DSM-11 Extended Commands

ZTRAP

PURPOSE:

ZTRAP forces an error when ZTRAP is encountered by the interpreter.
FORM:

ZT{RAP}sm{string}

where:

string is an informational message to be included in the error
message string

EXPLANATION:

When DSM-11 encounters a ZTRAP command in a DSM routine, it forces a
ZTRAP error. This error prevents the routine from executing any further.

The informational message can be any four characters, and is then included in
the error message, preceded by the letter Z.

For example, if you issue the following ZTRAP statement:

ZTRAF ERR1

the resulting ZTRAP error message is:

< ZERRI1 >label + offset “routine name:command number

If you issue ZTRAP command without an argument, then the result is:
< ZTRAP > label + offset"routine name:command number
COMMENTS:

The ZTRAP command provides a way to gracefully abort the execution of an
application routine. DSM-11 reports the ZTRAP error in the $ZERROR
special variable. Thus, you can test for this error in an error-processing

routine, and take the appropriate steps to terminate your application when the
€rror occurs.

The ZTRAP command produces a trap to a declared trap or error handler.
The command is particularly useful in instances where it is desirable to redirect
program flow to a lower level call frame.

DSM-11 Extended Commands 5-31

ZTRAP (Cont.)

5-32

If no argument is present, DSM-11 substitutes TRAP. If an argument is
present, DSM-11 use the first four characters only of the string given as an
argument to the ZTRAP command.

RELATED:

The QUIT Command

The ZQUIT Command

The $ZERROR Special Variable

The $ZTRAP Special Variable

EXAMPLE:

The following example generates a ZTRAP error when a user types the "E”
key. Control passes to an error-processing routine (set in the $ZTRAP special
variable) that runs down the application.

STRT % $2T="ERR1"EXIT"

R "Enter chaice or ‘E’ toexit: ", CH
I CH="E" 2T

ERR1 T $ZE["ZTRAF" H

DSM-11 Extended Commands

ZUSE

PURPOSE:

ZUSE allows you to write to a terminal-type device owned by another user.
RESTRICTION:

The ZUSE command may be restricted on your system. If so, you can only use
ZUSE if you are in the system account or if you are running a library routine

that contains ZUSE statements.

See your system manager to determine if ZUSE is restricted. See the DSM
User’s Guide for more information on library routines.

FORM:

ZU{SE}{:postcond} s¥.argument

In which argument can be one of the following:
terminal

@expr atom

where:

postcond is a postconditional expression

terminal is a device specifier of the terminal-type device
@expr atom is an indirect reference that evaluates ZUSE argument
EXPLANATION:

ZUSE allows you to set any terminal-type device as the current I/O device
without having to execute OPEN and USE commands. The terminal-type
devices you can use include the line printer but exclude the DMC11.

After you execute a ZUSE, you can execute WRITE commands to that device:
1@ W U, "LINE FRINTER OUT OF FAFER"

WRITE commands are the only commands you can give when you use ZUSE.
The system arbitrates which user accesses the device at any one time.

You can use your principal device again with:

[

DSM-11 Extended Commands 5-33

ZUSE (Cont.)
COMMENTS:

ZUSE is primarily intended for use in a broadcast utility routine for sending
messages to other system users.

During SYSGEN you may disable ZUSE on a terminal by terminal basis. If
this is done any message sent by ZUSE to a disabled terminal is ignored. You
may want to do this for a terminal that is a printer and is not being used
interactively by a user.

See the DSM User’s Guide for the valid device specifiers you can use as ZUSE
arguments.

RELATED:

The CLOSE Command

The OPEN Command

The USE Command

The WRITE Command

The Indirection Operator (Section 2.6.6)
Postconditional Expressions (Section 2.7.4)

EXAMPLES:

The following example writes a message on the terminal specified earlier in
DEV.

ZIWDEV W I, "ERRMON: LF ERROR DETECTED"

The following example prompts for a device specification and a message. Then
it sends the message to the specified device.

DEV R ', "ENTER DEVICE: ",DEVA

R V', "ENTER MESSAGE: ", MSG
ZU DEVA W !, MSG

5-34 DSM-11 Extended Commands

ZWRITE

PURPOSE:

ZWRITE writes the contents of your local symbol table to the current device.
FORM:

ZW{RITE}{:postcond}

ZW{RITE}{:postcond}srargument}

In which argument can be one of the following:

local

@expr atom

where:

postcond is a postconditional expression

local is the name of a local variable with or without subscripting

@expr atom is an indirect reference that evaluates to one or more
ZWRITE arguments

EXPLANATION:

ZWRITE without an argument writes all currently defined local variables in
numeric collating order. When ZWRITE has a variable name as an argument,
it writes only that variable. If the variable has defined nodes, then it writes all
the nodes. When ZWRITE has a variable name and subscript as an argument,
it writes only the specified node and its descendant nodes.

RELATED:
Array Structure (Section 2.4.4)

Local Variables (Section 2.4.1)
Postconditional Expressions (Section 2.7.4)

DSM-11 Extended Commands 5-35

ZWRITE (Cont.)
EXAMPLE:
The following example displays the contents of the symbol table.
ZW

A="JOHN JONES"
AC1)="444 EAST ELM ST"
B="123047702"
C="8779494"

The following example writes the contents of the local variables B and C:

S VAR="R. C"
ZW BVRK

B="123044702"
C="8779494"

The following example writes all defined elements of A:

ZW A

ACLH="1"
ACL,1)="2"
A€1,33="3"
AC3)="6"
AC3,2y="2"
AC3,4,5)="3"

The following example writes all defined elements of A containing 3 as the
first subscript:

RETE
AC3)="6"

AcC3,2y="2"

AC3,4,3)="3"

5-36 DSM-11 Extended Commands

Chapter 6
DSM-11 Functions

This chapter describes the DSM-11 functions and provides examples of their
use.

6.1 Introduction To DSM-11 Functions

Functions perform a specified operation and return a value resulting from that
operation. Each function consists of a mnemonic name that describes the
function performed preceded by a dollar sign ($) and followed by one or more
arguments.

The arguments specify the values that DSM-11 must use when it evaluates the
function. Function arguments are enclosed in parentheses and immediately
follow the function name. Multiple function arguments are separated from
each other by commas and no intervening spaces. Except for the DSM-11
"trace” functions ($DATA, $NEXT, $ORDER, $ZNEXT, $ZORDER,
$ZSORT), function arguments can always be expressions.

DSM-11 has two types of functions:
e ANSI Standard functions

e Extended functions

DSM-11 Functions 6-1

The ANSI Standard functions are specified by the ANSI MUMPS Language
Standard and follow standard usage. The ANSI MUMPS Language Standard
reserves the characters $A through $Y as the first characters of the standard
function names.

As described in the ANSI MUMPS Language Standard, extended functions
are implementation-specific extensions to the language. Extended function
names start with the characters $Z.

You can abbreviate ANSI Standard function names to their first two charac-
ters (where the “$” counts as the first of those characters). You can abbreviate
extended function names to their first three characters.

6.2 Function Descriptions

6-2

The following pages contain descriptions of all DSM-11 functions. Each
function description contains an explanation of the purpose, forms, and
operation of the function. The descriptions are in alphabetical order for ease
of referencing.

The descriptions also contain one or more examples of how to use the
function. All command-line examples are presented as they would appear

when entered from a terminal. All routine-line examples appear as they would
when listed on a line printer.

DSM-11 Functions

$ASCII

PURPOSE:

$ASCII returns the decimal ASCII code for the specified character in the
specified string.

FORM:

$SA{SCI1}(string{,position})

where:

string is a string

position is an integer-valued expression that specifies the position in
the string of the character whose value $ASCII is to return

EXPLANATION:

Each ASCII character in a string has a unique position number. In a string n
characters long, the first, leftmost character has position 1; the last, rightmost
character has position n.

$ASCII returns the decimal ASCII value of the character at the specified
position in the specified string. $ASCII can return the decimal value of any
character in the ASCII character set (that is, $A returns values between 0 and
255).

If the specified string is empty or if the integer value in the position argument
is larger than the number of characters in the string, $ASCII returns -1. If you
do not include the position argument, $ASCII returns the ASCII decimal
value of the first character in the string.

COMMENTS:

You can use noninteger numeric values in the position argument. However,
DSM-11 ignores the fractional portion and considers only the integer portion
of the argument.

S Z="ABCDE" W $A(Z,3.5)
67

RELATED:
The SCHAR Function
The READ Command (READ *)

The WRITE Command (WRITE *)
The ASCII Character Set (Appendix A)

DSM-11 Functions 6-3

$ASCII (Cont.)

6-4

EXAMPLES:

The following example determines the ASCII decimal value of the character
W.

W$AC"W")
a7

The following example determines the decimal equivalent of the ASCII value
for the third character in the variable Z.

S Z2="TEST" W $ACZ,3)
83

The following example returns a -1 because the second argument specifies a
position greater than the number of characters in the string.

S Z2="TEST" W $ACZ,5)
-1

The following example generates a simple checksum for the string X. When
$CHAR(CS) is concatenated to the string, the checksum of the new string is
always zero. Thus, validation is simplified.

CKSUM S CS=@ F I=1:1:$L(K) S CS=CS+$A(K,I)
S CS=128-CSH128

The following example converts a lowercase or mixed case alphabetic string to

all upper case. The example uses three functions described in detail later in this
chapter.

ST S LEN=$L(STRING),NSTRING="" F I=1:1:LEN D CNVT
q

CNVUT S CHAR=$ECSTRING,I) S:$ACCHAR))96 CHAR=$C($ACCHAR)-32)
S NSTRING=NSTRING_CHAR
Q

DSM-11 Functions

$CHAR

PURPOSE:

$CHAR returns the character(s) whose decimal ASCII value(s) you specify in
the argument(s).

FORM:

SC{HAR}(ASCII code{,...})

where:

ASCII code is an integer expression that evaluates to the ASCII code for
the character to be returned

EXPLANATION:

The arguments you can use are integer expressions whose values are in the
range of O through 255 (the range of decimal codes for the entire ASCII
character set).

COMMENTS:
Keep the following points in mind when you use the SCHAR function:

1. If you enter a value less than zero as an argument, DSM-11 returns a null
string.

2. If you enter an argument list whose translated value exceeds 255 charac-
ters, DSM-11 generates an error.

3. You can use noninteger numeric values as arguments. However, DSM-11
ignores the fractional portion of the argument and considers only the
integer portion as an ASCII code, for example:

W$CCES .50
f

In this example, SCHAR ignores the fractional portion of the number and
produces the character represented by ASCII code 65, an uppercase A.

DSM-11 Functions 6-5

$CHAR (Cont.)

6-6

4. You should not use SCHAR to perform formatted writes. The SCHAR
statements:

W$CC12) iform feed
W $C(13) ;carriage-returns/line-feed

generally do not perform the same operation as the statements:

W #
W!

5. You can use $CHAR to generate escape sequences on video display
terminals. (The third example shows how to do this on a VT100 terminal.
See your user’s guide for your terminal for details.)

RELATED:

The $ASCII Function

‘The READ Command (READ *)

The WRITE Command (WRITE*)

The ASCII Character Set (Appendix A)

EXAMPLES:

The following example generates the ASCII character represented by decimal
code 72.

S H=72 W $CD
H

The following example tests SCHAR by comparing the returned characters
(represented by ASCII decimal codes 32 to 95) with their equivalents in string
A.

A sAL="
F 1232:1:95 $ A1=A1_$CCD)
S A" 1MHSIR’ ()%4, - /01234567891 (=)?

ABCDEFGHIJKLMNOPQRSTUVWXYZIN]® "
IA1 =AW !,"ERROR A1=",A1

DSM-11 Functions

$CHAR (Cont.)

The following example generates escape sequences to control formatting on a
VTI100 video terminal.

STRT S HOME=$C(27)_"[H"
S ERSCRN=$C(27)_"[2J"
S PRMT(S)="NAME: ",PRMT(7)="STREET: ",PRMT(9)="CITY: "
S PRMT(11)="STATE: ",PRMT(13)="ZIP CODE: "
ESC W HOME, ERSCRN
F LIN=5:2:13 W $C(27)_"["_LIN_"i30f",PRMTCLIN) R DATACLIN)
0

To generate VT100 escape sequences using SCHAR, you specify @so[the
VTI100 Control Sequence Introducer (CSI) as $C(27)__"[". The actual escape
sequence codes follow the CSI. These codes generally consist of alphabetic
characters that can be preceded by integers.

The sequence Eso[H specifies the "home” position on the VT100 terminal
(the upper left corner of the display screen). The sequence Eso[2] erases all
characters from the display screen. The sequence @so[nl;n2f specifies direct
cursor positioning when two integer-valued expressions precede the "f” and
are separated from each other by a semicolon (;). The first integer (nl)
specifies line position, and the second integer (n2) specifies column position.
The first integer specifies the horizontal line number on the terminal screen;
the second integer specifies the vertical column number.

Line ESC +1 in the preceding example positions the cursor to line 5 column
30, writes a prompt, and reads the data entered in response to the prompt.
Then, the FOR statement increments the line and prompt numbers by two;
and the entire sequence repeats until each of the five prompts has been written
and the associated data has been entered.

DSM-11 Functions 6-7

$DATA

PURPOSE:

$DATA returns an integer that indicates whether a specified node (element)
contains data, has descendants (has a pointer to a node on the next lower
level), both, or neither.

FORM:

SD{ATA}(storage ref)

where:

storage ref is the name of a local or global variable or is an indirect
reference that evaluates to the name of a variable or to
another indirect reference

EXPLANATION:

In the integer value $DATA returns, the low-order digit is a truth value that
tells if the variable has a value. The high-order digit is a truth value that tells if
the variable is a node with a descendant.

The integer values $SDATA can return are as follows:
Value Meaning

0 The variable has neither a value nor descendants (that is,
the variable does not exist).

1 The variable has a value but no descendants.
10 The variable has no value but has descendants.
11 The variable has a value and has descendants.
RELATED:

The KILL Command

The SET Command

The $NEXT Function

The $ZNEXT Function

The $ZSORT Function

Naked References (Section 2.4.5)

6-8 DSM-11 Functions

$DATA (Cont.)
EXAMPLES:

The following example sets nodes in the global array Z. All are on the second
(single-subscript) level. Then the example tests AZ(1) and determines that it
contains data and no downward pointer.

K*“z

§Z01)="A", "2C30="R", "7 (42="C"
W$DC ZC10)

1

Given the first statement in the previous example, the following example gives
a third (two-subscript) level node a value, then tests the system-created second-
level node that points to it. The test shows that the second-level pointer node
contains no data but has descendants.

§%202,3)="D" W $DC Z(2))
10

The following example uses indirection to determine the attributes of a node.

gy=ntHol, 1
W $DCRY)
12

DSM-11 Functions 6-9

$EXTRACT

6-10

PURPOSE:
$EXTRACT returns a substring from a specified position in a string.
FORM:

SE{XTRACT}(string{,start pos{,end pos}})

where:

string is the string from which you want to extract a substring

start pos is an integer-valued expression that specifies the sequential
position of the first (or only) character in the substring you
want to extract

end pos is an integer-valued expression that specifies the sequential
position of the last character in the substring you want to
extract

EXPLANATION:

$EXTRACT has a one-, two-, and three-argument form.

In the one-argument form, SEXTRACT returns the first character from the
specified string.

In the two-argument form, SEXTRACT returns the character at the position
specified in start pos from the specified string.

In the three-argument form, $SEXTRACT returns all characters from the
position specified in start pos to the position specified in end pos. (In a string n
characters long, the first, leftmost character is position one. The rightmost
character is position n.)

The values you specify for start pos and end pos should be integer-valued
expressions. If you use decimal numbers, DSM-11 strips away the decimal
portion and uses only the integer portion as the position specifier, for
example:

S ¥="ARCDE" W $ECY,1.99)

A

DSM-11 Functions

$EXTRACT (Cont.)

COMMENTS:

Keep the following points in mind when you use the SEXTRACT function:

1. The one-argument form:

The one-argument form is equivalent to the two-argument form when the
value of start pos is one.

2. The two-argument form:

If the integer value of start pos is less than one or greater than the number
of characters in the string, SEXTRACT returns a null string.

3. The three-argument form:

1. If the integer value of start pos is greater than the integer value in end
pos, SEXTRACT returns a null string.

2. If the integer values in start pos and end pos are equal, SEXTRACT
returns the character at the position both arguments specify. (Thus,
this is equivalent to the two-argument form.)

3. If the value of end pos is greater than the number of characters
(positions) in the string, SEXTRACT returns all characters from the
position specified in start pos to the end of the string.

4. If the value of start pos is less than one, SEXTRACT returns all

characters from the first character to the position specified by end
Dpos.

RELATED:

The $FIND Function
The SLENGTH Function
The $SPIECE Function

EXAMPLES:

The following example returns the fourth character in the string.

S H="THIS IS A TEST" W $ECK, 4)
S

DSM-11 Functions 6-11

$EXTRACT (Cont.)

6-12

The following example shows that the one-argument form is equivalent to the
two-argument form when start pos is one.

S STR="HELLO"

W $ECSTR, 1), !, $ECSTRY
H

H

The following example returns a substring composed of the first through sixth
characters.

s W="THIS IS A TEST" W $ECK,1,6)

The following example returns a substring. Because start pos is less than zero,
$EXTRACT returns a substring composed of the first through seventh
characters.

S W="THIS IS A TEST" W $ECK,-1,7)
THIS IS

The following example returns a null string because start pos is larger than end
DosS.

S H="THIS IS A TEST" W $ECK,6,2)

The following example displays the strings held by X(1) through X(5)
vertically on the current 1/0 device.

WC1D="THIS", K(2)="15 A TEST",K(3)="FOR $E"
I DERENS (DR
FI=1:1:1Q@W ! F J=1:1:5W ?25%],$ECKRC]), 1)

o D

DSM-11 Functions

$FIND

PURPOSE:

$FIND returns an integer specifying the end position of a specified substring
within a specified string.

FORM:

SF{IND}(string,substring{,position})

where:

string is the string that contains the substring

substring is the substring whose end position you want to determine

postion is an optional integer-valued expression that specifies the
sequential character position in the string from which
$FIND must begin its search

EXPLANATION:

Each character in a string has a unique position number. In a string n charac-
ters long, the first character has position number 1 and the last character has
position number n.

$FIND searches string for substring. If you do not specify position, SFIND
begins its search with the first character in string. If you do specify position,
$FIND begins its search at the character in that position in string.

If SFIND does not find substring, it returns a zero. If $FIND does find
substring, it returns an integer value that represents the position of the charac-
ter immediately to the right of substring.

$FIND ends its search with the first, leftmost occurrence of substring and

returns only the position of the character immediately to the right of that

occurrence. To find the nth occurrence of substring within string, you can use

position and repeated searches to exclude earlier occurrences of substring.

COMMENTS:

Keep the following points in mind when you use the $SFIND function:

1. You can use integer values of one or greater in position. If you use
decimal numbers, DSM-11 ignores the decimal portion of the number and
considers only the integer portion.

2. If $FIND locates no occurrence of substring, it returns a value of zero.

DSM-11 Functions 6-13

$FIND (Cont.)

3. If you specify a null string as substring, the two-argument form of $FIND
returns a one and the three-argument form returns the value of position.
If its value of position is greater than the number of characters in the
string, the three-argument form of $FIND returns a zero.

4. 1If string is a null string, both forms of $FIND return a zero.
RELATED:

The $SEXTRACT Function
The SLENGTH Function
The $PIECE Function

EXAMPLES:

The following example returns the position of the character immediately to the
right of the substring FOR.

S K="FOREST" W $F (X, "FOR™)
4

The following example returns the position of the character immediately to the
right of the substring contained in the variable Y.

S R="FOREST",¥="FOR" W $FCR,Y)
4

The following example returns the position of the character immediately
following the first occurrence of R after the seventh character in X.

S X="EVERGREEN FOREST",Y="R" W $F(X,Y,7)
14

The following examples illustrate the behavior of the null string with $FIND.
If you specify the null string in the second argument, $SFIND returns the
position of the first character in the two-argument form and the position
specified by the third argument in the three-argument form. When the third
argument specifies a position greater than its number of characters in the
string, SFIND returns a zero.

S W="FOREST" W $F (X, ")

1
W$FCK, """, 4)
4
W$FCX,"",9)
']

6-14 DSM-11 Functions

$SFIND (Cont.)

The following example uses name indirection to return the position of the
character immediately to the right of the substring THIS.

Y=URT,K="UTHIS 16 A TESTMM
WEFCRY, MTHIS™
6

DSM-11 Functions 6-15

$JUSTIFY
PURPOSE:

$JUSTIFY returns a specified string right-justified in a field of a specified
length.

FORMS:

$J{USTIFY }(string, field{,frac field})

where:

string is the string to be right-justified

field is an integer-valued expression that specifies the total length
of the field in which to right-justify the first argument

frac field is an integer-valued expression that specifies the number of
fractional digits (including possible trailing zeros)

EXPLANATION:

The two-argument form of $JUSTIFY returns stringright-justified in a field of
spaces whose total length you specify in field. Thus, if string is four characters
long and field is nine, $JUSTIFY returns string with five spaces concatenated
to the left of the leading character in string.

The three-argument form of $JUSTIFY converts string to a numeric expres-
sion and returns string as a decimal number in a field whose total length you
specify in field and whose fractional length (that is, the number of spaces to
the right of the decimal point) you specify in frac field.

DSM-11 does this by performing the following steps:
1. It converts the value of the string to a numeric.

2. It appends zeros after the decimal point (and puts in the decimal point if
necessary) to satisfy the frac field requirements.

3. It appends one zero to the left of the decimal point if the numeric value of
string is less than 1.0 and greater than -1.0 and string does not already
have a zero in this position.

4. It returns the string resulting from steps 1, 2,and 3. If the resulting string
is not long enough to satisfy field, DSM-11 appends spaces to the left of
the string until the total length of string equals field.

6-16 DSM-11 Functions

$JUSTIFY (Cont.)

COMMENTS:

Keep the following points in mind when you use the $JUSTIFY function:

1.

In the three-argument form, the length of field includes the decimal point
and, possibly, the sign of the numeric value, and a leading zero. Thus, if
you enter the statement:

W$J(-1234,3,2)
DSM-11 returns:
-1234 .00

(The first character on the line is a space.)

2. In either the two- or three-argument form, $JUSTIFY returns string
unjustified if you enter a field value less than the number of characters in
string.

3. You can use frac field to round decimal fractions. If you set the frac field
to zero, $JUSTIFY rounds the integer portion of string:

W$JC11.9,2,@)

12

If you set frac field to a positive integer value less than the number of
nonzero fractional digits in string, $JUSTIFY returns the decimal portion
of string rounded up if the last, excluded digit is greater than or equal to
five.

W $J(15.55,5,1)

15.6

4. A negative value for frac field is invalid.

5. The field and frac field specifications do not guarantee that the length of
the returned string will be less than or equal to either the field or frac field
value. For example:

W $JC.5555,2,3)
2.556
RELATED:

The SLENGTH Function

DSM-11 Functions 6-17

$JUSTIFY (Cont.)

6-18

EXAMPLES:

The following example right-justifies the value of X in a 10-character field.

TA=14 445 W FJCK, 180
14.445

The following example does not right-justify the value of X because the field
specified in the second argument is shorter than the length of X.

Szia 445 W $JCH, 40
14445

The following example justifies the value of X in a 10-character field. Because
the value of the third argument specifies four decimal places, $JUSTIFY adds
a trailing zero to the decimal portion of the value of X.

5 H=14 445 W $J0K, 10,40
1444502

The following example justifies the value of X in a 10-character field. Because
the value of the third argument specifies two decimal places, $JUSTIFY
rounds up the decimal portion of the value of X.

Tod=l4 445 W EI0M, 10,20
14 .45

The following example justifies the value of FRAC in a 10-character field.
Because FRAC is a fraction without a leading zero, $JUSTIFY appends a zero
to the left of the decimal point before calculating the number of spaces
required to create the specified field length.

5 FRAC=.231 W $JCFRAC, 12,30
0.231

The following example uses $JUSTIFY for format control.

FAY iFAY=1 CENT A DAY ON DAY 1-THEN DOUBLES
S PAY=.01
F DAY=1:1:31 W $J(DAY,2),$JCFAY,14,2), ! S PAY=FAY_*2

DSM-11 Functions

$LENGTH
PURPOSE:

$LENGTH returns either the number of characters in a specified string or the
number of substrings in the specified string.

FORM:

SL{ENGTH}(string{,delimiter})

where:

string is the string whose length you want to determine or the
string whose number of substrings you want to determine

delimiter is the character or characters used to separate the substrings
within string

EXPLANATION:

The one-argument form of $SLENGTH returns the number of characters in
string.

The two-argument form of $LENGTH returns the number of substrings
within string. SLENGTH returns the number of substrings separated from one
another by delimiter. This number is always equal to the number of delimiters
in the string plus one. If the delimiter itself is a string of several characters,
then the number is the number of delimiter strings plus one. Thus, the
statement:

W$LO"A B, C M

returns

3

COMMENTS:

Keep the following points in mind when you use the SLENGTH function:
1. If string is null in the one-argument form, $LENGTH returns a zero.
2. If string is null in the two-argument form, $LENGTH returns a one.

3. If delimiter is null, SLENGTH returns zero.

DSM-11 Functions 6-19

SLENGTH (Cont.)

6-20

RELATED:

None.

EXAMPLES:

The following example determines the length of a local variable.

S A="TEST" W $LCAD
4

The following example determines the number of substrings within a string.

S STR="ABCDEFEFG",DELIM="4" W $LCSTR,DELIM)
3

The following example returns a zero because the string tested is the null
string.

SA="" W $LCAD

The following example centers the text stored in the variable TXT within a
field of spaces. The variable FLD stores the size of the field.

S FLD=21,TXT="HELLO WORLD"

W"1" D CENTER W TXT, 26X+ CCFLD-$LCTKT))-TABY, " 1" Q
CENTER S ILEN=$L(TXT),TAB=CFLD-ILEN)\2 F I=1:1:TABW " "

Q

DSM-11 Functions

SNEXT

PURPOSE:

$NEXT returns the subscript of the next sibling in collating sequence to the
specified global or local node.

FORM:

SN{EXT}(storage ref)

where:

storage ref is the name of a local or global variable or is an indirect
reference that evaluates to a variable name or to another
indirect reference

EXPLANATION:

You must use only subscripted variable names as arguments. If you are using a
naked reference, the naked indicator must be defined.

If a sibling with a higher subscript exists, SNEXT returns its subscript. If no
such sibling exists, SNEXT returns a -1.

COMMENTS:
Keep the following points in mind when you use $NEXT:

1. S$SNEXT returns subscripts for any global variable in the collating sequence
in which the global was created. However, SNEXT returns the subscripts
of local variables in numeric collating sequence.

2. $NEXT is similar to SORDER, except that they have different starting
values and failure codes, as follows:

SNEXT S$ORDER,$ZSORT
starting point -1 null string
failure code -1 null string

In general, SORDER should be used instead of $SNEXT, since SNEXT
cannot handle negative subscripts.

DSM-11 Functions 6-21

$NEXT (Cont.)

6-22

RELATED:

The $SORDER Function

The $ZORDER Function

The $ZNEXT Function

The $ZSORT Function

The $ZORDER Special Variable
Array Structure (Section 2.4.4)

EXAMPLES:

The following example returns the first subscript in "X. It sets the naked
indicator to "X("").

§TRe1,2,30=m, e =
NSNC =10
1

The following example returns the next subscript on the single-subscripted
level. (The node you specify in the argument need not exist.) The naked
indicator is still set to “X("").

A A R -
[gy g Vet y -
wil,2,30= 1 st

The following example returns the first subscript on the two-subscript level.
The naked indicator is now set at the “X(1....) level.

DSM-11 Functions

$ORDER
PURPOSE:

$ORDER returns the subscript of the next sibling in collating sequence of a
specified array node.

FORM:

$O{RDER}(storage ref)

where:

storage ref is the name and subscript(s) of a local or global variable or
is an indirect reference that evaluates to a variable name or
to another indirect reference

EXPLANATION:

If another sibling exists, SORDER returns its subscript. If no sibling exists or
if the variable specified does not exist, SORDER returns the null string.

The node you specify in the argument must have at least one subscript. If you
are using a naked reference, the naked indicator must be defined.

COMMENTS:
Keep the following points in mind when you use SORDER:

1. SORDER returns subscripts for any global variable in the collating
sequence in which the global was created. However, SORDER returns the
subscripts of local variables in numeric collating sequence.

2. $ORDER is similar to $ZSORT and $NEXT. All three functions allow
you to examine the structure of an array. However, they have different
starting points and failure codes, as follows:

SNEXT $ORDER,$ZSORT
starting point -1 null string
failure code -1 null string

In all other respects, SORDER and $NEXT perform identical operations
(including the way they return subscripts of local and global variables).

DSM-11 Functions 6-23

$ORDER (Cont.)

3. $ORDER and $ZSORT perform identical operations on global variables
and have identical syntax, but return subscripts of local variables differ-
ently. SORDER returns local variables in numeric collating sequence.
$ZSORT returns local variables in ASCII collating sequence.

For example, if A is local array with the following defined nodes: A(1),
AQ2), A2.5), A(3), A(0), A(20), A(01), A("B"), then SORDER and
$ZSORT return the subscripts in the following order:

$ORDER $ZSORT
$O(A(// /r)) =1 $ZS(A(” //)) ="01"
$O(A(1)) =2 $ZS(A(01)) =1
$O(A(2))=2.5 $ZS(A(1)) = 10
$O(A(2.5)) =3 $ZS(A(10)) =2
$O(A(3)) =10 $ZS(A(2))=2.5
$O(A(10)) =20 $ZS(A(2.5)) =20
$O(A(20))="01" $ZS(A(20)) =3
$O(A(01))="B" $ZS(A(3))="B"
$O(A(”B”))= "n $ZS(A(”B”))= nn
RELATED:

The $SDATA Function

The SNEXT Function

The $ZNEXT Function

The $ZORDER Function

The $ZSORT Function

The $ZORDER Special Variable
Array Structure (Section 2.4.4)

EXAMPLES:
The following example returns the next subscript at the single-subscript level.

5 "PR(1):5549
“FR71 63:2316

oo

"FR(1 . R)=647
5 "PRCL . ZZ)="END™
WSO FRIT 61
1.8

6-24 DSM-11 Functions

$ORDER (Cont.)

The following example also returns the next subscript at the single-subscript

level.

S ASGC"ZERO") =10
S ASGCUONE")=11
S ASGC"FIVE")=12

5 ASGC"SIN")I=13
W $OCASGC))
FIVE

S

W $OCASGC"FIVE"))
ONE

W $OCASGCONE"))
SIK

W $0CASGC"SIR"))
ZERO

W $OCASGCCZERD™)

The following example returns all subscripts at the single-subscript level from
the array TREE. It also returns the value of the node having each subscript.

PRINT S Y¥=""

STOP § Y=$OCTREE(Y)) I ¥=""
W 1,v,215, TREECY) G STOP

DSM-11 Functions 6-25

$PIECE

PURPOSE:

$PIECE returns the specified substring from the specified string.

FORM:

$SP{IECE}(string,delimiter{,start field{,end field}})

where:

string is the string that contains the substring

delimiter is the character or characters used as a delimiter between
the substrings in the string

start field is an integer expression that specifies the field (or the first
of a series of substrings) you want to retrieve from string

end field is an integer expression that specifies the last in a series of
substrings to retrieve from the string

EXPLANATION:

Each string can be composed of a series of substrings separated by a common
delimiter. The delimiter can be any character or series of characters that occur
in the string.

All other characters in the string can have a position value with respect to the
delimiter. For example, consider the string:

"123#456#789"

If the pound sign (#) is the delimiter, the characters 123 form the first substr-
ing and the characters 789 form the third substring.

The two-argument form of $PIECE returns the substring located before the
first occurrence of delimiter. That is, SPIECE returns the first substring in the
string.

Thus, the statement:
W $FC"123H4568785", "#'")
returns the substring:

123

6-26 DSM-11 Functions

$PIECE (Cont.)

The three-argument form of $PIECE returns the start field substring in the
string. That is, $PIECE returns the substring located between the start field-1
and start field occurrences of delimiter.

The four-argument form of $PIECE returns the substring of sfring bounded
on the left but not including the start field-1 occurrence of delimiter in string,
and bounded on the right but not including the end field+ 1 occurrence of
delimiter. The substring that $SPIECE returns includes any intermediate
occurrences of delimiter.

Thus, the statement:

W $F (1230456878, ", 1,20

returns the substring

123#456

COMMENTS:

Keep the following points in mind when you use the SPIECE function:

1. For the two-argument form:

The two-argument form is equivalent to the three-argument form when
the value of start field is one.

2. For the three-argument form:
1. If start field is less than one, $PIECE returns a null string.

2. If start field-1 is greater than the number of delimiting substrings,
$PIECE returns a null.

3. For the four-argument form:

1. If start field is less than one, $PIECE treats start field as having a
value of one.

2. If end field is greater than the number of occurrences of delimiter in
the string, SPIECE returns all characters from those to the left of the
start field occurrence of delimiter through the end of the string.

3. If start field is greater than end field, SPIECE returns a null string.

4. If end field is less than one, SPIECE returns a null string.

DSM-11 Functions 6-27

$PIECE (Cont.)

4. For both the three- and four-argument forms:

1. If there are fewer than start field-1 instances of delimiter in string,
$PIECE returns a null string.

2. If the substring specified in delimiter does not exist in string and if
start field is one, $PIECE returns the entire string unless end field
equals zero.

3. If delimiter is a null string, $SPIECE returns a null string. (Null substr-
ings can be found anywhere in any number required.)

5. For all forms:

To set the value of a substring within a string you can use an expression
that resembles the SPIECE function as an argument of the SET
command. See the description of the SET command for details about this
process.

RELATED:

The SET Command

The SEXTRACT Function
The $FIND Function

The SLENGTH Function

EXAMPLES:

The following example shows that the two-argument form is equivalent to the
three-argument form when start field is one.

S A="123H4568783"

W$FCA, "#", 10, 1, $FCA, "#")
123

123

The following example finds the third substring in string A.
S A="123H-H456H-H7RI"

W$FCA,"#-8",3)

789

The following example returns all substrings from that immediately to the left
of the third occurrence of delimiter through that immediately to the left of the
fifth occurrence of delimiter.

W $FC"JAN; FEB; MARCH: APR: MAY; JUN", "5 ", 3,5)
MARCH; APR ;i MAY

6-28 DSM-11 Functions

$PIECE (Cont.)

The following example extracts the fractional portion of the result of an
arithmetic operation.

W $F(355-113,".",2)
14159292035

The following example shows that you can nest $PIECE. It finds the second
piece of A marked by the """ delimiter and the first and second pieces of this
substring (A,B,C) marked by the ”,” delimiter.

$A="1,2,3"A.B,C a1
§

WSPCSPCA, "M, 20, 1,8
A,

DSM-11 Functions 6-29

$RANDOM

6-30

PURPOSE:

$RANDOM returns a pseudorandom integer uniformly distributed in a closed
interval from zero through one less than the specified integer value.

FORM:
SR{ANDOM }(integer)
where:

integer is an integer-valued expression one greater than the largest
pseudorandom integer that you want SRANDOM to return

EXPLANATION:

The value of integer must be nonzero.
RELATED:

None.

EXAMPLES:

The following example always returns a zero.

W $RCL)
[

The following example generates an array of evenly distributed random
numbers from zero through 24.

FI=1:1:505 K(II=$RC25)
The following example always generates an even integer between two and 102.
S R=$R(51)+1%2

W
64

The following example simulates the roll of two dice.

DICE R !,"ROLL DICE ?",A Q:A=""
W1, $RC6D+1,"+", $R(6)41 G DICE

DSM-11 Functions

$SELECT
PURPOSE:

$SELECT returns the value of the first (leftmost) expression in its argument
list whose matched truth-valued expression is true.

FORM:

$SS{ELECT}(¢truth value:expression{,...})

where:

truth value is a truth-valued expression
expression is an expression
EXPLANATION:

Each $SELECT argument is a pair of expressions separated by a colon. The
left half of the pair is a truth-valued expression. The right half of the pair can
be any expression.

$SELECT evaluates the arguments from left to right. When $SELECT discov-
ers a truth-valued expression with the value of one (true), it returns that truth-
valued expression’s matching right expression.

COMMENTS:

Keep the following points in mind when you use the $SELECT function:

1. $SELECT stops evaluation after it discovers the leftmost true truth-valued
expression. It never evaluates later pairs.

2. If all truth-valued expressions in the argument list are false, DSM-11
produces an error. To prevent an error from disrupting an executing
routine, make sure that one of the pairs evaluates as true.

(See the DSM User’s Guide for more information on errors.)

EXAMPLES:

The following example prompts for a function and calls a routine based on the
answer. If none of the expected answers are received, DSM-11 invokes the
error-handling routine ERR.

R !',"FUNCTION 1,2, OR 3?",A
D $5CA=1:""TEST",A=2:""UPDAT",A=3:""EDI",1:""ERR")

DSM-11 Functions 6-31

$SELECT (Cont.)

The following example accepts a number and determines if the number is odd
or even.

A K !,"ENTER A NUMBER",X Q:X=""

W !," THE NUMBER IS ", $S(K#2:0DD,1:"EVEN")
GA

6-32 DSM-11 Functions

$TEXT

PURPOSE:

$TEXT returns the specified line from the routine currently in memory.
FORMS:

S$ST{EXT}(argument)

In which argument can have any of the following forms:

line ref

line spec

where:

line ref is a line reference to the line in the routine or is an indirect
reference that evaluates to a line reference or to another
indirect reference

line spec is a line specification of the line in the routine

EXPLANATION:

$TEXT returns the line referenced from the current routine in memory in a
special format. $TEXT replaces the TAB character with a space character.
$TEXT does not return the carriage return that terminates the line.

COMMENTS:
Keep the following points in mind when you use the $TEXT function:

1. If the line reference or line specification is to a line that does not appear in
the body of the routine, $TEXT returns a null string.

2. If you want to return the name of the routine, use a line specification of
+0.

RELATED:

The ZINSERT Command

The ZREMOVE Command

Line References (Section 2,5,1)
Line Specifications (Section 2.5.3)

DSM-11 Functions 6-33

$TEXT (Cont.)

6-34

EXAMPLES:
The examples are based on the following simple routine named MATH:

MATH iMATHEMATICAL ROUTINE
W "THIS ROUTINE MANIPULATES TWO NUMBERS"
W !,"A CARRIAGE RETURN EXITS"

STAR R !'!,"ENTER NUMBER ", % Q:%=""

SECR !!,"ENTER SMALLER NUMBER ", ¥
1Y (X6 SEC
W !'!,"THE NUMBERS ADDED = ", X+¥
W 1'!,"THE NUMBERS SUBTRACTED =",%-¥
W 1!, "THE NUMBERS MULTIPLIED = ", X*v
W !1,"THE NUMBERS DIVIDED = ", X/¥
G STAR

The following example uses a line label to retrieve the line labeled STAR.

W $TCSTARD
STAR R !'!,"ENTER NUMBER ", X Q:K=""

The following example uses an offset to retrieve the line beyond that labeled
SEC. (The first character on the line that DSM-11 returns is a space.)

W$TCSECHD)
IY'¢{XGSEC

The following example uses a line specification to retrieve the third line in the
routine. (The first character on the line that DSM-11 returns is a space.)

W$TC+3)
W !,"A CARKRIAGE RETURN EXITS"

The following example returns the name of the routine.

WETC+R)
MATH

DSM-11 Functions

$SVIEW

PURPOSE:

S$VIEW returns the decimal equivalent of the contents of a specified memory
location.

FORMS:

SV{IEW }(location{,state})

where:

location is an integer-valued expression specifying a location in
memory

state is an integer-valued expression specifying the exact meaning
of location

EXPLANATION:

The one-argument form of $VIEW reads a location in memory specified by
location. The value of location must be the logical address used in Kernel-
Mode mapping.

The two-argument form of $VIEW performs several different viewing tasks.
DSM-11 determines which viewing task to perform by the value in the second
argument.

Table 6-1 gives the possible values for sfate and the meanings they give
location.

DSM-11 Functions 6-35

$SVIEW (Cont.)

6-36

Table 6-1: SVIEW Argument Values

location state Value Meaning
value value

0-m l-n state specifies a job number. (n stands for the
maximum number of jobs on the system.)

location specifies an offset from the beginning of
the partition. (m stands for the largest offset
value possible in the partition.)

To specify your own job, use the special variable
$JOB for state.

0-x 0 state specifies that /ocation is an offset from the
beginning of the VIEW Buffer. (x stands for the
largest offset value on the VIEW device.)

0 - 65535 -1 state specifies that /ocation is the logical address
used in Kernel-Mode mapping. (This is the default
state when you do not include a state specifier.)

0 - 65535 -2 state specifies that location is the logical address
used in User-Mode mapping.

0 - 16383 + 128 to + 32767 state specifies a memory-management
block./ocation is an offset starting at the memory-
management block specified by state.

When the state value is either -1 or -2, a /ocation of 40960 through 56344
represents the current partition. A /ocation value of 56344 to 65535 represents the
I/0 page.

When you use a state value between + 128 and + 32767, you can view an area in
memory that would otherwise not be mapped by either Kernel Mode (state=-1) or
User Mode (state=-2) at the time when you execute the VIEW. Thus, these
statevalues allow you to view anywhere into physical memory, except for the first
8192 bytes, which are accessible as either Kernel Mode or User Mode.

To obtain a more detailed explanation, see your PDP-11 Processor Handbook for
information on memory management.

DSM-11 Functions

$VIEW (Cont.)
COMMENTS:
Keep the following points in mind when you use the $VIEW function:
1. You can use either bytes or full words to specify location. If location is an
even number, it specifies a word location and $VIEW returns a 16-bit word
value. If location is an odd number, it specifies an odd byte /ocation and

$VIEW only returns the value of that 8-bit byte.

(To obtain the value of any byte whose address may be even or odd, use the
formula $V(...)#256.)

2. You may find $VIEW most useful if you are writing utility routines that must
read the system tables. See the DSM-11 User’s Guide for more information on
system tables and $VIEW.

RELATED:

The VIEW Command

EXAMPLES:

The following example examines the high byte of word 2.

W $VIEWC3)

The following example examines Kernel-Mode location 42. This word consists of
bytes 42 and 43.

S H=$V(42)

The following example examines location 50 in partition number 2.
S WD=¢V(5Qa,)
The following example examines the last word in the VIEW buffer.

S WD=¢V(1RZZ, Q)

DSM-11 Functions 6-37

$ZCALL
PURPOSE:
$ZCALL provides an general-purpose function call to user-written routines.
FORM:

$ZC{ALL}(external ref{,expression,...})

where:

external ref is a symbol defined outside the DSM-11 language
expression is an expression

EXPLANATION:

Your System Manager or system programmer must previously have established the
actual spelling and function of the symbol represented by external ref. That
spelling must conform to the syntax rules for DSM names. Thus, external ref must
contain no more than eight uppercase alphabetic or digit characters. The first
character must be either an alphabetic or a percent character (%).

Your System Manager or system programmer must also have determined the
number and nature of the expressions that follow external ref. These expressions
must relate to external ref as arguments relate to a function.

COMMENTS:

$ZCALL gives you a consistent method for specifying functions unique to your
site. By using $ZCALL, you do not have to add new $Z functions or make
extensive modifications to the interpreter.

Whether or not you can use $ZCALL depends on its implementation at your site.
See the DSM User’s Guide for more information on using $ZCALL.

RELATED:
None.
EXAMPLES:

None.

6-38 DSM-11 Functions

$ZNEXT

PURPOSE:

$ZNEXT performs a physical scan of an array.

FORM:

$ZN{EXT}(global ref)

where:

global ref is the name and subscript(s) of global variable or is an indirect
reference that evaluates to a global name or to another
indirect reference

EXPLANATION:

$ZNEXT returns a full reference (name and subscripts) to the next defined node in
collating sequence to the node you specify in the argument. If no such node exists,
$ZNEXT returns a -1.

COMMENTS:

$ZNEXT and $ZORDER perform similar operations, that is, they allow you to
examine the structure of a global array. However, $ZNEXT and $ZORDER have
two syntactic differences: starting points and failure codes. These values are
shown in the following chart:

$ZNEXT $ZORDER
starting point -1 null string
failure code -1 null string

Refer to the description of $ZORDER for details about the method these two
functions use to determine array structure. In general, $ZORDER should be used
instead of $ZNEXT.

Both $ZNEXT and $ZORDER work as indicated only on global variables. If you

try to use these functions on a local subscripted variable, you receive a
<SYNTX> error.

DSM-11 Functions 6-39

$ZNEXT (Cont.)
RELATED:

The $DATA Function

The $NEXT Function

The $SORDER Function

The $ZORDER Function

The $ZSORT Function

The $ZORDER Special Variable
Array Structure (Section 2.4.4)
Naked References (Section 2.4.5)

EXAMPLES:

The following example writes all the defined nodes in the array X.
5001, 2,30, RO e, THoL, 2, 3, 40

WO$ZNC SO

*%(1,2,3)

WEZNC RO, 2,30
“%(1,2,3,4)

W$ZNC H(1,2,3,40)
"Re2)

'/l\“he following example produces a list of all defined nodes in the global variable
A.

A S X=$ZNC"AC-10)
FI=1:1Q:K=-1 W !,X,"=",8K S X=$ZN(®X)

6-40 DSM-11 Functions

$ZORDER

PURPOSE:

$ZORDER performs a physical scan of an array.

FORM:

$ZO{RDER}{global ref}

where:

global ref is the name and subscript(s) of a global variable or is an
indirect reference that evaluates to a global name or to
another indirect reference

EXPLANATION:

$ZORDER returns a full reference (name and subscripts) to the next defined
global node in collating sequence to the global node you specify in the argument.
If no such global node exists, $ZORDER returns a null string.

COMMENTS:

Keep the following points in mind as you use the $ZORDER function:

1.

$ZORDER and $ZNEXT perform similar operations; that is, they allow you
to determine the structure of a global array. However, $ZORDER and
$ZNEXT have two syntactic difference: their starting points and failure
codes, as follows:

$ZORDER $ZNEXT
starting point null string -1
failure code null string -1

Both $ZNEXT and $ZORDER give the results indicated here only on global
variables. If you try to use them on a local subscripted variable, you receive a
SYNTX error.

$ZORDER $NEXT, $ZNEXT, $ORDER, and $ZSORT can all be considered
trace functions; they allow you to examine the form and contents of an array.
However, the method SORDER, $ZSORT, and $NEXT use is different from
the method $ZORDER and $ZNEXT use.

DSM-11 Functions 6-41

$ZORDER (Cont.)

6-42

$ORDER, $ZSORT, and SNEXT return only the subscripts of siblings (nodes
having a common parent); but they return both data (defined) nodes and
logical (pointer) nodes. Figure 6-1 shows the method SORDER, $ZSORT, and
$NEXT use. (All nodes filled in black are data nodes. All nodes not filled in
black are pointer nodes.)

Figure 6-1: A $SORDER, $ZSORT, or SNEXT Array Scan

MR-S-883-80

On the other hand, $ZORDER and $ZNEXT return all data nodes in an
array, regardless of their relationship; but they do not return pointer nodes.
Figure 6-2 shows the method $ZORDER and $ZNEXT use. (All nodes filled
in black are data nodes. All nodes not filled in black are pointer nodes.)

DSM-11 Functions

$ZORDER (Cont.)

Figure 6-2: A $ZORDER, or $ZNEXT Array Scan

1,41) MR-S.884.80

For example, if the global array contains the following defined nodes:

MA(1)
"A(1,1)
A(1,3)
"AQ3)
"AB3,2)
"A(3,4,5)

DSM-11 Functions 6-43

$ZORDER (Cont.)

$SNEXT/$SORDER/$ZSORT and $ZORDER/$ZNEXT return the following
information:

$NEXT/$ORDER/$ZSORT $ZORDER/$ZNEXT

Argument Return Return
A1) 3 "A(1,1)
"A(1,1) 3 "A(1,3)
"A(1,3) Fail "AQ3)
"A(3) Fail "A(3,2)
AA(3,2) 4 "A(3,4,5)
"A(3,4,5) Fail Fail
RELATED:

The $DATA Function

The SNEXT Function

The SORDER Function

The $ZNEXT Function

The $ZSORT Function

The $ZORDER Special Variable
Array Structure (Section 2.4.4)
Naked References (Section 2.4.5)

EXAMPLES:

The following example writes defined nodes for the array "X:
S °M01,2,30=1, "8z, MM 01,2,3,4)0=12

W$Z0C 0)

*%(1,2,3)

W$Z00%%C1,2,30)
*®(1,2,3,4)

W$Z0C %(1,2,3,4))
"R

6-44 DSM-11 Functions

$ZSORT

PURPOSE:

$ZSORT returns the subscript of the next sibling in collating sequence of a
specified array node.

FORM:
$ZS{ORT}(storage ref)
where:
storage ref is the name and subscript(s) of a local or global variable or is

an indirect reference that evaluates to a variable name or to
another indirect reference

EXPLANATION:

If another sibling exists, $ZSORT returns its subscript. If no sibling exists or if the
variable specified does not exist, $ZSORT returns the null string.

The node you specify in the argument must have at least one subscript. If you are
using a naked reference, the naked indicator must be defined.

COMMENTS:

$ZSORT is similar to SORDER. Both allow you to examine the structure of an
array. They have identical starting points and failure codes (null string). They
both return the subscripts of any global variable in the collating sequence in which
the global was created. However, $ZSORT and $ORDER return subscripts of
local variables differently. $ZSORT returns local variables in ASCII collating
sequence. $ORDER returns local variables in numeric collating sequence.

For example, if A is a local array with the following defined nodes: A(1), AQ2),
AQ2.5), A(3), A(10), A(20), A(01), A("B”), SORDER and $ZSORT return the
subscripts in the following order:

$ORDER $ZSORT
$O(A("") =1 $ZS(A("") =01
$O(A(1))=2 $ZS(A(01)) =1

$O(A(2))=2.5
$O(A(2.5)) =3
$O(A(3)) = 10
$O(A(10) = 20
$O(A(20)) =01
$O(A(01))="B"
$O(A(IIBH)) = nn

$ZS(A(1)) =10
$ZS(A(10))=2
$ZS(A(2)) =2.5
$ZS(A(2.5)) =20
$ZS(A(20)) =3
$ZS(A(3)) — IIBII
$ZS(A(IIBII)) — nn

DSM-11 Functions

6-45

$ZSORT (Cont.)
RELATED:

The $DATA Function

The SNEXT Function

The SORDER Function

The $ZORDER Function

The $ZNEXT Function

The $ZORDER Special Variable
Array Structure (Section 2.4.3)

EXAMPLE:

The following example returns the next subscript at the single-subscript level.
§ "PR(1)=5549

S UFRO1.6)=2316

FRC1.R8)=647
S OFRCL.22)="END"

2

A

W$Z5C PRCL.6DD
1.8

6-46 DSM-11 Functions

$ZUCI

PURPOSE:

The $ZUCI function can be used to obtain the three-letter UCI name given a UCI
number, or the UCI number if given the UCI name.

FORM:

$ZU{Cl}(name{,volume set name})

or

$ZU{Cl}(number,volume set number})

where:

name is a three-letter code or a null string

volume set name is a three-letter code

number is 0 or a positive integer from 1 to 50
volume set is 0 or a positive integer from 1 to 3
number

EXPLANATION:

$ZU can be used to find out the current UCI name or number, or to find out UCI
names or numbers for other UCIs. The $ZU function returns a UCI name or
number along with the name or number of the volume set the UCI resides on.

The $ZU function works as follows:
Input Result

$ZU(UCI name) UCI number, volume set number

$ZUUCI UCI name, volume set name

number)

$ZUu("") Current UCI number, volume set number
$ZU(0) Current UCI name, volume set name

DSM-11 Functions 6-47

$ZUCI (Cont.)

If you want to find out information about a UCI on a different volume set from
the one you are currently on, then you must specify the volume set, for example:

$ZU(name,volume set name)

or:

$ZU(number,volume set number)
COMMENTS:

If a nonexistent UCI name, UCI number, volume set name, or volume set number
is submitted, a <NOUCI> error will result.

RELATED:
None
EXAMPLES:

The account SCT has a UCI number of 11, and the system volume set has the
name SYS and a volume set number of 0.

WRITE $2UC"SCT", "5YS")
11,0

WRITE $2U¢11, @)
SCT,SYS

6-48 DSM-11 Functions

Chapter 7
DSM-11 Special Variables

This chapter describes the DSM-11 special variables and provides examples of
their use.

7.1 Introduction to DSM-11 Special Variables

Special variables are system-defined and maintained variables that contain
information on various values or processes in the operating environment.
During the course of processing, the system updates information stored in the
special variables. If you need to know or use the information a special variable
contains, you can access it by using the special variable name.

Each special variable is an uppercase name preceded by a dollar sign. The
name is a mnemonic for the information the special variable contains.

DSM-11 has two types of special variable:
e ANSI Standard special variables
e Extended special variables

ANSI Standard special variables are specified in the ANSI Standard and
follow standard usage. The ANSI MUMPS Language Standard reserves the
characters $A through $Y as the first two characters of Standard special
variable mnemonics.

DSM-11 Special Variables 7-1

As specified in the ANSI Standard, extended special variables are implementa-
tion-specific additions to the language. Extended special variables use the
characters $Z as the first two characters of their mnemonics.

7.2 Special Variable Descriptions

The following pages contain descriptions of all DSM-11 special variables.
Each description contains the purpose, form, and operation of the variable.
The descriptions are in alphabetical order for ease of referencing.

Each description also contains one or more examples of how to use the special
variable. All command-line examples in the following descriptions are given as
they would appear when entered from a terminal. All routine-line examples
are given as they would appear when listed on a line printer.

7-2 DSM-11 Special Variables

$HOROLOG
PURPOSE:
$HOROLOG contains two integer values that are the current time and date.
FORM:
$H{OROLOG}
EXPLANATION:
$HOROLOG returns the time and date in the following form:
date,time
The system increments the time field from zero to 86399 seconds. When it
reaches 86399 at midnight, the system resets the time field to zero and

increments the date field by one.

COMMENTS:

DSM-11 keeps a time and date based on the premise that day zero is December
31, 1840. Thus $HOROLOG contained a value of 0,1 at 12:00:01 on
December 31, 1840.

RELATED:
None.

EXAMPLE:

The following example converts SHOROLOG to a time in the form
hour:minute AM or PM.

10 S M=FCH,",",2)\60
S N="AM" S:M' (720 M=M-720,N=" PN"
S:M(6Q M=M+720
§ I=M\6Q@ S: "I I=""
S TIM=T+CM\6QH1Q)_":"_(MR6N1Q)_(MH1Q) N
I "$DCNFY W TIMK TIM
K M,N,I,NF I
INT S NF=""G 10

DSM-11 Special Variables 7-3

$10

7-4

PURPOSE:

$10 contains the specifier of the current 1/0 device.
FORM:

$1{0O}

EXPLANATION:

Whenever you issue a USE command to direct I/0 to a device, DSM-11 sets
the value of $10 to a specifier of that device. Whenever you issue a CLOSE
command to give up ownership of the device and return to your principal
device, DSM-11 sets the value of $IO to that of your principal device.

RELATED:
None.
EXAMPLES:

The following example uses a device (specified in the variable DEV), returns to
the principal device, and writes the device specification to the device.

oF1 0 DEV U DEV S I=$I
HauWi,!

The following example saves the current device specification in OLDI, opens
the specified device, and prints the symbol table. Then it reestablishes the old
device specification saved in OLDI.

BEGID R ', "ENTER DEVICE T USE ",DEV
S OLDI=$I
0 DEV U DEV ZW C DEV
U OLDI

DSM-11 Special Variables

$JOB
PURPOSE:
$JOB contains the integer job number assigned to your job.
FORM:
$J{OB}
EXPLANATION:

Every active DSM-11 job has a unique job number. (See the DSM-11 User’s
Guide for more information.)

RELATED:
None
EXAMPLE:

The following example prints a form feed, the job number, the symbol table,
and the current routine on a specified device.

2 DEV LI DEV W #,4$J, ! ZNW W ! ZF

DSM-11 Special Variables 7-5

$STORAGE

7-6

PURPOSE:

$STORAGE contains the amount of free space available within your
partition.

FORM:

$S{TORAGE}

EXPLANATION:

$STORAGE contains the amount of free space in bytes.
COMMENTS:

See the DSM User’s Guide for more informat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>