icmm)

ERASE

ERASE <list of array names>
The ERASE statement cancels array definitions made with the DIM
statement.

The ERASE statement erases specified arrays from memory, allow-
ing the arrays to be redimensioned or freeing that memory for other
purposes. An “‘Illegal function call’’ error will result if an attempt is
made to erase a non-existent array.

DIM

1é DIM X (15)

20 FOR I=1 TO 15
3O X(I)=1

40 NEXT 1

S50 FOR I=1 TO 13
69 FRINT X(I)3
70 NEXT I

86 PRINT

¢ ERASE X

106 DIM X(13)
11 FOR I=1 TO 15
120 PRINT X(I)3

130 NEXT I

14@ END

RN

1234567891011 12BUDB
po00000000000000

1§

3-38

www . fastio.com

O O O O O O O O O

http://www.fastio.com/

RN

I

AR

|

AL L L L

LEMUW)

ROR

ERROR <integer expression>

The ERROR statement makes it possible to simulate occurrence of
MFBASIC errors or to define other types of errors.

When this statement is executed in a program and no error trap
routine is provided, the error message whose error code equals the
value of <integer expression> is displayed and program execution
halts; if the value of <integer expression> does not correspond to .
any error code which is defined in MFBASIC, an ‘‘Unprintable er-
ror’’ message is displayed. (A list of the MFBASIC error codes is
given in Appendix A.) In any event, the value of <integer expres-
sion > must be greater than 0 and less than 255. -

Error trap routines can be used in conjunction with the ERROR
statement to assign user definitions to error codes. An example of
this is shown in program example 2 below.

ON ERROR GOTO, RESUME, ERR/ERL, Appendix A

19 INPUT A.B

20 X=A*E
30 IF X>560 THEN ERROR &
40 GOTO 10
RN
74,5
77,8
Overflow in 3
k
3-39

www . fastio.com

http://www.fastio.com/

Example 2

19 ON ERROR GOTO 80

20 CLs

39 INPUT "INPUT NUMBER FROM 1 TO 9":iA

49 IF ATl OR AX9 THEN ERROR 200

5@ PRINT A

60 ERROR 216

70 END

80 IF ERR=208 THEN PRINT "ERROR":RESUME 3@
990 IF ERL=60 THEN PRINT "TEST":RESUME 70

INPUT NUHBER FROM 1 70 97 0
ERR

INPUT MUMBER FROM 1 70 97 19
ERRR

INPUT MUMBER FRO 1 T0 97 7
7

TEST

X

kC\H)PD www fastio.com

g AO NN EnNnNnNnnNnnnnm;

http://www.fastio.com/

FIELD

FIELD[#] < file number>, <field width> AS <string variable>,
< field width> AS <string variable>, ...

The FIELD statement is used to assign the positions in a random file
: buffer for use as variables.

When a file is OPENed, a buffer is automatically reserved in memory
which is used for temporary storage of data while it is being transfer-
red between a flexible disk (or other external device) and main
memory. With random access files, data is read into this buffer from
the flexible disk with the GET statement and written from the buffer
to the disk with the PUT statement. However, before this can be
done, a FIELD statement must have been executed to assign variables
to specific positions in the random file buffer. (Disk data is then read
into the variables in the buffer by executing a GET statement, or
values are written into the variables in the buffer by executing a LSET
or RSET statement. See Chapter 5 for detailed instructions on access-
ing random access files.) The < file number > which is assigned to this
buffer is the number under which the file was OPENed. < field
width> is the number of positions to be allocated to the specified
<string variable >. For example:

FIELD 1,20 AS N$,10 AS ID$,40 AS ADD$

assigns the first 20 positions (bytes) of the buffer to string variable N§,
the next 10 positions to ID$, and the next 40 positions to ADDS$. The
total number of positions assigned to variables by the FIELD state-
ment cannot exceed the record length that was specified when the file
was OPENed; otherwise, a ‘“‘FIELD overflow’’ error will occur. (The
default record length is 128 bytes.)

If necessary, any number of FIELD statements may be executed for
the same file. If more than one such statement is executed, all
assignments made are effective at the same time.

GET, LSET/RSET, OPEN, PUT

3-41

14901 J1 Y Y 0 1 0 0 1

Cl

bPD www . fastio.com

http://www.fastio.com/

190 OFPEN "R",#1,"TEST.DAT"
20 FIELD #1,8 AS A%$,6 AS Bs$
30 RSET A$="EP"

46 LSET E$="SON"

50 PRINT A$+B$

60 PUT #1,1

76 CLOSE 1

86 END

RN
EPSON
k

NOTE:

Once a variable name has been FIELDed, use only RSET or LSET to store data in
that variable. FIELDing a variable name assigns it to specific positions in the random
file buffer; using an INPUT or LET statement to store values to FIELDed variable
names will cancel this assignment and reassign the names to normal string space.

3-42

ka)PD www . fastio.com

H’Hﬂﬂ’ﬂﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂﬂ‘ﬂl‘fﬂﬂ’ﬂﬂﬂﬂ‘ﬂﬂﬂ‘ﬂ’ﬂﬂﬂ‘J

http://www.fastio.com/

14 Q1 4 Y § T 4 QY 4 N 4 SV § (Y 8 QT 4 QY 4 L 4 QY 4 JY 4 O 4 QT 4 QO 4 QY € N 4 A1 4 QY 4 S0 § SO 4 N N1 4 Q1 4 A 1

ClibPD

FILES

|

FILES [<filename >1]

The FILES command is used to display the names of files stored on
the specified flexible disk.

If <filename> is omitted, the names of all files on the flexible disk
in the currently active drive are displayed. <filename> may be
represented using question marks (?) or asterisks (*). The question
mark is a wildcard character which is used to indicate any character,
while the asterisk indicates all characters in the specified position.

Displays the names of all files on the currently active disk whose
primary names begin with the letter L and whose extensions are
“.BAS”’.

FILES ““B:*.*'" or FILES “B:"’
Displays the names of all files on the disk in drive B.

FILES “'B:D???. %"’

Displays the names of all files on the disk in drive B which begin with
the letter D and include not more than four characters in the primary
file name.

3-43

www . fastio.com

http://www.fastio.com/

ClibPD

FOR...NEXT

FOR <variable> = <expression 1> TO <expression 2>
[STEP <expression 3>1

NEXT [< variable >1[, <variable>...]

The FOR...NEXT statement makes it possible to repeat the series of
instructions written between FOR and NEXT a specific number of
times.

With this statement, program execution loops through the series of
instructions written between FOR and NEXT a specific number of
times. The number of times the loop is repeated is determined by the
values of <expression 1>, <expression 2>, and <expression 3>,
with <variable > used as a counter to keep track of the number of
loops made. :

The initial value of <variable> is determined by the value of <ex-
pression 1>, and <expression 2> indicates the value of
< variable > on which the loop is to be terminated.

<expression 3> indicates the value by which <variable> is to be
incremented each time the loop is repeated. MFBASIC checks the
value of <variable> before executing the instructions in the loop,
then the instructions in the loop are executed if <variable> is less
than or equal to <expression 2>; otherwise, the loop is terminated
and execution proceeds with the statement following NEXT.

An increment of ‘17’ is assumed if STEP is not specified; however, a
negative value must be specified as the STEP in <expression 3> if
the starting value (<expression 1>) is greater than the ending value
(<expression 2>) (otherwise, the instructions following FOR will
not be executed).

FOR...NEXT loops may be nested; that is, one FOR...NEXT loop
may be included within the range of another. When loops are nested,
a different variable name must be specified for <variable> of each
loop. Further, the NEXT statement for the inner loop must appear
before that for the outer one.

If nested loops end at the same point, a single NEXT statement may
be used for all of them. In this case, the variable names must be

specified following NEXT in the reverse order in which they appear .

in the FOR statements of the nested loops; in other words, the first
variable name following next must be that which is specified in the

3-44

www . fastio.com

BB OANnNANnNAnNnNnNnNnNnNnOnononnnnn;

http://www.fastio.com/

1

bbb AT R AT R AR RE WA M AE AT W

ClibPD

nearest preceding FOR statement, the second variable name follow-
ing NEXT must be that which is specified in the next nearest
preceding FOR statement, and so forth.

If a NEXT statement is encountered before its corresponding FOR
statement, a ‘“NEXT without FOR’’ message is displayed and execu-
tion is terminated. If a FOR statement without a corresponding
NEXT statement is encountered, a ‘“FOR without NEXT’’ message
is displayed and execution is terminated.

WHILE...WEND

1‘3 PRINTIIXH’ " x.-’-.z", 1] X.".:S.ll
20 FOR X=0 TO 10
30 FRINT X, X2, X"3

49 NEXT

RN

X Y, ¥3
0 0 0

1 1 1

2 4 8

3 9 Y
4 1 64
5 % 1%
b % 26
i 8 3
8 64 510
9 81 ™
10 109 100
&k

3-45

www . fastio.com

http://www.fastio.com/

10 FOR A=1 TO
26 FOR B=1 TO
25 FOR C=1 TO
36 PRINT A,B,C
40 NEXT C,E,A

R MR

RS RO = bma RO N b
RO e PO b RO = PO e

L e A I = T e S v

=

16 I=3

26 FOR I=1 TO I+7
29 PRINT Iz

49 NEXT

50 END

AN
12345678910
&v

In Example 3 above, the loop is repeated ten times because the loop
variable’s final value is always set before the initial value.

3-46

‘C\M)PD www fastio.com

ra RN AA

http://www.fastio.com/

GCURSOR

GCURSOR [STEPI(horizontal position, vertical position),
(<variable 1>, <variable 2>)

The GCURSOR statement displays the graphic cursor and reads its
' coordinates into variables.

<horizontal position> and < vertical position> are graphic coor-
dinates which specify the initial position in which the graphic cursor is
to be displayed. These coordinates can be specified either as absolute
values or, by adding the STEP function, as relative values. (See the
explanation of the CIRCLE statement for an example of use of the
STEP function.)

The graphic cursor is displayed as a large ‘‘ +’’ mark, and can be mov-
ed by pressing the cursor control keys. The horizontal and vertical
positions of the graphic cursor are read into <variable 1> and
<variable 2>, respectively, when the RETURN key is pressed. The
horizontal position must be specified as an integer expression whose
value is between 0 and 639, and the vertical position must be specified
as an integer expression whose value is between 0 and 399.

1o CLS

20 GCURSOR (32,200), (X1,Y1)
20 GCURSOR (X1,Y1), (X2,Y2)
40 LINE (X1,Y1)-(X2,Y2)

S50 X1=X2

6B Yi=Y2

76 60TO 3o

NOTE:

After execution of the GCURSOR statement, the last reference pointer used by STEP
is updated to (horizontal position, vertical position).

3-47

ol A AT Al Al AR AR AR A A A W

ClihPD www . fastio.com

http://www.fastio.com/

ClibPD

G

GET[#] < file number>[, <record number>]

The GET statement reads a record into a random file buffer from a
random disk file.

This statement reads a record into the random file buffer from the file
OPENed under the integer expression specified for < file number>.
<record number > must also be specified as an integer expression; if
omitted, the record read is that following the record read by the
previous GET statement. The highest record number which can be
read is 32767.

FIELD, LSET/RSET, OPEN, PUT

See Chapter 5.

3-48

www fastio.com

NABEBROEEOANBONRNORNANRAA R ARA,

http://www.fastio.com/

GET@

GETI[@] (horizontal position 1,vertical position 1)
-[STEP}({horizontal position 2,vertical position 2), <array name >

This statement reads the settings of the specified range of display dots
into a variable array. .

The range of dot settings read into the variable array is that of the rec-
tangular area defined by a diagonal line between (horizontal position
1,vertical position 1) and (horizontal position 2,vertical position 2).

(horizontal position 1,vertical position 1) must be specified as absolute
coordinates; however, relative coordinates can be specified for
(horizontal position 2,vertical position 2) by specifying STEP. (See
CIRCLE for an example of coordinate specification with STEP.) The
values of numeric expressions specifying the horizontal positions must
be between 0 and 639, and those for the vertical positions must be bet-
ween 0 and 399.

The array in which the dot settings are to be stored must be defined in
advance by executing a DIM statement. The maximum values which
must be specified for the array subscripts in the DIM statement are
calculated as shown below.

First, calculate the number of bytes (A) required for storage of the dot
settings by GET@ (X1,Y1)-(X2,Y2) <array variable > as follows.

R

A =4+ (({<no. of horizontal dots> + 7) \ 8) * <no. of vertical
dots > *M

In the above, M =1 for the black and white mode, and M =3 for the
color mode. The maximum subscript value which must be specified in
the DIM statement is equal to A \ N+ 1, where N is 2 for an integer
type array, 4 for a single precision array, and 8 for a double precision
array.

After execution of the GET @ statement, the last reference pointer us-
ed by STEP is updated to (horizontal position 2, vertical position 2).

PUT@

3-49

b O AR R

F

ClihPD www . fastio.com

http://www.fastio.com/

k ClibPD

www fastio.com

- {H

+ (A

M OBE#H (AN)
VLY - (HH L VHD) | B

@ OHL,

THEN HH
THEN Y
THEN VH
1av1)

Y

Y, R#

e ML =GINICOS (-2, 141859y %1

14159 STER 2014159 /908
@) 3V I=INT (ST COD (XY #100) *5

L8NG % (WH-VL 1) %3

. ot . F R SR

3-50

EAREAEOBRRROEOBORBNORAANBRM|

http://www.fastio.com/

GOSUB...RETURN

GOSUB <line number >

RETURN

The GOSUB and RETURN statements are used to branch to and
return from subroutines.

The GOSUB statement transfers execution to the program line
' number specified in <line number >; execution is returned to the
point following that at which the subroutine call was made when a
RETURN statement is encountered. Subroutines may include more
than one RETURN statement if the program logic dictates a return

from different points in the subroutine.

A subroutine may be called any number of times in a program, and
one subroutine may be called by another. Nesting of subroutines in
this manner is limited only by the amount of stack space available for
storing return addresses. An ‘‘Out of memory’’ error will occur if the
stack space is exceeded, as may be demonstrated by executing the ex-
ample below.

3-51

Chb oAb R MM R AF AE R RE R RERORE A RE R OAT RN B MM

ClihPD www . fastio.com

http://www.fastio.com/

-

'

Subroutines may be located anywhere in a program; however, it is
recommended that they be made readily distinguishable from the
main program. Care must be taken to ensure that execution does not
move into a subroutine without its being called. This can be avoided
with the STOP, END, or GOTO statements; the STOP and END
statements stop execution when encountered, while the GOTO state-
ment makes it possible to route execution around a subroutine. If a
RETURN statement is encountered without a corresponding
GOSUB statement, a ‘“‘RETURN without GOSUB?’’ error will occur.

10 INPUT"INFUT ANGLE IN DEGREES"SN

20 GOSUR 44

30 6070 10

49 P=C0S(N*ZI.141359/180)

50 Q=5IN(N*3.14159/180)

60 PRINT "N="3N,"COS{N)="iP, "SIN(N)="3Q
70 RETURN

RN

INPUT ANGLE IN DEGREES? 0

N9 00SN=1 SIN(N)- @

INPUT ANGLE IN DEGREES? 15

N 15 COS(N)= . %5926 SIN(N)= . 258819
INPUT ANGLE IN DEGREES? 30

N3 COS(N)= . 866006 SINMN)= .5
INPUT ANGLE. IN DEGREES? 46

N % COS(N)= . 707107 SINN)= . 787106
INPUT ANGLE IN DEGREES?

3-52

L ClibPD www . fastio.com

http://www.fastio.com/

GOTO

GOTO <line number>

The GOTO statement unconditionally transfers program execution
‘ to the program line specified by <line number>.

This statement is used to make unconditional ‘‘jumps’ from one
point in a program to another. If the statement(s) on the line
specified by <line number > is an executable statement (other than a
REM or DATA statement), execution resumes with that statement;
otherwise, execution resumes with the first executable statement en-
countered following <line number>. An ‘‘Undefined line number’’
error will occur if <line number > refers to a non-existent line.

19 READ A, R
20 IF A=G AND B=0 THEN 86
@ PRINT "A=";A,"B="3B

40 S=A%E

S0 PRINT "FRODUCT IS"iS
6% BOTO 16

70 DATA 12,5,8,3,9,0,0,0
86 END

RUN

k12 ES
PRODUCT 15 60
8 B3
PRODUCT IS 24
K9 k-0
PRODUCT 1S @

1§

3-53

1901 1 1Y A A I 1S I I 1 I VOO VI VI

o

bPD www . fastio.com

http://www.fastio.com/

ClibPD

IF...THEN [...ELSEJ/IF...GOTO

NOTE:

IF <logical expression>

THEN | < statement> ‘
<line No. >

GOTO <line No.>

[ELSE ‘<statement> ’]
<line No. >

This statement is used to change the flow of program execution ac-
cording to the results of a logical expression.

The THEN or GOTO clause following <logical expression> is ex-
ecuted if the result of <logical expression> is non-zero (true).
Otherwise, the THEN or GOTO clause is ignored and the ELSE
clause (if any) is executed; execution then proceeds with the next ex-
ecutable statement. With the first format, the THEN clause may be
followed by a line number or one or more statements. Specifying a
line number after THEN causes program execution to be transferred
to that program line in the same manner as with GOTO. With the se-
cond format, a line number is always specified following GOTO.

With MFBASIC, IF...THEN...ELSE statements may be nested by

including one such statement as a clause in another. Such nesting is

limited only by the maximum length of the program line.

For example, the following is a correctly nested IF...THEN state-
ment:

20 IF X>Y THEN PRINT ““X IS LARGER THAN Y"" ELSE IF Y>X
THEN PRINT ‘X IS SMALLER THEN Y’’ ELSE PRINT “* X
EQUALS Y"’ :

If a statement contains more THEN than ELSE clauses, each ELSE
clause is matched with the nearest preceding THEN clause. For ex-
ample, the following statement will display ‘‘A=C’’ when A =B and
B=C; “A< >C” if A=B and B< >C; and nothing at all if
A< >B.

IF A=B THEN IF B=C THEN PRINT “A=C"
ELSE PRINT “A< >C"

When using IF together with a relational expression which tests equality, remember
that the internal representation of values which result from floating point computa-
tions are not always exact. Therefore, it is preferable to test computed values against
the range over which the accuracy of such values may vary. For example, when testing

Jor equality between ‘‘1°° and a computed variable A, the following form is
recommended.

10 IF ABS(A-1.0) < 1.0E-6 THEN...

3-54

www . fastio.com

TR Q .

}

P AR NINTN

http://www.fastio.com/

The statement(s) following THEN will be executed if the value of A is within + 1.0E-6
of 1.0.

100 IF (A>1) and (A< 10) THEN X=SQR(Y):GOTO 150
, 110 X=Y

This example calculates X = SQR(Y) and branches to program line 150
if the value of A is greater than 1 and less than 10; otherwise, execu-
tion continues with line 110.

100 IF X=Y THEN PRINT A$ ELSE LPRINT A$
This statement outputs the value of variable A$ to either the display or

printer, depending on whether the value of X equals Y. If X equals Y,
output is to the display; otherwise, output is to the printer.

VRV R

3-55

]

ClibPD www . fastio.com

http://www.fastio.com/

i ClibPD

INPUT

INPUT[;]1<list of variables >
INPUT[;]<"’prompt string’’ > <; |, > <list of variables >

This statement makes it possible to substitute values into variables
from the keyboard during program execution.

Program execution pauses when an INPUT statement is encountered
to allow data to be substituted into variables from the keyboard. One
data item must be typed in for each variable name specified in <list
of variables>. After all data items have been typed in, they are
substituted into the variables by pressing the RETURN key.

With the first format, a question mark is displayed to indicate that
the program is waiting for data entry; with the second, the specified
prompt string is displayed. The prompt string will be followed by a
question mark if it is followed by a semicolon; if it is followed by a
comma, the question mark will be suppressed. With either format, a
semicolon following INPUT causes the carriage return/line feed se-

quence to be suppressed when the RETURN key is pressed to enter

data; this prevents the cursor from advancing to the next line.

When more than one variable name is specified in <list of
variables >, each variable name must be separated from the follow-
ing one by a comma. When such an INPUT statement is executed,
commas are also used to separate the data items typed in from the
keyboard. The items entered in response to an INPUT statement are
substituted into the variables specified in <list of variables > when
the RETURN key is pressed.

The variables specified in <list of variables > may be either numeric
or string variables (including array varibles); however, the type of
each data item entered must match that of the corresponding
variable. A string variable must be included in quotation marks if any
commas (or leading or trailing spaces) are to be included in the string;
otherwise, quotation marks are not required.

If the response to an INPUT statement includes other than the cor-
rect number or type of data items, the message ‘‘?Redo from start’’
will be displayed, followed by the prompt string (if any). When this
occurs, reenter the data items correctly, then press the RETURN key;
no values will be substituted into variables until an acceptable
response is made.

3-56

www . fastio.com

N BB B AEONOEOOABEn RPN nNPnNMAeENnNNnOQ®

http://www.fastio.com/

Example 1

16 ON ERROR GOTO &0

20 INPUT "INPUT ARBITRARY NUMBER"S§X

I Y=8GR(X) ‘

49 PRINT "SGQUARE ROOT OF"3Xs"IS"3Y

56 6O0TO 20

60 IF ERL=3G AND X<® THEN PRINT "Negative number
error - Redo":RESUME 50

RN

INPUT ARBITRARY NUMBER? 1
SOUARE ROOT OF 1 1S 1
INPUT ARBITRARY NMBER? 5
SOUARE ROOT OF 5 1S 2.23687
INPUT ARBITRARY NUMBER? 7
SOUARE ROOT OF 7 1S 2.645%
INPUT ARBITRARY NUMBER? 9
SOUARE ROOT OF 9 IS 3
INPUT ARBITRARY NUMBER? -8
" Negative nusber error - Redo
INPUT ARBITRARY NUMBER?

Example 2

16 INPUT "ENTER ANY TWO STRINGS";A%,EB$
20 PRINT A$;" ";Bs$

RN

ENTER ANY TWO STRINGS? EPSON,GX-10
EPSN (X-10

i

3-57

FWW&F&F&FHMMMMHMMMMHHHHMH«HHHM&H

ClibPD www fastio.com

http://www.fastio.com/

,‘ ClibPD

INPUT #

Remarks

INPUT # < file number >, <variable list >

This statement is used to read data items into variables from a se-
quential file on a flexible disk.

The sequential file from which data items are to be read must have
been previously opened for input by executing an OPEN statement.
The <file number> specified following INPUT# is that under
which the file was OPENed, and < variable list > specifies the names
of variables into which data items are to be read. Data items read
must be of the same type as the variables into which they are
substituted.

When a sequential file is read with the INPUT # statement, the first
character encountered which is not a space is assumed to be the start
of a data item. With string items, the end of each item is assumed
when the next subsequent comma or carriage return is encountered
(unless the item is enclosed in quotation marks, in which case the

item is assumed to include all enclosed characters). String data is also

automatically delimited wherever 255 characters have been input.

With numeric items, the end of each item is assumed when a space,
comma, or carriage return is encountered. Therefore, care must be
taken to ensure that proper delimiters are used when the file is written
to the disk with the PRINT # statement; see the explanation of the
PRINT # statement and Chapter 5 for further information.)

INPUT, LINE INPUT #, OPEN, PRINT #, WRITE, WRITE #
See Chapter 5.

3-58

www . fastio.com

i,

!

i

1

\

1
2

T4au

!

AR aan

http://www.fastio.com/

KEYnNn/KEY LIST/KEY LLIST

KEY<n>, <X$>
KEY LIST
KEY LLIST

The KEY statement is used to define or list the functions of the user
programmable function keys. S

The first format is used to ‘define the functions of function keys.
Here, <n> is an integer from 1 to 10'which indicates the number of
the function key being defined, and <X$> is a character string of
up to 15 characters which is to be assigned to that key as a function.
For example, o ‘

KEY 1, ““LIST""
assigns the LIST function to programmable function key 1.

A control code can be included in the character string assigned to the
function key by adding + CHR$(I) to X$, where I is the ASCII code
for that control character. For example,

KEY 1, “LIST""+ CHR$(13)

will assign the character string ‘“‘LIST”’ plus a return code to pro-
grammable function key 1; subsequently, pressing F1 will list the en-
tire contents of any program currently stored in memory.

KEY LIST and KEY LLIST output a list of the current function key
definitions to the display and printer.

KEY 1, ““SAVE"

3-59

AEEREEERERREERRENRREARR NS D

ClihPD www . fastio.com

http://www.fastio.com/

Y ClibPD

KILL

KILL <file descriptor>

The KILL command is used to delete files from the disk in one of the
QX-10’s flexible disk drives.

The KILL command can be used to delete any type of disk file. The
full file descriptor must be specified if the file to be deleted is on a
disk in a drive other than that which is currently active. Otherwise,
only the primary file name and extension need to be specified.

KILL ““FILE3.BAS"

KILL *“B:SAMPLE1.BAS"’
NOTE:

Operation of the KILL command is not assured if it is issued against a file which is
currently OPEN.,

www fastio.com

T U U N (O O U U LA O A LA OO O OO L N A A L O & K &

http://www.fastio.com/

LET

_ [LET] < variable > = < expression >
This statement is used to assign the value of an expression into a
variable. '

Note that the word LET is optional. Thus, the two examples below
give the same result.

Example 1

1e LET A=3
20 LET B=3
30 LET C=AxB
49 PRINT C
S99 END

RN
15
1§

10 A=
20 B=
30 C=AxB
49 PRINT C
S0 END

3-61

LU

ClibPD www fastio.com

|

http://www.fastio.com/

ClibPD

r

See also

NOTE:

LINE [[STEP1(X1,Y1)]-[STEP1{X2,Y2)[,[<color
code > |[,[BIFIII, <line style >1]]

This statement draws a straight line between two specified points.

The straight line is drawn between: the points whose graphic coor-
dinates are specified by (X1,Y1) and (X2,Y2). Relative coordinates
can be specified for either or both the starting and ending points by
adding STEP. If (X1,Y1) is omitted, the last coordinates used by the
preceding PSET, PRESET, LINE, CONNECT, GET@, or PUT@
statement are assumed; this is the same as specifying STEP(0,0).

< color code > specifies the color to be used in drawing the line; if
omitted, the current foreground color is assumed as the default value.

When the B option is specified, this statement draws a rectangle
whose diagonal dimension is defined by the two points specified. If
the F option is specified together with the B option, the rectangle is
painted; however, the BF option cannot be specified if a <line style >
specification is made. '

The <line style > option specifies the style of line to be drawn; any
16-bit number from &HO0000 to &HFFFF can be specified in this op-
tion. The dot settings in the line drawn will have a one-to-one cor-
respondence with the settings of the 16 bits of the value specified in
the <line style> option; i.e., dots corresponding to ‘‘1’’ bits will be
set, while those corresponding to ‘0’ bits will not be set. If the line
drawn is longer than 16 dots, the dot sequence will be repeated in each
16-dot section.

CIRCLE, COLOR, CONNECT, PRESET, PRESET

After execution of the LINE statement, the last reference pointer is updated to the
values specified for (X2, Y2)

3-62

www . fastio.com

a1,

!

1

0 o A A I O O GO A R kA

IR N

http://www.fastio.com/

19 CLS
20 LINE (100,100)-(20a,26@), ,BF
70 LINE (250, 100) - (350, 200), ,BF
49 FOR I=120 TO 180 STEF 2

S50 LINE (270,1)-(336,1),8

60 NEXT I

70 LINE (490, 100)-(506,200),,B
86 END

kbbb RF KD MR REOEE KKK KK BE KE R BE KUK RE RERE OB OKE O RE K

3-63

kk

ClibPD www fastio.com

r

http://www.fastio.com/

L ClibPD

Example 2

www . fastio.com

~EESSEEERTEERS

10 CLS

20 PRINT“LINE STYLE", "SAMPLE"
25 Y=30

30 FOR I=1 TO 153 STEP 9

40 PRINT "%H";HEX$(I)

S50 LINE (190,Y)—(300,Y),,.]
60 Y=Y+20

76 NEXT 1

e e tm e o em e em em e = b

3-64

T AR AR AR RN AR ED

http://www.fastio.com/

1o CLS

20 LOCATE 1,20,1

39 INPUT"enter color numbers a,b,c,d";A.B,C,D
49 FOR X=1 TO 350 STEF 2

S0 LINE (X,1)-(X,200),A,,%H3555

60 LINE (X+51,1)-(X+51,200),B8,, HAAAA
79 NEXT X

80 FOR X=2 TO Z5¢ STEP 2

90 LINE (X,50)-(X,250),C,,%HAAAA

100 LINE (X+51,50)-(X+51,250),D,,&H5555
110 NEXT X

126 INPUT A:GOTO 1o

enter color nusbers a,b,c,d? 2,3,4,5
?

3-65

pprrrrrrrrrrprrrrrrrerrrreree s

ClibPD www fastio.com

http://www.fastio.com/

LINE INPUT

LINE INPUT[;1l < *“prompt string’’ > ;] < string variable > -

The LINE INPUT statement is used to substitute character strings in-
to string variables from the keyboard during program execution.

As with the INPUT statement, the LINE INPUT statement is used to
substitute values into variables from the keyboard. However, this
statement is only applicable to character strings and string variables,
and only one such string can be input at a time (it is not possible to
specify a list of variables); the maximum length of the input line is
255 characters

Another difference between the INPUT and LINE INPUT
statements is that, whereas the former requires that the string entered
be enclosed in quotation marks if it includes any commas, the latter
substitutes all characters entered into the specified variable. Further,
no question mark is displayed when a LINE INPUT statement is ex-
ecuted unless one has been mcluded in < “prompt string’’ > by the

As with the INPUT statement, a semicclon fdllbwmg LINE INPUT
suppresses the carriage return/hne feed code s0 that the cursor re-
mains on the same line. S

INPUT

19 LINE INPUT "CHARACTER INPUT "jA%
20 FRINT As$
39 END

RN

CHARACTER INPUT ABC ,DE;"FGH
ABC ,DE;"FEH :

13

3-66

www . fastio.com

AR NN EROAAN

http://www.fastio.com/

LINE INPUT #

LINE INPUT # < file number >, <string variable >

As with the INPUT # statement, the LINE INPUT # statement is us-
: ed to read data items from a disk file into variables. o

The LINE INPUT # statement differs from the INPUT # statement
, in that it inputs all characters in the sequential file up to the first car-
riage return encountered before substituting them into <string
variable> (all other delimiting characters recognized by the IN-
PUT # statement are regarded as part of the string being read); the
carriage return code itself is skipped, so that the next LINE INPUT #
statement reads characters starting with the first character following
the carriage return. This statement can be used to read all values writ-
‘ten by a PRINT # statement into one variable; it also allows lines of
an MFBASIC program which has been saved in ASCII format to be

input as data by another program.

See Chapter 5.

3-67

LI

ClibPD www . fastio.com

http://www.fastio.com/

‘l ClibPD

r

IST

LIST [<line number > [-[<line number > 1]]
LIST < file descriptor> [, <line number > [-[<line number>]]]

This command is used to list of all or part of an MFBASIC program
on the display screen.

Executing the LIST command without specifying line numbers or a
file descriptor causes the lines of the program currently contained in
memory to be output to the CRT screen.

If an asterisk is appended to LIST, the LIST is output without line
numbers.

For other formats, the program lines listed and the device to which the
list is output are as follows.

LIST <line number>-<Iline number> \
Lists the program currently contained in memory to the CRT screen,
starting with the first <line number> and ending with the second.

LIST <line number>-
Lists the program currently in memory to the CRT screen, starting
with the specified line and ending with the last line of the program.

LIST -<line number>
Lists all lines of the program from the first line to that specified in
< line number >.

LIST <line number>
Lists the program line specified in <line number>.

LIST <file descriptor>
Outputs the program in memory to the device specified in <file
descriptor > in ASCII format. (This is the same as using the SAVE
statement with the A option to output a program to the specified
device in ASCII format.) Devices which can be specified include the
CRT, RS-232C interface, flexible disk drives, and line printer. If line
numbers are specified, only the specified lines are output.

When a program is being listed, the listing can be terminated before
execution of the command is completed by pressing the BREAK or
CRTL and C keys. MFBASIC always returns to the command level
after execution of a LIST command.

3-68

www . fastio.com

Hau,

{

i1 d

\

MEAMNOOAOOOONOONIN0NRAQ

http://www.fastio.com/

WOk AP R RF & &P RF R AT B AP & LB B & & & A A & M A A

C‘“)’,,)D

LIST
Lists the program currently in memory.

LIST *
Same as above, but outputs the program list without line numbers.

LIST 500
Lists line 500 of the program currently in memory.

LIST 150-
Lists all lines from line 150 to the end of the program in memory.

LIST -1000
Lists all lines from the beginning of the program in memory through
line 1000. '

LIST 150-1000
Lists program lines from 150 through 1000.

LIST “"CMOS:"’
SAVEs the program in memory to the CMOS RAM file in ASCII for-
mat.

3-69

www fastio.com

http://www.fastio.com/

| ClibPD

LLIST

LLIST [<line number > [-[< line number>]]]
Purpose This command lists all or part of the lprogram in memory to the
printer. s :

The LLIST command is used in the same manner as LIST, but out-
put is always directed to the printer connected to the QX-10.
MFBASIC always returns to the command level after execution of a
LLIST command.

See LIST.

3-70

www . fastio.com

HUy,

|

H Y

!

o O O O R SO R S R LI

http://www.fastio.com/

LOAD

LOAD < file descriptor>[,R]

This command loads a program file into memory from a disk drive,
disk image RAM, the RS-232C interface, or ‘““CMOS:"’ file.

Y Specify the device name, primary file name, and extension under
which the file was SAVEd in < file descriptor >. If the device name is
omitted, the currently active drive is assumed; if the extension file
name is omitted, ‘“.BAS”’ is assumed.

When a LOAD command is executed, all files currently open are
closed and all variables and program lines currently resident in
memory are cleared before the specified program is loaded.

- However, if the “R’’ option is appended to the LOAD command, all
data files are left open and the program is RUN as soon as loading is
completed; therefore, LOAD with the ‘‘R>’ option may be used to
chain programs (or segments of the same program).

When programs are chained in this manner, information may be
~ passed betweem them by storing it in disk data files.

CHAIN, MERGE, RUN, SAVE

LOAD “‘LNINPT"

LOAD “‘B:LNINPT.BAS"’

3-71

1O L

ClibPD www . fastio.com

|

http://www.fastio.com/

LOCATE

LOCATE [<X>1I,[<Y>1[, <cursor switch>]]

This statement moves the cursor to a specific position on the display
screen.

The LOCATE statement moves the cursor to the character screen
coordinates specified by <X >, <Y>.In the WIDTH 80 mode, the
value specified for <X > must be in the range from 1 to 80, with 1
indicating the screen column on the far left; in the WIDTH 40 mode,
the value specified for <horizontal position> must be in the range
from 1 to 40. In either mode, the value specified for <Y > must be in
the range from 1 to 20, with 1 indicating the top line of the screen.

Specifying 0 in the <cursor switch> option turns off the cursor, and
specifying 1 turns the cursor on.

The cursor switch is forcibly set to 0 when MFBASIC returns to the
command level; further, regardless of the setting of the cursor
switch, the cursor is displayed when INPUT or LINE INPUT
statements or the INPUTS function are encountered during program
execution.

1o CLS

20 A%="ABCDEFG"
30 LOCATE 5,2
49 PRINT A%

50 LOCATE 10,3
&9 PRINT A%

76 L.LOCATE 15,4
89 PRINT A%

9@ END

ABCDEFG
ABCDEFG
ABCDEFG

3-72

www . fastio.com

ey E

http://www.fastio.com/

FLIE I U R L

LPRINT/LPRINT USING

LPRINT [<list of expressions >]

' LPRINT USING < '’format string’’ >; <list of expressions>

These statements are used to print data on the printer connected to
the QX-10,

These statements are used in the same manner as the PRINT and
PRINT USING statements, but output is directed to the printer in-
stead of the display screen.

PRINT, PRINT USING

3-73

www fastio.com

http://www.fastio.com/

i ClibPD

LSET/RSET

See also
Example

NOTE:

LSET <string variable > = < string expression >
RSET < string variable > = < string expression>

These statements move data into a random file buffer to prepare it
for storage in a random access file with the PUT statement.

If the length of <string expression > is less than the number of bytes
in the random file buffer which were FIELDed to < string variable >,
the LSET statement left-justifies the string data in the field and the
RSET statement right-justifies it. Extra spaces in the random file buf-
fer are padded with blanks. If the length of <string expression> is
greater than the number of bytes FIELDed to <string variable >,
characters are dropped from the right end of <string expression >
when it is moved into the buffer.

Numeric values must be converted to strings before they are LSET or
RSET. See the explanations of the MKI$, MKS$, and MKD$ func-
tions in Chapter 4 for conversion of numeric values to strings.

FIELD, GET, OPEN, PUT

18 A-STRINGS 28,)

20 NE="EPSON'
30 REET A
40 FRINT g
o0 PRINT A3
%
RN
EPSON
EPSH
&k

The LSET and RSET statements can also be used to left or right justify a string in a
non-fielded string variable. For example, the following program lines right justify
string N$ in a 20-character field prepared in variable A$. This can be very useful for
Jformatting printed output.

3-74

www . fastio.com

o O U L O e O O O O O O O GO R & O

http://www.fastio.com/

MERGE

MERGE < file descriptor>

This command merges a program from a disk drive, disk image.
RAM, RS-232C interface, or the ‘“CMOS:”’ file with the program
currently in memory.

Specify the device name, primary file name, and extension under
which the file was SAVEd in < file descriptor>. If the device name is
omitted, the currently active drive is assumed; if the extension is
omitted, ‘‘.BAS”’ is assumed. The file being merged must have been
SAVEd in ASCII format. (Otherwise, a ‘‘Bad file mode’’ error will
occur.)

If any lines of the program being merged have the same numbers as
lines of the program in memory, the merged lines will replace the cor-
responding lines in memory. Thus, MERGEing may be thought of as
‘“‘inserting’’ program lines from a storage device into the program in
memory.

MFBASIC always returns to the command level after execution of a
MERGE command.

SAVE

MERGE ““TEST1"
MERGE ‘“CMOS:TEST1.BAS"’

3-75

"M_H_H—H_M_M_Jrﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ—H_JI_H_H_JI_.H_

ClihPD www . fastio.com

http://www.fastio.com/

	./3-038.tif
	./3-039.tif
	./3-040.tif
	./3-041.tif
	./3-042.tif
	./3-043.tif
	./3-044.tif
	./3-045.tif
	./3-046.tif
	./3-047.tif
	./3-048.tif
	./3-049.tif
	./3-050.tif
	./3-051.tif
	./3-052.tif
	./3-053.tif
	./3-054.tif
	./3-055.tif
	./3-056.tif
	./3-057.tif
	./3-058.tif
	./3-059.tif
	./3-060.tif
	./3-061.tif
	./3-062.tif
	./3-063.tif
	./3-064.tif
	./3-065.tif
	./3-066.tif
	./3-067.tif
	./3-068.tif
	./3-069.tif
	./3-070.tif
	./3-071.tif
	./3-072.tif
	./3-073.tif
	./3-074.tif
	./3-075.tif

