ChhPDF -

o

UT

Remarks

Example

PUTI #1] < file number > [, <record number >]

Writes the contents of a random file buffer to one record of a
random access file.

The random access file must be opened in the ‘““R’’ mode under
the number specified in < file number > before this statement can
be executed. Further, data must be set in the random file buffer
with the LSET and/or RSET statements. ‘

< file number > is the number under which the file was opened,
and <record number > is the number of the file record to which
the buffer contents are to be written.

<record number> must have a value in the range from 1 to
32767. If <record number > is omitted, the contents of the ran-
dom file buffer will be written to the record following the record
accessed by the previous PUT or GET statement.

GET, LSET/RSET, OPEN and Chapter 6.

10 OPEN "R",#1, "RANDOM", 20
20 FIELD #1,10 AS A%
30 LSET A$="ABCDEFGHIJ"
40 PUT #1

50 WRITE#1,1,2,"YZa"

60 PUT #1

70 PRINT#1, "KLMNOPQ";
80 PUT #1

90 FOR I=1 TO 3

100 GET #1,1

110 PRINT AS$

120 NEXT

run
ABCDEFGHIJ
1,2,"YZa"
KLMNOPQa "
Ok

3-158

wvvwfastio.com

NOTE:

String data to be written to a random access file with PUT can be placed in the
random file buffer with the PRINT#, PRINT# USING, and WRITE # state-
ments, as well as with the LSET/RSET statements. An example of this is IN-
CLUDED IN THE PROGRAM ABOVE. When the WRITE # statement is used
Jor this purpose, extra positions in the buffer are padded with spaces. An FO

error (Field overflow) will occur if an attempt is made to read or write past the
end of the buffer.

3-159

http://www.fastio.com/

ChhPDF -

RANDOMIZE

Remarks

See also
Example

RANDOMIZE [<expression>]

Reinitializes the sequence of random numbers generated by the
RND function using the seed number specified in < expression>.

The value specified in <expression> must be a number in the
range from — 32768 to 32767. If <expression> is omitted, BASIC
suspends program execution and displays the following message
to prompt the operator to enter a value from the keyboard.

Random number seed ?

If the random number sequence is not reinitialized, the RND func-
tion will return the same sequence of random numbers each time
a given program is executed. This can be overcome by placing
a RANDOMIZE command at the beginning of each program so
that the user can input a random number. It is better however,
if the computer changes the random number seed in <expression>.
This can be achieved by using the TIMES$ function as this is a
continually changing string of numibers. A description of this is
given in the example program in RND.

RND

1¢ FOR J=1 TO 3
20 RANDOMIZE

30 PRINT

40 FOR I=1 7O 5
50 PRINT RNDj;

60 NEXT I
70 PRINT
80 NEXT J
run
Random number seed (~-32768 to 32767)7 1
.58041 .128928 .928324 ,901162 .532818
Random number seed (-32768 to 32767)7 2
.89341 .B823736 .9645463 .674916 (963391
Random number seed (-32768 to 32747)7 1
826124 .915422 .0593067 .38{003 .51ti10t
Ok
3-160

wvvwfastio.com

v
£

READ

Remarks

See also

READ <list of variables>

Reads values from DATA statements and assigns them to
variables.

The READ statement must always be used in conjunction with
one or more DATA statements. The READ statement assigns
items from the <list of constants > of DATA statements to vari-
ables specified in <list of variables>. Items from the <list of
constants > are substituted into variables in the <list of variables >
on a one-to-one basis, and the type of each variable to which data
is assigned must be the same as the type of the corresponding con-
stant in <list of constants>.

A single READ statement may access one or more DATA state-
ments, or several READ statements may access the same DATA
statement.

If the number of variables specified in <list of variables > is great-
er than the number of constants specified by DATA statements,
an OD error (Out of data) will occur. If the number of variables
specified in <list of variables> is smaller than the number of con-
stants specified in DATA statements, subsequent READ state-
ments begin reading data at the first item which has not previ-
ously been read. If there are no subsequent READ statements,
the extra items are ignored.

The next item to be read by a READ statement can be reset to
the beginning of the first DATA statement on any specified line
by means of the RESTORE statement.

DATA, RESTORE

3-161

http://www.fastio.com/

ChhPDF -

o FOR J=1 TO 5
é@ READ A(J) ,B$(J),CJ)
20 NEXT J
44 FOR J=1 TO S
50 PRINT A(J) ,B$(J),C ()
&0 NEXT J
76 END
89 DATA 1,aaaa,ll
99 DATA 2,bbbb,22
196 DATA 3,ccecc, 33
1106 DATA 4,dddd, 44
1260 DATA S,eeee,d3

run

1 aaaa

2 bbbhb

= ccee

4 dddd

5 eeee
Ok

3-162

wvvwfastio.com

11

22
-
ey

44
55

Purpose
Remarks

NOTE:

REM <remark >
> <remark >

Makes it possible to insert explanatory remarks into programs.

Either of the above formats may be used to insert explanatory
remarks into a program. Remark statements are ignored by
BASIC during program execution, but are output exactly as en-
tered when the program is listed.

If prograin execution is branched to a line which begins with a
remark statement, execution resumes with the first subsequent line
which contains an executable statement.

If a remark statement is to be appended to a line which includes
an executable statement, be sure to precede it with a colon (©).
Also, note that any executable statements following a remark
statement on a given program line will be ignored.

When a program is listed using LIST* or LLIST*, apostrophes indicating re-
mark statements are not output. However, “REM”’ is output at the beginning
of any remark statements beginning with REM.

3-163

http://www.fastio.com/

REMOVE

REMOVE

Writes the directory to the microcassette tape and terminates
microcassette 1/0.

] A REMOVE command must be executed before taking a cassette
g tape out of the microcassette drive. The reason for this is that,
if the cassette tape is taken out of the drive without executing the
REMOVE command, the directory is not updated and data which
has been written to the cassette up to that point may be lost. Fur-
ther, if another tape is inserted in the microcassette drive without
executing the REMOVE command for the previous tape, the con-
tents of the new tape may be destroyed.

The REMOVE command cannot be executed if any files are open
or the tape in the drive has not been mounted.

DW error (Disk write error) — An error occurred while data was
being written to the microcassette drive.

AC error (Tape access error) — The REMOVE command was
executed before the tape in the drive had been installed by ex-

executed while a tape file was still open.

MOUNT

Section 2.4.5

‘ 3-164
ChibPDF - www.fastio.com

ecuting the MOUNT command; or, the REMOVE command was

RENUM

Purpose
Remarks

Examples
| Examples |

RENUM][< new line number >][,[<old line number >]
[, <increment > }]]

Renumbers the lines of programs.

This command renumbers the lines of a program according to
the values specified in < new line number >, <old line number>,
and <increment>. <new line number > is the first line number
to be used in the new sequence of program lines and <old line
number > is the line number in the current program with which
renumbering is to begin. <increment> is the amount by which
each successive line number in the new sequence is to be increased
over the number of the preceding line.

The default value for <new line number > is 10, that for <old
line number > is the first line of the current program, and that
for <increment> is 10.

The RENUM command also changes all line number references
included in GOTO, GOSUB, THEN, ON...GOTO, ON...GOSUB
and ERL statements to reflect the new line numbers. If a nonex-
istent line number appears after one of these statements, the mes-
sage ‘UL error in xxxxx’’ is displayed. The incorrect line number
in the program line is not changed, but that indicated by xxxxx
may be changed.

RENUM

Renumbers the entire program. The first line number of the new
sequence will be 10, and the numbers of subsequent lines will be
increased in increments of 10.

RENUM 300,50

Renumbers program lines starting with existing line 50. The num-
ber of line number 50 in the current program will be changed to
300, and all subsequent lines will be increased in increments of 10.

RENUM 1000,900,20
Renumbers the lines beginning with 900 so that they start with
line number 1000 and are increased in increments of 20.

3-165

http://www.fastio.com/

ChhPDF -

NOTE:

The RENUM command cannot be used to change the order of program lines
(for example, RENUM 15, 30 when the program has three lines numbered 10,
20 and 30), or to create line numbers greater than 65529. An FC error (Illegal
Junction call) will result if this rule is not observed.

3-166
wvvwfastio.com

RESET

RESET

Resets the READ/ONLY condition which results when the flop-
py disk in a disk drive has been exchanged for another one. When
the floppy disk in an external disk drive is replaced with another
one when that drive has previously been accessed, subsequent
writes to that drive are inhibited. This is to protect the contents
of the disk’s directory. Executing the RESET command resets the
read-only condition and re-enables access to the new disk. It also
closes any files which are open in the same manner as the CLOSE
command.

Also RESET enables a new ROM capsule for read access after
replacement.

The default drive is the default drive for CP/M until a RESET
command is executed. The execution of a RESET command sets
the default drive to drive A: and so programs should specify the
drive to which the data is to be saved.

100 CLOSE

11 PRINT "Replace disk in drive E: and press
enter when ready"

120 AS=INPUTS$ (1)

130 RESET

140 OPEN"Q",#1,"E:FILEL"

3-167

http://www.fastio.com/

ChhPDF -

RESTORE

Remarks

See also
Example

RESTORE [<line number >}

Allows DATA statements to be re-read from a specified program
line.

If <line number > is specified, the next READ statement will
access the first item in the DATA statement on the specified line
or on the first subsequent line which contains a DATA statement
if there is no DATA statement in the specified line. If <line num-
ber > is not specified, the next READ statement accesses the first
item in the first DATA statement in the program.

DATA, READ

10 FOR I=1 TO 2

20 FOR X=1 TD B

30 READ A:SOUND A,S56

40 NEXT X,I

50 SOUND ©, 100:RESTORE

&0 FOR I=1 TO 2

70 FOR X=1 TO 8

80 READ A:SOUND A%2,50

90 NEXT X, I

10@ DATA 256,2688,320,341,384,424,480,512
110 DATA 512,480, 426,384,341, 320, 288, 256

3-168

wvvwfastio.com

RESUME

Purpose

Remarks

See also
Example

RESUME

RESUME §

RESUME NEXT
RESUME <line number >

Used to continue program execution after execution has branched
to an error processing routine.

The RESUME statement makes it possible to resume program ex-
ecution at a spécific line or statement after error recovery process-
ing has been completed. The point at which execution is resumed
is determined by the format in which the statement is executed
as follows:

RESUME Resumes program execution at the statement
or which caused the error.
RESUME ¢

RESUME NEXT Resumes program execution at the statement
immediately following that which caused the
error.

RESUME Resumes program execution at the program line
<line number > specified in <line number>.

An RW error (RESUME without error) message will be generated
if a RESUME statement is encountered anywhere in a program
except in an error processing routine.

ERROR, ON ERROR GOTO, ERR/ERL

See the example program under ERROR.

3-169

http://www.fastio.com/

RIGHTS

Purpose

Remarks

See also
Example

RIGHTS$(X$,J)

Returns a string composed of the J characters making up the right
hand end of string X8$.

The value specified for J must be in the range from 0 to 255.
If J is greater than the length of X$ the entire string will be
returned. If J is equal to 0 a null string of zero length is returned.

LEFT$, MID$

10 Af="Epson PX-4"
20 FOR I=1 TO 10
30 PRINT RIGHT®$(A$, 1)
40 NEXT
run
4
-4
X—4
FX-4
FX-4
n PX-4
on PX-4
son PX-4
pson FPX—4
Epson FX-4
Ok

3-170

ChibPDF - www.fastio.com

ND

Format
Purpose
Remarks

See also
Example

RNDI(X)]
Returns a random number with a value between 0 and 1.

RND returns a random number from a sequence determined
mathematically by the random number generator in the BASIC
interpreter. The same sequence of numbers is generated each time
a program containing the RND function is executed. If X is omit-
ted or the number specified for X is greater than 0, the next ran-
dom number.in the sequence is generated. If 0 is specified for X,
RND repeats the last random number generated. If the number
specified for X is less than 0, RND starts a new sequence whose
initial value is determined by the value specified for X.

It is sometimes necessary to generate numbers in a given range.
The following examples show how this may be done.

INT (RND (X) * 100) Generates numbers in the range

0—99.

INT (RND X)*160)+1 Generates numbers in the range
1—100.

INT (RND (X)*108) + 50 Generates numbers in the range
100—149.

INT (RND X)*18) -5 Generates numbers in the range
~5to +4.

RANDOMIZE

The following program shows how to use RANDOMIZE and the
value returned by TIMES$, to give a random number which is as
random as the computer will allow. Run the program a number
of times to see that the numbers output from line 30 are the same
each time the program is run. The first value will be the same
for the five circuits of the repeating loop (lines 30 to 50) because
a negative value of X repeats the number by continually reseed-
ing with the same number. The next values will be the same as
these values because X =0 which repeats the last random num-
ber. When X is from 1 to 3 a different number is produced each
time in the loop lines 30— 50, but this number will be the same
each time the program is run.

3171

http://www.fastio.com/

1o FOR X

20 FOR N

30 PRINT

40 NEXT N
45 FRINT

56 NEXT X
&H 7

79

go " firs
99 RANDOM
10 FOR J
110 PRINT
126 NEXT

130 FRINT
144 *

156 ° sec
169 FOR g
179 RANDO
1890 FRINT
199 NEXT

200 FPRINT

. 36860l

. 708601

. 4984871

.9249844

. 421504

422 292
846 1206
Ok

The second set of numbers, generated by lines 100 — 130, is again
the same every time the program is run, despite RANDOMIZE

having been used.

The last set of numbers are different every time the program is
run because the number used to generate the seed is different.
It is obtained from the string returned by TIME$, by multiplying
the hours by the seconds. This requires not only string manipula-
tion to remove the characters from each end of the string, but
also using the VAL function to convert them into numbers. More
complex algorithms could be used.

-1 TO =
1 7O S
RND (X) §

[/

t randomize routine
1ZE (456,

= 1 TO 19
INT(RND (1) %10040) 3§

ond randomize routine
= 1 TO 10

MIZE (VAL (LEFT$(TIMES,2)) VAL (RIGHT$ (TIME%,2)))
INTC(RND (1) #1000) 3

. 3IN8601 . 3686011 . T0B601 . 308601
.308601 308601 .I08601 308601
670127 .98706 .739354 .783018
.55241 .681371 .823571 .244878
L775332 .310637 346467 .056878

06 L1467 3T 595 910 875 173
948 4 B39 687 © 567 224 514

3-172

ChibPDF - www.fastio.com

RUN

Purpose
Remarks

See also
Examples

RUN [<line number>]
RUN < file descriptor>[,R]

Initiates program execution.

The first format is used to start execution of the program in the
currently selected program area. Execution begins at the first line
of the program unless < line number > is specified. If <line num-
ber > is specified, execution begins at the specified line. All files
are closed and variables cleared, even if the <line number > speci-
fied is not the first line of the program. To restart a program from
a particular line number without using RUN, use GOTO <line
number > .

The second format is used to load and execute a program from
a disk device, including the microcassette drive and RS-232C
interface. Specify the name under which the program was saved
in < file descriptor >; if the extension is omitted, ‘. BAS”’ is assumed.
For the RS-232C interface, specify “COMU:[(< options>)] as the
file descriptor.

The RUN command normally closes all files which are open and
deletes the current contents of memory before loading the specified
program. However, all data files will remain open if the R option
is specified although the variables will be cleared.

GOTO, LOAD, MERGE

RUN 300
runs the program from line 300.

RUN “ADDRESS.BAS”
loads and runs the program “ADDRESS.BAS” in the default drive.

RUN “D:ENTRY.BAS”,R

loads and runs the program “ENTRY.BAS” from disk drive D:
without closing the files which were opened by the previous
program.

3-173

http://www.fastio.com/

SAVE

Purpose

ENEE

See also
Examples

ChbPDF -

SAVE <file descriptor>[,A]
SAVE < file descriptor>[,P]

Used to save programs to disk device files or the RS-232C com-
munications interface.

This command saves BASIC programs to disk files or the RS-232C
communications interface. In the former case, specify the drive
name, file name and extension in < file descriptor>.

The currently active drive is assumed if the drive name is omit-
ted, and ‘‘.BAS”’ is assumed if the extension is omitted. In the
latter case, specify ‘“COMS@:[(<options>)]"’ as the file
descriptor.

If the A option is specified, the program will be saved in ASCII
format; otherwise it will be saved in compressed binary format.
The ASCII format requires more disk space for storage than bi-
nary format, but some file access operations require that the file
be in ASCII format (for example, the file must be in ASCII for-
mat if it is to be loaded with the MERGE command).

If the P (protect) option is specified, the program will be saved
in an encoded binary format. When a file is saved using this op-
tion it cannot be edited or listed when it is subsequently loaded.
Once a program has been saved with the P option the protected
condition cannot be cancelled.

LOAD, MERGE
SAVE ‘“ADDRESS”’
SAVE “B:ADDRESS.ASC”,A

SAVE “COM#:(ASN3FXN)”’
SAVE ‘“SECRET”,P

3-174

wvvwfastio.com

SCREEN

|

Remarks

SCREEN (< horizontal position> , < vertical position>)

Returns the character code of the character displayed at the speci-
fied position on the screen.

The SCREEN function returns the value of character code for
the character displayed at the virtual screen coordinates specified
by <horizontal position> and < vertical position>. <horizontal
position > must be specified as a numerical expression with a value
in the range from 1 to Xmax; <vertical position> is also speci-
fied as a numerical expression, but with a value in the range from
1 to Ymax. The values of Xmax and Ymax are determined by
the size of the screen currently being used as the write screen.

FC error (Illegal function call) — An argument specified was not
in the prescribed range.

3-175

http://www.fastio.com/

7))

GN

ChhPDF -

SGNX)
Returns the sign of numeric expression X.

If X is greater than 0, SGN(X) returns 1. If X equals 0, SGN().()
returns 0. If X is less than 0, SGN(X) returns — 1. Any numeric
expression can be specified for X.

10 A=1: PRINT SGN(A)
20 B=1<0:PRINT SGN(B)
30 C=1=1:PRINT 8GN(C)

run
1
°

-1

Ok

3-176

wvvwfastio.com

Format

SIN
[Format]

Purpose
Remarks

Example

SIN(X)
Returns the sine of X, where X is an angle in radians.

The sine of angle X is calculated to the precision of the type of
the numeric expression specified for X.

10 CL.S

20 INPUT "Enter angle in degrees“;A
30 PI=4%ATN(1)

49 D=P1/18a

59 PRINT "SIN(";A;")="3SIN(A*D)

6@ 6OTO 20

Enter angle in degrees? ©
SINC ©)= 0

Enter angle in degrees? 30
SINC(30)= .5

Enter angle in degrees? 45
SIN(45)= ,707107

Enter angle in degrees?

3-177

http://www.fastio.com/

ChbPDF -

SOUND

SOUND < pitch >, < duration >

Generates a sound of the specified pitch and duration.

The <pitch> parameter is specified as a value from 0 to 4500.
Values from 100 to 4500 cause a sound to be generated at the
equivalent pitch, and values from 0 to 99 result in no sound.

The < duration> parameter is specified as a value from 0 to 2554;
the length of the sound generated is equal to < duration> x 10
msec, with the result rounded off to the nearest millisecond.

When a SOUND statement is executed, the BASIC interpreter
waits for execution of that statement to be completed before go-
ing on to the next statement.

The relationship between values specified in <pitch> and the
notes of the musical scale is as shown in the table below.

Unit: Hz

Note| 1 2 3 4 5

C | 130 | 261 | 523 | 1046|2093
C#| 138 | 277 | 554 | 1108|2217
D | 146 | 293 | 587 {1174 2349
D#] 155 | 311 | 622 | 1214|2489
E | 164 | 329 | 659 | 1318|2637
F | 174 | 349 | 698 | 1396|2793
F#| 184 | 369 | 739 | 14792959
G | 195 | 391 | 783 | 1567|3135
G#| 207 | 415 | 830 | 1661 | 3322
A | 220 | 440 | 880 | 1760|3520
A#| 233 | 466 | 932 |1864 {3729
B | 246 | 493 | 987 | 1975|3951

3-178
wvvwfastio.com

F.C error (Illegal function call) — A parameter specified was out-
side the permissable range.

MO error (Missing operand) — A required operand was not speci-
fied in the statement.

3-179

http://www.fastio.com/

SPACE$ ~ SPC

SPACES(QJ)

SPCQ)

Returns a string of spaces whose length is determined by the value Returns a string of spaces for output to the display or printer.

specified for J.

The SPC function can only be used with an output statement such
as PRINT or LPRINT — unlike the SPACES$ function, it can-

not be used to assign spaces to variables. The value specified for
J must be in the range from 0 to 255.

SPACE$

10 FOR J=1 TO 7
20 READ As,B$

30 PRINT A$;SPC(20-LEN(A%$+B$));B%
40 NEXT

56 DATA Angie,523-2121,Alfie
23-1234,Charlie, 234-2324, Joh

The value of J must be in the range from 0 to 255. If other than
an integer expression is specified for J, it is rounded to the nearest
integer.

SPC

Example

14 FOR J=1 TO 7

20 READ A$,E$

=0 P$=A$+SPACES (2A—-LEN (A$+B%)) +B%$

46 PRINT P$

S0 NEXT) _

ZQ DATA Angie,523—2121,Alfie,456-161®,R0bert,2114444
76 DATA Susan,223-1234,Charlie,234-2324,John, 703-7654
80 DATA Randolph,&621-1360

»456-1010,Robert, 21-4444, Susan, 2
n, 703-7654,Randolph, 631~1360

run
Angie 5232121
Alfie 456—-1010
run Raobert 21-4444
. = -2
Angie Zfz_;;fé Susan 223-1234
Alfie :1‘4444 Charlie 234-2324
gobert q:3_1n74 John 703-7654
usan L & 6531 —
S 234-2324 Randol ph 631-13460
John 703—765?
Randolph 631-1360
Ok

3-180 3-181
ChibPDF - www.fastio.com

http://www.fastio.com/

SQR

SOR(X)
Returns the square root of X.

The value specified for X must be greater than or equal to 0.

1e PRINT "X","SGR(X)"
20 FOR X=6 TO 100 STEP 1@
30 PRINT X,SQR(X)

40 NEXT

run

X SAR (X)
e (<)
10 3.14228
20 4.472148
30 5.47723
40 6.32456
S0 7.97107
60 7.74597
70 8.3b646
80 8.94427
90 9.48683
100 10

Ok

3-182

ChibPDF - www.fastio.com

STAT

Purpose
Remarks

STAT [| <program area no.> |]
ALL

Displays the status of program areas.

Executing the STAT command without specifying any parameters
displays the status of the currently selected program area. If
<program area no. > is specified, the status of the specified pro-

gram area is displayed. In both cases, the display format is as
follows.

Pn: XXXXXXXX YYYYY Bytes

Here, n indicates the number of the applicable program area,
XXXXXXXX indicates the name assigned to that program area
by the TITLE command, and YYYYY indicates the size of the
program area (i.e., the size of the program in that area) in bytes.
Spaces are displayed for XXXXXXXX if no name has been as-
signed with the TITLE command.

When an asterisk (““*”’) is displayed between Pn and the pro-
gram area name, the edit inhibit attribute has been set for that
area with the “TITLE ...,P”’ command.

Executing STAT ALL displays the status of all program areas
as follows.

P1:AAAAAAAA aaaaa Bytes

P2.BBBBBBBB bbbbb Bytes

P3:CCCCCCCC cccee Bytes

P4:DDDDDDDD ddddd Bytes

PS.EEEEEEEE eeeee Bytes
xxxxx Bytes free

The number displayed for xxxxx indicates the current number of
bytes of unused memory.

FC error (Illegal function call) — A number other than 1 to 5
was specified in <program area no.>.

3-183

http://www.fastio.com/

ChhPDF -

STOP

Remarks

See also
Example

STOP

Terminates program execution and returns BASIC to the com-
mand level.

STOP statements are generally used to interrupt program execu-
tion during debugging to allow the contents of variables to be ex-
amined or changed in the direct mode. Program execution can
then be resumed by executing a CONT command.

The following message is displayed upon execution of a STOP
statement:

Break in nnnnn

Unlike the END statement, no files are closed when a STOP state-
ment is executed.

CONT

10 PRINT "Program line 10"
20 8TOP
30 PRINT "Program line 20"

run

Program line 1@
Break in 20

Ok

cont

Program line 20
Ok

3-184

wvvwfastio.com

STOP KEY

Purpose
Remarks

STOP KEY l ON \
OFF

Disables or reenables the key.

Executing STOP KEY OFF disables the key and +
[c] . This prevents processing from being interrupted if the
key is accidentally pressed during execution of an application
program.

Executing STOP KEY ON reenables the key (and +
[c]) function after it has been disabled by executing STOP KEY
OFF.

Since the key and / [c] are completely disabled when
STOP KEY OFF is executed, be careful to avoid executing it dur-
ing program dcbugging.

The key is not disabled unless a STOP KEY OFF com-
mand is executed. Once executed, the STOP KEY OFF command

" is cancelled and the key reenabled by a hot start or execu-

tion of a RUN, MENU, or STOP KEY ON command.

3-185

http://www.fastio.com/

STRs

Purpose
Remarks

See also
Example

ChibPDF - www fa

STRS$(X)
Converts numeric data to string data.

This function returns a string of ASCII characters which represent
the decimal number corresponding to the value of X. X must be
a numeric expression.

This function is complementary to the VAL function.
VAL

19 FOR X=1 TO 10
20 PRINT X3

30 NEXT

49 PRINT

S50 FOR X=1 TO 1@
60 A$=8TRS$ (X)

70 PRINT A%j

80 NEXT

run
1 2 3 4 5 & 7 8 9 1te
12345678910

Ok

3-186
Sto.com

STRINGS

Purpose
Remarks

STRING $(J, K)
STRINGS$(J, X$)

Returns a string of characters.

The length of the character string returned by this function is de-
termined by the value of J. If K is specified the function returns
a string of J characters whose ASCII code corresponds to the value
of K. If a non-integer value is specified for K its value is rounded
to the nearest integer before the string of characters is returned.

If X$ is specified this function returns a string of J characters
made up of the first character of the specified string.

190 A$=STRINGS (5, "A")
20 B+=STRING$ (5, 66)
30 PRINT A$:PRINT B$

run
ARAAA
BEBBB

© 0k

3-187

http://www.fastio.com/

ChhPDF -

SWAP

Format
Purpose

Remarks

Example

SWAP <variable 1>, <variable 2>

The SWAP statement exchanges the values of variables specified
in <variable 1> and <variable 2>.

The SWAP statement may be used to exchange the values of any
type of variable, but the same variable types must be specified
in both <variable 1> and <variable 2> ; otherwise a TM error
(Type mismatch) will occur.

14 Using SWAF for alphabetization

20 FOR J=1 TO 5

30 READ A% (J)

40 NEXT J

SS9 FOR J=2 TO S

&0 IF A$(I-1) *A%(J) THEN SWAP A$(J-1),A$(J):J=1
79 NEXT J

aga FOR J=1 TO S

99 PRINT A%(J)

190 NEXT J

119 DATA Mary,Charlie,Angie,Jane,Andy

run
Andy
Angie
Charlie
Jane
Mary

Ok

3-188

wvvwfastio.com

SYSTEM

Format
Purpose
Remarks

SYSTEM
The SYSTEM command returns control from BASIC to CP/M.
The SYSTEM command ends operation of the BASIC interpreter

and returns control to CP/M., All programs in the BASIC pro-
gram areas are lost when this command is executed.

3-189

http://www.fastio.com/

TAB

Remarks

Example

TAB(@J)

Spaces to column J on the LCD screen or printer. If the cur-
sor/print head is already past column J, it is spaced to that column
on the next line.

The character position on the far left side of the LCD screen or
printer is column 0, and that on the far right side is the device
width minus one. For the LCD screen, the device width is the num-
ber of columns determined for the currently selected screen by
the SCREEN or WIDTH statement. For a printer, it is the num-
ber of columns determined by the WIDTH LPRINT statement.

If the value specified for J is greater than the device width minus
one, the number of spaces generated is equal to J MOD n, where
n is the device width.

In the expression
PRINT TAB (J) ; A$

the string A$ will be printed with the first character starting at
position J. However, if the length of string A$ added to the value
of J is greater than 81, the string will be printed on the next line.

The TAB function can only be used with the PRINT and LPRINT
statements, and cannot be used to generate strings of spaces for
other purposes.

190 SCREEN ©
20 PRINT 1325334355
30 PRINT 13TAB(4)52; TAB(?) ;33 TAB(15) 345 TAB(22)335

run

1 2 3 4 5

it 2 3 4 S
Ok

3-190

ChibPDF - www.fastio.com

NOTE:

If a space is included between TAB and the opening bracket in TAB (J), PX-4
BASIC will interpret this as item J of an array with the name TAB. Rather than
print the next string at position J, the value 0 will be printed because the value
of all the items in this array will be 0. If J is greater than 10, a BS error (Subscript
out of range) will be generated because the TAB array has not been dimensioned.

3-191

http://www.fastio.com/

TAN

Format
Purpose
Remarks

See also
Example

TANX)
Returns the tangent of X, where X is an angle in radians.

The tangent of angle X is calculated to the precision of the type
of numeric expression specified for X.

To convert an angle from degrees to radians, multiply it by
1.57080 (for single precision) or by 1.570796326794897/90 (for
double precision).

ATN, COS, SIN

"e

1@ INPUT "Enter angle in degrees”j
20 PRINT “Tangent"jA;"degrees is"jTAN(A*3.14159/186)

30 6070 10

Enter angle in degrees? 39
Tangent 30 degrees is .57735
Enter angle in degrees? 45
Tangent 45 degrees is .999999
Enter angle in degrees? 60
Tangent &0 degrees is 1.73205
Enter angle in degrees?

3-192

ChibPDF - www.fastio.com

e

=

-

PX-4 BA.

e

TAPCNT

Format
Purpose
Remarks

See also

TAPCNT
Reads or sets the value of the microcassette drive counter.

The TAPCNT function reads the value of the microcassette drive
counter. The value returned will be in the range from - 32768
to 32767.

The TAPCNT function can be used at any time it is necessary
to determine the counter value.

The TAPCNT function can also be used to set the counter value.
However, in this case, the tape in the microcassette drive must
be in the unmounted condition.

AC error (Tape access error) — An attempt was made to set the
counter value while the tape in the microcassette drive was in the

mounted condition.

10 error (Device 1/0 error) — An attempt was made to read or
set the counter value when microcassette drive is not installed.

WIND

3-193

http://www.fastio.com/

TIMES

Remarks

TIMES$S
Reads the time of the built-in clock.

The TIMES function returns the time of the built-in clock as an
8-byte character string. The format of this string is
“HH:MM:SS’’, where HH indicates the hour (00 to 23), MM in-
dicates the minute (00 to 59), and SS indicates the second (00 to
59).

TIMES$ is a system variable and can be set by executing
TIME$ = “HH:MM:SS”’.

3-194

ChibPDF - www.fastio.com

TITLE

Format
Purpose

Remarks

TITLE (<program area name >]J[,P]

Sets the name and protect attribute of the currently selected pro-
gram area.

The TITLE command assigns a name to the currently selected
program area. This name is specified in < program area name >
as a string of from 0 to 8 letters. If more than 8 letters are speci-
fied, the ninth and following letters are ignored. After execution
of this command, the specified program area name is displayed
upon execution of the STAT command and in the BASIC start-
up menu. Further, when a program file is loaded by executing
the LOAD or RUN < filename> commands, the file name of
the program loaded is set as the program area name.

The program area name can be cancelled by executing the TITLE
command with a null string (‘‘ **) specified for <program area
name>. The program area name is also cancelled by executing
the NEW command.

The program area name is not affected if the <program area
name> parameter is omitted.

If the P (protect) option is specified, executing the TITLE state-
ment sets the protect attribute for the currently selected program
area. Once a program area has been protected in this manner, any
attempt to edit that program or to execute a DELETE command
in that program area will result in an FC error (Illegal function
call).

MO error (Missing operand) — A required operand was not speci-
fied in the command.

3-195

http://www.fastio.com/

TRON/TROFF

Purpose
Remarks

See also
Example

TRON
TROFF

Used to enable or disable the trace mode of execution.

In the trace mode, the number of each line of a program is dis-
played on the screen in square brackets at the time that line is
executed. This makes it possible to determine the sequence in
which program lines are executed, and as such can be used with
the STOP and CONT commands during program debugging.

The trace mode is enabled by executing TRON and is disabled
by executing TROFF. -

CONT, STOP

1@ FOR I=1 TO 3:PRINT I;:NEXT
20 PRINT
39 TRON
40 FOR I=4 TO 4:PRINT Ij:NEXT
50 TROFF

run

1t 2 3

(401 4 S5 &6 [30]
Ok

3-196

ChibPDF - www.fastio.com

USR

Remarks

USR [< digit >] < argument >

Passes the value specified for <argument> to a user-written

machine language routine and returns the result of that routine.

< digi.t > .is an integer from 0 to 9 which corresponds to the digit
spec§f1ed in the DEF USR statement for the machine language
routine. If <digit> is omitted, USR® is assumed.

A string or numeric expression must be specified for
<argument>; this argument is passed to the machine language
routine as described in Appendix G.

3-197

http://www.fastio.com/

VAL

VAL(XS)

Converts a string composed of numeric ASCII characters into a
numeric value.

This function returns the numeric value of a character string con-
sisting of numeric characters. The first character of string X$ must
be 47, - ¢ & or a numeric character (a character
whose ASCII code is in the range from 48 to 57); otherwise, this
function returns 0.

Some examples of use of the VAL function are shown below.

(1) VAL(XS)
Returns the decimal number which corresponds to the string
representation of that decimal number. X$ is composed of the
characters “‘0’’ to ‘9’ and may be preceded by ““+°’, “—"’
or “.”’. Complementary to the STR$ function.

(2) VAL(“&H”’ + X$)
Returns the decimal number which corresponds to the string
representation of a hexadecimal number. X$ is composed of
the characters ‘0" to ‘9>’ and ““A’’ to “‘F’’. This is com-
plementary to the HEX$ function.

(3) VAL(“&0”’ +X9)
Returns the decimal number which corresponds to the string
representation of an octal number. X$ is composed of the
characters “‘0’’ to *“7’. This is complementary to the OCT$
function.

HEXS, OCTS$, STRS

10 INPUT "Type in a hexadecimal number "jA$

20 PRINT "The decimal value of &H"jA$;" using VAL (";CHR$(34)
$"KH";CHR$(34) 5 "+X$) is "jVAL ("&H"+A%)

30 INPUT "Type in an octal number "jB$

40 PRINT "The decimal value of &0"iB$;" using VAL (";CHR%(34)
$"&0";CHR$(34) 3 "+X$) is "3VAL("&0"+B$)

run

Type in a hexadecimal number ? 4F

The decimal value of &H4F using VAL ("&H"+X$) is 79

Type in an octal number ?7 32

The decimal value of &032 using VAL ("&0O"+X$) is 26

Ok
3-198

ChibPDF - www.fastio.com

VARPTR

Remarks

VARPTR(< variable name >)
VARPTR((# < file number>)

The first format returns the address in memory of the first data
byte of the variable specified in <variable name>.

The second format returns the starting address of the I/O buffer
assigned to the file opened under < file number>.

With the first format, a value must be assigned to <variable
name > before executing VARPTR; otherwise, an ‘‘Illegal func-
tion call’’ error will result. Any type of variable name (numeric,
string, or array) may be specified, and the address returned will
be an integer in the range from — 32768 to 32767. If a negative
number is returned, add it to 65536 to obtain the actual address.

Storage of the various types of data in memory is as follows.
(§ indicates the byte which corresponds to the value returned
by VARPTR.)

(1) Integer variables

The data section of integer variables occupies two bytes in
memory. Lower-order bits of this number are contained in the
byte whose address is returned by the VARPTR function, and
high-order bits are contained in the byte at the following address.
Thus, if variable A% contains the integer 2, the address returned
by the VARPTR function (the low-order byte) will contain 2, and
that address plus 1 (the high-order byte) will contain 0.

Lower byte Higher byte
\J 1
\ T
2 Variable name 0 0 Data
Il
_Y__J
2-bytes
3-199

http://www.fastio.com/

ChhPDF -

(2) Single precision variables

With single precision variables, numeric values are stored in two
parts, using a total of four bytes of memory. The first part which
is referred to as the exponent, and the remaining three bytes are
referred to as the mantissa.

The VARPTR function returns the address of the least signifi-
cant byte of the mantissa; the VARPTR address + 1 contains the
middle byte of the mantissa; and the VARPTR address + 2 con-
tains the most significant byte of the mantissa. The exponent is
at the VARPTR address + 3.

Exponent

h 2 -

T T
4 Variable name 0 0] Mantissa

—~
4 -bytes

(3) Double precision variables

The storage format for double precision values in variables is the
same as with single precision variables. However, the mantissa
portion of a double precision variable consists of seven bytes in-
stead of three, so the data portion of a double precision variable
occupies a total of eight bytes in memory.

Exponent

) 4 1

I

8 Variable name o} 0] Mantissa

Y
8-bytes

3-200

wvvwfastio.com

(4) String variables

With string variables, the VARPTR function returns the length
of the string. The low-order byte of the string’s starting address
in memory is indicated by the VARPTR address + 1, and the high-
order byte of the string’s starting address in memory is indicated
by the VARPTR address + 2.

$

T
. "y
3 Variable name 0 0 I?atnr;?\ gd?irrtégg
1

;—‘V—_‘_—/
3-bytes for string descriptor

The second format returns the address of the first byte of the 170
buffer assigned to the file opened under < file number>.

This function is generally used to obtain the address of a varia-
ble prior to passing it to a machine language program. In the case
of array variables, the format VARPTR(A(0)) is generally used
so that the address returned is that of the lowest-numbered ele-
ment of the array.

VARPTR is an abbreviation for VARiable PoinTeR.

Example

30 As$="abcdefghijklmnopgrstuvwxyz"

40 A=VARPTR(AS):PRINT "Address of variable ‘As$ is ";A

50 B=PEEK (A+2) %*&H100+PEEK (A+1)

60 PRINT "Address of string in variable A% is"jB

70 PRINT "String in variable A$ is "j:FOR I=0 TO 25:PRINT CH
R$ (PEEK(B+1)) 3

90 NEXT

run

Address of variable A% is -29624

Address of string in variable A% is 35638

String in variable A% is abcdefghijklmnopgrstuvewxyz
Ok

NOTE:

The addresses of array variables change whenever a value is assigned to a new
simple variable; therefore, all simple variable assignments should be made be-
fore calling VARPTR for an array.

3-201

http://www.fastio.com/

WAIT

Remarks

NOTE:

WAIT < port number >, J[,K]

Suspends program execution while monitoring the status of a
machine input port.

The WAIT statement causes execution to be suspended until a
specified machine input port develops a specified bit pattern. The
data read at the port is exclusive ORed with the value of integer
expression K, then ANDed with J. If the result is zero, BASIC
loops back and reads the port again. If the result is not 0, execu-
tion resumes with the next statement. If K is omitted, 0 is assumed.

Use of this statement requires in-depth knowledge of the PX-4 firmware, and
using it incautionsly can result in loss of system control and other problems.

3-202

ChibPDF - www.fastio.com

WHILE...WEND

Remarks

See also

WHILE < expression >
[<loop statements>]

WEND

Allows the series of instructions between WHILE and WEND to
be repeated as long as the condition specified by <expression>
is satisfied.

This statement causes program execution to loop through the ser-
ies of instructions between WHILE and WEND as long as the
condition specified by <expression> is satisfied. <expression>
is specified as any expression which has a truth value of 0 (false)
or other than 0 (true). Thus numeric, logical or relational expres-
sions may be used to specify the condition which controls looping.

As with FOR/NEXT loops, WHILE/WEND loops may be nest-
ed to any level. They may also be included within FOR/NEXT
loops or vice versa. When loops are nested, the first WEND cor-
responds to WHILE of the innermost loop, the seccond WEND
corresponds to WHILE of the next innermost loop, and so forth.

A WE error (WHILE without WEND) will occur if WHILE is
encountered without a corresponding WEND, and a WH error
(WEND without WHILE) will occur if WEND is encountered
without a corresponding WHILE.

FOR...NEXT

3-203

http://www.fastio.com/

10

INFUT"Enter arbitrary number™;X
20 WHILE X"A<1IE+06
Z@ PRINT STR$ (X) ;" ";MID$(STR$ (A),2,5) ;" "="iMID$ (STR¢ (X"A) , 2,

er arbitrary number? 42.05

6)

4@ A=A+1

50 WEND

run

Ent
42.5"0=1
42.5"1=42.5
42.5"2=1806.2
42.5"3=767565.
0ok

ChhPDF -

wvvwfastio.com

3-204

WIDTH

Purpose
Remarks

WIDTH <no. column >, <no. lines 1>
Specifies the size of the virtual screens.

The number of columns in the virtual screen is determined by the
value specified for <no. columns>. The number of lines is de-
termined by the value specified for <no. lines>. The value speci-
fied for <no. columns> must be either 40 or 80; when 40 is
specified for <no. columns>, the value specified for <no.
lines> must be in the range from 8 to 50. When 80 is specified
for <no. columns>, the value specified for <no. lines> must
be in the range from 8 to 25.

The screen is cleared when this statement is executed.

MO error (Missing operand) — A required operand was not speci-
fied in the statement.

FC error (Illegal function call) — The number specified in one
of the statement operands was outside of the prescribed range.

3-205

http://www.fastio.com/

WIND

Purpose

Remarks

WIND [| <counter value> |]
ON
OFF

Controls forward or reverse movement of the microcassette tape
and audio output to the speaker.

When this command is executed without specifying any parameter,
the tape is rewound to its beginning and the counter is reset to
0. When < counter value > is specified, the tape is wound in one
direction or the other until the counter reaches the specified value.
< counter value > must be specified as a numeric expression whose
value lies in the range from — 32768 to 32767.

Executing WIND ON places the microcassette drive in the PLAY
mode and outputs the read signal to the speaker. After the drive
has been placed in the PLAY mode in this manner, the BASIC
interpreter goes on to execute any subsequent statements.
Microcassette operation in the PLAY mode is terminated by ex-
ecuting WIND OFF.

The BEEP and SOUND statements cannot be executed while the

microcassette drive is in the PLAY mode. Further, the WIND OFF
statement is ignored if executed while the drive is not in the PLAY
mode.

Note that the WIND statement cannot be executed if the tape in
the drive has been installed by executing the MOUNT statement.

FC error (Illegal function call) — The value specified for
< counter value> was outside the prescribed range.

OV error (Overflow) — The value specified for < counter value >
was outside the prescribed range.

AC error (Tape access error) — The tape in the microcassette drive
has been installed by executing the MOUNT statement.

IO error (Device 1/0 error) — Some problem has occurred with
the microcassette drive.

3-206

ChibPDF - www.fastio.com

WRITE

Remarks

See also

WRITE]| < list of expressions>]

Displays data specified in <list of expressions> on the LCD
screen.

If <list of expressions > is omitted, a blank line is output to the
LCD screen. If <list of expressions> is included, the values of
the expressions are displayed on the LCD screen.

Numeric and string expressions can both be included in <list of
expressions >, but each expression must be separated from the
one following it with a comma. Commas are displayed between
each item included, and strings displayed are enclosed in quota-
tion marks. After the last item has been output, the cursor is au-
tomatically advanced to the next line.

The WRITE statement displays numeric values using the same
format as the PRINT statement; however, no spaces are output
to the left or right of numbers displayed.

PRINT

3-207

http://www.fastio.com/

WRITE #

Purpose
Remarks

See also
Example

WRITE # < file number >, <list of expressions>
Used to write data to a sequential disk device file.

< file number > is the number under which the file was opened
for output, and expressions included in <list of expressions>
are the numeric and/or string expressions which are to be writ-
ten to the file. Data is written to the file in the same format as
it is output to the screen by the WRITE statement; that is, com-
mas are inserted between individual items and strings are delimited
with quotation marks.

Therefore, it is not necessary to specify explicit delimiters in <list
of expressions >, as is the case with the PRINT # statement. The
following illustrates the difference between use of the PRINT #
and WRITE # statements (the statements indicated perform iden-
tical functions).

PRINT #1,CHR$(34);*‘SMITH,JOHN"’; CHR$(34);*,”’;
CHRS$(34);‘SMITH, ROBERT”’;CHRS$(34)

WRITE #1, “SMITH, JOHN”’,*SMITH, ROBERT”’

A carriage return/line feed sequence is written to the file follow-
ing the last item in <list of expressions>.

PRINT # and PRINT # USING

10 CLS

20 OPEN "O",#1,"A:DATA"
30 FOR I=1 TO 2

40 PRINT "Enter item";I:LINE INPUT A$(I)
%0 NEXT I

50 WRITE#1,A8(1),A%(2)
70 CLOSE

80 OPEN"I",#1,"A:DATA"
90 INPUT#1,AS,B$

100 PRINT A$:PRINT B$
110 CLOSE

12@ END

3-208

ChibPDF - www.fastio.com

Enter item 1
SMITH, JOHN
Enter item 2
SMITH, ROBERT
SMITH, JOHN
SMITH, ROBERT
Ok

3-209

http://www.fastio.com/

	./brm3_158-159.tif
	./brm3_160-161.tif
	./brm3_162-163.tif
	./brm3_164-165.tif
	./brm3_166-167.tif
	./brm3_168-169.tif
	./brm3_170-171.tif
	./brm3_172-173.tif
	./brm3_174-175.tif
	./brm3_176-177.tif
	./brm3_178-179.tif
	./brm3_180-181.tif
	./brm3_182-183.tif
	./brm3_184-185.tif
	./brm3_186-187.tif
	./brm3_188-189.tif
	./brm3_190-191.tif
	./brm3_192-193.tif
	./brm3_194-195.tif
	./brm3_196-197.tif
	./brm3_198-199.tif
	./brm3_200-201.tif
	./brm3_202-203.tif
	./brm3_204-205.tif
	./brm3_206-207.tif
	./brm3_208-209.tif

