ClibPD

PRINT # PRINT # USING

PRINT # <file number>,[<list of expressions>]
PRINT # <file number>,USING < '’format string’’ >; <list of ex-
pressions >

These statements are used to write data to a sequential disk file.

<file number > is the number under which the file was OPENed for
output; <‘‘format string’”’ > is specified as described in PRINT
USING, and the expressions included in <list of expressions> are
the numeric and/or string expressions which are to be written to the
file. Both of the formats above write values to the disk in display im-
age format; i.e., data is written to the disk in exactly the same format
as it would be displayed on the screen. Therefore, care should be
taken to ensure that data is delimited so that it will be properly input
when the file is later read (see the descriptions of the INPUT # and
LINE INPUT # statements).

Numeric expressions included in <list of expressions> should be
delimited with semicolons; if commas are used, the extra blanks that
would be inserted between display fields by a PRINT statement will be
written to the disk. String expressions included in <list of expres-
sions> must be separated from each other by semicolons; further, a
string expression consisting of an explicit delimiter (a comma or car-
riage return) should be included between each expression which is to
be read back into a separate variable by the INPUT # statement (the
reason for this is that the INPUT # statement regards all characters
preceding a comma or carriage return as one item). This can be done
using one of the following formats.

PRINT #1, <string expression>;'’,’’; <string expression>.
PRINT # 1 < string expression>;CHR$(13);
< string expression>...

If a string which is to be read back into a variable with the INPUT #
statement includes commas, significant leading blanks, or carriage
returns, surround the corresponding expression in the PRINT # state-
ment with explicit quotation marks (by specifying CHR$(34)). This
can be done as follows.

PRINT #1,CHR$(34);""SMITH, JOHN"’; CHR$(34) CHR$(34);
""SMITH, ROBERT’’;CHR$(34);..

3-106

www . fastio.com

_n_n'_ﬂ_ﬂ‘_ﬂJTJI‘JTJI‘JTJI‘JTJI‘JTJI‘JI‘JI‘JI‘JI‘JI‘JI‘JI‘JTJI‘JI’_HJ

http://www.fastio.com/

When the LINE INPUT # statement is to be used to read data items
back into variables, delimit string expressions in <list of expres-
sions > with CHR$(13) (the carriage return code) as shown in the ex-
ample above.

INPUT #, LINE INPUT #, WRITE #, Chapter 5

3-107

Fﬂ&l_lll_ﬂs[hll_dl_lﬂ‘_«ﬂH_B_H_H_H_H_H_M_H_H_M_H_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_

ClibPD www fastio.com

http://www.fastio.com/

ClibPD

PSET

PSET [STEPI(X,Y)[, < color code>]

‘This statement turns on the dot at the specified graphic coordinates
on the display screen.

This statement sets the dot whose graphic coordinates are specified by
(X,Y). When STEP is specified, (X,Y) specify a position relative to
the last coordinates used by the preceding CIRCLE, COLOR, CON-
NECT, LINE, or PRESET statement. When <color code> is
specified, the dot is set to the specified color; if it is omitted, the dot is
set to the current foreground color.

CIRCLE, COLOR, CONNECT, LINE, PRESET

1e CLS

13 DIM A(L00)

16 LOCATE 2¢,1,@:PRINT "START: "TIMES

17 FOR I=& TO 10000

18 LOCATE 1,1,0:PRINT I

20 X1=RND: X2=RND

30 X=(—-2%L06 (X1)) . S#C05(2%3. 1416%X2)

4@ X=5S50%X+200

5@ IF Xr=0 AND X<=6060 THEN AX)=(A(X)+1):FSET (X,200-A(X))

&9 NEXT
7¢ LOCATE 40,1,@:FRINT "END: “TIMES$
86 END
10000 START: 11:58:01 END:12:17:24

NOTE:
After execution of the PSET statement, the last reference pointer (LRP) is updated to

the values specified for (X, Y).

3-108

www fastio.com

RN T |

http://www.fastio.com/

PUT

PUTI #1< file number > [, <record number>]
This statement is used to write a data record from a random file buffer

' to a random access disk file.

Before this statement can be executed, the disk file must have been
opened in the R mode with the OPEN statement and the data to be
written to the file must have been set in the random file buffer with
the LSET and/or RSET statements. < file number> is the number
under which the file was OPENed. If <record number > is omitted,
the number used will be the one following that used by the previous
PUT statement; this must be a value in the range from 1 to 32767.

LSET/RSET, OPEN

See Chapter 5.

3-109

'R EEER R

I ClibPD www fastio.com

http://www.fastio.com/

ClibPD

PUT@

PSET
PRESET

OR
AND

XOR

See also

NOTE:

PUTI@1(X,Y), < variable array name > [, < function>]

This statement is used to display a graphic pattern on the display
screen.

Graphic pattern data to be displayed by the PUT@ statement must
have been previously stored in the variable array specified with the
GET@ statement. (X,Y) are graphic coordinates specifying the loca-
tion of the dot at which the upper left corner of the pattern is to be
displayed.

<variable array name > is the name of the variable array containing

the graphic pattern data, and must be the same as that specified in the
GET@ statement.

<function> specifies the function to be used for display of the
graphic pattern; the following functions may be specified.

Causes the graphic pattern stored in the array to be displayed as is.
Displays the color whose code is the complement of the pattern color
stored in the array (7- <color code>). In the black and white mode,
reverses the setting of each dot in the graphic pattern.

ORs each bit of the graphic pattern in the array and one on the
screen, and displays the result.

ANDs each bit of the graphic pattern in the array and one on the
screen, and displays the result.

XORs each bit of the graphic pattern in the array and one on the
screen, and displays the result.

XOR is assumed for < function> unless otherwise specified.
GET@

After execution of the PUT @ statement, the last reference pointer (LRP) is updated
to the values specified for (X, Y).

3-110

www . fastio.com

AR NAANEOBARRAONBEENBAN |

http://www.fastio.com/

RANDOMIZE

"H_M—M_H—alﬂlﬂl_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_H_H_H_H—H_H_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_

www . fastio.com

RANDOMIZE [< expression >]

This statement uses the seed number specified in <expression> to
reinitialize the sequence of random numbers returned by the RND
function.

The value specified in <expression > must be a number in the range

“from -32768 to 32767. If <expression> is omitted, MFBASIC
suspends program execution and displays the following message to
prompt the operator to enter a value from the keyboard before
reinitializing the random number sequence.

Random number seed (-32768 to 32767)?

If the random number sequence is not reinitialized, the RND func-
tion will return the same sequence of random numbers each time the
program is run. To change the sequence in which random numbers
are generated, place a RANDOMIZE statement at the beginning of
the program and change the argument each time the program is ex-
ecuted.

RND

10 RANDDMIZE

20 FOR I=1 TQ S

IO PRINT RNDs

40 NEXT I

S0 END

RtN

Random nunber seed (32768 1o 327677 1
58041 12898 928324 1162 53818
X ,

MN 1]

Random number seed (-3278 to 32767)7 2
ABAT 851465 801263 656113 16401
&k

RN

Random nusber seed (-32768 to 327677 1
oA 12808 98324 .tle2 53818
&k

3-111

http://www.fastio.com/

ClihPD

www fastio.com

ECRRvES
EO VY,
MEXT I

FPAIMT (X, Y)
HEXT @

3-112

http://www.fastio.com/

i

s dF & & OF o O WA A W WA A A WAL A WA Al

EAD

READ <list of variables>

This statement reads values from DATA statements and substitutes
those values into the variables specified in <list of variables>.

Values which are substituted into variables by the READ statement
must be specified elsewhere in the program in a DATA statement.
These values are substituted into the variables specified in <list of
variables> on a one-to-one basis; i.e., an internal pointer keeps
track of the location of the next value to be read in the DATA state-
ment’s <list of constants>, and this pointer is advanced for each
value read into one of the variables in the READ statement’s <list of
variables >. Note that the type of each value read must be the same
as that of its corresponding variable in <list of variables>; other-
wise, a ‘‘Syntax error’’ will occur.

A single READ statement may access one or more DATA
statements, or several READ statements may access the same DATA
statement.

If the number of variables specified in <list of variables > is greater
than the number of constants specified in the DATA statement(s), an
““‘Out of data’ error will occur. If the number of variables specified
in <list of variables> is smaller than the number of constants
specified in the DATA statement(s), subsequent READ statements
will begin reading data at the first unread item. If there are no subse-
quent READ statements, the extra items are ignored.

The pointer used to keep track of the items read from DATA
statements can be reset by means of the RESTORE statement.

DATA, RESTORE

3-113

I ClibPD www . fastio.com

http://www.fastio.com/

ClibPD

10
29
30
49
50
(=15
T
=15
9D

129 DATA I,cccc, 33
119 DATA 4,dddd, 44
126 DATA S,eeee,S5

www fastio.com

FOR I=1 TO 5

READ A(I),B&(I),C(I)

NEXT I
FOR I=1 TO S

FRINT A¢I),B$(I),C(I)

NEXT I

END

DATA 1,aaaa, 1l
DATA 2,bbbb, 22

bbbb

dddd

SEssRR=

3-114

EAERRRNRRRRARERERRNR RN

http://www.fastio.com/

REM

00 0 L L

I ClibPD wiwvw . fastio.com

REM <remark >
' <remark >

The REM statement is used to insert explanatory remarks into a pro-
gram,

Either of 'the above formats may be used to insert explanatory
remarks into a program. REM statements are ignored by MFBASIC
during program execution, but are output exactly as entered when the
program is listed.

If program execution is branched to a line which begins with a REM
statement, execution resumes with the first subsequent line which
begins with an executable statement.

If a remark statement is to be appended to a line which includes an
executable statement, be sure to precede it with a colon (:). Note that
any executable statements following a REM statement on a given
program line will be ignored.

3-115

http://www.fastio.com/

ClibPD

19 " x*%% INTEREST COMPUTATION FROGRAM %%

2@ "This program uses the Newton-Raphson method
21 *to compute the effective annual rate

22 Tof interest on a loan when given the

2T Tamount borrowed, the number of payments,

24 “the amount of each payment, and the

25 "number of payments per year.

Io

48 *The Newton-Raphson method states

41 "that, if ¢ is an approximate value of

42 Ta root of an equation, then a better

4% "approximation is the number c-L[f(c)/f7 (c)].

S50 °

69 CLS

7@ PRINT"ENTER AMOUNT OF LOAN": INFPUT;PV:PRINT

80 PRINT "ENTER NO. OF PAYMENTS": INPUTiNO: PRINT
e PRINT "ENTER AMOUNT OF EACH PAYMENT": INFUTSAMT:
PRINT

1o PRINT "ENTER NO. OF PAYMENTS/YEAR": INFUT:YR:PR
INT

110 I=1:"Initial estimate of c

120 "Lines 130 to 160 calculate f{c)

136 A=PV*I"NO

140 FOR AA=NO-1 TO o STEP ~1:LO0CATE 37,10,0:PRINT"
RUNMING": LOCATE 37,10,9:FRINT" "

156 A=A-AMT*I"AA

16® NEXT

176 “Lines 180 to 219 calculate 7 (c)

- 1860 B=NO*PV*I™(NO—-1)

199 FOR AA=NO-2 T0O @ STEP —1:LO0CATE 37,19,0:FRINT”
RUNNING": LOCATE 37,10,0:PRINT" "

200 B=R—-{(AA+1) *AMT*I"AA

219 NEXT

220 I=I-A/B: ' Calculation of c-Lf () /" (c)]

- 230 IF ABS(A/R) ».000001 THEN 130

231 TLine 23@ checks to see whether the

232 "difference between f{(c) and ' (c) is

233 "less than 0000015 if not, calculations

234 Tare repeated using the new estimate

235 "obtained for ¢ on line 220.

240 I$=STR$E((I"YR—-1)%101)

256 PRINT USING "\ "I IBs s PRINT"Z ANNUALLY"
3-116

www . fastio.com

yryyyyyyyryyyesyNnyyyyyynyyyy

http://www.fastio.com/

ENTER AMOWNT OF LOAN

7 1000

ENTER NO. (F PAYMENTS
73 |
ENTER AMOUNT OF EACH PAYMENT
240

ENTER N). OF PAMENTS/AEAR
212

15,658 ANALLY
K

AR R

http://www.fastio.com/

ClibPD

RENUM

RENUM [[<new line number>][,[<old line number>][, <incre-
ment >]]]

This command is used to renumber the lines of programs.

This command renumbers the lines of a program according to the
values specified in its arguments. <new line number > is the first line
number to be used in the new sequence of program lines, and <old
line number > is the line number in the current program with which
renumbering is to begin. <increment> is the value by which each
successive line number in the new sequence is to be increased over the
number of the preceding line.

The default value for <new line number> is 10, that for <old line
number > is the first line of the current program, and that for <incre-
ment > is 10.

The RENUM command also changes all line number references in-
cluded in GOTO, GOSUB, THEN, ON...GOTO, ON...GOSUB,
and ERL statements to reflect the new line numbers. If a nonexistent
line number appears after one of these statements, the message
“Undefined line xxxxx in yyyyy’’ is displayed. The incorrect line
number indicated by xxxxx is not changed, but that indicated by yyyyy
may be changed.

NOTE:
The RENUM command cannot be used to change the order of program lines (for ex-

ample, RENUM 15,30 when the program has three lines numbered 10, 20, and 30) or
to create line numbers greater than 65529,

An ““lllegal function call’’ error will result if this rule is not observed.

RENUM

Renumbers the entire program. The first line number of the new se-
quence will be 10, and the numbers of subsequent lines will be increas-
ed in increments of 10.

RENUM 300,50

Renumbers program lines starting with line 50. The number of line
number 50 in the current program will be changed to 300, and all
subsequent lines will be increased in increments of 10.

RENUM 1000,900,20
Renumbers the lines beginning with 900 so that they start with line
number 1000 and are increased in increments of 20.

3-118

www . fastio.com

N

t

3

' AT AT AT 4T 4T 4T 4T 4T

t

]

' 4T IT IT 4T 4T

I 4T AT AT 4T

|

http://www.fastio.com/

RESET
RESET

This command is used to reset the READ ONLY condition after the

flexible disk in one of the drives has been replaced.

Remarks When the flexible disk in one of the disk drives is replaced with a dif-
ferent one after that drive has been accessed, writes to that drive will
be inhibited if the disk is replaced with another one. This is done
automatically by the QX-10’s basic disk operating system to protect
directory information on the disk. Executing the RESET command
resets the read-only state and makes it possible to write data to the
new disk.

199 CLOSE

1iey PRINT "REFLACE DISK IN DRIVE A AND PRESS ENTER
WHEN READY" i

120 AS=INFUTSH (1)

130 RESET

140 OPEN"Q",#1,"A:FILEL"

3-119

linipipipmERgnaneege sy te s L.

e

IhPD www . fastio.com

http://www.fastio.com/

ClibPD

RESTORE

RESTORE [< line number>]

This statement is used to reset the pointer which keeps track of the
last item read from DATA statements, making it possible to reread
DATA statements from a specific line.

If <line number > is specified in the RESTORE statement, the next
READ statement will access the first item in the DATA statement on
the specified line. If <line number> is not specified when
RESTORE is executed, the next READ statement will access the first
item in the first DATA statement in the program.

DATA

1o FOR I=1 TO 3

20 READ A$(I) ,B$(I) ,CE(I)

39 NEXT I

49 FOR I=1 TO 3

S0 PRINT A®(I) ,B$%(I),CH(I)

60 NEXT I

65 PRINT

790 RESTORE 1660

89 FOR I=1 TO 3

9¢ READ D#(1),E$(I),F$(1)

1960 NEXT I

116 FOR I=1 TO I

120 PRINT D$<(I) ,E$(I) ,F$(I)

1360 NEXT I

14 END

156 DATA AAAA,BBER,CCCC,DDDD,EEEE,FFFF,G6GGE, HHHH, I
I111,JdJ3d, KKK, LLLL

160 DATA MMMM, NNNN, 0000, PPFF, GR0G, RRRR, 5885, TTTT,U

yuu

x

RN

MM BBBB 0000
00O EEEE FFFF
(666 HH I
JI KKKK L
MM AN 0000
Mt NN 0000
PPPP 0oca R
3% T W
1§

3-120

www . fastio.com

AR NN RSN AR AN AN

http://www.fastio.com/

RESUME
RESUME

RESUME O
RESUME NEXT
RESUME < line number >

The RESUME statement is used to continue program execution after
execution has branched to an error processing routine.

The RESUME statement makes it possible to resume program execu-
tion at a specific line or statement after error recovery processing has
. been completed. The point at which execution is resumed is deter-

-mined by the format in which the statement is executed as follows.

RESUME Resumes program execution at or the
- or statement which caused the error.

RESUME O _

RESUME NEXT Resumes program execution at the

- statement immediately following that
which caused the error.

RESUME <line number > Resumes program execution at the pro-
gram line specified in <line number>.

A “RESUME without error’’ error will occur if a RESUME state-
ment is encountered anywhere in a program except in an error pro-
cessing routine. '

ERROR, ON ERROR GOTO, ERR/ERL

19 ON ERROR GOTO 7@

2¢ CLS

9 INPUT "Input a number from 1 to 9"iA

49 IF A<l OR AX9 THEN ERROR 200

5@ FRINT A

&9 END

7% IF ERR=200 THEN PRINT "Error":RESUME Jo

Inout @ nuaber from 1 t0 97 8
Error

Inout a nunber from 1 0 97 10
Error .
Input a nusber from 1 to 9?5
5

1§

3-121

ARREREEEERE RN RER R R RN D

ClihPD www . fastio.com

http://www.fastio.com/

ClibPD

UN

RUN [<line number>]
RUN < file descriptor>[,R]

The RUN command is used to start execution of a program.

The first format is used to start execution of the program currently in
memory. Execution begins at the first line of the program unless
<line number> is specified. If <line number> is specified, pro-
gram execution begins at that line.

The second format is used to load and execute a program from a disk
drive (including disk image RAM or the CMOS RAM file). Specify
the name under which the file was saved in < file descriptor>; if the
extension is omitted, ‘‘.BAS’’ is assumed. (For the CMOS RAM file,
specify ‘““CMOS:” as the file descriptor.)

The RUN command normally closes all files which are open and
deletes the current contents of memory before loading the specified

program. However, all data files will remain open if the R option is

specified.
LOAD, MERGE

RUN 300
RUN ‘“ADDRESS.BAS'’
RUN ““B:SAMPLE"’,R

3-122

www . fastio.com

JI‘JI‘JI’JI‘JI‘J

oo nagasnny

http://www.fastio.com/

_ClibPD

b &b O MW M A AN MMM R A BE AT S A A WM A AF AT N

SAVE

See also

www . fastio.com

SAVE <file descriptor>[,A |,P]

The SAVE command is used to save programs on disk files or to the
CMOS RAM file.

This command saves BASIC programs to a disk file or the CMOS
RAM file. In the former case, specify the drive name, primary file
name, and extension in < file descriptor >. The currently active drive
is assumed if the drive name is omitted, and “.BAS”’ is assumed if
the extension is omitted. In the latter case, specify ““CMOS:’’ as the
file descriptor.

If the A option is specified, the program will be saved in ASCII for-
mat; otherwise, it will be saved in compressed binary format. The
ASCII format requires more disk space for stordage than binary for-
mat, but some file access operations require that the file be in ASCII
format (for example, the file must be in ASCII format if it is to be
loaded using the MERGE command).

If the P (protect) option is specified, the program will be saved in
an encoded binary format. When a file is saved using this option, it
cannot be edited or listed when it is subsequently loaded. Once a

program has been saved with the P option, the protected condition
cannot be cancelled.

LOAD, MERGE

SAVE’’ADDRESS"’
SAVE'’B:ADDRESS.ASC’’, A
SAVE''CMOS:"’
SAVE''SECRET"’,P

3-123

http://www.fastio.com/

ClibPD

SET

SET <file descriptor>[,P]
This statement is used to set or reset the write protect attribute of disk
files. :

This statement sets or resets the write protect attribute of the disk file
specified by < file descriptor>. (The file specified in <file descrip-
tor> must be a disk file.) The write protect attribute is set if the P
option is specified, and is reset if the P option is omitted.

When the write protect attribute is set for a file, any attempt to write
data to that file will result in a ‘‘Disk write protect’’ error.

SET “’B:CLIENTS.DAT"",P
SET “’B:CLIENTS.DAT"

3-124

www fastio.com

ARAREROOROEEARRAN AR OL

http://www.fastio.com/

b WF RFRF M A1 GF & AF & AN OF B AR BF GF A0 &K M MM RF MR OAF

'8

SOUND

Example

SOUND < pitch>, <duration>

The SOUND statement outputs a tone of the specified pitch and
duration from the speaker. The frequency of the tone generated is
specified in <pitch> as a value from 31 to 32767; no sound is
generated by specifying values from 0 to 30. The duration of the tone
is specified in <duration> as a value from 0 to 5461; when the state-
ment is then executed, the duration of the tone will be equal to
< duration > X 10 msec.

MFBASIC continues execution of programs statements even while a
sound is being generated by the SOUND statement; however, subse-
quent SOUND statements encountered will not be executed until the
tone resulting from the previous one has been output for the specified
amount of time. -

BEEP

19 FOR X=1 TO 8

20 READ A:SOUND A, S50

30 NEXT

40 FOR X=1 TO 8

S50 READ A:SOUND A,50

b0 NEXT

7@ DATA 256,288, 329,341,384, 426,480,512
86 DATA S12,4860,426,384,341,720, 288, 256

3-125

I ClibPD wwww fastio.com

http://www.fastio.com/

ClibPD

STOP

STOP

The STOP statement terminates program execution and returns

MFBASIC to the command level.

STOP statements are generally used to interrupt program execution
during debugging to allow intermediate values to be examined or
changed in the direct mode; program execution can then be resumed
by executing a CONT command.

The following message is displayed when a STOP statement is en-
countered.
BREAK IN line nnnnn

Unlike the END statement, no files are closed when a STOP state-
ment is executed.

CONT

3-126

www . fastio.com

ANEERREENRAERAEE RN REEND |

http://www.fastio.com/

|

10 OPEN"O",#1,"A:FILEL"
26 FOR I=1 TO 3@

I0 PRINT #1,STR$(D)

40 NEXT

S50 CLOSE

60 OPEN"I",#1,"A:FILEL"
70 IF EOF(1) THEN 130
83 INPUT#1,A$

90 PRINT A%

100 STOP

110 6OTO 70

126 STOP

130 CLOSE

RUN

1
Break in 100

Break in 109
1§

CONT

4

Break in 100
1

3-127

rﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ—ﬂ—ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂfﬂ_ﬂ_Iﬂﬂﬂﬂrr
g%

ClibPD www fastio.com

http://www.fastio.com/

ClibPD

STOP KEY

STOP KEY |ON
OFF

The STOP KEY statement is used to disable or reenable the BREAK
key.

Executing STOP KEY OFF inhibits the function of the BREAK key
(or CTRL and C). This prevents processing from being interrupted
by accidentally pressing the BREAK key during program execution.
The BREAK key function is reenabled by executing STOP KEY ON.

If no STOP KEY statement is executed, STOP KEY ON is assumed.

Since STOP KEY OFF completely disables operation of the BREAK
key (or CTRL and C), it should be used with caution.

3-128

www . fastio.com

M I I I AT AT AT AT 4T 4 4T 4T 4T 41 47 43 4T 4T AT 4T AT i i

http://www.fastio.com/

SWAP

SWAP <variable 1>, <variable 2>

The SWAP statement exchanges the values of the variables specified
in <variable 1> and <variable 2>.

The SWAP statement may be used to exchange the values of any type
of variable, but the same variable types must be specified in both
<variable 1> and <variable 2>; otherwise, a ‘‘Type mismatch’’
error will occur. ‘ '

Further, an ‘‘Illegal function call”” error will occur if the name
specified in <variable 2> is that of a non-array variable to which no
value has been previously assigned.

1¢ FOR I=1 TO &

20 INPUT "ENTER NAME";A%(I)

39 NEXT 1

49 FOR I=2 TO 9

50 IF A%(I-1) A% (1) THEN SWAF A$(I-1) ,A%(I):I=1
6O NEXT I

76 FOR I=1 TO 5

8@ FRINT A$(I)

99 NEXT

K
AN

ENTER NAHE? JAOKSON
ENTER NAIE? SHITH
ENTER NAHE? CLARK
ENTER NAYE? JORES
ENTER NAYE? FODA
LA

FODA

JACKSN

JOES

T

k

AF O bF b of of dF &b A5 RF b BF ME AF AN AF Rb AN A1 BF A B OAF WA

3-129

'y

]

ClihPD www . fastio.com

http://www.fastio.com/

ClibPD

SYSTEM
SYSTEM

The SYSTEM command clears program memory and returns control
from MFBASIC to CP/M.

This command may be executed either in the MFBASIC direct mode
or the indirect mode.

SYSTEM

3-130

www fastio.com

.

AARANRAORRR AR AR nnnnn

http://www.fastio.com/

TIMES
As a statement

TIMES$ =""<HH>:<MM>:<SS>"
As a variable
X$ =TIMES$

TIMES is a system variable which contains the time of the QX-10’s
built-in clock.

As a statement, TIMES is used to set the date of the QX-10’s built-in
clock. <HH > is a 2-digit number from 00 to 23 which indicates the
hour, <MM > is a 2-digit number from 00 to 59 which indicates the
minute, and <SS > is a 2-digit number from 00 to 59 which indicates
the second.

As a variable, TIMES returns the time of the built-in clock in
“HH:MM:SS”’ format.

TIME

19 FPRINTYCURRENT TIME IS "iTIMES$

20 INPUT "ENTER NEW TIME (HH:MM:SS)";A$
320 TIME$=A%

49 PRINT TIMES

k

RN

CURRENT TIME IS 06:03:38

ENTER NEW TIME (HH:MH:SS)? 16:44:49

16:44:%

13

3-131

Flrfdrﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_Irﬂ_ﬂ_ﬂ_ﬂ_dl_

ClihPD www . fastio.com

http://www.fastio.com/

TRON/TROFF
TRON

TROFF
These commands are used to trace program execution.

Executing TRON (either in the direct mode or indirect mode) causes
' the number of each program line to be displayed on the screen in
brackets as it is executed. Tracing is discontinued by executing
- TROFF or a NEW command. .
These commands can be used in conjunction with the STOP and
CONT commands during program debugging.

CONT, STOP

19 TRON

26 GOSUR 70

2@ TROFF

4¢ PRINT

S0 GOSUR 70

&a END

7@ PRINT"EFSON "3
80 PRINT"GX-16 "3
9 PRINT"MFEBASIC"
106 RETURN

k

RN

(28] [T0]EPSON (801010 [FBIMFBASIC
(1001(38]

EPSON (¢-10 MFBASIC

X A

3-132

ClibPD www fastio.com

CANORENOOENRNNO RO |

http://www.fastio.com/

WAIT

WAIT < port number>,I[,J]
This statement suspends program execution while monitoring the

status of a machine input port. .

The WAIT statement causes execution to be suspended until a
specified machine input port develops a specified bit pattern. The
data read at the port is exclusive ORed with the value of integer ex-
pression J, then ANDed with L. If the result is zero, MFBASIC loops
back and reads the port again. If the result is not 0, execution con-
tinues with the next statement. If J is omitted, 0 is assumed.

NOTE: _
Use of this statement requires in depth knowledge of the QX-10 firmware, and using
it incautiously can result in loss of system control and other problems. See the QX-10
Programmer’s Guide for detailed information on the QX-10 firmware.

AF &F &8 &f f OF GF Ab &F &b &6 UB kb 0 Ab AF &N AF AF AR AF A OGN A

3-133

&

I ClibPD www . fastio.com

http://www.fastio.com/

ClibPD

WHILE...WEND

See also

WHILE < expression>
[<loop statements>]

WEND

The WHILE...WEND statement is used to repeat the series of in-
structions included between WHILE and WEND as long as a
specified condition is satisfied.

This statement is used in the same manner as the FOR...NEXT state-
ment, except that the loop is repeated until the condition specified in
<expression > is no longer satisfied.

As with FOR/NEXT loops, WHILE/WEND loops may be nested to
any level (they may also be included within FOR/NEXT loops, or vice
versa); when loops are nested, the firss WEND corresponds to

WHILE of the innermost loop, the second WEND corresponds to

WHILE of the next innermost loop, and so forth.

A “WHILE without WEND”’ error will occur if WHILE without a
corresponding WEND is encountered, and a ‘“WEND without
WHILE”” error will occur if WEND without a corresponding WHILE
is encountered.

FOR...NEXT

3-134

www . fastio.com

T ITTTT™™M™

http://www.fastio.com/

19 INPUT "ENTER ARBITRARY NUMBER";X

20 WHILE X"A<1E+06

38 PRINT STRE(X) i " "iMIDS(STR$(A) ,2,5) 1 "="3MID$ (ST
RE(X"A) 2, 6)

40 A=A+1

5@ WEND

k

RN

ENTER ARBITRARY MUMBER? 5
5L
v15
YED
YFID
5462
Y315
06-15625
STFRI%
VIS
Ok

3-135

ﬂﬁlﬂﬂﬂlﬂlﬁlﬂlrﬂ_drﬂ_ﬂ_ﬂ_H_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_

ClibPD www fastio.com

http://www.fastio.com/

ClibPD

WIDTH

www . fastio.com

WIDTH <no. of columns>

WIDTH < file descriptor>, <no. of columns >
WIDTH# <file no.>, <no. of columns>
WIDTH LPRINT <no. of columns>

This statement is used to set the column width of the specified device
or file. :

The functions of the four specification formats are as follows.

WIDTH <no. of columns> specifies the number of characters
which can be displayed on each display line; either 40 or 80 can be
specified in <no. of columns>. Execution of the WIDTH command
in this format clears the screen and places the display in either the
double width (40 column) or normal (80 column) display mode. In
the 40 column mode, the 1-byte character set can be changed with the
OPTION STYLE statement.

WIDTH <file descriptor>, <no. of columns> specifies the
number of characters which can be output in each line to the device
specified in < file descriptor >. The devices which can be specified in
<file descriptor> are ‘“CMOS:”’, “LPT0:”’, and ‘“COMn:’’. An
“Illegal function call’”’ error will result if any other device is
specified. When ‘“‘LPTO:” is specified, this format performs the
same function as WIDTH LPRINT. When the WIDTH statement is
executed in this format and the specified device is already open, the
output width specified does not become effective until the device has
been closed and then reopened.

WIDTH# <file no.>, <no. of columns> specifies the output
width for the file (channel) specified by < file no.>. With this for-
mat, the file specified by <file no.> must be open at the time the
WIDTH statement is executed. Further, the file device must be either
“SCRN:”, “CMOS:”’, “LPTO0:” or ““COMn:’’; an “‘Illegal function
call’’ error will result if these conditions are not satisfied.

The width specified by executing the WIDTH statement in this for-
mat becomes effective immediately for the specified file (channel);
this makes it possible to change the width of applicable open device
files at any time. '

WIDTH LPRINT <no. of columns> specifies the maximum

number of characters which can be printed on each line by the
printer.

3-136

OO BB BNDN

http://www.fastio.com/

For devices other than the display screen any value from 1 to 255 can
be specified in <no. of columns>. When a value from 1 to 254 is
specified, MFBASIC monitors the number of characters output and,
when the number exceeds that specified, automatically outputs a car-
riage return/line feed code. When 255 is specified, the output line
width is assumed to be infinite and MFBASIC does not automatically
output carriage returns and line feed codes.

16 WIDTH 4

20 PRINT * ABCDEFGH"
3B

Ok

ABCDEFGH
0k

Example 2

10 OPEN"Q",#1,"LPTo:"

20 WIDTH #1,190

30 PRINT#1, "AAAAAAAAAAARARAAAAARAAAAAAAAAAAAAAAA"
4¢ PRINT#1,"BEBBBBBEEBEBEEEEBEEBBEEEEBRBEEEEEEE"
50 PRINT#1, "CCCCCCCCCCCCCCCCOCCCCCCCCCOOCooeeee”
60 CLOSE

AARAAAAAAA

AAAAAAAARAA

AAAAAAAAAAA
AAA

BEEBEBBBEE

BEEBBEBEBER

EEBBEEBRBEE

EEE

cceecececee

Cccococecoeeee

ccececcoocee

cce

3-137

'FErrrrErErrrrrrrrrrrrrErrers.

ClibPD wwww fastio.com

http://www.fastio.com/

Example 3

1@ WIDTH "LFT&:", 15

29 LPRINT"AAARAAAARAAAARAAARAAAARAAAARARARAAAAAAAARA"
9 LPRINT"BBEBEBREEEBEBEBEBEEBEERREBBEBEBREEREE"
49 LPRINTYCCCCCCCCCCCCCCCCCCoCcecCCeccococceccocooo
AARAAAAAAARARAAAA

ARAAAAAAARRAAAAA

ARAAA

BEEEBERBBREREBEH

BEBEEBBEEERBEEER

EEEER

ceoccocococeccccceo

L0] 0 O 1 4]

ceeoe

Example 4
 Example 4.

1% WIDTH LPRINT 2@

20 LPRINT"AARAARAAAAAAARAAAAAAAAAAAANAAAAAAAAAA"
3% LPRINT"BEBEEBBEBEREBEBEEEEEBEEBEBREEBEEBEEBEEBEBE"
49 LPRINT"CCCCCCCCCCCCCCCCCCCCcCccccccccocceceocoe”
AAAAARAAAARAAAAAAAAA

ARAAARBAARRAAARA

BEBEEBEEEEBEEBBEEBEEER

BERBERRBEEERBEER

L0 1o o o o o 4

cceccoceccececeoceceo

NOTE: ,

The initial line width values are as follows.
LPTO: 80
COMO: -COMH4: 255
CMOS: 255

3-138

ClibPD www . fastio.com

http://www.fastio.com/

ClibPD

o o o A BF W SF A bR R AE A A B RS R A

'y

]

WRITE

|

WRITE[< list of expressions >1]
This statement is used to display data on the CRT screen.

If <list of expressions> is omitted, a blank line is output to the
display screen. If <list of expressions> is included, the values of the
expressions are displayed on the screen.

Numeric and string expressions can both be included in <list of ex-
pressions>, but each expression must be separated from the one
following it with a comma. Commas are displayed between each item
included, and strings displayed will be enclosed in quotation marks.
After the last item has been output, the cursor is automatically ad-
vanced to the next line. '

The WRITE statement displays numeric values using the same for-
mat as the PRINT statement; however, no spaces are output to the
left or right of numbers displayed.

PRINT

19 A=10:B=90: C$="EPSON QX-10"
29 WRITE A,B.C$

Z0 END

k

RN

1@; %; "EPW QX‘IOH

&k

3-139

nwfastio.com

http://www.fastio.com/

ClibPD

WRITE #

WRITE # < file number >, <list of expressions>

This statement is used to write data to a sequential disk file. = - -

-<file number > is the number under which the file was OPENed for -

output, and the expressions included in <list of expressions > are the
numeric and/or string expressions which are to be written to the file.
Data is written to the file in the same format as for display on the
screen by the WRITE statement; i.e., commas are inserted between

items and strings are delimited with quotation marks. Therefore, it is

‘not necessary: to specify explicit delimiters in <list of expressions>,

‘as is the case with the PRINT# statement). A carriage return/line
... feed sequence is written to the disk following the last item in <list of

expressions. >

_ PRINT# and PRINT # USING

100 A$ =""EPSON’":B$ =""QX-10"
110 OPEN'O"", #1,""DATA"’
120 WRITE#1,A$,B$

The above sequence writes the following image to the disk:. .
““EPSON”’,"QX-10"" ‘

A subsequent INPUT # statement (such as INPUT #1,A$,B$) would

input each item to separate variables (‘‘EPSON” to A$ and

“QX-10"’ to B$). Compare this with the example given in the descrip-

tion of the PRINT # statement.

3-140

www . fastio.com

BRI DRRBAOAAARORRBRRNODADnREONDNODNNDNNDNDN |

http://www.fastio.com/

	./3-106.tif
	./3-107.tif
	./3-108.tif
	./3-109.tif
	./3-110.tif
	./3-111.tif
	./3-112.tif
	./3-113.tif
	./3-114.tif
	./3-115.tif
	./3-116.tif
	./3-117.tif
	./3-118.tif
	./3-119.tif
	./3-120.tif
	./3-121.tif
	./3-122.tif
	./3-123.tif
	./3-124.tif
	./3-125.tif
	./3-126.tif
	./3-127.tif
	./3-128.tif
	./3-129.tif
	./3-130.tif
	./3-131.tif
	./3-132.tif
	./3-133.tif
	./3-134.tif
	./3-135.tif
	./3-136.tif
	./3-137.tif
	./3-138.tif
	./3-139.tif
	./3-140.tif

