(d) Using a branch telephone Communication is established when a number is dialed from a branch telephone and the A or O command is executed after the counterpart answered. The handset must be hooked on after command execution so that it will not puck up noise.

Communication through a branch telephone can also be established by dialing a number with the D command with W option. In this case, the line is not disconnected even when the handset is hooked on. It can be disconnected only by executing the H command and hanging up the handset.

(e) How to answer When the S2 register is nonzero, the modem answers the phone automatically (auto answering); it counts rings to the value sepcified in the S2 register and executes the A command automatically. Therefore, the line is always connected in the ANS mode when the auto answering function is enabled.

The auto answering function is disabled when the S2 register is loaded with 0. Even in this state, the modem informs the main unit of ring detection by sending it return code 8. When a ring is detected, execute the A or O command to establish communication.

(f) Handset
The handset can be turned on or off using the V command. Since whether the handset is on or off does not affect the communication function of the modem, the communication line can be monitored by turning on the handset during data transmission. However, noises caught by the handset microphone may enter the

line and disturb communication.

(g) Acoustic coupler
The modem cartridge serves as an acoustic coupler when furnished
with an optional acoustic coupler unit. In this case, the
telephone line is disconnected from the modem.

The only differences between the coupler and modem are that 1) with the coupler, the computer sends data through the telephone mouthpiece while the modem sends it directly via the telephone line, and 2) with the coupler, the computer receives data through the telephone earpiece, while the modem gets it directly from the telephone line. The function of commands are the same for both couplers and modems except that the coupler is not provided with the dialing function.

If both the handset and coupler are connected at the same time, neither of them can be used.

5.1.7.3 DMM cartridge

(1) General

The Digital MultiMeter (DMM) cartridge is an intelligent measuring unit which incorporates an A/D conversion IC and 4-bit

The DMM cartridge transfers data and commands via the PINE cartridge interface in 600-bps asynchronous serial communication mode. The cartridge interface is set to the IO mode and used as the control signal line (Power ON/OFF, RDY).

(2) Structure

(a) DMM cartridge I/O address space

R/W	I/0 address	Register name	bit7	bi t6	bit5	bit4	bit3	bi t2	bit1	bi t0	Remarks
R e	P10H	CIOR	Out		port onte					CDBO	
a	P11H	4									·
d	P12H		Not used (access inhibited)								
ŭ	P13H						•				·
W	P10H	CIOR	0	0	0	CDB4	D	on't	car	e	
r	P11H										
i	P12H		Not used (access inhibited)								
t	P13H			400	-u (U				· · ·		
е											

CIOR:

Cartridge IO register
CDB0: Command (Range switch command) RDY signal

= 0: Ready

= 1: Busy

CDB4: Power-on/off control signal

= 0: Power-on

1: Power-off

In addition to the above signal lines, CTXD and CRXD are used for asynchronous serial communication (600 bps, 8 data bits, no parity, 1 stop bit). In actual operation, data is sent or received via ARTDOR (P14H) or ARTDIR (P14H). The serial switch must be set to the cartridge SIO mode.

```
MODEM SAMPLE PROGRAM
                                                                NOTE :
                                                                             This sample program is for using MODEM
                                                                             cartridge,
                                                                <> assemble condition <>
                                                                <> loading address <>
                                                                .PHASE 100H
                                                                constant values <>
                                                                IO registers
                                                                                                                        Switch register
Cartridge switch 1
Cartridge switch 2
IO control register
CRS signal bit
                                                  ŹSWR
                                                                             EQU
EQU
0018
                                                                                           18H
0002
                                                  ZCSW1
ZCSW0
                                                                                           02H
                                                                                           01H
0019
                                                  ZIOCTLR
BZCRS
                                                                                           19H
                                                                             EOU
                                                               System area
F005
                                                  RZSWR
                                                                                          0F005H
0F006H
0F53FH
                                                                                                                        SWR data setting area IOCTLR data setting area Cartridge device code
F006
                                                  RZIOCTLR
CRGDEV
F53F
                                                                             EQU
                                                                BIOS entry (RBIOS2)
                                                  ₩ВООТ
                                                                                                                      Warm Hoot
Serial Input/Qutput
Console status
Console in
Console out
EB03
                                                                             FOL
                                                                                           OFB03H
EB54
EB06
                                                  RS10X
CONST
                                                                             EQU
                                                                                           WBOOT
WBOOT
                                                                                                         +03H
EB09
                                                  CONTN
                                                                             FOU
                                                                                           WBOOT
                                                                                                         +06H
                                                  CONOUT
                                                                             EQU
                                                                                           WBOOT
                                                                                                         +09H
                                                               RSIOX parameter
0010
                                                  RSOPN
                                                                                                                      ; Open code
                                                                                           10H
                                                                             EQU
                                                                                                                      Close code;
Input status code;
Oltput status code;
Get code;
Put code
0020
0030
                                                  RSCLS
                                                                             EQU
EQU
                                                                                           20H
                                                                                           30H
                                                  RSIST
                                                                             EQU
EQU
0040
                                                  RSOST
RSGET
                                                                                           40H
50H
0060
                                                  RSPUT
                                                                                           60H
0001
                                                  ŔS232
                                                                             EQU
                                                                                           01H
                                                                                                                         RS-232C using
                                                                             EQU
EQU
                                                                                           02H
03H
                                                                                                                        SIO using
Cartridge SIO using
0002
                                                  STO
0003
                                                   CSIO
                                                                Cartridge mode
                                                  DBMODE
HSMODE
                                                                                                                      ; DB mode
; HS mode
; IO mode
; OT mode
                                                                                           00000000B
01000000B
10000000B
0000
                                                                             EQU
0080
                                                   IOMODE
                                                                             EQU
00C0
                                                  OTMODE
                                                                             EQU
                                                                                           11000000B
                                                  DVMDN
COOF
                                                                             EQU
                                                                                           00001111B
                                                                                                                      ; Device code for Modem
                                                  ĆR
000D
                                                                                                                      ; Carriage return.
; Line feed.
                                                                             EOU
                                                                                           ODH
000A
                                                  LF
                                                  ÉCVSZ
0200
                                                                             EQU
                                                                                           200H
                                                                                                                      ; Receive buffer size.
                                                                             MAIN PROGRAM
                                                                NOTE :
                                                                CAUTION
                                                                             If you use resident BIOS, change
RBIOS1 to RBIOS2.
If Your program is ROM execute program,
you must use RBIOS2.
                                                   START:
0100
                                                                             PSTART
0100
             C3 01AE
                                                                JP.
                                                                Message
             53 74 61 72
74 20 6F 66
20 4D 6F 66
5 6D 20 63
6F 6D 6D 75
6E 69 63 61
74 69 6F 6E
2E 0D 0A 00
4D 6F 64 65
6D 20 63 61
72 74 72 69
64 67 65 60
68 2E 0D 0A
                                                   úsgı;
                                                                DB
                                                                              'Start of Modem communication.', CR, LF, 00B
0103
0107
010B
010F
0113
0117
011B
011F
                                                   MSG2:
                                                                              Modem cartridge check.', CR, LF, 00H
0123
0127
012B
                                                                DB
012F
0133
             6B 2E GD GA

00

53 65 6E 64

20 69 6E 69

74 69 61 6C

20 64 61 74
013B
013C
                                                                              'Send initial data.', CR, LF, 00H
                                                   MSG3:
0140
0144
0148
014C
0150
             61 2E 0D 0A
00
52 65 63 65
                                                                              'Receive answer code,', CR, LF, 00H
0151
                                                   MSG4:
                                                                DB
             69 76 65 20
61 6E 73 77
65 72 20 63
6F 64 65 2E
0155
0159
015D
0161
```

0000000000

0

õ

0

0 0 0

0:

01 01 01

01

01

01

01

01

01 01

01

02

02

02

02

02

02

02

02

02

02

02 02 02

02

02

```
21 21 21 20
53 74 61 72
74 20 6F 66
20 4D 6F 64
65 6D 20 21
21 21 0D 0A
                                                                   '!!! Start of Modem !!!', CR, LF, 00H
0168
                                           MSG5:
                                                       DR
016C
0170
0174
0178
017C
           21 21 0D 0A
00
21 21 21 20
45 6E 64 20
6F 66 20 4D
6F 64 65 6D
0180
0181
0185
                                           MSG6:
                                                                  '!!! End of Modem !!!', CR, LF, 00H
                                                       DB
0189
018D
0191
0195
            20 21 21 21
           20 21 21 21
0D 0A 00
43 6F 6D 6D
75 6E 69 63
61 74 69 6F
6E 20 65 72
72 6F 72 0D
                                                                   'Communication error', CR, LF, 00H
0198
                                           MSG7:
                                                       DB
019C
01A0
01A4
01A8
01AC
           04 00
                                                       Main program
01AE
01AE
01B1
                                           PSTART:
                                                                                          ; Set stack pointer.
; 'Start of Modem communication'
; Message display.
            31 4000
                                                                   SP,4000H
           21 0103
CD 02BC
                                                       I.D
                                                                  HL, MSG1
MSGDSP
01B4
                                                       CALL
           21 0123
CD 02BC
3A F53F
47
01B7
                                                       LD
                                                                  HL.MSG2
                                                                                            'Modem cartridge check'
                                                                  MSGDSP
A,(CRGDEV)
B,A
03FH
                                                       CALL
                                                                                            Message display
01BA
01BD
                                                       LD
                                                                                          ; Get cartridge device code.
01C0
            E6 3F
                                                       AND
01C1
                                                                                            Get device code only.
                                                                  DVMDM
NZ,WBOOT
A,B
IOMODE+DVMDM
                                                                                            Modem cartridge?
No. then WBOOT.
Restore CRGDEV.
Already IO mode?
01C3
01C5
            FE OF
C2 EBO3
0108
                                                       LD
           FE 8F
C4 0289
                                                       CALL
                                                                  NZ.SETMODE
01CB
                                                                                          ; No. then set into 10 mode.
OICE
                                           CRESET:
           CD 029D
CD 0296
                                                       CALL
                                                                  CRST02
CRST01
                                                                                          ; CRS line on and wait 10 msec. ; CRS line off and wait 10 msec.
OICE
01D1
                                                       CALL
01D4
                                           MDMOPN:
01D4
01D7
            21 02F2
                                                                   HL, OPNDAT
                                                                                          ; Copy RSIOX open parameters.
           11 0305
01 0009
ED B0
                                                       LD
LD
                                                                  DE, OPNPRM
BC, 9
                                                       LDIR
01DD
           21 0305
06 13
                                                                   HL.OPNPRM
                                                       LD
                                                                                            RSIOX open.
Using Cartridge SIO.
01E2
                                                       LD
                                                                   B.RSOPN+CSIO
01E4
01E7
                                                       CALL
OR
            CD EB54
                                                                   RSIOX
                                                                                          . Already opened?
            C2 026F
                                                                   NZ, ERREND
01E8
                                                       JP
01EB
                                           PUTINIT:
01EB
01EE
           21 013C
CD 02BC
                                                       LD
CALL
                                                                  HL.MSG3
MSGDSP
                                                                                             'Send initial data.
                                                                                          Display message
01F1
            21 0305
                                                       LD
                                                                   HL, OPNPRM
                                                                                          ; Send initial data.
           3A 02FB
4F
                                                                  A, (INITDATA)
C, A
B, RSPUT
01F4
01F7
                                                       LD
LD
                                                                                          ; Initial data --> A
            06 60
                                                                                              Using PUT function of RSIOX.
            CD EB54
                                                       CALL
                                                                  RSIOX
NZ, ERREND
01FA
            20 70
                                                       JR
                                                                                          Error return, then retry.
                                           GETANS:
01FF
                                                                  HL. MSG4
                                                                                          ; 'Receive answer code.
; Display message.
01FF
0202
            21 0151
                                                       I.D
            CD 02BC
                                                       CALL
                                                                   MSGDSP
0205
                                            GETANS1:
            21 0305
                                                       LD
                                                                  BL . OPNPRM
0205
                                                                                          : Receive answer code.
0208
020A
            06 50
CD EB54
                                                       I.D
                                                                  B, RSGET
RSIOX
                                                                                              Using GET function of RSIOX.
                                                       CALL
            C2 026F
                                                                  NZ , ERREND
                                                       JP
                                                                                          Error return, then Warm Boot.
0200
            CD 02C8
                                                                                          ; Display receiving character.
; Recive char. is CR?
; No. (Loop until receiving CR code.)
0210
                                                       CALI.
                                                                  CHARDSP
0213
0215
            FF OD
            20 EE
                                                       JR
                                                                  NZ, GETANS1
                                            ;
           06 20
CD EB54
0217
                                                       LD
                                                                  B, RSCLS
                                                                                          : Close RSIOX
                                                       CALL
0219
                                                                   RSIOX
                                                                                          ; '!!! Start of modem !!!'
; Display message.
021C
021F
            21 0168
CD 02BC
                                                                   BL.MSG5
                                                       CALL
                                                                   MSGDSP
                                            :
0222
0225
                02FC
                                                       LD
                                                                  HL, MDMDAT
DE, OPNPRM
                                                                                            Copy initial data parameter for RSIOX.
            11 0305
                                                        LD
0228
            01 0009
                                                       I.D
                                                                  BC.9
            ED B0
21 0305
                                                        LDIR
                                                       LD
                                                                  HL.OPNPRM
                                                                                            Open RSIOX
022D
0230
            06 13
CD EB54
                                                       LD
CALI.
                                                                  B.RSOPN+CSIO
RSIOX
                                                                                              Using OPEN function of RS10%.
0235
                                                       OR
                                                                                            Error return?
Yes. (then Warm Boot)
            C2 026F
                                                                   NZ . ERREND
0236
0239
0239
                                           KEYCHK
            CD EB06
                                                       CALL
                                                                  CONST
                                                                                          : Get console status.
                                                       INC
                                                                                          ; Exist inputing key data? ; Yes.
0230
            28 OE
                                                        JR
                                                                   Z . PUT
023D
023F
            21 0305
                                                       1.D
                                                                  HI OPNERM
                                                                                          ; Get RSIOX receiving status
0242
            06 30
                                                       LD
                                                                   B.RSIST
                                                                                             Using INSTS function of RSIOX
                                                       CALL
INC
JR
0244
0247
            CD EB54
                                                                   RSIOX
                                                                                             Exist receiving data?
                                                                   A
Z.GET
            28 18
 0248
            18 EC
                                                                   KEYCHK
                                                                                          Loop to Key Check.
 024B
                                                       JR
```

```
PUT:
            CD EB09
FE 03
28 21
                                                                          CONIN
                                                                                                      Get inputed key code. STOP key?
024D
                                                             CALL
0250
0252
                                                             CP
JR
                                                                          03H
Z,PEND
                                                                                                       Yes.
0254
             CD 02C8
                                                             CALL
                                                                          CHARDSP
                                                                                                       Display inputed key data.
0257
             21 0305
                                                             LD
                                                                          HL. OPNPRM
                                                                                                       Send inputed key data
025A
025B
                                                             LD
                                                                          C.A
B.RSPUT
             06 60
                                                                                                        Using PUT function of RSIOX.
025D
             CD EB54
                                                             CALL
                                                                          RSTOX
             18 D7
                                                                          KEYCHK
                                                                                                    Loop to Key Check.
0260
0262
0262
                                                ĠET:
                                                             LD
LD
CALL
CALL
             21 0305
                                                                          HL, OPNPRM
                                                                                                       Get reciving data.
Using GET function of RSIOX.
0265
0267
026A
            06 50
CD EB54
CD 02C8
                                                                          B. RSGET
                                                                          RSIOX
CHARDSP
                                                                                                       Display receiving data.
Loop to Key Check.
             18 CA
                                                                          KEYCHK
026F
                                                ERREND:
026F
0272
                                                                          HL, MSG7
MSGDSP
                                                                                                        Communication error.'
                                                                                                    Display message.
                                                             CALL
             CD 02BC
0275
                                                PEND:
                                                                          HL, MSG6
                                                                                                       '!!! End of modem !!!'
                                                             LD
0275
             21 0181
                                                             CALL
LD
CALL
                                                                          MSGDSP
HL,CLSCMD
PUTDATA
                                                                                                       Display message.

Modem close parameter --> HL
Send modem close parameter.
             CD 02BC
21 02EE
0278
027E
             CD 02AB
                                                             LD
CALL
JP
0281
                                                                          B. RSCLS
                                                                                                    : Close RS10%.
             06 20
0263
0286
             CD EB54
C3 EB03
                                                                          RS10X
WBOOT
                                                                                                    Jump to Warm Boot.
                                                                          SELECT IO MODE
                                                             NOTE :
                                                                          Select IO mode (Cartridge mode)
                                                             <> entry parameter <>
    NON
                                                             <> return parameter <>
NON

0289
0289
                                                SETMODE
            3A F005
E6 FC
F6 01
32 F005
D3 18
C9
                                                                          A, (RZSWR)
                                                             LD
                                                                                                                    Get switch register data
                                                             AND
OR
LD
                                                                          OFFH-ZCSW1-ZCSW0
ZCSW0
(RZSWR),A
                                                                                                                    Clear CSW1.0 bit.
Set IO mode.
Store to memory.
028C
028E
0290
0293
0295
                                                             OUT
                                                                                                                    Output to IO port.
                                                             RET
                                                             CRS LINE CONTROL SUBROUTINE
                                                             NOTE :
                                                                          There are two routine, one is setting CRS high, and one is setting CRS low.
                                                              <> entry parameter <>
                                                                          NON

  return parameter <>
  NON

                                                                  preserved registers <> NON
                                                 CRSTO1:
0296
0296
0299
                                                             1.D
                                                                           A. (RZIOCTLR)
                                                                                                    ; Get IO control register data.
             3A F006
             CB DF
18 05
                                                              SET
                                                                           BZCRS, A
                                                                                                     ; Set CRS high.
029B
029D
                                                              JR
                                                                           CRST
                                                 CRST02:
                                                                           A, (RZIOCTLR)
                                                                                                       Get IO control register data.
Reset CRS low.
             3A F006
CB 9F
 029D
                                                              L.D
02A0
02A2
                                                              RES
                                                                           BZCRS, A
                                                 CRST:
02A2
02A5
02A7
02AA
             32 F006
D3 19
CD 02DE
C9
                                                                           (RZIOCTLR),A
(ZIOCTLR),A
WAIT10
                                                                                                       Store data to memory.
Out put to IO port.
Wait about 10 msec.
                                                              I.D
                                                              CALL
RET
                                                              SEND DATA TO RSIOX
                                                              NOTE :
                                                                           Send data to RSIOX until finding
                                                                           00h code.
                                                              <> entry parameter <>
        HL : Data top address.
<> return parameter <>
        NON
                                                              non
c> preserved registers <>
NON
                                                              CAUTION
                                                                           If error happend, then stop this
                                                                           this program.
 02AB
02AB
                                                 PUTDATA:
                                                                           C,(HL)
C
C
Z
                                                                                                     ; Get sending data. (1 byte)
              4E
 02AC
02AD
             0C
0D
                                                              INC
                                                                                                       Data is 00h?
Yes. (then return)
 02AF
                                                              RET
```

```
PUSH
                                                                                            Save parameter.
Send data to RSIOX.
Use PUT function of RSIOX.
                                                                  HL, OPNPRM
B, RSPUT
RSIOX
HL
 02B0
            21 0305
                                                       LD
02B3
02B5
            06 60
CD EB54
                                                       CALL
POP
INC
                                                                                         ; Restore parameter.
; Pointer update.
; Loop.
02B8
02B9
            E1
23
                                                                  HI.
02BA
            18 EF
                                                                  PUTDATA
                                                       DISPLAY MESSAGE UNTIL FIND 00H
                                                       NOTE :

c> preserved registers <>
NON

                                                       CAUTION:
02BC
02BC
                                           MSGDSP:
                                                                  C,(HL)
C
C
Z
            4E
                                                       LD
                                                                                         Get displaying data,
02BD
02BE
            OC
OD
                                                                                         Getting data is 00h? Yes. (then return)
                                                       DEC
02BF
                                                                                        Save p
Consol
Restor
Update
                                                                                           Save parameter.
Console out data.
Restore parameter.
Update parameter.
02C0
            E5
                                                       PUSH
                                                                  HI.
           CD EBOC
E1
23
18 F4
                                                                  CONOUT
HL
HL
MSGDSP
02C1
02C4
02C5
                                                      CALL
POP
                                                      INC
JR
                                                      DISPLAY A CHARACTER
                                                      NOTE :
                                                      NON
                                                      nun
opreserved registers <>
All registers.
                                                      CAUTION:

If character code is CR, then console out CR with LF.
                                           CHARDSP:
                                                                                         ; Save all registers.
           F5
C5
D5
0208
                                                      PUSH
02C8
02C9
02CA
02CB
02CC
                                                                  BC
DE
                                                      PUSH
                                                                 HL
AF
C,A
CONOUT
           E5
F5
                                                      PUSH
PUSH
                                                      LD
CALL
POP
            4F
                                                                                           Console out data.
           CD EBOC
F1
FE OD
OE OA
CC EBOC
E1
D1
02CE
02D1
                                                                 AF
CR
C, LF
Z, CONOUT
HL
DE
                                                                                           Get inputed parameter,
Is it CR?
If so, then console out LF.
                                                      CP
LD
CALL
POP
POP
02D2
02D6
02D9
02DA
                                                                                           Restore all registers.
           C1
F1
C9
02DB
                                                      POP
POP
                                                      RET
                                                      WAIT ABOUT 100 MILI SECOND
                                                      NOTE :
                                                      <> entry parameter <>
    NON
                                                      <> return parameter <>
    NON

    preserved registers <>
    NON
                                                      CAUTION ;
                                           WAIT10:
02DE
           01 0002
02E1
02E2
                                                      PUSH
                                           WT10:
02E2
02E4
           3E E6
                                                      LD
                                                                 A,230
                                           WT20:
02E4
02E5
                                                      DEC
                                                                 NZ,WT20
           20 FD
          0B
78
B1
20 F6
F1
C9
02E7
02E8
02E9
                                                      DEC
                                                                 A,B
C
NZ,WT10
AF
                                                      LD
OR
JR
POP
02EA
02EC
02ED
                                                      Constant data & Work area
02EE
                                          ĆLSCMD:
          25 5A 0D 00
                                                                 '%Z',CR,00H
                                                                                        ; Modem close command data.
                                                      RSIOX first open parameter.
```

```
02F2
02F2
02F4
02F6
02F7
02F8
02F9
02FA
                                                                     OPNDAT:
                                                                                                                                                  Receive buffer top address.
Receive buffer size.
Baud rate. (300 bps)
Bit length. (8 bits/character)
Parity. (non parity)
Stop bit. (1 stop bit)
Special parameter.
                                                                                                         RCVBUF
RCVSZ
006H
003H
000H
001H
0FFH
                   030E
                                                                                       DW
DB
DB
DB
DB
DB
                   030E
0200
06
03
00
01
FF
                                                                                       Modem initial data.
(8 bits, non parity, 1 stop bit)
02FB
02FB
                                                                     INITDATA:
                                                                                                          01011000B
                                                                                       RSIOX second open parameter.
(This parameters are matched with initial data.)
02FC
02FC
02FE
0300
0301
0302
0303
0304
                                                                     MDMDAT:
                  030E
0200
06
03
00
01
FF
                                                                                                         RCVBUF
RCVSZ
006H
003H
                                                                                                                                              ; Receive buffer top address.
Receive buffer size.
Baud rate.
Bit length.
Parity.
Stop bit.
Special parameter.
                                                                                       DW
DB
DB
                                                                                       DB
DB
DB
                                                                                                          000H
001H
0FFH
                                                                                       R$10% parameter area (for calling & return)
0305
0305
                                                                     OPNPRM
                                                                                       DS
                                                                                                          9
                                                                                       Receiving buffer area
030E
030E
                                                                     RCVBUF:
                                                                                      DS
                                                                                                         RCVSZ
                                                                                       END
```

(3) Use
The DMM cartridge is used following the steps shown below using
BIOS RSIOX:

Fig. 5.1.16 DMM Processing Procedure

The measurement procedure in measurement mode Ø is as follows:

The measurement procedure in measurement mode 1 is shown below.

The difference between modes Ø and l is as follows: In measurement mode Ø, the DMM cartridge automatically starts sending A/D conversion data if the range switch command is not sent within a specified period after the DMM cartridge is ready (approximately 1/10 of the sampling period). In measurement mode l, the DMM cartridge keeps waiting until either a Range Switch command or ACK1 is received.

Step 1: DMM cartridge connected?

Check whether or not a DMM cartridge is connected to the cartridge interface. This can be checked with CRGDEV (ØF53FH).

CRGDEV, bits 3 - 0

= ØEH: DMM cartridge connected

= Other than ØEH: Another type of cartridge connected.

Step 2: Call RSIOX to open cartridge SIO.

Open cartridge SIO with BIOS RSIOX. The open parameters are: cartridge SIO as I/O device, 600 bps, 8 data bits, no parity, 1 stop bit.

Step 3: Set cartridge to IO and turn power on.

Set the cartridge mode to IO through the following procedure:

LD A, (RZSWR)

AND ØFCH

OR Ø1H

LD (RZSWR), A

OUT. (18H), A.

RZSWR (\emptyset F \emptyset 05H) is the area that stores the SWR (P19H) output status.

After setting up the IO mode, turn power on by writing 00H to Pl0H. After power-on, the system waits approximately three seconds to allow for DMM reset processing.

Step 4: Set up measurement mode and receive ACK0.

After power-on, send a measurement mode command to the DMM using RSIOX PUT. The measurement command has the following format:

7 6 5 4 3 2 1 0 1 m2m1m0m3m2m1m0

m2 : Selects measurement mode

= 0 : Measurement mode 0

1 : Measurement mode 1

m1 : Don't care

m0: Selects voltage/resistance

= 0 : Measure voltage

1 : Measure resistance

n3 : Selects DCV/ACV or ohm/LP(Low Power)-Ohm

= 0 : DCV or ohm

1 : ACV or LP-ohm

n2~n0 : Selects range

n2 n1 no Measurement mode	000	001	010	011	100	101	100
DCV	AUTO		300mV	3 V	30V	300V	500V
ACV	AUTO			3 V	30V	300V	350V
	AUTO	1	0000	21.0	navo	300	3000
Ω	AUTO	V	300Ω	3K73	30KΩ	KΩ	KΩ
	AUTO			040	001/0	300	3000
LPΩ	AUTO			ЗКΩ	30KΩ	ΚΩ	ΚΩ

After sending the measurement command, receive ACKØ using RSIOX GET.

The values in the measurement command, except that of ml, are returned unchanged as ACK0.

- ml = 0: 50 Hz sampling rate
 Approx. 5 times/second
 = 1: 60 Hz sampling rate
 Approx. 4 times/second
- Step 5: Send measurement start command.

 Send a measurement start command to the DMM using RSIOX PUT.

 The data to be sent the DMM may be of any value. On receiving a data byte, the DMM starts measurement in the mode specified in step 4.
- Step 6-1 or 7-1: Receive A/D conversion data.

 Receive A/D conversion data using RSIOX GET. A/D conversion data is three bytes in length. See (4) for details.
- Step 6-2: Range switching necessary?

 If the measurement mode is other than AUTO, determine in the application program whether or not range switching is necessary, according to the results of 6-1 or 7-1.
- Step 6-4 or 7-3: Switch range or send ACK1.

 Send a range switch command or send ACK1 to the DMM using RSIOX PUT. Send a range switch command when switching the range, or ACK1 when not. See (4) for the range switch command and ACK1.
- Step 8: Turn power off.

 Turn off DMM power when measurement is completed. Power is turned off by writing 010H to P10H.

Note:

The DMM is automatically turned off if a power-off signal is received while the DMM is measuring voltage or resistance. Even if power is turned off in the continue mode, the DMM remains offline when power is turned on again. That is, DMM processing DMM cannot be continued. In such a case, follow the above procedure starting at step 1.

If measurement is found to be unsuccessful, carry out power-off processing in step 8 and begin agaom frp, step 1. When turning on the DMM immediately after turning it off, be srue to wait at least three seconds after power-off before switching power on again.

- (4) Command, ACK, conversion data(a) Range switch command

76543210 0 0 0 0n3n2n1n0

n3 : Selects DCV/ACV or ohm/LP-0hm.

= 0 : DCV or ohm 1: ACV or LP-ohm n2 - n0 : Selects range

n2 n1 n0 Heasurement mode	000	001	010	011	100	101	110
DCV	AUTO		300mV	3 V	30V	300V	500V
ACV	AUTO			3V	30 V	300V	35 0V
Ω	AUTO		300Ω	ЗКΩ	30ΚΩ	300ΚΩ	3000ΚΩ
LPΩ	AUTO			ЗКΩ	30ΚΩ	300ΚΩ	3000ΚΩ

(b) ACK1

76543210

An asterisk (*) stands for 'Don't care'.

(c) A/D conversion data
A/D conversion data consists of three bytes and has the following
format:

B : Battery low bit

= 1 : Battery low

0 : Battery OK

Replace the battery when voltage gets low.

Second byte

BCD BCD data, data, thousands hundreds place place K : K units (during measurement of voltage or resistance)

= 1 : K-ohm

= 0 : Not K-ohm units

M: m units (during measurement of voltage or resistance)

= 1 : mV units

= 0 : Not mV units

A : Auto range

= 1 : Auto range

= 0 Manual range

Third byte

S : Sign bit = 1 : Minus = 0 : plus

P1 - P3 : Decimal point

(5) Miscellaneous

(a) Auto range

When Auto range is specified, the DMM cartridge automatically selects the range appropriate to the measured value.

The DMM cartridge selects the 1-level higher or lower range as follows:

Higher range: When the count exceeds 1999

Example: If the resistance exceeds 19.99K ohms when

measured at the 30K-ohm range, the 300K-ohm range

is automatically selected.

Lower range: When the count is below 179

Example: If the resistance is less than 1.79K ohms

when measured at the 30K-ohm range, the 3K-ohm

range is automatically selected.

(b) Power-off

The DMM cartridge must always be turned off when it is not to be used. Otherwise, its battery will be quickly be drained.

(c) Battery low

When the voltage of the DMM battery falls within the range 1.32V - 0.8V through 1.32V + 0.8V, the A/D conversion data 13 bits are set to 1. In this case, the battery must be replaced.

(d) Changing the reset time

AC noise can be offset by setting the reset time according to the power (AC) frequency $(50 \, \text{Hz}/60 \, \text{Hz})$ of the area where the DMM is used.

The reset time can be set by turning the switch placed under the lid of the battery box.

ACKØ, bit 5 is loaded with the currently specified reset time. PINE software can identify the specified reset time.

5.2 Serial Interfaces

5.2.1 General

The PINE supports RS-232C, SIO, and cartridge SIO as serial communication devices. In principle, these serial devices are switched by a serial controller and cannot be used simultaneously.

5.2.2 Setting Up Serial Interface

5.2.2.1 Switching serial modes

The serial interface modes (RS-232C, SIO, and cartridge SIO) can be switched through SWR (Pl8H), bits 3 and 2.

R/W	I/0 address	Register name	bit7bi1	. 6 bit5	bit4	bit3	bit2bi	t1bit0	Remarks
Write	18H	SWR				SSW1	SSW0		Bits other than 3 and 2 are used for other purposes

Serial mode	SSW1	SSW2	R×D	T×D	Devices
0	0	0	Cartridge SIO	Cartridge SIO	
1	0	1	SIO	SIO ¸	
2	1	0	RS-232C	RS-232C	Printer, acoustic coupler
3	1	1	RS-232C	SIO	

5.2.2.2 Setting up parameters

R	I/O address	Register name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Remarks
R	14H	ARTDIR		7	or	8 bi	t da	ita			
e	15H	ARTSR	RDSR		FE	0E	PE	Tx emp- ty	Rx RDY	Tx RDY	
d	16H	IOSTR			RCTS	RCD	RXD	SIN			Bits other than 5 through 2 are used for other purposes
	оон	CTLR1	BRG3	BRG2	BRG1	BRGC					Bits other than 3 through 0 are used by purposes
W	14H	ARTDOR		.7	or	8 bi	t da	ıta			
i	15H	ARTHR	STOP		EVEN	PEN		DATA			
t	16H	ARTCR		\	RRTS	ER	SBRM	RXE	RDTR	TXE	
	19H	IOCTLR						SOUT			Bits other than 2 are used for other purpose

See FIRMWARE, CHAPTER 2, "I/O REGISTERS" for register contents.

5.2.3 System Support

5.2.3.1 Switching serial interfaces

The PINE supports three types of serial interface configurations: SIO for FDDs, RS-2232C or SIO for list devices, and RS-232C, SIO, or cartridge SIO for by the user. PINE OS automatically controls the serial switch to allow these configurations to operate independently.

Figure 5.2.1 illustrates the serial interface configurations.

Fig. 5.2.1 Serial Interface Configurations

The OS selects a serial interface configuration as follows:

- 1) Loads the current configuration into SRMODE (@F33CH).
- 2) Checks whether or not the the serial interface configuration to be used matches the current serial interface configuration.
- 3) If they match, performs the subsequent processing without changing the current configuration. If not, performs the subsequent processing after changing to the newthe configuration.

The parameters for changing the serial interface configuration are stored in the 15-byte area, SRTABL (0F279H).

SRMODE (ØF33CH) 1 byte

Indicates the current serial interface configuration.

= ØFFH: Not used.

= 00H: Used by the system (list device).

= 01H: Used by the user (RSIOX). = 02H: Used by FDD (floppy disk drive).

The initial value is ØFFH. It is initialized by a warm boot.

SRTABL (ØF279H) ØFH bytes

Serial interface configuration switching table

Name	Length	Contents
SYSCTLR1	1	CTLR1 for LIST
SYSARTMR	1	ARTMR for LIST
SYSSWR	1	SWR for LIST
SYSARTCR	1	ARTCR for LIST
SYSSOUT	1	SOUT for LIST
RS2CTLR1	1	CTLR1 for RSIOX
RS 2ARTMR	1	ARTMR for RSIOX
RS 2SWR	1	SWR for RSIOX
RS 2ARTCR	1	ARTCR for RSIOX
RS 2 SOUT	1	SOUT for RSIOX
HSCTLR1	1	CTLR1 for FDD
HSARTMR	1	ARTMR for FDD
HSSWR	1	SWR for FDD
HSARTCR	1	ARTCR for FDD
HSSOUT	1	SOUT for FDD

- This table is divided into 5-byte units. Each entry in the table corresponds to I/O register CTLR1, ARTMR, SWR, ARTCR, or IOCTLR.
- Bits not associated with serial interfaces must be set to \emptyset .
- RS2CTLR1 through RS2SOUT are set when RSIOX OPEN is executed.

5.2.3.2 How serial interfaces are used

Although the PINE is furnished with three types of serial interfaces for serial communication, only one is available at a time. Consequently, the system selects the serial interface to be used according to the module to be executed.

The modules that use the seial interfaces are divided into the following groups:

- System modules Modules that communicate with the device selected through the I/O byte (PUN:, RDR:, or CON:). (RS-232C)
- User modules Modules that use serial interfaces. (RS-232C, SIO, or cartridge SIO)
- Disk and list device modules Modules that use terminal floppy disks. System modules that use list devices. (RS-232C, SIO)

Since these devices operate independently, the I/O mode must be specified separately for each module.

Table 5.2.2 shows how one module can use a serial interface while another module is using it.

Table 5.2.2 Interrelationships among Serial Interfaces and Modules

	Hodule currently using	DISK/LST	System	User module						
	e to use serial device	module	module	RS-2320	SIO	Cartridge \$10	RS-232C inpu [*] SIO output			
DI	SK/LST module	0	0	0	0	0	0			
1 -	stem module M:,RDR:,CON:)	0	0	×	, x	×	×			
	RS-232C	0	Δ	0	×	×	×			
module.	SIO	0	×	×	0	×	×			
User I	Cartridge SIO	0	×	×	×	0	×			
	RS-232C input SIO output	0	×	×	×	×	0			

O: Availabe

1: Available only in

the current mode

 \times : Not available

Programming notes

- Relationship between the system and user modules and DISK or LST devices
 - System modules resets the parameters for the DISK or LST device (RS-232C or SIO) before accessing it when it is being used by a user module. Accordingly, the validity of the data received after the active serial device has been switched to the DISK or LST device that is being used by a system or user module. When the system or user module attempts to access the DISK or LST device again, the device is automatically restored into the previous state.
- Relationship between system and user modules When one module is using a serial device, another module cannot use even a different serial device. When a serial device is used by two or more modules:
 - While a user modlue is using the serial device, a system module can use it in the mode set up for the user module.
 - 2. An error will be generated if a user module attempts to access a serial device which is being used by a system module. To use the same serial device, the user module must once close the serial device and clear the mode established by the system module.

5.3 Disk Drive Unit

5.3.1 General

The PINE can connect to external floppy disk drive units via the SIO interface. Data is read from or written onto a floppy disk in lK-byte units.

Disk drive units TF-20, TF-15, and PF-10 are available. Communication between the PINE and the FDD (floppy disk drive unit) is established in accordance with the EPSON Serial Communication Protocol (EPSP).

5.3.2 EPSON Serial Communication Protocol (EPSP)

Data is transferred between the PINE and the FDD according to a protocol called EPSP (EPSON Serial Communication Protocol).

EPSP has the general format shown below.

FMT
DID
SID
FNC
SIZ
Text data

FMT: Identifies the header block format.

ØØH: Indicates message transmission from the main unit (PINE).

ØlH: Indicates message transmission from the FDD.

DID: Destination device ID.

31H: First FDD (Drive D: or E:)

32H: Second FDD (Drive F: or G:)

SID: Source device ID

This field contains 23H if the message (command) is from the PINE.

FNC: Command for FDD.

SIZ: Indicates the text data length. The value in this field is the length of the actual text data minus 1.

Text data returned from the FDD ends with a return code.

Tables 5.3.1 and 5.3.2 show the floppy disk drive commands and return codes, respectively.

Table 5.3.1 Commands

No.	Command name	FNC	Function
1	RESET	ØDH	Reset terminal floppy
2	READ	77H	Read disk directly
3	WRITE	78H	Write disk directly
4	WRITEHST	79H	Flush buffer
5	COPY	7AH	Copy volume
6_			
7	FORMAT	7CH	Format disk

Table 5.3.2 Return Codes

Return code	Meaning
00H	Normal termination
ØFAH	BDOS error (read error)
ØFBH	BDOS error (write error)
ØFCH	BDOS error (drive select error)
ØFDH	BDOS error (write protect error)
ØFEH	

D T d (1) RESET

Function: Resets the disk drive floppy.

Send data:

< Send data >

< Receive data :	<	Rece	ive	data	>
------------------	---	------	-----	------	---

+0	00H	(FMT)
1	SS	(DID)
2	MM	(SID)
3	ODH	(FNC)
4	00H	(SIZ)
5	00H	

+0	01H	(FMT)
1	MM	(DID)
2	SS	(SID)
3	ODH	(FNC)
4	00H	(SIZ)
5	Return code	

Description:

The RESET command causes the FDD to initialize itself and wait for an ENQ block. The FDD sends return code 00H to the main unit.

(2) READ

Function: Reads a disk directly. Send data:

< Send data >

< Receive data >

+0	00H	(FMT)	+00H [01H	(FMT)
1	SS	(DID)	01H	MM	(DID)
2	MM	(SID)	02H	SS	(SID)
3	77H	(FNC)	03H	77H	(FNC)
4	02H	(SIZ)	04H [80H	(SIZ)
5	Drive code		05Н	Read data	
6	Track number	2.00	06H	Read data	
7	Sector number				128 bytes
	Drive code = 1	or 2	85H [Read data	
	Track number =	0 - 39	86H	Return code	
	Sector number =	1 - 64			•

Description:

The READ command causes the FDD to transfer to the system the data (128 bytes) read from the specified sector on the specified logical track of the disk as well as a return code.

(3) WRITE

Function: Writes a disk directly.

Send data:

	< Send data >		< Receive data >
+00H	00H	(FMT)	O1H (FMT)
01H	SS	(DID)	MM (DID)
02H	MM	(SID)	SS (SID)
03H	78H	(FNC)	78H (FNC)
04H	83H	(SIZ)	OOH (SIZ)
05H	Drive code		Return code
06H	Track number		
07H	Sector number		
08H	Write type		Drive code = 1 or 2
09H	Write data		Track number = 0 - 39
HAO	Write data	128 bytes	Sector number = 1 - 64
		120 bytos	Write type = 0 - 2
+88H	Write data		

Description:

The WRITE command causes the FDD to write the specified data (128 bytes) to the location on the disk addressed by the specified logical track and sector numbers.

= 01H: Flush buffer (The FDD immediately writes data

on the FDD without blocking.)

= 02H: Sequential write (The FDD simply blocks data

< Receive data >

for a high-speed write.)

(4) WRITEHST

Function: Flushes the buffer.

< Send data >

Send data:

(FMT) (FMT) +00H 01H +00H 00H (DID) 01H MM (DID) 01H SS 02H (SID) SS 02H (SID) MM (FNC) 03H 79H 03H 79H (FNC) 04H 00H (SIZ) (SIZ) 04H 00H05H Return code 05H 00H

Description:

The WRITEHST command causes the FDD to flush the contents of the 1K-byte host buffer (filled by the WRITE command) onto the disk.

(5) COPY

Function: Copies a volume.

Send data:

< Send data >

< Receive data >

+00H	00H	(FMT)
01H	SS	(DID)
02H	MM	(SID)
03H	7AH	(FNC)
04H	00H	(SIZ)
05H	Drive code	

01H	(FMT)
MM	(DID)
SS	(SID)
7AH	(FNC)
02H	(SIZ)
Track number of the currently	
copying track (high-order byte) Track number of the currently	
copying track (low-order byte)	
Return code	

Track number of the currently copying track = 0 - 39 ØFFFFH: End

Description:

The COPY command causes the FDD to copy the entire disk in the specified drive onto another disk in the same drive unit. This command is not available if the unit has only one drive.

(6) FORMAT

Function: Format disk

Send data:

< Send data >

< Receive data >

+00H [00H	(FMT)
01H	SS	(DID)
02H	MM	(SID)
03H	7CH	(FNC)
04H	00H	(SIZ)
05H [Drive code	1
_		_

Drive code = 0 or 1

Description:

The FORMAT command causes the FDD to format two tracks and return the corresponding track number (logical number) and a return code to the system. The FDD continues formatting in two track units and sets the logical track number in the return message to ØFFFFH when it completes formatting.

5.3.3 Use

In PINE OS, data is read from or written to the FDD through BIOS. However, the user can communicate directly with the FDD through application programs.

Use the following system-supplied utilities when communicating directly with the FDD through application programs:

EPSPSND (Utility for sending EPSP data)

EPSPRCV (Utility for receiving EPSP data)

See Section 4.2, "Jump Tables" for the use of these utilities.

5.4 External RAM Disk

5.4.1 General

The PINE external RAM disk is an optional external read/write storage device. It connects to the PINE main unit via the system bus interface.

The external RAM disk can contain up to 128K bytes of RAM and a 1M-bit CMOS mask ROM or EPROM. ROM is installed as a capsule and can be replaced from the exterior of the PINE.

In operation mode (i.e, when PINE power is on), the external RAM disk draws power from the battery in the PINE main unit. In non-operation mode (when PINE power is off), it draws backup power from the battery in the external RAM disk.

The external RAM disk is always attached to the PINE main unit. Its contents cannot be guaranteed if it is removed from the main unit.

5.4.2 Hardware General

5.4.2.1 Block diagram

The block diagram of the external RAM disk is shown in Figure 5.4.1.

5.4.2.2 Interface with the main unit

The external RAM disk connects to the main unit via the following signal lines out of the system bus:

Signal	IN/OUT	Number	Logic	Description
name		of pins		
DB7 - Ø	IN/OUT	8	Positive	Data bus
AB7 - Ø	IN	8	Positive	Address bus
MRQ	IN	1	Negative	Z-80 memory request signal
IORQ	IN	1	Negative	Z-80 I/O request signal
RD	IN	1	Negative	Z-80 read signal
WR	IN	1	Negative	Z-80 write signal
WAIT	OUT	1	Negative	Z-80 wait signal
HLTA	IN	1	Negative	Z-80 halt signal
MI	IN	1	Negative	Z-80 Ml signal
CLK	IN	1	Negative	System clock reverse signal
DW	IN	1	-	DRAM refresh control signal
DCAS	IN	1	-	DRAM refresh control signal
RS	IN	1	Negative	System reset signal
PON	IN	1	Positive	Power-on signal (turns on
				the DD converter.)
OFF	IN	1	Positive	Off signal
VCH	IN	1	-	Battery charge power
VBK	IN/OUT	1	-	Backup power
VB1	IN	1	-	Main battery power
GND		1	-	Signal ground

5.4.3 Structure

5.4.3.1 External RAM disk I/O address map

R/W	I/O address	Register name	bit7	bi t6	bi t5	bit4	bit3	bit2	bit1	bi t0	Remarks
Re	90H 91H 92H										
a d	93H 94H	EXTIR EXTSR	EXT		8 b	it d	ata		(OPN)	(WP)	<u></u>
W	90H 91H	EXTAR EXTAR	A7 A15	A6 A14	A5 A13	A4 A12	A3 A11	A2 A10	A1 A9	AO A8	
i t	92H 93H	EXTAR EXTOR	×	×	× 8 b	× it d	× ata	A18	A17	A16	
е	94H	EXTCR	×	×	×	X	×	X	OPN	₩P	

The x mark stands for "Don't care."

EXTIR: External RAM disk input register EXTSR: External RAM disk status register

OPN = 1: RAM opened = 0: RAM closed

EXT = 1: No external RAM disk installed

= 0: External RAM disk installed

EXTAR: External RAM disk address register EXTOR: External RAM disk output register

EXTCR: External RAM disk command register (WP and OPN have the

same meaning as for EXTSR.)

5.4.3.2 External RAM disk memory map

5.4.3.3 Miscellaneous

(1) Switch settings
The external RAM disk has two switches, SW2 and SW3, in the box on its rear. These switches are used to select ROM capacities.

ROM type	SW2	SW3
64K bit (e.g., 27C64)	K	В
128K bit	K	В
256K bit (e.g., 27C256)	К	В
512K bit	M	В
lm bit (e.g., HN62301)	М	A

(2) Addresses in 256K-bit ROM
In ROMs excluding 256K-bit ROMs, logical ROM addresses have a one-to-one correspondence with physical ROM addresses.
Therefore, data are written into ROM sequentially from lower to higher addresses. In 256K-bit ROMs, however, the first half of the logical address space is mapped into the second half of the physical address space, and the second half of the logical address space is mapped into the first half of the physical address space (see the figure below).

Address on external RAM	disk Physical ROM address
20000Н	4000H
23FFFH	7FFFH
24000Н	Ø Ø Ø Ø H
27FFFH	ЗЕЕН

(3) Backup battery ON/OFF switch
The external RAM disk is furnished with a switch for turning on
or off the connection with a backup battery. When this switch is
on, the external RAM disk is always supplied with a small
quantity of power from the battery.

(4) Power

When the PINE main unit power is on, PINE battery power is regulated by the DC to DC convertor in the external RAM disk unit and applied to the circuit. When the main unit power is off, power is applied to the circuit from the backup battery in the external unit.

The battery in the external RAM disk is charged at the same time as the NiCd battery in the main unit. Note that charging of the battery in the external RAM disk is not guaranteed if the battery in the main unit is an Mn battery and used without being connected to an AC adaptor.

When the main unit power is off, the main unit and the external RAM disk are each supplied with power from their own backup batteries, respectively. If, however, the voltage of either battery drops below a specified value, that battery is supplied with power from the other battery. Therefore, both the main unit and the optional RAM disk are guaranteed a similar backup time.

5.4.4 Use

Memory (RAM or ROM) can be accessed by loading the desired address into EXTAR (P90H - P92H) and reading or writing the data in EXTIR (P93H) or EXTOR (P93H), respectively.

The address counter is automatically incremented after each read or write. Only the lowest 8 bits of the address counter are incremented; the higher bits remain unchanged. Therefore, once an address is specified, up to 256 contiguous data bytes can be read from or written into RAM or ROM, without respecifying the address.

5.4.4.1 Reading/writing RAM

Figure 5.4.2 shows the procedure for reading/writing RAM.

Fig. 5.4.2 Procedure for Reading/writing RAM

Step 1: External RAM disk installed?

Check whether or not an external RAM disk is installed by reading I/O port address 94H. The MSB indicates the presence or absence of an external RAM disk.

MSB = 1: External RAM disk installed.

= Ø: No external RAM disk installed.

Step 2: Open file.

Write 1 to I/O port address 93H, bit 1 to open the external RAM disk for read or write. Cancel write protection of RAM, if necessary.

Step 3: Specify RAM address.

Load I/O port addresses 90H through 92H with the address to be read or written. The RAM address may be in the range of 00000H through 1FFFFH.

Step 4: Read or write.

Access the I/O port address 93H for read or write.

Steps 5 and 6: Loop.

Determine whether or not read/write processing has been terminated in the application program. During sequential read/write, the external RAM disk auto increment function allows up to 256 bytes of data to be read/written without address re-specification.

Step 7: Close file.

When read/write processing is completed, set I/O port address 93H, bit 1 to Ø to close the external RAM disk. Write-protect the RAM, if necessary.

5.4.4.2 Reading ROM

Figure 5.4.3 illustrates the procedure for reading ROM.

Fig. 5.4.3 Procedure for Reading ROM

Step 1: External RAM disk installed?
 Check whether or not an external RAM disk is installed by
 reading I/O port address 94H. The MSB identifies the
 presence or absence of an external RAM disk.
 MSB = 1: External RAM disk installed.

= Ø: No external RAM disk installed.

Step 2: Specify ROM address.

Load I/O port addresses 90H through 92H with the address from which data is to be read. The ROM address must be 20000H or up.

Step 3: Read data.

Access I/O port address 93H to read data.

Steps 4 and 5: Loop.

Determine whether or not read processing has been terminated in the application program. During sequential read, the external RAM disk auto increment function allows up to 256 bytes of data to be read without address re-specification.

5.4.4.3 Notes

(1) RAM open/close processing To save power, the external RAM disk must be opened only when it is being accessed. While RAM is closed, it is refreshing itself and cannot be accessed.

ROM need not be opened for access.

(2) RAM write protection When RAM is write protected, a write operation causes no actual write to RAM and does not increment the address register. However, RAM can be read, in which case the address register is incremented accordingly. Reading of ROM is not affected by write protection, either.

5.4.5 System Support

PINE OS supports the RAM portion of the external RAM disk as a read/write disk drive. See Section 3.8, "Disk Storage" for detailed information.

The OS does not support the ROM portion of the external RAM disk. Application programs must read data from this area for themselves.

5.4.5.1 Installation check

The OS checks for presence or absence of an external RAM disk at power-on or reset time. It examines the MSB of EXTSR (P94H) and, if an external RAM disk is found to be installed, treats the RAM in the external RAM disk as a RAM disk.

5.4.5.2 Opening/closing RAM

The OS opens and closes the RAM in the external RAM disk before and after a read or write. Therefore, the RAM is always closed after the OS performs a read/write operation.

5.4.5.3 RAM write protection

The OS automatically cancels write protection of RAM when reading/writing the RAM in the external RAM disk. Therefore, the RAM is not write protected after the OS performs a read/write operation.

5.4.5.4 Resetting during write to RAM

Write operation is not guaranteed if the RESET button is pressed during a write to the external RAM disk. The OS displays a "RAM DISK FORMAT" message to warn against possible destruction of RAM contents.

```
1 M BIT ROM READ PROGRAM
                                                   NOTE :
                                                              This sample program is reading 1 Mbit {\tt ROM}, and displaying the data.
                                                   <> assemble condition <>
                                                    .Z80
                                                    <> loading address <>
                                                    .PHASE 100H
                                                    constant values <>
                                                   BIOS entry
EB03
EB09
EB0C
                                         WROOT
                                                                                               ; Warm Boot entry
; Console input entry
; Console out entry
                                                              EOU
                                                                         OFBO3H
                                                                         WBOOT
                                        CONIN
                                                              EQU
                                                                                    +06H
                                                                                    +09H
                                                   System area
F294
                                         LSCRVRAM
                                                              EQU
                                                                         0F294H
                                                                                               ; VRAM top address.
                                        STOP
CR
LF
0003
                                                               FOU
                                                                         03H
000D
                                                               EQU
EQU
                                                                         ODH
0.00\Delta
                                                                         OAH
000C
                                         čLS
                                                               EQU
001B
                                         ESC
                                                                          1 BH
0020
                                         SPACE
                                                               EQU
                                                                         20H
                                         .
P90
                                                              EQU
                                                                         90H
                                                                                                 I/O port 91H
I/O port 91H
I/O port 92H
I/O port 93H
0090
                                                              EQU
EQU
                                        P91
P92
0091
0092
                                                                         92H
0093
0094
                                         P93
P94
                                                               EOU
                                                                         93H
                                                               EQU
                                                                         94H
                                                                                               ; I/O port 94H
                                                              MAIN PROGRAM
                                                   NOTE :
                                                              This program is reading 1 Mbit ROM, and displaying kanji font.
0100
0100
                                         MAIN:
           31 1000
                                                   LD
                                                              SP,1000H
                                                                                    ; Set stack pointer.
0103
           CD 0177
DA EB03
                                                              CHKROM
C, WBOOT
                                                   CALL
JP
                                                                                    ; Connect external RAN disk? No.
0106
0109
           CD 0188
                                                              CUSROFF
                                                   CALL
                                                                                    Cursor off.
010C
                                        MATN10:
010C
010E
                                                              C,CLS
CONOUT
           OF OC
                                                                                    ; Clear screen & home.
           CD EBOC
                                                   CALL
           2A F294
06 04
0111
                                                              HL, (LSCRVRAM)
                                                                                      VRAM top addr --> HL
Loop counter (4 lines)
0114
                                                   I.D
0116
0116
                                         MAIN20:
                                                   PUSH
                                                              HL
BC
           E5
                                                                                      Save registers
0117
0118
           C5
06 OF
                                                    PUSH
                                                              R 15
                                                   LD
                                                                                      Loop counter (15 characters)
011A
                                         MAIN30:
           E5
                                                   PUSH
                                                              HL
                                                                                    : Save registers
011B
           C5
                                                   PUSH
           06 10
                                                   LD
                                                              B, 16
                                                                                    Loop counter (16 dot lines)
011E
011E
                                        MAIN40:
           CD 014C
CD 017B
                                                   CALL
                                                              READROM
                                                                                      Read I Mbit ROM. Write the data to VRAM directly.
0121
                                                              WRTVRAM
0124
                                                   INC
                                                                                      VRAM pointer increment.
Read I Mbit ROM.
Write the data to VRAM directly.
                                                              HI.
0125
0128
           CD OLAC
                                                   CALL
                                                              READROM
           CD 017B
                                                              WRTVRAM
012B
           11 001F
                                                   LD
                                                              DE, 31
                                                                                      Get next dot line address in VRAM
                                                   ADD
DJNZ
012E
                                                              HL, DE
MAIN40
           10 ED
012F
0131
          C1
                                                              BC
HL
                                                   POP
                                                                                      Restore registers.
0132
0133
                                                   POP
           23
                                                              HL
                                                                                      Get nect column address in VRAM.
0134
0135
           10 E3
                                                              MAIN30
                                                   DJNZ
0137
          C1
                                                   POP
                                                                                      Restore registers
0138
0139
013C
          E1
11 0200
19
                                                   POP
LD
                                                              HI.
                                                              DE,32*16
HL,DE
                                                                                      Get next line address in VRAM.
                                                   ADD
          10 D7
013D
                                                   DJNZ
                                                              MAIN20
013F
          CD EB09
                                                   CALL
                                                              CONIN
                                                                                      Key input wait, STOP key?
0142
0144
          FE 03
20 C6
                                                   CP
JR
                                                              STOP
NZ, MAIN10
                                                                                      No.
0146
0149
          CD 017D
C3 EB03
                                                  CALL
JP
                                                              CUSRON
WBOOT
                                                                                   ; Curs
                                                                                      Cursor on .
```

```
READ DATA FROM 1 M BIT ROM
                                                                NOTE :
                                                                             Read a data from 1 Mbit ROM.
This routine uses the function of auto
                                                                             increment.
                                                                <> entry parameter <>
   NON
                                                                A : Read data.
preserved registers <>
                                                                             NON
                                                                CAUTION :
014C
014C
014F
0150
                                                  READROM
             3A 0193
3C
32 0193
                                                                                                           Last 8 bits data.
256 bytes read?
Set the new address.
                                                                             A, (P90DT)
                                                                INC
                                                                             A
(P90DT), A
NZ, READ50
                                                                LD
JR
0153
              20 1F
                                                                                                        ; No.
             3A 0194
3C
32 0194
20 07
0155
                                                                LD
INC
LD
JR
                                                                             A, (P91DT)
                                                                                                        ; Middle 8 bits data.
; 256*256 bytes read?
; Set the new address.
0158
0159
                                                                             A
(P91DT),A
NZ,READ40
015C
                                                                                                        ; No.
             3A 0195
015E
                                                                LD
INC
                                                                                                        ; Top 3 bits data.
; Count up.
; Set the new ROM address.
                                                                             A, (P92DT)
0161
0162
             3C
32 0195
                                                                             A
(P92DT),A
                                                                LD
0165
                                                  READ40:
             3A 0193
D3 90
3A 0194
D3 91
3A 0195
D3 92
0165
0168
016A
016D
016F
0172
                                                                                                        ; 1/0 port output for setting next address ; Last 8 bits
                                                               LD
OUT
                                                                             A, (P90DT)
(P90), A
                                                                             A, (P91DT)
(P91), A
A, (P92DT)
                                                               LD
OUT
                                                                                                            Middle 8 bits.
                                                                I.D
                                                                OUT
                                                                             (P92),A
                                                                                                            Top 8 bits.
0174
0174
0176
                                                  READ50:
                                                                                                       ; Read ROM data.
             DB 93
C9
                                                               IN
RET
                                                                            A, (P93)
                                                                            CHECK CONNECTING EXTERNAL RAM DISK
                                                               NOTE :

    return parameter <>
        CY : Return information.
        =0 -- Connected RAM disk.
        =1 -- Not connected RAM disk.

    reserved registers <>
    reserved.

                                                                            NON
                                                               CAUTION :
0177
0177
0179
                                                  CHKROM:
             DB 94
                                                                IN
                                                                             A. (P94)
                                                                                                           Get external status MSB --> CY
                                                               RLA
RET
              17
                                                                            WRITE VRAM AT THE HL ADDRESS
017B
017B
017C
                                                  WRTVRAM:
                                                               LD
             77
                                                                            (HL).A
                                                               RET
                                                                            CURSOR ON
                                                  CUSRON:
017D
             0E 1B
CD EB0C
0E 33
CD EB0C
                                                               LD
CALL
LD
CALL
                                                                            C,ESC
CONOUT
C,'3'
017D
017F
0182
0184
0187
                                                                             CONOUT
                                                               RET
                                                                            CURSOR OFF
0188
0188
018A
018D
018F
                                                  CUSROFF:
             0E 1B
CD EBOC
0E 32
CD EBOC
                                                               LD
CALL
LD
CALL
                                                                            C, ESC
                                                                            CONOUT
C, 2
CONOUT
0192
0193
0193
                                                  P90DT:
             FF
                                                                            OFFH
                                                               DB
0194
0194
                                                  P91DT:
             FF
                                                                DΒ
                                                                             0FFH
                                                  P92DT
0195
             01
                                                                DB
                                                                             001H
                                                                END
```

5.5 Barcode Reader and External Cassettes

5.5.1 General

The PINE is furnished with barcode reader and external cassette interfaces. The barcode reader interface has +5V power output and the barcode reader input (BCRD). The external cassette interface handles the motor drive signal (RMT) for cassettes with a remote terminal, the record signal (MIC) to cassettes, and the earphone signal (EAR) from cassettes.

Neither barcode reader nor external cassette is supported by PINE OS.

5.5.2 Structure

5.5.2.1 Barcode reader/external cassette I/O address map

R/W	I/O address	Register name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Remarks
	P02H	ICRL. B			stat (low					the	
R	P03H	ICRH. B			stat (hig					the	·
e a d	P04H	ISR						ICF			Bits other than bit 2 are used for other purposes.
	P05H	STR							BCRD	EAR	Bits other than bits 1 and 0 are used for other purposes.
W	POOH	CTLR1					SW BCI	BCR1	BCRO	SL BCR	Bits other than bits 3 through 0 are used for other purposes.
i t	P02H	CTLR2		[on' t	Ca	re		RMT	MIC	
e	PO4H	IER						IER2			Bits other than bit 2 are used for other purposes.

ISR (Interrupt Status Register):

ICF: Interrupt signal generated when the FRC value is latched to ICR by transition in the state of the signal from the barcode reader or external cassette.

STR (Status Register):

BCRD: Barcode reader input signal

EAR: External cassette EAR input signal

CTLR1 (Control Register 1)

SWBCR: Turns on/off power (+ 5V) to the barcode reader.

= 0: Power off.

= 1: Power on.

BCR1, BCR0: Selects the latch trigger polarity.

= 00: Trigger inhibited.

= 01: Falling trigger (_____)

= 10: Rising trigger (____)

= 11: Rising and falling triggers (_____)

SLBCR: Selects the trigger signal that is to latch the FRC value to ICR.

= 0: External cassette EAR input signal

= 1: Barcode reader input signal

CTLR2 (Control Register 2)

RMT: External cassette remote ON/OFF signal

= 0: Remote OFF

= 1: Remote ON

MIC: External cassette write signal (output to microphone) IER (Interrupt Enable Register)

IER2: Controls INT2 (ICF) interrupts.

= 0: Interrupts disabled.

= 1: Interrupts enabled.

5.5.3 Use

This subsection discusses the method of determining the wave form of the input signal from the barcode reader or external cassette, as well as the method of sending signals to the external cassette.

5.5.3.1 Selecting the barcode reader or external cassette

The barcode reader or external cassette is initialized in the following steps:

Fig. 5.5.1 Initialize Procedure

Step 1: Get CTLR1 value.

Read the current CTLR1 (P00H) value from the system area RZCTLR1 (0F001H).

Step 2: Initialize barcode reader (or external cassette).
Manipulate the value read in step (1) as follows:

Bits 7 - 4: Do not change.

Bits 3 - 0: Specify whether power to the barcode reader is to be turned on or off, the trigger polarity, and the trigger signal.

Step 3: Output data to CTLR1.

Load the value specified in step (2) into RZCTLR1 (ØFØØ1H) and output it to CTLR1 (PØØH).

5.5.3.2 Data input

Whether or not data is input from the barcode reader or external cassette is determined by measuring the input signal 1 or Ø state time. The time can be measured by the procedure shown in Figure 5.5.2 (the procedure for measuring the time of the mark signal).

Fig. 5.5.2 Time Measuring Procedure

Step 1: Set rising trigger polarity.
Set CTLR1 (P00H), bits 2 and 1 to 1 and 0, respectively, using the procedure shown in Figure 5.5.1. Make a dummy read or ICRH.B (P03H), if necessary, and reset the ICF interrupt.

Step 2: Wait for ICF interrupt.

Read the value of ISR (PØ4H) to check for an ICF interrupt.

ISR, bit 2 identifies the presence or absence of an ICF interrupt.

ISR (P04H), bit 2 = 0: No ICF interrupt generated. = 1: ICF interrupt generated.

If no ICF interrupt has been generated, repeat this until one is generated.

Step 3: Read ICR data.

Read ICRL.B (P02H) and ICRL.B (P03H) and get the FRC value at input signal rise time.

Step 4: Set falling trigger polarity.

Set CTLR1 (P00H), bits 2 and 1 to 0 and 1, respectively, using the procedure shown in Figure 5.5.1.

Steps 5 and 6:

Same as steps (2) - (3).

Step 7: Compute mark signal time.

Compute the mark signal time from the formula

(T2 - T1)/614.6 ms.

where Tl and T2 are the values obtained in steps (3) and (6), respectively. If T2 -l Tl \leq 0, add 65536 to the result to get a positive value.

Note: Since FRC is set to approximately 106.6 ms. frequency, time exceeding one frequency (more than 106.6 ms.) may elapse while waiting for an ICF interrupt in step (2). Therefore, an application program must include frequency count check and timeout processing routines in its wait processing routine. The frequency count can be checked using the OVF interrupt.

5.5.3.3 Data output (output to MIC of the external cassette)

Data can be output to the MIC terminal of the external cassette by setting CTLR2 (P02H), bit 0 to 1 or 0 and outputting mark or space signals.

The REMOTE terminal can also be controlled through CTLR2 (PØ2H), bit 1.

5.5.4 System Support

PINE OS supports neither the barcode reader nor the external cassette. For the ICF interrupt, however, a hook is provided in the corresponding interrupt processing routine to allow expansion of ICF interrupt processing.

The external cassette is supported by BASIC.

5.6 ROM Capsules

5.6.1 General

The PINE can house up to two capsule ROMs in memory, in addition to OS ROM (32K bytes) and RAM (64K bytes). ROM capsules may be 8K-, 16K-, or 32K-byte mask ROMs. Data in these capsules can be accessed immediately through bank switching.

5.6.2 Structure

5.6.2.1 ROM capsule I/O address map

R/W	I/O address	Register name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bi t0	Remarks
Read	P05H	STR	BANK3	BANK2	BANK1	BANKO			hrough ther p		
Write	P05H	BANKR	BANK3	BANK2	BANK1	BANKO			hrough ther p		

STR (Status Register)

BANK3 - 0: Indicate the current bank status.

BANKR (Bank Register)

BANK3 - 0: Select a bank.

5.6.2.2 Memory map

	OS ROM	RAM	ROM	capsule	1	ROM	capsule	2
BANK3, 2, 1, 0 Address	0000	0100	1000	1001	1001	1100	1101	1110
FFFFH E000H	RAM		RAM ROM1	RAM ROM1	RAM ROM1	RAM ROM2	RAM ROM2	RAM ROM2
С000Н			(8KB)	(16KB)	(82KB)	(8KB)	(16KB)	(32KB)
A000H		RAM					Anna de plandino mán na de mario de mar	
8000H								
6000H	OS Rom							
4000H	(32KB)							
2000H 0000H			·					
UUUUH								

Fig. 5.6.1 PINE ROM Capsule Memory Map

5.6.2.3 ROM addresses

In ROMs 1 and 2 in the ROM capsule, the relationship between logical and physical addresses differs depending on the ROM capacity.

(1) Addresses in 64K-bit ROM In 64K-bit ROMs, logical ROM addresses have a one-to-one correspondence with physical ROM addresses.

Memory address	Physical ROM address
Ø СØØØН	Ø Ø Ø Ø H
ØDFFFH	1FFFH

(2) Addresses in 128K-bit ROM

In 128K-bit ROMs, the first half of the logical address space is mapped into the econd half of the physical address space, and the second half of the logical address space is mapped into the first half of the physical address space (see the figure below).

Memory address	Physical ROM address
ØAØØØH	2000H .
ØBFFFH	3FFFH
ОСОООН	ØØØØН
ØDFFFH	lfffh

(3) Addresses in 256K-bit ROM

In 256K-bit ROMs, the first half of the logical address space is mapped into the econd half of the physical address space, and the second half of the logical address space is mapped into the first half of the physical address space (see the figure below).

Memory address	Physical ROM address
бøøøн	6000н
	· I
7FFFH	7FFFH
8ØØØH	ØØØØH
	1
DFFFH	5FFFH

5.6.2.4 ROM switch jumper

When installing 64K-, 128K-, or 256K-bit ROM devices in ROM capsules, change the settings for J4 and J5 according to the ROM type.

Table 5.6.2 ROM Capacity and Jumpers

		IdDic	3.0.2 Roll Supusing Line
1	J4 and	J5	ROM type
	A		128K bit (PROM)
	В		64K bit
	В		128k bit (Mask ROM)
	В	i3	256K bit

Jumper J4 is for ROM capsule 1 (drive C) use and Jumper J5 is for ROM capsule 2 (drive B) use.

5.6.3 Use

Figure 5.6.1 shows the procedure for reading data in ROM capsule through bank switching.

Fig. 5.6.1 Procedure for Reading ROM Data

See Section 4.4, "Bank Switching" for steps (1), (2), and (4).

5.6.4 System Support

PINE OS supports ROM capsules as read-only disks or executable programs. See Section 3.8, "Disk Storage" for the method of supporting ROM capsules as disks. See Section 4.6, "Executing a ROM Program" for the executing ROM programs.

5.6.4.1 Installation check

PINE OS checks whether or not a ROM capsule is installed at power-on or reset time.

At power-on or reset time, PINE OS determines whether or not a ROM capsule is installed by checking for a ROM header.

5.7 Centronics Interface

5.7.1 General

The PINE employs the Centronics interface which allows the PINE to print on an ordinary terminal printer (MP, RP, or FP) without processing print data.

5.7.2 Structure

5.7.2.1 Centronics interface I/O address map

R/W	I/O address	Register name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Remarks
Read	16H	IOSTR							PERR	PBSY	Bits 7 through 2 are used for other purposes
Unito	17H	PDR				8-bit	data				
Write	19H	IOCTLR							PINI	PSTB	Bits 7 through 2 are used for other purposes

IOSTR (I/O Status Register)

PERR: Printer error signal

= 0: Normal state.

= 1: Error occurred.

PBSY: Printer busy signal

= 0: Printer ready.

= 1: Printer busy.

PDR (Printer Data Register)

Used to output data to the printer. Loaded with ØFFH when

not in use.

IOCTLR (I/O Control Register)

PINI: Printer initial reset signal

PSTB: Data strobe signal

Note: The printer can be reset by holding the *PINI signal in the Ø state for more than 50 us.

5.7.3 Use

Figure 5.7.1 shows the procedure for using the Centronics interface.

S

F

5

5 T

C

Fig. 5.7.1 Data Transmission Procedure

Step 1: Printer ready?

Check whether or not the printer is ready by examining PBSY and PERR (IOSTR, bits 0 and 1). 0 in both bits indicates that the printer is ready.

Step 2: Output data.

Write to PDR (P17H) the data to be output to the printer.

Step 3: Control strobe signal.

Generate the strobe signal to cause the printer to read data. To do this, set PSTB (IOCTLR, bit 0) to 1 and then restore it to 0.

Steps 4 and 5: Termination processing.

When outputting data continuously, return to step (1). When data output processing is completed, send ØFFH to PDR (P17H) to save power.

5.7.4 System Support

In PINE OS, the Centronics interface is manipulated through the LIST and LISTST functions. See Section 3.4, "BIOS Details" for BIOS functions.

5.7.4.1 Centronics interface initial signal

The PINE initially resets the printer at power-on or reset time by sending an initial signal to the Centronics interface. Even if power is turned off in the continue mode during printing, the printer is reset the next time power is turned on; print operation cannot be continued, once power is turned off.

5.8 Printer

5.8.1 General

PINE OS supports printers incorporating the Centronics or RS-232C interface. Any type of printer connects to the PINE Centronics, RS-232C, or SIO interface. The cartridge printer, which is one of the PINE cartridge options, is always connected to the cartridge interface.

See Section 5.1, "Cartridges" for the cartridge printer, and Section 5.7, "Centronics Interface" for the Centronics interface. For the RS-232C and SIO interfaces, see Section 5.2, "Serial Interfaces."

The following pages discuss printers in general.

5.8.2 System Support

5.8.2.1 Selecting printer interface

The PINE can connect to a printer via four types of interfaces: Centronics, RS-232C, SIO, and cartridge SIO. The interface to which the printer is to be connected is determined by bits 5 and 6 of the DIP switch on the PINE main unit rear panel.

Bit 6	Bit 5	Output interface
OFF	OFF	SIO
OFF	ON	Cartridge
ON	OFF	RS-232C
ON	ON	Printer

5.8.2.2 Printer interface parameters

The bit rate must be specified when outputting print data to the RS-232C or SIO. In PINE OS, the initial settings are 4800 bps, 8 data bits, no parity, and 2 stop bits. These parameter values can be changed by rewriting the following areas:

SYSCTLR1 (ØF279H) 1 byte Specifies the bit rate.

7	6	5	4	3	2	1	0
				0	0	0	0

bit 7	bit 6	bit 5	bit 4	Transmission speed	bit 7	bit 6	bit 5	bit 4	Transmission speed	bit 7	bit 6	bit 5	bit 4	Transmission speed
0	0	0	0	110	0	1	0	1	2400	1	0	0	0	1200
0	0	0	1	150	0	1	1	0	4800	1	0	0	1	75
0	0	1	0	300	0	1	1	1	9600	1	1	×	×	200
0	0	1	1	600	1	0	1	0	19200					
0	1	0	0	1200	1	0	1	1	38400					

SYSARTMR (ØF27AH) 1 byte Specifies the send and receive parameters.

5.8.2.3 Output to the printer

Data is output to the printer through the BIOS LIST and LISTST functions. See Section 3.4, "BIOS Details" for further information.

5.8.2.4 Screen dump

In PINE OS, the data on the LCD screen can be output on the printer in bit image by pressing the CTRL/PF5 keys or by calling the BIOS SCRNDUMP function.

5.8.2.5 International character set specification processing

PINE OS automatically specify the international character set (ESC + 'R') for the printer.

The international character set specification is output when data is sent to the printer for the first time after:
 The LST: field of the I/O byte is changed,

- A warm boot is performed,
- Power is turned on, or
- The display character generator is changed.

5.8.3 Printer Types

Table 5.8.1 lists the printers available for the PINE. Table 5.8.1 Available Printers

	Table 2.0	. I HVUIIU	Die lineers
Printer type	PINE	PINE	Connectable interface
	graphics	screen	
	character	dump	
MX-80II, III	\$ *	\$ **	Centronics (RS-232C, SIO)
MX-100II, III	х	0	Centronics (RS-232C, SIO)
MX-80, 100	0	0	Centronics (RS-232C, SIO)
FX-80, 100	Down load	0	Centronics (RS-232C, SIO)
LQ1500	X	0	Centronics
SQ2000	x	0	Centronics
DX-100	x	X	Centronics ***
C-40	x	0	RS-232C, SIO
P-40P	0	0	Centronics
P-40S	0	0	RS-232C, SIO
P-80	0	0	RS-232C, SIO
Cartridge prin		0	Cartridge

- The \$ marks indicate that the corresponding functions are available if PROM for the HC-20 is used.
- **: The screen dump function is not available for the MP-80 I.
- ***: The optional printer adaptor must be used.

Notes:

- Characters EØH, E1H, and 7FH cannot be printed on any of the 1) above printers.
- The user is advised to use the Centronics interface for 2) ordinary terminal printers (MP, FP, and RP).