DISK

BASlc

P200I

11111111111111

CHAPTER 0

TARLE OF CONTENTS

CHAPTER 1 ¢ GENERAL INFORMATION ABOUT BASIC
CHAPTER 2 ¢ BASIC COMMANDS AND STATEMENTS
CHAPTER 3 : BASIC FUNCTIONS

APPENDIX A

BASIC FILE COMMANDS AND FUNCTIONS

APPENDIX B

BASIC DISK I/0

APPENDIX C

oo

ASSEMBLY LANGUAGE SUBROUTINES

APPENDIX D

MATHEMATICAL FUNCTIONS

APPENDIX E ASCII CHARACTER CODES

APPENDIX F : CONVERTING BASIC PROGRAMS

APPENDIX G SUMMARY OF ERROR CODES AND ERROR

MESSAGES

APPENDIX H

THE VOLUME ORGANIZATION UTILITY

APPENDIX I

SCREEN I/O MANAGEMENT

CHAPTER 1
GENERAL INFORMATION ABOUT BASIC

.17 INITIALIZATION

BASIC is initialized automatically at power up.

1.2 MODES OF OPERATION

When BASIC is initialized, it types the prompt "OK". "OK"
means BASIC is at command level, that is, it is ready to
accept commands. At this point, BASIC may be used in either of
two modes: the direct mode or the indirect mode.

In the direct mode, BASIC commands and statements are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may

be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode

is useful for debugging and for using BASIC as a

"calculator" for quick computations that do not require a
complete program. Multistatements may be entered in this mode.

The indirect mode is the mode used for entering programs.
Program lines are preceded by line numbers and are stored in
memory. The program stored in memory is executed by

entering the RUN command.

1.3 LINE FORMAT

Program lines in a BASIC program have the following format
(square brackets indicate optional):

nnnnn BASIC statement [: BASIC statement ...] (carriage
return)

GENERAL INFORMATION ABOUT BASIC Page 1-1

At the programmer's option, more than one BASIC statement
may be placed on a line, but each statement on a line
must be separated from the last by a colon (:).

A BASIC program line always begins with a line number, end
with a carriage return and may contain a maximum of 255
characters.

It is possible to extend a logical line over more than one
physical line by use of the terminal's auto-linefeed.
Auto-linefeed lets you continue typing a logical line on the
next physical line without typing a <{carriage-return).

1.3.1 LINE - NUMBERS

Every BASIC program line begins with a line number. Line
Numbers indicate the order in which the program lines

are stored in memory and are also used as references when
branching and editing. Line Numbers must be in the range
O to 65529. A Period (.) may be used in EDIT, LIST, AUTO
and DELETE commands to refer to the current line.

GENERAL INFORMATI

1.4 CHARACTER SET

The BASIC charact
characters, numer

ON ABOUT BASIC Page 1-2

er set 1s comprised of alphabetic
ic characters and special characters.

The alphabetic characters in BASIC are the upper case and

lower case letter

s of the alphabet.

The numeric characters in BASIC are the digits 0 through 9.

The following spe
recognized by BAS

Character:

+ 0~

S e D FE R -~ N ¥ |

@
escape

carriage
return

cial characters and terminal keys ars
1

Name:

Blank

Semicolon

Equal sign or assignment symbol
Plus sign

Minus sign

Asterisk or multiplication symbol
Slash or division symbol

Up arrow or exponentiation symbol
Left parenthesis

Right parenthesis

Percant

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)
Double quotation mark

Colen

Ampersand

Question mark

LLess than

Greater than

Backslash or integer division symbol
At-sign

Escapes Edit Mode subcommands.

Terminates input of a line.

Page 1-3

<= ‘ Backspace. Deletes the last character
typed.
TAB Moves print position to next tab stop

Tab stops are every eight columns.

Deletes the line that is currently being
et typed.

SHIFT-TAB Changes the keyboard in the so called typewriter
mode vice versa. In this mode it is possible to
enter lower case letters.

SHIFT-STOP BREAKs program.

SHIFT-5 (keypad) Suspends program.

SHIFT-START Resumes a suspended program.

GENERAL INFORMATION ABOUT BASIC Page 1-4

i.5 CONSTANTS

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric
characters enclosed in double guotation marks. Examples of
string constants:

"HELLO"
"$ 25,000.00"
"Number of Employees"

Numeric constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

1. Integer constants Whole numbers between and including

-32768 and + 32767. Integer constants do
not have decimal points.

2. Fixed Point Positive or negative real numbers,
constants i.e., numbers that contain decimal
points.

GENERAL INFORMATION ABOUT BASIC Page 1-5

3. Floating Point Positive or negative numbers repre-
constants sented in exponential form (similar

to scientific notation). A floating
point constant consists of an optionally
signed integer or fixed point number
(the mantissa) followed by the letter E
and an optionally signed integer (the
exponent) .
The allowable range for floating point
constants is_approximately:
10738to 10+37
Examples:
235.988E-7= .0000235988
2359E6 = 2359000000

(Double precision floating point
constants use the letter D instead
of E. See Section 1.5.1.)

4., Hex constants Hexadecimal numbers with the prefix
&H. Examples:

&H76
&H32F

The allowable range is:
&HO0000 to &HFFFF

5. Octal constants Octal numbers with the prefix &0 or &
Examples:

&0347
&1234

The allowablé range is:
&0000000 to &0177777

1.5.1 Single And Double Precision Form For Fixed/Floating
Point Constants

Fixed/floating point constants may be either single precision
or double precision numbers. With double precision, the
numbers are stored with 16 digits of precision, and printed
with up to 16 digits.

GENERAL INFCRMATION ABOUT BASIC Page 1-6

A single precision constant is any numeric constant that
has:

1. seven or fewer digits, or
2. exponential form using E, or
3. a trailing exclamation point (!)

A double precision constant is any numeric constant that
has:

1. eight or more digits, or
2. exponential form using D, or
3. a trailing number sign (#)

Examples:

Single Precision Constants Double Precision Constants
46.8 345692811
- 7.09E-06 -1.09432D-06
3489.0 3489.0#%
22.5! 7654321.1234

1.6 VARIABLES

Variables are names used to represent values that are used
in a BASIC program. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is
assigned a value, integer,(real) single precision and double
precision variables are assumed to be zero, string variables
are assumed to be a zero-length string (i.e."").

1.6.1 Variable Names And Declaration Characters

BASIC variable names may be any length, however, only the
first 40 characters are significant. The characters allowed in
a variable name are letters and numbers and the decimal point.
The first character must be a letter. Special type declaration
characters are also allowed and are a significant part of the
variable name -- see below.

A variable name may not be a reserved word, but BASIC allows
embedded reserved words. If a variable begins with FN, it is
assumed to be a call to a user-defined function. Reserved
words include all BASIC commands, statements, function names
and operator names.

GENERAL INFORMATION ABOUT BASIC Page 1-7

Variables may represent either a numeric value or a string.
String variable names are written with a dollar sign (S) as
the last character. For example: AS = "SALES REPORT". The
dollar sign is a variable type declaration character, that
te, 1t "declares" that the variable will represent a string.

Numeric variable names may declare integer, single or double
precision values. The default type of a numeric variable is
(real) single precision, unless otherwise specified. The type
declaration characters for these variable names are as
follows:

Precision

% Integer variable 5 digits (-32768 to
+32767)

! Single precision variable 7 digits

Double precision variable 16 digits

The default type for a numeric variable name is single
precision.

Examples of BASIC variable names follow.

PI# declares a double precision value
MINIMUM! declares a single precision value
LIMIT% declares an integer value

There is a second method by which variable types may be
declared. The BASIC statements DEFINT, DEFSTR, DEFSNG and
DEFDBL may be included in a program to declare the types for
certain variable names. These statements are described in
detail 1n Chapter 2.

1.6.2 Array Variables

An array is a group or table of values referenced by the
same variable name. Each element in an array is referenced
by an array variable that is subscripted with integers or
integer expressions. An array variable name has as many
subsorigts zs tiere are dimensions in the array. For example
for V (10) the subscript range is from 0 to 10. V(10) would
reference a value in a one-dimensional array, T(1,4) would
reference a value in a two-dimensional array, and so on. The
maximum number of dimensions for an array is 255. The maximum
number of elements per dimension is 32767.

If an array is subscripted by a single-precision or double-
precision expression, the subscript is converted to integer
(implicit conversion). The expression is rounded, not
truncated.

GENERAL INFORMATION ABOUT BASIC Page 1-8

1.7 TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from
one type to another., The following rules and examples
should be kept in mind.

1.

If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the wvariable
name. (If a string variable is set equal to a
numeric value or vice versa, a "Type mismatch"
error occurs.)

Example:

10 A% = 23.42
20 PRINT A%
RUN

23

During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation is returned to this
degree of precision.

Examples:

10 D# = 6#/7 The arithmetic was performed
20 PRINT D# in double precision and the
RUN result was returned in D#

.8571428571428571 as a double precision value.

10 D = 6#/7 The arithmetic was performed -

20 PRINT D in double precision and the

RUN result was returned to D (single

.857143 precision variable), rounded and
printed as a single precision
value.

Logical operators convert their operands to integers
and return an integer result.

Operands must be in the range - 32768 to 32767 or an
"Overflow" error occurs.

When a floating point value is converted to an
integer, the fractional portion is rounded.
Example:

10 C% = 55.88
20 PRINT Cs
RUN

56

GENERAL INFORMATION ABOUT BASIC Page 1-9

5. If a double precision variable is assigned a single

precision value, only the first seven digits,
rounded, of the converted number will be wvalid.
This is because only seven digits of accuracy were
suppiied with the single precision value. The
absolute value of the difference between the
printed double precision number and the original
single precision value will be less than 6.3E-8
times the original single precision value.
Example:

10A = 2.04
20 B# = A
30 PRINT A; B#
RUN
2.04 2.039999961853027

1.8. EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or
a variable, or it may combine constants and variables with
operators to produce a single value.

Operators perform mathematical or logical operations on

values.

The operators provided by BASIC may be divided

into four categories.

Arithmetic
Relational
Logical

Functional

1.8.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation Sample Expression
A Exponentiation MY
-, + Unary + or - -X
*,/ Multiplication, Floating X*Y
Point Division X/Y
\ Integer Division X'y
+,- Addition, Subtraction X+Y

GENERAL INFORMATION ABOUT BASIC Page 1-10

To change the order in which the operations are performed,
use parentheses. Operations within parentheses are
performed first. Inside parentheses, the usual order of
operations is maintained.

Here are some sample algebraic expressions and their BASIC
counterparts.

Algebraic Expression BASIC Expression
X+2Y X+Y*2
x-Y X-Y/2Z

Z
XY X*Y/7
2
X+Y (X+Y) /2

Y/
(x2)Y (X 2) ¥

2

xY X (Y 2)
X(-Y) X*(-Y) or X*-Yy

1.8.1.1 Integer Division And Modulus Arithmetic

Integer division is denoted by the baskslash (). The operands
are rounded to integers (must be in the range -32768 to

32767) before the division is performed, and the quotient is
truncated to an integer. For example:

10 4 = 2
25.68 6.99 = 3

The precedence of integer division is just after
multiplication and floating point division.

Modulus arithmetic is denoted by the operator MOD. It gives
the integer value that is the remainder of an integer
division. For example:

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
division.

GENERAL INFORMATION ABOUT BASIC Page 1-11

1.8.1.2 Overflow And Division By Zero -

If, during the evaluation of an expression, a division by
zero is encountered, the "Division by zero" error message

is displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results

in zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infinity
is supplied as the result of the exponentiation, and
execution continues.

If overflow occurs, the "Overflow" error message 1is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues.

1.8.2 Relational Operators

Relational operators are used to compare two values. The
result of the comparison is either "true" (-1) or "false"
(0). This result may then used to make a decision regarding
program flow.

Operator Relation Tested Expression
= Equality X=Y
Qor X< Inequality XY
{ Less than x<y
> Greater than XY
(= or =¢ Less than or equal to x{=Y
)= or =) Greater than or
equal to X)=Y

(The equal sign is also used to assign a value to a
variable).

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y < (T-1)/2

is true if the value of X plus Y is less than the value of
T-1 divided by Z. More examples:

IF SIN(X)< 0 GOTO 1000
IF I MOD J<)0 THEN K=K+1

GENERAL INFORMATION ABOUT BASIC Page 1-12

1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true"™ (not zero)
or "false" {zero). In an expression, logical operations are
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of
precedence.

NOT
X NOT X
1 0
0 1
AND
X Y X AND Y
1 1 1
1 0 0
0 1 0
0 0 0
OR
X Y X OR Y
1 1 1
1 0 1
0 1 1
0 0 0
XOR
X Y X XOR Y
1 1 0
1 0 1
0 1 1
0 0 0
IMP
X Y X IMP Y
1 1 1
1 0 0
0 1 1
0 0 1
EQV
X Y X EQV Y
1 1 1
1 0 0
0 1 0
0 0 1

Just as the relational operators can be used to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision.

GENERAL INFORMATION ABOUT BASIC Page 1-13

For example:

IF D200 AND F>4 THEN 80
IF 1< 10 OR K> 0 THEN 590
IF NOT P THEN 100

Logical operators work by converting their operands to
sixteen bit, signed, two's complement integers in the range
-32768 to +32767. (If the operands are not in this range, an
error results.). If both operands are supplied as 0 or -1,
logical operators return 0 or -1. The given operation is
performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands. True is represented by -1, false by 0.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator maybe used to "mask"™ all but one of the bits of a
status byte at a machine I/O port. The OR operator may be
used to "merge" two bytes to create a particular binary
value. The following examples will help demonstrate how the
logical operators work.

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16
15 AND 14=14 15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)
- 1 AND 8=8 -1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8 = 8
4 OR 2=6 4 = binary 100 and 2 = binary 10,
so 4 OR 2 = 6 (binary 110)
10 OR 10=10 10 = binary 1010, so 1010 OR 1010 =
1010 (10)
-1 OR =-2=-1 -1 = binary 1111111111111111 and
-2 = binary 1111111111111110,
so -1 OR -2 = -1. The bit
complement of sixteen zeros is
sixteen ones, which is the
two's complement representation of -1.
NOT X=-(X+1) The two's complement of any integer

is the bit complement plus one.

GENERAL INFORMATION ABOUT BASIC Page 1-14

1.8.4 Functional Operators

A function is used in an expression to call a predetermined
operation that is to be performed on an operand. BASIC has
"intrinsic" functions that reside in the system, such as
SQR (sguare root) or SIN (sine). All of BASIC's intrinsic
functions are described in Chapter 3.

BASIC also
written by

2llows "user defined" functions that are

the programmer.

1.8.5 String Operations

Strings may be concatenated using +. For example:

10 AS="FILE"

20 BS="NAME"

30 CS="NEW " + AS + BS
40 PRINT AS + BS

50 PRINT CS$S

RUN

FILENAME

NEW FILENAME

Strings may be compared using the same relational operators
that are used with numbers:

String comparisons are made by taking one character at a
time from each string and comparing the ASCII codes. If all
the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedes the

higher. If,
is reached,
Leading and

during string comparison, the end of one string
the shorter string is said to be smaller.
trailing blanks are significant. Examples:

" AA " " AB"

"FILENAME" = "FILENAME"

IIX&" "n X#"

n kq " " KG "

"SMYTH" "SMYTHE"

BS "9/12/78" where BS = "8/12/78"
" B " n ABH

Thus, string comparisons can be used to test string values

or to alphabetize strings.

All string constants used in

comparison expressions must be enclosed in quctation marks.

GENERAT, INFORMATION ABOUT BASIC Page 1-15

1.9 INPUT EDITING

If an incorrect character is entered as a line is being
typed, it can be deleted with the RUBOUT key. -
i =N

Rubout has the effect of backspacing over a character and
erasing it. Once a character(s) has been deleted, simply
continue typing the line as desired.

To delete a line that is in the process of being typed,

type .

A carriage return is executed automatically after the line is
deleted.

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.

BASIC will automatically replace the old line with the new

line.

For more sophisticated editing capabilities see EDIT.
To delete the entire program that is currently residing in

memory, enter the NEW command. NEW is usually used to clear
memory prior to entering a new program.

1.10 ERROR MESSAGES

If BASIC detects an error that causes program execution
to terminate, an error message is printed. For a complete list
of BASIC error codes and error messages, see Appendix C.

Page 2-1

H A F T E R 2

BASIC COMMANDS AND STATEMENTS
All of the BASIC commands and statements are described in
this chapter. Each description is formatted as follows:

Format: Shows the correct format for the instruction.
See below for format notation.

Purpose: Tells what the instruction is used for.

Remarks: Describes in detail how the instruction
is used.

Example: Shows sample programs or program segments

that demonstrate the use of the instruction.

Format Notation
Wherever the format for a statement or command is given, the
following rules apply:

1. 1Items in capital letters must be input as shown.

2. 1Items in lower case letters enclosed in angle
brackets (< >) are to be supplied by the user.

3. Items in square brackets ([]) are optional.
4. All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,

hyphens, equal signs) must be included where shown.

5. Items followed by an ellipsis (...) may be repeated
any number of times (up to the length of the line).

6. Items separated by a vertical bar (‘) are mutually
exclusive; choose one.

BASIC COMMANDS AND STATEMENTS Page 2-2

2.1 AUTO

Format:

Purpose:

Remarks:

Example:

AUTO [<line number)[,dincrement >}

To generate a line number automaticaliy after
every carriage return.

AUTO begins numbering at <line number) and
increments each subsequent line number by
{increment). The default for both wvalues is
10. If {(line number) is followed by a comma
but {increment » is not specified, the last
increment specified in an AUTO command is
assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, typing a
carriage return immediately after the asterisk
will delate the current line and generate the
next line number. If a text is entered before
typing carriage return, the text of the current
line is replaced and the next line number is
generated.

AUTO is terminated by typing SHIFT-STOP. The
line in which SHIFT-STOP is typed is not saved.
After SHIFT-STOP is typed, BASIC returns to
command level.

AUTO 100, 50 Generates line numbers 100,
150, 200 ...

AUTO Generates line numbers 10,
20, 30, 40 ...

BASIC COMMANDS AND STATEMENTS Page 2-3

2.2 CALL

Format: CALL ¢ variable name) [{argument list)]
Purpose: To call an assembly language subroutine.
Remarks: The CALL statement is one way to transfer

program flow to an assembly language subroutine.
(See also the USR function).

{variable name >» contains an address that is the
starting point in memory of the subroutine.
{variable name) may not be an array variable
name. argument list contains the arguments
that are passed to the assembly language
subroutine.

The CALL statement generates the same calling
sequence used by BASIC.

Example: 110 MYROUT=&HDOOO
120 CALL MYROUT(I,J,K)

BASIC COMMANDS AND STATEMENTS Page 2-4

2.3 CHAIN

Format: THAIN [MERGED (filenamed!.{(line number exp)]
Purpose: o call 2 program and pass variables to it from

gra
the current program.

Remarks: (filename) is the name of the program that is
called. Example:

CHAIN"PROGT®

{line number exp)> is a line number or an
expression that evaluates to a line number in
the called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins at the first line.
Example:

CHAIN"PROG1", 1000

{line number exp)> is not affected by a RENUM
command.

With the ALL option, every variable in the
current program is passed to the called program.
If the ALL option is omitted, the current
program must contain a COMMON statement to list
the variables that are passed.

Example:

CHAIN"PROG1", 1000,ALL

If the MERGE option is included, it allows a
subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is
performed with the current program and the
called program. The called program must be an
ASCII file if it is to be MERGEd. Example:

CHAIN MERGE"OVERLAY", 1000

After an overlay is brought in, it is usually
desirable to delete it so that a new overlay
may be brought in. To do this, use the DELETE
option. Example:

CHAIN MERGE"OVERLAY2",1000,DELETE 1000-5000

The line numbers in (range) are affected by the
RENUM command.

BASIC COMMANNS ANTY STATRMENTS Pade 2-5

NOTE T rhe MFRGF nntion is omitted, CHAIN dces not

BY OGO Yy V;i?”fiahl({’ tynes or “Ser_defineﬂ
far se v the chained proaram, That

foresiona

R, e e s e eNA T A e MO DR
, VRO TR s SIRDTT O VIR T TR ., DEFS ,»D! sy W RERN
. : - Y e,
— R B E A S Tortaren yartahies mush e
v & LY T aarAam,

81 03 05

RASIC COMMANDS ANND STATEMENTS Page 2-6

2.4 CLEAR

Format: CLEAR [, expression-1 , expression-2]

Purpose: = to undo all declarations of variables
- to make a redivision of the availahle memorv

Remarks: exnression-1 sonecifies the upper boundary of
memory to be used hy BASIC. Beyond this boundarv,
anvlications can place machine code proarams or anv
other information. (e.qg. by POKE statements)

exnression-2 1s the size of the stackarea to be
used bv the BASIC svystem. The minimum value 1is about
100, but should be specified greater if the
apolication has nested constructions like FOR...NEXT
loops, recursive subroutines or complex

expressions. (Recommended: areater than 400)

Examples: CLEAR

CLEAR ,&HCO000, 400

BASIC COMMANDS AND STATEMENTS Page 2-7

2.5 CLOSE

Format:
Purpose:

Remarks:

Example:

CLOSE [[(#]{file number)[,[#]{(file numberp..]]

To conclude I/0 to a disk file.

{file number) is the number under which the file
was OPENed. A CLOSE with no arguments closes
all open files.

The association between a particular file and
file number terminates upon execution of a
CLOSE. The file may then be reOPENed using the
same or a different file number; likewise, that
file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command always

CLOSE all disk files automatically. (STOP does
not close disk files.)

See appendix B.

BASIC COMMA

NDS AND STATEMENTS Page 2-8

2.6 COMMON

Format:
Purpose:

Remarks:

Example:

COMMON {list of variables)>
Tc pass variables to a CHAINed prcgram.

The COMMON statement is used in conjunction with
the CHAIN statement. COMMON statements may
appear anywhere in a program, though it is
recommended that they appear in more than one
COMMON statement. Array variables are specified
by appending " ()" to the variable name. If all
variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

100 COMMON A,B,C,D(),GS
110 CHAIN "PROG3",10

BASIC COMMANDS AND STATEMENTS Page 2-9

2.7 CONT

Format:

Purpose:

Remarks:

To continue program execution after a SHIFT-STCP
SHIFT-STOP has been typed, or a STOP or END state-
ment has been executed.

Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
string).

CONT is usuallay used in conjunction with STOP
for debugging. When execution is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.
CONT may be used to continue execution after an
error.

CONT is invalid if the program has been edited
during the break, and the program reports "Can't
Continue".

BASIC COMMANDS AND STATEMENTS Page 2-10

2.8 DATA

Format:

Purpose:

Remarks:

N
b

DATA (list of cecnstant

oY

To store the numeric and string constants that
are accessed by the program's READ statement(s).

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a line (separated by commas), and any
number of DATA statements may be used in a
program. The READ statements access the DATA
statements in order (by line number) and the
data contained therein may be thought of as one
continuous list of items, regardless of how many
items are on a line or where the lines are
placed in the program.

<{1list of constants) may contain numeric
constants in any format, i.e., fixed point,
floating point or integer. (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be surrounded
by double quotation marks only if they contain
commas, colons or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or string) given in
the READ statement must agree with the
corresponding constant in the DATA statement.

If the program tries to access DATA via the READ
statement after the last DATA item, the program
reports an "out of data" error.

DATA statements may be reread from the beginning
by use of the RESTORE statement.

BASIC COMMANDS AND STATEMENTS Page 2-11

2.9 DEF FN

Format: DEF FN dmame’ 't ‘parameter list))1={function
definizion;

Purpose: To define and name a function that is written
by the user.

Remarks: {name > must be a legal variable name. This

name, preceded by FN, becomes the name of the
function. (parameter list) is comprised of
those variable names in the function definition
that are to be replaced when the function is
called. The items in the list are separeted by
commas. <{function definition> is an expression
that performs the operation of the function. It
is limited to one line. Variable names that
appear in this expression serve only to define
the function; they do not affect program
variables that have the same name. A variable
name used in a function definition may or may
not appear in the parameter list. If it does,
the value of the parameter is supplied when the
function is called. Otherwise, the current
value of the variable is used.

The variables in the parameter list represent,
on a one-to-one basis, the argument variables
or values that will be given in the function
call.

In BASIC, user-defined functions may be numeric
or string. If a type is specified in the function
name, the value of the expression is forced to
that type before it is returned to the calling
statement. If a type is specified in the function
name and the argument type does not match, a
"Type mismatch" error occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a
function is called before it has been defined,
an "Undefined user function" error occurs. DEF
FN is illegal in the direct mode.

BASIC COMMANDS AND STATEMENTS Page 2-12

Example:

410 DEF FNAB (X,Y)=X 3/Y 2
420 T=FNAB(I,J)

Line 410 defines the function FNAB.
The function 1is called in line 420.

BASIC COMMANDS AND STATEMENTS Page 2-13

2.10 DEFINT/SNG/DBL/STR

Format: DEF (type> {range(s) of letters)
where (type) is INT, SNG,DBL, or STR

Purpose: To declare variable types as integer, single
precisions, double precision, or string.

Remarks: A DEFtype statement declares that the variable
names beginning with the letter(s) specified
will be that type variable. However, a type
declaration character always takes precedence
over a DEFtype statement in the typing of a
variable.

If no type declaration statements are
encountered, BASIC assumes all variables
without declaration characters are single
precision variables.

Examples: 10 DEFDBL L-P All variables beginning with
the letters L,M,N, O and P
will be double precision
variables.

10 DEFSTR A All variables beginning with
the letter A will be string
variables.

10 DEFINT I-N, W-2
All variables beginning with
the letters I, J, K, L, M,
N, W, X, Y and Z will be integer
variables.

BASIC COMMANDS AND STATEMENTS Page 2-14

2.11 DEF USR
Format: DEF USR [<digit>]=<{integer expression?

Purpose: To specify the starting address of an assembly
langquage subroutine.

Remarks: {digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <{digit) is
omitted, DEF USRO is assumed. The wvalue of
{integer expression) is the starting address of
the USR routine. See Appendix C, Assembly
Language Subroutines.

Any number of DEF USR statements may appear in a
program to redefine subroutine starting addresses,
thus allowing access to as many subroutines as
necessarily.

Example: .

200 DEF USR0=24000
210 X=USRO (Y42/2.89)

BASTC 7 OMMANDS anpD STATEMENTS Page 2-15

2.12 DELETE

Earmar DELETE ({¢line numbery] {-{iline number, |
Purpose: To delete program lines.

Remarks: BASIC always returns to command level after a

DELETE is executed. If {line number) does not
exist, an "Illegal function call" error occurs.

Examples: DELETE 40 Deletes line 40

DELETE 40-100 Deletes lines 40 through
100, inclusive

DELETE-40 Deletes all lines up to
and including line 40

BASIC COMMANDS AND STATEMENTS Page 2-16

2.13 DIM

format:

Purpose:

Remarks:

Example:

DIM ¢(list of subscripted variables)

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of its subscript(s)
is assumed to be 10. If a subscript is used

that is greater than the maximum specified, a
"Subscript out of range" error occurs. The
minimum value for a subscript is always O,
unless specified otherwise with the OPTION BASE
statement.

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

10 DIM A (20)

20 FOR I=O TO 20
30 READ A (1I)

40 NEXT I

BASIC COMMANDS AND STATEMENTS Page 2-17

2.14 EDIT

Format:

Purpose:

Remarks:

EDIT (line number)

To enter Edit Mode at the specified line.

In Edit Mode, it is possible to edit portions of
a line without retyping the entire line. Upon
entering Edit Mode, BASIC types the line

number of the line to be edited, then it types a
space and waits for an Edit Mode subcommand.

Edit Mode Subcommands

Edit Mode subcommands are used to move the
cursor or to insert, delete, replace, oOr search
for text within a line. The subcommands are not
echoed. Most of the Edit Mode subcommands may

be preceded by an integer which causes the
command to be executed that number of times.
when a preceding inteqer is not specified, it is
assumed to be 1,

Edit Mode subcommands may he categorized
accordinag to the following functions.

1. Movina the cursor
2. Inserting text

3. Deletina text

4. Findinag text

5. Replacing text

6. Ending and restarting Edit Mode

NOTE

In the descriptions that follow,

“ch> represents any character, text
represents a string of characters of
arbitrary lenath, [i] represents an
optional integer (the default is 1), and
$ or Escape (see text) represents the
CODE key.

BASIC COMMANDS AND STATEMENTS Page 2-18

1'

Moving the Cursor

Space

Rubout

Use the space bar to move the cursor to the
right. [i]Space moves the cursor i spaces to
the right. Characters are printed as you space
over them.

In Edit Mode, [i]Rubout moves the cursor i
spaces to the left (backspaces). Characters are
printed as you backspace over them.

Inserting Text

I

I<text) inserts {text} at the current cursor
position. The inserted characters are printed

on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Rubout or Delete key on the
terminal may be used to delete characters to the
left of the cursor. If an attempt is made to
insert a character that will make the line
longer than 255 characters, a bell is typed and
the character is not printed.

The X subcommand is used to extend the line. X
moves the cursor to the end of the line, goes
into insert mode, and allows insertion of text
as if an Insert command had been given. When
you are finished extending the line, type

CODE or Carriage Return.

Deleting Text

D

[1]D deletes i characters to the right of the
cursor. The deleted characters are echoed
between quotes, and the cursor is

positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, iD deletes the
remainder of the line.

H deletes all characters to the right of the
cursor and then automatically enters insert
mode. H is useful for replacing statements at
the end of a line.

Finding Text

]

The subcommand [i]S<{ch) searches for the ith
occurrence of ¢(ch> and positions the cursor
before it. The character at the current cursor
position is not included in the search. If {ch>
is not found, the cursor will stop at the end of

BASIC COMMANDS AND STATEMENTS Page 2-19

the line. All characters passed over during the
search are printed.

K The subcommand [i]K<{ch)> is similar to [i]S<ch>,
except all the characters passed over in the
search are deleted. The cursor is positioned
before <ch>, and the deleted characters are
enclosed in quotes.

5. Replacing Text

C The subcommand C «h®> changes the next character
to ¢«chM. If you wish to change the next i
characters, use the subcommand iC, followed by i
characters. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode.

6. Ending and Restarting Edit Mode
{cr> Typing Carriage Return prints the remainder of

the line, saves the changes you made and exits
Edit Mode.

E The E subcommand has the same effect as Carriage
Return, except the remainder of the line is not
printed.

Q The Q subcommand returns to BASIC command level,

without saving any of the changes that
were made to the line during Edit Mode.

L The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the line, still
in Edit Mode. L is usually used to list the
line when you first enter Edit Mode.

A The A subcommand lets you begin editing a line
over again. It restores the original line and
repositions the cursor at the beginning.

NOTE

If BASIC receives an unrecognizable

command or illegal character while in

Edit Mode, it prints a bell and the command or
character is ignored.

BASIC COMMANDS AND STATEMENTS Page 2-20

Syntax Errors

When a Syntax Error is encountered during
execution of a program, BASIC automatically
enters Edit Mode at the line that caused the
error. For example:

10 K = 2(4)

RUN

?Syntax error in 10
10

When you finish editing the line and type
Carriage Return (or the E subcommand), BASIC
reinserts the line, which causes all variabhle
values to be lost. To preserve the variable
values for examination, first exit Edit Mode
with the Q subcommand. BASIC will return to
command level, and all variabhle values will he
preserved.

NOTE

Remember, if you have just entered a
line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode
at the current line. (The line number

symbol "." always refers to the current
line.)

BASIC COMMANDS AND STATEMENTS Page 2-21

2.15 END

Format:

Purpose:

Remarks:

Example:

END

To terminate program execution, close all files
and return to command level.

END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK message to
be printed. An END statement at the end of a
program is optional. BASIC always returns to
command level after an END is executed.

520 IF K <1000 THEN END ELSE GOTO 20

BASIC COMMANDS AND STATEMENTS Page 2-22

2.16 ERASE

Format: ERASE {list of array variables)
Purpose: To eliminate arrays from a program.
Remarks: Arrays may be redimensioned after they are

ERASEd, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a "Duplicate definition"™ error
occurs.

Example: .

450 ERASE A,B
460 DIM B(99)

BASIC COMMANDS AND STATEMENTS Page 2-23

2.17

ERR AND ERL VARIABLES

When an error handling subroutine is entered,
the variable ERR c¢ontains the error code for the
error, and the variable ERL contains the line
number of the line in which the error was
detected. The ERR and ERL variables are usually
used in IF...THEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was a
direct mode statement, ERL will contain 65535.
To test if an error occurred in a direct
statement, use IF 65535 = ERL THEN ...

IF ERR

{error code)THEN ...

IF ERL

{line number) THEN ...

If the line number is not on the right side of
the relational operator, it cannot be renumbered
by RENUM. Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.
BASIC's error codes are listed in Appendix G.

BASIC COMMANDS

2.18 ERROR

Format:

Purpose:

Remarks:

Example 1:

AND STATEMENTS Page 2-24

ERROR <(integer expression)

1) To simulate the occurrence of a BASIC
error; or 2) to allow error codes to be
defined by the user.

The value of {integer expression” must be
greater than O and less than 255. If the
value of integer expression equals an error
code already in use by BASIC (see

Appendix C), the ERROR statement will
simulate the occurrence of that error, and
the corresponding error message will be
printed. (See Example 1.)

To define your own error code, use a value
that is greater than any used by BASIC's
codes. (It is preferable to use the highest
available values, so compatibility may be
maintained when more error codes are added
to BASIC.) This user-defined error code

may then be conveniently handled in an error
trap routine. (See Example 2.)

If an ERROR statement specifies .a code for
which no error message has been defined,
BASIC responds with the message UNPRINTABLE
ERROR. Execution of an ERROR statement for
which there is no error trap routine causes
an error message to be printed and execution
to halt.

LIST
10 S 1
20T 5
30 ERROR S + T

40 END

Ok

RUN

String too long in line 30

0

Or, in direct mode:

Ok

ERROR 15 (you type this line)
String too long (BASIC types this line)
Ok

BASIC COMMANDS AND STATEMENTS Page 2-25

Example 2: .

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET"; B
130 IF B> 5000 THEN ERROR 210

210 THEN PRINT "HOUSE LIMIT IS $5000"
130 THEN RESUME 120

400 IF ERR
410 IF ERL

[}

BASIC COMMANDS AND STATEMENTS Page 2-26

2.19 FIELD

Format:

Purpose:

Remarks:

Example:

NOTE:

FIELD{#]{file number’, field width) AS

g e 4 Y T a)
CSTTING variadbLs, ..,

To allocate space for variables in a random file
buffer.

To get data out of 2 random buffer after a GET
or to enter data before a PUT, a FIELD statement
must have been executed.

{file number” is the number under which the file
was OPENed. (field width) is the number of
characters to be allocated to string variable.
For example,

FIELD 1, 20 AS N§, 1C AS IDS$, 40 AS ADDS

allocates the first 20 positions (bytes) in the
random file buffer to the string variable NS,
the next 10 positions to IDS, and the next 40
positions to ADDS$. FIELD does NOT place any data
in the random file buffer. (See LSET/RSET and
GET).

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPENed.
Otherwise, a "Field overflow" error occurs.

(The default record length is 256.)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in effect at the same
time.

See Appendix B.

Do not use a FIELDed variable name in an INPUT
or LET statement. Once a variable name 1s
FIELDed, it points to the correct place in the
random file buffer. If a subsequent INPUT or
LET statement with that variable name is
executed, the variable's pointer is moved to
string space.

BASIC COMMANDS AND STATEMENTS Page 2-27

2.20 FOR ... NEXT

Format:

Purpose:

Remarks:

FOR <variable»=x TO y [STEP z]

NEXT [(variable)] [,{variableD...]
where x, y and z are numeric expressions.

To allow a series of instructions to be
performed in a loop a given number of times.

(variable? is used as a counter. The first
numeric expression (x) is the initial value of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is incremented by the amount
specified by STEP. A check is performed to see
if the value of the counter is now greater than
the final value (y). If it is not greater,
BASIC branches back to the statement after

the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is
a FOR...NEXT loop. If STEP is not specified,
the increment is assumed to be one. If STEP is
negative, the final value of the counter is set
to be less than the initial value. The counter
is decremented each time through the loop, and
the loop is executed until the counter is less
than the final value.

Nested Loops

FOR...NEXT loops may be nested, that is, a
FOR...NEXT loop may be placed within the context
of another FOR...NEXT loop. When loops are '
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used for
all of them.

The variable(s) in the NEXT statement may be

BASIC COMMANDS AND STATEMENTS Page 2-28

Example 1:

Example 2:

Example 3:

omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement 1s encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message is issued and execution is
terminated.

10 K=10

20 FOR I=1 TO K STEP 2
30 PRINT TI;
40 K=K+10
50 PRINT K
60 NEXT
RUN

1 20

3 30

5 40

7 50

9 60

Ok

10 J=0

20 FOR I=1 TO J
30 PRINT I

40 NEXT I

RUN

In this example, the loop does not execute
because the initial value of the loop exceeds
the final value.

10 I=5

20 FOR I=1 TO I+5

30 PRINT I;

40 NEXT

RUN
123456782910

Ok

In this example, the loop executes ten times.
The final value of the loop variable is always
set before the initial value is set.

BASIC COMMANDS AND STATEMENTS Page 2-29

2.21 GET

Format:

Purpose:

Remarks:

Example:

GET [#]{file number) [,{record number)]

To read a record from a random disk file into a
random buffer.

{file number)> is the number under which the file
was OPENed. If record number is omitted, the
next record (after the last GET) is read into
the buffer. The lowest possible record number

is 1.

See Appendix B.

BASIC COMMANDS AND STATEMENTS Page 2-30

2.22 GOSUB...RETURN

Format:

Purpose:

Remarks:

Example:

GOSUB (line number)

*

RETURN

To branch to and return from a subroutine.

{line number) is the first line of the
subroutine.

A subroutine may be called any number of times
in a program, and a subroutine may be called
from within another subroutine. Such nesting of
subroutines is limited only by available
memory.

The RETURN statement(s) in a subroutine cause
BASIC to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should logic dictate a return at
different points in the subroutine. Subroutines
may appear anywhere in the program, but it is
recommended that the subroutine be readily
distinguishable from the main program. To
prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around
the subroutine. If the {line number) is not-
valid, a "Undefined line number in xx" error
is reported.

10 GOSUB 40

20 PRINT "BACK FROM SUBROUTINE"
30 END

40 PRINT "SUBROUTINE";
50 PRINT " IN ";

60 PRINT " PROGRESS "
70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

BASIC COMMANDS AND STATEMENTS Page 2-31

2.23 GOTO

Format:

Purpose:

Remarks:

Example:

GOTO <line number)

To branch unconditionally out of the normal
program sequence to a specified line number.

If (line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after 1line number . If the (line-
number> 1is not valid, a "undefined line

number in xx" error is reported.

LIST

10 READ R

20 PRINT "R=";R,

30 A = 3.14*R?2

40 PRINT "AREA =";A

50 GOTO 10

60 DATA 5, 7, 12

Ok

RUN

R =5 AREA = 78.5

R =17 AREA = 153.86
R = 12 AREA = 452.16

?0ut of data in 10
Ok

BASIC COMMANDS AND STATEMENTS Page 2-32

2.24

Format:

Format:

Purpose:

Remarks:

IF...THEN[...ELSE] AND IF...GOTO

IF [expression) THEN <statement(s)>|(line number >
[ELSE . statement(s)> Q {line number)]
IF (expression> GOTO <line number,

[ELSE ¢statement(s)) ‘ ¢line number)]

To make a decision regarding program flow based
on the result returned by an expression.

If the result of expression 1is not zero, the
THEN or GOTO clause is executed. ("true "is
represented by a non-zero value).THEN may be
followed by either a line number for branching
or one or more statements to be executed. GOTO
is always followed by a line number. If the
result of expression 1is zero, the THEN or GOTO
~clause is ignored and the ELSE clause, if
present, is executed. Execution continues with
the next executable statement.

Nesting of IF Statements
IF ...THEN...ELSE ... statements may be nested.
Nesting is limited only by the lenath of the line.
For example

I[F X Y THEN PRINT "GREATER" ELSE IF Y{X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN clauses,
each ELSE is matched with the closest unmatched
THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<C"

will not print "A.C", when AB.

If an IF...THEN statement is followed by a line
number in the direct mode, an "Undefined line"
error results unless a statement with the
specified line number had previously been
entered in the indirect mode.

BASIC COMMANDS AND STATEMENTS Page 2-33

NOTE:

Example 1:

Example 2:

Example 3:

When using IF to test equality for a value that
is the result of a floating point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0
with a relative error of less than 1.0E-6.

200 IF I THEN GET #1,I

This statement GETs record number I if I is not
zero.

100 IF (I{20) AND (I>10) THEN DB= 1979-1:GOTO 300
110 PRINT "OUT OF RANGE"

In this example, a test determines if I 1is
greater than 10 and less than 20. If I is in
this range, DB is calculated and execution
branches to line 300. If I is not in this
range, execution continues with line 110.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT AS

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of a variable (IOFLAG).
If IOFLAG is zero, output goes to the line
printer, otherwise output goes to the terminal.

BASIC COMMANDS AND STATEMENTS Page 2-34

2.25 INPUT

Format:

Purpose:

Remarks:

INPUT ["prompt string">;] <(list of variables)

To allow input from the terminal during program
execution.

When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. If
("prompt string">™ is included, the string is
printed before the question mark. The required
data is then entered at the terminal.

The data that is entered is assigned to the
variable(s) given in variable list . The
number of data items supplied must be the same
as the number of variables in the list. Data
items are sepvarated by commas.

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must aaree with the type specified by the
variable name. (Strings input to an INPUT
statement need not bhe surrounded hy gquotation
marks. However, if the string is surrounded by
quotation marks, the quotation marks are stripoed
off).

Responding to INPUT with too many nr too few
items, or with the wrong type of value (numeric
instead of string, etc.) causes the message "?Redo
from start" to be pbrinted. No assignment »f input
values is made until an acceptable response 1is
given.

BASIC COMMANDS AND STATEMENTS Page 2-35

Examples: 10 INPUT X
20 PRINT X "SQUARED IS" X¢2
30 END
RUN
? 5 (The 5 was typed in by the user

in response to the question mark.)
5 SQUARED IS 25
Ok

LIST

10 PI= 3.14

20 INPUT "WHAT IS THE RADIUS";R

30 A=PI*R/2

40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT

60 GOTO 20

Ok

RUN

WHAT IS THE RADIUS ? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS ?
etc.

BASIC COMMANDS

2.26 INPUT#

Format:

Purpose:

Remarks:

Example:

AND STATEMENTS Page 2-36

INPUTEFile numzery . {variabhle list)
4 o ar > . (varia Xo

h

To read data items from a seguential dizk
and assign them to program variables.

¢

{(file number? is the number used when the file
was OPENed for input. (variable list)> contains
the variable names that will be assigned to the
items in the file. {(The variable type must
match the type specified by the variable name.)
With INPUT#, no question mark is printed, as
with INPUT.

The data items in the file should appear just as
they would if data were being typed in response
to an INPUT statement. With numeric values,
leading spaces, carriage returns and line feeds
are ignored. The first character encountered
that is not a space, carriage return or line
feed is assumed to be the start of a number.

The number terminates on a space, carriage
return, line feed or comma.

If BASIC is scanning the sequential data file
for a string item, leading spaces, carriage
returns and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first
character is a quotation mark ("), the string
item will consist of all characters read between
the first quotation mark and the second. Thus, a
quoted string may not contain a quotation mark
as a character. If the first character of the
string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage or line feed (or after 255 characters
have been read). If end of file is reached when
a numeric or string item is being INPUT, the
item is terminated.

See Appendix B.

BASIC COMMANDS

2.27 KILL

Format:
Purpose:

Remarks:

Example:

AND STATEMENTS Page 2-37

KILL <{filename)

To delete a file from disk.

If a KILL statement is given for a file that is
currently OPEN, a "File already open" error
occurs.

KILL is used for all types of disk files:
program files, random data files and sequential
data files.

200 KILL "MYJOB. BAS"

See also Appendix B.

BASIC COMMANDS AND STATEMENTS Page 2-38

2.28 LET
Format: [LET] (variable)>={expression>
Purpose: To assign the value of an expression to a

variable.

Remarks: Notice the word LET is optional, i.e. the equal
sign is sufficient when assigning an expression
to a variable name.

Example: 110 LET D=12
120 LET E=12*2
130 LET F=12%*4
140 LET SUM=D+E+F

or

110 D=12

120 E=12%*2
130 F=12*4
140 SUM=D+E+F

BASIC COMMANDS AND STATEMENTS Page 2-39

2.29

Format:

Purpose:

Remarks:

LINE INPUT

LINE INPUT {{"prompt string");]<{string variable)

To input an entire line (up to 254 characters)
to a string variable, without the use of
delimiters.

The prompt string is a string literal that is
printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return is
assigned to (string variable).

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a
carriage return/line feed sequence at the
terminal.

A LINE INPUT may be escaped by typing SHIFT-STOP.
BASIC will return to command level and type Ok.
Typing CONT resumes execution at the LINE INPUT.

BASIC COMMANDS AND STATEMENTS Page 2-40

2.30 LINE INPUT#

Format:

Purpose:

Remarks:

Example:

LINE INPUT#{file numbery ,{string variable>

To read an entire line (up to 254 characters),
without delimeters, from a sequential disk data
file to a string variable.

{file number) is the number under which the file
was OPENed. (string variable> is the variable
name to which the line will be assigned. LINE
INPUT# reads all characters in the sequential
file up to a carriage return. It then skips over
the carriage return/line feed sequence, and the
next LINE INPUT# reads all characters up to the
next carriage return. (If a line feed/carriage
return sequence is encountered, it is
preserved.)

LINE INPUT# is espacially useful is each line of
a data file has been broken into fields, or if a
BASIC program saved in ASCII mode is being read
as data by another program.

10 OPEN "O",1,"LIST"

20 LINE INPUT "CUSTOMER INFORMATION?:CS
30 PRINT #1, CS$

40 CLOSE 1

50 OPEN "I",1,"LIST"

60 LINE INPUT #1, CS

70 PRINT C$

80 CLOSE 1

RUN

CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS

Ok

BASIC COMMANDS AND STATEMENTS Page 2-41

2.31 LIST

Format:

Purpose:

Remarks:

LIST [<{line number1)][-][<{line number2)]

To list all or part of the program currently
in memory at the terminal.

BASIC always returns to command level after
a LIST is executed.

Listing is terminated either by the end of the
program or by typing SHIFT STOP.

The format allows the following options:

1. LIST
or
LIST -
All of the program currently in the memory
is listed at the terminal.

2. LIST <{line number 1>
Only the specified line number is listed.

3. LIST {(line numberi1) -
The program is listed beginning at that
line.

4. LIST - {line number2)
All lines from the beginning of the program
through that line are listed.

5. LIST <line number1)> - {line number2)
The entire range is listed.

BASIC COMMANDS AND STATEMENTS Page 2-42

Examples: LIST Lists the program currently
in memory.

LIST 150~ Lists all lines from 150
to the end.

LIST -1000 Lists all lines from the
lowest number through 1000.

LIST 150-1000 Lists lines 150 through
1000, inclusive.

LIST 500 Lists line 500.

BASIC COMMANDS AND STATEMENTS Page 2-43

2.32 LLIST

Purpose:

Remarks:

Example:

LLIST

[<line number1)>][-]{<{line numpear)]

To list all or part of the program currently
in memory at the line printer.

LLIST

BASIC
after
LLIST

assumes a 132-character wide printer.

always returns to command level
an LLIST is executed. The options for
are the same as for LIST.

See the examples for LIST.

BASIC COMMANDS AND STATEMENTS Page 2-44

2.33 LCAD

i s 2 et

Povmat; LOAD (filename){,R]

PUrrose: T load a file from disk into memory.

Temarks: {filename” is the name that was used when the
file was SAVEd. (The default extension .BAS is
supplied.)

LOAD closes all open files and deletes all
variables and program lines currently residing
in memory before it loads the designated
program. However, if the "R" option is used
with LOAD, the program is RUN after it is
LOADed, and all open data files are kept open.
Thus, LOAD with the "R" option may be used tc
chain several programs (or segments of the same
program). Information may be passed between the
programs using their disk data files.

Example: LOAD "MYJOB",R

BASIC COMMANDS AND STATEMENTS Page 2-45

2.34 LPRINT AND LPRINT USING

Format: LPRINT [{(list of expressions)]

LPRINT USING {string exp)>; (list of expressions>

Purpose: To print data at the line printer.

Remarks: Same as PRINT and PRINT USING, except output
goes to the line printer.

LPRINT assumes a 132-character-wide printer.

BASIC COMMANDS AND STATEMENTS Page 2-46

2.35 LSET AND RSET

Format:

Purpose:

Remarks:

Examples:

NOTE:

LSET { string variable>=d{string expressiony
RSET <(string variabled={string expression>

To move data from memory to a random file buffer
(in preparation for a PUT statement).

If (string expression) requires fewer bytes than
were FIELDed to <string variable)», LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to
pad the extra positions.) If the string is too
long for the field, characters are dropped from
the right. Numeric values must be converted to
strings before they are LSET or RSET. See the
MKIS$, MKSS, MKDS functions.

150 LSET AS$=MKSS (AMT)
160 LSET DS$=DESC(S$)

See also Appendix B.

LSET or RSET may also be used with a non-fielded
string variable to left-justify or right-justify
a string in a given field. For example, the
program lines

110 AS=SPACES(20)
120 RSET AS$=NS$S

right-justify the string N$ in a 20-character
field. This can be very handy for formatting
printed output.

BASIC CCMMANDS AND STATEMENTS Page 2-47

2.36 MERGE

Format:

Purpose:

Remarks:

Example:

MERGE <{filename)

To merge a specified disk file intc the program
currently in memory.

(filename)> is the name used when the file was
SAVEd. (The default extension .BAS is supplied.)
The file must have been SAVEd in ASCII format.
(If not, a "Bad file mode" error occurs.)

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting" the program lines on
disk into the program in memory.)

BASIC always returns to command level after
executing a MERGE command.

MERGE "MYJOB"

BASIC COMMANDS AND STATEMENTS Page 2-48
2.37 MIDS

- M T o ¢ n b . — N O A N ¢ P N
Format: MIDS {(SLI’;!’;C} E‘X‘._.."i/, i!i;mj.“f\;vtflnq eXD o -

where n and m are integer expressions and
(string expl) and (string exp2) are string
expressions.

Purpose: To replace a portion of one string with another
string.
MIDS may also be used as a function that returns
a substring of a given string (see section 3.24).

Remarks: The characters in (string expl>, beginning at
position n, are replaced by the characters in
{string exp2). The optional m refers to the
number of characters from (string exp2> that
will be used in the replacement. If m is
omitted, all of (string exp2) is used. However,
regardless of whether m is omitted or included,
the replacement of characters never goes beyond
the original length of {string expl).

Example: 10 AS="KANSAS CITY, MO"
20 MIDS (AS$,14)="KS"
30 PRINT AS
RUN
KANSAS CITY, KS

BASIC COMMANDS AND STATEMENTS Page 2-49

2.38 NAME

Format:
Purpose:

Remarks:

Example:

NAME <old filename) AS (new filename)
To change the name of a disk file.

<old filename)> must exist and <{new filename)
must not exist:; otherwise an error will result.
After a NAME command, the file exists on the
same disk, in the same area of disk space, with
the newname.

Ok
NAME "ACCTS" AS "LEDGER"
Ok

In this example, the file that was formerly
named ACCTS will now be named LEDGER.

BASIC COMMANDS AND STATEMENTS Page 2-50

2.39 NEW

Format: NEW

Purpose: To delete the program currently in memory and
clear all variables.

Remarks: NEW is entered at command level to clear memory

before entering a new program. BASIC always
returns to command level after a NEW is executed.

BASIC COMMANDS AND STATEMENTS Page 2-51

2.40 NULL

Format:

Purpose:

Remarks:

Example:

NULL <integer expression?”

To set the number of nulls to be printed at the
end of each line.

{integer expression) should be 0 or 1 for
Teletype-compatible CRTs. {integer expression)
should be 2 or 3 for 30 cps hard copy printers.
The default value is 0.

Ok

NULL 2

Ok

100 INPUT X

200 IF X>50 GOTO 800

Two null characters will be printed after each
line.

BASIC COMMANDS AND STATEMENTS Page 2-52

2.41 ON ERROR GOTO

Format:

Purpose:

Remarks:

NOTE:

Example:

ON ERROR GOTO <line number>

To enable error trapping and specify the first
line of the error handling subroutine.

Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.,
Syntax errors), will cause a jump to the
specified error handling subroutine. If {line
number > does not exist, an "Undefined line"
error results. To disable error trapping,
execute an ON ERROR GOTO 0. Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO 0 statement that appears in an
error trapping subroutine causes BASIC to

stop and print the error message for the error
that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for
which there is no recovery action.

If an error occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error
handling subroutine. The error trapping is
disabled by the CLEAR command.

10 ON ERROR GOTO 1000

BASIC COMMANDS AND STATEMENTS Page 2-53

2.42 ON...GOSUB AND ON...GOTO

Format:

Purpose:

Remarks:

Example:

ON (expression) GOT2 (list of line numbers.)
ON (expression» GOSUB <list of line numbers~

To branch to one of several specified line
numbers, depending on the value returned when
an expression is evaluated.

The value of (expression> determines which line
number in the list will be used for branching.
For example, if the value is three, the third
line number in the list will be the destination
of the branch. (If the value is a non-integer,
the fractional portion is rounded.)

In the ON...GOSUB statement, each line number in
the list must be the first line number of a
subroutine.

If the value of expression 1is zero or greater
than the number of items in the list (but less
than or equal to 255), BASIC continues with the
next executable statement. If the value of
{expression) is negative or greater than 255, an
"Illegal function call" error occurs.

100 ON L-1 GOTO 150,300,320,390

BASIC COMMANDS

2.43 OPEN

Format:
Purpose:

Remarks:

NOTE:

Example:

AND STATEMENTS Page 2-54

—

OPEN {mode>, [(#]{(file number, .{filename,,

To allow [/0 to a disk rfile.

A disk file must be OPENed before any disk 1/0
operation can be performed on that file. OPEN
allocates a buffer for I/0 to the file and
determines the mode of access that will be utsed
with the buffer.

{mode) is a string expression whose first
character is one of the following:

"o" specifies sequential output mode
nI" specifies sequential input mode
"R" specifies random input/output mode

{file number > is an integer expression whose
value is between one and fifteen. The number is
then associated with the file for as long as it
is OPEN and is used to refer other disk I/O
statements to the file.

{filename) is a string expression containing a
name that conforms to the BASIC rules for disk
filenames.

{reclen) is an integer expression which, if
included, sets the record length for random
files. The default record length is 256 bytes.

A file can be OPENed for sequential input or
random access on more than one file numnber at a
time. A file may be OPENed for output, however,
on only one file number at a time.

10 OPEN "I",2,"INVEN"

See also Appendix B.

BASIC COMMANDS AND STATEMENTS Page 2-55

2.44

Format:

Purpose:

Remarks:

OPTION BASE

OPTION BASE n
where n is 1t or 0

To declare the minimum value for array
subscripts.

The default base is 0. If the statement
OPTION BASE 1

is executed, the lowest value an array subscript
may have is one.

If more than one OPTION BASE statement is
specified in a program, a "Duplicate Definition"
error occurs, until a CLEAR is specified.

BASIC COMMANDS AND STATEMENTS Page 2-56

2.45 ouT

Format:

Purpose:

Remarks:

Example:

ouT I1,J

where I and J are integer expressions in the
range 0 to 255.

To send a byte to a machine output port.

The integer expression I is the port number, and
the integer expression J is the data to be
transmitted. (See INP Function for input port
handling, Section 3.15)

100 ouT 32, 100

BASIC COMMANDS AND STATEMENTS Page 2-57

2.46 POKE

Format:

Purpose:

Remarks:

Example:

POKE I, J
where I and J are integer expressions

To write a byte into a memory location.

The integer expression I is the address of the
memory location to be POKEd. The integer
expression J is the data to be POKEd. J must be
in the range O to 255. I must be in the range

O to 65536.

The complementary function to POKE is PEEK. The
argument to PEEK is an address from which a byte
is to be read. (See PEEK Function, Section 3.27)

POKE and PEEK are useful for efficient data
storage, loading machine code subroutines,

and passing arguments and results to and from
machine code or assembly language subroutines.

10 POKE &H5A00, &HFF

BASIC COMMANDS AND STATEMENTS Page 2-58

2.47 PRINT

Format:
Purpose:

Remarks:

PRINT

[T . R T T R
A T

To output data at the terminal.

If (list of expressions’ is omitted, a blank
line is printed. If <(1list of expressions> is
included, the values of the expressions are
printed at the terminali. The expressions in the
list may be numeric and/or string expressions.
(Strings must be enciosed in quotation marks.)

Print Positions

The position of each printed item is determined

by the punctuation used to separate the items in
the list. BASIC divides the lines into print 2zones
of 14 character positions each. In the list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediately affter the last value.

If a comma or a semicolon terminates the list of
expressicons, the next PRINT statement begins
printing on the same line, spacing accordingly. If
the list of expressions terminates without a comma
or a semicolon, a carriage return is printed at
the end of the line. If the printed line is longer
than the terminal width, BASIC goes to the next
physical line and continues printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 10 (-6) is output as
.000001 and 10 (-7) is output as 1E-7. Double
precision numbers that can be represented with
16 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 1D-16 is output as
.0000000000000G01 and 'D-17 is output as 1D-17.

BASIC COMMANDS AND STATEMENTS Page 2-59

A question mark may be used in place of the word
PRINT in a PRINT statement.

Example 1: 10 X=5
20 PRINT X+5, X-5, X*(-5), X5
30 END
RUN
10 0 -25 3125
ok

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

Example 2: LIST
10 INPUT X
20 PRINT X "SQUARED IS" X2 "AND";
30 PRINT X "CUBED IS" X3
40 PRINT
50 GOTO 10
0Ok
RUN
29
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21

21 SQUARED IS 441 AND 21 CUBED IS 9261
?

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line, and line 40 causes a
blank line to be printed before the next prompt.

Example 3: 10 FOR X = 1 TO 5
20 J=J+5
30 K=K+10
40 ?2J;K;
50 NEXT X
Ok
RUN
5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don't
forget, a number is always followed by a space
and positive numbers are preceded by a space.)
In line 40, a question mark is used instead of
the word PRINT.

BASIC COMMANDS AND STATEMENT Page 2-60

2.48

PRINT USING

Format:

Purpose:

Remarks
and
Examples:

n spaces

PRINT USING string exp’; <{list of expressions,

To print strings and/or numbers using a specified
format, possibly intermixed with text.

¢list of expressions, is comprised of the string
expressions or numeric expressions that are to
be printed, separated by semicolons. {string
exp) 1s a string literal (or variable) that is
comprised of special formatting characters.
These formatting characters (see below)
determine the field and the format of the
printed strings or numbers.

String Fields

When PRINT USING 1is used to print strings, one
of three formatting characters may be used to
format the string field:

Specifies that only the first character in the
given string is to be printed.

Specifies that 2+n characters from the string

are to be printed. If the double quotation marks
are typed with no spaces, two characters will be
printed; with one space, three characters will be
printed, and so on. If the string is longer than
the field, the extra characters are ignored. If
the field is longer than the string, the string
will be left-justified in the field and padded
with spaces on the right.

Example:

10 AS="LOOK" :BS="0UT"

30 PRINT USING "!";AS$;BS

40 PRINT USING " ";AS;BS

50 PRINT USING " ".AS;BS;"I"
RUN

LO

LOOKOUT

LOOK ouTr !!

BASIC COMMANDS AND STATEMENTS Page 2-61

ll&ll

Specifies a variable length string field. When
the field is specified with "&", the string is
output exactly as input. Example:

10 A$="LOOKX": B3="0UT"

20 PRINT USING "1!";AS;
30 PRINT USING "&";BS
RUN
LOUT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to
format the numeric field:

A number sign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be
right-justified (preceded by spaces) in the
field.

A decimal point may be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as O if
necessary). Numbers are rounded as necessary.

PRINT USING "##.##";.78

0.78
PRINT USING "###.4##";987.654
987.66
PRINT USING "##.## ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.

A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number.

BASIC COMMANDS AND STATEMENTS Page 2-62

* %

$S

**s

A minus sian at the end of the format field will
cause negative numbers to be printed with a
trailing minus sian.

PRINT USING "+&#, 2z ;~68.35,2.4,55.8,. .3
-58.95 +2.40 = 35,860 - 0.90
PRINT USING "##.#é%- ":~-68.95,22.449,-7.01
68.95- 22.45 7.01-

A double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits.

PRINT USING "**§.# ";12.39,-0.9,765.1
*12.4 *-0.9 765.1

A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $S.
Negative numbers cannot be used unless the minus
sign trails to the right.

PRINT USING "SS###.#4";456.78
$ 456.78

The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be astersk-filled and a
dollar sign will be printed before the number.
**S gpecifies three more digit positions, one of
which is the dollar sign.

PRINT USING "**S##.##";2.34
*k*x52.34

A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential format.

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.##,"; 1234.5
1234.50,

BASIC COMMANDS AND STATEMENTS Page 2-63

TTTT Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponen=ial format. The four carats allow space
for E+xx to be printed. Any decimal point
position may be specified. The significant digits
are left-justified, and the exponent is adjusted.
Unless a leading + or trailing + or - is specified,
one digit position will be used to the left of the
decimal point to print a space or a minus sign.

PRINT USING "##.#% ". 234.56
2.35E+02 TTTT

PRINT USING ".#### -";888888
.8889E+06 TTTT

PRINT USING "+.##% ".123
+.12E+03 TTTT

% If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a percent
sign will be printed in front of the rounded
number.

PRINT USING "##.##";111.22
$111.22

PRINT USING ".##";.999
$1.00

If the number of digits specified exceeds 24, an
"Illegal function call" error will result.

10 A$=" JOHN ###.#% ! PETER & "

20 BS="***" : C=123.457

30 LPRINT USING A$;C;B$

40 LPRINT USING AS$;C,BS$,BS

50 LPRINT USING AS$;C;B$;BS,C
RUN

JOHN 123.46 * PETER

JOHN 123.46 * PETER ***

JOHN 123.46 * PETER *** JOHN 123.46

BASIC COMMANDS AND STATEMENTS Page 2-64

2.49 PRINT# AND PRINT# USING

Format: PRINT#{filenumber), [USING{string exp);) list of exps
Purpose: To write data to a sequential disk file.
Remarks: {filenumber? is the number used when the file

was OPENed for output. {string exp) is

comprised of formatting characters as described

in Chapter 2, PRINT USING. The expre581ons in

{list of expressions)> are the numeric and/or string
expressions that will be written to the file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk, just
as it would be displayed on the terminal with a
PRINT statement. For this reason, care should be
taken to delimit the data on the disk, so that
it will be input correctly from the disk.

In the list of expressions, numeric expressions
should be delimited by semicolons. For example,

PRINT#1,A;B;C;X;Y;2

(If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to disk.)

String expre551ons must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions.

For example, let AS="CAMERA" and BS$="93604-1".
The statement

PRINT#1,AS;BS

would write CAMERA93604-1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the problem,
insert explicit delimiters into the PRINT#
statement as follows:

PRINT#1,AS;",";BS
The image written to disk is

CAMERA,93604-1

BASIC COMMANDS AND STATEMENTS Page 2-65
which can be read back into two string variables.
If the strings themselves contain commas,
semicolons, significant leading blacks, carriage
recurns, or line feeds, write them to disk
surrounded by explicit quotation marks,
CHRS (34).

For example let AS="CAMERA, AUTOMATIC" andBs$="
93604-1". The statement

PRINT#1,AS$;BS

would write the following image to disk:
CAMERA, AUTOMATIC 93604-1

and the statement

INPUT#1,A$,BS$

would input "CAMERA" to AS$ and

"AUTOMATIC 93604-1" to BS. To separate these
strings properly on the disk, write double
quotes to the disk image using CHR$(34). The
statement .

PRINT#1, CHRS(34);CHRS$(34);CHRS(34);BS;CHRS(34)
writes the following image to disk:

"CAMERA, AUTOMATIC"" 93604-1"

and the statement

INPUT#1,AS$,BS

would input "CAMERA, AUTOMATIC" to AS$ and
" 94603-1" to BS.

The PRINT# statement may also be used with the
USING option to control the format of the disk
file. For example:
PRINT#1,USING"SS###.##,";J;:K;L

For more examples using PRINT#, see Appendix B.

See also WRITE#.

BASIC COMMANDS

2.50 PUT

Format:

Purpose:

Remarks:

Example:

AND STATEMENTS Page 2-66

PUT [#]<{file number>[,{record number)]

To write a record from a random buffer to a
random disk file.

{file number> is the number under which the file
was OPENed. If record number 1is omitted, the
record will have the next available record
number (after the last PUT). The lowest possible
record number is 1.

See Appendix B.

BASIC COMMANDS AND STATEMENTS Page 2-67

2.51 RANDOMIZE

Format:
Purpose:

Remarks:

Example:

NOTE:

RANDOMIZE ({<{expression)]
To reseed the random number generator.

If (expression) is omitted, BASIC suspends
program execution and asks for a value by
printing

Random Number Seed (-32768 to 32767)?
before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every time
the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the
argument with each RUN.

10 RANDOMIZE
20 FOR I=1 TO 5
30 PRINT RND;:
40 NEXT 1
RUN
Random Number Seed (-32768 to 32767)?
3 (user types 3)
.88598 .484668 .586328 .119426 .709225
Ok
RUN
Random Number Seed (-32768 to 32767)7?
4 (user types 4)
.803506 .162462 .929364 .292443 .322921
Ok
RUN
Random Number Seed (-32768 to 32767)?
3 (same sequence as first RUN)
.88598 .484668 .586328 .119426 .709225
Ok

The following construction should be used to
generate a really random start value.

10 RANDOMIZE 256 * PEEK(&H6011) + PEEK(&H6010) - 32768

BASIC COMMANDS AND STATEMENTS Page 2-68

2.52 READ

Format:

Purpose:

Remarks:

READ <(list of variables)>

ot = T)
D rend viaLues

“hem Lo variables.

A READ statement must always be used in
conjunction with a DATA statement. REAL
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a "Syntax
error" will result.

A single READ statement may access one or more
DATA statements (they will be accessed in
order), or several READ statements may access
the same DATA statement. If the number of
variables in (list of variables) exceeds the
number of elements in the DATA statement(s), an
OUT OF DATA message is printed. If the number
of variables specified is fewer than the number
of elements in the DATA statment(s), subsequent
READ statements will begin reading data at the
first unread element. If there are no subsequent
READ statements, the extra data is ignored.

To reread DATA statements from the start, use
the RESTORE statement

80 FOR I=1 TO 10

90 READ A(I)

100 NEXT I

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values from the
DATA statements into the array A. After execution,
the value of A(1) will be 3.08, and so on.

BASIC COMMANDS AND STATEMENTS Page 2-69

Example 2:

LIST

10 PRINT "CITY", "STATE", "ZIP"

20 READ CS$, S$, 2

30 DATA "DENVER,", COLORADO, 80211
40 PRINT CS, SS, 2

Ok

RUN

CITY STATE ZIP
DENVER, COLORADO 80211
Ok

This program READs string and numeric data from
the DATA statement in line 30.

BASIC COMMANDS AND STATEMENTS Page 2-70

2.53 REM

Format: REM (remark) or 'J{remark>

Purpose: To allow explanatory remarks to be inserted in a
program.

Remarks: REM statements are not executed but are output

exactly as entered when the program is listed.

REM statements may be branched into (from a GOTO
or GOSUB statement), and execution will continue
with the first executable statement after the
REM statement.

Example: .

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1 TO 20
140 SUM=SUM + V (I)

or,

120 FOR I=1 TO 20 : 'CALCULATE AVERAGE VELOCITY
130 SUM=SUM+V(I)
140 NEXT I

or,

120 ' This is a remark

BASIC COMMANDS AND STATEMENTS Page 2-71

2.54 RENUM

Format:
Purpose:

Remarks:

NOTE:

Examples:

RENUM [{new =~umber»! 7, [{old number> ! [, {increment>]!

To renumber proaram lines.

<{new number> is the first line number to be used
in the new sequence. The default is 10. {old
number,” is the line in the current program where
renumbering is to begin. The default is *the
first line of the program. {increment> is the
increment to be used in the new sequence. The
default is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ON....GOTO,
ON...GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number
appears after one of these statements, the error
message "Undefined line xxxxx in yyyyy" is
printed. The incorrect line number reference
(xxxxx) is not changed by RENUM, but line number
YYYYY may be changed.

RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10,20 and 30)
or to create line numbers greater than 65529.

An "Illegal function call"” error will result.

RENUM Renumbers the entire program.
The first new line number
will be 10. Lines will
increment by 10.

RENUM 300,,50 Renumbers the entire pro-
pram. The first new line
number will be 300. Lines
will increment by 50.

RENUM 1000,909)20 Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

BASIC COMMANDS AND STATEMENTS Page 2-72

Format: EraTOprR [Z1line number]

Furpose: T nallow DATA staresments Lo oDe revead I7om &
specified point.

Remarks: After a RESTORE statement is executed, the next
READ statement accesses the first item in the
first DATA statement in the program. If {line
number > is specified, the next READ statement
accesses the first item in the specified DATA
statement.

Example: 10 READ A,B,C

20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 7%

BASIC COMMANDS AND STATEMENTS

2.56 RESUME

Formats: RESUME

RESUME O
RESUME NEXT
RESUME {line numb

Purpose: To continue progr

recovery procedur

Remarks: Aany one of the fo

used, depending u
resume:

RESUME
or
RESUME O

RESUME NEXT

RESUME
{line number ?

A RESUME statemen
error" message to
routine is specif

10 ON ERROR GOTO

Example:

900 IF (ERR=230)A
AGAIN": RESUME 80

Page 2-73

er)

am execution after an error
e has been performed.

ur formats shown above may be
pon where execution is to

Execution resumes at the
statement which caused the
error.

Execution resumes at the
statement immediately fol-
lowing the one which caused
the error.

Execution resumes at

{line number?.

t causes a "RESUME without

be printed, if no error trap

ied or no error has occured.

900

ND(ERL=90)THEN PRINT "TRY

BASIC COMMANDS AND STATEMENTS Page 2-74

2.57 RUN

Format 1: RUN ["line number>]
Purpose: To execute the program currently in memory.
Remarks: If <line number > is specified, execution begins on

that line. Otherwise, execution begins at the
lowest line number.

Example: RUN

Format 2: RUN (filename>[,R]
Purpose: To load a file from disk into memory and run it.

Remarks: {filename > is the name used when the file was
SAVEd. (The default extension .BAS is supplied.)

RUN closes all open files and deletes the
current contents of memory before loading the
designated program. However, with the "R"
option, all data files remain OPEN.

Example: RUN "NEWFIL",R

See also Appendix B.

BASIC COMMANDS AND STATEMENTS Page 2-75

2.58 SAVE

Format:
Purpose:

Remarks:

Examples:

SAVE { filename»{,a | ,P]
To save a program file on disk.

{filename > is a quoted string that conforms to
the BASIC requirements for filenames. (The
default extension .BAS is supplied.) If
{filename) already exists, the file will be
written over.

Use the A option to save the file in ASCII
format. Otherwise, BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access
requires that files be in ASCII format. For
instance, the MERGE command requires an ASCII
format file.

Use the P option to protect the file by saving
it in an encoded binary format. When a protected
file is later RUN (or LOADed), any attempt to
list or edit it will fail.

SAVE"COM2" A
SAVE"PROG" ,P

See also Appendix B.

BASIC COMMANDS AND STATEMENTS Page 2-76

2.59 STOP

Format:

Purpose:

Remarks:

Example:

STOP

To terminate program execution and return to
command level.

STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement
does not close files.

BASIC always returns to command level after a
STOP is executed. Execution is resumed by
issuing a CONT command.

10 INPUT A,B,C
20 K=A 2*5.3:L=BT3/.26
30 SsTO
40 M=C*K+100:PRINT M
RUN
21,2,3
BREAK IN 30
Ok
PRINT L
30.7692
Ok
CONT
115.9
Ok

BASIC COMMANDS AND STATEMENTS Page 2-77

2.60 SWAP

Format: SWAP (variable>,(variable>

Purpose: To exchange the values of two variables.
Remarks: Any type variable may be SWAPped (integer,

single precision, double precision, string),
but the two variables must be of the same type or
a "Type mismatch" error results.

Example: LIST
10 AS=" ONE "™ : BS$=" ALL" : CS="FOR"
20 PRINT AS$ CS BS
30 SWAP AS, BS
40 PRINT AS CS$ BS
RUN
Ok
ONE FOR ALL
ALL FOR ONE
Ok

BASIC COMMANDS AND STATEMENTS Page 2-78

2.61 TRON/TROFF

Format:

Purpose:

Remarks:

Example:

TRON

TROFF

To trace the execution of program statements.

As an aid in debugging, the TRON statement
(executed in either the direct or indirect mode)
enables a trace flag that prints each line
number of the program as it is executed. The
numbers appear enclosed in square brackets. The
trace flag is disabled with the TROFF statement
(or when a NEW command is executed).

TRON

Ok

LIST

10 K=10

20 FOR J=1 TO 2

30 L=K + 10

40 PRINTJ;K;L

50 K=K+10

60 NEXT

70 END

Ok

RUN

[10][20]([30][40] 1 10 20
[50]([60][30]([40]) 2 20 30
[50] [60][70]

Ok

TROFF

Ok

BASIC COMMANDS AND STATEMENTS Page 2-79

2.62 VARPTR

Format 1:
Format 2:

Action:

Warning:

Examples:

VARPTR (variable name))
VARPTR {(#<fila numbars)

Format 1: Returns the address of the first byte
of data identified with (variable name». A value
must be assigned to variable name prior to
execution of VARPTR. Otherwise an "Illegal
function call" error results. Any type variable
name may be used (numeric, string, array), and
the address returned will be an integer in the
range 32767 to -32768. If a negative address is
returned, add it to 65536 to obtain the actual
address.

VARPTR is usually used to obtain the address of
a variable or array so it may be passed to an
assembly language subroutine. A function call of
the form VARPTR(A(O)) is usually specified when
passing an array, so that the lowest-addressed
element of the array is returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addressed of the arrays change whenever a new
simple variable is assigned.

Format 2: Returns the starting address of the
disk I/O buffer assigned to <file number).

100 XX=USR(VARPTR(Y))
or

10 REM SEE WARNING
20 DEFINT A-Z
30 DIM X(10)
40 X(8)=31
50 A=VARPTR (X(8))
60 I = 111 : REM CAUSES A SHIFT OF THE ARRAY
70 LPRINT A
80 LPRINT PEEK (A+1);PEEK(A)
90 LPRINT
100 A=VARPTR(X(8))
110 LPRINT A
120 LPRINT PEEK(A+1);PEEK(A)
RUN
-27865
0 o0

-27859
0 31

BASIC COMMANDS AND STATEMENTS Page 2-80

2.63 WAIT

Format:

Purpose:

Remarks:

CAUTION:

Example:

WAIT {(port number), I[,J]
where I and J are integer expressions

To suspend program execution while monitoring the
status of a machine input port.

The WAIT statement causes execution to be suspended
until a specified machine input port develops a
specified bit pattern. The data read at the port is
exclusive OR'ed with the integer expression J, and
then AND'ed with I. If the result is zero, BASIC
loops back and reads the data at the port again. If
the result is nonzero, execution continues with the
next statement. If J is omitted, it is assumed to
be zero.

It is possible to enter an infinite loop with the
WAIT statement, in which case it will be necessary
to manually restart the machine.

100 WAIT 32,2

BASIC COMMANDS AND STATEMENTS Page 2-81

2.64 WHILE...WEND

Format: WHILE {expressinn’

'{loop statements)]

WEND

Purpose: To execute a series of statements in a loop as
long as a given condition is true.

Remarks: If {expression) is not zero (i.e., true), {loop
statement)> are executed until the WEND
statement is encountered. BASIC then returns to
the WHILE statement and checks (expression). If
it is not true, execution resumes with the
statement following the WEND statement.

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE.

An unmatched WHILE statement causes a "WHILE
without WEND" error, and an unmatched WEND
statement causes a "WEND without WHILE" error.

Example: 90 'BUBBLE SORT ARRAY AS

100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS

115 FLIPS=0
120 FOR I=1 TO J-1
130 IF AS(I)>AS$(I+1) THEN
SWAP AS$(I),AS(I+1):FLIPS="
140 NEXT I
150 WEND

NOTE: WHILE...WEND is not implemented in most BASICs.

BASIC COMMANDS AND STATEMENTS Page 2-82

2.65 WIDTH

Format:

Purpose:

Remarks:

WIDTH [LPRINT] {integer expression)

To set the printed line width in number of
characters for the terminal or line printer.

If the LPRINT options is omitted, the line width
is set at the terminal. If LPRINT is included,
the line width is set at the line printer.

{integer expression) must have a value in the
range 15 to 255. The default width is 72
characters.

If { integer expression?> is 255, the line width
is "infinite," that is, BASIC never inserts a
carriage return. However, the position of the
cursor of the print head, as given by the POS or

LPOS function, returns to zero after position
255.

BASIC COMMANDS AND STATEMENTS Page 2-83

2.66 WRITE

Format:
Purpose:

Remarks:

Example:

WRITE [{list of expressions)]
To output data at the terminal

If {list of expressions> is omitted, a blank
line is output. If <{list of expressions) is
included, the values of the expressions are
output at the terminal. The expressions in the
list may be numeric and/or string expressions,
and they must be separated by commas.

When the printed items are output, each item
will be separated from the last by a comma.
Printed strings will be delimited by quotation
marks. After the last item in the list is
printed, BASIC inserts a carriage return/line
feed.

WRITE outputs numeric values using the same
format as the PRINT statement without leading
and trailing blanks.

10 A=80:B=90:CS$="THAT'S ALL"
20 WRITE A,B,CS$
RUN
80, 90,"THAT'S ALL"
Ok

BASIC COMMANDS AND STATEMENTS Page 2-84

2.67 WRITE#

Format:
Purpose:

Remarks:

Example:

WRITE#{filenumber >,(list of expressions.>
To write data to a sequential file.

{file number)> is the number under which the file
was OPENed in "O" mode. The expressions in the
list are string or numeric expressions, and they
must be separated by commas.

The difference between WRITE# and PRINT# is that
WRITE# inserts commas between the items as they
are written to disk and delimits strings with
quotation marks. Therefore, it is not necessary
for the user to put explicit delimiters in the
list. A carriage return/line feed sequence is
inserted after the last item in the list is
written to disk.

Let AS$="CAMERA" and BS$="93604-1".
The statement:

WRITE#1,AS,BS

writes the following image to disk:
"CAMERA","93604-1"

A subsequent INPUT# statement, such as:
INPUT#1,AS$,BS

would input "CAMERA" to AS$ and "93604-1" to BS.

	p2kdb_00_0001
	p2kdb_00_0002
	p2kdb_00_0003
	p2kdb_01_0001
	p2kdb_01_0002
	p2kdb_01_0003
	p2kdb_01_0004
	p2kdb_01_0005
	p2kdb_01_0006
	p2kdb_01_0007
	p2kdb_01_0008
	p2kdb_01_0009
	p2kdb_01_0010
	p2kdb_01_0011
	p2kdb_01_0012
	p2kdb_01_0013
	p2kdb_01_0014
	p2kdb_01_0015
	p2kdb_02_0001
	p2kdb_02_0002
	p2kdb_02_0003
	p2kdb_02_0004
	p2kdb_02_0005
	p2kdb_02_0006
	p2kdb_02_0007
	p2kdb_02_0008
	p2kdb_02_0009
	p2kdb_02_0010
	p2kdb_02_0011
	p2kdb_02_0012
	p2kdb_02_0013
	p2kdb_02_0014
	p2kdb_02_0015
	p2kdb_02_0016
	p2kdb_02_0017
	p2kdb_02_0018
	p2kdb_02_0019
	p2kdb_02_0020
	p2kdb_02_0021
	p2kdb_02_0022
	p2kdb_02_0023
	p2kdb_02_0024
	p2kdb_02_0025
	p2kdb_02_0026
	p2kdb_02_0027
	p2kdb_02_0028
	p2kdb_02_0029
	p2kdb_02_0030
	p2kdb_02_0031
	p2kdb_02_0032
	p2kdb_02_0033
	p2kdb_02_0034
	p2kdb_02_0035
	p2kdb_02_0036
	p2kdb_02_0037
	p2kdb_02_0038
	p2kdb_02_0039
	p2kdb_02_0040
	p2kdb_02_0041
	p2kdb_02_0042
	p2kdb_02_0043
	p2kdb_02_0044
	p2kdb_02_0045
	p2kdb_02_0046
	p2kdb_02_0047
	p2kdb_02_0048
	p2kdb_02_0049
	p2kdb_02_0050
	p2kdb_02_0051
	p2kdb_02_0052
	p2kdb_02_0053
	p2kdb_02_0054
	p2kdb_02_0055
	p2kdb_02_0056
	p2kdb_02_0057
	p2kdb_02_0058
	p2kdb_02_0059
	p2kdb_02_0060
	p2kdb_02_0061
	p2kdb_02_0062
	p2kdb_02_0063
	p2kdb_02_0064
	p2kdb_02_0065
	p2kdb_02_0066
	p2kdb_02_0067
	p2kdb_02_0068
	p2kdb_02_0069
	p2kdb_02_0070
	p2kdb_02_0071
	p2kdb_02_0072
	p2kdb_02_0073
	p2kdb_02_0074
	p2kdb_02_0075
	p2kdb_02_0076
	p2kdb_02_0077
	p2kdb_02_0078
	p2kdb_02_0079
	p2kdb_02_0080
	p2kdb_02_0081
	p2kdb_02_0082
	p2kdb_02_0083
	p2kdb_02_0084

