- Chapter 2
Specifications of other BIOS

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

Chapter 2 BIOS Subroutine Specifications

1. General

This chapter describes specifications for the principle
subroutines used within BIOS. Most of these subroutines are
located in BIOS2, 3, 4, and 5 in the system bank, and cannot be
called directly from user programs. '

Note that the addresses shown in the program lists are not fixed,
but vary according to the version of MultiFonts CP/M® used.

2. Subroutine Specifications

2.1 Subroutine SIGNMSG (BIOS2)
(1) Description of processing
The SIGNMSG subroutine clears the display screen and
displays the MultiFonts CP/M® opening message.
(2) Call procedure
a) Entry parameters: None
CALL SIGMSG

b) Return information: None

2.2 Subroutine KBCOM (BIOS1l)
(1) Description of procéssing .
This subroutine outputs a l-byte command to the
keyboard. '
(2) Call procedure
a) Entry parameters
Register C = Command to be output
CALL KBCOM
b) Return information: None

2.3 Subroutine CALBRT (BIOS2)

(1) Description of processing
This subroutine outputs a calibrate command to the
specified flexible disk drive.

(2) Call procedure
a) Entry parameters

The drive number of the drive to which the
command is to be output is set in DRIVE (address
OFEO1lH) in the BIOS common data area. (0 is
specified for drive A, 1 for drive B, 2 for drive

2-1

wvvwfastio.com

http://www.fastio.com/

ChhPDF -

C, and 3 for drive D.)
CALL CALBRT
b) Return information: None

However, the status is saved in FDBSY (address
0FE1l1H) in the BIOS common area. See the
description of the BIOS common data area for
details. '

2.4 Subroutine NSECRW (BIOS2)
(1) Description of processing

This subroutine outputs or inputs data from the
flexible disk specified in parameters set in the BIOS
common data area.

(2) Call procedure
a) Entry parameters

Access to the flexible disk drive is governed by
settings made in DRIVE (OFEOlH, the drive number),
TRACK (OFEO2H, the track number), HEAD (OFEO3H, the
head position), SECTOR (0OFE0O4H, the sector number),
SECTCT (OFEO05H, the number of bytes to be read or
written), and RWFLG (OFEQOH, set to 0 for writes and
to other than 0 for reads) in the BIOS common data
area.

CALL NSECRW

b) Return information
A =0 : Normal completion (72 flag=l)
A # 0 : Error (2 flag=0)

If an error occurs, the error status is indicated in
FDSTS (address OFED3H) and FDBSY (address OFEllH) in
BIOSl1. See the description of the BIOS common data
area for details.

2.5 Subroutine WRITEHST (BIOS2)
(1) Description of processing

This subroutine writes data to a flexible disk drive
in accordance with parameters set in the BIOS common
data area. Logical data is set in the system table.

(2) Call procedure
a) Entry parameters

Access to the flexible disk drive is governed by
settings made in HSTDSK (0FC44H, the drive number),
HSTTRK (0OFC45H, the track number), and HSTSEC
(0FC47H, the number of sectors to be written). For
HSTSEC, one logical sector corresponds to four
physical sectors; therefore, one logical sector
consists of 1024 bytes.

CALL WRITEHST

wvvwfastio.com

http://www.fastio.com/

b) Return information: None

However, a return code is saved in ERFLAG (address
OFC50d) in the BIOS common data area. Normal
completion is indicated when the return code is 0,
and an error is indicated if it is other than 0.
Also, the status at that time is saved in FDBSY
(address O0FE11H).

2.6 Subroutine DMASET (BIOS2)
(1) Description of processing

This subroutine makes settings required for making DMA
reads or writes to flexible disks as specified by
parameters set in the BIOS common data area.

(2) Call procedure
a) Entry parameters

Settings to be made are specified in advance in
DBADDR (address OFEQO6H, the buffer address) and
SECTCT (address OFE0O5H, the number of sectors) in
the BIOS common data area.

CALL DMASET

b) Return information: None

2.7 Subroutine COMMD (BIOS2)
(1) Description of processing
This subroutine outputs commands set in the BIOS
common data area to the flexible disk drive (uPD765).
(2) Call procedure
a) Entry parameters

Commands to be output are set in FDCOM (address
OFE0O8H) in the BIOS common data area, and the number
of commands to be output is set in register B.

CALL COMMD
b) Return information: None

Note:

All interrupts other than those from the flexible disk drive are
masked (inhibited) upon execution of this subroutine; therefore,
the mask bits must be restored to their original conditions by
the flexible disk drive interrupt processing routine or routine
for processing execution results.

ChibPDF - www.fastio.com

http://www.fastio.com/

Chapter 3

Interrupt Processing Routines

ChibPDF - www.fastio.com

http://www.fastio.com/

Chapter 3 Interrupt Processing Routines

1. General

BIOS provides interrupt processing only for the following four
devices.

a) Keyboard (puPD7201)
b) Flexible disk controller (uPD765)
c) RS-232C interface (uPD7201)

d) Light pen (optional) (uPD7220)

However, the MASKI routine uses interrupt processing to check
whether or not option cards are installed when it is called to
reset an interrupt mask. The interrupt processing routine does
the following. '

a) Reads the status of devices and sets status flags.

b) Reads data from devices (excluding the flexible disk
controller).

There is no way of knowing what states will result in generation
of an interrupt, nor or what memory bank will be selected at the
time an interrupt occurs. Therefore, the following processing
must be performed at the beginning of the interrupt processing
routine.

a) The stack pointer must be saved somewhere between
addresses 0EOOOH and OFFFFH of the common data area and
a new stack pointer must be established elsewhere in
that area.

b) The number of the currently selected memory bank must be
read (by checking the settings of bits 4 to 7 of the
data obtained by reading I/O port 030H), then that
number must be saved and the bank switched to that
containing the program which actually handles the
interrupt processing. This is done by writing the bank
number to I/0 port 018H.

c) Execution must be transferred to the interrupt
processing routine by a JP instruction, etc.

d) The interrupt processing routine must save the stack
pointer in the common data area of memory and establish
a new stack pointer in its own bank.

e) The contents of all registers must be saved.

f) Interrupt processing is done after the above steps have
been completed.

Calls to BIOS routines cannot be made from within the interrupt
processing routine.

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

Correct results and continued execution of the program prepared
are not assured unless this processing is done.

2. Preparation of interrupt processing routines

The only options supported by BIOS are the RS-232C interfaces

and the light pen. Therefore, interrupt processing routines must
be prepared when other options are to be used. Points to be
considered when preparing such routines are described below.

(1) All option interrupts are inhibited after a cold start

has been made; in other words, all interrupt masks are set.
Therefore, the interrupt mask bit corresponding to the device to
be used must be reset (to enable interrupts). This is done by
calling the MASKI routine described in Chapter 1. See Chapter 1
for details.

(2) After calling the MASKI routine and resetting the interrupt
mask, set the execution address of the interrupt processing
routine in the BIOS interrupt vector table. This vector table is
contained in BIOSl, and its starting address is fixed at OFD80H.
The table consists of 16 4-byte blocks.

The option interrupt level is returned in the return information
after normal termination of the MASKI routine. Set the exectuion
address of the interrupt processing routine in the vector table
according to that level.

The interrupt levels and corresponding addresses in the vector
table are as follows.

Vector address Interrupt level/interrupt device
OFD80H Power failure
OFD84H Software timer 1
- OFD88H | Option level 1 (slots 1~ 5)
OFD8CH Option level 2 (slots 17 5)
OFD90H Keyboard or main board RS-232C interface
0FD94H Light pen
OFD98H Flexible disk controller
OFD 9CH Reserved (setting inhibited)
OFDA OH Printer
OFDA4H Option level 3 (slot 1)
OFDASH Calender clock
OFDACH option level 4 (slot 2)
OFDB OH option level 5 (slot 3)
OFDB4H Software timer 2
OFDB8H Option level 6 (slot 4)
OFDBCH Option level 7 (slot 5)

wvvwfastio.com

http://www.fastio.com/

ChhPDF -

The interrupt sequence is performed as follows.

When an interrupt occurs, the interrupt controller (an Intel
8259A) outputs a CALL instruction to the CPU for the vector
address corresponding to the interrupt level; i.e., a CALL is
made to the vector address corresponding to the interrupt level.

Example: When a keyboard interrupt is generated, three
bytes (0CDH, 090H, and OFDH) are output to the
CPU. These constitute the following instruction.

CALL OFD90H

Thus, all that is necessary is to execute a jump instruction to
the starting address in the vector table of the interrupt
processing routine which corresponds to the interrupt level. The
vector table entry consists of 4 bytes, which are set in the
following format.

00H, 0OC3H, XX, XX

) W

: Starting address of
interrupt processing
routine

Jump instruction

*If necessary, set with
a l-byte instruction
(PUSH, EI, etc.)

This procedure passes control to the interrupt processing
routine.

(3) The interrupt processing routine must satisfy the
requirements outlined in paragraphs a) to e) above. In other
words, items a) to c) must be loaded into the common data area in
memory . ‘

Normally, CCP, BDOS, and BIOSl are loaded into the resident area

“of memory; however, if BDOS is not called, addresses 0EOO0OH to

OF7FFH can be used in any manner desired.

To return control to CP/M upon completion of the processing
program, simply call the WBOOT routine.

(4) Before returning from the interrupt processing routine
after interrupt processing has been completed, be sure to post
completion of interrupt processing to the interrupt controller
and reenable interrupts. This is done by coding the following
steps.

www fastio.com

http://www.fastio.com/

ChhPDF -

LD A, B2oH s MORMAL EOQT.

OouT (AgH) , A FRESTORE REGISTERS.
EI SENABLE INTERRUPT.
RETI s RETURN.

Note that 020H is written to I/O port 08H; this posts completion
of interrupt processing to the interrupt controller. However,
this applies to vector addresses from OFDS80H to OFDICH for 7
interrupt levels; when the vector address is from OFDAOH to
OFDBCH, it is also necessary to write 020H to I/0 port OCH.

LD A, @RoH
ouT (agH) , A § NORMAL. EOT
ouT (D2CHY . A i

The reason for this is that there are two interrupt controllers,
which are connected in cascade. As indicated earlier, this
provides for up to 15 interrupt control levels. I/0 port 08H is
the address for the master interrupt controller, and 0CH is the
address for the slave interrupt controller.

(5) The highest interrupt level is that for power failure
interrupts and the lowest is option level 7.

Other interrupts are inhibited when control is passed to an
interrupt processing routine. Therefore, all other interrupts
are held pending even when an interrupt of the lowest level
(option level 7) is being processed. Pending interrupts are
processed when the EI (enable interrupts) instruction is
executed.

If you wish to perform multi-level interrupt processing, output
the EI instruction at the beginning of the interrupt processing
routine. After doing this, any higher level interrupts occurring
during processing routine execution will be handled immediately.

(6) All interrupts other than those from the flexible disk
controller are masked during flexible disk access. Therefore,
other interrupts are held pending until completion is posted from
the device or a software timeout is detected.

(7) Interrupt masks

Interrupt masks can be set for the I/O ports indicated below. The
settings fo the masks can also be read. Interrupts are inhibited
when corresponding mask bits are set to "1" and enabled when they
are set to "1".

wvvwfastio.com

http://www.fastio.com/

- 1/0 port 09H——7 6 5 4 3 2 1 O

(MASTER) | t
Power failure interrupt

Software timer 1 interrupt

Option level 1 interrupt

Option level 2 interrupt

Keyboard or standard RS-232C
interface interrupt

CRT or light pen interrupt

Flexible disk controller interrupt

Slave interrupt controller interrupt

I/0 port ODH —=7 6 5 4 3 2 1 (O=—Printer interrupt
(SLAVE) 4
Option level 3 interrupt

Calender clock interrupt

Option level 4 interrupt

Option level 5 interrupt

Software timer 2 interrupt

Option level 6 interrupt

Option level 7 interrupt

(8) Power failure interrupt routine

With the QX-10, it is possible to execute from 400 to 1000
program steps between the time a power failure is detected
and the time the power actually drops below minimum operating
levels. The user can make use of this time to store vital
data in CMOS RAM (2048 bytes). However, this operation is
not assured by hardware and thus there is no positive
assurance that it will be carried out.

The power failure interrupt routine of BIOS performs the
following processing.

o Disables CMOS RAM.
O Resets DMA.

ChibPDF - www.fastio.com \

http://www.fastio.com/

ChhPDF -

The user can use independently developed interrupt processing
procedures instead of the above routine. Naturally, such
routines must be kept constantly resident in memory; however,
it is not necessary for them to be located in the common data
area. An example of user setup for a power failure interrupt
processing routine is shown below. This program consists of
two sections. One sets the jump address to the user
interrupt processing routine, and the other is actually
executed when a power failure occurs.

(i) Jumps to a user processing routine in BIOS

FOINT EG aFDECH2
LD DE, (PDIMT? F DE=FOWER FATILURE JUMP ADDRESS.
LD Hi., FRNUC 5
LD BC, FWNUCE-PRNLIC
LDIR $8ET EXIT JUMP ROUTINE.
FRINUC: LD A, BloH
ouT (B18H) A
JF FREXTT s JUMP TO USER ROUTINE.
FRNUCE EQL %

The above program may be executed to rewrite the BIOS power
failure routine with the seven bytes from PWNUC to PWNUCE.
Since there are only 12 bytes available in the BIOS area for
this purpose, the length of the rewritten portion must fit
into that space. The address of the main section of the user
program should be indicated for the label in JP PWEXIT. This
main section is the program which actually saves data in CMOS
RAM,

(ii) Example of program for saving data in CMOS RAM

FWEXIT: LD A, 1M
ouT (@2EH) , A FENABLE CMOS RAM,
LD DE, CMOS 3
LD HL, SVDATA jHL=DATA ADDRESS.
L.D EC, DLNG ;
LDIR FSAVE CMOS.
HAL.T FSTOR!
CHMOS EGL BEOHEH 1 CMOS TOF ADDRESS.
DLMNG EGL 2048 PCMOS LENGTH.

CMOS RAM is assigned to the 2048 bytes starting at address
08000H, and is normally disabled. It may be enabled by
writing 0l1H to I/0 port 020H. However, once CMOS is enabled,
memory from 08800H to ODFFFH cannot be accessed. This means
that the PWEXIT program shown in (ii) above and the data
indicated by SVDATA must be located in the area from address
0H to 07FFFH. The program may be located in any memory bank.
In (i) above, the bank is selected by LD A,010H of PWNUC;
this may be changed as necessary to select the bank desired.

wvvwfastio.com

http://www.fastio.com/

ChhPDF -

(9) Interrupt processing for option cards prepared by users

When the user builds an interface using the universal card,
processing for interrupts from that interface is performed as
follows. See the "QX-10 Technical Manual-Hardware operations"
concerning the option board interface.

When the option interrupt level is set to 1 or 2, interrupts are
generated at that level regardless of the slot into which the
card is inserted. However, the level of interrupts generated
varies according to slot for interrupt levels 3, 4, 5, 6, and 7.

Correspondence between the option interrupt levels and the option
slots is as follows.

Slot 1: Option interrupt level 3
Slot 2: Option interrupt level 4
Slot 3: Option interrupt level 5
Slot 4: Option interrupt level 6
Slot 5: Option interrupt level 7

Since the interrupt level is determined by the slot into which
the option card is inserted, the corresponding processing address
must be set in the vector table at the applicable point. The
vector table entry consists of four bytes; these are filled with
a NOP instruction and a jump instruction to the processing
routine. The program which does this must also reset the
corresponding interrupt mask. However, there is no way of
predicting when interrupts will be generated or what memory bank
will be selected at the time. Therefore, the interrupt
processing routine must be loaded into common data area. In
order to prevent destroying BIOS1l, the routine must be limited to
the 5632 bytes from address O0EQO0O0H to OF5FFH; further, CCP and
BDOS cannot be used in this case. If BDOS is to be used, it must
be limited to the 2048 bytes from O0EO0OH to OE7FFH. (This also
includes space for the stack.)

Two program examples are shown below. One sets the NOP and jump
instructions and resets the interrupt mask in the vector table,
and the other is used for entering/exiting the interrupt
processing routine.

(i) Setting NOP and the JUMP instruction

INTTEL EQU BFDBGH P INTERRUFT VECTOR TOF ADDR.
LYSRST E6U H11101111E 3 LEVEL 5 MASK OFF.

DI iDISARLE INTERRUFT.

LD DE, INTTEL+4%1235 LEVEL 5 VECTOR.

) ML, LVSIP ;

LD BC, 4 :

LDIR PSET JUMP SEQUENDE.

wvvwfastio.com

http://www.fastio.com/

IN A, (8DH) sPIC CURRENT MASE.
AND LYERST FRESET LEVES MASE.
aouT (aDH) A]
=1 i

LVEIP: MNOF ;
JE LVEINT FEXECUTE INTERRUFPT HANDLER.

TR Y

After execution of this program, execution jumps to the LV5INT
label address when an option level 5 interrupt is generated. See
Chapter 4 for details on the instructions marked with an asterisk.

(ii) Interrupt processing routine entry/exit

LVSINT: LD (8VSF), 8P 1SAVE CURRENT STACK FOINTER.
LD SF, INTSTACK $SET NEW STACK.
FUSH AF $SAVE ALL REGISTER.
FUSH BC
FUSH DE
FUSH HL
FUSH IX
FUSH 1Y
EX AF , AF*
EXX
FUSH AF
FUSH BC
FUSH DE
FUSH HL

NEEOCSI E 88 o8B BE AR @R CEE EE R

FROCESSING ROUTINE => THIS ROUTINE MUST NOT INCLUDE CALLS Ta
BIOS OR BDOS. i

FOF Hi.. FRESTORE ALl REGISTERS.
FOF DE H

F O Be H

FF AF i

EXX H

EX ~F, AFT 5

e 1y H

FOE X i

PO i H

FOF DE i

PO BC H

L.D £y, 20H H

s NORMAL EOT.

ChibPDF - www.fastio.com

http://www.fastio.com/

ouT (@8H) , A s MASTER.
OuT (@CH) , A 3 5LAVE.
FOF AF ;
LD SF, (SYSF) 3RECOVER CURRENT STACK POINTER.
ET s ENAELE INTERRUPT.
RETI 3 CONT INUE .
.
VTR DS 2 FGTACK FOINTER SAVE AREA.
INTSTACK EQU PEBGOH s TEMPORARY STACK AREA.

(10) Interrupt processing using the calendar clock

The calendar clock of the QX-10 can be used to generate
interrupts at intervals of minutes, seconds, or hours.
Preparation of an interrupt processing routine for interrupts
from the calendar clock thus makes it possible to perform
prescribed processing at fixed intervals. However, all or part
of the interrupt processing routine must be included in the
common data area of memory (the area from address OEO0OOH to
OF5FFH, or from OEQOOOH to OE7FFH).

(i) Setting the interrupt processing routine address in
the vector table

INTTEL Ea e DEaH P INTERRUPT VECTOR TOP ADDR.
COMRST E $11111011E s CALENDAR CLOCE MASE OFF.
0I iDISABLE INTERRUPT.
" DE, INTTBRL+4%16; CALENDAR CLOCK INT. VECTOR.
LD ML, CLINT H
D BC. 4 H
LDIR s SET JUMP SEGUENCE.
N Py (BDHI $FIC CURRENT MASK.
AND COMRST sRESET CALENDAR CLOCK MASk.
aur (aDHY A H
£l F ENARLE INTERRUFT.
CLINT: MO 3
JE CLOETNT PEXECUT INTERRUFT HANDLER.

CLCKINT is the starting address of the interrupt processing

routine. After execution of this program, processing will jump
to CLCKINT whenever a calendar clock interrupt is generated.

Procedures for setting the hour, minute, and second are as

follows. See (9) above for an example of an interrupt processing
- routine.

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

(ii) Setting the calendar clock

This setting must be made
on or the reset button is
TIMDAT routine of BIOS is

REREG

RDREG

CHELF

SETTIME:

RAMAD

INTTIME:

Ef
E
LD
ouT
N
AND
JR
LD
auT
LD
QuT
L0
L.D
LD
LD
aur
ING
QUTI
JR
LD
OuT
LD
ouT

DR

DR

whenever the QX-10's power is turned

pressed. This also applies when the
called.

BEDH FSELECT RAM ADDRESS.

GECH s RAM DATA.

0, @Ak

(RSREG) , A
A, (RDREG)
BEOH

NZ, CHEUF
A, DEH
(RSREG) , A
A, OBAH
(RDREG) , A
DE , RAMAD

FSELECT CONTROL REGL.
.iF'.'Eer%D CONTROL. REG1.
sUFPDATE CYCLE?

s YES.

FOELECT CONTROL REG2.

i STOF UPDATE.

iRAM ADDRESS TABRLE,

&

ML, INTTIME §INT. TIME TABLE.
BC, @330 IREG B=3, REG C=RDREG.

A, (DE) $SET H,M, 8.

(RSREG) ,A 3

DE ;

NZ,SETTIME 3

A, BEH s SELECT CONTROL REGZ.

(REREG) , A 3

A, B2AH s ENABLE CALENDAR CLOCK INT.
(RDREG) ,A j

=T FHOURS, MINUTES, SECONDS (RAM ADDR.)
@, BIOH, @15H oM TOM 158 (BCD DATA)

The setting for the QX-10's calendar clock is made in BCD code

using 24-hour representation.
made in BCD code.

Therefore, the setting must be

The addresses in RAM for the hour, minute, and second are as
shown below.

Hour:

Minute:

Second:

The RAM address is

I/0 port 03DH.

wvvw fastio.com

05H
03H
0lH

(set with 00H to 023H)
(set with 00H to 059H)
(set with 00H to 059H)

selected by writing a corresponding number to

http://www.fastio.com/

ChhPDF -

The example above causes a calendar clock interrupt to be
generated each day when the time reaches 00:30:15. Whether or
not the hour, minute, or second data is used in controlling the
timing at which interrupts are generated is determined by the
settings of bits 7 and 6 of each value. 1If these bits are set to
"1", the relevant data is not used in controlling interrupt

timing.
Examples:

Generating interrupts at 10 second intervals
INTTIME: DB O0COH, 0COH, 0l10H
Generating interrupts at 15 minute intervals
INTTIME: DB O0COH, 015H, OCOH
Generating interrupts at 2 hour intervals
INTTIME: DB 02H, 0CO0H, 0COH
(iii) Control register 3 must be read by the interrupt

processing routine as shown below. This serves to
reset the calendar clock interrupt flag.

1D £, BOH FPEELECT CONTROL. REGS.
auT (2XZDH) A i
IN A, (0E SCH) FREAD CONTROL REGE.

(iv) The CMOS real-time clock IC used is a Hitachi HD146818
(compatible with the Motorola MCl146818). This is a time-of-day
clock and calendar whic¢h counts seconds, minutes, and hours of
the day, as well as days of the week and the date, month, and
year. Correction for leap years is done automatically.

The device includes 50 bytes of static RAM, and operates on a
time base of 32.768 kHz. It also provides programmable periodic
interrupt generation and square wave output. Backup is provided
by a NiCd rechargeable battery.

Signals applicable to operation of the real-time calendar clock
IC are as shown in the table below,.

v fastio.com

http://www.fastio.com/

Pin
No.

Signal
Name

I/0

Function

0sCl

External clock signal (32.768 kHz).

0sc2

External clock signal (32.768 kHz). Open
during input.

to
11

ADO
to
AD7

I/0

Bidirectional bus lines through which the
CPU transfers the RTC access address and
data. The access address is transferred
during the first half of the cycle, and
data is transferred during the second
half. The address signal level is
determined at the falling edge of M.

The impedance of the data bus driver and
tri-state output buffer is high except
during RTC data output.

12

Vss

GND

13

Chip select.

14

Strobe signal used to read the address
from the address bus. The address is read
into the RTC at the falling edge of this
signal.

15

=l

Input terminal for the R/W signal from
the CPU. The CPU sets W to H to read
the RTC, and to L to write data to the
RTC.

17

@l

System clock input terminal. The CPU
reads data from the RTC while G is H,

and writes data to the RTC at the falling
edge of G.

18

RTC reset signal. Resets the control
registers and user RAM. RTC operation
resumes when RES returns to L. This
signal does not affect the clock or
calendar RAM.

19

IRQ

CPU interrupt request signal (active low).

22

PS

When this signal becomes L, the Valid RAM
and Times (VRT) bit is cleared to 0; the
CPU should then initialize the RTC and
set the VRT bit to 1 to prepare for a
power failure.

24

Vcc

Power supply

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

(11) software timer interrupts

The 0X-10 is equipped_with two software timers. One of these
counts down in 1/2x10° -second units, and the other counts

down in 1/1200-second units. Both generate interrupts when 0 is
reached.. The counters consist of 16 bits, and either a binary
count or BCD count can be selected. Therefore, the maximum timer
intervals are 32.8 ms or 54,6 seconds, respectively. The timer
which counts down in 1/2x10° second units is designated

software timer 1, or the fast timer; and that which counts down

in 1/1200 second units is designated software timer 2, or the
slow timer.

An example of interrupt processing using the software timers is
shown below.

Counter value set

[Interrupt mask reset

(}nterrupt routiné:)

Timer started

Interrupt defection
> Phd flag ON

Interrupt
detection
flag on?

(Return }»

Interrupt
processing

wvvwfastio.com

http://www.fastio.com/

ChhPDF -

(i) Setting the counter value

The counter value is set as follows.

TCTRL.
TONTF
TONTS

COUNTEL
COUNTSL
COUNTHL
COUNTHU

The program above writes 070H and OBOH to I/O port 070H.
meanings of the corresponding bit patterns are as follows.

7 6 5 4
——’
1 1

EC
Eau
EGH

LD
ouT
Ln
ouT
LD
ouT

LD
ouT
LD
QuT
LD
ouT

EQu
EC)
DW

ECid
ECH
D

@aH
B2H
a1

B, O70H
(TCTRL) , &
A, (COUNTSL)
(TCNTS) , A
A, (COUNTSL)
(TCNTS) , A

A, OEOH
(TCTRL) , A
A, (COUNTHL)
(TCNTE) , 6
A, (COUNTHU)
(TCNTF) , A&

&
$4-1
1260

%
$+1
BFFFFH

wvvwfastio.com

sFAST COUNTER.

F SLOW COUNTER.
SELECT TIMER SLOW.
SET LOWER VALUE.

SET UPFER VALUE.

R ‘RE my =Y am AR

SELECT TIMER FAST.
SET LOWER VALUE.,

SET UFFER VALUE.

“m cm% cmn A% xx caE

i1 SEC.

$E2.8 MILLYI SEC.

Software timer

0l: Software timer 2 (slow)
10: Software timer 2 (fast)

The

Counter counts down in binary mode

' 1: Counter counts down in BCD mode.
Fixed

Counter selection

00 and 11 must not be specified.

http://www.fastio.com/

ChhPDF -

(ii) Example of setting the interrupt vector address and
resetting the interrupt mask

MASE T E aF&SAH s R1058 ENTRY
iNTTHL E arpaoH FIMTERRUPT VECTOR TOF ADDRESS.
D

DE, INTTBEL+4% 15 SOFTWARE TIMER FAST VECTOR.
ML, STINTF
BC, 4

H

™ — i
v Reileivilelelsi]

83 ‘s8 mm

SET JUMP SEQUENCE. (FAST)
DE, INTTBL+4%135 SOFTWARE TIMER SLOW VECTOR.
HL,B8TINTS 3

)

L B, 4 ;

LDIR 1SET JUMF SEQUENCE. (SLOW)
STINTF: PUSH AF :

JE STIML 1SOFTWARE TIMER FAST INT. HANDLER.
STINTS: PUSH AF :

JE STIMR : SOFTWARE TIMER SLOW INT. HANDLER.

(iii) Example of interrupt processing routine

STIMi: LD Ayl 1 SOFTWARE TIMER FAST.
IR SETF

STIM2: LD A, B2HH : SOFTWARE TIMER SLOW.
ouT (BCH) , A s NORMAL. EOQI. (SLAVE)
LD A, 2 :

SETF: LD (INTD) , A 1SET INTERRUFT ID.
LD A, O2eH s
ouT (@8H) , A §NORMAL EOI. (MASTER)
FOF AF s RECOVER REGISTER.
RETI 3 RETURN.

INTD EQU BE7FFH ;

The interrupt processing program above must be loaded into the
resident area of memory (starting at address OEOOOH). The
interrupt device (software timer 1 or software timer 2) can be
determined from the contents of INTD (address OE7FFH) by user
programs to perform subsequent processing accordingly.

(iv) sStarting the software timers

Counter operatlon is startlng by writing data to I/O port 018H.
However, since this port is used for switching memory banks,
the following procedure must be used.

v fastio.com

http://www.fastio.com/

IN
AND
OR
ouT

Ay (DE0H)
aF oH

22H
(218H)

FREAD CURRENT BANE NO.

3

SHET SOFTWARE TIMER TRIBGER.
FBTART TIMER.

This procedure is effective for both software timer 1 and
software timer 2.

ChhPDF -

wvvwfastio.com

3-16

http://www.fastio.com/

	./pg2_2-00.tif
	./pg2_2-01.tif
	./pg2_2-02.tif
	./pg2_2-03.tif
	./pg2_3-00.tif
	./pg2_3-01.tif
	./pg2_3-02.tif
	./pg2_3-03.tif
	./pg2_3-04.tif
	./pg2_3-05.tif
	./pg2_3-06.tif
	./pg2_3-07.tif
	./pg2_3-08.tif
	./pg2_3-09.tif
	./pg2_3-10.tif
	./pg2_3-11.tif
	./pg2_3-12.tif
	./pg2_3-13.tif
	./pg2_3-14.tif
	./pg2_3-15.tif
	./pg2_3-16.tif

